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Abstract

A set of novel time-resolved techniques are presented to probe the transient carrier

dynamics of semiconductors. The techniques are particularly useful for opaque, multi-

layer and multi-phase samples. Multiple incidence angle reflectometry measurements

have been used to measure the plasma frequency, scattering rate and effective mass of

carriers shortly after optical excitation, but prior to significant recombination. For sam-

ples of nano structured silicon embedded in an amorphous silicon matrix (nc-Si:H) val-

ues of ωp = 1.2+0.3
−0.2×1015s−1, Γ = 2+1.2

−1 ×1015s−1 and meff = 0.17 are found, in good

agreement with those found in similar optical, time-resolved studies. Time-resolved

scattering and reflectivity measurements have been used to measure the characteris-

tic timescales of carriers within samples of nc-Si:H, we find a decay time of carriers

within the nano crystals of τdec = 2.2± 0.2ps, a recombination time in the matrix of

τrec = 22± 2ps and a transfer of carriers initially excited into the nano-crystals to the

amorphous matrix of τtrans = 4±0.7ps. These compare well with timescales measured

in the bulk α-Si and nc-Si samples.

A time-resolved ellipsometry technique has been developed using a home-built and

calibrated ellipsometer. The design and optimisation of the ellipsometer has been cho-

sen carefully to study low absorption materials. The ellipsometric angles (Ψ and ∆)

are measured in good agreement with commercial ellipsometry equipment. An optical

model is constructed to find accurately the thin film thickness’ and dielectric function

dispersions of the complex multi-layer samples. The values are then fit as a function of

time allowing measurement of the transient change in dielectric function. The changes

of complex dielectric function are modelled using a Drude approximation revealing

interesting behaviour of the scattering processes and carrier concentration in samples

of nc-Si:H and silicon nitride (SiNx). In samples of nc-Si:H we find that the carriers

adopt a classical distribution through analysis of the Fermi integrals and that recombi-

nation processes conserve the average temperature of electrons, suggesting that there

is no preference for recombination of carriers with higher energies. This is contrary to

current understanding of carrier dynamics in bulk semiconductors.
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Chapter 1

Introduction

Ultrafast operations and processes are generally considered to be those operating on the

femtosecond timescale, a unit of time equal to 10−15s. To explore fundamental atomic

processes on timescales as short as a few femtoseconds, one requires equipment with

characteristic operating times of the same order. In the field of optics this usually im-

plies the use of ultrafast pulse lasers [1]. Due to the large concentration of energy when

a pulse of light is squeezed into this ultrafast regime, it is not only short lived events

that can be studied but also interactions of intense light with matter and the resultant

transient behaviour of atoms and molecules. So why are ultrafast pulses interesting to

study? To answer this question it is useful to consider the length scales that are being

dealt with. In one femtosecond a visible light pulse can travel a distance of several

hundred nanometers. Obviously this distance is inconsequential in our everyday lives,

however this corresponds to many thousand atomic distances (atomic distance ∼ 1Å),

such that light interacts with thousands of atoms in just 1fs and the their response is

averaged. Thus, as a femtosecond pulse interacts over this length scale we can see how

this time scale may shed light on much larger, macroscopic processes. In fact many pro-

cesses on the atomic scale progress on the sub-picosecond timescale. So it is important

to study physical systems operating in the ultrafast regime as many of these processes

are the initial steps of important mechanisms in physics, chemistry and biology.

A plethora of techniques have emerged over the past few decades, harnessing the

power of emergent ultrafast optical technologies, these include; velocity map imag-
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Chapter 1. Introduction 2

ing (VMI), high harmonic generation (HHG), a multitude of pump-probe spectroscopy

techniques, terahertz pulses and z-scan measurements to name just a few. The choice

of technique is simply down to what physics one wishes to study. For example velocity

map imaging provides a means to probe photoelectron processes in a wide variety of

atoms and molecules [2]. This thesis concentrates on the inherent ability of ultrafast

optical pulses to probe electron dynamics in semiconductor materials in a manner not

achievable previously. This is performed by a set of reflectivity-based spectroscopic

measurements. In particular we are interested in the excitation, transport and recom-

bination processes of carriers that are optically excited [3–6]. This means resolving

the energy distribution of carriers as a function of time following stimulus from an op-

tical excitation. This is no easy feat, requiring careful and deliberate experiments to

be performed which shed light on the surprising physics involved on the femtosecond

timescale.

1.1 Review of Carrier Dynamics in Semiconductors

Events that occur in the ultrafast time regime are considered microscopic. These events

are the building blocks of macroscopic processes that appear to progress on a relatively

slow time frame. The processes governed by these microscopic events are numerous and

diverse in their nature; in this thesis the focus will be on the transient electron dynam-

ics on surfaces occurring on the femto- and pico-second time scale. Due to advances in

ultrafast technology it is now possible to study the fundamental mechanisms and charac-

teristic time scales in solids at room temperature. Their importance lies predominantly

in the optimisation and miniaturisation of semiconductor devices used in modern day

electronics [7–11]. The following is a brief description of the present understanding of

ultrafast processes following optical excitation into non-equilibrium states.

In bulk semiconductors an excitation of free carriers into states above the band gap

is achieved by an incident pump (excitation) pulse with frequency ωeh > ωgap. In direct

band gap semiconductors the energy distribution of the carriers initially resembles that

of the excitation spectrum, with a mean excess energy ∆E = h̄(ωeh−ωgap). Thermal-

isation occurs, when the excitation density is large, through carrier-carrier scattering,

2
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Figure 1.1: A schematic diagram illustrating the photoexcitation of a semiconductor and
subsequent energy relaxation. After photoexcitation with polarized light, the carriers
have delta function distribution in momentum and energy space (a). Within tens of
femtoseconds momentum randomization occurs (b). Thermalization of carriers into a
Fermi-Dirac distribution occurs for carrier densities greater than 1019 cm−3 via collision
between carriers on the sub-picosecond timescale [10−13 s] (c). As time evolves the hot
carriers lose their excess kinetic energy while attempting to reach thermal equilibrium
with the lattice through optical phonon scattering (d). [12]

conserving the mean carrier energy. This thermalisation means that carriers scatter out

of their initial states, which has the effect of broadening their energy distribution. How-
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ever for nano-structured or amorphous semiconductors scattering of the carriers may

proceed via interactions with defect states, phonons or boundaries between different

phases of the material. In fact very little is understood about the scattering mechanisms

in these kind of complex structured samples [13–17]. The temperature attributed to

the thermalised carriers can be far greater than that of the lattice. This energy can be

transferred to the lattice by carrier-phonon scattering, resulting in carriers relaxing into

lower states in the conduction (valence) band. The Fermi distribution is reached when

the temperature of the carriers is equal to that of the lattice (thermal equilibrium). If the

initial energy density is high a local increase in temperature of the lattice can readily

be observed [12]. Above a certain threshold this can induce melting of the lattice [18].

The processes here are shown schematically in figure 1.1.

It is widely accepted [19] that carrier-carrier scattering in bulk materials occurs

over the first 10fs or less, relaxation of the carriers into lower states in the band and

subsequent interband transitions can then ensue over the course of several nanosec-

onds. However in this study it is shown that nano-structuring of semiconductors can

alter these characteristic time scales. Many studies have been carried out to investigate

how changes of the optical properties of a sample can provide knowledge of the tran-

sient nature of surface electron dynamics [20–22]. Since the development of ultrashort

pulse sources there has been considerable research into electron dynamics and optically-

induced ‘phase transitions’ in dielectrics, semiconductors and metals [23–27]. The pi-

oneering work performed by Shank et al. [19] investigated the effect of increasing the

carrier density Neh on the optical properties of crystalline silicon. The contribution of

the electron-hole (e-h) plasma to the reflectivity of the sample is estimated by a simple

Drude model expression for the refractive index of the plasma [19].

np = nc(1−ω
2
p/ω

2)1/2 (1.1)

Here, np and nc are the refractive indices of the plasma and unpeturbed crystalline

silicon respectively, ωp is the e-h plasma frequency and ω is the frequency of the inci-

dent probe light. It is important to note here that in the work of Shank (and many others)

the imaginary component of the refractive index is omitted from the theory, these kind
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of assumptions cannot be made for more complicated samples [28–31]. From Eq. 1.1

it can be seen that as the probing frequency ω is increased above that of the e-h plasma

frequency ωp the refractive index and hence reflectivity decreases. In this case, tak-

ing a measurement of ∆np(τ), where τ is the time delay with respect to the excitation,

provides a method to estimate the e-h plasma frequency,

ωp = (Nehe2/meε0)
1/2, (1.2)

where me is the free electron mass and ε0 is the permittivity of free space. In order

to relate this to a measurable property of the sample one must look at the reflectivity,

absorption or transmission of the sample.

Sabbah and Riffe [32] propose that there are two linear contributions to the mea-

sured reflectivity change ∆R/R: changes in the dielectric function due to free carriers

in the conduction band and changes to the dielectric function due to interband transi-

tions. The free carrier contribution can be described by a Drude model expression as

seen in Shank’s work [19]. While the interband contribution can be attributed to state

filling, lattice temperature changes and band-gap renormalisation. For samples where

ℜ(ε)� ℑ(ε) and ℜ(∆ε) ≥ ℑ(∆ε) one can assume that the contribution to the change

in reflectivity is only due to the real part of the dielectric function. Hence the change in

reflectivity can be linked via Fresnel formulae to the real part of the refractive index, n,

by;

∆R
R

=
4n0 cos(φ)

(n2
0−1)(n2

0− sin2(φ))1/2
∆np, (1.3)

where φ is the incidence angle and n0 is the refractive index of the ambient medium.

However, if one were to attribute the change in optical constants to both the real and

imaginary parts of the complex refractive index (as we will see later) a more sophisti-

cated approach should be taken. A method to resolve the real and imaginary parts of

the refractive index based on the reflectometry procedure has been proposed by Roeser

et al. [33], in which multiple incidence angles are used to fully resolve the complex

dielectric function.
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Prominent work in the study of semiconductor electron dynamics over the past few

decades has relied heavily on modelling using the Drude model. Using this approxima-

tion, which describes the dielectric function’s response to excitation of free carriers, it

is possible to model the carriers plasma frequency and scattering rate. In the paper by

Sokolowski-Tinten and von der Linde [34] a comprehensive study of the electron dy-

namics in silicon are presented. The data is fitted quite accurately with a Drude model

response for free carrier absorption. For an excitation density of 1022cm−3, probed at a

wavelength of 625nm, the authors are able to estimate the optical mass mopt = 0.15 and

damping time of the carriers τ ≈ 1fs. These values are in fair agreement with other high

carrier density measurements [35, 36] and theoretical studies [15, 37]. Other mecha-

nisms for changes in the optical properties of the sample, such as; state and band filling

as well as band gap renormalization are given little weight.

Silicon photonics, the technology giving optical functionality to silicon has recently

had a resurgence corresponding to the advent of nano-structured samples with tune-

able size and shape morphology. This nano-structuring has been adopted in order to

realise the potential of silicon for various devices, such as; computing (waveguides,

modulators, sources and detectors), photo-voltaics, sensing, optical resonators, etc [38].

Therefore an understanding of the charge dynamics in these types of materials is crucial

in order to understand how these devices should be fabricated. Despite extensive stud-

ies of silicon nanocrystal materials there have been only a few attempts to understand

the carrier dynamics in these types of materials [39–42]. Terahertz spectroscopy has

been widely used to study nano-structured silicon due to its inherent ability to measure

processes occurring on these scales, this is because their interaction length is of the

same order as typical dimensions of embedded nanocyrstals. The measurable length

scale is given by Lω =
√

D/ω , where D is the diffusion coefficient of carriers in the

material and ω is the probing frequency [43]. At terahertz frequencies this implies

Lω =2-10nm. Studies of nano crystalline silicon embedded in hydrogenated amor-

phous silicon (nc-Si:H) have shown non-Drude like behaviour over this extremely wide

probing range [44]. These techniques benefit from access to both the real and imagi-

nary components of the conductivity. The Drude like behaviour, seen in bulk crystalline
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silicon, is modelled alongside the non-Drude behaviour of nc-Si within the construct of

the Drude-Smith model, where the complex conductivity is given by,

σ
∗(ω) =

σ0

1− iωτ

[
1+

∞

∑
n=1

cn

(1− iωτ)n

]
. (1.4)

Here σ0 = e2nfτ/m∗ is the dc conductivity, with nf being the free carrier density, m∗ is

the effective mass, τ is the collision rate, and ω is the frequency of the excitation. The

coefficient cn represents the fraction of the carriers initial velocity that is retained after

the nth collision. Knowledge of the conductivity and scattering rate provide invaluable

information when designing silicon photonic materials [38]

Figure 1.2: Energy band gap scheme for silicon. The arrows indicate the paths avail-
able for excitation and recombination of carriers. Black arrows: indirect absorption.
Red arrows: phonon assisted (indirect) non-radiative recombination. Blue arrow: non-
radiative recombination. Green arrows: Auger recombination. Orange arrows: free-
carrier absorption mechanism. [38]

There is a general belief that in order to take silicon photonics to the next level

there needs to be improvements in all-silicon active devices [38]. Despite improve-

ments through hybrid technologies and ion implanted materials, research is focussed on

micro- and nano-crystalline silicon embedded in hydrogenated amorphous silicon. Per-
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haps the device that encapsulates this desire for an all silicon material most, is that of

a silicon laser. It is important therefore to understand why photoemission is so difficult

to achieve in silicon materials [45]. The issue here lies in the band structure of silicon,

it’s indirect band gap, shown in Fig 1.2, means that radiative recombination of electrons

and holes requires a momentum conserving phonon, thus e-h pairs have relatively long

lifetimes. This is coupled with a generally large diffusion length for carriers (typically

a few µm) making it likely that carriers encounter luminescence killing centres, such as

defects, before they are likely to recombine [20].

However, there are certain systems of silicon for which these problems can, to some

extent, be overcome. With the advent of nanocrystalline silicon (nc-Si:H), whose shape

and size morphology can be well controlled, photoluminescence has become possible

[46]. In order to achieve this kind of emission it is required that the crystalline phase

is retracted to just a few nm. It has be shown that the efficiency of this emission are a

consequence of the particle-in-a-box argument for an infinite quantum well, in which

as the spatial confinement of the box is increased, the overlap of the e-h wavefunctions

becomes larger, leading to an increase in the probability of radiative emission. Further-

more, due to the spatial confinement of the carriers, the diffusion length is restricted

making it less likely for the carriers to encounter defects. As a result of the nanostruc-

turing of silicon, the linear and nonlinear optical properties of the sample can be wildly

altered [46, 47].

The nonlinear response of nc-Si:H has been of particular interest due to the pos-

sible applications in all-optical switching and other photonic devices [48–50]. Ma et.

al. describe a z-scan measurement of nc-Si:H in which they show the tuneable non-

linear absorption properties of the sample at photon energies slightly below the band

gap. Here they propose that photons below the band gap create carriers that are excited

into the Urbach tail states via a phonon-assisted transition. However as the photon en-

ergy approaches the band gap they believe either two-photon absorption or free carrier

absorption may then occur, leading to the nonlinear behaviour seen in some of these

materials.
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1.2 Summary of Current Understanding

The literature published over the past few decades describes a mechanism of optical

carrier excitation and decay depicted as follows. Initially the carriers are excited above

the band gap with a distribution equal to the excitation spectrum. Over the first few

femtoseconds the carriers thermalize through electron-electron collisions transferring

energy between each other until an equilibrium is reached, this can take the form of

either a classical Boltzmann distribution [37] or a quantum Fermi-Dirac distribution

[12]. The dependence on which route the system proceeds, in order to assume this dis-

tribution is unclear [37]. The carriers reach their destined distribution after ∼ 10−13s

with equal temperature for electrons and holes Te = Th but different chemical poten-

tials µe 6= µh (see Fig. 1.1). It is widely believed that over the following picoseconds

(10−12s), the carriers lose energy and relax toward the band extrema releasing optical

phonons, heating the lattice. Recombination processes in bulk [4, 51] and surface states

[52] transfer electrons back to the valence band on timescales longer than the lattice

equilibrium time (i.e. the time in which carriers and the lattice have reached thermal

equilibrium) [53–55]. We aim to show, over the course of this thesis, that this picture of

carrier excitation and relaxation is not always valid.
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Chapter 2

Novel Semiconductor Materials

The following is a summary of two samples that have shown particularly interesting

phenomena. The first is a composite material of nano-crystalline silicon spheres em-

bedded in a matrix of amorphous silicon, a material that has been developed as a novel

absorber for future solar cell technologies. The second is a sample of silicon nitride,

which exhibits photoluminescence over a relatively wide bandwidth. The fabrication

and basic characteristics of each sample are discussed.

2.1 Crystalline Silicon Inclusions Embedded in Hyrdo-

genated Amorphous Silicon (nc-Si:H)

Samples of nano (micro) crystalline silicon embedded in a hydrogenated amorphous

silicon matrix (nc-Si:H) were supplied by Sirica DC (Israel) and were fabricated via

a plasma enhanced chemical vapour deposition (PECVD) method and characterised at

the Institute of Microtechnology (IMT) in Switzerland. The technique was initially per-

fected by Veprek and Marecek [56] to fabricate hydrogenated microcrystalline silicon

µc-Si:H. Later, Usui et. al. [57] and Spear et. al. [58] published what is now the

standard form for PECVD. The precise details and parameters of this technique can be

found elsewhere [59]. Nanocrystalline formations are grown in an amorphous silicon

matrix by controlling the ratio of hydrogen H2 to silane SiH4. The authors state that

this ratio, [SiH4]/[SiH4 + H2], controls the size and morphology of the crystallites. The

sample, shown in Fig 2.1, consists 500-nm-thick layers of hydrogenated amorphous sil-

10
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Figure 2.1: Multi-layer structure of a sample of nano crystalline silicon embedded in
an amorphous silicon matrix (nc-Si:H). The sample substrate is a crystalline silicon
wafer with a ∼200nm layer of silicon dioxide. The nc-Si:H layer is approximately
500nm thick, consisting of 35% spherical inclusions of nc-Si with an average diameter
of 〈a〉 = 6nm. The sample was prepared by Sirica DC (Israel) in conjunction with the
Institute for Microtechnology (IMT)

icon (α-Si:H) containing nanocrystalline silicon nc-Si (not visible in the SEM image

due to similar dielectric constant of the two phases of the composite material). A crys-

talline silicon substrate covered by 200nm of silicon oxide was used to grow the layers.

We used standard methods of micro-Raman and XRD [60–62] analysis (see appendix

A) to estimate that about 35% of the total layer volume was occupied by nc-Si with a

mean diameter of <a> = 6 nm.

Figure 2.2 shows a typical absorption spectra for the samples of micro/nano- crys-

talline silicon described here, this is plotted alongside curves for a crystalline silicon

wafer and intrinsic hydrogenated amorphous silicon. It shows that µc-Si:H (nc-Si:H)

closely follows the curve of c-Si, with a slight red-shift. It is believed that the red-shift

occurs due to scattering from the rough µc-Si:H layer [64]. Furthermore, at energies ≥
1.8eV there may also be a contribution due to absorption within the amorphous phase.

The samples produced by Vallat-Sauvain et. al. [59] are part of research into mate-

rials which may be used as novel absorbers in thin-film solar cells. The materials are

designed with respect to their spectral response, photodegradation stability and other

basic solar cell parameters.
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Figure 2.2: Optical absorption of a µc-Si:H layer deposited by very high frequency-
glow discharge (VHF-GD). The measurement was made by constant photocurrent
method (CPM) in [63] and is compared with measurements of amorphous and crys-
talline silicon.

2.2 Silicon Nitride (SiNx)

As discussed in Sec. 1.1 quantum confinement of silicon nanostructures has provided

a breakthrough in electro-optical devices [65]. Due to the enhanced radiative recombi-

nation rate of electrons and holes, a wide range of luminescence wavelengths has been

observed in porous and nano-crystalline silicon [66]. Due to the structural disorder of

amorphous silicon, along with its intrinsically higher band-gap (1.6eV) compared to that

of crystalline silicon (1.1eV), the luminescence efficiency is much greater [67]. These

effects are advantages when producing light of wavelengths in the blue and shorter spec-

tral region. The dependence of the luminescence properties with size and morphology

of the amorphous silicon quantum dots (α-Si QD) also lead to important information

with regard to the carrier mobility. In fact there is relatively little known about transport

properties of carriers in these types of samples compared to crystalline silicon [68].

Primarily it has been left to theoretical works to study α-Si quantum structures

12
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[69, 70]. The issue here is that it is very difficult to grow truly zero-dimensional α-

Si QD structures. Generally standard amorphous silicon samples suffer from natural

defects that act to quench radiative recombination. Therefore it is seen of upmost im-

portance to create α-Si QD’s of high quality when studying the origin of light emission

and quantum confinement. Silicon nitride is an excellent matrix for use with these α-

Si QD’s due its lower tunnelling barrier compared to a silicon dioxide (SiO2) matrix

[71–73]. The samples discussed in this thesis are grown with a technique based on the

processes developed by Park et. al. [68, 74].

Table 2.1: Table of experimental parameters detailing the values used in the plasma
enhanced chemical vapour deposition (PECVD) routine to fabricate samples of SiNx
and GaAs.

