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Abstract 

 

MLL2 is a H3K4 specific HMT which vital for normal embryonic 

development in the mouse. Little is known on how MLL2 is recruited to its 

target genes and activates transcription. To gain insight into the molecular 

mechanism underlying MLL2 function, we focused on a known MLL2 

target gene: Magoh2. This gene is controlled by a CpG island promoter 

and is ubiquitously expressed.  

Our results demonstrate that in the absence of MLL2, the Magoh2 

promoter is methylated and Magoh2 is transcriptionally silenced. The 

Magoh2 promoter adopts the active conformation only in the presence of 

MLL2. Pol II is lost from the Magoh2 promoter in the absence of MLL2, 

resulting in Magoh2 down-regulation. We observed loss of H3K4me3 and 

H3K9ac and relocation of a nucleosome over the promoter, coinciding with 

the onset of DNA methylation. Use of DRB and α-amanitin demonstrated 

that neither transcription nor the presence of Pol II are required for the 

maintenance of H3K4me3. Magoh2 silencing can be overcome by re-

introducing full-length MLL2.  

We investigated the role of MLL2 in haemopoiesis and demonstrated 

that MLL2 is vital for macrophage differentiation from embryoid bodies. 

MLL2 may be required for correct upregulation of Flk1 and generation of 

haemangioblast cells. When Mll2 was deleted in haemangioblasts, the 

haemopoietic transcriptional program was perturbed suggesting that MLL2 

may also play a role at this later developmental stage. 
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1. INTRODUCTION 

 

1.1. The cell 

 

The cell is the smallest living entity and has been referred to as “the 

building block of life”. Although the details of the evolutionary origin of the 

first cell are not entirely clear, it is obvious that all cells originate from pre-

existing cells, through the process of mitosis (or meiosis for germ cells). 

The eukaryotic cell is surrounded by a two-layered lipid and protein 

membrane, the plasma membrane (Singer and Nicolson, 1972). Inside the 

plasma membrane lies the cytoplasm where all the cellular organelles are 

located (Figure 1.1).  

The organelles are membranous structures with highly specific roles 

including energy conversion, metabolism and protein synthesis (Bainton, 

1981; de Duve, 1996; McBride et al., 2006; Palade, 1975). The nucleus is 

the organelle where the blueprints for a cell are stored in the form of 

deoxy-ribonucleic acid (DNA) (Avery et al., 1979). It is surrounded by two 

double lipid membranes – the nuclear envelope – and is connected to the 

cytoplasm via the nuclear pores (reviewed in Lamond and Earnshaw, 

1998). 

A cell’s DNA contains functional units that encode for protein or 

ribonucleic acid (RNA) with specific functions, scattered between large 

pieces of DNA that do not (reviewed in Gall, 1981; Gregory, 2001). Such a 

coding unit is what is referred to as a gene. The DNA in the nucleus is 
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wrapped around small basic proteins – the histones (reviewed in Kornberg 

and Lorch, 1999) – forming a structure termed chromatin by W. Flemming 

in 1882.  

The cell, although separated from its environment by the plasma 

membrane, is not isolated from it. It can dynamically respond to 

environmental signals received from the extracellular environment by 

receptor proteins which will initiate a signalling cascade that will eventually 

reach the nucleus and change the gene expression program of the cell in 

response to the environmental cue received (reviewed in Brivanlou and 

Darnell, 2002).  

 

 

 

 

 

Figure 1.1. Schematic representation of an animal cell. Figure created by Tilottama Chatterjee, 
publically available on NotesMaster (http://www.notesmaster.com/notes/syllabus/viewer/3099-
plant-animal-and-microbe-cells). 
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1.2. Chromatin and transcription 

 

1.2.1. Chromatin structure 

 

Chromatin is the physiological substrate of all DNA templated 

processes, such as DNA replication, DNA repair and of course 

transcription of messenger RNA (mRNA). Chromatin is mainly composed 

of DNA and a collection of proteins (Kornberg, 1974). Two copies of each 

of the four core histone proteins –  H2A, H2B, H3 and H4 – form an 

octamer around which approximately 147bp of DNA are wound (Luger et 

al., 1997) (Figure 1.2).  The histones are small, highly basic proteins and 

contain a globular “histone fold” domain and an N-terminal unstructured 

tail. The first role that histones have to play is compacting the 

approximately 1.5 meters of DNA (in humans) in the confined space 

(1-10μm in diameter) of the nucleus. A first degree of compaction is 

achieved by winding DNA approximately 1.7 times around the histone 

octamer, forming a nucleosome (a schematic representation of the 

different degrees of chromatin compaction is presented in Figure 1.3). A 

series of nucleosomes is the 10nm wide “beads-on-a-string” structure 

observed by electron microscopy in conditions of low ionic strength (Olins 

and Olins, 1974), which was thought to be the native form of chromatin in 

the nucleus. Later studies have demonstrated the existence of a higher 

order chromatin structure, the 30nm fibre, observed at ionic strengths 

closer to physiological levels and whose formation requires the presence 
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of the linker histone H1 (reviewed in Felsenfeld and McGhee, 1986). The 

existence and the exact structure of the 30nm fibre and the position of H1 

in this structure in vivo is still a matter of intense debate (Eltsov et al., 

2008; Grigoryev and Woodcock, 2012; Robinson and Rhodes, 2006). 

During mitosis, just before metaphase, all nuclear DNA is highly 

compacted to form the “metaphasic chromosomes” which are eventually 

split between the two daughter cells at the end of mitosis. 

 

 

 Figure 2.2. Crystal structure of the nucleosome (Figure from Luger et 
al., 1997). Top panel: Top (left) and side (right) view of the nucleosome 
particle. DNA backbones in brown and turquoise, H3: blue, H4: green, 
H2A: yellow, H2B: red. Bottom panel: The N-terminal tails protrude 
outside the core nucleosome particle 
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Figure 1.3. Chromatin structure: from the DNA double helix to metaphasic chromosomes. 
A: The DNA double helix, two complementary strands forming a helical structure with a 10bp 
periodicity. B: DNA is wrapped 1.7 times around a histone octamer, made up of two copies of 
each of the core histones. C: Addition of histone H1 (speculative position of H1 illustrated in 
blue) facilitates the formation of the 30nm fibre. D: the 30nm solenoid fibre. E: Chromatin is 
further compacted in the nucleus. Centromeric and telomeric regions reside in heterochromatin, 
a highly compacted structure, while active regions reside mainly in the less compacted 
euchromatin. F: A highly compacted metaphasic chromosome, two copies of the same DNA 
molecule joined at the centromere.  
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1.2.2. Basal transcription 

 

The process of transcription of DNA into RNA is a multi-step enzymatic 

reaction and involves proteins binding to DNA, unwinding of the double 

helix and polymerization of ribonucleotides to form a RNA molecule of 

complementary sequence to the DNA strand from which it originated. RNA 

transcription is mediated by protein complexes comprised of general 

transcription factors and a catalytic RNA polymerase subunit. 

 

 

1.2.2.1. RNA polymerases 

 

There are three main RNA polymerases in all eukaryotes and all of 

them function in large complexes with general transcription factors. The 

three eukaryotic RNA polymerases share extensive structural similarity 

between them and also with the prokaryotic RNA polymerase (Allison et 

al., 1985). RNA polymerase I is located in the nucleolus (Roeder and 

Rutter, 1969) and is responsible for transcribing the 18S and 28S 

ribosomal RNAs (rRNAs) (Zylber and Penman, 1971). RNA polymerase II 

transcribes the regulatory miRNA species (Lee et al., 2004), protein 

coding genes into mRNAs (Weil et al., 1979) and possibly other regulatory 

non-coding RNA (ncRNA) species. RNA polymerase III is located in the 

nucleoplasm (Roeder and Rutter, 1969) and generates the transfer RNAs 

(tRNAs) and small nuclear RNAs (snRNAs) (Hall et al., 1982).  
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1.2.2.2. The RNA polymerase II core promoter 

 

In order for mRNA transcription to take place, the transcriptional 

machinery first needs to assemble on a specific DNA sequence. This 

“docking site” is provided by the core promoter, which assembles all the 

necessary factors for transcription to start. Core promoters are absolutely 

required for the initiation of mRNA transcription and they are located in the 

immediate vicinity of the transcription start site (TSS). 

The RNA polymerase II core promoter contains a set of conserved DNA 

sequence elements, including the initiator sequence (Inr), the TATA box, 

the upstream and downstream TFIIB recognition elements (BREu/d), the 

downstream promoter element (DPE) and the motif ten element (MTE) (for 

a comprehensive review on all core promoter elements see Juven-

Gershon et al., 2008; Juven-Gershon and Kadonaga, 2010; Smale and 

Kadonaga, 2003). A schematic of a core promoter is shown in Figure 1.4. 

The Inr spans from -3bp to +5bp, thus encompassing the TSS (Smale and 

Baltimore, 1989) and the TATA Box is located approximately 25bp 

upstream of the transcription start site (TSS).  The TFIID complex can bind 

on both of these elements via the TBP (TATA-box) and TAF1 and TAF2 

(Inr) subunits (Benoist and Chambon, 1981; Dierks et al., 1983; Juven-

Gershon and Kadonaga, 2010; Mathis and Chambon, 1981). The BREu 

and BREd have been found immediately up/downstream of the TATA-box, 

on a subset of TATA-box containing promoters and can either increase or 

decrease transcription rates (Deng and Roberts, 2005; Evans et al., 2001; 



8 
 

Lagrange et al., 1998). The DPE is located around +28bp to +32bp mostly 

in promoters lacking a TATA box (Burke and Kadonaga, 1996). On those 

promoters TFIID binds to the Inr and DPE sequences. Spacing between 

those two sequence elements appears to be critical for the function of 

promoters containing such motifs (Kutach and Kadonaga, 2000). The MTE 

was found immediately upstream of the DPE and is thought to be a 

binding site for TFIID (Lim et al., 2004; Ohler et al., 2002). The MTE 

functions together with the Inr but can be independent of the TATA-box 

and the DPE (Lim et al., 2004). These elements provide extensive 

diversity in core promoter composition and it has been shown that certain 

activators preferentially interact with core promoters harbouring different 

combinations of these elements (reviewed in Juven-Gershon and 

Kadonaga, 2010). The diversification of core promoters is further 

enhanced by the presence of TBP-related factors and atypical TAFs that 

assemble into different complexes and preferentially target specific core 

promoters in different cell types / developmental stages (reviewed in 

Goodrich and Tjian, 2010; Juven-Gershon and Kadonaga, 2010). 

Recent genome-wide studies (reviewed in Lenhard et al., 2012) have 

changed our view of core promoters from TATA-box versus TATA-less 

promoters. Promoters are now classified in three different groups, Type I, 

II and III promoters. Type I promoters closely resemble the core promoters 

originally described in Drosophila. These promoters usually contain a 

TATA-box that defines a unique TSS and normally do not overlap a CpG 

island (Akalin et al., 2009; Carninci et al., 2006; Lenhard et al., 2012; Rach 
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et al., 2011; Yamashita et al., 2005). Type I promoters are generally 

associated with highly inducible/regulated genes (Lenhard et al., 2012). 

Type II promoters are generally found on housekeeping genes and are 

TATA-depleted. These promoters have numerous transcription start sites 

over a broader region and overlap a CpG island. They often contain 

sequence elements that are not positionally fixed, (Motif 1 or 6, DRE) and 

are usually found associated with constitutively expressed genes (Akalin 

et al., 2009; Carninci et al., 2006; Lenhard et al., 2012; Rach et al., 2011; 

Yamashita et al., 2005). Type III promoters are also TATA-depleted and 

generally overlap multiple large CpG islands that often extend well into the 

coding region. Initiation from these promoters happens from a narrower 

region than on Type II, however they do not have the very well defined 

TSS of Type I promoters. Type III promoters are generally associated with 

developmentally regulated genes and are often targets for Polycomb-

mediated repression (Engstrom et al., 2007; Lenhard et al., 2012). 

 

 

 

 

 

 

 

Figure 1.4. Structure of a RNA polymerase II core promoter (Figure adapted from 
Juven-Gershon and Kadonaga, 2010). BREu: upstream TFIIB recognition element, 
TATA: TATA-box, BREd: downstream TFIIB recognition element, Arrow: transcription 
start site, Inr: initiator sequence, MTE: motif ten element, DPE: downstream promoter 
element.  
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1.2.3. Sequence specific transcription factors 

 

Promoters also contain binding sites for other – non-general – 

sequence specific transcription factors (TFs) (Bram and Kornberg, 1985; 

Cordingley and Hager, 1988; Lee et al., 1987a). TFs were first discovered 

in the 1980s (Bohmann et al., 1987; Dynan and Tjian, 1983; Lee et al., 

1987a) and have been implicated in a variety of transcriptional processes 

and cellular responses (Baxter et al., 1972; Berleth et al., 1988; Driever 

and Nusslein-Volhard, 1988; Hager and Palmiter, 1981; Nakabeppu et al., 

1988). These TFs commonly contain a DNA binding domain and a trans-

activation domain (Ptashne and Gann, 1997; Triezenberg, 1995) (Figure 

1.5), which can recruit histone modifying activities, chromatin remodelers 

or the basal transcription machinery (reviewed in Lee and Young, 2000). 

TFs often work in collaboration to establish the gene expression programs 

that shape cellular identity (among others Krysinska et al., 2007; 

Nottingham et al., 2007; Rodriguez et al., 2005). 
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1.2.4. Enhancer and insulator elements 

 

Promoters are not the only cis-regulatory elements found in eukaryotic 

genomes (Bergman et al., 1984; Thanos et al., 1988). Enhancers also play 

an important role in regulation of gene expression (Moreau et al., 1981; 

Wasylyk and Chambon, 1983). These are DNA sequences which can 

increase the transcriptional activity of a target promoter. They bind 

activating transcription factors (TFs) (Brady and Khoury, 1985; Thanos et 

al., 1988) and can act as signal integration hubs (Lee et al., 1987a; Lee et 

Figure 1.5. Transcription factors bind DNA in the context of chromatin (Figure from 
Bonifer and Bowen, 2010). They exert their function through interaction with a variety of 
other protein factors. The nucleosome on the right is illustrated with its N-terminal histone 
tails, which are targets for extensive post-translational modification. 
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al., 1987b). Although enhancers can be located megabases away from the 

TSS on the one-dimensional DNA sequence, they are thought to be in 

very close proximity in the three-dimensional space of the nucleus when 

they are active (Heuchel et al., 1989; Mueller-Storm et al., 1989; Su et al., 

1991). Physical interactions between an enhancer and a target promoter 

are established by the cooperative action of TFs that bind the enhancer 

and promoter (Figure 1.6A) (Su et al., 1991). In some cases these 

interacting TFs and other protein complexes form a tight complex that 

constitutes the so-called enhanceosome (Thanos and Maniatis, 1995). 

Enhancers act by significantly enhancing the rate of transcription (Moreau 

et al., 1981; Wasylyk and Chambon, 1983). This is achieved by increased 

recruitment of RNA polymerase II to the promoter (Treisman and Maniatis, 

1985; Weber and Schaffner, 1985) or stabilisation of the RNA polymerase 

II complex (Walters et al., 1995; Walters et al., 1996). Enhancers can 

provide tissue specificity in gene expression (Edlund et al., 1985; Ephrussi 

et al., 1985; Gillies et al., 1983), by recruiting tissue-specific TFs (Staudt et 

al., 1986). In both cases, enhancers may interact with the mediator 

complex that can recruit the basal transcription machinery (reviewed in 

Malik and Roeder, 2010) and / or histone modifying complexes that set up 

a chromatin environment that is permissive for transcription (Merika et al., 

1998; Vernimmen et al., 2011).  
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Since enhancers can affect transcription over long distances, it is 

imperative that their actions are targeted to the correct promoter. This is 

directed by another type of cis-regulatory elements, insulators. These are 

DNA sequences that are recognised and bound by specific insulator 

proteins –  mainly CTCF – and can mediate DNA loop formation to 

promote or prevent enhancer-promoter interactions (Bell et al., 1999) 

(Figure 1.6B). Insulators are also involved in preserving heterochromatin 

boundaries (Saitoh et al., 2000) (Figure 1.6C). 

 

 

 

 

Figure 1.6. Co-operative function of cis regulatory elements (Figure from Krivega and 
Dean, 2012) A: Enhancers are brought in close proximity to their target promoters through 
the action of sequence specific TFs. B: Insulators function by blocking enhancer-promoter 
interactions, possibly by generating loops, thereby targeting an enhancer to a specific 
promoter. C: Insulator elements also function by presenting a “road-block” to the expansion 
of heterochromatin domains 
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1.2.5. Chromatin remodelling 

 

The higher order chromatin structures described previously are by no 

means static. Chromatin associated proteins interact only transiently with 

the chromatin fibre and are rapidly replaced (Meshorer et al., 2006; Phair 

et al., 2004a; Phair et al., 2004b). When a cell receives differentiation, 

stress or other signals it will need to change its expression profile. The 

local chromatin environment at promoters that need to be activated or 

silenced needs to be altered accordingly.  

If a nucleosome is situated over the transcription start site, the basal 

transcription machinery cannot assemble on the promoter (Workman and 

Roeder, 1987). A first step towards gene activation would then be 

displacement of that nucleosome (Fletcher et al., 2002). This is achieved 

by ATP-dependent nucleosome remodelling complexes that are directly or 

indirectly recruited to target promoters by sequence specific transcription 

factors (Belikov et al., 2004; Fryer and Archer, 1998; Truss et al., 1995; 

Tsukiyama et al., 1994; Yie et al., 1999). These remodelers utilize the 

energy provided by the hydrolysis of ATP to slide nucleosomes to different 

positions, displace H2A/H2B dimers leaving the core H3/H4 tetramer 

intact, evict a whole nucleosome or mediate exchange of the core histones 

for histone variants (reviewed in Kouzarides, 2007; Segal and Widom, 

2009; Talbert and Henikoff, 2010; Workman and Kingston, 1998). 
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 The activating action of ATP-dependent remodelers is based on the 

fact that they can either generate a nucleosome free region over a gene’s 

promoter or loosen the histone-DNA contacts sufficiently to allow binding 

of other effector proteins and the basal transcription machinery (Agalioti et 

al., 2000; Almer et al., 1986; Archer et al., 1991). Regardless of whether 

the nucleosome is displaced or disrupted, the presence of the remodelling 

complex and binding of transcription factors increases DNA accessibility. 

This can be detected experimentally as increased sensitivity to 

endonucleases such as DNaseI (McGhee et al., 1981; Weiss et al., 1986).  

The ATP-dependent remodelers are categorised in four families: 

SWI/SNF (switching defective / sucrose non-fermenting), ISWI (imitation 

SWI), NuRD (nucleosome remodelling and deacetylation) and INO80 

(inositol requiring 80) (reviewed in Cairns, 2005, 2007; Clapier and Cairns, 

2009). These ATP-dependent remodelers are contained within larger 

multi-subunit complexes that have distinct roles in gene regulation.  

SWI/SNF complexes act mostly in gene activation (reviewed in Martens 

and Winston, 2003) by generating irregular nucleosomal arrays that leave 

binding sites for transcription factors exposed and available for binding.  

ISWI complexes generally generate regularly spaced nucleosomal 

arrays that result in gene repression (reviewed in Corona and Tamkun, 

2004), although there have been examples of ISWI mediated activation 

(reviewed in Badenhorst et al., 2002; Morillon et al., 2003). NuRD 

complexes are generally repressive but can act to activate transcription of 

rRNA species (reviewed in Eberharter and Becker, 2004).  
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INO80 also has both repressive and activating functions. It has also 

been implicated in DNA repair via interaction with the histone H2A variant, 

H2A.X and in distribution of another histone H2A variant, H2A.Z at active 

promoters (Jonsson et al., 2004; Kobor et al., 2004; Mizuguchi et al., 

2004; Morrison et al., 2004; van Attikum et al., 2004). Notably, 

nucleosomes adjacent to active promoters also contain a histone H3 

variant, H3.3 (Chow et al., 2005; Mito et al., 2005; Schwartz and Ahmad, 

2005). The combination of H3.3 and H2A.Z has been reported to form very 

unstable nucleosomes and exclude histone H1 (Braunschweig et al., 

2009; Jin and Felsenfeld, 2007; Jin et al., 2009), thus contributing to DNA 

accessibility and transcription (reviewed in Henikoff, 2009).  

 

 

1.2.6. Histone post-translational modifications 

 

The histone proteins – the unstructured N-terminal tails in particular – 

are targets for extensive post-translational modification (PTM) (Allfrey et 

al., 1964; Bannister and Kouzarides, 2011). These PTMs have been 

proposed to have regulatory roles in most DNA related processes and 

most notably transcription, in which context they have been studied the 

most (some of the known histone PTMs are illustrated in Figure 1.7).  

The histone tails do not affect the structure of individual nucleosome 

core particles, but they may impact on the overall chromatin environment 

and structure by recruiting other protein co-factors, mediating inter-
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nucleosomal contacts and altering histone-DNA binding affinity (reviewed 

in Cockerill, 2011; Peterson and Laniel, 2004).  

The presence of different modifications at different target sites gave rise 

to speculation on the existence of a “histone code” (Jenuwein and Allis, 

2001; Strahl and Allis, 2000). The histone code hypothesis has been a 

matter of intense debate within the scientific community but it is still 

unclear to which extent histone PTMs may have an instructive role in gene 

transcription. The main reason for this is that the few studies that hint to 

such mechanisms are mostly correlative and do not provide direct 

evidence of causality (reviewed in Henikoff and Shilatifard, 2011; Turner, 

2012). Moreover, extensive redundancy within different histone modifying 

enzyme families complicates things even further and makes genetic-

manipulation approaches difficult to interpret. Though undoubtedly histone 

PTM play some role in transcriptional regulation in mammals – as 

illustrated by the severity of phenotypes associated with deletions of 

histone modifying enzymes – there is little evidence of direct causality 

(Bungard et al., 2010; Cao and Zhang, 2004; Smith et al., 2011). An 

example showing that histone modifications may be a by-product of other 

processes comes from murine ES cells (reviewed in Turner, 2012). In 

these cells G9a methylates lysine 9 on histone H3 on the promoter of the 

pluripotency gene Oct4 upon differentiation (Feldman et al., 2006), 

followed by epigenetic gene silencing. The mechanism was thought to 

involve recruitment of heterochromatin protein 1 (HP1) via the H3K9 

methyl mark, which in turn would recruit the DNA methyltransferases 
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DNMT3a/b. A more recent study however, has shown that this silencing 

process in independent of G9a catalytic activity (Epsztejn-Litman et al., 

2008). In contrast, the same study shows that although methylation of 

lysine 9 on histone H3 was not required for DNA methylation, it was 

required for HP1 association and chromatin compaction. Further studies in 

yeast have shown that the main role of histone H3 lysine 9 methylation 

may be to recruit HP1 which can then “bridge” bucleosomes together and 

result in chromatin compaction (reviewed in Turner, 2012). These results 

reinforce the notion that histone modifications are part of a cooperative 

process where the interacting partners and their precise roles are only 

incompletely understood. Additionally, the use of the word “code” 

presumes that combinations of histone PTMs would have a biological 

output different to the individual PTMs added together. This however, has 

not been observed to date by any of the numerous (among many others 

Hoskins et al., 2011; Kharchenko et al., 2011; Mikkelsen et al., 2007) 

genome-wide histone PTM mapping studies. A list of different histone 

PTMs, the enzymes that catalyse them and their attributed transcriptional 

function is shown in Table 1.1. 
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1.2.6.1. Histone phosphorylation, ubiquitination, SUMOylation and 

proline-isomerisation 

 

Phosphorylation of histones takes place on serine, threonine and 

tyrosine residues and is a highly dynamic modification. Histone 

phosphorylation is regulated by a balance of kinases and phosphatases. 

Histone phosphorylation has been implicated in chromatin condensation 

during mitosis (Gurley et al., 1974) and signal-dependent activation of 

inducible genes (Clayton et al., 2000; Soloaga et al., 2003). Notably, 

phosphorylation confers a negative charge to the histone molecule which 

could diminish the electrostatic interactions between the nucleosome core 

and the negatively charged DNA backbone.  

Figure 1.7. Schematic of histone post-translational modifications (Bhaumik et al., 
2007). ac: acetylation, me: methylation, ph: phosphorylation, ub1: mono-ubiquitination. 
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Histone ubiquitination, although observed as early as 1982 (Levinger 

and Varshavsky, 1982), has not yet been attributed a clear role in gene 

transcription, with the exception of mono-ubiquitination of histones H2A 

and H2B at lysines 119 and 120 that have been clearly implicated in gene 

repression and activation respectively (Wright et al., 2012).  

The role of SUMOylation (small ubiquitin-like modification) is even more 

unclear than that of ubiquitin. SUMOylation appears to act by preventing 

ubiquitination and acetylation of the same residues (Iniguez-Lluhi, 2006; 

Long et al., 2005; Wotton and Merrill, 2007). 

Proline isomerisation, although not a covalent PTM, can quite 

drastically change the structure of a histone tail and affect transcription by 

inter-converting proline residues between the cis and trans conformation 

(Chen et al., 2006; Nelson et al., 2006).   

 

 

1.2.6.2. Histone acetylation 

 

Acetylation was one of the first observed histone modifications (Allfrey 

et al., 1964). The discovery and characterisation of the first histone 

acetyltransferase (HAT) came many years later (Brownell and Allis, 1995; 

Kleff et al., 1995). The association of histone acetylation with active 

transcription was hypothesised long before the discovery of HATs (Clever 

and Ellgaard, 1970; Gallwitz and Sekeris, 1969; Pogo et al., 1966; Wilhelm 

and McCarty, 1970).  
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A large number of HATs have been characterised since then and they 

can be classified in two categories. Type B HATs are cytoplasmic and 

acetylate individual histones before they are translocated into the nucleus. 

This aids the assembly of the nucleosome core particle, after which the 

marks laid down by type B HATs are replaced by a locus appropriate 

pattern (Parthun, 2007; Scharf et al., 2009).  

Type A HATs reside in the nucleus and belong to one of three protein 

families: MYST, GNAT and CBP/p300. HATs target a plethora of lysine 

residues on all the core histones with rather low substrate specificity 

(reviewed in Bannister and Kouzarides, 2011). 

The effect of lysine acetylation is loss of the lysine’s positive charge. 

Given the number of lysines that can be acetylated in any one nucleosome 

– one on H2A, four on H2B, five on H3 and four on H4 – the net charge 

effect can be quite significant. Early experiments with the HDAC inhibitor 

sodium butyrate demonstrated that histone hyper-acetylation results in 

increased chromatin accessibility (Simpson, 1978; Vidali et al., 1978) due 

to small attenuation of the electrostatic interactions between the 

nucleosome core particle and the DNA backbone (Mathis and Chambon, 

1981) and interference with intra-nucleosomal contacts, causing a general 

de-compaction (Oliva et al., 1990).  

One particular acetylation site however, has greater implications than 

charge neutralisation alone. A more recent study in yeast demonstrated 

that acetylation of lysine 16 on histone H4 along with eviction of histone 

H1 is sufficient to de-compact the 30nm chromatin fibre (Robinson et al., 
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2008). This could provide a very elegant and simple mechanism for local 

chromatin de-compaction to allow, for example, passage of a transcribing 

RNA polymerase. 

Moreover, lysine acetylation is recognised by bromodomains (Owen et 

al., 2000) and can thus serve as a tethering point for proteins that harbour 

such domains. Many of the ATP-dependent remodelling complexes 

mentioned previously contain proteins with such domains (Kasten et al., 

2004; Tamkun et al., 1992), providing a mechanism by which a 

remodelling complex could be targeted to nucleosomes on active regions 

of the genome. 

 

 

1.2.6.3. Histone methylation 

 

Histone methylation was discovered in the same study as histone 

acetylation (Allfrey et al., 1964). Its role however had remained elusive for 

over 20 years. Histones are methylated on lysine and arginine residues. 

Lysines can be mono-, di-, or tri-methylated, while arginines can be mono- 

and symmetrically or asymmetrically di-methylated.  

The functional outcome of lysine methylation depends on the position of 

the modified lysine. The first identified histone lysine methyltransferase 

was suppressor of variegation 3-9 homologue 1 (SUV39H1) (Rea et al., 

2000). This enzyme has specific activity against lysine 9 of histone H3. 

This modification has been implicated in transcriptional silencing, 
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heterochromatin formation and maintenance, DNA methylation (will be 

discussed later) and genome stability (reviewed in Shinkai, 2007). 

Transcriptional repression in this case is mediated by the recruitment of 

the DNA methylation machinery and heterochromatin protein 1 (HP1) to 

the H3K9me mark (Fuks et al., 2003a; Vaute et al., 2002).  

