
Optimising Learning with Transferable
Prior Information

by

Funlade Tajudeen Sunmola

A THESIS SUBMITTED TO THE FACULTY OF SCIENCE OF THE UNIVERSITY OF BIRMINGHAM

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Intelligent Robotics Laboratory

School of Computer Science

University of Birmingham

Birmingham

United Kingdom

April 2012

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

This thesis addresses the problem of how to incorporate user knowledge about an environment,

or information acquired during previous learning in that environment or a similar one, to make future

learning more effective. The problem is tackled within the framework of learning from rewards

while acting in a Markov Decision Process (MDP). Being able to appropriately incorporate user

knowledge and prior experience into learning is useful because it should lead to better performance

during learning (the exploitation-exploration trade-off), and offer a better solution at the end of the

learning period. In this thesis, we show how to incorporate both user knowledge and prior experience

of the learning agent in an integrated framework for transfer learning.

In general, transfer learning exploits prior experience on different but related tasks to improve

performance while learning. It is conventional wisdom that when faced with new tasks, learners

seek to improve performance by transferring prior experience from related tasks. In this thesis, we

focus on the use of explicitly available prior information about the transition matrix of the MDP. We

work in a Bayesian setting and consider two main types of transferable information namely histori-

cal data and user knowledge expressed about constraints involving absolute and relative restrictions

on process dynamics. We study situations where there exists a pro-forma prior (a.k.a. recipient)

distribution formulated for a new task alongside pre-prior (a.k.a. donor) information that may in-

clude historical data and transition constraints. We present new algorithms for reasoning with the

transition constraints based on Monte Carlo sampling and maximum likelihood methods that include

sampling from truncated Dirichlet-distributed transition models and parameter inference for ordered

transition parameters.

In addition to showing how to revise beliefs about the MDP transition matrix using constraints

and prior knowledge, we also show how to use the resulting beliefs to control exploration. First

we extend an existing algorithm for the exploration-exploitation trade-off called Optimistic Model

Selection to work with constrained Dirichlet models. Second we present a new exploration control

algorithm that allows us to select optimistic models from these constrained densities whilst incorpo-

Page ii

rating historical data via power priors. Power priors use a relative precision parameter to control the

influence of historical data relative to new observations. One question is how to set this precision

parameter. We show how the constraints can be used to acquire a precision parameter. Essentially

the historical data is valued to the extent that it matches the user knowledge about constraints on the

transition matrix for the new task. The algorithm works by measuring the degree of match between

the historical data and imaginary data drawn from the user specified constraints.

We apply our algorithms to grid-world MDPs and to a model of a maintenance intervention task,

in order to show how user constraints might in practice be generated. To demonstrate the benefits

of historical information we also show how to use process templates to transfer information from

one environment to a second with related local process dynamics. We present results showing that

incorporating historical data and constraints on state transitions in uncertain environments, either

separately or collectively, can improve learning performance.

Page iii

Acknowledgements

This work could not have been undertaken without God’s blessing and support from a number of

people. I am deeply grateful to my thesis supervisor Dr Jeremy Wyatt, Reader in AI & Robotics and

Head of Intelligent Robotics (IR) Laboratory, University of Birmingham UK. I very much appreciate

his support, advice and inspiration throughout my research - working with Jeremy has been a real

pleasure.

I thank members of my thesis committee consisting of Professor Ela Claridge, Dr Ata Kaban

and my supervisor Jeremy for all of their time and effort during my thesis group meetings. The IR

Lab is a great place to work, study and enjoy academia in a friendly environment that also provides

administrative, financial, and logistic support.

My special thanks to my family - my wife Mrs Olabisi Olufunmilayo Sunmola, my children

Omolade and Olufadebi, nieces and nephews, brothers and sisters including Professor Adegbenga

& Mrs Temitope Sunmola, Professor Adewale & Professor Morenike Dipeolu, Dr Timothy & Mrs

Opeyemi Osadiya, Mrs Yetunde Oshodi, Dr Bolanle Abudu, Ms. Titilayo Oshodi, Mr Adeniran &

Mrs Mojisola Paul, Ms. Yejide Oluwakemi Oshodi, Dr Gbenga & Mrs Modupe Ojumu, Mr Babajide

& Mrs Yetunde Oyesoji Olaleye and also my wonderful friends including in the English Midlands

particularly Dr Adesegun & Dr Titilola Abudu, Dr Adedeji & Mrs Oludotun Okubadejo, Dr Olaide

& Mrs Mojisola Olaoye, Dr Olayiwola & Mrs Omolara Olawale and elsewhere, too numerous to list

here, for their encouragement.

Finally, I am indebted to my parents Chief Olaitan & Chief Olufadebi Sunmola for starting me

out in life with sound training and sponsorship to an excellent engineering school (ABU Zaria) for

my first degree in Civil Engineering, and for allowing me to realize my own potential. Their support

over the years has been priceless. My thanks also go to my father-in-law Chief Theophilus Oshodi.

This thesis is dedicated to my Parents. To God be the Glory.

Page iv

Outline of the Thesis

I: Background

Chapter 1: Introduction

Chapter 2: Markov Decision Tasks

Chapter 3: Capturing Uncertainty about the Task-Environment Model

II: Exploration Control & Model Selection

Chapter 4: Exploration Control through Model Selection

III: Transfer Methodology

Chapter 5: Approaches to Prior Information Transfer

Chapter 6: The Transfer Framework

IV: Transfer Techniques

Chapter 7: Reasoning with Constrained Transitions

Chapter 8: Accounting for Historical Data

Chapter 9: Leveraging with Process Templates

V: Conclusions

Chapter 10: Conclusions and Future Work

Page v

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Challenges of Learning . 4

1.1.2 Transferable Prior Information . 6

1.1.2.1 Possible Types of Transferable Prior Information 6

1.1.2.2 Model Transfer . 8

1.2 About this Thesis . 9

1.2.1 Problem and Approach of this Thesis . 9

1.2.2 Contributions . 10

1.2.3 Structure of the Thesis . 14

2 Markov Decision Tasks 16

2.1 Introduction . 16

2.2 The Framework of Markov Decision Theory . 17

2.2.1 Components of the Framework . 18

2.2.1.1 The Concepts of State, Transition & Markov Chain 18

2.2.1.2 Rewards . 22

2.2.2 Objective of the Markov Decision Task . 23

2.2.2.1 Return as a Measure of Cumulative Reward 24

2.2.2.2 Policies and Optimal Policies . 25

2.2.2.3 Value Functions . 26

2.3 Solving Markov Decision Tasks . 28

2.3.1 Planning in MDP . 29

2.3.1.1 Value Iteration . 29

2.3.1.2 Policy Iteration . 31

2.3.1.3 Linear Programming . 33

2.3.2 Learning in MDP . 34

2.3.2.1 Model-free Methods . 37

2.3.2.2 Model-based Methods . 47

2.4 Chapter Summary . 49

Page vi

CONTENTS

3 Capturing Uncertainty about the Task-Environment Model 50

3.1 Introduction . 50

3.2 Transition Uncertainty . 52

3.2.1 Common Descriptions for Modelling Transition Uncertainty 52

3.2.1.1 Polytopic Transition Models . 54

3.2.1.2 Probability Distribution over Possible Models 56

3.2.2 Estimating Transition Probabilities . 57

3.2.2.1 Dirichlet Distribution of Transition Models 58

3.2.2.2 Generating Samples of Transition Models 61

3.2.3 Credible Set of Transition Models . 62

3.2.4 Probabilistic Distance Measures . 66

3.3 Bayesian Learning with Uncertain Process Models 69

3.3.1 Bayesian Estimator of expected return . 69

3.4 Chapter Summary . 72

4 Exploration Control through Model Selection 73

4.1 Introduction . 73

4.2 The General Set up . 74

4.3 Optimistic Model Selection (OMS) . 77

4.3.1 The Main Loop of OMS . 78

4.3.2 Algorithms for Selecting Optimistic Models 79

4.4 Multi-objective Programming Approach . 82

4.4.1 Goal Programming (GP) . 83

4.4.2 Pre-emptive GP Approach to OMS . 85

4.5 Worked Examples . 86

4.6 Chapter Summary . 89

5 Approaches to Prior Information Transfer 90

5.1 Introduction . 90

5.2 Overview of Transfer Methods . 91

5.2.1 Naive Transfer . 91

5.2.2 Transfer Scaling, Discounting & Quality Adjustments 92

5.2.3 Bayesian Melding . 95

Page vii

5.3 A Note on Transfer Performance . 96

5.4 Chapter Summary . 97

6 The Transfer Framework 98

6.1 Introduction . 98

6.2 The Transfer Context . 99

6.2.1 Domain and Task . 99

6.2.2 Transferring Knowledge from Historical Data 100

6.2.2.1 A Simple Transfer Algorithm . 101

6.2.2.2 Experiment I: Grid World . 102

6.2.3 Transferring Knowledge from Experts about Transition Constraints 111

6.2.3.1 Constrained Prior Distributions 113

6.3 Revised Bayesian Estimation of Expected Return 113

6.4 Chapter Summary . 115

7 Reasoning with Constrained Transitions 116

7.1 Introduction . 116

7.2 Converting a Convex Set into Simple Bounds . 119

7.3 Probabilistic Inference in Constrained Transition Models 120

7.3.1 Truncated Dirichlet Distributions . 120

7.3.2 Sampling Truncated Dirichlet Distributions 121

7.3.2.1 Sampling Transition Models from Truncated Beta Distribution . . 121

7.3.2.2 Extending the Sampler to Truncated Dirichlet Distributions 122

7.3.3 Order Restrictions on Transition Probabilities 123

7.4 Constrained Optimistic Model Selection (COMS) 124

7.5 Experiment II: The Grid World with Transition Constraints 125

7.6 Experiment III: Maintenance Intervention Task . 129

7.7 Experiment IV: Additional Experiments . 132

7.8 Chapter Summary . 134

8 Accounting for Historical Data 135

8.1 Introduction . 135

8.2 Power Priors . 136

8.2.1 Power Priors for Process Models . 139

Page viii

CONTENTS

8.2.2 Acquiring the Precision Parameter . 141

8.3 Experiment V: Maintenance Intervention with Power Priors 142

8.3.1 Experiment Setup . 143

8.3.2 Results and Discussion . 145

8.4 Experiment VI: The Grid World with Power Priors 149

8.5 Chapter Summary . 152

9 Leveraging with Process Templates 154

9.1 Introduction . 154

9.2 Use of Templates in Reinforcement Learning . 155

9.3 Model Assumptions and Characteristics . 157

9.3.1 Configuration of Features in the MDP State Space 157

9.3.2 An Illustration using the Grid Domain . 158

9.4 Template-Based Transfer Algorithm . 159

9.5 Experiment VII: Transfer using Process Templates 163

9.5.1 Experiment Setup . 163

9.5.1.1 Template Provisioning . 163

9.5.1.2 Transfer to new Tasks . 164

9.5.2 Results and Discussion . 167

9.6 Chapter Summary . 170

10 Conclusions and Areas of Future Research 171

10.1 Conclusions . 171

10.2 Future Research . 173

Page ix

List of Algorithms

2.1 The Value Iteration Algorithm . 31
2.2 The Policy Iteration Algorithm . 32
2.3 An online algorithm for learning a policy and value function based on state values . . 38
2.4 An online learning algorithm for learning a policy and value function based on state-

action values . 39
2.5 Estimation of state values via temporal difference T D(0) method 41
2.6 An Actor Critic Algorithm . 44
2.7 The Q-Learning Algorithm . 45
2.8 The SARSA Learning Algorithm . 46
3.1 Credible Interval using F-Distribution Tables . 64
3.2 Credible Interval (CI) through Simple Monte Carlo 64
4.1 The Main Loop of the Optimistic Model Selection (OMS) Algorithm. Adapted from

Wyatt (2001). 79
4.2 Simple Optimistic Model Selection. Adapted from Wyatt (2001). 80
4.3 Full Optimistic Model Selection. Adapted from Wyatt (2001). 81
6.1 A simple transfer algorithm for combining pre-prior and pro-forma information . . . 102
7.1 The Main Loop of the Constrained Optimistic Model Selection (COMS) Algorithm. . 124
9.1 The Main Loop of the Template based Optimistic Model Selection (TOMS) Algorithm162

Page x

List of Figures

1.1 An illustration of Reinforcement Learning Framework 3

1.2 An example of Transition Constraints . 7

1.3 Bayesian Learning in Markov Decision Processes 11

1.4 A Framework for Optimising Learning with Transferrable Prior Information 12

2.1 A simple instance of the Agent Wellbeing task . 21

3.1 A simple instance of the agent wellbeing task with partially known transition prob-
ability matrix . 53

3.2 The simple instance of the agent wellbeing task with reduced transition uncertainty. . 55

3.3 Dirichlet distributions for the example transition models a) ~ma
i = (2,2,2) and b)

~ma
i = (14,46,10) having mean transition probabilities [0.3333,0.3333,0.3333] and

[0.2000,0.6571,0.1429] respectively. 60

3.4 Credible regions for the example transition models a) ~ma
i = (2,2,2) and b) ~ma

i =
(14,46,10) having mean transition probabilities (0.3333,0.3333,0.3333) and (0.2000,0.6571,0.1429)
respectively. 65

3.5 An illustration of the bounded distance measures between two Dirichlet distributions 68

4.1 Examples of transition models in the Wellbeing task 76

4.2 An example of Model Selection . 86

4.3 An example of Model Selection . 87

4.4 An example of Model Selection with Transition Constraints Illustrating the GP ap-
proach . 88

5.1 A typical model transfer problem . 91

6.1 Control Actions in the Grid World . 103

6.2 A 4×3 Grid World with High and Low Goal Cells. The black cell is an obstacle. . . 104

6.3 Transitions Under Successful Actions in the 4×3 Grid World 104

6.4 Admissible transitions under the North actions in cell (1,1). The agent can move to
cells (1,2),(2,1), or remain in (1,1) . 105

6.5 Optimal Policies for the Grid Task - Experiment I 109

6.6 Discounted Total Rewards over time for Experiment I-A: I-A-1, I-A-2. I-A-3 & I-A-4.110

6.7 Discounted Total Rewards over time for Experiment I-B: I-B-1, I-B-2, I-B-3, & I-B-4.110

6.8 Ordering for discounted cumulative reward for Experiments I-A and I-B 111

Page xi

7.1 A simple implementation of a Java function for sampling from a truncated Beta
distribution. 122

7.2 The 4×3 Grid World with Transition Constraints. 126

7.3 Discounted Total Rewards over time for Experiment II-2, II-3, II-4 & II-5. 127

7.4 Comparison of Results for Experiment II-2, II-3, II-4 & II-5. The Q Learning result
is from Experiment I-A-4 in Chapter six. 128

7.5 Ordering for methods in Experiment II based on the discounted cumulative reward
obtained. 128

7.6 A simplified MDP model of the intervention timing task. Transitions under watchful
waiting actions are shown as solid lines while those for intervene actions are shown
in broken lines. Not all possible transitions are shown in the figure. 129

7.7 Discounted Total Rewards (Costs) over time for Experiment III 131

7.8 Ordering for discounted cumulative reward for Experiments III 132

7.9 The 15×15 Grid World . 132

7.10 Discounted Total Rewards over time for Experiment IV 134

8.1 Plot of PDF versus precision parameter for power prior with historical data set to
[50, 15] and a Dirichlet distributed pro-forma prior with parameters [40, 60]. The
actual transition model for the task is assumed to be the p associated with each graph.
The precision parameter varies for each of the four transition models. 141

8.2 Discounted Total Rewards (costs) over time for Experiment V-A. Imaginary data
from the actual transition probabilities . 147

8.3 Discounted Total Rewards (costs) over time for Experiment V-B. Imaginary data
from transition constraints . 148

8.4 Partial dominance ordering for methods used in Experiment V at 95% level of sig-
nificance. 149

8.5 The 4×3 Grid World with Transition Constraints. 149

8.6 Discounted Total Rewards over time for Experiment VI. 151

8.7 Partial dominance ordering for methods used in Experiment VI at 95% level of sig-
nificance. 152

9.1 A simple 5×5 grid with five occupied (obstacle) cells 158

9.2 Local templates in the grid domain . 161

9.3 The 5×5 grid showing correspondence of templates to cell configurations (Indexes
in Table 9.1.) . 161

9.4 Instances of the baby maze task used for template provisioning 164

9.5 A Six Room Maze in a grid domain - a) The maze and b) associated templates 164

Page xii

LIST OF FIGURES

9.6 A G-Maze in a grid domain - a) The maze and b) associated templates 165

9.7 Optimal policies for the Six Room Maze, G-Grid Maze and D-Grid Maze Tasks . . . 166

9.8 Results for the Six-Room Maze Task . 168

9.9 Comparison of Results for the Six-Room Maze Task 168

9.10 Results for the G-Grid Task . 169

9.11 Comparison of Results for the G-Grid Task . 169

Page xiii

List of Tables

2.1 Model-based versus Model-free Methods . 37

3.1 Some Properties of the Dirichlet Distribution . 59

6.1 Set up for Experiment I-A in a 4× 3 grid world with 0.9 probability of successful
action . 108

6.2 Set up for Experiment I-B in a 4× 3 grid world with 0.5 probability of successful
action . 108

7.1 Set up for Experiment II in a 4×3 grid world with 0.9 probability of successful action126

7.2 Summary of the Set up for Experiment III in the Intervention Timing Doman (ITD) . 131

7.3 Set up for Experiment IV in a 15×15 grid world with 0.94 probability of successful
action . 133

8.1 Summary of the Set up for Experiment V in the Intervention Timing Domain (ITD) . 145

8.2 The power prior precision parameters acquired in Experiments V-A-4 & V-B-4. . . . 146

8.3 Set up for Experiment VI. 150

9.1 Bit Encoding and Indexing of the Templates . 160

9.2 Setup for Experiment VII-A in the template-based six-room maze 165

9.3 Setup for Experiment VII-B in the template-based G maze 165

Page xiv

1
Introduction

This thesis explores approaches to learning in sequential decision processes when opportunities exist

for exploiting prior information from diverse sources. In particular, the thesis is geared towards en-

dowing agents with ability to autonomously recombine prior information from separate and possibly

diverse sources in order to help them learn more quickly and effectively on a new task in unknown

or partially known environments. A primary motivation is to reduce the total number of data, re-

sources and learning steps needed to establish the models of the new process necessary to find an

optimal or near optimal way of behaving. This chapter introduces the research that lead to this

thesis, summarises the problem and approach of the thesis, the thesis contributions and its structure.

1.1 Background

Many real world tasks are sequential in nature and involve decisions under uncertainty, where actions

do not entail certain outcomes. The outcomes are often partly random and partly under the control

of the decision maker (i.e. an ‘agent’). Examples include a robot navigating through hospital wards,

attending to patients in emergencies, deciding on a sequence of actions to take, and making up its

mind on where and when to dock. The sequential nature of the tasks offers an opportunity to use

accumulating experience to make advantageous and valuable decisions as learning progresses. At

the heart of many computational techniques used for accomplishing sequential decision making lie

the closely related frameworks of Markov Decision Process (MDP) and Reinforcement Learning

Page 1

Chapter 1: Introduction

(RL).

An MDP is a stochastic control process characterized by a set of states that can be perceived

exactly, actions, and a probabilistic transition function that specifies the probabilities of moving

from one state to the next. In MDPs after each transition the system moves into a new state, in which

one can choose an action, which may incur an immediate reward (i.e. revenue or cost) and which,

in addition, affects the next state transition. Essentially, the process is Markovian in the sense that,

the outcome of applying an action to a state depends only on the current state and the current action.

This means that if the current state of the MDP at time t is known, transitions to a new state at the

next time step (t +1) are independent of all previous states.

The Markov framework (of which MDPs are a part) is rich in capturing the essence of purposeful

activity in a wide variety of tasks and can be quite expressive, as demonstrated by structured for-

malisms such as factored (Boutilier, Dean & Hanks 1999, Boutilier, Dearden & Goldszmidt 2000,

Guestrin, Patrascu & Schuurmans 2002) and relational (Dzeroski, De Raedt & Driessens 2001)

MDPs. Increasingly, the framework is finding considerable popularity in artificial intelligence most

especially machine learning and sequential decision making with applications in a variety of ar-

eas, including engineering, economics, management and medicine (White 1985, White 1988, White

1993, Feinberg & Shwartz 2002).

Solving a known MDP, i.e. one in which transition and reward functions are available directly to

the agent, translates simply to finding an optimal policy such that the expected value (such as total

discounted reward) will be maximized. Generally, a policy, optimal or not, is a rule that specifies

for each state how to choose an action given a state. For example, a policy in the hospital robot we

mentioned earlier could be specified as follows: if robot is idle, has low fuel and is positioned near

a docking station then dock. Executing the dock action could, with a probability, change the robot

state to one in which the robot is switched off, still has low fuel and is docked in the docking station.

On transition to the new state, the robot may be rewarded for not wasting fuel given that it is idle.

Unfortunately, the transition dynamics required for the MDP are rarely known precisely in prac-

Page 2

1.1. BACKGROUND

tical applications. Whilst MDPs underlying real world tasks may be fully observable, they are often

characterized by non-stationarity in the world, and knowledge of the actual transition probabilities

and reward functions that has limited precision. For tasks involving MDPs with unknown or par-

tially known transition and/or reward functions, the problem becomes one of reinforcement learning

(Sutton & Barto 1998).

Reinforcement learning is the problem faced by an agent that must learn behaviour through either

systematic or trial-and-error interactions with an environment (Kaelbling, Littman & Moore 1996,

Wyatt 2002). As illustrated in Figure 1.1, an agent learning from reinforcement would perform ac-

tions in states, observe transitions and rewards, and use the accrued experience to revise value and

policy estimates. Solving an unknown or partially known MDP, via reinforcement learning, may

1. The agent uses an appropriate action selection method to choose an action to perform based
upon its current value and policy estimates.

2. The agent acquires experience by observing the effects of its action in the task environment.

3. The agent uses the experience it acquires to revise its value estimates and update its policy.

Figure 1.1: An illustration of Reinforcement Learning Framework

be tackled by first inferring a model of the process to determine the unknown transition and reward

functions and then acting using the model. An alternative is to follow a direct reinforcement learning

approach that relies on an ability to solve the underlying Markov decision process without comput-

ing transition probabilities. The two approaches differ fundamentally - the former is model-based

while the latter is model-free. Model based reinforcement learning approaches are advantageous in

Page 3

Chapter 1: Introduction

domains where real-world actions are expensive and computation time is relatively cheap.

For several decades, researchers have studied techniques for inferring process models and suc-

cess have been recorded, most notably and recently, in new algorithms for dealing with large state

spaces with inherent structure (Boutilier et al. 1999). While progress in modelling stochastic pro-

cesses has been considerable, it has also exposed a number of challenging and complementary prob-

lems one of which centres on how to take full advantage of useful information about known, pre-

viously solved, tasks in order to improve performance on new tasks in unknown environments.

This particular challenge, often generally referred to as ‘Transfer of Learning’ turns out to be quite

formidable for MDPs, especially in unknown or partially known task environments.

The goal of the research documented in this thesis is to extend the study of MDPs to encompass

transfer of learning. Specifically we study approaches to learning process models for MDP-based

tasks in unknown environments when opportunities exist for exploiting prior information from di-

verse sources. Beyond studying whether learners can transfer what they have learnt from one task

to another, we also explore the techniques underlying how such transfer takes place. This chapter

contains an introduction to the thesis. It covers the motivation for the research, a statement of the

research problem and solution approach, thesis contributions and an outline of the thesis structure.

In the next two sections, we explain the challenges of learning a new task and introduce a way of

addressing the challenges.

1.1.1 Challenges of Learning

Learning new tasks in unknown environments can be quite challenging. Learning, in this sense,

refers to changes to the decision maker’s perception and motor skills based on their experience and

interaction with their environment leading to improvements in their expected future performance.

There are multiple impediments including the obvious ones such as barriers to learning imposed by

poor quality models and inability to make inferences about the dynamics of an unknown environment

until enough data is acquired over time through interactions. Reinforcement learners typically face

Page 4

1.1. BACKGROUND

the following challenges.

Exploration-Exploitation tradeoffs: the learner needs to decide actions to perform while max-

imising current value and simultaneously seeking to benefit appropriately from learning op-

portunities. The agent must balance exploitation of the knowledge it already has with explo-

ration in the hopes of learning something or discovering new knowledge that might lead to

better performance in the future.

Bellman’s curse of dimensionality: many interesting environments in which agents may perform

do display structure that should allow them to model and reason in a compact way. Using

structure allows agents to exploit prior knowledge about the regularity of the world. For

example, knowing that the effect of actions in two or more different states are similar may

allow one to make simultaneous inference about behaviour in those states. Enumerated state

MDP approaches do not account for structure and as the number of domain variables grows the

number of states increases exponentially. This phenomenon is known as Bellman’s curse of

dimensionality (Bellman 1957). Through efficient aggregation of domain variables, structure

provides opportunities to dampen the curse of dimensionality.

Incorporating user and/or designer knowledge: when user and/or designer knowledge on rewards,

policy, values and transition functions are available to the agent they should be incorporated

into learning. A potential drawback of MDPs and reinforcement learning is their inability to

easily incorporate user and/or designer knowledge into an agent’s learning algorithm in order

to improve performance.

Clearly, agents require the ability to deal with these three challenges simultaneously to allow them

to systematically develop their knowledge of unknown environments and productively reuse their

experiences for new tasks. In our world, such capabilities matter immensely – it is a fundamental

and fascinating aspect of human learning. No one would seriously think of trying to solve any

problem in everyday life without bringing to bear their prior experiences and, equally importantly,

those of others.

Page 5

Chapter 1: Introduction

1.1.2 Transferable Prior Information

The previous section alludes to one of the most important premise for success in life which is the

fundamental idea that when learning to accomplish a new task the learner should take account of

all he/she already knows in order to decide the next course of action. This includes both building

upon his/her prior learning and exploiting strength borrowed from the experiences of others. The

underpinning philosophy is that new knowledge builds on the old and can be directed to positively

influence performance. As the saying often goes ‘one cannot learn anything unless one almost knows

it already’ (Winston 1984). For us, in this thesis, this philosophical saying influences our approach

to two important and significantly intertwined subjects: a) the integration of rich and diverse sources

of prior information into learning processes, and b) model transfer – the significance of which cannot

be over-emphasised.

1.1.2.1 Possible Types of Transferable Prior Information

In realistic decision making tasks, there often is access to transferable (i.e. explicitly available) prior

information that is relevant to the task at hand and exploiting such information wisely can lead to

improved performance. The efficient use of prior information is seldom trivial and it is one of the

main differences between humans and machines. The principal issues involve: a) the striking of

a balance between the type and amount of built in versus learned information, and b) an ability to

harness prior information emerging from diverse sources. There is in addition the paradoxical nature

of prior knowledge to contend with, that is, inaccurate knowledge hinders development, and lack of

it makes progress impossible or inefficient (Pintrich, Marx & Boyle 1993).

Machine learning has emphasised the importance of prior information, with an understanding

that the incorporation of (implicit or explicit) priors is fundamental to any learning situation where

we have a hope of being successful. This understanding motivates the development of learning sys-

tems which capitalise efficiently on pieces of prior information. The importance of prior knowledge

in machine learning is summarised in the much acclaimed no free lunch theorem. Loosely, the no

Page 6

1.1. BACKGROUND

free lunch theorem states that all search algorithms have the same average performance over all prob-

lems, and thus implies that to gain in performance on a certain application one must use a specialized

algorithm that includes some prior knowledge about the problem (Wolpert & Macready 1997).

Knowledge comes in many forms. For example, we could be provided with prior knowledge

about: a) relevance of certain other variables that can help us ignore certain variables when building

our model, b) preferences such as constraints on model parameters that can both guide our search

over possible models and speed up inference, and c) uncertainties and lack of accuracy of our models.

These knowledge forms often come from diverse sources that can include:

Historical Data: from previous tasks is available when there is access to recorded experiences.

When such information is available, it is natural to incorporate it into learning process of a

new task by quantifying the information with appropriate prior distribution.

Constraints (Absolute or Relative): that are expressions of conditions to be satisfied or hypothe-

ses regarding aspects of a task environment. The expressions are usually established on

the basis of physical, theoretical, customary and economic considerations, amongst others.

They convey a degree of determinism in uncertain task environments. For example, con-

sider the hospital robot we mentioned earlier and assume that the robot’s environment is

characterised by a model of system dynamics we illustrate in Figure 1.2. Reasoning with

Transition constraints:

0.87≤ pdock
1,3 ≤ 0.97; i.e. pdock

1,3 = 0.92±0.05

pdock
1,3 ≥ 10.0pdock

1,2 ≥ pdock
1,1

pdock
1,1 = 0.07

0.0≤ pdock
1,2 ≤ 1.0

pdock
1,1 + pdock

1,2 + pdock
1,3 = 1.0

Figure 1.2: An example of Transition Constraints

Page 7

Chapter 1: Introduction

the transition constraints specified by the model can help simplify inferences and sometimes

permit exact deductions. In the example, we can reasonably infer that 0.007 ≤ pdock
1,2 ≤ 0.06,

0.87≤ pdock
1,3 ≤ 0.923 with bounds on pdock

1,2 significantly tighter in comparison to the conven-

tional [0,1] probability bound we would ordinarily have assumed.

The availability of transferable prior information should encourage the learner to value and har-

ness the differences in the information set, drawing upon the widest possible range of views and

experiences, to improve learning performance. This can be accomplished through model transfer.

1.1.2.2 Model Transfer

Model transfer concerns the ability to learn more quickly and develop a deeper understanding of the

task environment by bringing some knowledge or skills from models of related tasks. Model transfer

provides an alternative to undertaking complete data collection and model development in every task

instance. This helps an agent to acquire new views on a task by looking at the task from a different

approach, which strengthens our understanding of the task. Not only do such capabilities help speed

up decision making processes they also provide solid basis for effective decisions. Model transfer

provides a convenient approach to the problem of incorporating parameter domain knowledge into

model estimation steps. A primary motivation for model transfer is that it helps in reducing the total

number of data, resources and learning steps needed to establish the models of related processes.

Model transfer also facilitates the use of prior distributions formulated for simpler, economical, and

more easily understood models to modify the prior distribution of a more complex model (Neal

2001).

Model transfer can be thought of as transfer learning in the sense that it leverages learned knowl-

edge in one context to enhance learning in different contexts and thus establish a channel between

previous isolated learned tasks. A variety of model transfer studies have been reported including in

engineering (Schaible 1999, Karasmaa 2003), statistical analysis and modelling (Koppelman, Kuah

& Wilmot 1985, Neal 2001). Model transfer in reinforcement learning is a much more recent subject

Page 8

1.2. ABOUT THIS THESIS

and its conspicuous absence in literature is posited by Price (2003) in his study of imitation in rein-

forcement learning domains. Transfer learning research in MDPs include, for example, Singh (1991)

on transfer across composition of sequential tasks, Dixon, Malak & Khosla (2000) on incorporat-

ing prior knowledge and previously learned information into reinforcement learning agents, Tanaka

& Yamamura (2003), Wilson, Fern, Ray & Tadepalli (2007) on multitask reinforcement learning,

Sunmola & Wyatt (2006) on model transfer in Markov decision processes using parameter matching

techniques, Taylor (2008) on autonomous inter-task transfer in reinforcement learning, Taylor, Jong

& Stone (2008) on transferring of instances in model based reinforcement learning, Lazaric, Restelli

& Bonarini (2008), Lazaric (2008) on the transfer of samples in batch reinforcement learning, Torrey

(2009) on relational transfer based largely on advice taking, Castro (2011) on the use of bisimulation

for policy transfer in MDPs, and a survey of publications in the subject area (Taylor & Stone 2009).

1.2 About this Thesis

In this section we informally describe the problem of the thesis and describe the hypothesis we

explore in this thesis. In addition we present the thesis contributions and its structure.

1.2.1 Problem and Approach of this Thesis

We informally describe the problem of this thesis as follows. Our agent has knowledge of transitions

for a set of related tasks. The agent is presented with a new task and a new reward function but do not

yet have a policy and a model for that task. The problem is to transfer relevant information from the

models of the previous tasks to help improve its performance on the new task in comparison to learn-

ing the new task from scratch. We focus in this thesis on transition knowledge and consider that the

transition knowledge from previous tasks is available in two main forms namely historical data and

constraints involving absolute and relative restrictions on process dynamics. We consider situations

where there exists a pro-forma prior (a.k.a. recipient) distribution formulated for a new task along-

side pre-prior (a.k.a. donor) information that may include historical data and transition constraints

Page 9

Chapter 1: Introduction

derived from related tasks. We make a simplifying assumption that the transition constraints are

known and consistent with the new task environment. What we do not know is how to appropriately

reason with the transition constraints, the historical data and the agent’s pro-forma prior information

in order to optimise learning performance on a new task. The following characterises the thesis.

• We introduce inferential bias into the learner. We focus primarily on an ‘Optimistic’ agent that

uses a principle of maximum expected utility but with biases in its probabilistic estimates of

transitions.

• We utilise a variety of types of prior knowledge available to the agent, and

• We use a Bayesian paradigm for information transfer.

In integrating various sources of information we adopt the standard Bayesian methodology for se-

quential decision making, Figure 1.3, shows how to incorporate prior information about transitions

into reinforcement learning. The Bayesian approach arises naturally when information is available a

priori for planning and estimation. The Bayesian approach has several advantages over other meth-

ods. First, it allows natural incorporation of priors over transition and reward parameters. Second,

it provides an elegant solution to the exploration/exploitation problem arising from action selection

especially in structured domains. A downside however is that the Bayesian solution to the problem

is intractable because it involves dynamic programming over a tree of information states. As a re-

sult, approximate solutions have been popular due largely to the availability of fast computing and

advance in stochastic sampling algorithms e.g. Dearden (2000), Strens (2000),Wyatt (2001),Castro

& Precup (2007), and Asmuth & Littman (2011).

1.2.2 Contributions

The research situates model transfer in a Bayesian framework for learning Markov decision tasks

leading to the transfer learning methodology we propose and study in this thesis. The methodology

is illustrated in Figure 1.4.

Page 10

1.2. ABOUT THIS THESIS

1. The agent uses an appropriate action selection method to choose an action to perform based
upon its current value and policy estimates.

2. The agent acquires experience by observing the effects of its action in the task environment.

3. The agent uses the experience it acquires to revise its value estimates and update policy.

4. The agent revises its beliefs about transition probability and rewards based on its prior in-
formation and experience.

Figure 1.3: Bayesian Learning in Markov Decision Processes

Based on the framework of Figure 1.4 we explore the following hypotheses:

1. Extending power prior analysis to Markov chains allows learners to incorporate historical

information in a sensible way. Power priors provide a useful class of informative priors for

Bayesian inference. This leads to better performance on some new tasks while learning (less

regret).

2. Incorporating absolute constraints on state transitions in uncertain Markov decision process

environments can improve performance.

3. Incorporating relative constraints on state transitions in uncertain environments modelled as

Markov decision processes can improve performance.

4. Integrating historical data with transition constraints improves learning performance still fur-

ther.

Page 11

Chapter 1: Introduction

1. The agent uses an appropriate action selection method to choose an action to perform based
upon its current value and policy estimates.

2. The agent acquires experience by observing the effects of its action in the task environment.

3. The agent uses the experience it acquires to revise its value estimates and update policy.

4. The agent revises its beliefs about transition probability and rewards based on its quantifica-
tion of prior information and experience.

5. Information from the task population and their models are transferred to the new task and
added to knowledge base.

6. Information may flow between the new task environment and the knowledge base.

Figure 1.4: A Framework for Optimising Learning with Transferrable Prior Information

leading to the following contributions of this thesis:

1. We present a Bayesian methodology for incorporating transferable prior information into steps

for learning Markov decision tasks. We work in a Bayesian setting and consider two main

types of transferable information namely historical data and user knowledge expressed about

constraints involving absolute and relative restrictions on process dynamics. We study sit-

uations where there exists a pro-forma prior (a.k.a. recipient) distribution formulated for a

new task alongside pre-prior (a.k.a. donor) information that may include historical data and

Page 12

1.2. ABOUT THIS THESIS

transition constraints.

2. We present new algorithms for reasoning with the transition constraints based on Monte Carlo

sampling and maximum likelihood methods that include sampling from truncated Dirichlet-

distributed transition models and parameter inference for ordered transition parameters.

3. In addition to showing how to revise beliefs about the MDP transition matrix using constraints

and prior knowledge, we also show how to use the resulting beliefs to control exploration.

• First we extend an existing algorithm for the exploration-exploitation trade-off called

Optimistic Model Selection (OMS) to work with constrained Dirichlet models. We de-

scribe how OMS can be formulated as a lexicographic goal program that allows us to

straightforwardly incorporate a variety of transition constraints into the model selection

steps.

• Second we present a new exploration control algorithm that allows us to select optimistic

models from these constrained densities whilst incorporating historical data via power

priors. Power priors use a relative precision parameter to control the influence of histori-

cal data relative to new observations. One question is how to set the precision parameter

required in power prior analysis. We show how the constraints can be used to acquire a

precision parameter. Essentially the historical data is valued to the extent that it matches

the user knowledge about constraints on the transition matrix for the new task. The algo-

rithm works by measuring the degree of match between the historical data and imaginary

data drawn from the user specified constraints.

4. We apply our algorithms to grid-world MDPs and to a model of a maintenance intervention

task, in order to show how user constraints might in practice be generated. To demonstrate

the benefits of historical information we also show how to use process templates to transfer

information from one environment to a second with related local process dynamics.

Page 13

Chapter 1: Introduction

1.2.3 Structure of the Thesis

The thesis is structured into five parts - Research background, Exploration Control and Model Se-

lection, Transfer Methodology, Transfer Techniques, and Conclusions.

Part one contains three chapters – one to three – consisting of the concepts and background

material that constitute the foundation we build upon in subsequent chapters of the thesis. This

chapter, i.e. chapter one, contains an introduction to the thesis. In chapter two we describe the

framework of Markov decision processes and look at techniques for solving Markov Decision tasks

when there is a complete model of the task environment. The chapter also describe methods of

learning how to solve Markov decision tasks when a complete model of the task environment is not

available. In chapter three, we look more closely at the issue of uncertainty in system dynamics and

describe Bayesian approaches to learning MDPs in uncertain environments.

Part two consists of one chapter - four - that presents procedures we use in this thesis for se-

lecting models in Bayes adaptive Markov decision processes. The selected model is used as a ve-

hicle for explaining and predicting observations, estimating value functions, controlling exploration

and deciding how to behave. We describe in the chapter an existing algorithm for the exploration-

exploitation trade-off called Optimistic Model Selection (Wyatt 2001) and describe how optimistic

model selection can be formulated as a lexicographic goal program to allow it to be extended to

handle constraints on transition probability.

Part three consists of two chapters – five and six – with a focus on the methodology of transfer-

ring prior information from previous tasks to new Markov decision tasks. In chapter five we review

existing approaches to prior information transfer. In the context of model transfer, we review proba-

bilistic expressions that underpin the transfer approaches we adopted in the thesis. Next, in chapter

six, we present our transfer framework. We described in the chapter the transfer context i.e. the do-

main, task, and specific types of the transferable prior information and explain how we incorporate

the transferable prior information into Bayesian steps for estimating expected returns.

