
   

 

 

NUMERICAL INVESTIGATIONS OF THE 

COUPLED DEM-LBM TECHNIQUE WITH 

APPLICATION TO LEAKAGE-SOIL 

INTERACTION DUE TO A LEAKING PIPE 

 
 

 JUN LI  
BEng 

 
 

A thesis submitted to The University of Birmingham  

for the degree of  

DOCTOR OF PHILOSOPHY  

 

 

                                  Department of Civil Engineering  

The University of Birmingham 

October 2012                                        

 



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



   

ABSTRACT 

Underground pipes have been widely used to transport water and sewage waste for 

drainage and water distributions. However, leakage problem of distribution pipes may 

result in localised underground cavities, which may expose infrastructures to the danger 

of collapse, or lead surface subsidence without any early warnings. Because of its special 

importance in the underground environment and safety, the interaction between leakage 

from a buried pipe and the surrounding soils has attracted attentions of infrastructure 

owners and geotechnical engineers. This, therefore, requires an understanding of the 

behaviour of a fluid-particle system.  

 

This thesis aims to develop a numerical tool, FPS-BHAM, in exploring the large-scale 

fluid-particle system with local interaction behaviours being captured. A blocked 

partitioning domain decomposition strategy with the philosophies of parallel computing 

and combination with a large-scale modelling technique is proposed in this thesis.     

 

The illustration of detailed implementation of DEM-LBM, with its verification in 

FPS-BHAM and its validation using a pipe leakage problem, are sequentially conducted. 

A good parallel behaviour is achieved by applying the blocked partitioning domain 

decomposition strategy, which is proposed in this thesis. The DEM-DFF technique is 

also successfully implemented in FPS-BHAM as well. Furthermore, a combination 

strategy between DEM-LBM and DEM-DFF is proposed in this thesis. A good 



   

computational benefit is found to be achieved by adopting the proposed combination 

strategy. Finally, different behaviours between LBM and DFF during the dynamic 

propagation to the steady state are investigated by parametric studies. 

 

KEY WORDS: Discrete Element Method, Lattice Boltzmann Method, Darcy Fluid 

Flow, Domain Decomposition, Combination Strategy, Parallel Computing  
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CHAPTER 1: INTRODUCTION 

1.1 Research background 

Underground pipes have been widely used to transport water and sewage waste for 

drainage and water distributions. However, leakage problem of distribution pipes may 

result in underground cavities, which may expose infrastructures to the danger of collapse, 

or lead surface subsidence without any early warnings. Because of its special importance 

in the underground environment and safety, the interaction between leakage from a buried 

pipe and the surrounding soils has attracted attentions of infrastructure owners and 

geotechnical engineers.   

 

In the vicinity of the leak (i.e. the leaking area), the flow paths of the leaking fluid in the 

soil could be greatly affected or even blocked due to the existence of soil. Away from the 

leaking area, only seepage flows that controlled by Darcy’s law are assumed to exist when 

the soil is saturated. However, in the vicinity of the leaking area, the flow pattern of the 

leaking fluid can be significantly influenced by the high pressure and velocity as well as 

the presence of soil particles being transported by the fluid, and may demonstrate 

turbulent phenomenon. On the other hand, motion of the soil particles are mainly 

controlled by inter-particle contacts, gravity, pressure gradient force, and drag force by 

fluid flows. Hence, some of the soil particles may be mobilised and transported, (i.e. soil 

is locally fluidised.). Through such a process, a cavity may be produced and developed 
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gradually, which indicates a local large displacement occurring within the soil material. 

 

The application of the analytical methods for solving such a problem encounters 

difficulties as the geo-materials are usually granular in nature, which exhibits inherently 

discontinuous, heterogeneous and generally anisotropic micromechanical behaviour. 

Moreover, the existence of multiphase interaction makes theoretical analysis even harder. 

Investigations using field and laboratory studies face many difficulties, such as 

disturbance of sample, difficulty in reproducing identical samples, and lack of 

transparency for visual measurements. Alternatively, numerical simulations may provide 

as an promising approach to explore the underlying mechanism of fluid-soil interaction.  

 

1.2 Numerical techniques for modelling fluid-particle interactions 

In recent years, numerical simulations of fluid-particle systems using a variety of 

techniques have been reported. Among those, the Discrete Element Method (DEM) has 

been regarded as an effective tool to trace the motion of solid particles (Cundall, 2001). 

Compared to the conventional Finite Element Method (FEM), DEM can be applied to a 

material subject to large displacements where compatibility condition is not valid (this is 

further explained in Section 2.2). Furthermore, both the macroscopic and microscopic 

analyses of a granular material can also be conducted through such method. Ever since 

DEM was proposed by Cundall (1971), different fluid methods have been coupled with it 
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to provide a solution to studies on the fluid flows and motion of particles with multiphase 

interaction. Among these methods, the coupling between DEM and Darcy fluid flow 

(DFF) (Hakuno and Tarumi, 1988) is a commonly-used technique for many geotechnical 

problems due to its simple form and low computational cost. Nevertheless, this technique 

is based on Darcy’s law and only applicable to the flows with the Reynolds number less 

than ten (Shafipour and Soroush, 2008), e.g. laminar flows. Therefore, it is unsuitable to 

apply this technique to modelling the turbulent flows in the leaking area.   

 

An alternative option is to couple the Lattice Boltzmann Method (LBM) with DEM 

(Cook et al, 2004). Unlike DFF, LBM with Large Eddy Simulation (LES) model can be 

applied in simulating turbulent flows. Furthermore, LBM directly describes fluid flows 

on the microscopic scale, so that the detailed flow behaviour can be traced. On the other 

hand compared with the conventional fluid method, such as Computational Fluid 

Dynamics (CFD), LBM is able to provide a relatively high computational efficiency in 

fine-grain modelling due to its explicit and local nature. Hence, the coupled DEM-LBM 

is regarded as a favourable tool in simulating the leaking area with a small-sized leak 

opening, which is presented in Section 2.7.  

 

1.3 Aim of this research 

Although DEM-LBM is quite efficient in small-scale modelling, the total computational 
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cost for simulating a real-scale problem could still be high due to fine grids adopted, 

which limits the applications of DEM-LBM technique. Therefore, it is necessary to 

enhance the performance of this technique and make it more applicable. In order to 

achieve this aim, two strategies are proposed in this thesis: 

 

a) Parallel computing. Both DEM and LBM involve only local processes as well as the 

explicit schemes (explained in Sections 3.2 and 3.3, respectively), which makes 

DEM-LBM exhibit the highly natural parallelisation. In order to achieve optimum 

parallel performance, the computational load in each processor shall be as balanced as 

possible. The minimum serial calculation is required to be achieved so as to avoid idle 

waiting of processors. In addition, the data communication among processors shall be 

kept as small as possible. 

 

b) Combining DEM-LBM with another simulation technique, which is more suitable for 

a large-scale simulation. For the leakage-soil interaction considered in this thesis, 

DEM-DFF can be employed to modelling the area far from the leakage, where the fluid 

flows are laminar. On the other hand, DEM-LBM is employed to investigate the refined 

leaking area with intensive changes in the fluid field and fluid-particle interactions. By 

combining these two techniques, an optimal performance in both computational 

efficiency and accuracy would be achieved.  
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Both the above philosophies lead to the domain decomposition scheme, in which the 

computational domain is decomposed into sub-domains, and various computational 

techniques are employed in different sub-domains according to local features. Thereafter, 

the calculations in each sub-domain are performed independently on a local processor 

working within a parallel computer.  

 

Therefore, the aim of this thesis is to develop an efficient strategy for combination of 

DEM-DFF and DEM-LBM with parallel computing through domain decomposition. 

This is divided into the following objectives: 

(i) to develop an efficient code named FPS-BHAM (abbreviation of Fluid Particle 

System - University of Birmingham) with successful implementation of DEM-LBM and 

DEM-DFF; 

(ii) to propose a proper domain decomposition scheme in the program , which forms a 

basic platform of the combination of techniques with parallel computing; 

(iii) to parallelise the code FPS-BHAM, so that parallel computing on a group of 

processors can be conducted; and 

(iv) to propose a proper strategy for combination of DEM-DFF and DEM-LBM, so that 

the combined system works properly. 

(v) to explore the pipe leakage problem using FPS-BHAM. The majority of the results is 

reported by Cui (2012). In this thesis, only a few of simple pipe leakage tests are 

presented to show the capability of this technique in modelling the leakage-soil 

http://dict.cn/abbreviation
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interaction. 

 

1.4 Thesis layout 

This thesis is divided into nine chapters. Chapter 2 gives an introduction of the 

fundamental theories involved in this thesis. Chapter 3 is devoted to a literature review of 

the studies on leakage-soil interaction; the different numerical techniques simulating 

fluid-particle systems; the parallel computing of DEM and LBM; and LBM combined 

with other large-scale modelling techniques. Chapter 4 provides details of the 

implementations of DEM-LBM and DEM-DFF in FPS-BHAM. In Chapter 5, the 

blocked partitioning domain decomposition in FPS-BHAM along with parallelisation 

scheme is presented. This is followed, in Chapter 6, by an illustration of the interface 

treatment between DEM-DFF and DEM-LBM sub-domains based on the platform of the 

blocked partitioning domain decomposition. In Chapter 7, results are provided to validate 

the strategies proposed in Chapters 4-6, including DEM-LBM implementation, the 

parallel performance of the proposed blocked partitioning domain decomposition, 

DEM-DFF simulations, and the proposed combination strategy between DEM-LBM and 

DEM-DFF. In Chapter 8, the influence of the different forms of governing equations in 

DFF and LBM on the performance of the combined system is under investigation. 

Finally, in Chapter 9, conclusions on the overall work presented in this thesis are provided 

and some further works are suggested. 
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CHAPTER 2: FUNDAMENTAL THEORIES  

2.1 Introduction  

The fundamental theories involved in this thesis is introduced in this chapter, including 

the discrete element method (DEM) (see Section 2.2), the lattice Boltzmann method 

(LBM) and its coupling with DEM (see Section 2.3), and the Darcy fluid flow (DFF) 

and its coupling with DEM (see Section 2.4).  

 

2.2 Discrete element method (DEM) 

DEM was initially proposed to deal with problems in rock mechanics (Cundall, 1971; 

and Cundall, 1974), and it has been increasingly used in the geotechnical field during 

recent decade (see e.g. O’Sullivan, 2011). In DEM, material is viewed as an assembly of 

discrete particles.  

 

2.2.1 Soft-sphere DEM algorithm 

Among literatures, two different algorithms are generally employed: hard-sphere and 

soft-sphere approaches (Duran, 2000). The soft-sphere DEM, which is employed in this 

thesis (see Section 3.2). Between any two particles in contact, a slight overlap is allowed. 

The contact is viewed as a dynamic process in which contact forces accumulate or 

dissipate over time. Contact forces can be subsequently obtained through the deformation 
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history at the contact. The motion of a single particle is governed by the Newton’s second 

law in the form of the following equations:        

 dm
dt


v F  (2.1) 

and 

 dI
dt


ω T , (2.2) 

where v, ω  are the translational and rotational velocity, and m and I are the particle mass 

and its moment of inertia. F and T are total external force and torque respectively applied 

to the particle.  

 

The total force F and total torque T applied to the particle can be calculated by 

 c b f  F F F F            (2.3) 

and 

 c f T T T , (2.4) 

where Fc is the summation of the contact forces over all contacts on the particle, i.e. the 

total contact force. Fb denotes the body force. Ff represents the fluid force applied on the 

particle, of which its calculations are demonstrated in Sections 2.3.2 and 2.4.2. Tc and 

Tf indicate the torques generated by the contact force and fluid force, respectively.   

 

The calculation of the contact force is conducted in the normal and tangential directions 

as below: 

 t t t
n n nk   F F α  (2.5) 
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and 

 t t t
t t tk   F F δ , (2.6) 

where α  and δ  are the relative normal and tangential displacement increments 

within a DEM time step. nk  and tk  are the normal and tangential contact stiffnesses, 

which are computed by algorithms based on contact constitutive model (see Section 

2.2.2).  

 

For a sufficiently small DEM time step, the velocities and accelerations are assumed to be 

constant during each time step. With a central difference scheme, the location and 

rotation are determined as (Cundull and Strack, 1978)
  

 

 [ (1 ) ] / (1 )
2 2

t t t t DEM DEM DEM
DEM

t t tc ct
m m m

   
       x x v F  (2.7) 

and 

 [ (1 ) ] / (1 )
2 2

t t t t DEM DEM DEM
DEM

t t tc ct
I I I

    
       θ θ ω T , (2.8)                   

where x, θ  are the particle coordinates and its angular rotation. c, c’ are the global 

damping coefficients, and DEMt  denotes the DEM time step. 

 

2.2.2 Contact constitutive model 

The contact constitutive models involved in this thesis are the Hertz theory (Johnson, 

1985), the theory of Mindlin and Deresiewicz (1953), and the Johnson-Kendall-Roberts 

(JKR) model (Johnson et al., 1971), which are introduced in this sub-section. For the 
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ease of explanation, some basic variables and their expressions are firstly defined. 

 

As for two circular particles A and B in contact, their radii are denoted as AR  and BR , 

masses as Am  and Bm , Young’s modulus as AE  and BE , shear modulus as AG  and 

BG , and Poisson’s ratios as A  and B . The effective contact radius *R  is obtained 

from (see e.g. Yang, 2009) 

 *1 1 1A BR R R  . (2.9) 

The effective mass m  is obtained from 

 1 1 1A Bm m m   . (2.10) 

The effective contact Young’s modulus *E  is obtained from 

 * 2 21 (1 ) (1 )A A B BE E E     . (2.11) 

The effective contact shear modulus G  is obtained from 

 *1 (2 ) (2 )A A B BG G G     . (2.12) 

 

The relative approach between the two particles in contact (Figure 2.1) is expressed as  

 ( )A BR R D   α n  (2.13)  

and 

 A BR R D    , (2.14) 

where D  is the centre-to-centre distance and n  is the unit vector pointing from centre 

of A to centre of B.  
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Figure 2.1: Two particles in contact 

 

The relative normal and tangential displacement increments are obtained from 

  B A
DEMt    v v n  (2.15) 

and 

      B A A B
DEM A DEM B DEMt R t R t          δ v v n ω n ω n . (2.16) 

Hence, the tangential displacement is calculated by 

 t t t  δ δ δ . (2.17) 

 

During each DEM time step, the tangential force and displacement are re-orientated due 

to the rotation of the contact plane. The variables are adjusted by 

    r e o r i e n t a t e d o l d
t t
  F Ω F  (2.18) 

and 

re orientated old  δ Ω δ ,                      (2.19) 

where Ω is the rotation of the contact plane given by 

 (( ) )B A
DEMt

D
    

nΩ v v n . (2.20) 
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If the resultant tangential force satisfies the sliding criterion, sliding is assumed to occur 

and the tangential force is reset to the limiting value nF   (   is the inter-particle 

friction coefficient).
 

 

The Hertz theory (see Johnson, 1985) is used to determine the normal contact stiffness, 

 12nk E a , (2.21) 

where 1a  is the radius of the contact area calculated by 

    
1 / 2*

1a R . (2.22) 

 

The tangential contact stiffness is determined by Thornton and Randall (1988) based on 

the theory of Mindlin and Deresiewicz (1953). By adopting an incremental approach, tk  

can be calculated using the newly updated nF  and 1a . The expression for tk  is shown 

as follows (Thornton and Yin, 1991): 

  18 1 n
t

Fk G a  


 
  


, (2.23) 

          
1 / 3

1 0 ( )t n

n

F F
loading

F


 


  
    
 

, (2.24) 

 
 

1/3
2

1 0 ( )
2

t t n

n

F F F
unloading

F


 


   
    
 
 

, (2.25) 

 
 

1/3
2

1 0 ( )
2

t t n

n

F F F
reloading

F


 


   
    
 
 

, (2.26) 

and the negative sign in (2.23) is only taken during unloading. The forces *
tF  and **

tF  

define the load reversal points and need to be continuously updated by 
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    t t nF F F          (2.27) 

and 

 t t nF F F    ,                      (2.28) 

If  
1

*8 aG
Fn




  with 0 nF , let  =1 until the condition   nFaG 1
*8   

is satisfied.   

                                             

In order to account for inter-particle adhesion, the JKR model (Johnson et al., 1971) has 

been incorporated into the Hertz model to determine the normal contact stiffness 

(Thornton and Yin, 1991) 

 

3
3

3
2

2 3
3

3
2

3 3
2 ,

3
n

a
a

k E a
a
a



 
 

 


 
 
 
 

 (2.29) 

where 

  
1/3

2
3 ,
4
R Fa
E





 
  
 

 (2.30)  

  
1/3

3
3 ,
4

cR Fa
E





 
  
 

 (2.31) 

and F   is regarded to be the effective normal force 

 22 4 4 .n c n c cF F F F F F      (2.32) 

If the particles are leaving each other, the negative sign is taken in (2.32). cF  is the so 

called ‘pull-off’ force indicating the minimum tensile force required to separate two 

adhesive particles in contact. It is given by 
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*3.0cF R  ,       (2.33) 

where   is the surface energy of each solid particle in contact.  

 

In the presence of tangential interactions, it is assumed that a peeling mechanism takes 

place initially when a tangential force is applied (Thornton, 1991). During this peeling 

process, the radius of the contact area reduces to 

 
4

1/3
2

23 2 4 4
4 4

t
n c n c c

F ERa F F F F F
E G



 

  
      

  
  

. (2.34) 

If the particles are leaving each other, the negative sign is taken in (2.34). The 

corresponding tangential stiffness is given by 

 48tk G a . (2.35) 

The peeling process terminates if the tangential force reaches a critical value of 

  
1/2

24tc n c c
GF F F F
E





 
  

 
. (2.36) 

After the tangential force reaches to its critical value, sliding immediately happens if 

tcF  is greater than the sliding force slcF ,  

 
3/22 ( 0.3 )

3
n

slc n c
F FF F F F

F


 
    

, (2.37) 

  2 ( 0.3 )slc n c n cF F F F F    , (2.38) 

and the tangential force is then reset to slcF . Otherwise, it undergoes a smooth 

transition to sliding. During this transition process, the radius of the contact area is 

given by 
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  
1/3

5
3 2
4 n c

Ra F F
E





 
  
 

, (2.39) 

and the corresponding tangential stiffness is calculated by (2.23)-(2.26) with nF  

replaced by cn FF 2 , and 1a  replaced by 5a .  

 

2.2.3 Critical time step in DEM  

The critical time step used in DEM ,c DEMt  is calculated as (Yang, 2009)  

,
min s

c DEM
Rt

G
 


   ,                     (2.40) 

in which          

 0.8766 0.1631   ,                     (2.41) 

where minR , s ,  , and G  are the minimum particle radius, particle density, particle  

Poisson’s ratio and shear modulus, respectively. In consideration of computational 

stability, the time step used in DEM needs to be smaller than the critical one. 

 

2.3 Lattice Boltzmann method (LBM) and its coupling with DEM 

LBM originated from the late 1980s. It has been regarded as an alternative to the 

conventional macroscopic fluid models, and used for a wide range of applications (see 

Section 3.6). As indicated in Chen (1998), the lattice Boltzmann equation recovers the 

incompressible NS equations to the second order in both space and time, subject to the 

condition of low compressibility error. 
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2.3.1 Algorithm (Chen and Doolen, 1998) 

In LBM, the fluid domain is divided into a square lattice with unity spacing. Fluid is 

assumed as packets of micro-particles residing on each lattice node. The D2Q9 model is 

adopted in this thesis, in which the velocity field is discretised into nine prescribed 

vectors (see Figure 2.2). In a unity time step, fluid particles are allowed either to remain at 

their current locations (which is referred to the zero velocity 0e ), or to travel to their 

adjacent nodes with velocities )8,...1( iie .  

