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Abstract 

 

During meiosis, axis formation and synapsis of homologous chromosomes are tightly 

co-ordinated with meiotic recombination. This study investigates the influence of 

chromosome axis and synaptonemal complex proteins on meiotic crossover 

formation. 

The study involved the characterization of a novel protein, AtASY3, required for 

normal meiosis in Arabidopsis. Analysis of Atasy3 mutants revealed that loss AtASY3 

compromises chromosome axis formation, synapsis and normal levels of crossover 

formation. Further analysis revealed that loss of AtASY3 disrupts the axial 

organization of AtASY1. In separate studies, colleagues found that AtASY3 and 

AtASY1 are able to interact. Together, these results suggest that AtASY3 is a 

functional homologue of the budding yeast axis protein, Red1. Since studies in 

budding yeast indicate that Red1 and Hop1 (homologue of AtASY1) play a key role in 

establishing a bias to favour inter-homologue recombination, this study suggests that 

AtASY3 and AtASY1 may have a similar role in Arabidopsis.  

The study also involved the analysis of the putative phosphorylation site, residue 

T295, on AtASY1. This revealed that T295 is essential for AtASY1-mediated 

crossover formation during meiosis. Additionally, a potential meiotic role for the 

RECQ DNA helicase, AtRECQ4B was investigated, however, the protein does not 

appear to be essential for Arabidopsis meiosis. 
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1.1. Overview of Meiosis 

Meiosis is a specialized cell division in eukaryotes, involving two rounds of nuclear 

division known as meiosis I and meiosis II, after one round of DNA replication. Both 

meiosis I and meiosis II consist of four stages – prophase, metaphase, anaphase 

and telophase. During meiosis I homologous chromosomes separate and during 

meiosis II sister chromatids separate to produce haploid gametes. These divisions 

reduce the chromosome number by half thereby compensating for fertilization, which 

involves the conjugation of two haploid sets of genetic information for the formation of 

a diploid offspring. Meiosis thus ensures chromosome number from generation to 

generation and is therefore essential for sexual reproduction. An important aspect of 

meiosis is homologous recombination, a process that allows the exchange of genetic 

material between paternal and maternal homologous chromosomes resulting in the 

formation of new combinations of alleles. Therefore, meiosis is also crucial for 

producing genetic variation. Meiosis is highly conserved throughout evolution and its 

duration lasts about 33h in Arabidopsis (Armstrong et al., 2003). 

 

1.1.1. Meiosis I: The first meiotic division 

Prior to meiosis, DNA replication occurs during pre-meiotic S phase. Prophase I is 

the first and longest stage of meiosis lasting ~21 hours in Arabidopsis (Armstrong et 

al., 2003). It is divided into five cytologically distinct substages – leptotene, zygotene, 

pachytene, diplotene and diakinesis. Figure 1 is a diagrammatic representation of all 

the stages of meiosis. Early during leptotene, chromosomes condense into thin 

thread-like structures called chromatids. Sister chromatids are held together by a 
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protein complex called cohesin (Sjogren and Nasmyth, 2001). Homologous 

chromosomes start to pair and synapse along their axis via the assembly of a 

proteinaceous structure known as the synaptonemal complex (SC). Meiotic 

recombination is also initiated at certain regions of the chromosomes at this stage. 

Pairing and synapsis is more apparent during zygotene, where chromosomes appear 

relatively thicker. Zygotene is followed by pachytene during which homologous 

chromosomes appear fully synapsed. During diplotene, the SC disassembles and at 

diakinesis, crossovers (COs), which are products of meiotic recombination, are 

visible as chiasmata (singular - chiasma) on paired homologues, also referred to as 

bivalents. Bivalents progressively condense and desynapse along most of their 

lengths except at chiasmata. Subsequently, kinetochore microtubules, a type of 

spindle fibre become attached to specialized protein structures called kinetochores, 

formed on the centromere of each chromosome.  The kinetochore microtubules then 

start to align the bivalents within the cell and at metaphase I bivalents are arranged 

at the equatorial region of the meiotic cell. During anaphase I homologous 

chromosomes separate and move towards either poles of the cell due to shortening 

of spindle fibres. This process is known as disjunction and is followed by telophase I 

which leads to the formation of the dyad stage, in which the cell contains two polar 

groups of partially decondensed chromosomes. The cell then initiates a second 

round of nuclear division. 

 

1.1.2. Meiosis II: The second meiotic division 

The second meiotic division is very similar to a mitotic division. During prophase II, 

each of the two poles of the meiotic cell consist of a pair of sister chromatids. At 
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metaphase II, the sister chromatids align on the equatorial plate while remaining 

attached to the spindle fibres. During anaphase II, sister chromatids separate and 

migrate towards the poles of the cell. This leads to telophase II, where one member 

of each chromosome is present at each pole. This is followed by the formation of a 

nuclear envelope around each set of chromosome and subsequently cytokinesis, 

which generates four haploid cells. 
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Figure 1. Diagrammatic representation of meiosis.  
DNA synthesis occurs in the diploid parent cell prior to meiosis. During prophase I of meiosis 
homologous chromosomes pair and synapse and recombination events take place between 
them. Homologous chromosomes align during metaphase I, followed by their separation at 
anaphase I. This is followed by a second division at anaphase II which separates the sister 
chromatids leading to the formation of four haploid gametes. 
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1.2. Sister chromatid cohesion 

Prior to the onset of mitosis and meiosis sister chromatid cohesion is established 

following DNA replication in S phase (Guacci et al., 1994). Sister chromatid cohesion 

is essential for the attachment of the kinetochores of sister chromatids to 

microtubules emanating from the opposite spindle poles in both mitotic and meiotic 

cell. This attachment allows pairs of chromatids to be recognized and aligned at the 

equator of the metaphase spindle leading to the subsequent correct segregation of 

sister chromatids during both mitosis and meiosis II (Uhlmann and Nasmyth, 1998). 

Sister chromatid cohesion is maintained by a ring-like multi-protein complex known 

as the cohesin (Michaelis et al., 1997, Uhlmann and Nasmyth, 1998). Cohesin 

ranges around 40nm in diameter and holds sister chromatids together during both 

mitosis and meiosis (Gruber et al., 2003). Cohesin accumulates at ~50kb region 

around each centromere and at AT rich and intergenic regions along chromosome 

arms during S phase (Uhlmann, 2004). Studies in budding yeast have revealed that 

the mitotic cohesin complex consists of four core proteins – the SMC proteins SMC1 

and SMC3, the Kleisin family member SCC1 and SCC3, while the meiotic cohesin 

complex contains the same proteins, with the exception that SCC1 is replaced by 

another Kleisin member, REC8 (Guacci et al., 1997, Michaelis et al., 1997). SMC1 

and SMC3 have five structural domains – two α  helices, a globular hinge domain 

and N and C terminal globular domains containing nucleotide binding motifs called 

Walker A and Walker B respectively (Losada and Hirano, 2005). SMC1 and SMC3 

are thought to fold in half at the hinge domain producing anti parallel coil interaction, 

bringing the Walker A and Walker B motifs together to create a region with ATPase 

activity, which is thought to be required for the association of SMC proteins with DNA 
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(Arumugam et al., 2003, Haering et al., 2002, Nasmyth and Haering, 2005). 

Biochemical studies in which yeast recombinant proteins were co-expressed in insect 

cells showed that SMC1 and SMC3 monomers interact with each other in the hinge 

region to form a stable V-shaped heterodimer (Haering et al., 2004). Further studies 

suggest that the head of SMC1 interacts with the carboxyl (C) -terminal of SCC1 and 

the head of SMC3 interacts with the amino (N) -terminal of SCC1 to form a ring 

structure that is proposed to hold the sister chromatids together (Gruber et al., 2003, 

Haering et al., 2002, Haering et al., 2004). REC8, component of the meiotic cohesion 

complex shares functional similarities in its N and C termini with its mitotic 

counterpart SCC1 (Gruber et al., 2003). Furthermore, biochemical studies revealed 

that REC8 can bind to SMC1 and SMC3 via interactions with its C and N termini 

respectively thus attributing to a structural role of REC8 in the meiotic cohesion 

complex (Gruber et al., 2003). SCC3 is the fourth subunit of the cohesin complex and 

studies in yeast have shown that it binds directly to the C-terminal of SCC1, 

presumably to stabilise the cohesin complex (Haering et al., 2002). The cohesin 

complex is highly conserved among organisms. SMC1β, SMC3, REC8 and STAG3 

(homologue of SCC3) have been identified as components of the mammalian 

cohesin complex and shown to interact with each other (Eijpe et al., 2003, Lee et al., 

2003, Prieto et al., 2001, Revenkova et al., 2001). Arabidopsis AtSMC1 and AtSMC3 

have similar structural properties as their yeast homologues and loss of these 

proteins result in defects in embryo and endosperm development (Lam, 2005, Liu 

Cm et al., 2002). Immunolocalization studies revealed that AtSMC3 localizes along 

the entire length of chromosomes by pachytene. AtSMC3 remains associated with 

sister chromatids until diakinesis after which a substantial AtSMC3 signal is observed 
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at microtubule spindle until telophase I suggesting a role of AtSMC3 in spindle 

assembly as well as sister chromatid cohesion (Lam, 2005). In Arabidopsis, AtSYN1 

has been identified as a homologue of the yeast REC8 (Bai et al., 1999). Cytological 

analysis revealed that Atsyn1 mutants possess abnormal chromosomes along with 

extensive chromosome fragmentation and bridges at anaphase I resulting in the 

formation of polyads and the subsequent defect in reproductive growth (Bai et al., 

1999). Immunolocalization studies indicated that AtSYN1 localizes along the full 

length of meiotic chromosomes arms in early prophase I. (Cai, 2003). Recently, 

AtSCC3 has also been shown to be involved in sister-chromatid cohesion 

(Chelysheva, 2005). Cytological analysis showed that Atscc3 mutants exhibit low 

levels of chromosome fragmentation and bridges at metaphase I suggesting that 

AtSCC3 is required for normal reproductive development (Chelysheva, 2005). 

Immunolocalization studies indicate that AtSCC3 associates with meiotic 

chromosomes from leptotene through to metaphase I, supporting a role for the 

protein as a component of the cohesin complex (Chelysheva, 2005).  

 

 

1.3. Pairing and synapsis of homologous chromosomes 

Pairing and synapsis of homologous chromosomes are essential for the correct 

recognition, juxtaposition and alignment of homologues during meiosis. 
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1.3.1. Homologous chromosome pairing 

Telomeres are thought to play an important role during early chromosome pairing. 

Telomeres are composed of tandem repeat sequences at chromosome ends thereby 

protecting them from shortening or degradation. Telomeric repeats are highly 

conserved although their numbers vary enourmously between organisms. 

Arabidopsis telomeres are composed of the repeat sequence 5’-TTTAGGG-3’ and 

range between 2-5kb in length (Riha and Shippen, 2003). Prior to meiosis in 

eukaryotes, the centromeres of chromosomes are found clustered near spindle poles 

while their telomeres are scattered across the other side of nucleus. This is known as 

the ‘Rabl’ orientation of chromosomes (Zickler and Kleckner, 1998). Eventually, 

during early prophase I telomeres become attached to the inner nuclear envelope 

(NE) and subsequently move along the NE to form a cluster towards the microtubule 

organizing centre (MTOC) This orientation of telomeres is known as the ‘bouquet’ 

arrangement (Bass et al., 2000, Scherthan, 2001). Bouquet formation has been 

proposed to facilitate homologue recognition and pairing by bringing homologous 

chromosomes into close association with each other (Bass et al., 2000, 

Golubovskaya et al., 2002, Harper et al., 2004). In hexaploid wheat, chromosome 

pairing depends on the Ph1 locus, which ensures pairing between homologues and 

not homoeologues (Riley et al., 1959). Nevertheless, bouquet formation during early 

wheat meiosis has been proposed to facilitate pairing of sub-telomeric regions, which 

subsequently facilitates pairing along homologous chromosomes (Lukaszewski, 

1997). Similarly, recent FISH analysis in barley (Hordeum vulgare L) using telomere 

probes suggests that telomeres pair to form a bouquet in late G2 (Higgins et al., 

2012). At this stage, the axis protein ASY1 formed continuous signal at subtelomeric 
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but remained as foci or short stretches in the interstitial regions. Subsequent SC 

formation was also found to initiate in the subtelomeric regions, from where it 

polymerized to linear stretches as prophase I progressed. Interestingly, telomeres 

were found to be clustered until late zygotene. This suggests that pairing and 

synapsis in Barley initiate from subtelomeric regions which are in close proximity, 

possibly due to telomere clustering (Higgins et al., 2012). However, studies in 

Sordaria macrospora revealed that homologue pairing occurs prior to the formation of 

the bouquet suggesting that it is not necessary for homologue pairing (Storlazzi et al., 

2003). Therefore, the significance of the bouquet is currently a topic of debate. 

Additionally, it has been suggested that the bouquet may have a role in the regulation 

of recombination and interlock resolution, although these too remain unclear (Zickler 

and Kleckner, 1998). In Arabidopsis, telomeres do not form a classical ‘bouquet’ 

orientation and are instead found to cluster while remaining associated with the 

nucleolus rather than the NE throughout meiotic interphase (Armstrong et al., 2001). 

FISH analysis using sub-telomeric probes revealed that telomeres of homologous 

chromosomes in Arabidopsis pair at the G2-leptotene transition while remaining 

associated with the nucleolus. It is thought that this pairing is mediated by similar 

unique sequences present in the sub-telomeric regions of homologous 

chromosomes, although the exact mechanism of homologue recognition is not yet 

understood (Armstrong et al., 2001). These observations led Armstrong et al. (2001) 

to propose that the clustering of telomeres while remaining associated with the 

nucleolus in Arabidopsis may be equivalent to the bouquet of other species and may 

facilitate homologue pairing.  
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More recent studies suggest that meiotic chromosome pairing is promoted by 

telomere-led rapid meiotic prophase chromosome movements (RPMs) independent 

of bouquet formation (Lee et al., 2012). Studies in S. pombe revealed that dynamic 

movement (~5µm/min) of telomeres clustered them at the spindle pole body within 

the meiotic cell during zygotene and early pachytene (reviewed in Koszul and 

Kleckner, 2009). In maize, live imaging studies revealed that the telomere-led 

movements were involved in movements of individual chromosome segments as well 

as rotations of the entire chromatin during early prophase I (Sheehan and Pawlowski, 

2009). It has been proposed that these telomere-led movements could bring 

homologues into close proximity thereby promoting their pairing by aiding in 

homologue search and recognition. The movements have also been proposed to 

play a role in resolving chromosomal interlocks (Koszul and Kleckner, 2009). 

Telomere movements have also been reported in a wide variety of organisms. 

Molecular studies showed that telomere movements are mediated by cytoskeletal 

motion-generating components that are directly linked to the chromosome ends via 

SUN protein-mediated bridges that span the NE (Chikashige et al., 2006). Defects in 

budding yeast SUN protein, MPS3 and the telomere-cytoskeleton bridge proteins, 

NDJ1 and CMS4 were found to cause defects both in RPMs and homologue pairing 

(Conrad et al., 2008, Conrad et al., 2007, Trelles-Sticken et al., 2000). A recent study 

further analysed the role of RPMs by analysing pairing between between lacI-GFP 

tagged chromosome segements in RPM-defective mutants (Lee et al., 2012). This 

revealed that in cms4∆ and mps3-dAR the number of paired signals was significantly 

reduced compared to the wild-type. Furthermore, time-lapse analysis revealed a 

graded decrease in telomere movements in relation to the severity of chromosome 
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pairing defects in mps3∆, ndj1∆ and cms4∆, suggesting that RPMs are involved in 

chromosome pairing. Interestingly, Mps3, Ndj1 and Csm4 have previously shown to 

be required for bouquet formation (Lee et al., 2012). This raised the possibility that 

RPMs directly promote homologue pairing but separately from any role in bouquet 

formation. In agreement with this, chromosome pairing was found to be less 

defective in mps3-dAR than in ndj1∆ even though telomere clustering appears more 

defective in mps3-dAR than in ndj1∆. This suggests that homologue pairing is 

correlated with RPMs rather than bouquet formation (Lee et al., 2012).  

 

Intriguingly, homologous chromosome recognition and pairing in C. elegans depend 

on heterochromatic repeats, known as pairing centres (PCs)  that are present at one 

end of each chromosome (MacQueen et al., 2005). PCs mediate interaction between 

chromosomes and the mammalian zinc-finger proteins HIM-8 and ZIM 1, 2, 3. This is 

followed by the tethering of these proteins and their bound chromosome sites in a 

patch on the NE during early prophase I. This arrangement has been proposed to 

facilitate homologue recognition by promoting association of homologous PCs 

(Hiraoka and Dernberg, 2009, Osman et al, 2011 and the reference therein). The PC-

NE attachment sites consist of nuclear membrane spanning complexes composed of 

SUN- and KASH-domain proteins SUN-1 and ZYG-12 which link PCs to cytoskeletal 

microtubules (Hiraoka and Dernburg, 2009). It is proposed that ZYG-12 directly 

interacts with dynein motor protein which in turn interacts with microtubules to pull 

apart the associations between PCs. The forces generated are thought to separate 

only non-homologous interactions while leaving the correctly linked robust 
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homologous PCs attached. These events are also thought to release a block 

imposed by SUN-1 which subsequently facilitates chromosome synapsis (Osman et 

al, 2011 and the references within). Both SUN and KASH domain proteins are widely 

conserved among organisms. In addition to MPS3 in S. cerevisiae studies in 

S.pombe have shown that the SUN domain protein, SAD1 mediates telomere 

clustering to spindle pole body via interaction with RAP1/TAZ1/BQT1/BQT2 protein 

complex (Chikashige et al., 2006). Arabidopsis has two SUN domain proteins, 

although their meiotic roles have not yet been characterized (Graumann et al., 2010). 

Thus it is plausible that a similar mechanism involving NE, bridge proteins and 

cytoskeletal microtubules may mediate telomere clustering which may promote 

homologue pairing during Arabidopsis meiosis. 

 

1.3.2. Homologous chromosome synapsis 

Homologous chromosome synapsis during early prophase I is thought to stabilize 

homologue pairing and facilitate homologous recombination. Homologous 

chromosomes synapsis is achieved by the formation of a highly conserved 

proteinaceous structure known as the synaptonemal complex (SC) between each 

pair of homologues. The SC consists of two lateral elements (LEs), each of which are 

formed at the base of each homologue and are connected to each other via 

transverse filaments (TFs) forming a zipper-like tripartite structure (Figure 2B). The 

LEs of the SC are thought to be derived from axial elements (AEs), which comprises 

of axis proteins and components of the cohesin complex (Blat et al., 2002, Klein et 

al., 1999). Immunolocalization studies in yeast revealed that cohesin components 
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REC8 and SMC3 localize along the chromosome axes during early prophase I (Klein 

et al., 1999). Similar observations have been reported for the Arabidopsis cohesin 

components AtSYN1 and AtSMC3 (Cai, 2003, Lam, 2005). In addition, the coiled-coil 

protein RED1 and HORMA domain protein HOP1 have been identified as LE 

components in budding yeast (Hollingsworth et al., 1990, Smith and Roeder, 1997). 

Immunofluorescence studies in wild type S. cerevisiae revealed that RED1 localizes 

along the entire length of chromosomes at pachytene, where it co-localizes with 

ZIP1, the TF protein component of the SC (Smith and Roeder, 1997). Furthermore, 

RED1 localizes to unsynapsed chromosomes present in yeast zip1 mutant which 

lacks TFs. In addition, cytological studies involving wild-type S. cerevisiae, where 

pachytene chromosomes were digested with DNase I and then labelled with histone 

H2B and anti-RED1 antibodies along with 4',6-diamidino-2-phenylindole (DAPI) 

showed significant levels of RED1 staining but greatly reduced histone and DAPI 

staining in the meiocytes. This indicated that RED1 is associated with core of the SC 

and not with chromatin (Smith and Roeder, 1997). These observations suggest that 

RED1 is a component of the axial region of the SC (Smith and Roeder, 1997). It has 

been suggested that yeast RED1 and mammalian SYCP3 are structurally analogous. 

SYCP3, like RED1 also has a coiled-coiled domain in its C-terminus and has been 

shown, together with SYCP2, to localize to LEs of mammalian SC during pachytene 

(Fraune et al., 2012, Yuan et al., 2000).  Furthermore, male sycp3 mice mutants fail 

to form SC and are completely sterile (Yuan et al., 2000). A recent study has also 

identified a coiled-coil protein, PAIR3, which is essential for pairing and synapsis of 

homologous chromosomes in rice. The rice pair3 mutant displays asynaptic 

chromosomes at pachytene and fail to form bivalents at diakinesis resulting in a loss 
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of recombination (Yuan et al., 2009). Immunolocalization studies indicate that PAIR3 

localizes along the length of meotic chromosomes during pachytene in a ZEP1 (TF 

protein of rice SC) – independent manner (Wang et al., 2010a). These results 

suggest that PAIR3 is associated with the LE of the rice SC (Wang et al., 2010a, 

Yuan et al., 2009). Immunolocalisation studies in S. cerevisiae revealed that the 

HORMA domain protein HOP1 also localizes along the entire length of meiotic 

chromosome axes at early prophase I (Hollingsworth et al., 1990, Smith and Roeder, 

1997). Moreover, HOP1 has been shown to co-localize with RED1 at early prophase 

I in wild-type cells. Additionally, HOP1 has been reported to be able to localize to 

unsynapsed AEs in zip1 mutant suggesting that HOP1 associates with AE regions of 

the SC. In accord, hop1 mutant have been reported to lack SC (Hollingsworth et al., 

1990). Recently, two HORMA domain proteins, HORMAD1 and HORMAD2 have 

been shown to be associated with the AEs of mammalian SC (Wojtasz et al., 2009). 

Immunolocalisation studies in mice revealed that both HORMAD1 and HORMAD2 

co-localized with SYCP3 during early prophase I (Wojtasz et al., 2009). In rice, 

immunocytological and electron microscope (EM) analyses suggest that the HORMA 

domain protein PAIR2 associates with AEs at leptotene and zygotene. Mutation in 

pair2 completely eliminates synapsis indicating that PAIR2 plays an essential role in 

homologous chromosome synapsis during rice meiosis (Nonomura et al., 2004). The 

Arabidopsis HORMA domain protein AtASY1 show limited homology to yeast HOP1 

(Caryl et al., 2000). Although AtASY1 is not an AE component, it has been shown to 

associate with the AE by immunolocalisation and immunogold electron microscopy 

(Armstrong et al., 2002). Immunolocalisation studies revealed that AtASY1 localizes 

to meiotic chromosome in early leptotene, when AE first become visible. 
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Subsequently, AtASY1 forms a continuous LE-associated signal by leptotene-

zygotene transition, persisting until pachytene when synapsis is complete (Armstrong 

et al., 2002). Atasy1 mutant fails to form the SC indicating that AtASY1 is important 

for synapsis during Arabidopsis meiosis (Caryl et al., 2000).  

Soon after the formation on AEs in early leptotene, each AE is thought to bind a pair 

of sister chromatids, which are organized into parallel sets of loops (Kleckner, 2006). 

Two AEs are then held together by TFs which assemble progressively between AEs 

in a zipper-like manner during early prophase I to form the tripartite SC. The SC is 

fully formed by pachytene, when homologous chromosomes are fully aligned, paired 

and synapsed. In budding yeast, the coiled-coil protein ZIP1 has been identified as 

the TF component of the SC (Sym et al., 1993). Immunolocalization studies on wild-

type chromosome spreads revealed that ZIP1 localizes along the entire length of 

synapsed homologous chromosomes during pachytene. Additionally, electron 

microscopy showed that zip1 mutants are able to form full-length AEs that can 

undergo homologous pairing but are defective in synapsis (Sym et al., 1993). Unlike 

in yeast, the LEs of the mammalian SC are connected to each other by the central 

region, which consists of TF and central elements (CEs) (reviewed in Fraune et al, 

2012). SYCP1 has been identified as the TF protein that interacts, via its coiled-coil 

domain with the CE, composed of the proteins SYCE1, SYCE2, SYCE3 and TEX12 

to make up the central region of mammalian SC (Fraune et al, 2012 and the 

references therein). Studies of sycp1 knockout mice revealed that although AEs were 

able to form and align normally homologous chromosomes failed to synapse in the 

mutants. In addition, analysis of the CE protein knockout mice suggests that the 

proteins are involved in synapsis initiation and/or propagation (Fraune et al, 2012 and 
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the references therein). In contrast, the LEs of the rice SC are connected to each 

other via only TFs, similarly to the LEs of the yeast SC. Recently, ZEP1 has been 

identified as the TF protein of the rice SC (Wang et al., 2010b). Rice zep1 mutants 

display normal alignment and pairing of homologous chromosomes at leptotene and 

zygotene but fail to form the SC at pachytene (Wang et al., 2010b). Furthermore, 

immunolocalisation studies in wild type revealed that ZEP1 forms a continuous linear 

signal along the entire length of chromosomes at pachytene, when the SC is fully 

formed (Wang et al., 2010b). The Arabidopsis transverse filaments are composed of 

coiled-coil proteins called AtZYP1a and AtZYP1b, encoded by two genes AtZYP1a 

and AtZYP1b respectively (Higgins et al., 2005). The AtZYP1 proteins bind LEs with 

their C-terminals and attach head-to-head with their N-terminals thus bringing LEs 

within close proximity (Higgins et al., 2005). Immunolocalization studies show that 

AtZYP1 initially localizes to meiotic chromosomes during leptotene as numerous foci. 

At zygotene AtZYP1 polymerizes to form a continuous linear signal along the entire 

length of the pachytene chromosomes, indicating that AtZYP1 is a SC component 

(Higgins et al., 2005). Dual-immunolocalization revealed that AtASY1 signals flank 

both sides of the AtZYP1 signal along the synapsed homologues at pachytene, 

suggesting that AtZYP1 forms part of the central region of the SC (Higgins et al., 

2005). In Atzyp1 RNAi mutant, where both Atzyp1a and Atzyp1b are disrupted, 

synapsis fails to occur suggesting that AtZYP1 is essential for the formation of the 

central region of Arabidopsis SC (Higgins et al., 2005).  
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1.3.3. Role of meiotic recombination in homologous chromosome pairing 

and synapsis 

Many studies have implicated meiotic recombination in playing an important role in 

the process of chromosome pairing and synapsis in addition to its role in crossover 

(CO) formation. Studies conducted using chromosome painting in S. cerevisiae 

spo11 and rad50 mutants, both of which are defective in double-strand break (DSB) 

formation (the first step of recombination) indicate that chromosome pairing in these 

mutants is drastically reduced (Loidl et al., 1994). Similarly, in Sordaria macrospora 

lack of SKI8, a protein required for DSB formation, leads to severe defects in 

homologue identification, pairing and subsequent synapsis in the ski8 mutant (Tesse 

et al., 2003). These defects in the ski8 mutant can be recovered via induction of 

exogenous DSBs, hence meiotic recombination (Tesse et al., 2003). Similarly, 

several studies in various organisms have shown that both early and late 

recombination intermediates are found to be spatially associated with the 

chromosome axis (Osman et al., 2011 and the references within). These 

observations collectively suggest that recombination is required for normal levels of 

homologous chromosome pairing and synapsis. A mechanism for how recombination 

promotes chromosome pairing and eventual synapsis has also been suggested. It is 

proposed that early during the process of recombination in leptotene the 

recombination regions of homologous chromosomes are brought into close proximity 

of each other. The resulting close association of homologues has been suggested to 

facilitate pairing and synapsis of homologous chromosomes (Zickler and Kleckner, 

1998). However, chromosome pairing in some organisms has been shown to be 

recombination independent. Live imaging studies of chromosomes in Drosophila 
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male meiosis revealed that homologue pairing and synapsis occur in the absence of 

recombination (Vazquez et al., 2002). Furthermore, homologue pairing and synapsis 

in C. elegans have also shown to be independent of DSB formation and 

recombination (MacQueen et al., 2005). These observations support the notion that 

although recombination may facilitate pairing of homologous chromosomes in some 

organisms the dependence of homologue pairing on recombination is not universal. 
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Figure 2. (A) Dual loop organization and (B) structure of the SC. 
(A) During early prophase I sister chromatids of each set of homologous 
chromosomes are organized into sets of chromatin loops. The loops are 
anchored and aligned along a linear proteinaceous axis. (B) In Arabidopsis, 
homologous chromosomes become associated with axial elements at early 
leptotene and align at a distance of 400nm. At late leptotene/early zygotene, 
synapsis is initiated.  Lateral elements of homologous chromosomes are 
connected by the polymerizing transverse filaments. By early pachytene the SC 
is completely formed between the homologues which become fully synapsed at 
a distance of 100nm. Modified from Alberts et al, (1983). 
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1.4. Meiotic Recombination 

Recombination is a process that generates COs between homologous chromosomes 

during meiosis. It is required for the correct segregation of chromosomes at 

anaphase I as well as to generate genetic variation in the offspring. The mechanisms 

involved in meiotic recombination have been primarily established from various 

studies in budding yeast and is believed to be canonical amongst most eukaryotes 

including Arabidopsis. Meiotic recombination involves the formation of double-strand 

breaks (DSBs), followed by strand resection and invasion which leads to the 

formation of intermediate structures. Some of these structures are stabilized and 

subsequently resolved to generate meiotic COs (Figure 3). 

 



22 

 

 

Figure 3. Schematic representation of meiotic DSB repair pathway. 
Following DSB formation the 5´ -end is resected to 3ˊ-end. This is followed by strand invasion 
which leads to the formation of D-loop. A portion of the overall D-loops are repaired via the 
SDSA pathway to form NCOs while the remaining undergo 2

nd
 end capture, repair synthesis 

and ligation. These latter intermediates are then stabilized  to form dHjs. A substantial portion of 
the dHjs are resolved to generate COs while some of them may also undergo dissolution to 
generate NCOs. 
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1.4.1. DNA double-strand break formation 

Meiotic recombination is initiated by the formation of DNA DSBs during leptotene. 

DSBs are generated by a topoisomerase II – related transesterase, SPO11 which 

catalyses DSB formation by nucleophilic attack on meiotic DNA via its catalytically 

active tyrosine residues (Keeney et al., 1997). During this process SPO11 becomes 

covalently attached to the 5ˊ ends of DNA on either side of each DSB site and 

remains attached until further processing in the subsequent step of recombination 

(Keeney et al., 1997). SPO11 is widely conserved among organisms and three 

paralogues of SPO11, AtSPO11-1, AtSPO11-2 and AtSPO11-3 have been identified 

in Arabidopsis (Grelon et al., 2001, Hartung and Puchta, 2001). However, only 

AtSPO11-1 and AtSPO11-2 have been shown to be essential for meiotic DSB 

formation (Grelon et al., 2001, Stacey et al., 2006). Atspo11-1-3 mutant is sterile and 

cytological analysis revealed that the mutant lacks synapsis at pachytene and 

bivalents and chiasmata at metaphase I (Sanchez-Moran et al., 2007). In addition, 

immunolocalization studies showed that the mutant had no γH2AX foci, which is a 

marker for DSBs, indicating the absence of DSB formation in the mutant (Sanchez-

Moran et al., 2007). Similarly, Atspo11-2 mutant displays severe sterility along with 

the absence of synapsis at pachytene and bivalents at metaphase I (Stacey et al., 

2006). Interestingly, the complete lack of DSB formation in Atspo11-1-3 mutants 

suggests that AtSPO11-2 is unable to catalyse DSB formation without AtSPO11-1, 

indicating that AtSPO11-1 and AtSPO11-2 may act non-redundantly as a 

heterodimer to catalyze DSB formation (Sanchez-Moran et al., 2007, Stacey et al., 

2006). In budding yeast SPO11 alone is not sufficient to initiate recombination. 

Accessory proteins MRE11, RAD50, XRS2, MER2, MIE4, SKI8, REC102, REC104 
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and REC114 have all been proposed to be involved in the initiation of meiotic 

recombination (Cole et al., 2010). Many of these accessory proteins are yet to be 

identified in Arabidopsis due to the lack of homology at sequence level between 

species. However, recent fertility screens of mutant lines have identified three 

mutants Atprd1, Atprd-2 and Atprd-3 whose phenotypes are reminiscent of the 

Atspo11-1-3 mutant (De Muyt et al., 2009, De Muyt et al., 2007). Further analysis 

revealed that each of the three Atprd mutants can suppress phenotypes of mutants 

of proteins involved downstream in the meiotic DNA repair process. These 

observations suggest that AtPRD1, AtPRD2 and AtPRD3 are required for DSB 

formation during meiotic recombination in Arabidopsis. In concert with this, AtPRD1 

have been shown to interact with AtSPO11-1 directly in a yeast two-hybrid assay 

(reviewed in Osman et al., 2011). Additionally, a recent study suggests that a novel 

protein, AtDFO, is also required for DSB formation during Arabidopsis meiosis 

(Zhang et al., 2012). Atdfo mutants exhibit extensive defects in homologue pairing 

and synapsis along with a severe reduction in recombination which leads to nearly 

complete sterility. Moreover, Atdfo/Atmre11 which is deficient in both AtDFO and 

AtMRE11, a DSB processing protein, was found to suppress the fragmentation 

phenotype of Atmre11 single mutant. This suggests that AtDFO is involved in DSB 

formation, although its functional mechanism remains unresolved (Zhang et al., 

2012).  
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1.4.2. Processing of double-strand breaks 

After DSB formation, H2AX, a histone variant is phosphorylated at C-terminal serine, 

S139, at sites of DSB to form γH2AX. γH2AX is formed over a large region 

surrounding each DSB but is absent in the vicinity of the DSB (Shroff et al., 2004). It 

has been suggested that γH2AX produces structural changes to facilitate the 

subsequent DNA repair process at the DSB site (Fernandez-Capetillo et al., 2003). 

The DNA repair process begins with the nucleolytic removal of the SPO11 which 

remains attached to 5’ ends of DNA on either side of DSB. This is followed by the 

subsequent resection of the 5’ ends to 3' single stranded DNA (ssDNA), each 

approximately 0.5-1 kb in length. In budding yeast these processes are carried out by 

the MRE11-RAD50-XRS2/NBS1 (MRX/N) complex together with COM1/SAE2 

(Mimitou and Symington, 2009). S. cerevisiae mrx mutants have low spore viability 

and are defective in recombination and synapsis (Connelly and Leach, 2002). 

Mutants of Arabidopsis MRN proteins Atmre11 and Atrad50 exhibit defective 

synapsis and extensive fragmentation at prophase I (Bleuyard et al., 2004a, Puizina, 

2004). Analysis of an Atmre11/Atspo11-1 double mutant revealed that the 

fragmentation phenotype observed in the Atmre11 mutant was suppressed in the 

double mutant indicating that AtMRE11 is involved in DSB repair rather than its 

induction (Puizina, 2004). Furthermore, co-immunoprecipitation studies showed that 

AtMRE11 can interact with AtRAD50 in vitro (Daoudal-Cotterell et al., 2002). In 

addition, the Arabidopsis AtNBS1 has been proposed to play a role in DNA cross-link 

repair and shown to possess an AtMRE11 interaction site in its C-terminal 

(Waterworth et al., 2007). These observations suggest that AtMRE11, AtRAD50 and 

AtNBS1 may form a protein complex which is involved in early DSB repair 
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processing. Additionally, Arabidopsis AtCOM1, a homologue of the budding yeast 

COM1/SAE2 is also thought to be involved in DSB processing (Uanschou et al., 

2007). Immunolocalization studies of the Atcom1 mutant revealed that the mutant is 

able to accumulate AtSPO11 but not downstream recombination intermediates. 

Furthermore, the Atcom1 mutant exhibits extensive chromosome fragmentation 

which is not suppressed in the Atcom1/Atdmc1 double mutant, suggesting that 

AtCOM1 is involved in the early stages of DSB processing (Uanschou et al., 2007). 

Therefore, based on above observations it is plausible that similarly to budding yeast, 

the Arabidopsis AtMRE11-AtRAD50-AtNBS1 complex along with AtCOM1 are 

involved in the early steps meiotic DSB processing. 

 

1.4.3. Strand invasion and exchange 

Strand resection during early DSB processing generates 3ˊ – ended ssDNA on 

either side of the DSB. This is followed by the assembly of bacterial RecA-related 

recombinases RAD51 and DMC1 via mediator proteins on the 3' ssDNA tail to form a 

nucleoprotein filament. This nucleoprotein filament then invades duplex DNA, 

performs a homology search and initiates strand exchange (Bishop and Zickler, 

2004). In budding yeast RAD51 has been shown to be involved in the mitotic DNA 

repair between sister chromatids of the same chromosome, whereas DMC1 plays a 

role in inter-homologue recombination during meiosis (Bishop et al., 1992, Shinohara 

et al., 1992). Initially it was thought that in addition to RAD51, the meiosis specific 

DMC1 is necessary to make the switch from inter-sister to inter-homologue 

recombination during meiosis in budding yeast (Bishop et al., 1992). However, 
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studies show that over-expression of RAD51 in S. cerevisiae dmc1 mutant can 

restore inter-homologue recombination suggesting that RAD51 and DMC1 work as 

partners to promote inter-homologue recombination (Bishop, 1994). Interestingly, 

recent studies in budding yeast suggest that although both the recombinases are 

capable of strand-exchange only DMC1 catalyzes homology search and strand 

exchange in essentially all meiotic recombination events (Cloud et al., 2012). 

Analysis of a separation of function mutant form of S. cerevisiae RAD51, that retains 

filament-forming but not joint molecule (JM) forming activity, suggests that RAD51’s 

strand exchange activity is fully dispensable for normal meiotic recombination. 

Furthermore, analysis of a similar mutant of DMC1 suggests that loss of DMC1 

causes a severe defect in inter-homologue JM formation. These findings suggest that 

the JM activity of DMC1 alone is responsible for meiotic recombination (Cloud et al., 

2012). Nevertheless, biochemical studies suggest that RAD51 acts with MEI5-SAE3 

as an accessory factor that stimulates DMC1 activity, suggesting that the 

recombinase catalyzes recombination indirectly, via DMC1, during meiosis (Cloud et 

al., 2012). Arabidopsis Atrad51 mutants are sterile and exhibit extensive 

chromosome fragmentation suggesting that AtSPO11-induced DSBs are not repaired 

in the absence of AtRAD51 (Li, 2004). On the other hand, Arabidopsis Atdmc1 

mutants fail to form any COs resulting in the formation of univalents which segregate 

randomly at anaphase I. Interestingly, chromosome fragmentation was not observed 

in Atdmc1 mutants suggesting that DSBs are repaired in these mutants, probably by 

using the sister chromatid as the repair template (Couteau et al., 1999). These 

observations indicate that the recombinases AtRAD51 and AtDMC1 function together 

to mediate inter-homologue recombination during Arabidopsis meiosis. A recent 
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study using BrdU pulse-labelling and dual-immunolocalisation suggest that AtDMC1 

loading slightly precedes AtRAD51 indicating an asymmetry in the loading of the 

recombinases in Arabidopsis (Sanchez-Moran et al., 2007). This observation 

supports previous reports in budding yeast, where it has been proposed that RAD51 

and DMC1 loading are asymmetrical (Hunter and Kleckner, 2001). It has been 

suggested that the asymetrical loading of the two recombinases in Arabidopsis might 

be a mechanism to promote inter-homologue recombination (Sanchez-Moran et al., 

2007). Consistent with this, recent immunolocalisation studies in Arabidopsis early 

prophase I chromosome spreads revealed that AtRAD51 and AtDMC1 foci do not co-

localize with each other, instead, they form doublets which co-localize with γH2AX 

foci. This suggests that DSBs are flanked by two different nucleoprotein filaments, 

comprised of either AtRAD51 or AtDMC1 (Kurzbauer et al., 2012). Additionally, the 

study also revealed that AtDMC1-coated nucleoprotein filaments are impeded from 

DSB repair using the sister chromatid as a template presumably by the axis protein 

AtASY1, which has been shown to mediate inter-homologue recombination during 

Arabidopsis meiosis (Kurzbauer et al., 2012, Sanchez-Moran et al., 2007). 

Arabidopsis has five other paralogues of AtRAD51: AtRAD51B, AtRAD51C, 

AtRAD51D, AtXRCC2 and AtXRCC3 (Bleuyard et al., 2004b). However, only 

AtRAD51C and AtXRCC3 have been shown to possess a role in meiosis (Bleuyard 

and White, 2004, Li, 2005). Both Atrad51c and Atxrcc3 mutants exhibit extensive 

chromosome fragmentation. Analysis of Atrad51c/Atspo11 and Atxrcc3/Atspo11 

double mutants revealed that the fragmentation phenotype of Atrad51c and Atxrcc3 

are suppressed in double mutants indicating that AtRAD51C and AtXRCC3 are 

involved in meiotic recombination (Bleuyard and White, 2004, Li, 2005). In addition, 
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yeast-two hybrid studies have showed AtXRCC3 directly interacts with AtRAD51C 

and also with AtRAD51. These observations led to the proposal that AtRAD51C 

forms a complex with XRCC3 which may mediate the assembly of RAD51 during 

meiotic recombination (Osakabe et al., 2002). 

In budding yeast, mediator proteins are thought to be involved in the assembly of 

strand exchange proteins. RPA is one of the mediator proteins involved in 

nucleofilament formation (San Filippo et al., 2008). Biochemical studies in yeast have 

shown that RPA can remove secondary structures within the DNA thereby promoting 

the assembly of RAD51 onto the 3’ – ended ssDNA. Furthermore, RPA is thought to 

coat the 3’-ended ssDNA and prevent incorrect RAD51-mediated strand exchange 

(reviewed in San Filippo et al., 2008). Yeast RPA is thought to form a heterotrimer 

composed of subunits: RPA1 (~70kDa), RPA2 (~32kDa) and RPA3 (~14kDa) (Wold, 

1997). In budding yeast mutants where rfa1, the gene encoding the large subunit of 

RPA had been mutated, a complete loss of recombination was observed implying 

that RPA is crucial for meiotic recombination (Soustelle et al., 2002). In mammals, 

RPA1 has been identified as a homologue of the yeast RFA1 gene. Mice with a 

heterozygous point mutation in rpa1 accumulate lymphoid tumours and their offspring 

exhibit early embryonic lethality (Wang and Haber, 2004). In Arabidopsis, although 

five paralogues of RPA1 subunit have been identified, only AtRPA1a has been 

shown to possess a role in meiosis (Osman et al., 2009, Shultz et al., 2007). Analysis 

of Atrpa1a mutants revealed that the protein is involved in downstream steps of 

strand exchange and is dispensible for meiotic DNA repair suggesting that AtRPA1a 

is not essential for nucleoprotein filament formation. However, immunolocalisation 

studies showed that AtRPA1a is associated with meiotic chromosomes from 
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leptotene to early pachytene. These observations led to the suggestion that in 

addition to a role in strand exchange AtRPA1a may be involved in AtRAD51-filament 

formation, although in its absence the latter role is performed by one or more of its 

paralogues with functional redundancy (Osman et al., 2009).   

In budding yeast the RAD52 epistasis group, composed of the proteins RAD52, 

RAD55 and RAD57 have been proposed to play a role in nucleoprotein filament 

formation (Symington, 2002). It is thought that RAD55 and RAD57 form a 

heterodimeric complex that binds ssDNA and remove the inhibitory block on RAD51-

mediated strand exchange imposed by RPA. This is thought to promote the initiation 

of strand exchange by the recombinases (Sung, 1997). S. cerevisiae RAD55 and 

RAD57 share sequence homology with Arabidopsis AtRAD51B and AtRAD51C 

respectively, although there is no evidence of conservation of any functional 

homology (Osman et al., 2011). Also Arabidopsis does not have a RAD52 orthologue 

but possesses two paralogues of the mammalian tumour suppressor protein BRCA2 

(Siaud et al., 2004). In mammals, BRCA2 has been shown to act as a mediator 

protein and help recruit RAD51 to 3’-ended ssDNA with the help of another mediator 

protein DSS1. Mammalian BRCA2 is thus considered a functional analogue of 

budding yeast RAD52 (Jensen et al., 2010, Thorslund et al., 2007). The Arabidopsis 

Atbrca2 mutant where both paralogues of AtBRCA2 are disrupted exhibit defects in 

synapsis as well as localization of the recombinases AtRAD51 and AtDMC1. 

Furthermore, yeast two hybrid assay and co-immunoprecipitation studies showed 

that either paralogue of AtBRCA2 is able to physically interact with AtRAD51 and 

AtDMC1 suggesting that it may be involved in the recruitment of the recombinases 

during early DSB repair (Dray et al., 2006).  



31 

 

Additionally in budding yeast, the mediator proteins RAD54 and RDH54/TID1, both 

members of the SWI2/SNF2 chromatin remodelling protein family, are thought to help 

the recombinases promote strand exchange (Shinohara et al., 1997). Analysis of the 

rad54 mutant revealed that there is a reduction of somatic homologous 

recombination suggesting that RAD54 is involved in promoting exchanges between 

sister chromatids. Whereas, rdh54 mutants exhibit severely reduced spore viability 

suggesting that RDH54 is involved in the DMC1-dependent exchange between 

homologous chromosomes (Shinohara et al., 2003, Shinohara et al., 1997). In 

Arabidopsis AtRAD54, is not involved during meiosis and a homologue of budding 

yeast RDH54 has not been found yet. Since Arabidopsis has at least 40 SWI2/SNF2 

family members it is possible that many share functional redundancy with respect to 

nucleoprotein filament formation and strand exchange initiation (reviewed in Osman 

et al., 2011).  

