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Abstract  

A common theme among the two research projects is the dichotomy of biological 

molecules or pathways contributing to both physiological and pathophysiological 

processes in vivo. Reactive oxygen species (ROS) are involved in redox signalling and 

phagocytosis, however when present in excess ROS attack cellular structures contributing 

to the progression of a number of degenerative pathologies such as Alzheimer’s and 

cardiovascular disease. Project 1 investigates the DNA repair protein OGG1 which 

counteracts the reactive species damage by repairing oxidised DNA base lesions. The 

DNA glycosylase OGG1 acts via the base excision repair (BER) pathway to mediate the 

nucleophilic excision of oxidised guanine residues 7,8-dihydro-8-oxoguanine (8-oxoG). 

The localisation of OGG1 is investigated in the cellular contexts of oxidative stress, 

apoptosis and mitosis. The protein partners of OGG1 were identified and compared to that 

of the single-nucleotide polymorphism variant Ser326Cys-OGG1to determine whether 

reduced repair capacity of the variant is due to impaired protein interactions.  

 

Platelets mediate the physiological process of haemostasis and the pathophysiological 

process of thrombosis.  GPVI is a glycoprotein platelet receptor integral to stable collagen 

binding at sites of vascular damage to activate haemostasis. As GPVI shares considerable 

homology to ITAM-receptors, it was hypothesised that GPVI is regulated by Src-like 

adaptor proteins (SLAP) which are the key negative regulators of ITAM-containing 

receptors of B cells and T cells. Project 2 investigates the regulation of GPVI by SLAP1 

and SLAP2 in a DT40 cell line model using the NFAT/AP1-luciferase assay. Furthermore 

the contribution of each SLAP2 domain was investigated to elucidate a potential 

mechanism of SLAP2 mediated inhibition. SLAP1 and SLAP2 significantly inhibit 

collagen-stimulated GPVI signalling without altering GPVI expression levels indicating 



intrinsic inhibition of GPVI signalling. As SLAP proteins are expressed in platelets these 

are potential regulators of GPVI signalling in vivo. Elucidation of GPVI regulation could 

have implications in the development of anti-thrombosis therapy. 
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Summary 

Reactive oxygen species have several targets within the cell; the most destructive to 

cellular survival is DNA due to the irreplaceability of DNA. The most common oxidative 

DNA damage is formation of the single-base modification 7, 8-dihydro-8-oxoguanine (8-

oxoG) due to the high susceptibility of guanine to oxidation. The mutagenicity of 8-oxoG 

is a result of its ability to mimic thymine residues, thus an adenine is incorporated in the 

opposite strand during transcription.  These GC: TA transversion mutations reduce the 

integrity of the DNA. OGG1 is a DNA glycosylase involved in the excision 8-oxoG via 

the Base Excision Repair (BER) pathway. OGG1 has been shown to reduce the number of 

GC:TA transversion mutations in mouse and E.coli models. Several single nucleotide 

polymorphisms (SNP) of OGG1 have been found in the population, the most common is 

Ser-326-Cys SNP found predominantly in Japanese populations. In vivo and in vitro 

studies have demonstrated the reduced enzymatic activity of the variant. Furthermore the 

Cys-326 genotype has been associated with a number of cancers, notably lung 

adenocarcinomas. BER characteristically involves the crosstalk and synergy between 

several proteins; this study aims to identify protein partners associated with OGG1. This 

study also investigates whether reduced repair activity of the Cys-326 variant is due to 

different complement of interactions compared to the variant. Furthermore the localisation 

of the variant and wild-type are compared in normal conditions and oxidative stress 

conditions to investigate whether delayed response of the variant is due to delayed 

relocalisation.  
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Chapter 1. Introduction 
 

Reactive species (ROS) have a dichotomic role in living species; involved in both 

physiological and pathophysiological processes. ROS are responsible for the 

administration of oxidative burst in phagocytes, modulation of vascular tone and cellular 

signalling regulation of several kinases and transcriptions (Dröge 2002). Conversely they 

are responsible for cellular damage, mutagenesis and aging (Dröge 2002). Reactive species 

are oxygen-containing or nitrogen-containing molecules rendered highly reactive due to 

the presence of an unpaired electron or an open shell configuration. The cataclysmic effect 

this single subatomic imbalance has in orchestrating cellular level damage underpins the 

intricacy and complexity of cellular chemical reactions. The destructive effect of reactive 

oxygen species has been more widely examined since the establishment that ROS plays a 

role in the aetiologies of a number of chronic diseases such as cancer, CVD, 

atherosclerosis and diabetes (Dröge 2002; Simone et al. 2008). ROS can be either 

endogenous from mitochondrial respiration, cytochromes, and macrophage and neutrophil 

defences, or from exogenous sources such as UV light, environmental pollutants, drugs 

and alternatively from pathological processes such as inflammation (Dröge 2002).  

 

Excessive reactive oxygen species induces oxidative stress wherein the steady state 

production and removal of ROS is imbalanced in the favour of ROS accumulation 

(Klaunig et al. 2011). As a result of  oxidative stress there is an increased manifestation of 

lipid peroxidation, DNA oxidation and protein oxidation (Dröge 2002). Particular attention 

is given to oxidative damaged DNA as DNA is the blueprint on which survival is 

underpinned. As well as direct modification of nucleotides, ROS accumulation can lead to 

deoxyribose modifications, single strand and double strand breaks, and DNA crosslinks  

resulting in genomic instability (Klaunig et al. 2011). Consequently carcinogenesis, cell 
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death or cellular cytotoxicity are induced (Simonelli et al. 2011). Several repair 

mechanisms have been evolved to maintain DNA fidelity and overcome potentially lethal 

adducts. Choice of repair pathway is lesion-specific; however there is some overlap in the 

mechanisms. As most common form of oxidative DNA damage is single base adducts; 

base excision repair (BER) is the prime repair mechanism. BER repairs single nucleotide 

damage such as thymine glycols and uracil lesions (Barnes & Lindahl 2004). Base 

excision repair involves the specific excision of the damaged base, leaving an abasic site 

which is then filled by a DNA Polymerase and ligated to the phosphodiester backbone. 

Several evolutionarily conserved proteins have been assigned to this process, emphasizing 

the dependence on BER is correcting DNA damage (Grollman & Moriya 1993). 

Owing to its low redox potential, guanine is most vulnerable to oxidative damage, 

resulting in the formation of 7,8-dihydro-8-oxoGuanine lesions (8-oxoG) (Radak & 

Boldogh 2010).  8-oxoG is a highly mutagenic lesion formed from the addition of an oxo 

group to C8 and a hydrogen to the nitrogen group at C7 (figure1.1)(David et al. 2007). The 

earliest evidence of 8-oxoG formation in vitro and in vivo was presented by Kasai and 

Nishimura who quantified the increase in 8-oxoG formation upon ionizing radiation, thus 

providing a link between oxygen radicals and 8-oxoG (Kasai et al. 1986; Kasai & 

Nishimura 1984). The mutagenic potential of 8-oxoG arises from its ability to mimic 

thymine residues. Upon generation 8-oxoG in its 6,8-diketo form and is paired with 

cytosine in the anti conformation by Watson-Crick pairing. The thermodynamic and 

structural preference of 8-oxoG to adopt the syn conformation results in the incorporation 

of adenine opposite 8-oxoG (David et al. 2007). The Hoogsteen base pairing of 8-oxoG:A 

is stabilised by 2 hydrogen bonds (figure1.2). (Klungland & Bjelland 2007, Wang et al. 

1998). Further propagation of the DNA strands would result in the pairing of thymine 

opposite adenine, thus left unrepaired 8-oxoG can result in GC:TA transversions. The 
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functional consequence of 8-oxoG was identified by transfecting the c-HA-ras gene 

containing an 8-oxoG moiety into NIH3T3, which upon sequence analysis revealed the 8-

oxoG had almost exclusively mutated to a thymine (Kamiya et al. 1992).  

 

 

 

Figure 1.1 Guanine Oxidation (Jarem et al. 2011) 

 

 

 

 

A 3-fold difference in the in vivo levels of 8-oxoG compared to in vitro suggested the 

presence of a repair mechanism(Kasai et al. 1986). The mutagenic potential of 8-oxoG is 

subdued by a complex defence system.  Studies in model genetic organisms have 

identified repair enzymes which excise 8-oxoG; inactivation of these genes increased the 

accumulation of GC:TA transversions (Arai et al. 2006; Larsen et al. 2006). Similar repair 

proteins have been discovered in drosophila and mouse models (Dherin et al. 2000). The 

E.coli repair system has been fully characterised as an elaborate three-tiered system 

composed of the 8-oxoG-specific enzymes MutM, MutY and MutT collectively known as 

the GO system (Michaels & Miller 1992). Devoting three mechanisms to the correction of 

8-oxoG emphasizes the significant avoidance in 8-oxoG accumulation, and the threat of 8-

oxoG to genetic fidelity.  Functional homologs of each GO system enzyme have been 

discovered in human cells (Bessho et al. 1993). MutM catalyses the excision of 8-oxoG 

opposite cytosine, the human functional homolog of MutM is OGG1 (Russo et al. 2007). 

Figure.1.2 Base Pairs of 8-oxoG. In the syn 
conformation 8-oxoG base pairs with adenine 
and guanine. Its predominate keto form base 
pairs with cytosine. (Klungland & Bjelland 2007) 
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MutY, homolog of human NEH1, excises 8-oxoG opposite a misincorporated adenine 

(Hazra et al. 2002; Morland et al. 2002). Whilst these two enzymes act on DNA, MutT 

(mammalian MTH1 homolog) sanitises the nucleotide pool of free 8-oxoG bases (Colussi 

et al. 2002).  

The critical activity of E.coli MutM in error avoidance propelled the search for its 

homolog in other species. The OGG1 protein was first identified in S.cerivisiae possessing 

the same function as MutM but structurally unrelated.  Determination of the structure of 

yeast OGG1 lead to the identification of human and mouse homologs of OGG1 through 

sequences database search  (Aburatani et al. 1997).  OGG1 was identified as the major 

repair enzyme of 8-oxoG, demonstrated by a 7-fold increase in 8-oxoG levels in 

homozygous OGG1 knockout mice and a 200-fold increase when the knockout mice were 

subjected to the oxidising agent potassium bromate (Nishimura 2003). It is reported that 

upto 80% of 8-oxoG repair is performed by OGG1. OGG1 also excises FapyG lesions 

(David et al. 2007). Although functionally identical, MutM facilitated the discovery of 

OGG1 which has distinctly different structures and reaction mechanisms (Rosenquist et al. 

1997). While MutM belongs to the Helix-two turn-Helix superfamily, OGG1 belongs to 

the Endonuclease III superfamily possessing the canonical Helix-Hairpin-Helix motif and 

the conserved Gly/Pro-rich-Asp residues (Hazra et al. 2002). The OGG1 gene was mapped 

on to 3p25 by FISH analysis and consisted of 8 exons, the gene site is associated with 

inhibition of lung cancer (Lu et al. 1997).  The upstream region possesses a typical house-

keeping gene sequence suggesting OGG1 is constitutively expressed, although at varying 

expression levels in different tissues (Boiteux & Radicella 2000).  

 

Further investigation of OGG1 gene identified several alternatively spliced variants of 

which 2 cDNA sequences were dominantly expressed. The most prevalent, OGG1α 

consists of the  first 7 exons whereas OGG1β consists of the first 6 exons and exon 8. Thus 
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both proteins share the first 316 amino acids, but differ at the c-terminus. OGG1α is a 

36kDa nuclear protein whereas OGG1β is 40kDa and is translocated to the mitochondria 

(Boiteux & Radicella 2000). The localisation sequences were allocated to exon 1 for 

mitochondrial localisation and the exon 8 for nuclear localisation. The nuclear localisation 

signal consisted of the consensus signal  KRKK-(X3-5)-K-XX-E  also found in yeast 

OGG1 (Boiteux & Radicella 2000). The intracellular localisation was further verified by 

indirect immunofluorescence microscopy and counter-staining of mitochondria and 

nucleus; as expected the exogenously expressed OGG1 proteins colocalised to their 

respective compartments critically dependant on intact localisation signal (Nishioka et al. 

1999). Nishioka et al. further pinpointed OGG1β to the inner mitochondrial membrane 

using electron microscopy (Nishioka et al. 1999).  Relative mRNA levels were quantified 

in the kidney, thymus, testis, ovary, lungs and brain. Depletion of OGG1β did not affect 

the level of DNA glycosylase activity (Hashiguchi et al. 2004). In vitro excision assays 

established the lack of DNA glycosylase activity of OGG1β (Hashiguchi et al. 2004). The 

inactivity of OGG1β was ascribed to the C-terminal domain at which the gene sequences 

for OGG1α and OGG1β diverge (Hashiguchi et al. 2004). This surprising result leads to 

the speculation that other DNA glycosylases repair oxidative DNA damage in the 

mitochondria. The lack of activity of OGG1β is compensated for by OGG1α distributed 

within the nuclear and mitochondrial compartments at a calculated ratio of 4.2:1 

(Hashiguchi et al. 2004). Exclusive targeting to mitochondria has further elucidated the 

role of wild-type OGG1 in maintaining mtDNA integrity while non-functional mutants 

reduced cell viability (Rachek et al. 2002; Chatterjee et al. 2006). Consistent with previous 

studies, OGG1 knockout models results in 20-fold increase in 8-oxoG lesions in mtDNA, 

emphasizing both the higher exposure to oxidative damage compared to nuclear DNA and 

importance of OGG1 repair (Souza-pinto et al. 2001; Bohr et al. 2002).  
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OGG1 is a bifunctional protein in the BER pathway of 8-oxoG elimination; it initiates the 

excision of the lesion via glycosylase activity and subsequently cleaves the strand at the 

site of nucleotide excision via AP lyase activity (David et al. 2007). The strand break is 

then restored to normality by the concerted action of a complex of proteins. The 

composition of the complex reflects the choice between short-patch pathway and long-

patch pathway which diverge upon OGG1-catalysed cleavage of the N-glycosidic bond. 

The short-patch pathway requires DNA polymerase β, APE1, DNA ligase III and XRCC1 

(van Loon et al. 2010).  Using the activated lysine-249 residue, OGG1 introduces 

nucleophilic attack on the bond between the nucleotide and sugar-phosphate, resulting in 

β-elimination of the nucleotide and the formation of a covalent Schiff base intermediate 

between OGG1 and the deoxyribose at C1 position (Hill et al. 2001). Subsequent to 

nucleotide excision, a strand break at the apurinic (AP site) is catalysed by β-elimination 

via the APlyase activity of OGG1, forming a 3’-α,β-unsaturated aldehyde and a 

5’phosphate (Hill et al. 2001). The intrinsic 3’ phosphodiesterase activity of human AP 

endonucleases is required to remove the 3’ terminus. Alternatively, APE1 can substitute 

for the AP lyase activity of hOGG1, by directly cleaving the generated AP site (Hirano 

2008). The AP site is filled by DNA polymerase β and ligated into the DNA backbone by 

DNA ligase III. Whereas short-patch pathway replaces a single nucleotide, the long-patch 

pathway involves the ligation of 2-5 nucleotides. The abasic site is elongated 3’ by several 

nucleotides catalysed by DNA polymerase    . Due the inability of these polymerases to 

process 5’rd-pase (sugar phosphate), Flap endonuclease FEN1 is required to process this 

single stranded flap structure containing a 5’-dRp group which is then a substrate for 

polymerisation and ligation (Sokhansanj et al. 2002). PCNA and protein A assist the long-

patch pathway, whereas these auxiliary proteins are readily bypassed by DNA polymerase-

β (Maga et al. 2008; Maga et al. 2007). Dianov et al. quantified the relative proportion of 
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8-oxoG BER pathways, with short-patch BER accounting for 72% of repair events. Long-

patch BER only repairs 28% of 8-oxoG adducts (Dianov et al. 1998), however this 

proportion is increased to 50% in the experimental absence of polymerase β, leading to the 

speculation of another polymerase-β independent repair pathway. Additional to the two 

types of BER, 8-oxoG can be repaired by other mechanisms independent of OGG1. This 

reflects the presentation on the lesion on DNA depending on whether it is in the 

transcribed or nontranscribed strands, in dividing cells or quiescent cells, and if on 

proliferating cells whether it is in the parent strand. The Nucleotide excision repair (NER) 

system is considered as a backup system, using RAD14, and appears to recognize a helix 

distortion rather than specific lesions and can remove a variety of structurally unrelated 

base modifications (Mikkelsen et al. 2009). Mismatch repair (MMR) uses MSH2/MSK6  

to repair 8-oxoG lesions on the transcribed strand (Russo et al. 2007). Further defence is 

provided by Transciption coupled repair (TCR) which is able to repair 8-oxoG relatively 

efficiently if the lesion is in the transcribed sequence, independent of OGG1 (Le Page et 

al. 2000). TCR contributes to the defences requiring several NER proteins such as XPG, 

TFIIH and CSB; these are able to repair 8-oxoG efficiently in the transcribed sequence 

independent of OGG1 but requires OGG1 for repair of 8-oxoG in the nontranscribed 

sequence (Le Page et al. 2000).  

 

The base flipping mechanism is common to several BER repair proteins (Hollis et al. 

2000; Faucher et al. 2009). Detection of the lesion is the first step and involves the repair 

protein recognising the local conformational change in the DNA backbone and the more 

widespread bending of the helix (Miller et al. 2003; Barone 2003). Positive recognition of 

the lesion initiates the superposition of glycosylase amino acid into the DNA helix 

adjacent to the site of lesion (Kuznetsov et al. 2005). The nucleotide is rotated out of DNA 

and the vacant site is occupied by an amino acid stabilising the DNA duplex (David et al. 
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2007). The enzyme-reaction mechanism is then activated upon entry of the nucleotide into 

a cavity within the repair protein (Bruner et al. 2000). The kinetics of OGG1 activity have 

been defined into 5 reaction steps (Kuznetsov et al. 2005). The first 3 are fast consecutive 

equilibrium steps involving lesion recognition, base extrusion, and enzyme reconfiguration 

(Kuznetsov et al. 2007). The final 2 steps are irreversible rate-limiting  steps in which the 

N-glycosidic bond is cleaved and the 3’phosphate is eliminated (Kuznetsov et al. 2005). 

OGG1 scours the length of the DNA sampling millions of base pair per second in search of 

a 8-oxoG among every million guanines (Chen et al. 2002). Considerable optimisation of 

the DNA-protein interface is required to facilitate fast enzyme sliding (Blainey et al. 

2006). 8-oxoG creates a local kink in the DNA and curvature to the strand. Atomic force 

microscopy has been used to visualise OGG1 detection of damage (Chen et al. 2002). The 

repair process is initiated by OGG1 detection of 8-oxoG residues; it can discriminate 

between undamaged DNA and 8-oxoG by the greater curvature of the DNA at 8-oxoG 

sites upon OGG1-mediated bending of DNA at the minor groove (Hashiguchi et al. 2004). 

Considerable distortion is observed adjacent to 8-oxoG lesions. Interestingly it is not the 

mutagenic syn conformation of 8-oxoG that the OGG1 active site recognises but the anti 

conformation which is quite similar the normal duplex DNA (Bruner et al. 2000). 

 

Structure-mediated catalysis is one of the methods by which OGG1 exerts substrate 

specificity and ensures precision repair. Comparison of the active OGG1α and OGG1β not 

only elucidated potential causes for the inactivity of OGG1β but also identified catalysis-

critical amino acids. Following this, site-directed mutagenesis of potentially critical amino 

acids confirmed their function and significance (Radom et al. 2007). The phenylalanine 

residue at 319 is known to be critical for 8-oxoG recognition (Bruner et al. 2000), as it 

interacts with the opposite  -faces of 8-oxoG with cooperation from Cys-253. However 

OGG1β possess a leucine at this position which may justify the absence in α-helix 
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formation in the c-terminus (Faucher et al. 2010). When the Phe-319 residue was mutated 

to leucine in OGG1α, the mutant maintained partial activity in the leucine mutant. 

Although the activity of the leucine-mutant is reduced 2.1-fold relative to the wild-type 

OGG1α, it confirms the feasible activity of OGG1β which is identical to the leucine 

mutant of OGG1α. It was proposed the mutation at Phe-319 destabilizes the interaction 

with 8-oxoG without perturbing the glycosylase activity, however binding cannot be 

restored by substitution to Phe  indicating  that binding requires several amino acids. Site-

directed mutagenesis of the 317-323 region of OGG1α highlighted the importance of 

Valine-317, critical for glycosylase activity. The centrally located residue is likely to 

provide geometric stabilisation, virtue of its hydrophobicity, in the interaction with 8-

oxoG.  Once 8-oxoG is sandwiched into the active site by interactions of Cys253 and 

Phe315 with the opposite  -faces of 8-oxoG, the hOGG1 contacts the DNA backbone via 

an almost charge-neutral channel with the exception of the basic His27 residue. 

Discrimination between 8-oxoG and guanine is based on the opposite orientations of local 

dipoles as OGG1 can only specifically interact with dipole orientation of 8-oxoG via the 

complementary dipoles on active site amino acids Lys249-NH3
+
 and Cys-253-S

- 
(Seeberg 

et al. 2002). Phosphates of 8-oxoG strand provide the main contact interface between the 

lesion and OGG1.  Only the final helix of the helix-hairpin-helix (HhH) motif directly 

interacts with the DNA via Val250, Gln 249 and the highly conserved Gly245. The HhH 

contacts the 3’ region of the lesion to stabilise the DNA for maximum access of the lesion 

into the active-site cavity. Hydrated ions of either Ca
2+

 or Mg
2+

 stabilized the kinked 

conformation via the hydrogen bonds formed between the H2O ligands and the DNA. 

Stabilisation is improved by the hydrogen bonding of the central residue (Asn150) of the 

conserved NNN motif with a phosphate on the DNA backbone (Seeberg et al. 2002). The 

first residue (Asn149) of the NNN motif binds the exocyclic NH2 of the complementary 
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cytosine via hydrogen bonds to its amide carbonyl side chain. Gly-42 on the β-sheet forms 

hydrogen bonds with the N7 atom of 8-oxoG (Seeberg et al. 2002).  Furthermore Gln 315 

hydrogen bonds with 8-oxoG at the O6, N1 and N2H positions. Only 4 residues interact 

with the base on the complementary strand; these are critical to ensure accurate opposite 

base substrate-specificity (Seeberg et al. 2002). Tyr203 is wedged between the cytosine 

and its 5’ neighbour creating a DNA kink. Arg154 and Arg204 form strong hydrogen 

bonds with N3 and O2 atoms of 8-oxoG. Finally Asn149 interacts with the carbonyl group 

of cytosine, completing the hydrogen-bond pentad between OGG1 and 8-oxoG (Priestley 

et al. 2010). The catalytic reactions then begins with the nucleophilic attack on C-1’ by the 

 -NH2 on the critical lysine 249 (Kemp et al. 2004). The approximation of the 8-oxoG and 

Lys249 on OGG1 provide the enthalpic and entropic force for the completion of the 

reaction  (Norman et al. 2001).   

 

The interactions of OGG1 with the cytosine on the complementary strand underlie the 

significance of opposite base substrate specificity. Bjoras et al. measured the excision 

activity of hOGG1 for oligonucleotides containing 8-oxoG paired with C,G, T and A 

(Bjorâs et al. 1997). As expected the most efficient excision occurred when 8-oxoG was 

opposite C, followed by T>G>A (Bjorâs et al. 1997). The diversity in cleavage substrates 

is unexpected as excision of 8-oxoG against C, T or A can result in fix mutations. 

However the least efficient excision of 8-oxoG occurred when it was paired with A, 

despite this being the most common pairing during replication, this limits the possibility of 

repair-error mutations. The opposite base substrate specificity of OGG1 can be considered 

as a form of temporal regulation of 8-oxoG repair. The base opposite 8-oxoG is altered 

several times inherent to the mutagenicity of OGG1. As aforementioned there is some 

redundancy in the enzyme involved in oxidative DNA damage repair. OGG1 is the first 
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point of repair as it excises 8-oxoG opposite cytosine, the native state of this lesion. 

Transcription leads to 8-oxoG paired with adenine at which point it is no longer substrate 

for OGG1. It is then repaired by the human MutY homolog, NEH1which has broader 

substrate specificity (Hazra et al. 2002). Zharkov et al. have further characterised the 

substrate specificity according to the two activities of OGG1; glycosidic bond  incision and 

strand cleavage (Sidorenko et al. 2009). Strand cleavage assays were conducted to 

investigate the AP endonuclease activity of OGG1. It was found that strand cleavage only 

occurs when 8-oxoG is paired with C. The inability of hOGG1 to cleave the strand at an 

AP site opposite the bases G, T and A is evidence that the activities occur independently 

and are regulated independently. This provides a secondary level of discrimination which 

prevents the continuation of excision and subsequent strand cleavage of mispaired 8-oxoG 

lesions which would otherwise result in fix mutations. Therefore strand continuity is 

preserved for mismatch removal which will allow error-free post-replication repair by 

strand exchanges until the AP-site is processed. Coupling of glycosylase and AP lyase 

activities is often observed with bifunctional DNA glycosylases demonstrated by 

comparable catalytic rates; however this is not the case with OGG1 (Norman et al. 2001). 

Base excision occurred at a 2-fold higher rate than DNA strand cleavage.The delay 

between base excision and β-elimination has been observed by sodium borohydryde 

trapping of OGG1 activity against 8-oxoG:C leading to the proposition of a two step 

reaction mechanism (Zharkov et al. 2000).  

 

It is known that OGG1 is expressed constitutively and is not transcriptionally regulated by 

cell-cycle progression (Dhénaut et al. 2000). It is more likely its activity is modulated at 

the protein level, via direct interactions by protein partners or by changes in cellular 

environment. Both stimulation and inhibition of OGG1 activity have been reported on 

induction of oxidative stress (Pu et al. 2007; Bercht et al. 2007; Hodges et al. 2002). A 
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well established stimulator of OGG1 is APE1 (APEX1), increasing excision activity 5-fold 

in vitro (Hill et al. 2001). It is proposed that this coordination is to maintain APEX1 in 

close approximation to the OGG1-catalysed nucleotide gap (Sidorenko et al. 2007). P300 

is a transcriptional coactivator implicated in the acetylation of Lys338/341, which 

stimulates OGG1 activity in cooperation with APE1 (Bhakat et al. 2006). XRCC1 also 

forms a complex with APE1, polymerase-β and DNA ligase during active BER, but its 

exact role is yet unknown (Boiteux & Radicella 2000). The human ribosomal protein rS3 

interacts with OGG1 at high affinity, which if bound to OGG1 before OGG1-DNA 

interaction it can stimulate OGG1 activity 2-fold (Vijay et al. 2006).  Conversely rS3 can 

bind 8-oxoG blocking OGG1 interaction and possibly induce apoptosis (Vijay et al. 2006).  

The multifunctional checkpoint complex Rad9-Rad1-Hus1 was shown to colocalise and 

interact with OGG1(Park et al. 2009). Though the complex is involved cell signalling, 

apoptosis and cycle arrest, it is likely to be acting in its DNA damage sensor and DNA 

repair capacity. Upon sensing DNA damage the Rad9-Rad1-Hus1 complex transmits 

further signals to downstream proteins involved in BER repair; it has previously shown to 

interact with APE, polymerase, FEN1, DNA Ligase 1, NEIL1 and the MutY homolog 

(Park et al. 2009). The increase in OGG1 activity was more pronounced when incubated 

with individual components of the complex, despite this the complex was able to stimulate 

OGG1 activity 4-fold (Park et al. 2009). The homologous-recombination protein RAD52 

has been shown to confer resistance to oxidative stress by direct interaction with both 

OGG1 isoforms, suggesting interaction mediated by a common domain, increasing OGG1 

incision activity 3-fold  by increasing dissociation rate from Schiff-base intermediate (de 

Souza-Pinto et al. 2009). Reciprocally, OGG1 inhibits the activities of RAD52, thereby 

preventing RAD52-mediated single-strand annealing and DNA strand exchange  (de 

Souza-Pinto et al. 2009), The RAD52 inhibition was inherent to OGG1 and not observed 
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in other DNA glycosylases, however RAD52 stimulation was observed in the induction of 

double strand DNA breaks (de Souza-Pinto et al. 2009). It is possible this mechanism 

ensure repair of 8-oxoG lesions prior to homologous recombination. Nuclear factor-YA 

(NF-YA) has a CCAAT box motif transcription factor that binds OGG1 promoter in a 

consensus sequence.  The involvement of the Tuberin and NF-YA in OGG1 regulation has 

also been documented. Tuberin is a multifunctional protein encoded by the TSC2 gene, the 

deficiency of which has been associated with human malignancies. A marked decreased in 

OGG1 mRNA was observed in human renal epithelial cells when tuberin was down-

regulated by siRNA interference (Habib et al. 2008). A similar pattern of decreased NF-

YA expression was observed when tuberin was down-regulated in the tumour kidney 

tissue of Eker rats (Habib et al. 2003). NF-YA levels were measured in cytoplasmic and 

nuclear fractions of tuberin-deficient murine renal cells, the data suggested that tuberin-

deficiency results in increased cytoplasmic localisation of NF-YA.  The study has lead to 

the inference that tuberin is involved in the regulation of OGG1 via controlled expression 

and subcellular redistribution of NF-YA (Habib 2009). NEIL1 and NEIL2 are proteins 

structurally unrelated to OGG1 but have similar substrates particularly Fapy and 5-

hydroxyuracil (David et al. 2007). They possess preferential activity on DNA bubble 

structures, as found during transcription and recombination, while OGG1 can only process 

8-oxoG on duplex DNA (Dou et al. 2003). Therefore these proteins are involved in 

Transcription-coupled repair (TCR). Another protein involved in TCR is Cockayne 

syndrome B (CSB) protein which reportedly associates with OGG1 to overcome the 

transcription blockage and gene inactivation caused by 8-oxoG (Khobta et al. 2009). 

Furthermore, CSB has an OGG1 independent role and can repair 60% of 8-oxoG lesions in 

the absence of OGG1 (Osterod et al. 2002).  Xeroderma Pigmentosum complementation 

group C (XPC) also contributes to 8-oxoG repair by stimulated OGG1 activity, 
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presumably by increasing the rate of dissociation of OGG1 from the AP site (Shimizu et 

al. 2010).  As the prime enzyme of Mismatch repair (MMR), MSH2 is also associated with 

OGG1 to coordinate the repair of 8oxoG. The substrate of MSH2 is 8oxoG paired with 

adenine, thus MSH2 also reduces the GC:TA transversions (Ni et al. 1999). There is 

considerable cross-talk between the different pathways of DNA repair, ensuring back-up 

defences should OGG1 bypass the 8-oxoG lesion. The network of OGG1 interacting 

proteins is illustrated below (figure 1.3).  

 

Figure 1.3 OGG1 Interactions 

Network from STRING 9.0  

Evidence of interaction sourced 

from existing knowledge 

and experimental data.  

The weight of the connecting 

line indicates strength of 

interaction.  (STRING, 2012 ) 

 

 

 

Alterations in individual amino acids have been shown to abolish catalytic activity and or 

recognition (van der Kemp et al. 2004; Radom et al. 2007). Several single-nucleotide 

polymorphisms have been identified in the population. The most common polymorphism 

in OGG1 is the Ser-326-Cys which is present at varying levels at different ethnicities. It is 

most frequent in Japanese populations present in 47.6% of the population (Daimon et al. 

2009).  The mutation is the result of a G:C transversion mutation at 1245 base pair on exon 

7 (Li et al. 2008). Dherin et al. found the kcat/Km for the excision activity of Cys-OGG1 

was 2.82x10
-5

 (min
-1

nM
-1

), which was 1.6-fold lower than the wildtype at 4.47x10
-5

 (min
-

1
nM

-1
)  (Dherin et al.1999). The significantly reduced repair activity was also observed in 

vivo in mononuclear blood cells of individuals of the Cys/Cys genotype (Jensen et al. 
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2012).This reduced repair activity has been associated with resistance to APE1 stimulation 

(Hill & Evans 2006). Several investigators have attempted to deduce the exact cause of 

reduced repair activity. Bravard et al. investigated the susceptibility of the variant to 

oxidative cellular environment (Bravard et al. 2009a). In vitro investigations using 

diamide-induced oxidation induced the reduced repair activity of the variant compared to 

the wild-type as observed in vivo (Bravard et al. 2009a). Enzymatic activity was restored 

by reducing agents, normalizing activity comparable to the wild-type. The regulatory 

effect of redox environment indicated the possible thiolation of OGG1. Crosslinking 

agents further confirmed the formation of the disulphide-bond, directly linking the redox 

sensitive cysteine to reduced activity (Bravard et al. 2009a). Hill and Evans expanded on 

the dimerisation theory suggesting that the disulphide bonds are formed between two 

OGG1 proteins resulting in homodimerisation in solution as confirmed by gel shift assays 

and size exclusion chromatography (Hill & Evans 2006). The allosteric effect and altered 

interface of the dimerisation is implicated in reduced repair ability (Hill & Evans 2006).  