Part four consists of three chapters – seven, eight and nine – which, in addition to chapter four,

Page 14

1.2. ABOUT THIS THESIS

represent the main contributions of this thesis. In chapter seven we turn to the problem of reasoning

with transition constraints and describe constrained Bayesian inference methods for accomplishing

this. We also present in the chapter empirical results that support our hypotheses that constraints on

state transitions in uncertain environments can improve performance. In chapter eight we describe

power priors as a means of discounting historical information in Markov chains. In the chapter,

we focus on the use of historical data from previous tasks in the construction of prior distributions

for a new Markov decision task. The construction is accomplished through power prior Bayesian

analysis. We start by describing the basics of power prior distributions. We then describe how power

priors can be used to construct priors for transition models whilst incorporating historical data. The

problem that we attend to in chapter nine is of a slightly different nature. We assume that a reference

pattern (template) from donor models of source tasks is available and the agent have to decide how

best to use the template in leveraging learning performance on a new target task.

The thesis concludes in part five - chapter ten - with a summary of the research and the conclu-

sions drawn. In addition the chapter contains a list of areas of future work.

Page 15

2
Markov Decision Tasks

In this chapter we describe Markov decision process (MDP), a powerful framework for controlling

systems that evolve in a stochastic way. We first introduce the framework of Markov decision theory

and then look at dynamic programming techniques for solving Markov decision tasks. This applies

when we have a complete MDP model of the task. Following this we then consider learning how to

solve Markov decision tasks when a complete model of the MDP is not available. In that case we

have to either learn without maintaining a model or attempt to build a model while learning. The

concepts and background introduced here will constitute the foundations that we build upon in all

the subsequent chapters.

2.1 Introduction

Let us begin this chapter by considering an example decision task involving an agent whose well-

being may deteriorate over time in an uncertain environment. Reward is accrued on the basis of the

agent’s state of wellbeing. The agent can select actions that could improve its wellbeing, albeit at

some cost. The agent can perfectly sense its environment and fully observe the effects of its actions.

Sometimes its actions fail, could lead to undesired outcomes or unexpected results. This example,

which we refer to as the ‘agent wellbeing task’ is a stochastic process i.e. a sequence of random

events governed by a set of probability distributions rather than being deterministic. As we shall see

in this chapter, the task can be framed as a Markov decision process (MDP).

Page 16

2.2. THE FRAMEWORK OF MARKOV DECISION THEORY

MDPs constitute a powerful framework for representing (and thus reasoning about and con-

trolling) systems that evolve in a stochastic way. It is well suited for the robot wellbeing task we

described above. MDPs provide the theoretical foundations for sequential decision-making in com-

pletely observable environments. An MDP specifies an environment and task. The problem in an

MDP is to find an optimal policy (or way of behaving) and there exist a variety of known solution

algorithms for this problem.

MDPs were first introduced in 1957 by Richard Bellman as a variant of his more general ‘dy-

namic programming’ theory of optimal control, itself based on work by Hamilton and Jacobi in the

1800s (Bellman 1957, Bellman 1961, Sutton & Barto 1998). Since its invention, MDP have been

applied in economics, operations research, control systems design, and artificial intelligence (AI)

among other areas. In AI research, MDP theory has gained favour as a model of rational decision

making in well-defined circumstances where an intelligent agent’s outcome preferences can be ex-

pressed as a trajectory utility function (Russell & Norvig 2003). In unknown task environments,

MDPs can sometimes be combined with reinforcement learning techniques to avoid the need to

directly specify reward functions and process dynamics.

Russell & Norvig (2003) give a good introduction to MDPs from an AI point of view. Other

popular references include Bertsekas (1987) and Puterman (2005). Much of the content of this

chapter is a recapitulation of work in the operations research and control engineering literature e.g.

(Hernández-Lerma & Lasserre 1991, Sennott 1999, Feinberg & Shwartz 2002, Heyman & Sobel

2003), and in the reinforcement-learning literature e.g. (Watkins 1989, Kaelbling et al. 1996, Sutton

& Barto 1998, Wyatt 2002, Szepesvári 2010). The concepts and background introduced here will be

built upon in the subsequent chapters of this thesis.

2.2 The Framework of Markov Decision Theory

The sequential decision-making problems formalised by Markov decision processes are described as

follows. At a specified point in time, a decision-maker, agent, or controller observes the current state

Page 17

Chapter 2: Markov Decision Tasks

of a system. Based on the observed state, the decision maker chooses an action. The consequence

of the action choice is twofold – the decision-maker receives an immediate reward (or incurs an

immediate cost), and at the subsequent point in time the system evolves to a new state according

to the underlying transition dynamics of the process determined by the chosen action. At the new

state, the decision-maker faces a similar problem but this time the new state could be a state that is

different to that the agent was in during the previous time step and there may be a different set of

actions to consider.

In this section we describe the framework of Markov decision processes (MDPs).

2.2.1 Components of the Framework

Mathematically, a Markov decision process is a 5-tuple (S,A,Ψ,P,R). In the tuple, S is a set of |S|

distinct states, A is a set of |A| distinct actions, Ψ⊆ S×A is the set of admissible state-action pairs,

P : Ψ×S−→ [0,1] is a Markovian transition model that specifies in a probabilistic form the process

dynamics and R : Ψ−→R is the expected reward function mapping S and A into real-valued returns.

We explain these concepts i.e. state, transition and Markov chain in Section 2.2.1.1. We describe

the other component of the framework i.e. the reward in Section 2.2.1.2.

2.2.1.1 The Concepts of State, Transition & Markov Chain

The problem of modelling a decision task is greatly simplified by the concept of state and, in specific

applications, the modelling ‘art’ is to find an adequate state description that characterises the task’s

underlying stochastic process. The state of a system at a particular time is a description of the

condition of the system at that time that is sufficient to determine all aspects of the future behaviour

of the system when combined with knowledge of the system’s future controlled actions. The history

of the system that is relevant to its future behaviour is summed up in its current state. Essentially,

future behaviour does not depend on how the system arrived at its current state, a property sometimes

called ‘path independence’ of the system description.

Page 18

2.2. THE FRAMEWORK OF MARKOV DECISION THEORY

The concept of path independence derives from a general notion of independent processes. To

describe the notions of independence let us first define a stochastic process by a set of random

variables {Xt , t ∈ T} where the random variable Xt denotes the outcome at time step t and T =

{0,1,2 . . .}. The outcomes are referred to as the states of the process. The domain of Xt is the set

of possible outcomes denoted S = {s1,s2, . . . ,s|S|}. In the general case the outcome at time t + 1 is

dependent on the prior sequence of outcomes x0,x1, . . . ,xt−1,xt . The likelihood of the outcome at

time t +1 being s′ given the prior sequence of outcomes xt ,xt−1,xt−2, . . .x0 is stated as follows:

Pr(Xt+1 = s′|xt ∧ xt−1∧ . . .∧ x0). (2.1)

If the outcome at each time is independent of the outcome at all prior stages then the process is said

to be an independent process. That is,

Pr(Xt+1 = s′|xt ∧ xt−1∧ xt−2∧ . . .∧ x0) = Pr(Xt+1 = s′). (2.2)

The independence assumption allows calculations of transition probabilities to be simplified. The

more independence assumptions the more the possibility of explicit calculations but the more ques-

tionable is the realism of the model. When modelling a stochastic process, the challenge is to have

dependencies which allow for sufficient realism but can be analytically tamed to permit sufficient

mathematical tractability. The Markov assumption frequently balances these two demands nicely.

A Markov process weakens the independence assumption marginally by permitting the outcome at

time t + 1 to be independent of all previous outcomes except that immediately, prior at the time t.

That is,

Pr(Xt+1 = s′|(Xt = s)∧ xt−1∧ xt−2∧ xt−3∧ . . .∧ x0) = Pr(Xt+1 = s′|Xt = s). (2.3)

Equation 2.3 is the Markov property of a stochastic dynamical system. The property establishes that,

the way the system develops probabilistically in the future does not depend on the whole history

Page 19

Chapter 2: Markov Decision Tasks

but only on the present. The property stated in Equation 2.3 illustrates another use of the concept

of state in describing the evolution of dynamically controlled processes that operate according to

probabilistic rules. The system state and future controlled actions determine the probabilities of all

aspects of the future behaviour of the system independently of how the state was reached.

The conditional probabilities Pr(Xt+1 = s′|Xt = s) in Equation 2.3 are called the single step tran-

sition probabilities, these will be denoted by s ; s′ and written in shorthand to mean the probability

of the transition from state s to s′:

pss′ = Pr(Xt+1 = s′|Xt = s). (2.4)

We refer to pss′’s simply as transition probabilities. Transitions from state s to state s′ occurring as a

result of an action a taken at state s will be denoted as pa
ss′ , expressed as follows:

pa
ss′ = Pr(Xt+1 = s′|Xt = s,At = a). (2.5)

and we denote by s a
; s′ to incorporate the action taken at state s. The transition probabilities for each

action a can be represented in the form of a square array called the matrix of transition probabilities,

or the transition matrix, Pa in which the (s,s′)th element is pa
ss′ . In finite state spaces Pa is (|S|× |S|)

dimensional, written out as

Pa =

pa
11 pa

12 pa
13 . . . pa

1|S|

pa
21 pa

22 pa
23 . . . pa

2|S|

pa
31 pa

32 pa
33 . . . pa

3|S|
...

...
...

. . .
...

pa
|S|1 pa

|S|2 pa
|S|3 . . . pa

|S||S|

and the entries pa

ss′ satisfy standard stochastic constraints 0≤ pa
ss′ ≤ 1;∑s′∈S pa

ss′ = 1 ∀s ∈ S.

In the agent wellbeing task, assume that the agent can choose from a set of two actions {repair,do−

nothing} and let the possible states of wellbeing be {Healthy, Ill, and Dead}. An example of system

Page 20

2.2. THE FRAMEWORK OF MARKOV DECISION THEORY

dynamics for the agent wellbeing task is shown in Figure 2.1.

Pdo−nothing =

Healthy Ill Dead

Healthy 0.98 0.02 0.00
Ill 0.05 0.75 0.20
Dead 0.00 0.00 1.00

Prepair =

Healthy Ill Dead

Healthy 0.90 0.10 0.00
Ill 0.84 0.06 0.10
Dead 0.00 0.00 1.00

Figure 2.1: A simple instance of the Agent Wellbeing task

In the figure, the states represent whether the robot is healthy, ill, or dead during a period captured

by the model. According to the figure, under a do-nothing action, a healthy state is followed by a)

another healthy state with a probability of 0.98, b) an ill state with a probability of 0.02, and c) a dead

state with a probability of 0.0. That is, according to the model when the agent follows a do-nothing

action in a healthy state, there is very small probability that its state will change to ill and it would

not be expected to die. From this figure, it is possible to calculate the long-term fraction of time

during which the robot is healthy, or on average how long it will take to go from being healthy to

being ill.

Andrei Markov, a Russian mathematician, was the first one to study these matrices. At the

beginning of this century he developed the fundamentals of the Markov chain theory. A Markov

chain is a stochastic process that consists of a finite number of states and some known probabilities

pss′ , where pss′ is the probability of moving from state s to state s′. We describe a Markov chain as

follows: We have a set of states, S = {s1,s2, . . . ,s|S|}. The process starts in one of these states and

moves successively from one state to another. Each move is called a step. If the chain is currently

in state s, then it moves to state s′ at the next step with a transition probability denoted by pss′ , and

this probability does not depend upon which states the chain was in before the current state. The

process can remain in the state it is in, and this occurs with probability pss. An initial probability

Page 21

Chapter 2: Markov Decision Tasks

distribution, defined on S, specifies the starting state. Usually this is done by specifying a particular

state as the starting state. So a discrete time Markov chain can be completely described by the tuple

< S,P,u >. where u is the transition probabilities across initial starting states and, as before, S is the

finite set of states the process can be in, P are the state transition probabilities.

The subject of Markov chains is best studied by considering special types of Markov chains; a

more common type is Absorbing Markov chain and it involves the notion of Transient Markov state.

Definition 2.1 (Absorbing Markov Chain:) A state s of a Markov chain is called absorbing if it is

impossible to leave it (i.e., pss = 1). A Markov chain is absorbing if it has at least one absorbing

state and if from every state it is possible to go to an absorbing state in one or more steps (not

necessarily in one step).

Definition 2.2 (Transient Markov State:) In an absorbing Markov chain, a state which is not ab-

sorbing is called transient.

In our agent wellbeing model of Figure 2.1, dead is an absorbing state. Obvious questions that

can be asked about such a chain include: (a) What is the probability that the process will end up

in a given absorbing state? (b) On average, how long will it take for the process to be absorbed?

and (c) On average, how many times will the process be in each transient state? The answers to all

these questions depend, in general, on the state from which the process starts as well as the transition

probabilities.

2.2.1.2 Rewards

As recompense in recognition of worthy behaviours, rewards are generated in MDPs, following

actions and state transitions. A reward at time t is a random variable Rt = R(s,a,s′) that is dependent

on the current state s at time t, the action taken a and the next state s′ at time t + 1. The actual

sequence of rewards generated at times t = (0,1,2, . . .) is denoted as (r0,r1,r2, . . .). At each time

step, an observation resulting from action a at state s can be represented in short form as s
a,rt
; s′ for

the transition s a
; s′ and reward rt = ra

ss′ .

Page 22

2.2. THE FRAMEWORK OF MARKOV DECISION THEORY

The general form of the stochastic reward Rt we have described can be relaxed in a variety of

ways. The stochastic reward variable can be defined on either S×A× S, as we have done above,

or defined on S×A. In the MDP framework, there is no distinction between the two forms as the

destination state can be averaged out with no effect on planning. In addition, the stochastic reward

variable can sometimes be associated more conveniently with states, i.e. rs, on the assumption that

the reward accrues for being in the state.

The actual reward generated at a particular instant can be specified by a reward function. Three

types of reward functions are described as follows (Narendra & Thathachar 1989). The simplest

reward function, termed a P-model, is when the set of possible rewards is Boolean, R = {0,1}. Any

task with well-defined criteria for success and failure can be represented as a P-model. For example,

assuming the aim of the robot wellbeing task is to recompense the robot only for being in a healthy

state, it is easy to specify the reward function as a P-model as follows, taking 1 to be a success for

being at a healthy state:

rt =

1 i f robot is healthy

0 otherwise

A minimal extension of the P-model is a Q-model that allows any finite number of reward values

in the interval [0,1]. Tasks with real-valued rewards can be expressed in this form by means of

normalisation and quantisation. The most general case is when the reward can take any real value in

the interval [0,1]. Such a model is termed an S-model. By normalisation any problem with bounded

reward can be expressed as an S-model.

2.2.2 Objective of the Markov Decision Task

An objective function in an MDP maps a set of possible states and action sequences and their prob-

abilities to a single number known as value. MDP solution algorithms seek results that optimise the

value, so the choice of this function is a critical part of the statement of a task. In Markov decision

processes, value is defined in terms of cumulative reward received over time. In other words, the

Page 23

Chapter 2: Markov Decision Tasks

goal of the agent in terms of MDPs would be to implement a control policy that maximizes some

measure of cumulative reward to be received in the future. In this section, we look at how such

measures are defined and explain what we mean by optimal solutions in terms of value functions.

2.2.2.1 Return as a Measure of Cumulative Reward

We described reward functions in Section 2.2.1.2 and noted that such functions only specify rewards

for particular times in a process. Operating an MDP over time would result in a series of reward

accruals over a series of time steps and a measure of performance beyond immediate rewards will be

required to account for the resulting accruals. Return R has been suggested, and widely used, as a

long term measure of reward (Barto, Sutton & Watkins 1990, Sutton & Barto 1998). The following

are three possible definitions of return.

Finite horizon criterion: The simplest finite horizon criterion takes into account the expected re-

ward for the next N steps to form the undiscounted finite horizon return: R = ∑
N
t=0 rt . This

criterion often is not appropriate, since in most cases an agent does not know the length of its

life.

Average reward criterion: The average reward criterion considers the average reward over an in-

finite life span to form the undiscounted infinite horizon return:

R = limN→∞

1
N

N

∑
t=0

rt (2.6)

One problem with this criterion is that an agent’s extremely ineffective early behaviour could

be overlooked due to the averaging with the long run reward.

Infinite horizon discounted reward: In the infinite horizon discounted reward criterion, behaviour

is optimized in the following way: the aim is to maximize the long-run reward, but rewards

Page 24

2.2. THE FRAMEWORK OF MARKOV DECISION THEORY

that are received in the future are geometrically discounted by the discount factor γ ∈ (0,1) :

R =
∞

∑
t=0

γ
trt . (2.7)

The discount factor 0 ≤ γ < 1 could be interpreted as the probability of existing for another

step.

The most commonly used return function is the discounted model. This has been extensively

used within work on learning from delayed reinforcement and is the return model adopted throughout

subsequent portions of this thesis. The choice of a value for γ determines the relative weighting of

close and distant future reward values. As γ → 0 rewards close in time contribute more towards the

return value. When γ = 0 only immediate rewards matter and return is reward so Rt = rt . Not only

is this method elegant it has been shown to make certain problems tractable.

2.2.2.2 Policies and Optimal Policies

The behaviour of an agent in the MDP framework can be completely and sufficiently described

by the agent’s policy. The policy (π) controls the actions an agent takes. The function π(s) that

describes the action choice as a function of the state is called the policy function.

There are several types of policies and the most common distinctions are stationary versus non-

stationary and deterministic versus non-deterministic policies. A stationary policy (π : S → A)

is a mapping between states in the world and actions to be taken in the states. The action deci-

sion depends only on the state the agent occupies and is independent of time. A stochastic policy

(π : S×A→ [0,1]), is a mapping from states into probability distribution over actions f (π|s) with

probability Pr(a|s) in state s. Under a stochastic policy the action selection in each state varies, but

the distribution with which selection varies is fixed. A non-stationary policy (πt : S→ A) is again

a mapping between states and actions, but it is indexed by time. The policy πt is used to choose an

action on the tth to last time step as a function of the current state s at time t. The time indexing for

Page 25

Chapter 2: Markov Decision Tasks

non-stationary policies is slightly counter intuitive as it does not refer to the number of steps past but

the number of steps from the final step of the process.

In general, a policy and the transition matrix together induce a probability distribution over the

set of all possible sequences of states and actions for each possible initial state of the environment.

In other words, we should in principle be able to take a description of a policy, an environment, and

an initial state, and compute the probability that a given sequence of states and actions will occur.

We need some ways of distinguishing between the quality of different policies and how well

they fulfil the agent’s goals. The return models introduced previously in Section 2.2.2.1, allows an

ordering to be defined over policies. A policy πx is at least as good as a policy πy if the expected

return for all the process states under πx is equal to or greater than at under πy. In Markov decision

processes, optimality is defined in terms of cumulative reward received over time. The agent’s goal

is typically directed towards implementing a control policy that maximizes some measure of the

total reward to be received in the future. An optimal policy maximises the agent’s expected return.

2.2.2.3 Value Functions

In this section we describe how to predict the expected return for a given state in a Markov decision

process and we define value functions for doing so. A value function gives a measure of the expected

return for the states in a Markov decision process. Since the value functions are measures of expected

return they are defined with respect to particular policies. We describe two types of value functions:

State-Value Functions: Assuming an agent has a policy π , the state value function of a state s

under the policy can be defined as:

V π(s) = Eπ(R|Xt = s)

= Eπ(Rt+1 + γRt+2 + γ
2Rt+3 + . . . |Xt = s)

= Eπ(Rt+1 + γV π(s′)|Xt = s)

= rπ(s)
s + γ ∑

s′
pπ(s)

ss′ V π(s′) (2.8)

Page 26

2.2. THE FRAMEWORK OF MARKOV DECISION THEORY

where Eπ(·) denotes the expected value given that the agent follows policy π and V π(s) de-

notes the value function i.e. the expected return when starting in state s and following π there-

after. Without loss of generality, the expectation of immediate reward Eπ(Rt+1) is expressed

as rπ(s)
s . The expected return for each state under the policy can be calculated in both finite

and infinite horizon cases. In the finite horizon case V π
t (s) is the expected rewards gained for

starting in state s and executing the policy π for t time steps. The simplest case is when there

is only one step

V π
1 (s) = rπ(s)

s , (2.9)

whereas the recursive form for t-steps is

V π
t (s) = rπ(s)

s + γ ∑
s′

pπ(s)
ss′ V π

t−1(s
′). (2.10)

The t−step value of being in state s and executing the policy π is the expectation of the

immediate reward, rπ(s)
s = E[R(s,π(s))], plus the discounted expected value for the remaining

t− 1 steps. In the evaluation of the future all possible resulting states s′ must be considered,

the likelihood of their occurrence pπ(s)
ss′ , and their (t−1) step value under policy π , V π

t−1(s
′).

The optimal state-action value function, denoted V ∗, is defined as:

V ∗(s) = max
π

V π(s)

= max
a
{ra

s + γ ∑
s′

pa
ss′V

∗(s′)} (2.11)

State-Action Value Functions: The state-action value function Qπ corresponding to a policy π is

the mapping of state-action pairs to their values and satisfies:

Qπ(s,a) = Eπ(R|Xt = s,At = a)

= ra
s + γ ∑

s′
pa

ss′Q
π(s′,a) (2.12)

Page 27

Chapter 2: Markov Decision Tasks

Qπ(s,a) is a function that calculates the quality of a state-action combination. The optimal

state-action value function, denoted Q∗, is defined as:

Q∗(s,a) = max
π

Qπ(s,a)

= max
a
{ra

s + γ ∑
s′

pa
ss′Q

∗(s′,a)} (2.13)

Intuitively, Equation 2.13 says that the state-action value, Q∗(s,a), is the expected total dis-

counted return resulting from taking action a in state s and continuing with the optimal policy

thereafter.

2.3 Solving Markov Decision Tasks

The solution to a Markov Decision Process can be expressed as a policy π , a function from states to

actions. In the example agent wellbeing task above, a specification to do-nothing in a healthy state

specifies the policy for an agent to follow in that state.

The optimal solution of an MDP is an optimal policy π∗ that dominates all other possible policies

for that MDP. There exists a well established family of algorithms known as dynamic programming

for calculating optimal policies (Bellman 1957, Bertsekas 1987). Dynamic Programming works via

the calculation of successive approximations of the value function to evaluate a specific policy. The

algorithms typically transform Bellman equations such as those of (2.14) and (2.15) into update

rules for improving approximations of the desired value functions. The updates are repeated in some

order for all the states until no further changes take place.

π(s) := argmax
a
{ra

s + γ ∑
s′

pa
ss′V (s′)} (2.14)

V (s) := ra
s + γ ∑

s′
pπ(s)

ss′ V (s′) (2.15)

Page 28

2.3. SOLVING MARKOV DECISION TASKS

The order in which the updates are made depends on the variant of the algorithm; we could do

them for all states at once, or state by state, and more often to some states than others. As long as no

state is permanently excluded from either of the steps, the algorithm will eventually converge to an

optimal solution.

In the sub-sections that follows we look at how Markov decision tasks can be achieved in com-

pletely observable environments mostly via dynamic programming techniques. We start by looking

at the case where a perfect model of the task is available i.e. the transition probabilities and reward

functions are fully determined. Following this we consider learning how to behave when we have

no model and we do not maintain a model. Finally we will look at how we can build a model whilst

learning and use the constructed model to decide how to behave. Our organisation of the section is

motivated by the distinction made in much of the reinforcement learning literature, this being the

difference between knowing the true model of the task environment a-priori and learning a model.

Clearly, if the model is known the agent does not need to learn. However, when the agent does not

have access to the correct model it would have to learn about the task environment in order to act

appropriately. When the MDP model of the task environment is completely specified the search for

an optimal policy reduces to a planning problem.

2.3.1 Planning in MDP

There are many methods for finding optimal policies for MDPs when we have a complete model.

In this section we will describe three classical approaches commonly used namely value iteration,

policy iteration and linear programming methods. All of the methods can be found in standard

textbooks on MDPs e.g. (Bertsekas 1987, Puterman 2005).

2.3.1.1 Value Iteration

Value Iteration (VI) (Bellman 1957) is a simple iterative procedure that computes the value of each

state based on the values assigned to neighbouring states, iterating the loop for each state until either

Page 29

Chapter 2: Markov Decision Tasks

a) the value estimation converges to exactly the correct V ∗ values, formally requiring an infinite

number of iterations, or b) the VI steps satisfies surrogate convergence criteria. The challenge in

VI and many other iterative approaches lies in knowing exactly when to stop iterating and return

a correct solution. An approach that relies on infinite number of iterations is less desirable and in

VI the surrogate option is often used, thanks to a significant result for the VI algorithm that bounds

the performance of the current greedy policy as a function of the maximum difference between two

consecutive value functions Vt(s),Vt−1(s) (Sutton & Barto 1998).

The quantity |Vt(s)−Vt−1(s)| is known as the Bellman error magnitude and also sometimes

called the Bellman residual. Based on the notion of Bellman residuals, the VI algorithm quite

simply iteratively compute the values of each state until the maximum difference between the value

estimates of two successive steps are close enough, i.e. less than a pre-specified threshold ε value.

In other words, the iterative loop terminates when |Vt(s)−Vt−1(s)|< ε ∀s ∈ S. The VI algorithm is

illustrated in Algorithm 2.1.

The precision of the algorithm increases with smaller thresholds albeit resulting in lengthier

steps to convergence. On the completion of the value iteration algorithm an agent would be supplied

with the optimal policy to control its behaviour, which is just the greedy policy with respect to the

converged value function. It is important to note that often π = π∗ long before Vt is near V ∗, so

optimal behaviour can be found before the value function has converged. If |Vt(s)−Vt−1(s)| < ε

∀s ∈ S, then the value of the greedy policy with respect to V (s) does not differ from V ∗(s) by more

than 2ε
γ

1−γ
at any state (Sutton & Barto 1998).

Page 30

2.3. SOLVING MARKOV DECISION TASKS

1: procedure [V,π] = VALUE ITERATION(S,A,P,R,ε)

2: Initialise state values V (s) ∀s ∈ S

3: set ∆← 0

4: repeat

5: for each s ∈ S do

6: v←V (s)

7: V (s)←maxa {ra
s + γ ∑s′ pa

ss′V
∗(s′)}

8: ∆←max(∆, |v−V (s)|)

9: end for

10: until ∆ < ε

11: V ∗(s)←V (s) ∀s ∈ S

12: π(s)← argmaxa ra
s +∑s′ pa

ss′V
∗(s′)

13: return [V ∗(s),π(s)] ∀s ∈ S

14: end procedure

Algorithm 2.1: The Value Iteration Algorithm

2.3.1.2 Policy Iteration

The value iteration algorithm we described in Section 2.3.1.1 operates by iteratively updating state-

values directly on the state space. An alternative approach is to iteratively search the policy space

directly and this is the basis of policy iteration, our focus in this section.

Policy iteration (Howard 1960) iteratively computes the value function for a given policy π and

if the policy can be improved then a replacement policy that is strictly better than the current one

is obtained and the iteration continues until convergence when no further policy improvement can

be found. The policy iteration algorithm should converge in at most an exponential number of steps

since a) there are at most |S||A| distinct policies, and b) the sequence of policies improves at each

step (Puterman 2005). The policy iteration algorithm has two main phases (Algorithm 2.2):

Page 31

Chapter 2: Markov Decision Tasks

Policy Evaluation: in which we compute the state-value function V π for a given policy π . The job

in this phase is sometimes referred to as a prediction problem. Recall from our discussion

in Section 2.2.2.3 that the state value functions can be computed for all s ∈ S as V π(s) =

rπ(s)
s + γ ∑s′ pa

ss′V
π(s′) and, when the transition probabilities and reward functions are known,

the evaluation accomplished using a number of methods including that of Section 2.3.1.1.

Policy Improvement: allows us to find a policy π ′ that are strictly better than the current policy π ,

if the optimal policy has not been found. From the policy evaluation step we know the worth

of the current policy through its state value function V π(s). The issue raised in this phase is

whether there would be a gain in changing to a new policy and the issue can be addressed

via the policy improvement theorem (Sutton & Barto 1998) whose conditions are met by the

greedy policy given by π ′(s) = argmaxaQ(s,a).

1: procedure [V,π] = POLICY ITERATION(S,A,P,R)

2: Initialise policies π(s) and state values V π (s) ∀s ∈ S

3: repeat

4: Set stablePolicy← true

5: solve V π (s) = rπ(s)
s + γ ∑s′ p

π(s)
ss′ V π (s′) ∀s ∈ S.

6: for each s ∈ S do

7: π ′(s)← argmaxaQπ (s,a)

where Qπ (s,a)← rπ(s)
s + γ ∑s′ pa

ss′V
π (s′) ∀a ∈ A

8: if π ′(s) 6= π(s) then stablePolicy← f alse end if

9: end for

10: π(s)← π ′(s) ∀s ∈ S

11: until stablePolicy

12: return [V (s),π(s)] ∀s ∈ S

13: end procedure

Algorithm 2.2: The Policy Iteration Algorithm

Page 32

2.3. SOLVING MARKOV DECISION TASKS

Note that in the illustration the policy evaluation phase is accomplished by solving linear equa-

tions in V π(s) for all s ∈ S. In principle, other methods for computing the state value function of a

policy can be used including the value iteration (VI) algorithm. If using VI, the initial value functions

can be set to those from previous policy evaluation phase.

2.3.1.3 Linear Programming

In this section we describe linear programming (LP) approaches to Markov decision tasks. A linear

program, consists of a set of variables, a set of linear equations over the variables and an objective

function, A linear programming problem may be defined as finding an assignment to the variables in

a way that the objective function is maximised or minimised over all the variable assignments that

satisfy each of the linear equations, The linear equations constrain the space of acceptable solutions

and may be equalities or inequalities.

In LP approaches to MDPs, the variables are the value functions V (s) for every state s ∈ S of the

decision process. An LP formulation of MDP is as follows.

Minimise ∑
s

V (s)

subject to: V (s)≥ ra
s + γ ∑

s
pa

ss′V (s′) ∀s ∈ S, a ∈ A
(2.16)

where each pair (s,a) corresponds to a constraint. This LP formulation has |S| optimisation variables

and |S|× |A| constraints. The intuition here is that, for each state s, the optimal value from s is no

less than what would be achieved by first taking action a, for each a ∈ A. The minimization ensures

that we choose the least upper bound (the maximum, in other words) for each of the V (s) variables.

An important fact from the theory of linear programming is that every linear program has an

equivalent linear program in which the roles of the variables and the constraints are reversed. The

resulting linear program, known as the dual, can also be used to solve MDPs. One advantage of the

dual formulation is that it makes it possible to express and incorporate additional constraints on the

form of the policy found.

Page 33

Chapter 2: Markov Decision Tasks

Associated with the LP for MDP is a corresponding dual LP (D-LP) given by:

Minimise ∑
s

∑
a

ra
s y(s,a)

subject to:

∑
s

∑
a

V (s′)y(s,a) = 0 ∀s′ ∈ S

∑
s

∑
a

y(s,a) = 1

y(s,a)≥ 0 ∀s ∈ S, ∀a ∈ A

(2.17)

The variables y(s,a) constitute a feasible solution to the dual if they jointly satisfy the constraints in

the D-LP problem. An optimal solution y∗(s,a) requires the variables to be feasible and satisfy the

following expression.

∑
s

∑
a

ra
s y∗(s,a)≥∑

s
∑
a

ra
s y(s,a) (2.18)

for all the feasible solutions to the D-LP. The optimal solution y∗(s,a) could be used to establish the

optimal policies.

In general, the LP approach to MDPs is appealing because it is valid in a very general context.

It produces an exact solution without the need to specify stopping criterion. LP approaches offers

a) an elegant way of solving planning problems where maximisation of expected total discounted

reward is subject to additional constraints on expected rewards, and b) a family of mathematical

programming algorithms for approximating value function using lower dimensional functions.

2.3.2 Learning in MDP

In the previous section we described methods an agent may use to find optimal policies for Markov

decision processes. In order to use the methods described, the agent must have a-priori a complete

model of the decision task i.e. state transition probabilities and reward functions must be known.

In such instances, there is no learning involved. The known rewards and transition probabilities are

simply plugged into the methods to obtain the optimal policy.

Page 34

2.3. SOLVING MARKOV DECISION TASKS

As we know, life is not always that simple. Often there are uncertainties and the agent would not

always know a-priori the complete task environment. That is, all or some elements of the reward and

transition probabilities would be unknown to the agent. When uncertainty exists the agent would

have to learn from its interaction with the environment, using the resulting information to update

its knowledge of the environment and decide future actions. There are two classical approaches as

follows.

Model-free: learn to perform a task without learning a process model.

Model-based: learn to perform a task by acquiring one or more process models of the task and

using the acquired model(s) to establish the appropriate policies.

The model-free approach is also known as a direct, ‘cached values’, method and the model-based

approach is sometimes called an indirect method. There is no consensus as to the better of the

two approaches. Whilst friendly debates continues in the field on the better of the two approaches,

it is generally opined that the choice of an appropriate approach depends on the particular task at

hand and the resources available. For example, model-based approaches may be more appropriate

in well defined control-like tasks that presents opportunities for modelling the system. In addition,

model-based methods may be the most suited when interaction between a learning agent and the

real system is limited, not feasible and/or dangerous. On the other hand, model-free methods may be

more applicable to agents learning constructional tasks, i.e. tasks that require coordinated, predictive

actions over multiple time steps, for which there is no existing model and there may be no clear path

towards developing a model (Gaskett 2002).

Although empirical reinforcement learning research provides success stories for both model-

based and model-free methods (e.g. Kearns & Singh (1999)), the weight of evidence supports a view

that model-based methods outperforms model-free methods in terms of total cumulative rewards

received (e.g. Koppejan & Whiteson (2009)), albeit the importance of learning a reliable model

cannot be overemphasised. Compared to model free reinforcement learning, Atkeson & Santamaria

(1997) noted that model based reinforcement learning is more data efficient, finds better trajectories,

Page 35

Chapter 2: Markov Decision Tasks

plans and policies, and handles changing goals more efficiently.

Whilst model-free methods may have obvious benefits for some tasks (Wyatt, Hayes & Hallam

1999), especially in ensuring that state action values are attributed to, and behaviour driven directly

by cues predicting rewards, they do have significant limitations (McDannald, Takahashi, Lopatina,

Pietras, Jones & Schoenbaum 2012). Two significant limitations of model-free methods according

to McDannald et. al. (2012) are: i) due to the fact that model-free value is represented in a common

currency, the predictions used to guide behaviour are blind to specific features of rewards, and ii)

model-free methods do not straightforwardly allow for ‘new learning’ to occur when these specific

features of the predicted rewards are changed, so long as general or cached ‘value’ is maintained.

Model-based methods addresses these issues much better particularly in facilitating the transfer of

prior information about systems dynamics which is the subject of this thesis.

In summary, model-free methods are known to be appealing when there are computational re-

source constraints, they are simple to implement and its performance, though inferior to that of the

model-based based methods, is still quite strong. Adaptation to changes in the reward structure and

their specific features is much slower with model-free methods. Model-based methods are more

flexible, uses dynamic programming algorithms on the estimated models to compute values, and can

more easily accommodate changes in state-reward pairings directly. Model-free methods may not

explore as efficiently as model-based methods and, as we know, the speed of convergence of an agent

rests heavily on the exploration policy employed (Wyatt 1997). These differences are highlighted in

Table 2.1.

We describe in this section the techniques used in the two approaches, starting in Section 2.3.2.1

with the model-free methods and turning to model-based methods in section 2.3.2.2.

Page 36

2.3. SOLVING MARKOV DECISION TASKS

Model-based Methods

• Indirectly learn state values.

• Explicitly estimate a model from
experience.

• Use dynamic-programming algorithms
on the estimated model.

• Effective use of experience.

• High computational costs.

• Facilitates transfer of prior information
relating to systems dynamics

Model-free Methods

• Directly learn state action values.

• Takes longer to learn especially
in more complex environments.

• No guarantees about explore/exploit
trade-off.

• Low memory and computational costs.

• Adaptation to changes in the reward
structure and their specific features
is much slower.

Table 2.1: Model-based versus Model-free Methods

2.3.2.1 Model-free Methods

In this section we describe solution methods for Markov decision processes on the basis that a)

there is no prior knowledge of the task environment i.e. the transition and reward functions are un-

known, and b) the task will be performed without inferring or using any process model of the task’s

environment. We describe model-free solutions that allows a learning agent to interact with task

environments, shifting our discussion from the off-line methods introduced in the previous sections

to on-line solution approaches. The on-line approaches permit real and/or simulated interaction with

the task’s environment and they generally involve iterative steps of taking an action in a state, ac-

quiring experience by observing the effect of the action taken, revising value and/or policy estimates

based on the acquired experience, and moving on to the next state. The iteration is illustrated in

Algorithm 2.3.

Page 37

Chapter 2: Markov Decision Tasks

1: procedure ONLINELEARNINGBASEDONSTATEVALUES

2: Initialise state values V (s) and policy π(s) ∀s ∈ S.

3: loop (for each episode):

4: Initialise state s.

5: repeat (for each step of the episode):

6: Select an action a from state s using π and execute the action.

7: Receive immediate reward r = ra
s and observe the new state s′ i.e. acquire experience s

a,r
; s′.

8: Update state-value V (s) and policy function π using the acquired experience s
a,r
; s′.

9: Advance to next state s← s′.

10: until end of episode e.g. s is terminal.

11: end loop

12: end procedure

Algorithm 2.3: An online algorithm for learning a policy and value function based on
state values

There are known variations to the on-line Algorithm 2.3 including, for example, using state-

action values instead of state-values as we illustrate in Algorithm 2.4.

In both Algorithms 2.3 and 2.4 the agent must establish how to a) in step 6 select actions i.e.

find policies that would optimise predicted performance, and b) in step 8 update value functions i.e.

estimate expected future performances. The former is sometimes referred to as a control problem

and the latter a prediction problem. If the agent has a model then the prediction problem can be

solved by using the planning techniques we discussed in Section 2.3.1. We will shortly, in Section

2.3.2.2, describe how the agent can acquire a model of the task environment. If the agent decides to

operate model-free it can build estimates of the value function directly from experience. This can

be done primarily in two main ways via Monte Carlo and temporal difference learning. We begin

with a brief discussion of Monte Carlo methods followed by a description of temporal difference

learning.

Page 38

2.3. SOLVING MARKOV DECISION TASKS

1: procedure ONLINELEARNINGBASEDONSTATEACTIONVALUES

2: Initialise state-action values Q(s,a) ∀s ∈ S, ∀a ∈ A.

3: loop (for each episode):

4: Initialise state s.

5: repeat (for each step of the episode):

6: Select an action a from state s using the policy derived from Q(s,a) and execute the action.

7: Receive immediate reward r = ra
s and observe the new state s′ i.e. acquire experience s

a,r
; s′.