In S. cerevisiae the MND1/HOP2 complex has been shown to shown to be important 

in facilitating strand invasion (Chi et al., 2007). Both mnd1 and hop2 mutants fail to 

sporulate and exhibit a severe reduction in pairing and undergo meiotic arrest at 

pachytene checkpoint (Tsubouchi and Roeder, 2002). Immunolocalisation studies 

revealed that although RAD51 and DMC1 accumulate at prophase I in both mutants 

DSBs remain unrepaired in them. Hence it is thought that the recombination defects 

in both mutants occur during strand exchange step after loading of the recombinases 

(Tsubouchi and Roeder, 2002). Furthermore, the two proteins have been shown to 

interact in co-immunoprecipitation studies suggesting that MND1 and HOP2 may 

work as a complex along with RAD51 and DMC1 to promote homology search and 

promote strand invasion (Tsubouchi and Roeder, 2002). Biochemical studies in 
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mammals showed that mouse MND1-HOP2 complex can interact with both DMC1 

and RAD51 in vitro (San Filippo et al., 2008). Arabidopsis Atmnd1 and Athop2 fail to 

undergo pairing and synapsis, display possible non-homologous interactions and fail 

to repair DSBs (Kerzendorfer, 2006, Panoli et al., 2006, Schommer et al., 2003). Co-

immunoprecipitation studies showed that AtMND1 and AtHOP2 are able to physically 

interact with each other and with AtRAD51 and AtDMC1 (Kerzendorfer, 2006, 

Vignard et al., 2007). These observations led to the proposal that Arabidopsis 

AtMND1-AtHOP2 may perform similar roles to their budding yeast counterparts 

(Vignard et al., 2007). 

An important aspect during strand-exchange is the choice of DSB repair template. As 

discussed earlier, in both S. cerevisiae and Arabidopsis, RAD51 has been shown to 

mediate DNA repair using sister-chromatids while both RAD51 and DMC1 are 

necessary for inter-homologue recombination during meiosis (reviewed in Bishop 

2004, Osman et al., 2011). Additionally, in budding yeast a protein complex, 

composed of the axis proteins RED1 and HOP1 and the kinase MEK1, is essential 

for establishing a bias towards DMC1-mediated inter-homologue recombination by 

forming a barrier to inter-sister repair during the strand exchange step (Niu et al., 

2005). In Arabidopsis, although AtASY1 has been characterized as a functional 

homologue of budding yeast HOP1, identification of homologues of RED1 and MEK1 

still remain unreported. Nevertheless, AtASY1 has recently been shown to mediate 

AtDMC1-dependent inter-homologue recombination in Arabidopsis (Sanchez-Moran 

et al., 2007). More recently HED1 has also been shown to promote DMC1-mediated 

inter-homologue recombination by attenuating inter-sister exchanges in budding 

yeast (Busygina et al., 2008). Evidence for this comes from the observation that 
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spore viability is restored in hed1/dmc1 double mutants in contrast to dmc1 single 

mutants which have the option of DSB repair via inter-sister pathway but still fails to 

do so. Hence it is thought that the high spore viability in hed1/dmc1 double mutants 

is presumably due to the absence of HED1-mediated blockage to inter-sister repair 

(Busygina et al., 2008). In support, both yeast two-hybrid and pull down assays 

indicate that HED1 can interact with RAD51 but not DMC1. Furthermore, biochemical 

studies using affinity pull-down assays revealed that HED1 strongly interferes with 

RAD51-RAD54 interaction but not with DMC1-RAD54 interaction (Busygina et al., 

2008). Hence, it has been proposed that HED1 attenuates RAD51-mediated inter-

sister recombination by disrupting the interaction between RAD51 and its strand-

exchange efficacy mediator RAD54 during the strand exchange step, thereby 

promoting inter-homologue recombination (Busygina et al., 2008). A homologue of 

the budding yeast HED1 is yet to be identified in other eukaryotes.  

Soon after its assembly the RAD51/DMC1-containing nucleo-protein filament initiates 

strand exchange via single-end invasion. Initially during single-end invasion the 

functional nucleoprotein filament performs a homology search and locates 

complementary sequences on either of the two homologous chromosomes. It then 

invades the intact duplex and displaces similar ssDNA from one of the donor strand. 

As the invading strand polymerizes the displaced DNA strand extends to form loop-

like structure known as the ‘displacement loop’ (D-loop) (reviewed in Bishop and 

Zickler., 2004). At this stage a proportion of the single-end invasions are repaired via 

DNA synthesis and ligation without undergoing any genetic exchange. This pathway 

of repair is called synthesis-dependent strand annealing (SDSA) and leads to a non-

crossover event. In the remaining single-end invasions, after displacing similar 
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ssDNA from the target donor strand the invading strand base pairs with 

complementary DNA on the other strand of the donor duplex. This result in the 

formation of a stable single end invasion intermediate (SEI) which is subsequently 

resolved into a CO through one of the pathways for CO formation (reviewed in 

Bishop and Zickler, 2004). 

 

1.4.4. Pathways to meiotic crossover formation 

Following strand invasion during early DSB repair the invading strand in the D-loop 

interacts with the intact duplex to form a stable intermediate called SEI, as mentioned 

earlier. The second invading strand then associates with donor duplex and DNA 

synthesis occurs from the 3’ end joining newly synthesised DNA with the resected 5’ 

ends. This gives rise to a more stable structure known as the double Holliday junction 

(dHj) (Holliday, 1964). The dHj is subsequently stabilized and resolved to form CO 

(reviewed in Bishop and Zickler., 2004).  

Studies in budding yeast have led to the proposal that meiotic COs can be formed by 

at least two different pathways (Borner et al., 2004, de los Santos et al., 2003). The 

first is dependent on the bacterial MutS homologue MSH4, which is involved in the 

stabilization of recombination intermediates while the second is the MSH4-

independent pathway. In S. cerevisiae, approximately 85% of the COs are formed by 

MSH4-dependent pathway and exhibit CO interference, a mechanism which ensures 

that two COs do not form in adjacent regions in a chromosome (Borner et al., 2004). 

The remaining COs are found to be randomly distributed throughout the genome 

indicating that they are formed via a different pathway which does not involve MSH4 
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and does not exhibit CO interference (de los Santos et al., 2003, Hollingsworth, 

2004). Interestingly, Arabidopsis too has been reported to possess an interference-

sensitive MSH4-dependent and an interference-insensitive MSH4-independent 

pathway for meiotic CO formation (Copenhaver et al., 2002, Higgins, 2004). 

 

1.4.4.1. MSH4-dependent pathway for crossover formation 

In budding yeast the MSH4-dependent pathway for CO formation is associated with a 

complex of proteins including MSH4, MSH5, MER3, ZIP1, ZIP2, ZIP3 and ZIP4, 

collectively referred to as ZMM proteins (Borner et al., 2004). Putative homologues of 

S. cerevisiae ZMM proteins have also been identified in Arabidopsis (reviewed in 

Osman et al., 2011). 

The MutS homologues MSH4 and MSH5 play a key role in promoting CO formation 

and CO interference during meiotic recombination in eukaryotes (Ross-Macdonald 

and Roeder, 1994, Zalevsky et al., 1999). Budding yeast msh4 and msh5 mutants 

exhibit ~85% reduction in COs while the remaining COs have been reported to be 

interference insensitive. Furthermore, the mutants also fail to form intermediate 

structures such as the SEI and dHj (Ross-Macdonald and Roeder, 1994). In vitro 

biochemical studies using recombinant human hMSH4/5 and suggest that MSH4 and 

MSH5 work as a heterodimer that can bind to Holliday junctions (Hjs) and pro-Hjs 

such as D-loops. These observations led to the hypothesis that during human meiotic 

recombination, hMSH4-hMSH5 heterodimer encompass two DNA duplexes side by 

side via a sliding clamp mechanism to convert and stabilize them into dHjs, which are 

subsequently resolved to COs or NCOs (Snowden et al., 2004). Homologues of 
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MSH4/MSH5 have also been identified in Arabidopsis (Higgins, 2004, Higgins et al., 

2008b). Atmsh4 and Atmsh5 displayed a severe reduction in CO formation. In 

contrast to 9.86 chiasmata per cell Atmsh4 and Atmsh5 mutants were reported to 

possess 1.25 and 1.15 chiasmata per cell respectively, representing only ~15% of 

wild-type levels. The remaining COs observed in the mutants did not display CO 

interference (Higgins, 2004, Higgins et al., 2008b). Immunolocalization studies 

revealed that in wild-type both AtMSH4 and AtMSH5 localized to meiotic 

chromosomes as numerous foci (>100) during leptotene. Their numbers gradually 

decreased through until pachytene when only 8 or 9 foci were present, corresponding 

to the number of chiasmata reported in wild-type. These observations suggest that 

AtMSH4 and AtMSH5 possess similar roles to their counterparts in budding yeast 

(Higgins, 2004, Higgins et al., 2008b). Immunolocalization studies further revealed 

that AtMSH5 localization during meiosis require AtMSH4 suggesting the two proteins 

may work as a complex. In agreement, AtMSH4 and AtMSH5 were found to exhibit 

extensive co-localisation during prophase I in immunolocalization studies (Higgins et 

al., 2008b). 

A recent study has revealed that AtMSH4 localization depends on the tumour 

suppressor protein retinoblastoma (RBR) (Chen et al., 2011). Analysis of its mutant, 

Atrbr-2, revealed that it displays incomplete synapsis and a reduction in chiasma 

frequency to 1.7 in contrast to 9-10 in the wild-type, a phenotype reminiscent of 

Atmsh4 mutant (Chen et al., 2011). Immunolocalization studies revealed that 

AtMSH4 failed to localize at all in majority of the meiocytes from Atrbr-2. Since strand 

exchange proteins AtRAD51 and AtDMC1 were able to localize in Atrbr-2 mutant, it is 

speculated that AtRBR may play a role during early DSB repair prior to AtMSH4 
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loading (Chen et al., 2011). In animals, pRB has been found to interact with 

chromatin modifiers, DNA repair proteins and condensin complexes (Longworth et 

al., 2008). It is speculated that AtRBR may influence meiotic chromosomal 

organization to allow proper recombination progression, although its exact function 

during meiosis still remains to be determined (Chen et al., 2011). 

In budding yeast the ZMM protein MER3 have been suggested to be involved in 

processing recombination intermediates (Borner et al., 2004). MER3 is a DExH-box 

type DNA helicase that can unwind DNA in a 3’ to 5’ direction and stimulate 

extension of DNA heteroduplex in the direction relative to incoming ssDNA (Mazina 

et al., 2004, Nakagawa, 2001). Furthermore, mer3 mutants exhibit severe defects in 

DNA synthesis during meiotic recombination (Terasawa et al., 2007). In Arabidopsis 

AtMER3/RCK has been identified as a homologue MER3 (Chen et al., 2005, Mercier 

et al., 2005). Analysis of the Atmer3/rck mutant revealed that although pairing and 

synapsis is normal during early prophase I chiasma frequency per cell was severely 

reduced to 2.25 compared to 9-10 in the wild-type. The remaining chiasmata did not 

display CO interference suggesting that MSH4-dependent COs were absent in the 

mutant (Mercier et al., 2005). These observations suggest that AtMER3/RCK is 

important for the stabilization of intermediate heteroduplex structures during CO 

formation via the MSH4-dependent pathway (Mercier et al., 2005).  

In budding yeast, the small ubiquitin-like modifier (SUMO) ligase protein ZIP3 and 

ZIP4 have been implicated in the assembly of the SC (Agarwal and Roeder, 2000, 

Tsubouchi et al., 2006). Budding yeast zip3 mutants lack homologue paring and 

recombination but are able to form SC. It is suggested that ZIP3 regulates ZIP1 
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assembly by suppressing ZIP1 polymerization via sumoylation of axis or SC 

components (Agarwal and Roeder, 2000). ZIP4 on the other hand has been shown to 

function with ZIP2 to promote ZIP1 polymerization (Tsubouchi et al., 2006). 

Additionally, both ZIP3 and ZIP4 have been shown to be epistatic to all ZMM proteins 

in CO formation (Agarwal and Roeder, 2000, Tsubouchi et al., 2006). A putative 

Arabidopsis AtZIP3 has been identified but does not appear to have a role in SC 

assembly. Instead, it was reported to be epistatic to AtMSH4/5 in CO formation via 

means of preliminary observations (Osman et al., 2011). Similarly, Arabidopsis 

AtZIP4 does not have a role in AtZIP1 polymerization (Chelysheva et al., 2007). 

However, Atzip4 mutants exhibit a severe reduction in chiasma frequency forming 

2.55 chiasmata per cell compared to 9-10 in the wild-type. The remaining COs were 

found to be CO interference insensitive suggesting that AtZIP4 functions similarly to 

other ZMM proteins during CO formation (Chelysheva et al., 2007). 

ZIP2, a protein with a XPF domain has been shown be epistatic to other ZMM 

proteins in budding yeast (Chua and Roeder, 1998). zip2 mutants are reported to be 

defective in single strand invasion during meiotic recombination. Recently, AtSHOC1, 

a novel XPF endonuclease was identified in Arabidopsis which may be functionally 

similar to ZIP2 in budding yeast (Macaisne et al., 2008). In Atshoc1 mutants the 

chiasma frequency was reduced from 9.2 in wild-type to 1.27, representing ~15% of 

wild-type levels. This observation was similar to Atmsh4/5 mutant. Furthermore, the 

chiasma frequency of Atshoc1/Atmsh5 double mutant showed no significant 

difference from that observed in Atmsh4 single mutant suggesting that AtSHOC1 

functions epistatic to other ZMM proteins during CO formation in Arabidosis 

(Macaisne et al., 2008). In Arabidopsis, another novel protein AtPTD has been found 



39 

 

to function similarly to ZMM proteins (Wijeratne, 2005). Atptd mutants display a 

reduction in chiasma frequency form wild-type levels of 9.7 to 2.5. Further analysis 

revealed that MSH4-dependent COs were absent in the mutant and the residual COs 

did not display interference and were distributed at random (Wijeratne, 2005). AtPTD 

protein displays sequence similarities with a protein called ERCC1, which has been 

shown to form a complex with XPF to cleave intermediate structures in vitro (Sancar 

et al., 2004, Wijeratne, 2005). In support, AtPTD has been shown to interact with 

AtSHOC1 in a two-hybrid assay. These observations suggest that AtSHOC1 and 

AtPTD may work as a complex in the formation of MSH4-dependent COs (Macaisne 

et al., 2008). 

Studies in S. cerevisiae zip1/red1 double mutant suggest that in addition to its role as 

the TF component of SC ZIP1 also plays a separate role in CO formation (Storlazzi et 

al., 1996). As discussed earlier, Red1 is an AE component of the budding yeast SC 

and its mutant lacks SC and displays a reduction in recombination to ~25% of wild-

type levels (Rockmill and Roeder, 1988, Smith and Roeder, 1997). In zip1 mutant 

SEIs and dHjs are reduced to ~15% of wild-type levels (Sym et al., 1993). Since zip1 

mutants also lack the SC its subsequent recombination defects should be similar to 

that observed in the red1 mutant. However, analysis of the zip1/red1 double mutant 

revealed the double mutant displayed a sum of the two single mutant phenotypes 

including a specific deficit of CO recombinants observed exclusively in the zip1 

mutant (Storlazzi et al., 1996). These observations led to the suggestion that ZIP1 

plays an additional role in meiotic recombination. In agreement, the remaining COs in 

zyp1 mutant were found to be interference insensitive similarly to other zmm mutants 

(Borner et al., 2004). Intriguingly, in Arabidopsis AtZYP1 has been observed to 
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localize as numerous foci early in leptotene, well before SC formation during 

zygotene suggesting it may play a role in CO formation in addition to SC formation 

(Higgins et al., 2005). Although Atzyp1 RNAi knock out mutants display only a mild 

reduction in the chiasma frequency from 9-10 in the wild-type to 7.3, the remaining 

COs have been reported to occur between both homologous and non-homologous 

chromosomes. These COs result in the formation of multivalents, homologous and 

non-homologous bivalents and univalents during metaphase I suggesting that CO 

control is compromised in Atzyp1 RNAi mutants (Higgins et al., 2005). Similarly, the 

rice zep1 mutants exhibit an increase in chiasma frequency suggesting that ZEP1 

plays a separate role in CO formation in addition to its structural role in SC (Wang et 

al., 2010b). 

In addition to the ZMM proteins studies in budding yeast have shown that the MutL 

mismatch repair proteins MLH1 and MLH3, which function as a heterodimer, are also 

essential for promoting CO formation (Nishant et al., 2008, Wang et al., 1999). Both 

mlh1 and mlh3 mutant exhibits reduced spore viability and reduction in CO 

frequency. Analysis of S. cerevisiae msh4/mlh1 double mutant revealed that it 

displayed similar defects in CO formation to the msh4 single mutant suggesting that 

MLH1-MLH3 heterodimer functions following MSH4-MSH5 in the recombination 

pathway (Hunter and Borts, 1997). Mouse male and female mlh1 mutants fail to form 

COs leading to the formation of unpaired univalents at metaphase I (Baker et al., 

1996, Woods et al., 1999). Additionally, both male and female mouse mlh3 mutants 

fail to undergo meiosis and are completely infertile (Lipkin et al., 2002). Homologues 

of AtMLH1 and AtMLH3 have also been identified in Arabidopsis. AtMLH1 is required 

for recombination in both somatic and meiotic cells whereas AtMLH3 is meiosis-
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specific (Dion et al., 2007, Jackson et al., 2006). Immunolocalization studies revealed 

that both AtMLH1 and AtMLH3 formed approximately 9 foci during pachytene, 

corresponding to the number of chiasmata observed in wild-type meiocytes. AtMLH1 

localization during meiosis has been found to be dependent on AtMLH3. Atmlh3 

mutants exhibit a reduction of chiasmata from ~9.8 in the wild-type to ~3.9. 

Immunocytological analysis revealed that revealed that AtMSH4 is able to localize in 

Atmlh3 suggesting that dHjs are formed but are not resolved in the mutant (Jackson 

et al., 2006). These observations led to the proposal that in Arabidopsis the 

AtMLH1/AtMLH3 complex is required to maintain dHjs in a conformation that 

promotes their resolution into COs (Franklin et al., 2006, Jackson et al., 2006).  

Analysis of the Atrpa1a mutant revealed that in addition to its role in nucleoprotein 

filament assembly, AtRPA1a also possess a role in MSH4-dependent CO formation 

(Osman et al., 2009). Atrpa1a mutant exhibit 3.98 chiasmata per cell compared to 

9.86 in the the wild-type. Analysis of Atrpa1a/Atmsh4 double mutant revealed that its 

chiasma frequency was reduced to 1.08 which was not significantlt different from that 

of the Atmsh4 single mutant, suggesting that AtRPA1a is required for MSH4-

dependent CO formation. Interestingly, the Atrpa1a/Atmlh3 double mutant was found 

to have a slightly higher mean CO frequency of 1.76 per cell suggesting that 

AtRPA1a functions after AtMSH4 but before AtMLH3 during CO formation (Osman et 

al., 2009). In vitro studies S. cerevisiae rfa1-t11 mutant revealed that the loss of RPA 

protein in budding yeast causes defects in RAD52-mediated strand annealing and 

second-end capture after D-loop formation (Sugiyama et al., 2006). These 

observations led to the proposal that in Arabidopsis AtRPA1a may play a similar role 
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in strand annealing and second-end capture during the formation intermediate 

structures (Osman et al., 2009).  

Soon after the formation of dHjs, they are then resolved to form CO recombinants.  

However, recent analysis in Arabidopsis suggests that the proteins AtRMI1/BLAP75 

and AtTOP3α are involved in the dissolution of some dHjs as NCOs (Chelysheva et 

al., 2008, Hartung et al., 2008). This pathway of dHj dissolution is supported by the 

presence of a tripartite protein complex referred to as RTR (RECQ/TOP3α/RMI) or 

BTB (Blooms/TOP3α/BLAP75) complex in yeast and mammals (Raynard et al., 

2008). The RTR/BTB complex has been shown to resolve dHJ and D-loop via a 

hemicatenane intermediate (Raynard et al., 2008). S.cerevisiae, rmi1 mutants show 

reduced sporulation and spore viability and top3 mutants show hyper-recombination, 

chromosome instability and do not sporulate (Chang et al., 2005, Mullen et al., 2005). 

S. pombe top3 mutants are lethal and D. melanogaster and mice top3α mutants 

display early embryogenic lethality (White, 2008 and the references therein). Analysis 

of these mutants led to the proposal that BLAP75/RMI1 is involved in the loading and 

stabilisation of the RTR/BTB complex and TOP3α catalyses the dissolution of 

recombination intermediates (White, 2008). Arabidopsis Atrmi1/blap75 mutant 

exhibits drastic chromosome fragmentation at anaphase I although all pachytene 

stages were normal with no disruption to homologue recognition and synapsis 

(Chelysheva et al., 2008). Arabidopsis Attop3α mutants exhibit absolute sterility and 

chromosome fragmentation in metaphase I and absence of second meiotic division 

(Hartung et al., 2008). These observations led to the proposal that AtRMI1/BLAP75 

and AtTOP3α promote the dissolution of some dHjs as NCOs via a hemicatenane 

intermediate (Chelysheva et al., 2008, Hartung et al., 2008). In Arabidopsis only 5-
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10% of DSBs are resolved as COs while the rest are repaired as NCOs. It is thought 

that most of the NCOs arise via the SDSA pathway early during DBS repair. 

Interestingly, immunolocalization studies suggest that at zygotene the number of 

intermediate structure stabilization protein AtMSH4 is found to be three fold higher 

than the number of COs formed eventually. Hence it has been suggested that the 

remaining intermediate structures which do not form COs may be resolved as NCOs 

by the AtRMI1/BLAP75-AtTOP3α complex (reviewed in Osman et al., 2011). 

  

1.4.4.2. MSH4-independent pathway for CO formation 

Studies in yeast revealed that ~15% of COs in budding yeast and all or most COs in 

fission yeast form via a pathway independent of MSH4. The COs formed via this 

pathway do not exhibit interference and are distributed randomly throughout the 

genome (Borner et al., 2004, de los Santos et al., 2003, Smith et al., 2003). The 

MSH4-independent pathway it is thought to be dependent partially on MUS81-MMS4 

in budding yeast and completely on MUS81-EME1 in fission yeast (de los Santos et 

al., 2003, Smith et al., 2003). MUS81 is a structure-specific highly conserved 

endonuclease that can cleave a variety of DNA structures (Haber and Heyer, 2001). 

S. cerevisiae mus81 mutants exhibit reduction in spore viability while S. pombe 

mus81 mutants are completely sterile (de los Santos et al., 2003, Smith et al., 2003). 

Although the mechanism of MUS81 function is still poorly understood it is proposed 

that in S. cerevisiae, MUS81 and MMS4 are thought to function as a heterodimer 

which cleaves D-loop to yield a branched structure. The branched structure then 

captures the second free DSB end and extends it via DNA synthesis. This is followed 
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by a second cleavage by MUS81-MMS4 complex which resolves the structure into 

CO recombinants (Bishop, 2006). In S. pombe EME1 is thought to partner MUS81 for 

mediating CO formation probably via a similar mechanism. Genetic analysis in 

Arabidopsis revealed the existence of two pathways to CO formation, later confirmed 

by analysis of Atmsh4 mutant (Copenhaver et al., 2002, Higgins, 2004). Analysis of 

the Atmsh4 mutant revealed the presence of an AtMSH4-independent pathway for 

CO formation in Arabidopsis. This pathway accounted for ~15% of COs which did not 

exhibit interference (Higgins, 2004). Biochemical analysis revealed that Arabidopsis 

AtMUS81 and AtEME1 can form a heterodimer, which cleaved intact or nicked Hjs 

(Higgins et al., 2008a). Immunolocalization studies on wild-type chromosome 

spreads suggest that AtMUS81 localizes in a DSB-dependent manner to every 

recombination site during leptotene probably at the same time as AtRAD51. Since 

AtMUS81 may not be required for CO formation at many of these sites it is suggested 

that AtMUS81 may play a role in resolving aberrant joint molecules that arise during 

strand invasion (reviewed in Osman., 2011). Interestingly, Atmus81 mutant did not 

exhibit any reduction in fertility. However, there was a 90% decrease in CO 

frequency in the Atmsh4/Atmus81 double mutant indicating that AtMUS81 is required 

for approximately 5%, but not all, of the 15% COs formed by the AtMSH4-

independent pathway. The residual 10% of the COs may be formed by an entirely 

different pathway(s) (Higgins et al., 2008a). The existence of more than two 

recombination pathways is supported by analysis of the budding yeast msh5/mms4 

double mutant, which exhibit a six-fold reduction in CO frequency compared to wild-

type, although not complete elimination of COs (de los Santos et al., 2003). 
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1.4.5. Double-Holliday junction resolution 

Previous biochemical studies in budding yeast identified three structure-selective 

nucleases that have been shown to possess joint molecule (JM) resolution 

capabilities. These are MUS81 (which partners with MMS4), SLX1 (which partners 

with SLX4) and YEN1 (Schwartz and Heyer, 2011). MUS81 is related to the XPF 

subunit of the ERCC1-XPF family of endonucleases that possess Hj resolving 

abilities (Boddy et al., 2001). In budding yeast MUS81 activity is responsible for ~5% 

of the total COs suggesting the presence of other resolvases that are involved in dHj 

resolution (de los Santos et al., 2003). SLX1 is a GIY domain nuclease which 

partners with the scaffold protein Slx4. Recombinant SLX1-SLX4 complexes from 

budding yeast and humans have been shown to cleave Y junctions, 5ˊ flaps and Hjs 

implicating the complex in JM resolution (Fricke and Brill, 2003, Munoz et al., 2009, 

Svendsen et al., 2009). Additionally, studies showed that the budding yeast 

Rad2/XPG family endonuclease, YEN1, also possess Hj resolving abilities (Ip et al., 

2008). Expression of YEN1 in affinity purification studies revealed that the nuclease 

was able to resolve Hjs by a symmetrical cleavage mechanism analogous to that 

shown by bacterial resolvase RUVC (Ip et al., 2008). Similar observations were made 

for its homologue, GEN1, in humans (Ip et al., 2008). Furthermore, a recent study 

showed that loss of YEN1 in mus81 background resulted in roughly 2-fold decrease 

in Hj resolution efficiency in vivo. In contrast, loss of MUS81 alone did not reduce Hj 

resolution efficacy in vivo suggesting that in budding yeast YEN1 acts redundantly 

with MUS81 during CO formation (Tay and Wu, 2010). Similarly, expression of GEN1 

in S. pombe mus81 mutant was shown to promote Hj resolution and CO formation in 

the mutant (Lorenz et al., 2009). In addition, the XPG/RAD2 nuclease family 
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member, EXO1 and DNA mismatch repair components the MUTLγ complex MLH1-

MLH3 are also thought to possess a role in dHj resolution (Zakharyevich et al., 

2010). Although, the above nucleases were implicated in JM resolution their exact 

roles in resolving meiotic JMs remained unclear. Nevertheless, recent studies in 

budding yeast have provided interesting data regarding JM resolution. In budding 

yeast, the BLM helicase homologue SGS1 has been shown to be a central regulator 

of JM resolution pathways (De Muyt et al., 2012, Zakharyevich et al., 2012). A 

sgs1/slx4/yen1/mms4 quadruple mutant exhibits a 6 fold reduction in COs and 3.6 

fold reduction in NCOs whereas the slx4/yen1/mms4 triple mutant was found to 

display wild-type levels of product formation. This suggests that SGS1 can resolve 

JMs efficiently into both COs and NCOs. Further analysis of various quadruple 

mutants of structure-specific nucleases suggest that SGS1 specifically promotes CO 

formation in conjunction with EXO1-MUTLγ complex while in the absence of the latter 

SGS1 mediates JM disassembly into NCOs (De Muyt et al., 2012, Zakharyevich et 

al., 2012). In accord, SGS1 has previously been shown to be a member of the RTR 

complex, which is involved in the dissolution of JMs to form NCOs (Gilbertson and 

Stahl, 1996, Martini et al., 2011). Interestingly, recent studies indicate that YEN1 and 

SLX1-SLX4 are cryptic resolvases that are revealed specifically in the absence of 

MUS81-MMS4 and SGS1 respectively. YEN1 mutation in a mus81 background 

caused an additional 21% reduction in total COs than mus81 single mutant, however, 

this effect was not observed in any other double mutant involving YEN1. This 

suggests that YEN1 makes a significant contribution in crossing over in mus81. 

Similarly, sgs1/slx4 and sgs1/slx1 double mutants exhibit meiotic catastrophe and 

unresolved JMs, which were not observed in any other double mutants involving 
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SLX4 and SLX1 (Zakharyevich et al., 2012). Taken together, the data suggests that 

in budding yeast SGS1 is the major JM resolvase during wild-type meiosis. In the 

absence of SGS1, JM resolution occurs normally but depends on MUS81-MMS4 and 

SLX1-SLX4 and on YEN1 when MUS81 is disrupted (De Muyt et al., 2012, 

Zakharyevich et al., 2012).  

JM resolution appears to be dependent of varying resolvases between organisms. In 

contrast to budding yeast, MUS81 is required for the formation of most if not all COs 

in fission yeast (Hollingsworth, 2004, Smith et al., 2003). The complete sterility 

phenotype displayed by S. pombe mus81 mutants can be rescued by bacterial Hj 

resolvase RUSA suggesting that MUS81 is involved in the resolution of intermediate 

structures in fission yeast (Hollingsworth, 2004). Additionally, S. pombe SGS1 

orthologue, RQH1 was also found to be important for CO and NCO formation, 

although a meiotic resolvase activity is yet to be shown (Cromie et al., 2006). In C. 

elegans, the FANCJ-related DNA helicase RTEL1 has been functionally compared to 

SGS1 and rtel1-1 mutant appears to promote JM resolution via MUS81-dependent 

pathway (Youds et al., 2010). In Arabidopsis, a functional homologue of SGS1 is yet 

to be found. Additionally, two homologues of GEN1 have been identified in 

Arabidopsis. However, the double knockout line was found to be fertile suggesting 

possible redundancy of proteins in dHj resolution (Osman et al., 2011). Nevertheless, 

~85% of the meiotic COs are dependent on the MUTL complex AtMLH1-AtMLH3 

while the rest are partially dependent on AtMUS81 (Franklin et al., 2006, Higgins, 

2004, Higgins et al., 2008a, Higgins et al., 2008b). Hence, it is plausible that dHj 

resolution in Arabidopsis may be similar to that in budding yeast, although this 

remains to be validated.  
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1.4.6. Crossover homeostasis 

In budding yeast, a study was carried out using a series of S. cerevisiae spo11 

hypomorphs where DSB formation was induced at different levels (∼80%, ∼30%, and 

∼20% of wild-type levels) in order to to understand CO/NCO designation (Martini et 

al., 2006). The study measured recombination frequency at eight different intervals 

across three chromosomes in the spo11 hypomorphs. These revealed that reducing 

the number of DSBs does not cause a parallel reduction in the number of COs, 

instead, there is a tendency for COs to be maintained at the expense of NCOs. This 

phenomenon is termed crossover homeostasis and is thought to be important for 

assuring the formation of at least one CO between each chromosome pair, which is 

essential for the proper segregation of chromosomes during meiotic divisions (Martini 

et al., 2006). 

Various studies of meiotic recombination revealed that although recombination is 

initiated by the formation DSBs at a number of sites along the chromosomes, only a 

subset of DSBs mature to form COs, while the rest are resolved as NCOs. The ratio 

of DSBs to COs has been observed to vary among organisms. In budding yeast, 

number of DSBs was found to be approximately three times more than COs whereas 

in mouse only ~10% of DSBs are resolved as COs (Kauppi et al., 2004). 

Immunolocalization studies on wild-type Arabidopsis meiocytes using anti-AtSPO11 

antibody, that detects DSB catalyzing protein AtSPO11, revealed that DSBs are 

formed at ~150 sites during early leptotene (Sanchez-Moran et al., 2007). This is in 

agreement with the number of early recombination intermediates, AtRAD51 and 

AtDMC1 observed during early prophase I in wild-type meiotic chromosome spreads 

using similar studies (Sanchez-Moran et al., 2007). However, FISH studies revealed 
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that only 9-10 COs are present at wild-type metaphase I suggesting that only 5-10% 

of the DSBs are subsequently repaired to form COs in Arabidopsis while the rest are 

repaired as NCOs (Franklin et al., 2006). The importance of such a variation between 

DSB and CO numbers is currently unknown, although it is speculated that the high 

number of DSBs is required to promote homologous chromosome pairing and 

synapsis (Baudat and de Massy, 2007, Osman et al., 2011). Interestingly, the 

observation that only a few DSBs are eventually repaired to form COs suggest the 

presence of anti-CO factors. In Arabidopsis, recent studies suggest that mutation of 

the helicase AtFANCM in the zmm mutant Atzyp4 results in an increase in mean 

bivalent numbers to ~4.5 from ~1.5 in Atzyp4. Furthermore, analysis of eight genetic 

intervals using tetrad analysis revealed that in Atfancm-1/Atzip4 the genetic 

distances were increased by a factor of 1.9 to 3.1 compared to the wild type 

(Crismani et al., 2012). In an Atfancm-1 single mutant the recombination frequency 

was increased by ~12% compared to the wild-type. Interestingly, an Atfancm-

1/Atzip4/Atmus81 triple mutant exhibits an absence of bivalents at metaphase I and 

chromosome fragmentation at anaphase I suggesting that the extra COs in Atfancm-

1 are AtMUS81-dependent and interference-insensitive. These findings suggest that 

AtFANCM acts as an anti-CO factor during Arabidopsis meiosis (Crismani et al., 

2012). Similar anti-CO activity has been described for RTEL1 in C. elegans and 

SGS1 in budding yeast (Oh et al., 2007, Youds et al., 2010). rtel-1 mutant exhibits 

significantly increased meiotic recombination in five genetic intervals on three 

chromosomes (Youds et al., 2010). Similarly, loss of SGS1 increases meiotic COs 

and causes transient accumulation of inter-homologue, inter-sister chromatid and 

multi-chromatid joint molecules during meiosis (Jessop et al., 2006, Oh et al., 2007, 
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Oh et al., 2008a). AtFANCM, RTEL1 and SGS1 have all been proposed to act as 

anti-recombinases that can resolve intermediate structures which lead to the 

formation of NCOs, thereby constraining the formation of excess COs (De Muyt et al., 

2012, Oh et al., 2008b, Youds et al., 2010).  

So far, it is unclear how DSBs are designated as COs and NCOs, although analysis 

in budding yeast zmm mutants have led to the proposal that CO/NCO decision takes 

place early in the DSB repair process (Borner et al., 2004). Budding yeast zmm 

mutants form normal levels of DSBs but are defective in strand invasion and dHj and 

CO formation. However, NCOs have been observed to form at normal levels in zmm 

mutants. Since strand invasion is the earliest step which is aberrant in zmm mutants, 

it is proposed that the CO/NCO decision takes place at or before this step in the DSB 

repair process (Borner et al., 2004). This proposal is referred to as ‘Early Crossover 

Decision’ (ECD) model of CO formation and is likely to be the case for Arabidopsis 

meiotic recombination (Bishop and Zickler, 2004, Borner et al., 2004).  

 

1.4.7. Crossover control 

Various studies have revealed that meiotic COs are not randomly distributed across 

the genome and their numbers are tightly regulated in all organisms (Jones, 1984). 

Interestingly, the number and distribution of COs in all organisms are such that they 

ensure the formation of at least one CO per chromosome pair. This is known as the 

obligate CO and is essential for correct segregation of chromosomes during meiotic 

divisions (Jones, 1984, Jones and Franklin, 2006, Shinohara et al., 2008). Formation 

of a CO reduces the formation of another CO in adjacent region. This is due to the 
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presence of interference between COs. Interference is the phenomenon by which the 

formation of one CO reduces the possibility of the formation of another CO in close 

proximity (Jones and Franklin, 2006). This therefore increases the chance of a 

second CO occurring in the areas most distal to the initial CO. Interference was first 

observed in Drosophila chromosomes where the number of observed double COs on 

a chromosome was less than the expected number (Sturtevant, 1915). In budding 

yeast, tetrad analysis in quartet mutants in which the four pollen grains remain 

attached after meiotic recombination showed that ~85% of the COs formed exhibited 

interference based on their fit to chi-square distribution (Copenhaver et al., 2002). As 

discussed earlier, this is also the case in Arabidopsis (Higgins, 2004). 

The mechanism of how interference is established between COs is still poorly 

understood. It was thought that interference was controlled and transmitted by the 

SC which runs the whole length of homologous chromosomes (Sym et al., 1993). 

This was supported by the observation that budding yeast zmm mutants which 

lacked SC also lacked interference (Borner et al., 2004). However, a more recent 

study suggests that CO interference is established before the formation of the SC 

(Fung et al., 2004). Furthermore, Arabidopsis Atzyp1 mutants which lack SC still 

have nearly wild-type distribution of COs and hence the presence of interference, 

indicating that the SC does not have a role in transmitting interference signals 

(Higgins et al., 2005). A model for establishing CO interference is the ‘counting 

model’, which proposes that adjacent COs are separated by a fixed number of NCOs 

(Stahl, 2004). This model accounts well for the pattern of CO distribution in various 

organisms including Arabidopsis. A prediction of the counting model is that a 

reduction in DSBs would cause a corresponding reduction in both CO and NCO 
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products. However, studies in budding yeast suggests that a reduction in DSB does 

not result in reduction in COs, instead COs are maintained at the expanse of NCOs 

(Martini et al., 2006). Another model proposed that CO interference is transmitted by 

the local release of tension across a chromosome by the induction of COs (Kleckner, 

2004). Kleckner et al., (2004) suggested that during the formation of a CO the 

chromosome axis twists due to a build up of tension. This tension is relieved locally 

and no other CO is formed in close vicinity due to a lack of tensional stress. However, 

there is a build-up of stress further away from the CO due to constant expansion and 

contraction of chromatin throughout meiosis. This stress is proposed to be relieved at 

a CO site far away from the initial CO site (Kleckner, 2004). Nevertheless, the exact 

mechanism of establishing CO interference still remains unknown. 

More recently, analysis of the distribution of recombination events in mammals and 

budding yeast revealed that meiotic COs tend to occur at specific regions along 

chromosomes. These regions have been termed recombination hotspots are 

approximately 1-2kb in length (Kauppi et al., 2004). Since all recombination events 

initiate by the formation of DSBs recombination hotspots are also known as DSB 

hotspots. Studies in yeast and mice showed that DSB hotspot designation requires 

the post-translational chromatin modification, the tri-methylation of histone H3 on 

lysine 4, H3K4me3 (Borde et al., 2009, Buard et al., 2009). This epigenetic 

modification has been proposed to serve as a marker for the initiation of 

recombination. Analysis of the S. cerevisiae mutants which lack the H3K4 

methyltransferase protein SET1 revealed drastic changes in hotspot usage in the 

mutant compared to the wild-type (Borde et al., 2009). Furthermore, two separate 

studies in mice independently identified PRDM9, which is involved in hotspot 
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regulation through chromatin modification (Grey et al., 2009, Parvanov et al., 2010). 

PRDM9 was found to be meiosis-specific and possess a SET domain that tri-

methylates H3K4. Mice lacking PRDM9 exhibit meiotic arrest at prophase I and 

hence complete sterility (Hayashi et al., 2005). PRDM9 possesses a DNA-binding 

zinc-finger domain comprising of several zinc-finger repeats in its C-terminus (Baudat 

et al., 2009). Intriguingly, computational analysis predicts that the C-terminus zinc-

finger domain of both mouse and human PRDM9 may bind to a 13-mer sequence 

motif (CCnCCnTnnCCnC), found enriched in DSB hotspots This prediction has been 

confirmed by in vitro analysis suggesting that the H3K4 modifier is recruited to DSB 

hotspots (Baudat et al., 2009, Grey et al., 2011). Studies involving experimental and 

population genetics suggest that variation in the C-terminus zinc-finger domain of 

PRDM9 may lead to variation in the usage of DSB hotspot (Segurel et al., 2011). 

Analysis of a selection of Prdm9 alleles from 20 mouse strains revealed extensive 

variation in repeat numbers of the zinc-finger domains in PRDM9 between the strains 

(Parvanov et al., 2010). Similar observations were reported in studies of human 

PRDM9 C-terminus zinc-finger repeats using DNA from several different sources and 

spanning multiple ethnicities (Baudat et al., 2009, Parvanov et al., 2010). The 

extensive variation of PRDM9 C-terminal zinc-finger repeats is thought to account for 

the differences in hotspot usage between individuals in both mice and human. 

Consistent with this suggestion, transgenic mice with varying levels of PRDM9 zinc 

fingers exhibit differences in hotspot activity, H3K4me3 levels, and the genome-wide 

distribution of crossovers (Grey et al., 2011). These findings implicate PRDM9 in 

playing a role in CO control. So far, an orthologue of PRDM9 has not been identified 

in Arabidopsis. However, recent studies suggest that chromatin modifications 
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mediated by the methyltransferase AtMET1, which is required to maintain CG DNA 

methylation, also plays an important role in CO distribution during Arabidopsis 

meiosis (Yelina et al., 2012). Loss of Atmet1 results in loss of DNA methylation and 

associated histone modifications which lead to increased transcription of repetitive 

sequences (Kankel et al., 2003). Analysis of the segregation of polymorphic markers 

revealed an increase in centromere-proximal meiotic CO frequency in Atmet1. This 

was not observed in the wild-type as centromeric repeat regions are densely 

methylated and hence exhibit low CO frequency. Furthermore, pollen-typing assays 

revealed a coincident decrease in CO frequency at pericentromeric regions but an 

increase at the distal regions of chromosomes in Atmet1. Interestingly, the total 

number of COs were found to be similar between the wild-type and Atmet1. These 

observations suggest that regional epigenetic organization play an important role in 

CO distribution along eukaryotic chromosomes (Yelina et al., 2012). Additionally, the 

SWI2/SNF2-like chromatin remodelling protein, AtDDM1 has also been shown to be 

involved in CO control in Arabidopsis (Melamed-Bessudo and Levy, 2012). Analysis 

of fluorescent seed markers from DDM1/ddm-1 revealed that its meiotic 

recombination rate was 59% higher than that of the wild-type. Additionally, analysis 

of molecular markers within chromosome 5 showed that recombination was 60-90% 

more in euchromatic regions than heterochromatic regions in DDM1/ddm-1 

compared to the wild-type. Similar results were observed for MET1/met1-3 

(Melamed-Bessudo and Levy, 2012).  

Histone acetylation and deacetyaltion have also been shown to be involved in meiotic 

recombination. Disruption of S. cerevisiae histone acetyltransferase (HAT), SpGcn5 

leads to a partial loss of DSBs in ade6-M26 hotspot locus (Yamada et al., 2004). 
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Additionally, disruption of histone deacetylase (HDAC), ScRpd3p increases HIS4 

hotspot activity (Merker et al., 2008). Furthermore, in budding yeast disruption of the 

HDAC, SIR2 changes the genomic distribution of meiosis-specific DSBs 

(Mieczkowski et al., 2007). In Arabidopsis, a recent study revealed that mutation of 

the GCN5-related HAT gene AtMCC1 leads to ~68% reduction in fertility and the 

formation of univalents in 8% of the Atmcc1 nuclei. Interestingly, all of these 

univalents involved chromosome 2 indicating the loss of the obligate CO in the 

chromosome. Additionally, there was a significant decrease in ring bivalents 

(contains 2-3 COs) for chromosome 1 and a significant increase for chromosome 4 in 

Atmcc1 compared to the wild-type. This corresponded to a significant increase in 

distal chiasmata in chromosome 4. Altogether, these changes increased the 

formation of ring bivalents by 12% in Atmcc1 compared to the wild-type, although 

there was no significant difference in the overall chiasma frequency between the two. 

These findings suggest that histone acetylation plays an important role in CO control 

in Arabidopsis (Perrella et al., 2010).  

The findings discussed in the above sections highlight the importance of chromatin 

modifications in CO control. It is likely that controlled chromatin condensation and 

decondensation may make the DNA more accessable for recombination proteins. 

Alternatively, these may regulate the expression of recombination proteins such that 

they influence CO formation. However, the mechanisms underlying CO control still 

remains poorly understood. 
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1.5. Inter-relationship between chromosome axes and meiotic 

recombination  

 

1.5.1. Co-ordination between chromosome axis maturation and 

recombination 

In many organisms, normal juxtaposition of the homologous axes at early prophase I 

requires meiotic recombination, which in turn requires the former to generate normal 

levels of COs, suggesting that the two processes are tightly linked (Kleckner, 2006). 

The basis of this inter-relationship is still poorly understood, however, it can be best 

explained by the ‘axis to loop capture’ model. (Zickler and Kleckner, 1999). It is 

proposed that during early prophase I meiotic chromosomes are arranged as so-

called ‘dual-loop modules’ (Figure 2A), where meiotic sister chromatids are organized 

into a set of chromatin loops. The loops are anchored and aligned along a linear 

proteinaceous axis at a density of approximately 20 loops per µm of axis. The density 

of loops along chromosome is thought to be conserved between organisms, evident 

from the observation that organisms with larger genomes have either larger loop size 

or longer axis but no change in their loop density (reviewed in Kleckner, 2006). 

