
ON ASYMPTOTICAL & NUMERICAL
ANALYSES OF LIQUID JETS

by

MUHAMMAD MOHSIN

A thesis submitted to
The University of Birmingham

for the degree of
DOCTOR OF PHILOSOPHY

School of Mathematics
College of Engineering
& Physical Sciences
The University of Birmingham
July 2012



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



Acknowledgements

I would like to express my sincere and heartfelt thankfulness and appreciation to

my supervisors Dr. Jamal Uddin and Professor Stephen Decent for helping me

with every difficulty that I had during my research. Their guidance, commitment

and co-operation were really blessings for me throughout this research. In partic-

ular, I am really grateful to Jamal for all of his help, support, encouragement and

very useful advices throughout my whole research life.

My sincere thanks also go to Dr. Emilian Părău, from the University of East
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Abstract

Liquid jet breakup is a commonly occurring phenomenon in the world and con-

trolling the breakup process is very important and useful in many industrial, en-

gineering and medical fields. In this thesis, we investigate the behaviour of liquid

jets and, in particular, how to control the breakup of liquid jets. For that purpose,

we examine the behaviour of linear and nonlinear waves travelling along a liquid

jet using two different methods, the classical method and then the Needham-Leach

method.

The outline and the advantages of the classical method are as follows. We use

a long wavelength asymptotic expansion to reduce the governing equations of a

given problem in to a set of one-dimensional model equations. We first obtain

the steady-state solutions of these model equations and then we perform a linear

temporal instability analysis of steady-state solutions. This process yields a tem-

poral dispersion relation, which we solve numerically to investigate the behaviour

of maximum growth rates and maximum wavenumbers of the most unstable wave

disturbance, by changing key physical parameters of the problem. In addition, we

estimate the breakup length of compound liquid jets falling under gravity, using

the linear temporal stability analysis and we compare our results with numerical

simulations. Furthermore, using classical method, we obtain the nonlinear tempo-

ral equations, which we solve to get useful information about the breakup length,

main and satellite drop sizes, by changing key physical parameters of the problem.
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The outline and the advantages of the Needham-Leach method are as fol-

lows. We consider the model equations of a given problem, along with initial

and boundary conditions, and we divide the whole domain in different space and

time asymptotic regions. We next find the solution to the model equations in

each region, which consists of some unknown constants and then we do asymp-

totic matching between each neighbouring region to find out the values of the

unknown constants. This process is repeated in each asymptotic region until the

whole asymptotic domain is fully covered. The Needham-Leach method gives

useful information about the liquid jet breakup, the region of breakup and, most

importantly, the means of controlling the liquid jet breakup. We also obtain an

asymptotic solution to the liquid jet equations for large space and time limits. We

also find the onset of nonlinear wave instability, where the nonlinear wave starts

to dominate. Hence, we find the mode competition of the imposed wave from

linearity into nonlinearity. In order to get the onset of nonlinear wave instability,

we must do this kind of the Needham-Leach method analysis, as we cannot get

the onset of nonlinear wave instability through numerical analysis.
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Chapter 1

Introduction

The breakup of a liquid jet into small drops is a commonly occurring phenomenon

in the world. In many industrial and engineering problems, it is highly desirable

to control the breakup of liquid jets and to obtain drops of a desired size. Liquid

jet breakup is used in many fields like in pharmaceutics (see Mitragotri (2006)),

prilling process (see Wallwork (2002)), sprays (see Lefebvre (1989)) and agricul-

tural irrigation (see Eggers & Villermaux (2008)). Normally, a disturbance, in the

form of a sinusoidal wave, is applied at the orifice of the liquid jet to control the

size of the resulting drops. This disturbance can be a high frequency sound wave

(see Partridge (2006)) or in the form of a vibrating needle (see Chauhan (2003)).

As a result of this imposed disturbance, two kinds of drops are produced; drops

of equal sizes, known as uniform or main drops, and drops of much smaller sizes,

known as satellite droplets. In industrial and engineering applications, such as

in the process of agricultural irrigation, the satellite droplets lead to waste (see

Eggers & Villermaux (2008)). The primary aim, in such studies, is therefore to

obtain uniform drops and no satellite droplets.

Our main objective in this thesis is to use the classical method and then the

Needham-Leach method to control the liquid jet breakup. We first use the classi-
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cal method to obtain the steady-state solutions of the model equations of a given

problem and then we perform a temporal instability analysis to obtain a disper-

sion relation, which gives us useful information about the maximum growth rate

and the maximum wavenumber of the imposed wave-like disturbance. Next, we

use the Needham-Leach method to describe the different regions of the breakup

of liquid jets. This asymptotic method tells us the onset of the nonlinearity or the

mode competition of the wave from linearity into nonlinearity. We use matched

asymptotic expansions to calculate the large time and space asymptotic structure

of the long wavelength evolution equations. We determine some useful quantities,

like the amplitude, frequency, wavenumber (and hence the wavelength) and the

growth rate of the disturbance, which are associated with the travelling of non-

linear waves. These will give useful information about the liquid jet breakup, the

region of breakup and, most importantly, how we can control the breakup of liquid

jets. In addition, we will also compare the results of our asymptotic method with

a numerical method. Our aim will be to ultimately obtain a parameter space in

which uniform drops with no or very few satellite droplets can be achieved.

This thesis is divided into two parts. In the first part, we present the classi-

cal method and in the second part, we present the Needham-Leach method. We

arrange this thesis in the following manner. The second chapter of this thesis con-

tains a short summary about liquid jets and the importance of controlling them.

We also describe the different types of breakup regimes and the different types of

instability analyses. In addition, we describe compound liquid jets and important

experimental and theoretical works on them.

In the third chapter, we perform a theoretical analysis to examine the instabil-

ity of an axisymmetric inviscid compound liquid jet which falls vertically under

the influence of gravity. This problem is a generalization of the problem, which

was considered by Sanz & Meseguer (1985). We use a long-wavelength, slender-
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jet asymptotic expansion to reduce the governing equations of the problem into a

set of one dimensional partial differential equations, which describe the evolution

of the leading-order axial velocities of the jet as well as the radii of both the inner

and the outer interfaces. We first determine the steady-state solutions of the one

dimensional model equations and then we perform a linear temporal instability

analysis to obtain a dispersion relation, which gives us useful information about

the maximum growth rate and the maximum wavenumber of the imposed wave-

like disturbance. We use our results to estimate the location and qualitative nature

of breakup and then compare our results with numerical simulations.

In the fourth chapter, we perform a theoretical analysis to examine the instabil-

ity of an axisymmetric shear thinning compound liquid jet which falls vertically

under the influence of gravity. This problem is a generalization of the problem

solved in Mohsin et al. (2012). We use a long-wavelength, slender-jet asymp-

totic expansion to reduce the governing equations of the problem into a set of

one dimensional partial differential equations, which describe the evolution of the

leading-order axial velocities of the jet as well as the radii of both the inner and

the outer interfaces. We first determine the steady-state solutions of the one di-

mensional model equations and then we perform a linear temporal instability anal-

ysis to obtain a dispersion relation, which gives us useful information about the

maximum growth rate and the maximum wavenumber of the imposed wave-like

disturbance. We next use the Lax-Wendroff method to determine the non-linear

temporal solution.

In the fifth chapter, we give a description of the Needham-Leach method.

After that, we give a review of Decent (2009), which is an application of the

Needham-Leach method to the breakup of liquid jets. Decent (2009) applied

the Needham-Leach method for the very first time to the breakup of liquid jets

and, consequently, obtained very useful information regarding the regions of jet
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breakup.

In the sixth chapter, we consider a straight uniform vertically falling Newto-

nian liquid jet under the influence of gravity. We obtain a leading-order solution

of this problem. We next apply the Needham-Leach method to this problem and

we find an equation that describes an uncontrollable and unstable nonlinear wave.

Moreover, we obtain an asymptotical solution of that equation and we also find

asymptotically the onset of that uncontrollable and unstable nonlinear wave. In

addition, we solve the nonlinear wave equation computationally and we also ob-

tain the onset of the uncontrollable and unstable nonlinear wave computationally.

In order to have uniform drops with no or few satellite droplets, we postulate that

we must break the liquid jet before the onset of the uncontrollable and unstable

nonlinear wave. At the end, we carry out a linear wave regime analysis and using

this analysis and asymptotic matching, we derive a dispersion relation, that gives

a relationship between the frequency and the wavenumber.

In the seventh chapter, we consider a rotating Newtonian liquid jet. We ob-

tain a leading-order solution of this problem. We next apply the Needham-Leach

method to this problem and, similar to the previous chapter, we find an equation

that describes an uncontrollable and unstable nonlinear wave. Moreover, we ob-

tain an asymptotical solution of that equation and we also find asymptotically the

onset of that uncontrollable and unstable nonlinear wave. In addition, we solve

the nonlinear wave equation computationally and we also obtain the onset of the

uncontrollable and unstable nonlinear wave computationally. We also describe

different types of modes of the breakup of liquid jets. We use a numerical model

to support our analysis. Using the numerical model, we find the mode of breakup

and the point of breakup on the computational solution of the unstable nonlinear

wave. We examine the impact of varying the physical parameters of this problem

on the breakup modes of liquid jets. This chapter mainly examines regions in
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which we can get uniform drops with no or very few satellite droplets.

In the eight chapter, we include gravity in the problem described in previous

chapter seven and we consider a rotating Newtonian jet which is falling under the

influence of gravity. We first obtain a leading-order solution of this problem. We

next apply the Needham-Leach method to this problem and, similar to the pre-

vious chapter, we find an equation that describes an uncontrollable and unstable

nonlinear wave. Moreover, we obtain an asymptotical solution of that equation

and we also find asymptotically the onset of that uncontrollable and unstable non-

linear wave. In addition, we solve the nonlinear wave equation computationally

and we also obtain the onset of the uncontrollable and unstable nonlinear wave

computationally.

The penultimate chapter of this thesis contains a brief summary of all the re-

sults we have obtained in the previous chapters. In the last chapter, we look to-

wards the future directions and the possible extensions of our work in this thesis.

In Appendix A, we describe a generalization of Decent (2009), by examining a

straight uniform non-Newtonian liquid jet. We apply the Needham-Leach method

to this problem and we also calculate the non-Newtonian viscosity in each region.

Finally, in Appendix B, we mention the numerical model, which we use in fourth

and seventh chapters of this thesis.
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Chapter 2

Literature Review on Liquid Jets

2.1 Introduction
The breakup of liquid jets is a commonly occurring phenomenon and it can be

observed in many places in our daily life. For example, if we open a water tap

very slowly, we can observe the water dripping from it, resulting in the drop for-

mulation of liquid jets. The breakup and the drop formulation of liquid jets is an

important phenomenon in many scenarios; for example, in the production of fer-

tilizer pellets, which are used in the industrial prilling process, where liquid jets

are used to make tiny pellets (see Figure 2.1).
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Figure 2.1: Left is a prilling drum used to manufacture pellets in the industry and
right is a large number of pellets or beads. Figures are respectively taken from
GEA Process Engineering Inc. and Aveka group.

Liquid jets are also widely used in the process of agricultural irrigation (see

Eggers and Villermaux (2008) for details), where liquid jets are used to form

sprays (see Figure 2.2) as well as cutting various materials, including meat and

metal plates (see Figure 2.3).

The flow of liquid jets is of two types; laminar flow (also known as the

smooth flow) and turbulent flow (also known as the rough flow). A laminar flow

is a flow in which the fluid particles move in layers or laminas and these layers

move along the well-defined paths. In such a flow, one layer of fluid smoothly

slides over an adjacent layer and there is no mixing of adjacent fluid layers. Con-

sequently, there is no movement of fluid particles from one layer to another (see

Massoud (2005) and Sawhney (2011)). In a turbulent flow, on the other hand, there

is mixing of adjacent fluid layers and this type of flow is characterized by chaotic

and disordered property changes of the fluid. Flows with very high Reynolds num-

bers, greater than 4,000 (see Holman (2002)), usually become turbulent, while

those with low Reynolds numbers usually remain laminar. The region in between
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Figure 2.2: Liquid jets are used as sprays in agricultural irrigation. Reproduced
from Eggers and Villermaux (2008).

Figure 2.3: A figure showing the cutting of metal plates by high speed water jets.
Reproduced from Eggers and Villermaux (2008).
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is called the transition region. In this thesis, we consider the liquid jet flow

which is laminar.

Figure 2.4: A figure showing the main drop and the satellite droplet emission from
an ink-jet printer. Reproduced from Aveka Printer Groups Ltd.

As mentioned earlier, when a liquid jet breaks, small drops of different sizes

are produced. We ideally want the size of the drops to be equal and the elimination

of very small droplets; the satellite droplets. For example, in the process of ink-

jet printing, the tiny nozzle, inside the printer, normally produces drops of equal

size (the uniform or main drops) along with some satellite droplets (see Figure

2.4) and these satellite droplets always reduce the quality of the image produced

by the ink-jet printer. We, therefore, want a total eradication of these unwanted

satellite droplets.

2.2 Important Contributions to the Field
The study of liquid jets goes back to the 15th century when da Vinci (1508) studied

the behaviour and the breakup of liquid jets. He correctly noted that the force of
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gravity is responsible for the detachment of a water drop from a water orifice (see

Eggers and Villermaux (2008) for details).

After da Vinci’s work, there was a large gap until the 19th century when Savart

(1833) firstly noted that when a liquid jet is perturbed with a periodic disturbance,

the jet becomes unstable and breaks into a series of equally spaced drops and he

also noted the appearance of a satellite droplet. He also noted that the frequency

of this periodic disturbance could be controlled by changing the frequency of the

periodic disturbance at the nozzle of the liquid jet.

After that, Plateau (1849) found that if a liquid jet is given any small distur-

bance, then the disturbance will reduce the surface area of the jet, and so it will

be the surface tension which will eventually break the jet. Hence Plateau was the

first to found that surface tension is important for the breakup of liquid jets.

Then it was Rayleigh (1879) who studied inviscid jets and he introduced

linear temporal stability analysis. Rayleigh also obtained a dispersion re-

lation linking the wavenumber k of the imposed disturbance to the frequency

ω of the disturbance. Rayleigh found that waves with wavelength larger than

the undisturbed jet circumference are unstable and thus they grow and break the

jet. Rayleigh’s most important finding was that ka = 0.697 for most unstable

wavenumber, where a is the undisturbed radius of the orifice, and hence ω has the

greatest value only when ka = 0.697, which consequently gives most unstable

wavelength λ = 2π/k = 2πa/0.697 = 9a.

After that, Weber (1931) extended Rayleigh’s analysis by including the vis-

cosity and his result ka = 0.7 ≈ 0.697 showed good agreement with that of

Rayleigh. His most important result was that the viscosity reduces the growth rate

of disturbances in liquid jets.

After Weber, it was Keller et al. (1973) who examined the impact of the distur-

bance at the orifice and considered spatially propagating disturbances. Keller was
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the first to present the spatial instability analysis, which deals with instabilities

propagating with respect to the space.

Then Peregrine et al. (1990) found that the breakup behaviour of a liquid jet

depends highly on three internal properties of the jet, namely, the density, the sur-

face tension and the viscosity. Hence, for inviscid fluids, jet breakup will depend

highly on two internal properties of the liquid jet; the density and the surface ten-

sion. Note that at pinch-off (or at the breakup point), the radius of the jet goes to

zero while the velocity of the jet goes to infinity, which results in a singularity in

the solution of the liquid jet equations. In order to avoid this singularity, it is a

usual trend to stop the numerical simulations of the liquid jet equations when the

radius of the jet becomes 5 % of the initial non-dimensional undisturbed jet radius

(See Părău (2006) and Uddin & Decent (2010) for more details).

2.3 Types of Breakup Regimes
If the exit velocity of a fluid is not too low, then there exists four different types

of breakup regimes, which are given below:

1 : the Rayleigh regime, 2 : the first wind−induced regime,

3 : the second wind−induced regime and 4 : the atomization regime.

The Rayleigh regime and the first wind-induced regime fall into one cat-

egory, having the following three identical properties:

1: They both occur at lower speeds,

2: They both have breakup taking place far away from the orifice and

3: They both have the size of the resulting drops equal to the size of the orifice.

The rest of the two regimes, the second wind-induced regime and the

atomization regime, are totally opposite to the first two, but they can also be
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Figure 2.5: Four breakup regimes, (a) Rayleigh regime, (b) first wind-induced
regime, (c) second wind-induced regime and (d) atomization regime. Reproduced
from Lin and Reitz (1998).

classified into one group having following three similar properties:

1: They both occur at higher speeds,

2: They both have breakup taking place very near to the orifice and

3: They both have the size of the resulting drops much less than the size of the

orifice.

Reitz and Bracco (1986) did the experimental observation to view the four dif-

ferent breakup regimes, which are shown in Figure 2.5. In this thesis, we consider

the liquid jet breakup at the Rayleigh regime.

2.4 Instability Analyses and Types of Instabilities
There are two types of analyses for instabilities; the temporal instability analysis

and the spatial instability analysis. We consider imposed wavelike distur-

bances of the form exp(ωt − ikz), where k is the wavenumber and ω is the fre-

quency of the imposed disturbance.
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In the temporal instability analysis, we force ω to be complex and k to be

purely real, that is,

ω = ωr + iωi and k = kr,

where for the positive temporal growth rate ωr, the disturbance grows with time

t. In this case, ωi is the frequency of oscillation, k is the real wavenumber and

ωi/k (i.e., frequency/wavenumber) is the phase-speed of the wave (or simply the

wavespeed). We note that the wavenumber k of the imposed wave disturbance is

related to the wavelength λ of the wave, as λ = 2π/k, and hence it is related to

the size of the resulting drops. That is, the larger the wavenumber is, the smaller

the wavelength is and so the smaller the resulting drop sizes will be. In addition,

the growth rate of the imposed wave disturbance is related to the breakup length

of the jet. That is, the larger the growth rate is, the smaller the breakup length of

the jet will be.

In the spatial instability analysis, on the other hand, we force k to be complex

and ω to be purely imaginary, that is,

k = kr + iki and ω = iωi.

In this case, ki is the spatial growth rate, kr is the real wavenumber and ωi is the

frequency.

We now describe the types of instabilities. There are two types of instabil-

ities; the convective instability and the absolute instability. The convective

instability do not grow at the disturbance base and it only grows away from it.

The absolute instability, on the other hand, grows everywhere including at the dis-

turbance base and also it grows away from it (as shown in Figure 2.6). In other

words, we can say that the convective instability grows only in one direction while

the absolute instability grows in all directions (see Schmid & Henningson (2001)
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Figure 2.6: Sketch of convective and absolute instabilities. (a) (r, t) plane diagram
of a convectively unstable disturbance; (b) (r, t) plane diagram of an absolutely
unstable disturbance. Reproduced from Schmid and Henningson (2001).

and Bassi (2011) for more details).

We can use both temporal and spatial instability analyses to investigate con-

vective or absolute instability. In our thesis, we shall only consider the convective

instability and we shall use the temporal instability analysis to investigate it. In

addition, Ruyer-Quil et al. (2008) has shown that for a similar problem, involving

a liquid film falling down a vertical cylinder, a temporal-spatial stability analysis

is needed to fully capture the dynamics of instability and a similar analysis would

provide an interesting extension of the current work.

2.5 Compound Liquid Jets
A compound liquid jet, which consists of an inner fluid that is completely sur-

rounded by an outer immiscible fluid, is unstable to imposed axisymmetric inter-

facial disturbances (see Sanz & Meseguer (1985)). It is desirable to study and

understand the mechanism of instability in compound liquid jets as they are used

in capsule production in pharmaceutics (see Berkland et al. (2007) and Chen et

al. (2009)) and in various technological devices such as in ink-jet printing (see

Hertz (1980) and Hertz & Hermanrud (1983)).

The first experimental work on compound liquid jets was performed by Hertz

14



& Hermanrud (1983), who generated a compound jet by forcing a core fluid to

emerge from a nozzle below a stationary immiscible shell fluid. Later, Sanz &

Meseguer (1985) performed a theoretical analysis on the instability of inviscid

compound jets. They used a long wavelength asymptotic expansion, with the

assumption that the leading-order axial velocity is independent of the radial coor-

dinate, to derive a one-dimensional model for inviscid compound jets. They per-

formed a linear temporal instability analysis of the one-dimensional inviscid com-

pound jet equations for axisymmetric disturbances and found two growing modes;

the stretching mode and the squeezing mode. Sanz & Meseguer (1985) found

that the stretching mode has much larger growth rate than that of the squeezing

mode (see Figure 2.7), for all parameters of the problem. The effects of viscosity

and radial flows in compound liquid jets were considered by Radev & Tchavdarov

(1988) and Shkadov & Sisoev (1996) who found that the structure and properties

of wave modes remain the same. Chauhan et al. (2000) further extended the work

of Radev & Tchavdarov (1988) by considering temporal disturbances along a vis-

cous compound jet and performed a systematic analysis of the effects of viscosity,

surface tension and density ratios on the maximum growth rate and maximum

wavenumber. The theoretical works of all these authors have results which agree

qualitatively with the experimental work of Hertz & Hermanrud (1983). The spa-

tial instability analysis of compound liquid jets was performed by Chauhan et al.

(1996) while the effects of gravity on the breakup dynamics of inviscid compound

liquid jets have been investigated by Uddin & Decent (2010). Recently, Mohsin et

al. (2012) considered non-Newtonian (shear thinning) compound liquid jets and

obtained very useful information about the breakup and the droplet formation.
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Figure 2.7: The stretching and the squeezing modes.

2.6 Summary
In this chapter, we described an introduction to liquid jets and some of the major

contributions to the field of liquid jets. We next presented four different types of

breakup regimes. We mentioned that we consider the liquid jet breakup at only

the Rayleigh regime in this thesis.

In addition, we also described the temporal and the spatial instability analyses.

We next mentioned two types of instabilities, and mentioned that we shall only

consider the convective instability, using the temporal instability analysis in this

thesis. At the end, we also gave a description about compound liquid jets and

significant experimental and theoretical works on them.
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Chapter 3

Temporal Instability Analysis of

Inviscid Compound Jets Falling

Under Gravity

3.1 Introduction
Compound liquid jets can be used in a variety of industrial applications ranging

from capsule production in pharmaceutics to enhance printing methods in ink-

jet printing. An appreciation of how instability along compound jets can lead

to breakup and droplet formation is thus critical in many fields in science and

engineering.

The main objective of the present chapter is to include the effects of gravity

into the dynamics of a compound inviscid liquid jet and to investigate the effects of

changing key physical parameters on its temporal stability to small disturbances.

This extends the work of Sanz & Meseguer (1985) by introducing a spatially non-

uniform steady state and results in growth rates and most unstable wavenumbers

which differ along the jet. We use a long wavelength asymptotic expansion to
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reduce the governing equations of the problem. We first obtain the steady-state

solutions of the one dimensional model equations and then we perform a linear

temporal instability analysis of steady-state solutions. This process yields a tem-

poral dispersion relation, which we solve numerically to investigate the behaviour

of maximum growth rates and maximum wavenumbers of the most unstable dis-

turbance. In addition, we estimate the breakup length of an inviscid compound jet,

falling under gravity, using the linear temporal stability analysis and we compare

our results with numerical simulations found in Uddin & Decent (2010).

3.2 Problem Formulation
In order to formulate this problem, we make the following physical assumptions:

1: The compound liquid jet is inviscid and it comes out of a concentric cylin-

drical tube having an outer radius a and inner radius χa, where 0 < χ < 1.

2: Both the inner and the outer fluids have constant densities and constant

interfacial surface tensions, and that both the fluids are not mixable.

3: The jet falls vertically downwards under the influence of gravity and, at the

orifice of the nozzle, the jet has already formed as a uniform jet, but the effects of

gravity are not present.

4: We choose the cylindrical polar coordinates (x, r, θ) to describe the dy-

namics of the jet, where x is the length along the centreline of the jet, r is the

radial coordinate and θ is the azimuthal coordinate, and we further assume that

the flow is axis-symmetric (so that the problem is independent of the azimuthal

coordinate).

5: We take U as the initial uniform velocity of the jet on exit and we neglect

the effects of the surrounding air.

6: We take u[j] = (u[j], v[j], 0) as the velocity vector which describes the flow.

Here the superscript j = i is for the inner fluid and j = o is for the outer fluid. We
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Figure 3.1: A sketch of an inviscid compound jet falling under gravity. The axis of
symmetry of the jet is represented by the x-axis while the inner interface (denoted
by dashed lines) and outer interface (denoted by solid lines) are given by r =
R(x, t) and r = S(x, t) respectively.

denote u[j] as the axial velocity, v[j] as the radial velocity, R(x, t) as the interface

of the inner fluid with the outer one, S(x, t) as the interface of the outer fluid with

the air (or simply as the free surface), p[j] as the pressure, t as the time ρ[j] as the

density, σ[j] as the surface tension and g = (g, 0) as the gravity (see Figure 3.1 for

a sketch of this set-up).

The continuity equation and the Euler’s equations, which describe the flow in

the inner and the outer jets, are respectively given by

∂u[j]

∂x
+
∂v[j]

∂r
+
v[j]

r
= 0, (3.1)

∂u[j]

∂t
+ u[j]

∂u[j]

∂x
+ v[j]

∂u[j]

∂r
= − 1

ρ[j]
∂p[j]

∂x
+ g (3.2)
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and

∂v[j]

∂t
+ u[j]

∂v[j]

∂x
+ v[j]

∂v[j]

∂r
= − 1

ρ[j]
∂p[j]

∂r
. (3.3)

The kinematic boundary conditions, at the interface of two jets r = R(x, t), and

at the free surface of the outer jet r = S(x, t), are respectively given by

v[j] =
∂R

∂t
+ u[j]

∂R

∂x
(3.4)

and

v[o] =
∂S

∂t
+ u[o]

∂S

∂x
. (3.5)

For inviscid fluids, we have the classical free surface condition of constant pres-

sure and hence zero tangential stress boundary condition. The normal stress

boundary conditions, at the interface of two jets r = R(x, t), and at the free

surface of the outer jet r = S(x, t), are respectively given by

p[i] − p[o] = σ[i]κ[i] (3.6)

and

p[o] = σ[o]κ[o], (3.7)

where κ[i] and κ[o] are respectively the curvatures of the inner free surface and the

outer free surface. These are given by

κ[i] =

(
1 +

(
∂R
∂x

)2)− 1
2

R
−

∂2R
∂x2(

1 +
(
∂R
∂x

)2) 3
2

(3.8)
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and

κ[o] =

(
1 +

(
∂S
∂x

)2)− 1
2

S
−

∂2S
∂x2(

1 +
(
∂S
∂x

)2) 3
2

. (3.9)

3.3 Non-Dimensionalization
We non-dimensionalize our variables as

ū[j] =
u[j]

U
, v̄[j] =

v[j]

U
, x̄ =

x

L
, r̄ =

r

a
,

t̄ =
tU

L
, p̄[j] =

p[j]

ρ[o]U2
,

where L is a characteristic wavelength in the axial direction (see Papageorgiou

(1995)), which can be chosen as L = U2/g. Here the quantities with the overbars

are dimensionless quantities. We next assume that the jet is slender and so we

define a small parameter ϵ as ϵ = a/L << 1 (see Sanz & Meseguer (1985) and

Radev & Tchavdarov (1988)). Hence, in the following analysis, we are assuming

that a << L in our long wavelength slender jet theory. Note that S(0, t) = 1, as

a is the outer tube radius.

3.4 Asymptotic Expansions
We next drop overbars form the variables and then, similar to Eggers (1997), we

expand the variables using an asymptotic slender jet expansion of the form

{u[j], v[j], p[j]} = {u[j]0 (x, t), v
[j]
0 (x, t), p

[j]
0 (x, t)}+ (ϵr){u[j]1 (x, t), v

[j]
1 (x, t), p

[j]
1 (x, t)}

+ O((ϵr)2), (3.10)
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{R, S} = {R0(x, t), S0(x, t)}+ ϵ{R1(x, t), S1(x, t)}+O(ϵ2). (3.11)

We substitute the above asymptotic expansions in to the continuity equation

(3.1), which at leading order O(1/ϵ) gives v[j]0 = 0, while at next order O(1) gives

v
[j]
1 = −1

2

∂u
[j]
0

∂x
. (3.12)

Using equation (3.12), the kinematic boundary conditions (3.4) (at r = R(x, t))

and (3.5) (at r = S(x, t)), at leading orders, respectively give

(R2
0)t + (R2

0u
[i]
0 )x = 0, (3.13)

and

(S2
0 −R2

0)t + ((S2
0 −R2

0)u
[o]
0 )x = 0. (3.14)

Similarly, the normal stress boundary conditions, at r = S(x, t) and r = R(x, t),

at leading order, respectively give

p
[o]
0 =

1

S0We
and p

[i]
0 =

1

We

(
σ

R0

+
1

S0

)
, (3.15)

where σ = σ[i]/σ[o] is the ratio of surface tension between inner and outer fluid

interfaces and We = ρ[o]U2a/σ[o] is the Weber number.

