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   Abstract  

 

Alkaline water electrolysis is a promising technology to produce clean and pure hydrogen. This technology 

coupled with the ultrasound results in an enhanced rate of hydrogen production. The recent technologies in 

the area of electrolysis are the application of solar energy using photovoltaic cells to supply electricity, steam 

electrolysis, PEM electrolysis, the application of magnetic field and high temperature solid oxide electrolysis 

cell. The literature studies indicate an improved mass transfer and 10%-25% energy saving using the 

ultrasound. 

This work continues the previous research done in this area by investigating the effect of the ultrasound on a 

conventional water electrolysis cell along with other parameters subject of alteration such as electrode 

active surface area, concentration and temperature. The hydrogen production was measured using a digital 

hydrogen flowmeter; the average production efficiency and energy efficiency of the electrolysis cell were 

72% and 14.5% respectively.  It was calculated that the ultrasound increased the production efficiency by 6% 

and energy efficiency by 1.3%.  The act of the ultrasound resulted in bubble removal from the surface of the 

electrode and the solution therefore prepared the electrode surface for the electrochemical reactions thus 

enhanced the hydrogen generation.  

The current generation was enhanced by about 70% when the electrode active surface area was increased 

by about 45%, the hydrogen production rate however was not improved in an orderly fashion as a result of 

this increase in the electrode surface area. This increase is resulted from a larger electrode surface area 

available for the reaction, which refers to more active sites.  The lowest ohmic resistance in our cell was 

obtained at 15M experiment, which was about 1.5 Ω at 3.3V applied potential. This was slightly higher than 

0.8 Ω mentioned for a very recent work carried out in an advanced alkaline electrolysis cell, which benefited 

from a hydrophilic separator between the electrodes using a 28% KOH electrolyte solution.  The average low 

ohmic resistance in our study for low concentration experiments (0.1M) was about 14Ω at 30V. 
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      Chapter 1: Introduction  

 

1.1. Introduction 

 

With ever-increasing global demand concerning fossil fuels and the significant consequences of their use, the 

quest for clean and sustainable energy resources is essential while the highest demand still belongs to the 

oil, natural gas and coal according to Shell and BP [1] [2].  

 

Figure 1: World primary energy demand, data obtained from Shell. *Other Renewables includes tidal, geothermal, hydroelectric and 
waste [1].     

In the figure 1 above it is shown that crude oil, natural gas and coal have the highest values of energy 

demanded per year decade by decade whilst renewables grow each year in demand but still very low 

compared to the fossil fuel based resources.    

The Hydrogen when introduced as a fuel could be used as a source of energy in variety of applications from 

fuel cells, rockets and space industry to domestic applications such as pumping and heating. The majority of 

hydrogen currently comes from steam reforming of natural gas and partial oxidation of hydrocarbons as 

other technologies are less cost effective and efficient (see more in 2.1.3).  

Hydrogen as a fuel could be a sustainable solution to the world energy crisis if produced through a 

renewable based technology. The majority of hydrogen production technologies including coal gasification, 
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biomass processing and else are not either sustainable or do they produce hydrogen in the amount required 

[3].  This leaves us with any technology through which the electricity is produced from renewables, which 

can then power an electrolyser to produce hydrogen.  Solar and wind technology due to their great potential 

could help supply the future hydrogen production sustainable and renewable [4] [5]. 

The water electrolysis, as a technology to generate hydrogen, is responsible for about 4-5% of hydrogen 

production in the world and this practise in the presence of ultrasound has gained the interest of researchers 

and good deal of attention has been paid towards the method since the introduction of ultrasound improves 

the mass transfer and energy transfer consequently the rate of hydrogen production [6].                                                                       

The recent technologies in field of water electrolysis include photo-electrolysis or photovoltaic (PV) 

electrolysis, high temperature and pressure electrolysis, steam electrolysis, bio-catalysed electrolysis and the 

application of sonobioreactor to produce hydrogen from organic electrolyte [6].       

The early studies related to gas generation involving electrolysis and the ultrasound (sonoelectrochemisty) 

were performed during 1930-1940 where the effect of 280 kHz or 1200 kHz ultrasonic field on the deposition 

potential of hydrogen or chlorine was investigated [7] [8]. In 1992 Franco Cataldo et al [9] were among the 

first to electrolyse the aqueous solution of NaCl or HCl applying 30 kHz ultrasonic field and compared the 

results to the silent conditions. The main observation was a very strong degassing effect of ultrasonic waves 

and enhanced coalescence of gas bubbles hence an increase in the production of chlorine gas under 

sonication [9].  There have been numerous experiments with different cell configurations, various electrodes 

and electrolytes as of the primary works in the sonoelectrochemistry among which the immersion of 

ultrasonic tip and electrodes are the most broadly used configuration.  

The use of bioreactor has also been mentioned as one of the promising techniques in the literature with a 

maximum increase in the hydrogen production of up to 118% when methane was used as sparge gas 

compared to the experiment without sparging. The ultra-sonication is reported to have caused localised 

pressure drop and formation of cavitation bubbles [10].                                                                                              

In a recent work, advanced alkaline water electrolysis has been practised using gas diffusion electrodes, a 

hydrophilic separator (Celgard or ZrO�) and 28% KOH electrolyte solution. The authors reported a better 

performance in comparison to PEM electrolyser, low resistance (0.8 ohm cm2) and lower capital cost using 

nickel based catalyst with catalyst cost of 10$/kW [11]. 

This research project was done with an emphasis to investigate the effect of ultrasound on the generation of 

hydrogen production, albeit other parameters were altered such as electrode surface area, temperature and 

concentration of the electrolyte and material of electrodes and electrolytes. The results under the ultrasonic 

field were then compared to that of silent conditions for further analysis.   
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1.2. Aims and objectives 

 

 

The aim of this research was to evaluate the success of producing hydrogen with and without an ultrasonic 

field and also explicate the influence of ultrasound on the generation of hydrogen. In this study the effects of 

other parameters on the hydrogen production were considered among which, the electrode active surface 

area was an important one.  Other factors include electrolyte concentration, temperature and also electrode 

configuration.   

The main objective of this research project is to provide the academic grounds validating the hydrogen 

production via alkaline water electrolysis under silent and sonicated conditions and quantifying the amount 

of hydrogen produced.  

The specific objectives of this work are as follow: 

• To study the effect of ultrasound on the production of hydrogen and compare the results with silent 

conditions. 

• To examine the influence of electrode active surface area on the current and hydrogen generation. 

• To see the effect of concentration and temperature on hydrogen production 

• To find the hydrogen production efficiency and energy efficiency for the electrolytic cell 
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Chapter 2: Background and Literature Review  

 

2.1 Hydrogen 

 

2.1.1. Overview 

 

The word hydrogen contains two parts; hydro meaning water in Greek and genes is translated as forming. 

Hydrogen is an element with the atomic number 1 and atomic weight of 1.00794. Cavendish in 1776 

prepared hydrogen but at the time it was still not recognised until it was named by Lavoisier.                

Hydrogen on earth can mainly be found in arrangement with oxygen in water however it is also available in 

organic materials such as coal, petroleum and living plants. Hydrogen exists as a free element in atmosphere 

in such a low degree that the value is less than 1 ppm by the volume. It is known as the lightest among all 

gases and is widely used to produce methanol, other applications are hydrocracking, hydrodealkylation, 

hydrodesulfurization, production of hydrochloric acid, welding purposes, rocket fuel, reduction of metallic 

ores, filling balloons and more.  In the US, production of hydrogen is said to equal an amount of 3 billion 

cubic feet per year [12] however this amount is reported by the US department of energy in 2006 to be 

around 9 million tons per annum [13], globally though, the annual production of hydrogen in 2004 reached 

some 50 million tons with a 10%-increase year by year. The economic value of hydrogen produced per year 

in the globe was around $135 billion as of 2005 [14].          

Hydrogen can be prepared by the following methods; decomposition of certain hydrocarbons using heat 

treatment, action of steam on heated carbon, electrolysis of water, displacement from acid using specified 

metals, action of potassium or sodium on aluminium and other techniques [12].    

Hydrogen consists of three isotopes named as protium, deuterium and tritium; deuterium was discovered by 

Urey in 1932 which, has an atomic weight of 2 and present in natural hydrogen as low as 0.015%.            

Clean hydrogen could be employed as a reducing agent in chemical processes, refinery, metallurgy and also 

used as a good replacement for natural gas, gasoline and etc.  Hydrogen as a fuel has a few barriers on its 

way towards the establishment of hydrogen economy such as high costs in comparison to other fuels, high 

capital investment and also public approval [12]. On the other hand, the renewable-based techniques of 

hydrogen production such as solar photovoltaic electrolysis of water and photo-electrochemical 

decomposition of water would not be capable to reduce the cost of hydrogen production appreciably as they 

themselves are expensive processes while fossil fuels benefits from factors including availability, low costs, 

easy transport and storage [15]. 
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 It can be seen in figure 2 below; the hydrogen energy path from primary resources of energy to hydrogen 

energy itself where its distribution, storage and end use are depicted; this could be a good representative 

path for a sustainable hydrogen economy. 

 

Figure 2 [16]: Primary Resources of energy to Hydrogen. 

 

2.1.2. Hydrogen as a fuel 

 

Hydrogen as a fuel is a top quality energy carrier (calorific value: 141,790 Kj/Kg) which, has the advantages of 

extremely low emissions and high efficiency. Hydrogen fuel can be used for a variety of application as briefly 

mentioned in the previous section and also for power generation, transportation and heating as well as a 

fuel replacement. Hydrogen as a fuel owns properties including flammability over extensive range of 

concentrations and temperatures plus considerable combustion efficiency, even though this combustibility is 

a useful property for a fuel, it yet raises some technical obstacles for production, storage and transportation 
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of hydrogen such as safety issues. Hydrogen liberates energy in an explosive manner when mixed with 

oxygen giving pure water as by-product [14].  In figure 3 the use of hydrogen energy in diverse areas is 

shown. 

 

Figure 3 [14]: Hydrogen Energy applicable areas.   

 

2.1.2.1. Energy content   

 

Hydrogen benefits from the highest energy content per unit mass of any fuel while suffers from low 

volumetric density, which creates the storage problem specifically for on-board storage tanks used in 

vehicles. Hydrogen on a weight basis has almost triple the amount of the energy content of gasoline (140.40 

MJ/kg Vs. 48.6 MJ/kg) whilst on a volume basis the ratio is different (8491 MJ/m3 for liquid hydrogen Vs. 

31150 MJ/m3 for gasoline) [14].                                                                                                                                

Hydrogen due to its electrochemical property can be used in a fuel cell, for instance in  H�/O� cells with 

50%-60% efficiency and lifetime of nearly 3000-5000 hours for light-duty vehicles [17], the current output 

could give a range of 440-1720A/m� of the electrode surface. This could yield a power output within the 

range of 50 to 2500 W for different fuel cells [14](See more in section 2.2 on fuel cells).
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2.1.3. Hydrogen Production      

 

There is a wide range of technologies available to produce hydrogen from which some are preferred due to 

factors such as cost, environmental issues, sustainability and etc.                                                                           

The US department of energy categorised current technologies into three sections including thermal 

processes, electrolytic processes and photovoltaic processes [18].  

The majority of hydrogen produced in the world comes from the natural gas using steam-reforming 

technology, as for the rest, partial oxidation process of oil and coal is responsible for it.  From 45-50 Mt of 

hydrogen produced in the world per year about 20% belongs to the USA however this requires an increase 

by 2040 to 65 Mt for the USA only, The US Department of Energy reported.  US alone by 2040 will have 300 

million light-duty vehicles, which require hydrogen if powered by fuel cells. In order to cope with such an 

enormous increase from 9-10 Mt at present to 65 Mt in 2040, the construction of about 700 large steam-

reformer plants is required where each plant in average can produce 0.1 Mt of hydrogen annually. This may 

push fossil fuel industry to the limits (as the majority of hydrogen currently comes from natural gas and 

coal); also the establishment and engagement of a new energy industry based on renewable may be needed, 

which is a difficult task per se.                                                                                                                                                                

Currently about 4-5% of hydrogen is produced via electrolysis globally, the reason to such a low figure is the 

high cost of this process especially on industrial scale. Electrolysis is used for hydrogen production in large 

scale when it is either economically justified or hydrogen is a by-product of another process such as Chlor-

Alkali manufacturing process for the production of chlorine and caustic soda [19]. Industrial water 

electrolysers are designed to produce 244,440 Nm
 year⁄ (Normal cubic metre) with an energy efficiency of 

61% [6]. 

Some of the hydrogen production technologies are listed below [19]:  

• Reforming of Natural Gas 

• Partial Oxidation of Hydrocarbons 

• Plasma, Sorbet-Enhanced and Autothermal Reforming 

• Gasification Technology including Fluidised-Bed, Moving-Bed and Entrained-flow Gasifiers 

•  Water Electrolysis  

• Combined Cycle Processes 

• Biomass processing 

• Thermo-Chemical Hydrogen Production 
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2.1.3.1. Reforming of Natural gas  

      

In this technique steam is used to reform natural gas in order to produce hydrogen in industry. The chemical 

equation is as follows: 

CH� + H�O�gas� → CO + 3H�                                                                      (1) 

In the above process (equation 1) methane reacts with steam in the presence of a nickel-based catalyst at 

900°C and elevated pressures. The mixture gas �CO + 3H�� is known as synthesis gas or syngas. The steam 

reaction absorbs heat making it endothermic, which requires a large amount of heat, that is to say 252 KJ per 

mole of methane under STP conditions ; temperature of 298.15K and pressure of 101.325kPa.                     

This reaction may be carried out in autothermal reformer or allothermal reformer, which refers to the heat 

supplied as either external or internal respectively by inserting oxygen or air to the reaction mixture.            

An alternative method to produce hydrogen could be partial oxidation where oxygen or air is added to the 

gaseous mixture hence some of methane exothermically and internally is oxidised [20]: 

2CH� + O� → 2CO + 4H�                                                                               (2) 

 

Solar-thermal reforming is another kind of reforming, researches have been carried out to see if it is possible 

to provide the required heat for the steam reforming of natural gas, landfill and coal-bed methane using 

solar energy. Solar-thermal reforming while benefiting from reduced CO� emissions and high thermal 

efficiency, also offers a syngas contained with nearly 25% solar energy. The only drawback to this method is 

that this cannot be functional at nights unless the conventional steam reforming is used combined with the 

solar technology [20].       

2.1.3.2. Partial Oxidation of Hydrocarbons  

 

The process of oxidation is an alternative to reforming of natural gas. This process also applies to the 

gasification of coal and an extensive range of liquid hydrocarbons. The process can be termed as the general 

reaction below: 

2C�H� + mO� → 2mCO + nH�                                                                                    (3) 

The partial oxidation technique has a weakness in comparison to the steam reforming and that is the 

amount of hydrogen molecules produced per molecule of methane, which is 2 molecules as opposed to 

three produced in steam reforming before water gas shift reaction.  In this technique, feedstock such as light 

hydrocarbons are used for catalytic process at 600-900°C and non-catalytic process includes heavy residual 

oils and coal as feedstock with temperature range of 1100-1500°C [21].   
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2.1.3.3. Plasma, Sorbent-Enhanced and Autothermal Reforming 

 

Plasma reforming is a technique developed to produce hydrogen through direct thermolysis or 

thermocatalytic cracking of methane or other hydrocarbons.  Thermal plasma technology is operated at 

temperatures between 3000-10000°C while thermocatalytic cracking is carried out at considerably lower 

temperature than direct thermolysis. The by-product of both processes is soot, that is easier to capture and 

also the energy needed per mole of methane is less than steam reforming process however plasma 

reforming is a massive consumer of electricity as the plasma is created by an electric arc at the 

aforementioned elevated temperature ranges.  Thermocatalytic decomposition though endures catalyst 

deactivation when carbon builds up in the process while there is no such problem in direct thermolysis 

because of high temperature existing in the process, which does not necessitate any catalyst.       

Sorbent-enhanced reforming usually yields a product including 90% hydrogen, 10% unreacted methane, 

small fraction of carbon dioxide and footprints of carbon monoxide, the temperature in this method is 

reduced to 400-500°C thanks to the combination of methane steam reforming with its consequent shift 

reaction into a single step and simultaneous decrease in temperature from original 900°C to the reduced 

value of around 500°C as mentioned above. The lowered temperature in this process allows less expenditure 

on materials of construction and also as this procedure is a transformed process into a single step; it does 

not need gas-separation stages. Sorbent-enhanced reforming is still at R&D phase and needs development.  

Autothermal reforming is another technology from series of reforming pathways, which is in fact the 

combination of best properties of partial oxidation and steam reforming processes. The pressure can reach 

up to 10 MPa and temperature range of 950-1100°C. This method needs no indirect heat exchanger or 

external heat output and its efficiency can climb up to 80-90% since all of the heat created in the partial 

oxidation is used to power steam reforming and this efficiency is higher than partial oxidation systems.  

Partial oxidation and steam reforming reaction are done simultaneously, all this results in more compact, 

lower-capital cost and easier system [22]. 

2.1.3.4. Gasification Technology          

    

Gasification technology involves three major designs namely as fluidized bed (The Winkler) gasifier, moving 

bed (The Lurgi) gasifier, and entrained flow (the GE) gasifier [23]. Gasification is referred to as the conversion 

of solid materials into combustible gases at temperatures exceeding 700°C when an oxygen carrier is 

present. The partial combustion of solid or consequential syngas supplies the required energy for 

thermochemical conversion. Using the gasification technology almost any kind of fossil fuel can be processed 

to produce hydrogen.                                                                                                                                                       
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The coal is a typical material used for gasification and its production in the world is expected to rise to 3779 

Mtoe by 2030, most of which will be used for electricity generation [24]. Below in figure 4, there is a 

schematic diagram of the gasification processes where different types including entrained flow gasifier can 

be seen in which the most aggressive type of gasification occurs. The oxidizing gas and pulverized coal flow 

in the same direction in this process where the operating temperature is greater than 1400°C and pressures 

of up to 2-3 MPa is observed [24].  The produced syngas could be further processed in order to obtain 

hydrogen gas. 

 

  Figure 4 [24]: The gasifier designs.  

 

In figure 4 the moving bed gasifier shown bears a resemblance to a blast furnace. The pressure in this 

gasifier reaches to about 3MPa while the temperature at top of the bed is usually 450°C and at the bottom 

nearly 2000°C. The residence time in moving-bed gasifier is between 30 minutes to 1 hour.                                

The fluidized bed gasifier is operated in such a way that keeps the solid particles suspended in upward 

position using an upward-flow gas.  The suspended coal particles in this method react with risen oxygen-

enriched gas at 950-1100°C and 2-3 MPa of pressure.  There is homogeneous temperature distribution 

throughout the gasifier, which is resulted from high grades of back-mixing. The rate of heat and mass 

transfer between solid and gas in this system is high [24].    
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2.1.3.5. Hydrogen from water  

 

 In section 2.3 and 2.6, electrolysis and its applications are explained thoroughly, in this section various 

technologies in the realm of hydrogen production from water are introduced.                                                                                

The first technique is water electrolysis with solar energy, which includes photovoltaic cells, solar-thermal 

process, photo-biochemical cells and photo-electrochemical cells.                                                                   

Photo-electrochemical cells themselves consist of three subsections as follows:  

• Tandem Cells 

• Direct Hydrogen Production 

• Dye-Sensitized Solar Cells   

The other method is thermochemical hydrogen production, which includes the following [25]: 

• Sulfur-Ammonia Cycle 

• Sulfur-Iodine Cycle 

• Westinghouse Cycle 

• Metal Oxide Cycles 

Photovoltaic cells are the most commonly used for conversion of solar energy to electricity, high costs of 

solar cells (photovoltaic cells) make this technology applicable to small scale at present [25] however large 

scale solar plants are operated currently in different regions such as Mojave Desert in California [26].             

In PV technology, the photovoltaic cells are illuminated when the photons strike a PV cell and direct current 

is generated from the semiconductors. The cells are made of semiconductor materials, which have electrons 

bonded weakly at an energy level. The energy required to break this bond to let the electrons move freely is 

provided by photons in the sunlight. This puts the electron at a new energy level known as the conduction 

band; here electricity can be conducted through the material [27] [28].                                                                                                                            

Thermolysis is another process in which a substance is decomposed through the application of heat, when 

this heat is provided directly by sun, the practice is known as thermal-solar process. High temperature of 

about 3000°K is required to separate water molecules into hydrogen and oxygen through thermal 

decomposition [29]. In figure 5 water-splitting process using solar energy is schematically shown.  

Photo-electrochemical cells are capable of breaking down water molecules using photo-electrochemical 

reactions occurring in the cell. The electrodes are light-sensitive and direct current of electricity can be 

produced, which then helps electrolyse water using PV cells [25].    
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Figure 5 [25]: Enhanced solar-water splitting technology. 

