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ABSTRACT 

The neurohypophysial hormone [arginine8]vasopressin (AVP) exerts the majority of its 

physiological roles through the G-protein-coupled receptor, V1aR. AVP binding to the V1aR 

promotes receptor activation and generates signalling though the inositol phosphate pathway. 

ICL 2 has been implicated in many aspects of GPCR signalling and crystallographic data 

highlight the structurally dynamic nature of this region. A complete alanine-scanning study of 

ICL 2 has not previously been conducted in a GPCR but is presented here in the prototypical 

peptide-ligand GPCR, V1aR. However, a role of Leu3.58 in mediating G-protein-dependent 

signalling was observed in the V1aR – a finding that has previously been reported in other 

GPCRs. 

Upon agonist binding, the structural rearrangements of TM V and TM VI are integral in 

signal transduction in GPCRs. Two highly conserved residues, Tyr5.58 and Ile6.40 are key 

players in the activation process. Given their high conservation, it was presumed that their 

roles are universal throughout the rhodopsin-like GPCR family. The systematic substitution of 

these two residues in the V1aR demonstrate the receptor-specific nature of substitutions of 

Tyr5.58 and Ile6.40 given that findings in the V1aR are not recapitulated in the generally limited 

mutagenic studies in other receptors.  
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CHAPTER 1: INTRODUCTION 

1.1 G-protein-coupled receptors 

G-protein-coupled receptors (GPCRs) are the largest family of integral membrane proteins 

and as such conduct the majority of signal transduction across cell membranes. 

Approximately 2 % of genes within the human genome encode ~ 800 GPCRs (Millar and 

Newton, 2010). Being so numerous, GPCRs participate in a vast array of physiological 

processes and elicit sight, smell and taste perception. Although 30-50 % of clinically 

approved drugs modulate GPCRs (Hopkins and Groom, 2002; Klabunde and Hessler, 2002), 

only a subset of this superfamily are currently druggable, making the potential for 

pharmaceutical development enormous. 

GPCR are expressed at the cell surface and transmit the binding of extracellular ligands across 

the cell membrane, initiating intracellular signalling cascades. The canonical view of 

signalling by GPCRs is through activating the family of heterotrimeric GTPases, the guanine 

nucleotide-binding (G-) proteins. 

1.2 G-proteins 

G-proteins are made up of three subunits, Gα, Gβ and Gγ. 21 Gα subunits, 6 Gβ and 12 Gγ 

subunits are encoded in the human genome (Downes and Gautam, 1999). Primary sequence 

similarity subdivides Gα subunits into four distinct classes: Gαs Gαi Gαq and Gα12 (Simon et 

al., 1991). Gα subunits are comprised of a GTPase domain and a helical domain. This 

conserved protein framework has been confirmed by X-ray crystallography which 

additionally provides insight into structural changes involved in G-protein activation (Sprang, 

1997; Oldham and Hamm, 2006; Singh et al., 2012). The GTPase domain within the Gα 
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subunit is conserved throughout the entire G-protein superfamily. The six, α-helical domain 

forms a lid over the nucleotide binding pocket and differentiates the Gα proteins from the 

monomeric, small G-proteins. The Gα subunit is post-translationally acylated at the N-

terminus which facilitates plasma membrane localization (Chen and Manning, 2001). 

The Gβ subunit possesses a seven-bladed β-propeller structure and the amino-terminus forms 

a coiled-coiled with the amino-terminus of Gγ. The C-terminus of Gγ also forms contacts with 

blades five and six of Gβ (Wall et al., 1995; Sondek et al., 1996). Denaturing conditions are 

required to separate the obligate Gβγ dimer (Schmidt et al., 1992). The action of G-proteins is 

discussed further in section 1.6. 

1.3 Classification of GPCRs 

GPCRs are characterised by a conserved 7 transmembrane (TM) α-helical motif with 

conserved topology (Figure 1.1). With an extracellular amino-terminus and intracellular 

carboxyl-terminus, transmembrane regions are connected by alternating intracellular loops 

(ICL I-III) and extracellular loops (ECL I-III). GPCRs are commonly classified into six 

familes, Families A-F, according to sequence analysis (Attwood and Findlay, 1994; 

Kolakowski, 1994). This classification incorporates both vertebrate and invertebrate GPCRs. 

Human GPCRs may be classified into five groups in the GRAFS classification system 

(Fredriksson et al., 2003); the glutamate, rhodopsin, adhesion, frizzled/taste2 and secretin 

families. 

The glutamate receptor family represents eight metabotropic glutamate receptors (mGluR), 

the non-ion channel GABA (γ-aminobutyric acid) receptors, the calcium-sensing receptor and 

a subfamily of proposed taste receptors. These receptors possess extended amino-termini that 

are responsible for ligand recognition. For example the mGlu receptors possess the 
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Figure 1.1 A two-dimensional representation of a typical GPCR 

The amino terminus is located on the extracellular side and the carboxyl-terminus on the 
intracellular face. Helices are shown as red cylinders and TM helices are labelled by roman 
numerals (TM I-VII and H8). Extracellular loops (ECL) and intracellular loops (ICL) are 
down and labelled. The most conserved residue of each helix is shown in a circle. Asn1.50, 
Asp2.50 and Arg3.50 are involved in receptor activation and G-protein coupling (discussed 
further in section 1.5.3). Trp4.50, Pro5.50, Pro6.50 and Pro7.50 have more general structural roles 
dictated by their side chain properties. Trp4.50 participates in hydrophobic interactions and the 
conserved proline residues introduce kinks into the TM regions. 
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characteristic “Venus flytrap” module that closes around the glutamate ligand upon binding 

(Pin et al., 2003). The rhodopsin-like family is the largest of all the GPCR families, 

representing approximately 90% of all vertebrate GPCRs (Fredriksson et al., 2003). This 

group is identified by characteristic amino acid sequence motifs such as the NPxxY and 

D/ERY motifs discussed in more detail in section 1.5.3. The rhodopsin GPCR family includes 

the olfactory receptors. The adhesion receptor family are characterised by motifs in the 

amino-termini that may participate in cell adhesion (Stacey et al., 2000). Frizzled/taste 2 

receptors comprise a fourth group of vertebrate GPCRs. These two receptor subfamilies share 

consensus sequence motifs that are distinct from the other four families. The taste 2 receptors 

are distinct from the taste 1 receptors in the glutamate family given that they possess short 

amino-termini that are unlikely to participate in ligand recognition. The secretin family of 

GPCRs possess amino-termini ~ 150-180 amino acids in length stabilised by six conserved 

cysteine residues. The large peptide ligands of the secretin family of GPCRs demonstrate high 

amino acid sequence identity (Wheatley et al., 2012). 

While the ligand-amino-terminal interactions have been elucidated for a number of secretin 

family GPCRs (Parthier et al., 2009), atomic detail of transmembrane regions is, at present, 

limited to a subset of rhodopsin family receptors. 

1.4 Structure of rhodopsin-like GPCRs 

In order to compare the relative position of residues between different rhodopsin-like GPCRs, 

the Ballesteros-Weinstein numbering system is utilised (Ballesteros and Weinstein, 1995). 

Each TM helix is referenced regarding helix number, and from sequence alignment, the most 

conserved residue of each helix is denoted the value 50 (Figure 1.1). The number 

progressively decreases from 50 for amino acids upstream of the reference residue and 
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increases towards to carboxyl-terminus. For example, the residue three residues preceding the 

most conserved residue in TM VI is denoted by the reference 6.47. 

1.4.1 Rhodopsin at 2.8 Ǻ 

The first crystal structure of a GPCR was that of bovine rhodopsin (bRho) by Palczewski et 

al. in 2000 (Figure 1.2). Rhodopsins are activated by light and produce vision by signalling 

through the visual G-protein, transducin. Rhodopsin is composed of the protein opsin and a 

vitamin A derivative – 11-cis-retinal – covalently linked through Lys296 of opsin. Absorption 

of a photon of light by 11-cis-retinal isomerises the chromophore to all-trans-retinal, 

activating opsin. 

From the crystal structure of bRho at 2.8 Ǻ, the precise location of the retinal binding pocket 

was elucidated. The presence of an eighth cytoplasmic helix (H8) following TM VII and 

extracellular N-linked glycosylation sites were also identified. The bRho structure has since 

been refined by obtaining crystals at a higher resolutions (Okada and Palczewski, 2001; Riek 

et al., 2001; Teller et al., 2001; Krebs et al., 2003; Shimamura et al., 2008). 

bRho has an intermediate molecular weight with respect to family A GPCRs and was thought 

to be representative of the family. However, bRho possesses a covalently bound ligand – an 

uncommon feature amongst GPCRs. The first crystal structure of a GPCR with a diffusible 

ligand came in 2007 with the human β2-adrenoceptor, β2AR (Rosenbaum et al., 2007).  

1.4.2 Crystal structures of diffusible-ligand GPCRs 

Increasing amounts of structural data are now available due to various strategies developed to 

facilitate crystallisation. The major inherent difficulties in obtaining crystals of GPCRs are: i) 

that as membrane proteins, they must be solubilised by detergent prior to purification and the 

lateral pressure which maintains their tertiary structure is removed when taken from their 
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Figure 1.2 Bovine rhodopsin: The first crystal structure of a GPCR 

The 11-cis-retinal ligand is shown in white space-filled. Helices are coloured according to 
colour; TM I , red; TM II, orange; TM III green; TM IV, teal; TM V, blue; TM VI, lilac; TM 
VII, purple and H8, yellow. Glycosylation sites are not shown. pdb: 1F88.  
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membrane environment, ii) the receptors are unstable in the detergent used in their 

solubilisation and purification and iii) the conformational dynamism of GPCRs decreases the 

likelihood that the GPCR will exist as single receptor conformation required for 

crystallisation. Protein engineering has enhanced success in obtaining crystals suitable to 

obtain molecular structural detail. 

Removal of carbohydrate chains by deglycosylation or mutagenesis of glycosylation sites 

increases homogeneity of GPCR crystals. The first two β2AR receptor structures were 

obtained by crystallisation with inverse agonists, truncating the carboxyl-terminus and 

stabilising the most flexible of the loop regions, ICL 3. Two methods were used to decrease 

flexibility of ICL 3; binding an antibody raised against ICL 3 (Rasmussen et al., 2007) or by 

substituting the ICL 3 region with the relatively inflexible T4-lysozyme, T4L (Cherezov et 

al., 2007). A completely different strategy was employed for crystallising the avian β1 

adrenoceptor (β1AR), utilising thermostabilising point mutations to aid in crystallisation 

(Warne et al., 2008). Ligand-free opsin was crystallised (Park et al., 2008) and showed 

marked differences to the previously published bRho structure (Palczewski et al., 2000) and 

gave the first insights into a pseudoactive receptor structure. The first G-protein-interacting 

structure came from crystallising opsin in the presence of the carboxyl terminus of transducin, 

Gt-CT (Scheerer et al., 2008). 

The publication of structures of the human A2A adenosine receptor, A2AR (Jaakola et al., 

2008); CXCR4 chemokine receptor (Wu et al., 2010); human dopamine D3 receptor, D3R 

(Chien et al., 2010) and human histamine H1 receptor, H1R (Shimamura et al., 2011) have 

added further structural information to the field. Still these structures provided further insight 

to the inactive receptor conformation. The structures of agonist-bound receptor conformations 

have recently become available from the human β2AR (Rasmussen et al., 2011a; Rasmussen 
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et al., 2011b; Rosenbaum et al., 2011), avian β1AR (Warne et al., 2011), metarhodopsin II 

(Choe et al., 2011) and A2AR (Lebon et al., 2011; Xu et al., 2011). The publication of the first 

active receptor in a GPCR-G-protein complex (Rasmussen et al., 2011b) represents a 

milestone structure. Here, T4L is engineered at the amino terminus of the β2AR and the 

interface of Gα and Gβγ are stabilised by a camelid nanobody (Figure 1.3). 

More recently, the diversity of GPCR structures solved has increased with crystal structures 

of the human sphingosine 1-phosphate receptor (Hanson et al., 2012); human M2 and rat M3 

muscarinic acetylcholine receptors, mAChR (Haga et al., 2012; Kruse et al., 2012). The 

human κ-opioid receptor, κ-OR (Nagase et al., 2012; Wu et al., 2012); mouse μ-opioid 

receptor, μ-OR (Manglik et al., 2012), δ-opioid receptor, δ-OR (Granier et al., 2012) and most 

recently the related nociceptin/orphanin FQ peptide receptor (Thompson et al., 2012) crystal 

structures have been resolved is inactive conformations. 

1.5 Receptor activation 

The basis of all GPCR activation models is that the receptor exists in an equilibrium between 

inactive (R) and active (R*) states (discussed further in 1.7). Agonists have a higher affinity 

for R* whereby binding stabilises an active state and moves the equilibrium towards R*. The 

binding event stabilises particular intramolecular rearrangements that initiate intracellular 

signalling. 

Given the important functional roles of particular amino acid motifs conserved in rhodopsin-

like GPCRs, it is suggested that mechanisms are shared throughout the family. 
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Figure 1.3 The crystal structure of the β2AR-Gs complex 

The agonist BI-167107 is shown in space-filled. Helices are coloured according to colour; TM 
I , red; TM II, orange; TM III green; TM IV, teal; TM V, blue; TM VI, lilac; TM VII, purple 
and H8, yellow. T4L (brown) is engineered at the amino-terminus of the β2AR. 
Heterotrimeric G-protein is shown in white. Nb35 nanobody is shown in pink. pdb: 3SN6 
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1.5.1 Ligand binding 

The binding modes of different families of GPCRs largely correlate to orthosteric (natural) 

ligand size and architectures of the receptors’ amino-termini. As such, the diversity of GPCR 

ligands of the rhodopsin-like GPCRs requires diverse modes of binding. Orthosteric ligands 

vary in both chemical composition and size; from small monoamine ligands and nucleotides 

to peptides, lipids and large glycoproteins. The general location of the orthosteric binding 

sites of subfamilies of the rhodopsin-like and mGluR-like families of GPCRs are summarised 

in Figure 1.4. Before the advent of crystallographic GPCR data, site-directed mutagenesis and 

radioligand binding assays were invaluable in identifying specific residues involved in ligand 

binding. Key residues may be conserved within families, such as Asp3.32 of monoamine ligand 

receptors, (Gantz et al., 1992; Ho et al., 1992; Mansour et al., 1992; Spalding et al., 1994) 

which form a counter-ion to the amine group conserved within their cognate ligands. 

Furthermore, the ligand binding domains of 11-cis-retinal and all-trans-retinal in opsins 

occupy a similar position in the GPCR as the monoamine ligands (Palczewski et al., 2000). 

Nethertheless, crystal structures have revealed that there is a diversity of TM contacts made 

by ligands which induce common helical rearrangements that confer an active receptor 

conformation (Unal and Karnik, 2012). 

Crystallographic data provides high resolution detail of ligand binding sites that site-directed 

mutagenesis could previously only infer. An emerging picture is that activation is 

accompanied by contraction of the ligand binding pocket although how this is achieved seems 

to vary between receptors. β1AR crystal structures identified a contraction of the ligand 

binding pocket of 1 Ǻ of full agonists isoprenaline and carmoterol; and partial agonists 

dobutamin and salbutamol (Warne et al., 2011). However it was apparent that a specific 

contact with Ser5.46 is required to confer full-agonism. Similarly a contraction by 1.2 Ǻ of the 
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Figure 1.4 Representation of ligand binding domains of GPCRs 

A, The opsins and amine, nucleotide and lipid moiety receptors bind orthosteric ligands at TM regions. B, peptide hormone ligands may 
bind orthosteric ligands at the amino-terminus, ECLs and TM regions. C, proteases cleave the amino-terminus of protease activated 
receptors which exposes the tethered ligand which subsequently interacts with receptor. D, the large glycoprotein hormones bind and the 
extended amino-terminus of their respective GPCRs. E, neurotransmitter receptors bind to the large amino-termini of their receptors. 
Modified from (Ji et al., 1998). 
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ligand binding site in the β2AR was observed (Rasmussen et al., 2011a; Rasmussen et al., 

2011b; Rosenbaum et al., 2011). The agonist ligands NECA and adenosine at the A2AR 

likewise induce a 0.7 Ǻ and 0.8 Ǻ contraction of the ligand binding site respectively, but in 

contrast to β1AR, key contacts are made with Ser7.42 and His7.43 rather than TM V (Lebon et 

al., 2011). Together these data indicate the contraction of the ligand binding site (measured 

from the Cα of analogous residues 5.42 and 7.39) is induced upon ligand binding, but the 

precise ligand-receptor contacts are divergent. 

1.5.2 Intracellular conformational changes associated with activation 

With the advent of GPCR structures stabilised in an active receptor conformation, the direct 

comparison to inactive structures is now possible. This allows clear observation of structural 

changes involved in receptor activation which are summarised below. The hallmark structural 

feature of an activated receptor has been accepted as the outward movement of TM VI 

relative to TM III to expose the Gα binding site. This has been demonstrated by disulphide 

cross-linking and site-directed spin labelling experiments in rhodopsin (Farrens et al., 1996) 

and by fluorescence spectroscopy in the β2AR (Gether et al., 1997; Yao et al., 2006). 

1.5.2.1 Rhodopsin  

Crystallographic data of rhodopsin in it ground state demonstrate the close proximity of TM 

III and TM VI at the intracellular face (Palczewski et al., 2000). Crystallisation of ligand free 

opsin (Park et al., 2008), opsin with Gt-CT fragment (Scheerer et al., 2008) and most recently 

crystallographic data of two Meta II conformations (Choe et al., 2011; Deupi et al., 2012) 

indicate a 6 Ǻ outward movement of TM VI relative to TM III. 

1.5.2.2 A2AR 

The agonist stabilised A2AR crystal structures represent what are thought to be activation-

intermediate structures (Lebon and Tate, 2011; Lebon et al., 2011; Xu et al., 2011) compared 
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to the ZM241385, inverse agonist-bound structure (Dore et al., 2011). Subtle helical 

rearrangements included a shift of TM III towards the extracellular surface, 3 Ǻ outward 

movement of the cytoplasmic portion of TM V and a 40 ° rotation and outward movement of 

TM VI are similar to those observed in β2AR structures discussed in section 1.5.2.3. The 

outward movement of the cytoplasmic portion of TM VI in this structure would not be 

sufficient to accommodate the C-terminal portion of Gα as observed in opsin and Meta II. 

1.5.2.3 β2AR 

Rasmussen et al., 2011a crystallised the β2AR representing the first diffusible-ligand GPCR in 

an active conformation. A camelid antibody fragment (Nb80) was co-crystallised as a G-

protein mimetic in the agonist (BI-167107)-bound β2AR structure. Nb80 increased the affinity 

of agonist binding to a similar level as observed in the presence of G-protein. The outward 

movement of TM VI in the BI-167107-β2AR-Nb80 complex was 11 Ǻ accompanying a 1.3 Ǻ 

contraction of the binding pocket. 

The BI-167107 agonist and a similar camelid nanobody approach were used in co-

crystallising the elusive G-protein-β2AR complex (Rasmussen et al., 2011b). The Nb35 bound 

at the interface of Gα and Gβ subunits of the Gs heterotrimer. Although the location of the Gα 

C-terminus of the intact G-protein is similar to in the opsin crystal structure (Scheerer et al., 

2008), the outward movement of TM VI relative to TM III is 14 Ǻ (Figure.1.5). The two 

active β2AR structures described here are virtually identical apart from the additional 3 Ǻ 

movement described in the latter. 

It is expected that the outward movement of TM VI relative to TM III allows the binding of 

G-protein associated with the canonical view of GPCR signalling. What is still not understood 

is how an active receptor conformation is adopted to elicit G-protein-independent signalling 

cascades. The publication by (Nakajima and Wess, 2012) concerned designer receptors 
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Figure 1.5 An overlay of crystal structures of the β2AR in an inactive and an active state 

The structure of β2AR in an inactive receptor conformation is shown in red (pdb: 2RH1) and a 
G-protein interacting conformation is shown in green (pdb: 3SN6). Gs is shown in white (pdb: 
3SN6). The outward movement of TM VI away from TM III associated with receptor 
activation is indicated by the yellow arrow.  
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exclusively activated by designer drugs (DREADDs). These receptors that selectively 

signalling through G-protein-independent pathways will perhaps provide inside into the 

appropriate conformational changes required. 

1.5.3 Conserved motifs of rhodopsin-like GPCRs 

There are numerous conserved residues that define the rhodopsin-like GPCR family. It is 

accepted that the conserved motifs possess conserved roles and hence universal modes of 

activation. Key, conserved amino acids motifs are discussed here with respect to their role in 

GPCR activation. 

1.5.3.1 D/ERY 

In the rhodopsin GPCR family, residues Asp/Glu3.49-Arg3.50-Tyr3.51 are located at the 

membrane boundary of TM III. Arg3.50 is the most conserved residue in TM III being present 

in 96% of rhodopsin-like GPCRs. An acidic residue precedes Arg3.50 in 86 % of receptors 

while Tyr3.51 is conserved in 67 % of the family (Mirzadegan et al., 2003). In the bRho crystal 

structure, Glu3.49 side chain forms an ionic interaction with neighbouring Arg3.50, maintaining 

an inactive receptor conformation (Palczewski et al., 2000). Breakage of the interaction by 

protonation of the acidic side chain (Cohen et al., 1992) or mutagenic charge neutralisation 

results increased activation in the absence of agonist in the α1bAR and β2AR (Scheer et al., 

1996; Scheer and Cotecchia, 1997; Rasmussen et al., 1999). Additionally, the bRho crystal 

structure possesses an ‘ionic lock’ between Glu3.49/Arg3.50 with Glu6.30/Thr6.34 at the 

cytoplasmic face of TM VI (Palczewski et al., 2000) in an inactive conformation. Although 

Glu3.60 is only conserved in the monoamine-ligand GPCRs, the proximity of TM III and TM 

VI is thought to be important in conferring a G-protein-interacting conformation in general. 

However, the majority of GPCR crystal structures do not demonstrate an ‘ionic lock’ with the 
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exceptions of the D3R (Chien et al., 2010) and one A2AR structure (Dore et al., 2011) 

although how much this is due to the T4L-fusion replacing ICL 3 is debatable. 

1.5.3.2 CWXP 

The Cys6.47-Trp6.48-Xxx6.49-Pro6.50 motif is located below the ligand-binding domain of 

rhodopsin-like GPCRs. The ‘rotamer toggle switch’ involves the side chain indole of Trp6.48 

switching between two preferred rotamers to modulate the kink in TM VI about Pro6.50. The 

bond angle of the proline kink is decreased when Trp6.48 breaks interactions with TM VII 

normally stablising the R state. A straightening of TM VI and produces a movement of TM 

VI away from TM III at the cytoplasmic face (Shi et al., 2002; Ruprecht et al., 2004; 

Schwartz et al., 2006). However, crystallographic data of active receptor conformations thus 

far does not support this as a mechanism of the conformational changes undergone during 

GPCR activation. 

1.5.3.3 NPXXY 

Asn7.49, Pro7.50 and Tyr7.53 comprise the conserved NPxxY motif. Asn7.49 is proposed to act as 

an on/off switch, stabilising an active conformation through a hydrogen bond network with 

the two most conserved residues in TM I and TM II, Asn1.50 and Asp2.50 (Govaerts et al., 

2001; Urizar et al., 2005). The side chain of Tyr7.53 participates in the ‘tyrosine toggle switch’ 

with Tyr5.58 which translocate into the helical bundle upon activation. This side chain 

movement extends a hydrogen bond network towards the D/ERY motif and the C-terminus of 

the G-protein (Standfuss et al., 2011). 
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1.6 Intracellular signalling 

1.6.1 G-protein dependent signalling 

GPCRs are named as such by their ability to activate G-proteins and hence initiate 

intracellular signalling cascades. G-proteins are activated by exchanging a bound GDP 

(guanosine diphosphate) for GTP (guanosine triphosphate) – a process catalyses by active 

GPCRs. 

1.6.1.1 G-protein activation 

The GDP molecule is bound to the Gα GTPase domain which maintains the association of the 

Gαβγ heterotrimer and hence inactivation of the G-protein (Figure 1.6). An active GPCR 

promotes the exchange of the GDP molecule for a GTP molecule which causes the 

heterotrimer to dissociate into Gα-GTP and the functional Gβγ dimer. The two G-protein 

units activate effector molecules that generate second messengers until such time that the 

GTPase activity of the α-subunit hydrolyses GTP. Hydrolysis of GTP to GDP results in 

reassociation of the Gαβγ heterotrimer, inactivating the G-protein and terminating G-protein-

dependent signalling. 

The β2AR structure in complex with Gs has now revealed conformational changes that 

mediated exchange of GDP in the heterotrimer for GTP (Rasmussen et al., 2011b). Hydrogen-

deuterium exchange experiments also demonstrate how the active GPCR destabilises the ‘P-

loop’ of Gs that stabilises the GDP molecule, promoting nucleotide exchange (Chung et al., 

2011). 

1.6.1.2 Activation of adenylyl cyclase 

The Gαs and Gαi/o subtypes of G-proteins modulate the activity of the intracellular effector 

adenylyl cyclase, AC (Figure 1.7). AC is a membrane localised enzyme that generates the
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Figure 1.6 G-protein activation by G-protein-coupled receptors 

Activated GPCR (R*) catalyses the exchange of GDP for GTP, causing G-protein (Gαβγ) 
dissociation into Gα-GTP and Gβγ. Both G-protein units may activate downstream effectors 
until such time that the GTP is hydrolysed. Gα-GDP reassociates with the Gβγ dimer, 
rendering the heterotrimeric G-protein inactive. 
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Figure 1.7 Signalling through GPCRs 

Binding of diverse extracellular ligands causes the activation of G-proteins at the intracellular face of GPCRs. The subunits of G-protein 
activate specific effector molecules resulting in activation and inhibition of the production of second messengers (Marinissen and Gutkind, 
2001). 
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second messenger cyclic adenosine 3,5-monophosphate (cAMP) from ATP (adenosine 

triphosphate). cAMP in turn regulates the activity of protein kinase A (PKA). Gαs increases 

intracellular levels of cAMP whereas Gαi α-subunits cause inhibition of AC. 

1.6.1.3 Activation of phospholipase C-β 

Phospholipase C (PLC)-β is activated by the Gαq/11 subtype of Gα (Figure 1.7). Particular 

PLC-β isoforms may also be activated by the obligate Gβγ dimer (Morris and Scarlata, 1997). 

PLC catalyses the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), liberating the 

second messengers inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 

stimulates calcium release from the intracellular stores and DAG activates protein kinase C 

(PKC). 

1.6.2 G-protein-independent signalling 

β-arrestins are well documented to be involved in the internalisation of a plethora of 

membrane proteins. However, β-arrestins also partake in the propagation of intracellular 

signalling in GPCRs. They were first implicated as mediators of receptor signalling in the 

β2AR whereby mitogen-activated protein kinase (MAPK) signalling was inhibited by 

dominant negative β-arrestin mutants (Daaka et al., 1998; Luttrell et al., 1999). The function 

of β-arrestin as a scaffold in G-protein-independent signalling has been reported in the 

angiotensin II receptor type I (AT1R) (Tohgo et al., 2002) and CXCR4 (Sun et al., 2002).  

The β2AR has been shown to activate MAPK through Gs at low agonist concentrations and 

activate Src at higher concentrations of the same agonist (Sun et al., 2007). Interestingly, this 

later mechanism is β-arrestin-independent, further highlighting the complexity of GPCR 

signal transduction. 
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1.6.3 Constitutive activity 

Receptors exist in equilibrium between inactive and active states whereby the binding of an 

agonist moves the equilibrium towards the active conformation. However, GPCRs may adopt 

an active receptor conformation in the absence agonist. Constitutively active mutants (CAMs) 

may be generated by disrupting interactions associated with maintaining an inactive receptor 

state (Kjelsberg et al., 1992; Robinson et al., 1992; Han et al., 1998). Some such CAMs are 

associated with pathologies in humans such as retinitis pigmentosa (Stojanovic et al., 2003) 

and obesity (Proneth et al., 2006). Constitutive activity may be an endogenous feature of a 

receptor as in the ghrelin receptor (ghrelin-R). In this case, mutations reducing its agonist-

independent signalling are associated with pathology (DelParigi et al., 2002; Holst and 

Schwartz, 2006). The constitutive activity of the ghrelin-R has been shown to be inherent in 

the receptor itself and not due to interaction with intracellular components (Damian et al., 

2012). 

1.7 Activation models 

Models of activation of GPCRs have developed over the years which accommodate new 

insights from experimental data. 

1.7.1 Ternary complex model 

The ternary complex model (TCM) described that a receptor may exist in two affinity forms 

(De Lean et al., 1980). A cellular component X is required to form a high affinity ternary 

complex with hormone (H)-bound receptor (HR). The ternary complex HRX is capable of 

activating effector molecules, connecting the agonist (H) binding event and the initiation of 

intracellular signalling. Addition of non-hydrolysable guanine nucleotides destabilised the 

ternary complex, suggesting that component X is an intracellular guanine-nucleotide binding 
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site or G-protein. The formation of RG accounts for agonist-independent signalling observed 

experimentally. 

1.7.2 Extended ternary complex and cubic ternary complex models 

The extended ternary complex elaborates on the TCM to accommodate constitutive activity 

observed in an engineered β2AR construct (Samama et al., 1993). Three observations of the 

mutant β2AR were made: i) increased agonist-independent signalling, ii) increased agonist 

affinity and iii) increased intrinsic efficacy of partial agonists. These properties of the mutant 

β2AR when compared to Wt can, in part, be accommodated by the increased coupling of 

receptor to G-protein. However, an increased affinity of agonist for mutant β2AR was 

observed even in the absence of G-protein which cannot be accommodated in the TCM. The 

extended ternary complex model incorporated constant J which governs the conversion 

between two receptor population, R and an active R* (Figure 1.8). Constant β describes the 

effect of hormone binding on the equilibrium between R and R*. These inclusions 

accommodate the observations in the constitutively active β2AR construct such that HR*G is 

the only ternary complex formed. 

The cubic ternary complex elaborates on the extended ternary complex model, permitting 

distinct receptor conformations binding to a common G-protein (Weiss et al., 1996). To this 

point, agonist-independent signalling is explained in addition to the action of agonists 

stabilising an active receptor conformation. Additionally, inverse agonism can be 

accommodated, whereby an inverse agonist ligand may stabilise an inactive receptor state, 

decreasing a receptors inherent basal activity. However, only one signalling component, i.e. 

G-protein, is assumed responsible for all intracellular signalling pathways. A model whereby 

a receptor can signal through multiple pathways, either through multiple G-proteins and/or
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Figure 1.8 The extended ternary complex model and the cubic ternary complex model 

Upper panel: The extended ternary complex. Inactive receptor (R) undergos conversion to active 
receptor (R*) governed by J. Agonist (A) interacts with R and R* may interact with A and 
intracellular G-protein (G). β describes the allosteric effect of A on J; K describes the affinity of 
A for R; M, the affinity of R* for G. α the ability of A to form the ternary complex AR*G 
(Samama et al., 1993). Lower panel: The cubic ternary complex model. Both R and R* may 
interact with G therefore both R*G and AR*G are the active receptor species (Weiss et al., 1996).  
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other intracellular components such as the β-arrestins must be considered, presumable through 

multiple active (and inactive) receptor conformations (Gurevich et al., 1997). 

1.8 Modulating receptor function 

1.8.1 Allostery 

Allosteric modulators are ligands that may bind to GPCR regions distinct to the site of orthosteric 

ligand binding. As such, the binding of an allosteric modulator may modulate the affinity, 

potency or efficacy of orthosteric ligands for their receptor (Monod et al., 1963; Wess, 2005; 

Conn et al., 2009).  

The monovalent cation, Na+ is a well-documented allosteric modulator of GPCR function. Na+ is 

proposed to neutralise the charged Asp2.50, affecting both ligand binding affinity and G-protein 

activation (Limbird, 1984). The α2 adrenoceptor α2AR; dopamine D2 receptor. D2R and 

serotonin receptor, 5-HT1R (Horstman et al., 1990; Neve et al., 1991; McLoughlin and Strange, 

2000) are allosterically modulated by Na+. An A2AR crystal structure demonstrated how Na+ ions 

and structural water molecules contribute to GPCR function (Liu et al., 2012). Additionally this 

structure shows how cholesterol stabilises the conformation of TM VI. 