We use equation (3.15) in the axial momentum equation (3.2) and obtain equa-

tions for the inner and outer fluids, at leading order,

∂u
[i]
0

∂t
+ u

[i]
0

∂u
[i]
0

∂x
= − 1

ρWe

∂

∂x

(
σ

R0

+
1

S0

)
+

1

F 2
(3.16)
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and

∂u
[o]
0

∂t
+ u

[o]
0

∂u
[o]
0

∂x
= − 1

We

∂

∂x

(
1

S0

)
+

1

F 2
, (3.17)

where ρ = ρ[i]/ρ[o] is the density ratio of the inner fluid to the outer fluid and

F = U/
√
Lg is the Froude number. Since an appropriate choice for the length

scaleL, in the vertical direction, is given byL = U2/g, so F has the value of unity.

Since this choice of L is a natural length scale in this problem, we henceforth use

F = 1 throughout this chapter (apart from the steady-state solutions, where we

vary all the parameters of the problem). Moreover, the radial momentum equation

(3.3), after using equations (3.12) and (3.15), gives ∂p[j]0 /∂r = 0.

Equations (3.13), (3.14), (3.16) and (3.17) are the model equations, for four

unknowns R0, S0, u
[i]
0 and u[o]0 . In addition, we have the boundary conditions, at

the nozzle x = 0, as

u
[i]
0 (0, t) = u

[o]
0 (0, t) = S(0, t) = 1 and R(0, t) = χ, where 0 < χ < 1.

If we set We = 1 and ignore the term with F (i.e., have F → ∞) in equations

(3.16) and (3.17), then our model equations are the same as those found in Sanz

& Meseguer (1985).

3.5 Steady-State Solution
The system of equations (3.13), (3.14), (3.16) and (3.17) with the time derivative

terms removed can be solved for the four variables u[i]0 , u[o]0 , R0 and S0 with the

resulting solution, which will be spatially non-uniform, as the steady state solu-

tion. Similar to Uddin & Decent (2010), we make use of the boundary conditions
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at x = 0, so that we can write equations (3.13) and (3.14) as

R0 =
χ√
u
[i]
0

and S0 =

√√√√u
[i]
0 (1− χ2) + u

[o]
0 χ

2

u
[i]
0 u

[o]
0

. (3.18)

Therefore, after substituting the values for R0 and S0, from equation (3.18) into

equations (3.16 ) and (3.17), we end up with two equations in two unknowns u[i]0

and u[o]0 .

We solve the above nonlinear system of steady-state equations (3.16 )-(3.18)

using Newton’s method (as in Uddin & Decent (2010)) and present the solutions

in following figures. In Figure 3.2, we plot the steady-state solution for the inner

and the outer jet velocities, for various Froude numbers. We observe, from this

figure, that a decrease in the Froude number (or increase in gravity) causes in

turn the jet velocities to increase. In Figure 3.3, we plot the steady-state solution

for the inner and the outer jet radii, for various Froude numbers. We observe,

from this figure, that an increase in the Froude number (which corresponds to

a decrease in the gravity) causes in turn the jet radii to increase. In Figure 3.4,

we plot the steady-state solution for the inner and the outer jet radii, for various

Weber numbers. We observe that an increase in the Weber number (which could

correspond to a decrease in the surface tension of the outer interface) leads to a

more rapid decay of the jet radii along the jet. In Figure 3.5, we plot the steady-

state solution for the inner and the outer jet radii, for various interfacial surface

tension ratios. We observe, from this figure, that as we increase the surface tension

ratio σ (or as the surface tension of the inner interface is increased with respect to

the outer intrface), the jet radii increases slightly. In Figure 3.6, we plot the steady-

state solution for the inner and the outer jet radii, for various density ratios. We

observe, from this figure, that as we increase the density ratio ρ (or as the density

of the inner fluid is increased with respect to the outer fluid), the jet radii decreases
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very slightly. Consequently, we deduce that ρ has very little impact on steady-state

solutions. Finally, in Figure 3.7, we plot the steady-state solution for the inner and

the outer jet radii, for various values of initial inner jet radius χ. We observe, from

this figure, that as we decrease the initial inner jet radius χ, the jet inner radius

decreases clearly, whereas, the jet outer radius remains unaffected.
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Figure 3.2: The steady-state solution for the inner and the outer jet velocities, for
various Froude numbers. The solid line represents F = 0.5 while the dashed line
represents F = 1. It can be seen that a decrease in the Froude number (or increase
in gravity) causes in turn the jet velocities to increase. The other parameters are
We = 10, ρ = 2, σ = 3 and χ = 0.5.
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Figure 3.3: The steady-state solution for the inner and the outer jet radii, for
various Froude numbers. The solid line represents F = 0.5 while the dashed
line represents F = 1. It can be seen that an increase in the Froude number (or
decrease in gravity) causes in turn the jet radii to increase. The other parameters
are We = 10, ρ = 2, σ = 3 and χ = 0.5.
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Figure 3.4: The steady-state solution for the inner and the outer jet radii, for
various Weber numbers. The solid line represents We = 10 while the dashed
line represents We = 0.7. It can be seen that a decrease in the Weber number
causes the jet radii to increase. The other parameters are F = 1, ρ = 2, σ = 3 and
χ = 0.5.
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Figure 3.5: The steady-state solution for the inner and the outer jet radii, for
various surface tension ratios. The solid line represents σ = 3 while the dashed
line represents σ = 13. It can be seen that as we increase the interfacial surface
tension ratio σ (or as the surface tension of the inner interface is increased with
respect to the outer intrface), the jet radii increases slightly. The other parameters
are F = 1, We = 10, ρ = 2 and χ = 0.5.
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Figure 3.6: The steady-state solution for the inner and the outer jet radii, for
various density ratios. The solid line represents ρ = 2 while the dashed line
represents ρ = 12. It can be seen that as we increase the density ratio ρ (or as the
density of the inner fluid is increased with respect to the outer fluid), the jet radii
decreases very slightly. The other parameters are F = 1, We = 10, σ = 3 and
χ = 0.5.
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Figure 3.7: The steady-state solution for the inner and the outer jet radii, for
various values of initial inner jet radius χ. The solid line represents χ = 0.5
while the dashed line represents χ = 0.1. It can be seen that as we decrease the
initial inner jet radius χ, the jet inner radius decreases clearly, whereas, the jet
outer radius remains unaffected. The other parameters are F = 1, We = 10,
σ = 3 and ρ = 2.

3.6 Linear Temporal Instability Analysis
We now investigate the instability of an inviscid compound jet by performing a

linear temporal instability analysis. The length scale over which the jet evolves

is x = O(1). However, disturbances along the jet are much smaller, typically of

the order of the jet radius a (which is comparable to ϵ when x = O(1)). Similar

to Wallwork et al. (2002) and Uddin et al. (2006), we consider travelling short-

wavelength modes (or short waves) of the form exp(ωt̄+ ikx̄), where t̄ = t/ϵ and

x̄ = x/ϵ are small length and time scales. In addition, ω = ω(x) = O(1) and k =

k(x) = O(1) are the frequency and the wavenumber of the imposed wave-like

temporal disturbance. Therefore, we have small O(ϵ) wavelength perturbations

along the jet. We next perturb the steady-state solution by a small time-dependent,
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short-wave disturbance and assume

u[j] = u
[j]
0 (x) + δ exp(ωt̄+ ikx̄)û

[j]
1 (x), (3.19)

R = R0(x) + δ exp(ωt̄+ ikx̄)R̂1(x), (3.20)

S = S0(x) + δ exp(ωt̄+ ikx̄)Ŝ1(x), (3.21)

where δ << ϵ. We substitute equations (3.19) – (3.21) into equations (3.13),

(3.14), (3.16) and (3.17) and we use the full curvature terms in order to prevent

instability of waves with zero wavenumber (see Brenner et al. (1997) for more

details). Consequently, we obtain the following set of four equations at the next

order O(δ/ϵ) 1

(
ikR2

0

)
û
[i]
1 +

(
2ωR0 + 2ikR0u

[i]
0

)
R̂1 = 0, (3.22)

(
ik(S2

0 −R2
0)
)
û
[o]
1 −

(
2ωR0 + 2ikR0u

[o]
0

)
R̂1

+
(
2ωS0 + 2ikS0u

[o]
0

)
Ŝ1 = 0, (3.23)

(
ω + iku

[i]
0

)
û
[i]
1 +

σ

ρWe

(
−ik
R2

0

+ ik3
)
R̂1 +

1

ρWe

(
−ik
S2
0

+ ik3
)
Ŝ1 = 0 (3.24)

and

(
ω + iku

[o]
0

)
û
[o]
1 +

1

We

(
−ik
S2
0

+ ik3
)
Ŝ1 = 0. (3.25)

1Note that at the leading order, we obtain the steady-state equations.
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Equations (3.22)-(3.25) can be written in terms of matrix form as


ikR2

0 0 a13 0

0 a22 a23 a24

ω + iku
[i]
0 0 σ

ρWe

(
−ik
R2

0
+ ik3

)
a34
ρWe

0 ω + iku
[o]
0 0 a44

We

 ·


û
[i]
1

û
[o]
1

R̂1

Ŝ1

 =


0

0

0

0

 ,

where

a13 = 2ωR0 + 2ikR0u
[i]
0 , a22 = ik(S2

0 −R2
0),

a23 = −2
(
ωR0 + ikR0u

[o]
0

)
, a24 = 2ωS0 + 2ikS0u

[o]
0

and

a34 = a44 =

(
−ik
S2
0

+ ik3
)
.

For the above system to have a non-trivial solution, we require that

det


ikR2

0 0 a13 0

0 a22 a23 a24

ω + iku
[i]
0 0 σ

ρWe

(
−ik
R2

0
+ ik3

)
a34/ρWe

0 ω + iku
[o]
0 0 a44/We

 = 0,

and, therefore, we obtain

(ω + iku
[o]
0 )

[
ikR2

0

{
2a23a44
ρWe

+
σa24
ρWe

(
ik

R2
0

− ik3
)}

+
{
a13a24(ω + iku

[i]
0 )
}]
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− a44
We

[{(
ikσ

ρWeR2
0

− ik3σ

ρWe

)
(2R0R0,x + ikR2

0)a22

}
+
{
(ω + iku

[i]
0 )a13a22

}]
= 0.

(3.26)

We define ω′ = ω + iku
[o]
0 , which in effect moves us into a frame of reference

which moves with the outer jet velocity u[o]0 . We can, hence, write

ω + iku
[i]
0 = ω′ − ik(u

[o]
0 − u

[i]
0 ), as ω = ω′ − iku

[o]
0 .

Therefore, equation (3.26) can be written as

[4R0S0](ω
′)4 + [8R0S0α3](ω

′)3

+

[
2ikR2

0

ρWe
(R0α2 + σS0α1) + (4R0S0α

2
3) +

2ikR0α2

We

(
S2
0 −R2

0

)]
(ω′)2

+

[
4ikR0α2α3

We
(S2

0 −R2
0)

]
(ω′) +

R0α2

We

(
2ikα2

3 −
σk2R0α1

ρWe

)(
S2
0 −R2

0

)
= 0,

(3.27)

which is our required dispersion relation. Here

α1 =
ik

R2
0

− ik3, α2 =
ik

S2
0

− ik3 and α3 = −ik(u[o]0 − u
[i]
0 ).

Note that in the limiting case of no gravity, i.e., for u[i]0 = u
[o]
0 = S0 = 1 and

R0 = χ, in our dispersion relation (3.27), we obtain the same dispersion relation

as found in Sanz & Meseguer (1985).

3.7 Results and discussion
The dispersion relation (3.27) relates ω′ to the wavenumber k. For a given value of

k, the equation is seen to be a quartic equation in ω′, with coefficients depending

on x, the axial distance along the jet. Subsequently, by choosing a value of x

and evaluating these coefficients at this particular value, our equation becomes

31



a quartic equation in ω′, with constant coefficients, which may be solved using

Ferrari’s method (see Bali & Iyengar (2005)). An example of solving (3.27), for

a value of x and for different k, is shown in Figure 3.8, where the four solutions

of (3.27) are shown, of which two are growing modes (i.e., where Re(ω′) > 0

and are unstable), which is similar to what is seen for a straight uniform inviscid

compound jet, as found by Sanz & Meseguer (1985). Of the two unstable modes,

it is typically assumed that breakup of the jet is caused by the mode with the largest

growth rate and, throughout this work, we will focus our attention on this mode

and we refer to it as the most unstable mode. In such a case, it can be seen that

there is a value of the wavenumber k, at which the growth rate is maximal - we

refer to this value as the most unstable wavenumber and denote it by kmax. The

significance of this value of kmax is that breakup of the jet is caused by a wave

having this wavenumber and so the resulting droplets will scale with this value

of k and, in particular, we would expect droplets to become smaller for larger

kmax. A plot of such most unstable modes for different ratios of surface tension

σ, for different density ratios ρ, for different Weber numbers We and for different

inner jet radius χ is shown in following figures. As the surface tension ratio is

reduced (i.e., as the surface tension of the inner interface is made smaller than

the outer interface), the most unstable mode has lower growth rates, which will

correspond to larger jets (as the smaller growth rate implies larger jets). Moreover,

as the density ratio is reduced (i.e., as the density of the inner jet is made smaller

than the outer jet), the most unstable mode has higher growth rates, which will

correspond to longer jets. We observe that the qualitative behaviour of increasing

σ and ρ, demonstrated in Figures 3.9 and 3.13, is the same as illustrated in Sanz

& Meseguer (1985). Since the steady-state values of radii and velocities of the jet

vary along x, we see that we have different kmax for different axial distances x

along the jet. This change is demonstrated in Figures 3.9 and 3.13, for different
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σ and ρ respectively. In particular, we see that the most unstable wavenumber

kmax grows with axial distance x for both cases. The corresponding maximal

growth rate [Re(ω′)]max for the above cases are shown in Figures 3.11 and 3.14

respectively, where again we notice that the maximal growth rate increases along

the jet.

As explained in the preceding paragraph, kmax represents the value of k at

which the growth rate Re(ω′) is maximum. For certain parameter ranges, the

value of kmax is unique, however, as demonstrated in Figure 3.10, for certain pa-

rameter values, there exists a non-uniqueness in the value of kmax. This behaviour

is a result of the two competing wavemodes along the jet and can result in large

differences in kmax, as certain parameters are changed. In particular, for the case

shown in Figure 3.10, for σ = 0.22, we have kmax = 0.81, while for σ = 0.23,

we have kmax = 1.35. Therefore, there exists a value of σ, which we refer to

as threshold surface tension ratio σ∗, at which we have two competing wave-

modes having different wavenumbers. This is investigated in Figure 3.11, where

we demonstrate how kmax changes, as σ is increased, for different locations x

along the jet. From this figure, it is clear that σ∗ is the same, for all values of x,

while kmax is larger as x increases. Also note from this figure that, for σ < σ∗, an

increase in σ causes kmax to increase, while for σ > σ∗, an increase in σ causes

kmax to decrease slightly, for x = 0, x = 2 and x = 4. A plot of how σ∗ changes

with change in ρ can be seen, for different axial distances x, from Figure 3.12.

As the density ratio ρ is increased, we can see that σ∗ increases. Additionally, as

in Figure 3.14 , we see that kmax increases as ρ is increased and is larger for all

values of ρ, as one moves down the jet.

From Figure 3.15, it can be seen that a decrease in the Weber number causes

the maximum wavenumber to decrease for x > 0, while causes the maximum

growth rate of the disturbance to increase. Moreover, for a given We, both kmax
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and [Re(ω′)]max increase as x increases. From Figures 3.15 and 3.16, it can

be seen that at x = 0 (i.e., at the nozzle, where the effects of gravity are not

present), changing the Weber number does not make any difference to the maxi-

mum wavenumber kmax = 1.33. Note that this value of kmax = 1.33, at x = 0,

corresponds exactly to the corresponding value for the no-gravity case of Sanz &

Meseguer (1985), where kmax = (m−1)−1 = (0.75)−1 = 1.33, as shown in Figure

3.17. Also note that, for We = 1 and at x = 0, [Re(ω′)]max = 0.94 corresponds

exactly to the corresponding value for the no-gravity case of Sanz & Meseguer

(1985), where τm = [Re(ω′)]max = 0.94, as shown in Figure 3.17. In Figure

3.16, we note that, at x = 0, as We is increased, the maximum growth rate of the

disturbance does not remain constant and decreases. This is due to the fact that in-

creasing We implies a decrease in the surface tension and hence a decrease in the

maximum growth rate of the disturbance (since the growth rate of the disturbance

is proportional to the surface tension, as shown in Figure 3.11). We note that this

result is easily understood as it is the surface tension that causes the instability in

liquid jets. In addition, a decrease in We causes the maximum wavenumber to

decrease for x > 0, while causes the maximum growth rate of the disturbance to

increase, for different values of x. In Figure 3.18, we plot maximum wavenumber

kmax and maximum growth rate [Re(ω′)]max versus x, for different values of χ.

It can be seen that a decrease in χ causes both the maximum wavenumber and

the maximum growth rate of the disturbance to increase. Moreover, for a given χ,

both kmax and [Re(ω′)]max decrease as x decreases.

In Figure 3.19, we plot a diagram to show how changing the surface tension

ratio σ and the parameter χ affect the wavenumber of the most unstable mode to-

gether with the associated maximal growth rate of this mode. Figure 3.19 consists

of a set of points which represent the values of inverse maximum wavenumber

(kmax)
−1 and associated maximum growth rate [Re(ω′)]max, obtained when all
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parameters are kept fixed, except either σ or χ (we consider the parameter space

0.1 < χ < 0.9 and 0.1 < σ < 4). Together, this constitutes a map of different

maximum wavenumbers and associated maximum growth rates, as σ and χ are

varied. We have chosen to plot the inverse wavenumber with growth rate as this is

consistent with the work of Sanz & Meseguer (1985) but we note that here, unlike

in Sanz & Meseguer (1985), we plot only the largest or most unstable wavemode

with the reasoning that this mode is responsible for breakup. There are two sets

of curves shown in Figure 3.19 which are drawn firstly by fixing χ and varying σ

– this usually leads to curves which appear almost vertical in nature and can be

seen to be almost straight for smaller values of χ but which take on a more arc

shape as χ is increased. With reference to all such figures (Figures 3.19 – 3.24)

of this nature, these curves represent fixed χ for different σ with χ increasing as

one moves from left to right with the value of χ being represented by the sym-

bols used in the figure. Curves obtained by fixing σ but varying χ are shown as

dashed lines in Figure 3.19 and for larger values of σ such curves are continu-

ous in nature. It is important to note that there are some discontinuities in the

graph of Figure 3.19. In particular, note that when we fix σ = 0.1 and vary χ,

we find that there are no modes which lie between 0.63 < (kmax)
−1 < 1.27, for

x = 0, 0.41 < (kmax)
−1 < 0.85, for x = 2 and 0.38 < (kmax)

−1 < 0.73, for

x = 4. This is caused by competing wavemodes which propagate along the jet

and which, under different parameters, can alter the value of the most unstable

wavenumber significantly (see Figure 3.19). Examination of this figure also re-

veals that the most unstable wavenumber together with its growth rate decrease

as χ is increased for any fixed σ and this trend is apparent for distances along

the jet and for different values of ρ (see Figure 3.21 - 3.23). We also notice that

growth rates always decrease as σ is decreased but that there is a non-monotonic

behaviour for the most unstable wavenumber for fixed χ and varying σ such that,
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for larger values of χ, there is a trend for the most unstable wavenumber to de-

crease as σ is decreased, whilst for smaller χ, there is a tendency for the most

unstable wavenumber to increase as σ is made smaller.

Since the jet is accelerating downwards in the vertical direction, the steady-

state solution is a function of the vertical distance x from the nozzle. This, in

turn, affects the coefficients of our dispersion relation and we, therefore, see dif-

ferences in the relationship between the most unstable wavenumber and its asso-

ciated growth rate, as we move down the jet. Figure 3.19 shows three such cases

which correspond to x = 0, x = 2 and x = 4. A careful examination of the

curves presented in Figure 3.19 (for example one may compare extreme values

of the maximal growth rate and most unstable or maximum wavenumber for a

fixed value of χ, for three different axial distances) reveals that, for the parameter

ranges considered here, the maximum wavenumber increases for any given χ and

for all σ, as x increases. Moreover, the associated growth rates are also larger for

a given χ and σ, as x increases. This indicates that breakup lengths and droplet

sizes are likely to be smaller for a compound liquid jet falling under gravity than

those predicted using the analysis of Sanz & Meseguer (1985). We note that due

to the presence of a thinning jet in the case with gravity this would be anticipated

but our results here show that the thinning nature of the jet affects the maximal

growth rates and most unstable wavenumbers.

In Figure 3.20, we show that, for small χ, if χ is kept fixed and σ is allowed

to vary, then one observes a similar discontinuity in the value of the most unstable

wavenumber and its associated growth rate. It is clear from this figure that, for χ =

0.3 and χ = 0.4, there are no modes which lie between 0.41 < (kmax)
−1 < 1.4

and 0.57 < (kmax)
−1 < 1.32 respectively. We, therefore, conclude that varying

both σ and χ have transitional behaviour in the values of (kmax)
−1. We reproduce

the diagram, found in Figure 3.19, in Figures 3.21 and 3.22 for the cases where
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ρ = 1 and ρ = 2 respectively. We note that the effect of increasing ρ (which

corresponds to increasing the relative density of the inner fluid to the outer fluid)

is to accentuate (or to emphasize) the effect of increasing kmax, for any σ and

χ. We find in all of these figures that for σ ≥ 0.5 and for varying χ, we do not

have any transitional behaviour in the values of (kmax)
−1. However, as we go

down to σ = 0.23 = σ∗ and then for σ < 0.23, we start to get a transitional

behaviour in the values of (kmax)
−1, for varying χ. In Figure 3.23, we plot a

similar graph, but, in this case, we keep σ fixed and choose to vary ρ and χ. We

found that kmax increases, for any given ρ and χ, as x increases, while as ρ is

decreased, [Re(ω′)]max is increased. We observe that the qualitative behaviour of

the inverse maximum wavenumber (kmax)
−1 and its associated maximum growth

rate [Re(ω′)]max, for varying σ and χ, demonstrated in Figures 3.19 – 3.22, for

x = 0, is the same as illustrated in Sanz & Meseguer (1985).

In Figures 3.21 and 3.24, we vary the Weber number and we found that, at

x = 0, for We = 40, all (kmax)
−1 values for χ are exactly the same, as for

We = 10. This behaviour can be estimated from Figure 3.16(a), for χ = 0.5.

That is, varying the Weber number does not make any difference to the maximum

wave number, at x = 0. Moreover, as we increase x, (kmax)
−1 decreases, i.e.,

kmax increases (for a fixed χ and varying σ), which is observed before in Figure

3.16(a). Furthermore, as we increase x, [Re(ω′)]max increases, which is shown

before in Figure 3.16(b), while as we increase We, [Re(ω′)]max decreases, for a

given χ, which is also shown before in Figure 3.16(b).

We show values of threshold surface tension ratio σ∗ plotted against χ, for

different ρ, in Figures 3.25 and 3.26. We see that σ∗ increases with an increase in

χ, and that, σ∗ is larger, for larger ρ. Furthermore, Figure 3.25 demonstrates that

no values of σ∗ exist after χ = 0.475 (and in particular, at χ = 0.5), for ρ = 0.5,

at x = 0 (as found in Figure 3.20 and in Sanz & Meseguer (1985)), while Figure

37



3.26 demonstrates that no values of σ∗ exist after χ = 0.46, for ρ = 0.5, at x = 4.

Figure 3.27 shows all four imaginary solutions of equation (3.27), which rep-

resents all four frequencies of the disturbance against wavenumber, at x = 0. We

only consider the greatest frequency of the disturbance (the blue curve in Figure

3.27). In Figure 3.28, we plot the frequency of the disturbance against wavenum-

ber, for varying the surface tension ratio, at x = 0. It can be seen that a decrease

in the surface tension ratio causes the frequency of the disturbance to decrease,

for large wavenumber. In Figure 3.29, we plot the frequency of the disturbance

against wavenumber, for varying the density ratio, at x = 0. It can be seen that an

increase in the density ratio causes the frequency of the disturbance to decrease,

for large wavenumber. In Figure 3.30, we plot the frequency of the disturbance

against wavenumber, for varying the Weber number, at x = 0. It can be seen

that an increase in the Weber number causes the frequency of the disturbance to

decrease, for large wavenumber. In Figure 3.31, we plot the frequency of the dis-

turbance against wavenumber, for varying the inner jet radius, at x = 0. It can be

seen that an increase in the inner jet radius causes the frequency of the disturbance

to increase, for large wavenumber.

Recall that we assumed in our Mathematical model that the jet has already

formed and is uniform, at the nozzle (i.e., at x = 0, where the effects of gravity

are not present). This uniform jet (having uniform radius and uniform velocity)

at the nozzle, corresponds to the no-gravity case of Sanz & Meseguer (1985).

Thus, waves on the jet at x = 0, correspond to the behaviour of a uniform jet

and we can, therefore, calculate the wavespeed of the wave disturbance on the

uniform jet, at x = 0. Figure 3.32 shows, a graph obtained from equation (3.27),

which represents all four transformed wavespeeds of the disturbance versus the

wavenumber, at x = 0. We only consider the greatest transformed wavespeed

of the disturbance (the blue curve in Figure 3.32). In Figure 3.33, we plot the
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transformed wavespeed of the disturbance against wavenumber, for varying the

surface tension ratio, at x = 0. It can be seen that a decrease in the surface tension

ratio causes the transformed wavespeed of the disturbance to decrease, for large

wavenumber. In Figure 3.34, we plot the transformed wavespeed of the distur-

bance against wavenumber, for varying the density ratio, at x = 0. It can be seen

that a decrease in the density ratio causes the transformed wavespeed of the distur-

bance to increase, for large wavenumber. In Figure 3.35, we plot the transformed

wavespeed of the disturbance against wavenumber, for varying the Weber number,

at x = 0. It can be seen that a decrease in the Weber number causes the trans-

formed wavespeed of the disturbance to increase, for large wavenumber. In Figure

3.36, we plot the transformed wavespeed of the disturbance against wavenumber,

for varying the inner jet radius, at x = 0. It can be seen that a decrease in χ causes

the transformed wavespeed of the disturbance to decrease, for large wavenumber.