Paradoxically Cys-326 is possibly inactivated by the same physiological condition 

(oxidative stress) from which it protects DNA. Epidemiological studies have attempted to 

elucidate the functional consequences of this polymorphism; however no definitive 

conclusion has been agreed. Kohno et al. identified loss of heterozygosity at the hOGG1 

locus in lung tumours; however levels of 8-oxoG in peripheral leukocytes and lung cancer 

cells were normal (Kohno et al. 1998). No significant difference was observed in the 

mutation suppressibility between the variant and wildtype (S.-R. Kim et al. 2004).  A case-

control study found a significant association of lung adenocarcinoma risk in individual 

homozygous for the Cys variant allele (Kohno et al. 2006). Conversely a large scale meta-

analysis of 6375 cancer subjects found no association of lung cancer with the Cys/Cys 

genotype (Li et al. 2008). The neuropathological CAG repeat was expanded in the Cys 
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variant, linking the Cys phenotype to accelerated manifestation of Huntingdon’s disease 

(Jarem et al. 2009; Jarem et al. 2011). Heterozygotes and homozygotes for the variant 

present accelerated development of  Type 2 Diabetes due to decreased glucose tolerance 

(Daimon et al. 2009) and ROS-mediated β-cell dysfunction (Thameem et al. 2010).  

Diabetes aetiology has been attributed to the loss of protective effect of OGG1 against free 

fatty acid-induced apoptosis (Rachek et al. 2006) in addition to its regulation of 

inflammation in type 1 diabetes, allergens and LPS-induced shock (Mabley et al. 2004). 

Lack of conformity between the biochemical properties of the Cys-326 variant and 

carcinogenesis may be due to a number of factors such as inter-individual variability(Lee 

et al. 2005; Collins et al. 2001), age-related oxidative-stress susceptibility (Mikkelsen et 

al. 2009; Radak & Boldogh 2010) and exposure to environmental factors (Aka et al. 2004; 

Wrońska-Nofer et al. 2012). Furthermore the redundancy of the oxidative DNA repair 

means that reduced activity of OGG1 may be nullified by other repair proteins. 

 

Several studies have suggested post-transcriptional modification of OGG1, such as 

phosphorylation by Cdk4 (Hu et al. 2005), PKC (Dantzer et al. 2002), and acetylation by 

P300 (Bhakat et al. 2006). OGG1 interacts with many protein partners, many of which 

regulate activity. OGG1 exerts discrimination at an intermolecular level dictated by the 

amino acid sequence, and  though these have an additive effect on recognition, a single 

amino acid change can disrupt the recognition properties of the protein. Thus it is theorised 

that altered sequence can directly affect the complement of protein partners. This study 

investigates the identity of protein partners of the variant compared to the wild-type in an 

attempt to examine whether altered interaction properties are responsible for the reduced 

repair activity of the Cys-326 variant. The delayed response of the Cys-326 OGG1 has 

recently been documented as well as decreased nuclear retention (Kershaw 2011). 
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Previous inconsistencies in the localisation of the variant have been documented, 

suggesting that while the wild-type consistently relocates to the nucleoli during S-phase 

the variant is excluded from this compartment (Luna et al. 2005). This study compares the 

localisation of the variant and the wild-type under normal and oxidative stress conditions. 



Chapter 2 Materials and Methods 

2.1 Chemicals 

Materials were of the highest quality and from Sigma-Aldrich unless otherwise stated.  

Abbreviations  

DMEM      Dulbecco’s Modified Eagle’s Medium (D6429, Sigma-Aldrich) with  

                   4500 mg/L glucose, L-glutamine and sodium pyruvate, with pyridoxine    

                  (substitutes pyridoxine HCl for pyridoxal HCl), endotoxin tested, sterile   

                   filtered. Supplementated with foetal bovine serum (10% v/v) (FBS), 

                   L-glutamine (2 mM), penicillin (100 U/ml) and streptomycin (100 µg/ml). 

PBS            Phosphate Buffered Saline (Dulbecco A) (Oxoid, Basingstoke). Typical 

Formula:  

                   Sodium Chloride 8.0, Potassium chloride 0.2, Di-sodium hydrogen phosphate  

                   1.15, potassium dihydrogen phosphate 0.2.               

 

2.2 Cell Culture 

Cell culture was conducted in sterile conditions in a Bio Air Aura B4 Class II hood, which 

was spray cleaned with 70% ethanol before and after use. All instruments were sprayed 

with 70% ethanol before entering the hood.  

2.2.1 Thawing Cells 

A549 cells were removed from liquid nitrogen. The cryovial (1ml) (Naglene) containing 

the frozen cells were retrieved from liquid nitrogen storage and immediately placed in a 

37ºC water bath. The cryovial was then transferred to the hood where the contents of the 

vial were transferred to a 15ml Falcon tube (BD Falcon™). Pre-warmed DMEM (9ml) 

was added to the 15ml Falcon tube. The tube was centrifuged for at 1000 x g for 5 minutes 

(MSE Falcon 6/300, Sanyo, Japan). The supernatant was aspirated and the pellet was 
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resuspended in 1ml fresh DMEM. The suspension was then split into 75cm
2
 cell culture 

flasks (BD Falcon™) and fresh pre-warmed DMEM (15ml) was added to each flask.  

2.2.2 Cell Maintenance 

Cells were maintained in 75cm
2
 cell culture flasks  (BD Falcon™) containing Dulbecco’s 

modified Eagle’s medium (DMEM)  supplemented with foetal bovine serum (10% v/v) 

(FBS), L-glutamine (2 mM), penicillin (100 U/ml) and streptomycin (100 µg/ml). Cells 

were incubated at 37°C in a humidified chamber (5% CO2, 95% air; MCO-15AC, Sanyo, 

Japan). 

2.2.3 Cell Passage 

Cells were reseeded upon reaching 70-80% confluency. DMEM media was removed from 

T75cm
2
 flasks and the cells were washed with sterile PBS. As standard, cells were 

detached using trypsin-EDTA, incubated at 37ºC in a humidified chamber (5% CO2, 95% 

air; MCO-15AC, Sanyo, Japan)  for approximately 3 minutes, transferred to 15ml Falcon 

tube  with fresh media and centrifuged at 1500 x g for 5 minutes (MSE Falcon 6/300, 

Sanyo, Japan). The supernatant was then aspirated and the pellet was resuspended in 1ml 

fresh media. The resuspended media was split to achieve 50-60% confluency per T75cm
2
 

flask. Cells were maintained in 15ml of DMEM.  

2.2.4 Cryopreservation 

Cells were washed in sterile PBS and trypsinised as above. Following centrifugation at 

1500 x g for 5 minutes, the supernatant was aspirated and cells were resuspended in 1ml of 

Freezing media. Freezing media consists of 1:9 mixture of sterile DMSO (10% v/v) and 

Feotal Bovine Serum (Sigma-Aldrich). The resuspended cells were then transferred to a 

cryopreservation vial (Naglene) and kept in a -80C freezer overnight before transfer to 

liquid nitrogen.  
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2.3 Oxidation Treatment 

2.3.1 BSO Oxidation 

Buthionine sulfoximine was used as the oxidative reagent of choice attributed to its rapid 

potent inhibition of GCL resulting in the depletion of cellular GSH.  Depletion of 

cytoplasmic GSH by BSO has been documented to significantly increase ROS formation. 

A stock solution of 10mM of BSO was prepared by mixing 22.23mg DL-buthionine-

sulfoximine (Sigma-Aldrich) in complete DMEM medium (10ml). Serial dilutions were 

conducted to prepare 1mM, 0.5mM, 0.25mM, 0.125mM and 0.0625mM concentrations of 

BSO which were stored in the freezer till use.   

2.3.2 Cell Viability Assay 

MTT (Thiazolyl Blue Tetazolium Bromide) (Sigma-Aldrich) was prepared in complete 

medium to a 0.5mg/ml solution and filter sterilised. Cells were seeded into 96 -Well plates 

(Corning) and incubated overnight in at 37ºC, 5% CO2, 95% air ( MCO-15AC, Sanyo, 

Japan) to reach confluency. The growth media was removed and varying concentrations of 

BSO-containing media was added to cells which were then incubated for 24 hours at 37ºC. 

The oxidation treatment media was decanted from the 96-well plates and replaced with 

MTT-supplemented media. Cells were incubated for 2 hours at 37ºC in a humidified 

chamber (5% CO2, 95% air; MCO-15AC, Sanyo, Japan). Again the medium was removed 

and 100% DMSO was added to each well. The well plates were then either read 

immediately or stored at 4ºC till ready to read. The absorbance was read at 540nm using 

Bio-Tek FL600 microplate reader (Bio-Tek Instruments Inc. USA) against a DMSO blank.  
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2.4. EGFP-OGG1 Vectors  

2.4.1 Vector Propagation 

GFP-Ser326-hOGG1 and GFP-Cys326-hOGG1 cDNA plasmids (pcDNA3©) were 

propagated by transformation into E.coli and selection using Kanamycin antibiotic 

(30ug/ml). As a positive-control of transfection, a plasmid containing GFP was also 

selectively grown. Using a 200µl pipette tip a small aliquot of frozen glycerol stock E.coli 

cells transformed with the OGG1-GFP or GFP expression vector was scraped from the 

eppendorf and added to a 50ml Falcon tube (BD Falcon™). Then 30ml of Luria-Bertani 

Broth (MELFORD) was added to the falcon tube, followed by kanamycin (15µl). The 

E.coli culture was grown at 37ºC in a rotator (Aerotron INFORS AG) (225rpm) overnight.  

2.4.2 Plasmid DNA Isolation 

Plasmid extraction was conducted using the Bioline ISOLATE Plasmid Mini kit as per 

manufacturer’s instructions (BIOLINE). Cultures were centrifuged at 6000 x g for 10 

minutes (Mistral 2000, Meadowrose Scientific LTD) to pellet the bacterial cells. The 

remaining supernatant was removed and the cells were resuspended in 500µl in 

Resuspension buffer. Next, 500µl of Lysis Buffer P was added and the suspension was 

mixed by inverting 4-5 times. The mixture was transferred to a 1.5ml microcentrifuge tube 

to which 600µl of Neutralisation buffer is added. The contents are mixed by inverting 4-5 

times to achieve a homogenous suspension. The suspension was centrifuged at maximum 

speed (16500 x g using Eppendorf Centrifuge 5415D) for 10 minutes. The supernatant was 

transferred to the spin column (BIOLINE) which was placed in a collection column and 

centrifuged for 1 minute at 10000 x g. The column was washed with 500µl of Wash Buffer 

AP and centrifuged for 1 minute at 10000 x g. The filtrate was discarded It was then 

washed with 700µl Wash Buffer BP and centrifuged for 1 minute at 10000 x g. The filtrate 

was discarded. The spin column was centrifuged at maximum speed (16500 x g using 
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Eppendorf Centrifuge 5415D) for 2 minutes. The spin column was then placed into a 

1.5ml Elution tube. The plasmid DNA was eluted by the addition of 100µl of Elution 

buffer to the spin column and incubation at room temperature for 5 minutes followed by 

centrifugation at 10000 x g for 1 minute. 

2.4.3 DNA Quantification 

The concentration of the eluted DNA was measured by conducting a 1:20 dilution with 

ultrapure water into 100µl spectrophotometer curvette. The absorbance at 260nm 

determined using UVIKON spectrophotometer is an estimation of the DNA concentration 

expressed in µg/µl. Absorbance was also measured at 280nm to facilitate DNA purity 

calculation. 

2.5 Transfection  

2.5.1 Transfection of EGFP-OGG1  

The ratios of the transfection reagent, DNA and media volume were adjusted according to 

the tissue culture vessal as suggested by manufacturer’s instructions. Cells were cultured in 

12-well plates/ 6-wells plates/ T25 flasks at 50-60% confluency and incubated (37ºC, 5% 

CO2, 95% air) overnight to grow to approximately 70-80% confluency. The quantity of 

DNA required per vector for each well/flask was calculated and then multiplied by the 

number of replicates for each vector type. The recommended amount of serum-free 

DMEM was added to the vector DNA in a 15ml Falcon tube or 1.5ml eppendorf. The 

recommended amount of TurboFect™ Transfection reagent (Fermentas, UK) was added 

according to vessel size and number of replicates. The mixture was briefly vortexed 

followed by incubation for 15-20 minutes at room temperature. The DNA:DMEM: 

Turbofect mixture was then added dropwise to each well and the cells were returned to the 

humidified chamber  (37ºC, 5% CO2, 95% air) for 24-48 hours for vector expression.  
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2.5.2 Flow Cytometry 

Quantitative transfection efficiency was determined by flow cytometry analysis. Cells 

were grown in 12-Well plates (Corning) and transfected (2µg DNA: 200µl serum-free 

DMEM: 4µl TurboFect™) according to the protocol above. Samples were prepared for 

flow cytometry following the 24-48 hour incubation period required to achieve vector 

expression. The DMEM was removed and cells were washed with PBS. Cells were 

detached by the addition of Trypsin:EDTA and incubation at 37ºC for 5 minutes. The 

detached cells suspension was transferred to a 1.5ml eppendorf and spun for 5 minutes at 

8000 x g at room temperature using a benchtop centrifuge (Eppendorf Centrifuge 5145D). 

The supernatant was then aspirated and the cells were resuspended in 1ml non-sterile PBS. 

The suspension was transferred to a 5ml polystyrene round bottom flow cytometry tube 

(Becton Dickinson). Samples (10 000 live cells) were gently vortexed prior to analysis 

using a BD FACScalibur™ flow cytometer (Becton Dickinson).  CellQuestPro™ software 

and Weasel software (Walter and Eliza hall institute of medical research, Australia) were 

used to process and analyse the data.  

2.6 Immunoprecipitation of OGG1 

2.6.1 Epifluorescence Microscopy 

Having optimised transfection and quantitatively recorded efficiency levels, 

Epifluorescence microscopy was utilised to ensure adequate transfection of cells in T25 

flasks prior to immunoprecipitation. Axiovert 10 (Zeiss) microscope was used to view 

GFP fluorescence under blue laser light. 

2.6.2. Nuclear Protein Extraction 

Nuclear protein was isolated from cultured to reduce sample complexity and enrich 

concentration of GFP-OGG1 protein. Growth medium was decanted from the culture flask 
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and cells were washed with cold sterile PBS. Ice cold Pierce IP Lysis buffer (25mM Tris-

HCl pH 7.4, 150mM NaCl, 1mM EDTA, 1% NP-40 and 5% glycerol), supplemented with 

protease inhibitor cocktail (Sigma Aldrich), was added to the cells at the recommended 

volume per culture vessel. Cell detachment was further stimulated by vigorous scraping. 

The detached cell suspension was transferred to a 1.5ml eppendorf* and incubated at 4ºC 

for 20 minutes. Following this, cells were centrifuged at 3000 x g for 5 minutes at 4ºC 

using a benchtop centrifuge (Hawk 15/05 Refrigerated, Sanyo, Japan). The supernatant 

was aspirated and the nuclear pellet resuspended in Pierce IP Lysis buffer. Cells were 

further incubated at 4ºC for 30 minutes, with gentle vortexing every 10 minutes. The 

resuspension was subjected to centrifugation at 18 000 x g for 20 minutes at 4ºC, and the 

supernatant was collected in a sterile 1.5 ml eppendorf. *T25 flasks of cells transfected in 

duplicate were combined at this stage to increase the overall yield of nuclear protein.  

2.6.4 Immunoprecipitation 

Protein purification was conducted using Pierce ® Crosslink Immunoprecipitation Kit 

(ThermoScientific) according to manufacturer’s instructions (Appendix 1). The protocol 

was optimised to troubleshoot a number of problems; the numbered points below 

correspond to the stage that was modified in the original protocol. The protocol was 

repeated several types with different variables altered each time, therefore to simplify the 

interpretation of results the attempts are annotated with the experiment number.  

A. Binding Antibody to Protein A/G Plus Agarose 

A.5. The initial antibody dilution used 10µl Rabbit Anti-GFP antibody (Ab290, Abcam) 

diluted into 400µl 1x Coupling Buffer and added (100µl) to each column. (Experiment 1) 

A.5. The antibody dilution was reduced to 4µl Rabbit Anti-GFP antibody (Ab290, Abcam) 

diluted into 400µl 1x Coupling Buffer. Then 100µl of the solution was added directly to 

the resin in the column. (Experiment 2 and onwards). 
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B. Crosslinking the Bound Antibody  

B.1. A single tube of DSS was dissolved in DMSO to prepare 10x DSS. (Experiment 1) 

The 10x DSS was stored in a foil pouch and used in subsequent experiments. (Experiment 

1-5).  

B.1. Inefficient crosslinking suggested degradation of 10xDSS. To address this possibility 

fresh 10x DSS was prepared per experiment. (Experiment 6-7). 

B.5. The crosslinking reaction was incubated for 90 minutes which is longer than the 

recommended maximum time of 60 minutes. (Experiment 6-7).  

 

C. Mammalian Cell Lysis 

C.3. Supplement the IP Lysis buffer with protease inhibitor (1:10 dilution). For lysis of 12-

well plate 250µl of IP lysis buffer was added to each well. (Experiment 1).  

C.3. Due to high background to signal ratio, lysis of cells transfected with EGFP-Cys 

OGG1, EGFP-Ser OGG1 and non-transfected cells was proceeded by nuclear protein 

extraction as described above. (Experiment 2). Lysis of the positive-control GFP-

transfected cells was conducted using the original cell lysis protocol; GFP localizes in the 

cytoplasm so nuclear protein extraction would be counterproductive. (Experiment 1 and 

onwards).  

C.3. Due to insufficient protein yields, the cell culture and transfection was scaled up to 

T25 flasks (25cm
2
). Therefore the cell lysis was also scaled up; 750 µl of IP Lysis buffer 

was used to lyse cells in T25s as described above. (Experiment 3 and onwards).  

 

D. Pre-clearing lysate using Control Agarose Beads.  

D.1. To respond to the low protein yields (~0.5mg), only 40µl of the Control Agarose 

Resin was added to each spin column. (Experiment 1 - 3). 
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D.1. At high protein yields the recommended amount (80µl) of Control Agarose Resin was 

added to each spin column. (Experiment 4 and onwards). 

D.4. The volume of lysate added to the column varied with every immunoprecipitation 

attempt. The recommended amount of total protein per IP reaction is 500-1000µg. The 

amount of total protein per sample was determined using the Bradford Assay, then the 

maximum amount that could be consistently taken from each sample was calculated. This 

lysate volume was diluted with ice-cold IP Lysis buffer to achieve the general 

recommended sample volume (300-600µl) of 500µl.  

 

E. Antigen Immunoprecipitation 

E.1. This step was omitted as the antibody-crosslinked columns were freshly prepared on 

the day of immunoprecipitation. (Experiment 1 and onwards) 

E.3. This step was omitted as the cell extract was diluted in IP Lysis buffer prior to pre-

clearing. Subsequent to the pre-clearing (D.5), all of the flow-through collected per sample 

was applied to antibody-crosslinked columns.   

 

F. Antibody Elution 

F1. The spin column was placed into a new collection tube and 10µl of Elution buffer was 

added and the columns were centrifuged as suggested in the original protocol. Additionally 

the low pH of the Elution buffer was neutralised by adding 3µl of 1M Tris, pH 8.8, directly 

to the collection tube. (Experiment 1-6). 

F3. Two additional elutions were conducted by repeating steps F1-F3. The elute was 

collected into 1.5 eppendorf and stored at -80 till further analysis by SDS-PAGE.  

F1-3. To facilitate the downstream mass spectrometry of the purified protein, the Pierce 

Elution buffer was exchanged for an elution buffer of known composition and 

compatibility to mass spectrometry. The elution buffer was prepared of 
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TFA:H2O:Acetonitrile at 1:20:20 ratio. Then 40µl of elution buffer was added to each 

column. The columns were rotated end-to-end gently for 10 minutes at room temperature, 

followed by centrifugation at 1000 x g for 1 minute at 4°C (Hawk 15/50 Sanyo, Japan). 

The supernatant was collected, and elution buffer was evaporated at 60°C using Eppendorf 

Vacufuge to achieve a dry pellet.  The samples were then stored at -80 till downstream 

processing by mass spectrometry.  

 

2.6.5 Bradford Assay 

Protein concentration was determined colorimetrically using the Bradford assay (Bradford 

M.M 1976). Bio-Rad reagent was made to a 1/5 dilution with dH20 and syringe filtered. 

Bio-Rad reagent (1ml) was added to each curette with varying amounts (0-10 µl) of the 

BSA standard. Arbitrarily chosen amounts of samples were added to a cuvette containing 

Bio-Rad reagent and the absorbance was read at 595nm.  

2.7 Protein Analysis 

2.7.1 SDS-PAGE 

Buffers  

10% Resolving gel: Polyacrylamide 30% solution (10%), Tris-HCl pH 8.8 (1.5M), SDS 

(10% w/v), UHQ H20 (11.9ml). Immediately prior to casting N,N,N,N-

tetramethylethylenediamine (TEMED) (4 μl per 10ml) and 10% w/v ammonium 

persulphate (APS) (100 μl per 10 ml) were added.  

4% Stacking gel: Polyacrylamide  30% solution (5%), Tris-HCl pH 6.8 (1M), SDS (10% 

w/v), UHQ H2O (20.4ml). Immediately prior to casting N,N,N,N-

tetramethylethylenediamine (TEMED) (10 μl per 10 ml) and 10% w/v ammonium 

persulphate (APS) (100 μl per 10 ml) were added. 

1X TBS: Tris base (0.1 M) and NaCl (0.15 M), adjusted to pH 8.0.  
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1X TBS-0.05% Tween: 10x TBS, UHQ H2O and Tween 20 (0.05%).  

SDS-PAGE running buffer: Tris base (25 mM), glycine (192 mM), and SDS (0.1% w/v).  

Transfer buffer: Tris base (20 mM), glycine (150 mM) and methanol (20% v/v).  

Blocking buffer: Low-fat powdered milk (Marvel, U.K.) (5%) in 1X TBS-0.05% Tween 

 

Following elution of the desired protein, 20µl was aliquoted into a 100µl microcentrifuge 

tube in preparation of SDS-PAGE. The eluted proteins were mixed with 20µl of 2x 

Laemmli loading buffer and centrifuged briefly. The sample was denatured by heating at 

95ºC for 5 minutes. Sequentially the resolving gel and stacking gel were cast using the 

Mini-PROTEAN Tetra Electrophoresis System (Bio-Rad™). Ladder (Prestained Protein 

Marker, Broad Range, BioLabs) (10µl) was loaded followed by the samples; these were 

resolved in running buffer at 100V for approximately 90 minutes.  

2.7.2 Western Blot and ECL Immunodetection  

The SDS-polyacrylamide gel was washed with running buffer and the stacking gel was 

removed, prior to placing the gel into the transfer kit. The PVDF membrane (Millipore 

Immobilon) was primed to transfer by equilibration in 100% methanol and transfer buffer. 

The transfer unit was assembled in the following order: cathode cassette plate, fiber pad, 

filter paper, polyacrylamide gel, PVDF membrane, filter paper, fiber pad and anode 

cassette plate. The proteins were transferred using the Bio-Rad electrophoretic transfer 

system at 80V for 90 minutes. Following transfer the membrane was blocked, using 

Blocking buffer, overnight at 4C on a rocking platform.  The membrane was washed with 

1xTBS- 0.05% Tween before incubation with primary antibody, Rabbit Anti-GFP 

antibody (Abcam:ab290) (1:2500 dilution) for either 1 hour at room temperature or 

overnight at 4C on a rocking platform. Membranes were washed with 1x TBS-0.05% 

Tween solution (3 x 15 minutes) before incubation with secondary antibody, Goat Anti-
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Rabbit HRP antibody (DAKO) (1/1000 dilution). Once again the membranes were washed 

with 1x TBS-0.05% Tween solution (3x15minutes) and then washed with 1x TBS for 15 

minutes. The membrane was incubated with SuperSignal West Pico chemiluminescent 

detection reagent (Thermo Fisher Scientific, U.K.) for 5 minutes, prepared as per 

manufacturer’s instructions. The membranes were exposed to ECL Hyperfilm (Amersham) 

in the dark and the film was developed using X-O-graph machine.  

2.8 Mass Spectrometry  

Samples underwent zip-tip desalting and trypsin digestion (Functional genomics and 

proteomics facility, University of Birmingham, UK). The peptide fragments were pipetted 

into 96-well and processed by LTQ Orbitrap Velos Mass spectrometer (ThermoScientific) 

(Functional genomics and proteomics facility, University of Birmingham, UK) 

2.9 Confocal microscopy 

Coverslips were washed in 70% ethanol and PBS before being placed into 6-well plates 

(Corning). Cells were seeded into 6-well plates at 40-50% confluency and incubated 

overnight. Wells were transfected (4µg DNA: 400µl serum-free DMEM: 6µl Turbofect™) 

in duplicate in to separate well plates. After 24 hours of transfection incubation, a 6-well 

plate was treated with BSO (10mM); the DMEM was removed and equal volume of fresh 

BSO- media (10mM) was added. Following 48 hour incubation since transfection, cells 

were counterstained with 1000x dilution of DAPI for 30 minutes at 37°C. DMEM media 

was aspirated and coverslips were washed twice with PBS and fixed using 2% 

paraformaldehyde, pH 7.4, for 15 minutes at room temp. Coverslips were washed twice 

with PBS before transfer to a microscope slide with an aqueous mountant (DAKO). Image 

acquisition was performed with a Leica TCS SP2 confocal microscope using a 63x oil 

immersion objective NA 1.32. Fluorochromes were excited using an argon laser at 488 nm 

for EGFP and 405 nm for DAPI. Images were processed using ImageJ (MacBiophotonics). 



Chapter 3 Results  

 

Various concentration of the oxidising agent BSO were tested to determine a suitable 

concentration without disruption of cell viability. The cells were transfected with GFP-

OGG1 and then treated with the oxidising agent. These cells were then viewed under a 

confocal microscope and compared to non-treated cells. A second set of cells were 

transfected, and OGG1 with its protein partners was co-purified and the identities were 

confirmed by mass spectrometry.  

3.1 Cell Viability Assay  

Cell viability of the cells was measured to ensure that BSO did not have an adverse affect 

on the survival of the cells. Different concentrations of BSO were tested to determine a 

concentration effect on cell viability. Cell viability was determined using the MTT assay in 

which a yellow tetrazole dye is reduced to an insoluble purple formazan crystal, which is 

solubilised on addition of DMSO. The absorbance [540nm] is measured against a DMSO 

blank. No statistical difference was observed between any of BSO concentrations tested.  
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Figure 3.1 Cell Viability of A549s assessed after BSO treatment for 24 hours. Cell 

viability determined by MTT assay, measuring the absorbance of MTT reduction against a 

DMSO blank. No concentration dependant decrease is observed in A549 cells. One-way 

ANOVA analysis further confirmed that there was no statistical change (P<0.05) in the 

absorbance (540nm) at varying BSO concentrations in A549s (P=0.647 SD±0.058). 

 

3.2 Flow Cytometry Analysis of Transfection Efficiency  

The fluorescence emitted by GFP was measured to determine the transfection efficiency.  

The measurement of GFP fluorescence was plotted against the forward scatter. A quadrant 

is chosen (x=0,y=10
1
) to exclude background fluorescence and represent a threshold 

between transfection-dependant fluorescence and background fluorescence inherent to 

cells. The region below this quadrant represents non-transfection dependent inherent 

fluorescence. The fluorescence measured above the threshold is due to transfection and the 

percentage of cells above the threshold fluorescence is the transfection efficiency.  



Figure 3.2.1 Graphical presentation 

of GFP fluorescence in negative 

control untransfected cells. Over 

99% of the cells in the non-transfected 

negative control are below this 

threshold. 

Figure 3.2.2 Graphical presentation 

of GFP fluorescence in positive 

control GFP-transfected cells. The 

standard threshold as determined by 

the negative-control is applied. The 

region above the threshold (yellow) 

represents GFP expression in 

transfected cells indicating a 52% 

transfection efficiency.  

Figure 3.2.3 Graphical presentation 

of GFP fluorescence in GFP-Ser-

OGG1 transfected cells. The region 

(yellow) above represents cells 

transfected with GFP-Ser-OGG1 

vector (44.8% transfection 

efficiency).  

Figure 3.2.4 Graphical presentation 

of GFP fluorescence in GFP-Cys-

OGG1 transfected cells. Expression 

of Cys-OGG1 is measured by GFP 

fluorescence above the threshold, the 

figure above shows 56% transfection 

efficiency.  



3.3 Optimisation of Immunoprecipitation protocol  

This study provides recommendations on the optimisation of the Pierce Crosslink 

Immunoprecipitation kit for the purification of GFP-OGG1, based on the experience of the 

author.  The optimisation of immunoprecipitation is a common challenge encountered by 

investigators as protocols need to be modified to suit the type of protein, source of protein 

and the amount required.  Optimisation of immunoprecipitation is further complicated by 

numerous factors which significantly influence the success of the experiment.  Isolating 

the causal factor of a poor result is a scientific challenge that is dependent on the 

interpretation of the results. The usual strategy that is taken during method development is 

to alter one variable at a time which is often easy to implement and readily observed in the 

results. However, the trial and error method in which adjustments are made is time 

consuming and laborious. The starting point of any optimisation procedure is to perform 

the protocol without any deviations; the outcome of this pilot run would dictate the 

troubleshooting actions. Various immunoprecipitation methodologies are illustrated below 

(Figure.3.3.1), in general an antibody showing high specificity for the low-abundance 

target is coupled to a solid-phase matrix (protein A/G sepharose beads); this then binds 

proteins of interest and adsorbs the protein complex from the cell lysate (ThermoScientific 

2010). Proteins that are not bound to the antibody-Protein A/G bead support are washed 

away and the proteins of interest are eluted from the antibody coupled beads.  This is often 

followed by Western blot analysis to determine the identity of proteins that are associated 

with the protein of interest. This study utilised the Crosslink IP method whereby the 

antibody is covalently bound to the beaded support via a crosslinking reagent.   
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Several efforts were made to optimise the cross-link immunoprecipitation. The outcome of 

each immunoprecipitation was analysed by western blot. The results are analysed in the 

context of identifying the potential problem and the suitable troubleshooting reaction. The 

figure below (figure 3.3.2) summarises the immunoprecipitation protocol with the 

optimisation steps conducted, demonstrating that different variables were altered with each 

experiment of the immunoprecipitation protocol.  

Figure 3.3.1 Immunoprecipitation Methodology. The various methodologies of 

immunporecipiation are summarised. The crosslink IP method is most relevant 

to this study (ThermoScientific 2010). 

 



Elution 

5. The elution buffer provided in the  

immunoprecipitation kit was incompatible  

with mass spectrometry, thus the elution buffer 

 was changed to one with known composition  

suitable for mass spectrometry.  

Optimisation of Sample 

Preparation 

1. The initial run of the 

immunoprecipitation experiment indicated a                                 

high noise ratio and  background. To    

minimise this, the sample preparation  

protocol was modified to include 

 nuclear extraction.  

3.  Insufficient yields of initial 

protein sample was considered 

as a possible drawback. To 

address this, the cell culture 

vessal was up-scaled from 12- 

well plates to T25 flasks.   

                                     

 

Antibody-Column    Preparation 

                      2. The excessive elution  

                           of the  antibody indicated 

                        that the concentration of 

                     antibody was too high,   

              resulting in elution  

of uncrosslinked antibody. 

                      To counteract this, the 

                              antibody concentration was 

lowered.  

                           4. The presence of an 

                            antibody band in the  

                            control extract suggested 

                            inadequate crosslinking 

                            of antibody to the  

                             A/G Proteins. Fresh DSS  

                            crosslinker was utilised  

                            to increase efficiency 

                            of crosslinking reaction. 
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Figure 3.3.2 Schematic illustration of the cross-link immunoprecipitation. The stages that were altered 

to optimise the immunoprecipitation protocol are numbered in the order they were implemented. 

 

 



Results of Experiment 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.3 Western blots of Experiment 1. Gel A analysed the primary eluate, the 

starting material and the flow through allowing the comparison of protein bands at each 

stage of immunoprecipitation. Gel B analysed the secondary and tertiary elutions to 

evaluate the efficiency of the elution buffer is washing off GFP-OGG1.  

 

The outcome of the immunoprecipitation was analysed by conducting a western blot of the 

eluates (Figure 3.3.3). Gross vertical streaking was observed in all the eluate samples. The 

control samples lack GFP so the presence of bands in the control column is likely due to 

contamination of the samples. GFP-Cys-OGG1 and GFP-Ser-OGG1 presented a similar 
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band pattern to the control, suggesting inherent processing problems. It is likely that the 

proteins have been degraded resulting in a number of polypeptides that have different 

molecular weights that can be detected by GFP antibody. 

 

The starting cellular material was also analysed to confirm the presence of OGG1 in the 

cell sample. As expected no GFP was present in the cell lysate of the control. The cell 

lysate of GFP-Cys-OGG1 displayed a discrete band  representing OGG1 protein with an 

approximate molecular weight of 60kDa which correlates to estimated combined 

molecular weights of GFP and OGG1. The lack of a band for GFP-Ser-OGG1 represents 

insufficient GFP-OGG1 present in the cell sample which would likely be a result of low 

transfection efficiency.  

The flow-through was collected after overnight incubation of the cell lysate with the 

antibody-crosslinked resin (Step E.5, Immunoprecipitation Protocol, Appendix 1). The 

flow-through was analysed to determine the efficiency of the immunoprecipitation; the 

presence of discrete bands would indicate the proteins are not sufficiently bound to the 

resin and can be washed off the resin without elution buffer.  

The additional elutions were also analysed, as presented on Gel B (figure 3.3.3). The band 

present in the GFP-Ser-OGG1 column is likely to represent GFP-OGG1. This indicates the 

primary elution is not sufficient to elute all of the protein. It also suggests that the GFP-

antibody cross-linked resin was able to specifically detect and bind to GFP-OGG1. The 

absence of any bands in the remaining column indicates any bound GFP-OGG1 has been 

eluted completely from the resin. 