Sample SiH4 N2 NH3 N/Si EPL ∆EPL I532nm
PL I405nm

PL ET EU d
[ cm3

min ] [ cm3

min ] [ cm3

min ] [%] [eV] [eV] [%] [%] [eV] [meV] [nm]

SiNx 276 16 20 181 84 1.55 0.53 469 1470 2.32 190 440
GaAs - - - - 1.4 0.03 100 100 - - ∞

Samples of SiNx, obtained from Sirica DC (Isreal), are prepared via plasma en-

hanced vapour deposition (PECVD), in which ammonia (NH3) is used as a source of ni-

trogen (N2), which is diluted in silane and used along with pure nitrogen gas (99.9999%)

as the reactant gases [74]. Silicon wafers are used as the sample substrates. Details of

the flow rate, total pressure, plasma power and growth temperature can be found from

Ref. [76]. A full list of the deposition parameters and optical constants are listed in

table 2.1. Additional N2 gas is used to control the growth rate of the silicon nitride

film, in turn controlling the size and morphology of the α-Si QD structures. Fig. 2.3

show the PL response of the sample used in these studies. SEM measurements confirm

a film thickness of 440nm for the silicon nitride layers. Further information regard-

ing this sample, such as; absorption spectra, SEM images and time-resolved photo-

luminescence can be found in Appendix B.
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Figure 2.3: Normalised photoluminescence intensity measured in samples of SiNx as a
function of wavelength. Excitation is performed with a wavelength of 532nm with an
average power of 10mW. [75]
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Chapter 3

Experimental Methods & Theory

A number of techniques are available to measure the optical parameters of semiconduc-

tors, the following sections will describe two methods to resolve the refractive indices

and, in the second case, thin film thickness’ of opaque, multilayer semiconductor mate-

rials. The first method, known as reflectometry [77], is a simple yet effective method to

resolve the reflection coefficients of samples. The second, ellipsometry [78, 79], is far

more complex and allows, with appropriate caveats, the ability to resolve completely

the complex optical parameters of the sample. Later sections will deal with using the

measured optical parameters, resolved as a function of time, to infer information about

the dynamics of carriers in these samples. This include discussions about time-resolved

techniques, utilising a pump-probe schematic to optically excite and probe the mate-

rial as well as introducing theoretical models used to develop an understanding of the

physics involved with the interaction of light in these materials.

3.1 Reflectometry & Ellipsometry

The use of optics in the measurement of the physical properties of materials has been in

use for several centuries. Since Sir Isaac Newton’s observation of interference rings [80]

optics have been used to measure the intrinsic properties of materials in a non-invasive

manner. The observations of Newton would presently be classed under the term inter-

ferometry or reflectometry. Despite its early conception, reflectometry techniques were

confined to academic laboratories and only began to show up in industrial applications
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in the 1960’s [81]. The basic principle behind all modern reflectometry techniques is an

extremely simple one. A beam of monochromatic light is incident upon a sample and

a measurement of the light before and reflected light after the sample is taken. When

measuring the intensity of the beam the technique provides the absolute reflectance of

the sample.

In the following sections, techniques will be discussed that are capable of resolving

important optical parameters of various opaque semiconductors. We will start by con-

sidering what salient information can be drawn from reflectometry measurements. To

start, we take the assumption that the measurement is performed at normal incidence,

this means that all the cosine terms of the Fresnel coefficients are equal to unity. Fur-

thermore, due to the axial symmetry of the measurement at normal incidence, there is

no way to discern between s- (perpendicular) and p- (parallel) polarised waves. The

description used throughout this chapter for the polarisation state of light follows that

of Clarke and Grainger [82].

Considering a plain surface (with no film), the Fresnel reflection coefficient is given

by;

r13 =
N3−N1

N3 +N1
. (3.1)

Where N3 is the complex index of refraction for the substrate and N1 is the index of

refraction of the surrounding medium/ambient (usually air, N1 = 1.0− i0.0). N.B. In

this discussion the term N2 has been reserved for the complex index of refraction of a

thin film on top of the substrate. The absolute reflectance is related here by

R = |r13|2, (3.2)

at this stage it is trivial to see how one can draw information about the refractive index

directly from a measurement of the absolute reflectance of the sample. However it is

not possible to separate the real and imaginary components (n3, k3).

In order to truly resolve both components of the refractive index, for all types of

16
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samples, and without assumption, a different approach should be taken. In this text

the method used to obtain these parameters is that of ellipsometry. Ellipsometry mea-

surements are performed using light of precisely known polarisation. The polarised

light is reflected from or transmitted through a sample, and the resultant light is de-

tected using an ‘analyser’ to ascertain the change in polarisation of the light due to

its interaction with the sample. The nomenclature for ‘ellipsometry’ came from the

fact that the polarised light often becomes elliptically polarised following reflection (or

transmission). The technique measures two fundamental values (ψ , ∆). These are the

amplitude ratio ψ and the phase difference ∆ between the two orthogonal components

(p- (parallel) and s- (perpendicular)) of the polarised light. Ellipsometry has become

an attractive measurement tool due to its non-perturbative nature and high sensitivity

to small interfacial effects, such as the composition of thin films. In order to achieve a

truly non-perturbative technique the wavelength and intensity of the light must be prop-

erly chosen.

In this text we look at a technique known as spectroscopic ellipsometry. The range

of wavelengths over which one scans can provide information on different atomic pro-

cesses, depending on the range of photon energies and the structure of the material [78].

Ellipsometry has been widely applied to evaluate optical constants as well as thin film

thicknesses in a plethora of solid state materials to great effect [83–86]. Recent ad-

vances allow for in situ measurements of these parameters, e.g. allowing the possibility

to track the temporal evolution of thin-film growth [87]. However, for the purpose of

this text only ex situ measurements (i.e. after the sample has been prepared) will be

considered. The ability to extract knowledge of the optical constants is rather difficult

directly from the absolute values (ψ , ∆) and so in normal practice an optical model is

constructed for data analysis.

Unlike reflectometry measurements, ellipsometry allows one to directly measure

both the refractive index n and extinction coefficient k. From these values (n, k) one

can define the complex refractive index N ≡ n− ik. The sign here is based on whether

one chooses to describe the extinction coefficient as a gain or loss, the convention used

17



Chapter 3. Experimental Methods & Theory 18

is based on the temporal evolution of the light wave defined by eiωt (rather than e−iωt)

as defined by Muller and other participants at the International Conference on Ellip-

sometry [88, 89]. From measurements of the complex refractive index one can draw

the complex dielectric constant ε and absorption coefficient α . Which are found by the

simple relations; ε = N2 and α = 4πk/λ .

3.1.1 Principles of Measurement & Terminology

In order to discuss how one would perform a spectroscopic ellipsometry measurement,

it is useful to define precisely what parameters of the beam should be measured. In

order to do so we define the fields of the EM wave using Maxwell’s equations [90].

Let (Eip, Eis), (Erp, Ers) and (Et p, Ets) represent the p- and s- components of the elec-

tric vectors of the incident, reflected and transmitted waves respectively. By matching

the tangential components of E and H fields across an ambient/substrate interface the

Fresnel complex-amplitude coefficients for reflection and transmission are retrieved.

rp =
N3 cosφ1−N1 cosφ3

N3 cosφ1 +N1 cosφ3
rs =

N1 cosφ1−N3 cosφ3

N1 cosφ1 +N3 cosφ3
(3.3)

tp =
2N1 cosφ1

N3 cosφ1 +N1 cosφ3
ts =

2N1 cosφ1

N1 cosφ1 +N3 cosφ3
(3.4)

Snell’s law, N1 sinφ1 = N3 sinφ3, can then be used to recast the equations 3.3 in a form

that is only dependent on the angle of incidence φ1 and complex indices of refraction

N1 & N3.

rp =
N3 cosφ1−N1

√
1− (N1

N3
sinφ1)2

N3 cosφ1 +N1

√
1− (N1

N3
sinφ1)2

rs =
N1 cosφ1−N3

√
1− (N1

N3
sinφ1)2

N1 cosφ1 +N3

√
1− (N1

N3
sinφ1)2

(3.5)

As with all reflectometry techniques the reflectance is defined as the ratio of the outgo-

ing (reflected) wave intensity to that of the incoming (incident) wave. These are given
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by the square of the complex-amplitude Fresnel coefficients, such that;

Rp = |rp|2 and Rs = |rs|2. (3.6)

The main ellipsometric values (ψ , ∆) can now be considered. In order to investigate the

effect of reflection (or transmission) on the amplitude and phase of the wave separately

it is useful to write the complex Fresnel coefficients as,

rp = |rp|exp(iδp), rs = |rs|exp(iδs). (3.7)

Figure 3.1(a) represents a normal plane wave reflection from a surface and shows both

p- and s-wave components. In general these components are not necessarily in phase.

When each component is reflected from the surface there is a possibility of a phase shift

and this phase shift may not be equal for both components. The phase difference for

p- and s-wave components can be defined as δp and δs respectively. The value ∆ (often

referred to as Delta or ‘Del’) is then related to these parameters by:

∆ = δp−δs. (3.8)

Delta, therefore, is the phase difference induced by the surface between the p- and s-

waves, and can take values between 0◦ and +360◦ (or−180◦ and +180◦, depending on

preference) [79].

The reflection not only induces a phase change, but also an amplitude reduction for

both p- and s-waves. As with the phase change the amplitude reduction will not neces-

sarily be equal for p- and s-waves. The total reflection coefficients for p- and s-waves

defined in Eq. 3.5 are in general complex, ψ is defined in relation to the magnitudes of

these coefficients in the following manner;

tanψ =
|rp|
|rs|

, (3.9)

ψ is therefore the angle whose tangent is the ratio of the magnitudes of the total reflec-

tion coefficients, and can take values ranging between 0◦ and 90◦ [79]. It is now useful
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(a)

(b)

Figure 3.1: 3.1(a) Measurement principle of ellipsometry [78] 3.1(b) Electric field E
for p- and s- polarisations, in this diagram Es is perpendicular to the page. φ1 and φ2
are the angles of incidence and refraction respectively, and N1 and N2 are the complex
refractive indices of the ambient and substrate.

to define ρ as the complex ratio of the total reflection coefficients, that is;

ρ =
rp

rs
. (3.10)

The fundamental equation of ellipsometry defined by Azzam and Bashara [91] is then,

ρ = tanψei∆. (3.11)

The amplitude and phase components of ρ can be attributed to the tangential and expo-

nential parts of this function respectively. It is important to note that when performing

an ellipsometry measurement one should assume that the measured values of ψ and

∆ are always correct (as long as the ellipsometer is functioning correctly). However,

the quality of the optical constants that are extracted from this data rely heavily on the

accuracy of the optical model.
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3.1.2 Reflections from Ambient/Substrate Systems

To model an optical system accurately one must first appreciate what constitutes a thin

film as apposed to a substrate. A material is defined as a substrate when knowledge of

any materials beneath it or any lower boundary is not required. A material is considered

a thin film when any light emerging from its top surface is a combination of reflections

from both the top and bottom surfaces. It is convenient to start by considering a sub-

strate with no film. A material is considered a substrate if it is sufficiently absorbing and

thick enough that light incident onto its upper surface does not reach it’s lower boundary

(back side).

In SE a set of ψ(λ ) and ∆(λ ) values are collected. In the case of a substrate (with

no film), the optical constants can be retrieved directly with no need for any regression

analysis. Following the same convention as previously (section 3.1), ψ and ∆ can be

inverted to give values of the optical constants n(λ ) and k(λ ). The complex relation is

given by;

N3 = N1 tanφ1

√
1− 4ρ sin2

φ1

(ρ +1)2 , (3.12)

where ρ is the complex combination of ∆ and ψ described by equation 3.11. N1 and

N3 are the complex indices of refraction for the surrounding medium and the substrate

respectively, and φ1 is the angle of incidence of the incoming beam. These quantities

are illustrated in figure 3.1(b).

Assuming that k1 = 0, Eq. 3.12 is separable into two real functions;

ε
′ = n2

3− k2
3 = n2

1 sin2
φ1

[
1+

tan2 φ1(cos2 2ψ− sin2
∆sin2 2ψ)

(1+ sin2ψ cos∆)2

]
, (3.13)

and

ε
′′ = 2n3k3 =

n2
1 sin2

φ1 tan2 φ1 sin4ψ sin∆

(1+ sin2ψ cos∆)2 . (3.14)
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Where ε ′ and ε ′′ are the real and imaginary parts of the dielectric function ε = ε ′+ iε ′′.

Equations 3.13 & 3.14 can then be solved for n and k. The physically correct values of

which will involve positive values of both n and k. The equations show that the com-

plex index of refraction of medium 3 can be determined if the index of refraction of the

incident medium (1) is known and the ellipsometric ratio ρ is measured for one angle

of incidence φ1.

Figures 3.2(a), 3.2(b) and 3.2(c), show the variation of the phase shifts (δp,δs), the

reflectances (Rp, Rs) and the ellipsometric parameters (ψ , ∆) with incidence angle φ

(= φ1) when light is incident upon the surface of a semiconductor (silicon). When p-

polarised light is incident onto the interface between two transparent media (such as

air/glass) the reflected wave at a certain angle is completely transmitted (in an ideal

system), this angle of incidence is known as the Brewster angle φB. At this angle the

incident wave is completely refracted into the second medium. For other interfaces such

as air/semiconductor, the reflectance of the p-polarised light Rp does not reach zero, but

still shows the characteristic minimum (whose value is dependent on the extinction co-

efficient k). This angle is known as the pseudo-Brewster angle.

Figure 3.2(a) shows that the reflectance Rp has a minimum at the pseudo-Brewster

angle, while Fig. 3.2(b) shows that the phase shift of the p-polarised light δp experiences

a transition from 2π for φ1 < φB to π for φ1 > φB. If one considers the s-polarised

components, the reflectance Rs shows a monotonic increase with incidence angle, while

the phase shift δs remains constant at π . These measurements are the basis for the

variation of the ellipsometric angles (ψ , ∆) shown in Fig. 3.2(c). One should note how ∆

drops from a value of π below Brewster’s angle to zero just after it, while ψ experiences

a minimum at Brewster’s angle. Another important angle to consider is known as the

principal angle at which ∆ reaches 1
2π . The difference between the principal angle and

the pseudo-Brewster angle is normally very small and tends to zero as the extinction

coefficient k approaches zero. It is worth noting that the transition of ∆ (from π to

zero) becomes sharper as the value of the extinction coefficient becomes smaller. At the

principal angle, incident light polarised at an azimuth to the plane of incidence, other
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Figure 3.2: (a) The intensity reflectances Rp and Rs, (b) reflection phase shifts δrp
and δrs and (c) ellipsometric angles ψ and ∆ as functions of incidence angle φ for an
air/silicon interface Nsi = 3.681− i0.05

than zero or 1
2π , is reflected elliptically polarised. This follows because the s- and p-

components, which are oscillating in phase prior to reflection acquire a phase difference

∆ of 1
2π upon reflection.
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3.1.3 Reflection from Ambient-Film-Substrate Systems

An extremely important part of ellipsometry is the case when the optical system to be

analysed is that of a substrate with a single layer film. Figure 3.3 shows an example

of such a system, the thickness of the film is labelled d and is sandwiched between

two semi-infinite media (ambient and substrate). The film is considered to have parallel

boundaries with respect to the ambient and substrate interfaces. The ambient, film and

substrate are all homogeneous and optically isotropic, with complex indices of refrac-

tion N1, N2 and N3 respectively.

Figure 3.3: Optical interference in a thin film formed on a substrate. φ1, and φ2 are the
angles of incidence and refraction in each of the 3 media respectively, N1, N2 and N3
are the complex refractive indices of the ambient and substrate, and d1 is the thin film
thickness.

A plane wave that is incident upon the film (medium 2) at an angle φ1 will have a

reflected component in the ambient (medium 1) and transmitted wave at an angle φ3 in

the substrate (medium 3). The aim of this section is to relate the complex amplitudes

of the reflected and transmitted waves to that of the incident wave for both p- and s-

polarised incident beams. The procedure (originally performed by Drude [92]) is based

on the physical picture in Fig. 3.3. In the following discussion the incident amplitude

of the wave is assumed to be unity and polarised in either the p- or s- direction (the

subscripts to denote this polarisation have been dropped for simplicity).

This picture is as follows; the incident wave is partially reflected from the (1, 2)

boundary with an intensity according to the Fresnel reflection coefficients [equations

3.3-3.4]. The transmitted wave undergoes multiple internal reflections at the (2, 3) and
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(2, 1) boundaries, these boundaries are in general not perfectly reflective and as such a

small component is leaked out upon each reflection. It is useful to denote the Fresnel

reflection and transmission coefficients for the boundaries (2, 1) and (2, 3) by r21, t21 and

r23, t23 respectively. The resultant reflected wave in the ambient can be resolved from

the complex amplitudes of the successive partial wave reflections r12, t12t21r23e−i2β ,

t12t12r21r2
23e−i4β , ... , and similarly for the transmitted wave in the substrate, which is

made up of t12t23e−iβ , t12t21r21r23e−i3β , ... , where β is the phase change experienced

by the wave as it traverses the film from one boundary to the other (1, 2) to (2, 3). β

can be defined as;

β = 2π

(
d1

λ

)
N2 cosφ2, (3.15)

in terms of the free-space wavelength λ , thickness of the film d1, the complex refractive

index of the film N2 and the angle of refraction (with respect to the normal) inside the

film φ2. Alternatively it can be defined in terms of the angle of incidence φ1 by;

β = 2π

(
d1

λ

)(
N2

2 −N2
1 sin2

φ1
)1/2

. (3.16)

Using the relations for the Fresnel reflection coefficients, r10 =−r01 and t01t10 = 1−r2
01

[93]. The addition of all the partial wave reflections results in an infinite geometric

series who’s summation provides the total reflected amplitude:

r =
r12 + r23e−2iβ

1+ r12r23e−i2β
. (3.17)

Reinserting the polarisation dependence into equations 3.17, the following equations

are retrieved.

rp =
r12p + r23pe−2iβ

1+ r12pr23pe−i2β
, rs =

r12s + r23se−2iβ

1+ r12sr23se−i2β
. (3.18)

The Fresnel reflection coefficients at the boundaries (1, 2) and (2, 3) can be readily

obtained from equations 3.3.
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r12p =
N2 cosφ1−N1 cosφ2

N2 cosφ1 +N1 cosφ2
, r23p =

N3 cosφ2−N2 cosφ3

N3 cosφ2 +N2 cosφ3
, (3.19)

r12s =
N1 cosφ1−N2 cosφ2

N1 cosφ1 +N2 cosφ2
, r23s =

N2 cosφ2−N3 cosφ3

N2 cosφ2 +N3 cosφ3
. (3.20)

The three angles (φ1, φ2 and φ3) contained in the equations (3.19, 3.20), which are the

angles of propagation of the waves in the media 1, 2 and 3 respectively, can be related

to each other via Snell’s law as follows;

N1 sinφ1 = N2 sinφ2 = N3 sinφ3. (3.21)

Applying the above theory to a practical system requires that certain conditions are met.

Heavens [94] noted that there are three conditions for the theory to hold true; (i) the lat-

eral dimension of the film should be many times that of its thickness to ensure one can

use the approximation of an infinite number of reflections in the film, (ii) the bandwidth

of the source, the degree of collimation, and the beam spot size as well as the film thick-

ness should be such that the multiply-reflected waves combine coherently, and (iii) the

film should not be amplifying. In general all of these conditions are met within a stan-

dard ellipsometry experiment, and more importantly in the experiments carried out here.

As the interface Fresnel coefficients for reflection (equations 3.18) are different for

the ambient/film/substrate system compared to the interface coefficients for the am-

bient/substrate system, it is evident that the overall Fresnel coefficients must also be

different. However, in a similar manner to the ambient/substrate case, the basis for el-

lipsometry on ambient/film/substrate systems is to measure the amplitude attenuation

and phase change of the reflected and transmitted waves for both p- and s- components.

Therefore one would use equations 3.10 and 3.11 in a manner akin to that of ambi-

ent/substrate ellipsometry calculations.

In most cases of reflection ellipsometry one can assume the case of a three-phase

optically isotropic ambient/film/substrate system as described. The measured ellipso-
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metric value ρ =
rp
rs

can be modified by substitution of the complex amplitude reflection

coefficients in equations 3.19-3.20;

tanψei∆ = ρ =
r12p + r23pe−i2β

1+ r12pr23pe−i2β
× 1+ r12sr23se−i2β

r12s + r23se−i2β
, (3.22)

where the ambient/film (r12p, r12s) and the film/substrate (r23p, r23s) interface Fresnel

coefficients can be related to the optical properties of the system via equations 3.19, 3.20

and β . The phase change experienced by the light as it traverses the film, is related to the

optical properties by equation 3.16. Therefore equation 3.22 relates the ellipsometric

angles (ψ , ∆) to the refractive indices of the ambient N1, the film N2 and the substrate

N3, as well as the thickness of the film d1, for given wavelengths of the ellipsometer λ

and the angle of incidence φ1. The dependence of ρ can then be written,

tanψei∆ = ρ(N1,N2,N3,d1,λ ,φ1). (3.23)

Equation 3.23 can subsequently be split into amplitude and phase components repre-

sented by the following real equations.

ψ = tan−1 |ρ(N1,N2,N3,d1,λ ,φ1)|, (3.24)

∆ = arg[ρ(N1,N2,N3,d1,λ ,φ1)], (3.25)

where |ρ| and arg(ρ) are the absolute value and argument (angle) of the complex func-

tion of ρ respectively. Although in this discussion it may seem that the solution to

equation 3.22 is trivial, it is, in fact, for systems with more than 2 unknowns, rather

complex. Indeed it can only be dealt with in a satisfactory manner with the use of a

computer program. It is worth noting that ρ depends on no less than nine arguments:

the real and imaginary components of all three complex refractive indices (N1, N2, N3),

the film thickness d1, the beam wavelength λ , and the incidence angle φ1.
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Figure 3.4: Fresnel coefficients and optical parameters for a three-layer structure. ri, j
and ti, j are the complex Fresnel amplitude reflection and transmission coefficients for
each of the media, N1, N2, N3 and N4 are the complex refractive indices of the 4 media,
and d1 and d2 are the thin film thickness.

