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ABSTRACT 

B-cell specific gene PAX5 (Busslinger, 2004) is aberrantly expressed in t(8;21) 

AML (Tiacci et al., 2004) and is potentially involved in blocking myeloid 

differentiation. To understand the mechanism of PAX5 deregulation in t(8;21) 

AML we examined the expression, chromatin structure, histone modifications 

and RNA Polymerase II recruitment at PAX5 in t(8;21) AML, in non-t(8;21) 

myeloid precursors and in a pre-B-cell-line. Our studies show that in non t(8;21) 

myeloid precursors, the PAX5 gene is poised for transcription but is repressed 

by polycomb complexes. This polycomb repression is alleviated in t(8;21) cells 

leading to PAX5 expression. t(8;21) AML model Kasumi-1 carries an activating 

C-KIT mutation that leads to constitutive activation of different downstream 

signalling pathways (Larizza et al., 2005). Some of these signalling pathways 

have been shown to regulate association of polycomb complexes with 

chromatin (Voncken et al., 2005). Our study shows that small molecule 

mediated inhibition of constitutively activated JNK, MEK and P38 signalling in 

Kasumi-1 cells lead to a down regulation of PAX5 expression, decrease in 

elongating RNA Polymerase II and H327ac with concomitant increase in 

H3K27me3 at PAX5. This suggests that deregulated MAPkinase signalling in 

t(8;21) AML leads to the dissociation of polycomb complexes from PAX5 

causing its activation. It also suggests a novel role of tyrosine kinase mutations 

in lineage specification and differentiation block in t(8;21) AML.  
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1 INTRODUCTION 

1.1

Blood is the most regenerative tissue in a living organism. Everyday about one 

trillion blood cells are generated in adult human bone marrow (

 Haematopoiesis 

Finch et al., 

1977). The process by which this occurs is called haematopoiesis. Every 

mature blood cell originates from a single cell-type, called haematopoietic stem 

cell (hereafter referred to as HSC). Like other stem cells, HSCs are capable of 

‘self-renewal’ (i.e. undergoing cell division to form more HSCs) and 

‘differentiation’ (i.e. dividing to develop and mature into the various types of 

blood cells). HSCs express genes specific to all blood lineages at a very low 

level. This phenomenon is known as ‘lineage priming’ in HSCs (Enver and 

Greaves, 1998). Therefore, these cells possess the ability to differentiate and 

develop into all blood lineages through progressive restriction of their gene 

expression. HSCs sit at the apex of a hierarchy of multi-potent progenitors that 

progressively get restricted to a specific blood lineage. This process of ‘self-

renewal’ and ‘differentiation’ of HSCs into mature blood cells is tightly controlled 

by transcription factor networks and signalling pathways that ensure the 

formation of the correct blood cells at the correct time and in correct numbers 

(Doulatov et al., 2012, Laiosa et al., 2006a, Orkin and Zon, 2008). Perturbation 

of any of these features of haematopoiesis leads to various blood cell disorders 

including malignancy. Haematopoiesis is therefore not only an interesting 

paradigm to study cell-fate decision but the understanding of haematopoiesis is 

crucial to the field of haematopoietic malignancies. 
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1.1.1 

Haematopoietic stem cells (like other stem cells) are defined by: 1) 

multipotency, which is their ability to undergo asymmetric cell division in order to 

give rise to different cell types and also cells that maintain its stem cell 

properties, 2) their ability to remain quiescent and have a long life-span but also 

self-renew, 3) their dependency on the niche micro-environment for quiescence 

and last, but not the least 4) by their ability to repopulate the entire 

haematopoietic system (for at least 16 weeks) of an immuno-compromised 

recipient in an in-vivo transplantation assay (

Haematopoietic stem cells: definition, origin and maintenance  

Orkin and Zon, 2008, Martinez-

Agosto et al., 2007). Originally, HSCs were identified by staining mouse bone 

marrow cells with antibodies against a combination of surface antigens 

(Morrison et al., 1995, Spangrude et al., 1988, Morrison and Weissman, 1994). 

Using this method HSCs were defined as lineage- Sca-1+ckit+ cells (LSK cells). 

The LSK cell population is further subdivided on the basis of their cell surface 

markers and reconstitution potential, into long-term-HSC (LT-HSC: Thy-

1lowFlk2/Flt3-), short-term-HSC (ST-HSC: Thy-1lowFlt3+) and multi-potent 

progenitors (MPP: Thy-1-Flt3+) (Christensen and Weissman, 2001, Osawa et 

al., 1996, Yang et al., 2005). It is important to note that the surface markers that 

define a mouse HSC and a human HSC are different. Human HSCs are CD34+ 

and FLT3+ while murine HSCs are not (Civin et al., 1984, Kang et al., 2008). 

Murine HSCs are defined as Lin-Sca-1+cKit+CD34-CD150+CD49blow while 

human HSCs are defined as LIN-CD34+CD38-CD45RA-THY-1+CD49f+ cells 

(Bhatia et al., 1997, Conneally et al., 1997, Lansdorp et al., 1990, Doulatov et 

al., 2012, Notta et al., 2011, McKenzie et al., 2007). 
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In mammals, during development, haematopoiesis occurs in multiple waves and 

in various sites (see Figure 1.1). The initial wave of haematopoiesis occurs in 

the extra-embryonic yolk sac and is called ‘primitive haematopoiesis (

Origin of HSCs 

Sabin, 

1920). The main purpose of ‘primitive haematopoiesis’ is the production of 

erythroid cells needed for the rapid development of the embryo (Orkin and Zon, 

2008). A common endothelial and haematopoietic progenitor; called 

‘haemangioblast’ migrates from the primitive streak of the embryo to the yolk 

sac contributing to the formation of blood islands (Murray, 1932, Choi et al., 

1998, Fehling et al., 2003). 

‘Primitive haematopoiesis’ soon gets replaced by ‘definitive haematopoiesis’ in 

the Aorta-Gonad-Mesonephron (AGM) followed by foetal liver, thymus, spleen 

and then the adult bone marrow (Medvinsky and Dzierzak, 1996, Muller et al., 

1994, de Bruijn et al., 2000, Boisset et al., 2010). The origin of adult HSCs is 

the ‘haemogenic endothelium’ which is a common precursor for blood and 

endothelial tissue (Jaffredo et al., 2005b, Jaffredo et al., 2005a, Jaffredo et al., 

2000, Dzierzak and Speck, 2008). A recent study involving continuous single-

cell observation of mouse mesodermal cells generating blood and endothelial 

cells has led to the detection of haemogenic endothelium (Eilken et al., 2009) 

thereby resting controversies regarding the existence of the haemogenic 

endothelium. The emergence of HSCs involves various transcription factors and 

signalling pathways including RUNX1, GFI1,GFI1B VEGF, TGFβ and NOTCH1 

signalling (Dzierzak and Speck, 2008, Orkin and Zon, 2008, Chen et al., 2009, 

Lancrin et al., 2012). 



 

4 
 

 

Figure 1.1: Sites of haematopoiesis during embryonic development. 
‘Primitive Haematopoiesis’ starts in the yolk sac. This is replaced by ‘Definitive 

Haematopoiesis’ in the AGM and the foetal liver. In adults the primary site of 

haematopoiesis is the bone marrow microenvironment. This figure is adapted 

from (Orkin and Zon, 2008). 

Once the haematopoietic system is established the maintenance of HSC 

identity becomes crucial for sustained haematopoiesis. HSCs undergo 

asymmetric cell division to produce cells that retain their stem cell properties, 

remain dormant or quiescent and maintain HSC homeostasis. The other cells 

become differentiated into committed blood progenitors.  

Maintenance of HSCs 

Like other stem cells, HSCs depend on the niche microenvironment to regulate 

self-renewal and differentiation in order to maintain homeostasis. The HSC 

niche changes as the sites of haematopoiesis change during development. 

Adult haematopoiesis takes place in the bone marrow (Sipkins et al., 2005, 
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Orkin and Zon, 2008). Therefore, the bone marrow niche microenvironment is of 

prime importance for HSC maintenance. Loss of BMP receptor-1 (bone 

morphogenetic protein receptor 1) in mouse osteoblasts results in an increased 

number of osteoblasts and also HSCs (Calvi et al., 2003, Zhang et al., 2003). 

Induction of death of osteoblasts by targeting these cells with suicide genes 

also perturbs haematopoiesis (Visnjic et al., 2004). Furthermore, stimulation of 

the parathyroid receptor leads to increase in trabecular bone and the number of 

HSCs (Calvi et al., 2003). The above studies, therefore, make it evident that 

osteoblasts play a crucial role in the maintenance of HSCs. Intravital 

microscopy and GFP labelled HSC transplantation experiments showed that 

HSCs lodge next to osteoblasts (Sipkins et al., 2005). Osteoblasts secrete N-

cadherin and Notch receptor ligand. Interactions mediated by N-cadherin and 

TIE2/Angiopoietin anchors HSCs to niche cells and maintain HSCs in quiescent 

state (Arai et al., 2004, Martinez-Agosto et al., 2007). 

Apart from the bone marrow micro-environment; transcription factors such as 

GFI-1, polycomb complex protein BMI1 (see section 1.3.6) and MEF/ELF4 

control HSC self-renewal and proliferation (Eliasson and Jonsson, 2010). GFI-1 

maintains HSCs in quiescent state (Hock et al., 2004), while MEL/ELF4 and 

BMI1 promote proliferation of the HSCs and their entry into the cell-cycle 

(Lacorazza et al., 2006, Oguro et al., 2006). Furthermore two recent studies 

have shown that LDB1 complexes regulate a transcription program required for 

the maintenance of HSCs by restricting its differentiation into downstream 

progenitors and mature blood cells (Li et al., 2011). C-MYC, on the other hand, 

has been shown to promote the release of HSCs from their quiescent state. 
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Loss of C-MYC in HSCs in the bone marrow makes these cells incapable of 

differentiation as their interactions with the niche cells become stronger and 

they remain quiescent and attached to the niche (Wilson et al., 2004). The 

quiescent HSCs maintain HSC homeostasis while the proliferating HSCs are 

the ones that contribute to haematopoietic differentiation. 

1.1.2 

As indicated above one of the defining features of an HSC is that it can 

differentiate along multiple pathways via transient amplifying cells which 

increasingly get restricted towards a particular cell fate option/lineage through a 

cascade of binary decisions.   

Cellular pathways of haematopoiesis 

The analysis of cell surface antigens of haematopoietic cells led to the 

discovery of progenitor cells. These progenitor cells are below HSCs in the 

haematopoietic hierarchy and have restricted lineage potential. Lineage 

restricted progenitors undergo cellular divisions and further lineage restrictions 

in order to give rise to committed and mature blood cells. This process of 

gradual loss in differentiation potential of a multipotent HSC is known as lineage 

commitment. 

Cell sorting experiments aimed at identifying precursor cell types with specific 

differentiation potential led to the identification of a common lymphoid progenitor 

(CLP) that gives rise to B-cells, T- cells and NK-cells (Kondo et al., 1997), and a 

common myeloid progenitor (CMP) (Akashi et al., 2000). The CMP gives rise to 

two further progenitors: the Granulocyte-macrophage progenitor (GMP) and the 
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Megakaryocyte-erythrocyte progenitor (MEP). GMPs in turn give rise to 

neutrophils, basophils, eosinophils, macrophages and mast cells. MEPs on the 

other hand, give rise to megakaryocytes and erythrocytes. Based on these 

experimental findings, Akashi-Kondo-Weissman proposed their scheme of 

haematopoietic differentiation. According to this scheme of haematopoiesis, the 

first lineage commitment step of an uncommitted progenitor is the strict 

separation of lymphoid and myeloid lineages (Laiosa et al., 2006a). However 

this CLP-CMP model does not exclude other routes of lineage commitment. 

Recent experimental data describe a fraction of the primitive LSK cells with 

combined lymphoid and myeloid potential with little or no megakaryocyte-

erythrocyte (MegE) potential. These progenitors are marked by high expression 

of FLT3 on the cell surface and expression of several lymphoid genes. These 

progenitor cells are termed lymphoid-primed multi-potent progenitors (LMPPs) 

(Adolfsson et al., 2005, Yang et al., 2005). The existence of LMPPs is further 

corroborated by using additional marker VCAM-1 (Vascular adhesion molecule-

1) in combination with FLT3 (Lai and Kondo, 2006, Yoshida et al., 2006). This 

study subdivided the MPPS into three distinct groups: FLT3loVCAM-1+, 

FLT3hiVCAM-1+ and FLT3hiVCAM-. The FLT3hiVCAM+ subgroup showed 

granulocyte-monocyte-lymphoid potential with little or no megakaryocyte-

erythrocyte potential corresponding to the LMPPs described by Adolfsson et al 

(Adolfsson et al., 2005). This led to the proposal of an alternative 

haematopoietic differentiation scheme by Jacobsen and colleagues. According 

to this model the first step in the differentiation of HSCs/MPPs is the formation 

of a subset of progenitors that retain the capacity to give rise to all 
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haematopoietic cell types except for megakaryocytes and erythrocytes (see 

figure 1.2). 

 

Figure 1.2: Schematic diagram of the cellular pathways of 
haematopoiesis. Haematopoiesis starts with a multipotent stem cell that 

gradually differentiates into mature blood cells via progenitor cells. 
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Though the studies referred to above elucidate a clear road-map of 

differentiation of an HSC into mature blood cells, it does not shed any light on 

the question as to how an individual HSC decides to enter one lineage over 

another. Recent studies have shown that HSCs are not a homogenous 

population. HSCs differ amongst themselves in the ability to self-renew and 

differentiate. Depending on the contribution of an individual HSC to the myeloid 

or lymphoid lineage, HSCs has been subdivided into lymphoid-deficient (α)/ 

myeloid biased (Muller-Sieburg et al., 2004), balanced (β) and myeloid-deficient 

(γ and δ) HSCs (Dykstra et al., 2007) (reviewed in (Muller-Sieburg et al., 2012) . 

This difference in differentiation potential of individual HSCs is dependent on a 

non-random gene expression pattern. It has been shown that TGFβ influences 

the maintenance one subtype of HSC versus another (see section 1.1.4) 

(Challen et al., 2010). The bone marrow microenvironment also has been 

shown to be more conducive to the α-HSC compared to the β- HSC (Benz et 

al., 2012). Another gene Btaf (known to be regulating DNA damage response) 

also differentially influences the maintenance of α versus β-HSCs (Wang et al., 

2012). These studies are therefore slowly elucidating a molecular mechanism of 

how each individual HSC decides to differentiate along the haematopoietic tree. 

This molecular mechanism (for example the epigenetic signature) defining a 

particular HSC sub-type is maintained in the daughter HSCs that are produced 

as a result of a self-renewal divisions (Copley et al., 2012).  
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1.1.3 

Cell fate decisions are a complex process that is still very much an evolving 

field of research. It involves various molecular regulators. These include 

extracellular factors such as: cell-cell interactions, cytokine and other signalling 

pathways and also cell intrinsic factors such as transcription factors. The 

extracellular developmental cues finally culminate to cause a change intrinsic to 

the cell i.e. change in gene expression because distinct cell fate options are 

associated with distinct gene expression patterns.  

Determinants of cell fate decision in Haematopoiesis 

1.1.4 

Extracellular factors communicate with the cell via signalling molecules. A 

number of signalling pathways influence haematopoiesis at various levels; from 

the formation and maintenance of HSCs to haematopoietic differentiation. 

Several evolutionarily conserved signalling pathways: Hedgehog, WNT, 

TGFβ/SMAD and NOTCH signalling, are involved in formation, self-renewal and 

maintenance of HSCs (

Role of signalling in haematopoiesis 

Luis et al., 2012b). Furthermore, signalling mediated by 

cytokine receptors also play important role in haematopoietic lineage decisions 

(reviewed in (Baker et al., 2007).  

There is an interesting conundrum regarding the mechanism of asymmetric 

division of HSCs. By asymmetric cell division HSCs divide to form two daughter 

cells one of which maintains the stem-cell properties and the other undergoes 

differentiation. One school of thought envisages that this occurs through 

unequal division of cell-intrinsic factors that determine cell fate. Alternatively, a 

second school of thought proposes that this could be due to differential 
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exposure to extracellular signals of the two daughter cells that are otherwise 

identical (Knoblich, 2008). Therefore signalling is potentially a very important 

component in haematopoietic stem cell maintenance as well as haematopoietic 

differentiation. Discussed below are the different signalling pathways that play 

an important role in haematopoiesis 

Several signalling pathways have been shown to be of importance for the 

emergence, maintenance and proper functioning of HSCs. TGFβ signalling is 

one such conserved pathway (reviewed in (

TGFβ, NOTCH-1 and Wnt signalling pathways are involved in establishment, 

maintenance and differentiation of HSCs 

Blank and Karlsson, 2011). 

Neutralisation of TGFβ signalling in cultured HSCs releases the HSCs from 

quiescence (Soma et al., 1996, Fortunel et al., 1998, Hatzfeld et al., 

1991).Therefore, the role of TGFβ in vitro is to maintain stem-cell quiescence. 

In-vivo, however, TGFβ knockout mice show phenotypes that are difficult to 

interpret. TGFβ-1 ligand knockout causes impaired reconstitution ability due to 

defective homing of HSCs (Capron et al., 2010) whereas the TGFβ-1 receptor 

knockout showed no defects in self-renewal or reconstitution ability even though 

the mice were under severe haematopoietic stress due to multifocal 

inflammation which is observed in both TGFβ ligand and receptor knockout 

mice (Larsson et al., 2003, Larsson et al., 2005). Therefore, TGFβ signalling is 

involved in immune cell homeostasis in vivo. It has also been shown that 

knockout of TGFβ causes increased myelopoiesis in mice suggesting that 

TGFβ negatively regulates myelopoiesis in vivo (Letterio et al., 1996). He et al. 

have shown that TGFβ signalling balances erythroid differentiation with 
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inhibition of stem cell growth (He et al., 2006). According to their model, TIF1γ 

(transcriptional intermediary factor-1 γ) and SMAD4 compete to bind 

SMAD2/SMAD3 complex. The TIF1γ/SMAD2/SMAD3 complex favours 

erythroid development while the SMAD4/SMAD2/SMAD3 complex inhibits HSC 

growth (He et al., 2006). TIF1γ has recently also been shown to play a role in 

the early erythroid myeloid bifurcation by regulating GATA1 and PU.1 

expression (Monteiro et al., 2011). 

NOTCH-1 signalling is another very important pathway for haematopoiesis. 

NOTCH1 is a trans-membrane receptor that undergoes cleavage after binding 

its ligand and translocates to the nucleus. Within the nucleus, along with its 

transcriptional co-factor CSL, it activates transcription of its target genes (Deftos 

and Bevan, 2000). Several studies have unequivocally linked NOTCH-1 

signalling to definitive haematopoiesis in the AGM during embryonic 

development (reviewed in (Pajcini et al., 2011). Kumano et al analysed embryos 

of Notch-1 and Notch-2 deficient mice and found that the development of HSCs 

was severely impaired in the Notch-1 deficient mice but not in the Notch-2 

deficient mice (Kumano et al., 2003). They also explanted AGM regions from 

wild-type mouse embryos at embryonic day 9 and 10 respectively in media with 

γ-secretase inhibitor and observed a differential effect on the ability of 

haematopoietic progenitors to proliferate in colony assays. γ-secretase is a 

protease complex that is an integral membrane protein. Addition of γ-secretase 

inhibitor inhibits the cleavage of NOTCH and prevents the release of the 

intracellular domain of NOTCH thereby mimicking the conditional-knockout 

phenotype. They found that when γ-secretase inhibitor was added on 
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embryonic day 9 it impaired the generation of HSCs, while there was no effect 

when added on embryonic day 10 (Kumano et al., 2003). This showed that 

NOTCH-1 signalling is important for the generation of HSCs but not its 

maintenance. Other studies conducted have also established that NOTCH-1 is 

necessary for the generation of HSCs in AGM (Yoon et al., 2008, Hadland et 

al., 2004, Robert-Moreno et al., 2005, Robert-Moreno et al., 2007). The role of 

NOTCH-1 in adult haematopoiesis, however, is still controversial. Gain of 

function studies showed the involvement of NOTCH-1 in the control of 

haematopoiesis. Addition of soluble NOTCH-1 ligand to human CD34+CD38-

LIN-  cord blood cells or primitive murine LIN-SCA-1+CKIT+ cells in culture leads 

to a rapid expansion of progenitors in vitro that shows a short-term 

haematopoietic reconstitution potential (Karanu et al., 2000, Varnum-Finney et 

al., 2003). Loss-of-function studies, however, fail to establish a link between 

haematopoiesis and NOTCH signalling (Pajcini et al., 2011). Functional 

inactivation of Notch-1, Notch-1 and Notch-2 in mice does not affect HSCs (Han 

et al., 2002,  Radtke et al., 1999, Tanigaki et al., 2002, Maillard et al., 2008). 

Inactivation of Notch-1, Jagged-1in bone marrow progenitors or stromal cells 

also does not affect HSCs (Mancini et al., 2005). Even though the precise role 

of NOTCH signalling in adult haematopoiesis is still not entirely clear, the ability 

to expand cord-blood cells in vitro is clinically highly relevant if put to proper 

usage (Pajcini et al., 2011). 

Wnt signalling has also been shown to have a precisely regulated role in HSC 

function (Luis et al., 2012a). Retroviral over-expression of a constitutively active 

β-catenin in BCL-2 transgenic haematopoietic stem/progenitor cells lead to the 
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expansion of HSCs and an increase in repopulating capacity upon 

transplantation in mice (Reya et al., 2003). However, conditional over-

expression of β-catenin leads to block in differentiation and a transient 

expansion of the HSC pool followed by exhaustion of haematopoietic cells 

(Kirstetter et al., 2006, Scheller et al., 2006). These seemingly counter-intuitive 

results were down to the precise dependence of HSC function on precise Wnt 

signalling dosages (Luis et al., 2012a). Wnt activity in the haematopoietic 

organs is rather modest (Grigoryan et al., 2008). Recent data has shown that 

when Wnt activity is only slightly enhanced over normal levels, HSCs engraft 

better. However when exposed to high levels of Wnt signalling, HSCs 

completely fail (Luis et al., 2011).  

Loss of function experiments involving conditional deletion of β-catenin and its 

homolog γ-catenin failed to affect HSC function (Cobas et al., 2004, Jeannet et 

al., 2008, Koch et al., 2008). It was later shown that this could be explained by 

the fact that, the conditional deletion of these two mediators of Wnt signalling 

still left behind a small amount of residual Wnt activity (Luis et al., 2012a, Prlic 

and Bevan, 2011) and it was proposed that this residual Wnt activity was 

sufficient to maintain HSC function. Experiments where Wnt activity was almost 

reduced to zero have shown that abrogation of Wnt signalling is detrimental to 

HSCs (Luis et al., 2010, Fleming et al., 2008). However a quarter of the normal 

Wnt activity is sufficient to maintain normal HSC function. Slightly enhanced 

Wnt activity is beneficial for HSC functioning but high levels of Wnt activity are 

not well tolerated (Luis et al., 2012a). Wnt signalling has also been shown to be 

of importance in the regulation of the component cells of the HSC niche 
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(Malhotra and Kincade, 2009). Furthermore it has been shown that it plays an 

important role in T-cell differentiation (Xu et al., 2003). Within the 

haematopoietic compartment thymocytes and mature T-cells have highest Wnt 

activity (Weerkamp et al., 2006). 

Signalling pathways therefore play a crucial role in establishment and 

maintenance of different haematopoietic cells. These signalling pathways 

interact and act synergistically or antagonistically to form a complex network 

that not only regulates itself but also other genes in order to regulate various 

haematopoietic processes.  

1.1.5 

The above described signalling pathways mostly influence emergence, 

maintenance and functioning of HSCs. Haematopoietic differentiation, on the 

other hand, is influenced by cytokine signalling. Cytokines are extracellular 

ligands that elicit a biological response in a cell-context dependent manner via 

binding and activating a specific class of conserved receptors.  

Role of cytokine and cytokine receptor mediated signalling in 

haematopoietic differentiation 

There are over fifty different cytokines that in some way regulate 

haematopoiesis. The first cytokine was identified as a biological factor that 

stimulates the survival, proliferation and differentiation of haematopoietic 

progenitors into morphologically distinct colonies and hence were called colony 

stimulating factors (CSF) (Metcalf and Nicola, 1984). There is wealth of data 

that has shown the effect of cytokines on maturing haematopoietic cells. 
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According to this data, cytokines were arranged in a hierarchy where cytokines 

acting on multi-potential cells were placed separately from the more lineage 

specific cytokines (see figure 1.3). 
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Figure 1.1: Haematopoiesis and the role of cytokines in lineage 
determination. The cytokines needed for cell-fate decision at the various 

stages of haematopoietic differentiation are indicated with green redrawn from 

(Robb, 2007).. 
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As described in figure 1.3, cytokines were originally thought to regulate 

haematopoiesis in a hierarchical fashion.  There are two models explaining the 

role of cytokines in regulating haematopoiesis: a) an instructive role and b) a 

permissive role. According to the permissive model haematopoietic 

differentiation is primarily driven by transcription factors and cytokines which 

provide survival and proliferation signal for these already committed cells (

Is the role of cytokines instructive or permissive in haematopoiesis? 

Till et 

al., 1964). The instructive model, in contrast, envisages that cytokines play a 

crucial role in the cell fate decision of haematopoietic stem/progenitor cells 

along with important lineage determining transcription factors. There are several 

experiments in favour of both notions. 

The phenotype of mouse models deficient of the various cytokine receptors 

suggests a permissive role of cytokines, as mice deficient in GM-CSF, EPO or 

G-CSF only show a reduction in the number of respective progenitors or mature 

progeny but not their complete ablation (Lieschke et al., 1994a, Lieschke et al., 

1994b, Stanley et al., 1994, Wu et al., 1995). Retroviral expression of M-CSFR 

on erythroid cells led to the development of erythroid cells in response to M-

CSF (McArthur et al., 1994, Pharr et al., 1994) which suggested that cytokine 

signalling did not reverse lineage choices; it only facilitated survival of cells that 

had determined its lineage fate through other critical determinants. EPO-R 

could also be replaced by prolactin receptor, growth hormone receptor and c-

MPL (receptor for thrombopoietin) with the same effect (Goldsmith et al., 1998, 

Socolovsky et al., 1997). Further in support of the permissive role, ectopic 

expression of the survival factor BCL-2 in haematopoietic progenitor cell lines 
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led to the differentiation of these cell lines independent of cytokines (Fairbairn et 

al., 1993). Ectopic expression of BCL-2 in vivo also rescued T-cell defects and 

monocyte defects in IL-7 and M-CSF deficient mice respectively (Fairbairn et 

al., 1993). There are several in vivo experiments using transgenic approaches 

that also `suggest the permissive role of cytokines. Stoffel et al targeted the 

cytoplasmic domain of the G-CSF receptor gene (CSF3R) to the c-MPL locus to 

create a mouse with a G-CSFR-c-MPL chimeric receptor (Stoffel et al., 1999). 

These chimeric receptors were able to replace c-MPL functionally even though 

the cytoplasmic domain was that of G-CSFR. The mice did not develop 

thrombocytopenia or show an increase in granulocytic cells; again supporting 

the permissive role of cytokine signalling (Stoffel et al., 1999). 

However, there are several experiments in favour of the ‘instructive’ role of 

cytokines. Expression of IL2Rβ (β-chain of the IL-2 receptor) in CLPs led to the 

formation of GM colonies while wild type CLPs only formed B cell colonies 

(Kondo et al., 2000). IL2Rβ in this case did not merely provide survival signal to 

the CLPs; as the ectopic expression of Bcl-2 gene did not cause this CLPs to 

GM conversion observed by ectopic expression of IL2Rβ (Kondo et al., 2000). 

This result was interpreted such that this lymphoid to GM conversion was due to 

up-regulation of GM-CSFR in the IL2Rβ expressing CLPs. Therefore, the 

human GM-CSFR gene (α and β chain) was ectopically expressed in CLPs 

(Iwasaki-Arai et al., 2003) followed by stimulation of these cells with human 

recombinant GM-CSF. This also induced a similar CLP to GM conversion. 

However, IL2R signalling did not show an instructive role in pre-T cells or pro-B 

cells (Iwasaki-Arai et al., 2003). Similarly, transgenic hGM-CSFR expression in 
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MEPs showed only a permissive role in the commitment of MegE (Iwasaki-Arai 

et al., 2003). Therefore, ectopic IL2R and GM-CSFR expression shows 

instructive role in myeloid commitment only in cell-context dependent manner.  

FLT3 is expressed in ST-HCS and MPPs and FLT3 expressing MPPs rapidly 

give rise to B and T-lymphoid cells (Sitnicka et al., 2003) (see 1.1.1). Mice 

lacking FLT3 or FLT3 ligand show severely reduced number of CLPs. IL7Rα (α 

subunit of the IL-7 receptor) is expressed on CLPs, B-cells and T-cells (Sitnicka 

et al., 2003). Mice lacking IL-7 or IL-7α show severe defects in T and B-cell 

differentiation. Mice lacking both FLT3 and IL-7R show total absence of B-cells 

in foetal and adult haematopoiesis (Sitnicka et al., 2003) It is therefore, likely 

that IL-7 and FLT3 signalling ‘instructs’ the B-cell specific transcription factors, 

thereby establishing the B-cell gene expression signature (Laiosa et al., 2006a). 

Recently Schroeder and colleagues used bio-imaging techniques to track the 

differentiation of individual mouse HSCs and demonstrated that M-CSF and G-

CSF can instruct lineage choice (Rieger et al., 2009). Taken together, the above 

studies suggest that cytokines can act permissively to provide a general survival 

signal to cells that has already determined their cell fate option under instruction 

from other critical lineage determining factors (transcription factors). However, 

under specific cellular contexts certain cytokines have been shown to instruct 

cell fate option in a way that is more critical than just providing survival signal. 
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1.1.6 

The identity of any cell, be it stem or committed, is defined by its ‘gene 

expression signature’ i.e. the set of genes that are expressed in that particular 

cell at the given time. This gene expression pattern is determined by the pattern 

of transcription factor expression (see sections 1.1.7 and 1.1.8). Transcription 

factors are DNA binding proteins that bind specific sequences at the cis-

regulatory elements of genes (see section 1.2) and regulate their expression. 

Binding of transcription factors at these elements (i.e. enhancers or promoters) 

of genes can either activate or repress the expression of a gene.  

Role of transcription factors in haematopoiesis 

Transcription factors SCL (stem cell leukaemia) /TAL1, RUNX1 and GFI1 are 

transcription factors essential for the establishment of haematopoiesis 

(reviewed in (Schutte et al., 2012). Scl knockout mice are embryonic lethal at 

embryonic day 9.5 (Shivdasani et al., 1995). Runx1 knockout mice die between 

embryonic day 12.5-13.5 due to block in development of definitive 

haematopoiesis (Wang et al., 1996b). HSCs lacking Gfi1 undergo rapid 

proliferation but are unable to sustain long-term haematopoiesis and are die by 

embryonic day 15 (Hock et al., 2004). 

A particular cell fate option is defined by the subset of these genes that are 

expressed in that particular cell type at that given time. Therefore spatio-

temporal regulation of gene activity is essential to cellular differentiation and cell 

fate identity. Transcription factors interact with each other and regulatory 

elements of other key target genes and form a complex interaction network that 

determines a cell’s genetic signature and hence its identity  (Schutte et al., 
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2012).  Figure 1.4 shows a selection of network motifs found in mammalian 

gene regulatory networks (see figure 1.4). 

 

Figure 1.4: Schematic diagram showing a selection of motifs commonly 
found in mammalian gene regulatory network (Schutte et al., 2012). Genes 

form complex regulatory networks in organisms whereby one gene either 

activates or represses one or more genes. The above cartoon shows few 

examples of gene regulatory networks. 

It has been proposed that key lineage determining decisions rely on a few 

‘master regulators’ or ‘lineage determining’ transcription factors. These 

transcription factors activate target genes that are specific to a particular lineage 

and repress other genes that are required for alternative lineages. A few 

examples of such crucial transcription factors include CEBPα, PU.1, GATA1 

and PAX5 which are discussed in sections 1.1.7, 1.1.8 and 1.4 in greater details 

with respect to lymphopoiesis/B-cell development and myelopoiesis. The study 

of single gene locus to elucidate regulatory elements complemented with 
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genome-wide ChIP-sequencing experiments are slowly but steadily revealing a 

comprehensive understanding of the various transcription factors and their 

target genes (building complex gene regulatory networks) for haematopoietic 

differentiation (Schutte et al., 2012). 

1.1.7

The generation of myeloid cells (i.e. erythroid, megakaryocytic, granulocytic and 

monocytic cells) in the bone marrow is defined as myelopoiesis. Myelopoiesis 

involves several binary cell-fate decisions mediated by key transcription factors 

that play a crucial role in the development of mature myeloid cells (see figure 

1.5) 

 Myelopoiesis 

The first major ‘branching’ in the ‘haematopoietic tree’ occurs with the 

bifurcation of the megakaryocyte-erythrocyte progenitors (MEPs) from the 

lympho-myeloid lineage option (see figure 1.1 and section 1.1.2). The 

megakaryocyte-erythrocyte vs. the lympho-myeloid cell fate outcome of a 

multipotent progenitor is determined by the interplay between two critical 

transcription factors PU.1 and GATA-1 (Laiosa et al., 2006b). PU.1 (along with 

C/EBP proteins) favours the lympho-myeloid outcome while GATA-1 (and its 

interaction with Friend of GATA-1 i.e. FOG-1) favours the megakaryocyte-

erythrocyte fate option (Scott et al., 1994, Orkin et al., 1998). 