 

Optimisation Step 1 

The initial problem encountered was the high level of background noise relative to the 

signal of interest. From the SDS-PAGE analysis it is evident that the expected signal of 
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interest is masked in the background signal. High background is the result of non-specific 

binding of the cell lysate components to the antibody immobilised resin.  As no resin is 

completely inert, non-specific interactions between cellular components and the Protein 

A/G resin are likely. Pre-clearing of starting material eliminates nonspecific high affinity 

proteins bound to the protein A/G resin, these proteins are omitted from the actual 

immunoprecipitation process. High background signal was repeatedly detected throughout 

the experiments despite the pre-clearing stage, suggesting either short-comings of the pre-

clearing stage or other causes of non-specific signals. Several routes can be undertaken to 

reduce the background signal; in this investigation the first attempt was to reduce sample 

complexity by conducting nuclear extraction of the samples. Only the nuclear fraction was 

immunoprecipitated, therefore minimising the amount of non-specific proteins in the cell 

lysate sample. Reducing the presence of nonspecific proteins enriches the protein of 

interest in the lysis buffer 
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Gel A 

From Left to Right: 

AControl Elution 1 

B GFP-Cys-OGG1 Elution 1 

C GFP-Ser-OGG1 Elution 1 

D GFP Elution 1 

E GFP-Cys-OGG1 Elution 2 

F GFP-Ser-OGG1 Elution 2 

G GFP  Elution 2 

H Control Elution 2 

Gel B 

From Left to Right: 

A Control Flow Through 

B GFP-Cys-OGG1 Flow Through 

C GFP-Ser-OGG1 Flow Through 

D GFP Flow Through 

E Control Nuclear Extract 

F GFP-Cys-OGG1 Nuclear Extract 

G GFP-Ser-OGG1 Nuclear Extract 

H GFP Cell Lysate 

 

Results of Experiment 2.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.4 Western Blots of Experiment 2. Gel A compares the efficiency of the 

primary and secondary elution. Large amount of non-specific interactions are observed in 

all columns except Control Elution 2. Gel B doesn’t present any bands in any flow through 

samples indicating that all antigen has been washed off. The nuclear extract samples 

indicate the presence of the protein of interest in each analyte.  

 

The primary and secondary eluates were examined by western blot. As previously 

observed in Experiment 1, (Gel A - figure 3.3.3), vertical streaking in all of the columns 

was evident. It was established that these were likely the result of non-specific binding, 

which was minimised in the secondary elution. The large vertical bands presented in the 

GFP elution represent the relative affinity of GFP antibody to GFP compared to that of 

GFP-OGG1.  
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The flow through of the immunopreciptation (Gel B) did not produce any bands indicating 

that the GFP-antibody is interacting strongly with the components of the lysate. The 

analysis of the nuclear extracts confirms the absence of GFP-OGG1 in the control. The 

bands in the GFP-Cys-OGG1 and GFP-Ser-OGG1 columns represent GFP-OGG1 as these 

are of equal molecular weight. The band in the GFP nuclear extract is further down 

representing the smaller molecular weight GFP protein. The intensity of this band indicates 

large number of GFP transfected cells and also excessive GFP antibody concentrations.  

 

Optimisation Step 2 

The antibody dilution must be balanced to achieve adequate protein yield whilst reducing 

background reactions. The antibody concentrations are empirically determined using the 

manufactures’ recommendations as a preliminary guideline. The initial dilution used was 

1/1000 but as a result of strong antibody signal this concentration was reduced to 1/2500. 

This study utilised polyclonal antibodies which is a possible source of background 

reactions due to its ability to recognise various epitopes of the GFP proteins. An obvious 

solution to this would be the use of monoclonal antibodies, however due to the limited 

resources this was not feasible in this study.  
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Results of Experiment 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.5 Western Blot of Experiment 3. Gel A only produced a single discrete band for 

GFP elution 1. Gel B generated no bands for elution 3 and produced speckled bands for 

flow through.  

 

The western blots of experiment 3 were uncharacteristic of what had previously been 

observed with these samples. Various causes could be attributed to this, including 

preparation error. No bands were observed in elution 1 with the exception of a band for 

GFP elution 1. No bands were observed in elution 2 (Gel A) or elution 3 (Gel B). Analysis 

of the flow through resulted in speckled bands of various molecular weights, likely a result 

of non-specific proteins being detected. The lack of GFP-OGG1 bands in the flow through 

eliminate the possibility that the GFP-OGG1 was being washed off resulting in the absence 

of bands of elution samples. An analysis of the cell lysate was required to determine 
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whether the absence of GFP-OGG1 bands were a result of poor transfection efficiency.  It 

is possible that the low amount of GFP-OGG1 proteins were insufficient enough to be 

detected.  

 

Optimisation Stage 3 

The lack of antigen signal prompted investigation into the possible causes; it was 

determined that the low initial OGG1 concentration prevented detection. Although the 

transfection was confirmed by epifluorescence microscopy, a quantitative measure of 

transfection efficiency was not determined. Possible resolutions for low antigen abundance 

include increasing cell lysate concentration, increasing antibody concentration and 

metabolically labelling cellular proteins. It was observed that the yield of nuclear extract 

protein was below the recommended sample volume.  To ensure that the initial protein 

concentration corresponded to the recommended amount, the cell lysate yield was 

increased by up-scaling the cell culture vessel. Initially cells were cultured in 12-well 

plates, then 6-well plates and finally in T25 flasks. Furthermore cells were transfected in 

duplicate, thus the yield for each sample was doubled. 

 

Results of Experiment 4  

The western blots, (figure 3.3.6), of the eluates on Gel A show that the GFP-antibody is 

being eluted. Most of the antibodies are eluted in the primary elution with only faint bands 

present in the secondary elution. This suggests very weak or absent crosslinking of the 

GFP antibody to the Protein A/G resin. The GFP-OGG1 bands are not observed for the 

GFP-OGG1 transfected samples; however it is undetermined whether the 

immunoprecipitation purified these proteins as the signal is potentially concealed by the 

antibody bands which are of similar molecular weight to GFP-OGG1.  The nuclear extract 

samples show the expected absence of a signal in the control, the presence of GFP-OGG1 
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bands in the transfected samples and the characteristically more mobile GFP band in the 

GFP nuclear extract. The absence of any bands in the flow through suggests that the 

antibodies are only removed from the resin on addition of elution buffer. Neither GFP-

OGG1 nor GFP were observed in the flow through, suggesting that these are adequately 

bound to the GFP-antibody resin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.6 Western Blots of Experiment 4. Gel A shows equal molecular weight bands in 

all the samples, although these bands become fainter in Elution 2. This indicates the 

elution of the GFP antibody as it is present in all samples and of the corresponding 

molecular weight. A small band is seen in the GFP Elution 1 column which represents 

GFP.  Gel B shows the presence of GFP-OGG1 and GFP in the nuclear extract of the 

corresponding transfected samples. No bands are observed in the Flow Through columns. 

GEL B 

From Left to Right: 

A Control Nuclear Extract  

B GFP-Cys-OGG1 Nuclear Extract 

C GFP-Ser-OGG1 Nuclear Extract 

D GFP Nuclear Extract 

E Control Flow Through 

F GFP-Cys-OGG1 Flow Through 

G GFP-Ser-OGG1 Flow Through 

H GFP Flow Through 

 

Gel A 

From Left to Right: 

A Control Elution 1 

B GFP-Cys-OGG1 Elution 1 

C GFP-Ser-OGG1 Elution 1 

D GFP Elution 1 

E Control Elution 2 

F GFP-Cys-OGG1 Elution 2 

G GFP-Ser-OGG1 Elution 2 

H GFP  Elution 2 
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Optimisation Step 4 
 

A common occurrence in immunopreciptation is elution of the antibody. Specific 

background refers to the co-elution of the antibody which masks the band of the protein of 

interest. Specific background is attributed to the antibody interactions with the 

immobilized resin. Crosslink immunoprecipitation kits allow the antibody to be 

crosslinked to the solid-phase bead matrix to prevent co-elution, which would otherwise 

interfere with antigen detection. The efficiency of the crosslinking reaction has been 

documented as incomplete, despite improving the overall quality of the 

immunoprecipitation.  The crosslinking reaction between antibodies and Proteins A/G is 

attributed to the multiple primary amine groups of amino acids on both of the antibody and 

protein resins, resulting in the formation covalent amide bonds (ThermoScientific 2010). 

Common crosslinkers exploit this interaction by promoting the production reaction of N-

Hydroxysuccinimidyl (NHS) esters. This study used a DSS crosslinker which contains 

reactive (NHS) esters on the ends of short carbon chains (ThermoScientific 2010). It is 

critical to optimise the dosage of DSS crosslinker to sufficiently link the antibody to 

Protein A/G without overwhelmingly crosslink Fc regions, modifying the binding site and 

preventing antigen recognition. It was determined that the DSS crosslinker had not been 

adequately preserved. Therefore a fresh batch of DSS crosslinker was prepared for the 

proceeding experiments. 
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Results of Experiment 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 3.3.7 Western Blots of Experiment 5. Gel A shows the immunoprecipitation of 

OGG1 in the GFP-Cys-OGG1 and GFP-Ser-OGG1 column; the OGG1 band is less mobile 

than the antibody band. Gel B shows GFP-OGG1 and GFP is present in the same prior to 

immunoprecipitation. 

 

Successful immunoprecipitation was observed in the western blot images of experiment 5. 

The control elution 1 shows a single band representing the GFP-antibody. The identity of 

the GFP-antibody was confirmed by the presence of an equal molecular weight band in all 

the samples of elution 1. Two bands were observed in GFP-Cys-OGG1 and GFP-Ser-

OGG1 columns. The lower mobility band refers to the GFP-OGG1 protein. The bands of 

elution 2 show a similar pattern to elution 1. As expected no GFP signal is detected in the 

nuclear extract or flow through of the control. No bands were observed in the flow through 
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From Left to Right: 

A Control Elution 1 

B GFP-Cys-OGG1 Elution 1 

C GFP-Ser-OGG1 Elution 1 

D GFP Elution 1 

E Control Elution 2 

F GFP-Cys-OGG1 Elution 2 

G GFP-Ser-OGG1 Elution 2 

H GFP  Elution 2 
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D GFP Flow Through 
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G GFP-Ser-OGG1 Nuclear Extract 

H GFP Cell lysate 
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of the GFP-Cys-OGG1 and GFP-Ser-OGG1 suggesting adequate binding of OGG1 

proteins to the GFP-antibody resin. A discrete band of GFP was observed in the flow 

through of GFP sample, this is likely due to high concentrations of GFP cell lysate 

resulting in unbound GFP. The characteristic bands of GFP-Cys-OGG1, GFP-Ser-OGG1, 

and GFP cell extracts were observed.  

Optimisation Step 5 

There are considerable restrictions on the solutions utilised to prepare samples for mass 

spectrometry, such as the absence of detergent and salts. The elution buffer provided with 

the immunoprecicipitation kit was unsuitable for mass spectrometry so the 

immunoprecipitation was repeated using an elution buffer with known compatibility to 

mass spectrometry. This elution buffer, however, was not compatible for SDS-PAGE 

analysis of the purity of the sample.  

3.4 Mass Spectrometry Results 

Cells transfected with GFP-Ser-OGG1 and GFP-Cys-OGG1 were lysed and the OGG1 

proteins with associated partners were co-purified. The eluate was collected following 

immunoprecipitation and was analysed by mass spectrometry. The LQT Orbitrap Velos 

Mass Spectrometer requires trypsin digestion of the samples before high energy collisions 

with neutral gas atoms resulting in fragmentation of peptides.  The fragmented ions of the 

peptides sequence are used to obtain a protein identify using the MASCOT database. A 

substantial proportion of the proteins identified in the samples were contaminating keratin 

and albumin proteins; these were excluded from the lists. Several variant forms of each 

protein were detected in the samples; here the precursor protein of the variants is presented 

(figure 3.3.8). The complete lists for each sample are available in Appendix 2.  A selection 

of proteins was common to both samples. The proteins exclusive to the Cys-OGG1 sample 

were thioredoxin and lysozyme, both of which have known antioxidant properties. 
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Table 3.4.1 GFP-Ser-OGG1 Mass Spectrometry Results. The identities of several proteins from the Ser-OGG1 sample are presented below. The 

coverage refers to the amount of peptide sequence from which the protein identity was found.  

Description Coverage # Proteins # AAs MW [kDa] 

prolactin-inducible protein precursor [Homo sapiens]  10.17 1 118 13.514 

glial fibrillary acidic protein [Homo sapiens] 16.67 1 66 7.5761 

NCK-associated protein 1, isoform CRA_a [Homo sapiens] 7.09 1 141 16.3652 

NCK-associated protein 1, isoform CRA_f [Homo sapiens] 5.24 1 401 43.6169 

pHL E1F1 [Homo sapiens] 10.45 1 134 15.0876 

prolactin-induced protein [Homo sapiens] 15.19 1 79 9.0777 

prolactin-induced protein [Homo sapiens] 15.19 1 79 9.0596 

prolactin-inducible protein precursor [Homo sapiens] 8.22 1 146 16.5618 

sarcolectin [Homo sapiens] 3.84 1 469 51.3823 

 

Table 3.4.2 GFP-Cys-OGG1 Mass Spectrometry Results. The identities of several proteins from the Cys-OGG1 sample are presented below.  

Description Coverage # Proteins # AAs MW [kDa] 

glial fibrillary acidic protein [Homo sapiens] 16.67 1 66 7.5761 

prolactin-induced protein [Homo sapiens] 15.19 1 79 9.0596 

thioredoxin [Homo sapiens] 15.29 1 85 9.4457 

thioredoxin [Homo sapiens] 12.38 1 105 11.7297 

Chain A, Buried Polar Mutant Human Lysozyme 9.23 1 130 14.6931 

lysozyme {beta-sheet domain} [human, Peptide Mutagenesis, 130 aa] 9.23 1 130 14.6491 

Chain A, Mutant Human Lysozyme With Foreign N-Terminal 

Residues 

9.16 1 131 14.7482 

prolactin-inducible protein precursor [Homo sapiens] 8.22 1 146 16.5618 

lysozyme precursor [Homo sapiens] 8.11 1 148 16.4292 

NCK-associated protein 1, isoform CRA_f [Homo sapiens] 2.74 1 401 43.6169 

sarcolectin [Homo sapiens] 2.35 1 469 51.3823 
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MERGE 

3.5  Confocal Microscopy Results 
Fig.3.5.1 Confocal images of untreated cells. Images show nuclear localisation of GFP-Ser- and GFP-Cys-OGG1 of untreated cells. 

 Cells were counterstained with DAPI. The merge images show OGG1 is localised in the nucleus. Images of the positive control, GFP, 

demonstrates cytoplasmic localisation. 
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Figure 3.5.2. Confocal images of cells treated with 10mM BSO for 24 hours. Cells were counterstained with the nuclear stain DAPI. The GFP 

signal of the Ser-OGG1 and Cys-OGG1was localised in the nucleic material. The merge shows GFP-OGG1 in the nucleus. There was no change 

in localisation upon BSO treatment. 
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Figure 3.5.3. Confocal images showing localisation of GFP-OGG1 in apoptotic cells. Cells express exogenous GFP-OGG1. The DAPI panels show 
that the nucleic material has condensed into micronuclei apoptotic bodies. The merge shows GFP-OGG1 are discretely excluded from the 
apoptotic bodies.  
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Figure 3.5.4. Merged Z-scan of an untreated Ser-OGG1 apoptotic cell. OGG1 is excluded from the apoptotic body at all cross sections of the nucleus.  
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Figure 3.5.5. Confocal image of an untreated GFP-Ser-OGG1 apoptotic cell. The nuclear material, stained with DAPI, shows the condensation of 
nuclear material into apoptotic bodies. The GFP-OGG1 has a punctate pattern throughout the cell but as the merge demonstrates it is 
excluded from the apoptotic bodies.  
 
 
 
 

Figure 3.5.6. Orthogonal cross-section of an  
untreated GFP-Ser-OGG1 apoptotic cell.  
The GFP-OGG1 is excluded from the  
apoptotic body through the cell.   
 
 
 
 
 
 
 
 

MERGE GFP DAPI 
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MERGE GFP DAPI 

Figure 3.5.7. Confocal images of untreated GFP-Ser-OGG1 mitotic cells. The DAPI stain shows that the nuclear material is in the process of 
division. The GFP-OGG1 is diffusely distributed though out the cell. The merge shows the GFP-OGG1 is in both the nuclear and cytoplasmic 
compartment.  
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Chapter 4. Discussion 

4.1 Cell Viability on BSO treatment 

As a DNA repair protein for oxidised lesions it is critical to investigate OGG1 activity, 

localisation and regulation under its expected operating conditions of oxidative stress. 

Several studies have studied OGG1 upon inducement of oxidative stress by various means 

(Arai et al. 2006; Bercht et al. 2007; Dahle et al. 2008; Smart et al. 2006; Priestley et al. 

2010; Green et al. 2006). This study used buthionine-sulphoximine to induce oxidative 

stress by reducing levels of reduced glutathione.  Glutathione is a proven antioxidant in the 

cytoplasm, nucleus and mitochondria (Green et al. 2006), which reacts indirectly with 

various ROS or directly as a cofactor of glutathione peroxidase and dehydroascorbate 

dehydrogenase (Will et al. 1999). BSO depletes reduced glutathione by inhibition of the 

glutamate-cysteine ligase, the first enzyme in the biosynthesis of glutathione (Green et al. 

2006). A BSO concentration dependant increase in glutathione was observed which 

correlates to the concentration dependant increase in reactive oxygen species; cells treated 

with 10mM BSO previously shown to increase ROS levels 4-fold compared to basal levels 

(Green et al. 2006).  The levels of total cellular glutathione is inversely proportional to the 

levels of oxidative DNA damage i.e. 8-oxoG (Will et al. 1999; Lenton 1999; Martínez-

Alfaro et al. 2006). The BSO concentrations used in this study produced no significant 

change in cell viability. Cell viability was determined by performing the MTT assay 

consisting of a yellow dye which is reduced to insoluble purple formazan crystals by the 

activity of mitochondrial succinate dehydrogenase. The highest concentration of BSO 

which did not change cell viability was 10mM BSO; this concentration was then used  to 

treat cells prepared for confocal microscopy in order to achieve maximum change of 

cellular ROS levels without disrupting cell viability.  
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4.2 Transfection Efficiency  

The bifunctionality of GFP as an affinity tag and fluorescent label is one of the reasons 

why it is the fusion-tag of choice, particularly in OGG1 research it has been used in both 

immunoprecipitation and fluorescence microscopy (Dantzer et al. 2002; Zielinska et al. 

2011; Bravard et al. 2010). Cell samples were transfected with either Ser-OGG1-GFP, 

Cys-OGG1-GFP or GFP. Transfection efficiency was confirmed adequate to ensure 

sufficient expression of GFP-OGG1 prior to downstream experiments. Transient 

transfection in A549 cells overexpresses the OGG1 protein as A459s inherently possess 

low level endogenous OGG1 protein. As expected, overexpression of OGG1 enhances the 

activities of OGG1. When transfected into mammalian cells, the total OGG1 enzyme 

activity is increased 10-fold and the repair of 8-oxoG, as determined by the alkaline elution 

technique, is 3-fold higher than vector-only transfected cells (Hollenbach et al. 1999). 

Although the extent of difference in repair kinetics caused by overexpression varies 

depending on the source of oxidative stress (Dahle et al. 2008), the overall enhancement in 

repair efficiency is observed.  Thus correlating exogenous OGG1 activity profile to 

endogenous OGG1 must take into consideration the overexpression of the OGG1 protein. 

4.3 Immunoprecipitation 

Many functions within the cell are the result of synergy between many protein interacting 

partners and/or multiprotein complexes. Studies have proposed the OGG1 contribution to a 

multiprotein complex, based on experiments demonstrating consistent colocalisation of 

DNA repair proteins and several cellular components displaying a regulatory effect on 

OGG1 possibly via direct interaction (Hu et al. 2005; Bhakat et al. 2006). This study 

aimed to compare the profile of protein-interactions between the wild-type Ser-326 OGG1 

to the Cys-326 variant, as well as identifying any novel interactions. The first step was to 

purify OGG1 with all possible protein partners en masse. The co-purification of protein 
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partners is a compromise between removal all non-specific bound proteins (contaminants) 

using high stringency techniques, and preservation of specific interacting protein partners 

using low stringency techniques. In general, it is attempted to maintain all interaction 

events. For this reason low stringency techniques are utilised such as the pull-down assay 

which co-elute the proteins within a single experiment. To investigate further the proteins 

that directly interact with OGG1, a pull-down immunoprecipitation was performed. The 

‘bait’ protein was recombinant GFP-OGG1 chimera synthesized in cells and allowed to 

interact with endogenous proteins and form stable complexes. These multiprotein 

complexes were harvested, purified, and then analysed by gel electrophoresis and mass 

spectrometry. 

 

Untested immunoprecipitation techniques require considerable optimisation to adequately 

purify GFP-OGG1. A recurring issue was non-specific background; to resolve this 

antibody concentration was decreased to reduce the high-affinity low-specificity binding 

of contaminants to the antibody. Sample complexity was reduced by nuclear extraction, 

however this decreased the initial substrate for immunoprecipitation, therefore the cell 

culture was scaled up to increase the quantity of nuclear enriched OGG1. Consistent 

elution of the GFP antibody lead to the speculation that the DSS crosslinker was no longer 

active, therefore fresh crosslinker was utilised. Incompatibility of the ThermoScientific 

elution buffer to mass spectrometry analysis required substitution of the 

immunoprecipitation elution buffer to one of confirmed compatibility to mass 

spectrometry. The western blots of each experiment were sequentially analysed; the 

conclusion was that under these conditions immunoprecipitation is not suitable for mass 

spectrometry analysis. The incompatibility of the mass-spectrometry elution buffer to 
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SDS-PAGE prevented analysis of sample prior to mass spectrometry. This restriction 

means the purity of the sample cannot be verified before mass spectrometry.  

4.4 Mass Spectrometry  

The final immunoprecipitation was performed without SDS-PAGE analysis, instead the 

eluate was analysed by LQT Orbitrap Velos mass spectrometry to identify the peptide 

sequences of the co-eluted proteins. A substantial amount of the proteins identified were of 

the keratin family and albumin family which are common contaminants of mass 

spectrometry (Keller et al. 2008; Alphalyse Inc 2009). The presence of contaminants may 

reflect the stringency of the purification technique. The contaminating proteins that co-

elute are due to nonspecific binding to the affinity matrix, antibody and/or fusion tag 

(Trinkle-Mulcahy et al. 2008). The challenge is then to distinguish the specific protein 

interacting partners from the abundant contaminants. The lists of proteins identified by 

mass spectrometry were filtered through a list of known non-specific binders of the 

agarose bead and the GFP tag (Global Proteomics Machine 2011). It was established that 

the accuracy in determining protein partners requires efficient depletion of the target 

protein, which can be stringently achieved using GFP binder (Trinkle-Mulcahy et al. 

2008). A GFP binder is more efficient at specifically extracting GFP from a highly 

complex sample than anti-GFP antibody or endogenous antibody (Trinkle-Mulcahy et al. 

2008). High depletion efficiency increases the signal of the target protein thus improving 

the signal to noise ratio (Trinkle-Mulcahy et al. 2008). Potential GFP-interacting proteins 

have been listed as cytokeratins 8 and 18, variants of heat-shock 70kDa protein, and 

ubiquitin (Trinkle-Mulcahy et al. 2008). Exclusion of such proteins from the mass 

spectrometry list reduces the list to possible protein partners which are then corroborated 

with previous publications.  
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Ser-OGG1-GFP Mass Spectrometry 

The analysis of the Ser-OGG1 sample produced a large number of non-nuclear proteins. 

The most prevalent was Glial fibrillary acidic protein (GFAP). GFAP is a component of 

the intermediate filament family that provide structural support to cell (U.S National 

Library of Medicine 2008). Upon cellular trauma, astroglial cells produce GFAP to limit 

further structural and functional damage (U.S National Library of Medicine 2008).  There 

is no previous evidence of the interaction between this protein and OGG1 so it is likely the 

presence of this protein in the sample is a result of contamination.  Another possible 

contaminant is the Prolactin-induced protein (PIP), named as such due to its upregulation 

by prolactin (Kitano et al. 2006). It is secreted into the fluids of several glands, particularly 

the apocrine gland where it regulates water transport (Kitano et al. 2006). It was detected 

several times in the sample despite no previous indication of its interaction with OGG1. 

The NCK-associated protein 1 is preferentially expressed in the brain, heart and skeletal 

muscles. It is known to interact with RAC1, involved in cell growth, reorganisation of the 

cytokeleton and kinase activation (Kitamura et al. 1997). Its presence in the sample is 

unexpected as it has not previously been linked to OGG1.  A proline-rich protein (pHL 

E1F1) was also detected twice in the sample, this protein is produced abundantly in the 

human lacrimal gland where it likely mediates a protective function  (Dickinson & Thiesse 

1995). This protein has not been cited in any study to associate with OGG1 so the function 

of this protein in relation to OGG1 is elusive. Sarcolectin is a tissue growth factor, was 

also detected in the sample. Its role is related to inhibition of interferon to reduce an 

antiviral state (Ibelguafts 2011). The proteins detected in the Ser-OGG1 sample were non-

specific to OGG1 or were the result of contamination, thus it is not possible to relate these 

proteins to OGG1 function. 
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Cys-OGG1-GFP Mass Spectrometry 

Several proteins were common to both the Ser-OGG1 and Cys-OGG1 sample; these 

included GFAP, PIP, NCK-associated protein and sarcolectin. The most abundant protein 

in the Cys-OGG1 sample is lysozyme. Various mutants and structures of lysozymes were 

detected. Lysozymes are ubiquitous enzymes in human secretions, such as tears, mucus, 

milk and saliva (Invitria 2010). Though Hen Egg Lysozyme C and human Lysozyme C 

have been implicated in contaminating mass spectrometry samples (Global Proteomics 

Machine 2011), such an unexpected abundance in lyzosymes in unexpected. The lack of 

detection of lysozymes in the Ser-OGG1 sample further obscures the cause of the 

lysozyme presence, as possible sources such as reagents can be excluded. However, 

considering the exogenous secretion of lysozyme it is likely a contaminant as a result of 

direct human contact with the sample. Lysozymes posses antimicrobial properties based on 

the ability to lyse bacterial cell walls (Hung et al. 2007). Lysozymes also help reduce 

oxidative stress by scavenging free radicals and hydroxyl molecules (Invitria 2010). 

Lysozymes detoxify advanced glycation end products (AGE) which produce ROS (Liu et 

al. 2006). Lysozymes also inhibit cell apoptosis and suppress the expression of AGE-

induced p66 and c-Jun which are involved in stress response (Liu et al. 2006). As 

lysozymes are proven to reduce oxidative stress there is a possibility the abundant 

expression of lysozyme in the sample is due to enhanced oxidative stress.  

 

Thioredoxin was also considerably prevalent in the mass spectrometry results. As with 

lysozymes, several mutant forms were detected. Thioredoxin has a significant role in 

oxidative stress and redox signalling. The prime role of thioredoxin is as a disulphide 

reductase which prevents the formation of disulphide bonds between free sulphydryl 

groups of proteins in oxidizing conditions (Arnér & Holmgren 2000). The proteins are 

then maintained in their reduced state via the synergy of thioredoxin, NADPH and 
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thioredoxin reductase. The disulphide within the active site of oxidized thioredoxin is 

reduced to dithiol by a reaction catalysed by thioredoxin reductase and NADPH (Arnér & 

Holmgren 2000). The reduced thioredoxin then reduces protein disulphides.  Additionally 

thioredoxin also possesses several organism specific functions but it is its role in apoptosis 

in response to oxidative stress that is particularly relevant to this study. The apoptosis 

signalling kinase 1(ASK1) and reduced thioredoxin form a complex which associates with 

DNA polymerase (Arnér & Holmgren 2000). This inhibitory complex is able to regulate 

apoptosis according to redox states within the cell. Increasing oxidative stress would 

decrease the levels of reduced thioredoxin, preventing the formation of the inhibitory 

complex, allowing activation of apoptosis. Both oxidised and reduced forms of thioredoxin 

were present in our mass spectrometry analysis this it is not feasible to deduce the relative 

prevalence of each in the cell.  Furthermore thioredoxin is involved in redox modulation of 

several transcription factors such as NF-kB and AP-1 involved in inflammation and 

apoptosis, respectively (Arnér & Holmgren 2000). Thus thioredoxin can modulate the 

cellular response to oxidative stress in contribution to its intrinsic antioxidant activity. 

Thioredoxin is upregulated in response to oxidative stress thus it is likely that the enhanced 

oxidative stress due impaired activity of Cys-OGG1 increased thioredoxin expression. 

However no previous study has linked thioredoxin to OGG1 directly. The redox regulation 

imposed by thioredoxin is reminiscent to the regulation proposed for OGG1. Bravard et 

al., demonstrated the effect of altering the cellular redox on OGG1 activity (Bravard, et al. 

2009a). Cadmium induced an redox environment which lead to the reduction of OGG1 

(Bravard, et al. 2009a). The glycosylase activity was then measured at different doses to 

show a cadmium-specific inhibition of OGG1. It is not the general oxidative conditions 

which impair glycosylase activity, nor does cadmium directly interact with OGG1 but 

oxidative modifications of either possible 8 cysteine residues on OGG1(Bravard, et al. 
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2009a). Using cysteine-modifying reagents these redox-sensitive residues on OGG1 were 

verified as critical for glycosylase activity. After 60 minutes the glycosylase activity was 

restored indicating normalisation of the oxidation conditions, further reconfirmed when 

cadmium was sequestered by a metal chelator (Bravard, et al 2009a). Thus the redox-

induced inhibition was reversible leading to the speculated involvement of thioredoxin 

which reverses protein thiolation. Yeast strain defective of thioredoxin are considerably 

vulnerable to the effect of cadmium, further highlighting a possible link between OGG1 

and thioredoxin. The impaired activity of Cys326-OGG1 was then justified in terms of 

extra cysteine and its sensitivity to oxidation. Upon addition of reducing agents, which 

prevent oxidation of cysteine residues, the DNA glycosylase activity was rescued and 

comparable to the wildtype (Bravard, et al. 2009b). Using thiol-specific crosslinkers they 

were able to identify a disulphide bond exclusively present in Cys-OGG1 (Bravard, et al. 

2009b). It is speculated that the additional cysteine increases the susceptibility to 

oxidation, forms a disulphide bond and therefore increases the sensitivity of OGG1 to 

inactivation by oxidative stress (Bravard, et al. 2009b). Thus the exclusive presence of 

thioredoxin in the Cys-OGG1 sample may reflect the requirement of thioredoxin to 

inhibition formation of disulphide bonds on Cys-OGG1 to maintain intact DNA 

glycosylase activity.  

 

Conclusion 

Overall the mass spectrometry did not yield any expected partners of OGG1 or even 

OGG1 itself. This suggests problems during the processing stages which has lead to the 

accumulation of large amount of human skin contaminants and non-specific proteins. 

However this was only a pilot study to determine the efficiency of the 

immunoprecipitation: mass spectrometry workflow in studying OGG1 and its interacting 

proteins. Thus the results here cannot be accepted conclusively as further repeats would be 
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required in addition to downstream validation techniques to verify the bona fide interaction 

of the partners. Several flaws in methodology have been identified such as lack of 

compatibility in the reagents of the two processes and the laborious optimisation of 

immunoprecipitation. Mass spectrometry does, however, provide an en mass identification 

of proteins from a complex sample in a single experiment. This reflects the high sensitivity 

and resolution of current mass spectrometry technology. Despite this, mass spectrometry is 

still prone to experimental errors and system errors which can lead to inaccurate 

identification of a peptide (Trinkle-Mulcahy et al. 2008). The inability to discriminate 

between native proteins, non-specific proteins and contaminants is a considerable problem 

when attempting to identify novel associations. Cell lysis inevitably mixes the pool of 

proteins which would otherwise be separated in organelle compartments. The subsequent 

protein interactions would not reflect the putative interactions in the cell, leading to 

inaccurate conclusions on protein-partners. Researchers have begun to challenge this 

drawback by the development of techniques which can distinguish between specific and 

non-specific interactions (Trinkle-Mulcahy et al. 2008; Tackett et al. 2005).  

4.5 Confocal Microscopy 

Comparison of BSO-treated cells to non-treated cells 

Several investigations into the localisation of OGG1 have been conducted by means of 

conjugated photosensitive and fluorescent dyes in order to track the distribution and 

dynamic relocalisation in response to different physiological conditions and cell-cycle 

stages. Some studies have also attempted to compare the localisation of the wild-type 

OGG1 to mutant variants to elucidate whether aberrant spatial modulation is responsible 

for reduced repair activity. This study found  no difference in the localisation of exogenous 

hOGG1 of either the wild-type or Cys-326 variant under oxidative stress induced by BSO 

(figure 3.5.1 and figure 3.5.2)  
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The confocal images generated in this study presented heterogenous localisation pattern of 

GFP-OGG1 in cells with no BSO-dependant difference (figure 3.5.2). At the organelle 

level the GFP-OGG1 was consistently localised in the nucleus and occasionally in the 

cytoplasm, but no GFP foci were observed in the mitochondria. Contrarily a molecular 

beacon tracked the dynamic activity of mOGG1 to dominate in the mitochondria in KO-

MEFs (Mirbahai et al. 2010). The fluorescence denoting OGG1 excision activity increased 

in a concentration dependant manner of potassium bromate-induced oxidative stress. The 

possibility that this increase in mitochondrial mOGG1 was due to mRNA stabilisation or 

transcriptional activation was eliminated by RT-PCR (Mirbahai et al. 2010). The authors 

suggest the  presence of mOGG1 activity in mitochondria may reflect the relative burden 

of the particular oxidising agent on mitochondrial DNA (Mirbahai et al. 2010). However 

without the use of 8-oxoG antibodies, the mitochondrial translocation cannot be directly 

correlated to increasing DNA damage. The surprising absence of nuclear mOGG1 activity 

observed in the study by Mirbahai et al., may also be due to lack of authentic mOGG1 in 

knockout cells, maintaining normal levels of OGG1 and thus exclusively measuring the 

activity of ectopically expressed mOGG1. When the same authors transfected the 

mOGG1-beacon into wild-type MEFs a similar pattern of strong nuclear expression was 

observed, corresponding to overexpression of OGG1, as observed in this study.  