8: Update the state-action values Q(s,a) using the acquired experience s
a,r
; s′.

9: Advance to next state s← s′.

10: until end of episode e.g. s is terminal.

11: end loop

12: end procedure

Algorithm 2.4: An online learning algorithm for learning a policy and value function
based on state-action values

Monte Carlo methods solve the model-free prediction problem by averaging sample returns. In

a basic Monte Carlo approach we sample a sequence of experience tuples {s1
a1,r1
; s′1,s2

a2,r2
; s′2, . . .}

from the task environment and use the sampled experience to calculate the actual return from each

state. We then repeat the sampling many times to obtain multiple independent realisations of the

experience sequences and associated actual return for each sequence from each state. The value

estimate is then based on the average of the actual returns.

To implement the basic Monte Carlo method it is typically assumed that the sampled experience

is divided into episodes and all the episodes eventually terminate irrespective of the actions selected.

This is because value estimates and policies are revised only at the end of an episode. Hence, Monte

Carlo methods are suited to episodic tasks and they are incremental on an episode-by-episode sense.

There are two established Monte Carlo methods for estimating expected return namely every visit

Monte Carlo and the first visit Monte Carlo (Sutton & Barto 1998). As the name suggests, the

Page 39

Chapter 2: Markov Decision Tasks

approaches differs mainly in the way the sampled experience tuples are collated.

Simple Monte Carlo methods are important in that they give a performance baseline from which

to work, and aspects of them have been important in developing sophisticated algorithms. The dif-

ficulty with simple Monte Carlo estimators is that their standard errors decline very slowly as the

sample size rises. The variance of returns can be high which makes convergence slow (Singh &

Sutton 1996). Also when interacting with a system in closed-loop, it is often impossible to reset

the system to some particular state which would be necessary to obtain sufficient independent re-

alisations of the process from that state. When this is not possible, it is not clear how to apply the

Monte-Carlo techniques without introducing bias. Temporal difference learning which is without

doubt one of the most significant ideas in reinforcement learning, addresses these issues. Meth-

ods of temporal differences were invented to perform prediction and optimization in exactly these

circumstances.

Temporal difference (TD) learning (Sutton 1988) is a prediction method that allows an agent

to learn in unknown environments by using past experience to predict the mean goodness of each

state of the environment given that a certain policy is followed. Temporal difference methods were

invented to account for the behaviour of animals in psychological experiments involving prediction,

the links with dynamic programming were only made later. The idea of temporal difference learning

draws from both dynamic programming and Monte Carlo methods. The former samples the envi-

ronment according to a pre-specified policy whilst the latter approximates value estimates based on

old estimates previously learned.

Temporal difference methods are predicated on a notion that value predictions across time steps

are often correlated. Temporal difference methods quantify the difference between two subsequent

value estimates and applies an update equation to revise the mean goodness of each state. The

temporal difference quantity is simply

(r+ γV (s′))−V (s) (2.19)

Page 40

2.3. SOLVING MARKOV DECISION TASKS

where V (s) is the value estimate at state s and r+ γV (s′) is a different estimate of the value of state

s arising from acquiring an experience s
a,r
; s′ from an interaction with the environment, r is reward

accrued from the transition under action a in state s i.e. r = ra
s . Compared to V (s), the revised

estimate r + γV (s′) facilitates a better estimate of the value of state s and the temporal difference

between the two estimates can be used to update the value of V (s) as follows:

V (s)←V (s)+α
[
r+ γV (s′)−V (s)

]
(2.20)

where 0 < α ≤ 1 is the learning rate. The temporal difference learning procedure is illustrated in

Algorithm 2.5.

1: procedure TEMPORALDIFFERENCE TD(0) (π , α)

2: Initialise state values V (s) ∀s ∈ S.

3: loop (for each episode):

4: Initialise state s.

5: repeat (for each step of the episode):

6: Select an action a from state s using π and execute the action.

7: Receive immediate reward r = ra
s and observe the new state s′ i.e. s

a,r
; s′.

8: Update state-value V (s)← V (s)+α[r+ γV (s′)−V (s)].

9: Advance to next state s← s′.

10: until end of episode e.g. s is terminal.

11: end loop

12: end procedure

Algorithm 2.5: Estimation of state values via temporal difference T D(0) method

In TD methods the value of state s depends on the value of state s′ and not only on the final

result. This makes it possible for TD methods to improve their predictions during a process without

having to wait for the final result. There are flavours of temporal difference learning for control.

Page 41

Chapter 2: Markov Decision Tasks

An actor-critic approach (Barto, Sutton & Anderson 1983) which parallels policy iteration has been

suggested as being implemented in biological RL, and Q-learning (Watkins 1989) which parallels

value iteration.

Actor-Critic

Actor-critic (AC), first proposed by Barto et al. (1983), is temporal difference learning TD method

that have a separate memory structure to explicitly represent the policy independent of the value

function. It consists of two components - actor and critic. The role of the actor is to select actions

and that of the critic is to evaluate the performance of the actor. The critic’s evaluation is used

to provide the actor with a signal that allows it to improve its performance, typically by updating

its parameters along an estimate of the gradient of some measure of performance, with respect to

the actor’s parameters. When the representations used for the actor and the critic are compatible,

the resulting AC algorithm is simple, elegant and provably convergent to a local maximum of the

performance measure used by the critic (under appropriate conditions) (Sutton, McAllester, Singh

& Mansour 1999, Konda & Tsitsiklis 2000, Konda 2002).

Learning in the Actor-Critic architecture is on-policy: the critic must learn about and critique

whatever policy is currently being followed by the actor. The critique takes the form of a TD error.

This scalar signal is the sole output of the critic and drives all learning in both actor and critic.

Typically, the critic is a state-value function. After each action selection, the critic evaluates the new

state to determine whether things have gone better or worse than expected. That evaluation is the

TD error:

δ = r+ γV (s′)−V (s) (2.21)

where V is the current value function implemented by the critic, s,s′ ∈ S are the states at time

t and t + 1. This TD error can be used to evaluate the action just selected, the action a taken in

state s at time t. If the TD error is positive then it suggests the tendency to select a should be

Page 42

2.3. SOLVING MARKOV DECISION TASKS

strengthened for the future. Else if the TD error is negative then it suggests the tendency should be

weakened. The strengthening or weakening steps can be implemented by increasing or decreasing

action probabilities p(s,a), for instance, by

p(s,a)← p(s,a)+βδ (2.22)

where β is another positive step-size parameter. This AC method we described is just one variant

in a family of actor-critic methods. There are other variations such as those that select actions in

different ways or use a notion of eligibility traces (Sutton 1988, Sutton & Barto 1998). Additional

factors considered by others include varying the amount of credit assigned to the action a taken

which, for example, allows for a probability of selecting actions Pr(a|s) in the update rule:

p(s,a)← p(s,a)+βδ [1−Pr(a|s)] . (2.23)

Algorithm 2.6 shows the actor critic algorithm in schematic form. Actor-critic methods offer the

following advantages:

• They require minimal computation in order to select actions. Methods that lack a separate data

structure for the policy typically require a repeated search for the action with the best value,

and this search can become computationally prohibitive, especially for real valued actions.

• They can learn stochastic policies; that is, they can learn the optimal probabilities of selecting

various actions.

• The separate actor in actor-critic methods makes them more appealing in some respects as

psychological and biological models. In some cases it may also make it easier to impose

domain-specific constraints on the set of allowed policies. An actor maintains a separately

parameterized stochastic action-selection policy.

Page 43

Chapter 2: Markov Decision Tasks

1: procedure ACTORCRITICALGORITHM (β)

2: Initialise probability of selecting actions Pr(a|s) and the state value V (s) , ∀s ∈ S and ∀a ∈ A.

3: loop (for each episode):

4: Initialise state s.

5: repeat (for each step of the episode):

6: Select an action a from state s using Pr(a|s) and execute the action.

7: Receive immediate reward r = ra
s and observe the new state s′ i.e. acquire experience s

a,r
; s′.

8: Calculate the TD error δ ← [r+ γV (s′)]−V (s).

9: with TD error δ do

10: Update actor by adjusting the action probabilities for state s.

p(s,a)← p(s,a)+δβ [1−Pr(a|s)].

11: Update critic by adjusting the value of state s:

V (s)←V (s)+δβ .

12: end with

13: Advance to next state s← s′.

14: until end of episode e.g. s is terminal.

15: end loop

16: end procedure

Algorithm 2.6: An Actor Critic Algorithm

Q-Learning

Q-learning (Watkins 1989, Watkins & Dayan 1992) is an off-policy temporal difference algorithm.

This was a very important development in reinforcement learning as the learned action value function

Q converges on the optimal action value function Q∗ independently of the policy being followed. In

this case, the learned action-value function directly approximates the optimal action-value function,

independent of the policy being followed. This dramatically simplifies the analysis of the algorithm

and enabled early convergence proofs. The policy still has an effect in that it determines which

Page 44

2.3. SOLVING MARKOV DECISION TASKS

state-action pairs are visited and updated. However, a basic requirement for correct convergence is

that all pairs continue to be updated:

Q(s,a)← Q(s,a)+α[ra
s + γ max

a′
Q(s′,a′)−Q(s,a)] (2.24)

The Q-learning algorithm is shown in Figure 2.7. The algorithm is guaranteed to converge to the

correct Q-values with probability one if the environment is stationary and depends on the next state

only, every state-action pair continues to be visited, and the learning rate α is decreased appropriately

over time.

1: procedure Q-LEARNING(α)

2: Initialise state–action values Q(s,a) ∀s ∈ S, ∀a ∈ A

3: loop (for each episode):

4: Initialise state s.

5: repeat (for each step of the episode):

6: Select an action a from state s using π derived from the current Q-values and execute the action.

7: Receive immediate reward r = ra
s and observe the new state s′ i.e. acquire experience s

a,r
; s′.

8: Update state-action-value Q(s,a)← Q(s,a)+α[r+ γ max
a′

Q(s′,a′)−Q(s,a)]

9: Advance to next state s← s′

10: until end of episode e.g. s is terminal.

11: end loop

12: end procedure

Algorithm 2.7: The Q-Learning Algorithm

SARSA

Another approach to model learning similar to Q-learning is by means of SARSA. The SARSA

algorithm was first explored by Rummery & Niranjan (1994) as modified Q-learning. The acronym

Page 45

Chapter 2: Markov Decision Tasks

‘SARSA’ stands for State-Action-Reward-State-Action (Sutton 1996). The principles of SARSA and

Q-Learning are quite similar. However, SARSA updates Q(s,a) for the policy π that it is actually

executing. In essence, unlike Q-Learning, SARSA is an on-policy algorithm. The Q-value that

SARSA updates depends on the current state s, the action a selected in that state, the reward received

on executing the action, the next state s′ following the execution of action a in s and the action a′ to

be taken in state s′. The Q-value updates are based on the quintuple (s,a,r,s′,a′) using the following

formula.

Q(s,a)← Q(s,a)+α[ra
s + γ Q(s′,a′)−Q(s,a)] (2.25)

The parameter α in Equation 2.25 has same meaning as in Q-learning. The SARSA learning algo-

rithm is shown in Algorithm 2.8.

1: procedure SARSA(α)

2: Initialise state–action values Q(s,a) ∀s ∈ S, ∀a ∈ A

3: loop (for each episode):

4: Initialise state s.

5: Select action a from s using policy derived from Q-values.

6: repeat (for each step of the episode):

7: Execute action a.

8: Receive immediate reward r = ra
s and observe the new state s′ i.e. acquire experience s

a,r
; s′.

9: Select action a′ from s′ using policy derived from Q-values.

10: Update state-action-value Q(s,a)← Q(s,a)+α[r+ γ Q(s′,a′)−Q(s,a)]

11: Advance to next state s← s′

12: Advance to next action a← a′

13: until end of episode e.g. s is terminal.

14: end loop

15: end procedure

Algorithm 2.8: The SARSA Learning Algorithm

Page 46

2.3. SOLVING MARKOV DECISION TASKS

The SARSA algorithm has two action selection steps 5 and 9 in Algorithm 2.8.

2.3.2.2 Model-based Methods

In this section we look at how an agent may solve a Markov decision task when it does not know in

advance the accurate model of the task but wants to use a model-based approach supplemented by

the data it collects. Unlike the model-free methods we described previously, the agent will need to

rely on algorithms that operate by learning the true MDP model during its interaction with the task

environment. Model-based approaches are generally based around the following:

• Experience Acquisition: the agent acquires experience from the task environment through the

data it collects during its interaction,

• Model Construction: the agent uses the experience it acquires to construct estimates of model

structure and parameters, and

• Acting using the Constructed Model: the agent uses the estimated model to inform and speed

up learning.

Constructing estimates of model parameters can be done by counting the frequencies of observed

experiences. We focus on system dynamics. To compute a maximum likelihood model of system

dynamics an agent will usually require the following variables

#(s a
; s′) = Number of transitions from state s to s′ after executing action a

= ∑
t

I(Xt = s,At = a,Xt+1 = s′)

#(s a
; succ(s)) = Number of times the agent has executed action a in state s

= ∑
t

I(Xt = s,At = a,Xt+1 = s′ ∈ succ(s)) (2.26)

(2.27)

Page 47

Chapter 2: Markov Decision Tasks

in which succ(s) is the set of states that succeeds state s and I(.)is an indicator function that returns 1

if (·) occurs and 0 otherwise. A maximum likelihood estimate of transition probabilities is estimated

as:

p̂a
ss′ =

#(s a
; s′)

#(s a
; succ(s))

(2.28)

where the estimates p̂a
ss′ are the maximum likelihood transition probabilities that enforces the sum

to one constraint for the probability measures. The parameter estimates are computed as normalised

transition counts.

Given that we can now reasonably estimate the transition probabilities from data the next step is

to understand how the estimates can be used to speed up learning. There are three main approaches.

Two Phase Learning: in which the agent separates the process into learning and acting phases, and

the division can be arbitrary. In the first phase, the agent concentrates on the acquisition of

experience without worrying about using the acquired experience to moderate behaviour. It

uses pre-defined policies, or simply act randomly, and builds an estimate of transition proba-

bilities with the data collected. Following the data collection, the agent then turns its attention

to acting, using the constructed model to compute value and policy functions.

With luck the agent may be able to gather data to construct a reasonable model that will lead

to good policies. However this approach is fraught with difficulties that include inefficiencies

in the way data is gathered, because the agent can get stuck in states, and may suffer from

appropriate depth and coverage of the task space

Learning via Off-line Dynamic Programming: in which the agent learns the model continuously

through the agent’s lifetime and at each time step it uses the current model to compute value

functions and optimal policies. The agent interleaves learning with acting making efficient

use of data, which is better than the two phase approach. However, the approach is still

computationally demanding and does not address the exploration question adequately.

Learning via On-line Dynamic Programming: in which the agent learns the model continuously

Page 48

2.4. CHAPTER SUMMARY

through the agent’s lifetime and incorporates phases of model estimation with phases of value

estimation. The approach was motivated by the theory of asynchronous dynamic program-

ming (ADP). The ADP approaches are geared towards addressing a major drawback of con-

ventional dynamic programming (DP) methods wherein computations involve operations over

the entire state set of the MDP i.e. requiring sweeps of the state set. ADP algorithms are itera-

tive DP algorithms that operate by backing up state values in a particular order, using currently

available estimates of the values of other states. The order of back-ups may be rule based.

The values of some states may be backed up a number of times before those of other states are

backed up once. However, it is important that the values of all the states must continue to be

backed up in order to achieve convergence correctly; no state should be ignored. Developing

the concepts of ADP further, a class of value iteration algorithms termed adaptive real-time

dynamic programming (ARTDP) algorithms has been defined (Kaelbling et al. 1996, Sutton

& Barto 1998) and it is this class of algorithms that we work with in this thesis.

2.4 Chapter Summary

In this chapter we have described the framework of Markov decision processes and discussed how

a performance criterion can be coupled with the process to specify a Markov decision task. We

have described approaches to solving Markov decision tasks, organising the description around the

notions of planning and learning. We described solving a Markov decision task with a known cor-

rect model of the underlying MDP and this we explained can be accomplished through value itera-

tion, policy iteration and linear programming algorithms. We also described learning in MDP and

explained that this occurs when we don’t have a complete model of the underlying MDP. The ap-

proaches we described for learning in MDP are split between a) model-free methods using Monte

Carlo sampling and temporal difference, and b) model-based learning using normalised transition

counts to build the model and adaptive dynamic programming algorithms to act using the constructed

model. Our focus in the rest of the thesis shall be on model-based methods and particularly how the

agent could improve its estimates of model parameters using transferable prior information.

Page 49

3
Capturing Uncertainty about the

Task-Environment Model

In the previous chapters we highlighted the need for learning when there exist uncertainty over task

environments. A simple frequentist approach was presented in chapter two to illustrate the learning

involved. In this chapter and the following ones we go into more detail about learning in uncertain

task environments particularly in relation to system dynamics. We explore common descriptions

for modelling transition uncertainty and present a Bayesian view of learning in Markov decision

processes with uncertain transition probabilities.

3.1 Introduction

As discussed in Chapter two, sequential decision making tasks can be formalised in terms of Markov

decision processes (MDP) as maximizing a value function jointly determined by the policy chosen

by the decision agent and the MDP parameters. That is, the decision agent attempts to solve the

following optimisation problem:

max
π

V π(s) = u{γ,R,P,V π(s′)} ∀(s,s′) ∈ S, (3.1)

where π is a policy i.e. a statement of actions to take in each state s of the task environment,

V π(s) is the value of state s from following policy π with a discount factor γ , and R,P are the

Page 50

3.1. INTRODUCTION

MDP’s reward and transition parameters respectively. It is sometimes assumed that the agent has a

complete knowledge of the environment in which case the MDP is assumed known with certainty

and the policy can be determined straightforwardly using, for example, the planning algorithms we

described in Chapter two. Unfortunately, in real world, the parameters of the MDP are often subject

to uncertainty.

The uncertainty can be intrinsic and unavoidable, may arise from many other reasons such as:

a) imprecise or conflicting elicitations from experts, b) insufficient data from which to estimate the

models, c) incorrect measurements, or d) nonstationary variations in the model values. In the face

of uncertainty, establishing the MDP parameters and the optimal policy is no longer trivial. The

simplest type of uncertainty arises when interactions within the world can be stochastic. At the other

end of the spectrum is uncertainty that arises when we do not know exactly how the world works.

Decision-making tasks under such strong or genuine uncertainty are generally difficult to tackle;

in such environments it might be hard to evaluate actions and plans and, consequently, to find the

optimal action or policy or plan to follow. It has long been known that neglecting uncertainty in

the MDP parameters and instead solving the decision problem of Equation 3.1 with some roughly

right parameters or certainty equivalents could over-simplify the decision task, render a computed

solution highly sub-optimal with possibly conflicting and incorrect policies.

In this and subsequent chapters of the thesis we go into more detail about learning in uncer-

tain task environments. We focus specifically on transition uncertainty and Bayesian approaches

to learning in Markov decision processes with uncertain transition probabilities. The remainder of

this chapter is organised into three sections. In Section 3.2 we explore common descriptions for

modelling transition uncertainty and describe how we estimate state transition probabilities using

multinomial distributions. In addition, we describe in the section a more precise Bayesian notion

of transition uncertainty based on the idea of credibility region and discuss how to measure dis-

tances between two transition models. We introduce in Section 3.3 Bayesian learning in MDPs with

uncertain transition models. The chapter ends in Section 3.4 with a chapter summary.

Page 51

Chapter 3: Capturing Uncertainty about the Task-Environment Model

3.2 Transition Uncertainty

We now focus on the problem of transition uncertainty in Markov decision processes. As introduced

in the preceding section, transition uncertainty exists naturally in tasks where a fully determined

transition model P of system dynamics is not readily available and the model must be estimated

from experimentation. One of the very first steps in handling transition uncertainty is describing the

uncertainty in the transition model. There are many ways of representing transition uncertainty and

the more common descriptions are discussed in the next section.

3.2.1 Common Descriptions for Modelling Transition Uncertainty

This section describes how uncertainties in transition probabilities are modelled. The approaches we

describe vary from a partial knowledge of transition probabilities to Bayesian methods that place a

probability density over the space of all possible transition models. Recall from Chapter two that the

transition probability matrix P of an MDP under action a in (|S|× |S|) dimensional finite state space

is

Pa =

pa
11 pa

12 pa
13 . . . pa

1|S|

pa
21 pa

22 pa
23 . . . pa

2|S|

pa
31 pa

32 pa
33 . . . pa

3|S|
...

...
...

. . .
...

pa
|S|1 pa

|S|2 pa
|S|3 . . . pa

|S||S|

and the entries pa

ss′ are the conditional probabilities Pr(Xt+1 = s′|Xt = s) at the single step t to t +1,

with s,s′ ∈ S. The transition probabilities naturally satisfy the constraints 0≤ pa
ss′ ≤ 1; ∑s′∈S pa

ss′ = 1

∀ s ∈ S. For a given state s ∈ S the constraints depend exclusively on the s-th row of the transition

matrix. That is, for each s ∈ S, the constraints are not coupled by pa
ss′ ∀rows s′ 6= s ∈ S. As a result,

Page 52

3.2. TRANSITION UNCERTAINTY

the transition matrix P can be split by rows as follows.

Pa =
[
~pa

1,~p
a
2, . . . ,~p

a
|S|

]

where ~pa
s is the row of the transition matrix in state s.

One way of incorporating uncertainty in the transition matrix P is to consider that the transition

probabilities are partially available, that is, some elements of the matrix are unknown (Zhang &

Lam 2010). Recall the agent wellbeing task we described in Figure 2.1 of Chapter two and take,

for example, a situation in which an incomplete description is available for the transition matrix

under the repair action illustrated in Figure 3.1 where each unknown element is labelled as ‘?’. An

Prepair =

Healthy Ill Dead

Healthy 0.90 ? ?
Ill 0.84 ? 0.10
Dead ? ? 1.00

Figure 3.1: A simple instance of the agent wellbeing task with partially known transition
probability matrix

equivalent description of uncertainty can be obtained through a classical approach that assume that

the transition probabilities are unknown but that they exist in a finite region of n-dimensional space

bounded by known hyperplanes. This leads us nicely to the subject of polytopic transition models

which we describe next.

Page 53

Chapter 3: Capturing Uncertainty about the Task-Environment Model

3.2.1.1 Polytopic Transition Models

A common approach for describing uncertainty in task environments is to consider the transition

matrix to lie in a given set, most typically a polytope. Coxeter (1973) defines polytope as geomet-

rical entity represented by the general term of the infinite sequence ‘point, line segment, polygon,

polyhedron, . . .’ or, more specifically, as a finite region of n-dimensional space bounded by a finite

number of hyperplanes. Using a general polytopic models to handle uncertainty in process dynamics

is often not tractable as it incurs a significant additional computation effort and sometimes a poor

representation of statistical uncertainty that leads to conservative policies. These issues with poly-

trophic representations of transition models are alleviated when the uncertainty is described by an

interval matrix or sets (e.g. convex sets in Goncalves, Fioravanti & Geromel (2010), and compact

sets in Kalyanasundaram, Chong & Shroff (2002)) or when the polytope is described by its vertices.

The following rows define each of the uncertain polytope vertices in the example of Figure 3.1.

~prepair,1
1 = [0.90,0.10,0.00] ~prepair,2

1 = [0.90,0.00,0.10]

~prepair,1
2 = [0.84,0.06,0.10]

~prepair,1
3 = [0.00,0.00,1.00]

It is important to note that whenever a row contains none or one ‘?’ or when an element in the row

equals 1.0 then, as a result of the normalisation constraint, only one row is generated. This reduces

the uncertainty in the process, as illustrated in Figure 3.2. Two or more ‘?’ appearing in a row will

produce the same number of vertices when none of its elements have a transition probability that is

equal to 1, as it is in the case of ~prepair,1
1 and ~prepair,2

1 above.

Interval based approaches to handling uncertainty provides upper and lower bounds on the tran-

sition probability where

~pa
s = {pa

ss′ |pa
↓,ss′ ≤ pa

ss′ ≤ pa
↑,ss′ , ∀s′ ∈ S} (3.2)

where pa
↓,ss′ and pa

↑,ss′ are the lower and upper bounds on pa
ss′ respectively. Although the concept of

Page 54

3.2. TRANSITION UNCERTAINTY

Prepair =

Healthy Ill Dead

Healthy 0.90 ? ?
Ill 0.84 0.06 0.10
Dead 0.0 0.0 1.00

Figure 3.2: The simple instance of the agent wellbeing task with reduced transition uncertainty.

lower and upper bounds presents a relatively simpler and intuitive representation of uncertainty it

is subsumed by representations using convex sets. A convex set approach to incorporating uncer-

tainty in transition probabilities (Goncalves et al. 2010) usually consider the vector ~pa
s unknown but

belonging to a convex set with known vertices for all k ∈ Ks, specified as:

~pa
s ∈ {

Ks

∑
k=1

λ
k
s ~p

a,k
s : λ

k
s ∈ Λ} (3.3)

for all s ∈ S and a ∈ A, where λ k
s ∈ Λ are the weights applied to each of the vertices ~pa,k

s . Liu (2000)

used convex sets to model simplex constraints, such as monotonicity and convexity or concavity, on

the probabilities of a set of discrete distributions, including multinomial, and described implementa-

tions using Expectation-maximization (EM) and Data Augmentation (DA) algorithms. The simplex

approach is particularly relevant for handling statistical uncertainty in process dynamics considering

that transition probabilities can be estimated using multinomial distributions.

One can also resort to using imprecise probabilities to represent uncertainty in MDPs. The term

MDP with Imprecise Probabilities (MDP-IP) was proposed by White & Eldeib (1994). Satia &

Lave (1973) described a related concept they termed MDP with uncertain transition probabilities.

To specify an MDP-IP, all elements of an MDP must be specified except the transition probabilities

which for MDP-IPs are specified as a set of probabilities for each transition between states. These

Page 55

Chapter 3: Capturing Uncertainty about the Task-Environment Model

sets are referred to as transition credal sets. MDP-IPs are identical to MDPs, except that the tran-

sition function is replaced with a set of distributions. Solutions to the MDP-IP require nonlinear

optimization and can be extremely time-consuming in practical applications. The main computa-

tional problem in the solution of MDP-IPs is the need to repeatedly solve nonlinear constrained

optimization problems.

3.2.1.2 Probability Distribution over Possible Models

In a Bayesian approach to handling of transition uncertainty in MDPs, we assume that there is a

space P of all the possible transition functions (parametric models) for the MDP and that there exists

a belief state over this space. The belief state defines a probability density f (P|M) over the MDPs.

The density is parameterised by M ∈M. In the Bayesian approach, the unknown parameter P is

treated as a random variable, with prior distribution f (P|M) which represents what one knows about

the parameter before observing transitions.

The choice of prior distribution is a relevant issue in Bayesian methods. In practical applica-

tions, when a prior is specified, it is usually said that it approximately reflects an experimenter’s

prior opinion. There are two main reasons why prior information sometimes requires approxima-

tion. Firstly, there are situations in which the task of translating prior information into a probability

distribution may be quite hard task and use of an approximation is necessary. Secondly, even when

an expression of the true prior distribution is available, it might happen that the posterior cannot be

exactly evaluated. From robust Bayesian viewpoint, Good (1950) proposed that subjective infor-

mation can be quantified in terms of a class of possible distributions from which has emerged an

ε−contaminated classes of prior distributions which is a mixture of base prior and a class of prior

distributions e.g. Berger & Berliner (1986). Procedures that select the priors in the ε−contaminated

classes acts as an automatic ‘robustifier’ for the base prior in the sense that the resulting posteri-

ors and Bayes estimators are more robust to misspecification in base prior elicitation (Berger &

Berliner 1986, Berger 1990).

Page 56

3.2. TRANSITION UNCERTAINTY

3.2.2 Estimating Transition Probabilities

This section describes how state transition probabilities can be estimated using multinomial distri-

butions. A multinomial distribution is the probability distribution of outcomes from a multinomial

experiment. It is a frequently used distribution in statistics with the following properties:

• The experiment consists of a number of repeated trials.

• Each trial has a discrete number of possible outcomes; two or more outcomes in a multinomial

experiment.

• On any given trial, the probability that a particular outcome will occur is constant.

• The trials are independent; that is, the outcome on one trial does not affect the outcome on

other trials.

Let us consider an experiment consisting of n independent trials and for each trial assume the prob-

ability of a particular outcome k is pk; p1, p2, . . . , pk, . . . , pK where pk ≥ 0 for k = 1,2, . . . ,K and

∑k pk = 1. Let xk indicate the number of times outcome k was observed over the n trials. The

vector~x = (x1,x2, . . . ,xk, . . . ,xK) follows a multinomial distribution with parameters n and ~p where

~p = (p1, p2, . . . , pk, . . . pK). The probability mass function of this multinomial distribution is given

by:

f (x1,x2, . . . ,xk, . . . ,xK |n, p1, p2, . . . , pk, . . . pK) =
n!

x1!x2! . . . ,xk!, . . . ,xK!

K

∏
k=1

pxk
k (3.4)

for non-negative integers (x1,x2, . . . ,xk, . . . ,xK). The experiment and resulting distribution is bino-

mial where there are only two outcomes.

The modelling of transition probabilities using multinomial distributions can be thought of as

follows: a) in state s, we observe ma
s0 transitions under action a, b) the observed counts are stored

in an |S|× |S| matrix of observation counts Ma in which ma
ss′ is the total number of times we have

observed transition s a
; s′, c) the transition model ~pa

s ∈ P is a multinomial with probability mass

Page 57

Chapter 3: Capturing Uncertainty about the Task-Environment Model

function

f (~ma
s |ma

s0,~p
a
s) =

ma
s0!

ma
s1

!ma
s2

! . . .ma
sN

!

N

∏
s′=1

(pa
ss′)

ma
ss′ (3.5)

where ~ma
s = (ma

s1
,ma

s2
, . . . ,ma

sN
) are observation counts (ma

s0 = ∑s′ ma
ss′) and, as before, the transition

probabilities must satisfy the constraints that 0 ≤ pa
ss′ ≤ 1;∑s′ pa

ss′ = 1 for s = 1,2, . . .N, and finally

d) an estimate of transition probability p̂a
s can be extracted from the observation counts as follows:

p̂a
ss′ =

ma
ss′

∑s′∈S ma
ss′
∀s ∈ S. (3.6)

In Bayesian Settings, a useful prior for the probability parameter p of the multinomial distribu-

tion is Dirichlet distribution. We describe the Dirichlet distribution approach to modelling transition

probabilities in the next section.

3.2.2.1 Dirichlet Distribution of Transition Models

We saw in the previous section that the transition model P of an MDP can be regarded as a gen-

eralisation of an independent multinomial model. A convenient prior distribution for the model is

Dirichlet. The Dirichlet distribution is a natural conjugate prior of the parameters of the multinomial

distribution. The probability density of the Dirichlet distribution for variables ~pa
s = (pa

s1
, pa

s2
, . . . , pa

sN
)

with parameters ~ma
s = (ma

s1
,ma

s2
, . . . ,ma

sN
) is defined by:

f (~pa
s |~ma

s) =
1

Z(~ma
s)

N

∏
s′=1

(pa
ss′)

ma
ss′−1 (3.7)

for the possible N successor states of state s ∈ S and action a ∈ A, given that ma
ss′ > 0 ∀s,s′ ∈ S.

The parameters ~ma
s can be interpreted as prior observation counts for events governed by ~pa

s . The

normalisation constant Z(~ma
s) is:

Z(~ma
s) =

∏
N
s′=1 Γ(ma

ss′)

Γ(∑N
s′=1ma

ss′)
(3.8)

Page 58

3.2. TRANSITION UNCERTAINTY

As before, let ma
s0 = ∑

N
s′=1ma

ss′ . Table 3.1 contains expressions for the mean and variance of the

Dirichlet distribution in the context of transition models.

Expectation E[pa
ss′]

ma
ss′

ma
s0

Variance Var[pa
ss′]

ma
ss′ (m

a
s0−ma

ss′)

(ma
s0)

2(ma
s0+1)

Table 3.1: Some Properties of the Dirichlet Distribution

When ma
ss′ → 0, the Dirichlet distribution becomes non-informative. This means that all the pa

ss′

will stay the same if all the parameters ma
ss′ are scaled with the same multiplicative constant. The

variances will, however, get smaller as ma
ss′ grows.

Example 3.1 Lets consider the estimation of transitions from ill-health state of our wellbeing task

under repair action. Assuming Dirichlet prior probability distribution on P, the resulting density

functions are shown in Figure 3.3.

The Dirichlet distribution entertains several properties that are known to be very useful in sta-

tistical inference. In particular, estimates derived using Dirichlet priors are consistent (the estimate

converges with probability one to the true distribution), conjugate (the posterior distribution is also

a Dirichlet distribution), and can be computed efficiently (all queries of interest have a closed-form

solution). Furthermore, theoretical studies of online predictions of individual sequences show that

prediction using Dirichlet priors is competitive with any other prior distribution; with the multi-

nomial distribution it is easy to encode a prior by assigning the initial counts in M appropriately.

Complete uncertainty of the domain can be setting M to the constant matrix with entries equal to 1.

Events which are more likely to occur can be assigned a higher value.

Dirichlet priors are known to be unwieldy in some key applications. These applications are

characterized by several distinct features, such as follows.

• The set of possible outcomes is very large and often not known in advance.

Page 59

Chapter 3: Capturing Uncertainty about the Task-Environment Model

(a) ~ma
i = (2,2,2), ~pa

i = (0.3333,0.3333,0.3333)

(b) ~ma
i = (14,46,10), ~pa

i = (0.2000,0.6571,0.1429)

Figure 3.3: Dirichlet distributions for the example transition models a) ~ma
i = (2,2,2) and b)

~ma
i = (14,46,10) having mean transition probabilities [0.3333,0.3333,0.3333] and

[0.2000,0.6571,0.1429] respectively.

Page 60

3.2. TRANSITION UNCERTAINTY

• The number of training examples is small compared to the number of possible outcomes.

• The approaches to multinomial estimation tend to be domain–independent; they make little

use of prior knowledge about a specific domain. In many domains where multinomial distri-

butions are estimated there is often at least weak prior knowledge about the potential structure

of distributions.

• The outcomes that have positive probability constitute a relatively small subset of the possible

outcomes. This subset is not known in advance.

• There usually is knowledge of the pattern that underlies the possible outcomes.

3.2.2.2 Generating Samples of Transition Models

How do we generate samples from Dirichlet distributions? As we shall see later in this thesis par-

ticularly in our treatment of truncated Dirichlet models, we require a good method of generating

samples of transition models from Dirichlet distributions. In Bayesian settings, sampling approaches

aim to provide estimates of both the model parameters and their uncertainty by generating samples

of models that are distributed according to the true posterior probability distribution of the model

parameters conditioned on the data.

There exist several algorithms for generating samples from Dirichlet distributions and they in-

clude (Ş̧tefănescu 1989, Narayanan 1990, Hung, Balakrishnan & Cheng 2011, Ng, Tian & Tang

2011):

• The Gamma method based on the relation between Dirichlet and Gamma distributions,

• Different rejection techniques or the use of the classical inverse method, and

• The use of a transformation of a uniform random vector over a bounded domain.

In addition, Frigyik, Kapila & Gupta (2010) discussed a method commonly referred to as Pòlya’s

urn and a ‘stick breaking’ approach. They compared the two methods to that based on transform-

Page 61

Chapter 3: Capturing Uncertainty about the Task-Environment Model

ing Gamma-distributed random variables. Performance analysis of the algorithms indicate that the

Gamma approach is fast and computationally more efficient in comparison to others (Narayanan

1990, Frigyik et al. 2010). We use the Gamma approach in this thesis. Given a Dirichlet distri-

bution, Dir(~m), the sampling algorithm based on the Gamma approach can be straightforwardly

accomplished in two steps as follows:

step 1: Generate gamma realisations: for i = 1,2, . . . ,k, draw a number ζi from Γ(mi,1),

step 2: Normalise them to form a probability mass function: for i= 1,2, . . . ,k, set xi =
ζi

∑
k
j=1 ζ j.

. Then

~x is a realisation of Dir (~m).

The Gamma distribution Γ(κ,θ) is defined by the following probability density:

f (x|κ,θ) = xκ−1 e−x/θ

θ κΓ(κ)
(3.9)

The density is in terms of the gamma function Γ(·) and is parameterized by κ > 0 a shape parameter

and θ > 0 a scale parameter. The scale that is used to generate the Gamma variates is irrelevant, as it

cancels in the ratio. Incidentally, only k−1 variates need to be generated as the kth is obtained from

the fact that ∑ j x j = 1. Given the efficiency of modern gamma generators (Marsaglia & Tsang 2000),

the generation of independent Dirichlet variates is particularly undemanding.

3.2.3 Credible Set of Transition Models

Whilst the Dirichlet density provides us with a good measure of transition uncertainty through its

characterisation of the hyperparameters ~ma
i for each row i = 1,2, . . . , |S| of the transition model, we

will be interested in a more precise notion of uncertainty in terms of posterior intervals that are

expressed in probability statements of the form:

Pr(pa
↓,i j ≤ pa

i j ≤ pa
↑,i j) = 1−α (3.10)

Page 62

3.2. TRANSITION UNCERTAINTY

where pa
↓,i j and pa

↑,i j are lower and upper bounds respectively on pa
i j. The interval

[
pa
↓,i j, pa

↑,i j

]
is

called a 100(1−α)% Bayesian confidence interval or credible set for the parameter of interest pa
i j.

It is the Bayes version of the classical confidence intervals used in frequentist statistics.

The Bayesian counterpart of the frequentist idea of a confidence interval is usually referred to as

a ‘(posterior) credible interval’ and corresponds to 100(1−α)% of the posterior probability f (P|M).

Commonly used are central posterior intervals and regions of highest posterior density. In contrast to

frequentist confidence intervals, Bayesian credible intervals possess individual coverage probability.

For example, a single 95% Bayesian-credible interval for a parameter is interpreted as having 95%

probability of containing the true parameter value. A single frequentist confidence interval, on the

other hand, either contains the parameter value of not – there is no probability statement to be made.

Frequentist coverage probabilities arise from the (possibly hypothetical) replication of a procedure

and taking the ratio of favourable outcomes.

The idea of credibility regions (Berger 1985, Chen & Shao 1999) offers a more precise notion

of the uncertainty in a row of transition matrix and is more formally defined as follows:

Definition 3.1 (The Credibility Region:) An 100×η% credibility region for parameter p is a sub-

set P of P of the form:

P = {~p ∈ P| f (~p|~m)≥ k(η)}

and k(η) is the largest constant such that:

∫
p

f (~p|~m)d p≥ η . (3.11)

That is, for a given prior distribution, the credibility region p is such that the overall probability mass

of the density covers a 100×η% region and the likelihood of the density is at least k(η). Solution

to the integration problem (Equation 3.11) for the credibility region cannot be achieved in closed

form for the Dirichlet density. There have been several suggested approaches for constructing an

highest posterior density (HPD) credible region for continuous distributions including from a gen-

Page 63

Chapter 3: Capturing Uncertainty about the Task-Environment Model

eral univariate density (Chen & Shao 1999, Gewali, Ntafos & Singh 2002). Even though some of

the approaches are fairly efficient for Beta density, extending to higher dimensions like Dirichlet is

difficult and computationally expensive. Our focus in this thesis is on algorithms that use Bayesian

credible intervals and to estimate the credible intervals we use an F-distribution table method (Algo-

rithm 3.1, adapted from Nicholson (1985)) and a simple Monte Carlo sampling method (Algorithm

3.2). Figure 3.4 shows estimates of credible intervals for two sample transition models.