The ubiquitous steroid-lipid cholesterol has been implicated in the allosteric regulation of a 

number of GPCRs. Cholesterol shifts the equilibrium to stabilise an inactive receptor 

conformation in rhodopsin (Straume and Litman, 1988; Mitchell et al., 1990; Bennett and 

Mitchell, 2008). In contrast cholesterol stabilises an active receptor state in the oxytocin receptor 

(OTR) (Fahrenholz et al., 1995; Klein et al., 1995). 
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It is also apparent that GPCRs can be activated via allosteric sites in the absence of agonist in the 

orthosteric site. So called ago-allosteric modulation was first observed in adenosine A1 receptor 

where the allosteric ligand PD81723 activated Gαi/o even in the absence of orthosteric ligand 

(Bruns and Fergus, 1990). This phenomenon has also been described in M2 mAChR (May et al., 

2007) and free fatty acid 2 receptor (Milligan et al., 2009). 

1.8.2 Dimerisation 

Dimerisation is a well-recognised mechanism by which GPCR signalling may be honed. GPCRs 

of the rhodopsin family may form dimers through association of transmembrane segments. TM I 

and TM IV are implicated as interfaces in the formation of homodimers of the α1bAR (Carrillo et 

al., 2004) and D2R (Guo et al., 2005). Rhodopsin dimers involve TM I and II in native 

membranes (Liang et al., 2003). The implication of dimer formation is evident in the β2AR where 

disruption of dimer formation reduced agonist-induced AC activity (Hebert et al., 1996). 

Heterodimer formation of somatostatin SST3:SST2A dimers prevented activation of SST3 by 

selective ligand (Pfeiffer et al., 2001). Heterocompexes of the 5-HT2AR and mGlu2R enabled 5-

HT2A agonists to induce signalling through Gi/o normally associated with mGlu2R signalling 

(Gonzalez-Maeso et al., 2008). The neurotensin receptor 1 (NTS1) reconstituted in lipid bilayers 

eliminates the requirement of cellular components to form functional dimers (Harding et al., 

2009). Dimerisation is often required for transport to the cell surface but is not a prerequisite for 

G-protein activation given that β2AR (Whorton et al., 2007) and rhodopsin (Bayburt et al., 2007) 

are capable of functioning as monomers. 

1.8.3 Post-translational modifications 

GPCRs possess post-translational modifications, the resultant effects of which are diverse and 

largely receptor specific. 
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1.8.3.1 Glycosylation 

Many membrane proteins are modified by the addition of carbohydrate moieties as part of their 

maturation. N-linked glycosylation of asparagine residues (consensus site Asn-Xxx-Ser/Thr) 

occurs in the endoplasmic reticulum whereas O-linked glycosylation at serine or threonine 

residues occurs in the Golgi and cytosol. There is no consensus sequence known for O-linked 

glycosylation. It has been demonstrated that glycosylation of GPCRs plays multiple roles in their 

function. N-linked glycosylation occurs in rhodopsin where mutations of the glycosylation 

consensus sequence cause autosomal retinitis pigmentosa (Murray et al., 2009). The human μ-OR 

is modified by N-linked glycosylation which is essential in maintaining protein stability (Huang 

et al., 2012). The vasopressin V2 receptor may be modified by O-linked glycosylation at 

extracellular serine/threonine residues (Sadeghi and Birnbaumer, 1999). 

1.8.3.2 Palmitoylation 

The addition of a 16-carbon saturated fatty acid, palmitic acid, often occurs at cysteine residues 

on the intracellular side of GPCRs near the end of H8. Palmitoylation of two adjacent cysteine 

resides in the cytoplasmic tail was first demonstrated in bRho (Ovchinnikov Yu et al., 1988). 

Incorporation of the palmitic acid moieties into the plasma membrane results in the formation of 

a fourth intracellular loop composed of H8 (Palczewski et al., 2000). The effects of 

palmitoylation on GPCR function are receptor dependent. The lack of palmitoylation causes in 

reduced receptor number at the cell surface in the histamine H1 (Fukushima et al., 2001), 

dopamine D1 (Ng et al., 1994) and TSH (Tanaka et al., 1998) receptors. Signalling efficacy of 

the β2AR was greatly reduced in non-palmitoylated receptor constructs (O'Dowd et al., 1989) 

whereas Gs activation was unaffected in serotonin 4A receptor (Ponimaskin et al., 2002). V1aR is 
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palmitoylated and agonist-stimulation results in turnover of the palmitate which has structural 

implications (Hawtin et al., 2001). 

The presence of carboxyl-terminal cysteine residues is not indicative of receptor palmitoylation. 

The cysteine residues in the carboxyl-terminus of the μ-OR are not palmitoylated but a cysteine 

residue in ICL 2 may be (Chen et al., 1998). Palmitoylation of the ICL 2 cysteine is required for 

effective intracellular signalling but does not affect ligand binding (Zheng et al., 2012). 

1.8.3.3 Ubiquitination 

Ubiquitin is a 76 amino acid protein which when covalently linked to intracellular lysine 

residues, marks proteins for lysosomal degradation (Ciechanover, 2010). This post-translational 

modification has been characterised in the β2AR where all intracellular lysine residues were 

mutated, rendering the receptor incapable of ubiquitination and subsequent degradation upon 

agonist stimulation (Shenoy et al., 2007). Substitution of lysyl side chains in the CXCR4 

(Marchese and Benovic, 2001) and V2R (Martin et al., 2003) also prevented the lysosomal 

degradation owing to ubiquitination being prevented. 

1.9 Terminating receptor signalling 

To effectively regulate receptor signalling, it is essential that receptor activation can be 

terminated. This may be achieved by a number of mechanisms and utilises a plethora of 

intracellular proteins (Figure 1.9). 

1.9.1 Receptor desensitisation 

GPCR-G-protein interactions – and hence intracellular signalling – may be disrupted by a family 

of GPCR kinases (GRKs). Kinases in this family are comprised of three domains; a regulator of 
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Figure 1.9 Desensitisation, sequestration and receptor fate 

Receptors are activated by ligand binding (H), inducing phosphorylation at intracellular portions 
by GRKs which promotes β-arrestin (β-arr) recruitment. AP-2 (β2-adaptin) associates with 
receptor-β-arrestin complexes and clathrin, causing formation of clathrin-coated pits. Dynamin 
(Dyn) causes scission of clathrin-coated vesicle. Receptors are either recycled to the plasma 
membrane or targetted to late endosomes, resulting in lysosomal degradation. Adapted from 
Luttrell et al., 2008.  
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G-protein signalling (RGS) homology domain at the amino-terminus, a catalytic domain and a 

membrane targeting domain at the carboxyl-terminus (Magalhaes et al., 2012). The GRK family 

comprises seven members in mammals (GRK 1-7). GRK 1 and GRK 7 are expressed exclusively 

in the visual system and of the remaining members, all but GRK 4 are expressed ubiquitously 

(Pitcher et al., 1998; Ferguson, 2001). Association of GRK 2 and GRK 3 with Gαq/11-coupled 

GPCRs is in itself enough to uncouple the active receptor from the G-protein in a 

phosphorylation-independent manner (Ferguson, 2007). Phosphorylation-dependent 

desensitisation involves phosphorylation of active-receptors by GRKs at serine and threonine 

residues in the ICL 3 and the carboxy-terminus. Although, this is often not enough to uncouple 

GPCR and G-protein but does initiate the recruitment of arrestins, of which there are four 

isoforms in mammals (Ferguson, 2001). Arrestin1 and arrestin4 are expressed in the visual 

system and the two non-visual arrestins, β-arrestin1 (arrestin2) and β-arrestin2 (arrestin3) are 

ubiquitously expressed. Association of arrestins to phosphorylated GPCRs uncouples receptor 

from G-protein, preventing the generation of second messengers. 

1.9.2 Sequestration 

Further to the desensitisation of active GPCRs, the binding of β-arrestins may initiate the 

internalisation of receptors from the cell-surface. This reduction of receptor number at the cell-

membrane is known as sequestration. Clathrin-mediated endocytosis is induced by β-arrestin1 

and β-arrestin2 binding to the clathrin heavy chain of clathrin and β2-adaptin, AP-2 (Ferguson et 

al., 1996; Goodman et al., 1996). Assembly of the heterotetrameric adaptor complex promotes 

the invagination of the cell membrane and hence the internalisation of active receptor. 

Consequently, internalised receptors may undergo two fates; trafficking down the endocytic 
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pathway if β-arrestins bind with high affinity, or recycling back to the cell membrane if β-arrestin 

binds with a relatively lower affinity (Oakley et al., 2000). 

1.9.3 Regulating G-protein activity 

Enhancing the hydrolysis of GTP in the catalytic domain of Gαq and Gαi/o proteins is an 

additional mechanism by which intracellular signalling is halted. Regulators of G-protein 

signalling (RGS) act as GTPase activating proteins (GAPs), thus promoting the reassociation of 

the G-protein heterodimer (Nunn et al., 2006). An RGS box of approximately 120 amino acids is 

conserved among all RGS protein which elicits their GAP activity with flanking regions 

determining their specificity. Targeting this vast family of GPCR-signalling-regulators is rapidly 

becoming an area of therapeutic interest (Sjogren and Neubig, 2010). 

1.10 Human neurohypophysial hormones 

In 1953, the neurophyophysial hormones [arginine8]vasopressin (AVP) and oxytocin (OT) were 

the first neuropeptides to be chemically synthesised (Duvigneaud, 1955). AVP and OT are co-

translated with specific neurophysin (NP-I for AVP and NP-II for OT) in the supraoptic nuclei 

(SON) and paraventricular nuclei (PVN) of the hypothalamus. The prohormones are cleaved, in 

neurosecretory granules and AVP and OT are released into the blood stream with their respective 

neurophysin as a hormone-binding protein complex (Hadley, 1996) 

1.10.1 The structure of AVP and OT 

Neurohypophysial hormones are nonapeptide hormones that possess a six amino acid ring 

structure generated by a characteristic disulphide bond between Cys1 and Cys6 (Figure 1.10). The 

tripeptide carboxyl-terminal tail is amidated (Hadley 1996). A phenylalanine residue is present at   
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Figure 1.10 Structures of AVP and OT 

The molecular structure and amino acid sequences of AVP and OT are shown in the upper and 
lower panels respectively.  
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position 3 in AVP compared to an isoleucine residue on OT. Additionally, AVP possesses an 

arginine residue at position 8 whereas OT has a neutral amino acid, leucine. 

1.10.2 AVP and OT receptors 

The human neurohypophysial hormone receptors were characterised initially based upon their 

pharmacology and second messenger generation (Michell et al., 1979). OT binds with high 

affinity to the oxytocin receptor (OTR) which stimulates PLC-β. AVP also acts at the OTR as a 

high affinity partial agonist (Wootten et al., 2011), in addition to binding to three distinct 

vasopressin receptor subtypes; V1aR, V1bR and V2R. The V1aR and V1bR signal through the 

inositol-phosphate pathway like the OTR whereas the V2R generates the second messenger 

cAMP through stimulation of AC (Birnbaumer, 2000). The tissues in which neurohypophysial 

hormone receptors are expressed dictate the physiological roles of OTR and AVP. 

1.10.3 Physiology of neurohypophysial hormones 

There are numerous roles for AVP acting through the three primary vasopressin receptors. The 

V1aR mediates the majority of the physiological roles of AVP including the contraction of 

vascular smooth muscle (den Ouden and Meinders, 2005) in blood homeostasis, as highlighted 

by mouse knockout (KO) studies (Oikawa et al., 2010). This study revealed a role of the V1aR in 

elevation of arterial blood pressure in response to increased plasma salt concentrations. The 

homeostatic roles of AVP are further highlighted by a study that demonstrated increased 

locomotion in dehydrated mice, a response that was attenuated in V1aR KO mice (Tsunematsu et 

al., 2008). Additionally the roles of AVP in platelet aggregation (Filep and Rosenkranz, 1987) 

and glycogenolysis in the liver and insulin secretion (Howl et al., 1991) are mediated through the 
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V1aR. The intricacy of neurohypophysial hormone physiology is exemplified by the analgesic 

effects of OT which are not observed in V1aR KO mice (Schorscher-Petcu et al., 2010). 

Adrenocorticotropin (ACTH) release from the anterior pituitary is stimulated through the V1bR 

(Griebel et al., 2003) implicating AVP in stress and anxiety. KO studies identified that ACTH 

release is mediated by the V1bR under basal and stress conditions (Tanoue et al., 2004). 

The V2R mediates the antidiuretic effects of AVP by two mechanisms (Deen et al., 1995). The 

V2R is expressed in the principal cells of the distal nephron in the kidney. V2R activation 

promotes the transcription of the water channel aquaporin 2 and stimulates insertion of aquaporin 

2 water channels, promoting water reabsorption (Conner et al., 2012). V2R KO mice exhibited all 

of the features of X-linked nephrogenic diabetes insipidus (NDI), lacking antidiuretic responses 

to AVP in addition to polyuria and polydipsia (Li et al., 2009). It is from this antidiuretic effect 

that AVP is also known as antidiuretic hormone (ADH). 

OT plays a duel role in labour. Uterine contraction and prostaglandin F2α release are induced by 

OT at the OTR in addition to stimulating lactation post-partum (Jenkins and Nussey, 1991). OT 

was shown to provide antidepressant effects in male mice in an OTR KO study (Matsushita et al., 

2010). Both OT and AVP play roles in anxiety, depression and social behaviour including autism 

(Neumann and Landgraf, 2012), bond formation and maternal care (Bosch and Neumann, 2012).  
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1.11 Strategy and aims of this study 

The aim of this study is to probe regions of the V1aR with regards their contribution to receptor 

structure and function. Evolution of the GPCR superfamily in general and specifically the V1aR 

has resulted in amino acids at particular loci, and the side chain properties fulfilling specific roles 

in receptor structure and function. In substituting specific amino acids to those with different side 

chain properties, the role of the endogenous residue may be probed. For example, the substitution 

of any amino acid to alanine affectively removes the side chain as far as the β-carbon. 

Additionally, the similarities/differences between amino acid side chains may be utilised to assess 

the role of side chains. For example, in mutating a tyrosine residue to phenylalanine, any 

perturbation in structure and function, may be attributed to the hydroxyl of the endogenous 

tyrosine and not the benzene moiety. Together, it is hypothesised that the resultant effects in 

receptor structure and function observed are due to the differences in the side chains introduced 

my amino acid substitution. Perturbations in receptor structure and function where assessed 

following mutagenesis by characterisation of ligand binding, signalling capabilities and cell-

surface expression within three regions of the V1aR. 

Since the publication of crystallographic data, ICL 2 has become an area of increasing interest in 

the GPCR field owing to its key location within the receptor architecture close to the receptor:G-

protein interface. The individual contribution of the amino acids within ICL 2 to the structure and 

function of the V1aR are focused upon – paying particular attention to areas of conservation 

within the GPCR superfamily. 

The V1aR demonstrates little, if any, detectable constitutive activity through the inositol-

phosphate pathway. Constitutively active mutants have previously identified particular residues 
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within the GPCR superfamily that are integral maintaining an inactive receptor conformation. 

One such residue is a conserved hydrophobic residue at position 6.40, yet there seems to be no 

consensus as to the effects of substitutions introduced at this locus. Mutagenesis of the residue 

Ile6.40, and neighbouring residues aim to look at the role of this conserved hydrophobic residue in 

the V1aR. 

A conserved tyrosine residue within TM V has been attributed many roles in GPCR function. 

Here, systematic substitution of Tyr5.58 by all other 19 encoded amino acids is utilised to attempt 

to understand the structural requirements at this locus and how this relates to its functional role. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Antibodies 

Monoclonal anti-haemagglutanin (HA) (mouse clone HA-7) primary antibody was purchased 

from Sigma (Dorset UK). Horse, anti-mouse IgG, horseradish peroxidase (HRP)-conjugated 

antibody was purchased from New England Biolabs (Hitchin, UK). 

2.1.2 Cell tissue culture 

Dulbecco’s modified Eagle’s medium (DMEM) and Dulbecco’s phosphate-buffered saline (PBS) 

were purchased from Lonza (Slough, UK). Inositol-free DMEM was custom made by Life 

Technologies (Paisley, UK). Foetal bovine serum, (FBS) was purchased from PAA (Yeovil, UK). 

Poly-D-lysine (PDL) and polyethyleneimine (PEI) transfection reagent were purchased from 

Sigma (Dorset, UK). Cell-culture plastic ware was purchased from Fisher Scientific 

(Loughborough, UK) and Triple Red (Long Crendon, UK). 

2.1.3 Molecular biology reagents 

Deoxyribonucleotide triphosphates (dNTPs) were purchased from Bioline (London, UK). Pfu 

DNA polymerase enzyme was purchased from Promega (Southampton, UK) and DpnI restriction 

enzyme from New England Biolabs (Hitchin, U.K.). Mammalian expression vector pcDNA3.1(+) 

(Figure 2.1) was purchased from Invitrogen (Paisley, UK). Promega Wizard® Plus SV Miniprep 

Kit (Southampton, UK) and High Purity Maxiprep System, Marligen Biosciences (High 

Wycombe, UK) were used for isolation and purification of plasmid DNA.  



 

37 
 

 

 

 

Figure 2.1 Mammalian expression vector pcDNA3.1 

T7 promoter (green) and adjacent restriction sites within the multiple cloning sites of 
pcDNA3.1(+) and pcDNA3.1(-) are shown. SV40 enhancer regions are indicated and region 
encoding ampicillin resistance utilise for clonal selection is shown (adapted from 
Invitrogen.com).  
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2.1.4 Oligonucleotides 

Sense and antisense oligonucleotides were designed to incorporate the nucleotide substitutions to 

create mutant receptor constructs by QuikChange™ (oligonucleotide sequences can be found in 

the appropriate experimental chapters). Oligonucleotides were synthesized by Invitrogen 

(Paisley, UK) on a 0.2 μmole scale. Lyophilised oligonucleotides were dissolved in sterile 

distilled water to 100 pmol/μl and stored at –20 °C. Similarly, oligonucleotides, 5’-

TAATACGACTCACTAT-3’ and 5’-TAGAAGGCACAGTCGAGGCTG-3’, flanking the coding 

sequences of the V1aR and ghrelin-R were synthesised and used to confirm mutant receptor 

sequences. 

2.1.5 Peptides and hormone analogues 

[Arginine8]vasopressin, AVP; cyclic antagonist (CA), [d(CH2)5
1, Tyr(Me)2]AVP; and human 

ghrelin were purchased from Bachem (Weil am Rhine, Germany). 

2.1.6 Radiochemicals 

Tritiated AVP, [Phe3-3,4,5-3H]AVP (specific activity: 55.90 – 61.86 Ci/mmol) and myo-[2-

3H]inositol (specific activity: 21.70 – 23.75 Ci/mmol) were purchased from Perkin Elmer 

(Stevenage, UK). 

2.1.7 Substrates 

Sigma-fast O-phenlyenediamine dihydrochloride (OPD) was purchased from Sigma (Dorset, 

UK). 
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2.2 Methods 

2.2.1 QuikChange™ PCR 

Mutagenesis was performed using the coding (cDNA) sequences for V1aR and ghrelin-R in the 

mammalian expression vector pcDNA3.1(+). Both coding sequences contained a nine amino 

acid, haemagglutanin (HA)-epitope tag (YPYDVPDYA) engineered after the initiation 

methionine (Wheatley et al., 2007; Kendrick, PhD thesis, University of Birmingham 2010). 

The QuikChange™ based mutagenesis method designed by Strategene (Cambridge, UK) was 

employed to engineer point mutations into the V1aR and ghrelin-R coding sequences. 100 ng of 

an appropriate template (generally wildtype (Wt)) was used in a final reaction volume of 50 μl. 

Reaction mixture included sense and antisense oligonucleotide primers at 0.4 pmol/µl; dATP, 

dCTP, dGTP and dTTP each at 0.2 nmol/µl; Pfu DNA polymerase (0.5-2.0 u) in 1x Pfu buffer. 

Using Biometra T3000 Thermocycler, DNA was amplified under conditions: 95 °C for 1 min 

(preheating); denaturing, 95 °C, 1 min; annealing, 55 °C, 1 min; extension, 68 °C 14 min and 

repeat from denaturing step for 12 cycles. Methylated template DNA was digested by DpnI at 30 

°C for 90 min. 

2.2.2 Gel electrophoresis 

QuikChange™ reactions were analysed by gel electrophoresis before and after digestion by DpnI 

to confirm presence of mutant cDNA. Samples were mixed (1:9) with 10 x loading dye buffer 

(0.25 % (w/v) bromophenol blue, 10 mM Tris,  1mM EDTA and 30 % (v/v) glycerol) and loaded 

into 1 % (w/v) agarose gels in 1 x TBE buffer (89 mM Tris, 89 mM boric acid, 2 mM EDTA) 
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containing ethidium bromide (0.5 µg/ml). Horizontal gel electrophoresis was run at 

approximately 80 mV for 60 min. Gels were visualized using ultraviolet light transilluminator. 

2.2.3 Transformation 

XL-10 gold ultracompetent cells were made using a standard protocol (Sambrook et al., 1989) 

and stored at -80 °C. Cells were thawed on ice and 30 µl XL-10 gold cells were incubated with 

cDNA for 30 min on ice. Cells were heat-shocked at 42 °C for 30 sec and returned to ice for 2 

min. 800 µl lysogeny broth (LB)-Lennox (1 % (w/v) peptone, 0.5 % (w/v) yeast extract, 0.5 % 

(w/v) NaCl) was added and incubated at 37 °C for 1 h. Cells were sedimented by centrifugation 

at 13,000 rpm for 10 min, resuspended in approximately 30 µl LB and spread on LB agar plates 

containing 100 µg/ml ampicillin. Plates were incubated for 16 h, 37 °C. Single colonies were 

selected to inoculate 5-10 mL LB containing 100 µl/ml ampicillin. Cultures were grown for 16 h, 

37 °C for cDNA extraction and purification. 

2.2.4 Plasmid cDNA extraction and purification 

Promega Wizard® Plus SV Miniprep Kit (centrifugation protocol according to manufacturer’s 

instructions) was used to purify culture to yield 1-10 µg cDNA for automated fluorescence DNA 

sequencing. XL-10 gold ultracompetent cells transformed with cDNA of confirmed sequence 

were cultured and purified by Marligen High Purity Maxiprep System (column flow-through 

method according to manufacturer’s instructions) to yield 0.5-2.5 mg cDNA. cDNA 

concentration was determined by absorbance spectroscopy at 260 nm of samples diluted 1:99 in 

sterile distilled water measured on Bio-Tek Kontron, Unikon 923 spectrometer. Sample purity 

was determined by measuring the absorbance ratio at 260/280 nm. 
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2.2.5 Automated fluorescence DNA sequencing 

All receptor constructs modified by QuikChange™ were confirmed by automated fluorescence 

sequencing using primers cited in 2.1.4 (Functional Genomics and Proteomics Laboratories, 

University of Birmingham, UK). 

2.2.6 Cell culture 

HEK 293T cells were incubated in humidified 5 % (v/v) CO2 at a constant temperature of 37 °C. 

Routine passage in DMEM supplemented with 10 % (v/v) FBS was carried out twice weekly. 

Cell stocks (low-passage, log phase growth, 1 x 106 cells/vial) were stored in liquid nitrogen in 

freezing medium (90 % (v/v) FBS, 10 % (v/v) DMSO). 

For cell membrane preparations for ligand binding assays, cells were seeded at an approximate 

density of 5 x 105 cells/100 mm dish and transfected after 48 h. For measurement of agonist-

induced inositol phosphate production PDL-coated, 12-well plates were seeded at a density of 2.5 

x 105/well and transfected after 24 h. In preparation of enzyme-linked immunosorbent assay 

(ELISA) protocol, PDL-coated, 24-well plates were seeded at approximate density 1.5x105 

cells/well and transfected after a further 24 h. 

2.2.7 PEI transfection 

All transfection solutions of sterile 5 % glucose, sterile 10mM PEI and DNA were incubated 

without media for 30 min, room temperature prior to being added to dishes/wells. Tranfection 

solution for radioligand binding cell membrane extracts were composed of 1 ml sterile 5% 

glucose, 60 µl sterile 10 mM PEI and 5 µg DNA per 100 mm dish. Seeded wells for agonist-

induced inositol phosphate production assays were transfected with 60 µl sterile 5% glucose, 8 µl 
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sterile PEI, 1 µg DNA and 1 ml full media per well, 0 µg DNA for untransfected wells. For 

ELISA, 30 µl sterile 5% glucose, 4 µl sterile 10 mM PEI, 0.5 µg DNA and 500 µl full media was 

used per well, 0 µg DNA as blank. 

2.2.8 Cell membrane harvesting 

Cell membrane extracts were prepared as described previously (Wheatley et al., 2007). Cells 

were washed twice in ice-cold PBS and scraped in harvest buffer (20 mM HEPES, 1 mM EGTA, 

10 mM Mg(CH3COO)2; pH 7.4) containing 0.1 mg/ml bacitracin and 250 mM sucrose. Cell 

membranes were sedimented (4000 rpm; 10 min at 4 °C) and resuspended in harvest buffer 

containing 0.1 mg/ml bacitracin. Membranes were incubated on ice for 20 min and centrifuged as 

before. Sedimented cell membranes were resuspended in harvest buffer containing 250mM 

sucrose and stored in 500 μl aliquots at -20 °C. 

2.2.9 Protein assay 

The Pierce BCA protein assay kit (Northumberland, UK) was used to determine protein 

concentration of cell membrane extracts. Using a standard BSA standard curve, the approximate 

total protein concentration of unknown samples was determined. 

2.2.10 Radioligand binding assays 

Radioligand binding assays were performed on harvested cell membrane preparations using a 

tritiated natural agonist [Phe3-3,4,5-3H]AVP as previously described (Wheatley et al., 1997). In a 

final volume of 500 µl, radioligand binding assays contained tritiated radioligand, competing 

ligand (AVP or CA) at final concentrations 10-6 to 10-12 M and membranes (50-300 µg protein) 

diluted in assay buffer (20 mM HEPES, 1 mM EGTA, 10 mM Mg(CH3COO)2, 1 mg/ml BSA; 
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pH 7.4). Non-specific binding was defined by a saturating concentration of unlabelled ligand (10 

μM). Incubation for 90 min at 30 °C established equilibrium and subsequent centrifugation 

(13,000 rpm for 10 min) separated bound and free ligand. Membranes pellets were twice washed 

in water and solubilised with 50 µl Soluene 350 (Packard). 1 ml of HiSafe3 liquid scintillation 

cocktail (Perkin Elmer) was added to solubilised membranes and dpm calculated using a Packard 

1600 TR liquid scintillation analyser counter; 3 min counts. 

2.2.10.1 Analysis of radioligand binding data  

Experimental data were expressed as a percentage of maximum binding. Replicates of three 

independent experiments performed in triplicate were analysed by non-linear regression to fit 

theoretical Langmuir binding isotherms using the GraphPad Prism 4.0 program (San Diego, 

USA). Individual IC50 values for competing ligands were corrected for radioligand occupancy to 

give individual Ki values using the equations below. Ki values are quoted as the mean of three 

values ± s.e.m. 

[3H]ligand concentration (nM) =    counts (dpm)     
      specific activity (Ci/mmol) + sample volume (µl) x 2.22 

 

Ki (nM) = IC50 - [free radioligand] (nM) 

 

Ki (nM) = IC50 x   Kd[H3]ligand   
       Kd[3H]ligand x [free radioligand] 

 

2.2.11 AVP-induced inositol phosphate production assay 

AVP-induced accumulation of inositol phosphates were carried out as previously described 

(Wheatley et al., 1997). 24 h post transfection, media was replaced with inositol-free DMEM 
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containing 1 µCi/ml myo-[2-3H]inositol. Cells were washed with PBS 24 h after media change 

and incubated in fresh inositol-free DMEM containing 10 mM LiCl at 37 °C for 30 min. Cells 

were then incubated at 37 °C for 30 min with varying concentrations of AVP ranging from 10-10 – 

10-6 M. Media was removed by aspiration and the assay was terminated with the addition of 0.5 

ml per well of perchloric acid solution (5 % (v/v) HClO4, 1 mM EDTA and 1 mg/ml phytic acid 

hydrolysate) and incubated at room temperature for 15 min. Samples were neutralised with 1.2 M 

KOH containing 10 mM EDTA and 50 mM HEPES in 1 ml microcentrifuge tubes and stored 

overnight at -20 °C. Samples were sedimented at 13,000 rpm for 30 min and supernatent loaded 

onto Bio-Rad AG1-X8 (formate form) (Hemel Hempstead, UK) filled columns. Following the 

elution of free inositol and glycerophosphoinositol with 10 ml, 60 mM NH4COOH containing 0.1 

M HCOOH, a mixed fraction of inositol mono-, bis- and trisinositolphosphates was eluted by 10 

ml, 850 mM NH4COOH containing 0.1 M HCOOH. 10 ml UltimaFlo AF scintillation cocktail 

(Perkin Elmer) was added to the mixed fraction eluent and radioactivity quantified by a Packard 

1600 TR liquid scintillation analyser counter; 3 min counts, three times per vial. 

2.2.11.1 Analysis of AVP-induced inositol phosphate production 

Data were analysed by non-linear regression to generate sigmoidal dose-response curves using 

GraphPad Prism 4.0 (San Diego, USA). Data were normalised to Wt Emax and basal signalling 

levels. Mean EC50 values of three independent experiments performed in triplicate were 

determined and are stated ± mean 95 % confidence intervals. Emax values are stated ± s.e.m. 

2.2.12 ELISA to measure cell-surface expression  

HEK 293T wells were transfected with receptor constructs as previously described (Wheatley et 

al., 1997). To induce internalisation, V1aR construct were stimulated for 30 min with 10-7 M AVP 
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and incubated in humidified 5% CO2 at 37 °C. Growth media was removed by aspiration and 

cells were treated with 3.7 % (v/v) formaldehyde in PBS for 15 min. Cells were washed with PBS 

three times and blocked with 1% (w/v) BSA in PBS for 45 minutes shaking at room temperature. 

The cells were incubated with 250 µl mouse, α-HA antibody (diluted 1:2500-3500) in PBS with 

1% (w/v) BSA at room temperature, 1 h (shaken). Cells were washed three times with PBS and 

blocked as before for 15 min. Cells were incubated with 250 µl α-mouse IgG, HRP-linked 

antibody diluted (diluted 1:2500-3500) for 1 h. The cells were washed a further three times 

before addition of OPD substrate made up according to manufacturer’s instructions. Colour was 

allowed to develop in the dark and reaction terminated by transferring 100 µl volumes into a 96 

well plate containing 100 µl/well of 1 M H2SO4. The absorbance at 492 nm was measured. 

2.2.12.1Analysis of ELISA 

Data were analysed using GraphPad Prism 4.0 program (San Diego, USA). Histograms were 

constructing of cell-surface expression of three independent experiments performed in triplicate, 

normalised to total Wt expression and untransfected cells. For V1aR constructs, the presence of 

receptor at the cell surface after agonist challenge was analysed similarly. 

  



 

46 
 

CHAPTER 3: INVESTIGATING INTRACELLULAR LOOP 2 IN V1AR 

3.1 Introduction 

Intracellular loop 2 (ICL 2) connecting transmembrane helices III and IV is the most conserved 

intracellular loop of the rhodopsin-like family of GPCRs with respect to length (Mirzadegan et 

al., 2003). This intracellular region has been shown to contain binding determinants for arrestin 

(Raman et al., 2003; Marion et al., 2006) and GRK 2 (Dhami et al., 2005) in addition to contact 

points for Gα (Timossi et al., 2002; Havlickova et al., 2003; Rasmussen et al., 2011b). The 

importance of ICL 2 in GPCR function is further highlighted by human pathologies caused by 

point mutations within ICL 2 in GPR54 (Wacker et al., 2008), V2R (Vargas-Poussou et al., 1997) 

and the melanocortin 1 receptor (Sanchez-Laorden et al., 2009). 

Crystallographic data have demonstrated the potential of ICL 2 to adopt multiple conformations. 