 

Differential localisation of the Cys-OGG1 variant compared to wild-type was not observed 

in this study in either treated cells or non-treated cells. However  Zielinski et al., utilised 

quantitative live cell imaging to demonstrate that the repair kinetics of Cys-OGG1 is 3.4-4-

fold slower than wild-type (Zielinska et al. 2011). Measuring colocalisation of GFP-OGG1 

to acute foci of DNA damage, Cys-OGG1 was shown to be slower as it only repaired 20% 

of damage in 15 minutes compared to the 50% of damage repaired by the wild-type in 10 

minutes.  
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Apoptotic Cells 

Confocal images of apoptotic cells displayed differential GFP expression in the nuclear 

substructure (3.5.3). We observed that GFP-OGG1 was acutely excluded from the 

condensed Dapi-stained nuclear material in a non-treated GFP-Ser-OGG1. This distinctly 

differs from the diffuse GFP-OGG1 expression observed throughout the nucleus of non-

apoptotic cells. The hallmark nuclear morphology of apoptosis is the presence of apoptotic 

bodies (also known as micronuclei) (Martelli et al. 2001), which characterise the confocal 

images from this study. The apoptotic pathway is intertwined with many components 

involved in oxidative stress, notably OGG1 protects against apoptosis activation as 

demonstrated in knockout models (Oka et al. 2008). For example, the earliest substrates of 

caspase-3 are poly(ADP-ribose) polymerase (PARP) and DNA-PK which are both 

involved in DNA repair (Robertson et al. 2000). Furthermore OGG1 binding to PARP 

during oxidative stress enhances its poly(ADP-ribosyl)ation activity, the absence of OGG1 

results in total decrease in PARP and the PARP-mediated translocation of apoptosis-

inducing factor (Hooten et al. 2011; Oka et al. 2008). DNA-PK mediates the DNA 

fragmentation by phosphorylation of histone H2AX (Mukherjee et al. 2006). To counteract 

this OGG1 inhibits activation of DNA-PK which would otherwise lead to the oxidative 

stress-induced  apoptosis by phosphorylation of p53 (Youn et al. 2007). Caspase-6 then 

cleaves the nuclear proteins Lamin and NuMA which results in DNA fragmentation and 

chromatin condensation (Robertson et al. 2000). The protease cathepsin B diffuses into the 

nucleus where it degrades the transcription factor SP1 (Robertson et al. 2000). Suppression 

of SP1 has previously been shown to reduce OGG1 activity in response to the oxidative 

metal cadmium (Youn et al. 2005). Thus the consequence of cathepsin B-degradation of 

SP1 would be reduced OGG1. Moreover cathepsin B initiates chromatin detachment from 

nuclear matrix and endonuclease activation resulting in DNA fragmentation.  
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To our knowledge, this is the first study which visualizes OGG1 localisation in apoptotic 

cells. The nucleic material is condensed into a ball which is typical apoptotic morphology. 

OGG1 is discretely excluded from the nucleic material. Possible justifications for this 

distinctive morphology is to sequester DNA repair proteins from damaged DNA to which 

they have a high affinity. Gerner et al., provided evidence of considerable exchange in the 

protein composition of the chromatin and nuclear matrix during apoptosis (Gerner et al. 

2002). Apoptotic chromatin condensation resulted in the degradation of several proteins 

and the translocation of others to the nuclear matrix (Gerner et al. 2002). DNA repair 

proteins in particular become accumulated in the nuclear matrix (Gerner et al. 2002). It is 

likely that the inactivation of several DNA repair proteins is to prevent any 

counterproductive repair events when the cell is committed to death. 

Mitotic cells 

OGG1 expression was then observed in mitotic cells (figure3.5.7). The characteristic 

division of nucleic material was prevalent. The OGG1 was diffusely distributed throughout 

the cell. Surprising the characteristic localisation to the nuclear compartment was not 

observed in mitotic cells. Several studies have previously investigated the expression and 

localisation of OGG1 during cell cycle progression. Cell-cycle dependent expression is 

characteristic of a number DNA repair proteins, such as RAD52, APE and hMYH which 

are known associates of OGG1 (Luna et al. 2005; Fung et al. 2001; Kim 2001). The 

mRNA expression of hOGG1 increased with increased transcription in a cell-cycle 

dependant manner. The hOGG1 promoter contains two consensus transcription factor 

binding sites for NF-Y and E2F, which regulate the expression of several genes in a cell-

cycle dependant manner (Luna et al. 2005). However other studies have presented 

evidence suggesting constitutive expression of OGG1, as a housekeeping protein (Youn et 

al. 2005). Reporter gene technology has been used to examine the transcription-level 
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regulation of hOGG1; the fusion of luciferase gene to the OGG1 promoter in HeLa cells 

did not suggest cell-cycle dependant increase in transcription (Dhénaut et al. 2000).  

 

The localisation of GFP-OGG1 was tracked through cell cycle progression. During 

interphase OGG1 was localised in the nuclear matrix, a protein-RNA rich network, and 

chromatin (Dantzer et al. 2002). The OGG1 translocates dynamically to the condensed 

chromatin on the onset of mitosis (Dantzer et al. 2002). This translocation was further 

characterised in context of chromatin; oxidative stress induced the relocalisation of OGG1 

from euchromatin to heterochromatin (Amouroux et al. 2010). The euchromatin is easily 

accessible and is the preferred site of OGG1-mediated BER (Amouroux et al. 2010). 

Heterochromatin, like mitotic condensed chromatin, is a barrier to OGG1-mediated BER 

(Amouroux et al. 2010). OGG1 also been suggested to associate with the spindle assembly 

during mitosis but translocates to the centriole and cytoskeleton during interphase (Conlon 

et al. 2004). Microtubule-associated shuttling has been suggested as the mode of 

translocation (Conlon et al. 2004). 

 

The localisation of the wild-type and variant mutants in HaCat cells was studied in detail 

in context of cell-cycle dependant changes. Characteristically WT-OGG1 is located in the 

soluble chromatin and nuclear matrix during interphase. It is homogenously present in the 

nucleus during G1 and G2. However during S-phase, OGG1 is dynamically translocated to 

the nucleoli, discerned by counter-staining for nucleoli specific proteins, nucleolin and 

fibrallin. During S-phase the nucleoli is the site of high speed low fidelity of DNA 

synthesis which inherently requires DNA repair. Live time-lapse imaging confirmed the 

active localisation of OGG1 in the nucleoli during S-phase when counter-stained with 

PCNA, indicating active DNA replication. A similar pattern of localisation was observed 

with the repair deficient Cys-326 variant and the phosphomimetic variant Glu-326. During 
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mitosis, OGG1 is detected in the condensed chromatin; the site of DNA division. This is 

expected as many other DNA repair proteins become concentrated on chromatin during 

division of the nucleic material. The inhibition of DNA-dependant transcription saw the 

relocalisation of hOGG1 to condensed regions in the segregated nucleoli.  Dantzer et al., 

observed hOGG1-GFP in nuclear speckles but attributed the displacement of hOGG1 from 

the soluble chromatin and nuclear matrix to condensed chromatin due to progression of 

cells from interphase to mitosis (Dantzer et al. 2002). They suggested  relocalisation 

mechanism involved phosphorylation by PKC, as the wild-type distribution pattern was 

not observed with the Cys-326 variant but with the phosphomimetic Glu-326 variant 

(Dantzer et al. 2002). PKC is under redox regulation (Korichneva 2005), as is 

OGG1(Bravard et al. 2006), thus the activation of PKC during oxidative stress would 

enhance the response and localisation of OGG1.  

 

Other investigators have attempted to study the distribution of OGG1 within the nuclear 

sub-architecture. Campalans et al., demonstrated the dynamic localisation OGG1-GFP 

upon UVA radiation from soluble nucleoplasm to nuclear speckles where it is strongly 

associated with interchromatin and excluded from heterochromatin and nucleoli 

(Campalans et al. 2007). Distinct foci of OGG1-GFP colocalised with nuclear speckles 

independent of 8-oxoG interaction but possibly dye oxidative burst (Campalans et al. 

2007). The colocalisation of GFP-OGG1 to nuclear speckles cannot be verified in the 

present study without counterstaining for SC35. Blocking transcription resulted in 

chromatin condensation and subsequent OGG1 translocation from nuclear speckles to 

heterochromatin (Campalans et al. 2007).  

 

The exclusion of OGG1 from condensed chromatin/nucleoli was observed in a study by 

Conlon et al., wherein nutrient starvation was used to established oxidative stress in cells. 

Under normal conditions the mOGG1, as detected by anti-mOGG1 antibodies was 
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observed diffusely distributed throughout the cell (Conlon et al. 2003). These initial 

cytoplasmic pools redistribute to the nucleus in response to 2 hours of nutrient deprivation. 

A punctuate pattern of condensed structures of mOGG1 is then visible in the nucleus. The 

investigators did not counterstain for nucleic structures to reduce possible bleedthrough of 

multiple fluorescent signals. This lack of nuclear staining makes it difficult to discern the 

pattern of OGG1 distribution with respect to nuclear material, although the authors 

suggested the lack of OGG1 in the nucleoli as discerned by phase-contrast microscropy. 

Detection using 8-oxoG antibodies showed a similar localisation pattern within the nuclear 

interior but excluded from nucleoli.  The increased prevalence of OGG1 in the nucleus was 

attributed to the increased translation of stockpiled mRNA, although possible explanations 

such as increased nuclear import, protein stability and increased accessibility to antibodies 

have not been ruled out. The time frame eliminated the possibility of de novo synthesis of 

mRNA as the mRNA levels were not altered within the first hours of oxidative stress. 

 

The mitotic cells examined in this study did not directly corroborate with existing 

evidence. Whilst nucleic staining indicates mitotic division, the OGG1 is diffusely 

distributed throughout the nucleus. Without further characterisation of the cell cycle stage 

it is not feasible to delineate the expected localisation of OGG1.  

4.6 Conclusion 

The investigation into OGG1 protein partners by immunoprecipitation and mass 

spectrometry workflow proved problematic for a number of reasons. Further optimisation 

and repetition of the experiment would be required to study OGG1 partners. This study 

found the critical parameters in OGG1 coimmunopurification to be antibody concentration, 

sample volume and crosslinker activity. The presence of the antioxidants thioredoxin and 

lysozyme reflect the oxidative stress environment in the Cys-OGG1 sample. The high 

resolution found many contaminants, indicating further optimisation of workflow to enrich 
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amount of purified OGG1.The investigation into the localisation of wild-type OGG1 in 

comparison to the Cys-326 variant suggested no difference under normal conditions or 

oxidative conditions. Thus the impaired repair activity of Cys-326 is not due to aberrant 

spatial modulation. Observation of the localisation of OGG1 in apoptotic cells was novel; 

further research is required to understand the dynamics of the separate compartments in the 

apoptotic nucleus.  Examination of synchronous mitotic cells would be required to draw 

conclusions on OGG1 localisation. Overall no localisation difference between the wild-

type and variant was observed.  
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Appendix 

Appendix I 

INSTRUCTIONS  

Pierce
®

 Crosslink 

Immunoprecipitation Kit 

26147 2134.7 

Number Description 
26147 Pierce Crosslink Immunoprecipitation Kit, contains sufficient reagents to perform 50 reactions 
 using 10μL of immobilized antibody support 

 Kit Contents: 

 Pierce Protein A/G Plus Agarose, 0.55mL of settled resin supplied as a 50% slurry (e.g., 100μL of 
 50% slurry is equivalent to 50μL of settled resin) 

 20X Coupling Buffer, 25mL, when diluted results in 0.01M sodium phosphate, 0.15M NaCl; pH 7.2 

 DSS (disuccinimidyl suberate), No-Weigh™ Format, 8  2mg microtubes 

 IP Lysis/Wash Buffer, 2  50mL, 0.025M Tris, 0.15M NaCl, 0.001M EDTA, 1% NP-40, 
 5% glycerol; pH 7.4 

 100X Conditioning Buffer, 5mL, neutral pH buffer 

 20X Tris-Buffered Saline, 25mL, when diluted results in 0.025M Tris, 0.15M NaCl; pH 7.2 

 Elution Buffer, 50mL, pH 2.8, contains primary amine 

 Lane Marker Sample Buffer, Non-reducing, (5X), 5mL, 0.3M Tris•HCl, 5% SDS, 50% glycerol, 
 lane marker tracking dye; pH 6.8 

 Pierce Spin Columns – Screw Cap, 50 columns, includes accessories 

 Microcentrifuge Collection Tubes, 2mL, 100 tubes 

 Microcentrifuge Sample Tubes, 1.5mL, 50 tubes 

 Pierce Control Agarose Resin (crosslinked 4% beaded agarose), 2mL of settled resin supplied as a 
 50% slurry (e.g., 100μL of 50% slurry is equivalent to 50μL of settled resin) 

 Storage: Upon receipt store at 4C. Store DSS desiccated at 4ºC. Kit is shipped at ambient 
 temperature. 

 

Introduction 
 
The Thermo Scientific Pierce Crosslink Immunoprecipitation (IP) Kit enables highly effective and efficient 

antigen immunoprecipitations by covalently crosslinking antibodies onto Protein A/G resin. This kit combines 

the reliable crosslinking chemistry of DSS and the versatile high-binding capacity of Pierce Protein A/G Plus 

Agarose to produce an  
excellent method for performing IPs. The kit includes optimized buffers for high antigen yield using less than 

10 g of antibody and efficient spin columns and collection tubes for minimizing handling and mixing. The 

included 5X sample buffer is ideal for preparing samples for SDS-PAGE without significant dilution. This 

complete kit enables researchers to perform easy high-yield IPs that are free from antibody contamination. 
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Important Product Information 
 
 Perform all steps at 4°C unless otherwise indicated. 

 Perform all resin centrifugation steps for 30-60 seconds at low speed (i.e., 1000-3000  g). Centrifuging at speeds greater 

than 5000  g may cause the resin to clump and make resuspension difficult. 

 When centrifuging spin columns, the flow-through volume should not exceed 600μL when using a 2mL collection tube 

and 300μL when using a 1.5mL collection tube. Exceeding these volumes may result in back pressure in the column 

and incomplete washing or elution. 

 Before performing the immunoprecipitation, pre-clear lysates using the Control Agarose Resin to reduce 

nonspecific protein binding. 

 When using serum, the antibody specific for the antigen of interest may comprise only 1-2% of the total IgG in 

the serum. If recovery of high amounts of antigen is desired, use an affinity-purified antibody for optimal results. 

 IP Lysis/Wash Buffer has been tested on representative cell types including but not limited to the following cell 

lines: HeLa, Jurkat, A431, A549, MOPC, NIH 3T3 and U2OS. Typically, 10
6
 HeLa cells yields ~10mg of cell pellet 

and ~3g/L (or 300g) when lysed with 100μL of IP Lysis/Wash Buffer. 

 For best results, add Thermo Scientific Halt Protease (Product No. 78430) and Phosphatase (Product No. 78428) 

Inhibitor Cocktails to minimize degradation and dephosphorylation of cell lysate proteins. These inhibitors are also 

available as a combined cocktail (Product No. 78440). See the Related Thermo Scientific Products Section for 

more information. 

 The IP Lysis/Wash buffer is compatible with the Thermo Scientific Pierce BCA Protein Assay (Product No. 23225). 

 Proper controls are vital for identifying relevant interactions. The supplied Pierce Control Agarose Resin is composed 

of a similar support material used for Pierce Protein A/G Agarose Resin and can be used as a negative control. 

 The Pierce Spin Columns package includes columns, screw caps, plugs, Luer-Lok™ Adapter Caps, large frits and a 

large frit tool. The large frit is not needed for the standard IP protocol. When scaling-up (i.e., > 200μL of resin), the large 

frit can be inserted into the column to facilitate washing. The Luer-Lok Caps have a flip top that may be used during 

wash steps. Use the screw caps for sealing the spin columns during storage. (See the Additional Information Section.) 

 

Procedure for the Pierce Crosslink IP Kit 
 
A. Binding of Antibody to Protein A/G Plus Agarose  
 

Note: The following protocol is optimized for coupling 10g of antibody but can be used for 2-50g. For 

antibody amounts > 50g, proportionally scale the resin, crosslinker and buffer volumes.  
 
1. Prepare 2mL of 1X Coupling Buffer for each IP reaction by diluting the 20X Coupling Buffer with ultrapure water.  
 
2. Gently swirl the bottle of Pierce Protein A/G Plus Agarose to obtain an even suspension. Using a wide-bore or cut 

pipette tip, add 20μL of the resin slurry into a Pierce Spin Column. Place column into a microcentrifuge tube and 

centrifuge at 1000  g for 1 minute. Discard the flow-through.  
 
3. Wash the resin with 200μL of 1X Coupling Buffer, centrifuge and discard the flow-through. Repeat this wash once.  
 
4. Gently tap the bottom of the column on a paper towel to remove any excess liquid. Insert the bottom plug.  
 
5. Prepare 10 g of antibody for coupling. Adjust the volume to 100μL with sufficient ultrapure water and 20X 

Coupling Buffer to produce 1X Coupling Buffer. For example, for a 1g/L of antibody solution, add 5μL of 20X 

Coupling Buffer and 85μL of water and 10μL of antibody. Add the ultrapure water, 20X Coupling Buffer and affinity-

purified antibody directly to the resin in the column.  
 
6. Attach the screw cap to the column and incubate on a rotator or mixer at room temperature for 30-60 minutes, ensuring 

that the slurry remains suspended during incubation.  
 
7. Remove and retain the bottom plug and remove the cap. Place the column into a collection tube and centrifuge. Save the 

flow-through to verify antibody coupling.  
 
8. Wash the resin with 100μL of 1X Coupling Buffer, centrifuge and discard the flow-through.  
 
9. Wash the resin with 300μL of 1X Coupling Buffer, centrifuge and discard the flow-through. Repeat this wash once.  

 
Pierce Biotechnology PO Box 117 (815) 968-0747  www.thermoscientific.com/pierce 
3747 N. Meridian Road Rockford, lL 61105 USA (815) 968-7316 fax  
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B. Crosslinking the Bound Antibody  
 

Note: Conventional IP can be performed by omitting crosslinking; however, if crosslinking is omitted, the antibody 

will co-elute with the antigen during the elution steps.   
Note: The DSS crosslinker is moisture-sensitive. Keep DSS in foil pouch after use. Dissolve DSS in DMSO or 

DMF immediately before use. DSS is not compatible with amine-containing buffers (e.g., Tris, glycine).  
1. Puncture the foil covering of a single tube of DSS with a pipette tip and add 217μL of DMSO or DMF to prepare a 

10X solution (25mM). Use the pipette to thoroughly mix the solution (i.e., draw up and expel the solution) until the 

DSS is dissolved.  
 
2. Dilute the DSS solution 1:10 in DMSO or DMF (100μL of 10X DSS with 900μL solvent) to make 2.5mM DSS.  
 
3. Tap the bottom of the column on a paper towel to remove excess liquid and insert the bottom plug.  
 
4. Add 2.5μL of 20X Coupling Buffer, 9μL of 2.5mM DSS and 38.5μL of ultrapure water to the column. The total solution 

volume will be 50μL. The DSS is added at 10X molar excess to Protein A/G on the resin with a working concentration 

of 450M.  
 
5. Incubate the crosslinking reaction for 30-60 minutes at room temperature on a rotator or mixer.  
 
6. Remove and retain the bottom plug and open the cap. Place the column into a collection tube and centrifuge.  
 
7. Add 50μL of Elution Buffer to the column and centrifuge. Save the flow-through to verify antibody crosslinking.  
 
8. Wash twice with 100μL of Elution Buffer to remove non-crosslinked antibody and quench the crosslinking reaction.  
 
9. Wash twice with 200μL of cold IP Lysis/Wash Buffer and centrifuge after each wash.  
 
10. Proceed to immunoprecipitation protocol. If desired, the antibody-crosslinked resin can be stored for up to 5 days in 

IP Lysis/Wash Buffer. For longer storage, store resin in 1X Coupling Buffer (PBS). When storing the resin, place plug 

in bottom of spin column, add 200μL of storage buffer, attach the screw cap and store at 4°C  

 
C.   Mammalian Cell Lysis 
 
Protocol I: Lysis of Cell Monolayer (Adherent) Cultures  
1. Carefully remove culture medium from cells.  
 
2. Wash the cells once with 1X Coupling Buffer.  
 
3. Add ice cold IP Lysis/Wash Buffer (Table 1) to the cells and incubate on ice for 5 minutes with periodic mixing.  
 

Table 1. Suggested volume of IP Lysis/Wash Buffer to use for different 

standard culture plates. 
Plate Size/Surface Area Volume of IP Lysis/Wash Buffer 

100  100mm 500-1000μL 
100  60mm 250-500μL 
6-well plate 200-400μL per well 

24-well plate 100-200μL per well 
 
4. Transfer the lysate to a microcentrifuge tube and centrifuge at ~13,000  g for 10 minutes to pellet the cell debris.  
 
5. Transfer supernatant to a new tube for protein concentration determination and further analysis.  

 
Protocol II: Lysis of Cell Suspension Cultures 
 
1. Centrifuge the cell suspension at 1000  g for 5 minutes to pellet the cells. Discard the supernatant.  
 
2. Wash cells once by suspending the cell pellet in PBS. Centrifuge at 1000  g for 5 minutes to pellet cells.  
 
3. Add 500μL of ice cold IP Lysis/Wash Buffer per 50mg of wet cell pellet (i.e., 10:1 v/w). If using a large amount of cells, 

first add 10% of the final volume of IP Lysis/Wash Buffer to the cell pellet and pipette the mixture up and down to mix. 

Add the remaining volume of IP Lysis/Wash Buffer to the cell suspension.  
 
4. Incubate lysate on ice for 5 minutes with periodic mixing. Remove cell debris by centrifugation at ~13,000  g for 

10 minutes. Transfer supernatant to a new tube for protein concentration determination and further analysis.  

 
Pierce Biotechnology PO Box 117 (815) 968-0747  www.thermoscientific.com/pierce 
3747 N. Meridian Road Rockford, lL 61105 USA (815) 968-7316 fax  
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D.   Pre-clear lysate using the Control Agarose Resin  
1. For 1mg of lysate, add 80μL of the Control Agarose Resin slurry (40μL of settled resin) into a spin column.  
 
2. Centrifuge column to remove storage buffer.  
 
3. Add 100μL of 1X Coupling Buffer to the column, centrifuge and discard the flow-through.  
 
4. Add 1mg of lysate to the column containing the resin and incubate at 4ºC for 30 minutes to 1 hour with gentle end-

over-end mixing.  
 
5. Centrifuge column at 1000 × g for 1 minute. Discard the column containing the resin and save the flow-through, 

which will be added to the immobilized antibody.  

 

E. Antigen Immunoprecipitation General Protocol  
 
Note: The amount of sample needed and the incubation time are dependent upon each specific antibody-antigen system and 

may require optimization for maximum yield.  
1. If the antibody-crosslinked resin was stored in PBS, wash twice with IP Lysis/Wash Buffer. Discard the flow-

through after each wash.  
 
2. Tap bottom of the column on a paper towel to remove excess liquid. Replace bottom plug.  
 
3. Dilute the cell extract in IP Lysis/Wash Buffer. The recommended sample volume in the spin column is 300-600μL. The 

suggested amount of total protein per IP reaction is 500-1000 g as determined by the Pierce BCA Protein Assay.  
 
4. Add the pre-cleared lysate to the antibody-crosslinked resin in the column. Attach the screw cap and incubate 

column with gentle end-over-end mixing or shaking for 1-2 hours or overnight at 4°C.  
 
5. Remove bottom plug, loosen the screw cap and place the column in a collection tube. Centrifuge column and save 

the flow-through. Do not discard flow-through until confirming that the IP was successful.  
 
6. Remove the screw cap, place the column into a new tube, add 200μL of IP Lysis/Wash Buffer and centrifuge.  
 

Note: An alternative wash buffer (20X TBS) is supplied if a detergent-free wash is required. Dilute TBS to 1X before use.  
 
7. Wash sample twice with 200μL IP Lysis/Wash Buffer and centrifuge after each wash.  
 
8. Wash sample once with 100μL of 1X Conditioning Buffer.  

 
F.   Antigen Elution 
 
Note: To neutralize the low pH of the Elution Buffer (e.g., for downstream enzymatic or functional assays), add 

5μL of 1M Tris, pH 9.5 to the collection tube, which will neutralize the pH upon centrifugation (Step F3). Alternatively, use 

a neutral pH elution buffer (i.e., Thermo Scientific Gentle Elution Buffer, Product No. 21027). 
 
1. Place the spin column into a new collection tube, add 10μL of Elution Buffer and centrifuge.  
 
2. Keep the column in the tube and add 50μL of Elution Buffer. Incubate for 5 minutes at room temperature. The column 

does not need to be closed or mixed.   
Note: For a more concentrated eluate, less Elution Buffer may be used; however, overall yield might be reduced.  

 
3. Centrifuge the tube and collect the flow-through. Analyze the eluate for presence of antigen. Perform additional 

elutions (i.e., Steps F1-F3) as needed. Analyze each eluate separately to ensure that the antigen has completely eluted.  
 
4. To preserve activity of the antibody-coupled resin, immediately proceed to Section G, Resin Regeneration and Storage.  

 
G.   Resin Regeneration and Storage 
 
1. Add 100μL of 1X Coupling Buffer to the column, centrifuge and discard the flow-through. Repeat this step once.  
 
2. Replace the bottom plug on the column. Add 200μL of 1X Coupling Buffer to column. Replace screw cap. Wrap the 

bottom of the tube with laboratory film to prevent resin from drying. For long-term storage (i.e., > 2 weeks) add sodium 

azide at a final concentration of 0.02%.  

 

 
Pierce Biotechnology PO Box 117 (815) 968-0747  www.thermoscientific.com/pierce 
3747 N. Meridian Road Rockford, lL 61105 USA (815) 968-7316 fax  
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Appendix II  

Mass Spectrometry Results of GFP-Ser-OGG1 

Accession Description Score Coverage # 
Proteins 

# Unique 
Peptides 

# 
Peptides 

# 
PSMs 

# AAs MW [kDa] calc. pI 

145579641 prolactin-inducible protein precursor [Homo 
sapiens] (Chain B, Crystal Structure Of The 
Complex Formed Between Mhc-Like Zinc 
Alpha2-Glycoprotein And Prolactin Inducible 
Protein At 3 A Resolution 

73.34 10.17 1 0 1 1 118 13.514 5.55 

38566198 GFAP protein [Homo sapiens] 68.06 2.55 1 0 1 1 431 49.7186 5.52 

226236 glial fibrillary acidic protein 68.06 11.7 1 0 1 1 94 10.9288 5.29 

553302 glial fibrillary acidic protein [Homo sapiens] 68.06 16.67 1 0 1 1 66 7.5761 7.25 

16265836 glial fibrillary acidic protein [Homo sapiens] 68.06 2.55 1 0 1 1 432 49.7776 5.59 

4503979 glial fibrillary acidic protein isoform 1 [Homo 
sapiens] 

68.06 2.55 1 0 1 1 432 49.8496 5.52 

196115290 glial fibrillary acidic protein isoform 2 [Homo 
sapiens] 

68.06 2.55 1 0 1 1 431 49.4776 6.13 

334688844 glial fibrillary acidic protein isoform 3 [Homo 
sapiens] 

68.06 2.51 1 0 1 1 438 50.2578 5.67 

62896925 glial fibrillary acidic protein variant [Homo 
sapiens] 

68.06 2.55 1 0 1 1 432 49.8197 5.59 

119571952 glial fibrillary acidic protein, isoform CRA_a 
[Homo sapiens] 

68.06 3.47 1 0 1 1 317 36.2764 5.74 

119571954 glial fibrillary acidic protein, isoform CRA_c 
[Homo sapiens] 

68.06 2.67 1 0 1 1 412 47.6105 5.5 

57997051 hypothetical protein [Homo sapiens] GFAP 68.06 2.51 1 0 1 1 438 50.2137 5.57 

119631357 NCK-associated protein 1, isoform CRA_a [Homo 
sapiens] 

38.3 7.09 1 0 1 1 141 16.3652 5.26 
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119631362 NCK-associated protein 1, isoform CRA_f [Homo 
sapiens] 

77.36 5.24 1 0 2 2 401 43.6169 5.03 

1050983 pHL E1F1 [Homo sapiens] 82.43 10.45 1 0 1 1 134 15.0876 7.06 

332838574 PREDICTED: proline-rich protein 4 isoform 2 
precursor pHL E1F1 

82.43 10.45 1 0 1 1 134 15.1156 7.66 

169168829 PREDICTED: similar to hCG1643231 [Homo 
sapiens] 

68.06 3.51 1 0 1 1 313 35.2769 8.15 

116642261 prolactin-induced protein [Homo sapiens] 73.34 15.19 1 0 1 1 79 9.0777 5.31 

116642259 prolactin-induced protein [Homo sapiens] 73.34 15.19 1 0 1 1 79 9.0596 5.31 

4505821 prolactin-inducible protein precursor [Homo 
sapiens] 

73.34 8.22 1 0 1 1 146 16.5618 8.05 

4688900 sarcolectin [Homo sapiens] 80.46 3.84 1 0 2 2 469 51.3823 5.69 

121934234 Unknown (protein for IMAGE:40134129) [Homo 
sapiens] (glial fibrillary acidic protein isoform 1) 

68.06 8.8 1 0 1 1 125 14.5404 4.89 

34536332 unnamed protein product [Homo sapiens] glial 
fibrillary acidic protein isoform 2 

68.06 2.55 1 0 1 1 431 49.4756 6.13 

194382434 unnamed protein product [Homo sapiens] glial 
fibrillary acidic protein isoform 1 

68.06 2.65 1 0 1 1 415 48.1709 5.52 

194383466 unnamed protein product [Homo sapiens] glial 
fibrillary acidic protein isoform 2 

68.06 2.7 1 0 1 1 407 47.3073 5.33 
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Mass Spectrometry Results of GFP-Cys-OGG1 

Accession Description Score Cov
era
ge 

# 
Prot
eins 

# 
Unique 
Peptide
s 

# 
Pept
ides 

# 
PS
Ms 

# 
A
As 

MW 
[kDa
] 

cal
c. 
pI 

914044 surface-associated sulphydryl protein, SASP=thioredoxin homolog [human, 
THP-1 monocytes, Peptide Partial, 21 aa, segment 1 of 2] 

34.74 61.9 1 0 1 1 21 2.27
91 

4.
91 

553302 glial fibrillary acidic protein [Homo sapiens] 71.47 16.6
7 

1 0 1 1 66 7.57
61 

7.
25 

1166422
61 

prolactin-induced protein [Homo sapiens] 76.04 15.1
9 

1 0 1 1 79 9.07
77 

5.
31 

1166422
59 

prolactin-induced protein [Homo sapiens] 76.04 15.1
9 

1 0 1 1 79 9.05
96 

5.
31 

3153859 thioredoxin delta 3 [Homo sapiens] 34.74 15.4
8 

1 0 1 1 84 9.31
46 

6.
04 

5595794
6 

thioredoxin [Homo sapiens] 34.74 15.2
9 

1 0 1 1 85 9.44
57 

6.
04 

226236 glial fibrillary acidic protein 71.47 11.7 1 0 1 1 94 10.9
288 

5.
29 

1193899
38 

Chain A, Crystal Structure Of C73s Mutant Of Human Thioredoxin-1 Oxidized 
With H2o2 

34.74 12.3
8 

1 0 1 1 10
5 

11.7
138 

4.
92 

3025661
58 

Chain A, Crystal Structure Of Human Thioredoxin C6973S DOUBLE MUTANT, 
REDUCED Form 

34.74 12.3
8 

1 0 1 1 10
5 

11.6
978 

4.
92 

1193901
30 

Chain A, Crystal Structure Of S-Nitroso Thioredoxin 34.74 12.3
8 

1 0 1 1 10
5 

11.7
367 

4.
92 

1193899
88 

Chain A, Crystal Structure Of S-Nitroso Thioredoxin 34.74 12.3
8 

1 0 1 1 10
5 

11.7
437 

4.
92 

1065111 Chain A, High Resolution Solution Nmr Structure Of Mixed Disulfide 
Intermediate Between Mutant Human Thioredoxin And A 13 Residue Peptide 
Comprising Its Target Site In Human Nfkb 

34.74 12.3
8 

1 0 1 1 10
5 

11.5
719 

4.
92 

1578368
99 

Chain A, High-Resolution Three-Dimensional Structure Of Reduced 
Recombinant Human Thioredoxin In Solution 