 MEPE26 are avian progenitors that are transformed with an E26 virus 

expressing the Myb-Ets oncogene. When this oncogene is inactivated these 

cells differentiate to avian erythrocytes and thrombocytes but they can also be 
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stimulated to form myeloblasts through the activation of the RAS or PKC 

pathway (Graf et al., 1992). Ectopic expression of GATA-1 in myeloblasts 

induces the formation of MEPE26 cells (Kulessa et al., 1995). Ectopic expression 

of PU.1 in MEPE26 cells, on the other hand, causes reprogramming of these 

cells to form myeloblasts (Nerlov and Graf, 1998). Ectopic expression of GATA-

1 in GMPs and C-KIT+CD34+ progenitor cells with restricted GM potential leads 

to the formation of MegE colonies under culture condition in significant numbers 

(Iwasaki et al., 2003, Heyworth et al., 2002). In zebrafish models, reducing the 

dosage of GATA-1 by morpholinos causes conversion of erythroid cells to 

myeloid cells; while lowering the dosage of PU.1 induces a switch between 

myeloid and erythroid lineages (Galloway et al., 2005, Rhodes et al., 2005). 

These experiments reveal that the dosage or stoichiometry of two key 

transcription factors can determine the cell fate option of an early 

haematopoietic progenitor. 

GATA-1 and PU.1 determine MegE vs. lympho-myeloid cell fate option via 

antagonising each other’s transactivation activity through protein-protein 

interaction (Rekhtman et al., 1999, Nerlov et al., 2000, Zhang et al., 2000). They 

bind to each other to form a PU.1: GATA-1 complex. This complex antagonizes 

PU.1 through hindering the interaction of PU.1 with c-JUN (Zhang et al., 1999). 

On the other hand this complex blocks the transactivation activity of GATA-1 by 

recruiting Rb protein to the GATA-1 target genes (MegE genes) followed by 

chromatin remodelling and repression of these genes (Stopka et al., 2005).  
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Once a multipotent progenitor (MPP) resolves the lympho-myeloid vs. 

megakaryocyte-erythrocyte cell fate option it either forms a ‘Megakaryocyte-

Erythrocyte Progenitor’ (MEP) or a ‘Lymphoid-primed multipotent progenitor’ 

(LMPP). The MEPs further need to get resolved to an erythrocytic or a 

thrombocytic cell fate option. This happens via the counteraction of EKLF and 

FLI-1 (Starck et al., 2003). High FLI -1 expression drives thrombocytic outcome. 

EKLF on the other hand drives erythrocytic outcome of the megakaryocyte-

erythrocyte progenitor (Starck et al., 2003). LMPPs also further get resolved into 

either myeloid or lymphoid linage.  The LMPPs when resolved into the myeloid 

cell fate gives rise to granulocytes and macrophages via a common granulocyte 

macrophage progenitor (GMP) (see section 1.1.2 and figure 1.1). It has been 

shown that the dosage of PU.1 expression is critical for the determination of B 

cell vs. macrophage development in the context of LMPPs (DeKoter and Singh, 

2000). Myeloid cells are specified by a high dosage of PU.1 expression 

(DeKoter and Singh, 2000, Laslo et al., 2008). 

GMPs are primarily regulated by PU.1 and CEBP/ α (Laslo et al., 2008). PU.1 

and CEBP/α co-operatively regulate genes that specify the myeloid lineage 

such as Csf1r, Csf3r and Csf2r (Tenen, 2003, Friedman, 2002). Mice deficient 

in PU.1 completely lacks Myelomonocytic cells (DeKoter et al., 1998). 

Conditional deletion of Pu.1 in adult bone marrow causes complete loss of 

CMPs and GMPs (Iwasaki et al., 2005, Dakic et al., 2005). Mice deficient in 

C/ebpα lack neutrophils and eosinophils and conditional deletion in adult bone 

marrow leads to the absence of GMPs and reduction in the number of CMPs 

(Zhang et al., 2004b, Zhang et al., 1997). Conditional deletion of C/ebpα 
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specifically in GMPs does not show any phenotype (Zhang et al., 2004b). This 

indicates that while C/EBPα is absolutely necessary for the development of 

GMPs it is not needed for terminal differentiation and maturation of granulocytes 

and macrophages (Laiosa et al., 2006a)  

GMPs get resolved into several different mature myeloid cell types: mast cells, 

neutrophils, eosinophils, basophils (together referred to as granulocytes) and 

macrophages (see figure 1.1). PU.1 and C/EBPα are needed for the 

development of both macrophages and neutrophils. For the development of 

eosinophils and basophils C/EBPα co-operates with GATA-2 (Laslo et al., 2006, 

Laslo et al., 2008). 

It has been suggested that the relative concentration of PU.1 and C/EBPα 

determines macrophage vs. neutrophil development (Dahl et al., 2003). PU.1 is 

expressed at low levels in GMPs and this regulates a gene expression that is 

mixed for both macrophages and neutrophils (Dahl et al., 2003). At higher PU.1 

concentration this mixed gene expression pattern gets refined to a gene 

expression pattern that specifies macrophages via the regulation of crucial 

secondary cell-fate determinants such as EGR-1/2 and GFI-1 (Dahl et al., 

2003). EGR1 and 2 upregulates myeloid specific genes while down-regulating 

the neutrophils specific genes. GFI-1 on the other hand down-regulates 

macrophage specific genes and activates neutrophil specific genes in 

conjunction with C/EBPα (Dahl et al., 2003, Laslo et al., 2008) thereby 

establishing a complex gene regulatory circuit (see figure 1.5). 
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CSF-1 receptor (Csf1r) expression in differentiating myeloid precursors is 

absolutely crucial for the development of macrophages (Dai et al., 2002). 

Krysinska et al. showed by induction of PU.1 in a Pu.1-/- progenitor (that does 

not express CSF-1R) that the Csf1r gene gets activated in two distinct steps. 

Low doses of PU.1 keeps the Csf1r promoter primed but this does not allow 

robust expression of CSF-1R protein. With increased PU.1 expression EGR-2 is 

up-regulated and this along with PU.1 reorganizes the chromatin at the Csf1r 

intronic regulatory element (FIRE) and allows expression of CSF-1R (Krysinska 

et al., 2007). 

The development of eosinophils and basophils depend on C/EBPα and GATA-2 

(Laslo et al., 2008). The order of induction of C/EBPα and GATA-2 determines 

the eosinophil or basophil cell fate option. Sequential induction of these two 

transcription factors in CLPs which normally does not express either of these 

transcription factors shed light on the order of induction of these two 

transcription factors required for the specification of eosinophil or basophil. 

When C/EBPα was induced followed by GATA-2 eosinophils were generated 

but if GATA-2 was expressed followed by C/EBPα, then basophils were 

generated (Iwasaki et al., 2006). 

Myelopoiesis therefore involves several transcription factors that dictate along 

with cytokines and signalling the cell-fate choices at every branching point 

within the haematopoietic hierarchy.  Figure 1.5 shows the complex interaction 

of transcription factors at various branching points during myelopoiesis (see 

figure 1.5). 
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Figure 1.5: A complex network of transcription factors make binary 
lineage choices to regulate myeloid cell fate (Laslo et al., 2008) The scheme 

shows the pathways of myelopoiesis along with the various transcription factors 

that determine the cell-fate choices within the myeloid linage.  

1.1.8

Lymphopoiesis is the generation of lymphocytes (i.e. B cells, T cells and Natural 

killer (NK) Cells) in the bone marrow and thymus. As discussed in section 1.1.2 

HSCs are heterogeneous and some of these HSCs are pre-destined to be 

lymphoid cells and have a non-random/distinct gene expression pattern that 

specifies this fate (

 Lymphopoiesis 

Dykstra et al., 2007). However the first definite branching out 

of the lymphoid lineage from the erythro-myeloid lineage occurs at the step 

when LMPPs give rise to common lymphoid progenitors (CLPs) that are 
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capable of giving rise to B-cells, T-cells and NK cells (see figure 1.1). CLPs 

were originally identified by Kondo and Weismann as a Linaege-SCA-1low c-

KITlowIL7Rα+ population within the adult bone marrow (Kondo et al., 1997). 

Other than CLPs, an early lymphoid progenitor (a possible predecessor of the 

CLP) has also been described to exist in small numbers within the LSK 

population (Igarashi et al., 2002). Furthermore a T-cell restricted progenitor 

called the Early T cell progenitor (ETP) has also been described (Allman et al., 

2003, Schwarz and Bhandoola, 2004). 

It is largely perceived that an HSC resembles a myeloid progenitor more than a 

lymphoid progenitor in terms of its gene-expression pattern. However with 

gradual loss in self-renewal capacity genes such and Flt3 and Notch-1 get up-

regulated from LT-HSCs to LMPPs with the concomitant down-regulation of 

Gata-1 and Gata--2 (Christensen and Weissman, 2001, Sitnicka et al., 2002, 

Kikuchi et al., 2005, Forsberg et al., 2005, Laiosa et al., 2006a). FLT3 is 

required for the generation of CLPs (Sitnicka et al., 2002). FLT3 and its ligand 

together with PU.1 upregulates IL7Rα which in turn up-regulates EBF-1 that is 

essential for B cell development (Kikuchi et al., 2005). 

The IKAROS family of proteins is essential for development of lymphocytes 

(Georgopoulos et al., 1992, Georgopoulos et al., 1994, Wang et al., 1996a). 

HSCs from Ikaros-null mice lack FLT3 and have impaired ability to repopulate 

and to differentiate into lymphocytes (Nichogiannopoulou et al., 1999). Ikaros-

null mice lack all B cells, NK cells and fetal T-cells (Allman et al., 2003, Wang et 

al., 1996a). However, in Ikaros-null mice myeloid differentiation is unaffected 

(Nichogiannopoulou et al., 1999). The IKAROS family of proteins are therefore 
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very important transcription factors that specify lymphoid lineage in very early 

haematopoietic progenitors (Yoshida et al., 2006). These proteins are thought 

to target lineage-determining genes by chromatin remodelling via interactions 

with NuRD and SWI/SNF complexes (Kim et al., 1999, O'Neill et al., 2000). 

NK cells are large granular lymphocytes that arise from the CLP. They form a 

crucial part of innate immune system. These are cytotoxic cells that respond to 

viral infections etc. by secretion of interferons. Mice deficient in Ikaros lack NK- 

cells (

Natural Killer cell lineage 

Wang et al., 1996a). Pu.1 deficient mice show a reduced number of NK-

cells (Colucci et al., 2001) and mice deficient in Id2 show a defect in the 

transport of NK cells to the periphery (Yokota et al., 1999, Ikawa et al., 2001). 

These experiments imply that IKAROS, PU.1 and ID proteins play important 

roles in the development of NK cells (Laiosa et al., 2006a). 

T cells are lymphocytes that play a very important role in cell-mediated 

immunity. These cells arise in the bone marrow and mature in the thymus and 

hence the name ‘T-cells’. One of the defining features of the T-cell is the 

presence of a fully re-arranged T cell receptor (TCR) on the cellular membrane. 

The T-cell receptor plays crucial role in antigen recognition and T cell activation 

and commitment to CD4+ or CD8+ cell fate. There are various subcategories of 

T-cells based on their surface markers and their immune functions.  

T cell development  
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T-helper cells (TH) cells are usually CD4+ cells that recognise antigen presented 

by the MHC II complex. Upon antigen binding these cells undergo activation 

and become effector TH cells which produce cytokines and stimulate the activity 

of B-cells (see next section) and cytotoxic T-cells (TC). TC cells are usually CD8+ 

and they bind antigen presented on the MHC I complex and also divide to 

become effector TC cells that kill infected or malignant cells. Upon activation TH 

and TC cells not only divide to form respective effector T cells but they also form 

memory T-cells. Memory T cells can either be CD4+ or CD8+. These cells 

persist for long after an infection has been resolved. They are capable of rabidly 

expanding on re-exposure to the same infection/antigen in future and hence 

they provide an immune memory to the system (Smith-Garvin et al., 2009).  

T cells arise from the CLPs or the ETP. ETPs arise from LMPPs due to 

increased NOTCH signalling. NOTCH1 has been shown to down-regulate B cell 

specifying gene program to promote T-cell development at the expense of B 

cells (Hoflinger et al., 2004). Inactivation of NOTCH1 or CSL (transcriptional 

partner of NOTCH1, see section 1.1.4) blocks T-cell development at the earliest 

T-cell progenitor stage. Mice deficient in NOTCH1 also show a similar block in 

T-cell development (Radtke et al., 1999, Han et al., 2002). Expression of 

constitutively activated NOTCH1in fetal-liver derived haematopoietic progenitors 

or culturing of these progenitor cells on OP9 stroma that constitutively secretes 

the NOTCH1 ligand Delta1, induces T-cell development form these progenitors 

at the expense of B cells and NK cells (Schmitt et al., 2004b, Schmitt et al., 

2004a). It has also been shown that a transcription factor called LRF inhibits 

NOTCH1 signalling in the bone marrow. Inactivation of LRF in HSCs, leads to 
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the precocious generation of T-lineage progeny directly from HSCs; due to up-

regulation of NOTCH1 signalling (Maeda et al., 2007). These experiments 

together indicate that NOTCH1 signalling is crucial for T-cell development. 

Apart from NOTCH1, the transcription factor GATA3 is also very important for 

T-cell development. Mice lacking GATA-3 show a block in T cell development at 

an early stage (Ting et al., 1996). E2A and HEB are very important for T cell 

receptor rearrangement (Tremblay et al., 2003). E2A and HEB form a 

heterodimeric complex that activates genes required for TCR rearrangement 

and signalling. 

B cells are an important part of the adaptive immune system. They are 

generated in the bone marrow. B-cells are the precursors of plasma cells that 

produce antibodies and hence provide humoral immunity complementing the 

cell-mediated immunity provided by T-cells. 

B-cell development 

B cells arise from common lymphoid progenitors via a pro-B-cell stage (CD34+ 

CD19+ CD10+), large and small Pre-B-cells (CD34- CD19+) through to mature 

IgM+ B-cells (LeBien, 2000). The VDJ recombination of the heavy chain of the 

immunoglobulin occurs at the pro-B cell stage and requires RAG-1 and RAG2 

proteins (Jung et al., 2006). The expression of the pre-B cell receptors (pre-

BCR) with a fully rearranged immunoglobulin heavy chain and a surrogate light 

chain is typical of the pre-B cell stage. Signalling through pre-BCR leads to the 
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VJ recombination of the immunoglobulin light chain leading to the formation of a 

fully functional B-cell receptor (BCR) (Jung et al., 2006). 

B-cell development requires the orchestrated functioning of several transcription 

factors including IKAROS, PU.1, E2A, EBF1 and PAX5 (Laiosa et al., 2006a). 

As indicated earlier IKAROS is essential for lymphocyte development and the 

lack of IKAROS in vivo leads to complete loss of B cells (Georgopoulos et al., 

1994). PU.1 concentration has been shown to be of critical importance for the 

specification of B cell vs. macrophage cell fate in LMPPs (DeKoter and Singh, 

2000). A low level of PU.1 is required for B cell development while macrophage 

development requires 4-5 fold higher PU.1 concentration (Laslo et al., 2008) . 

This lineage specific regulation of PU.1 concentration is achieved through two 

distinct auto-regulatory loops at the PU.1 locus in B cells and macrophages. In 

B cell precursors, transcription factors  such as E2A and FOXO1 activate the -

14kb upstream regulatory element which is also bound by PU.1 and drives an 

intermediate level of PU.1 expression needed for B cell development (Leddin et 

al., 2011). In myeloid progenitors CEBPα along with PU.1 binds the -14kb URE 

and activates a myeloid specific enhancer at -12 kb which is bound by PU.1 

activated genes such as EGR1 and drives high levels of PU.1 expression 

(Leddin et al., 2011). 

Mice deficient in PU.1 shows impaired B cell differentiation (DeKoter et al., 

2002, Medina et al., 2004). However, PU.1 is not strictly required for B cell 

formation (Ye et al., 2005). Conditional deletion of Pu.1 in pro-B cells does not 

impair B- cell formation (Ye et al., 2005). Experiments show that PU.1 activates 

the Ebf gene via IL7-R signalling (Kikuchi et al., 2005). However EBF can be 
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induced by E47: an isomer of E2A, or other members of the E-box family of 

transcription factors (Bain et al., 1994). IL7 receptor signalling regulates the 

earliest events of B cell development (Miller et al., 2002). Stimulation with IL7 is 

sufficient to induce B cell differentiation in CLPs under culture condition. IL7-/- or 

IL7-R-/- mice show a block in B cell differentiation at the pre-pro-B-cell stage. 

This defect can be rescued by re-expression of EBF (Dias et al., 2005). Thus 

IL7 signalling controls B cell development through activation of Ebf (Laslo et al., 

2008). 

EBF1 or early B cell factor 1 is essential for the development of B cells. Loss of 

EBF1 blocks B cell development at the pro-B cell stage prior to the initiation of 

BCR rearrangements (Lin and Grosschedl, 1995). EBF1 is activated by E2A 

and also by PU.1 via IL7-R signalling (Kikuchi et al., 2005, Dias et al., 2005). It 

has also been shown that E2A and EBF along with FOXO1 (either as E2A and 

EBF or as E2A and FOXO1) bind cis- regulatory elements of target genes 

(transcription factors, signalling and survival factors) in order to specify B-cell 

fate (Lin et al., 2010). 

One of the most important targets of EBF is the master regulator of B cell 

commitment: PAX5 (Decker et al., 2009). PAX5 is reviewed in greater detail in 

section 1.4. PAX5 up-regulates B-cell specific genes such as CD19 and Mpo1 

(Cobaleda et al., 2007) and down regulates lineage inappropriate genes such 

as Csf1r (Tagoh et al., 2006b). PAX5 also down-regulates Blimp1 which is 

responsible for terminal differentiation to plasma cells (Cobaleda et al., 2007). In 

mice lacking PAX5, B-cell development gets stalled at the pro-B cell stage 

(Urbanek et al., 1994, Nutt et al., 1997). Under culture conditions these pro-B 
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cells can be differentiated into other haematopoietic lineages but not B-cells 

(Nutt et al., 1997). Furthermore deletion of Pax5 in B cells leads to the aberrant 

up-regulation of myeloid genes such Csf1r, Csf2r and CSf3r and also T cell 

transcription factor gene Notch 1 (Nutt et al., 1999, Nutt et al., 1998, Souabni et 

al., 2002). Taken together these results indicate that PAX5 is essential for 

commitment to B cell lineage and also for the maintenance of B-cell identity. 

Figure 1.6 illustrates the main transcription factors influencing binary lineage 

choices in lymphopoiesis (see figure 1.6). 

 

Figure 1.6: Schematic diagram showing the role of transcription factors in 
making binary cell fate choices during lymphopoiesis. The scheme shows 

the pathways of lymphopoiesis along with the key transcription factors that 

determine the cell-fate choices within the lymphoid lineage. 
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1.2 

The eukaryotic genome is very large and highly complex. Many are estimated to 

have between 20,000 and 25,000 genes. In a given cell at a given time only a 

subset of this vast and complex genome is transcribed. To understand cell 

differentiation in the context of haematopoiesis or any other differentiation 

pathway it is very important to understand eukaryotic transcription and how it is 

regulated in a spatio-temporal manner. The complexity of the eukaryotic 

genome makes the mechanism controlling its spatio-temporal regulation also 

highly complex. To understand the regulation of eukaryotic genes, we first need 

to understand the structure of a typical eukaryotic gene along with its cis-

regulatory regions and also how these genes are organized to form a compact 

structure such as the eukaryotic chromosome. 

 Eukaryotic Transcription and its regulation 

1.2.1

The basic behaviour of a gene was described about a century ago by Gregor 

Johann Mendel. According to Mendel’s definition, genes are “some factors” that 

pass on from parent to off-spring in an unchanged manner. Genes exist in two 

alternative states called ‘alleles’. Diploid organisms have two sets of 

chromosomes; one is inherited from the father and the other from the mother. 

Genes behave in a way similar to chromosomes; i.e. one allele of each gene is 

inherited form either parent. Therefore the corollary to this is that genes are 

carried on chromosomes.  

 The structure of a typical Eukaryotic gene 
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Frederick Griffith’s transformation experiment with Streptococcus pneumonia in 

1928 (Griffith, 1928) followed by Hershey and Chases experiment in 1952 

involving infection of bacteria with bacteriophages containing radio-labelled 

DNA and protein components provided the first evidence that ‘DNA and not 

‘protein’ is  the genetic material (Hershey, 1952). Therefore a gene may be 

defined as a sequence of DNA that codes for a messenger RNA (by a process 

called ‘transcription’) that in turn codes for a functional protein  (translation) and 

this meaningful protein coding sequence of DNA is inherited as part of a 

chromosome from parent to off-spring. 

Only about 2% of the vast eukaryotic genome is accounted for by protein coding 

sequence. Each eukaryotic gene consists of transcriptional regulatory regions 

that can either be directly upstream (i.e. at the 5’ end) or may be scattered over 

large distances. These regulatory regions are called ‘cis’-regulatory elements 

and they are recognised and bound by ‘trans’-acting transcription factors during 

transcription. Broadly there are two types of cis-regulatory elements: promoters 

and long-range regulatory elements (reviewed in (Lee and Young, 2000). 

Recently genome-wide profiling of 125 diverse cell and tissue types from the 

Stamatoyannopoulos lab has identified a vast number of cis-regulatory 

elements which include experimentally verified enhancers and promoters and 

also a large number of novel elements which have been inked to their 

respective genes, various chromatin features  and transcription (Thurman et al., 

2012). 
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 A gene promoter is defined as a cis-regulatory element that is required for 

initiation of transcription or increases the frequency of transcriptional initiation 

when placed close to the transcription initiation site. A gene promoter consists 

of the ‘core promoter’ and ‘proximal promoter elements’.  

Promoters 

Core promoter element

Novina and Roy, 1996

: The core promoter element is about 100 bps long and 

consists of the transcription initiation site (that binds the RNA Polymerase II 

complex). About 24%-32% of eukaryotic promoters contain an AT-rich 

sequence ~ 20-30bps away from the transcription start site. This is called the 

TATA box and serves as the binding site for TBP ( ). 

However most gene promoters are TATA-less and may contain an initiator 

sequence (Inr) or contain neither of these two motifs (Smale et al., 1998). On-

going research is aimed at identifying more motifs that better describe promoter 

elements. 

Proximal promoter element

Novina and Roy, 1996

: The proximal promoter element is present 5’ of the 

core promoter element and the transcription start site. These elements increase 

the frequency of transcription initiation when placed in proximity of the 

transcription start site. Proximal promoter elements bind transcription factors 

that influence transcription. These elements often have recognition sites for 

CAAT-binding proteins (CBP) or CAAT-enhancer binding protein (CEBP) or Sp1 

that recognises the GC box ( , Neph et al., 2012). The 

binding of these transcription factors stabilises the basal transcription machinery 
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(see section 1.2.2) and enhances the slow rate of transcription that is achieved 

by the basal transcription machinery and the core promoter alone. 

As indicated in the beginning of this chapter, eukaryotic genes are regulated in 

a complex lineage specific manner. To achieve this complex regulation, cis-

regulatory elements other than promoters are required. The long range 

regulatory elements: enhancers, silencers, insulators and locus control regions; 

serve this purpose. 

Long range regulatory elements 

Enhancers

Blackwood and Kadonaga, 1998

: Enhancers are DNA sequence elements that are themselves 

incapable of transcription, but are able to dramatically increase the rate of 

transcription from a promoter element. Enhancers can be at great distances 

from the gene promoter and be upstream, downstream or intronic and be in 

either orientation ( ). Enhancer elements bind 

transcription factors and co-activators that form a complex called the 

‘enhanseosome’ (Yie et al., 1999). The activator proteins bound on an enhancer 

act via chromatin remodelling so as to make the chromatin more active (see 

section 1.2.5). The ‘enhanseosome’ also interacts with basal transcription 

machinery (see section 1.2.2) at the core promoter by looping in order to 

activate distant promoters (Su et al., 1990). Enhancer activity is tissue specific 

(i.e. enhancers get activated by specific transcription factors in specific cell 

types only) and hence it accounts for tissue specific expression of the genes 

that they activate (Lee and Young, 2000). 
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Silencers

Lee and Young, 2000

: Silencers are very similar to enhancers, except for the fact that they 

repress the activity of a promoter rather than increasing it. These elements can 

also act at large distances and at any orientation. Silencers bind proteins that 

compact the chromatin (see section 1.2.3) further thereby inhibiting transcription 

( , Baniahmad et al., 1990). 

Insulators

 An insulator is effective in blocking enhancer/silencer or LCR activity only when 

bound to CTCF proteins (

: The presence of enhancers and silencers acting on promoters at 

large distances raises the question as to how the activity of the cis-regulatory 

elements is restricted to the appropriate promoter. One of the classic examples 

of an insulator sequence is in the β-globin locus. The β-globin locus is under the 

control of a locus control region (LCR) (see next section) that stimulates β-

globin expression in erythroid cells. In order to prevent this LCR from 

stimulating flanking genes in the region, the β-globin gene is flanked by two 

insulator sequences. 

Phillips and Corces, 2009, Farrell et al., 2002) A 

CTCF bound insulator blocks chromatin remodelling or looping actions of 

enhancers/ silencers from propagating over large distances thereby restricting 

the actions of these regulatory elements to the appropriate genes (Farrell et al., 

2002, Burgess-Beusse et al., 2002) and reviewed in (Lee and Young, 2000). 

Locus Control regions

Grosveld et al., 

1987

: LCRs or locus control regions were originally 

characterised in the mid-1980s in the β-globin gene cluster (

). The β-globin gene cluster consists of four functional β-globin genes and 

one pseudogene. A region of DNA sequence 10-20 kb upstream of this cluster 
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was shown to confer high levels of expression from this gene cluster both in 

vivo and in transgenic experiments (Grosveld et al., 1987) and reviewed in 

(Bulger and Groudine, 1999, Li et al., 1999). The deletion of the β-globin LCR 

leads to a complete lack of expression of any of the β-globin genes in the 

cluster even though the other enhancers and promoters of the genes remain 

intact (Fang et al., 2005, Bender et al., 2000). This is the cause of the lethal 

condition known as Hispanic thalassemia wherein no haemoglobin is produced 

(Bender et al., 2006). Since the entire β-globin locus is under the control of this 

regulatory element it is called the ‘locus control region’. Following 

characterisation of the LCR in the β-globin locus, similar locus control regions 

have been defined in the α-globin cluster, the major histocompatibility complex 

locus and the CD2 and lysozyme genes (Li et al., 1999). 

1.2.2 

Transcription is the process by which the information encoded within a protein 

coding gene is converted into RNA. The process of transcription invariably 

starts at the ‘transcription start site’ which is a part of the core promoter element 

(see section 1.2.1) with the assembly of an apparatus that is known as the 

‘basal transcription machinery’ The basal transcription machinery of protein 

encoding genes primarily consists of: a) the 12-subunit RNA polymerase II 

complex b) the general transcription factors and c) co-activators/mediators 

reviewed in (

The basal transcription machinery 

Lee and Young, 2000, Fuda et al., 2009).  All protein coding genes 

in eukaryotes are transcribed by the RNA polymerase II enzyme. The basal 

transcription machinery for these genes assembles at the core promoter in a 

step-wise manner. The general transcription factor (GTF) TFIID complex which 
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consists of TBP (TATA binding protein) and TAFs (TBP associated factors) 

binds the DNA at the TATA box or the initiator sequence within the core 

promoter element in the presence of another factor called the TFIIA.  

The TFIID/TFIIA/DNA complex is recognised by another GTF, TFIIB. This binds 

TFIID at the side opposite to that of TFIIA. The binding of TFIIB facilitates the 

recruitment of the RNA polymerase II enzyme in association with another factor:  

TFIIF. This complex is known as the initiator complex. TFIIB has also been 

shown by structural analysis to be of importance in holding the DNA in the 

correct orientation within the RNA polymerase II complex thereby allowing 

transcription to occur (Lee and Young, 2000). 

The eukaryotic RNA polymerase II enzyme is complex consisting of 12 subunits 

of RPB1-12. The largest subunit of the RNA polymerase II contains a C-terminal 

repeat domain (CTD) consisting of 52 (in human) repeats of Tyr-Ser-Pro-Thr-

Ser-Pro-Ser (Corden, 1990, Young, 1991). The phosphorylation state of the 

serine residues at the CTD repeats is closely related to the functional status of 

the RNA polymerase II complex. RNA polymerase II is recruited to the gene 

promoters in a un-phoshorylated state as part of the initiator complex as 

described above. As transcription initiates the polymerase II complex gets 

phosphorylated by two specific kinases at serine 5 followed by serine 2 residues 

of the CTD repeats (Dvir et al., 1997). 

The recruitment of TFIIF to the initiator complex facilitates the recruitment of two 

other factors namely TFIIE and TFIIH. Of these two factors, TFIIH is of 

particular importance as this possesses the CDK7 subunit that has the kinase 
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activity that is needed to phosphorylate serine 5 residue on the CTD repeats of 

the RNA polymerase II (Dvir et al., 1997, Lee and Young, 2000). Mutations in 

the kinase subunit of TFIIH affect CTD phosphorylation both in vivo (Akoulitchev 

et al., 1995, Tirode et al., 1999) and in vitro (Makela et al., 1995). The 

phosphorylation at serine 5 allows transcriptional initiation to occur. After being 

phosphorylated the RNA polymerase II complex transcribes about 20-30 base 

pairs and pauses. Thereafter pTEFb (positive transcription elongation factor b) 

is recruited which possess the CDK9 kinase and cyclin T subunits (Lis et al., 

2000, Price, 2000) and mediates the phosphorylation of the RNA polymerase II 

CTD repeat at the serine 2 residue. This phosphorylation step releases the 

paused RNA polymerase II complex and allows effective transcriptional 

elongation (Price, 2000). TFIIF moves along with the RNA polymerase II 

enzyme, however TFIIA and TFIID remains attached to the promoter and 

facilitates subsequent recruitment of TFIIB and RNA polymerase II for repeated 

cycles of transcription (Lee and Young, 2000). Figure 1.7 illustrates the 

assembly of the basal transcription machinery at a typical eukaryotic protein 

coding gene promoter (see figure 1.7).  
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Figure 1.7: The Basal transcription machinery. A cartoon showing the step-

wise assembly of the basal transcription factors at a typical eukaryotic gene and 

also the steps leading to transcriptional initiation and elongation. 
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1.2.3 

If the DNA that constitutes this large human genome were to be extended as a 

two dimensional double helix, it would be of an enormous length. However, this 

DNA is contained within the nucleus of a cell which is a rather tiny structure with 

an average diameter of 6µm. Therefore, DNA within a living cell does not exist 

as a two-dimensional double helix, but as a compact structure that is neatly 

packaged into the nucleus. In fact DNA exists in complex with certain nucleo-

proteins (histones) and forms a compact structure called chromatin (reviewed in 

(

Chromatin Structure 

Cockerill, 2011, Bonifer and Cockerill, 2011). 

Nucleosomes are the building blocks of chromatin and consists of ~146 base 

pairs of DNA double helix wrapped around a symmetrical histone octamer 

containing two molecules each of H3,H4,H2A and H2B each  (Richmond et al., 

1984, Bakayev et al., 1977). High resolution structural analysis using X-ray 

crystallography has confirmed that H3-H4 heterodimers form a tetramer that 

loads onto 60 base pairs of DNA; this is followed by two H2A-H2B hetero-

dimers associating with the H3-H4 tetramer above and below respectively to 

form an octamer core (see figure 1.8). The DNA double helix wraps around the 

surface of this octamer and the genome exists as regularly spaced 

nucleosomes with a DNA repeat length of 180-200 base pairs  (Albright et al., 

1980, Simpson et al., 1978, Simpson, 1978). The amino-terminal tails of the 

core histone octamer, however, remains unstructured and exposed. These 

amino terminal tails undergo post-translational modifications that have been 

shown to have far reaching effects on chromatin structure and the activity of 

neighbouring genes (see section 1.2.4). The 200 base pairs spaced 
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nucleosomes loaded onto DNA can be loosely described as a ‘beads on string 

structure’ (Thoma et al., 1979). which constitutes the first stage of DNA 

compaction. This ‘bead on string’ structure is further folded onto itself to form 

more compact structures termed ‘solenoids’ (Allan et al., 1982). Histone H1 

plays an important role in the formation of such higher order chromatin 

structures (Thoma et al., 1979). Most nucleosomes recruit histone H1 to ‘seal 

off’ the core histone octamer. The core histone octamer along with histone H1 

and ~166 base pairs of DNA is called a ‘chromatosome’ (Albright et al., 1980). 

Under physiological condition of ion- concentration, chains of nucleosomes, with 

or without histone H1; folds into the 30nm fibre (Marsden and Laemmli, 1979). 

However, the exact nature of this structure is still an evolving field of research 

(Cockerill, 2011). 
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Figure 1.8: The structure of the nucleosome core. This cartoon diagram 

shows the assembly of histone on DNA to form nucleosome core histone 

octamer particle (Cockerill, 2011). 
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1.2.4 

The N-terminal tails of the histone proteins of the core nucleosome particle are 

subject to a variety of post-translational modifications. To date a number of 

different types of histone modifications (namely: acetylation, methylation, 

phosphorylation, ubiquitination, sumoylation, ADP-ribosylation and proline 

isomerisation) have been identified at various amino acid residues (lysine, 

arginine, serine, threonine and proline) of the histone tails. Table 1.1 lists the 

various modifications at the various possible histone tail residues (see table 

1.1). 