 

 

Figure 2.2: A typical lattice in D2Q9 model 

 

As demonstrated in Figure 2.2, the prescribed velocities in a D2Q9 model are defined as 

 0 (0,0)e , (2.42) 

 (cos{ ( 1) / 2},sin{ ( 1) / 2}) ( 1,2,3,4)i C i i i    e , (2.43)          

 2 (cos{ (2 9) / 4},sin{ (2 9) / 4}) ( 5,6,7,8)i C i i i     e , (2.44) 

where C  refers to the lattice speed, which is defined as the ratio of the unity lattice 

spacing h  to LBM time step LBMt , 

 / LBMC h t   . (2.45) 
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C  is also related to the fluid speed of sound sC  as 

 3 sC C . (2.46) 

 

Rather than describing a fluid flow by density, pressure, and flow rate, the primary 

variables in LBM are the density distribution functions if , along with the prescribed 

velocities ie . The governing equation for the notable lattice Boltzmann BGK model with 

Large Eddy Simulation (LES) turbulence implementation is shown as (Hou et al, 1996) 

1( , ) ( , ) [ ( , ) ( , )] ( 0,...,8)eq
i i LBM LBM i i i

total

f t t t f t f t f t i


      x e x x x ,   (2.47)       

where if  represents the probable quantity of micro-particles at a lattice node moving 

along the i th-direction with velocity ie  at a particular time. eq
if  are a set of distribution 

functions at which the systems are defined as the equilibrium, which is expressed as 

(Chen and Doolen, 1998) 

 29 3[1 3( ) ( ) ]
2 2

eq
i i i if w       e u e u u u , (2.48) 

0
4
9

w  ,    1
9iw    ( 1, 2 , 3, 4 )i  ,   1

36iw    ( 5, 6 , 7 , 8)i  , 

where u and   are the fluid velocity and density, respectively. total  is the total 

relaxation time, which is calculated as (Hou et al, 1996) 

2
2

3

181 [ ]
2

c
total

h S Q
C

  


 
  


,                  (2.49) 

where cS  is the Smagorinsky constant, Q  is related to the second-order moments of the 

non-equilibrium distribution functions, which is calculated as (2.50). And   is a 

dimensionless relaxation time determined by (2.52). 
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,

2 i j i j
i j

Q Q Q  ,             (2.50) 

8

0

( )eq
ij i jQ e e f f   



  ,                     (2.51)               

3 1
2h C





 
 

,                         (2.52) 

where   is the kinematic viscosity of the fluid, and ie  is the ith component of the 

lattice velocity e .   

 

Each LBM time step consists of two steps. Firstly, collision happens among the 

micro-particles travelling to a same node, which leads to the changes in the density 

distribution functions at that node. Thereafter, streaming process is conducted, in which 

the post-collision density distribution functions are streamed to their neighbouring nodes 

along the ith-direction.  

 

The macroscopic fluid variables such as density ρ, velocity u and pressure p can be given 

based on the philosophy of the mass and momentum conservations and the equation of 

state, respectively (Chen and Doolen, 1998): 

                             i
i

f  ,
 

                          (2.53) 

 
i i

i
f u e ,                          (2.54) 

  
2
sp C    .

                   
 (2.55) 
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2.3.2 Boundary conditions 

In LBM, the boundary conditions are applied to the computational domain through 

updating the density distribution functions at the boundary nodes. In this sub-section, the 

fluid-wall and fluid-particle interactions used in this thesis are illustrated, respectively.  

 

No-slip stationary wall 

No-slip stationary wall is a commonly-encountered boundary condition. The most 

popular way in applying it in LBM is the bounce-back rule. It is illustrated by He et al 

(1997) that the bounce-back rule achieves the second order accuracy when the wall is 

located half spacing away from the boundary nodes (Figure 2.3). It is assumed an 

incoming fluid particle will reflect back along its original direction,  

 ( , ) ( , )i LBM if t t f t  x x , (2.56) 

where -i stands for the opposite direction of i.  

 

 

   

 

 

 

Figure 2.3: Bounce-back rule in LBM 

 

f -i

Boundary
nodes

f i

Wall

Internal
nodes
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No-slip moving boundary condition 

In order to deal with the interactions between fluid flows and a moving solid boundary 

in LBM, Noble and Torczynski (1998) proposed Immersed Moving Boundary (IMB) 

condition. In IMB, the solid particles are firstly mapped onto the LBM framework. A 

nodal cell with the size identical to the lattice spacing is set up for each lattice node with 

its centre located at the node, see Figure 2.4. The local solid/fluid ratio   is employed 

to represent the volume fraction of the nodal cell covered by a moving particle. 

 

 

 

 

 

Figure 2.4: A nodal cell in IMB 

 

The modified LBM governing equation with the implementation of IMB is shown as 

(Noble and Torczynski, 1998) 

 1( , ) ( , ) (1 )[ ( , ) ( , )]eq s
i i LBM LBM i i i i

total

f t t t f t f t f t 


        x e x x x , (2.57) 

 ( , ) ( , ) ( , ) ( , )s eq eq
i i i i b if t f t f f      x x v u ,   (2.58) 

where s
i  stands for the non-equilibrium component of the density distribution 

functions being bounced back. The bounce-back effect is considered on all the boundary 

Moving particle
V b

nodal cellVolume covered
by solid particle
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nodes along the directions pointing to the particles. According to the Newton’s third law, 

the total effect of the bounce-back on the particle should be equal and opposite to the 

fluid force applied to the particle. Based on this philosophy, the total fluid force and 

torque acting on the moving particle can be obtained from the following equations 

(Feng et al, 2007): 

 ( )s
f m i i

m i
C h    F e , (2.59) 

 ( ) ( )s
f m c m i i

m i
C h      T x x e , (2.60) 

where m cx x  denotes the vector from a lattice node to the particle centre. And the 

summation is conducted along the particle boundary. The calculated Ff and Tf are then 

used in DEM in (2.3) and (2.4). So far, a complete treatment for the fluid-particle 

interaction has been achieved. 

 

2.4 Darcy fluid flow (DFF) and its coupling with DEM 

DFF model is widely used in geotechnical applications, especially in simulating 

underground seepage flows, for its simplicity and low computational requirement (see 

Section 3.4).  

 

2.4.1 Algorithm 

The mass conservation for fluid flow is shown as  
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                       ( ) 0
t
  
 

 

u
x

,                        (2.61) 

where   is the density of fluid. u  is the velocity vector. For seepage flow, the Mach 

number is usually low and the change of pressure is limited, the flow can be assumed 

incompressible. Therefore, the above equation can be simplified as 

0




u
x

.                          (2.62) 

For a two-dimensional case, (2.62) can be written as 

0yx uu
x y


 

 
,                        (2.63) 

where xu , yu , xu
x




 and yu

y



 are fluid velocities, and velocity gradients in the x and 

y directions, respectively. The flow rate through a soil mass can be determined by the 

Darcy’s law,  

 x xx xy

y yx yy

h
u k k x

hu k k
y

 
     
            

, (2.64) 

where h  is the hydraulic head of the fluid. [k] is the permeability matrix. h
x



 and 

h
y



 are hydraulic gradient in the x and y directions, respectively. The relationship 

between the hydraulic head and the pore fluid pressure p is shown as 

 ph y
g

  , (2.65) 

where y is the elevation of a point above the datum, and g is the gravitational 

acceleration. Combined (2.63)-(2.65), the governing equation used for Darcy fluid flow 

can be obtained as,  
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 ( ( ) ( )) ( ( ) ( )) 0xx xy yx yy
p p p pk k k k

x x y y x y
     

       
     

. (2.66) 

 

2.4.2 DFF coupling with DEM 

The two way coupling between DEM and DFF in undrained simulations (see Section 3.4) 

has facilitated the following philosophies: a) the particle motions are considered to induce 

changes in local permeability, and hence in seepage flows (by (2.66)); and b) the fluid 

exerts the hydrostatic force p
bf  and hydrodynamic force df  on the solid particles. 

 

The hydrostatic force p
bf  is generated due to the presence of pressure gradient. The 

force generated by pressure is taken into consideration, which is calculated as 

 ( )p P
b V  f p , (2.67) 

where PV  is the volume of the particle. p , the gradient of pressure, is calculated 

from central difference approach 

 1, 1,

2
i j i j

x

p p
p

x
 

 


 (2.68) 

and 

 , 1 , 1

2
i j i j

y

p p
p

y
 

 


. (2.69) 

 

The hydrodynamic force includes the drag, lift and virtual mass forces. However, the lift 

and virtual mass force can be negligible compared to the drag force in the Darcy fluid 
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flow (Shafipour, 2008). The drag force can be expressed by a semi-empirical Ergun’s 

Equation (Ergun, 1952), 

       
22 2150 (1 ) / ( ) 1.75 (1 ) ( ) / pd pn nd n d          f u v u v ,       (2.70) 

where n is the porosity of the soil bed;   and  are the pore fluid dynamic viscosity 

and density, respectively; pd  is the average particle diameter in the each cell; v  is 

particle velocity and u  is the average fluid velocities in a cell, which is calculated as 

 i
i

pu k
g


 


. (2.71) 

  

Hence, the total force exerted on a single particle by fluid, denoted as fF , is expressed 

as (Shafipour, 2008) 

1
p pd

f b V
n

 


fF f ,          (2.72) 

which is used in (2.3) for solving the new particle location in the DEM calculation.  
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CHAPTER 3: LITERATURE REVIEW 

3.1 Leakage-soil interaction induced by a pipe leakage 

Leakages are frequently found in underground transportation pipes (Rajani and 

McDonald, 1994; Makar, 2000; and Kunkel et al, 2008). A leak in a pipe may be 

attributed to various factors, such as seasonal changes, the differential settlements 

caused by heavy traffic loads, etc (Cui, 2012). Among literatures, the amount of water 

leaking from a broken pipe has drawn many attentions (Farley, 2001; Puust et al, 2010; 

Noack and Ulanicki, 2006). In addition, a leakage could also lead to local large 

displacement in the surrounding soil, and this would further induce many serious 

accidents relating to both safety and economic issues all around the world (Sӧderlund et 

al, 2007; Steindorff, 2008; and Lynch and Stimpson, 2011). However, due to the 

complicity of the physical behaviour of the phenomenon, to the authors' knowledge, 

there are no literatures published addressing the leakage-soil interaction due to a buried 

leaking pipe. 

 

Laboratory tests were conducted on fine-grained soils subjected to a pipe leakage under 

different pressure settings (Rogers et al, 2008; Royal et al, 2008; and Supraksorn, 2009). 

From the experimental results, three failure mechanisms in the soil are identified: (i) 

permeation of the leaking fluid into soil; (ii) cavity being created within the soil; and (iii) 

the soil being ruptured with the leaking fluid migrated up to the top surface. However, 
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due to the lack of transparency of the 3D experiment, it is difficult to observe what 

happens inside the soil and also to acquire sufficient data for further analysis. In order to 

perform the observation inside the soil bed, a two-dimensional experimental study was 

carried out on a slot-shaped opening under the soil sample (Alsaydalani, 2010). With the 

aid of the Particle Image Velocimetery technique, the behaviour within the sample could 

be monitored and analysed. Some information, such as the vertical distribution of 

excessive pressure, the cavity size, and the particle velocity distribution could be 

obtained through the successful investigations. However, more information is expected 

in order to develop a better understanding of the leakage-soil interaction, such as the 

spatial distribution of excessive pressure, the inter-particle forces, the fluid forces 

applied to particles, etc. Such information can be easily obtained from analytical or 

numerical approach. In addition, the experiment faces the difficulties in reproducing 

identical samples, and the time-consuming nature of a laboratory work. 

 

On the other hand, it has been identified that the behaviour of the leakage-soil 

interactions are influenced by quite a number of factors (Cui, 2012). The discontinuous 

and heterogeneous behaviour of the soil bed, the turbulent nature of the leaking water, 

and the rapid soil geometry change, make such a problem complicated in nature and 

difficult in theoretical analysis. 

 

Compared with the theoretical and experimental approaches, a numerical tool is 
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expected in exploring the leakage-soil interactions, with the advantage of an easy 

acquisition of data as well as a capability of providing repeatable samples under various 

conditions. Therefore, in the following sections, the literature review is mainly 

conducted on the numerical tools for simulating geotechnical problems during the past 

several decades, which includes DEM-CFD, DEM-DFF, DEM-SPH, and DEM-LBM. 

 

3.2 DEM and its application in soil mechanics 

Before the 1970s, most researches in soil mechanics were conducted by the continuum 

approach, which is based on three assumptions: continuity, homogeneity and isotropy 

(Malvern, 1969). However, the real granular materials consist of particulate materials in 

contact and the surrounding voids, which determines the inherently discontinuous, 

heterogeneous and generally anisotropic micromechanical behaviour of soil materials. 

The limitation of such a conventional continuum model led to the development of DEM 

in the study of granular materials (Cundall, 1971). DEM is able to handle discontinuous 

material with a large displacement and mirco-structure rearrangement. It provides the 

complete information of any single particle over time. By statistical approach, the 

macroscopic properties including spatial distributions, stress tensors and strain tensors 

can also be obtained (Cundall and Strack, 1978; Gong, 2008). All these features boost 

the development of DEM, and make more and more researchers realising the 

importance of this discontinues approach in geotechnical applications. It has been 
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shown by Cundall and Hart (1992) that compared with other numerical tools such as 

Finite Element Method (FEM) and Boundary Element Method (BEM), DEM is more 

capable in modelling a discontinuous material. Cundall (2001) suggested that, as the 

improvement of computer hardware/software, the future trend for soil and rock 

modelling may be conducted by DEM rather than continuum computational methods. 

 

As pointed out by Duran (2000), DEM models are normally classified into two 

categories as “soft-sphere” which was the original DEM model, and “hard-sphere” 

which was firstly introduced by Campbell and Brennen (1985). In the “hard-sphere” 

model, no overlap in particles is allowed during collisions. The contacts are assumed to 

happen instantly and the contact forces are calculated based on the energy equilibrium, 

which makes this model quite efficient in the system that is not densely packed (Deen et 

al, 2007). However, for most geotechnical problems, in which the quasi-static state of 

soil involved, the multiple collisions and the complex contact behaviours are difficult to 

handle in this model. In contrast, in the “soft-sphere” model, a small amount of overlap 

is allowed at the contact points. The contact forces are determined based on the overlap 

area in different contact constitutive theories. This model provides ease of treatment to 

multiple collisions and complex contact behaviour, leading to its prevalence in 

geotechnical application (O’Sullivan, 2011). 

 

In the “soft-sphere” model, a virtual spring connects the two contacting particles at the 
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contact points in both the normal and tangential directions. In the original DEM model, 

a linear spring contact constitutive theory was used, indicating that the force and 

displacement relationship of the spring follows the Hooke’s Law (Cundall and Strack, 

1978, 1979). However, due to the change of contact area during collision, it is 

considered that the response of elastic spheres in contact is more accurately described 

by the Hertz contact theory (Johnson, 1985). In 1988, Cundall employed the Hertz 

normal contact theory and a simplified Mindlin tangential contact theory (Mindlin, 1949) 

in DEM. Later, the complete tangential contact theory of Mindlin and Deresiewcz (1953) 

combined with the Hertz normal contact theory was implemented in DEM by Thornton 

and Randall in 1988.  

 

The classical Hertz contact theory neglects adhesion of particles, thereby an important 

improvement was incorporating the JKR adhesive theory (Johnson, 1985) into DEM, 

which is done by Thornton and Yin (1991). In geotechnical applications, such an 

improvement indicates the extension of DEM applications from simulating cohesionless 

soils to capturing the mechanical response of cohesive soils (Delenne et al, 2004; Cui et 

al, 2012). In the JKR theory, the adhesive force between two particles is regarded as a 

‘pull-off’ force indicating the minimum tensile force required to break the contact. Its 

value is closely related to the particle surface energy. Theoretically speaking, this 

parameter is difficult to evaluate because it depends on many variables related to 

physical and chemical properties (Israelachvili, 1991). And in numerical simulations, 
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this parameter is often determined empirically (Zhu, 2007). However, one notable work 

is done by Cui (2012) to explore the relationship between the apparent cohesion of a 

soil and the particle surface energy in geotechnical applications. 

 

In recent decades, irregular-shaped particles are becoming more and more popular in 

DEM simulations, e.g. Lin and Ng (1997) and Han et al (2007b). In their work, 

assemblies of ellipsoids and polygons were employed, respectively, to provide resistance 

to rolling motion and to capture the inherent geometry-dependent asperity behaviour. An 

alternative approach is to use ‘clumps’ of particles, in which particles are bonded 

together at the contact points, e.g. McDowell and Harireche (2002). In this thesis only 

circular particles are adopted for the sake of simplicity and computational economy. 

However, employing irregular-shaped particles in future research can be beneficial, 

which provides a way in investigating the particle interlock behaviour in the 

leakage-soil interaction.  

 

As the interactions between soil and fluid flows are quite common, soil behaviour in 

geotechnical problem does not merely depend on the behaviour of soil phase, but also 

on the fluid movement in the ground. Among these cases, some can be solved with 

certain hypotheses, e.g. Ng and Dobry’s work (1994). In their work, the undrained 

condition was simulated by assuming that, no volume changes occurred in shear test 

before sample failure (i.e. the constant volume assumption). However, in most cases 



31 

with a rapid motion of groundwater, which is also exhibited in the leakage-soil 

interaction, the explicit consideration of pore fluid is necessary. Therefore, in the recent 

decades, DEM has been incorporated with fluid modelling methods so that the 

interactions between the soil and fluid flows can be described. The following sections 

(Sections 2.3-2.7) give a literature review of the widely used techniques coupling DEM 

with different fluid methods. 

 

3.3 Coupled DEM-CFD technique 

DEM was coupled with Computational Fluid Dynamics (CFD) by Tsuji et al (1993) in 

simulations of a two-dimensional fluidised bed. Good agreement with the experimental 

results was achieved in terms of particle motion. The fluid-particle systems consist of 

large-sized fluid cells with small-sized particles submerged in them. For the fluid phase, 

the local averaged Navier–Stokes (NS) equations were solved, which was originated 

from Two Fluid Model (TFM) (Anderson and Jackson, 1967). These equations were 

integrated with the SIMPLE method (Patankar, 1980) in the staggered grid system. By 

solving the NS equations, a local averaged pore fluid pressure and velocity within each 

CFD cell were obtained. Thereafter, the determination of the local averaged fluid force 

applied to the particles is conducted with hydrostatic and hydrodynamic force equations. 

This fluid force was applied to particle phase for DEM computations, as well as to the 

local momentum term in NS equation for representing the influence of particles on the 
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fluid phase. 

 

During the recent two decades, DEM-CFD has been widely accepted in both research 

and industry fields, and useful reviews can be found in Zhu et al (2007) and Yang 

(2009). Among the literatures, some notable publications are working on extending 

applications of this technique: Kawaguchi et al (1998) extended its applications to 

three-dimensional simulations, and Mikami et al (1998) employed this technique in the 

simulations of cohesive particles. For liquid-particle systems, particle-particle collisions 

are influenced by the drainage of the liquid between the colliding particles and the 

acceleration of the liquid surrounding the particles. In order to consider such an influence, 

Zhang et al (1999) modified DEM-CFD by incorporating two forces, i.e. the pressure 

force and virtual mass forces. This model was then successfully used by Li et al (2001) 

for the hydrodynamic description of a gas-liquid-particle flow. In order to improve the 

accuracy and to modify the algorithm of this technique, researches were carried out 

including: Xu and Yu (1997) which modified the gas-particle interaction 

implementation, and Feng and Yu (2004) which evaluated the formulations of the local 

averaged Navier–Stokes equations. Furthermore, Hoomans et al (1996) employed the 

“hard-sphere” model in DEM-CFD in simulating gas–solid two-phase flows in 

gas-fluidised beds. 