 

2.1.3.6. Combined Cycle Processes (CCP) 

 

CCP technology is classified into two groups namely as Natural Gas Combined Cycle (NGCC) and Integrated 

Gasification Combined Cycle (IGCC). NGCC employs natural gas as the fuel while IGCC uses syngas or syngas-

derived gas. Combined cycle plant burns fuel (liquid or gas) to produce electricity [30].                                       

In a Combined Cycle Gas Generator (CCGG), high-temperature gas turbine is joined to a generator where the 

gas is burnt. The flue gas (exhaust gas) coming off the turbine is utilized to move up the steam and this 

steam hence is conveyed to a conventional steam turbine then a generator. Similar procedure is applied in 

an IGCC plant to generate electricity from coal [24].  

     

2.1.3.7. Hydrogen from Biomass 

 

Hydrogen can be produced from both wet and dry biomass stocks; dry biomass comes in the form of wood 

chips and straw while wet biomass typically includes silage, liquid manure and sewage. Anaerobic digestion 

at ambient temperature is used to treat wet biomass, which yields biogas containing methane, carbon 
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dioxide and monoxide and a small amount of hydrogen. The biogas can be further processed using a biogas 

scrubber to separate the gases for allocated purposes.                                                                                              

Dry biomass can also be used as feedstock for Combined Heat and Power (CHP) systems [31]. Biomass is 

mainly converted to hydrogen and other gases through gasification and pyrolysis. The gasification 

techniques available include supercritical conversion of biomass, direct solar gasification, biomass-derived 

synthesis gas conversion and etc. [32].   

Wet biomass can be supercritically gasified in the presence of Ni/γAl�O
 and Ni/CeO�-γAl�O
 catalysts to 

produce hydrogen. Ni-based catalysts serve best by recognising the high gasification efficiency of biomass 

when water reaches near its critical temperature. This process is carried out in an autoclave reactor at 

temperature and pressure of 673K and 24.5 MPa respectively with 9.09 wt. % concentration of glucose.  

Coking and carbon deposition in this method are the main problems, which cause deactivation of catalyst 

[33]. Supercritical gasification of biomass can also be operated in a fluidised bed reactor at 923K and 30MPa, 

in this way the problem of reactor plugging could be prevented, the produced gas through this experimental 

process is H�, CO, CH�, CO� and traces of C�H%, C�H� [34]. 

2.1.3.8. Thermo-chemical Hydrogen Production 

 

Thermo-chemical water decomposition has been recognised as a promising technology for the future of 

hydrogen production, which at the moment is an essential industrial service [35]. The idea is to break down 

water molecules at moderate high temperature of less than 1000°C because water molecules are stable and 

require elevated temperature to be broken thermally. The water in this method is reacted with one or more 

chemical substances that are later regenerated using a chain of cyclic thermochemical reactions. Various 

cycles may be used in thermo-chemical hydrogen production as mentioned in 2.1.3.5 [25].   

2.1.3.9. Nuclear Hydrogen Production 

 

Nuclear hydrogen production methods use water as the only feedstock, which means there would be no 

carbon emission. The efficiency of these processes (nuclear heat to hydrogen product) starts at 25% using 

available light water reactors rising up to 38% when using more efficient reactors. The application of high 

temperature reactors coupled with steam electrolysis, thermochemical process or a hybrid process will 

increase the efficiency up to 45-50%. Chemical reforming could be used along with a nuclear reactor’s heat 

to decrease the use of biomass feedstock or fossil fuel consequently resulting in the reduction of CO� 

emissions.  In table 1 below hydrogen production by the use of nuclear reactors is shown including various 

parameters involved [36]. 
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Table 1 [36]: Nuclear Hydrogen Production; Techniques and parameters. 

 Neutron 

Spectrum 
Typical sizes 

MWt/MWe 
Coolant Reactor outlet 

Coolant 

Temperature 

(°C) 

Method of 

Electricity 

Generation 

Fuel Cycles Hydrogen 

Production Pathway 

Heavy water 

Reactor 
Thermal 2000-3200 

MWt       700-
1100 MWe 

Heavy 
Water 

310-319 Steam Turbine Natural 
UO2, Low 
enriched 

UO2 

Water Electrolysis 

Light water 

reactor 
Thermal 2000-4800 

MWt       600-
1700 MWe 

Light Water 280-325 Steam Turbine UO2,       U-
Pu MOX 

Water Electrolysis 

Supercritical 

water reactor 
Thermal or 

Fast 
1600-2540 

MWt      700-
1150 MWe 

Light Water 430-625 Steam Turbine UO2, Th/U,             
U-Pu  MOX 

Water Electrolysis, 
M-T 

Thermochemical 

High 

Temperature 

Gas Reactors 

Thermal 100-600 MWt        
45-300 MWe 

Helium 750-950 Steam Turbine, 
Gas turbine 

UO2, Th/U,      
U-Pu,     

MOX,      U-
TRU,    PuO2 

Water Electrolysis, 
Steam Electrolysis, 
Thermochemical, 

Chemical Reforming 

Gas-fast 

Reactors 
Fast 600-2400 

MWt        280-
1100 MWe 

Helium 850 Steam Turbine, 
Gas turbine 

U-TRU,    U-
Pu MOX 

Water Electrolysis, 
Steam Electrolysis, 
Thermochemical, 

Chemical Reforming 

Liquid metal 

Fast Reactors 
Fast 45-3000 MWt          

20-1100 MWe 
Sodium, 

Lead, Lead 
Bismuth 

500-800 Steam Turbine, SCO�turbine 
U-Pu MOX,      

U-Pu 
Nitrides, 

MOX 
w/TRU 

Water Electrolysis, 
M-T 

Thermochemical, M-
T Methane Reform 

Molten Salt 

Reactors 
Thermal 900-2400  

MWt         400-
1200 MWe 

Salts, Li�BeF�  NaF − ZrF� 
and etc 

750-1000 Steam Turbine, SCO�turbine 
Th/U, UO2 Water Electrolysis, 

Steam Electrolysis, 
Thermochemical, 

Chemical Reforming 
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2.1.4. Hydrogen Storage and Distribution  

 

2.1.4.1. Hydrogen Storage; a literature survey  

 

Conventionally hydrogen can be stored in the form of compressed gas or alternatively as a cryogenic liquid. 

Liquefaction and compression of hydrogen gas requires a considerable amount of energy. The storage of 

hydrogen as a result of low density creates significant financial and technological challenges.  Hydrogen can 

be stored in gaseous form in a vessel with average pressure of 30 MPa, which is the pressure that most gases 

are kept in a cylinder. Hydrogen however has been recently stored under pressures of 700 bar and higher 

and this calls for a meticulous look at the material of construction for the vessel.  Aluminium alloys and 

austenitic stainless steel are appropriate choices for hydrogen storage purposes since the hydrogen is prone 

to adsorb and dissociate at the surface of materials causing embrittlement and diffusion [37].  

In 1898 J.Dewar was the first person who liquefied hydrogen. The density of liquefied gases is noticeably 

greater as opposed to compressed gases thus complicated storage systems are required for liquefied gases 

as well as special needs for handling, between 20-30% of hydrogen’s energy content is used for its 

liquefaction. Hydrogen during the liquefaction procedure is compressed to around 30 bar then cooled down 

to 80K using liquid nitrogen [38] [39].                                                                                                                                                                                         

Hydrogen liquefaction by magnetic refrigeration is an example in which ultra-cold temperatures of 1K is 

achievable with maximum liquefaction power of 25.3 W, this technique makes use of magnetocaloric effect 

meaning that the temperature of magnetic material goes up by magnetising and down by demagnetising. 

The magnetic refrigerant used in this method was a ceramic polycrystalline known as dysprosium gadolinium 

aluminium garnet (DGAG) [40].                                                                                                                                            

Physisorption in porous materials is yet another mechanism to store hydrogen in which hydrogen is 

accumulated in molecular form. Hydrogen is trapped inside the molecular structure so that it won’t 

dissociate on the surface of solid substance [41]. The examples of materials are microporous adsorbents 

such as silicon dioxide, zeolites and activated carbon [42].               

 At present hydrogen storage in solid-state materials has been inspected where a great deal of thoughts is 

given to the subject. The materials investigated include metallic, complex and destabilized hydrides, doped-

carbon based nanostructures and metal organic frameworks [43] [44].    
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Another method of hydrogen storage is hybrid storage, which requires cooling down pure hydrogen to 

below its freezing point at -259°C where liquid and solid hydrogen known as slush is obtained benefiting 

from higher energy density. Supercritical storage of hydrogen in a cryogenic tank is also a technique 

currently under consideration [38] [39].     

In 2003 Nobuhiko Takeichi et al reported the potential of a unique hybrid storage mechanism for hydrogen, 

merging an aluminium-carbon fiber reinforced plastic (Al–CFRP) composite vessel and hydrogen 

storage alloy. The calculations were done for a storage system enabling to store 5kg of hydrogen at pressure 

of nearly 35 MPa. This storage technique as concluded in their work could be ideal for on-board storage in 

fuel cell vehicles since using the proposed hybrid vessels, the volume and weight of the storage system can 

be determined by altering the volume fraction of the hydrogen storage alloy in the vessel [45].  

A concept design was also proposed by Indranil Ghosh et al for vehicle applications in which cryosorption 

storage of hydrogen gas in activated carbon was propounded.  The design includes three 0.33m in 1.4m φ 

stainless steel storages allowing the storage capacity of 3.1 kg with both adsorption and desorption 

occurring adiabatically. A temperature range of 77K can be reached simply by liquid nitrogen (LN2) at 

atmospheric pressure [46].  

One of the main technologies to store hydrogen on a commercial level is high pressure gaseous hydrogen 

storage known as HPGH2, which has been adopted by the majority of hydrogen refuelling stations globally 

[47]. Hydrogen storage for vehicular designs requires light weight HPGH2 vessels, the US Department of 

Energy (DOE) in 2003 stated the range of the gravimetric and volumetric density of on-board hydrogen 

storage systems should be no less than 6 wt% H2 and 60 kgH2/m3 in respective order to allow a driving range 

greater than 500 km on a single tank. Considering the new fuel cell vehicles introduced with different costs, 

designs and performance, the mentioned range is required to be no less than 5.5 wt% H2 and 40 

kgH2/m3 respectively by 2015 [48].   

For stationary hydrogen storage systems at present there are mainly two types known as seamless hydrogen 

storage vessel and multifunctional layered stationary (MLS) hydrogen storage vessel [47]. The first type is 

constructed from high-strength seamless tubes with maximum permitted pressure of 65 MPa and the 

volume of 0.411 m3, which requires assembly of many vessels for high storage [49].                                             

The seamless method suffers from hydrogen embrittlement at high operating pressures [50] but with the 2nd 

technique (MLS) developed by Zheng et al. featuring a flat steel ribbon wound cylinder and two double-

layered hemispherical heads, the embrittlement problem is tackled [51]. The hydrogen using the 2nd method 

could be stored with a volume of 2.5 m3 at a pressure of 77 MPa [47].   
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2.1.4.2. Hydrogen Distribution  

    

There are three main options to distribute hydrogen: 

� Pipeline and tube trailers 

� Marine and on-road transportation such as ships, barges, trucks and railway 

� High energy density carriers such as ethanol and methanol  

Hydrogen (in the form of gas or mixture of hydrogen and natural gas) can be transported using pipeline and 

tube trailers while liquefied hydrogen, since requires cryogenic tanks, could be delivered by means of ships, 

trucks and railway where careful handling and monitoring is more achievable.                                                 

Methanol and ethanol or other fuels could be used to transport hydrogen where hydrogen can be reformed 

at the destination for further use. The investigations however demonstrated that hydrogen transportation 

using pipelines is the most cost effective and energy-efficient method for large quantities of hydrogen over 

long distances [52].    

 

2.1.5. Transportation via Hydrogen Fuel 

 

In late 1920s hydrogen was used in airships when the burning of hydrogen in the internal combustion engine 

was experienced for the first time. In 1930s some 1000 vehicles renovated their internal combustion system 

to Erren’s duo system, a German engineer who discovered if hydrogen is fed directly to the combustion 

chamber at raised pressure instead of carburettor, the pre-ignition, backfire and knock (problems attributed 

to low ignition energy of hydrogen in comparison to petrol) are tackled. Aircrafts and space shuttles also use 

forms of hydrogen as fuel, in mid 1950s, a customised American B57 twin-jet bomber flew numerous 

experimental missions with one engine functioning on LH2 [53]. Later on though, it was clear that engines 

running on pure hydrogen were favoured from the viewpoint of air pollution in contrast to the dual systems.                                                                    

Introducing hydrogen as a fuel into the transportation system requires a policy or an approach varying from 

the method of transportation and geographic consideration to the technological improvements in the 

vehicle design. The hydrogen as a fuel could be initially applied to the heavy-duty cargo mode vehicles and 

eventually makes its way towards light-duty vehicles; in this approach the transfer of technology and 

subsidiary industries could be maturely and efficiently achieved and also a group of associated skills and 

practises could be developed [54].           
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2.2. Fuel Cells 

 

Fuel cell is an electrochemical device, which directly converts energy from a chemical reaction to electricity 

and heat while by-producing clean water in the process.  The electricity is generated from a fuel and oxidant 

such as hydrogen and oxygen respectively [55] [56].  In figure 6 a diagrammatic depiction of a fuel cell is 

demonstrated where ion conduction stream and the product/reactant routes throughout the cell are shown.  

         

Figure 6 [57]: A diagrammatic representation of an individual fuel cell, a common configuration. 

 

2.2.1. Fundamentals  

 

       In essence a fuel cell functions like a battery however contrary to the batteries, a fuel cell requires no 

recharging considering the fuel and oxidant are supplied.  The basic structure of most fuel cells contains an 

electrolyte layer linked with a porous anode and cathode on either side [58].  In figure 6 the electrolyte is 

made up of a thin membrane capable to conduct positive ions while filtering away electrons or neutral 

gases.  The fuel (hydrogen) and the oxidiser (oxygen), both directed by flow field plates at both sides of the 

cell, are introduced to the cell, one enters to a side of the cell and the other goes into the opposite side of 

the cell. The incoming hydrogen gas is prone to dissociate into electrons and proton as:  H� ↔  2H, + 2e-                                                     

It is favourable to coat the electrodes or membrane with catalyst to promote the above-mentioned 

dissociation, which therefore helps force the reaction to the right as the hydrogen gas liberates proton in the 

vicinity of the anode, there will be a concentration difference across the membrane between two 

electrodes, which causes the protons to travel through the membrane without electrons. This event gives 
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positive charge to the cathode with respect to anode.  The left-behind electrons are then attracted towards 

positively charged cathode but since they cannot move through the membrane, they are to take another 

path. The electrons will take another route if an external circuit is created between electrodes. This flow of 

electrons through the exterior circuit brings energy to the load, as the electrons move from anode to the 

cathode, the current (I) direction, which is conventionally opposite to that of electrons, is from cathode to 

anode [57].  

A single cell as shown in figure 6 produces 0.5V and 1V under normal operating conditions and open circuit 

conditions in respective order.  Cell stacks are introduced to increase the voltage, to do this, gas flow plates 

within the stack are designed in such way to be bipolar meaning that they transport both hydrogen and 

oxygen used by neighbouring cells as shown in figure 7 [57].  

   

Figure 7 [59]: A multicell stack.  

 

2.2.2. Thermodynamic considerations  

 

Thermodynamics as we are familiar with is the science of energy conversion from one form to another, 

which entails objectives such as heat generation or work to be done. This could be implemented in forms of 

electrical or mechanical energies.  The energy is supplied from a fuel resource within which the energy is 

encapsulated in a chemical form and can be released via chemical reactions using devices such as heat 

engines and fuel cells and then converted to electricity or heat. The heat and electricity can be converted to 

work using devices such as turbine and electrical circuit or an electromagnetic device (i.e. a motor) 

respectively [60].The anode and cathode half-cell reactions for the fuel cell represented in figure 6 are as 

follows: 

Anode:      H� → 2H, + 2e-
                                                              (4)                                                                                                               

Cathode:   
.
� O� + 2H, + 2e- → H�O                                          (5)             
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When the half reactions are combined, the outcome is the reaction for combustion of hydrogen as we have:       

H� + .
� O� → H�O + Heat                                                                    (6) 

The reaction shown in equation 6 happens spontaneously as it is exothermic therefore it releases heat. 

Hydrogen and oxygen in the above reaction readily react to form water while generating a certain amount of 

energy, which is used by fuel cell to distribute electrical energy to its load. In order to find the amount of 

energy released in the reaction and also the amount converted to electrical energy, three thermodynamic 

quantities need to be understood: entropy, enthalpy and free energy [59].  

2.2.2.1. Entropy    

 

Entropy is “A thermodynamic function defined such that when a small quantity of heat dQ is received by a 

system at temperature T, the entropy of the system is increased by dQ /T, provided that no irreversible 

change takes place in the system’’ [61]. The concept of entropy is better appreciated when come across 

engineering processes as it is a rather complicated property, which is hard to define physically. The second 

law of thermodynamics guides towards the definition of entropy.                                                                      

Time and again the 2nd law of thermodynamics leads to the terms that include inequalities, for instance a 

reversible heat engine is more efficient than an irreversible one running between the same two thermal 

energy sinks [62]. Entropy “can be described as a measure of molecular disorder, or molecular randomness” 

[63], as a system becomes more disordered the positions of the molecules become less predictable and the 

entropy increases [62]. Entropy in a fuel cell helps understand how much energy is directly converted to 

electricity while another thermodynamic property known as enthalpy could be used to know what amount 

of energy is released in a fuel cell.  In addition to that entropy assists in developing the maximum efficiency 

of a fuel cell [64]. Additional information on the entropy can be found on page 2, Appendix I in the CD 

provided.          

2.2.2.2. Enthalpy           

 

The enthalpy of a material is characterised as the product of its pressure P, Volume V and the sum of its 

internal energy (U), which can be written as: Enthalpy H = U + PV and usually has the unit of KJ of energy 

per mole of substance [59]. In some textbooks the term E is commonly used instead of U representing the 

energy. Enthalpy is in particular useful for constant pressure processes [61]. The internal energy (U) of a 

substance is defined as inclusive sum of kinetic energies of molecules and also energies related to 

intermolecular forces between molecules and atoms inside the molecules and atoms. This is referred to as 

microscopic properties. In other words enthalpy is considered as a scale of energy that it takes to constitute 

a matter from its component parts [59].                                                                                                                     
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Enthalpy of formation is known to be the enthalpy change for the reaction when a substance formation is 

from its constituent elements [61] or it is the difference between the enthalpy of a substance and the 

enthalpies of its elements. The maximum possible fuel efficiency could be determined using the absolute 

entropy S°, enthalpy and Gibbs free energy G° [59].  

2.2.2.3. Gibbs Free Energy   

 

In a chemical reaction like the one occurring in a fuel cell, the chemical energy liberated can be considered 

as having two fractions; one as entropy-free, named free energy (∆G), which can directly be converted to 

mechanical or electrical work and the 2nd part that must appear as heat (Q).  The free energy (G) is the 

difference between the enthalpy (H) produced by the chemical reaction and the heat that needs to be 

released; Q = T∆S, this is to be consistent with the 2nd law.                                                                                                   

The Gibbs free energy is associated with the maximum possible entropy-free mechanical or electrical yield 

from a chemical reaction and can be found by subtracting the sum of Gibbs free energies of reactants and 

products: 

∆G = ∑ G=>?@ABCD − ∑ GEFGBCG�CD                                                            (7)                

It can be inferred from equation 7 that the maximum possible efficiency is the fraction of Gibbs free energy 

to enthalpy change �∆H� in the chemical reaction [65]:  

ηIGJ = ∆K
∆L                                                                                                                        (8) 
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2.2.3. Type of fuel cells 

 

Fuel cells can be categorised according to temperature, pressure or simply type of fuel or oxidant they use 

however for the sake of practicality fuel cells are now classified by the type of electrolyte they use.  The 

types mentioned and frequently used in publications are as follows: Alkaline Fuel Cell (AFC), Phosphoric Acid 

Fuel Cell (PAFC), Molten Carbonate Fuel Cell (MCFC), Solid Oxide Fuel Cell (SOFC), Proton Exchange 

Membrane Fuel Cell (PEMFC) and Direct Methanol Fuel Cell (DMFC).  Zinc Air Fuel Cell (ZAFC), Protonic 

Ceramic Fuel Cell (PCFC) and microbial Fuel Cell (MFC) are other types of fuel cells [66] [67]. In table 2 below 

a brief illustration of the types of fuel cells and their key properties can be found.  

Table 2: Type of Fuel Cells  and their applications [66], [67]. 