Crystal structures of the β1AR (Warne et al., 2008) and the A2AR (Jaakola et al., 2008) first 

demonstrated α-helical portions of ICL 2 whereas the β2AR adopted an L-shaped conformation 

(Cherezov et al., 2007). It has been suggested that an α-helix conformation of ICL2 is associated 

with the ability to bind β-arrestin and that in general, GPCRs are able to adopt both 

conformations with varied probability (Shan et al., 2010). This dynamic nature is highlighted by 

the dopamine D3 receptor (Chien et al., 2010), where ICL 2 of one unit of the asymmetric dimer 

is helical and the other is unresolved indicting structural heterogeneity. 

Few mutagenic studies of the entire ICL 2 have been conducted. The most extensive study to date 

was the cannabinoid CB1 receptor which signals through Gi and Gs (Chen et al., 2010). Much 

mutagenesis has been concentrated around the conserved Pro3.57 residue and the adjacent residue 
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which is usually a bulky hydrophobic. Pro3.57 is associated with arrestin binding and 

internalisation (Raman et al., 2003; Marion et al., 2006) whereas the adjacent residue 3.58 is 

more implicated in the activation of many classes of G-protein (Moro et al., 1993; Sugimoto et 

al., 2004; Chen et al., 2010). 

The aim of this chapter is to assess the contribution of individual amino acids within ICL 2 on the 

pharmacology, signalling properties and cell-surface expression of the Gq-coupled V1aR. The 

DRY motif of the V1aR has been characterised previously (Hawtin, 2005). The first section of 

this chapter will encompass the systematic alanine-scanning mutagenesis of the residues proximal 

to the DRY motif continuing through to the basic cluster at the juxtamembrane segment of TM 

IV (Figure 3.1). Particular attention will then be paid to the residues Pro3.57-Leu3.58 and the 

downstream residues which correspond to the helical region revealed in recent GPCR crystal 

structures. In addition, some complementary experiments were conducted in ICL 2 of the ghrelin-

R to characterise the effects of specific residue substitutions in a Gq/11-coupled GPCR possessing 

substantial constitutive activity, signalling through the inositol phosphate pathway like V1aR 

(Holst et al., 2003). 

3.2 Results 

All V1aR receptor constructs discussed in this chapter are summarised in Figure 3.1. The 

oligonucleotides utilised to generate the receptor constructs (as described in section 2.2.1) are 

summarised in Table 3.1. The V1aR constructs were characterised by radioligand binding assay 

with respect to their ability to bind the endogenous agonist ligand AVP and synthetic peptide 

ligand CA. All receptor constructs characterised by radioligand binding expressed at 
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Figure 3.1 Two-dimensional representation of the V1aR 

The N-terminal, HA-epitope tag (extracellular side) is shown as blue circles. Helices are labelled 
by roman numerals. The most conserved residue of each helix of rhodopsin-like GPCRs is shown 
in grey circles and conserved disulphide bridge is shown in red. Palmitoylation sites are shown as 
zigzags (intracellular side). The residues discussed within this chapter are shown as yellow 
circles.  
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Receptor construct Sense oligonucleotide Antisense oligonucleotide 

[I3.52A]V1aR 
5’ – GCC–GAC–CGC–TAC–GCC-
GCG-GTG-TGC-CAC – 3’ 

5’ – GTG-GCA-CAC-CGC-GGC-GTA-
GCG-GTC-GGC – 3’ 

[I3.52F]V1aR 
5’ – GAC-CGC-TAC-TTC-GCG-GTG-
TG – 3’ 

5’ – CA-CAC-CGC-GAA-GTA-GCG-
GTC – 3’ 

[A3.53G]V1aR 
5’ – AC-CGC-TAC-ATC-GGG-GTG-
TGC-CAC-CC – 3’ 

5’ – GG-GTG-GCA-CAC-CCC-GAT-
GTA-GCG-GT – 3’ 

[V3.54A]V1aR 
5’ – GC-TAC-ATC-GCG-GCG-TGC-

CAC-CCG-CT – 3’ 
5’ – AG-CGG-GTG-GCA-CGC-CGC-
GAT-GTA-GC – 3’ 

[C3.55A]V1aR 
5’ – C-TAC-ATC-GCG-GTG-GCC-
CAC-CCG-CTC-AAG – 3’ 

5’ – CTT-GAG-CGG-GTG-GGC-CAC-
CGC-GAT-GTA-G – 3’ 

[H3.56A]V1aR 
5’ – C-ATC-GCG-GTG-TGC-GCC-
CCG-CTC-AAG-AC – 3’ 

5’ – GT-CTT-GAG-CGG-GGC-GCA-
CAC-CGC-GAT-G – 3’ 

[H3.56F]V1aR 
5’ – GCG-GTG-TGC-TTC-CCG-CTC-
AAG – 3’ 

5’ – CTT-GAG-CGG-GAA-GCA-CAC-
CGC – 3’ 

[P3.57A]V1aR 
5’ – GCG-GTG-TGC-CAC-GCG-CTC-
AAG-ACT-CTG – 3’ 

5’ – CAG-AGT-CTT-GAG-CGC-GTG-
GCA-CAC-CGC – 3’ 

[P3.57L]V1aR 
5’ – GCG-GTG-TGC-CAC-CTG-CTC-
AAG-ACT-CTG – 3’ 

5’ – CAG-AGT-CTT-GAG-CAG-GTG-
GCA-CAC-CGC – 3’ 

[L3.58A]V1aR 
5’ – GTG-TGC-CAC-CCG-GCC-
AAG-ACT-CTG-CAA-C– 3’ 

5’ – G-TTG-CAG-AGT-CTT-GGC-
CGG-GTG-GCA-CAC – 3’ 

[L3.58M]V1aR 
5’ – G-TGC-CAC-CCG-ATG-AAG-
ACT-CTG – 3’ 

5’ – G-TTG-CAG-AGT-CTT-CAT-
CGG-GTG-GCA-C – 3’ 

[L3.58S]V1aR 
5’ – G-TGC-CAC-CCG-TCC-AAG-
ACT-CTG – 3’ 

5’ – G-TTG-CAG-AGT-CTT-GGA-
CGG-GTG-GCA-C – 3’ 

[K3.59A]V1aR 
5’ – G-TGC-CAC-CCG-CTC-GCG-
ACT-CTG-CAA-CAG – 3’ 

5’ – CTG-TTG-CAG-AGT-CGC-GAG-
CGG-GTG-GCA-C – 3’ 

[K3.59R]V1aR 
5’ – GC-CAC-CCG-CTC-AGG-ACT-
CTG-CAA-C – 3’ 

5’ – G-TTG-CAG-AGT-CCT-GAG-
CGG-GTG – 3’ 

[T3.60A]V1aR 
5’ – CAC-CCG-CTC-AAG-GCT-CTG-
CAA-CAG – 3’ 

5’ – CTG-TTG-CAG-AGC-CTT-GAG-
CGG-GTG-GC – 3’ 

[T3.60F]V1aR 
5’ – CAC-CCG-CTC-AAG-TTT-CTG-
CAA-CAG-C – 3’ 

5’ – G-CTG-TTG-CAG-AAA-CTT-
GAG-CGG-GTG – 3’ 

[T3.60S]V1aR 
5’ – CAC-CCG-CTC-AAG-TCT-CTG-
CAA-CAG-C – 3’ 

5’ – G-CTG-TTG-CAG-AGA-CTT-
GAG-CGG-GTG – 3’ 

[T3.60Y]V1aR 
5’ – CAC-CCG-CTC-AAG-TAT-CTG-
CAA-CAG-C – 3’ 

5’ – G-CTG-TTG-CAG-ATA-CTT-
GAG-CGG-GTG – 3’ 

[L3.61A]V1aR 
5’ – CCG-CTC-AAG-ACT-GCG-
CAA-CAG-CCC-GCG – 3’ 

5’ – CGC-GGG-CTG-TTG-CGC-AGT-
CTT-GAG-CGG – 3’ 

[L3.61K]V1aR 
5’ – CCG-CTC-AAG-ACT-AAG-
CAA-CAG-CCC-GCG – 3’ 

5’ – CGC-GGG-CTG-TTG-CTT-AGT-
CTT-GAG-CGG – 3’ 

[Q3.62A]V1aR 
5’ – CTC-AAG-ACT-CTG-GCA-
CAG-CCC-GCG-CGC – 3’ 

5’ – GCG-CGC-GGG-CTG-TGC-CAG-
AGT-CTT-GAG – 3’ 
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[Q3.62V]V1aR 
5’ – CTC-AAG-ACT-CTG-GTA-
CAG-CCC-GCG-CGC – 3’ 

5’ – GCG-CGC-GGG-CTG-TAC-CAG-
AGT-CTT-GAG – 3’ 

[Q3.63A]V1aR 
5’ – G-CTC-AAG-ACT-CTG-CAA-
GCG-CCC-GCG-C – 3’ 

5’ – G-CGC-GGG-CGC-TTG-CAG-
AGT-CTT-GAG-C– 3’ 

[P3.64A]V1aR 
5’ – CT-CTG-CAA-CAG-GCC-GCG-
CGC-CGC-TC – 3’ 

5’ – GA-GCG-GCG-CGC-GGC-CTG-
TTG-CAG-AG – 3’ 

[A3.65G]V1aR 
5’ – G-CAA-CAG-CCC-GGG-CGC-
CGC-TCG-CGC – 3’ 

5’ – GCG-CGA-GCG-GCG-CCC-GGG-
CTG-TTG-C – 3’ 

[R3.66A]V1aR 
5’ – CAA-CAG-CCC-GCG-GCC-
CGC-TCG-CGC-CTC – 3’ 

5’ – GAG-GCG-CGA-GCG-GGC-CGC-
GGG-CTG-TTG – 3’ 

[R3.67A]V1aR 
5’ – CAG-CCC-GCG-CGC-GCC-
TCG-CGC-CTC-ATG – 3’ 

5’ – CAT-GAG-GCG-CGA-GGC-GCG-
CGC-GGG-CTG – 3’ 

[S3.68A]V1aR 
5’– GCG-CGC-CGC-GCG-CGC-CTC-
ATG-ATC – 3’ 

5’– GAT-CAT-GAG-GCG-CGC-GCG-
GCG-CGC – 3’ 

[R3.69A]V1aR 
5’ – GCG-CGC-CGC-TCG-GCC-CTC-
ATG-ATC-GCG – 3’ 

5’ – CGC-GAT-CAT-GAG-GGC-CGA-
GCG-GCG-CGC – 3’ 

[R3.66A/R3.67A]V1aR 
5’ – CAA-CAG-CCC-GCG-GCC-
GCC-TCG-CGC-CTC-ATG – 3’ 

5’ – CAT-GAG-GCG-CGA-GGC-GGC-
CGC-GGG-CTG-TTG– 3’ 

[R3.66A/R3.69A]V1aR 
5’ – CAA-CAG-CCC-GCG-GCC-
CGC-TCG-GCC-CTC – 3’ 

5’ – GAG-GGC-CGA-GCG-GGC-CGC-
GGG-CTG-TTG – 3’ 

[R3.67A/R3.69A]V1aR 
5’ – CAG-CCC-GCG-CGC-GCC-
TCG-GCC-CTC-ATG – 3’ 

5’ – CAT-GAG-GGC-CGA-GGC-GCG-
CGC-GGG-CTG – 3’ 

[R3.66A/R3.67A/ 
R3.69A]V1aR 

5’ – GCG-GCC-GCC-TCG-GCC-
CTC-ATG-ATC-GCG – 3’ 

5’ – CGC-GAT-CAT-GAG-GGC-CGA-
GGC-GGC-CGC– 3’ 

[β2AR-ICL2H]V1aR 

RXN1: 5’ – G-TGC-CAC-CCG-TTC-
AAG-TAT-CTG-CAA-C – 3’ 
RXN2: 5’ – CCG-TTC-AAG-TAT-
CAG-TCA-CAG-CCC-GCG-CGC – 3’ 

RXN1: 5’ – G-TTG-CAG-ATA-CTT-
GAA-CGG-GTG-GCA – 3’ 
RXN2: 5’ – GCG-CGC-GGG-CTG-
TGA-CTG-ATA-CTT-GAA-CGG – 3’ 

[ghrelinR-ICL2H]V1aR 

RXN1: 5’ – GC-CAC-CCG-CTC-
AGG-GCT-AAG-CAA-CAG  – 3’ 
RXN2: 5’ – CTC-AGG-GCT-AAG-
GTA-CAG-CCC-GCG-CGC – 3’ 

RXN1: 5’ – CTG-TTG-CTT-AGC-CCT-
GAG-CGG-GTG-GC  – 3’ 
RXN2: 5’ – GCG-CGC-GGG-CTG-TAC-
CTT-AGC-CCT-GAG  – 3’ 

 

Table 3.1 Oligonucleotide sequences utilised to generate receptor constructs  

Receptor constructs were generated as previously described in section 2.2.1. The codon encoding 
the amino acid substituted is highlighted in red and nucleotide substitutions in bold. Non-bold 
bases show the complementary template sequence. 

  



 

51 
 

1-2 pmol/mg protein. In order to determine the effects of point mutations on the receptors’ 

capabilities to activate PLC, receptor constructs were transiently transfected into HEK 293T cells 

and the accumulation of inositol phosphates, InsP-InsP3 was measured. Cell-surface expression of 

each receptor construct was also quantified relative to Wt by exploiting the HA epitope–tag in an 

ELISA. 

3.2.1 Alanine-scanning mutagenesis of ICL 2 

To investigate the contribution of individual amino acids in ICL 2 to the structure and function of 

the V1aR, each amino acid was individually mutated to alanine. In doing so, the amino acid side 

chain from the β-carbon is effectively removed. Natural alanine residues were mutated to glycine 

generating the receptor constructs [I3.52A]V1aR, [A3.53G]V1aR, [V3.54A]V1aR, [C3.55A]V1aR, 

[H3.56A]V1aR, [P3.57A]V1aR, [L3.58A]V1aR, [K3.59A]V1aR, [T3.60A]V1aR, [L3.61A]V1aR, 

[Q3.62A]V1aR, [Q3.63A]V1aR, [P3.64A]V1aR, [A3.65G]V1aR, [R3.66A]V1aR, [R3.67A]V1aR, 

[S3.68A]V1aR and [R3.69A]V1aR. Radioligand competition binding curves of alanine 

substitutions of ICL 2 residues are shown in Figures 3.3-3.7. InsP-InsP3 dose-response curves and 

cell-surface expression levels are represented in Figures 3.8-3.1. All data are summarised in 

Table 3.2. All figures and tables are presented together in the following pages. 

All receptor constructs with the exception of [I3.52A]V1aR, [P3.64A]V1aR, [R3.66A]V1aR, 

[R3.67A]V1aR and [R3.69A]V1aR bound the agonist ligand AVP and synthetic antagonist CA 

with Wt-like binding affinity (Figure 3.3-3.7, Table 3.2). [I3.52A]V1aR displayed 4.5-fold and 6-

fold increases in affinity for AVP and CA respectively (Figure 3.3). [P3.64A]V1aR did not bind 

[3H]AVP at experimental concentrations so could not be pharmacologically characterised (Figure 

3.6). [R3.66A]V1aR, [R3.67A]V1aR and [R3.69A]V1aR bound AVP with increase affinity of 4-,  
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Figure 3.3 Competition radioligand binding curves of alanine substituted ICL 2 residues 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [I3.52A]V1aR, (■); [A3.53G]V1aR, (▲); 
[V3.54A]V1aR, (▼) and [C3.55A]V1aR (♦). Upper panel: [3H]AVP vs AVP competition; lower 
panel: [3H]AVP vs CA competition. A theoretical Langmuir binding isotherm was fitted to data 
expressed as specific binding (%), defining non-specific binding by 1 μM ligand. Data are the 
mean ± s.e.m. of three experiments performed in triplicate.  
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Figure 3.4 Competition radioligand binding curves of alanine substituted ICL 2 residues 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [H3.56A]V1aR, (■); [P3.57A]V1aR, (▲); 
[L3.58A]V1aR, (▼) and [K3.59A]V1aR (♦). Upper panel: [3H]AVP vs AVP competition; lower 
panel: [3H]AVP vs CA competition. A theoretical Langmuir binding isotherm was fitted to data 
expressed as specific binding (%), defining non-specific binding by 1 μM ligand. Data are the 
mean ± s.e.m. of three experiments performed in triplicate.  
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Figure 3.5 Competition radioligand binding curves of alanine substituted ICL 2 residues 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [T3.60A]V1aR, (■); [L3.61A]V1aR, (▲); 
[Q3.62A]V1aR, (▼) and [Q3.63A]V1aR (♦). Upper panel: [3H]AVP vs AVP competition; lower 
panel: [3H]AVP vs CA competition. A theoretical Langmuir binding isotherm was fitted to data 
expressed as specific binding (%), defining non-specific binding by 1 μM ligand. Data are the 
mean ± s.e.m. of three experiments performed in triplicate.  
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Figure 3.6 Competition radioligand binding curves of alanine substituted ICL 2 residues 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [P3.64A]V1aR, (■); [A3.65G]V1aR (▲) and 
[R3.66A]V1aR, (▼). Upper panel: [3H]AVP vs AVP competition; lower panel: [3H]AVP vs CA 
competition. A theoretical Langmuir binding isotherm was fitted to data expressed as specific 
binding (%), defining non-specific binding by 1 μM ligand. Data are the mean ± s.e.m. of three 
experiments performed in triplicate.  
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Figure 3.7 Competition radioligand binding curves of alanine substituted ICL 2 residues 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [R3.67A]V1aR, (■); [S3.68A]V1aR (▲) and 
[R3.69A]V1aR, (▼). Upper panel: [3H]AVP vs AVP competition; lower panel: [3H]AVP vs CA 
competition. A theoretical Langmuir binding isotherm was fitted to data expressed as specific 
binding (%), defining non-specific binding by 1 μM ligand. Data are the mean ± s.e.m. of three 
experiments performed in triplicate. 
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Figure 3.8 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of alanine substitutions of ICL 2 residues 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [I3.52A]V1aR, (■); 
[A3.53G]V1aR, (▲); [V3.54A]V1aR, (▼) and [C3.55A]V1aR (♦). Data are normalised to 
[Wt]V1aR basal and maximal signalling levels, expressed as the mean ± s.e.m. of three 
experiments performed in triplicate. Basal signalling is plotted at 10-11 M. Lower panel: Cell-
surface expression levels of receptor constructs were normalised to untransfected cells and 
unstimulated (-) [Wt]V1aR expression levels. Data are stated as the mean ± s.e.m. of three 
experiments performed in triplicate. Stimulated (+) constructs were challenged by 10-7M AVP for 
30 min. 
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Figure 3.9 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of alanine substitutions of ICL 2 residues 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [H3.56A]V1aR, (■); 
[P3.57A]V1aR, (▲); [L3.58A]V1aR, (▼) and [K3.59A]V1aR (♦). Data are normalised to 
[Wt]V1aR basal and maximal signalling levels, expressed as the mean ± s.e.m. of three 
experiments performed in triplicate. Basal signalling is plotted at 10-11 M. Lower panel: Cell-
surface expression levels of receptor constructs were normalised to untransfected cells and 
unstimulated (-) [Wt]V1aR expression levels. Data are stated as the mean ± s.e.m. of three 
experiments performed in triplicate. Stimulated (+) constructs were challenged by 10-7M AVP for 
30 min.  
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Figure 3.10 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of alanine substitutions of ICL 2 residues 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [T3.60A]V1aR, (■); 
[L3.61A]V1aR, (▲); [Q3.62A]V1aR, (▼) and [Q3.63A]V1aR, (♦). Data are normalised to 
[Wt]V1aR basal and maximal signalling levels, expressed as the mean ± s.e.m. of three 
experiments performed in triplicate. Basal signalling is plotted at 10-11 M. Lower panel: Cell-
surface expression levels of receptor constructs were normalised to untransfected cells and 
unstimulated (-) [Wt]V1aR expression levels. Data are stated as the mean ± s.e.m. of three 
experiments performed in triplicate. Stimulated (+) constructs were challenged by 10-7M AVP for 
30 min.  
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Figure 3.11 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of alanine substitutions of ICL 2 residues 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [P3.64A]V1aR, (■); 
[A3.65G]V1aR, (▲) and [R3.66A]V1aR, (▼). Data are normalised to [Wt]V1aR basal and 
maximal signalling levels, expressed as the mean ± s.e.m. of three experiments performed in 
triplicate. Basal signalling is plotted at 10-11 M. Lower panel: Cell-surface expression levels of 
receptor constructs were normalised to untransfected cells and unstimulated (-) [Wt]V1aR 
expression levels. Data are stated as the mean ± s.e.m. of three experiments performed in 
triplicate. Stimulated (+) constructs were challenged by 10-7M AVP for 30 min.  
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Figure 3.12 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of alanine substitutions of ICL 2 residues 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [R3.67A]V1aR, (■); 
[S3.68A]V1aR, (▲) and [R3.69A]V1aR, (▼). Data are normalised to [Wt]V1aR basal and 
maximal signalling levels, expressed as the mean ± s.e.m. of three experiments performed in 
triplicate. Basal signalling is plotted at 10-11 M. Lower panel: Cell-surface expression levels of 
receptor constructs were normalised to untransfected cells and unstimulated (-) [Wt]V1aR 
expression levels. Data are stated as the mean ± s.e.m. of three experiments performed in 
triplicate. Stimulated (+) constructs were challenged by 10-7M AVP for 30 min.  
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Receptor 

construct 

Binding affinity, Ki 

(nM) ± s.e.m. 

InsP-InsP3 accumulation 

(% Wt Emax) ± s.e.m. 

Cell-surface expression 

(% Wt unstimulated) ± s.e.m. 

AVP CA Basal EC50
* Emax Unstimulated Stimulated 

V1aR 0.45 ± 0.04 0.96 ± 0.10 0 0.60 ± 0.02 100 100 55 ± 2 

[I3.52A]V1aR 0.10 ± 0.08 0.15 ± 0.08 3 ± 1 0.28 ± 0.04 51 ± 7 47 ± 4 12 ± 3 

[A3.53G]V1aR 0.26 ± 0.08 1.06 ± 0.20 0 ± 5 1.05 ± 0.32 24 ± 3 49 ± 7 16 ± 4 

[V3.54A]V1aR 0.59 ± 0.33 1.45 ± 0.18 -1 ± 3 5.98 ± 2.27 16 ± 4 37 ± 4 14 ± 3 

[C3.55A]V1aR 0.31 ± 0.11 0.68 ± 0.10 2 ± 2 0.32 ± 0.03 67 ± 5 53 ± 3 15 ± 3 

[H3.56A]V1aR 0.63 ± 0.11 1.22 ± 0.22 -1 ± 4 2.47 ± 0.40 58 ± 3 64 ± 5 35 ± 6 

[P3.57A]V1aR 0.73 ± 0.06 # 1.21 ± 0.08# 2 ± 2 0.35 ± 0.03 38 ± 9 40 ± 7 12 ± 3 

[L3.58A]V1aR 0.33 ± 0.08 1.14 ± 0.43 1 ± 1 1.04 ± 0.19 29 ± 4 97 ± 3 55 ± 2 

[K3.59A]V1aR 0.43 ± 0.10 0.86 ± 0.25 -1 ± 1 1.70 ± 0.02 68 ± 1 56 ± 7 18 ± 4 

[T3.60A]V1aR 0.53 ± 0.13 1.39 ± 0.35 0 ± 1 0.46 ± 0.05 80 ± 4 119 ± 8 71 ±7 

[L3.61A]V1aR 0.38 ± 0.07 0.95 ± 0.15 -3 ± 2 0.78 ± 0.07 47 ± 6 93 ± 2 56 ± 6 

[Q3.62A]V1aR 0.82 ± 0.22 1.27 ± 0.16 1 ± 0 0.29 ± 0.02 89 ± 6 78 ± 9 31 ± 1 

[Q3.63A]V1aR 0.50 ± 0.18 2.17 ± 0.63 -2 ± 3 1.51 ± 0.35 151 ± 7 127 ± 4 69 ± 8 

[P3.64A]V1aR Did not bind [3H]AVP -2 ± 5 No detectible signalling 4 ± 8 5 ± 5 

[A3.65A]V1aR 0.24 ± 0.02 0.74 ± 0.17 -1 ± 1 0.36 ± 0.05 84 ± 4 99 ± 5 53 ± 4 

[R3.66A]V1aR 0.11 ± 0.04 0.33 ± 0.06 -1 ± 3 1.04 ± 0.06 82 ± 5 89 ± 6 52 ± 3 

[R3.67A]V1aR 0.14 ± 0.05 0.32 ± 0.03 4 ± 1 1.16 ± 0.10 93 ± 7 80 ± 8 41 ± 7 

[S3.68A]V1aR 0.93 ± 0.04 1.71 ± 0.16 4 ± 1 0.31 ± 0.05 130 ± 8 128 ± 4 84 ± 3 

[R3.69A]V1aR 0.16 ± 0.02 0.30 ± 0.05 -1 ± 2 0.75 ± 0.06 93 ± 7 68 ± 5 37 ± 3 

 

Table 3.2 Binding, signalling and cell-surface expression alanine substitutions of ICL 2 
residues 

All data are shown as the mean ± s.e.m. of three separate experiments performed in triplicate. 
*EC50 is stated as the mean ± mean of 95 % confidence intervals of three separate experiments 
performed in triplicate. Data in yellow indicate >2.5-fold increase in Ki or EC50 or >25 % 
reduction in Emax, cell-surface expression; orange >5-fold increase in Ki or EC50 or >50 % 
reduction in Emax, cell-surface expression or internalisation; red >10-fold increase in Ki or EC50 
or >75 % reduction in Emax, cell-surface expression or internalisation. Data in green indicate 
>2.5-fold increase in Ki or EC50 or >25 % increase in Emax, cell-surface expression or > 50% 
increase in internalisation. Data in white are comparable to Wt. # denotes IC50 ± mean of 95 % 
confidence intervals of three separate experiments performed in triplicate. 
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3- and 2.8-fold respectively and all bound CA with 3-fold increases in affinity (Figures 3.6-3.7, 

Table 3.2). [P3.57A]V1aR displayed Wt-like IC50 values for AVP, 0.73 ± 0.06 nM (Wt 0.80 ± 

0.02 nM) and CA, 1.21 ± 0.08 nM (2.17 ± 0.09 nM), Figure 3.4. All receptor constructs displayed 

Wt-like basal levels of activity so will not be discussed further in this regard (Table 3.2).  

Receptor constructs [I3.52A]V1aR, [A3.53G]V1aR, [V3.54A]V1aR, [C3.55A]V1aR exhibited 

reduced maximal signalling levels and reduced cell-surface expression compared to Wt (Figure 

3.8, Table 3.2). The EC50 values of [I3.52A]V1aR, [A3.53G]V1aR and [C3.55A]V1aR were 

comparable to Wt whilst [V3.54A]V1aR increased ~10-fold. In response to agonist, 

[A3.53G]V1aR, [V3.54A]V1aR internalised at levels of receptor at levels comparable to Wt. 

[I3.52A]V1aR and [C3.55A]V1aR all displayed an increased tendency to internalise, > 67.5 % of 

unstimulated expression (Wt, 45 % unstimulated expression). 

[P3.57A]V1aR and [L3.58A]V1aR demonstrated Wt-like EC50 values while [H3.56A]V1aR and 

[K3.59A]V1aR achieved small 4.1- and 2.8-fold increases respectively (Figure 3.9, Table 3.2). 

The maximal signalling levels of [H3.56A]V1aR, [P3.57A]V1aR, [K3.59A]V1aR demonstrated 

decreased Emax values in line with their reduced cell-surface expression. [L3.58A]V1aR expressed 

at a Wt-like level with a marked reduction in maximal signalling capabilities (29 % of Wt Emax). 

P3.57A and K3.59A internalised a larger proportion of the receptor expressed (70 % and 68 % 

respectively) compared to Wt (45 % of unstimulated levels). 

Receptor constructs [T3.60A]V1aR and [Q3.62A]V1aR signalled like-Wt in all respects (Figure 

3.10, Table 3.2). [L3.61A]V1aR and [Q3.63A]V1aR displayed Wt-like EC50 values yet maximal 

InsP-InsP3 generation was 47 % and 151 % of Wt respectively. [Q3.63A]V1aR expressed at the 
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cell surface at 127 % of Wt levels while the [T3.60A]V1aR, [Q3.62A]V1aR and [L3.61A]V1aR 

expressed at levels comparable to Wt. All receptor constructs internalised upon agonist challenge. 

Figure 3.11 shows that receptor construct [P3.64A]V1aR could not generate second messengers 

InsP-InsP3 in response to AVP challenge given that is was not expressed at the cell surface as 

indicated by ELISA (Table 3.2). [A3.65G]V1aR and [R3.66A]V1aR signalled like Wt in all 

respects, expressed at the cell-surface at levels comparable to Wt and internalised a similar 

proportion of receptors to Wt (Figure 3.6, Table 3.2). 

[R3.67A]V1aR signalled and expressed at the cell surface at levels comparable to Wt (Figure 

3.12, Table 3.2). [S3.68A]V1aR generated an EC50 comparable to Wt with an Emax 130 % of Wt. 

Cell-surface expression was also increased to 128 % of Wt levels. [R3.69A]V1aR signalled 

through the inositol phosphate pathway in a manner comparable to Wt although cell-surface 

expression was slightly reduced. [R3.67A]V1aR, [S3.68A]V1aR and [R3.69A]V1aR all 

internalised normally in response to AVP challenge. 

3.2.2 Extended alanine-scanning of the arginine cluster 

A basic residue at the TM IV-cytosolic boundary is thought to contribute to a motif responsible 

for cholesterol binding (Hanson et al., 2008). As such, double and triple substitutions, 

[R3.66A/R3.67A]V1aR, [R3.66A/R3.69A]V1aR, [R3.67A/R3.69A]V1aR and 

[R3.66A/R3.67A/R3.69A]V1aR of the arginine cluster in V1aR were generated to investigate their 

role in receptor function. 

All receptor constructs bound [3H]AVP and generated competition binding curves for the ligands 

AVP and CA (Figure 3.13). IC50 values for constructs [R3.66A/R3.67A]V1aR (AVP, 0.59 ± 0.04 

nM; CA, 1.81 ± 0.28 nM) and [R3.66A/R3.69A]V1aR (AVP, 0.40 ± 0.03 nM; 
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Figure 3.13 Competition radioligand binding curves of multiple arginine substitutions at 

the cytoplasmic interface of TM IV 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [R3.66A/R3.67A]V1aR, (■); 
[R3.66A/R3.67A]V1aR, (▲); [R3.67A/R3.69A]V1aR, (▼) and [R3.66A/R3.67A/R3.69A]V1aR 
(♦). Upper panel: [3H]AVP vs AVP competition; lower panel: [3H]AVP vs CA competition. A 
theoretical Langmuir binding isotherm was fitted to data expressed as specific binding (%), 
defining non-specific binding by 1 μM ligand. Data are the mean ± s.e.m. of three experiments 
performed in triplicate.  
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CA 1.45 ± 0.22 nM) were comparable to Wt (AVP, 0.80 ± 0.02 nM; CA, 2.17 ± 0.09 nM). The 

double substitution receptor construct [R3.67A/R3.69]V1aR increased the binding affinity of AVP 

4.1-fold while maintaining Wt-like CA binding (Figure 3.13, Table 3.3). The triple substitution 

[R3.66A/R3.67A/R3.69A]V1aR maintained a Wt-like pharmacological profile. All multiple-

substituted receptor constructs maintained Wt-like basal signalling levels but exhibited decreases 

in maximal InsP-InsP3 generation and also decreased expression at the cell surface was evident. 

EC50 values of [R3.66A/R3.67A]V1aR and [R3.66A/R3.69A]V1aR were Wt-like while 

[R3.67A/R3.69A]V1aR decreased 2.6-fold. EC50 for the triple substitution decreased 5.4-fold. 

Double receptor constructs and the triple substitution internalised levels of receptor comparable 

to Wt upon agonist challenge. 

3.2.3 Substitution of conserved residues Pro3.57, Leu3.58 and Lys/Arg3.59 

A proline residue is present at locus 3.57 in 64 % of rhodopsin-like GPCRs (Marion et al., 2006). 