3.1.4 Multilayer Systems

The same procedure as described by section 3.1.3 can be extended to that of multilayer

systems. Figure 3.4 shows a typical optical model for a 3-layer system. This is a system

where two films are formed on a substrate. To solve this model, one first solves the

problem set out in section 3.1.3 to find the Fresnel coefficients for a two layer system as

described by Eq. 3.18. This is done for the substrate, and two film layers: 2, 3 & 4, as

follows,

r234 =
r23 + r34 exp(−i2β2)

1+ r23r34 exp(−i2β2)
. (3.26)

The phase variation here, is given by β2 =
2πd2

λ
N3 cosφ3, which can be recast to include

the incidence angle φ1 and complex indices of refraction N1 and N3 using Snell’s law

3.21. From equation 3.26 it is possible to obtain the amplitude coefficients for the 3-

layer system;

r1234 =
r12 + r234 exp(−i2β1)

1+ r12r234 exp(−i2β1)
. (3.27)

Using this method it is possible to find an equation for the amplitude coefficients for

a system of any number of layers. Putting equation 3.26 into 3.27 one retrieves the
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equation for a 3-layer system as;

r1234 =
r12 + r23 exp(−i2β1)+ [r12r23 + exp(−i2β1)]r34exp(−i2β2)

1+ r12r23 exp(−i2β1)+ [r23 + r12 exp(−i2β1)]r34exp(−i2β2)
(3.28)

In a similar fashion to that of the previous section one can use the standard ellipsometric

equation 3.11 along with Eq. 3.28 to resolve the ellipsometric angles (ψ , ∆). The next

section contains further information on how exactly one should carry out an ellipsome-

try experiment including the advantages and pitfalls of two commonly used techniques.

The first of these techniques is the simplest and most widely used, this involves rotating

an analyser (polariser) positioned after the surface to measure the change in the polar-

isation due to the surface. The second method is more sophisticated, used to measure

samples with small extinction coefficients, a rotating compensator (quarter-waveplate)

is used in conjunction with a fixed analyser to resolve the change in polarisation for a

given sample. This setup is discussed in the following sections.

3.1.5 Rotating Analyser Ellipsometry (RAE)

Ellipsometry experiments can be explained in terms of Jones (or Mueller, for poorly

polarised systems) matrices. These matrices are a system for describing the polarisation

state of light and the effect that optical components have on this polarisation state. Here

we will implement a simple Jones matrix formulation [95] (table 3.1) to a standard PSAR

(Polariser-Sample-(rotating)Analyser) configuration. The Jones matrix formulation is

useful for polarised light and is implemented with simple 2x2 matrices.

The rotating analyser ellipsometry setup is described as follows:

Lout = AR(A)SR(−P)PLin, (3.29)

where Lout is the light detected by a light detector and is given by Lout = [EA,0]T , the

symbol T denotes the transposed matrix (ai j = aT
ji). In Eq. 3.29, Lin is the normalised

Jones vector corresponding to incident light (Lin = [1,0]T ), A of the rotation matrix

R(A) represents the rotation angle of the analyser, and P is the rotation angle of the

polariser. In order to express the transmission of light through a polariser, the electric
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Table 3.1: Jones matrices for optical elements and co-ordinate rotation

Optical Element Symbol Jones Matrix

polariser (analyser) P or A
[

1 0
0 0

]

Compensator (Retarder) C
[

1 0
0 exp(−iδ )

]

Co-ordinate rotation R(α)
[

cosα sinα

−sinα cosα

]

Sample S
[

sinψ exp(i∆) 0
0 cosψ

]

field (Eip, Eis) co-ordinates of Fig. 3.1(a) must first be rotated such that the transmission

axis of the polariser is parallel to that of the Eip axis. After transmission of the light the

co-ordinates are rotated back to their original position. In the Jones formulation this is

expressed by R(−P)PR(P). If we consider that only light transmitted by the polariser

is taken into account, the term R(P) is eliminated from R(−P)PR(P) and similarly for

the analyser term we remove, R(−A), where the light transmitted through the analyser

is detected independent of the co-ordinate rotation. Eq. 3.29 can be written in matrix

form as


 EA

0


 =


 1 0

0 0




 cosA sinA

−sinA cosA




 sinψ exp(i∆) 0

0 cosψ




×


 cosP −sinP

sinP cosP




 1 0

0 0




 1

0


 . (3.30)

For P =+45◦ the equation simplifies to,


 EA

0


 =


 1 0

0 0




 cosA sinA

−sinA cosA




 sinψ exp(i∆)

cosψ


 . (3.31)
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Neglecting the 1/
√

2 proportional term. Expansion of Eq. 3.31 provides the equation

for the transmitted amplitude EA.

EA = cosAsinψ exp(i∆)+ sinAcosψ . (3.32)

Therefore the light intensity measured at the detector is given by [82]

I = |EA|2 = I0(1+S1 cos2A+S2 sin2A), (3.33)

where, I0 represents the average intensity of one ‘optical cycle’, S1 and S2 are the Stoke’s

parameters given by,

S1 =−cos2ψ & S2 = sin2ψ cos∆. (3.34)

Figure 3.5: normalised light intensity in rotating-analyser ellipsometry (RAE), plotted
as a function of the angle of rotating analyser A = ωt. This figure summarizes the
calculated results when the polarisation states of reflected light are (a) ψ = 45◦, ∆ =
180◦, (b) ψ = 45◦, ∆ = 135◦ and (c) ψ = 45◦, ∆ = 90◦. [78]

Fig. 3.5 shows the normalised light intensity detected according to Eq. 3.33. In

order to find the values of the Stoke’s parameters (S1, S2) the value of ∆ was changed

between 90◦ and 180◦ while ψ was kept constant. Figure 3.5 shows the intensity plot

for three surfaces with constant ψ and different ∆ values. As ∆ is scanned between

90◦ and 180◦ the light emerging form the surface is transformed from circular, through

elliptical, to linear polarisation. For samples with k > 0 one would expect an intensity

plot similar to that in fig 3.5(b).
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3.1.6 Rotating Analyser Ellipsometry with Compensator (RAEC)

In RAE the Stoke’s parameter S3 is not measured, this causes an error in measurement

of ∆ around ∆ ∼= 0◦ and 180◦. This is due to the ambiguity of the cosine of ∆ in equa-

tion 3.34. Introduction of a compensator into the RAE setup allows one to overcome

these problems [96]. Using Jones matrices RAE with compensator can be described as

follows;

Lout = AR(A)CSR(−P)PLin, (3.35)

where the compensator is described by,

C =


 exp(−iδ ) 0

0 1


 (3.36)

In Eq. 3.35, C has simply been substituted into Eq. 3.29. The compensator here has

been defined with its fast axis perpendicular to the plane of the surface (i.e. s-polarised).

This is to simplify the equations (if the compensator was aligned parallel to the surface

then one would use R(−C)CR(C) instead of just C). The polarisation shift δ caused by

the compensator is expressed as a function of C. If an incident polarisation P =+45◦ is

assumed then Eq. 3.35 becomes,


 EA

0


 =


 1 0

0 0




 cosA sinA

−sinA cosA




 exp(−iδ ) 0

0 1




 sinψ exp(i∆)

cosψ




=


 1 0

0 0




 cosA sinA

−sinA cosA




 sinψ exp[i(∆−δ )]

cosψ


 (3.37)

Here we see that the compensator introduces a shift on ∆ but not on ψ . This tells us that

the compensator does not affect the amplitudes of the s- and p-polarisation components

but instead the relative phase between them. Therefore RAE with compensator can be

described by simply replacing ∆ by ∆′ = ∆−δ , the intensity detected is then given by

I = I0[1+S1 cos2A+(S2 cosδ −S3 sinδ )sin2A]. (3.38)
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Where the third Stoke’s parameter S3 is defined as,

S3 =−sin(2ψ)sin∆. (3.39)

Evidently, this means that the measurement of all three Stoke’s parameters S1−3 be-

comes possible. From Eq. 3.38 it is clear that the two components S1 and (S2 cosδ −
S3 sinδ ) are the measured Fourier coefficients in this measurement technique. To re-

solve S2 and S3 it is evident that two or more measurements with different values of δ

should be taken [96]. The compensator (quarter waveplate) has the property that it pro-

duces a δ = 90◦ phase shift for an incident polarisation P = 45◦ and a δ = 0◦ shift for

incident polarisation parallel to the fast or slow axis of the compensator. So for a con-

stant incident polarisation of P = 45◦, there is a δ = 0◦ phase shift when C = 45◦(= P)

and δ = 90◦ phase shift when C = 0◦. Reference to Eq. 3.38 reveals that S2 is obtained

for δ = 0◦ and S3 when δ = 90◦.

3.1.7 Rotating Compensator Ellipsometry (RCE)

The Jones matrix formulation for a rotating compensator ellipsometer in the PSCRA

(Polariser-Sample-(rotating)Compensator-Analyser) configuration is expressed as;

Lout = AR(A)R(−C)CR(C)SR(−P)PLin. (3.40)

This is found by simply inserting R(−C)CR(C) into Eq. 3.35. If it is assumed that the

polariser and analyser angles are P = 45◦ and A = 0◦ respectively, and that the incident

light is polarised such that Lin = [1,0]T then the expansion of Eq. 3.40 is given by


 EA

0


 =


 1 0

0 0




 cosC −sinC

sinC cosC




 1 0

0 exp(−iδ )




×


 cosC sinC

−sinC cosC




 sinψ exp[i(∆)]

cosψ


 . (3.41)

Here we describe the compensator with its fast axis parallel to the surface (p-polarised)

as opposed to section 3.1.6 where the compensator is aligned perpendicular to the sur-
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face (s-polarised). Substitution of δ = 90◦ into Eq. 3.41 yields the electric field ampli-

tude,

EA = (cos2C− isin2C)sinψ exp(i∆)+(1+ i)cosC sinC cosψ). (3.42)

The light intensity detected then follows (derivation in appendix D);

I = I0(2+S1−2S3 sin2C+S1 cos4C+S2 sin4C). (3.43)

It is clear from Eq. 3.43 that as the compensator is rotated, the Stoke’s parameters S1−3

can be determined as the Fourier coefficients. The polarisations indicated in Fig. 3.6

are for light detected after the compensator. Figure 3.6(a) shows that for reflected linear

polarisation [(ψ , ∆) = (45◦, 180◦)] the intensity varies with a period of 90◦ (cos4C).

If we suppose that reflected light is polarised at −45◦, as shown, the light transmitted

through the compensator (C = 0◦) will be right-circular polarised (ER). Recall that the

phase of the s-polarisation lags when C = 0◦ (i.e. when the compensator fast axis is par-

allel to the plane of the surface (p-polarised)). This right-circular polarised light further

transmitted through the analyser A = 45◦, in this case we resolve the light into parallel

and perpendicular components with respect to the surface and note that only the parallel

component is transmitted through the analyser to be subsequently detected.

When the compensator then rotates to C = 45◦, the slow axis coincides with the

reflected linear polarisation (E−45◦), such that the light is transmitted with no phase

change. This light is then perpendicular to the transmission axis of the analyser and as

such the detected light intensity goes to a minimum. When the compensator is rotated

further to C = 90◦ the reflected light is transformed to left-circular polarised (EL), and

as a result the detected light intensity returns to a maximum. In a similar fashion to that

of C = 45◦, when the compensator is rotated to C = 135◦ the detected intensity drops to

a minimum again. So, in a PSCRA configuration reflected linear polarised light oscil-

lates with compensator angle with a period of 90◦, in this respect it is straightforward to

see that the Stoke’s parameters S1 and S2 are measured as Fourier coefficients of cos4C
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Figure 3.6: Normalised light intensity for rotating-compensator ellipsometry (RCE),
plotted as a function of compensator angle C. The figure summarises the calculation
results when the polarisation states of reflected light are (a) ψ = 45◦, ∆ = 180◦, (b)
ψ = 45◦, ∆ =−90◦ and (c) ψ = 45◦, ∆ = 90◦. The polarisation (denoted by an arrow)
represent the polarisation states of reflected light emerging from the rotating compen-
sator [78].

and sin4C.

Figure 3.6(b), shows the recorded intensity for light reflected with right-circular

polarisation. Here, we see a 180◦ period (cos2C, see Eq. 3.43). If the Stoke’s vector

[S0,S1,S2,S3]
T of reflected light is then represented by LR = [1,0,0,1]T (right-circular

polarised), the polarisation state emerging from the compensator is given by

Lout = R(−C)CR(C)LR. (3.44)

Mueller matrices (an extension of the Jones matrix formulation) developed by Hans

Mueller [91], simplifies this description. Using Mueller matrices the polarisation state

of the light Eq. 3.44 is given by [78]

LC = [1,−sin2C,cos2C,0]T (3.45)

This shows that right-circular polarised light incident onto the compensator (δ =

90◦) is transformed to linear polarisation described by −sin2C (S1) and cos2C (S2).

The direction of the linear polarisation then changes with the angle of the compensator
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(i.e. analogous to the RAE system). This can be seen from Eq. 3.45 when C = 0◦ is

substituted and LC = [1,0,1,0]T is obtained, which represents E+45◦ . The light inten-

sity detected is therefore maximised for C = 0◦. If the compensator is then rotated to

C = 90◦ then the polarisation is rotated to E−45◦ and therefore light intensity is min-

imised.

For left-circular polarised reflected light, the light from the compensator is found by

substitution of LR = [1,0,0,−1]T into Eq. 3.44,

LC = [1,sin2C,−cos2C,0]T . (3.46)

As with right-circular polarised light, here the light transmitted by the compensator at

an angle C = 0◦, the light becomes linearly polarised. From Fig. 3.6 it is seen that the

variation of light intensity with C is opposite to that of the right-circular polarised case.

This means that the signs of the Stoke’s parameters have been reversed. Therefore linear

polarised light is detected as the component of light oscillating at four times the com-

pensator frequency (4ω), circularly polarised light is detected at twice the compensator

frequency (2ω) and elliptically polarised light is detected as a superposition of these 2ω

and 4ω components.
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3.2 Time-Resolved Techniques

Perhaps the most common use for ultrafast technologies is to study time-resolved pro-

cesses in solid-state, chemical and biological materials. Ultrafast pulses provide an ex-

cellent basis for taking ‘stop-action’ snapshots of processes in a manner akin to taking

photographs of high-speed processes using a flash lamp [1]. In the following sections

studies of photo-excited carriers in solid-state materials will be considered. Examples

of a vast array of studies in semiconductor materials can be found here [97]. These

include reflection, luminescence, absorption and scattering spectroscopy, which reveal

processes of the electronic band structure, phonons, excitons, defect states, surface in-

teractions etc. Not only this but due to the extreme nature of the light being used one

can gain access to the temporal evolution of nonlinear, non-equilibirum and transport

properties of semiconductors [97].

As a multitude of techniques are available within the pump-probe remit, the general

scheme of a typical pump-probe measurement is discussed. Fig. 3.7 depicts a standard

pump-probe measurement, in which an intense pump pulse excites a medium into some

non-equilibrium state. A shortly following probe pulse of smaller intensity, such that

the system is not excited further, then probes the material to detect any change in the

samples optical properties. We may write that the pump pulse excites some change in

the optical property of the sample O such that,

O(t)→ O0 +∆O(τ− τ0) (3.47)

where O0 is the unperturbed sample’s optical property O and O(τ− τ0) is that property

some time τ following excitation at τ0. The delay between the measurement time τ and

the excitation time τ0 represents the delay between the probe and pump pulses ∆τ . If

one is free to vary the measurement time τ via some method of delaying the probe pulse,

the transient change in the optical property can be mapped as a function of time. This

scheme provides a correlation function, similar to those measured by common pulse

length measurements, such as autocorrelation [18].
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Figure 3.7: Schematic of a standard non-collinear pump-probe experiment. A short
intense pulse of light is incident upon a sample at time τ = 0 in order to ‘pump’ the
sample into some non-equilibrium state. A less intense pulse is incident some time
following excitation τ > 0, to ‘probe’ a change in an optical parameter such as trans-
mission (shown), reflection or absorption. A photodetector is used following the sample
to measure the transient change in the desired optical parameter.

Measurement of the optical properties of semiconductors can lead to interesting

information about their intrinsic processes. Spectroscopy provides a unique tool to

study the distributions of excitations (electrons, holes, excitons, phonons, plasmons,

etc.) and their subsequent relaxation paths. Combining these methods with spatially

resolved techniques [50, 98], one can gain knowledge of the transport properties of these

dynamic excitation in any number of bulk and nano structured semiconductors. Due to

the complexity of these processes it can be crucial to choose the right probing method,

for instance transmission measurements of the sample provide an excellent tool to study

absorption, whereas reflectivity measurements tend to be sensitive to refractive index

changes as well as absorption [1]. However, it is not just reflectivity measurements that

provide information about the refractive index, interferometric measurements as well

as spectroscopic techniques in which the phase can be measured lend themselves to

exploring the complex refractive index of samples N ≡ n− ik.

3.2.1 TR-Reflectometry

In order to map how the refractive index N of an opaque semiconductor evolves on the

femtosecond time scale one can modify a typical reflectometry setup (sec 3.1) by com-

bining it with a pump-probe approach (sec 3.2). The choice of pump and probe photon
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energies, mode of detection and geometry of the system must all be carefully chosen.

The detector used operates, in general, on a slow time scale with respect to the length

of the pulse and the dynamics being studied, averaging in this time-integrated manner

means that the resolution of the system is down to the method of pump-probe delay.

For instance, in the measurements shown here, the resolution of the system is given by

the incremental steps of a 1-D translation stage. Furthermore, when considering what

dynamics are to be studied the photon energies of the probe should be carefully con-

sidered, the case in which the pump and probe are of the same wavelength is known

as degenerate, whereas for pump and probe beams separated in energy the system is

non-degenerate. A schematic for the degenerate case, used in these works, is shown in

Fig. 3.8.

Figure 3.8: Schematic diagram of a typical time-resolved pump-probe reflectometry
setup. Where t is the duration of the ultrashort pulse, B/S is a partial beamsplitter, RR is
a retro-reflector mounted on an automated micrometer translation stage, S is the sample
being analysed mounted on a rotation stage with (x, y, z) µm controls, D is a silicon
photodiode connected to a lock-in amplifier and Comp is a computer with LabView
software for control of the translation stage.

In all subsequent studies the same basic setup is used, here, the output of an ampli-

fied Ti:sapphire ultrafast oscillator, producing ultrafast pulses with pulse duration, rep-

etition rate, average pulse energy and bandwidth of ∼ 45fs , 1kHz, ∼ 4W and ∼ 60nm

respectively, are attenuated and then split by a R80 : T 20 beamsplitter. The reflected

component (the probe) is passed through a motorised 1-D translation stage with sub-

µm control, while the transmitted component (the pump) traverses a fixed optical path.

This provides the pulse delay between pump and probe components. The beams are
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combined onto the sample with a non-collinear geometry. Furthermore, the beams are

polarised at azimuths orthogonal to one another and the pump beam blocked following

the sample to avoid interference. The probe is then detected with a standard silicon

photodiode and processed with a lock-in amplifier to maximise the signal-to-noise-ratio

(SNR).

If a standard silicon photodiode detector is replaced with a spectrometer and the

probing beam is of sufficient bandwidth a spectroscopic reflectometry measurement

may be performed. Measurement of the reflectance of the sample as a function of

time and wavelength can lead to interesting observations about the sample properties

including the electronic band structure, plasma frequency, absorption and scattering

dynamics [41].

3.2.2 TR-Ellipsometry

The procedures and calibration in this section are based on the paper: Time-resolved

Ellipsometry to Study Extreme Non-equilibrium Electron Dynamics in Nanostruc-

tured Semiconductors, MRS Proceedings Spring 2012, DOI: 10.1557/opl.2012.1262

(2012) [99]

As apposed to the inherent ambiguities of time-resolved reflectometry measure-

ments, in which only the amplitude change of reflectance is measured as a function of

the probe delay, time-resolved ellipsometry measurements allows for complete deter-

mination of the complex refractive index with time (N(t) = n(t)− ik(t)). Ellipsometry

measurements, as described in sec 3.1, measure both the amplitude and phase of the

beam. The ellipsometry method used here is that of rotating compensator ellipsometry

in the PSCRA (polariser - sample - (rotating) compensator - analyser) configuration.

The ellipsometry system that is described hereafter was built in the probe arm of

the reflectometry setup, discussed in section 3.2.1. The home built ellipsometer uses

an Edmund Optics linear high-contrast (10,000:1) glass broadband (750-1400nm) po-

lariser to set the initial polarisation state of the beam. The focused beam is combined
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with the pump beam non-collinearly at the sample surface (as in the reflectometry setup)

and the resultant reflected beam is passed through a combination of compensator and

analyser before being detected. The compensator used was a Newport Optics broad-

band (700-1000nm) achromatic quarter (λ/4) wave plate, providing little dispersion

over the range of wavelengths used. The compensator was mounted in a New Focus

motorised ’ground-worm gear’ rotation mount providing accurate rotation of the optic

to 0.01◦. The analyser was a Thorlabs Glan-Thompson polariser with an extinction ratio

of 100,000:1 and was set up prior to the detector in order to measure the polarisation

change as described previously. The beam is detected using a standard large aperture

Thorlabs silicon photodetector and processed using a Stanford Research lock-in ampli-

fier detecting the signal at the laser repetition rate.

This method provides certain advantages over other techniques that make it an ideal

choice when working with multilayer low absorption semiconductors. Due to the tech-

nique’s sensitivity to changes in the phase parameter ∆ and sensitivity to this parameter

near 0◦ and 180◦. Low absorption samples, whose phase changes quickly at incidence

angles near the Brewster angle, can therefore be measured accurately. The method is

also inherently sensitive to thin film thicknesses of multilayer samples due to measure-

ment of the amplitude and phase of the beam [78].