Fuel Cell System Area of purpose Efficiency (cell) Electrolyte Temperature range 

Alkaline Fuel Cell (AFC) 
Space and traction 

applications 
50-60% 30-50% KOH 60-90°C 

Solid Oxide Fuel Cell  

(SOFC) 
Power generation 55-65% 

Yttrium-stabilized 
Zirkondioxide 
(ZrO�/Y�O
) 

800-1000°C 

Polymer Electrolyte 

Fuel Cell (PEFC) 

Traction and space 
applications 

50-60% 
Polymer membrane 

(Nafion, Dow) 
50-80°C 

Phosphoric Acid Fuel 

Cell (PAFC) 

Mostly dispersed 
power applications        
( 50-500KW, 1MW, 

5MW, 11MW) 

55% 
Concentrated 

phosphoric acid 
160-220°C 

Molten Carbonate Fuel 

Cell (MCFC) 
Power generation 60-65% 

Molten Carbonate 
melts (Li�CO
/Na�CO
) 

620-660°C 

Direct Methanol Fuel 

Cell (DMFC) 

Small scale and military 
applications 

40% Polymer membrane 120-190°F≈49-90°C 

Zinc Air Fuel Cell (ZAFC) 

[68] 
- - Ceramic 700°C 

Protonic Ceramic Fuel 

Cell (PCFC) 
Power generation - 

Solid electrolyte 
(Ceramic) 

N/A 

Microbial Fuel Cell 

(MFC) 

Wastewater treatment 
and medical 
applications 

50% - 20-40°C 

Proton Exchange 

Membrane Fuel Cell 

(PEMFC) 

Transport, portable 
and immobile 
applications 

40-60% Polymer Membrane 20-80°C 
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2.3. Electrolysis 

 

Electrolysis can be referred to as the dissociation of ions of a solution by passing a direct current through the 

electrodes, which results in generation of positively and negatively charged ions. The electric current is used 

to make a chemical reaction (at the electrode), which does not occur under normal circumstances.                                                                                                          

Electrolysis in other words is the decomposition of a material caused by passing a DC between two 

electrodes submerged in a sample solution [69] . More technically referring to the electrolysis, this process 

entails passing a current through a cell to chemically change the electrolyte through detachment of ions 

where the cell potential is negative. This means that the electricity causes a chemical reaction to occur, 

which would otherwise be non-spontaneous. Oxygen and Hydrogen readily react to produce water where 

energy is released (in a fuel cell for instance), the reverse process however requires input energy and can be 

done through electrolysis. The reactions at the anode and cathode are [70]:         

      Anode:  2H2O          O2+ 4H++ 4e_                                                                                E°= -1.23V  

      Cathode: 4 H2O+ 4e_            2H2+4OH_                                                                         E°= -0.83V  

Total Reaction: 6H2O           2H2+O2+4(H++OH_) or  2H2O             2H2+ O2                  E°= -2.07V                 

It must be noted that the potentials mentioned above are assumption for when the molar concentrations of 

H+ and OH_ are one. In figure 8 a representative electrolytic cell is shown.  

   

Figure 8 [6]: Schematic presentation of basic water electrolysis. 
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Here are anode and cathode reactions written differently: 

At the Anode:   H�O�l� ⇔ 2H, + .
� O� + 2e        E°P�?@F �25°C� = 1.23V 

At the Cathode:  2H, + 2e ⇔ H�                          E°TGCU?@F�25°C� = 0V 

The Net Reaction:   H�O�l� ⇔ H� + .
� O�            E°TFWW�25°C� = 1.23V 

There is a minimum potential requirement before water molecules decompose, which is determined by 

chemical potential of gases or liquids at each electrode. The current in an electrolysis process is directly 

proportional to hydrogen production rate, which is itself enhanced by increased applied potential.  The 

electricity consumption in an electrolysis process depends on the potential used in order to produce 

reasonable amount of hydrogen. In electrolysis the overall Gibbs free energy (ΔG) between products and 

reactants, is affected by change in potential and current, which are themselves function of temperature and 

concentration. The electrolysis potential (E) can be found using Nernst equation in terms of mole of 

electrons transferred (n), Faraday constant (F) and change in Gibbs free energy [71].  The equation is: 

X = YZ
[\                                                                               (9) 

 In water electrolysis at potentials greater than 1.48V, thermoneutral voltage relates to the High Heating 

Value (HHV) of hydrogen (142 MJ/kg H2) [equivalent to the enthalpy of water decomposition (286 KJ/
mole, H�O)] while the minimum work (voltage) necessary for water decomposition at 1 atm and 300K is 

237 Kj mole,⁄  H�O or 1.23V corresponding to the hydrogen production rate of 32.6 kWh kg⁄ . Water 

electrolysis for current electrolysers is an exothermic process generating in excess of 7 kWh kg ,⁄ H� [71].  

In water electrolysis the activation overpotentials of cathode and anode are usually different to one another, 

which demonstrate their distinctive catalytic activities while these activities do not decide the ratio of 

electrochemical reaction rate on cathode to anode but this ratio is determined by the stoichiometric ratio 

only.  The reason behind this may be that in an electrolytic process the electric current passing through the 

anode is always identical to that of cathode.                                                                                                                  

The hydrogen and oxygen production rates may be represented with the equations below in respective 

order [72]: 

  NLfg hP
�i ,  Njfg hP

�i    

Where NLf and Njf are the hydrogen and oxygen producing rates (mol. S-1), J is the current density (A cm-2), 

A is surface area cm2 and F is Faraday’s constant (96485 C mol-1) 
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A basic electrolyser includes cathode, anode and an electrolyte and the direction of electron movement is 

from anode to cathode considering that the oxidation takes place in anode and reduction in cathode.            

The water electrolysis is said to be divided into the three methods within each the conduction of one ionic 

species occur across the electrolyte [73]:  

� Liquid Alkaline Electrolytes in which hydroxide (OH-) is transferred  (classic alkaline electrolysis cell) 

� Proton Exchange membranes in which protons (H+) are transported  (PEM electrolysis) 

� Ceramic Solid Oxide membranes in which Oxygen ions (O-2) are conduced ( Steam electrolysis)  

 

The PEM electrolysis uses very pure water in the process. Potassium hydroxide, which is usually used in 

alkaline water electrolysis, is replaced by a proton conducting polymer membrane hence the problem of 

corrosion is tackled. In this type of electrolysis, hydrated protons are directed through the polymer 

electrolyte (such as perfluorosulfonic acid polymer). Active notable metal catalysts are required for this 

electrolysis in order to achieve high exchange current densities at room temperature [71]. 

Steam electrolysis on the other hand employs solid oxide electrolytes such as doped ZrO2. In technique 

electrode reactions, unlike other electrolysis approaches, happens between gas phase reactants and 

crystalline ionic solids. The temperature range at which the reactions occur is between 1000 and 1200K. The 

steam electrolysis is rather in rudimentary stages of development compared to alkaline water electrolysis 

and PEM electrolysis and there is great potential for improvement [71].                                                                       

In 1800 Shortly after Alessandro Volta invented the voltaic cell, Nicholson and Carlisle discovered electrolysis 

but since the knowledge of the time was limited, it took about 100 years for scientists to introduce the first 

industrial electrolyser. In the meantime the foundations for water electrolysis have been improved 

throughout the understanding of thermodynamic (enthalpy, entropy) and other fundamental 

electrochemical terms such as potential, overpotenial and decomposition voltage.   

Today the majority of industrial electrolysers operate with the energy requirement of 4.5 − 5 kWh/m
  H� 

[74], [75] and can produce hydrogen with the efficiency of about 73% [76] and energy efficiency of between 

40-60%.The Industrial water electrolysers are considered to produce 244,440 Nm
 year⁄  [6]. 
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2.3.1. Commercial use of Electrolysis  

 

The most popular commercial electrolytic processes are: 

• Production of aluminium  

• Electro-refining of metals  

• Metal plating 

• Electrolysis of sodium chloride                                                                                

Sodium metal is largely produced through the electrolysis of molten sodium chloride. In order to produce 

sodium, CaCl2 is mixed with NaCl to decrease the high melting point of sodium chloride down to 600° C, 

which was originally 800°C. In figure 9 the electrolysis of this mixture in a Downs cell is shown [70].  

 

Figure 9 [70]: Downs Cell. 

 

Anode Reaction               2Cl- → Cl� + 2e- 

Cathode Reaction            Na, + e- → Na 

    

Metal Plating is another useful application to protect the readily corroded metals by coating a thin film of 

corrosion-resistant metal. The examples are silver plating of a spoon, tin coating of steel cans (known as tin 

cans) and chrome plating of steel car bumpers. An item can be plated when used as the cathode in a tank 

within which there are ions of plating metal.  
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Purification of metals can also be made through the electrolysis when there is aqueous copper sulphate as 

the electrolyte, thin slips of ultrapure copper as cathode and impure copper is cast into large slabs where 

they act as anodes for an electrolytic cell.  This is an example of metal electrorefining.                                                

In this procedure (metal electro-refining) an electric current is applied between the impure metal sample 

and a cathode as both are submerged in a solution within which exist the cations of the metal. Metal is then 

stripped off the impure sample and placed in pure form on the cathode [77]. Iron and Zinc can also be 

oxidised from impure anode [70].                                                                                    

Hydrogen can be produced as a by-product via hall-Heroult cell.  This cell is used to produce aluminium 

worldwide.   Aluminium is the 3rd most plentiful element on earth and can be found in nature in its oxide 

form known as bauxite [70]. This process is schematically shown in figure 10. 

    

Figure 10 [78]: The Hall-Heroult Cell. 

 

This is a process in which the conversion of alumina to aluminium occurs through electrolytic reduction in a 

molten bath of natural and synthetic cryolite. The energy consumption per ton of produced aluminium is 13-

17 MWh [79]. Cryolite is a monoclinic mineral with the chemistry of Na
AlF% known as sodium aluminium 

fluoride [80].   

In this section the electrolysis was defined and the principles were explained in brief along with the 

commercial use of electrolysis.  The Nernst equation (equation 9 on page 31) was introduced with which the 

potential of an electrolysis cell can be calculated, this is a key equation in the electrolysis and 

electrochemistry. In the next section the principles of electrochemistry are discussed and Nernst equation 

will be explained in more details. The important electrochemical topics such as decomposition potential and 

overpotential are also talked over in addition to the methods to calculate these potentials.      
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2.4. Electrochemistry 

 

The know-how of interconversion of electrical and chemical energies came to utilisation around mid-19th 

century. Chemical energy is converted to electricity through batteries, fuel cells and corrosion processes 

while the reverse, proceeds in electrolysis, electroplating and etc. The basic foundations (voltage, current, 

capacitance, concentration and etc.) for electrochemical phenomena were explicated through empirical 

observations by Michael Faraday and other European scientists before electron was discovered in 1893 and 

development of chemical thermodynamics in 1923. Potentiometry and polarography were introduced in 

1920 and 1930 respectively. They are related to electrochemical phenomena and use of this phenomenon 

for molecule analysis and thermodynamic characterisation. Relationships that portray the two mentioned 

techniques are directly rooted from solution thermodynamics. As for polarography there is a further reliance 

on the diffusion of ionic species in solution. The latter is the foundation of conductivity measurements.           

The quantitative relationships allowed applying electrochemistry to the comprehensive range of chemical 

species and processes in the solution phase [81].                                                                                                              

Electrochemistry includes chemical facts correlated to charge separation and consequently charge transfer.  

The occurrence of this charge transfer could be homogenous in solution or heterogeneous on the electrode 

surface [82].                                                                                                                                                            

Electrochemistry is a division of chemistry corresponding to the electric current, potentials and chemical 

reactions with some reactions being spontaneous and electricity-productive just as batteries while others 

need electricity to develop such as electrolysis [83]. In 1800 Alessandro Volta devised the first battery called 

Voltaic pile, which was made of copper and zinc disks separated by paper bathed with acid solutions. The 

development towards today’s electrochemistry was made feasible through the discovery of a sustainable 

source of electrical current. Michael Faraday definitively described concepts such as anode, cathode, 

electrolyte, electrode and ion before 1835, which made electrochemistry practically definable. The idea of 

negative and positive mathematical symbols on charges is accredited to Benjamin Franklin while earlier on 

Charles-François de Cisternay speculated the existence of only two kinds of electrical charges [84].                 

2.4.1. Principles of Electrochemistry     

2.4.1.1. Nernst Equation 

 

 Nernst equation is used in electrochemistry to establish the equilibrium potential of a cell engaged with a 

reversible system applicable at the surface of the electrode. Let’s consider a simple redox reaction: 

O + ne- ⇌ R 
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The Nernst equations are therefore: 

E = E?m + En
�i ln T∗p

T∗q                                                   (10) 

E = E? + En
�i ln Gp

Gq                                                      (11) 

Where E0(V) is the standard potential, E0’ is the formal potential, C*(mol L-1) is the bulk concentration for the 

specified element, subscripts O and R refer to oxidised and reduced species, a (mol L-1) is the activity, R is the 

universal gas constant (JK-1mol-1) and F is Faraday’s constant (C/mol). The value of formal potential depends 

on the properties of supporting electrolyte and solvent [85].  A reduction example could be considered at 

which reduction reaction occurs for a platinum solution (pt2+) and solid platinum electrode with the molar 

concentration of 1mM. We thus have: 

Pt�, + 2e- ⇌ Pt 
The voltage drop over the above system can now be calculated through the Nernst equation, as can be seen 

above the reduced product is a solid with unit activity; the activity for very dilute solution (1mM), which is 

the same as the concentration, hence using equation 11: 

E = 1.188V + En
�i ln r.rr.

. = 1.099V  The SEP (Standard Electrode Potential) for platinum is 1.188 and the 

temperature is 25°C. The half-reaction voltage is 1.1V [85].    

In an electrochemical system, the electrochemical reaction at one electrode occurs if the reaction proceeds 

at the other electrode, this is to say that a half reaction cannot occur on its own and there is always a 

reducer and oxidiser (i.e. electron donor and electron acceptor respectively). It is possible to measure 

potential difference between different half cells with respect to reference electrodes [86].  

The half-cell potentials may be calculated with respect to a standard reference half-cell (standard hydrogen 

electrode or SHE) that is given the arbitrary value of 0.0V. The standard potential (Er) is defined as a 

potential of a half cell at unit activity with respect to the standard hydrogen electrode.  This activity of a half 

cell depends on concentration and temperature. The relations between E and Er can be found using Nernst 

equation where E may be related to the standard potential [86]. 

For a half cell reaction aOx + ne- ⇌ bRed                                                                                                                 

Therefore Nernst equation can be written as below, which is the same as equation 10 and 11:   

X = Xv − w�. xv� yz
[\{ |}~�v �y����

�����                                                                                                  (12) 
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Where F is faraday constant, T is temperature in Kelvin, n is number of moles and R is gas constant, the 

symbol ‘Red’ denotes reduced and Ox stands for oxidised species.   

2.4.1.2. Electrode Reactions  

 

The reaction between electrodes and the solution is subject to occurrence at the interfacial area between 

electrode and electrolyte where charge distribution is different than that of bulk. Electrode reactions are 

known to be heterogeneous, at each electrode charge transfer and its difficulty can be characterised by 

capacitance and resistance respectively. The electrode can perform the role of a sink (for oxidation) of 

electrons transferred to or from species in solution and a source (for reduction). 

In   equation  A + ne- → B, A and B are oxidised and reduced species respectively, on the other hand the 

electrode can contribute to the electrode reaction as in dissolution of metal X we have: 

X → X�, + ne- 

There should always be consistency between the energies of electron orbitals where transfer takes place in 

the donor and acceptor, in the electrode this level is the highest filled orbital. This is known as a Fermi 

energy level in a metal symbolised as EF, this is different in soluble kinds and it is the orbital of valence 

electron to be received or given, therefore the following points can be concluded accordingly: [82]  

1. Before the occurrence of electron transfer for a reduction reaction, there is a minimum energy requirement 

for the transferable electrons from the electrode. This corresponds to a suitably negative potential in volts. 

2. For an oxidation reaction, there is a maximum energy threshold for the lowest unoccupied level in the 

electrode in order to accept electrons from the species in solution. This corresponds to adequately positive 

potential in volts.                                                                                                        

The external control of potential values is possible through which the extent and direction of electrode 

reaction can be managed reasonably [82].   

   2.4.1.2.1 Kinetics and Thermodynamics 

 

The electrode reactions by convention are half reactions articulated as reductions with which is correlated a 

standard electrode potential E0, which is measured in relation to the normal hydrogen electrode (NHE). The 

Nernst Equation can relate standard electrode potential to the potential E at equilibrium for half-reactions.  

    E = E⦵ − En
�i ∑ v� ln a�                                                         (13) 

Where a� is activity, which is equal to 1 with all species for dilute solutions only, v� is the stoichiometric 

numbers negative for oxidised species or reagents and positive for reduced species or products.  
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The propensity for the reaction to happen is given by equation 14 relative to the normal hydrogen electrode 

reference under standard conditions [82].    

   ΔG⦵ = −nFE⦵
                                                                     (14) 

The Nernst Equation can be written in terms of concentration where we have a�=  γ�c�  

    E = E⦵m − En
�i ∑ v� ln c�                                                    (15) 

Where E⦵m is the formal potential depending on the medium and γ� the activity coefficient of species i. 

The formal potential depends on the medium because it is inclusive of the term E and also logarithmic 

activity coefficient terms. The Nernst equation is applicable when there is equilibrium at the electrode 

surface between oxidised and reduced species engaged in an electrode reaction.                                                                                                       

This electrode reaction is consequently known as a reversible one as it complies with the condition of 

thermodynamic reversibility.  The mass transport of the species from the bulk determines their 

concentration at the interface, which is typically defined as mass transfer coefficient (k@). A reaction is 

reversible when the rate of electrode reaction is significantly faster than that of mass transport. This rate or 

kinetics is standardised by a rate constant; k0 which is when E0=E0’, therefore for a reversible reaction we 

have K0>>k@.                                                                                                                                                                         

On the contrary for the opposite case, an irreversible reaction, the electrode reaction cannot be reversed. In 

this case a strong kinetic obstacle must be conquered. This could be done by use of an extra potential known 

as overpotential, for this we have K0<<k@. 

There is the 3rd case known as quasi-reversible reaction whose behaviour is transitional between reversible 

and irreversible reactions. The overpotential in this case has a small value and with the aid of this additional 

potential reaction can be reversed. The rate constant for an electrode reaction depends on the potential and 

can be written for oxidation and reduction reactions as follow:                

   KB = Krexp �−αBnF��-���
En ��                                          (16) 

   KG = Krexp �αGnF��-���
En ��                                        (17) 

 

Equation 16 is for reduction and equation 17 is designed for oxidation.  In the above equations αB and ∝G are 

cathodic and anodic charge transfer coefficients, which also act as a measure for the activation barrier. 

Another way to illustrate the rate of electrode reaction is in the course of the current exchange ( I0), which is 

defined as the scale or extent of the partial current at the anode or cathode at the equilibrium potential 

(E��). Empirically speaking, the rates of electrode reactions are determined as the current passed to which 
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they are directly relative.  In equations above R is gas constant, E is the cell potential, E0’ is the formal 

potential, n is number of moles transferred and T is temperature in kelvin. 

2.4.2. Electrochemical Terms 

 

2.4.2.1. Decomposition Potential  

 

Decomposition voltage (ED) is expressed as ‘The minimum potential difference, which must be applied 

between two electrodes before the currents flows and decomposition happens’. The values of 

decomposition voltages can be determined using a graph of current vs. cell voltage, this graph provides the 

decomposition curve, which then leads to the calculation of decomposition voltages. 

 Experimentally this value may be calculated finding the equation of the line for a graph of current versus 

voltage when y=0 the value of x in the equation equals to the decomposition potential.  This means the 

extrapolation of 2nd branch of graph back to zero current [87].  For instance the decomposition potential for 

0.1M KOH experiment in the presence of the ultrasound and electrode active length of 10 cm is as follows 

(The relevant graph can be found in the appendix V, page 121 on figure 4): 

Finding the equation of the line (current- voltage graph) for this experiment, which is y = 54.2x − 96,       

the value of x gives us the decomposition potential when y=0, therefore E� = 1.77volts   

The overpotential of a system may be calculated via equation below; 

η = E� − EEF�TFWW                                                                     (18) 

Where η is the overpotential in volts, E� is the decomposition potential and EEF�TFWW  is the reversible potential 

with the value equals to 1.23 volts for pure water and can be found using Nernst equation (equations 10-12 

on page 36) for different temperatures and concentrations [87] . While we have: 

EEF�TFWW =∣ EEF�,T − EEF�,G ∣                                               (19)                                                                                                                            

Where EEF�,T and EEF�,G  are the reversible potential of cathode and anode in respective order.  
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2.4.2.2. Overpotential 

 

Overpotential [η (V)] is referred to as the divergence of electrode cell potential from its value at equilibrium, 

which can be negative or positive. The equations 18 and 19 introduced in 2.4.2.1 can be used to calculate 

overpotential  [88]. Anode and cathode overpotentials can also be found separately from the equation 20 

and 21 in this section.  

The term polarisation is defined as a voltage loss or overpotential that is correlated to current density [89]. 