An alanine residue is also common at this position (26 %), therefore the P3.57L mutant construct 

was generated to elucidate whether proline and alanine contribute similarly at this position with 

respect to V1aR and ghrelin-R structure and function. An isoleucine, leucine, valine or 

phenylalanine at position 3.58 is observed in 75 % of rhodopsin-like GPCRs. A basic residue is 

present at position 3.59 in both V1aR and ghrelin-R, therefore Lys3.59 was substituted to alanine in 

the ghrelin-R to assess the contribution of a basic side chain at this locus in receptor structure and 

function. 

3.2.3.1 Substitution of Pro3.57 and Leu3.58 in the V1aR 

The substitution [L3.58S]V1aR recapitulates a polymorphism in the V1aR documented in GPR54 

(Wacker et al., 2008) and [L3.58M]V1aR introduces the methionine residue present in the V2R
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Figure 3.14 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of multiple arginine substitutions at the cytoplasmic interface of TM IV 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [R3.66A/R3.67A]V1aR, (■); 
[R3.66A/R3.69]V1aR, (▲),[R3.67A/R3.69A]V1aR, (▼) and [R3.66A/R3.67A/R3.69A]V1aR, (♦). 
Data are normalised to [Wt]V1aR basal and maximal signalling levels, expressed as the mean ± 
s.e.m. of three experiments performed in triplicate. Basal signalling is plotted at 10-11 M. Lower 
panel: Cell-surface expression levels of receptor constructs were normalised to untransfected 
cells and unstimulated (-) [Wt]V1aR expression levels. Data are stated as the mean ± s.e.m. of 
three experiments performed in triplicate. Stimulated (+) constructs were challenged by 10 -7M 
AVP for 30 min.  
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Receptor construct 
Binding affinity, Ki 

(nM) ± s.e.m. 
InsP-InsP3 accumulation 

(% Wt Emax) ± s.e.m. 
Cell-surface expression 

(%Wt unstimulated) ± s.e.m. 

AVP CA Basal EC50
* Emax Unstimulated Stimulated 

V1aR 0.45 ± 
0.04 

0.96 ± 
0.10 0 0.60 ± 

0.02 100 100 55 ± 2 

[R3.66A/R3.67]V1aR 0.59 ± 
0.04# 

1.81 ± 
0.28# 0 ± 5 0.61 ± 

0.06 62 ± 7 59 ± 2 24 ± 1 

[R3.66A/R3.69]V1aR 0.40 ± 
0.03# 

1.45 ± 
0.22# 3 ± 0 0.33 ± 

0.09 37 ± 1 37 ± 3 15 ± 3 

[R3.67A/R3.69]V1aR 0.11 ± 
0.02 

0.39 ± 
0.09 3 ± 2 0.23 ± 

0.03 43 ± 1 49 ± 4 21 ± 4 

[R3.66A/R3.67/ 
R3.69]V1aR 

0.34 ± 
0.08 

0.84 ± 
0.17 0 ± 2 0.11 ± 

0.04 14 ± 2 15 ± 3 9 ± 4 

 

Table 3.3 Binding, signalling and cell-surface expression of multiple arginine substitutions 
at the cytoplasmic interface of TM IV 

All data are shown as the mean ± s.e.m. of three separate experiments performed in triplicate. 
*EC50 is stated as the mean ± mean of 95 % confidence intervals of three separate experiments 
performed in triplicate. Data in yellow indicate >2.5-fold increase in Ki or EC50 or >25 % 
reduction in Emax, cell-surface expression; orange >5-fold increase in Ki or EC50 or >50 % 
reduction in Emax, cell-surface expression or internalisation; red >10-fold increase in Ki or EC50 
or >75 % reduction in Emax, cell-surface expression or internalisation. Data in green indicate 
>2.5-fold increase in Ki or EC50 or >25 % increase in Emax, cell-surface expression or > 50% 
increase in internalisation. Data in white are comparable to Wt. # denotes IC50 ± mean of 95 % 
confidence intervals of three separate experiments performed in triplicate. 

  



 

69 
 

which couples to Gs. [P3.57L]V1aR bound AVP and CA with Wt-like binding affinities. The 

substitution of Leu3.58 for either serine or methionine produced a receptor construct that bound 

AVP and CA like Wt (Figure 3.15, Table 3.4). 

The receptor construct [P3.57L]V1aR displayed reduction in maximal InsP-InsP3 generation (47 

% of Wt) with Wt-like basal and EC50 values (Figure 3.16, Table 3.4). A proportional decrease in 

cell-surface expression was also evident but the construct internalised a Wt-like proportion of 

receptor upon agonist stimulation (Figure 3.16, Table 3.4). At the locus 3.58, the serine 

substitution severely reduced maximal signalling capabilities with an Emax of just 15 % of Wt but 

did not affect basal signalling levels or EC50. [L3.58S]V1aR receptor construct displayed a 

slightly increased presence at the cell surface at 126 % of Wt levels. The conservative 

[L3.58M]V1aR substitution behaved like Wt with respect to signalling through the inositol 

phosphate pathway and cell-surface expression. Both [L3.58S]V1aR and [L3.58M]V1aR 

underwent internalisation upon AVP challenge. 

3.2.3.2 Substitution of Pro3.57, Leu3.58 and Lys3.59 in the ghrelin-R 

The receptor constructs [P3.57A]ghrelin-R, [P3.57L]ghrelin-R, [L3.58A]ghrelin-R, 

[R3.59A]ghrelin-R were generated to assess the contribution of these residues on the inositol 

phosphates generation and cell-surface expression in the ghrelin-R. Naturally, the ghrelin-R 

possesses a basal activity of 50-60 % of Emax signals through with inositol phosphate pathway 

(Holst et al., 2003). 
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Figure 3.15 Competition radioligand binding curves of Pro3.57 and Leu3.58 constructs in 
V1aR 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [P3.57L]V1aR, (■); [L3.58S]V1aR (▲) and 
[L3.58M]V1aR, (▼). Upper panel: [3H]AVP vs AVP competition; lower panel: [3H]AVP vs CA 
competition. A theoretical Langmuir binding isotherm was fitted to data expressed as specific 
binding (%), defining non-specific binding by 1 μM ligand. Data are the mean ± s.e.m. of three 
experiments performed in triplicate. 
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Figure 3.16 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of Pro3.57 and Leu3.58 constructs in V1aR 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [P3.57L]V1aR, (■); 
[L3.58S]V1aR, (▲) and [L3.58M]V1aR, (▼). Data are normalised to [Wt]V1aR basal and 
maximal signalling levels, expressed as the mean ± s.e.m. of three experiments performed in 
triplicate. Basal signalling is plotted at 10-11 M. Lower panel: Cell-surface expression levels of 
receptor constructs were normalised to untransfected cells and unstimulated (-) [Wt]V1aR 
expression levels. Data are stated as the mean ± s.e.m. of three experiments performed in 
triplicate. Stimulated (+) constructs were challenged by 10-7M AVP for 30 min.  
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Receptor 
construct 

Binding affinity, Ki 
(nM) ± s.e.m. 

InsP-InsP3 accumulation 
(% Wt Emax) ± s.e.m. 

Cell-surface expression 
(% Wt ustimulated) ± s.e.m. 

AVP CA Basal EC50
* Emax Unstimulated Stimulated 

V1aR 0.45 ± 0.04 0.96 ± 0.10 0 0.60 ± 0.02 100 100 55 ± 2 

[P3.57L]V1aR 0.23 ± 0.10 0.64 ± 0.22 3  ± 3 0.33 ± 0.04 47 ± 8 42 ± 7 14 ± 4 

[L3.58S]V1aR 0.65 ± 0.20 1.18 ±0.22 -1 ± 2 0.95 ± 0.36 15 ± 2 119 ± 9 83 ± 8 

[L3.58M]V1aR 0.55 ± 0.20 0.87 ± 0.15 1 ± 2 0.37 ± 0.02 85 ± 4 100 ± 3 53 ± 3 

 

Table 3.4 Binding, signalling and cell-surface expression of Pro3.57 and Leu3.58 constructs in 
V1aR 

All data are shown as the mean ± s.e.m. of three separate experiments performed in triplicate. 
*EC50 is stated as the mean ± mean of 95 % confidence intervals of. Data in yellow indicate >2.5-
fold increase in Ki or EC50 or >25 % reduction in Emax, cell-surface expression; orange >5-fold 
increase in Ki or EC50 or >50 % reduction in Emax, cell-surface expression or internalisation; red 
>10-fold increase in Ki or EC50 or >75 % reduction in Emax, cell-surface expression or 
internalisation. Data in green indicate >2.5-fold increase in Ki or EC50 or >25 % increase in Emax, 
cell-surface expression or > 50% increase in internalisation. Data in white are comparable to Wt. 
# denotes IC50 ± mean of 95 % confidence intervals three separate experiments performed in 
triplicate. 
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While [P3.57A]ghrelin-R and [P3.57L]ghrelin-R were expressed at the same level albeit ~50 % 

of Wt. However, the P3.57A substitution maintained agonist responsiveness in generating InsP-

InsP3 (Figure 3.17, Table 3.5), [P3.57A]ghrelin-R generated a Wt-like EC50 with only slight 

reduction in basal signalling level. In contrast, P3.57L ablated both the basal activity and ghrelin-

induced signalling of the ghrelin-R. The [L3.58A]ghrelin-R construct demonstrated a marked 

inhibition in basal signalling. There was also some decrease in agonist potency (4.2-fold) and 

Emax in response to ghrelin stimulation. Expression was markedly elevated at 148 % of Wt levels. 

[R3.59A]ghrelin-R maintained Wt-like signalling capabilities and cell-surface expression. 

3.2.4 Probing the role of residue 3.60 

In peptide ligand-GPCRs, residue 3.60 is generally an amino acid with a small side chain (Figure 

3.18). In contrast, the amine-ligand GPCRs generally possess a tyrosine residue. Multiple 

receptor substitutions were generated in the V1aR and ghrelin-R to assess the roles of their 

respective naturally occurring amino acids, and the effects of introducing the tyrosine residue 

conserved among amine-ligand GPCRs. A phenylalanine residue was also substituted into both 

receptors given its side chain similarity to tyrosine. 

3.2.4.1 Probing the role of residue 3.60 in V1aR 

Naturally, the V1aR has a threonine at this locus, therefore the conservative substitution 

[T3.60S]V1aR was generated in addition to receptor constructs [T3.60F]V1aR and [T3.60Y]V1aR. 

[T3.60S]V1aR and [T3.60F]V1aR were well tolerated, maintaining Wt-like pharmacology (Figure 

3.19, Table 3.6), signalling capabilities, expression and internalisation (Figure 3.20). However 

the [T3.60Y]V1aR construct bound AVP with 3-fold decrease in affinity but maintained Wt-like 

CA binding affinity. Basal signalling through the inositol phosphate pathway was unaffected, as
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Figure 3.17 InsP-InsP3 dose-response curves and cell-surface expression of Pro3.57, Leu3.58 
and Arg3.59 constructs in ghrelin-R 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]ghrelin-R, (○); [P3.57A]ghrelin-R, (■); 
[P3.57L]ghrelin-R, (▲), [L3.58A]ghrelin-R, (▼) and [R3.59A]ghrelin-R, (♦). Data are 
normalised to basal and maximal signalling levels, expressed as the mean ± s.e.m. of three 
experiments performed in triplicate. Basal signalling is plotted at 10-11 M. Lower panel: Cell-
surface expression levels of receptor constructs normalised to untranfected cells and [Wt]ghrelin-
R expression levels expressed as the mean ± s.e.m. of three experiments performed in triplicate.  
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Receptor construct 

InsP-InsP3 accumulation 
(% Wt Emax) ± s.e.m. 

Cell-surface 
expression 

(% Wt unstimulated) 
± s.e.m. Basal EC50

* Emax 

ghrelin-R 0 0.97 ± 0.03 100 100 

[P3.57A]ghrelin-R -28 ± 5 0.80 ± 0.06 77 ± 11 55 ± 1 

[P3.57L]ghrelin-R -93 ± 7 No detectible signalling 52 ± 3 

[L3.58A]ghrelin-R -76 ± 12 4.12 ± 0.61 57 ± 6 148 ± 17 

[R3.59A]ghrelin-R -22 ± 2 0.71 ± 0.10 93 ± 4 96 ± 6 

 

Table 3.5 Binding, signalling and cell-surface expression of Pro3.57, Leu3.58 and Arg3.59 
constructs in ghrelin-R 

All data are shown as the mean ± s.e.m. of three separate experiments performed in triplicate. 
*EC50 is stated as the mean ± mean of 95 % confidence intervals of three separate experiments 
performed in triplicate. Data in yellow indicate >2.5-fold increase in EC50 or >25 % reduction in 
basal signalling, Emax, cell-surface expression; orange >5-fold increase in EC50 or >50 % 
reduction in basal signalling, Emax or cell-surface expression; red >10-fold increase in EC50 or 
>75 % reduction in basal signalling, Emax or cell-surface expression. Data in green indicate >2.5-
fold increase in EC50 or >25 % increase in basal signalling, Emax or cell-surface expression. Data 
in white are comparable to Wt. 
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Figure 2.18 Weblogos of sequences of ICL 2 regions in amine-ligand and peptide-ligand GPCRs 

Weblogos of amine ligand-GPCRs (upper panel) and peptide ligand-GPCRs (lower panel) from multiple sequence alignments 
from the GPCR database http://www.gpcr.org/7tm/. The logos represent the sequences between Arg3.50 and Trp4.50. Residue 3.60 
is at position 12. 

http://www.gpcr.org/7tm/
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Figure 3.19 Competition radioligand binding curves of Thr3.60 substitutions in V1aR 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [T3.60S]V1aR, (■); [T3.60F]V1aR, (▲) and 
[T3.60Y]V1aR, (▼). Upper panel: [3H]AVP vs AVP competition; lower panel: [3H]AVP vs CA 
competition. A theoretical Langmuir binding isotherm was fitted to data expressed as specific 
binding (%), defining non-specific binding by 1 μM ligand. Data are the mean ± s.e.m. of three 
experiments performed in triplicate.  
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Figure 3.20 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of Thr3.60 substitutions in V1aR  

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [T3.60S]V1aR, (■); 
[T3.60F]V1aR, (▲) and [T3.60Y]V1aR, (▼). Data are normalised to [Wt]V1aR basal and maximal 
signalling levels, expressed as the mean ± s.e.m. of three experiments performed in triplicate. 
Basal signalling is plotted at 10-11 M. Lower panel: Cell-surface expression levels of receptor 
constructs were normalised to untransfected cells and unstimulated (-) [Wt]V1aR expression 
levels. Data are stated as the mean ± s.e.m. of three experiments performed in triplicate. 
Stimulated (+) constructs were challenged by 10-7M AVP for 30 min.  
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Receptor 
construct 

Binding affinity, Ki 
(nM) ± s.e.m. 

InsP-InsP3 accumulation 
(% Wt Emax) ± s.e.m. 

Cell-surface expression 
(% Wt unstimulated) ± s.e.m. 

AVP CA Basal EC50
* Emax Unstimulated Stimulated 

V1aR 0.45 ± 0.04 0.96 ± 0.10 0 0.60 ± 0.02 100 100 55 ± 2 

[T3.60S]V1aR 0.85 ± 0.42 1.21 ± 0.09 0 ± 2 0.64 ± 0.10 96 ± 4 114 ± 4 72 ± 6 

[T3.60F]V1aR 0.44 ± 0.10 0.86 ± 0.11 0 ± 3 0.81 ± 0.09 99 ± 15 100 ± 9 59 ± 7 

[T3.60Y]V1aR 1.35 ± 0.25 2.18 ± 0.25 -1 ± 1 1.22 ± 0.07 80 ± 11 148 ± 4 103 ± 6 

 

Table 3.6 Binding, signalling and cell-surface expression of Thr3.60 substitutions in V1aR 

All data are shown as the mean ± s.e.m. of three separate experiments performed in triplicate. 
*EC50 is stated as the mean ± mean of 95 % confidence intervals of three separate experiments 
performed in triplicate. Data in yellow indicate >2.5-fold increase in Ki or EC50 or >25 % 
reduction in Emax, cell-surface expression; orange >5-fold increase in Ki or EC50 or >50 % 
reduction in Emax, cell-surface expression or internalisation; red >10-fold increase in Ki or EC50 
or >75 % reduction in Emax, cell-surface expression or internalisation. Data in green indicate 
>2.5-fold increase in Ki or EC50 or >25 % increase in Emax, cell-surface expression or > 50% 
increase in internalisation. Data in white are comparable to Wt. # denotes IC50 ± mean of 95 % 
confidence intervals of constructs that bound ligand but Ki could not be calculated. 
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was agonist potency (Figure 3.20, Table 3.6). The construct was expressed at the cell surface at 

148 % of Wt levels but generated a maximal signalling response of 80 % of Wt levels. All Thr3.60 

substitutions internalised a Wt-like proportion of receptor upon agonist stimulation. 

3.2.4.2 Probing the role of residue 3.60 in ghrelin-R 

The alanine residue of the ghrelin-R was mutated to the threonine residue present in the V1aR in 

addition to substitution by phenylalanine and tyrosine. [A3.60T]ghrelin-R, [A3.60F]ghrelin-R 

and [A3.60Y]ghrelin-R were all expressed at the cell surface at levels comparable to Wt (Figure 

3.21, Table 3.7). All substitutions severely reduced the basal signalling capabilities of receptors 

to generate InsP-InsP3. With only small aberrations in EC50 (< 3-fold increases) only the 

[A3.60Y]ghrelin-R displayed a marked decrease in maximal signalling levels, whereas 

[A3.60T]ghrelin-R and [A3.60F]ghrelin-R were essentially Wt. 

3.2.5 Probing sequences associated with ICL 2 helical elements 

Inspection of GPCR crystal structures reveals in general, it is the five residues downstream of 

Pro3.57 that can adopt an α-helical conformation, ICL2H (Warne et al., 2008; Chien et al., 2010; 

Haga et al., 2012; Manglik et al., 2012; Wu et al., 2012). Consequently, these residues in the 

V1aR were mutated to the corresponding residues of the β2AR which has been shown to adopt a 

helical conformation (Rasmussen et al., 2011a; Rasmussen et al., 2011b) and the constitutively 

active ghrelin-R generating chimeric constructs [β2AR-ICL2H]V1aR and [ghrelin-R-ICL2H]V1aR 

respectively (Figure 3.22). Each amino acid of the proposed helical region taken from ghrelin-R 

was also substituted individually into the V1aR.  
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Figure 3.21 InsP-InsP3 dose-response curves and cell-surface expression of Ala3.60 
substitutions in ghrelin-R 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]ghrelin-R, (○); [A3.60T]ghrelin-R, (■); 
[A3.60F]ghrelin-R, (▲) and [A3.60Y]ghrelin-R, (▼). Data are normalised to basal and maximal 
signalling levels, expressed as the mean ± s.e.m. of three experiments performed in triplicate. 
Basal signalling is plotted at 10-11 M. Lower panel: Cell-surface expression levels of receptor 
constructs were normalised to untransfected cells and [Wt]ghrelin expression levels. Data are 
stated as the mean ± s.e.m. of three experiments performed in triplicate.  
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Receptor construct 

InsP-InsP3 accumulation 
(% Wt Emax) ± s.e.m. 

Cell-surface 
expression 

(% Wt unstimulated) 
± s.e.m. Basal EC50

* Emax 

ghrelin-R 0 0.97 ± 0.03 100 100 

[A3.60T]ghrelin-R -69 ± 3 2.71 ± 0.01 83 ± 4 102 ± 2 

[A3.60F]ghrelin-R -80 ± 3 2.11 ± 0.61 85 ± 3 86 ±7 

[A3.60Y]ghrelin-R -71 ± 18 2.03 ± 0.25 44 ± 3 123 ± 14 

 

Table 3.7 Binding, signalling and cell-surface expression of Ala3.60 substitutions in ghrelin-R 

All data are shown as the mean ± s.e.m. of three separate experiments performed in triplicate. 
*EC50 is stated as the mean ± mean of 95 % confidence intervals of three separate experiments 
performed in triplicate. Data in yellow indicate >2.5-fold increase in EC50 or >25 % reduction in 
basal signalling, Emax or cell-surface expression; orange >5-fold increase in EC50 or >50 % 
reduction in basal signalling, Emax or cell-surface expression; red >10-fold increase in EC50 or 
>75 % reduction in basal signalling, Emax or cell-surface expression. Data in green indicate >2.5-
fold increase in EC50 or >25 % increase in basal signalling, Emax or cell-surface expression. Data 
in white are comparable to Wt.  
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Figure 3.22 Sequences of chimeric receptor constructs  

(Top-bottom) ICL 2 sequences of [Wt]V1aR, [β2AR-ICL2H]V1aR and [ghrelin-R-ICL2H]V1aR 
constructs. Residues corresponding to α-helical portions of ICL 2 are shown in bold. Β2AR and 
ghrelin-R sequences corresponding to ICL2H portions are shown in blue and green respectively.  
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3.2.5.1 Chimeric substitutions of V1aR ICL2H 

[β2AR-ICL2H]V1aR and [ghrelin-R-ICL2H]V1aR bound both AVP and CA with Wt-like binding 

affinities (Figure 3.23, Table 3.8). [β2AR-ICL2H]V1aR displayed a Wt-like signalling properties 

through the inositol phosphate pathway while [ghrelin-R-ICL2H]V1aR exhibited an increased 

maximal signalling response, 158 % of Wt (Figure 3.24, Table 3.8). Both receptor constructs 

displayed reduced ability to internalise upon agonist challenge ([β2AR-ICL2H]V1aR, 19 %; 

[ghrelin-R-ICL2H]V1aR, 17 %; Wt, 45 % of unstimulated expression). 

3.2.5.2 Individual amino acid substitutions of the ghrelin-R ICL2H sequence into V1aR 

Leu3.58 is present in both receptors and the T3.60A substitution has been discussed previously. 

The constructs [K3.59R]V1aR, [L3.61K]V1aR and [Q3.62V]V1aR recapitulate amino acids of the 

ghrelin-R into the V1aR. 

[K3.59R]V1aR and [Q3.62V]V1aR maintained Wt-like binding affinities for AVP and CA while 

[L3.61K]V1aR displayed 3-fold decreased affinities for both ligands (Figure 3.25, Table 3.9). The 

signalling capabilities of all constructs were Wt-like as were the level of cell-surface expression 

(Figure 3.26, Table 3.9). [K3.59R]V1aR, [L3.61K]V1aR and [Q3.62V]V1aR internalised at Wt-like 

levels upon agonist challenge. 

3.2.6 Further substitution of amino acids of ghrelin-R into the V1aR 

The region preceeding the proposed helical portion of ICL 2 is reasonably similar between the 

ghrelin-R and V1aR with the exception of postions 3.52 and 3.56. Therefore, the constructs 

[I3.52F]V1aR and [H3.56F]V1aR were generated. These substitutions yielded constructs that 

displayed Wt-like pharmacological and signalling properties (Figure 3.27-3.28, Table 3.10).
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Figure 3.23 Competition radioligand binding curves of chimeric ICL2H V1aR constructs 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [β2AR-ICL2H]V1aR, (■) and [ghrelin-R-
ICL2H]V1aR, (▲). Upper panel: [3H]AVP vs AVP competition; lower panel: [3H]AVP vs CA 
competition. A theoretical Langmuir binding isotherm was fitted to data expressed as specific 
binding (%), defining non-specific binding by 1 μM ligand. Data are the mean ± s.e.m. of 
three experiments performed in triplicate. 
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Figure 3.24 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of chimeric ICL2H V1aR constructs 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [β2AR-ICL2H]V1aR, (■); 
and [ghrelin-R-ICL2H]V1aR, (▲). Data are normalised to [Wt]V1aR basal and maximal 
signalling levels, expressed as the mean ± s.e.m. of three experiments performed in triplicate. 
Basal signalling is plotted at 10-11 M. Lower panel: Cell-surface expression levels of receptor 
constructs were normalised to untransfected cells and unstimulated (-) [Wt]V1aR expression 
levels. Data are stated as the mean ± s.e.m. of three experiments performed in triplicate. 
Stimulated (+) constructs were challenged by 10-7M AVP for 30 min.  

-11 -10 -9 -8 -7 -6

0

20

40

60

80

100

120

140

160

log[AVP] (M)

In
s
P

-I
n

s
P

3
 a

c
c
u

m
u

la
ti

o
n

(%
 W

t 
E

m
a
x
)

R
 -

1a

[W
t]
V

R
 +

1a

[W
t]
V

- R
1a

]V
H
]

A
R
-IC

L2

2[

+ R
1a

]V
H

A
R
-IC

L2

2[

- R
1a

]V
H

[g
hre

lin
-R

-IC
L2

R
 +

1a
]V

H

[g
hre

lin
-R

-IC
L2

0

20

40

60

80

100

120

140

160

180

C
e
ll

-s
u

rf
a
c
e
 e

x
p

re
s
s
io

n

(%
 W

t)



 

87 
 

Receptor 
construct 

Binding affinity, Ki 
(nM) ± s.e.m. 

InsP-InsP3 accumulation 
(% Wt Emax) ± s.e.m. 

Cell-surface expression 
(% Wt unstimulated) ± s.e.m. 

AVP CA Basal EC50
* Emax Unstimulated Stimulated 

V1aR 0.45 ± 0.04 0.96 ± 0.10 0 0.60 ± 0.02 100 100 55 ± 2 

[β2AR-
ICL2H]V1aR 

0.78 ± 0.19 1.35 ± 0.17 0 ± 2 1.41 ± 0.11 93 ± 2 148 ± 11 120 ± 8 

[ghrelin-R-
ICL2H]V1aR 

0.74 ± 0.14 1.96 ± 0.84 0 ± 0 0.43 ± 0.09 159 ± 5 163 ± 10 136 ± 5 

 

Table 3.8 Binding, signalling and cell-surface expression of chimeric ICL2H V1aR 
constructs  

All data are shown as the mean ± s.e.m. of three separate experiments performed in triplicate. 
*EC50 is stated as the mean ± mean of 95 % confidence intervals of three separate 
experiments performed in triplicate. Data in yellow indicate >2.5-fold increase in Ki or EC50 
or >25 % reduction in Emax, cell-surface expression; orange >5-fold increase in Ki or EC50 or 
>50 % reduction in Emax, cell-surface expression or internalisation; red >10-fold increase in Ki 
or EC50 or >75 % reduction in Emax, cell-surface expression or internalisation. Data in green 
indicate >2.5-fold increase in Ki or EC50 or >25 % increase in Emax, cell-surface expression or 
> 50% increase in internalisation. Data in white are comparable to Wt. # denotes IC50 ± mean 
of 95 % confidence intervals of three separate experiments performed in triplicate. 
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Figure 3.25 Competition radioligand binding curves of ghrelin ICL2H residues in the 
V1aR 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [K3.59R]V1aR, (■); [L3.61K]V1aR, (▲) 
and [Q3.62V]V1aR, (▼). Upper panel: [3H]AVP vs AVP competition; lower panel: [3H]AVP 
vs CA competition. A theoretical Langmuir binding isotherm was fitted to data expressed as 
specific binding (%), defining non-specific binding by 1 μM ligand. Data are the mean ± 
s.e.m. of three experiments performed in triplicate. 
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Figure 3.26 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of ghrelin ICL2H residues in the V1aR 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [K3.59R]V1aR, (■); 
[L3.61K]V1aR, (▲) and [Q3.62V]V1aR, (▼). Data are normalised to [Wt]V1aR basal and 
maximal signalling levels, expressed as the mean ± s.e.m. of three experiments performed in 
triplicate. Basal signalling is plotted at 10-11 M. Lower panel: Cell-surface expression levels of 
receptor constructs were normalised to untransfected cells and unstimulated (-) [Wt]V1aR 
expression levels. Data are stated as the mean ± s.e.m. of three experiments performed in 
triplicate. Stimulated (+) constructs were challenged by 10-7M AVP for 30 min.   
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Receptor 
construct 

Binding Ki 
(nM) ± s.e.m. 

InsP-InsP3 accumulation 
(% Wt Emax) ± s.e.m. 

Cell-surface expression 
(% [Wt unstimulated) ± 

s.e.m. 

AVP CA Basal EC50
* Emax Unstimulated Stimulated 

[Wt]V1aR 0.45 ± 0.04 0.96 ± 0.10 0 0.60 ± 0.02 100 100 55 ± 2 

[K3.59R]V1aR 0.77 ± 0.24 1.46 ± 0.26 1 ± 1 0.57 ± 0.05 99 ± 4 93 ± 4 64 ± 4 

[L3.61K]V1aR 1.45 ± 0.32 3.47 ± 0.37 0 ± 2 0.69 ± 0.11 78 ± 11 122 ± 6 94 ± 5 

[Q3.62V]V1aR 0.68 ± 0.06 2.26 ± 0.49 1 ± 1 0.45 ± 0.07 84 ± 9 109 ± 10 74 ± 6 

 

Table 3.9 Binding, signalling and cell-surface expression of ghrelin ICL2H residues in 
the V1aR 

All data are shown as the mean ± s.e.m. of three separate experiments performed in triplicate. 
*EC50 is stated as the mean ± mean of 95 % confidence intervals of three separate 
experiments performed in triplicate. Data in yellow indicate >2.5-fold increase in Ki or EC50 
or >25 % reduction in Emax, cell-surface expression; orange >5-fold increase in Ki or EC50 or 
>50 % reduction in Emax, cell-surface expression or internalisation; red >10-fold increase in Ki 
or EC50 or >75 % reduction in Emax, cell-surface expression or internalisation. Data in green 
indicate >2.5-fold increase in Ki or EC50 or >25 % increase in Emax, cell-surface expression or 
> 50% increase in internalisation. Data in white are comparable to Wt. # denotes IC50 ± mean 
of 95 % confidence intervals of constructs that bound ligand but Ki could not be calculated. 
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Figure 3.27 Competition radioligand binding curves of ghrelin-R-like amino acid 
substitutions in V1aR 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [I3.52F]V1aR, (■) and [H3.56F]V1aR. 
Upper panel: [3H]AVP vs AVP competition; lower panel: [3H]AVP vs CA competition. A 
theoretical Langmuir binding isotherm was fitted to data expressed as specific binding (%), 
defining non-specific binding by 1 μM ligand. Data are the mean ± s.e.m. of three 
experiments performed in triplicate. 
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Figure 3.28 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of ghrelin-R-like amino acid substitutions in V1aR 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [I3.52F]V1aR, (■) and 
[H3.56F]V1aR, (▲). Data are normalised to [Wt]V1aR basal and maximal signalling levels, 
expressed as the mean ± s.e.m. of three experiments performed in triplicate. Basal signalling 
is plotted at 10-11 M. Lower panel: Cell-surface expression levels of receptor constructs were 
normalised to untransfected cells and unstimulated (-) [Wt]V1aR expression levels. Data are 
stated as the mean ± s.e.m. of three experiments performed in triplicate. Stimulated (+) 
constructs were challenged by 10-7M AVP for 30 min.  
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Receptor 
construct 

Binding affinity, Ki 
(nM) ± s.e.m. 

InsP-InsP3 accumulation 
(% Wt Emax) ± s.e.m. 

Cell-surface expression 
(% Wt unstimulated) ± s.e.m. 

AVP CA Basal EC50
* Emax Unstimulated Stimulated 

[Wt]V1aR 0.45 ± 0.04 0.96 ± 0.10 0 0.60 ± 0.02 100 100 55 ± 2 

[I3.52F]V1aR 0.36 ± 0.06 0.71 ± 0.20 -4 ± 1 0.86 ± 0.06 85 ± 3 105 ± 4 70 ± 6 

[H3.56F]V1aR 0.24 ± 0.09 0.63 ± 0.14 0 ± 3 0.27 ± 0.03 83 ± 2 87 ± 6 48 ± 4 

 

Table 3.10 Binding, signalling and cell-surface expression of ghrelin-R-like amino acid 
substitutions in V1aR 

All data are shown as the mean ± s.e.m. of three separate experiments performed in triplicate. 
*EC50 is stated as the mean ± mean of 95 % confidence intervals of three separate 
experiments performed in triplicate. Data in yellow indicate >2.5-fold increase in Ki or EC50 
or >25 % reduction in Emax, cell-surface expression; orange >5-fold increase in Ki or EC50 or 
>50 % reduction in Emax, cell-surface expression or internalisation; red >10-fold increase in Ki 
or EC50 or >75 % reduction in Emax, cell-surface expression or internalisation. Data in green 
indicate >2.5-fold increase in Ki or EC50 or >25 % increase in Emax, cell-surface expression or 
> 50% increase in internalisation. Data in white are comparable to Wt. # denotes IC50 ± mean 
of 95 % confidence intervals of constructs that bound ligand but Ki could not be calculated. 
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Cell-surface expression levels were comparable to [Wt]V1aR and the proportion of receptors 

internalised upon agonist challenge Wt-like for both receptor constructs. 