The Jones formulation [95] was used in section 3.1 to mathematically describe the

detected intensity of the measurement. It has been noted from equation 3.43 that the

Stoke’s vectors can be described by the second and fourth order Fourier components

oscillating at 2× and 4× the compensator frequency ωC. Equation 3.43 may therefore

be recast as,

I(C) = A0 +A2 cos2C+B2 sin2C+A4 cos4C+B4 sin4C. (3.48)

Where C is the angle of the compensator and the Fourier coefficients, Ai and Bi, where

i is the order of oscillation frequency, are given by;
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Figure 3.9: Generalized scheme for a rotating compensator ellipsometry (RCE) mea-
surement. The incident light is polarised prior to the sample at an angle of P. The light
is then incident onto a sample at an incidence angle Φ, at which point it undergoes re-
flection (shown), transmission and/or absorption processes. The reflected (in this case)
light transmits a compensator (usually a quarter wave plate, λ/4) and an analyser prior
to being detected with a photodetector or spectrometer. Rotation of the compensator
through 360◦ provides an intensity profile as per Eq. 3.43, yielding the Stoke’s vectors
Si of the sample.

A0 =
1
π

∫
∞

0
I(C)dC

A2 =
2
π

∫
∞

0
I(C)cos2CdC

B2 =
2
π

∫
∞

0
I(C)sin2CdC

A4 =
2
π

∫
∞

0
I(C)cos4CdC

B4 =
2
π

∫
∞

0
I(C)sin4CdC (3.49)

These coefficients can then be formulated in terms of the ellipsometric parameters [100],

giving,
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A0 =1− cos2Pcos2Ψ

+
1
2
[cos2A(cos2P− cos2Ψ)+ sin2Asin2Psin2Ψcos∆], (3.50)

A2 =− sin2Asin2Psin2Ψsin∆, (3.51)

B2 =cos2Asin2Psin2Ψsin∆, (3.52)

A4 =
1
2
[cos2A(cos2P− cos2Ψ)− sin2Asin2Psin2Ψcos∆], (3.53)

B4 =
1
2
[cos2Asin2Psin2Ψcos∆+ sin2A(cos2P− cos2Ψ)]. (3.54)

For the case where the polariser angle P = 45◦ and the analyser angle A = 0◦ equations

3.50-3.54 can be simplified,

A0 = 1− 1
2

cos2Ψ, (3.55)

A2 = 0, (3.56)

B2 = sin2Ψ, (3.57)

A4 =
1
2

cos2Ψ, (3.58)

B4 =
1
2

sin2Ψcos∆. (3.59)

It should be noted that these equations are only valid for a perfect compensator. Fur-

thermore the Fourier coefficient A0, the zeroth order component, should not be used as

it may contain interference from other sources. We also omit the Fourier component A2

which provides a zero for this set of experimental parameters. The ratios of the Fourier

coefficients should only be used as the absolute intensity is not measured in standard

ellipsometry measurements. Hence the Fourier coefficients B2 and B4 will be scaled

with respect to A4 to provide,
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B2

A4
=−2tan2Ψsin∆ (3.60)

B4

A4
=− tan2Ψcos∆ (3.61)

If we now define two parameters X1≡− B2
2A4

and X2≡−B4
A4

, then the ellipsometric angles

can be straightforwardly defined in terms of these parameters as,

tan2Ψ =
√

X2
1 +X2

2 (3.62)

tan∆ = X1/X2 (3.63)

Due to the nature of these tangent equations the values of Ψ and ∆ must be rescaled

using the signs of the Fourier coefficients. A procedure for correcting the ellipsometric

parameters was proposed by Boer et. al. [100] and is presented in table 3.2. Due to

both parameters having tangent dependence, there are no regions in the Ψ-∆ plane in

which the ellipsometer loses accuracy.

Table 3.2: In order to determine the correct values of Ψ and ∆ the signs of the Fourier
coefficients A4 and B4 should be known. The value of Ψ and ∆ measured should be
corrected as shown in the table in which, the indices designate in which order the steps
should be performed. These transformations are based on Eq. 3.63 [100].

A4 > 0→Ψ2 = 90◦−Ψ1
A4 < 0→Ψ2 = Ψ1
B4 > 0→ ∆2 = ∆1 ∆2 < 0→ ∆3 = ∆2 +360◦

B4 < 0→ ∆2 = ∆1 +180◦ ∆2 > 0→ ∆3 = ∆2

For the ellipsometer to work effectively it is clear that positions of P, C and A should

be well defined and accurately calibrated for proper fitting of the intensity profile to be

performed. Initially it is worth considering the calibration of the polariser angle, P,

and analyser, A. The technique commonly used to align these optics was developed

by McCrackin et. al. [101] and then later adapted by Ghezzo [102]. Initially the

compensator is removed and a highly reflective surface is used in place of the sample

(it is important that the sample adds no ellipticity to the beam). McCrackin [101] noted
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that in this case the intensity transmitted by the analyser was proportional to,

I = 4L2 +
4χ2

tan2 Ψsin2
δ
− 8Lχ

tanΨ

(
cos∆

tanδ
− sin∆

)
, (3.64)

where L=A−π/2, δ is the phase difference between p- and s- components of polarised

light transmitted by the polariser and χ is related to the polariser angle by

χ = P tanδ . (3.65)

Eq. 3.64 is only valid when the polariser and analyser angles are set almost parallel and

perpendicular to the plane of incidence, respectively. Using equations 3.64 & 3.65 we

find and expression for the intensity in terms of P:

I = 4L2 +
4

tan2 Ψ
(χ2 +P2)− 8L

tanΨ
(Pcos∆−χ sin∆). (3.66)

With the analyser set perpendicular to the plane of incidence, a minimum of light trans-

mission is found for polariser angles which satisfy ∂ I/∂P = 0, along with equation 3.66

and the definition of L, the angle of P providing minimum transmitted light intensity is

given by,

P = (A−π/2) tanΨcos∆. (3.67)

With equation 3.67 at hand, it can be seen that by incrementing the position of A

and finding the minimum light intensity using P a set of points (A,P) are found. This

procedure is repeated for a different incidence angle and another curve is found which

follows,

P = (A−π/2) tanΨ̄cos ∆̄, (3.68)

where ∆̄ and Ψ̄ are the new set of azimuths for this incidence angle. Now, by eliminating

A from equations 3.67 & 3.68, we find,

P(1− tanΨcos∆

tanΨ̄cos ∆̄
) = 0. (3.69)

If the incidence angles are chosen carefully such that each lies on either side of Brew-
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ster’s angle for the reflective surface, Heavens [94] shows that,

tanΨcos∆

tanΨ̄cos ∆̄
< 0, (3.70)

Figure 3.10: Calibration of the azimuths of polariser and analyser for use in ellipsom-
etry measurements. The values of polariser angle P and analyser angle A, according to
the housing of the optics, are plotted as per Eq. 3.67. The crossing points of these vec-
tors provides the precise alignment of polariser and analyser such that they are exacty
orthogonal with azimuths equal to P = 90◦ and A = 0◦.

such that equation 3.69 can only be satisfied for P = 0◦, leading via equation 3.68 to

a corresponding analyser angle of A = π/2 = 90◦. Using the intersection of the two

curves described by 3.67 & 3.68 the polariser and analyser can be calibrated extremely

accurately. Fig. 3.10 shows the alignment procedure described here for three separate

incidence angles providing a calibration such that the true position of the polariser and

analyser can be aligned with the scale readings on the housing of these optics.

With the polariser and analyser calibrated it is then possible to accurately rotate the

polariser and analyser to P = 45◦ and A = 0◦ respectively. With this arrangement the

sample is then removed and the arms of the ellipsometer brought in-line such that the

incidence angle is equal to φi = 0◦. Rotating the compensator through 0◦-360◦ it is then

possible to model the intensity detected following the analyser given a perfectly aligned

compensator via Jones matrix formulation (using the same method as in appendix D) as
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follows,

Idet =
1
2
+

1
2

cos(2C)sin(2C). (3.71)

Plotting experimental data against this theoretical model (shown in Fig. 3.11) it is possi-

ble to see the shift required to align the compensator precisely. In the procedure used for

analysis in this text the shift in compensator required is given by the difference between

the second minima of the experimental and theoretical curves (this choice is arbitrary).

The slight variation of the measured intensity as a function of compensator angle with

respect to the theoretical curve is due to the non-perfect nature of the compensator (such

as inhomogeneities of the optic across the beam profile).

Figure 3.11: Calibration of compensator (λ/4). The intensity of light is measured in
a PCA configuration (no sample). Comparing theoretically predicted intensity (black
line) with experimentally measured data (red symbols) allows for the mis-match in
alignment angle of the compensator C to be found and adjusted for.

Given that the ellipsometer is fully calibrated as described above, one can then per-

form a standard fitting procedure. Fitting equation 3.48 to the detected intensity as a

function of the probe wavelength (λ ) and probe delay (τ), is the fundamental proce-

dure for all time-resolved spectroscopic ellipsometry measurements. Fig. 3.12 shows

a typical intensity curve as a function of compensator angle, fitted for a single probing

wavelength at a fixed delay time. In a time-resolved spectroscopic ellipsometry mea-

surement a set of wavelength and time increments would be processed simultaneously

to map the change of the ellipsometric parameters Ψ(λ ,τ) and ∆(λ ,τ).
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Figure 3.12: The intensity of light for a rotating compensator ellipsometry (RCE) mea-
surement at a wavelength λ = 760nm. The data (red symbols) are fitted using Eq. 3.48
(black line) to yield the ellipsometric parameters Ψ and ∆. This procedure is performed
in a TR-RCE measurement for all probing wavelengths and probe delay times τ sepa-
rately.

Once this set of data has been measured an optical model should be built and the

appropriate treatment using Fresnel formulae should then be performed as per section

3.1.

3.2.3 Multiple Angle and Pump Fluence Reflectometry

Performing spectroscopic reflectometry at multiple incidence angles or multiple flu-

ences provides a convenient way to measure unambiguously certain sample parame-

ters, such as the optical mass of carriers, absorption, plasma frequency and scattering

time. In order to do this a standard spectroscopic reflectometry measurement should

be performed as described in section 3.2.1. The measurement can then be repeated for

multiple incidence angles to provide a set of data to which a model of carrier absorp-

tion (such as the Drude model) can be applied. Via application of the same model to

all multi-angle reflectometry measurements, ambiguity in the fitting parameters can be

avoided. Similarly, for measurements at different pump fluences fitting can be made to

multiple measurements to analyse different optical parameters.
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In order to fit a time-dependent carrier absorption model to a multiple layer system,

such as those often measured with ellipsometry measurements, an optical model should

first be made. In order for reflectometry measurements to be applicable one must know

all of the optical constants and film thickness’ before the model can be applied. The

best method to resolve these parameters is to perform a static ellipsometry measure-

ment first. Once the optical model has been evaluated, the model of carrier absorption

can be applied to the dielectric function dispersions of the appropriate layer(s). This

procedure should be applied to fit the change in reflectance measured as a function of

the probe delay and probing wavelengths (see reference [103]).

3.2.4 Time-Resolved Scattering Measurements

The intense research into the time domain evolution of carrier dynamics in semicon-

ductor materials has been driven by improvements to electro-optical devices whose

speed, efficiency and optical non-linear behaviour they determine. Pump-probe spec-

troscopy has been the standard tool of investigation into these processes, however in

nano-structured samples these techniques suffer from spatial averaging of the signal,

blurring the contributions of the composite phases of the material. Despite the interest

into composite materials, due to their multitude of uses in photo-voltaics, all-optical

switching etc., little is known about their optical excitation and decay channels [34].

Due to the inherent complexity of composite materials, theoretical models have strug-

gled to predict their dynamics [104–108], leaving only a few experimental measure-

ments to provide an insight into these processes [109–112].

In order to resolve the contribution of both phases in a typical nano-structured semi-

conductor, such as nano-crystalline silicon (nc-Si:H), a combination of pump-probe re-

flectometry and scattering can be performed (shown schematically in Fig. 3.13). Here,

the former provides knowledge of the spatially averaged contribution of the phases,

while the latter describes their differences [113]. A model can then be provided to de-

scribe the dependence of the dielectric function upon excitation. In a manner similar to

that of the multi-angle reflectometry described in section 3.2.3, an optical model should
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Figure 3.13: Schematic representation of a combined reflectivity and scattering mea-
surement. The detectors, DET1 and DET2, are oriented to measure the specular and
off-specular components of reflected light from the sample. The panels, from top to
bottom, correspond to different relative probe delays, before, shortly after and longer
after pump excitation. In panel (a) the dielectric functions of the matrix and nano crys-
tals are approximately equal, εm ≈ εnc 6= 0, this is because neither phase has a surplus
of excited carriers prior to pump excitation. The measured reflected intensities, prior to
the pump pulse, for each component are used as a reference. (b) Shortly after the pump
εm > εnc and Nnc > Nm, resulting in a negative change seen in specular reflectivity and
a positive change in scattered intensity. (c) A long time after the pump εm ≈ εnc and
Nnc = Nm 6= 0, carriers have ‘leaked’ into the matrix and the concentration of carriers in
the sample is almost uniform. Following this time, recombination of carriers and holes
in both the nano crystalline and amorphous phases reduces the average concentration
and reflectivity recovers to its initial value. [113]
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first be given for the sample utilising a technique such as ellipsometry. The specific

details of how to resolve the dynamics in each of the phases are described in Sec. 3.3.5.
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3.3 Theoretical Models

The techniques described hitherto all rely on an assumption of how to model the system

being studied. In the majority of cases, before the model can be applied, it is crucial

to understand the structure of the sample being studied. There are a number of diag-

nostic methods to measure the structure of materials, which include scanning electron

microscopy, atomic force microscopy, x-ray diffraction, Raman spectroscopy etc. Util-

ising these methods it is possible to build up a mathematical model of the sample for

use in analysis. The following section describes how the specific materials that con-

stitute the sample can be modelled, once the general structure of the sample has been

determined.

3.3.1 Designing an Optical Model

All optical models start by defining the layer structure of the sample. A method to

deal with absorption, transmission and multiple reflections in the samples studied here

is described in Sec. 3.1.3, using Fresnel formulae. For spectroscopic techniques it is

essential to describe the dielectric functions of each layer with a dispersive model. A

number of different models are used in order to model crystalline and amorphous ma-

terials. For samples with layers of mixed phases further modelling is required through

effective media approximations [114]. The most simple material modelled here is that

of silicon dioxide (SiO2) due to the lack of absorption over the probing energies, a

Lorentz model, based on a simple forced, damped harmonic oscillator is used.

The classical Lorentz model describes the electric field polarisation when a neg-

atively charged electron interacts with the positive nucleus to create a dipole moment.

Fig. 3.14 shows how the interaction of electron and nucleus can be modelled as a spring,

which is forced via the AC field of the probing electric field, E = E0 exp(iωt). The elec-

tron is modelled to oscillate in the direction of this field about the static nucleus, slowed

by a frictional force. The system is described in terms of the forces acting upon the
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Figure 3.14: Physical picture of the Lorentz model, a negatively charged electron os-
cillates with respect to a stationary positively charged ion (nucleus). The system is
modelled by a forced, damped oscillator with resonant frequency ω0.

electron by,

me
d2x
dt2 =−meΓ

dx
dt
−meω

2
0 x− eE0 exp(iωt), (3.72)

where me and e are the mass and charge of the electron, Γ is the frictional force param-

eter (describing the scattering of electrons), ω0 is the resonant frequency of the system

and ω is the probing frequency. Solving this differential equation by putting in the

solution x(t) = aexp(iωt) we find,

a =
−eE
me

1
(ω2

0 −ω2)+ iΓω
. (3.73)

The polarisation can then be given by P =−eNex(t), where Ne is the number density of

electrons in the system. Substitution into Eq. 3.73 and the common identities P = ε0χE

and χ = ε−1, provides the equation for dielectric function [78],

ε = ε∞ +
(εs− ε∞)ω

2
0

ω2
0 −ω2 + iΓω

(3.74)

Where ε∞ is the dielectric function at a frequency far greater than the probe frequency

ω∞ � ω and εs is the dielectric function for DC probing ωs � ω . As glass (SiO2)

does not display any absorption features in the probing frequencies used here, we can

described the dispersion in the absence of scattering parameter Γ. Fig. 3.15 shows the

dispersion of SiO2 over a wavelength range of 400-850nm given values of εs, ε∞ and ω0

of 2.5, 1 and 12 respectively [115]. As their is no absorption and therefore Γ = 0 there
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is no imaginary component of the dielectric function for SiO2.

400 450 500 550 600 650 700 750 800 850
2.5

2.52

2.54

2.56

2.58

2.6

2.62

Wavelength (nm)   

ε S
iO

2

’

Figure 3.15: Dielectric function dispersion of silicon dioxide, SiO2. Within the wave-
length range probed here, there are no absorption features in this material and therefore
there is no imaginary component of the dielectric function. The dielectric function is
modelled with a simple Lorentz model.

Amorphous and crystalline materials are much more complex due to the inherent

nature of the electronic band structure in the material. There have been many attempts

to describe the multitude of materials that are categorised under the umbrella of amor-

phous and crystalline semiconductors [78, 116–119]. In order to model the sample

of nano-crystalline silicon embedded in hydrogenated amorphous silicon (nc-Si:H) a

model proposed by Forouhi and Bloomer [117, 118] is used to describe both the amor-

phous and crystalline phases of the nano-crystalline layer as well as the crystalline sili-

con substrate. The description of this model (FB) is simplest for amorphous materials,

in which the imaginary part of the refractive index is given by,

k(E) =
A(E−Eg)

2

E2−BE +C
ω > ωg (3.75)

= 0 ω ≤ ωg (3.76)

where A, B and C are constants which satisfy A > 0, B > 0, C > 0 and 4C−B2 > 0 , Eg

is the optical band gap and E is the probing energy. The real part of the refractive index
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Figure 3.16: Dielectric function dispersion for amorphous silicon α-Si. The real (solid
line) and imaginary (dashed line) components of the dielectric function are modelled
using a Forouhi-Bloomer [118] approach.

is then related through the Kramers-Kronig relation [120] to give,

n(E) =
√

ε∞ +
B0E +C0

E2−BE +C
. (3.77)

Where B0 and C0 are constants related to A, B and C such that,

B0 =
A
Q

[
−B2

2
+EgB−E2

g +C
]

, (3.78)

C0 =
A
Q

[
(E2

g +C)
B
2
−2EgC

]
, (3.79)

Q =
1
2

√
4C−B2. (3.80)

For the amorphous phase of the nano-crystalline silicon sample, the dispersion of

the complex dielectric function, ε
′
(λ ) and ε

′′
(λ ), are shown in Fig. 3.16 fitted using the

FB model whose constants are shown in table 3.3. The real and imaginary components

of the dielectric function are related to the refractive index and extinction coefficient by

ε = (n+ ik)2.

For crystalline samples this model should be adapted. Forouhi and Bloomer adapted

the model for amorphous materials by deducing the extinction coefficient k(E). Mod-

elling a one-electron model with a finite excited electron state lifetime [118]. The re-

fractive index n(E) is then related again by the Kramers-Kronig relation as the Hilbert
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transform of k(E) [118]. Due to the long range symmetry in crystalline materials there

are a number of peaks in the dispersion of k(E), these are related to the symmetry

points in the Brillouin zone. This leads to a re-casting of equation 3.76 to include these

different peaks.

k(E) =

[
q

∑
i=1

Ai

E2−BiE +Ci

]
(E−Eg)

2
ω > ωg (3.81)

=0 ω ≤ ωg (3.82)

the states i correspond to these different symmetry points and the number of these points

q are defined by the crystalline structure of the semiconductor in question. Similarly,

the equation for the refractive index is given by re-forming equation 3.77 as,

n(E) =
√

ε∞ +
q

∑
i=1

B0iE +C0i

E2−BiE +Ci
. (3.83)

Where Ai, Bi, Ci, B0i and C0i are similar to those described in equations 3.80. For the

crystalline phase of the nano-crystalline layer and the crystalline silicon substrate the

values of the constants Ai, Bi, Ci, ε∞ and Eg are given in table 3.3, while the dispersions

for each material are given in Figs. 3.17(a) & 3.17(b). N.B. The unusually high value

of ε∞ has been seen in other works [121].

For samples of silicon nitride (SiNx) a model is used based on that proposed by Tauc

et. al. [122]. Due to the amorphous nature of the silicon nitride layer a simple model is

used, this is a result of the blurring of the states when compared to crystalline materials.

Here we define the refractive and extinction coefficient by,

n(ω) = n∞ +
B(ω−ω j)+C
(ω−ω j)2 +Γ2

j
, (3.84)

k(ω) =
f j(ω−ωg)

2

(ω−ω j)2 +Γ2
j

ω > ωg

= 0 ω ≤ ωg (3.85)
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Figure 3.17: Dielectric function dispersion for crystalline, c-Si, and nano crystalline
silicon, nc-Si. The real (solid line) and imaginary (dashed line) components of the
dielectric function are modelled using a Forouhi-Bloomer [118] approach.

where B and C are positive constants relating to the parameters Γ j, f j, the probing fre-

quency ω and the band gap frequency ωg. The values of the parameters n∞, ωg, f j, ω j

and Γ j are shown in table 3.3 and the related dispersions of n(λ ) and k(λ ) are shown in

Fig. 3.18.

Having defined each of the layers’ dispersions the final task is to define the effective

dispersion of any mixed phase layers. In order to model the nano-crystalline silicon in-

clusions embedded in amorphous silicon we need to mix the two dispersions shown

in Figs. 3.17(a) & 3.16. The Bruggeman effective-medium approximation (EMA)

[123, 124] is a mixing rule for heterogeneous composites. For a composite material

with complex dielectric constants ε1 and ε2 with volume filling fractions of f and 1− f

respectively the EMA model assumes a mixture of approximately spherical grains. The

model holds for spherical inclusions that are well separated such that the total volume

can be considered dilute [125, 126]. The effective dielectric function of the material εeff
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Figure 3.18: Refractive index dispersion for silicon nitride, SiNx. Refractive index, n
(solid line) and extinction coefficient, k (dashed line) are modelled using a Tauc-Lorentz
model [122].

relies on the assumption (known as self-consistent effective medium approximation)

that the material surrounding the spherical inclusions can be modelled as a homoge-

neous matrix and also that first order approximation for a dilute composite can be used

[127–129].