There are three main kinds of overpotential namely as activation, resistance (Ohmic) and concentrations 

overpotentials.  

 The activation overpotential is established based on the activation energy or Gibbs energy and is denoted by 

the symbol (ηG). This means that in order for an electrochemical reaction to advance, the activation 

overpotential, which is an energy barrier, must be overcome.  This type of overpotential can have various 

values rooted from different types of electrode and also gases evolving on the electrodes [90]. For instance 

hydrogen and oxygen gas produced at the electrodes have the respective overpotential values of:  -0.62V 

and +0.95V [91] [92].           

Resistance overpotential or Ohmic polarisation is another type, which proposes that all materials except 

superconductors deliver resistance to charge transfer and this can be explained using Ohm’s law. In an 

electrolytic process there are ionic and electronic resistivities that respectively manipulate oxide-ion transfer 

through the electrolyte and transport of electrons through the electrodes [93].    

Concentration overpotential is another type explained and is a significant effect resulted from concentration 

variation in the locality of electrode surface caused by electrochemical reactions taking place in the 

neighbourhood. Concentration overpotential is denoted by symbol ηC [94].                                                                                                    

In order to evaluate the overpotential of an electrolytic cell, there are two methods of decomposition 

voltage (sections 2.4.2.1 and 2.4.2.2) and discharge potential presented in section 2.4.2.3 [87].   

2.4.2.2.1. Hydrogen and oxygen generation Overpotential 

 

Hydrogen evolution reaction mechanism is in the following form including the formation of adsorbed 

hydrogen followed by either chemical desorption or electrochemical desorption [6]: 

H, + e- → HP@ 

2HP@ → H�   (Chemical Desorption) 

H, + e- + HP@ → H�  (Electrochemical Desorption) 
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Where subscript ‘Ad’ denotes the adsorbed position. 

The overpotential can also be calculated for hydrogen and oxygen separately using Tafel equation, the 

hydrogen overpotential can be found via: 

�����}�� = �. x yz
�\ |}~ �

�v                                                                       (20) 

Where ir is the exchange current density of reaction, R is the universal gas constant (8314 JK-.mol-. ), T is 

temperature in kelvin, � is transit (transfer) coefficient (dimensionless), F (96,485 C/mole) faraday constant 

and i is the current (amperes).  

 The oxygen overpotential can also be found using the Tafel equation: 

��[}�� = �. x yz
��-��\ |}~ �

�v                                                                  (21)                             

Tafel equation is the linear relationship between the overpotential and logarithm of current density [6].            

The logarithmic form of I (current) and potential make a linear relationship [82].Tafel equation in other word 

is a bridge that connects applied overpotential to the current i, which travels through the circuit. Here is 

Tafel equation [87]: 

              η = �.
En
�i log ir − �.
En

�i log i                                                  (22) 

Tafel equation then can be written in the form: 

η = a + b log i                                                                               (23) 

In the equation 23 a and b are constant, which can be deduced from equation 22. Tafel plots (graph of 

log ⃓i⃓  vs η) are made up of a cathodic and anodic branch for negative and positive overpotentials 

respectively. In order to find out the transfer coefficient α, the slope of a linear area on the plot is 

considered to calculate reduction and oxidation slopes [87] [88]. Tafel equation however has restrictions for 

applicability, equation 23 can be applied if a number of assumptions are satisfied for a system including [95]:  

• Negligible ohmic potential drop  

• Uniform current density otherwise only point-to-point overpotetnial could be calculated   

• Large overpotential for the reaction hence the following relation applies⃒ η b⁄ ⃒ ≥ 1    

• Suppression of the diffuse double layer by a large excess of supporting electrolyte.  

• Small current density in contrast to the mass-transfer limited current density  

The application of Tafel equation to an electrolytic system requires three-electrode electrolysis system  and 

potentiostatic experiments to be done in order to find exchange current density (ir). This way anode and 

cathode half-cell reactions can be studied independently and irrespective of one another.  
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2.4.2.3. Discharge Potential  

 

In this technique an understanding of electrode reactions is required in a potentiostatic manner. 

Potentiostatic refers to a technique in which the electrode potential is kept constant, it is called 

potentiostatic Coulometry [96]. In order to find the anodic discharge potential (E@G) and cathodic discharge 

potential (E@B), curves for the cathode and anode are plotted separately then extrapolated to give the values 

of  E@G and E@B.The sum of anode and cathode overpotential may be written as [87]: 

Where E@G and E@B are the decomposition potential of anode and cathode respectively. 

anode overpotential� ηG� = E@G − E>F�,G                                      (24) 

cathode overpotential� ηB� = E@B − E>F�,B                                 (25) 

Where E>F�,T and E>F�,G  are the reversible potential of cathode and anode in respective order. 

Therefore the overpotential of a system may be found via the following equations: 

η = ηP�?@F + ηTGCU?@F                                                                             (26) 

Anode and cathode overpotentials may be calculated using equations 27 and 28 [87]: 

ηP�?@F = ηP,G + ηT,G + ηE,G                                                                      (27) 

ηTGCU?@F = ηP,B + ηT,B + ηE,B                                                                  (28)  

Where η is the overpotential, subscript A is the activation, C is the concentration and R is resistance whist 

subscripts a and c stand for anode and cathode respectively.   

 

 

2.5. Ultrasound 

 

2.5.1. Principles  

 

Sound waves are defined as longitudinal pressure waves travelling through a substance.  Ultrasound is a 

term applied to the sound waves above the frequency at which human ears are capable of hearing.  Human 

hearing is ranged between 20 Hz to approximately 20 kHz.  The ultrasonic band can be grouped into two 

sections including diagnostic ultrasound and power ultrasound where power ultrasound has a frequency 

range between 20 kHz and 1 MHz while diagnostic one goes above 1MHz [97].  In the figure provided below 

(figure 11) the spectrum of sound is demonstrated in a definitive diagram.  
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Figure 11 [97]: The classification of sound spectrum.  

The ultrasound is a pressure wave with a high frequency, which generates spots of low and high pressures 

within a medium when moving through it. This pressure generally known as acoustic pressure depends on 

the energy input to the system. This sound wave creates steady streaming when going through viscous 

medium such as water hence scattering the energy in the form of viscous flow. The type of resultant flow is 

dependent on two factors;                                                                                                                                               

First one is the shape of original acoustic wave and second factor is the occurrence of either following 

circumstances; reflection of pressure wave from the hard surfaces or its interaction with the system 

boundary [98]. It is noted that the ultrasound at higher frequency results in enhanced energy absorption 

thus larger acoustic streaming flow rates compared to the case where lower frequency is used for the same 

power intensity [97].                                                                                                                                                                                                      

This streaming phenomenon and consequent pressure changes can be tolerated in mediums such as air as 

they are more compressible and elastic compared to the liquids, in liquids such as water though at 

sufficiently high pressures, the liquid can be ruptured affected by ultrasound leading to the formation of gas 

and vapour micro bubbles. These Microbubbles act as a relief valve of the tensile stresses built up by the 

pressure wave. This event would occur under high acoustic pressure variation of up to 3000 MPa 

nevertheless the formation of these micro bubbles could occur at moderately mild acoustic pressures that 

are because some gas cavities or nanobubbles exist in any liquid and this helps formation of microbubbles.  

The process of bubble development/creation is called cavitation. The created bubbles during the course of 

cavitation will expand first and then collapse, influenced by the sound fields creating a cycle of 

expansion/collapse in the form of a sinusoidal cycle.  The expansion and collapse of the bubbles depend on 

the bubble size and also acoustic pressure as for some specific bubble sizes and acoustic pressures the 

expansion period is elongated and followed by an aggressive collapse known as the inertial cavitation. The 

cavitation is called stable or repetitive transient when this bubble oscillation can hold up to hundreds of 

acoustic cycles.  Another type of cavitation occurs at low frequencies (20-100 kHz) and high amplitudes as 

the bubbles collapse in the period of only few acoustic cycles and the bubbles keep disintegrating to smaller 

bubbles, this type is referred to as unstable or transient cavitation [97].        
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2.5.2. Cavitation Microstreaming 

                                                                                                                                                                                              

There is another phenomenon known as cavitation microstreaming, which occurs when large bubbles are 

formed either through coalescence of small bubbles or growth of large bubbles during expansion phase. The 

process is called rectified diffusion, which takes place over a great number of acoustic cycles, since the 

interfacial area is great and mass transfer boundary layer is thinner throughout the bubble expansion rather 

than bubble collapse therefore more air is allowed into a bubble during the expansion phase while lesser air 

leaks out during the collapse period, which causes the growth of large bubbles. The large bubbles may even 

drift away from the sonication zone by the act of gravity. In addition to that, the pressure and velocity in the 

neighbouring fluid fluctuates as a result of bubbles bouncing up and down in an oscillatory movement and 

this is known as cavitation microstreaming.  High pressures of up to 100MPa can be observed when a bubble 

collapses in the course of a transient or repetitive transient cavitation [97].                                     

There is a great resistance to heat and mass transfer at fluid-fluid and fluid-solid boundary layer, this 

resistance could be overcome by focusing the distribution of acoustic energy in these regions. Ultrasound is 

very influential in enhancing the heat and mass transfer within a medium being under sonication [99] [100]. 

The ultrasound is less effective at high temperatures above ambient point [101] as raising up the external 

temperature increases the water vapour pressure within the bubbles being cavitated and this water vapour 

act as a pillow to mitigate the bubble collapse, which is why the ultrasonic field is less effectual [97].     

There are chemical and physical effects involved with ultrasound at various frequencies. Chemical effects 

can be seen more dominantly than physical at frequencies between 200-500 kHz known as intermediate 

frequency and this is because the number of active bubbles formed is higher than low frequencies (20-100 

kHz) however physical effects can still be spotted.  The chemical effects contain the chemical changes in 

vapour phase, cavitation bubbles and the surrounding medium such as primary radical formation as a result 

of high temperature within a bubble at the instant of breakage, localised temperatures of up to 5000K and 

greater exist when a bubble collapses violently. The physical effects include the enhanced turbulence in the 

fluid at low frequencies, which strongly exist at the interfaces and system boundaries [97].      
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2.6. Electrolysis; a literature survey 

 

Water electrolysis is a well-known technology and a process to produce pure hydrogen with minimal impact 

on the environment but still not a cost effective technique since it requires high energy to proceed. The 

energy requirement (electricity) for the water electrolysis has been mentioned in the literature [74], [75] 

4.5 − 5 kWh/m
, H� for the majority of industrial electrolysers. The electricity is expensive in most 

countries and considering that the electricity has an average production efficiency of 30-40%, the overall 

efficiency of the electrolysers is usually below 40%. The solution is to lower the price or the electricity or 

alternatively reduce the energy requirement for this technique through the reduction of resistances in the 

process such as electrical and electrochemical, development of new electrode materials or refine cell 

geometry [74], [75].  

Currently about 4-5% of hydrogen produced in the world is through water electrolysis, about 48% from 

steam methane reforming, oil reforming accounts for 30% and 18% belongs to coal gasification [102]. The 

reason to this low percentage (4-5%) is rather evident; large ohmic voltage losses and high overpotentials. 

These result in the elevated rate of energy consumption and the requirement for large electrode surface 

areas, which wholly make the production set-up, economically not reasonable. The overpotential however 

can be reduced utilising more active electrodes but there still exists the following problem; the majority of 

gas bubbles are adsorbed on the surfaces of electrode and membrane or distribute in the electrolyte 

throughout water electrolysis and this causes large ohmic voltage losses [103].  

The rapid detachment of hydrogen and oxygen gas bubbles from the electrolytic system is rather a difficult 

task under normal gravity conditions, as the current density is raised ohmic voltage drop and bubble 

coverage are increased notably and this does not help the situation.                                                                                    

This separation of bubbles from the electrode surface, electrolyte and membrane is manipulated by 

interphase buoyancy expression ∆ρg. It suggests the carry-out of the experiment under super-gravitational 

field, which results in the increment of interphase slip velocity and convection flow velocity caused by high 

gravity acceleration field and consequently results in the intensification of multiphase separation.                    

As a result, the reduction of gas bubble coverage on the electrode surface can be observed, which would be 

beneficial for gas evolution reaction as there would be more active sites available, moreover the 

disengagement of gas bubbles from the electrolyte or membrane can be eased efficiently thus leading to the 

reduction of overpotential and ohmic voltage drop under super gravity field [103].                    

Alkaline water electrolysis is one of the popular techniques to easily produce hydrogen however there are 

challenges to be dealt with such as energy use, maintenance and cost, in this type of electrolysis, the 
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electrolyte is an alkaline solution, sodium or potassium hydroxide are dissolved in water to increase 

conductivity of solution. This is to say that ions with high mobility are applied thus transferring the electricity 

more readily. Potassium hydroxide is the most widely used material because it resists gigantic corrosion loss, 

the preferred type of electrodes used are nickel because of their reasonable price, high activity and also 

availability. The advance of this electrochemical reaction needs some requirements and that is to overcome 

a handful of barriers and this calls for adequate electrical energy supply. The barriers comprise the following 

[6]: 

• Electrochemical reaction resistances 

• Electrical resistances of the system 

• Transport related resistances 

• Availability of electrode surfaces  

 The electrical resistances can be found via Ohm’s law R=V/I where V is the voltage that is applied only at the 

circuit and I is the current.  Transport-related resistances are forms of physical resistances such as 

resistances to ionic transfer within the electrolyte solution or gas bubbles formation at the surface of 

electrodes and inside the bulk of electrolyte.  In accordance with the Joule’s law the two of mentioned 

resistances are the reasons for heat generation and transport phenomena hence inefficiency of the 

electrolysis. The energy lost in the process as a result of electrical and transport-related resistances is also 

referred to as Ohmic loss.                                                                                                                                                 

The electrochemical reaction resistances are resulted by the overpotentials needed to overcome activation 

energies of oxygen and hydrogen formation reactions on the cathode and anode surfaces, this nevertheless 

increases the overall cell potential [6].      

Zeng et al [6] in their work have shown the overall resistances involved in an electrolytic process presented 

in the equation below: 

yz}��| = y� + y� + ⋯ + y¤                                                  (29) 

Where R.is the external electrical circuit resistance including connections and wiring at anode. R� is anode 

resistance rooted from the overpotential of OER(Oxygen Evolution Reaction) on the surface of the anode. R
 

is resulted from oxygen gas bubbles accumulated on the surface of anode, which delays the contact between 

anode and the electrolyte. R� and R¥ are resistances enforced by the ions in the electrolyte and the 

membrane respectively. The resistance caused by partial coverage of cathode by hydrogen bubbles is R%. R¦ 

is the resistance resulted from the overpotential for HER and finally R§  is the electrical resistance of 

connections and wiring at the cathode [104].      
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Water electrolysis in the presence of an ultrasonic field is another area, which has been investigated by 

Sheng-De Li et al [105], the energy efficiency of water electrolysis was improved significantly in the presence 

of the ultrasound. This was done using two techniques of Linear Sweep Voltammetry (LSV) and galvanostatic 

polarisation; the measurements were done for cell voltage, energy consumption and efficiency of generated 

gas in the process of electrolysis utilising an alkaline solution.                                                                                     

The cell voltage was reduced considerably in the presence of ultrasound particularly at low electrolyte 

concentration and high current density. The efficiency of hydrogen gas generation showed an enhancement 

in the range of 5% to 18% at high current density in the presence of ultrasound while this efficiency for 

oxygen gas dropped, which was result of different characteristic behaviour of gas bubbles.  It was concluded 

that the use of ultrasound as a powerful tool will improve the performance of an electrolytic cell. The LSV 

curves produced in the study showed that HER (Hydrogen Evolution Reaction) difference remained almost 

the same using ultrasonic field at various concentrations while OER was reduced with increasing electrolyte 

concentration.  With increasing electrolyte concentration, cell voltage difference was reduced for both 

sonicated and unsonicated (silent) conditions under steady-state polarisation conditions [105] .          

Steam electrolysis is yet another technique in the realm of the electrolysis. In the 1980s in a project known 

as HOTELLY, Donitz reported the use of electrolysis in the form of high temperature steam electrolysis, 

which was studied for hydrogen production employing solid oxide electrolysis cell (SOEC). This type of cell 

benefits from its intrinsic high efficiency and heat and electrical power supply by nuclear and solar energies 

for water electrolysis giving a green and high purity large-scale hydrogen production [106].                   

 Another form of electrolysis has appeared as the practice of photo-electrolysis of water, which has been 

investigated broadly in the aspect of light to hydrogen fuel conversion.  This investigation has so far been 

classified into two methods; use of semiconductor electrodes and utilisation of photovoltaic device (i.e. solar 

cell) as one of the components of whole electrolysis arrangement.  TiO2 used as semiconductor 

photoelectrodes is capable to decompose water with no external bias but the conversion efficiency is low 

(i.e.3.0%)  due to their wide bandgap1 , which takes in a limited amount of solar radiation however there is a 

drawback of photoelectrode dissolution for small bandgap semiconductor photoelectrode. Amorphous 

silicon solar cells have been studied for the systems utilising solar cell device where its bandgap matches 

with the solar spectrum well [107].  

In another experimental set-up, Hexadecyl-trimethylammonium bromide (HTMAB) was used as a cationic 

surfactant to improve the water electrolysis on the carbon cloth electrode. This work was done to 

investigate the effect of this surfactant on the water electrolysis.   

                                                           
1
 An energy region in solid-state defining the electrical conductivity [180] of a solid. 
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The use of carbon-based electrodes and HTMAB surfactant had an opposite effect on the Oxygen Evolution 

Reaction (OER) and Hydrogen Evolution Reaction (HER). This is to say that the surfactant inhibited HER 

indicated as a small negative potential shift but enhanced OER, which showed as a large positive potential 

shift.  The OER enhancement was caused mainly because of speeding up H2O2 production from water 

oxidation at a moderately negative potential. The improvement of OER after introduction of HTMAB was 

sufficiently large that makes up for the decrease of HER in water electrolysis. This surfactant however was 

introduced to other systems with different electrodes and the results were significantly different, which 

showed the effect of various electrodes in different electrolytes and their important characteristics in the 

electrolysis [76].                

Jonathan Mbah et al in a study reduced the energy requirement for the decomposition of water molecules 

employing a solar chemical cell. They have decreased the equilibrium potential to 0.6V in practise utilising 

sulphur dioxide and anode tolerance materials.  Silicon electrodes were used in this work on which was 

deposited ruthenium dioxide (RuO�). Sulphur dioxide (SO�) was used to scavenge the anode. Sulphur 

dioxide reacts with H�O at the anode and is oxidised to sulphuric acid.  The thermochemical free energy in 

this work was decreased six times its primary value from 56 to 9.18 kcal/mole [102].     

In an electrochemical reactor using a Nafion 117 solid polymer electrolyte (SPE) with sulfonic acid groups, 

Ebru Önder Kiliç et al produced hydrogen with 99.999% purity with the use of Titanium oxide coated with 

iridium oxide as anode and carbon fibre with Pt catalyst as cathode. In this experiment formic acid was 

electrochemically decomposed. In this work hydrogen was produced at a rate of 3.2 mL/min at 25 mA cm-2 

of current density and treatment time of 150 minutes [108].   

P.K. Dubey et al reported a significant amount of hydrogen production in their work. They used 1.0 M NaOH 

as an electrolyte solution and anodic voltage of 1V (Vs. Standard Calomel Electrode) was employed.  Multi-

walled carbon nanotubes were used as anode, Platinum wire as counter electrode and saturated calomel 

electrode (SCE) as reference electrode. The reported amount of hydrogen for this type of anode was about 

375lh-.m-� for alkaline water at PH level of 14. The amount of hydrogen production for multi-walled 

carbon nanotube was double the amount produced for conventional graphitic carbon electrode (about 

200 lh-.m-�) while keeping the overpotential the same [109].     

W.L. Guo et al have been able to generate hydrogen at a rate of 53 μmol hr⁄  for 3.0 M HCOOH and 2.5 M 

NaOH solution at 8.0 mA cm�⁄  of current density. The hydrogen was produced via electrolysis of aqueous 

formic acid solutions. A further investigation was done to see the effect of concentrations of sodium 

hydroxide and formic acid on the cell potential. The initial cell potential of 0.30V was noted for the case in 

which the actual concentration of formic acid was greater 0.8 × 10-«M [110].   
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PEM electrolysis as an alternative method for hydrogen production was studied by Frano Barbir from the 

renewable energy sources [111]. PEM electrolysers these days on industrial scale have production capacities 

of up to several thousands m
 h⁄  using KOH or proton exchange membrane electrolyte.  Potentials above 

thermoneutral (1.482V) are applied (as low as 1.6V) at the anode in order to split water into protons, 

electrons and oxygen. The protons travel through the membrane joining the electrons at the cathode to 

form hydrogen. The PEM electrolysers are mentioned to produce hydrogen up to 99.999% purity and are 

also simpler to deal with in comparison to the alkaline water electrolysis. Barbir’s study showed that PEM 

electrolysers can be coupled with PV arrays/solar cells as an energy supply with coupling efficiency of above 

93% [112] [111].  