34.74 12.3
8 

1 0 1 1 10
5 

11.6
997 

4.
92 
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1578298
97 

Chain A, Human Thioredoxin (D60n Mutant, Reduced Form) 34.74 12.3
8 

1 0 1 1 10
5 

11.7
288 

5.
03 

3131037
50 

Chain A, Human Thioredoxin C35s,C62s,C69s,C73s Mutant Showing Cadmium 
Chloride Bound To The Active Site 

34.74 12.3
8 

1 0 1 1 10
5 

11.6
658 

4.
92 

2905600
81 

Chain A, Human Thioredoxin Double Mutant C35s,C73r 34.74 12.3
8 

1 0 1 1 10
5 

11.7
669 

5.
07 

1578310
00 

Chain A, Human Thioredoxin Double Mutant With Cys 32 Replaced By Ser And 
Cys 35 Replaced By Ser 

34.74 12.3
8 

1 0 1 1 10
5 

11.6
978 

4.
92 

1578340
11 

Chain A, The High-Resolution Three-Dimensional Solution Structures Of The 
Oxidized And Reduced States Of Human Thioredoxin 

34.74 12.3
8 

1 0 1 1 10
5 

11.6
038 

4.
92 

5059299
4 

thioredoxin [Homo sapiens] 34.74 12.3
8 

1 0 1 1 10
5 

11.7
297 

4.
92 

9280551 thioredoxin 1 [Homo sapiens] 34.74 12.3
8 

1 0 1 1 10
5 

11.6
857 

4.
78 

3451008
12 

Chain C, Crystal Structure Of The Human Thioredoxin Reductase-Thioredoxin 
Complex 

34.74 11.2
1 

1 0 1 1 11
6 

12.9
643 

6.
4 

1455796
41 

Chain B, Crystal Structure Of The Complex Formed Between Mhc-Like Zinc 
Alpha2-Glycoprotein And Prolactin Inducible Protein At 3 A Resolution 

76.04 10.1
7 

1 0 1 1 11
8 

13.5
14 

5.
55 

6730357 Chain A, Role Of Amino Acid Residues At Turns In The Conformational Stability 
And Folding Of Human Lysozyme 

64.78 9.38 1 0 1 1 12
8 

14.5
631 

9 

6730358 Chain A, Role Of Amino Acid Residues At Turns In The Conformational Stability 
And Folding Of Human Lysozyme 

64.78 9.3 1 0 1 1 12
9 

14.5
351 

8.
82 

1578319
08 

Chain A, Amyloidogenic Variant (Asp67his) Of Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.7
132 

9.
17 

1427847
3 

Chain A, Buried Polar Mutant Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.6
931 

9 

1427847
4 

Chain A, Buried Polar Mutant Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.7
071 

9 

1427847
2 

Chain A, Buried Polar Mutant Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.7
071 

9 

1427846
7 

Chain A, Buried Polar Mutant Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.6
791 

9 
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1427847
6 

Chain A, Buried Polar Mutant Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.6
931 

9 

1427847
0 

Chain A, Buried Polar Mutant Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.7
071 

9 

1427847
1 

Chain A, Buried Polar Mutant Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.7
071 

9 

1427847
5 

Chain A, Buried Polar Mutant Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.6
931 

9 

1578353
38 

Chain A, Changes In Conformational Stability Of A Series Of Mutant Human 
Lysozymes At Constant Positions 

64.78 9.23 1 0 1 1 13
0 

14.6
912 

9 

1578342
17 

Chain A, Contribution Of Hydrogen Bonds To The Conformational Stability Of 
Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.6
752 

9.
01 

1578342
15 

Chain A, Contribution Of Hydrogen Bonds To The Conformational Stability Of 
Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.6
752 

9.
01 

1578342
18 

Chain A, Contribution Of Hydrogen Bonds To The Conformational Stability Of 
Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.6
752 

9.
01 

1578342
16 

Chain A, Contribution Of Hydrogen Bonds To The Conformational Stability Of 
Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.6
752 

9.
01 

6729876 Chain A, Contribution Of Hydrogen Bonds To The Conformational Stability Of 
Human Lysozyme: Calorimetry And X-Ray Analysis Of Six Ser->ala Mutant 

64.78 9.23 1 0 1 1 13
0 

14.6
752 

9 

6729705 Chain A, Contribution Of Hydrogen Bonds To The Conformational Stability Of 
Human Lysozyme: Calorimetry And X-Ray Analysis Of Six Ser->ala Mutants 

64.78 9.23 1 0 1 1 13
0 

14.6
752 

9 

4388847 Chain A, Contribution Of Hydrogen Bonds To The Conformational Stability Of 
Human Lysozyme: Calorimetry And X-Ray Analysis Of Six Ser->ala Mutants 

64.78 9.23 1 0 1 1 13
0 

14.6
752 

9 

6729879 Chain A, Contribution Of Hydrogen Bonds To The Conformational Stability Of 
Human Lysozyme: Calorimetry And X-Ray Analysis Of Six Ser->ala Mutants 

64.78 9.23 1 0 1 1 13
0 

14.6
752 

9 

1578347
11 

Chain A, Contribution Of Hydrophobic Effect To The Conformational Stability 
Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.5
992 

9.
31 

1578347
08 

Chain A, Contribution Of Hydrophobic Effect To The Conformational Stability 
Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.5
992 

9.
31 

1578347
07 

Chain A, Contribution Of Hydrophobic Effect To The Conformational Stability 
Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.6
132 

9.
31 
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1578353
40 

Chain A, Contribution Of Hydrophobic Effect To The Conformational Stability 
Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.6
912 

9 

1578347
04 

Chain A, Contribution Of Hydrophobic Effect To The Conformational Stability 
Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.6
132 

9.
31 

1578347
16 

Chain A, Contribution Of Hydrophobic Effect To The Conformational Stability 
Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.5
992 

9.
31 

1578347
09 

Chain A, Contribution Of Hydrophobic Effect To The Conformational Stability 
Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.5
992 

9.
31 

1578347
10 

Chain A, Contribution Of Hydrophobic Effect To The Conformational Stability 
Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.5
992 

9.
31 

1578347
03 

Chain A, Contribution Of Hydrophobic Effect To The Conformational Stability 
Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.6
132 

9.
31 

1578347
12 

Chain A, Contribution Of Hydrophobic Effect To The Conformational Stability 
Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.5
992 

9.
31 

1578347
14 

Chain A, Contribution Of Hydrophobic Effect To The Conformational Stability 
Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.5
992 

9.
31 

1578347
15 

Chain A, Contribution Of Hydrophobic Effect To The Conformational Stability 
Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.5
992 

9.
31 

1578347
13 

Chain A, Contribution Of Hydrophobic Effect To The Conformational Stability 
Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.5
992 

9.
31 

1578342
92 

Chain A, Contribution Of Hydrophobic Residues To The Stability Of Human 
Lysozyme: Calorimetric Studies And X-Ray Structural Analysis Of The Five 
Isoleucine To Valine Mutants 

64.78 9.23 1 0 1 1 13
0 

14.6
771 

9 

1578342
89 

Chain A, Contribution Of Hydrophobic Residues To The Stability Of Human 
Lysozyme: Calorimetric Studies And X-Ray Structural Analysis Of The Five 
Isoleucine To Valine Mutants 

64.78 9.23 1 0 1 1 13
0 

14.6
771 

9 

1578342
88 

Chain A, Contribution Of Hydrophobic Residues To The Stability Of Human 
Lysozyme: Calorimetric Studies And X-Ray Structural Analysis Of The Five 
Isoleucine To Valine Mutants 

64.78 9.23 1 0 1 1 13
0 

14.6
771 

9 

1578325
79 

Chain A, Contribution Of Hydrophobic Residues To The Stability Of Human 
Lysozyme: X-Ray Structure Of The V100a Mutant 

64.78 9.23 1 0 1 1 13
0 

14.6
631 

9 

1578325
80 

Chain A, Contribution Of Hydrophobic Residues To The Stability Of Human 
Lysozyme: X-Ray Structure Of The V110a Mutant 

64.78 9.23 1 0 1 1 13
0 

14.6
631 

9 
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1578325
81 

Chain A, Contribution Of Hydrophobic Residues To The Stability Of Human 
Lysozyme: X-Ray Structure Of The V121a Mutant 

64.78 9.23 1 0 1 1 13
0 

14.6
631 

9 

1578325
82 

Chain A, Contribution Of Hydrophobic Residues To The Stability Of Human 
Lysozyme: X-Ray Structure Of The V125a Mutant 

64.78 9.23 1 0 1 1 13
0 

14.6
631 

9 

1578325
83 

Chain A, Contribution Of Hydrophobic Residues To The Stability Of Human 
Lysozyme: X-Ray Structure Of The V130a Mutant 

64.78 9.23 1 0 1 1 13
0 

14.6
631 

9 

1578325
84 

Chain A, Contribution Of Hydrophobic Residues To The Stability Of Human 
Lysozyme: X-Ray Structure Of The V2a Mutant 

64.78 9.23 1 0 1 1 13
0 

14.6
631 

9 

1578325
85 

Chain A, Contribution Of Hydrophobic Residues To The Stability Of Human 
Lysozyme: X-Ray Structure Of The V74a Mutant 

64.78 9.23 1 0 1 1 13
0 

14.6
631 

9 

1578325
86 

Chain A, Contribution Of Hydrophobic Residues To The Stability Of Human 
Lysozyme: X-Ray Structure Of The V93a Mutant 

64.78 9.23 1 0 1 1 13
0 

14.6
631 

9 

1578325
87 

Chain A, Contribution Of Hydrophobic Residues To The Stability Of Human 
Lysozyme: X-Ray Structure Of The V99a Mutant 

64.78 9.23 1 0 1 1 13
0 

14.6
631 

9 

1578350
52 

Chain A, Contribution Of Water Molecules In The Interior Of A Protein To The 
Conformational Stability 

64.78 9.23 1 0 1 1 13
0 

14.6
491 

9 

1578350
57 

Chain A, Contribution Of Water Molecules In The Interior Of A Protein To The 
Conformational Stability 

64.78 9.23 1 0 1 1 13
0 

14.6
491 

9 

1578350
53 

Chain A, Contribution Of Water Molecules In The Interior Of A Protein To The 
Conformational Stability 

64.78 9.23 1 0 1 1 13
0 

14.6
491 

9 

1582583
5 

Chain A, Crystal Structure Analysis Of A Human Lysozyme Mutant W64c C65a 64.78 9.23 1 0 1 1 13
0 

14.5
761 

9 

3234628
71 

Chain A, Crystal Structure Of A Charge Engineered Human Lysozyme Variant 64.78 9.23 1 0 1 1 13
0 

14.6
31 

8.
48 

1151420
8 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At Left-
Handed Helical Positions 

64.78 9.23 1 0 1 1 13
0 

14.5
921 

8.
82 

1151393
7 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At Left-
Handed Helical Positions 

64.78 9.23 1 0 1 1 13
0 

14.6
481 

9 

1151392
7 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At Left-
Handed Helical Positions 

64.78 9.23 1 0 1 1 13
0 

14.6
061 

8.
82 

1151392
9 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At Left-
Handed Helical Positions 

64.78 9.23 1 0 1 1 13
0 

14.5
851 

9.
01 
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1151393
3 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At Left-
Handed Helical Positions 

64.78 9.23 1 0 1 1 13
0 

14.6
251 

9 

1151393
5 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At Left-
Handed Helical Positions 

64.78 9.23 1 0 1 1 13
0 

14.6
341 

9 

1208439
9 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
061 

9 

9955035 Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.6
491 

9 

1208439
8 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
071 

8.
82 

9955038 Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
231 

9 

1208427
4 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
071 

8.
82 

9955030 Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.6
491 

9 

1208440
0 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
482 

9.
17 

9955033 Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
231 

9 

9955036 Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
052 

9 

1208439
6 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.6
791 

9 

1208440
1 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
551 

8.
98 

9955029 Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
392 

9 

1208427
3 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
551 

8.
98 

1208440
2 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
071 

8.
82 
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9256911 Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.6
491 

9 

9955031 Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
052 

9 

9955039 Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
392 

9 

9955037 Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
052 

9 

9955027 Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
052 

9 

9955034 Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
392 

9 

1208440
9 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
482 

9.
17 

9955032 Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
052 

9 

1208427
2 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
482 

9.
17 

1208439
7 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
551 

8.
98 

1208427
5 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
061 

9 

9955028 Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
052 

9 

1208440
3 

Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
061 

9 

9955327 Chain A, Crystal Structure Of Mutant Human Lysozyme Substituted At The 
Surface Positions 

64.78 9.23 1 0 1 1 13
0 

14.7
231 

9 

7767021 Chain A, Crystal Structures Of Salt Bridge Mutants Of Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.6
902 

9.
17 

7767016 Chain A, Crystal Structures Of Salt Bridge Mutants Of Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.6
902 

9.
17 
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7767015 Chain A, Crystal Structures Of Salt Bridge Mutants Of Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.6
902 

9.
17 

1578353
22 

Chain A, Crystal Structures Of The Apo-And Holomutant Human Lysozymes 
With An Introduced Ca2+ Binding Site 

64.78 9.23 1 0 1 1 13
0 

14.7
221 

8.
66 

1578339
00 

Chain A, Dissection Of The Functional Role Of Structural Elements Of Tyrosine-
63 In The Catalytic Action Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.5
991 

9.
01 

1578339
14 

Chain A, Dissection Of The Functional Role Of Structural Elements Of Tyrosine-
63 In The Catalytic Action Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.6
752 

9.
01 

1578339
21 

Chain A, Dissection Of The Functional Role Of Structural Elements Of Tyrosine-
63 In The Catalytic Action Of Human Lysozyme 

64.78 9.23 1 0 1 1 13
0 

14.7
142 

9.
01 

1794256
9 

Chain A, G105a Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.7
052 

9 

1794256
8 

Chain A, G127a Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.7
052 

9 

1794256
6 

Chain A, G129a Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.7
052 

9 

1794257
4 

Chain A, G37a Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.7
052 

9 

1794257
3 

Chain A, G48a Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.7
052 

9 

1794257
1 

Chain A, G68a Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.7
052 

9 

1794257
0 

Chain A, G72a Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.7
052 

9 

3659960 Chain A, Human Lysozyme Double Mutant A96l, W109h 64.78 9.23 1 0 1 1 13
0 

14.6
842 

9 

6980459 Chain A, Human Lysozyme E102 Mutant Labelled With 2',3'-Epoxypropyl 
Glycoside Of N-Acetyllactosamine 

64.78 9.23 1 0 1 1 13
0 

14.7
052 

9 

6980458 Chain A, Human Lysozyme L63 Mutant Labelled With 2',3'-Epoxypropyl N, N'-
Diacetylchitobiose 

64.78 9.23 1 0 1 1 13
0 

14.6
412 

9.
01 

3659958 Chain A, Human Lysozyme Mutant A96l 64.78 9.23 1 0 1 1 13
0 

14.7
332 

9 
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1578315
52 

Chain A, Human Lysozyme Mutant With Glu 35 Replaced By Ala 64.78 9.23 1 0 1 1 13
0 

14.6
331 

9.
17 

1578315
51 

Chain A, Human Lysozyme Mutant With Glu 35 Replaced By Asp 64.78 9.23 1 0 1 1 13
0 

14.6
771 

9 

1578315
54 

Chain A, Human Lysozyme Mutant With Trp 109 Replaced By Ala 64.78 9.23 1 0 1 1 13
0 

14.5
761 

9 

1578315
53 

Chain A, Human Lysozyme Mutant With Trp 109 Replaced By Phe 64.78 9.23 1 0 1 1 13
0 

14.6
521 

9 

1339962
7 

Chain A, Mutant Human Lysozyme (A83kQ86DA92D) 64.78 9.23 1 0 1 1 13
0 

14.7
792 

8.
82 

1339962
6 

Chain A, Mutant Human Lysozyme (A92d) 64.78 9.23 1 0 1 1 13
0 

14.7
351 

8.
82 

1339962
5 

Chain A, Mutant Human Lysozyme (Q86d) 64.78 9.23 1 0 1 1 13
0 

14.6
781 

8.
82 

1827553 Chain A, Mutant Human Lysozyme C77a 64.78 9.23 1 0 1 1 13
0 

14.6
592 

9.
14 

5821956 Chain A, Mutant Human Lysozyme With Foreign N-Terminal Residues 64.78 9.23 1 0 1 1 13
0 

14.6
341 

8.
84 

5821955 Chain A, Mutant Human Lysozyme With Foreign N-Terminal Residues 64.78 9.23 1 0 1 1 13
0 

14.6
941 

8.
84 

1578295
61 

Chain A, Role Of Arg 115 In The Catalytic Action Of Human Lysozyme. X-Ray 
Structure Of His 115 And Glu 115 Mutants 

64.78 9.23 1 0 1 1 13
0 

14.6
721 

8.
82 

1578295
63 

Chain A, Role Of Arg 115 In The Catalytic Action Of Human Lysozyme. X-Ray 
Structure Of His 115 And Glu 115 Mutants 

64.78 9.23 1 0 1 1 13
0 

14.6
641 

8.
66 

1578318
24 

Chain A, Role Of Proline Residues In Human Lysozyme Stability: A Scanning 
Calorimetric Study Combined With X-Ray Structure Analysis Of Proline 
Mutants 

64.78 9.23 1 0 1 1 13
0 

14.7
172 

9 

1578318
20 

Chain A, Role Of Proline Residues In Human Lysozyme Stability: A Scanning 
Calorimetric Study Combined With X-Ray Structure Analysis Of Proline 
Mutants 

64.78 9.23 1 0 1 1 13
0 

14.6
891 

9 

5051402
5 

Chain A, Structure Of T70n Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.7
041 

9 
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4930014 Chain A, T11a Mutant Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.6
611 

9 

4930015 Chain A, T11v Mutant Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.6
892 

9 

4930016 Chain A, T40a Mutant Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.6
611 

9 

4930017 Chain A, T40v Mutant Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.6
892 

9 

4930020 Chain A, T43a Mutant Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.6
611 

9 

4930021 Chain A, T43v Mutant Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.6
892 

9 

4930023 Chain A, T70v Mutant Human Lysozyme 64.78 9.23 1 0 1 1 13
0 

14.6
892 

9 

1578318
25 

Chain A, The Crystal Structure Of A Mutant Lysozyme C77(Slash)95a With 
Increased Secretion Efficiency In Yeast 

64.78 9.23 1 0 1 1 13
0 

14.6
272 

9.
31 

6729883 Chain A, Verification Of Spmp Using Mutant Human Lysozymes 64.78 9.23 1 0 1 1 13
0 

14.7
622 

9 

6729882 Chain A, Verification Of Spmp Using Mutant Human Lysozymes 64.78 9.23 1 0 1 1 13
0 

14.6
752 

9.
17 

1578301
85 

Chain A, Verification Of Spmp Using Mutant Human Lysozymes 64.78 9.23 1 0 1 1 13
0 

14.6
791 

9 

6729885 Chain A, Verification Of Spmp Using Mutant Human Lysozymes 64.78 9.23 1 0 1 1 13
0 

14.6
902 

9 

385536 lysozyme {beta-sheet domain} [human, Peptide Mutagenesis, 130 aa] 64.78 9.23 1 0 1 1 13
0 

14.6
491 

9 

5821957 Chain A, Mutant Human Lysozyme With Foreign N-Terminal Residues 64.78 9.16 1 0 1 1 13
1 

14.7
482 

9 

7546189 Chain A, Crystal Structure Of Mutant Human Lysozyme With Four Extra 
Residues (Eaea) At The N-Terminal 

64.78 8.96 1 0 1 1 13
4 

15.0
913 

8.
66 

1578319
13 

Chain A, Structural And Functional Analyses Of The Arg-Gly-Asp Sequence 
Introduced Into Human Lysozyme 

64.78 8.96 1 0 1 1 13
4 

15.1
063 

9 
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1578318
53 

Chain A, Structure Of A Conformationally Constrained Arg-Gly-Asp Sequence 
Inserted Into Human Lysozyme 

64.78 8.82 1 0 1 1 13
6 

15.3
124 

8.
78 

1578319
14 

Chain A, Structural And Functional Analyses Of The Arg-Gly-Asp Sequence 
Introduced Into Human Lysozyme 

64.78 8.7 1 0 1 1 13
8 

15.4
325 

9 

4505821 prolactin-inducible protein precursor [Homo sapiens] 76.04 8.22 1 0 1 1 14
6 

16.5
618 

8.
05 

307141 lysozyme precursor (EC 3.2.1.17) [Homo sapiens] 64.78 8.11 1 0 1 1 14
8 

16.5
442 

9.
16 

847820 lysozyme precursor [Homo sapiens] 64.78 8.11 1 0 1 1 14
8 

16.4
292 

8.
98 

1195719
52 

glial fibrillary acidic protein, isoform CRA_a [Homo sapiens] 71.47 3.47 1 0 1 1 31
7 

36.2
764 

5.
74 

1196313
62 

NCK-associated protein 1, isoform CRA_f [Homo sapiens] 71.47 2.74 1 0 1 1 40
1 

43.6
169 

5.
03 

1195719
54 

glial fibrillary acidic protein, isoform CRA_c [Homo sapiens] 71.47 2.67 1 0 1 1 41
2 

47.6
105 

5.
5 

3856619
8 

GFAP protein [Homo sapiens] 71.47 2.55 1 0 1 1 43
1 

49.7
186 

5.
52 

1961152
90 

glial fibrillary acidic protein isoform 2 [Homo sapiens] 71.47 2.55 1 0 1 1 43
1 

49.4
776 

6.
13 

1626583
6 

glial fibrillary acidic protein [Homo sapiens] 71.47 2.55 1 0 1 1 43
2 

49.7
776 

5.
59 

4503979 glial fibrillary acidic protein isoform 1 [Homo sapiens] 71.47 2.55 1 0 1 1 43
2 

49.8
496 

5.
52 

6289692
5 

glial fibrillary acidic protein variant [Homo sapiens] 71.47 2.55 1 0 1 1 43
2 

49.8
197 

5.
59 

3346888
44 

glial fibrillary acidic protein isoform 3 [Homo sapiens] 71.47 2.51 1 0 1 1 43
8 

50.2
578 

5.
67 

4688900 sarcolectin [Homo sapiens] 71.47 2.35 1 0 1 1 46
9 

51.3
823 

5.
69 
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Summary 

GPVI is a glycoprotein platelet receptor integral to stable collagen binding at sites of vascular 

damage to activate haemostasis. GPVI is exclusively expressed on the platelet membrane 

dependent on its non-covalent association to ITAM-containing FcR-γ chains. As GPVI is a 

member of the immunoglobulin superfamily and shares considerable homology to ITAM-

receptors, it was hypothesised that GPVI is regulated by Src-like adaptor proteins (SLAP) 

which are the key negative regulators of ITAM-containing receptors of B cells and T cells. The 

two homologs of SLAP proteins, SLAP1 and SLAP2, are expressed in platelets and consist of 

4 homologous domains. The present study investigates the role of the SLAP proteins in GPVI 

signalling in DT40 cell line model using the robust NFAT/AP-1-luciferase assay. Furthermore 

the contribution of each SLAP2 domain to its inhibitory activity was investigated to elucidate a 

potential mechanism of SLAP2 mediated inhibition. The results show SLAP1 and SLAP2 

significantly inhibit collagen-stimulated GPVI signalling. SLAP proteins did not alter GPVI 

expression levels indicating intrinsic inhibition of GPVI signalling. The c-terminal domain 

predominantly contributes to inhibitory activity followed by the SH2 domain, myristoylation 

sequence and the SH3 domain. Elucidation of GPVI regulation could have implications in the 

development of anti-thrombosis therapy.  
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Chapter 1. Introduction 

1.1 Overview 
 

Haemostasis has three fundamental tenets; (1) the formation of a haemostatic ‘plug’ to arrest 

bleeding into the vasculature, (2) sealing off localised tissue damage to prevent further damage 

at site, and (3) recruitment of reparative components to restore vascular integrity. Haemostasis 

exemplifies a feat of cellular signalling established on multi-component interconnections, bi-

directional signal transduction and dynamic cellular changes such that a molecular-cellular 

process sufficiently responds to extensive vascular tissue damage. The importance of 

haemostasis is most emphasized by the bleeding disorders that manifest in its absence, such as 

thrombotic thrombocytopenia purpura, and von Willebrand disease (Coller 2011). Platelets 

survey the entirety of the vasculature, safeguard structural integrity in the event of damage and 

provide continuous support to repair of vessels (Ho-Tin-Noe et al. 2012). In recent years, 

however, the role of platelets has undergone a paradigm shift with their implication in 

pathologies such as MI, ischemic stroke, acute coronary syndrome, and atherosclerosis (Linden 

& Jackson 2010; Nieswandt et al. 2011; Bigalke et al. 2010; Huo & Ley 2004). The aetiologies 

of these disorders are associated with the formation of thrombotic lesions. Thrombotic lesions 

have the propensity to rupture and occlude blood vessals. Alternatively the thrombotic lesion 

uncontrollably extends resulting in intravascular intrusion and disruption of blood flow. 

Thrombosis is mechanistically identical to haemostasis, but due to deregulation of the 

haemostatic process clot formation is excessive either in magnitude or site. The dichotomic 

role of platelets in the maladaptive version of haemostasis, thrombosis, is investigated with the 

intention to produce anti-thrombotic agents. The most thrombotic ECM protein, collagen and 

its putative receptor is GPVI. The GPVI is associated with the ITAM-bearing FcR-γ chain and 

is critical to the early formation of stable contacts with the damaged vasculature. Here, the 

regulation of GPVI receptors via SLAP proteins, regulators of ITAM receptors, is investigated. 

Elucidation of GPVI regulation would contribute to our understanding of limiting thrombosis.  
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1.2 Platelet Physiology  

Platelets are anuclear discoid cell fragments derived from megakaryocytes in the bone marrow 

(Ho-Tin-Noe et al. 2012). Platelets are the third major morphological component of the blood 

(Coller 2011). Highly adapted to their role, platelets display a number of receptors, produce 

secretory granules and undergo rapid cytoskeletal changes. Platelets traverse the length of the 

vasculature, and in resting conditions are maintained in a quiescent state by nitric oxide and 

prostacyclin released by the endothelium layer (Austin 2009). Discontinuity of the anti-

thrombotic endothelium layer at the site of damage indicates a loss of vascular integrity. At the 

site of injury thrombin, shear stress, or various cytokines perturb antithrombotic activity of 

endothelial cells to inhibit the quiescent state of platelets and promote haemostasis (Austin 

2009).  

1.3 Haemostasis 

 

Haemostasis is a complex dynamic process consisting of a seamless transition of 5 events 

(figure 1); a distinct ligand-receptor pairing characterises each stage of haemostasis resulting in 

increased stability of the haemostatic plug with each stage.  

 

 Figure 1.1 Haemostasis. An Illustrated representation of the major events in 
haemostasis plug formation (Ellison 2009).  
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1.Rolling – The initiator of haemostasis is von Willibrand factor (vWF), a large highly 

abundant multimeric glycoprotein which is only platelet-reactive when attached to fibrillar 

collagen (Peyvandi, et al 2011). High shear conditions cause elongation of globular vWF to 

linear vWF, exposing  the A1 domains of vWF to glycoprotein GPIbα (Savage, et al 1998). 

GPIbα is disulphide linked to GPIbβ and noncovalently associated to GP-IX and GP-V 

forming the glycoprotein receptor GPIb-V-IX (Broos, et al 2011). Under high velocity flow 

absolute immobilisation of platelets is not feasible; instead the shear forces incident on vWF-

bound GPIbα elongates cytoskeletal-bound GPIbα into a tether (Ruggeri & Mendolicchio 

2007). This tether impedes the flow of circulating platelets and gradually decelerates 

circulating platelets to facilitate other low binding-energy interactions. The transient 

interactions of vWF:GPIbα create a rolling effect along the vessal wall (Stegner & Nieswandt 

2011).  

2. Platelet Activation – At high shear stress direct collagen receptor binding is not possible due 

to the slow rate of interaction, however once platelets have been decelerated to site of damage, 

these interactions become feasible. Platelets have two receptors for collagen, GPVI and α2β1 

(Clemetson, et al 1999). Platelet-exclusive GPVI activates tyrosine phosphorylation cascades, 

intracellular calcium flux, exteriorisation of phosphatidylserine on platelet membrane and 

release of soluble agonists (Clemetson 2012). Integrin receptor α2β1 undergoes ‘inside-out 

activation’; ligand-induced transition from resting to high affinity state by extending 

extracellular domains upwards (Nuyttens, et al 2011). Integrin α2β1 synergises with GPVI to 

maximise the activation response of platelets. Exposure of negatively charged 

phosphatidylserine on the plasma membranes provides an interface for the catalytic generation 

of thrombin and coagulation cascade (Farndale 2006). The GPVI-dependent exocytosis of 

granules releases secondary wave mediators, ThromboxaneA2 and ADP, which propagate 

autocrine platelet activation via binding to G-protein coupled receptors (Rivera, et al 2009).  
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3. Platelet-Platelet Adhesion – Activation via collagen receptors, extracellular matrix 

components and soluble agonists all converge to the activation of the integrin αIIbβ3 (Clemetson 

2012). The receptor αIIbβ3 recognises the arginine-glycine-aspartic acid sequences in 

fibrinogen, fibrin, vWF, thrombospondin, fibronectin, and vitronectin (Varga-Szabo et al. 

2008). The bivalent nature of fibrinogen allows the attachment of two integrins from separate 

platelets to a single fibrin molecule, thus bridging adjacent platelets. The fibrin mesh engulfs 

the microaggregate developing a stable platelet clot. Platelet-platelet adhesion occurs at less 

than 50nm of each other supported by indirect interactions of multivalent adhesive proteins and 

junctional proteins, and direct platelet-platelet interactions via surface Eph kinases which bind 

surface-bound ephrins (Brass et al. 2005). The receptor plays a central role in maintaining 

these interactions to prevent dissolution of the haemostatic plug (Langer & Gawaz 2008). The 

premature destabilisation of the growing clot may results in the detachment of fibrous clot 

which can occlude blood vessels. Site ruptures facilitate thrombus formation via the interaction 

of GPIb-V-IX and GPVI with the underlying fibrous tissue (Andrews & Berndt 2004). 

 4. Spreading – The adhesive contacts enforced by αIIbβ3 receptors result in the formation of a 

monolayer of platelets. Platelets undergo vast cellular conformation transforming from discoid 

cells to flattened cells with protuberant pseudopodia. Ligand-binding of α2β1 receptors 

critically contribute to the formation of filopodia and lamellaepodia. Increased intracellular 

calcium levels mediates phosphorylation of myosin-light chain of the cytoskeleton, facilitating 

dynamic cell changes and contractile motion of fibrin mesh (Allford & Machin 2004).   

5. Aggregation – The haemostatic plug is stabilised by further deposition of platelets. 

However beyond the monolayer of platelets, circulating platelets do not have access to the 

attractive forces of the subendothelium. Therefore further recruitment and activation of 

platelets is dependent on secretion of soluble agonists in platelet granules (Clemetson 2012). 

vWF bridges interactions between deposited platelets and circulating platelets via the αIIbβ3 

receptor (Clemetson 2012).  
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1.3 GPVI Identification 

The first evidence of GPVI was indirectly acquired by the absence of collagen-induced platelet 

aggregation in patients harbouring antibodies to a 62-kDa membrane glycoprotein (Sugiyama 

et al. 1987). Sugiyama et al. investigated a patient presenting idiopathic thrombocytopenic 

purpura (ITP) finding normal platelet characteristics with the exception of collagen-responses. 

Purification of the F(ab’)2 fragments of this atypical antibody verified its specificity to GPVI as 

when mixed in normal platelet-rich plasma it caused collagen-dependent aggregation 

(Sugiyama et al. 1987). Sugiyama and colleagues deduced that the patient’s IgG was directed 

to a membrane bound collagen receptor. Similar bleeding disorders alerted researchers to the 

absence of GPVI. One such patient exhibited inherited deficiency of GPVI (significantly 

reduced radioisotope incorporation into a 61kDa protein), reducing collagen- adhesion to 1.3%, 

significantly below the normal range 23-24% (Moroi, et al 1989). Having demonstrated α2β1-

independent collagen-stimulated aggregation (Morton, et al 1995), the identity of the second 

collagen receptor was investigated. Several potential candidates were proposed however only 

GPVI fit the criterion of collagen-induced tyrosine phosphorylation of signalling proteins. The 

phosphorylation of Fc receptor γ-chain (FcR-γ), a prerequisite of collagen-induced aggregation, 

crosslinks GPVI (Poole et al. 1997). Increased collagen concentration corresponded to 

increased tyrosine phosphorylation of FcR-γ chain and increased co-precipitation with 60kDa 

membrane protein GPVI (Gibbins, et al 1997). The snake toxin, convulxin, and the synthetic 

collagen derivative, collagen-related peptide (CRP), induced platelet aggregation by 

mechanisms analogous to collagen, resulting in time-dependent tyrosine phosphorylation of 

FcR-γ and also co-immunoprecipitated with GPVI (Polanowska-Grabowska, et al 2003; Polgár 

et al., 1997). Taken together, GPVI was identified as a platelet receptor directly binding the 

physiological ligand collagen. With this, a ‘two-step, two-site’ model of collagen-induced 

platelet activation was established as Santoro et al first proposed whereby binding of α2β1 is 

followed by GPVI activation (Santoro, et al 1991). 
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1.4 GPVI Genomic Structure 

Isolation of GPVI facilitated early attempts to characterise GPVI and its gene (Tandon, et al 

1989). The GPVI gene was mapped to chromosome 19q 13.4 consisting of 8 exons spanning 

1017 base pairs encoding 339 amino acids (Clemetson et al. 1999; Ezumi et al. 2000). The 

mouse and human genes share 64% homology and the expression of GPVI is limited to the 

megakaryocytic lineage (Jandrot-Perrus et al. 2000). Common with other megakaryocytic 

genes, such as integrin α2, GPIX and GPV, the GPVI promoter has a consensus initiation 

sequence, which lacks TATA and CAAT boxes instead has multiple transcription start sites 

(Ezumi et al. 2000). Full-length cDNA cloning identified an N-terminal signal sequence 

followed by two IgG-like domains, a mucin-like serine/threonine-rich region, a transmembrane 

domain, and a unique c-terminus  (Clemetson et al. 1999). The two IgG-like domains are 

disulphide linked and externalised on the plasma membrane. This hydrophobic extracellular 

portion is homologous to Type-1 transmembrane receptors (Clemetson et al. 1999; Jandrot-

Perrus et al. 2000). Homology searching of this region identified GPVI as a member of the 

immunoglobulin super-family, closely related to FcR-α, mouse mast cell receptor and the 

natural killer receptor class (Clemetson et al. 1999). The 19 amino acid transmembrane domain 

contains a positively charged- arginine residue which forms an ionic bond with aspartic residue 

in the transmembrane portion of FcR-γ (Clemetson et al. 1999). The 51 amino acid 

cytoplasmic region is distinct from other family members, lacking a kinase consensus sequence 

or any phosphorylateable residue. Instead the cytoplasmic domain possesses a type-1 proline-

rich sequence typical of SH3-binding sites (Miura, et al 2000). Genomic analysis found a 

discrepancy between the predicted molecular weight (38kDa) from the cDNA sequence and the 

~60kDa molecular weight of purified GPVI. The incongruency was attributed to extensive 

glycosylation contributing an extra 20 kDa molecular weight to GPVI (Jandrot-Perrus et al. 