We note, from these figures, that the transformed wavespeed moves with the outer

jet velocity, for wavenumber k ≤ 1, while it moves faster than the outer jet veloc-

ity, for k > 1. This description is anticipated as we are transformed into a frame

of reference which moves with the outer jet. Hence transformed wavespeed of the

disturbance, at x = 0, depends upon the outer jet radius S(x = 0) = 1. For k ≤ 1,

we have λ ≥ 2π (as k = 2π/λ). In this case, we have longer waves which travel

with the outer jet (or they are stationary with respect to the outer jet velocity). For

k > 1, λ < 2π. In this case, we have shorter waves which travel faster than the

outer jet.
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Figure 3.8: All four solutions of dispersion relation (3.27), with only the real part
plotted, which represents all four growth rates of the disturbance versus wavenum-
ber, at x = 0. The parameters, used here, areWe = 10, ρ = 1, σ = 1 and χ = 0.5.
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Figure 3.9: Top: Growth rate Re(ω′) versus wavenumber k of the disturbance, for dif-
ferent σ, at x = 0. Middle: Maximum wavenumber kmax versus axial distance x, for
different σ. Bottom: Maximum growth rate [Re(ω′)]max versus axial distance x, for dif-
ferent σ. It can be seen that a decrease in σ causes both kmax and [Re(ω′)]max to decrease.
The other parameters are We = 10, ρ = 1 and χ = 0.5.
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Figure 3.10: Growth rate Re(ω′) versus wavenumber k of the disturbance, which
shows that there exists a transition of maximum wavenumber kmax, for small σ,
at x = 0. For σ = 0.22, we have kmax = 0.81, while for σ = 0.23, we have
kmax = 1.35. This interesting behaviour is thoroughly further investigated in the
following graph. The other parameters are We = 10, ρ = 1 and χ = 0.5.
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Figure 3.11: Top: Maximum wavenumber kmax against surface tension ratio σ,
for different values of x. We note that there is a transition in the graphs for x = 0,
x = 2 and x = 4, for one value of σ, which we refer to as threshold surface
tension ratio σ∗, which occurs at σ∗ = 0.224. Bottom: Maximum growth rate
[Re(ω′)]max against σ, for different values of x. It can be seen that a decrease in
σ causes [Re(ω′)]max to decrease, for different values of x. The other parameters
are We = 10, ρ = 1 and χ = 0.5.
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Figure 3.12: Threshold surface tension ratio σ∗ against density ratio ρ, at x = 0,
x = 2 and x = 4. We note that σ∗ increases as we increase ρ. Also note that σ∗

does not exist for small ρ (i.e., for ρ < 1), at χ = 0.5 (see Figures 3.20 and 3.25,
for more details). The other parameters are We = 10 and χ = 0.5.
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Figure 3.13: Top: Growth rate Re(ω′) versus wavenumber k of the disturbance, for
different ρ, at x = 0. Middle: kmax versus axial distance x, for different ρ. Bottom:
[Re(ω′)]max versus axial distance x, for different ρ. It can be seen that a decrease in
ρ causes kmax to decrease while causes [Re(ω′)]max to increase. Note that there does
not exists a transition in the graphs of kmax, for varying ρ. The other parameters are
We = 10, σ = 1 and χ = 0.5.
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Figure 3.14: Maximum wavenumber kmax in the top, while maximum growth rate
[Re(ω′)]max in the bottom, against density ratio ρ, for different values of x. It can
be seen that a decrease in the density ratio causes the maximum wavenumber kmax

to decrease for x = 0 and x = 2, as found in the previous graph, while causes
the maximum growth rate [Re(ω′)]max to increase. Moreover, for a given ρ, kmax

decreases while [Re(ω′)]max increases as x decreases. The other parameters are
We = 10, σ = 1 and χ = 0.5.
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Figure 3.15: Top: Growth rate Re(ω′) versus wavenumber k of the disturbance, for
different values of We, at x = 0. Middle: kmax versus axial distance x, for different We.
Bottom: [Re(ω′)]max versus x, for different We. It can be seen that a decrease in the
Weber number causes kmax to decrease for x > 0, while causes [Re(ω′)]max to increase.
The other parameters are σ = 1, ρ = 1 and χ = 0.5.
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Figure 3.16: Top: Maximum wavenumber kmax against the Weber number We, for dif-
ferent values of x. Bottom: Maximum growth rate [Re(ω′)]max versus the Weber number,
for different values of x. It can be seen that at x = 0, changing the Weber number does
not make any difference to the maximum wavenumber kmax = 1.33. Note that this value
of kmax = 1.33, at x = 0, corresponds exactly to the corresponding value for no-gravity
case of Sanz & Meseguer (1985), where kmax = (m−1)−1 = (0.75)−1 = 1.33, as shown
in the next figure. Also note that, for We = 1 and at x = 0, [Re(ω′)]max = 0.94 corre-
sponds exactly to the corresponding value for no-gravity case of Sanz & Meseguer (1985),
where τm = [Re(ω′)]max = 0.94, as shown in the next figure. The other parameters are
σ = 1, ρ = 1 and χ = 0.5.
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Figure 3.17: A figure taken from Sanz & Meseguer (1985), which shows that our
results, at x = 0, are in perfect agreement with those of Sanz & Meseguer (1985).
This figure shows that for σ = 1 and χ = R = 0.5, the inverse wavenumber
is m−1 = 0.75 and the maximum growth rate is τm = 0.94. In some of our
next graphs, we go parallel to this figure, so that we can know how the maximum
growth rate and the inverse maximum wavenumber behave with the influence of
the gravity. The other parameters are We = 1 and ρ = 1.
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Figure 3.18: Top: Growth rate Re(ω′) versus wavenumber k of the disturbance, for
different χ, at x = 0. Middle: Maximum wavenumber kmax versus axial distance x, for
different values of χ. Bottom: Maximum growth rate [Re(ω′)]max versus x, for different
values of χ. It can be seen that a decrease in χ causes both kmax and [Re(ω′)]max to
increase. The other parameters are σ = 1, ρ = 1 and We = 10.
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Figure 3.19: Maximum growth rate [Re(ω′)]max against inverse maximum wavenumber
(kmax)

−1, for various values of σ and χ. The graphs from top to bottom represent x = 0,
x = 2 and x = 4 respectively. The other parameters are We = 10 and ρ = 0.5. The
symbols are for σ = 0.1− 4, while the dashed lines are for χ = 0.1− 0.9. The diamonds
represent σ = 0.1, where χ = 0.1 − 0.9, and there is a discontinuity in the diamonds,
caused by competing wavemodes.
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Figure 3.20: Maximum growth rate [Re(ω′)]max against inverse maximum
wavenumber (kmax)

−1, for various values of σ and χ. This figure is an enlarged
version of the previous figure, for x = 0, We = 10 and ρ = 0.5. The sym-
bols are for σ = 0.01 − 0.1, which are below the dashed line σ = 0.1, and
σ = 0.1− 4, which are above the dashed line σ = 0.1, while the dashed lines are
for χ = 0.1 − 0.9. The diamonds represent σ = 0.1, where χ = 0.1 − 0.9, and
there is a discontinuity in the diamonds, caused by competing wavemodes.
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Figure 3.21: Maximum growth rate [Re(ω′)]max against inverse maximum wavenumber
(kmax)

−1, for various values of σ and χ. The graphs from top to bottom represent x = 0,
x = 2 and x = 4 respectively. The other parameters are We = 10 and ρ = 1. The
symbols are for σ = 0.1− 4, while the dashed lines are for χ = 0.1− 0.9. The diamonds
represent σ = 0.1, where χ = 0.1 − 0.9, and there is a discontinuity in the diamonds,
caused by competing wavemodes.
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Figure 3.22: Maximum growth rate [Re(ω′)]max against inverse maximum wavenumber
(kmax)

−1, for various values of σ and χ. The graphs from top to bottom represent x = 0,
x = 2 and x = 4 respectively. The other parameters are We = 10 and ρ = 2. The
symbols are for σ = 0.1− 4, while the dashed lines are for χ = 0.1− 0.9. The diamonds
represent σ = 0.1, where χ = 0.1 − 0.9, and there is a discontinuity in the diamonds,
caused by competing wavemodes.
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Figure 3.23: Maximum growth rate [Re(ω′)]max against inverse maximum wavenumber
(kmax)

−1, for various values of σ and χ. The graphs from top to bottom represent x = 0,
x = 2 and x = 4 respectively. The other parameters are We = 10 and σ = 1. The
symbols are for ρ = 0.1− 4, while the dashed lines are for χ = 0.1− 0.9.
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Figure 3.24: Maximum growth rate [Re(ω′)]max against inverse maximum wavenumber
(kmax)

−1, for various values of σ and χ. The graphs from top to bottom represent x = 0,
x = 2 and x = 4 respectively. Here We = 40 and ρ = 1. The symbols are for
σ = 0.1 − 4, while the dashed lines are for χ = 0.1 − 0.9. The diamonds represent
σ = 0.1, where χ = 0.1 − 0.9, and there is a discontinuity in the diamonds, caused by
competing wavemodes.
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Figure 3.25: Threshold surface tension ratio σ∗ against inner jet radius χ, for
various density ratio ρ, at x = 0. Note that for ρ = 0.5, there does not exist σ∗

at χ = 0.5, as found in Figure 3.20 and in Sanz & Meseguer (1985). The other
parameter is We = 10.
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Figure 3.26: Threshold surface tension ratio σ∗ against inner jet radius χ, for
various density ratio ρ, at x = 4. Note that for ρ = 0.5, there does not exist σ∗ for
χ > 0.45. The other parameter is We = 10.
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Figure 3.27: A graph showing all four imaginary solutions of equation (3.27),
which represents all four frequencies of the disturbance versus wavenumber, at
x = 0. The parameters, used here, are We = 10, σ = 1, ρ = 1 and χ = 0.5.
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Figure 3.28: Frequency of the disturbance versus wavenumber, for varying the
surface tension ratio, at x = 0. It can be seen that a decrease in the surface tension
ratio causes the frequency of the disturbance to decrease, for large wavenumber.
The other parameters are We = 10, ρ = 1 and χ = 0.5.
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Figure 3.29: Frequency of the disturbance versus wavenumber, for varying the
density ratio, at x = 0. It can be seen that an increase in the density ratio causes
the frequency of the disturbance to decrease, for large wavenumber. The other
parameters are We = 10, σ = 1 and χ = 0.5.
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Figure 3.30: Frequency of the disturbance versus wavenumber, for varying the
Weber number, at x = 0. It can be seen that an increase in the Weber number
causes the frequency of the disturbance to decrease, for large wavenumber. The
other parameters are ρ = 1, σ = 1 and χ = 0.5.
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Figure 3.31: Frequency of the disturbance versus wavenumber, for varying the
inner jet radius, at x = 0. It can be seen that an increase in the inner jet radius
causes the frequency of the disturbance to increase, for large wavenumber. The
other parameters are We = 10, ρ = 1 and σ = 1.
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Figure 3.32: A graph obtained from equation (3.27), which represents all four
transformed wavespeeds of the disturbance versus the wavenumber, at x = 0. The
parameters, used here, are We = 10, ρ = 1, σ = 1 and χ = 0.5.
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Figure 3.33: Transformed wavespeed of the disturbance versus the wavenumber,
for varying the surface tension ratio, at x = 0. It can be seen that a decrease in
the surface tension ratio causes the transformed wavespeed of the disturbance to
decrease, for large wavenumber. The other parameters are We = 10, ρ = 1 and
χ = 0.5.
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Figure 3.34: Transformed wavespeed of the disturbance versus the wavenumber,
for varying the density ratio, at x = 0. It can be seen that a decrease in the density
ratio causes the transformed wavespeed of the disturbance to increase, for large
wavenumber. The other parameters are We = 10, σ = 1 and χ = 0.5.
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Figure 3.35: Transformed wavespeed of the disturbance versus the wavenumber,
for varying the Weber number, at x = 0. It can be seen that a decrease in the
Weber number causes the transformed wavespeed of the disturbance to increase,
for large wavenumber. The other parameters are σ = 1, ρ = 1 and χ = 0.5.
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Figure 3.36: Transformed wavespeed of the disturbance versus the wavenumber,
for varying χ, at x = 0. It can be seen that a decrease in χ causes the transformed
wavespeed of the disturbance to decrease, for large wavenumber. The other pa-
rameters are We = 10, σ = 1 and ρ = 1
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3.8 Breakup Lengths
Using the results from our temporal instability analysis, we may determine the

profile of waves travelling along both the inner and outer interfaces. In order to

do this, we first need to evaluate an expression for time t̄ (in equations (3.19) –

(3.21)). The variable t̄ (= t/ϵ) does not appear explicitly in our analysis but may

be approximated using the expression t(x) =
∫ x

0
(1/u(s))ds (see Uddin & Decent

(2009), for more details), so as to specify a value of t for each axial distance x

along the jet. Thereafter, we may choose a value of δ and ϵ, and use the results

obtained in the previous section to plot R and S (i.e., equations (3.20) and (3.21)).

This allows us to determine the axial distance (or breakup length lb) at which either

R reaches zero or both the inner and outer interfaces touch. Compound jet profiles

for certain parameter values are shown in Figure 3.37. In this figure, we show two

examples of cases where the breakup is a result of the inner interface breaking

first and one where the outer interface touches the inner interface first. We can

then determine breakup length lb, when χ is varied, as shown in Figure 3.38. Here

we see that the breakup length increases as χ is increased and that there are values

of χ at which the jet breakup changes qualitatively, that is, instead of the inner jet

rupturing, we have that the outer and inner interfaces touch. The jump in the inner

jet breakup length, for We = 100 and χ = 0.71, is due to the formation of a neck,

as the inner jet breaks later at lb = 82.95 (see Figure 3.37). In addition, a decrease

in the outer jet breakup length, for We = 100 and χ = 0.91, is again due to the

formation of a neck, as the inner jet does not break and the two interfaces touch at

lb = 94.05 (see Figure 3.37).

We next want to compare our results to numerical simulations of an inviscid

compound jet falling under gravity, as considered by Uddin & Decent (2010). In

order to do this, we note that we must take δ = ϵ = 0.01, as in Uddin & Decent
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(2010). Compound jet profiles for certain parameter values (where δ = ϵ = 0.01)

are shown in Figure 3.39. In this figure, we show two examples of cases where

the breakup is a result of the inner interface breaking first and one where the outer

interface touches the inner interface first. We can then determine breakup length

lb, when χ is varied, as shown in Figure 3.40. Here we see that the breakup length

increases as χ is increased and that there are values of χ at which jet breakup

changes qualitatively - that is, instead of the inner jet rupturing, we have that the

outer and inner interfaces touch. Therefore, we have a transition in the behaviour

of breakup lengths of inner and outer fluids, for different We and by varying χ.

We note that the transition point, from the inner jet rupturing first to the outer

jet rupturing first, increases with an increase in We. The jump in the inner jet

breakup length, for We = 100 and χ = 0.57, is due to the formation of a neck, as

the inner jet does not break near lb = 44.51 but breaks later at lb = 57.57. This

phenomenon is illustrated in Figure 3.41. In addition, an increase in the outer jet

breakup length, for We = 20 and χ = 0.82, is again due to the formation of a

neck, as the inner jet does not break and the outer jet breaks at lb = 37.42 (see

Figure 3.39). We also investigate the impact of the disturbance amplitude δ on the

breakup length lb, for different Weber numbers, in Figure 3.42. We, consequently,

find that increasing the disturbance amplitude implies a decrease in the breakup

length, for different Weber numbers. Furthermore, we find from Figures 3.40

and 3.42 that for small Weber number, we have small breakup length. We now

compare our results to numerical simulations of an inviscid compound jet falling

under gravity, as considered by Uddin & Decent (2010). In particular, we have

for We = 20 and χ = 0.72, the breakup length, as predicted by Uddin & Decent

(2010), is around lb ≈ 34, which is in good agreement with a value of lb = 29 (as

shown in Figure 3.40), predicted using the present linear theory. It is important to

note that the final stages of the breakup, where both the inner and outer jet radii
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Figure 3.37: Compound jet profiles showing breakup caused by the inner jet rup-
ture (top) and when the inner and outer jet interfaces touch (bottom). In the top
figure, we have We = 100 and χ = 0.71 (with breakup at lb = 82.95), while for
the bottom figure, we have We = 100 and χ = 0.91 (with breakup at lb = 94.05).
The other parameters are δ = 2 × 10−3, ϵ = 0.01, σ = 1 and ρ = 1. The inner
interface is represented here by a dashed line with the outer interface as a solid
line.

approach zero, is inherently nonlinear and, therefore, our linear theory, which is

based upon a one-dimensional approximation of the governing equations, will not

provide an accurate picture of the latter stages of the breakup process. However,

since disturbances grow exponentially, the final stages of the breakup occur over

relatively short length and time scales and, therefore, linear theory may be used to

provide good predictions of breakup lengths and breakup times (see also Eggers

(1997)).
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Figure 3.38: A graph of breakup length against χ, for different Weber numbers. Note
that, for We = 20, the inner jet breaks first when χ < 0.94, while for We = 100, the
inner jet breaks first when χ < 0.9. The other parameters are δ = 2 × 10−3, ϵ = 0.01,
σ = 1 and ρ = 1.
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Figure 3.39: Compound jet profiles showing breakup caused by the inner jet rup-
ture (top figure) and when the inner and outer jet interfaces touch (bottom figure).
In the top figure, we have We = 100 and χ = 0.57 (with breakup at lb = 57.57),
whilst for the bottom figure, we have We = 20 and χ = 0.82 (with breakup at
lb = 37.42). The other parameters are δ = 0.01, ϵ = 0.01, σ = 1 and ρ = 1. The
inner interface is represented here by a dashed line with the outer interface as a
solid line.
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Figure 3.40: A graph of breakup length against χ, for different Weber numbers. This
graph clearly shows a transition in the behaviour of breakup lengths. Note that, for We =
20, the inner jet breaks first when χ < 0.82, while for We = 100, the inner jet breaks
first when χ < 0.93. That is, the transition point increases with an increase in We. The
jump in the inner jet breakup length, for We = 100, is due to the formation of a neck, as
the inner jet does not break near lb = 44.51 (see Figure 3.41). The other parameters are
δ = 0.01, ϵ = 0.01, σ = 1 and ρ = 1.
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Figure 3.41: Compound jet profiles showing a small increase in χ implies a jump
in the breakup length lb, for the inner jet. Top is χ = 0.56, with lb = 44.51,
while bottom is χ = 0.57, with lb = 57.57. Also note the formation of a neck, for
χ = 0.57, as the inner jet does not break near lb = 44.51. The other parameters
are We = 100, σ = 1, ρ = 1, ϵ = 0.01, δ = 0.01.
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Figure 3.42: A graph of breakup length against disturbance amplitude δ, for different
Weber numbers. It is clear from this graph that increasing the disturbance amplitude im-
plies a decrease in the breakup length, for different Weber numbers. The other parameters
are σ = 1, ρ = 1, χ = 0.5 and ϵ = 0.01.
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3.9 Conclusions
In this chapter, we have investigated the instability of an inviscid compound liquid

jet falling under the influence of gravity. We have used a slender jet approximation

to determine a one dimensional model, which describes the velocity and radial

displacements of the inner and outer free surfaces. We have solved the steady-

state equations and investigated its dependence on changes in all the parameters

of the model. In particular, we found that a decrease in the Froude number (or

an increase in the gravity) causes the jet radii to decrease, while an increase in

the Weber number (which could correspond to a decrease in the surface tension

of the outer interface) leads to a more rapid decay of the jet radii along the jet.

We have then considered the growth of unstable waves on the two interfaces by

considering a linear temporal instability analysis. The obtained dispersion rela-

tion, which describes the relationship between the growth rate and wavenumber

of disturbances, has been solved numerically in order to determine the most unsta-

ble wavenumber (which we assume to be the dominant wavenumber which leads

to breakup) and the associated maximum growth rate. We have investigated how

this most unstable wavenumber varies as we change key critical parameters, like

the ratio of surface tension σ and the aspect ratio of inner jet radii χ. Diagrams

showing how such changes in the parameters affect the most unstable mode, for

different axial distances x along the jet, have been investigated to reveal that the

most unstable wavenumber and maximum growth rates are larger as the wave

travels down the jet. Furthermore, we found that the most unstable wavenumber

decreases with an increase in χ, for different axial distances x, whilst the maxi-

mum growth rate decreases with an increase in ρ, and with a decrease in σ, for

different axial distances x. Moreover, we found that a decrease in the interfa-

cial surface tension ratio whereas an increase in the density ratio and the Weber
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number causes the frequency and the transformed wavespeed of the disturbance

to decrease, at x = 0. In addition, our results correspond to those given in Sanz

& Meseguer (1985), for the case without gravity. We have also used the results

from our linear theory to estimate the location of breakup and have shown that the

breakup of the jet can occur by the inner jet rupturing first or by the outer interface

touching the inner interface, and that the value of χ, at which these two processes

occur simultaneously, become smaller as We is decreased. Finally, we have also

compared our results favourably with numerical simulations found in Uddin &

Decent (2010).
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Chapter 4

Breakup, Droplet Formation and

Temporal Instability Analysis of

Shear Thinning Compound Jets

Falling Under Gravity

4.1 Introduction
In this chapter, we perform a theoretical analysis to examine the breakup and

droplet formation of an axisymmetric non-Newtonian, shear thinning compound

liquid jet which falls vertically under the influence of gravity. We also first in-

vestigate the effect of physical parameters on the temporal instability of a non-

Newtonian, shear thinning compound liquid jet that falls under the influence of

gravity, extending the work of the previous Chapter 3 and also extending the

work of Mohsin et al. (2012). We use a long-wavelength, slender-jet asymp-

totic expansion to reduce the governing equations of the problem into a set of

one dimensional partial differential equations, which describe the evolution of the
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leading-order axial and radial velocity of the jet as well as the radii of both the

inner and the outer interfaces. We first determine the steady-state solutions of the

one dimensional model equations and then we perform a linear temporal insta-

bility analysis to obtain a dispersion relation, which gives us useful information

about the maximum growth rate and the maximum wavenumber of the imposed

wave-like disturbance. We next use the Lax-Wendroff method to determine the

nonlinear temporal solution and we will compare our results with those found in

Mohsin et al. (2012) for the no-gravity case.

4.2 Model Equations
In order to derive the model equations of this problem, we make the same as-

sumptions as in Section 3.2. The only differences are that now we are considering

a non-Newtonian compound liquid jet and are taking u[i] = (u[i], v[i], 0) as the

velocity vector describing the jet flow. Here the superscript i = 1 is for the inner

fluid and i = 2 is for the outer fluid.

The continuity equation and the Navier-Stokes equations for this problem are

respectively given by

u[i]x + v[i]r + (v[i]/r) = 0, (4.1)

ρi(u
[i]
t +u

[i]u[i]x +v
[i]u[i]r ) = −p[i]x +ηi(u[i]xx+

1

r
(ru[i]r )r)+2ηixu

[i]
x +ηir

(
v[i]x + u[i]r

)
+ρig

(4.2)

and

ρi(v
[i]
t +u[i]v[i]x +v[i]v[i]r ) = −p[i]r +ηi(v[i]xx+((rv[i]r )r/r)r)+2ηirv

[i]
r +ηix

(
v[i]x + u[i]r

)
.

(4.3)

Here ηi is the variable shear rate dependent viscosity and is defined, using the
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Carreau model (see Carreau et al. (1979)), as

ηi = η̃
[i]
0 [(1− λi)(1 + (hγ̇[i])

2)
ni−1

2 + λi]. (4.4)

Here γ̇[i] =
√
E : E/2, where E[i] = ∇u[i] + (∇u[i])T , η̃0 is the zero-shear rate

viscosity, h is a time constant, λη̃0 is the viscosity in the limit of infinite shear and

ni is the flow index number within each fluid.

The kinematic, tangential and normal stress boundary conditions, at the inner

and the outer interfaces, and all of the rest of the analysis (i.e., non-dimensionalization

and asymptotic expansions with notations U = U0, a = R0 and L = L0) remain

exactly the same as in Mohsin et al. (2012). In addition, similar to Mohsin et

al. (2012), we also have the same parameters ρ = ρ1/ρ2 as the density ratio of

the inner fluid to the outer fluid, σ = σ1/σ2 as the interfacial surface tension ra-

tio, ψ = η̃
[1]
0 /η̃

[2]
0 as the zero shear rate viscosity ratio, Re = ρ2LU/η̃

[2]
0 as the

Reynolds number and We = ρ2U
2a/σ2 as the Weber number (see Mohsin et

al. (2012), for more details). Moreover, we also have the same first two model

equations, as in Mohsin et al. (2012), as

(R2
0)t + (R2

0U)x = 0, (4.5)

and

(S2
0 −R2

0)t + ((S2
0 −R2

0)U)x = 0, (4.6)

where, using the slender jet assumption, that at leading-order, the axial velocities

are independent of the radial direction r, and also using the no-slip condition, that

for viscous fluids, the velocities are continuous at the shared interface r = R(x, t),

we wrote u[i]0 = Ui(x, t) = U(x, t).

The only difference in this case is that the axial equation of motion, for the
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inner and outer fluids, at leading order, gives

ρRe
ψ

(
Ut + UUx +

p
[1]
0x

ρ

)
−(η1Uxx + 2Uxη1x) =

1

r

(
ru

[i]
2r

)
r
+
ρRe
ψ

(
1

F 2

)
(4.7)

and

Re
(
Ut + UUx + p

[2]
0x

)
− (η2Uxx + 2Uxη2x) =

1

r

(
ru

[i]
2r

)
r
+Re

(
1

F 2

)
. (4.8)

These equations have general solutions for u[1]2 and u[2]2 in the form of,

u
[i]
2 = Qi(x, t)

r2

4
+Mi(x, t) log r +Ni(x, t), (4.9)

for i=1,2. Here

Q1(x, t) =
ρRe
ψ

(
Ut + UUx +

p
[1]
0x

ρ

)
− (η1Uxx + 2Uxη1x) , (4.10)

and

Q2(x, t) = Re
(
Ut + UUx + p

[2]
0x

)
− (η2Uxx + 2Uxη2x) . (4.11)

Here Mi(x, t) and Ni(x, t) are the functions of integration. Further more, we have

the conditions in the inner fluid that

u[1]r (x, 0, t) = 0 and v[1](x, 0, t) = 0, (4.12)

and this implies that M1 = 0, otherwise we have a singular solution for u[1]2 , as

r → 0 (as in Mohsin et al. (2012)).

Similar to Mohsin et al. (2012), the tangential stress condition at r = S(x, t), at

O(ϵ2), gives that

2S0x

(
v
[2]
0r − Ux

)
+
(
u
[2]
2r + v

[2]
0x

)
= 0, (4.13)
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which, after using equation (4.9) and v[2]0 = −rUx/2 (see Mohsin et al. (2012) for

the derivation of this equation) gives

M2 = 3S0S0xUx +
S2
0

2
Uxx −

1

2
S2
0Q2. (4.14)

Similar to Mohsin et al. (2012), the tangential stress condition at r = R(x, t), at

O(ϵ2), gives that

η2
ψη1

(
3R0R0xUx +

R2
0

2
Uxx −

R2
0

2
Q2 −M2

)
= 3R0R0xUx +

R2
0

2
Uxx −

R2
0

2
Q1. (4.15)

Using the values of Q1, Q2 and M2 in equation (4.15), we get

[
S2
0 + (ρ− 1)R2

0

]
(Ut + UUx) = − 1

We

[(
S2
0 −R2

0 +
R2

0

ρ

)
κ2x +

(
σR2

0

ρ

)
κ1x

]
+
ψ

Re

[
3(R2

0)xUxη1 +

(
2 +

1

ρ

)
R2

0(Uxη1)x

]
+

3

Re
[
(S2

0 −R2
0)Uxη2

]
x

+
[
S2
0 + (ρ− 1)R2

0

]( 1

F 2

)
.(4.16)

Therefore, equations (4.5), (4.6) and (4.16) are the model equations forR0, S0 and

U . We note that for the no gravity case (i.e., in the limit of F → ∞, as g = 0), we

get the same equations, as found in Mohsin et al. (2012).

In addition, similar to Chapter 3, we have the boundary conditions, at the

nozzle x = 0, as

U(0, t) = S(0, t) = 1 and R(0, t) = χ, where 0 < χ < 1.

We know that F = U/
√
Lg is the Froude number and L is a characteristic

wavelength in the axial (or vertical) direction. Similar to Chapter 3, an appropriate
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choice for this length scale L in the vertical direction, is given by L = U2/g and

so F has the value of unity. Since this choice of L is a natural length scale in

this problem, we henceforth use F = 1 throughout this chapter (apart from the

steady-state solutions, where we vary all the parameters of the problem, as we did

in Chapter 3).

4.3 Steady-State Solution
We define U0, R0 and S0 as the steady-state solution of model equations (4.5),

(4.6) and (4.16) respectively. Similar to Chapter 3, by making use of the boundary

conditions at x = 0, i.e., U0(0) = S0(0) = 1 and R0(0) = χ, we can write

equations (4.5) and (4.6) as

R0 =
χ√
U0

and S0 =

√
1

U0

. (4.17)

Therefore, after substituting the values for R0 and S0, from equation (4.17) into

equation (4.16), we end up with one equations in one unknown U0.