Zickler and Kleckner (1999) proposed that in leptotene DSBs form towards the base 

of chromatin loops which are in close proximity to the chromosome axis. At some 

point soon after the formation of DSBs, the DSB ends become tethered to their 

underlying axis along with RecA homologues and other recombination proteins that 

are loaded onto the DNA ends. One of the protein-associated DSB end then identify 

and capture a homologous DNA sequence located within the chromatin loop of its 

corresponding homologue. This mechanism of homologue identification is termed 
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‘axis to loop capture’ and is thought to allow homology search over a distance of the 

length of one chromatin loop (Zickler and Kleckner, 1999). It is suggested that 

following loop capture by the axis-associated DSB, the ends of DNA around DSB 

which are coated with various early recombination proteins form a rigid rod-like 

structure. The rod on one side is proposed to grow outward, carrying the DSB and 

the associated axis towards the homologue axis. This is followed by the rod on the 

other side which is also thought to grow outward but swing ~180° about the DSB to 

capture the homologue axis. These actions are proposed to pull the homologues 

together to close proximity of each other (Zickler and Kleckner, 1999). The resulting 

close association of homologues is thought to facilitate pairing and synapsis of 

homologous chromosomes (reviewed in Kleckner, 2006).  

Indeed, recombination has been shown to be tightly co-ordinated with axis 

maturation. Initially, Blat et al (2002) proposed that recombination machinery 

assembles within the chromatin loop and then gets tethered onto the chromosome 

axis prior to DSB formation in the axis-associated loop (Blat et al., 2002). Other 

scientists argued that DSBs are formed prior to the loop-axis association or that DSB 

formation and axis assembly occur concomitantly (Kleckner, 2006, Lorenz et al., 

2006). In Arabidopsis, dual-immunolocalization along with time course studies 

suggest that DSB formation and axis maturation are indistinguishable events 

(Sanchez-Moran et al., 2007). The studies revealed that although the number of 

AtSPO11 (DSB catalyzing protein) foci was maximum at 3h post BrdU pulse labelling 

at S-phase, the number of γH2AX (DSB marker) foci did not peak till 5h post pulse-

labelling. This indicates that there is a considerable delay in the actual formation of 

DSBs after AtSPO11 loading. In addition, the study reported that appearance of 
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γH2AX signal is concomitant with transition of AtASY1, AtSMC3 and AtSCC3 signals 

from chromatin to the axis. These observations suggest that DSB formation, hence 

recombination does not occur till the axis has matured (Sanchez-Moran et al., 2007).  

In Arabidopsis, further evidence of the tight co-ordination between recombination and 

chromosome axis maturation are emphasized by analysis of progression of prophase 

I in recombination mutants. Time-course experiments using BrdU pulse-labelling at 

S-phase and the subsequent detection of labeled meiotic stages using FITC-

conjugated anti-BrdU antibody and DAPI-stained DNA revealed that completion of 

prophase I takes ~29 hours post pulse-labeling in wild-type (Armstrong et al., 2003). 

However in mutants such as Atmsh4, Atzyp1 and Atmlh3 in which recombination is 

defective, completion of prophase I takes considerably longer, ~38, ~54 and ~35 

hours post pulse-labeling in S phase respectively, than in wild-type (Higgins, 2004, 

Higgins et al., 2005, Jackson et al., 2006). These observations suggest the presence 

of an intra-prophase I surveillance mechanism that ensures DSBs are repaired 

before proceeding with the divisions of meiosis (Jackson et al., 2006). 

 

1.5.2. Spatial association between recombination and chromosome 

axis/SC 

An important aspect of meiotic recombination is that it occurs in the context of the 

chromosome axis and the SC. Early EM studies of Schizophyllum commune, 

Coprinus, Bombyx mori and human spermatocytes revealed that ‘recombination 

nodules’, containing a complex of recombination proteins were found to be 

associated with the SC at pachytene (von Wettstein et al., 1984). Furthermore, the 
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number and distribution of these nodules were consistent with the number of 

eventual chiasmata observed in the corresponding organism. More recent studies in 

mammals involving immunocytological techniques revealed that these nodules 

correspond to MLH1 and MLH3, which are thought to mark CO sites (Barlow and 

Hulten, 1998, Lipkin et al., 2002). Furthermore, mouse and budding yeast 

recombination proteins RAD51 and DMC1 have been observed to localize to 

homologous axes (Moens et al., 2002 and the references therein). In Arabidopsis, 

the recombination proteins AtRAD51, AtDMC1, AtMSH4 and AtMLH3 all exhibit axis-

associated foci-like signals supporting the notion that recombination is spatially 

coupled with the axis (reviewed in Osman et al., 2011).   

 

1.5.3. Role of axis proteins in recombination 

Cohesins form an integral component of the meiotic chromosome axes. In addition to 

their role in maintaining sister-chromatid cohesion, cohesins are also thought to play 

a role in meiotic CO formation. Studies involving human cells where DSBs were 

induced using a laser microbeam and assembly of repair proteins were tracked in 

vivo by immunofluorescent detection revealed that cohesin accumulates at DSB sites 

(Kim et al., 2002). It has been proposed that the accumulation of cohesin at break 

sites following their formation is required to stabilize broken DNA ends and facilitate 

DSB repair (Strom et al., 2004). S. cerevisiae rec8 mutants which lack the meiotic 

REC8 cohesin subunit fail to repair DSBs. Similarly, Arabidopsis Atsyn1 mutants 

lacking the yeast REC8 homologue AtSYN1 also fail to repair DSBs (Bai et al., 1999, 

Klein et al., 1999). In addition to cohesins, certain structural components of the SC 
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have also been shown to play a role in promoting meiotic recombination. The SC TF 

component ZIP1 in S. cerevisiae and AtZYP1 in A. thaliana has also been shown to 

be required for normal levels of CO formation (Borner et al., 2004, Higgins et al., 

2005, Storlazzi et al., 1996). In addition, RED1 and HOP1, the AE components of the 

SC in budding yeast, have been shown to be essential for the formation of DMC1-

mediated interference-dependent COs (Niu et al., 2005). Similarly, Arabidopsis 

meiotic axis protein, AtASY1 has recently been shown to play a key role in mediating 

inter-homologue recombination (Sanchez-Moran et al., 2007). Time-course studies 

coupled with immunolocalization studies showed that in in the absence of AtASY1, 

AtDMC1 is destabilized soon after loading leading to a loss of inter-homologue 

recombination in Atasy1 (Sanchez-Moran et al., 2007). It is presumed that AtASY1 

promotes CO formation via interaction with yet unknown members using a 

mechanism similar to the one in budding yeast.  

 

 

1.6. Arabidopsis thaliana - a model plant for meiosis research 

In Arabidopsis, male meiosis occurs in the anther. Early during anther development 

several adjacent hypodermal cells within the anther primordium undergo periclinal 

divisions to form archesporial cells. The archesporial cells then divide mitotically to 

form primary sporogenous cells. The sporogenous cells subsequently differentiate 

into pollen mother cells (PMCs) and primary parietal cells, which differentiate 

mitotically to form the wall of the anther (reviewed in Wilson and Yang, 2004). 

Female meiosis on the other hand occurs in the ovule housed in gynoecium in 
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Arabidopsis. Hypodermal cells at the top of ovule primordium differentiate during 

early ovule development to form an archesporial cell, which give rise to the spore 

bearing tissue, megaspore mother cell (MMC). Female meiosis occurs in the MMC 

giving rise to four haploid megaspores, three of which degenerate via programmed 

cell death and only one develops into the female gametophyte (reviewed in Osman et 

al., 2011, Wilson and Yang 2004). 

The first description of meiosis in Arabidopsis was reported over a century ago. 

However, due to the small size of chromosomes in Arabidopsis and the limited 

cytological procedures available at that time meiotic research in Arabidopsis proved 

to be challenging. Nevertheless, recent advances in the development of cytological 

and molecular biology tools have made Arabidopsis an ideal model organism for 

studying meiosis. Arabidopsis has a relatively small genome (~125MB) which has 

been completely sequenced (Arabidopsis Genome Initiative, 2000). In addition, there 

is a wide selection of T-DNA insertional mutants available for identification and 

characterization of meiotic genes in Arabidopsis. Furthermore, the anther locules in 

Arabidopsis contain synchronized meiocytes which allow the cytological analysis of 

chromosomes at different stages of meiosis. Recent advances have also enabled the 

ultra-structural analysis of meiotic chromosome synapsis using electron microscopy 

and the analysis of chromosome-specific chiasma frequency and distribution using 

FISH (Albini and Jones, 1984, Armstrong and Jones, 2003, Jones et al., 2003). The 

availability of antibodies against various meiotic proteins allows efficient 

immunocytological analysis of the localization of various proteins during meiosis. 

(Sanchez-Moran, 2007 and the references therein). Time course experiments using 

BrdU pulse labelling of meiotic chromosomes allow the study of the chronology and 
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duration of the different meiotic stages in Arabidopsis (Armstrong et al., 2003). The 

use of BrdU pulse labelling in conjunction with immunolocalization also allows the 

study of the distribution of meiotic proteins at different time points (Armstrong et al., 

2003, Sanchez-Moran et al., 2007). In addition, the ability to transform and express a 

desired gene in vivo during Arabidopsis meiosis using Agrobacterium is highly 

advantageous for the characterization of meiotic proteins (Zhang et al., 2006). More 

recent advances have led to the development of proteomics studies involving co-

immunoprecipitation and mass spectrometry using meiocytes from Arabidopsis and 

its close relative Brassica (Sanchez-Moran et al., 2005). These have allowed the 

analysis of interactions between meiotic proteins and raised the possibility of 

identifying novel proteins involved in meiosis. Finally, there is generally no meiotic 

arrest in Arabidopsis meaning that meiosis proceeds to the end in most mutants 

allowing defects to be tracked along the meiotic stages (reviewed in Sanchez-Moran, 

2007). These characteristics make Arabidopsis an ideal model organism for studying 

meiosis. 

 

 

1.7. Aims and objectives 

Chromosome axis formation, synapsis and meiotic recombination are essential for 

normal meiosis. Recent evidence suggests that these processes are closely inter-

linked, although their inter-relationship still remains poorly understood. This project 

aims to investigate this inter-relationship in order to study the control of meiotic 
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recombination and chromosome synapsis during meiosis in A. thaliana. The 

objectives of this project are as follows: 

Elucidation of the role of the RECQ family DNA helicase, AtRECQ4B, during meiosis. 

Molecular and cytological characterization of a novel axis component, AtASY3, that is 

required for normal synapsis and recombination. 

Investigation of the effect of post-translational modification of the axis-associated 

protein, AtASY1, by analysing a putative phosphorylation site, T295, in the protein.  
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CHAPTER 2 

Materials and methods 
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2.1. Plant material and growth conditions 

Arabidopsis thaliana seeds including those of the T-DNA insertion lines used in this 

study were obtained from European Arabidopsis Stock Centre (NASC) 

(www.arabidopsis.info). Seeds for Atasy1-T295A transgenic lines were provided by 

Eduardo Corredor and Ruth Perry. The ecotype Columbia-0 (Col-0) was used as a 

wild-type control in all experiments. 

Plants were grown in soil based compost in a glasshouse at 18-25ºC with a 16 hour 

light cycle and watered twice daily. For growing plants in MS media (see appendix for 

recipe), seeds were initially sterilized in 20% bleach (ParazoneTM) for 15 minutes 

followed by three 15 minute washes in sterile distilled water (SDW) on a rotating 

wheel. Seeds were then dried, placed on MS plate and vernalized 48 hours at 4ºC 

before moving the MS plate to a growth chamber, maintained at 22ºC with a day 

length of 16 hours.  

 

 

2.2. Nucleic acid manipulations 

2.2.1. Isolation of plant DNA 

DNA was isolated for genotyping plants using the Extract-N-AmpTM Plant PCR kit 

(Sigma). A small portion of nascent leaf (~2x2mm) was collected into a 0.5 ml 

microfuge tube. 40μl of extraction buffer was added to the tube and the leaf was 

broken up with the tip of a pipette. The sample was then incubated at 95°C for 10 

minutes in a PCR machine. Subsequently, 40μl of dilution buffer was added and the 
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tube flicked in order to further break up the tissues. The sample was then centrifuged 

for 15 seconds at 13,000 rpm to separate the plant DNA into the supernatant. The 

tube containing the extracted DNA was stored at −20ºC. 

 

2.2.2. RNA extraction from plant tissue 

All microfuge tubes, pipette tips and pestles that were used for handling RNA were 

treated with diethyl pyrocarbonate (DEPC) to remove any RNase contamination in 

them. All equipments were immersed in DEPC (1:1000 with SDW) and left overnight 

before being subsequently autoclaved to inactivate DEPC. Total RNA from the 

desired plant tissue was extracted using RNase easy minikit (Qiagen) as per the 

manufacturer’s protocol. A suitable amount (50-100mg) of the desired plant tissue 

was snap frozen in liquid nitrogen upon collection and ground in a 1.5ml tube using a 

pestle. Subsequently, the RLT buffer (Qiagen) was added to the sample and the tube 

vortexed to break open cells and denature RNases. The sample was then passed 

through a QIAshredder spin column (Qiagen) to remove cellular debris and then 

through a RNeasy mini column (Qiagen) where the RNA binds to a silica membrane. 

The membrane was then washed with RW1 buffer (Qiagen) containing ethanol 

followed by RNase free (DEPC treated) water to elute the RNA. Eluted RNA was 

stored at −70ºC. 
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2.2.3. cDNA synthesis 

First-strand cDNA synthesis was carried out using the Superscript™ II reverse 

transcriptase (Invitrogen). 1μl of Oligo(dT)24 was added together with ~2μg of total 

RNA and 1μl of dNTP mix (10mM each) and made up to 12μl with RNase free water. 

The sample was then heated at 65ºC for 5 minutes and instantly chilled on ice. 

Subsequently, 5µl of 5X FSB, 2µl of 0.1M DTT and 1µl of the RNase inhibitor 

RNasein (Promega) was added to the sample. This was then subjected to reverse 

transcription PCR (see section 2.2.10) for generating cDNA. cDNA was stored at 

−20ºC. 

 

2.2.4. Nucleic acid quantification 

DNA was diluted to 1:100 with SDW and RNA to 1:200 with DEPC treated water. 

Each sample was transferred to a quartz cuvette before measuring its absorbance 

with a spectrophotometer (Jenway 6305) at a wavelength of 260nm. The 

concentration of the sample was then calculated given that a DNA sample of 50μg/ml 

and an RNA solution of concentration 40 μg/ml each has an absorbance (OD260) of 

1.0. 

 

2.2.5. DNA agarose gel electrophoresis 

1% agarose gels were used in all cases. To prepare a gel, agarose (Sigma) was 

dissolved in 0.5X TBE by heating in a microwave. The molten gel was briefly cooled 

and 0.5μg/ml of ethidium bromide was added for subsequent visualisation of DNA 
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before being allowed to set. The gel was covered with loading buffer (0.5X TBE) 

before loading any DNA. For estimation of molecular weights, all DNA was run next 

to a 1kb DNA ladder (15 μl 1Kb Ladder {Invitrogen, 50μl DNA loading buffer {40% 

[v/v] glycerol, 0.25% [w/v] Bromophenol blue, 0.25% [w/v] xylene cyanol}, 135μl 

SDW). DNA loading buffer was added to DNA if not already included in the sample. 

Gels were run using Hybaid or Biorad electrophoresis kits. Images of gels were 

captured using a FlourS Max multi-imager or a Gel-Doc XR imager using 

QuantityOne Software. 

 

2.2.6. RNA agarose gel electrophoresis 

Agarose gels for resolving RNA samples were prepared run and visualized using 

similar techniques as used for DNA gels. However, before loading RNA samples onto 

a gel, RNA loading dye (Invitrogen) was added to each sample at a ratio of 1:1 and 

incubated at 65ºC to prevent the formation of any secondary structures of RNA. 

 

2.2.7. Primer design 

Primers were designed by selecting appropriate regions from the desired nucleotide 

sequence. Primers were obtained from Eurofins MWG Operon (Germany). A 

complete list of primers used in this study can be found in the Appendix. 
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2.2.8. Polymerase chain reaction (PCR) 

PCRs were used to amplify genomic DNA, cDNA and plasmid DNA using desired 

primers. Most PCRs were carried out using TaqDNA polymerase ReddyMix 

(ThermoScientific) following the manufacturer’s instructions. Primers were used at a 

final concentration of 0.1μM. In a typical PCR reaction (Table 1), DNA was denatured 

at 95ºC before allowing primers to anneal. The annealing temperature was generally 

5°C below the average melting temperatures of the primers being used. Nucleotide 

sequence was then elongated from the primers by Taq polymerase in the ReddyMix. 

The duration of this elongation stage was 1 minute per kb of sequence to be 

amplified. Each cycle consisting of the above stages was usually carried out 35 

times. This was followed by a final elongation stage to complete the amplification 

process. PCRs were carried out in a ThermoHybaid Omnigene, Techne TC-412 or 

ThermoHybaid PCRSprint thermo-cycler.  

In some cases where accurate amplification of nucleotide sequence were necessary, 

PCRs were carried out using Pfu DNA polymerase (Promega) according to the 

manufacturer’s protocol. All solutions were prepared on ice and reactions were 

subjected to a hot start. DNA elongation times were extended as per the protocol to 

allow proof reading by the polymerase. All other aspects of the PCRs were similar to 

those described in the above paragraph. 
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Temperature (˚C) Time (minutes) Number of cycles 

94 2 1 

94 1 

35 
5˚C below Tm of  

primers 
1 

72 1 minute per kb 

72 10 1 

 

    Table 1. Standard PCR. (Tm = Melting temperature) 

 

2.2.9. PCR for genotyping plants 

Plants were genotyped by PCRs using gene specific primers in conjunction with a 

primer specific to the left border of T-DNA. 1µl of genomic DNA extracted from plant 

leaf was added to 9µl primer mix (final concentration 2pmol/μl) and 10µl of TaqDNA 

ReddyMix (ThermoScientific). PCRs were carried out as described in section 2.2.8. 

 

2.2.10. Reverse transcription (RT)-PCR 

RT-PCRs were used for cDNA preparation for gene expression analysis and other 

purposes. RT-PCRs were carried out using SuperScript™ II reverse transcriptase 

enzyme (Invitogen) as per the manufacturer’s instructions. Sample preparation is 

detailed in section 2.2.3. During the RT-PCRs, samples were heated at 42ºC for 50 

minutes to allow elongation of cDNA using the RNA template. This was followed by 

heating at 70ºC for 15 minutes to inactivate the reaction. 
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2.2.11. 3´ -rapid amplification of cDNA ends (RACE) 

3ˊ-RACE, involving three rounds of PCRs, was used to amplify the unknown 

nucleotide sequence at the 3ˊ end of Brassica ASY3 from an mRNA template. The 

first round of PCR was essentially a RT-PCR (section 2.2.10) which generated cDNA. 

However, instead of using the usual oligo-dT primer the reaction was carried out 

using a modified oligo dT-adapter primer, which consists of a short sequence of 

deoxy-thymine nucleotides and an adapter sequence. The second and third rounds 

of PCRs were carried out similarly to that described in section 2.2.8. The second 

round of PCR involved the amplification of the 3' end of the cDNA using a gene 

specific primer (GSP) complimentary to a known location and an anti-sense primer 

complementary to the oligo(dT)-adaptor sequence. The final round of PCR used a 

nested GSP in conjuction with the primer complementary to the adaptor sequence to 

amplify the 3ˊ end of the cDNA increasing specificity of the desired product.  

 

2.2.12. Cloning 

2.2.12.1. Amplification of insert DNA 

For cloning, the desired nucleotide fragments were initially amplified by PCRs using 

specific primers as described in 2.2.8. In case of cloning of fragments into expression 

vectors, PCRs were carried out using primers with specific restriction sites 

incorporated in them. Amplified fragments were separated using gel electrophoresis 

as described in section 2.2.5.   
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2.2.12.2. Gel extraction of DNA bands 

DNA fragments in agarose gel were illuminated using weak UV light. A small portion 

of the gel containing the DNA fragment of interest was cut using a sterile blade. 

Extraction of the DNA fragment from the gel was carried out using QIAquick Gel 

Extraction Kit (QIAGEN) following the manufacturer’s guidelines. The gel containing 

the DNA fragment was dissolved in three volumes (w/v) of QG buffer by heating at 

50ºC for 10 minutes. The solution was then transferred to a QIAquick spin column 

and centrifuged at 13,000 rpm for 1 minute. During this process DNA binds to the 

membrane in the column. The column is then washed with PE buffer and the DNA is 

subsequently eluted in nuclease free water. 

 

2.2.12.3. Ligation of DNA fragments into vectors 

pDrive 

pDrive (Qiagen) is a 3.85kb easy cloning vector. The plasmid has a multiple cloning 

site (MPC) within the lacZ gene, which allows blue/white selection of colonies using 

X-gal. The plasmid also permits ampicillin and kanamycin selection. For ligation, 2-

4μl of purified DNA was mixed with 1μl of pDrive and 5μl of 2x ligation buffer. 

Samples were incubated overnight at 15ºC. 
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pZErO™-2 

pZErO™-2 (Invitrogen) is a 3.3 Kb plasmid with a lacZ gene containing a MPC. The 

lacZ gene is fused with ccdB which encodes a lethal protein. Expression of ccdB 

results in death of cells containing non-recombinant vector.  Therefore, cloning into 

the MPC disrupts ccdB expression allowing growth of recombinants only. The 

plasmid also contains kanamycin resistance gene. For ligation of cohesive ends a 2:1 

molecular ratio of insert:vector was used while a 10:1 ratio of insert:vector was used 

for blunt-end ligation. Molecular ratio for ligation of cohesive ends was calculated as 

follows: 

      X ng insert = (2)(bp insert)(10 ng linearized pZErO™-2) / (3297 bp pZErO-2) 

For blunt-end ligation, the 2 in the above equation was replaced with 10. Ligation 

samples were prepared as per manufacturer’s instructions. Ligations were carried out 

at 16°C for 30 minutes for cohesive-end ligation and 60 minutes for blunt-end 

ligation. 

 

pCR®-Blunt 

pCR®-Blunt (Invitrogen) is a 3.5kb vector used for blunt-end cloning. The plasmid has 

similar properties to pZErO™-2. For ligation into pCR®-Blunt, a a 10:1 molar ratio of 

insert:vector was used. Molecular ratio was calculated as follows: 

    X ng insert = (10)(bp insert)(25 ng linearized pCR®-Blunt) / (3500 bp pCR®-Blunt) 
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Ligation samples were prepared as per manufacturer’s instructions. Ligations were 

carried out at 16°C for 60 minutes. 

 

pET21b 

pET21b (Novagen) is a 5.4 Kb plasmid with MPC downstream of a T7 promoter. 

Expression from the T7 promoter is under the control of a Lac operator (lacI), which 

allows isopropylthio-β-D-galactosidase (IPTG) inducible expression. The plasmid 

also contains 6 repeats of the CAC codon, which codes for histidine, downstream of 

the MPC. This histidine tag is attached to the C-terminus of the recombinant protein 

and allows easy protein purification. The plasmid also contains an ampicillin 

resistance gene for selection. For preparation of each ligation sample a molar ratio of 

3:1 insert:vector was used. Molecular ratio was calculated as follows: 

               X ng insert = (3)(bp insert)(10 ng linearized vector) / (bp vector) 

The insert and vector mix was added to 4μl of 5x ligation buffer and 1μl T4 ligase 

(Invitrogen). Each sample was then made up to a final volume of 20µl with SDW. 

Ligations were performed over night at 14°C.  

 

pPF408 

pPF408 is a 11.5 Kb binary plasmid which contains a MPC downstream of a meiosis 

specific DMC1-promoter (Siaud et al., 2004). The plasmid allows the expression of a 

fragment of interest during meiosis in vivo. The plasmid also contains BASTA and 
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chloramphenicol resistance genes for selection. Sample preparation and ligation 

were carried out similarly to the methods mentioned above for pET21b. 

 

2.2.12.4. Preparation of competent E. coli cells 

Ready-compenent E. coli BL21 (DE3) was obtained from Novogen. However, 

competent E. coli DH5α was prepared in house. E. coli DH5α from a glycerol stock 

was streaked on a Lysogeny Broth (LB) agar plate (for recipe see appendix), which 

was then incubated overnight at 37 °C. After incubation a single colony was used to 

inoculate 5 ml of LB, which was then grown for 16 hours at 37 °C while shaking at 

200-225 rpm. 100µl of the resulting culture was then added to 100ml of LB in a 2 litre 

flask and grown further at the above conditions until the optimal density of the culture 

at OD550 was between 0.3-0.4.  The flask was cooled on ice for 10 minutes before 

transferring its contents to a pre-cooled 250ml centrifugation tube.  The tube was 

then centrifuged for 5 minutes at 3000 rpm at 4°C (SORVALL® RC26). After 

discarding the supernatant the pellet containing cells were re-suspended by swirling 

in 20 ml of ice-cold TFB1 (30mM potassium acetate, 100mM rubidium chloride, 

10mM calcium chloride, 50mM magnesium chloride, 15% (v/v) glycerol pH5.8 filter 

sterilised). The sample was then allowed to incubate on ice for 2 hours after which it 

was centrifuged for 5 minutes at 2000 rpm in 4°C. The supernatant was discarded 

and the cells were re-suspended by swirling in 4ml ice-cold TFBII (10mM MOPS, 

75mM calcium chloride, 10mM rubidium chloride, 15% (v/v) glycerol, pH 6.5, filter 

sterilised). The sample containing the bacterial cells were left overnight on ice at 4°C 
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before being aliquoted (50μl) into 1ml microcentrofuge tubes. The tubes were then 

snap frozen in liquid nitrogen and stored at −80°C.  

 

2.2.12.5. Transformation into competent E. coli by heat shock 

A 50μl aliquot of competent cells was thawed on ice for 10 minutes. Subsequently, 

2μl of ligation reaction was added twice and gently mixed by stirring the pipette tip. 

The tube with the mixture was the then left on ice for 30 minutes. Subsequently, the 

mixture was subjected to a heat shock at 42°C for 45 seconds after which the tube 

was quickly transferred on ice. After 2 minutes of recovery on ice, 200μl of LB was 

added to the heat shocked culture. The tube containing the culture was then 

incubated at 37°C for 45 minutes, shaking at 200 rpm. After incubation, cells were 

then plated on LB agar plates containing the appropriate selective media and grown 

inverted overnight at 37°C. 

 

2.2.12.6. Preparation of electro-competent A. tumefaciens 

5μl of bacterial culture from a glycerol stock of A. tumefaciens was added to 10ml of 

LB containing rifampicin and grown for 48 hours at 28ºC in a shaking tray. This was 

then used to inoculate 200ml of LB containing rifampicin in a 2 litre flask. The culture 

was grown further in the above conditions until it reached an OD600 of 0.5-0.8. The 

culture was transferred to a centrifugation flask and cooled on ice before being 

centrifuged at 500 rpm for 5 minutes at 4ºC. The pellet containing cells was then 

washed once with each of 1.0, 0.5, 0.2 and 0.02 culture volumes of 10% glycerol by 
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repeated resuspension and centrifugation. Cells were then devided into 100μl 

aliquots, snap frozen in liquid nitrogen and stored at −70ºC. 

 

2.2.12.7. Transformation into electro-competent A. tumefaciens 

A 100μl aliquot of electro-competent A. tumefaciens (LBA4404) cells was thawed on 

ice for 10 minutes. 2µl of plasmid DNA was added to the cells twice, each time 

mixing gently using the pipette tip. The mixture was allowed to incubate on ice for 20 

minutes before being transferred to a 0.2cm electroporation cuvette (BioRad) at 4ºC. 

The cells in the cuvette were then electroporated using a BioRad micropulser set to 

EC1 (2.5 KV, 5-6 ms) at 4ºC. After electroporation, the cells were left to recover on 

ice for 1 minute. Subsequently, 1ml of LB was added to the cuvette and mixed gently 

with the cells. The cells were then incubated at 28ºC for 2 hours before being plated 

onto LB agar plates containing appropriate selection antibiotics and grown for 2 days 

at 28ºC. 

 

2.4.12.8. Bacterial growth media 

The recipe for LB broth and LB agar media can be found in Appendix. All media was 

prepared using SDW and sterilised by autoclaving at 15 psi and 121°C for 20 

minutes. For preparation of selective media, ampicillin was used at a final 

concentration of 100μg/ml, kanamycin at a final concentration of 50μg/ml and 

chloramphenicol at a final concentration of 12.5μg/ml for E. coli and 100μg/ml for A. 
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tumefaciens. Handling and inoculations of liquid broth and agar plates were carried 

out under aseptic conditions. 

 

2.2.12.9. Colony PCR 

Colony PCRs were used to test bacterial colonies following transformation to verify 

whether they contained plasmids cloned with the desired inserts. PCRs were carried 

out using a primer specific to the insert and another specific to a region in the 

plasmid. In case of E. coli, a small amount of each bacterial colony was picked with a 

separate sterile toothpick and mixed with 9µl of primer mix (final concentration 

2pmol/μl) and 10µl of TaqDNA ReddyMix (ThermoScientific) in a 0.5ml microfuge 

tube. For Agrobacterium, after picking, each colony was dipped into 10µl of SDW in a 

0.5ml microfuge tube and boiled for 5 minutes to lyse the cells. Subsequently, 1µl of 

each sample was added to a separate tube containing primer and PCR mix as 

mentioned earlier. All bacterial DNA were subjected to PCR as described in section 

2.2.8. 

 

2.2.12.10. Extraction of plasmid DNA using boil preparation 

Boil preparation was used to extract crude DNA to check for the presence of a 

fragment of interest in transformed cells. For this procedure, 10ml of LB broth was 

inoculated with bacterial cells from a single colony. The culture was grown overnight 

at 37°C, shaking at 200 rpm. Subsequently, 1ml of the culture was centrifuged at 

13,000 rpm for 1 minute to pellet the cells. The supernatant was discarded and cells 
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were resuspended in 100µl of STET buffer (8% Sucrose, 0.5% Triton X100, 50mM 

NaEDTA pH 8, 10mM Tris-HCl pH 8). 10μl of lysozyme (10 mg/ml) was added to the 

mixture, which was then boiled for 45 seconds to lyse the cells. The mixture was then 

immediately centrifuged at 13,000 rpm for 10 minutes to pellet cellular debris. The 

pellet was then removed and 500µl of ice cold 100% ethanol was added to the 

supernatant together with 10μl of 3M sodium acetate. The sample was then 

incubated in −20ºC to precipitate DNA before being centrifuged at 13,000 rpm for 10 

minutes at 4°C. The supernatant was removed and pellet was then washed with 

500µl of 70% ethanol. The pellet containing DNA was then allowed to air dry for 15 

minutes before re-suspending in 100μl of SDW containing RNaseA (40 μg/ml). 

 

2.2.12.11. Purification of plasmid DNA using wizard preparation 

Plasmid DNA was purified form bacterial cultures using Wizard plus SV Minipreps 

DNA purification system (Promega). DNA purification was carried out using the 

manufacturer’s guidelines for the microcentrifuge protocol. 9ml of bacterial culture 

grown overnight was centrifuged at 13,000 rpm for 5 minutes to pellet the cells. The 

pellet was re-suspended in 250µl Cell Resuspension Solution before adding 250µl of 

Cell Lysis Solution to lyse the cells. Subsequently, 10µl of alkaline protease was 

added to remove unwanted proteins followed by 350µl of Neutralization Solution. The 

mixture was then centrifuged at 13,000 rpm to bind plasmid DNA in a spin column. 

The column was then washed with ethanol before eluting the plasmid DNA in 100µl 

of nuclease-free SDW. Purified plasmid DNA was stored at −20ºC. 

 



80 

 

2.2.12.12. Restriction digestion 

Restriction enzymes were obtained from New England Biolabs or Fermentas. 

Restriction digests were carried out in appropriate buffers supplied with the enzymes 

following instructions from the manufacturer. Plasmid DNA was digested at 37°C for 

2 hours or overnight as per requirement. In some cases, restriction enzymes were 

inactivated after digestion by heating at 65ºC for 30 minutes.  

 

2.2.12.13. DNA sequencing 

For DNA sequencing 300-500ng of plasmid DNA, purified using wizard preparation, 

was added to 1µl of 3.2 pmol/μl primer (M-13 forward, M-13 reverse, T7 promoter) 

and made up to a 10µl final volume with SDW. DNA sequencing reactions were 

carried out by the Functional Genomics Laboratory in University of Birmingham. 

 

2.2.12.14. DNA sequence analysis 

DNA sequencing results were analysed using Chromas software. Homology 

searches were carried out using the BLAST program on the National Centre for 

Biotechnology Information (NCBI) website (www.ncbi.nlm.nih.gov) and the ClustalW 

program (www.ebi.ac.uk/Tools/msa/clustalw2). Reverse complementation was 

carried out using the website www.bioinformatics.org/sms/rev_comp.html. Nucleotide 

sequences were translated to putative amino acid sequences using BCM Search 

Launcher (http://searchlauncher.bcm.tmc.edu). 
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2.3. Protein manipulations 

2.3.1. Recombinant protein production 

The AtASY3-C recombinant protein was used to produce an antibody against ASY3. 

A test induction was initially carried out to verify AtASY3-C expression before a large 

scale production of the recombinant protein. 

 

2.3.1.1. Test induction and purification 

E.coli BL21 (DE3) containing the pET-21b vector with AtASY3-C was grown in 10ml 

LB containing ampicillin (100µg/ml), which was incubated overnight at 37ºC on a 

shaker (200 rpm). The culture was then separated into two halves and 5ml of fresh 

LB containing ampicillin (100µg/ml) was added to each half. For induction of AtASY3-

C expression, 10µl of Isopropyl β-D-1-thiogalactopyranoside (IPTG) (final 

concentration of 1mM) was added to one half of bacterial culture while the other half 

was left uninduced. The cultures were then grown for 4 hours at 37ºC on a shaker 

(200 rpm). For protein purification 1ml of each culture was centrifuged at 13,000 rpm 

for 1 minute. The supernatants were removed while the cells from each culture were 

resuspended in 75µl Bugbuster Mastermix (Novagen) and incubated at room 

temperature for 30 minutes. The solutions were then centrifuged at 13,000 rpm for 1 

minute. Supernatants containing the soluble proteins were separated while each 

pellet containing insoluble proteins was resuspended in 75µl SDW. Both soluble and 

insoluble protein solutions were then loaded onto SDS-PAGE gels for further 

analysis. 
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2.3.1.2. Large scale protein production  

Large scale protein production was performed by growing E.coli BL21 (DE3) 

containing the pET-21b vector with AtASY3-C in 200ml LB containing ampicillin 

(100µg/ml) in a 2L flask. The culture was incubated overnight at 37ºC on a shaker 

(200 rpm). Subsequently, 200ml of fresh LB containing ampicillin (100µg/ml) was 

added to culture. Recombinant protein expression was induced by adding IPTG (final 

concentration of 1mM) and subsequently incubating the culture for 4 hours at 37ºC 

on a shaker (200 rpm). The bacterial culture was then divided into two halves and 

centrifuged in 250ml centrifuge flasks using a floor centrifuge (SORVALL® RC26) for 

10 minutes at 5000 rpm at 4°C. The supernantants were discarded and each culture 

pellet was re-suspended in 200ml of cold lysis buffer (see appendix) by gentle 

swirling. Samples were then centrifuged as before and each pellet re-suspended in 

20ml cold lysis buffer. 400μl of 10mg/ml lysozyme and 100μl of 50mM 

phenylmethanesulfonylfluoride (PMSF) were added to each sample and incubated at 

4°C for 1.5 hours. This was followed by the addition of sodium deoxcholate (26 mg) 

together with 50μl of 50mM PMSF to each sample, which were subsequently 

incubated at 37ºC for 30 minutes. Cells were then sonicated 5x (30 seconds pulse 

each) with 30 seconds on ice to cool between each pulse. Samples were 

subsequently centrifuged at 5,000 rpm (SORVALL® RC26) for 20 minutes at 4°C and 

the supernatant discarded. The resulting pellets containing recombinant proteins 

were re-suspended in 20ml of lysis buffer followed by sonication and centrifugation 

approximately 5-7 times until pellet appeared white with black spots. The pellet 

containing the AtASY3-C recombinant protein was then resuspended in 10ml 1x PBS 

(Sigma). The recombinant protein solution was quantified, tested using SDS-PAGE 
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and coomasie staining before sending 2mg of it to BioGenes (Germany) for antibody 

production. Purified proteins were stored at −20ºC. 

 

2.3.2. Protein extraction from plant tissue 

Anthers from B. oleracea and A. thaliana buds that are expected to contain early 

prophase I meiocytes were extracted, snap frozen in liquid nitrogen and stored in an 

eppendorf tube at −80ºC until required. Immediately before protein extraction one 

protease inhibitor tablet (Roche) was dissolved in 10ml IP buffer (see appendix). For 

protein extraction, ~250µl of frozen meiotic tissue was transferred to a 1.5ml 

microfuge tube and ground using a pestle for 5 minutes. While grinding, the tube was 

continuously refrozen in liquid nitrogen to prevent the tissues from thawing. Once the 

tissues were suitably ground, 250µl of IP buffer containing protease inhibitor was 

added. The tissues were then further ground for 10 minutes while being continuously 

refrozen. When completely ground, the tissues were allowed to thaw before adding 

another 250µl of IP buffer containing protease inhibitor. For extraction of proteins 

from ~100µl of frozen meiotic tissues the amount of IP buffer containing protease 

inhibitor was reduced to 150µl per addition after each grinding step to make a final 

volume of 300µl. The solution containing the ground tissues was then centrifuged at 

13,000 rpm for 20 minutes at 4ºC. The resulting supernatant containing soluble 

meiotic proteins was carefully extracted to a fresh tube, quantified and used for 

further analysis. Both the supernatant and the pellet (containing insoluble proteins) 

were stored at −20ºC (or −70ºC for long-term storage). 
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2.3.3. Protein quantification 

Protein concentrations were quantified using BioRad assays performed according to 

the manufacturer’s instructions. 200µl of Bradford reagent was added to an 

appropriate amount of each protein sample before making up to a final volume of 1ml 

using SDW. Each mixture was incubated at room temperature for 5 minutes, then 

transferred to a plastic cuvette before measuring its absorbance using a 

spectrophotometer (Jenway 6305) at 595 nm. The absorbance of BSA (10 mg/ml) 

was used as standard. Protein concentrations were estimated using the following: 

          x mg/ml Protein = ({Abs. Protein / Abs. BSA} x Conc. BSA) / (Vol. Protein) 

 

2.3.4. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) 

Proteins were analysed by SDS-PAGE using 3rd generation BioRad self-assembly 

kits. A resolving gel was prepared first as per Table 2. 7ml of the resolving gel was 

poured into the glass plates and a layer of absolute butanol was added over the gel 

to prevent the formation of air bubbles before allowing the gel to set. The butanol was 

then rinsed off and 2.5ml of stacking gel, prepared as per Table 2, was added on top 

of the resolving gel along with a comb containing wells. The stacking gel was then 

allowed to set. For both gels the TEMED was added immediately before pouring as it 

causes the gels to polymerise quickly. The gel tank was then assembled as 

described in the manufacturer’s instructions and filled with 1x reservoir buffer (see 

Appendix). Prior to their loading proteins were mixed with 5x protein loading buffer 

and boiled for 5 minutes. Protein samples along with a protein weight marker 
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(PageRuler™ prestained protein ladder, Fermentas) were then loaded onto the SDS-

PAGE gel.  The gel was initially run at 80V to allow proteins to enter the resolving gel 

before being run at 150V until the proteins were resolved. 

 

Contents 
Resolving gel 

Stacking gel 
10% 15% 

SDW 6.1ml 3.6ml 3ml 

Resolving buffer (1.5M Tris, pH 8.8) 3.75ml 3.75 0 

Stacking buffer (1M Tris, pH 6.6) 0 0 1.25ml 

Acrylamide (Protogel) 5ml 7.5ml 625µl 

 SDS (10% w/v) 150µl 150µl 50µl 

APS (15% w/v) 75µl 75µl 25µl 

TEMED (Sigma) 15µl 15µl 5µl 

Final volume 15ml 15ml 5ml 

Table 2. Components of the resolving and stacking gels and their amounts for SDS-PAGE. 

 
 

 
 

2.3.5. Two dimensional-polyacrylamide gel electrophoresis (2D-PAGE) 

2D-PAGE involves the separation of proteins initially on the basis of their net charge 

by isoelectric focusing (IEF) followed by SDS-PAGE, which separates the proteins by 

their mass. IEF were performed using a 7cm immobiline drystrips (pH3-10, NL) (GE 

Healthcare) following the manufacturer’s instructions. Protein samples were extracted 

from meiocytes and quantified as described in section 2.3.2 and 2.3.3 respectively. 

Prior to each IEF, ~90µg of a desired protein sample was precipitated in 5 volumes of 

acetone containing 20mM DTT. The mixture was centrifuged at 6000 rpm for 2 

minutes at 4ºC. The supernatant was removed and the pellet air dried for 5 minutes 
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before resuspending in 125µl of rehydration buffer (see Appendix) in a sonicating 

water bath at room temperature for 2 hours. The resulting solution was then used to 

rehydrate an immobiline drystrip. The solution was evenly distributed along a strip 

holder. The immobiline strip was then placed, gel-side down, over the solution such 

that the solution was evenly distributed under the strip. Rehydration followed by IEF 

was performed using an Ettan IPGphor II IEF System as per Table 3. After IEF, the 

focussed strip was equilibrated by treatment with 10ml equilibration buffer (see 

Appendix) containing 100mg DTT in a rocking table for 25 minutes followed by 

incubation in 10ml equilibration buffer containing 250mg iodoacetamide in a rocking 

table for 25 minutes. The latter treatment was carried out in the dark since 

iodoacetamide is sensitive to light.  Following equilibration, proteins in the strip were 

subjected to vertical SDS-PAGE using 3rd generation BioRad self-assembly kits. A 

10% resolving gel was set up as described in 2.3.4. Instead of using a stacking gel, 

the 7cm immobiline drystrip strip was placed sideways on top of the resolving gel. A 

small well was cut out in one side of the resolving gel for loading a protein weight 

marker (PageRuler™ prestained protein ladder, Fermentas). SDS-PAGE was carried 

out as described in 2.3.4. 
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Step pH interval Voltage mode Voltage (V) Tme (h:min) kVh 

Rehydration 3-10, NL   20:00  

IEF 3-10, NL 

1. Step and hold 300 0:30 0.2 

2. Gradient 1000 0:30 0.3 

3. Gradient 5000 1:30 4.5 

4  Step and hold 5000 0:12-0:36 3 

Total  2:42-3:06 6.0-8.0 
 

Table 3. Conditions for rehydration and IEF for 2D-PAGE. 

 
 
 

2.3.6. Coomasie staining 

Protein gels were stained for 1 hour in Coomassie blue stain (0.1% Coomassie 

R250, 45% methanol, 45% Glacial Acetic acid, 9.9% MilliQ water). Gels were then 

washed using a de-staining solution (20% methanol, 7% acetic acid) until products 

were visible. Gels were dried and stored between cellophane sheets. 

 

2.3.7. Western blotting  

Following the resolution of proteins by SDS-PAGE or 2D-PAGE they were transferred 

to a Hybond-C Extra membrane (Amersham Biosciences) using a BioRad western 

transfer kit following manufacturer’s instructions. The SDS-PAGE gel was placed 

next to the Hybond-C Extra membrane inside the transfer cassette. The cassette was 

then assembled inside a gel tank which was covered with 1x transfer buffer (see 

Appendix). An ice pack was added to the apparatus to prevent overheating of the 

buffer. Protein transfers were carried out at 400 mA for 1 hour. After transfers, the 
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membranes were blocked using milk block (5% milk, 0.1% Tween in 1X TBS) over 

night at 4 °C on a shaker. 

 

2.3.8. Antibody labelling 

After blocking nitrocellulose membranes following western blotting the membranes 

were incubated with a primary antibody (usually 1:1000 in milk block) for 2 hours 

whilst shaking gently at room temperature. Following incubation, the membranes 

were washed 3 times, for 10 minutes each, in 20ml of TBS wash solution (1x TBS 

with 0.1% Tween 20). The membranes were then incubated with a secondary 

antibody (1:10,000 in milk block) conjugated with either alkaline phosphatase (AP) or 

horse radish peroxidase (HRP) for 1 hour on a shaker at room temperature. The 

membranes were subsequently washed with 20ml of TBS wash solution 3 times for 

10 minutes per wash prior to visualization. 

 

2.3.9. Protein detection using enhanced chemiluminescence (ECL) 

Western blotting membranes containing proteins were visualized using Amersham 

ECL Western blotting detection reagents and analysis system (GE Healthcare). Each 

membrane was treated with ECL reagents A and B according to the manufacturer’s 

instructions. Blots were then exposed to photographic films (Amersham Hyperfilm 

ECL, GE Healthcare) and developed using an AGFA CURIX 60 Xograph. 
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2.4. Cytological procedures 

 

2.4.1. Meiotic chromosome spreading 

Arabidopsis inflorescences were removed from the plant and fixed in 3:1 fixative (3:1 

ethanol:glacial acetic acid). The inflorescences were allowed to fix at room 

temperature for at least 2 days. Flower buds were removed from inflorescences and 

washed in 0.01 M citrate buffer (pH 4.5) three times, for five minutes each time. Buds 

were then digested in an enzyme mix (0.3% (w/v) pectolyase, 0.3% (w/v) 

cytohelicase, 0.3% (w/v) cellulase) and citrate buffer for 1.5 hours at 37°C. The 

digestion was halted by adding ice-cold water. A single bud was transferred to a 

clean slide with a small amount of buffer and macerated with a needle. 10µl of 60% 

acetic acid was added and the slide was put on a 45°C hotplate for 30 seconds. The 

slide was then taken off the hotplate and another 10µl of 60% acetic acid was added. 

Subsequently, 100µl of cold 3:1 fixative was added to the slide, around and on top of 

the material. The slide was washed with another 100µl of 3:1 fixative and dried. The 

cells were then stained with 10μl of 4',6-diamidino-2-phenylindole (DAPI) at 1μg/ml in 

Vectashield mounting medium (Vector laboratories) and subsequently visualized 

using fluorescence microscopy. 