S. Siracusano et al in their work produced hydrogen at 270 lh-1 using a PEM electrolyser operating at 60A 

potential and 70°C with 876 W of electrical power. The overall cell stack efficiency of 73% and 85% were 

attained for low and high heating value of hydrogen, respectively [113].   

Microbial electrolysis has been mentioned in the literature as a good alternative to conventional electrolysis, 

which also benefits from low energy requirement and concomitant treatment of waste water or biowaste. 

The microbial electrolysis cell (MEC) uses the microbes to decompose the organic matter at the anode and 

generate hydrogen at the cathode. Hongqiang Hu et al reported 2 m
 day⁄ m
⁄  of hydrogen production at a 

current density of 12 A m�⁄  for a nickel-based cathode (NiMO) at 0.6V potential. They also mentioned 240% 

energy efficiency based on electrical energy input at 0.4V potential applied [114].   

Douglas F. Call et al in a work studied the effect of high surface area of stainless steel cathode on the 

generation of hydrogen in a microbial electrolysis cell.  It was reported that using a stainless steel brush 

cathode with a specific surface area of 800 m� m
⁄  at 0.6V, hydrogen was generated at a rate of about 1.7 

m
, H� m
, d⁄ . They reported that this rate was similar to those achieved using expensive platinum-catalysed 

carbon cloth cathodes. A reduction in overpotetnial for hydrogen evolution using this method was observed 

[115].   

Kim et al in a recent project have investigated the production of hydrogen via 3-cell flat-tubular solid oxide 

electrolysis cell stack. They reported 4.1 lh-1 of hydrogen production with the total hydrogen production of 

144.32 litres over 37.1 hours of operation time. The active area of a single cell was 30 cm2 and the cell had 

an electric efficiency of 97.61%. 

 Hydrogen gas in an electrolytic process is generated just after the process of electrolysis is started (i.e. 

decomposition potential). The production of hydrogen is in molecular form occurring through the 

electrochemical reaction on the surface of cathode. Molecular hydrogen gas nucleates at the cavity of 

electrode surface [116] to hydrogen gas bubbles at cathode active sites on the surface of electrode, the 
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hydrogen bubbles then start to grow on the surface of electrode [117]. The Volmer–Heyrovsky–Tafel 

mechanism occurs at the surface of the electrode. The hydrogen electrode reaction consists of three parts as 

follows [118]: 

 

H�O + e- = HG@D?>­F@ + OH-   �Volmer Reaction� 

HG@D?>­F@ + HG@D?>­F@ =  H�   �Tafel Reaction� 

HG@D?>­F@ + H�O + e- = H� + OH- �Heyrovsky Reaction� 

 

 

Figure 12 [119]: Elementary Reaction Phases in HER. 

 

The Volmer-Heyrovsky-Tafel mechanism for hydrogen evolution reaction (HER) can be shown in figure 12 for 

a platinum electrode where subscript ‘ad’ refers to adsorbed species on the surface of electrode.  

In this section the author had a look at the important electrolytic processes mentioned in the literature 

including alkaline water electrolysis, steam electrolysis, MEC and PEM along with the electrolysis in the 

presence of the ultrasound. The combination of ultrasound, electrolysis and solar energy could be a 

successful blend in order to produce sustainable clean energy for future if the energy requirements and 

capital investment for the equipment and material could be decreased.  It may be deduced from the 

literature that the use of PEM electrolysers are preferred over conventional electrolysis due to less energy 

consumption and higher efficiency and ease of use however more investigation is required to draw a more 

comprehensive conclusion.   
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2.7. Sonoelectrochemistry; a literature survey 

 

This field was born through the marriage of electrochemistry and ultrasound and increasingly gained the 

interest of electrochemists as well as engineers. The industrial scale-up of the electrochemical processes 

lacks adequate mass transfer to the electrode surface and also suffer from fouling of the electrode surface. 

The utilisation of the ultrasound for the electrochemical processes tackles the problem of mass transfer 

limitation by simply increasing its rate to the electrode, reducing the diffusion layer thickness and elevating 

the limiting current density [120]. Although escalating the mass transfer, ultrasound can also have some 

influences in homogenous systems, which engage releasing highly reactive radical species [121] [122].       

The start of sonoelectrochemistry was with Morigushi in 1930s who investigated the effect of ultrasound on 

the water electrolysis, In the 50s an extensive attention was paid to sonic- aided electroplating specifically 

that of nickel and chromium however methodical applications were used in 1960s. 1980s was the decade 

when the main focus of sonoelectrochemistry was pulled towards analysis of styrene polymerization, 

thiophene and organic sonoelectrosynthesis. The active progress of sonoelectrochemistry was flourished in 

the 90s both in basic know-how as well as the applied studies. Today not only general reviews on 

sonoelectrochemistry are not hard to find but also unambiguously oriented applications such as organic 

synthesis [121] and electroanalysis [123] can be found [124].  Varieties of experiments and different set-ups 

have been carried out as of the first sonoelectrochemical experiments [125]; 

• The parallel use of ultrasonic tip as electrode and ultrasound emitter 

• Combination of voltammetric cell and ultrasonic tip through liquid chamber or glass wall  

• Submersion of the electrochemical cell into the ultrasonic bath 

• The immersion of electrodes and ultrasonic tip into the liquid, known as sonochemical cell, which is 

the most widely used configuration         

 

The important effect of ultrasound in chemistry and electrochemistry as the result of cavitation phenomena 

made this technology popular in the mentioned fields. At the verge of cavitation when the ultrasound 

irradiation spreads, the occurrence of chemical and mechanical events is evident, this impinges on any 

heterogeneous process such as electron transfer at the surface of electrode. There are mechanical events 

corresponding to the ultrasonic field propagation as follows: [126] 

• Cavitation and shock waves 

• Acoustic streaming and microjetting 

• Mass transport promotion from/to the electrode 

• Electrode surface cleaning  
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In 2003 all the mentioned phenomena have been re-examined at high and low frequencies by Compton et al 

and the conclusion was that at high frequency ultrasound the electrochemical processes are manipulated by 

different processes than that of low frequencies, for instance micromixing and microjetting are attributed 

processes to high frequency while acoustic streaming is related to lower frequencies [127].                                                                                                                      

The cavitation is the result of quick generation and collapse of microbubbles within the medium, which can 

cause accelerated mass transfer, improved energy transfer and pressure and thermal differentials on a 

microscopic scale [122].                                                                                                                                                      

The sonication in the electrochemical process promotes the following benefits [122]: 

1. The ultrasonic agitation via cavitation within the bulk interrupts the diffusion layer and stops the diminution of 

electro-active species 

2.    The transfer of ions across the electrode double layer is made available more evenly via ultrasonic agitation 

3.  Ultrasonic degassing prevent the accumulation of gas bubbles at the electrode 

4. The electrode surface is continuously activated and cleaned via ultrasonic irradiation  

 

E. Namgoong et al [128] were among those of first to make an effort towards the analysis of the effect of 

ultrasound implementation to an electrochemical system; this was the application of ultrasound directly to 

the cathode rather than the electrolyte throughout the electroplating experiments. The current efficiency of 

chromium deposits was observed to be reduced by 5%-10% resulted from pressure and temperature 

increase at the surface of the electrode. This enhancement in temperature and pressure is resulted from the 

cavitation caused by the ultrasonic field. Reisse et al [129] in a similar pattern reported the idea of a 

sonoelectrochemical reactor unique design in the literature with different approaches being detailed [130] 

[131] however the need for additional control was mentioned for some experiments, this type of control was 

used in order to work with specified potentials on both the working electrode and the titanium sonotrode 

[132].                       

Another field being subject of investigation in the area of sonoelectrochemistry is the leverage of medium in 

the spread of ultrasound.  Mediums such as highly resistive ones for the effect of mass transfer [133], 

acoustically emulsified media [134] and organic solvents [135] have been investigated.  Also low (20KHz) and 

high frequencies in sonoelectrochemical systems in terms of mass transfer and surface effects have been 

considered, low temperature, high pressure, sonochemical enhancement of electrochemiluminescence and 

high speed voltammetry are other aspects, which were analysed [124] [136].    

 T.J.Mason et al. reported that the ultrasound amends the chemistry of reactions at the electrode and 

significantly increases current efficiencies however the effects of ultrasound on electrochemical processes 

still needs considerable exploration [122]. 
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The initial work in sonoelectrochemistry emphasised on depolarising effect of the ultrasound, at 280 kHz or 

1200 kHz intense ultrasonic field, the investigation resulted to find out that hydrogen or chlorine deposition 

potentials are influenced by this strong field.                            

 One of the early attempts to measure the amount of hydrogen gas released at the cathode was the work of 

F. Cataldo in early 90s who investigated the effect of ultrasound on the hydrogen and chlorine production 

during the electrolysis of aqueous solutions of NaCl and HCl. This was done under 30kHz- ultrasonic field and 

the electrolytic process included a Hoffman’s coulometer submersed in an ultrasonic bath.  It was reported 

that the effect of ultrasound is more evident with chlorine since its solubility is higher in water (i.e. 3150 

ml/l) while that of oxygen is 19.6 ml/l at standard pressure and 15°C.  In this work a very strong degassing 

effect of ultrasonic waves was observed, which was attributed to enhanced coalescence of gas bubbles and 

their mechanical stripping. This phenomenon vividly increased the chlorine gas generated in the presence of 

ultrasound [9].   

F.Cataldo in another work reported the effect of ultrasonic irradiation on the conductivity of aqueous 

solutions such as KCl, LiCl and KI, it was stated that the ultrasonic irradiation of the aforementioned solutions 

increased their conductivity however this effect immediately faded away at the moment the ultrasonic filed 

was turned off. This phenomenon was clarified with collapse of the cavitation bubbles caused by the 

ultrasound.  This was explained as the energy was released in the form of heat and shock waves hence 

increasing the temperature within the bulk of medium thus generating hot spots and this resulted in an 

increase in the conductivity [137].  

In a study, the effects of the ultrasonic irradiation on the electrochemical reduction were researched 

employing the electrolysis and cyclic voltammetry at a constant potential. In this work benzaldehyde and 

benzoquinone electroreduction in different solvents were used as the solution in a sonoelectroreactor 

having the working electrodes operating as sonotrode as well.  The electrode-solution interface and mass 

transfer were reported to be significantly affected by the ultrasound.  It was determined that the ultrasound 

resulted in a dramatic change in the behaviour of the electroactive species.  Alex Durant et al in this work 

compared mechanical stirring to the ultrasound and suggested that the stirring is almost as efficient as the 

ultrasound and more study is required to decisively conclude the benefits of the ultrasound over mechanical 

stirring [138].       

The gas bubble collection on the surface of the electrodes is an important phenomenon having an effect on 

the efficiency of water electrolysis. The behaviour of gas bubbles at the electrodes has been the topic of 

research for several papers. Electrode surface coverage and bubble dispersion within the electrolyte were 

reported as two effective factors on the electrolysis of water. The gas bubbles on the surface of electrode 
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result in an increase in electrical resistance of the cell, stemmed from an increase in current density due to a 

rise in the number of gas bubbles and reduction in the active surface area of the electrode [105].  

The ultrasound can be employed to enhance the efficiency by removal of gas blanketing on the electrode 

surface, promoting the bubble disengagement from the electrolyte and increased mass transfer. It was 

reported by Sheng-De Li et al that the ultrasound resulted in an energy saving of about 10-25% for hydrogen 

production at high current densities [105]. 

It is suggested by Sheng-De Li et al that the amount of energy that could be saved via the application of the 

ultrasound is reasonably notable compared to the investment in equipment and energy consumption by an 

ultrasonic filed. For instance, a 100 kA cell with a bubble-overpotential of 0.3V could save up to 30 kW while 

an ultrasonic filed uses about 0.05 kW only [105].      

 Pier Luigi Gentili et al have successfully produced hydrogen via water sonophotolysis in water/ethanol 

solutions. The highest amount of hydrogen produced in their work was attributed to concentrated 

suspensions using a catalyst named S: Lar.§Gar.�lnO
. A piezoelectric transducer was responsible for 

generating 38 kHz ultrasound at 50W power output.  A Xe lamp at 35W emitted the light used for this study, 

which was located on top of the reaction cell.  The hydrogen production after 3 hours of treatment time for 

the samples containing 0.4g of the aforementioned catalyst in 200 mL water/ethanol was reported as 

follows; in photocatalysis (light) the amount was 4.44 µmol, sonocatalysis (ultrasound) 215.6 µmol and 

sonophotocatalysis (ultrasound and light) 269.6 µmol. The results consistently agreed on a greater amount 

of hydrogen being produced when the ultrasound and light are combined in comparison to the single use of 

the ultrasound and light. The ultrasound was also solely more productive than the light [139].   

In a different study the effect of the ultrasound on an aqueous slurry containing alumina and polyacrylic acid 

was examined at 28, 45 and 100 kHz ultrasound. The results indicated that the viscosity of the slurry was 

changed by the act of the ultrasound resulted from breaking of hydrogen bonding networks of alumina and 

the acid. The viscosity was reduced as the output power was increased. The lower ultrasound frequency was 

also helpful in reducing the viscosity [140].     

The ultrasound is considered a helpful tool in many areas such as chemistry, medicine, material sciences and 

etc.  Although variety of works has been carried out with the aid of ultrasound in the field of chemistry and 

electrochemistry but majority used in chemical labs suffer from inflexibility due to the less control of the 

parameter. Most works are done in cleaning ultrasonic bath, which does not allow controlling the 

parameters. The frequency, intensity and irradiation mode could be subject of alteration, which would lead 

to significant areas of research and opens new windows [141].      
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Chapter 3: Experimental procedure  

 

In this chapter the experimental procedure will be explained along with the materials and equipment used 

throughout the research. The experiments and the conditions of use are tabulated in table 3 in section 3.2.  

 

3.1. Material and equipment 

 

The materials used for this project includes sodium hydroxide and potassium hydroxide pellets, which were 

then solved into the water to produce the electrolyte of required molar concentration. Carbon rods 

(manufactured by Morganite) and nickel-based electrodes (Rolls Royce electrodes) were used as the 

electrodes with the diameter of 0.5 cm and 0.6 cm respectively. The electricity was supplied using a power 

supply (Thurlby PL320 32V-2A). A digital hydrogen flowmeter (Red-y compact flowmeter (L/min)) was in use 

in order to measure the rate of hydrogen production at the specified voltage and concentration. A magnetic 

stirrer was also utilised especially for high molar concentration, which stirs the solution using a magnetic 

bead.  The ultrasound was irradiated to the medium using either an ultrasonic bath (Langford Ultrasonics 

3.75l Ultrasonic Cleaning Tank, 40 kHz) or an ultrasonic transducer (Sonics Ti Alloy, 47 mm in diameter linked 

to Vibracell Sonics VCX750 set on 20 kHz). The amplitude of the ultrasound was set on 30% on the ultrasonic 

equipment. The water was pumped and heated through the external jacket of the cell using a water pump 

and heater (yellow line ET Basic) illustrated in figure 14. The separation distance between the electrodes was 

7.5 cm.     

3.2. Experiments 

 

The experiments throughout this research projects were done under silent (unsonicated) and sonicated 

conditions and the silent results are compared to the case in which the ultrasound was applied to investigate 

whether the ultrasound has increased the hydrogen production. The experiments were carried out either in 

a custom glass cell demonstrated in figure 13 with a total volume of 1000 cm3 ,at the bottom was attached 

an ultrasonic transducer (frequency used 20 kHz) or in a beaker positioned in an ultrasonic bath with the 

volume of 800 cm3. 

There were various parameters subject of change including temperature and concentration of the 

electrolyte, material of electrode and electrolyte, electrode surface area by altering the electrode active 

length.     
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The experimental conditions and parameters are reported in table 3. The first six pairs of experiments were 

done for low concentration (0.1M) and that is considered as the first part of the experiments. The 2nd part 

belongs to pairs 7 and 8 where higher concentrations were subject of the study. Each pair of experiment 

includes silent and sonicated conditions.  The reason higher concentrations were experimented in this 

research was the fact that some industrial electrolysers employ this approach [142], [143] where the 

potential is reduced in comparison to the low concentration case. Having a look at the tables of the results in 

appendix III provided in the CD, one can see the difference between the potentials. Please refer to the tables 

15 (concentration 0.1M) and 90 (concentration 15M) in appendix III for more information. For the 

experiments tabulated in table 90 the maximum potential applicable was 3.2V while this was 30V for the 

experiments in table 15.       

  Table 3: Table of Experiments.  

Name Electrolyte Concentration Temperature 
Electrode Active 

surface area (���) 
Electrode 

Pair 1 NaOH 0.1M 25°C 
28.8, 32, 35.1, 38.25, 

41.4 
carbon rods 

Pair 2 KOH 0.1M 25°C same as above  carbon rods 

Pair 3 NaOH 0.1M 25°C 
32, 33.5, 35.1, 36.7, 

38.25 
carbon rods 

Pair 4 KOH 0.1M 25°C Same as above carbon rods 

Pair 5 NaOH 0.1M 
No Temperature 

Regulation 

28.8, 32, 35.1, 38.25, 

41.4 
carbon rods 

Pair 6 KOH 0.1M 
No Temperature 

Regulation 
same as above carbon rods 

Pair 7 KOH 
0.1M, 1M, 5M 

and 10M 
25°C 40.12 

RR (Nickel 

Based) 

Pair 8 KOH 15M 25°C, 40°C and 60°C 38.25, 42, 45.8  
RR (Nickel 

Based) 

 

The electrode surface area was changed throughout this research project by varying the electrode active 

length from 9 cm to 13 cm to see its effect on the hydrogen production. These changes could be justified by 

pointing to the fact that at higher electrode surface area there are more available active sites for the 

electrochemical reaction on the surface of the electrode hence more current and hydrogen generation is 

expected.  . The temperature of the electrolyte was increased since at higher temperatures ionic 

conductivity and the rate of the electrochemical reaction is enhanced [144].   
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Since the electrolytic process at the potentials higher than thermoneutral potential (1.48V) is exothermic, it 

was decided to try some experiment (pairs 5 and 6) without temperature control as the temperature of the 

electrolyte will be increased during the exothermic process with the heat being released [145]. The data 

sheets of ‘no temperature control’ experiments can be found in the appendix III (in CD) table 45 onward on 

page 49.                                                                       

3.3. Experimental Technique  

 

An electrolytic cell with a total volume of 1000 cm3 was used equipped with an ultrasonic horn (Sonics Ti 

Alloy, 47 mm in diameter linked to Vibracell Sonics VCX750 set on 20 kHz) at the bottom from which the 

ultrasonic irradiation can spread to the medium.                                                                

An ultrasonic bath (Langford Ultrasonics 3.75l Ultrasonic Cleaning Tank, 40 kHz) was also used which would 

transduce the ultrasound to the electrolyte at 800 cm3.  

In figure 13 the custom glassware with the volume of 1000 cm3 is shown. 

 

Figure 13:  Schematic presentation of electrolytic cell. 
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Hydrogen gas was evolved at the cathode and oxygen at the anode. The generated hydrogen gas was 

measured using a digital hydrogen flowmeter (Red-y compact flowmeter (lit/min)).  

The efficiency of the hydrogen gas produced may be calculated using the equation presented: 

Efficiency�%� =  ±q²³´
±µ¶²³´ × 100%                   (30) 

This equation (Eqn 30) is the comparison of the actual hydrogen gas produced versus the ideal value. 

VEFGW�cm
� is the hydrogen gas produced per unit of time, which is read by the flowmeter and V·@FGW�cm
� is 

the ideal volume of hydrogen gas generated, which can be calculated using the ideal gas law equation at the 

given conditions.  The ideal volume may be calculated using the relation below [105]: 

V·@FGW�cm3� = ¸·C
�i × En

=                                      (31)                    

Where S is the stoichiometric coefficient, I is applied current, t is the time of operation, n is number of 

electrons transferred, F is Faradic constant (96484 C.mol-1), T is the operating temperature in Kelvin, R is 

ideal gas constant (8.314 J.K-1.mol-1) and P is the pressure (atmospheric in Pascal).  

The hydrogen and oxygen production rates may also be found on a molar basis from the equations below in 

respective order [72]: 

  NLfg hP
�i                                                               (32) 

  Njfg hP
�i                                                               (33) 

Where NLf and Njf are the hydrogen and oxygen producing rates (mol.s-1), J is the current density (A cm-2), 

A is surface are (cm2) and F is Faraday’s constant (96485 C mol-1) 

In figure 14 the electrolytic cell is shown during the operation for high concentration (15M) KOH electrolysis.  
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Figure 14: The custom glassware during electrolysis of 15 molar concentration KOH. 