Another repressive lysine methyl-mark is deposited on lysine 27 of 

histone H3 by proteins of the polycomb group (Cao et al., 2002). The 

polycomb repressive complex 2 (PRC2) is recruited to target genes by a 

mechanism that involves non-coding RNA species (Kaneko et al., 2010; 

Kanhere et al., 2010). Its catalytic subunit – enhancer of zeste homologue 

2 (EZH2) – deposits methyl-moieties on lysine 27 of histone H3 that 

subsequently serve to recruit the polycomb repressive complex 1 (PRC1). 

PRC1 mediates mono-ubiquitination of lysine 119 of histone H2A, a mark 

associated with transcriptional repression (Wang et al., 2004a).  

Methylation of histone H3 on lysine 4 has been associated with active 

promoters and enhancers. Lysine 4 tri-methylation is found on active 

promoters, as demonstrated by many genome wide mapping studies of 

this mark. Mono-methylation of the same residue can be observed on 

enhancers together with acetylation of lysine 27 of histone H3 (Heintzman 

et al., 2007). Additionally, lysine 4 tri-methylation has also been found on 

CpG islands that lack promoter activity (Thomson et al., 2010) and has 

been proposed to confer protection from de novo DNA methylation (Ooi et 

al., 2007). 
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Histone methylation does not change the charge of the histone tail and 

is a rather stable modification. In fact it is so stable that it was thought to 

be permanent. The discovery of methyl-arginine deimination provided a 

mechanism by which the methyl-arginine could be removed by conversion 

into citrullin (Cuthbert et al., 2004; Wang et al., 2004b). In the same year 

the first lysine specific demethylase (LSD1) was discovered. LSD1 can 

demethylate mono- and di-methylated lysines (Shi et al., 2004). Following 

these discoveries, a second family of demethylases was discovered 

(Tsukada et al., 2006). These proteins contain a catalytic jumonji domain 

and are able to demethylate all forms of methylated lysines, via a different 

chemical reaction to the one catalysed by LSD1. 

 

 

 

Table 1.1 Histone modifications associated with transcription (adapted from Li et 
al., 2007) 



25 
 

1.2.6.4. Crosstalk between histone PTMs 

 

The plethora of different histone modifications inspired the “histone 

code” hypothesis discussed earlier. Though the existence of a “code” per 

se was never verified, certain elements of that theory hold true (reviewed 

in Turner, 2012). There have been numerous studies reporting cross-talk 

between different histone PTMs in a way that a histone PTM on one 

histone tail may induce or preclude specific modification of different 

residues on the same (in cis) or a different histone (in trans) tail (reviewed 

in Bannister and Kouzarides, 2011). A summary of interdependent histone 

PTMs is shown schematically in Figure 1.8.  

A good example of histone PTM cross-talk in cis was described in 

Saccharomyces cerevisiae. The Snf1 kinase phosphorylates histone H3 

on serine 10. This modification recruits the Gcn5 acetyltransferase which 

in turn acetylates lysine 14 of histone H3. Members of the 14-3-3 protein 

family are then recruited to the doubly modified histone H3 tail and 

mediate transcriptional activation (Walter et al., 2008).  

The connection between serine 10 phosphorylation and lysine 14 

acetylation was also demonstrated in humans (Clayton et al., 2000; 

Mateescu et al., 2004). The study by Mateescu et al. (2004) revealed that 

this double phospho-acetylation mark negates the effects of lysine 9 

methylation by displacing HP1 – the main downstream effector of lysine 9 

methylation. 
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Serine 10 phosphorylation is also involved in trans-histone cross-talk. A 

recent study (Zippo et al., 2009) demonstrated that the kinase PIM1 is 

recruited to the H3 lysine 9 acetylated nucleosomes on the promoter of the 

FOSL1 gene and phosphorylates serine 10 of histone H3. This results in 

acetylation of lysine 14 on H3 and the recruitment of 14-3-3 proteins. 

Those in turn recruit the MOF acetyltransferase that acetylates lysine 16 of 

histone H4. This chromatin environment is favourable for recruitment of 

the bromodomain protein BRD4 which can recruit the positive transcription 

elongation factor b (p-TEFb) to promote transcriptional elongation 

(Hargreaves et al., 2009; Yang et al., 2008; Zippo et al., 2009).  

Another example of PTM cross-talk in trans is that between mono-

ubiquitination of H2B and methylation of lysine 4 and lysine 79 on H3 – 

both being hallmarks of transcriptionally active genes. In S. cerevisiae, the 

protein Cps35 binds to mono-ubiquitinated histone H2B and recruits a 

protein complex that contains the Set1 histone methyltransferase to 

mediate tri-methylation of lysine 4 of histone H3 (Lee et al., 2007). An 

analogous phenomenon was also observed in human cells (Kim et al., 

2009). Methylation of lysine 79 of histone H3 is mediated by the enzyme 

Dot1 which also binds to the H2B mono-ubiquitin (McGinty et al., 2008; 

Weake and Workman, 2008). 
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Figure 1.8. Schematic of histone PTM cross-talk (figure from Bannister and 
Kouzarides, 2011). ac: acetylation, me: methylation, ph: phosphorylation, ub: mono-
ubiquitination, iso: proline isomerisation. Arrow heads indicate a positive effect while 
blocked lines indicate a negative effect. 

 

 

 

 

 

 

 

 

1.2.7. Transcription by RNA polymerase II 

 

1.2.7.1. Transcription initiation 

 

For RNA polymerase II mediated transcription, the catalytic subunit 

needs to be recruited to the core promoter and positioned just upstream of 

the TSS. The RNA polymerase II holoenzyme is bound to the promoter by 

the TFIID protein complex (Figure 1.9). This complex contains the TATA 

binding protein (TBP) and several TBP associated factors (TAFs).  
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After TFIID binding on the promoter, TFIIA is recruited, which in turn 

recruits TFIIB. TFIIB interacts with Rpb1 –  the RNA polymerase II catalytic 

subunit –  via three different domains (Nikolov and Burley, 1997). However 

the presence of TFIIB is not sufficient to recruit Rpb1. It is only after TFIIF 

and TFIIE are recruited to the complex that the main polymerase subunit is 

recruited. At this point the initiation complex is assembled and the RNA 

polymerase starts transcribing but terminates after a short distance. 

After the incorporation of factors TFIIH (ATPase, helicase and kinase 

activity) and TFIIJ the enzyme can start genuine transcription (Goodrich 

and Tjian, 1994). TFIIH is responsible for the unwinding of the DNA double 

helix right in front of the polymerase to allow access to the template strand 

(Douziech et al., 2000) and also phosphorylates the C-terminal domain 

(CTD) heptapeptide (YSPTSPS) repeats of the enzyme at serine 5 (Hirose 

and Ohkuma, 2007).  

This model was established a long time ago (reviewed in Buratowski, 

1994) and has since been challenged on many different levels. As 

mentioned previously, there is a collection of different TBP related factors 

and TAFs that can assemble into atypical TFII complexes that function on 

distinct promoter subsets. This suggests that the so-called general 

transcription factors may not be so general after all and that there is at 

least some transcriptional regulation at the level of the core promoter. 

Additionally, recent work (Apostolou and Thanos, 2008; Eskiw and Fraser, 

2011; Osborne et al., 2004) has demonstrated that promoters are 

recruited to the RNA polymerase II and associated factors rather than the 
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factors to the promoter. These studies propose the existence of 

“transcription factories”, areas in the nucleus where there is increased 

concentration of RNA polymerase II, general transcription factors and 

even tissue specific transcription factors. Upon stimulus, genes that are to 

become activated are then thought to be recruited to these factories where 

all the necessary factors are present and transcription can initiate. 
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Figure 1.9. Recruitment of the RNA polymerase II to a TATA-box promoter and 
assembly of pre-initiation complex. The TATA-box is recognised by the TATA binding 
protein (TBP) that resides within the TFIID complex. TFIID recruits TFIIA, which in turn 
recruits TFIIB. Subsequently, TFIIF and TFIIE are recruited to the complex. The main 
polymerase subunit (Rpb1) is then recruited and anchored onto TFIIB. At this point the 
initiation complex is assembled and the RNA polymerase produces short abortive 
transcripts. After the incorporation of factors TFIIH and TFIIJ, Rpb1 is phosphorylated at 
serine 5 of the CTD and the enzyme can proceed into initiation of transcription. 
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1.2.7.2. Transcription elongation 

 

After the initiation step, the enzyme moves into the gene body. It is 

however unable to give full length, processed transcripts and pauses 

around 20bp to 40bp downstream of the TSS (Marshall and Price, 1992). 

This barrier may be overcome immediately on constitutively expressed 

genes or it may need a specific signal (Saunders et al., 2006), as is the 

case for inducible genes. This elongation block is mediated by the action 

of the negative elongation factor (NELF) and the 5, 6-

dichlorobenzimidazole 1-β-D-ribofuranoside (DRB) sensitivity inducing 

factor (DSIF) (Yamaguchi et al., 1999). In order for the elongation block to 

be relieved, p-TEFb needs to be recruited to the initiating polymerase, 

where its cyclin dependent kinase 9 (Cdk9) subunit phosphorylates DSIF 

and NELF. These phosphorylation events convert DSIF into an activator 

and cause NELF to be evicted from chromatin (Figure 1.10). Finally, 

p-TEFb phosphorylates the RNA polymerase II CTD at serine 2, a 

modification that recruits the 5’-capping and the pre-mRNA processing 

machinery (Bres et al., 2008; Fong and Bentley, 2001). P-TEFb can be 

recruited by DNA bound co-activators, transcription factors or even 

chromatin bound activators (reviewed in Peterlin and Price, 2006). 

Furthermore, the modified CTD provides a tethering point for transcription 

related chromatin modifiers such as the H3K36 methyltransferase Set2 (Li 

et al., 2003; Li et al., 2002). 
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Figure 1.10. RNA polymerase II pause and release into elongation. After the polymerase has 
initiated transcription, it moves into the gene body and pauses at around +20bp to +40bp. This 
pause is mediated by two factors, DSIF and NELF. The transcriptional block is alleviated through 
the signal dependent recruitment of p-TEFb. P-TEFb phosphorylates NELF causing it to be evicted 
from chromatin. DSIF is also phosphorylated by p-TEFb. In the phosphorylated form and in the 
absence of NELF, DSIF acts a transcriptional activator. Finally, p-TEFb phosphorylates Rpb1 on 
the serine 2 residues of the CTD repeats, allowing the enzyme to proceed into productive 
elongation. The individual TFII factors are not depicted in this schematic as they would make the 
figure needlessly complicated. 
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Recruitment of the basal transcription machinery and initiation was until 

recently considered to be the limiting step in transcription. A growing body 

of evidence (reviewed in Carrera and Treisman, 2008; Margaritis and 

Holstege, 2008; Price, 2008) however, suggests that transcription is very 

often regulated at the transition between initiation and elongation, much 

like what was initially observed on the Hsp70 promoter in Drosophila 

melanogaster (Gilmour and Lis, 1986).  

 

 

1.3. DNA methylation 

 

Although the DNA sequence remains mostly unchanged during 

development, there is another level of information attached to the DNA 

molecule in the form of DNA methylation. In eukaryotes, methyl-groups are 

added to cytosine residues and – for animals – predominantly within a 

CpG dinucleotide. DNA methylation is an ancestral mechanism as it is 

found in fungi, plants, insects and mammals, albeit with different genomic 

distributions. This divergence may be indicative of differences in the role 

DNA methylation plays in different organisms.  

The plant Arabidopsis thaliana for example has a mosaic pattern of 

DNA methylation (Deng and Roberts, 2005; Juven-Gershon and 

Kadonaga, 2010; Lagrange et al., 1998). Repeat elements, 

heterochromatin, non-transcribing genes and pseudo-genes are all found 

within DNA-methylated domains. Coding regions of active genes were 
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also found to be methylated while the promoter and terminator regions of 

the same genes were non-methylated.  

In the fungus Neurospora crassa, a mosaic pattern of DNA methylation 

was also observed (Evans et al., 2001; Kutach and Kadonaga, 2000; Lim 

et al., 2004). DNA methylation in this case marked repetitive elements and 

transposons but not the coding regions of transcribed genes.  

In vertebrates the majority of CpG dinucleotides in the genome are 

methylated (Meissner et al., 2008; Singer et al., 1979). This pattern is cell-

type specific and is established early during development (reviewed in 

Borgel et al., 2010; Brandeis et al., 1993)  

 

 

1.3.1. CpG islands  

 

DNA methylation in animals is limited to cytosines most often in the 

context of the CpG dinucleotide. Methylated cytosines undergo a 

spontaneous de-amination reaction, causing the conversion of cytosine 

into a thymidine residue (Bird, 1980; Coulondre et al., 1978). A proportion 

of these mutations escapes the DNA repair mechanisms and can be 

transmitted to the next generation. Over evolutionary time, spontaneous 

de-amination together with the global CpG methylation pattern observed in 

vertebrates has resulted in a genome-wide depletion of CpG 

dinucleotides. In essence the CpG dinucleotide is under-represented in 

vertebrate genomes compared to the expected frequency. 
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 However, there are regions in the genome where CpG dinucleotides 

are found at the expected or higher frequency. These regions are on 

average 1kb long, have GC content of approximately 55% and most often 

co-localise with gene promoters. These regions were termed CpG islands 

and are of functional significance for transcriptional regulation. CpG 

islands can only be observed because they are kept methylation-free, as if 

they were methylated they would be subject to the same CpG mutational 

loss as the rest of the vertebrate genome (Bird, 1980; Coulondre et al., 

1978). Most importantly, CpG islands are conserved in syntenic regions 

between humans and mice – that diverged approximately 75 million years 

ago – suggesting that CpG islands are of functional significance (Deaton 

and Bird, 2011). 

 

 

1.3.2. Role of DNA methylation 

 

One of the first things that became evident when DNA methylation was 

examined in plants and fungi, was that it was targeted to transposable 

elements through the action of specific protein co-factors (Ohler et al., 

2002). This observation gave rise to the “genome defence” hypothesis. 

DNA methylation was suggested to be a cellular mechanism to prevent 

activation of transposable elements, that could potentially be detrimental 

to the genome (Kazazian and Moran, 1998; Kuff and Lueders, 1988; 

Walsh et al., 1998; Yoder et al., 1997). The fact that mammalian genomes 
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are globally methylated, with very few exceptions, did not offer any 

evidence to the contrary (Ehrlich et al., 1982). Moreover, early retroviral 

transfection experiments, demonstrated that de novo methylation of the 

retroviral DNA in embryonic carcinoma cells could inactivate the virus, 

while de-methylation could reactivate the virus (Stewart et al., 1982), 

lending support to the idea that DNA methylation is a defence mechanism 

against retro-transposons. Indeed, cells that lack DNA methyltransferases 

exhibit increased transposon expression (Goodrich and Tjian, 2010).  

DNA methylation has been employed as a mechanism for 

transcriptional regulation in mammals. As many as 60% of all mammalian 

promoters overlap a CpG island (Illingworth et al., 2010; Saxonov et al., 

2006). Other CpG islands that do not seem to overlap a protein-coding 

gene’s promoter (the so-called orphan CpG islands) have been in many 

cases shown to function as promoters for regulatory non-coding RNAs 

(Panning and Jaenisch, 1996; Sleutels et al., 2002) or act as alternative 

promoters for known genes (Core et al., 2008; Shiraki et al., 2003). Early 

reporter-gene based experiments showed that methylation of those CpG 

island promoters results in transcriptional silencing of the reporter gene, 

thus establishing a negative correlation between CpG methylation and 

gene expression (Stein et al., 1982; Vardimon et al., 1982).  

This finding posed the question: how does DNA methylation result in 

transcriptional silencing? The presence of a methyl group in the major 

groove of the DNA double helix could be excluding binding of sequence 

specific activator transcription factors, as has been demonstrated for USF 
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(Watt and Molloy, 1988). This however is not a universal phenomenon, as 

other factors like SP1 can bind DNA and activate transcription regardless 

of the methylation status of the underlying DNA sequence (Harrington et 

al., 1988; Holler et al., 1988).  

 In addition to that, DNA methylation can exert its repressive function 

through the recruitment of repressor proteins. Methyl-binding-domain 

(MBD) protein family members are recruited to the methylated CpG 

dinucleotides and can recruit repressive complexes that modify the local 

chromatin environment, thus making it unfavourable for transcription (Fuks 

et al., 2003b; Jones et al., 1998; Nan et al., 1998; Prokhortchouk et al., 

2001; Yoon et al., 2003a). The common theme emerging from a vast 

number of studies by several research groups is that methylation of a CpG 

island promoter results in transcriptional silencing of the associated gene. 

However, the non-methylated state of the CpG island promoter does not 

necessarily result in active transcription (Bird et al., 1987; Weber et al., 

2007). In fact, numerous genes that are regulated by CpG island 

promoters become transcriptionally silenced during mammalian 

development. This transcriptional silencing is only rarely accompanied by 

DNA methylation (reviewed in Suzuki and Bird, 2008). 

 Contrary to most genes, imprinted genes and genes that reside on the 

inactive X chromosome in mammals gain DNA methylation on their CpG 

island promoters. DNA methylation of those promoters is crucial for the 

maintenance of transcriptional silencing (Chen and Li, 2004; Dodge et al., 

2005; Karpf and Matsui, 2005). 
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DNA methylation is also involved in the establishment of lineage 

appropriate  expression profiles during differentiation (Deaton et al., 2011; 

Farthing et al., 2008; Illingworth et al., 2008; Mohn et al., 2008; Schilling 

and Rehli, 2007; Weber et al., 2007; Yagi et al., 2008). These studies 

clearly demonstrated that DNA methylation patterns change during cell 

differentiation from embryonic stem cells to terminally differentiated cells. 

 This conversion of DNA methylation patterns is dependent on DNA 

methyltransferases (DNMTs) and proteins of the TET family (Ito et al., 

2010; Wu et al., 2011). TET proteins can hydroxylate methyl-cytosine 

residues and convert them to hydroxymethyl-cytosine (Ito et al., 2011; 

Tahiliani et al., 2009). Hydroxymethyl-cytosine can then be removed from 

the genome and replaced by unmodified cytosine. This process is 

dependent on the base excision repair mechanism (He et al., 2011; Maiti 

and Drohat, 2011). Additionally, cytosine hydroxymethylation itself may 

negate the repressive effects of cytosine methylation, as the methyl-

binding proteins of the MBD family are unable to bind 

hydroxymethyl-cytosine and exert their repressive functions (Jin et al., 

2010).  

 

 

 

 

 

 



39 
 

1.3.3. Chromatin signature of a CpG island 

 

CpG islands differ significantly from the surrounding DNA. Firstly, they 

can be separated from the rest of the genome solely by their nucleotide 

composition. These regions present a GC percentage of approximately 

55% as compared to 42% in bulk mouse genome (41% in the human 

genome). Moreover, the CpG dinucleotide is vastly overrepresented in 

comparison to the CpG depleted mammalian genomes.  

These primary sequence characteristics can already influence the 

assembly of those sequences into nucleosomes. It was observed that 

certain dinucleotide combinations (especially ApA and TpT) are found in 

the genome with approximately a 10bp periodicity, the same as the helical 

periodicity of the DNA molecule. This was proposed to aid the bending of 

the DNA double helix around the core nucleosome particle (Trifonov and 

Sussman, 1980). As the physical properties of individual nucleotides differ, 

it is conceivable that different dinucleotide combinations could introduce a 

kink in the DNA double helix, thus aiding the wrapping of DNA around the 

histone core. A/T pairs are underrepresented in CpG islands, thus 

rendering DNA locally rigid and less able to stably assemble into 

nucleosomes. Indeed, more recent studies have demonstrated a general 

nucleosome depletion over CpG islands (Heintzman et al., 2007; Ozsolak 

et al., 2007; Schones et al., 2008).  

 



40 
 

The differences of CpG islands to the rest of the genome are not limited 

to the nucleotide composition and nucleosome depletion. The 

nucleosomes that are present on or adjacent to a CpG island are marked 

by trimethylation of lysine 4 on the N-terminal tail of histone H3 

(H3K4me3). This mark is thought to be a mark of active transcription 

(reviewed in Kouzarides, 2007). The deposition of this mark is thought to 

be mediated by CFP1, a CxxC domain protein (Thomson et al., 2010). The 

CxxC domain of CFP1 can bind to non-methylated CpG dinucleotides 

(Voo et al., 2000) and CFP1 has been shown to interact with several H3K4 

specific methyltransferases (Ansari et al., 2008; Lee and Skalnik, 2002, 

2005). The presence of the H3K4me3 mark does not depend on the 

promoter activity of the CpG island, as artificial CpG islands with no 

promoter activity readily gained the H3K4me3 mark when inserted in 

murine ES cells (Thomson et al., 2010).  

This distinct chromatin structure of CpG island promoters makes them 

favourable for transcription by recruitment of additional histone modifying 

complexes to the H3K4me3 mark and by possibly negating the need for 

nucleosome remodelling. 
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1.4. Embryonic stem cells 

 

1.4.1. Origins of the embryonic stem cell 

 

When a fertilized egg starts dividing it gives rise to cells that are 

completely identical in every aspect (Figure 1.11). After the 8 cell stage, 

during blastocyst formation, the first steps of differentiation are becoming 

evident, as some the cells of the conceptus form the trophectoderm – a 

tissue that will not be part of the fetus – and the inner cell mass (ICM). The 

inner cell mass is the part of the conceptus that will develop into the fetus. 

ICM cells are pluripotent, meaning they are able to generate all tissues 

found in the adult organism but cannot generate extraembryonic tissue. 

Such cells can be isolated from the developing embryo and they can be 

cultured in vitro (Evans and Kaufman, 1981). Once isolated they are called 

embryonic stem cells (ES cells) which – under the appropriate culture 

conditions – exhibit unlimited self-renewal capacity and extensive 

differentiation potential, reflecting their origins. 

 

 

 

 

Figure 1.11. Development of the zygote to the blastocyst (Figure adopted from Zernicka-
Goetz, 2005). 
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1.4.2. Pluripotency and lineage commitment 

 

As the embryo develops further, the individual cells in the ICM activate 

different transcriptional programs depending on cues from neighbouring 

cells. In essence, different genes are transcribed into messenger RNA 

(mRNA), therefore different proteins are synthesised in the different cells. 

These differences in gene expression underlie all differentiation processes 

(Mansergh et al., 2009). All the ICM cells start off as pluripotent, but as 

they progress through development their differentiation potential is 

gradually limited until finally a specific mature cell type is formed (reviewed 

in Reik, 2007). Techniques have been developed that recapitulate the 

differentiation of the ICM cells by culturing ES cells in vitro under specific 

culture conditions that will drive differentiation toward a specific cell type 

(Doetschman et al., 1985; Fehling et al., 2003; Lancrin et al., 2009; 

Pearson et al., 2008; Wobus et al., 1988).  

 

 

1.4.3. Bivalent chromatin domains and the poised polymerase 

 

The chromatin fibre within a cell exists in several different states that 

impact greatly on its ability to be transcribed into mRNA. The presence of 

activating or repressive transcription factors, post-translational 

modifications on the histone molecules and the resulting degree of 

compaction of the chromatin fibre are the key factors that impact on 
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whether a gene can be transcribed or not (reviewed in Bannister and 

Kouzarides, 2011; Lee and Young, 2000).  

Genes that are not required usually reside in compacted chromatin 

domains in mature cell types (Mikkelsen et al., 2007). The situation in 

ICM/ES cells is quite different. In ICM and ES cells the vast majority of the 

genome is accessible for the transcriptional machinery (Zeitlinger et al., 

2007). The pluripotency of these cells is reflected on the molecular level, 

where specification genes of different lineages are not expressed but 

harbour both activating and repressive chromatin modifications (Bernstein 

et al., 2006). Moreover, the transcriptional machinery is in place and 

waiting for the environmental cue to transcribe the genes in question 

(Zeitlinger et al., 2007). These domains have been termed bivalent 

chromatin domains (Bernstein et al., 2006).  

More recent data suggest that bivalent domains are not as prevalent as 

initially thought and part of the observed bivalency may be a result of 

culture conditions (Marks et al., 2012). Depending on the cue received, a 

subset of those genes will resolve in the active state driving the cell in a 

specific differentiation path, while all the inappropriate genes will be 

silenced and eventually compacted (Mikkelsen et al., 2007). 

Put simply, ES cells keep all their options open until they receive an 

environmental signal. At that point they undertake a cell fate decision and 

start progressing through differentiation – via a series of subsequent 

binary decisions – by adjusting their transcriptional program under the 

influence of newly expressed lineage specific transcription factors. 



44 
 

1.4.4. ES cells as a model system for biological processes 

 

ES cells are a good model to study developmental processes in vitro as 

they retain the differentiation potential of the ICM cells. However, the 

implications of the establishment of ES cell lines extend beyond that. ES 

cells can be grown in vast numbers in the lab due to their very high 

proliferation rates and enhanced self-renewal capacity, without the need 

for immortalization. ES cells can, relatively easily, be genetically modified 

to generate knock-out/in ES cells, tag proteins to simplify further analyses 

(Joyner et al., 1989; Smithies et al., 1985; Thomas and Capecchi, 1987; 

Thomas et al., 1992) and then either used as a cell line or micro-injected 

into a developing embryo, to yield chimeric embryos (Bradley et al., 1984). 

These chimeric animals can then be examined for germline transmission 

of the modified genes and used to establish pure genetically modified 

strains. This technology is now quite advanced in the mouse (Hofemeister 

et al., 2011) and has generated a large number of different mouse lines 

harbouring mutations, constitutive or inducible deletions and various 

tagged proteins (reviewed in Skarnes et al., 2011).  
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1.5.  Histone modifications in development 

 

Histone modifications have proven to be a key aspect of transcriptional 

regulation (as exemplified in paragraph 1.2). Although the drivers of 

differentiation are transcription factors, the enzymatic activities depositing 

such modifications also have an impact on differentiation processes. 

Several studies have reported severe developmental defects and/or 

embryonic lethality as a result of mutations or deletion of (among others) 

the histone acetyltransferases MOF (Gupta et al., 2008), p300 (Yao et al., 

1998), GCN5 (Xu et al., 2000; Yamauchi et al., 2000) and the histone 

methyltransferases MLL1 (Yu et al., 1995) and MLL2 (Glaser et al., 2006). 

 

 

1.5.1. The polycomb / trithorax antagonism 

 

In Drosophila melanogaster, mutation of the Polycomb gene gives rise 

to a homeotic phenotype (Lewis, 1978). Polycomb is not related to the 

homeobox genes that control embryo pattering but was shown to be a 

repressor of the bithorax gene cluster that controls formation of the 

posterior part of the fly (Lewis, 1978, 1982; Wedeen et al., 1986). A group 

of genes (Polycomb Group, PcG) was discovered later that when mutated 

presented similar homeotic phenotypes (Jurgens, 1985). 
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In the following decades, members of the PcG were shown to encode 

for proteins that form 3 distinct complexes, the polycomb repressive 

complex 1 (PRC1), polycomb repressive complex 2 (PRC2) and the 

pleiohomeotic repressive complex (PhoRC), with distinct histone modifying 

activities (presented briefly in paragraph 1.2.6.3 and reviewed in 

Margueron and Reinberg, 2011; Schwartz and Pirrotta, 2007). 

Additionally, these complexes have been shown to act on a much wider 

scale than just the homeobox gene clusters (reviewed in Schuettengruber 

et al., 2007; Schwartz and Pirrotta, 2007). 

The gene Trithorax was shown to have a suppressive effect on PcG 

mutant phenotypes (Ingham, 1983). Later, a large number of genes with 

similar activity were characterised and classified as the Trithorax group 

(TrxG) (reviewed in Schuettengruber et al., 2007; Schuettengruber et al., 

2011).  TrxG proteins generally oppose the action of PcG proteins and 

they – like the PcG proteins – are not limited to homeobox gene clusters 

(reviewed in Schuettengruber et al., 2007). TrxG proteins however are not 

as biochemically homogeneous as the PcG. They contribute to many 

different transcriptional activating complexes with roles in histone 

modification and chromatin remodelling (reviewed in Schuettengruber et 

al., 2011). TrxG proteins have been implicated in ES cell self-renewal (Ang 

et al., 2011), cell fate decisions and proliferation (Bagchi et al., 2007), 

programmed cell death (Tyagi and Herr, 2009) and X-chromosome 

inactivation (Pullirsch et al., 2010). 
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1.5.2. The SET1 / MLL family 

 

A subset of the TrxG is the SET1/MLL protein family. These proteins 

have been shown to possess histone methyltransferase activity targeted to 

lysine 4 of histone H3 (Goo et al., 2003; Hughes et al., 2004; Milne et al., 

2002; Wysocka et al., 2003; Yokoyama et al., 2004). These findings 

offered a molecular explanation to the PcG – TrxG antagonism that has 

been observed genetically. This antagonism is manifested by the opposing 

functional outcomes of the repressive methylation of lysine 27 on histone 

H3 (Cao et al., 2002) and ubiquitination of lysine 121 on histone H2A 

(Wang et al., 2004a) mediated by PcG proteins and the activating 

methylation of lysine 4 on the same histone catalysed by members of the 

SET1/MLL family. 