We solve the above nonlinear system of steady-state equations (4.16)-(4.17)

using Newton’s method and present the solutions in following figures. In Figures

4.1 – 4.6, we plot the steady-state solution for the inner and the outer jet radii and

velocity, for various density ratios, Weber numbers and Reynolds number. We

observe that an increase in the density ratio (which could correspond to a decrease

in the density of the outer fluid), Weber number (which could correspond to a

decrease in the surface tension of the outer interface) and Reynolds number leads

to a more rapid decay of the jet radii and rapid increase of the jet velocity along

the jet. In Figures 4.7 – 4.12, we plot the steady-state solution for the inner and

the outer jet radii and velocity, for various Froude numbers, surface tension ratios

and zero shear rate viscosity ratios. We observe that an increase in the Froude

number (which corresponds to a decrease in the gravity), surface tension ratio and
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Figure 4.1: The steady-state solution for the inner and the outer jet radii, for
various density ratios. It can be seen that an increase in the density ratio causes
the jet radii to decrease. The other parameters are F = 1, Re = 10, We = 10,
σ = 1, χ = 0.5, ψ = 0.5, λ1 = 0.1, λ2 = 0.1, h = 1, n1 = 0.5 and n2 = 1.

zero shear rate viscosity ratio leads to a more rapid increase of the jet radii and

rapid decrease of the jet velocity along the jet. We note, from these figures, that

the velocity of the jet increases while the radii decreases as we increase ρ, We

and Re and decrease F , σ and ψ. In Figure 4.13, we plot the steady-state solution

for the inner and the outer jet radii, for various flow index numbers and find that

as the compound jet is made more shear thinning, the jet radii decrease.
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Figure 4.2: The steady-state solution for the inner and the outer jet velocity, for
various density ratios. It can be seen that an increase in the density ratio causes
the jet velocity to increase. The other parameters are F = 1, Re = 10, We = 10,
σ = 1, χ = 0.5, ψ = 0.5, λ1 = 0.1, λ2 = 0.1, h = 1, n1 = 0.5 and n2 = 1.
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Figure 4.3: The steady-state solution for the inner and the outer jet radii, for
various Weber numbers. It can be seen that an increase in the Weber number
causes the jet radii to decrease. The other parameters are F = 1, Re = 10, ρ = 1,
σ = 1, χ = 0.5, ψ = 0.5, λ1 = 0.1, λ2 = 0.1, h = 1, n1 = 0.5 and n2 = 1.
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Figure 4.4: The steady-state solution for the inner and the outer jet velocity, for
various Weber numbers. It can be seen that an increase in the Weber number
causes the jet velocity to increase. The other parameters are F = 1, Re = 10,
ρ = 1, σ = 1, χ = 0.5, ψ = 0.5, λ1 = 0.1, λ2 = 0.1, h = 1, n1 = 0.5 and n2 = 1.
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Figure 4.5: The steady-state solution for the inner and the outer jet radii, for
various Reynolds numbers. It can be seen that an increase in the Reynolds number
causes the jet radii to decrease. The other parameters are F = 1, We = 10, ρ = 1,
σ = 1, χ = 0.5, ψ = 0.5, λ1 = 0.1, λ2 = 0.1, h = 1, n1 = 0.5 and n2 = 1.
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Figure 4.6: The steady-state solution for the inner and the outer jet velocity, for
various Reynolds numbers. It can be seen that an increase in the Reynolds number
causes the jet velocity to increase. The other parameters are F = 1, We = 10,
ρ = 1, σ = 1, χ = 0.5, ψ = 0.5, λ1 = 0.1, λ2 = 0.1, h = 1, n1 = 0.5 and n2 = 1.
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Figure 4.7: The steady-state solution for the inner and the outer jet radii, for
various Froude numbers. It can be seen that a decrease in the Froude number
(which corresponds to an increase in the gravity) causes the jet radii to decrease.
The other parameters are We = 10, Re = 10, ρ = 1, σ = 1, χ = 0.5, ψ = 0.5,
λ1 = 0.1, λ2 = 0.1, h = 1, n1 = 0.5 and n2 = 1.
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Figure 4.8: The steady-state solution for the inner and the outer jet velocity, for
various Froude numbers. It can be seen that a decrease in the Froude number
(which corresponds to an increase in the gravity) causes the jet velocity to in-
crease. The other parameters are We = 10, Re = 10, ρ = 1, σ = 1, χ = 0.5,
ψ = 0.5, λ1 = 0.1, λ2 = 0.1, h = 1, n1 = 0.5 and n2 = 1.
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Figure 4.9: The steady-state solution for the inner and the outer jet radii, for
various surface tension ratios. It can be seen that an increase in the surface tension
ratio causes the jet radii to increase. The other parameters are F = 1, We = 10,
Re = 10, ρ = 1, χ = 0.5, ψ = 0.5, λ1 = 0.1, λ2 = 0.1, h = 1, n1 = 0.5 and
n2 = 1.
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Figure 4.10: The steady-state solution for the inner and the outer jet velocity,
for various surface tension ratios. It can be seen that an increase in the surface
tension ratio causes the jet velocity to decrease. The other parameters are F = 1,
We = 10, Re = 10, ρ = 1, χ = 0.5, ψ = 0.5, λ1 = 0.1, λ2 = 0.1, h = 1,
n1 = 0.5 and n2 = 1.
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Figure 4.11: The steady-state solution for the inner and the outer jet radii, for
various zero shear rate viscosity ratios ψ. It can be seen that an increase in ψ
causes the jet radii to increase. The other parameters are F = 1, We = 10,
Re = 10, ρ = 1, σ = 1, χ = 0.5, λ1 = 0.1, λ2 = 0.1, h = 1, n1 = 0.5 and
n2 = 1.
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Figure 4.12: The steady-state solution for the inner and the outer jet velocity, for
various zero shear rate viscosity ratios ψ. It can be seen that an increase in ψ
causes the jet velocity to decrease. The other parameters are F = 1, We = 10,
Re = 10, ρ = 1, σ = 1, χ = 0.5, λ1 = 0.1, λ2 = 0.1, h = 1, n1 = 0.5 and
n2 = 1.
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Figure 4.13: The steady-state solution for the inner and the outer jet radii, for
various flow index numbers. It can be seen that as the compound jet is made more
shear thinning, the jet radii decrease. The other parameters are F = 1, We = 10,
Re = 10, ρ = 1, σ = 1, χ = 0.5, ψ = 0.5, λ1 = 0.1, λ2 = 0.1 and h = 1.
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4.4 Linear Temporal Instability Analysis
We now investigate the instability of a non-Newtonian shear thinning compound

jet by performing a linear temporal instability analysis. Similar to Chapter 3, we

consider travelling short-wavelength modes (or short waves) of the form exp(ωt̄+

ikx̄), where t̄ = t/ϵ and x̄ = x/ϵ are small length and time scales. In addition, ω =

ω(x) = O(1) and k = k(x) = O(1) are the frequency and the wavenumber of

the disturbance. We perturb the steady-state solution by a small time-dependent,

short-wave disturbance and assume

U = U0(x) + δ exp(ωt̄+ ikx̄)Û1, (4.18)

R = R0(x) + δ exp(ωt̄+ ikx̄)R̂1, (4.19)

S = S0(x) + δ exp(ωt̄+ ikx̄)Ŝ1, (4.20)

where δ << ϵ. We substitute equations (4.18)-(4.20) into equations (4.26) – (4.28)

and we use the full curvature terms in order to prevent instability of waves with

zero wavenumber, as we did in the previous chapter (see Brenner et al. (1997) for

more details). This yields, at leading order, our steady-state equations. At next

order O(δ/ϵ), we obtain a set of three equations, namely

(
ikR2

0

)
Û1 + (2R0(ω + ikU0)) R̂1 = 0, (4.21)

(
ik(S2

0 −R2
0)
)
Û1 − (2ωR0 + 2ikR0U0) R̂1

+(2ωS0 + 2ikS0U0) Ŝ1 = 0 (4.22)
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and

(ζ) Û1 + (α) R̂1 + (β) Ŝ1 = 0, (4.23)

where

ζ = (ω + ikU0)a1 − (ψ/Re)[6ikR0R0,xd1 + (2 + ρ−1)ikR2
0f1 + 6ikb1R0R0,x(U0,x)

2

+(2 + ρ−1)(ikb1R
2
0U0,xU0,xx +R2

0U0,xe1)]

−(3/Re)[2ika5(d2 + b2(U0,x)
2) + a6(ikf2 + ikb2U0,xU0,xx + U0,xe2)],

α =
σR2

0a4
ρWe

− 6ikψd1R0U0,x

Re
+

6ikd2R0U0,x

Re

and

β =
a2a3
We

− 6ikd2S0U0,x

Re
.

Here

a1 = (S0)
2 + (ρ− 1)(R0)

2, a2 = (S0)
2 + (ρ−1 − 1)(R0)

2,

a3 =

(
−ik
S2
0

+ ik3
)
, a4 =

(
−ik
R2

0

+ ik3
)
,

a5 = S0S0,x −R0R0,x, a6 = S2
0 −R2

0,

b1 = 3h2(1− λ1)(n1 − 1), b2 = 3h2(1− λ2)(n2 − 1),

c1 = 3h2(n1 − 3), c2 = 3h2(n2 − 3),

d1 = (1− λ1)

(
1 + 3h2

(
n1 − 1

2

)
(U0,x)

2

)
+ λ1,

d2 = (1− λ2)

(
1 + 3h2

(
n2 − 1

2

)
(U0,x)

2

)
+ λ2,

e1 = ikb1U0,xx(1 + c1(U0,x)
2),
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e2 = ikb2U0,xx(1 + c2(U0,x)
2),

f1 =

(
1 +

c1(U0,x)
2

2

)
b1U0,xU0,xx

and

f2 =

(
1 +

c2(U0,x)
2

2

)
b2U0,xU0,xx.

We define

ω′ = ω + ikU0, (4.24)

which in effect moves us into a frame of reference which moves with the jet ve-

locity U0.

Equations (4.21)-(4.23), after using (4.24), can be written in matrix form as
ikR2

0 2R0ω
′ 0

ika6 −2R0ω
′ 2S0ω

′

ζ α β

 ·


Û1

R̂1

Ŝ1

 =


0

0

0

 .

For the above system to have a non-trivial solution, we require that the determinant

of the matrix to be zero, and, therefore, we obtain

(4R0S0a1)(ω
′)2 + 2S0[(−2ψ/Re){6ikR2

0R0,xd1 + (2 + ρ−1)ikR2
0f1

+6ikb1R
2
0R0,x(U0,x)

2 + (2 + ρ−1)(ikb1R
3
0U0,xU0,xx +R3

0U0,xe1)}

−(6R0/Re){2ika5(d2 + b2(U0,x)
2) + a6(ikf2 + ikb2U0,xU0,xx + U0,xe2)}](ω′)

+

[
2S0

(
6k2R3

0U0,x

Re
(d2 − ψd1)−

ikσR4
0a4

ρWe

)
+ {2ikR0(R

2
0 + a6)}

(
6ikd2S0U0,x

Re
− a2a3
We

)]
= 0, (4.25)

which is our required dispersion relation.
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At x = 0 (i.e., at the nozzle), we have the no-gravity case and we have

U0 = S0 = 1 and R0 = χ

as our constant steady-state solutions. Therefore, for the no-gravity case, we will

have the same dispersion relation (4.25), with all the derivatives of U0, R0 and S0

being zero.

4.5 Results and discussion
The dispersion relation (4.25) relates ω′ to the wavenumber k. For a given value of

k, the equation is seen to be a quadratic equation in ω′, with coefficients depending

on x, the axial distance along the jet. Subsequently, by choosing a value of x

and evaluating these coefficients at this particular value, our equation becomes a

quadratic equation in ω′, with constant coefficients, which may be solved using

quadratic formula. An example of solving (4.25), for a value of x and for different

k, is shown in Figure 4.14, where the two solutions of (4.25) are shown, of which

one is a growing modes (i.e., where Re(ω′) > 0 and is unstable) and it is typically

assumed that breakup of the jet is caused by this mode with the largest growth

rate and, throughout this work, we will focus our attention on this mode and we

refer to it as the most unstable mode. In such a case, it can be seen that there is a

value of the wavenumber k, at which the growth rate is maximal - we refer to this

value as the most unstable wavenumber and denote it by kmax. The significance

of this value of kmax is that breakup of the jet is caused by a wave having this

wavenumber and so the resulting droplets will scale with this value of k and, in

particular, we would expect droplets to become smaller for larger kmax. A plot

of such most unstable modes for different parameters is investigated in following

figures. Since the steady-state values of radii and velocities of the jet vary along

x, we see that we have different kmax for different axial distances x along the jet.
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This change is demonstrated in Figures 4.15 – 4.26, for different parameters of

the problem. In Figures 4.15 – 4.26, we plot growth rate versus wavenumber of

the disturbance, for a given parameter, at the nozzle, then maximum wavenumber

versus the axial distance, for that parameter and next maximum growth rate versus

the axial distance, for that parameter.

From Figures 4.15 and 4.16, we find that a decrease in the Weber number

causes the maximum wavenumber of the disturbance to decrease while causes the

maximum growth rate of the disturbance to increase, for different values of x.

Moreover, for a given We, both kmax and [Re(ω′)]max decrease, as x decreases.

Note that, at x = 0, we don’t have a constant kmax for various We (as in inviscid

case). This is due to the fact that for viscous case, k = f(We), as found in

Uddin (2007). Due to the shear thinning (or viscosity) factor, we find that kmax is

directly proportional to We, in particular at x = 0, which was also found in Liao

et al. (2000) and Yang et al. (2012). From Figures 4.17 and 4.18, we find that

a decrease in the Reynolds number causes both the maximum wavenumber and

the maximum growth rate of the disturbance to increase, for different values of

x. Moreover, for a given Re, both kmax and [Re(ω′)]max decrease as x decreases.

We note that for Re < 12, the maximum growth rate at x = 4, is slightly less than

the corresponding maximum growth rates at x = 0 and at x = 2. However, this

behaviour is reversed for Re > 12. From Figures 4.19 and 4.20, we find that a

decrease in the density ratio causes the maximum wavenumber of the disturbance

to decrease for x < 1.8 while after x = 1.8, this behaviour is reversed. We also

observe that a decrease in the density ratio causes the maximum growth rate of

the disturbance to increase, although for large ρ, the difference in [Re(ω′)]max is

slightly small (as shown in Figure 4.20(b)). We further note that as we increase

ρ, x = 0 curve increases, x = 4 curve decreases, while x = 1.8 curve remains

constant. This shows that the transition of the different behaviour of kmax at x = 0
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and x = 4 curves occurs at x = 1.8 curve. This transition takes place due to

the characteristic behaviour of ρ, for these set of parameters. From Figures 4.21

and 4.22, we find that a decrease in the interfacial surface tension ratio σ causes

both the maximum wavenumber and the maximum growth rate of the disturbance

to decrease, for different values of x. Moreover, for a given σ, both kmax and

[Re(ω′)]max decrease as x decreases. In addition, we found that there does not

exists any discontinuity (or transition) in kmax against σ in this case, as found in

inviscid-gravity case. This may be due to the fact that in this case, we have only

one velocity, whereas, in the inviscid case, we have two different velocities. From

Figures 4.23 and 4.24, we find that a decrease in the zero shear rate viscosity

ratio ψ causes both the maximum wavenumber and the maximum growth rate of

the disturbance to decrease, although for large ψ, the difference in [Re(ω′)]max

is relatively small. Moreover, for a given ψ, both kmax and [Re(ω′)]max decrease

as x decreases. From Figure 4.25, we find that a decrease in the inner jet radius

χ causes both the maximum wavenumber and the maximum growth rate of the

disturbance to increase. Moreover, for a given χ, both kmax and [Re(ω′)]max

decrease as x decreases. From Figure 4.26, we find that as the compound jet is

made more shear thinning (i.e., as flow index numbers n1 and n2 are decreased),

both the maximum wavenumber and the maximum growth rate of the disturbance

decrease. That is, as the compound jet is made more shear thinning, we get more

stable jets (i.e., we get more smaller disturbance curve). Moreover, for a given n1

and n2, both kmax and [Re(ω′)]max increase as x increases.

In Figure 4.27, we plot a diagram to show how changing the surface tension

ratio σ and the parameter χ affect the wavenumber of the most unstable mode to-

gether with the associated maximal growth rate of this mode. Figure 4.27 consists

of a set of points which represent the values of inverse maximum wavenumber

(kmax)
−1 and associated maximum growth rate [Re(ω′)]max, obtained when all
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parameters are kept fixed, except either σ or χ. Here we consider the parameter

space 0.3 < χ < 0.8 and 0.5 < σ < 5. Together, this constitutes a map of dif-

ferent maximum wavenumbers and associated maximum growth rates, as σ and χ

are varied. We have chosen to plot the inverse wavenumber with growth rate as

this is consistent with the work of our previous chapter and with the work of Sanz

& Meseguer (1985) but we note that here, unlike in Sanz & Meseguer (1985),

we plot only the largest or most unstable wavemode (as we did in our previous

chapter) with the reasoning that this mode is responsible for breakup. There are

two sets of curves shown in Figure 4.27 which are drawn firstly by fixing χ and

varying σ. With reference to all such figures (Figures 4.27 and 4.28) of this na-

ture, these curves represent fixed χ for different σ, with χ increasing as one moves

from left to right with the value of χ being represented by the solid lines used in

the figure. Curves obtained by fixing σ but varying χ are shown as dashed lines

in Figure 4.27 and for all values of σ, such curves are continuous in nature.

Since the jet is accelerating downwards in the vertical direction, the steady-

state solution is a function of the vertical distance x from the nozzle. This, in

turn, affects the coefficients of our dispersion relation and we, therefore, see dif-

ferences in the relationship between the most unstable wavenumber and its asso-

ciated growth rate, as we move down the jet. Figure 4.27 shows three such cases

which correspond to x = 0, x = 2 and x = 4. A careful examination of the

curves presented in Figure 4.27 (for example one may compare extreme values

of the maximal growth rate and most unstable or maximum wavenumber for a

fixed value of χ, for three different axial distances) reveals that, for the parameter

ranges considered here, (kmax)
−1 decreases as x increases, that is, the maximum

wavenumber increases for any given χ and for all σ, as x increases. Moreover, the

associated growth rates are also larger for a given χ and σ, as x increases. This

indicates that breakup lengths and droplet sizes are likely to be smaller for a shear
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Figure 4.14: The solutions of dispersion relation (4.25), with only the real part
plotted, which represents two growth rates of the disturbance versus wavenumber,
at x = 0. The parameters, used here, are F = 1, We = 10, Re = 50, ρ = 1,
σ = 0.5, χ = 0.5, ψ = 1, λ1 = 0.1, λ2 = 0.1, h = 1, n1 = 0.5 and n2 = 0.9.
These parameters will be our base case parameters for the rest of the figures.

thinning compound liquid jet falling under gravity.

From Figures 4.27 and 4.28, we find that as we increase ρ, [Re(ω′)]max de-

creases at x = 0, 2, 4, while kmax increases at x = 0 and decreases at x = 2, 4.

This is the same qualitative behaviour which was observed before in Figures

4.19 and 4.20. We also find, from these two Figures 4.27 and 4.28, that both

maximum wavenumber kmax and maximum growth rate [Re(ω′)]max increase, as

x increases. Furthermore, we find from these two figures that both maximum

wavenumber kmax and maximum growth rate [Re(ω′)]max increase as we increase

σ, for χ = 0.5, a qualitative behaviour which is also found before in Figures 4.21

and 4.22, for χ = 0.5, but this time, for larger values of We and Re, and for

smaller values of n1 and n2.

95



0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

k

R
e(

ω
′ )

We=1

We=10

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

x

k m
ax

We=10

We=1

0 0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

[R
e(

ω
′ )]

m
ax

We=1

We=10

Figure 4.15: Top: Growth rate Re(ω′) versus wavenumber k of the disturbance, for
different We, at x = 0. Middle: kmax versus axial distance x, for different We. Bottom:
[Re(ω′)]max versus x, for differentWe. It can be seen that a decrease inWe causes kmax

to decrease while causes [Re(ω′)]max to increase. The other parameters are the same as
in the previous Figure 4.14.
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Figure 4.16: Top: Maximum wavenumber kmax against the Weber number We, for dif-
ferent values of x. Bottom: Maximum growth rate [Re(ω′)]max versus the Weber number,
for different values of x. It can be seen that a decrease in the Weber number causes the
maximum wavenumber of the disturbance to decrease while causes the maximum growth
rate of the disturbance to increase, for different values of x. Note that, at x = 0, we don’t
have a constant kmax for various We (as in inviscid case). This is due to the fact that
for viscous case, k = f(We), as found in Uddin (2007). Due to the shear thinning (or
viscosity) factor, we find that kmax ∝ We, in particular at x = 0, which was also found
in Liao et al. (2000) and Yang et al. (2012). The other parameters are the same as in
Figure 4.14.
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Figure 4.17: Top: Growth rate Re(ω′) versus wavenumber k of the disturbance, for
different Re, at x = 0. Middle: kmax versus x, for different Re. Bottom: [Re(ω′)]max

versus x, for different Re. It can be seen that a decrease in the Reynolds number causes
both kmax and [Re(ω′)]max to increase. The other parameters are the same as in Figure
4.14.

98



10 15 20 25 30 35 40 45 50
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Re

k m
ax

x=0

x=2

x=4

10 15 20 25 30 35 40 45 50
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Re

[R
e(

ω
′ )]

m
ax

x=0

x=2

x=4

Figure 4.18: Top: Maximum wavenumber kmax against the Reynolds number
Re, for different values of x. Bottom: Maximum growth rate [Re(ω′)]max versus
Re, for different values of x. It can be seen that a decrease in the Reynolds
number causes both the maximum wavenumber and the maximum growth rate of
the disturbance to increase, for different values of x. We note that for Re < 12, the
maximum growth rate at x = 4, is slightly less than the corresponding maximum
growth rates at x = 0 and at x = 2. However, this behaviour is reversed for
Re > 12. The other parameters are the same as in Figure 4.14.
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Figure 4.19: Top: Re(ω′) versus k, for different ρ, at x = 1.8. At this x, kmax = 1.27
remains constant, for different ρ. Middle: kmax versus x, for different ρ. A decrease
in ρ causes kmax to decrease for x < 1.8. After x = 1.8, this behaviour is reversed.
Bottom: [Re(ω′)]max versus x, for different ρ. It can be seen that a decrease in ρ causes
[Re(ω′)]max to increase. The other parameters are the same as in Figure 4.14.
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Figure 4.20: Maximum wavenumber kmax in the top, while maximum growth rate
[Re(ω′)]max in the bottom, against density ratio ρ, for different values of x. It can be
seen that a decrease in the density ratio causes the maximum wavenumber to decrease for
x = 0, and increase for x = 4, as found in the previous graph, while causes the maximum
growth rate to increase, although for large ρ, this difference is slightly small. We note
that as we increase ρ, x = 0 curve increases, x = 4 curve decreases, while x = 1.8
curve remains constant. This shows that the transition of the different behaviour of kmax

at x = 0 and x = 4 curves occurs at x = 1.8 curve. This transition takes place due to
the characteristic behaviour of ρ, for these set of parameters. The other parameters are the
same as in Figure 4.14.
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Figure 4.21: Top: Growth rate Re(ω′) versus wavenumber k of the disturbance, for
different values of the interfacial surface tension ratio σ, at x = 0. Middle: Maximum
wavenumber kmax versus axial distance x, for different σ. Bottom: Maximum growth
rate [Re(ω′)]max versus axial distance x, for different σ. A decrease in σ causes both
kmax and [Re(ω′)]max to decrease. The other parameters are the same as in Figure 4.14.
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Figure 4.22: Maximum wavenumber kmax in the top, while maximum growth rate
[Re(ω′)]max in the bottom, against the interfacial surface tension ratio σ, for dif-
ferent values of x. It can be seen that a decrease in σ causes both the maximum
wavenumber and the maximum growth rate of the disturbance to decrease, for
different values of x. We found that there does not exists any discontinuity (or
transition) in kmax against σ in this case, as found in inviscid-gravity case. Phys-
ical Explanation: This may be due to the fact that in this case, we have only one
velocity, whereas, in the inviscid case, we have two different velocities. The other
parameters are the same as in Figure 4.14.
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Figure 4.23: Top: Growth rate Re(ω′) versus wavenumber k, for different ψ, at x = 0.
Middle: kmax versus x, for different ψ. Bottom: [Re(ω′)]max versus x, for different ψ. A
decrease in ψ causes both kmax and [Re(ω′)]max to decrease. The other parameters are
the same as in Figure 4.14.
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Figure 4.24: Maximum wavenumber kmax against density ratio ψ, for different
values of x. Clearly, an increase in ψ causes both the maximum wavenumber and
the maximum growth rate of the disturbance to increase, although for large ψ, the
difference in [Re(ω′)]max is relatively small. The other parameters are the same
as in Figure 4.14.
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Figure 4.25: Top: Growth rate Re(ω′) versus wavenumber k of the disturbance, for
different values of the inner jet radius χ, at x = 0. Middle: Maximum wavenumber
kmax versus axial distance x, for different χ. Bottom: Maximum growth rate [Re(ω′)]max

versus axial distance x, for different χ. A decrease in χ causes both kmax and [Re(ω′)]max

to increase. The other parameters are the same as in Figure 4.14.
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Figure 4.26: Top: Growth rate Re(ω′) versus wavenumber k of the disturbance, for
different values of the flow index numbers n1 and n2, at x = 0. Middle: Maximum
wavenumber kmax versus axial distance x, for different n1 and n2. Bottom: Maximum
growth rate [Re(ω′)]max versus axial distance x, for different n1 and n2. As the com-
pound jet is made more shear thinning, both kmax and [Re(ω′)]max decrease. The other
parameters are the same as in Figure 4.14.

107



4.6 Non-Linear Temporal Solution
We next remove the zero subscripts from our variables so that we have the follow-

ing nonlinear system as

[
S2 + (ρ− 1)R2

]
(Ut + UUx) = − 1

We

[(
S2 −R2 +

R2

ρ

)
κ2x +

(
σR2

ρ

)
κ1x

]
+
ψ

Re

[
3(R2)xUxη1 +

(
2 +

1

ρ

)
R2(Uxη1)x

]
+

3

Re
[
(S2 −R2)Uxη2

]
x

+
[
S2 + (ρ− 1)R2

]( 1

F 2

)
,(4.26)

(R2)t + (R2U)x = 0 (4.27)

and

(S2 −R2)t + [(S2 −R2)U ]x = 0, (4.28)

where we now have included the full expression for the mean curvature term by

retaining the symbols κi. This approach of retaining the full expression for the

mean curvature term is essential for linear instability analysis (see previous section

for the justification of this approach for linear theory) and also for non-linear

temporal solutions (see Appendix B for the justification of this approach for non-

linear theory). We note that since for viscous compound liquid jets, the inner and

the outer fluids have the same velocity U (due to the no-slip condition), so the

inner and the outer interfaces R and S will move with the same phase. Therefore,

the inner jet will always break first, for viscous compound liquid jets, with or

without gravity (as in Mohsin et al. (2012)). On the other hand, since for inviscid

compound liquid jets, the inner and the outer fluids have different velocities, so

the inner and the outer interfaces R and S will move with the different phase.

Therefore, sometimes the inner jet breaks first and sometimes the outer jet breaks

first, for inviscid compound liquid jets, with or without gravity (as in Chapter 3).
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Figure 4.27: Maximum growth rate [Re(ω′)]max against inverse maximum wavenumber
(kmax)

−1, for various values of σ and χ, for ρ = 0.5. The graphs from top to bottom
represent x = 0, x = 2 and x = 4 respectively. The other parameters are F = 1,
We = 30, Re = 70, ψ = 1, λ1 = 0.1, λ2 = 0.1, h = 1, n1 = 0.3 and n2 = 0.3. The
solid lines are for σ = 0.5− 5, while the dashed lines are for χ = 0.3− 0.8.
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Figure 4.28: Maximum growth rate [Re(ω′)]max against inverse maximum wavenumber
(kmax)

−1, for various values of σ and χ, for ρ = 2. The graphs from top to bottom
represent x = 0, x = 2 and x = 4 respectively. The other parameters are the same as in
the previous figure. The solid lines are for σ = 0.5 − 5, while the dashed lines are for
χ = 0.3− 0.8.
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We next solve non-linear temporal equations (4.26) – (4.28), using a form of

finite difference method, known as the Lax-Wendroff method (see Appendix B for

the description of this method). We note that in order to ensure the convergence

of this numerical method, we must full fill a necessary condition for convergence,

known as the CFL (Courant-Friedrichs-Lewy) condition that the time step has to

be much less than half of the square of the spatial step. That is,

dt <<
(dx)2

2
.

In Figure 4.29, we perform an accuracy check of the Lax-Wendroff method, by

taking different spatial step sizes and next for our all of the following graphs, we

choose a spatial step size of 5× 10−4 (i.e., n = 2, 000 so that dx = 5e− 4), as in

Uddin et al. (2008).

Similar to Uddin & Decent (2010), the boundary conditions, at the nozzle exit

x = 0, are

U(0, t) = 1 + δ sin
(κ
ϵ
t
)
, (4.29)

R(0, t) = χ and S(0, t) = 1, (4.30)

where δ is the non-dimensional initial amplitude and is made dimensionless with

respect to the radius of the orifice. Moreover, κ is the wavenumber of the imposed

sinusoidal disturbance. In addition, the inclusion of ϵ indicates that we are looking

for small and fast waves, as in the previous Section 4.5 (see Gurney (2010), for

further details). We next take a fixed value of ϵ as ϵ = 0.01. Furthermore, χ

is the initial radius of the inner thread of fluid and 0 < χ < 1. The downstream

boundary conditions are obtained by the quadratic extrapolation of the last internal

mesh points.
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The initial conditions of the system are chosen so that

U(x, 0) = U0, S(x, 0) = S0 and R(x, 0) = R0.

Here U0, R0 and S0 are the solutions of the steady-state equations. We stop our

numerical simulations of liquid jet equations when the minimum dimensionless

jet radius becomes 0.05. We took the location of this minimum point to be the

location of the breakup.

4.7 Results and discussion
In Figure 4.30, we plot the breakup of a viscous compound jet with both shear

thinning core and shell fluids, having n1 = n2 = 0.4 (top), a Newtonian core

and a shear thinning shell fluid (middle top) and vice versa (middle bottom), and

then both Newtonian core and shell fluids (bottom) for wave number κ = 0.65.

We note that the breakup lengths and satellite droplets are smallest when we have

both shear thinning core and shell fluids. In Figure 4.31, we plot the breakup

lengths for a viscous compound jet with both shear thinning core and shell fluids,

having n1 = n2 = 0.4, a Newtonian core and a shear thinning shell fluid and vice

versa, and then both Newtonian core and shell fluids, for different disturbance

wavenumbers. Clearly, the breakup lengths are smallest when we have both shear

thinning core and shell fluids and largest when we have both Newtonian core and

shell fluids. In Figure 4.32, we plot the main drop sizes for a viscous compound

jet with both shear thinning core and shell fluids, a Newtonian core and a shear

thinning shell fluid and vice versa, and then both Newtonian core and shell fluids,

for different κ. Clearly, the main drop sizes are smallest when we have both shear

thinning core and shell fluids, although for κ = 1.2, there is not much difference

in main drop sizes for all of the four cases. In addition, main drop sizes decrease

as κ is increased because the wavelength is decreased. In Figure 4.33, we plot the
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satellite drop sizes for a viscous compound jet with both shear thinning core and

shell fluids, a Newtonian core and a shear thinning shell fluid and vice versa, and

then both Newtonian core and shell fluids, for different κ. Clearly, the satellite

drop sizes are smallest when we have both shear thinning core and shell fluids. In

addition, the satellite drop sizes decrease as we increase κ. Therefore, the larger

the wavenumber is (or the smaller the wavelength is), the smaller the main and

satellite drops will be.

In Figure 4.34, we plot the breakup lengths for a viscous compound jet with

both shear thinning core and shell fluids, having n1 = n2 = 0.4, a Newtonian core

and a shear thinning shell fluid and vice versa, and then both Newtonian core and

shell fluids, for different interfacial surface tension ratios. Clearly, the breakup

lengths are smallest when we have both shear thinning core and shell fluids and

largest when we have both Newtonian core and shell fluids. In addition, breakup

lengths decrease as we increase σ. In Figure 4.35, we plot the main drop sizes for a

viscous compound jet with both shear thinning core and shell fluids, a Newtonian

core and a shear thinning shell fluid and vice versa, and then both Newtonian core

and shell fluids, for different interfacial surface tension ratios. Clearly, the main

drop sizes are smallest when we have both shear thinning core and shell fluids. In

Figure 4.36, we plot the satellite drop sizes for a viscous compound jet with both

shear thinning core and shell fluids, a Newtonian core and a shear thinning shell

fluid and vice versa, and then both Newtonian core and shell fluids, for different

interfacial surface tension ratios. Clearly, the satellite drop sizes are smallest when

we have both shear thinning core and shell fluids. In addition, the satellite drop

sizes decrease as σ is decreased. From Figures 4.34 – 4.36, we find that as σ is

increased, the breakup lengths are smaller and less amount of fluid is consumed in

the main drop size, which in turn, has an impact of a more increase in the satellite

droplet size. This happens because increasing σ results in high curvature, which in
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turn results in quick snap-off at the neck. Consequently, the jet will break quickly

and a big satellite drop will also form.