Chromatin modifications 

Studies over the last decade have identified the enzymes and the particular 

catalytic domains of these enzymes, responsible for the various chromatin 

modifications (Sterner and Berger, 2000, Zhang, 2006, Nowak and Corces, 

2004, Shilatifard, 2006, Cuthbert et al., 2004, Hassa et al., 2006, Nelson et al., 

2006). Similarly enzymes that erase most of these modifications have also been 

identified n (Kouzarides, 2007). These modifications are highly dynamic, i.e. 

they appear and disappear from the chromatin very quickly on receiving the 

appropriate stimuli (see section 1.2.9). However, extensive effort has been 

made by way of chromatin immuno-precipitation (ChIP) (Solomon et al., 1988) 

and chromatin immuno-precipitation coupled with high-throughput sequencing 

(Barski et al., 2007) to acquire a global view of the chromatin modifications and 

their biological functions. 
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The functional consequences of histone modifications are twofold: a) 

establishment of a chromatin environment and b) conduction of DNA based 

biological tasks wed in (Kouzarides, 2007). In this context chromatin 

environment means maintenance of ‘euchromatin’ (accessible chromatin) and 

‘heterochromatin’ (condensed inaccessible chromatin) and maintaining distinct 

boundaries between these two states (see section 1.2.6). DNA based biological 

tasks on the other hand refer to transcription of a gene, repair of damaged DNA, 

DNA replication or chromatin condensation.  

 

Table 1.1.1: Chromatin modifications. This table lists the various histone 

modifications on the different histone particles along with the corresponding 

residues modified (Kouzarides, 2007). 
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A large volume of ChIP-sequencing data has been produced that have 

identified several histone modifications genome-wide and many such data sets 

have been analysed by various bio-informatics exercises in order to produce a 

consolidated functional map of histone modifications and therefore a map of the 

chromatin environment across the whole genome. For example Keji Zhao’s 

group has produced ChIP-sequencing datasets for a large number of histone 

modifications (Barski et al., 2007). Such data sets (Barski et al., 2007, 

Mikkelsen et al., 2007) along with gene expression studies have helped 

researchers to associate certain histone modifications with actively transcribed 

chromatin while others with transcriptional inactivity. Studies over the years 

have shown that different modifications of the histone tails provide binding sites 

for different effector proteins that either activate or inactivate transcription and 

also mediate re-enforcement of the active/inactive state. For example 

acetylation of lysine residues (e.g. H3K9) is bound by bromodomain or PHD 

domain containing proteins (Jin et al., 2011, Dhalluin et al., 1999) while 

methylation of H3K9 recruits HP1 that in turn recruits DNA methyl-transferases 

which further reinforces an inactive state (Allan et al., 2012, Yun et al., 2011). 

This combinatorial modifications of the histone tails and the recognition of these 

modified histone tails by reader proteins greatly extend the potential of the 

information contained by the genetic code itself and this is referred to as the 

‘histone code’ (Jenuwein and Allis, 2001). 
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Histone acetylation is always associated with active chromatin. This 

modification affects lysine residues on H3, H4, H2A and H2B histones in the 

nucleosome octamer (table 1.1.1). Acetylation of histones is carried out by 

enzymes broadly termed as histone acetyl transferases (HATs). Some of the 

well- known HATs include HAT1, p300/CBP, GCN5 (

Acetylation  

Kouzarides, 2007, Sterner 

and Berger, 2000). Reversal of acetylation is associated with transcriptional 

repression. Histone de-acetylases (HDACs) are classified into three distinct 

classes: class I, II and III. HDACs are part of numerous signalling pathways and 

repressive complexes and do not exhibit a lot of specificity for particular acetyl 

groups (Kouzarides, 2007, Vaquero et al., 2006).  It is proposed that acetylation 

‘unravels’ the chromatin and makes it more accessible by affecting contact 

between histones on adjacent nucleosomes by neutralising the charge on lysine 

residues (Schubeler et al., 2004). Biophysical studies indicate that inter-

nucleosomal interaction is crucial for higher order chromatin structure. A more 

direct proof of this comes from the work of Shogren-Knaak et al, where they 

chemically ligated an acetylated histone tail (acetylated at H4K16) to a 

recombinant histone core particle (Shogren-Knaak and Peterson, 2006, 

Shogren-Knaak et al., 2006). This modification had a negative effect on the 

formation of the 30nm fibre. Acetylated histones have been shown to recruit 

bromo-domain (Dhalluin et al., 1999) and the tandem PHD domain (Zeng et al., 

2010) containing proteins that facilitate chromatin activation (Shogren-Knaak et 

al., 2006). 
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Phosphorylation targets serine residues on H3, H4 and H2B and threonine in 

H3 (see table 1.1.1). Histone phosphorylation is mediated by serine/threonine 

kinases such as MSK1/2, RSK1/2, Haspin (

Phosphorylation 

Nowak and Corces, 2004). MSK 

and RSK kinases are downstream of several MAPkinase signalling pathways 

(Cargnello and Roux, 2011). Phosphorylation is also likely to affect chromatin 

structure via change in charge on amino acid residue in the histone tails (Nowak 

and Corces, 2004). Phosphorylation of H3S10 and H3S28  has been shown to 

be involved in the activation of ‘immediate early genes’ such as c-Jun and c-Fos 

by counteracting the action of HP1 and polycomb repressive complexes 

respectively (Macdonald et al., 2005, Lau and Cheung, 2011b, Lau and 

Cheung, 2011a, Gehani et al., 2010, Mahadevan et al., 1991). 

 Methylation affects lysine on H3 and arginine residues on H3 and H4 (table 

1.1.1). A lysine residue may be mono, di or tri methylated. Methylation is 

mediated by specific lysine methyl-transferases containing the SET catalytic 

domain or protein arginine methyl-transferases (PRMTs). SUV39H1, the MLL 

family of enzymes, ASH2, EZH2 are well known examples of SET domain 

containing lysine methyl-transferases.  The arginine methyl-transferases include 

PRMT4/5, CARM1 (

Methylation 

Kouzarides, 2007).  

Methylation may be associated with active or repressed chromatin depending 

on residues modified (Sims et al., 2003, Zhang and Reinberg, 2001). 

Methylation of H3K9 and H3K27 (see section 1.2.10) is associated with 
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transcriptional repression. H3K9me3 is the mark of ‘constitutive 

heterochromatin’ that recruits chromo-domain containing HP1 (heterochromatin 

protein 1) that leads to further chromatin compaction and finally to DNA 

methylation (Munari et al., 2012, Bannister et al., 2001). Recent work has 

discovered that two lysine methyl-transferases PRDM3 and PRDM16 that 

mono-methylates H3K9 in the cytoplasm which gets converted to H3K9me3 by 

SUV39H1 in the nucleus to form heterochromatin. This study has shown that 

H3K9me1 plays a crucial role in the initiation of heterochromatin formation; 

depletion of Prdm3 and Prdm16 abrogates H3K9me1 and prevents the 

SUV39h-dependent H3K9me3 and de-represses satellite transcription (Pinheiro 

et al., 2012). H3K27me3 is the hallmark of polycomb repression (see section 

1.3) and is installed by the SET domain containing EZH2 methyl-trasnferase 

(Beisel and Paro, 2011). In contrast methylation of H3K4 is associated with 

active transcription. Studies associate H3K4me3 to actively transcribed 

transcriptional start sites at promoters with high CpG content (Bernstein et al., 

2005, Kim et al., 2005). Sites of H3K4me3 are often accompanied by other 

features of active chromatin i.e. acetylated histone, DNAse I hypersensitivity 

(see section 1.2.6), H3.3 histone variant and recruitment of RNA polymerase II 

(Wang et al., 2008, Hon et al., 2009a, Hon et al., 2009b, Goldberg et al., 2010). 

The lysine 4 residue on H3 is also subject to di and mono-methylation. 

H3K4me2 is the precursor to the tri-methyl mark. Orford et al identified a subset 

of gene promoters in haematopoietic progenitors containing the H3K4me2 mark 

instead of H3K4me3. These genes corresponded to gene promoters with low 

CpG content and were not expressed in progenitors but would be expressed 

once differentiation of these progenitors was induced (Orford et al., 2008). Thus 
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H3K4me2 marks promoters that are poised for activation. Enrichment of 

H3K4me1 along with the lack of H3K4me3 is the chromatin signature of 

enhancers (Heintzman et al., 2007). Using this definition Heintzman et al 

identified 55,000 putative enhancers in five different human cell types 

(Heintzman et al., 2009, Heintzman and Ren, 2009). H3K27ac has also been 

shown to be enriched at enhancers (Rada-Iglesias et al., 2011) and is a general 

mark of active chromatin (Creyghton et al., 2010). H3K36me3 and H3K79me3 

are found in the gene body of transcribed genes (Li et al., 2007, Barski et al., 

2007, Heintzman et al., 2007). Levels of H3K36me3 have been shown to 

correlate with the levels of gene expression (Barski et al., 2007). This indicates 

the likely interaction of methyl-transferase enzymes with the elongating RNA 

Polymerase II (Mikkelsen et al., 2007, Li et al., 2007). It is hypothesized that the 

methyl-transferase interacts with the transcribing RNA polymerase II enzyme 

and deposits the H3K36me3 mark as transcription occurs. 

De-methylation of lysine residues is mediated by de-methylases which have so 

far been shown to have two distinct catalytic domains with two distinct de-

methylation reactions: LSD1 and JmjC domains respectively (Kouzarides, 

2007). LSD1 de-methylates H3K4 and represses transcription (Shi et al., 2004), 

while JmjC domain containing de-methylases remove H3K9me3, HK36me3 and 

H3K27me3 and activate transcription (Yamane et al., 2006, Tsukada et al., 

2006, Cloos et al., 2006, Chen et al., 2006, Fodor et al., 2006, Agger et al., 

2009). An enzyme with a methyl-arginine de-methylating activity is yet to be 

discovered. However, the process of de-amination has been shown to correlate 

with the removal of methyl-arginine modifications. This process involves the 
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conversion of arginine to citrulline (Cuthbert et al., 2004, Wang et al., 2004b).In 

vivo data has shown that mono-methylated arginines are capable of undergoing 

de-amination to form citrulline which prevents further methylation (Wang et al., 

2004b). 

Ubiquitination is another interesting modification. Ubiquitin is a 76 amino acid 

protein that is coupled via its C-terminal carboxyl group to the free amino group 

of a lysine residue on an H2A or H2B histone tail (

Ubiquitination 

Zhang, 2003). Ubiquitination 

targets H2AK119 and H2BK120 residues and this modification is mediated by 

BMI1/RING1B (Wang et al., 2006) and RNF20/RNF40 ubiquitin ligases 

respectively (Zhu et al., 2005). H2AK119ub mediated by BMI1/RING1B (see 

section 1.3) is a consequence of polycomb repression and leads to block of 

transcriptional elongation and therefore gene repression (Wang et al., 2004a, 

Stock et al., 2007). Though the concept of H2AK119ub1 helping in chromatin 

compaction has been recently challenged (Whitcomb et al., 2012, Endoh et al., 

2012), largely H2AK119ub is crucial for the repression of polycomb targets 

(Endoh et al., 2012). On the contrary H2BK120 is an active mark. This 

modification promotes H3K4 and Dot1L mediated H3K79 methylation and 

therefore promotes active chromatin (Whitcomb et al., 2012). 

It is evident from the above description that a large variety of histone 

modifications occur at the N-terminal histone tails that recruit different effector 

proteins which dictate transcriptional activity or inactivity. The occurrence of 

‘Cross-talk’ between histone modifications 
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such a large variety of modifications on amino acid residues that are closely 

situated in space and time is likely to cause ‘cross-talk’ between these 

modifications. Mechanistically such communications occur at different levels. 

Firstly since a large variety of modifications occur at the same lysine residue 

some modifications are mutually exclusive. For example H3K27me3 and 

H3K27ac are mutually exclusive modifications of the same lysine residue (Lau 

and Cheung, 2011a). Secondly modifications of adjacent residues on the same 

histone often mask the functional effect of another modification. 

Phosphorylation of H3S10 masks H3K9me3 modifications hindering the binding 

to HP1 to the H3K9me3 mark (Fischle et al., 2005). Similarly 

H3K28Ph/H3K27me3 double modification leads to the reactivation of genes 

repressed by the H3K27me3 mark (Gehani et al., 2010). In fact, the methyl-

phospho switch is hypothesized to act as a general switch from an inactive to 

an active chromatin state. Furthermore the catalytic activity of an enzyme may 

be compromised due to the modification of its substrate recognition site. 

Conversely an enzyme may be able to recognise its substrate more effectively 

due to the presence of an adjacent modification. Isomerisation of H3P30 affects 

the methylation of H3K36 by SET2 (Nelson et al., 2006) while the HAT GCN5 is 

able to recognise H3 far more effectively when H3S10 is phosphorylated 

(Clements et al., 2003). Histone modifications ‘talk’ to each other even when 

they are on separate histone tails, e.g. H2BK120ub is required for methylation 

of H3K4 and H3K79 (Whitcomb et al., 2012). Therefore chromatin/histone 

modifications form a complex dynamic network that interacts with a variety of 

different effector molecules (Turner, 2012). Within this network there is 

continuous ‘cross-talk’ between the covalent histone modifications thereby 
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specifying the chromatin environment and helping in activities such as 

transcriptional regulation, chromatin condensation etc. 

1.2.5

Transcription requires the binding of RNA polymerase II and the assembly of 

the basal transcription machinery at promoters.  Therefore, for transcription to 

occur it is important that promoters, enhancers and other cis-regulatory 

elements are accessible to regulatory proteins that bind to these elements in 

trans. As discussed in section 1.2.3 DNA is normally packaged into chromatin 

that forms a compact condensed structure. For regulatory proteins to access 

the DNA for transcription, chromatin needs to ‘unravel’. This can be achieved by 

installing histone modifications that change charges on amino acid residues 

(see section 1.2.4). However, a more direct way of ’unravelling’ the DNA is by 

disruption or repositioning of nucleosomes (

 Chromatin remodelling 

Cairns, 2009).  

The classical view of chromatin is that it consists of regularly spaced 

nucleosomes (bead-on-string structure) that folds up on itself to form higher 

order chromatin structures. Nucleosomes impede the access of regulatory 

proteins to DNA which is required for gene activation (Wang et al., 2011b). 

Nucleosome positioning pattern and its dynamic regulation allows regulatory 

factors to access underlying genetic information. Research has shown that 

regulatory elements (promoters and enhancers) are nucleosome depleted 

regions where regulatory factors can access the underlying DNA while 

transcribed regions have well positioned nucleosomal arrays (Bai and Morozov, 

2010). It has been known for more than a decade that active genes are 
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enriched in nucleosomes that lack a H2A-H2B dimer of the nucleosome core 

particle (Baer and Rhodes, 1983). As the elongating RNA polymerase 

advances, it recruits facilitator of active transcription (FACT). This displaces one 

of the H2A-H2B dimer and partially disrupts the nucleosome. The H2A-H2B 

dimer is then replaced once the transcribing RNA polymerase II complex has 

passed (Reinberg and Sims, 2006). Histone H2A is also known to be replaced  

in active or poised gene promoters with a variant called the H2A.Z at the +1 or -

1 positioned nucleosomes (Guillemette et al., 2005, Raisner et al., 2005, Zhang 

et al., 2005). In this context a nucleosome is disrupted to replace a canonical 

H2A with a variant H2A.Z, which is deposited in a replication independent 

manner by members of the SWR1 family of chromatin remodellers (Mizuguchi 

et al., 2004). The H2A.Z variant is differs from the canonical H2A in its amino-

terminal tail sequence. Key amino acid residues of H2A.Z are changed and this 

alters its interaction with the H3/H4 tetramer (Cairns, 2009). Another variant 

histone is the H3.3 which is found at genes that are actively being transcribed or 

has been recently transcribed (Chow et al., 2005, Schwartz and Ahmad, 2005). 

Structurally H3.3 is not very different from the canonical H3.1, however, it has 

recently been shown that nucleosomes containing H3.3 variant is far less stable 

compared to nucleosomes containing the canonical H3.1 histone (Jin and 

Felsenfeld, 2007). Furthermore the stability of nucleosomes carrying H2A.Z 

depends on the histone H3 variant present. H2A.Z-H3.1 nucleosomes are 

(counter-intuitively) more stable than H2A-H3.1 nucleosome (Jin and 

Felsenfeld, 2007, Henikoff, 2008). However, a nucleosome consisting of H2A.Z 

and H3.3 histones is considered to be the least stable (Henikoff, 2008). 
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It is evident that histones of the nucleosome core particle are critical for 

chromatin structure and the level of its compaction. Histone H1 interacts with 

the linker DNA as well as with the nucleosome core and is crucial for 

maintaining higher order chromatin structure. Loss of H1 is sufficient to reduce 

the level of chromatin compaction and H1 is reduced in active genes compared 

to inactive genes (Garrard, 1991, Woodcock et al., 2006). A recent study has 

shown that H4K16ac and loss of histone H1 is required for the de-compaction of 

the 30-nm fibre in vitro (Robinson et al., 2008). 

Chromatin remodelling is mediated by specialised chromatin remodellers that 

are classified into three families: ISWI, SWI/SNF and SWR1 (SWR 1 deposits 

the H2A.Z variant and has been discussed above). These chromatin 

remodellers use the energy from ATP hydrolysis to reorganise the nucleosomes 

by sliding/evicting or disrupting them ii (Cairns, 2009) . So far we have 

discussed chromatin remodelling in the context of ‘unravelling’ the chromatin in 

order to facilitate transcription. However, chromatin remodelling can do the 

contrary as well. Except for NURF and ISWI1B, all other members of the ISWI 

family of chromatin remodellers slide nucleosomes in order to create the equally 

spaced array of nucleosomes that is associated with chromatin compaction and 

transcriptional repression (Kagalwala et al., 2004). In fact, the ISW family of 

remodellers specifically act at regions that are devoid of active the H4K16ac 

marks (Corona et al., 2002). The SWI/SNF family of remodellers, unlike ISWI, is 

capable of both sliding and evicting nucleosomes. They function to disorganise 

nucleosomes and activate genes (Narlikar et al., 2002, Saha et al., 2006). The 

SWI/SNF complex consists of bromo domain containing proteins (SWI2/SNF2 
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subunit) (Awad and Hassan, 2008) and can recognise and bind to acetylated 

histone tails and further relax chromatin compaction through nucleosome 

repositioning (Narlikar et al., 2002, Cairns, 2009). So far no specific DNA 

sequence binding ability of SWI/SNF has been identified. However, several 

studies have identified different mechanisms by which the SWI/SNF complex is 

targeted to specific nucleosomes. SWI/SNF has been shown to interact with the 

glucocorticoid receptor and other steroid receptors, the basal transcription 

machinery, GAGA factors and certain DNA structures that target this complex to 

appropriate target promoters (Cairns, 2009). 

 

Figure 1.9: Cartoon diagram showing mechanisms of action of ISWI, 
SWI/SNF and SWR 1 family of chromatin remodellers (Cairns, 2009). ISWI 

family of chromatin remodellers slide histones while the SWI/SNF family of 

histone remodellers slide or eject histones. SWR 1 family of histone remodellers 

insert H2A.Z histone variants. 
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1.2.6

In the context of assembly of basal transcription factors, histone modifications 

and chromatin remodelling; ‘active’ and ‘inactive’ chromatin has been referred to 

a number of times. It is therefore important to clearly define the scientific 

meaning and the basic features of ‘active’ vs. ‘inactive’ chromatin. The bulk of 

the human genome consists of tightly packed nucleosomes where the DNA 

sequence is hidden. This corresponds to mitotic chromosome or chromosomes 

in centromeres or telomeres. These regions of tight chromatin compaction show 

very little transcriptional activity and are termed ‘heterochromatin’ and are what 

has so far in the text been referred to as ‘inactive’ chromatin. Regions of the 

chromatin that is less tightly packed and have a more dispersed appearance 

under the electron microscope are termed ‘euchromatin’. Euchromatin shows 

high transcriptional activity (

 Active and Inactive Chromatin 

Lee and Young, 2000) 

In Drosophila cells chromatin interaction map of 53 broadly selected chromatin 

associated proteins was generated using DamID. This DamID profile of 53 

proteins showed that the genome can be segmented into five distinct groups 

that are defined by unique yet overlapping combinations of proteins. This study 

subdivided the genome into five different types of chromatin denoted as: ‘green, 

yellow, red, blue and black’ chromatin. ‘Green’ and ‘blue’ chromatins are 

inactive and are defined by HP1 and polycomb binding respectively. They 

identified a third kind of repressive chromatin ‘black’ chromatin that is distinct 

from the classical heterochromatin and is depleted in HP1, SU(VAR)3-9 and 

polycomb proteins. This class of chromatin is defined by a previously unknown 

combination of proteins. Furthermore, this study also subdivided the 
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euchromatin into two distinct groups ‘red’ and ‘yellow’ chromatin mainly on the 

basis of disparate levels of H3K36me3. Active genes within the ‘red’ chromatin 

exhibited a lack of the H3K36me3 mark which is a mark of active transcriptional 

elongation (Filion et al., 2010).  

It has long been recognised that actively transcribed genes have cis-regulatory 

regions accessible to the transcription factors and the basal transcription 

machinery. This makes these regions hypersensitive to digestion with 

nucleases such as DNaseI (

Cis-Regulatory regions of active genes are hypersensitive to DNAseI digestion 

Stalder et al., 1980, Lawson et al., 1980, Smith et 

al., 1984). DNaseI is an endo-nuclease that cleaves DNA in a sequence 

independent manner (some preference to cut adjacent to pyrimidines) at 

phosphor-diester bonds to yield 5’ phospho-polynucleotides and free hydroxyl 

groups. Controlled DNaseI digestion and identification of double strand cuts by 

Southern blotting or high-throughput sequencing is a an important tool used to 

identify cis-regulatory regions of genes by way of identifying DNaseI 

hypersensitive sites (DHSs) (Tuan and London, 1984). 

To visualise such sites chromatin is treated with increasing concentration of 

DNaseI enzyme in vivo. Following this treatment, the genomic DNA is isolated, 

purified and subject to restriction digestion with desired restriction enzymes. 

This DNA is then electrophoresed on an agarose gel and double strand cuts 

made by DNaseI is identified by southern blotting using probes against regions 

(usually cis-regulatory elements of genes) of interest (Cockerill, 2000). 
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Figure 1.10: DNaseI hypersensitive site mapping. A cartoon diagram 

showing the method of identifying cis-regulatory elements of a gene by 

determining DNase I hypersensitive sites by Southern blotting. 

1.2.7

Although under most circumstances genes that have DNase I hypersensitive 

sites (DHSs) and have active histone modifications such as H3K4me3 are 

transcriptionally active, there are some exceptions where the DNA is DNase I 

hypersensitive and the histones carry both active H3K4me3 and inactive 

H3K27me3 mark (

 Bivalent and poised chromatin  

Herz et al., 2009). Such domains are termed ‘bivalent 

domains’. Originally ‘bivalent domains’ were identified in mouse and human 

embryonic stem cells (Pan et al., 2007, Zhao et al., 2007, Bernstein et al., 2006) 

and later on even in haematopoietic stem and progenitor cells (Cui et al., 2009). 

Genes that are bivalently marked are repressed but poised for transcription. 
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Developmentally important transcription factors were shown to fall under this 

category (Herz et al., 2009). It was observed that when these stem cells/ 

progenitors were subjected to differentiation the bivalent marks were resolved 

and either the active H3K4me3 or the inactive H3K27me3 mark persisted (Cui 

et al., 2009, Mohn et al., 2008). 

1.2.8 

The initiation of transcription is regulated by the interaction of key transcription 

factors with response elements such as promoters and enhancers. 

Transcription factors are regulatory proteins that bind cis-regulatory elements of 

genes in trans. Transcription factors include: basal transcription factors that 

interact with the RNA polymerase II complex to from the basal transcription 

machinery (BTM) (see section 1.2.2), transcription factors that recognise short 

DNA sequence response elements (TF binding sites) and orchestrates the 

regulation of transcription via changes in chromatin and recruitment of BTM and 

a third class of factors termed as co-activator/co-repressors. Co-activator/co-

repressors themselves do not bind the DNA but mediate protein-protein 

interactions with transcription factors and the BTM or chromatin modifying 

enzymes and chromatin re-modellers (

Role of transcription factors in regulation of transcription initiation 

Lee and Young, 2000). 

Recognition of short DNA sequence response elements by transcription factors 

(TFs) is the key to transcriptional initiation (Georges et al., 2010, Li et al., 2008). 

These TF binding sites or response elements most often are present in gene 

promoters and enhancers (Gondor and Ohlsson, 2009). These TF binding sites 

generally occur in clusters. Transcription factors along with their co-activators 
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bind these response elements and form very large protein assemblies. The 

current paradigm entails that a transcription factor bears a special DNA binding 

domain that recognises a specific set of DNA sequences (Pan et al., 2010). To 

date several DNA binding domains in transcription factors have been identified 

such as: helix-loop-helix, homeobox, helix-turn-helix and leucine zipper domain 

(Lee and Young, 2000). 

However, this current paradigm completely overlooks the complexity added by 

posttranslational modifications of transcription factors and the co-

activators/repressors. So far only a subset of all binding sites for a given 

transcription factor has been defined experimentally. Computer algorithms have 

therefore been designed to scan the genome and predict TF binding elements. 

These algorithms typically construct weighted binding matrices for transcription 

factors based on experimentally defined binding consensus sequences (Erill 

and O'Neill, 2009, Lyakhov et al., 2008, Mahony and Benos, 2007, Mahony et 

al., 2007, Veprintsev and Fersht, 2008). Pan et al has reviewed the current 

evolving mechanisms of transcription factor-binding sequence interaction and 

selection (Pan et al., 2007). 

So far from our discussion of eukaryotic transcription it is clear that chromatin is 

unravelled via the dynamic interplay between transcription factors, chromatin 

remodellers/modifiers and the basal transcription machinery. However, the 

question arises that what comes first. Several studies have shown FOXA and 

GATA family of transcription factors to possess this ability to bind to chromatin 

prior to its activation and initiating the process of chromatin and transcriptional 
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activation (Smale, 2010). These factors are termed ‘pioneer factors’ and in a 

way serve a crucial function in certain circumstances (Zaret and Carroll, 2011). 

1.2.9

The activation of a gene is a sequential process and is under the control of 

transcription factors and the epigenetic regulatory machinery which in turn, 

receive instructions from outside signals. The extracellular/environmental cues 

that cells receive from its surroundings are translated into meaningful 

information as a cascade of changes within the cytoplasm via signal 

transduction. These changes are finally translated to the nucleus by 

transcription factors which recruit chromatin modifying enzymes that modulate 

the local chromatin thereby activating or repressing transcription of a gene. 

Genes, involved in development and differentiation, are largely regulated via 

this mechanism (

 Signalling communicates with chromatin to regulate transcription 

Mohammad and Baylin, 2010). 

In sections 1.1.4 and 1.1.5 role of Wnt, NOTCH, TGFβ and cytokine/growth 

factor signalling in haematopoiesis has been discussed (sections 1.1.4 and 

1.1.5). Similar signalling pathways are also involved in maintenance and 

differentiation of embryonic stem cells (ESCs) (Marson et al., 2008, Xu et al., 

2008, Bray, 2006, Kopan and Ilagan, 2009) and function by affecting key 

downstream transcription factors and chromatin modifying enzymes. A large 

number of chromatin modifying enzymes (histone methyl-transferases, DNA 

methyl-transferases, histone acetyl-transferases, histone de-acetylases, histone 

de-methylases) that establish such heritable epigenetic states are regulated by 
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signal transduction (Richly et al., 2010). Transcription factors are also under the 

control of signalling molecules.  

Hormone receptors, such as those that bind retinoic acid or oestrogen (RAR 

and ER) act as DNA-binding transcription factors in the nucleus (Sun et al., 

1998). Upon hormone stimulation they translocate to the nucleus and function 

as DNA-binding transcription factors that mediate activation/repression of target 

genes . Activation of mouse mammary tumour virus (MMTV) promoter occurs 

through glucocorticoid and progesterone receptors or through progestin 

activated ERK signalling (Vicent et al., 2010). The activation of MMTV and other 

progesterone receptor target genes is coupled with the activity of HATs (Vicent 

et al., 2010). Signal transducer and activator of transcription (STAT) proteins 

are another class of transcription factors that translates cellular signals into 

changes in transcriptional state of target genes within the nucleus. STAT4 has 

been shown to promote active chromatin, while STAT6 are known to associate 

with transcriptionally inactive chromatin (Wei et al., 2010, Korzus et al., 1998). 

STAT3 provides survival signal in cells by affecting genes involved in apoptosis. 

In ES cells STAT3 is activated by LIF signalling and in turn it activates the Klf 

and Sox2 genes which are important in the maintenance of pluripotency in the 

stem cells (Niwa et al., 2009). NOTCH effector RBP-J interacts with KDM5a de-

methylates H3K4me3 and mediates repression of target genes (Liefke et al., 

2010). TGFβ signalling influences SMAD proteins that activates or represses 

target genes in a cell-context dependent manner (Massague et al., 2005).  

Signalling also impacts the balance between polycomb complexes and the 

opposing trithorax group (reviewed in detail in section 1.3). It has been 
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established that posttranslational modification of both polycomb and trithorax 

proteins mediate its association/dissociation to the chromatin at target loci. The 

signalling mediated modification of polycomb group proteins is discussed in 

greater detail in section 1.3. During muscle differentiation trithorax group 

associated Ash2L methyl-transferase mediating tri-methylation of H3K4 are 

recruited to target genes by Mef2d. This interaction between Ash2L and Mef2d 

is mediated by the phosphorylation of Mef2d by P38 kinase which is a 

component of the mitogen activated protein (MAP) kinase pathway (Rampalli et 

al., 2007). 

There are several examples where signalling molecules directly affect histones 

in order to alter gene expression. Phosphorylation of H3S10 is mediated by 

signalling pathways such as ERK2, RSK2, MSK1, JNK or P38 (He et al., 2003, 

Zhong et al., 2000, Zhong et al., 2001a, Zhong et al., 2001b, Soloaga et al., 

2003). The H3 serine 10 phosphorylation by Aurora B kinase is of prime 

importance in activation of genes that are methylated at H3K9 and are bound by 

heterochromatin protein 1 (HP1) (Fischle et al., 2005). Recently it has been 

shown by ChIP-sequencing that during differentiation of stem cells into neurons, 

JNK binds to a large set of active promoters (Tiwari et al., 2012). The same 

study identified H3S10 to be a direct substrate of JNK and showed that 

promoters bound by JNK carried phosphorylated H3S10. Small molecule 

mediated inhibition of JNK reduced the H3S10 phosphorylation at the target 

genes (Tiwari et al., 2012). Similarly, other studies have shown that MSK1 

(mitogen and stress activated protein kinase-1) phosphorylates H3S28 that 
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mediates de-repression of polycomb target genes (Gehani et al., 2010, Lau and 

Cheung, 2011a). 

Signalling molecules also directly modify transcription factors. c-Jun is a 

member of the AP1 complex and is an immediate early response gene that is 

activated in response to mitogen, stress signals and differentiation signals. Jun 

kinase (JNK) is known to phosphorylate the AP1 complex (Baker et al., 1992). 

Plasma cell differentiation is mediated by BLIMP-1 (B-lymphocyte induced 

maturation protein-1) upon stimulation with antigen. In mature B-cells, prior to 

differentiation into plasma cells, BLIMP-1 is repressed by PAX5. It has recently 

been shown that upon antigen stimulation, B- cell receptor mediated activation 

of ERK1/2, phosphorylates PAX5. This phosphorylated PAX5 is unable to 

repress BLIMP-1 leading to the activation of BLIMP-1 which drives plasma cell 

differentiation via concomitant repression of PAX5 (Yasuda et al., 2012). 

The above studies therefore make it evident that signalling ‘talks’ to 

transcription factors and also to chromatin in order to activate or repress genes. 

Signalling pathways communicate the ‘environmental cues’ from the 

surroundings to within the cell and alter gene regulation. This communication of 

extracellular information into the nucleus is of prime importance in development 

and cell fate choice. Even though the decision of an individual cell to 

activate/repress a particular gene seems to be ‘stochastic’, signalling appears to 

be the immediate cause for a cascade of cytoplasmic and nuclear events that 

lead to the activation/repression of a gene 
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1.2.10 

For correct development to occur in a timely manner genes need to be activated 

but genes not required in a specific lineage need to be repressed. Therefore the 

mechanisms governing the repression of a gene is just as important as the 

mechanisms governing its activation. 

Repression of eukaryotic transcription 

Repression of transcription involves targeting of the repression machinery to the 

DNA sequence/gene that is to be inactivated; this is followed by chromatin 

changes and then the maintenance of the repressed chromatin state through 

cell divisions to propagate the silenced state through generations (Beisel and 

Paro, 2011). Just like activator complexes, repressor complexes bind DNA 

sequence elements: ‘silencers’ and ‘promoters’ to mediate long range silencing 

of appropriate genes. There are several co-repressor proteins that are recruited 

to specific DNA sequences through protein-protein interaction with DNA-binding 

transcription factors. Groucho/Tup1 and Sir family of co-repressors are 

important repressor proteins that mediate long range gene silencing (Courey 

and Jia, 2001). Groucho/Tup1 family of co-repressors functionally interact with 

histone de-acetylases that establish a repressive chromatin environment (see 

section 1.2.4) (Chen et al., 1999, Choi et al., 1999, Brantjes et al., 2001, 

Watson et al., 2000, Wu et al., 2001). There are a number of co-repressors with 

histone de-acetylases activity. HDAC1 has been extensively characterised 

(Struhl, 1998). It is a part of repressive complexes such as Sin3A and NuRD 

(Knoepfler and Eisenman, 1999) and has also been shown to functionally 

interact with Groucho co-repressors. The SIR family of co-repressors also have 

histone de-acetylases activity and these proteins mediate long range repression 
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(Lustig, 1998, Grunstein, 1998). Several studies that show that co-repressors 

such as Groucho function not only by means of their HDAC activity but also via 

their interaction with the basal transcription machinery (Yu et al., 2001, Zaman 

et al., 2001). Apart from the recruitment of co-repressors by transcription 

factors, that directly mediate histone de-acetylation or talk to the BTM, there are 

additional mechanisms of gene silencing involving tri-methylation of the H3K9 

and H3K27 residues respectively. 