The SET1/MLL family is comprised of at least six different proteins in 

mammals. Those are MLL1 (KMT2A, HRX), MLL2 (KMT2D, Wbp7), MLL3 

(KMT2C, HALR), MLL4 (KMT2B, ALR), SET1A (KMT2E) and SET1B 

(KMT2F). The different SET1/MLL members are illustrated in Figure 1.12. 

The nomenclature for MLL proteins is rather confusing as mouse MLL2 

(Wbp7) was named MLL4 in humans and mouse MLL4 (ALR) was named 

MLL2 in humans. In this study we are exclusively using the mouse 

nomenclature. In silico phylogenetic analysis revealed that these proteins 

exist as orthologous pairs. The MLL1-2 pair is the closest homologue of 

the D. melanogaster Trithorax (FitzGerald and Diaz, 1999; Glaser et al., 

2006).  
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Set1 – the only histone H3 lysine 4 methyltransferase in yeast – is 

recruited to the initiating RNA polymerase II via the Paf1 complex (Ng et 

al., 2003). The human PAF1 complex can also recruit histone H3 lysine 4 

methyltransferase activities to the RNA polymerase (Rozenblatt-Rosen et 

al., 2005), but a later study (Milne et al., 2010) demonstrated that, at least 

in vitro, this interaction is specific to MLL1. 

MLL3 and MLL4 appear to be specifically recruited to target promoters 

by transcription factors and the ASC2 co-activator (Demers et al., 2007; 

Lee et al., 2006; Mo et al., 2006; Patel et al., 2007). Deregulation of MLL3 

or MLL4 has been implicated in solid tumour development (Lee et al., 

2009; Vakoc et al., 2009; Wang et al., 2011). MLL3 has been reported to 

be required for normal adipogenesis (Lee et al., 2008). MLL4 has also 

been implicated in leukaemias (reviewed in Damm et al., 2012), while 

MLL4 mutations have been attributed a direct causal role in Kabuki 

syndrome (Ng et al., 2010). 

Figure 1.12. The SET1/MLL protein family (Figure adapted from Ruthenburg et al., 
2007). The SET1/MLL family of proteins is composed of three orthologous pairs of 
proteins. 
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MLL1 is the most studied MLL protein, mainly due to the fact that it 

causes aggressive leukaemias when fused to a variety of other proteins 

(reviewed in Collins and Rabbitts, 2002; Daser and Rabbitts, 2005; and 

originally described in Djabali et al., 1992; Tkachuk et al., 1992). The 

leukaemogenic potential of the MLL1 fusion proteins is mediated by 

aberrant recruitment of elongation promoting factors (reviewed in Slany, 

2005, 2009; Smith et al., 2011). This elongation complex recruits p-TEFb 

resulting in phosphorylation of the RNA polymerase II CTD and loss of 

pausing control. Further studies demonstrated that the non-methylated 

CpG binding capacity (mediated by the CxxC domain) of MLL1 is 

maintained in the MLL1 fusion proteins and is required for leukaemogenic 

transformation (Ayton et al., 2004). Consistent with the haemopoietic 

deregulation observed in the presence of aberrant forms of MLL1, wild 

type MLL1 is required for normal haemopoiesis. Several studies have 

demonstrated that MLL1 is absolutely required for both primitive and 

definitive haemopoiesis and specifically for the generation of haemopoietic 

stem cells (Ernst et al., 2004; Hess et al., 1997; Jude et al., 2007; 

McMahon et al., 2007; Yagi et al., 1998).  

MLL1 has been implicated in transcriptional memory (Blobel et al., 

2009). This study presents evidence that MLL1 is redistributed to highly 

transcribed genes before mitosis and remains associated with the mitotic 

chromosomes. This redistribution facilitates robust reactivation of the 

genes after cytokinesis.  
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Biochemical purification of the MLL1 complex identified the product of 

the MEN1 gene as a part of the MLL1 complex (Hughes et al., 2004; 

Yokoyama et al., 2004). Yokoyama et al. (2004) demonstrated that MEN1 

deletion phenocopies the effects of Mll1 deletion suggesting a key role of 

the MEN1 gene product in the functional integrity of the MLL1 complex. 

The other subunits of the core MLL1 complex are WDR5, RBBP5 and 

ASH2L and are shared between the MLL1 and MLL2 complexes (Dou et 

al., 2006; Wysocka et al., 2003). These studies demonstrated that loss of 

any of these subunit results in partial or total loss of MLL1 complex 

methyltransferase activity both in vitro and in vivo. Additionally, the MLL1 

complex has been shown to interact with the histone H4 lysine 16 

acetyltransferase MOF (Dou et al., 2005), the histone acetyltransferase 

CBP (Ernst et al., 2001) and members of the SWI/SNF family of chromatin 

remodelers (Rozenblatt-Rosen et al., 1998). MLL1 appears to be part of a 

mega-complex that concentrates several activities that can co-operatively 

activate transcription. Milne and colleagues (Milne et al., 2005b) provided 

further support to this idea by demonstrating that deletion of Mll1 resulted 

in abnormal RNA polymerase II distribution and changes in histone 

modification levels on a subset of the homeobox gene promoters. 

Disruption of either the MLL1 or MLL2 complex resulted in depletion of the 

histone H3 lysine 4 trimethyl mark on specific homeobox gene promoters 

and concomitant loss of the basal transcription machinery in mouse 

embryonic fibroblasts (Wang et al., 2009). Another study (Terranova et al., 

2006) demonstrated that mouse embryos lacking MLL1 exhibit abnormal 
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homeobox gene silencing, along with aberrant DNA methylation of those 

genes’ promoters. Studies published by the Timmers laboratory (van 

Ingen et al., 2008; Vermeulen et al., 2007) demonstrate that the basal 

transcription factor TFIID can bind directly to trimethylated lysine 4 of 

histone H3. TFIID is a key basal transcription factor that can potentialy 

nucleate the rest of the basal transcriptional machinery and trigger the 

assembly of the RNA polymerase II pre-initiation complex (reviewed in 

Buratowski, 1994). If TFIID recruitment and/or stabilisation depended on 

the presence of the H3K4me3 mark, loss of this mark would result in 

transcriptional down-regulation or complete silencing of genes that operate 

through this mechanism. 

Taken together, these results suggest that MLL proteins may be 

recruited to promoters prior to the basal transcription machinery (unlike 

yeast Set1) and function by i) setting up a permissive chromatin landscape 

for transcription, ii) recruiting the basal transcription machinery and iii) 

preventing DNA methylation. Direct evidence for this idea however has 

been so far lacking. 
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1.5.3. MLL2 structure and function 

 

MLL2 is a 2713 amino-acid protein with a very similar domain 

composition to MLL1 (Figures 1.12 and 1.13). The functions attributed 

here to the MLL2 domains are based on their similarity to other proteins, 

as there is no direct experimental evidence on their function in the context 

of MLL2. MLL2 harbours 3 AT hook domains that bind the minor groove of 

the DNA double helix in AT-rich regions (Reeves and Nissen, 1990), 2 

speckled nuclear localization signals that dictate the subnuclear 

localization of the protein (Hedley et al., 1995), a CxxC type zinc finger 

that binds to non-methylated CpG dinucleotides (Ayton et al., 2004; Birke 

et al., 2002; Lee et al., 2001), 3 PHD fingers that can bind histone H3 

trimethylated at lysine 4 (Chang et al., 2010), an atypical bromodomain 

that would normally bind acetylated histones (Dhalluin et al., 1999; 

Jacobson et al., 2000; Owen et al., 2000), an extended PHD finger and a 

SET domain that catalyses trimethylation of lysine 4 on histone H3 (Dou et 

al., 2005; Milne et al., 2002; Nagy et al., 2002; Roguev et al., 2001). MLL2 

also contains a taspase 1 cleavage site and 2 FY-rich regions. In the case 

of MLL1, the FY regions have been shown to mediate re-association of the 

two MLL1 parts after taspase-mediated cleavage (Hsieh et al., 2003). 

Unlike MLL1, MLL2 function is rather poorly characterised. Knock-out 

experiments have demonstrated that MLL2 is indispensable for mouse 

embryonic development, as embryos lacking MLL2 die before embryonic 

day 11.5 (Glaser et al., 2006). Notably, the Mll2 knock-out embryos die 
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due to widespread apoptosis and general tissue disorganisation rather 

than specfic developmental defects. ES cells lacking MLL2 are viable, 

albeit with defects in differentiation and slightly increased apoptosis rates 

(Lubitz et al., 2007). These observations reveal a crucial role for MLL2 in 

early embryonic development. 

Using a conditional knock-out allele for MLL2, a more recent study has 

demonstrated that MLL2 is only required briefly during development. 

(Glaser et al., 2009). Postnatal deletion of Mll2 did not have any severe 

effects at the organism level. However, gametes were affected by loss of 

MLL2, which is required for maturation of spermatocytes (Glaser et al., 

2009) and bulk H3K4 trimethylation and survival in oocytes (Andreu-Vieyra 

et al., 2010). Additionally, it has been demonstrated recently that MLL2 

plays a role in macrophage function (Austenaa et al., 2012). According to 

Austenaa et al. MLL2 is absolutely required for transcription of the Pigp 

gene, which encodes for a critical enzyme in the GPI anchor glycolipid 

synthesis. As a result Mll2 knock-out macrophages exhibit a complete lack 

of GPI-anchored membrane proteins and impaired lipo-polysaccharide 

responses. 

Glaser et al. (2009) also demonstrated that only a small number of 

genes are significantly down-regulated in response to Mll2 deletion, most 

prominent of which is Magoh2 – an until then uncharacterised gene. 

Magoh and Magoh2 (also known as MagohB) code for identical proteins 

except for a single aminoacid substitution (prediction from the in silico 

translated mRNA sequence, ncbi BLASTx). The Drosophila homologue of 
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Magoh and Magoh2 is mago nashi. The mago nashi gene product is a 

component of the exon-exon junction complex (Kataoka et al., 2001). 

Magoh2 expression is regulated by a CpG island promoter and it is 

expressed in all the tissues examined so far, including ES cells (Glaser et 

al., 2009). The same study demonstrated that Magoh2 expression is 

completely abolished upon Mll2 deletion, while Magoh expression was 

unaffected. Magoh2 is exquisitely dependent on MLL2, with no functional 

redundancy from other SET1/MLL family members. Magoh2 transcriptional 

silencing is accompanied by depletion of histone H3 lysine 4 trimethylation 

and an increase in DNA methylation over the CpG island promoter. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13. Structure of the MLL2 protein (Figure re-drawn from Glaser et al., 2009). 
MLL2 is cleaved by Taspase 1 and the 2 parts hetero-dimerise via the two FY-rich regions. 
MLL2 contains 3 AT hooks, 2 speckled nuclear localisation sequences (SNL), a CxxC zinc 
finger, 3 PHD fingers, an atypical bromo-domain, an extended PHD finger (ePHD) and the 
catalytic SET domain. 
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1.6. Aims of the present study 

 

Currently, besides biochemical information, very little is known about 

the molecular mechanism by which individual MLL complexes regulate 

their target genes in living cells. The reason for this is that different 

SET1/MLL complexes can compensate for the lack of individual members. 

This was recently confirmed by chromatin immunoprecipitation coupled 

with high throughput sequencing experiments demonstrating that more 

than one SET1/MLL family members can be recruited to the same gene 

(unpublished data from the A.F. Stewart and H.G. Stunnenberg labs). The 

same study also showed that the majority of MLL2 direct targets are genes 

regulated by CpG island promoters. However, the role of MLL complexes 

in controlling the activity of such promoters is poorly understood. Studies 

described above have demonstrated that MLL1 depletion leads to 

transcriptional silencing accompanied by loss of histone H3 lysine 4 

methylation, histone acetylation and RNA polymerase II. This silencing is 

often stabilised by DNA methylation. Although Glaser et al. (2009) 

provided some evidence suggesting that MLL2 operates by a similar 

mechanism, there is no data on whether Mll2 deletion leads to the same 

chromatin state switch and RNA polymerase II eviction. To this end, this 

study examines the fine chromatin structure of the Magoh2 promoter in 

Mll2-/- murine ES cells. 
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Glaser et al. (2009) reported that Magoh2 transcriptional silencing is 

accompanied by DNA methylation. It is unclear however, whether DNA 

methylation precedes transcriptional silencing or merely maintains it. 

Moreover, it is not known where the basal transcription machinery is 

situated within this hierarchy. To gain insight into these mechanistic 

details, this study employs time-course experiments on an inducible Mll2 

knock-out system to try and establish the order of events that lead to 

Magoh2 silencing and DNA methylation. Additionally, there is no 

information on whether this epigenetic silencing can be reversed. This 

issue is addressed herein by re-introduction of wild type or mutant MLL2 

and examination of the Magoh2 transcriptional status. 

Many studies have reported that MLL1 deletion results in dramatic 

haemopoietic deficiencies. Our knowledge regarding MLL2 in 

haemopoiesis is limited to the fact that Mll2 is required for macrophage 

responses (Austenaa et al., 2012). MLL2 could play a more fundamental 

role in early haemopoiesis that is masked by the widespread apoptosis 

and early lethality observed in Mll2-/- embryos. This issue is addressed by 

in vitro differentiation of ES cells toward haemopoietic progenitors or 

monocytes, with deletion of Mll2 at different stages of the haemopoietic 

differentiation process. 

 

 

 

 

 



57 
 

2. MATERIALS AND METHODS 

 

2.1. Cell lines 

 

E14 wild type, Mll2-/-, Mll2F/F, Mll2F/+ (Glaser et al. 2006, 2009; Lubitz et 

al. 2007) and mutant MLL2 transfected Mll2F/F ES cells (generated by  Mr. 

A. Gupta and Mr. D.C. Torres, not published) were provided by Dr. 

Stewart’s lab, Technische Universitaet Dresden. Sp1-/-, Sp1R and Sp3-/- 

ES cells were provided by Dr. Philipsen, Erasmus University Rotterdam 

(Akalin et al., 2009; Lenhard et al., 2012). 

 

 

2.2. Cell Culture 

 

2.2.1.  Routine murine embryonic stem cell culture  

 

Murine embryonic stem (ES) cells were grown in high glucose DMEM 

(Sigma) supplemented with 15% batch tested serum for maintenance of 

pluripotency (PAA Gold FBS), 1000 U/ml leukaemia inhibitory factor (LIF) 

(ESGRO, Millipore), 25 mM HEPES (Gibco), 1 mM sodium pyruvate 

(Gibco), 2 mM L-glutamine (Gibco), 100 U/ml penicillin / 100 μg/ml 

streptomycin (Gibco), 1× non-essential amino-acids (Sigma), 

0.15 mM mono-thioglycerol (MTG, Sigma) at 37oC, 5% CO2, on tissue 

culture grade plastics (Falcon, Corning) at a plating density of 
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104 cells/cm2. Cells were split every 2-3 days, by removing the medium, 

washing very briefly with phosphate buffered saline (PBS, Invitrogen) and 

brief trypsinization in an appropriate volume of 1× trypsin / ethylene 

diamine tetra-acetic acid (EDTA) (Gibco) at room temperature. Trypsin 

was inactivated by addition of an equal volume of serum-containing 

medium. Cells were counted in an improved Neubauer haemocytometer 

(Hawksley), under an Olympus BX45 microscope. 

  

 

2.2.2. Differentiation of ES cells in semi-solid media 

 

ES cells were harvested and washed in PBS to remove any remaining 

LIF. Subsequently, they were resuspended in 1.2% base methylcellulose 

(Stemcell Technologies) in IMDM medium (Invitrogen) containing 10% 

serum batch tested for embryoid body differentiation (PAA FBS), 10%     

M-CSF conditioned medium, 5% IL3 conditioned medium, 0.15 mM MTG, 

2 mM L-glutamine and 100 U/ml penicillin / 100 μg/ml streptomycin, at      

103-105 cells/ml. 4ml were plated in 60 mm low adherence bacteriological 

grade plates (Sterilin) and grown at 37oC / 5% CO2 for 15-20 days. 

Embryoid bodies (EB) were checked regularly for blood island formation 

and monocyte production on an Olympus CKX41 inverted microscope, 

fitted with an Olympus C7070 digital camera. 
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2.2.3. Differentiation of ES cells to blood progenitors via haemogenic 

endothelium 

 

ES cells were harvested by trypsinization from the routine culture 

medium and plated on gelatinized (0.1% pork skin gelatine (Sigma) in PBS 

for 20 minutes at room temperature) tissue culture grade containers at a 

density of 2-4×104 cells/cm2 in standard ES growth medium (described 

above). 24 hours later the cells were trypsinised again and plated on 

gelatinized containers at a density of 2-4×104 cells/cm2 in IMDM (Sigma) 

supplemented with 15% ES serum, 1000 U/ml LIF, 25 mM HEPES, 1 mM 

sodium pyruvate, 2 mM L-glutamine, 100 U/ml penicillin / 100 μg/ml 

streptomycin, 1× non-essential amino-acids, 0.15 mM MTG. 24 hours later 

the cells were harvested by brief trypsinization and washed once with PBS 

to remove all remaining ES medium and LIF. The cells were resuspended 

in IMDM based in vitro differentiation (IVD) medium containing 15% serum 

batch tested for EB differentiation (PAA FBS), 100 U/ml penicillin / 

100 μg/ml streptomycin, 0.15 mM MTG, 180 μg/ml human transferrin 

(Roche) and 50 μg/ml L-ascorbic acid (Sigma) at a density of 5×104 

cells/ml. The cells were plated in low adherence bacteriological dishes 

(Corning) and incubated for 3.5 days at 37oC / 5% CO2 to form EBs. The 

EB suspension was harvested, transferred to appropriate tubes and the 

EBs were left to settle by gravity for 10 minutes. The medium was 

discarded, the EBs were washed with PBS and left to settle again by 

gravity. PBS was removed and the EBs were completely dissociated by 
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addition of 2 ml 1× Trypsin/EDTA and gentle pipetting. Trypsin was 

inactivated by adding an equal volume of IMDM containing 20% EB 

serum. The cells were counted and centrifuged at 300×g for 5 minutes at 

room temperature and then resuspended in 200 μl MACS buffer: 0.5% 

bovine serum albumin (BSA, Miltenyi), 2 mM ethylene-diamine-tetraacetic 

acid di-sodium salt (EDTA, Sigma) in PBS. A small amount of cells was 

kept separately and stained with 0.5 μg of a phycoerythrin (PE) conjugated 

α-FLK1 antibody (eBioscience) or an isotype control antibody 

(eBioscience) in 100 μl MACS buffer to verify FLK1 expression by 

fluorescence activated cell sorting (FACS) on a BD Bioscience LSRII 

instrument. FACS data were analyzed using the BD FACS Diva software 

suite. The remaining cells were then stained for FLK1 with 1 μg of a biotin 

conjugated α-FLK1 antibody (eBioscience) for 15 minutes on ice. The cells 

were washed twice with MACS Buffer and then bound to anti-biotin 

magnetic beads (Miltenyi) according to the manufacturer’s instructions. 

The FLK1 positive haemangioblast-enriched cells were purified using a 

Miltenyi AutoMACS instrument. The cells in the positive and negative 

fractions were counted and compared to the percentages acquired from 

FACS analysis. Purified FLK1 positive cells were centrifuged at 300×g for 

5 minutes at room temperature and resuspended in an appropriate volume 

of IMDM based blast medium containing 10% EB FCS, 2 mM L-glutamine, 

100 U/ml penicillin / 100 μg/ml streptomycin, 0.15 mM MTG, 180 μg/ml 

human transferrin, 50 μg/ml L-ascorbic acid, 20% D4T conditioned 

medium, 10 μg/ml VEGF (Peprotech) and 10 μg/ml IL-6 (Peprotech) and 
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plated in tissue culture grade containers at a density of 1-2×104 cells/cm2 

and incubated for a further 3 to 4 days to allow for haemogenic 

endothelium formation. The whole blast culture was harvested at the 

timepoints indicated in the main text by brief trypsinization and the cells 

were resuspended in PBS. A fraction of the cells was separated from the 

bulk (that was used for RNA isolation), distributed into 6 FACS tubes and 

centrifuged at 300×g for 5 minutes at room temperature. The cells were 

resuspended in 100 μl MACS buffer. The 6 samples prepared were either 

1) left unstained, or stained with 2) 1 μl PE-Cy7–α-CD41 antibody, 

3) 0.5 μl PE–α-Tie2 antibody, 4) 0.5 μl PE–IgG isotype control antibody, 

5) 1 μl PE-Cy7– / 1 μl APC–IgG isotype control antibodies and 6) 1 μl 

PE-Cy7–α-CD41 / 0.5 μl PE–α-TIE2 / 1 μl APC–α-C-KIT antibodies. All the 

antibodies used were from eBiosciece. Staining was performed in the dark 

for 20 minutes on ice. Subsequently the cells were washed in 1 ml MACS 

buffer, resuspended in 500 μl MACS buffer and analyzed on a LSRII 

instrument. Post-acquisition data analysis was performed using the BD 

FACS Diva software suite. 
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2.2.4. Genotyping 

 

The Mll2F/F and Mll2F/+ ES cells were tested for recombination of the 

Mll2 alleles twice by Southern blot (see main text) and after that by PCR 

every time they were induced with 4-hydroxytamoxifen (OHT). OHT was 

added to the culture medium at a final concentration of 10-7 M. The 

genotyping PCR was performed using the primers shown in table 2.1. The 

145se/147as primer pair detects all Mll2 alleles while the 145se/146as 

primer pair detects only the larger targeted (F) and WT alleles. This pair 

was used to verify deletion of the F allele as PCR with the 145se/147as 

pair was strongly biased for the smaller Fc product. 

 

 

 

Primer  Sequence TαoC Amplicon 
145se CGGAGGAAGAGAGCAGTGACG 

65 F: 1500bp, WT: 1400bp,     
Fc: 800bp 147as GGACAGGAGTCACATCTGCTAGG 

  
 

    145se CGGAGGAAGAGAGCAGTGACG 
65 F: 1132bp, WT: 1032bp 

146as GGGACCGAAGCGCAGAGC 

 

 

 

 

 

 

Table 2.1. Primers used to confirm deletion of the Mll2 F allele. 
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2.2.5. Disruption of RNA polymerase II by α-amanitin and DRB 

 

DRB blocks transcriptional elongation by inhibiting p-TEFb enzymatic 

activity (Fraser et al., 1978; Marshall et al., 1996). α-amanitin binds the 

active site of RNA polymerase II and this complex is subsequently 

targeted for degradation (Nguyen et al., 1996). Mouse ES cells were 

grown under standard conditions. 5,6-dichlorobenzimidazole 1-β-D-

ribofuranoside (DRB, Sigma) or α-amanitin (Sigma) were added to the 

culture medium to give a final concentration of 100 μM or 5 μg/ml, 

respectively. The cells were grown for up to 24 hours in DRB and up to 48 

hours in α-amanitin and then harvested using a method suited for the 

downstream analyses. 

 

 

2.3. Apoptosis assays by annexin V staining 

 

Mll2F/F and Mll2F/+ ES cells were grown under standard conditions. OHT 

was added to the culture medium from a stock of 10-3 M in 100% ethanol 

to yield a final concentration of 10-7 M. Control cells (labelled -OHT in main 

text) were treated with an equal volume of 100% ethanol. OHT was added 

on subsequent days so that all the timepoints could be harvested at once. 

The cells were stained with FITC conjugated Annexin V and propidium 

iodide (PI) using an Annexin V apoptosis detection kit from Santa Cruz 

Biotechnology according to the manufacturer’s instructions. The stained 
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cells were analysed by FACS on a BD Bioscience LSRII instrument. FACS 

data were analysed using the BD FACS Diva software suite. 

 

 

2.4. Cell cycle assays by propidium iodide staining of fixed cells 

 

Mll2F/F and Mll2F/+ ES cells were grown under standard conditions and 

induced with OHT as described above. OHT (or ethanol where 

appropriate) was added to all the cells on the same day and the individual 

time-points were harvested sequentially. The cells were harvested by brief 

trypsinization and counted. 107 cells were transferred to 1.5 ml tube and 

centrifuged at 300×g for 5 minutes at 4oC. The cells washed once with ice 

cold PBS, centrifuged again and resuspended in the residual volume 

(30-50 μl) of PBS. The cells were fixed by addition of 1 ml 70% methanol 

that was pre-cooled to -20oC. The fixed cells were kept at -20oC until the 

complete set of time-points was collected. The cells were centrifuged at 

400×g for 5 minutes at room temperature, washed once with PBS and 

resuspended in 500 μl of freshly prepared PBS containing 50 μg/ml 

propidium iodide and 10 μg/ml RNase A. The cells were stained for 30 

minutes at room temperature in the dark and analyzed on a DB Bioscience 

LSRII FACS instrument. The post-acquisition data analysis was performed 

using the Verity ModFit LT 3.2 software suite. 
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2.5. Transfections 

 

All transfections were performed in 6-well plates (Falcon) using 

Lipofectamine LTX with PLUS reagent from Invitrogen according to the 

manufacturer’s instructions. Antibiotic selection was optimized by 

determining the minimum concentration sufficient to kill non-transfected 

cells. The concentrations that were found to be effective were 300 μg/ml 

G418 (Invitrogen) and 0.5 to 1 μg/ml (as indicated in main text) Puromycin 

(Invitrogen). The transfected cells were grown in G418 containing media 

for 14-20 days and single colonies were picked and expanded, or in 

Puromycin containing media for 4 days and harvested as a bulk population 

and expanded. 
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2.6. DNA purification 

 

Cells were harvested by brief trypsinization and centrifuged at 300×g for 

5 minutes at room temperature. The cells were resuspended in 200 μl 

PBS, lysed by addition of an equal volume of 2× lysis buffer (100 mM Tris 

(Sigma) pH8.0, 40 mM EDTA, 2% sodium dodecyl-sulphate (SDS, Biorad), 

200 μg/ml Proteinase K) and incubated overnight at 55oC to allow for 

complete protein digestion. Subsequently, the samples were purified by 

one round of phenol (P) (Sigma), phenol / chloroform (BDH) / isoamyl-

alcohol (Sigma) (25/24/1 v/v) (PCI), chloroform / isoamyl-alcohol (24/1 v/v) 

(CI) and the purified aqueous phase was incubated with 100 μg/ml 

RNase A (Roche) for 1 hour at 37oC, before a second round of P-PCI-CI 

extraction. DNA was dehydrated by addition of 40 μl 5 M NaCl (0.5M final) 

and 400 μl isopropanol for 5 minutes to overnight, depending on the size 

of the DNA fragments being purified, at 4oC. The samples were 

centrifuged at 16,000×g for 5 to 20 minutes at room temperature to pellet 

the DNA precipitate. The DNA pellets were washed once with 70% ethanol 

and left to air-dry. After all the ethanol had evaporated, the pellets were 

dissolved in an appropriate amount of H2O or 0.1× TE buffer (1 mM Tris 

pH8.0, 0.1 mM EDTA pH8.0) depending on the downstream analyses. 

Quantification of DNA samples was performed using a Nanodrop ND1000 

instrument (Invitrogen). 
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2.7. RNA purification 

 

RNA was extracted from cells using either TRIzol Reagent (Invitrogen) 

or RNEasy spin columns (Qiagen) according to manufacturer’s 

instructions. The purified RNA was quantified on a Nanodrop ND1000 

instrument (Invitrogen) and stored at -20oC short term or -80oC long term. 