 

The fluid force applied to an isolated particle has been well-established, and a summary 
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of the equations can be accessed in Zhu et al (2007). However, for a particulate system, 

even though the local porosity is employed in the fluid force equations, e.g. Di Felice 

(1994), the effect due to the presence of other particles on fluid force calculation cannot 

be fully considered (Zhu et al, 2007). This is attributed to a reduction in the size of fluid 

space, and hence a strong localisation effect of fluid velocity gradient. For the 

applications in which the fluid-particle interactions are crucial, Direct Numerical 

Simulation (DNS), which is a fine resolution of CFD, has been conducted, e.g. Hu 

(1996) and Pan et al (2002). In principle, for any fluid-particle system, DNS coupled 

with DEM is able to determine the behaviours of both particle and fluid with high 

accuracy. However, a large number of particles with fine resolution in the fluid mesh 

would cause a computational barrier in applying this technique to the real-scale 

engineering problems.  

       

3.4 Coupled DEM-DFF technique 

Compared with CFD, Darcy Fluid Flow (DFF) has a much more simple form with less 

parameters and variables, i.e. permeability and pressure function, allowing relatively 

lower computational cost, which makes this technique widely used in geotechnical 

applications. However, as the technique is limited to flows with low Reynolds number 

(Charbeneau, 2006), it is only suitable for describing the seepage behaviour far away 

from the leak.  
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This technique was firstly proposed by Hakuno and Tarumi (1988) to model the 

dynamic behaviour of a fully-saturated soil in undrained condition. In DFF, the pore 

fluid was regarded as an elastic medium without shear resistance. Hence, when the 

particles were moving, excess pore pressures were generated due to the pore volume 

changes. The pressures dissipated according to the Darcy’s law. In their work, it 

assumed that an instant equilibrium state was achieved in the end of every calculation 

cycle. Once the equilibrium pressure gradients were obtained from DFF solver, the 

values were used in calculating the fluid force in DEM. 

 

However, it is recognised that envisaging pore fluid flow as a dynamic process rather 

than an instant equilibrium achieves more realistic solutions (Bonilla, 2004). In his 

work, the effect of pore pressure generation and dissipation were combined together 

with the aid of Hagen-Poiseuille theory. The pore pressure was obtained by integrating 

over a time increment. 

 

In the above DEM-DFF implementations, the pore pressures were determined at the 

pore level, and all individual pores were required to be identified at every calculation 

cycle. It is computationally expensive in the cases where particles move with large 

velocities so that pores are continuously created and lost over time. Alternatively, 

Nakase et al. (1999) simplified the implementation by considering pore pressures at the 

cell level. In their two-dimensional simulations, the computational domain was divided 
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into square cells, the dimensions of which were chosen so that there are about 15 

circular particles whose centres were located inside the cell. Volume change of pores 

generating excess pore pressure was thus calculated from the weighted average 

displacement of particles in the four neighbouring cells. Assumption was made that the 

pressure calculated at the centre of each cell presents the value throughout the whole 

cell. A finite difference scheme was used to solve the equations describing pore pressure 

dissipations. Once pressure dissipated for a time increment, the updated pressure 

gradients were used to calculate the fluid force applied to particles.  

 

A similar coupled technique was also utilised by Shafipour and Soroush (2008). While 

in this work, volume changes of pores in each cell were calculated from the strain tensor 

in cell. Although it may provide better accuracy in comparison with Nakase et al. (1999), 

it involves more complicated calculations as partial differential equations need to be 

solved. Furthermore, in addition to the hydrostatic forces exerted on a particle by pore 

pressure gradient, the drag force is also taken into account.  

 

During the same period, the technique has also been applied to sand production 

phenomenon in the oil wells (O’Connor et al 1997, Preece et al 1999, Jensen and Preece 

2000). Due to the dominate influence of the pressure boundary applied to this problem, 

the excess pore pressure generated by the pore volume change can be neglected, and 

therefore the DFF implementation is largely simplified.  
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For the leakage-soil interaction in this thesis, as hydraulic radius is adopted to provide 

flow channels (see Section 3.4.2), the generation of the excess pore pressure is mainly 

contributed by the flow boundary conditions, rather than the deformation of the pore 

size. For this reason, a simple DFF model, which is based on the Laplace equation, is 

employed.   

 

3.5 Coupled DEM-SPH technique 

Smoothed Particle Hydrodynamics (SPH) was first proposed by Lucy (1977) and 

Gingold and Monaghan (1977) as one of the macroscopic fluid applications of the 

Mesh-free Particle Methods (MPMs), in which the fluid system is described by a finite 

number of discrete particles without the Eulerian grid. This method is based on the 

Lagrangian philosophy, using a single particle representing a part of the fluid with a 

kernel function (Li and Liu, 2007). Similar to DEM, this technique can be easily 

employed in the problems with discontinuity or large displacements, such as 

free-surface or moving boundary problems in fluid simulations. This feature makes SPH 

coupled with DEM a special tool in simulating solid-liquid mixture in some 

geotechnical problems (Li et al., 2007; and Morris and Johnson, 2009).  

 

However, as pointed out by Alejandro (2009), SPH is computationally more expensive 

and provides lower accuracy compared with other grid-based methods. Furthermore, 

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bJohnson%2C+Scott%7d&section1=AU&database=139267&yearselect=yearrange&sort=yr
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due to the Lagrangian description of the fluid particles, the viscosity and turbulence 

models would be difficult to apply. Although some progress has been achieved by 

adding Large Eddy Simulations (LES) into SPH (Rogers and Dalrymple, 2004), the 

implementation is still very complicated. Therefore, in most SPH applications, only 

artificial viscosity is used and laminar flows are modelled (Alejandro, 2009). For 

simulating the flows of the leaking fluid in this thesis, SPH is regarded not suitable 

because the flow near the leak is expected to be turbulent. 

 

3.6 Lattice Boltzmann Method 

The Lattice Boltzmann Method (LBM), which was originated from the Lattice Gas (LG) 

automata (Succi, 2001), was firstly used for studying the shock-wave structures (Inamuro 

and Sturtevant, 1990). LBM regards fluid as packets of micro-particles, of which the 

distribution is controlled by the discretised Boltzmann equation. Rather than solving the 

NS equations as the conventional CFD techniques do, the LBM equation is solved 

explicitly and only local calculations and data streaming are involved during 

computations. Although the LBM equation was derived based on the first order finite 

difference, it was found to be able to recover the second order NS equations (Chen and 

Doolen, 1998).  

 

LBM has been proved to be very efficient in fluid modelling. A comparison was 

http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
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conducted between LBM and CFD on homogeneous isotropic turbulence simulation 

with Reynolds number up to 25,500 (Satofuka and Nishioka, 1999). With the same grid 

size and approximately same accuracy being achieved, LBM required less than half 

CPU time of CFD. Furthermore, as suggested by Kwon and Hosoglu (2008), solid 

boundary conditions can be easily applied to LBM, which makes a detailed description 

of fluid-particle interaction easily achieved. These features attracted interests of many 

researchers in the development and promotion of the method.   

 

Among the literatures, contributions have been made to extend the application of LBM, 

including: incorporating a turbulence model into LBM (e.g. Eggel, 1996); modelling of 

multiphase flow (e.g. Premnath et al, 2005); and simulating the capillary interaction 

between colloidal particles in multi-component interface (e.g. Onishi et al, 2008). Much 

progress has also been made in development of various LBM boundary conditions to fit 

different situations. The bounce-back scheme as the originally fixed wall boundary 

condition was employed in LBM to apply no-slip wall conditions (Lavall´ee et al, 1991). 

Later, He at el (1997) proposed the halfway bounce-back scheme, which doubled the 

accuracy of the original one. The moving boundary condition is achieved by Immersed 

Moving Boundary (IMB) scheme, which was proposed by Noble and Torczynski in 1998. 

For specified velocity and pressure boundary conditions, the Zou-He boundary scheme 

was proposed based on the philosophy of the bounce-back of non-equilibrium 

distribution (Zou and He, 1997).  And on the computational issues, researchers have 
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devoted to improve the numerical stability or efficiency by proposing the multi-time 

relaxation LBM (Lallemand and Luo, 2000); the implicit LBM scheme (Krafczyk, 2001); 

and the locally refined LBM meshes (Filippova and HÄanel, 1998). 

 

3.7 Coupled DEM-LBM technique 

Since firstly introduced by Cook et al (2000) in a two-dimensional particle-laden fluid 

simulation, DEM-LBM has stimulated more and more interest for researchers intending 

to simulate a fluid-particle system with a detailed description rather than a macroscopic 

one at the cell level. The validation and evaluation of DEM-LBM has been given in the 

recent years, indicating this technique is very promising to provide good performance of 

simulations. Owen et al (2011) demonstrated its capability in quantitative descriptions 

of fluid-particle interactions by comparing the results from a sequence of numerical 

tests with the empirical or experimental data. The tests studied the drag coefficients in a 

2D flow through a circular cylinder and a square cylinder, as well as a 3D flow through 

a particle assembly, respectively. The investigations on the velocity field and 

hydrodynamic torque in a 2D cylindrical Couette flow were also conducted. 

Furthermore, Mansouri et al (2009) and Feng et al (2010) carried out three-dimensional 

validations separately against experimental data, and good agreements were obtained by 

both. 
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In the two-dimensional simulations conducted by Cook et al (2000, 2004), the fluid 

flows were limited to low Reynolds numbers. Therefore, Feng et al (2007) and Han et al 

(2007a) incorporated a simple LES model into the coupled technique and provided a way 

to simulate fluid-particle systems with a high Reynolds number. In their work, a sub-cycle 

time scheme was also proposed regarding stability issues. In the same year, irregular 

shaped particles were employed in the DEM-LBM simulations (Han et al, 2007b), 

which implies the interlock between particles could be taken into account. However, for 

the two-dimensional simulations, a physically unrealistic situation appears in the form of 

no connected paths for fluid flow through a densely-packed material. Boutt et al (2007) 

adopted a special treatment by setting up a hydraulic radius for a solid particle when 

considering the fluid-particle interactions. Although this treatment may cause subtle 

difference in the hydrodynamic force calculation, the simulations with this treatment 

could still give satisfied results for a two-dimensional qualitative analysis. In 2010, 

Mansouri et al employed DEM-LBM to calculate the permeability of a cemented 

polydisperse granular material. The simulations of sand production were also performed 

with this technique by Ohtsuki and Matsuoka (2008) and Ghassemi and Pak (2011). 

Furthermore, Leonardi et al (2011) incorporated a power law and a Bingham model into 

the DEM-LBM framework, which extends its applications to the non-Newtonian fluid. 

Moreover, by adopting the JKR model in the DEM contact mechanics in Cui et al 

(2012), the mechanical behaviour of apparent cohesion in soil can be modelled with 

DEM-LBM implemented.   
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Due to the ease of solid boundary treatment and high computational efficiency in 

modelling the physical behaviours at a small scale, DEM-LBM has been regarded as a 

suitable tool to simulate fluid-particle systems with fine meshes. However, for a 

large-scale problem with the local behaviour required to be captured in detail, such as a 

soil bed subjected a local leakage, DEM-LBM would encounter with difficulties as a 

large amount of computational time along with memory space is expected. Hence, it is 

beneficial to parallelise the DEM-LBM computing as well as to combine it with other 

techniques which are more suitable for simulating large-scale problems. For this reason, 

the following two sections present a literature review of the previous works on DEM 

and LBM parallelisation, and combination of LBM with large-scale modelling 

techniques.   

 

3.8 Parallelisation of DEM and LBM 

The initial idea of DEM parallelisation can be found in Ghaboussi et al (1993), in which 

the contact detection was carried out simultaneously by a number of processors. In 1995, 

Schroder carried out regular domain decomposition in a 2D serial code with the 

Message Passing Interface (MPI) as the communication library, and each processor held 

a copy of global arrays. However, no report on the parallel performance has been 

reported. Washington and Meegoda (2003) implemented a paralleled DEM algorithm in 

a cluster with 512 processing nodes. Although the contact calculations were parallelised, 
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the particle data were still stored in all processors. Forces and moments were processed 

globally by the inter-processor communication, which formed the major bottleneck of 

this algorithm. Not only it caused a great amount of communication, but also the 

number of particles modelled was limited. Thus, only a speedup of 8.73 times was 

reported for 512 processor nodes in this work. Later, a great improvement has been 

achieved by Darmana et al (2006). After domain decomposition, the calculations on 

each processor were conducted only for a unique sub-domain and synchronizations 

were only required for the particles at the sub-domain boundaries. In addition, a mirror 

domain approach was applied in order to keep the load balance in a system with 

non-uniform spatial distribution. Using 32 processors, the parallel efficiency was around 

0.6 for a 270,000-particle system. In 2011, Kafui et al adopted a commercial 

parallelisation platform ‘parawise graph partitioner’ to evenly distribute particles 

between processors, and a 27-times speedup was achieved on 32 processors. On a 

shared-memory cluster, Shigeto and Sakai (2011) scaled the simulations by multi-thread 

parallel with OpenMP, a speedup of 5.4 times was achieved on 8 processors. 

 

For LBM parallelisation, the pioneer work was carried out by Satofuka and Nishioka 

(1999) with strip decomposition, in which the fluid domain was divided into vertical 

strips or horizontal strips, and the data in each strip was stored and processed by local 

processor. In their work, a speedup of 14 times was achieved using 16 processors. In 

order to take the good advantage of the data locality in the LBM algorithm, Schepke et 
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al (2009) demonstrated that the blocked partitioning could achieve better performance 

in parallelisation. For the simulation of a fluid flow through a porous medium partly 

occupied over the domain, modifications were proposed by some researchers, such as 

Pan et al (2006), Wang et al (2005), in order to provide a balanced load among 

processors.  

 

As pointed out by Feng et al (2007), due to the explicit and local processes involved in 

both DEM and LBM, DEM-LBM has the nature of parallelisation. However, there have 

been very few literatures reporting the parallel work on the overall DEM-LBM 

computations, in spite of the well-established parallelisation strategies developed for 

DEM and LBM separately. Therefore, the parallel computing of DEM-LBM is proposed 

in this thesis (see Chapter 4), which is beneficial to extend its applications to large-scale 

problems with a local detailed description.  

 

3.9 LBM combined with large-scale modelling techniques 

An alternative way to efficiently model the multi-scale behaviour is to combine LBM 

with other fluid methods which are more suitable for large-scale simulations, such as 

DFF and CFD. The basic idea is to apply different models at different fluid regions, 

with data exchange at the interfaces between neighbouring regions by a prescribed 

exchanging strategy. As such an idea promotes a better computational performance, 
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researchers have devoted to its development, which is presented as follows.  

 

Generally, it is straight forward to convert density distribution functions in LBM to the 

macroscopic fluid variables used in DFF and CFD. However, the reverse process is 

regarded difficult and of key importance in the combination of LBM and other fluid 

methods. An early attempt can be found on combination between LBM and CFD by 

Kwon and Hosoglu (2008) in simulating a wave propagation problem. This combination 

made the simulation of complex geometry involved in fluid-solid interaction 

conveniently described. In their work, only D2Q5 model was used in LBM aiming to 

reduce the number of unknown density distribution functions during data conversion, 

and the unknown distribution functions were simply obtained from the mass 

conservation equation. Another work is conducted for the combination of LBM and 

CFD (Chen et al, 2011). In this work, the density distribution function is reconstructed 

by a more generalised relationship between macroscopic and microscopic variables (Xu 

et al, 2012). As the above work was published in the writing-up stage, the theories and 

implementations have not been included in this thesis. However, further consideration 

of this work would be beneficial in the future. Furthermore, with both the 

non-equilibrium bounce-back theory and the extrapolation theory, the LBM D2Q9 

model was successfully combined with DFF (Li et al, 2010). The details are presented 

as part of innovations in this thesis (see Section 5.3). 
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In addition, all the above combinations were performed on the fluid phase only, whereas 

the presence of a large number of solid particles would trigger necessary treatments in 

the combination strategy, which is illustrated in Section 5.4.     
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CHAPTER 4: IMPLEMENTATIONS OF DEM-LBM AND DEM-DFF 

in FPS-BHAM 

4.1 Introduction 

In FPS-BHAM, only a two-dimensional model has been built up for simulating a 

fluid-particle system so far. However, the DEM calculation is based on three-dimensional 

analysis, with the particle motions are restrained within a single plane. When dealing with 

the fluid-particle interactions, the spherical particles are treated as cylinders with a 

reduced size (see Section 4.3.2).  

 

The implementations regarding DEM-LBM and DEM-DFF in FPS-BHAM are presented 

in this chapter, including the implementations of DEM (see Section 4.2), DEM-LBM (see 

Section 4.3), and DEM-DFF (see Section 4.4), and the modification of gravitational 

acceleration (see Section 4.5). 

 

4.2 DEM implementation 

The DEM implementation in FPS-BHAM can be divided into three parts: the contact 

detection scheme, the contact force calculations and the contact array storage strategy.  

The contact force calculations from a well-established code TRUBAL, which is based on 

the contact theories stated in Thornton (1991), are directly transferred into FPS-BHAM 

for this thesis. The contact detection scheme adopted in this thesis is presented in 
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Section 5.5. In the following section, the contact array is introduced for storing the 

contact information in the DEM calculations. 

 

A contact array is allocated to store the contact data, which is used in the history-based 

contact constitutive theory. Once a contact is detected, the following work is conducted. 

If the contact is a new one, the contact force is calculated directly, and the relevant data 

is stored in the contact array for further usage. However, if the contact is already stored 

in this array, which indicates an old contact, the data in the array is required to be 

extracted for use. After the contact force being calculated, the new data is adopted to 

replace the old one in the contact array. Otherwise, if a contact is dismissed, the memory 

shall be set free for reuse. As the data required to be stored in the contact array is of a 

large amount and the contacts are dynamic, the operations such as contact searching, 

allocating, and destruction would be time consuming. However, there are few literatures 

reporting the storage strategy for contact array, with the consideration of parallelisation. 

Hence, in this section, the array storage strategy used in this thesis is presented. 

 

The structure for storing an individual contact in the array in the memory is shown in 

Figure 4.1, which is similar to the one used in Cundall and Strack (1978). For a ball-ball 

contact, the First Component stores the smaller index of the particle in contact, while 

the Second Component stores the larger one. For a wall-ball contact, the First 

Component stores the index of the wall and the Second Component stores that of the 
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particle. Contact Information stores all data related to the contact force calculations. 

Next Contact stores the address of the next contact in a contact chain, which builds up a 

link connecting another contact in the array.   

 

First
Component

Second
Component Contact Information

Next
Contact

 

Figure 4.1: Structure of a contact array 

 

Once the contact array is allocated, many contact chains are set up in this array. All 

contacts in a single chain share the same First Component. The address of the first 

contact in the chain is denoted as Entrance, while the Next Contact of the end of the 

chain is denoted as -1. By accessing Entrance of each chain, all contacts in the chain 

can be traced. In addition, an Empty Contact Chain is set up to connect all free spaces in 

the contact array (see Figure 4.2). 
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Empty Entrance

-1

-1

 

Figure 4.2: Contact chains in contact array 

 

The contact searching in the array can be easily performed by tracing the chain of which 

the bounded First Component is that of the contact. In order to reduce duplicated 

searching through a single chain, a new chain is set up correspondingly. If the particle is 

found in the original chain, this contact is removed from it and recorded in the new 

chain. In this way, the number of the contacts in the original chain is reduced, and hence 

the contact searching becomes faster. If the particle is not found in the chain, a new 

space is allocated from the Empty Contact Chain to store this contact, and the contact is 

also recorded in the corresponding new chain. At the end of each calculation cycle, all 

the remaining contacts in the original chain shall be dismissed as they actually no longer 

exist. Therefore such a chain is destructed by linking it to the Empty Contact Chain. All 

the existing contacts recorded in the new chain are then used for the next calculation 

cycle.  
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4.3 DEM-LBM Implementation  

4.3.1 Time steps and sub-cycling 

Since the DEM and LBM adopt different time steps, special attention is required to 

maintain an overall stability of the DEM-LBM calculations. The time step used in DEM 

is chosen to be a value smaller than the critical one, which is determined by (2.40). 