 

3.4. Electrolyte Preparation  

 

In order to obtain the required molar concentration, masses of KOH or NaOH necessary to make the solution 

are found then dissolved into water to achieve a final volume of one litre. In tables 4 and 5 below various 

masses, required to have different concentrations, are shown.  The electrolytic cell or reaction vessel was 

entirely filled up with the solution and sealed using three crocodile clips to prevent the escape of gas 

bubbles from the cell.  

Table 4: Mass of electrolytes. 

Concentration (M) Mass of Electrolyte (g) for the final volume of 1000 mL 

NaOH KOH 

0.1M 4.0 5.61 

1M 40 56.10 

5M 200 280.5 

10M 400 561 

15M 600 841.5 

 

The concentrations however for 85% KOH pellet are different as tabulated below in table 5. 
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Table 5: Mass of electrolytes.  

Concentration (M) 

Mass of electrolyte 

(KOH) (g) for final 

volume of 1000 

mL[85% KOH pellet] 

Mass of KOH for final 

volume of 800 mL[85% 

KOH pellet] 

0.1 6.60 5.28 

1 66.01 52.81 

5 330.06 264.04 

10 660.12 528.10 

15 990.30 792.13 

 

Chapter 4: Analysis, Interpretations of Results and Discussion  

 

In this chapter the author goes through the analysis of the current and current density generation and 

explaining the electrical resistance using the current-voltage graph. The decomposition potential and 

overpotential are then evaluated followed by the hydrogen generation comparison for silent and ultrasound-

aided experiments. The effects of ultrasound, temperature and concentration are presented using the 

graphs and tables staring from sections 4.1 to 4.5. There are separate sections assigned to the energy and 

the effects of electrode surface area and electrodes on the production of hydrogen namely as 4.6, 4.7 and 

4.8.       

4.1. Current Generation 

 

In figure 15 a current-voltage graph shows that by increasing the voltage, the current is increased and that 

the higher the electrode active length (i.e. electrode active surface area), the greater the current is for the 

given voltage. In the graph shown in this figure it is clear that for KOH the produced currents are higher than 

NaOH. This is due to fact that potassium hydroxide is a stronger electrolyte than NaOH since it is more 

electrically conductive and has higher molecular mobility where electrons can move more freely compared 

to sodium hydroxide thus the current is transferred more readily. 

The solutions with smaller ions are generally more conductive compared to the solutions with larger ions 

since the viscous drag is less in them. The conductivity is inversely proportional to the radius of hydrated ion 

(i.e. λ � 1/radius) [146]. Sodium ions have larger solvation shells (known as hydration shell when water is the 

solvent) than Potassium ions, sodium ions because of their greater charge density attract more water to 
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become hydrated leading to a greater radius of their hydrated ion hence potassium hydroxide is more 

conductive than sodium hydroxide [147], [148].  

According to Ohm’s law R = ±
·   where R is Ohmic resistance, V (volts) is potential and I is the current (A). If 

the potential is increased at a greater rate than the current, then the ohmic resistance is increased otherwise 

a reduction in resistance is observed.  During the experiments it was observed that an increase in potential 

resulted in the current being generated at a greater rate hence resulted in a reduction in resistance. (Tables 

of data can be found on appendix III page 9 of the document provided on CD) 

For instance for 0.1M NaOH silent experiment at the electrode active length 9 cm (surface area: 28.8 cm2) 

and 25°C, the resistance started at 1000Ω for 1Volts of potential and 0.001 amperes of current and had a 

decreasing pattern and at 30V potential and 0.924A current, the resistance was reduced to 32.47 Ω, similar 

pattern was noted for other active areas. In figure 16 a graph of electrode active length versus resistance 

shows the pattern.  

 

Figure 15: Current-Voltage graph for silent NaOH and KOH at 25° C. 

 

The Current-Voltage curves in this graph (Figure 15) can be used to calculate the decomposition potentials 

for each curve. Figure 16 demonstrates that the higher the electrode active length (i.e. more surface area), 

the less the resistance will be. The ohmic resistances are calculated from 0-30V and currents for each applied 
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surface area for comparison. The lowest resistance for this experiment (Silent condition) was 14.92 Ω 

belonging to the applied potential of 30 volts and generated current of 2.011 amperes.  

In figure 16 it can also be seen that the introduction of ultrasound further decreases the resistance, for this 

experiment under sonicated condition the lowest resistance was 13.97 Ω at 30V and 2.147A and electrode 

active length of 13 cm.  The ultrasound helps remove gas bubbles at the surface of the electrode and also 

within the electrolyte. These bubbles are resistance to ionic transfer in the electrolyte and cause of 

transport-related resistances [104]. This may be compared to the literature work carried out by Sheng-De Li 

et al [105] who also reported a reduction in the electrolyte resistance when the ultrasonic field is on. The 

behaviour of gas bubbles has an impact on the electrode surface coverage and void faction of the electrolyte 

solution, which is proportional to ohmic resistance according to Qian et al [149]. The application of the 

ultrasonic field results in the removal of bubbles away from the electrodes as well as void fraction of the bulk 

electrolyte.          

 

Figure 16: Graph of electrode active length versus Ohmic resistance for 0.1M NaOH at 25°C.  

 

It may be suggested, having a look at figure 15, that the resistance is increased by increasing the voltage 

considering the equations of the line for individual curves and finding the slope of the line, however it must 

be noted that the resistance is the voltage divided by the current at a certain point according to ohm’s law, 

not the division of changes in voltage by changes in current ( ∆V ∆I⁄ ). Furthermore the gradient of the line 

on the current-voltage curves does not represent resistance as it gives  ∆I ∆V⁄ , which is- 
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�Changes in Current Changes in voltage⁄ � .  More accurate method is to use ohms law for individual cell 

voltages applied and generated currents and plot the graph as shown in figure 16. 

In the next figure (17) a comparison of current-voltage curves is done for sodium hydroxide and potassium 

hydroxide electrolytes at 9 cm electrode active length (28.8 cm2 surface area) for silent and sonicated 

conditions. In figure 17 it is shown that the ultrasound enhances the current generation through enhanced 

mass transfer and conductivity.  

 

Figure 17: Current-voltage graph comparison for NaOH and KOH at 25°C. 

For sodium hydroxide (NaOH) experiment in this figure (17) it was calculated that the ultrasound increased 

the current by between 20-27.5 mA and current density by 1.90 mA cm�⁄   for the individual applied 

potentials whereas the enhancement in current and current density for potassium hydroxide at 9 cm 

electrode active length and 25°C were 112-136.5 mA  and 9.5 mA cm�⁄  respectively. 

 This shows the ultrasound has been more effective for potassium hydroxide and the reason may be the fact 

that KOH is a more active electrolyte than NaOH and the ultrasound seems to have boosted the mass 

transfer and conductivity much better in potassium hydroxide.  

In figure 18 the effect of concentration is investigated on the electrolysis where an increase in the generated 

current can be seen when the concentration of the electrolyte is increased. This is resulted from the 

augmentation of charge carriers in the solution therefore more current is produced. Higher concentration 

means there is more H, and OH- ions in the solution hence the electrical current is increased and the 

resistance is reduced.  The ohmic resistance for the experiments at 5M and 10M were reduced down to 

2.31Ω (for 4.85V, 104.6 mA/cm2) and 2.17Ω (for 4.72V, 108.2 mA/cm2) respectively, which shows that at 
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higher concentrations the resistance is considerably reduced. This was compared to the resistance 

calculated for 0.1M for this experiment, which was 30Ω at 30V potential and 49.83 mA/cm2 of current 

density.  

 

Figure 18: Silent current voltage graph for potassium hydroxide at various concentrations and 10.5 cm electrode active length                                     

(surface area: 40.12 cm2).  

 

The maximum applied voltage for 10M concentration experiment shown in figure 18 was 4.72 volts, which 

generated 2171 mA of current, at 5M concentration the voltage and current were 4.85V and 2099 mA 

respectively, for 1M this was 8.9V and 2197 mA and finally for 0.1M concentration the maximum applied 

voltage was 30V and the current was 1000 mA.  It was expected to see a greater difference in current 

generation between10M and 5M however the graph shows otherwise.  At high concentration when the 

potential is increased the surface of electrodes are covered with the bubbles and the electrodes may have 

been deactivated hence less current is generated as well as less hydrogen produced. This electrode surface 

coverage results in a reduction in the active surface area therefore higher current density.  

The effect of temperature on the current generation is considered for high concentration experiment at 15M 

potassium hydroxide where the changes were measured for 3V of applied potential. The graphical 

demonstration of this is presented in figure 19. According to Jason C. Ganley, at high temperatures the ionic 

conductivity is increased as well as the rate of electrochemical reactions at the surface of the electrode 

[144].  
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Figure 19: Graph of average current produced for temperature changes at 3V for 15M KOH.   

 

The current generation is increased as the temperature is raised as can be seen in figure 19. The greatest 

current in this experiment was 1718 mA produced at 90°C and the smallest value was recorded at 25°C, 

which was 782 mA. The current density was also improved by increasing temperature, for example the 

current density for anode fixed experiment at 25°C started at 26.4 mA cm�⁄  and it was at its peak value          

( 40.15 mA cm�⁄  ) at 90°C.   

 

Figure 20: Current enhancement for selected experiments at 28.8 cm
2
 active surface area.  
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The current generation was recorded for silent and sonicated conditions and it was observed that the 

current is always increased when the voltage is increased. In figure 20 a graph of current enhancement is 

plotted. The current enhancement for a set of experiment is calculated; the generated current at a voltage 

under sonicated experiment is subtracted from a current generated under silent condition for the same 

voltages. 

A comparison of two curves on the graph in figure 20 displays a greater enhancement for potassium 

hydroxide curve (Red curve), that is resulted from the nature of the electrolyte.  Not all of the current 

enhancement graphs followed a similar pattern though, for instance figure 50 on page 144 in appendix V (in 

CD) shows the pattern for 0.1M KOH at 25°C or figure 49 where the curves display fluctuations.  These 

patterns are resulted from the actual fluctuations in the current generation at each applied potential, which 

may be resulted from the voltage drop and resistances throughout the cell, the resistances were mentioned 

in the literature survey by Zeng et al [6].    

 

4.2. Decomposition potential and overpotential determination 

 

4.2.1. Decomposition potential 

 

In 2.4.2.1 it was explained how to calculate decomposition voltages using the current-voltage graph. In order 

to find the values of decomposition voltage using the graph, the equation of the line is constructed assuming 

y=0, then one may be able to find the value. In figure 15 on the graph, the blue arrow shows the region of 

decomposition voltages, this is a representation of the voltages at which the process of electrolyte 

decomposition starts however these potentials for various curves on the graphs are different and one may 

be able to see the differences having a look at I-V graph, also the equation for each plotted curve is different.  

In figure 21 the effect of surface area on the decomposition potential is shown where it can be seen a 

reduction in this potential as the surface area is increased. The increase of electrode surface area by varying 

its active length, means that there are more sites available for the electrochemical reaction at the surface of 

electrode hence the amount of the minimum potential that must be applied between the electrodes before 

the current flows, may be reduced (i.e. the decomposition potential is reduced). The lowest decomposition 

potential calculated for sonicated 0.1M NaOH was 1.71 volts, which was related to the greatest surface area 

(41.38cm�) and the lowest value for the other experiment shown in red in figure 21 was also associated with 

greatest electrode surface area and that was 1.99 volts.                                                                                     
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Figure 21: Graph of decomposition potential versus surface area for selected experiments.  

  According to Vladimir M. Nikolic et al a reduction in cell potential is obtained either by altering the catalytic 

nature of the overpotetnial for HER or by increasing true surface area of an electrode [74] and above on 

figure 21 the latter case’s effect is shown even though this was not the case for all of the experiments.  

Further experimentation is required to draw a more comprehensive inference.  

Figure 21 also displays that the temperature is another factor effective in the reduction of decomposition 

voltage.  The experiment for which the red curve is plotted on the graph benefited from no temperature 

control, the starting temperature of the cell was 25°C and the average finishing temperature reached to 

about 35°C, this was compared to the experiment where the temperature was constant at 25°C. 

The increase of temperature inside the cell within the electrolyte is resulted from exothermic 

electrochemical reactions occurring on the electrodes, which would release heat owing to temperature 

increase if there is no control.   

S.K. Mazloomi et al in their work state the influence of higher temperature in an electrolytic process, that 

the electrolysis is more efficient when the temperature is raised.  The water splitting reaction potential is 

also said to decrease as the temperature is increased. An increase in temperature also raises the ionic 

conductivity and surface reaction of an electrolyte [150].  

A comparison of silent and sonicated conditions shows that the introduction of the ultrasound reduces the 

decomposition potential. Table 6 below compares the values at silent and sonicated for selected 

experiments and proves this. The ultrasound increases mass transfer from one electrode to another, 

removes the gas bubble from the electrode surface and within the electrolyte and prepares the surface of 

electrode for electrochemical reaction via electrode surface cleaning.  
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Table 6:  Comparison of decomposition potentials for various experiments under silent and sonicated conditions. 

 Decomposition Potential (Volts) 

Experiment With Ultrasound Without Ultrasound 

0.1M NaOH at 25°C and 13 cm 

electrode active length 
2.74 1.71 

0.1M KOH at 25°C and 9 cm  

electrode active length 
2.56 1.83 

0.1M KOH Silent without temperature 

control at 11 cm active length 
2.62 1.79 

0.1M NaOH without temperature 

control at 10 cm active length 
2.17 1.90 

5M KOH at 25°C and 10.5 cm 

electrode active length  
1.05 0.96 

      

Another parameter is the concentration of electrolyte whose effect was considered on the decomposition 

potential. An increase in concentration of potassium hydroxide from 0.1M to 10M has significantly 

influenced this potential. The water molecules started to decompose at 3.54V for the experiment done for 

0.1M KOH at 25°C and 10.5 cm electrode active length �surface area: 40.12 cm�� while the decomposition 

of water molecules for this experiment at 5M and 10M concentration were 1.06V and 0.95V respectively. An 

increase in the number of charge carriers gives rise to this reduction. The average decomposition potential 

for various experiments is tabulated in table 7 where a decrease in the potential is observed at high 

concentration experiments. The potential for 15M KOH in table 7 is 0.83V that is less than that of the 

reversible potential (1.23V).  This may be referred to as underpotential deposition (UPD), which occurs when 

the species in a medium are electrodeposited. This is usually the case for the reduction of a metal cation to a 

solid metal. This indicates that the depositing atoms on a crystal surface (adatom) are attached to the 

foreign metal electrode strongly (nickel electrode in our case). In other words the UPD occurs as a result of 

strong interaction between the electrodepositing metal in the solution and the substrate (electrode 

material/ Nickel) [151], [152] however this may hardly be the case as there seems to be no interaction of this 

kind between nickel electrode and potassium hydroxide other than oxidation of nickel to nickel oxide [153], 

therefore it may be hard to imagine the potassium metal plates out from the KOH electrolyte and coat the 

electrode surface. More investigation is required using different electrochemical and surface 

characterisation techniques such as cyclic voltammetry technique, Fourier transform infrared reflection 

(FTIR), Surface-enhanced Raman spectroscopy (SERS), scanning tunnelling microscopy (STM) and atomic 

force microscopy (AFM) [152]. 
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Table 7: Average decomposition potential.  

Experiments Average Decomposition Voltage (volts) 

0.1M NaOH (silent and sonicated) 2.44 

0.1M KOH(silent and sonicated) 2.33 

KOH 10M (silent and sonicated) 0.95 

KOH 1M (silent and sonicated 1.22 

15M KOH at various Temperatures and Electrode 

Surface Area 
0.83 

  

In table 8 the decomposition potentials for silent and sonicated shown in table 7 are separated and 

presented where the effect of ultrasound once again can be seen more general compared to table 6.  

Table 8: Decomposition potential for different experiments. 

 0.1M NaOH 0.1M KOH 
KOH at various 

concentrations 

Decomposition 

Voltage (V) 

Unsonicated 2.57 2.52 1.77 

Sonicated 2.31 2.14 1.30 
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4.2.2. Overpotential 

 

The basic definition of overpotential was explained in 2.4.2.2 and it was stated in 2.4.2.1 that the 

overpotential can be found using equation 18 and 19. The equations 20 and 21 in 2.4.2.2.1 can be used to 

separately calculate the overpotential of cathode and anode. Here are the equations 20 and 21 respectively:  

ηTGCU?@F = 2.3 En
�i log �

��,  ηP�?@F = 2.3 En
�.-��i log �

��                                                                                                                                        

In equations 20 and 21 the term exchange current density (ir) is unknown for our work since our electrolytic 

cell was 2-electrode system therefore not applicable. A three-electrode system may be required to 

separately find anode and cathode overpotentials since it allows studying anode and cathode half-cell 

reactions regardless of one another.  In a three electrode system (voltammetry), a reference electrode is 

used along with a working electrode and an auxiliary electrode. The current and current density is measured 

for anode and cathode separately with respect to the reference electrode.   

Equation 18 is used to determine the overpotential but first the reversible potential must be calculated for 

various experiments. In order to calculate the reversible potential (EEF�TFWW) of a system, equations 10 (2.4.1.1) 

and 19 (2.4.2.1) can be applied [85] [154].                                                                                                                                                            

A sample calculation can be found on the next page to find overpotential for 0.1M NaOH at 25°C where the 

decomposition potential is 2.68V.The half-cell reactions are balanced with base since sodium and potassium 

hydroxide were used [155]. 
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Oxygen- water half-cell reaction at the anode is given by [155]: 

2H2O (l) + 4e−+ O2 (g) → 4OH−(aq)  

Where number of electrons n=4, F= 96485 c/mol, T=298.15K, R= 8.314J.K-1.mol-1 and Standard Electrode 

Potential (SEP) E0=-1.23V for Oxygen, hence via equation 10: 

 EEF�,G = E° + En
�i ln �jLº�»

�Lfj�f  →  EEF�,G = −1.23 + §.
.�×�«§..¥
�×«%�§¥ ln r..»

. → EEF�,G = −1.23 + �−0.0591� =
−1.289V 

Hydrogen half-cell reaction at the cathode is: 

4H2O (l) + 4 e− → 2H2 (g) + 4OH− (aq)  

Where n=4  and E0 =0 for hydrogen and other values are the same as above thus we can write; 

EEF�,T = 0 + 6.422 × 10-
ln 0.1�
1 →  EEF�,T = −0.0591V 

The reversible potential of the cell can be found using equation 19, therefore: 

EEF�TFWW =∣ EEF�,T − EEF�,G ∣ = ∣ −0.0591 − �−1.289� ∣→  EEF�TFWW = 1.230V    
 

Therefore the overpotential can be determined via equation 18: 

 η = E� − EEF�TFWW → η = 2.68 − 1.23 = 1.45V                                                                       
 

When the concentration and temperature are changed the reversible potential could be calculated by 

replacing their values into the equations above however equation 10 is applied for low concentration 

experiments and at high concentrations in which the solution is far from ideal conditions, equation 11 may 

be used where the activity is applied instead of concentration.  In table 9 [147] the activity coefficient for 

KOH  is shown at different concentrations where the activity can be found via a = ɤ T
T�  with C being the 

concentration of solute,Cr the standard concentration and ɤ the activity coefficient [148], [147].   

Table 9: activity coefficient for potassium hydroxide.  

KOH Activity coefficient  (ɤ) 

0.1M 0.779 

1M 0.773 

5M 1.697 

10M 6.110 

15M 19.9 
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The Cell’s reversible potential for 10M KOH at 25°C is calculated using equation 11 and table 9 (a = ɤ T
T� =

6.11 × .rI
.I = 61.1), which is 1.226V. If equation 10 is used for this molarity, the cell’s reversible potential 

will be 1.229V, which is a close value to 1.226V. Therefore it may be okay to use both equations 

interchangeably since the difference is trivial.  Furthermore in equations 10 and 11 (logarithmic term: 

ln Gp
Gq  or ln T∗p

T∗q, the expression before logarithm: 
En
�i), the change in temperature from 25°C to 90°C and also 

change in concentration from 0.1M to 15M did not result in major difference in the value of cell’s reversible 

potential since logarithmic term is used and also faraday constant value is large in the denominator and an 

increase in temperature in our work does not greatly influence the final value of the reversible potential. The 

water activity was assumed 1 for the calculations.   

For instance the reversible potential of the cell for 0.1M KOH at 25°C is 1.23V and its value for 15M KOH at 

25°C is also 1.23V. Another example is the reversible potential of the cell for 0.1M KOH at 25°C, which is 

1.229V while at 90°C, it is 1.230V. Therefore it is okay to assume that the cell’s reversible potential for all 

experiments is 1.23V. In tables 10 and 11 the overpotentials are calculated using equation 18.  