SET domain containing SUV39H1 mediates the tri-methylation of the H3K9 

residue. This modification is identified and bound to by a ‘chromo-domain’ 

containing protein called heterochromatin protein-1 (HP1). Once bound this 

further recruits more SUV39H1 and mediates the propagation of the H3K9me3 

mark leading to the formation of heterochromatin (Lomberk et al., 2006). 

SUV39H1and HP1 both recruits DNA methyl-transferases (Lomberk et al., 

2006) and H3K9me3 mark is most often succeeded by DNA methylation. 

Therefore once HP1 mediated heterochromatin is established the locus is then 

methylated at the DNA level and is repressed for long-term. 

Another parallel mechanism of gene repression involves polycomb repressive 

complexes. Similar to the HP1 mediated repression; polycomb repression 

requires a ‘chromodomain’ mediated recognition of H3K27me3 residue. It is 

also believed that following polycomb mediated repression; HP1 mediated 

heterochromatin formation takes over which in turn gives way to DNA 

methylation. Therefore there exists a hierarchical or step-wise recruitment of 

repression machineries for the silencing of a locus. In the next section we shall 

discuss polycomb repressive complexes; their mechanisms of recruitment to 
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target genes and mechanism of polycomb-mediated gene repression in greater 

detail (see section 1.3). 

1.3 

The polycomb group of proteins (hereafter referred to as PcG proteins) were 

initially identified in Drosophila melanogaster. These proteins play an important 

part in regulating the homeotic (Hox) gene in Drososphila (

Polycomb complexes 

Lewis, 1978). 

Mutations in the genes encoding PcG proteins lead to abnormal body patterning 

of flies due to aberrant expression of Hox genes in incorrect spatial territories 

(Struhl, 1981, Nusslein-Volhard et al., 1985, Zink and Paro, 1989). ChIP-

sequencing experiments in the years that followed have identified hundreds of 

other genes that are regulated by PcG proteins both in flies (Schwartz et al., 

2006) and mammals (Boyer et al., 2006, Lee et al., 2006). PcG protein targets 

include key transcription factors and signalling components such as the HOX 

cluster WNT, PAX and FOXO families important in development (Beisel and 

Paro, 2011). 

1.3.1

Research over the last decade has identified two principal classes of repressive 

complexes formed by these PcG proteins: PRC1 (polycomb repressive complex 

1) and PRC 2 (polycomb repressive complex 2). At its core the PRC2 complex 

consists of the ‘SET domain’ containing catalytic subunit called Enhancer of 

Zeste in flies and EZH2 in humans. To augment the catalytic activity of EZH2 

another subunit called the SUZ12 (Suppressor of Zeste) along with ESC (extra 

sex comb in Drsosphila) or EED (embryonic ectoderm development in 

 Polycomb repressive complexes 
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mammals) is required. Figure 1.11 shows the general composition of the PRC1 

and PRC2 complexes. The PRC1 complex is highly diverse in its composition. 

Multiple paralogues of each PcG genes exist allowing different combinations of 

subunits for the formation of the PRC1 complex. Broadly, in humans PRC1 

consists of an ubiquitin ligase subunit called RING1B/RING1, a chromo-domain 

containing CBX subunit (with many paralogues) that recognises the H3K27me3 

residue, BMI1 (paralogues include Mel18 and a number of other PCGF 

proteins) and PH1 subunits that augment the catalytic activity of RING1B 

respectively (Simon and Kingston, 2009, Eckert et al., 2011). 

 

Figure 1.11: Cartoon illustrating the general composition of PRC2 and 
PRC1 complexes (Eckert et al., 2011). Polycomb proteins form two repressive 

complexes. PRC2 mediates H3K27me3 via the EZH2 domain which is read and 

bound by the PRC1 complex which in turn allegedly blocks transcriptional 

elongation. 
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1.3.2

In D. melanogaster polycomb repressive complexes are recruited at specific 

DNA sequences called polycomb response element (PRE) (

 Recruitment of PRC2 to target genes 

Muller and Kassis, 

2006, Ringrose and Paro, 2007) by pleiohomeotic (PHO) (Mohd SArip, A, mol 

cell boil 2002) and the synergistic action of GAGA factors (Mahmoudi, t nucleic 

acids res, 2003). However in mammals an equivalent of a Drosophila PRE has 

so far not been identified. Genome wide ChIP sequencing analysis has 

identified a large number of PcG target genes (Schwartz et al., 2010, Schwartz 

et al., 2006, Bracken et al., 2006). Computational motif analysis at these target 

sites, however, has failed to reveal an enriched DNA motif that could be defined 

as the mammalian ‘PRE’. However, PcG complexes preferentially bind to un-

methylated CpG island promoters (Ku et al., 2008). Two recent studies have 

reported elements functioning as mammalian PREs (Sing et al., 2009, Woo et 

al., 2010). One has identified a 3-kb long element in the mouse MafB gene that 

contains a GAGA-factor binding-site and two palindromic YY1 binding-sites. 

This element is highly similar to the Drosophila PRE (Sing et al., 2009). YY1 

has been shown to function as a PcG protein in Drosphila in vivo (Atchison et 

al., 2003). In the second study a 1.8-kb element has been identified in the 

human HOXD11 and HOXD12 genes (called D11.12). This contains a cluster of 

four YY1 binding sites (Woo et al., 2010). A number of proteins have been 

implicated in targeting PRCs to its target genes in mammals. Recently a 

number of simultaneous studies identified JARID2 to associate with PRC2 at 

PcG target genes in mouse ES cells (Peng et al., 2009, Landeira et al., 2010, Li 

et al., 2010, Pasini et al., 2010, Shen et al., 2009). The AT-rich DNA sequence 

recognised by JARID2 is implicated in targeting PRC2 complex. Apart from this 
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several studies have identified long and short non-coding RNAs that recruit PcG 

proteins. One of the best known examples of this is in the inactivation of X 

chromosome. The long nc-RNA ‘Xist’ is required for X-inactivation (Brown et al., 

1992, Zhao et al., 2008). Xist has been shown to co-immuno-precipitate with the 

PRC2 component EZH2 (Pandey et al., 2008, Maenner et al., 2010). PRC1 can 

also be directed to inactivate X-chromosome by CBX7 protein in a RNA 

dependent manner (Yap et al., 2010). Furthermore, more recently transcription 

of short stem-and-loop non-coding RNA has been shown to interact with SUZ12 

subunit of the PRC2 complex and mediate repression of target genes in a 

manner similar to that of Xist (Kanhere et al., 2010). 

1.3.3 

The current accepted mechanism of PRC mediated gene silencing involves 

EZH2 mediated tri-methylation of H3K27 residue. This modification serves as a 

docking site for the PRC1 complex (

Mechanism of transcriptional repression mediated by polycomb repressive 

complexes 

Simon and Kingston, 2009). This was 

shown by the knockdown of the H3K27me3 de-methylase ‘UTX’ in human cells 

which resulted in increase of the H3K27me3 mark and a concomitant increase 

in PRC1 deposition at target genes (Lee et al., 2007). In another study, the viral 

methyl-transferase v-SET was used to tri-methylate H3K27 replacing PCR2. 

While loss of PRC2 led to loss of PRC1 targeting, v-SET mediated methylation 

of H3K27 restored PRC1 recruitment at target promoters (Mujtaba et al., 2008). 

The chromodomain containing CBX protein (Polycomb in Drosophila) is capable 

of recognising the H3K27me3 mark and has affinity to bind this mark (Kaustov 

et al., 2011). However, there are a large number of genomic loci that recruit the 
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PRC2 complex but not the PRC1 complex (Min et al., 2003). There are also a 

few examples of gene loci that show PRC1 accumulation independent of PRC2 

or H3K27me3 (Schoeftner et al., 2006, Yu et al., 2012, Pasini et al., 2007). 

Furthermore, although in D. melanogaster PRC1 accumulation peaks at PREs 

(Polycomb response elements –see section 1.3.2) the H3K27me3 mark is more 

widespread (Schwartz et al., 2006). Moreover, recently it has been shown in 

mouse embryonic stem cells that PRC1 is recruited by the H3K4me3 de-

methylase RBP2 and mediates gene repression independent of H3K27me3 or 

PRC2 recruitment (Simon and Kingston, 2009, Tavares et al., 2012).  

Once recruited, the PRC1 component RING1B mediates mono-ubiquitination of 

the H2AK119 residue (Cao et al., 2005). However, the mechanism of repression 

by PRC1/H2AK119ub1 is unclear. Possible repression mechanisms include 

blocking of recruitment of key transcription factors at promoters and enhancers 

of target genes, blocking of recruitment of RNA polymerase II and the basal 

transcription machinery or blocking the initiation or elongation of transcription. 

Many studies indicate that transcription factors and PRC1 can simultaneously 

bind their target sites (Bracken et al., 2006, Lee et al., 2006, Breiling et al., 

2001). Therefore the first scenario of blocking TF recruitment to promoters and 

enhancers is unlikely. RNA polymerase II too has been shown to be recruited to 

polycomb target sites (Bracken et al., 2006). Therefore the option that PRC1 

blocks RNA polymerase II recruitment can also be ruled out. However, PRC1 

has been shown to interact with the basal transcription machinery (Breiling et 

al., 2001, Saurin et al., 2001). A recent study using immobilized template 

recruitment experiments has shown that PRC1 disassembles the RNA 
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polymerase II pre-initiation complex by interfering with mediator proteins. 

However, it does not target TBP or TFIID (Lehmann et al., 2012). 

ChIP studies in mouse ES cells have identifies genes that are marked by both 

the activating H3K4me3 and the repressing H3K27me3 marks. Such genes are 

called ‘bivalent genes’ (see section 1.2.7) as they recruit RNA polymerase II but 

it remains paused (Pol II –phospho Serine 5) (Herz et al., 2009). These genes 

are also marked by the H2AK119Ub1 mark (Stock et al., 2007). Depletion of 

RING1/ RING1B led to the depletion of the H2AK119ub1 mark followed by 

conversion of the paused RNA polymerase II (phosphorylated at serine 5) into 

elongating RNA polymerase II (phosphorylated at serine 2) and the depression 

of these genes (Stock et al., 2007). This led to the hypothesis that PRC1 

mediated H2AK119ub1 blocks transcriptional elongation. Studies in Drosophila 

show classic PcG target genes contain paused polymerase II and hence 

support this notion (Srinivasan et al., 2008, Petruk et al., 2006). However, PRC1 

component RING1B has also been shown to repress target genes via chromatin 

compaction independent of the H2AK119ub1 mark (Eskeland et al., 2010). It is 

difficult to dissect the repressing mechanism of PRC1; it may be possible that 

the large numbers of PcG target genes are silenced in more than one way. 

1.3.4 

As outlined in section 1.3 polycomb repressive complexes target and repress 

genes encoding transcription factors and signalling components (

Signalling ‘talks’ to polycomb 

Beisel and 

Paro, 2011) important in differentiation of stem cells and development. These 

genes are re-activated in response to developmental signals. Polycomb is 
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therefore heavily regulated by signalling. Polycomb proteins themselves 

undergo post-translational modifications (ubiquitination, sumoylation and 

phosphorylation at various residues on different sub-units) down-stream of 

signalling pathways which regulate their association and dissociation from the 

chromatin and their repressive activity (Niessen et al., 2009). 

Signalling mediated phosphorylation of PcG proteins affects sub-cellular 

localisation, interaction within protein complexes, enzymatic activity and 

association/dissociation to chromatin of PcG proteins (Niessen et al., 2009). It 

has been shown that the PRC1 component BMI1 gets phosphorylated in a cell 

cycle dependent manner and its phosphorylation status inversely correlates with 

its chromatin association. At G1/S phase BMI1 is hypo-phosphorylated and is 

bound to the chromatin, whereas in G2/M phase BMI1 is hyper-phosphorylated 

and dissociates from chromatin (Voncken et al., 1999). MEL18 (PCGF6) has 

also been shown to be preferentially phosphorylated in the G2/M phase and is a 

substrate of CDK7 (Akasaka et al., 2002). The PRC2 component EZH2 also 

gets phosphorylated in a cell-cycle dependent manner. A study from Danny 

Reinberg’s lab shows that EZH2 gets phosphorylated at threonine 345 and 487 

by cyclin dependent kinase -1 (CDK1) and this facilitates its association with 

non-coding RNAs HOTAIR and Xist both of which have been implicated in 

recruitment of PRC2 to HOX genes and X-chromosome, respectively (Kaneko 

et al., 2010). Another study showed phosphorylation of EZH2 at threonine 350 

by CDK1 and CDK 2 (Chen et al., 2010). This study also showed that over-

expression of CDK1 and CDK2 repressed the EZH2 target gene Hoxa9, while 

depletion of CDK1 and CDK2 led to the expression of Hoxa9 (Chen et al., 
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2010). In another study Wei et al reported that phosphorylation of EZH2 at 

threonine 345 inhibited the methyl-transferase activity of EZH2 (Wei et al., 

2011) due to disruption of EZH2 interaction with SUZ12 and EED. However, this 

study contradicts results from Kaneko et al and Chan et al (Caretti et al., 2011). 

Extracellular signals such as AKT have been shown to phosphorylate serine 21 

residue of EZH2. This modification reduces EZH2’s affinity for H3 therefore 

impedes EZH2’s methyl-transferase activity (Cha et al., 2005). More recently 

P38α has been discovered to phosphorylate EZH2 at Thr372 which mediates 

Pax7 repression (Palacios et al., 2010). EZH2 in fact is phosphorylated at a 

large number of residues by diverse signals and the functional consequences of 

these modifications are largely cell context dependent. Carreti et has reviewed 

the diversity and functional consequences of the ‘Phospho-EZH ion’ 

comprehensively (Caretti et al., 2011)(see figure 1.12).  Interestingly it was 

shown that the opposing trithorax group of proteins are also phosphorylated in a 

cell-cycle dependent manner (Rampalli et al., 2007). This indicates that 

phosphorylation plays an important part in regulating the trithorax-polycomb 

balance at developmental genes. 
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Figure 1.12: Cartoon illustrating the various signalling pathways 
mediating phosphorylation of EZH2 protein (Caretti et al., 2011). The SET 

domain containing EZH2 protein is phosphorylated at a number of residues as 

indicated by several cell-cycle dependent kinases and MAP kinases. This 

phosphorylation of EZH2 regulates the binding of EZH2 to its target genes. 

1.3.5 

As polycomb represses genes that are often important developmental 

regulators, repression needs to be counteracted in a timely manner to allow 

differentiation and development to occur. A large proportion of modifications 

(phosphorylation in particular) of PcG proteins is mediated by various signalling 

pathways leading to the de-repression of their target genes (see section 1.3.4). 

This ensures that the developmental genes are de-repressed only in response 

to an extracellular signal; cell-cycle dependent genes are de-repressed in a 

cyclic order while immediate early response genes are briefly de-repressed in 

response to stress (

Counteraction of polycomb repression during development 

Sawarkar and Paro, 2010). 
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Several studies have identified mechanisms by way of which polycomb 

repression is counteracted. In myoblasts several genes are under polycomb 

repression and are de-repressed during myogenesis. The homeo-box TF Six4 

along with along with the histone de-methylase UTX binds these genes and 

mediates H3K27me3 de-methylation. This is followed by binding of MyoD 

(master regulator of muscle differentiation and development) and Mef2d. The 

final activation signal is provided by P38 MAPkinase that phosphorylates Mef2d 

which then recruits the trithorax component Ash2L which is part of the MLL 

H3K4 methyl-transferase complex. H3K4me3 counteracts polycomb mediated 

repression and leads to the activation of PcG target genes (see section 1.2.9) 

(Rampalli et al., 2007). Stress-induced signalling mediated by MSK1 which is 

downstream of MAPkinase signalling directly phosphorylates H3Serine 28 

residue that masks the H3K27me3 mark. This double mark is not recognised by 

PRC complexes which fail to bind target sequences. This leads to the de-

repression of immediate early response genes (Gehani et al., 2010). In a 

parallel study they showed that H3S28phosphorylation actually leads to the 

removal of H3K27me3 mark which gets replaced by the opposing H3K27ac 

mark leading to the de-repression of immediate early genes repressed by 

polycomb (Lau and Cheung, 2011a). In mouse ES cells NODAL signalling 

activates SMAD2/3 which then recruits JMJD3 to Nodal and Brachury loci 

where JMJD3 de-methylates H3K27me3 mark allowing the activation of Nodal 

and Brachury (Dahle et al., 2010). Signalling also mediates direct 

phosphorylation of PcG proteins (see section 1.3.4). As discussed above 

phosphorylation of EZH2 dictates it association and dissociation from the 

chromatin. JNK, MEK and P38 MAPkinases converge at a downstream kinase 
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called MAPKAP3 (3pK) (Ludwig et al., 1996). This has been shown to 

phosphorylate BMI1 mediating its dissociation from the chromatin (Voncken et 

al., 2005). In Drosophila activated JNK signalling has been shown to 

transcriptionally down-regulate PcG proteins leading to de-repression of target 

genes (Lee et al., 2005). Furthermore, senescence inducing stress signals, 

NFκB dependent stress signals, and signals from the IL4/STAT6 pathway 

induces transcriptional up-regulation of the histone de-methylase JmjD3. This 

leads to increased JMJD3 occupancy at target genes, followed by their de-

repression (Agger et al., 2009, Barradas et al., 2009). Therefore a large number 

of developmental signals may contribute to the de-repression of polycomb 

target genes. This is an active field of research and new mechanisms are being 

discovered constantly. 

1.3.6 

PcG proteins repress a large number of genes in embryonic stem cells that are 

important for development. Timely de-repression of these genes in response to 

various developmental signals allows proper development (sections 1.3.1, 1.3.4 

and 1.3.5). In haematopoiesis PcG proteins play an important role in self-

renewal and differentiation of HSCs (

Role of polycomb group proteins in haematopoiesis 

Oguro and Iwama, 2007, Konuma et al., 

2010). Like ES cells, also HSCs have been shown to contain polycomb target 

genes with bivalent chromatin marks (Cui et al., 2009, Weishaupt et al., 2010). 

Several loss and gain of function studies have dissected the role of polycomb in 

haematopoiesis.  PRC1 genes have been shown to be highly expressed in the 

LSK cell population (Osawa et al., 1996). Expression of PRC1 genes positively 

correlate with the self-renewal potential of HSCs (Iwama et al., 2004). Loss of 
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BMI1 in mice shows no defect in embryonic haematopoiesis but slowly the mice 

develop pancytopenia and the bone marrow is replaced with adipocytes. BMI1-/- 

HSCs show defects in long-term self-renewal and colony forming capacity (van 

der Lugt et al., 1994, Oguro et al., 2006). Loss of Ring1b on the other hand 

causes hypo-cellular bone marrow with hyper-proliferating immature cells. 

PRC2 complex proteins are also highly expressed in HSCs (Cales et al., 2008). 

Heterozygocity for Eed null allele causes myelo-proliferative and lympho-

proliferative disorders in mice (Lessard et al., 1999). Loss of EZH1in mice 

causes no HSC defect but loss of EZH2 in mice causes a block in B cell 

development with impaired heavy chain re-arrangement and T cell development 

stops at the double negative stage (Su et al., 2005, Su et al., 2003). Forced 

expression of BMI1 leads to marked expansion of HSC numbers ex vivo and 

increased repopulating capacity in vivo (Iwama et al., 2004) and over 

expression of EZH2 preserves the long-term repopulating potential of HSCs in 

serial transplantation assays (Kamminga et al., 2006). Taken together, loss and 

gain of function experiments establish that polycomb proteins play a crucial role 

in the maintenance of HSC self-renewal and pluripotency. 
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1.4 

PAX5, also known as the B-cell specific activator protein is a member of the 

PAX family of transcription factors (

 PAX5 

Cobaleda et al., 2007). Expression of PAX5 

within the haematopoietic system is restricted to the B-lineage. It is expressed 

from the pro-B cell stage up to mature B cell stage and then down-regulated in 

terminally differentiated plasma cells (Cobaleda et al., 2007). The defining 

feature of the PAX5 family of proteins is the paired-box DNA binding domain 

(Czerny et al., 1993). Like other PAX family transcription factors, PAX5 has an 

N-terminal paired box DNA-binding domain, a partial homeo-domain that 

interacts with TBP and other members of the basal transcription machinery as 

well as a C-terminal trans-activation domain that interacts with other proteins to 

determine PAX5’s transcriptional regulatory activity (activator/repressor) in a 

context dependent manner (Eberhard and Busslinger, 1999) (Figure 1.12 and 

see section 1.4.1). The trans-activatoion domain can either interact with co-

activators such as histone acetyl-transferases or co-repressors such Groucho, 

depending on the genomic context (Eberhard and Busslinger, 1999, Cobaleda 

et al., 2007). 
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Figure 1.13: A cartoon diagram of the PAX5 protein. The figures shows the 

ten exons interspersed by introns of the PAX5 gene and the PAX5 protein with 

its paired box DNA binding domain and the trans-activation domain (from Atlas 

of genetics and cytogenetics in oncology and haematology) 

1.4.1

The entry of committed lymphoid progenitors into the B-lineage is determined 

by three key transcription factors: E2A, EBF and PAX5 (

 Role of PAX5 in B-cell commitment 

Medvedovic et al., 

2011, Busslinger, 2004)  (see section 1.1.8). The role of PAX5 in B-

lymphopoiesis was established by studying Pax5 knockout mice. In the bone 

marrow of adult Pax5-/- null mice B-lymphopoiesis proceeds only up to pro-B-

cell stage(Urbanek et al., 1994, Nutt et al., 1997). These Pax5 null pro-B cells 

express E2A and EBF and can be propagated in culture in the presence of IL7 

(Nutt et al., 1997). However, they are not committed to the B-lineage (Nutt et al., 

1999). This established PAX5 and not E2A or EBF as the master regulator of B-

cell commitment. On substituting IL7 with appropriate growth factors Pax5-/- pro-

B cells gave rise to macrophages, granulocytes, osteoclasts and natural killer 

cells (Nutt et al., 1997). Upon transplantation these Pax5-/- pro-B cells home to 

the bone marrow and differentiate to every lineage other than B cells (Schaniel 
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et al., 2002b, Schaniel et al., 2002a). Therefore these Pax5 null pro-B cells 

were not committed to the B-lineage and retained a latent multi-lineage 

potential. They could only differentiate to mature B-cell upon retroviral 

restoration of Pax5 expression (Rolink et al., 1999, Rolink et al., 2002). PAX5 is 

therefore indispensable for the commitment of lymphoid progenitors to B-cells. 

PAX5 tailors the gene expression pattern of uncommitted progenitors according 

to the requirement of B-cell lineage. It up-regulates genes that are needed for 

B-lineage commitment and down-regulates genes that are B-lineage 

inappropriate (Cobaleda et al., 2007). A large number of B-cell specific genes 

have been reported to be up-regulated by PAX5 (Busslinger, 2004) such as 

CD79a (signal transducing chain Igα), CD19 and CD21 (co-stimulatory 

receptors), CD72 (inhibitory co-receptor) and Blnk (Fitzsimmons et al., 1996, 

Nutt et al., 1997, Nutt et al., 1998, Horcher et al., 2001, Kozmik et al., 1992, 

Walter et al., 2008). Furthermore PAX5 is known to activate the Lef1 gene and 

maintain Ebf1 expression (Roessler et al., 2007). cDNA microarray analysis has 

identified a large number of PAX5 target genes from which a major percentage 

are up-regulated by PAX5. These genes include secondary transcription factor 

genes (Irf8, SpiB, IKZf3) that reinforce the B-cell gene expression program 

(Pridans et al., 2008). Recently PAX5 has been shown to maintain two distinct 

gene expression patterns in early and late B-lymphopoiesis (Revilla et al., 

2012). 

The developmental plasticity exhibited by Pax5-/- pro-B cells indicates that PAX5 

not only up-regulates B-cell specific genes but also down-regulates B-lineage 

inappropriate genes. PAX5 is known to down-regulate the macrophage colony 
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stimulating factor-1 receptor gee (Csf1r) and Notch 1 gene required for 

macrophage development and T-cell development (Tagoh et al., 2006b, Nutt et 

al., 1999, Souabni et al., 2002). A comprehensive picture of PAX5 repressed 

genes appeared from the micro-array analysis that identified 110 such genes 

(Delogu et al., 2006). A large number of these genes are cell surface receptors 

and intracellular transducers involved in signalling of other haematopoietic 

lineages, for example the genes encoding FLT3 receptor, the SCA1 protein, the 

RAMP1 subunit of CGRP receptor in addition to Csf1r and Notch1 (Holmes et 

al., 2008). Recently, a study by McManus et al has elucidated the mechanism of 

PAX5 mediated up-regulation and down-regulation of its target genes. They 

identified PAX5 target genes by streptavidin ChIP-chip analysis in pro-B-cells 

expressing biotinylated PAX5. Using PAX5-deficient and wild type pro-B cells 

they measured histone modifications at target loci and discovered that PAX5 

induces active chromatin at up-regulated targets and removes active chromatin 

at repressed targets. PAX5 directly recruits chromatin remodellers, histone 

modifying enzymes and the basal transcription machinery to its target genes 

(McManus et al., 2011). 

1.4.2

PAX5 is expressed from a 190 kb locus containing 10 exons and intervening 

introns (figures 1.13 and 1.14). It is transcribed from two distinct promoters 

(

 Regulation of murine Pax5 

Busslinger et al., 1996) upstream of exons 1A and 1B. Expression of Pax5 has 

been reported in the mid-hindbrain boundary of mid-gestation embryos of 

mouse in addition to B-lymphocytes (Adams et al., 1992). The expression in this 

developing brain region is driven from the proximal promoter while in B cells 
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both the distal and the proximal promoters are active (Busslinger et al., 1996). A 

study from Busslinger’s laboratory provides great insight into the mechanisms of 

activation and regulation of the Pax5 gene in mice. They identified a novel 

regulatory element in the fifth intron of the gene through deletion analysis and 

characterized this regulatory element as a B-cell specific intronic enhancer for 

Pax5. This enhancer region contains a DNase I hypersensitive region (see 

section 1.2.6) with four individual hypersensitive sites (HS A-D). HS A and HS B 

were found to be B cell specific while HS-C was present in thymocytes in 

addition to B cells. This enhancer region was found to contain functional binding 

sites for transcription factors PU.1, IRF8, IRF4 and NF-κB. They also 

characterized the promoter region of the gene and identified 8 hypersensitive 

sites (HS1-8). HS 4 and HS 8 coincide with the 5’ end of exons 1A and 1B 

respectively and are the minimal promoter elements of the gene. HS 1-3 lie 

upstream of exon 1A, HS 6-7 fall within the intron between exons 1A and 1B 

(Figure 1.13). EBF1 that was previously implicated to be an upstream regulator 

of Pax5 was shown to strongly bind to HS 7 in the promoter region. They also 

showed that the promoter region remained repressed by polycomb protein 

complexes prior to pro-B- cell stage in early lymphopoiesis and then gets 

activated through chromatin remodelling by EBF1 binding (Decker et al., 2009). 
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Figure 1.14: Schematic diagram showing the regulatory regions of the 
mouse pax5 locus (Decker et al., 2009). The figure shows mammalian 

sequence conservation at the Pax5 locus. Six of the ten Pax5 exons are 

indicated with black bars. The two transcription start sites are indicated with 

arrows. The positions of the promoter and enhancer hypersensitive sites 

identified at the mouse Pax5 locus are indicated below the horizontal line with 

thin black bars. 

1.5  

Acute Myeloid Leukaemia (hereafter referred to as AML) is a heterogeneous 

disorder characterized by a large number of distinct chromosomal 

translocations and other abnormalities. It is defined by >20% myeloblasts in the 

bone marrow. Pathologically, the initial stages show diffuse bone marrow 

infiltration with myeloblasts while later stages are marked by circulating 

leukemic blasts. Until recently, morphologically AML was classified under the 

FAB (French-American-British) classification system based on the stages of 

differentiation observed. A newer classification method devised by the World 

Health Organisation (WHO) takes into account factors other than morphology 

(

Acute Myeloid Leukaemia 

Vardiman, 2010, Vardiman et al., 2002, Vardiman et al., 2009). One of the sub 

groups under this classification is ‘acute myeloid leukaemia with recurrent 

genetic abnormality’. Table 1.2 lists the AMLs that fall under this sub group 

(Table 1.2). 
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Table 1.2: Table lists the acute myeloid leukaemia with recurrent genetic 
abnormalities as classified by WHO (Vardiman et al., 2009). 

1.5.1

The t(8;21) is one of most common and widely studied chromosomal 

translocation associated with core-binding factor (CBF) complex leukaemia. The 

core-binding factor complex consists of a member of the RUNX transcription 

factor family along with its non-DNA binding partner CBFβ (

 Acute Myeloid Leukaemia with t(8;21) (q22;q22) translocation 

Wang et al., 1996c). 

In t(8;21) AML, RUNX1 (also called AML1) is fused to the entire ETO gene (also 

called RUNX1T1 or MTG8) (Erickson et al., 1992, Miyoshi et al., 1993) Figure 

1.14). RUNX1 is a DNA-binding transcription factor that acts as a transcriptional 

activator and is of prime importance for haematopoiesis (Lichtinger et al., 2010, 

Bonifer and Bowen, 2010) and the specification of HSCs from haemogenic 

endothelium (Chen et al., 2009, Dzierzak and Speck, 2008).  ETO on the other 

hand is a transcriptional repressor. This translocation (like other CBF complex 

translocations) disrupts the normal function of the CBF complex (Tonks et al., 

2007). Morphologically, the leukemic blasts of AML with t(8;21) translocation 

show variable degree of differentiation. It therefore falls under the category of 

AML with maturation (M2) under the FAB classification (Miyoshi et al., 1991). 
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Under most circumstances the RUNX1/ETO fusion protein binds RUNX1 target 

genes and functions as a transcriptional repressor (Lam and Zhang, 2012, 

Okumura et al., 2008, Peterson et al., 2007b, Tonks et al., 2007). It has been 

shown that ectopic expression of RUNX1/ETO interferes with the normal 

function of RUNX1 (as a dominant negative mutant) and redirects certain gene 

expression programs (Tonks et al., 2007). A number of studies have shown that 

RUNX1/ETO recruits histone de-acetylases to its target genes and deregulates 

important myeloid transcription factors such as CEBPα (Zhang et al., 2004a, 

Gelmetti et al., 1998, Lutterbach et al., 1998, Pabst et al., 2001). Ptasinska et al 

has comprehensively investigated the epigenetic mechanism of RUNX1/ETO 

functioning (Ptasinska et al., 2012b). They performed ChIP-sequencing analysis 

of RUNX1 and RUNX1/ETO in Kasumi-1 cells (t(8;21) model cell line) and in 

primary t(8;21) patient cells. Moreover, they depleted RUNX1/ETO by siRNA in 

Kasumi-1 cell line and measured the effect on gene expression and 

transcription factor binding. They identified a large number of high confidence 

RUNX1 and RUNX1/ETO binding sites which were enriched in RUNX1, ETS 

and E-box binding motifs. This indicates that RUNX1 and RUNX1/ETO are 

primarily recruited to its target via DNA binding and also indicates interaction 

with ETS and E-box proteins. Depletion of RUNX1/ETO increased RUNX1 

binding sites and also led to the formation of large number of de novo RUNX1 

binding sites. Hence, RUNX1/ETO depletion leads to re-localisation of RUNX1 

binding.  They also showed that depletion of RUNX1/ETO reprogrammed the 

epigenome with complex changes in RNA polymerase II occupancy and 

H3K9acetylation at target sites along with inhibition of the leukemic gene 

expression program and concomitant induction of myeloid differentiation 
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(Ptasinska et al., 2012b). In a more recent study from Stunnenberg’s lab they 

have identified chromatin accessible regions in t(15;17) and t(8;21) AML and 

have measured DNA methylation and several histone modifications (H2A.Z ac, 

H3 ac, H3K9me3, H3K27me3) along with p300 localisation. Using unsupervised 

clustering, they defined six distinct classes of chromatin accessible regions 

based on the measured chromatin features mentioned above. They identified 

that RUNX1/ETO (and also PML/RARα) localises at accessible chromatin sites 

that have p300 and hypo-acetylated histones (Saeed et al., 2012). A study from 

Stephen Nimer’s lab has attributed the leukemogenecity of RUNX1/ETO to 

p300 mediated acetylation of RUNX1/ETO itself which helps in sustaining self-

renewal and leukaemia in mouse models (Wang et al., 2011a) 
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Figure 1.15: Cartoon diagram showing fusion of RUNX1 and ETO. A) 

Shows Chromosome translocation at chromosomes 8 and 21. B) Cartoon 

diagram showing RUNX1 (AML1)/ETO and ETO-RUNX1 (AML1) fusion genes 

respectively. C) Cartoon diagram showing the full length RUNX1/ETO fusion 

protein with the various domains from RUNX1 and ETO respectively (Peterson 

et al., 2007a). 