 

While in LBM, the speed of sound which is directly related to the lattice speed through 

(2.46) is usually quite high (around 1482m/s in 20°C water) compared with fluid velocity. 

However, employing such a high value in the LBM simulation may lead to an 

unacceptable computational cost in a large-scale modelling. It is recommended by Han 

et al (2007a), if the Mach number (Ma) calculated using (4.1) is much smaller than 1, the 

compressibility error is controlled within a reasonable level. 

maxuMa
C

 ,
                          

(4.1) 

where maxu  is the maximum fluid velocity in a simulation. Once the lattice speed is 

determined, the lattice spacing and time step are uniquely related according to (2.46). In 

general, a simulation with a larger spacing and time step results in a saving in 

computational cost, but compromises in accuracy. Therefore, in this thesis, the lattice 

spacing h  and time step LBMt  are chosen with comprehensive considerations of 

both accuracy and computational cost.  
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As the time step calculated in LBM has been found to be larger than that in DEM, Feng et 

al (2007) proposed the Sub-cycling time scheme to deal with such a difference. The time 

step used in DEM, DEMt , is adopted as follow: 

 LBM
DEM

subcycle

tt
N


  , (4.2) 

where 

 
,

int[ ] 1LBM
subcycle

c DEM

tN
t


 


. (4.3) 

In other words, within a single LBM calculation cycle, Nsubcycle sub-cycles of DEM is 

computed. In addition, the fluid force applied to particles remains constant during each 

LBM cycle.  

 

4.3.2 Hydraulic radius 

In a two-dimensional simulation, fluid channels through a densely packed soil are 

blocked, which is not true in the reality. Boutt et al (2007) proposed a hydraulic radius to 

cope with this problem. For the DEM calculation, the original particle radius is employed 

in the computations. While dealing with the fluid-particle interactions (see IMB scheme 

in Section 2.3.2), a reduced value of the real particle size, i.e. the hydraulic radius, is used. 

In the fluid-particle two-way coupling, a hydraulic radius hR , rather than the actual 

radius of a particle R , is adopted for a cylinder to give an equivalent drag force to a 

sphere, 
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Hence, 
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dh   ,          (4.5)  

where DF  denotes the drag force applied to a particle. rv  is the speed of particle 

relative to fluid. A  is the reference area. dC  is the drag coefficient only related to 

particle Reynolds number, and is taken as 0.44 according to Zhu et al. (2007). Therefore, 

the hydraulic radius is adopted as 

          0.785hR
R
 .               (4.6)  

Hence, fluid channels are generated artificially between particles. 

            

4.3.3 Flow chart of DEM-LBM computations  

Figure 4.3 illustrates the flow chart of DEM-LBM computations. Initially, the time steps 

for both DEM and LBM are determined, and hence a sub-cycling strategy is set up for 

the DEM-LBM simulation. In each LBM calculation cycles, the soil particles are 

mapped onto the LBM framework, and the local solid/fluid ratio (see Section 2.3.2) is 

calculated at each lattice node. Based on the local solid/fluid area ratio, the LBM 

governing equation with IMB and LES (2.57) is solved, and the fluid force and torque 

applied to each particle are obtained from (2.59) and (2.60) as well. The fluid force and 

torque obtained is then regarded to be constant and used in (2.3) and (2.4) during the 
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DEM calculations followed. While in the DEM sub-cycles, contact detection is 

performed firstly to find out the particles/walls that might be in contact. This process is 

shown in Section 5.5. Once the contact has been identified, the contact force 

calculations are conducted. Afterwards, the calculated force and torque are used for 

updating the position and rotation of each particle as shown in (2.7) and (2.8). The 

above procedures are repeated till the end of the simulation.        
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Figure 4.3: Flow chart of DEM-LBM computations 

 

DEM-LBM CYCLE:  Do i = 0, maximum cycle number 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

End Do 
 
 
 
 
 

 
 

DEM CALCULATION:  Do j = 0, Nsubcycle 

 

 

 

 

 

 

 

 

 

 

End Do 
 

BEGIN:  
Setting up initial conditions and values 

Calculating time steps and set up sub-cycling scheme 

FLUID CALCULATION:  
 
 
 

 

 

 

Contact Detection: Finding out elements which might be in contact 

Contact force calculation: 
Updating normal and tangential contact forces 

Calculating contact forces and toques applied to particles 

Updating DEM data: Calculating new positions and rotations of particles  

END 

Mapping particles into LBM framework; calculating local solid/fluid 
ratios   

 Calculating density distribution functions   
Calculating density and velocity of lattice nodes 

 

Calculating fluid forces and torque 
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4.4 DEM-DFF Implementation  

Since the focus is on the combination of DEM-LBM and DEM-DFF, the permeability is 

assumed to be homogeneous and can be simplified as kkk yyxx   and 0 xyyx kk , 

where k is the macroscopic permeability of the soil. According to Section 2.4.2, it 

implies that only a one-way coupling between DEM and DFF is implemented in this 

thesis, as the change in permeability and seepage by particle motions are not taken into 

account. The DFF governing equation can then be written as 

 
2 2

2 2 0p p
x y

 
 

 
. (4.7) 

 

Using the second-order central difference approach, we have  

 0 0 0 0 0 0 0 0 0 0 0 0

2 2
1, 1, , , 1 , 1 ,

2 2 2 2

2 2
0x y x y x y x y x y x yp p p p p p p p

x y x y
        

   
   

, (4.8) 

where 
0 0,x yp , 

0 01,x yp  , 
0 01,x yp  , 

0 0, 1x yp  , 
0 0, 1x yp   are the excessive pressures at Node 

( 0 0,x y ) and its four neighbouring nodes. x  and y  are the node spacing in the x 

and y directions. If yx  ,  

 0 0 0 0 0 0 0 0

0 0

1, 1, , 1 , 1
, 4

x y x y x y x y
x y

p p p p
p      

 .   (4.9) 

 

In DEM-DFF, the value of permeability used in (2.71) is required to be determined prior 

to calculations. The value is required to be consistent with that in LBM. A simple way is 

to carry out a DEM-LBM test on the soil sample under a pressure driven flow. Once the 
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steady state is reached, i.e. the inlet flow rate is equal to the outlet one, and the 

permeability can be calculated according to (2.71), and subsequently be applied to the 

DFF calculations. 

 

4.5 Modification of gravitational acceleration 

As the body force of the fluid is not included in both the LBM and DFF governing 

equations (i.e. (2.57) and (2.66)), the hydrostatic pressure is not taken into account. 

Hence, in the DEM calculations, the buoyancy force is considered by modifying the 

gravitational acceleration as (Feng, 2010) 

* (1 / )sg g   ,                         (4.10) 

where g and *g  are the original and modified gravitational accelerations, respectively. 
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CHAPTER 5: PARALLELISATION WITH DOMAIN 

DECOMPOSITION   

5.1 Introduction 

As stated in Section 1.3, a domain decomposition scheme for DEM-LBM is required to 

be proposed in FPS-BHAM for simulating the leakage-soil interaction. In this research, 

blocked partitioning domain decomposition is employed in order to facilitate parallel 

computing of the combined system. Full detail of the parallelisation strategy is 

explained in this chapter. Section 5.2 shows the domain decomposition scheme used and 

the sub-domain partitioning. The parallelised fluid and DEM calculations are presented 

in Sections 5.3 and 5.4, respectively. Two related computing issues, i.e. the DEM 

contact detection algorithm, and the modification to the fluid force calculation are 

shown in Section 5.5 and Section 5.6, respectively. They are followed by a flow chart of 

the whole parallel computing process in FPS-BHAM, as shown in Section 5.7. The 

performance of proposed domain decomposition scheme is evaluated in Section 7.3 

 

5.2 Domain decomposition 

In domain decomposition, data of each sub-domain is expected to be stored within the 

local memory of corresponding processors. The calculations in each processor can be 

carried out independently without interfering with one another frequently. Hence, the 

time spent on communication among processors is kept at the minimum level. Working 
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load shall be balanced for each processor to avoid idle waiting of processors. 

 

Depending on computing resources, one processor may be occupied by a single 

sub-domain or be shared by several sub-domains. For the former case, the fluid data 

array, the ball data array, and the contact array are set up for each sub-domain to store 

local data, which is illustrated in this chapter. For the latter case, the ball and contact 

arrays can be set up for each processor. In such a case, less data exchange is required, 

which leads to an easier implementation. 

 

Combination of DEM-LBM and DEM-DFF could lead to satisfactory performance in 

terms of accuracy and computational cost, which is an important feature of this research. 

Therefore, the blocked partitioning domain decomposition scheme (Schepke et al, 2009) 

is adopted. It provides an efficient way of applying two different numerical techniques 

in appropriate areas, i.e. applying DEM-LBM to the area with intensive fluid-particle 

interactions while DEM-DFF to the area with low Reynolds number and less fluid 

induced particle movement. Both the fluid and DEM calculations share the same 

decomposition scheme, so that there would be no extra data communication among 

processors when considering fluid-particle interactions.  

 

One fact should be noted beforehand that CPU time required for DEM-LBM and 

DEM-DFF differs widely, which is demonstrated in Section 7.4.2. In order to balance 
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the working load, DEM-LBM and DEM-DFF sub-domains are distributed in the way 

that the number of each type of sub-domains is almost identical in each processor. For 

this research, the number of sub-domains for each technique is fixed while a variable 

number and size of sub-domain can be considered in the future. For instance, as shown 

in Figure 5.1, the domain is divided into 4×4 sub-domains, with 8 DEM-LBM and 8 

DEM-DFF sub-domains. If 4 processors are used, each one shall contain 2 DEM-LBM 

and 2 DEM-DFF sub-domains, respectively. If 3 processors are adopted, it is impossible 

to evenly distribute these sub-domains. In such a case, the optimum distribution shall be 

3 DEM-LBM and 3 DEM-DFF sub-domains in the first two processors.  
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Figure 5.1: Sub-domain allocation 
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5.3 Parallelised fluid calculation 

During a single calculation cycle, the governing equation for the fluid field in each 

sub-domain (i.e., (2.57) in DEM-LBM sub-domains or (2.66) in DEM-DFF 

sub-domains) is solved independently with its corresponding boundary conditions. At 

the interfaces, it is necessary to guarantee the continuity conditions: 

 , _ , _interface sub domain A interface sub domain B   , (5.1) 

 , _ ,interface sub domain A interface sub domain_B u u , (5.2) 

 , _ , _interface sub domain A interface sub domain Bp p  , (5.3) 

where ρ, u, p are the density, velocity, and pressure of the fluid, respectively.  

 

Virtual nodes are set up as the sub-domain boundary nodes, which overlap the 

corresponding inner nodes in a neighbouring sub-domain (see Figure 5.2). Data at 

virtual nodes can be obtained from calculations in the corresponding inner nodes from 

the neighbouring sub-domains, and are used for applying boundary conditions. Between 

sub-domains with a same numerical technique applied, only data exchange by 

assignment operation is necessary (see Figure 5.3). However, for sub-domains with 

different numerical techniques applied, it is not straightforward since different data 

types are used. In Chapter 6, implementations applied to the combination strategy 

between DEM-LBM and DEM-DFF will be presented in detail. 
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Figure 5.2: Virtual nodes  

 

 

 

 

 

 

 

 

 

Figure 5.3: Fluid data exchange 
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If two sub-domains belong to different processors, message passing is required to 

facilitate communication. There are many parallel programming libraries that provide 

message passing option. The Message Passing Interface Standard (MPI) (Blaise, 2012a) 

for distributed memory systems, and OpenMP (Blaise, 2012b) for shared memory 

systems are widely used nowadays. Since FPS-BHAM has been implemented on the 

distributed memory cluster BlueBEAR (Reed, 2007) in the University of Birmingham, 

MPI is adopted for the data communication among processors. 

 

MPI is a message passing library standard based on the consensus of the MPI Forum, 

and the detailed documentation is available at Blaise (2012a). In this thesis only 

point-to-point communication strategy is employed, in which one processor sends data 

to only one destination processor with a single command. The implementation is briefly 

introduced in this section. 

 

The standard point-to-point communication in MPI is a two-way message passing, in 

which both the sender and receiver call MPI routines for data communication. Two 

commonly-used types are blocking communication and non-blocking communication. 

In the blocking communication, neither the sender nor the receiver is continuously 

processing until data communication is completed. However, if two processors are 

sending data to each other at the same time, both processors will wait for the partner to 

receive the data, which would form a deadlock. Although it can be avoided by 
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programming with a special attention, this is still a challenge for the situation where 

multiple communications exist (Blaise, 2012b). 

 

To avoid this case, non-blocking communication is employed in this thesis. By this 

communication type, processors are allowed to send and receive data at the same time. 

The routine for sending a message is MPI_Isend and the one for receiving a message is 

MPI_Irecv (Blaise, 2012b): 

MPI_Isend (buf., count., datatype., dest., tag., comm., request., ierr.) , 

MPI_Irecv (buf., count., datatype., source., tag., comm., request., ierr.) , 

buf. is the address of the first element of data. count. and datatype. are the number and 

data type of all the elements, respectively. dest. and source. are the IDs of the processors 

receiving and sending data, respectively. tag. works as a tag to distinguish among 

various messages. tag. is set as (5.4), so messages can be identified during multiple 

communications. 

. 8* sub domaintag i bl  ,                       (5.4) 

where sub domaini  is the sub-domain index in the destination/source processor and bl  is 

the boundary location, (There are eight boundary locations: left, right, upper, lower, 

upper left, upper right, lower left, lower right, which are denoted by 0 to 7, 

respectively) . comm. represents the group of processors with communication. request. 

is the request to show a successful communication. ierr. indicates the type of error 

happened during communication. For multiple non-blocking communications, MPI_wait 
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(request., status.) is employed for a final check of the completeness of all 

communications.  

 

The type and location of each sub-domain are stored in all processors, therefore all 

processors know the type of data to send and receive as well as the ID of the processor 

to communicate. After fluid calculation in each cycle, the routine MPI_Barrier (comm., 

ierr.) is invoked to synchronise all processors before data communications. Then, 

MPI_Isend is employed to send the data to the corresponding destination processors. At 

the same time, each processor prepares to receive data from the corresponding source 

processors by the command MPI_Irecv.  

 

5.4 Parallelised DEM calculation 

Particles are initially mapped onto different sub-domains according to the location of 

their centres. Each of them is expected to be stored and calculated only in the local 

sub-domain. However, a particle straddling different sub-domains might contact 

particles in the neighbouring sub-domains, and such contacts would have to be 

considered. In order to identify these contacts, overlapping areas with the width identical 

to the maximum particle size are set around each sub-domain. A criterion is set up that a 

particle is considered for a particular sub-domain during DEM calculation if its location 

is either inside this sub-domain or in the overlapping areas of this sub-domain. This is 

http://dict.cn/completeness


65 

because for the particles belong to the neighbouring sub-domains, only those located in 

the overlapping areas of the local sub-domain have the chance to touch the local 

particles.  

 

However, this treatment can lead to duplicated consideration of contact force. For 

instance, there are three particles in contact as shown in Figure 5.4, Particles 1 and 3 are 

located in the overlapping area of Sub-domain B, and Particle 2 is located in the 

overlapping area of Sub-domain A. Contacts exist between particles 1 and 3 (designated 

as C13) as well as particles 1 and 2 (designated as C12). As all the three particles are 

taken into consideration in both sub-domains, the two contacts are detected twice which 

could lead to duplicated consideration of the contact force. In order to avoid this, the 

contact force calculated is only applied to the particles located inside a particular 

sub-domain. In this case, contact force in C12 is applied to Particle 1 in Sub-domain A, 

and to Particle 2 in Sub-domain B. Although C13 can be detected in both sub-domains, 

the calculation of the corresponding contact force will not be considered in sub-domain 

B, as the contact force is only used in Sub-domain A. 
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Figure 5.4: Particles in overlapping areas 

 

In this way, each particle inside a particular sub-domain obtains the correct value of 

contact force. Calculations followed lead to the correct solution to the particle locations. 

Before the data of these particles are ready for the next calculation cycle, some of it 

shall be transferred to replace the values in adjacent sub-domains, including: 

(i) particles moved out of the local sub-domain, or  

(ii) particles located in the overlapping areas of the adjacent sub-domains.  

 

Similar with fluid parallelisation, the data communication among processors is also 

required if the sub-domains involved in data exchanges are in different processors. 

However, the number of particles of which the data needs to be transferred cannot be 

determined by the destination processor in advance. Hence, the data communication is 

conducted in two steps. Firstly, the destination processor is informed of the amount of 

data. Accordingly, a dynamic array can be set up as a temporary place for storing the 



67 

data to be received. Afterwards, the data is transferred and stored in the place prepared. 

Once all communications are finished, the data stored in the temporary places can be 

unpacked for use.   

 

The contact array of a sub-domain with particle immigration needs to be updated as well.  

As stated in Section 4.2, contact array is quite complicated. The addresses of contacts 

and chains of contact array may suffer from great changes when receiving new contact 

data from other sub-domains. A simple implementation can be performed in the 

following way to avoid the changes: a contact is allocated in the contact array when its 

related particles are in the overlapping areas, while the calculation of this contact can be 

omitted. Once either of the particles enters the sub-domain, the contact information 

related to this particle shall be updated in this sub-domain. The updating information is 

sent from the source sub-domain. Based on this principle, all the contacts which are 

required to be updated or sent are checked over sub-domains after data of particles are 

transferred.  

 

5.5 Contact detection with blocked partitioning domain decomposition 

In DEM simulations with a great number of contacts involved, contact detection usually 

consumes a considerable amount of time. Many researchers have developed different 

schemes for contact detection in order to improve the DEM computational efficiency, 
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and a brief literature review can be found in Munjiza (2004). In this section, all particles 

are assumed to be with similar size. In the case where this assumption fails, additional 

memory space is needed and modifications are required, which can also be found in 

Munjiza (2004). 

 

Among various detection schemes, Direct Mapping Scheme (DMS) (Munjiza, 2004), 

which is a linear one, is capable of providing the best CPU efficiency. In this method, the 

domain is divided into boxes. The spacing of a box is equal to the largest particle size, so 

that each particle can be fitted into a single box. Each particle is mapped onto the 

corresponding box according to its centre coordinates. A memory space is required for 

each box to store the ID of the particle occupying the box. Once a particle is mapped, 

contact detection is carried out. As one particle will be in contact with particles in the 

neighbouring boxes, contact searching is only performed in the neighbouring boxes. 

However, in such a scheme, a huge amount of computer memory is required if the 

dimension of computational domain is relatively large compared with particle size, 

which adversely limits its applications. 

 

Another scheme called “No Binary Search” (NBS) was proposed by Munjiza and 

Andrews (1998), in order to reduce the memory cost for DMS. The fundamental 

philosophy is to divide the whole domain into columns, of which the width equals the 

maximum particle size. Particles are mapped onto the columns based on their centre 
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coordinates. Afterwards, contact searching is sequentially performed on each of the two 

neighbouring columns by DMS until the whole domain is checked. Once the checking 

between two related columns is finished, the memory used for a former column can be 

released and used for a new column, so that the memory required for the whole domain 

is reduced to that for only two columns. However, as blocked partitioning domain 

decomposition is used (see Section 5.2), such scheme is not suitable for the work in this 

thesis. This is because a single column is crossing different sub-domains, requiring extra 

data transfer between different processors. Therefore, in this section, a modified contact 

detection scheme with blocked partitioning domain decomposition is proposed.  