The Nernst equation for concentrated solutions can be defined in terms of activity of species involved in 

reduction and oxidation or partial pressure of gases, below one can find the Nernst equation using this 

approach [156] [157]:  

Water / hydrogen: 

4H2O + 4e− → 2H2 + 4OH−                              (34) 

Water / oxygen (as a reduction half-reaction): 

2H2O + 4e−+ O2 → 4OH−                        (35)  

Nernst equation for the water / hydrogen electrode (cathode) where (X} = −0.84�  [156] [157]: 

   X = X} − yz
½\ ln ¾�¿����¿º½

�¿��½ À      (36)  

Nernst equation for the water / oxygen electrode (Anode) where (X} = 0.39�: 

   X = X} − yz
½\ ln ¾ ��¿º½

����¿���À      (37)  

Overall reaction is Eq. 34 − Eq. 35: 

4H2O + 4e− − 2H2O − 4e− − O2 → 2H2 + 4OH− − 4OH− 

That gives: 2H2O → O2 + 2H2        

Therefore the Nernst equation becomes Eq. 36 − Eq. 37 for the whole cell:  

X = −v. ¤½ −  yz
½\ ln Á�¿����¿º ½

�¿��½ Â −  v. xÃ − Ä− yz
½\ ln Á ��¿º½

����¿���ÂÅ 
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= −�. �x − yz
½\ ln ¾�¿����¿º½����¿���

�¿��½��¿º½ À = −�. �x − yz
½\ ln ¾Æ¿��Æ���¿��� À                         (38) 

  Where activity a = =
=� with P being partial pressure and P0 is the atmospheric pressure (P0=1bar)                   

The negative sign after E0 in equations 36 and 37 results from the logarithmic term as the reduced species 

are on top of the fraction and oxidised at the bottom unlike equations 10 and 11. The final expression in 

equation 38 is based on partial pressure of gases, the term P0 disappears when the activity is written in 

terms of partial pressure as it is divided by 1 bar. The term activity remains in the denominator as the system 

is liquid and water is being used as the solution. The calculation could be carried out using the partial 

pressure of the gases but since the pressure inside our cell was not measured hence the activity of liquid 

species can be used to do the calculations at higher concentrations (5M-15M) [157]. 

Table 10: Overpotential for various experiments. 

Experiments Average Overpotential (volts) 

0.1M NaOH (silent and 

sonicated) 
1.24 

0.1M KOH(silent and sonicated) 1.10 

KOH 1M, 10M (silent and 

sonicated) 
1.03, 0.27 

15M KOH at various 

Temperatures and Lengths 
-0.40 

                                       

Table 11: Overpotential comparison for silent and sonicated. 

 0.1M NaOH 0.1M KOH 
KOH at various 

concentrations 

Overpotential 

Unsonicated 1.34 1.30 0.47 

Sonicated 1.09 0.92 0.07 

 

The overpotential for 15M experiments was negative as the average value was demonstrated in table 10. 

This may be resulted from a faster reaction rate and very low resistive losses in this experiment. More 

exploration is needed to see the effect of high concentration on the rate of reaction and resistive losses.  In 

the literature [158] though, the negative overpotential is referred to as underpotential (deposition), which is 

defined as the voltage below the optimum value for a device or component [159]. Underpotential deposition 

(UPD) was explained in 4.2.1. The decomposition potentials and overpotentials for various experiments can 

be found in appendix II on page 5.     
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4.3. Current density 

 

Current density is the current flowing through a conductor per unit cross-sectional area and is measured in 

amperes per square metre [160]. Figure 22 illustrates the current density changes for the change in surface 

area of the electrodes for chosen experiments under silent and sonicated conditions.  The base of 

comparison on this graph is to see the effect of surface area at a constant 15V voltage for sodium and 

potassium hydroxide.  Increasing the surface area by 9.45 cm� results in an increase in the current density 

by the following values for the specified experiments at 15 volts: 

• Enhancement in current density (relative to the primary value)  for 0.1M NaOH Silent: 16.1 mA 

• Enhancement in current density for 0.1M NaOH Sonicated: 14.4. mA 

• Enhancement in current density for 0.1M KOH Silent: 33.1 mA 

• Enhancement in current density for 0.1M  KOH Sonicated: 24.2 mA 

  

Figure 22: Graph of current density versus surface area for different experiments at 15V, no temperature control.  

    

The ultrasound has increased the current density as can be observed from the graph above in figure 22. This 

increase was calculated for 0.1M NaOH experiment to be 4.17 mA and for 0.1M KOH to be 7.5 mA. The 

increase is higher for potassium hydroxide as expected since this electrolyte is more conductive than sodium 
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hydroxide.  A decrease in current density may be expected by an increase in electrode surface area 

according to the current density and current relation however since an increase in electrode surface area 

considerably increases the current therefore current density is increased overall.  

An increase in voltage also increases the current density, in figure 23 an increase in current density for 

different experiments is shown using a graph of current density-voltage.  This increase is expected as the 

current density is a function of current and its value is raised when the cell’s potential is increased. 

   

Figure 23: Current density- Voltage graph for sonicated 0.1M NaOH without temperature control.  

 

Figure 24 demonstrates the enhancement in current density when the ultrasound is applied. The 

enhancement in current density is obtained by finding the difference between sonicated and silent 

experiments for applied potentials and electrode active lengths (active surface area).  On the graph in figure 

24, the low active lengths (active surface area) account for highest improvement in current density, which 

may be resulted from gas blanketing on the surface of electrode that decreases the active surface area 

hence increases the current density as the current density is Current Surface Area⁄ .  The current density-

voltage graph for different experiments can be found in appendix V figure 17 onward on page 128.  
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Figure 24: Graph of improvement in current density versus voltage for 0.1M KOH at 25°C. 

 

The curves on the graph in figure 24 fluctuate and do not follow a regular pattern. This was observed for 

majority of experiments. The current density is a function of current and since the current generation was 

accompanied by fluctuations resulted from various resistances and potential drop hence the irregularities 

are expected for the current density as well until the resistances are reduced to minimum. The repetition of 

the experiments in a different cell with reduced resistances is highly recommended.  

4.4. Hydrogen Generation  

 

The hydrogen generation measurement was carried out using a digital hydrogen flow meter. The hydrogen 

gas was produced at the cathode and captured through a glass tube. 

The hydrogen production for silent experiment with 1.0 M concentration KOH at 25°C (40.12 cm� electrode 

surface area, Nickel-based electrode) was 0.31 L min⁄  with the applied voltage of 5.5V and current density of 

28.16 mA cm�⁄ .  The volume of the cell was 800 cm
 for this experiment and the cell was filled with the 

electrolyte. This may be compared to the literature work carried out by Ebru Önder Kiliç et al who produced 

hydrogen at a rate of 3.2 mL/min (0.0032 L/min) at 25 mA/ cm2 of current density [108]. The current density 

values are similar but Ebru et al had a much lower rate produced compared to our work.  They used 3.0 M 

HCOOH and 2.5 M NaOH solution as the electrolyte but our electrolyte was 1.0M KOH.   

The voltage requirement is decreased by increasing the electrolyte concentration. The highest voltage 

applied for 0.1M NaOH and KOH experiment is 30 volts, however this is significantly reduced at 10M KOH 
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and 15M KOH to 3.72V and 3.2V respectively. The highest hydrogen generation was recorded 0.72 L min⁄  

(12 cm3/second) for sonicated 10M KOH at 25°C and 4.65V potential.  

Another literature work by W.L. Guo et al reported hydrogen generation at a rate of 53 μmol hr⁄  for 3.0 M 

HCOOH and 2.5 M NaOH solution at a current density of 8.0 mA cm�⁄  [110]. An initial electrolysis voltage 
as low as 0.30V was used when the concentration of the formic acid was larger than 0.8 × 10-«M.  
The best comparison to W.L.Guo et al may be the experiment done for 1.0M KOH at 25°C and electrode 

surface area of 40.1 cm�, the rate of recorded hydrogen production was 0.6 litre min⁄  for the applied 

voltage of 8.5 volts. This is equal to 8.69 × 10-� gram second⁄   that is a better value compared to that of 

W.L.Guo (53 μmol hr⁄  equal to 2.96 × 10-§  gram second⁄ ) however their applied potential was very low 

compared to our work and the current density in our experiment was about 20 mA/cm2, which was larger 

than theirs. Therefore the carry-out of the experiments at low potential and high electrode surface area and 

high concentration is recommended.                                                                                                    

Figure 25 shows a graph of enhancement in hydrogen generation for potassium hydroxide at different 

applied voltages. 

 

Figure 25: Enhancement in hydrogen production at 25°C, electrode surface area: 40.1 ��� (electrode active length 10.5 cm)        

 

The greatest improvement in hydrogen generation occurs for 10M experiment, which was 0.17 L min⁄  at an 

applied potential of 4.65V while this was 0.18  L min⁄  for 5M at 4.8V. The curves on the graph in figure 25 do 
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not follow a regular pattern, which is originated from the cell deign, resistances in the production of 

hydrogen such as transport-related resistances, electrical resistances of the DC supplier and voltage drop 

therefore variation in the hydrogen production for silent and sonicated experiment leading to a graph such 

as the one presented in figure 25.     

Increasing the potential does not seem to result a steady improvement in hydrogen generation either 

(Figure 25), for instance at 5.5V, the improvement for 1M is -0.01 L min⁄ , even though it is 0.04 at  L min⁄  at 

5V and 0.02 L min⁄  at 6V potential. This pattern is resulted from the aforementioned reasons. 

 

        

Figure 26: Hydrogen generation rate for selected experiments at 25°C.                        

           

Figure 26 above shows rate of hydrogen generation in cubic centimetre per second as the cell potential is 

increased. The greatest rate of hydrogen was generated at higher potentials applied as can be seen in this 

figure. For the presented experiments, the lowest applied voltage at which the hydrogen generation was 

recorded, belonged to silent and sonicated experiments at 3V and electrode surface area of 41.2 cm�. It is 

expected that the experiments with ultrasound lead to higher hydrogen generation and that was the case.  

The results can be seen in tables 12 and 13. More graphs on hydrogen production can be found in appendix 

V (located in the CD) figure 33 onward on page 136. 
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Table 12 below demonstrates the improvement in hydrogen production for selected potentials. This 

improvement is the difference between the produced values for sonicated and silent experiments.  The 

negative improvements are errors emanated from the cell design and different resistances throughout the 

cell including electrical, electrochemical and transport resistances. 

Table 12: Improvement in hydrogen production for different experiments. 

 

In table 13 the average values of enhancement for hydrogen production is displayed for various experiments 

where the highest improvement is attributed to the potassium hydroxide at 0.1M concentration. 

Table 13: Enhancement in hydrogen production for different experiment. * Electrode surface area. 

Experiments at 25°C unless otherwise mentioned 

Improvement in 

Hydrogen production 

(percentage) 

0.1M NaOH Various electrode surface area (*e.s.a) 13.82% 

0.1M KOH various e.s.a 25% 

0.1M NaOH fixed anode, various cathode e.s.a 7.5% 

0.1M KOH fixed anode, various cathode e.s.a 13% 

0.1M NaOH various e.s.a No Temperature Regulation 7.8% 

0.1M KOH various e.s.a No temperature Regulation 19.2% 

KOH various molar concentration e.s.a. 40.1 cm
2
 18.5% 

15M KOH Silent various temperatures 8.0% 

 

The ultrasound has improved the hydrogen generation for most of the applied potentials, it was expected to 

see greater enhancement in production at higher potentials but that was not the case. The hydrogen gas 

bubbles did not always go through the capturing tube at the cathode, especially for higher potentials and 

electrode surface area. This is resulted from the diameter of capturing tube as it was not large enough to 

allow all hydrogen gas bubbles in, hence caused invalid reading at high potentials such as 20V and above.  

The other factors, which may have influenced the hydrogen generation, are electrode coverage by gas 

bubbles, electrode deactivation as a result of high gas concentration on the electrode surface and different 

Experiments  
Improvement in Hydrogen production (%) 

3V 15V 25V 

0.1M NaOH Various electrode surface areas 22.22% 6.33% 7.75% 

0.1M KOH various  electrode surface areas 33.33% 17.9% 21.7% 

0.1M NaOH fixed anode, various cathode surface area 28.6% -9.2% 1.46% 

0.1M KOH fixed anode, various cathode surface area 0.0% 5.62% -1.42% 

0.1M NaOH various surface area without Temperature control -36.6% 5.88% 18.8% 

0.1M KOH various surface area without temperature control 0.0% 4% 25% 
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resistances as mentioned in section 2.6. The hydrogen production was improved by about 65% when the 

electrode surface area was increased by about 45%. This was calculated finding the increase in surface area 

and increase in the hydrogen production over that surface area increase then finding the percentage.  For 

instance the increase from 28.8 cm2 to 41.4 cm2 is 12.6 cm2 and the percentage increase in surface area can 

be found as follows:  ��41.4 − 28.8�/ 28.8� × 100 = 43.75%. The same method is used to find the 

percentage increase in hydrogen production.  

The hydrogen production was enhanced by about 11% when the ultrasound was applied, this could be 

calculated having a look at tables 12 and 13 and using the same technique mentioned above.                         

For example the improvement in hydrogen generation for the first experiment on table 13 is 0.024 L/min. 

The hydrogen production for this experiment was 0.146 L/min (calculated from the table of data, Appendix 

III table 5 onward), which gives the percentage increase as �0.024/ 0.146� × 100% = 16.44% meaning that 

the ultrasound has improved the hydrogen generation by 16.44% for this experiment. 

4.5. Hydrogen generation efficiency 

 

The hydrogen production efficiency may be found using the equations 30 and 31 in 3.3, here are the 

equations again: 

Efficiency�%� =  ±q²³´
±µ¶²³´           

V·@FGW�cm3� = ¸·C
�i × En

=                                            
The hydrogen production efficiency for the electrolysis cell was calculated for each potential applied and 

every electrode surface area employed. The data sheets in appendix III (CD provided) deliver the information 

regarding to the efficiency calculated for each potential, hydrogen generation, current density and etc.   

The efficiency was plotted against the applied potential for sodium hydroxide at the specified operating 

conditions in figure 27. The efficiency curves do not follow a steady shape with increase or decrease in the 

potential. This may be explained by referring to equation 31 in 3.3 for the ideal volume calculations. In the 

stated equation, time and current are the numerator and since the time of hydrogen generation for every 

applied potential was different, as was the current generated, hence the variations on the graph in figure 27 

could be justified.  For 18V potential as an example, the time of hydrogen generation with the ultrasound 

was 36 seconds leading to the production efficiency of about 88% at this voltage, however this was 42 

seconds for the silent case and the production efficiency was nearly 74%.  
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Figure 27: Graph of production Efficiency Vs. Voltage for NaOH at 25°C, 35.1 ���electrode surface area. 

The efficiencies of up to 96% have been mentioned in the literature by some researchers employing 

electrodes such as low carbon steel [74] and 10 vol% 1-butyl-3-methyl-imidazolium-tetrafluoroborate 

(MBI.MF4)in water as electrolyte under current density of 44 mA cm�⁄  [150] while commercial and industrial 

electrolysers are usually less than 73% efficient [76].  Therefore our study could be compared with the 

literature work [74, 76 and 150] done since our efficiencies were similar in value as they are reported in 

table 15.  

The enhancement in efficiency for numerous experiments was calculated and tabulated in table 14 below. 

This enhancement is the difference of the efficiency for sonicated and silent conditions.   

Table 14: Improvement in production efficiency.  

Experiments at 25°C unless otherwise mentioned Improvement in Efficiency (%) 

0.1M NaOH Various electrode surface area (A) 5.31 

0.1M KOH various electrode surface area    (Am) 3.26 

0.1M NaOH fixed anode, various cathode surface area  (B) 1.70 

0.1M KOH fixed anode, various cathode surface area     (Bm) 5.20 

0.1M NaOH various electrode surface area No Temperature Regulation  (C) -4.47 

0.1M KOH various electrode surface area No temperature Regulation     (Cm) 4.03 

KOH various molar concentration and 40.1 cm� surface area  25.60 

15M KOH Silent various temperatures 5.24 
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The improvement in efficiency could be compared for potassium hydroxide and sodium hydroxide 

electrolytes using table 14 for the denoted experiments on the table.  A comparison of (A) and (A′) shows 

that at 0.1M concentration sodium hydroxide had a better production efficiency (2.05% better) however the 

opposite was expected since KOH solution is more conductive [161]. For B-B’ and C-C’ cases, potassium 

hydroxide is more efficient for hydrogen production with better improvements of 3.5% and 8.5% 

respectively.  

The efficiency of hydrogen production in another experiment was calculated for the case in which the 

potential was constant at 2.5V and the effect of electrode surface area was considered for 1M KOH at 25°C 

(Nickel-Based Electrode). The comparison was done for both silent and sonicated conditions, the result is 

reported in figure 28. The increase in surface area results in a raise in the efficiency for both silent and 

sonicated cases, additionally the ultrasound further increases the efficiency for this experiment.   

 

Figure 28: Graph of efficiency versus electrode surface area for 1M KOH at 25°C, Nickel-Based electrodes, 2.5V Potential. 

 

It was observed that the increase of electrode surface area results in higher rate of current being generated 

whilst the time of hydrogen generation is slightly reduced as a result of this increase, since time and current 

are main influencing factors in order to find the ideal volume (Eqn. 31 in 3.3.), hence the efficiency (Eqn. 30 

in 3.3.) is indirectly related to the electrode surface area and directly to the time and current.  Figure 28 

clarifies these changes in production efficiency.  Equations 30 and 31 can be again found below respectively: 

Efficiency�%� =  ±q²³´
±µ¶²³´           

V·@FGW�cm3� = ¸·C
�i × En

=                                            
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Figure 29: Production efficiency for 0.1M NaOH at 25°C. 

 

 Figure 29 displays the production efficiency behaviour with the increase in the potential for a selected 

experiment. The efficiency is between 60-90% for majority of applied voltages and as seen above there is no 

linear increase in efficiency with an increase in voltage. The efficiencies above 100% may be errors, which 

may be resulted from malfunction of DC supplier for a certain voltage or errors in reading by the digital 

hydrogen flowmeter. The graphs for the improvement in efficiency for various experiments can be found in 

appendix V figure 65 and onwards on page 152. In table 15 below the production efficiency for different 

experiments is demonstrated. 

Table 15: Production Efficiency for different experiment silent and sonicated. 

Experiment Production Efficiency (%) 

0.1M NaOH at 25°C 78.44 

0.1M KOH at 25°C 77.1 

0.1M NaOH without Temperature Control 68.92 

0.1M KOH without Temperature Control 66 

15M KOH 70.55 

  

The overall efficiency of the electrolytic cell could be averaged using table 15 efficiencies, which would give 

the average value of about 72%.
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4.6. Energy  

 

The energy balance on a system demonstrates how efficient a process is in terms of energy 

consumption when the produced energy is compared to the consumed amount of energy. An energy 

balance on the electrolytic system shows how much energy is used to produce a certain amount of 

energy in the form of hydrogen. 

The amount of electrical energy consumption for hydrogen production can be found using the 

relation described below in equation 39 and ultrasonic power consumption via (Eqn.40) [74] [162] 

 P = V × I  And Energy = P × t                      (39)                                                                                  

 Where P is power (watt or Joule/s), V and I are overall voltage (volts), t is time (s) and current 

(amperes) through the cell respectively.  

The energy consumed for the sonicated experiments may be found via equation 40 assuming that 

the losses are negligible and all the ultrasound goes to the temperature increase (i.e. heat): 

Q (joules) = mCÉ∆T                                            (40) 

Where ΔT is the change in the temperature of electrolyte, m (grams) is the mass of electrolyte 

solution and CÉ is the specific heat capacity of the solution (electrolyte) (j/kg.K).   

The material properties and the ultrasonic power of materials can be seen in appendix IX tables 134 

and 135 on page 162. The value of dT/dt (change in temperature over time) was calculated for each 

electrolyte by measuring the temperature changes over a period of time at 30% (sonication 

amplitude) and 5 second time intervals. The temperature rise with time for the ultrasound applied 

can be found on table 136 in the appendix IX.     

 The energy efficiency for various experiments can then be calculated using the equation below: 

X[�Ê~Ë XÌÌ����[�Ë: X[Ê~Ë ÆÊ}�Í���
X[�Ê~Ë �}[ÎÍ��� × �vv%                        (41) 

Another way to find the energy efficiency is to find the energy losses during the process including 

the losses at the circuit, electrode and within the electrolyte, then using equation 42 [6].  

�[�� = � − XÏ}ÎÎ
XÐ[ÑÍ�                                                         (42) 
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Energy loss at the electrode includes the loss due to the partial coverage of electrode by gas bubbles 

resulting in bubble overpotential both at the anode and cathode. The energy loss at the circuit is 

resulted from connections and wiring at the anode and cathode. The resistance to ion transfer 

within the electrolyte is the reason to another form of energy loss [6].  