1.5.2 

Heterozygous RUNX1/ETO knock- in mice die at embryonic day11.5 (

t(8;21) AML requires a co-operating secondary mutation for 

leukemogenesis 

Yergeau 

et al., 1997, Okuda et al., 1998) and fail to establish haematopoiesis. Several 

transgenic RUNX1/ETO mouse models have been established and all of these 

mice remain healthy without any leukaemia (Rhoades et al., 2000, Yuan et al., 
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2001, Fenske et al., 2004, Buchholz et al., 2000, Higuchi et al., 2002). 

Retroviral transduction with RUNX1/ETO followed by bone marrow 

transplantation in mice also failed to induce leukaemia in the recipient mice. 

Even though RUNX1/ETO functions to restructure the epigenome to a large 

extent (Ptasinska et al., 2012b), RUNX1ETO alone is unable to establish 

leukaemia in model organisms. 

t(8;21) patients invariably present other mutations and lesions. Additional 

cytogenetic aberrations that co-appear with t(8;21) include loss of one X-

chromosome in females and Y-chromosome in males, deletion of chromosome 

9q or the trisomy of chromosome 4 or 8 . In addition to chromosomal 

aberrations t(8;21) patients show mutations in growth factor receptors, 

transcription factors and proto-oncogene: CKIT, FLT3, PU.1, and RUNX1 

(Peterson et al., 2007a). Table 1.3 lists the various chromosomal and genetic 

aberrations that co-appear with t(8;21) translocation in AML patients. 

Occasionally t(5;12) and t(9;22) also appear in patients with t(8;21) (Peterson et 

al., 2007a). 

A large number of studies have classified mutation in transcription factors and 

tyrosine kinase receptors (C-KIT, N-RAS and FLT3) separately. The consensus 

in the field is that tyrosine kinase receptor mutations provide a proliferative 

advantage to leukemic stem/progenitor cells while chromosomal translocations 

such as RUNX1/ETO (or PML/RARα) and direct mutations in transcription factor 

genes (PU.1, RUNX1) influence the differentiation block observed in leukemic 

blasts. 
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Table 1.3: List of cytogenetic and genetic mutations that co-appear in 
t(8;21) AML patients (Peterson et al., 2007a). 

Wang et al screened 54 patients with t(8;21) AML and identified 11 different C-

KIT mutations in 48% of the patient cohort (Wang et al., 2005). Furthermore in a 

different study by Schessl et al 135 RUNX1/ETO positive AML patients were 

screened and they too identified activating mutations in receptor tyrosine 

kinases (FLT3, N-RAS and CKIT) as the most common secondary mutations in 

t(8;21) patients (Schessl et al., 2005). In a subsequent paper Wang et al 

produced a transduction and transplantation mouse model of t(8;21) AML. Co-

expression of RUNX1/ETO and hybrid C-KIT N822K mutation caused fatal 
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leukaemia in mice (Wang et al., 2011c). RUNX1/ETO has also been reported to 

co-operate with FLT3 length- mutation (FLT3-LM) to produce leukaemia in bone 

marrow transplantation mouse models. These studies further confirm the two-hit 

model stating that aberrations in both transcription factors and signalling 

molecules are required for the pathogenesis of leukaemia.  t(8;21) patients after 

remission often shows the persistence of RUNX1/ETO but mutations such as 

activating C-KIT or FLT3 are undetectable (Wang et al., 2005, Schessl et al., 

2005). Furthermore RUNX1/ETO and t(8;21) lesion is present in newly born 

children long before the onset of the disease (Wiemels et al., 2002). These 

evidences strongly suggest that t(8;21) is an initiating lesion that requires a 

‘second-hit’ for leukaemia to occur. These secondary mutations mostly are 

abnormalities of signalling molecules that provide proliferative advantage to 

leukemic stem/progenitor cells. 

1.6  

PAX5 has been implicated to be a tumour suppressor and an oncogene in B-

cell leukaemia (

PAX5 and malignancies 

Medvedovic et al., 2011). Loss of both alleles of Pax5 in mouse 

has identified Pax5 as a tumour suppressor (Cobaleda et al., 2007). However, 

heterozygous mutations (mono-allelic somatic mutations and point mutations in 

PAX5 has been reported in 32% B-ALL (acute lymphoblastic leukaemia) 

(Mullighan et al., 2007). BCR-ABL1 positive B-ALL carries heterozygous PAX5 

mutations (Mullighan et al., 2008). Heterozygous Pax5 mutation has also been 

shown to co-operate with other oncogenic lesions (Stat5b-CA Pax5+/-) to 

produce B-ALL in mouse models (Heltemes-Harris et al., 2011). 
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Recurrent translocation t(9;14) leading to the IGH-PAX5 mutation has been 

reported in B- cell non-Hodgkin lymphoma (Busslinger et al., 1996, Iida et al., 

1996, Morrison et al., 1998). This translocation places the entire PAX5 gene 

under the control of the IGH promoter leading to strong up-regulation of the 

translocated PAX5 allele causing B-cell leukaemia (Morrison et al., 1998). Other 

PAX5 translocations have been reported in paediatric B-ALLs. 15 different 

translocation partners of PAX5 have been identified which include transcription 

factors (ETV6, FOXP1,PML, DACH1 DACH2), chromatin regulators (NCOR1, 

BRD1), protein kinases (JAK1,HIPK1) nuclear pore sub unit (POM121), 

extracellular matrix protein (ELN) and proteins of unknown function 

(GOLGA6,AUTS2,CO20orf112) (Medvedovic et al., 2011, Coyaud et al., 2010, 

Nebral et al., 2009) 

1.6.1 

Although PAX5 is the master-regulator of B-cell lineage (see section 1.4.1) it 

has been shown to be aberrantly expressed in t(8;21) AML. One of the defining 

features of t(8;21) AML is a mixed lineage phenotype. It co-expresses myeloid 

genes along with theB-lineage surface marker CD19 (

PAX5 is aberrantly expressed in AML with t(8;21) translocation 

Walter et al., 2010, Tiacci 

et al., 2004). Tiacci et al reported PAX5 expression in t(8;21) AML patient blasts 

by RT-qPCR and showed expression of PAX5 to be more common in  t(8;21) 

AML than previously reported by immuno-histochemistry experiments. They 

also noticed that PAX5 expression in AML selectively clusters with t(8;21) AML 

patients and suggested that this might be a reason the expression of B-lineage 

genes in this type of leukaemia (Tiacci et al., 2004). In a later study Valbuena et 

al investigated 28 AML patients with t(8;21) and identified PAX5 expression by 
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immuno-histochemistry in blast cells of all of them, thus, further confirming the 

selective association of PAX5 expression with t(8 21) translocation (Valbuena et 

al., 2006). Gibson et al also reported selective correlation of PAX5 expression in 

t(8;21) myeloid blasts but they also reported rare PAX5 expression in AML with 

11q23 abnormality and AML with slight differentiation (Gibson et al., 2006). 

1.6.2 

Aberrant expression of PAX5 is has functional consequence as it has been 

implicated to be one of the factors that suppress myeloid differentiation and 

maintain leukemic progenitors in t(8;21) AML. PAX5 has been shown to repress 

Csf1r, a factor that is required for macrophage differentiation, during B-cell 

commitment (

PAX5 expression has functional consequence in t(8;21) AML 

Tagoh et al., 2006b). Therefore, PAX5 is likely to do the same in 

t(8;21) AML thereby contributing to the myeloid differentiation block. Ectopic 

expression of PAX5 in bone marrow stem/progenitor cells leads to the formation 

of bi-phenotypic B220+GR1/MAC1+ cells that could be maintained in culture. 

Although these cells remained cytokine dependent they acquired the capacity 

for sustained generation of myeloid progenitors. The PAX5 + B220+ GR1/MAC1+ 

bi-phenotypic progenitors expressed both myeloid genes and PAX5 target B-

lineage genes at the single cell level (Anderson et al., 2007). In a separate 

study ectopic expression of PAX5 by retroviral transduction in cytokine 

stimulated human CD34+ cord-blood cells seeded on HESS-5 cells in the 

presence of SCF and GCSF resulted in the generation small myeloid 

progenitors that co-expressed CD33 and CD19 with blocked myeloid 

differentiation (Sekine et al., 2008). These studies strongly suggest that 

aberrant expression of PAX5 in t(8;21) AML accounts for its bi-phenotypic 
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features. Walter et al showed a positive correlation between CD19 expression 

and PAX5 expression in t(8;21) patient blasts while this correlation does not 

exist between EBF1 and CD19 expression (Walter et al., 2010). This strongly 

suggests that PAX5 and not EBF1 is of importance for the up-regulation of B-

cell genes such as CD19 in t(8;21) AML. They showed that CD19 exists in 

poised state in myeloid progenitors; in t(8;21) AML PAX5 binds CD19 at the 

enhancer and promoter to remodel the chromatin structure at the promoter 

leading to the aberrant up-regulation of CD19 in t(8;21) AML (Walter et al., 

2010) 

1.7 

PAX5 is aberrantly expressed in t(8;21) AML and is of functional consequence 

in this type of leukaemia (see sections 1.6.1 and 1.6.2) but the mechanism of 

PAX5 deregulation in this type of leukaemia was unknown. The primary 

objective of this study was therefore to investigate the molecular mechanism of 

aberrant up-regulation of PAX5 in t(8;21) AML. To understand this mechanism 

we first needed to have a clear understanding of the regulation of the PAX5 

gene in normal B cells. However, while the regulation of the Pax5 gene in mice 

is well understood the human PAX5 gene had not been studies. To this end, we 

set out to elucidate the mRNA expression, chromatin structure, histone 

modifications and RNA Polymerase II occupancy at the PAX5 locus in human 

B-cells and compare it to non t(8;21) myeloid precursors and t(8;21) AML. The 

working hypothesis of the experiments performed was that an upstream 

transcription factor activates and maintains PAX5 expression in t(8;21) AML. 

Aims and Objectives 



 

100 
 

The ultimate aim of our study was to achieve better understanding of the 

pathways that are responsible for mixed-lineage phenotype of t(8;21) AML and 

how they contribute to the differentiation block.   
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2 MATERIALS AND METHODS 

2.1 

Human cell lines Ramos, Nalm-6, Kasumi-1, SKNO-1, HL60, KG 1 and HeLa 

were grown in the following way: 

Cell Culture 
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Table 2.1: Culture Condition used to grow human cell lines. All cell types 

were incubated at 37° C in an incubator having humified air supplemented with 

5% CO2. 
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2.2 

Patient material was obtained with consent from the NHS ethics approval 

committee (Leeds Teaching Hospital NHS Trust) as part of a parallel study in 

the lab (

Growing primary cells from t(8; 21) patients 

Ptasinska et al., 2012a).  2x 106 frozen cells isolated from the bone 

marrow of a t(8;21) patient who had relapsed after recovery was thawed and 

cultured in RPMI media (Sigma) supplemented with 20% heat-inactivated FCS 

(GIBCO), Penicillin/streptomycin cocktail (GIBCO) and L-Glutamine (GIBCO) for 

two hours at 37°C with humified air and 5% CO2.  The cell suspension was 

divided in two halves and one half of the cells were treated with 30µl of sterile 

Dimethyl Sulfoxide (DMSO)-Hybri-Max® (Sigma) and the other half was treated 

with 10µM each of JNK, MEK and P38 small molecule inhibitors. 

2.3 

2x106 cells (for RNA extraction) or 2x107 cells (for extracting chromatin for 

ChIP) were resuspended in RPMI (Sigma) supplemented with 20% FCS 

(GIBCO), Penicillin/Streptomycin (GIBCO) and L-Glutamine (GIBCO) and 

treated with 10µM (final concentration) of AKT inhibitor (Akt Inhibitor IV, sc-

203809, Santa cruz Biotechnologies), JNK inhibitor (P600125 Sigma), P38 

inhibitor (SB20219 Sigma), MEK inhibitor (PD98059 Sigma), STAT3 inhibitor 

(Static:sc202818 Santa Cruz Biotechnologies) or MSK1 inhibitor (H89 

dihydrochloride hydrate Sigma Aldrich) and was harvested at various time 

points depending on the experiment (see section 3.7). The small molecule 

inhibitors were dissolved in sterile dimethyl sulfoxide (DMSO)-Hybri-Max® 

(Sigma) and stored at a stock concentration of 10mM. 

Treatment of cells with protein kinase inhibitors 
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2.4 

2 x106 cells were resuspended in RPMI media (Sigma) supplemented with 20% 

FCS (GIBCO). The cells were treated with 20ng/ml (final concentration) of 

Trichostatin A (Sigma Aldrich) dissolved in molecular biology grade absolute 

Ethanol (Sigma) and incubated for 2 hours at 37°C with 5% CO2.  

Treatment of Kasumi-1 cells with HDAC inhibitor Trichostatin A (TSA) 

2.5 

2-5x107 Kasumi-1 cells were transfected with 200nM siRNA in RPMI media with 

(20%FCS, P/S and L-Glutamine) using a Fischer 3500 electroporator (Fischer, 

Heidelberg, Germany) at 350V with an electrical  pulse of 10msec (

siRNA mediated knockdown of genes in Kasumi-1 cell line 

Heidenreich, 

2009). The transfections were done in a 0.4cm, sterile Sigma-Aldrich™ 

electroporation cuvette, (Ptasinska et al., 2012a). The siRNAs used were: C-KIT 

siRNA (h): sc-29225 (Santa Cruz Biotechnology, Inc.) and 3pK siRNA (h): sc-

39105 (Santa Cruz Biotechnology, Inc.). The siRNAs were resuspended 

according to the manufacturer’s protocol with nuclease free water provided by 

the manufacturer. The resuspended siRNA was stored at -20°C (short-term) or -

80°C (Long-term) in individual aliquots. Following transfection the transfected 

cells were seeded in pre-warmed RPMI media (Sigma) supplemented with heat-

inactivated serum (GIBCO) and incubated at 37°C with 5% CO2 until harvested 

for experiments as indicated in sections 3.9.3 and 3.10. 
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2.6 

3 x 10 5 HL-60 cells were differentiated by culturing in media containing PMA 

(Sigma) dissolved in DMSO at the final concentration of 50 ng/ml. Cells were 

incubated at 37°C, 5% CO2 for 3 days. Differentiation was confirmed by visual 

inspection under the microscope. 

Differentiation of HL-60 cells to macrophage like cells with phorbol 

myristate acetate (PMA) 

2.7

105 cells were counted and centrifuged at 300 x g for 5 minutes. The resulting 

pellet was resuspended in Annexin Buffer and stained with Annexin V and PI for 

5 to 10 minutes at room temperature according to the kit manufacturer’s 

instructions (Annexin V (FL) sc-4252, Santa Cruz Biotechnologies, Inc.). The 

stained cells were analysed by flow cytometry (see section 3.7). 

 Annexin/ PI staining  

2.8

2 x 105 cells were counted and centrifuged at 300 x g at room temperature for 5 

minutes in BD Falcon™ round bottomed snap-cap polypropylene FACS tubes. 

The resulting pellet was washed with 1ml of buffer containing 0.5% BSA and 

2mM EDTA (FACS buffer) and resuspended in the residual buffer after 

discarding most of the supernatant. To the cell suspension 2µl of primary 

antibody : human Anti IgG-FITC MACs Miltenyi # 130-093-193 (Isotype control 

for Annexin V stained cells; see section 3.7), human Anti IgG-PE MACs Miltenyi 

# 130-093-193 (Isotype control for CD117 stained cells), human CD117 

(A3C6E2)-PE MAC Miltenyi # 130-091-734, was added and incubated for 30 

 Flow Cytometry 
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minutes at 4°C. The cells were then washed in 2 mls of FACs buffer and 

resuspended in 500µl of FACs buffer. 

The stained cells described above and the Annexin/PI stained cells (see section 

3.7) were analysed by Flow cytometry (CyAn FACs analyser, DAKO) using 

Summit 4.3 (Beckman Coulter, INC) software according to the manufacturer’s 

protocol. 

2.9 

Approximately 5 x106 cells were centrifuged at 300 x g and lysed in 1ml of 

TRIZOL solution (Invitrogen) and incubated for 5minutes at room temperature. 

To the lysate, 200µl of chloroform (Sigma) was added and incubated at room 

temperature. This was followed by centrifugation for 15 minutes at 12000 x g to 

separate the organic phase and the aqueous phase. The aqueous phase was 

transferred to a fresh tube and to this 500µl of 2-propanol was added and 

incubated at 4ºC for 10 minutes to allow precipitation of RNA. The precipitated 

pellet was washed with 70% ethanol (made in DEPC treated water: added 0.1% 

DEPC to sterile water and autoclaved) and resuspended in 20µl of DEPC 

treated water. Genomic DNA was removed by treatment with RQI RNase-free 

DNaseI (Promega) at 37°C for 1 hour according to the manufacturer’s protocol. 

To the DNaseI treated samples 250µl of TRIZOL and 50µl of chloroform was 

added, vortexed and centrifuged at 12000 x g at 4ºC for 5 minutes. The top 

aqueous layer was transferred to a fresh tube and to this 700µl of chloroform 

was added and centrifuged again at 12000 x g for 5 minutes at 4ºC to allow 

separation of the aqueous and the organic phases. The aqueous layer was 

Extraction of RNA 
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transferred to a fresh tube and to this 150µl of 2-propanol was added and 

incubated at 4°C for 10 minutes to precipitate the RNA. The precipitated RNA 

pellet was washed with 70% ethanol (prepared in DEPC treated water) and air 

dried to remove any traces of ethanol. This washed and dried pellet was 

resuspended in 20µl of DEPC treated water. The isolated RNA was quantified 

using NanoDrop 1000 spectrophotometer™ (Thermo scientific) according to the 

manufacturer’s instructions. 

2.10 

1µg of RNA was annealed to 1µl of oligo(dT) primers (50µM) (Invitrogen) by 

incubating at 70°C for 5 minutes followed by 4ºC for 5 minutes. Annealed to 

oligo (dT) primers, 4µl of 5 x first strand synthesis Buffer (Promega), 5µl of 2mM 

dNTP, 1µl of 200U/µl M-MLV Reverse Transcriptase (Promega), 0.5µl of 

400U/µl of RNase out (Invitrogen) were added to the RNA and incubated at 

37°C for 1 hour followed by 95°C for 5 minutes in a T300 thermocycler 

(Biometra). 

cDNA Synthesis 

2.11 

Real-Time PCR was performed using  of SYBR® Green PCR master mix 

(Applied Biosystems, Warrington, UK), 100nM primers (final concentration)  

under standard conditions in an ABI 7500 Real-Time PCR system (Applied 

Biosystems, Foster city, CA, USA). 0.25µl of 10µM (working dilution) primers 

were added to 2.5µl of diluted cDNA or ChIP template, to this 2.5µl of nuclease 

free water and 5µl of SYBR® Green PCR master mix was added to make up a 

total reaction volume of 10µl. Custom primers for Real-Time PCR were 

Real-Time PCR 
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designed (Table 3.2) using Primer Express™ and obtained from Sigma Aldrich. 

Expression of each gene was calculated relative to the expression of TBP or 

GAPDH. Amplification efficiencies of the different primers were determined by 

serial dilution of cDNA (for gene expression analysis) or genomic DNA 

templates (for ChIP analysis). cDNA standard for gene expression analysis was 

prepared using cDNAs obtained from Ramos, Nalm-6, Kasumi-1, HL-60, HL-

60+PMA, HeLa and KG-1 in equal proportions.   

 

Table 2.2: Table showing sequences of primers used for quantitative Real-
time PCR analysis to measure gene expression. 
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2.12 

A bacterial artificial chromosome (BAC) construct containing the PAX5 coding 

region (BAC CTD 2230P4 ResGen™) was prepared using Qiagen Plasmid Plus 

Maxi kit (Qiagen) according to the manufacturer’s protocol. 

DNaseI Hypersensitive site mapping 

2.12.1 

Probes for Southern blotting were designed to hybridise on either side of the 

chosen restriction fragments (See figures 3.2.and 3.3). The probes were 500-

600 base pairs long to ensure proper signal from Southern blots. Furthermore 

probe sequences were designed so as to avoid complementarity to repeat 

elements within the human genome.  

 Designing and preparation of probes for Southern blotting 

The probes were prepared by standard PCR reaction using 1µg of PAX5 BAC 

CTD 2230P4 (Resgen™) preparation as template, plus 25 mM dNTP mix, 5µl of 

10µM primers (forward and reverse), MgCl2 (3mM) and 1U Taq DNA 

Polymerase (recombinant) (Invitrogen) in a 50µl reaction. Cycling conditions 

used for PCR were: 96ºC for 2 minutes, 96ºC for 30 seconds, 52-65 ºC for 30 

seconds, 72ºC for 60 seconds for 20 cycles followed by a final extension of 

72ºC for 15 minutes in T300 thermocycler (Biometra). The primers used for the 

PCR reactions were designed using Primer3 version 0.4.0 ™. The names and 

sequences of the primers used are listed in table 2.3.  



 

110 
 

 

Table 2.3: Table showing sequences of primers used to prepare probes 
for Southern blotting 

 

2.12.2 

108 cells were harvested and washed in ice cold PBS followed by DNaseI buffer 

(11mM KPO4 pH 7.4, 108mM KCl, 22mM NaCl, 5mM MgCl2, 1mM CaCl2, and 

1mM DTT) and centrifuged at 50g for 10 minutes at 2ºC. The resulting pellet 

was resuspended in 1 ml of DNase buffer containing 1mM ATP.100µl of this cell 

suspension was treated with 104µl of buffer containing 80µl of DNaseI buffer 

4µl of 10% NP-40 and 20µl of water containing varying concentrations of 

DNaseI enzyme (Worthington). See table 2.4 for the various concentrations of 

DNaseI enzymes used for the different cell lines. This reaction was incubated at 

room temperature for exactly 6 minutes. The DNaseI reaction was then stopped 

by lysing the nuclei with 200 µl of lysis buffer (100mM Tris pH 8.0, 40 mM 

EDTA, 2% SDS, 500µg/ml ProteinaseK) and incubated overnight at 55°C. The 

samples were then subjected to two rounds of Phenol-chloroform-isoamyl 

extractions followed by an extraction with chloroform. The purified samples 

In vivo DNaseI treatment  
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were then treated with RNaseA (50µ/ml) at 37°C for 1 hr. This was followed by 

another round of phenol-chloroform and chloroform extractions. The DNaseI 

treated samples were precipitated in ethanol and the resulting pellet was 

washed in 70% ethanol and resuspended in 100µl of 1xTE buffer. 

 

 

 

Table 2.4: The units of DNaseI enzymes used for in-vivo DNaseI treatment 
of each of the human cell lines. 
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2.12.3 

20µg of the DNaseI treated samples were restriction digested according to the 

manufacturer’s protocol with BamHI (for the PAX5 enhancer), EcoRI/AseI (for 

the proximal PAX5 promoter) or MfeI (for distal the PAX5 promoter) (New 

England Biolabs) in the appropriate buffers supplied by the manufacturer (See 

figures 3.2 and 3.3). The digested samples were then electrophoresed on a 

0.8% agarose gel in 1X TAE with 0.5mg/ml of ethidium bromide at 50mV 

overnight to ensure good resolution. The gel was then incubated for 10 minutes 

with depurination buffer (0.25M HCL), rinsed with distilled water and soaked in 

denaturation buffer (1.5M NaCl and 0.5M NaOH) for 30 minutes in order to 

denature the DNA into single strands to allow binding to the membrane. The 

denatured DNA was then transferred onto a nylon membrane, positively 

charged with quaternary amine groups (Zeta-probe membrane, Bio-Rad) by 

capillary transfer overnight in denaturation buffer (Figure 3.1). Following transfer 

the membrane was rinsed in 2x SSC ( 0.3M NaCl, 0.015M sodium citrate pH 

7.0 ) to neutralise the high alkaline pH of the denaturation buffer and then the 

DNA was cross-linked to the membrane using a Stratalinker® UV cross-linker 

(Stratagene) and baked at 80°C for 1-2 hours. The cross-linked membrane was 

pre-hybridised with denatured herring testes DNA (0.5mg/ml) in Rapid Hyb-

buffer® (Amersham Pharmacia) for 30 minutes at 65°C. Following pre-

hybridisation the membrane was hybridised with P32 labelled and denatured 

probes at 65°C for 2 hrs. 

Southern Blotting 
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Figure 2.1: Schematic diagram showing assembly of gel for capillary 
transfer in Southern blotting. The gel is placed over a support which has a 

paper wick dipped into the transfer buffer contained within a tray. The nylon 

membrane is placed directly on the gel. To facilitate transfer of DNA from the 

gel to the membrane layers of Whatman paper and paper towels are placed 

above the membrane. The whole assembly is held together by placing a weight 

of about 500gms on top. The figure is adapted from Roberts et al; October 

2006, Current problems in Cardiology, Vol 31, Issue 10. 

2.12.4 

Probes were labelled with αP32 CTP and αP32 ATP (Perkin Elmer) using 

Megaprime DNA labelling kit (Amersham) using the manufacturers protocol. 

 Labelling probes 

2.12.5 

Following hybridisation, the membrane was washed thrice with low stringency 

buffer (2 x SSC, 0.1% SDS) and once with high stringency buffer (0.1x SSC, 

0.1% SDS) if required at 65ºC in order to remove any non-specifically bound 

Washing the membrane and visualisation of the Southern Blot 
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probe from the membrane. The washed membrane was then exposed overnight 

to imaging screen-K (BIO-RAD) and scanned with Molecular imager 

PharosFX™ system (BIO-RAD). 

2.12.6 

The cis-regulatory regions of the murine Pax5 gene were mapped by Decker et 

al. (

Mapping and analysing DNaseI hypersensitive sites 

Decker et al., 2009). Using this information, corresponding regions on the 

human PAX5 gene were identified as possible intronic enhancer and proximal 

and distal promoters. Convenient restriction fragments were chosen at the 

possible enhancer and promoter regions of the human PAX5 gene within which 

the DNaseI sites were likely to be contained. For the possible enhancer region a 

BamHI fragment was chosen while for the proximal promoter an EcoRI/AseI 

fragment and for the distal promoter an MfeI fragment was chosen. Positions of 

the probes binding on each of these fragments were known. 

The DNaseI treated samples were first electrophoresed alongside a DNA 

ladder. The distance migrated by the various bands of the DNA ladder from the 

well were measured. The logs of the distances travelled by the fragments were 

plotted against the size of each of these fragments to obtain a standard curve. 

Then the distances travelled by the fragments detected in the lanes containing 

DNaseI treated samples were measured. Using the standard curve, the sizes of 

these fragments were determined. As the positions of the probes within each 

restriction fragment were known, the position of the DNaseI hypersensitive sites 

relative to the respective restriction sites could be calculated. Once this was 

done restriction enzymes close to each of the DNaseI hypersensitive sites were 

chosen. Human genomic DNA was digested with each of these restriction 
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enzymes to create a custom DNA ladder and this was once again 

electrophoresed and blotted alongside DNaseI treated samples. Using the 

method described above a standard curve was plotted and the exact positions 

of the DNaseI hypersensitive sites were determined. The position of the 

restriction site relative to the PAX5 HS4 transcription start site was known and 

hence the position of each of the DNaseI hypersensitive sites relative to the 

HS4 transcription start site was calculated. 

2.13 

2.13.1 

Chromatin immuno-precipitation assay (ChIP) 

2X107 cells were harvested by centrifugation at 300 x g at room temperature for 

5 minutes. The cell-pellet was resuspended in 10mls of media. To this, 

formaldehyde (16% stock solution, Pierce) was added to a final concentration of 

1% and incubated at room temperature for 10 minutes. This reaction was 

quenched by adding freshly prepared 2M Glycine (Sigma) solution in phosphate 

buffered saline (PBS) to a final concentration of 0.4M. The in-vivo cross-linked 

cells were harvested by centrifugation at 300 x g at 4°C for 5 minutes. The 

pellet was then washed twice with ice-cold PBS. The cells were then 

resuspended in 10 ml of ice cold Buffer A (10mM HEPES, pH 8.0, 10mM EDTA, 

0.5mM EGTA, 0.5mM EGTA, 0.25% Triton X-100, 1:1000 dilution of protease 

inhibitor cocktail (Roche) and 0.1mM PMSF (Sigma) and incubated at 4°C for 

10 minutes with rotation in order to isolate intact nuclei. The nuclei obtained 

were centrifuged at 500xg at 4°C for 5 minutes. Following centrifugation the 

nuclei were resuspended in 10 ml of ice-cold Buffer B (10mM HEPES, pH 8.0, 

200mM NaCl, 1mM EDTA, 0.5mM EGTA, 0.01% Triton X-100, PIC 1:1000 

Cross linking using formaldehyde and sonication 
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dilution and 0.1mM PMSF)  and incubated at 4°C f or 10 minutes with rotation. 

The pellet was then resuspended in 600µl of ice-cold ChIP buffer (25mM Tris-

HCL, pH 8.0, 150mM NaCl, 2mM NaCl, 2mM EDTA,1% Triton X-100, 0.25% 

SDS, PIC 1:1000 dilution and 0.1mM PMSF). This was then sonicated using 

Bioruptor™ (Diagenode) at 240W for 15 cycles of 30sec on and 30 sec off at 

5°C to obtain average fragments of length 400-500bp. The resulting sonicated 

chromatin was then centrifuged at 16,000xg at 4°C for 10 minutes. The pellet 

was discarded and the supernatant was diluted with 1200µl of 3x ChIP Buffer 

(25mM Tris-HCl, pH 8.0, 150mM NaCl, 2 mM EGTA, 1% Triton X-100, 7.5% 

Glycerol, PIC 1:1000 dilution and 0.1mM PMSF. 

2.13.2 

For each immuno-precipitation reaction 15µl of Protein G beads (Dyanbeads™) 

were washed twice with phosphate buffer (pH 8.0) and incubated for 2 hours at 

4°C with  BSA (0.5% final concentration), 2µg of antibody and phosphate buffer 

to make up a total volume of 10µl. To this, 20-25µg of sonicated chromatin was 

added and incubated for 2 hours at 4ºC with rotation. Thereafter, the Protein G 

beads conjugated to the antibody and the pulled down chromatin was separated 

from the unbound chromatin using a DynaMag™-2 (Invitrogen) magnetic 

separator and washed once with 1 ml of wash Buffer 1 (20mM Tris-HCl pH 

8.0,150mM NaCl, 2mM EDTA, 1% Triton-X-100, 0.1% SDS),  twice with 1 ml of 

wash Buffer 2 (20mM Tris-HCl pH 8.0, 500mM NaCl, 2mM EDTA, 1% Triton-X-

100, 0.1% SDS), once with 1ml of LiCl Buffer ( 10mM Tris-HCl pH 8.0, 250mM 

LiCl, 1mM EDTA, 0.5% NP-40).5% Na-deoxycholate) and twice with TE/NaCl 

Buffer (10mM Tris-HCl PH 8.0, 50mM NaCl, 1mM EDTA). The pulled down 

Immuno-precipitation 
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chromatin was then eluted in 100µl of elution buffer (100mM NaHCO3 and 1% 

SDS) on a shaker at room temperature for 15 minutes and reverse cross-linked 

using 1µl of proteinase K (50mg/ml) at 65ºC overnight. Following reverse cross-

linking, the immuno-precipitated DNA was purified using an Agencourt AMPure 

XP PCR purification kit (Beckman Coulter Genomics) using the manufacturers 

protocol. The purified DNA was then analysed by quantitative Real-Time PCR 

(see section 2.11) using the primers listed in table 2.6. 

 

 

Table 2.5:  Table showing the antibodies used for ChIP experiments. 
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Table 2.6:  Table showing sequences of primers used for amplifying DNA 
pulled down by ChIP by Real-Time PCR analysis 
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2.14 

2.14.1

In-vivo DNaseI and DMS foot-printing 

Nalm-6, Kasumi-1, SKNO-1, HL-60, primary t(8;21) patient cells and HeLa cells 

were treated in vivo with DNaseI enzyme following the protocol detailed in 

section 2.12.2. 

 In vivo DNaseI treatment 

2.14.2 

2 x 107
 cells (Nalm-6, Kasumi-1, SKNO-1 HL-60 and HeLa) were harvested and 

washed twice with phosphate buffer saline (PBS) and resuspended in 0.2 % 

dimethyl sulphate (DMS) (Sigma)/PBS and incubated at room temperature for 5 

minutes. The DMS treated cells were centrifuged at 300xg at room temperature 

for 5 minutes. The DMS/PBS mixture was discarded safely in 3M sodium 

acetate solution to neutralise the DMS. The cell pellet was washed three times 

in ice-cold PBS. After each wash, the PBS was discarded safely in 3M sodium 

acetate solution. The cells were thereafter resuspended in lysis buffer 2 

(150mM NaCl, 10mM EDTA, pH 8) containing 600µg/ml  of proteinase K and to 

this an equal volume of lysis buffer 1 (20mM Tris-HCL, pH 8.0, 20 mM NaCl, 

20mM EDTA, pH 8.0, 1% sodium dodecyl sulphate (SDS) was added. The cell 

lysate with ProteinaseK was incubated over-night at room temperature. 

Thereafter 100µg/ml RNase A was added and incubated at 37ºC for 1 hour. The 

samples were then purified using phenol-chloroform-isoamyl alcohol (see 

section 2.12.2) and precipitated with 1 volume of isopropanol and 1/10 volume 

of 5M NaCl and 20µg of glycogen at -20ºC overnight. The samples were then 

In situ DMS treatment 
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centrifuged at 13000 x g and the DNA pellet was rinsed with 70% ethanol, air 

dried and resuspended in 99µl of 0.1 x TE.  