 

Since the particles have already been mapped onto sub-domains with the overlapping 

areas in this thesis (see Section 5.4), DMS can be directly executed within each 

sub-domain with its overlapping areas. With a similar idea as NBS, once the checking 

within a sub-domain is finished, the memory used can be released and used for a new 

one. For a LBM fluid sub-domain, the memory cost of each lattice node is at least 10 

times more than the memory required for storing a particle index in a box. Furthermore, 

for the simulations in this thesis, the average size of the box is five times of the size of a 

lattice spacing in one dimension, which leads to the memory used in the process of 

mapping can be neglected compared with that used in LBM ( i.e. less than 1/(52×10) 

=1/250). Thus, this contact detection scheme can be implemented without special 

consideration of memory cost.        
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Figure 5.5: Contact detection 

 

As an example shown in Figure 5.5, Particles 3, 5, and 7 are located in a particular 

sub-domain or in an overlapping area of this sub-domain. Firstly, Particle 3 is mapped 

onto this sub-domain. Contact searching is performed on the neighbouring boxes and no 

contact is detected (see Figure 5.5(a)). While after Particle 5 is introduced into the 

sub-domain, the contact between Particles 3 and 5 is detected (see Figure 5.5(b)). Finally, 

after Particle 7 is mapped, contacts between 3 and 7, and between 5 and 7 can be found 

through detection.  

 

It can therefore be concluded that, the computational cost used in the contact detection 

is linearly related to the number of particles in this scheme. Furthermore, this scheme 

can be directly implemented without much consideration of memory cost.  
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5.6 A particle straddling different sub-domains   

With the proposed combination strategy, calculation of the fluid force applied to a 

particle straddling different sub-domains requires special attention. In DEM-DFF, this 

force is determined by the pressure gradient force and hydrodynamic force on the cell 

level (see Section 2.4.2). While, in DEM-LBM, the fluid force applied to a single 

particle are based on the IMB scheme (see Section 2.3.2), which follows the philosophy 

of momentum conservation between the solid particle and the surrounding microscopic 

fluid particles. The different treatments of fluid force between DFF and LBM may lead 

to a problem which is discussed in Section 6.3.2. In FPS-BHAM, if the particle is 

covering both DEM-DFF and DEM-LBM sub-domains, the fluid force is determined by 

averaging the values calculated from those DEM-DFF sub-domains.  

 

5.7 Flow chart of computations with parallelisation 

Figure 5.6 shows the flow chart of the complete computational strategy with 

consideration of parallelisation. In the beginning, the domain is divided into different 

sub-domains with different numerical techniques applied according to simulation 

arrangement, so that the computational load can be evenly distributed to different 

processors, as shown in Section 5.2. Particles are then mapped onto the corresponding 

sub-domains according to their positions. During each computing cycle, the calculations 

of each sub-domain are performed independently in the corresponding processors. The 
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main structure of the loop in a single computing cycle is followed, which is illustrated 

in Section 4.3.3, but with data exchanges among sub-domains in the following 

situations: a) fluid data exchange at sub-domain interfaces to apply boundary conditions 

for fluid calculation (see Section 5.3); b) modification of the fluid force applied to a 

particle straddling sub-domains with both DEM-LBM and DEM-DFF (see Section 5.6); 

and c) exchange of particle and contact information among sub-domains after each 

DEM sub-cycle (see Section 5.4). Before each data exchange, synchronisation between 

processors is required to guarantee an accurate and successful data transfer.  
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Figure 5.6: Flow chart of computations with parallelisation 

Mapping particles onto different sub-domains 

COMPUTATING CYCLE:  Do i = 0, maximum cycle number 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
                              

 
 
 

 
End Do 

 

END 

BEGIN:  
Dividing the domain into different sub-domains with different techniques; 

Distributing sub-domains into different processors  
 

Fluid data exchange at sub-domain interface 

Applying system boundary (local) 

Fluid calculation (local) 
 

Modifying fluid forces  
 

Mapping particles onto fluid framework (local)  

DEM CALCULATION: Do j = 0, Nsubcycle 

 

 

 

 

 

 

End Do 

 

 

DEM contact detection (local) 

Contact force calculation (local) 
 

Updating new positions of particles (local) 

 
Exchanging information of particles and 

contacts among processors  
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CHAPTER 6: COMBINATION OF DEM-LBM AND DEM-DFF 

6.1 Introduction 

As the blocked partitioning domain decomposition is adopted for parallel computing 

(see Chapter 5), the DEM-LBM and DEM-DFF calculations can be conveniently 

performed independently on separate sub-domains. However, a difficulty is encountered 

during data exchange due to different types of variable used in the DEM-DFF and 

DEM-LBM techniques, as mentioned in Section 5.3. Moreover, different treatments to 

fluid-particle interactions also require special consideration in dealing with sub-domain 

interfaces. Therefore, in this chapter, main focus is on solving the problems mentioned 

above in order to provide an accurate and smooth solution across the sub-domain 

interfaces. The conversion of variable types between DFF and LBM is then explained in 

Section 6.2. Thereafter, issues regarding incorporation of the DEM with the combined 

system are discussed in Section 6.3. The validation of the proposed combination 

strategy in this chapter can be found in Section 7.4.   

 

6.2 Combination of between DFF and LBM  

6.2.1 Introduction 

As the DFF calculations involve macroscopic variables while LBM is implemented using 

microscopic ones, information transfer between the sub-domains of the different 
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numerical techniques applied is not straightforward. Thus, it is necessary to develop an 

efficient two-way conversion scheme between different data types.    

 

The relationship between the density distribution functions and macroscopic variables is 

presented in (2.53)-(2.55). By a direct summation, conversion from density distribution 

functions in LBM to pressure in DFF can be achieved. However, there is no such direct 

way to converse the data inversely, as the number of independent unknowns is greater 

than that of the conservation equations. In order to close the system, extra constraints are 

required. 

 

An example is taken for the case of a node at the left boundary of a LBM sub-domain, 

with a DFF sub-domain adjacent to it on the left, as illustrated in Figure 6.1.  
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Figure 6.1: Interface between LBM and DFF  
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After the streaming step, the density distribution functions 0f , 2f , 3f , 4f , 6f  and 

7f  can be determined while 1f , 5f  and 8f  are unknown. The key issue is to obtain 

the values of 1f , 5f  and 8f  so as to meet the conservation requirements. However, 

based on (2.53)-(2.55), only two equations can be derived, i.e., (6.1) and (6.2). Therefore, 

one more constraint is required, which is discussed in the following sub-sections.  

 5 8 2 4 6 7yf f u f f f f      , (6.1) 

 1 5 8 0 2 3 4 6 7( )f f f f f f f f f         , (6.2) 

where  and yu  are the macroscopic density and velocity in the y direction, 

respectively. 

 

6.2.2 Extrapolation scheme  

In 1996, Chen et al proposed the extrapolation scheme, in which it is assumed that the 

density distribution functions are linearly distributed within the domain.  

 

The illustration is presented for Node E in Figure 6.2, which is based on the same node 

as shown above. Considering the ease of implementation, it is assumed that there is one 

additional layer of nodes (A-D-G) beyond the virtual ones (see Figure 6.2(a)). For each 

calculation cycle before the streaming operation, the distribution functions at the nodes 

on A-D-G can be calculated using a second order extrapolation, based on the values of the 

distribution functions at the nodes on B-E-H and C-F-I, 

 *
1 1 1 1D E E Ff f f f      , (6.3) 
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 *
5 5 5 5A B B Cf f f f      , (6.4) 

 *
8 8 8 8G H H If f f f      , (6.5) 

where *
if  are predetermined values ready to be streamed to Node E in the figure.  

 

After streaming (see Figure 6.2(b)), the distribution functions at the virtual nodes can be 

enforced by the equilibrium distribution functions (2.48) in the collision step, with the 

density and velocity values obtained from DFF sub-domain through (2.55) and (2.71). 
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         (a) Before streaming                               (b) After streaming     

Figure 6.2: Extrapolation scheme 

 

In this way, the distribution functions at Node E can be uniquely determined. However, as 

reported in Section 7.4.2, the extrapolation scheme cannot be applied to the simulations 

with a low relaxation number. In order to overcome this limitation, the non-equilibrium 

bounce-back scheme is investigated in the following sub-section.    
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6.2.3 Non-equilibrium bounce-back scheme  

A non-equilibrium bounce-back scheme for LBM model was proposed by Zou and He 

in 1997. It assumed that the transverse velocity can be neglected at the interface where 

density distribution functions have to be obtained from the specified macroscopic 

variables. This scheme is based on the idea that the non-equilibrium part of the density 

distribution is bounced back only in the direction normal to the interface. Therefore, in 

the previous case, there is 

 1 1 3 3
eq eqf f f f   , (6.6) 

where eq
if  is the equilibrium density distribution function in the ith direction. 

Combining (6.1), (6.2) and (6.6), 1f , 5f  and 8f   can be obtained. 

 

6.3 Incorporation of DEM with the combined system   

6.3.1 Fluid density at the particle-covered nodes 

As IMB is adopted in the LBM framework (see Section 2.3.2), the information of the 

fluid nodes fully covered by particles is not obtained explicitly, for instance, Node A in 

Figure 6.3. However, such information is required at the interface between the DFF and 

LBM sub-domains, as it is required to be transferred across the interface. In this work, 

the problem is solved by determining the fluid density at the particle-covered nodes 

from those at the neighbouring fluid nodes using a smoothing function. 
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LBM DFF

A

 

Figure 6.3: A node fully covered by particle 

 

The smoothing function is an approximating function based on interpolation of a set of 

values in an arbitrary manner, and it is widely used in mesh-free methods, such as 

Smoothed Particle Hydrodynamics (SPH) (Liu and Liu, 2010). The values can be those 

at the neighbouring nodes within a predefined cut-off distance. Many researchers have 

considered the smoothing function construction, and special attention has been paid to 

the pattern of interpolation and definition of the cut-off distance of the influencing area.  

Using the smoothing function, the density at a particle-covered node p  can be 

obtained by 

 
( )i fi

p
i

 




 



, (6.7) 

where fi  is the density at the ith fluid node within the cut-off distance, and i  is its 

corresponding weighting factor. 

 

In this thesis, the bell-shaped function (Lucy, 1977) is employed, and it is expressed as 

 3(1 3 )(1 )i i
i

r r
h h

    , (6.8) 



80 

where ir  is the distance between the particle-covered node and the ith fluid node. h is 

the cut-off distance of the influencing area, which is chosen as the maximum particle 

diameter in simulations. 

 

6.3.2 Fluid force treatment 

In a DEM-LBM sub-domain, the particles are treated as moving solid boundaries, and 

fluid force applied to a single particle is calculated based on momentum conservation at 

the microscopic scale. Accurate results can only be obtained when calculations are 

performed on all the lattice nodes surrounding the particle. While in a DEM-DFF 

sub-domain, the particles are submerged in large fluid cells. The fluid force is obtained 

from (2.70) at the cell scale. Even if part of a particle is outside the sub-domain, the 

force applied to the particle can still be estimated with the aid of extrapolation, which is 

implemented on the fluid pressure and velocity. Therefore, if a particle is located at the 

LBM/DFF interface, as shown in Figure 6.4, the fluid force adopts the value which is 

calculated in the DFF sub-domain. 

 

 

 

 

 

Figure 6.4: Fluid force applied to a particle at the LBM/DFF interface 

Drag Force

DFFLBM
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CHAPTER 7: VERIFICATION AND VALIDATION 

7.1 Introduction 

In this chapter, verification and validation are carried out to evaluate the algorithms and 

implementation presented in Chapters 4-6. Since this research began with the modelling 

leakage-soil interaction using DEM-LBM, this technique is firstly tested in Section 7.2, 

including: a) whether or not DEM-LBM has been correctly implemented in FPS-BHAM; 

and b) the capability of DEM-LBM in modelling the leakage-soil interaction in a pipe 

leakage problem. For the parallel computing strategy proposed in Chapter 5, the 

verification can be easily achieved by comparing the numerical results with and without 

parallelisation. Therefore, in Section 7.3, the main focus is on the assessment of parallel 

performance with the blocked partitioning domain decomposition. Finally, in Section 

7.4, the validation is conducted on the combination strategy between DEM-LBM and 

DEM-DFF. The following objectives shall be accomplished during this section: a) to 

ensure the DEM-DFF technique has been correctly implemented in FPS-BHAM; b) to 

check whether the proposed combined system works properly; and c) to evaluate the 

benefit obtained from the combination strategy.  
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7.2 Verification of DEM-LBM in FPS-BHAM 

The work carried out in this section is used to verify DEM-LBM implementation and to 

evaluate the capability of DEM-LBM in modelling leakage-soil interaction. Since 

DEM-LBM mainly consists of DEM, LBM and the two-way coupling between DEM 

and LBM (i.e. IMB), the work in this section is presented in the following sub-sections:  

1) verification of DEM code, 

2) verification of LBM with IMB code, and 

3) evaluation of DEM-LBM capability in modelling leakage-soil interaction. 

 

7.2.1 Verification of DEM code 

The contact force calculation of the DEM part in FPS-BHAM is extracted from the 

well-developed TRUBAL code which is maintained by Colin Thornton and his team. 

The following comparison studies are carried out to examine if the DEM calculations, 

especially the contact force calculation subroutine, works properly. 

 

One-Ball Drop Test 

As shown in Figure 7.1, a ball with no initial velocity is located 5m above the ground. 

Due to the body force, the ball dropped freely. After touching the ground, the ball 

bounces back. All parameters are listed in Table 7.1. 
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3m

5m

 

Figure 7.1: One-ball drop test 

 

Body force (N)  (1.0, -9.81, 0.0) 

Radius (m)  1.0 

Density (kg/m3)  2700 

Young’s modules (Pa)  6.895×108 

Poisson’s ratio  0.3 

Friction coefficient  0.3 

Global damping  0.01 

Ball-Ball contact damping  0.016 

Wall-Ball contact damping  0.032 

Time step (s)  0.0001 

Table 7.1: Parameters of one-ball drop test  

 

Case 1: A non-adhesive ball is used with the elastic contact theory. The simulation is 

performed on both TRUBAL and FPS-BHAM. Table 7.2 records the particle location at 

1.0s (10,000 DEM calculation cycles), which is a short time after colliding with the wall. 
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The results are compared with those from TRUBAL in Table 7.2 as well. 

 

 TRUBAL FPS-BHAM Relative difference  

X-coordinate 3.478647 3.478688 4×10-5 

Y-coordinate 1.503515 1.502916 5×10-4 

Rotation -4.954123×10-2 -4.924805×10-2 5×10-5 

Table 7.2: Comparison between the results from TRUBAL and FPS-BHAM in Case 1   

 

Case 2: An adhesive particle is adopted to collide with the wall. The same set of DEM 

parameters is used except the particle surface energy value given as 5.0J/m2. Table 7.3 

shows the comparison between the results from different codes. 

 

 TRUBAL FPS-BHAM Relative difference  

X-coordinate 3.478651 3.478722 7×10-5 

Y-coordinate 1.499619 1.498504 1×10-3 

Rotation -4.953366×10-2 -4.916298×10-2 6×10-5 

Table 7.3: Comparison between the results from TRUBAL and FPS-BHAM in Case 2 

 

Two-Ball Contact Test 

As shown in Figure 7.2, both Ball A and Ball B are with no initial velocity. Ball A is 

located at 5m above the ground, while Ball B is rest on the ground. In the beginning of 
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the test, Ball A started to drop freely under gravity. All parameters are listed in Table 7.4. 

The simulation is performed on both TRUBAL and FPS-BHAM. Table 7.5 shows the 

comparison of ball positions and rotations after 10,000 cycles. 

 

3m

5m
0.5m

A

B

 

Figure 7.2: Two-ball contact test 

 

Parameters  Ball A Ball B Wall 

Body force (N)  (0.0, -9.81, 0.0) 

Radius (m)  1.0 1.5 - 

Density (kg/m3)  2700 5000 - 

Young’s modules (Pa)  6.895×108 8.895×108 10.895×108 

Poisson’s ratio  0.30 0.31 0.32 

Friction coefficient  0.3 0.4 0.5 

Surface energy (J/m2)   5.0 

Global damping  0.01 

Ball-Ball contact damping  0.016 

Wall-Ball contact damping  0.032 

Time step (s)  0.0001 

Table 7.4: Parameters of two-ball contact test  
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  TRUBAL FPS-BHAM Relative difference  

 

Ball A 

X-coordinate 2.377825 2.378652 8×10-4 

Y-coordinate 3.707772 3.699688 8×10-3 

Rotation 0.5343704 0.532251 3×10-4 

 

Ball B 

X-coordinate 3.560187 3.563979 4×10-3 

Y-coordinate 1.476991 1.476910 8×10-5 

Rotation -3.6935519×10-2 -3.489850×10-2 3×10-4 

Table 7.5: Comparison between the results from TRUBAL and FPS-BHAM in two-ball 

contact test 

 

Since the contact force subroutine used in TRUBAL is treated as a black box, and be 

transferred as a whole, the difference in the contact force calculation may be due to 

reasons other than the coding within the contact force subroutine and there are a number 

of possibilities which may cause the difference in the above tests: 

 

(i) Truncation error: In TRUBAL, the single precision ‘real type’ variables are used 

during calculations. However, in FPS-BHAM, the ‘double precise type’ variables are 

adopted. 

 

(ii) Procedural difference: In TRUBAL, the contact forces are calculated at the end of 

each DEM cycle, after the particle positions being updated. While in FPS-BHAM, the 
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contact forces are firstly calculated, and then followed by updating the particle positions. 

Hence, there will be almost a cycle difference between the two codes, which induces 

subtle difference in the simulation results.  

 

Although differences exist, from Tables 7.2, 7.3, and 7.5, the differences are still 

considered to be sufficiently small compared with the dimensions of simulation. It 

indicates that the DEM part works properly with the contact force calculation 

successfully transferred from the original TRUBAL code.  

 

7.2.2 Verification of LBM with IMB code 

In Cook et al (2004), the Couette flows are simulated using LBM with IMB. By 

comparing with the analytical solution, LBM with IMB was proved to be capable of 

describing fluid behaviour with moving boundaries with acceptable accuracy. In their 

tests, a laminar flow of a viscous fluid is in a channel between two parallel walls. When 

one wall is moving relative to the other, the flow is driven by the viscous drag force 

applied to the fluid. In this section, similar tests, including a plane Couette flow and a 

cylindrical Couette flow are modelled and the results are compared with analytical 

solutions, respectively.  

 

Plane Couette Flow 

In a plane Couette flow, two plane walls are located at the top and bottom boundaries of 

http://en.wikipedia.org/wiki/Laminar_flow
http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Fluid
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a rectangular domain. Hence, the local solid/fluid ratio (see Section 2.3.2) is 0.5 for all 

nodes at the interface between fluid and walls. Since the analytical solution is derived 

based on the assumption of a large aspect ratio, the size of the computational domain is 

chosen to be 0.3m × 0.05m. The fluid density 31000kg/m  , and the kinematic 

viscosity 6 210 m /s  . The lattice spacing is 1mm, and the time step 41 10 sLBMt     

which gives the corresponding lattice speed 10m/sC  . Periodic boundary conditions 

are applied to the left and right sides. Initially, the fluid is at the equilibrium state and 

the top wall is moving rightwards with a constant velocity 0 1m/su  . The analytical 

solution at the steady state satisfies  

 0
yu u
d

  , (7.1) 

where u is the fluid velocity, d is the distance between the two walls, and y is the 

distance between a particular node to the stationary wall at the bottom.  