1: procedure
[

pa
↓,ik, pa

↑,ik

]
= F-DISTRIBUTION (CI)(~ma

i , k, α)

2: ma
i−← ∑ j 6=k ma

i j

3: z1← 2× (ma
ik +1)

4: z2← 2× (ma
i−+1)

5: z← F1−α,z1,z2

6: pa
↑,ik← (1+ z× z1

z2
)−1

7: Redo steps 2 through 6 for the second credible limit

8: end procedure

Algorithm 3.1: Credible Interval (CI) using F-Distribution Tables.
Adapted from Nicholson (1985)

1: procedure
[

pa
↓,ik, pa

↑,ik

]
= MONTE CARLO CI(~ma

i , k, N, α)

2: ma
i−← ∑ j 6=k ma

i j

3: rands← random (Beta, N, ma
i−, ma

ik)

4:
[

pa
↓,ik, pa

↑,ik

]
← Quantile(rands,1−α,α)

5: end procedure

Algorithm 3.2: Credible Interval (CI) through Simple Monte Carlo

Page 64

3.2. TRANSITION UNCERTAINTY

(a) ~ma
i = (2,2,2), ~pa

i = (0.3333,0.3333,0.3333)

(b) ~ma
i = (14,46,10), ~pa

i = (0.2000,0.6571,0.1429)

Figure 3.4: Credible regions for the example transition models a) ~ma
i = (2,2,2) and b)

~ma
i = (14,46,10) having mean transition probabilities (0.3333,0.3333,0.3333) and

(0.2000,0.6571,0.1429) respectively.

Page 65

Chapter 3: Capturing Uncertainty about the Task-Environment Model

3.2.4 Probabilistic Distance Measures

Probabilistic distance measures between two probability distributions are very important metrics to

evaluate the similarity for data of statistical nature. If the parameters of two probability density

functions are known or can reliably be estimated, a single numerical value can be calculated that

assesses how far or close two stochastic information sources are from each other. Rauber, Braun

& Berns (2008) analyse probabilistic distances of the Dirichlet distribution and its particular two-

parameter instantiation, the Beta distribution. Their work is motivated by the fact that the distribution

has a variety of possible applications where similarity measures between sample sets are required and

that probabilistic distances between sample sets have not been investigated so far for this particular

distribution.

Consider two probability density functions f1(P|M1) and f2(P|M2) of a |S| dimensional contin-

uous random variable P defined by their functional forms f1, f2 and parameters M1,M2 respectively.

A probabilistic distance measure J between the two probability density functions is a functional that

measures the difference ∆ integrated over the domain of P.

J(f1, f2,M1,M2) =
∫

P
∆[(f1, f2,M1,M2)]dP (3.12)

Rauber et al. (2008) gives the analytical definitions of the Chernoff, Bhattacharyya and Jeffreys-

Matusita probabilistic distances between two Dirichlet distributions and two Beta distributions as its

special case. They showed the inappropriateness of some other measures including the Kullback-

Leibler Divergence for calculating distances between Dirichlet distributions.

The Bhattacharyya coefficient ρ between two probability distributions described in the func-

tional forms f1, f2 and their respective parameters M1,M2 is defined as (Bhattacharyya 1943, Kailath

1967):

ρ(M1,M2) =
∫ √

f1(P|M1) f2(P|M2)dP (3.13)

From Equation 3.7, we express the Dirichlet probability density function of transition probabili-

Page 66

3.2. TRANSITION UNCERTAINTY

ties ~pa
s from state s under action a as follows:

f (~pa
s |~ma

s) =
1

Z(~ma
s)

N

∏
s′=1

(pa
ss′)

ma
ss′−1 (3.14)

with Dirichlet parameters ~ma
s = (ma

s1,m
a
s2, . . . ,m

a
s|S|), N = |S|, constraints ma

ss′ > 0 and ∑s′ pa
ss′ = 1.

The normalising constant Z(~ma
s) which forces f (~pa

s |~ma
s) as a probability density function to integrate

to unity over the domain of P is the multinomial beta function with value:

Z(~ma
s) =

∏
N
s′=1 Γ(ma

ss′)

Γ(∑N
s′=1ma

ss′)
(3.15)

Following Rauber et al. (2008) in their definition of Bhattacharyya coefficient ρ for Dirichlet

distributed densities, we write the Bhattacharyya coefficient ρ between two Dirichlet distributed

transition models ~pa
s , ~ma,1

s and ~pa
s , ~ma,2

s as follows:

ρ(~ma,1
s ,~ma,2

s) =
1

Z(~ma,1
s)

1
2 Z(~ma,2

s)
1
2

∫ N

∏
s′=1

(pa
ss′)

ma,1
ss′
2 +

ma,2
ss′
2 −1d~pa

s (3.16)

Let β a
ss′ =

ma,1
ss′
2 +

ma,2
ss′
2 , s′ = (1,2, . . . , |S|). Then f (~pa

s |~β a
s) can be seen as a Dirichlet distribution with

parameters ~β a
s in which β a

ss′ > 0 ∀s′. In effect,
∫

f (~pa
s |~β a

s) = 1 and
∫

∏
N
s′=1 (pa

ss′)
β a

ss′−1d~pa
s = Z(~β a

s).

Hence Equation 3.16 can be expressed as follows:

ρ(~ma,1
s ,~ma,2

s) =
Z(~m

a,1
s
2 + ~ma,2

s
2)√

Z(~ma,1
s)Z(~ma,2

s)
(3.17)

and from the Bhattacharyya coefficient ρ defined in Equation 3.13 we can express the Bhattacharyya

distance between the two Dirichlet densities, in logarithm form, as follows:

JB(~ma,1
s ,~ma,2

s) =−ln ρ(~ma,1
s ,~ma,2

s) (3.18)

The logarithm form prevents numerical overflows in the computation of Gamma (·) when (·) comes

Page 67

Chapter 3: Capturing Uncertainty about the Task-Environment Model

near 171.61.

In Chapter eight of this thesis we will need to calculate distances between Dirichlet distributions

for the degree of match between historical data and imaginary data drawn from the user specified

constraints. To do this however the measure would be required to be bounded between [0, 1]. A

bounded measure is reported by Roman, Jolad & Shastry (2012) that uses base 2 for the logarithm,

normalising the maximum value to 1.

J′B(~m
a,1
s ,~ma,2

s) =−log2

[
1+ρ(~ma,1

s ,~ma,2
s)

2

]
(3.19)

We are adopting the bounded measure in this thesis. We validated the measure for a range of proba-

bility distributions and the result is shown in Figure 3.5.

Figure 3.5: An illustration of the bounded distance measures between two Dirichlet distributions.
In this figure, we consider two Dirichlet densities ~m1 = ~p1 ∗60 and ~m2 = ~p2 ∗60

where ~p1 = [0.33334,0.33333,0.33333] and ~p2 = [0.33334, p21, p22].
(a) plots p21

p22
∈ [0,1] against the bounded measure J′B(~m1,~m2)

(b) plots the probability density function f (~p2|~m1) against the bounded measure J′B(~m1,~m2).

Page 68

3.3. BAYESIAN LEARNING WITH UNCERTAIN PROCESS MODELS

3.3 Bayesian Learning with Uncertain Process Models

As discussed in Chapter two, an agent that is learning to perform a task in unknown or partially

known MDPs will start with a parameterised ‘world model’ or a skeletal description of the task en-

vironment. The job of the agent is to acquire experience while interacting with the environment and

use the experience to estimate the unknown parameters of the world model. The MDP that results

from the estimated world model can be solved optimally using the planning techniques we described

in Chapter two. The agent can approach the model based learning task using either frequentist meth-

ods that we described in Chapter two or alternatively the agent could use Bayesian techniques. Our

focus in the remainder of this chapter is on Bayesian approaches.

Bayesian learning in MDPs can be traced back to (Bellman & Kalaba 1959a, Bellman & Kalaba

1959b) where adaptive control processes are introduced. Bayesian Learning in MDPs have two

distinctive features namely, a) a prior belief state which specifies our prior density over the space of

possible models, and b) the concept of hyperstates, introduced in Bellman & Kalaba (1959b), that

refers to the system as an adaptive control process. Informally an hyperstate pairs a current model

estimate (the information state) with the current state in the MDP (the physical state). A Hyper

MDP is then created by allowing the transition probabilities between hyper states to be determined

by the current model estimate at the hyper state. It has been shown that if the agent considers all

the possible hyper states it could reach and computes the value function for all these hyper states,

this value function produces an optimal exploration strategy. Using hyperstates as the model for

exploration overcomes myopic behaviour.

3.3.1 Bayesian Estimator of expected return

In a Bayesian formulation of the estimation problem, we assume that there is a space P of all the

possible transition functions (parametric models) for the MDP and that there exists a belief state

over this space. The belief state defines a probability density f (P|M) over the MDPs. The density

is parameterised by M ∈M. In the Bayesian approach we treat the unknown parameter P as a ran-

Page 69

Chapter 3: Capturing Uncertainty about the Task-Environment Model

dom variable, with prior distribution f (P|M) which represents what one knows about the parameter

before observing transitions.

We choose a prior belief state which specifies our prior density over the space of possible models.

At each step in the environment, we start at state s, choose an action a and then observe a new state

s′ and a reward r. We summarise our experience by a sequence of experience tuples < s,a,r,s′ >

stored in D. When we observe transitions, we update the prior with the new experience. Given an

experience tuple D we can compute the posterior belief state by Bayes rule:

f (P|M) =
f (D|P) f (P|M)

f (D)

=
1
Z

f (D|P) f (P|M) (3.20)

in which Z is a normalising constant. Thus, the Bayesian approach starts with some prior probability

distribution over all possible MDPs (we assume that the sets of possible states, actions, and rewards

are delimited in advance). As we gain experience, the approach focuses the mass of the posterior

distribution on those MDPs in which the observed experience tuples are most probable.

As mentioned in the previous section, we need to choose a distribution that is closed under

updates and which can be indexed by a set of parameters M. The multinomial distribution is a

natural choice for finite state and action spaces.

The Bayesian estimator of expected return under the optimal policy is the expectation of the

value function:

Vs(M) =
∫
P

Vs(P) f (P|M)dP (3.21)

where Vs(P) is the value of state s given the transition function P. P is the set of all the possible

transition functions. We know from the central result of both Bellman and Martin that when this

integral is evaluated we transform our problem into one of solving a MDP with known transition

Page 70

3.3. BAYESIAN LEARNING WITH UNCERTAIN PROCESS MODELS

probabilities, defined on the information space M×S:

Vs(M) = max
a
{∑

s′
p̄a

ss′(M)(ra
s + γVs′(T a

ss′(M)))} (3.22)

in which, for convenience, the transformation on M due to a single observed transition s
a,r
; s′ is

denoted T a
ss′(M), p̄a

ss′(M) is the marginal expectation of the Dirichlet, and r is the reward associated

with the transition s
a,r
; s′. The optimal solution is to act greedily with respect to the Bayes values

(Bellman 1961).

This shows how the Bayesian estimate of value elegantly incorporates the value of future in-

formation. The optimal solution to the well-known exploration-exploitation trade-off is thus to act

greedily with respect to the Bayes values. Because the solution involves dynamic programming over

a tree of information states the problem is intractable. A simple approximation to this is the certainty

equivalent (CE) estimate. We could also approximate the value of the integral by random sampling

(Dearden 2000, Strens 2000, Strens 2003). As previously noted, the successive-approximation tech-

nique of dynamic programming can be used to solve Equation 3.22. However, as pointed out by Satia

& Lave (1973), in this case, the state space includes the parameter space of the matrix-beta distri-

bution and even for small size Markovian decision processes this approach has heavy computational

requirements.

Other approaches to the optimal learning problem include: a) sampling from the infinite hyper-

tree to produce a small, more manageable, tree (Wang, Lizotte, Bowling & Schuurmans 2005, As-

muth & Littman 2011) and using linear programming to compute the value of the hyperstates (Castro

& Precup 2007), b) exploration control based on optimistic model selection (OMS) from a density

over possible models (Wyatt 2001), and c) an improved characterization of the underlying decision

problem to be solved, recognising that Bayesian RL can be cast as a partially observable Markov

decision process (Duff 2002), and taking advantage of the fact that the optimal value function can

be parameterized by a set of multivariate polynomials thereby allowing efficient offline approximate

policy optimisation techniques to be derived (Poupart, Vlassis, Hoey & Regan 2006).

Page 71

Chapter 3: Capturing Uncertainty about the Task-Environment Model

3.4 Chapter Summary

We described in this chapter the notion of uncertainty regarding the transition probabilities of Markov

decision processes and explored the common descriptions for modelling transition uncertainty. We

then focused on Bayesian methods. Bayesian inference derives the posterior probability as a conse-

quence of two antecedents, a prior probability and a ‘likelihood function’ derived from a probability

model for the data to be observed. Bayesian inference computes the posterior probability accord-

ing to Bayes’ rule. We highlighted the Bayesian approach to optimal learning in the framework of

Markov decision processes and, in particular, described how total expected returns can be calculated

using Bayesian techniques.

Page 72

4
Exploration Control through

Model Selection

Usually when making decisions in an unknown or partially known world there often exist a set of

possible world models from which an agent may select one to work with. The selected model can be

used as a vehicle for explaining and predicting observations, estimating value functions, controlling

exploration and deciding how to behave. This chapter presents procedures for selecting models in

Bayes adaptive Markov decision processes.

4.1 Introduction

Models provide a concrete vehicle for explaining the occurrence of observations. Often the obser-

vations could be seen to have been produced by a set of competing candidate models and the role

of model selection is to identify the one model, from a set of candidate models that best captures

the regularities underlying the observations. Model selection is fundamental to scientific enquiry,

problem solving and decision making. An example of model selection is that of value function ap-

proximation in large scale reinforcement learning problems where a set of real world observations

is used to select a function that predicts state action values. Whilst picking a model from amongst a

set of competing models may seemingly appear straightforward, the problems with model selection

typically include the following: a) quantifying what is meant by ‘best’, b) establishing the appropri-

Page 73

Chapter 4: Exploration Control through Model Selection

ate set of assumptions that are applicable to the selection process, and c) knowing how to search the

model space for the ‘best’ model. A good model selection method will typically balance goodness

of fit with simplicity and be efficient in its search of the model space.

Exploration control in optimal learning can be achieved through model selection. In this chapter

we shall describe a method for controlling exploration via model selection. The method is known

as Optimistic Model Selection (Wyatt 2001), abbreviated as OMS. We shall review two established

algorithms used by OMS to select optimistic models in Bayes adaptive MDPs. We shall then formu-

late OMS as a multi-objective program. The multi-objective program will allow us to a) use OMS in

the presence of transition constraints, and b) exploit existing multi-objective programming solution

techniques to efficiently search the model space for the ‘best’ model.

The rest of the chapter is organised into five main sections. We introduce in Section 4.2 the

general set up for model selection in optimal learning and in Section 4.3 we describe the OMS

method. Our multi-objective programming approach to optimistic model selection is presented in

Section 4.4 and we show in Section 4.5 worked examples of the OMS methods we describe. We

conclude the chapter in Section 4.6 with a summary. The original contribution of this chapter is to

show how to extend OMS to work with constraints on the model using multi-objective programming

techniques.

4.2 The General Set up

Recall from Chapter three the Bayesian estimator of return under the optimal policy:

Vs(M) =
∫
P

Vs(P) f (P|M)dP (4.1)

where Vs(P) is the value of state s given a transition function P. P is the set of all the possible

transition functions, the Dirichlet distribution over the space of possible models is parameterised

by M and f (P|M) is the probability density for the possible transition model P ∈ P given M. Also

Page 74

4.2. THE GENERAL SET UP

recall from Chapter three the central result of both Bellman and Martin (Bellman 1961, Martin 1967)

that when the integral 4.1 is evaluated the problem is transformed into one of solving an MDP with

known transition probabilities, defined on the information space M×S:

Vs(M) = max
a
{∑

s′
p̄a

ss′(M)(ra
ss′+ γVs′(T a

ss′(M)))} (4.2)

in which, for convenience, the transformation on M due to a single observed transition s
a,r
; s′ is

denoted T a
ss′(M), p̄a

ss′(M) is the marginal expectation of the Dirichlet distribution, and ra
ss′ the reward

associated with the transition s
a,r
; s′. The optimal solution is to act greedily with respect to the Bayes

values defined in Equations 4.1 and 4.2. A way to evaluate equation 4.2 in unknown or partially

known environments is to default the transition model P to models that we select from M. Our focus

in this chapter and the rest of the thesis is on a model selection approach, with the following general

set-up.

• There is a set of candidate models P1,P2, . . . ,PK , where K is size of the model space. If K

is reasonably small an agent may choose to compare models to one another in a sequential

experiment. Unfortunately the set is usually infinite, i.e. K→ ∞.

• There is a prior distribution for the model and it is Dirichlet with known parameters M. The

probability density for a given model P ∈ P given the Dirichlet, i.e. f (P|M) can be computed

using the methods we described in Chapter three.

• Following a new observation regarding transition from a current state s to a new state s′ under

an action a, the prior distribution can be revised into posterior distribution M using Bayes rule.

• The successor states succa
s to the current state s under action a will become fully established

as learning progresses.

• The probability interval for each of the transition probabilities of model P is established using

the algorithms we described in Chapter three for calculating credible intervals.

Page 75

Chapter 4: Exploration Control through Model Selection

• The back-up values of successor states can be calculated using the value iteration methods we

described in Chapter two.

• One of the candidate models P1,P2 . . .PK . will be the best model given the estimated state

values and the credible intervals

Let us revisit the hospital robot task we mentioned earlier in Chapter one and consider transitions

(a) ~pdock
1 = (0.01,0.06,0.93) (b) ~pdock

1 = (0.10,0.05,0.85)

(c) ~pdock
1 = (0.01,0.09,0.90) (d) ~pdock

1 = (0.07,0.06,0.87)

Figure 4.1: Examples of transition models in the Wellbeing task. The models will appeal
differently to an optimistic learning agent that uses a principle of maximum expected utility with

biases in its probabilistic estimates of transitions.

under a dock action (Figure 4.1). Let the current state be 1, i.e. the robot is switched on, not docked

Page 76

4.3. OPTIMISTIC MODEL SELECTION (OMS)

and has low fuel and let successor states to the current state be states 1, 2, and 3. We assume the

corresponding value functions to be 120, 50, and 20 under 1 dock
; 1, 1 dock

; 2, and 1 dock
; 3 respectively

inducing the ordering shown in example models of Figure 4.1. In addition the probability intervals

for each of the successor states are assumed to be [0.01,0.3], [0.05,0.4], and [0.85,0.93] for pdock
11 ,

pdock
12 , and pdock

13 respectively. The candidate models in the model space described by these probability

intervals include those shown in Figure 4.1 and, as we shall show in the subsequent sections of this

chapter, an optimistic model is contained in this set of the candidate models. The example models

shown in Figure 4.1 will appeal differently to an optimistic learning agent that uses a principle of

maximum expected utility with biases in its probabilistic estimates of transitions. In next section,

we shall describe the OMS method as a specific instance of the general set-up we itemised above.

4.3 Optimistic Model Selection (OMS)

The OMS method (Wyatt 2001) integrates ideas from a popular family of approximate approaches

to the exploration-exploitation trade off which typically use some instantiation of the heuristic ‘be

optimistic in the face of uncertainty’ (Kaelbling et al. 1996, Wiering & Schmidhuber 1998, Meuleau

& Bourgine 1999). OMS integrates the instantiation idea with the Bayesian view of exploration by

selecting an optimistic model Popt from P using probability intervals calculated based on f (P|M).

The OMS method has the following two components:

Augmented MDP: Similar to R-max (Brafman & Tennenholtz 2002), OMS uses an augmented

state space. It adds a hypothetical state k to the underlying MDP resulting in an augmented

state space k∪ S. The hypothetical state is sometimes referred to as the ‘Garden of Eden’

(Szita & Lőrincz 2008). k is an absorbing state and once visited the agent remains in the

state indefinitely with reward Rmax for each time step taken at the garden of Eden. State k

represents possible unobserved transitions (Kearns & Singh 2002) and by making the state

highly rewarding it also induces a distal exploration value function (Wyatt 1997) that will

drive the learner toward novel state action pairs.

Page 77

Chapter 4: Exploration Control through Model Selection

Exploration value function: The value function for the augmented MDP can differ from the true

underlying state values that we described in Chapter two. The value function for the aug-

mented MDP is called the exploration value function and the relevant Bellman equation is:

ξ
a
s (M) = ∑

s′
pa

opt,ss′(M)(ra
ss′+ γ max

a′
{ξ a′

s′ (M)}) (4.3)

where pa
opt,ss′(M) are the transition probabilities according to Popt . The agent acts greedily

with respect to ξ a
s (M) by selecting the action with the highest optimistic value.

4.3.1 The Main Loop of OMS

The main loop of the OMS method is shown in Algorithm 4.1. The procedure takes as input a known

specification of an MDP i.e. the states S, actions A and reward function R of the MDP. Also passed

as input to the procedure are the prior distribution M, the discount rate γ for infinite horizon tasks, α

that signifies the level of confidence attached to probability intervals, and the initial state values V .

The procedure returns an optimistic model Pa
opt .

Lines 2-5 are the initialisation steps. The true value function for the hypothetical state Vk is

initialised in line 2 and the prior information for the hypothetical state is initialised in line 3. The

exploration values are initialised in lines 4 and 5. The underlying MDP is augmented with a hypo-

thetical state k during the initialisation steps.

Lines 6-18 contains the main learning steps. The agent observes the current state x in line 7 and

selects an action a to perform given the current state and the current exploration values. In line 8, the

agent selects an action a with the highest optimistic value, breaking ties randomly. In line 9 the agent

executes the action selected and observes the transition to the next state i.e. x
a,r
; y. The observed

transition is used to update beliefs in line 10. The updated belief is the posterior distribution defined

by M. The agent runs its asynchronous real time dynamic programming (ARTDP) algorithm in lines

11-17. Since the value function may change as the agent perform asynchronous back-ups it would

be necessary to perform model selection every time a state action pair is backed up. The optimistic

Page 78

4.3. OPTIMISTIC MODEL SELECTION (OMS)

1: procedure Pa
opt = OMS(S,R,A,V,M,γ,α)

2: Initialise Vk ∀i, j ∈ S∪ k and ∀a ∈ A
3: Initialise ma

ik,m
a
k j ∀i, j ∈ S∪ k according to M

4: ξ a
i = γVk, ∀i ∈ S and ∀a ∈ A where ma

ik > 0
5: ξ a

k =Vk, ∀a ∈ A
6: loop
7: observe current state x
8: select action a = argmaxb{ξ b

x } breaking ties randomly
9: execute action a in state x and observe the transition x

a,r
; y

10: update belief ma
xy = ma

xy +1
11: repeat
12: choose i
13: for each action b do
14: find ~pb

opt,i using Algorithm 4.2 or 4.3
15: update ξ b

i using Equation 4.3
16: end for
17: until ARTDP algorithm stops
18: end loop
19: end procedure

Algorithm 4.1: The Main Loop of the Optimistic Model Selection (OMS) Algorithm.
Adapted from Wyatt (2001).

Algorithms 4.2 and 4.3 are shown in pages 80 and 81 respectively.

model is selected in line 14 and the exploration value function is revised in line 15 to reflect the

newly selected model. The optimistic estimate can be calculated using any form of ARTDP.

To complete our description of the OMS algorithm we need to explain how exactly an optimistic

model is selected. Algorithm 4.1 cited two algorithms 4.2 and 4.3 for selecting an optimistic model.

We shall describe the two algorithms in the next section.

4.3.2 Algorithms for Selecting Optimistic Models

Wyatt (2001) suggests two ways of selecting Popt , which were termed ‘simple’ and ‘full’ OMS. In

simple OMS the agent is optimistic only about hypothesised transition to the garden of Eden state.

In full OMS the agent can be optimistic about transitions to other states too.

Page 79

Chapter 4: Exploration Control through Model Selection

Simple OMS

In simple OMS (Algorithm 4.2), when an agent receives in state i a new observation, it re-calculates

the upper bound of the (1−α) probability interval for the transition probability to the state k for

each state action pair. The marginal density required for this computation is simply a Beta density,

always following Beta(ma
ik,∑ j 6=k ma

i j), and can be calculated using the algorithms we describe in

Chapter three for computing credible intervals. The other probabilities are then renormalized to give

an optimistic one step transition model from state action pair i,a. Applied to all states the result is

an optimistic MDP Pa
opt , under action a ∈ A.

1: procedure ~pa
opt,i = OMS−Simple(i,a,k,~ma

i ,α)

2: for i,a construct ~pa
opt,i:

3: pa
opt,ik = upperbound(Beta,ma

ik,∑ j 6=k ma
i j,α)

4: pa
opt,i j =

1−pa
opt,ik

1−p̄a
ik

p̄a
i j, ∀ j 6= k

where p̄a
i j =

ma
i j

∑x∈S∪k ma
ix

5: end procedure

Algorithm 4.2: Simple Optimistic Model Selection.
Adapted from Wyatt (2001).

Simple OMS can be seen as a relation of Kearns and Singh’s E3 algorithm (Kearns & Singh

2002) in which the learner chooses either to identify the model by taking actions that drive it toward

the unknown state set, or to exploit within the set of known states. In the OMS−Simple algorithm

as soon as a state action pair is tried it is considered known, and can be used in exploitation if it is

appealing enough.

Page 80

4.3. OPTIMISTIC MODEL SELECTION (OMS)

Full OMS

In full OMS (Algorithm 4.3), an agent can be optimistic about the transition probabilities for any of

the successors of state i under action a. OMS employs the ideas of bounded parameter MDPs (Givan,

Leach & Dean 2000). However, instead of performing interval value iteration, full OMS computes

only the optimistic value function. Given state action pair i,a we order the successor states by the

current estimate of the value function, in descending order (Line 4) and then calculate the lower and

upper bounds of the (1−α) probability interval for each transition (Lines 5 and 6) using techniques

we described in Chapter three. An optimistic transition function is then constructed by sending as

much probability mass as possible to the states early in the ordering, while keeping all probabilities

within their lower and upper bounds.

1: procedure ~pa
opt,i = OMS−Full(i,a,k,~ma

i ,α)

2: for i,a construct the model ~pa
opt,i:

3: obtain the u successor states succa
i from S∪ k.

4: order the u states in succa
i to give

(j1, j2, . . . , ju) such that V j1 ≥V j2 ≥ . . .≥V ju .

where V j = maxb{ξ b
j }

5: pa
↑,ix =upperbound(Beta,ma

ix,∑y6=x ma
iy,α), ∀x

6: pa
↓,ix =lowerbound(Beta,ma

ix,∑y 6=x ma
iy,α), ∀x

7: set s to be as large as possible while

pa
↓,i js ≤ 1− (∑p<s pa

↑,i jp
+∑q>s pa

↓,i jq)≤ pa
↑,i js

8: set pa
opt,i jp

= pa
↑,i jp

, ∀p < s

9: set pa
opt,i jq = pa

↓,i jq , ∀q > s

10: set pa
opt,i js = 1−∑ j 6= js pa

opt,i j

11: end procedure

Algorithm 4.3: Full Optimistic Model Selection.
Adapted from Wyatt (2001).

Page 81

Chapter 4: Exploration Control through Model Selection

Full OMS can be seen as an extension of Wiering and Schmidhuber’s method (Wiering &

Schmidhuber 1998) which uses a more appealing density to represent uncertainty about the model;

utilises this density in exploration control from the outset; and takes account of all successors in

calculating the optimistic model.

4.4 Multi-objective Programming Approach

In this section we shall describe how OMS can be extended to work with constraints on models using

multi-objective programming. Whilst the OMS algorithms we described in Section 4.3 satisfy the

probability constraints on transition models, that is, 0 ≤ pa
ss′ ≤ 1; ∑

|S|
s′=1 pa

ss′ = 1 ∀ s = 1,2, . . . , |S| it

does not handle other possible constraints such as absolute and/or relative restrictions on transition

probabilities.

In contrast to optimisation involving a single objective, multi-objective programming involves

recognition that an agent is responding to multiple objectives. Generally, objectives are conflict-

ing, so that not all objectives can simultaneously arrive at their optimal levels. Problems involving

multiple objectives can be solved using linear programming, where one of the objectives, the most

important, is optimised and the others are considered in the restrictions. This procedure generates

some disadvantages such as

• Representing the goals by means of restrictions of linear programming generally leads to

intractable problems. In large problems it is difficult to find the restriction that causes the

intractability.

• The choice of which objective should be optimised is sometimes difficult or subjective.

Multi-objective programming presents a way of solving these problems, where the optimum solution

of the problem of linear programming is substituted by a set of solutions, not necessarily optimum

in the sense of the linear programming, but efficient solutions. A multi-objective problem can be

Page 82

4.4. MULTI-OBJECTIVE PROGRAMMING APPROACH

represented as follows:

max{z1(x),z2(x), . . . ,zn(x)},x ∈ℵ (4.4)

where x are the decision variables, ℵ is the set of possible alternatives and {z1,z2, . . . ,zn} are the

finite set of objectives. The obtained solution can be dominated or non-dominated. A solution is

non-dominated when there is no other feasible solution that improves one of the objectives without

decreasing at least another objective. Several methods exist to generate a set of non-dominated so-

lutions. An assumed utility function is used to choose appropriate solutions. Several fundamentally

different utility function forms have been used in multi-objective models. These may be divided into

three classes: lexicographic, multi-attribute utility and unknown utility (Chankong & Haimes 1983).

The method that will be used in this work is lexicographic goal programming and will be described

next.

4.4.1 Goal Programming (GP)

The lexicographic approach (Charnes, Cooper & Ferguson 1955, Lee 1972, Ignizio 1976, Charnes

& Cooper 1977) assumes the decision maker has a strictly ordered pre-emptive preference system

among objectives with fixed target levels. For example, a lexicographic system could have its first

priority goal as income of not less than £10,000; the second priority as leisure of no less than 20

hours a week; the third as costs of no more than £6,500, etc. This formulation is typical of goal

programs (Lee 1972).

The various goals are dealt with in strict sequential order - higher goals before lower order goals.

Once a goal has been dealt with (meeting or failing to meet the target level), its satisfaction remains

fixed and the next lower order goal is considered. Consideration of the lower level goals does not

alter the satisfaction of higher level goals and cannot damage the higher level goals with respect to

target level attainment. The characteristic that distinguishes the formulation of goal programming is

that one or more goals are directly incorporated in the function objective, through deviation variables,

that is, the objectives are written in the form of goals restrictions, where each goal represents the

Page 83

Chapter 4: Exploration Control through Model Selection

value that intends to be reached. The central construct in goal programming is the deviation variable.

The goals cannot be reached completely and, to allow this flexibility, deviation variables are used d+

and d−, indicating how much the objective was surpassed or was lacked by that value respectively.

Goal programming expresses a form of reaching the goals as closest as possible; the objective of this

technique is to minimize the sum of the deviations for all the goals.

The general model of goal programming can be written as follows:

min z = w+d++w−d−

s.t. CG X−d++d− = G

CB X
≥
=
≤

B.

xk ≥ 0, d+
k ≥ 0, d−k ≥ 0, xk ∈ X ∀k ∈ K.

(4.5)

where:

z objective function
w+,w− are the vector of weights associated with the positive and negative deviations of the goals.
CG is an (m×n) matrix of the decision variable coefficients associated with goal constraints.
CB is an (m×n) matrix of the decision variable coefficients associated with other constraints.
G is an (m×1) vector that represents the goals that are to be reached.
B is an (m×1) vector that represents bounds on the other constraints.
d+,d− are (m×1) vectors that represent the positive and negative deviations of the m goals.
X is an (m×1) vector of decision variables.

There are two main approaches to handling the objective function in goal programming: Non-

pre-emptive and Pre-emptive (Lee 1972, Ignizio 1976).

Non-pre-emptive Goal Programming: In this approach, we put all the goals in the objective func-

tion and solve the linear program a single time. The objective for the problem is to minimise

the weighted sum of the deviation variables. The penalty measures the relative importance of

the goals. Because the goals are very often measured on different scales, the penalties play

the double role of transforming all the goals to the same dimensional units as well as specify-

ing their relative importance. In this approach the subjective step is the determination of the

Page 84

4.4. MULTI-OBJECTIVE PROGRAMMING APPROACH

weights. Different weights will often yield very different solutions.

Pre-emptive Goal Programming: here the goals are divided into sets and each set is given a pri-

ority: i.e. first, second, and so on. The assumption is that a higher goal is absolutely more

important than a lower priority goal. The solution is obtained by initially optimising, with re-

spect to the first priority goals without regard to the values of lower priority objectives. Then,

holding constant the value of the first priority objective function by adding the constraint

z1(d+
1 ,d

−
1) = z∗1, the optimal solution is obtained for the second-priority goals. The feasible

solution space for this second problem is the set of alternative optima for the first problem.

The process continues until all priorities are considered. If no alternative optima exist at the

end of a particular stage, we have reached the end of the computations so we must be satisfied

with the current values of the lower priority objectives. If several goals have about the same

priority we include them in the set in the objective at the appropriate step of the process. The

relative importance of the goals within any set are reflected by the specification of the penalty

weights, as in the non-pre-emptive case. The subjective part of this procedure is the division

of the goals into priority sets and the selection of penalties within a priority set.

4.4.2 Pre-emptive GP Approach to OMS

To formulate optimistic model selection as a pre-emptive goal program we let ~pa
opt,s be the decision

variables of interest and goals are the ordered successor states to state s.

min z = w+d++w−d−

s.t. pa
opt,ss′−d+

s′ +d−s′ = pa
↑,ss′ , ∀s′ ∈ S

pa
opt,ss′ ≥ pa

↓,ss′ , ∀s′ ∈ S

∑s′ pa
opt,ss′ = 1.

pa
opt,ss′ ≥ 0, d+

s′ ≥ 0, d−s′ ≥ 0 ∀s′ ∈ S.

(4.6)

Page 85

Chapter 4: Exploration Control through Model Selection

where:

z objective function
w+,w− are the vector of weights associated with the positive and negative deviations of the goals.
pa

opt,ss′ is a decision variable representing transition probability from state s to state s′ under action a.
pa
↓,ss′ , pa

↑,ss′ are the lower and upper bounds on pa
ss′ respectively.

d+,d− represent the positive and negative deviations of the goals.

The goals are divided into sets according to decreasing order of the state values and each set is

given a priority. Once the goal program of Equation 4.6 is solved, the resulting ~pa
opt,s can then be

used in the main loop of the OMS, line 14 of Algorithm 4.1 in place of Algorithms 4.2 and 4.3.

4.5 Worked Examples

In this section we use two simple Examples 4.1 and 4.2 to illustrate how to select optimistic models

using the full OMS Algorithm 4.3. We also show that optimistic models can be selected for the same

set of examples using the pre-emptive GP formulation of Equation 4.6.

Example 4.1 We return to the hospital robot task we presented in Section 4.2 and select an opti-

mistic model from the model space, illustrated in Figure 4.2.

Transition constraints:

0.0≤ pdock
11 ≤ 1.0

0.0≤ pdock
12 ≤ 1.0

0.0≤ pdock
13 ≤ 1.0

pdock
11 + pdock

12 + pdock
13 = 1.0

Figure 4.2: An example of Model Selection

Page 86

4.5. WORKED EXAMPLES

To pick an optimistic model ~pdock
opt,1, full OMS sends as much probability mass as possible to

pdock
opt,1,1 while keeping pdock

opt,1,2 and pdock
opt,1,3 to their lower bounds. That is pdock

opt,11 is set to

min(0.3,1−0.05−0.85) = 0.1. In line 7 of the full OMS Algorithm 4.3, s is computed to be 1 hence

pdock
opt,12 and pdock

opt,13 are kept to their lower bounds i.e. 0.05 and 0.85 respectively. The ~pdock
opt,1 selected

by the full OMS Algorithm 4.3 is therefore [0.1,0.05,0.85] for [pdock
opt,11, pdock

opt,12, pdock
opt,13]. We also used

goal programming Equation 4.6 to select an optimistic model ~pdock
opt,1 for this process. The model

selected by the goal programming approach is the same as that selected by the full OMS algorithm.

Example 4.2 Assume the value functions in Example 4.1 are changed to [12,40,80] for [ξ dock
11 ,ξ dock

12 ,ξ dock
13]

while keeping the probability intervals the same as shown in Figure 4.3. Observe that compared to

Transition constraints:

0.0≤ pdock
11 ≤ 1.0

0.0≤ pdock
12 ≤ 1.0

0.0≤ pdock
13 ≤ 1.0

pdock
11 + pdock

12 + pdock
13 = 1.0

Figure 4.3: An example of Model Selection

Example 4.1, the state ordering has now changed because of the changes we have made to the explo-

ration value functions. As a result, the full OMS algorithm will now push min(0.93,1−0.01−0.05)

= 0.93 > 0.85 to pdock
opt,13, min(0.4,1−0.93−0.01) = 0.06 > 0.05 to pdock

opt,12 and keep pdock
opt,11 to its

lower bound which is 0.01. Hence the optimistic model selected in this case by Full OMS is

[0.01,0.06,0.93] corresponding to [pdock
opt,11, pdock

opt,12, pdock
opt,13] which, as expected, differs from model

we picked in Example 4.1. We also used the goal program of Equation 4.6 to select an optimistic

model ~pdock
opt,1 for this process. The model selected by the goal programming approach is the same as

that selected by the full OMS algorithm.

Page 87

Chapter 4: Exploration Control through Model Selection

Finally, to illustrate the appeal of the goal programming approach, we applied it to an extension

of Example 4.2 incorporating absolute and relative constraint on transitions.

Example 4.3 Staying with Example 4.2, let’s assume we now have an additional constraint in the

form of an order restriction on the transition probabilities which states that 1.0 ≥ pdock
13 ≥ pdock

11 ≥

pdock
12 ≥ 0.0, Figure 4.4. Due to the order constraint, the OMS Algorithms 4.2 & 4.3 cannot be applied

Transition constraints:

1.0≥ pdock
13 ≥ pdock

11 ≥ pdock
12 ≥ 0.0

pdock
11 + pdock

12 + pdock
13 = 1.0

Figure 4.4: An example of Model Selection with Transition Constraints Illustrating the GP
approach

to this problem. However, by including the order restriction as an additional constraint in the goal

program we solved in Example 4.2 we are able to select the following model. The model selected

is [0.05,0.05,0.9] corresponding to [pdock
opt,11, pdock

opt,12, pdock
opt,13] respectively. The selected model differs

from that we obtained in Example 4.2, the goal programming solution we obtained in this example

reflects the order restriction placed on the transition probabilities whilst attempting to satisfy the

goals we set out to achieve in terms of the ordering of successive states in terms of exploration

values.