 

2.4.2. Preparation of fluorescence in situ hybridization (FISH) probes 

The 5S and 45S probes were used to label rDNA in meiotic chromosomes during 

FISH. For preparation of the 5S rDNA probe, the plasmid pCT4.2 (Campell et al., 
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1992) containing the 5S rDNA gene from A. thaliana as a 500-bp insert cloned in 

pBlu was used. The 45S rDNA probe, on the other hand, was prepared using the 

plasmid pTa71 (Gerlach and Bedbrook, 1979), which consists of a 9 Kb EcoRI 

fragment of Triticum aestivum containing the 18S-5.8S-25S rRNA genes and spacer 

regions. For production of the probes, 3μg of plasmid DNA was mixed with 4μl of 

Biotin (BIO) or Digoxygenin (DIG) nick translation mix (Roche) and made up to 20μl 

with SDW water. The mixture was then incubated at 15ºC for 90 minutes. The 

reaction was subsequently stopped by adding 1μl of 0.5M EDTA (pH 8.0) and 

heating the resulting mixture for 10 min in a water bath at 65ºC. 

 

2.4.3. Fluorescence in situ hybridization (FISH) 

Metaphase I cells fixed on glass slides were washed in 2X SSC for 10 minutes at 

room temperature before being incubated with pepsin for 1.5 minutes at 37°C to 

remove unwanted proteins. The cells were then washed again using 2XSSC for 10 

minutes at room temperature and treated with 4% paraformaldehyde in fume hood 

for 10 minutes. The cells were briefly washed with SDW before being treated with 

70% ethanol for 2 minutes followed by a wash with 100% ethanol for 2 minutes. The 

cells were then air dried for 20 minutes. The probes 45S DIG and 5S BIO were 

added on top of the cells and a coverslip was placed on them. The edges of the 

coverslip on each slide were glued using rubber solution and each slide was heated 

at 70°C for 4 minutes on a hot plate. All slides were then incubated at 37°C overnight 

in a moist box to allow hybridization of probes. Subsequently, each slide was treated 

three times with 50% formamide containing 2X SSC, once with 2X SSC and once 
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with 4X SSC with 0.5% Tween20 for 5 minutes per treatment. The cells were then 

washed with 4X SCC at room temperature before adding anti-DIG FITC and AVIDIN-

CYE3. Each slide was covered with parafilm and incubated at 37°C for 30 minutes. 

The cells were then subjected to three 5 minutes washes in dark using 4XSSC at 

room temperature, followed by a wash with SDW. Each slide was then treated with 

70%, 85% and 100% ethanol for 2 minutes per treatment and allowed to air dry. The 

cells were then stained with DAPI/Vectashield and analysed using fluorescence 

microscopy. 

 

2.4.4. Meiotic timecourse 

Meiocytes were labelled by the incorporation of thymidine analog bromodeoxyuridine 

(BrdU) into nuclear DNA during meiotic S-phase. Arabidopsis stems containing 

inflorescence were cut to a length of ~5cm and transferred to 10mM BrdU from a 

labelling kit (Roche). Stems were immersed in BrdU for 2 hours to allow uptake via 

the transpiration stream. Following BrdU labelling, stems were transferred to water 

until desired time intervals. For analysis of BrdU incorporation, inflorescences were 

extracted from the stems and fixed in 3:1 ethanol: acetic acid. Chromosome spreads 

were prepared as described in 2.4.1 and treated with an anti-BrdU (mouse 

monoclonal) antibody (Roche) which also contains a mixture of nucleases. These 

nucleases generate single-stranded DNA fragments, which allow binding of the 

antibody to BrdU. The above immunolocalisation was carried out according to the 

manufacturer’s instructions. Chromosome spreads were then counterstained with 

DAPI/Vectashield and analysed for BrdU staining using fluorescence microscopy. For 
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analysis, cells at each meiotic stage were classified as BrdU labelled or unlabelled 

(Armstrong et al, 2003). 

 

2.4.5. Immunolocalization 

Several (4-6) fresh Arabidopis inflorescences were dissected under 

stereomicroscope on moist filter paper and buds less than ~300 µm in diameter were 

pooled as these were expected to contain meiocytes. Anthers were dissected out 

from these buds and placed in a glass slide containing 5µl of digestion mix (0.1g 

cytohelicase (Sigma), 0.0375g sucrose, 0.25g polyvinylpyrrolidone, in 25ml SDW). 

The anthers were tapped using a brass rod to disrupt tissues and the slide was then 

incubated at 37˚C for 4 minutes in a moist box. Subsequently, 10µl of 1% lipsol was 

added to the meiocytes, which were then spread using a kneedle. The cells were 

then fixed using 4% paraformaldehyde, mixed and allowed to air dry for 2 hours in a 

fume cupboard. Fixed cells were incubated with primary antibody (usually 1:200) for 

1 hour at 37˚C in a moist box before washing twice with 1X PBS + 1% (v/v) triton X-

100 (Sigma). The cells were then incubated with secondary antibody (1:50 for FITC 

and 1:200 for CY3/Texas Red) at 37˚C for 30 minutes in a moist chamber followed by 

3 washes with 1x PBS + 1% (v/v) triton X-100 (Sigma). The slides were then stained 

with DAPI/Vectashield and visualized using flourescence microscopy. 
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2.4.6. Immunolocalization coupled with timecourse 

BrdU pulse labelling was carried out as described in section 2.4.4. However, instead 

of fixing buds, they are used for the preparation of chromosome spreads for 

immunolocalisation studies. Slide preparation for immunolocalization was carried out 

similarly to that described in 2.4.5. Meiocytes were incubated with the primary 

antibody at 4ºC overnight in a moist box. The primary antibody was subsequently 

detected using a suitable secondary antibody while the BrdU was detected using an 

anti-BrdU antibody (Roche), following the manufacturer’s instructions. Cells were 

then stained using DAPI/Vectashield before being analysed using fluorescence 

microscopy. 

 

2.4.7. Assessing pollen viability using Alexander’s staining 

Inflorescences were extracted and fixed using 70% ethanol for 3 hours. 5-7 anthers 

from each inflorescence were put on a slide and stained using 10µl of Alexander’s 

stain (Alexander, 1969). Alexander’s stain contains 10ml Ethanol (95%), 1 ml 

Malachite Green (1% in 95% ethanol), 5ml Fuchsin Acid  (1% in water), 0.5ml 

Orange G (1% in water), 5g Phenol, 5g Chloral Hydrate, 2 ml Glacial acetic acid, 25 

ml Glycerol, 50 ml distilled water. The anthers were squashed using a coverslip to 

allow pollen grains to be released from the anthers. The slides were incubated at 4°C 

for at at least 16 hours to allow the stain to be absorbed by the pollen grains. Slides 

were analysed using a light microscope.  
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2.4.8. Fluorescence microscopy and image analysis 

Fluorescence microscopy was carried out using a Nikon Eclipse E400 microscope 

and images were captured using a Hamamatsu ORCA-ER digital camera. Images 

were analysed using Cell P Soft Imaging System software (Olympus).  

 

 

2.5. Transformation into Arabidopsis 

The AtASY3 cDNA was introduced in Atasy3-1 mutant plants for a complementation 

study. A. tumefaciens (LBA 4404) containing pPF408 plasmid with AtASY3 cDNA 

were transformed into Arabidopsis plants by the floral dip method (Clough and Bent, 

1998). A 600ml bacterial culture was grown overnight at 28ºC, shaking at 200 rpm in 

LB containing chloramphenicol (100μg/ml) and rifampicin (50μg/ml). The culture was 

grown to an OD600 of 1.6 before being centrifuged 5000 rpm for 10minutes. The LB 

was then removed and the pellet re-suspended in 1200ml of 5% sucrose medium to 

make a final OD600 of 0.8. 0.05% Silwet (500 μl/l) was added to the bacterial solution, 

which was then divided into three 400ml aliquouts in beakers. Arabidopsis plants with 

3-4 inflorescences containing non-flowering buds were dipped into the bacterial 

solution (2 plants per 400ml solution) for 2-5 seconds each with gentle agitating. 

Dipped plants were then grown in a moist box for 48 hours away from direct light 

inside a glasshouse. Subsequently, the plants were grown in normal conditions in the 

glasshouse until harvestation. Seeds from these plants were then grown under 

BASTA (DL-Phosphinothricin) (Duchefa Biochemie) selection either on MS plates (25 
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μg/ml) or on soil compost with the weedkiller, BASTA (0.1g/l) 3 times at 8–10 day 

intervals. 

 

 

2.6. Genetic crossing of plants 

Homozygous T-DNA insertion mutants were crossed with heterozygous plants to 

generate double mutants in which two of the desired genes were disrupted due to the 

presence of T-DNAs. For efficient crossing, homozygous plants with 4-6 

inflorescences were selected as recipients while flowering heterozygous plants were 

used as donors. Siliques, flowers and buds which were either too small or mature 

were removed from each inflorescence leaving a nascent bud in each stem of 

recipient plants. Nascent buds were emasculated under a light microscope using 

forceps to remove all the immature anthers leaving the stigmata undamaged. Mature 

flowers containing pollen from the heterozygous plants were then used to pollinate 

the stigmata in the emasculated inflorescences under a binocular. Pollinated plants 

were then allowed to grow and siliques containing the hybrid seeds matured after 15-

25 days from pollinated inflorescences. The siliques were harvested prior to their 

opening by cutting into a 1.5ml microfuge tube. The seeds from these siliques were 

stored for 2 days for maturation prior to sowing.  
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2.7. Statistical procedures 

All statistical procedures described were carried out using Microsoft Office Excel. 
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CHAPTER 3 

Investigation of the Arabidopsis RecQ helicase, 

AtRECQ4B  
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3.1. Introduction 

RECQ helicases are a conserved group of DNA helicases that are involved in the 

maintenance of genome integrity. RecQ helicase are known to unwind a variety of 

substrates including simple 3´ -tailed duplexes, forked duplexes, four-way junctions, 

D-loops and guanine-rich genomic regions such as telomeres (Huber et al., 2006, 

Mohaghegh et al., 2001, van Brabant et al., 2000). Defects in the human RecQ 

genes cause various rare genetic disorders. One of these disorders is Bloom’s 

syndrome, which is caused by the disruption of the human RECQ helicase, BLM 

(Ellis et al., 1995). Bloom’s syndrome is associated with dwarfism, increased sister-

chromatid exchange, sunlight sensitivity and a predisposition to most types of 

cancers (Mankouri and Hickson, 2007). In budding yeast, disruption of the BLM 

orthologue, SGS1 leads to increased DNA damage sensitivity and elevated 

recombination (Watt et al., 1996). Furthermore, loss of SGS1 increases meiotic COs 

and causes transient accumulation of inter-homologue, inter-sister chromatid and 

multi-chromatid joint molecules during meiosis (Jessop et al., 2006, Oh et al., 2007, 

Oh et al., 2008a). In Arabidopsis, out of the 7 RecQ-like genes identified so far, 

AtRECQ4A has been proposed to be the functional homologue of BLM and 

Sgs1(Bagherieh-Najjar et al., 2005, Hartung et al., 2006, Hartung et al., 2007). 

AtRECQ4A was found to suppress both the methyl methane sulfonate (MMS) 

hypersensitivity and hyper–recombination phenotype of budding yeast sgs1 mutant 

(Bagherieh-Najjar et al., 2003). Furthermore, Atrecq4A mutants exhibit an increased 

frequency of homologous COs in somatic cells suggesting that the AtRECQ4A acts 

as an anti-recombinase, similarly to yeast SGS1 (Hartung et al., 2007). Additionally, 

Arabidopsis also contains the RecQ helicase, AtRECQ4B which arose from a recent 
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gene duplication event. AtRECQ4B is ~70% identitcal to AtRECQ4A in amino acid 

level (Hartung and Puchta, 2006). However, in contrast to Atrecq4A, Atrecq4B 

mutants are not sensitive to mutagen-induced DNA damage and exhibit impaired 

somatic homologous recombination. Hence, AtRECQ4B has been proposed to 

promote homologous recombination in somatic cells, antagonistic to its close relative 

AtRECQ4A (Hartung et al., 2007).  

 

A previous study reported that there was no loss of fertility in the Atrecq4A mutant 

(Bagherieh-Najjar et al., 2005). However, a direct analysis of meiosis in the mutant 

was not performed during the study. Moreover, in an analysis of the Brassica meiotic 

proteome the Brassica homologues of AtRECQ4A and AtRECQ4B were found to be 

present in meiocytes suggesting putative roles for the proteins during meiosis 

(Sanchez-Moran et al., 2005; F.C.H.F. and K.O., unpublished). This observation 

along with the known meiotic role of yeast SGS1 led to the investigation of the two 

helicases during Arabidopsis meiosis. Analysis of Atrecq4A mutant revealed that 

pollen viability was decreased in the mutant resulting in a reduction in its fertility. 

However, there was no significant effect on meiotic COs in the mutant. Instead, 

AtRECQ4A was found to be required for the dissolution of recombination-dependent 

telomeric associations (J.H., K.O., F.C.H.F). Subsequently, AtRECQ4B was analysed 

to verify whether the helicase played a role during Arabidopsis meiosis. This chapter 

describes the expression analysis of AtRECQ4A (At1g10930) and AtRECQ4B 

(At1g60930) along with the molecular characterization of an Atrecq4B T-DNA 
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insertion mutant. The chapter also includes the cytological analysis of various meiotic 

stages in the mutant and in wild-type Arabidopsis (Col-0). 

 

 

3.2. AtRECQ4A and AtRECQ4B expression is meiosis-specific 

Reverse transcription (RT)-PCR was used to determine whether AtRECQ4A and 

AtRECQ4B are expressed during meiosis in wild-type Arabidopsis (Col-0). The 

primers, 4AF1 and 4AR1 were designed to check for AtRECQ4A expression while 

4BF1 and 4BR1 were designed to analyse AtRECQ4B expression. Additionally, a set 

of 2 primers, GAPD-F1 and GAPD-R1 were used to check for the expression of the 

housekeeping gene, AtGAPD. AtGAPD expression was used as a control to equalize 

template RNA loading in the plants analysed. Subsequently, total RNA from wild-type 

bud tissues was extracted using RNeasy extraction kit (Qiagen). The RNA content 

was quantified using spectrophotometer to allow equalisation of template RNA in all 

samples that were subsequently analysed using RT-PCR. The RT-PCR reactions 

were carried out using SuperScript II reverse transcriptase (Invitrogen) following the 

manufacturer’s protocol. The cDNAs generated by the RT-PCR reactions were 

subjected to PCR using the AtRECQ4A, AtRECQ4B and GAPD-specific primers 

mentioned above. The PCR products were then analysed via gel electrophoresis. 

This revealed that in wild-type, both AtRECQ4A and AtRECQ4B transcripts can be 

detected in the bud tissue suggesting that the helicases are expressed during 

Arabidopsis meiosis (Figure 4).  
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Figure 4. Expression analysis of AtRECQ4A and AtRECQ4B in flower buds. 
AtRECQ4A is expressed in both WT and Atrecq4B mutant but not in the two Atrecq4A mutant 
lines, Atrecq4A-5 and Atrecq4A-6. Similarly, AtRECQ4B is expressed in the WT and in the two 
Atrecq4A mutant lines but not in the Atrecq4B mutant. Similar AtGAPD expression from all 
tissues indicate approximately equal abundance of template mRNA in all samples.
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3.3. Analysis of AtRECQ4A and AtRECQ4B expression in their 

corresponding mutant lines 

To investigate whether AtRECQ4B has a role during Arabidopsis meiosis, a T-DNA 

insertion line (SALK_011357) of the gene was obtained from NASC. This line has 

already been described and its T-DNA insertion site was mapped in a previous study 

(Hartung et al., 2007). Seeds from this line were grown along with those of wild-type 

Arabidopsis (Col-0). Additionally, primers (RECQ4B-F1 and RECQ4B-R1) specific to 

either sides of the predicted T-DNA insertion site and another specific to the left-

border region of the T-DNA (LBb1.3) were designed to check for zygosity of the T-

DNA insertion in each plant. Subsequently, genomic DNA was extracted from leaves 

of mutant and wild-type plants and genotyped via PCRs using the primers above. 

The primers, RECQ4B-F1 and RECQ4B-R1 were used to amplify the wild-type 

genomic region while RECQ4B-F1 and LBb1.3 were used to detect the T-DNA. The 

PCRs allowed the identification of plants homozygous for the T-DNA insertion in 

AtRECQ4B in the mutant line. Hence these homozygous knockout plants are 

potentially deficient in AtRECQ4B expression.  

 

Along with the Atrecq4B mutant line two Atrecq4A T-DNA insertion lines, Atrecq4A-5 

(SALK_069672) and Atrecq4A-6 (SAIL_350_C06) were previously obtained from 

NASC for the analysis of the helicases. Homozygous knockout plants from two 

Atrecq4A mutant lines were identified earlier in our lab (J.H.). To verify the absence 

of AtRECQ4B and AtRECQ4A gene transcripts in Atrecq4B and the two Atrecq4A 

mutants respectively, an expression analysis of the two genes was performed using 
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RT-PCR. Total RNA was extracted from bud tissues of homozygous plants from each 

of these mutant lines. The RNA samples were then analysed via RT-PCR using the 

primers and methods similar to those used for AtRECQ4A and AtRECQ4B 

expression analysis in the wild-type (described in section 3.2). This revealed that the 

AtRECQ4B transcript was not detected in the Atrecq4B mutant (Figure 4), but was 

present in the two Atrecq4A mutant lines (Figure 4). Additionally, AtRECQ4A 

transcript was not detected in Atrecq4A-5 and Atrecq4A-5 mutant lines but was 

present in the Atrecq4B mutant (Figure 4). These observations confirm that the 

Atrecq4B and the two Atrecq4A mutant lines, Atrecq4A-5 and Atrecq4A-6 are 

completely defective in expression of their corresponding genes. 

 

 

3.4. Analysis of Atrecq4B fertility 

Analysis of Atrecq4B revealed that the mutant displayed normal vegetative growth 

similar to the wild-type. In addition, the Atrecq4B mutant did not exhibit any reduction 

in fertility compared to wild-type. The mean silique length in Atrecq4B was 15.51mm 

(n=50), which was not significantly different from 15.70mm (n=50) in the wild-type (P 

= 0.46, ANOVA). Moreover, the mean seed-set per silique in the mutant was 54.22 

(n=50), which too was not significantly different from 56.64 (n=50) observed in the 

wild-type (P = 0.13, ANOVA). Additionally, pollen viability in the Atrecq4B mutant line 

was determined using Alexander’s staining. This revealed that the ratio of viable:non-

viable pollen in the mutant was 116:1 (n=345), which was similar to 129:1 (n=403) 

observed in the wild-type. This observation is consistent with the wild-type levels of 
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seed-set observed in the Atrecq4B. Altogether, the above results suggest that there 

is no reduction in fertility due to the disruption of AtRECQ4B. 

 

 

3.5. Cytological analysis of wild-type and Atrecq4B meiotic stages 

To verify whether loss of AtRECQ4B results in any meiotic defects DAPI-stained 

chromosome spreads of various meiotic stages from the mutant were compared to 

those from the wild-type.  

 

In the wild-type, meiotic chromosomes become condensed and are clearly visible as 

fine thread-like structures at leptotene (Figure 5A). At zygotene, chromosomes often 

appear as a dense knot at one side of the nucleus and there is an aggregation of the 

pericentromeric heterochromatin into a variable number of clumps (Figure 5B). At 

pachytene, the homologous chromosomes are fully synapsed and are visible as 

much shorter but thicker strands with distinct densely stained centromeres (Figure 

5C). At diplotene, homologous chromosomes de-synapse and form thin threads 

which appear to be more extended than those at zygotene (Figure 5D). During 

diakinesis COs are visible as chiasmata on bivalents (Figure 5E) and at metaphase I 

bivalents are aligned at the equatorial region of the cell (Figure 5F). At anaphase I, 

homologous chromosomes separate and move towards the two poles of the cell 

(Figure 5 G) leading to the formation of the dyad stage, where a set of chromosomes 

is present at each pole of the cell. This is followed by the second round of meiotic 
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division in which prophase II is substantially quicker than the first. Subsequently, fully 

condensed sister chromatids align at metaphase II (Figure 5H) followed by their 

separation in anaphase II leading to the formation of the tetrad stage where one 

member of each chromosome is present at each pole of the stage (Figure 5I). 

 

Interestingly, analysis of the meiotic chromosome spreads from the Atrecq4B mutant 

revealed that its meiotic stages are indistinguishable from those of the wild-type. 

Meiotic chromosome condensation and pairing in Atrecq4B early prophase I nuclei 

appeared normal along with the synapsis of homologous chromosomes at pachytene 

(Figure 6A). In addition, normal metaphase I nuclei, each containing 5 bivalents, 

were observed in Atrecq4B (Figure 6B). Furthermore, all the Atrecq4B tetrads 

analysed were balanced with no signs of aneuploidy (Figure 6C). These observations 

confirm that there are no apparent meiotic defects in Atrecq4B. 
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Figure 5. Meiotic atlas of WT Arabidopsis. 
(A) Homologous chromosome pairing and synapsis initiates in leptotene. (B) Thicker 
chromosomes in zygotene signify more pairing. (C) Synapsis is completed by pachytene. (D) 
Chromosomes desynapse in diplotene (E) Chiasmata, which are physical connections between 
non-sister chromatids are visible in diakinesis (F) Bivalents align in metaphase I (G) 
Homologous chromosomes separate in anaphase I (H) Sister chromatids align at metaphase II 
before separating (I) Tetrad contains haploid sets of genetic information. Bar 10µm. 
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Figure 6. Atrecq4B mutant cytology. 
(A) Homologue pairing and synapsis appear normal and complete by pachytene. (B) Bivalents 
are aligned at metaphase I. (C) Balanced tetrads containing haploid gametes are formed in the 
mutant (D) Analysis of WT metaphase I nuclei labelled using FISH with 5S (red) and 45S 
(green) rDNA probes revealed 8.29 chiasmata per WT nuclei (n=50). (E) Atrecq4B displays WT 
levels of chiasma frequency (n=50). (F) Atrecq4B/Atmsh4 exhibit 1.08 chiasmata per nuclei 
(n=66). Bar 10µm. 
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3.6. AtRECQ4B is not essential for CO formation 

A previous study implicated AtRECQ4B in playing a role in recombination in somatic 

cells. To verify whether the protein also played a role in meiotic recombination the 

chiasma frequency of Atrecq4B was compared to that of wild-type. Initially, chiasma 

frequency in wild-type meiocytes was determined by FISH analysis using 5S and 45S 

rDNA probes on 50 metaphase I nuclei. This revealed that each wild-type meiocyte 

possessed an overall mean chiasma frequency of 8.29 (n=50) (Figure 6D). Similar 

analysis of 50 Atrecq4B metaphase I nuclei revealed that each nucleus contained an 

overall mean chiasma frequency of 8.82, which was not statistically different from that 

of the wild-type (P>0.1, ANOVA) (Figure 6E). Although this finding suggests that loss 

of AtRECQ4B does not significantly affect meiotic CO formation, it does not reveal 

any modest changes to the chiasma frequency due to the loss of the protein. Hence, 

to clarify this issue an Atrecq4B/Atmsh4 double mutant was constructed by crossing 

a homozygous Atrecq4B with a heterozygous Atmsh4 plant followed by self-crossing 

their subsequent progeny. Chiasma frequency of the double mutant was then 

determined and compared to that of the Atmsh4 single mutant. This revealed no 

statistical difference between the chiasma frequency of Atrecq4B/Atmsh4 (1.08 per 

cell, n=64) and the Atmsh4 single mutant (1.29 per cell, n=66) (P>0.1) (Figure 6F). 

This observation therefore confirms that AtRECQ4B is not essential for meiotic CO 

formation. This finding, in conjunction with the normal cytology of Atrecq4B mutant 

suggest that AtRECQ4B probably does not possess a meiotic role or that it functions 

redundantly with other protein(s) during Arabidopsis meiosis. 
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3.7. Discussion 

 

3.7.1. AtRECQ4A and AtRECQB4 are expressed during meiosis 

RT-PCR analysis of AtRECQ4A and AtRECQB4 expression revealed that both 

genes are transcribed in Arabidopsis flower buds. This is consistent with the previous 

reported expression pattern of these genes (Hartung et al., 2000). Furthermore, the 

finding is also consistent with proteomics studies that detected peptides 

corresponding to AtRECQ4A and AtRECQB4 in an analysis of the meiotic proteome 

of B. oleracea, a close relative of Arabidopsis (Sanchez-Moran et al., 2005; F.C.H.F. 

and K.O., unpublished). Taken together, these suggest that both AtRECQ4A and 

AtRECQ4B are highly likely to be active during meiosis. 

 

3.7.2. Disruption of AtRECQ4B does not lead to meiotic defects  

Analysis of AtRECQ4A revealed that it is not essential for meiotic CO formation (J.H., 

K.O., F.C.H.F). Instead, Atrecq4A mutants displayed chromatin bridges at metaphase 

I which were dependent on meiotic recombination and telomere repeats, indicating 

that AtRECQ4A is required to remove connections between telomeres that arise 

during meiotic recombination. This suggests that AtRECQ4A may not play a meiotic 

similar role to its budding yeast homologue Sgs1 (J.H., K.O., F.C.H.F). To investigate 

a potential role of AtRECQ4B an Atrecq4B mutant line with a T-DNA insertion in the 

gene was obtained and the position of the T-DNA validated using molecular studies. 

Furthermore, RT-PCR analysis confirmed that the mutant did not express AtRECQ4B 
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during meiosis. Interestingly, this mutant did not exhibit any loss of fertility. This 

finding was inconsistent with a meiotic defect, and therefore, led to a thorough 

cytological comparison between the meiotic stages of Atrecq4B and the wild-type. 

This revealed that during wild-type meiosis, condensed homologous chromosomes 

pair and synapse during the leptotene and zygotene of prophase I. Homologous 

chromosomes appeared fully synapsed by pachytene and subsequently de-synapse 

at diplotene. At diakinesis, chromosomes further condense to form five bivalents, 

each of which contain a pair of homologous chromosomes linked via chiasmata. The 

five bivalents were found to be aligned at metaphase I before their segregation at 

anaphase I to form dyads. Subsequently, sister chromatids were found to be aligned 

at metaphase II followed by their separation at anaphase II to form tetrads, each 

containing four eventual pollen grains. These observations were consistent with 

previous reports of chromosome behaviour during meiosis in A. thaliana (Armstrong 

and Jones, 2003). Intriguing, cytological analysis of Atrecq4B revealed that all of its 

meiotic stages were similar to those of the wild-type. There was no indication of any 

defects in homologue pairing or synapsis. Additionally, recombination appeared 

normal with no evidence of any loss of chiasmata.  Moreover, none of the meiotic 

stages in Atrecq4B displayed any evidence of chromatin bridges or chromosome 

fragmentation, which are a common phenotype of mutants of genes involved in 

maintaining genome integrity. These observations were consistent with the wild-type 

level of fertility observed in Atrecq4B. Altogether, these suggest that loss of 

AtRECQ4B does not lead to any meiotic defects in A. thaliana.  
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3.7.3. Loss of AtRECQ4B does not affect chiasma formation 

Previous studies suggest that AtRECQ4B promotes homologous recombination in 

somatic cells (Hartung et al., 2007). To investigate whether the protein had a similar 

effect during meiotic recombination the chiasma frequency of Atrecq4B was analysed 

in detail. This revealed that there was no noticeable reduction in Atrecq4B chiasma 

frequency, which was statistically similar to that of the wild-type. Additionally, the 

chiasma frequency of Atrecq4B/Atmsh4 double mutant was found to be statistically 

similar to that of Atmsh4, suggesting that there was no loss of neither MSH4-

dependent nor MSH4-independent COs due to the loss of AtRECQ4B. This indicates 

that the protein is not essential of meiotic CO formation. 

 

An interesting observation, however, emerged from immunolocalization studies of 

AtRECQ4A, performed by colleagues at our lab (J.H., K.O., F.C.H.F.). The 

researchers analysed localization of AtRECQ4A in wild-type, Atrecq4A and Atrecq4B 

using an anti-AtRECQ4A antibody that was raised against the AtRECQ4A N-

terminus. This region displayed 51% identity with that of AtRECQ4B, thus allowing 

the possibility that the antibody might recognize both proteins. The analysis revealed 

that in wild-type meiocytes AtRECQ4A/B localized as numerous foci (mean of 103 

per cell, n=5) on meiotic chromosome axes during early leptotene. These foci 

gradually decreased in number (mean of 77 per cell, n=5) at early zygotene. As 

prophase I progressed the AtRECQ4A/B foci further decreased in number such that 

at late zygotene only ~11 (n=5) large telomeric foci were detected. At pachytene, the 

number of these AtRECQ4A/B telomeric foci was found to be reduced to 4/5 (n=5) . 
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In Atrecq4A-5 mutants the number of AtRECQ4A/B foci was substantially reduced to 

<10, most of which were telomeric. However, this was not the case in Atrecq4B, 

which displayed wild-type levels and pattern of AtRECQ4A/B foci. Interestingly, in an 

Atrecq4A-5/Atrecq4B double mutant the number of AtRECQ4A/B foci was further 

reduced to ~5 (n=10). Most of these were telomeric, similarly to those in Atrecq4A-5. 

This suggests that the anti-AtRECQ4A antibody may exhibit a small amount of cross-

reaction with AtRECQ4B (J.H., K.O., F.C.H.F.). Intriguingly, this indicates that 

AtRECQ4B may indeed localize to meiotic chromosome axes and telomeres during 

early prophase I. This is consistent with the RT-PCR analysis suggesting the 

meiosis-specific expression of AtRECQ4B and the proteomics data which detected 

peptides of the AtRECQ4B homologue in Brassica meiotic proteome (Sanchez-

Moran et al., 2005; F.C.H.F. and K.O., unpublished). Another important observation 

was the presence of some residual AtRECQ4A/B foci in the Atrecq4A-5/Atrecq4B 

double mutant. This indicates that the anti-AtRECQ4A antibody may also exhibit 

some cross-reaction with other member(s) of the AtRECQ family, suggesting the 

possibility of functional redundancy between the helicases (J.H., K.O., F.C.H.F.). 

Therefore, it seems highly likely that upon loss of AtRECQ4B another member of the 

AtRECQ family performs the former’s meiotic role, which appears to exist based on 

evidence but still remains unknown.  
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CHAPTER 4 

Molecular characterization of ASY3 in Arabidopsis 

thaliana and Brassica oleracea 
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4.1. Introduction 

An important feature of meiotic recombination is that it is tightly coupled with 

chromosome axis organization. In Arabidopsis, the axis protein AtASY1 has recently 

been shown to promote AtDMC1-mediated inter-homologue recombination 

(Sanchez-Moran et al., 2007). Furthermore, Arabidopsis mutant plants lacking the 

SC component AtZYP1 display recombination between non-homologous 

chromosomes (Higgins et al., 2005). These observations highlight the presence of a 

functional inter-relationship between axis components and the recombination 

machinery (discussed in chapter 1.6). However, understanding this inter-relationship 

has proved challenging in Arabidopsis. This is partly because chromosome axis and 

SC proteins display limited primary sequence conservation, which has made it 

difficult to identify their homologues in different species using solely in silico methods. 

In order to overcome this issue researchers in our lab have developed a proteomics-

based approach to identify novel meiotic proteins by making an inventory of proteins 

present in meiocytes from Arabidopsis and its closely related species, Brassica 

(Sanchez-Moran et al., 2005, Osman et al., unpublished). The results from such a 

study along with homology searches led to the identification of a novel coiled-coil 

protein, ASYNAPTIC 3 (ASY3), required for normal meiosis in Arabidopsis and 

Brassica. This chapter describes the identification and cloning of ASY3 in 

Arabidopsis and Brassica along with the molecular characterization of three 

Arabidopsis asy3 T-DNA insertion mutants. This chapter also describes the 

production of a recombination protein used to raise an antibody against ASY3, which 

was subsequently used for immunolocalization studies of ASY3. 
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4.2. Identification of Arabidopsis ASY3  

Recently, a proteomics-based study was carried out in our lab with the aim of 

identifying novel proteins expressed in prophase I meiocytes from Arabidopsis and 

Brassica. The study involved co-immunoprecipitation (Co-IP) of prophase I proteins 

from Brassica oleracea meiocytes, extruded from staged anthers, using an antibody 

against a known meiotic axis protein such as AtASY1 followed by analysis using 

mass spectrometry (MS) (Osman et al., unpublished). Out of the many peptides 

detected by the MS analysis, four showed homology in BLAST (NCBI) searches to 

the predicted product of a previously uncharacterized Arabidopsis gene, At2g46980. 

Genome sequencing data from TAIR indicated that At2g46980 (referred to hereafter 

as AtASY3) encompasses a genomic region of 3562 base pairs (bp) containing 9 

exons separated by 8 introns in Arabidopsis chromosome 2. Analysis using 

bioinformatics software revealed that AtASY3 is predicted to encode a ~88kDa 

protein, 793 amino acids (AAs) in length with an isoelectric point (pI) of 9.72. The 

AtASY3 protein is predicted to contain several sequence motifs including a putative 

nuclear localisation signal (NLS), a condensin-like domain and a DEAD-box helicase-

like domain containing regions similar to P-loop NTPase, all of which are of potential 

functional significance. More interestingly, the C-terminal (residues 624 to 785) of 

AtASY3 protein is predicted to contain a coiled-coil domain, often found in meiotic 

axis/SC proteins (Figure 7A). Homology searches revealed that AtASY3 is 25.6% 

identical to the rice coiled coil meiotic chromosome axis protein PAIR3. Furthermore, 

AtASY3 also displayed weak homology (16.4% identity) to the budding yeast SC 

component Red1, which is also a coiled-coil protein (Figure 7D). These initial 

observations suggested that AtASY3 potentially possessed properties found in 
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meiotic axis proteins and thus led to further investigations to verify whether AtASY3 

is involved in Arabidopsis meiosis. 
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Figure 7. Structure of AtASY3 and its predicted product and AtASY3 expression analysis. 
(A) Map of the ~3.5kb At2g46980 locus showing the exon/intron organization of AtASY3. The 
exons are represented by numbered black boxes. The triangles indicate the T-DNA insertion 
sites in Atasy3-1, Atasy3-2 and Atasy3-3.  (B) Diagrammatic representation of the 793aa 
AtASY3 protein. The black box indicates the relative position of the putative coiled-coil domain. 
(C) Expression analysis of AtASY3. AtASY3 is highly expressed in WT flower buds (B) and at a 
lower level in open flowers (F), however, there is no detectable expression in stem (S) and leaf 
(L) tissues. The AtASY3 transcript cannot be detected in flower buds of Atasy3-1, Atasy3-2 and 
Atasy3-3 mutants. Expression of the housekeeping gene AtGAPD was analysed as a control. 
(D) ClustalW2 alignment of Red1 and AtASY3 amino acid sequences. The two sequences show 
weak homology.  
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4.3. AtASY3 is expressed in reproductive tissues 

Reverse transcription (RT) PCR was used to determine the relative expression 

pattern of AtASY3 in various tissues from wild-type Arabidopsis (Col-0).  For this 

purpose a set of 2 primers, ASY3-EX-R1 and ASY3-EX-F1, encompassing all three 

T-DNA insertion sites was designed to check for AtASY3 transcript. Another set of 

primers, GAPD-N and GAPD-C, was designed to check for the expression of the 

housekeeping gene, GAPD. GAPD is expressed equally in all plant tissues. Hence, 

analysis of its transcript from various plant tissues would act as a control enabling the 

comparison of the relative abundance of AtASY3 transcripts from different tissues. To 

analyse AtASY3 expression, total RNA from stem, leaf, bud and flower tissues from 

wild-type Arabidopsis were extracted using RNeasy extraction kit (Qiagen). The RNA 

content from each sample was quantified using spectrophotometer to allow 

equalisation of RNA in all samples. The RT-PCR reactions were carried out using 

SuperScript II reverse transcriptase (Invitrogen) following the manufacturer’s 

protocol. The cDNAs generated by the RT-PCR reactions were subjected to PCR 

using the AtASY3 and GAPD-specific primers mentioned above. Analysis of the 

products of this PCR via gel electrophoresis revealed that in wild-type, AtASY3 

transcripts can be detected in the reproductive tissues, bud and flower but not in the 

vegetative tissues, stem and leaf (Figure 7C). Further analysis revealed that the 

expression of AtASY3 is notably higher in bud than in flower tissue. These findings 

suggest that AtASY3 is expressed in meiotic tissues, which is consistent with a role 

for AtASY3 during Arabidopsis meiosis.  
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4.4. Molecular characterization and analysis of AtASY3 T-DNA 

insertion mutants 

To investigate a potential meiotic role of AtASY3 three Arabidopsis T-DNA insertion 

mutant lines of AtASY3, Atasy3-1 (SALK_143676), Atasy3-2 (SAIL_423_H01) and 

Atasy3-3 (SALK_050971), were obtained from NASC. The seeds from these lines 

were grown along with the wild-type (Col-0) control. To check for zygosity of the T-

DNA insertion, primers were designed on either sides of the T-DNA insertion site for 

each line. Genomic DNA was extracted from leaves of plants from each mutant line 

and the wild-type and genotyped via PCRs using primers specific to each T-DNA 

insertion. A set of 2 primers were used to verify wild-type AtASY3 and another set to 

identify the T-DNA for each T-DNA insertion line. The primer sets ASY3-1-F1 and 

ASY3-1-R1 (for Atasy3-1), ASY3-2-F1 and ASY3-2-R1 (for Atasy3-2), ASY3-3-F1 

and ASY3-3-R1 (for Atasy3-3) were used to amplify the wild-type genomic region. 

Additionally, the primer sets ASY3-1-R1 and LBb1.3 (for Atasy3-1), ASY3-2-R1 and 

LB3 (for Atasy3-2), ASY3-3-R1 and LBb1.3 (for Atasy3-3) were used to amplify the 

region where the T-DNA was inserted. The PCRs allowed the identification of plants 

homozygous for the T-DNA insertion in AtASY3 in all three mutant lines. Hence, 

these homozygous knockout plants are potentially deficient in AtASY3 expression. 

To determine the exact insertion site of each T-DNA, PCR products containing the 

partial T-DNA and AtASY3 genomic sequence from a homozygous plant of each line 

were ligated to pDRIVE cloning vectors before being transformed into competent E. 

coli (DH5α). Following verification of the products using boil preparations and 

restriction digestion using EcoRI, DNA was isolated using wizard preparation 

(Promega) and sequenced. The sequencing data was analysed using BLAST (NCBI) 
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and TAIR Seqviewer. This revealed that the T-DNA insertion site in Atasy3-1 is 

located at the first exon (1188bp from start), in Atasy3-2 is present in between first 

and second exon (1583bp from start) and in Atasy3-3 is located in between fourth 

and fifth exon (2186bp from start) in the genomic sequence of AtASY3 (Figure 7B). 

 

To confirm the absence of AtASY3 expression in the T-DNA insertion mutants 

Atasy3-1, Atasy3-2 and Atasy3-3, total RNA was extracted from bud tissues of 

homozygous plants from each of these mutant lines.  The RNA samples were then 

analysed via RT-PCR using the primers and methods similarly to those used for 

AtASY3 expression analysis in the wild-type. This revealed that AtASY3 transcript 

was not present in any of the Atasy3 T-DNA insertion lines confirming that they were 

indeed knockout lines of AtASY3 (Figure 7.C). 

 

Analysis of homozygous Atasy3-1, Atasy3-2 and Atasy3-3 knockout mutants 

revealed that they displayed normal vegetative growth similar to wild-type Col-0. 

However, these mutants exhibit significantly reduced fertility compared to wild-type 

Col-0 (Figure 8AB). The mean silique length in Atasy3-1, Atasy3-2 and Atasy3-3 

were 9.90mm, 10.2mm and 9.80mm respectively relative to 15.64mm in the wild-type 

(ANOVA, P < 0.0001; n=50) (Figure 8CD). The mean seed-set in Atasy3-1, Atasy3-2 

and Atasy3-3 were 15.78, 15.96 and 15.70 respectively compared to 58.68 in the 

wild-type (ANOVA, P < 0.0001; n=50) (Figure 8.E). These results indicate a ~75% 

reduction in fertility in Atasy3 mutants, consistent with a meiotic defect. In addition, 

pollen viability in Atasy3 mutant lines was determined using Alexander’s staining. 
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This revealed the presence of a large proportion of non-viable pollen in all three 

Atasy3 T-DNA insertion lines (viable:non-viable ratio = ~1.8:1; n=1943) in contrast to 

wild-type (Col-0) (viable:non-viable ratio = 55:1; n=1973). These results are also 

suggestive of a potential meiotic defect in Atasy3 mutant lines.  

 

Figure 8. Comparison between WT and Atasy3 fertility. 
Reduced silique length in Atasy3 (B, D) compared to wild-type (A, C). Bar 10mm. (E) Graph 
showing the variation in the mean seed-set between WT and the three Atasy3 mutant lines. 
Fertility is ~75% reduced in Atasy3 T-DNA insertion mutant lines compared to the WT. 
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4.5. Molecular characterization of Brassica ASY3 

Proteomics studies involving CO-IP and MS analysis of proteins from Brassica 

oleracea meiocytes led to the identification of Arabidopsis ASY3, which encodes a 

meiosis-specific protein with a potential role during meiosis. It is common to find 

conservation between genes of Brassica and Arabidopsis since the two are closely 

related. Therefore, characterizing the ASY3 gene in B. oleracea in addition to that in 

Arabidopsis would reveal if the two are conserved, and if so, would significantly aide 

in understanding the potential meiotic role of ASY3. To do so, the full length coding 

sequence of B. oleracea ASY3 (BoASY3) needs to be compared with AtASY3. 

However, a limitation of using B. oleracea is the insufficient availability of its 

sequence data. Nevertheless, the Brassica genome has been completely sequenced 

for B. rapa via BAC sequencing using Sanger sequencing methods and de novo 

sequencing using second generation sequencers (Brassica database, BRAD). 

Analysis of B. rapa genome sequence using homology searches revealed the 

presence of a locus (Bra004486) similar to AtASY3 in the line Chiifu 401. Further 

analysis revealed that the predicted product of this locus (hereafter referred to as 

BrASY3) was ~75% identical to AtASY3 protein (Figure 9A). Hence this locus is ideal 

for designing primers which can subsequently be used to amplify and sequence full 

length ASY3 from Brassica oleracea, which shares close phylogenetic relationship 

with Brassica rapa.  
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4.5.1. Determining BoASY3 3´-end nucleotide sequence using 3´-RACE 

Homology analysis revealed that the 3ˊ end of BrASY3 display some variation to 

that of AtASY3 at nucleotide level and hence was not suitable for designing primers 

for BoASY3 amplification. Furthermore, the actual location of the termination codon 

in BoASY3 cannot be predicted based on BrASY3 nucleotide sequence since the 

length of coding sequences of conserved genes may vary from one species to 

another. Hence, to determine the unknown nucleotide sequence at the 3ˊ end of 

BoASY3, its 3ˊ end was amplified by 3ˊ RACE. 3ˊ RACE allows the amplification of 

nucleic acid sequences from an mRNA template between a defined internal site and 

the 3´ end of the mRNA. The process involves 3 rounds of PCRs. During the first 

PCR cDNAs are generated from mRNA templates using reverse transcription and an 

oligo dT-adapter primer, which consists of a short sequence of deoxy-thymine 

nucleotides and an adapter sequence. The oligo dT-adapter primer complements the 

natural poly(A) tail and adds the adaptor sequence to the 3' end of each cDNA. The 

second round of PCR involves the amplification of the 3' end of the desired cDNA 

using a gene specific primer (GSP) complimentary to a known location and an anti-

sense primer complementary to the oligo(dT)-adaptor sequence. The final round of 

PCR uses a nested GSP in conjuction with the primer complementary to the adaptor 

sequence to amplify the 3ˊ end of the cDNA increasing specificity of the desired 

product. Hence, an oligo dT-adapter primer (3RACE17AP) and an anti-sense primer 

complimentary to the adapter region (3RACEAP) were designed for the amplification 

of the 3ˊ end of BoASY3. Additionally, a GSP (Bra486_3ˊRaceF1, 535bp from end) 

and a nested GSP (Bra486_3ˊRaceF2, 468bp from end) were also designed based 

on known conserved sequences at the 3ˊ region of BrASY3. Total RNA was 
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extracted from Brassica oleracea buds and subjected to RT-PCR using Superscript II 

(Invitrogen) reverse transcriptase and 3RACE17AP. The resulting cDNA was 

subjected to PCR using Bra486_3ˊRaceF1 and 3RACEAP. The subsequent product 

was further amplified using Bra486_3ˊRaceF2 and 3RACEAP and analysed using 

gel electrophoresis. The analysis revealed the presence of a ~750bp product in high 

abundance (Figure 9B). The RACE-PCRs also generated 4 other products of varying 

sizes (two > 900bp, two < 400bp) and in very low abundance, possibly due to non-

specific amplification. The ~750bp product was extracted from the electrophoresis gel 

using Qiaquick gel extraction kit (Qiagen), ligated to pDRIVE (Qiagen) expression 

vector and transformed into competent E. coli (DH5α). Subsequently, the presence of 

the product was verified using boil preparation of plasmid DNA followed by its 

digestion using EcoRI restriction enzyme. Finally, the vector-product DNA was 

extracted using wizard preparation (Promega) and sequenced using M13 – Reverse 

primer. This revealed the previously unknown nucleotide sequence at the 3ˊ region 

of BoASY3 and the exact location of the termination codon in it. Homology analysis 

revealed that the 3´ region of BoASY3 displays high conservation with BrASY3, 

although the former contains more coding sequences with its stop codon located 

further downstream compared to the latter (Figure 9D). More importantly, the 3´ of 

BoASY3 is highly conserved to AtASY3, consistent with the conservation of the gene 

between the two species (Figure 9E). Furthermore, with the 3´ nucleotide sequence 

of BoASY3 now available, the rest of its coding sequence can be amplified and 

compared to AtASY3.  
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4.5.2. Cloning the full length coding sequence of BoASY3 

Analysis of the predicted BrASY3 mRNA sequence revealed that it shares 84% 

identity with that of AtASY3 and hence is an ideal template for designing primers for 

BoASY3 amplification. The length of the mRNA sequence of BrASY3 is 2310bp and 

hence too large to be amplified error-free by PCR using Taq DNA polymerase. 