 

 

2.8. Reverse transcription and quantitative PCR 

 

Reverse transcription (RT) of 0.5 – 2 μg total RNA was performed using 

M-MLV reverse transcriptase (Invitrogen), according to the manufacturer’s 

instructions. The reaction was complemented with RNase inhibitors 

(RNaseOUT, Invitrogen) as suggested by the manufacturer. Real-time 

quantitative PCR (Q-PCR) was performed using 2× SYBR Green PCR 

Master Mix (ABI), according to manufacturer’s instructions. Samples were 

amplified either on an ABI 7900HT or an ABI 7500 Real-time PCR 

instrument. Initial analysis (threshold / baseline setting) was performed 

using the ABI SDS software.  Standard curve quantitation and further 

analyses of the raw data were performed in Microsoft Excel. Primers used 

for RT-QPCR expression analyses are shown in Table 2.2. 
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Primer Name Sequence 
Gapdh FW ACCTGCCAAGTATGATGACATCA 

 
REV GGTCCTCAGTGTAGCCCAAGAT 

Magoh2 FW CGGGCATAAGGGCAAGTTT 

 
REV AATTACTGTTGTTGGCATATGTAAGCTT 

 
FW_primary TGGGACTATGAAATTGTCTTTACC 

Mll2 FW GCGTCCACCACATCAAAGTC 

 
REV TCGCTCTGTGCTGACTGACA 

 
FW_primary ACATCCACTCACCTCAAACCTT 

18S rRNA FW CAGTAAGTGCGGGCCATAAG 

 
REV GGCCTCACTAAACCATCCAA 

Magoh FW CAGGACCTGAAGTGTTTAGTC 

 
REV CTTGTGTCCACAATATCCAAT 

Oct4 FW AGGTGGAACCAACTCCCGAG 

 
REV GCTTCAGCAGCTTGGCAAC 

Scl/Tal1 FW CCAACAACAACCGGGTGAAG 

 
REV GCCGCACTACTTTGGTGTGAG 

Gata2 FW AGAACCGGAAGCTCATC 

 
REV TCGTCTGACAATTTGCACAACAG 

Fli1 FW TCGTGAGGACTGGTCTGTATGG 

 
REV GCTGTTGTCGCACCTCAGTTAC 

Runx1 FW GCAGGCAACGATGAAAACTACTC 

 
REV CAAACCTGAGGTCGTTGAATCTC 

Pu.1 FW CCATAGCGATCACTACTGGGATTT 

 
REV TGTGAAGTGGTTCTCAGGGAAGT 

Csf1R FW CTTTGGTCTGGGCAAAGAAGAT 

 
REV CAGGGCCTCCTTCTCATCAG 

Gfi1 FW GTGAGCCTGGAGCAACACAA 

 
REV CTCTTGAAGCTCTTGCCACAGA 

Tie2 FW TGCAACTGAAGAGAGCAAATG  

 
REV TCAAGCACAGGATAAATTGTG  

Evi1 FW TGCCCTGGAGATGAGCTGTAA 

 
REV GATCTAGAGCAGAAAGGCCAGATT 

Cdh5 FW AATTCTTCCGAATAACCAAGC 

 
REV GCACAATGGACTCTTTCCCTA  

Icam2 FW GTGTACCAGCCTCCAGCTC  

 
REV CAAAGGTCTGATTCTTCAGGG  

Table 2.2. Primer used for RT-QPCR analyses. All primers were used at 60oC. The 
Magoh2 and Mll2 FW_primary primers were used instead of the FW primer to detect 
primary transcripts post α-amanitin/DRB treatment. 
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2.9. In vivo and in vitro dimethyl-sulphate treatment  

 

Dimethyl-sulphate (DMS) induces the formation of N-7-methyl-guanine 

(70%) and N-3-methyl-adenine (30%) (Brookes and Lawley, 1963). 

Subsequent piperidine (Fluka) treatment introduces single strand breaks at 

the sites of the N-7-methyl-guanine modification (Maxam and Gilbert, 

1977). Applying the same treatment to living cells (in vivo DMS treatment) 

and naked DNA (G-Reaction or in vitro DMS treatment) provides 

information about transcription factor occupancy as detected by either 

hyper-reactivity or protection of certain guanine residues, visualized on a 

polyacrylamide gel after ligation mediated PCR (LM-PCR) (Tagoh et al., 

2006). Murine ES cells were harvested and washed twice with PBS. 

1-2×106 cells were resuspended in 100 μl of 0.2% v/v DMS (Aldrich) in 

PBS and incubated for 5 minutes at room temperature. After DMS 

treatment the cells were washed twice with 20 ml ice cold PBS. Finally the 

cells were resuspended in 200 μl of ice cold PBS, lysed by addition of an 

equal volume of 2× lysis buffer (100 mM Tris pH8.0, 40 mM EDTA, 

2% SDS, 200 μg/ml Proteinase K) and incubated overnight at 55oC. 

Subsequently, the samples were purified as described in paragraph 2.6. 

The DMS treated genomic DNA was left to dissolve overnight in 99 μl 

0.1×TE (1 mM Tris-HCl pH8.0, 0.1 mM EDTA pH8.0). For the G reaction, 

100 µg of E14 intact genomic DNA were left overnight to dissolve in 100 µl 

of H2O. 100 µl of 2× DMS buffer (100 mM sodium cacodylate pH 8.0, 

2 mM EDTA pH8.0) were added to the DNA and mixed by inverting the 
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tube. 10 µl of 10% DMS were added to the mixture and the samples were 

incubated for 3 minutes at room temperature. The methylation reaction 

was stopped by addition of 30 μl DMS stop buffer (1.5 mM sodium acetate 

pH7.0, 1 M β-mercaptoethanol) and 750µl ice-cold ethanol and allowed to 

precipitate at room temperature. DNA pellets were washed with 70% 

ethanol and left overnight to dissolve in 99 µl 0.1× TE. Methylated genomic 

DNA (in vivo or in vitro) was then cleaved by piperidine (Fluka). 1 µl of 

10 M piperidine was mixed thoroughly with 99 µl of DMS treated sample 

and was incubated for 10 minutes at 90°C. Samples were cooled in ice 

cold water and diluted to 400 μl with H2O. Subsequently, piperidine was 

removed by extracting twice with 800 μl isobutanol (BDH). Residual 

isobutanol was removed by a chloroform extraction. The aqueous phase 

was transferred to a clean reaction tube and the DNA was precipitated by 

addition of 40 μl 5 M NaCl and 400 μl isopropanol. DNA pellets were 

resuspended in 0.1× TE buffer, quantified using a Nanodrop ND-1000 

spectrophotometer and diluted to 1 µg/µl with 0.1× TE buffer. A small 

amount of the purified samples was separated on a 0.8% agarose, 

0.5× TBE gel to confirm that sufficient piperidine cleavage had occurred. 

 

 

 

 

 

 



71 
 

2.10. In vivo and in vitro DNaseI / MNase treatment 

 

The method for DNaseI treatment of permeabilised cells is adapted 

from the method described by Pfeifer and Riggs (Pfeifer and Riggs, 1991). 

For the in vivo DNaseI treatment, ES cells were harvested by 

trypsinization and washed once with PBS. The cells were counted and 

resuspended in ice-cold Ψ buffer (11 mM KPO4 pH7.4, 108 mM KCl, 

22 mM NaCl, 5 mM MgCl2, 1 mM CaCl2, 1 mM DTT) containing 1 mM ATP 

(freshly added) at a concentration of 3×107 cells/ml and were kept on ice. 

A range of DNaseI concentrations was prepared by mixing 80 μl Ψ buffer 

containing 1 mM ATP with 4 μl 10% non-ident P40 (NP40) and 20 μl H2O 

containing 2 U, 4 U or 8 U DNaseI (Worthington). The 104 μl of the above 

solution were mixed with 100 μl of the cell suspension and were incubated 

for 6 minutes at room temperature. The reaction was stopped by addition 

of 200 μl 2× lysis buffer. The in vitro DNaseI controls were generated by 

initially dissolving 30 μg E14 intact genomic DNA in 100 μl Ψ buffer. A 

range of DNaseI concentrations was prepared by mixing 80 μl Ψ buffer, 

4 μl 10% NP40 and 20 μl H2O containing 2 U, 4 U or 8 U DNaseI. The 

104 μl of the above solution were mixed with the 100 μl of DNA and 

incubated for 3 minutes on ice. The reaction was stopped by addition of 

200 μl 2× lysis buffer. The samples, both in vivo and in vitro, were 

incubated overnight at 55oC, purified as described in paragraph 2.6 and 

then dissolved in 0.1× TE at a concentration of 1μg/μl. Digested DNA was 

separated on a 0.8% agarose, 0.5× TBE gel to verify DNaseI digestion 
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and identify the samples most suitable for downstream analyses. For the 

in vivo Micrococcal nuclease (MNase) treatment, ES cells were harvested 

by trypsinization and washed once in PBS. The cells were resuspended at 

a density of 3×107 cells/ml of Ψ buffer. A range of MNase (Worthington) 

concentrations was prepared by mixing 80 μl Ψ buffer, 4 μl 10% NP40 and 

20 μl H2O containing 4 U, 8 U or 16 U MNase. The 104 μl of the MNase 

containing solution were mixed with 100 μl of the cell suspension and 

incubated for 6 minutes at room temperature. The reaction was stopped 

by addition of 200 μl 2× lysis buffer. The samples were then incubated 

overnight at 55oC and purified as described in paragraph 2.6. Finally the 

DNA pellets were dissolved in 0.1× TE at a concentration of 1 μg/μl. 

MNase digests were separated on a 0.8% agarose, 0.5× TBE gel to 

identify the samples most suitable for downstream analyses. Importantly, 

for both DNaseI and MNase a subset of cells was treated in the exact 

same way, except there was no nuclease present. This was used to verify 

that the observed digestion was indeed due to the addition of the nuclease 

and not due to DNA degradation or apoptosis. Also the 0 U DNaseI 

treated sample was digested with appropriate restriction enzymes to 

generate a size marker in the DNaseI hypersensitive site mapping 

experiments. 
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2.11. DNaseI hypersensitive site mapping  

 

DNaseI treatment was performed as described in paragraph 2.10. The 

method used for transfer, probe labelling and hybridization was previously 

described by Cockerill (Cockerill, 2000). A series of DNaseI treated 

samples (10 μg each) were digested to completion in 16 μl of 1× the 

appropriate NEB restriction enzyme buffer ± BSA and 10 U of the 

restriction enzyme (RE) (NEB) indicated in each figure. Digestions were 

performed at an appropriate for the enzyme temperature, for 3-4 hours. 

The RE size marker was created by a complete digestion of 5 μg 0 U 

DNaseI treated sample with the same enzyme used for the DNaseI treated 

samples and subsequent partial digestion with REs  (indicated on  figures) 

that would generate conveniently sized fragments. The restriction 

reactions were stopped by addition of 4 μl of 20% ficoll 400 (Sigma), 

1% SDS, 0.1% Orange G (Aldrich). The DNaseI digests (10 μg) and the 

size markers (5 μg) were loaded on a 0.8% agarose, 1× TAE (Severn 

Biotech) gel containing 0.5 µg/ml ethidium bromide and were separated for 

16 hours at 45 V in 1× TAE buffer containing 0.5 µg/ml ethidium bromide. 

Under these conditions the Orange G dye migrated approximately 20 cm. 

The digests were then visualised in a Biorad Geldoc station, keeping UV 

exposure to a minimum. The gel was washed twice for 15 minutes in 0.5 M 

NaOH, 1.5 M NaCl to denature the DNA and subsequently washed twice for 

20 minutes in 1 M Tris pH7.0, 1.5 M NaCl to neutralise the NaOH. The DNA 

was then transferred to a Biorad ZETA-Probe membrane overnight in 
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10× SSC (0.15 M sodium citrate (Sigma) and 1.5 M NaCl). The transfer 

assembly was taken apart and the membrane was washed in 2× SSC and 

rinsed with H2O.  The DNA was then UV-fixed on the membrane with 0.07 

J/cm2 in a FlowGen UV cross-linker. The membrane was blocked by pre-

hybridization for 60-90 minutes with rotation at 65oC in 20 ml RapidHyb 

buffer (GE healthcare) containing 0.25 mg/ml sonicated and denatured 

herring testes DNA (Roche). 40 ng of the probe were radiolabelled using 

the Amersham Megaprime kit (GE Healthcare) and [α32-P] dCTP (Perkin 

Elmer), according to the manufacturer’s instructions (for some probes [α32-P] 

dATP was used in combination with [α32-P] dCTP to obtain higher labelling 

efficiency). The labelled probes were separated from unincorporated 

nucleotides by passing through a Sephadex G50 spin column (GE 

healthcare), mixed with 5 mg herring testes DNA and denatured at 99°C for 

5 minutes. The probe was cooled on ice and mixed with the pre-

hybridization buffer. The membrane was left to hybridize for 2 hours with 

rotation at 65°C. The membrane was then washed twice with 2× SSC, 

25 mM sodium phosphate (Sigma), 0.1% SDS at 65°C for 15 minutes and 

the background radioactivity level (at the corner of the membrane) was 

estimated with a Geiger counter. The membrane was then washed twice 

for 20 minutes with solutions of increasing stringency (0.5× SSC, 0.25× 

SSC, 0.1× SSC), until the background radioactivity was sufficiently low. 

The membrane was sealed in a plastic film and exposed for at least 16 

hours to a Biorad K-Screen. The screen was scanned on a Biorad Pharos 

FX molecular imager. The size of the DNaseI produced bands, was 
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estimated by measuring the distance they migrated and relating it to the 

migration distance of the known size RE marker. The probes used in 

DNaseI hypersensitive site mapping experiments were generated by 

nested PCR on E14 genomic DNA and gel purification using the Qiagen 

QIAquick Gel Extraction Kit according to the manufacturer’s instructions. 

The probe used for Mll2 genotyping was generated by a single PCR on an 

Mll2 BAC template. The primers and PCR conditions used to generate the 

probes and the genomic co-ordinates of the probes are shown in Table 2.3.  

 

 

 
Primer name Sequence TαoC Amplicon Genomic Target 

Probe 1 FW AAGTTAGCCTTTGTTCCCTATGAAATA 
65 1047bp 

  

  REV ATGAATATAGGTGTCCTTGGGGTAG   

  FW nest. AAATTGCTGAAACAAAAATGAAACCCT 
66 809bp chr6: 131234803 - 

131235611   REV nest. CATGTCAGAGCTTGTCTGTTAGCCA 

Probe 2 FW AGACTACCATGGTGCAAAGGA 
60 1044bp 

  

  REV CAACCTGAGACCCAAAGGAA   

  FW nes. TGGTGCAAAGGAGTTAATTTCA 
60 633bp chr6: 131247325 - 

131247957   REV nest. TTGCCATACGCTGAACACAT 

Probe 3 FW CACTTTCTCGCCTCTTCACA 
60 617bp 

  

  REV ACCTCTGAGCCATCTCTCCA   

  FW nest. CGCCTCTTCACAGGAGATAAA 
58 520bp chr6: 131239967 - 

131240486    REV nest. TTCTTGTTCCTCTTGCATTTGA 

Probe 4 FW AACCAATTTGAAAGCACTCAG 
55 703bp 

  

  REV TGCTGTAAAGTAATTCAGAAAAGC   

  FW nest. ACCTGCAATTCCTCTCTCCA 
58 624bp chr6:131242072 - 

131242695    REV nest. TGCCACTCCTGAAAAGTTGA 

Mll2 FW GTAGTCCAGTCGCCTTGCTC 
60 824bp chr7:31374024 - 

31374847    REV CGAGACAGGAGCTACGAACC 

 
 

 

Table 2.3. Primers used to generate probes for Southern blots. Also shown on the table, the 
amplicon length and the genomic region to which the probe is complementary. The Mll2 probe was 
generated by a single PCR on an Mll2 BAC as template. 
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2.12. In vivo footprinting  

 

2.12.1. Ligation mediated PCR on DNaseI/DMS treated DNA 

 

Ligation mediated PCR (LM-PCR) was performed as described 

previously (Tagoh et al., 2006) with a few modifications. All primers were 

designed with theoretically optimal properties (as described in Grange et 

al., 1997) using the Oligo 5.0 software. The G-reaction DNA was used as 

a template to optimise the primers’ annealing temperatures in LM-PCR. 

The method is a multi-step procedure, were a biotinylated primer is used 

for a primer extension reaction, performed in 5 μl of 1× Thermo Pol buffer 

(10 mM KCl, 20 mM Tris-HCl pH8.8, 10 mM (NH4)2SO4, 2 mM MgSO4, 

0.1% Triton X-100) (NEB), 0.25 μM dNTPs (Promega), 0.20 μM 

biotinylated 1st primer, 0.3 M sulpholane (Aldrich), 1 U Vent Exo– 

polymerase (NEB) and 1 μg template DNA (DMS-piperidine/DNaseI 

digestion product). The above mixture was initially denatured for 15 

minutes at 95oC, the 1st primer was allowed to anneal for 20 minutes and 

finally, extension was performed at 76oC for 20 minutes. The extension 

products were ligated to a custom linker (LP25/21 linker) by mixing the 5 μl 

extension product with 7.25 μl of 23.3% PEG 6000, 48.7 mM Tris pH7.5, 

13.5 mM MgCl2, 32.8 mM DTT, 1.65 mM ATP, 0.08 mg/ml BSA, 5.5 μM 

LP25/21 linker and 5 U T4 DNA ligase (Epicentre) and overnight 

incubation at 16oC. Streptavidin coated magnetic beads (Dynal M-280, 

Invitrogen) were used to purify the linker ligated extension products. 
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Firstly, 10 μl of the stock beads solution was washed twice on a magnetic 

separator with 2× bind & wash buffer (B&W buffer: 10 mM Tris pH7.5, 

1 mM EDTA, 2 M NaCl). The washed beads were resuspended in 12.5 μl 

2× B&W buffer and added to the ligation products. The bead/ligation 

product mixture was incubated at room temperature with rotation for 2-4 

hours. The beads were separated from the solution on a magnetic 

separator and the supernatant was discarded. The beads were washed 

once with 200 μl 2× B&W buffer, twice with 1× TE buffer and were finally 

resuspended in 10 μl of 0.1× TE buffer. Subsequently, the bound DNA 

was released from the beads by incubating at 95oC for 15 minutes. The 

captured products were amplified using a gene specific primer and a 

primer specific for the linker (LP25). A PCR master mix was added to the 

10 μl of the eluted DNA to a 50 μl final volume of 0.2 mM dNTPs, 0.5 μM 

2nd primer, 0.5 μM LP25 primer, 3% dimethyl-sulphoxide (DMSO), 

1× Phusion GC buffer (NEB), 1 U Phusion Hot-start polymerase (NEB). 

Amplification was performed by 30” initial denaturation at 98oC followed by 

22 cycles of 10” denaturation at 98oC, 10” annealing, 30” extension at 

72oC and finally an extension completion for 5 minutes at 72oC. The 3rd 

primer was radioactively labelled by a 1 hour incubation of a 10 μl solution 

of 4 μM 3rd primer, 1× polynucleotide kinase buffer (PNK buffer: 70 mM 

Tris pH7.6, 10 mM MgCl2, 5 mM dithiothreitol (DTT)), containing 5 μl of 

EasyTide [γ32-P] dATP (Perkin Elmer) and 10 U T4 polynucleotide kinase 

(NEB) at 37oC and subsequently diluted to 50 μl with H2O and purified by 

passing through a G25 resin spin column (GE Healthcare). 10 μl of the 
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amplification product were mixed with 4 μl of the labelling mix (0.25 mM 

dNTPs, 3.75% DMSO, 1× Phusion GC buffer, containing 0.5 U Phusion 

Hot-Start polymerase and 2 μl of the radio-labelled 3rd primer) and 

radio-labelled by primer extension (30” initial denaturation at 98oC followed 

by 7 cycles of 10” denaturation at 98oC, 10” annealing, 30” extension at 

72oC and finally an extension completion for 5 minutes at 72oC). All PCR 

reactions were performed in a Biometra T3000 Thermal Cycler. Primer 

sequences and PCR conditions are shown in Table 2.4. 

 

 

2.12.2. LM-PCR on Micrococcal nuclease treated DNA 

 

The method used for MNase footprinting is slightly different to the one 

employed for DMS/DNaseI, as MNase catalyses double strand cuts and 

MNase cleaved DNA lacks the 5’-phosphate group, thus being unsuitable 

for ligation. Initially, 10 μg of MNase treated DNA were phosphorylated by 

a 1 hour incubation in a 30 μl reaction volume of 1× PNK buffer, 

1 mM ATP and 20 U T4 polynucleotide kinase, at 37oC. Volume was 

adjusted to 50 μl to yield a DNA concentration of 0.2 μg/μl. Two 

micrograms of the phosphorylated DNA were ligated to 100 pmol of the 

LP25/21 linker in 27 μl of 30 mM This pH7.5, 8.5 mM MgCl2, 20 mM DTT, 

1 mM ATP, 0.05 mM BSA, containing 6 U of T4 Ligase. The ligation 

reaction was performed overnight at 16oC. After ligation, the final volume 

was adjusted to 100 μl with 0.1× TE and the ligation products were 
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precipitated by addition of 10 μl 5M NaCl and 100 μl isopropanol. The 

samples were centrifuged at 16,000×g for 10 minutes at 20oC and the 

DNA pellets washed once with 70% ethanol. DNA pellets were dissolved 

in 0.1× TE to give a final concentration of 1 μg/μl. 1μg of the linker-ligated 

product was used in a primer extension reaction and the products were 

captured on streptavidin coated magnetic beads (as described for 

LM-PCR on DMS/DNaseI treated material in paragraph 2.12.1). 

Subsequently, the captured products were eluted in 10 μl 0.1× TE by 

heating to 95oC for 15 minutes. The whole eluate was used in an 

amplification reaction using gene specific and linker specific primers (as 

for DNaseI/DMS). Finally, labeling of the amplified products was 

performed as described above. 

 

 

2.12.3. DNA denaturing polyacrylamide gel electrophoresis  

 

The radiolabelled LM-PCR products were mixed with 14 μl of 

2× sequencing gel loading dye (0.1% w/v bromophenol blue, 0.1% w/v 

xylene cyanol in formamide). DNA was denatured by heating at 95oC for 

10 minutes and cooled in ice cold water. LM-PCR products were 

separated on a 6% polyacrylamide (19:1 acrylamide:bis-acrylamide) 8M 

urea gel prepared using the UreaGel Sequencing System (GeneFlow), 

according to the manufacturer’s instructions. The gel was allowed to 

polymerize for at least one hour at room temperature. The gel was pre-ran 
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in a Gibco S2 sequencing apparatus at 85 W for approximately 90 minutes 

to reach a temperature higher than 50oC. The denatured LM-PCR 

products were loaded on the gel and were ran for 90 minutes at 85 W. The 

gel was allowed to cool before separating the glass plates and was then 

fixed for 2 minutes in fixing solution (10% methanol (Sigma), 10% acetic 

acid (Sigma) in H2O). The gel was transferred to a sheet of Whattman 

3MM paper, covered with cling-film and dried in a prewarmed Biorad gel 

dryer for 30 to 90 minutes. Images were obtained by overnight exposure of 

a Biorad K-Screen to the dried gel. The screens were scanned using a 

Biorad Pharos FX molecular imager. 

 

 
 
 
 

Primer name Sequence TαoC 
VL1 a [bio]-TTCCCTACCGGAGTAAAC 50 
  b TGCGCCCGTGACGTCACTACC 58 
  c TCACTACCTCGCGCCGGCGGC 66 
VL2 a [bio]-CACGCTGAAACCCGCTC 50 
  b CTCACCGTCCGGCCGAAACT 58 
  c GCCGAAACTCGAACTCCAAAAACTC 64 
VL13 a [bio]-AGCGCTCGAGATCGTGGT 58 
  b GTGGCTCCAATGCGAACCTTCAG 66 
  c GGCTCCAATGCGAACCTTCAGTTCTCT 68 
 Oct4 a [bio]-CAACTGGTTTGTGAGGTGTCC 52 
  b GTGACCCAAGGCAGGGGTGAGA 60 
  c CCCAAGGCAGGGGTGAGAGGACCT 62 

 

 

Table 2.4. Primers used for footprinting experiments. Primers VL1 and 13 target different 
regions of the Magoh2 CpG Island promoter. Primer VL2 is in reverse orientation to VL1 and 
13. The Oct4 primers were used to verify that the samples used were equally digested. 
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2.13. Measurement of DNA methylation 

 

2.13.1. Measurement by bisulphite conversion and pyrosequencing 

 

Genomic DNA was treated with sodium bisulphite using the EZ-DNA 

methylation kit from Zymo Research according to the manufacturer’s 

instructions. Bisulphite converted DNA was used as a PCR template to 

amplify the Magoh2 promoter using primers specific for the converted DNA 

sequence (Table 2.5). The PCR products were sent to the pyrosequencing 

facility in the University of Leeds where they were purified using 

streptavidin coated magnetic beads and prepared for sequencing using a 

third sequencing primer (Table 2.5).  

 

 

2.13.2. Measurement by methylation sensitive restriction enzyme 

digestion and QPCR 

 

500 μg of genomic DNA were digested to completion with 10 U HpaII in 

a final volume of 10 μl. The digests were diluted to an estimated 

concentration of 2 ng/μl and used as a template for a QPCR reaction with 

primers flanking a single HpaII site on the Magoh2 promoter (Table 2.5). 

The data were subsequently normalised against a PCR amplicon on the 

Oct4 promoter (Oct4 primers shown in Table 2.8), that does not contain a 

HpaII site. 
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Primer name Sequence TαoC 
BiS Magoh2 5' FW AGTAGAGAAGGTAGAAATTATTATTTATAG 

53 
  REV [bio]-CTCTTAAAAATCTCTTACTTCCTCTTC 

  SEQ GGTAGAAATTATTATTTATAGATAT   
BiS Magoh2 3' FW AGGGTAAAAATGTTTATGGGTAGT 

56 
  REV [bio]-AAACCCTTTCTCAAAACTAAACAAAT 

  SEQ GGTATAAGGGTAAGTTTGG   
Magoh2 HpaII FW TTCTCTTGGGGGTCTCTTGCTTCC 

60 
  REV CGCGTCACCAAGGGCGCGTT 

 

2.14. Protein purification 

 

2.14.1.  Whole cell protein extracts 

 

Cells where harvested by scraping in an appropriate volume of cold 

PBS and centrifuged at 300×g for 5 minutes at 4oC. The cells were 

resuspended in residual volume, transferred in 1.5 ml tube and centrifuged 

again. After all the supernatant was removed, the cells were lysed by 

addition of 1 μl RIPA buffer (150 mM NaCl, 1.0% NP-40, 0.5% sodium 

deoxycholate, 0.1% SDS, 50 mM Tris pH8.0) per 5×105 cells and 

incubated for 10 minutes on ice. The lysate was centrifuged at 16,000×g 

for 10 minutes at 4oC and the supernatant was transferred to a clean tube. 

5× reducing disruption buffer (250 mM Tris pH6.8, 0.5 M DTT, 

50% glycerol, 25% β-mercaptoethanol, 10% SDS, 0.1% bromophenol 

blue) was added to  the protein extract and mixed thoroughly. Samples 

were stored at -20oC. 

Table 2.5. Primers used to measure DNA methylation. BiS indicates primers used for bi-
sulphite converted DNA. 2 primer sets had to be used to cover the whole Magoh2 CpG island 
(5’ and 3’). 

SEQ denotes the sequencing primer used by the pyrosequencing facility.  
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Alternatively, total protein extracts were obtained by acetone 

precipitation of lysates from cells used for RNA purification by the Qiagen 

RNEasy spin columns, according to the manufacturer’s instructions. The 

precipitated proteins were dissolved in urea buffer (40 mM Tris pH6.8, 

8 M urea) and then centrifuged at 16,000×g for 10 minutes at 4oC. The 

supernatant was transferred to a clean tube, mixed thoroughly with 5× 

reducing disruption buffer and stored at -20oC. 

 

 

2.14.2. Nuclear protein extracts 

 

Cells were harvested by brief trypsinization and spun down for 5 

minutes at 300×g at 4oC. The cells were washed in 1 ml PBS and 

resuspended in sucrose buffer (0.32 M sucrose, 50 mM KCl, 20 mM NaCl, 

3 mM CaCl2, 2 mM magnesium acetate, 10 mM Tris pH8.0, 1 mM DTT, 

0.5 mM phenylmethylsulphonyl fluoride (PMSF), 1.5 mM spermine, 

0.5 mM spermidine, 1:1000 protease inhibitor cocktail (PIC: 104 mM 

AEBSF, 80 μM aprotinin, 4 mM bestatin, 1.4 mM E-64, 2 mM leupeptin, 

1.5 mM pepstatin A, Sigma) at a density of 2×108 cells/ml. An equal 

volume of sucrose buffer containing 0.2% NP40 was added to disrupt the 

plasma membranes. Intact nuclei were spun down for 5 minutes at 

500×g/4oC and washed with 1 ml sucrose buffer (without NP40). The 

nuclei were resuspended in half the volume of sucrose buffer used initially 

(minimum of 20 μl) of low salt buffer (10 mM 4-(2-hydroxyethyl)-1-



84 
 

piperazine-ethane-sulphonic acid  (HEPES) pH8.0, 20% glycerol, 2 mM 

magnesium acetate, 20 mM KCl, 10 mM NaF, 1 mM sodium 

pyrophosphate, 2 mM ethylene glycol tetra-acetic acid (EGTA), 0.5 mM 

DTT, 0.5 mM PMSF, 1:1000 PIC). An equal volume of high salt buffer 

(10 mM HEPES pH8.0, 20% glycerol, 2 mM magnesium acetate, 

0.7 M KCl, 10 mM NaF, 1 mM sodium pyrophosphate, 1% NP40, 2 mM 

EGTA, 0.5 mM DTT, 0.5 mM PMSF, 1:1000 PIC) was added drop-wise, 

while slowly mixing the lysate. The lysates were incubated on ice for 20 

minutes and then spun down at 16,000×g for 5 minutes at 4oC. The 

supernatant was passed through an ion exchange column (Thermo 

Fisher) and eluted in buffer D (20% glycerol, 10 mM HEPES pH8.0, 

50 mM NaCl, 45 mM KCl, 2 mM magnesium acetate, 10 mM NaF, 1 mM 

sodium pyrophosphate, 2 mM EGTA, 0.1 mM ZnCl2, 1 mM DTT). The 

purified nuclear extracts were stored at -80oC. 