3.3 Discussion 

3.3.1 The role of amino acids in the amino portion of ICL 2 in the V1aR 

Overall, these data provide much insight into the role of ICL 2 in the structure and function of 

the V1aR. Substitution of residues to alanine in the amino-portion of ICL 2 was the most 

sensitive to reducing expression at the cell surface. This suggests that Ile3.52, Ala3.53, Val3.54, 

Cys3.55, His3.56, Pro3.57 and Lys3.59 all contribute to the expression level of the V1aR, 

presumably though contributing stability through their side chains that cannot be provided by 

the methyl group of alanine. This region in the CB1R has previously been scanned by alanine 

mutagenesis but with less disruption to cell surface expression (Chen et al., 2010). 

Additionally, I3.52A, C3.55A, P3.57A and K3.59A substitutions generated a receptor 

constructs that display an increased tendency to internalise upon agonist stimulation. The 

[I3.52A]V1aR construct displayed a 4-fold increase in AVP affinity which is probably the 

cause of the 2-fold increase in agonist potency in generating InsP-InsP3. Cell-surface 

expression levels were ‘rescued’ by the substitution of the corresponding residue observed in 

the ghrelin-R in the constructs [I3.52F]V1aR and [H3.56F]V1aR. These substitutions also 

recovered the signalling characteristics of the V1aR, restoring the increased potency of 

[I3.52F]V1aR and decreased potency of [H3.56F]V1aR to Wt-like levels. It is noteworthy that 

no increase in basal activity was observed in the V1aR when corresponding ghrelin-R residues 

were introduced, indicating that these residues alone are not sufficient to confer constitutive 

activity. Together these data indicate the importance of side chain volume – greater than that 

of alanine – at positions 3.52 and 3.56 in maintaining cell-surface expression. However, in the 

prokineticin-2 (PKR2) receptor, co-immunoprecipitation experiments indicated that His3.56 is 
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not necessary for interaction with G-protein (Peng et al., 2011), as supported by these data 

given that [H3.56A]V1aR could still signal though the inositol-phosphate pathway. 

[A3.53G]V1aR was expressed less than Wt at the cell surface but the decrease in Emax was 

greater than the decrease in expression. This apparent decrease in efficacy may be due to the 

added flex introduced into the peptide backbone conferred by the glycine substitution. An 

isoleucine, leucine, valine or phenylalanine residue occurs at position 3.54 in 98 % of 

rhodopsin-like GPCRs (Marion et al., 2006), highlighting the importance of the Val3.54 in the 

V1aR. Substitution to alanine in the [V3.54A]V1aR construct resulted in a ~10-fold decrease in 

AVP potency and decreased efficacy in generating InsP-InsP3 establishing that alanine cannot 

substitute for this group conservation. Alanine-substitution of neighbouring resides Ile3.52 and 

Cys3.55 reduced cell-surface expression to ~50 % of Wt but displayed 50 % and 67 % of Wt 

Emax respectively. Given that [A3.53G]V1aR and [V3.54A]V1aR expressed at 49 % and 37 % 

of Wt but signalled at 24 % and 17 % of Wt Emax respectively, their reduced efficacy in 

generating InsP-InsP3 is clearly not due to simply a reduction in cell-surface expression. The 

crystal structure of β2AR in complex with Gs (Rasmussen et al., 2011b) indicates that residues  

Ala3.53 and Val3.54 do not form direct contacts with the G-protein so their substitution may 

affect the ability of the receptor to adopt an active conformation. This region has been 

previously implicated in contributing to the ability of the receptor to adopt an active state 

together with other ICL 2 residues. In the follicle-stimulating hormone receptor (FSHR), 

agonist-induced cAMP accumulation was abolished despite proper expression upon the 

introduction of an alanine residue in place of the native Thr3.53 (Nakamura et al., 1998; 

Timossi et al., 2002). 
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3.3.2 The role of Pro3.57-Leu3.58 in the V1aR 

Alanine and leucine substitution of Pro3.57 are able to maintain Wt-like pharmacology and 

signalling capabilities through the inositol phosphate pathway. However, either substitution 

leads to a reduction in expression of V1aR at the cell-surface. In contrast the P3.57A 

substitution in the AT1aR maintained agonist binding, Emax was reduced to ~60 % of Wt while 

cell-surface expression was Wt-like (Gaborik et al., 2003). As in the V1aR, the 

[P3.57A]ghrelin-R maintained near-Wt signalling capabilities with a only slight reduction in 

agonist-independent signalling. In contrast, substitution to leucine generated a ghrelin-R that 

completely ablated both basal and agonist-induced InsP-InsP3 accumulation. This is not due 

to reduced cell-surface expression given that the [P3.57L]ghrelin-R and [P3.57A]ghrelin-R 

constructs expressed at similar levels. Therefore in the V1aR which possesses little 

constitutive activity, an alanine or leucine residue can maintain the role of the native Pro3.57 

albeit with a reduced maximal signalling capability as a result of reduced cell-surface 

expression. However, although the P3.57A substitution in the ghrelin-R is well tolerated, the 

leucine substitution (uncommon at position 3.57 in rhodopsin-like GPCRs) completely 

prevented both basal and agonist-induced inositol phosphates accumulation. Pro3.57 has been 

implicated in Gq coupling in the 5HT2cR whereby under basal conditions, a 4-fold decrease in 

co-immunoprecipitation of receptor and G-protein was observed when a P3.57A substitution 

was introduced compared to Wt (Marion et al., 2006)  

The reduced efficacy of non-conservative substitutions of Leu3.58 is has been reported for 

other GPCRs (Moro et al., 1993; Gaborik et al., 2003; Ulloa-Aguirre et al., 2007; Wacker et 

al., 2008; Chen et al., 2010) whilst maintaining cell-surface expression. The hydrophobic 

residue at position 3.58 promotes GDP-GTP exchange (Wacker et al., 2008) and is supported 

by the structure of β2AR in its G-protein-interacting conformation where it interacts with the 
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P-loop of the G-protein (Rasmussen et al., 2011b). This may be supported by findings in the 

V1aR given that substitution to both alanine and serine severely reduced AVP efficacy through 

the inositol phosphate pathway. Agonist-induced internalisation was prevented by L3.58A in 

the M1R (Lechleiter et al., 1990) but this was not observed in the V1aR for alanine 

substitution, at least after 30 minutes of AVP stimulation. [L3.58A]ghrelin-R construct 

replicates these signalling impairments, displaying a reduction in both basal and maximal 

signalling levels. Additionally, the increase in cell-surface expression is consistent with a loss 

in the ability to internalise given that the ghrelin-R undergoes constitutive internalisation 

(Kendrick, PhD thesis, University of Birmingham 2010). The L3.58M substitution in the V1aR 

retained Wt functionality in all respects, further highlighting the absolute requirement of a 

bulky, hydrophobic residue at the locus 3.58. 

3.3.3 The role of putative ICL2H residues in the V1aR 

The ICL 2 amino acid sequences of the chimeric receptor constructs [β2AR-ICL2H]V1aR and 

[ghrelin-R-ICL2H]V1aR are shown in Figure 3.22. Substitution of ICL2 by corresponding 

residues of β2AR or ghrelin-R increased V1aR expression by a similar amount. Interestingly, 

the ICL2H region of the Gs-coupled GPCR, β2AR demonstrated no detrimental effect on InsP-

InsP3 signalling but the substitution of ghrelin-R ICL2H residues increased Emax. This being 

said, the increase in the [ghrelin-R-ICL2H]V1aR construct may be due to increased efficacy of 

AVP. Both receptor constructs drastically reduced the proportion of receptor internalised 

upon agonist challenge indicating that the ICL 2 sequence Leu3.58Lys3.59Thr3.60Leu3.61Gln3.62 

together is important in modulating internalisation in the V1aR. Although it cannot be 

suggested that these residues are, or are not, adopting an α-helical conformation, it has 

previously been suggested that the ability to adopt an α-helix is associated with an ability to 

interact with β-arrestins (Shan et al., 2010). 
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Comparison of known crystal structures indicates that, Leu3.58 in the V1aR is the first residue 

proposed to be capable of adopting an α-helical conformation. Alanine substitutions of Thr3.60 

and Gln3.62 indicated that neither residue is specifically involved in the intracellular signal 

generation or cell-surface expression of the V1aR. Introducing the ghrelin-like valine at 

position 3.62 maintained Wt-like receptor function. Lys3.59 plays a minor role in receptor 

stability, trafficking or folding given that the alanine substitution was expressed at a lesser 

extent at the cell surface. The reduced Emax can be accounted for by this reduced expression, 

although the decreased AVP potency in InsP-InsP3 generation was also observed. Wt inositol 

phosphate accumulation and cell-surface expression was recovered by the ghrelin-like 

substitution K3.59R. Together these data indicate the importance of a basic residue at this 

locus for cell-surface expression and InsP-InsP3 accumulation in the V1aR. However, this may 

not be true of GPCRs in general as the loss of the basic character at position 3.59 conferred by 

the [R3.59A]ghrelin-R construct yielded a Wt-like signalling and cell-surface expression 

indicating that the ghrelin-R is not sensitive to amino acid changes at 3.59. Substitution of 

Thr3.60 to alanine, serine or phenylalanine maintained Wt-like functionality of the V1aR in all 

respects. However substitution to the amine-like Tyr3.60 increased cell-surface expression and 

decreased the affinity of AVP agonist 3-folds. Given that a large proportion of V1aR adopt an 

inactive state without agonist stimulation and the decrease in agonist affinity, it is likely the 

T3.60Y substitution is stabilising an inactive conformation. A small residue that is incapable 

of forming hydrogen bonds is required at position 3.60 to maintain constitutive activity in the 

ghrelin-R. When substituted for serine (may hydrogen bond), phenylalanine (bulky) or 

tyrosine (bulky and may hydrogen bond) a decreased basal activity was observed. However 

hydrogen bond or bulk alone is not enough to reduce the Emax of ghrelin-R but contribution of 

both in [A3.60Y]ghrelin-R decreased ghrelin-induced signalling markedly although the 
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construct was well expressed. Together, substitution of 3.60 to amine ligand-GPCR tyrosine 

residue in the peptide-ligand GPCRs provides inactivating effects. 

3.3.4 The role ICL 2 residues downstream of putative ICL2H in the V1aR 

Q3.63A demonstrates a slight decreased efficacy of AVP in generating InsP-InsP3 although 

the maximum signalling capabilities are increased compared to Wt implicating the glutamine 

side chain in signal transduction. The P3.64A substitution would relieve the constrained 

orientation of the peptide backbone provided by Pro3.64 in the V1aR. The loss of receptor 

expression indicates that the restricted torsion angle of the N-Cα bond of proline is absolutely 

required to maintain the integrity of the V1aR. This particular conformation may be essential 

in maintaining the relative orientation of ICL 2 with respect to TM IV. Ser3.68 contributes to 

the level of expression of the V1aR at the cell surface as substitution to alanine substantially 

increased expression. Given that this residue is potentially positioned in TM IV the 

replacement of serine for alanine is more preferable in an α-helical conformation as 

substitution removes the serine hydroxyl group which may disrupt the stability of the helix. 

Removal of arginine residues at the ICL 2-TM IV interface by alanine substitution decreases 

the basic character in this area. Fewer arginine residues at position results in decreased cell-

surface expression and consequently maximal signalling capabilities. This loss in cell-surface 

expression may be due to the reduction of interaction of the arginine residues with membrane 

lipids such as cholesterol as suggested previously (Hanson et al., 2008). Interestingly, double 

and single alanine substitutions produced apparent increased affinities for AVP and CA while 

the triple mutant construct, substituting all arginine residues maintained Wt-like 

pharmacology. However, in general, it is clear that basic character at the ICL2-TM IV 

interface is essential to maintain the cell-surface expression and integrity of V1aR.  
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CHAPTER 4: INTERACTIONS OF HYDROPHOBIC BARRIER 

RESIDUES IN THE V1AR 

4.1 Introduction 

Upon agonist binding to a GPCR, receptor activation is transmitted to the intracellular face to 

initiate the appropriate signalling cascades. This activation is conferred by the rearrangement 

of intramolecular interactions stabilising an inactive state. One such rearrangement is the 

‘global toggle switch’ whereby the kink of TMVI is modulated by Trp6.48. The decreased 

bend-angle of the proline-induced kink straightens TMVI, moving it away from TMIII (Shi et 

al., 2002; Ruprecht et al., 2004; Schwartz et al., 2006) accompanied by a rotation of TM VI. 

However GPCR crystal structures suggest that a less drastic rearrangement of Trp6.48 

accompanies the rotation and outward movement of TM VI relative to TM III to expose a G-

protein binding site. In a subset of rhodopsin-like GPCRs, exposure of G-protein binding 

epitopes requires the breakage of the ionic interactions between Asp/Glu3.49-Arg3.50 and 

consequently an interhelical ionic bond between Arg3.50 and Glu6.30. Preventing the Arg3.50-

Glu6.30 interaction by mutagenesis of the β2AR resulted in CAMs, implicating the interactions 

in maintaining an inactive state (Ballesteros et al., 2001). Although not all GPCRs possess the 

appropriate residues to maintain an ‘ionic lock’ interaction, the outward movement of TM VI 

relative to TM III is generally accepted as a requirement to allow G-protein interaction. 

Positioned near the membrane-cytosolic boundary are residues that are implicated in 

stabilising an inactive receptor conformation. In opsin and H1R, mutation of the residue at 

position 6.40 has been show to modulate constitutive activity of the receptors depending on the 

substitution introduced (Han et al., 1998; Bakker et al., 2008). A L6.40Q polymorphism in 

the melanocortin-4 receptor (Proneth et al., 2006) was identified in an obesity patient, a 
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pathology caused by agonist-independent signalling. To date, the effects of the specific 

mutations seem to be receptor specific. Rhodopsin, which possesses no basal activity due to a 

bound inverse agonist, showed a remarkable ability to generate constitutively active receptor 

constructs upon mutation at this locus. 

Residue 6.40 is either a valine, isoleucine or leucine in 84 % of rhodopsin-like GPCRs 

(Mirzadegan et al., 2003). The methionine of rhodopsin in relatively atypical, conserved in 5 

% of rhodopsin-like GPCRs. It is one of a number of conserved hydrophobic residues that 

form a hydrophobic barrier separating an interhelical hydrogen bond network near the ligand 

binding region from the DRY motif at the intracellular face (Trzaskowski et al., 2012). The 

hydrophobic barrier comprises residues 2.43, 2.46, 3.43, 3.46, 6.36 and 6.40, and is disrupted 

upon agonist binding, resulting in the hydrogen bond network extending from the ligand 

binding pocket through to the G-protein binding domain. These rearrangements are supported 

by structures of active GPCRs (Lebon et al., 2011; Rasmussen et al., 2011b; Standfuss et al., 

2011). 

This study aims to utilise a systematic mutagenic approach to probe the role of Ile6.40 in the 

structure and function of the V1aR. Initially Ile6.40 was substituted to every encoded amino 

acid and pharmacologically and functionally characterised. Double mutations were generated 

to attempt to identify interaction partners of Ile6.40 and additionally Leu3.43 which also 

participates in the hydrophobic barrier maintaining an inactive receptor conformation. 

4.2 Results 

The residues discussed within this chapter are represented in Figure 4.1. The oligonucleotides 

utilised to generate the receptor constructs (as described in section 2.2.1) are summarised in 

Table 4.1. Receptor constructs were characterised by radioligand binding assay with respect 
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Figure 4.1 Two-dimensional representation of the V1aR 

The N-terminal, HA-epitope tag (extracellular side) is shown as blue circles. Helices are 
labelled by roman numerals. The most conserved residue of each helix of rhodopsin-like 
GPCRs is shown in grey circles and conserved disulphide bridge is shown in red. 
Palmitoylation sites are shown as zigzags (intracellular side). The residues discussed within 
this chapter are shown as yellow circles.  
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Receptor Construct Sense Oligonucleotide Antisense Oligonucleotide 

[L3.43D]V1aR 
5’ – CG-GCC-TAC-ATG-GAC-GTA-
GTC-ATG-AC – 3’ 

5’ – GT-CAT-GAC-TAC-GTC-CAT-
GTA-GGC-CG – 3’ 

[L3.43K]V1aR 
5’ – CG-GCC-TAC-ATG-AAG-GTA-
GTC-ATG-AC – 3’ 

5’ – GT-CAT-GAC-TAC-CTT-CAT-
GTA-GGC-CG – 3’ 

[I6.40C]V1aR 
5’ – G-ATG-ACT-TTT-GTG-TGC-
GTG-ACG-GCT-TAC – 3’ 

5’ – GTA-AGC-CGT-CAC-GCA-
CAC-AAA-AGT-CAT-C– 3’ 

[I6.40D]V1aR 
5’ – G-ATG-ACT-TTT-GTG-GAC-
GTG-ACG-GCT-TAC – 3’ 

5’ – GTA-AGC-CGT-CAC-GTC-CAC-
AAA-AGT-CAT-C– 3’ 

[I6.40E]V1aR 
5’ – G-ATG-ACT-TTT-GTG-GAA-
GTG-ACG-GCT-TAC – 3’ 

5’ – GTA-AGC-CGT-CAC-TTC-CAC-
AAA-AGT-CAT-C– 3’ 

[I6.40F]V1aR 
5’ – G-ATG-ACT-TTT-GTG-TTC-
GTG-ACG-GCT-TAC – 3’ 

5’ – GTA-AGC-CGT-CAC-GAA-
CAC-AAA-AGT-CAT-C– 3’ 

[I6.40G]V1aR 
5’ – G-ATG-ACT-TTT-GTG-GGC-
GTG-ACG-GCT-TAC – 3’ 

5’ – GTA-AGC-CGT-CAC-GCC-
CAC-AAA-AGT-CAT-C– 3’ 

[I6.40H]V1aR 
5’ – G-ATG-ACT-TTT-GTG-CAC-
GTG-ACG-GCT-TAC – 3’ 

5’ – GTA-AGC-CGT-CAC-GTG-
CAC-AAA-AGT-CAT-C– 3’ 

[I6.40K]V1aR 
5’ – G-ATG-ACT-TTT-GTG-AAA-
GTG-ACG-GCT-TAC – 3’ 

5’ – GTA-AGC-CGT-CAC-TTT-CAC-
AAA-AGT-CAT-C– 3’ 

[I6.40P]V1aR 
5’ – G-ATG-ACT-TTT-GTG-CCC-
GTG-ACG-GCT-TAC – 3’ 

5’ – GTA-AGC-CGT-CAC-GGG-
CAC-AAA-AGT-CAT-C– 3’ 

[I6.40Q]V1aR 
5’ – G-ATG-ACT-TTT-GTG-CAA-
GTG-ACG-GCT-TAC – 3’ 

5’ – GTA-AGC-CGT-CAC-TTG-CAC-
AAA-AGT-CAT-C– 3’ 

[I6.40R]V1aR 
5’ – G-ATG-ACT-TTT-GTG-CGC-
GTG-ACG-GCT-TAC – 3’ 

5’ – GTA-AGC-CGT-CAC-GCG-
CAC-AAA-AGT-CAT-C– 3’ 

[I6.40T]V1aR 
5’ – G-ATG-ACT-TTT-GTG-ACC-
GTG-ACG-GCT-TAC – 3’ 

5’ – GTA-AGC-CGT-CAC-GGT-CAC-
AAA-AGT-CAT-C– 3’ 

[I6.40V]V1aR 
5’ – G-ATG-ACT-TTT-GTG-GTC-
GTG-ACG-GCT-TAC – 3’ 

5’ – GTA-AGC-CGT-CAC-GAC-
CAC-AAA-AGT-CAT-C– 3’ 

[I6.40W]V1aR 
5’ – G-ATG-ACT-TTT-GTG-TGG-
GTG-ACG-GCT-TAC – 3’ 

5’ – GTA-AGC-CGT-CAC-CCA-
CAC-AAA-AGT-CAT-C– 3’ 

[Y6.44D]V1aR 
5’ – G-ATC-GTG-ACG-GCT-GAC-
ATC-GTC-TGC-TG – 3’ 

5’ – CA-GCA-GAC-GAT-GTC-AGC-
CGT-CAC-GAT-C – 3’ 

[N7.49D]V1aR 
5’ – G-AAT-AGC-TGC-TGT-GAT-
CCC-TGG-ATA-TAC – 3’ 

5’ – GTC-TAT-CCA-GGG-ATC-ACA-
GCA-GCT-ATT-C – 3’ 

[N7.49K]V1aR 
5’ – G-AAT-AGC-TGC-TGT-AAA-
CCC-TGG-ATA-TAC – 3’ 

5’ – GTC-TAT-CCA-GGG-TTT-ACA-
GCA-GCT-ATT-C – 3’ 

[N7.49R]V1aR 
5’ – G-AAT-AGC-TGC-TGT-CGT-
CCC-TGG-ATA-TAC – 3’ 

5’ – GTC-TAT-CCA-GGG-ACG-
ACA-GCA-GCT-ATT-C – 3’ 

 

Table 4.1 Oligonucleotide sequences utilised to generate receptor constructs  

Receptor constructs were generated as described in section 2.2.1. The codon encoding the 
amino acid substituted is highlighted in red and nucleotide substitutions in bold. Non-bold 
bases show the complementary template sequence.  
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to their ability to bind the endogenous agonist AVP and synthetic peptide antagonist CA. All 

V1aR constructs characterised by competition radioligand binding assay were expressed at 1-

2pmol/mg protein. In order to determine the effects of amino acid substitution on the 

receptors’ signalling capabilities, receptor constructs were transiently transfected into HEK 

293T cells and the dose-response accumulation of inositol phosphates, InsP-InsP3 measured. 

The effects on EC50, basal and maximal signalling (Emax) were determined. The signalling 

responses of receptor constructs may be perturbed by amino acid substitutions affecting 

functional expression at the cell surface. Whole cell ELISA utilised the HA-tag engineered at 

the amino terminus of all V1aR constructs to detect the presence of receptor constructs at the 

cell surface.  

4.2.1 Systematic substitution of Ile6.40 

The substitution of Ile6.40 in the V1aR to all other encoded amino acids was utilised to assess 

the contribution of the isoleucine side chain in receptor structure and function. The 

radioligand competition binding curves of the receptor constructs [I6.40C]V1aR, 

[I6.40D]V1aR, [I6.40E]V1aR, [I6.40F]V1aR, [I6.40G]V1aR, [I6.40H]V1aR, [I6.40K]V1aR, 

[I6.40P]V1aR, [I6.40Q]V1aR, [I6.40R]V1aR, [I6.40T]V1aR, [I6.40V]V1aR and [I6.40W]V1aR 

are presented in Figures 4.2-4.7. Inositol phosphates dose-response curves and levels of cell-

surface expression (+/- agonist challenge) are represented in Figures 4.8-4.13.  Six of the 19 

substitutions of Ile6.40 (alanine, serine, asparagine, leucine, methionine and tyrosine) were 

engineered and partially characterised with respect to radioligand binding and inositol 

phosphate accumulation by Wootten (PhD thesis, University of Birmingham, 2007). These 

data are italicised in Table 4.2 and discussed as an ensemble with the new data presented here. 

Levels of basal signalling and internalisation were Wt-like unless stated in the text. All graphs 

and summary data tables are presented together in the following pages.  
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Figure 4.2 Competition radioligand binding curves of substitutions of Ile6.40 to small 
amino acids 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [I6.40G]V1aR, (■) and [I6.40P]V1aR, (▼). 
Upper panel: [3H]AVP vs AVP competition; lower panel: [3H]AVP vs CA competition. A 
theoretical Langmuir binding isotherm was fitted to data expressed as specific binding (%), 
defining non-specific binding by 1 μM ligand. Data are the mean ± s.e.m. of three 
experiments performed in triplicate. 
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Figure 4.3 Competition radioligand binding curves of substitutions of Ile6.40 to small 
polar amino acids 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [I6.40T]V1aR, (▲); and [I6.40C]V1aR, 
(▼). Upper panel: [3H]AVP vs AVP competition; lower panel: [3H]AVP vs CA competition. 
A theoretical Langmuir binding isotherm was fitted to data expressed as specific binding (%), 
defining non-specific binding by 1 μM ligand. Data are the mean ± s.e.m. of three 
experiments performed in triplicate. 
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Figure 4.4 Competition radioligand binding curves of substitutions of Ile6.40 to valine 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○) and [I6.40V]V1aR (■). Upper panel: 
[3H]AVP vs AVP competition; lower panel: [3H]AVP vs CA competition. A theoretical 
Langmuir binding isotherm was fitted to data expressed as specific binding (%), defining non-
specific binding by 1 μM ligand. Data are the mean ± s.e.m. of three experiments performed 
in triplicate. 
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Figure 4.5 Competition radioligand binding curves of substitutions of Ile6.40 to aromatic 
amino acids 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [I6.40F]V1aR, (■) and [I6.40W]V1aR, 
(▼). Upper panel: [3H]AVP vs AVP competition; lower panel: [3H]AVP vs CA competition. 
A theoretical Langmuir binding isotherm was fitted to data expressed as specific binding (%), 
defining non-specific binding by 1 μM ligand. Data are the mean ± s.e.m. of three 
experiments performed in triplicate. 
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Figure 4.6 Competition radioligand binding curves of substitutions of Ile6.40 to acidic and 
amine amino acids 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [I6.40D]V1aR, (■); [I6.40E]V1aR, (▼); 
and [I6.40Q]V1aR (♦). Upper panel: [3H]AVP vs AVP competition; lower panel: [3H]AVP vs 
CA competition. A theoretical Langmuir binding isotherm was fitted to data expressed as 
specific binding (%), defining non-specific binding by 1 μM ligand. Data are the mean ± 
s.e.m. of three experiments performed in triplicate. 
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Figure 4.7 Competition radioligand binding curves of substitutions of Ile6.40 to basic 
amino acids 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [I6.40H]V1aR, (■); [I6.40K]V1aR, (▲); 
and [I6.40R]V1aR (▼). Upper panel: [3H]AVP vs AVP competition; lower panel: [3H]AVP vs 
CA competition. A theoretical Langmuir binding isotherm was fitted to data expressed as 
specific binding (%), defining non-specific binding by 1 μM ligand. Data are the mean ± 
s.e.m. of three experiments performed in triplicate. 
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Figure 4.8 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of substitutions of Ile6.40 to small amino acids  

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [I6.40G]V1aR, (■) and 
[I6.40P]V1aR, (▼). Data are normalised to [Wt]V1aR basal and maximal signalling levels, 
expressed as the mean ± s.e.m. of three experiments performed in triplicate. Basal signalling 
is plotted at 10-11 M. Lower panel: Cell-surface expression levels of receptor constructs were 
normalised to untransfected cells and unstimulated (-) [Wt]V1aR expression levels. Data are 
stated as the mean ± s.e.m. of three experiments performed in triplicate. Stimulated (+) 
constructs were challenged by 10-7M AVP for 30 min.  
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Figure 4.9 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of substitutions of Ile6.40 to small, polar amino acids  

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [I6.40T]V1aR, (▲) and 
[I6.40C]V1aR, (▼). Data are normalised to [Wt]V1aR basal and maximal signalling levels, 
expressed as the mean ± s.e.m. of three experiments performed in triplicate. Basal signalling 
is plotted at 10-11 M. Lower panel: Cell-surface expression levels of receptor constructs were 
normalised to untransfected cells and unstimulated (-) [Wt]V1aR expression levels. Data are 
stated as the mean ± s.e.m. of three experiments performed in triplicate. Stimulated (+) 
constructs were challenged by 10-7M AVP for 30 min.  
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Figure 4.10 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of substitutions of Ile6.40 to hydrophobic amino acids  

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○) and [I6.40V]V1aR (■). 
Data are normalised to [Wt]V1aR basal and maximal signalling levels, expressed as the mean 
± s.e.m. of three experiments performed in triplicate. Basal signalling is plotted at 10-11 M. 
Lower panel: Cell-surface expression levels of receptor constructs were normalised to 
untransfected cells and unstimulated (-) [Wt]V1aR expression levels. Data are stated as the 
mean ± s.e.m. of three experiments performed in triplicate. Stimulated (+) constructs were 
challenged by 10-7M AVP for 30 min.  

-11 -10 -9 -8 -7 -6

0

20

40

60

80

100

120

log[AVP] (M)

In
s
P

-I
n

s
P

3
 a

c
c
u

m
u

la
ti

o
n

(%
 W

t 
E

m
a

x
)

R
 -

1a

[W
t]
V

R
 +

1a

[W
t]
V

R
 -

1a

[I6
.4

0V
]V

R
 +

1a

[I6
.4

0V
]V

R
 -

1a

[I6
.4

0L
]V

R
 +

1a

[I6
.4

0L
]V

R
 -

1a

[I6
.4

0M
]V

R
 +

1a

[I6
.4

0M
]V

0

20

40

60

80

100

120

140

C
e
ll

-s
u

rf
a
c
e
 e

x
p

re
s
s
io

n

(%
 W

t)



 

114 
 

Figure 4.11 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of substitutions of Ile6.40 to aromatic amino acids  

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [I6.40F]V1aR, (■) and 
[I6.40W]V1aR, (▼). Data are normalised to [Wt]V1aR basal and maximal signalling levels, 
expressed as the mean ± s.e.m. of three experiments performed in triplicate. Basal signalling 
is plotted at 10-11 M. Lower panel: Cell-surface expression levels of receptor constructs were 
normalised to untransfected cells and unstimulated (-) [Wt]V1aR expression levels. Data are 
stated as the mean ± s.e.m. of three experiments performed in triplicate. Stimulated (+) 
constructs were challenged by 10-7M AVP for 30 min.  
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Figure 4.12 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of substitutions of Ile6.40 to acid and amine amino acids  

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [I6.40D]V1aR, (■); 
[I6.40E]V1aR, (▼); and [I6.40Q]V1aR (♦). Data are normalised to [Wt]V1aR basal and 
maximal signalling levels, expressed as the mean ± s.e.m. of three experiments performed in 
triplicate. Basal signalling is plotted at 10-11 M. Lower panel: Cell-surface expression levels of 
receptor constructs were normalised to untransfected cells and unstimulated (-) [Wt]V1aR 
expression levels. Data are stated as the mean ± s.e.m. of three experiments performed in 
triplicate. Stimulated (+) constructs were challenged by 10-7M AVP for 30 min.  
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Figure 4.13 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of substitutions of Ile6.40 to basic amino acids  

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [I6.40H]V1aR, (■); 
[I6.40K]V1aR, (▲) and [I6.40R]V1aR (▼). Data are normalised to [Wt]V1aR basal and 
maximal signalling levels, expressed as the mean ± s.e.m. of three experiments performed in 
triplicate. Basal signalling is plotted at 10-11 M. Lower panel: Cell-surface expression levels of 
receptor constructs were normalised to untransfected cells and unstimulated (-) [Wt]V1aR 
expression levels. Data are stated as the mean ± s.e.m. of three experiments performed in 
triplicate. Stimulated (+) constructs were challenged by 10-7M AVP for 30 min.  
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Receptor 
construct 

Binding affinity, Ki 
(nM) ± s.e.m. 

InsP-InsP3 accumulation  
(% Wt Emax) ± s.e.m. 

Cell-surface expression  
(% Wt unstimulated) ± s.e.m. 