The energy efficiency can be calculated for various experiments using equations 41 and 42. For 

instance, the efficiency for the case in which 0.35 kW of energy (electrical and ultrasound) was used 

and 10 cm
 s⁄  of hydrogen was produced is given by (hydrogen density: 0.000089 g/cm3): 

10 �cm
 S⁄ � × 0.000089�g cm
⁄ � = 0.00089 g S⁄  

0.00089
1000 = 0.00000089 Kg S⁄  

The calorific value of hydrogen is 141790 KJ Kg⁄  

0.00000089 Kg S⁄ × 141790 KJ Kg⁄ = 0.1261931 KJ S⁄  or KW Amount of energy produced in the 

form of hydrogen.  The energy efficiency: 

0.1261931
0.35 = 0.360 × 100% = 36.0% 

The literature equation [163] [164] of energy efficiency for an electrolysis system is given by [165]:  

� = ÒÓ ¿�,�Í� ¿¿Ô
X,Õ��||Ö�-zvzÎ×,Õ¿��Ö�-zvzÎ×                                (43) 

Where NÓ Lf,jAC is the hydrogen outlet flow rate, HHV is the higher heating value of hydrogen, E is the 

electric energy input, QTFWW  is the redundant heat from the cell , QLfp  is the thermal energy input to 

raise the temperature of water, T0 and TS are the temperatures of the environment and the external 

heat source, respectively.  

The equation 43 could be broken down in order to see its constituents and how they can be 

calculated. For this reason the overall reaction in water electrolysis can be written in 

thermodynamics language: 

H�O + Heat + electricty → H� + 1
2 O� 

The theoretical energy needed to produce hydrogen through electrolysis at a certain temperature is 

given by: 

 ∆¿ = Õ + ∆Z                                                                       (44)    
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Where Q=TΔS and ΔG is the change in Gibbs free energy.  The value of ΔH for water formation at 

1atm and 298°K is given by ∆H =  −285.8 KJ/mol of H�                                                                           

(Standard Gibbs free energy) ΔG° = −RTln K hence (equilibrium constant) k = eºØÙ°
qÚ  where k can be 

used to calculate Gibbs free energy (ΔG) at different temperatures.        

In an electrolytic cell there are various resistances as mentioned in section 2.6, there resistances 

resulting from the overpotetnial needed to overcome activation energy of oxygen and hydrogen 

formations, resistances due to wiring and connection at the electrodes, resistance to ion transfer 

within the electrolyte and resistance due to electrode surface covered by the gas bubbles. Therefore 

for energy efficiency calculations it is required to define a term, which encapsulates theses 

resistances. The cell usually operates at a higher potential than the equilibrium potential, hence the 

term overpotential is introduced, which can represent the internal resistances in an electrolysis cell. 

The following equation may be presented for joules heating based on joules law per unit time [165] 

[166]: 

ÕÛ = Ð�y� = ÐÔ}Ü�ÊÑ}��[���|                                                   (45) 

Where I is the current and Re is the internal resistance and Vj�F>É?CF�C�GW  is the overpotential or 

overvoltage for different experiments, which was explained and calculated in sections 2.4.2.2 and 

4.2.2.  

The lost heat or redundant heat �QBFWW� mentioned in equation 43 can be found using the equation 

46 below: 

Õ��|| = z∆Ý − ÕÞ                                                                           (46)  

Where ΔS is the change in entropy and can be found by Q/T.  

In table 16 the energy efficiency is calculated for various experiments along with the energy saving 

when the ultrasound is applied.  The energy efficiency demonstrated on table 16 can be compared 

to the energy efficiency mentioned in the literature, which is said to be between 40%-60% [74], [75] 

for the electrolysis [6], [76]. This is higher than the majority of experiments presented on the table 

however the last experiment had energy efficiency above 40%, which is within the aforementioned 

range.  Our energy efficiencies nevertheless are much lower than that of PEM electrolyser 

mentioned by Frano Barbir with coupling energy efficiency of 93% (solar cell/PEM electrolyser) [112] 

[111].  
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Table 16: Energy efficiency for different experiments. 

Experiment  Energy efficiency Range 

(%) 

Energy saving via 

Ultrasound 

0.1M NaOH, electrode surface area cm2 

(28.8, 32, 35.1, 38.25, 41.4) at 25°C 

Silent: 6.8-7.83  -0.29% 

Sonicated: 6.6-7.54 

0.1M KOH, electrode surface area same as 

above at 25°C  

Silent: 8.1-8.4 1.17% 

Sonicated: 9.0-9.57 

0.1M NaOH fixed anode, various cathode 

surface area cm2 (32, 33.5,35.1, 36.7,38.25) 

at 25°C 

Silent: 7.95-8.53 0.62% 

Sonicated: 7.5-9.15 

0.1M KOH fixed anode, various cathode 

surface area same as above at 25°C 

Silent: 7.77-8.26 0.27% 

Sonicated: 7.81-8.53 

0.1M NaOH various surface area(28.8, 32, 

35.1, 38.25, 41.4) without Temperature 

control 

Silent: 9.2-9.72 0.68% 

Sonicated: 9.5-10.4 

0.1M KOH various surface same as above 

without temperature control 

Silent: 8.3-9.7 0.90% 

Sonicated: 8.0-10.60 

KOH at 25°C                                        

concentrations ( 0.1M, 1M, 5M, 10M) 

Silent:  12.5-42.8 5.8% 

Sonicated: 11.3-48.6 

 

The energy saving using the ultrasound was not significant during the experiments as shown on table 

16. This was compared to 10-25% energy saving mentioned by Sheng-De Li. The highest energy 

saving is attributed to the experiment using potassium hydroxide at various concentration, which 

was 5.8%. This also had the highest energy efficiency for both silent and sonicated experiments 

reaching 48.6% for the sonicated experiment.    

The energy efficiency can be increased by reducing the potential requirement for the electrolysis, 

enhancing the cell design, electrode surface and reducing the resistances throughout the cell.                

Sheng-De Li et al suggested the amount of energy that could be saved via the application of the 

ultrasound is significant compared to the investment in equipment and energy consumption by an 

ultrasonic field. They set an example referring to a 100 kA cell with a bubble-overpotential of 0.3V , 

which could save up to 30 kW while an ultrasonic field consumes about 0.05 kW only [105] however 

in our work the energy saving using the ultrasound was not satisfactory having it compared to the 

mentioned range by Sheng-De Li et al.      
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4.7. Effect of electrode surface area  

 

The electrode active surface area is the area in contact with the electrolyte at which the 

electrochemical reactions occur however the meaning of real surface area is defined according to 

different traits, and further experimentation may be needed in order to determine the real surface 

area of the electrode. This depends on factors such as electrode surface heterogeneity and 

homogeneity, surface topography (i.e. macro/micro roughness) and dispersion of active materials 

within the electrolyte [167]. 

The techniques with which the real surface area can be found are divided into in-situ and ex-situ 

methods. The in-situ includes procedures such as voltammetry, hydrogen and oxygen adsorption 

from the solution, ion exchange capacity, drop weight, capacitance ratio, Parsons-Zobel plots and 

negative adsorption. The ex-situ method contains X-ray diffraction, Porosimetry, microscopy, 

adsorption of probe molecules from the gas phase and etc. [167].  Please note that not all of the 

aforementioned methods are applicable for solid electrode, for instance drop weight (volume) 

technique is applied for liquid metal electrodes such as Hg and Ga in dynamic or static conditions. 

Adsorption processes and capacitance ratio are the most commonly used methods applied for solid 

electrodes, which are based on diffusion controlled mass transfer when the current is 

homogeneously distributed. In the 2nd method the differential capacitance is evaluated in the 

electrical double layer area using Gouy-Chapman theory [168]. The electrical double layer is a region 

near the surface of the electrode where the first layer includes adsorbed ions and the second has 

ions attached to surface charge (i.e. positive and negative charges in the layer as a whole) [169].    

The active electrode surface area in our work is assumed equal to the geometrical electrode surface 

area in contact with the electrolyte, the fluctuations in the level of the electrolyte inside the 

capturing tube at the time of the experiments were not recorded.             

4.7.1. Increase of electrode surface area 

 

In this part, the effect of electrode surface area for numerous experiments is evaluated where unlike 

4.7.2 the anode and cathode active lengths are the same and their increase is studied on the 

hydrogen generation. In previous sections, figures 21, 22 and 28 considered the effect of surface 

area on decomposition potential, current density and production efficiency, this section’s focus is to 

quantify the changes for the current and hydrogen production.  
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Figures 30 and 31 demonstrate the effect of electrode surface area on the current generation and 

hydrogen production for selected potentials. The trend shows the current and hydrogen generation 

are both increased by increasing electrode surface area.  In figure 30 increasing the surface area by 

12.6 cm� from 28.8 cm� to 41.4 cm� increases the current generation by: 

• 1087 mA for silent 0.1M NaOH 

• 1143 mA for sonicated 0.1M NaOH   

• 1303 mA for silent 0.1M KOH 

• 1102 mA for sonicated 0.1M KOH 

 

Figure 30: Current vs. surface area for different experiments at 30V and 25°C. 

 

 

Figure 31: Hydrogen production versus electrode surface area silent experiment at 25°C and 22V.  
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In figure 31 increasing the electrode surface area by 12.6 cm� results in an enhancement in 

hydrogen generation by: 

• 3.05 cm
 second⁄  for 0.1M NaOH or 122% increase 

• 3.01 cm
 second⁄  for 0.1M KOH   or 113% increase 

Having compared the current generated for various experiments at different electrode surface areas 

(Appendix III on page 9 onward), it was calculated that increasing the electrode surface area by 

about 45% increased the current by 2-2.5 times its initial value. This was done by finding the 

differences between the current generation at active length 9 cm (Electrode surface area: 28.8 cm�) 

and active length 13 cm (Electrode surface are: 41.4 cm�) at different potentials for various 

experiments. This means that 43.75% increase in the electrode surface area results in 70-150% 

increase in the current generation.  

The enhancement in hydrogen generation by increasing the electrode surface area did not follow a 

steady trend and negative improvements were spotted for numerous experiment, the reasons to the 

fluctuations in hydrogen production (errors or negative improvements) come from the cell design 

(gas capturing tube), resistances to mass transfer and bubble accumulation on the surface of 

electrode. The enhancement trend however may be found having a look at the consistent results 

obtained for different potentials such as the data plotted in figure 31. In this figure the hydrogen 

generation was increased by 113% for 0.1M KOH and 122% for 0.1M NaOH when the electrode 

surface area was increased by 43.75%.   

The improvement in the hydrogen generation, by about 45% increase in surface area, was evaluated 

to be between 50-130% for the consistent results.  The improvement was evaluated by finding the 

difference between hydrogen production at 28.8 cm� (initial electrode surface area) and 41.4 cm� 

(final electrode surface area) for different potentials and experiments, which would give us the 

range.  The low percentage belongs to low applied potentials such as 2-5 volts.        

 

4.7.2. Fixed-anode/Fixed Cathode Electrode Active Length 

 

The first comparison in this section will be made for the experiments carried out at high 

concentration (15M) electrolyte and variable anode and cathode electrode active length (surface 

area).  The current generation along with hydrogen production are compared for similar surface 

areas but different electrode configurations in figures 32 and 33. The fixed length of electrode was 
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set at 11 cm and variable length was changed. Figures 32 and 33 may demonstrate that the cathode-

fixed experiment resulted in slightly more current being generated hence more hydrogen production 

however the overall results were not conclusive and irregular patterns were observed. (Additional 

information regarding to the results can be seen in appendix III table 73 onward on page 75)     

 

 

Figure 32:  Current-Voltage comparison between anode-fixed and cathode-fixed for 15M KOH at 25°C.  

 

 

Figure 33: Hydrogen Production comparison between anode-fixed and cathode-fixed for 15M KOH at 40°C.  
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The aim here was to see whether an increase in the cathode surface area has any influence on the 

current generation and the production of hydrogen compared to the opposite electrode 

arrangement. Douglas F. Call et al in a work investigated the effect of high surface area of stainless 

steel cathode on the generation of hydrogen in a microbial electrolysis cell.  It was reported that 

using a stainless steel brush cathode the hydrogen generation was similar to the rate achieved via 

platinum-catalysed cathodes. Moreover a reduction in overpotetial for hydrogen evolution was 

obtained [115].   

Hydrogen generation for the experiment shown in figure 33 at 2V for instance, exhibited 0.12 cm
 s⁄  

increase for both cathode-fixed electrode arrangements relative to anode-fixed, the current was 

enhanced by 11 mV (anode 9 cm, cathode 11 cm) and 28 mV (anode 13 cm, cathode 11 cm) however 

at 4V (anode 13 cm, cathode 11 cm), the current was reduced by 31 mA and the hydrogen 

production was also reduced by 0.3cm
 S⁄ .   

As one can see from the figures 32 and 33 and the data sheet in appendix III, the increase or 

decrease in current, current density and hydrogen production for cathode-fixed configuration is not 

decisive and the fluctuations are a barrier on the interpretation of the results. The reason to such 

indecisive results in this section may be raised from the fact that there was not a large cathode 

surface area as opposed to the anode and vice versa hence similar results with fluctuations were 

obtained. It may be suggested to carry out a similar experiment for very large cathode surface area 

as opposed to a small anode one in order to obtain more reasonable data.  

4.8. Effect of electrode 

 

The recorded hydrogen generation for 0.1M potassium hydroxide using carbon electrodes was 

greater compared to that of nickel-based electrodes. This can be seen from the graph below in figure 

34.  

Nickel is the most widely used electrode for the electrolysers because of its stability and activity 

(activation overpotential:  -0.28V for hydrogen and +0.56V for oxygen) [6]. The nickel electrode 

throughout the experimentation showed more resistance to corrosion in comparison to carbon 

electrode particularly for potassium hydroxide solution. The carbon electrodes (activation 

overpotential : +0.95 V for oxygen and -0.62V for hydrogen) after operation time of about 90 

minutes (low concentration such as 0.1M NaOH or KOH) eroded into the electrolyte solution and 

changed the colour to black while this erosion was noted for nickel electrode at above 60°C. The 



93 
 

nickel electrode was worn away and altered the colour of the electrolyte solution to yellow at the 

above-mentioned temperature and an operation time of nearly 60 minutes (high concentrations 

such as 10M and 15M KOH). The rate of corrosion was not measured.   

 

 

Figure 34: Hydrogen production comparison for carbon electrode and nickel electrode. 
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Another reason to the trend on the graph in figure 34 may be the result of electrode surface. The 

electrode surfaces are usually amended by pores, cuts and slits to increase bubble detachment from 

the surface however the size of these amendments must not cause gas trapping [6].    

The following factors may be the cause of less current and hydrogen produced for the nickel 

electrodes:  

I. The deactivation of nickel electrode through the development of nickel hydride phase as a 

result of high concentration of hydrogen. 

II. The surface of the nickel electrode may have inhibited the bubble detachment  hence 

resulted in bubble accumulation at the surface, resistance to mass transfer and increase in 

current density since the bubble blanketing reduces the active surface area of the electrode. 

III. Formation of NiO (Nickel oxide) on the surface of the electrode, which reduces the electrical 

conductivity.  

Although nickel is a popular material in the industry for the electrolysers but a careful look at the 

surface of electrode and material of electrode coating could make a considerable difference in the 

production and energy efficiency.  The electrode surface could be improved using coating materials 

as well as modification of the surface structure via creation of perforations and apertures.     

      

Chapter 5: Concluding remarks, Recommendations and Future work 

 

5.1. Concluding Remarks 

 

 The electrolytic cell during this research project had the average production efficiency of 

about 72% and energy efficiency of about 14.5%. The production efficiency is similar to the 

literature values mentioned between 70-96% [74], [113] however the energy efficiency is far 

behind the literature range, which is between 40%-60% [114]  

 The ultrasound increased the production efficiency by about 6% and energy efficiency by 

about 1.3%. This means that the energy saving via the ultrasound was only 1.3% that was 

considerably lower than 10%-25% range mentioned in the literature [105]. 

 A 45% increase in the electrode active surface area enhanced the current generation by 

about 70% whilst the hydrogen production was not improved in a regular fashion however 
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more experimentation is required to achieve an orderly pattern and draw a decisive 

conclusion.  

 Dissimilar electrode configurations has not resulted in a definite increase or decrease in 

current and hydrogen generation, this may be caused by small variance between anode and 

cathode surface areas. Further experiment is required employing a very large cathode 

surface area against a small anode surface area and vice versa in order to investigate the 

effect of dissimilar electrode configurations. 

 The nickel electrode throughout the experiments at high concentrations such as 5M-15M 

may have undergone deactivation. The nickel electrode deactivation is broadly mentioned in 

the literature and is a common occurrence [6], [170], [171]. The iron coating could be used 

to prevent the electrode deactivation. The electrode surface could also be enhanced by 

creating cuts, slits and perforations in order to ensure a good performance by the electrode.     

 Increasing the concentration and temperature of the electrolyte solution resulted in a 

decrease in the decomposition potential and overpotetnial. The decomposition potential at 

molar concentrations of 5M-15M had an average value below 1.23V, which may be 

interpreted as underpotential deposition (UPD) however more study is needed employing 

electrochemical and surface characterisation techniques such as FTIR, SERS, STM and etc.  

 

5.2. Recommendations and Future Work 

 

The first recommendation is to design a new cell and do the repetition for the similar experiments 

since the absence of reliability and a definitive conclusion can be seen from some of the 

experiments. The limited time available to the author did not allow a new cell design. In a new 

design it is suggested to reduce the resistances by decreasing the gap between the electrodes, 

reduce wiring at the electrodes and enhance the electrode surface using coating materials.  

The cell design could be altered in such a way to enhance the gas capturing by allowing reasonably 

sized diameter for the capturing tubes. In figure 35 the author’s recommended design is depicted. 

The total volume of the cell may also be differed, at smaller volumes the ultrasound’s effect could be 

studied better since more of the solution will be in the proximity of the ultrasound.   

In order to enhance the production rate, the ultrasonic transducer could be removed and instead an 

ultrasonic tip replaces the cathode/anode or both, which would act as both electrode and an 

ultrasonic irradiator. In this way there will be a localised ultrasonic field at the electrodes hence the 
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gas bubble removal from the surface of the electrode and within the electrolyte would be much 

more effective.  

    

Figure 35: Recommended cell design by the author. 

 

The gap between the electrodes in our study was 7.5 cm, this gap could be reduced and its effect 

could be studied on the electrochemical reactions, a smaller gap means less distance for ions to 

travel between the electrodes and may lead to less ohmic and ionic resistances. 

The electrode surface can be modified using slit, cuts and perforations in order to maximise the 

contact with the electrolyte solution. The electrode active surface is increased using this method 

hence more active sites available for the electrochemical reaction. The nickel electrodes can be 

coated with the materials such as iron in order to prevent the electrode deactivation at high 

concentration of hydrogen.     

The use of three electrode system (voltammetry) is recommended for future work in order to 

calculate the anodic and cathodic overpotentials separately as the half-cell reactions in this way can 

be studied separately irrespective of the other half. This method employs a reference electrode, 

working electrode and counter electrode [173].  
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The sonication distance from the electrolyte and also the power of sonication could be subject of 

alteration for future work. The enhancement in sonication amplitude may also further increase the 

mass transfer hence productivity of hydrogen.  

The electrolyte solution could be purged with argon or nitrogen gas for a specified period of time 

throughout the experiments to remove the air from the cell. The resistance to mass transfer may be 

reduced using this technique. 

More exploration on the effect electrode surface area on the electrochemical production of 

hydrogen is recommended, our results in this area were not entirely conclusive hence a repetition in 

this area is suggested along with the investigation on the effect of large cathode surface area in 

comparison to a small anode surface area and vice versa. For instance the cell’s internal wall may be 

made from nickel alloy material acting as the cathode while a platinum wire or steel could be placed 

into the electrolyte as the anode.  

The application of a magnetic field in the electrolysis could be studied using ferromagnetic electrode 

materials and potassium hydroxide as electrolyte solution, this could be coupled with an ultrasonic 

field in order to enhance the production of hydrogen. The direction of magnetism will determine the 

direction of gas bubble motion and the convection of electrolytic solution as reported by Ming-Yuan 

et al in their work who displayed the direction of the electrolyte flow field under the magnetic force 

effect. Therefore the direction of the ultrasonic irradiation should be set in the direction of 

magnetism for maximum impact [174].       

Urine could be used as the electrolyte material in order to produce hydrogen.  Urine has 4 hydrogen 

atoms per molecule as opposed to water with 2 hydrogen atoms per molecule. Furthermore the 

hydrogen atom bonds in urine are weaker than that of water therefore less energy may be needed 

to decompose the urine molecules. Park et al in a recent work studied the electrolysis of Urea and 

Urine for solar hydrogen production using BiOx–TiO2 anode and stainless steel cathode [175]. The 

electrolysis of Urine/Urea could be carried out using the ultrasonic field, magnetic field or 

mechanical stirring in the absence of external electrolyte added to the urine and urea contrary to 

the work of Park et al in which  NaCl, LiClO4or Na2SO4 (50 mM, 60 mL) were added to urine solution.  
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