Therefore, 3 sets of primers, each with a forward and a reverse primer were designed 

to amplify their corresponding sections of DNA from the 5´ region of BoASY3 by PCR 

using Taq DNA polymerase. Each primer set was designed to overlap to allow the 

accurate alignment and ordering or their amplified products. The expected length of 

the products from the three primer sets, Bras4486_F3 and Bo486TAQR1, 

Bo486TAQF1 and Bo486TAQR2 and Bo486TAQF2 and Bo486TAQR3 were ~508bp, 

~586bp and ~425bp respectively. Additionally, a fourth set of primers, consisting of 

Bras4486_F4 and Bras4486_R2 was designed to amplify a ~905bp region 

overlapping the ~425bp region and the already sequenced 3´ region of BoASY3. The 

fourth set of primers was designed to amplify a longer section of BoASY3 compared 

to the other sets particularly to avoid an extra PCR reaction to amplify the already 

sequenced 3´-end of BoASY3. Furthermore, the amplification of this relatively longer 

section would require PCR using the proofreading Pfu DNA polymerase for error-free 

amplification. Subsequently, three separate PCRs using B. oleracia bud cDNA and 

Taq DNA polymerase were carried out, each with a different set of primers designed 

for BoASY3 amplification using Taq DNA polymerase. Similarly another PCR was 

carried out using bud cDNA, Pfu DNA polymerase and the primers from the fourth 

set. The PCR products from all reactions were then analysed using gel 

electrophoresis, which revealed that the primer sets were able to amplify their 



127 

 

corresponding regions of BoASY3 (Figure 9C). All the PCR products were 

subsequently extracted from the electrophoresis gel using Qiaquick gel extraction kit 

(Qiagen). The products from the PCRs using Taq DNA polymerase were ligated to 

pDRIVE (Qiagen) expression vectors while the product from the PCR using Pfu DNA 

polymerase was ligated to pCR-Blunt (Invitrogen). The vectors were transformed into 

separate competent E. coli (DH5α). Subsequently, the presence of the desired 

products was verified using boil preparation followed by their digestion using EcoRI. 

Each product with the corresponding amplified region of BoASY3 was then extracted 

using wizard preparation (Promega) and sequenced using M13–Forward primer. 

Since all the amplified sections of BoASY3 had overlapping regions BLAST (NCBI) 

searches were used to align and order each segment of sequenced DNA. The 

resulting nucleotide sequence was then conjoined with the known sequence of 3´-

end of BoASY3 to reveal the full length coding sequence of BoASY3. Homology 

analysis of the full length BoASY3 coding sequence and its predicted product 

revealed that they are 95% and 93% identical respectively to those of BrASY3, 

suggesting a high level of conservation between the two genes. More interestingly, 

further analysis revealed that the full length coding sequence of BoASY3 shares 85% 

identity with that of AtASY3. Furthermore, BoASY3 is predicted to encode a protein 

that is 77% identical to AtASY3 in amino acid sequence (Figure 9F). In addition, 

BoASY3 is predicted to be ~86kDa in weight and 776 AA in length, therefore, of 

similar size and length to AtASY3. These results suggest that AtASY3 is conserved 

at molecular level in B oleracea.  
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Figure 9. (A,D,E,F) ClustalW2 alignment of various sequences, (B) 3ˊ RACE PCR 
products  and (C) Amplification of BoASY3.  
(A) The amino acid sequence of BrASY3 displays ~75% identity to that of AtASY3. (B) 3ˊ 
RACE PCR products. The reaction generated the expected ~750bp product (red arrow) along 
with four non-specific products (blue arrows). (C) Amplification of BoASY3. Overlapping 
sequential regions of BoASY3 were amplified by three PCRs using Taq DNA polymerase and 
one PCR using Pfu DNA polymerase. (D) BoASY3 C-terminal nucleotide sequence displays 
high conservation with BrASY3, although the former contains more coding sequences and its 
stop codon is located further downstream compared to the latter (E) The 3´ of  BoASY3 is highly 
similar to AtASY3 (F) BoASY3 is 77% identical to AtASY3 in amino acid sequence. 
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4.6. Production of an anti-ASY3 antibody 

 

4.6.1. Cloning the AtASY3 C-terminal region for recombinant protein 

production  

The availability of an antibody that detects AtASY3 would allow immunolocalization 

studies for understanding the functional role of the protein. Since, AtASY3 has been 

found to be 77% identical to BoASY3 the anti-ASY3 antibody may also be useful for 

studying functional similarities between the two. Database searches revealed that 

AtASY3 shares sequence identity with rice axis protein, PAIR3 (25.6%) and budding 

yeast axis component, RED1 (16.4%). Interestingly, the coiled-coil region (a feature 

of meiotic axis proteins) at the C-terminal of AtASY3 displays the most conservation 

with PAIR3 and Red1. Hence, the C-terminal of AtASY3 was selected for generating 

a recombinant protein that would be used for the production of an anti-ASY3 

antibody. The primers, RED1F1 and RED1R1 were designed to amplify a 702bp 

region from the wild-type (Col-0) bud cDNA corresponding to the last 234 residues of 

the AtASY3 C-terminal (Figure 7A). RED1F1 and RED1R1 were designed to contain 

NdeI and XhoI restriction sites respectively, to allow cloning of the amplified product 

into an expression vector in the correct orientation. The NdeI restriction site was 

specifically chosen for amplification of the 5´-end of the desired fragment as it 

contains the ATG start codon. RNA was extracted from wild-type inflorescences and 

cDNA was generated by RT-PCR using Superscript II (Invitrogen). The cDNA was 

amplified by PCR using the primers RED1F1 and RED1R1 and its product run on an 

electrophoresis gel (Figure 10A). Subsequently, the PCR product was extracted from 
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the gel and ligated to pDRIVE before being transformed into competent E. coli 

(DH5α). Following verification of the product using boil preparations and restriction 

digestion using EcoRI, DNA was isolated using wizard preparation (Promega) and 

sequenced. The sequencing results confirmed that the correct sequence was 

amplified and was in frame for subsequent expression. Hence, the fragment was 

isolated using NdeI/XhoI double digestion and gel extraction, sub-cloned into pET21b 

expression vector (Novogen) and transformed into competent E. coli (DH5α). The 

presence of the insert was again verified using boil preparations and restriction 

digestion using EcoRI. Finally, plasmid DNA was isolated using wizard preparation 

(Promega) and transformed into competent E. coli (BL21) (DE3) for subsequent 

expression of the AtASY3 C-terminal fragment (hereafter referred to as AtASY3-C). 

Computational analysis using BCM Search Launcher program 

(http://searchlauncher.bcm.tmc.edu) revealed that the expected product of the 

AtASY3-C is a ~27kDa protein. However, the actual weight of the final product is 

expected to be slightly higher due to the addition of a histidine-tag from the pET21b 

vector. 

 

4.6.2. Production of the recombinant protein for anti-ASY3 antibody 

preparation 

Prior to a larger scale production of the AtASY3-C test induction experiments were 

carried out for the verification of AtASY3-C expression. For this purpose, 4 different 

bacterial cultures (each 10ml) were grown, each from a separate colony of E. coli 

BL21 (DE3) containing pET21b-AtASY3-C. Samples from each of the 4 cultures were 



135 

 

induced for the expression of the recombinant protein using IPTG (final concentration 

of 1mM), an artificial inducer of the lac operon in pET21b. Control experiments were 

also set up in parallel where no IPTG was added to samples from each of the 4 

cultures. After incubation with or without IPTG, proteins were isolated from both 

induced and non-induced cultures using BugBuster (Novagen). Proteins were 

separated into a soluble and an insoluble fraction and resolved using SDS-PAGE. 

The proteins were subsequently detected using coomassie blue staining. This 

revealed that the AtASY3-C recombinant protein (~27kDa) was present in the 

insoluble fraction but undetectable in the soluble fraction (Figure 10BC.). Further 

analysis of the insoluble fraction revealed that AtASY3-C was expressed in both the 

induced and non-induced samples, although its expression was several fold higher in 

each of the induced samples relative to their corresponding non-induced samples 

(Figure 10B). The expression of AtASY3-C in non-induced samples was probably 

due to the leaky baseline expression by the T7 polymerase in E. coli BL21 (DE3). 

Nevertheless, the results clearly suggest that AtASY3-C is generated by the pET21b-

AtASY3-C expression system, which can now be used for a larger scale production 

of the recombinant protein, needed for anti-ASY3 antibody production. 

 

For the large scale production of recombinant AtASY3-C protein a 200ml culture was 

grown from a single colony of E. coli BL21 (DE3) clone 1 from the test induction. 

Protein expression was induced using IPTG and the subsequent proteins were 

extracted using sonication. The insoluble fraction containing proteins including 

AtASY3-C was separated and various amounts (10µl, 5µl, 2.5µl, 1µl, 0.5µl) of it were 
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loaded into a SDS-PAGE gel. Additionally varying amounts of BSA of known 

concentrations (10, 5, 2.5, 1.25mg/ml) were also loaded into the gel for the 

quantification of AtASY3-C in the samples. All the samples were resolved using SDS-

PAGE and subsequently detected using coomassie blue staining. The result showed 

that AtASY3-C was successfully expressed to produce the AtASY3-C recombinant 

protein (Figure 10D). In addition, comparison of band intensities of AtASY3-C to 

those from known BSA concentrations in conjunction with BIORAD assay allowed the 

quantification of the amount of AtASY3-C. This revealed that the concentration of 

AtASY3-C produced from the large scale production was ~3mg/ml. The AtASY3-C 

protein sample was then diluted to 1mg/ml and sent to BioGenes (Germany) for the 

production of the anti-ASY3 antibody in rabbit. 

 

4.6.3. Validation of anti-ASY3 antiserum 

At BioGenes (Germany), two rabbits numbered 5073 and 5074 were inoculated with 

AtASY3-C for the production of anti-ASY3 antibody. Subsequently, the pre-immune 

sera and the anti-sera containing the anti-ASY3 antibody from each of the two rabbits 

were collected and sent to our lab. However, whether the antisera can detect the 

recombinant AtASY3-C needed to be verified before use. To do so, two different 

amounts (1µl and 0.5µl) of the recombinant AtASY3-C protein were loaded into one 

half of a SDS-PAGE gel for their subsequent detection by western blotting using 

each of the two antisera. As a control, similar amounts of the same protein were also 

loaded on the other half of the same gel to check for any detection by the pre-

immune anti-sera from the two rabbits. A second gel was also set up similarly but 
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only for detection of the presence of AtASY3-C recombinant protein via coomassie 

bluestaining. Once the proteins were resolved by SDS-PAGE, those from the first gel 

were electroblotted to a nitrocellulose membrane (GE Healthcare) for probing while 

the ones from the second gel were detected using coomassie blue staining. The 

nitrocellulose membrane was separated into two halves and each probed using 

either the pre-immune serum from rabbit 5073 or 5074 (1:3000). Subsequently, the 

membranes were probed using anti-rabbit secondary conjugated to horseradish 

peroxidise (HRP) (1:10,000) and visualized using ECL. No bands were detected at 

various exposures confirming that the pre-immune serum from either rabbit is 

incapable of detecting recombinant AtASY3-C. The nitrocellulose membranes were 

then washed, blocked using milk and re-probed using anti-sera from the two rabbits. 

The membrane initially analysed using pre-immune serum from rabbit 5073 was 

probed with anti-sera from 5073 (1:3000). Similarly, the other half of the membrane 

initially analysed using pre-immune serum from rabbit 5074 was probed with anti-

sera obtained from 5074 (1:3000). The membranes were then probed using anti-

rabbit secondary conjugated to HRP (1:10,000) and visualized using ECL. This 

revealed that the anti-serum from rabbit 5074 is able to detect AtASY3-C 

recombinant protein very clearly in all the lanes in which the protein was loaded into 

(Figure 10E). However, the anti-serum from rabbit 5073 does not detect the 

recombinant AtASY3-C adequately. Although there is some detection of the proteins 

in both the 1µl and 0.5µl lane, they are several fold less compared to the detection by 

the antiserum from rabbit 5074 (Figure 10E). Nevertheless, these validation studies 

revealed that the antiserum from rabbit 5074 contains the anti-ASY3 antibody, which 

can now be used for further studies of AtASY3. 
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Figure 10. Cloning and detection of AtASY3-C recombinant protein and validation of anti-
ASY3 antibody. 
(A) A 702bp region of AtASY3 C-terminal was amplified by PCR. (B) Coomasie blue staining of 
SDS-PAGE gel revealed that AtASY3-C (red arrow) was present in the insoluble fraction of the 
protein samples (C) AtASY3-C was absent in the soluble fractions (D) Coomasie stained SDS-
PAGE gel showing various amounts of AtASY3-C after large-scale production for antibody 
preparation. Known concentrations of BSA allow estimation of protein concentrations in the 
samples. (E) Western blotting analysis revealed that the anti-serum from rabbit 5074 can 
efficiently detect AtASY3-C (red arrow) while that from rabbit 5073 does not detect the 
recombinant protein adequately. 
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4.7. Discussion 

 

4.7.1. ASY3 is a putative meiotic axis protein in Arabidopsis and Brassica 

Analysis of B. oleracea meiotic proteome led to the identification of a novel protein, 

AtASY3, with a putative meiotic role in Arabidopsis. Analysis of the protein revealed 

that it is weakly predicted to contain a putative NLS, a condensin-like domain and a 

DEAD-box helicase-like domain containing regions similar to P-loop NTPase. NLS 

allows protein to be imported into the nucleus while the condensin-like domain may 

provide structural properties to the protein. Furthermore, DEAD-box family of proteins 

are involved in chromatin remodelling during diverse cellular processes suggesting 

that AtASY3 may possess similar functional capabilities. (Linder and Jankowsky, 

2011). More importantly, however, AtASY3 is predicted to contain a coiled-coil 

domain towards the C-terminal. Coiled-coil domains are known to provide structural 

stability and are involved in protein-protein interactions (Mason and Arndt, 2004). 

Interestingly, this structural feature is found in other meiotic proteins, such as RED1 

in budding yeast, OsPAIR3 in rice and SCP3 in mammals, which are all components 

of the AE of the meiotic SC and so far reported to have no close homologues in other 

species. In addition to the similar coiled-coil regions AtASY3 was found to exhibit 

16.4% and 25.6% identity to RED1 and OsPAIR3 respectively at sequence level. 

This is consistent with previous reports which highlight that meiotic axis/SC proteins 

exhibit little conservation in primary sequence level but shares certain structural 

properties (Higgins et al., 2005). These observations make AtASY3 an ideal 

candidate as a meiotic axis protein in Arabidopsis. 
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Additionally, homology analysis of AtASY3 revealed that it shares 75% sequence 

identity with the putative product of a locus in B. rapa. This prompted the cloning and 

sequencing of ASY3 from B oleracea. Comparison of BoASY3 and AtASY3 revealed 

that the two were 85% identical in nucleotide level and 77% identical in amino acid 

level. Furthermore, BoASY3 was found to present in B oleracea meiotic proteome 

(Sanchez-Moran et al., 2005, Osman et al., unpublished). These findings suggest 

that ASY3 is conserved between Brassica and Arabidopsis, which is not surprising as 

the two species are closely related and thought to have diverged only 14-18 million 

years ago (BRAD database). 

 

4.7.2. AtASY3 is expressed in Arabidopsis meiocytes 

Analysis of AtASY3 expression from a range of wild-type Arabidopsis tissues 

revealed that AtASY3 is expressed in flower buds. Since buds contain anthers with 

PMCs in them it is highly likely that AtASY3 may be involved during meiosis. 

Additionally, AtASY3 expression, although relatively reduced, was also detected in 

flowers. Flower contains the ovary where female gametogenesis occurs. Hence, it is 

likely that AtASY3 is also involved in female meiosis.  Moreover, in Arabidopsis, 

female gametogenesis is relatively delayed compared to male meiosis to avoid self-

fertilization. This may account for the comparatively lower expression of AtASY3 

detected in flower by RT-PCR at that instance. Nevertheless, the expression analysis 

revealed no detection of AtASY3 in wild-type stem and leaf tissue thereby ruling out a 
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role of AtASY3 in vegetative tissues. The finding that AtASY3 is expressed in 

reproductive tissues is consistent with a role for it during meiosis. 

 

4.7.3. Atasy3 mutants display reduced fertility 

To further analyse AtASY3 the T-DNA insertion lines Atasy3-1, Atasy3-2 and Atasy3-

3, were obtained and the presence of their T-DNA verified. Subsequent RT-PCR 

analysis failed to detect AtASY3 expression in flower buds from any of the mutant 

lines confirming that the T-DNA insertion successfully mutated AtASY3 in all three 

mutant lines. Further analysis of Atasy3 mutants revealed that their mean seed-set 

was reduced ~75% compared to the wild-type. Moreover, all three mutant lines 

contained a substantial proportion of non-viable pollen. These observations confirm 

that fertility is significantly reduced in all Atasy3 mutants. Reduced fertility is often an 

indication of a meiotic defect and has been reported in previous studies of various 

Arabidopsis meiotic mutants (reviewed in Osman et al., 2011). Based on this, it is 

highly probable that the reduced fertility of Atasy3 mutants may be a direct 

consequence of defects in their meiosis. 

 

4.7.4. Anti-ASY3 antibody is capable of detecting recombinant ASY3 

The anti-ASY3 antibody was produced primarily for immunolocalization studies of the 

protein. Although AtASY3 showed limited identity to OsPAIR3 (25.6%) and Red1 

(16.4%) at overall sequence level the proteins displayed relatively high conservation 

in their C-terminal which contained the coiled-coil domain. Hence, the C-terminal 
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region of AtASY3 was cloned and expressed in E. coli for producing the recombinant 

protein AtASY3-C, which was subsequently used in generating the anti-ASY3 

antibody in two different rabbits. In western analysis, the anti-serum from rabbit 5074 

was able to detect AtASY3-C recombinant protein very clearly. However, the anti-

serum from rabbit 5073 only weakly detected AtASY3-C. This may be because the 

inoculum failed to generate an appropriate level of immune response in the rabbit or 

vice versa. Nevertheless, the pre-immune serum from both rabbits taken before their 

inoculation with AtASY3-C was incapable of detecting AtASY3-C. Altogether, these 

observations suggest that the anti-serum from rabbit 5074 contains the anti-ASY3 

antibody which is specific to AtASY3 and therefore can be used for 

immunolocalization studies of AtASY3. 
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CHAPTER 5 

Cytology and immunolocalization of ASY3 
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5.1. Introduction 

Proteomic studies and homology analysis led to the identification of a novel coiled-

coil protein, AtASY3 in Arabidopsis. Molecular characterization of AtASY3 revealed 

that the protein is meiosis-specific and is conserved in Brassica. Analysis of three 

Atasy3 mutant lines revealed that all three lines exhibit reduced fertility, an indication 

of probable defects in their meiosis. This chapter describes the cytological 

investigation of Atasy3 mutants carried out to verify and analyse the putative meiotic 

defects in them. Additionally, an anti-ASY3 antibody has been raised for 

immunolocalization studies of AtASY3. This chapter also illustrates the wild-type 

localization of AtASY3 and BoASY3 along with the immunolocalization of various 

meiotic proteins in Atasy3 mutant. Furthermore, this chapter describes the cytological 

analysis of various genetic crosses of Atasy3 which aide in understanding the meiotic 

role of AtASY3.  

 

 

5.2. Cytological analysis of Atasy3 mutants 

To confirm that the reduction in fertility of Atasy3 mutants was due to the disruption of 

AtASY3 gene DAPI-stained chromosome spread preparations from PMCs of all three 

Atasy3 T-DNA insertion mutant lines were analysed using fluorescence microscopy. 

Analysis of Atasy3-1 revealed that chromosome behaviour in its early meiotic stages, 

leptotene and zygotene, were indistinguishable from those of the wild-type (Col-0) 

(Figure:11AB). However, normal pachytene nuclei were not observed in the Atasy3-1 
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mutant. Although there were no apparent defects in axis formation, it was clear that 

homologous chromosomes failed to synapse in Atasy3-1, in contrast to the wild-type 

which exhibit complete chromosome synapsis at pachytene (Figure:11C). 

Furthermore, at late diplotene/diakinesis it was apparent that a portion of the 

homologous chromosomes were not linked by any chiasmata in Atasy3-1 

(Figure:11DE). This was confirmed by the presence of univalents at metaphase I in 

the mutant, in stark contrast to wild-type metaphase I where five bivalents are 

observed (Figure:11F). In wild-type meiosis, the bivalents segregate normally at 

anaphase I followed by the segregation of sister chromatids at anaphase II which 

generates four haploid gametes. In comparison, the loss of COs and the presence of 

univalents in metaphase I in Atasy3-1 lead to mis-segregation in both meiotic 

divisions resulting in the formation of aneuploid tetrads (Figure:11GHI). Cytological 

analysis of the meiotic stages of Atasy3-2 and Atasy3-3 revealed that the two mutant 

lines are cytologically indistinguishable from Atasy3-1 (Figure 12A-F, G-L). Hence, 

these observations confirm that all three Atasy3 T-DNA insertion lines undergo 

defective meiosis which leads to reduction in their fertility. 
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Figure 11. Representative meiotic stages from Atasy3-1 PMCs. 
Early prophase I stages, (A) leptotene and (B) zygotene in Atasy3-1 are indistinguishable from 
those of wild-type, however, normal (C) pachytene was not observed in the mutant. 
Homologous chromosomes fail to undergo full synapsis in Atasy3-1. Chromosomes condense 
further in (D) diplotene and (E) diakinesis, where it is apparent that some chromosomes are not 
connected by chiasma. Both bivalents and univalents are present at (F) metaphase I. The lack 
of normal levels of COs in Atasy3-1 lead to chromosome mis-segregation at (G) anaphase I 
leading to the formation of unbalanced (H) dyad and (I) tetrad. Bar 10μm. 
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Figure 12. Representative meiotic stages of Atasy3-2 (A-F) and Atasy3-3 (G-L). 
Leptotene (A,G); pachytene (B,H); diakinesis (C,I); metaphase (D,J); dyad (E,K) tetrad (F,L). All 
stages are indistinguishable from their corresponding stages in Atasy3-1. Bar 10µm. 
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5.3. Verification of Atasy3 mutant phenotype 

 

5.3.1. Allelism test 

To confirm that meiotic phenotype observed in Atasy3 mutants was due to the 

disruption of the AtASY3 gene an allelism test was carried out by crossing 

homozygous Atasy3-1 and heterozygous Atasy3-2 lines. As expected, approximately 

half the progeny were genotyped as homozygous Atasy3-1/Atasy3-2 hetero-allelic 

knockouts which possessed a T-DNA in each allele of AtASY3 obtained from either 

Atasy3-1 or Atasy3-2. Cytological analysis of meiotic chromosome spreads from 

homozygous Atasy3-1/Atasy3-2 revealed that chromosomes fail to synapse at 

prophase I in the double mutant (Figure 13Ai). Furthermore, univalents are formed at 

metaphase I which leads to the formation of unbalanced tetrads in the double mutant, 

similarly to homozygous Atasy3-1 and Atasy3-2 single mutant (Figure 13Aiii). Hence, 

the meiotic defects in Atasy3-1/Atasy3-2 are indistinguishable from those of its 

parental lines. These observations therefore suggest that disruption of AtASY3 leads 

to the aberrant meiotic phenotype observed in Atasy3 mutants. 

 

5.3.2. Complementation test 

A complementation test was also carried out to confirm that the meiotic phenotype of 

Atasy3-1 mutant was due to the knockout of AtASY3. In the complementation test, a 

wild-type copy of AtASY3 cDNA was cloned and expressed in Atasy3-1 and 

subsequent transformed lines were analysed for the recovery of wild-type phenotype. 
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The presence of wild-type features in transformed plants would indicate that the 

mutant Atasy3 gene was complemented by the wild-type AtASY3 cDNA and hence 

the former is responsible for the defective meiotic phenotype observed in Atasy3 

mutant.  

 

5.3.2.1. Cloning AtASY3 cDNA for complementation of Atasy3 mutants 

For the complementation test a modified pBluescript II plasmid containing the wild-

type (Col-0) AtASY3 cDNA with both 5´ and 3´ untranslated regions (UTRs) was 

obtained from RIKEN BRC (Japan). The plasmid was transformed into E. coli (DH5α) 

and the presence of the cDNA verified using boil preparation and restriction digestion 

using XhoI and BamHI. Plasmid DNA was then extracted using wizard preparation 

(Promega) and sequenced for ensuring the integrity of the AtASY3 cDNA nucleotide 

sequence. Since the AtASY3 cDNA with the UTRs was ~3kb in length it was divided 

into 5 parts and each part sequenced by a separate primer designed using the 

AtASY3 cDNA nucleotide sequence (resource number: pda19140) from RIKEN BRC 

database (http://www.brc.riken.jp/lab/epd/catalog/cdnaclone.html). The T7 promoter 

primer along with the primers, RED1_cDNA_F1, RED1_cDNA_F2, RED1_cDNA_F3 

and RED1_cDNA_F4 were used to sequence overlapping regions from the 5´ to the 

3´ end of AtASY3 cDNA. The resulting nucleotide sequences were then conjoined in 

the correct order to obtain the full length nucleotide sequence of AtASY3 cDNA. 

Analysis of the AtASY3 cDNA nucleotide sequence revealed that it was identical to 

that from the RIKEN BRC database and hence can be used for complementation of 

the Atasy3 mutant. 
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The AtASY3 cDNA along with its 5´and 3´ UTRs was amplified by PCR using Pfu 

DNA polymerase and the primers RED1_cDNA_FWD1 and RED1_cDNA_REV1 

which had the restriction sites of XhoI and SpeI respectively incorporated in them. 

Subsequent gel electrophoresis revealed that, as expected, the PCR amplified a 

~3kb product which was then extracted from the gel using QiaQuick gel extraction kit 

(Qiagen) (Figure 13B). The extracted product was ligated to pZERO, transformed into 

E. coli (DH5α) and verified using boil preparation and double digestion using XhoI 

and SpeI restriction enzymes. Plasmid DNA containing the amplified product was 

then isolated using wizard preparation (Promega) and the two ends of the product 

sequenced using M13 reverse and forward primers. The results confirmed that the 

sequences analysed were from the 5´ and 3´ UTRs of AtASY3 cDNA and contained 

the XhoI and SpeI restriction sites respectively. Subsequently, the AtASY3 cDNA 

with the UTRs was isolated using XhoI/SpeI double digestion and gel extraction and 

sub-cloned into the expression vector, pPF408. The pPF408 plasmid contains a 

DMC1 promoter which is ideal for meiosis-specific expression of a desired product in 

Arabidopsis. The pPF408-AtASY3 cDNA was then transformed into competent E. coli 

(DH5α) and subsequently verified using boil preparations and XhoI/SpeI double 

restriction digestion. The plasmid DNA was subsequently isolated using wizard 

preparation (Promega) and transformed into Agrobacterium tumefaciens (LBA4404). 

Finally, the presence of the AtASY3 cDNA was verified in various Agrobacterium 

colonies by colony PCR using the primers ASY3-1-F1 and ASY3-1-R1 and a 

selected colony was used to grow a bacterial culture for the subsequent 

transformation into Atasy3-1 mutants. 
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5.3.2.2. Transformation of AtASY3 cDNA into Atasy3 mutants and analysis of 

subsequent transformants 

AtASY3 cDNA containing both 5´ and 3´ UTRs were transformed into Arabidopsis 

Atasy3-1 mutants via the floral dipping method described by Clough and Bent, 1998. 

Flowering Atasy3-1 mutant plants were dipped into the Agrobacterium culture 

containing pPF408-AtASY3 cDNA. As a control an Atasy3-1 mutant was dipped into 

an Agrobaterium culture containing only the pPF408 plasmid. The dipped Atasy3-1 

plants were then allowed to mature and produce seeds which were later harvested. 

Plants were grown from the harvested seeds on MS media containing BASTA for 

selection of transformants. Since pPF408 plasmid contains the BASTA resistance 

gene only transformed plants are able to survive on the selective media. Eventually, 

transformants which grew on the MS media which were later transferred and grown 

in pots containing soil compost.  

 

The transformants were genotyped to verify their zygosity for Atasy3 mutation using 

a set of 2 primers, one in exon 1 and the other in intron 1, designed to amplify solely 

genomic AtASY3. Genomic DNA from transgenic plants was amplified by PCR using 

the primers Comp_Geno_676-LP and Comp_Geno_676-RP while the presence of 

the T-DNA was verified using Comp_Geno_676-RP and LbB1.3. These experiments 

revealed that all the transformants were homozygous for the Atasy3 mutation. 

Furthermore, the presence of the transgene was verified by PCR using the primers, 

ASY3-EX-C-LP (in exon 9) and ASY3-EX-C-RP (in exon 5) which were designed to 

amplify a shorter product from the transgene and a longer product from genomic 
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AtASY3. The analysis revealed that the shorter PCR product, therefore the 

transgene, was present in all the transgenics whose parental line was transformed 

with pPF408-AtASY3 cDNA but not in the wild-type (Col-0) or the control 

transformant whose parental line was transformed with only pPF408.  

 

The transformants were then analysed for the restoration of wild-type phenotype. 

Analysis of the transgenic plants revealed that seed count was increased in all plants 

compared to the Atasy3-1 mutant and that the transgenics displayed varying levels of 

recovery of wild-type fertility (Table 4). Analysis of a transformant which displayed 

siliques of wild-type sizes (Figure 13Ciii) revealed that it had a mean seed set of 

41.27 compared to 46.13 in the wild-type (Figure 13Ci), thus exhibiting ~90% level of 

wild-type fertility. In addition, the transformant displayed ~66% more fertility than 

Atasy3-1 mutant which was grown in parallel and exhibited a mean seed set of 14.13 

(Figure 13Cii). Furthermore, the control transformant whose parental line was 

transformed with only pPF408 exhibited a mean seed set of 14.9 which was not 

statistically different from Atasy3-1 mutant (p=0.4, ANOVA), indicating that there was 

no increase in fertility in the absence of AtASY3 cDNA. These results are consistent 

with the potential complementation of the mutant Atasy3 gene in the transformant 

that displayed ~90% of wild-type fertility. To confirm the complementation of the 

mutant Atasy3 gene chromosome spreads of various meiotic stages from the 

transformant were analysed using fluorescence microscopy. This revealed that 

homologous chromosomes were properly synapsed in pachytene (Figure 13Civ), in 

contrast to the Atasy3-1 mutant which is asynaptic. Additionally, five bivalents were 
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observed along with the absence of univalents at metaphase I in the transformant 

(Figure 13Cv), unlike in Atasy3-1 where univalents were found in metaphase I. The 

univalents in Atasy3-1 lead to mis-segregation during meiotic divisions resulting in 

the formation of aneuploid tetrads in the mutant. In contrast, balanced tetrads were 

observed in chromosome spreads from the transformant suggesting chromosomes 

segregate normally in it, similarly to wild-type (Figure 13Cvi). These observations 

suggest that normal meiosis was restored in transgenics whose parental Atasy3-1 

mutant line was transformed with AtASY3 cDNA. Therefore, the aberrant meiotic 

phenotype observed in Atasy3-1 mutant is indeed due to the disruption of the 

AtASY3 gene. 

 

Percentage of 
fertility (seed-set) 

Number of 
Atasy3DMC1-ASY3 
transformants 

21-40 % 12 

41-60 % 8 

61-80 % 16 

81-100 % 4 

 
 

Table 4. Number of transgenic plants and the percentage of their fertility (mean 
seed-set) relative to the wild-type.  
Percentage of fertility of transgenics was calculated by measuring their mean seed-
set and comparing them to that of the wild-type. Transgenic plants exhibited varying 
range of fertility (mean seed-set). 
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Figure 13. (A) Allelism and (B, C) complementation analysis. 
(Ai) Atasy3-1/Atasy3-2 exhibits (Ai) asynapsis in pachytene (Aii) loss of normal levels of COs 
and univalents in metaphase I. These lead to misegregation at meiotic divisions resulting in the 
formation of (Aiii) unbalanced tetrads. Bar 10µm. (B) PCR amplification of ~3kb AtASY3 cDNA. 
(Ciii) Fertility in an Atasy3 complementation line was restored to normal levels observed in WT 
(Ci) in contrast to Atasy3 (Cii). Bar 10mm. Cytological analysis confirmed that normal meiosis 
was restored in the Atasy3 complementation line. Homologous chromosomes underwent 
normal synapses in (Civ) pachytene. A full complement of five bivalents was observed in (Cv) 
metaphase I. These underwent normal segregation leading to the formation of balanced (Cvi) 
tetrads. Bar 10µm. 
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5.4. AtASY3 localizes to meiotic chromosome axes in early 

prophase I 

The localization and distribution of AtASY3 on wild-type meiocytes were studied by 

immunolocalization using the anti-ASY3 antibody that was produced and found to be 

capable of detecting the recombinant AtASY3-C peptide in a western blot analysis. 

As a control, an immunolocalization study was performed on DAPI-stained wild-type 

(Col-0) chromosome spreads initially using the pre-immune serum from the rabbit 

which produced the anti-ASY3 antibody. This revealed that the pre-immune serum 

did not detect any signal suggesting that it did not contain any substance that was 

capable of detecting AtASY3. Immunolocalization studies were then carried out on 

DAPI-stained wild-type chromosome spreads using the antiserum which contained 

the anti-AtASY3 antibody in conjunction with antibodies that recognize the axis-

associated protein, AtASY1 and the SC TF component, AtZYP1. The chromosome 

spreads were then visualized by fluorescence microscopy (Figure 14). The analysis 

revealed that AtASY3 foci were first detected on chromatin at late G2 phase 

concomitantly with AtASY1 localization. Although AtASY1 localizes as numerous foci 

on chromatin at G2, AtASY3 is predominantly nucleolar at this stage with relatively 

fewer foci associated with chromatin (Figure 14A). However, at early leptotene when 

AtASY1 signal appears to become axis-associated, the nucleolar association of 

AtASY3 disappears and the protein localizes as numerous foci on the chromosome 

axes (Figure 14B). Subsequently, at early zygotene, when AtASY1 is visible as a 

continuous linear signal, numerous punctuate foci and short stretches of linear 

AtASY3 signal can be observed (Figure 14C). By late zygotene, when AtZYP1 has 

polymerized into short stretches, some AtASY3 stretches are found to partially co-
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localize with the AtZYP1 stretches. As prophase I progresses, AtASY3 gradually 

polymerizes such that at pachytene when AtZYP1 is visible as a continuous signal 

indicating a fully formed SC, AtASY3 also forms a continuous signal that partially co-

localizes with AtZYP1 (Figure 14D). The AtASY3 signal was not observed in nuclei of 

later meiotic stages suggesting that the protein only persists till pachytene. These 

observations indicate that AtASY3 localizes to meiotic chromosome axes in early 

prophase I and remains axis/SC-associated till pachytene in wild-type meiocytes. To 

ensure specificity of the anti-ASY3, the antibody was used to perform an 

immunolocalization study on DAPI-stained prophase I chromosome spreads from 

Atasy3-1. This revealed that the antibody was unable to detect any AtASY3 in the 

mutant confirming that it was indeed specific to AtASY3 (Figure 14E).  
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Figure 14. Immunolocalization of AtASY3 in WT. 
(A) In late G2/early leptotene AtASY3 is predominantly nucleolar. (B) AtASY3 localizes in early 
leptotene as numerous foci which co-localize with AtASY1. (C) AtASY3 foci gradually 
polymerize as prophase I progresses. (D) Linear stretches of AtASY3 co-localize with AtZYP1. 
(E) AtASY3 signal is not observed in Atasy3-1 mutant. Bar 10µm. 
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5.5. BoASY3 localizes to meiotic chromosome axes similarly to 

AtASY3 

Since AtASY3 shares substantial sequence homology with BoASY3 it was probable 

that the anti-ASY3 antibody could detect BoASY3 in immunolocalization studies. If 

so, the antibody could be used to analyse BoASY3 localization and compare it with 

that of AtASY3. For this purpose, immunolocalization was performed initially on 

DAPI-stained chromosome spreads of B. oleracea using the pre-immune serum from 

the rabbit which produced the anti-ASY3 antibody. As expected the pre-immune 

serum could not detect BoASY3 (Figure 15D). Subsequently, to detect and analyse 

BoASY3 localization immunolocalization was performed on DAPI-stained 

chromosome spreads of Brassica oleracea using the anti-ASY3 antibody in 

conjuction with anti-ASY1 antibody. The analysis revealed that in leptotene BoASY3 

localizes as numerous foci, most of which co-localize with the axis-associated foci 

and short stretches of BoASY1 (Figure 15A). At zygotene, numerous short stretches 

and foci of BoASY3 are observed which partially co-localize with the continuous 

linear signal of BoASY1 (Figure 15B). At late zygotene/early pachytene, just before 

BoASY1 dissociation when the protein produces a diffuse linear axis-associated 

signal BoASY3 is observed to form a continuous linear signal which co-localizes with 

BoASY1 (Figure 15C). These observations suggest that BoASY3 localizes to the 

meiotic chromosome axes during prophase I in Brassica. This phenotype is 

reminiscent to that of AtASY3 suggesting that the two share similar localization 

patterns and may be functionally homologous to each other. 
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Figure 15. Immunolocalization of BoASY3 using anti-ASY3 antibody. 
Brassica BoASY3 localises to meiotic chromosomes as numerous axis-associated foci in 
leptotene and gradually polymerizes, as prophase I progresses, to a continuous linear signal 
which co-localizes with the axis-associated signal of BoASY1 by late zygotene/early pachytene. 
The localisation of BoASY3 is reminiscent to AtASY3. BoASY3 was not detected using pre-
immune anti-AtASY1 antiserum. Bar 10μm. 
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5.6. Analysis of meiotic chromosome axis and SC proteins in 

Atasy3-1 mutant 

Analysis of AtASY3 revealed that it is a meiotic chromosome axis protein and its 

absence leads to asynapsis during Arabidopsis meiosis. Hence the effect of the loss 

of AtASY3 on other axis components was investigated using immunocytological 

studies of the Atasy3-1 mutant, whose meiotic defects are indistinguishable from the 

other two Atasy3 mutant lines.  

 

5.6.1. Meiotic cohesin components AtSMC3 and AtSYN1 localize 

normally in Atasy3-1 

The localization of the meiotic cohesin proteins AtSMC3 and AtSYN1 were analysed 

by immunolocalization studies. In wild-type (Col-0), both AtSMC3 and AtSYN1 are 

first detected as numerous foci in early leptotene. As leptotene and zygotene 

progresses, both AtSMC3 and AtSYN1 foci linearize to form corresponding stretches 

which display partial co-localization. By pachytene both AtSMC3 and AtSYN1 signals 

appear as linear, continuous and co-localized with each other along the entire length 

of the chromosomes (Figure 16 A, C). Analysis of Atasy3-1 chromosome spreads 

revealed that the localization of both AtSMC3 and AtSYN1 were indistinguishable 

from the wild-type. Both cohesin proteins were detected as linear continuous signals 

which were found to be axis-associated (Figure 16 B, D). The results confirm that 

loss of AtASY3 does not disrupt global sister chromatid cohesion in Atasy3-1. In 

contrast, analysis of AtASY3 localization using the anti-ASY3 antibody in Atsyn1 

mutant revealed that AtASY3 localization is completely disrupted in the mutant, 
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suggesting that localization of AtASY3 is dependent on AtSYN1 (Figure 16E). To 

investigate whether AtASY3 functions following AtSYN1 an Atasy3-1/Atsyn1 double 

mutant was generated and chromosome spreads of its meiocytes were analysed 

using DAPI staining followed by fluorescence microscopy. This revealed that the 

double mutant exhibited extensive chromosome fragmentation throughout its meiosis 

(Figure 17G) and failed to form any chiasmata, consistent with the previously 

reported phenotype of the Atsyn1 mutant (Bai et al., 1999, Cai, 2003). The 

suppression of the meiotic defects of Atasy3-1 by the fragmentation phenotype of 

Atsyn1 in the Atasy3-1/Atsyn1 double mutant suggest that AtASY3 localization and 

function is dependent on AtSYN1, and therefore the meiotic cohesin complex. 

 

5.6.2. AtASY1 localization is disrupted in Atasy3-1 

In wild-type meiocytes, the meiotic chromosome axis protein AtASY1 localizes to 

chromatin during late G2 as numerous foci. By early leptotene the AtASY1 foci forms 

axis-associated stretches which progressively polymerizes to a linear continuous 

signal along the entire length of chromosomes by late leptotene/early zygotene 

(Figure 16F). At pachytene, AtASY1 is depleted along the meiotic axis and its signal 

disappears soon afterwards. In contrast, analysis of Atasy3-1 meiotic chromosome 

spreads revealed that normal AtASY1 localization is disrupted in the mutant. 

Immunocytological analysis of Atasy3-1 revealed that initially at leptotene AtASY1 

localizes as numerous chromatin-associated foci and short stretches which later 

become axis-associated similarly to wild-type. However, as prophase I progressed, 

instead of polymerizing to a linear signal AtASY1 was detected as discrete foci which 
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were evenly distributed on the chromosomes (Figure 16G). Further analysis revealed 

that the number of AtASY1 foci in each Atasy3-1 meiocyte varied considerably from 

42 to 132 with an overall mean of 74 per nucleus (n=20). 

 

In wild-type, AtASY1 association with meiotic chromosome axes has been shown to 

be independent of AtSPO11-mediated DSB formation (Sanchez-Moran et al., 2007). 

To investigate whether the AtASY1 foci on Atasy3-1 were DSB dependent an 

Atasy3-1/Atspo11-1-4 double mutant was constructed by crossing a homozygous 

Atasy3 with a plant heterozygous for AtSPO11 gene followed by self-crossing their 

subsequent offspring. Chromosome spreads from Atasy3-1/Atspo11-1-4 double 

mutant were then analysed by immunolocalization using the anti-ASY1 antibody. This 

revealed that the axis-associated AtASY1 foci remained on the double mutant 

suggesting that localization of the AtASY1 foci in Atasy3-1 is independent of 

AtSPO11-mediated DSB formation, similarly to those in the wild-type (Figure 16H).  

 

Since normal localization of AtASY1 was found to be dependent on AtASY3, 

localization of AtASY3 was analysed in the Atasy1 mutant to investigate whether 

their localization relationship was reciprocal. Immunolocalization on DAPI-stained 

chromosome spreads from Atasy1 using anti-ASY3 antibody revealed that 

localization of AtASY3 was indistinguishable from that in the wild-type (Figure16I). 

Therefore, although normal AtASY1 localization requires AtASY3, localization of the 

AtASY3 does not require AtASY1.  
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5.6.3. AtZYP1 fails to polymerize in Atasy3-1 

To investigate the defects in chromosome synapsis in Atasy3-1 in more detail, 

localization of the SC TF component AtZYP1 was analysed in the mutant and 

compared to that in wild-type. In wild-type meiocytes, AtZYP1 localizes on chromatin 

as numerous foci at leptotene. At zygotene, numerous axis-associated AtZYP1 foci 

and short stretches are observed. By pachytene, AtZYP1 polymerizes to form the 

linear central region of the SC which produces a continuous signal along the entire 

length of homologous chromosomes and signals the completion of their synapsis 

(Figure16J). In contrast, immunolocalization studies of AtZYP1 localization in Atasy3-

1 revealed that the SC TF component fails to localize normally in the mutant. 

Although early localization of AtZYP1 appeared normal, rather than polymerizing to 

form a continuous linear signal between the homologues as in wild-type, the protein 

formed discrete foci and short stretches which failed to polymerize into a 

continuously linear signal in Atasy3-1 (Figure 16K). Further analysis revealed that the 

AtZYP1 foci and short stretches in the mutant were often abnormally thick and 

distorted in appearance. Therefore, the analysis reveals that lack of AtZYP1 

polymerization in Atasy3-1 forms the basis of the synaptic defects observed in the 

mutant. 
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Figure 16. Immunolocalization of axis and SC proteins in Atasy3-1. 
During WT leptotene both (A) AtSMC3 (green) and (C) AtSYN1 (red) localise as a continuous 
signal along meiotic chromosome axes. Similar loading patterns were observed for the two 
proteins (B, D respectively) in Atasy3-1.  (E) AtASY3 fails to localize in Atsyn1 mutant. (F) In 
WT, AtASY1 polymerizes along the entire length of meiotic chromosome axes in leptotene. (G) 
In contrast, AtASY1 fails to polymerize in Atasy3-1, instead the protein forms numerous discrete 
foci (~74, n=5) along the lengths of chromosomes. (H) The aberrant AtASY1 foci persist in 
Atasy3-1/Atspo11-1-4. (I) AtASY3 can localize normally in Atasy1 mutant. (J) During WT 
pachytene, AtZYP1 polymerizes into a continuous signal, which co-localizes with AtMLH1. (K) 
In Atasy3-1, AtZYP1 fails to polymerize and forms discrete foci and/or short stretches, some of 
which co-localize with the remaining AtMLH1 foci (white arrows). Bar 10µm. 
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5.7. Chiasma frequency is significantly reduced in Atasy3 mutants 

Cytological analysis of diakinesis and metaphase I from Atasy3 mutant lines revealed 

that a portion of the homologous chromosomes failed to form chiasmata in the 

mutants. To quantify the reduction in COs 50 Atasy3-1 metaphase I nuclei were 

analysed by FISH using 5S and 45S rDNA probes. This revealed that the number of 

chiasmata varied between 0-6 per nuclei with each meiocyte possessing a mean 

chiasma frequency of 3.34 (Figure 17B). Furthermore, FISH analysis of Atasy3-2 and 

Atasy3-3 metaphase I nuclei revealed that they possessed a mean chiasma 

frequency of 3.17 (n=50) and 3.32 (n=50) respectively, which are not statistically 

different from that of Atasy3-1 (p >> 0.05 for both, ANOVA). These observations are 

in stark contrast with wild-type (Col-0) in which each meiocyte contain 8-12 

chiasmata with an overall mean chiasma frequency of 9.76 (n=50) (Figure 17A). 