The derivation of the EMA model used to describe the effective dielectric function

of the nano-crystalline silicon is described by Zhang et. al. [130], who presents a self-

consistent three-dimensional Bruggeman effective medium model which has continuous

spectral density. Self-consistency results in the equation for a two phase composite

material that follows,

f
εeff− ε1

2εeff + ε1
+(1− f )

εeff− ε2

2εeff + ε2
= 0. (3.86)

Where ε1 and ε2 are the dielectric functions of nano-crystals and amorphous silicon

matrix respectively, f is the volume filling fraction of the nano-crystals and εeff is the

effective dielectric function of the layer as a whole. Solving this equation to provide a

relation for εeff in terms of the other 3 parameters gives,

εeff =
1
4
(γ +

√
γ2 +8ε1ε2), (3.87)

where the parameter γ is represented by the symmetric function γ =(3 f1−1)ε1+(3 f2−
1)ε2, and f1 and f2 are the volume filling fractions of each of the two phases of the
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Table 3.3: Fitted parameters for dielectric function dispersions of α-Si, c-Si, nc-Si and
SiNx modelled with Forouhi-Bloomer and Tauc-Lorentz models.

Sample ε∞ A B C Eg
α-Si 3.71 1.09 6.67 12.72 1.27

ε∞ Ai Bi Ci Eg
c-Si (substrate) 5.664 0.011 6.86 11.778 2.065

0.054 7.361 13.625
0.153 8.632 18.817
0.047 10.314 26.859

nc-Si 19.985 0.011 6.86 11.778 1.7058
0.054 7.361 13.625
0.153 8.632 18.817
0.047 10.314 26.859

n∞ ωg f j ω j Γ j
SiNx 1.8165 1.5656 0.2210 4.3038 1.4505

composite. Fitting of the EMA model should be performed based on XRD and Raman

analysis of the sample in question, alternatively spectroscopic ellipsometry provides a

useful tool to fit the volume filling fraction of complicated composite layers. The ef-

fective dispersion of the nano-crystalline silicon inclusions layer is plotted in Fig. 3.19

based on a filling fraction of f ' 0.3 and the dispersions for nc-Si and α-Si from Figs.

3.17(a) & 3.16.

Having created this complicated optical model, based on measurements of XRD,

Raman, SEM etc., for each of the samples under study, the quality of the model can be

tested. The sample of nc-Si:H is modelled using Fresnel formulae for a 4-layer system

as per section 3.1.4, the top oxidation layer of SiO2 is fitted by varying the thickness of

the layer between 0.1-10nm. The 2nd layer utilises the EMA model described above as

well as the dispersions of α-Si and nc-Si described by the FB model. A third layer of

SiO2 is modelled using the simple Lorentz model and finally the substrate is modelled

with the dispersion of c-Si. A commercial ellipsometer (Horiba Jobin-Yvon UVISEL)

has been used to measure the ellipsometric parameters Ψ(λ ) and ∆(λ ) and using equa-

tion 3.11 along with an iterative fitting procedure to vary the film thicknesses, the quality

of the optical model is assessed. Fig. 3.20 shows that the optical model is of very good
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Figure 3.19: Effective dielectric function dispersion for nano crystalline silicon embed-
ded in amorphous silicon matrix, nc-Si:H. The dielectric function is found by mixing
the dispersions of nc-Si and α-Si using an effective media approximation proposed by
Bruggeman [123].

quality, fitting with a mean squared error defined by,

MSE =
1

2N−M

N

∑
i=1

[(
(Ψcal

i −Ψ
exp
i

σΨ
exp
i

)2

+

(
∆cal

i −∆
exp
i

σ∆
exp
i

)2]
(3.88)

where N is the number of data points, M is the number of parameters (2) and σ is the

standard deviation of the experimentally acquired data Ψ
exp
i and ∆

exp
i . Using this equa-

tion we find a value of MSE = 1× 10−4. The SiNx sample is a much simpler system

constituting of only a silicon nitride thin film and c-Si substrate, here the SiNx thin film

is modelled using the modified Tauc-Lorentz dispersion. The model is compared to

the experimentally measured values of the ellipsometric parameters in Fig 3.21 and fits

with a MSE = 0.0018. A summary of the fitting parameters for the nc-Si:H and SiNx

samples are shown in table 3.4

Table 3.4: Parameters for fitting of ellipsometry measurements performed with a com-
mercial ellipsometer. The film thickness for the multilayer structures and volume frac-
tion of mixed phase layers are used for fitting. The mean square error (MSE) for each
fitting is also given.

Sample d1 d2 d3 f MSE
nc-Si:H 10.7nm 482nm 188nm 0.27 1×10−4

SiNx 440nm - - - 0.0018

Note: high value of d1 due to surface roughness.
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Figure 3.20: Ellipsometry measurement performed with a commercial ellipsometer
(Horiba Jobin-Yvon) providing Ψ and ∆ values over a range of wavelengths between
400-900nm (symbols). The values are fitted with an optical model using Fresnel for-
mulae (solid line) and making use of the dielectric function dispersions outlined in this
section. The nc-Si:H sample is modelled based on measurements of SEM, XRD and
µ-Raman.
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Figure 3.21: Ellipsometry measurement performed with a commercial ellipsometer
(Horiba Jobin-Yvon) providing Ψ and ∆ values over a range of wavelengths between
400-900nm (symbols). The values are fitted with an optical model using Fresnel for-
mulae (solid line) and making use of the dielectric function dispersions outlined in this
section. The SiNx sample is modelled based on the measurements of XRD and absorp-
tion analysis.
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3.3.2 Drude Theory

Thus far we have only considered how to describe theoretically the optical properties

of samples while in their equilibrium state i.e. with no optical (or otherwise) pumping

of electrons. In order to model accurately the dielectric function change as a function

of the probe delay, we must consider how to adapt the dielectric dispersions given in

section 3.3.1. If we assume free electron absorption (FCA) takes place within the semi-

conductor a resultant change in the dielectric function will be observed. Considering

the electronic band structure for a generic semiconductor, as shown in Fig. 3.22. When

the conduction band displays a large number of free carriers (holes) (> 1018cm−3), the

semiconductor displays a metallic-like behaviour. If one of these electrons somehow

scatters, either from a point defect, another electron, a phonon etc., it collects some

change in momentum k→ k+ k′. This change in wave vector allows free carrier ab-

sorption to occur, changing the absorption coefficient αFCA. Therefore it is trivial to see

that the absorption coefficient increases with carrier (hole) density, Ne. The transport

of the free carriers within the conduction band is usually described by the Boltzmann

equation or Fermi integrals [131], however we limit this description of FCA to classical

Drude theory.

We treat the theory of electron absorption here in a similar manner to that of the

Lorentz model in section 3.3.1. By assuming an electrostatic force Fx applied to the

semiconductor such that the electrons move with a speed 〈v〉 in the direction of the

force x until it scatters with a time interval 〈t〉. Here the parentheses 〈〉 signify the

average value of velocity and scattering time of the electrons. The free electrons are

therefore described by,

Fx = meff
〈v〉
〈τ〉 , (3.89)

where meff is the effective mass of the carriers. We also note that the electron’s velocity

depends on the applied electric field E such that 〈v〉 = −µE, with µ being the drift

mobility of the electrons. Making use of the the fact that the force is related to the field
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Figure 3.22: Representation of free carrier absorption (FCA) in semiconductor materi-
als. Carriers can be excited within the conduction band via phonon assisted transitions
in order to gain the momentum k required to move along the parabolic energy band.

by Fe =−eE we find,

µ =
e〈t〉
meff

. (3.90)

This shows us that as the drift mobility of the electrons increases, the time between

scattering events increases and therefore the absorption of free carriers αFCA goes down.

Given the definition of the conductivity σ = eNµ and recalling Eq. 3.89 we find,

meff
d2x
dt2 =−Fx +Fe =−

meff

〈τ〉
dx
dt
− eE0 exp(iωt). (3.91)

Using the solution x = aexp(iωt) in the same manner as in the derivation of the Lorentz

oscillator and setting Γ ≡ 〈τ〉−1, the dielectric function for free carrier absorption is

given by,

ε = ε∞−
Ne2

meffε0

1
ω2− iωΓ

,

= ε∞−
ω2

p

ω2− iωΓ
. (3.92)
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The plasma frequency,

ωp =

√
Ne2

meffε0
(3.93)

and scattering frequency Γ can then be used as fitting parameters for time-resolved mea-

surements of the dielectric function as described in sections 3.2.1, 3.2.2 & 3.2.4. Mul-

tiplying through by the complex conjugate of the denominator provides the free carrier

absorption contribution for both the real and imaginary components of the dielectric

function.

ε
′ = ε∞−ω

2
p

ω2

ω4 +Γ4 (3.94)

ε
′′ =−ω

2
p

Γω

ω4 +Γ4 (3.95)

3.3.3 Fitting Drude Parameters with Pump Fluence

Fitting of the Drude model to the time-resolved reflectometry is achieved in conjunction

with the optical model to find the change in reflection coefficients rp(τ) and rs(τ). If

a single time delay is picked out and the pump fluence varied it is possible to plot the

plasma frequency as a function of the pump fluence F . Given equation 3.93 and the

relation between the pump fluence and number of carriers created,

N =
AαF
dh̄ω

(3.96)

where Aα = α/πr2 is the absorbance of the sample, d is the thin layer thickness and ω

is the probing frequency, the relation between plasma frequency and the effective mass

m∗ is given by,

ω
2
p =

AFe2

dε0h̄ωme

1
m∗

= αF . (3.97)

α =
Ae2

dε0h̄ωmem∗
(3.98)

The slope of equation 3.97, α , provides the effective mass of the carriers.
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3.3.4 Ellipsometry Fitting

Having seen how a static spectroscopic ellipsometry measurement is performed (sec-

tion 3.1.7), the model can be adapted to fit data as a function of the probe delay. To

apply a model of carrier absorption, we must first decide which layers are likely to be

effected. Once the ‘active’ layers have been decided the dielectric function dispersions

can be fitted using a model (such as Drude) by finding the contribution to the (complex)

dielectric function that fits the ellipsometric parameters Ψ and ∆. In order to do this the

unperturbed dielectric function (ε0) is modified as follows,

ε
′
(t) = ε

′
0 + ε

′
D = ε

′
0−ω

2
p

ω2

ω4 +Γ2ω2 ,

ε
′′
(t) = ε

′′
0 + ε

′′
D = ε

′′
0 +ω

2
p

Γω

ω4 +Γ2ω2 . (3.99)

For each time delay corresponding to a pair of Ψ(λ , t) and ∆(λ , t), equations 3.99 are

used to iteratively best fit the change in dielectric constant, making use of equation 3.88.

The fitting parameters here are the Drude parameters ωp(t) and Γ(t), which provide an

insight into the carrier dynamics undergone after intense optical pumping.

3.3.5 Scattering Theory

In traditional pump-probe measurements in which the reflectivity is measured as a func-

tion of time R(t) the dielectric function can be resolved by [34, 132],

R(t) =

∣∣∣∣∣
1−
√

(ε)

1+
√

(ε)

∣∣∣∣∣

2

(3.100)

The dielectric function can then be related to the number of free carriers (N) excited

in the sample by the Drude equation 3.92. The Drude parameters ωp and Γ have been

measured extensively in samples of bulk crystalline [32, 133, 134] and bulk amorphous

silicon [135]. However, when measurements are made in composite materials the con-

tribution from each of the phases are mixed and the effective dielectric function is mea-
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sured instead. This can be modelled with a simple Maxwell-Garnett approximation.

εeff = εm +3 f εm
εnc− εm

εnc +2εm− f (εnc− εm)
(3.101)

where εm, εnc are the dielectric function of the host matrix and nano-crystals respec-

tively and f is the volume filling fraction of the nano-crystals. Through equations 3.92

& 3.101 we find that the change of the effective dielectric function depends on both

the number of carriers in the nano-crystals Nnc(t) as well as the number of carriers

in the host matrix Nm(t). Therefore measurements of the reflectivity cannot provide

knowledge of the separate functions of carrier density without resorting to additional

assumptions.

One can also measure the scattering intensity, dependent on the scattering efficiency

Qscat, such that,

Is = KIiQscat (3.102)

where Ii is the probing intensity and K is a geometrical factor describing the collection

efficiency of the scattered light from the irradiated volume [136]. In this case the di-

electric functions of both the nano-crystals and the host matrix are described within the

scattering efficiency,

Qscat =
8
3

(
2π < a >

λ

)4 ∣∣∣∣
εnc− εm

εnc + εm

∣∣∣∣
2

, (3.103)

where < a > is the average size of the embedded spherical inclusions and λ is the prob-

ing wavelength. Measurement of the scattered intensity therefore provides knowledge

of the carrier densities within the nano-crystals and the matrix, but this time instead of

their sum it provides their difference. So combining measurements of reflectivity and

scattering it is possible to resolve unambiguously the contribution of free carriers to the

dielectric function from both phases of a composite material.
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Results & Discussion

This chapter outlines the results for experiments proposed in the Experimental Methods

& Theory chapter. Discussion of the results are presented in each section, summarising

salient information obtained about carrier dynamics in samples of nano crystalline sil-

icon nc-Si:H and silicon nitride SiNx. In particular the distribution of electrons shortly

after excitation is discussed, revealing surprising behaviour of a classical electron gas

in samples of nc-Si:H.

4.1 Reflectometry

A basic reflectometry measurement is outlined in Sec. 3.1. A measurement of the

change of reflectivity is performed using a standard pump-probe apparatus. A ∼50fs

pulse (shown in red in Fig. 4.1) is split into two unequal pulses of∼600µW and∼6µW

using a pellicle beamsplitter and recombined non-collinearly onto a sample of nc-Si:H.

Pump and probe spot sizes of ∼250µm and ∼50µm were used providing a pump flu-

ence of ∼1.2mJ/cm2. An angle of incidence of φi = 65◦ was used, close to the samples

Brewster angle. A step size of 10fs was used to delay the probe with respect to the pump

pulse. The pump-probe spatial overlap was checked using a microscope objective and

CCD camera, while the temporal overlap is checked using a standard intensity autocor-

relation [18] measurement at the sample position.

A silicon photodiode and lock-in amplifier were used to measure the reflected inten-

67



Chapter 4. Results & Discussion 68

0 5 10 15 20 25
−0.15

−0.1

−0.05

0

0.05

Probe Delay (ps)    

∆
R

/R
0
  

 

Figure 4.1: Transient reflectivity data (solid black line) plotted as a function of probe
delay time (τ). The Reflectivity data is normalised to the initial reflectance (prior to
the pump τ < τ0) to provide ∆R/R0, indicating the fractional change in reflectance
following excitation. The pump pulse duration (solid red line) and temporal position
are shown, indicating that the reflectivity changes on the same time scale as the leading
edge of the pulse function.

sity while minimising the noise from other sources. The reflectivity change ∆R(τ)/R0

has been measured for probe delays up to 23ps following excitation, in which time the

reflectivity change has reached zero. The reflectivity change consists of an excitation

region (0-0.5ps) and two decay regions (0.5-2ps and 2-22ps). The reflectivity change is

plotted in Fig. 4.1, we propose that the change in reflectivity is solely due to the change

of refractive index N ≡ n− ik of the nc-Si layer, however due to the restrictive nature of

the measurement the component of the complex refractive index (n or k) responsible is

not resolved and instead in this type of measurement it is left to speculation about which

is responsible. The magnitude of the change seen here is much larger (10×) than that

seen in bulk silicon (1%) for similar excitation parameters [19, 32], we propose that the

large change in reflectivity (up to 15%) is likely due to the amplification of the signal

by multiple reflections in the sample as well as an enhanced carrier absorption through

the crystallites, which is discussed in detail in the following sections (Sec. 4.4).

Measuring as a function of pump fluence between 0.6mJ/cm2-2mJ/cm2, below the

cumulative melting fluence for silicon based samples [35], provides a means to see how

the change in reflectivity varies as the number of carriers in the sample is increased.

For the range of pump fluences measured, a linear variation of reflectivity change was

seen (see Fig. 4.11). This implies that the processes responsible are linear. However a

nonlinear contribution cannot be discounted as the range of pump fluences used cover
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a relatively small region (< 1 order of magnitude), below which no reflectivity change

is detected and above which, the sample approaches its melting fluence of 4.4mJ/cm2

[26].

Figure 4.2: Transient reflectivity change ∆R/R0 as a function of both probe delay (τ)
and pump fluence. The reflectivity is measured with a photodetector, averaging over
all probing wavelengths. Inset: maximum change in reflectivity as a function of pump
fluence, experimental data points (symbols) and linear fit (dashed line).

Replacing the silicon photodetector with a spectrometer (Ocean Optics QE65 Pro)

one can measure how the reflectance changes with the probing wavelength. Figure

4.3 shows that over the bandwidth of the probe pulse (∼60nm centred about 795nm)

the reflectance varies from a negative change at low probing wavelengths to a positive

change at high wavelengths. The point at which the reflectance change flips between

these two regions shows a characteristic shift (consistent with the blue shift of a Fabry-

Perot fringe as the dielectric function decreases), with probe delay (τ), which can be

modelled using Drude theory for free carrier excitation. This is discussed in further

detail in section 4.3.
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Figure 4.3: Transient reflectivity change as a function of probing wavelength, measured
using a spectrometer (Ocean Optics QE65 Pro). Inset. Integrated reflectivity data from
main graph.

4.2 Scattering

The discussion and results in this section are based on the paper: Resolving the ultra-

fast dynamics of charge carriers in nano composites, Applied Physics Letters, 100,

241906 (2012) [113]

The results from a traditional pump-probe reflectivity measurement are presented

alongside scattering measurements in Fig. 4.4. The data here have been normalised

with respect to the initial values prior to the pump excitation such that; ∆R(t)/R0 =

(R(t)− R0)/R0 and ∆IS(t)/I0 = (IS − I0)/I0. Both signals show an almost instanta-

neous change upon excitation with the pump pulse, remarkably, the reflectivity change

∆R shows an initial negative change, while the scattering intensity ∆IS shows an ini-

tial positive change. Furthermore, it can be seen that the reflectivity decay lasts longer,

implying the contribution from two different relaxation mechanisms [113]: a rapid de-

cay (proceeding on the same timescale as the scattered intensity change), taking place

over the first few picoseconds, and a slow decay proceeding over tens of picoseconds.

The absence of the slow component in the scattered intensity profile suggests (via Eq.

3.103) that the difference between the dielectric functions of the nc-Si and the α-Si ma-
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trix reach an indistinguishable level during the first few picoseconds.

Figure 4.4: Time-resolved optical response of the free carriers in nc-Si:H. (a), (b) Mea-
sured and (c), (d) calculated 2-D contour maps of the transient reflectivity change ∆R/R0
and scattering intensity change ∆I/I0. The x-axis shows the probe delay (on logarith-
mic scale) while the y-axis corresponds to the fluence of the pump laser. The pump
arrival time is highlighted with a white dashed line at ∼2 ps. The regions I, II, and III
correspond to the conditions described in Fig. 3.13. (e) The carrier dynamics in the
nanocrystals and the matrix reconstructed from (c) and (d) at a fluence of 1 mJ/cm2. (f)
Schematic representation of the photo-excited carrier dynamics in the material; carriers
are pumped in the nanocrystals with a response time τexc, excited carriers can recom-
bine within the nc-Si through τrec-nc or leak into matrix states at a rate τtrans which then
recombine within τrec-m (see Table 4.1) [113]. NB. The increase in ∆I/I0 in (b) is likely
due to lattice heating when operating at maximum fluence, which is not taken into ac-
count in our analysis.

We assume that thermal effects do not contribute significantly to the signal as the

fractional change of the dielectric function expected due to the lattice temperature in-

crease, would be indistinguishable at the pump fluences used [133, 134]. We also expect

that changes due to thermal effects take place over 4ps and longer, later than the main

optical response observed. Using equations 3.102 & 3.103, the transient change in both

reflectivity and scattering intensity can be reconstructed (see Figures 4.4(c) and 4.4(d)).

This is achieved by iteratively fitting the contribution to the dielectric function from the

change in carrier density in both the nc-Si and the α-Si matrix. The fitting parame-

ters Nnc(τ) and Nm(τ) can be well described by a combination of exponential functions

(shown in Fig. 4.4(e)) from which relevant time scales can be extracted. These are
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tabulated in table 4.1.

Table 4.1: Characteristic time scales in nc-Si:H, measured using reflectivity and scat-
tering measurements. Data here has been obtained by fitting of Figs. 4.4(a) & 4.4(b).
[113]

Component nc-Si α-Si
Excitation time, τexc (fs) 85±10 ...
Decay time, τdec (ps) 2.2±0.2 ...
Transfer time, τtrans (ps) 4.0±0.7
Recombination time, τrec (ps) 4.9±0.5 22±4
N at 0.4 mJ/cm2 (1020cm−3) 8.1±0.1 1.7±0.1
N at 1.4 mJ/cm2 (1020cm−3) 27.0±0.1 2.6±0.1

The values and timescales of the carrier densities, Nnc(τ) and Nm(τ), reveal salient

information about the carrier dynamics occurring in these types of composite materi-

als, not achievable with other methods [44, 121, 137]. An excitation of the nc-Si was

measured to be almost instantaneous with pump excitation, proceeding on the order of

the pulse duration, τexc = 85fs. However, the maximum concentration of carriers in the

host matrix is reached a few picoseconds later. By correlating the carrier densities in

the nano-crystals and the matrix τdec we propose that the decay in the nc-Si consists of

two components, a recombination of carriers within the crystals τrec nc and a transfer of

charge to the host matrix τtran. These processes are depicted in Fig. 4.4(f), where the

recombination time is approximated by,

τrec nc ≈ τdecτtrans/(τtrans− τdec) = 4.9ps (4.1)

The estimate of the recombination time here is similar to the surface state decay times

measured in nanocrystalline films (3ps) [109]. Furthermore, the slow decay time mea-

sured in the α-Si matrix of 22ps is similar to that measured in bulk amorphous silicon

[135], which is attributed to multiparticle recombination.