 

 

2.15. Electrophoretic mobility shift assays 

 

2.15.1. Probe generation 

 

To generate double stranded (ds) DNA probes for electrophoretic 

mobility shift assays (EMSAs), custom complementary single stranded (ss) 

DNA oligonucleotides were ordered from Sigma. The oligonucleotides 

(500 pmol each) were annealed to form dsDNA probes in 100 μl 1× oligo 
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annealing buffer (20 mM Tris pH8.0, 0.2 mM MgCl2, 1 mM EDTA pH8.0, 

50 mM NaCl). The mixture was heated to 100oC on a heat block for 15 

minutes and was then left to slowly cool down to room temperature on the 

block. The annealed probes were mixed with glycerol (10% final) and were 

separated on a 0.5× TBE, 18.5% glycerol, 7% polyacrylamide gel for 

approximately 2 hours at 150 V. The gel was then stained in 0.5× TBE 

containing 0.5 μg/ml ethidium bromide for approximately 20 minutes and 

the dsDNA probes were excised from the gel on a UV transilluminator, 

minimizing UV exposure as much as possible. The gel slices were 

homogenized using a clean pair of forceps and transferred to 1.5 ml tubes. 

The probes were eluted by an overnight incubation in 750 μl oligo elution 

buffer (20 mM Tris pH8.0, 400 mM NaCl, 2 mM EDTA pH8.0, 0.05% SDS) 

at 37oC. The eluted probes were passed through a 0.45 μm syringe filter 

to remove polyacrylamide pieces and then purified using standard phenol 

extraction as described in paragraph 2.6. 

 

 

2.15.2. Protein binding and band shift assay 

 

4 μg of nuclear extract in buffer D (described in 2.13.2) were mixed with 

the non-labelled competitor and 1 μg antibody (where indicated) for 15 

minutes at room temperature. The labelled probe was added to the 

reaction and incubated for a further 25 minutes at room temperature. The 

quantity of labelled probe used was calculated to give 20,000 cpm (1 to 15 
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pmoles). The amount of non labelled competitor used was 100× the 

amount of the respective probe. The samples were separated at 150 V for 

1 hr 15 minutes on a 5% acrylamide gel (5% acrylamide (37.5:1 Seven 

Biotech), 0.5× TBE (Seven Biotech), 1/1000 tetra-methyl-ethylene-diamine 

(TEMED, Fluka) and 0.1% ammonium persulphate (APS, Sigma) that was 

allowed to set for 1 hour before pre-run at 150 V in 0.5× TBE for 60 

minutes. The gel was fixed with 10% methanol, 10% acetic acid for 5 

minutes and dried in a gel dryer for 90 to 120 minutes. Biorad K-Screens 

were exposed to the gel overnight and scanned on a Biorad PharosFX 

molecular imager. 

 

 

2.16. SDS polyacrylamide gel electrophoresis and Western blotting 

 

Whole cell extracts or nuclear extracts from equal amounts of cells were 

separated on a Biorad  4–20% Mini-PROTEAN TGX Precast Gel for 1 hour 

at 200 V in 1× SDS running buffer (24.8 mM Trizma Base (Sigma), 0.19 M 

glycine, 0.1% w/v SDS). Proteins were then transferred onto a nitrocellulose 

membrane by wet transfer at 100 V for 70 minutes at 4oC in 24.8 mM Trizma 

Base, 0.19 M glycine, 10% v/v methanol. The membrane was then washed 

briefly with Tris buffered saline – Tween20 (TBS-T: 50 mM Tris pH7.6, 

150 mM NaCl, 0.05% Tween20) and blocked with 5% w/v bovine serum 

albumin (BSA, Sigma) in TBS-T for 2 hours at room  temperature or 4oC 

overnight with mild shaking. The primary antibody was added to the blocking 
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buffer and incubated for 2-4 hours at room temperature with mild shaking. 

The membrane was washed twice for 2 minutes with TBS-T and then 

incubated with the appropriate horseradish peroxidise (HRP) conjugated 

secondary antibody, diluted in 5% BSA in TBS-T for 30 to 60 minutes. The 

membrane was washed 4 times for 5 minutes with TBS-T and excess buffer 

was removed. West-pico chemiluminescence (Thermo Fisher) was used to 

visualize the results according to the manufacturer’s instructions. ECL 

Hyperfilm (GE Healthcare) was exposed to the membranes and developed 

in Konica Minolta SRX-101A X-Ray film processor. The antibodies and 

dilutions used are shown in Table 2.5. 

 
 
 
 
 

Target Protein Host Conjugate Vendor Cat. Num. Dilution 
RNA PolII CTD Mouse (mAb) none abcam ab5408 1:1000 
RNA PolII phospho-S2  Rabbit (pAb) none abcam ab5095 1:1000 
NUP188 Rabbit (pAb) none abcam ab86601 1:500 
mouse IgG Goat (mAb) HRP Jackson 115-035-174 1:10000 
rabbit IgG Mouse (mAb) HRP Jackson 211-032-171 1:10000 

 
 

 

 

 

 

 

 

Table 2.6. Antibodies and dilutions used for western blots. 
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2.17. Chromatin immunoprecipitation 

 

2.17.1. Formaldehyde crosslinking 

 

ES cells were grown under standard conditions as described in 2.2.1. 

Formaldehyde was added to the culture medium (16% Thermo Scientific) to 

yield 1% final concentration. The cells were incubated with the formaldehyde 

for 12 minutes at room temperature with mild shaking. The medium was 

discarded and the cells washed twice with ice-cold 0.4 M glycine in PBS, to 

quench any residual formaldehyde. The cells were then harvested by 

scraping in 10 ml 0.5× Trypsin/EDTA and transferred to a 25 ml universal 

tube (Corning). The trypsin was inactivated by addition of 1ml FCS and the 

cells were centrifuged at 300×g for 5 minutes at 4oC.  

 

 

2.17.2. Chromatin purification and sonication 

 

The cells were washed once in ice-cold PBS, resuspended in ice-cold 

buffer A: 10 mM HEPES pH8.0, 10 mM EDTA, 0.5 mM EGTA, 0.25% Triton 

X-100, 1:1000 PIC and 0.1 mM PMSF and incubated for 10 minutes at 4oC 

with rotation. At this point 10 μl of the cell suspension were transferred to a 

haemocytometer to measure the number of cells harvested. The cells were 

centrifuged at 300×g for 5 minutes at 4oC, resuspended in ice-cold buffer B: 

10 mM HEPES pH8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.01% 
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Triton X-100, 1:1000 PIC and 0.1 mM PMSF and incubated for 10 minutes 

at 4oC with rotation. The isolated nuclei were then centrifuged at 400×g for 5 

minutes at 4oC and resuspended in SDS-IP buffer: 25 mM Tris pH8.0, 

150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.25% SDS, 1:1000 PIC and 

0.1 mM PMSF, at a density of 5×106 cells/300 μl SDS-IP buffer. The lysed 

nuclei were transferred to appropriate reaction tubes, depending on the 

volume and sheared using a Diagenode Bioruptor at the high setting for 10 

minutes of 30” sonication pulse, 30” pause at 4oC. The sonicated samples 

were centrifuged at 16,000×g for 5 minutes at 4oC if the sonication was 

performed in 1.5 ml tubes or at 4,000×g for 15 minutes if they were 

sonicated in 15 ml tubes, to clear the sonicated chromatin from insoluble 

membrane fragments and other cell components. The cleared supernatant 

was transferred to a clean reaction tube and mixed with 2 volumes of 

glycerol-IP buffer: 25 mM Tris pH8.0, 150 mM NaCl, 2 mM EDTA, 

1% Triton X-100, 7.5% glycerol, 1:1000 PIC and 0.1 mM PMSF. Finally, 

the sonicated chromatin was distributed in 300 μl aliquots (chromatin from 

1.67×106 cells per aliquot), snap frozen in liquid nitrogen and stored at 

-80oC. 
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2.17.3. Immunoprecipitation 

 

10 μl per immunoprecipitation of protein G coated Dynabeads 

(Invitrogen) were washed twice in citrate/phosphate buffer pH8.0: 24.5 mM 

citric acid, 76.7 mM NaH2PO4 and resuspended in 10 μl citrate/phosphate 

buffer. Bovine serum albumin (BSA, Sigma) was added to the beads at a 

final concentration of 0.5% w/v to block non-specific protein binding. An 

appropriate antibody was added to the beads which were incubated for 2 

hours at 4oC with rotation. The antibodies used are presented in Table 2.6. 

One aliquot of chromatin per immunoprecipitation was thawed slowly on 

ice and added to the 10 μl of the antibody bound Dynabeads. The 

chromatin was incubated with the beads for 2-3 hours at 4oC with rotation. 

The reaction tubes were placed on a magnetic separator to capture the 

beads and discard the supernatant. The beads were resuspended in ice-

cold wash buffer 1: 20 mM Tris pH8.0, 2 mM EDTA, 1% Triton X-100, 

0.1% SDS, 150 mM NaCl and incubated for 5 minutes at 4oC with rotation. 

The beads were then separated again and washed twice for 5 minutes 

with ice-cold wash buffer 2: 20 mM Tris pH8.0, 2 mM EDTA, 1% Triton 

X-100, 0.1% SDS, 500 mM NaCl. The beads were captured on the 

magnetic separator and washed for 5 minutes with ice-cold LiCl buffer: 

10 mM Tris pH8.0, 1 mM EDTA, 0.25 M LiCl, 0.5% NP40, 0.5% sodium 

deoxycholate (Sigma). Subsequently, the beads were washed twice for 2 

minutes with ice-cold TE/NaCl buffer: 10 mM Tris pH8.0, 1 mM EDTA, 

50 mM NaCl. The beads were finally resuspended in 100 μl freshly 
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prepared ChIP elution buffer: 0.1 M NaHCO3, 1% SDS, 200 mM NaCl 

containing 200 μg/ml Proteinase K and incubated overnight at 65oC to 

reverse the crosslinks and to elute and deproteinate the bound DNA. Input 

controls were prepared by treating 30 μl of chromatin with 10 μg RNase A 

for 1 hour at 37oC. Subsequently, 50 μg Proteinase K were added and 

SDS to yield 0.2% final concentration and incubated at 65oC overnight. 

Both input and immunoprecipitated DNA were then purified using the 

Agencourt Ampure PCR purification kit according to the manufacturer’s 

instructions and eluted in 200 μl of 0.1× TE buffer. 

 

 

 

Target Vendor Cat. Num. amount/IP 
RNA polymerase II CTD abcam ab5408 1μg 
H3K4me3 Millipore 07-473 2μl 
H3K9ac abcam ab4441 1μg 

2.17.4. Quantitative PCR and data analysis 

 

The immunoprecipitated DNA was used as template for QPCR on an 

ABI 7900HT or ABI 7500 real time PCR instrument. 5 μl of the 

immunoprecipitated DNA were used as template in a 20 μl reaction 

containing 0.25 μM of each primer in 1× ABI SYBR Green Master Mix. The 

initial data analysis (threshold/baseline) was performed by the ABI SDS 

software and further analyses were performed in Microsoft Excel. 

Standard curve quantitation was used for all the ChIP experiments. 

Moreover, all the histone modification pull-downs were corrected for 

Table 2.7. Antibodies used for chromatin immunoprecipitation 
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nucleosome density by calculating the enrichment of the given 

modification over an H3 immunoprecipitation on the same sample. RNA 

polymerase II immunoprecipitations were corrected for input. The final 

values presented are obtained by normalizing against a genomic region 

that should be positive for the given modification/protein and presented 

either as enrichment over that control region or as fold change over the 

first/untreated time-point in a time-course experiment. The primers used in 

ChIP-QPCR assays are shown in Table 2.8. 

 

 
 

 

Primer Name Sequence 
En1 FW GGAAGTCAAACCCCTCTACTG 

  REV GGATAAGCCACGGCTCAGA 

-20bp Magoh2  FW TACTCCGGTAGGAACGAAA 

  REV CTCCAATGCGAACCTTCAGT 

+60bp Magoh2 FW CAAAAACTCGTGCCCAAACT 

  REV CCGAGGGTAAAAATGTCTATG 

Oct4 promoter FW TGGGCTGAAATACTGGGTTC 

  REV TTGAATGTTCGTGTGCCAAT 

Chr2 FW AGGGATGCCCATGCAGTCT 

  REV CCTGTCATCAGTCCATTCTCCAT 

 

 

 

 

 

 

Table 2.8. Primers used in ChIP-QPCR analyses 
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2.18. Bacterial cultures and BAC/plasmid purification 

 

2.18.1. Bacterial strains 

 

The bacterial strains used were all rpsLmut (resistant to streptomycin), 

RecA- (no endogenous recombinases) E.coli DH10β derivatives. The 

EC1000-pir116 strain expresses the pir116 protein which is necessary to 

propagate the pR6K plasmids used. The EC1000-pir116 strain was the host 

used for all pR6K plasmids. The EC1000-pir166 + pSC101-BAD-ETgA-tet, is 

the same strain only transformed with an L-arabinose inducible construct 

that expresses the RecET system of recombinases of the Rac prophage, 

used for linear-linear recombineering and confers resistance to tetracycline. 

The bacterial artificial chromosome (BAC) host was the GB05-Red strain. 

These bacteria contain a genomic integration of the Red operon from phage 

λ under the control of the L-arabinose inducible BAD promoter. The Red 

operon expresses the Red α,β,γ system for linear into circular 

recombineering.  
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2.18.2. E. coli solid cultures 

 

Bacteria were streaked on 10cm Petri dishes containing low salt 

Luria-Bertani (LB) medium (Lennox) pH8.0, complemented with 1.5% w/v 

agar and the appropriate antibiotic. Antibiotic concentrations used are shown 

in Table 2.9. Bacteria were grown at 37oC, except for strains containing a 

pSC101 plasmid which can only be propagated at 30oC. 

 

 

2.18.3. E. coli liquid cultures 

 

Liquid cultures were inoculated with a single colony picked from a solid 

culture. The bacteria were grown in low salt LB pH8.0 complemented with 

the appropriate antibiotics (see Table 2.9 for antibiotic concentrations) at 

37oC or 30oC (for pSC101 containing strains) with shaking. 
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2.18.4. Small scale BAC and plasmid preparations 

 

Small scale preparations were performed using a Qiagen Miniprep Kit. 

Initially, the bacterial culture was centrifuged for 1 minute at 11,000×g and 

the supernatant was discarded. The cells were resuspended in 200 μl buffer 

P1 (containing RNase A as per the manufacturer’s instructions) and mixed 

for 10 minutes at 1300 rpm on an Eppendorf thermo-mixer at room 

temperature. Subsequently, 200 μl of buffer P2 were added to the cell 

suspension and mixed gently but thoroughly by inverting the reaction tube. 

Finally, 200 μl of buffer P3 were added and mixed gently but thoroughly by 

inverting the reaction tube to neutralise the alkaline lysate. The lysate was 

centrifuged for 20 minutes at 16,000×g to separate proteins, the bacterial 

genome and other insoluble cellular components. The supernatant was 

transferred to a clean reaction tube. The supercoiled DNA was precipitated 

by addition of 600μl isopropanol, incubated for 10 minutes and centrifuged at 

16,000×g for 20 minutes. The supernatant was discarded and the DNA 

pellet washed with 70% ethanol. The ethanol was discarded and the pellet 

left to air-dry briefly. Finally, the DNA was dissolved in an appropriate 

volume of H2O. 
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2.18.5. Large scale BAC and plasmid preparations 

 

Large scale plasmid preparations were performed using a Qiagen Maxi-

prep kit according to the manufacturer’s instructions. The kit is unsuitable for 

bacterial artificial chromosome (BAC) preparations due to the large size of 

the BAC constructs that would not be released efficiently from the DNA 

binding matrix in the kit’s columns. A different method was used to purify 

large amounts of BAC DNA. BAC hosts were grown in 250 ml low salt LB 

with antibiotics for approximately 16 hours. The whole culture was harvested 

and centrifuged at 4000×g for 10 minutes at 4oC. The cells were 

resuspended in 10 ml ice-cold solution A (50 mM glucose, 25 mM Tris 

pH8.0, 10 mM EDTA pH8.0) and lysed using 20 ml solution B (0.2 M NaOH, 

1% SDS). Subsequently the lysate was neutralized by addition of 15 ml 

solution C (3 M potassium acetate, 12% v/v glacial acetic acid) and 

centrifuged at 8,000×g for 5 minutes to pellet most of the insoluble fraction. 

The supernatant was carefully removed and filtered through Whatman 

paper. 30 ml ice-cold isopropanol were added to the cleared lysate, mixed 

and centrifuged at 4,000×g for 5 minutes at 4oC. The DNA/RNA pellet was 

washed once with 70% ethanol and resuspended in 3.75 ml TE. Addition of 

5 ml ice-cold 5M LiCl and centrifugation at 4,000×g for 5 minutes at 4oC 

caused the RNA to precipitate. The supernatant (~9 ml) was transferred to a 

clean tube, mixed with 18 ml absolute ethanol and centrifuged at 10,000×g 

for 10 minutes at 4oC. The DNA pellet was washed with 70% ethanol and 

dissolved in 900 μl TE. 20 μg RNase A were added and the mix was 
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incubated for 1 hour at 37oC to digest any residual RNA. The DNA was 

mixed thoroughly with 0.45 ml of PEG/NaCl solution (2.5 M NaCl, 20% 

polyethylene-glycol 6000) and incubated on ice for 15 minutes. The mix was 

centrifuged at 16,000×g for 10 minutes at 4oC, generating a transparent 

gelatinous pellet. The supernatant was discarded and the pellet re-dissolved 

in 500 μl TE. BAC DNA was purified further by standard phenol/chloroform 

extraction as described in paragraph 2.6 

 

 

 

 

Antibiotic µg/ml application 
ampicillin 50 liquid 
  100 solid 
chloramphenicol 10 liquid 
  15 solid 
tetracyclin 3 liquid 
  5 solid 
gentamicin 1 liquid 
  2 solid 
streptomycin 100 liquid 
  200 solid 
blasticidin S 30 liquid (solid BAC) 
  40 solid 

 

 

 

 

 

Table 2.9. Antibiotic concentrations used for selection of bacteria 
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2.19. Generation of an inducible knock-in Mll2 BAC by 

recombineering 

 

2.19.1. Experimental design and computer software 

 

This recombineering exercise was aimed at modifying a pre-existing 

Mll2-GFP BAC illustrated in Figure 2.2. A gene-trapping stop cassette would 

be inserted in intron1 to prevent Mll2 expression from the BAC. However, the 

cassette would be flanked by loxP sites, allowing for excision of the stop 

cassette by activation of the Cre-ERT2 recombinase in the host Mll2Fc/Fc ES 

cells and thus re-expression of Mll2. The main purpose of this would be to 

examine whether re-expression of Mll2 could rescue the Magoh2 silencing 

phenotype (described in Results). Moreover, the fact that the BACs would be 

inactive until they were induced would provide the opportunity to establish 

stable cell lines, activate the BAC transgenes and follow the kinetics of 

Magoh2 reactivation. This exercise was designed together with Dr. Jun Fu, 

during the author’s 3 month placement in the Stewart lab (BIOTEC, TU 

Dresden, Germany). All the in silico manipulation and planning of the 

experiment was performed using the TextCo Gene Construction Kit. 
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Figure 2.2. Map of the original Mll2-GFP BAC (as supplied by Dr. H. Hofemeister in the Stewart 
lab). F-Ori: BAC origin of replication, cmR: chloramphenicol resistance gene, ampR: ampicilin 
resistance gene, start: MLL2 translation start site, IRES: internal ribosome entry sequence, gb3: 
bacterial promoter, neoR: neomycin resistance gene, SacB: bacterial promoter, SpecR: 
spectinomycin resistance gene, the unlabelled blue boxes are the individual exons of Mll2. 
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2.19.2. Generation of a gene-trapping stop cassette 

 

The gene-trapping cassette was generated by modification of a pre-

existing cassette (pR6K-cm-GT0-lacZneo-CoTC) in the Stewart lab, 

illustrated in Figure 2.3. The lacZneo part of the cassette was exchanged for 

a blasticidin S resistance gene, under the control of the gb3 bacterial 

promoter (gb3-Bsd). The gb3-Bsd fragment was obtained from the pR6K-

2Ty1-2PreS-tdKatushka-biotin-T2A-gb3-Bsd plasmid (Figure 2.4 top panel). 

The pR6K-2Ty1-2PreS-tdKatushka-biotin-T2A-gb3-Bsd was digested to 

completion with AvaI and the ~1.5 kb double band was gel purified and used 

as a template for a PCR reaction with primers BSD1 and BSD2 generating 

the PCR product shown in the lower panel of Figure 2.4. The sequences of 

the primers used for recombineering are shown in Table 2.9. The 3’ portion 

of these primers is complementary to the pR6K-2Ty1-2PreS-tdKatushka-

biotin-T2A-gb3-Bsd plasmid while the 5’ portion is homologous to the pR6K-

cm-GT0-lacZneo-CoTC. The homologous regions are labelled in Figures 2.3 

and 2.4 as HA1 and HA2. EC1000-pir116+pSC101-ETgA-tet were cultured 

overnight at 30oC in tetracycline containing LB (tet-LB). 30 μl of the overnight 

culture were used to inoculate 1.5 ml tet-LB and were cultured for a further 2 

hours on a thermo-mixer at 30oC at 900 rpm. L-arabinose  was added to the 

bacterial cultures (0.2% final concentration) to induce expression of the 

RecET recombinases and cultured for a further 1 hour at 37oC. The cells 

were centrifuged at 10,000×g for 1 minute, washed twice with ice-cold H2O 

and resuspended in residual volume (~30 μl).  100 ng of the PCR product 
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and 0.5 μg of SphI/PvuI digested pR6K-cm-GT0-lacZneo-CoTC were added 

to the bacteria and the mixture was transferred in a pre-cooled 1 mm gap 

electroporation cuvette. The bacteria were transformed by electroporation at 

1350 V. Warm LB culture medium without any antibiotics was added 

immediately after electroporation and the transformed bacteria were 

transferred in reaction tubes where they were cultured for 1 hour at 37oC 

with shaking. Finally, the transformed bacteria were centrifuged at 10,000×g 

for 1 minute and streaked on LB-agar plates containing 30 μg/ml 

blasticidin S (Invivogen). Importantly, the transformation was also performed 

with cells that had not been induced with L-arabinose, to exclude acquired 

resistance in the absence of recombination. The plates were incubated 

overnight at 37oC and single colonies were picked and used to inoculate LB 

medium containing 30 μg/ml blasticidin S. The colonies were grown 

overnight at 37oC with shaking and the plasmid contained was extracted 

using the method described in paragraph 2.17.4. The isolated plasmids 

(10-20 μg) were digested to completion with 10 U PvuII and resolved on an 

agarose gel. The PCR product would introduce a novel PvuII site in the 

plasmid therefore enabling detection of successful recombineering. Two 

clones with the correct digestion pattern were sent for sequencing (core 

sequencing facility, Max Planck Institute, Dresden, Germany) to verify the 

integrity of the construct. 
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Figure 2.3. The pR6K-cm-GT0-lacZneo-CoTC plasmid. This was used as a base to 
generate a STOP cassette. The regions labelled HA1 and HA2 were used to swap lacZ-neo 
cassette for a gb3-Bsd, thus making the construct smaller and easier to work with. R6K Ori: 
origin of replication, cmR: chloramphenicol resistance gene, FRT: site recognised by the Flp 
recombinase, SA: splice acceptor, GT0: adapter sequence to maintain the T2A in-frame, 
T2A: sequence that instructs the ribosome to cleave the nascent peptide and begin 
synthesizing a new one, SV40-pA: poly-A signal from the SV40 virus, synt-Pa: poly-A signal, 
CoTC: transcription termination sequence, loxP: site recognised by the Cre recombinase. 
PvuI and SphI mark the sites for the respective restriction enzymes. 
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Primer Sequence 

Mll2-
genta1 

GTTGTGGACAAGTGGGATTCTCGGGGCTCCTGGAAAGAAGATAACT

TCGTATAGCATACATTATACGAAGTTATGCGTGTTTCGAGCATGTT

TCTGCGTAGTGTCAGCTCATCC 

  
Mll2-
genta2 

TAGCTACCCAAACGCTCCACGCAGCCTGCTTCCTTCGTGGTGTCCA

TCATCCTGTAGGTGTAGACGACGACGAACAGAG 

  

BSD1 
TCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTGCTATG

GCCACAACCTGTTAC 

  

BSD2 
TCTGGTTATGTGTGGGAGGGCTAAGCGGGACTCTGGGGTTCGAAAT

GACCGACCAAGCGACGCC 

Table 2.10. Sequence of primers used in recombineering. 
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Figure 2.4. The pR6K-2Ty1-2PreS-tdKatushka-biotin-T2A-gb3-Bsd plasmid (top) was 
generated as a protein tagging construct in the Stewart lab, however it was convenient to 
generate a gb3-Bsd cassette. The plasmid was digested with AvaI and used a PCR 
template in a reaction with primers BSD1 and 2 to generate the gb3-Bsd PCR cassette 
(bottom). 
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Figure 2.5. The pR6K-cm-GT0-Bsd-CoTC plasmid is the recombination product of the gb3-
Bsd PCR product into the pR6K-cm-GT0-lacZneo-CoTC. R6K: origin of replication, cmR: 
chloramphenicol resistance gene, FRT: site recognised by the Flp recombinase, SA: splice 
acceptor, GT0: adapter sequence to maintain the T2A in-frame, T2A: sequence that instructs 
the ribosome to cleave the nascent peptide and begin synthesizing a new one, SV40-pA: poly-
A signal from the SV40 virus, synt-Pa: poly-A signal, CoTC: transcription termination 
sequence, loxP: site recognised by the Cre recombinase. Junction markers flank the cassette 
that was introduced into this plasmid. 
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2.19.3. Modification of the Mll2-BAC 

 

Initially, the BAC was modified by using an rpsL-genta cassette, obtained 

by PCR on the pR6K-photo-rpsL-genta plasmid (Figure 2.6). Primers 

Mll2-genta1 and 2 were used to amplify the rpsL-genta portion of the 

plasmid. These primers contain the HA1 and HA2 regions that will mediate 

the final cassette exchange and homology to intron1 of Mll2 that will mediate 

recombineering into the BAC. Moreover, primer Mll2-genta1 contains a loxP 

site that will be situated 5’ of the final cassette. The 3’ loxP site was already 

on the pR6K-cm-GT0-lacZneo-CoTC as shown in Figures 2.3 and 2.4. The 

BAC host was (GB05-Red E.coli) cultured overnight at 37oC with shaking 

and prepared for transformation/recombineering as described in paragraph 

2.18.2 for the EC1000-pir116+pSC101-ETgA-tet. The BAC host was 

transformed with 200 ng of the rpsL-genta cassette by electroporation and 

cultured overnight in LB-agar plates containing 2 μg/ml gentamicin (Sigma). 

The introduction of the wild type rpsL restores sensitivity to streptomycin, 

allowing for counter-selection when the rpsL-genta cassette is exchanged for 

the gb3-Bsd. The resulting BACs were tested by single digestions with 

EcoRI, PvuII, BamHI and BglII. One clone was selected to proceed further. 

The BAC host was prepared again for transformation/recombineering and 

transformed by electroporation with 1μg of EcoRI/SwaI digested pR6K-cm-

GT0-BSD-CoTC. The transformed bacteria were cultured on 200 μg/ml 

streptomycin and 30 μg/ml blasticidin S LB-agar plates. Single colonies were 

picked and tested by restriction digestion and sequencing. Unfortunately, 
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there were no correct clones. Due to unforeseen recombineering events the 

3’ of the cassette integrated in different regions of the BAC, possibly at the 

gb3-neo downstream of the Mll2 gene. The structure of the final construct is 

shown in Figure 2.7. 