2.14.3 

50-100µg of genomic DNA isolated from Kasumi-1 cells was precipitated with 

ethanol and resuspended carefully in 100µl of nuclease free water (HyClone 

Molecular Biology grade water, Thermo Scientific). This was gently mixed with 

100µl of 2X DMS buffer (100mM sodium cacodylate, pH 8.0, 2mM EDTA). To 

this 1µl of DMS was added and incubated at room temperature for 3 minutes. 

The reaction was stopped with 30µl of DMS stop buffer (1.5M sodium acetate, 

pH 7.0, freshly prepared 1M 2-mercaptoethanol) and 750µl of pre-chilled 100% 

ethanol and allowed to precipitate for 30 minutes at -80ºC. The DNA was then 

centrifuged at 15000xg for 5 minutes at room temperature and rinsed with 70% 

ethanol and resuspended in 99 µl of 0.1 x TE by gentle pipetting. 

Preparation of DMS treated genomic control DNA  

2.14.4 

To the 99 µl of DMS treated samples prepared as described in sections 2.14.2 

and 2.14.3, 1 µl of piperidine (10 M) (Fischer scientific Ltd.) was added and 

mixed gently and incubated at 90 ºC for 10 minutes and then transferred to ice-

water. To this 300 µl of water was added and samples were extracted using 2 

volumes of iso-butanol. The DNA solution was transferred to fresh tubes and 

precipitated with 2 volumes of ethanol and 1/10 volume of 3 M sodium acetate. 

The DNA was allowed to precipitate at -20 ºC for at least 30 minutes. The 

Piperidine treatment of in vivo DMS treated samples and genomic DNA 

control 
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precipitated DNA was then resuspended in 0.1 x TE to a final concentration of 1 

µg/µl. 

2.14.5 

Primers were designed using the Oligo™ 1.5 primer designing software. 

Primers were designed according to the conditions described in Grange et al 

(

Primer Design 

Grange et al., 1997). 

2.14.6 

The best annealing temperature for each of the primers designed were 

determined by performing an LM PCR using G reaction /naked DNA control 

(see section 2.14.3) and the test primer set. For each test primer three different 

annealing temperatures were used, whereby the annealing temperatures was 

increased by 2-3 ºC each time, the highest temperature tried being Tm-3 ºC. 

Table 3.7 lists the sequence of primers used for in vivo foot printing along with 

their annealing temperatures (table 2.7). 

Primers optimisation 
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Table 2.7: Table showing sequence of two sets of primers (‘a’ and ‘b’) 
used for in vivo DNaseI and DMS footprinting at HS8 of the distal PAX5 
promoter. 

2.14.7 Ligation mediated polymerase chain reaction 

5µl of reaction mixture was prepared by combining: 1 µg of DNaseI/DMS 

treated DNA template, 20µM biotinylated primer, 0.25 µl of 25mM dNTP, 0.25 µl 

DMSO, 0.5µl of 10X Thermo Pol buffer (New England Biolabs), 1.00µl of 

VentR® exo- DNA polymerase (New England Biolabs), 1.00µl of Nuclease free 

distilled water to a total volume of 5µl. The reaction was then incubated in a 

T300 thermocycler (Biometra) at 95ºC for 15 minutes, annealing temperature as 

determined by primer optimisation for 20 minutes, 72ºC for 20 minutes 

respectively. 

Primer extension 
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20µM LP25 and LP21 oligonucleotides were mixed with nuclease free water 

(HyClone Molecular Biology grade water, Thermo Scientific) and annealed by 

incubating the oligonucleotide mixture at 95º C for 15 minutes and then 

gradually cooled down to 4ºC. 

Preparation of LP25-21 linkers 

primer extension LP25-21 linker was ligated to the primer extension product 

accordingly by combining: 4.25µl of ligation buffer (676 µl of 50%PEG, 82.8mM 

Tris, pH 7.5, 23mM MgCl2, 56mM DTT, 2.8mM ATP, 0.14mg/ml BSA), 2.00µl of 

LP25-21 Linkers, .50µl of T4 DNA Ligase (Epicentere®), 0.50µl of ddH2O and 

5µl of the primer extension product to make up a total volume of 12.25µl. The 

mixture was then incubated at 16ºC overnight. 

Ligation of LP25-21 linkers to the primer extension product 

15µl of M-280 Dyanbeads (Dynabeads® M-280 Streptavidin, Invitrogen) were 

washed with 2x bind and wash buffer (B&W buffer) (10mM Tris pH 7.5, 1mM 

EDTA, 2M NaCl). Thereafter it was resuspended in 12.5µl of 2X B&W buffer. To 

the resuspended beads 12.5µl of ligated products were added and incubated 

for 2 hours at room temperature with rotation. Thereafter the beads were 

separated using a magnetic separator. The supernatant was discarded and the 

beads were washed twice with 150µl of 2X B&W buffer and once with 150µl 1X 

Capture of primer extension products ligated to LP25-21 linkers 
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TE. The beads were then resuspended in 10µl of 0.1 X TE and the DNA was 

released from the beads by heating the suspension at 95º C for 10 minutes. 

PCR amplification reaction mixture was prepared by combining: 1 µof 10mM 

dNTP, 1.25 µl of 20µM primer (second nested primer), 1.25 µl of 20µM LP25 

primer, 1.50 µl of DMSO, 10.00 µl of 5X Phusion GC buffer (Finnzymes), 0.50 µ 

of 2U/µl Phusion® Hot start High-fidelity DNA polymerase (Finnzymes), 24.50 µl 

of ddH2O and 10µl of DNA captured by Dynabeads to make up a total volume 

of 50 µl. The reaction mixture was then amplified in a T300 thermocycler 

(Biometra) at 98ºC for 30 seconds, 98ºC for 10 seconds, annealing temperature 

of primer for 10 seconds, 72ºC for 30 seconds for 22 cycles. 

PCR Amplification with second nested primers and LP-25 

40pmol of the third nested primer was incubated with 10 X PNK buffer (70mM 

Tris-HCl,10mM MgCl2 and 5mM DTT), 10 units of T4 Kinase (New England 

Biolabs) and 1.85MBq of [γ-32P] ATP (Perkin Elmer) at 37ºC for 60 minutes. To 

this 40µl of distilled water was added and the entire volume of the labelled 

primer was purified using an illustra MicroSpin™ G25 column (GE Healthcare) 

according to the manufacturer’s protocol. The labelling PCR was performed by 

combining: 10µl of 10mM dNTP, 2.00µl of 20µM labelled 32P-primer, 0.15µl of 

DMSO, 0.80µl of 5X Phusion GC buffer (Finnzymes), 0.25µl of 2U/µl Phusion® 

Hot start High-fidelity DNA polymerase (Finnzymes), 0.70µl of ddH20 and 10µl 

of amplified PCR product to make up a total volume of 14µl. The reaction 

Labelling of third nested primer with P32 isotope 
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mixture then incubated in a T300 thermocycler (Biometra) at: 98 ºC for 30 

seconds, 98 ºC for 10 seconds, annealing temperature of primer for 10 

seconds, and 72 ºC for 30 seconds for 6 cycles in a T300 thermocycler 

(Biometra). 

2.14.8 

The labelled and amplified samples were then electrophoresed in a 6% 

polyacrylamide gel in a Life Technologies model S2 sequencing gel 

electrophoresis apparatus for 1.5 hours at constant 80 Watts. The gel was then 

dried using a Double-up Gel dryer Vacuum pump system (Biorad). The gels 

were then exposed overnight to imaging screen-K (BIO-RAD) and scanned with 

molecular imager PharosFX™ system (BIO-RAD) (

Electrophoresis and visualisation 

Tagoh et al., 2006a). 

2.15 

Whole cell protein was extracted from cells using RIPA buffer (1% NP-40, 0.1% 

DSD, 50mM Tris-HCl pH 7.4, 0.5% sodium deoxycholate, 1mM EDTA). 107 cells 

were harvested by centrifugation at 300 x g for 5 minutes, resuspended in RIPA 

buffer and incubated at 4°C for 30 minutes followed by centrifugation at 16000 x 

g at 4°C for 15 minutes. The resulting pellet was discarded and the supernatant 

was transferred to fresh tube and used for western blotting or stored at -20°C 

for use in future. 

Protein isolation and western blotting 

For western blotting the protein was electrophoresed in a 10% polyacrylamide 

gel (Resolving gel: Bis-acrylamide 29:1 5mls, 1.5M Tris-HCl pH 8.8 3.75ml, 

10% SDS 0.15ml, 10% APS 60µl, TEMED 15µl, Water 6mls and Stacking gel: 
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bis-acrylamide 29:1 680µl, 1M Tris-HCl pH 6.8 500µl, 10% SDS 40µl, 10% APS 

24µl, TEMED 12µl and water 2.72 ml) at 100 Volts until the dye from the sample 

loading buffer (2x sample buffer: 10mg Bromophenol blue. 30mls of 10% SDS, 

10ml Glycerol, 12.5ml ‘Upper Tris’ and water to bring the volume up to 50mls) 

had run three- quarters through the gel. The gel electrophoresis was performed 

in Mini-PROTEAN tetra electrophoresis system (Biorad) according to the 

manufacturer’s protocol using a reservoir buffer for the electrophoresis (10x 

reservoir buffer: 30g Tris Base, 144g glycine, 100ml 10% SDS and water up to 

1litre). The protein standard used to determine molecular weight of proteins of 

interest was Precision Plus™ protein standard all blue. 

After electrophoresis the proteins on the gel was electro-blotted on to a 

nitrocellulose membrane (Thermo scientific, Pierce) using Mini-Trans blot cell 

(Biorad) according to the manufacturer’s protocol at 120 Volts for 1 hour at 4 °C. 

After transfer the membrane was blocked using 5% skimmed milk in PBS for 30 

minutes and incubated in 5 ml of primary antibody (3pK (C-4) sc-365148 Santa 

Cruz Biotechnologies, INC) at 1:1000 dilution over-night at 4°C with constant 

rotation. The membrane was then washed 3 times for 5 minute with PBS-T 

(PBS+00.1% Tween-20). The membrane was then incubated in 20 ml of 

secondary HRP-conjugated anti-mouse antibody at 1:10000 dilutions for 1 hour 

at room temperature. Following incubation with secondary antibody the 

membrane was washed three times for 5 minutes with PBS-T and visualised 

using Super-Signal® west Pico Chemiluminescent substrate (Thermoscientific, 

Pierce) according to the manufacturer’s protocol. 

 



 

127 
 

3 RESULTS 

3.1 

PAX5: the master regulator of B cell development and commitment is aberrantly 

expressed in patients with acute myeloid leukaemia carrying the t(8;21) 

translocation (see section 1.6.1) (

PAX5 is aberrantly expressed in t(8;21) AML 

Tiacci et al., 2004, Valbuena et al., 2006). 

Kasumi-1 and SKNO-1 cell lines are well-established models of acute myeloid 

leukaemia with t(8;21) translocation (Asou et al., 1991, Matozaki et al., 1995). In 

order to compare levels of PAX5 expression between human B-cell lines and 

t(8;21) AML cells, we measured PAX5 expression by q-RT-PCR in the following 

cell types: Nalm-6 (pre-B cell line established from human ALL), Ramos (B 

lymphocyte established from Burkitt’s lymphoma), Kasumi-1 and SKNO-1 (cell 

lines established from t(8;21) AML patients) and also primary cells from two 

t(8;21) patients (patient #1: CD34+ cells from peripheral blood of t(8;21) patient, 

patient#2 : CD34+ cells from the bone marrow of t(8;21) patient after relapse). 

HL-60 (pro-myeloblastic cell line established from human acute myeloid 

leukaemia) and KG-1 (myeloblastic cell line established from human acute 

myeloid leukaemia) were used as non t(8;21) myeloid precursor controls for 

comparison with t(8;21) AML. HeLa, an epithelial cell line was used as a non-

haematopoietic control. Our experiments showed that PAX5 is robustly 

expressed in B-lymphoid cell lines. In non t(8;21) myelobasts (HL-60 and KG-1) 

and also in HeLa PAX5 expression could not be detected. t(8;21) AML cell lines 

and t(8;21) patient cells showed aberrant PAX5 expression albeit at a level 

much lower compared to B lymphoid cells (figure 3.1) 
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Figure 3.1: Relative PAX5 expression in B-lymphoid, t(8;21) AML and non-
t(8;21) myeloid precursor cell lines. Quantitative real-time PCR analysis 

showing PAX5 expression relative to TBP expression in Ramos (B-cell line), 

Nalm -6 (pre-B cell line), Kasumi-1 and SKNO-1 t(8;21) AML cell lines and 

primary cells from two t(8;21) patient samples (t(8;21)#1 and t(8;21)#2 

respectively),KG1, HL-60 (myeloid cell lines without t(8;21) translocation and 

HL-60+PMA (HL-60 cell line differentiated to macrophage like cells by treatment 

with PMA) and HeLa (epithelial cell line). The y-axis represents average relative 

PAX5 expression from at least three independent experiments; the error bars 

represent standard deviation between three independent experiments. For the 

patient samples the error bars represent variability between duplicate q-PCR 

measurements 
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3.2 

3.2.1 

PAX5 is organized in an open chromatin conformation and carries 

active histone marks in human B-lymphoid cells  

In order to study the molecular mechanism of PAX5 de-regulation in t(8;21) 

AML we needed a clear understanding of transcriptional regulation of PAX5 in 

normal human B cells. The murine Pax5 locus has been well characterised by 

Decker et al in mouse B lymphoid cells (

DNase I hypersensitive site mapping at the PAX5 proximal and distal 

promoters in Nalm-6 pre-B cell line 

Decker et al., 2009) (and also see 

section 1.4.2). However, such a characterisation of the human PAX5 locus was 

missing from the relevant literature. To this end we set out to characterise the 

cis-regulatory elements of the human PAX5 locus in B-lymphoid cells using 

DNase I hypersensitive site mapping (referred to as DHS mapping hereafter).  

The positions of the DHSs at the murine Pax5 proximal and distal promoters 

were known (Decker et al., 2009). Using this as a reference, we predicted the 

positions of the corresponding human DHSs and designed a strategy for 

mapping the human PAX5 promoter DHSs by Southern blotting (figure 3.2 A).   

The proximal promoter at exon 1A was mapped using ‘Probe a’ within an 

EcoRV/ AseI restriction fragment as indicated in figure 3.2 A. This promoter 

element contained a cluster of five hypersensitive sites labelled as HS 1 to 5 

(figure 3.2 A and B). The distal promoter at exon 1B was mapped within an MfeI 

restriction fragment using ‘Probe a’ and ‘Probe b’ from either end of the MfeI 

fragment (figure 3.2A). This promoter element contained a cluster of three 

hypersensitive sites labelled as HS 6 to 8 (figures 3.2 A and C i and ii). The 
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positions of HS 1, HS 2, HS 6 and HS 7 were shifted from their corresponding 

murine hypersensitive sites (green bars in figure 3.2 A). However, the positions 

of HS 4 and HS8, which are the minimal promoters carrying the two 

transcription start sites respectively, were conserved between human and 

mouse. Furthermore comparison between human and mouse sequences at HS 

4 and HS 8 shows 84.5% and 91% sequence conservation respectively (figures 

3.2 D and E). 
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Figure 3.2: DNase I hypersensitive site mapping of PAX5 proximal and 
distal promoters in pre-B cell line (Nalm-6). A) Schematic representation of 

the strategy used to map DNAse I hypersensitive sites (DHS) by Southern 

blotting at the proximal and distal PAX5 promoters. The proximal promoter 

DHSs were mapped using probe Pa within the EcoRV /AseI restriction fragment 

while the distal promoter was mapped within  the MfeI restriction fragment using 

probes 'Probe a' and 'Probe 'b. The positions of the hypersensitive sites 

predicted from the already characterised mouse Pax5 promoter are indicated as 

black bars, while the hypersensitive sites mapped in the human pro-B Nalm-6 

cell line are indicated with green bars B) Southern blot showing DNAse I 

hypersensitive sites at the proximal PAX5 promoter mapped using probe Pa. C) 

Southern blot showing DNase I hypersensitive sites at the distal PAX5 promoter 

mapped using probe 'Probe b' (i) and Pa (ii) respectively. Each of the 

hypersensitive sites in B and C are labelled with distance in kilo base pairs 

mapped from HS 4 TSS. D) Comparison of mouse and human sequences at 

HS 4 transcription start site. E) Comparison of mouse and human sequences at 

HS 8 transcription start site. The human sequence is in black and the mouse in 

blue. The differences in sequences are marked in red. The conserved 

transcription factor binding sites (as defined by MatInspector) are indicated with 

black boxes. 
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3.2.2 

A B-cell specific enhancer with a hypersensitive region consisting of four DHSs    

(HS A to HS D) was described at the fifth intron of the murine Pax5 gene by 

Decker et al (see section 1.4.2). This paper demonstrated that the expression of 

Pax5 in mouse B cells largely depended on this intronic enhancer element 

(

DNase I hypersensitive site mapping locating the PAX5 intronic enhancer 

in Nalm-6 pre-B cell line 

Decker et al., 2009). It was therefore important to identify the corresponding 

enhancer element in human B cells at the PAX5 locus.  

We predicted possible positions of the human PAX5 enhancer- DHSs based on 

the positions of the mouse DHSs (black bars in Figure 3.3 A). We then used 

this, to devise a strategy for mapping the human enhancer-DHSs by Southern 

blotting. This strategy involved mapping the enhancer DHSs with two probes: 

‘Probe1’ and    ‘Probe 2’ from either end of a BamHI fragment as illustrated in 

Figure 3.3 A. Our experiments showed the presence of the 4 previously 

described DHSs HS A, B, C and D (figures 3.3 A, B and C). In addition to these 

DHSs we also observed three DHSs specific to the human enhancer at +37.4, 

+36.8 and +36.2 kb relative to the HS4 transcription start site respectively 

(figures 3.3 A and B). Of the enhancer hypersensitive sites, HS B is the best 

characterised element in mouse and was shown to bind PU.1, NFκB and IRF4 

(Decker et al., 2009). In Nalm-6 cells, HS B formed the most prominent DNase I 

hypersensitive site and most likely also the main enhancer element of human 

PAX5. The sequence at the DHSs of the PAX5 enhancer is only moderately 

conserved. Sequence comparison between mouse and human HS B showed 

only a modest 58% conservation (figure 3.3 D) However, the actual binding 
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sites of NFκB, IRF, E-Box proteins and EICE (ETS IRF composite element) and 

their order are well conserved between mouse and human. 

. 
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Figure 3.3: DNAse I hypersensitive site (DHS) mapping at PAX5 intronic 
enhancer in pre B cell line (Nalm-6). A) Schematic representation showing 

mammalian sequence conservation at the PAX5 enhancer region and the 

strategy used to map DHSs by southern blotting at the PAX5 intronic enhancer. 

The DHSs at the PAX5 enhancer were mapped using probes1 and 2 within a 

BamHI fragment as indicated in the figure. The positions of DHSs at the 

characterised murine Pax5 intronic enhancer (Decker et al., 2009) is indicated 

with black bars, while the positions of the DHSs observed in Nalm-6 human pre-

B cell line are indicated with green bars. B) Southern blot showing DNAse I 

hypersensitive sites (DHS) at the PAX5 intronic enhancer mapped with Probe 1 

(i) and Probe 2 (ii). The DHSs are marked with their names and the distance in 

kilo base pairs from HS 4 transcription start site (see figure 2A). C) Comparison 

of human and mouse sequences at HS B intronic enhancer. The human 

sequence is shown in black while that of the mouse in blue. The differences in 

sequences are indicated in red. The conserved transcription factor binding sites 

(as defined by Decker et al and MatInspector) are marked with black boxes. 
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3.2.3 

Having identified the DNaseI hypersensitive sites at the PAX5 promoters and 

enhancer in a human pre-B cell line, we wanted to further characterise these 

DHSs. To this end we performed chromatin immuno-precipitation assays (ChIP) 

to examine the distribution of active and inactive histone modifications as well 

as RNA polymerase II recruitment.  

PAX5 promoter hypersensitive sites carry active histone marks and recruit 

RNA polymerase II in Nalm-6. 

H3K4me3 is a histone mark specifically associated with active promoters and 

H3K9ac is a histone modification generally associated with open chromatin (Lee 

and Young, 2000). ChIP-qPCR assays showed high levels of H3K4me3 and 

H3K9ac at the PAX5 promoter DHSs (HS 1 to HS 8) in Nalm-6 cells (figures 3.4 

A and B). H3K27me3 is an inactive histone mark and is the hall-mark of 

polycomb mediated transcriptional repression (Margueron and Reinberg, 2011). 

The PAX5 gene which is highly expressed in Nalm-6 cells, showed no 

enrichment of H3K27me3 (figure 3.4 C). Furthermore, consistent with the fact 

that the gene is highly expressed in Nalm-6, ChIP assays showed high levels of 

RNA polymerase II (total and phosphorylated-serine 2 RNA polymerase II) 

recruitment across the PAX5 promoter elements but not at HS B enhancer 

(figures 3.4 D and E). Taken together, these experiments establish that the 

PAX5 locus shows an open chromatin structure, active histone marks, RNA 

polymerase II recruitment and a high level of transcription in the human pre-B 

cell line Nalm-6. 
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Figure 3.4: Active histone marks and elongating RNA polymerase II are 
present at the proximal and distal PAX5 promoters in the Nalm-6 cell line. 
ChIP-qPCR showing relative enrichment of H3K4me3 (A), H3K9ac (B), 

H3K27me3 (C), RNA Polymerase II (D) and RNA Polymerase II phosphorylated 

at serine 2 residue (E) at the PAX5 promoter hypersensitive sites HS1-8 and at 

the PAX5 intronic enhancer hypersensitive site HS B. PU.1 promoter primers 

are used as a positive control, CSF1R primers are used as a negative control 

and CHR9 primers located at the 3’ end of the PAX5 gene and are used as an 

internal negative control. The y-axis in A, B, D and E show relative enrichment 

over the inactive IVL locus while C shows relative enrichment over input while 

IVL is used as a positive control region. H3K4me3, H3K9ac and H3K27me3 (A, 

B and C) is normalised to H3 ChIP. Each bar graph is representative of at least 

two independent ChIP experiments and the error bars represent variation 

between duplicate q-PCR measurements. 
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3.3 

3.3.1 

PAX5 is poised for transcription in non-t(8;21) myeloid precursors 

Having established the DHS pattern and histone modification patterns at the 

PAX5 promoters and enhancer in human pre-B cells (see sections 3.2.1, 3.2.2 

and 3.2.3), we wanted to do the same for t(8;21) AML cells. Using the same 

strategy as described in section 3.2.1 for DHS mapping, we found that in t(8;21) 

AML cells the minimal promoter sites HS 4 and HS 8 at the proximal and distal 

promoters respectively, remain DNase I hypersensitive (figure 3.5 A).  

PAX5 proximal and distal promoters show active chromatin conformation 

in t(8;21) AML and also in non-t(8;21) myeloid precursors. 

At the proximal promoter, four of the five DHSs identified in the pre-B cell line 

were hypersensitive in t(8;21) AML (HS 1 to HS 4) and at the distal promoter 

only one of the three DHSs (i.e. HS 8 ) was hypersensitive in t(8;21) AML 

(figures 3.5 A, B and C). Genome-wide DNase I-sequencing in cells from two 

t(8;21) patients and also in Kasumi-1 confirmed this pattern of DHS sites at the 

PAX5 promoter cluster (figure 3.7) (Ptasinska et al., 2012a). 

We used HL-60 and KG-1 (for KG-1 data not shown) as non t(8;21) myeloid 

precursor controls which do not express PAX5. However, to our surprise HL-60 

and KG-1 showed exactly the same DHS pattern at the two PAX5 promoters as 

t(8;21) AML (figures 3.5 A, B and C). DNase I-sequencing in HL-60 cells done 

by the University of Washington as part of the ENCODE project also shows the 

same DHS pattern at the PAX5 locus as that observed by our DHS-Southern 

blotting experiments (UCSC Genome Browser). Furthermore, DNase I-

sequencing performed by Ptasinska et al in normal CD34+ myeloid progenitors 
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also showed a similar DNAse I hypersensitive pattern at the PAX5 promoters 

(figure 3.7) (Ptasinska et al., 2012a). CD34+ myeloid progenitors are mobilized 

stem cells from the peripheral blood of healthy donors and do not express 

PAX5. HeLa (figure 3.5) and CD14 + Monocytes (figure 3.7) however showed 

no DHSs at the PAX5 locus and these cell types serve as proper negative 

controls for the experimental procedure.  

Taken together, the DHS mapping by Southern blotting and analysis of 

published genome-wide DNAse I-sequencing experiments establish that the 

PAX5 promoters remain in an open chromatin conformation in t(8;21) AML as 

well as in non-t(8;21) myeloid precursors. 
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Figure 3.5: DNase I hypersensitive site mapping of the PAX5 proximal and 
distal promoters in t(8;21) and non t(8;21) myeloid precursor cell lines. A) 

Schematic representation showing the mammalian sequence conservation and 

strategy used for mapping the DHSs (see figure 2A) at the PAX5 proximal and 



 

141 
 

distal promoters. Positions of predicted DHSs based on the characterised 

murine Pax5 promoter region are indicated with black bars, while the positions 

of the DHSs observed in Nalm-6 (human pro-B cell line), Kasumi-1 and SKNO-1 

(human t(8;21) AML cell lines) and HL-60 and KG-1 (non-t(8;21) AML cell lines) 

) are indicated with green, red and blue bars respectively. HeLa (human 

epithelial cell line) showed no DNAse I hypersensitive sites at the PAX5 

promoter region. B) Southern blot showing DNase I hypersensitive sites (DHS) 

at the PAX5 proximal promoter in the indicated cell lines mapped with probe 

‘Probe a’ C) Southern blots showing DHSs at the PAX5 distal promoter in the 

indicated cell lines, mapped with probes ‘Probe b’ (i) and ‘Probe a’ (ii) 

respectively. All the DHSs are labelled with their names and distances in kilo 

base pairs in relation to HS 4 transcription start site 

3.3.2 

In order to determine whether the PAX5 intronic enhancer (see section 3.2.2) 

was also organized in an active chromatin conformation in t(8;21) AML, we 

performed DHS mapping at the enhancer in these cell types. Out of the seven 

hypersensitive sites identified in Nalm-6 (green bars Figure 3.6 A), only HS A 

and HS C were hypersensitive in t(8;21) AML. However, HS A and HS C were 

also hypersensitive; not only in HL-60, KG-1 (myeloid precursors) but also in 

HeLa cells (figure 3.6). Therefore, we reasoned that HS A and HS C are 

ubiquitous hypersensitive sites present not only in myeloid precursor controls 

(HL-60 and KG-1) but also in epithelial negative control cells (HeLA) 

PAX5 enhancer displays an inactive chromatin conformation in t(8;21) 

AML 
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Of the four DHSs at the intronic PAX5 enhancer, the best characterised DHS in 

mouse B cells and the strongest in Nalm-6 cells was HS B (figure 3.3). HS B is 

completely absent in t(8;21) AML as well as non-t (8;21) myeloid controls (figure 

3.6). This result was also confirmed by DNase I-sequencing experiments in 

Kasumi-1 and in primary t(8;21) patient samples (figure 3.7) (Ptasinska et al., 

2012a, Cobaleda et al., 2007). From the experiments described above, it is 

reasonable to conclude that the main PAX5 enhancer hypersensitive site (HS 

B) is in an inactive chromatin conformation and hence the enhancer is inactive 

in t(8;21) AML.  
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Figure 3.6: DNase I hypersensitive site mapping of the PAX5 intronic 
enhancer in t(8;21) AML and non-t(8;21) myeloid precursor cell lines. A) 

Schematic representation showing the mammalian sequence conservation and 

strategy used for mapping the DHSs (see figure 3A) at the PAX5 intronic 

enhancer. Positions of predicted DHSs based on the characterised murine Pax5 

enhancer is indicated with black bars, while the positions of the DHSs observed 

in Nalm-6 (human pro-B cell line), Kasumi-1 and SKNO-1 (human t(8;21) AML 

cell lines), HL-60 and KG-1 (non-t(8;21) AML cell lines) ) and HeLa (human 

cervical cancer cell line) are indicated with green, red, blue and purple bars 

respectively. B) Southern blots showing DNase I hypersensitive sites (DHS) at 

the PAX5 enhancer in the indicated cell lines mapped with Probe1 (i) and Probe 

2(ii) respectively. All the DHSs are labelled with their names and distances in 

kilo base pairs in relation to HS4 transcription start site. 
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Figure 3.7: PAX5 locus shows open chromatin conformation in Kasumi-1, 
primary cell from t(8;21) patients and in normal human CD34+ progenitors 
but not in CD4+ monocytes. Screenshot showing DNAse I-sequencing tracks 

at the PAX5 locus in CD34+ progenitors from two primary t(8;21) patient 

samples, Kasumi-1 cell line and CD4+ normal monocytes. Along with the 

promoter cluster hypersensitive sites and HS A of the intronic enhancer (see 

figures 4 and 5); potential new elements (labelled as NE1-3) were identified with 

the genome- wide DNAse I -seq approach. This screen shot also shows ChIP-

seq tracks showing RNA polymerase II, H3K9ac and H2AZ enrichment at the 

hypersensitive sites. The genome-wide data was produced as part of work done 

by Ptasinska et al (Ptasinska et al., 2012a). 

 



 

145 
 

3.3.3 

DNAse I sequencing in primary t(8;21) patients and in Kasumi-1 cells, identified 

hypersensitive sites that had not been previously characterised as PAX5 

regulatory elements. We named them as NE (new elements) 1, 2 and 3 (figure 

3.7). These sites were also present in normal CD34+ myeloid progenitors. On 

inspection whether DHSs corresponding to NE1, NE2 and NE 3 were seen in B 

lineage cells (GM 12878 B lymphoid cells); we found that while NE 1 and NE 3 

were present, NE 2 was not (UCSC genome Browser). The role of these 

hypersensitive sites in the regulation of PAX5, if any, is so far unknown. 

DNase I-sequencing identifies new hypersensitive sites in the PAX5 gene 

body 

3.3.4 

DHS mapping revealed that the PAX5 locus is sensitive to DNase I digestion at 

the promoter elements in t(8;21) AML and also in non t(8;21) myeloid 

precursors. In non- t(8;21) myeloid precursors the gene, however, is 

transcriptionally repressed (figure 3.1), indicating that the gene may be in a 

poised configuration characterized by bivalent chromatin marks and a poised 

chromatin (see sections 1.2.7 and 1.3.2). In order to determine if there was any 

difference in histone modifications at these elements between PAX5-expressing 

t(8;21) cells and PAX5-not expressing myeloid precursors, we first carried out 

chromatin immuno-precipitation (ChIP) assays for active histone marks: 

H3K4me3 and H3K9ac. ChIP-qPCR assays showed that PAX5 promoter 

PAX5 promoters carry high levels of active histone marks in t(8;21) AML 

but not in non-t(8;21) myeloid precursors. 
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hypersensitive sites carry high levels of H3K4me3 and H3K9ac in Kasumi-1 and 

SKNO-1 cells but not in HL-60 cells (figures 3.8 A and B). 

 

Figure 3.8: PAX5 promoters show active histone marks in Kasumi-1 and 
SKNO-1 cell lines but not in HL-60. ChIP-qPCR showing relative enrichment 

of H3K4me3 (A) and H3K9ac (B) at the PAX5 promoter hypersensitive sites HS 

1-8 and the intronic enhancer hypersensitive site HS B. PU.1 and CSF1R 

promoter primers are used as positive controls. CHR9 primers are located at 

the 3’ end of the PAX5 gene and are used as an internal negative control. The 

relative enrichment is calculated over IVL. The H3K4me3 and the H3K9me3 

ChIPs are normalised to H3 ChIP. Each bar graph is a representative of at least 

two independent ChIP experiments and the error bars represent the variation 

between duplicate q-PCR measurements 
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3.3.5 

Further to the histone modification ChIPs described above, we performed ChIP-

qPCR assays for total RNA polymerase II and its elongating form which is 

phosphorylated at serine-2 residue of the C-terminal repeat (see section 1.2.2). 

ChIP-qPCR showed high levels of total RNA polymerase II recruitment at the 

PAX5 promoters in Kasumi-1 and SKNO-1 (figure 3.9 A). Surprisingly, also in 

HL-60 cells, there was substantial RNA polymerase II recruitment (figure 3.9 A). 

In order to explain this observation in light of the fact that PAX5 is not 

expressed in HL-60 cells; we performed ChIP for the elongating form of RNA 

polymerase II complex. Kasumi-1 and SKNO-1 showed high levels of serine-2 

phosphorylated RNA Polymerase II enrichment at the PAX5 promoters, but HL-

60 did not (figure 3.9 B). This result indicates that the RNA polymerase II that is 

recruited at the PAX5 promoters in HL-60 fails to be phosphorylated at serine 2 

residue and hence does not form an elongating RNA Polymerase II complex 

that is capable of effective transcriptional elongation.  

