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Synopsis 

 

Boron carbide has a leading role in high performance applications due to its extreme 

hardness, low density, high melting point, high Young’s modulus, great resistance to 

chemical agents, excellent thermoelastic and thermoelectric properties and high corrosion 

and oxidation resistance. Due to its excellent properties it has many high performance 

applications including; body and vehicle armour, abrasive powder, nuclear applications and 

aerospace applications. 

 

Currently, boron carbide is commercially produced by a carbothermal reduction process. 

This involves the carbon reduction of boric acid by heating in an electric heating furnace. 

However, the process has many associated problems, including: 

 

 Considerable amount of free carbon residue in the final product. 
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 Difficulty and expensive to grind the product to fine particle size for densification. 

 Requires a high temperature furnace operation. 

 Control of temperature above 2027 °C  is not possible. 

 Non-uniform heating in an electric arc furnace resulting in some unreacted products. 

 Contamination in the final product. 

 

As a result of the problems with commercially produced boron carbide, an alternative 

method is required. 

 

This work assesses the possibility of using a polymeric precursor, polyvinylalcohol (PVA) and 

boric acid (H3BO3) as the starting materials to synthesise boron carbide powder with a 

stoichometry of B4C and a small amount of free carbon. The process steps involve: 

 

 Mixing PVA and boric acid in a dehydration condensation reaction to synthesise 

polyvinylborate (PVBO). 

 PVBO is pyrolysed to carbonise the PVA and remove water from the boric acid to 

leave carbon and boron oxide, the elements required to process boron carbide. 

 Pyrolysed sample is heat treated to synthesise boron carbide. 

 

A combination of FTIR, TGA, XRD, Raman Spectroscopy and SEM has been used to 

characterise the PVBO, pyrolysed product and final heat treated product as a function of 

starting raw materials and processing conditions. 
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The optimum processing conditions found were to use a composition of 3.7 g PVA and 1 g 

H3BO3, and to pyrolyse at 600  ºC for 2 hours at a heating rate of 10 ºC min-1 under Ar flow. 

The pyrolysed sample was subsequently heat treated at 1400 ºC for 5 hours at a heating rate 

of 10 ºC min-1 under Ar flow. This produced B4C powder with the smallest amount of 

residual carbon. The results achieved therefore offer a potential low temperature and low 

cost alternative to the commercially produced B4C. 
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1.  Introduction and Literature Review 

1.1. Introduction to Boron Carbide 

 

Boron Carbide is a low-atomic non-metallic material.1 It is the third hardest material known 

to man after diamond and cubic boron nitride, with the advantages of being relatively easy 

to be synthesized and stable up to very high temperatures.2 It is also the hardest material 

produced in tonnage quantities.3 Boron carbide compound was discovered in the mid-19th 

century as a by-product in the production of metal borides; however its chemical formula 

was unknown.4 In 1883, Joy identified the compound B3C and in 1894, Moissan identified 

the compound B6C. The commercially produced boron carbide of today (with a 

stoichiometric formula of B4C) was not discovered until 1934.5 Boron carbide has a leading 

role in materials suitable for high performance applications due to its attractive combination 

of properties. These properties include high hardness, low density, high melting point, high 

Young’s Modulus,6 great resistance to chemical agents, high neutron absorption cross-

section,5 high corrosion and oxidation resistance6 and excellent thermoelastic and 

thermoelectric properties.1 The physical and chemical properties of boron carbide are given 

in Table 1. 1,6, 
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Property Value (units) 

Hardness 29.1 GPa 

Density 2.52 gm cm-3 

Melting Point 2450°C 

Young’s Modulus 448 GPa 

Shear Modulus 180 GPa 

Fracture Toughness 2.9 – 3.7 MPa m1/2 

Neutron Absorption Cross-Section 600 Barns 

 

Table 1. Properties of Boron Carbide 

 

 

1.2. Structure of Boron Carbide 

 

Boron carbide is a compositionally disordered material with a rhomboheadral phase which 

can exist in a wide range of compositions. This extends from B10.4C (8.8 atomic % C) to B4C 

(18.8 atomic % C).7The homogeneity range is shown in the B-C phase diagram presented in 

Figure 1.  
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Figure 1. The Phase Diagram for the B-C System7 

 

Boron carbide is established in the B-C system. Notations of boron carbide, such as B4C, 

B13C2 and B8 can be found. The stoichiometric B4C is the most stable compound in B-C 

system and has superior properties, such as very high hardness and thermal conductivity. 

The reason for boron carbides excellent properties is due to its unique atomic structure. The 

most widely accepted structure of boron carbide consists of 12-atom icosahedra located at 

the corners of the unit cells.7 This is shown in the schematic diagram in Figure 2. 
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Figure 2. Schematic diagram of the structure of boron carbide Rhombohedral unit cell.2 

 

The icosahedra generally consists of 11 boron atoms and 1 carbon atom (B11C).2  6 atoms 

form the top and bottom triangular face of the icosahedra which sit at the polar sites and 

are directly linked to atoms in a neighbouring icosahedra via strong two-centre bonds along 

the cell edges.7 The other six atoms form a hexagon in the plane perpendicular to the axis, 

known as the equatorial sites.2 The atoms in the equatorial sites bond directly to other 

icosahedra by either three-centre bonds or to chain structures.7  The majority of icosahedra 
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have a B11C structure with the C atom placed in a polar site. However a few have a B12C 

structure or B10C2 structure with the two C atoms placed in two antipodal polar sites.8 

 

The longest diagonal of the rhomohedral unit cell consists of a three-atom linear chain. Each 

end member of the chain is bonded covalently to an atom of three different icosahedra.7 

There is compositional disorder as carbon atoms replace boron atoms at a number of 

locations in the structure, including various icosahedral sites as well as within the three-

atom intericosahedral chain.9 There are three types of three-atom chains. These include: C-

B-C, C-B-B and B-B-B. The most widely accepted and most stable structural model for Boron 

Carbide has B11C icosahedra that consist of C-B-C intericosahedral chains with 20 atomic % 

C.10  The carbon-boron bonds in this three-atom chain are very strong.  