AVP CA Basal EC50
* Emax Unstimulated Simulated 

V1aR 0.45 ± 0.04 0.96 ± 0.10 0 0.60 ± 0.02 100 100 55 ± 2 

[I6.40A]V1aR 0.19 ± 0.07 0.86 ± 0.11 17 ± 2 0.31 ± 0.03 104 ± 9 48 ± 7 22 ± 5 

[I6.40C]V1aR 0.45 ± 0.11 1.12 ± 0.13 -1 ± 3 0.76 ± 0.09 92 ± 4 98 ± 5 47 ± 7 

[I6.40D]V1aR 0.64 ± 0.12# 3.74 ± 1.23# 1 ± 3 No detectible signalling 10 ± 3 6 ± 2 

[I6.40E]V1aR 0.54 ± 0.07# 2.43 ± 0.16# 0 ± 2 0.12 ± 0.05 10 ± 6 27 ± 5 15 ± 8 

[I6.40F]V1aR 0.59 ± 0.10 0.92 ± 0.15 -1 ± 0 3.06 ± 1.22 24 ± 3 141 ± 8 110 ± 5 

[I6.40G]V1aR 0.21 ± 0.07 0.60 ± 0.22 -2 ± 4 0.66 ± 0.06 58 ± 3 41 ± 5 18 ± 2 

[I6.40H]V1aR 0.36 ± 0.12 1.46 ±0.35 2 ± 1 3.18 ± 0.45 31 ± 3 108 ± 4 72 ± 6 

[I6.40K]V1aR 0.90 ± 0.38 1.19 ± 0.43 0 ± 1 4.14 ± 0.20 37 ± 4 124 ± 1 95 ± 2 

[I6.40L]V1aR 1.20 ± 0.25 0.72 ± 0.06 -9 ± 2 42.9 ± 5 96 ± 6 116 ± 7 81 ± 5 

[I6.40M]V1aR 0.26 ± 0.09 1.16 ± 0.12 18 ± 4 0.57 ± 0.04 146 ± 25 104 ± 5 58 ± 8 

[I6.40N]V1aR 0.89 ± 0.34 0.99 ± 0.06 5 ± 5 0.54 ± 0.10 103 ± 8 57 ± 3 24 ± 4 

[I6.40P]V1aR 0.40 ± 0.02 0.79 ± 0.10 1 ± 3 1.68 ± 0.40 41 ± 3 63 ± 8 23 ± 3 

[I6.40Q]V1aR 0.33 ± 0.03 0.84 ± 0.05 1 ± 2 1.04 ± 0.25 41 ± 1 95 ± 7 58 ± 6 

[I6.40R]V1aR 0.15 ± 0.08 0.56 ± 0.13 -1 ± 2 1.23 ± 0.59 18 ± 3 79 ± 7 48 ± 6 

[I6.40S]V1aR 0.36 ± 0.04 0.97 ± 0.12 12 ± 5 0.81 ± 0.06 106 ± 8 53 ± 1 24 ± 3 

[I6.40T]V1aR 0.23 ± 0.07 0.79 ± 0.05 7 ± 1 0.54 ± 0.06 96 ± 5 72 ± 5 41 ± 3 

[I6.40V]V1aR 0.28 ± 0.08 1.11 ± 0.33 3 ± 1 0.68 ± 0.07 102 ± 10 79 ± 6 39 ± 3 

[I6.40W]V1aR 0.12 ± 0.04 0.50 ± 0.06 2 ± 1 0.69 ± 0.32 22 ± 3 67 ± 5 47 ± 3 

[I6.40Y]V1aR 1.72 ± 0.76 1.94 ±0.04 -11 ± 3 2.52 ± 0.07 31 ± 6 122 ± 4 91 ± 5 

 

Table 4.2 Binding, signalling and cell-surface expression of Ile6.40 substitutions 

All data are shown as the mean ± s.e.m. of three separate experiments performed in triplicate. 
*EC50 is stated as the mean ± mean of 95 % confidence intervals of three separate 
experiments performed in triplicate. Data in yellow indicate >2.5-fold increase in Ki or EC50 
or >25 % reduction in Emax, cell-surface expression; orange >5-fold increase in Ki or EC50 or 
>50 % reduction in Emax, cell-surface expression or internalisation; red >10-fold increase in Ki 
or EC50 or >75 % reduction in Emax, cell-surface expression or internalisation. Data in green 
indicate >2.5-fold increase in Ki or EC50 or >25 % increase in Emax, cell-surface expression or 
> 50% increase in internalisation. Data in white are comparable to Wt. # denotes IC50 ± mean 
of 95 % confidence intervals of three separate experiments performed in triplicate. Data taken 
from the thesis of Wootten, University of Birmingham, 2007 are shown in italics. 
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4.2.1.1 Substitution of Ile6.40 for small side chain amino acids  

The receptor constructs [I6.40G]V1aR, [I6.40A]V1aR and [I6.40P]V1aR represent the 

substitution of isoleucine for amino acids with small side chains. The binding characteristics 

of the receptor constructs were Wt-like with respect to binding both AVP agonist and CA 

antagonist (Figure 4.2, Table 4.2). A slight increase (2.3-fold) increase in AVP binding 

affinity to the [I6.40A]V1aR was noted. 

[I6.40G]V1aR generated a Wt-like EC50 with a decrease in maximal signalling, 58 % of Wt 

Emax (Figure 4.8, Table 4.2). The construct was expressed at the cell-surface at 41 % of Wt 

levels. Although an EC50 and maximal signalling levels comparable to Wt were observed for 

the [I6.40A]V1aR construct, a substantial increase in basal activity of 17 % was displayed 

[I6.40A]V1aR expressed at the cell surface at 48 % of Wt levels. [I6.40P]V1aR displayed a 

2.8-fold increase in EC50 and a reduction in Emax (41 % of Wt Emax). The receptor construct 

was expressed at the cell surface at 63 % of Wt levels. 

4.2.1.2 Substitution of Ile6.40 for small polar amino acids 

The receptor constructs [I6.40S]V1aR, [I6.40T]V1aR, [I6.40C]V1aR substituting Ile6.40 to 

amino acids with small polar side chains maintained Wt-like pharmacology (Figure 4.3, Table 

4.2). The basal signalling level of [I6.40S]V1aR was considerably increased to 12% of Wt 

maximal signalling levels although Wt-like EC50 and Emax values were observed (Figure 4.9, 

Table 4.2). The receptor construct [I6.40S]V1aR expressed at a reduced 53 % of Wt levels. 

Wt-like EC50 and maximal signalling levels were achieved by the [I6.40T]V1aR receptor 

construct, but an increase in basal signalling accompanied these findings (7 % of Wt Emax). 

[I6.40T]V1aR displayed slightly reduced cell-surface expression at 72 % of Wt levels. 

[I6.40C]V1aR was Wt-like with respect to all parameters of InsP-InsP3 signalling and cell-

surface expression. 
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4.2.1.3 Substitution of Ile6.40 for hydrophobic amino acids 

The receptor constructs [I6.40V]V1aR, [I6.40L]V1aR and [I6.40M]V1aR represent 

conservative substitutions of Ile6.40 and the most commonly residues observed at this locus in 

rhodopsin-like GPCRs. The pharmacology of [I6.40V]V1aR and [I6.40M]V1aR were 

comparable to Wt (Figure 4.4, Table 4.2). [I6.40L]V1aR demonstrated a 2.6-fold decrease in 

agonist binding while maintaining Wt-like antagonist binding.  

The signalling capabilities of the receptor construct were essentially Wt in all respects with 

the introduction of the I6.40V substitution (Figure. 4.10, Table 4.2). Although the receptor 

construct [I6.40L]V1aR achieved maximal signalling comparable to Wt, a substantial decrease 

in basal signalling (-9 % of Wt Emax) and a 72-fold increase in EC50 were observed. 

[I6.40M]V1aR displayed a considerable increase in basal activity of 18 % of Wt Emax with a 

Wt-like EC50. The maximal signalling capabilities of the [I6.40M]V1aR construct were 

increased to 146 % compared to Wt Emax. Conservative substitutions of Ile6.40 to valine, 

leucine and methionine all expressed at the cell surface at levels comparable to Wt. 

4.2.1.4 Substitution of Ile6.40 for aromatic amino acids 

In substituting Ile6.40 to amino acids with aromatic side chains, the receptor constructs 

[I6.40F]V1aR, [I6.40Y]V1aR and [I6.40W]V1aR were generated. [I6.40F]V1aR maintained Wt-

like binding affinities for both AVP and CA (Figure 4.5, Table 4.2). [I6.40Y]V1aR displayed a 

3.8-fold decrease in AVP binding and maintained Wt-like CA binding affinity. The receptor 

construct [I6.40W]V1aR increased the binding affinity of AVP 3.7-fold but maintained a CA 

binding affinity comparable to Wt. 

Inositol phosphates dose-response curve of [I6.40F]V1aR displayed a 5.1-fold increase in EC50 

and severely reduced maximal signalling capabilities, 24 % of Wt Emax (Figure 4.11, Table 
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4.2). [I6.40Y]V1aR displayed basal signalling of -11 % of Wt Emax, 4.2-fold increase in EC50 

and a reduction in Emax to 31 % of Wt levels. The receptor construct [I6.40W]V1aR generated 

a Wt-like EC50 value with respect to InsP-InsP3 accumulation but reached maximal signalling 

levels only 22 % of Wt. [I6.40F]V1aR, [I6.40Y]V1aR and [I6.40W]V1aR expressed at the cell 

surface at 141 %, 122 % and 67 % respectively. Although all internalised on AVP challenge, 

[I6.40F]V1aR showed a greatly reduced tendency to internalise (22 % of total expression; Wt, 

45 % of total expression). 

4.2.1.5 Substitution of Ile6.40 for acidic and amine amino acids 

The substitution of Ile6.40 to acidic amino acids generated the receptor constructs 

[I6.40D]V1aR and [I6.40E]V1aR. These constructs bound both AVP and CA, generating 

competition binding curves (Figure 4.6). IC50 values were comparable to Wt (AVP: 

[I6.40D]V1aR, 0.64 ± 0.12 nM; [I6.40E]V1aR, 0.54 ± 0.07 nM; Wt, 0.85 ± 0.02 nM. CA: 

[I6.40D]V1aR, 3.74 ± 1.23 nM; [I6.40E]V1aR, 2.43 ± 0.16 nM; Wt, 2.17 ± 0.09 nM). Receptor 

constructs [I6.40N]V1aR and [I6.40Q]V1aR maintained Wt-like pharmacology (Figure 4.6, 

Table 4.2). 

The receptor construct [I6.40D]V1aR could not generate an inositol-phosphate response and 

was detectible at the cell surface at only 10 % of Wt levels (Figure 4.12, Table 4.2). 

[I6.40E]V1aR generated a maximal InsP-InsP3 signal at only 10 % of Wt and 5-fold decrease 

in EC50. [I6.40E]V1aR displayed a reduction in cell-surface expression (27 % of Wt 

expression). [I6.40N]V1aR generated InsP-InsP3 in a manner comparable to Wt, with a 

potential increase in basal activity of 5 % of Wt Emax, although cell-surface expression was 

reduced (57 % of Wt). The receptor construct [I6.40Q]V1aR displayed Wt-like EC50 but could 

only signal to 41 % of Wt Emax. Cell-surface expression of [I6.40Q]V1aR was comparable to 

Wt. 
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4.2.1.6 Substitution of Ile6.40 for basic amino acids 

Receptor constructs [I6.40H]V1aR, [I6.40K]V1aR and [I6.40R]V1aR generated receptor 

constructs substituting the leucine reside at position 6.40 for amino acids with basic side 

chains. [I6.40H]V1aR and [I6.40K]V1aR maintained Wt-like binding affinities for AVP and 

CA (Figure 4.7, Table 4.2). [I6.40R]V1aR demonstrated a 3-fold increase in AVP binding 

whilst maintaining CA binding affinity. 

Substitution of Ile6.40 to basic amino acids severely disrupted the ability to generate InsP-InsP3 

(Figure 4.13, Table 4.2). [I6.40H]V1aR, [I6.40K]V1aR and [I6.40R]V1aR reached maximal 

signalling levels of only 31 %, 37 % and 18 % of Wt Emax respectively. Only [I6.40R]V1aR 

maintained Wt-like EC50 whilst [I6.40H]V1aR and [I6.40K]V1aR displayed 5.3-fold and 6.9-

fold increased EC50 respectively. All substitutions of Ile6.40 to residues with basic side chains 

expressed at the cell surface at levels comparable to Wt. 

4.2.2 Probing interactions of Ile6.40 with the receptor construct [I6.40D]V1aR 

Given that the most detrimental substitution of Ile6.40 was to aspartate, double receptor 

constructs were generated to attempt to restore expression and functionality. The receptor 

construct [L3.43K/I6.40D]V1aR was generated to attempt to recapitulate the interaction of 

Ile6.40 with another hydrophobic barrier residue – Leu3.43 – with a charge-charge interaction. 

Additionally an interaction with Asn7.49 of the NPXXY was introduced to attempt to recover 

functionally in the same manner with the receptor construct [I6.40D/N7.49K]V1aR. In the 

carazolol bound structure of the β2AR, both Ile6.40 and Asn7.49 point into the helical bundle 

(Cherezov et al., 2007). Additionally, modelling of a number of CAMs generated by 

substitution of 6.40 in the H1R suggested interaction with Asn7.49 (Bakker et al., 2008). The 

single mutations [L3.43K]V1aR and [N7.49K]V1aR were generated to assess the contribution 

of the individual substitutions on receptor structure and function. 
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The receptor constructs [L3.43K/I6.40D]V1aR and [I6.40D/N7.49K]V1aR bound both AVP 

and CA, generating competition radioligand binding curves (Figure 4.14). 

[L3.43K/I6.40D]V1aR displayed a 2.6-fold decrease in IC50 (0.32 ± 0.02 nM; Wt, 0.85 ± 0.02 

nM) for AVP binding whilst [I6.40D/N7.49K]V1aR maintaining Wt-like IC50 (0.66 ± 0.23 

nM; Wt 0.85 ± 0.02 nM). Both [L3.43K/I6.40D]V1aR and [I6.40D/N7.49K]V1aR maintained 

Wt-like IC50 values, 2.23 ± 0.05 nM and 2.96 ± 0.27 nM respectively, for CA (Wt, 2.17 ± 

0.09 nM). In contrast, the single substitutions [L3.43K]V1aR and [N7.49K]V1aR displayed 

7.8-fold and 20.8-fold decreases in AVP binding affinity whilst CA affinity was comparable 

to Wt (Figure 4.14, Table 4.3). 

The double receptor construct [L3.43K/I6.40D]V1aR displayed basal signalling levels of 10 % 

of Wt Emax, a Wt-like EC50 and Emax of 35 % of Wt (Figure 4.15, Table 4.3). Expression at the 

cell surface was 11 % of Wt levels and a decrease in the amount of receptor present after AVP 

stimulation was observed. The receptor construct [I6.40D/N7.49K]V1aR could not generate 

detectible InsP-InsP3 when challenged with AVP and was not expressed at the cell surface. 

The single mutant [L3.43K]V1aR signalled though the inositol phosphate pathway like Wt in 

all respects. The cell-surface expression observed was increased to 161 % of Wt and 

underwent internalisation upon agonist challenge. No detectible InsP-InsP3 was observed for 

the receptor construct [N7.49K]V1aR although it was well expressed at the cell surface (126 % 

of Wt levels). The substitution of Asn7.49 to lysine however, made the receptor construct 

incapable of internalisation upon agonist stimulation. 
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Figure 4.14 Competition radioligand binding curves of constructs probing interactions 
with Ile6.40 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [L3.43K/I6.40D]V1aR, (■); 
[I6.40D/N7.49K]V1aR, (▲); [L3.43K]V1aR, (▼) and [N7.49K]V1aR (♦). Upper panel: 
[3H]AVP vs. AVP competition; lower panel: [3H]AVP vs. CA competition. A theoretical 
Langmuir binding isotherm was fitted to data expressed as specific binding (%), defining non-
specific binding by 1 μM ligand. Data are the mean ± s.e.m. of three experiments performed 
in triplicate. 
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Figure 4.15 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of constructs probing interactions with lle6.40 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [L3.43K/I6.40D]V1aR, 
(■); [I6.40D/N7.49K]V1aR, (▲);[L3.43K]V1aR (▼) and [N7.49K]V1aR (♦). Data are 
normalised to [Wt]V1aR basal and maximal signalling levels, expressed as the mean ± s.e.m. 
of three experiments performed in triplicate. Basal signalling is plotted at 10-11 M. Lower 
panel: Cell-surface expression levels of receptor constructs were normalised to untransfected 
cells and unstimulated (-) [Wt]V1aR expression levels. Data are stated as the mean ± s.e.m. of 
three experiments performed in triplicate. Stimulated (+) constructs were challenged by 10-7M 
AVP for 30 min.  
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Receptor construct 

Binding Ki  
(nM) ± s.e.m. 

InsP-InsP3 accumulation  
(% Wt Emax) ± s.e.m. 

Cell-surface expression (% 
Wt unstimulated) ± s.e.m. 

AVP CA Basal EC50
* Emax Unstimulated Simulated 

V1aR 
0.45 ± 
0.04 

0.96 ± 
0.10 

0 
0.60 ± 
0.02 

100 100 55 ± 2 

[L3.43K/I6.40D]V1aR 
0.32 ± 
0.02# 

2.23 ± 
0.05# 

10 ± 5 0.27 ± 
0.07 

35 ± 6 11 ± 4 6 ± 5 

[I6.40D/N7.49K]V1aR 
0.66 ± 
0.23# 

2.96 ± 
0.27# 

1 ± 1 No detectible signalling 2 ± 1 2 ± 2 

[L3.43K]V1aR 
3.52 ± 
1.27 

1.08 ± 
0.14 

-3 ± 2 0.67 ± 
0.14 

100  ± 9 161 ± 9 104 ± 10 

[N7.49K]V1aR 
9.36 ± 
1.62 

1.23 ± 
0.27 

-1 ± 1 No detectible signalling 126 ± 6 126 ± 4 

 

Table 4.3 Binding, signalling and cell-surface expression of receptor constructs probing 
interactions with Ile6.40 

All data are shown as the mean ± s.e.m. of three separate experiments performed in triplicate. 
*EC50 is stated as the mean ± mean of 95 % confidence intervals of three separate 
experiments performed in triplicate. Data in yellow indicate >2.5-fold increase in Ki or EC50 
or >25 % reduction in Emax, cell-surface expression; orange >5-fold increase in Ki or EC50 or 
>50 % reduction in Emax, cell-surface expression or internalisation; red >10-fold increase in Ki 
or EC50 or >75 % reduction in Emax, cell-surface expression or internalisation. Data in green 
indicate >2.5-fold increase in Ki or EC50 or >25 % increase in Emax, cell-surface expression or 
> 50% increase in internalisation. Data in white are comparable to Wt. # denotes IC50 ± mean 
of 95 % confidence intervals of three separate experiments performed in triplicate. 
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4.2.3 The effects of the N7.49R substitution on theV1aR 

In that the [N7.49K]V1aR receptor construct displayed significant perturbation in function, the 

[N7.49R]V1aR construct was generated to assess whether the effects observed were as a result 

of the lysine present at position 7.49 or a basic side chain in general. The pharmacology of the 

[N7.49R]V1aR receptor construct was Wt-like with respect to both agonist and antagonist 

binding (Figure 4.16, Table 4.4). 

[N7.49R]V1aR was unable to generate detectible InsP-InsP3 signal although it was expressed 

at the cell surface at levels comparable to Wt (Figure 4.17, Table 4.4). The construct was 

incapable if internalisation upon agonist challenge. 

4.2.4 Probing the interaction of Leu3.43 and Asn7.49 

In order to probe potential interaction of Leu3.43 and Asn7.49 as both residues are oriented 

towards each other in the helical bundle of the inactive, carazolol-bound β2AR (Cherezov et 

al., 2007), the receptor constructs [L3.43D/N7.49K]V1aR and [L3.43K/N7.49D]V1aR were 

generated. Additionally the single substitutions [L3.43D]V1aR and [N7.49D]V1aR were 

generated to assess the effects of single substitutions participating in potential charge-charge 

interaction. 

[L3.43D/N7.49K]V1aR generated radioligand competition curves and IC50 values for both 

AVP, 0.72 ± 0.11 nM and CA, 1.73 ± 0.09 nM that were comparable to Wt (AVP, 0.85 ± 0.02 

nM; CA, 2.17 ± 0.09 nM) (Figure 4.18). [L3.43K/N7.49D]V1aR displayed Wt-like binding 

affinities for both AVP and CA (Figure 4.18, Table 4.5). [L3.43D]V1aR did not binding 

[3H]AVP at experimental concentrations and [N7.49D]V1aR maintained Wt-like 

pharmacology.  
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Figure 4.16 Competition radioligand binding profiles of [N7.49R]V1aR 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○) and [N7.49R]V1aR, (■). Upper panel: 
[3H]AVP vs. AVP competition; lower panel: [3H]AVP vs. CA competition. A theoretical 
Langmuir binding isotherm was fitted to data expressed as specific binding (%), defining non-
specific binding by 1 μM ligand. Data are the mean ± s.e.m. of three experiments performed 
in triplicate. 
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Figure 4.17 InsP-InsP3 dose-response curves and cell-surface (+/- agonist challenge) 
expression of [N7.49R]V1aR 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○) and [N7.49R]V1aR, (■). 
Data are normalised to [Wt]V1aR basal and maximal signalling levels, expressed as the mean 
± s.e.m. of three experiments performed in triplicate. Basal signalling is plotted at 10-11 M. 
Lower panel: Cell-surface expression levels of receptor constructs were normalised to 
untransfected cells and unstimulated (-) [Wt]V1aR expression levels. Data are stated as the 
mean ± s.e.m. of three experiments performed in triplicate. Stimulated (+) constructs were 
challenged by 10-7M AVP for 30 min.  
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Receptor 
construct 

Binding Ki 
(nM) ± s.e.m. 

InsP-InsP3 accumulation  
(% Wt Emax) ± s.e.m. 

Cell-surface expression  
(% Wt unstimulated) ± s.e.m. 

AVP CA Basal EC50
* Emax Unstimulated Simulated 

V1aR 0.45 ± 0.04 0.96 ± 0.10 0 0.60 ± 0.02 100 100 55 ± 2 

[N7.49R]V1aR 0.74 ± 0.16 0.72 ± 0.20 -2 ± 1 No detectible signalling 78 ± 3 77 ± 4 

 

Table 4.4 Binding, signalling and cell-surface expression of [N7.49R]V1aR 

All data are shown as the mean ± s.e.m. of three separate experiments performed in triplicate. 
*EC50 is stated as the mean ± mean of 95 % confidence intervals of three separate 
experiments performed in triplicate. Data in yellow indicate >2.5-fold increase in Ki or EC50 
or >25 % reduction in Emax, cell-surface expression; orange >5-fold increase in Ki or EC50 or 
>50 % reduction in Emax, cell-surface expression or internalisation; red >10-fold increase in Ki 
or EC50 or >75 % reduction in Emax, cell-surface expression or internalisation. Data in green 
indicate >2.5-fold increase in Ki or EC50 or >25 % increase in Emax, cell-surface expression or 
> 50% increase in internalisation. Data in white are comparable to Wt. # denotes IC50 ± mean 
of 95 % confidence intervals of constructs that bound ligand.  
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Figure 4.18 Competition radioligand binding profiles of constructs probing the 
interaction of Leu3.43 and Asn7.49 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [L3.43D/N7.49K]V1aR, (■); 
[L3.43K/N7.49D]V1aR, (▲); [L3.43D]V1aR (▼); and [N7.49D]V1aR (♦). Upper panel: 
[3H]AVP vs. AVP competition; lower panel: [3H]AVP vs. CA competition. A theoretical 
Langmuir binding isotherm was fitted to data expressed as specific binding (%), defining non-
specific binding by 1 μM ligand. Data are the mean ± s.e.m. of three experiments performed 
in triplicate.  
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[L3.43D/N7.49K]V1aR and [L3.43D]V1aR did not generate InsP-InsP3 at levels that could be 

detected and were expressed at the cell surface at only ~10 % of Wt levels (Figure 4.19, Table 

4.5). [L3.43K/N7.49D]V1aR and [N7.49D]V1aR signalled through the inositol phosphate 

pathway like Wt with only small reductions in maximal signalling levels, 70 % and 74 % of 

Wt Emax respectively. [L3.43K/N7.49D]V1aR expressed at the cell surface at increased density 

compared to Wt (138 % of Wt levels) and internalised only 20 % of receptors when 

stimulated by AVP (Wt 45 % internalisation). [N7.49D]V1aR expressed at a reduced level at 

the cell surface (56 % of Wt) but internalised like Wt upon agonist challenge. 

4.2.5 Probing the interaction of Leu3.43 and Tyr6.44 

In the lutropin receptor (LHR), the mutation L3.43R was identified as the cause of 

gonadotropin-independent precocious puberty in a Brazilian boy (Latronico et al., 1998). This 

mutation caused salt-bridge formation with Asp6.44, resulting in constitutive activity and a 

lack of hormone responsiveness. This interaction was attempted to be recapitulated in the 

V1aR by the generation of the receptor construct [L3.43K/Y6.44D]V1aR. The single 

substitution [Y6.44D]V1aR was also generated. 

[L3.43K/Y6.44D]V1aR and [Y6.44D]V1aR displayed 3.7-fold and 5.6-fold increases in 

affinity to AVP agonist respectively (Figure 4.20, Table 4.6). The receptor construct 

[L3.43K/Y6.44D]V1aR possessed a 4.8-fold increase in CA affinity whilst [Y6.44D]V1aR 

displayed a Wt-like affinity to the antagonist. 

The double substitution [L3.43K/Y6.44D]V1aR demonstrated a reduced maximal InsP-InsP3 

accumulation of 55 % of Wt Emax whilst maintaining Wt-like EC50 (Figure 4.21, Table 4.6). 

Cell-surface expression was reduced to 46 % of Wt levels and internalised in response to AVP 

challenge. [Y6.44D]V1aR achieved maximal signalling levels only 11 % of Wt Emax with
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Figure 4.19 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of constructs probing the interaction of Leu3.43 and Asn7.49 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [L3.43D/N7.49K]V1aR, 
(■); [L3.43K/N7.49D]V1aR, (▲); [L3.43D]V1aR (▼) and [N7.49D]V1aR (♦). Data are 
normalised to [Wt]V1aR basal and maximal signalling levels, expressed as the mean ± s.e.m. 
of three experiments performed in triplicate. Basal signalling is plotted at 10-11 M. Lower 
panel: Cell-surface expression levels of receptor constructs were normalised to untransfected 
cells and unstimulated (-) [Wt]V1aR expression levels. Data are stated as the mean ± s.e.m. of 
three experiments performed in triplicate. Stimulated (+) constructs were challenged by 10-7M 
AVP for 30 min.  
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Receptor construct 

Binding affinity, Ki 
(nM) ± s.e.m. 

InsP-InsP3 accumulation  
(% Wt Emax) ± s.e.m. 

Cell-surface expression  
(% Wt unstimulated) ± s.e.m. 

AVP CA Basal EC50
* Emax Unstimulated Simulated 

[Wt]V1aR 
0.45 ± 
0.04 

0.96 ± 
0.10 

0 
0.60 ± 
0.02 

100 100 55 ± 2 

[L3.43D/N7.49K]V1aR 
0.72 ± 
0.11# 

1.73 ± 
0.09# 

1 ± 1 No detectible signalling 9 ± 1 8 ± 1 

[L3.43K/N7.49D]V1aR 
1.09 ± 
0.31 

0.83 ± 
0.21 

1 ± 2 
1.08 ± 
0.12 

70 ± 5 138 ± 7 111 ± 6 

[L3.43D]V1aR Did not bind [3H]AVP -2 ± 1 No detectible signalling 10 ± 3 10 ± 3 

[N7.49D]V1aR 
0.26 ± 
0.04 

1.09 ± 
0.17 

0 ± 2 
0.48 ± 
0.05 

74 ± 8 56 ± 1 36 ± 3 

 

Table 4.5 Binding, signalling and cell-surface expression of constructs probing the 
interaction of Leu3.43 and Asn7.49 

All data are shown as the mean ± s.e.m. of three separate experiments performed in triplicate. 
*EC50 is stated as the mean ± mean of 95 % confidence intervals of three separate 
experiments performed in triplicate. Data in yellow indicate >2.5-fold increase in Ki or EC50 
or >25 % reduction in Emax, cell-surface expression; orange >5-fold increase in Ki or EC50 or 
>50 % reduction in Emax, cell-surface expression or internalisation; red >10-fold increase in Ki 
or EC50 or >75 % reduction in Emax, cell-surface expression or internalisation. Data in green 
indicate >2.5-fold increase in Ki or EC50 or >25 % increase in Emax, cell-surface expression or 
> 50% increase in internalisation. Data in white are comparable to Wt. # denotes IC50 ± mean 
of 95 % confidence intervals of three experiments performed in triplicate.  
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Figure 4.20 Competition radioligand binding profiles of constructs probing the 
interaction of Leu3.43 and Tyr6.44 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [L3.43K/Y6.44D]V1aR, (■) and 
[Y6.44D]V1aR, (▲). Upper panel: [3H]AVP vs. AVP competition; lower panel: [3H]AVP vs. 
CA. A theoretical Langmuir binding isotherm was fitted to data expressed as specific binding 
(%), defining non-specific binding by 1 μM ligand. Data are the mean ± s.e.m. of three 
experiments performed in triplicate.  
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Figure 4.21 InsP-InsP3 dose-response curves and cell-surface expression of constructs 
probing the interaction of Leu3.43 and Tyr6.44 

Upper panel: Sigmoidal dose-response curves of inositol phosphates accumulation assays of 
HEK 293T cells, transiently transfected with receptor constructs [Wt]V1aR, (○); 
[L3.43K/Y6.44D]V1aR, (■) and [Y6.44D]V1aR, (▲). Data are normalised to [Wt]V1aR basal 
and maximal signalling levels, expressed as the mean ± s.e.m. of three experiments performed 
in triplicate. Basal signalling is plotted at 10-11 M. Lower panel: Cell-surface expression levels 
of receptor constructs were normalised to untransfected cells and unstimulated (-) [Wt]V1aR 
expression levels. Data are stated as the mean ± s.e.m. of three experiments performed in 
triplicate. Stimulated (+) constructs were challenged by 10-7M AVP for 30 min.  
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Receptor construct 

Binding affinity, Ki 
(nM) ± s.e.m. 

InsP-InsP3 accumulation  
(% Wt Emax) ± s.e.m. 

Cell-surface expression  
(% Wt unstimulated) ± s.e.m. 

AVP CA Basal EC50
* Emax Unstimulated Simulated 

V1aR 
0.45 ± 
0.04 

0.96 ± 
0.10 

0 
0.60 ± 
0.02 

100 100 55 ± 2 

[L3.43K/Y6.44D]V1aR 
0.12 ± 
0.03 

0.20 ± 
0.02 

2 ± 1 0.46 ± 
0.03 

55 ± 4 46 ± 3 24 ± 2 

[Y6.44D]V1aR 
0.08 ± 
0.03 

0.47 ± 
0.09 

-1 ± 0 
1.81 ± 
0.50 

10 ± 1 42 ± 4 37 ± 2 

 

Table 4.6 Binding, signalling and cell-surface expression of constructs probing the 
interaction of Leu3.43 and Tyr6.44 

All data are shown as the mean ± s.e.m. of three separate experiments performed in triplicate. 
*EC50 is stated as the mean ± mean of 95 % confidence intervals of three separate 
experiments performed in triplicate. Data in yellow indicate >2.5-fold increase in Ki or EC50 
or >25 % reduction in Emax, cell-surface expression; orange >5-fold increase in Ki or EC50 or 
>50 % reduction in Emax, cell-surface expression or internalisation; red >10-fold increase in Ki 
or EC50 or >75 % reduction in Emax, cell-surface expression or internalisation. Data in green 
indicate >2.5-fold increase in Ki or EC50 or >25 % increase in Emax, cell-surface expression or 
> 50% increase in internalisation. Data in white are comparable to Wt. # denotes IC50 ± mean 
of 95 % confidence intervals of three separate experiments performed in triplicate.  
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a 3-fold increase in EC50. The cell-surface expression was reduced to 42 % of Wt and only 12 

% of receptor at the cell surface were internalised upon agonist challenge (Wt, 45 % of 

unstimulated expression). 