 

 

Figure 2.6. The pR6K-photo-rpsL-genta plasmid (top) is an adaptor cassette for 
recombineering allowing for selection of the recombined clones and counter selection 
when this cassette is swapped for the final cassette. The adaptor cassette was obtained 
by a PCR reaction on this plasmid using primers Mll2-genta1 and 2 (bottom). Primer Mll2-
genta1 contains a region homologous to the Mll2 BAC (BAC HA1), a loxP site, the HA1 
region and the primer region that is complementary to the 5’ of the Tn-10 promoter, while 
primer Mll2-genta2 contains a BAC homology region (BAC HA2) the HA2 region and the 
primer sequence that is complementary to the 3’ of genta. rpsL: E. coli wild type rpsL 
confers sensitivity to streptomycin, genta: gentamicin resistance gene. 
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Figure 2.7. The final Mll2-Bsd-NGFP-neo-spec-amp construct would contain the stop 
cassette in intron1 trapping the transcript in the cassette and generating truncated mRNA. The 
cassette would be excisable in the Mll2F/F and Mll2F/+ ES cells that express the Cre-ERT2, 
therefore allowing the full Mll2 transcript to be generated from the BAC construct. 
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3. RESULTS 

 

3.1.  Magoh2 transcriptional regulation and chromatin structure 

 

The main aim of this work was to investigate the molecular details of 

how MLL2 is involved in driving transcription from the Magoh2 CpG island 

promoter. To this end, we studied the chromatin structure and expression 

of this gene in wild type and Mll2-/- ES cells. The latter harbour a 

gene-trapping cassette in intron 1 of both alleles of Mll2 (Figure 3.1). The 

nascent Mll2 mRNA is spliced to the cassette which contains a neomycin 

resistance gene, two poly-adenylation signals and a transcriptional 

terminator, thus preventing expression of wild-type Mll2. 

 

Figure 3.1. Schematic of the Mll2 alleles in Mll2-/- cells. The mouse embryonic stem cell lines 
used harbour either the wild type Mll2 allele (E14) or the Mll2– allele. The Mll2– allele contains a 
STOP cassette within intron1 of Mll2. The STOP cassette is composed of a splice acceptor (sA), an 
internal ribosome entry sequence (IRES), the β-galactosidase gene (lacZ), a neomycin resistance 
gene (neo), two poly-adenylation signals (pA) and a transcriptional terminator sequence (not 
shown). Black boxes indicate the Mll2 exons. MLL2 is post-translationally cleaved by the Taspase 1 
protease. The Taspase cleavage site is indicated by the arrow. 
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3.1.1. Magoh2 is transcriptionally silenced in the absence of MLL2 

 

To test whether Magoh2 expression depended on the presence of 

MLL2, we measured Magoh2 steady-state mRNA levels by reverse-

transcription (RT) and quantitative real-time PCR (QPCR) in E14 wild type 

and Mll2-/- ES cells. Our results demonstrate that Magoh2 expression was 

reduced to near background levels in the Mll2-/- ES cells (detected at CT 

>30). This is consistent with previously reported findings (Glaser et al., 

2009) suggesting that MLL2 is directly or indirectly required for Magoh2 

expression (Figure 3.2).  

 

 

 

 

 

 

Figure 3.2. Magoh2 is transcriptionally silenced in Mll2-/- ES cells. 
Reverse transcription and quantitative PCR with primers specific for 
Magoh2. Bars represent the mean +sd of 6 measurements (3 biological x 
2 technical replicates) 
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3.1.2. DNaseI hypersensitive sites on the Magoh2 locus 

 

To investigate the reason for Magoh2 silencing, we first had to identify 

potential cis regulatory elements regulating Magoh2 expression. To this 

end we employed DNaseI hypersensitive site (DHS) mapping. Three 

conserved intronic regions were identified (through the UCSC genome 

browser’s mammalian conservation plots) which could play a role in 

Magoh2 transcriptional regulation and were termed conserved sequence 

(CS) 1, 2 and 3 (Figure 3.3 Top panel). The assay was designed to 

encompass the entire Magoh2 gene and ~7Kb upstream (up to the end of 

the neighbouring Styk gene) within one BamHI restriction fragment. The 

region downstream of the Magoh2 gene was not examined as it is a 30Kb 

long gene desert that is enriched in repeat elements, making analyses 

technically challenging. Hybridization with probes on either side of the 

BamHI restriction fragment revealed the presence of two DNaseI 

hypersensitive sites, termed HSp and HS1 (Figure 3.3 Middle and Lower 

panel).  

HSp forms over the Magoh2 promoter only in E14 wild type cells. The 

absence of HSp in the Mll2-/- cells suggests that MLL2 is involved in the 

maintenance of the “open chromatin” conformation of the Magoh2 

promoter. HS1 was found to be in close proximity to conserved sequence 

1 (CS1). To accurately map the position of HS1 we designed a higher 

resolution DHS mapping experiment, using probes closer to HS1 (Figure 

3.4). Southern blotting revealed that the HS1 does not overlap CS1; rather 
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it forms over a simple repeat element. The increased DNaseI sensitivity of 

this site may be because the DNA sequence of the repeat element is 

unfavourable for nucleosome assembly. If that were the case we would 

not expect it to change upon MLL2 depletion. Although CS1, 2 and 3 

contain putative binding sites for transcription factors, they do not seem to 

be active in ES cells. These elements may act as enhancers either for 

Magoh2 or other nearby genes in other cell-types. 
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Figure 3.3. DNaseI hypersensitive sites on the Magoh2 locus in Mll2-/- and E14 wild 
type ES cells. Top panel: Schematic of the Magoh2 locus. CS1, 2 and 3 mark three 
conserved regions within the locus that could potentially act as cis regulatory elements. 
Probe1 and 2 mark the two probes used for the Southern blots shown in the lower and 
middle panels respectively. Arrows show the positions of the two DNaseI hypersensitive 
sites detected. The last three lanes serve as a DNaseI non-digested control (BamHI) and 
as molecular weight markers (BamHI+EcoRI/BglII). Middle panel: Hybridization with 
Probe 2. Arrows show the two DNaseI hypersensitive sites detected. Lower panel: 
Hybridization with Probe 1 verifies the presence of the two DNaseI hypersensitive sites. 
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Figure 3.4. HS1 does not overlap CS1. Top panel: Schematic of the Magoh2 locus. 
Probe 3 and Probe 4 mark the two probes used for the Southern blots shown in the 
middle and lower panels respectively. Arrows show the positions of the two DNaseI 
hypersensitive sites detected. The repeat element is illustrated in brackets. The last 
three lanes serve as a DNaseI non-digested control (EcoRI) and as molecular weight 
markers (EcoRI+SmlI/BseYI). Middle panel: Hybridization with Probe 3. HS1 is 
indicated by the arrow. The position of CS1 is illustrated by the bar. Lower panel: 
Hybridization with Probe 4. 
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3.1.3. The Magoh2 promoter harbours binding sites for SP and CREB 

family transcription factors 

 

To elucidate how the Magoh2 promoter is activated we had to identify 

which sequence specific transcription factors bind this promoter. Potential 

transcription factor binding sites were identified by in silico sequence 

analyses. The prediction algorithms are publicly available through the 

Pasteur Institute’s website (TFScan, bioweb.pasteur.fr). The transcription 

factors that could potentially bind the Magoh2 promoter are illustrated in 

Figure 3.5. 

 

 

 

 

 

Figure 3.5. Primary DNA sequence of the Magoh2 CpG island promoter. Capital letters mark 
the CpG island. The CpG island is well defined as it is flanked on the 5’ by a series of AC repeats 
and a stretch of T on the 3’. This figure also illustrates in silico predicted transcription factor 
binding sites (TFScan, www.bioweb.pasteur.fr). The TSS shown is as it is annotated in the UCSC 
genome browser and overlaps a CAGE peak as shown by data produced by the FANTOM 
consortium. 
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To investigate whether the in silico predicted TFs could bind the 

Magoh2 promoter in vitro we performed electrophoretic mobility shift 

assays. Overlapping double stranded DNA probes were designed to cover 

the Magoh2 promoter and were incubated with nuclear protein extracts 

from E14 wild type ES cells (Figure 3.6). Protein binding was detected for 

probes 1 and 7 that contain SP1/3 and CREB binding sites respectively. 

Weak protein binding was observed for probes 5, 8 and 9. In all cases, the 

observed protein binding could be disrupted by use of a 100-fold excess of 

unlabelled probe. 

To verify that SP family members are the proteins binding to probe 1, 

the assay was repeated. This time we used antibodies specifically 

targeting either SP1 or SP3 to generate a super-shift (Figure 3.7). A probe 

containing the SP consensus sequence was used as a competitor (lane 3) 

and could completely abolish protein binding on probe 1, suggesting that 

protein binding is localised on the predicted SP sites. The super-shifts 

observed when α-SP antibodies were added to the binding reactions 

(lanes 4 and 5) verify that SP1 and SP3 indeed bind to the Magoh2 

promoter in vitro. 
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Figure 3.6. SP1/3 and CREB bind the Magoh2 promoter in vitro. Top panel: 
Double stranded DNA probes (1-9) were designed to cover the entire Magoh2 CpG 
island promoter. Lower panel: Electrophoretic mobility shift assays using the probes 
shown above. In vitro protein binding to probe1 and probe7 is shown by arrows. Weak 
protein binding was observed on probes 5 and 9 indicated by the asterisks. Diamonds 
(probes 3 and 4) indicate non-specific signal as a result of mechanical damage to the 
gel. All the probes were titrated (1-15 pmoles) so that 20,000cpm/lane were loaded on 
the gel. The non-labelled competitor was used at 100-fold excess of the respective 
labelled probe. 
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Figure 3.7. SP1 and SP3 are verified as being able to bind the Magoh2 promoter. 
The electrophoretic mobility shift assay was repeated for probe1. This time a probe 
containing the SP1/3 consensus sequence (courtesy of Dr. S. Bowers) was used as 
non-labelled competitor in a 100-fold excess of the labelled probe (lane 3). Antibodies 
against SP1 and SP3 (1μg each) were added to the binding reaction (lanes 4 and 5 
respectively). The position of the super-shifted bands is indicated by arrows. The 
probe was titrated such that 20,000cpm/lane were loaded on the gel.  



119 
 

3.1.4. The SP and CREB sites are not occupied in vivo 

 

The in vivo presence of SP and CREB family members on the Magoh2 

promoter was investigated by in vivo dimethyl-sulphate (DMS) footprinting. 

DMS is a highly reactive molecule that methylates guanine residues on 

DNA at the N7 position (Brookes and Lawley, 1963). Subsequent alkaloid 

and heat treatment cleaves DNA at these modified sites (Maxam and 

Gilbert, 1977). G-residues within TF binding sites will be protected from 

DMS mediated methylation if the TF is bound in vivo and thus escape 

alkaloid/heat induced cleavage. Furthermore, TF binding can lead to 

increased methylation of G residues immediately adjacent to the TF 

binding site which can then be detected as increased band intensity. DNA 

fragments are isolated, amplified, radiolabelled and separated on high 

resolution denaturing acrylamide gels. When comparing in vivo to in vitro 

DMS treated DNA, loss of specific bands in the in vivo sample indicates 

that this particular G residue is bound by a protein and is not accessible to 

DMS. The advantage of this technique is that it allows us to investigate 

binding of essentially any factor to a specific region within a single assay. 

These experiments did not reveal any protection from DMS-mediated 

methylation of G residues within the SP1/3 or CREB binding sites (Figure 

3.8), suggesting that if these factors bind the Magoh2 promoter in vivo, the 

binding is weak and/or transient. 
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Moreover, little difference could be reproducibly observed between the 

E14 wild type and Mll2-/- ES cells over the entire Magoh2 promoter. Only 

one G residue appeared to be consistently (over 3 experiments) protected 

from DMS-mediated methylation (+122bp) in the wild type cells when 

compared to G-reaction or Mll2-/- cells. Although this protection was 

reproduced in three independent experiments, no known TF was predicted 

to bind within that region. 

To further investigate the role of SP1/3 in Magoh2 regulation, Magoh2 

steady state mRNA levels were measured in Sp1-/-, rescued Sp1-/- (Sp1R) 

and Sp3-/- ES cells (Figure 3.9). Magoh2 mRNA levels were unaltered in 

the Sp3-/- ES cells when compared to wild type E14 cells. The Sp1-/- cells 

exhibited a marked overexpression of Magoh2, but the same 

overexpression was observed in the Sp1R cells. Since re-expression of 

Sp1 did not attenuate the expression levels of Magoh2, it is more likely 

that this overexpression is due to clonal differences between the individual 

cell lines rather than a specific effect of SP1 depletion. We conclude that 

SP1 and SP3 most likely do not have individual non-redundant roles in 

Magoh2 regulation. 
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Figure 3.8. SP1/3 and CREB do not bind the Magoh2 promoter in vivo. Dimethyl-sulphate 
footprinting over the Magoh2 promoter in E14 wild type ES cells and the Mll2-/- ES cells. 
Annotation is relative to the transcription start site, indicated by the arrow. G: G-reaction (in vitro 
DMS treated genomic DNA). The CREB and the two SP1/3 binding site are shown by the bars. 
White circle indicates a G nucleotide that was consistently protected in 3 individual experiments. 
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Figure 3.9. SP1 and SP3 do not appear to have an individual functional role in Magoh2 
regulation. Sp1 and Sp3 knock-out ES cell lines were used to measure Magoh2 expression by 
reverse transcription and quantitative PCR. Sp1R are Sp1-/- ES cells rescued with a Sp1 
expressing plasmid. The bars represent the mean +sd of 4 measurements (2 biological x 2 
technical replicates). 
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3.1.5. The Magoh2 transcription start site is occupied in the presence of 

MLL2 

 

To identify other proteins that may bind the Magoh2 promoter we 

employed DNaseI footprinting (Figure 3.10). The methodology of this 

assay is very similar to DMS footprinting, however as DNaseI is much 

larger than DMS, it allows detection of DNA regions that are covered by a 

protein complex and gives a measure of overall chromatin accessibility, as 

indicated by the intensity of the DNaseI produced cleavage products 

(Galas and Schmitz, 1978). The results demonstrated that a protein or 

more likely a protein complex is tethered to the TSS region, providing 

protection from DNaseI digestion, as compared to an in vitro DNaseI 

digested control. This protection spans a 37bp stretch and is flanked by 

DNaseI hyper-sensitive regions on both sides. It is likely that this DNaseI 

protection is due to the presence of a RNA polymerase II pre-initiation 

complex on the Magoh2 promoter. Cells lacking MLL2 exhibit no such 

binding, suggesting that MLL2 is required for recruitment of these protein 

factors to the Magoh2 promoter. Additionally, the SP and CREB binding 

sequences on the Magoh2 promoter were found to be accessible to 

DNaseI (data not shown), further suggesting that these factors are not 

binding the Magoh2 promoter in vivo. 
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Figure 3.10. The Magoh2 transcription start site is occupied by a large protein complex. 
DNaseI footprinting of the Magoh2 CpG island promoter. The region protected from DNaseI 
digestion spans from -8bp to +29bp, as indicated by the white bar. The protected region is flanked 
by hypersensitive regions (black bars) G: G-reaction, ctrl: in vitro DNaseI digested DNA. Arrow: 
transcription start site. Annotation is relative to the transcription start site. Primers on the Oct4 
promoter were used to verify equal DNaseI digestion of the samples.  
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3.1.6. Loss of active histone marks and RNA Pol II in Mll2-/- cells 

 

As histone modifications have been proposed to have some role in 

transcriptional regulation, we wanted to investigate whether Magoh2 

silencing was accompanied by changes in the chromatin landscape, as 

suggested for other genes after MLL1 depletion. To this end we employed 

chromatin immunoprecipitation studies to examine the chromatin state of 

the Magoh2 promoter (Figure 3.11). These assays revealed that when 

Magoh2 is expressed, nucleosomes on the Magoh2 promoter bear the 

H3K4me3 mark. The levels of this modification were greatly reduced in the 

absence of MLL2, consistent with its H3K4 methyltransferase activity. As 

H3K4me3 is considered to be a histone mark of active transcription, this 

finding is consistent with the observed Magoh2 transcriptional silencing in 

Mll2-/- ES cells presented in Figure 3.2. Additionally, acetylation of histone 

H3 on lysine 9 (H3K9ac) – another mark associated with active 

transcription – was also absent from the Magoh2 promoter in Mll2-/- cells. 

Immunoprecipitation with an antibody against RNA polymerase II 

demonstrated that the transcriptional machinery engages with the Magoh2 

promoter only in the presence of MLL2, further supporting the DNaseI 

footprinting experiments presented in Figure 3.10. These experiments are 

consistent with the hypothesis that MLL2 is required to establish the active 

chromatin environment on the Magoh2 promoter. Additionally, the data 

suggest that MLL2 recruitment and H3K4me3 deposition coincide with 

recruitment of the basal transcription machinery to the Magoh2 promoter. 
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Figure 3.11. Loss of active chromatin marks and RNA polymerase II on the Magoh2 
promoter in the absence of MLL2. ChIP assays were performed using antibodies against 
H3K4me3 (top), H3K9ac (middle) and the RNA polymerase II CTD (lower). The 
immunoprecipitated DNA was amplified by QPCR with a primer set on an inactive region on 
chromosome 2 (negative control) and two primer sets on the Magoh2 promoter centred around 
-20bp and +60bp as indicated. Data for histone modifications are corrected for nucleosome 
density, as determined by a histone H3 immunoprecipitation. Bars represent the mean +sd of 
biological triplicates. A value of 1 is approximately 19% of Input. 
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3.1.7. Acquisition of DNA methylation on the Magoh2 CpG island in the 

absence of MLL2 

 

Extensive research has shown that when CpG islands become 

transcriptionally silenced they do not necessarily acquire DNA methylation. 

With regards to the Magoh2 CpG island promoter, Glaser et al. (2009) – 

using an inducible Mll2 knock-out system – reported that this promoter is 

methylated 12 days after Mll2 deletion. Our initial experiments using the 

methylation sensitive restriction enzyme HpaII and PCR over a single 

HpaII site suggested that this is indeed the case (data not shown). To 

further validate this result, total genomic DNA from E14 wild type and  

Mll2-/- cells was treated with sodium bisulphite, amplified by PCR and 

sequenced on a pyrosequencer (Figure 3.12). The result clearly shows an 

increase in cytosine modification levels in the Mll2-/- cells. 

A significant amount of cytosine modification was detected in the wild 

type cells as well. However, the method employed cannot distinguish 

between methylated and hydroxymethylated cytosines (Jin et al., 2010). It 

is likely that the modification responsible for this phenomenon in the E14 

wild type cells is not methylation, as promoter methylation almost 

invariably leads to transcriptional silencing. 
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Figure 3.12. DNA methylation is increased on the Magoh2 promoter in the absence of MLL2. 
Genomic DNA from E14 wild type and Mll2-/- was treated with sodium bisulphite, amplified with 
primers specific for the bisulphite converted Magoh2 CpG island sent for pyrosequencing. The 
overlaid bars represent the percentage of modified cytosine residues within each sample. Each 
point on the X-axis represents an individual CpG dinucleotide. The Magoh2 transcription start site is 
indicated by the arrow. 
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3.2. Chromatin dynamics at the Magoh2 promoter 

 

3.2.1. An inducible Mll2 knock-out system 

 

So far we showed that Magoh2 expression, normal protein occupancy 

on the promoter and lack of DNA methylation depended on the presence 

of MLL2. To gain insight into the causal relationships of these 

observations we employed an inducible knock-out system. This system 

would allow us to perform kinetic experiments over a time-course to 

establish the order of events leading from the active open-chromatin state 

as seen in E14 WT cells to the silenced and DNA methylated state seen in 

Mll2-/- cells. The Mll2F/F and Mll2F/+ ES cells ubiquitously express the Cre 

recombinase fused to a mutant oestrogen receptor ligand-binding domain 

(Cre-ERT2) from the Rosa26 locus. Also, the wild type Mll2 alleles have 

been modified to yield the Mll2F allele (Figure 3.13). In this allele, exon 2 of 

Mll2 is flanked by loxP sites (the Cre cognate sequence). Activation of the 

Cre recombinase by addition of 4-hydroxytamoxifen (OHT) to the culture 

medium results in deletion of Mll2 exon 2, causing a frame shift and 

introducing stop codons within exon 3. Consequently, no functional MLL2 

can be synthesised in the cells after OHT induction. The Mll2F/F cells lose 

both functional Mll2 alleles upon Cre activation, while the Mll2F/+ lose only 

one allele and are used as a control cell line to exclude any OHT/Cre 

induced effects. The recombined (null) allele is hereafter termed Mll2Fc. 
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The efficiency and kinetics of Cre-mediated recombination were 

examined by Southern blotting. As illustrated in Figure 3.13, recombination 

is complete 24 hours post OHT induction. Importantly, no outgrowth of 

non-recombined cells was observed up to 8 days post induction, as 

detected by the absence of the Mll2F allele. 

 

 

 

 

 

 

Figure 3.13. The inducible Mll2 knockout system. Top panel: ES cells carrying an 
inducible Mll2 knockout allele (Mll2F) express the Cre recombinase fused to a mutant 
oestrogen receptor ligand-binding domain (Cre-ERT2) from the ubiquitous Rosa26 locus. 
These cells have one or two conditional alleles (Mll2F/+ and Mll2F/F respectively) of Mll2. 
The recombined allele is termed Fc. Middle panel: Mll2 Southern blot after OHT treatment. 
The three different alleles for Mll2 can be distinguished. F: conditional allele, WT: wild type 
allele, Fc: recombined null allele. Lower panel: Quantitation of the above Southern blot. 
The intensity quantification was performed using the QuantityOne software suite (Biorad). 
Error bars represent the standard deviation of 2 independent experiments. 

Days post OHT 



131 
 

3.2.2. Reduced proliferation of ES cells post Mll2 deletion 

 

Previous studies (Milne et al., 2005b; Takeda et al., 2006; Tyagi et al., 

2007) have reported that MLL1 may be involved in cell cycle progression 

and regulation of proliferation. We hypothesised that the highly related 

MLL2 protein may have similar functions. To test this, we recorded cell 

numbers over a time-course, as it was the simplest way of measuring 

growth rates. This experiment demonstrated that Mll2Fc/Fc cells exhibit 

slower growth rates than their non-induced Mll2F/F counterparts (Figure 

3.14), especially between 2 and 4 days post OHT induction. Importantly, 

loss of only one allele of Mll2 did not seem to affect cell proliferation rates, 

as no differences were observed in the OHT induced (Mll2Fc/+) versus non-

induced Mll2F/+ cells.  

To find the reason for this apparent proliferation defect, we examined 

the cell cycle stage distribution of these cells to identify whether MLL2 

plays a role in this process, as it has been suggested for MLL1. The cell 

cycle stage distribution was examined by FACS analysis of methanol 

fixed, propidium iodide stained Mll2F/F cells, over a 4-day time-course. The 

cells were separated into three populations based on their DNA content. 

The percentages of cells in each stage were plotted in a bar chart (Figure 

3.15). This experiment revealed that there is no apparent block in the cell 

cycle after Mll2 deletion. Further investigation revealed that cells lacking 

MLL2 exhibit slightly increased apoptosis rates (Figure 3.16), as measured 

by FACS analysis of Annexin V stained Mll2F/F ±OHT ES cells. This 
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increase in apoptosis could account for the lower cell counts shown in 

Figure 3.14.  

 

 

 

 

 

Figure 3.14. Deletion of both Mll2 alleles results in growth inhibition. Cells were 
grown under standard conditions, harvested and counted in a haemocytometer at the 
indicated time-points. The cells were passed normally during the course of this experiment 
(on days 1 and 3) and the dilution factor is calculated in the results presented. A 
representative of 3 experiments is shown. 
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Figure 3.15. No apparent block in cell cycle progression after Mll2 deletion. Cell 
cycle distribution of control (-OHT) and induced (+OHT) Mll2F/F cells was measured by 
propidium iodide staining and fluorescence activated cell sorting after methanol fixation 
over a 4 day time-course. A representative of 2 experiments is shown. 
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Figure 3.16. Increased apoptosis after MLL2 depletion. Mll2F/F and Mll2F/+ cells 
were grown under standard conditions and induced with OHT. The cells were 
harvested at the indicated timepoints, stained with FITC conjugated Annexin V 
and propidium iodide (PI) and analysed by fluorescence activated cell sorting. 
Bars represent the mean fold change of the Annexin V positive, PI negative cell 
fraction (2 biological replicates).  
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3.2.3. Magoh2 steady state mRNA levels decrease 2 days post OHT 

induction 

 

To establish the kinetics of Magoh2 transcriptional silencing we 

measured Magoh2 steady state mRNA levels over a 4-day period post 

OHT induction (Figure 3.17). Although Mll2 deletion was complete within 1 

day post addition of OHT, the first transcriptional effects on Magoh2 were 

only observed 2 days post induction. This discrepancy can be attributed to 

both the stability of the Magoh2 mRNA and the half-life of the MLL2 

protein, which has been shown to be approximately 36 hours in the same 

cell system (Glaser et al., 2009). Due to the lack of a suitable antibody the 

kinetics of MLL2 depletion could not be examined in this study and indirect 

effects cannot be completely excluded. It is however reasonable to 

assume that MLL2 levels reach critically low levels between 1 and 2 days 

post OHT induction, as this would be consistent with previously published 

reports (Glaser et al., 2009) and both an increase in apoptosis and a 

depletion of Magoh2 mRNA were first observed at this time point. 

Subsequently, a nearly complete depletion of Magoh2 mRNA was 

observed 4 days post OHT induction. No significant down-regulation of 

Magoh2 was observed in the Mll2F/+ cells, suggesting that one allele of 

Mll2 was sufficient to maintain Magoh2 expression. There was however no 

indication on whether MLL2 protein levels in the Mll2F/+ cells were 

decreased by deletion of one Mll2 allele or if the cells compensated for this 
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loss by increasing transcription or translation rates of the remaining Mll2 

allele. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. Magoh2 is transcriptionally silenced 4 days post Mll2 deletion. Magoh2 
mRNA expression after deletion of both alleles of Mll2, as detected by reverse transcription 
and quantitative PCR. Bars represent mean +sd of 4 measurements (2 biological x 2 
technical) 
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3.2.4. The pre-initiation complex on the Magoh2 promoter is disrupted 4 

days post OHT induction 

 

We have previously shown using Mll2-/- cells that the Magoh2 promoter 

is not occupied by what we assume is a RNA polymerase II pre-initiation 

complex. To gain insight into the kinetics of RNA polymerase II depletion, 

we repeated the DNaseI footprinting experiments described previously, 

this time using the inducible knock-out system over a time-course of 8 

days (Figure 3.18). We observed the characteristic DNaseI protection 

around the transcription start site flanked by hypersensitive regions, as 

described previously in E14 ES cells (Figure 3.10). This pattern was 

maintained in the Mll2F/+ cells throughout this time-course, consistent with 

the reported maintenance of Magoh2 mRNA levels. Contrastingly, the 

DNaseI digestion pattern observed in Mll2F/F cells over the Magoh2 

transcription start site was altered 4 days post OHT induction, coinciding 

with the observed Magoh2 mRNA depletion. The digestion pattern 

observed 8 days post OHT induction very closely resembled the pattern 

seen previously in the Mll2-/- cells. These experiments point to a 

requirement for MLL2 in order to maintain stable association of the RNA 

polymerase II complex with the Magoh2 promoter in vivo.  