In Figure 4.37, we plot the breakup lengths for a viscous compound jet with

different flow index numbers for the inner and outer fluids. We only vary the flow

index number of the shell fluid while keeping the flow index number of the inner

fluid constant. Clearly, the breakup lengths are smallest when we have both shear

thinning core and shell fluids and largest when we have both Newtonian core and

shell fluids. This result is anticipated as viscosity is a stabilizing factor (since vis-

cosity dissipates energy). Therefore, shear thinning, which reduces the viscosity,

destabilizes the jet, leading to shorter breakup lengths. Figure 4.37 is a compari-

son with Mohsin et al. (2012) and we note that due to gravity, breakup lengths are

smaller, which is true physically. We also find that the breakup lengths are smaller

when the core fluid is strongly shear thinning, as in Mohsin et al. (2012). Here

we have chosen the same parameters as in Figure 6 of Mohsin et al. (2012). In

Figure 4.38, we plot the main drop sizes for a viscous compound jet with different

flow index numbers for the inner and outer fluids. We only vary the flow index

number of the shell fluid while keeping the flow index number of the inner fluid

constant. We find that the main drops are smallest when we have both Newtonian

core and shell fluids. In addition, main drop sizes decrease as n2 is increased.

We also find that for small values of n2 (at n2 = 0.4, 0.45), changing n1 does not

make any difference to the main drop sizes. In Figure 4.39, we plot the satellite

droplet sizes for a compound viscous jet with different flow index numbers for the

inner and outer fluids, with varying the disturbance amplitude δ. We only vary the

flow index number of the shell fluid while keeping the flow index number of the

inner fluid constant. We observe that for a Newtonian core, increasing δ implies a

decrease in the satellite droplets, which is a similar qualitative behaviour as found

in Mohsin et al. (2012). We also observe that for a shear thinning core, increas-
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Figure 4.29: The accuracy check of our numerical method. The dashed, dotted
and solid lines respectively represent the number of points (with spatial step size)
n = 1, 000 (dx = 1e − 3), n = 2, 000 (dx = 5e − 4) and n = 4, 000 (dx =
2.5e − 4). Here dt = 0.000025 and the other parameters are F = 1, We = 40,
Re = 950, σ = 1, ρ = 1, ψ = 1, χ = 0.5, δ = 0.05, κ = 0.85, λ1 = 0.1,
λ2 = 0.1, h = 1, n1 = 0.2 and n2 = 0.9.

ing δ implies an increase in the satellite droplets, which is a similar qualitative

behaviour as found in Mohsin et al. (2012). We also observe that as n1 and n2 are

increased (or as the inner and the outer fluids are made less shear thinning), less

discharge of fluid takes place into the main drop size, which in turn, has an impact

of a more increase in the satellite droplet size.
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Figure 4.30: The breakup of a viscous compound jet with both shear thinning core and
shell fluids, having n1 = n2 = 0.4 (top), a Newtonian core and a shear thinning shell
(n2 = 0.4) fluids (middle top) and vice versa (middle bottom), and then both Newtonian
core and shell fluids (bottom) for wave number κ = 0.65. We note that the breakup
lengths and satellite droplets are smallest when we have both shear thinning core and
shell fluids. The other parameters are We = 15, Re = 550, σ = 1, ρ = 1, ψ = 1,
χ = 0.5, δ = 0.05, λ1 = 0.1, λ2 = 0.1 and h = 1.
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Figure 4.31: Breakup lengths for a viscous compound jet with both shear thinning core
and shell fluids, having n1 = n2 = 0.4 (bottom), a Newtonian core and a shear thin-
ning shell (n2 = 0.4) fluids (middle bottom) and vice versa (middle top), and then both
Newtonian core and shell fluids (top), for different disturbance wavenumbers. Clearly, the
breakup lengths are smallest when we have both shear thinning core and shell fluids and
largest when we have both Newtonian core and shell fluids. The other parameters are the
same as in the previous figure.
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Figure 4.32: Main drop sizes for a viscous compound jet with both shear thinning core
and shell fluids, a Newtonian core and a shear thinning shell fluid and vice versa, and
then both Newtonian core and shell fluids, for different κ. Clearly, the main drop sizes
are smallest when we have both shear thinning core and shell fluids, although for κ =
1.2, there is not much difference in main drop sizes for all of the four cases. The other
parameters are the same as in the previous figure.
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Figure 4.33: Satellite drop sizes for a viscous compound jet with both shear thinning
core and shell fluids, a Newtonian core and a shear thinning shell fluid and vice versa,
and then both Newtonian core and shell fluids, for different κ. Clearly, the satellite drop
sizes are smallest when we have both shear thinning core and shell fluids. In addition, the
satellite drop sizes decrease as we increase κ. The other parameters are the same as in the
previous figure.
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4.8 Conclusions
In this chapter, we have investigated the instability of a shear-thinning compound

liquid jet falling under the influence of gravity. We have used a slender jet ap-

proximation to determine a one dimensional model, which describes the velocity

and radial displacements of the inner and outer free surfaces. We have solved

the steady-state equations and investigated its dependence on changes in all the

parameters of the model. In particular, we found that an increase in the Weber

number (which could correspond to a decrease in the surface tension of the outer

interface) and Reynolds number leads to a more rapid decay of the jet radii and

rapid increase of the jet velocity along the jet. We have then considered the growth

of unstable waves on the two interfaces by considering a linear temporal instabil-

ity analysis. The obtained dispersion relation, which describes the relationship

between the growth rate and wavenumber of disturbances, has been solved nu-

merically in order to determine the most unstable wavenumber (which we assume

to be the dominant wavenumber which leads to breakup) and the associated max-

imum growth rate. We have investigated how this most unstable wavenumber

varies as we change key critical parameters, like the ratio of surface tension σ and

the aspect ratio of inner jet radii χ. Diagrams showing how such changes in the

parameters affect the most unstable mode, for different axial distances x along

the jet, have been investigated to reveal that the most unstable wavenumber and

maximum growth rates are larger as the wave travels down the jet. We also find

that a decrease in the density ratio causes the maximum wavenumber of the distur-

bance to decrease for x < 1.8 while after x = 1.8, this behaviour is reversed. We

also observe that a decrease in the density ratio causes the maximum growth rate

of the disturbance to increase, although for large ρ, the difference in [Re(ω′)]max

is slightly small. We further note that as we increase ρ, x = 0 curve increases,
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Figure 4.34: Breakup lengths for a viscous compound jet with both shear thinning core
and shell fluids, having n1 = n2 = 0.4, a Newtonian core and a shear thinning shell fluid
and vice versa, and then both Newtonian core and shell fluids, for different interfacial
surface tension ratios. Clearly, the breakup lengths are smallest when we have both shear
thinning core and shell fluids and largest when we have both Newtonian core and shell
fluids. In addition, breakup lengths decrease as we increase σ. The other parameters are
We = 20, Re = 500, ρ = 1, ψ = 1, κ = 0.7, χ = 0.5, δ = 0.05, λ1 = 0.1, λ2 = 0.1
and h = 1.
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Figure 4.35: Main drop sizes for a viscous compound jet with both shear thinning
core and shell fluids, a Newtonian core and a shear thinning shell fluid and vice
versa, and then both Newtonian core and shell fluids, for different interfacial sur-
face tension ratios. Clearly, the main drop sizes are smallest when we have both
shear thinning core and shell fluids. The other parameters are the same as in the
previous figure.
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Figure 4.36: Satellite drop sizes for a viscous compound jet with both shear thinning
core and shell fluids, a Newtonian core and a shear thinning shell fluid and vice versa, and
then both Newtonian core and shell fluids, for different interfacial surface tension ratios.
Clearly, the satellite drop sizes are smallest when we have both shear thinning core and
shell fluids. In addition, the satellite drop sizes decrease as σ is decreased. The other
parameters are the same as in the previous figure.
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Figure 4.37: Breakup lengths for a viscous compound jet with different flow index
numbers for the inner and outer fluids. We only vary the flow index number of the shell
fluid while keeping the flow index number of the inner fluid constant. Clearly, the breakup
lengths are smallest when we have both shear thinning core and shell fluids and largest
when we have both Newtonian core and shell fluids. This figure is a comparison with
Mohsin et al. (2012) and we note that due to gravity, breakup lengths are smaller. We also
find that the breakup lengths are smaller when the core fluid is strongly shear thinning,
as in Mohsin et al. (2012). Here we have chosen the same parameters as in Figure 6 of
Mohsin et al. (2012), as We = 16.4, Re = 480, δ = 0.05, κ = 0.88, σ = 0.5, ρ = 1,
ψ = 0.5, χ = 0.7, λ1 = 0.1, λ2 = 0.1 and h = 1.

124



0.4 0.5 0.6 0.7 0.8 0.9 1
1.355

1.36

1.365

1.37

n
2

di
m

en
si

on
le

ss
 m

ai
n 

dr
op

 s
iz

e

 

 

n
1
=1

n
1
=0.2

Figure 4.38: Main drop sizes for a viscous compound jet with different flow index
numbers for the inner and outer fluids. We only vary the flow index number of
the shell fluid while keeping the flow index number of the inner fluid constant.
We find that the main drops are smallest when we have both Newtonian core and
shell fluids. In addition, main drop sizes decrease as n2 is increased. We also find
that for small values of n2 (at n2 = 0.4, 0.45), changing n1 does not make any
difference to the main drop sizes. The other parameters are the same as in the
previous figure.
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Figure 4.39: Satellite droplet sizes for a compound viscous jet with different flow index
numbers for the inner and outer fluids, with varying the disturbance amplitude δ. We
only vary the flow index number of the shell fluid while keeping the flow index number
of the inner fluid constant. We observe that for a Newtonian core, increasing δ implies
a decrease in the satellite droplets, which is a similar qualitative behaviour as found in
Mohsin et al. (2012). We also observe that for a shear thinning core, increasing δ implies
an increase in the satellite droplets, which is a similar qualitative behaviour as found in
Mohsin et al. (2012). As n1 and n2 are increased (or as the inner and the outer fluids
are made less shear thinning), less discharge of fluid takes place into the main drop size,
which in turn, has an impact of a more increase in the satellite droplet size. The other
parameters are the same as in the previous figure.
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x = 4 curve decreases, while x = 1.8 curve remains constant. This shows that

the transition of the different behaviour of kmax at x = 0 and x = 4 curves occurs

at x = 1.8 curve. This transition takes place due to the characteristic behaviour

of ρ, for these set of parameters. In addition, we found that there does not exists

any discontinuity (or transition) in the maximum wavenumber kmax against any

parameter of the problem in this case, as found in inviscid-gravity case, for σ.

This may be due to the fact that in this case, we have only one velocity, whereas,

in the inviscid case, we have two different velocities.

We have also solved the model equations using a numerical method based on

finite differences. We have investigated the effects of changing the key parameters

on the breakup lengths, main drop sizes and satellite drop sizes. In particular,

we have found that breakup lengths, main drops and satellite drops are always

smallest when we have both shear thinning core and shell fluids, for different

values of the disturbance wavenumber κ. We also find that the satellite drops

decrease as we increase κ. Furthermore, as the interfacial surface tension ratio σ

is increased, the breakup lengths are smaller and less amount of fluid is consumed

in the main drop size, which in turn, has an impact of a more increase in the

satellite droplet size. Moreover, the satellite drop sizes are smallest when we

have both shear thinning core and shell fluids. We also found that due to gravity,

breakup lengths are smaller and are also smaller when the core fluid is strongly

shear thinning, as in Mohsin et al. (2012).

We observed that for a Newtonian core, increasing δ implies a decrease in the

satellite droplets, which is a similar qualitative behaviour as found in Mohsin et

al. (2012). We also observed that as n1 and n2 are increased (or as the inner and

the outer fluids are made less shear thinning), less discharge of fluid takes place

into the main drop size, which in turn, has an impact of a more increase in the

satellite droplet size.
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Chapter 5

Description and Application of The

Needham-Leach Method

5.1 Description of The Needham-Leach Method
We first describe the Needham-Leach method, which is an asymptotic method,

and then we describe an application of this method, which is in Decent (2009).

The Needham-Leach method is very useful to find the large spatial and temporal

asymptotic solution of many classes of differential equations, such as, the general-

ized Fisher equation in reaction-diffusion systems, KdV equation and the Navier-

Stokes equations (see Leach & Needham 2001 & 2004, Leach et al. 2003 and

Decent (2009) for more details). In this method, we consider the model equations

of a given problem along with initial and boundary conditions and we divide the

whole domain in following five different space and time asymptotic regions, as

shown in Figure 5.1.

(I) s → 0 and t → 0; (II) s = O (1) and t → 0; (III) s → ∞ and t = O (1);

(IV) s→ ∞ and t→ ∞ and (V) s = O (1) and t→ ∞.

We find the solution to the model equations in each region, which consists
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Figure 5.1: A diagram showing the representation of the different regions of the
Needham-Leach asymptotic method. Reproduced from Gurney (2010).

of some unknown constants and then we do asymptotic matching between each

neighbouring region to find out the values of the unknown constants. In this way,

the whole asymptotic domain will be covered. The regions A, B, C and D in Figure

5.1 are the regions where the asymptotic matching, between each neighbouring

regions, will take place.

This method starts with considering the initial conditions at t = 0 and then

posing small time asymptotic, t → 0, and also using the boundary condition at

s = 0, in the first region, where both s → 0 and t → 0. We then substitute

the small time and space asymptotics into the model equations and we find the

solution in this region I. This solution is then expanded in order to pose asymp-

totic expansions in next region II, where t → 0 and s = O(1). We next substitute

asymptotic expansions of region II into the model equations and we find the solu-

tion in region II. After that, we do asymptotic matching between the two regions

to determine the values of unknown constants. This procedure is repeated in next
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regions III, IV and V until the whole asymptotic domain is fully covered. This

asymptotic method gives deep investigations into the partial differential equations

in each region of the liquid jet equations. We now give an application of the

Needham-Leach method.

5.2 Application of The Needham-Leach Method
As an application of the Needham-Leach method, we review Decent (2009). De-

cent (2009) has applied the Needham-Leach method for the very first time to the

liquid jets and has obtained very useful information regarding the regions of the

liquid jet breakup. This seminal work of Decent (2009) forms the base of our

new work in this thesis. Decent (2009) studied the behaviour of a slender vis-

cous jet, as it moves towards breakup, using the Needham-Leach method. Decent

(2009) successfully applied the Needham-Leach method to the viscous liquid jet

equations and obtained some useful results.

In particular, Decent (2009) found an equation, in region IV, which describes

an uncontrollable and unstable nonlinear travelling wave at large times. This equa-

tion, which we call as the g0-equation, is given by

Re (g′0)
4 − 4zReWeg′0g0 + 2z2ReWe (g′0)

2 − 4zReWe (g′0)
2
+ 4ReWeg′0g0

+2ReWe (g′0)
2
+ 2ReWe (g0)

2 + 6We (g′0)
2
g0 − 6We (g′0)

3
z

+6We (g′0)
3
+Re (g′0)

2
= 0. (5.1)

In the above equation, z is defined as z = s/t = O(1), for large space and time.
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In addition, g0 is obtained in the asymptotic limit Re→ ∞ and is given by

g0 =

√
Q0

4
√
We

(5.2)

where

Q0 = −We2 − 10z2We+ 20zWe− 10We− 6z2We2 − z4We2 + 2 + 4z3We2

+4zWe2 −
√
We (z − 1)2 (We− 2zWe+ z2We− 4)3. (5.3)

Decent (2009) also solved the g0-equation computationally for Re = O(1) and

that computational solution is given in Figures 5.2 and 5.3.

The g0-equation (5.1) describe the dynamics of an uncontrollable and unsta-

ble nonlinear travelling wave at large times. Note that the real part of g0 is the

temporal growth rate, for negative values and it is the temporal decay rate, for

positive values. Figure 5.2 shows the computational solution of the real part of

g0. Decent (2009) noted from this figure that the temporal growth rate lies in a

range of values of z, which can be represented by z1 < z < z2. In addition, from

equations (5.2) and (5.3), Decent (2009) found that z1 → max
(
1− 2/

√
We, 0

)
and z2 → 1 + 2/

√
We as Re→ ∞. Further more, the imaginary part of g0 is the

local frequency of the uncontrollable nonlinear travelling wave. Figure 5.3 shows

the computational solution of the imaginary part of g0.

Decent (2009) noted that the small unstable growing linear waves come out

of the orifice z = 0. These waves grow gradually until they become nonlinear

before z = z1. In the region z1 < z < z2, Decent (2009) found a new nonlinear

wave, given by equation (5.1), which starts at z = z1. This new nonlinear wave

does not depend on the controllable frequency ω or controllable amplitude δ and
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Figure 5.2: The real part of g0 plotted against z for We = 10 for Re = 15 (top),
50 (middle) and 1000 (bottom). Figure taken from Decent (2009).
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Figure 5.3: The imaginary part of g0 plotted against z for We = 10 for Re = 15
(top for z < 0 and bottom for z > 0), 50 (middle) and 1000 (bottom for z < 0
and top for z > 0). Figure taken from Decent (2009).
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so we cannot control it. Hence z = z1 is the onset (or the beginning point) of

the uncontrollable nonlinear travelling wave. Gurney (2010) has next used the

Needham-Leach method on straight inviscid liquid jet equations and also consid-

ered the impact of rotation on straight inviscid liquid jet equations.

5.3 Derivation of Temporal Growth Rate and Wavenum-

ber
In this section, we derive the temporal growth rate and wavenumber of the fastest

growing temporal linear mode in the limit of Re → ∞, using the linear temporal

instability analysis. These quantities have not been given nor derived in Decent

(2009). We perturb the steady-state solution by a small time-dependent distur-

bance and assume

R = 1 + δ exp(λt+ iks)R1 (5.4)

and

u = 1 + δ exp(λt+ iks)u1, (5.5)

where δ, λ and k are respectively the amplitude, frequency and wavenumber of

the disturbance. Moreover, R1 and u1 are constant vectors. Substituting the above

equations into the model equations of straight axi-symmetric viscous liquid jets

(see Decent (2009)) and taking the limit Re→ ∞, we get

2λR1 + iku1 + 2ikR1 = 0 (5.6)

and

(λWe+ ikWe)u1 + (ik3 − ik)R1 = 0. (5.7)
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Equations (5.6) and (5.7) can be written in the matrix form as ik 2λ+ 2ik

λWe+ ikWe ik3 − ik

 ·

u1
R1

 =

0

0

 .

For the above system to have a non-trivial solution, we require that

det

 ik 2λ+ 2ik

λWe+ ikWe ik3 − ik

 = 0.

That is,

ik(ik3 − ik)− (2λ+ 2ik)(λWe+ ikWe) = 0, (5.8)

and so we obtain a dispersion relation of the form

2λ2We+ 4iλkWe = −k4 + k2 + 2k2We. (5.9)

Hence from this dispersion relation, we obtain

λ =

[
k2(1− k2)

2We

]1/2
+ i(−k) = λr + iλi, (5.10)

where

λr = Growth rate =

[
k2(1− k2)

2We

]1/2
(5.11)

and

λi = Frequency = −k. (5.12)

Now using the fact that
dλr
dk

= 0
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for the fastest (maximum) growth rate, we obtain, from equation (5.11), that

k = 1/
√
2, (5.13)

which is the wavenumber of the fastest growing temporal linear wave-mode in the

limit of Re→ ∞.

Substituting this value of k into equation (5.11), we get

λr =
√
2/
(
4
√
We
)
, (5.14)

which is the temporal growth rate of the fastest growing temporal linear wave-

mode in the limit of Re→ ∞. This completes our review on Decent (2009).

5.4 Summary
In this chapter, we presented a description about the Needham-Leach method. In

addition, we described an application of this method, that is in Decent (2009),

which forms the base of some of our next chapters. At the end, we have derived

the temporal growth rate and wavenumber of the fastest growing temporal linear

mode in the limit of Re→ ∞, which are not derived in Decent (2009).
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Chapter 6

Asymptotic Solution of Straight

Vertically Falling Newtonian Liquid

Jet Under the Influence of Gravity

6.1 Introduction
In the previous chapter, we reviewed Decent (2009), which describes the applica-

tion of the Needham-Leach method to a Newtonian liquid jet, without gravity. In

this chapter, we extend the analysis of Decent (2009) by examining the asymptotic

solution of straight vertically falling Newtonian liquid jet, falling under the influ-

ence of gravity. Note that in the laboratory, we cannot easily perform the problem

given in Decent (2009) which do not have gravity in it because under the normal

circumstances, we have the force of gravity acting in the laboratory. However, our

problem can easily be performed in the laboratory as we have included gravity in

our problem. Hence, this problem is a practical generalization of Decent (2009).
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6.2 Model Equations
The model equations for a straight downward falling Newtonian jet, falling under

the influence of gravity, are given by

Rt = −R
2
us − uRs (6.1)

and

ut + uus = − 1

We

(
1

R(1 + ϵ2R2
s)

1
2

− ϵ2Rss

(1 + ϵ2R2
s)

3
2

)
s

+
3

Re
· 1

R2

[
∂

∂s

(
R2∂u

∂s

)]
+

1

F 2
. (6.2)

Here u = (us, ur, uθ) = (u, v, 0) is the velocity vector, g = (g, 0) is the gravity,

ρ is the density of the liquid, µ is the viscosity, t is time and p is the pressure.

In these equations, we have taken u (s, t) as the velocity component parallel to

the centreline of the jet, R (s, t) as the distance of the axi-symmetric free-surface

away from the jet’s centreline and s as the distance along the jet’s centreline from

the orifice. The non-dimensional constants appearing in these equations are the

Froude number, the Reynolds number and the Weber number and these are re-

spectively given by

F =
U√
Lg
, Re =

ρUL

µ
and We =

ρU2a

σ
. (6.3)

Here a is the radius of the orifice, U is the exit speed of the jet and L is the typical

axial length scale (which can be taken as L = U2/g) chosen so that, in keeping
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with the slender jet assumption, we define a small parameter ϵ as

ϵ = a/L << 1.

These equations have been derived in Partridge (2006) (by taking Rb → ∞ and

Ys = 1). We define new length and time scales s̃ and t̃ such that

s̃ =
s

ϵ
, t̃ =

t

ϵ
.

So equation (6.1) can be written as

1

ϵ
Rt̃ = −1

ϵ

R

2
us̃ −

1

ϵ
uRs̃, (6.4)

or

Rt̃ +
R

2
us̃ + uRs̃ = 0. (6.5)

Similarly equation (6.2) can be written as

ut̃ + uus̃ = − 1

We

(
1

R(1 +R2
s̃)

1
2

− Rs̃s̃

(1 +R2
s̃)

3
2

)
s̃

+
3

Re ϵ
· 1

R2

[
∂

∂s̃

(
R2∂u

∂s̃

)]
+

ϵ

F 2
. (6.6)

We define

R̃e = Re ϵ =
ρUL

µ
· a
L

=
ρUa

µ

and we also define
ϵ

F 2
=

1

F̃ 2
,
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or

F̃ =
F√
ϵ
=

U√
Lg

·
√
L

a
=

U
√
ag
.

Therefore, equation (6.6) becomes

ut̃ + uus̃ +
1

We

[
1

R

(
1 +R2

s̃

)−1/2 −Rs̃s̃

(
1 +R2

s̃

)−3/2
]
s̃

− 3

R̃e

(R2us̃)s̃
R2

− 1

F̃ 2
= 0. (6.7)

Equations (6.5) and (6.7) are now used as the model equations for a straight down-

ward falling Newtonian jet, falling under the influence of gravity.

The non-dimensional initial conditions are

R
(
ϵs̃, ϵt̃ = 0

)
= 1 and u

(
ϵs̃, ϵt̃ = 0

)
= 1.

The boundary conditions at the orifice are

R
(
ϵs̃ = 0, ϵt̃

)
= 1 and u

(
ϵs̃ = 0, ϵt̃

)
= 1 + δ sin

(
ωϵt̃
)
.

We define u0 and R0 as the steady-state solution of equations (6.5) and (6.7). We

also assume that u→ u0 and R → R0 as s̃→ ∞, which physically means that in

the far-field, the jet is considered to be undisturbed.

Note that now our original equations are in s̃ and t̃. As mentioned in section

5.1, we divide the domain in five asymptotic regions and apart from regions IV

and V, the solutions in regions I-III are the same as given in Decent (2009). We

are only interested in regions IV and V as they will give us useful information

about the g0-equation.

We, therefore, examine this problem in region IV (the nonlinear waves sec-
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tion), where s̃ → ∞ and t̃ → ∞ so that z = s̃/t̃ = O (1). Similar to Gurney

(2010), we introduce a new length scale s̄, defined by

s̄ = ϵs̃ = O(1), as ϵ→ 0.

The reason for introducing this new length scale s̄ is that we want to have the

O(1) values of the steady-state problem (as s̄ = O(1)). Similar to the expansions

that Gurney (2010) and Decent (2009) used in region IV, we pose the following

multiple-scales type expansions

u = u0(s̄) +

[
exp (−tg0 (z, s̄))

{
h0 (z, s̄) +O

(
1√
t

)}
+ h.o.t.

]
(6.8)

and

R = R0(s̄) +

[
exp (−tg0 (z, s̄))

{
ζ0 (z, s̄) +O

(
1√
t

)}
+ h.o.t.

]
(6.9)

as t̃ → ∞ and h.o.t. denotes higher-order terms. The steady-state equations for

u0 and R0 can be obtained from equations (6.5) and (6.7), using s̄ = ϵs̃, and are

given by

1

2
u′0R0 + u0R

′
0 = 0 (6.10)

and

ϵu0u
′
0 +

1

We

(
−ϵR′

0

R2
0(1 + ϵ2R′2

0 )
1
2

− ϵ3R′
0R

′′
0(R

−1
0 ) + ϵ3R′′′

0

(1 + ϵ2R′2
0 )

3
2

+
3ϵ5R′

0R
′′2
0

(1 + ϵ2R′2
0 )

5
2

)
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− 3

R̃e
(ϵ2u′′0 + 2ϵ2u′0R

′
0R

−1
0 )− ϵ

F 2
= 0, (6.11)

where we have used 1/F̃ 2 = ϵ/F 2 and ′ = ∂/∂s̄. Note that we can take L =

U2/g, which will imply that F is fixed as F = 1, as F = U/
√
Lg. However, we

keep F as a parameter in this chapter.

6.3 Leading-Order Solution
We expand u0 and R0 as

u0(s̄) = u00(s̄) + ϵu01(s̄) + ϵ2u02(s̄) +O(ϵ3) (6.12)

and

R0(s̄) = R00(s̄) + ϵR01(s̄) + ϵ2R02(s̄) +O(ϵ3). (6.13)

Hence at leading-order, we have the following inviscid equations

1

2
u′00R00 + u00R

′
00 = 0 (6.14)

and

u00u
′
00 −

1

We

(
R′

00

R2
00

)
− 1

F 2
= 0. (6.15)

The steady-state solutions of above two equations (6.14) and (6.15), using a Runga-

Kutta 4th-order method, are shown in Figures 6.1-6.4.

Figures 6.1 and 6.2 show respectively that the leading-order radius R00 de-

creases and the leading-order velocity u00 increases, as Weber number We de-

creases (or as the surface tension increases). Figures 6.3 and 6.4 show respectively

that the leading-order radius R00 decreases and the leading-order velocity u00 in-
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Figure 6.1: A graph showing the behaviour of the leading-order radius R00 of the
jet plotted against the axial length s, for various Weber numbers. Here F = 1.

creases, as Froude number F decreases (or as the gravity increases). From Figures

6.1-6.4, we also note that the jet thins and accelerates, as it leaves the orifice, due

to the gravity, which has also been observed in experiments (See Hawkins et al.

(2010) and Varga et al. (2003)).
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Figure 6.2: A graph showing the behaviour of the leading-order velocity u00 of
the jet plotted against the axial length s, for various Weber numbers. Here F = 1.
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Figure 6.3: A graph showing the behaviour of the leading-order radius R00 of the
jet plotted against the axial length s, for various Froude numbers. Here We = 5.
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Figure 6.4: A graph showing the behaviour of the leading-order velocity u00 of the
jet plotted against the axial length s, for various Froude numbers. Here We = 5.
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6.4 Determination of the nonlinear travelling wave
Substituting equations (6.8) and (6.9) into equation (6.5), we obtain at leading-

order in ϵ

h0 = 2ζ0

(
−g0 + zg0,z − u00g0,z

R00g0,z

)
. (6.16)

Putting u00 = R00 = 1 in equation (6.16), we get

h0 = ζ0

(
−2g0 + 2zg0,z − 2g0,z

g0,z

)
, (6.17)

which is the same equation (95) of Decent (2009). We expected to get this equa-

tion as it corresponds to the problem described in Decent (2009) with no gravity

in which u00 = R00 = 1.