The consistency of this approach has been verified by measuring the reflectivity and

scattering intensity as a function of the fluence at a fixed probe delay of ∼100fs. These

measurements are seen in Fig. 4.5. Also plotted is the calculated relative scattering
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Figure 4.5: Dependence of the optical properties of nc-Si:H on pump fluence. The LHS
y-axis shows the maximum change in reflectivity change and scattering intensity while
the RHS y-axis corresponds to the relative scattering efficiency. Symbols represent
experimental data, while lines represent calculations. [113]

efficiency, Yscat =Qscat/(Qscat +Qabs), where Qabs is the absorption efficiency. It should

be noted that absorption exceeds the scattering intensity significantly. This means that

scattering can only be observed from nc-Si close to the surface, due to the dominance

of absorption deeper within the layer. Comparison of the scattering and absorption

probabilities also implies that the contribution due to multiple scattering events toward

the total scattering intensity is insignificant, as statistically, following a single scattering

event, the scattered photon is then absorbed [113].

4.3 Multi-Incidence Angle & Fluence Dependent Reflec-

tivity Measurements

The discussion and results in this section are based on the paper: Enhanced carrier-

carrier interaction in optically pumped hydrogenated nanocrystalline silicon, Ap-

plied Physics Letters, 101, 14 (2012) [103]
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As described in the previous section, we have taken time-resolved measurements of

the reflectivity using a standard femtosecond pump-probe setup. The details of the delay

line and the calibration procedure can be found in section 3.1 and previous publications

by the group [113, 138]. The laser parameters and alignment procedure are the same as

used for the reflectometry measurements in the previous section with the reflected probe

pulse being wavelength-analyzed using a spectrometer (Ocean Optics QE65 Pro).

Figure 4.6: Transient change in reflectivity ∆R/R0 as a function of probing wavelength
and probe delay. 2D contour plots show experimental data for incidence angles between
40◦-80◦. Dash-dot line shows probe delay ∼350fs following excitation. [103]

The Drude equation (3.92) shows that pumping of the sample leads to a change in

the dielectric function εeff, resulting in a change of the samples reflectance R. This

enables us to resolve the parameters of the Drude model using reflectivity measure-

ments. However, to determine the plasma frequency ωp and scattering rate Γ simulta-

neously, two independent measurements should be made. In some works this is per-

formed by measuring the reflectivity and transmission of the sample. However, this is

not always possible, in particular for opaque and optically dense samples which trans-

mit light poorly. Alternatively, one can estimate these parameters by assuming that the

optically absorbed energy is transferred completely to the production of electron-hole

pairs and then guess the optical mass of the carriers. In this section we have measured
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the pump-probe reflectivity of the sample as a function of wavelength for a fixed pump

fluence of 2.5±0.5mJ/cm2. The results of the pump-probe measurements for incidence

angles between 40◦-80◦ are shown in Fig. 4.6. It is important to note that despite a

considerable change in reflectance of the sample being expected as the incidence angle

is scanned (up to 50%), the major contributing factor to the change in reflectance fol-

lowing the optical excitation is due to changes in the dielectric function of the nc-Si:H

layer. We analyse the reflectivity as a function of wavelength for a fixed probe delay

time of τ ∼350fs. This delay time is chosen as it allows sufficient time for the plasma

to build up and the electrons to reach equilibrium, while being short enough to avoid

significant population decay due to recombination or diffusion of carriers. These fixed

τ curves of reflectivity change versus probing wavelength are shown in Fig. 4.7. A dis-

tinct transition is seen as the probing wavelength is scanned, exhibiting a Fabry-Perot

fringe attributed to a change in the real part of the dielectric function. The position of

the fringe shifts to shorter wavelengths as the optical path inside the sample increases

with the incidence angle. This observation is consistent with with the blue-shift of the

Fabry-Perot fringes as the dielectric function within the nc-Si:H layer decreases due

to the pumped free carriers [134]. The fixed τ curves were fitted simultaneously with

the Drude model incorporated into the optical model. The simultaneous iterative best-

fitting procedure reveals the values of the plasma frequency ωp = 1.2+0.3
−0.2×1015s−1 and

damping rate Γ = 2+1.2
−1 ×1015s−1.

Although we do expect some dependence of the plasma frequency and scattering

rate, this type of measurement is not sensitive enough to resolve such a trend. The weak

dependence of these parameters on incidence angle is confirmed by calculations; Fig.

4.8 shows that the absorbed energy is only weakly dependent on angle due to multi-

ple reflections in the multilayer structure of the sample. Calculation of the absorption

coefficient is performed through use of an optical model, using Fresnel formulae and

the optical functions of the layers, predicting a change of A = 0.025→ 0.04 over the

incidence angles measured. Although this predicts a higher plasma frequency for larger

angles this dependence is masked by experimental error.
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Figure 4.7: Transient change in reflectivity recorded at different incidence angles be-
tween 40◦-80◦. Black dots depict the reflectivity change, ∆R/R0, extracted from the
measurements shown in Fig. 4.6. Red solid line represents the Drude model fitting.

Comparison of the values of ωp and Γ to those published in the literature for bulk

silicon and embedded nc-Si lead to some interesting postulations. Sokolowski-Tinten

et. al. [34] estimated a scattering frequency Γ = 9.9× 1014s−1, which they attribute to

carrier-carrier scattering, although these measurements are at a plasma frequency an or-

der of magnitude greater than ours. Sabbah et. al. [32] estimate Γ = 1.25×1013s−1 at

plasma frequencies well below the one in this study. It is important to note here that the

measurements performed are for single angle of incidence measurements. A number

of works using Terahertz pulses have recently been published [43, 44], which propose

scattering rates in the region Γ = 3× 1013s−1-Γ = 1.25× 1014s−1 at nearly the same

plasma frequencies used here. It is however important to note that due to the depen-

dence of the scattering rate on the probing frequency these values should be considered

carefully [44]. All of these studies, summarised in Tab. 4.2, despite proposing quite

different scattering rates, agree that the scattering process is governed by carrier-carrier

interactions. It is apparent from our studies that in this sample of nc-Si:H the scattering

rate is an order of magnitude faster than previously reported.

In order to understand these differences it is useful to know the effective mass of the

carriers, this allows one to calculate the carrier density Neh from the plasma frequency,

ωp. The effective mass of the carriers can be calculated by measuring the reflectivity
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Figure 4.8: (a) Change in the absorbance of nc-Si:H as a function of incidence angle,
calculated using Fresnel formulae for multiple reflections and utilising the dielectric
function dispersions of each layer from ellipsometry measurements. (b) Change in re-
flectance (black triangles), transmission (blue squares) and absorbance (red circles) as
a function of incidence angle again calculated as in (a).

change ∆R(λ ,τ)/R0, for a fixed angle of φi = 70◦, as a function of the pumping fluence,

F , between 0.14 and 2.3mJ/cm2. The results from this measurement are shown in Fig.

4.9. In a manner akin to that of measurements with varying incidence angle, there is

an observed Fabry-Perot fringe toward the red side of the spectrum. The data were

analysed by fitting with the same Drude approximation as in the previous measurement,

fitting as a function of wavelength for a fixed probe delay of ∼350fs. Fig. 4.10 shows

the fixed τ measurements and are in reasonable agreement with those seen in Fig. 4.7.

The plasma frequencies retrieved from this measurement are plotted as a function of

the pumping fluence in Fig. 4.11. The dependence of the graph is seen to be linear,

however the y-intercept does not correspond to the plasma frequency in absence of the

optical pump, but rather the detection limit of the apparatus used. The slope of the graph

was found by a linear fit to be ∆ = 6.1×1029cm2/mJs2, which was used to estimate the

reduced optical mass from,

ω
2
p =

1
m

AF
d

e2

h̄ωε0me
= ∆F, (4.2)

where A = 0.4 is the absorbance calculated from the optical model (including the ef-

fect of free carrier absorption within the sample) at a delay time of 350fs and d is the

thickness of the nc-Si:H layer. The optical mass of the carriers estimated was found to

be meff = 0.17+0.05
−0.03. The value measured here is close to that found in samples of bulk
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Figure 4.9: Transient change in reflectivity plotted for a range of pump fluences between
0.14-2.3mJ/cm2. The change in reflectivity ∆R/R0 are plotted as a function of probe
delay and probing wavelength. An overlay of the probe spectrum is plotted (dashed
line) on a logarithmic scale. [103]

silicon from other time-resolved reflectivity measurements [32, 34] (mSi = 0.15) cor-

responding to the band edge reduced optical mass. This requires that non-parabolicity

effects can be discounted [132]. Using the effective mass of the carriers it was then

possible to deduce the carrier density Neh (plotted on the right axis of Fig. 4.11).

The value of the carrier concentration here is an average value over the size of the

beam spot. In measurements of scattering outlined in section 4.2 we have proven that at

the probe delay here the majority of carriers are localised within the silicon nanocrys-

tals, thus the true concentration can be greater by a factor of 1/ f , where f = 0.35 is

the fractional volume of the nanocrystals in the layer. Knowledge of the effective mass

of the carriers and the carrier concentration allows the mean free path of the carriers

to be calculated. For an ambipolar electron-hole plasma this is given classically by,

l = v f /Γ, where v f is the Fermi velocity. For the data shown in Fig. 4.7 the mean free

path is l ∼ 0.3nm. This value, unusually short compared to similar measurements in

these types of materials, leads to important conclusions about the carrier interactions.

Firstly, that the carrier is confined within the crystallites, as scattering restricts its es-

cape from the excitation volume. Second, that the carrier is self-confined and finally,

that the carriers mutual interaction is strong. It can also be deduced that scattering from

78



Chapter 4. Results & Discussion 79

−0.3

0

0.3

 

 

−0.3

0

0.3

 

 

∆
 R

 /
 R

0
  

  
  

760 780 800

−0.3

0

0.3

Wavelength (nm)
760 780 800

1.0mJ/cm
2 1.4mJ/cm

2

0.57mJ/cm
2

0.14mJ/cm
2

1.9mJ/cm
2

2.3mJ/cm
2

Figure 4.10: Transient change in reflectivity recorded at various pump fluences between
0.14-2.3mJ/cm2. Black dots depict the reflectivity change, ∆R/R0, extracted from the
measurements shown in Fig. 4.9. Red solid line represents the Drude model fitting.

the nanocrystalline boundaries does not contribute as their length scale is an order of

magnitude larger. We also note that scattering from defects and from phonons can be

discounted as the scattering rate measured is too fast to fit these mechanisms [139]. It

is therefore reasonable to assume that carrier-carrier processes are responsible for this

fast scattering rate.

This assumption requires some elaboration. Calculation of the average distance

between carriers r0 can be found from the carrier concentration within each of the

nanocrystals 2.9× 1020cm3, providing r0 = (3/4N)1/3 = 1.3nm. Conversely, the scat-

tering rate provides a distance, rs = (Nl)−1/2 = 3nm, greater than the average distance

between the carriers, suggesting a strong carrier-carrier interaction. In accordance with

Fermi-liquid theory [139] the interaction length scales with temperature as (kbT/E f )
2.

Under the experimental conditions here, this factor approaches unity at T = 104K. Cor-

responding to the temperature at which the coulomb screening is zero and limitation

due to Pauli exclusion principle is ineffective. The extremely high temperature of the

electronic sub-system that this requires is not out of reach of the carrier concentration
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Figure 4.11: LHS y-axis: Plasma frequency ωp calculated through Drude model fitting
of data in Fig. 4.9 as a function of pump fluence. RHS y-axis: Carrier concentration
Neh calculated from values of plasma frequency using effective mass of carriers approx-
imated using Eq. 4.2.

found here [132]. For a classical gas of electrons at the Fermi temperature the screening

radius can be approximated [140] by (ε0kbT/Ne2)1/2 providing an estimate of 1.7 nm,

this supports the argument of strong interactions between hot carriers. Another factor

that can lead to this high scattering rate is that of spatial confinement [141], known to

increase the strength of the Coulomb interaction. A similar influence is expected to

effect scattering, not yet explored in depth in the literature [103].

Table 4.2: Summary of calculated carrier concentrations Neh and scattering times Γ for
samples of nc-Si:H measured using a variety of techniques.

Study ωp Neh Γ

NPRL (800nm) [103] 1.25×1015s−1 2.9×1020cm−3 2×1015s−1

Sokolowski (625nm) [34] ... ∼ 1022cm−3 9.9×1014s−1

Sabbah (800nm) [32] ... 5×1018cm−3 1.25×1013s−1

Cooke (THz) [43] ... 3×1018cm−3 3×1013s−1

Shimakawa (THz) [44] ... 6×1019cm−3 1.25×1014s−1
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4.4 Ellipsometry

4.4.1 Nano-crystalline Silicon nc-Si:H

The discussion and results in this section are based on the paper: Electron dynam-

ics in hydrogenated nano-crystalline silicon studied by time-resolved ellipsometry,

Unpublished (2012)

Measurements of time-resolved ellipsometry have been performed as described in

section 3.2.2. A novel pump-probe rotating compensator ellipsometer (RCE) has been

used, described in detail here [99]. The ellipsometer utilises a polariser prior to the

sample, in oder to set the polarisation axis of the incident light to P = 45◦. The sample

is set to an incidence angle of φi = 65◦, corresponding closely to the samples Brewster

angle. Following the sample the ellipsometer uses a rotating compensator positioned

in a mechanical rotation mount, which is capable of 0-360◦ rotation and an analyser

(Glan-Thompson polariser) set to an angle of A = 0◦. The light from the ellipsometer

Id(λ ,τ) is detected via a spectrometer (Ocean Optics USB2000+ VIS-NIR). Analysis

of the detected intensity Id(λ ,τ) is performed using a standard Fourier series equation,

given by Eq. 3.48 [142, 143]. The parameters resolved Ψ(λ ,τ), ∆(λ ,τ) represent the

change in amplitude and phase of the light following the sample. The RCE, positioned

in the probe arm of the apparatus, was calibrated and compared to measurements made

on the same sample of nc-Si:H using a commercial ellipsometer. Fig. 4.12 shows that

the two ellipsometers (home-built RCE and Horiba Jobin-Yvon) are in very good agree-

ment for both of the ellipsometric parameters Ψ & ∆.

By varying the probe delay (τ) the ellipsometric parameters are resolved as a func-

tion of time over the first 25ps following optical excitation. The relative changes in the

ellipsometric parameters δΨ/Ψ0 and δ∆/∆0 are plotted as a function of wavelength

in Fig. 4.13(a) & 4.13(b). Although these measurements provide some idea of the

time-scales involved upon excitation of the sample it is not clear what processes are

responsible. To gain a better insight into these processes we must convert the ellip-

sometric parameters to a change in dielectric function of the sample. For the particu-
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Figure 4.12: Ellipsometric angles Ψ & ∆ measured with commercial ellipsometer
(Horiba Jobin-Yvon) [open symbols] and compared with measurements made with
home-built ellipsometer (without optical pumping) [solid line].

lar sample used here we propose (as in the previous section) that the nc-Si:H layer is

solely responsible for the changes seen in the amplitude and phase of the light follow-

ing light reflection. An optical model utilising a transfer matrix formulation and based

on measurements of scanning electron microscopy (SEM), x-ray diffraction (XRD) and

micro-Raman analysis was used to model the optical parameters of the sample prior

to excitation with the pump pulse (τ < τ0). For probe delays following excitation the

model should be adapted to correspond to the values of the ellipsometric parameters at

τ > τ0.

(a) (b)

Figure 4.13: (a) Transient change in ellipsometric angle δΨ/Ψ0 plotted as a function of
probing wavelength and probe delay. (b) Transient change in ellipsometric angle δ∆/∆0
plotted as a function of probing wavelength and probe delay.
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Fitting of the time-resolved ellipsometry data is achieved via two methods (shown

in Fig. 4.14), the first finds the complex dielectric function (εnc−Si = ε ′nc−Si− iεnc−Si
′′)

by varying each component (real and imaginary) independently in order to best fit the

values of Ψ(λ ,τ) and ∆(λ ,τ). The second method uses a Drude model approximation,

which describes the contribution of free carriers excited in the conduction band to the

dielectric function. The unperturbed dielectric function (ε0 = ε ′0− iε0
′′) for each wave-

length is modified by adding a contribution depending on the probe delay, such that

using the Drude approximation the dielectric function at each probe delay is given by,

ε(τ) = ε0 + εd(τ) (4.3)

where εd is given by the Drude model in equation 3.92. Combination of Eqs. 4.3 & 3.92

provide the Drude parameters ωp and Γ. Fig. 4.14 (a, b) shows values of the ellipso-

metric parameters averaged over all probing wavelengths, (c, d) the dielectric functions

of the nc-Si:H layer and (e, f) the Drude parameters. The change in dielectric function

described by the Drude model approach is in good agreement with those found by the

‘brute force’ method described above.

272

277

282

287

 

 

Ψ

−2 −1 0 1 2 3 4 5

26

27

28

29

Probe Delay (ps)

 

 

∆

−8

−6

−4

−2

0

x 10
−3

∆
ǫ′
/
ǫ′ 0

 

 

−2 −1 0 1 2 3 4 5

0

2

4

Probe Delay (ps)

∆
ǫ′
′ /
ǫ′
′ 0

 

 

0

1

2

3

4
x 10

15

ω
p

 

 

−2 −1 0 1 2 3 4 5
0

1

2

3
x 10

16

Probe Delay (ps)

Γ

 

 

a)

b)

c)

d)

e)

f )

Figure 4.14: (a)-(b) Change in ellipsometric angles, Ψ and ∆, averaged over all probing
wavelengths as a function of probe delay over the first 5ps following excitation. (c)-(d)
Change in the dielectric function ∆ε ′/ε ′0 & ∆ε ′′/ε ′′0 found from ‘brute’ force fitting of
the functions (symbols) and through Drude model approximation (solid) line. (e)-(f)
change in the Drude model parameters ωp & Γ.
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A distinct positive change in the imaginary part of the dielectric function and a much

smaller negative change in the real part are measured, corresponding well with other

measurements on these types of silicon materials [39, 44, 144]. The change in absorp-

tion exhibits a characteristic time scale of ∼4ps, in which time the change has reached

almost zero. However, the change in the real component persists for much longer,

proceeding over tens of picoseconds, this can be seen in Appendix C. The timescales

and mechanisms responsible have been discussed using scattering measurements (Sec.

3.2.4). Measurements of the Drude parameters reveal more interesting features of the

time-scales and mechanisms involved in carrier excitation, transport and relaxation af-

ter optical excitation. As described in the previous section, the effective mass of the

carriers can be estimated through pump fluence dependent measurements of reflectivity

change in conjunction with Drude modelling of the system. Using the effective mass

meff = 0.17 we are able to resolve the carrier concentration Neh as a function of time.

Fig. 4.15 plots the carrier concentration against probe delay.
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Figure 4.15: Transient change in carrier concentration Neh as a function of probe delay.
Inset: corresponding change in scattering frequency Γ.

The graph shows a relatively high peak carrier concentration of ∼ 7× 1020cm−3,

although consistent with concentrations estimated in other works [19, 34], this provides

an insight into the mechanism of excitation. We see that the carriers are excited on

roughly the same timescale as the pulse duration ∼80fs. Given the assumption that
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carriers are excited linearly according to the equation,

N =
AF
h̄ω

, (4.4)

where A is the absorbance of the sample, F is the pumping fluence and ω is the pump

frequency. This equation provides an estimate of Nest ∼ 1018cm−3, well below the car-

rier concentration measured here. This high carrier concentration can be due to nonlin-

ear absorption of carriers [50], although nonlinear dependency of carrier concentration

was not measured as a function of the pumping fluence. Alternatively the absorption

coefficient of the sample may be altered during the time in which the pump pulse is

still ‘on’. The mechanism of excitation here is complicated and has not been studied in

depth. Electrons are expected to be far from equilibrium and as such do not behave in a

straightforward manner. The precise mechanism by which excitation occurs should be

studied in more detail as a function of both probing energy Ep and pump fluence F .
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Figure 4.16: Fraction ω2
p/Γ3/2 as a function of probe delay over the first ∼5ps after op-

tical excitation. The fraction yields a constant for electron-electron (-like) interactions.
After∼300fs the fraction has reached a constant level and we assume that carrier-carrier
interactions are the dominant process at this time-scale. For later probe delays thermal
processes (not modelled by the Drude approximation) start to play a significant role and
accuracy is lost.

Following excitation we expect the electrons to reach equilibrium within ∼0.3ps

[13]. This timescale seems to be set by the time in which the pump and probe are still

strongly interacting with each other. After this time it is possible to infer some interest-
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ing behaviour of the carriers. The first thing to note is the method by which the carriers

interact, either through carrier-carrier scattering, carrier-phonon interactions, scattering

from boundaries or from defect states etc. To understand which of these is responsible

the length scales of the scattering process should be understood. This can be achieved

for carrier-carrier interactions by considering the fraction ω2
p/Γ3/2. This fraction pro-

vides a constant for e− e scattering which assumes ω2
p ∝ Neh and Γ = v f /l ∝ N2/3

eh .

Fig. 4.16 shows the dependence of this fraction as a function of the probe delay. It can

be seen that immediately after optical excitation τ = 0 there is a sharp rise indicating

that the electrons are out of equilibrium or some other process is responsible for the

scattering seen at these times. After approximately 300fs there is a flattening of the

graph suggesting that the major scattering contribution is from carrier-carrier interac-

tions. This trend persists for a further ∼3.5ps, corresponding to the point at which the

scattering rate, calculated using the Drude model, has become very small and accuracy

in both parameters (ωp & Γ) are lost. We expect that after this time thermal effects

due to phonon interactions start to play a role and masks the carrier-carrier contribution.