Page 88

4.6. CHAPTER SUMMARY

4.6 Chapter Summary

Our focus in this chapter has been on model selection in Bayes Adaptive Markov decision processes

(BAMDP). The role of model selection is to identify the one model, from a set of competing models

that best captures the regularities underlying the process of interest. We described the optimistic

model selection (OMS) approach to exploration control in BAMDPs with two algorithms for select-

ing optimistic models termed ‘simple’ and ‘full’ OMS. In simple OMS the agent is optimistic only

about hypothesised transition to a ‘garden of Eden’ state. In full OMS the agent can be optimistic

about transitions to other states too. We also developed a multi-objective programming approach to

model selection in BAMDPs to extend OMS to work with additional constraints on the models such

as orderings on the transition probabilities. Specifically, we presented a pre-emptive goal program-

ming approach to OMS and showed that it gives the same result as those of the full OMS Algorithm

in two of our examples. In the third example we imposed order restrictions on state transition proba-

bilities and noted that whilst the goal programming approach was able to select an optimistic model

given the order restriction the simple and full OMS Algorithms are not equipped to handle such

constraints. In such situations, where constraints are imposed on transitions, the goal programming

approach is the preferred choice.

Page 89

5
Approaches to Prior Information Transfer

In this chapter we will review techniques for transferring prior information between models. We will

focus primarily on model transfer and the associated probability expressions.

5.1 Introduction

Consider an unknown model P informed by n diverse data set D1, . . . ,Dn. These data have been

evaluated for their individual information content related to the unknown model through the elemen-

tary probabilities f (P|Di). The challenge is then to recombine the prior probability f (P) and the n

single-event conditional probabilities f (P|Di) into the posterior probability f (P|D1, . . . ,Dn) while

accounting for the interaction among data. From a probabilistic point of view, the general problem is

one of meaningfully summarising into a posterior probability distribution the prior and pre-posterior

probabilities from the diverse sources of information (Genest & Zidek 1986). The primary goal is

to build a new composite probabilistic model by objectively aggregating all available information

while respecting the different nature and uncertainty levels present in the information sources (Xu

& Golay 2006).

Model transfer is the practice of taking a model identified for one process and, after some ad-

justment, reusing it to predict a different process. The idea behind this concept assumes that we

can take advantage of relationships that are common to both processes. Model transfer does not

typically include adaptive methods where the transfer from process to process occurs gradually. A

Page 90

5.2. OVERVIEW OF TRANSFER METHODS

typical model transfer problem can be characterised as shown in Figure 5.1. This contrasts with a)

classical machine learning problem in which the source (donor) tasks are absent, and b) multi-task

learning in which the output labels are also allowed to change the problem. Research in transfer

Figure 5.1: A typical model transfer problem

learning (Taylor & Stone 2009, Pan & Yang 2010) promises mechanisms that let systems improve

with experience particularly when they are across domains. Whilst cross-domain transfer is hugely

important, a fundamental issue in model transfer is whether adjustments will be needed to donor

models before transfer and, if yes what sort of adjustments are required and how. The resolution of

this issue remains the main driver of research in model transfer.

5.2 Overview of Transfer Methods

This section provides an overview of the main methods of model transfer reported in the literature.

5.2.1 Naive Transfer

In naive transfers the model specification and parameter estimates from donor tasks are applied di-

rectly (without any change) to a new recipient task. This is the simplest method of transferring prior

Page 91

Chapter 5: Approaches to Prior Information Transfer

information. It requires minimum effort and does not require adjustments to the donor information.

The assumption here is that all factors relevant to the recipient are captured by the donor. Such

assumptions may be difficult to justify in practical applications. In the next chapter (Chapter six)

we shall present a naive method that transfers donor information from related tasks to a new task

through a simple addition operator and without any change to the donor information. There are

alternatives to the naive approach which include scaling, discounting and quality adjustments of the

donor information which we discuss in the next section.

5.2.2 Transfer Scaling, Discounting & Quality Adjustments

In transfer scaling it is assumed that the parameters of the donor models are transferrable to the

recipient up to a certain ‘scale’. The scale is an indicator of transfer bias (the difference in the true

parameters between the two contexts), it is a representation of the unobserved ‘hidden’ factors in the

transfer contexts.

A number of authors have described techniques for using ‘imaginary’ or ‘fictitious’ data to mod-

ify a pre-prior distribution (Karny 1984, Neal 2001, Tesař 1996). Karny (1984) focused on deriving

quantitative expressions of prior information contained both in prior data and individual pieces of

expert information. They expressed the individual pieces of expert information in a common form

called ‘fictitious’ data. Neal (2001) showed how a prior distribution formulated for a simpler, more

easily understood, model can be used to modify the prior distribution of a more complex model. He

used imaginary data drawn from the simpler ‘donor’ model to condition the more complex ‘recipi-

ent’ model. The approach of Tesař (1996) centres on minimizing Kullback-Leibler distance between

empirical and model distributions

A common problem in information transfer is that of making inference about a parameter that

would govern an ideal (or paradigm) study for a particular purpose – one for the population of

interest to the investigator, without misclassification or other weaknesses, on the basis of non–ideal

studies whose conditions do vary from the ideal in some important ways (Zellner 1988, Zellner 1997,

Page 92

5.2. OVERVIEW OF TRANSFER METHODS

Zellner 2002, Wolpert & Mengersen 2004). There could be significant variation in the quality of a)

the inputs from the donor, b) the prior information of the recipient and c) the sample information.

Zellner (2002) suggested ‘quality-adjustment’ methods that adjust the prior and the likelihood of

data such that the posterior distribution f ′ is proportional to a function of the quality adjustments, i.e.

f ′ ∝ Ad j1(f (θ))Ad j2(l(θ |D)), where Ad j1(f (θ)) is the quality-adjusted prior and Ad j2(l(θ |D)) is

the quality-adjusted likelihood function. It is also appropriate to use quality-adjusted posteriors

when the prior and sample information are to be weighed differently (Zellner 2002).

Wolpert & Mengersen (2004) described a parametric adjustment approach. Assuming the ith

study does offer direct evidence about a parameter θ i through a likelihood Li(θ
i), and if each θ i

(including θ 0) is related to a hyperparameter θ through a known functional relationship θ i = φi(θ),

then we can ‘adjust’ the evidence from the ith study to bear directly on θ (and hence on θ 0) through

the relationship:

LAdj
i (θ) = Li(φi(θ)), (5.1)

in which the function φi(θ) represents the value of θi when the hyperparameter value is θ .

The parametric adjustment model can be generalised to cases when the adjustment function

θi = φ(θ ,αi) depends explicitly on a parameter αi, resulting in (Wolpert & Mengersen 2004):

LAdj
i (θ) = Li(φi(θ ,αi)), (5.2)

Wolpert & Mengersen (2004) noted that if the parameter αi in (5.2) is regarded as uncertain and

therefore random with a prior probability distribution f α
i (dαi|θ) then a conditional distribution for

θ i given θ can be calculated by averaging over the possible values of αi,

fi(dθ
i|θ) =

∫
δ (θ i−φi(θ ,αi)) f α

i (dαi|θ), (5.3)

Page 93

Chapter 5: Approaches to Prior Information Transfer

and an adjusted likelihood function:

LAd j
i (θ) =

∫
Li(θ

i) fi(dθ
i|θ),

=
∫

Li(φ(θ ,αi)) f α
i (dαi|θ). (5.4)

Akin to the parametric adjustment model, the Confidence profile method (CPM) in both its

classical and its Bayesian forms (Eddy 1989, Eddy, Hasselblad & Shachter 1990a, Eddy, Hasselblad

& Shachter 1990b) was intended to apply to conventional fixed and random-effects meta-analysis,

as well as to multi-parameter evidence synthesis. Adjustment for bias was strongly emphasized, and

the CPM literature sets out formulae for adjusting basic or functional parameters. The confidence

profile method (CPM) can correct for this by defining a function that relates a donor parameter θ ω

to a recipient parameter θ . Call this function ϑ(θ ω). This function can be substituted for θ ω in the

likelihood function restoring the correctness of Bayes’ formula.

f (θ |D) ∝ L(ϑ(θ ω)|D) f (θ) (5.5)

This last formula illustrates the three basic ingredients of the Confidence Profile Method. The

method requires prior distributions, likelihood functions, and functions that describe biases. Al-

though the purpose of bias adjustment is clearly to recover the ‘true’ underlying effects from messy

data, it is also viewed as a method for dealing with heterogeneity in trial results.

Another important way of transferring information, especially those arising from historical data,

is by using power priors. A power prior discounts the historical data by raising the likelihood of the

historical data to a fractional power. Let the historical data set be D and L(θ |D) the likelihood of θ

based on the historical data. The power prior is expressed as L(θ |D)δ f (θ) (Ibrahim & Chen 2000),

in which f (θ) is the prior distribution about θ that is specified by the agent before any historical

data is made available and 0≤ δ ≤ 1 is a scalar precision parameter that weights the historical data

relative to the likelihood of the current task. Under power prior rules, the posterior probability of θ

Page 94

5.2. OVERVIEW OF TRANSFER METHODS

given the historical data is expressed for a fixed δ as follows:

f (θ |D,δ) =
L(θ |D)δ f (θ)∫

Θ
L(θ |D)δ f (θ)dθ

(5.6)

Ibrahim, Chen & Sinha (2003) show that the power priors are optimal in the sense that the distribu-

tion in Equation 5.6 minimizes a convex sum of Kullback-Leibler divergence between the following

two posterior densities based on a) ‘pooled historical and current data’ (δ = 1) and b) ‘not us-

ing the historical data at all’ (δ = 0). Bhattacharya (2009) showed that both quality-adjusted and

power prior rules can be derived as special cases of a unified procedure. They also showed that

a well-justified value of the precision parameter δ in power priors can be obtained by considering

constraints relating divergence from a specified distribution given a single historical dataset.

5.2.3 Bayesian Melding

Bayesian melding was proposed by Raftery, Givens & Zeh (1995) and Poole & Raftery (2000) as a

technique for combining or melding information from three sources in order to arrive at Bayesian

posterior distributions. The three sources of information are direct, indirect and the model itself.

Direct information involves observations that are made directly on a population of interest. Indirect

information is obtained from outside sources somehow related to the population of interest. The

indirect information is typically expressed as probability density functions that reflect knowledge

and uncertainty about the unknown model quantities.

A basic premise about Bayesian melding is that information is available for some inputs θ and

outputs φ , and it is likely that some uncertainty are associated with the information. The uncertainty

is captured as probability distributions before and after applying the model. Bayesian pre-model

priors are denoted as fθ (θ) and fφ (φ) for the inputs and outputs respectively. The likelihoods for

the inputs and outputs are denoted by Lθ (θ) and Lφ (φ). Assuming conditional independence of

inputs and outputs, the joint pre-model posterior distribution of θ and φ according to Bayes theorem

Page 95

Chapter 5: Approaches to Prior Information Transfer

is:

f (θ ,φ) ∝ fθ (θ)Lθ (θ) fφ (φ)Lφ (φ) (5.7)

Considering the model Φ as a mapping of inputs to outputs: Φ(θ)→ φ . The joint post-model

posterior probability distribution f ′(θ ,φ) will have a non-zero probability only when φ = Φ(θ).

The Bayesian melding principle define the joint distribution of θ and φ given the model as the

‘restriction of the pre-model distribution to the submanifold (θ ,φ) : φ = Φ(θ)’, that is:

f ′(θ ,φ) ∝

f (θ ,Φ(θ)) if φ = Φ(θ),

0 otherwise
(5.8)

5.3 A Note on Transfer Performance

Transfer methods are generally evaluated experimentally rather than theoretically, including the al-

gorithms we developed in this thesis. Only very little work has been done on theoretical evaluation

of transfer algorithms and they focus on highly restricted transfer scenarios where the relationships

between the source and target tasks are mathematically well-defined. Optimal learning is much

more involved with several parameters to contend with, hence most of the current research at the

intersection of transfer learning and optimal learning does not contain theoretical analysis.

Empirical analysis of learning performance is straightforward. We will discuss this using an

acronym we refer to as SEE - Start-up, Efficiency and Effectiveness. Model transfer is important at

the start of learning and initial performance can be measured against an expert or an ignorant agent.

Efficiency relates to the time, effort or expense spent in accomplishing transfer. For example one

could be interested in the amount of time it takes to fully learn the target task given the transferred

knowledge compared to the amount of time to learn it from scratch.

Finally we have effectiveness i.e. the quality of being able to bring about an effect, which

in transfer learning, captures the overall performance improvement brought about as a result of

implementing a transfer learning scheme. A decrease in performance that is traced or associated

Page 96

5.4. CHAPTER SUMMARY

with a transfer learning scheme means that negative transfer has occurred, avoiding negative transfer

is a major challenge.

5.4 Chapter Summary

This chapter briefly summarised the methods of transferring prior information between models. By

far the simplest method is the naive approach that transfers information without adjustments. We

will look at an example of this method in chapter 6. More interesting are methods that do involve

adjusting or discounting information before they are transferred thereby reducing or eliminating

transfer bias. In chapter eight we will study one of such methods - the power prior Bayesian analysis

approach.

Page 97

6
The Transfer Framework

In Chapter five we saw that there are many different ways of exploiting transferable prior informa-

tion by objectively aggregating all available information while respecting the different nature of the

information sources and the uncertainty levels present in those sources. The methods for exploiting

prior information reviewed in that chapter come from a wide variety of fields. In this chapter we

start to develop our transfer methods for Bayes Adaptive Markov Decision Processes (BAMDP).

The objectives of this chapter are: a) to establish the transfer context, i.e. the domain, task, and

specific types of the transferable information, and b) to explain how we incorporate the transferable

prior information into Bayesian estimates of expected returns.

6.1 Introduction

In Chapter five we saw that an agent can exploit the presence of information from related tasks to im-

prove performance when learning a new task. A successful exploitation of the available information

will depend on:

1. What constitutes the transfer context i.e. the specifications of the domain, task and available

information, and

2. How prior information is to be quantified given all the available information and how the

quantified prior information is to be incorporated into the agent’s learning algorithm.

Page 98

6.2. THE TRANSFER CONTEXT

In this chapter we shall establish each of these items.

We consider situations in which an agent is learning to perform a task that can be formalised as a

Bayes Adaptive Markov Decision process (BAMDP) in environments where additional information

is explicitly available to the agent in the form of user knowledge and/or information acquired from

previous learning. Specifically, suppose the agent can formulate a prior distribution for the transition

parameters of the BAMDP but finds it difficult to come up with a well-specified prior distribution

for the task-environment model. Although the agent is less confident that his/her prior distribution

is an adequate representation of reality, we shall assume the agent is willing to exploit well specified

‘donor’ information made available before the start of learning.

We use the term ‘pro-forma’ to describe the agent’s less-well specified prior distribution (Neal

2001) and refer to the well-specified prior distribution from the donors as ‘pre-prior’ information.

The transfer problem in our setup, for the agent, is how to integrate the well-specified pre-prior

information with the less-well specified pro-forma distribution.

The rest of this chapter is structured into three main sections. In Section 6.2 we describe

the transfer context and explain in Section 6.3 how we incorporate transferable information into

Bayesian estimation steps of expected returns. The chapter ends in Section 6.4 with a summary.

6.2 The Transfer Context

We now describe the transfer context. To do so we shall first give the definition of the domain and a

task in Section 6.2.1 and then turn to the definition of transferable information in Sections 6.2.2 and

6.2.3.

6.2.1 Domain and Task

A domain in the context of transfer learning in Markov decision processes (MDPs) consists of four

of the five components that specify an MDP. These are the state space S, the action space A, a set of

Page 99

Chapter 6: The Transfer Framework

admissible state-action pairs Ψ and the transition function P. We adopt this definition of domain in

this thesis. We assume that the transition function is completely or partially unknown and it is to be

inferred from the agent’s interaction with the domain. The reward function R is not considered part

of the domain specification but instead forms part of the specification for the task.

Definition 6.1 (Domain:) A domain υ is a tuple (S,A,Ψ,P). In the tuple, S is a set of |S| dis-

tinct states, A is a set of |A| distinct actions, Ψ ⊆ S×A is the set of admissible state-action pairs,

P : Ψ× S −→ [0,1] is a Markovian transition model that specifies in a probabilistic form the pro-

cess dynamics. The transition probabilities pa
ss′ ∈ P naturally satisfy the constraints 0 ≤ pa

ss′ ≤ 1;

∑s′ pa
ss′ = 1 ∀s,s′ ∈ S.

We define a task ω as a tuple consisting of a domain, a reward function and a performance

measure.

Definition 6.2 (Task:) A task ω ∈ Ω is a tuple 〈υ ,R,G〉 where υ is the domain, R : Ψ −→ R is a

reward function and G is the performance measure. Ω is the space of tasks.

Performance G of the learning agent can be measured in several ways. To account for exploration

and exploitation trade-off we will measure the discounted total reward to-go i.e. the average return

at each point at each time step. Learning proceeds in multiple episodes. More precisely, suppose

the agent receives the following rewards r1,r2, . . . ,rt , . . . ,rn in a run of time length n. The return to

go at time t is defined to be ∑t ′≥t γ(t
′−t)rt ′ . Each episode positions the learning agent in an initial

state of the environment and terminates when an end condition is satisfied. For instance, an episode

terminates when a maximum number of steps are achieved or when the agent reaches a terminal state.

For simplicity in this thesis we primarily consider the case where both the source of the transferable

information and the new task belong to the same domain.

6.2.2 Transferring Knowledge from Historical Data

It is often the case that decision makers may have access to data on previously accomplished tasks.

Such data, which is generally referred to as historical data, can be very useful when learning to

Page 100

6.2. THE TRANSFER CONTEXT

accomplish a new task. In lifelong tasks, for example, the data gathered from previous time periods

may provide a useful prior distribution for new tasks. This is especially so when the new tasks

only differ slightly from the previous tasks. In general, historical data may be elicited from diverse

sources, of which raw historical data obtained from similar previous tasks is the most natural. Other

sources include expert opinion, case-specific information, and functional model of data - empirical

and/or theoretical.

Suppose while learning or experimenting on some previous tasks the experience acquired is

stored and made explicitly available to an agent learning on a new but related task. Historical data in

terms of experience acquired can be roughly divided into two groups: i) samples of transitions and

ii) knowledge of solutions involving value and policy functions. Our focus in this thesis, in addition

to transfer of constraints from experts, is on samples of transitions.

More formally, we consider situations in which samples of transition 3 data have been collected

from previous tasks and made available to the learning agent. The samples of transitions 3 can be

treated as historical counts and quantified into a pre-prior distribution f (P|M3). The transfer algo-

rithm quantifies the prior distribution for a new learning task by combining the pre-prior distribution

f (P|M3) of the donor with the pro-forma prior distribution f (P|Mω) of the recipient agent. The

pro-forma distribution quantifies the agent’s less-well specified prior information.

6.2.2.1 A Simple Transfer Algorithm

In this section we describe a simple algorithm for quantifying prior distribution M for a new task in

the presence of a pre-prior information M3 and pro-forma prior information Mω . We consider the

simplest method discussed in Chapter five for transferring prior information between models. We

assume the pre-prior information M3 is representative of the new task and apply a simple addition

operator to combine the pre-prior and the pro-forma information as shown in Algorithm 6.1.

Page 101

Chapter 6: The Transfer Framework

1: procedure M = SIMPLE TRANSFER ALGORITHM(M3,Mω ,S,A)

2: for each action a in A do

3: for each state s in S do

4: for each state s′ in S do

5: ma
ss′ = m3,a

ss′ +mω,a
ss′

6: end for

7: end for

8: end for

9: return M←
[
ma

ss′
]
∀s,s′ ∈ S and a ∈ A.

10: end procedure

Algorithm 6.1: A simple transfer algorithm for combining pre-prior and
pro-forma information. The algorithm uses an addition operator to combine the
information. We shall consider alternatives to the simple transfer algorithm in

subsequent chapters of this thesis.

The simple transfer algorithm takes as input the pre-prior information M3, the pro-forma prior

information Mω and the definition of states S and actions A. It returns a quantified prior M. The

aggregation is achieved in line 5 through the use of an addition operator to combine each of the

corresponding entries of the two matrices. The resulting prior can be used as input to an optimal

learning algorithm for Bayes Adaptive MDPs. In the next section, we describe a set of simple exper-

iments that uses the simple algorithm (Algorithm 6.1) with an optimistic model selection algorithm

(Algorithm 4.3 of Chapter four) to learn a new task in the presence of historical data. We shall

consider alternatives to the simple transfer algorithm in subsequent chapters of this thesis.

6.2.2.2 Experiment I: Grid World

We apply Algorithm 6.1 to quantify the prior distribution in a simple grid world domain. The domain

is adapted from Russell and Norvig (2003). The environment is discrete and fully observable. It

Page 102

6.2. THE TRANSFER CONTEXT

consists of a cellular grid with a known starting point and one or more exit points. Each cell in the

grid is either a free space where the agent can move, or an obstacle. The agent can move in any of the

free space in orthogonal directions using the usual four primitive actions of North, East, South and

West, illustrated in Figure 6.1. There are uncertainties in the agent’s actions, each action succeeds

Figure 6.1: Control Actions in the Grid World

in moving the agent in the chosen direction with a probability p and fails by moving the agent in a

perpendicular direction with probability 1− p. That is, if the agent selects a ‘North’ action then it

will move north with probability p but will move east or west with probability 0.5× (1− p). If the

agent hits an obstacle it will bounce back to its original location. There are positive and negative

rewards for the actions. Moving from cell to cell in the grid incurs cost and the exits have rewards

attached to them.

An agent on the grid is faced with the task of moving from a starting point to an exit point,

selecting actions to take in each state of the environment with the objective of maximising expected

rewards in the presence of obstacles and transition uncertainty. The agent is provided with the reward

function but not the actual transition model of the task. The actual transition model is of dimension

S×S, but is sparse for this domain since the agent can only transition to adjacent cells.

Experiment Setup

We carried out two sets of experiments I-A and I-B to demonstrate the application of the simple

transfer algorithm with optimistic model selection on the grid world. We also applied Q-learning

to the grid world. The two sets of experiments differ in the actual probability p of success. The

success probability is set to 0.9 and 0.5 in I-A and I-B respectively. We use a 4×3 Grid in both sets

of experiments with a single start state at cell (1,1) and two exit cells (Hi - 4,3) and (Low - 4,2) as

Page 103

Chapter 6: The Transfer Framework

shown in Figure 6.2. The task consists of the simple 4×3 grid of Figure 6.2 and the reward function

Figure 6.2: A 4×3 Grid World with High and Low Goal Cells. The black cell is an obstacle.

specified in Equation 6.1. The task in each of the experiment is kept the same.

rs =

+1.0 for Hi Goal,

−1.0 for Low Goal,

−0.2 otherwise, for accessible cells

(6.1)

The transitions that correspond to successful actions are shown in Figure 6.3.

(a) Successful North Actions (b) Successful East Actions

(c) Successful West Actions (d) Successful South Actions

Figure 6.3: Transitions Under Successful Actions in the 4×3 Grid World

The agent’s pro-forma prior is Dirichlet whose parameters are set to one everywhere. The fol-

lowing historical data, Equations 6.2 - 6.5, in the form of a pre-prior information is supplied to the

Page 104

6.2. THE TRANSFER CONTEXT

agent. The entries that correspond to admissible transitions carry more weight. For example, as il-

lustrated in Figure 6.4 applying the North action in cell (1,1) the agent can either move to cell (1,2),

cell (2,1) or remain at the same location i.e. cell (1,1). These three cells carry more weight in the

pre-prior information row 1 of Equation 6.2.

Figure 6.4: Admissible transitions under the North actions in cell (1,1).
The agent can move to cells (1,2),(2,1), or remain in (1,1)

M3,North =

Cells 1,1 2,1 3,1 4,1 1,2 3,2 4,2 1,3 2,3 3,3 4,3

1,1 10.0 10.0 1.0 1.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0

2,1 10.0 10.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

3,1 1.0 10.0 1.0 10.0 1.0 10.0 1.0 1.0 1.0 1.0 1.0

4,1 1.0 1.0 10.0 10.0 1.0 1.0 10.0 1.0 1.0 1.0 1.0

1,2 1.0 1.0 1.0 1.0 10.0 1.0 1.0 10.0 1.0 1.0 1.0

3,2 1.0 1.0 1.0 1.0 1.0 10.0 10.0 1.0 1.0 10.0 1.0

4,2 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1,3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.0 10.0 1.0 1.0

2,3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.0 10.0 10.0 1.0

3,3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.0 10.0 10.0

4,3 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(6.2)

Page 105

Chapter 6: The Transfer Framework

M3,East =

Cells 1,1 2,1 3,1 4,1 1,2 3,2 4,2 1,3 2,3 3,3 4,3

1,1 10.0 10.0 1.0 1.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0

2,1 1.0 10.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

3,1 1.0 1.0 10.0 10.0 1.0 10.0 1.0 1.0 1.0 1.0 1.0

4,1 1.0 1.0 1.0 10.0 1.0 1.0 10.0 1.0 1.0 1.0 1.0

1,2 10.0 1.0 1.0 1.0 10.0 1.0 1.0 10.0 1.0 1.0 1.0

3,2 1.0 1.0 10.0 1.0 1.0 1.0 10.0 1.0 1.0 10.0 1.0

4,2 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1,3 1.0 1.0 1.0 1.0 10.0 1.0 1.0 10.0 10.0 1.0 1.0

2,3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.0 10.0 1.0

3,3 1.0 1.0 1.0 1.0 1.0 10.0 1.0 1.0 1.0 10.0 10.0

4,3 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(6.3)

M3,South =

Cells 1,1 2,1 3,1 4,1 1,2 3,2 4,2 1,3 2,3 3,3 4,3

1,1 10.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

2,1 10.0 10.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

3,1 1.0 10.0 10.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

4,1 1.0 1.0 10.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1,2 10.0 1.0 1.0 1.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0

3,2 1.0 1.0 10.0 1.0 1.0 10.0 10.0 1.0 1.0 1.0 1.0

4,2 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1,3 1.0 1.0 1.0 1.0 10.0 1.0 1.0 10.0 10.0 1.0 1.0

2,3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.0 10.0 10.0 1.0

3,3 1.0 1.0 1.0 1.0 1.0 10.0 1.0 1.0 10.0 1.0 10.0

4,3 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(6.4)

Page 106

6.2. THE TRANSFER CONTEXT

M3,West =

Cells 1,1 2,1 3,1 4,1 1,2 3,2 4,2 1,3 2,3 3,3 4,3

1,1 10.0 1.0 1.0 1.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0

2,1 10.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

3,1 1.0 10.0 10.0 1.0 1.0 10.0 1.0 1.0 1.0 1.0 1.0

4,1 1.0 1.0 10.0 10.0 1.0 1.0 10.0 1.0 1.0 1.0 1.0

1,2 10.0 1.0 1.0 1.0 10.0 1.0 1.0 10.0 1.0 1.0 1.0

3,2 1.0 1.0 10.0 1.0 1.0 10.0 1.0 1.0 1.0 10.0 1.0

4,2 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1,3 1.0 1.0 1.0 1.0 10.0 1.0 1.0 10.0 1.0 1.0 1.0

2,3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.0 10.0 1.0 1.0

3,3 1.0 1.0 1.0 1.0 1.0 10.0 1.0 1.0 10.0 10.0 1.0

4,3 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(6.5)

The set up for the experiments are summarised in Tables 6.1 and 6.2. Each of I-A and I-B consists

of four experiments (I-A-1, I-A-2, I-A-3, I-A-4) and (I-B-1, I-B-2, I-B-3, I-B-4). Experiments I-A-1

and I-B-1 were used as baselines in which the agent has access to the optimal policy for the task right

from the start of the two experiments. We assume that the actual transition function is known to the

agent in these two experiments. In contrast to Experiments I-A-1 and I-B-1, the transition model is

unknown to the agent for the other experiments. In Experiments I-A-2 and I-B-2 the agent learns the

transition function using the optimistic model selection algorithm and a non-informative Dirichlet

pro-forma prior information whose parameters are set to 1 everywhere. Experiments I-A-3 and I-B-3

extends those of I-A-2 and I-B-2 by making available to the agent pre-prior information Equations

6.2 - 6.5 and the simple transfer algorithm. Finally, experiments I-A-4 and I-B-4 highlights the

performance of a model free method (Q learning) applied to the grid world task. For Q learning, we

use a learning rate α = 1
#(s,a) where #(s,a) is the number of times action a was executed in state s.

For a balance between exploitation and exploration actions, we use in the Q learning experiments

Page 107

Chapter 6: The Transfer Framework

an ε-greedy exploration method with ε linearly reduced from 0.8 to 0. We carried out fifty trials per

experiment and the discount factor is set to 0.95 in all the experiments.

I-A-1 I-A-2 I-A-3 I-A-4
Domain Grid Task Grid Task Grid Task Grid Task

0.9 success 0.9 success 0.9 success 0.9 success
probability probability probability probability

Task 4×3 Grid 4×3 Grid 4×3 Grid 4×3 Grid
γ = 0.95 γ = 0.95 γ = 0.95 γ = 0.95

(Reward) Equation 6.1 Equation 6.1 Equation 6.1 Equation 6.1
Learning Algorithm Optimal Policy OMS OMS Q Learning

Known Model α = 95% α = 95%
Pro-Forma Prior - Uniform(1) Uniform(1) -
Pre-Prior - - Equations 6.2 - 6.5
Transfer Method - - Simple Transfer Algorithm -

Table 6.1: Set up for I-A in a 4×3 grid world with 0.9 probability of successful action. I-A
consists of four individual experiments - the baseline (I-A-1) in which the actual transition model is
available to the agent and an optimal policy is used from start, I-A-2 involves learning using OMS

with a non-informative prior information, I-A-3 involves learning with OMS using the simple
transfer algorithm to combine the non-informative prior information supplied to the agent in I-A-2
and a pre-prior information Equations 6.2 - 6.5, and I-A-4 involves model free learning using the

standard Q learning Algorithm.

I-B-1 I-B-2 I-B-3 I-B-4
Domain Grid Task Grid Task Grid Task Grid Task

0.5 success 0.5 success 0.5 success 0.5 success
probability probability probability probability

Task 4×3 Grid 4×3 Grid 4×3 Grid 4×3 Grid
γ = 0.95 γ = 0.95 γ = 0.95 γ = 0.95

(Reward) Equation 6.1 Equation 6.1 Equation 6.1 Equation 6.1
Learning Algorithm Optimal Policy OMS OMS Q Learning

Known Model α = 95% α = 95%
Pro-Forma Prior - Uniform(1) Uniform(1) -
Pre-Prior - - Equations 6.2 - 6.5
Transfer Method - - Simple Transfer Algorithm -

Table 6.2: Set up for I-B in a 4×3 grid world with 0.5 probability of successful action. I-B consists
of four individual experiments - the baseline (I-B-1) in which the actual transition model is

available to the agent and an optimal policy is used from start, I-B-2 involves learning using OMS
with a non-informative prior information, I-B-3 involves learning with OMS using the simple

transfer algorithm to combine the non-informative prior information supplied to the agent in I-B-2
and a pre-prior information Equations 6.2 - 6.5, and I-B-4 involves model free learning using the

standard Q learning Algorithm.

Page 108

6.2. THE TRANSFER CONTEXT

Results and Discussion

The optimal policies are shown in Figures 6.5(a) and 6.5(b) for 0.9 and 0.5 probabilities of successful

actions respectively. Due to the episodic nature of the tasks all of the four actions are optimal in the

goal states. With the exceptions of cell locations (3,2) and (4,1) the optimal policies are the same in

both sets of experiments. Figures 6.6 and 6.7 show the discounted total reward acquired by the agent

(a) Probability of successful action = 0.9. (b) Probability of successful action = 0.5.

Figure 6.5: Optimal Policies for the Grid Task

over time in each of the experiments. The shaded area is estimates of standard deviation showing

standard error around the mean. As we would expect, the agent is able to learn the task with and

without transfer of the prior information. The agent’s performances with optimal policies derived

directly from the known models (I-A-1 and I-B-1) outperform all of the others that involve learning.

In addition, as expected, the agent when using OMS with pro-forma prior is able to learn the task

a bit quicker when the reliability of the action is greater i.e. convergence was achieved at around

500 steps when p = 0.9 in comparison to about 1000 steps when p = 0.5. More interesting is the

role of the historical data i.e. the pre-prior. The agent benefits more from the historical data when

p = 0.5 in comparison to when p = 0.9. One possible reason for this is that the transitions to each

of the admissible cells are equally weighted in the pre-prior information supplied to the agent. Both

the OMS with and without pre-prior outperforms the model free Q Learning method in terms of

discounted total reward obtained. These differences can be seen in Figure 6.8 to be statistically

significant.

Page 109

Chapter 6: The Transfer Framework

Figure 6.6: Discounted Total Rewards over time for Experiment I-A: I-A-1, I-A-2. I-A-3 & I-A-4.
The shaded area is estimates of standard deviation showing standard error around the mean.

Figure 6.7: Discounted Total Rewards over time for Experiment I-B: I-B-1, I-B-2, I-B-3, & I-B-4.
The shaded area is estimates of standard deviation showing standard error around the mean.

Page 110

6.2. THE TRANSFER CONTEXT

(a) (b)

Figure 6.8: Ordering for discounted cumulative reward for Experiments I-A and I-B under (a) 0.9
probability of successful action and (b) 0.5 probability of successful action. The solid lines indicate

statistical significance at 95% level.

6.2.3 Transferring Knowledge from Experts about Transition Constraints

Having shown how to incorporate historical data we now turn to the problem of how we can incor-

porate user knowledge in the form of constraints on transition models.

In many real-world applications, domain experts usually have valuable information about model

parameters that can be expressed as transition constraints. A transition constraint refines a process

model by expressing a condition or a restriction to which the model must conform. We gave simple

examples of transition constraints in Chapter one. Our intention is to make the constraints as simple

as possible, so that the experts can easily formalise their knowledge into these constraints. We dis-

tinguish two types of constraints, absolute and relative constraints. An absolute transition constraint

allows domain experts to specify conditions for a transition parameter without having to worry about

Page 111

Chapter 6: The Transfer Framework

relating the specification to other transition parameters in the model. Relative constraints involve rel-

ative relationships between transition parameters.

In the context of absolute constraints, one can for example specify an upper bound and a lower

bound for the probability of moving from state s to state s′ under an action a such that pa
ss′ ∈[

pa
↓,ss′ , pa

↑,ss′

]
where pa

↓,ss′ and pa
↑,ss′ are the lower and upper bound restrictions placed on transition

probability pa
ss′ . This type of constraint can be seen as a form of parameter tolerance that specifies

the plausible deviations of the parameter from pre-specified values. A single known value of pa
ss′

that collapses the bounds into a single estimate e.g. pa
ss′ = 0.8 can also be regarded as an absolute

constraint, although such constraints are not common in practice. In between the two i.e. known

parameter values and absolutely bounded transition constraints is yet another example, an interest-

ing case that we refer to as significant inequalities. It is reasonable to sometimes expect in practice

the availability of information relating to the size of a state transition probability. For example, in

the grid task we described in section 6.2.2.2 the agent may be informed that the transition prob-

ability of a successful action is at least 0.8. This we regard as significant inequality because that

single transition probability, say from state s to state s′ under action a, is greater than the sum of

the transition probabilities from s to all other successor states of s (i.e. excluding s′), under action

a. Significant inequalities implicitly cross the boundary between absolute and relative constraints in

that they give an indication of how significant the constraint is in comparison to some of the other

transition parameters in the model.

A typical example of a relative constraint is an equality constraint on the transition probabilities,

i.e. when we know that one or more state transitions share the same transition probability value.

Another important class of relative constraints are order constraints on transition probabilities which

we will cover in the next chapter.

Page 112

6.3. REVISED BAYESIAN ESTIMATION OF EXPECTED RETURN

6.2.3.1 Constrained Prior Distributions

A convenient choice of prior distribution over the transition parameters, given a set of transition

constraints CΩ over the tasks Ω, can be expressed as follows:

f (P|M) =

1

ZCΩ
(M) ∏

A
a=1 ∏

N
s=1 ∏

N
s′=1 (pa

ss′)
ma

ss′−1 for pa
ss′ ∈ PCΩ

0 otherwise,
(6.6a)

where N = |S|, ~ma
s = {ma

s1,m
a
s2, . . . ,m

a
s|S|} for the possible successor states of state s ∈ S and action

a ∈ A, given that ma
ss′ > 0 ∀s,s′ ∈ S. The constraint space PCΩ

is a subset of the possible space

of models P i.e. PCΩ
∈ P. CΩ is in two parts, the usual stochastic constraints on probabilities i.e.

0 ≤ pa
ss′ ≤ 1; ∑s′ pa

ss′ = 1 ∀s,s′ ∈ S, a ∈ A and user-specified transition constraints φΩ in the space

of tasks Ω. That is,

CΩ = {φΩ;0≤ pa
ss′ ≤ 1;∑

s′
pa

ss′ = 1 ∀s,s′ ∈ S, a ∈ A} (6.6b)

and

ZCΩ
(M) =

∫
PCΩ

A

∏
a=1

N

∏
s=1

N

∏
s′=1

(pa
ss′)

ma
ss′−1d pa

ss′ (6.6c)

We have now shown how to incorporate user knowledge about constraints into a density over models

that is also able to incorporate historical data. We now show how to modify the estimated expected

return based on the resulting density.

6.3 Revised Bayesian Estimation of Expected Return

Recall from Chapter 3 the Bayesian estimator of expected return under optimal policy which we

stated as follows:

Vs(M) =
∫
P

Vs(P) f (P|M)dP (6.7)

in which P is a model for the MDP in the space of all possible models P, f (P|M) is the density of

the model P for the MDP and Vs(M) is the estimated value given M. We wish to incorporate into our

Page 113

Chapter 6: The Transfer Framework

estimate of expected return the transferable prior information that is available to the learning agent,

in the form of historical data characterised as pre-prior M3, pro-forma Mω and transition constraints

CΩ. To do so we do need to modify the integral of Equation 6.7. The Bayesian estimator of expected

return under the optimal policy then becomes:

Vs(M) = E[Ṽs|O,M3,Mω ,CΩ] =
∫
PCΩ︸︷︷︸Vs(P) f (P|O,M3,Mω)︸ ︷︷ ︸dP (6.8)

6
6

changes possible to plausible space of models

incorporates
transferable information

The quantity of interest V is expressed as an expectation of a density over the transition functions

P parameterised by a) a matrix Mω of pro-forma transition counts and b) pre-prior historical data

M3, and c) the observations O; subject to constraint PCΩ
on the model space. Equation 6.7 is

modified in two significant ways.