Substituting equations (6.8), (6.9) and (6.16) into equation (6.7), we obtain a

nonlinear ordinary differential equation for g0 in z, at leading-order in ϵ, of the

form

ReR00 (g0,z)
4 +

Re

R00

(g0,z)
2 − 4zReWeg0g0,z + 2z2ReWe (g0,z)

2 − 4zReWeu00 (g0,z)
2

+4ReWeu00g0g0,z + 2ReWeu200 (g0,z)
2 + 2ReWe (g0)

2 + 6Weg0 (g0,z)
2 − 6Wez (g0,z)

3

+6Weu00 (g0,z)
3 = 0. (6.18)

Putting u00 = R00 = 1 in equation (6.18), we get
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Re (g0,z)
4 +Re (g0,z)

2 − 4zReWeg0g0,z + 2z2ReWe (g0,z)
2 − 4zReWe (g0,z)

2 + 4ReWeg0g0,z

+2ReWe (g0,z)
2 + 2ReWe (g0)

2 + 6Weg0 (g0,z)
2 − 6Wez (g0,z)

3 + 6We (g0,z)
3 = 0,

which is the same equation (92) of Decent (2009).

Solving equation (6.18), for large Reynolds number (i.e., Re→ ∞), gives

g0 =

√
Q0

4
√
WeR

3/2
00

(6.19)

where

Q0 = −We2u400R
2
00 − 10z2WeR00 + 20zWeu00R00 − 10Weu200R00 − 6z2We2u200R

2
00

−z4We2R2
00 + 2 + 4z3We2u00R

2
00 + 4zWe2u300R

2
00

−
√
R00We (z − u00)

2 (Weu200R00 − 2zWeu00R00 + z2WeR00 − 4)
3
. (6.20)

Putting u00 = R00 = 1 in equations (6.19) and (6.20), we get

g0 =

√
Q0

4
√
We

(6.21)

where

Q0 = −We2 − 10z2We+ 20zWe− 10We− 6z2We2 − z4We2 + 2 + 4z3We2
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+4zWe2 −
√
We (z − 1)2 (We− 2zWe+ z2We− 4)3, (6.22)

which are the same equations (112) and (113) of Decent (2009).

Recall that, for negative values of g0, the real part of g0 is the temporal

growth rate and, for positive values, it is the temporal decay rate. In addition,

the imaginary part of g0 is the local frequency of the nonlinear travelling wave.

Further more, recall that that Decent (2009) graphically found that there is a range

of values of z for which the real part of g0 is negative and in that range, the asymp-

totic expansions become non-uniform at large t. This range of values is denoted by

z1 < z < z2. In addition, Decent (2009) found that z1 → max
(
1− 2/

√
We, 0

)
and z2 → 1 + 2/

√
We as Re→ ∞.

In our case, we find from equations (6.19) and (6.20), that

z1 → max
(
u00 − 2/

√
R00We, 0

)
and z2 → u00 + 2/

√
R00We as Re→ ∞.

These values of z1 and z2 corresponds to the same values of of z1 and z2 of Decent

(2009) in the limit u00 = 1 and R00 = 1.

6.4.1 Behaviour for small z

We next examine the solutions in this region as z → 0 (as we want to have the

initial conditions for g0(z)). We pose

g0 =M0 +M1z +M2z
2 +O

(
z3
)

(6.23)

as z → 0. We substitute the above equation into the g0-equation (6.18), and we

find at leading-order

ReR00M
4
1 +ReR−1

00 M
2
1 + 4ReWeu00M1M0 + 6Weu00M

3
1
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+6WeM2
1M0 + 2ReWeM2

0 + 2ReWeu200M
2
1 = 0, (6.24)

which is the same equation (102) of Decent (2009) in the limit u00 = 1 and

R00 = 1.

At the next-order in this expansion, we find that either M2 = 0 or that

2ReR00M
3
1 +ReR−1

00 M1 + 2ReWeu200M1

+2ReWeu00M0 + 6WeM1M0 + 9Weu00M
2
1 = 0, (6.25)

which is the same equation (110) of Decent (2009) in the limit u00 = 1 and

R00 = 1.

Hence we have two simultaneous equations (6.24) and (6.25) for M0 and M1.

Note that differentiating equation (6.24) with respect to M1 gives equation (6.25).

We solve equations (6.24) and (6.25) in some asymptotic limits to findM0 and

M1. For Re→ ∞, we find

M0 = − M1

2u00We

(
R−1

00 + 2R00M
2
1 + 2u200We

)
+O

(
1

Re

)
(6.26)

and

M1 = ± 1

2R00

√
−2− u200R00We±

√
u400R

2
00We2 − 4u200R00We

+ O

(
1

Re

)
, (6.27)

where the ± alternatives can be taken in any combination to satisfy equations

(6.24) and (6.25). Note that the above two equations correspond to equations
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(123) and (122) of Decent (2009) in the limit u00 = 1 and R00 = 1.

We now solve equations (6.24) and (6.25) for We→ 0. This is found to give

M0 = −M1

(
2u200Re+ 9u00M1

2u00Re+ 6M1

)
+O (We) (6.28)

and

M1 = ± i√
2 R00

+O (We) , (6.29)

which correspond to equations (125) and (124) of Decent (2009) in the limit u00 =

1 and R00 = 1.

6.5 Computational Solution
We next solve equations (6.24) and (6.25) without any asymptotic limits to find

M0 and M1 computationally and then we use these values of M0 and M1 as the

initial conditions for g0(z). Hence we solve g0-equation (6.18), with the initial

conditions

g0(z = 0) =M0 and g
′
0(z = 0) =M1,

for both Re = O (1) and We = O (1), computationally using a Runga-Kutta

fourth-order method. We next present the results in the following figures. Note

that when we change s, then u0(s) and R0(s) will also change, resulting a change

in M0 and M1 (as M0 = M0(u0, R0) and M1 = M1(u0, R0)), which in turn will

change g0.

Figure 6.5 shows that as we increase s, the solution of the g0-equation is shifted

to higher values of z, giving more time to break the jet before z = z1. Figure 6.6

shows that at z = z3, the solution of the g0-equation changes its sign. Also note

that z = z3 remains at the same point in the real and imaginary solutions of g0.
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Figure 6.5: A graph showing the real part of the solution Re(g0) plotted against
z, red for s = 5, blue for s = 20, pink for s = 60 and green for s = 100. We
note that for larger values of s, the curves are translated along the z-axis. Here
We = 10 and Re = 15.
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Figure 6.6: A graph showing the imaginary part of the solution Im(g0) plotted
against z, red for s = 5, blue for s = 20, pink for s = 60 and green for s = 100.
We again note that for larger values of s, the curves are translated along the z-axis.
Here We = 10 and Re = 15.

150



0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

s (with We = 10)

z1

 

 

Re=15
Re=50
Re=1000

Figure 6.7: A graph between s and z1 for We = 10.

Recall that z1 is the place where the nonlinear waves start to dominate, while at

z2 we have a mixture of both linear and nonlinear waves and at z3, the instability

is at its maximum value. We now plot some graphs of s against z1, z2, z3 and

Real (g0(z3)).

Note that since Im(g0(z3)) = 0, at z-axis, for all values of We and Re, so we

do not need to plot graph of s against Im(g0(z3)) as it will be a straight line on

s-axis. Also note that

Real(g0(z3)) = Im(g0(z3)), at z − axis.

Figure 6.7 shows that z1 increases as s increases and z1 decreases with in-

creasing values of Re. Figure 6.8 shows that z1 increases as s increases and z1

also increases with increasing values of We. Note that in order to get the uniform

droplets with no satellite droplets, linear waves must dominate in the jet’s breakup
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Figure 6.8: A graph between s and z1 for Re = 45.

process. The linear waves remain dominant as the jet come out of the orifice until

the point z1. We, therefore, must have a large value z1 so that we can easily break

our jet before z1. We have found, from Figures 6.7 and 6.8 respectively, that in

order to get a large value of z1, we must have a small value ofRe and a large value

of We.

Figure 6.9 shows that z2 increases as s increases and z2 also increases with

increasing values of Re. Figure 6.10 shows that z2 increases as s increases and z2

decreases with increasing values of We. Figures 6.11 and 6.12 show that z3 in-

creases as s increases and z3 is not affected by increasingRe andWe. Figure 6.13

shows that Real (g0(z3)) decreases as s increases and Real (g0(z3)) also decreases

with increasing values of Re. Figure 6.14 shows that Real (g0(z3)) decreases as s

increases and Real (g0(z3)) increases with increasing values of We.

We now compare our results with those given in Decent (2009). The following

figures 6.15 and 6.16 show that our results are in perfect agreement with those
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Figure 6.9: A graph between s and z2 for We = 10.
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Figure 6.10: A graph between s and z2 for Re = 45.
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Figure 6.11: A graph between s and z3 for We = 10.
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Figure 6.12: A graph between s and z3 for Re = 45.
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Figure 6.13: A graph between s and Real (g0(z3)) for We = 10.
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Figure 6.14: A graph between s and Real (g0(z3)) for Re = 45.
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Figure 6.15: The real part of g0 plotted against z with s = 0 for We = 10 for
Re = 15 (green curve on top), 50 (red curve on middle) and 1000 ( blue curve on
bottom). This figure is exactly the same as figure 9 of Decent (2009).

given in Decent (2009). Also, we can see that for large values of s, the curves are

translated along the z-axis, as shown in figures 6.17 and 6.18.
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Figure 6.16: The imaginary part of g0 plotted against z with s = 0 for We = 10
for Re = 15 (green curve on top for z < 0; bottom for z > 0), 50 ( red curve on
middle) and 1000 ( blue curve on bottom for z < 0; top for z > 0). This figure is
exactly the same as figure 10 of Decent (2009).

Figure 6.17: The real part of g0 plotted against z with s = 100 for We = 10 for
Re = 15 (green curve on top), 50 ( red curve on middle) and 1000 ( blue curve on
bottom).

157



Figure 6.18: The imaginary part of g0 plotted against z with s = 100 forWe = 10
for Re = 15 (green curve on top for z < 0; bottom for z > 0), 50 (red curve on
middle) and 1000 (blue curve on bottom for z < 0; top for z > 0).

6.6 Linear Waves Regime Analysis
We next examine this problem in region V (the linear waves section), where t̃ →

∞ and s̃ = O (1). We remove tildes and pose the following expansions

u = u0(s, s̄) + δ exp (iωt)

(
Γ0 (s, s̄) +O

(
1√
t

))
+O

(
δ2
)
+ c.c. (6.30)

and

R = R0(s, s̄) + δ exp (iωt)

(
Ω0 (s, s̄) +O

(
1√
t

))
+O

(
δ2
)
+ c.c., (6.31)

where c.c. denotes complex conjugate, s̄ = ϵs, δ → 0 and δ << ϵ.

Note that we if we have u = u0(s̄) and R = R0(s̄), where s̄ = ϵs, then as

ϵ → 0, we have s̄ → 0. This gives u0(s̄ = 0) = 1 and R0(s̄ = 0) = 1 from the

boundary conditions and this corresponds to no-gravity problem. This cannot be

true as we have gravity in our problem.

158



Substituting the above two expansions into equations (6.5) and (6.7) and tak-

ing the limits t→ ∞, δ → 0 and ϵ→ 0 gives at leading-order the same equations

(6.5) and (6.7) being satisfied while O(δ) gives

2iωΩN +R0ΓN,s + 2u0ΩN,s = 0, (6.32)

and

iωReWeΓN + u0ReWeΓN,s −
ReΩN,s

R2
0

−ReΩN,sss − 3WeΓN,ss = 0, (6.33)

for N = 0, 1.

Putting u0 = R0 = 1 in equations (6.32) and (6.33), we get

2iωΩN + ΓN,s + 2 ΩN,s = 0, (6.34)

and

iωReWeΓN +ReWeΓN,s −ReΩN,s −ReΩN,sss − 3WeΓN,ss = 0, (6.35)

which are the same equations (128) and (129) of Decent (2009).

Equations (6.32) and (6.33) have the general solutions

ΓN = Γ̂1+4N(s̄) exp(k1s) + Γ̂2+4N(s̄) exp(k2s) + Γ̂3+4N(s̄) exp(k3s)

+ Γ̂4+4N(s̄) exp(k4s) (6.36)
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and

ΩN = Ω̂1+4N(s̄) exp(k1s) + Ω̂2+4N(s̄) exp(k2s) + Ω̂3+4N(s̄) exp(k3s)

+ Ω̂4+4N(s̄) exp(k4s), (6.37)

where k1, k2, k3 and k4 are the four solutions of the linear dispersion relationship

between k and ω which is given by

k4R2
0Re+ k2Re− 2ω2R0ReWe+ 4iωku0R0ReWe− 6iωk2R0We

+2k2u20R0ReWe− 6k3u0R0We = 0. (6.38)

That is, the above equation has the solutions k = k1, k2, k3, k4. Putting u0 = 1

and R0 = 1 in equation (6.38), we get

k4Re+ k2Re− 2ω2ReWe+ 4iωkReWe− 6iωk2We

+2k2ReWe− 6k3We = 0, (6.39)

which is the same equation (132) of Decent (2009).

6.6.1 Derivation of Dispersion Relation by Matching

Note that the linear dispersion relation (6.38) can also be derived as follows. We

do matching of regions IV and V to get the value of g0 as

g0 = −(iω + kz).
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We next substitute this value of g0 into the g0-equation (6.18) and we then have

k4R2
0Re+ k2Re− 2ω2R0ReWe+ 4iωku0R0ReWe− 6iωk2R0We

+2k2u20R0ReWe− 6k3u0R0We = 0, (6.40)

which is the same equation (6.38). We also find the relationship between Γ̂j and

Ω̂j (for j = 1, 2, ...8) which is given by

Γ̂j = −2Ω̂j (iω + u0kj−4N)

R0kj−4N

(6.41)

for j = 1, 2, ..., 8 and N = 0, 1. This equation (6.41) corresponds to equation

(133) of Decent (2009) in the limit of u0 = R0 = 1.

The boundary conditions at s = 0 are R = 1 and u = 1 + δ sin (ωt). Using

these boundary conditions in expansions (6.30) and (6.31), we obtain

Ω̂1 + Ω̂2 + Ω̂3 + Ω̂4 = 0, (6.42)

Ω̂5 + Ω̂6 + Ω̂7 + Ω̂8 = 0, (6.43)

Γ̂1 + Γ̂2 + Γ̂3 + Γ̂4 = − i

2
(6.44)

and

Γ̂5 + Γ̂6 + Γ̂7 + Γ̂8 = 0. (6.45)
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6.7 Conclusions
In this chapter, we have extended the Needham-Leach method to the viscous-

gravity problem. We have noticed that we do not need to examine regions, I, II,

and III as they give the same results as in Decent (2009). We have successfully

examined this problem in the crucial region IV (the nonlinear waves section) and

obtained steady-state solutions for the velocity and the radius, with the informa-

tion that as the distance s increases (i.e., as the jet flows away from the orifice),

the jet’s velocity component (parallel to the centreline of the jet) increases while

the jet’s radius decreases, which shows perfect agreement with the experimental

observations.

In addition, we have obtained a fourth-order ODE (6.18) for g0(z), which

describes the behaviour of the nonlinear wave. We first solved that ODE for large

Reynolds number (i.e., Re → ∞) and obtained solution for g0(z). This solution

gives us the value of z1 ( where the nonlinear waves start to dominate), the value

of z2 (where we have a mixture of both linear and nonlinear waves) and the value

of z3 (where the instability is at its maximum value). From this, we postulate

that in order to obtain the uniform droplets with no or few satellite droplets, we

must break the jet before z = z1, so that the linear waves dominate in the breakup

process. Note that all of our results correspond perfectly to results in Decent

(2009) with no gravity (i.e., in the limit of u0 = R0 = 1).

We next examined the solution for small z (i.e., z → 0) and obtained the initial

conditions for g0(z) as

g0(z = 0) =M0 and g
′
0(z = 0) =M1,

where we found M0 and M1 first with asymptotic limits Re → ∞ and We →

0 and next computationally for Re = O(1) and We = O(1). So we have an
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initial value problem (i.e., equation (6.18) for g0(z) with the above known initial

conditions) and then we solved this initial value problem computationally, using

a Runge-Kutta fourth-order method, which gives us the solutions for g0(z), both

for Re = O(1) and We = O(1).

We also obtained various graphs for z1 against s, z2 against s, z3 against s and

Real(z3) against s, both for Re = O(1) and We = O(1). We also note that the

larger z1 is, the easier it will be to break the jet before z1, so that the linear waves

dominate in the breakup process and hence we can get only uniform droplets.

Therefore, our asymptotic theory alone (without any numerics or experiments)

tells us how we can obtain only the uniform droplets, which is a big achievement.

For that to happen, we discovered (from the graphs of z1 against s with various

Re and We) that we must have a large value of We and a small value of Re.

At the end, we also considered region V (the linear waves section) and we

found a linear dispersion relation linking the wavenumber k and the frequency ω,

which corresponds to the dispersion relation of Decent (2009) in the limit u0 =

R0 = 1. Moreover, we have also derived the same dispersion relation in another

way, by doing the asymptotic matching of regions IV and V. In addition, we also

found the solution in this region, which corresponds to the solution of Decent

(2009) in the limit u0 = R0 = 1, showing concrete validation of our work.
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Chapter 7

Asymptotic Solution of Rotating

Newtonian Liquid Jet

7.1 Introduction
In this chapter, we investigate the rotating Newtonian liquid jets. Our hypothesis

is that the jet breakup can be more easily controlled if it breaks up in the regime

where z < z1. In order to support our hypothesis, we shall use together the

Needham-Leach method, to obtain the g0-equation, and a numerical model, based

on the Lax-Wendroff method to obtain the shape of the mode and the breakup

point.

7.2 Problem Statement
The model equations for a rotating downward falling Newtonian jet, falling from

a large rotating cylindrical drum and ignoring the effects of gravity, are given by

Rt +
1

2
usR + uRs = 0 (7.1)
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and

ut + uus +
1

We

(
1

R(1 + ϵ2R2
s)

1
2

− ϵ2Rss

(1 + ϵ2R2
s)

3
2

)
s

− 3ϵ

Re
· 1

R2

[
∂

∂s

(
R2∂u

∂s

)]
−
[
(X + 1)Xs + ZZs

Rb2

]
= 0, (7.2)

where u (s, t) is the velocity component parallel to the centreline of the jet,R (s, t)

is the distance of the axi-symmetric free-surface away from the jet’s centreline, s

is the distance along the jet’s centreline from the orifice (i.e., s is the arc length

along the jet ) andX and Z are the jet centreline coordinates, so that the centreline

of the jet can be described by x = X(s, t) and z = Z(s, t). In these equations,

the subscripts denote differentiation with respect to that subscript and t is time.

These equations have been derived in Partridge (2006). In these equations, the

non-dimensional parameters are the Weber number which is We = ρaU2/σ > 0,

the Reynolds number which is Re = ρaU/µ = ρUs0ϵ/µ and the Rossby number

which is Rb = U/s0Ω, where the liquid’s density is ρ, the liquid’s viscosity is µ,

the surface tension of the liquid-gas interface is σ, the radius of the large cylindri-

cal drum is s0, the radius of the small orifice is a, the exit speed of the jet is U , Ω

is the rotation rate and ϵ is a small parameter defined as

ϵ = a/s0 << 1.

Note that in the previous chapter, we have R̃e = ρaU/µ = ϵρUL
µ

which is

consistent here in this chapter as Re = ρaU/µ = ρUs0ϵ/µ, where s0 = L.

We define s̃ and t̃ as

s̃ =
s

ϵ
, t̃ =

t

ϵ
.
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So equation (7.1) can be written as

1

ϵ
Rt̃ +

1

ϵ

R

2
us̃ +

1

ϵ
uRs̃ = 0,

or

Rt̃ +
R

2
us̃ + uRs̃ = 0. (7.3)

Similarly, equation (7.2) can be written as

1

ϵ
[ut̃ + uus̃] =

1

ϵ
[− 1

We

(
1

R(1 +R2
s̃)

1
2

− Rs̃s̃

(1 +R2
s̃)

3
2

)
s̃

+
3ϵ

Re ϵ
· 1

R2

[
∂

∂s̃

(
R2∂u

∂s̃

)]
+

[
(X + 1)Xs̃ + ZZs̃

Rb2

]
],

or

ut̃ + uus̃ = − 1

We

(
1

R(1 +R2
s̃)

1
2

− Rs̃s̃

(1 +R2
s̃)

3
2

)
s̃

+
3

Re
· 1

R2

[
∂

∂s̃

(
R2∂u

∂s̃

)]
+

[
(X + 1)Xs̃ + ZZs̃

Rb2

]
. (7.4)

The non-dimensional initial conditions are

R
(
ϵs̃, ϵt̃ = 0

)
= 1 and u

(
ϵs̃, ϵt̃ = 0

)
= 1.

The boundary conditions at the orifice are

R
(
ϵs̃ = 0, ϵt̃

)
= 1 and u

(
ϵs̃ = 0, ϵt̃

)
= 1 + δ sin

(
ωϵt̃
)
.

We define u0 and R0 as the steady-state solution of equations (7.3) and (7.4). We

also assume that u→ u0 and R → R0 as s̃→ ∞, which physically means that in
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the far-field, the jet is considered to be undisturbed.

7.3 Asymptotic Expansions
Note that now our original equations are in s̃ and t̃. We examine this problem

in region IV (the nonlinear waves section), where s̃ → ∞ and t̃ → ∞ so that

z = s̃/t̃ = O (1). We introduce a new length scale s̄, defined by

s̄ = ϵs̃ = O(1), as ϵ→ 0.

We introduce this notation s̄ to remain consistent with the previous chapter’s work.

We pose the following expansions

u = u0(s̄) +

[
exp (−tg0 (z, s̄))

{
h0 (z, s̄) +O

(
1√
t

)}
+ h.o.t.

]
(7.5)

and

R = R0(s̄) +

[
exp (−tg0 (z, s̄))

{
ζ0 (z, s̄) +O

(
1√
t

)}
+ h.o.t.

]
, (7.6)

as t̃ → ∞ and h.o.t. denotes higher-order terms. The steady-state equations for

u0 and R0 can be obtained from equations (7.3) and (7.4), using s̄ = ϵs̃, and are

given by

ϵ(
1

2
u′0R0 + u0R

′
0) = 0, (7.7)

ϵu0u
′
0 +

1

We

(
−ϵR′

0

R2
0(1 + ϵ2R′2

0 )
1
2

− ϵ3R′
0R

′′
0(R

−1
0 ) + ϵ3R′′′

0

(1 + ϵ2R′2
0 )

3
2

+
3ϵ5R′

0R
′′2
0

(1 + ϵ2R′2
0 )

5
2

)

167



− 3

Re
(ϵ2u′′0 + 2ϵ2u′0R

′
0R

−1
0 )− ϵ

[
(X0 + 1)X ′

0 + Z0Z
′
0

Rb2

]
= 0, (7.8)

(X ′
0)

2 + (Z ′
0)

2 = 1 (7.9)

and

(
u20 −

3ϵu′0
Re

− 1

R0We

)
(X ′′2

0 + Z ′′2
0 ) =

2u0
Rb

(X ′
0Z

′′
0 − Z ′

0X
′′
0 )

+
1

Rb2
[(X0 + 1)X ′′

0 + ZZ ′′
0 ] , (7.10)

where ′ = ∂/∂s̄. We expand u0 and R0 as

u0(s̄) = u00(s̄) + ϵu01(s̄) + ϵ2u02(s̄) +O(ϵ3) (7.11)

and

R0(s̄) = R00(s̄) + ϵR01(s̄) + ϵ2R02(s̄) +O(ϵ3). (7.12)

7.4 Leading-Order Solution
Hence at leading-order in ϵ, we have

1

2
u′00R00 + u00R

′
00 = 0, (7.13)

u00u
′
00 −

1

We

(
R′

00

R2
00

)
−
[
(X0 + 1)X ′

0 + Z0Z
′
0

Rb2

]
= 0, (7.14)
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(X ′
0)

2 + (Z ′
0)

2 = 1 (7.15)

and

(
u200 −

1

R00We

)
(X ′′2

0 + Z ′′2
0 ) =

2u00
Rb

(X ′
0Z

′′
0 − Z ′

0X
′′
0 )

+
1

Rb2
[(X0 + 1)X ′′

0 + ZZ ′′
0 ] . (7.16)

So we have three equations in three unknowns, namely u00, X0 and Z0, as

R00 = 1/
√
u00,

from equation(7.13). The boundary conditions at s = 0 are given by

u00(0) = X ′
0(0) = 1 and X0(0) = Z0(0) = Z ′

0(0) = 0.

The steady-state solutions of the above equations are obtained using a Runga-

Kutta 4th-order method and are shown in Figures 7.1-7.5 .

Figure 7.1 shows that for very high rotation rate (i.e., for very small value of

Rb), the jet curves very largely after leaving the cylindrical orifice, while Figure

7.2 shows that for smaller rotation rates (i.e., for higher values of Rb), the jet

curves less after leaving the cylindrical orifice. Figure 7.3 shows that for higher

values of surface tension (i.e., for smaller values of We), the jet curves more after

leaving the cylindrical orifice. From Figures 7.4 and 7.5, it can be respectively

seen that for smaller Rossby numbers, i.e., for larger rotation rates, the velocity

of the jet becomes larger along the jet and the radius of the jet becomes smaller

along the jet.
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Figure 7.1: A diagram showing the trajectory of an inviscid rotating liquid jet
emerging from an cylindrical orifice which is placed at the origin (0,0) for very
small Rb. For this very high rotation rate (i.e., for very small value of Rb), the jet
curves very largely after leaving the cylindrical orifice.
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Figure 7.2: A diagram showing the trajectory of an inviscid rotating liquid jet
emerging from an cylindrical orifice which is placed at the origin (0,0) for different
values of Rb. Note that for higher rotation rates (i.e., for smaller values of Rb),
the jet curves more after leaving the cylindrical orifice. Here We = 10.
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Figure 7.3: A diagram showing the trajectory of an inviscid rotating liquid jet
emerging from an cylindrical orifice which is placed at the origin (0,0) for different
values of We. Note that for higher values of surface tension (i.e., for smaller
values of We), the jet curves more after leaving the cylindrical orifice. Here Rb =
3.5.
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Figure 7.4: A graph showing the leading-order velocity of an inviscid liquid jet for
different Rossby numbers. It can be clearly seen that for smaller Rossby numbers,
i.e., for larger rotation rates, the velocity of the jet becomes larger along the jet.
Here We = 10.
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Figure 7.5: A graph showing the leading-order radius of an inviscid liquid jet for
different Rossby numbers. It can be clearly seen that for smaller Rossby numbers,
i.e., for larger rotation rates, the radius of the jet becomes smaller along the jet.
Here We = 10.

7.5 Determination of the nonlinear travelling wave
Next, we find the g0-equation as follows. Substituting equations (7.5) and (7.6)

into equation (7.3), and using ∂/∂s̃ = ϵ ∂/∂s̄, we obtain, at leading-order in ϵ, an

equation of the form

h0 = 2ζ0

(
−g0 + zg0,z − u00g0,z

R00g0,z

)
. (7.17)

Putting u00 = R00 = 1 in equation (7.17), we get

h0 = ζ0

(
−2g0 + 2zg0,z − 2g0,z

g0,z

)
, (7.18)

which is the same equation (95) of Decent (2009). We expected to get this equa-

tion as it corresponds to the no gravity problem in which u00 = R00 = 1.

Substituting equations (7.5), (7.6) and (7.17) into equation (7.4), and using
∂
∂s̃

= ϵ ∂
∂s̄

, we obtain a nonlinear ordinary differential equation for g0 in z, at
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leading-order in ϵ, of the form

ReR00 (g0,z)
4 +

Re

R00

(g0,z)
2 − 4zReWeg0g0,z + 2z2ReWe (g0,z)

2 − 4zReWeu00 (g0,z)
2

+4ReWeu00g0g0,z + 2ReWeu200 (g0,z)
2 + 2ReWe (g0)

2 + 6Weg0 (g0,z)
2 − 6Wez (g0,z)

3

+6Weu00 (g0,z)
3 = 0. (7.19)

Putting u00 = R00 = 1 in equation (7.19), we get

Re (g0,z)
4 +Re (g0,z)

2 − 4zReWeg0g0,z + 2z2ReWe (g0,z)
2 − 4zReWe (g0,z)

2 + 4ReWeg0g0,z

+2ReWe (g0,z)
2 + 2ReWe (g0)

2 + 6Weg0 (g0,z)
2 − 6Wez (g0,z)

3 + 6We (g0,z)
3 = 0,

which is the same equation (92) of Decent (2009).

This result shows that the g0-equation implicitly depends on the rotation via

u0 and R0. This is due to the fact that the rotation appears in the steady-state

equations, in the form of Rb. So changing Rb in those equations imply a change

in u0 and R0; the steady-state solutions, which in turn will have a change in the

g0-equation.