4.3 Discussion 

4.3.1 The role of Ile6.40 in the structure and function of the V1aR 

The conserved hydrophobic residue at position 6.40 is implicated in forming a hydrophobic 

barrier, separating the ligand binding site from the intracellular G-protein docking domain 

(Trzaskowski et al., 2012). The residues partaking in this interaction are shown in Figure 

4.22. Mutation of residue 6.40 has resulted in generating constitutively active mutants in 

opsin, MC4R and H1R (Han et al., 1998; Proneth et al., 2006; Bakker et al., 2008) by 

destabilisation of an inactive receptor conformation. 

The [I6.40A]V1aR construct effectively removes the isoleucine side chain as far as the β-

carbon of the side chain and in doing so, a classical CAM was generated. Constitutively active 

mutants possess an increased affinity for agonists and a small 2.3-fold increase was observed 

in the [I6.40A]V1aR construct. The basal signalling level of the [I6.40A]V1aR was increased 

to 17 % of Wt Emax levels and a Wt-like Emax although the cell-surface expression was 

decreased to half of Wt levels. These data clearly implicate the isoleucine side chain at 

position 6.40 in the V1aR as participating in interactions stabilising the inactive receptor state. 

Substantial constitutive activity were also generation by substitution of 6.40 to alanine in 

opsin, 10.9% of light stimulated signalling (Han et al., 1998) and H1R, ~65 % of Emax (Bakker 

et al., 2008). In contract, the corresponding substitution in the MC4R did not generate a CAM 

(Proneth et al., 2006). Substituting 6.40 for alanine in MC4R and H1R reduced expression to 

about 25 % of Wt levels while [I6.40A]V1aR expressed like Wt. The substitution of the 
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Figure 4.22 Hydrophobic barrier residues in inactive rhodopsin and their 
rearrangements upon activation 

A) The crystal structure of inactive rhodopsin (pdb: 1GZM) highlighting residues of TM II, 
III and VI comprising the hydrophobic barrier, separating the ligand binding site from the 
cytoplasmic G-protein binding domain. B) The opening of the hydrophobic barrier, as in the 
active rhodopsin structure (pdb: 2X72) and formation of a water, channel connecting the 
ligand binding domain with the ERY motif and G-protein docking domain. (Trzaskowski et 
al., 2012). 
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isoleucine side chain for only a hydrogen atom as in the [I6.40G]V1aR receptor construct also 

increased AVP affinity (2.1-fold) although no increase in the basal signalling level was 

detected. However, similarly to the alanine substitution, [I6.40G]V1aR displayed Emax of 58 % 

of Wt with a more detrimental effect on cell-surface expression (41 % of Wt). A similar 

reduction in expression was observed in the H1R but this construct displayed substantial 

increase in agonist-independent signalling (Bakker et al., 2008). Increased flexibility 

introduced into TM VI by the glycine residue may reduce the stability of the receptor, 

reducing cell-surface expression. Substitution to serine or threonine generated receptors that 

possessed substantial increases in basal activity at 12 % and 7 % of Wt Emax respectively 

whilst maintaining Wt pharmacology. [I6.40S]V1aR and [I6.40T]V1aR constructs still 

achieved Wt-like levels of maximal signalling although their expression was reduced to 53 % 

and 72 % respectively. Particularly for the [I6.40S]V1aR receptor construct, it appears that 

there in an increased ability for AVP to signal through the inositol phosphate pathway. The 

serine substitution generated the third highest levels of constitutive activity in opsin at ~16 % 

of maximum light activated levels and 8.5 % for the threonine substitution (Han et al., 1998). 

Molecular modelling suggested that serine interacts with Arg3.50 through a hydrogen bond 

network in opsin, stabilising an active conformation and permitting interaction with G-protein 

(Deupi et al., 2012). The serine substitution in H1R fully activated the receptor as it was 

unresponsive to further activation by histamine (Bakker et al., 2008) although the construct 

could still bind agonist. The [I6.40C]V1aR construct essentially substitutes the hydroxyl of 

serine for the thiol of cysteine. This substitution generated a receptor construct that was Wt 

with respects to pharmacology, signalling and cell-surface expression supporting that the 

hydroxyl moiety in eliciting the basal activity observed in the [I6.40S]V1aR construct. 

Cysteine substitution in opsin produced one of the lowest basal activities, 3.9 % of light 
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induced maximum (Han et al., 1998). The [I6.40V]V1aR receptor construct is the approximate 

side chain volume of [I6.40T]V1aR but is hydrophobic as it does not possess the hydrophilic 

hydroxyl of threonine. This receptor construct was Wt-like with respect to pharmacology, 

signalling capabilities, cell-surface expression and internalisation. This further highlights the 

participation of polar moieties conferring basal activity in the V1aR. This being said, an 

increase of ~ 9 % in basal activity was observed in opsin when valine was substituted at 

position 6.40 (Han et al., 1998). 

[I6.40M]V1aR displayed basal InsP-InsP3 to 18 % of Wt Emax. Wt-like pharmacology was 

maintained in this receptor construct. Emax of 146 % of Wt was displayed while expressing at 

the cell-surface at a Wt-like density. Together, these data suggest that in the context of the 

V1aR, the methionine which is capable of maintaining the very low levels of basal activity in 

rhodopsin cannot fulfil the same role. Only one other V1aR construct demonstrated increased 

basal activity, [I6.40N]V1aR although the level was not as robust as other receptor constructs. 

This receptor construct maintained Wt-like pharmacology, EC50 and maximal signalling 

levels even with expression of 57 % of Wt levels. The asparagine substitution of the MC4R 

generated the greatest increase in constitutive activity of the seven substitutions characterised 

(Proneth et al., 2006). Similarly, substantial constitutive activity (22.9 % of light-activated 

maximum) was observed in opsin by asparagine substitution (Han et al., 1998) by interaction 

with Arg3.50 through a hydrogen bond network (Deupi et al., 2012). The naturally occurring 

polymorphism L6.40Q in MC4R displayed similar levels of constitutive activity to the 

asparagine substitution and molecular modelling suggests that the glutamine side chain 

stabilises the orientation of Tyr5.58 and Tyr7.53 into the helical bundle characteristic of the 

active state (Proneth et al., 2006). However, the basal activity of the glutamine substitution of 

6.40 in opsin did not generate such a large increase in constitutive activity (2.6 % of 
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signalling in light). [I6.40Q]V1aR displayed decreased AVP efficacy (41 % Wt Emax whilst 

expressing like Wt) indicating that the longer side chain of glutamine compared to asparagine 

is, at least in part, responsible for the reduced InsP-InsP3 response to AVP.  

Introduction of the helix-breaking proline residue in [I6.40P]V1aR was slightly detrimental to 

the integrity and stability of the construct as suggested from the reduced cell-surface 

expression. This being said, pharmacology and signalling properties of the construct were 

well maintained. In opsin, the proline substitution of 6.40 resulted in a slight increase in 

constitutive activity of only 5.8 % of light activated maximum but the greatest reduction in 

maximum signalling levels (Han et al., 1998). 

The integrity of the V1aR was severely reduced when Ile6.40 was substituted for either 

aspartate or glutamate as indicated by cell-surface expression levels of [I6.40D]V1aR, 10 % of 

Wt and [I6.40E]V1aR, 27 % of Wt. Substitution of Ile6.40 to glutamate in the H1R also severely 

decreased receptor expression (~ 10 % of Wt) but was able to be characterised with regards to 

signalling and the construct was almost full activated (Bakker et al., 2008). The same 

substitution in the MC4R receptor also increased constitutive activity but expressed at 66 % 

of Wt levels (Proneth et al., 2006). Basal signalling in opsin of 6.40 substitutions to aspartate 

and glutamate were 9.7 and 6.4 % of maximum respectively (Han et al., 1998). Given the 

levels of constitutive activity of receptors possessing an acidic residue at position 6.40, it may 

be possible that a similar substitution in the V1aR is in fact constitutively active, but the 

instability introduced by the destabilisation of the inactive receptor state is such that is cannot 

be expressed at sufficient levels to be functionally characterised. Unlike the substitutions of 

Ile6.40 to acidic residues in the V1aR, the integrity of the receptor constructs substituted by 

basic amino acids was not affected as constructs were expressed at levels comparable to Wt. 

Arginine and lysine substitutions in the MC4R generated constructs that expressed at reduced 
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levels compared to Wt, ~ 54 % of Wt (Proneth et al., 2006). Similarly, in the H1R, lysine and 

arginine substitutions at 6.40 were detrimental to cell-surface expression, < 50 % of Wt levels 

(Bakker et al., 2008). Arginine at 6.40 in opsin resulted in a receptor construct that could not 

be expressed to levels that could be functionally characterised while histidine and lysine 

substitutions demonstrated detectible increased in basal activity (~ 6 % maximum activation) 

and were activated to Wt-like levels in light. However, [I6.40H]V1aR, [I6.40K]V1aR and 

[I6.40R]V1aR displayed decreased efficacy, generating Emax (% Wt) of 31 %, 37 % and 18 % 

respectively although they were expressed at Wt-like levels. Although [I6.40H]V1aR and 

[I6.40K]V1aR maintained Wt-like pharmacology, the agonist potency to generate InsP-InsP3 

were reduced as indicated by the respective 5.3- and 6.9-fold increases in EC50. In MC4R 

arginine substitution at 6.40 was clearly constitutively active whilst lysine demonstrated only 

moderate agonist-independent signalling (Proneth et al., 2006). Conversely, although both 

substitutions to basic amino acids were constitutively active in H1R, lysine substitution 

demonstrated full activation of the H1R (Bakker et al., 2008). Computational modelling 

(Figure 4.23) suggested the mechanism of constitutive activity by these basic residues in the 

H1R is by inducing the conformational reorientation of Asn7.49 towards Asp2.50 as in the active 

state (Jongejan et al., 2005; Urizar et al., 2005). 

The bulky side chain of phenylalanine in the [I6.40F]V1aR construct maintained receptor 

pharmacology and conferred increased stability of the V1aR manifesting in an increased cell-

surface expression. However, a lesser proportion of the construct internalised when 

challenged by AVP compared to Wt. This may in part be due to the decreased potency of 

AVP to activate the receptor construct and hence generate InsP-InsP3. No difference was 

observed in the basal signalling level of the [I6.40F]V1aR construct, as was the case in MC4R 

(Proneth et al., 2006) and H1R (Bakker et al., 2008). The larger tryptophan residue of the
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Figure 4.23 Mechanism of activation of Wt H1R and I6.40R and I6.40K CAMs 

A) Computational model of Wt H1R in the inactive state; B) Model of Wt H1R adopting an 
active conformation illustrating the interaction of Asn7.49 and Asp2.50; C-D) The active 
conformation of H1R induced by the mutations of Ile6.40 to C) arginine and D) lysine. These 
substitutions induce to reorientation of Asn7.49 and Asp2.50 as proposed in the activation of the 
Wt H1R. The conformation of Arg3.50 could not be modelled in C and D so has been modelled 
as engaging in the ‘ionic lock’ interaction. Colour code: golden rod, TM II; dark red, TM III; 
orange, TM VI, and blue, TM VII. (Bakker et al., 2008).  

A B 

D C 
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[I6.40W]V1aR construct conferred a decreased AVP potency, but an apparent increase in AVP 

affinity. Although there was a decrease in cell-surface expression, this was not sufficient to 

account for the decreased maximal signalling levels demonstrating an inherent reduced ability 

to adopt an active receptor conformation. The apparent increase in AVP affinity may indicate 

long range perturbation of the ligand binding site. 

Substitution of Ile6.40 to leucine or tyrosine resulted in severe inactivation of the V1aR. Both 

receptor constructs displayed small decreases (> 2.5-fold) in AVP binding affinity, suggesting 

the mutations introduced interactions that were stabilising an inactive state. This is supported 

by the apparent decreases in basal activity of [I6.40L]V1aR and [I6.40Y]V1aR to -9 and -11 % 

of Wt Emax respectively. Although the V1aR displays little detectible basal activity natively, 

the reductions measured here further highlight the inactivating nature of the substitutions 

introduced. AVP potency is reduced 71.5-fold in the [I6.40L]V1aR construct whereas a lesser 

4.2-fold decrease is observed in the [I6.40Y]V1aR construct. This being said, although both 

receptor constructs are expressed to levels comparable to Wt at the cell surface, only the 

[I6.40L]V1aR construct is able to reach Wt-like maximal signalling levels. [I6.40Y]V1aR 

displays reductions in AVP potency in a manner similar to the [I6.40F]V1aR suggesting that 

the terminal hydroxyl of tyrosine mediates the inactivating reduction in basal activation and 

the benzene moiety causes the reduction in agonist potency to generate InsP-InsP3. The 

leucine substitution of 6.40 in opsin was the only characterised construct to maintain basal 

levels of signalling (Han et al., 1998). In contrast to the findings in the V1aR where tyrosine 

substitution generated a receptor construct that was greatly reduced in its ability to stabilise an 

active receptor conformation, the corresponding substitution in opsin generated the greatest 

level of constitutive activity, 32.6 % of light induced activity (Han et al., 1998). The crystal 

structure of opsin incorporating the M6.40Y substitution proposes a mechanism for the high 
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degree of agonist-independent signalling in rhodopsin (Deupi et al., 2012). This involves the 

stabilisation the orientations of Tyr5.58 and Tyr7.53 into the helical bundle through aromatic-

aromatic interactions (Figure 4.24). 

4.3.2 Probing interactions of Ile6.40 with the receptor construct [I6.40D]V1aR 

In the attempt to recapitulate the interaction of Ile6.40 with Leu3.43 with a charge-charge 

interaction to recover expression and functionality, the following findings were observed. The 

double substitution [L3.43K/I6.40D]V1aR expressed at a similar level as the single 

[I6.40D]V1aR substitution. This being said, dose-responsive InsP-InsP3 accumulation was re-

established at detectible levels and a basal activity of 10 % of Wt Emax levels detected. 

Additionally, the construct bound AVP with higher affinity than Wt as suggested by the 

decreased IC50 (0.32 ± 0.02 nM; Wt, 0.85 ± 0.02 nM), a feature characteristic of CAMs 

(Figure 4.14, upper panel). The single substitution [L3.43K]V1aR displayed decreased binding 

affinity for AVP suggesting that the lysyl side chain at position 3.43 stabilises an inactive 

conformation, which may contribute to the increased cell-surface expression observed. This 

substitution does not prevent the construct from adopting an active conformation, as indicated 

by the Wt-like signalling capabilities through the inositol phosphate cascade. This is 

supported by the similar signalling capabilities were observed in the [L3.43A]V1aR construct 

generated previously but Wt-like AVP binding was maintained (Wootten, PhD thesis, 

University of Birmingham, 1997). An analogous substitution was generated in the LHR 

(L3.43R) which also increased the density of receptor at the cell surface (Latronico and 

Segaloff, 2007). This construct demonstrated increased constitutive cAMP accumulation but 

was unable to generate cAMP in response to agonist hormone although Wt-like binding 

affinity was maintained. Together, these data suggest that in the double substituted receptor 

construct [L3.43K/I6.40D]V1aR, a charge-charge interaction confers the basal activity 



 

146 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24 Effect of the M6.40Y mutation on the ‘ionic lock’ region of rhodopsin 

A) blue mesh demonstrates the electron density of Y2235.58, Y3067.53 and CAM M257Y6.40. 
B) Inactive conformation of Wt rhodopsin with hydrophobic barrier residue M2576.40; C-D) 
demonstrate the similarity of the orientation of residues in the ‘ionic lock’ region of two 
constitutively active rhodopsin crystal structures (Deupi et al., 2012).  

A B 

D C 
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observed. One might hypothesise that this is due to the increased side chain length introduced 

by substitution of Ile6.40 for lysine. Through L3.43K and I6.40D interacting, the increased side 

chain length introduced at 6.40 is increasing the distance between the cytoplasmic portions of 

TM VI and TM III, partially recapitulating the increase in distance well documented in GPCR 

activation required for G-protein activation. 

In the attempt to stabilise the interaction of Ile6.40 with Asn7.49 with a charge-charge 

interaction to recover expression and functionality, the following findings were observed. 

[I6.40D/N7.49K]V1aR was able to bind AVP and CA although cell-surface expression and 

InsP-InsP3 generation were not detected. The loss of cell-surface expression was probably due 

to the detrimental effect of the I6.40D substitution given that the receptor construct 

[N7.49K]V1aR was detected at the cell-surface at slightly higher levels than Wt, although 

generation of inositol phosphates by [N7.49K]V1aR was not observed. Additionally the 

[N7.49K]V1aR adopted a more inactive conformation as indicated by the greatly decreased 

(20-fold) AVP affinity. Given that the construct was able to bind AVP, albeit with reduced 

affinity, the lack of InsP-InsP3 generation and internalisation upon agonist challenge was not 

due to an inability to bind AVP. The [N7.49R]V1aR construct demonstrated Wt-like 

pharmacology indicating that the inactivating effects observed in [N7.49K]V1aR are due 

specifically to the lysyl side chain and not the presence of a basic charge at 7.49. However, 

the inability of the [N7.49K]V1aR construct to generate InsP-InsP3 and to internalise upon 

agonist challenge, can be attributed to a basic charge being present at position 7.49 given that 

the same observations were made in the [N7.49R]V1aR construct. An acidic charge at 7.49 as 

in the [N7.49D]V1aR construct maintained the ability to internalise upon AVP challenge, 

further highlighting the basic charge at 7.49 being responsible for the loss of internalisation 

and InsP-InsP3 generation. 
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4.3.3 Probing the interaction of Leu3.43 and Asn7.49 

Introduction of an aspartate residue at position 3.43 was detrimental to the expression of 

receptor constructs [L3.43D]V1aR and [L3.43D/N7.49K]V1aR, which resulted in their 

inability to signal through the inositol phosphate pathway. In combination, the substitutions 

L3.43K and N7.49D caused the V1aR to possess a decreased ability of AVP to generate InsP-

InsP3 given that the [L3.43K/N7.49D]V1aR generated maximal signalling levels of only 70 % 

of Wt although it was very well expressed. Additionally, the construct demonstrated a 

severely decreased ability to internalise upon agonist challenge internalising only 20 % of 

receptors from the cell surface (Wt, 45 %). The [N7.49D]V1aR receptor construct indicates 

that the decreased efficacy and inability to internalise are not attributed to the contribution of 

this substitution as this construct internalised upon agonist challenge and was dose-responsive 

in generating InsP-InsP3. Together with the observed decreased AVP affinity observed in the 

single [L3.43K]V1aR construct, these data suggest that the charge-charge interaction conferred 

in the [L3.43K/N7.49D]V1aR maintain Wt-like conformation at the ligand binding pocket, but 

potentially a more inactive conformation at the intracellular side. 

4.3.4 Probing the interaction of Leu3.43 and Tyr6.44 

The substitution of Tyr6.44 to aspartate results in a receptor that adopts a more active 

conformation as demonstrated by the increased affinity for AVP. However the ability to 

generate of InsP-InsP3 was diminished given then Emax and AVP potency were reduced. 

Although the cell-surface expression was reduced to 42 % of Wt, it was not to an extent that 

should result in only 10 % of Wt Emax. For example [I6.40G]V1aR expressed at a similar level 

but still has an Emax of 58 % of Wt (Table 4.2). The double substitution 

[L3.43K/Y6.44D]V1aR was expressed at an almost identical level to [Y6.44D]V1aR but the 

signalling capabilities were greatly enhanced. The 3.7-fold increase in AVP affinity and 
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increase in Emax from 10 % to 55 % of Wt are consistent with stabilising an R* state. 

Together, these data suggest that the interaction of Leu3.43 and Tyr6.44 contributes to the ability 

to signal through the inositol-phosphate pathway in the V1aR, potentially through hydrophobic 

interaction of the leucine side chain and benzene ring of the native tyrosine side chain. The 

[Y6.44D]V1aR simulated the residue conserved in glycoprotein hormone receptors (Shinozaki 

et al., 2001; Zhang et al., 2005) but was disruptive to agonist-induced signalling in the V1aR. 

With Asp6.44 interacting with L3.43R of the LHR, constitutive activity was conferred and the 

receptor was no longer responsive to hormone agonist. In the V1aR, [L3.43K/Y6.44D]V1aR 

recovered the reduced agonist-induced InsP-InsP3 generation observed in [Y6.44D]V1aR but 

did not confer constitutive activity.  
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CHAPTER 5: THE ROLE OF TYR5.58 IN V1AR 

5.1 Introduction 

Understanding intramolecular interactions and structural rearrangements of transmembrane 

regions of GPCRs is key in elucidating activation mechanisms. The relative orientations of 

the TM III and TM VI are by far the most characterised, yet more subtle helical 

rearrangements have been identified in TM V.  

TM V contains a proline residue conserved in 77 % of rhodopsin-like GPCRs (Mirzadegan et 

al., 2003). Typically, the presence of a proline residue in an α-helix induces bend in the helix 

of approximately 20° (Deupi et al., 2004) with the precise disruption being dictated by the 

local context. This distortion of the helix is induced by the steric clash introduced by the 

pyrrolidine ring and lack of normal main chain hydrogen bonding. Crystallographic data of 

GPCRs have identified that an unwinding of residues preceding this conserved proline residue 

removes the steric clashes associated with a typical α-helix (Sansuk et al., 2011). 

Additionally, comparison of inactive and active rhodopsin structures reveals TM V 

approaches TM VI, accompanied by a rotation in TM V upon activation (Sansuk et al., 2011; 

Standfuss et al., 2011). 

Although the Ballesteros-Weinstein numbering system is based around Pro5.50, a Tyr5.58 is 

equally conserved in rhodopsin-like GPCRs. The ligand-free crystal structure of opsin first 

identified Tyr5.58 (Park et al., 2008) as an interacting partner with Arg3.50 which was 

subsequently confirmed by further rhodopsin crystal structures (Choe et al., 2011; Deupi et 

al., 2012) structures. However, in an inactive receptor conformation, Tyr5.58 points towards 

the membrane (Palczewski et al., 2000; Li et al., 2004) suggesting its participation in protein-

protein interactions in an active state only (Figure 5.1). Upon activation, disruption of the
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Figure 5.1 The translocation of Tyr5.58 in receptor activation 

Overlay of inactive, red (pdb: 1GZM) and active, green (pdb: 3PX0) rhodopsin crystal 
structures viewed from inside the helical bundle. In the inactive state, Tyr5.58 is oriented 
towards the membrane. Upon activation, Tyr5.58 is translocated with the rotation of TM V into 
the helical bundle and hydrogen bonds (green dashes) with the ‘ionic lock’ residue Arg3.50.  

TM III 
TM V 
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hydrophobic barrier (discussed previously in Chapter 4) by the rotation of TM VI, allows the 

reorientation of Tyr5.58 into the helical bundle (Standfuss et al., 2011). In doing so, Tyr5.58 

connects the actions at the ligand binding pocket to rearrangements at the cytoplasmic face 

through an extended hydrogen bond network. Tyr7.53 is also repositioned into the helical 

bundle and these tyrosine residues together disrupt the ‘ionic lock’ between TM III and TM 

VI, allowing G-protein binding. NMR studies confirm the role of Tyr5.58 in stabilising an 

active intermediate of Meta II (Goncalves et al., 2010). This has been exploited to obtain the 

crystal structure of β1AR where the Y5.58A substitution was introduced as one of a number of 

point mutations to stabilise an inactive receptor conformation (Warne et al., 2008). In both 

inactive and active structures of β2AR, Tyr5.58 faces into the helical bundle, adopting different 

conformations (Cherezov et al., 2007; Rasmussen et al., 2011b). Tyr5.58 is oriented towards 

the membrane in the inactive structure of M3 mAChR (Kruse et al., 2012), inactive H1R 

(Shimamura et al., 2011) and all activation intermediate structures of the A2AR (Lebon and 

Tate, 2011; Xu et al., 2011). Inactive structures of a number of GPCRs also demonstrate 

Tyr5.58 positioned into the helical bundle (Chien et al., 2010; Haga et al., 2012; Manglik et al., 

2012; Wu et al., 2012). 

The aim of this chapter is to probe the structural requirements at this locus of Tyr5.58 in the 

pharmacology, signalling and stability at the cell-surface of the V1aR. By systematically 

substituting this conserved tyrosine residue for all 19 encoded amino acids, the role of the 

phenol side chain of Tyr5.58 will attempt to be elucidated. 
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5.2 Results 

The position of Tyr5.58 discussed in this chapter is represented in Figure 5.2 in the V1aR. The 

oligonucleotides utilised to generate the receptor constructs (as described in section 2.2.1) are 

presented in Table 5.1. Receptor constructs were expressed in HEK 293T cells and 

characterised by radioligand binding assay with respect to their ability to bind the endogenous 

agonist AVP and synthetic peptide antagonist CA (Figures 5.3-5.8, Table 5.2). All, V1aR 

constructs characterised by competition radioligand binding assay were expressed at 1-2 

pmol/mg protein. In order to determine the effects of amino acid substitution on the receptors’ 

signalling capabilities, receptor constructs were transiently transfected into HEK 293T cells 

and the accumulation of InsP-InsP3 measured (Figures 5.9-5.14, Table 5.2). The effects on 

IC50, basal and maximal signalling (Emax) were ascertained. All basal signalling levels were 

Wt-like unless stated otherwise. The signalling response of receptor constructs may be 

influenced by the ability of receptors to be trafficked to the cell surface. Consequently, in 

addition to pharmacological characterisation, whole cell ELISA utilised the HA-tag 

engineered at the amino terminus of all V1aR constructs to detect the presence of receptor 

constructs to quantify cell-surface expression (Figures 5.9-5.14 and summarised in Table 5.2). 

Receptor constructs were also challenged with AVP agonist and the ability of the receptor to 

internalise assessed. All levels of internalisation were comparable to Wt unless stated. 

5.2.1 Substituting Tyr5.58 for small side chain amino acids 

The receptor constructs [Y5.58G]V1aR, [Y5.58A]V1aR and [Y5.58P]V1aR substituted the 

large phenolic side chain of tyrosine for small side chains. [Y5.58G]V1aR and [Y5.58A]V1aR 

maintained Wt-like affinities for AVP agonist and CA antagonist (Figure 5.3, Table 5.2). In 

marked contrast, [Y5.58P]V1aR did not bind the [3H]AVP tracer ligand at experimental 

concentrations used so could not be further characterised by radioligand binding studies.  
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Figure 5.2 Two-dimensional representation of the V1aR 

The N-terminal, HA-epitope tag (extracellular side) is shown as blue circles. Helices are 
labelled by roman numerals. The most conserved residue of each helix of rhodopsin-like 
GPCRs is shown in grey circles and conserved disulphide bridge is shown in red. 
Palmitoylation sites are shown as zigzags (intracellular side). The residues discussed within 
this chapter are shown as yellow circles. 
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Receptor construct Sense oligonucleotide Antisense oligonucleotide 

[Y5.58A]V1aR 5’ – GGT-ACC-TGC-GCC-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-GGC-GCA-
GGT-ACC – 3’ 

[Y5.58C]V1aR 5’ – GGT-ACC-TGC-TGC-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-GCA-GCA-
GGT-ACC – 3’ 

[Y5.58D]V1aR 5’ – GGT-ACC-TGC-GAG-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-CTC-GCA-GGT-
ACC – 3’ 

[Y5.58E]V1aR 5’ – C-TTG-GGT-ACC-TGC-GAG-
GGC-TTC-ATC-TGC – 3’ 

5’ – GCA-GAT-GAA-GCC-CTC-GCA-
GGT-ACC-CAA-G – 3’ 

[Y5.58F]V1aR 5’ – GGT-ACC-TGC-TTC-GGC-TTC-
ATC – 3’ 

5’ – GAT-GAA-GCC-GAA-GCA-
GGT-ACC – 3’ 

[Y5.58G]V1aR 5’ – GGT-ACC-TGC-GGC-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-GCC-GCA-
GGT-ACC – 3’ 

[Y5.58H]V1aR 5’ – GGT-ACC-TGC-CAC-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-GTG-GCA-
GGT-ACC – 3’ 

[Y5.58I]V1aR 5’ – GGT-ACC-TGC-ATC-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-GAT-GCA-
GGT-ACC – 3’ 

[Y5.58K]V1aR 5’ – GGT-ACC-TGC-AAA-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-TTT-GCA-GGT-
ACC – 3’ 

[Y5.58L]V1aR 5’ – GGT-ACC-TGC-TTG-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-CAA-GCA-
GGT-ACC – 3’ 

[Y5.58M]V1aR 5’ – GGT-ACC-TGC-ATG-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-CAT-GCA-
GGT-ACC – 3’ 

[Y5.58N]V1aR 5’ – GGT-ACC-TGC-AAC-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-GTT-GCA-GGT-
ACC – 3’ 

[Y5.58P]V1aR 5’ – GGT-ACC-TGC-CCC-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-GGG-GCA-
GGT-ACC – 3’ 

[Y5.58Q]V1aR 5’ – GGT-ACC-TGC-CAG-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-CTG-GCA-
GGT-ACC – 3’ 

[Y5.58R]V1aR 5’ – GGT-ACC-TGC-CGC-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-GCG-GCA-
GGT-ACC – 3’ 

[Y5.58S]V1aR 5’ – GGT-ACC-TGC-TCC-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-GGA-GCA-
GGT-ACC – 3’ 

[Y5.58T]V1aR 5’ – GGT-ACC-TGC-ACC-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-GGT-GCA-
GGT-ACC – 3’ 

[Y5.58V]V1aR 5’ – GGT-ACC-TGC-GTC-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-GAC-GCA-
GGT-ACC – 3’ 

[Y5.58W]V1aR 5’ – GGT-ACC-TGC-TGG-GGC-
TTC-ATC – 3’ 

5’ – GAT-GAA-GCC-CCA-GCA-
GGT-ACC – 3’ 

 

Table 5.1 Oligonucleotide sequences utilised to generate receptor constructs  

Receptor constructs were generated as described in section 2.2.1. The codon encoding the 
amino acid substituted is highlighted in red and nucleotide substitutions in bold. Non-bold 
bases show the complementary template sequence.  
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Figure 5.3 Competition radioligand binding curves of substitutions of Tyr5.58 to small 
amino acids 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [Y5.58G]V1aR, (■); [Y5.58A]V1aR, (▲); 
and [Y5.58P]V1aR, (▼). Upper panel: [3H]AVP vs. AVP competition; lower panel: [3H]AVP 
vs. CA competition. A theoretical Langmuir binding isotherm was fitted to data expressed as 
specific binding (%), defining non-specific binding by 1 μM ligand. Data are the mean ± 
s.e.m. of three experiments performed in triplicate.  
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Figure 5.4 Competition radioligand binding curves of substitutions of Tyr5.58 to small 
polar amino acids 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [Y5.58S]V1aR, (■); [Y5.58T]V1aR, (▲); 
and [Y5.58C]V1aR, (▼). Upper panel: [3H]AVP vs. AVP competition; lower panel: [3H]AVP 
vs. CA competition. A theoretical Langmuir binding isotherm was fitted to data expressed as 
specific binding (%), defining non-specific binding by 1 μM ligand. Data are the mean ± 
s.e.m. of three experiments performed in triplicate.  
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Figure 5.5 Competition radioligand binding curves of substitutions of Tyr5.58 to 
hydrophobic amino acids 

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [Y5.58V]V1aR, (■); [Y5.58I]V1aR, (▲); 
[Y5.58L]V1aR, (▼) and [Y5.58M]V1aR (♦). Upper panel: [3H]AVP vs. AVP competition; 
lower panel: [3H]AVP vs. CA competition. A theoretical Langmuir binding isotherm was 
fitted to data expressed as specific binding (%), defining non-specific binding by 1 μM ligand. 
Data are the mean ± s.e.m. of three experiments performed in triplicate. 
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Figure 5.6 Competition radioligand binding curves of substitutions of Tyr5.58 to aromatic 
amino acids  

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [Y5.58F]V1aR, (■) and [Y5.58W]V1aR. 
Upper panel: [3H]AVP vs. AVP competition; lower panel: [3H]AVP vs. CA competition. A 
theoretical Langmuir binding isotherm was fitted to data expressed as specific binding (%), 
defining non-specific binding by 1 μM ligand. Data are the mean ± s.e.m. of three 
experiments performed in triplicate.  
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Figure 5.7 Competition radioligand binding curves of substitutions of Tyr5.58 to acidic 
and amine amino acids  