2000). The cDNA sequence predicted one putative N-glycosylation site (Miura et al. 2000) 

confirmed by crystal analysis (Horii, et al 2006). 
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1.5 GPVI Structure 

The general GPVI structure, as predicted by genomic analysis, consists of two Ig-like globular 

extracellular domains, a transmembrane domain and a long cytoplasmic tail.  Though extensive 

regions of GPVI are reserved for ligand-recognition, ligand-binding is dominated by the two 

Ig-like domains (n-terminal D1 and D2) (Horii et al., 2006; Lecut et al., 2004). The D1 domain 

and to a lesser extent the D2 domain promote ligand binding  and are critical for binding of 

collagen, CRP and convulxin (Dumont et al. 2006). Substitution of both domains abolished 

collagen binding, but restoring the D1 had a greater collagen-binding efficiency than D2 

(Dumont et al. 2006). D1 domain is typical of an Ig fold, consisting of β-sheets (ABE and 

A`GFCC` strands) followed by a short 310 helix and 2 polyproline type II helices.  After the 

first β-strand of D1 a conserved cis-proline (P14) distorts the A’strand which then interacts 

with the G strand the final β-sheet of D1. Therefore to D1 domain is an I-type Ig fold. In 

contrasts the conserved proline (P100) at the end of the A strand of D2 results in trans 

conformation, and thus the D2 domain is a C2-type Ig fold. The D2 domain deviates from 

canonical C2-type Ig-fold, containing elongated C and C1 strands; these, like the AB loop, 

extend outwards and exhibit considerable flexibility. Atypical of the Leukocyte receptor cluster 

(LRC) family, GPVI has an 11-residue deletion intervening C'E loop resulting in a shallow 

hydrophobic groove in the D1 domain. The ligand binding residues were identified by 

generating monoclonal antibodies to selectively inhibit the binding of collagen, convulxin and 

collagen-related protein (CRP). 

 

 

A B 
Figure 1.2. Structure of GPVI Ig-domains (Horii et al. 2006). A. Ribbon diagram of GPVI representing the n-

terminal D1 domain and the c-terminal D2 domain. The N-glycosylation site is indicated by a gold ball. B. Ribbon 

diagram of the dimeric structure of GPVI. The two D2 domains via hydrophobic interactions form a back to back 

dimer. The D1 domains are extended at 90˚ angles to form the ligand binding site.  
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Differential inhibition of collagen, CRP, and convulxin indicates GPVI possesses distinct 

binding sites for each ligand with some overlap of residues (Lecut et al. 2004). GPVI binding 

to convulxin involves charge residues on the D1 and the interdomain hinge, as mutation of 

both the linker region and D1 abolish convulxin binding (Dumont et al. 2006). Collagen 

binding residues are localised to a 30-35 residue loop bordering the hydrophobic groove on 

D1; these residues are charged polar residues such as K41, K59, and R60 (Horii et al. 2006). 

Residues K59, R60 and R166 on the apical surface of GPVI are critical for collagen binding 

(O’Connor et al. 2006; Smethurst et al. 2004). In a separate study the residues V34 and L36 

were found critical for the binding of GPVI to collagen and CRP (Lecut et al. 2004). The 

homologous collagen-binding domains of both GPVI and LAIR presented 3 conserved residues 

R59, E61, and W109, which promote collagen binding (Brondijk et al. 2010).  Crystal structure 

analysis found an N-glycosylated residue (N72) on an outward extending loop at the end of D1 

(Horii et al. 2006). Glycosylation contributes to the maximal binding of GPVI agonists, as the 

oligosaccharides directly contact collagen, and preserve optimal orientation of the binding site 

(Kunicki, et al 2005). Disruption of the consensus N-glycosylation site Asn92-Gly-Ser94 

decreased GPVI response to ligands (Kunicki et al. 2005). The transmembrane domain 

contains a positively charged arginine in position 3 which forms a salt-bridge with an aspartic 

acid of FcR-γ; the expression of GPVI is dependent on this constitutive cross linking 

(Nieswandt et al. 2000). The intracellular tail serves as an adaptor for downstream interactions 

via two autonomous domains; a highly basic region and a proline-rich region which mediate 

interaction with calmodulin and Src-family kinases, respectively (Locke et al. 2003). Loss of 

either domain significantly abrogates GPVI signalling, in the presence and absence of FcR-γ. 

The basic residues in 14 amino acids sequence between W292 and V306, presented on the 

interface of a helix, shares homology to classical calmodulin-binding motifs (Locke et al. 

2003). Calmodulin binds GPVI in resting platelets but dissociates upon activation, and is 

therefore considered a regulator of GPVI (Bender et al. 2010).  
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1.6 GPVI Dimerisation  

GPVI forms back-to-back dimers stabilised via the interaction between two hydrophobic D2 

domains (Horii et al. 2006). The D2 domains orientate the D1 domains to favour ligand 

binding (Dumont et al. 2006). The binding affinity of monomeric GPVI was compared to 

recombinant dimeric GPVI; monomeric GPVI has no observable affinity for collagen (Miura et 

al.  2002). Conversely GPVI dimers enhance affinity for collagen, and reciprocally collagen-

stimulation enhances GPVI dimerisation. Furthermore the dimer interface, consisting of 2 

parallel grooves, displays surface complementarity and matches the dimensions of a collagen 

fiber (Horii et al. 2006). The penultimate residue Cys388 in the D2 domain is critical for the 

dimerisation of GPVI (Arthur et al. 2007). GPVI dimerisation is independent of FcR-γ 

phosphorylation, Src-kinases, Syk, PI-3Kinase and calmodulin (Arthur et al. 2007). Resting 

platelets present GPVI monomers until activated by soluble agonists, collagen-, vWF- or shear-

induced platelet aggregation (Loyau et al. 2012). Monomers are maintained by high 

concentrations of intraplatelet cAMP, a general inhibitor of platelet activation (Dütting & 

Nieswandt, 2012). In contrast, Berlanga et al. demonstrated GPVI is dimerised in basal 

conditions and dimerisation is rapidly enhanced upon ligand binding (Berlanga et al. 2007). It 

is has been suggested GPVI operates via the multichain immune recognition receptor (MIRR) 

signalling model, whereby basal receptor dimers do not activate signalling until the disordered 

cytoplasmic domains of MIRR subunits homooligomerise (Sigalov 2007). The clustering of 

receptors is a requisite of collagen binding due to the multivalent and highly polymerised 

structure of collagen (Jarvis et al. 2008). Studies have demonstrated optimal binding to 

collagen is favoured dimerisation (Loyau et al. 2012; Jung et al. 2009; Miura et al. 2002). The 

clustering of GPVI was first indicated by the ability of bivalent F(ab’)2 fragments of GPVI 

antibodies to induce platelet aggregation and activation (Sugiyama et al. 1987). In support of 

clustering- induced activation, Jung et al. demonstrated crosslinking of GPVI dimers by 

bivalent IgG or monovalent Fab induced platelet aggregation (Jung et al. 2009). 
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1.7 GPVI- ITAM signalling 

GPVI signalling is underpinned on its interaction with the FcR-γ chain. GPVI lacks intrinsic 

enzymatic or kinase activity (Moroi & Jung 2004). Signal transduction is dependent on the 

constitutive association with the ITAM-bearing FcR-γ chain. GPVI is an ITAM-receptor, like 

BCR and TCRs, and signals through the ITAM motif of the FcR-γ. The ITAM motif consists 

of YXXL/IX6–8YXXL/I sequence where X denotes any amino acid (Watson & Gibbins 1998). 

Phosphorylation of the tyrosine (Y) residues within the ITAM motif form SH2-domain 

docking sites. Recruitment of SH2-domain proteins initiates downstream signalling.  

 

Ligand binding results in dimerisation of the GPVI receptor, and subsequently GPVI-

associated Src-kinases phosphorylate the ITAM motif of the FcR-γ chain. Src-kinases Lyn and 

Fyn are constitutively associated with the proline rich regions of the GPVI cytoplasmic tail via 

their SH3 domains (Suzuki-Inoue et al. 2002). Despite the constitutive association of Lyn and 

Fyn to GPVI, no kinase activity is observed in the absence of ligand, these kinases are primed 

for activity, emphasising the requirement of GPVI clustering to bring Lyn and Fyn in 

proximity of FcR-γ (Schmaier et al. 2009). Phosphorylation of conserved tyrosines in the 

ITAM motif of FcR-γ creates docking sites for SH2-domain bearing proteins. Other 

downstream substrates of Lyn include the kinase C-δ and SHIP-1 (SH2-domian-containing 

inositol phosphatase-1) which upon GPVI-induced phosphorylation result in the secretion of 

dense granules (Chari et al. 2009). 

 

The docking site created by the phosphorylated ITAM motif facilitates the binding of Syk 

(Suzuki-Inoue et al. 2004). Subsequent autophosphorylation of Syk activates kinase activity 

targeted at a number of substrates including LAT, SLP-76, Vav and PLCγ2 (Watson et al. 

2005). Syk mediates the formation of a signalosome with LAT, SLP-76 and Gads which 

regulates phospholipase Cy2 (PLCγ2) activity (Watson et al. 2005). Activated LAT and SLP-

76 associate with the GPVI cytoplasmic tail to orchestrate the phosphorylation of PLCγ2, PI3-

kinase, and G-protein coupled receptors (Leo et al. 2002; Judd et al. 2002). SLP-76 is involved 
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in granule secretion to maximise collagen-stimulated aggregation (Leo et al. 2002). 

 

 

 

The phosphorylation of PLCγ2 is integral to the amplification of GPVI signalling. PLCγ2 

translocates to the membrane where it cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) 

into inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) (Falet et al. 2000). The 

liberated IP3 is a cytosol-soluble substrate of IP3-receptors in the endoplasmic reticulum 

membrane. IP3-mediated calcium channels are opened creating an influx of calcium. The 

cooperation of calcium and the membrane bound DAG activates PKC (Falet et al. 2000).  

Calcium mobilisation and PKC activation are major endpoints in GPVI signalling, resulting in 

the exocytosis of dense granules, integrin activation, platelet adhesion and platelet spreading by 

filopodia formation (Nieswandt & Watson 2003; Watson et al. 2005; Quinton 2002).  

As the precursor to calcium influx and PKC activation, PLCγ2 is critical to haemostasis, such 

that no platelet aggregation is observed in PLCγ2-/- deficient mice (Nonne et al. 2005). Upon 

collagen-stimulation Syk, SLP-76, Lyn, LAT and FcR-γ interact with the c-terminal SH2 

domain of PLCγ2 (Gross et al. 1999). The activation of PLCγ2 is also supported by PI3-kinase, 

Tec family and Vav proteins which are activated directly downstream of Syk (Watson et al. 

2005). Vav proteins serve as critical adaptor proteins in PLCγ2 phosphorylation as deficiency 

Figure 1.3. The GPVI signalling cascade (S P Watson et al. 2005). GPVI ligand binding induces dimerisation 

of GPVI. Fyn and Lyn phosphorylate the ITAM motif of the FcR-γ chain. The recruitment of Syk to the results in 

the formation of a signalosome and PLCγ2 activation. 
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in certain members of the Vav family markedly reduces of PLCγ2 phosphorylation and GPVI 

signalling (Pearce et al. 2004).  

Btk is a nonreceptor tyrosine kinase of the Tec family activated by Syk in response to GPVI 

and GPIb-Ix-V stimulation. Activated Syk recruits Btk which associates with PI3-kinase via its 

PH domain, and  is simultaneously translocated to the plasma membrane (Dangelmaier et al. 

2005). Btk phosphorylates PLCγ2 at Try753 and Tyr759 residues (Suzuki-Inoue et al. 2004). 

PI3-kinase is non-redundantly critical for GPVI-induced thrombus formation (Gilio et al. 

2009). In addition to Btk translocation, PI3-kinase mediates the serine/threonine 

phosphorylation of protein kinase B (PKB) and translocates activated PKB to cell membranes 

where PKB modulates of dense granule secretion (Barry & Gibbins 2002). PKB regulates ADP 

secretion, enhances PLCγ2-mediated calcium flux, and induce exteriorisation of 

phosphatidylserine under flow conditions (Barry &  Gibbins 2002). 

The activities of several proteins converge to the activation of PLCγ2 which in turn activates 

several signalling pathways. The two products of PLCγ2 are exploited in the NFAT/AP-1 

luciferase assay to measure the relative level of signalling. The IP3 opens ER-calcium channels 

producing cytoplasmic calcium influx. Following depletion of IP3-gated calcium stores, 

intraluminal calcium levels are replenished by opening of the membrane-bound ICRAC channel 

composed of Orai1 oligomers and the calcium sensor STIM1(Gilio et al. 2010). Store-operated 

calcium entry (SOCE) produces sustained calcium influx activating several calcium sensitive 

proteins such as calcineurin. Calcineurin dephosphorylates NFAT exposing the nuclear 

translocation signal facilitating entry of NFAT into the nucleus. The second PLCγ2 product, 

DAG, activates the membrane-bound GTPase Ras. Ras undergoes conformation switch from 

inactive GDP-bound form to active GTP-bound state. Ras activates MAP3K which activates 

MAP2K. Successive activation of MAPK by MAP2K translocates MAPK to the nucleus where 

it promotes dimerisation of c-Fos and c-Jun forming the AP-1 transcription factor. NFAT and 

AP-1 promote transcription of luciferase reporter gene of the NFAT assay. 
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1.8 GPVI Membrane localisation  

The clustering of GPVI receptors upon ligand-binding is promoted by the membrane 

localisation in lipid rafts which concentrate GPVI receptors (Quinter et al. 2007). Lipid rafts 

are heterogenous microdomains within the plasma membrane, highly enriched in glycoproteins 

such as glycosphingolipids, phospholipids and cholesterol (Lingwood & Simons 2010). Lipid 

rafts selectively sequester receptors in microenviroments where the selective composition of 

proteins is conducive to signal activation. Reported members of lipid rafts include acylated src-

family kinases such as Lyn and Fyn, and palmitoylated transmembrane proteins such as LAT 

(Dorahy & Burns 1998; Horejsí et al. 1999; Zhang et al. 1998). Locke et al. reported the 

existence of convulxin-dependent presence GPVI in lipid rafts in platelets (Locke et al. 2002). 

The presence of GPVI in lipid rafts is comparable to the translocation of TCR, BCR and 

CLEC-2 (Kabouridis 2006; Gupta & DeFranco 2007; Pollitt et al. 2010). Uncoupling the 

GPVI:FcR-γ complex established FcR-γ association is required for GPVI presence in lipid rafts 

(Locke et al. 2002).  Cvx-stimulation increased the prevalence of LAT and recruited SLP-76 

and PLCγ2 to lipid rafts (Locke et al. 2002; Wonerow et al. 2002). The selective lipid raft 

disruption by methyl-β cyclodextrin reduces collagen-, CVX-, and CRP- induced aggregation 

(Ezumi et al. 2002; Quinter et al. 2007).The inhibition of GPVI induced aggregation, calcium 

mobilisation and dense-granule secretion upon methyl-β cyclodextrin treatment indicated lipid 

raft integrity is required for maximal GPVI activation (Wonerow et al. 2002). Ezumi et al. 

reported lipid raft disruption inhibited of phosphorylation of FcR-γ, Syk, PLC, LAT and SLP-

76, whereas Quinter et al. found no affect on the phosphorylation of Syk, LAT and PLC in 

methyl-β cyclodextrin-treated cells in response to collagen and convulxin stimulation (Ezumi 

et al. 2002; Quinter et al. 2007). CRP stimulated responses were sensitive to lipid raft 

disruption, exhibiting reduced platelet aggregation, Syk phosphorylation and calcium 

mobilisation (Quinter et al. 2007). The resistance of collagen and convulxin to lipid raft 

disruption may indicate the ability of these agonists to induce clustering without lipid rafts.   



14 
 

1.9 GPVI Regulation 

Several GPVI regulatory mechanisms have been proposed but it is likely the regulation of 

GPVI involves the synergy of several mechanisms providing tiered level of regulation whereby 

expression level is regulated by (i) ectodomain shedding or (ii) internalisation, or GPVI 

activation is attenuated by (iii) ITIM receptors or (iv) by direct inhibition of signalling proteins.  

GPVI undergoes ectodomain shedding whereby the extracellular portion is rapidly and 

irreversibly cleaved resulting in a soluble 55kDa sGPVI and the 10kDa membrane bound 

remnant (Gardiner et al. 2004). The soluble 55kDa sGPVI is observed in plasma upon 

incubation with GPVI agonists in a time-dependent manner (Gardiner et al. 2004). GPVI 

shedding is also induced by incubation of platelets with anti-GPVI antibody in vitro and in vivo  

(Stephens et al. 2005; Al-Tamimi et al. 2009; Boylan et al. 2006). Shedding was inhibited by 

inhibitors of GPVI signalling molecules Syk, PI-3kinase, and Src kinases indicating shedding 

is dependent on components downstream of GPVI-ligand activation (Wijeyewickrema et al. 

2007).The mechanism of agonist-induced degradation involves the dissociation of the 

calmodulin bound to the cytoplasmic tail of GPVI (Gardiner et al. 2004). Loss of the protective 

calmodulin molecules makes GPVI susceptible to ectodomain shedding. Antibody-induced 

ectodomain shedding is also dependent on LAT and PLCγ2 (Rabie et al. 2007).Shedding is 

mediated by metalloproteinases, ADAM10 upon calmodulin inhibition and ADAM17 in cell 

cytotoxic conditions (Bender et al. 2010). Concomitant loss of GPVI shortly after ligand-

binding attenuates the haemostatic response to external stimuli. Furthermore the resulting 

sGPVI inhibits platelet aggregation (Massberg et al. 2004). Metalloproteinases-dependent 

shedding is induced by the coagulation factor FXa in a time-dependent manner, controlling the 

procoagulant property of GPVI following coagulation (Al-Tamimi et al. 2011; Siljander et al. 

2001). The metalloproteinase-dependent shedding is supported by EMMPRIN, an 

immunoglobulin receptor, which induces synthesis of matrix metalloproteinase and is capable 

of making semi-adhesive contacts with GPVI (Seizer et al. 2009).  
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GPVI internalisation was demonstrated by antibody-induced loss of GPVI expression and 

concomitant absence of cleaved GPVI ectodomain in the supernatant; this effect was exclusive 

to the hF1232 anti-GPVI antibody (Takayama et al. 2008). A fluorescent endocytic probe was 

tagged to the antibody and monitored GPVI internalisation upon introduction into monkeys. 

The fluorescence maximised within 1 hour, indicating high levels of GPVI endocytosis. In 

vitro studies confirmed the endocytosis fluorescence was specific to GPVI internalisation and 

was dependent on high levels of cAMP (Takayama et al. 2008). The JAQ1 anti-GPVI antibody 

was able to induce both endocytic-internalisation and the ectodomain shedding; the distinction 

between the two pathways was the differential requirement of LAT and PLC for ectodomain 

shedding (Rabie et al. 2007). JAQ1 mediated internalisation was dependent on the ITAM motif 

of FcR-γ as mutation of two conserved tyrosines (residues 65 and 76) inhibited internalisation 

(Rabie et al. 2007). 

     Analogous to BCR and TCR regulation, GPVI is susceptible immunoreceptor tyrosine-

based inhibitory motif (ITIM) -receptor mediated regulation. ITIM receptors are diametric 

opposites of ITAM receptors, where the conserved ITIM motif is phosphorylated to create 

docking sites for SH2-domain phosphatases. Platelets express ITIM receptors PECAM-1, 

CEACAM-1, and G6b which have been shown to decrease platelet response to collagen (Patil 

et al. 2001; Wong et al. 2009; Mori et al. 2008). Phosphorylated ITIM motif recruits the 

phosphatases SHP-1, SHP-2, and SHIP1 which then inhibit PLCγ2 activation and 

dephosphorylate docking sites (Unkeless & Jin 1997).  

      Downregulation of individual signalling components is a regulatory mechanism observed 

in BCRs and TCRs (Rao et al. 2002; Lupher et al. 1999); the potential of this mechanism to 

regulated GPVI has been suggested due to the commonality of signalling components. 

Receptor stimulation recruits Cbl proteins to phosphorylated signalling components where Cbl 

catalyses the transfer of ubiquitin to lysine residues on the substrate protein resulting in 

ubiquitinylation and subsequent lysosomal or proteosomal degradation (Thien & Langdon 
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2005). The inhibitory capacity of the Cbl family in GPVI signalling has previously been 

established by the Cbl-b dependent inhibition of PLCγ2, Btk and GPVI induced aggregation 

(Daniel et al. 2010). c-Cbl is a ubiquitously expressed member of the Cbl family of E3 ligases 

composed of an N-terminal tyrosine-kinase binding domain, an ring finger domain and a c-

terminal proline-rich SH3-recognition domain (Rao et al. 2002). c-Cbl complexes with 

phosphotyrosines of tyrosine kinases, such as Lyn, Fyn, Lck, ZAP70 and Syk, via the 4 helix 

bundle, calcium-binding EF domain and a SH2 domain of the tyrosine kinase binding domain 

(Rao et al. 2002; Thien & Langdon 2005). c-Cbl also interacts with non-tyrosine kinases, some 

of which are common to the GPVI signalling pathway such as PI 3-kinase, Vav and Grb2 (Rao 

et al. 2002). Analogous to the stimulation-dependent recruitment of c-Cbl in TCR and BCR 

complexes, GPVI stimulation results in phosphorylation/activation of c-Cbl (Polgár et al. 

1997). Lck-dependent phosphorylation of c-Cbl in TCR parallels the Lyn- and Fyn- mediated 

phosphorylation of c-Cbl in GPVI signalling (Auger et al. 2003). c-Cbl then complexes with 

phosphorylated Syk which is rapidly ubiqinylated and degraded (Dangelmaier et al. 2005). 

Knockout analysis in platelets demonstrated the absence of c-Cbl coincided with the increase 

phosphorylation of FcR-γ, PLCγ2, and Syk  (Auger et al. 2003). However an ubiquitinylation-

inhibitor had no effect on the tyrosine phosphorylation of these proteins. Researchers have 

reported c-Cbl is phosphorylation-independently bound to Src-like Adaptor Proteins (SLAP) 

which are recruited to signalling complexes in receptor-stimulating conditions and supplement 

the activity of c-Cbl (Tang et al. 1999). SLAP proteins translocate c-Cbl to membranes upon 

receptor stimulation resulting in enhanced c-Cbl activity as c-Cbl is juxtaposed to substrates 

and SLAP further stabilises c-Cbl-to-protein interactions (Swaminathan et al. 2007).  

 

1.10 SLAP Proteins 

Src-like adaptor proteins (SLAP) are non-enzymatic adaptors which share considerable 

homology to the Src family of tyrosine kinase possessing homologous N-terminal regions, SH3 

domains and SH2 domains but divergent c-terminus regions (Pandey et al. 1995). SLAP1 and 
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SLAP2 are homologous at n-terminal (21%), SH3 domain (36%) and SH2 domain (59% but 

have unique c-terminus. SLAP1 was identified via two independent yeast-hybrid screens for 

interacting molecules of tyrosine kinase Eck and c-Cbl (Pandey et al. 1995; Tang et al. 1999). 

SLAP2 was identified by bioinformatic searches informed by the genetic structure of SLAP1 

(Holland et al. 2001).  The SLAP1 gene was mapped to chromosome 8q22.3-qter  in the 3’ end 

of the thyroglobin gene (Angrist et al. 1995; Meijerink et al. 1998). The SLAP2 gene was 

localised to 20q11.23 (Loreto & McGlade 2003). Expression profiling found SLAPs 

predominantly present in cells of the lymphoid and myeloid lineage, with differential 

expression of SLAP1 and SLAP2 in spleen, lungs, and thymus (Dragone et al. 2009). The 

regulatory activity of SLAP was first recognised when SLAP1 overexpression inhibited DNA 

synthesis and cell growth (Roche et al. 1998). The co-immunoprecipitation of SLAP1 with the 

PDGF receptor indicated that the activity of SLAP1 was specific to receptors rather than a 

global inhibition of mitogenesis (Roche et al. 1998). Till date SLAP proteins have 

demonstrated negative regulation of PDGF receptor, BCR, TCR, GM-CSF, M-CSF, Epo-R, 

osteoclasts, fibroblasts and mast cells (Sirvent et al. 2008; Dragone et al. 2006; Myers et al. 

2005; Liontos et al. 2011; Lebigot et al. 2003; Kim et al. 2010; Park & Beaven 2010; 

Swaminathan et al. 2007; Hiragun et al. 2006). Knockout studies have defined the in vivo role 

of SLAP proteins in lymphocytes. The SLAP1
-/- 

deficiency results in a 3-5 fold increase in 

TCR expression on double-positive cells (DP) attributed to increased TCR recycling and 

decreased TCR  degradation (Sosinowski et al. 2001). The SLAP1
-/-

 phenotype of increased 

surface activation-markers, increased positive selection and rescue of ZAP70
-/-

 induced 

inhibition of thymocyte development was no different from the c-Cbl
-/-

 phenotype (Sosinowski 

et al. 2001). SLAP1 deficiency elevated BCR levels and generated hyporesponsive mature B-

cells (Dragone et al. 2006). No phenotype in either B-cells or T-cells was observed in SLAP2 

knockout studies (Dragone et al. 2009).  In attempt to characterise the pathway of SLAP-

induced regulation, interacting proteins have been coimmunoprecipitated under receptor 
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stimulating conditions. SLAP1 overexpression in T-cell line purified ZAP-70, Syk, Vav, SLP-

76, c-Cbl, Lck, TCRζ and LAT (Tang et al. 1999; Loreto et al. 2002; Sosinowski et al. 2000). 

Interacting partners of SLAP2 in B-cells included c-Cbl and IgAα (Holland et al. 2001; 

Dragone et al. 2006). These interactions were dependent on the SH2 domain of SLAP proteins, 

with the exception of c-Cbl which associates with the c-terminal of SLAP proteins (Loreto et 

al. 2002; Sosinowski et al. 2000; Holland et al. 2001). The overexpression of SLAP proteins in 

T- and B-lymphocytes reduced NFAT transcription, calcium mobilisation, and reduced 

expression of CD69, a lymphocyte-specific marker of ligand-receptor activation (Holland et al. 

2001). Overexpression of SLAP1 increased TCR degradation in a manner dependent on Lck-

mediated phosphorylation of TCRζ followed by cooperative activities of c-Cbl and SLAP1 

(Myers et al. 2005). Overexpressed SLAP1 decreased surface and total BCR levels by 

approximately 40-50% via c-Cbl-dependent alteration of BCR recycling and internalisation 

(Dragone et al. 2006). SLAP2 overexpression in T-cells decreased levels of ZAP-70 and CD3ε 

and in B-cells decreased Syk levels (Dragone et al. 2009). Sugihara et al. demonstrated the 

presence of SLAP proteins in platelets and implicated SLAP2 in the negative regulation of 

GPVI signalling, due to its stimulation-dependent displacement from the soluble cytoplasmic 

compartment to the insoluble cytoskeletal compartment accompanied with c-Cbl, LAT and Syk 

(Sugihara et al. 2010). The effect of SLAP proteins on GPVI signalling has not been 

characterised and is the subject of this study.  

1.11 GPVI Levels and Polymorphisms 
 

Population studies have reported tight regulation of GPVI levels among healthy population; the 

mean receptor density is 3730± 453 and the surface density ranges between 1.5-5% (Best et al. 

2003; Furihata et al. 2001). GPVI is expressed in the early stages of megakaryocytic 

differentiation but is not functionally adherent to collagen till later differentiation stages 

(Lagrue-Lak-Hal et al. 2001). GPVI expression increases with megakaryocte differentiation 

(Berlanga et al. 2000). Platelets GPVI levels are maintained throughout lifetime and are not 
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affected by the protease-activated receptors or the Src-kinase inhibitor PP2 or prostacyclin 

(Best et al. 2003). Some variation of GPVI levels has been correlated to the presence of GPVI 

gene polymorphisms.  Five of the 10 polymorphisms within the population are inherited as a 

haplotype with 5 single nucleotide polymorphisms (SNPs) within the mucin and cytoplasmic 

domains. Two common haplotypes of the GPVI gene, ‘a’ and ‘b’, are present in the population 

at frequencies of 0.85 and 0.13, respectively, and differ at residues Ser219Pro, Lys237Glu, 

Thr249Ala, Gln317Leu and His322Asn (Best et al. 2003; Arthur et al. 2007).  The low 

frequency ‘b’ genes possess 3-fold reduced platelet aggregation, reduced tyrosine 

phosphorylation, platelet activation, reduced thrombin generation and reduced Syk 

phosphorylation (Joutsi-Korhonen et al. 2003; Trifiro et al. 2009). The most functionally 

relevant SNP is the Ser219Pro, a thymine to cytosine substitution at 13254 base, which 

modifies an O-glycosylation site (Arthur et al. 2007).  This mutation has been associated with 

myocardial infarction and coronary thrombosis (Croft et al. 2001; Ollikainen et al. 2004).  In a 

study of 102 healthy participants, one individual was homozygous for the Ser219Pro 

polymorphism, 77% were heterozygotes and 22% were Ser/Ser homozygotes; the GPVI 

expression levels were 2598 sites, 3437±353, and 3814±439 respectively (Best et al. 2003). 

The functional consequence of Ser219Pro is reduced collagen adhesion under high stress and 

reduced GPVI expression (Best et al. 2003). In contrast Trifiro et al. found that under static 

system there was no difference in the ligand binding capacities of the ectodomains of the two 

haplotypes, though the Gln317Leu and His322Asn of the ‘b’ haplotype increased binding to 

calmodulin and reduced binding to Lyn and Fyn, respectively (Trifiro et al. 2009). Though 

GPVI polymorphisms disrupt structure-function relationships and expression levels, the overall 

effect of gene polymorphisms on GPVI-mediated platelet responses is relatively subtle 

compared to the marked reduction in patients with anti-GPVI antibodies, congenital deficiency, 

immune disorders or defective GPVI signalling (Arthur et al. 2007). A review of GPVI 

deficiency reported a number of clinical defects that accompany the typical bleeding disorder 
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such as recurrent purpura, menorrhagia, post-surgery/trauma and postpartum bleeding, 

epistaxis, subcutaneous and gingival bleeding, and recurring bleeding episodes requiring 

multiple transfusions (Arthur et al. 2007). However there is inter-patient variability with some 

GPVI-deficient individuals exhibiting only mildly increased bleeding times (Moroi et al. 

1989).   

1.12 Therapeutic Potential of GPVI Regulation  
 

The role of GPVI in coronary arterial thrombosis, atherosclerosis and acute coronary syndrome 

and its associated complications is well established (Nieswandt et al. 2011, Bigalke et al. 2011, 

Bigalke et al. 2010). GPVI deficiency exhibits anti-thrombotic properties as established by the 

abolition of thrombus formation in carotid artery injury model in GPVI null mice (Furie & 

Furie 2006). Researchers have observed the inhibition GPVI activity provides considerable 

protection from thrombosis. The established modes of GPVI inhibition involve anti-GPVI 

antibodies and soluble GPVI-Fc dimers which function via the same mechanism of competing 

with endogenous GPVI for collagen binding. Irreversible depletion of GPVI, via monoclonal 

antibody JAQ1, provided long-term protection from thrombosis with minimal effect on 

bleeding times (Nieswandt et al. 2001). Schulte et al. reported a two-phase anti-thrombotic 

effect of GPVI inhibition, first thrombin is partially and transiently inhibited followed by the 

prolonged unresponsiveness to collagen (Schulte et al. 2006). The anti-thrombotic capacity of 

anti-GPVI antibodies is due to the inhibition of several GPVI mediated events such as 

collagen-induced aggregation (Muzard et al. 2009), procoagulant activity of GPVI (Lecut et al. 