These results, therefore, suggest a ~65% reduction in chiasma frequency in Atasy3 

mutants compared to the wild-type. Analysis of the distribution of the residual 

chiasmata in Atasy3 mutants revealed that 74.80% of the chiasmata were located at 

the distal regions of chromosomes. The distal localization of Atasy3 chiasmata is 

similar to that observed in wild-type, in which 73.80% of the chiasmata are found in 

the distal regions of chromosomes (n=50).  

 

To investigate whether the residual COs in Atasy3-1 are DSB-dependent DAPI-

stained chromosome spreads from an Atasy3-1/Atspo11-1-4 double mutant were 

analysed using fluorescence microscopy. The analysis revealed that the double 

mutant failed to from any chiasmata and contained only univalents at metaphase I 
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(Figure 17H) in contrast to wild-type which has 5 bivalents containing 8-10 chiasmata 

per metaphase I nucleus. This observation confirms that the residual chiasmata 

formed in Atasy3-1 are dependent on AtSPO11-mediated formation of DSBs. 

 

Additionally, an Atasy3-1/Atmsh4 double mutant was constructed to analyse whether 

the loss of AtASY3 is responsible for a reduction in MSH4-dependent or MSH4-

independent COs. Chiasma frequency of Atasy3-1/Atmsh4 double mutant was then 

analysed using FISH to determine whether loss of AtASY3 resulted in any further 

reduction in chiasmata over that observed in Atmsh4. Out of the 30 Atasy3-1/Atmsh4 

metaphase I nuclei analysed none were found to have any COs (Figure 17D). In 

contrast, FISH analysis of 30 metaphase I nuclei from Atmsh4 grown in parallel 

revealed that the mutant exhibited a mean chiasma frequency of 1.10 (Figure 17C). 

Therefore, the loss of AtASY3 results in a further reduction of COs over the MSH4-

dependent COs that are lost in Atmsh4. This observation suggests that AtASY3 is 

required for the formation of both MSH4-dependent and MSH4-independent COs. 
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Figure 17. Cytological and FISH analysis of WT, Atasy3-1 and various other mutants. 
Analyses of metaphase I nuclei revealed that (A) WT exhibits a mean chiasma frequency of 
9.76 (n=50). (B) In contrast, the mean chiasma frequency in Atasy3-1 was significantly reduced 
to 3.34. (C) Atmsh4 displays a mean chiasma frequency of 1.10 (n=50). (D) Whereas, Atasy3-
1/Atmsh4 failed to form any COs (n=30). (E) Atasy3-1/Atasy1 exhibits a mean chiasma 
frequency of 1.78, which is statistically similar to that of (F) Atasy1 but significantly reduced from 
that of (B) Atasy3-1. (G) Atasy3-1/Atsyn1 and (I) Atasy3-1/Atrad51 exhibit extensive 
chromosome fragmentation. (H) Atasy3/Atspo11-1-4 and (J) Atasy3-1/Atdmc1 failed to form 
chiasmata. Bar 10μm. 
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5.8. Analysis of recombination proteins in Atasy3-1 mutant 

To analyse the basis of the reduction of COs in Atasy3-1 the localization of various 

recombination proteins were analysed by fluorescence immunolocalization using 

their corresponding antibodies. 

 

5.8.1. DSB formation is reduced in Atasy3-1 

The meiosis-specific histone variant H2AX is phosphorylated to generate γH2AX 

soon after DSB formation (Rogakou et al., 1998). In wild-type meiocytes, γH2AX 

forms numerous foci on chromatin encompassing DSBs in early prophase I. 

Therefore, γH2AX foci may be used as an indicator for meiotic DSBs. Hence to 

investigate whether the loss of AtASY3 affects DSB formation the distribution of 

γH2AX in Atasy3-1 was compared to that in wild-type, assuming that H2AX was 

phosphorylated at all DSBs and the turn-over rate of DSBs were identical in both 

wild-type and Atasy3-1. Immunostaining analysis of γH2AX on DAPI-stained 

chromosome spreads from Atasy3-1 revealed that the mean number of γH2AX foci 

per leptotene nuclei was 115 (n=5) (Figure 18B). This number was in stark contrast 

to the wild-type, which possessed on average 162 (n=5) γH2AX foci per nuclei 

(Figure 18A). This observation suggests that DSB formation is significantly reduced 

in Atasy3-1 (P<0.01).  
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5.8.2. Number of foci of strand exchange proteins is reduced in Atasy3-1 

Immunolocalization studies in wild-type meiocytes revealed that both strand 

exchange proteins AtRAD51 and AtDMC1 localize to meiotic chromosomes as 

numerous foci in early leptotene. Similarly, in Atasy3-1 meiocytes, the two proteins 

localize as numerous foci in early prophase I although their numbers are significantly 

reduced. Immunostaining analysis revealed that the number of AtRAD51 foci was 

reduced from 142 in the wild-type (n=5) (Figure 18C) to 96 in Atasy3-1 (n=5) 

(P<0.05) (Figure 18D). In addition, the number of AtDMC1 foci was reduced from 146 

in the wild-type (n=5) (Figure 18E) to 110 in Atasy3-1 (n=5) (P<0.05) (Figure 18F). 

These observations are consistent with the reduction in the number of γH2AX in 

Atasy3-1. 

 

To further investigate the relationship between AtASY3 and the two strand exchange 

proteins an Atasy3-1/Atrad51 and an Atasy3-1/Atdmc1 double mutant was generated 

by genetic crossing. Cytological analysis of the Atasy3-1/Atrad51 meiotic 

chromosome spreads revealed that the double mutant fails to form any chiasmata 

and exhibits extensive chromosome fragmentation at metaphase I (Figure 17I). This 

phenotype is similar to that reported for the Atrad51 single mutant and suggests that 

the double mutant fails to repair DSBs (Li, 2004). In contrast, cytological analysis of 

chromosome spreads from Atasy3-1/Atdmc1 meiocytes revealed that although the 

double mutant did not exhibit any chromosome fragmentation, it only contained 

univalents at metaphase I (Figure 17J). This suggests that although DSBs are 

repaired the double mutant failed to form any COs, a phenotype reminiscent of the 
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Atdmc1 single mutant. Interestingly, the suppression of the meiotic defects of Atasy3-

1 in both Atasy3-1/Atrad51 and Atasy3-1/Atdmc1 double mutants suggest that 

AtASY3 plays a role in meiotic recombination downstream of the two strand 

exchange proteins.  

 

5.8.3. Localization of AtMSH4 and AtMLH1 is reduced in Atasy3-1 

The Arabidopsis MutS homologue AtMSH4 is required for the formation of normal 

levels of interference sensitive COs. Previously, AtMSH4 has been reported to 

localize on meiotic chromosome as numerous foci during leptotene. The number of 

AtMSH4 foci gradually decreases as prophase I progresses such that at pachytene 

only 9-10 foci are present on synapsed homologous chromosomes in each meiocyte. 

These remaining AtMSH4 foci were found to co-localize with AtZYP1 during wild-type 

pachytene (Higgins et al., 2008b). Immunostaining analysis of AtMSH4 localization in 

wild-type meiocytes revealed that a mean of 145 (n=5) foci were initially present per 

nucleus during leptotene (Figure 18G). As reported previously, the number of 

AtMSH4 foci per nucleus gradually decreased to 9-10, which were found to co-

localize with AtZYP1 during pachytene. Immunolocalization studies on Atasy3-1 

chromosome spreads revealed a notable difference in the number of AtMSH4 foci 

during their initial localization in the mutant compared to that in the wild-type. 

Although numerous AtMSH4 foci were able to localize to chromosomes during 

leptotene their number was considerably reduced to a mean of 112 (n=5) per 

meiocyte in the Atasy3-1 mutant (Figure 18H). As prophase I progressed the number 

of AtMSH4 foci in the mutant decreased gradually, similarly to wild-type. However, at 
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pachytene, instead of the 9-10 foci found in each wild-type nucleus only 0-4 AtMSH4 

foci were observed that co-localized with the distorted AtZYP1 foci and stretches in 

each Atasy3-1 meiocyte.  

 

In addition, the localization of the MutL homologue, AtMLH1, thought to mark the 

sites of COs was also analysed in the Atasy3-1 mutant and compared to that in the 

wild-type. It has been previously reported that approximately 8-12 AtMLH1 foci co-

localize with AtZYP1 in each wild-type pachytene nucleus (Jackson et al., 2006). In 

agreement, immunolocalization studies of wild-type chromosome spreads revealed 

that the mean number of AtMLH1 foci per pachytene nucleus was 10.20 (n=5) 

(Figure 18I). In contrast, similar analysis of Atasy3-1 pachytene nuclei revealed that 

the mean number of AtMLH1 foci was significantly reduced to 3.1 per nucleus 

(P<0.01 n=5) (Figure 18J). This number is consistent with the observed chiasma 

frequency of 3.34 in Atasy3-1. Furthermore, the residual AtMLH1 foci in Atasy3-1 

were found to co-localize with the aberrant AtZYP1 foci and short stretches observed 

in the mutant. Hence, it is likely that these AtMLH1 foci mark the sites for subsequent 

COs that are formed in Atasy3-1 mutant. Interestingly, the reduction in AtMLH1 

numbers revealed an important observation regarding the loss of recombination in 

the mutant. Earlier studies of recombination proteins in Atasy3-1 revealed a 

coordinated reduction in the number of γH2AX, AtRAD51, AtDMC1 and early 

AtMSH4 foci, reflecting a reduction of DSBs to ~70% of wild-type level in the mutant. 

However, the mean number of AtMLH1 foci and chiasmata in Atasy3-1 were found to 

be 3.1 and 3.34 respectively, indicating an overall CO formation of only ~35% of wild-
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type levels in the mutant. This suggests that there is an additional defect or defects 

during meiotic recombination in addition to the reduction in DSB formation in Atasy3-

1. 
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Figure 18. Immunolocalization of various recombination proteins in WT and Atasy3-1. 
Analysis revealed ~30% reduction in the number of γH2AX, AtRAD51 and AtDMC1 in Atasy3-1 
(B, D, F respectively) compared to WT (A, C, E respectively). These figures indicate a ~30% 
reduction in the number of DSBs in Atasy3-1. (G) In WT, the mean number of initial AtMSH4 
foci was 145. (H) This was reduced to 112 in Atasy3-1. (I) The mean number of MLH1 foci in 
WT was 10.20. (J) in contrast, this was reduced to 3.10 in Atasy3-1. N=5 for all studies. Bar = 
10µm.
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5.9. The residual AtASY1 foci stabilizes AtDMC1 in Atasy3-1 

A previous study reported that stabilization of the strand exchange protein, AtDMC1 

on meiotic chromosome axes requires the axis-associated protein, AtASY1 

(Sanchez-Moran et al., 2007). The authors compared the localization of AtDMC1 in 

both Atasy1 and wild-type using BrdU pulse labelling of PMCs coupled with 

immunolocalization. This revealed that in wild-type meiocytes, numerous AtDMC1 

foci localized to meiotic chromosomes ~12h post pulse labelling at S-phase and a 

substantial portion of them persisted till ~30h post labelling. In contrast, although 

initial AtDMC1 loading in Atasy1 was indistinguishable from that in wild-type, its 

number was considerably reduced by 24h post pulse-labelling. Furthermore, at 30h 

post pulse-labelling only a small proportion of the Atasy1 meiocytes analysed 

contained only few AtDMC1 foci while all wild-type meioctyes were found to possess 

substantially higher number of AtDMC1 foci. These observations suggest that 

AtDMC1 is destabilized in the absence of AtASY1 (Sanchez-Moran et al., 2007). In 

Atasy3, normal localization and levels of AtASY1 was not observed. Hence the 

localization of AtDMC1 was analysed in the mutant for comparison with those in 

Atasy1 and wild-type to verify whether Atasy3 exhibits a similar scenario to Atasy1 

with regards to AtDMC1 loading. PMCs from the two mutants and the wild-type were 

subjected to BrdU pulse-labelling at S-phase followed by immunolocalization using 

anti-DMC1 and anti-BrdU antibodies and subsequently visualized using fluorescence 

microscopy. This revealed that in wild-type, Atasy1 and Atasy3-1 the maximum 

number of AtDMC1 foci accumulated on meiotic chromosomes ~12h post pulse-

labelling at S-phase (Figure 19A). However, at 24h post BrdU pulse labelling 

AtDMC1 foci was entirely absent in Atasy1 meiocytes (Figure 19A). In stark contrast, 
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there was no reduction in the number of AtDMC1 foci in Atasy3-1 similarly to the wild-

type (Figure 19A). Furthermore, at 30h post pulse-labelling a substantial number of 

AtDMC1 foci persisted on Atasy3-1 and wild-type meiotic chromosomes while none 

was observed in Atasy1 meiocytes (Figure 19A). These observations suggest that 

the rapid loss of AtDMC1 observed in Atasy1 does not occur in Atasy3-1. The rapid 

loss of AtDMC1 in Atasy1 represent a swift turnover of the protein presumably due to 

the loss of some AtASY1-mediated normal barrier to progression which allows 

recombination to proceed but causes some DSBs to be repaired via inter-sister 

interactions rather than inter-homologue recombination. Interestingly, the observation 

that the initial rate of AtDMC1 loading is normal and most of its foci persist 

throughout early prophase I in Atasy3-1 suggest that the slight reduction in AtDMC1, 

observed earlier during immunolocalization studies in the mutant, may be due to a 

loss in overall DSBs rather than a swift turnover of the protein. This, therefore, 

suggests that although slightly reduced in number the remaining AtDMC1 foci are 

stabilized in Atasy3-1, most likely by the residual AtASY1 domains in the mutant.  
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Figure 19. Time-course analysis of AtDMC1 localization in WT, Atasy1 and Atasy3 and of 
meiotic progression in Atasy3-1. 
(A) Time-course analysis of AtDMC1 localization in WT, Atasy1 and Atasy3. AtDMC1 foci 
in Atasy3-1 persist in high numbers at least up to 24h post BrdU pulse labeling at S phase 
before gradually decreasing in abundance by 30h. This observation was similar to that in WT 
but in stark contrast to that of Atasy1, where AtDMC1 foci are destabilized soon after loading by 
~18h. (B) Time-course analysis of meiotic progression in Atasy3-1. In WT, leptotene was 
labeled with BrdU 24h post pulse labeling, pachytene by 24h and tetrad by 34h post labeling. 
Similar observations were made for Atasy3-1. Bar 10µm. 
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5.10. AtASY1 is epistatic to AtASY3 with regard to CO formation 

To study the relationship between AtASY3 and AtASY1 further an Atasy3-1/Atasy1 

double mutant was constructed and its chiasma frequency compared to those of 

Atasy3-1 and Atasy1 single mutants. FISH analysis using 5S and 45S rDNA probes 

on DAPI-stained metaphase I chromosome spread preparations from the double 

mutant revealed that it possessed a mean chiasma frequency of 1.78 (n=50) (Figure 

17E). This was a significant reduction from the mean chiasma frequency of 3.34 

(n=50) observed in the Atasy3-1 single mutant (P<10-7, ANOVA) (Figure 17B). 

However, the mean chiasma frequency observed in the double mutant was not 

significantly different from that in Atasy1 single mutant, which possessed an overall 

mean chiasma frequency of 1.88  (n=50; P=0.68, ANOVA) (Figure 17F). These 

observations suggest that AtASY1 is epistatic to AtASY3 with regard to CO 

formation. Interestingly, the findings also suggest that the higher CO frequency in 

Atasy3-1 compared to Atasy3-1/Atasy1 double mutant may be due to the residual 

AtASY1 foci that remain in the single mutant.  

 

 

5.11. Loss of AtASY3 does not affect progression of meiosis 

In Arabidopsis, the normal duration of meiosis is ~34h in the wild-type (Col-0) 

(Armstrong et al., 2003, Sanchez-Moran et al., 2007). Previous studies of 

Arabidopsis meiotic mutants reported delays in meiosis due to defects in 

recombination (Higgins, 2004, Higgins et al., 2005, Jackson et al., 2006). To 
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investigate whether the loss of COs in Atasy3-1 results in a delay during its meiosis, 

PMCs from the mutant were analysed along with those from the wild-type using BrdU 

pulse-labelling at S-phase followed by detection using anti-BrdU antibody and DAPI 

staining. This revealed that in wild-type, most pachytene chromosomes were found to 

be stained with BrdU at 24h post labelling suggesting that homologue synapsis was 

complete at this time period, consistent with previous reports (Armstrong et al., 2003, 

Higgins, 2004) (Figure 19B). Similar observations were made in the PMCs from 

Atasy3-1 indicating that prophase I progressed normally in the mutant (Figure 19B). 

Additionally, wild-type tetrads were found to be BrdU-stained at 34h post labelling 

suggesting that meiosis was complete at this time period. This observation too was 

consistent with previous reports (Figure 19B) (Armstrong et al., 2003, Higgins, 2004). 

Similarly to the wild-type, tetrads were also observed to be stained with BrdU at 34h 

post pulse labelling in the Atasy3-1 mutant (Figure 19B). This suggests that loss of 

AtASY3 does not cause any delay in meiotic progression in Atasy3-1. This finding is 

not surprising as there is no evidence of chromosome fragmentation and hence, no 

apparent defect in the underlying DSB-repair process in the mutant. Furthermore, 

although there is a coordinated reduction in the number of various recombination 

proteins due to the loss of DSBs and/or synapsis, they were still found to localize 

presumably to recombination intermediates during early prophase I in Atasy3-1. 

Therefore, it is conceivable that, regardless of the consequences of the loss of 

AtASY3, the recombination machinery repairs DSBs which fail to undergo inter-

homologue recombination, possibly via inter-sister interactions, thereby ensuring the 

timely processing of DSBs across recombination checkpoints in Atasy3-1. 

 



180 

 

5.12. Discussion 

 

5.12.1. Loss of AtASY3 results in asynapsis and other meiotic defects 

Cytological analysis of the T-DNA insertion line Atasy3-1 revealed that normal 

pachytene nuclei were not observed in the mutant line. Unlike in wild-type where 

homologous chromosomes were fully synapsed in pachytene they failed to synapse 

in Atasy3-1. This asynaptic phenotype of Atasy3-1 was confirmed by 

immunolocalization studies of SC TF component AtZYP1. Instead of polymerizing to 

continuous linear signal as found in the wild-type AtZYP1 formed abnormal discrete 

foci or on occasion short stretches. These failed to polymerize into a continuous 

linear signal confirming that normal SC formation was disrupted in Atasy3-1. The 

disruption of the SC in Atasy3-1 is further supported by EM studies of silver-stained 

chromosome spread preparations of meiocytes from the mutant, performed by our 

collaborators (M.P. and N.C.). Their analysis revealed that in contrast to the fully 

synapsed homologous chromosomes found in the wild-type Atasy3-1 nuclei were 

diffuse and chromosome axes could not be clearly detected using similar spreading 

conditions. A subsequent modification in their technique then allowed the 

visualization of Atasy3-1 nuclei where more extensive regions of the axis were 

visible. This revealed extensive disarrangement of chromosome axes in the mutant. 

Although in some cases there was some detectable alignment of axes the spacing 

between them appeared variable (M.P. and N.C., personal communication). 

Interestingly, the EM study of Atasy3-1 meiocytes suggests that despite the 

asynapsis chromosome axes are still formed in the mutant. However, the observation 
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that the mutant nuclei appear diffuse indicates that there is likely an underlying 

structural defect in the axes that causes chromosome fragmentation during the 

spread preparations. Alternatively, it is also possible that axis formation remains 

incomplete in Atasy3-1. Nonetheless, the observation suggests that there may be 

abnormalities in the meiotic chromosome axes in Atasy3-1. 

 

In addition to asynapsis, cytological analysis revealed that Atasy3-1 fails to form 

normal levels of chiasmata between homologous chromosomes. Additionally, the 

mutant also contains univalents at metaphase I. These lead to mis-segregation at 

both meiotic divisions and results in the formation of aneuploid gametes. Similar 

phenotypes were also observed in meiocytes from the two other T-DNA insertion 

lines, Atasy3-2 and Atasy3-3. Furthermore, the fact that these meiotic phenotypes 

were due to a mutation in AtASY3 was confirmed by an allelism test as well as a 

complementation test. Taken together, these findings confirm that loss of AtASY3 

does indeed lead to defects during Arabidopsis meiosis.  

 

5.12.2. ASY3 is a meiotic chromosome axis protein in Arabidopsis and 

Brassica 

AtASY3 localization was studied by immunolocalization using the anti-ASY3 

antibody, which has been produced and found to detect the C-terminal of the protein 

in western analysis. Preliminary immunolocalization studies using the antibody 

revealed that it was capable of detecting the AtASY3 signal in wild-type meiocytes. 

Furthermore, no signal was detected in similar studies of meiotic chromosome 
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spreads from Atasy3 mutants. In addition to confirming the RT-PCR analysis which 

indicated that the Atasy3 mutants lack AtASY3 transcript the above findings also 

highlight the successful production of an antibody capable of specifically detecting 

AtASY3 in Arabidopsis. Subsequent immunolocalization studies of wild-type 

meiocytes using the anti-ASY3 antibody revealed that initially at G2 the AtASY3 in 

predominantly nucleolar. This mirrors the initial localization pattern of certain meiotic 

proteins, such as AtDMC1 and AtRAD51, which has also been observed to localize 

to the nucleolus during G2 (Klimyuk and Jones, 1997, Li, 2004). The significance of 

the nucleolar localization of meiotic proteins is not known but it is plausible that the 

nucleolus may serve as a storage area for the proteins prior to their actual 

localization during meiosis (Carmo-Fonseca et al., 2000). At early leptotene AtASY3 

was found to localize as numerous axis-associated foci which progressively 

polymerize to short stretches as prophase I progressed. At this stage all the AtASY3 

signals were found co-localized with the linear AtASY1 signal, which marks the 

meiotic chromosome axes. Furthermore, by pachytene when AtZYP1 is visible as a 

continuous signal indicating a fully formed SC, AtASY3 formed a continuous signal 

that partially co-localizes with AtZYP1. These observations clearly indicate that 

AtASY3 is meiotic chromosome axis protein. Furthermore, this is consistent with the 

finding that loss of AtASY3 results in asynapsis in Atasy3. 

 

Previously, homology analysis revealed that AtASY3 is conserved in B. oleracea at 

primary sequence level. This prompted the analysis of localization patterns between 

the homologues during meiosis. Immunolocalization studies on B. oleracea prophase 
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I meiocytes using anti-ASY3 revealed that BoASY3 localization during early 

prophase I was indistinguishable from that of AtASY3. This indicates that like 

AtASY3, BoASY3 also localizes to meiotic chromosome axes and the two share stark 

resemblanses in localization patterns during meiosis. Therefore it is highly likely that 

in addition to being similar in sequence level the two proteins are also functional 

homologues of each other.  

 

5.12.3. Normal AtASY1 localization is dependent on AtASY3 

Previous immunolocalization studies revealed that during wild-type meiosis the axis 

protein AtASY1 localizes as numerous foci at late G2 and progressively polymerizes 

into a continuous axis-associated linear signal by late leptotene (Armstrong et al., 

2002). This pattern of AtASY1 localization was also observed during the analysis of 

wild-type meiocytes in this study. In contrast, although AtASY1 was found to initially 

localize as numerous axis-associated foci at early prophase I it failed to form a linear 

continuous signal as prophase I progressed in Atasy3-1. Instead, AtASY1 was found 

to form several discrete foci in the mutant, indicating a clear deviation from its normal 

loading pattern in the wild-type. More recently, a detailed analysis of the linear 

AtASY1 signal observed in wild-type meiocytes during early prophase I was carried 

out using deconvolution software in our lab. The findings suggest that AtASY1 is 

distributed along the axes as a series of hyper-abundant domains separated by 

stretches of lower abundance. These AtASY1 domains appeared evenly spaced and 

their numbers were found to be quite consistent (mean number per nucleus = 160, 

n=10) (J.H., F.C.H.F., personal communication). The domain-like organization of 
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AtASY1 is supported by EM studies of the protein in the plant Crepis capillaris. 

Immunogold labelling of AtASY1 on C. capillaris revealed that the gold particles 

formed discrete axis-associated clusters rather than a continuous linear signal (S. A., 

F.C.H.F., personal communication). Furthermore, this pattern of AtASY1 localization 

in highly reminiscent to that of its homologue in budding yeast, HOP1 which has 

been proposed to form domains of alternating hyper-abundance and lower 

abundance at early prophase I (Borner et al., 2008, Joshi et al., 2009). Although 

these latest observations suggest an underlying domain-like organization of AtASY1 

in the wild-type itself, the localization pattern of the protein was still found to be 

aberrant in Atasy3-1 compared to the wild-type. The most notable difference was that 

the mean number of AtASY1 foci in the mutant (74 per nucleus) was far fewer than 

the AtASY1 domains in the wild-type (160 per nucleus). Furthermore, the number of 

AtASY1 foci in Atasy3-1 varied considerably from 42 to 132 in the meiocytes 

analysed, whereas, the AtASY1 domains in the wild-type were consistent in their 

numbers. Therefore, it is clear that loss of AtASY3 results in abnormal localization of 

AtASY1 during meiosis.   

 

A previous study reported that in budding yeast the AtASY1 homologue HOP1 fails to 

localize to meiotic chromosome axes in the absence of the axis protein RED1 (Smith 

and Roeder, 1997). However, recent analysis of HOP1 revealed that although 

localization of normal levels of the protein requires RED1, some HOP1 is able to load 

onto DSBs sites independently of RED1 (Woltering et al., 2000). This relationship is 

similar to that observed between AtASY1 and AtASY3. Furthermore, while normal 
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AtASY1 localization was dependent on AtASY3, this relationship was not found to be 

reciprocal. This scenario too was also similar to budding yeast, where Hop1 

localization requires RED1 but not vice versa. These observations indicate that 

AtASY1 and AtASY3 share similarities to yeast axis proteins Hop1 and Red1 in terms 

of their loading patterns during meiosis.  

 

5.12.4. AtASY1 localization in Atasy3-1 is DSB-independent  

Recent analyses using deconvolution software suggests that AtASY1 localizes as 

hyper-abundant domains along the axes during early prophase I. These domains 

were found to correlate both spatially and numerically with γH2AX and AtDMC1 

suggesting that they encompass DSB sites (J.H. and F.C.H.F., personal 

communication). This is in accord with a previous report proposing that AtASY1 

promotes inter-homologue recombination during meiosis (Sanchez-Moran et al., 

2007). However, AtASY1 is able to localize normally in Atspo11-1-4 mutant indicating 

that its localization during prophase I is DSB-independent (Sanchez-Moran et al., 

2007). This suggests that AtASY1 localization and recruitment of recombination 

machinery to the axes may not be inter-dependent events. Interestingly, the residual 

axis-associated AtASY1 foci observed in Atasy3-1 mutant were also found in the 

Atasy3-1/Atspo11-1-4 double mutant, which lack DSB formation. This suggests that, 

similarly to Atspo11-1-4, the formation of the AtASY1 foci in Atasy3-1 is DSB-

independent. However, it is unclear whether the AtASY1 domains in Atasy3-1 and 

Atspo11-1-4 are identical to those of the wild-type. If so, it would suggest that in wild-

type AtASY1 is recruited to predetermined sites which encompass DSB hotspot, 
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possibly to promote inter-homologue recombination by establishing a bias favouring 

it. Alternatively, it is also possible that AtASY1 recruitment is influenced by DSB 

formation or the pre-DNA break recombination complex. Nevertheless, this would 

support the current accepted proposal in budding yeast that inter-homologue bias is 

established prior the break formation and that the bias is enforced afterwards during 

the transition of the nascent DSB to a joint molecule recombination intermediate 

(Schwacha and Kleckner, 1997). Hence, a more detailed analysis of the AtASY1 foci 

in Atasy3-1 is required to clarify this avenue. 

 

5.12.5. DSBs appear reduced in Atasy3-1 

In Arabidopsis, the level of DSBs may be estimated by quantifying the number of the 

DSB marker, γH2AX and/or the strand exchange proteins, AtRAD51 and AtDMC1 

present in meiocytes during early prophase I (Sanchez-Moran et al., 2007). In wild-

type prophase I meiocytes, the mean number of γH2AX, AtRAD51 and AtDMC1 foci 

per nucleus were found to be 162, 142 and 146 respectively. In contrast, their 

numbers dropped to 115, 96 and 110 per meiocyte respectively in the Atasy3-1 

mutant. These figures indicate ~30% reduction in the number of γH2AX, AtRAD51 

and AtDMC1, and therefore, in the number of DSBs in Atasy3-1. However, since this 

method of DSB quantification is indirect it is arguable that not all the DSBs are 

detected in the mutant. Furthermore, due to the dynamic nature of meiotic 

recombination it is possible that all γH2AX foci were not detected in Atasy3-1. 

Additionally, the statistical analysis which supported the variation in γH2AX numbers 

between wild-type and Atasy3-1 was based on observations from a small number of 
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cells (n=5), which may not provide a concrete evidence towards a decrease in 

γH2AX numbers in the mutant. Nevertheless, as both the DSB marker and the strand 

exchange proteins show similar reduction in their numbers in Atasy3-1 it can be 

surmised that their numbers reflect a true reduction in DSBs in the mutant.  

 

An important aspect of meiotic recombination is its close coupling with the 

chromosome axes development. Hence the recombination machinery is found to be 

associated with the chromosome axes (Blat et al., 2002, Carpenter, 1975, Kleckner, 

2006). However, there remains some obscurity to the issue of whether the 

recruitment of the recombination machinery precedes DSB formation or vice versa. 

Recent studies in budding yeast suggest that the DSB machinery becomes tethered 

to the chromosome axes prior to break formation (Panizza et al., 2011). This process 

has been found to require the axis proteins RED1 and HOP1 as mutants lacking 

either protein exhibit defects in DSB formation (Kim et al., 2010). Loss of normal 

levels of DSBs in AtASY3-deficient plants suggests that the protein may play a 

similar role during Arabidopsis meiosis. Therefore, it is plausible that AtASY3 may be 

involved in organizing the chromosome axes such that it favours formation of normal 

levels of meiotic DSBs. This is supported by the observation that Atasy3-1 mutant 

exhibits defects in axis formation during meiosis. However, it is also possible that loss 

of AtASY3 results in a change in chromatin conformation that causes a subsequent 

reduction in DSB formation. Interestingly, the correlated reduction in the numbers of 

γH2AX and the recombination proteins in Atasy3-1 suggest that DSB formation 

occurs in context of the axis, lending support to the findings in budding yeast. 
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Whereas, if the recombination machinery was recruited to the axes following DSB 

formation then defects in the axes would not lead to a reduction in γH2AX, which is 

not the case in Atasy3-1.  

 

Interestingly, in a recent analysis the number of γH2AX foci in Atasy1 early prophase 

I meiocyte was found to be 129.5 (n=10), compared to 160.8 (n=5) in the wild-type 

(P=0.12). This suggests that albeit a small reduction there is no significant reduction 

in γH2AX, and hence, DSB formation in Atasy1 mutant (J.H. and F.C.H.F., personal 

communication). Therefore, while lack of AtASY3 leads to significant reduction in the 

number of meiotic DSBs, loss of AtASY1 does not have much effect on DSB 

formation. This observation is consistent with a previous study of AtASY1 (Sanchez-

Moran et al., 2007). It is possible that the variation in DSB levels between Atasy1 and 

Atasy3-1 mutants may be due to the differences in the state of their meiotic axes. 

While axis formation was disrupted in Atasy3-1, the Atasy1 mutant possess a clearly 

defined axes, although with some minor discontinuities (Pradillo et al., 2007). This 

therefore further highlights the importance the meiotic axes may play in ensuring the 

formation of normal levels of DSBs. However, it is worth noting that although loss of 

AtASY1 does not lead to a significant loss of DSBs in Arabidopsis, disruption of its 

homologues, HOP1 and HORMAD, result in severe losses of DSBs in budding yeast 

and mouse respectively (Daniel et al., 2011, Schwacha and Kleckner, 1994). The 

basis of this difference is currently unknown but may represent an underlying 

difference in the control of DSB formation between the organisms. 
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5.12.6. AtASY3 is required for normal levels of CO formation 

Investigation of three Atasy3 T-DNA insertion lines revealed that chiasma frequency 

was reduced to ~34% of the wild-type level in all the lines analysed. Furthermore, 

analysis of Atasy3-1/Atmsh4 revealed that the double mutant failed to form any COs, 

indicating that loss of AtASY3 results in a loss of both interference-sensitive MSH4-

dependent and interference-insensitive MSH4-independent COs. This finding 

suggests that AtASY3 plays an important role early in the meiotic recombination 

pathway. Interestingly, reduction in chiasma frequency is also a phenotype of 

budding yeast and rice axis proteins, RED1 and OsPAIR3 respectively (Rockmill and 

Roeder, 1990, Schwacha and Kleckner, 1997, Yuan et al., 2009). In budding yeast 

RED1 is proposed to impose a bias such that meiotic DSBs are repaired using the 

homologue rather than the sister as a template. It is suggested that RED1 achieves 

this function by constraining the loading of the sister chromatid cohesion mediator, 

REC8 at DSB sites. Loss of the protein is thought to alleviate the constraint on REC8 

loading thus shifting the bias towards inter-sister repair for meiotic DSBs (Kim et al., 

2010). It is conceivable that loss of AtASY3 results in a similar scenario during 

Arabidopsis meiosis. Intriguingly, the reduction in COs in Atasy3-1 was found to be 

proportionally greater than that expected from the loss of DSBs in the mutant. 

Assuming that the ratio of COs to NCOs was maintained in the Atasy3-1, a ~30% 

reduction in DSBs should result in decrease of the mean chiasma frequency to 6-7 in 

the mutant. Instead, the mean chiasma frequency was found to be 3.34 indicating an 

additional loss of meiotic COs in Atasy3-1. Furthermore, there was no evidence of 

chromosome fragmentation suggesting that there was no overall DSB repair defect in 

the mutant. These observations indicate that there is a loss of inter-homologue bias 
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and that a higher proportion of meiotic DSBs were repaired using the sister chromatid 

as a template in Atasy3-1. This, therefore, suggests that AtASY3 may play a similar 

role to RED1 during meiotic CO formation in Arabidopsis. Alternatively, it is also 

possible that loss of AtASY3 may cause all or some recombination intermediates to 

be processed in such a way that result in the formation of NCOs rather than COs. 

Hence, further research is necessary to distinguish between the two possibilities. 

 

Analysis of the distribution of the residual chiasmata in Atasy3-1 revealed that ~75% 

of the chiasmata were located at the distal/sub-telomeric regions of homologous 

chromosomes. This observation is consistent with a previous report which suggest 

that prior to meiosis in Arabidopsis telomeres cluster while remaining associated with 

the nucleolus thereby bringing telomeres of homologous chromosomes into close 

proximity which may aide in subsequent pairing and genetic exchange between them 

(Armstrong et al., 2001). Similarly, a previous study also reported that virtually all the 

residual chiasmata in the Atasy1 mutant were found to be in distal regions of 

homologous chromosomes, highlighting the importance of telomere clustering prior to 

meiosis in Arabidopsis (Ross et al., 1997). 

 

5.12.7. Residual AtASY1 mediate AtDMC1-dependent inter-homologue 

recombination in Atasy3-1 

Previous studies suggest that loss of AtASY1 leads to the destabilization of AtDMC1 

during early prophase I resulting in the loss of inter-homologue recombination in 

Atasy1 mutant (Sanchez-Moran et al., 2007). Analysis of Atasy3-1 revealed that 
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AtASY1 fails to localize normally and its number is significantly reduced in the mutant 

compared to the wild-type. To investigate whether this leads to a similar scenario to 

that in Atasy1 AtDMC1 localization during prophase I was compared between the two 

mutants and the wild-type. The study revealed that although there was a loss of 

AtDMC1 foci soon after their initial loading in Atasy1 this was not the case in Atasy3-

1, in which AtDMC1 persisted throughout early prophase I similarly to that in the wild-

type. Interestingly, although the number of AtASY1 was reduced in Atasy3-1 they 

were still found to localize as discrete foci to meiotic chromosome axes in the mutant. 

This suggests that the remaining AtASY1 is sufficient to stabilize AtDMC1 in the 

mutant. Consistent with this, analysis using deconvolution software suggests that 

virtually all the AtASY1 foci in Atasy3-1 were found to co-localize with AtDMC1 and 

γH2AX (J.H., F.C.H.F., personal communication).  

 

To further analyse the impact of the remaining AtASY1 in Atasy3-1 the chiasma 

frequency was analysed in an Atasy3-1/Atasy1 double mutant. This revealed that the 

mean chiasma frequency was significantly reduced from 3.34 in Atasy3-1 to 1.78 in 

the double mutant. This number, however, was not significantly different from the 

mean chiasma frequency of 1.88 in the Atasy1 single mutant. This suggests that 

AtASY1 is epistatic to AtASY3 in terms of CO formation, although this relationship is 

reversed in terms of protein loading. Interestingly, a similar scenario is observed in 

budding yeast with regards to DSB formation and RED1 and HOP1 loading during 

meiosis (Rockmill and Roeder, 1990, Smith and Roeder, 1997). Although Hop1 

localization is greatly reduced in the absence of RED1, the relationship is not 
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reciprocal. Additionally, hop1 mutant which lacks HOP1 entirely exhibits a stronger 

defect in DSB formation than red1, which possess reduced HOP1 (Rockmill and 

Roeder, 1990, Smith and Roeder, 1997). Similarly, assuming that immunolocalization 

detects all the axis-associated AtASY1 foci in Atasy3-1, the observation that Atasy3-

1 exhibits relatively lower recombination defects than Atasy3-1/Atasy1 suggests that 

higher number of COs in Atasy3-1 is most likely due to the residual AtASY1 in the 

single mutant. Nevertheless, these remaining AtASY1 foci are still insufficient to 

promote wild-type levels of COs in Atasy3-1. 

 

An interesting observation that emerged from the analysis of the residual AtASY1 in 

Atasy3-1 was that the mean number of γH2AX foci was greater than that of the 

AtASY1 domains and that these additional γH2AX foci did not co-localise with 

AtASY1 domains in the mutant (J.H, F.C.H.F). If the loss of DSBs and AtASY1 

domains in Atasy3-1 occurred randomly it would lead to the formation of similar 

proportion of γH2AX and AtASY1 foci that are not associated with each other, since 

DSB formation and AtASY1 localization are not inter-dependent processes. However, 

this was not observed in Atasy3-1, suggesting that some DSBs may occur outside of 

AtASY1 domains. One possibility for the lack of co-localization between some γH2AX 

and AtASY1 foci could be that although the AtASY1 domains in Atasy3-1 actually 

correspond to the position of the domains observed in wild-type, they are 

substantially smaller in size. Therefore, although these domains spatially associate 

with recombination complexes including γH2AX they no longer appear co-localized 

during immunolocalization. Alternatively, some DSBs may occur in regions of lower 
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AtASY1 abundance which are found between the AtASY1 hyper-abundant domains. 

Interestingly, previous studies in budding yeast suggest that some meiotic DSBs are 

formed at random sites outside of DSB hotspots (Schwacha and Kleckner, 1997). 

Assuming that AtASY1 domains coincide with DSB hotspots, this may also be the 

case in Arabidopsis.  

 

5.12.8. SC nucleation is sufficient to prevent ectopic recombination 

during meiosis  

In addition to its structural role budding yeast ZIP1, along with other ZMM proteins, is 

also required for the formation of interference-sensitive COs during meiosis (Borner 

et al., 2004). In Arabidopsis, loss of the budding yeast ZIP1 homologue, AtZYP1 

results in a slight reduction in chiasma frequency to ~80% of the wild-type level. 

However, the remaining COs has been reported to occur between ectopic 

chromosome regions, which are most likely to be duplicated sequences that amount 

to ~60% of the Arabidopsis genome. These COs result in the formation of univalents, 

multivalents, homologous bivalents and more importantly, non-homologous bivalents 

during metaphase I suggesting that CO control is compromised in Atzyp1 (Higgins et 

al., 2005). Analysis of Atasy3-1 revealed that SC formation and synapsis was 

extensively disrupted in the mutant. This was confirmed by immunolocalization which 

revealed that unlike in the wild-type AtZYP1 fails to polymerize into a continuous 

signal at early prophase I in the mutant. Instead, AtZYP1 formed discrete, abnormally 

thick and deformed foci and occasional short stretches during early prophase I in 

Atasy3-1. It is possible that some of these may represent an accumulation of 
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polycomplexes, nucleating at sites where AtZYP1 polymerization initiated but 

subsequently failed to continue. Interestingly, although Atasy3-1 was essentially 

asynaptic there was no evidence of any ectopic recombination in the mutant. 

Although, COs were reduced in Atasy3-1, the remaining COs were always found to 

occur between homologous chromosomes and there was no evidence of multivalent 

formation. Earlier, immunolocalization studies revealed that the number of AtMLH1 

foci was reduced to 3.1 in Atasy3-1, consistent with the reduction in its chiasma 

frequency. Nevertheless, all the remaining AtMLH1 foci, which are thought to mark 

CO sites (Jackson et al., 2006), were found to be invariably associated with the 

AtZYP1 foci and/or short stretches. These observations indicate that instead of 

extensive SC polymerization, the presence of AtZYP1 at sites of recombination is 

sufficient to prevent non-homologous interactions during Arabidopsis meiosis. 

Additionally, this finding confirms that in addition to its role in SC formation, AtZYP1 is 

also essential for maintaining CO fidelity during Arabidopsis meiosis. This is 

consistent with previous finding that AtZYP1 localizes as numerous foci early in 

leptotene well before SC formation during zygotene, suggesting it may play a role in 

CO formation in addition to SC formation (Higgins et al., 2005). 
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CHAPTER 6 

Analysis of Arabidopsis asy1-T295A mutants 

 

 

 

 

 



196 

 

6.1. Introduction 

In budding yeast, the AE proteins HOP1, RED1 and MEK1 are essential for 

establishing a bias towards inter-homologue recombination rather than inter-sister 

interactions during meiotic recombination (Niu et al., 2005). In addition to these the 

protein kinase MEC1 has also been implicated in partner choice during meiotic 

recombination. Budding yeast mec1 mutant exhibits elevated levels of ectopic 

recombination (Grushcow et al., 1999). Furthermore, there is an accumulation of 

MEC1 in addition to HOP1, RED1 and MEK1 in the dmc1 mutant which fails to form 

meiotic inter-homologue associations and arrest at late prophase I (Hochwagen and 

Amon, 2006). Additionally, dmc1 mec1 double mutant proceeds through meiosis 

without repairing DSBs suggesting that MEC1 might be regulating a common 

process related to meiotic inter-homologue bias (Lydall et al., 1996, Weinert and 

Hartwell, 1988). MEC1 functions in conjunction with TEL1, similarly like their 

mammalian homologues ATR and ATM respectively (Mallory and Petes, 2000). Like 

their mammalian counterparts, MEC1 and TEL1 are serine/threonine kinases that 

preferentially phosphorylate their substrates on serine (S) or threonine (T) residues 

that precede glutamine (Q) residues, otherwise known as S/TQ motifs (Mallory and 

Petes, 2000, Traven and Heierhorst, 2005). Targets of ATM/ATR family proteins 

usually contain S/TQ cluster domains (SCDs) in which three S/TQ motifs are found 

within a region of 100 amino acid residues (Traven and Heierhorst, 2005). 

Interestingly, a recent study in budding yeast reported that HOP1 contains eight 

S/TQ motifs, three of which (S298, S311 and T318) form an SCD that acts as a 

target site for MEC1/TEL1 phosphorylation (Carballo et al., 2008). The study 

revealed that mutation of the S/TQ motifs within the HOP1 SCD in a dmc1 mutant 
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resulted in repair of DSBs via RAD51-dependent pathway. This suggests that 

Mec1/Tel1-mediated phosphorylation of HOP1 SCD is required for preventing DMC1-

independent repair of meiotic DSBs. Furthermore, the study also included a more 

detailed analysis of the effect of mutating each S/TQ motif within the HOP1 SCD 

individually. This revealed that mutation of T at residue 318 to Alanine (A) conferred 

a hop1 mutant phenotype and resulted in the most severe reduction in spore viability 

compared to that resulting from the mutation of the other two S/TQ motifs within the 

SCD (Carballo et al., 2008). 