PAX5 promoters carry stalled RNA Polymerase II complexes in non-

t(8;21) myeloid precursors 
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Figure 3.9: PAX5 promoters carry paused RNA polymerase II in HL-60 
(non t(8;21) myeloid precursor) but in Kasumi-1 and SKNO-1 t(8;21) cell 
lines RNA Polymerase II gets phosphorylated at the serine 2 residue and 
forms an elongating RNA polymerase II complex. ChIP-qPCR showing 

relative enrichment of RNA polymerase II (A) and RNA Polymerase II S2P (B) 

occupancy at the PAX5 promoter hypersensitive sites HS 1-8 and the intronic 

enhancer hypersensitive site HS B. PU.1 and CSF1R promoter primers are 

used as positive controls. CHR9 primers are located at the 3’ end of the PAX5 

gene and are used as an internal negative control. The relative enrichment is 

calculated over IVL. Each bar graph is a representative of at least two 

independent ChIP experiments and the error bars represent the variation 

between duplicate q-PCR measurements. 
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Taken together, the DNAse I hypersensitive site mapping and ChIP-qPCR data 

in Kasumi-1, SKNO-1 and HL-60 cells establish that in t(8;21) AML the PAX5 

locus is organized in an open chromatin structure with active histone 

modifications and recruits the elongating RNA polymerase II complex which 

leads to the transcription of the gene. In HL-60 (myeloid precursors), however, 

PAX5 locus is in an open chromatin conformation with a stalled RNA 

polymerase II complex and the gene is transcriptionally inactive. 

3.4 

Having established that PAX5 is poised for transcription in non-t(8;21) myeloid 

precursors, we examined what keeps the gene repressed in these cells. PAX5 

is a developmentally regulated lineage specifying gene(

PAX5 is repressed by polycomb repressive complexes in non-t(8;21) 

myeloid precursors 

Cobaleda et al., 2007). 

Previous studies have reported repression of PAX5 and other lineage specifying 

genes in pluripotent stem cells and in inappropriate lineages by polycomb 

repressive complexes (Chen et al., 2011). In order to see whether this was the 

case for PAX5 repression in non-t(8;21) myeloid precursors; we performed 

ChIP assay for H3K27me3, H3K27ac and EZH2.  

ChIP assays showed high levels of H3K27me3 in HL-60 cells, especially at the 

distal promoter elements. Kasumi-1 and SKNO-1 cells also showed some 

H3K27me3 mark, but much lower compared to HL-60 cells (figure 3.10 A). 

ChIP-qPCR showed much higher enrichment of EZH2 in HL-60 than in Kasumi-

1 cells consistent with the H3K27me3 ChIP (figure 3.10 C ChIP performed by 

Anetta Ptasinska). Recent studies have reported that H3K27ac is a mark that 
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indicates removal of polycomb from a polycomb target gene and that this mark 

and H3K27me3 are mutually exclusive (Lau and Cheung, 2011a, Lau and 

Cheung, 2011b). Our experiments showed that Kasumi-1 cells carry high levels 

of acetylation at H3K27 at the PAX5 promoter DHSs while HL-60 showed none 

(figure 3.10 B). Taken together, this data indicates that in HL-60 cells PAX5 is a 

target of polycomb complexes that represses its transcriptional activity even 

though the gene is in an active chromatin conformation and recruits RNA 

polymerase II.   
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Figure 3.10: PAX5 is a polycomb target in myeloid precursors without 
t(8;21) translocation. ChIP-qPCR showing H3K27me3/H3 (A), H3K27ac (B) 

and EZH2 (C) enrichment at the PAX5 locus. The bars represent relative 

enrichment over input. Each bar graph is a representation of at least two 

independent experiments. The error bars represent variation between duplicate 

q-PCR measurements. TBP, IVL FIRE and PU.1 primers are used as negative 

controls in A and C while in B, TBP promoter is used as a positive control. 

CHR9 serves as an internal negative control for the PAX5 gene. 
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3.5 

Our experiments so far showed that the PAX5 gene is poised for transcription 

but repressed by polycomb repressive complexes in non-t(8;21) myeloid 

precursors (sections 3.3 and 3.4). We hypothesized that in t(8;21) this polycomb 

repression is somehow relieved, leading to effective transcriptional elongation. 

Classically, activation of a gene requires binding of transcription factors to its 

cis-regulatory elements to drive the assembly of the basal transcription 

machinery leading to effective transcription (

DMS and DNAse I in-vivo foot-printing show that PAX5 distal promoter 

HS 8 display an identical chromatin fine structure and transcription factor 

binding pattern in B cells, t(8;21) AML and non t(8;21) myeloid precursors 

Lee and Young, 2000) (also see 

sections 1.2.2 and 1.2.8). 

It is known that EBF-1 is a critical factor in the regulation of Pax5 in mouse B 

cells. However the binding sites for EBF-1 were present in HS 6 and HS 7 

which are not in an open chromatin conformation in t(8;21) cells (figure 3.5). 

Furthermore, the same study showed that the enhancer HS B binds factors 

such as IRF4, PU, 1 and NFκB in mouse B cells (Decker et al., 2009). HS B, too 

is in an inactive chromatin conformation in t(8;21) AML Hence these known 

transcription factors and their interactions with PAX5 regulatory elements were 

unlikely to be responsible for the transcription of PAX5 in t(8;21) AML. 

 We therefore set out to identify one or more unique transcription factors that 

may drive PAX5 transcription in t(8;21) AML via differential binding to the PAX5 

promoter elements in B cells, t(8;21) AML and non t(8;21) myeloid precursor 

cells. To this end, we used in vivo DMS and DNase I foot-printing technique. 



 

153 
 

This technique creates lesions in the DNA of a live cell (in this case cleavage by 

DMS/DNAse I). The pattern of this cleavage can be compared to the pattern of 

cleavage/lesion created by in vitro DMS/DNase I treatment on naked DNA. This 

provides useful information about chromatin conformation, transcription factor 

binding, and nucleosome positioning and chromatin compaction at loci of 

interest (Tagoh et al., 2006a). 

To identify transcription factors that might be responsible for PAX5 transcription 

in t(8;21) AML we  performed DMS and DNAse I footprinting at HS 1, HS 4 

(data not shown) and HS 8. HS 4 and HS 8 are the minimal PAX5 promoters 

carrying the transcription start sites, while HS 1 is a very strong hypersensitive 

site in t(8;21) AML which recruits a lot of RNA Polymerase II and shows the 

presence of high levels of H3K4me3 and H3K9ac (see Figures 3.8 and 3.9 ). In 

vivo foot-printing experiments at HS1, HS4 (data not shown) and HS 8 (figure 

3.11) showed that the chromatin fine structure of B cells and that of t(8;21) AML 

and non-t(8;21) myeloid precursor controls at these hypersensitive sites was 

identical (figure 3.11). DNAse I and DMS foot-printing showed several foot-

prints at HS 8 which, however, were the same in B cells, t(8;21) AML and non-

t(8;21) AML cells but were different in HeLa (figures 3.11 A, B and C). 

Inspection of the sequence under the protected and hypersensitive regions in 

figures 3.11 A, B and C showed binding sites for transcription factors such as 

Sp1, WT1 and NF1. These results indicate that the PAX5 locus not only shows 

open chromatin structure and recruitment of RNA polymerase II in HL-60, but 

also shows exactly the same chromatin fine structure and transcription factor 
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binding pattern as that of B cells and t(8;21) AML cells where the gene is 

transcriptionally active. 
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Figure 3.11: The chromatin fine structure at HS 8 PAX5 distal promoter in 
B cells, myeloid precursors and t(8;21) AML is identical. DNase I 

footprinting (A) and (B) at PAX5 HS 8 showing that the chromatin fine structure 

and transcription factor binding is identical in B cell, t(8;21) AML and myeloid 

precursors. The TBP promoter region is shown as a control for equal DNase I 

digestion of the samples in A and B. C shows DMS- footprinting at PAX5 HS 8 

distal promoter and protection over Sp1 binding site in B cells, t(8;21) AML and 

in myeloid precursors. Regions of protection are marked by hollow bars (A and 

B) or circle (C) while regions of hypersensitivity are marked by solid bars (in A 

and B) or solid dots (in C). The base pairs are labelled in relation to HS8 

transcription start site as indicated in the UCSC genome browser. D shows the 

sequence of the PAX5 HS 8 foot-printed in A, B and C. The possible 

transcription factors binding at the various regions of protection and 

hypersensitivity observed are indicated in the figure. 

3.6 

An obvious cause of aberrant activation of PAX5 in t(8;21) AML could be due to 

direct or indirect effect of RUNX1/ETO on the gene. RUNX1/ETO is the fusion 

protein expressed as a result of the t(8;21) translocation leading to the fusion of 

the genes: RUNX1 and ETO. Normally RUNX1/ETO functions as a repressor, 

however, in certain cases RUNX1/ETO has been reported to function as an 

activator (

PAX5 is neither a direct nor an indirect target of RUNX1or RUNX1/ETO 

Nimer and Moore, 2004, Wang et al., 2011a) (also see section 1.5.1). 

We therefore wanted to test whether PAX5 was one of the few genes that were 

up-regulated by RUNX1/ETO directly or indirectly.  

To test whether PAX5 was a direct target of RUNX1/ETO in t(8;21) AML, we 

inspected the PAX5 locus for RUNX1 or RUNX1/ETO peaks in RUNX1 and 

RUNX1/ETO ChIP-sequencing data produced as part of a parallel study in the 



 

156 
 

lab (Ptasinska et al., 2012a). Figure 3.12 B shows that PAX5 was not a target of 

RUNX1 or RUNX1/ETO in Kasumi-1 or in cells from t(8;21) AML patients.  

We next investigated whether RUNX1/ETO indirectly affects the expression of 

PAX5 in t(8;21) AML. To this end we measured PAX5 and RUNX1/ETO 

expression in primary cells from t(8;21) patients where RUNX1/ETO expression 

was knocked-down by siRNA (siRNA RE) designed specifically against the 

RUNX1 and ETO junction(Heidenreich, 2009).  As a control for comparison the 

same cells were transfected with siRNA with a scrambled sequence (siRNA 

MM). We received RNA from these cells as a generous gift from Dr Olaf 

Heidenreich (Newcastle University, UK). We also used cDNA from RUNX1/ETO 

knocked-down Kasumi -1(using the same siRNA RE described above) cells 

generated by Ptasinska et al (Ptasinska et al., 2012a). qRT-PCR expression 

analysis showed that RUNX1/ETO knock-down had no effect on PAX5 

expression in Kasumi-1 cells or in cells from t(8;21) patients (figure 3.12 A). 

Therefore, we conclude that PAX5 is not a direct target of RUNX1/ETO and its 

presence or absence does not influence PAX5 expression.  
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Figure 3.12: PAX5 is neither a direct nor an indirect target of RUNX1/ETO. 
A) qRT-PCR showing RUNX1/ETO (top panel) and PAX5 (bottom panel) 

expression after treatment of primary t(8;21) sample (left) and Kasumi-1 cell line 

(right) with siRNA MM (siRNA mismatch) and siRNA RE (siRNA RUNX1/ETO) 

in order to knock-down RUNX/ETO (Patient samples were a gift from Dr Olaf 

Heidenreich and the RUNX1/ETO KD Kasumi-1 cDNA was from Ptasinska et al 

, Leukaemia 2012. B) ChIP-seq track showing PAX5 locus does not bind 

RUNX/ETO or RUNX1. ChIP-seq data from (Ptasinska et al., 2012a). 
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3.7 

Our experiments so far demonstrate that at the PAX5 locus, chromatin 

structure, RNA Polymerase II recruitment and transcription factor binding in 

t(8;21) AML cells and in non- t(8;21) myeloid precursors were identical. The 

only differences observed between t(8;21) AML and HL-60 cells were in the 

higher occupancy of polycomb complexes and the lack of the elongating RNA 

polymerase II in HL-60 cells (sections 3.3.5 and 3.4). We therefore, 

hypothesized that PAX5 expression in t(8;21) AML was due to alleviation of 

polycomb repression and addressed the question what caused it.  A large body 

of literature supports the idea that cellular signalling directly impacts on 

polycomb activity, thereby regulating its association/dissociation from the 

chromatin (Section 1.3.4) (

Aberrant expression of PAX5 in t(8;21) AML requires MAPkinase 

signalling 

Sawarkar and Paro, 2010). We therefore set out to 

explore whether the up-regulation of PAX5 in t(8;21) AML cells is caused by 

aberrant signalling. 

As described in section 1.5.2, RUNX1/ETO alone is unable to cause overt 

leukaemia in mouse models. A second mutagenic event is required to co-

operate with the t(8;21) translocation to induce overt leukaemia (Wang et al., 

2011c, Wang et al., 2005). The most common second mutagenic events that 

have been reported to co-operate with RUNX1/ETO are mutations in tyrosine 

kinase receptor genes namely C-KIT, FLT3, RAS and RAF. These receptor 

tyrosine kinase mutations are believed to provide proliferative advantage to 

leukemic cells (see section 1.5.2).  
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 Kasumi-1 and SKNO-1cell lines are C-KIT mutant models of t(8;21) AML. 

Activating Asn822Lys mutation in the C-KIT receptor constitutively activates a 

number of downstream signalling pathways namely AKT, JAK/STAT3 and 

MAPkinase pathways (figure 3.13 A)(Larizza et al., 2005). To test whether 

chronic signalling is responsible for the relief of polycomb repression and PAX5 

activation, we systematically inhibited each of these pathways in Kasumi-1 cells 

by using small molecule inhibitors (indicated with red circles in figure 3.13 A) 

alone and in combination. After inhibition of each of these pathways we 

measured PAX5 expression by qRT-PCR (figures 3.13 A, B C and D).  

Inhibition of AKT, JNK, P38 and MSK1 signalling showed no effect on PAX5 

expression. Inhibition of MEK showed a small but variable effect on PAX5 

expression (figure 3.13 B and C) whereas inhibition of STAT3 signalling 

dramatically drove the Kasumi-1 cells into apoptosis within 2-3 hours of inhibitor 

treatment (figure 3.14 C). On treatment of Kasumi-1 cells simultaneously with 

JNK, MEK and P38 inhibitors for 6 hours, PAX5 expression was down-regulated 

more than 2 folds. A similar level of down-regulation in PAX5 expression was 

also achieved with only JNK and P38 inhibitors (figure 3.13 D). These 

experiments show that JNK and P38 signalling is involved in the aberrant up-

regulation of PAX5 expression in t(8;21) AML. 
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Figure 3.13: Activating receptor tyrosine kinase (RTK) mutation 
constitutively activates downstream pathways required for PAX5 
deregulation in t(8;21) AML. A) Cartoon showing downstream signalling 

pathways deregulated by activating receptor tyrosine kinase mutations and the 

complex mutual cross-talk between these signalling pathways. B) Table 
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showing signalling pathways inhibited by small molecule inhibitor treatment of 

Kasumi-1 cells and their effects on PAX5 expression respectively. C) qRT-PCR 

showing PAX5 expression kinetics after treatment of Kasumi-1 cells with the 

indicated protein kinase inhibitors. D) q-RT-PCR showing various combinations 

of JNK, MEK and P38 inhibitors and effect on down-regulation of PAX5 

expression in Kasumi-1 cells. The bar plot shown is a single representative of 

two biologically independent repeats. The error bars represent variability 

between duplicate q-PCR measurements 

3.7.1 

Simultaneous inhibition of JNK, MEK and P38 signalling down-regulates 

expression of PAX5. To ensure that this down-regulation of PAX5 is not due to 

cell death or dramatic differentiation of the cells, we recorded the morphology of 

the inhibitor treated Kasumi-1 cells at various time points over a 24 hour time 

period. We also recorded cell survival by trypan blue staining over 10 hours and 

Annexin/PI staining 10 hours after treatment with inhibitors.  

Simultaneous inhibition of JNK, MEK and P38 signalling does not affect 

the survival of Kasumi-1 cells 

Photographs of Kasumi-1 cells taken over 24 hours did not show any change in 

morphology or viability of the inhibitor treated Kasumi-1 cells as compared to 

the DMSO treated control cells (figure 3.14 A). Trypan blue staining showed 

that the cells did not die off during these 10 hours of inhibitor treatment (figure 

3.14 B). Annexin/PI staining further confirmed the fact that there was no 

increase in the number of apoptotic cells 10 hours post treatment with JNK, 

MEK and P38 inhibitors (figure 3.14 C). These results, therefore, show that 

inhibition of MAPkinase (JNK, MEK and P38) signalling does not affect the 

survival of Kasumi-1 cells. 
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Figure 3.14: Simultaneous treatment with JNK, MEK and P38 inhibitors is 
not toxic and does not affect the survival of Kasumi-1 cells.  A) 

Photographs showing DMSO control treated and inhibitor (JNK+MEK+P38) 

treated Kasumi-1 cells at 2, 6,9,12 and 24 hours respectively. B) Cell survival 

assay with trypan blue staining showing that Kasumi-1 cell do not die over 

10hrs after treatment with JNK, MEK and P38 inhibitors. The x-axis shows the 

various time points while the y-axis represents cell count in 10^5 per ml. C) cell 

survival assay using Annexin/PI staining showing that Kasumi-1 does not 

undergo apoptosis 10 hours afters JNK,MEK and P38 inhibition. However cells 

undergo apoptosis 3 hours after treatment with STAT3 inhibitor. 
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3.7.2 

Constitutive activation of STAT3 signalling has been demonstrated in many 

types of cancer including AML (

Inhibition of STAT3 signalling induces apoptosis in t(8;21) Kasumi-1 cells. 

Redell et al., 2011). Genes responsive to 

STAT3 signalling include anti-apoptosis genes and cell-cycle regulators. 

Consistent with previous reports (Redell et al., 2011), inhibition of STAT3 

signalling in Kasumi-1 cells rapidly induced apoptosis. Annexin/PI staining of 

Kasumi-1treatment with STAT3 inhibitor showed that 75% of the cells were 

dead 3 hours after treatment with the small molecule inhibitor (figure 3.14 C). 

STAT3 inhibitors therefore could be potential therapeutic option for treating 

AML. 

3.7.3 

As described in section 3.7.1, simultaneous inhibition of JNK, MEK and P38 

signalling did not affect the survival of Kasumi-1 cells. It also did not affect the 

transcription of control housekeeping genes such as TBP, RPL13A and UBC 

(figure 3.15 B and C) However PAX5 showed ~2fold down-regulation after 4 

hours of treatment and up to ~4 fold down-regulation after 6 hours of treatment 

which was maintained for more than 12 hours in Kasumi-1 cells. Control 

treatment with 30µl of DMSO did not affect the expression of PAX5 in Kasumi-1 

(figure 3.15 A) 

Inhibition of MAPkinase signalling specifically down-regulates PAX5 in 

t(8;21) AML but not in Nalm-6 pre B cells 

SKNO-1 is another t(8;21) cell line with the same activating C-KIT Asn822Lys 

mutation. We wanted to see whether down-regulation of PAX5 in response to 

inhibition of constitutively activated MAPkinases was specific to Kasumi-1 or it 
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was a more general phenotype in t(8;21) AML. To this end we treated SKNO-1 

cells with JNK, MEK and P38 inhibitors over a period of 10 hours. Inhibition of 

these signalling pathways in SKNO-1 showed a down-regulation of PAX5 

expression, albeit, the down-regulation achieved in SKNO-1 was lower than that 

in Kasumi-1 cells. After 6 hours of inhibitor treatment PAX5 was only down-

regulated ~1.6 fold compared to PAX5 expression in untreated or DMSO 

treated SKNO-1 cells (figure 3.16 A). However, TBP expression was unaffected 

by inhibitor treatment just like in Kasumi-1 cells (figure 3.16 B). 
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Figure 3.15: Aberrant PAX5 expression in Kasumi-1 t(8;21) cell line 
requires MAPkinase signalling. qRT-PCR analysis of PAX5 (A), TBP (B) and 

RPL13A (C) expression kinetics after inhibition of JNK, MEK and P38 signalling  

for 2,4 6,8 and 10 hours respectively. The expression plotted is relative to 

GAPDH expression and each bar graph shows one representative of at least 

three independent biological repeats. The error bars represent variability 

between duplicate q-PCR measurements. TBP and RPL13A are used as 

control genes to show that inhibition of JNK, MEK and P38 signalling does not 

affect transcription as a whole. 
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Figure 3.16: Aberrant PAX5 expression in SKNO-1 t(8;21) cell line requires 
MAPkinase signalling. qRT-PCR analysis of PAX5 (A), and TBP (B) 

expression kinetics after inhibition of JNK, MEK and P38 signalling for 2, 4 6, 8 

and 10 hours respectively. Y-axis shows expression relative to GAPDH 

expression and each bar graph shows one representative of at least two 

independent biological repeats. The error bars represent variability between 

duplicate q-PCR measurements. TBP is used as a control gene to show that 

inhibition of JNK, MEK and P38 signalling does not affect transcription as a 

whole. 

We furthermore cultured (frozen) cells derived from the bone marrow of a 

t(8;21) patient who had relapsed after remission, in RPMI media with 10% FCS 
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and no cytokines for 2 hours. After 2 hours in culture half the cells were treated 

with JNK, MEK and P38 inhibitors and half were treated with DMSO. Following 

treatment, the cells were incubated for another 6 hours, RNA was extracted 

from the cells and PAX5 expression was measured by qRT-PCR. As seen in 

figure 3.17 A after treatment with inhibitors PAX5 expression was down-

regulated ~ 2 fold compared to DMSO treated cells. There was no effect of the 

inhibitor treatment on TBP expression in these t(8;21) AML cells (figure 3.17 B). 
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Figure 3.17: Aberrant PAX5 expression in primary t(8;21) cells requires 
MAPkinase signalling. qRT-PCR analysis of PAX5 (A), and TBP (B) 

expression after inhibition of JNK, MEK and P38 signalling for 6 hours. CD34+ 

cell frozen from the bone marrow of a t(8;21) patient after relapse were cultured 

in RPMI1 media with serum for 2 hours after which JNK, MEK and P38 

inhibitors were added and incubated for 6 hours. Y-axis shows expression 

relative to GAPDH expression. The error bars represent variability between 

duplicate q-PCR measurements. TBP is used as a control gene to show that 

inhibition of JNK, MEK and P38 signalling does not affect transcription as a 

whole. 
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One reason for the down-regulation of PAX5 after signalling inhibition could be 

that this gene is regulated by a transcription factor that is signalling responsive. 

We therefore tested whether PAX5 expression in B cells needed MAPkinase 

signalling. To this end, we treated Nalm-6 cells with JNK, MEK and P38 

inhibitors and measured PAX5 expression over a time course. In these cells 

treatment with MAPkinase inhibitors did not affect PAX5 expression (figure 

3.18). It can therefore be concluded that inhibition of MAPkinases affects PAX5 

expression in t(8;21) AML but not in pre-B cells (Nalm-6). Furthermore the 

down-regulation of PAX5 in t(8;21) did not affect the survival of these cells and 

also did not inhibit transcription as a whole as house- keeping genes remained 

unaffected by the inhibition of these signalling pathways. Therefore it is possible 

to conclude that MAPkinase dependent PAX5 expression is specific to t(8;21) 

AML.

 

Figure 3.18: PAX5 expression in Nalm-6 B cells is independent of JNK, 
MEK and P38 signalling. qRT-PCR showing PAX5 expression kinetics in 

Nalm-6 pro-B cell line after simultaneous treatment with JNK, MEK and P38 

inhibitors for 2, 4, 6 and 8 hours respectively. The y-axis shows PAX5 

expression relative to GAPDH expression. The bar graph is a representative of 
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two independent repeats and the error bars represent variability between 

duplicate q-PCR measurements 

3.7.3 

To further investigate the molecular mechanism behind the down-regulation of 

PAX5 expression in response to inhibition of MAPkinase signalling, we 

performed ChIP-qPCR assays for RNA Polymerase II, H3K27ac and 

H3K27me3 in MAPkinase inhibitor treated, DMSO treated and untreated 

Kasumi-1 cells 6 hours after treatment.  

Inhibition of JNK, MEK and P38 signalling leads to the loss of RNA 

polymerase II and alteration of chromatin at the PAX5 locus 

Treatment with inhibitors caused a significant loss of RNA Polymerase II at HS 

1 and HS 4 of the PAX5 promoter region (figure 3.19 A). This is in accordance 

with the fact that PAX5 expression is down regulated after treatment with 

MAPkinase inhibitors. 

As described in Sections 3.3.5 and 3.4, PAX5 is poised for transcription but 

repressed by polycomb complexes in non-t(8;21) myeloid precursors. In order 

to investigate whether inhibition of signalling had any effect on polycomb 

occupancy at the PAX5 locus, we performed H3K27me3 and H3K27ac ChIP 

experiments. We observed that after overnight treatment (~16hrs) with JNK, 

MEK and P38 inhibitors Kasumi-1 cells showed an overall increase in 

H3K27me3 (figure 3.19 C) across the PAX5 locus. This was concomitant with 

the loss of the opposing H3K27ac mark that is associated with loss of polycomb 

from a target gene (figure 3.19 B) (also see section 1.3.5). Taken together these 
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results suggest that aberrant MAPkinase signalling in t(8;21) leads to the 

removal of polycomb from the PAX5 gene. 

 

Figure 3.19: Inhibition of JNK, MEK and P38 signalling leads to loss of 
RNA polymerase II and alteration of chromatin at the PAX5 locus in 
Kasumi-1 cell line. ChIP-qPCR showing relative RNA Polymerase II (A) and 

H3K27ac (B) and H3K27me3 (C) enrichment at the PAX5 locus after 6 hours (A 

and B) and overnight treatment (C) with inhibitors. Y-axis shows relative 

enrichment to IVL (A and B) or input (C). Each bar graph is a representative of 
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at least two independent experiments. The error bars represent standard 

variability between duplicate q-PCR measurements. 

3.8 

Our results so far indicate that PAX5 is up-regulated in t(8;21) AML due the 

removal of polycomb by constitutively activated aberrant MAPkinase signalling. 

The inhibition of these signalling pathways bring polycomb back on to the PAX5 

locus thereby accounting for the down-regulation of PAX5 expression after 

treatment with inhibitors. It is known that polycomb complexes recruit histone 

deacetylases (HDACs) to mediate repression of its target genes. Therefore we 

examined whether Trichostatin A (TSA): a well-known inhibitor of class I and II 

HDACs, can counteract the down-regulation of PAX5 observed on inhibition of 

MAPkinase signalling. To this end we treated Kasumi-1 cells with TSA alone or 

simultaneously with JNK, MEK, P38 inhibitors. Treatment with TSA alone 

enhanced the expression of PAX5 in Kasumi-1, while this was not the case for 

Kasumi-1 cells treated with ethanol as control. When TSA was added in 

conjunction with JNK, MEK and P38 inhibitors, the expression of PAX5 was 

rescued up to the levels in untreated Kasumi-1 cells. Cells treated with DMSO 

and ethanol simultaneously as control did not show a change in PAX5 

expression (figure 3.20). This result shows that down-regulation of PAX5 due to 

inhibition of constitutively activated MAPkinase signalling in Kasumi-1 cells 

involve histone deacetylases. 

The HDAC inhibitor TSA enhances PAX5 expression in Kasumi 1 cells 

and counteracts down-regulation of PAX5 after JNK, MEK and P38 

inhibition 
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Figure 3.20: Treatment of Kasumi-1 with HDAC inhibitors enhances PAX5 
expression and rescue down-regulation of PAX5 after JNK, MEK and P38 
inhibition. qRT-PCR showing PAX5 expression relative to GAPDH after 

treatment with TSA,  JNK+MEK+P38 inhibitors, TSA+JNK+MEK+P38 inhibitors 

and for control DMSO, ethanol and DMSO + ethanol. This is a representative of 

two independent experiments and the error bars represent variability between 

duplicate q-PCR measurements. 
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3.9 

There is a large body of literature that describes the cross-talk between cellular 

signalling and polycomb (see sections 1.3.4 and 1.3.5 (

Removal of polycomb from PAX5 does not involve MSK1, 3pK or 

JMJD3 

Niessen et al., 2009). 

Various mechanisms have so far been described to be involved in the 

regulation of dissociation/association of polycomb to its target (Sawarkar and 

Paro, 2010). Figure 3.21 illustrates the various possible mechanisms that lead 

to the de-repression of a polycomb target gene.  

Signalling mediated regulation of polycomb association and dissociation to the 

chromatin is a highly evolving field and the mechanisms discussed in sections 

1.3.4 and 1.3.5 and illustrated in figure 3.21 might only be few of many 

mechanisms that regulate this process. We, therefore, investigated whether 

some of these already known mechanisms were responsible for the de-

repression of PAX5 in t(8;21) AML. 
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Figure 3.21 Possible mechanisms of de-repression of polycomb target 
genes. Schematic representation showing the various mechanisms of de-

repression of polycomb target genes reported in literature (Sawarkar and Paro, 

2010). 
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3.9.1 

MSK1 is a protein kinase downstream of MEK/ERK pathway that has been 

shown to phosphorylate the H3S28 residue and is implicated in de-repression of 

polycomb target genes (

MSK1 is not involved in the de-repression of PAX5 in t(8;21) AML 

Gehani et al., 2010, Lau and Cheung, 2011a) (see 

section 1.3.5).  We investigated whether MSK1 was involved in the de-

repression of PAX5 in t(8;21) AML by treating Kasumi-1 cells with a specific 

MSK1 small molecule inhibitor (figure 3.13 A) over a time course of 24 hours. At 

each indicated time-point RNA was extracted from these treated cells and PAX5 

expression was measured by qRT-PCR. MSK1 treatment showed no effect on 

the expression of PAX5 gene (figure 3.13 C). This indicates that MSK1 and 

phosphorylation of H3S28 is not involved in the de-repression of PAX5 in t(8;21) 

AML. 

3.9.2 

JMJD3 is the histone de-methylase that specifically de-methylates H3K27 tri-

methylation and thus is associated with the de-repression of polycomb target 

genes (reviewed in Sawarkar and Paro 2010). It contains the JmjC catalytic 

domain and a conserved histidine residue for cofactor binding (

Aberrant PAX5 expression in t(8;21) AML does not involve signalling 

mediated up-regulation of JMJD3 expression 

Swigut and 

Wysocka, 2007). Up-regulation of JMJD3 has been reported in many cancers 

(see section 1.3.5). Therefore, we examined whether JMJD3 was up-regulated 

in t(8;21) AML. q-RT-PCR analysis shows that JMJD3 expression in Kasumi-1, 

SKNO-1 and cells from t(8;21) patients was considerably higher compared to 

non t(8;21) myeloid precursors KG-1 and HL-60 cells. However, the expression 
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of JMJD3 was observed to be very high in CD34+ mobilized stem cells from the 

peripheral blood of normal healthy donors (figure 3.22 A).  

We next tested whether the expression of JMJD3 in Kasumi-1 cells was 

dependent on aberrant constitutive MAPkinase signalling. To this end we 

measured JMJD3 expression after simultaneous treatment with JNK, MEK and 

P38 inhibitors. We also treated the Kasumi-1 cells with DMSO as control for 

comparison. However, JMJD3 was down-regulated in the DMSO controls as 

well as in inhibitor treated samples suggesting that this was the effect of DMSO 

rather than the inhibitors itself (figure 3.22 B). Hence we conclude that aberrant 

PAX5 expression in t(8;21) AML is not a consequence of signalling mediated 

JMJD3 up-regulation. 
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Figure 3.22: Aberrant PAX5 expression does not involve signalling 
mediated up-regulation of JMJD3. A) qRT PCR showing JMJD3 expression in 

the indicated cell lines. The error bars represent standard deviation between 

duplicate q-PCR measurements. B) q-RT PCR showing JMJD3 expression 

kinetics in Kasumi-1 cell line after treatment with JNK, MEK and P38 inhibitors. 

Treatment with DMSO is done as a control. The values are an average between 

two independent experiments and the error bars represent variability between 

the values from these two experiments 
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3.9.3 

It has been reported that loss of BMI1: a component of the PRC1 complex leads 

to up-regulation of Ebf1 and Pax5 in mouse HSC/ MPP (

MAPKAPkinase3 / 3pK is not responsible for aberrant up-regulation of 

PAX5 in t(8;21) AML 

Oguro et al., 2010). 

Association of BMI1 to chromatin is governed by its phosphorylation status 

(Voncken et al., 2005). MAPKAP kinase 3 (3pK) is a protein kinase downstream 

of JNK, MEK and P38 which is known to phosphorylate BMI1 leading to its 

dissociation from the chromatin (see section 1.3.5). Our experiments showed 

that combined inhibition of JNK and P38 signalling in Kasumi-1 cells down-

regulated PAX5 expression within 4 hours of treatment. We hypothesized that 

this down-regulation of PAX5 could be the result of inhibition of 3pK via the 

inhibition of upstream MAPkinase pathways. In order to test our hypothesis, we 

knocked down the expression of the 3pK gene in Kasumi-1 cells by siRNA. We 

transiently transfected siRNA directed against the 3pK mRNA and achieved 

~75% down-regulation at the mRNA level within 18 hours (figure 3.23 B) and 

~60% down-regulation at the protein level after 4 days of treatment with siRNA 

(figures 3.23 A and B). qRT-PCR analysis of RNA extracted from 3pK depleted 

Kasumi-1 cells at various time-points, however, did not show an effect of 3pK 

depletion on the expression of PAX5 (figure 3.23 C) 
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Figure 3.23: MAPKAP kinase 3 (3pK) is not responsible for the de-
repression of PAX5 in t(8;21) AML. A) Western blot showing knock down of 

3pk protein after 4 days of treatment with siRNA 3pK in Kasumi-1 cells. B) qRT-

PCR showing effective knock-down of 3pK in Kasumi-1 cells after 2, 4 and 5 

days respectively. C and D) qRT-PCR assay showing PAX5 and TBP 

expression is not affected by the knockdown of 3pK in Kasumi-1 cells. The 

relative expression of 3pK, PAX5 and TBP are relative to GAPDH. The error 

bars represent variability between duplicate q-PCR measurements. 