Othonos et. al. [12] claim that phonon processes become effective between 4-15ps in

semiconductors, corresponding well to the times measured here. An in depth look at

the processes, rates and concentrations measured within the timescale 0.3-5ps will be

studied in the following sections (Sec.4.5 & 4.6)

4.4.2 Silicon Nitride SiNx

In order to corroborate the measurements made on samples of nc-Si:H we have also

looked at a sample of silicon nitride, SiNx. We begin, as before, by looking at the re-

flectivity from the sample as a function of the probe delay. This provides a convenient

measure of the strength of the response within the sample to optical pumping, as well as

providing a quick method to optimise the overlap of the pump and probe (by scanning

the probe over the pump spot until a maximum ∆R/R0 is measured). The apparatus

to measure the sample are the same as those described in section 3.1. The measured

transient reflectivity change ∆R(τ)/R0 exhibits a small negative change in reflectance

of about 2% (see Fig. 4.17). The reflectivity change seen here is much smaller than that
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observed in the previous sample, being almost at the level of noise (∼ 1%). We see that

the reflectivity reaches zero after 2.5ps, however, as we see later, this corresponds to the

point at which the change in reflectivity of the sample is no longer visible, due to the

low SNR, not the point at which there is no change due to the dielectric function.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.03

−0.02

−0.01

0

0.01

0.02

Probe Delay (ps)

∆
R
/
R

0

Figure 4.17: Transient change in reflectivity ∆R/R0 measured in a sample of SiNx as a
function of probe delay, experimental data (symbols) and smoothed data (solid line).

To understand the processes occurring in this sample, time-resolved ellipsometry

measurements have been taken. Figs. 4.18(a) & 4.18(b) show the change in amplitude

δΨ/Ψ0 and phase δ∆/∆0 imparted by the sample on the incident probe pulse following

excitation with the pump. The change in the ellipsometric parameters are plotted as

a function of probing wavelength, it can be seen that for longer wavelengths there is

a greater percentage change in the values. We also note that although the reflectivity

change appeared to be zero for probe delays after 2.5ps, in fact the change in the di-

electric function which imparts an amplitude and phase shift to the incident light is still

present. To further illustrate this point the averaged values of the ellipsometric param-

eters are plotted in Fig. C.5 in Appendix C. Also plotted is the quality of fit for these

parameters.

As before an optical model based on measurements of SEM and absorption spectra

has been constructed. Iterative fitting of the temporal ellipsometric parameters using a

Drude model approximation provides the dielectric function of the SiNx layer, we as-

sume here that the silicon substrate does not play a role in the dielectric function change
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(a) (b)

Figure 4.18: (a) Transient change in ellipsometric angle δΨ/Ψ0 plotted as a function of
probing wavelength and probe delay. (b) Transient change in ellipsometric angle δ∆/∆0
plotted as a function of probing wavelength and probe delay.

as we have not been able to measure any signal from this material at the pump fluences

and probing energies used in this study. Fig.4.19 (a, b) shows the change of the dielec-

tric function (∆ε ′/ε ′0, ∆ε ′′/ε ′′0 ), which exhibits the same qualitative changes seen in the

sample of nc-Si:H. A large increase in the imaginary component of the dielectric func-

tion (∝absorption coefficient) is seen along with a much smaller decrease in the real

part. The extracted Drude parameters are plotted in Fig.4.19 (c, d) showing an increase

in both the plasma frequency ωp and scattering frequency Γ. The scattering rate mea-

sured also reaches approximately the same level as that seen in nc-Si:H.
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Figure 4.19: (a)-(b) Transient change in dielectric function of SiNx sample ∆ε ′/ε ′0 &
∆ε ′′/ε ′′0 , found via fitting of the Drude model. (c)-(d) Calculated Drude parameters
over the first few picoseconds.
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The mechanism by which the carriers scatter can be checked by looking at the frac-

tion ω2
p/Γ3/2 as described in section 3.2.2. This fraction is plotted as a function of the

probe delay τ and would show a constant for carrier-carrier interactions for the reasons

described previously. Fig. 4.20(a) shows this fraction with probe delay, however no

levelling of the graph is seen for the data measured. This implies that carrier-carrier

scattering may not be responsible. An alternative mechanism for the scattering process

to proceed is that of collisions with defects. In order to test this theory one can look to

see if the collision length L = v f /Γ is constant with the probe delay, suggesting that no

matter how many carriers are excited and/or subsequently decay the scattering length is

fixed i.e. likely to be from a boundary which does not change with time. Fig. 4.20(b)

shows a plot of the collision length L with probe delay, the ‘flattening’ of the graph

immediately after excitation of the carriers (τ = 0) suggests that the dominant process

in this sample could indeed be collisions with fixed boundaries or defects. There is still

some slight dependence with probe delay suggesting that although collisions with de-

fects dominates the scattering, other processes cannot be disregarded completely. The

collision length measured is retrieved using the fermi velocity v f = (h̄/m)(3π2Neh)
1/3

and the scattering rate Γ, L = v f /Γ. Where the carrier concentration is found from Eq.

3.93 using an effective mass for carriers in silicon nitride samples of meff = 0.4 [145].

The collision length is found to be L≈ 1Ȧ, which points toward scattering from defects

and impurities in the sample, typical for these types of SiNx materials [38]. However so

far the data in inconclusive.

4.5 Solving the Fermi integrals

As we have seen in section 4.4 the scattering process in nc-Si:H is governed by electron-

electron interactions. To make sense of the scattering rate observed it is important

to understand the electron (and hole) distribution within the conduction band (valence

band). Dependent on whether the electron interactions obey quantum or classical laws,

the scattering rate obeys quite different dependence with carrier concentration [15, 37].

To get an idea of the regime that the system is operating under, we can model a Fermi-

Dirac distribution of electrons for a parabolic conduction/valence band. Given that the

system has a finite, non-zero temperature, the excited states of the N-electron system
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Figure 4.20: (a) Fraction ω2
p/Γ3/2 as a function of probe delay, no flattening of the

graph is seen suggesting that carrier-carrier collisions are not the dominant process in
this material. (b) Collision length, L = v f /Γ as a function of probe delay, The graph is
relatively flat over the experimental region suggesting that collisions with fixed bound-
aries dominate the scattering process.

should be modelled using statistical mechanics (see Appendix E). The total internal

energy of the system is given by,

u =
∫ d~k

4π3 ε(~k) f (ε(~k)), (4.5)

Similarly the electron density by,

n =
∫ d~k

4π3 f (ε(~k)). (4.6)

Integrals of these types can be converted into spherical coordinates to retrieve the carrier

concentration,

n =
∫

∞

−∞

dεg(ε) f (ε) =
(m)3/2
√

2π2h̄3

∫
∞

−∞

dε
ε1/2

exp((ε−µ)/kbT )+1
, (4.7)

where g(ε) = m
h̄2

π2

√
2mε

h̄2 is the density of states such that g(ε)dε = (1/V ) × the num-

ber of 1-electron energy levels. For the moment we will neglect the slightly different

contribution for holes. We may also write down the energy for the system as (see Eq.

4.5),
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u =
(h̄ω−Eg)

2
n =

∫
∞

−∞

dεg(ε) f (ε)ε

=
(m)3/2
√

2π2h̄3

∫
∞

−∞

dε
ε3/2

exp((ε−µ)/kbT )+1
, (4.8)

where ω is the pump frequency and Eg is the band gap of the sample and we have taken

all the non energy-dependent parameters outside of the integral. The term (h̄ω−Eg)/2

is known as the excess energy ∆. From the experiments performed previously it is

possible to solve these equations to find the temperature T and chemical potential µ .

Certain assumptions should be made in order for this to be true,

1. The set of equations is only valid for times much shorter than the electron-hole

recombination time. This means that the number of electrons and holes are the

same and energy is exchanged between them to achieve equilibrium.

2. The temperature of electrons and holes are the same.

The set of equations (4.7 & 4.8) can only be solved analytically for the classical (Tn�
T ) and quantum regimes (Tn� T ), where Tn is the fermi temperature and is defined by,

Tn =
h̄2

2m
(3πn)2/3. (4.9)

However, as we know, the carrier concentration and the excess energy ∆ through exper-

imentation, we are able to solve this problem numerically.

To do this we should first re-scale the parameters to reduce the complexity of the

calculation. We do this via the transformations: β = 1/kbT , x = βε , y = β µ , β̃ = h̄ωβ

and ñ = n/C(h̄ω)3/2, where C = (2m)3/2/2π2h̄3.

f1 = β̃
−3/2

∫
∞

0
dx

x1/2

exp(x− y)+1
− ñ, (4.10)

f2 = β̃
−5/2

∫
∞

0
dx

x3/2

exp(x− y)+1
− (ñ− Ẽñ), (4.11)
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where Ẽ = Eg/h̄ω is the rescaled band gap energy. To solve this new set of equations

we can simply iterate,


 y

β̃


=


 y

β̃


−


 ∂ f1/∂y ∂ f1/∂ β̃

∂ f2/∂y ∂ f2/∂ β̃



−1
 f1

f2


 . (4.12)
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Figure 4.21: Calculated scaled temperature t = t/∆ and chemical potential µ̃ = µ/∆

against the scaled Fermi temperature tn, for a simple semiconductor material with
parabolic density of states and equal effective mass for electrons and holes me = mh
(solid lines). Dotted lines represented the asymptotic limits of the functions for high
and low carrier density (quantum and classical limits respectively).

Figure 4.21 shows the solution to these equations, solved numerically through equation

4.12. The asymptotes are calculated for the low and high density limits such that the

scaled temperature t = (kb)T/∆ and chemical potential µ̃ = µ/∆ in the high density

and low density limits of tn = Tn/∆ are given by,

t =





2/3, tn� 1
√

5/3− tn, 5
3 − tn� 1

(4.13)

and,

µ̃ =





ln tn(+1
3 ln 4π

3 ), tn� 1
√

5/3− tn, 5
3 − tn� 1

(4.14)
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These asymptotes are only valid for a symmetrical system in which the electrons

and holes can be modelled with the same DoS and effective mass me = mh = meff. For

a more realistic approach we need to include the separate effective masses for electrons

and holes, as well as including the number of degenerate points in the band structure

η . To perform this calculation a system of 3 equations; (1) the number of electrons, (2)

the number of holes and (3) the total energy of the system. The numerical solution is

calculated (as in the symmetric case), for values ηe = 6, ηh = 2 [146] and me = 0.26 and

mh = 0.32 [147] and is shown in appendix F. The result is shown in Fig. 4.22, here we

see the temperature of the system scaled by the excess energy t̃, and the scaled chemical

potentials for both electrons and holes (µ̃e, µ̃h). The figure also shows the experimental

region for probe delays corresponding to τ = 0.3ps→ 5ps. In this range the electrons

and holes should have had time to reach equilibrium and have not had sufficient time to

completely recombine. In this region the calculated values of the scaled temperature t̃

and chemical potentials µ̃e(h), averaged over the experimental region are found to be,

• 〈t〉 = 0.61

• 〈µ̃e〉 = -1.79

• 〈µ̃h〉 = -1.55

suggesting that we are in a region somewhere between the classical and quantum regimes,

starting, for low densities, in the classical regime and moving toward the quantum

regime as the electron (hole) concentration increases. To check this result further we

assume that we are operating in a purely classical regime and calculate the scattering

rate as a function of carrier concentration.

4.6 Rutherford Scattering

To understand the high scattering rate measured through experiment we look at the pre-

dicted scattering rate from classical Rutherford scattering. This calculation was first

performed for dense plasmas almost 80 years ago [148]. We use this estimation to fit

the experimental data for the probe delay region τ = 0.3ps→ 5ps. First we will discuss
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Figure 4.22: Scaled temperature t and chemical potential µ̃ as a function of scaled
Fermi-temperature tn. The solid lines are calculated for a typical crystalline silicon
material with ηe = 6 equivalent valleys in the conduction band and ηh = 2 equivalent
valleys in the valence band and with effective masses for electrons and holes me = 0.26
and mh = 0.32 [147]. Symbols represent the range of experimental data shortly follow-
ing optical excitation (0.3ps - 5ps) and averaged values over this range are presented
suggesting that the data is within the classical limit and edging toward the quantum
limit.

the assumptions and approximations required for this calculation.

According to Lifshitz [148] a classical non-degenerate plasma can be described using

Rutherford scattering. The transport scattering cross-section is found by integrating

over all scattering angles χ with a factor of (1− cosθ ) to find,

σt = πρ
2 lnΛ, (4.15)

The integral is truncated at large and small scattering angles due to it’s divergent nature

under these conditions. Where, for small angles, there is a cut off due to Debye shielding

(see appendix G). The minimum distance between particles, ρ , with velocity v is found

94



Chapter 4. Results & Discussion 95

by energy conservation, such that,

mv2

2
=

e2

ρ
, (4.16)

and the Coulomb logarithm, lnΛ, is a result of truncation of the integral and contains

information about screening. Using this information the transport cross-section is there-

fore,

σt =
4πe4

m2v4 lnΛ (4.17)

Recalling that nlσt = 1 and l = vτ the scattering rate is given by,

τ
−1 =

4πne4

m2v3 lnΛ (4.18)

which can be written using the method outlined in appendix G by,

τ
−1 = Γ =

1
3π1/2 ne

(
e2

4πε0

)2 4π

m1/2
e T 3/2

e

lnΛ. (4.19)

Fitting of Eq. 4.19 to the experimental data for our given time range (τ = 0.3ps

→ 5ps) over which the classical equation can be used ‘accurately’ provides a linear fit

whose gradient is a measure of the system temperature. Here we set the Coulomb log-

arithm, lnΛ, to unity, the consequences of this are discussed later. We find through the

fitting process an electronic system temperature (kb)Te' 0.3eV . This value corresponds

reasonably to the expected excess energy pumped into the system ∆ = (h̄ω −Eg) =

(1.55eV −1.1eV ) = 0.45eV . This provides some interesting observations about the be-

haviour of the electron system.

The first point to note is that in the classical limit (µ � 0) the distribution of elec-

trons conserves the average temperature T ∼ 0.3eV while the chemical potential is re-

duced to correspond to the decrease in carrier concentration. This suggests that as the

concentration of electrons decreases there is no preference for recombination for par-

ticles with higher energy. This means that energy per unit volume is decreasing but

average energy remains constant. The second point is illustrated by our assumption that

the Coulomb logarithm is equal to unity. For the argument (given in Sec. G.1.1) that the
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Figure 4.23: Experimentally measured scattering rate Γ against carrier concentration
Neh (symbols) provides a linear trend, fitting of Eq. G.22 (solid line) provides the tem-
perature of carriers over the range of probe delays, 0.3-5ps. This suggests that the
electron temperature stays the same and no preference is given to recombination of car-
riers with higher energies. Inset: Total energy within the nc-Si for probe delays between
0.3-5ps.

Coulomb logarithm is divergent for large impact parameter b i.e. for small scattering

angles. The Debye screening length, given by,

rD =

√
T ε0

4πne2 , (4.20)

is therefore the parameter that controls the Coulomb logarithm to be finite. In this

scenario Λ = − lnθmin, where θmin is the minimum possible scattering angle in which

scattering is still seen. i.e. smaller angles correspond to larger impact parameters in

which Coulomb scattering is not observed. The Debye radius should therefore be larger

than the scattering distance for this to be the case. We note that scattering can be a

quantum or classical event depending on the minimum distance that particles reach

during a scattering event. The product of the minimal distance and the momentum of

the particle is given as,

mvρ =
e2

2vε0
, (4.21)
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Scattering is classical, according to the Pauli exclusion principle, if,

e2

h̄v
� 1, (4.22)

therefore the minimum angle that scattering is possible is given by, θmin = e2/TrD� 1.

For quantum scattering,

e2

h̄v
� 1, (4.23)

the minimum scattering angle is given by, θmin =
h̄

mvrD
� 1. To understand the scattering

process occurring in the experiment performed, we can check the fraction,

e2

h̄v
≡
√

E0

T
, where, E0 =

me4

2h̄2 . (4.24)

In the case presented, where we set the Coulomb logarithm equal to unity, this fraction

is large and we should take the logarithm in the classical limit.

i.e. lnΛ = ln
TrD

e2 . (4.25)

However we find that for the temperature measured (T ∼ 0.3eV) the Coulomb logarithm

is small (lnΛ� 1). We should now look at the assumptions we have made to come to

this point. The parameter which informs us as to which regime we belong is given by

Eq. 4.24 and we may re-write this equation as follows,

e2

h̄v
=

v0

v
=

√
Eryd

T
. (4.26)

where Eryd = 13.6eV is the Rydberg energy. This parameter is indeed large for the

temperature measured in our experiment (corresponding to v = 108ms−1), suggesting

that we should use the classical limit of the Coulomb logarithm, given by Eq. 4.25.

Now we recall how this was derived. We estimate the scattering cross section to be,

σt = πρ
2
∫

dθ f (θ)(1− cosθ), f (θ) =
sinθ

4sin2(θ/2)+
(

ρ

rD

)2 . (4.27)
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For the case of no screening rD = ∞ the equation is logarithmically divergent at θ = 0.

For rD � ρ we have a finite but logarithmically large value lnrD/ρ � 1 and for a

well screened potential rD � ρ there is no special contribution from small angles i.e

the whole integral is a constant. We must therefore put lnΛ = 1 (see appendix H)

in the case that rd � ρ . The values retrieved from experiment provide ρ = 0.62nm

while rD = 0.16nm suggesting that putting the Coulomb logarithm to unity is indeed

the correct thing to do.
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Chapter 5

Summary & Conclusions

This work has predominantly shown the development and application of a set of novel

techniques to study semiconductor materials. This set of techniques is particularly use-

ful when studying opaque semiconductors as there is no need for transmission mea-

surements. All of the measurements utilise femtosecond pulses centred at 800nm with

a pulse duration of ∼50fs, providing information about the transient nature of the elec-

tron dynamics in these types of materials. Of particular interest is the ability to dis-

cern carrier dynamics in composite nano-structured materials. The most simple proce-

dure outlined is that of reflectometry, which has been successfully used to measure the

plasma frequency and scattering rate in a sample of nano-structured silicon embedded

in an amorphous silicon matrix. This was performed using a single fluence multiple-

incidence-angle approach [103] to minimise errors and corroborate results. Measure-

ments made, reveal a plasma frequency of ωp = 1.2+0.3
−0.2×1015s−1, similar to measure-

ments of other silicon-based materials under the same conditions [34]. A scattering rate

of Γ = 2+1.2
−1 × 1015s−1 is considerably higher than the majority of works under simi-

lar conditions. However it has been shown theoretically that scattering rates as fast as

this are indeed expected [149, 150]. Development of this technique by control of the

pumping fluence leads to further information about the optical parameters of the mate-

rial. Plotting the plasma frequency against pumping fluence finds a linear trend, fitting

of this trend provides information about the effective mass of carriers. For samples of

nc-Si:H we find meff = 0.17, very close to that of bulk c-Si (0.15).

The samples of nc-Si:H have proven interesting to study for many reasons, not least

because the carrier dynamics operate on very different characteristic time scales com-
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pared to their bulk counterparts. Nc-Si:H has found applications in many areas includ-

ing photovoltaics, optical switching and microelectronics. For these applications it is

crucial to understand how different phases of a composite material (such as nc-Si:H)

contribute to the overall carrier dynamics. We have developed a pump-probe scatter-

ing and reflectivity technique [113] capable of discerning the contribution of embedded

spheres from the host matrix. Experiments reveal a fast process of carrier decay within

the nano-crystals operating over a few picoseconds, τdec = 2.2±0.2ps, while recombi-

nation within the host matrix occurs on a much slower timescale, occurring over tens

of picoseconds, τrec = 22± 4ps. We propose that carriers, initially excited within the

nano-crystals, are transferred to the matrix within τtrans = 4.0±0.7ps. These measure-

ments are in reasonable agreement with timescales measured in bulk amorphous silicon

and other nc-Si samples.

We have further studied samples of nc-Si:H and SiNx using a novel time-resolved

rotating compensator ellipsometry apparatus. Although there have been a few attempts

at this type of measurement before, they have succumbed to errors with regard to mod-

elling of the materials or assumptions made about the measurement process [14, 151].

We have shown that our home-built ellipsometer is in very good agreement with com-

mercial ellipsometry equipment by comparing measurements made in the absence of

optical pumping with those from a Horiba Jobin-Yvon ellipsometer. This is achieved

by accurate calibration of all the components of our RCE apparatus (polariser, analyser

and compensator). Furthermore we have shown that the optical model created for the

multilayer samples of nc-Si:H is well defined and in good agreement (for film thick-

ness, composition of multiple phase layers and dielectric function dispersions) with

SEM, XRD and µ-Raman analysis of the sample. With a fully resolved (‘unperturbed’)

ellipsometry measurement at hand we have modelled the electron dynamics follow-

ing excitation under the Drude model approximation. This has revealed the transient

changes in plasma frequency and scattering rate over the first few picoseconds, after

this time our technique loses accuracy.

The measurements of plasma frequency and scattering rate have been used to show
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that, for samples of nc-Si:H, carrier-carrier scattering seems to be the likely process of

carrier interaction. While in samples of SiNx we have shown that, within the experi-

mental error, the scattering length stays relatively constant, suggesting collisions with

defects could be the dominant scattering mechanism. Although these measurements are

not conclusive. For samples of nc-Si:H we have modelled the carrier dynamics using

Fermi integrals. This allows us to ascertain whether the system should assume a clas-

sical or quantum electron distribution. This model provides the electron temperature

and chemical potential for a parabolic semiconductor material with known energy band

gap Eg, optical pumping with energy h̄ωeh, mass of electrons and holes and number

of degenerate points in the band structure, η . It was found that, for the carrier den-

sities measured through ellipsometry, the system should adopt a classical distribution

at low carrier densities and moves toward, but does not reach, the quantum regime for

the highest carrier densities measured. We therefore assume a classical distribution of

carriers is reached following excitation. Using this knowledge we model the scattering

dynamics through Rutherford scattering. We find a linear relation between scattering

rate and carrier concentration for probe delay times of 0.3→ 5ps. This leads to impor-

tant conclusions about the electron distribution in this time period. First that the electron

temperature is conserved over this time, with the total energy (and therefore chemical

potential) decreasing with the carrier concentration. And second, we estimate the mini-

mum distance between scattering particles ρ = 0.62nm and the Debye shielding radius

rD = 0.16nm, suggesting an unscreened potential for scattering events.