1. After observing O a transition with experience tuple < s,a,r,s′ >, the posterior over process

models is, in a standard Bayesian context, decomposed into a likelihood and prior distribution

as follows.

f (P|O,M3,Mω) =
f (O|P) f (P|Mω ,M3)

f (O,Mω ,M3)

(6.9)

2. In contrast to Equation 6.7 in which the integral is over the space of possible models, the

integral of Equation 6.8 is restricted to the space of plausible models. A question arising is how

plausible or empirically adequate do the transition models have to be. We make a simplifying

assumption that the transition constraints are known, fits with the way the environment works

and neither violates the functional form nor what we know about the data.

The idea of plausible models is central to this thesis. The idea is not new. It is used for example

Page 114

6.4. CHAPTER SUMMARY

in motion simulation including the exploitation of randomness to satisfy constraints as introduced

by (Barzel, Hughes & Wood 1996). So what exactly is meant by plausible models? The adjective

plausible has two meanings when used in conversations:

• Apparently reasonable and valid, and truthful,

• Given to or characterized by presenting specious arguments.

The notion of plausibility has been used by some researchers to solve inference problems e.g.

(Chenney & Forsyth 2000, Fellows, Hartman, Hermelin, Landau, Rosamond & Rozenberg 2011).

Chenney & Forsyth (2000) provides the following definition of plausibility.

A model, including its simulator, is plausible if the important statistics gathered from

samples distributed according to p(A) [a probabilistic model] are sufficiently close to

the real world statistics we care about.

This definition of plausibility is sufficient for our purpose even though we recognise that it is quite

vague because it says nothing about which statistics we might care about, or what it means to be

sufficiently close.

6.4 Chapter Summary

We described in this chapter our transfer setting and presented a framework for optimising learning

in Bayes Adaptive MDPs for the transfer setting. The objectives in this chapter were twofold: a) to

establish the transfer context, i.e. the domain, task, and specific types of the transferable information,

and b) to explain how we incorporate the transferable prior information into Bayesian steps for

estimating expected returns. We described the two main types of transferable information that we

study in this thesis, namely historical data and transition constraints. The constraints are acquired

from experts. It is previous knowledge that fits with the way the environment works and neither

violates the functional form nor what we know about the data. We will describe in the next chapter

how to reason with the transition constraints.

Page 115

7
Reasoning with Constrained Transitions

Our focus in this chapter is on how to reason with transition constraints in the context of optimal

learning. We will study computational algorithms for reasoning with the two types of transition con-

straints we distinguished in chapter six - absolute and relative constraints. Our original contribution

in this chapter is that we show how to model both constraint types using the already known idea of

truncated Dirichlet densities and how to use the resulting beliefs to control exploration.

7.1 Introduction

Constraints on transition parameters lead to a partitioning of the overall space of process models

into feasible and infeasible regions. Knowledge about the unknown parameters of a transition model

in form of constraints CΩ, in a task space Ω, restricts the space P of possible models to a space

of plausible models PCΩ
enabling us to discard non-conforming transition models. How to use

information about constraints in the estimation procedure for optimal learning is the focus of this

chapter.

There is a large literature on parameter constrained estimation, particularly in the areas of trun-

cated distributions and order-restricted inferences, and comprehensive review of these areas includes

Barlow, Bartholomew, Bremner & Brunk (1972). The two main approaches are constrained maxi-

mum likelihood estimation and Bayesian inference typically done via Monte Carlo Markov Chains.

A simple approach to constrained parameter estimation problem is rejection sampling. Given a con-

Page 116

7.1. INTRODUCTION

strained distribution, we could sample from the parent (unconstrained) distribution and only accept

samples that satisfy given constraints. Unfortunately, the rejection sampling algorithm may be too

inefficient especially when the number of parameters is large and/or when the constraints are severe.

In such cases, the algorithm will be too slow as a high percentage of the candidate variates will be

rejected.

There are a number of constrained maximum likelihood estimation algorithms for multinomial

distributions especially in situations where there is order restriction on model parameters. The most

widely used of these algorithms is the pool adjacent violators algorithm (Ayer, Brunk, Ewing, Reid &

Silverman 1955) which is applicable only in the case of a simple linear ordering or an amalgamation

of simple linear orderings. Jewell & Kalbfleisch (2004) described a variant of the pool adjacent vi-

olators algorithm as a maximum likelihood estimator of a series of ordered multinomial parameters.

They demonstrate convergence of the algorithm. A known computational routine that implements

isotonic regression for the case of a simple linear ordering is credited to Cran (1980). Lim, Wang

& Choi (2009) reformulated the maximum likelihood estimation problem of ordered multinomial

probabilities as a geometric program and then solved the problem globally and efficiently. They

reported the computational merits of the geometric programming approach to the pool adjacent vi-

olators algorithm of Jewell & Kalbfleisch (2004) and concluded that geometric programming based

approach is computational faster and easier to use.

Compared with the vast literature on constrained maximum likelihood estimation particularly

for order restricted inference, few Bayesian methods have been reported for solving constrained pa-

rameter problems. Typically, constraints in Bayesian estimation methods are imposed by choosing a

prior distribution that has support on a restricted space. Bayesian techniques for constrained param-

eter inference include the use of truncated prior distribution (Gelfand, Smith & Lee 1992, Sedransk,

Monahan & Chiu 1985), applying transformations e.g. isotonic regressions to unconstrained param-

eter estimates (Gunn & Dunson 2005). As we shall see later in this chapter, Monte Carlo Markov

Chains, particularly Gibbs sampling can be straightforwardly implemented for Bayesian calculations

to solve constrained parameter and truncated data problems (Gelfand et al. 1992). The sequential

Page 117

Chapter 7: Reasoning with Constrained Transitions

Monte Carlo (SMC) algorithm of Lang, Chen, Bakshi, Goel & Ungarala (2007) for Bayesian esti-

mation in constrained dynamic system provides an alternative to the classical Monte Carlo rejection

sampling approach we mentioned earlier. The SMC algorithm enforces inequality constraints via

acceptance / rejection algorithm but is more accurate and efficient. They showed that the SMC

algorithm possesses the theoretical properties of unconstrained SMC.

Compared to the Bayesian approaches, the constrained maximum likelihood estimation faces

the challenges of assessing uncertainty in the parameter estimates since standard asymptotic theory

does not apply in this case (Geyer 1991). In addition, the constrained maximum likelihood estimates

are boundary values, i.e., parameters violating the constraints are simply moved to their correspond-

ing constraint boundaries. To support inference mechanisms in knowledge systems, White (1986)

presented simple generalisations of Bayes’ rule that allow both a priori probabilities and conditional

probabilities to be described by linear inequalities. His generalisations also produce an extreme

point description and a linear inequality description of a set containing all possible a posteriori prob-

abilities.

In the context of process control, the role of constraints in optimal control problems for linear

systems is recognised in the literature e.g. Dreyfus (1962), Ho (1962), and Chang & Seborg (1982).

Linear programming has been shown (Chang & Seborg 1982) to be a powerful method for devel-

oping multivariate control schemes which explicitly includes linear equality and linear inequality

constraints on the state, control and/or output variables. Typically, a linear programming problem is

solved on-line at sampling instants to determine the values of the control variables which minimise

or maximise a linear performance index while satisfying the constraints.

The main thrust of this chapter is the use of constrained parameter Bayesian inference methods

to reason about transition constraints in Markov decision processes. To do this we rely primarily on

truncated Dirichlet distribution. Before going on to describe the truncated distribution we shall first

look at how we could convert a set of constraints to simple bounds through linear programming. We

describe the conversion process in Section 7.2 and then move on to our probabilistic inference meth-

ods in Section 7.3. Equally important is how the result of the inference feeds into our exploration

Page 118

7.2. CONVERTING A CONVEX SET INTO SIMPLE BOUNDS

control algorithms. We describe the link in Section 7.4. We present our experiments and its results

in Sections 7.5, 7.6, & 7.7 and end the chapter in Section 7.8 with concluding remarks

7.2 Converting a Convex Set into Simple Bounds

In this section we shall describe a method of converting a set of transition constraints into lower

and upper bounds on transition probabilities. Let us consider a convex set CΩ on the transition

probabilities ~pa
s of state s under action a in a Markov decision process. The constraints in CΩ can be

converted into lower and upper bounds, pa
↓,ss∗ ≤ pa

ss∗ ≤ pa
↑,ss∗ , by solving the following optimisation

problem.

For lower bound,

pa
↓,ss∗ = min pa

ss∗ s∗ ∈ S

s.t. pa
ss′ ∈ PCΩ

∀s,s′ ∈ S.
(7.1)

and for upper bound,

pa
↑,ss∗ = max pa

ss∗ s∗ ∈ S

s.t. pa
ss′ ∈ PCΩ

∀s,s′ ∈ S.
(7.2)

The optimisation problem is a linear program for constraints CΩ that consists of linear equalities

and/or inequalities.

To illustrate, let us recall the hospital robot example we described in Chapter one, Page 7, in

which a set of constraints is imposed on the robot’s task-environment model. The lower and upper

bounds on transition probabilities pdock
12 and pdock

13 can be calculated from the constraints by solving

the linear programs specified in Equations 7.1 and 7.2. The linear program gave the same result we

inferred in Chapter one, i.e. 0.007≤ pdock
12 ≤ 0.06 and 0.87≤ pdock

13 ≤ 0.923.

Converting constraints to simple bounds may present us with a solution when the constraints

are many and/or severe. The bounds calculated from the linear programs in Equations 7.1 and 7.2

can, for example, be used to specify a truncated Dirichlet distribution over the space of the transition

models. We shall turn our attention in the next section to truncated Dirichlet distribution.

Page 119

Chapter 7: Reasoning with Constrained Transitions

7.3 Probabilistic Inference in Constrained Transition Models

This section introduces the truncated Dirichlet distribution approach to modelling transition prob-

abilities. We shall use the truncated Dirichlet distribution to reason with transition constraints and

use the resulting belief as input to our exploration control algorithms. In Section 7.3.1 we will first

describe the density function of the truncated Dirichlet distribution for transition models. We will

then describe how to draw samples from the distribution in Section 7.3.2. In Section 7.3.3 we will

extend our knowledge of working with truncated Dirichlet distributions to probabilistic inferences

on order restricted transition models.

7.3.1 Truncated Dirichlet Distributions

A truncated distribution is a conditional distribution that results from apriori restricting the domain

of some other probability distribution. Not only do such distributions prevent values outside of trun-

cated bounds, a proper truncated distribution should integrate to one within the truncated bounds. In

contrast to a truncated distribution, a censored distribution occurs when the probability distribution

is still allowed outside of a pre-specified range.

A random vector of transition probabilities ~pa
s = {pa

s1, pa
s2, . . . , pa

sN} for the possible N successor

states of state s ∈ S under action a ∈ A is said to be a truncated Dirichlet distribution (TDirichlet) if

the density of ~pa
s is:

Z(~ma

s)
−1

∏
N
s′=1 (pa

ss′)
ma

ss′−1, for ~pa
s ∈ PCΩ

(~pa
↓,s,~p

a
↑,s)

0, otherwise
(7.3)

where Z(~ma
s)
−1 is the normalizing constant, ~pa

↓,s =(pa
↓,s1, pa

↓,s2, . . . , pa
↓,sN), ~p

a
↑,s =(pa

↑,s1, pa
↑,s2, . . . , pa

↑,sN),

and the convex polyhedra

PCΩ
(~pa
↓,s,~p

a
↑,s) = {~pa

s : pa
↓,ss′ ≤ pa

ss′ ≤ pa
↑,ss′ ,1≤ s′ ≤ N,

N

∑
s′=1

pa
ss′ = 1} (7.4)

Page 120

7.3. PROBABILISTIC INFERENCE IN CONSTRAINED TRANSITION MODELS

When pa
↓,ss′ = 0 and pa

↑,ss′ = 1, ∀s,s′ ∈ S the TDirichlet(~pa
↓,s,~p

a
↑,s;ma

s1,m
a
s2, . . . ,m

a
sN) reduces to the

Dirichlet distribution. When N = 2 the truncated Dirichlet distribution reduces to a truncated Beta

distribution.

7.3.2 Sampling Truncated Dirichlet Distributions

Ng et al. (2011) presented conditional sampling methods and Gibbs samplers as two approaches

that can be used for generating independent identically distributed samples from truncated Dirichlet

distributions. We adopt the Gibbs sampler approach in this thesis and use it to generate samples of

transition models from truncated Dirichlet distributions. The Gibbs sampler requires all full con-

ditional distributions and relies on being able to simulate random draws from associated truncated

Beta distributions. We will first describe how we draw samples from the truncated Beta distribution

in Section 7.3.2.1 and then extend the presentation to the Gibbs sampler for the truncated distribution

in Section 7.3.2.2.

7.3.2.1 Sampling Transition Models from Truncated Beta Distribution

It is easy to draw random samples from a truncated Beta distribution. Following Ng et al. (2011),

we develop and implement our sampler as follows.

1. Assume we are interested in drawing random samples of a transition probability:

pa
s1 ∼ T Beta(ma

s1
,ma

s2
, pa
↓,s1

, pa
↑,s1

)

2. Let ζ be a random value drawn from a standard uniform distribution with 0≤ ζ ≤ 1.

3. The random transition probability pa
s1 is generated as follows:

pa
s1← F−1

B (FB(pa
↓,s1)+ζ{FB(pa

↑,s1)−FB(pa
↓,s1)}),

where FB(·) denotes the cumulative density function (CDF) of the beta distribution with pa-

rameters (ma
s1,m

a
s2) and F−1

B (·) is its inverse function. pa
s2 = 1− pa

s1 and ζ is set in step 2.

Page 121

Chapter 7: Reasoning with Constrained Transitions

Fortunately, evaluating FB(·) and F−1
B (·) are straightforward as software is readily available to do

the calculations e.g. R or S-Plus. A simple implementation in Java using the Beta distribution class

in Apache org.apache.commons.math3.distribution.BetaDistribution library is listed in Figure 7.1

Figure 7.1: A simple implementation of a Java function for sampling from a truncated Beta
distribution.

7.3.2.2 Extending the Sampler to Truncated Dirichlet Distributions

To facilitate sampling from a truncated Dirichlet distribution TDirichlet(~pa
↓,s,~p

a
↑,s;ma

s1,m
a
s2, . . . ,m

a
sN)

we adapt from the distribution theory the following (Ng et al. 2011):

ya
ss′∗|~pa

s(−N) ∼ T Beta(ma
ss′ ,m

a
sN , pa

↓,ss′∗, pa
↑,ss′∗) (7.5)

where ~pa
s(−N) = {pa

s1, pa
s2, . . . , pa

sN−1}

ya
ss′∗ =

pa
ss′

pa
ss′∗

∀s′ = 1,2, . . .N−1, (7.6)

pa
ss′∗ = pa

sN + pa
ss′ = 1−

N−1

∑
j=1, j 6=s′

pa
s j (7.7)

Page 122

7.3. PROBABILISTIC INFERENCE IN CONSTRAINED TRANSITION MODELS

and

pa
↓,ss′∗ = max(

pa
↓,ss′

ya
ss′∗

,1−
pa
↑,sN

ya
ss′∗

) pa
↑,ss′∗ = min(

pa
↑,ss′

ya
ss′∗

,1−
pa
↓,sN

ya
ss′∗

) (7.8)

The sampling algorithm is therefore as follows: we proceed through the indices s′ = 1,2, . . . ,N−1,

where we generate ya
ss′∗ from the corresponding truncated Beta distribution and set pa

ss′ = pa
ss′∗×ya

ss′∗.

7.3.3 Order Restrictions on Transition Probabilities

Let us consider the following order restriction on the transition probabilities ~pa
s = {pa

s1, pa
s2, . . . , pa

sN}

for the possible N successor states of state s ∈ S under action a ∈ A, and for a known k:

pa
s1 ≤ pa

s2 ≤ . . .≤ pa
sk ≥ pa

sk+1 ≥ . . .≥ pa
sN ; 0≤ pa

ss′ ≤ 1,
N

∑
s′=1

pa
ss′ = 1 (7.9)

As we did for truncated Dirichlet distributions in Section 7.3.1, we will use the Gibbs sampler that

requires the full conditional for pa
ss′ , s′ = 1, . . . ,N−1 (with pa

sk as fraction of these pa
ss′) probabilities;

[pa
ss′ |pa

s j, j = 1, . . . ,N − 1, j 6= s′,k] is a Beta distribution scaled to [0,1−∑
N−1
j=1, j 6=s′ p

a
s j] and then

suitably restricted according to the following constraints determined by k (Sedransk et al. 1985,

Gelfand et al. 1992).

if s′ < k, max(pa

ss′−1,b
a
ss′− pa

sN−1)≤ pa
ss′ ≤min(pa

ss′+1,b
a
ss′);

if s′ > k, max(pa
ss′+1,b

a
ss′− pa

sN−1)≤ pa
ss′ ≤min(pa

ss′−1,b
a
ss′);

if s′ = k, max(pa
sk−1, pa

sk+1,b
a
sk− pa

sN−1)≤ pa
sk ≤ ba

sk.

(7.10)

where ba
ss′ = 1−∑

N−1
j=1, j 6=s′ p

a
s j and pa

s0 ≡ 0

As discussed in Section 7.1, an alternative approach to inference for order constrained param-

eters is through either pool adjacent violators algorithms or Geometric Programming (Jewell &

Kalbfleisch 2004, Lim et al. 2009). The two algorithms are straightforward to implement for the

order constraints we specified in Equation 7.9.

Page 123

Chapter 7: Reasoning with Constrained Transitions

7.4 Constrained Optimistic Model Selection (COMS)

In this section we describe our extension to the optimistic model selection algorithm (Algorithm

4.1) to make it work with transition constraints. We refer to the new algorithm as constrained OMS

(COMS) and its main loop is shown in Algorithm 7.1. The algorithm takes as input a known spec-

ification of an MDP i.e. the states S, actions A and reward function R of the MDP. Also passed as

input to the procedure are the prior distribution M, the discount rate γ for infinite horizon tasks, α

that signifies the level of confidence attached to probability intervals, and the initial state values V .

The procedure returns an optimistic model Pa
opt . In addition, the algorithm takes as parameter the set

of transition constraints CΩ supplied to the agent.

1: procedure Pa
opt = OMS(S,R,A,V,M,γ,α,CΩ)

2: Initialise Vk ∀s,s′ ∈ S∪ k and ∀a ∈ A
3: Initialise ma

sk,m
a
ks′ ∀s,s

′ ∈ S∪ k according to M
4: ξ a

s = γVk, ∀s ∈ S and ∀a ∈ A where ma
sk > 0

5: ξ a
k =Vk, ∀a ∈ A

6: loop
7: observe current state x
8: select action a = argmaxb{ξ b

x } breaking ties randomly
9: execute action a in state x and observe the transition x

a,r
; y

10: update belief ma
xy = [ma

xy +1]|CΩ

11: repeat
12: choose i
13: for each action b do
14: find ~pb

opt,i using the Goal Program Equation 4.6.
15: update ξ b

i using Equation 4.3
16: end for
17: until ARTDP algorithm stops
18: end loop
19: end procedure

Algorithm 7.1: The Main Loop of the Constrained Optimistic Model Selection (COMS)
Algorithm.

The algorithm is in most part the same as that of the OMS except in Lines 10 and 14 where we

take cognisance of the information about constraints.

Page 124

7.5. EXPERIMENT II: THE GRID WORLD WITH TRANSITION CONSTRAINTS

Lines 2-5 are the initialisation steps. The true value function for the hypothetical state Vk is

initialised in line 2 and the prior information for the hypothetical state is initialised in line 3. The

exploration values are initialised in lines 4 and 5. The underlying MDP is augmented with a hypo-

thetical state k during the initialisation steps.

Lines 6-18 contains the main learning steps. The agent observes the current state x in line 7

and selects an action a to perform given the current state and the current exploration values. In line

8, the agent selects an action a with the highest optimistic value, breaking ties randomly. In line 9

the agent executes the action selected and observes the transition to the next state i.e. x
a,r
; y. The

observed transition is used to update beliefs in line 10 subject to the constraints CΩ imposed on the

transition probabilities. This involves a recognition of the specific type of constraint involved and

applying the techniques we described in Sections 7.2 and 7.3 to update M. The updated belief is the

posterior distribution jointly defined by M and the constraints CΩ.

The agent runs its asynchronous real time dynamic programming (ARTDP) algorithm in lines

11-17. Since the value function may change as the agent perform asynchronous back-ups it would

be necessary to perform model selection every time a state action pair is backed up. The optimistic

model is selected in line 14 using the Goal Program we formulated in Equation 4.6 (Chapter four)

and the exploration value function is revised in line 15 to reflect the newly selected model. The

optimistic estimate can be calculated using any form of ARTDP.

7.5 Experiment II: The Grid World with Transition Constraints

Recall the robot on a grid task we studied in Chapter six and in particular experiment I-A where we

showed the performance of a uniform pro-forma prior on a 4× 3 grid world and in which actions

carry a 0.9 probability of success. We revisit experiment I-A in this chapter.

We keep the set up for the experiment the same as in Chapter six. The details of the experiments

are recalled in Table 7.1 below in which experiments II-1, II-2 and II-3 are same as their counterparts

in Chapter six i.e. I-A-1, I-A-2 and I-A-3 respectively.

Page 125

Chapter 7: Reasoning with Constrained Transitions

(a) (b)

Figure 7.2: The 4×3 Grid World with Transition Constraints. The Grid contains one start cell and
two exit cells - High and Low Goals. The black cell is inaccessible. a) The 4×3 Grid. b) Optimal

Policy for 0.9 probability of success.

II-1 II-2 II-3 II-4 II-5
Domain Grid Task Grid Task Grid Task Grid Task Grid Task

0.9 success 0.9 success 0.9 success 0.9 success 0.9 success
probability probability probability probability probability

Task 4×3 Grid 4×3 Grid 4×3 Grid 4×3 Grid 4×3 Grid
γ = 0.95 γ = 0.95 γ = 0.95 γ = 0.95 γ = 0.95

(Reward) Equation 6.1 Equation 6.1 Equation 6.1 Equation 6.1 Equation 6.1
Learning Optimal Policy OMS OMS COMS COMS
Algorithm Known Model α = 95% α = 95% α = 95% α = 95%
Pro-Forma Prior - Uniform(1) Uniform(1) Uniform(1) Uniform(1)
Pre-Prior - - Equations Equations -

- - 6.2 - 6.5 6.2 - 6.5 -
Constraint - - - Tolerances Tolerances

Prob of Success Prob of Success
= 0.9±0.05 = 0.9±0.05

Transfer - - Simple Transfer ST & Sampling from Sampling from
Method (ST) Algorithm Truncated Dirichlet Truncated Dirichlet

Table 7.1: Set up for II in a 4×3 grid world with 0.9 probability of successful action. II consists of
five individual experiments - the baseline (II-1) in which the actual transition model is available to

the agent and an optimal policy is used from start, II-2 involves learning using OMS with a
non-informative prior information, II-3 involves learning with OMS using the simple transfer
algorithm to combine the non-informative prior information supplied to the agent in II-2 and a

pre-prior information Equations 6.2 - 6.5, and II-4 & II-5 involve transition constraints using the
COMS learning Algorithm.

Experiments II-4 and II-5 are new and they are designed to test the COMS algorithm. The set-

up for experiment II-4 is basically the same as II-3 except that in both II-4 and II-5 the learning

algorithm is COMS and there is knowledge of constraints. II-4 and II-5 differs with respect to pre-

prior information. II-4 allows for pre-prior information (historical data) as in II-3 unlike II-5 in

Page 126

7.5. EXPERIMENT II: THE GRID WORLD WITH TRANSITION CONSTRAINTS

which there is no pre-prior information (historical data). The constraints are absolute and set to a

tolerance of 0.9± 0.05 for transitions involving successful actions. The results of experiments II-4

and II-5 alongside those of II-1, II-2 and II-3 are shown in Figures 7.3 and 7.4.

Figure 7.3: Discounted Total Rewards over time
for Experiment II-2, II-3, II-4 & II-5.

As before, the shaded area is estimates of standard deviation showing standard error around the

mean. We saw in Chapter six that the agent is able to learn the task with and without transfer of

the prior information. We also saw in Chapter six that both the OMS with and without pre-prior

outperforms the model free Q Learning method in terms of discounted total reward obtained and the

OMS with pro-forma information performed better than OMS with pro-forma and pre-prior infor-

mation. As expected, the results of Experiments II-4 and II-5 show that the learning performance of

the agent improved with the constraints. The pro-forma and pre-prior information when combined

with constraints performed better than just the pro-forma information with constraints. The absolute

constraint allowed the agent to quickly improve the precision of its estimates transition probabili-

ties. The agent’s performances with optimal policy derived directly from the known models (II-1)

outperform all of the others that involve learning. These differences can be seen in Figure 7.5 to be

statistically significant.

Page 127

Chapter 7: Reasoning with Constrained Transitions

Figure 7.4: Comparison of Results for Experiment II-2, II-3, II-4 & II-5.
The Q Learning result is from Experiment I-A-4 in Chapter six.

Figure 7.5: Ordering for methods in Experiment II based on the discounted cumulative reward
obtained. The solid lines indicate statistical significance at 95% level.

Page 128

7.6. EXPERIMENT III: MAINTENANCE INTERVENTION TASK

7.6 Experiment III: Maintenance Intervention Task

An important challenge a decision maker often face is deciding when to intervene so as to alter

or prevent the progression of a condition. Instances of this challenge abound. In health service,

for example, physicians are often faced with decisions about medical interventions when precipitat-

ing events threaten patient’s life or when patient’s wellbeing is severely affected (Alagoz, Maillart,

Schaefer & Roberts 2004, Magni, Quaglini, Marchetti & Barosi 2000, Shechter, Bailey, Schaefer &

Roberts 2008). The challenge typically requires the decision maker to choose between two actions

i) ‘watchful waiting’ i.e. postpone the decision up to a critical point, and ii) ‘intervene’. While

seemingly straightforward, such tasks (referred to as intervention timing tasks) involve uncertainty,

complexity and dynamic change. A simplified abstraction of the intervention timing task is shown in

Figure 7.6. The states of the task comprise of an intervention state 0 and health states 1,2, . . . ,H +1

in order of decreasing health. The action space consists of watchful waiting and intervene. We ex-

Figure 7.6: A simplified MDP model of the intervention timing task. Transitions under watchful
waiting actions are shown as solid lines while those for intervene actions are shown in broken lines.

Not all possible transitions are shown in the figure.

periment with a specific instance of the intervention timing task. We adapt a model of a maintenance

intervention task from the literature Moustafa, Maksoud & Sadek (2004) and use it to highlight the

benefits of transferable prior information in practical settings. The maintenance task consists of

three actions, namely do-nothing, minimal maintenance and replacement. The do-nothing action

Page 129

Chapter 7: Reasoning with Constrained Transitions

corresponds to watchful waiting whilst the other two, i.e. minimal maintenance and replacement,

are interventions. The transition matrix for the deteriorating system is shown in Equation 7.11.

Pa =

0.28 0.20 0.15 0.12 0.09 0.07 0.05 0.03 0.01

0.40 0.19 0.15 0.10 0.07 0.05 0.03 0.01

0.32 0.23 0.17 0.12 0.08 0.05 0.03

0.32 0.26 0.20 0.13 0.07 0.02

0.56 0.20 0.14 0.08 0.02

0.60 0.25 0.13 0.02

0.65 0.22 0.13

0.70 0.30

1.0

(7.11)

The matrix exhibits structure that can be exploited during learning. First we validated the model

and obtained the same results reported in Moustafa et al. (2004), the paper was only concerned with

planning. We carried out the experiments described below on the Maintenance task. In Experiment

III-1 we simulated the optimal policy for use as a benchmark for evaluating learning performance,

assuming the agent knows the actual transition probabilities (Equation 7.11) from start. Unlike Ex-

periment III-1, Experiments III-2 and III-3 involve learning as the agent has no knowledge of the

actual transition probabilities. In experiment III-2 we applied the OMS algorithm with a uniform

pro-forma prior. Finally in experiment III-3 we applied order restriction on state transition probabil-

ities given as simple order (SO) in which, at any given state s ∈ S under action a ∈ A, pa
si ≥ pa

s j for

all i ≤ j. The pool adjacent violators algorithm (PAVA) was used in experiment III-3 for Bayesian

Inference and to control exploration we use COMS. The set-up is summarised in Table 7.2. The re-

sult of the experiments is shown in Figure 7.7. The results are averaged over fifty trials. The shaded

area is estimates of standard deviation showing standard error around the mean.

The agent is able to learn the task using the OMS algorithm although it took over 50000 steps

to converge to optimal solution. Performance of the COMS is quite remarkable, it shows significant

Page 130

7.6. EXPERIMENT III: MAINTENANCE INTERVENTION TASK

III-1 III-2 III-3
Domain ITD ITD ITD
Task γ = 0.99 γ = 0.99 γ = 0.99
Learning Algorithm Optimal Policy OMS [α = 0.95%] COMS [α = 0.95%]
Pro-Forma Prior - Uniform (1) Uniform (1)
Pre-Prior

Constraint - - SO
Inference Method - - PAVA

Table 7.2: Summary of the Set up for Experiment III in the Intervention Timing Doman (ITD)

improvement over the OMS Algorithm on this task. These differences can be seen in Figure 7.8 to

be statistically significant. Much of the improvements is due to the transition constraints which is

indicative of the potential benefits of our approach in practical applications. For example, the notions

of order restrictions and increasing / decreasing failure rates are known to engineers and scientists

and the knowledge that such information could optimise learning performance is significant.

Figure 7.7: Discounted Total Rewards (Costs) over time for Experiment III

Page 131

Chapter 7: Reasoning with Constrained Transitions

Figure 7.8: Ordering for discounted cumulative reward for Experiments III. The solid lines indicate
statistical significance at 95% level.

7.7 Experiment IV: Additional Experiments

We carried out experiments on a 15×15 grid to study the performance of the COMS algorithm on a

larger state space. The grid is shown in Figure 7.9(a). An agent on the grid is faced with the task of

(a) (b)

Figure 7.9: The 15×15 Grid World. The Grid contains one start cell and one goal cell. The black
cell is inaccessible. a) The 15×15 Grid. b) Optimal Policy for 0.94 probability of success.

moving from a starting position, cell (3,8), to a goal position, cell (13,8). The agent can move in any

of the free space in orthogonal directions using the usual four primitive actions North, East, South

and West. Each action succeeds in moving the agent in the chosen direction with a probability of

0.94 or fails and remains in the current cell with a probability 0.06. If the agent tries to take an action

going through an obstacle, it bounces back to the current cell. The reward function is specified in

Page 132

7.7. EXPERIMENT IV: ADDITIONAL EXPERIMENTS

Equation 7.12.

rs =

+10.0 for goal state,

+0.0 for accessible cells,

−1.0 penalty for attempting to go through an obstacle.

(7.12)

We carried out three experiments IV-1, IV-2, and IV-3. The set up of the experiments are summarised

in Table 7.3. Experiment IV-1 is the baseline in which the optimal policy is applied throughout given

that the actual transition model is known. In contrast to Experiment IV-1, Experiments IV-2 and IV-3

involve learning. The agent uses the COMS algorithm in Experiment IV-2 with a pro-forma prior

that is set to 1 everywhere and a knowledge of absolute transition constraints that sets the probability

of successful actions to 0.94. The agent needs to learn the other effects of its actions. The agent uses

a model free Q Learning algorithm in Experiment IV-3. The optimal policies are shown in Figure

IV-1 IV-2 IV-3
Domain Grid Task Grid Task Grid Task

0.94 success 0.94 success 0.94 success
probability probability probability

Task 15×15 Grid 15×15 Grid 15×15 Grid
γ = 0.99 γ = 0.99 γ = 0.99

(Reward) Equation 7.12 Equation 7.12 Equation 7.12
Learning Optimal Policy COMS Q Learning
Algorithm Known Model α = 95% -
Pro-Forma Prior - Uniform(1) -
Pre-Prior
Constraint - Absolute -

Probability of Successful action = 0.94

Table 7.3: Set up for IV in a 15×15 grid world with 0.94 probability of successful action. IV
consists of three individual experiments - the baseline (IV-1) in which the actual transition model is
available to the agent and an optimal policy is used from start, IV-2 involves learning using OMS
with a non-informative prior information and an Absolute Constraint, and IV-3 uses model free Q

learning algorithm.

7.9(b). Figure 7.10 shows the discounted total reward acquired by the agent over time in each of

the experiments. As we would expect, the agent is able to learn the task in both IV-2 and IV-3.

The COMS algorithm (IV-2) performed better than the Q-Learning algorithm (IV-3), the former

Page 133

Chapter 7: Reasoning with Constrained Transitions

exploiting the knowledge of the absolute constraints.

Figure 7.10: Discounted Total Rewards over time for Experiment IV

7.8 Chapter Summary

We described in this chapter algorithms for reasoning with transition constraints and showed how

we applied them to improve learning performance. The contributions in this chapter closely relate to

those of chapter four where we first covered the subject of constraints and optimistic model selection.

We showed in this chapter that there are many ways in which an agent can reason with constraints

and the effect of constraints on learning performance could be significant. In the next chapter we

will present another perspective on how transition constraints can be used when transferring prior

information in MDPs.

Page 134

8
Accounting for Historical Data

In this chapter, we focus on how an agent can incorporate historical data into prior distribution of a

new task. The new task is an MDP with unknown or partially known transition probabilities and the

historical data constitutes pre-prior information available to the agent before the commencement

of learning on the new task. We will describe in this chapter methods of constructing a prior dis-

tribution for the new task that integrates the historical data with other available information. The

construction is accomplished through power prior Bayesian analysis. We start by describing the

basics of power prior distributions. We then describe how power priors can be used to construct

priors for transition models. We use a model of the grid world task and the maintenance intervention

task to demonstrate the power prior approach.

8.1 Introduction

When an agent is faced with a task that involves learning and has at its disposal historical data from

related tasks the agent should incorporate the historical data in a way that will improve learning

performance. This can be done by weighing the historical data relative to its other beliefs when

calculating prior distribution for the model parameters of the new task. As we discussed in Chapter

five, a way to accomplish this is through power prior Bayesian analysis (Ibrahim & Chen 2000).

Page 135

Chapter 8: Accounting for Historical Data

The power prior approach provides a useful class of informative priors for Bayesian inference.

The basic idea of a power prior is to introduce into the inference algorithm a relative precision

parameter that controls the influence of the historical data on the new task. The power prior is

constructed by raising the likelihood function of the historical data to a suitable power to discount

the historical data relative to that of the new task.

Following the seminal work of Ibrahim, Chen and Sinha (2003) in their extensive study of the

theoretical properties of power priors, the power prior approach has gained popularity and has been

applied to a wide variety of Bayesian inference problems. Our contribution in this chapter is to

extend the power prior approach to Bayesian inference in unknown or partially known Markov de-

cision processes. We also present a method for acquiring the precision parameter and demonstrate

the benefit of our power prior method on the maintenance intervention task and the grid world task

we studied in the previous chapter.

The remainder of the chapter is organised as follows. In Section 8.2 we describe the idea of

power priors. We present our extension of power priors to process models in Section 8.2.1 and

describe in Section 8.2.2 how we calculate the relative precision parameter. Experiments illustrating

the performance of the power prior approach are reported in Sections 8.3 and 8.4. The chapter ends

in Section 8.5 with a summary.

8.2 Power Priors

In this section we briefly describe power prior Bayesian analysis for single and multiple historical

data sets. Let us start by considering a model that has unknown parameters θ . We would like to

incorporate historical data, denoted by D3, when making inference about θ . We assume that θ

follows a probability distribution and that, given θ , the historical data D3 and current data D are

independent random samples from an exponential family.

Let L(θ |D3) be the likelihood function of θ based on the historical data. Ibrahim & Chen (2000)

Page 136

8.2. POWER PRIORS

define the power prior of θ as:

f (θ |D3,δ) ∝ L(θ |D3)δ f (θ) (8.1)

in which, f (θ) is the pro-forma prior distribution about θ that is specified by the agent before any

historical data is made available and δ is a relative precision parameter that weights the historical

data relative to the likelihood of the current task.

The precision parameter δ can be assumed fixed. It is constrained to lie between 0 and 1. The

boundary values of δ , that is 0 and 1, give two interesting cases. The contribution of historical data to

the power prior is nil when δ = 0. This means that the whole of the power prior equates to the agent’s

pro-forma prior distribution. On the other hand, the case of δ = 1 results in full incorporation of the

historical data. That is, equal weight is given to both the likelihood L(θ |D3) and the pro-forma prior

distribution f (θ).

Taking account of the marginal probability of the historical data, the posterior probability of θ

given the historical data is expressed for a fixed δ as follows:

f (θ |D3,δ) =
L(θ |D3)δ f (θ)∫

Θ
L(θ |D3)δ f (θ)dθ

(8.2)

Notice that in Equations 8.1 and 8.2 the relative precision parameter is assumed fixed and known.

Typically the precision parameter is not necessarily pre-determined and more flexibility may be

achieved by making the parameter a random variable. The power prior f (θ |D3,δ) in Equations 8.1

and 8.2 can be extended by specifying a prior distribution for δ and including the distribution in a

joint power prior of (θ ,δ). Ibrahim and Chen(2000) proposed a joint power prior distribution for

(θ ,δ) of the form

f (θ ,δ |D3) ∝ L(θ |D3)δ f (θ) f (δ) (8.3)

in which f (δ) is the prior distribution for the precision parameter δ taken as a random variable. In

Page 137

Chapter 8: Accounting for Historical Data

the same vein, Equation 8.2 can be extended as follows,

f (θ ,δ |D3) =
L(θ |D3)δ f (θ) f (δ)∫ 1

0
∫

Θ
L(θ |D3)δ f (θ) f (δ)dθdδ

(8.4)

There are advantages associated with making δ a random variable instead of a fixed variable. First,

a random δ allows the tails of the marginal distribution of θ to be heavier than the tails with δ

fixed, and this may be more desirable. Secondly, a random δ brings about flexibility in expressing

uncertainty associated with δ via a prior distribution.

A natural prior for δ would be a Beta(α,β) distribution or, since 0 ≤ δ ≤ 1, simply a uniform

distribution. The learning agent may influence the prior weight on the historical data by adjusting

the hyper parameters α,β that specify the prior distribution for δ . The main reason often cited for

taking a beta prior for δ is that the beta prior is quite simple and natural (Ibrahim & Chen 2000, Chen,

Ibrahim & Shao 2000, Ibrahim et al. 2003, Duan 2005, Duan, Ye & Smith 2006). It is suggested that

several sets of hyper parameters should be used and sensitivity analyses conducted when inferring

the precision parameter (Chen et al. 2000).