 

The global difference is defined as (Cook et al, 2004) 

 
2 2

2 2

( ' ) ( ' )

( )
x x y y

v

x y

u u u u
E

u u

  







, (7.2) 

where ux and uy are the velocity components of the analytical solution in the x and y 

directions, 'xu  and 'yu  are the values given from the numerical tests. The summation 

is performed over the entire lattice. At the steady state, the global difference is 1.6% and 

the velocity distribution from the numerical result is shown in Figure 7.3.  
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Figure 7.3: Velocity distribution from numerical result on a plane Couette flow 

 

Cylindrical Couette Flow 

A cylindrical Couette flow is also simulated for the following reasons: a) In this flow 

model, the local solid/fluid ratio varies among nodes, thereby the calculations of the 

local solid/fluid ratio can be verified; and b) not only the velocity field, the torque 

applied to the walls can also be obtained from the analytical solution, indicating the 

fluid force applied to a moving boundary can be verified as well. In this test, two 

concentric cylindrical walls with radius of 60mm and 40mm, respectively, are located in 

the centre of a computational domain. The domain contains 160×160 lattices with 

spacing equal to 1mm. The cylindrical walls are rotating with different angular 

velocities, i.e. 0.0001 rad/s at the outer one and 0.0002 rad/s at the inner one. All other 

parameters are identical to those in the previous test. For the velocity field between the 

two walls at the steady state, the analytical solution is given by (7.3)-(7.5), and the 

torque applied to the walls can be obtained by (7.6). 

 ( ) Bu r Ar
r

  , (7.3) 

 
2 2

2 2 1 1
2 2

2 1

r rA
r r

 



, (7.4) 

 
2 2

1 2 1 1
2 2

2 1

( )r rB
r r

 



, (7.5) 
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2 2

1 2 2 1
2 2

2 1

4 ( )r rT
r r

  



, (7.6) 

where 1r , 2r , 1  and 2  are radii and angular velocities of the inner and outer 

cylinders, respectively. r  is the distance between a particular node and the centre of 

the cylinders.   and   are the density and kinematic viscosity of the fluid, 

respectively.  

 

At the steady state, the global velocity difference is found to be 1.1% and the relative 

difference of the torque is calculated as 1.5% . The velocity distribution from the 

numerical result is shown in Figure 7.4. 

 

 

Figure 7.4: Velocity distribution from numerical result on a cylindrical Couette flow 

 

From the Couette flow tests, the simulation results show good agreement with the 

analytical solutions, indicating LBM with IMB has been successfully implemented in 

FPS-BHAM.  
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7.2.3 Evaluation of DEM-LBM capability in modelling leakage-soil interaction 

An internal fluidisation is found to be the mechanism underlying the leakage-soil 

interaction (Alsaydalani, 2010). Therefore, an internal fluidisation model, which is 

based on the experiment conducted by Alsaydalani (2010), is set up to evaluate the 

DEM-LBM capability in modelling leakage-soil interaction, by comparing the 

simulation results with the experimental findings. 

 

Comparison between numerical results and experimental findings 

An experiment was performed at the University of Southampton to investigate the 

internal fluidisation in a sand bed (Alsaydalani, 2010). A two-dimensional experimental 

study (Alsaydalani, 2010) was conducted on a sand bed contained in a tank. It was 

connected to an inlet water pipe through a slot-shaped orifice. The dimensions of the tank 

is 600mm × 420mm × 146.6mm, as shown in Figure 7.5. During the test process, a sand 

bed with 300mm in height was fully submerged under water. The size of sand particles 

ranged from 0.6mm to 1.2mm with Beta accumulative distribution function. A slot 

opening along the width direction was chiselled in the middle bottom of the tank, 

through which a fluid was injected into the sand bed, and activated a two-dimensional 

soil fluidisation. With progressively increased flow rate, internal fluidisation was 

identified. Observations in the soil bed were made with the aid of Particle Image 

Velocimetery (PIV) which was a widely-used image analysis technique. Pore pressures 

were also monitored using standpipes attached to the centre line of the tank.  
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Figure 7.5: Sketch of the experimental setup (Alsaydalani, 2010) 

 

In order to produce comparable numerical results, a two-dimensional numerical model is 

set up using DEM-LBM technique, which has the same dimensions with those in the 

experiment. Non-adhesive circular particles are adopted to reproduce the sand bed. The 

bed is packed by dropping particles freely and settling them down for a sufficient period. 

The resulting dimensions are of 600mm in length and 290mm on average in height. As 

shown in Figure 7.6, the particles are coloured in layers so that the deformation in the bed 

due to the injected fluid can be clearly identified. The whole computational domain is 

divided into a 600×400 lattice grid, and hence the bed is fully submerged. An orifice with 

a width of 3mm is located in the middle of the base, connected with an inlet pipe which 

spans half length of the bed, so as to obtain a locally injected fluid. Wall boundary 

conditions are applied to the left and right boundaries of the sand bed in both DEM and 
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LBM calculations. At the top boundary of the computational domain, constant zero 

pressure is applied. During each test, a constant flow rate is applied as a controlled 

condition, which ranges from 0.25 l/s to 6.0 l/s among tests.  

 

In consideration of the computational cost, the particle sizes are set to be 3.25mm, 

3.50mm, 3.75mm, 4.00mm, 4.25mm, 4.50mm, 4.75mm, 5.00mm, 5.25mm, 5.50mm, 

5.75mm, and 6.00mm, of which the numbers are 198, 547, 826, 1035, 1174, 1244, 1244, 

1174, 1035, 826, 547, and 198, respectively. It can be noted that the particles are larger 

than those in a real sand.  

 

Although the particle size, the orifice width, and the flow rate are not directly comparable 

to the experimental model used by Alsaydalani (2010), it is recognised that a consistent 

mechanism underlying the onset of fluidisation is still achievable. In an effort to 

demonstrate the validity of the numerical model, the computational output is compared 

with experimental findings, then followed by a comparison with the analytical solution. 

The parameters used in the numerical tests are shown in Table 7.6. 
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Figure 7.6: Numerical setup 

 

Fluid kinematic viscosity sm /101 26  

Lattice spacing 31.0 10h m    

Time step in LBM stLBM
4100.1   

Fluid density 3 31 10 kg/m    

Lattice speed smC /10  

Particle density 32700 /s kg m   

Time step in DEM 
52.5 10DEMt s    

Friction coefficient 0.3 

Young’s modulus 69 MPa 

Poisson’s ratio 0.3 

Table 7.6: Parameters used in numerical simulations 
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From the numerical results, it has been found out that the pore fluid pressure is 

accumulated as the flow rate is increasing before fluidisation (see Figure 7.7(a)). Once 

fluidisation is activated, which is observed as the formation of a small internal cavity, 

the excess pressures inside the cavity undergo a reduction. If the flow rate is further 

increased, the pressures then tend to level off. This finding agrees well with the 

experimental data as shown in Figure 7.7(b).       

 

Figure 7.8 shows the excess pressure distribution along the bed height right above the 

opening. The reduction in the excess pressure near the opening with the increase in the 

flow rate indicates the activation of fluidisation. At the onset of fluidisation, the actual 

excess pressure gradient is much greater than unity, which is the critical hydraulic 

gradient derived for seepage flows, as shown in Figure 7.8(a). This is due to the 

localisation of injected fluid involved in this problem. Good qualitative agreement with 

the experiment data is also achieved, as shown in Figure 7.8(b).     

 

As suggested by Alsaydalani (2010), the soil mass above the fluidised zone was uplifted 

in a form of an inverted tapered block, and the particles outside it remained stable (see 

Figure 7.9(a)). The inclination angle of the wedge in the experiment was measured from 

63.2  to 64.8 , which was stated to be dependent on neither the opening size or the 

bed height. This uplifting phenomenon can also be observed from the numerical tests, in 

which the inclination angle is around 63 . 
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Figure 7.7: Excess pore pressures in bed with various flow rates 

 (a) numerical results; and (b) experimental results (Alsaydalani, 2010) 
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Figure 7.8: Vertical distribution of excess pore pressures in bed  

(a) numerical results; and (b) experimental results (Alsaydalani, 2010) 
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(b) 

Figure 7.9: Inverted tapered block and wedge angle  

(a) experimental result (Alsaydalani, 2010); and (b) numerical result 
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The above comparisons indicate that a good qualitative description can be achieved 

using the DEM-LBM technique in simulating the leakage-soil interactions. In order to 

validate the capability of DEM-LBM in providing quantitative analysis in this problem, 

a validation against the analytical solution is conducted as shown in the following 

section.      

 

Validation of the numerical results against analytical solution 

At the onset of fluidisation, force equilibrium is achieved in the uplifted soil mass 

between the seepage force and the effective weight of the soil mass (Alsaydalani, 2010). 

Based on this force balance, the fluidising pressure can be derived as (see Cui, 2012) 

0
0

2ln( )( cot )

2f

H L H W
Lp



 

 

 


,                   (7.7) 

where 0, ,H L   are the bed height, the opening size, and the wedge angle, 

respectively. W  is the effective volumetric weight of the soil. 

 

A set of tests are conducted using the numerical model on the soil bed with different 

heights. The validation of the numerically measured fluidising pressure against the 

predicted values is shown in Figure 7.10. It can be seen that the results match well the 

analytical solution. 
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Figure 7.10: Numerically measured and predicted fluidising pressures 

 

In summary, the DEM-LBM technique is a promising tool in simulating the leakage-soil 

interactions as it is capable of providing both qualitative description and quantitative 

analysis of the overall behaviours. 

 

7.3 Assessment of parallelisation strategy of DEM-LBM 

As mentioned in Section 7.1, the main focus in this section is on the assessment of the 

parallel performance with the blocked partitioning domain decomposition proposed in 

Chapter 4. The parallel performance is assessed using the parallel efficiency, which is 

defined as (Kumar et al, 1994) 

1 seq

p

T
E

N T
 ,                          (7.8) 

where seqT is the runtime of the best sequential algorithm. pN  is the runtime of the 
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parallel algorithm. P is the number of processors used. seqT  could be influenced by the 

number of sub-domains adopted. Hence, such an influence is explored prior to the 

parallel performance assessment.  

 

A similar leakage-soil interaction model to that presented in Section 7.2.3 is set up with 

119,000 particles located in the LBM framework. The domain size is divided into a 

2400×2400 lattice grid. All other parameters are the same as those used in Section 7.2.3. 

Various numbers of sub-domains are sequentially adopted, with same numbers in each 

dimension (e.g. 2×2, 3×3, 4×4, etc). All the computations are firstly carried out on a 

single processor. 

 

Among the tests, identical results are found to be obtained, including both the particle 

movements and the flow field. The CPU time consumed is plotted versus the number of 

sub-domains in each dimension, as shown in Figure 7.11 below. As more sub-domains 

are used, more duplicated DEM calculations are performed in the overlapping areas, 

which leads to more CPU time consumed in the DEM calculation. For LBM, more virtual 

nodes are also needed and calculated with more sub-domains adopted, thus more CPU 

time is expected as well. However, it is worth noting, from the test results, that the CPU 

time of LBM keeps reducing when the number of sub-domains is increasing until it 

reaches 32×32. Such a phenomenon is mainly attributed to a sharp reduction of CPU time 

in the streaming process of LBM. As it is also observed and studied by Satofuka and 
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Nishioka (1999), the reason was proved to be the ‘pseudo-vector processing capacity’, 

indicating that the reduction of the array inner loop size causes a save in runtime in the 

array operation for an equal amount of data. This feature boosts the parallel performance 

of LBM in the domain decomposition scheme.   

 

Figure 7.11: CPU time verses number of sub-domains in each dimension 

 

The minimal computation time used in a single processor, which is 52,364 seconds, is 

obtained using 32×32 sub-domains. This time is therefore used as a benchmark, seqT , in 

the analysis of the parallel performance of DEM-LBM code.  

 

With the same numerical model, simulations are then carried out with parallel 

computing. The parallel efficiency is plotted versus the number of processors, as shown 

in Figure 7.12. It is seen that with 32 processors, the efficiency of DEM-LBM is 0.72. It 
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is considered as a good parallel behaviour of DEM-LBM with the blocked partitioning 

domain decomposition proposed in this thesis. It is also noted that the LBM parallel 

efficiency is higher than that of DEM, indicating the overall performance is dependent 

on the ratio of computing load of LBM to DEM. Therefore, in the cases where the DEM 

sub-cycle number is relatively low or the porosity of the medium being modelled is 

relatively high, the computing load ratio of LBM to DEM tends to be relatively large, 

and a relatively high parallel efficiency can be achieved. 

 

 

Figure 7.12: Parallel efficiency verses number of processors 

 

7.4 Validation of the combination strategy between DEM-LBM and DEM-DFF 

In this section, the validation of the combination strategy between DEM-LBM and 

DEM-DFF (see Chapter 5) is conducted. Prior to the validation of the combination 
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strategy, the verification of pure DEM-DFF computation is carried out in Section 7.4.1. 

The validation of the combination strategy is performed in two steps: a) the validation 

of the combination of LBM and DFF, which is shown in Section 7.4.2; and b) the 

validation of the combination strategy with the presence of particles is presented in 

Section 7.4.3.  

 

7.4.1 Verification of DEM-DFF computation  

A numerical test on a one-dimensional pressure-driven flow through a porous medium 

is performed to verify the computation of DEM-DFF. The porous medium has the size 

of 0.16m×0.15m, as shown in Figure 7.13. It consists of 1,574 circular particles with 

diameter of 4mm. The domain is divided into 16×15 DFF cells, with around 6 particles 

in each cell. The periodic condition is adopted at the left and right boundaries. At the 

bottom and top boundaries, pressure inlet and outlet boundary conditions are applied, 

with the pressure gradient across the porous medium calculated as 

/ 22753Pa/mP y   . Stationary DEM walls are applied to all the boundaries in order 

to prevent the particles from moving out of the domain. After the steady state is reached, 

the pressure distribution contour is plotted in Figure 7.14. The global pressure 

difference is computed as 89 10  using (7.9), which indicates the result agrees well 

with the analytical solution. 
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,                        (7.9) 

Where 'p  and p is the pressure from numerical test and analytical solution, 
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respectively. p is calculated as 

H yp p
H


  ,                        (7.10) 

where H  is the height of the porous medium, and y is the distance to the bottom 

boundary. 

 

 

Figure 7.13: A DEM-DFF model of a one-dimensional pressure-driven flow through a 

porous medium 
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Figure 7.14: DEM-DFF result: pressure distribution contour in a one-dimensional 

pressure-driven flow through a porous medium 

 

In order to verify the calculation of the fluid force applied to the particles, a comparative 

DEM-LBM test is carried out. The lattice spacing in DEM-LBM is chosen to be 0.001m. 

The time step used is 51.67 10 s . The lattice speed C is 60m/s and the relaxation time 

0.50005  .  Different sets of pressure gradient in DFF and density gradient in LBM 

are employed, respectively, and the conversion relationship is shown as 

2
s

p C
y y

 


 
.                          (7.11) 

 

Since it is a one-dimensional flow, the fluid force generated in the x direction is 

considered as negligible. After the steady state is reached, the total fluid force in the y 

direction applied to all particles is plotted against the pressure gradient in Figure 7.15. It 
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is firstly noted that the fluid force is approximately proportional to the pressure gradient. 

This indicates the hydrostatic force p
bf , which is linearly related to fluid velocity, is of 

key importance in this case. It can also be seen that the fluid force calculated in 

DEM-LBM is slightly less than that calculated in DEM-DFF, and the relative difference 

ranges from 4.19%~5.32%. This is mainly because the fluid force equation in 

DEM-DFF (5.14) cannot accurately describe the effect caused by the presence of other 

particles, even though the porosity of the soil bed is considered (Zhu et al, 2007). While 

such an effect can be taken into account when calculating the fluid force in DEM-LBM, 

therefore, the value calculated in DEM-DFF is a bit higher than that calculated in 

DEM-LBM.  

 

 

Figure 7.15: Pressure gradient verses fluid force 
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From the test results presented in this sub-section, it can be concluded that computation 

of DEM-DFF is capable of providing descriptions to both the fluid field and the fluid 

force applied to particles with acceptable differences.  

 

7.4.2 Validation of the combination strategy between DFF and LBM 

Numerical tests demonstrated in this sub-section aim to validate the combination 

strategy between DFF and LBM, which is proposed in Section 5.3. Both one- and 

two-dimensional pressure-driven flows are simulated, and the test setup and results 

obtained are presented as below, respectively.  

 

One-dimensional pressure-driven test 

A fluid domain is divided into 3×3 sub-domains with each of them contains a 10×10 

grid. Three fluid models are employed by: i) pure LBM, ii) the combined system with 

LBM in the middle sub-domain, and iii) pure DFF. The lattice speed C is 10m/s and the 

kinematic viscosity is 3 21 10 m / s   . The relaxation time is calculated as 0.8  . 

The time step used in DFF is identical to that in LBM, which is 1×10-4s. Periodic 

boundary condition is applied to the left and right boundaries. At the bottom and top 

boundaries, pressure inlet and outlet boundary conditions are applied with pressure 

gradient / 333Pa/mP y    across the domain, which is sufficiently low to maintain a 

small Mach number during the test (i.e. within 10-3). Both the extrapolation scheme (see 

Section 5.3.2) and the non-equilibrium bounce-back scheme (see Section 5.3.3) are 
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employed and the pressure distribution contour at the steady state is shown in Figure 

7.16. The global difference of all tests is within 61 10 , which indicate that both the 

extrapolation scheme and the non-equilibrium bounce-back scheme show a good 

performance in data transfer between DFF and LBM in this case. The ratio of 

computing time on a single processor is found to be 126:22:9 (for LBM only: the 

combined system: DFF only) and the memory cost ratio is 117:21:9, which suggests 

applying combination strategy makes the computation much more economical. 

 

 

(a) 

 

(b) 
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(c)  

 

(d) 

Figure 7.16: One-dimensional pressure-driven flow: pressure distribution contour at the 

steady state by (a) LBM only; (b) combined system with extrapolation scheme; (c) 

combined system with non-equilibrium bounce-back scheme; and (d) DFF only 

 

If the kinematic viscosity is adopted as 6 21 10 m / s   , which is the value for water 

at room temperature. The relaxation time reduces to 0.5003  . In this case, the 

non-equilibrium bounce-back scheme generates an acceptably accurate pressure contour 



111 

at the steady state with the global difference within 61 10 . However, the extrapolation 

scheme fails to give a stable solution during the test. This failure is due to its 

assumption that a linear relationship exist for the density distribution function, which 

has been validated in the cases with a relatively high relaxation time (≥ 0.7) only (Chen 

et al, 1996). Therefore, in this thesis, the non-equilibrium bounce-back scheme is 

adopted as water is simulated. 

 

Two-dimensional pressure-driven test 

In order to validate the two-dimensional performance of the combined system, a 

two-dimensional pressure-driven test is carried out by i) pure DFF, and ii) the combined 

system with LBM in the middle sub-domain. Zero excess pressure is applied to the 

top-right corner node and kept fixed during the test. And the left and bottom boundaries 

are defined to have a fixed higher pressure. The pressure difference between the 

top-right corner to the left/bottom boundary is 100PaP  . At the top and right 

boundaries, the pressure gradient is held constant to be zero across the boundaries. All 

other parameters in both DFF and LBM are identical to that in the previous case with 

0.5003  . The pressure distribution contour at the steady state is shown in Figure 

7.17.  
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               (a)                                   (b) 

Figure 7.17: Two-dimensional pressure-driven flow: pressure distribution contour at 

the steady state by (a) pure DFF; and (b) combined system 

 

The pressure distribution along the line from the top-right corner to the left-bottom 

corner is shown in Figure 7.18. After 0.005s, some difference in the pressure 

distribution appears in the middle sub-domain. Such a difference is due to the different 

forms of the governing equations. In LBM which is based on the hyperbolic Partial 

Differential Equation (PDE), convective behaviour is modelled. While in DFF which is 

based on the parabolic PDE, only diffusion behaviour is modelled. This difference is 

further explored in Chapter 8. As time goes, such the difference gradually extends to the 

whole computational domain. In spite of this, after a short period (at around 0.5s), the 

difference disappears as the steady state is reached and the two curves nearly overlap. 