 



 

183 
 

3.10 

Inhibition of JNK, MEK and P38 signalling down-regulated PAX5 expression in 

t(8;21) AML, whereby JNK and P38 are sufficient for down-regulation (figure 

3.13 D). These signalling pathways get de-regulated as a result of activating 

tyrosine kinase mutations in t(8;21) AML. In Kasumi-1 and also in SKNO-1 the 

C-KIT receptor is rendered constitutively active due to the point mutation 

Asn833Lys. We therefore tested whether siRNA mediated knockdown of C-KIT 

down-regulated PAX5 expression. To this end we transiently transfected 

Kasumi-1 cells with siRNA against C-KIT mRNA. qRT-PCR confirmed the 

knock-down of C-KIT at the mRNA level (figure 3.24 B). Flow cytometry 

analysis of CD117 showed the depletion of C-KIT receptor protein from the cell 

surface of Kasumi-1 cells two days after transfection (figure 3.24 A). Even 

though C-KIT provides essential survival signals, depletion of C-KIT receptor is 

tolerated by the Kasumi-1 cells for at least 4 days. Annexin/PI staining 

confirmed that depletion of surface C-KIT did not drive Kasumi-1 cells into 

apoptosis. 

siRNA mediated knock-down of c-KIT down-regulates PAX5 

expression 

After knockdown of C-KIT, RNA was extracted from these C-KIT depleted 

Kasumi-1 cells and PAX5 expression was measured. qRT-PCR analysis 

showed 2 fold down-regulation of PAX5, 3 days after C-KIT knockdown (figure 

3.24 A). The same effect was not observed in control house- keeping genes 

such as TBP and RPL13A (figure 3.24 C). This result establishes the link 

between C-KIT mutation and de-regulated MAPkinase signalling as a cause for 

aberrant PAX5 expression in t(8;21) AML. 
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Figure 3.24: siRNA mediated knockdown of c-KIT receptor in Kasumi 1 
cells down-regulates PAX5 expression. A) Flow cytometry analysis showing 

loss of surface CD117 receptor (c-KIT) after siRNA mediated C-KIT knockdown 

in Kasumi-1 cells. The top panel shows IgG-PE staining of Kasumi-1 cells; the 

middle panel shows CD117 staining of mock transfected Kasumi-1 cells, while 

the bottom panel shows CD117 staining of C-KIT siRNA transfected Kasumi-1 

cells. B) q-RT PCR showing effective knock- down of C-KIT. The expression 

shown is relative to GAPDH. Error bars represent variation between duplicate q-

PCR measurements C) qRT-PCR showing PAX5, TBP and RPL13A 

expressions relative to GAPDH, 3 days after C-KIT knock-down. This is a 

representative of at least two independent experiments. The error bars 

represent variation between duplicate q-PCR measurements 
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4 DISCUSSION 

4.1 

It is well known that PAX5: the master regulator of B-cell development is 

aberrantly up-regulated in t(8;21) AML (

PAX5 expression is lower in t(8;21) AML cells than in B-lymphoid cells 

Tiacci et al., 2004, Valbuena et al., 

2006) (see sections 1.6.1 and 3.1 and figure 3.1). This aberrant up-regulation of 

PAX5 is of functional consequence in t(8;21) AML as it drives the expression of 

the B-cell specific CD19 gene (see section 2.6.2), but the cause for PAX5 was 

not known. In this study we, therefore, investigated the molecular mechanism of 

aberrant PAX5 expression in this type of leukaemia. To this end we used two 

well-established t(8;21) AML cell lines: Kasumi-1 and SKNO-1 (Asou et al., 

1991, Matozaki et al., 1995) as in vitro models together with primary cells from 

two t(8;21) AML patients. Kasumi-1 was originally established from the 

peripheral blood of a 7-year old Japanese boy with t(8;21) AML who had 

relapsed after bone marrow transplantation (Asou et al., 1991). SKNO-1 was 

established from a 22-year old male patient suffering from t(8;21) AML who also 

acquired  chromosome 17 monosomy and his disease became chemo-resistant 

(Matozaki et al., 1995). Kasumi-1 and SKNO-1, therefore, represent very 

aggressive forms of t(8;21) AML. PAX5 expression has been reported in these 

cell-types both at the message level and the protein level (SKNO1 only) (Tiacci 

et al., 2004). Several research studies investigating t(8;21) AML have used 

these cell lines as models (Ptasinska et al., 2012a). Consistent with previous 

reports, PAX5 expression was detected in Kasumi-1, SKNO-1 and in cells from 

t(8;21) AML patients (figure 3.1) by q-RT-PCR analysis. However, the 
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expression of PAX5 in t(8;21) was found to be considerably lower than the B-

lymphoid cells (Ramos and Nalm-6) (Figure 3.1). 

Several explanations are possible as why t(8;21) AML (Kasumi-1, SKNO-1 and 

primary cells) express PAX5 at such a low level compared to B-lymphoid cells. 

Decker et al identified a B-cell specific intronic enhancer at the murine Pax5 

locus which they found was responsible for the robust Pax5 expression in 

mouse B-cells (Decker et al., 2009). We identified the corresponding enhancer 

element (HS B) at the human PAX5 locus in human pre-B cells (Nalm-6) (see 

figure 3.3). This strong DNase I hypersensitive site (HS B) is in an inactive 

chromatin conformation in t(8;21) AML cells (figures 3.6 and 3.7) (also see 

section 3.3.2). Transgenic lines carrying the deletion of intron 5 (that carries the 

enhancer element) in Pax5-Gfp BAC, showed only minimal expression of the 

transgene in mature mouse B-cells(Decker et al., 2009) . This indicates that the 

high levels of Pax5 expression in mouse B-cells are dependent on the intronic 

enhancer element. Therefore, the lack of an active corresponding human 

enhancer element (HS B) in t(8;21) AML cells is likely to be one of the prime 

reasons for the low expression observed in these cells. 
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4.2 

Many previous studies have shown E2A and EBF1 act genetically upstream of 

Pax5 (

Aberrant expression of PAX5 in t(8;21) AML is independent of EBF1 

expression 

Bain et al., 1994, Lin and Grosschedl, 1995). Using Ebf1 -/- MPPs 

cultured on OP9 feeder cells, Decker et al showed that the activation of the 

murine Pax5 promoter (HS1-7) at the chromatin level and also the expression of 

Pax5 were dependent on the expression of EBF1 (Decker et al., 2009). 

However, we failed to detect EBF1 expression in Kasumi-1 or SKNO-1 cell lines 

by q- RT-PCR (data not shown), although both cell lines clearly express PAX5 

and show an active chromatin conformation at the proximal (HS1-4) and distal 

promoters (HS8) (see section 3.3.1 and figure 3.5). Cells obtained from t(8;21) 

AML patients did show EBF1 expression that was, however, much lower than 

B-lymphoid cells (data not shown). Moreover, previous studies from our lab 

demonstrated that EBF1 expression does not directly correlate to PAX5 

expression in primary t(8;21) blasts (Walter et al., 2010). EBF1 has been shown 

to primarily bind HS7 and weakly HS6 (by ChIP and in vivo footprinting 

experiments) at the murine Pax5 promoter to regulate Pax5 (Decker et al., 

2009). In t(8;21) AML these sites (HS7 and HS6) are not hypersensitive to 

DNase I digestion (see section 3.3.1 and figure 3.5) and hence are occluded 

from EBF1 binding. Taken together, the lack of active HS 7and HS 6 (which 

binds EBF1 in mouse B-cells),the lack of expression of EBF1 in Kasumi-1 and 

SKNO-1cell lines and also the EBF1 independent formation of hypersensitive 

sites HS1-4 suggest that the mechanism of up-regulation of PAX5 in t(8;21) 

AML does not directly involve EBF1. However, further studies are necessary  to 

examine whether EBF1 binds any of the other promoter hypersensitive sites in 
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those t(8;21) AML patients that do express EBF1, before completely ruling out 

the involvement of EBF1 in the aberrant activation or maintenance of PAX5 

expression in t(8;21) AML. 

4.3 

Within the haematopoietic system, PAX5 is exclusively expressed in the B-

lymphoid lineage. However, the promoter cluster of PAX5 has been shown to 

show hypersensitivity to DNase I digestion in early CD34+ and CD133+ 

progenitor cells (

PAX5 is poised for transcription and repressed by polycomb 

repressive complexes in non t(8;21) myeloid precursors 

Cui et al., 2009), in blasts from non-t(8;21) AML patients 

(Ptasinska et al., 2012a) and in human pro-myelocytic leukaemia cell line (HL-

60) (Encode, UCSC Genome Browser). It is known that poised genes show 

active chromatin, bivalent histone marks and carry a stalled RNA Polymerase II 

(Beisel and Paro, 2011). To study this in more detail, we used HL-60 cells as a 

non t(8;21) myeloid precursor control in our experiments. HL-60 cells were 

established from a female patient who was suffering from acute myeloblastic 

leukaemia with differentiation falling in M2 category under the FAB classification 

(Dalton et al., 1988).Therefore, HL-60 cells are very similar to Kasumi-1 cells in 

their differentiation stage. Our experiments show that in HL-60 cells the PAX5 

gene shows an active chromatin conformation at the promoters (see sections 

3.3.1, 3.5 and figures 3.5 and 3.11) and carries bivalent histone marks ( see 

section 1.2.7 and figures 3.8B and 3.10A) and a stalled RNA Polymerase II 

figure 4.9). Taken together, these results show that in HL-60 cells, PAX5 is 

poised for transcription. It is interesting to note that CD19, another B-cell gene 

that is deregulated in t(8;21) AML, also shows poised chromatin structure at the 
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enhancer in myeloblasts (Walter et al., 2010). Using DNase I hypersensitive site 

mapping, in vivo DNAse I footprinting and histone modification ChIP 

experiments, Walter et al  showed that the CD19 enhancer exhibits a poised 

chromatin in myeloblasts in the absence of up-stream B-cell specific  factors 

such as PAX5 and EBF1(Walter et al.  2010). Inspection of genome-wide 

DNAse I hypersensitive site mapping in HL-60 (UCSC genome browser) also 

reveals an open chromatin conformation at the CD19 enhancer and promoter. 

The PAX family of transcription factors are well-known targets of polycomb 

repressive complexes (Bracken et al., 2006). In fact, Pax5 has been shown to 

be repressed by polycomb repressive complexes in early haematopoietic 

progenitors (HSCs and MPPs) (Bernstein et al., 2006, Mikkelsen et al., 2008), in 

T-cells (Wang et al., 2008) and in Pax5 non- expressing MEFs (Mikkelsen et al., 

2008). Decker et al showed that in Ebf1-/- and in Tcfe2a-/- MPPs which do not 

express Pax5 and fail to form seven out of the eight Pax5 promoter 

hypersensitive sites, the Pax5 promoter is marked by the polycomb mediated 

H3K27me3 repressive mark (Decker et al., 2009). Our H3K27me3, H3K27ac 

and EZH2 ChIP experiments confirm this finding and provide direct evidence 

that indeed in PAX5 non-expressing HL-60 cells, the PAX5 gene is repressed 

by polycomb repressive complexes (figure 3.10 and section 3.4). Such poised 

chromatin imposed by polycomb repressive complexes is found at a number of 

developmentally regulated genes in early stem/ progenitor cells (Cui et al., 

2009, Beisel and Paro, 2011). Deletion of Bmi1 in mouse HSCs/MPPs leads to 

the untimely up-regulation of Pax5 and Ebf1 in HSCs/MPPs (Oguro et al., 
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2010). Therefore polycomb mediated repression of PAX5 is of paramount 

importance for the spatio-temporal regulation of PAX5. 

There are several known mechanisms of polycomb mediated repression (see 

section 1.3.3) including H2AK119ub1 mediated block in transcriptional 

elongation. Our ChIP experiment measuring the elongating phosphorylated -

serine2 RNA polymerase II complex indeed shows that in HL-60 cells 

transcription is blocked at the elongation stage (see figure 3.9B). Future 

experiments will test whether this block in transcriptional elongation at PAX5 in 

HL-60 is due to the deposition of PRC1/H2AK119ub. 

4.4 Aberrant

Our data clearly show that the presence or absence of RUNX1/ETO does not 

influence PAX5 expression. Microarray analysis of RNA isolated from human 

CD34+ haematopoietic progenitor cells transduced with RUNX1/ETO containing 

retrovirus also does not show deregulation of PAX5  (

 up-regulation of PAX5 in t(8;21) AML is not dependent on the 

presence of RUNX1/ETO  

Tonks et al., 2007). In a 

recent study Dunne et al describes that siRNA mediated depletion of 

RUNX1/ETO in primary t(8;21) patient cells down-regulates PAX5 expression 

by ~10 folds within 24 hours (Dunne et al., 2012). However, we have failed to 

reproduce this result by knocking down RUNX1/ETO for up to 96 hours in 

Kasumi-1 cells using the same siRNA (gift from Dr Olaf Heidenreich, Newcastle 

,UK) as this group (Figure 3.12 A). As a part of a parallel study in the lab, 

RUNX1/ETO knocked down Kasumi-1 cells were maintained for 10 days and 

RNA isolated at various time points from these cells were used for microarray 
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analysis (Ptasinska et al., 2012a). Inspection of this microarray data does not 

show a change in PAX5 expression as a result of RUNX1/ETO depletion in 

Kasumi-1 cells (Ptasinska et al., 2012a). To further confirm this, we obtained 

RNA from RUNX1/ETO depleted t(8;21) patient cells from Dr Olaf Heidenreich 

and found that PAX5 expression was unaffected as a result of RUNX1/ETO 

depletion (figure 3.12A). Furthermore, genome-wide RUNX1 and RUNX1/ETO 

ChIP-sequencing showed that PAX5 is not a direct target of RUNX1 or 

RUNX1/ETO (Figure 3.12 B) in Kasumi-1 cells or primary t(8;21) AML patient 

cells (Ptasinska et al. 2012).  It is important to note that, Dunne et al transduced 

foetal liver haematopoietic progenitor cells with RUNX1/ETO9a (a truncated 

version of the RUNX1/ETO protein that is capable of inducing leukaemia in 

transplantation mouse models) and observed only a small increase in PAX5 

expression (Dunne et al., 2012). They did observe a robust increase in PAX5 

expression on transducing the foetal liver haematopoietic progenitors with 

retroviruses containing RUNX1/ETO9a and POU4F1 (Dunne et al., 2012) and 

therefore suggest that RUNX1/ETO alone is unable to up-regulate PAX5; and 

requires the synergistic effects of RUNX1/ETO and POU4F1 (BRN3A) (Dunne 

et al., 2012).  

Our results and the literature discussed above clearly show that RUNX1/ETO 

does not directly bind PAX5 to regulate its expression, nor does the 

presence/absence of RUNX1/ETO alone affect PAX5 expression. However, the 

idea of another genetic mutation, or deregulated protein (such as BRN3A) co-

operating with RUNX1/ETO to up-regulate PAX5 is a plausible hypothesis. To 
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prove this, direct binding of BRN3A to the PAX5 locus needs to be shown and a 

mechanism of BRN3A and RUNX1/ETO co-operativity needs to be discovered. 

4.5 

Full length RUNX1/ETO protein on its own is unable to cause overt leukaemia 

in transplantation models; it requires co-operating mutations (see section 1.5.2). 

A sizeable percentage of secondary mutation in t(8;21) AML are in tyrosine 

kinase receptors (FLT3, c-KIT, NRAS and KRAS) (

Constitutively activated C-KIT mediated aberrant MAPKinase 

signalling is required for up-regulation of PAX5 in t(8;21) AML  

Peterson et al., 2007a, Valk 

et al., 2004, Bullinger et al., 2004) which co-operate with t(8;21) translocation to 

induce leukemic transformation (see section 1.5.2). The frequency of C-KIT 

mutation has been reported to be as high as 48% in t(8;21) AML (Wang et al., 

2005). KIT mutations are correlated with high white blood cell count (Cairoli et 

al., 2003, Nguyen et al., 2002), poor prognosis and highest frequency of relapse 

in t(8;21) AML (Park et al., 2011, Cairoli et al., 2006, Wakita et al., 2011). 

Kasumi-1 and SKNO-1 have been shown to carry an activating N822K point 

mutation in the activation domain of C-KIT receptor which leads to its ligand 

independent auto-phosphorylation (Beghini et al., 2002, Becker et al., 2008). 

Kasumi-1 carries a wild-type allele of C-KIT but the mutant allele is amplified 5-

fold due a concomitant trisomy of chromosome 4 (Beghini et al., 2002). SKNO-1 

is homozygous for the N822K C-KIT mutation (Becker et al., 2008). A large 

amount of research has elucidated the effect of activating C-KIT mutation on 

down-stream signalling pathways (Tsujimura et al., 1997, Timokhina et al., 

1998, Chian et al., 2001, Ning et al., 2001, Linnekin, 1999). Larizza et al has 

reviewed this body of work and put forward a composite picture of deregulated 
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signalling pathways (which includes AKT, JAK/STAT, JNK, P38 and MEK) 

down-stream of constitutively activated C-KIT signalling in t(8;21) AML (Larizza 

et al., 2005). Western blotting experiments have clearly shown constitutively 

phosphorylated PI3K, AKT, STAT3 and JNK proteins in Kasumi-1 cells (Beghini 

et al., 2005). Though constitutively activated ERK1/ERK2 kinases were not 

detectable by western blotting in Kasumi-1 cells (Beghini et al., 2005), other 

studies have reported an effect of high concentration (30µM) of MEK1/MEK2 

inhibitor on the survival and apoptosis of Kasum-1 cells (Rovida et al., 2006). 

Furthermore ERK1 and ERK2 (down-stream of MEK) were the first signalling 

pathways to be shown to be deregulated as a result of activating C-KIT 

mutation (Serve et al., 1995, Okuda et al., 1992, Druker et al., 1992). 

Stimulation of normal bone marrow cells show robust activation ERK and AKT 

signalling in a variety of C-KIT positive cells (Ronnstrand, 2004). It is important 

to note that different MAPKinases interact with each other extensively and 

exhibit complex ‘cross-talk’ (Chen et al., 2001). 

Our experiments demonstrate that simultaneous inhibition of JNK, P38 and 

MEK (or JNK and P38 –figure 4.13D) down-regulated PAX5 expression within 4 

hours of treatment in Kasumi-1 cells (figures 3.13D and 3.15), SKNO-1 cells 

(figure 3.16) and in cells from t(8;21) AML patients (figure 3.16). Furthermore, 

within 6 hours of treatment with JNK, P38 and MEK inhibitors PAX5 promoter 

hypersensitive sites lost the elongating form of RNA polymerase II and 

H3K27acetylation (figures 3.19 A and B) in Kasumi-1 cells. siRNA mediated 

knock-down of C-KIT in Kasumi-1 cells, which is known to be the causative 

mutation behind aberrant MAPkinase signalling in these cells, also down-
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regulated PAX5 expression (figure 3.24). This experiment directly links mutated 

C-KIT to aberrant PAX5 expression in Kasumi-1 cells and makes it evident that 

aberrant MAPKinase signalling which is an effect of constitutively activated C-

KIT, is required is required to maintain elevated PAX5 expression in t(8;21) 

AML cells. 

Our experiments have shown that in HL-60 cells PAX5 is not expressed (figure 

3.1), the gene is repressed by polycomb repressive complexes (figure 4.10) but 

the locus is poised for transcription (figures 3.6, 3.8 and 3.9). In this context it is 

interesting to note that unlike Kasumi-1, HL-60 cells have wild-type alleles of C-

KIT and are responsive to SCF (Jalal Hosseinimehr et al., 2004). Western 

blotting experiments have confirmed the absence of constitutively activated 

MEK (Miranda et al., 2002) and P38 MAPKinases (Tian et al., 2010) in HL-60 

cells. Though constitutive activation of JNK has been detected in this cell-type 

(Rovida et al., 2006), it clearly does not have an effect on PAX5 expression. 

Activating mutations in C-KIT forms up to 48% of the secondary mutations in 

t(8;21) AML. However, PAX5 expression is detectable in a much larger 

percentage of t(8;21) AML patients (Tiacci et al., 2004, Valbuena et al., 2006). 

The other common mutations co-operating with RUNX1/ETO in t(8;21) AML 

affect the signalling molecules N-RAS, K-RAS and FLT3. It is important to note 

that activated RAS-RAF kinases activate MAPkinases (Serve et al., 1995, 

Okuda et al., 1992). FLT3 is structurally very similar to C-KIT. There are several 

studies that show that constitutively active FLT3 constitutively activates STAT5 

and MAPkinases (Hayakawa et al., 2000, Williams et al., 2012). FLT3 and C-

KIT mutations lead to the deregulation of the same pathways in AML, which is 
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the likely explanation for the finding that these mutations are mutually exclusive 

in AML (Care et al., 2003). Therefore the convergence of activating C-KIT, FLT3 

and RAS mutations at down-stream MAPkinases could be a possible 

explanation for the activation of PAX5 expression in t(8;21) AML with or without 

C-KIT mutation. 

 

Figure 4.1: Schematic summary of constitutively activated signalling 
pathways down-stream of an activating C-KIT mutation (Larizza et al., 

2005). 

4.6 

STAT3 is a critical signalling component in haematopoietic cells (

STAT3 is the main survival signal in t(8;21) AML 

Chung et al., 

2006). and plays a key role in cancer (Bromberg et al., 1999). Constitutively 

activated STAT3 has been detected in squamous cell carcinoma of the head 

and neck (Grandis et al., 1998) and also in various other malignancies including 
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AML (Benekli et al., 2002, Spiekermann et al., 2001, Steensma et al., 2006). 

STAT3 has been shown to be active in t(8;21) AML as a result of constitutively 

activated C-KIT signalling (Larizza et al., 2005, Beghini et al., 2005).Fibroblasts 

expressing constitutive STAT3 develop malignancy in culture and form tumours 

in mice (Garcia et al., 1997). Our experiments showed that small molecule 

mediated inhibition of constitutively active STAT3 signalling in Kasumi-1 cells 

led to complete cell death within 3 hours of treatment by driving the cells into 

apoptosis (figure 3.14 C) as measured by Annexin/ PI staining. This confirms 

previous results which also demonstrated STAT3 dependency of survival in 

other AML cell lines (Kasumi-1, HL-60, K562, GDM-1,THP-1 KG-1 and NB-4) 

representing different  types of acute myeloid leukaemia  and primary paediatric 

AML (Redell et al., 2011). Similar results have been reported in HL-60 (Zhao et 

al., 2011)  and U937 cells with different STAT3 small molecule inhibitors (Kang 

et al., 2012). It is noteworthy that our experiments showed no apoptotic effect of 

AKT, JNK, MEK or P38 inhibition alone or in conjunction in Kasumi-1 cells 

(figure 4.14 A,B and C). However, Rovida et al reported apoptosis of Kasumi-1 

cells on inhibition of constitutively activated JNK in conjunction with HDAC 

inhibitors (Rovida et al., 2006). Our results indicate that constitutively activated 

STAT3 (and not AKT or MAPKinases) is the primary survival signal in Kasumi-1 

cell line. 

Recent work from Dong-Er Zhang’s lab has identified 19 genes as direct targets 

of RUNX1/ETO9a by combined microarray and ChIP-on-chip experiments in the 

Lin-Sca1- c-Kit+ (LK) leukemic population of cells from an AML mouse model 

carrying RUNX1/ETO9a oncogene (Lo et al., 2012). One of these 19 genes was 
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CD45. Their microarray data showed that CD45 is highly down-regulated in 

t(8;21) AML patient samples as well as the LK cells from the leukemic mouse 

model. CD45 is a haematopoietic JAK phosphatase that down-regulates 

JAK/STAT signalling. They found that as a result of down-regulation of CD45 in 

RUNX1/ETO9a expressing mouse cells, JAK/STAT signalling was enhanced 

with higher levels of phosphorylated JAK1, JAK2 and several STAT proteins 

including STAT3 compared to control cells. Re-expression of CD45 suppressed 

JAK/STAT signalling and delayed leukaemogenesis and drove the t(8;21) 

positive AML cells to apoptosis (Lo et al., 2012). Therefore this study exhibited  

an alternative (different from C-KIT mediated) mechanism of activation of 

JAK/STAT signalling but it re-enforces the fact that JAK/STAT signalling is the 

prime survival and growth signal in t(8;21) AML. Therefore, STAT3 is clearly a 

lucrative therapeutic target for treating acute myeloid leukaemia. 

4.7 

Inhibition of MAPKinase signalling in Kasumi-1 cells leads to the increase of the 

PRC2 mediated H3K27me3 mark across the PAX5 promoter hypersensitive 

sites (figure 3.19 C) with the concomitant decrease of the opposing H3K27ac 

mark (figure 3.19 B) and experiments conducted by So Yeon Kwon form the 

Bonifer lab has also confirmed the re-recruitment of EZH2 (unpublished results). 

The result is a down-regulation of PAX5. This inhibition of signalling mediated 

down-regulation of PAX5 can be counteracted by the HDAC inhibitor: TSA and 

is consistent with the finding that Polycomb complexes recruit HDACs to 

mediate repression (

Aberrant MAPkinase signalling in t(8;21) AML inactivates polycomb 

repressive complexes 

van der Vlag and Otte, 1999). Therefore, we propose in 
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t(8;21) AML aberrant MAPkinase signalling de-regulates polycomb which leads 

to its dissociation from of its target genes one of which is PAX5. This could 

either be due to direct signalling mediated modification (phosphorylation) of 

polycomb proteins or via another protein (transcription factor) that itself gets 

modified by signalling and then regulates polycomb. These two mechanisms 

are currently being investigated. 

A large number of mutations in polycomb group proteins have been detected in 

cancer including AML where genes encoding polycomb group proteins function 

as oncogenes or tumour suppressors (Raaphorst, 2005, Jacobs et al., 1999, 

Kikuchi et al., 2010, Mochizuki-Kashio et al., 2012). Our studies, however, 

suggest that polycomb might also become functionally de-regulated in t(8;21) 

AML as a result of aberrant signalling. Such de-regulated polycomb activity in 

turn deregulates the expression of downstream target genes which may be key 

factors in determining leukaemogenesis. Several studies have mechanistically 

linked signalling pathways to the de-repression of polycomb target genes. The 

immediate early response genes become de-repressed in response to 

MAPkinase pathway activation (Lau and Cheung, 2011a, Gehani et al., 2010). 

Furthermore, de-repression of polycomb targets in stem/progenitor cells form an 

important step in differentiation and development (Sawarkar and Paro, 2010). 

Therefore, the mechanism of PAX5 de-regulation mediated by a functionally de-

regulated polycomb could be a paradigm for gene de-regulation observed in 

several malignancies. 
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4.8 

Aberrant up-regulation of PAX5 in t(8;21) AML is a key component of the mixed 

lineage phenotype of t(8;21) AML. Ectopic expression of PAX5 in myeloid 

precursors leads to the formation of bi-phenotypic progenitor cells with B-cell 

and myeloid surface markers (see section 2.6.2). PAX5 has been shown to 

directly up-regulate CD19 expression in t(8;21) AML (

Aberrant up-regulation of PAX5 by mutant C-KIT is a novel role of C-

KIT signalling which may contribute to the differentiation block in t(8;21) 

AML 

Walter et al., 2010). In 

normal haematopoiesis PAX5 is a well-known repressor of myeloid specific 

genes such as CSF1R (Tagoh et al., 2006b). It is therefore likely to also repress 

myeloid genes in t(8;21) AML, thus contributing to the block in myeloid 

differentiation. 

C-KIT and other receptor tyrosine kinase genes were shown to regulate 

haematopoiesis by mostly influencing the HSC microenvironment (Ashman, 

1999). SCF/C-KIT signalling provides growth signal for multipotent progenitors 

(Ogawa et al., 1991, Carow et al., 1991) and crucial survival signal to HSCs 

(Sharma et al., 2006). C-KIT is expressed from HSCs up to pro-myelocytic 

progenitor stage during normal haematopoiesis (Zheng et al., 2009). Mutations 

in C-KIT are classically classified under the Class I mutations (such as 

mutations in RAS, FLT3, PDGFRβ, CSF1R) that are thought to provide survival 

and growth advantage to leukemic cells which carries another mutation (Class II 

mutation) that blocks differentiation (Steffen et al., 2005).  
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Our experiments demonstrate for the first time that constitutive C-KIT signalling 

and downstream MAPkinase signalling has a direct influence on gene 

expression in addition to its classical role in survival and growth signal of 

leukemic cells. Our results suggest that in t(8;21) AML activated MAPkinase 

signalling deregulates polycomb repressive complexes and affects its 

association/dissociation to target loci. Since leukemic blasts are arrested at an 

early stage of differentiation they are likely to have a large number of genes 

under polycomb regulation. Therefore, signalling mediated deregulation of 

polycomb is likely to de-regulate a large number of genes.  

siRNA mediated depletion of C-KIT in Sca1+Lin- mouse HSCs transduced with 

RUNX1/ETO does not reduce the re-plating ability of these cells. However, the 

loss of C-KIT leads to the colony forming unit-GM of RUNX1/ETO positive 

HSCs to appear more spread out indicating an effect of C-KIT signalling on the 

differentiation status of these cells (Zheng et al., 2009). Furthermore, recently a 

clinical study has described that the treatment of a 52 year old male patient 

suffering from AML with t(8;21) translocation and activating N822K C-KIT 

mutation, with dasatinib resulted in robust in vivo differentiation of myeloblasts 

into neutrophilic granulocytes in the peripheral blood of the patient (Chevalier et 

al., 2010) pointing to a role of C-KIT in the differentiation block in this type of 

leukaemia. The mechanism elucidated by our study i.e. deregulation of key 

genes (in this case PAX5) via abrogation of polycomb mediated repression by 

aberrant signalling downstream of activating C-KIT mutation, may represent the 

main mechanism by which C-KIT affects differentiation of blasts in t(8;21) AML. 
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4.9 

The mechanism by which PAX5 is deregulated in t(8;21) AML is illustrated in 

figure 4.2. In B cells PAX5 exhibits an active chromatin conformation at the 

promoters and enhancer, carries high levels of active histone makers 

(H3K4me3 and K3K9ac), recruits high level of RNA Polymerase II complex and 

is robustly expressed. In myeloid precursors without t(8;21) translocation the 

PAX5 promoters show an active chromatin conformation and recruits RNA 

polymerase II. However, the gene is repressed by polycomb repressive 

complexes and the RNA polymerase II is held paused. In t(8;21) AML this 

polycomb repression is relieved due to aberrant MAPkinase signalling which is 

an effect of an activating mutation in receptor tyrosine kinases (C-KIT). This 

leads to the up-regulation of PAX5 (see figure 4.2). 

Summary 
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Figure 4.2: Aberrant activation of PAX5 in t(8;21) AML involves abrogation 
of polycomb repression via constitutively activated MAPKinase pathways 
due to activating receptor tyrosine kinase mutations. In B cells the PAX5 

promoter remains active and robust transcription occurs. In myeloid precursors 

the gene is not expressed, but remains poised with a stalled RNA polymerase II 

and repressed by polycomb repressive complexes. In t(8;21) AML this 

polycomb repression is relieved via activated MAPkinase signalling leading to 

effective transcriptional elongation and aberrant expression of PAX5. The green 

and blue shapes indicate the basal transcription machinery associated with the 

RNA polymerase II complex. 
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4.10 

Although our study sheds light on the general mechanism of PAX5 deregulation 

in t(8;21) AML, there are a number of open questions. C-KIT mutations are 

most common in core binding factor leukaemia but receptor tyrosine kinase 

mutations are detected in a large variety of AML types irrespective of the 

karyotype. However PAX5 expression is highly correlated to t(8;21) AML. It is 

therefore unlikely that activated receptor tyrosine kinase mediated aberrant 

signalling is the sole reason for up-regulation of PAX5 in t(8;21) AML. It is 

therefore likely that RUNX1/ETO plays a role in the activation of PAX5 in 

conjunction with aberrant signalling. As discussed in section 4.4 Dunne et al 

has suggested POU4F/BRN3A as a potential factor that co-operates with 

RUNX1/ETO to up-regulate PAX5 (see section 4.4). It is therefore important to 

investigate whether BRN3A or any other RUNX1/ETO regulated factor co-

operates with MAPkinase signalling in the de-regulation of PAX5. Transcription 

factors may be directly influenced by MAPkinase signalling to co-operate with 

RUNX1/ETO to mediate PAX5 deregulation. Signalling mediated modification of 

transcription factors have been shown to affect transcription factor activity 

(

Open questions and future work 

Kowenz-Leutz et al., 2010, Yasuda et al., 2012). 

Furthermore, since our experiments show that inhibition of signalling recruits 

polycomb on to the PAX5 promoter hypersensitive sites, it is likely that aberrant 

MAPKinase signalling mediated loss of polycomb will affect a large number of 

polycomb targets in this type of leukaemia. If these genes are otherwise poised 

for transcription like PAX5, then these genes will also get de-repressed. 

Therefore this might be a mechanism of deregulation (up-regulated) of genes in 
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t(8;21) AML that are not directs targets of RUNX1/ETO. It is therefore important 

to perform microarray gene expression analysis before and after inhibitor 

treatment to examine the nature and number of deregulated genes. Genome-

wide H3K27me3 and EZH2 ChIP-sequencing experiments to complement the 

microarray analysis will shed light on the genes that recruit polycomb after 

MAPkinase inhibition. These experiments are currently on-going in the lab and 

will help to unravel a novel mechanism of gene de-regulation via de-regulated 

polycomb in t(8;21) AML. 
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