As DNaseI footprinting only detects DNaseI mediated cuts on one 

strand of the DNA molecule, the assay was repeated with primers specific 

for the opposite strand, verifying the results described above (Figure 3.19). 
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Figure 3.18. MLL2 is required to maintain a stable RNA polymerase II complex on the 
Magoh2 promoter. DNaseI footprinting over the Magoh2 promoter in OHT treated Mll2F/F and 
Mll2F/+ cells. The region protected from DNaseI digestion spans from -12bp to +35bp, as 
indicated by the white bar. As the control sample appears under-loaded, protection is detected 
as decreased intensity as compared to the lane average signal intensity. The protected region 
is flanked by hypersensitive regions (black bars) G: G-reaction, ctrl: in vitro DNaseI digested 
DNA. Time post OHT induction is indicated above the relevant lanes. Mll2-/- ES cells were 
included to demonstrate the DNaseI digestion pattern in the inactive state. Arrow: transcription 
start site. Annotation is relative to the transcription start site. Primers on the Oct4 promoter 
were used to verify equal DNaseI digestion of all samples. The regions that change in DNaseI 
sensitivity are shown in the red boxes. 
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Figure 3.19. MLL2 is required to maintain a stable RNA polymerase II complex on the 
Magoh2 promoter – analysis of reverse strand. A different set of primers was used on the 
reverse strand to verify the results illustrated in Figure 3.18. As the control sample appears 
under-loaded, protection is detected as decreased intensity as compared to the lane 
average signal intensity. Black bars indicate hypersensitive regions while white bars indicate 
protected regions. G: G-reaction, ctrl: in vitro DNaseI digested DNA. Time post OHT 
induction is indicated above the relevant lanes. Mll2-/- ES cells were included to demonstrate 
the DNaseI digestion pattern in the inactive state. Arrow: transcription start site. Annotation 
is relative to the transcription start site. Primers on the Oct4 promoter were used to verify 
equal DNaseI digestion of all samples. The regions that change in DNaseI sensitivity are 
shown in the red boxes. 
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3.2.5. Loss of the active histone marks and RNA polymerase II closely 

follow Magoh2 expression levels 

 

To further examine the kinetics of chromatin alterations accompanying 

Magoh2 silencing we employed chromatin immunoprecipitation over a 4-

day time-course after Mll2 deletion (Figure 3.20).  In concordance with the 

results presented above, loss of the active H3K4me3 and H3K9ac marks 

was first observed 2 days post OHT induction in Mll2F/F cells. The levels of 

both histone marks decreased to near background levels 4 days post 

induction, concomitantly with Magoh2 mRNA depletion. RNA polymerase 

II levels closely correlated with the levels of these two histone marks. Loss 

of only one Mll2 allele (Mll2F/+ cells) had no effect on the chromatin 

environment of the Magoh2 promoter. These experiments are consistent 

with the view that MLL2 and/or the H3K4me3 mark are a prerequisite for 

RNA polymerase II recruitment to the Magoh2 promoter.   
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Figure 3.20. Loss of active chromatin marks and RNA polymerase II on the 
Magoh2 promoter up to 4 days post Mll2 deletion. Chromatin immunoprecipitation 
assays were performed using antibodies against H3K4me3 (top), H3K9ac (middle) and 
the RNA polymerase II CTD (lower). The immunoprecipitated DNA was amplified by 
quantitative PCR with a primer set recognizing the Magoh2 promoter (the amplicon is 
centred around +60bp). Data for histone modifications are corrected for nucleosome 
density as determined by a histone H3 immunoprecipitation. Data for RNA polymerase 
II are corrected for the signal obtained with input material. All the data presented are 
normalized against the signal obtained with primers for the Oct4 promoter and plotted 
as fold change over the 0 hour time-point (untreated cells) 
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3.2.6. Nucleosome remodelling takes place on the Magoh2 promoter as 

soon as RNA polymerase II is removed 

 

DNaseI hypersensitive sites and active promoters have been reported 

to be relatively depleted of nucleosomes. In order to investigate whether 

Magoh2 silencing is accompanied by changes in promoter nucleosome 

occupancy we employed Micrococcal nuclease (MNase) footprinting after 

deletion of Mll2 in Mll2F/F and Mll2F/+ cells. MNase primarily catalyses 

double strand DNA breaks. Its action is greatly inhibited by the presence of 

nucleosomes or other DNA bound proteins, thus protection from MNase 

digestion after in vivo MNase treatment reflects regions that are occupied 

by nucleosomes or other protein complexes in live cells, while MNase 

sensitive regions are naked DNA (linker DNA or nucleosome free regions) 

(Axel, 1975; Clark and Felsenfeld, 1971; Zhang and Gralla, 1989). 

Identical MNase digestion patterns were observed in untreated Mll2F/F and 

Mll2F/+ cells. No changes were observed in Mll2F/+ cells up to 8 days post 

OHT induction. Contrastingly, in Mll2F/F cells the first changes were evident 

in the immediate region of the Magoh2 transcription start site 2 days post 

OHT induction (Figure 3.21). We observed a decrease in MNase cutting 

frequency in the previously hypersensitive regions and an increase in 

MNase cutting frequency in regions that were previously almost completely 

protected. Changes in MNase accessibility in Mll2F/F cells were also 

observed downstream of the transcription site 2 days post OHT induction 

(Figure 3.22). These results demonstrate that 2 days post OHT induction, 
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nucleosomes and/or other proteins are being repositioned on the Magoh2 

promoter. 

 

Figure 3.21. Nucleosome remodelling over the Magoh2 promoter up to 8 days post 
Mll2 deletion. Micrococcal nuclease (MNase) footprinting in the vicinity of the Magoh2 
transcription start site in OHT treated Mll2F/F cells. Black bars indicate hypersensitive 
regions while white bars indicate protected regions when comparing digestion patterns 
observed at the 8 days time-point to the 0 hours time-point. G: G-reaction. Time post 
OHT induction is indicated at the top of each lane. Arrow: transcription start site. 
Annotation is relative to the transcription start site. Primers on the Oct4 promoter were 
used to verify equal MNase digestion of all samples. 
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Figure 3.22. Nucleosome remodelling extends further downstream of the 
Magoh2 transcription start site. MNase footprinting examining the Magoh2 gene 
body. The black bar indicates a hypersensitive region while the white bar indicates a  
protected region when comparing digestion patterns observed at the 8 days time-point 
to the 0 hours time-point. G: G-reaction. Time post OHT induction is indicated at the 
top of each lane. Arrow: transcription start site. Annotation is relative to the 
transcription start site. Primers on the Oct4 promoter were used to verify equal MNase 
digestion of all samples. 
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3.2.7. DNA methylation occurs shortly after transcriptional silencing 

 

DNA methylation of CpG island promoters is one of the best 

characterised silencing marks. We have previously shown that the 

Magoh2 promoter is methylated in the absence of MLL2. To investigate 

whether DNA methylation is a silencing initiating or maintaining event, we 

measured DNA methylation levels on the Magoh2 promoter region by 

bisulphite conversion and pyrosequencing over an 8-day time-course in 

the Mll2 inducible knock-out system (Figure 3.23). A total of 19 CpG sites 

distributed between -48bp and +69bp from the transcription start site were 

examined in this assay. The results demonstrated that DNA methylation 

increases in Mll2F/F cells 4 days post OHT induction, which was the 

time-point where the H3K4me3 and H3K9ac histone marks along with RNA 

polymerase II had already been removed from the Magoh2 promoter and 

Magoh2 transcription had ceased. Thus, DNA methylation was not 

responsible for initiating Magoh2 silencing in those cells. In Mll2F/+ cells 

only a very small increase in DNA methylation was observed 8 days after 

OHT induction. As no clear bias towards methylation (or protection from 

methylation) of specific CpG dinucleotides was observed, the 

three-dimensional graphs presented in Figure 3.23 were summarised in a 

simpler box-plot format (Figure 3.24). This representation reveals a 

significant (at 95% confidence) increase in CpG methylation on the 

Magoh2 promoter in Mll2F/F cells 4 days post OHT treatment. At the 8 days 
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time-point CpG methylation on the Magoh2 promoter in Mll2F/F cells 

exceeded the levels measured in Mll2-/- cells. 

 Figure 3.23. Extensive DNA methylation on the Magoh2 CpG island in the absence of 
MLL2. DNA methylation levels on a part of the Magoh2 CpG island promoter in Mll2F/F and 
Mll2F/+ cells. The cells were induced with OHT and harvested at the time points indicated on 
the Z-axis. The DNA methylation levels measured in Mll2-/- cells (Figure 3.12) are inserted as 
a separate point on the Z-axis for comparison. Each point on the X-axis represents an 
individual CpG dinucleotide. Top panel: Methylation changes over a time-course after Mll2 
deletion in Mll2F/F cells Lower panel: DNA methylation measured at different time points in 
Mll2F/+ cells up to 8 days post OHT induction.  
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Figure 3.24. Summary of DNA methylation on the Magoh2 CpG island promoter. The 
data depicted in Figure 3.23 were summarized in a box-plot format for easier comparison. 
The hatched line represents the median DNA methylation level in the Mll2-/- cells. Black 
bars: median CpG methylation over the region examined (-48bp to +69bp). Boxes: 95% 
confidence interval, Whiskers 99% confidence interval. Open circle: outlier. 
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3.2.8. Active transcription and RNA polymerase II are not required for 

the maintenance of the H3K4me3 mark or for protection from DNA 

methylation 

 

To investigate whether active transcription or the presence of RNA 

polymerase II were required to prevent DNA methylation, Mll2F/F cells were 

treated with DRB or α-amanitin. DRB blocks transcriptional elongation by 

inhibiting p-TEFb enzymatic activity (Fraser et al., 1978; Marshall et al., 

1996). α-amanitin binds the active site of RNA polymerase II and this 

complex is subsequently targeted for degradation (Nguyen et al., 1996). 

Whole cell extract Western blots demonstrated that serine 2 

phosphorylated elongating form of RNA polymerase II was depleted after 

16 hours of DRB treatment, while a 24 or 48 hour α-amanitin treatment 

greatly reduced total RNA polymerase II levels (Figure 3.25 Top panel. An 

antibody against nucleoporin Nup188 was used to verify similar loading of 

all samples. 

To correlate these findings with Magoh2 expression, we measured 

Magoh2 transcript levels in DRB and α-amanintin treated cells by 

RT-QPCR. As expected, primary transcript and steady state mRNA levels 

were barely detectable following treatment with either of the two drugs 

(Figure 3.25). To verify this result, GAPDH expression levels were 

measured as well and were found to be just above detection limits (data 

not shown). Importantly, 18S rRNA could be readily detected as RNA 

polymerase I is reported to be unaffected by either of these drugs. 
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Figure 3.25. Treatment of Mll2F/F cells with DRB and α-amanitin completely 
blocked RNA polymerase II dependent transcription. Top panel: Western blot 
analysis on DRB and α-amanitin treated Mll2F/F cells, using whole cell protein extracts. 
The arrow indicates the band for phospho-serine 2 RNA polymerase II, the asterisk 
indicates a non-specific band (possibly non-modified Pol II). DMSO treated samples are 
used as a control to exclude drug carrier effects. Middle panel: RT-QPCR detecting 
primary Magoh2 RNA in DRB/α-amanitin treated cells. Data presented here are 
normalized to the 18S rRNA which is transcribed by RNA polymerase I. Bars represent 
mean +sd of 4 measurements (2 biological x 2 technical replicates). Lower panel: 
RT-QPCR detecting Magoh2 mRNA in DRB/α-amanitin treated cells. Data presented 
here are normalized to the 18S rRNA. Bars represent mean +sd of 4 measurements (2 
biological x 2 technical replicates). 
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Having established that Magoh2 transcription had ceased, we 

examined chromatin state at the Magoh2 promoter by chromatin 

immunoprecipitation (Figure 3.26). No change in RNA polymerase II 

occupancy or H3K4me3 levels was observed in DRB treated cells. On the 

contrary, cells treated with α-amanitin exhibited approximately 50% 

reduction in RNA polymerase II occupancy, accompanied by 

approximately 2-fold increase in H3K4me3 levels over the Magoh2 

promoter. These findings are consistent with the notion that H3K4me3 

deposition and maintenance on the Magoh2 promoter does not depend on 

RNA polymerase II recruitment and transcription. 

To identify what maintains the Magoh2 CpG island in an un-methylated 

state, we examined the DNA methylation levels on the Magoh2 promoter 

after DRB induced transcriptional blocking or α-amanitin induced RNA 

polymerase II depletion by HpaII digestion and QPCR (Figure 3.26). We 

did not observe any increase in methylation of this particular CpG 

dinucleotide following either treatment. This experiment suggests that in 

the presence of MLL2, protection from DNA methylation does not depend 

on productive transcriptional elongation and is not affected by a severe 

depletion of RNA polymerase II binding. The presence of MLL2 and/or the 

H3K4me3 mark appear to be sufficient to maintain the Magoh2 promoter 

free from methylation. 
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Figure 3.26. Depletion of RNA polymerase II does not affect DNA methylation levels and 
results in an increase in H3K4me3 levels on the Magoh2 promoter. Top panel: ChIP with 
antibodies against H3K4me3 and RNA polymerase II CTD. Data for histone modifications are 
corrected for nucleosome density as determined by a histone H3 immunoprecipitation. Data 
for RNA polymerase II are corrected for input. The data presented are plotted as fold change 
over the DMSO mock-treated cells. Bars represent mean +sd of 4 measurements (2 biological 
x 2 technical replicates). Lower panel: DNA methylation levels were measured by QPCR with 
primers spanning a single HpaII site after HpaII digestion. Methylation levels of the same CpG 
dinucleotide 8 days post OHT treatment of Mll2F/F cells (Fc/Fc) are shown for comparison. 
Data presented here are normalized over an amplicon on the Oct4 promoter that does not 
contain a HpaII site. N/A: not assayed. Bars represent mean +sd of 4 measurements (2 
biological x 2 technical replicates). DMSO treated cells are used to exclude any drug carrier 
effects.  
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3.3. Reactivation of the Magoh2 promoter 

 

3.3.1. Re-expression of Mll2 from the endogenous locus 

 

In order to examine whether Magoh2 silencing was reversible or DNA 

methylation prevented reactivation of the silenced CpG island promoter, 

we reactivated endogenous Mll2 alleles in Mll2-/- ES cells. As described 

previously, the Mll2 gene in these cells has been modified by the addition 

of a gene-trapping stop cassette in intron 1 (Figure 3.27). The Mll2-/- ES 

cells were transfected with a FlpO expressing plasmid (pCAGGS-FlpO-

IRES-puro, courtesy of Dr. F. Stewart) and co-transfected with a 100-fold 

less GFP expressing plasmid (pMAX-GFP, Amaxa). The transfected cells 

were enriched by culturing in 0.5μg/ml or 1μg/ml puromycin containing 

medium. FACS analysis demonstrated that over 95% of the surviving cells 

expressed GFP (data not shown).  Expression of the FlpO recombinase 

resulted in recombination between the two FRT sites flanking the stop 

cassette and removal of the cassette. Effectively this recombination event 

converts the Mll2- allele into Mll2F. 

 

 Figure 3.27. Reactivation of the endogenous Mll2 alleles in Mll2-/- ES cells. The stop 
cassette is excised by FlpO mediated recombination allowing transcription of full length 
Mll2. Black boxes indicate Mll2 exons. 
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Successful deletion of the stop cassette and reactivation of Mll2 were 

verified by genotyping PCR (data not shown) and Mll2 steady state mRNA 

expression measurement (Figure 3.28) respectively. When Mll2 was 

re-expressed, Magoh2 mRNA could be detected at approximately wild 

type levels, suggesting that the epigenetic silencing described above can 

be counteracted by re-introduction of MLL2. Importantly, cells transfected 

with the GFP expressing plasmid alone (mock transfected) exhibited no 

Mll2 or Magoh2 expression.  

 

 

 

 

 

 

 

Figure 3.28. Reactivation of the endogenous Mll2 rescues Magoh2 expression. 
The FlpO transfected Mll2-/- cells were cultured in the presence of 0.5μg/ml or 1μg/ml 
puromycin. Both concentrations were sufficient to kill mock transfected cells, however 
only the cells overexpressing FlpO and therefore the puromycin resistance gene 
survive the higher concentration of antibiotic. Bars represent mean +sd of at least 4 
measurements (2 biological x 2 technical replicates). 
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3.3.2. Magoh2 expression is MLL2 dose-dependent 

 

We previously showed that re-expression of the endogenous MLL2 is 

sufficient to at least partially reactivate the silenced Magoh2. We now 

wanted to test whether increased Mll2 expression levels would lead to a 

more robust expression of Magoh2. To this end, Mll2F/F and Mll2Fc/Fc were 

transfected with a BAC expressing a MLL2-GFP fusion protein and a 

neomycin resistance gene (provided by Dr. H. Hofemeister, Stewart lab, 

Figure 3.29 Top panel). We established stable transgenic lines by 

culturing the transfected cells in the presence of G418 for 21 days in total. 

Within that time, emerging resistant colonies were isolated and cultured 

separately to yield individual clones. The BAC transfected Mll2F/F cells 

were subsequently treated with OHT to delete the endogenous Mll2 

alleles. We verified that the BAC transgenes express functional MLL2, as 

detected by Mll2 mRNA expression and maintenance of Magoh2 mRNA 

expression (Figure 3.29 Middle panel). The BAC transfected Mll2F/F cells 

will be hereafter referred to as “loss of genomic Mll2” (LoG) cells while the 

BAC transfected Mll2Fc/Fc cells as “Rescue” cells. 

Mll2 and Magoh2 mRNA expression were measured in two LoG clones 

and five Rescue clones (Figure 3.29 Middle panel). Magoh2 expression 

was maintained in both LoG clones despite the deletion of the 

endogenous Mll2 alleles, demonstrating that the BAC transgenes encoded 

functional MLL2. Magoh2 expression levels closely followed those of Mll2 

pointing to an MLL2 dose-dependent effect on Magoh2 transcription.  
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Rescue clones 1-3 showed only minimal expression of Mll2 and no 

reactivation of Magoh2. Rescue clone 4 only exhibited partial Magoh2 

reactivation despite expressing wild type levels of Mll2. This can be 

explained if most of the BAC integrations only contain the 3’-most part of 

the BAC that may be expressed from a cryptic promoter. This would result 

in detection of this truncated RNA transcript but not in production of full 

length MLL2. Rescue clone 5 supports the reversibility of Magoh2 

silencing – which we observed before by re-activation of endogenous Mll2 

(Figure 3.28) – and the MLL2 dose-dependent effect on Magoh2 

expression as the approximately 3-fold overexpression of Mll2 is 

accompanied by a similar overexpression of Magoh2.These findings 

further support the idea that MLL2 acts upstream of transcriptional 

initiation and its increased presence facilitates the assembly of a functional 

RNA polymerase II complex on the Magoh2 promoter. 

To examine whether reactivation is mediated by re-establishment of 

H3K4me3 we performed ChIP with anibodies against this modification 

(Figure 3.29 Lower panel). Data presented for the LoG cells are the mean 

enrichment obtained for clones 1 and 2 over a time period of 8 days post 

OHT induction. BAC derived MLL2 was sufficient to maintain H3K4 

methylation on the Magoh2 promoter after the endogenous Mll2 was 

deleted. The H3K4me3 levels however did not strictly correlate with 

Magoh2 expression levels. Only a small difference in H3K4me3 levels was 

observed between LoG clones 1 and 2 (as illustrated by the size of the 

error bars), despite the over 4-fold difference in Magoh2 expression. This 
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finding suggests that MLL2 may have an H3K4 methylation-independent 

role in transcriptional regulation. Consistent with the low Magoh2 

expression levels measured in rescue clone 4, H3K4me3 levels were 

found to be lower than normal supporting the view that the Mll2 RNA 

measured previously in this cell line does not code for functional MLL2. 

Rescue clone 5 exhibited a complete rescue of the H3K4me3 mark on the 

Magoh2 promoter upon re-introduction of MLL2. 
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Figure 3.29. MLL2 has a dose-dependent effect on Magoh2 transcription. Top panel: 
Mll2F/F and Mll2Fc/Fc cells were transfected with an Mll2 expressing BAC (Mll2-NGFP-IRESneo). 
Middle panel: Expression analyses in LoG +OHT, Rescue, E14 and Mll2-/- cells. Bars represent 
the mean +sd of 4 measurements (2 biological x 2 technical replicates). Expression levels are 
normalized against GAPDH expression and illustrated as expression fold-change over the 
expression levels in E14 wild type cells. Lower panel: H3K4me3 chromatin immunoprecipitation 
on the Magoh2 promoter. Data presented for the LoG cells show the mean +sd H3K4me3 levels 
in LoG clones 1 and 2. Bars for the Rescue clones represent the mean +sd of 4 measurements 
(2 biological x 2 technical replicates) 
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3.3.3. The entire MLL2 protein is required for maintenance of Magoh2 

expression 

 

Although we showed that over-expression of Mll2 can lead to a similar 

over-expression of Magoh2, it was not clear whether this was due to 

SET-domain mediated enzymatic activity. To try and identify whether the 

SET domain and/or other domains of MLL2 are required for Magoh2 

expression we measured Magoh2 mRNA levels in Mll2F/F cells transfected 

with mutant-MLL2 BACs (cell lines generated and provided by Mr. A. 

Gupta and Mr. D.C. Torres, Stewart lab), before and after OHT induction. 

Figure 3.30 Top illustrates the MLL2 domains that were deleted in each of 

these cell lines. The results demonstrated that none of these mutant forms 

of MLL2 was able to maintain wild type Magoh2 expression levels after the 

endogenous Mll2 alleles had been deleted (Figure 3.30 Lower panel). 

Surprisingly, all the mutant-MLL2 expressing cell lines exhibited slightly 

reduced Magoh2 expression even in the presence of wild type MLL2. Most 

notably, Magoh2 mRNA levels in the ΔSNL mutant were close to 

background levels, as measured in Mll2-/- cells.  
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Figure 3.30. The complete MLL2 protein is required to maintain Magoh2 expression. 
Top panel: Mll2F/F cells were transfected with Mll2 BACs carrying mutants of MLL2 where 
specific domains were deleted. The schematic illustrates the deleted domains in each of the 
cell lines used. Lower panel: Magoh2 expression analysis in Mll2F/F cells harbouring the 
mutant BACs. Bars represent the mean +sd of at least 4 measurements (2 biological x 2 
technical replicates) 
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3.4. MLL2 in haemopoiesis 

 

MLL1 is implicated in both normal haemopoiesis and the establishment 

of haematological malignancies. The role of MLL2 in this process is 

unclear as Mll2 knock-out mouse embryos die early in development due to 

general tissue disorganisation and widespread apoptosis (Glaser et al., 

2006). There are, however, indications that MLL2 is involved in 

macrophage function (Austenaa et al., 2012). We decided to study the 

involvement of MLL2 in early haemopoiesis to find out whether there was 

a requirement for MLL2 in early blood development that may be concealed 

by the early embryonic lethality observed by Glaser et al. (2006). To this 

end, we differentiated Mll2F/F ES cells towards blood lineages and 

examined the consequences of Mll2 deletion. 
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3.4.1. Production of macrophages from embryoid bodies is abolished in 

the absence of Mll2 

 

We first examined the effects of Mll2 deletion on macrophage 

differentiation by performing a macrophage release assay using Mll2F/F 

and Mll2Fc/Fc cells. In these assays, cells were cultured in semi-solid media 

containing the cytokines M-CSF and IL3 which instruct macrophage 

differentiation. The cells initially form embryoid bodies (EBs) which later 

start releasing macrophages seen as a halo of round highly refractive cells 

around the EBs. Our first observation was that Mll2Fc/Fc cells had a strongly 

reduced EB forming potential as compared to Mll2F/F cells (Figure 3.31 Top 

panel). The cells were monitored for 19 days. In that time, a proportion of 

the Mll2F/F derived EBs generated macrophages unlike the Mll2Fc/Fc where 

no macrophage production was detected (Figure 3.31 Lower panel). 

However, both the Mll2F/F and Mll2Fc/Fc cells exhibited much lower EB 

forming potential and macrophage production than E14 wild type cells 

(data not shown), making comparisons between different cellular states 

difficult. To resolve this issue, Mll2F/F cells were subcloned and selected for 

increased EB forming potential and macrophage release. Two subclones 

(sc9 and 11) were selected to repeat the macrophage release assay 

(Figure 3.32). Almost all EBs derived from these subclones were 

surrounded by a macrophage halo after 15 days in the semi-solid culture 

medium. Contrastingly, when Mll2 was deleted (8 days) before the cells 

were transferred in the semi-solid medium, macrophage production was 
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completely abolished. These results demonstrate a clear requirement for 

MLL2 in macrophage differentiation. 

 

 

 

 

 

 

Figure 3.31. MLL2 depletion results in reduced embryoid body formation and 
macrophage production. Top panel: Mll2F/F and Mll2Fc/Fc cells were cultured in semi-solid 
media to generate embryoid bodies. Embryoid body formation capacity is calculated by 
counting the embryoid bodies formed and expressing them as a percentage of the number of 
cells initially seeded. The bars represent the mean +sd of embryoid bodies formed in 3 
separate experiments as a percentage of the total number of cells seeded. Over 100 embryoid 
bodies were counted in each of the 3 experiments.. Lower panel: Mll2F/F (top row) and 
Mll2Fc/Fc (bottom row) cells were cultured in semi-solid media to generate embryoid bodies that 
would further differentiate and produce macrophages. Over 500 embryoid bodies were 
examined for each of the cell lines. None of the Mll2Fc/Fc derived embryoid bodies produced 
macrophages. 
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3.4.2. MLL2 is required for the specification of haemangioblast and 

haemopoietic progenitor cells 

 

Macrophages differentiate via a well-described series of intermediate 

myeloid progenitor stages (reviewed in Chow et al., 2011). The 

experiments described in 3.4.1 did not reveal at which stage macrophage 

differentiation was blocked and the study by Austenaa et al. (2012) 

demonstrated that macrophage differentiation from haemopoietic stem 

cells in adult mice is not dependent on MLL2. These results suggest that 

the defect is very early in haemopoietic development, possibly before the 

Figure 3.32. Verification of the observed differentiation phenotype using 
subcloned lines. The Mll2F/F cells were sub-cloned and re-subjected to the 
macrophage release assay. Two individual sub-clones (sc9 and sc11) were 
employed. 300 embryoid bodies were examined for each condition. 
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establishment of the haemopoietic system. To identify when exactly MLL2 

is required during haemopoietic differentiation, we used a differentiation 

system that allowed us to delete Mll2 at discrete developmental stages 

(Fehling et al., 2003; Lancrin et al., 2009; Pearson et al., 2008) and 

monitor how this loss affects the generation of haemopoietic progenitor 

cells (Figure 3.33). Cells were allowed to form EBs in suspension by 

culturing in low adherence bacteriological Petri dishes for approximately 3 

days. FLK1 (VEGF receptor) expressing haemangioblast cells were 

enriched by MACS and cultured for another 3 days in the presence of 

VEGF and IL6. During this time the haemangioblast cells generate the 

so-called haemogenic endothelium – a tissue that expresses both 

endothelial and haemopoietic markers (TIE2, C-KIT, CD41). Haemogenic 

endothelium cells finally down-regulate the endothelial marker TIE2 and 

undergo a morphological transition becoming free-floating haemopoietic 

progenitors, which still express C-KIT and CD41. 

 

 

 

 

Figure 3.33. Schematic of the in vitro differentiation system. Mll2F/F cells were cultured in 
suspension for 3 days without LIF to form EBs. Flk1 expressing haemangioblast enriched cells 
were purified by MACS. The purified cells were cultured in the presence of VEGF and IL-6 to 
generate haemogenic endothelium (hexagonal cells in the schematic) and haemopoietic 
progenitor cells (round white cells in the schematic). Mll2 was deleted either in ES cells, 10 
days prior to LIF withdrawal or in the Flk1 positive haemangioblast enriched cells at day 3.  
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Mll2F/F cells were subjected to this differentiation method and 

approximately 35% of the cells were found to be expressing FLK1 after 3 

days (Figure 3.34). When Mll2 was deleted in the ES cell stage, FLK1 

expression was completely abolished, revealing a requirement for MLL2 at 

this very early developmental stage. The inability of the MLL2-lacking cells 

to initiate Flk1 expression during differentiation results in complete loss of 

haemangioblast cells which could account for the total lack of macrophage 

production from Mll2Fc/Fc derived EBs described earlier (Figures 3.31, 

3.32).  

To obtain a first insight into the reasons of the absence of Flk1 

expression we obtained unpublished ChIP-sequencing data generated in 

the A.F. Stewart and H.G. Stunnenberg labs. These assays examined 

H3K4me3 distribution in E14 WT and Mll2-/- ES cells and MLL2 distribution 

in E14 WT ES cells. Interestingly, the data show that Flk1 is an MLL2 

target in ES cells (Figure 3.35). Unlike Magoh2 however, H3K4 

trimethylation was unaffected on the Flk1 CpG island promoter in Mll2-/- ES 

cells, suggesting that – at least at the ES cell stage – loss of MLL2 can be 

compensated for by another SET1/MLL family member. 

We then deleted Mll2 in FLK1 positive haemangioblast cells (post 

MACS enrichment) to examine whether MLL2 is required at later 

developmental stages as well. The cells were harvested on day 6 of 

differentiation and subjected to FACS analysis for C-KIT, TIE2 and CD41 

expression (Figure 3.36). These three surface markers define three distinct 

cell populations: haemogenic endothelium I (C-KIT+, TIE2+, CD41-), 
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haemogenic endothelium II (C-KIT+, TIE2+, CD41+) and haemopoietic 

progenitors (C-KIT+, TIE2-, CD41+). Although the percentage of C-KIT 

positive cells in induced and control populations is similar, the pattern is 

strikingly different. Non-induced cells exhibit high levels of C-KIT staining 

while cells lacking MLL2 did not express C-KIT to the same extent. This 

suggests that MLL2 is also required after haemangioblast specification to 

correctly upregulate c-kit expression. Intriguingly, the c-kit CpG island 

promoter is also an MLL2 target in ES cells (data not shown, unpublished 

data from the A.F. Stewart and H.G. Stunnenberg labs).  

 

 

 

 

 

Figure 3.34. ES cells lacking MLL2 cannot differentiate into FLK1 expressing 
haemangioblasts. Differentiation of Mll2F/F ES cells ±OHT into embryoid bodies, followed by 
FACS analysis of FLK1 expression on day 3.  
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When C-KIT positive cells were examined further for the presence of 

TIE2 and CD41, we observed only minor differences suggesting that the 

presence of MLL2 is not critical at this stage. Intriguing as these results 

may be, we were unable to reproduce them due to technical issues 

affecting culture conditions. 