When there are multiple historical data sets, it is possible to incorporate the whole of the his-

torical data sets in the power prior formalism by generalising the specifications we described above

for single historical data. Suppose there are K historical data sets, D3 = {D3
1 ,D

3
2 . . . ,D3

k , . . . ,D
3
K}

where D3
k is the historical data set for the kth task. Chen et al. (2000) suggested defining a different

weight parameter δk for the kth historical data set and taking the δk’s to be independent identically

distributed Beta random variables with hyper parameters (α,β). Let ~δ = (δ1, . . . ,δk, . . . ,δK), then

the power prior for multiple historical data sets takes the form

f (θ ,~δ |D3) ∝
(∏K

k=1 L(θ |D3
k)

δk f (δk|α,β)) f (θ)∫
Θ
(∏K

k=1 L(θ |D3
k)

δk) f (θ)dθ
(8.5)

This framework could accommodate potential heterogeneity among several historical data sets, and

hence the role of historical data can be more accurately evaluated. Modifications (Duan 2005,

Neuenschwander, Branson & Spiegelhalter 2009, Gajewski 2010) to the power prior formulations

Page 138

8.2. POWER PRIORS

of Equation 8.3 and its extensions has been reported to resolve issues raised around: a) the tendency

for δ to be close to zero meaning that much of a historical data set is not used, and b) the suggestions

that the resulting power prior could be improper. Our focus in this thesis is primarily on the original

power prior formulations, Equations 8.1 and 8.2.

8.2.1 Power Priors for Process Models

We now turn to how historical data can be incorporated in the quantification of prior distributions for

process models. For ease of exposition we develop a power prior and the consequent posterior with

only one historical data set. Suppose we are interested in a process model with unknown transition

parameters P. We would like to incorporate historical data, denoted by D3, when making inference

about P. The agent has a pro-forma prior information matrix Mω that it formulated for P before

the historical data is made available. We assume that f (P|Mω) follows a probability distribution

and that, given P, the historical data D3 and the pro-forma prior information Mω are independent

quantities from an exponential family. Specifically, in line with previous chapters, we assume that

P follows a multinomial distribution and the pro-forma prior distribution f (P|Mω) is a product of

Dirichlet densities.

Let L(P|D3) be the likelihood function of the transition model P based on the historical data.

Following Ibrahim and Chen (2000), we define the power prior of P as:

f (P|D3,δ ,Mω) ∝ L(P|D3)δ f (P|Mω) (8.6)

in which, f (P|Mω) is the initial prior distribution about P before any historical data is made available

and δ is a relative precision parameter that weights the historical data relative to the likelihood of

the current task. We consider the parameter δ to be fixed and constrained to lie between 0 and 1.

Taking account of the marginal probability of the historical data, the posterior probability of P

Page 139

Chapter 8: Accounting for Historical Data

given the historical data is expressed for a fixed δ as follows

f (P|D3,δ ,Mω) =
L(P|D3)δ f (P|Mω)∫

P L(P|D3)δ f (P|Mω)dP
(8.7)

where f (P|Mω) is the pro-forma prior distribution and L(P|D3) is the multinomial likelihood of P

based on the historical data.

Consider a state s of the MDP and assume that the historical transition count data vector ~da,3
s

under action a in state s is a multinomial with a fixed number |S| of possible outcomes (successor

states) and |~da,3
s | independent trials. The pro-forma prior distribution for state s under action a, ~ma,ω

s ,

is Dirichlet. The posterior probability of ~pa
s given the historical data is expressed for a fixed δs as

follows:

f (~pa
s |~da,3

s ,δs,~ma,ω
s) ∝

(
|~da,3

s |!
da,3

s1 !×da,3
s2 !× . . .×da,3

s|S| !
∏
s′
(pa

ss′)
da,3

ss′

)δs

f (~pa
s |~ma,ω

s)

=
1

Z(~ma,ω
s)

(
|~da,3

s |!
da,3

s1 !×da,3
s2 !× . . .×da,3

s|S| !
∏
s′
(pa

ss′)
da,3

ss′

)δs

∏
s′
(p a

ss′)
ma,ω

ss′ −1

where Z(~ma,ω
s) is the normalisation constant.

Example 8.1 Consider a two state MDP whose transition probabilities ~pa
1 from state 1 under action

a are unknown. Assume historical data is available as transition counts [50, 15] for state transitions

pa
11 and pa

12 respectively. The agent has a pro-forma prior distribution with Dirichlet parameters [40,

60]. We calculate the PDF for four example values of ~pa
1 on a range of precision parameters, using

power prior Bayesian analysis. The result is shown in Figure 8.1 below. As the precision parameter

varies so does the likelihood of any particular model varies.

Page 140

8.2. POWER PRIORS

Figure 8.1: Plot of PDF versus precision parameter for power prior with historical data set to [50,
15] and a Dirichlet distributed pro-forma prior with parameters [40, 60]. The actual transition
model for the task is assumed to be the p associated with each graph. The precision parameter

varies for each of the four transition models.

8.2.2 Acquiring the Precision Parameter

To apply the power prior approach to a new task, a salient problem is how to establish a relative

precision parameter δ at the start of learning when no current data is available. We address this

problem in this section and show how transition constraints can be used to acquire a power prior

precision parameter. Essentially, the historical data is valued to the extent that it matches the user

knowledge about constraints on the transition matrix for the new task. The algorithm works by

Page 141

Chapter 8: Accounting for Historical Data

measuring the degree of match between the historical data and imaginary data drawn from the user

specified constraints. The steps for computing the precision parameter is as follows.

1. We use the transition constraints CΩ as a generative model for drawing random samples of

state transitions. The resulting samples, which we refer to as imaginary data, are then used to

infer parameters of a Dirichlet distribution ~ma,CΩ

s in state s under action a.

2. We create a parameter matrix for a Dirichlet distribution ~ma,3
s from the historical data ~da,3

s .

3. We calculate the distance between the two Dirichlet distributions with parameters ~ma,CΩ

s and

~ma,3
s using Equation 3.19 that we presented for bounded divergence measures (Rauber et al.

2008, Roman et al. 2012).

4. The distance measure obtained in step 3 lies between [0, 1] and is returned as the precision

parameter δs.

8.3 Experiment V: Maintenance Intervention with Power Priors

The model of the maintenance intervention task we introduced in Chapter seven is used in this section

to study the performance of the power prior methods. Recall that the intervention task requires an

agent to choose between two actions i) ‘watchful waiting’ i.e. postpone the decision up to a critical

point, and ii) ‘intervene’. The maintenance task is adapted from Moustafa, Maksoud & Sadek

(2004). It consists of three actions, namely do-nothing, minimal maintenance, and replacement. The

do-nothing action corresponds to watchful waiting whilst the other two, i.e. minimal maintenance

and replacement, are interventions. The transition matrix for the deteriorating system is shown in

Page 142

8.3. EXPERIMENT V: MAINTENANCE INTERVENTION WITH POWER PRIORS

Equation 8.8. The matrix exhibits structure that can be exploited during learning.

P =

0.28 0.20 0.15 0.12 0.09 0.07 0.05 0.03 0.01

0.40 0.19 0.15 0.10 0.07 0.05 0.03 0.01

0.32 0.23 0.17 0.12 0.08 0.05 0.03

0.32 0.26 0.20 0.13 0.07 0.02

0.56 0.20 0.14 0.08 0.02

0.60 0.25 0.13 0.02

0.65 0.22 0.13

0.70 0.30

1.0

(8.8)

In the experiments we carry out in this section (i.e. Experiment V), we assume the transition

probabilities are unknown but that the agent is presented with prior information in the form of his-

torical data and constraints. We demonstrate the benefits of the power prior approach when applied

to this task.

8.3.1 Experiment Setup

We keep all the parameters of the maintenance task the same as first introduced in Chapter seven.

We perform two sets of experiments: V-A and V-B. The two sets of experiments differ in the way

we generate the imaginary data used to acquire the power prior precision parameters. In experiment

V-A, we use samples obtained directly from the actual transition probability matrix as the imaginary

data. In experiment V-B the imaginary data are generated using the transition constraints. In both

sets of experiments we assume that the agent has a uniform pro-forma prior distribution expressed

Page 143

Chapter 8: Accounting for Historical Data

in Equation 8.9.

Mω =

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0

1.0 1.0

1.0

(8.9)

In addition, we assume that in both sets of experiments the agent is presented with transition

constraints associated with the domain. The constraints consist of: i) order restriction on state

transition probabilities given as simple order (SO) in which, at any given state s ∈ S under action

a ∈ A, pa
si ≥ pa

s j for all i ≤ j, and ii) significant inequality constraints on transition probabilities

in states 5,6,7,and 8, such that pa
ss ≥ 0.5 where s = [5,6,7,8] ∀a. We assume that the following

historical data (Equation 8.10) is available to the agent (highlighted in green are entries where the

data and the actual transition probability match).

Page 144

8.3. EXPERIMENT V: MAINTENANCE INTERVENTION WITH POWER PRIORS

D3 = 10×

0.28 0.2 0.15 0.12 0.09 0.07 0.05 0.03 0.01

0.40 0.19 0.15 0.1 0.07 0.05 0.03 0.01

0.12 0.33 0.27 0.12 0.08 0.05 0.03

0.02 0.16 0.32 0.20 0.08 0.22

0.36 0.12 0.14 0.26 0.12

0.25 0.25 0.25 0.25

0.05 0.65 0.30

0.10 0.90

1.00

(8.10)

The details of the experiments are summarised in Table 8.1.

V-1 V-2 V-3 V-4
Domain ITD ITD ITD ITD
Task γ = 0.99 γ = 0.99 γ = 0.99 γ = 0.99
Learning Algorithm Optimal Policy OMS OMS OMS

Known Model α = 95% α = 95% α = 95%
Pro-Forma Prior - Uniform Uniform Uniform

Equation 8.9 Equation 8.9 Equation 8.9
Pre-Prior - - Equation 8.10 Equation 8.10
Constraint - - SO & Significant SO & Significant

Inequality Inequality
Inference Method - - Power Prior Power Prior

Precision = 1.0 for historical data Precision acquired

Table 8.1: Summary of the Set up for Experiment V in the Intervention Timing Domain (ITD). The
task is the maintenance intervention task we adapted from Moustafa, Maksoud & Sadek (2004). As

before, V-1 is the baseline in which the actual transition model is available to the agent and an
optimal policy is used from start. V-2, V-3 and V-4 involve model-based learning. V-2 uses OMS

with a non-informative proforma prior. V-3 and V-4 allows for power priors.

8.3.2 Results and Discussion

The power prior precision parameters were calculated using the method we described in Section

8.2.2. The result of the calculation is presented in Table 8.2. The result shows that the acquired

Page 145

Chapter 8: Accounting for Historical Data

power prior is sensitive to the imaginary data used to acquire them. As expected, the precision

parameters are closer to 1 in states where the historical data closely matches the actual transition

probabilities (i.e. where the historical & imaginary data match)

State 1 2 3 4 5 6 7 8 9
Imaginary Data Acquired Precision
V-A-4: Obtained from actual transitions 1.00 0.77 0.61 0.60 0.22 0.21 0.61 0.0 1.0
V-B-4: Obtained from transition constraints 0.32 0.13 0.28 0.63 0.70 0.55 0.32 0.0 1.0

Table 8.2: The power prior precision parameters acquired in Experiments V-A-4 & V-B-4. The
precision parameters differ for imaginary data obtained from the actual transition probabilities

V-A-4 and those derived from transition constraints V-B-4.

The discounted total rewards obtained for the experiments are shown in Figures 8.2 and 8.3. The

results are averaged over fifteen trials. The results show that learning performance improves with the

use of power prior and the improvement is higher for the case where the imaginary data is obtained

from the actual transitions. The performance of OMS with proforma and pre-prior under power pri-

ors using the global precision and local precision settings are better than OMS with proforma prior

when the imaginary data was drawn from actual transition probabilities. Only the OMS with pro-

forma and pre-prior under power priors using the local precision settings performed better than OMS

with proforma prior in the case of the imaginary data drawn from transition constraints. In addition,

using local precision parameters appear better than defaulting to a global precision parameter of 1.

Notice that although the pro-forma prior (Equation 8.9) is uniform i.e. non-informative, it nonethe-

less correctly specifies the successor states and does not violate order constraints on the transitions.

These differences are statistically significant as shown in Figure 8.4. As expected, performance

under the optimal policy given known model dominates all the other methods.

Page 146

8.3. EXPERIMENT V: MAINTENANCE INTERVENTION WITH POWER PRIORS

Figure 8.2: Discounted Total Rewards (costs) over time for Experiment V-A. Imaginary data from
the actual transition probabilities

Page 147

Chapter 8: Accounting for Historical Data

Figure 8.3: Discounted Total Rewards (costs) over time for Experiment V-B. Imaginary data from
transition constraints

Page 148

8.4. EXPERIMENT VI: THE GRID WORLD WITH POWER PRIORS

(a) Imaginary Data from Actual
Transitions

(b) Imaginary Data from Transition Constraints

Figure 8.4: Partial dominance ordering for methods used in Experiment V at 95% level of
significance.

8.4 Experiment VI: The Grid World with Power Priors

We also study the performance of the power prior methods on the simple grid world we studied in

Chapters six and seven, particularly experiments I-A and II. We kept all the parameters of the task

as the same, the grid world and the associated optimal policy are reproduced in Figure 8.5.

(a) (b)

Figure 8.5: The 4×3 Grid World with Transition Constraints. The Grid contains one start cell and
two exit cells - High and Low Goals. The black cell is inaccessible. a) The 4×3 Grid. b) Optimal

Policy for 0.9 probability of success.

In addition to experiments II-1, II-2, and II-5 of Section 7.5 (Chapter seven), we carried out

in this section three further experiments applying power priors in the Grid domain. In the first

Page 149

Chapter 8: Accounting for Historical Data

experiment we use power priors to combine the pre-prior information Equations 6.2 - 6.5 with the

non-informative proforma prior using imaginary data drawn from the actual transition probabilities.

The resulting local precision parameter δs is zero for all states suggesting that the historical data i.e.

the pre-prior should not be used. In such a case, the inference on P is not much different from the

inference when the historical data is ignored. The second experiment is similar to the first experiment

except that the imaginary data from transition constraints is as specified in Equation 8.11, ∀s,s′ ∈ S

and ∀a ∈ A.

Constraints φΩ =

0.85≤ pa

ss′ ≤ 0.95 transitions arising from successful action

0.04≤ pa
ss′ ≤ 0.06 transitions arising from wall collisions

0.0001≤ pa
ss′ ≤ 0.0002 otherwise

(8.11)

VI-1 VI-2 VI-3 VI-4
Domain Grid Task Grid Task Grid Task Grid Task

0.9 success 0.9 success 0.9 success 0.9 success
probability probability probability probability

Task 4×3 Grid 4×3 Grid 4×3 Grid 4×3 Grid
γ = 0.95 γ = 0.95 γ = 0.95 γ = 0.95

(Reward) Equation 6.1 Equation 6.1 Equation 6.1 Equation 6.1
Learning Algorithm Optimal Policy OMS COMS OMS

Known Model α = 95% α = 95% α = 95%
Pro-Forma Prior - Uniform(1) Uniform(1) Uniform(1)
Pre-Prior - - - Samples from

- - - Transition Constraints
Constraint - - Tolerances Equation 8.11

Prob of Success
= 0.9±0.05

Transfer Method - - Sampling from Power Prior
Truncated Dirichlet Precision acquired

Table 8.3: Set up for Experiment VI.

Like the first experiment, the resulting local precision parameter δs is zero for all states, again

suggesting that the historical data i.e. the pre-prior should not be used. Finally, in the third experi-

ment, we use the imaginary data from the transition constraints as the historical data and transferred

information via power priors with δs set to 1 for all states. This means that the agent fully incorpo-

Page 150

8.4. EXPERIMENT VI: THE GRID WORLD WITH POWER PRIORS

rates the historical data into its prior distribution with equal weight given to both the likelihood of

the historical data and the proforma prior distribution. The set-up for this third experiment and those

relating to II-1, II-2, and II-5 of Section 7.5 is shown in Table 8.3.

The discounted total reward obtained is reported in Figure 8.6. As expected, the use of optimal

policy derived from known model dominates all the other methods.

Figure 8.6: Discounted Total Rewards over time
for Experiment VI.

In addition, the method using power priors performed better than the approach based on OMS

with non-informative proforma. We also observed that the OMS with power prior (proforma &

pre-prior from transition constraints) [VI-4] performed slightly better than the approach based on

Page 151

Chapter 8: Accounting for Historical Data

OMS with proforma and transition constraints [VI-3]. One reason for this is the slight differences

in the specification of the transition constraints used in VI-3 and VI-4. The differences in the total

discounted rewards are significant as shown in Figure 8.7.

Figure 8.7: Partial dominance ordering for methods used in Experiment VI at 95% level of
significance.

8.5 Chapter Summary

This chapter has presented a method of incorporating historical data into specifications of prior

distribution for process models of new tasks. This is done by extending the power prior approach

of (Ibrahim & Chen 2000) to Bayes adaptive Markov decision processes. Power priors allow us

to control the influence of historical data relative to new observations by using a relative precision

parameter to down weight the historical data. This chapter addressed the problem of how to set the

Page 152

8.5. CHAPTER SUMMARY

precision parameter by assessing the degree of match between the historical data and imaginary data

drawn from the user specified constraints. The main points are:

• When an agent has at its disposal historical data from related tasks the agent should appro-

priately incorporate the historical data into its learning procedure. It is convenient to achieve

this through power prior Bayesian analysis. Power priors use a relative precision parameter to

control the influence of historical data relative to new observations.

• In the context of Bayes Adaptive Markov decision processes, power priors are constructed by

raising the multinomial likelihood function of the transition model parameters, based on the

historical data, to a suitable power (i.e. the precision parameter) to discount the historical data

relative to the pro-forma Dirichlet distribution of the learning agent.

• A salient question is how to set the precision parameter. The chapter shows how the constraints

on process dynamics can be used to acquire a precision parameter. A useful answer is to set

the precision parameter to the degree of match between the historical data and imaginary data

drawn from the user specified constraints. In a sense, the historical data is valued to the extent

that it matches the user knowledge about constraints on the transition matrix for the new task.

• The quantified power prior can be used to augment existing exploration control algorithms

allowing the agent to exploit the presence of historical data when learning a new task from

reinforcement.

• Although the power prior methodology we present in this chapter is quite general, the most

natural specification of historical data arises when the raw data from a similar previous study

are available.

The power prior approach presents us with an alternative easier way of dealing with constraints

through the generative process. However the approach raises some issues for future work including,

importantly, i) how to detect automatically whether or not the imaginary data is of sufficient quantity

and quality, and ii) how much does it harm when similarity is weaker.

Page 153

9
Leveraging with Process Templates

The algorithms and experiments presented so far in this thesis have all used flat, enumerated state,

representations as the basis of model transfer. The problem that we attend to in this chapter is of a

slightly different nature. We will assume that a reference pattern (template) from donor models of

source tasks is available to a learning agent and the agent has to decide how best to use the template

to leverage learning on a recipient model of a new target task. A pattern is conceptualised simply as

a set of ‘locally-defined’ features of the donor models, each of which can be located independently

of the rest by analysing small regions of the model space.

9.1 Introduction

A template is a reusable definition of a part of task’s process model. It is considered as a repository

of process knowledge which holds information that can be transferred to new tasks. In some cases,

the template can be conceptualised as a historical datum, created for its value as a repository of

previous experience without regard to its potentials for reuse in future tasks. In most cases however

templates are created to be reused in future tasks, created specifically to capture the knowledge in a

domain. A good template should easily facilitate knowledge transfer.

In this chapter, we present an algorithm for learning a new task using information contained in a

template. The information is initially collected as ground truth for state-transitions in various tasks.

For a new and different task, our template-based approach would only need to add some follow-up

Page 154

9.2. USE OF TEMPLATES IN REINFORCEMENT LEARNING

experiences into the transferred information rather than starting from scratch. In the next section,

we briefly summarise related work on the use templates in reinforcement learning. In Section 9.3

we describe the model assumptions and characteristics of the Markov decision processes that define

our templates. A method of using the templates in the context of transfer learning is presented in

Section 9.4 and in Section 9.5 we illustrate through experiments the benefits of using the templates.

The chapter ends with a summary in Section 9.6.

9.2 Use of Templates in Reinforcement Learning

There is a rich collection of publications on the use of templates in artificial intelligence, most

especially in the field of machine vision using, for example, rigid and deformable templates (Jain,

Zhong & Lakshmanan 1996). A rigid template is not capable of adapting itself to data through

transformation other than by rotations and scaling whilst a deformable template, on the other hand,

is able to ‘deform’ itself by adapting to data through transformations that are jointly more complex

than transition, rotations and scaling. Deformable templates are usually of two types: a) ‘free-form’

i.e. there is no global structure to the template, the template is constrained by only local continuity,

and b) ‘parametric’ in which there is some prior information on the possible deformations which

can be encoded using a small number of parameters (Jain et al. 1996, Zhong, Jain & Dubuisson-

Jolly 2000).

A number of researchers have reported their use of templates for information transfer and reuse

in reinforcement learning including, for example, the use of local state descriptions (Lin & Li 2003,

Stolle & Atkeson 2007), static templates in the form of snakes (Drummond 1997), parameterised

relational templates (Proper & Tadepalli 2009, Proper & Tadepalli 2010), and family of value sur-

faces (Shannon, Santiago & George 2003) as viable template-based representations of transferable

knowledge in reinforcement learning.

Lin & Li (2003) presented an algorithm called Feature-SARSA for learning to optimally solve

Markov decision problems in domains that has particular characteristics attributable to each state

Page 155

Chapter 9: Leveraging with Process Templates

such that an agent might be able to take advantage of those characteristics to direct future learning.

They define a state feature function that generates local state features in each state. To control

exploration, a weight function is used in conjunction with the feature function to adjust current

policy to the actions worth exploring.

Silver, Sutton & Müller (2007) in their application of reinforcement learning to the game of Go

employed a template based representation. They specified a template as a configuration of features

for a rectangular region of the board. A basic template specifies a colour (black, white or empty) for

each intersection within the rectangle. The template is matched in a given position if the rectangle

on the board contains exactly the same configuration as the template. A local shape feature simply

returns a binary value indicating whether the template matches the current position. They use weight

sharing to exploit several symmetries of the Go board. All rotationally and reflectionally symmetric

shapes share the same weights. Colour symmetry is represented by inverting the colour of all stones

when evaluating a white move. These invariances define the class of location dependent shapes. A

second class of configuration independent shapes also incorporate translation invariance. Weights

are shared between all local shape features that have the same template, regardless of its location on

the board. For each type of shape, all possible templates are exhaustively enumerated to give a shape

set.

In considering the mechanics of reinforcement learning and adaptive dynamic programming

(ADP), Shannon et al. (2003) suggested that the appropriate site for integration of a priori template-

based information is the critic. They specifically looked at the critic as an approximator of the value

function from an ADP framework and opined that a priori information serves to constrain the family

of functions over which the critic must search to find an accurate approximation. They describe this

family of functions as being composed of a single template and set of perceptual transformations of

that template. Illustrating with an example of a family of value surfaces described by a quadratic

surface, an isotropic quadratic surface is in their framework considered a template, while the set of

parameterized transformations which connect this surface to the state space over which it is to be

evaluated are perceptual transformations of the template. In general, templates facilitate abstraction

Page 156

9.3. MODEL ASSUMPTIONS AND CHARACTERISTICS

and the knowledge of the template could be exploited in learning.

9.3 Model Assumptions and Characteristics

A task that is to be performed using templates must first be decomposed into a set of templates that

includes all the actions needed to perform the task. This can be done by an expert off-line and made

available to the agent or the learning agent can discover the templates by itself automatically during

its interactions with the environment. In this work, we assume the templates are defined offline

by an expert and supplied to the learning agent. In this section we describe the assumptions and

characteristics of the Markov decision processes that define our templates.

9.3.1 Configuration of Features in the MDP State Space

Assume the states s ∈ S in an MDP domain υ have a set of K local state features and the features

contain transferable information that influences action selection. We consider a grid world domain.

For any state in the grid we reference it in two ways. si is the enumerate state and there is one to

one correspondence between this and the Cartesian coordinate (xi,yi). Our templates will exploit

geometric regularities in the grid world that are most easily represented by Cartesian coordinates.

As a short hand, we will refer to the coordinate (xi,yi) as the configuration corresponding to si. We

sometimes use ui as a shorthand for (xi,yi) so that we are not tied to a fixed dimension for the grid

world (one could make it 3D, 4D etc.).

For each distinct configuration ui ∈ U in the state space, suppose there is a feature vector ~fi =

{ fi1, fi2, . . . , fik, . . . , fiK} that captures the particular characteristics attributable to that configuration

ui, i = {1,2, . . . |S|} in which fik is a local state feature. A state s is expressed in terms of the

configuration variable ui and the feature vector ~fi. A mapping from the state to the feature vector,

given the configuration variable, namely ∇υ : s ∈ S|ui→ ~fi is called a feature function of s. Given

two states s1 and s2 in domain υ , if s1,s2 ∈ S and ∇υ(s1|u1) = ∇υ(s2|u2) then we say that s1,s2 have

the same local state features and feature vectors, that is ~f1 = ~f2.

Page 157

Chapter 9: Leveraging with Process Templates

Associated with each feature vector is matrix ~Fi ∈ F of transition counts. The set of all feature

vectors and the associated count matrices constitute the transferable information for the domain.

This information is assumed to be available to the agent at the start of learning.

9.3.2 An Illustration using the Grid Domain

The following example from a grid domain illustrates the configuration we described in the previous

section. Assume the natural grid coordinates of a grid are represented as (xi,yi) in which xi ∈

{1,2, . . . ,Nx} yi ∈ {1,2, . . . ,Ny}, such that Nx is the number of cells wide and Ny is the number of

cells deep in the grid. We index a cell configuration in the world by i where i ∈ {1,2, . . . ,N} and

in an obstacle free grid N = Nx×Ny is the total number of states in the world. Figure 9.1 shows an

example 5× 5 grid. We refer to the example grid as a baby maze. There are occupied (obstacle)

Figure 9.1: A simple 5×5 grid with five occupied (obstacle) cells

cells in the baby maze i.e. cells (1,2),(3,2),(3,5),(4,3) and (5,2). The number of states in the

baby maze is 5×5−5 = 20. Other notations used in the model are as follows.

~fi: is the set of local state features, ~fi = 〈status(xi,yi),status(xi,yi+1),status(xi+1,yi),status(xi,yi−

1),status(xi−1,yi)〉 comprising of the local state features when the agent is at cell configura-

tion (xi,yi). We use binary indicators e.g. status(xi,yi)∈ [0|1] ∀i where values 0 and 1 indicate

empty and occupied (obstacle) cells respectively.

s ∈ S: the set of |S| distinct states, s = {(xi,yi), ~fi}. We set the configuration variable ui to (xi,yi)

Page 158

9.4. TEMPLATE-BASED TRANSFER ALGORITHM

making s = {ui, ~fi}.

a ∈ A: actions the agent can take in the domain, which in the grid is specified as the usual primitive

actions that would move the agent North(N),South(S),East(E),and West(W).

pa
ss′ ∈ P: Probability that the process will be in state s′ at time t +1 given that it is in state s at time

t and an action a is taken at time t.

R : S×A−→ R: is the expected reward function mapping S into real-valued returns with ra
s ∈ R

being the reward for performing action a in state s.

γ: the discount rate, 0≤ γ < 1.

The following is an example of a template at cell configuration (2,2) in the baby maze.

The feature vector for this template is < status(2,2),status(2,3),status(3,2),status(2,1),status(1,2)>

which equates to 00101 and bit encoding 5. A full list of the feature vectors in the grid domain is

shown in Figure 9.2 and Table 9.1. Figure 9.3 shows the correspondence of the templates to cell

configurations in the grid. Notice that the following template has no match in the grid, it is listed

only for completeness.

9.4 Template-Based Transfer Algorithm

Once a template and associated data is made available to an agent, the agent should have a way of

using the information when learning a new task. There are at least three considerations. First, in

each time step, the learning agent needs to decide whether or not to use a template and if so which

one. Second, once the template choice is made the learning agent must decide how to apply the

Page 159

Chapter 9: Leveraging with Process Templates

Template Index

00000 0

00001 1

00010 2

00011 3

00100 4

00101 5

00110 6

00111 7

01000 8

01001 9

01010 10

01011 11

01100 12

01101 13

01110 14

01111 15

Table 9.1: Bit Encoding and Indexing of the Templates

Page 160

9.4. TEMPLATE-BASED TRANSFER ALGORITHM

(a) (b) (c)

(d) (e) (f)

Figure 9.2: Local templates in the grid domain

Figure 9.3: The 5×5 grid showing correspondence of templates to cell configurations (Indexes in
Table 9.1.)

information in the template to the new task. Finally, to close the loop, new information acquired

from learning on the new task may be used to enrich the template definition for the domain. We

focus on the first two considerations and adopt the following method.

• The agent specifies belief about the unknown transition probabilities as a pro-forma prior

distribution f (P|Mω).

• Historical data consisting of a feature vectors and associated transition count matrix relating to

the domain is made available to the agent. The agent also receives information about transition

constraints that apply to the domain.

Page 161

Chapter 9: Leveraging with Process Templates

• At each time step in the learning process, the agent observes its current state. If the agent

is visiting the state for the first time it uses the feature function of the domain ∇υ to map

the current state to a feature vector then transfer the transition count for the matched feature

vector to its prior distribution. The resulting distribution is then used to update value and

policy functions.

We extend the constrained optimistic model selection COMS algorithm described in Chapter 7

to incorporate template-based transfer as shown in Algorithm 9.1.

1: procedure TemplateBasedOMS(S,R,A,γ,α,Mω ,Fυ ,CΩ)
2: Initialise Vk ∀i, j ∈ S∪ k and ∀a ∈ A
3: Initialise ma

i j← mω,a
i j ∀i, j ∈ S

4: Initialise ma
ik,m

a
k j ∀i, j ∈ S∪ k

5: ξ a
i = γVk, ∀i ∈ S and ∀a ∈ A where ma

ik > 0
6: ξ a

k =Vk, ∀a ∈ A
7: loop
8: observe current state x and the configuration ux
9: select action a = argmaxb{ξ b

x } breaking ties randomly
10: execute action a in state x and observe the transition x

a,r
; y

11: if transition x a
; y is observed the very first time then

12: retrieve feature vector ~fx← ∇υ : x ∈ S|ux and the associated transition counts ~Fa
x |~fx,a

13: transfer information ~ma
x ← ~mω,a

x +~Fa
x

14: end if
15: update belief ma

xy = [ma
xy +1]|CΩ

16: repeat
17: choose i
18: for each action b do
19: find ~pb

opt,i using COMS algorithms described in Chapter 7.
20: update ξ b

i using Equation 4.3
21: end for
22: until ARTDP algorithm stops
23: end loop
24: end procedure

Algorithm 9.1: The Main Loop of the Template based Optimistic Model Selection
(TOMS) Algorithm

The procedure takes as input a known specification of an MDP i.e. the states S, actions A and

reward function R. Also passed as input to the procedure are the pro-forma prior distribution Mω

of the agent, the discount rate γ for infinite horizon tasks, α that signifies the level of confidence

Page 162

9.5. EXPERIMENT VII: TRANSFER USING PROCESS TEMPLATES

attached to probability intervals, transition constraints CΩ and the historical information F captured

in the templates. The algorithm extends the constrained OMS in lines 11-14 where information from

the templates is incorporated into the learning steps, as described above. In line 13, the information

from the templates are transferred at state x i.e. ~ma
x ← ~mω,a

x +~Fa
x . An alternative would be to look

ahead, given observed transition x a
; y, and transfer at state y i.e. ~ma

y ← ~mω,a
y +~Fa

y .

9.5 Experiment VII: Transfer using Process Templates

In this section we describe the experiments we conducted to study the performance of the template-

based transfer algorithm. The experiments were performed in a grid domain.

9.5.1 Experiment Setup

First, we carried out an initial experiment to acquire historical data for the templates. This is then fol-

lowed by two further sets of experiments that we used to study learning performance in the presence

of the acquired historical data and a transition constraint.

9.5.1.1 Template Provisioning

We use the baby maze described in Section 9.3.2 to generate the historical data. Learning proceeds

in multiple episodes. Each episode positions the learning agent at the start and terminates when it

reaches a goal state or exceeds a maximum of one hundred steps. As before, the objective is to

maximize the expected discounted rewards. Each action succeeds in moving the agent in the chosen

direction with a probability of 0.94 or fails and remains in its current state with probability 0.06. If

the agent tries to take an action going through an obstacle, it stays at the current state. The reward

function is specified as follows.

rs =

+10.0 for goal state,

+0.0 for accessible cells,

−1.0 penalty for attempting to go through an obstacle.

(9.1)

Page 163

Chapter 9: Leveraging with Process Templates

The Full OMS Algorithm (4.1 & 4.3) of Chapter four is used to learn the baby maze task with fifty

trials of ten episodes each for the four instances of the maze shown in Figure 9.4.

(a) (b) (c) (d)

Figure 9.4: Instances of the baby maze task used for template provisioning. The baby maze
instances differ only in their goal cells. The yellow cell (1,1) is the start state. The goal state is

coloured orange.

9.5.1.2 Transfer to new Tasks

Following the acquisition of templates for the grid domain described in the previous section, the

second part of Experiment VII involves transfer of information from the templates to two new tasks

in the grid world. The new tasks are the six-room maze and the G-maze shown in Figures 9.5 and

9.6 respectively.

(a) (b)

Figure 9.5: A Six Room Maze in a grid domain - a) The maze and b) associated templates

We carried out two sets of experiments. The experiments are labelled VII-A and VII-B for

the six-room-maze and the G-maze respectively. The details of the experiments are summarised in

Tables 9.2 and 9.3

Page 164

9.5. EXPERIMENT VII: TRANSFER USING PROCESS TEMPLATES

(a) (b)

Figure 9.6: A G-Maze in a grid domain - a) The maze and b) associated templates

VII-A-1 VII-A-2 VII-A-3 VII-A-4
Domain Grid World Grid World Grid World Grid World
Task Six-Room Maze Six-Room Maze Six-Room Maze Six-Room Maze

γ = 0.95 γ = 0.95 γ = 0.95 γ = 0.95
Reward Equation 9.1 Equation 9.1 Equation 9.1 Equation 9.1
Learning Algorithm Optimal Policy OMS TOMS TOMS

Known Model α = 95% α = 95% α = 95%
Simple Transfer Simple Transfer

Pro-Forma Prior - Uniform(1) Uniform(1) Uniform(1)
Pre-Prior - - Templates Templates

- - acquired in acquired in
Section 9.5.1.1 Section 9.5.1.1

Constraints - - - Equation 9.2

Table 9.2: Setup for Experiment VII-A in the template-based six-room maze

VII-B-1 VII-B-2 VII-B-3 VII-B-4
Domain Grid World Grid World Grid World Grid World
Task G Maze G Maze G Maze G Maze

γ = 0.95 γ = 0.95 γ = 0.95 γ = 0.95
Reward Equation 9.1 Equation 9.1 Equation 9.1 Equation 9.1
Learning Algorithm Optimal Policy OMS TOMS TOMS

Known Model α = 95% α = 95% α = 95%
Simple Transfer Simple Transfer

Pro-Forma Prior - Uniform(1) Uniform(1) Uniform(1)
Pre-Prior - - Templates Templates

- - acquired in acquired in
Section 9.5.1.1 Section 9.5.1.1

Constraints - - - Equation 9.2

Table 9.3: Setup for Experiment VII-B in the template-based G maze

The actual transition probabilities and reward function for the tasks are kept the same as we

specified for the grid domain in Section 9.5.1.1. The discount factor is 0.95 throughout. The start

Page 165

Chapter 9: Leveraging with Process Templates

cell configuration is (5,1) in both the six-room and G mazes. The goal cell configurations are

(9,9) and (5,10) in the six-room maze and the G maze respectively. Both the start and goal cell

configurations are highlighted in Figures 9.5 and 9.6. The reward is same as in the baby maze. The

objective is to maximize total discounted reward.

Figure 9.7 shows the optimal policies we calculated for the mazes assuming that the actual

transition probabilities are known. The optimal policies are used in Experiments VII-A-1 and VII-

(a) Optimal Policy for the six-
room maze

(b) Optimal policy for the G
maze

Figure 9.7: Optimal policies for the Six Room Maze, G-Grid Maze and D-Grid Maze Tasks

B-1 to simulate rewards and calculate the average total discounted reward. The actual transition

probabilities are considered unknown in the other experiments. We assume availability of a uniform

pro-forma prior distribution whose parameters as set to 1 i.e. ma,ω
i j = 1 ∀i, j ∈ S. In Experiments

VII-A-3, VII-A-4, VII-B-3, and VII-B-4 the agent is presented with pre-prior information from the

templates we acquired in Section 9.5.1.1 and the agent uses the simple transfer method in line 13 of

TOMS (Algorithm 9.1) to combine prior information. Finally, in addition to the template based pre-

prior information, the following absolute constraints are made available to the agent in experiments

VII-A-4 and VII-B-4.

pa
i j = 0.94 ∀i ∈ S,a ∈ A and successful transition i a

; j. (9.2)

Page 166

9.5. EXPERIMENT VII: TRANSFER USING PROCESS TEMPLATES

9.5.2 Results and Discussion

The results of the experiments for the six-room maze and the G maze tasks are shown in Figures 9.8

– 9.11. The agent is able to learn the tasks using TOMS algorithms with and without the transferable

prior information, which are the templates and the transition constraints. The six-room maze is more

challenging without the template which we attribute to the non-informative uniform pro-forma prior

of the agent. The G maze is less challenging to learn for the agent without the template because it

is smaller in comparison to the six-room maze. In both the six-room maze and the G maze, learning

performance is improved with the use of templates and the improvement increases when the template

is combined with the constraints.

The contribution to performance improvement of the transition constraints is significant in com-

parison to learning with templates and no constraints. This is attributed to the ‘strength’ of the

constraints. Despite this, the learning performance of the agent with constraints is less effective than

the optimal policy. This is due to a) the uncertainty about transition probabilities for states other than

those captured in the constraint, and b) the effect of the non-informative pro-forma prior distribution

of the agent.

Page 167

Chapter 9: Leveraging with Process Templates

Figure 9.8: Results for the Six-Room Maze Task

Figure 9.9: Comparison of Results for the Six-Room Maze Task

Page 168

9.5. EXPERIMENT VII: TRANSFER USING PROCESS TEMPLATES

Figure 9.10: Results for the G-Grid Task

Figure 9.11: Comparison of Results for the G-Grid Task

Page 169

Chapter 9: Leveraging with Process Templates

9.6 Chapter Summary

The focus in this chapter has been on how to use reference patterns (templates) from donor mod-

els of source tasks in leveraging learning on a recipient model of a new target task. A template is

conceptualised simply as a set of ‘locally-defined’ features of the donor models, each of which can

be located independently of the rest by analysing small regions of the model space. We demon-

strated the benefits of historical information and also show how to use process templates to transfer

information from one environment to another with related local process dynamics.

Page 170

10
Conclusions and Areas of Future Research

Optimal learning and Transfer of Learning are two important subfields of Artificial Intelligence. Op-

timal learning is an approach to maximising behavioural patterns that leads to the highest possible

expected total reward over the entire duration of an agent’s interaction with an uncertain task en-

vironment. Prior uncertainty and prior experience plays a key role. Prior uncertainty over possible

environments adds complexity to the problem of optimal learning. Transfer of learning exploits prior

experience on different but related tasks to improve performance while learning. This thesis is at the

intersection of the two subfields. It focuses on how an agent could incorporate user knowledge about

an environment or information acquired during previous learning in order to make future learning

more effective. We presented new algorithms to facilitate the transfer and showed that the algo-

rithms can lead to better performance during learning (the exploitation-exploration trade-off) and

offer better solutions at the end of the learning period. In this final chapter of the thesis we present

concluding remarks and suggest directions for future research.