 

Intriguingly, a previous homology analysis of HOP1 and its Arabidopsis counterpart 

AtASY1, conducted in our lab, revealed that the T318 S/TQ motif within the SCD in 

HOP1 was conserved in AtASY1 (residue T295). Futhermore, the T295 [S/T]Q motif 

of AtASY1 was present within 30 residues of two similar motifs, thus defining a 

putative SCD. These observations led to the construction of Atasy1-T295A mutants 

to verify whether the T295 residue in AtASY1 is important for normal functioning of 

the protein (E.C., F.C.H.F.). Colleagues in our lab used Site Directed Mutagenesis kit 

(Stratagene) to induce a point mutation that resulted in the conversion of T to A at 

residue 295 in AtASY1. The resulting AtASY1T295A was cloned into pEarleyGate100 

vector, which possessed a 35S promoter, using the Gateway recombination system. 

The plasmid was then transformed into Atasy1 (SALK_144182) via Agrobacterium for 

subsequent expression of the transgene (E.C., F.C.H.F.). A preliminary immuno-

staining analysis of the resulting transgenic plants using anti-ASY1 antibody revealed 

that the antibody signal was detected in the transformants indicating the successful 
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expression of the transgene in them (A.M.,F.C.H.F.). However, the intensity of the 

signals varied between transformants reflecting the varying levels of expression of 

the transgene. Out of all the transformants analysed, early prophase I meiocytes 

from the transgenic line 511.54.1 displayed relatively higher levels of anti-ASY1 

staining suggesting good expression of the transgene, AtASY1T295A (A.M.,F.C.H.F.). 

Therefore this line was selected for carrying out a more detailed analysis of Atasy1-

T295A. This chapter describes the molecular characterization and cytological 

analysis of the Atasy1-T295A. Additionally, this chapter also describes the analysis of 

AtASY1 protein expression pattern in Atasy1-T295A. 

 

 

6.2. Molecular characterization of Atasy1-T295A  

Atasy1-T295A (511.54.1) plants were grown on MS media containing the herbicide 

BASTA for selection of transformants. Since the pEarleyGate100 plasmid contains 

the BASTA resistance gene only transformed plants were able to survive on the 

selective media. Eventually, 9 transformants that survived the selection were 

transferred and grown in pots containing soil compost.  

 

The transformants were initially genotyped to verify their zygosity for the Atasy1 

mutation. Genomic DNA from transgenic plants was amplified by PCR using the 

primers ASY1RP-EX1 and ASY1LP-EX5 while the T-DNA was detected using 

ASY1RP-EX1 and LbB1.3. The PCRs revealed that all the transformants were 
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homozygous for the Atasy1 mutation. To determine the exact insertion site of the T-

DNA in Atasy1-T295A, PCR product containing the partial T-DNA and AtASY1 

genomic sequence from a homozygous plant was ligated to pDRIVE cloning vector 

before being transformed into competent E. coli (DH5α). Following verification of the 

product using boil preparations and restriction digestion using EcoRI, DNA was 

isolated using wizard preparation (Promega) and sequenced. The sequencing data 

was analysed using BLAST (NCBI) and TAIR Seqviewer. This revealed that the T-

DNA insertion site in Atasy1-T295A was located at the third exon (521bp from start) 

in the genomic AtASY1, consistent with previous reports. 

 

Subsequently, the presence of the transgene in Atasy1-T295A was verified by PCR 

using the primers, TRANS-ID-F1 and TRANS-ID-R1. These primers were designed 

such that half of each primer was specific to the end of one exon while its other half 

was specific to the beginning of the subsequent exon. This ensured the amplification 

of the transgene and not genomic AtASY1. PCR analysis of the transformants using 

these primers confirmed that the transgene was present in all the transgenics 

analysed. Additionally, the primers TRANS-ID-F1 and TRANS-ID-R1 were designed 

to be specific to sequences on either side of the ‘GCA’ codon in the transgene that 

coded for A instead of T at residue 295 in AtASY1. Hence, their amplified product 

should contain a point mutation replacing the nucleotide A with G at position 883 in 

the coding sequence of AtASY1. To verify if this point mutation was present in the 

transgene a PCR-amplified product of the primers was ligated to pDRIVE and 

transformed into competent E. coli (DH5α). Following verification of the product using 
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boil preparations and restriction digestion using EcoRI, DNA was isolated using 

wizard preparation (Promega) and sequenced. Homology analysis of the sequencing 

data with AtASY1 coding sequence using BLAST (ClustalW) revealed that the point 

mutation, resulting in the replacement of the nucleotide A with G at position 883, was 

indeed present in the nucleotide sequence of the transgene (Figure 20A). Moreover, 

analysis of the nucleotide sequence of the transgene in Atasy1-T295A using BCM 

Search Launcher (http://searchlauncher.bcm.tmc.edu) revealed that this point 

mutation leads to the replacement of T with and A at residue 295 in its predicted 

product (Figure 20B). These findings confirm that the transgene in Atasy1-T295A 

encodes a putative protein (hereafter refered to as AtASY1T295A) in which the T295 

[S/T]Q motif has been mutated to A. 
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Figure 20. Analysis of the nucleotide and amino acid sequence of the transgene in 
Atasy1T295A. 
(A) The point mutation, resulting in the replacement of A with G at position 883 (red arrow) was 
present in the transgene. (B) The putative product of the transgene is predicted to contain A 
instead of T at residue 295 (red arrow). 
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6.3. Analysis of Atasy1-T295A  

Analysis of Atasy1-T295A transgenic plants revealed that the transformants 

displayed normal vegetative growth. However, comparison of silique lengths from the 

transformants (511.54.1-511.54.9) revealed that their mean silique lengths varied 

between 6.4mm - 8.1mm (n=10 for each), all of which were significantly reduced from 

the mean silique length of 13.3mm in the wild-type (n=10) (P<0.0001, ANOVA) 

(Table 5). Furthermore, analysis of seed sets from the transformants (511.54.1-

511.54.9) revealed that their mean seed set varied between 5.3 - 8.3 (n=10 for each), 

all of which were also significantly reduced from the mean seed set of 49.50 in the 

wild-type (n=10) (P<0.0001, ANOVA) (Table 6). Additionally, the mean silique sizes 

and seed sets of Atasy1-T295A transgenic plants were all highly similar to the 

Atasy1, which exhibit a mean silique length of 6.7mm (n=10) and seed set of 7.3 

(n=10) (Table 5,6). These observations suggest that Atasy1-T295A transgenic exhibit 

severely reduced fertility, consistent with a meiotic defect. 
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Silique 
number (n) 

Silique length (mm) 

 

Atasy1-T295A (line 511.54.1.) 
Atasy1 

WT (Col-0) 1 2 3 4 5 6 7 8 9 

1 9 7 6 9 9 8 8 6 7 6 14 

2 8 8 7 9 7 9 8 6 6 8 13 

3 8 8 6 9 8 7 7 9 7 7 15 

4 7 8 6 8 8 8 8 8 7 7 14 

5 7 9 6 6 8 8 8 7 6 6 13 

6 6 7 7 8 9 7 9 8 6 7 14 

7 9 9 6 6 8 7 10 11 6 7 14 

8 8 7 7 7 6 8 7 6 6 7 12 

9 7 8 6 7 7 9 7 8 7 7 13 

10 7 7 7 7 7 7 9 9 6 5 11 

MEAN 7.6 7.8 6.4 7.6 7.7 7.8 8.1 7.8 6.4 6.7 13.3 

 

Table 5. Comparison of lengths of siliques from WT, Atasy1 and Atasy1-T295A mutants. 

 
 
 

Silique 
number (n) 

Seeds per silique 

 

Atasy1-T295A (line 511.54.1.) 
Atasy1 

WT (Col-0) 1 2 3 4 5 6 7 8 9 

1 11 7 5 9 11 6 9 6 5 6 54 

2 9 6 6 9 6 12 8 5 5 8 52 

3 10 8 4 9 9 6 6 11 6 6 56 

4 8 8 5 11 7 9 8 7 7 7 53 

5 6 8 4 5 7 7 8 7 4 8 42 

6 5 6 5 8 11 6 8 11 4 7 52 

7 8 8 5 4 8 7 11 12 5 7 60 

8 11 7 5 9 6 8 9 5 6 8 42 

9 7 7 4 5 7 10 5 9 6 7 38 

10 8 6 6 5 6 6 9 10 5 9 46 

MEAN 8.3 7.1 4.9 7.4 7.8 7.7 8.1 8.3 5.3 7.3 49.5 
 

Table 6. Comparison of mean seed-sets of WT, Atasy1 and Atasy1-T295A mutants. 
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6.4. Cytological analysis of Atasy1-T295A 

To verify whether the reduction in fertility of Atasy1-T295A was due to defective 

meiosis DAPI-stained chromosome spread preparations from PMCs of Atasy1-T295A 

were analysed using fluorescence microscopy. This revealed that although the early 

prophase I stages, leptotene and zygotene, were indistinguishable from those of the 

wild-type normal pachytene nuclei was not observed in Atasy1-T295A. In contrast to 

wild-type, which exhibit complete chromosome synapsis at pachytene homologous 

chromosomes failed to synapse in Atasy1-T295A (Figure 21A). Furthermore, at late 

diakinesis it was apparent that a portion of the homologous chromosomes were not 

linked by any chiasmata in Atasy1-T295A (Figure 21B). This was confirmed by the 

presence of univalents at metaphase I in the transformant (Figure 21C), unlike the 

wild-type metaphase I where five bivalents are present instead. The absence of 

normal level of COs in Atasy1-T295A leads to mis-segregation in both of its meiotic 

divisions resulting in the subsequent formation of aneuploid gametes in the 

transformed line (Figure 21D). These observations confirm that Atasy1-T295A exhibit 

severe defects during meiosis. Interestingly, the meiotic defects in Atasy1-T295A are 

reminiscent of the Atasy1 mutant. Hence, these findings indicate that the product of 

the transgene, AtASY1T295A is dysfunctional suggesting that replacing the T with an A 

at residue 295 of AtASY1 severely affects the meiotic function of the protein. 
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Figure 21. Cytology of Atasy1T295A and AtASY1 localisation in the mutant. 
(A) Homologous chromosomes fail to undergo synapsis in pachytene. (B) Loss of COs are 
apparent in diakinesis (C) Univalents are present in metaphase I. (D) These result in the 
formation of unbalanced tetrads. E) In WT, AtASY1 polymerizes into a continuous signal in early 
prophase I. (F) In contrast, AtASY1 fails to polymerize, instead forms discrete foci in 
Atasy1T295A. Bar 10µm. 
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6.5. Normal AtASY1 localization may be disrupted Atasy1-T295A 

Previous immuno-staining analysis revealed that anti-ASY1 antibody signal was 

detected in Atasy1-T295A suggesting that AtASY1T295A was present during meiosis. 

Interestingly, a more detailed immuno-staining analysis of AtASY1T295A localization 

revealed that AtASY1T295A localized as numerous thick abnormal foci of varying 

shape and size during early prophase I in Atasy1-T295A (Figure 21F). Moreover, the 

continuous linear signal of AtASY1, as observed in early wild-type prophase I (Figure 

21E), was not detected in any of the meiocytes analysed. These observations 

indicate that AtASY1T295A localization to meiotic chromosomes during early prophase 

I is aberrant and not similar to AtASY1 localization in the wild-type. Furthermore, 

although a proportion of AtASY1T295A appears to localize to chromosomes during 

meiosis, it is apparent that the protein is devoid of normal AtASY1 functions resulting 

in defects during meiosis in Atasy1-T295A. 

 

 

6.6. Analysis of AtASY1T295A protein expression in Atasy1-T295A 

The analysis of Atasy1-T295A so far indicates that the transgenic line fails to 

undergo normal meiosis even though the product of the transgene, AtASY1T295A, may 

be present in it. Hence, to confirm the presence of AtASY1T295A in Atasy1-T295A 

proteins from early prophase I meiocytes of the transformant were extracted, probed 

with anti-ASY1 antibody and compared to AtASY1 expression in the wild-type. 
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6.6.1. Detection of AtASY1 in wild-type and Atasy1 mutant  

The presence of AtASY1 in protein samples from wild-type (Col-0) meiocytes was 

analysed by western blotting using a GST-tagged anti-ASY1 antibody raised in rat 

(No. 44). As a control, a similar analysis was also performed on meiotic proteins from 

Atasy1 mutant. Proteins were extracted from wild-type and Atasy1 meiotic buds using 

Quick Protein Extraction protocol (K.O.). The concentrations of proteins in the 

samples prepared were verified by BIORAD assay and equal amount (~40µg) of 

each sample was loaded into a SDS-PAGE gel for the subsequent detection of 

AtASY1. Additionally, ~10µg of each protein sample was also loaded into a separate 

SDS-PAGE gel for the subsequent expression analysis of the housekeeping protein 

Tubulin, which would ensure similar loading of the wild-type and mutant samples. 

Once the proteins in both gels were resolved by SDS-PAGE they were electro-

blotted to two different nitrocellulose membranes (GE Healthcare). The membrane 

with ~40µg of each sample was probed using anti-ASY1 antibody (1:1000) followed 

by an anti-rat secondary antibody (1:10,000). The other membrane with ~10µg of 

each sample was probed using a mouse anti-Tubulin antibody (Sigma) (1:5000) 

followed by an anti-mouse secondary antibody (1:10,000). Both the membranes were 

then visualized using ECL. Analysis of Tubulin expression ensured that 

approximately equal amounts of the wild-type and Atasy1 samples were loaded into 

all the gels (Figure 22A). Additionally, analysis of AtASY1 expression revealed that 

the protein (~67kDa) can be clearly detected in the protein sample from wild-type 

meiocytes (Figure 22A). Furthermore, AtASY1 was undetectable in the protein 

sample from Atasy1 mutant confirming that the mutant is deficient of the protein 

(Figure 22A). Interestingly, a product of shorter size (~62kDa) was detected in the 
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sample from the Atasy1 mutant. This product was not present in the sample from the 

wild-type. 

 

6.6.2. Detection of AtASY1T295A in Atasy1-T295A 

To determine whether AtASY1T295A is expressed in the Atasy1-T295A, meiotic 

proteins were extracted from 5 different plants (511.54.1, 2, 3, 5 and 7) using Quick 

Protein Extraction protocol (K.O.). Each sample was quantified using BIORAD assay 

and subsequently ~20µg of each sample along with that of wild-type and Atasy1 was 

loaded into a SDS-PAGE gel for the subsequent detection of AtASY1T295A. 

Additionally, ~10µg of each protein sample was also loaded into a separate SDS-

PAGE gel for the subsequent expression analysis of Tubulin. Once the proteins in 

both gels were resolved by SDS-PAGE they were electro-blotted into two different 

nitrocellulose membranes (GE Healthcare). The membrane with ~20µg of each 

sample was probed using anti-ASY1 antibody (1:1000) followed by an anti-rat 

secondary antibody (1:10,000). The other membrane with ~10µg of each sample was 

probed using a mouse anti-Tubulin antibody (Sigma) (1:5000) followed by an anti-

mouse secondary antibody (1:10,000). Both the membranes were then visualized 

using ECL. Analysis of Tubulin expression ensured that approximately equal 

amounts of all the samples were loaded into all the gels (Figure 22B). Analysis of 

AtASY1 expression revealed that the protein can be detected in the protein sample 

from wild-type meiocytes (Figure 22B). More interestingly, the anti-ASY1 antibody is 

able to detect a product of similar size to AtASY1 in all the samples from the 

transgenic plants (Figure 22B). Additionally, this product was not detected in the 
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protein sample from Atasy1 mutant (Figure 22B). Altogether, these findings suggest 

that AtASY1T295A is expressed in Atasy1-T295A. Nevertheless, Atasy1-T295A still 

fails to undergo normal meiosis suggesting that replacement of T to A at residue 295 

in AtASY1 renders the protein dysfunctional. Hence the S/TQ motif T295 of AtASY1 

is essential for normal function of the protein during Arabidopsis meiosis. Further 

analysis suggests that the intensity of the anti-ASY1 signal is substantially higher in 

the samples from Atasy1-T295A mutants than in that of the wild-type indicating a 

difference in expression level between genomic AtASY1 and the transgene 

AtASY1T295A. Intriguingly, the shorter product (~62kDa) detected by anti-ASY1 in the 

sample from the Atasy1 mutant was also observed in all the samples from Atasy1-

T295A. However, this product was not observed in the sample from the wild-type 

suggesting that it is solely specific to Atasy1 mutants. 
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Figure 22. Western blotting analysis of ASY1 in extracts from WT, Atasy1, Atasy1T295A 
and Brassica. 
(A) AtASY1 (dark red arrow) is detectable in extract from WT but not in that from Atasy1. A 
shorter product (light red arrow) is detectable in Atasy1 but not in the WT. (B) AtASY1 (dark red 
arrow) is detectable in extracts from five Atasy1T295 mutants confirming that the protein is 
present in the mutants. The shorter product (light red arrow) is also present in the Atasy1T295 
mutants (C) Western blotting analysis using anti-ASY1 antibody of 2D-PAGE resolved B. 
oleracea meiotic proteins showed at least 6 dot-like signals which are of similar sizes to 
BoASY1. (D) Similar analysis of B. oleracea extracts treated with phosphotase inhibitor 
revealed a variation in the distribution of the 6 dot-like putative BoASY1 signals, suggesting that 
the treatment may have resulted in changes in the phosphorylation states of BoASY1. 
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6.7. Preliminary analysis of ASY1 phosphorylation using 2D gel 

electrophoresis 

Analysis of Atasy1-T295A suggests that AtASY1 may be a substrate for 

phosphorylation, which is essential for normal functioning of the protein. This finding 

prompted the detection of the phosphorylated states of the protein. Phosphorylated 

isoforms of proteins can be detected using two dimensional-polyacrylamide gel 

electrophoresis (2D-PAGE). During 2D-PAGE, proteins are first separated on the 

basis of their net charge by isoelectric focusing (IEF) followed by SDS-PAGE which 

separates the proteins by their mass. Therefore, this method is ideal for further 

investigation of the effect of phosphorylation on AtASY1. However, extracting large 

volumes of meiotic proteins from Arabidopsis is somewhat strenuous. Hence, the 

effect of phosphorylation was instead studied on the homologue of AtASY1, BoASY1 

from Brassica oleracea (Armstrong et al., 2002), from which large volumes of meiotic 

proteins can be easily extracted. Early prophase I meiotcytes from Brassica oleracea 

were verified using aceto-orcein staining and light microscopy before the subsequent 

extraction of their proteins using Quick Protein Extraction protocol (K.O.). A sample 

from the extraction was treated with HALT phosphatase inhibitor (ThermoScientific) 

to preserve the phosphorylated states of proteins while another sample was left 

untreated. The protein samples were then quantified using BIORAD assay and 

~90µg each sample was used for rehydration of two different 7cm immobiline 

drystrips (pH3-10,NL) (GE Healthcare). Rehydration of the strips followed by IEF and 

the subsequent equilibration of the proteins in the two samples were carried out as 

per manufacturer’s instructions. Once the strips were focused and the proteins 

separated by their isoelectric point, each strip was placed sideways on top of a 
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separate 10% SDS-PAGE gel. As a control, ~40µg of Brassica olecracea meiotic 

proteins treated with phosphatase inhibitor was loaded into the SDS-PAGE gel with 

the strip containing proteins treated with the phosphatase inhibitor. Similarly, ~40µg 

of the untreated sample was loaded into the SDS-PAGE gel with the strip containing 

untreated proteins. The second dimension, SDS-PAGE, then separated the proteins 

by their mass. Once the proteins in both gels were resolved they were electro-blotted 

into two different nitrocellulose membranes (GE Healthcare). Each membrane was 

then probed using anti-ASY1 antibody (1:1000) followed by an anti-rat secondary 

antibody (1:10,000) and subsequently visualized using ECL. Analysis of the blots 

revealed that no proteins including AtASY1 could be detected in the control samples 

that were subjected to only one dimensional gel electrophoresis (Figure 22 C, D). 

However, discrete dot-like protein signals were observed in the blots from both the 

phosphatase inhibitor-treated and untreated samples that were subjected to 2D-

PAGE. Further analysis of the blot of untreated sample revealed the presence of a 

cluster of 4 distinct dots next to at least 2 dot-like signals of anti-ASY1 antibody, all of 

which were approximately 60kDa in size. The sizes of each of these signals were 

roughly consistent with the size of BoASY1 (Figure 24C). In addition, analysis of the 

blot of the sample treated with phosphatase inhibitor revealed the presence of at 

least 6 dot-like signals each weighing ~60kDa in size also (Figure 24D). It is plausible 

that each of these signals may represent a different phosphorylated isoform for 

BoASY1, however, there is not enough clear evidence in the blots to confirm this 

observation.  
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Interestingly, the distribution of the ~60kDa dot-like anti-ASY1 antibody signals 

between the blots from the two samples was notably different from one another. In 

the blot from the untreated sample all the dot-like signals were spaced adjacent to 

each other in a cluster. In contrast, in the blot of the treated sample two of the dot-like 

signals were spaced apart from the cluster of the remaining 4 signals. Moreover, 

these two signals were spaced far away from each other. Hence, it is apparent that 

the treatment with phosphatase inhibitor has a direct effect on the phosphorylation 

state of proteins extracted from meiocytes. Therefore, this treatment may preserve 

phosphorylated forms of ASY1 and can be used in future studies of the effect of 

phosphorylation on the protein. 

 

 

6.8. Discussion 

 

6.8.1. Mutation of T to A at residue 295 of AtASY1 leads to meiotic 

defects 

In a previous study, the AtASY1-T295A transgene encoding AtASY1 in which the T 

residue at position 295 was mutated to A was transformed into Atasy1 mutant plants 

in order to investigate the significance of this residue (E.C., F.C.H.F.). The resulting 

transformants displayed varying levels of AtASY1 signal when analysed by 

immunolocalization using anti-ASY1 antibody (A.M., F.C.H.F.). The probable cause 

of this variation may be due to the differences in the regulation of AtASY1-T295A 
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transgene expression between the transgenics. The transgenic line (Atasy1-T295A, 

line 511.54.1) that exhibited the highest AtASY1 signal in immunolocalization studies 

was analysed in further detail. Molecular characterization of 9 progenies of Atasy1-

T295A confirmed that these were homozygous knockouts of Atasy1. Furthermore, 

similar methods also validated the presence of the transgene and the point mutation 

in all Atasy1-T295A mutants. Analysis of Atasy1-T295A mutants revealed that fertility 

was significantly reduced in them compared to the wild-type, which possessed on 

average 49.50 seeds per silique. While most Atasy1-T295A transformants displayed 

a mean seed-set of 7/8 seeds per silique, two were found to contain a mean of ~5 

seeds per silique. This variation is likely due to the small amount of the sample size. 

Nevertheless, compared to the wild-type all Atasy1-T295A mutant plants displayed 

reduced mean seed sets, which intriguingly, were similar to that of the Atasy1 mutant 

(Caryl et al., 2000). Reduction in fertility is considered to be an indication of meiotic 

defect. Consistent with this subsequent cytological analysis revealed that Atasy1-

T295A failed to undergo synapsis. Furthermore, Atasy1-T295A failed to form normal 

levels of chiasmata during meiosis. This results in mis-segregation during meiotic 

divisions resulting in the formation of aneuploid gametes. The above meiotic defects 

were reminiscent to those of Atasy1. More importantly, they suggest that even 

though AtASY1-T295A transgene is supposedly expressed Atasy1-T295A mutant 

failed to undergo normal synapsis and recombination, indicating that the mutation of 

T295 in AtASY1 leads meiotic defects that are similar to those exhibited by Atasy1. 
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6.8.2. Residue T295 may be essential for the normal AtASY1 localization 

In wild-type meiocytes, AtASY1 was found to localize onto meiotic chromosome axes 

as numerous foci at leptotene. By zygotene AtASY1 formed a linear axis-associated 

signal. This observation was consistent with previous reports (Armstrong et al., 

2002). Prior immunolocalization studies confirmed that the anti-ASY1 antibody is able 

to detect a signal at the chromosome axes during early prophase I in Atasy1-T295A 

mutant. This signal is likely to be AtASY1T295A, the product of AtASY1-T295A 

transgene (A.M., F.C.H.F.). Further analysis of AtASY1T295A revealed that instead of 

forming a linear signal like AtASY1 in wild-type meiocytes, it formed numerous thick 

and abnormal foci during early prophase I in Atasy1-T295A. This suggests that 

mutation of T295 may disrupt the normal localization of AtASY1 during meiosis. 

Since protein targeting to axes appears normal, it is conceivable that the mutation 

might cause a conformational change in AtASY1T295A which disrupts its normal 

spatial association with the axes or its ability to polymerize normally along the axes. 

Alternatively, it is also possible that the mutation might reduce protein stability. This is 

consistent with previous reports in budding yeast where HOP1 stability is dependent 

on phosphorylation at the STQ motif T181 (Carballo et al., 2008). Given that the 

AtASY1T295A foci appear abnormally thick and aberrant, the former possibility is likely 

to be the case in Atasy1-T295A. Interestingly, recent studies in wild-type meiocytes 

using deconvolution software suggests that instead of forming a linear signal AtASY1 

is distributed along the axes as a series of evenly spaced hyper-abundant domains 

(mean number per cell = 160) which are separated by stretches of lower abundance 

(J.H., F.C.H.F.). This raises the question whether the AtASY1T295A foci in Atasy1-

T295A are in fact similar to the AtASY1 domains in wild-type. Since the AtASY1T295A 
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foci in Atasy1-T295A were not analysed via deconvolution software and their 

numbers were not quantified there is not sufficient data at the moment to validate 

this. Nevertheless, it is apparent that some AtASY1T295A domains may not be 

maintained in Atasy1-T295A. 

 

6.8.3. AtASY1T295A is unable to promote normal levels of inter-

homologue recombination in Atasy1-T295A 

Western blotting analysis using an ASY1 antibody was able to detect the ~67kDa 

AtASY1 in protein extracts from Arabidopsis meiotcytes. This was not the case for 

Atasy1 confirming that the mutant was deficient in AtASY1. However, a shorter 

product of ~62kDa was detected in the sample from the Atasy1 mutant which was not 

present in that from the wild-type. It is conceivable that this shorter product may be a 

truncated or degraded non-functional version of AtASY1. It is also possible that this 

could be a result of expression from an unknown promoter in the T-DNA in Atasy1. 

Alternatively, it may also be that this product is present in the wild-type, but in such 

low level that it was undetectable in the ECL exposure times used during this 

experiment. If the latter is the case then this may indicate that AtASY1 is regulated as 

its absence may trigger a higher expression of this shorter product. Nevertheless, the 

data suggests that full-length AtASY1 is only detectable in the wild-type and not in 

the Atasy1. With this in context, the focus was shifted to verifying the presence of 

AtASY1T295A in the five Atasy1-T295A mutant plants using similar methods as above. 

This revealed that in all five Atasy1-T295A mutants the anti-ASY1 antibody was able 

to detect AtASY1T295A, which was indistinguishable in size from AtASY1 in the wild-
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type. Moreover, the antibody was unable to detect AtASY1 in Atasy1, suggesting that 

AtASY1T295A is indeed present in Atasy1-T295A mutants. This finding is consistent 

with immunolocalization studies of AtASY1T295A in Atasy1-T295A. Furthermore, this 

finding confirms that the meiotic defects observed in Atasy1-T295A were not due to 

the absense of AtASY1. Instead, the data indicates that AtASY1T295A which bears a 

mutation in T295 to A cannot perform the normal functions of AtASY1. AtASY1 has 

previously shown to promote AtDMC1-mediated inter-homologue recombination 

(Sanchez-Moran et al., 2007). Therefore, it appears that T295 is essential for the 

above function of AtASY1. This is consistent with the loss of chiasmata in Atasy1-

T295A. Moreover, T295 is predicted to be a target site for serine/threonine kinase-

mediated phosphorylation of AtASY1. Hence, it is plausible that phosphorylation of 

AtASY1 at T295 may be essential for ensuring normal levels of CO formation 

between homologous chromosomes during meiosis.  

 

A notable observation during the above western blotting analysis was that the 

intensity of the anti-ASY1 signal was substantially higher in the samples from Atasy1-

T295A mutants compared that of the wild-type. This is likely due to the difference in 

expression level between the transgene AtASY1T295A and genomic AtASY1. The 

probable cause of this variation may be due to the expression of the transgene via 

the 35S promoter in pEarleyGate100 plasmid. This expression is unregulated and 

occurred in both meiotic and somatic tissues in flower buds which were used for 

protein extraction, unlike genomic AtASY1 expression, which is meiosis specific 

(Armstrong et al., 2002) and may be regulated by co-factors. 
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Intriguingly, the shorter product (~62kDa) detected by anti-ASY1 in the sample from 

the Atasy1 mutant was also observed in all the samples from Atasy1-T295A. 

Although AtASY1T295A, which is capable of localizing to meiotic chromosomes, is 

present in Atasy1-T295A the shorter product still persists in the mutant. This may 

suggest that the shorter product possibly originates from the T-DNA in the Atasy1. In 

accord, this product was not observed in the sample from the wild-type suggesting 

that it is specific to mutants with a T-DNA in AtASY1. Nevertheless, the actual source 

of this shorter product still remains to be determined. 

 

6.8.4. Preliminary analysis suggests that BoASY1, homologue of AtASY1, 

may be a likely substrate for phosphorylation  

Western blotting analysis revealed that T295 is essential for normal AtASY1 function. 

As T295 is a predicted target site for phosphorylation, studies were performed to 

verify whether this was the case. Since western blotting studies revealed no AtASY1 

band shift, which is generally an indication of phosphorylated form of a protein, a 2D-

PAGE was used to detect phosphorylated AtASY1. However, due to the 

impracticality associated with extracting large volumes of proteins from Arabidopsis 

meiocytes the study was performed using meiocytes from its close relative, B. 

oleracea. Brassica meiotic protein samples were either untreated or treated with 

phosphatase inhibitor to preserve phosphorylated states of proteins before being 

subjected to 2D-PAGE. During the second dimension an untreated and treated 

sample were added next to their corresponding previous samples as a control to 
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detect BoASY1 and use it as a reference when analysing the phophorylated forms of 

proteins. Analysis of the western blots following 2D-PAGE, however, revealed no 

detection of BoASY1 in the control samples. This was probably due to leakage of the 

control protein samples after loading into their corresponding wells. The leakage may 

have been caused by the defective formation of their wells which were at the edge of 

each vertical gel. The controls too were probably not appropriate as they were only 

subjected to one dimension separation whereas the treated and untreated were 

subjected to two dimensions of resolution. Nonetheless, had they worked they could 

have been used to compare phosphorylated forms of proteins in relation to BoASY1 

migration. Interestingly, as anticipated discrete dot-like signals, ~60kDA is size, were 

observed in the blots from both the phosphatase inhibitor-treated and untreated 

samples. These are likely to be phosphorylated forms of BoASY1 as they are of 

similar size to the protein. This in turn would suggest that AtASY1, homologue of 

BoASY1, may also be phosphorylate during Arabidopsis meiosis. In light of the 

observations in Atasy1-T295A this seems a likely possibility. However, this claim 

remains inconclusive due to the absence of appropriate controls and comprehensive 

data.  

 

Additionally, although there appears to be at least 6 dot-like signals at ~60kDA in 

each blot this number was by no means concrete as there was substantial 

background in the blots making it difficult to extrapolate the signals. Nevertheless, 

there appears to be a difference in distribution of these signals in the two blots. In the 

blot from the untreated sample all the dot-like signals were spaced adjacent to each 
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other in a cluster. In contrast, in the blot of the treated sample two of the dot-like 

signals were spaced apart from the cluster of the remaining signals. This may 

suggest that some phosphorylated forms of AtASY1 which may be lost in the 

untreated sample may be preserved when treated with phosphatase inhibitor. 

Although the above data indicates a notable variation between the two treatments 

one cannot rule out the possibility that the dot-like signals were due to cross-reaction 

of the anti-ASY1 antibody or that they were entirely an artefact of the preparation 

technologies involved, given that BoASY1 was undetectable in the control samples. 

Hence, although informative, the 2D-PAGE data remains inconclusive and requires a 

more comprehensive repetition.   
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CHAPTER 7 

General Discussion 
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7.1. Introduction 

 

Meiosis plays a central role during sexual reproduction in nearly all eukaryotic 

organisms. Among the major genetic events that occur during meiosis are paternal 

and maternal homologous chromosome synapsis and recombination, which leads to 

CO formation between them and subsequently generates genetic diversity. However, 

the mechanisms that regulate homologous chromosome synapsis and CO formation 

still remain poorly understood. Hence, this project was aimed at studying such 

mechanisms in order to gain further insight into the control of chromosome synapsis 

and recombination during meiosis in Arabidopsis. The main findings of this project 

and future perspectives are described in this chapter. 

 

 

7.2. AtRECQ4B is not essential for normal meiosis 

Previous studies indicate that AtRECQ4A is homologue of the mammalian BLM and 

budding yeast SGS1 helicase (Bagherieh-Najjar et al., 2005, Hartung et al., 2007). 

Loss of AtRECQ4A leads to an increased frequency of homologous COs in somatic 

cells suggesting that AtRECQ4A, like BLM and SGS1, acts as an anti-recombinase 

(Hartung et al., 2007). AtRECQ4A has been proposed to have undergone a recent 

gene duplication, giving rise to AtRECQ4B whose product was predicted to be ~70% 

identical to that of AtRECQ4A (Hartung and Puchta, 2006). In contrast to AtRECQ4A, 

AtRECQ4B has been proposed to promote homologous recombination in somatic 
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cells (Hartung et al., 2007). Interestingly, a recent analysis of the Brassica meiotic 

proteome revealed that Brassica homologues of AtRECQ4A and AtRECQ4B were 

present in meiocytes, suggesting putative roles for the proteins during meiosis 

(Sanchez-Moran et al., 2005; F.C.H.F. and K.O., unpublished).  

 

Expression analysis of AtRECQ4A and AtRECQ4B revealed that both genes were 

indeed expressed in flower buds during meiosis. However, a subsequent detailed 

analysis, performed by colleagues, suggested that AtRECQ4A was not essential for 

normal levels of meiotic CO formation. Atrecq4A mutants exhibited normal levels of 

meiotic COs but displayed chromatin bridges at metaphase I which were dependent 

on meiotic recombination and telomere repeats. Therefore, the protein was proposed 

to be required for the dissolution of inter-chromosomal connections that arise during 

meiotic recombination (J.H., K.O., F.C.H.F.). This raised the question whether 

AtREC4QB, the close relative of AtRECQ4A, performed the SGS1-like functions 

during meiosis or whether it maintained its recombinase activity also during meiosis. 

To investigate such possibilities an Atrecq4B mutant was obtained and analysed. 

Surprisingly, the mutant displayed no reductions in seed-set or pollen viability, two 

hallmark features of mutants with meiotic defects. Subsequent cytological analysis 

revealed that all the meiotic stages in Atrecq4B were similar to that of the wild-type. 

Homologous chromosome pairing, synapsis and meiotic CO formation all appeared 

normal with no indication of any chromatin bridges and any loss of chiasmata at 

metaphase I, confirming the absence of any meiotic defects in the mutant. Since 

previous reports suggest that AtRECQ4B promote CO formation in somatic cells, 
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such a role of the protein was also investigated during meiosis. Analysis of chiasma 

frequency of Atrecq4B revealed no significant difference from that of the wild-type. 

Furthermore, a more detailed analysis of the chiasma frequency of an 

Atrecq4B/Atmsh4 double mutant revealed no statistical difference in chiasma 

frequency between the double and Atmsh4 single mutant. This indicated that loss of 

AtRECQ4B did not have any impact on MSH4-dependent or MSH4-independent 

COs, suggesting that the protein is not crucial for normal Arabidopsis meiosis. 

 

However, analysis of AtRECQ4A localization during prophase I suggests that 

AtRECQ4B may be of some functional significance during meiosis (J.H., K.O., 

F.C.H.F). AtRECQ4A localization was analysed using an antibody that was found to 

detect the protein predominantly but evidence suggests that it may also display some 

cross-reactivity in detecting AtRECQ family members. In wild-type, AtRECQ4A/B foci 

were found to localize to meiotic chromosome axes as numerous foci at leptotene.  

At pachytene the number of these foci per cell was reduced to only ~5, which were 

mostly telomeric. In the Atrecq4A-5 mutant AtRECQ4A/B foci failed to localize as 

numerous foci, instead formed <10, mostly telomeric foci at early prophase I. 

Interestingly, in an Atrecq4A-5/Atrecq4B double mutant the number of AtRECQ4A/B 

foci was further reduced to ~5 per nucleus, suggesting that there was an additional 

loss of foci in the absence of AtRECQ4B (J.H., K.O., F.C.H.F). This suggests that 

some AtRECQ4B may localize to chromosome axes during meiosis, consistent with 

the RT-PCR analysis suggesting the meiosis-specific expression of AtRECQ4B and 

the proteomics data which detected peptides of the AtRECQ4B homologue in 
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Brassica meiotic proteome (Sanchez-Moran et al., 2005; F.C.H.F. and K.O., 

unpublished). The above findings are consistent with a role for AtRECQ4B during 

meiosis. Furthermore, the presence of some residual AtRECQ4A/B foci in the 

Atrecq4A-5/Atrecq4B double mutant indicates that the anti-AtRECQ4A antibody may 

also exhibit cross-reaction with other member(s) of the AtRECQ family. This suggests 

that there may be functional redundancy between members of the AtRECQ helicase 

family (J.H., K.O., F.C.H.F).  

 

Recent studies suggest that meiotic recombination intermediates that cannot be 

resolved as COs by the normal Holliday junction resolvase are removed by 

dissolution via a hemicatenane intermediate. In Arabidopsis this is performed by the 

RTR protein complex that is comprised of AtRMI1, AtTOP3α and a RECQ helicase 

(Chelysheva et al., 2008, Hartung et al., 2008). It has been proposed that AtRECQ4A 

may perform the helicase activity of the RTR complex. However, AtRECQ4A was not 

found to be involved in meiotic progression leading to the suggestion that it was 

either not involved in such mechanism or it functions redundantly with another 

helicase(s) (Chelysheva et al., 2008, Hartung et al., 2008). Additionally, recent 

analysis of AtRECQ4A suggests that it is only involved in resolving inter-

chromosomal telomeric connections during meiotic recombination (J.H., K.O., 

F.C.H.F). Nevertheless, immunolocalization studies showed that AtRECQ4A 

localizes to meiotic chromosome axes during early prophase I in the wild-type. 

Moreover, 63% of the AtRECQ4A foci were found to co-localize with AtMSH4 at 

zygotene. Additionally, some of the residual AtRECQ4A foci were found co-localized 
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with the late recombination protein and CO marker, AtMLH1 (J.H., K.O., F.C.H.F). 

These observations suggest that AtRECQ4A is associated with recombination 

intermediates during early prophase I leading the researchers to suggest that the 

protein might be involved in the RTR complex but its role can be substituted by 

another member of the AtRECQ helicase family (J.H., K.O., F.C.H.F). Taking into 

account that AtRECQ4B is present during meiosis and that some of it may localize to 

meiotic chromosome axes during early prophase I it is probable that AtRECQ4B may 

also be involved in maintaining genome integrity, however, similarly to AtRECQ4A it 

too possibly functions redundantly with other helicases during Arabidopsis meiosis. 

 

 

7.3. AtASY3, a novel meiotic axes component, is required for 

synapsis and CO formation during meiosis 

 

7.3.1. ASY3 is a novel component of meiotic chromosome axes  

Analysis of the Brassica meiotic proteome followed by homology searches led to the 

identification of a novel gene, AtASY3, in Arabidopsis. RT-PCR analysis of AtASY3 

revealed that the gene is expressed specifically during meiosis. Analysis of three 

Atasy3 T-DNA insertion mutant lines revealed that all of them displayed reduced 

fertility, consistent with a meiotic defect. Cytological analysis of these mutants 

revealed that they were all defective in homologous chromosome synapsis. This was 

verified by immunolocalization studies, which revealed that the SC TF component 
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failed to polymerize during early prophase I, confirming that normal synapsis was 

disrupted in the mutant. Furthermore, EM study of Atasy3-1 early prophase I 

meiocytes, performed by collaborators, suggests that normal axis formation was 

disrupted in the mutant (M.P, N.C.). In addition, Atasy3 mutants displayed a 

reduction in chiasmata and the formation of univalents at metaphase I. These led to 

mis-segregation at both meiotic divisions resulting in the formation of aneuploid 

gametes and the subsequent loss of fertility in the mutants. That disruption of 

AtASY3 leads to the above phenotypes was verified using an allelism test, where 

homozygous Atasy3-1/Atasy3-2 double mutant exhibited the same meiotic defects as 

its parental lines. Additionally, a complementation analysis, where transforming the 

AtASY3 cDNA into Atasy3-1 rescued nearly wild-type levels of fertility, supports the 

above findings. 

 

AtASY3 is predicted to encode a ~88kDA protein, 793 AA in length, whose C-

terminal contains a putative coiled coil domain, a feature found in other meiotic axis 

proteins. The C-terminal of AtASY3 was used to generate a recombinant protein 

which was subsequently used to produce an antibody that could detect AtASY3. 

Immunolocalization studies using anti-ASY3 antibody revealed that in wild-type 

meiocytes AtASY3 localizes to meiotic chromosome axes in late G2/early leptotene 

as numerous foci, which gradually polymerize to form a continuous signal by late 

leptotene. Analsysis using deconvolution software suggests that AtASY3 co-localizes 

with the axis-associated hyper-abundant domains of AtASY1 at this stage (J.H., 

F.C.H.F., personal communication). Furthermore, the linear AtASY3 signal mostly co-
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localizes with the continuous signal of the SC TF component AtZYP1. These 

observations indicate that AtASY3 localizes to meiotic chromosome axes in 

Arabidopsis. 

 

Interestingly, homology analysis suggested that AtASY3 was conserved in Brassica, 

with BoASY3 exhibiting 77% sequence identity with AtASY3. Immunolocalization 

studies of B. oleracea meiocytes using anti-ASY3 antibody revealed that the antibody 

was able to detect BoASY3, which was found to display a similar loading pattern to 

AtASY3 during early prophase I. Furthermore, BoASY3 also co-localized with the 

axis-associated BoASY1 during early prophase I. These findings indicate that 

AtASY3 is conserved, both in sequence level and in functions, in Brassica. 

 

7.3.2. AtASY3 is required for normal levels of meiotic DSB and CO 

formation 

Immunolocalization analysis of the DSB marker γH2AX was carried out in order to 

analyse the status of meiotic DSB formation in Atasy3-1. This revealed that there 

was ~30% reduction in the number of γH2AX foci in the mutant suggesting that 

although DSBs were able to form in the mutant their numbers were moderately 

reduced to ~70% of the wild-type level. This finding is supported by a similar 

reduction in the number of early recombination proteins, AtRAD51, AtDMC1 and 

AtMSH4 in Atasy3-1.  
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Cytological analysis of Atasy3 mutants revealed that some of its chromosomes were 

not linked by any COs during metaphase I. FISH studies of Atasy3 metaphase I 

nuclei revealed that the mean chiasma frequency was 3.34 in the mutant. This was a 

~65% reduction compared to the chiasma frequency in wild-type. Furthermore, 

analysis of Atasy3-1/Atmsh4 revealed that the double mutant failed to form any 

chiasmata. This suggests that AtASY3 is required for the formation of both 

interference sensitive and insensitive COs. 

 

7.3.4. AtASY3 is required for normal AtASY1 localization 

A recent analysis of AtASY1 using deconvolution software suggests that instead of 

linearizing the protein forms evenly distributed axis-associated hyper-abundant 

domains (mean number of 160 per nucleus) during early prophase I. These were 

found to co-localize with AtASY3 at the chromosome axes during early prophase I. 

(J.H., F.C.H.F.). Analysis of Atasy3-1 revealed that this localization of AtASY1 was 

disrupted in the absence of AtASY3. Although AtASY1 was able to form axis-

associated domains in Atasy3-1, their mean number was significantly reduced to 74 

per nucleus. Moreover, these were unevenly distributed and distorted in appearance. 

These suggest that normal AtASY1 localization is dependent on AtASY3. 

 

Previous studies reported that loss of AtASY1 destabilizes AtDMC1 soon after its 

loading during early prophase I resulting in a loss of inter-homologue recombination 

(Sanchez-Moran et al., 2007). In Atasy3-1 the overall number of AtDMC1 was 
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moderately reduced to ~70% of the wild-type level. Nevertheless, timecourse studies 

using BrdU pulse labelling coupled with immunolocalization revealed that the residual 

AtDMC1 foci in Atasy3-1 remained localized to meiotic chromosomes throughout 

early prophase I. This suggest that the reduction of AtDMC1 foci in the mutant is 

more likely due to the loss of overall DSBs and the loading of the residual AtDMC1 is 

stabilized in Atasy3-1. This may be attributable to the remaining AtASY1 domains in 

Atasy3-1. Consistent with this, the remaining AtASY1 domains were virtually always 

found to be co-localized with AtDMC1 and γH2AX (J.H, F.C.H.F). However, these 

were not sufficient to maintain normal levels of inter-homologue recombination in the 

Atasy3-1.  

 

In accord with the above findings, AtASY1 was found to be epistatic to AtASY3 in 

terms of CO formation. In FISH studies, the Atasy3-1 single mutant was found to 

exhibit a reduction in its mean chiasma frequency from 9-10 in the wild-type to 3.34. 