2003), ATP release, thromboxane A2 formation, and platelet adhesion (Matsumoto et al. 2007) 

and shear-induced thrombosis (Walker et al. 2009). Soluble GPVI-Fc dimers also inhibit 

collagen-induced aggregation, though with less potency than anti-GPVI antibodies, and unlike 

anti-GPVI antibodies permit haemostasis in injured arterial walls (Grüner et al. 2005). Existing 

anti-platelet agents target fibrinogen, ADP, thromboxane increase the bleeding risks (Jackson 
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& Schoenwaelder 2003). The ability to protect against thrombosis without increased bleeding 

risk is exclusive to GPVI, and therefore GPVI an attractive target for anti-thrombotic therapy.  

1.13 Objectives  
 

The development of anti-GPVI agents promotes research into the mechanisms of GPVI 

regulation and inhibition. As GPVI is of the ITAM-family of receptors and shares considerable 

signalling homology with BCRs and TCRs it is proposed that GPVI is also regulated via 

similar mechanisms regulating BCRs and TCRs involving SLAP proteins. In this study the 

regulatory effect of SLAP proteins on GPVI signalling is investigated in a cell line model using 

the NFAT-luciferase assay. The DT40 B-cell line was selected as a representative of platelets; 

the limited endogenous expression signalling receptors on DT40s facilitates the investigation 

of isolated signalling pathways (Buerstedde 2002).  The NFAT-luciferase assay exploits the 

ability of  GPVI-induced calcium mobilisation and DAG synthesis to activate NFAT and 

MAPK, respectively, which then promote the transcription of the reporter gene, luciferase. The 

relative levels of luciferase are representative of GPVI-activation. Surface GPVI levels are also 

detected to identify any concomitant changes in GPVI levels. Furthermore SLAP2 mutants of 

each domain are also investigated with the NFAT-luciferase assay to determine the relative 

contributions of each domain to the inhibitory activity of SLAP2 proteins.  
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Chapter 2 Material and Methods 

2.1 Materials 

Materials were of the highest quality and obtained from Sigma-Aldrich unless otherwise stated. 

Cells, GPVI and SLAP1/SLAP2 constructs, agonists and antibodies were provided by 

Dr.M.Tomlinson. The C-terminal mutant, SH2 domain, and myristoylation SLAP2 mutants 

were provided by Dr. McGlade (University of Toronto); these contained function blocking 

mutations generated by PCR-based mutagenesis. The c-terminal mutant was truncated at 70 

amino acids from the c-terminus. The SH2 domain was inactivated by mutation of arginine-

120 to lysine. The myristoylation mutant was generated by substitution of glycine-2 to alanine. 

The SH3-mutant was generated by Jing (Tomlinson lab) by mutagenesis of the proline-

recognition domain. 

SH3 SH2 COOH Myc

* SH2 COOH Myc

SH3
*

COOH Myc

SH3 SH2 Myc

* SH3 SH2 COOH Myc

SLAP2 WT

G2A

SH3*

SH2*

ΔC  

 

 

 

 

2.2.1 Cell Culture 

DT40 B cells were provided by the laboratory. These were maintained in RPMI supplemented 

with foetal bovine serum (10% v/v), L-glutamine (2 mM), penicillin (100 U/ml) and 

streptomycin (100 µg/ml), β2-mercaptoethanol (50µM) and chicken serum (1% v/v). Cells 

were kept in 175cm
2
 cell culture flasks (BD Falcon™) and incubated at 37°C in a humidified 

chamber (5% CO2, 95% air). Cells were maintained under 10
6
cells/ml by subculturing every 

two days or in preparation for downstream experiments. Prior to cell passage, cell density was 

determined using trypan blue exclusion of cells loaded onto a haemocytometer and viewed 

under a microscope at low magnification. The cell count was calculated and used to inform the 

dilution required to obtain suitable seeding density.  

Figure 2.1 SLAP2 structure and domain mutants. A representation of the SLAP2 variants 

investigated in this study.  
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2.3 DT40Transfection  

2.3.1 Transfection 
 

DT40 cells were counted by Trypan blue exclusion and reseeded to a density of 2x10
6
 cells/ml 

approximately 24 hours before transfection. On the day of the transfection, cells were counted 

by trypan blue exclusion and the volume required for 1.5x10
7
 cells/ml per transfection was 

transferred to 50ml falcon tubes (BD Falcon™)  and centrifuged at 1200 x g for 5 minutes. The 

cell pellets were resuspended in serum-free RPMI and combined to a final volume of 50ml. 

The cells were centrifuged again at 1200 x g for 5 minutes and the supernatant was discarded. 

The pellet was then resuspended in serum-free RPMI (0.4ml per transfection) and 20µg NFAT 

reporter/ 2µg Lac-Z per transfection was added to the cells. The cell suspension was then 

aliquoted to electroporation cuvette in addition to combination of expression constructs for 

pEF6/pcDNA3, GPVI/FcR-γ, and either SLAP1, SLAP2 or SLAP2 mutants. After a 10minute 

room-temperature incubation, the cells are electroporated at 350V, 500µF using GenePulser II 

Electroporator (BioRad,Hercules,CA, USA). After a10 minute room-temperature incubation 

the transfected cells were transferred from the electroporation cuvette to a 6-well plate (BD 

Falcon™) containing 8ml serum-supplemented RPMI medium. The cells were incubated 

(37˚C, 5% CO2) for 16-20hours and harvested the next day.  

2.3.2 Harvesting transfected cells 
 

Following an overnight incubation, the transfected samples were transferred from 6-well plates 

to 15ml Falcon tubes. Two of these samples were used for trypan-blue cell counting. The 

samples were then centrifuged for 5 minutes at 1200 x g and the supernatant was discarded. 

Each pellet was resuspended in the appropriate volume of serum-supplemented medium 

required to adjust the cell concentration to 2 x 10
6
 cells/ml. From this cell suspension aliquots 

were taken for NFAT-luciferase assay, β-galactosidase assay (250µl), flow cytometry (125µl), 

and western blot analysis (1000µl).   
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2.4 NFAT-Luciferase Assay 

2.4.1 Agonist incubation 
 

Immediately after harvesting transfected cells, aliquots were reseeded into a 96-well plate for 

NFAT-luciferase assay. Triplicates of transfected cells were individually stimulated with 

collagen (5µg/ml), RPMI media (negative control) and the positive control agonists PMA 

(phorbol myristate acetate) and ionomycin.  First, aliqouts of transfected cells were transferred 

to separate troughs. Next, 50µl of transfected cells were pipetted into each well of a triplicate, 

for three triplicates for the three stimulation conditions. The negative control stimulated 

triplicates recieved 50µl of supplemented RPMI media. Soluble collagen (5µg/ml) was 

obtained by diluting Horm collagen with supplemented RPMI, briefly vortexed and then 

transferred 50µl to collagen-stimulated triplicates. The positive control stimulation was 

conducted by suspending together 50ng/ml PMA and 1µM ionomycin in supplemented RPMI 

and transferring 50µl to each well of a triplicate. The well-plate was then incubated at 37C for 

6 hours, after which the plate was transferred to -80C or assayed immediately.  

2.4.2 Luciferase Assay 
 

The NFAT plate was read by first thawing cells at 37˚C for 15 minutes. Lysis buffer was 

prepared of 200 mM potassium phosphate buffer (pH7.8), 12.5% Triton X-100 and 1mM DTT. 

Lysis buffer (11µl) was multi-pipetted into each well, and cells were left to lyse at room 

temperature for 5 minutes. Assay buffer was prepared (200 mM phosphate buffer pH 7.8, 20 

mM MgCl2 and 10 mM ATP) and 100µl was added to each well of a white, opaque 96-well 

luminometer plate. Upon completion of lysis, the 100µl cell lysate is transferred to assay-buffer 

containing wells of the luminometer plate. The luminescence produced upon injection of 50µl 

of 1mM luciferin over a 10 second period was measured using a Mithras LB 960 luminometer. 

Data were averaged, deducted from blank and normalised with β-galactosidase activity. Data 

was expressed a relative NFAT activation of the mean and standard error of the mean of three 

independent experiments.  
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2.5 β-galactosidase assay 
 

The β-galactosidase assay was conducted using the Galacto-Light
TM

 kit as per manufacturers` 

instructions. Briefly, cells were lysed with 80µl of provided lysis buffer, vortexed and lysed at 

room temperature for 5 minutes. Galacton
TM

 was diluted (1:100) in Reaction buffer and 

aliquoted (70µl) in to wells of the luminometer plate. Lysed samples (20µl) were added to the 

Galacton-containing wells in triplicates and then incubated in the dark at room temperature for 

30-minutes. β-galactosidase activity was measured using a luminometer after an injection of 

Light Emission Accelerator (100µl).This assay facilitates normalisation of the NFAT-

Luciferase assay data for variation in transfection efficiencies of each sample.  

2.6 Flow cytometry  
 

Harvested cells were aliquoted into FACs tubes. Transfected cells were centrifuged at 1200 x g 

for 5minutes and the supernatant was aspirated. The cells were incubated in 50µl mouse anti-

human GPVI mAb (HY101, 10µg/ml) for 30 minutes at 4C. Cells were washed in FACS buffer 

(PBS, 0.2% BSA, 0.02% sodium azide), centrifuged for 5 minutes and the supernatant was 

aspirated. The cells were then incubated in 50µl FITC-conjugated anti-mouse IgG for 30 

minutes at 4°C. The cells were resuspended in 500µl FACs buffer containing the cell-viability 

dye propidium iodide. Cells were analysed using FACScalibur flow cytometer. Data was 

analysed using CellQuest™ software. 

2.7 Western Blot 

2.7.1 Buffers 

1% Triton-X-100 lysis buffer: 1%(v/v) Triton X-100, 10mM Tris pH 7.5, 150mM NaCl, 1mM 

EDTA, 0.01% (w/v) sodium azide and Protease cocktail inhibitor.  

12% Lower Gel: 30% Acrylamide (4ml), Lower gel buffer (2.5ml), distilled water (3.4ml), 

10% w/v Ammonium persulphate (APS) (100µl) and Temed (N,N,N,N-

tetramethylethylenediamine) (3.3µl). Lower gel buffer: 183g Trizma base (pH8.8) and 500ml 

water, store at 4°C. 
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Stacking Gel: 30% Acrylamide (0.43ml), Stacking gel buffer (0.83ml), distilled water (2.1ml), 

10% w/v ammonium persulphate (APS) (17µl) and Temed (N,N,N,N-

tetramethylethylenediamine) (3.3µl). Stacking gel buffer: 80g Trizma base (pH6.8) and 500ml 

water, store at 4°C. 

1x TBS: Tris base (20mM), NaCl (137mM), adjusted to pH 7.6. 

1xTBST: Tris base (20mM), NaCl (137mM), Tween 20 (0.1%) adjusted to pH 7.6. 

TBST High Salt: 1xTBST and NaCl (5M). 

SDS-PAGE running buffer: Tris base (25mM), glycine (192mM) and SDS (0.1%) 

Transfer Buffer: Tris base (20mM), glycine (150mM) and methanol (20%v/v) stored at 4°C. 

Blocking buffer: Low-fat powdered milk (Marvel, U.K.) (5%) in 1X TBS-0.05% Tween. 

2.7.2 Cell Lysis 

Samples were first placed on ice. Next 75µl of 1% Triton-100 lysis buffer was added and tubes 

were vortexed. Lysis was allowed to proceed for 30 minutes on ice, with vortexing every 10 

minute intervals. Samples were centrifuged for 10minutes at 14000 x g. Cell lysates were 

transferred to fresh 1.5ml eppendorf tubes containing 16.25µl 5x Non-reducing Laemmli 

sample buffer. Following brief vortexing, samples were boiled at 100°C for 5 minutes.  

2.7.3 Gel Electrophoresis 

Sequentially 12% SDS-resolving gel and stacking gel were cast into a gel cassette (1.5mm). 

Broad range protein ladder (Prestained Protein Marker, Broad Range, BioLabs) was added 

followed by the samples (40µl). The gels were submerged in running buffer and resolved at 

125V for approximately 90 minutes. Upon completion, gels were placed in transfer buffer for 

30 mintues. The Immobilon/PVDF membrane was then equilibrated in 100% methanol for 

approximately two mintues and then placed in transfer buffer for approximately 30 minutes. 

The transfer unit was assembled and  run at 30V for 90 minutes. After transfer the membranes 

were placed blotted in 5% Blocking buffer overnight at 4˚C on a rocking platform. Membranes 

were washed with 1xTBS- 0.05% Tween and then incubated in the primary antibody, Mouse 
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Anti-Myc antibody (1:1000 dilution), overnight at 4˚C on a rocking platform. Three 10 minute 

washes were conducted in High-salt TBST and the membranes were incubated in secondary 

antibody, Anti-Mouse 800-Odyssey antibody (1:1000) or Goat Anti-mouse HRP antibody 

(1:6000) overnight at 4˚C on a rocking platform. Following four 15 minute washes with High-

salt TBST and final wash with TBS, the membranes were analysed either with the Odyssey 

system or ECL immunodetection.  

2.7.4 Odyssey 

Following the final TBS wash, the Immobilon membranes were dried with filter paper and 

scanned on the Odyssey system (Licor Biosciences). Immobilon membranes were maintained 

in the dark to prevent loss of signal.  

2.7.5 ECL Immunodetection 

SuperSignal West Pico chemiluminesce reagent (Thermo Fisher Scientific, U.K.) was 

preprased as per manufacturers` instructions and applied to the membrane for 1 minute. 

Membranes were exposed in the dark to ECL film and developed using an X-O-graph.  
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Chapter 3 Results  

3.1.1 SLAP1 and SLAP2 inhibit GPVI/FcR-γ signalling in a cell line model 

SLAP inhibition of GPVI/FcR-γ was investigated using the NFAT/AP-1 luciferase assay 

established in the DT40 chicken B cell line. NFAT/AP-1 activation is an assay for intercellular 

calcium mobilisation and MAPK activation, respectively, downstream of ITAM-containing 

receptors. DT40 cells were transfected with NFAT/AP-1 reporter and GPVI/FcR-γ in the 

presence or absence SLAP1 and SLAP2. Non-stimulated cells transfected with GPVI/FcR-γ 

induced a basal NFAT/AP-1 activation that was 6.9-fold higher than the control-transfected 

cells. Stimulation with the GPVI agonist collagen increased the NFAT/AP-1 activation 3-fold. 

DT40 cells were individually co-transfected with SLAP1 or SLAP2. SLAP1 and SLAP2 

reduced GPVI/FcR-γ signalling by 4- and 9-fold, respectively in collagen-stimulated cells. 

 

Figure 3.1.1 SLAP proteins inhibit basal and collagen-induced GPVI/FcR-γ signalling. 

Representative β-gal normalised arithmetic mean ±SEM of 3 data sets analysed with 1-tail, 

unpaired Student’s t-test (P≤0.05). Data divided by collagen-stimulated GPVI value to obtain 

logarithmic data thus collagen-stimulated GPVI has no error bar. DT40 cells were transfected 

with 4µg GPVI/FcR-γ and 5µg SLAP1 or SLAP2. Collagen-stimulated GPVI induced 

substantial NFAT/AP-1 activation which was significantly reduced SLAP 1 (P=0.0431) and 

SLAP2 (P=0.0448). * ≤0.05 
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3.1.2 SLAP-mediated inhibition is specific to GPVI/FcR-γ signalling 

Transfected cells were stimulated with positive control agonists, phorbol myristate acetate 

(PMA) and ionomycin, for calcium mobilisation and MAPK kinase activation independent of 

ITAM-receptor signalling. All samples stimulated with PMA and ionomycin responded 

robustly and to similar levels, indicating little variation in the calcium mobilisation and MAPK 

activation capacities of transfected cells. Furthermore it indicates the inhibitory effect of SLAP 

proteins was specific to GPVI and not due to a global inhibition of cell signalling (Figure 

3.1.2).  

 

Figure 3.1.2 The PMA and ionomycin stimulation is not altered by SLAP proteins. 

Representative arithmetic mean ±SEM of 3 data sets normalised for β-gal. DT40 cells were 

transfected with NFAT/AP-1 reporter, β-galactosidase reporter and vector controls or 4µg 

GPVI/FcR-γ and 5µg SLAP1 or SLAP2, and stimulated with PMA and ionomycin. Relatively 

similar levels of NFAT/AP-1 activation observed upon PMA and ionomycin stimulation of 

DT40 cells. Co-transfection of SLAP proteins did not affect the PMA and ionomycin response.  

 

3.1.3 Flow cytometry analysis of GPVI expression in SLAP-expressing DT40 cells 

The GPVI expression levels were measured to determine whether the reduced GPVI/FcR-γ was 

due to decreased presentation of GPVI/FcR-γ on cell surface. Flow cytometry using FITC-

conjugated anti-GPVI antibody was used to measure GPVI expression. The results show that 
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no GPVI is detected in control-transfected cells, whereas fluorescence is markedly increased in 

the GPVI/FcRγ transfected cells (Figure 3.1.3). The GPVI expression is not affected by co-

transfection of SLAP proteins, indicating the decreased GPVI signalling is not due to 

decreased GPVI receptors.   
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Figure 3.1.3 GPVI expression in not altered by co-expression of SLAP proteins. 

Representative arithmetic mean ±SEM of 3 data sets corrected for auto-fluorescence. DT40 

cells were transfected with 4µg GPVI/FcR-γ and 5µg SLAP1 or SLAP2. Flow cytometric 

analysis of GPVI expression levels found similar GPVI expression levels in the absence or 

presence of SLAP proteins.  

 

3.2.1 Optimisation of the NFAT/AP-1 Assay for analysis of GPVI/FcR-γ signalling 

Comparing the data presented in Figure 3.1.1 to previous data, it was evident the basal 

GPVI/FcR-γ signalling response of non-stimulated cells was higher than previously observed 

in research establishing the DT40 cell line  NFAT/AP-1 assay for GPVI signalling (Tomlinson 

et al. 2007). The high basal signal reduced the fold increase of GPVI signalling upon collagen 

stimulation. The high basal GPVI signalling and reduced collagen-stimulation distorts the 

relationship of collagen-induced signalling and misrepresents the magnitude of SLAP mediated 

inhibition. Therefore the assay was optimised to minimise the confounding basal GPVI 

signalling. To this end, the relationship between NFAT/AP-1 activation and the amount of 
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GPVI/FcR-γ construct was investigated to determine whether increased basal GPVI signal is 

due to increased GPVI receptors. DT40s were transfected with varying amounts of GPVI/ FcR-

γ constructs (0, 0.25, 0.5, 1, 2µg) and the NFAT/AP-1 assay was conducted. The results 

demonstrate an inverse dose-dependent relationship where the NFAT/AP-1 activation is 

increased with decreasing quantities of GPVI/FcR-γ construct (Figure 3.2.1). Cells transfected 

with 2µg GPVI construct increased GPVI/FcR-γ signalling 8.8-fold upon collagen-stimulated 

whereas cells transfected with 0.25µg GPVI increased collagen-stimulated GPVI/FcR-γ 

signalling 33.8-fold over basal. The greater fold-increase in collagen stimulation increased the 

ratio of basal signal over collagen signal, therefore the basal signal was proportionally lesser 

with decreasing quantity of GPVI/FcR-γ construct. Higher proportion of collagen-stimulated 

signalling to basal signal was more comparable to previous NFAT/AP-1 assay data.

 

Figure 3.2.1 GPVI/FcR-γ induces collagen-stimulated NFAT/AP-1 activation in an 

inverse dose dependent manner. Representative β-gal normalised arithmetic mean ±SEM of 

3 data sets. DT40 cells were transfected with 0,2,1,0.5 and 0.25µg of GPVI/FcR-γ construct. 

Nonstimulated cells displayed similar levels of basal signalling. The collagen-stimulated 

response increased with decreasing amounts of GPVI, increasing the proportion of collagen-

response to basal signal. 
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3.2.2 Transfection with higher quantity of GPVI/FcR-γ construct does not alter calcium-

mobilisation and MAPK activation capacities of DT40 cells 

The NFAT/AP-1 assay was repeated with positive control agonists PMA and ionomyin (Figure 

3.2.2). The response to PMA and ionomycin stimulation was not varied by the amount of 

GPVI DNA transfected into cells indicating all transfected samples were receptive to calcium 

mobilisation and MAPK activation to similar levels. Therefore the amount of GPVI/FcR-γ 

plasmid does not affect the global machinery involved in calcium mobilisation and MAPK 

activation. Thus the dose-dependent variation of collagen-stimulated NFAT/AP-1 activation is 

specific to increase in GPVI/FcR-γ signalling. 

 

Figure 3.2.2 The PMA and ionomycin response is not affect by the quantity of GPVI/FcR-

γ construct. Representative arithmetic mean ±SEM of 3 data sets normalised for β-gal values. 

DT40 cells transfected with varying quantities of GPVI/FcR-γ construct (0, 2, 1, 0.5, 0.25µg) 

were stimulated with PMA and ionomycin. All samples similarly responded robustly to PMA 

and ionomycin stimulation. 
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3.2.3 GPVI expression levels decrease in dose-dependent manner 

To correlate the reduced NFAT/AP-1 activation to GPVI levels, the surface expression levels 

of GPVI were quantified by flow cytometry. As expected GPVI levels decreased with 

decreased construct transfection. This suggested the high levels of NFAT/AP-1 activation 

occurred at lower GPVI expression levels. Transfection with 2µg and 1µg of GPVI construct 

produced similar levels of GPVI expression, indicating a plateau of GPVI expression at 1µg 

GPVI construct. Therefore when cells were transfected with 2µg GPVI/FcR-γ construct, the 

excessive expression of GPVI is repressed by down-regulation of GPVI receptor. Measurement 

of GPVI expression levels precedes the 6-hour collagen-incubation of the NFAT/AP-1 assay, 

during this period cells transfected with higher quantities of GPVI/FcR-γ construct can 

substantially downregulate the GPVI receptor.  As a result the NFAT/AP-1 activation at higher 

quantities of GPVI construct is lower than smaller quantities of GPVI construct.  

.  

Figure 3.2.3 GPVI expression is reduced in decreasing quantities of GPVI/FcR-γ 

construct. Representative arithmetic mean ±SEM of 3 data sets corrected for auto-

fluorescence. DT40 cells were transfected with varying quantities of the GPVI/FcR-γ 

construct. Analysis of GPVI expression levels demonstrated GPVI levels decreased with 

decreasing dose of GPVI/FcR-γ. 
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3.3.1 SLAP-mediated inhibition at optimised GPVI/FcR-γ concentration 

The previous investigation demonstrated the collagen-stimulated NFAT/AP-1 activation was 

enhanced at lower concentrations of GPVI/FcR-γ. Transfections with lower amounts of GPVI 

increase GPVI/FcR-γ signalling by increasing the retainment of the receptor complex on the 

cell surface. High GPVI/FcR-γ concentrations and initial overexpression activate negative 

feedback pathways to downregulate the receptor. The greatest proportion of collagen-induced 

GPVI signalling was observed at 0.25µg of GPVI/FcR-γ construct. Therefore the NFAT/AP1 

assay was repeated with optimised quantity (0.25µg) of GPVI construct. Implementation of 

the optimised concentration decreased basal signalling and diminished variation between the 

basal signals of samples. The collagen-induced GPVI signalling was 33-fold higher the basal 

(Figure 3.3.1). At optimised GPVI/FcR-γ concentrations, SLAP1 and SLAP2 significantly 

inhibited collagen-induced signalling by 22 and 12 fold, respectively, an improvement from 

our previous observation of 4 and 9 fold inhibition, respectively (Figure 3.1.1).  

Figure 3.3.1 SLAP proteins inhibit GPVI signalling at optimised concentrations of 

GPVI/FcR-γ. Representative arithmetic mean±SEM of 3 data sets, normalised for β-gal, 

analysed with 1-tail, unpaired Student’s t-test (P≤0.05).  Data divided by collagen-stimulated 

DT40 cells were transfected with NFAT/AP-1reporter, β-galactosidase reporter and 0.25µg 

GPVI/FcR-γ and 5µg SLAP1 or SLAP2. Collagen-stimulated GPVI signalling was 

significantly reduced SLAP1 (P=0.0361) and SLAP2 (P=0.0389). * ≤0.05  



35 
 

3.3.2 SLAP proteins do not affect GPVI/FcR-γ signalling induced by positive control 

agonists PMA and ionomycin  

DT40 cells transfected with optimised GPVI/FcR-γ concentrations were investigated for 

response to positive control agonists for calcium mobilisation and MAPK activation. The 

nonstimulated NFAT/AP-1 activation was substantially increased upon stimulation with 

PMA and ionomycin. Stimulation induced similar level of response in all transfected 

samples. These results restate those presented in Figure 3.1.1 except the variation between the 

nonstimulated and collagen-stimulated GPVI/FcR-γ signalling is distinctly increased 

attributed to optimisation of GPVI concentration. As aforementioned the co-expression of 

SLAP proteins in GPVI-transfected DT40s does not alter the calcium mobilisation and 

MAPK activation response to agonists. Therefore SLAP proteins inhibit receptor-proximal 

signalling. SLAP inhibition is specific to GPVI/FcR-γ and not due to cell-wide disruption of 

signalling. 

 

Figure 3.3.2 SLAP proteins do not affect PMA- and ionomycin-stimulated GPVI 

signalling. Representative arithmetic mean±SEM of 3 data sets normalised for β-gal values. 

DT40 cells transfected with NFAT/AP-1 reporter, β-galactosidase construct, and 0.25µg 

GPVI/FcR-γ and 5µg SLAP1 or SLAP2. Cells stimulated with PMA and ionomycin 

produced relatively similarly levels of NFAT/AP-1 activation. Co-transfection of SLAP 

proteins did not affect the PMA and ionomycin- stimulated GPVI signalling.  
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3.3.3 Investigation of GPVI expression levels in SLAP-transfected DT40 cells at 

optimised concentrations of GPVI/FcR-γ 

The surface GPVI expression levels determined whether SLAP-mediated reduction of 

GPVI/FcR-γ signalling was due to reduced number of membrane GPVI/FcR-γ complexes. 

DT40s were transfected with the optimised concentration of GPVI/FcR-γ (0.25µg) to detect 

expression level variation at lower concentrations which would be overlooked at higher 

construct concentrations. The results (Figure 3.3.3) demonstrate non-significant variation of 

GPVI expressions levels in the presence of SLAP proteins. Unexpectedly GPVI expression 

levels were slightly increased in the presence of SLAP1 and SLAP2. These results eliminate 

the receptor degradation mechanism of SLAP-mediated inhibition and support the earlier 

finding (Figure 3.1.3) that SLAP-mediated inhibition is independent of GPVI expression 

levels.  

 

Figure 3.3.3 SLAP proteins do not alter GPVI expression levels. Representative 

arithmetic mean±SEM of 3 data sets corrected for auto-fluorescence. DT40s were transfected 

with 0.25µg GPVI/FcR-γ and 5µg SLAP1 or SLAP2. GPVI expression levels are relatively 

similar in the absence or presence of SLAP proteins.  
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3.4.1 SLAP2 mutants inhibit collagen-stimulated GPVI/FcR-γ signalling to varying 

degrees 

Previous research has indicated the predominant presence of SLAP2 proteins in platelets 

(Sugihara, et al 2010). In order to further investigate the inhibitory activity of SLAP2 

proteins, SLAP2 domain mutants were acquired and investigated using the NFAT/AP-1 

assay. Each SLAP2 variant was mutated in one domain whilst the rest of the SLAP2 structure 

was intact. Function-blocking mutation of each domain investigated the contribution of the 

domain to SLAP2 inhibitory function and implied the potential mechanism of inhibition. 

DT40 cells were transfected with NFAT/AP-1 reporter and β-galactosidase construct, and 

then with either empty vector control, GPVI only, or GPVI and SLAP2 mutants. All 

transfected samples had similar levels of basal signalling. The GPVI signalling response was 

measured following 6-hour collagen stimulation. GPVI-transfected cells exhibited substantial 

increase in NFAT/AP-1 activation upon collagen stimulation. In contrast, empty-vector 

controls did not increase collagen-stimulated signalling. The SLAP2 wild-type demonstrated 

maximal inhibition (57-fold) of collagen-stimulated GPVI signalling whilst the SLAP2 

mutants presented intermediate levels of inhibition. The inhibitory activity of the c-terminal 

truncated mutant, SLAP2 ΔC, was impaired most demonstrating 2-fold inhibition of 

collagen-stimulated GPVI signalling. Signal inhibition was reduced by mutation of the SH2 

domain mutant, exhibiting 7-fold inhibition. Mutation of myristoylation domain (SLAP2 

G2A) reduced inhibitory activity and only inhibited collagen-stimulation GPVI signalling 9-

fold. Mutation of the SH3 domain did not vastly disrupt inhibitory activity as the 35-fold 

inhibition was comparable to the SLAP2 wild-type. Taken together, these results indicate a 

greater role of the c-terminal in the SLAP2-mediated GPVI inhibition followed by the SH2 

domain, and the myristoylation sequence. The results indicate the SH3 domain has a minimal 

contribution to inhibition activity.  
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Figure 3.4.1 SLAP2 mutants inhibit collagen-induced GPVI/FcR-γ signalling to varying 

degrees. Representative β-gal normalised arithmetic mean ±SEM of 3 data sets analysed with 

1-tail, unpaired Student’s t-test (P<0.05). Data divided by collagen-stimulated SLAP WT 

value to obtain logarithmic data thus collagen-stimulated SLAP WT has no error bar. DT40 

cells were transfected with NFAT/AP-1reporter, β-galactosidase reporter and 0.25µg 

GPVI/FcR-γ and 5µg SLAP2 variants. Collagen-stimulated GPVI/FcR-γ signalling was 

significantly inhibited by the SLAP2 WT (P=0.0093), SLAP2 G2A (P=0.0112), SLAP2 SH3 

(P=0.0094), SLAP2 SH2 (P=0.0123) and SLAP ΔC (P=0.0415). 

 * ≤0.05  

**≤0.01 
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3.4.2 SLAP2 mutants do not affect GPVI/FcR-γ signalling induced by positive control 

agonists PMA and ionomycin  

GPVI/FcR-γ signalling was measured in response to positive control agonist for calcium 

mobilisation and MAPK activation. All transfected samples responded to stimulation with 

PMA and ionomycin. There was some non-significant variation between samples but on the 

whole the relative levels of NFAT/AP-1 activation were similar. These results indicated the 

co-expression of SLAP2 mutants did not disrupt cell-wide signalling responses. Instead the 

inhibitory activity of SLAP2 is specific to collagen-stimulated GPVI/FcR-γ signalling.  

 

Figure 3.4.2 SLAP2 mutants do not affect PMA- and ionomycin-stimulated GPVI 

signalling. Representative arithmetic mean±SEM of 3 data sets normalised for β-gal values. 

DT40 cells were transfected with NFAT/AP-1 reporter, β-galactosidase construct, and vector 

control or 0.25µg GPVI/FcR-γ and 5µg SLAP2 mutants. The nonstimulated response was 

considerably small in comparison the PMA- and ionomycin- stimulated NFAT/AP-1 

activation. PMA- and ionomycin-stimulation increased NFAT/AP-1 activation in all 

transfected samples.  
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3.4.3 Co-expression of SLAP2 mutants does not alter surface GPVI expression levels  

The GPVI levels were quantified by flow cytometry to determine whether the inhibition of 

GPVI/FcR-γ was due to decreased receptor expression. The results demonstrated cells co-

transfected with the SLAP2 mutants expressed GPVI to similar levels as cell transfected with 

GPVI only (Figure 3.4.3). The results indicate SLAP2 mutants inhibit GPVI signalling 

independent of GPVI expression levels.  

 

 

Figure 3.4.3 GPVI expression in not altered by co-expression of SLAP2 mutants. 

Representative arithmetic mean ±SEM of 3 data sets corrected for auto-fluorescence. DT40 

cells were transfected with NFAT/AP-1 reporter, β-galactosidase construct, and vector 

control or 0.25µg GPVI/FcR-γ and 5µg SLAP2 mutants. Flow cytometric analysis of GPVI 

expression levels found GPVI expression levels were unaffected by the co-expression of 

SLAP2 mutants.  
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3.4.4 Western Blot analysis confirmed SLAP2 mutants are expressed to similar levels in 

transfected DT40 cells 

Western blot of myc-tagged SLAP2 mutants confirmed the presence of SLAP proteins in 

transfected DT40s and demonstrated qualitatively similar levels of expression. Whole-cell 

lysate of transfect cells were analysed by SDS-PAGE blotted with anti-myc antibody and 

processed using the Odyssey system (Figure 3.4.4) The SLAP2 wild-type, SH2 domain 

mutant and the c-terminal mutant were expressed to similar levels. The myristoylation mutant 

SLAP2 G2A was expressed at slightly higher levels. Preliminary laboratory observations 

found the SLAP2 SH3 was not detected in western blots processed with the Odyssey system. 

In attempt to optimise detection of SLAP SH3 mutant, western blots were conducted with the 

more sensitive detection method of ECL immunoblotting (Figure 3.4.5). The SLAP2 wild-

type, the SLAP2 G2A mutant and the SLAP2 SH3 mutant were detected. A faint band was 

detected for the SLAP2 ΔC mutant. The SLAP2 SH2 mutant was not detected possibly due to 

sample preparation error. There was some variation in the level of expression of SLAP2 

mutants; however without quantitative analysis it cannot be determined whether the 

expression variation would have a significant effect on inhibition cannot be determined. 