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [Y5.58D]V1aR, (■); [Y5.58N]V1aR, (▲); 
[Y5.58E]V1aR, (▼) and [Y5.58Q]V1aR (♦). Upper panel: [3H]AVP vs. AVP competition; 
lower panel: [3H]AVP vs. CA competition. A theoretical Langmuir binding isotherm was 
fitted to data expressed as specific binding (%), defining non-specific binding by 1 μM ligand. 
Data are the mean ± s.e.m. of three experiments performed in triplicate.  
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Figure 5.8 Competition radioligand binding curves of substitutions of Tyr5.58 to basic 
amino acids  

Competition radioligand binding assays were performed on HEK 293T cells, transiently 
transfected with receptor constructs [Wt]V1aR, (○); [Y5.58H]V1aR, (■); [Y5.58K]V1aR, (▲) 
and [Y5.58R]V1aR, (▼). Upper panel: [3H]AVP vs. AVP competition; lower panel: [3H]AVP 
vs. CA competition. A theoretical Langmuir binding isotherm was fitted to data expressed as 
specific binding (%), defining non-specific binding by 1 μM ligand. Data are the mean ± 
s.e.m. of three experiments performed in triplicate.  
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Figure 5.9 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of substitutions of Tyr5.58 to small amino acids 

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [Y5.58G]V1aR, (■); 
[Y5.58A]V1aR, (▲); and [Y5.58P]V1aR, (▼). Data are normalised to [Wt]V1aR basal and 
maximal signalling levels, expressed as the mean ± s.e.m. of three experiments performed in 
triplicate. Basal signalling is plotted at 10-11 M. Lower panel: Cell-surface expression levels of 
receptor constructs were normalised to untransfected cells and unstimulated (-) [Wt]V1aR 
expression levels. Data are stated as the mean ± s.e.m. of three experiments performed in 
triplicate. Stimulated (+) constructs were challenged by 10-7M AVP for 30 min.  
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Figure 5.10 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of substitutions of Tyr5.58 to small hydrophilic amino acids  

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [Y5.58S]V1aR, (■); 
[Y5.58T]V1aR, (▲); and [Y5.58C]V1aR, (▼). Data are normalised to [Wt]V1aR basal and 
maximal signalling levels, expressed as the mean ± s.e.m. of three experiments performed in 
triplicate. Basal signalling is plotted at 10-11 M. Lower panel: Cell-surface expression levels of 
receptor constructs were normalised to untransfected cells and unstimulated (-) [Wt]V1aR 
expression levels. Data are stated as the mean ± s.e.m. of three experiments performed in 
triplicate. Stimulated (+) constructs were challenged by 10-7M AVP for 30 min.  
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Figure 5.11 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of substitutions of Tyr5.58 to hydrophobic amino acids  

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [Y5.58V]V1aR, (■); 
[Y5.58I]V1aR, (▲); [Y5.58L]V1aR, (▼) and [Y5.58M]V1aR (♦). Data are normalised to 
[Wt]V1aR basal and maximal signalling levels, expressed as the mean ± s.e.m. of three 
experiments performed in triplicate. Lower panel: Cell-surface expression levels of receptor 
constructs were normalised to untransfected cells and unstimulated (-) [Wt]V1aR expression 
levels. Data are stated as the mean ± s.e.m. of three experiments performed in triplicate. 
Stimulated (+) constructs were challenged by 10-7M AVP for 30 min.  
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Figure 5.12 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of substitutions of Tyr5.58 to aromatic amino acids  

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [Y5.58F]V1aR, (■) and 
[Y5.58W]V1aR, (▲). Data are normalised to [Wt]V1aR basal and maximal signalling levels, 
expressed as the mean ± s.e.m. of three experiments performed in triplicate. Basal signalling 
is plotted at 10-11 M. Lower panel: Cell-surface expression levels of receptor constructs were 
normalised to untransfected cells and unstimulated (-) [Wt]V1aR expression levels. Data are 
stated as the mean ± s.e.m. of three experiments performed in triplicate. Stimulated (+) 
constructs were challenged by 10-7M AVP for 30 min.  
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Figure 5.13 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of substitutions of Tyr5.58 to acidic and amine amino acids  

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [Y5.58D]V1aR, (■); 
[Y5.58N]V1aR, (▲); [Y5.58E]V1aR, (▼) and [Y5.58Q]V1aR (♦). Data are normalised to 
[Wt]V1aR basal and maximal signalling levels, expressed as the mean ± s.e.m. of three 
experiments performed in triplicate. Basal signalling is plotted at 10-11 M. Lower panel: Cell-
surface expression levels of receptor constructs were normalised to untransfected cells and 
unstimulated (-) [Wt]V1aR expression levels. Data are stated as the mean ± s.e.m. of three 
experiments performed in triplicate. Stimulated (+) constructs were challenged by 10-7M AVP 
for 30 min.  
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Figure 5.14 InsP-InsP3 dose-response curves and cell-surface expression (+/- agonist 
challenge) of substitutions of Tyr5.58 to basic amino acids  

Upper panel: Dose-response curves of inositol phosphates accumulation assays of HEK 293T 
cells, transiently transfected with receptor constructs [Wt]V1aR, (○); [Y5.58H]V1aR, (■); 
[Y5.58K]V1aR, (▲) and [Y5.58R]V1aR, (▼). Data are normalised to [Wt]V1aR basal and 
maximal signalling levels, expressed as the mean ± s.e.m. of three experiments performed in 
triplicate. Basal signalling is plotted at 10-11 M. Lower panel: Cell-surface expression levels of 
receptor constructs were normalised to untransfected cells and unstimulated (-) [Wt]V1aR 
expression levels. Data are stated as the mean ± s.e.m. of three experiments performed in 
triplicate. Stimulated (+) constructs were challenged by 10-7M AVP for 30 min.  
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Receptor 
construct 

Binding affinity, Ki 
(nM) ± s.e.m. 

InsP-InsP3 accumulation 
(% Wt Emax) ± s.e.m. 

Cell-surface expression 
(% Wt unstimulated) ± s.e.m. 

AVP CA Basal EC50* Emax Unstimulated Simulated 

V1aR 0.45 ± 0.04 0.96 ± 0.10 0 0.60 ± 0.02 100 100 55 ± 2 

[Y5.58A]V1aR 0.73 ± 0.41 1.14 ± 0.23 2 ± 1 0.46 ± 0.04 85 ± 0 92 ± 8 54 ± 2 

[Y5.58C]V1aR 1.52 ± 0.27 1.89 ± 0.34 1 ± 3 0.70 ± 0.15 80 ± 5 141 ± 7 91 ± 3 

[Y5.58D]V1aR 0.47 ± 0.27 0.83 ± 0.15 6 ± 3 0.27 ± 0.02 45 ± 5 42 ± 6 13 ± 4 

[Y5.58E]V1aR 0.54 ± 0.40 1.29 ± 0.07 2 ± 3 1.07 ± 0.08 74 ± 4 118 ± 6 69 ± 8 

[Y5.58F]V1aR 1.18 ± 0.34 1.43 ± 0.16 0 ± 2 0.67 ± 0.07 76 ± 5 110 ± 10 69 ± 6 

[Y5.58G]V1aR 1.12 ± 0.22 1.70 ± 0.10 3 ± 2 0.53 ± 0.06 101 ± 0 136 ± 3 80 ± 3 

[Y5.58H]V1aR 0.62 ± 0.14 1.52 ± 0.10 1 ± 2 0.25 ± 0.03 103 ± 4 94 ± 7 59 ± 6 

[Y5.58I]V1aR 1.84 ± 0.25 1.35 ± 0.15 -2 ± 4 0.05 ± 0.02 10 ± 1 125 ± 7 100 ± 10 

[Y5.58K]V1aR 0.17 ± 0.08 0.18 ± 0.06 1 ± 2 0.21 ± 0.03 28 ± 7 20 ± 2 10 ± 2 

[Y5.58L]V1aR 1.70 ± 0.15 1.72 ± 0.14 4 ± 1 0.57 ± 0.09 87 ± 10 104 ± 3 71 ± 6 

[Y5.58M]V1aR 1.88 ± 0.51 1.86 ± 0.18 4 ± 1 0.40 ± 0.01 91 ± 10 136 ± 3 77 ± 6 

[Y5.58N]V1aR 0.64 ± 0.28 1.02 ± 0.07 6 ± 2 0.32 ± 0.04 177 ± 17 109 ± 7 54 ± 8 

[Y5.58P]V1aR Did not bind [3H]AVP 0 ± 1 No detectable signalling -3 ± 3 0 ± 1 

[Y5.58Q]V1aR 0.60 ± 0.15 0.97 ± 0.16 0 ± 1 0.15 ± 0.02 104 ± 2 94 ± 6 50 ± 7 

[Y5.58R]V1aR Did not bind [3H]AVP 0 ± 1 No detectable signalling 1 ± 2 3 ± 2 

[Y5.58S]V1aR 0.95 ± 0.40 1.09 ± 0.18 2 ± 2 0.33 ± 0.05 129 ± 5 127 ± 12 70 ± 8 

[Y5.58T]V1aR 1.38 ± 0.43 1.52 ± 0.12 2 ± 2 0.38 ± 0.07 44 ± 6 110 ± 5 66 ± 6 

[Y5.58V]V1aR 1.31 ± 0.17 1.18 ± 0.43 4 ± 2 0.85 ± 0.32 23 ± 3 108 ± 6 74 ± 4 

[Y5.58W]V1aR 0.28 ± 0.14 0.52 ± 0.16 0 ± 3 0.25 ± 0.04 84 ± 5 70 ± 2 37 ± 1 

 

Table 5.2 Binding, signalling and cell-surface expression of Tyr5.58 substitutions 

All data are shown as the mean ± s.e.m. of three separate experiments performed in triplicate. 
*EC50 is stated as the mean ± mean of 95 % confidence intervals of three separate 
experiments performed in triplicate. Data in yellow indicate >2.5-fold increase in Ki or EC50 
or >25 % reduction in Emax, cell-surface expression; orange >5-fold increase in Ki or EC50 or 
>50 % reduction in Emax, cell-surface expression or internalisation; red >10-fold increase in Ki 
or EC50 or >75 % reduction in Emax, cell-surface expression or internalisation. Data in green 
indicate >2.5-fold increase in Ki or EC50 or >25 % increase in Emax, cell-surface expression or 
> 50% increase in internalisation. Data in white are comparable to Wt. # denotes IC50 ± mean 
of 95 % confidence intervals of three separate experiments performed in triplicate.  
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Both [Y5.58G]V1aR and [Y5.58A]V1aR generated InsP-InsP3 in a Wt-like manner with 

respect to EC50 and maximal signalling (Figure 5.9, Table 5.2). However they differed with 

respect to cell-surface expression with [Y5.58A]V1aR being essentially Wt and [Y5.58G]V1aR 

exhibiting increased cell-surface expression (136 % of Wt expression). [Y5.58P]V1aR 

however was not detectable at the cell-surface by ELISA and no InsP-InsP3 accumulation 

could be detected. 

5.2.2 Substituting Tyr5.58 for small polar amino acids 

[Y5.58S]V1aR, [Y5.58T]V1aR, [Y5.58C]V1aR represent substitutions of Tyr5.58 for amino 

acids possessing small hydrophilic amino acids. [Y5.58S]V1aR bound AVP agonist with Wt-

like affinity while [Y5.58T]V1aR and [Y5.58C]V1aR displayed a ~3-fold decreased affinity 

(Figure 5.4, Table 5.2). All three substitutions demonstrated Wt-like binding affinities for 

antagonist CA. 

While [Y5.58S]V1aR, [Y5.58T]V1aR and [Y5.58C]V1aR displayed Wt-like EC50 values of 

AVP-induced inositol-phosphates, maximal signalling level (Emax) was effected (Figure 5.10, 

Table 5.2). [Y5.58S]V1aR, [Y5.58T]V1aR and [Y5.58C]V1aR achieved Emax of 129 %, 44 % 

and 80 % of Wt levels respectively (Figure 5.10, Table 5.2). ELISA demonstrated that all 

receptor constructs expressed as well as Wt at the cell-surface with serine and cysteine 

substitutions expressing at 127 % and 141 % of Wt respectively. 

5.2.3 Substituting Tyr5.58 for hydrophobic amino acids 

The hydrophobic amino acids valine, isoleucine, leucine and methionine were substituted at 

position 5.58 generating the receptor constructs [Y5.58V]V1aR, [Y5.58I]V1aR, [Y5.58L]V1aR 

and [Y5.58M]V1aR. Substitution of Tyr5.58 for valine, isoleucine, leucine and methionine 

decreased the binding affinity of AVP by 3-4-fold while maintaining Wt-like affinities for CA 

(Figure 5.5, Table 5.2). 
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Receptor constructs [Y5.58L]V1aR and [Y5.58M]V1aR signalled like Wt (Figure 5.11, Table 

5.2). In contrast, [Y5.58I]V1aR displayed decreased Emax (10% of Wt Emax) and an apparent 

12-fold increase in IC50 despite being expressed well at the cell surface. It is difficult to be 

accurate regarding the increase in potency of AVP to generate InsP-InsP3 due to the overall 

poor signalling capabilities of this construct. [Y5.58V]V1aR also demonstrated drastic 

decrease in Emax (23 % of Wt Emax) but maintained Wt-like EC50. [Y5.58V]V1aR, 

[Y5.58I]V1aR, [Y5.58L]V1aR expressed at the cell surface at Wt-like levels and 

[Y5.58M]V1aR displayed an increase in cell-surface expression, 136 % of Wt expression. 

[Y5.58I]V1aR displayed the greatest decrease in the proportion of receptor internalised from 

the cell-surface upon AVP challenge of all amino acid substitutions within this chapter. The 

Y5.58I substitution resulted in a receptor construct that internalised only 20 % of total cell-

surface expression (Wt, 45 % of unstimulated expression). 

5.2.4 Substituting Tyr5.58 for aromatic amino acids 

[Y5.58F]V1aR and [Y5.58W]V1aR were generated, substituting Tyr5.58 for phenylalanine and 

tryptophan respectively. Substitution of Tyr5.58 for phenylalanine displayed a 2.6-fold 

decrease in AVP affinity while maintaining Wt-like CA affinity (Figure 5.6, Table 5.2). The 

[Y5.58W]V1aR receptor construct bound both AVP and CA with Wt-like binding affinities. 

[Y5.58F]V1aR was Wt-like in all aspects of InsP-InsP3 accumulation and cell-surface 

expression (Figure 5.12, Table 5.2). [Y5.58W]V1aR generated a near-Wt Emax with a small 

reduction cell-surface expression (70 % of Wt expression). IC50 of [Y5.58W]V1aR was 

comparable to Wt. 

5.2.5 Substituting Tyr5.58 for acidic and amine amino acids 

Substitution of the Tyr5.58 side chain for acidic amino acids generated the constructs 

[Y5.58D]V1aR and [Y5.58E]V1aR and substitutions for the polar amines [Y5.58N]V1aR, 
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[Y5.58Q]V1aR. All receptor constructs bound both agonist AVP and antagonist CA with Wt-

like binding affinities (Figure 5.7, Table 5.2). 

[Y5.58D]V1aR displayed a basal activity of 6 % of Wt Emax and reduced maximal signalling at 

44 % of Wt Emax although EC50 was Wt-like (Figure 5.13, Table 5.2). Cell-surface expression 

levels were reduced to 42 % of Wt levels. [Y5.58E]V1aR demonstrated a modest reduction in 

maximal signalling (74 % Wt Emax) whilst maintaining Wt basal and EC50 values. Cell-surface 

expression of [Y5.58E]V1aR was at a level comparable to Wt. 

While both [Y5.58N]V1aR and [Y5.58Q]V1aR substitutions resulted in receptor constructs that 

expressed at the cell-surface at levels comparable to Wt, the signalling properties were 

differently enhanced (Figure 5.13, Table 5.2). A small increase in basal activity (6 % of Wt 

Emax) and an increase to 177 % of Wt Emax were observed for the [Y5.58N]V1aR construct. 

[Y5.58Q]V1aR produced a Wt-like maximal signalling response with a 4-fold decrease in 

EC50. Basal signalling was unaffected. 

5.2.6 Substituting Tyr5.58 for basic amino acids 

[Y5.58H]V1aR, [Y5.58K]V1aR and [Y5.58R]V1aR were generated to assess the effect of 

introducing a basic side chain in the place of Tyr5.58 in the V1aR. [Y5.58H]V1aR bound both 

AVP and CA with Wt-like binding affinities (Figure 5.8, Table 5.2). [Y5.58K]V1aR displayed 

a 2.6-fold increase in AVP affinity and 5.3-fold increase in CA affinity. The receptor 

construct [Y5.58R]V1aR did not bind [3H]AVP at experimental concentrations used so could 

not be pharmacologically characterised. 

The [Y5.58H]V1aR generated InsP-InsP3 in a Wt-like manner in all respects and expressed at 

the cell-surface at a level comparable to Wt (Figure 5.14, Table 5.2). Substitution of the native 

tyrosine for a lysine residue produced a receptor construct with markedly reduced cell-surface 

expression (20 % of Wt) and Emax (28 % of Wt Emax). Basal signalling was unaffected in the 
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[Y5.58K]V1aR construct with a 2.8-fold decrease in EC50. Owing to the lack of presence of 

[Y5.58R]V1aR at the cell-surface detected by ELISA, no InsP-InsP3 accumulation was 

detected. 

5.3 Discussion 

Upon substituting the conserved Tyr5.58 to every other encoded amino acid, 17 of the 19 

substitutions were functionally expressed and able to be characterised with respect to their 

pharmacology and signalling capabilities through the inositol phosphate pathway. The two 

constructs that were severely disrupted were [Y5.58P]V1aR and [Y5.58R]V1aR. Both proline 

and arginine are excluded from this locus in the rhodopsin-like GPCR family (Mirzadegan et 

al., 2003) and their introduction had gross effects on the receptor structure. Introducing a 

helix-breaking, proline at position 5.58 resulted in a loss of presence at the cell surface and 

consequently inositol phosphate signalling. This is in agreement with observations in the 

human thyrotropin receptor where introducing the point mutation Y5.58P resulted in the 

receptor being retained in intracellular membrane compartments (Biebermann et al., 1998). It 

is reasonable to conclude that introducing proline at position 5.58 caused major disruption to 

the tertiary fold of the receptor. Additionally, the large, positively charged side chain of 

arginine cannot be accommodated at position 5.58. This effect was not solely due to the side 

chain charge as the lysine substitution was better accommodated. 

The ‘side chain removal’ substitution of [Y5.58A]V1aR, effectively removes the phenol 

moiety of the native tyrosine residue without affecting the propensity for TM V to adopt a 

helical conformation. The Wt-like nature of the [Y5.58A]V1aR receptor construct suggests 

that the loss of the phenol ring of tyrosine does not significantly perturb the receptor 

conformation given that the pharmacology of the construct was like Wt. Additionally, the 

construct is still capable of signalling though the inositol phosphate pathway as the mutation 
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did not affect the basal or agonist-induced signalling properties. The Y5.58A substitution in 

the β1AR favoured a receptor conformation where the ‘ionic lock’ is intact (Balaraman et al., 

2010) and abolished cannabinoid-induced inhibition of cAMP accumulation in the CB2 

receptor and decreased agonist binding affinity (Song and Feng, 2002). In the NK-1R, the 

substitution abolished SP-stimulated PI hydrolysis while maintaining high affinity binding 

(Huang et al., 1995). 

Similar to the [Y5.58A]V1aR construct, the introduction of a glycine residue resulted in a 

receptor construct capable of signalling though the inositol phosphate pathway in a Wt-like 

manner with AVP and CA binding comparable to Wt. [Y5.58G]V1aR was however expressed 

at the cell surface at a higher density than Wt. Together this suggests that the increased 

flexibility introduced into TM VI by glycine, is not disruptive to the integrity of the receptor 

nor its function. 

Similarly, the introduction of a cysteine residue at position 5.58 demonstrated a substantial 

increase in cell-surface expression compared to Wt but maintained Wt-like signalling 

properties. The slight decreased affinities of AVP and CA in the [Y5.58C]V1aR receptor 

construct does however indicate mild perturbation of the ligand binding site. The substitution 

to serine yielded a receptor that was Wt-like with regards to pharmacology of agonist and 

antagonist. The signalling capabilities of the receptor differ from Wt in only an increased 

Emax. Although there is a proportional increase in cell-surface expression, the [Y5.58G]V1aR 

demonstrates that this may not necessarily indicate an increased efficacy of AVP in signal 

generation. Molecularly, [Y5.58T]V1aR effectively mimics the [Y5.58S]V1aR construct with 

the addition of a methyl group at the β-carbon. Although the construct was well expressed at 

the cell surface, the efficacy of AVP to generate inositol phosphates was severely disrupted to 

less than half of Wt. The presence of the methyl moiety also conferred a decreased AVP 
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affinity while maintaining Wt-like CA binding. So tyrosine, serine or threonine possess an 

hydroxyl group while the cysteine possesses a closely-related thiol. Despite the structural 

similarity, the effects of substitution by these amino acids are diverse, highlighting that the 

presence of an hydroxyl (as in Tyr5.58) is insufficient to provide Wt-like functionality in the 

V1aR and the context of the hydroxyl is also important. 

The perturbations in ligand binding and AVP efficacy are also evident in the β-branched, 

hydrophobic substitution constructs [Y5.58V]V1aR and [Y5.58I]V1aR. While these constructs 

express at Wt-like levels at the cell surface, similarly to [Y5.58T]V1aR, the maximal 

signalling levels are severely reduced. The reduction in AVP efficacy is due to the β-methyl 

group given that the hydrophobic substitutions [Y5.58L]V1aR and [Y5.58M]V1aR generate 

maximal signalling levels comparable to Wt. No expressed receptor constructs other than 

those that are β-branched displayed reduced AVP efficacy to this extent. This said, 

substitution of tyrosine to leucine or methionine also reduced the binding affinity of AVP. 

Together, these data suggest that the introduction of hydrophobic amino acids valine, 

isoleucine, leucine and methionine, in addition to threonine stabilise an inactive state. This is 

presumably owing to the side chain being preferentially oriented to the membrane lipids in an 

inactive receptor state. However, it is only the β-branched receptor constructs that 

demonstrate reduced signalling capabilities. These observations suggest that the large 

hydrophobic ring of the native tyrosine stabilise the inactive receptor state, and the γ position 

of the phenol moiety permits full activation in response to agonist. This is further confirmed 

by the [Y5.58F]V1aR construct that only differs from the native tyrosine by an hydroxyl 

group. A small decrease in AVP affinity is displayed and a near-Wt Emax is observed. This is 

in contrast to the AT1aR where Y5.58F resulted in no inositol phosphate response (Hunyady et 

al., 1995). The loss in agonist binding affinity in the AT1aR was attributed to the impaired 

ability of the mutant to interact with G-protein. In the NK1R, the same substitution could 
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signal through the inositol phosphate pathway (Huang et al., 1995). However the substitution 

of a bulky, hydrophobic tryptophan, the largest of all the substitutions was well tolerated in 

the V1aR. In contrast, the Y5.58W substitution in the NK1R generated a receptor could only 

generate an inositol-phosphate signal of 6 % of Wt Emax (Huang et al., 1995). 

The contribution of the hydroxyl moiety may in part be assessed by the substitutions to acidic 

side chains. The constructs [Y5.58D]V1aR and [Y5.58E]V1aR did not perturb the ligand 

binding sites of the V1aR given their Wt-like pharmacology. [Y5.58D]V1aR did demonstrate a 

small increase in basal activity (6 % of Wt Emax) and reduced Emax that can be attributed to a 

reduction in cell-surface expression. The decreased cell-surface expression also suggests that 

the basal activity detected may be underestimated by more than 50 %. These data support the 

evidence of the hydroxyl moiety interacting with Arg3.50 in adopting an active receptor state 

(Park et al., 2008; Choe et al., 2011). These findings were not however reproduced in the 

[Y5.58E]V1aR receptor construct suggesting that the additional methylene does not allow the 

interactions conferred by the activating substitution Y5.58D. 

Receptor constructs [Y5.58N]V1aR and [Y5.58Q]V1aR displayed AVP and CA affinities 

comparable to Wt and Wt-like cell-surface expression levels. [Y5.58N]V1aR displayed 

increased basal activity of 6 % of Wt Emax and a 77 % increase in Emax with Wt-like EC50. 

[Y5.58Q]V1aR maintained Wt-like basal and maximal signalling levels but displayed 

increased (4-fold) potency of AVP to generate InsP-InsP3. The parallel increase in basal 

activity of [Y5.58D]V1aR and [Y5.58N]V1aR suggests that this may be attributed to the side 

chain length and/or the carbonyl group. Given the hydrophilic character of the side chains of 

aspartate and asparagine, it is reasonable that they would be more activating than tyrosine at 

5.58, shifting the equilibrium towards the R* state. 
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This hypothesis carries to the enhanced functionality of the [Y5.58K]V1aR displaying a 2.6-

fold increase in AVP binding affinity suggesting the substitution stabilises a side chain 

oriented away from the membrane as in an active receptor state. Although in general the 

ligand binding site is perturbed as the binding affinity of CA was also increased more than 5-

fold. Additionally a 2.9-fold increase in AVP potency in generating InsP-InsP3 was observed, 

with the decrease in Emax being attributed to a parallel decreased expression. The tolerable 

histidine substitution may be attributed the aromatic character of histidine being less 

disruptive than the lysine substitution when oriented to the lipid membrane in an inactive 

state. In the thyroid-stimulating hormone receptor (TSHR), a Y5.58K polymorphism causes 

hypothyroidism by reducing basal and hormone-induced cAMP signalling and completely 

ablating inositol phosphate accumulation (Biebermann et al., 1998). 

In general, these data suggest that substitution of the conserved Tyr5.58 is well tolerated in the 

V1aR. It is clear that the hydrophobic phenyl portion of the tyrosine side chain contributes to 

the stabilisation of an inactive conformation but presumably being oriented towards the 

membrane in a manor analogous to rhodopsin. Additionally, it is clear that the polar character 

of the hydroxyl group contributes (but is not essential) to adopting an active receptor 

conformation. Given that in the TSHR, mutation of Tyr5.58 to alanine, aspartate, 

phenylalanine, lysine, serine or tryptophan resulted in complete loss of Gq/11 coupling, it is 

apparent that the contribution of Tyr5.58 to receptor structure and G-protein coupling is 

receptor specific. However the rate at which an active conformation is adopted and its lifetime 

may be more sensitive to substitution (Goncalves et al., 2010). 
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CHAPTER 6: SUMMARY AND FUTURE WORK 

Given the diverse physiological processes to which the V1aR contributes, the understanding of 

its structure and mechanisms of function are of major pharmaceutical interest. Additionally, 

as a member of the largest family of integral membrane proteins, the rhodopsin-like GPCRs, 

experimental findings in the V1aR are likely to have wider application. Data presented here 

addressed the contribution of individual amino acids in the structure and function of the V1aR 

through a mutagenic approach. Receptor function was assessed with respect to the 

pharmacology and signalling properties of receptor constructs generated. Additionally, the 

cell-surface expression and agonist-induced internalisation of V1aR constructs was assessed. 

Chapter 3 addressed the role of individual amino acids in the ICL 2 region of the V1aR, 

initially by an alanine-scanning strategy. This highlighted that residues adjacent to the 

conserved DRY motif play a greater contribution to the level of cell-surface expression than 

residues in the second half of ICL 2, adjacent to TM IV. This could be explored further by the 

generation of more conservative substitutions within ICL 2 to ascertain the functional 

requirements at particular loci to maintain cell-surface expression.  

At position 3.58, a bulky hydrophobic residue is absolutely required to generate effective 

signalling though the inositol phosphate pathway. The receptor construct [L3.58M]V1aR 

introduced the corresponding residue observed in the related V2R into the V1aR and 

maintained Wt-like functionality. It would be interesting to further characterise this receptor 

construct to ascertain whether the methionine residue could introduce Gs coupling by 

quantifying cAMP accumulation. Additionally, this assay could be implemented in the V2R 

for receptor constructs substituting 3.60, generating the analogous receptor constructs that 

were generated in the V1aR and ghrelin-R. Substitution of Ala3.60 in the V2R to threonine, 

serine, phenylalanine and tyrosine would provide insight into the role of this residue in the 
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generation of cAMP, having presented here the effects on Gq coupling in receptors that 

possess little constitutive activity (V1aR) and substantial constitutive activity (ghrelin-R). As 

an extension to this, implementing the same assay to the chimeric construct [β2AR-

ICL2H]V1aR would provide insight as to whether Gs-coupling is introduced into the V1aR by 

substitution of the entire helical region observed in the β2AR. 

The conserved arginine cluster at the ICL 2-TM IV interface clearly contributes to the level of 

expression at the cell-surface given that substitution of two basic residues results in decreased 

expression as determined by ELISA. Substitution of all three arginine residues resulted in a 

greater loss in cell-surface expression. Substitution to lysine residues would prove insight into 

whether it is specifically the guanidinium side chain of arginine that contributes to cell-

surface expression or a general basic charge in this region. 

The role of Ile6.40 in the V1aR was probed in Chapter 4 by the systematic substitution to all 

other encoded amino acids. Differences in the basal activity level of V1aR were observed 

when particular amino acids where introduced, particularly methionine, alanine and 

substitution to the small polar amino acids serine and threonine. Interesting, there seems to be 

no general effect on basal activity and the amino acid introduced at position 6.40 when 

compared to opsin, H1R and MC4R. However, in the V1aR receptors that displayed 

constitutive activity, in general they were expressed at much lower levels at the cell surface 

although they appear to possess increased signalling though the inositol phosphate pathway at 

saturating agonist concentrations. This suggests that the CAMs may be adopting different R* 

states to Wt V1aR that are more efficacious in generating InsP-InsP3. The use of non-

hydrolysable GTP analogues would provide insight as to whether substitution of Ile6.40 affects 

the coupling of V1aR for G-protein. 
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Given that the substitutions I6.40D and I6.40E were particularly detrimental to the integrity of 

the V1aR, functional characterisation was problematic. Increasing the expression levels of 

[I6.40D]V1aR and [I6.40E]V1aR would allow more thorough and reliable characterisation to 

identify the effects of these substitutions that were masked by the reduced expression levels. 

The substitution of Asn7.49 to a basic amino acid ablated the inositol phosphate accumulation 

of the V1aR and internalisation when challenged by AVP. Assessing the capability of 

[N7.49K]V1aR and [N7.49R]V1aR to interact with β-arrestins would begin the attempt to 

dissect why it is that these constructs do not internalise upon agonist challenge. Additionally, 

the chimeric [β2AR-ICL2H]V1aR, [ghrelin-R-ICL2H]V1aR (Chapter 3) and [I6.40F]V1aR, 

[L3.43K/N7.49D]V1aR, [Y6.44D]V1aR should also be characterised in this regard given that 

they all internalised to a lesser extent than Wt. 

Chapter 5 attempted to elucidate the role of Tyr5.58 in the structure and function of the V1aR 

with by substitution to all other 19 encoded amino acids. Of the constructs that expressed at 

the cell-surface at levels that were capable of being functionally analysed, all substitutions on 

the whole were largely well tolerated with respect to cell-surface expression. The effects on 

signalling through the inositol phosphate pathway were more varied but in general, all were 

capable of Gq coupling. This is in contrast to the TSHR whereby any substitution of Tyr5.58 

lost Gq coupling selectivity. Together this suggests that Tyr5.58 plays a more minor role in Gq 

coupling in the V1aR than in the TSHR. However, the role of Tyr5.58 in the V1aR may play a 

more significant role in signalling through G-protein-independent pathways. To assess this, 

the catalogue of receptor constructs created in Chapter 6 should be characterised by their 

ability to activate MAPK/ERK1/2 pathway and by extension, characterisation with respect to 

their ability to interact with β-arrestins as a potential scaffold for G-protein-independent 

signalling. 
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As numerous CAMs were identified in this project, it would be useful to characterise the CA 

antagonist used within this study as to whether it possesses inverse agonist properties. 

Additionally, other antagonists of the V1aR could be characterised in this manner. Given that 

the V1aR natively possesses little detectible basal activity though the inositol phosphate 

pathway, CAMs presented here would be useful tools to the pharmaceutical industry in the 

design of and distinction between inverse agonist and antagonist ligands. 
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