The global difference at the steady state calculated over the whole domain is 61.3 10 , 

which indicates a good agreement with each other. 
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Figure 7.18: Pressure distribution along top-right corner to left-bottom corner 

 

In this sub-section, both one- and two-dimensional pressure-driven flows are simulated 

in the combined system. Numerical results demonstrate the non-equilibrium 

bounce-back scheme provides successful combination of DFF and LBM. However, the 

extrapolation scheme achieves good performance only with a relatively large relaxation 

time. Therefore, in this thesis, only the non-equilibrium bounce-back scheme is 

employed for the interface treatment.  

 

7.4.3 Validation of the combined system with the presence of particles 

Further work is conducted to validate the combination strategy with the presence of 

particles. In order to carry out the comparison, a pipe leakage test with the DEM-LBM 

technique in Cui (2012) is reproduced in the combined system.  



114 

A two-dimensional numerical model is set up with its configuration shown in Figure 

7.19. The size of the domain is 600mm×400mm. A fully submerged bed consisting of 

non-adhesive circular particles is adopted to produce a sand bed. By dropping particles 

freely and settling them down for a sufficient period, a sand bed with 600mm in length 

and 290mm on average in height is formed. The particle sizes are set to be 3.25mm, 

3.50mm, 3.75mm, 4.00mm, 4.25mm, 4.50mm, 4.75mm, 5.00mm, 5.25mm, 5.50mm, 

5.75mm, and 6.00mm, of which the numbers are 198, 548, 828, 1040, 1179, 1256, 1256, 

1179, 1040, 828, 548, and 198, respectively. In the figure, the particles are coloured in 

layers so that the deformation in the bed due to the injected fluid can be clearly identified. 

Wall boundary conditions are applied to the left and right boundaries of the sand bed in 

both DEM and LBM calculations. At the top boundary of the computational domain, 

constant zero pressure is applied. A pipe with 30mm diameter is placed at the bottom of 

the soil bed with a 4mm-wide orifice opening located in the middle of the pipe top 

surface, from which pipe water injects into the soil bed. A constant pressure of 16.67 

kPa is applied to both the left and right ends of the pipe. Other parameters used in the 

DEM-LBM test are adopted and listed in Table 7.7. 
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Figure 7.19: Setup of the pipe leakage model  

 

Particle density (kg/m3) 2700 

Friction coefficient in DEM  0.3 

Young’s modulus (MPa) 69 

Poisson’s ratio 0.3 

DEM time step (s) 2.0×10-5 

Fluid density (kg/m3) 1000 

Fluid kinematic viscosity (m2/s) 1.0×10-6

 
Lattice spacing (m)       1.0×10-3

 
LBM time step (s) 1.0×10-4

 
Dimensionless relaxation time 0.5003

 
Table 7.7: Parameters in the pipe leakage test 
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In order to implement the combination strategy, the domain is divided into 3×5 

sub-domains. As shown in Figure 7.20, the DEM-DFF technique is used in the 

sub-domains with seepage flows only, which has been observed from the previous 

DEM-LBM test (Cui, 2012). While in the remaining sub-domains, the DEM-LBM 

technique is employed. The cell size of a DFF sub-domain is 10mm, which is 10 times 

larger than the lattice spacing in a LBM sub-domain. From a preliminary test on the 

same soil sample under a one-dimensional pressure driven flow, the averaged 

permeability of the soil is calculated as 4.67×10-4 m/s, which is then used for calculating 

the drag force in DEM-DFF.   

 

Figure 7.20: Sub-domain arrangement for a pipe leakage problem 

 

In the first 4 seconds, the particles are kept fixed in order to observe the performance of 

the combination strategy for a steady flow. Afterwards, the calculation of DEM is 

switched on to validate the combination strategy in the dynamic process when a cavity 

develops at the leaking area. The pressure distribution contours at 4s are presented in 
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Figure 7.21, from which a general good agreement is achieved.  

 

 

(a) 

 

(b) 

Figure 7.21: Pressure distribution contour at 4 seconds: 

(a) DEM-LBM results; and (b) combined system results 

  

The individual pressure time p-t curves within the soil bed at different heights are 

presented in Figure 7.22, and it can be found out that the same general behaviour of the 

pressure evolution is exhibited. The comparison of these p-t curves at different heights 
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within the soil bed is shown in Figure 7.23. From calculations, the global differences are 

found to be 2.38%, 2.44%, 3.24%, and 4.5%, respectively, which are thought to 

acceptable for an engineering problem.    

 

The comparison of the velocity evolution at the orifice and the cavity evolution are 

shown in Figures 7.24 and 7.25, respectively. The global difference is calculated to be 

2.52% and 3.46%. A quite satisfied agreement is achieved from the above comparison, 

which indicates the successful combination is implemented in this thesis.  
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(a) 

 

(b) 

Figure 7.22: p-t curves within soil bed right above the orifice:  

(a) DEM-LBM results; and (b) combined system results 
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(a) 

 

 

(b) 
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(c) 

 

(d) 

Figure 7.23: A comparison of p-t curves between the results by DEM-LBM and 

combined system at different heights: (a) 0mm; (b) 10mm; (c) 53mm; and (d) 102mm. 
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Figure 7.24: A comparison of the velocity evolution at the orifice between results by 

DEM-LBM and combined system 

 

 

Figure 7.25: A comparison of the cavity evolution between results by DEM-LBM and 

combined system 
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From Figure 7.23 – Figure 7.25, it can be observed that the major component of the 

difference happens in the later stage of the simulation, which may be attributed to the 

different cavity shapes developed in the two tests. The particle configurations at the end 

of tests (i.e. at 10s) are provided in Figure 7.26. The cavity shape in the DEM-LBM 

simulation shows a more asymmetrical pattern compared with that in the combined 

system. This could be due to the different simulation scales of DEM-LBM and 

DEM-DFF. In DEM-LBM, the fluid-particle interactions are described with a fine mesh, 

which is based on microscopic momentum conservation. While in DEM-DFF, the cell 

size is larger and the force calculated is a local average, which may not be able to 

capture the subtle changes within a cell. Therefore, DEM-DFF with coarse mesh is not 

as sensitive as DEM-LBM to the local variety of the particle configurations, and a more 

symmetrical cavity is formed in the combined system.   

 

The total CPU time spent by the DEM-LBM simulation has been 21,353 seconds, while 

it takes only 12,460 seconds by the combined system with the same single processor 

used. Hence, a 42% save in the computational time is achieved in the combined system, 

which indicates a good computational benefit in the proposed combination strategy.   
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(a) 

 

(b) 

Figure 7.26: The particle configurations at 10s:  

(a) DEM-LBM results; and (b) combined system results 
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7.5 Summary  

In this Chapter, verifications are carried out to evaluate the algorithms and 

implementation in Chapters 4-6.  

 

Firstly, the DEM-LBM implementation is verified and its capability in modelling 

leakage-soil interaction is evaluated. As the contact force calculation of the DEM part in 

FPS-BHAM is extracted from the well-developed TRUBAL code, comparisons are made 

between the FPS-BHAM results and the TRUBAL results regarding the DEM 

calculations. It has been proved the DEM part works properly in FPS-BHAM. 

Simulations of a plane Couette flow and a cylindrical Couette flow are conducted and 

results are compared with analytical solution. Good agreement is achieved which 

indicates successful implementation of LBM with IMB in FPS-BHAM. It is then 

followed by the simulation of an internal fluidisation problem, and the results are 

validated against previous experimental findings. Good qualitative agreements are 

achieved. Furthermore, the fluidising pressures measured from the numerical tests 

match well the predicted ones from the analytically derived equation. All the above 

verifications indicate the DEM-LBM technique has been successfully implemented in 

FPS-BHAM and is capable of providing both qualitative description and quantitative 

analysis of the overall behaviour in the leakage-soil interaction problem. 

 

The blocked partitioning domain decomposition proposed for this thesis is under test 
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with the parallelised computing in Section 7.3. The ‘pseudo-vector processing capacity’ 

boosts the parallel behaviour of LBM in domain decomposition. A parallel efficiency of 

0.72 is achieved with 32 processors, which indicates a good parallel behaviour of 

DEM-LBM with the blocked partitioning domain decomposition. It is also noted that 

the parallel efficiency of LBM is higher than that of DEM, suggesting the overall 

performance is dependent on the ratio of the computing load of LBM to DEM. 

 

In Section 7.4, the verification of pure DEM-DFF computation is firstly carried out.  

Simulation results from a one-dimensional pressure-driven flow through a porous 

medium agree well with the analytical solution and the DEM-LBM solutions, as 

presented in Section 7.4.1. It is then followed by a validation of the combination 

strategy between DFF and LBM by conducting both one- and two-dimensional 

pressure-driven flow tests. Numerical results at the steady state demonstrate the 

non-equilibrium bounce-back scheme provides successful combination between DFF 

and LBM, while the extrapolation scheme achieves good performance only with a 

relatively large relaxation time. In addition, before the steady state is reached, it is noted 

that a difference in pressure distribution appears in the middle sub-domain. Such a 

difference is due to the different forms of the governing equations in DFF and LBM, 

which is further explored in Chapter 8. With the presence of particles, a previous pipe 

leakage test with the DEM-LBM technique in Cui (2012) is reproduced using the 

combined system. In this test, the non-equilibrium bounce-back scheme is adopted. At 
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the steady state, a general good agreement on the flow field is achieved between results 

by DEM-LBM and the combined system. During the dynamic process when a cavity 

develops at the leaking area, the consistent evolution behaviours of the excess pressures, 

the orifice velocity, and the cavity size are obtained. However, it is found that the major 

component of the difference happens in the later stage of the simulation, which may be 

attributed to the different cavity shapes developed in the two tests. This is because 

DEM-DFF is not as sensitive as DEM-LBM to the local variety of the particle 

configurations, and a more symmetrical cavity is formed in the combined system. In 

spite of the difference, a 42% savings in the computational time is achieved in the 

combined system for the example used with coarser mesh used for DFF, which indicates 

a good computational benefit in the proposed combination strategy and a promising 

capability in simulating the real-scale geotechnical problem with local detailed 

descriptions.  
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CHAPTER 8:  PARAMETRIC STUDY ON DIFFERENCE 

BETWEEN LBM AND DFF BEHAVIOURS  

8.1 Introduction 

As pointed out in Section 7.4, a different behaviour is observed in the combined system 

during the dynamic propagation to the steady state, which is mainly caused by the 

different forms of the flow equations in LBM and DFF. This issue is further explored in 

this chapter. In Section 8.2, an introduction to the Partial Differential Equations (PDEs) 

used in LBM and DFF are presented respectively and their different behaviours are 

demonstrated. In Section 8.3, the standard difference is introduced to describe such a 

difference. It is then followed by the work conducted to explore the LBM and DFF 

parameters affecting the standard difference in Sections 8.4 and 8.5, respectively. 

 

8.2 Difference between hyperbolic and parabolic PDEs 

In order to investigate the effect of different PDEs on the flow behaviour, a numerical 

test is carried out to simulate a one-dimensional pressure-driven flow. The domain size 

is 0.004m×0.004m, which is divided into a 4×4 grid. A pressure difference 3Pap   

is applied across the vertical direction. Pressure gradient across the left and right 

boundaries are kept constant at zero. Two tests with pure LBM and pure DFF employed 

are respectively conducted. In the LBM test, the time step is 1×10-4s, which gives the 

corresponding lattice speed of 10m/s. The kinematic viscosity is 1×10-6 m2/s. And in the 
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DFF test, the same time step is used so as to make the test results comparable. 

 

The results at various calculation cycles are shown in Figure 8.1, from which it can be 

seen the dynamic propagations to the steady state are different in DFF and LBM. In the 

DFF calculations, the flow pattern is controlled by (4.7), which is a parabolic PDE and 

exhibits diffusion behaviour due to the presence of the concentration gradient (i.e. the 

applied pressure gradient in the vertical direction). The convergence to the steady 

solution is very fast, which only takes around 40 calculation cycles. However, in the 

LBM calculations, the flow pattern is governed by (2.47), which originates from a 

hyperbolic PDE (i.e. the Boltzmann equation). Such a PDE describe the flow driven by 

force acting upon it, exhibiting the convection behaviour. From Figure 8.1(b), it is 

identified that a pressure wave between the top and bottom boundaries propagates with 

a period of around 16 calculation cycles. During each period, the pressure distribution 

consecutively reaches its wave crest and the wave trough. Due to the dissipation of the 

kinetic energy by the fluid viscosity, the amplitude of the wave keeps decreasing until 

the steady state is achieved. Compared with the DFF results, it can be observed that the 

number of cycles to reach the steady state is much greater in the LBM calculations. The 

resulting difference in the pressure distribution before the steady state cannot be ignored, 

as it would affect the performance of the combination strategy proposed in this thesis. 

Therefore, further investigation is conducted in the following sections. 
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(a) 

 

(b) 

Figure 8.1: Dynamic propagation to the steady state at different calculation cycles: (a) 

DFF results; and (b) LBM results 
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8.3 Quantifying the difference between LBM and DFF behaviours 

In order to analyse the difference between LBM and DFF behaviours, a standard 

measure of difference using a root mean square value is adopted, which is defined as 

2
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,                      (8.1) 

where n  is the number of the nodes, ,i LBMp  and ,i DFFp  are the pressures at Node i 

obtained from LBM and DFF calculations, respectively. From the test results 

demonstrated in Section 8.2, the evolution of the standard measure of difference for the 

first 50 calculation cycles is calculated and shown in Figure 8.2. It can be found the 

difference oscillates with a period of around 8 calculation cycles, which is half of that in 

the wave oscillation. The peak values are taken from both the wave crests and the 

troughs. In an effort to further investigate the trend of the standard difference, only these 

peak values are plotted against their corresponding calculation cycles as presented in 

Figure 8.3. With a much longer time, it is seen that the standard difference undergoes a 

reduction until it approaches to zero with the steady solution is achieved. 
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Figure 8.2: Time evolution of the standard difference for the first 50 calculation cycles 

 

 

Figure 8.3: Time evolution of peak values in the standard difference 
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8.4 Parameters in LBM affecting its behaviour and the standard difference 

The parameters which may be crucial in determination of the LBM behaviour include: 

kinematic viscosity, lattice speed, time step, lattice spacing, and relaxation time. In this 

section, the effects of the above parameters on the LBM behaviour and hence the 

standard difference are explored.  

 

Kinematic viscosity 

In order to investigate the influence of the kinematic viscosity on the convection 

behavior in LBM, the following tests are performed with the viscosity chosen to be 

8×10-6m2/s, 4×10-6m2/s, 2×10-6m2/s, and 1×10-6m2/s, respectively. All other parameters 

are the same as those in the test reported in Section 8.2. The pressure distribution 

around 0.1004s are shown in Figure 8.4. For each viscosity, the curve includes both the 

crest (at 0.1s) and the trough (at 0.1008s). It can be observed that, with the increase in 

the kinematic viscosity, the amplitude of the wave reduces. This indicates that, for the 

fluid with a higher viscosity, the kinetic energy is dissipated faster, so that less number 

of calculation cycles is required to approach to the steady solution. This can also be seen 

from Figure 8.5 as below. 
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Figure 8.4: Pressure distribution around 0.1004s 

 

The time evolution of the peak values in the standard difference is shown in Figure 8.5. 

It can be observed that the viscosity influences the rate of reduction in the peak values. 

With higher viscosity, the standard difference decreases faster as the kinetic energy is 

dissipated at a higher rate. It is also worth noting from Figure 8.6, the standard 

difference is almost linearly with the increase in the viscosity at a given time. 
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Figure 8.5: Time evolution of peak values in the standard difference with different 

kinematic viscosities 

 

 

Figure 8.6: Peak value of standard difference verses kinematic viscosity 
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Lattice speed and time step 

From (2.45), it can be identified that, for a given lattice spacing, the value of the lattice 

speed determines the time step used in the LBM caluclations, and vice versa. Therefore, 

the influence of these two parameters on the LBM behaviour is investiged together in 

the following test. The lattice speed is set as 10m/s, 20m/s, 40m/s and 80m/s, so as to 

give the corresponding time step of 1×10-4s, 0.5×10-4s, 0.25×10-4s, and 0.125×10-4s, 

respectivley. All other paratmers are the same as those in the test reported in Section 8.2. 

The results at same cycles ( i.e. t = 56 cycles and t = 64 cycles) are shown in Figure 8.7, 

from which it can be found the identical results are obtained regardless of the variety of 

lattice speed. It indicates that the energy dissapation within each LBM calculation cycle 

is independent of the lattice speed for a given lattice spacing. However, as the time steps 

used are different, the results at a given time are different from one another. Figure 8.8 

shows the pressure distribution around 0.1s with different lattice speeds adopted. It is 

found that the flow behavior changes significantly due to the change in lattice speed. 

This can be interpreted that, with a higher lattice speed, more periods of wave 

oscillation occurs during a given time, and hence more energy is disspated so that the 

steady solution is quicker to be achieved. The peak values in the standard difference is 

shown in Figure 8.9. It can be found that the lattice speed has a great impact on the 

standard difference. A higher lattice speed leads to a more sharply reduciton in the 

standard difference, this is also attributed to the quicker dissipation of the kinetic energy. 

Compared with the results shown in Figure 8.5, it can be concluded that the reduction in 
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the difference of LBM and DFF behaivours is more sensitive to the change in the lattice 

speed rather than in the kinematic viscosity.  

 

 

Figure 8.7: Pressure distribution at t = 56 cycles and t = 64 cycles with different lattice 

speeds 
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Figure 8.8: Pressure distribution around 0.1s with different lattice speeds 

 

 

Figure 8.9: Peak values in the standard difference with different lattice speeds 
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Lattice spacing 

The following test is conducted to explore the effect of lattice spacing. The lattice 

spacing is set to be 0.125mm, 0.25mm, 0.5mm and 1.0mm, respectively. For a given 

domain size which is same as that in the test reported in Section 8.2, more lattice nodes 

are adopted for a case with a smaller lattcie spacing for LBM. The time step is also 

changed correspondingly in order to keep an identical lattice speed, which is 10m/s for 

all these cases. The pressure distribution around 0.4s with different lattice spacings is 

shown in Figure 8.10, from which no significant difference can be observed, indicating 

the lattice spacing has little influence on the convection behavior.    

     

 

Figure 8.10: Pressure distribution at around 0.4s with different lattice spacings 
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Relaxation time 

From Figure 8.5, it can be noticed that for a given lattice speed and lattice spacing, a 

quicker reduction in the standard difference is obtained with a higher relaxation time, 

according to (2.52). However, from Figure 8.9, it is found out for a given kinematic 

viscosity and lattice spacing, a quicker reduction in the standard difference is achieved 

with a lower relaxation time. Hence, it can be concluded that there is no direct 

relationship between the relaxation time and the convection behaviour in LBM.   