The recombination mechanism of carriers in nc-Si:H samples is inconclusive and

is left to speculation as to the true nature of this process. Fauchet et. al. note that

Auger recombination is possible [4], although they do not observe the expected delay

between carrier recombination and lattice heating. Similarly we have not (yet) mea-

sured the characteristic dependence of recombination rate with carrier concentration.

Fauchet also rules out sequential emission of phonons due to the long wavelength of

phonons expected and the many intermediate levels in the band structure required for

this process. Electron-hole recombination is also possible but has not been directly ob-

served to date. Further work is required to resolve this issue. We also note that it would
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be interesting to control the electron distribution within the band structure, the experi-

mental parameters required for this are not well understood. Many works have shown

that (following excitation) a Fermi-Dirac distribution of electrons is produced within

the band structure [12, 133, 150], while we describe a classical electron distribution.

Control of the photon energies used and well as the size and shape morphology of the

samples could lead to a better understanding of this process. Pump fluence dependency

should also be checked to see if Auger recombination processes dominate.
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Appendix A

Supplementary Material nc-Si:H

A Raman spectroscopy measurement on nc-Si:H reveals the fraction of nc-Si to α-Si.

For the samples under study there was found to be ∼ 30% nc-Si. X-ray diffraction

measurements reveal that the average size of the nc-Si grains to be 〈a〉= 6nm.

(a) (b)

Figure A.1: (a) A Raman spectroscopy measurement of nc-Si:H revealing a 30% frac-
tion of nc-Si. (b) X-ray diffraction measurements providing the average size of nc-Si
grains 〈6〉nm.
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Supplementary Material SiNx

Absorption spectra of SiNx samples reveals a band gap energy of 2.32eV. Scanning

electron microscopy measurements show that the SiNx layer is ∼ 440nm thick. Time

resolved photoluminescence measurements reveal the time scales of luminescence for

samples of GaAs and SiNx operating on the nanosecond timescale.
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(a) (b)

(c)

Figure B.1: (a) Absorption spectroscopy measurements revealing the band gap energy
of SiNx samples of 2.32eV. (b) SEM measurements provide the SiNx film layer thickness
of ∼ 440nm. (c) Time-resolved photoluminescence (TRPL) performed on samples of
GaAs and SiNx revealing characteristic operating timescales in the picosecond region.
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Appendix C

Ellipsometry Measurements
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Figure C.1: (a) Fit for ellipsometric angle Ψ, in samples of nc-Si:H, as a function of
both probing wavelength λ and probe delay τ (b) Simultaneous fitting of ellipsometric
angle ∆ for the same parameters.
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Figure C.2: Ellipsometric parameters of nc-Si:H, averaged over the probing band-
width as a function of the probe delay, revealing quite different characteristic operating
timescales for Ψ and ∆.

Figure C.1 shows the quality of fitting for spectroscopic ellipsometry measurements as
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a function of probe delay. 3D plots show a good fit as a function of the probing wave-

length and probe delay for sample of nc-Si:H. Fig. C.2: Averaged values of ellipsomet-

ric parameters Ψ & ∆ over all probing wavelengths. Revealing different timescales for

Ψ and ∆.

Fig. C.3 shows the real and imaginary changes of the dielectric function averaged over

all probing wavelengths as a function of the probe delay. The dielectric function is

plotted for probe delays up to 25ps.
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Figure C.3: Change in the real ∆ε ′/ε ′0 and imaginary ∆ε ′′/ε ′′0 components of the dielec-
tric function of nc-Si:H, averaged over all probing wavelengths, plotted as a function of
probe delay over 25ps following excitation.

Fig. C.4: Ellipsometric angles fitted as a a function of probing wavelength and probe

delay for samples of SiNx.

(a) (b)

Figure C.4: (a) Quality of fit for ellipsometric angle Ψ, in samples of SiNx as a function
of both probe wavelength and probe delay. (b) Simultaneous fit for ellipsometric angle
∆.

Fig. C.5: The change in ellispsometric angles for samples of SiNx averaged over all
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probing wavelengths.
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Figure C.5: Average change in Ψ and ∆, in SiNx, for probe delays up to 2.5ps.
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Appendix D

Derivation of RCE intensity

In the following derivation Mueller matrices are utilised to find the intensity detected

I in a typical RCE experiment with optical angles P = 45◦ and A = 0◦. For a system

defined as in Eq. 3.40.

Define the Stoke’s parameters in Mueller matrix form.




S0

S1

S2

S3




(D.1)

The Mueller matrices for rotation are;

R(β ) =




1 0 0 0

0 cos(2β ) sin(2β ) 0

0 −sin(2β ) cos(2β ) 0

0 0 0 1




(D.2)

Similarly, to rotate the matrix back.
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R(−β ) =




1 0 0 0

0 cos(2β ) −sin(2β ) 0

0 sin(2β ) cos(2β ) 0

0 0 0 1




(D.3)

For a polariser, P, the Muller matrix,

P =
1
2




1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0




(D.4)

For a compensator, C, with retardation δ ;

C =




1 0 0 0

0 1 0 0

0 0 cos(δ ) sin(δ )

0 0 −sin(δ ) cos(δ )




(D.5)

The matrix for a sample, S, with ellipsometric angles (ψ , ∆) is,

S = A




1 −cos(2ψ) 0 0

−cos(2ψ) 1 0 0

0 0 sin(2ψ)cos(∆) sin(2ψ)sin(∆)

0 0 −sin(2ψ)sin(∆) sin(2ψ)cos(∆)




(D.6)

where A =
rpr∗p+rsr∗s

2 (i.e. the incident intensity I0).

Putting equations D.1-D.6 into equation 3.40 along with the optical angles and δ = π/2

and input Stoke’s vector,
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In =




S0

S1

S2

S3



=




1

0

1

0




(D.7)

One finds the output intensity to be;

IOut =

[
A
2
+

A
2

sin(2C)cos(2C)cos(2ψ)− A
2

sin2(2C)sin(2ψ)cos(∆)+
A
2

cos(2C)sin(2ψ)sin(∆)
]

(D.8)

Using the following trigonometric identities and the ellipsometric definitions of the

Stoke’s parameters (Eqs. 3.34 & 3.39);

sin(x)cos(x) =
1
2

sin(2x) sin2(x) = 1
2(1− cos(2x)) (D.9)

The equation to relate detected intensity and the Stoke’s parameters is found;

Iout = I0(2−S1 sin(4C)−S2 +S2 cos(4C)−2S3 cos(2C)) (D.10)
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Appendix E

Deriving the Fermi Integrals

The following section is a summary of calculations of the Fermi integrals given by

Ashcroft & Mermin [152]

For a system in thermal equilibrium at temperature T , its properties are calculated by

averaging over all possible states of the system. We assign a weight P(E) to the prob-

ability that an electron occupies each state E with a Maxwellian distribution e−E/kbT

[152],

P(E) =
e−E/kbT

∑e−Eα/kbT
. (E.1)

Here Eα is the energy corresponding to the α th state. We see that the denominator is the

partition function, relating to the Helmholtz free energy F =U−T S, such that,

∑e−Eα/kbT = e−FN/kbT . (E.2)

Thus we are able to recast Eq. E.1 as,

P(E) = e−(E−FN)/kbT . (E.3)

Obeying the Pauli exclusion principle we fill the system one electron at a time, allowing

us to define which electron levels are filled, for a given energy E. When operating at

thermal equilibrium, the probability fN that a particular electron level i is filled, is given
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by the sum of all the independent probabilities that a system of N electrons can take

with an electron occupying that level (i),

fN = ∑PN(Eα). (E.4)

The probability that the electron level is unoccupied is just one minus this same func-

tion, as, according to Pauli exclusion principle, this is the only two options for the

system to be in,

fN = 1−∑PN(Eγ), (E.5)

where γ represents the number of states the system of electrons can be in, in which the

electron level is not filled. For a system of N + 1 electrons in which the extra electron

occupies the specific electron level i and all other electrons are left unaltered, we find

the state in which the electron level is unoccupied by removing the last electron. We

also note that any N electron state with no electron in level i can be constructed from

any N + 1 system with an electron in this level. These two states differ only by εi, the

energy to have an electron in state i. A system of N electrons with an unoccupied level

i is the same as a system of N +1 electrons with an electron in level i minus the energy

to have an electron in that level, which means we can re-write Eq. E.5 [152],

fN = 1−∑P(EN+1
α − εi). (E.6)

Using Eq. E.3 we find,

P(EN+1
α − εi) = e(εi−µ)/kbT PN+1(EN+1

α ), (E.7)

where µ = FN+1−FN is the chemical potential. Substitution into Eq. E.6 yields,

fN = 1− e(εi−µ)/kbT
∑PN+1(EN+1

α ). (E.8)

Thus we find through Eqs. E.4 & E.8 that,

fN = 1− e(εi−µ)/kbT fN+1. (E.9)
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This equation gives the relation between an N electron system with the electron level i

occupied for a given temperature T and a system of N+1 electrons under the same con-

ditions. As we consider electron systems of N ∼ 1021 there is effectively no difference

between fN and fN+1. Solving Eq. E.9 under this assumption provides fN ,

fN =
1

e(εi−µ)/kbT +1
. (E.10)

Given that the dependence of N is governed by the chemical potential (see relation for

µ) the number of electrons is given by the sum of probabilities for a given arrangement

of electrons f . As the total number of electrons is the sum over all levels, we find the

averaged number of electrons in each level,

N = ∑
i

f = ∑
i

1
e(εi−µ)/kbT +1

. (E.11)

This equation allows us to determine the number of carriers as a function of temperature

T and chemical potential µ .

The energies of the electron levels for a given wave vector~k are given by,

ε(~k) =
h̄2k2

2m
. (E.12)

In the independent electron approximation the internal energy of the system U is the

sum over all one-electron levels ε(~k) times the mean number of electrons in each level

f (ε(~k)), so,

U = 2∑
k

ε(~k) f (ε(~k)), (E.13)

where the constant 2 is due to the spin of electrons. The energy density u =U/V is then

given by,

u =
∫ d~k

4π3 ε(~k) f (ε(~k)), (E.14)
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Similarly the electron density is given by,

n =
∫ d~k

4π3 f (ε(~k)). (E.15)

Integrals of these types can be converted into spherical coordinates to retrieve the carrier

concentration,

n =
∫

∞

−∞

dεg(ε) f (ε) =
(m)3/2
√

2π2h̄3

∫
∞

−∞

dε
ε1/2

exp((ε−µ)/kbT )+1
, (E.16)

where g(ε) = m
h̄2

π2

√
2mε

h̄2 is the density of states such that g(ε)dε = (1/V ) × the num-

ber of 1-electron energy levels. For the moment we will neglect the slightly different

contribution for holes. We may also write down the energy for the system as (see Eq.

E.14),

u =
(h̄ω−Eg)

2
n =

∫
∞

−∞

dεg(ε) f (ε)ε

=
(m)3/2
√

2π2h̄3

∫
∞

−∞

dε
ε3/2

exp((ε−µ)/kbT )+1
, (E.17)

where ω is the pump frequency and Eg is the band gap of the sample for the correspond-

ing photon energies and we have taken all the non energy-dependent parameters outside

of the integral. The term (h̄ω−Eg)/2 is known as the excess energy ∆.
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Temperature & Chemical Potential

Calculation

Given Fermi integral equations,

n =
(2me)

3/2

2π2h̄3

∫
∞

0
dε

ε1/2

exp(β (ε−µe))+1
(F.1)

n =
(2mh)

3/2

2π2h̄3

∫
∞

0
dε

ε1/2

exp(β (ε−µh))+1
(F.2)

(h̄ω−Eg)n =
(2me)

3/2

2π2h̄3

∫
∞

0
dε

ε3/2

exp(β (ε−µe))+1
+

(2mh)
3/2

2π2h̄3

∫
∞

0
dε

ε3/2

exp(β (ε−µh))+1

(F.3)

Which can be re-scaled via x = βε , ye(h) = β µe(h), β̃ = h̄ωβ and ñ = n/Ce(h̄ω)3/2.

Where Ce = (2me)
3/2/2π2h̄3.

f1 = β̃
−3/2

∫
∞

0
dx

x1/2

exp(x− ye)+1
− ñ (F.4)

f2 = m∗β̃−3/2
∫

∞

0
dx

x1/2

exp(x− yh)+1
− ñ (F.5)

f3 = β̃
−5/2

∫
∞

0
dx

x3/2

exp(x− ye)+1
+m∗β̃−5/2

∫
∞

0
dx

x3/2

exp(x− yh)+1
− (ñ− Ẽñ) (F.6)
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Where m∗ = m3
h/m3

e and Ẽ = Eg/h̄ω . This is solved by iteration of,




ye

yh

β̃


=




ye

yh

β̃


−




∂ f1/∂ye ∂ f1/∂yh ∂ f1/∂ β̃

∂ f2/∂ye ∂ f2/∂yh ∂ f2/∂ β̃

∂ f3/∂ye ∂ f3/∂yh ∂ f3/∂ β̃




−1


f1

f2

f3


 (F.7)

Solutions for β̃ provide the temperature dependence T on n, while ye and yh yield the

chemical potential for electrons µe and holes µh respectively.
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Appendix G

Rutherford Scattering for

Electron-Electron Collisions

The following sections are a summary of calculations of Rutherford scattering between

electrons prepared for a lecture course in plasma physics at M.I.T by Prof. I. Hutchin-

son [153]

G.1 Binary collisions

Consider equation of motion for two particles,

m1r̈1 = F12; m2r̈2 = F21. (G.1)

We discuss interactions between particles using (only) the Coulomb force, such that;

F12 =
e2

4πε0

~r
r3 , (G.2)

where b is the impact parameter. The stationary target problem shown in Fig. G.1, is

solved by considering conservation of angular momentum,

mrr2
θ̇ = const. = mrbv1. (G.3)
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Figure G.1: Collision scheme for calculation of scattering rate between electrons in a
classical electron gas dominated by the Coulomb interaction. The projectile scatters
from a target at a distance described by the impact parameter, b, at an angle χ .

G.1.1 Cut-off Estimates

When the particles scatter they slow down. The two main routes for relaxation of a

particle moving through a background of scatters are,

• Energy loss

• Momentum Loss

Energy loss for electron-electron collisions provide;

dK
dl

= Kn2
m1m2

(m1 +m2)2 8πb90
2
[

ln |b|
]max

min
, (G.4)

where K is the kinetic energy of the particle, b90 is the impact parameter resulting in

a 90◦ scattering event. This equation diverges at both b→ 0 and b→ ∞ due to the

approximations used to derive the equations above.

• We are using small angle approximation for scattering events.

• We assume Coulomb force but do not include screening, which is essential for a

plasma.

The small angle approximation breaks down at b = b90, therefore we should truncate

the integral, i.e. ignore results for b < b90. For the second approximation we use Debye

shielding, which says that in reality the potential varies like,

φ ∝
exp −r

rD

r
. (G.5)
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So the integral should be cut off at b = rD. These corrections provide the solution,

dK
dl

= Kn2
m1m2

(m1 +m2)2 8πb90
2 ln |Λ|, (G.6)

where Λ is given by,

Λ =
λD

b90
=

(
ε0Te

ne2

)1/2/( e2

4πε0mrv2
1

)
, (G.7)

and lnΛ is known as the Coulomb logarithm. The energy loss collision frequency is

then given by,

τ
−1
K = v1

1
K

dK
dL

= n2v1
m1m2

(m1 +m2)2 8πb90
2 ln |Λ|. (G.8)

Using equations for b90 =
e2

4πε0
1

mrv2
r

and mr into this equation we find,

τ
−1
K = n2

e4

(4πε0)2
8π

m1m2v3
1

lnΛ. (G.9)

The energy loss cross section is given by (1/K)dK/dl = σKn2.

G.2 Thermal Electron-Electron Collisions

We must now consider projectiles and targets with not just one initial velocity but for

both species moving, obeying Maxwellian distributions. This requires some heuristic

calculations. The Maxwellian distribution is given by,

fe(~v) = ne

(
me

2πTe

)3/2

exp
(
−m(~v− ~vd)

2

2Te

)
. (G.10)

where vd is the drift velocity. The total momentum loss per unit volume,

−d p
dt

=
∫ ∫

~vr
m1m2

m1 +m2
vr4πb2

90 lnΛ f1 f2d3v1d3v2, (G.11)

where ~vr is the relative velocity ~v1−~v2 and b90 is given by,

b90 =
e2

4πε0

1
mrv2

r
, (G.12)
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where mr is the reduced mass. We now transform to the relative velocity frame. The

distribution functions f j are taken to be shifted Maxwellians in the CoM frame, where

j is an integer representing the particle.

f j = n j

(
m j

2πTe

)3/2

exp
(
−m j(~v j− ~vd)

2

2Te

)
, (G.13)

where m1~vd1 +m2~vd2 = 0 and we write down,

f1 f2 = n1n2

(
m1

2πTe

)3/2( m2

2πTe

)3/2

exp
(
−m1v2

1
2Te
− m2v2

2
2Te

)

×
{

1+
~v1m1 ~vd1

Te
+

~v2m2 ~vd2
Te

}
, (G.14)

to first order in ~vd . Converting to CoM co-ordinates 1.

f1 f2 = n1n2

(
M

2πTe

)3/2( mr

2πTe

)3/2

exp
(
−MV 2

2Te
− mrv2

r
2Te

)
×
{

1+
mr

T
~vd.~vr

}
,

(G.15)

where M = m1 +m2. It can be shown that d3v1d3v2 = d3vrd3V and we write,

−d~p
dt

=
∫ ∫

~vrmrvr4πb2
90 lnΛn1n2

(
M

2πTe

)3/2( mr

2πTe

)3/2

× exp
(
−MV 2

2Te
− mrv2

r
2Te

)
×
{

1+
mr

T
~vd.~vr

}
d3vrd3V . (G.16)

Since nothing apart from the exponential term depends on V we perform the integral to

1To evaluate the integral properly we make some simplifications

• Ignore variations of lnΛ with v and replace with thermal value Λ = λD/b90(v1)

• The drift velocity ~vd is small relative to the typical thermal velocity
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find,

−d~p
dt

=
∫
~vrmrvr4πb2

90 lnΛn1n2

(
M

2πTe

)3/2( mr

2πTe

)3/2

exp
(
−mrv2

r
2π

){
1+

mr

Te
~vd.~vr

}
d3vr

(G.17)

The integral is performed by making the substitution ~u =~v/ve and ~ud = ~vd/ve where

ve =
√

Te/me (see appendix H).

−d p
dt

= vdvrtmr4πb2
90(vrt) lnΛn1n2

∫ u2
x

u3 f̂0(vr)d3~vr, (G.18)

= vdvrtmr4πb2
90(vrt) lnΛn1n2

2
3(2π)3/2 , (G.19)

where vrt ≡ Te/mr, b90(vert) is the 90◦ impact parameter evaluated at vtr and f̂0 is the

normalised unshifted maxwellian. Which gives,

−d p
dt

=
2

3(2π)1/2

(
e2

4πε0

)2 4π

m2
r v3

rt
lnΛn1n2mrvd , (G.20)

This is the general result of momentum loss for two Maxwellian distributions drifting

through each other with small drift velocity. We then need to fix one species in order to

find the collision frequency, such that the momentum density, when species 2 is fixed,

is n1m1vd .

τ
−1
12 =

1
m1n1vd

d p
dt

=
2

3(2π)1/2 n2

(
e2

4πε0

)2 4π

m2
r v3

rt

lnΛ

m1
, (G.21)

for electron-electron collisions we see that mr = 1/2me and vrt =
√

Te/me to find,

τ
−1
ee =

1
3π1/2 ne

(
e2

4πε0

)2 4π

m1/2
e T 3/2

e

lnΛ. (G.22)

However, this equation should be considered carefully, because the electrons are indis-

tinguishable it is not straightforward to define two ‘drifting Maxwellian’ distributions

of the same particle. A more specific approach should be taken in order to rigorously

prove this.
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Useful Integrals

H.1 Spherical Integrals

To solve integral of type,

∫ ux

u3 f0d3v (H.1)

We use the spherical symmetry of the electron distribution f0

∫ u2
x

u3 f0d3v =
1
3

∫ u2
x +u2

y +u2
z

u3 f0d3v =
1
3

∫ u2
x

u3 f0d3v (H.2)

=
1
3

∫
α

0

ve

v
f04πv2dv (H.3)

=
2πve

3

∫
α

0
f02vdv (H.4)

=
2πve

3
ne

(2π)3/2v3
e

∫
α

0
exp
(
− v2

2v2
e

)
dv2 (H.5)

=
2πve

3
ne

(2π)3/22
=

2
3(2π)1/2 ne (H.6)
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H.2 Approximations of Integrals

For an integral of the type,

L(α) =
∫ 1

0

dx
x+a

(H.7)

When we estimate the order of magnitude for small values of the parameter α � 1 we

break the integral into two parts,

L(α)≈
∫

α

0

dx
α

+
∫ 1

α

dx
x

= 1+ ln
1
α
≈ ln

1
α

(H.8)

Using this approximation the integral is positive for α� 1 but if you look at the solution

at α = 1/2 we find a negative answer. But the integral is positive for all α! If we now

look at the integrals exact solution,

L(α) = ln
(

1+
1
α

)
(H.9)

Now when we look at the solution for α = 1/2 we have L = ln(3/2) ≈ 1, a positive

answer.
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