This was significantly less severe than that of Atasy3-1/Atasy1 that displayed a mean 

chiasma frequency of 1.78, which was not significantly different from 1.88 in the 

Atasy1 single mutant. Interestingly, this inter-relationship was found to resemble that 

of Hop1 and Red1 in budding yeast with regards to DSB formation. Previous studies 

reported that hop1 mutant that lacks HOP1 entirely exhibits a stronger defect in DSB 

formation than red1, which possess reduced HOP1 (Rockmill and Roeder, 1990, 

Smith and Roeder, 1997). Assuming that such an inter-relationship is maintained in 

Arabidopsis, the higher number of chiasmata in Atasy3 compared to Atasy1 is likely 

due to the remaining AtASY1 domains in the former. 
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7.3.5. ASY3 interacts with ASY1 in Arabidopsis and Brassica  

Analysis of AtASY3 revealed that the protein is responsible for normal localization of 

AtASY1 onto meiotic chromosome axes. Furthermore, the two proteins were found to 

co-localize during early prophase I, suggesting the possibility of physical interaction 

between them. This led researchers in our lab to investigate a possible interaction 

between AtASY3 and AtASY1 in planta by a Co-IP experiment using anti-ASY1 

antibody. However, extracting sufficient amount of meiotic proteins from Arabidopsis 

was impractical due to the small size of its anthers. Hence, the researchers carried 

out the Co-IP using meiocytes from B. oleracea instead (K.O. and F.C.H.F., personal 

communication). This was a suitable alternative since BoASY1 has been reported to 

share 83% identity in amino acid sequence with AtASY1 and the anti-ASY1 antibody 

has been found to detect BoASY1 (Armstrong et al., 2002). Furthermore, analysis of 

AtASY3 revealed that it was 77% identical to BoASY3, which too was found to 

localize to meiotic chromosome axes similarly to the former in immunolocalization 

studies. The Co-IP was anticipated to separate the anti-ASY1 antibody bound to 

BoASY1 and any other recombination protein or proteins which formed a complex 

with the protein during meiosis. Following Co-IP, the resulting proteins were analysed 

using MS of tryptic peptides followed by homology searches against a combined 

Brassica database which also included full length amino acid sequences of BoASY1 

and BoASY3. This revealed that BoASY1 was identified as the top hit with 40 unique 

peptides corresponding to 397 out of the 599 amino acids (65% coverage) of the 

protein. Furthermore, BoASY3 was identified as the second hit with 28 peptides 

corresponding to 297 out of the 776 amino acids (38% coverage) of the protein. 

Additionally, neither of the two proteins were found in the control sample. This led the 
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researchers to suggest that BoASY3 and BoASY1 are able to interact in planta and 

may be components of a meiotic complex (K.O., E.R., K.M., F.C.H.F., personal 

communication). Since, BoASY3 and BoASY1 are conserved in Arabidopsis, it is 

highly likely that AtASY3 and AtASY1 also interacts with each other, similarly to their 

B. oleracea counterparts. 

 

The above findings prompted other researchers in our lab to determine whether 

AtASY3 and AtASY1 can directly interact with each other in a yeast two hybrid assay. 

For this purpose the researchers cloned full length AtASY3 and AtASY1 cDNAs as 

in-frame fusions with the GAL4 activator domain (AD) and the GAL4 DNA binding 

domain (DBD) respectively into two separate yeast two hybrid plasmids which were 

subsequently co-transformed into yeast. Addtionally, control co-transformations were 

also carried out where either of the two constructs was replaced by an empty vector. 

The principal behind this yeast two hybrid assay was that only if AtASY3 and AtASY1 

physically interacted with one another, the DBD and AD would be brought close 

together to reconstitute a functionally active factor that would activate expression of 

particular genes on the plasmids required for the yeast to grow on the corresponding 

selective media. The researchers found that under high stringency selection 

(−Leu/−Trp/−His/−Ade) yeast that expressed either one of the two genes were 

unable to grow on the selective media. However, under the same selection yeast was 

able to grow only when both AtASY3 and AtASY1 were co-expressed. This suggest 

that AtASY3 and AtASY1 are able to interact with each other directly, affirming the 

findings of the above Co-IP experiment (C.L., F.C.H.F., personal communication). 
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Additionally, the researchers carried out further similar assays in which several 

truncated regions of AtASY3 were fused with the AD instead of the full length 

AtASY3. This revealed that yeast that contained AtASY1 and residues 623-793 of 

AtASY3, and no other truncated forms of AtASY3, were able to grow on under high 

stringency selection (−Leu/−Trp/−His/−Ade). Interestingly, the researchers noted that 

this region of AtASY3 corresponded to the predicted coiled-coiled domain of the 

protein. This finding, therefore, suggests that the interaction between AtASY3 and 

AtASY1 is mediated via the coiled-coiled domain in AtASY3 (C.L., F.C.H.F., personal 

communication).   

 

7.3.6. AtASY3 shares functional similarities with RED1 

In budding yeast, the coiled coil protein RED1 forms the AE component of the meiotic 

SC and has been proposed to play an important role, together with HOP1, in 

mediating inter-homologue recombination during meiosis (Niu et al., 2005, Smith and 

Roeder, 1997). A previous study suggests that the mammalian protein, SYCP might 

be a structural analogue of RED1 as the former is predicted to possess a coiled coil 

domain and has been shown to localize to the LE of the mammalian SC (de los 

Santos and Hollingsworth, 1999). However, a functional orthologue of RED1 has yet 

to be identified in a multi-cellular organism. Analysis of AtASY3 suggests that the 

protein is also predicted to contain a coiled coil domain and shares 16.4% idendtity 

with RED1 in amino acid sequence. More importantly, AtASY3 has been found to 

share functional similarities with RED1. In budding yeast loss of RED1 disrupts the 

normal localization of the HORMA domain protein, HOP1 (Smith and Roeder, 1997). 
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Similarly, disruption of AtASY3 results in aberrant localization of the HORMA domain 

protein, AtASY1 during Arabidopsis meiosis. Additionally, Red1 has been shown to 

interact with HOP1 in Co-IP experiments and yeast two hybrid assays (Woltering et 

al., 2000). Yeast two hybrid data suggests that this interaction is dependent on the 

290 amino acids at the C-terminal of RED1. This region has been predicted to 

encode the coiled coil domain of RED1 (Woltering et al., 2000). Similarly, Co-IP 

experiments using Brassica meiocytes and anti-ASY1 antibody followed by MS 

analysis, performed by colleagues and collaborators, suggest a possible interaction 

between BoASY3 and BoASY1, the homologues of AtASY3 and AtASY1 respectively 

(K.O., E.R., K.M., F.C.H.F.). Furthermore, a direct interaction between AtASY3 and 

AtASY1 has been confirmed by yeast two hybrid assays, performed by colleagues in 

our lab. The analysis also revealed that the C-terminal of AtASY3, that is predicted to 

contain the coiled-coil domain, is essential for the interaction between the two 

proteins (C.L., F.C.H.F.). These findings highlight the striking similarities between 

AtASY3 and Red1 with regards to their inter-relationship with their corresponding 

HORMA domain proteins. Additionally, previous studies suggest that RED1 is 

required for normal levels of DSB formation during meiosis in budding yeast (Xu et 

al., 1997). Interestingly, Atasy3-1 mutant exhibits a ~30% decrease in meiotic DSBs, 

although the reduction was not as pronounced as that in red1 mutant, where a ~70% 

reduction in meiotic DSB formation has been reported (Xu et al., 1997). This 

suggests that, like RED1, AtASY3 is required for normal levels of meiotic DSB 

formation during meiosis.  
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Interestingly, AtASY3 was also found to exhibit 25.6% identity in amino acid 

sequence with OsPAIR3 in rice. Like AtASY3 and RED1, OsPAIR3 is predicted to 

contain a coiled-coil domain and has been shown to localize to the meiotic 

chromosome axes in rice (Wang et al., 2011, Yuan et al., 2009). Furthermore, 

localization of the rice HORMA domain protein OsPAIR2 has been found to be 

dependent on OsPAIR3 (Wang et al., 2010a). This inter-relationship is similar to that 

of AtASY3 and RED1 and their corresponding HORMA proteins. However, a direct 

interaction between OsPAIR3 and OsPAIR2 has not been shown yet. Nevertheless, 

Ospair3 mutants display similar phenotypes to Atasy3-1. Taken together, these 

observations suggest that like AtASY3, OsPAIR3 may also be a functional 

homologue of RED1. 

 

7.3.7. Putative roles of the axis protein AtASY3 in CO formation 

An important aspect of meiotic recombination is its close coupling with chromosome 

axes/SC (reviewed in Kleckner, 2006). Recently, several studies have focussed on 

the significance of this close association. These revealed that in addition to their 

structural roles, some meiotic axes/SC components are also involved in CO 

formation. In budding yeast, the axis proteins RED1 and HOP1 have been shown to 

be involved in DSB formation. It is proposed that the proteins are required to tether 

the DSB machinery to chromosome axes prior to DSB formation (Kim et al., 2010, 

Panizza et al., 2011). In accord with this, red1 mutants exhibit defect in DSB 

formation (Schwacha and Kleckner, 1997, Xu et al., 1997). Similarly, Atasy3-1 

mutants were found to exhibit ~30% reduction in DSB formation and abnormalities in 
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axis formation. Furthermore, analysis of AtASY3 suggests that it is likely to be a 

functional homologue of RED1. Hence, it is probable that AtASY3 functions similarly 

to RED1 and may be involved in organizing the meiotic axes such that it promotes 

normal level of DSB formation. 

    

In addition to its role in DSB formation, the axis protein RED1 has been proposed to 

form a complex with HOP1 and the kinase MEK1 in order to promote inter-

homologue recombination in budding yeast (Niu et al., 2005). It has been proposed 

that soon after DSB formation HOP1 is phosphorylated which causes it to dimerize 

and activate MEK1. MEK1 is then thought to phosphorylate one or more substrate(s) 

in the vicinity of the DSB which subsequently activates RED1 (Niu et al., 2005). It has 

been proposed that RED1 constrains the loading of the sister chromatid cohesion 

mediator, REC8 at DSB sites such that DSBs are repaired via inter-homologue 

interactions rather than inter-sister interactions (Kim et al., 2010). This is consistent 

with a reduction in chiasmata in the red1 mutant (Rockmill and Roeder, 1990, 

Schwacha and Kleckner, 1997). Similarly, Atasy3 mutant also exhibits a reduction in 

chiasma formation which, intriguingly, was greater in proportion than expected. 

Assuming that the ratio of COs to NCOs are maintained a ~30% reduction in meiotic 

DSBs, by simple extrapolation, should result in a ~30% decrease in the chiasma 

frequency of Atasy3. However, this was not the case as the mutant exhibits ~65% 

reduction in mean chiasma frequency from 9.76 in the wild-type to 3.34. This 

indicates that there is an additional loss of inter-homologue recombination and that a 

greater proportion of meiotic DSBs are repaired probably via inter-sister interactions 
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in Atasy3. This finding suggests that AtASY3 may be involved in mediating inter-

homologue recombination during Arabidopsis meiosis. Interestingly, in Arabidopsis, 

AtASY1 has recently been shown to play a key role in mediating inter-homologue 

recombination (Sanchez-Moran et al., 2007). Furthermore, our colleagues have been 

able to show an interaction between BoASY3 and BoASY1, homologues of AtASY3 

and AtASY1 respectively, in planta (K.O., E.R, K.M, F.C.H.F) as well as a direct 

interaction between AtASY3 and AtASY1 (C.L., F.C.H.F). Therefore, it is highly likely 

that AtASY3 interacts with AtASY1, early in the recombination pathway, to form a 

bias that promotes CO formation via inter-homologue recombination rather than inter-

sister interactions, probably using similar mechanisms to their yeast counterparts 

RED1 and HOP1 respectively. 

 

7.3.8. Future perspectives 

Post-translational modifications, particularly sumoylation and phosphorylation, are 

known to be essential for normal functioning of chromosome axis/SC proteins during 

meiosis.  

 

7.3.8.1. Putative interaction of SUMO with AtASY3 

The post-translational modification of SMT3, a small ubiquitin-like modifier (SUMO), 

has been shown to control SC assembly in budding yeast. In budding yeast, the SC 

initiation protein ZIP3 acts as an E3 ligase which causes SMT3 to form conjugates 

along the two AEs. These SMT3 conjugates interact with the C-terminal globular 
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domains of the SC TF component, ZIP1 to drive SC assembly between homologous 

chromosomes during early prophase I (Cheng et al., 2006). Recently, sumoylation of 

the budding yeast AE component, RED1 has also been proposed to be important for 

SC assembly. This modification was found to be dependent on the lysine residues in 

the RED1 C-terminal (Eichinger and Jentsch, 2010). In addition to being SUMO 

modified RED1 was also found to bind the 9-1-1 meiotic checkpoint complex 

(DDC1/MEC3/RAD17) (Eichinger and Jentsch, 2010). These two physical 

interactions have been proposed to ensure timely SC formation during meiosis. 

However, only a small proportion of RED1 was found to be covalently modified by 

SUMO during meiosis. Furthermore, red1KR mutants that expressed sumoylation 

defective RED1 were also found to be capable of forming normal meiotic SC, 

similarly to the wild-type, suggesting that sumoylation of RED1 was not necessary of 

SC assembly but only its timely formation (Eichinger and Jentsch, 2010). 

Interestingly, a recent study suggests that interaction between RED1 and SUMO 

chains instead play an important role in SC assembly (Lin et al., 2010). Red1 has 

previously been shown to directly interact with SMT3 in a yeast two hybrid screen (Ito 

et al., 2001). A more recent study identified two putative SMT3-interacting motifs, 

SIM1 (ILESTTVID) and SIM2 (ISII), in the RED1 C-terminal, which has been shown 

to strongly interact with SMT3 chains in yeast two hybrid assays (Lin et al., 2010). A 

detailed analysis revealed that SIM2 was better than SIM1 in binding Smt3 chains. 

Consistent with this, V5-red1I758R mutants with a mutation in SIM2 were found to 

exhibit almost no spore viability similarly to the asynaptic red1 null mutant, while V5-

red12R with a mutation in SIM1 were found to exhibit much less severe defect in 

spore viability. Interestingly, RED1 stability, chromosomal targeting, phosphorylation, 
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oligomerization and interaction with HOP1 were all found to be unaffected in both V5-

red1I758R and V5-red12R mutants. These observations suggest that the meiotic 

defects in V5-red1I758R and V5-red12R were due to a disruption in the interaction of 

RED1 with SUMO chains (Lin et al., 2010). Additionally, the study found that only the 

C-terminal, containing the two SIM domains, of RED1 was able to directly interact 

with the globular domain at the ZIP1 C-terminal, which is known to bind Smt3 chains. 

This led the authors to propose that RED1 and ZIP1 non-covalently sandwich SUMO 

chains to mediate SC assembly during meiosis (Lin et al., 2010). Another important 

finding of the study was that HOP1 was not phosphorylated in V5-red1I758R and V5-

red13R (where both SIM1 and SIM2 were mutated), similarly to red1 null mutant. This 

suggested that HOP1 phosphorylation, which is known be dependent on the kinases 

MEC1 and TEL1, does not occur in the absence of RED1-SUMO chain interaction 

(Lin et al., 2010). HOP1 phosphorylation has been shown to be required for the 

activation of MEK1, whose kinase activity is essential for forming a bias towards 

inter-homologue recombination rather than inter-sister repair of DSBs during meiotic 

recombination (Carballo et al., 2008, Niu et al., 2007, Niu et al., 2005). The above 

findings, therefore, indicate that the establishment of this bias is essentially 

dependent on interaction of RED1 with SUMO chains. This is consistent with the 

finding that both red1I758R and V5-red13R exhibit nearly no viable spores similarly to 

red1 null mutant (Lin et al., 2010).  

 

Analysis of Arabidopsis AtASY3 revealed that it is a functional homologue of RED1. 

Atasy3-1 mutants fail to form normal SC during early prophase I. Immunolocalization 
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studies indicate that instead of linearizing into a continuous signal at pachytene the 

budding yeast ZIP1 homologue, AtZYP1 forms distorted foci and short stretches. 

This suggests that although SC nucleation occurs it fails to extend properly in the 

mutant. Assuming that, like budding yeast, AtZYP1-SUMO chain-AtASY3 interaction 

is necessary for normal SC assembly the above finding would suggest that any 

remaining AtZYP1-SUMO chain interaction in Atasy3 mutant is insufficient to mediate 

normal SC assembly in the absence of AtASY3. Alternatively, the loss of AtASY3 

may disrupt the proper alignment of homologue axes which may in turn prevent 

normal SC elongation along the AEs. Hence, further work is necessary to determine 

whether AtASY3 or AtZYP1 can interact with SUMO proteins and whether the two 

can interact with each other, although this may be particularly difficult as AtZYP1 is 

encoded in two adjacent genes on the same chromosome and a disruption of either 

only leads to a mild effect on fertility. 

 

 AtASY3 was also found to interact with AtASY1, similarly to their budding yeast 

homologues RED1 and HOP1 respectively, to promote a bias towards inter-

homologue rather than inter-sister recombination. In budding yeast this process 

involved the activation of MEK1 via the RED1-SUMO chain-ZIP1 dependent 

phosphorylation of HOP1 (Carballo et al., 2008, Lin et al., 2010, Niu et al., 2005). 

Although a homologue of MEK1 has not yet been identified in Arabidopsis there is 

considerable evidence suggesting that AtASY1 phosphorylation is essential for 

normal levels of CO formation (described in Chapter 6). So far, it is unknown whether 

AtASY1 phosphoryation is dependent on AtASY3. However, given the extensive 
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similarities in the inter-relationship between AtASY1 and AtASY3 and their yeast 

counterparts it may be the case in Arabidopsis, although this needs to be verified 

through future studies. A notable observation was the lack of conservation of the 

RED1 lysine residues and SIM domains in the AtASY3 amino acid sequence, 

questioning the possibility of any potential SUMO interactions. Apart from showing a 

direct interaction one way of shedding more light into this may be by the detection of 

SUMO chains on chromosome axis/SC during early prophase I. This may be carried 

out via dual-immunolcalization using antibodies against SUMO and axis/SC proteins. 

However, given that SUMO modifications may be required for normal functioning of 

other meiotic proteins there may be some cross reactivity during immunolocalization. 

Nevertheless, it is worth analysing the effect of SUMO-mediated modifications on 

AtASY3 in further detail. 

 

7.8.3.2. Putative phosphorylation of AtASY3 

Recent studies in budding yeast indicate that RED1 binds to SUMO chains to 

promote MEC1/TEL1-mediated phosphorylation of HOP1, which leads to the 

activation of MEK1 and the subsequent prevention of DMC1-independent repair of 

meiotic DSBs (Carballo et al., 2008, Lin et al., 2010, Niu et al., 2005). Furthermore, 

RED1 has been shown to directly interact with MEC3 and DDC1, two of the three 

components of the 9-1-1 meiotic checkpoint complex (Eichinger and Jentsch, 2010). 

It has been suggested that essential components of the MEC1/TEL1 DNA damage 

checkpoint pathway and the 9-1-1 complex promote MEK1-dependent 

phosphorylation of RED1 (Hong and Roeder, 2002). This is consistent with previous 
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studies which reported that RED1 is a phosphoprotein, which is phosphorylated by 

MEK1 and dephosphorylated by protein phosphatase type I (GLC7) (Bailis and 

Roeder, 1998, 2000, de los Santos and Hollingsworth, 1999). It has been proposed 

that MEK1-phosphorylated RED1 prevents exit from pachytene until meiotic 

recombination is complete, when RED1 is dephosphorylated by GLC7 (Roeder and 

Bailis, 2000). This proposal highlights the importance of RED1 phosphorylation 

during meiosis. However, the amino acid residues responsible for this modification 

was not mapped or verified during these earlier studies. Subsequent research 

suggests that RED1 is not a target of MEK1-dependent phosphorylation, instead, it 

acts upstream of the kinase (Hochwagen and Amon, 2006, Wan et al., 2004). It has 

been proposed that RED1 is phosphorylated by an unknown kinase and that the 

subsequent phosphorylated RED1 interacts with MEK1 to recruit the kinase to DSB 

sites. MEK1 is then thought be activated to promote DMC1-independent repair of 

DSBs (Wan et al., 2004). Nevertheless, this proposal also emphasizes the 

importance of RED1 phosphorylation during meiosis. More recent studies, however, 

indicate that phosphorylation of RED1 may not be important for normal meiosis (Lai 

et al., 2011). Western blotting timecourse analysis of meiotic proteins separated by 

SDS-PAGE revealed that both phosphorylated and non-phosphorylated RED1 were 

detected in spo11∆ and mek1∆ diploid mutants, indicating that RED1 

phosphorylation was neither recombination specific nor MEK1-dependent. 

Additionally, RED1 was found to be phosphorylated in rad24∆tel1∆ (deficient in 

MEC1/TEL1 function) suggesting that RED1 phosphorylation is independent of 

MEC1/TEL1 activity. Furthermore, the studies suggest that RED1 de-phosphorylation 

was also not required for pachytene exit during meiosis (Lai et al., 2011). RED1 was 
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found to be a substrate for CDC28 protein kinase. RED1 is predicted to contain 

seven S/T-P or S-X-K-K motifs which form putative target sites for CDC28 kinase. 

Importantly, V5-red17A mutant, in which all the seven CDC28 target sites were 

mutated, displayed hypo-phosphorylated RED1 but similar spore viability as the wild-

type indicating that phosphorylation at these sites are not necessary for normal 

RED1 functions during meiosis (Lai et al., 2011). Interestingly, although reduced in 

amount RED1 phosphorylation was not entirely absent in V5-red17A, suggesting the 

presence of a CDC28-independent pathway for RED1 phosphorylation. Subsequent 

studies revealed that V5-red1I758R mutant, which is defective in RED1-SUMO 

interactions, also displayed hypo-phosphorylated RED1. Furthermore, V5-red1I758,7A 

synthetic mutant were found to generate few viable spores suggesting that RED1 

phosphorylation in V5-red1I758R was CDC28-dependent while that in V5-red17A was 

CDC28-independent (Lai et al., 2011). Although a kinase for the latter pathway was 

not identified the researchers mapped four putative sites for CDC28-independent 

phophoryation in RED1. When each of these were mutated there was loss of RED1 

phosphorylation in V5-red17A background, however, there was no loss of any spore 

viability compared to the wild-type. Taken together, the above findings led the 

researchers to conclude that although RED1 is phosphorylated, this modification is 

not essential for normal meiosis (Lai et al., 2011). Intriguingly, CDC28-independent 

RED1 phosphorylation was found to be dependent on HOP1 and RED1-SUMO 

interactions (Lai et al., 2011). Similarly, HOP1 phosphorylation was found to be 

dependent on RED1 and RED1-SUMO interactions in a previous study (Lin et al., 

2010). These observations suggest that HOP1-RED1-SUMO interaction may mediate 
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RED1 and HOP1 phosphorylation for the genetic events during meiosis (Lai et al., 

2011). 

 

AtASY3 was shown to interact with AtASY1, similarly like their budding yeast 

counterparts RED1 and HOP1, to mediate inter-homologue recombination in 

Arabidopsis. It is highly likely that the mechanisms and therefore the post-

translational modifications underlying this process are similar to that in budding 

yeast. Consistent with this, recent data suggests that phosphorylation of AtASY1 is 

essential for normal levels of inter-homologue recombination (detailed in Chapter 6). 

Since RED1 is a phosphoprotein and its phosphorylation may be important for 

normal meiosis it is highly likely that this too may be the case for AtASY3, given the 

functional similarities between the two. Although phosphorylation of AtASY3 was not 

verified during this study one way validating this would be to detect AtASY3 in protein 

extracts from Arabidopsis meiocytes by western blotting using the anti-ASY3 

antibody. Assuming that anti-ASY3 antibody would be able to detect AtASY3 in 

protein extracts from plant tissues, if AtASY3 is phosphorylated, this might be 

detected via band shifts if they are noticeable. An alternative option for detecting 

AtASY3 phosphorylation may be the identification on phosphorylation target sites on 

the protein. Based on the little amino acid sequence homology, which is often the 

case for meiotic axis proteins from different organisms, there appears to be no clear 

conservation of target sites which are similar to those responsible for CDC28-

independent phosphorylation of RED1 in budding yeast. Nevertheless, out of the 

seven S/T-P sites responsible for CDC28-dependent phosphorylation of RED1 only 
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two (S550 and S631) appears to be conserved in AtASY3. The significance of these, 

if any, may be determined via targeted mutations in future studies. Other putative 

phosphorylation sites include S/TQ motifs which are known potential targets of 

serine/threonine kinases. Targets of serine/threonine kinases usually contain SCDs 

in which three S/TQ motifs are found within a region of 100 amino acid residues 

(Traven and Heierhorst, 2005). Although homology searches indicate that AtASY3 

contains six putative S/TQ motifs they do not form any SCD and hence are unlikely to 

be phosphorylation target sites. Intriguingly, three of the putative S/TQ motifs (S15, 

S28 and S177) in AtASY3 are conserved in its Brassica homologue BoASY3, 

suggesting that they may potentially be of some functional significance. Hence it may 

be worth analysing these sites in more detail via site directed mutagenesis studies. It 

may also be possible to identify a putative Arabidopsis protein kinase that may be 

involved in phosphorylating AtASY3 via means of sequence or functional homology 

analysis. However, due to the functional redundancy between kinases the process 

may prove somewhat difficult. Nevertheless, analysing phosphorylation of AtASY3 

remains vastly important for understanding its effect on the control of the protein, 

given that this avenue is subject to immense debate at the moment. 
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7.4. AtASY1 phosphorylation is essential for mediating inter-

homologue recombination 

 

7.4.1. Atasy1-T295 mutants exhibit defective meiosis  

In budding yeast, the axis proteins HOP1 along with RED1 and MEK1 are essential 

for establishing a bias that promotes inter-homologue recombination rather than 

inter-sister repair of DSBs during meiosis (Niu et al., 2005). This process is thought to 

be dependent on post-translational modifications of the above proteins (Carballo et 

al., 2008, de los Santos and Hollingsworth, 1999, Wan et al., 2004). One in particular 

is the phosphorylation of HOP1. Recent studies indicate that HOP1 is a target of the 

serine/threonine kinase, MEC1/TEL1. HOP1 is predicted to contain eight S/TQ 

motifs, three of which (S298, S311 and T318) form an SCD that acts as a target site 

for MEC/TEL1 phosphorylation. Studies revealed that mutation of T at residue 318 to 

A conferred a hop1 mutant phenotype and resulted in the most severe reduction in 

spore viability (Carballo et al., 2008). Interestingly, a previous analysis in our lab 

found that HOP1 T318 is conserved at residue T295 in the Arabidopsis meiosis axis 

protein, AtASY1. This led to the construction of an AtASY1-T295A transgene that 

encoded AtASY1 in which the T residue at position 295 was mutated to A. This 

transgene was transformed via a vector into Atasy1 mutant plants in order to 

investigate whether T295 was of similar significance to HOP1 T318 (E.C., F.C.H.F.). 

A later study identified a line, Atasy1-T295A, from the resulting transformants that 

exhibited the highest AtASY1 signal in immunolocalization studies (A.M., F.C.H.F.). 

Subsequent molecular characterization of Atasy1-T295A confirmed the presence of 

T-DNA, the transgene and the point mutation in the mutant. Analysis of the Atasy1-
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T295A revealed that although the mutant displayed normal vegetative growth it 

possessed significantly reduced fertility compared to the wild-type. The reduction in 

seed-set was found to be similar to the levels observed in Atasy1 mutant. Moreover, 

this reduction in fertility is consistent with a meiotic defect. Cytological analysis of 

Atasy1-T295A revealed that the mutant failed to undergo synapsis. Furthermore, 

Atasy1-T295A failed to form normal levels of chiasmata during meiosis. This results 

in mis-segregation during meiotic divisions resulting in the formation of aneuploid 

gametes. The above meiotic defects were reminiscent to those of Atasy1 (Caryl et 

al., 2000). More importantly, they suggest that even though AtASY1-T295A 

transgene is expressed in Atasy1-T295A, they failed to undergo normal synapsis and 

recombination, indicating that the mutation of T295 in AtASY1 leads meiotic defects, 

which are similar to those of Atasy1. 

 

7.4.2. AtASY1 T295 is essential for normal levels of inter-homologue 

recombination  

Previous immunolocalization studies detected an axis-associated signal using anti-

ASY1 antibody in Atasy1-T295A mutant. This signal is likely to be AtASY1T295A, 

suggesting that the AtASY1-T295A transgene is expressed in the mutant. 

Interestingly, analysis of AtASY1T295A revealed that the protein formed numerous 

thick aberrant foci on meiotic chromosome axes during early prophase I in Atasy1-

T295A. This was in contrast to previous studies which reported that AtASY1 forms a 

distinct linear axis-associated signal in prophase I (Armstrong et al., 2002). However, 

recent studies in wild-type meiocytes using deconvolution software suggests that  
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instead of forming a linear signal AtASY1 is distributed along the meiotic axes as a 

series of hyper-abundant domains that are separated by stretches of lower 

abundance (J.H., F.C.H.F.). Hence, it is likely that AtASY1T295 foci in Atasy1-T295A 

are essentially similar to the ASY1 domains in wild-type, although it is apparent that 

some of these domains are lost in Atasy1-T295A. Nevertheless, the immulocalization 

studies suggest that AtASY1T295A is able to localize to meiotic chromosomes in 

Atasy1-T295A.  

 

To validate the presence of AtASY1T295A, meiotic proteins were extracted from 5 

Atasy1-T295A plants, an Atasy1 mutant and a wild-type. These were subjected to 

SDS-PAGE followed by western blotting using anti-ASY1 antibody. This revealed that 

the antibody was able to detect a band corresponding to AtASY1 in the protein 

sample from the wild-type but not in that of Atasy1 mutant. More interestingly, the 

antibody was also able to detect a similar band in samples from all 5 Atasy1-T295A 

plants confirming that AtASY1T295A is indeed present in Atasy1-T295A mutants. This 

finding is consistent with previous immunolocalization studies of AtASY1T295A. Taken 

together, these observations indicate that AtASY1T295A, which bears a mutation in 

T295 to A, can localize to chromosome axes during meiosis, however, it is unable to 

perform the normal functions of AtASY1. AtASY1 has previously been shown to 

promote AtDMC1-mediated inter-homologue recombination (Sanchez-Moran et al., 

2007). Therefore, it appears that T295 is essential for the above function of AtASY1. 

This is consistent with the loss of chiasmata in Atasy1-T295A. Moreover, T295 is 

predicted to be a target site for serine/threonine kinase-mediated phosphorylation of 



250 

 

AtASY1. Hence, it is likely that phosphorylation of AtASY1 at T295 may be essential 

for ensuring normal levels of CO formation between homologous chromosomes 

during meiosis. Interestingly, there was no evidence of chromosome fragmentation in 

Atasy1-T295A, suggesting that DSBs are repaired via AtDMC1-independent 

pathway. This suggests AtASY1 phosphorylation is likely to function by inhibiting 

inter-sister interactions rather than promoting inter-homologue recombination. This is 

in accord with the proposed mode of action of AtASY1 (Sanchez-Moran et al., 2007). 

Additionally this is also consistent with the observation that phosphorylation of HOP1, 

the homologue of AtASY1, is essential for establishing a bias towards inter-

homologue recombination rather than inter-sister interactions in budding yeast 

(Carballo et al., 2008).  

 

7.4.3. Further work 

Analysis of Atasy1-T295A suggests that AtASY1 is subjected to phosphorylation. 

However, no phosphorylated forms were noticeable in western blots of Arabidopsis 

meiotic proteins using anti-ASY1 antibody. Hence, to detect phosphorylated ASY1 a 

2D-PAGE, which separates proteins based on their pI and molecular weight, was 

performed followed by western blotting using anti-ASY1 antibody. Due to the difficulty 

in extracting large amounts of proteins from Arabidopsis meiocytes the study was 

performed using meiocytes from its close relative, B. oleracea. Although the study 

lacked an appropriate control the anti-ASY1 antibody, which has previously been 

shown to detect BoASY1 (Armstrong et al., 2002), was able to detect several dot-like 

signals which were consistent in size with BoASY1. Hence, based on the sizes of 
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these signals they may correspond to several phosphorylated forms of BoASY1. This 

finding suggests that AtASY1, homologue of BoASY1, is also phosphorylated during 

Arabidopsis meiosis. However, the 2D-PAGE data was inconclusive, as the anti-

ASY1 antibody failed to detect BoASY1 in the control samples. Furthermore, the 

blots displayed extensive background which made it difficult to quantify the number of 

dot-like signals in them. Hence, repeating this study may lead to more conclusive 

data regarding AtASY1 phosphorylation. Moreover, using a longer immobiline strip 

with less pH variation may significantly improve the resolution of signals in future 

studies. During the 2D-PAGE analysis a sample of Brassica meiotic protein extracts 

were treated with phosphatase inhibitor while another was left untreated. Comparison 

of their subsequent blots indicated a notable difference in the distribution of signals 

between the two blots. In the blot from the untreated sample all the dot-like signals 

were spaced adjacent to each other in a cluster. In contrast, in the blot of the treated 

sample two of the dot-like signals were spaced apart from the cluster of the 

remaining signals. This may suggest that some phosphorylated forms of AtASY1 

which may be lost in the untreated sample may be preserved when treated with 

phosphatase inhibitor. Therefore, it may be worth repeating this experiment, but with 

the addition of a further treatment with a phosphatase. Phosphatases are known to 

cleave phosphate groups, hence it would allow a better comparison between 

phosphorylated and non-phosphoryated forms of AtASY1. 

 

Another aspect worth analysing in further detail is the localization of AtASY1T295A 

during prophase I using deconvolution software. Analysis of AtASY1T295A localization 
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in relation to other axis and recombination proteins may help to understand the 

spatial relationship between them and provide a better understanding of the basis of 

the defects in CO formation in Atasy1-T295A. Since, CO formation is reduced in 

Atasy1-T295A it is conceivable that some of these may be due to a reduction in DSB 

formation in Atasy1-T295A. This is consistent with the loss of normal levels of DSB 

formation in budding yeast mutants that are defective in HOP1, the homologue of 

AtASY1 (Schwacha and Kleckner, 1994). However, this is unlikely as Atasy1 mutants 

display almost normal levels of DSB formation (J.H., F.C.H.F.).  

 

Further analysis of AtASY1 may also be focussed on determining the significance of 

the remaining S/TQ motifs in AtASY1. In AtASY1 the residues S266 and T268 

together with T295 form an SCD, the target site of serine/threonine kinases. 

Analysing the effects of mutating these sites may aide in understanding their 

significance. Furthermore, AtASY1 is predicted to contain four more S/TQ sites, three 

of which (S566, S569 and S593) are predicted to form an SCD. It is worth 

determining the importance of this second SCD and the sites within it. It may also be 

important to identify the kinase(s) responsible for AtASY1 phosphorylation. Since 

Hop1 has been shown to be a substrate for phosphorylation by MEC1/TEL1 

(Carballo et al., 2008), it is likely that their mammalian counterparts ATR/ATM may 

be responsible for phosphorylating AtASY1. However, this needs to be verified, 

possibly via comparing the defects in Atasy1-T295A with those in Atatr/Atatm double 

mutant. Additionally, phosphorylation of budding yeast HOP1 was found to be 

dependent on RED1 and vice versa (Lai et al., 2011, Lin et al., 2010). Recent data 
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indicates that their Arabidopsis homologues, AtASY1 and AtASY3 exhibit close inter-

relationship during meiosis. Therefore, future work may also focus on the impact, if 

any, of AtASY1 phosphorylation on AtASY3 and vice versa, if the latter is found to be 

phosphorylated. 

 

 

7.5. Final word 

The studies in this project provide further insight into the role of chromosome axis/SC 

proteins in the control of meiotic CO formation. Additionally, they highlight the fact 

that although meiotic axis/SC components between different species share limited 

primary sequence homology they display a close functional relationship that is 

conserved between species. 
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9.1. GENERAL BUFFERS AND SOLUTIONS 

CYTOLOGY 

 1x PBS 

 

  
Phosphate Buffer Saline (Sigma) 1 tablet per 100ml SDW   
(pH 7) 

  

  Citrate Buffer 

 

  
Citric acid    0.1 M 

Sodium citrate 0.1 M 

  Diluted 1:10 with SDW (pH 5.4) 
 

  

  20x SSC 

 

  
NaCI 3 M 

Trisodium citrate 300 mM 

  pH 7 using HCl 
 

  

  Alexander Stain 

 

  
Ethanol 95% 10 ml 

Malachite green (1% in 95% Ethanol)      1 ml 

Fuchsin acid (1% in water) 5 ml 

Orange G (1% in water) 0.5 ml 

Phenol 5g 

Chloral hydrate 5g 

Glacial acetic acid 2 ml 

Glycerol 25 ml 

Distilled water 50 ml 
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NUCLEIC ACID MANIPULATIONS 

  

     

     DNA Loading Buffer 

 

  LB Medium 

 

     
Bromophenol blue  50µl 

 
1-1bacto-tryptone 10g 

SDW 138µl 
 

1-1 bacto-yeast extract 5g 

   
NaCI 10g 

     

     5x TBE 

  

LB Agar 

 

     
Tris 0.445 M 

 
1-1bacto-tryptone 10g 

Boric acid 0.445 M 
 

1-1 bacto-yeast extract 5g 

EDTA 0.01 M 
 

NaCI 10g 

   
Bacto-agar 15g 

  
   

DNA Extraction Buffer 

 
Media was prepared in SDW and 

  
 

sterilised by autoclaving at 15 psi 

KCl 0.25 M 
 

C for 20 min. 
 EDTA 10 mM 

   
Tris-HCl 100 mM 

   

     

     Dilution Buffer 

    3x BSA in water 
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PROTEIN MANIPULATIONS 

  

    

    5x Protein Loading Buffer (PLB) Lysis Buffer 

 
Tris-HCl (pH 6.8) 12.5%(v/v) 

  SDS 2%(w/v) Tris HCl 50 mM 

Glycerol 10%(v/v) NaCI 100 mM 

B-Mercatoethanol 5%(v/v) EDTA 1 mM 

Bromophenol blue 0.001%(w/v) 
  

  

pH 8 
 

    1x Reservoir Buffer 

   
Tris 25 mM 

Denaturing Buffer 

 
Glycine 192 mM 

  
SDS 0.1 %(w/v) NaH2PO4  100 mM 

  
Tris HCl 10 mM 

pH 8.3 
 

Urea pH 8 8 M 

    

    Western Transfer Buffer 

 

Coomassie Blue Stain 

    
Methanol 20 %(v/v) Coomassie Blue  1% 

Sodium hydrogen carbonate 0.01 M SDW 45 %(v/v) 

Sodium carbonate 3.0mM Methanol 45 %(v/v) 

  

Glacial acetic acid 10% 

    

    Milk Block 

 

Destain 

 
PBS 1x 

  Milk powder 5% (w/v) Methanol 30 %(v/v) 

  
Glacial acetic acid 10 %(v/v) 

    



274 

 

 

Elution Buffer 

   

    
Tris HCl 50 mM 

  NaCI 300 mM 
  Urea 8 M 
  Varying concentrations of Imidazol, pH 8 
  

 

 

Rehydration Buffer 

 

IP Buffer 

 
Urea 8 M Tris HCl (pH 7.5) 20 mM 

CHAPS 2% NaCI 150 mM 

Bromophenol Blue Few grains Glycerol 10% 

  
EDTA 2 mM 

    Equilibration Buffer 

   
Tris HCl (pH 8.8) 50 mM 

  
Urea 6 M 

  
Glycerol 30% 

  
SDS 2% 

  
Bromophenol Blue Few grains 
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9.2. List of primers 

 

 

 

Other name Sequence (5' - 3') 

Tm 

(˚C) 
Purpose 

T7 promoter   TAATACGACTCACTATAGGG   

Sequencing M13 forward   TGACCGGCAGCAAAATG   

M13 reverse   AACAGCTATGACCATG   

Oligo dt 24   TTTTTTTTTTTTTTTTTTTTTTTT 42.2 RT-PCR 

GAPD-N GAPD-N CTTGAAGGGTGGTGCCAAGAAGG 64.2 
GAPD 

expression 
GAPD–C  GAPD–C  CCTGTTGTCGCCAACGAAGTCAG 64.2 
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LB3  Sail Lb3 TTCATAACCAATCTCGATACAC 54.7 

Genotyping 

LBb1.3  Salk LBb1.3  ATTTTGCCGATTTCGGAAC 52.4 

Wisc LB   AACGTCCGCAATGTGTTAAGTTGT 62.2 

DMC1A   CCTGCAATGGTCTCATGATGCATA 63 

DMC1B   GATGCAATCGATATCAGCCAATTTTAGAC 62.4 

DMC1C   AGGTACTCTGTCTCTCAATG 55.3 

DMC1D   ACTAATCCTTCGCGTCAGCAATGC 62.7 

RAD51NO8LP   TTCAGGATGGTGTCTCAGAGC 59.8 

RAD51NO8RP   ATGCCAAGGTTGACAAGATTG 55.9 

SPO11F4   GAGGATATCCAGATGTCTC 54.5 
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SPO11 R1   AGGAGAGCTTACTTCACGAC 52.2 

MSH4 F3   CGCATATGGAGATTGGTTTAGACACTTAC 63.9 

MSH4 R2   GCGTTGTGGAATGGATCAATG 57.9 

4AF1  AT1G10930EXF2 ACCTAAGACCTGGCGTTACTC 59.8 
AtRECQ4A 

expression 
4AR1 AT1G10930EXR1 CAGGTGTGACATATAGCAAC 55.3 

4BF1 BLMBEXFWD1 CTGGTTCTGAAGAGAGGGAAC 59.8 
AtRECQ4B 

expression 
4BR1 BLMBEXREV1 GCTGGTTGTTGCAGTAGCTG 59.4 

AT1G10930TDNA(2)   GCTCTGATCGTGTTGGACAG 59.4 

AtRECQ4A 

genotyping 
AT1G10930TDNA(2R

) 
  GAATAAGAGACACAAGTGGAG 55.9 
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At1g60930 F1   GCTGGTTGTTGCAGTAGCTG 59.4 
AtRECQ4B 

genotyping 
At1g60930R1   TTCAGGAGCTGAGCTAG 59.4 

ASY3-1-F1 676F1 AGGAGATGCTTCTGGAGAAC 57.3 

AtASY3 

genotyping 

ASY3-1-R1 676R1 CTGGTGCCAACTTAGGTCGC 61.4 

ASY3-2-F1 H01LP CACGACACGTCCAATGCCC 61 

ASY3-2-R1 H01RP CGAGCAAGAGCAATACTCCAC 59.8 

ASY3-3-F1 971LP CCAGACTCTCATGTTCCACAAC 60.3 

ASY3-3-R1 971RP GCGAGACTCAGATGGTTCAAG 59.8 

ASY3-EX-F1  ASY3-Ex-LP  GAAGAGCCATAGCGAACAATGC 60.3 
AtASY3 

expression 
ASY3-EX-R1 ASY3-Ex-RP  CATCCACAGAGCAAAGCCCGG 63.7 
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ASY3-CM-F1 
RED1_CDNA_FWD

1 
CCCTCGAGAACCGACACACCATTTTGAG 68 

AtASY3 

complementaio

n 

ASY3-CM-R1 
RED1_CDNA_REV

1 
GCACTAGTATATATCAAGATATCAATAACC 59.9 

COMP-GENO-676LP   GCCGCTTCAGTTTATGAAGG 57.3 

COMP-GENO-676RP   CGAGCAAGAGCAATACTCCAC 59.8 

ASY3-AB-F1 RED1F1 CCATATGATCAGCCCCGAAGAAAGAG 60 

ASY3 antibody 

ASY3-AB-R1 RED1R1 CGCTCGAGATCATCCCTCAAACATTCTGCGAC 65 

RED1 CDNA F1   GGTCTCCGAGATCGTCTCATCGG 66 

AtASY3 cDNA 

sequencing 
RED1 CDNA F2   GGTGCCAACTTAGGTCGCAAGTGC 66.1 

RED1 CDNA F3   CCTCTCAAGGGACAACAGGCC 63.7 
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RED1 CDNA F4   GCCGAAACAAGATTACAAGAGC 58.4 

3RACE17AP   
GACTCGAGTCGACATCGATTTTTTTTTTTTTTTT

TT 
62.6 

BoASY3 3ˊ 

RACE 

3RACE17AP   GACTCGAGTCGACATCGA 56 

BRA486-3RACEF1   GGGCAATGGACGTGTTACCTCGTC 66.1 

BRA486-3RACEF2   CAGAGGTGGATGAAGATGAAGGC 62.4 

BRAS4486F2   GCCATATGCCTGAAGCATCTCCTTTGC 66.5 

BoASY3 

sequencing 

BRAS4486F3   ATGAGCGAATACAGAAGCTTCGGCAG 64.8 

BRAS4486F4   GCACCAATCTCAAGTCCTTCCCCCTG 68 

BRAS4486R2   GCATTGTCCAGTTTTGTCTCGATGCCTCC 68.1 
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BO486TAQF1   GATGGATAAGAGTCCTGAGAGG 60.3 

BO486TAQF2   GCTGTAAAATGCCGCAAGGTTC 60.3 

BO486TAQR1   GCGGCAAGACTGCAGATGGAGG 65.8 

BO486TAQR2   CAGAATCCCATCAGCTTCATCC 60.3 

BO486TAQR3   GGATGCAAAGGAGATGCTTCAGG 62.4 

ASY1-F   GCAGAGATCACTGAGCAGGACTCG 66.1 
AtASY1 

genoyping 
ASY1-R   CGGACCATCAACAGTTTCACATATGC 63.2 

ASY1TA-TRAN-IDF1   CGCTAAAGGTCAAGAGCGTG 53.8 
AtASY1 T295A 

sequencing 
ASY1TA-TRAN-IDR1   GAGAGACAAGACACCAGAGAG 54.4 
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e1002507.  
 
Higgins, J. D., Ferdous, M., Osman, K. and Franklin, F. C. H. (2011), The 
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