 

8.5 Parameters in DFF affecting its behaviour and the standard difference 

For the simple form of DFF adopted in this thesis (see (4.7)), the cell size is the only 

parameter that may affect its diffusion behaviour. In this test, the cell size is set to be 

1mm, 0.5mm, 0.25mm and 0.125mm, respectively. By changing the number of cells and 

the time step, the same domain size and lattice speed are kept as those in the test 

reported in Section 8.2. The pressure distribution at around 0.04s with different cell 

sizes is shown in Figure 8.11. Unlike LBM, a significant impact can be observed from 

the results. With a smaller cell size, the diffusion speed is lower and hence a longer time 

is required to obtain a stable solution. The evolution of the standard difference during 

the first 50 calculation cycles is shown in Figure 8.12. It is seen that less violent 

oscillations in the standard difference are obtained in the test with a larger cell size. 

From the calculations, the average of the standard difference for each case is 0.97 Pa, 
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1.03 Pa, 1.1 Pa and 1.2 Pa, respectively. This indicates that with a smaller cell size, a 

larger difference between LBM and DFF behaviours is, in general, resulted.      

      

 

Figure 8.11: Pressure distribution at around 0.04s with different cell sizes 
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Figure 8.12: Evolution of the standard difference during the first 50 calculation cycles 

 

8.6 Summary 

This chapter explores the different behaviours in the combination strategy during the 

dynamic propagation to the steady state. In the DFF calculations, the flow pattern is 

controlled by a parabolic PDE and exhibits diffusion behaviour. While in the LBM 

calculations, the flow pattern is governed by a hyperbolic PDE. Such a PDE describes a 

flow motivated by force acting upon it, exhibiting the convection behaviour. Compared 

with the DFF results, it can be observed that the number of cycles to reach the steady 

state is much greater for the LBM calculations. 

 

The standard difference is adopted to analyse the difference between LBM and DFF 
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behaviours. It can be found the standard measure of difference oscillates with a period 

of around 8 calculation cycles, which is half of that in the wave convection. The peak 

values are taken from both the wave crests and the hollows. With a much longer time, it 

is seen the standard difference undergoes a reduction until it approaches to zero with the 

steady solution is achieved. 

 

For a fluid with a higher viscosity, the kinetic energy is dissipated faster, so that less 

calculation cycles are required to approach to a steady solution, and hence the standard 

difference decreases faster. It is also found that the standard difference is almost linearly 

reduced with the increase in the kinematic viscosity at a given time. Moreover, the 

identical results are obtained after the same number of calculation cycles regardless of 

the variety of lattice speed. With a higher lattice speed, more periods of wave oscillation 

are performed during a given time, and hence more energy is disspated so that the 

steady solution is quicker to be achieved. From the result, it is also noted that the 

reduction in the difference between LBM and DFF behaivours is more sensitive to the 

change in the lattice speed rather than in the kinematic viscosity. On the other hand, the 

lattice spacing has little influence on the LBM convection behavior. And there is no 

direct relationship being observed between the relaxation time and the convection 

behaviour, either. For DFF, with a smaller cell size, a larger difference between LBM 

and DFF behaviours is resulted. 
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From the work in this chapter, it is suggested that for the combination between DFF and 

LBM simulation, a fluid with a higher kinematic viscosity has less differernce during 

the dynamic propagation to the steady state. In addition, by increasing the lattice speed, 

the difference can be controlled in a most effeicient way.  
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions of this thesis 

The thesis is motivated by developing a numerical tool, FPS-BHAM, in exploring the 

large-scale fluid-particle phenomenon with the local behaviours being captured, such as 

a soil bed subjected to a local leakage. Although it is regarded as one of the most 

efficient techniques in a small-scale modelling, DEM-LBM is very expensive when 

applied to large-scale simulations. For this reason, a blocked partitioning domain 

decomposition strategy with the philosophy of parallel computing of DEM-LBM is 

adopted. Moreover, the combination of DEM-LBM and a large-scale simulation tool, i.e. 

DEM-DFF, is also proposed in this thesis.     

 

.In DEM, the motion of particles is determined based on the Newton’s second law. The 

force and torque acting on a single particle are generated from the contacts, the body 

force (for force only), and the fluid flows. For the fluid phase, LBM with LES 

turbulence model is employed to simulate the fluid flows with high Reynolds number. 

The fluid-wall and fluid-particle interactions are solved with the aid of the half-spacing 

bounce-back rule and the IMB scheme, respectively. Verification of the DEM-LBM 

implementation and examination of its capability in modelling leakage-soil interaction 

are conducted in a later section, i.e. Section 7.2. In the DEM-LBM verification, 

comparisons are firstly made between the FPS-BHAM results and the TRUBAL results 
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on the DEM calculations. Satisfactory agreement is obtained, indicating effective DEM 

computations in FPS-BHAM. It is followed by simulations of Couette flows, and the 

results agree well with the analytical solutions. This suggests the verified 

implementation of LBM with IMB in FPS-BHAM. Afterwards, the simulation of an 

internal fluidisation problem is carried out, and the results are validated against previous 

experimental findings. Good qualitative agreements are achieved. Furthermore, the 

fluidising pressures measured from the numerical tests are found to match the predicted 

ones from the derived equation well. All the above verifications indicate that the 

DEM-LBM technique has been successfully implemented in FPS-BHAM, and it is 

capable of providing both qualitative description and quantitative analysis of the overall 

behaviour in the leakage-soil interaction problem. 

 

The proposed blocked partitioning domain decomposition strategy with the parallel 

computing is illustrated in Chapter 5. The same decomposition scheme is employed for 

both the fluid and DEM calculations to avoid extra data communication among 

processors when considering fluid-particle interactions. Due to the significant difference 

in CPU time consumed between DEM-LBM and DEM-DFF, the numbers of both types 

of sub-domains are almost identical in each processor, so as to balance the working load. 

Fluid within each sub-domain is regarded as an isolated system, and solved 

independently by its governing equation and boundary conditions. Virtual nodes, which 

overlap the corresponding nodes in the neighbouring sub-domains, are set as the 
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sub-domain boundaries to guarantee the continuity requirement. Data at virtual nodes 

could be obtained from calculations in the corresponding nodes from the neighbouring 

sub-domains, and are interpreted as boundary conditions. MPI is used to facilitate 

communication when two sub-domains belong to different processors. For the solid 

phase, once mapped onto different sub-domains according to centre coordinates, 

particles are stored and calculated only in their local sub-domains. All the information 

of a particle within an overlapping area, including its contacts, is required to be 

transferred among all related sub-domains. The performance of such a parallel scheme 

is evaluated in Section 7.3. From the evaluation, it is found out that the ‘pseudo-vector 

processing capacity’ boosts the parallel behaviour of LBM in domain decomposition. A 

parallel efficiency of 0.72 is finally achieved with 32 processors, which indicates a good 

parallel behaviour of DEM-LBM with the blocked partitioning domain decomposition.  

 

The excess pressure in DFF is solved by the Laplace’s equation, and the fluid force is 

correspondingly computed. This force is then used in the DEM calculations. For the 

combination of DFF and LBM, a strategy is developed to facilitate the two-way 

conversion between macroscopic and microscopic variables used in DFF and LBM. The 

conversion from density distribution functions in LBM to pressure in DFF can be 

achieved by a direct summation, while the inversed process is not straightforward as 

more unknowns exist in LBM. Therefore, the extrapolation scheme and the 

non-equilibrium bounce-back scheme are separately employed to solve this problem. 
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When particles are involved in the combined system, the bell-shaped smoothing 

function is adopted to determine the data on the lattice nodes covered by particles. In 

addition, for a particle located at the LBM/DFF interface, the fluid force adopts the 

value which is calculated from the DFF calculations. The validation of the combination 

strategy is presented in Section 7.4. Simulation results from a one-dimensional 

pressure-driven flow through a porous medium by DEM-DFF agree well with the 

analytical solution and the DEM-LBM solutions. It is then followed by a validation of 

the combination strategy between DFF and LBM by simulating both one- and 

two-dimensional pressure-driven flows. Numerical results at the steady state 

demonstrate the non-equilibrium bounce-back scheme provides successful combination 

between DFF and LBM, while the extrapolation scheme achieves good performance 

only with a relatively large relaxation time. Finally, a previous pipe leakage test with the 

DEM-LBM technique is reproduced using the combined system. Evolution behaviours 

of the excess pressures, the orifice velocity, and the cavity size are obtained consistent 

with the results from pure DEM-LBM tests. Different cavity shapes are identified, 

which is attributed to different sensitivities of DEM-DFF and DEM-LBM to the local 

variety in the particle configurations. In spite of the difference, a 42% save in 

computational time is achieved in the combined system, which indicates a good 

computational benefit provided by the proposed combination strategy.  

 

Different behaviours between LBM and DFF in the combination strategy during the 
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dynamic propagation to the steady state are investigated in Chapter 8. The flow pattern 

is controlled by a parabolic PDE and exhibits diffusion behaviour in DFF. While in 

LBM, the flow pattern is governed by a hyperbolic PDE, and exhibits the convection 

behaviour. Compared with DFF, more calculation cycles are required to reach the steady 

state in LBM. The standard difference is adopted to analyse the difference between 

LBM and DFF behaviours at a given time. With a sufficiently long time, it is seen the 

standard difference undergoes a reduction until it approaches to zero with the steady 

solution is achieved. Parametric studies indicate that, for a fluid with a higher viscosity, 

the kinetic energy is dissipated faster, resulting a faster decrease in the standard 

difference. With a higher lattice speed, more periods of wave oscillation are performed 

during a given time, and hence more energy is disspated so that the steady solution is 

quicker to be achieved. From the result, it is also noted that the reduction in the 

difference between LBM and DFF behaivours is more sensitive to the change in the 

lattice speed rather than in the kinematic viscosity. On the other hand, the lattice spacing 

has little influence on the LBM convection behavior. And there is no direct relationship 

being observed between the relaxation time and the convection behaviour, either. For 

DFF, in the tests with a smaller cell size, a general larger difference between LBM and 

DFF behaviours is found to be induced. From the investigations, it is suggested that by 

increasing the lattice speed, the difference can be controlled in a most effeicient way. 
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9.2 Future work 

The research presented in this thesis is an early attempt to develop the numerical tool 

FPS-BHAM for exploring the large-scale fluid-particle phenomenon with the local 

behaviours being captured. The future work related to this thesis could include: 

 

a) Dynamic combination system. In this stage, the arrangement of different techniques 

in the combined system is predetermined by users according to experience of the 

physical phenomenon or the information of previous DEM-LBM simulations. However, 

for most fluid-particle systems, the flow behaviour in each sub-domain changes 

dynamically. This may results in the conservativeness in the arrangement of numerical 

techniques, and the optimum performance of the combined strategy is difficult to be 

achieved. In addition, for the simulations with complicated mechanism, cumbersome 

trail process before the simulation is often required to obtain the overall description of 

the phenomenon. Such limitations invoke the motivation of developing the dynamic 

combination system in the future, in which the arrangement of numerical techniques is 

conducted automatically and dynamically according to the features of flow behaviors in 

each sub-domain.   

 

b) Explicit determination of Permeability. In this thesis, the simple form DFF is 

governed by the Laplace’s equation, which is based on the assumption of a uniform 

permeability over the sample. For this reason, only one-way coupling between DEM and 
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DFF is adopted in this thesis. However, the real soils often exhibit heterogeneous or even 

anisotropic hydraulic behaviour. Hence, explicit consideration of permeability based on 

particle configuration is necessary in many geotechnical applications, which may lead to 

a two-way coupling between DEM and DFF in the future.  

 

c) In the current two-dimensional simulations, fluid paths through the particle assembly 

are considered by artificially adopting the hydraulic radius. This makes the 

determination of permeability ambiguous, although it is sometimes necessary to obtain 

the flow field in soil. Moreover, the current model is difficult to give an explicit 

description of turbulent flow which involved at the vicinity of the orifice, as it is 

actually a three-dimensional phenomenon. Therefore, it is expected to extend the 

simulations by FPS-BHAM to three-dimensional ones, by which the physical behaviour 

can be captured more accurately. 
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APPENDIXES 

Appendix 1: Subroutine list of FPS-BHAM  

Subroutine initialization: calling various initialization subroutine 

 contains 

 Subroutine system_initialization: system initialization 

  includes:  

  Subroutine input_control_data:  reading control data from 'control_data.txt'

 Subroutine mp_initialization: MPI initialization for parallel computing    

 Subroutine DEM_initialization: DEM initialization  

  includes: 

  Subroutine input_DEM_data:  reading DEM data from 'ball_coordinates.txt', 

            'wall_coordinates.txt','ball_properties.txt' and 

          'wall_properties.txt'     

 Subroutine fluid_initialization: fluid initialization   

  includes: 

  Subroutine set_region_fluid_type: set fluid type according to user requirement       

  Subroutine input_fluid_data: reading fluid data from 'fluid_data.txt'  

  Subroutine sLBM_initialization                       

  Subroutine sDFF_initialization                                   

  Subroutine lCFD_initialization       
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  Subroutine lDFF_initialization    

  Subroutines related to sCFD, lLBM is to be developed 

 

Subroutine region_map_particle: mapping particles into sub-domains and form   

        contact detection list   

 contains 

 Subroutine ball_transport: transporting related ball information between different  

       processors 

 Subroutine region_map: mapping particles into related sub-domain 

 Subroutine mp_contact_transfer: transfering related information in contact array  

          between different processsors 

 

Subroutine fluid_calculation: calculating fluid and its related hydrodynamic force   

 contains 

 Subroutine fluid_calculation_initialization: setting fluid force applied to particles to 

           zero 

 Subroutine mp_internal_boundary: applying internal boundary conditions between 

          different sub-domains 

  includes:  

  Subroutine mp_lDFF_send 

  Subroutine mp_lDFF_transfer 
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  Subroutine mp_lDFF_receive 

  Subroutine mp_sLBM_send 

  Subroutine mp_sLBM_transfer 

  Subroutine mp_sLBM_receive 

  Subroutines related to sCFD, sDFF, lLBM, lCFD is to be developed 

 Subroutine sLBM_system_boundary: applying system boundary conditions to  

           sLBM sub-domains 

 Subroutine sDFF_system_boundary: applying system boundary conditions to   

             sDFF sub-domains 

 Subroutine lDFF_system_boundary: applying system boundary conditions to   

             lDFF sub-domains 

 Subroutine sLBM_region_calculation: performing computations in sLBM   

          sub-domains  

  includes:                                                           

  Subroutine sLBM_map_particle: mapping particles into sLBM framework   

   has: 

   Subroutine slbm_imb: immersed moving boundary       

  Subroutine sLBM_map_wall: mapping walls into sLBM framework 

   Subroutine sLBM_calculation: sLBM calculations with extrapolation scheme  

   Subroutine sLBM_calculation2: sLBM calculations with non-equilibrium  

           bounce-back scheme 
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 Subroutine sDFF_region_calculation: performing computations in sDFF    

            sub-domains  

  includes:    

  Subroutine sdff_calculation: sDFF calculations  

 Subroutine lDFF_region_calculation: performing computations in lDFF    

            sub-domains 

  includes:    

  Subroutine lDFF_map_particle: mapping particles into lDFF framework 

  Subroutine lDFF_calculation: lDFF calculations  

  Subroutine lDFF_hydroforce: computation of fluid force on the lDFF   

         sub-domain 

 Subroutines related to sCFD, lLBM, lCFD is to be developed 

 Subroutine mp_transfer_hydro: modifying fluid force applied to the particles   

         belonging to more than one processors 

Subroutine DEM_calculation: DEM calculations 

 contains 

 Subroutine contact_calculation: detecting contacts and performing contact   

          calculations 

  includes:   

  Subroutine ball_ball_contact_calculation 

  Subroutine wall_ball_contact_calculation 
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  Both subroutines will use subroutine contact_force_calculation ( transferred  

              from the TRUBAL code)  

 Subroutine dem_update: updating particles and walls information 

Subroutine postprocess: postprocessing 

 

Appendix 2: Main calculation cycle in FPS-BHAM  

CALL INITIALIZATION 

CALL REGION_MAP_PARTICLE 

DO CYCLENUMB= CYCLE_BEGIN, CYCLE_END 

 CALL FLUID_CALCULATION 

 DO I= 1, DEM_SUBCYCLE 

 CALL DEM_CALCULATION 

 CALL REGION_MAP_PARTICLE 

 END DO 

END DO 

CALL POSTPROCESS 
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Appendix 3: Input files in FPS-BHAM 

control_data.txt 

 

Parameter Example 

cycle number when simulation begin 100001 

cycle number when simulation end 105000 

region_numb: number of sub-domains 4  4  1 

scell_numb: number of small-scale cells in 

each sub-domain 

150  150 

lcell_numb: number of large-scale cells in 

each sub-domain 

10  10 

nballs: number of balls 10047 

nwalls: number of walls 10 

nballproperties: number of ball properties 12 

nwallproperties: number of wall properties 1 

dem_dt_frac: ratio between DEM time 

step to the critical DEM time step 

0.5 

global damping factor; damping factors 

for ball-ball contact and ball-wall contact 

 

0.01  0.016  0.032 

time_step: timestep of each cycle (unit: s) 1e-4 

domain_size: size of domain (unit: m) 0.6  0.6  1 

bodyf: body force/mass (unit: m2/s) 0.0 -4.25  0.0 
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fluid_data.txt 

Parameter Example 

fluid_density: density of fluid (unit: kg/m3) 1000 

unit_weight: unit weight of fluid (unit: N/m3) 9.81e3 

dynamic_viscosity (unit: kg/m.s) 1e-3 

kinematic_viscosity (unit: m²/s) 1e-6 

Permeability (unit: m²)   2e-4 

initial_rho: initial_density (unit: kg/m3)   1000 

initial_veloc: initial_velocity (unit: m/s) 0.0 0.0 

left_boundary_rho:left_boundary_density (unit: kg/m3) 1000.0 

left_boundary_veloc: left_boundary_velocity (unit: m/s) 0.0 0.0 

right_boundary_rho: right_boundary_density (unit: kg/m3) 1000.000 

right_boundary_veloc: right_boundary_velocity (unit: m/s) 0.0 0.0 

front_boundary_rho: front_boundary_density (unit: kg/m3) 1000.0 

front_boundary_veloc: front_boundary_velocity (unit: m/s) 0.0 0.0 

back_boundary_rho: back_boundary_density (unit: kg/m3) 1000.000 

back_boundary_veloc: back_boundary_velocity (unit: m/s) 0.0 0.0 

system_left_boundary: system_left_boundary_type 

system_right_boundary: system_right_boundary_type 

system_front_boundary: system_front_boundary_type 

system_back_boundary: system_back_boundary_type 

4: velocity boundary    5: pressure boundary 

6: no-gradient outlet    9: periodic 

5 

5 

6 

6 
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ball_coordinates.txt 

Parameter x-coordinate  

(unit: m) 

y-coordinate 

(unit: m) 

type of particle 

Example 1.620E-003 3.366E-002 11 

 

ball_properties.txt 

Parameter Example 

radii (unit: m) & 

density (unit:kg/m3)  

1.625e-3  2765 

cohes: surface energy (unit:J/m2) 

& frict: friction coefficient  

0.0  0.3 

Ymd: Young's modolus (unit:Pa), 

yie: yield strength (unit:Pa) 

& poiss: Possion ratio 

 

6.895e7  1.9306e9  0.3 

 

wall_coordinates.txt 

Parameter Example 

point 1: x-coordinate (unit: m)   0 

point 1: y-coordinate (unit: m) 0.032 

point 1: x-coordinate (unit: m) 0.298 

point 1: y-coordinate (unit: m) 0.032 

type of wall 1 

function of wall: 

1: use for both DEM and fluid 

2: only for fluid; 3: only for DEM 

 

1 
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wall_properties.txt 

Parameter Example 

cohes: surface energy (unit:J/m2) 

& frict: friction coefficient  

0.0  0.3 

Ymd: Young's modolus (unit:Pa), 

yie: yield strength (unit:Pa) 

& poiss: Possion ratio 

 

6.895e7  1.9306e9  0.3 

 

 

 

 

 

 

 

                            