However, Rb does not appear explicitly in the g0-equation. In order to bring

Rb explicitly into our g0-equation, we must have

[
(X + 1)Xs̄ + ZZs̄

Rb2

]
= f(u,R).
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Solving equation (7.19), for large Reynolds number (i.e., Re→ ∞), gives

g0 =

√
Q0

4
√
WeR

3/2
00

(7.20)

where

Q0 = −We2u400R
2
00 − 10z2WeR00 + 20zWeu00R00 − 10Weu200R00 − 6z2We2u200R

2
00

−z4We2R2
00 + 2 + 4z3We2u00R

2
00 + 4zWe2u300R

2
00

−
√
R00We (z − u00)

2 (Weu200R00 − 2zWeu00R00 + z2WeR00 − 4)
3
. (7.21)

Putting u00 = R00 = 1 in equations (7.20) and (7.21), we get

g0 =

√
Q0

4
√
We

(7.22)

where

Q0 = −We2 − 10z2We+ 20zWe− 10We− 6z2We2 − z4We2 + 2 + 4z3We2

+4zWe2 −
√
We (z − 1)2 (We− 2zWe+ z2We− 4)3, (7.23)

which are the same equations (112) and (113) of Decent (2009).

Note that controllable growing linear waves come out of the orifice, they grow

gradually and they become nonlinear. From orifice to a point z1, linear waves

are in dominance and their dominance finishes at z1. After z1, there is a mixture

of both linear and nonlinear waves and this mixture finishes at a point z2. After
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z2, there are only nonlinear waves. Also, the instability of the waves is at its

maximum value at z3. We assume that the liquid jet do not pass beyond z3 because

the instability is maximum at z3.

From equations (7.20) and (7.21), we find that

z1 → max
(
u00 − 2/

√
R00We, 0

)
and z2 → u00 + 2/

√
R00We as Re→ ∞.

These values of z1 and z2 corresponds to the same values of of z1 and z2 of Decent

(2009) in the limit u00 = 1 and R00 = 1.

7.6 Types of Modes
We have four types of modes, M1, M2, M2/3 and M3. For M1, we have uniform

drops along with very few satellite droplets (usually, one satellite droplet in twenty

main uniform droplets, as seen in experiments). For M2, we have more number

of satellite droplets than M1. For M3, we have long ligaments occurring between

the main droplets. The mode M2/3 is the mode which is between M2 and M3 and

we can not describe this mode as M2 or M3. So we describe mode M2/3 as the

transition period from mode 2 to mode 3. All these various modes are shown in

following Figures 7.6 and 7.7.

7.7 Computational Solution
We now find values of z1 and z2 numerically, without any asymptotic limit, and

then we use these values to plot some figures which show the point of breakup

and the mode of breakup M1, M2, M2/3 or M3 along with values of z1 and z2.

The idea is that we run the numerical model, with five parametersWe,Rb,Re, δ

and ω, to find the shape of the mode, the breakup length sb and the breakup time

tb, and so we find the breakup point zb = sb/tb. We use sb in the steady-state

solution of the steady-state equations to find u0(sb) andR0(sb) (with same param-
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Figure 7.6: Mode classification of M1 and M2. Reproduced from Gurney (2010).
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Figure 7.7: Mode classification of M2/3 and M3. Reproduced from Gurney
(2010).
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Figure 7.8: Our hypothesis is that we get this kind of mode behaviour.

eters We and Rb used in the numerical code) and then we use u0(sb) and R0(sb)

in the numerics to generate the solution of the g0-equation (with same parameters

We and Re used in the code) to find a solution curve which will show z1 and z2.

Next, we see that at which place of the curve zb (calculated earlier from the code)

lies and we label that place as M1, M2, M2/3 or M3, depending on the shape

of the mode obtained from the numerical model. We mention here that Părău et

al. (2007) developed these numerical codes to investigate the liquid jet breakup,

which we use in this chapter. The basics behind the numerical model is described

in Appendix B.

This chapter mainly focuses on z-values, and in particular, it investigates

whether the M1 breakup always occurs before z1 and whether the M2 (or M2/3)

breakup always occurs after z1 or not. That is, we want to find the regions where

M1, M2 and M2/3 occur. Our hypothesis is that we get the mode behaviour shown

in Figure 7.8.
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7.7.1 Impact of Changing the Amplitude on Modes

We start with the set of data

We = 22.26, Rb = 0.512, Re = 375, ω = 1.3

and we vary the amplitude δ as δ = 0.08, δ = 0.01 and δ = 0.005. This set of data

is chosen from experiments (see Gurney (2010) and Hawkins (2010) for details).

In experiments, this set of data corresponds to a mixture of 40% glycerol and 60%

water, used by Hawkins (2010) and there does not exist mode 3 bahaviour, for

this set of data in experiments. In addition, in experiments, this set of data with

δ = 0.08, δ = 0.01 and δ = 0.005 gives M1, M2 and M2/3 behaviour respectively

(see Gurney (2010)).

We can easily see from Figures 7.9 – 7.14 that the larger the δ is, the smaller

the breakup point zb is. We observe that

δ = 0.08(M1) > 0.01(M2) > 0.005(M2/3),

which gives

zb = 1.1(M1) < 2.3(M2) < 3.2(M2/3).

Hence for large δ, we have a small breakup point while for small δ, we have a

large breakup point. In addition, this set of data shows us that as we decrease

δ, z1 and the breakup point are increased. Further more, decreasing δ implies a

change in the modes from M1 to M2 and then to M2/3. Note that the breakup

never occurs after z3, where the instability is maximum (i.e., where the growth

rate of the unstable nonlinear wave is maximum). Also note that our numerical

model is in agreement with the experimental data for M1 (where δ = 0.08), M2

(where δ = 0.01) and M2/3 (where δ = 0.005).
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(a) Temporal evolution of the jet.
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(b) Radius R00 against arc length s.

Figure 7.9: Mode 1 breakup in the linear wave regime, corresponding to M1 in
following figure. Here δ = 0.08.
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Figure 7.10: M1 with δ = 0.08.

7.7.2 Impact of Changing the Frequency on Modes

We take the set of data

We = 22.26, Rb = 0.512, Re = 375, δ = 0.1

and we vary the frequency ω as ω = 1.3, ω = 1 and ω = 0.698. This set of data

is chosen from experiments (see Gurney (2010) and Hawkins (2010) for details).

This set of data corresponds to a mixture of 40% glycerol and 60% water, used

by Hawkins (2010) in experiments. Note that for this set of data, in experiments,

there does not exist mode 3 bahaviour. In addition, in experiments, this set of

data with ω = 1.3, ω = 1 and ω = 0.698 gives M1, M2 and M2/3 behaviour

respectively (see Gurney (2010)).
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(a) Temporal evolution of the jet.

(b) Radius R00 against arc length s.

Figure 7.11: Mode 2 breakup with linear and nonlinear mode competition, corre-
sponding to M2 in following figure. Here δ = 0.01.
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Figure 7.12: M2 with δ = 0.01.
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(a) Temporal evolution of the jet.

(b) Radius R00 against arc length s.

Figure 7.13: Mode 2/3 breakup which corresponds to M2/3 in following figure.
Here δ = 0.005.
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Figure 7.14: M2/3 with δ = 0.005.
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Figure 7.15: Mode 1 breakup in the linear wave regime. Top is the jet temporal evolu-
tion, middle is R00 against s while bottom is Real(g0) against z. Here ω = 1.3.
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Figure 7.16: Mode 2 breakup with linear and nonlinear mode competition. Top is the
jet temporal evolution, middle is R00 against s while bottom is Real(g0) against z. Here
ω = 1.
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Figures 7.15 – 7.17 show that as we decrease the value of ω (from 1.3 to 1 and

then to 0.698), we get a change in the modes from M1 to M2 and then to M2/3.

Hence for large ω, we get mode 1 behaviour while for small ω, we get mode

2/3 behaviour. Note that as we decrease ω, z1 also decreases while the breakup

point increases. The above Figures 7.9 – 7.17 suggest that in order to get mode 1

behaviour, we must have large δ (as δ = 0.1 is large) and large ω (as ω = 1.3 is

large), for the breakup to occur before z1. Note that the breakup never occurs after

z3 where the instability is maximum (i.e., where the growth rate of the unstable

nonlinear wave is maximum). Also note that our numerical model is in agreement

with the experimental data for M1 (where ω = 1.3), M2 (where ω = 1) and M2/3

(where ω = 0.698).

7.7.3 Varying the Reynolds number

We take the set of data

We = 22.26, Rb = 0.512, δ = 0.1, ω = 1.3

and we very Re as Re = 375, Re = 600 and Re = 1250. We know from Gurney

(2010) that for small Re (i.e., for highly viscous fluids), we do not get M1. So we

consider only large Re, as we are mainly interested in finding the M1 behaviour.

From Figures 7.18 – 7.20, we find that that as we increase Re, the breakup point

and z1 are slightly decreased, with the breakup point having less decrease.
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Figure 7.17: Mode 2/3 breakup in the nonlinear wave regime. Top is the jet temporal
evolution, middle is R00 against s while bottom is Real(g0) against z. Here ω = 0.698.
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Figure 7.18: Mode 1 breakup in the linear wave regime. Top is the jet temporal evolu-
tion, middle is R00 against s while bottom is Real(g0) against z. Here Re = 375.
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Figure 7.19: Mode 1 breakup in the linear wave regime. Top is the jet temporal evolu-
tion, middle is R00 against s while bottom is Real(g0) against z. Here Re = 600.
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7.7.4 Varying the Weber number

Now we take the data Rb = 0.512, Re = 375, δ = 0.1, ω = 1.3 and we vary the

Weber number We as We = 20, We = 25, We = 35, We = 50 and We = 100.

We take a large number of values of We because we get some interesting results

for the larger values of the Weber number.

It can be observed from Figures 7.21 – 7.25 that as we increaseWe, the values

of both the breakup point and z1 are increased, with z1 having more increase in

its value. From these figures, we find that for higher values of We, we get larger

values of z1 and we do not get M1. We also note that for large values of We, M2

can occur before z1.
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Figure 7.20: Mode 1 breakup in the linear wave regime. Top is the jet temporal evolu-
tion, middle is R00 against s while bottom is Real(g0) against z. Here Re = 1250.
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Figure 7.21: Mode 1 breakup in the linear wave regime. Top is the jet temporal evolu-
tion, middle is R00 against s while bottom is Real(g0) against z. Here We = 20.
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Figure 7.22: Mode 1 breakup in the linear wave regime. Top is the jet temporal evolu-
tion, middle is R00 against s while bottom is Real(g0) against z. Here We = 25.
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Figure 7.23: Mode 1 breakup in the linear wave regime. Top is the jet temporal evolu-
tion, middle is R00 against s while bottom is Real(g0) against z. Here We = 35.
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Figure 7.24: Mode 2 breakup with linear and nonlinear mode competition. Top is the
jet temporal evolution, middle is R00 against s while bottom is Real(g0) against z. Here
We = 50. 197



7.7.5 Varying the Rossby number

Our last parameter to be changed is the Rossby number Rb. For that, we take the

set of data

We = 22.26, Re = 375, δ = 0.1, ω = 1.3

and we vary Rb as Rb = 0.412, Rb = 0.512, Rb = 0.612, Rb = 0.7, Rb = 1 and

Rb = 5. We take a large number of values of Rb because we get some unexpected

results for the larger values of the Rossby number.

It can be observed from Figures 7.26 – 7.31 that as we increase Rb, the values

of both the breakup point and z1 decrease, with z1 having more large decrease in

its value. We also note unexpectedly that M1 can occur after z1 for higher values

of the Rossby number.
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Figure 7.25: Mode 2 breakup with linear and nonlinear mode competition. Top is the
jet temporal evolution, middle is R00 against s while bottom is Real(g0) against z. Here
We = 100. 199
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Figure 7.26: Mode 1 breakup in the linear wave regime. Top is the jet temporal evolu-
tion, middle is R00 against s while bottom is Real(g0) against z. Here Rb = 0.412.
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Figure 7.27: Mode 1 breakup in the linear wave regime. Top is the jet temporal evolu-
tion, middle is R00 against s while bottom is Real(g0) against z. Here Rb = 0.512.
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Figure 7.28: Mode 1 breakup in the linear wave regime. Top is the jet temporal evolu-
tion, middle is R00 against s while bottom is Real(g0) against z. Here Rb = 0.612.
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Figure 7.29: Mode 1 breakup in the linear wave regime. Top is the jet temporal evolu-
tion, middle is R00 against s while bottom is Real(g0) against z. Here Rb = 0.7.
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Figure 7.30: Mode 1 breakup in the linear wave regime. Top is the jet temporal evolu-
tion, middle is R00 against s while bottom is Real(g0) against z. Here Rb = 1.
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7.8 Conclusions
In this chapter, we have extended the Needham-Leach method to the rotational-

viscous problem. We have noticed that we do not need to examine regions, I, II,

and III as they give the same results as in Decent (2009). We have successfully

examined this problem in the crucial region IV (the nonlinear waves section) and

obtained steady-state solutions for the velocity and the radius. In addition, we

have obtained a fourth-order ODE for g0(z), which describes the behaviour of the

unstable and uncontrollable nonlinear wave. We also solved that ODE for large

Reynolds number (i.e., Re→ ∞) and obtained solution for g0(z).

In addition, we compared our theory (or hypothesis) with the numerical model.

We get some encouraging results by changing the amplitude, the frequency and

the Reynolds number in the numerical model which are in agreement with our

theory. Our numerical model, however, showed that, for large Rb, M1 can occur

after z1 and, for large We, M2 can occur before z1.

The numerical model showed a number of results which our hypothesis says

that the jet breakup can be more easily controlled if it breaks up in the regime

where z < z1. This typically occurs for small s, corresponding to short breakup

lengths. We, therefore, conclude that our hypothesis is correct, provided we have

some conditions on the parameters, which are that we must have large values of

the amplitude, the frequency and the Reynolds number, and small values of the

Weber number (We < 50) and the Rossby number (Rb < 0.7).
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Figure 7.31: Mode 1 breakup in the linear wave regime. Top is the jet temporal evolu-
tion, middle is R00 against s while bottom is Real(g0) against z. Here Rb = 5.
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Chapter 8

Asymptotic Solution of Rotating

Newtonian Liquid Jet Under the

Influence of Gravity

8.1 Introduction
In the previous chapter, we have solved the rotation and viscous problem with-

out gravity and then we compared our hypothesis with the numerical results. In

this chapter, we will do a generalization of the problem described in the previous

chapter, by including the effects of gravity.

8.2 Problem Statement
The model equations for a rotating downward falling Newtonian jet, falling from

a large rotating cylindrical drum, under the influence of gravity, are given by

Rt +
1

2
usR + uRs = 0 (8.1)
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and

ut + uus +
1

We

(
1

R(1 + ϵ2R2
s)

1
2

− ϵ2Rss

(1 + ϵ2R2
s)

3
2

)
s

− 3ϵ

Re
· 1

R2

[
∂

∂s

(
R2∂u

∂s

)]
+
Ys
F 2

−
[
(X + 1)Xs + ZZs

Rb2

]
= 0, (8.2)

where u (s, t) is the velocity component parallel to the centreline of the jet,R (s, t)

is the distance of the axi-symmetric free-surface away from the jet’s centreline, s is

the distance along the jet’s centreline from the orifice (i.e., s is the arc length along

the jet ) and X ,Z and Y are the jet centreline coordinates, so that the centreline

of the jet can be described by x = X(s, t), z = Z(s, t) and y = Y (s, t). Note

that we have chosen the negative y-axis as the direction of the acceleration due

to gravity. In these equations, the subscripts denote differentiation with respect to

that subscript and t is time. These equations have been derived in Partridge (2006).

In these equations, the non-dimensional parameters are the Weber number which

is We = ρaU2/σ > 0, the Reynolds number which is Re = ρaU/µ = ρUs0ϵ/µ,

the Froude number which is F = U/
√
s0g and the Rossby number which is Rb =

U/s0Ω, where the liquid’s density is ρ, the liquid’s viscosity is µ, the surface

tension of the liquid-gas interface is σ, the radius of the large cylindrical drum is

s0, the radius of the small orifice is a, the exit speed of the jet is U and g is the

acceleration due to gravity. Also, Ω is the rotation rate and ϵ is a small parameter

defined as

ϵ = a/s0 << 1.

We define s̃ and t̃ as

s̃ =
s

ϵ
, t̃ =

t

ϵ
.

208



So equation (8.1) can be written as

1

ϵ
Rt̃ +

1

ϵ

R

2
us̃ +

1

ϵ
uRs̃ = 0,

or

Rt̃ +
R

2
us̃ + uRs̃ = 0. (8.3)

Similarly, equation (8.2) can be written as

1

ϵ
[ut̃ + uus̃] =

1

ϵ
[− 1

We

(
1

R(1 +R2
s̃)

1
2

− Rs̃s̃

(1 +R2
s̃)

3
2

)
s̃

+
3ϵ

Re ϵ
· 1

R2

[
∂

∂s̃

(
R2∂u

∂s̃

)]
− Ys̃
F 2

+

[
(X + 1)Xs̃ + ZZs̃

Rb2

]
],

or

ut̃ + uus̃ = − 1

We

(
1

R(1 +R2
s̃)

1
2

− Rs̃s̃

(1 +R2
s̃)

3
2

)
s̃

+
3

Re
· 1

R2

[
∂

∂s̃

(
R2∂u

∂s̃

)]
− Ys̃
F 2

+

[
(X + 1)Xs̃ + ZZs̃

Rb2

]
. (8.4)

The non-dimensional initial conditions are

R
(
ϵs̃, ϵt̃ = 0

)
= 1 and u

(
ϵs̃, ϵt̃ = 0

)
= 1.

The boundary conditions at the orifice are

R
(
ϵs̃ = 0, ϵt̃

)
= 1 and u

(
ϵs̃ = 0, ϵt̃

)
= 1 + δ sin

(
ωϵt̃
)
.

We define u0 and R0 as the steady-state solution of equations (8.3) and (8.4). We

also assume that u→ u0 and R → R0 as s̃→ ∞, which physically means that in
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the far-field, the jet is considered to be undisturbed.

8.3 Asymptotic Expansions
Note that now our original equations are in s̃ and t̃. We examine this problem

in region IV (the nonlinear waves section), where s̃ → ∞ and t̃ → ∞ so that

z = s̃/t̃ = O (1). We introduce a new length scale s̄, defined by

s̄ = ϵs̃ = O(1), as ϵ→ 0.

We introduce this notation s̄ to remain consistent with the previous chapter’s work.

We pose the following expansions

u = u0(s̄) +

[
exp (−tg0 (z, s̄))

{
h0 (z, s̄) +O

(
1√
t

)}
+ h.o.t.

]
(8.5)

and

R = R0(s̄) +

[
exp (−tg0 (z, s̄))

{
ζ0 (z, s̄) +O

(
1√
t

)}
+ h.o.t.

]
, (8.6)

as t̃ → ∞ and h.o.t. denotes higher-order terms. The steady-state equations for

u0 and R0 can be obtained from equations (8.3) and (8.4), using s̄ = ϵs̃, and are

given by

ϵ(
1

2
u′0R0 + u0R

′
0) = 0, (8.7)

ϵu0u
′
0 +

1

We

(
−ϵR′

0

R2
0(1 + ϵ2R′2

0 )
1
2

− ϵ3R′
0R

′′
0(R

−1
0 ) + ϵ3R′′′

0

(1 + ϵ2R′2
0 )

3
2

+
3ϵ5R′

0R
′′2
0

(1 + ϵ2R′2
0 )

5
2

)
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− 3

Re
(ϵ2u′′0 + 2ϵ2u′0R

′
0R

−1
0 ) + ϵ

Y ′
0

F 2
− ϵ

[
(X0 + 1)X ′

0 + Z0Z
′
0

Rb2

]
= 0, (8.8)

(X ′
0)

2 + (Z ′
0)

2 + (Y ′
0)

2 = 1, (8.9)

X ′′
0Z

′
0 −X ′

0Z
′′
0

F 2
− 2u0Y

′′
0

Rb
+

(X0 + 1)(Y ′′
0 Z

′
0 − Y ′

0Z
′′
0 )

Rb2

+
Z0(X

′′
0Y

′
0 −X ′

0Y
′′
0 )

Rb2
= 0 (8.10)

and

(
u20 −

3ϵu′0
Re

− 1

R0We

)
(X ′′2

0 + Y ′′2
0 + Z ′′2

0 ) = −Y
′′
0

F 2
+

2u0
Rb

(X ′
0Z

′′
0 − Z ′

0X
′′
0 )

+
1

Rb2
[(X0 + 1)X ′′

0 + ZZ ′′
0 ] , (8.11)

where ′ = ∂/∂s̄.

8.4 Leading-Order Solution
We expand u0 and R0 as

u0(s̄) = u00(s̄) + ϵu01(s̄) + ϵ2u02(s̄) +O(ϵ3) (8.12)

and

R0(s̄) = R00(s̄) + ϵR01(s̄) + ϵ2R02(s̄) +O(ϵ3). (8.13)
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Hence at leading-order in ϵ, we have

1

2
u′00R00 + u00R

′
00 = 0, (8.14)

u00u
′
00 −

1

We

(
R′

00

R2
00

)
+
Y ′
0

F 2
−
[
(X0 + 1)X ′

0 + Z0Z
′
0

Rb2

]
= 0, (8.15)

(X ′
0)

2 + (Z ′
0)

2 + (Y ′
0)

2 = 1, (8.16)

X ′′
0Z

′
0 −X ′

0Z
′′
0

F 2
− 2u00Y

′′
0

Rb
+

(X0 + 1)(Y ′′
0 Z

′
0 − Y ′

0Z
′′
0 )

Rb2

+
Z0(X

′′
0Y

′
0 −X ′

0Y
′′
0 )

Rb2
= 0 (8.17)

and

(
u200 −

1

R0We

)
(X ′′2

0 + Y ′′2
0 + Z ′′2

0 ) = −Y
′′
0

F 2
+

2u00
Rb

(X ′
0Z

′′
0 − Z ′

0X
′′
0 )

+
1

Rb2
[(X0 + 1)X ′′

0 + ZZ ′′
0 ] . (8.18)

So we have four equations in four unknowns, namely u00, X0, Y0 and Z0, as

R00 = 1/
√
u00,
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from equation(8.14). The boundary conditions at s = 0 are given by

u00(0) = X ′
0(0) = 1 and X0(0) = Y0(0) = Z0(0) = Y ′

0(0) = Z ′
0(0) = 0.

The steady-state solution of the above equations is obtained using a Runga-Kutta

4th-order method and is shown in Figures 8.1-8.4.

Since the surface tension causes the jet to break quickly, so reducing surface

tension implies long jets. It can be seen from Figure 8.1 that for large We (i.e.,

for small surface tension), we get a long jet. Figure 8.2 shows that as we decrease

We (i.e., increase the surface tension), the jet curves more. Figure 8.3 shows that

as we decrease F (i.e., increase the gravity), the jet falls more and rotates less.

Figure 8.4 shows that as we increase Rb (i.e., decrease the rotation), the jet rotates

less and falls more.

Figure 8.1: A graph showing a long trajectory for We=70, F=10 and Rb=5.
Clearly, for large We (i.e., for small surface tension), we get a long jet.
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Figure 8.2: A graph showing different trajectories for different Weber numbers.
Clearly, as we decreaseWe (i.e., increase the surface tension), the jet curves more.
The other parameters are given by Rb = 5 and F = 15.
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Figure 8.3: A graph showing different trajectories for different Froude numbers.
Clearly, as we decrease F (i.e., increase the gravity), the jet falls more and rotates
less. The other parameters are given by We = 70 and Rb = 5.
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Figure 8.4: A graph showing different trajectories for different Rossby numbers.
Clearly, as we increase Rb (i.e., decrease the rotation), the jet rotates less and falls
more. The other parameters are given by We = 5 and F = 15.

8.5 Determination of the nonlinear travelling wave
Next, we find the g0-equation as follows. Substituting equations (8.5) and (8.6)

into equation (8.3), and using ∂/∂s̃ = ϵ ∂/∂s̄, we obtain, at leading-order in ϵ, an

equation of the form

h0 = 2ζ0

(
−g0 + zg0,z − u00g0,z

R00g0,z

)
. (8.19)

Putting u00 = R00 = 1 in equation (8.19), we get

h0 = ζ0

(
−2g0 + 2zg0,z − 2g0,z

g0,z

)
, (8.20)

which is the same equation (95) of Decent (2009). We expected to get this equa-

tion as it corresponds to the no gravity problem in which u00 = R00 = 1.

Substituting equations (8.5), (8.6) and (8.19) into equation (8.4), and using
∂
∂s̃

= ϵ ∂
∂s̄

, we obtain a nonlinear ordinary differential equation for g0 in z, at
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leading-order in ϵ, of the form

ReR00 (g0,z)
4 +

Re

R00

(g0,z)
2 − 4zReWeg0g0,z + 2z2ReWe (g0,z)

2 − 4zReWeu00 (g0,z)
2

+4ReWeu00g0g0,z + 2ReWeu200 (g0,z)
2 + 2ReWe (g0)

2 + 6Weg0 (g0,z)
2 − 6Wez (g0,z)

3

+6Weu00 (g0,z)
3 = 0. (8.21)

Putting u00 = R00 = 1 in equation (8.21), we get

Re (g0,z)
4 +Re (g0,z)

2 − 4zReWeg0g0,z + 2z2ReWe (g0,z)
2 − 4zReWe (g0,z)

2 + 4ReWeg0g0,z

+2ReWe (g0,z)
2 + 2ReWe (g0)

2 + 6Weg0 (g0,z)
2 − 6Wez (g0,z)

3 + 6We (g0,z)
3 = 0,

which is the same equation (92) of Decent (2009).

This result shows that the g0-equation implicitly depends on the gravity and

the rotation via u0 and R0. This is due to the fact that the gravity and the rotation

appear in the steady-state equations, in the form of F and Rb respectively. So

changing F and Rb, in those equations, imply a change in u0 and R0; the steady-

state solutions, which in turn will have a change in the g0-equation. In other words,

the gravity and the rotation make a difference on the g0-equation via u0 and R0.

However, F and Rb do not appear explicitly in the g0-equation. In order to

bring F and Rb explicitly into our g0-equation, we must have

− Ys̄
F 2

+

[
(X + 1)Xs̄ + ZZs̄

Rb2

]
= f(u,R).
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Solving equation (8.21), for large Reynolds number (i.e., Re→ ∞), gives

g0 =

√
Q0

4
√
WeR

3/2
00

(8.22)

where

Q0 = −We2u400R
2
00 − 10z2WeR00 + 20zWeu00R00 − 10Weu200R00 − 6z2We2u200R

2
00

−z4We2R2
00 + 2 + 4z3We2u00R

2
00 + 4zWe2u300R

2
00

−
√
R00We (z − u00)

2 (Weu200R00 − 2zWeu00R00 + z2WeR00 − 4)
3
. (8.23)

Putting u00 = R00 = 1 in equations (8.22) and (8.23), we get

g0 =

√
Q0

4
√
We

(8.24)

where

Q0 = −We2 − 10z2We+ 20zWe− 10We− 6z2We2 − z4We2 + 2 + 4z3We2

+4zWe2 −
√
We (z − 1)2 (We− 2zWe+ z2We− 4)3, (8.25)

which are the same equations (112) and (113) of Decent (2009).

From equations (8.22) and (8.23), we find that

z1 → max
(
u00 − 2/

√
R00We, 0

)
and z2 → u00 + 2/

√
R00We as Re→ ∞.
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Figure 8.5: A plot illustrating the solution of g0-equation (8.21). It shows three
z-values (z1, z2 and z3) against a temporal growth rate curve. Note that u0 and
R0, in the g0-equation (8.21), are obtained from the steady-state solution. The
parameters are We = 22.26, Re = 375, Rb = 7 and F = 15.

These values of z1 and z2 corresponds to the same values of of z1 and z2 of Decent

(2009) in the limit u00 = 1 and R00 = 1. We next find the values of z1 and z2

numerically, without any asymptotic limit. These values are shown in Figure 8.5.

Note that we do not need to examine regions, I, II, III and V as they give the same

results as in Decent (2009).

8.6 Conclusions
In this chapter, we have extended the Needham-Leach method to the rotational-

viscous-gravity problem. We have noticed that we do not need to examine regions,

I, II, and III as they give the same results as in Decent (2009). We have success-

fully examined this problem in the crucial region IV (the nonlinear waves section)

and obtained steady-state solutions for the velocity and the radius. In addition,

we have obtained a fourth-order ODE (8.21) for g0(z), which describes the be-

haviour of the unstable and uncontrollable nonlinear wave. We also solved that

ODE for large Reynolds number (i.e., Re → ∞) and obtained solution for g0(z).
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This solution gives us the value of z1 (where the nonlinear waves start to domi-

nate) and the value of z2 (where we have a mixture of both linear and nonlinear

waves). From this, we postulate that in order to obtain the mode 1 behaviour

(i.e., uniform droplets with no satellite droplets), we must break the jet before

z = z1, so that the linear waves dominate in the breakup process. Note that all

of our results correspond perfectly to results in Decent (2009) with no gravity and

rotation. At the end, we also solved g0-equation (8.21) computationally, using

a Runge-Kutta fourth-order method, which gives us the numerical solution for

g0(z), for We = O(1), Re = O(1), Rb = O(1) and F = O(1).
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Chapter 9

Conclusion

The main objective of this piece of research was to investigate a number of meth-

ods which help us to know about the behaviour of liquid jets and especially to

control the breakup of liquid jets and, in particular, lead to a reduction in satellite

droplets. The first two chapters of this thesis describe introduction and literature

review on liquid jets along with the review of some important concepts used in

the theory of liquid jets.