Qualitative observations suggest the variation of expression is not sufficient to account for 

the pattern of inhibition observed with SLAP2 mutants.  
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Figure 3.4.4 Anti-myc western blot of SLAP2 mutants detected using Odyssey system. 

Whole-cell lysates were blotted with anti-myc antibody to detect myc-tagged SLAP proteins. 

SLAP2-transfected HEK293 cells is a positive control. Tetrameric myc-tagged β-

galactosidase (465kDa) was the loading control. SLAP2 WT and mutants were expressed to 

relatively similar levels.  
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Figure 3.4.5 Anti-myc western blot of SLAP2 mutants detected by ECL. Whole-cell 

lysates were blotted with anti-myc antibody to detect myc-tagged SLAP proteins. Tetrameric 

myc-tagged β-galactosidase (465kDa) served as a loading control. The SLAP2 WT, G2A 

mutant and SH3-domain mutant were detected.  
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Chapter 4. Discussion 

4.1 SLAP1 and SLAP2 inhibit GPVI/FcR-γ signalling in a cell line model 

In this study the potential role of Src-Like Adaptor Proteins (SLAP) in regulating GPVI 

signalling was investigated in a cell line model using the NFAT-luciferase reporter assay. 

DT40 cells transfected with GPVI/FcR-y increased NFAT/AP-1 activation, which is a 

measure of GPVI-induced calcium mobilisation and MAPK activation. The GPVI signalling 

response was markedly increased by collagen-stimulation. The collagen-stimulated GPVI 

signalling was reduced in the presence of SLAP1 and SLAP2. The calcium mobilisation and 

MAPK activation capacities of cells were unaltered in the presence or absence of SLAP 

proteins, demonstrating the inhibition of NFAT/AP-1 activation was specific to GPVI 

receptor-proximal signalling, rather than a global inhibition of signalling. Furthermore GPVI 

expression levels were not affected by co-expression of SLAP proteins indicating that this 

reduction of signalling was not due to direct degradation of the receptor at the plasma 

membrane. Therefore a hypothesis is proposed where the inhibition of signalling involves 

disruption of the intrinsic signalling pathway.  

Preliminary evidence of SLAP-mediated regulation of GPVI signalling was provided by the 

Nieswandt, Watson and Tomlinson groups [unpublished data]. Platelets of SLAP1
-/-

/SLAP2
-/-

 

double knockout mice had significantly elevated levels of GPVI mRNA relative to control 

mice and GPVI stimulated-platelet aggregation was hyper-responsive in the absence of SLAP 

proteins (Appendix 1.A). To determine whether hyper-responsive GPVI signalling in SLAP1
-

/-
SLAP2

-/- 
deficient mice was due to elevated GPVI expression levels, a GPVI gene was 

deleted in SLAP-double knockout mice to normalise GPVI expression levels. The signalling 

response of the SLAP1
-/-

/SLAP2
-/-

/GPVI
+/+

 knockout mice was then compared to SLAP1
-/-

/SLAP2
-/-

/GPVI
+/-

 mice. As expected, mice homozygous for GPVI had significantly elevated 

expression levels of GPVI and significantly increased signalling response compared to 
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control mice (Appendix 2.A). In GPVI heterozygous mice, despite the normalised GPVI 

expression levels, the signalling remained hyper-responsive relative to control mice 

(Appendix 2.B). These findings correlate with the data presented in this study demonstrating 

SLAP-mediated inhibition does not target GPVI expression levels; instead it is directed at the 

signalling pathway.  

 

The inhibitory activity of SLAP proteins has been established for a number of receptors such 

as PDGF, BCRs, TCRs, GM-CSF and Epo-R (Manes et al. 2000; Dragone et al. 2006; Myers 

et al. 2005; Liontos et al. 2011; Lebigot et al. 2003). These reports suggest SLAP proteins 

mediate downregulation of receptor-specific activities. The in vivo expression of SLAP 

proteins in platelets indicates a regulatory role of SLAP proteins in receptor-specific events in 

platelets responses. Convulxin stimulation, a GPVI-specific agonist, increased the expression 

of SLAP2 and translocation to the plasma membrane in human platelets (Sugihara et al. 

2010). The SLAP2 proteins co-immunoprecipitated with c-Cbl, Syk and LAT upon GPVI 

stimulation and were unaffected by inhibitors of secondary wave mediators and integrins 

(Sugihara et al. 2010). However the crude immunoblotting method of adding exogenous 

GST-SLAP2 to lysed platelets does not accurately reflect putative intracellular interactions 

and concentrates SLAP proteins above physiological range favouring interactions which 

would not occur at endogenous levels of SLAP2.Though Sugihara et al. demonstrated that 

SLAP2 is responsive to GPVI activation, the effect on signalling response could not be 

inferred, thus this study provides a valuable continuation of Sugihara et al. study where the 

signalling response is indirectly measured. Receptor activation  is a requisite of SLAP 

activity and  localisation; previous studies have demonstrated receptor stimulation activates 

Lck-mediated recruitment of SLAP to TCRζ chain (Myers et al. 2005), and induces SLAP 

colocalisation with the IgM chain of BCRs (Dragone et al. 2006). Accordingly, GPVI 

stimulation potentiates the inhibitory activity of SLAP proteins. Additionally SLAP proteins 
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reduced basal GPVI signalling in the absence of stimulation. It was suspected that this was 

due to a confounding error as the basal signal in GPVI-transfected cells was high than 

previous data collected with this assay (Tomlinson et al. 2007). Unaccounted NFAT/AP-1 

activation in the absence of GPVI stimulation misrepresents the relationship between 

nonstimulated and stimulated GPVI signalling. For this reason the assay was optimised in 

attempt to minimise basal signalling.  

 

4.2 Optimisation of the NFAT/AP-1 Assay for analysis of GPVI/FcR-γ signalling 

The data presented in Figure 3.1.1 was not comparable to previously conducted NFAT-

luciferase assays for GPVI signalling in DT40s (Tomlinson et al. 2007).The collagen-

stimulation GPVI signalling (3.5-fold over basal) was grossly lower than previous data which 

reported a 700-fold increase upon collagen stimulation (Tomlinson et al. 2007). Also the 

basal signal was higher in GPVI-transfected cells compared to vector-transfected controls, 

whereas previously the nonstimulated signals in control and GPVI-transfected samples were 

approximately proportional. The high basal GPVI signal alters the ratio between non-

stimulated and collagen-stimulated signalling and therefore misrepresents the capacity of 

collagen to induce GPVI signalling. Furthermore the extraneous basal GPVI signal 

misrepresents the relationship between GPVI and SLAP proteins in the nonstimulated 

samples, and diminishes the level of SLAP-mediated inhibition observed in collagen-

stimulated samples. For this reason an objective in this study was to optimise the assay to 

reduce basal GPVI signalling and enhance collagen-stimulated signalling.  

 

The basal GPVI/FcR-γ has been previously investigated by the uncoupling of the GPVI/FcR-

γ complex into its constituent components and transfection into DT40s (Mori et al. 2008). 

GPVI was not expressed in the absence of FcR-γ. FcR-γ is expressed independent of GPVI 

and constitutively activates NFAT/AP-1 production. Furthermore, FcR-γ -induced 
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NFAT/AP-1 was increased upon collagen stimulation (Mori et al. 2008). Mori et al. observed 

a dose-dependent increase in collagen-stimulated NFAT/AP-1 activation upon increasing 

concentrations of the FcR-γ plasmid. Thus the high basal NFAT/AP-1 activation observed in 

this study corresponds to the relatively high quantity of the GPVI/FcR-γ construct. To 

address this, a series of transfections were conducted with decreasing quantities of the 

GPVI/FcR-γ construct (2, 1, 0.5 and 0.25µg).  Subsequently the GPVI signalling was 

measured under nonstimulated and collagen-stimulated conditions by means of the NFAT-

luciferase reporter assay (Section 3.2). All transfected samples exhibited reduced basal 

signalling due to the decreased FcR-γ plasmid concentration and consequently reduced FcR-

γ-mediated NFAT/AP-1 activation. An inverse dose-dependent relationship of collagen-

induced signalling was observed, such that increasing GPVI/FcR-γ concentration reduced the 

NFAT/AP-1 activation. The assay was repeated with positive control agonists for MAPK 

activation and calcium influx demonstrating that the quantity of GPVI/FcR-γ transfected into 

cells did not substantially affect the cellular receptiveness to calcium mobilisation and MAPK 

activation. GPVI expression levels were reduced corresponding to decreasing quantity of 

GPVI/FcR-γ construct. Taken together these results indicate that decreasing GPVI levels 

increases GPVI signalling upon collagen-stimulation. It is notable at higher concentrations of 

the GPVI/FcR-γ construct the ratio between the non-stimulated and stimulated response is 

reduced, indicating the responsiveness of these receptors to collagen stimulation is reduced.  

 

The inverse relationship between quantity of GPVI construct and collagen-stimulated GPVI 

signalling can be explained in the context of adaptation. To limit the duration of signalling, 

receptors undergo adaptation, a process of ligand-induced internalisation or desensitisation 

(Shankaran et al. 2007). Adaptation facilitates temporal regulation of receptor sensitivity; in 

the presence of sustained stimuli cells enter a refractory state to prevent over-responding and 

continuously activating downstream process which could have detrimental effect on cells. 



47 
 

Collagen exerts a strong and prolonged signal in GPVI-transfected DT40s, inducing a 700-

fold NFAT/AP-1 activation over basal signalling (Tomlinson et al. 2007). The strong 

sustained stimulation of collagen results in desensitisation of the GPVI receptor to limit 

further receptor activation. High concentrations of GPVI plasmid initially overexpress GPVI 

at the plasma membrane and activate negative feedback pathways to internalise or desensitise 

the receptor. This phenomenon is more prevalent at higher concentrations of GPVI plasmid 

as the initial high GPVI expression activates negative feedback and accelerates GPVI 

downregulation. At high GPVI concentrations the combination of collagen-induced 

desensitisation and GPVI-concentration dependent downregulation reduces the collagen-

stimulated response. The lower concentrations of GPVI/FcR-γ plasmid exhibited lower levels 

of FcR-γ-mediated basal signalling. The absence of adaptation at low GPVI/FcR-γ 

concentrations enhances the collagen-stimulated response. The proportional ratio of basal 

signalling to collagen-stimulated signalling was increased. Therefore in effort to optimise this 

assay, the lowest concentration of GPVI/FcR-γ tested (0.25µg) was utilised in further 

experiments.  

 

4.3 SLAP-mediated inhibition at optimised GPVI/FcR-γ concentration 

The investigation into the inhibitory effect of SLAP1 and SLAP2 on GPVI signalling was 

repeated with optimised levels of GPVI/FcR-γ. The limited basal signalling and enhanced 

collagen-stimulated response more accurately represented the effect of collagen-stimulation 

on GPVI signalling and the magnitude of SLAP-mediated inhibition. At optimised GPVI 

concentrations the basal signalling was reduced and diminished variation of the basal signal 

among samples. The GPVI signalling increased following collagen stimulation. The presence 

of SLAP proteins decreased collagen-induced signalling with no effect on the basal GPVI 

signalling. The inhibitory activity of SLAP proteins was greater at optimised GPVI 

concentrations compared to previous concentrations of the GPVI construct. Stimulation with 
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positive control agonists, ionomycin and PMA, demonstrated no variation in global levels of 

calcium mobilisation and MAPK activation. Co-transfection of SLAP proteins did not affect 

GPVI expression levels. Consistent with earlier observations, SLAP family proteins inhibit 

GPVI signalling without altering GPVI surface expression levels. These results indicate 

SLAP-mediated inhibition is independent of GPVI-expression levels; instead inhibition is 

dependent on receptor stimulation and occurs at the signalling level.  

Several studies have attempted to elucidate the mechanism of signalling inhibition by means 

of the NFAT-luciferase assay and in vitro binding studies. In one such study, levels of 

endogenous SLAP1 in a lymphoma cell line were determined, and this quantity was then 

transfected into Jurkat T-cells to demonstrate the sufficiency of physiological levels of 

SLAP1 to potently inhibit TCR signalling (Sosinowski et al. 2000). Exogenously expressed 

SLAP1 proteins inhibit TCR signalling, in a dose-dependent manner, operating on 

membrane-proximal signalling components (Sosinowski et al. 2000). A similar investigation 

of SLAP1 in B-lymphocyte cell line, BJAB, yielded analogous results to those found with the 

TCR in Jurkats; SLAP1 significantly reduced NFAT activation upon anti-IgM stimulation of 

the B-cell receptor (Holland et al. 2001). In both Jurkat T cells and BJAB B cells SLAP2 

proteins, like SLAP1, inhibited NFAT induction in receptor stimulating conditions in a dose 

dependent manner (Holland et al. 2001). Furthermore SLAP2-mediated inhibition was 

overcome by the positive agonists for MAPK activation and calcium influx signifying the 

specificity of SLAP2 proteins to act on receptor-proximal components (Holland et al. 2001). 

Screening for CD69, an endogenous marker of early activation events in BCR and TCR 

signalling, both BJAB and Jurkat cells exhibited strong upregulation of CD69 upon 

stimulation of their representative lymphocyte receptors (Holland et al. 2001).  Co-expression 

of either SLAP1 or SLAP2 inhibited CD69 induction and activation of anti-IgM stimulated 

BCRs and anti-CD3 stimulated TCRs (Holland et al. 2001).  
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The pattern of tyrosine phosphorylation is not affected by SLAP1 proteins, instead the 

downstream calcium mobilisation has been implicated as the mechanism of inhibition 

(Sosinowski et al. 2000). Fluorescent-based calcium indicator Indo-1 tracked the calcium 

level changes in stimulated Jurkat cells indicating an acute suppression of calcium 

mobilisation in SLAP1-expressing cells which is relieved upon addition of the calcium 

ionophore ionomycin (Sosinowski et al. 2000).  Reversible suppression of calcium 

mobilisation was also observed in BJAB and Jurkat cells expressing SLAP2 following BCR 

and TCR stimulation, respectively (Holland et al. 2001).  

 

In vivo models have correlated the inhibitory activity of SLAP proteins to the degradation of 

TCRs and BCRs at the plasma membrane (Myers et al. 2006; Dragone et al. 2006). In these 

cases the recruitment of the ubiquitin-ligase c-Cbl is the modus operandi of inhibition. SLAP-

proteins constitutively associate with c-Cbl and are recruited to receptor-proximal 

components upon receptor stimulation (Dragone et al. 2009). In contrast the expression of 

GPVI receptors in not altered by the co-expression of SLAP proteins. The variation can be 

potentially attributed to the difference substrate specificity of c-Cbl. Targeting the CD3ε 

chain of TCRs and the IgM chain of BCRs, c-Cbl induces the degradation of these 

components (Myers et al. 2006; Dragone et al. 2006). Loss of these critical components 

accompanies downregulation of receptor complexes. As GPVI expression is not affected, it is 

likely c-Cbl does not target expression-critical components but rather SLAP and c-Cbl 

operate downstream of the receptor complex and instead interfere with the signalling 

pathway.  

4.4 SLAP2 mutants inhibit collagen-stimulated GPVI/FcR-γ signalling to varying 

degrees 

In attempt to further elucidate the mechanism of inhibitory activity, SLAP2 domain mutants 

were tested for their ability to reduce GPVI signalling. The mechanistic investigations 
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focused on SLAP2 due to proportionally greater expression of SLAP2 than SLAP1 in the 

platelets (Appendix 3). Also the role of SLAP1 has previously been studied in lymphocytes, 

by comparison much less is known of the role of SLAP2  though it has been linked to 

platelets (Dragone et al. 2009; Sugihara et al. 2010). Function-blocking mutations were 

generated in one domain per SLAP2 mutant and the inhibitory activities of these were 

evaluated using the NFAT-luciferase assay. Individual elimination of each domain of SLAP2 

proteins inferred the relative importance of each domain to inhibitory activity. The inhibitory 

activities of all the mutants decreased compared to wildtype with the SH3 mutant possessing 

closest semblance to the wildtype followed by the myristoylation sequence, the SH2 domain 

and the c-terminal mutant. The c-terminal mutant was most affected by disruption at this site 

indicating its importance in SLAP2 inhibitory function. The expression of GPVI receptor was 

not altered by the co-expression of SLAP2 mutants. The relatively similar levels of SLAP2 

mutants were determined by western blot to verify the pattern of inhibitory activity was not 

due to differences in expression levels. 

 

Primarily these results indicate the capacity of SLAP2 proteins for intermediary levels of 

inhibition; disruption of a single domain did not abolish inhibitory activity inferring more 

than one domain contributes to inhibition. These findings are concurrent with similar studies 

of SLAP2 mutants in lymphocyte cell lines demonstrating mutations in each domain impair 

inhibitory activity to a varying degree. The relative levels of impairment reported in this 

study is SH3>G2A>SH2>ΔC, in descending order of inhibitory activity. These results 

differed from the pattern observed by Pandey et al. describing the SH2 domain as the most 

impaired followed by the G2A myristoylation mutant with the SH3 domain exhibiting 

inhibitory activity greater than the wild-type (Pandey et al. 2002). Loreto et al. described the 

c-terminal mutation is better tolerated than SH2-domain mutation, followed by the G2A 

myristoylation mutant which is least impaired in Jurkat T cells (Loreto et al. 2002). Holland 
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et al. demonstrated the c-terminal mutant and the G2A myristoylation mutant diminished 

SLAP2 activity in lymphocytes to an approximately equal degree and concomitantly 

increased CD69 induction (Holland et al. 2001).  

The C-terminal region is critical for SLAP2 activity as compromise of its integrity vastly 

perturbs inhibitory ability. The results might reflect the greater proportional loss of protein 

mass  of the c-terminal mutant relative to other SLAP2 mutants however the c-terminal 

region of SLAP1 and SLAP2 has been recognised as the site to which c-Cbl associates via its 

n-terminus region (Tang et al. 1999; Holland et al. 2001). Endogenously expressed SLAP2 

constitutively associates with c-Cbl with enhanced interaction upon TCR activation (Loreto 

et al. 2002). Furthermore overexpression of both c-Cbl and SLAP2 enhances inhibition of 

NFAT activation in stimulated Jurkat cells (Loreto et al. 2002). An endogenously expressed 

SLAP-2 isoform, which lacks the c-terminal due to alternative splicing, is unable to associate 

with c-Cbl and does not inhibit TCR-induced NFAT activation (Loreto & McGlade 2003). 

SLAP1 was also observed to constitutively associate with c-Cbl in primary thymocytes and 

subsequently both are localised to endosomes (Myers et al. 2006; Sosinowski et al. 2000).  In 

lymphocytes the inhibitory activity of SLAP proteins is attributed to their ability to associate 

with ubiquitin-ligase c-Cbl. c-Cbl has a dual role in receptor regulation in mediating 

ubiquitinylation-dependent degradation and endocytic-internalisation (Jacob et al. 2008). c-

Cbl mediated ubiquitinylation of the Zap-70, Syk and CD3ε results in elimination of the TCR 

complex from the plasma membrane (Loreto et al. 2002; Myers et al. 2006). Likewise c-Cbl 

associates with proximal components of BCRs resulting in the downregulation of the receptor 

at the plasma membrane dependent on Src-family kinase activity (Dragone et al. 2006). This 

study rejects receptor-degradation mechanism of inhibition as GPVI expression was unaltered 

by the expression of SLAP proteins. However degradation of signalling proteins and 

subsequent elimination from signalling cascades is a potential mechanism of GPVI inhibition. 
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Cbl-dependent reduction of Fyn expression, transcription, substrate phosphorylation has been 

observed in T cells (Andoniou et al. 2000). Similar c-Cbl-mediated observations have been 

made for Lyn, Lck and Syk (Kaabeche et al. 2004; Rao, Miyake, et al. 2002; Katkere et al. 

2012). It is notable that Syk co-eluted with SLAP2 and c-Cbl (Sugihara et al. 2010) and is 

ubiquitinylated upon GPVI stimulation (Dangelmaier et al. 2005).The non-redundant 

requirement of these signalling proteins in GPVI signalling indicates c-cbl mediated 

degradation of these signalling proteins would impose a feasible mechanism of GPVI 

inhibition. Upon GPVI stimulation, c-Cbl is tyrosine phosphorylated at the N-terminal 

(Polgár et al. 1997). Phosphorylation was dependent on Src-kinases and occurred 

downstream of Lyn and Fyn, these kinases contribute directly or indirectly (via FcR-γ 

phosphorylation) to the c-Cbl phosphorylation (Auger et al. 2003; Hunter et al. 1999). In the 

presence of mutated c-Cbl the phosphorylation of the FcR-γ, LAT, Syk and PLCγ2 is 

increased upon GPVI stimulation  and c-Cbl mutant platelets aggregate in response to 

subthreshold concentrations of CRP (Auger et al. 2003). The delayed aggregation response 

indicated the enhanced aggregation magnitude was due to loss of feedback mechanism 

(Auger et al. 2003). Auger et al. provided strong evidence of the negative regulatory role of 

c-Cbl in GPVI signalling, however they found ubiquitin inhibitors had no effect on pattern of 

tyrosine phosphorylation (Auger et al. 2003). In conclusion, this study is consistent with 

previous SLAP studies supporting the involvement of c-Cbl constitutively complexed to c-

terminus of SLAP proteins; however the precise role of c-Cbl remains to be elucidated as the 

GPVI expression data disputes the ubiquitinylation-degradation role of c-Cbl. Further 

investigation with c-Cbl-deficient DT40 cell line would indicate the role of c-Cbl in the 

SLAP-mediated regulation of GPVI. 

 

Several researchers have identified the SH2 domain of SLAP proteins as the binding site for a 

number of signalling proteins. The conserved FXXR motif of the SH2 domain forms the 
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phosphotyrosine binding pocket which binds components of the TCR signalling complex 

such as TCRζ, Syk, ZAP-70, SLP-76, Vav and LAT (Tang et al. 1999; Myers et al. 2005; 

Sosinowski et al. 2000). SLAP2 also interacts with the proximal components of the BCR 

complex such as IgM via the SH2 domain (Dragone et al. 2006). These interactions are 

phosphorylation-dependent and diminished by mutation of the SH2 domain (Tang et al. 

1999; Myers et al. 2005; Sosinowski et al. 2000). The inhibitory activity of SH2-domain 

SLAP1 is diminished and the downregulation of the CD3ε is reduced (Myers et al. 2006). 

Optimum inhibition is dependent on the SH2 domain of SLAP proteins binding GM-CSFRα 

(Liontos et al. 2011). The intact SH2 domain is also required for the characteristic cellular 

distribution and colocalisation with TCR and BCR complexes (Sosinowski et al. 2000; 

Dragone et al. 2006). Disruption of the SLAP2 SH2 domain diminishes binding of ZAP-70 

and SLP-76 coincides with impaired ability to inhibit NFAT activation (Loreto et al. 2002). 

Likewise loss of ZAP-70 and CD3 interactions with overexpressed SLAP2 SH2 mutant 

correlated to decreased inhibition of NFAT induction (Pandey et al. 2002).  Consistent with 

these studies, the mutation of the SH2 domain compromises the ability of SLAP2 to inhibit 

NFAT/AP-1 activation. Mutation of the SH2 domain impaired inhibitory function greater 

than mutation of the myristoylation sequence or SH3 domain, indicating the SH2 domain has 

a significant contribution to SLAP2-mediated inhibition but lesser than the c-terminus. In 

contrast, Pandey et al. reported the SH2 mutant exhibited lower inhibitory activity than the c-

terminal mutant, indicating a greater role of SH2 domain in the inhibition of TCR activation 

(Pandey et al. 2002). The role of SH2 domain in the inhibition of the GPVI signalling is 

proposed to mediate the interaction of GPVI signalling components. Syk and LAT co-purify 

with SLAP2 in convulxin-stimulated platelets dependent of Src- and Syk-kinase activity 

(Sugihara et al. 2010). Therefore it is likely SLAP2 interacts with tyrosine-phosphorylated 

proteins via its SH2 domain and relays these proteins to the adjoined c-Cbl. A similar 
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scenario has been observed in the fibroblasts whereby SLAP1 recruits p85-PI3kinase via SH2 

domain and connects p85-PI3kinase to c-Cbl to mediate c-Cbl-dependent cytoskeletal events 

(Swaminathan et al. 2007).  

 

The reduced inhibitory activity of the myristoylation-mutant (G2A) can be explained in the 

context of the cellular localisation of SLAP proteins. Myristoylation domains facilitate 

interactions with plasma membranes attributed to the lipophilic myristoyl moiety 

(McIlhinney 1998). Previous research has suggested a role of the n-terminal myristoylation 

domain in facilitating the localisation of SLAP proteins to membranes. SLAP1 localises to 

the cytoplasm, plasma membrane and perinuclear regions (Manes et al. 2000), and both 

SLAP1 and SLAP2 have been localised to late endosomes (Sosinowski et al. 2000; Loreto et 

al. 2002). The presence of SLAP proteins in endosomes, typically involved in intracellular 

trafficking, is notable as previous evidence indicates the c-Cbl:SLAP complex mediates the 

endocytic internalisation of BCR (Dragone et al. 2006). The characteristic membrane 

distribution of wildtype SLAP proteins was abrogated when the second residue of the 

myristoylation sequence was mutated from glycine to alanine (G2A). The SLAP1 G2A 

mutant was strongly detected in the nucleus and diffusely present in the cytoplasm (Manes et 

al. 2000). Endogenously expressed SLAP2 variant, which lacks the myristoylation domain 

due to alternative translation initiation, is also mislocalised to the nucleus (Loreto & McGlade 

2003).  Differential localisation of the SLAP2 G2A myristoylation mutant was confirmed by 

detection of G2A mutants in the soluble cytosolic fraction, whereas the wildtype SLAP2 

precipitated in the membrane pellet fraction (Holland et al. 2001; Loreto et al. 2002). The 

cytoplasmic retention of the SLAP2 G2A mutant coincided with reduced capacity to inhibit 

CD69 expression and NFAT activation (Holland et al. 2001; Loreto et al. 2002). Aberrant 

localisation is correlated to reduced SLAP2 activity indicating importance of myristoylation-

mediated translocation. Accordingly the increased NFAT-activation of the G2A mutant 
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relative to the wild-type in this study indicates a potential role of the myristoylation domain 

in SLAP2-induced inhibition of GPVI signalling. Upon GPVI stimulation SLAP2 is 

transiently translocated from the cytosol to the membrane fraction (Sugihara et al. 2010). It is 

likely the myristoylation-targeting of SLAP proteins to membranous and vesicular structures 

transports SLAP and c-Cbl to the vicinity of GPVI signalling components. It has also been 

proposed the localisation of SLAP proteins is due to the synergy between the myristoylation 

site and the SH2 domain, as SH2 mutants have similarly disrupted cellular distribution 

(Sosinowski et al. 2000). Sosinowski et al. suggested the SH2-mediated binding to tyrosine 

phosphorylated proteins facilitates relocalisation to signalling complexes (Sosinowski et al. 

2000). The loss of the myristoylation domain may be compensated by the SH2 domain; 

therefore the mutational-loss of myristoylation domain is better tolerated than disruption of 

the c-terminus or the SH2 domain. 

 

The c-terminal region, the SH2 domain and myristoylation sequences have to some extent 

been assigned roles in SLAP-mediated inhibition. In contrast, the role of SH3 domain has 

remains elusive. This study found the mutation of the SH3 domain had little effect on 

inhibitory activity, such that the wild-type and SH3 mutant had closely equivalent levels of 

NFAT induction. Another research group also found the NFAT-activation was reduced by the 

co-expression of the SH3 mutant, to levels comparable to the wild-type SLAP2, on anti-CD3 

stimulation of Jurkat T cells (Pandey et al. 2002). In contrast, the SLAP1-SH3 mutant was 

relatively impaired in its ability to inhibit TCR-induced NFAT activity (Sosinowski et al. 

2000), highlighting potential differences in the mechanisms of SLAP1 and SLAP2. Thus the 

SH3 domain has a minor contribution to SLAP2-mediated inhibition but is likely to be more 

crucial to the activity of SLAP1. Characterisation of SH3 domain has defined it as ~60 

residue region which recognises proline-rich binding motif (PxxP) on a diverse range of 

proteins facilitating adaptable and low specificity interactions (Mayer 2000). Initially it was 
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suspected that SH3 domain of SLAP2 competes with Fyn and Lyn for the cognate binding 

site on the tail-region of GPVI in order to inhibit GPVI signalling. To this end the NFAT-

luciferase assay was repeated in an excess of Fyn to determine whether overexpression of 

Fyn can reverse the proposed competitive inhibition (Appendix 4). The results indicate the 

overexpression of Fyn did not rescue GPVI signalling in the presence of wild-type SLAP1 

and SLAP2, contradicting the hypothesis of competitive inhibition.  An alternative 

explanation of the SH3-mutant induced inhibition is based on the potential of the SH3 

domain to interact with c-Cbl, via proline-rich sequences within c-Cbl (Sosinowski et al. 

2000). It can be hypothesized that the interaction between c-Cbl and SH3 domains of SLAP 

proteins stabilises the c-Cbl:SLAP complex. However further research would be required to 

determine whether the SH3-mutant retains the ability to interact with c-Cbl. To conclude the 

findings of this project indicate the SH3 domain has a minimal undefined role in the 

inhibitory activity of SLAP2 proteins.  

The present study investigated the effect of SLAP proteins on the signalling response of the 

platelet receptor GPVI in a cell-based model. The findings concur with previous evidence of 

SLAP-induced inhibition of lymphocyte receptors.  However platelet research would be 

required to determine whether SLAP proteins are bona fide inhibitors of GPVI signalling. 

Mutational analysis was employed to elucidate the mechanism of SLAP2-mediated 

inhibition. To the best of our knowledge this the first study where the full complement of 

SLAP domain mutants have been investigated; on the whole the findings are in agreement 

with previous investigations of SLAP mutants. The SLAP2 mutants exhibited impaired 

inhibitory activity indicating all the domains contribute to inhibitory activity to varying 

degrees. The findings of this study can be integrated with previous research to infer a 

mechanistic version of SLAP-mediated inhibition. A model of SLAP inhibition of GPVI 

signalling is proposed (Figure 4.1). Following GPVI stimulation Src-kinase and Syk-kinase 
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phosphorylate of a number of components such as LAT and Syk. Subsequently SLAP 

proteins transiently translocate to the plasma membrane facilitated by the myristoylation 

sequence. At the membrane SLAP proteins are recruited to the phospho-tyrosines of 

signalling proteins. SLAP proteins bind signalling proteins via the SH2 domain. As a result 

the constitutively bound c-Cbl on the SLAP c-terminus is translocated to the membrane 

compartment and juxtaposed to phosphorylated signalling components. c-Cbl is also tyrosine 

phosphorylated in response to GPVI stimulation by activated Src-kinases. The role of the 

SH3 domain remains elusive; however, consistent with other studies the SH3 domain is not 

integral to inhibitory activity. SLAP proteins then enhance the activity of c-Cbl as adaptor 

proteins stabilising protein-protein interactions and concentrating c-Cbl substrates 

(Swaminathan et al. 2007). The role of c-Cbl has not been implicitly defined in the context of 

GPVI regulation; further research would be required to determine whether the SLAP and c-

Cbl complex interferes with signalling or targets signalling components for degradation. 

Removal of receptor complexes is receptor-specific activity of c-Cbl as GPVI expression is 

not altered unlike BCRs and TCRs which are typically degraded in the presence of SLAP and 

c-Cbl. It is likely c-Cbl mediates ubiquitinylation of individual signalling components, as 

reported for Syk (Dangelmaier et al. 2005), and therefore attenuates GPVI signalling. In 

conclusion, SLAP proteins inhibit GPVI signalling and potentially regulate GPVI activation 

to control unwanted platelet activation and thrombosis.  
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Model for SLAP regulation of GPVI
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Figure 4.1 Model for SLAP2 regulation of GPVI. Each domain has a non-competitive and sequential 

role membrane localisation, protein-interaction and c-Cbl binding to mediate GPVI inhibition.  
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APPENDICES 

Appendix 1.  

Preliminary data provided by Bender, Cherpokova, and Nieswandt  

A. SLAP1/SLAP2-deficient mice have elevated platelet GPVI levels. In the GPVI-dependent 

stroke model, SLAP1-/- SLAP2-/- mice have larger necrotic areas than wild-type mice 

(Markus Bender) 

 

* ≤0.05  

**≤0.01 

***≤0.001 
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Appendix 2 

Prelinimary data provided by Nieswandt, Watson and Tomlinson Groups.  

A. SLAP1/SLAP2 deficient platelets are hyper-response to subthreshold levels of GPVI 

agonists.  

 

B. GPVI signalling is hyper-responsive despite normalisation of GPVI expression levels. The 

increased GPVI levels are not responsible for the enhanced signalling in the SLAP1/SLAP2 

double knockouts.  
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Appendix 3. 

Mouse megakaryocytes and platelets express both SLAP1 and SLAP2 however the 

expression of SLAP2 is greater than that of SLAP1. Data provided by MG Tomlinson. 
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Appendix 4.  

SLAP2-mediated inhibition of collagen-stimulated GPVI signalling is not affected by the 

overexpression of the Src-kinase Fyn.  

 
All transfected samples were responsive to positive agonists, PMA and ionomycin, indicating 

samples have similar levels of basal and stimulated calcium mobilisation and MAPK 

activation. SLAP2 inhibition does not affect the global response to calcium mobilisation and 

MAPK activation. The co-expression of Fyn has no effect on calcium mobilisation and 

MAPK activation.  
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