 

 

Figure 3.35. Flk1 is a direct MLL2 target in ES cells (unpublished data from the A.F. Stewart 
and H.G. Stunnenberg labs). H3K4 trimethylation on the Flk1 promoter in ES cells does not 
depend on MLL2, however, correct upregulation of Flk1 during ES cell differentiation requires 
the presence of MLL2 as shown in Figure 3.34. 
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Figure 3.36. Cells lacking MLL2 fail to correctly upregulate c-kit and exhibit a defect 
in progression through the different haemogenic endothelium stages to 
haemopoietic progenitors. The blast cultures were harvested on day 6 and analysed by 
fluorescence activated cell sorting. The C-KIT positive cells in the top graphs were gated 
and further analysed for CD41 and TIE2 expression in the bottom graphs.  
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3.4.3. MLL2 is required for the correct establishment of transcriptional 

programs during differentiation 

 

Having established that MLL2 was vital for normal haemopoiesis, we 

further explored the mechanism behind this phenomenon. We therefore 

tested whether this differentiation defect was solely due to the observed 

Flk1 deficiency or whether there were more factors depending on MLL2 for 

correct expression. To address this question, we measured the mRNA 

expression levels of genes encoding key developmental factors over a 

differentiation time-course. Haemangioblast enriched FLK1 positive cells 

were grown as described above with or without OHT and the resulting 

populations were harvested daily over the next 3 days (Figure 3.37 Top 

panel). Of the genes examined, Scl/Tal1, Gata2, Gfi1 and Runx1 appeared 

to be regulated normally when Mll2 was deleted. Pu.1 exhibited a delayed 

induction pattern which resulted in a delayed induction of Csf1R one of the 

best characterised PU.1 targets (DeKoter et al., 1998; Himes et al., 2001; 

Krysinska et al., 2007). 

Importantly, MLL2 was found on a CpG island overlapping the Pu.1 

terminator region in ES cells (Figure 3.38, unpublished data from the A.F. 

Stewart and H.G. Stunnenberg labs). This CpG island is marked by 

H3K4me3, a histone mark almost exclusively associated with promoters 

(Mikkelsen et al., 2007). Deposition of the H3K4me3 mark on that region is 

dependent on the presence of MLL2 in ES cells. However, the functional 

relevance of this early chromatin marking is unknown, as Pu.1 expression 
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is only observed in haemopoietic progenitor cells (Lichtinger et al., 2012, in 

press and Cheng et al., 1996). It is therefore equally possible that 

decreased Pu.1 expression is a result of reduced numbers of progenitor 

cells in the Mll2F/F +OHT blast cultures (Figure 3.36). Further investigation 

is deemed necessary to elucidate the precise role of MLL2 in haemopoietic 

differentiation. 
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Figure 3.37. Deletion of Mll2 perturbs the normal gene expression pattern in 
differentiating cells. Top panel: Mll2F/F sc9 cells were differentiated using the in vitro 
differentiation system described in paragraph 2.2.3. Mll2 was deleted by addition of OHT in 
the culture medium, immediately after purification of the haemangioblast cells. The resulting 
differentiating cells were harvested over the next 3 days and used for expression analysis. 
Bottom panel: Expression levels of genes involved in differentiation of haemangioblasts to 
haemopoietic progenitors via haemogenic endothelium were measured by RT-QPCR. The 
bars represent the mean +sd of 2 technical replicates.  
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Figure 3.38. The Pu.1 terminator is a direct MLL2 target in ES cells (unpublished data from 
the A.F. Stewart and H.G. Stunnenberg labs). H3K4 trimethylation on the Pu.1 terminator in ES 
cells depends on the presence of MLL2. 
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4. DISCUSSION 

 

Set1 is the only H3K4 methyltransferase in yeast and has been shown 

to be recruited to the initiating RNA polymerase II (Ng et al., 2003) via 

interaction with the Paf1 complex (Krogan et al., 2003). Therefore, in yeast 

trimethylation of lysine 4 on histone H3 occurs after the basal transcription 

machinery has assembled and the RNA polymerase II has initiated 

transcription. Additionally, deletion of Set1 in yeast resulted in complete 

loss of H3K4me3 but only exhibit small growth defects (Briggs et al., 2001). 

Several studies in mammalian cells have reported that depletion of the 

H3K4 methyltransferase MLL1 results in abnormal transcriptional 

silencing, RNA polymerase II depletion and DNA methylation of a subset 

of the clustered homeobox genes (Milne et al., 2005a; Terranova et al., 

2006; Wang et al., 2009) and death in the early embryonic stages. These 

apparently contradicting results could either point to a fundamental 

difference between yeast and higher organisms or point to a cooperative 

mechanism that requires the synergistic assembly of multiple components. 

We therefore exploited the exquisite dependency of Magoh2 on MLL2 to 

gain mechanistic insights into how MLL proteins are involved in the 

activation and maintenance of transcriptional activity of higher eukaryotic 

genes. 
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4.1. MLL2 in transcriptional regulation 

 

4.1.1.  MLL2 is required for the formation of Magoh2 open chromatin 

and expression  

 

It has previously been shown that Magoh2 is transcriptionally silenced 

in Mll2-/- ES cells (Glaser et al., 2009). Here we extended these analyses 

by showing that this gene’s promoter resides in densely packaged 

chromatin in Mll2-/- ES cells. Additionally, H3K9ac, H3K4me3 and the basal 

transcription machinery are absent from the Magoh2 promoter, which 

carries a high level of DNA methylation in these cells. From our 

experiments, it appears that MLL2 on Magoh2 functions in a manner 

similar to MLL1 on the homeobox gene clusters (Milne et al., 2005b; 

Terranova et al., 2006; Wang et al., 2009). Taken together our and 

previously published results suggest that MLL proteins have a crucial role 

for transcription and may be required for assembly of the RNA polymerase 

II pre-initiation complex, recruitment of HATs to active promoters and 

protection from DNA methylation. 
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4.1.2.  MLL2 is required for the binding of RNA-polymerase II at 

Magoh2 

 

The inducible Mll2 knock-out system allowed us to establish the order of 

events leading to Magoh2 silencing and demonstrate that Magoh2 

silencing occurs in a sequential fashion. After MLL2 depletion, the levels of 

the H3K4me3 histone mark decrease (herein and Glaser et al., 2009) with 

a concomitant decrease in both H3K9 acetylation and RNA polymerase II 

association with the Magoh2 promoter. In contrast to our findings, a recent 

study (Clouaire et al., 2012) has deleted Cfp1, a key component of the 

SET1A and SET1B complexes. The data presented suggest that loss of 

the H3K4me3 mark is inconsequential for gene transcription. These 

seemingly contradictory results can be reconciled if what we have 

hypothesised earlier is true: mammalian SET1A and B operate similarly to 

yeast Set1 and are fundamentally different to mammalian MLL proteins.  

Our rescue experiments show that MLL2 catalytic activity is required for 

transcriptional maintenance of Magoh2, as a ΔSET Mll2 BAC transgene 

could not maintain Magoh2 expression. The same experiments show that 

other domains of MLL2 are also required to maintain Magoh2 expression. 

We speculate that the other domains may be important for MLL2 

recruitment to Magoh2 or interactions with accessory factors. By 

extension, it is possible that disruption of such domains on leukaemogenic 

MLL1 fusion proteins will block their function, making them potential 

targets for small molecule therapeutic agents. The CxxC domain appears 
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to be a good candidate target for drug development as it is required for 

their leukaemogenic potential (Ayton et al., 2004) and differences in this 

domain preclude MLL2 fusion mediated leukaemogenesis (Bach et al., 

2009). 

Loss of RNA polymerase II results in Magoh2 transcriptional silencing 

and possibly nucleosome repositioning over the Magoh2 promoter, as 

deduced from MNase footprinting experiments. Such an intricate 

competition for promoter binding between RNA polymerase II and 

nucleosomes has been reported previously in both humans and yeast 

(Lomvardas and Thanos, 2001; Schwabish and Struhl, 2004).  

In summary, from our data it is likely that MLL2 forms a platform that 

coordinates the synergistic assembly of the basal transcription machinery 

via multiple protein-protein interactions.  Interestingly, the trans-activation 

domain of MLL1 has been shown to interact directly with 

CBP/p300-containing HAT complexes (reviewed in Cosgrove and Patel, 

2010). HAT complexes are known to act as large multi-protein scaffolds 

that can mediate interactions between TFs and the basal transcription 

machinery (reviewed in Chan and La Thangue, 2001). In this context, 

MLL2 may be the factor that recruits CBP/p300-containing complexes – 

via its trans-activation domain – which in turn recruit the transcriptional 

apparatus. This may be assisted by TFIID binding to H3K4 trimethylated 

nucleosomes (van Ingen et al., 2008; Vermeulen et al., 2007) flanking the 

Magoh2 promoter. Consistent with our results on the Magoh2 promoter, 
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this model predicts that loss of MLL2 would result in loss of histone 

acetylation and RNA polymerase II. 

 

 

4.1.3.  H3K4 trimethylation on the Magoh2 promoter does not depend 

on the presence of RNA polymerase II 

 

Our experiments using transcriptional blockers suggest that in the 

presence of MLL2, RNA polymerase II and transcriptional elongation are 

largely dispensable for the maintenance of H3K4 trimethylation. This result 

is consistent with the hypothesis that MLL proteins operate differently to 

yeast Set1 and may have a causal role in transcriptional activation. 

Previous studies have hinted to such a mechanism as depletion of MLL1 

resulted in changes in RNA polymerase II distribution on MLL1 target 

genes (Milne et al., 2005a; Wang et al., 2009). Additionally, it has been 

shown that CpG islands recruit H3K4 methyltransferases regardless of 

their transcriptional activity (Thomson et al., 2010). Our experiments 

support the idea that neither active transcription nor the presence of a 

RNA polymerase II pre-initiation complex are required to maintain the 

H3K4me3 mark over an active CpG island promoter, further suggesting 

that MLL proteins act upstream of RNA polymerase II recruitment. Our 

experiments also suggest that loss of transcription is not sufficient to 

induce removal of the H3K4me3 mark from the Magoh2 promoter. 

Compelling as these results may be, there is a possibility that there are no 
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functional H3K4 demethylases in the cells, due to global loss of 

transcription. This would also explain the increase in H3K4me3 levels we 

observed on the Magoh2 promoter following α-amanitin treatment. If our 

results hold true, they support the idea that histone modifications have a 

role in transcriptional regulation – especially since a ΔSET MLL2 cannot 

exert maintain Magoh2 expression – and are not merely by-products of 

active transcription. Indeed, another research group (Fenouil et al., 2012) 

had very similar findings after depletion of RNA polymerase II on a 

genome-wide scale (Dr. P. Cauchy, personal communication). Specifically, 

they observed that after α-amanitin treatment, CpG island promoters 

maintain the H3K4me3 mark while this mark is lost on most non-CpG 

island promoters. Their results suggest that there are still functional H3K4 

demethylases in the cells for at least 36 hours of α-amanitin treatment. 

Additionally, these results are consistent with our hypothesis that 

H3K4me3 is independent of transcription, at least on CpG island 

promoters. 

 

 

4.1.4. Loss of MLL2 from the Magoh2 promoter leads to rapid DNA 

methylation 

 

How CpG islands are protected from DNA methylation has been a long-

standing subject of research. Our data from the inducible Mll2 knock-out 

system clearly demonstrate that loss of the H3K4me3 mark results in the 
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rapid onset of DNA methylation at multiple CpG dinucleotides. Moreover, 

transcriptional elongation and RNA polymerase II appear to be 

dispensable with regards to protection from DNA methylation, as 

illustrated by our experiments using DRB and α-amanitin. 

A previously proposed model (Turker, 2002) suggests that the 

methylation status of a genomic region is controlled by antagonistic 

methylation-promoting and methylation-blocking factors. Active promoters 

were thought to act as roadblocks to the expansion of DNA methylation 

simply by virtue of being transcribed. Supporting this idea, a recent study 

(Hitchins et al., 2011) demonstrated that decreased MLH1 expression – 

due a single nucleotide polymorphism at a HSF binding site– resulted in 

increased DNA methylation of the MLH1 promoter. Conversely, a mono-

allelic insertion of a SP-family binding site in the human RIL promoter was 

shown to increase methylation protection of that particular allele without 

affecting RIL expression levels (Boumber et al., 2008). It has been 

demonstrated that H3K4me3 may confer protection from DNA methylation 

(Ooi et al., 2007) as the DNA methyltransferase common subunit – 

DNMT3L – can only interact with unmethylated H3K4. As such MLL 

catalytic activity would preclude DNA methyltransferase recruitment, thus 

conferring protection from DNA methylation to MLL target promoters. 

Unfortunately, neither of the two aforementioned studies (Boumber et al., 

2008; Hitchins et al., 2011) measured H3K4me3 levels over the respective 

promoters. It is possible that these mutations affect the recruitment of MLL 

proteins and H3K4me3 levels. Our experiments on the Magoh2 promoter 
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could explain the above observations as we have shown that loss of the 

H3K4me3 mark can result in silencing and DNA methylation.  

 The original model proposed by Turker may very well hold true for 

SET1 regulated promoters, as at those promoters H3K4me3 deposition 

may be dependent on transcription initiation (much like in yeast). In that 

case, transcriptional activity would be required for protection from DNA 

methylation either directly or indirectly via the recruitment of SET1A/B to 

the initiating RNA polymerase II and H3K4 methylation. Our data suggest 

that MLL-regulated promoters are protected from DNA methylation due to 

the presence of the H3K4me3 mark rather than their transcriptional status.  

 Glaser et al. (2009) reported that there is a significant increase in PcG 

mediated H3K27 methylation on the Magoh2 promoter after Mll2 deletion. 

The PRC2 catalytic subunit, EZH2, responsible for depositing this mark 

has been shown to directly associate with DNA methyltransferases (Vire et 

al., 2006), providing further insight into the mechanism of DNA 

methyltransferase recruitment to the Magoh2 promoter after the H3K4me3 

mark has been removed. Importantly, this model may be applicable to 

other MLL-regulated CpG island promoters and may have implications for 

human disease. Indeed Mll3 deletions and de novo Mll4 loss-of-function 

mutations have been found with increased frequencies in patients with 

myeloid leukaemias and Kabuki syndrome respectively (Ng et al., 2010; 

Ruault et al., 2002). It remains to be seen which MLL target genes are 

deregulated and/or epigenetically silenced in patients with such mutations. 
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4.1.5. Re-expression of MLL2 can reactivate Magoh2 after epigenetic 

silencing  

 

DNA methylation is considered to be a stable epigenetic silencing 

modification (reviewed in Suzuki and Bird, 2008) and currently a number 

of models have been put forward to explain how this modification is 

removed. DNA methylation can be passively removed by dilution over 

consecutive DNA replication cycles with concomitant inhibition of the 

maintenance methyltransferase DNMT1 (reviewed in Wu and Zhang, 

2010). Alternatively, DNA methylation can be erased enzymaticaly, 

although the mechanistic details are not entirely clear. The first proposed 

model suggested that the methyl-cytidine base is removed by the TDG 

and/or MBD4 glycosylases, creating an abasic site (Lucey et al., 2005; 

Petronzelli et al., 2000; Yoon et al., 2003b) which is recognised by the 

base excision repair machinery (reviewed in Wu and Zhang, 2010). 

Alternatively, it is more likely that methyl-cytosine is first deaminated into 

thymidine, generating a T:G mismatch which is the native TDG substrate 

(reviewed in Wu and Zhang, 2010). Additionally, it has been found that 

methyl-cytosine can be further modified by TET family proteins into 

hydroxymethyl-cytosine (Tahiliani et al., 2009), which can also be 

deaminated and/or processed by TDG/MBD4 (Hashimoto et al., 2012; 

Lucey et al., 2005; Petronzelli et al., 2000; Yoon et al., 2003b). 
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Although the mechanism for DNA demethylation is not entirely clear 

there is evidence for active enzymatic erasure of DNA methylation. 

Previous studies have reported removal of DNA methylation from the IL-2 

promoter in response to T-cell activation in as little as 20 minutes post 

stimulation (Bruniquel and Schwartz, 2003) and the BDNF promoter upon 

KCl depolarisation-mediated neuronal stimulation. Moreover, two recent 

studies reported cyclical methylation and demethylation of active 

promoters between individual rounds of transcription (Kangaspeska et al., 

2008; Metivier et al., 2008), suggesting that methyl-moieties can be rapidly 

deposited and removed from DNA. Consistent with the proposed 

mechanisms for DNA demethylation they were able to show cyclical 

recruitment of DNA repair associated proteins to those promoters.  

In this study we demonstrated that simple re-expression of Mll2 is 

sufficient to overcome the repressive barrier posed by DNA methylation 

and reactivate Magoh2 transcription, as illustrated by reactivation of the 

endogenous Mll2 alleles in Mll2-/- ES cells. We have no indication as to 

which factors recruit MLL2 to the Magoh2 promoter but these factors are 

able to recruit MLL2 regardless of the fact that the Magoh2 promoter has 

become DNA methylated and resides in compacted chromatin.  

Based on our results we propose a model for the role of MLL2 in 

Magoh2 transcriptional regulation (Figure 4.1). After MLL2 depletion the 

H3K4me3 mark is either actively removed or diluted out over consecutive 

cell divisions concomitantly with a loss of H3K9 acetylation. RNA 

polymerase II can no longer associate with the Magoh2 promoter, as its 
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recruitment may be facilitated or stabilised by direct interactions of TFIID 

with the H3K4me3 mark (van Ingen et al., 2008; Vermeulen et al., 2007) 

and interactions with CBP/p300 containing HAT complexes (reviewed in 

Chan and La Thangue, 2001; Cosgrove and Patel, 2010). Loss of the 

basal transcription machinery allows nucleosomes to be repositioned over 

the stretch of DNA previously occupied by the pre-initiation complex with a 

concomitant increase in DNA methylation.  

 

 

 

 

 

 

Figure 4.1. Model for Magoh2 silencing following MLL2 depletion. MLL2 is normally 
recruited to the Magoh2 promoter by TFs, interaction of the PHD fingers with H3K4me3 or 
through CxxC domain binding to non-methylated CpG dinucleotides. After Mll2 deletion, 
H3K4me3 and H3K9ac are depleted from the Magoh2 promoter, resulting in eviction of RNA 
polymerase II, transcriptional silencing and nucleosome repositioning. Removal of the H3K4me3 
mark further results in DNA methylation and chromatin compaction. 



184 
 

4.1.6. Mll2 in CpG island promoter regulation – future directions 

 

Currently it is still unclear which protein factors recruit MLL2 to Magoh2 

and whether these are sequence-specific DNA binding proteins. Although 

we were unable to assign individual roles to SP1 and SP3 in the regulation 

of Magoh2, it is still possible that these factors compensate for each 

other’s absence. It would therefore be important, to perform a careful 

molecular characterisation of the Magoh2 promoter using point 

mutagenesis and reporter gene assays in ES cells in the presence and 

absence of MLL2, to precisely identify factor binding sites mediating the 

MLL2 effect. If the deletion of Mll2 had no influence on transiently 

transfected templates, this could alternatively be investigated by BAC 

transgenesis using Magoh2 constructs where individual binding sites were 

altered by recombineering. 

Only Magoh2 becomes transcriptionally silenced in response to Mll2 

deletion in ES cells. However, a number of other MLL2 target genes lose 

the H3K4me3 mark from their promoters after Mll2 deletion in ES cells 

(unpublished data from the A.F. Stewart and H.G. Stunnenberg labs). 

These genes are regulated by CpG island promoters and are bivalently 

marked and transcriptionally silent in ES cells. The role of H3K4me3 on 

those promoters is therefore not entirely clear. Moreover, it is currently 

unknown whether loss of MLL2/H3K4me3 from these promoters in ES cells 

affects transcriptional regulation of these genes later in development. To 

address this question we would like to perform genome wide MLL2, 
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H3K4me3, H3K27me3, DNA methylation and RNA expression analyses 

during in vitro differentiation towards blood and neuronal lineages. In this 

experimental setting we could delete Mll2 at different developmental 

stages and examine the chromatin dynamics and transcriptional status of 

MLL2 regulated CpG island promoters. Such experiments would provide 

valuable insight into chromatin mediated gene-priming mechanisms and 

shed light on the dynamics of MLL2 distribution during development. 

 

 

4.2. MLL proteins, the cell cycle and cell survival 

 

There have been numerous reports linking MLL1 to the cell cycle. This 

function of MLL1 is mediated by its involvement in transcription of the CDK 

inhibitors p27Kip1 and p18Ink4c (Milne et al., 2005b) and several S-phase 

specific genes, through interactions with HCF-1 and E2F family proteins 

(Tyagi et al., 2007). Taspase 1 mediated cleavage of MLL1 was shown to 

be critical for MLL1 function in cell cycle progression (Takeda et al., 2006). 

Our data and those by Lubitz et al. (2007) show that MLL2, unlike MLL1 

does not affect cell cycle progression but is partially required for ES cell 

survival, as illustrated by increased ES cell apoptosis in the absence of 

MLL2. According to Lubitz et al. (2007), Mll2-/- cells appear to become 

apoptotic during or immediately after cell division and this apoptotic 

phenotype correlates with decreased expression of the anti-apoptotic 

factor Bcl2 in these cells. 
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4.3. MLL2 plays a role in haemopoiesis  

 

4.3.1. MLL2 is required for macrophage differentiation and the 

generation of FLK1+ cells from differentiating ES cells 

 

MLL1 has been reported to play an important role in generation of 

haemopoietic stem cells and their potential to repopulate the bone marrow 

of irradiated mice (Ernst et al., 2004; McMahon et al., 2007). Austenaa et 

al. (2012) demonstrated that MLL2 is not required for macrophages 

differentiation in the bone marrow but is vital for their function. Pigp a CpG 

island promoter regulated gene is transcriptionally silenced in Mll2-/- 

macrophages. PIGP is a key enzyme in the GPI-anchor biosynthesis 

pathway (Kinoshita et al., 2008; Watanabe et al., 2000). PIGP depletion 

results in a complete loss of GPI anchored proteins and impaired 

macrophage responses to LPS, mediated by loss of GPI-anchored CD14 

(Austenaa et al., 2012). The Pigp silencing mechanism appears to be 

similar to what we and Glaser et al. (2009) described for Magoh2 

(transcriptional silencing, loss of H3K4me3 and acquisition of H3K27me3).  

So far no role of MLL2 in early haemopoiesis had been described, 

because Mll2 knock-out embryos die early during development due to 

widespread apoptosis (Glaser et al., 2006) prior to the establishment of 

the haemopoietic system. Use of the in vitro ES cell differentiation system 

circumvented this problem and demonstrated that MLL2 is absolutely 

necessary for macrophage differentiation from EBs. Importantly, the 
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inducible Mll2 knock-out system gives confidence that the observed 

differentiation defects are not due to clonal differences. Our results can be 

reconciled with the seemingly contradictory previously reported findings 

(Austenaa et al., 2012). Austenaa et al. (2012) used OHT-fed Cre-ERT2; 

Mll2F/F adult mice. In these mice the haemopoietic system has already 

been established before deletion of Mll2. Their data demonstrate that 

differentiation of macrophages from haemopoietic stem cells in the bone 

marrow is unaffected by Mll2 deletion. However, it is possible that MLL2 is 

required for the establishment of haemopoietic stem and progenitor cells 

earlier in development. 

To further investigate this hypothesis we employed a more 

sophisticated culture system that mimics embryonic haemopoiesis via 

generation of haemogenic endothelium (Fehling et al., 2003; Lancrin et al., 

2009; Pearson et al., 2008).Our preliminary findings using this system 

suggest that MLL2 is involved in establishment of the haemopoietic 

system. Deletion of Mll2 in ES cells resulted in complete ablation of the 

FLK1 positive population in EBs. A similar effect has been previously 

observed by Flk1 expression analysis in Mll2-/- derived EBs (Lubitz et al., 

2007). The FLK1 expressing population is enriched in haemangioblasts, 

the cells that give rise to haemogenic endothelium and haemopoietic 

progenitors. Depletion of this population could result in severe defects in 

both primitive and definitive haemopoiesis, as Flk1 has been shown to be 

absolutely required for both endothelial and haemopoietic development 

(Shalaby et al., 1997).  
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Flk1 is a direct target of MLL2 in ES cells (Figure 4.2, unpublished data 

from the A.F. Stewart and H.G. Stunnenberg labs). However, deletion of 

Mll2 did not affect H3K4me3 levels on the Flk1 CpG island promoter in ES 

cells. It is possible that Flk1 is co-regulated by a different SET1/MLL family 

member in ES cells but as development progresses this redundancy 

collapses and MLL2 is then required for the maintenance of H3K4me3 on 

the Flk1 promoter. In the absence of MLL2, we would expect an aberrant 

silencing of Flk1 by a mechanism similar to what we described previously 

for Magoh2. When we deleted Mll2 in haemangioblast cells, we observed 

suboptimal up-regulation of C-KIT expression in progenitor cells derived 

from these cells, suggesting that MLL2 is required at this later stage as 

well. Although the c-Kit CpG island promoter is also a direct MLL2 target, 

no change in H3K4me3 was observed in Mll2-/- ES cells (unpublished data 

from the A.F. Stewart and H.G. Stunnenberg labs). Future experiments 

using purified haemangioblast cells should clarify the histone modification 

status of these genes in the absence of MLL2. 
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4.3.2. MLL2 is required for the correct timing of expression of myeloid 

genes  

 

Examination of the expression kinetics of genes involved in 

haemopoietic differentiation showed that the timing of expression of such 

genes appears to be perturbed by MLL2 depletion. Scl/Tal1, Gata2 and 

Runx1 are direct MLL2 targets in ES cells and Mll2 deletion results in 

depletion of the H3K4me3 mark on their promoters (not shown, 

unpublished ChIP-seq data from the A.F. Stewart and H.G. Stunnenberg 

labs). However, these genes appear to be regulated normally during blast 

culture, suggesting that in these cases robust regulatory mechanisms are 

in effect which can overcome H3K4me3 depletion on those promoters. 

Pu.1 (Sfpi1) is another direct MLL2 target in ES cells (Figure 3.38), 

although no RNA is expressed from its main promoter in these cells 

(Hoogenkamp et al., 2009). MLL2 is recruited to the Pu.1 terminator, 

which overlaps a CpG island and Mll2 deletion results in loss of the 

H3K4me3 mark from the Pu.1 terminator in ES cells. It is unclear whether 

H3K4me3 depletion on the terminator is of functional significance for 

subsequent Pu.1 activation. Our blast culture FACS analyses 

demonstrated decreased numbers of haemopoietic progenitors in the 

absence of MLL2 (Figure 3.36). As Pu.1 is only upregulated in these cells 

(Lichtinger et al., 2012, in press and Cheng et al., 1996), it is possible that 

the abnormal kinetics we observed are due to an overall depletion of this 

population rather than a real transcriptional defect. Further 
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experimentation is required to clarify this issue. If Pu.1 expression is 

indeed delayed, it will cause delayed expression of Csf1R as this gene is 

absolutely dependent on the presence of PU.1 (DeKoter et al., 1998; 

Himes et al., 2001; Krysinska et al., 2007). The experiments described 

above need to be reproduced to make sure that what we observed is true. 

These preliminary findings however indicate that MLL2 may be required to 

establish a correct transcriptional program during haemopoietic 

differentiation by either inducing a primed chromatin state in ES cells 

and/or by maintaining transcription of specific genes that drive the cells 

toward the haemopoietic lineages. If this holds true, it also suggests that 

while there is functional redundancy at some developmental stages, this 

redundancy may be lost later in development where correct expression of 

a target gene would solely depend on a specific H3K4 methyltransferase.  
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4.3.3. MLL2 in haemopoiesis – future directions 

 

Our results suggest that MLL2 is required for the correct establishment 

of the haemopoietic system. However to firmly establish a clear role for 

MLL2 in this process further experimentation is required. Initially we need 

to repeat out blast culture expression analyses over a longer time-course. 

The panel of genes included needs to be expanded to include other key 

haemopoietic and possibly endothelial regulators.  

To circumvent problems with decreased numbers of particular cell 

populations we propose to repeat the same assays using FACS purified 

cells, based on their C-KIT, CD41, TIE2 profile. Expression analyses in 

purified cells will provide further insight into the role of MLL2 in 

establishing the haemopoietic transcriptional program. Ideally, these 

populations will be examined using mRNA expression microarrays or RNA 

high throughput sequencing to obtain a general picture of MLL2 regulated 

transcription during haemopoietic development. It is absolutely necessary 

to repeat these experiments with Mll2F/+ cells to exclude any OHT and/or 

CreERT2 induced effects.  

Additionally, we would like to couple these analyses with genome-wide 

H3K4me3, H3K27me3 chromatin immunoprecipitation and DNA 

methylation studies to investigate whether deregulation of haemopoiesis-

associated genes follows our proposed model for Magoh2 regulation. 
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