In the third chapter, we have investigated the instability of an inviscid com-

pound liquid jet falling under the influence of gravity. We have used a slender jet

approximation to determine a one dimensional model, which describes the veloc-

ity and radial displacements of the inner and outer free surfaces. We have solved

the steady-state equations and investigated its dependence on changes in all the

parameters of the model. We have then considered the growth of unstable waves

on the two interfaces by considering a linear temporal instability analysis. The

obtained dispersion relation, which describes the relationship between the growth

rate and wavenumber of disturbances, has been solved numerically in order to

determine the most unstable wavenumber (which we assume to be the dominant

wavenumber which leads to breakup) and the associated maximum growth rate.
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We have investigated how this most unstable wavenumber varies as we change

key critical parameters, like the ratio of surface tension σ and the aspect ratio of

inner jet radii χ. Diagrams showing how such changes in the parameters affect

the most unstable mode, for different axial distances x along the jet, have been

investigated to reveal that the most unstable wavenumber and maximum growth

rates are larger as the wave travels down the jet. Furthermore, we found that the

most unstable wavenumber decreases with an increase in χ, for different axial

distances x, whilst the maximum growth rate decreases with an increase in ρ, and

with a decrease in σ, for different axial distances x. Moreover, we found that a

decrease in the interfacial surface tension ratio whereas an increase in the density

ratio and the Weber number causes the frequency and the transformed wavespeed

of the disturbance to decrease, at x = 0. In addition, our results correspond to

those given in Sanz & Meseguer (1985), for the case without gravity.

We also found that for certain parameter values, there exists a non-uniqueness

in the value of the maximum wavenumber kmax. This behaviour is a result of

the two competing wavemodes along the jet and can result in large differences

in kmax, as certain parameters are changed. We showed that there exists a value

of σ, which we refer to as threshold surface tension ratio σ∗, at which we

have two competing wavemodes having different wavenumbers. We also showed

that σ∗ is the same, for all values of x, while kmax is larger as x increases. We

also found that, for σ < σ∗, an increase in σ causes kmax to increase, while for

σ > σ∗, an increase in σ causes kmax to decrease slightly, for x = 0, x = 2

and x = 4. Furthermore, we found that σ∗ increases, as the density ratio ρ is

increased. We also found that breakup lengths and droplet sizes are likely to be

smaller for a compound liquid jet falling under gravity than those predicted using

the analysis of Sanz & Meseguer (1985). We note that due to the presence of

a thinning jet in the case with gravity this would be anticipated but our results
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here show that the thinning nature of the jet affects the maximal growth rates

and most unstable wavenumbers. We have also used the results from our linear

theory to estimate the location of breakup and have shown that the breakup of

the jet can occur by the inner jet rupturing first or by the outer interface touching

the inner interface, and that the value of χ, at which these two processes occur

simultaneously, become smaller as We is decreased. At the end, we have also

compared our results favourably with numerical simulations found in Uddin &

Decent (2010).

In the fourth chapter, we have investigated the breakup, droplet formation and

temporal instability analysis of shear thinning compound jets falling under gravity.

We have considered the growth of unstable waves on the two interfaces by con-

sidering a linear temporal instability analysis. The obtained dispersion relation,

which describes the relationship between the growth rate and wavenumber of dis-

turbances, has been solved numerically in order to determine the most unstable

wavenumber and the associated maximum growth rate. We have investigated how

this most unstable wavenumber varies as we change key critical parameters. We

found that the most unstable wavenumber and maximum growth rates are larger

as the wave travels down the jet. We also find that a decrease in the density ra-

tio causes the maximum wavenumber of the disturbance to decrease for x < 1.8

while after x = 1.8, this behaviour is reversed. We also observe that a decrease in

the density ratio causes the maximum growth rate of the disturbance to increase,

although for large ρ, the difference in the maximum growth rate is slightly small.

We further note that as we increase ρ, x = 0 curve increases, x = 4 curve de-

creases, while x = 1.8 curve remains constant. This shows that the transition of

the different behaviour of kmax at x = 0 and x = 4 curves occurs at x = 1.8 curve.

This transition takes place due to the characteristic behaviour of ρ, for these set

of parameters. In addition, we found that there does not exists any discontinuity

222



(or transition) in the maximum wavenumber kmax against any parameter of the

problem in this case, as found in inviscid-gravity case, for σ. This may be due to

the fact that in this case, we have only one velocity, whereas, in the inviscid case,

we have two different velocities.

We have also solved the model equations using a numerical method based on

finite differences (the Lax-Wendroff method). We have investigated the effects of

changing the key parameters on the breakup lengths, main drop sizes and satellite

droplet sizes. In particular, we have found that breakup lengths, main drops and

satellite droplets are always smallest when we have both shear thinning core and

shell fluids, for different values of the disturbance wavenumber κ. We also find

that the satellite droplets decrease as we increase κ. Furthermore, as the interfa-

cial surface tension ratio σ is increased, the breakup lengths are smaller and less

amount of fluid is consumed in the main drop size, which in turn, has an impact of

a more increase in the satellite droplet size. Moreover, the satellite droplet sizes

are smallest when we have both shear thinning core and shell fluids. We also

found that due to gravity, breakup lengths are smaller and are also smaller when

the core fluid is strongly shear thinning, as in Mohsin et al. (2012). We observed

that for a Newtonian core, increasing δ implies a decrease in the satellite droplets,

which is a similar qualitative behaviour as found in Mohsin et al. (2012). We also

observed that as n1 and n2 are increased (or as the inner and the outer fluids are

made less shear thinning), less discharge of fluid takes place into the main drop

size, which in turn, has an impact of a more increase in the satellite droplet size.

In the fifth chapter, we gave a description and an application of the Needham-

Leach asymptotic method. We derived the temporal growth rate and wavenumber

of the fastest growing temporal linear mode in the limit ofRe→ ∞, using the lin-

ear temporal instability analysis. These quantities have not been given nor derived

in Decent (2009).
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In the sixth chapter, we examined a straight vertically falling Newtonian jet,

which is falling under the influence of gravity and applied the Needham-Leach

method to it. We obtained the asymptotic solution of that problem and, in addi-

tion, we obtained some useful information, like we identified z1 and z2, at which

the state of the wave changes. In addition, we found the onset of the instability

of the nonlinear wave, which we called z1, both asymptotically and numerically.

We also found that z1 increases with increasing values of Weber number and with

decreasing values of Reynolds number. Moreover, we compared our results with

those given in Decent (2009) and we found that our results are in perfect agree-

ment with those given in Decent (2009).

In the seventh chapter, we considered a rotating Newtonian jet and we fully

analyzed it by using the Needham-Leach method and also the numerical model.

We found the solution of that problem as well as the location of the different

modes of breakup. We took data from experiments and used this data to compare

our theory and numerical model. We ran the numerical code, to find the breakup

point zb and the shape of the mode of breakup. We next used the steady-state

solution in the numerics to generate the solution of the g0-equation to find a so-

lution curve, which showed z1 and z2, and then observed that at which place of

the curve the breakup point lies. We also observed the impact of changing the

five parameters (δ, ω, Re, We and Rb) on modes of breakup. We found that for

large δ, we have a small breakup while for small δ, we have a large breakup, and

decreasing δ implies a change in modes from M1 to M2 and then to M2/3. We

also found that as we increase the value of ω (from ω = 0.698 to ω = 1.3), we get

a change in modes from M2/3 to M2 and then to M1. Moreover, we noted that as

we increase Re, the breakup point and z1 are slightly decreased, with the breakup

point having less decrease. We also found that for larger values of We, we get

larger values of z1 and we do not get M1. We also noted that for large values of
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We, M2 can occur before z1. In addition, we observed that as we increase Rb,

values of both the breakup point zb and the onset of the instability of the nonlinear

wave z1 decrease, with z1 having more large decrease in its value. Finally, we

unexpectedly observed that M1 can occur after z1, for large values of the Rossby

number, which disproved our hypothesis that M1 can only occur before the onset

of the nonlinear wave, which starts at z1. We, therefore, conclude that our hypoth-

esis (that we always get M1 in z < z1 region) is not valid for large values of the

Rossby number.

In the eight chapter, we added the effects of gravity in the previous problem

which was analyzed in chapter six and we applied the Needham-Leach method to

it, which results in obtaining the asymptotic solution of that problem.
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Chapter 10

Future Work

There are many things which we want to do in the future. We can do spatial

instability analysis in problems described in chapters three and four of this the-

sis. We can also add rotation in problems described in chapters three and four of

this thesis. We can also apply the Needham-Leach method in problems described

in chapters three and four of this thesis. In addition, we can put surfactants in

chapters three and four. We can also do an extension of the sixth chapter of this

thesis by considering a straight vertically falling non-Newtonian liquid jet, which

is falling under the influence of gravity and we can apply the Needham-Leach

method to it. We can obtain the asymptotic solution of that problem and, in ad-

dition, we can obtain some useful information, like we can identify z1 and z2, at

which the state of the wave changes. Moreover, we can find the onset of the insta-

bility of the nonlinear wave, which we called z1, both asymptotically. We can also

develop a numerical model for this problem to support our asymptotic analysis.

After doing the above problem, we can also add the effects of rotation by con-

sidering a rotating non-Newtonian liquid jet, which is falling under the influence

of gravity and we can apply the Needham-Leach method to it. We can obtain the

asymptotic solution of that problem and, in addition, we can obtain the onset of
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the instability of the nonlinear wave. Then we can also develop a numerical model

to support our analysis.

Moreover, like we have used a numerical model without gravity in the seventh

chapter, in a same way, we can also develop a numerical model with gravity for

the sixth chapter to support our analysis in that chapter.

In addition, like we considered non-Newtonian liquid jets asymptotically in

Appendix A, we can develop a numerical model for non-Newtonian fluids to sup-

port our analysis. Further more, we can add surfactants, which are the special

chemicals that decrease the surface tension of fluids, in our work in sixth, seventh

and eight chapters. We can get some interesting results in these cases.

Our asymptotic analysis can also be extended to compound liquid jets. We

can also split the whole asymptotic domain into five different regions and then

apply Needham-Leach method in each region. In addition, we can also make a

numerical model to back up our theory for the compound liquid jets. We can use

our asymptotic analysis for inviscid, Newtonian and non-Newtonian compound

liquid jets, with and without gravity. Further more, we can also examine liquid jets

having externally imposed thermal gradients (for example, we can heat the jets).

In this case, we will get surface tension gradients as surface tension is temperature

dependent.

In addition, we can also compare our future work on compound liquid jets with

experiments. In the department of Chemical Engineering, University of Birm-

ingham, we have very recently bought a fast camera to take the pictures of the

breakup of compound liquid jets. Hence we can now take pictures of the breakup

of compound liquid jets in different situations that were not available before.
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Appendix A

Asymptotic Solution of Straight

Uniform Non-Newtonian Liquid Jets

A.1 Introduction
The problem presented in this appendix is a generalization of the problem pre-

sented in Decent (2009), where a Newtonian fluid, having a constant viscosity,

was considered.

A.2 Model Equations
The model equations of this appendix are

Rt +
R

2
uz + uRz = 0 (A.1)
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and

ut + uuz = − 1

We

(
1

R(1 + ϵ2R2
z)

1
2

− ϵ2Rzz

(1 + ϵ2R2
z)

3
2

)
z

+
3

Re
· 1

R2

[
∂

∂z

(
µaR

2∂u

∂z

)]
. (A.2)

These equations are derived in Uddin (2007) and here we have used the same

notations as we did in our previous chapters. Here µa is given by

µa = (1− λ)[1 + 3h2(uz)
2]

n−1
2 + λ. (A.3)

We define new length and time scales z̃ and t̃ such that

z̃ =
z

ϵ
, t̃ =

t

ϵ
.

So equation (A.1) can be written as

Rt̃ = −R
2
uz̃ − uRz̃, (A.4)

which after dropping tildes becomes

Rt +
R

2
uz + uRz = 0. (A.5)

In addition, equation (A.2) can be written as

ut̃ + uuz̃ = − 1

We

(
1

R(1 +R2
z̃)

1
2

− Rz̃z̃

(1 +R2
z̃)

3
2

)
z̃

+
3

Re ϵ
· 1

R2

[
∂

∂z̃

(
µaR

2∂u

∂z̃

)]
. (A.6)
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We define

R̃e = Re ϵ =
ρUL

µ0

· a
L

=
ρUa

µ0

.

Therefore, equation (A.6) becomes

ut̃ + uuz̃ = − 1

We

(
1

R(1 +R2
z̃)

1
2

− Rz̃z̃

(1 +R2
z̃)

3
2

)
z̃

+
3

R̃e
· 1

R2

[
∂

∂z̃

(
µaR

2∂u

∂z̃

)]
, (A.7)

which after dropping tildes becomes

ut + uuz +
1

We

(
1

R(1 +R2
z)

1
2

− Rzz

(1 +R2
z)

3
2

)
z

− 3

Re
· 1

R2

(
µaR

2uz
)
z
= 0, (A.8)

where µa is given by equation (A.3). Moreover, equation (A.3) can be written as

µa = (1− λ)[1 + 3
h2

ϵ2
(uz̃)

2]
n−1
2 + λ. (A.9)

Similar to defining z̃ and t̃ earlier, we define

h̃ =
h

ϵ
,

so that equation (A.9) becomes as

µa = (1− λ)[1 + 3h̃2(uz̃)
2]

n−1
2 + λ,

which after dropping tilde becomes
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µa = (1− λ)[1 + 3h2(uz)
2]

n−1
2 + λ. (A.10)

As mentioned earlier (in section 5.1), we divide the domain in five asymptotic

regions: (I) z → 0 and t → 0; (II) z = O (1) and t → 0; (III) z → ∞ and

t = O (1); (IV) z → ∞ and t → ∞ and (V) z = O (1) and t → ∞. We then find

solution in each region and that solution has some unknown constants in it. We

next do the asymptotic matching between each neighbouring region to find out the

value of unknown constants.

First, we find solution in region I. Since we have initial conditions u = R = 1

at time t = 0, so in region I, we impose small time asymptotics

u = 1 + tF0 (η) +O
(
t3/2
)

(A.11)

and

R = 1 + t3/2G0 (η) +O
(
t2
)

(A.12)

where η = z/
√
t = O(1) as z → 0 and t → 0. We substitute above two asymp-

totic expansions in our model equations (A.5) and (A.8) and we get a system of

differential equations

3G0 − ηG′
0 + F ′

0 = 0, (A.13)

2F0WeRe− 2G′′′
0 Re− ηF ′

0WeRe− 6F ′′
0We = 0, (A.14)

where the dash denotes differentiation. Since equations (A.13) and (A.14) are
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exactly the same equations as given in Decent (2009), so the solution of these

equations is exactly the same as given in Decent (2009).

From equation (A.11), we have at the leading order as t→ 0

(uz)
2 = t (F ′

0)
2 +O(t3/2). (A.15)

Using the above equation in equation (A.10), we get an expression for the

non-Newtonian viscosity as

µa = (1− λ)[1 + 3h2t (F ′
0)

2 +O(t3/2)]
n−1
2 + λ, (A.16)

where F0 is given by in Decent (2009).

After doing a careful analysis of all the next regions II-V, we find that asymp-

totic expansions and solutions in all the next regions will be exactly the same as

given in Decent (2009). We, therefore, do not repeat all the expansions and solu-

tions. However, we will calculate an expression for the non-Newtonian viscosity,

using equation (A.10), in next regions II-V. In region II, we find

µa = (1− λ)[1 + 3h2
2∑

j=1

[{4A2β2z−4t3 +O(t5)} exp (2cz) exp
(
−2βz2t−1

)
]β=βj

]
n−1
2

+λ, as t→ 0. (A.17)

In region III, we find

µa = (1− λ)[1 + 3h2
2∑

j=1

[{A2
0t

5 exp
(
2cz − 2βz2t−1 + 2σt

)
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{(c− 2βzt−1)2z−6 +O(z−7)}]β=βj
]
n−1
2 + λ, as z → ∞. (A.18)

In region IV, we find

µa = (1− λ)[1 + 3h2
∑

[{(g′0)2h20t−1 +O(t−2)} exp (−2tg0)]]
n−1
2

+λ, as t→ ∞. (A.19)

In region V, we find

µa = (1− λ)[1 + 3h2[δ2 exp (2iωt) {m1γ1 exp (m1z) +m2γ2 exp (m2z)

+m3γ3 exp (m3z) +m4γ4 exp (m4z)}2]]
n−1
2 + λ, as t→ ∞.(A.20)

Note that all the quantities used in equations (B.44)-(B.47) are given in Decent

(2009).

A.3 Conclusions
The aim of this appendix was to obtain an asymptotic solution for a non-Newtonian

jet. However, we find that the solution of this problem is exactly the same as given

in Decent (2009). We, thus, did not find any new solution. But, we did find the

non-Newtonian viscosity µa in regions I-V, that was not found before.
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Appendix B

Computational Methods and

Numerics

In this appendix, we describe the computational methods used in Chapters 4 and

7 of this thesis. The model equations for a rotating Newtonian jet, falling from a

large rotating cylindrical drum, are given by

Rt +
1

2
usR + uRs = 0 (B.1)

and

ut + uus +
1

We

(
1

R(1 + ϵ2R2
s)

1
2

− ϵ2Rss

(1 + ϵ2R2
s)

3
2

)
s

− 3

R2Re

[
∂

∂s

(
R2∂u

∂s

)]
−
[
(X + 1)Xs + ZZs

Rb2

]
= 0. (B.2)

For details of notations used in above equations, see Chapter 7. We define u0 and

R0 as the steady-state solution of equations (B.1) and (B.2). We also assume that

u → u0 and R → R0 as s → ∞, which physically means that in the far-field, the

jet is considered to be undisturbed. The initial conditions at t = 0 are found to
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satisfy the following ODEs

1

2
u′0R0 + u0R

′
0 = 0, (B.3)

u0u
′
0 −

1

We

(
R′

0

R2
0

)
−
[
(X0 + 1)X ′

0 + Z0Z
′
0

Rb2

]
− 3

Re

(
u′′0 −

u′20
u0

)
= 0, (B.4)

(X ′
0)

2 + (Z ′
0)

2 = 1 (B.5)

and

(
u20 −

3u′0
Re

− 1

R0We

)
(X ′′2

0 + Z ′′2
0 ) =

2u0
Rb

(X ′
0Z

′′
0 − Z ′

0X
′′
0 )

+
1

Rb2
[(X0 + 1)X ′′

0 + ZZ ′′
0 ] . (B.6)

where R0 = 1/
√
u0, from equation (B.3). The boundary conditions at s = 0 are

given by

u0(0) = X ′
0(0) = 1 and X0(0) = Z0(0) = Z ′

0(0) = 0.

For inviscid case (i.e., for Re → ∞), this system of equations can be solved

using a Runge-Kutta method while for viscous problem (i.e., for Re = O(1)), this

system of equations can be solved using Newton’s method (see Părău et al. (2007)

for the solution of viscous equations). Note that the steady-state solution do not

have a breakup point as there is no sinusoidal wave in the boundary conditions to

break the jet, as shown in Figure B.1.
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Figure B.1: The solution of the steady trajectory of the jet, with Re = 5000,
We = 40 and Rb = 3. Figure taken from Gurney (2010).

B.1 Non-Linear Temporal Solution
By defining A = R2, the system of equations (B.1)-(B.2) can be written as

At + (Au)s = 0 (B.7)

and

ut +

(
u2

2

)
s

+
1

We

(
8A+ (2ϵAs)

2 − 4ϵ2AAss

(4A+ (ϵAs)2)3/2

)
s

− 3

ARe
(Aus)s

−
[
(X + 1)Xs + ZZs

Rb2

]
= 0. (B.8)

The initial conditions at t = 0 are obtained from the steady-state ODEs as

A(s, t = 0) = R2
0(s) and u(s, t = 0) = u0(s), (B.9)

where u0(s) and R0(s) are the steady-state solutions of the ODEs (B.3)- (B.6).
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In order to break the jet, we impose a sinusoidal wave disturbance in the form

of the boundary conditions at the orifice s = 0 as

A(s = 0, t) = 1 and u(s = 0, t) = 1 + δsin

(
κt

ϵ

)
, (B.10)

where δ and κ are the amplitude and the frequency of the imposed wave and ϵ is

a small parameter. The above system (B.7)-(B.10) is solved numerically using a

two-step Lax-Wendroff method, which we describe in the next section.

B.2 Lax-Wendroff Method
A Lax-Wendroff method, is a type of finite difference schemes, which solves a

system of equations of the following form

∂u

∂t
= − ∂

∂s
F (u). (B.11)

In our case, we have u = (A, u)T and F (u) =
(
Au, u

2

2

)T
.

We denote uj
i as the approximate solution of u at the jth time node (or the jth

grid point) and the ith space node. We also denote dt as the time step size and ds

as the spatial step size. The two-step Lax-Wendroff method is given by

u
j+1/2
i+1/2 =

uj
i+1 + uj

i

2
− (F j

i+1 + F j
i )
dt

2ds
, (B.12)

uj+1
i = uj

i − (F
j+1/2
i+1/2 + F

j−1/2
i+1/2 )

dt

ds
, (B.13)

where F
j+1/2
i+1/2 are calculated using the values of uj+1/2

i+1/2 . Using this two-step Lax-

Wendroff method, we run the simulations until the jet breakup takes place, which

happens when the radius of the jet becomes less than 5% of the initial radius of
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Figure B.2: The solution of the temporal equations of the jet superimposed over
the steady-state solution, with Re = 5000, We = 40, Rb = 3 δ = 0.01 and κ =
0.7. Figure taken from Gurney (2010).

the jet. Thus, we get numerical solutions like the one shown in Figure B.2.

B.3 Inclusion of Full-Curvature Terms
Apart from the steady-state solutions, where we only consider the leading-order

curvature term, we include the full expression for the mean curvature term for

linear instability analysis, to get stable waves (with zero growth rate) for zero

wavenumber, and also for non-linear temporal solutions, to avoid instability in

numerical solutions, otherwise, we have a numerically unstable solution. Further-

more, experimental diagrams (see Figure B.3) have shown that there is a small

spherical drop connected by a slender neck in the region near breakup, which

shows the extreme deformation of the surface. Since near breakup, the surface

deforms itself, consequently, it becomes necessary to include more terms in cur-

vature. We, therefore, include the higher-order terms in curvature to fully capture

the breakup process. Without the expression for the full curvature, the jet is un-

stable to short wavelength waves, which is not true physically. This approach is

used by many authors, see, for example, Yarin (1993), Papageorgiou (1995) and
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Brenner et al. (1997).

Figure B.3: An experimental photograph showing a small spherical water drop is
connected by a slender neck in the region near breakup. Reproduced from Brenner
et al. (1997).

239



List of References

[1] Bali, N.P., & Iyengar, N., 2005, A Textbook of Engineering Mathematics.

Laxmi Publications, INDIA.

[2] Bassi, R., 2011, Absolute Instability in Curved Liquid Jets. Ph.D. thesis,

The University of Birmingham, UK.

[3] Berkland C., Pollauf E., Varde N., Pack D.W., Kim K.K., 2007, Monodis-

perse Liquid-filled Biodegradable Microcapsules. Pharmaceutical Re-

search, 24(5):1007–1013.

[4] Brenner, M. P., Eggers, J., Joseph, K., Sidney, R.N., & Shi, X.D., 1997,

Breakdown of scaling in droplet fission at high Reynolds number. Phys.

Fluids., 9:1573–1590.

[5] Carreau, P., J., Kee, D., D., and Daroux, M., 1979, An analysis of the

viscous behaviour of polymeric solutions, Can. J. Chem. Eng., 57, 135–140.

[6] Chandrasekhar, S., 1961, Hydrodynamic and Hydromagnetic Stability. Ox-

ford University Press.

[7] Chauhan, A., Maldarelli, C., Papageorgiou, D. T. & Rumschitzki, D. S.,

2000, Temporal instability of compound threads and jets, Phys. Fluids,

420, 1–25.

240



[8] Chauhan, A., Maldarelli, C., Rumschitzki D. S. & Papageorgiou, D. T.,

2003, An experimental investigation of the convective instability of a jet,

Ch. Eng. Sci., 58, 2421–2432.

[9] Chen, H. Y., Zhao, Y., & Jiang, L., 2009, Compound-fluidic electrospray:

An efficient method for the fabrication of microcapsules with multicompart-

ment structure. Chinese Science Bulletin, 54, 3147–3153.

[10] Colinet, P., Legros, J.C. & Velarde, M. G., 2001, Nonlinear dynamics of

surface-tension-driven instabilities. Weinheim ; Wiley-VCH, Cambridge.

[11] Craster, R. V., Matar, O. K. & Papageorgiou, D. T., 2005, On compound

liquid threads with large viscosity contrasts, J. Fluid Mech., 533, 95–124.

[12] da Vinci, L., 1508, Translated in MacCurdy, ed, The Notebooks of Leonardo

da Vinci. George Brazillier: New York, page 756.

[13] Decent, S.P., 2009, Asymptotic solution of slender viscous jet breakup. IMA

J. Appl. Math., 74, 741–781.

[14] Eggers, J. & Villermaux, E., 2008, Physics of liquid jets. Rep. Prog. Phys.,

71.

[15] Eggers, J., 1997, Nonlinear dynamics and breakup of free surface flows.

Rev. Mod. Phys., 69, 865-929.

[16] Ellwood, K. R. J., Georgiou, G.C., Papanastasiou, T.C., & J. O. Wilkes,

1990, Laminar jets of Binghamplastic liquids. J. Rheol., 34, 787–812.

[17] Hardas, N., Danviriyakul, S., Foley, J. L. Nawar, W. W., & Chinachoti,P.

2000, Accelerated stability studies of microencapsulated anhydrous milk

fat, Lebensm.-Wiss. Technol., 33, 506.

241



[18] Hertz, C. H., 1980, Method and apparatus for forming a compound liquid

jet particularly suited for ink-jet printing, U.S. Patent 4, 196, 437.

[19] Hertz, C. H., & Hermanrud, B., 1983, A liquid compound jet, J. Fluid

Mech., 131, 271–287..

[20] Gurney, C. 2010, The Stability and Control of Curved Liquid Jet Breakup.

Ph.D. thesis, The University of Birmingham, UK.

[21] Hawkins, V. 2010, An Experimental Investigation into the Stability and

Control of Curved Liquid Jet Breakup. Ph.D. thesis, The University of

Birmingham, UK.

[22] Hawkins, L. V., Gurney, C. J., Decent, P. S., Simmons, H. MJ. & Uddin, J.,

2010, Unstable Waves on a Curved non-Newtonian Liquid Jet. J. Phys. A:

Math. & Theor., 43, 055501 (18pp).

[23] Holman, J. P. (2002), Heat Transfer, McGraw-Hill Companies.

[24] Keller, J.B., Rubinow, S.I. & Tu, Y.O., 1973, Spatial instability of a jet.

Phys. Fluids, 16, 2052–2055.

[25] Leach, J.A. & Needham, D.J., 2001, The evolution of travelling waves in

generalized Fisher equations via matched asymptotic expansions: Algebraic

corrections. Q. J. Mech. Appl. Math. 54, 157–175.

[26] Leach, J.A., Needham, D.J. & Kay, A.L., 2003, The evolution of reaction-

diffusion waves in generalized Fisher equations: Exponential decay rates.

Dynamics of Continuous, Discrete and Impulsive Systems, Ser. A 10, 417–

430.

[27] Leach, J.A. & Needham, D.J., 2004, Matched Asymptotic Expansions in

Reaction-Diffusion Theory. Springer-Verlag, London.

242



[28] Lefebvre A., H., 1989, Atomization and Sprays. New York: Hemisphere.

[29] Liao, Y., Jeng, S. M., Jog, M. A., & Benjamin, M. A., 2000, The effect of

air swirl proffle on the instability of a viscous liquid jet. J. Fluid Mech., 424,

1–20.

[30] Lin, S.P. & Reitz, R.D., 1998, Drop and spray formation from a liquid jet.

Ann. Rev. Fluid Mech., 30:85 (105).

[31] Lin, S.P., 2003, Breakup of Liquid Jets and Sheets. Cambridge University

Press.

[32] Leib, S.J. & Goldstein, M.E., 1986, The generation of capillary instabilities

on a liquid jet. J. Fluid Mech., 168:479 (500).

[33] Mariotte, E., 1686, Traite du Mouvement des Eaux et Des Autres Corps

Fluides. Paris: E Michallet.

[34] Massoud, M., 2005, Engineering Thermofluids: Thermodynamics, Fluid

Mechanics, and Heat Transfer. Springer.

[35] Mathiowitz, E., Jacob, J. S., Jong, Y. S., Carino, G. P., Chickering, D. E.,

Chaturvedi, P., Santos, C. A., Vijayaraghavan, K., Montgomery, S., Bassett,

M., & Morrell, C., 1997, Biologically erodable microsphere as potential oral

drug delivery system. Nature, London, 386, 410.

[36] Middleman, S., 1995, Modelling axisymmetric flows: Dynamics of films,

jets and drops. Burlington, MA: Academic Press.

[37] Mitragotri, S., 2006, Current status and future prospects of needle-free liquid

jet injectors. Nature Reviews, Drug Discovery 5(7), 543-548.

243



[38] Mohsin, M., Uddin, J., Decent, S.P., & Simmons, M.J.H., 2012, Break-up

and droplet formation in shear thinning compound liquid jets. IMA J. Appl.

Math., 77, 97–108.
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