10.1 Conclusions

We addressed the problem of learning transfer in an online setting where the learner interacts with an

unknown or partially known environment to repeatedly perform actions, observes the consequences

of its actions i.e. reward and state transitions, revises its belief about the environment and updates its

value and policy functions based on its observations. We informally describe the problem addressed

Page 171

Chapter 10: Conclusions and Future Research

in this thesis as follows. We have knowledge of transitions for a set of related tasks. We have a new

task and a new reward function but do not yet have a policy and a model for that task. The problem

is to transfer explicitly available information to help improve performance on the new task in com-

parison to learning the new task from scratch. We consider two types of transferable information -

transition constraints and historical data.

The following are the conclusions drawn from the thesis.

1. Transition constraints play an important role in optimal learning. The constraints restrict

model choices helping to direct the learning agent towards plausible solutions. We demon-

strated in this thesis (Chapter seven) that transition constraints can play two important roles

in optimal learning - First in the revision of beliefs about the space of possible models and

second in exploration control through model selection on a restricted space of models, with

the restrictions dictated by the specified transition constraints.

2. We studied two main types of constraints: absolute and relative constraints. We also described

specific instances of each type including equality constraints, significant inequalities in tran-

sition probabilities, and ordering constraints on transition probabilities. We demonstrated that

these constraints can occur individually and can also manifest jointly (Chapter seven). The

constraints differ not only in the way they can be reasoned with but may also contribute in

different ways towards improvements in learning performance. To fully exploit transition

constraints it is important that they are appropriately recognised and accounted for.

3. Reasoning with transition constraints when learning from rewards can be achieved in a variety

of ways. We demonstrated in this thesis (Chapter seven) that inference can be done through

either a) Monte Carlo Markov Chains, specifically via Gibbs Sampling from truncated Dirich-

let distributions, or b) Specialised algorithms that exploit special structure exhibited by the

constraints. A consequence of this flexibility is that the methodology with which an agent can

reason with transition constraints can be seen as state contingent i.e. the choice of algorithm

is dependent on the structure exhibited by the constraints applicable to a given state of the

Page 172

10.2. FUTURE RESEARCH

decision process.

4. For agents using an optimistic model selection (OMS) approach to exploration control in

Bayes-Adaptive Markov decision processes, pre-emptive goal program techniques present an

elegant way of incorporating constraints in the model selection steps (Chapter four).

5. When an agent has at its disposal historical data from related task the agent should be able

to appropriately incorporate the historical data into its learning procedure. Although histori-

cal data may come from a variety of sources, the most natural specification of historical data

arises when the raw data from a similar previous activity is available. Historical data is con-

ceptualised in this thesis as constituting pre-prior information which is made available to the

agent before the commencement of learning on a new task. We showed in this thesis (Chapter

six) that a way to incorporate historical data in optimal learning is via power prior Bayesian

analysis. Power priors are constructed by raising the multinomial likelihood function of the

historical data to a suitable power (i.e. the precision parameter) to discount the historical data

relative to the pro-forma Dirichlet distribution of the learning agent. The precision parameter

can be acquired by measuring the degree of match between the historical data and imaginary

data drawn from the user specified constraints.

6. The benefits of historical data appear more visible and easier to conceptualise when transfer

is based on process templates (Chapter nine).

10.2 Future Research

The research we reported in this thesis leads to several possible areas of future work that include the

following:

• The consolidation of our research on the use of transferable prior information to optimise

learning in enumerated state MDPs and template-based MDPs especially in relation to areas

such as cross-domain transfer, historical data and constraints from multiple sources, consider-

Page 173

Chapter 10: Conclusions and Future Research

ations for other special types of absolute and relative transition constraints, and extensions to

other information types such those relating to solutions i.e. value and / or policy functions.

• Extension to other formalisms such as Factored MDPs, Relational MDPs, Partially Observable

MDPs, and continuous state and action spaces.

• Application to real world domains particularly where opportunity exists for exploiting histor-

ical data and/or transition constraints in sequential decision making that involves uncertainty

in the associated task-environment models.

We made assumptions in the thesis about the nature of constraints. Specifically, we assumed

that the transitions constraints are known and that they fit with the way the environment works.

This may not always hold in practical applications. The data may provide strong evidence that the

constraints are partially or completely untrue. We will require methods that appropriately reflect

uncertainty about process constraints and allow estimates to contradict the constraints or to permit

sensible compromise between unconstrained estimates and estimates based on the constraint.

Page 174

References

Alagoz, O., Maillart, L. M., Schaefer, A. J. & Roberts, M. S. (2004), ‘The Optimal Timing of

Living-Donor Liver Transplantation’, Management Science 50(10), 1420–1430.

Asmuth, J. & Littman, M. L. (2011), Approaching Bayes-optimality using Monte-Carlo tree search,

in ‘Proceedings of the 21st International Conference on Automated Planning and Scheduling’,

Freiburg, Germany.

Atkeson, C. G. & Santamaria, J. C. (1997), A Comparison of Direct and Model-Based Reinforce-

ment Learning, in ‘IEEE International Conference on Robotics and Automation’, Vol. 4, IEEE

Press, pp. 3557–3564.

Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T. & Silverman, E. (1955), ‘An Empirical Dis-

tribution Function for Sampling with Incomplete Information’, The Annals of Mathematical

Statistics 26(4), 641–647.

Barlow, R. E., Bartholomew, D. J., Bremner, J. M. & Brunk, H. D. (1972), Statistical Inference

Under Order Restrictions, John Wiley & Sons, New York.

Barto, A. G., Sutton, R. S. & Anderson, C. W. (1983), ‘Neuronlike adaptive elements that can solve

difficult learning control problems’, IEEE Transactions on Systems, Man, and Cybernetics

SMC-13(5), 834–846.

Barto, A. G., Sutton, R. S. & Watkins, C. J. C. H. (1990), Learning and sequential decision making,

in M. Gabriel & J. W. Moore, eds, ‘Learning and Computational Neuroscience’, MIT Press,

Cambridge, MA.

Barzel, R., Hughes, J. & Wood, D. N. (1996), Plausible Motion Simulation for Computer Graphics

Animation, in ‘Proceedings of the Eurographics Workshop Computer Animation and Simula-

tion’, pp. 183–197.

Bellman, R. E. (1957), Dynamic Programming, Princeton University Press, Princeton, N.J., USA.

Page 175

Bellman, R. E. (1961), Adaptive control processes: A guided tour, Rand Corporation Research

Studies, Princeton University Press.

Bellman, R. E. & Kalaba, R. (1959a), ‘A Mathematical Theory of Adaptive Control Processes’,

Proceedings of the National Academy of Sciences of the United States of America 45(8), pp.

1288–1290.

Bellman, R. E. & Kalaba, R. (1959b), ‘On Adaptive Control Processes’, IRE Transactions on Auto-

matic Control 4(2), 1 – 9.

Berger, J. O. (1985), Statistical Decision Theory and Bayesian Analysis, Springer Series in Statistics,

Springer-Verlag, New York.

Berger, J. O. (1990), ‘Robust Bayesian analysis: sensitivity to the prior’, Journal of Statistical Plan-

ning and Inference 25(3), 303–328.

Berger, J. O. & Berliner, L. M. (1986), ‘Robust Bayes and Empirical Bayes Analysis with ε−

Contaminated Priors’, The Annals of Statistics 14(2), 461–486.

Bertsekas, D. P. (1987), Dynamic Programming: Deterministic and Stochastic Models, Prentice-

Hall: Englewood Cliffs, NJ.

Bhattacharya, B. (2009), ‘Optimal Use of Historical Information’, Journal of Statistical Planning

and Inference 139(12), 4051 – 4063.

Bhattacharyya, A. (1943), ‘On a measure of divergence between two statistical populations defined

by their probability distributions’, Bulletin of the Calcutta Mathematical Society 35, 99–109.

Boutilier, C., Dean, T. & Hanks, S. (1999), ‘Decision-theoretic planning: Structural assumptions

and computational leverage’, Journal of Artificial Intelligence Research (JAIR) 11, 1–94.

Boutilier, C., Dearden, R. W. & Goldszmidt, M. (2000), ‘Stochastic dynamic programming with

factored representations’, Artificial Intelligence 121(1-2), 49–107.

Page 176

Brafman, R. I. & Tennenholtz, M. (2002), ‘R-MAX – A General Polynomial Time Algorithm for

Near-Optimal Reinforcement Learning’, Journal of Machine Learning Research 3, 213–231.

Castro, P. (2011), On planning, prediction and knowledge transfer in Fully and Partially Observable

Markov Decision Processes, PhD thesis, McGill University.

Castro, P. S. & Precup, D. (2007), Using Linear Programming for Bayesian Exploration in Markov

Decision Processes, in ‘Proceedings of the 20th International Joint Conference on Artifical In-

telligence’, IJCAI’07, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 2437–

2442.

Chang, T. S. & Seborg, D. E. (1982), Process Control in the Presence of Constraints, in ‘Proceedings

of the 1982 American Control Conference’, pp. 350 –357.

Chankong, V. & Haimes, Y. Y. (1983), Multiobjective Decision Making Theory and Methodology,

Elsevier Science, New York.

Charnes, A. & Cooper, W. W. (1977), ‘Goal programming and Multiple Objective Optimizations:

Part 1’, European Journal of Operational Research 1(1), 39–54.

Charnes, A., Cooper, W. W. & Ferguson, R. O. (1955), ‘Optimal Estimation of Executive Compen-

sation by Linear Programming’, Management Science 1(2), 138–151.

Chen, M.-H., Ibrahim, J. G. & Shao, Q.-M. (2000), ‘Power prior distributions for generalized linear

models’, Journal of Statistical Planning and Inference 84(1), 121–137.

Chen, M.-H. & Shao, Q.-M. (1999), ‘Monte Carlo Estimation of Bayesian Credible and HPD Inter-

vals’, Journal of Computational and Graphical Statistics 8(1), pp. 69–92.

Chenney, S. & Forsyth, D. A. (2000), Sampling plausible solutions to multi-body constraint prob-

lems, in ‘Proceedings of the 27th annual conference on computer graphics and interactive tech-

niques’, SIGGRAPH ’00, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,

pp. 219–228.

Page 177

Coxeter, H. S. M. (1973), Regular Polytopes, Dover books on advanced mathematics, Dover Publi-

cations.

Cran, G. W. (1980), ‘Algorithm AS 149: Amalgamation of Means in the Case of Simple Ordering’,

Journal of the Royal Statistical Society. Series C (Applied Statistics) 29(2), pp. 209–211.

Ş̧tefănescu, V. (1989), ‘Generating Dirichlet random vectors using a rejection property’, Kybernetika

25(6), 467–475.

Dearden, R. W. (2000), Learning and Planning in Structured World, Ph.D.Thesis, Department of

Computer Science, University of British Columbia, Canada.

Dixon, K., Malak, R. & Khosla, P. (2000), Incorporating Prior Knowledge and Previously Learned

Information into Reinforcement Learning Agents, Technical report. Institute for Complex

Engineered Systems, Carnegie Mellon University.

Dreyfus, S. (1962), ‘Variational Problems with Inequality Constraints’, Journal of Mathematical

Analysis and Applications 4, 297–308.

Drummond, C. (1997), Using A Case-Base of Surfaces to Speed-Up Reinforcement Learning, in

‘Proceedings of the Second International Conference on Case-Based Reasoning’, pp. 435–444.

Duan, Y. (2005), A Modified Bayesian Power Prior Approach with Applications in Water Quality

Evaluation, PhD thesis, Faculty of Virginia Polytechnic Institute and State University, Blacks-

burg, Virginia.

Duan, Y., Ye, K. & Smith, E. P. (2006), ‘Evaluating water quality using power priors to incorporate

historical information’, Environmetrics 17(1), 95–106.

Duff, M. (2002), Optimal learning: Computational procedures for Bayes-adaptive Markov decision

processes, PhD thesis, University of Massassachusetts Amherst.

Dzeroski, S., De Raedt, L. & Driessens, K. (2001), ‘Relational Reinforcement Learning’, Machine

Learning 43(1), 7–52.

Page 178

Eddy, D. M. (1989), ‘The Confidence Profile Method: A Bayesian Method for Assessing Health

Technologies’, Operations Research 37(2), 210–228.

Eddy, D. M., Hasselblad, V. & Shachter, R. (1990a), ‘A Bayesian method for synthesizing evidence:

The Confidence Profile Method’, International Journal of Technology Assessment in Health

Care 6(1), 31–35.

Eddy, D. M., Hasselblad, V. & Shachter, R. (1990b), ‘An Introduction to a Bayesian Method for

Meta-analysis: The Confidence Profile Method’, Medical Decision Making 10(1), 15–23.

Feinberg, E. & Shwartz, A. (2002), Handbook of Markov Decision Processes: Methods and Applica-

tions, International Series in Operations Research & Management Science, Kluwer Academic

Publishers.

Fellows, M., Hartman, T., Hermelin, D., Landau, G., Rosamond, F. & Rozenberg, L. (2011), ‘Hap-

lotype Inference Constrained by Plausible Haplotype Data’, IEEE/ACM Transactions on Com-

putational Biology and Bioinformatics, 8(6), 1692 –1699.

Frigyik, B. A., Kapila, A. & Gupta, M. R. (2010), Introduction to the Dirichlet Distribution and

Related Processes, Technical Report UWEETR-2010-0006, Department of Electrical Engi-

neering, University of Washington, Seattle, Washington, USA.

Gajewski, B. J. (2010), ‘Comments on ‘A note on the power prior’ by Neuenschwander B, Branson

M and Spiegelhalter DJ. Statistics in Medicine; DOI: 10.1002/sim.3722’, Statistics in Medicine

29(6), 708–709.

Gaskett, C. (2002), Q-learning for Robot Control, PhD thesis, Australian National University.

Gelfand, A. E., Smith, A. F. M. & Lee, T.-M. (1992), ‘Bayesian Analysis of Constrained Parameter

and Truncated Data Problems Using Gibbs Sampling’, Journal of the American Statistical

Association 87(418), pp. 523–532.

Page 179

Genest, C. & Zidek, J. V. (1986), ‘Combining Probability Distributions: A Critique and an Annotated

Bibliography’, Statistical Science 1(1), 114–135.

Gewali, L., Ntafos, S. & Singh, A. K. (2002), ‘Geometric approach for finding HPD-credible sets

with applications’, Applied Mathematics and Computation, 125(2), 195–207.

Geyer, C. J. (1991), Markov Chain Monte Carlo Maximium Likelihood, in E. Keramigas, ed., ‘Com-

puting Science and Statistics: The 23rd symposium on the interface’, Interface Foundation,

FairFax.

Givan, R., Leach, S. & Dean, T. (2000), ‘Bounded-parameter Markov decision process’, Artificial

Intelligence 122(1-2), 71–109.

Goncalves, A. P. C., Fioravanti, A. R. & Geromel, J. C. (2010), Filtering for discrete-time Markov

jump systems with network transmitted mode, in ‘49th IEEE Conference on Decision and

Control (CDC)’, pp. 924 –929.

Good, I. J. (1950), Probability and the weighing of evidence, Griffin, London.

Guestrin, C., Patrascu, R. & Schuurmans, D. (2002), Algorithm-Directed Exploration for Model-

Based Reinforcement Learning in Factored MDPs, in ‘ICML-2002 The Nineteenth Interna-

tional Conference on Machine Learning, University of New South Wales, Sydney, Australia,

July 8-12’, Morgan Kaufmann.

Gunn, L. H. & Dunson, D. B. (2005), ‘A tranformation approach for incorporating monotone or

unimodal constraints’, Biostatistics 6(3), 434–449.

Hernández-Lerma, O. & Lasserre, J. B. (1991), Markov decision processes, Vol. 28-29 of Annals of

Operations Research, J. C. Baltzer AG.

Heyman, D. P. & Sobel, M. J. (2003), Stochastic Models in Operations Research, Vol. II: Stochastic

Optimization, Vol. 2 of Stochastic Models in Operations Research, Dover Publications.

Page 180

Ho, Y.-C. (1962), ‘A Computational Technique for Optimal Control Problems with State Variable

Constraint’, Journal of Mathematical Analysis and Applications 5(2), 216 – 224.

Howard, R. A. (1960), Dynamic programming and Markov processes, Cambridge, MA: MIT Press.

Hung, Y. C., Balakrishnan, N. & Cheng, C. W. (2011), ‘Evaluation of algorithms for generating

Dirichlet random vectors’, Journal of Statistical Computation and Simulation 81(4), 445–459.

Ibrahim, J. G. & Chen, M.-H. (2000), ‘Power Prior Distributions for Regression Models’, Statistical

Science 15(1), 46–60.

Ibrahim, J. G., Chen, M.-H. & Sinha, D. (2003), ‘On Optimality Properties of the Power Prior’,

Journal of the American Statistical Association 98(461), 204–213.

Ignizio, J. (1976), Goal programming and extensions, Lexington Books.

Jain, A., Zhong, Y. & Lakshmanan, S. (1996), ‘Object matching using deformable templates’, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 18(3), 267–278.

Jewell, N. P. & Kalbfleisch, J. D. (2004), ‘Maximum Likelihood Estimation of Ordered Multinomial

Parameters’, Biostatistics 5(2), 291–306.

Kaelbling, L. P., Littman, M. L. & Moore, A. W. (1996), ‘Reinforcement Learning: A Survey’,

Journal of Artificial Intelligence Research 4, 237–285.

Kailath, T. (1967), ‘The Divergence and the Bhattacharyya Distance Measures in Signal Selection’,

IEEE Transactions on Communication Technology COM-15(1), 52–60.

Kalyanasundaram, S., Chong, E. K. P. & Shroff, N. B. (2002), Markov decision processes with

uncertain transition rates: sensitivity and robust control, in ‘Proceedings of the 41st IEEE

Conference on Decision and Control’, Vol. 4, pp. 3799 – 3804.

Karasmaa, N. (2003), The Transferability of Travel Demand Models: An analysis of transfer meth-

ods, data quality and model estimation, PhD thesis, Department of Civil and Environmental

Engineering, Helsinki University of Technology, Transportation Engineering Publication 106.

Page 181

Karny, M. (1984), ‘Quantification of Prior Knowledge about Global Characteristics of Linear Nor-

mal Model’, Kybernetika 20(5), 376—-385.

Kearns, M. J. & Singh, S. P. (2002), ‘Near-Optimal Reinforcement Learning in Polynomial Time’,

Machine Learning 49(2-3), 209–232.

Kearns, M. & Singh, S. (1999), Finite-sample convergence rates for Q-learning and indirect algo-

rithms, in ‘Neural Information Processing Systems 12’, MIT Press, Cambridge, MA, USA,

pp. 996–1002.

Konda, V. (2002), Actor-critic Algorithms, PhD thesis, Massachusetts Institute of Technology, Dept.

of Electrical Engineering and Computer Science.

Konda, V. R. & Tsitsiklis, J. N. (2000), Actor-critic algorithms, in S. A. Solla, T. K. Leen & K.-

R. Müller, eds, ‘Advances in Neural Information Processing Systems 12, [NIPS Conference,

Denver, Colorado, USA, November 29 - December 4, 1999]’, The MIT Press, pp. 1008–1014.

Koppejan, R. & Whiteson, S. (2009), Neuroevolutionary Reinforcement Learning for Generalized

Helicopter Control, in ‘GECCO 2009: Proceedings of the Genetic and Evolutionary Computa-

tion Conference’, pp. 145–152.

Koppelman, F. S., Kuah, G.-K. & Wilmot, C. G. (1985), ‘Transfer Model Updating with Disag-

gregate Data’, Transportation Research Record N1037, Transportation Demand Analysis and

Issues in Travel Behavior 1037, 102–107.

Lang, L., Chen, W.-S., Bakshi, B. R., Goel, P. K. & Ungarala, S. (2007), ‘Bayesian estimation via

sequential Monte Carlo sampling - Constrained dynamic systems.’, Automatica 43(9), 1615–

1622.

Lazaric, A. (2008), Knowledge Transfer in Reinforcement Learning, PhD thesis, Politecnico di Mi-

lano.

Page 182

Lazaric, A., Restelli, M. & Bonarini, A. (2008), Transfer of samples in batch reinforcement learning,

in ‘Proceedings of the 25th international conference on Machine learning’, ICML ’08, ACM,

New York, NY, USA, pp. 544–551.

Lee, S. M. (1972), Goal programming for decision analysis, Management and communications

series, Auerbach Publishers.

Lim, J., Wang, X. & Choi, W. (2009), ‘Maximum likelihood estimation of ordered multinomial

probabilities by geometric programming’, Computational Statistics & Data Analysis 53(4), 889

– 893.

Lin, Y.-P. & Li, X.-Y. (2003), ‘Reinforcement learning based on local state feature learning and

policy adjustment’, Information Sciences 154(1-2), 59 – 70. Introduction to Multimedia and

Mobile Agents.

Liu, C. (2000), ‘Estimation of Discrete Distributions with a Class of Simplex Constraints’, Journal

of the American Statistical Association 95(449), pp. 109–120.

Magni, P., Quaglini, S., Marchetti, M. & Barosi, G. (2000), ‘Deciding when to intervene: a Markov

decision process approach’, International Journal of Medical Informatics 60(3), 237–253.

Marsaglia, G. & Tsang, W. W. (2000), ‘A Simple Method for Generating Gamma Variables’, ACM

Transactions on Mathematical Software (TOMS) 26(3), 363–372.

Martin, J. J. (1967), Bayesian decision problems and Markov chains, Publications in Operations

Research, Wiley, New York.

McDannald, M. A., Takahashi, Y. K., Lopatina, N., Pietras, B. W., Jones, J. L. & Schoenbaum, G.

(2012), ‘Model-based learning and the contribution of the orbitofrontal cortex to the model-free

world’, European Journal of Neuroscience 35(7), 991–996.

Meuleau, N. & Bourgine, P. (1999), ‘Exploration of Multi-State Environments: Local Measures and

Back-Propagation of Uncertainty’, Machine Learning 35(2), 117–154.

Page 183

Moustafa, M. S., Maksoud, E. Y. A. & Sadek, S. (2004), ‘Optimal major and minimal maintenance

policies for deteriorating systems’, Reliability Engineering & System Safety 83(3), 363 – 368.

Narayanan, A. (1990), ‘Computer Generation of Dirichlet Random Vectors’, Journal of Statistical

Computation and Simulation 36(1), 19–30.

Narendra, K. S. & Thathachar, M. A. L. (1989), Learning automata: an introduction, Prentice Hall.

Neal, R. M. (2001), Transferring Prior Information Between Models Using Imaginary Data, Techni-

cal report, University of Toronto, Toronto, Ontario, Canada.

Neuenschwander, B., Branson, M. & Spiegelhalter, D. J. (2009), ‘A note on the power prior’, Statis-

tics in Medicine 28(28), 3562–3566.

Ng, K. W., Tian, G.-L. & Tang, M.-L. (2011), Dirichlet and Related Distributions: Theory, Methods

and Applications, Volume 888 of Wiley Series in Probability and Statistics, John Wiley & Sons.

Nicholson, B. J. (1985), ‘On the F-Distribution for Calculating Bayes Credible Intervals for Fraction

Nonconforming’, IEEE Transactions on Reliability R-34(3), 227 –228.

Pan, S. J. & Yang, Q. (2010), ‘A survey on transfer learning’, IEEE Transactions on Knowledge and

Data Engineering 22(10), 1345–1359.

Pintrich, P. R., Marx, R. W. & Boyle, R. A. (1993), ‘Beyond Cold Conceptual Change: The Role of

Motivational Beliefs and Classroom Contextual Factors in the Process of Conceptual Change’,

Review of Educational Research 63(2), 167–199.

Poole, D. & Raftery, A. E. (2000), ‘Inference for Deterministic Simulation Models: The Bayesian

Melding Approach’, Journal of the American Statistical Association 95(452), 1244–1255.

Poupart, P., Vlassis, N. A., Hoey, J. & Regan, K. (2006), An Analytic Solution to Discrete Bayesian

Reinforcement Learning, in ‘Proceedings of the 23rd International Conference on Machine

Learning, Pittsburgh, PA’, pp. 697–704.

Page 184

Price, R. R. (2003), Accelerating Reinforcement Learning with Imitation, PhD thesis, Department

of Computer Science, University of British Columbia.

Proper, S. & Tadepalli, P. (2009), Multiagent Transfer Learning via Assignment-Based Decomposi-

tion, in ‘International Conference on Machine Learning and Applications - ICMLA’, pp. 345

–350.

Proper, S. & Tadepalli, P. (2010), Transfer Learning via Relational Templates, in L. Raedt, ed.,

‘Inductive Logic Programming’, Vol. 5989 of Lecture Notes in Computer Science, Springer

Berlin Heidelberg, pp. 186–193.

Puterman, M. (2005), Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wi-

ley Series in Probability and Statistics, Wiley-Interscience.

Raftery, A. E., Givens, G. H. & Zeh, J. E. (1995), ‘Inference from a deterministic population dynam-

ics model for bowhead whales’, Journal of The American Statistical Association 90(430), 402–

416.

Rauber, T., Braun, T. & Berns, K. (2008), ‘Probabilistic distance measures of the Dirichlet and Beta

distributions’, Pattern Recognition 41(2), 637 – 645.

Roman, A., Jolad, S. & Shastry, M. C. (2012), ‘Bounded divergence measures based on Bhat-

tacharyya coefficient’, CoRR abs/1201.0418.

Rummery, G. A. & Niranjan, M. (1994), On-line Q-learning using connectionist systems, Technical

Report CUED/F-INFENG/TR 166, Cambridge University Engineering Department.

Russell, S. J. & Norvig, P. (2003), Artificial Intelligence: A Modern Approach, Prentice Hall Series

in Artificial Intelligence, 2nd edn, Prentice-Hall, Englewood Cliffs, NJ.

Satia, J. K. & Lave, R. E. (1973), ‘Markovian Decision Processes with Uncertain Transition Proba-

bilities’, Operations Research 21(3), 728–740.

Page 185

Schaible, B. R. (1999), Fuzzy Logic Based Regression Models of Flip-Chip Bonding Processes,

PhD thesis, Department of Mechanical Engineering, University of Colorado.

Sedransk, J., Monahan, J. & Chiu, H. Y. (1985), ‘Bayesian Estimation of Finite Population Pa-

rameters in Categorical Data Models Incorporating Order Restrictions’, Journal of the Royal

Statistical Society. Series B (Methodological) 47(3), 519–527.

Sennott, L. I. (1999), Stochastic Dynamic Programming and the Control of Queueing Systems, Wiley

series in probability and statistics: Applied probability and statistics, Wiley.

Shannon, T. T., Santiago, R. A. & George, G. L. (2003), Accelerating critic learning in approximate

dynamic programming via value templates and perceptual learning, in ‘Proceedings of the

International Joint Conference on Neural Networks’, Vol. 4, pp. 2922 – 2927.

Shechter, S. M., Bailey, M. D., Schaefer, A. J. & Roberts, M. S. (2008), ‘The Optimal Time to

Initiate HIV Therapy Under Ordered Health States’, Operations Research 56(1), 20–33.

Silver, D., Sutton, R. & Müller, M. (2007), Reinforcement Learning of Local Shape in the Game

of Go, in ‘Proceedings of the International Joint Conference on Artifical Intelligence, IJCAI’,

pp. 1053–1058.

Singh, S. P. (1991), Transfer of Learning Across Compositions of Sequential Tasks, in ‘Machine

Learning: Proceedings of the Eighth International Workshop’, Morgan Kaufmann, pp. 348–

352.

Singh, S. P. & Sutton, R. S. (1996), ‘Reinforcement Learning with Replacing Eligibility Traces’,

Machine Learning 22, 123–158.

Stolle, M. & Atkeson, C. G. (2007), Knowledge Transfer using Local Features, in ‘Proceedings of

the IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning’,

pp. 26 – 31.

Page 186

Strens, M. J. A. (2000), A Bayesian Framework for Reinforcement Learning, in ‘Proceedings of the

Seventeenth International Conference on Machine Learning (ICML)’, pp. 943–950.

Strens, M. J. A. (2003), Evolutionary MCMC Sampling and Optimization in Discrete Spaces,

in ‘Proceedings of the Twentieth International Conference on Machine Learning (ICML)’,

pp. 736–743.

Sunmola, F. T. & Wyatt, J. L. (2006), Model Transfer for Markov Decision Tasks via Parameter

Matching, in ‘Workshop of the UK Planning and Scheduling Special Interest Group’.

Sutton, R. S. (1988), ‘Learning to Predict by the Methods of Temporal Differences’, Machine Learn-

ing 3, 9–44.

Sutton, R. S. (1996), Generalization in Reinforcement Learning: Successful Examples using Sparse

Coarse Coding, in ‘Advances in Neural Information Processing Systems 8’, Vol. 8, pp. 1038–

1044.

Sutton, R. S. & Barto, A. G. (1998), Reinforcement Learning: An Introduction, Adaptive Computa-

tion and Machine Learning, MIT Press.

Sutton, R. S., McAllester, D. A., Singh, S. P. & Mansour, Y. (1999), Policy Gradient Methods for

Reinforcement Learning with Function Approximation, in S. A. Solla, T. K. Leen & K.-R.

Müller, eds, ‘Advances in Neural Information Processing Systems 12 (Proceedings of the 1999

conference)’, MIT Press, pp. 1057–1063.

Szepesvári, C. (2010), Algorithms for Reinforcement Learning, Synthesis Lectures on Artificial In-

telligence and Machine Learning, Morgan & Claypool Publishers.

Szita, I. & Lőrincz, A. (2008), The many faces of optimism: a unifying approach, in ‘Proceedings

of the 25th international conference on Machine learning’, ICML ’08, pp. 1048–1055.

Page 187

Tanaka, F. & Yamamura, M. (2003), Multitask Reinforcement Learning on the Distribution of

MDPs, in ‘IEEE International Symposium on Computational Intelligence in Robotics and Au-

tomation’, Vol. 3, pp. 1108 – 1113.

Taylor, M. E. (2008), Autonomous Inter-Task Transfer in Reinforcement Learning Domains, PhD

thesis, Technical Report UT-AI-TR-08-5, Department of Computer Sciences, The University

of Texas at Austin.

Taylor, M. E., Jong, N. K. & Stone, P. (2008), Transferring Instances for Model-Based Reinforce-

ment Learning, in ‘Proceedings of the European Conference on Machine Learning and Princi-

ples and Practice of Knowledge Discovery in Databases (ECML / PKDD)’, pp. 488–505.

Taylor, M. E. & Stone, P. (2009), ‘Transfer Learning for Reinforcement Learning Domains: A

Survey’, Journal of Machine Learning Research 10(1), 1633–1685.

Tesař, L. (1996), Processing of Prior Information as Function of Data, in L. Berec, J. Rojíček,

M. Kárný & K. Warwick, eds, ‘Preprints of the European IEEE Workshop CMP’96’, ÚTIA

AV ČR, Prague, pp. 145–149.

Torrey, L. (2009), Relational Transfer in Reinforcement Learning, PhD thesis, University of

Winsconsin-Madison.

Wang, T., Lizotte, D., Bowling, M. & Schuurmans, D. (2005), Bayesian Sparse Sampling for On-

line Reward Optimization, in ‘Proceedings of the Twenty-Second International Conference on

Machine Learning (ICML)’, pp. 961–968.

Watkins, C. J. C. H. (1989), Learning from Delayed Rewards, PhD thesis, King’s College, University

of Cambridge, UK.

Watkins, C. J. C. H. & Dayan, P. (1992), ‘Q-learning’, Machine Learning 8(3-4), 279–292.

Page 188

White, C. C. (1986), ‘A Posteriori Representations Based on Linear Inequality Descriptions of a

Priori and Conditional Probabilities’, IEEE Transactions on Systems, Man and Cybernetics

16(4), 570 –573.

White, C. C. & Eldeib, H. K. (1994), ‘Markov Decision Processes with Imprecise Transition Proba-

bilities’, Operations Research 42(4), 739–749.

White, D. J. (1985), ‘Real Applications of Markov Decision Processes’, Interfaces 15(6), 73–83.

White, D. J. (1988), ‘Further Real Applications of Markov Decision Processes’, Interfaces

18(5), 55–61.

White, D. J. (1993), ‘A Survey of Applications of Markov Decision Processes’, Journal of the

Operational Research Society 44(11), 1073–1096.

Wiering, W. & Schmidhuber, J. (1998), Efficient Model-Based Exploration, in ‘Proceedings of the

Fifth International Conference on Simulation of Adaptive Behaviour: From Animals to Ani-

mats 5’, MIT Press/Bradford Books, pp. 223–228.

Wilson, A., Fern, A., Ray, S. & Tadepalli, P. (2007), Multi-Task Reinforcement Learning: A Hier-

archical Bayesian Approach, in ‘Proceedings of the 24th International Conference on Machine

Learning, Corvallis, OR’.

Winston, P. H. (1984), Artificial Intelligence, 2nd edn, Addison Wesley.

Wolpert, D. H. & Macready, W. G. (1997), ‘No free lunch theorems for optimization’, IEEE Trans-

actions on Evolutionary Computation 1(1), 67–82.

Wolpert, R. L. & Mengersen, K. L. (2004), ‘Adjusted likelihoods for synthesizing empirical evi-

dence from studies that differ in quality and design: Effects of environmental tobacco smoke’,

Statistical Science 19(3), 450–471.

Wyatt, J. (1997), Exploration and Inference in Learning from Reinforcement, PhD thesis, Depart-

ment of Artificial Intelligence, University of Edinburgh.

Page 189

Wyatt, J. (2001), Exploration Control in Reinforcement Learning Using Optimistic Model Selection,

in A. Danyluk & C. Brodley, eds, ‘Proceedings of the Eighteenth International Conference on

Machine Learning’.

Wyatt, J. (2002), Reinforcement Learning: A brief overview, in ‘Perspectives on Adaptivity and

Learning’, Springer, pp. 243–264.

Wyatt, J., Hayes, G. & Hallam, J. (1999), Investigating the Behaviour of Q(λ), in ‘Colloquium on

Self-Learning Robots’, London.

Xu, M. & Golay, M. (2006), ‘Data-guided model combination by decomposition and aggregation’,

Machine Learning 63, 43–67.

Zellner, A. (1988), ‘Optimal Information Processing and Bayes’s Theorem’, The American Statisti-

cian 42(4), 278–294, with invited discussion and the author’s reply.

Zellner, A. (1997), Bayesian analysis in econometrics and statistics: the Zellner view and papers,

Economists of the twentieth century, Edward Elgar, Cheltenham, UK.

Zellner, A. (2002), ‘Information processing and Bayesian analysis’, Journal of Econometrics 107(1-

2), 41–50.

Zhang, L. & Lam, J. (2010), ‘Necessary and Sufficient Conditions for Analysis and Synthesis of

Markov Jump Linear Systems With Incomplete Transition Descriptions’, IEEE Transactions

on Automatic Control 55(7), 1695 –1701.

Zhong, Y., Jain, A. K. & Dubuisson-Jolly, M.-P. (2000), ‘Object Tracking Using Deformable Tem-

plates’, IEEE Transactions on Pattern Analysis and Machine Intelligence 22(5), 544–549.

Page 190

	Introduction
	Background
	Challenges of Learning
	Transferable Prior Information
	Possible Types of Transferable Prior Information
	Model Transfer

	About this Thesis
	Problem and Approach of this Thesis
	Contributions
	Structure of the Thesis

	Markov Decision Tasks
	Introduction
	The Framework of Markov Decision Theory
	Components of the Framework
	The Concepts of State, Transition & Markov Chain
	Rewards

	Objective of the Markov Decision Task
	Return as a Measure of Cumulative Reward
	Policies and Optimal Policies
	Value Functions

	Solving Markov Decision Tasks
	Planning in MDP
	Value Iteration
	Policy Iteration
	Linear Programming

	Learning in MDP
	Model-free Methods
	Model-based Methods

	Chapter Summary

	Capturing Uncertainty about the Task-Environment Model
	Introduction
	Transition Uncertainty
	Common Descriptions for Modelling Transition Uncertainty
	Polytopic Transition Models
	Probability Distribution over Possible Models

	Estimating Transition Probabilities
	Dirichlet Distribution of Transition Models
	Generating Samples of Transition Models

	Credible Set of Transition Models
	Probabilistic Distance Measures

	Bayesian Learning with Uncertain Process Models
	Bayesian Estimator of expected return

	Chapter Summary

	Exploration Control through Model Selection
	Introduction
	The General Set up
	Optimistic Model Selection (OMS)
	The Main Loop of OMS
	Algorithms for Selecting Optimistic Models

	Multi-objective Programming Approach
	Goal Programming (GP)
	Pre-emptive GP Approach to OMS

	Worked Examples
	Chapter Summary

	Approaches to Prior Information Transfer
	Introduction
	Overview of Transfer Methods
	Naive Transfer
	Transfer Scaling, Discounting & Quality Adjustments
	Bayesian Melding

	A Note on Transfer Performance
	Chapter Summary

	The Transfer Framework
	Introduction
	The Transfer Context
	Domain and Task
	Transferring Knowledge from Historical Data
	A Simple Transfer Algorithm
	Experiment I: Grid World

	Transferring Knowledge from Experts about Transition Constraints
	Constrained Prior Distributions

	Revised Bayesian Estimation of Expected Return
	Chapter Summary

	Reasoning with Constrained Transitions
	Introduction
	Converting a Convex Set into Simple Bounds
	Probabilistic Inference in Constrained Transition Models
	Truncated Dirichlet Distributions
	Sampling Truncated Dirichlet Distributions
	Sampling Transition Models from Truncated Beta Distribution
	Extending the Sampler to Truncated Dirichlet Distributions

	Order Restrictions on Transition Probabilities

	Constrained Optimistic Model Selection (COMS)
	Experiment II: The Grid World with Transition Constraints
	Experiment III: Maintenance Intervention Task
	Experiment IV: Additional Experiments
	Chapter Summary

	Accounting for Historical Data
	Introduction
	Power Priors
	Power Priors for Process Models
	Acquiring the Precision Parameter

	Experiment V: Maintenance Intervention with Power Priors
	Experiment Setup
	Results and Discussion

	Experiment VI: The Grid World with Power Priors
	Chapter Summary

	Leveraging with Process Templates
	Introduction
	Use of Templates in Reinforcement Learning
	Model Assumptions and Characteristics
	Configuration of Features in the MDP State Space
	An Illustration using the Grid Domain

	Template-Based Transfer Algorithm
	Experiment VII: Transfer using Process Templates
	Experiment Setup
	Template Provisioning
	Transfer to new Tasks

	Results and Discussion

	Chapter Summary

	Conclusions and Areas of Future Research
	Conclusions
	Future Research