 

Boron carbide structures can accommodate a large variation in carbon concentration 

without phase separation or interstitial occupancies.11 However, if the carbon concentration 

is varied it will cause a change in the distribution of the atom chains.10  A reduction in carbon 

concentration will cause C-B-C chains to progressively be replaced by C-B-B chains and form 

the composition B13C2. If the carbon concentration is lowered further the C-B-B chains are 

replaced by B-B-B chains and B12 icosahedra is formed.10  This can also occur if the boron 

carbide becomes rich in boron. The carbon-boron bonds present in the three-atom chain are 

much stronger than boron-boron bonds in icosahedra.12  
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1.3. Application of Boron Carbide 

 

Boron carbide is a suitable material for many high performance applications. Its outstanding 

hardness makes it a suitable abrasive powder. The  particle sizes ranging from 1 µm to 10 

mm means it can be used for polishing, lapping and grinding media for hard materials such 

as cemented carbides and technical ceramics.5 In sintered form, boron carbide is also used 

as blasting nozzles, ceramic bearings and wire drawing dies due to its excellent wear 

resistance.7   

 

Fully dense boron carbide is suitable for body and vehicle armour to protect against 

projectiles and ballistic threats. This can be used for helicopters or breast plates for a 

person’s protection. This is due to its high hardness as well as its high impact resistance and 

low specific weight. 5  Fully dense boron carbide also has a high elastic limit which is referred 

to as the Hugoniot Elastic Limit (HEL). This is the maximum principle stress component 

under one-dimensional strain at a strain rate of approximately 105s-1
.
13 

 

 Table 2 shows a comparison of physical properties between boron carbide and other 

ceramic materials that have been commercially produced and researched for use as armour 

applications.13 
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Material Density 

(Kg/m3) 

Compressive 

Strength (GPa) 

Hugoniot Elastic 

Limit (HEL) (GPa) 

Young’s 

Modulus (GPa) 

Boron Carbide 2500 

 

1.3 15 448 

Silicon Carbide 3000 – 3200 

 

3.9 8 380 – 430 

Titanium Diboride 4500 

 

3.75 8.6 – 13.1 520 – 550 

Aluminium Nitride 3200 

 

3 - 4 9.2 320 

Silicon Nitride 3150 

 

2 - 3 12 269 

Aluminium Oxide 

(high purity) 

3900 

 

2 - 3 8.4 340 – 370 

 

Table 2. Physical Properties of ceramics that have been produced for armour application 

 

The values shown in Table 2 demonstrate that boron carbide has the best overall properties 

in terms of hardness and lightness and therefore is favoured for ceramic plates protecting 

against projectiles. 

 

Boron carbide can also be used as a coating for various materials for different applications. 

For example, a coating can be applied to tools and then used for cutting various alloys such 

as stainless steel, titanium alloys and aluminium alloys.5 It can also be used as a coating to 

provide protection for the application. For example, thin films can be applied to ultra-high 

density disk drives14 or plasma-sprayed boron carbide can be coated on different types of 

stainless steel (0.3-2.00 mm) as a first-wall protection to protect against repeated thermal 

shocks from destruction loads.15 
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Boron carbide is used in many nuclear applications. It is used as a control rod, shielding 

materials and neutron detectors in nuclear reactors due to its ability to absorb neutrons. 

This is a result of its high B content, good chemical inertness and high refractoriness.5 

Furthermore; it is used in nuclear fusion reactors due to its thermal conductivity and 

thermal shock resistance.7  

 

There are also several aerospace applications that currently use boron carbide for its 

properties. For example, B4C can replace Be/Be alloys due to its low density, high stiffness 

and low thermal expansion.7  

 

Boron carbide is also used as a strengthening medium because of its high modulus to 

density ratio (1.8 x 107 m). For example, it is used as a filamentary material for 

reinforcement of plastic matrixes.16 Finally, boron carbide is used in electron devices that 

can be operated at high temperatures. For example, it can be used as a thermoelastic device 

by using it as a p-type semiconductor.17 

 

1.4. Synthesis of Boron Carbide 

 

There are several different methods for producing boron carbide. These include: 

 Carbothermic Reduction 

 Synthesis from elements 

 Magnesiothermic reduction 

 Chemical Vapour Decomposition 
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 Synthesis from polymer precursors.  

 

1.4.1. Carbothermic Reduction 

 

Commercially produced boron carbide is synthesised using a carbothermal reduction 

process. This involves carbon reduction of the inexpensive starting material boric acid 

(H3BO3) by heating in an electric heating furnace. 

 

The overall carbon reaction can be presented as the following:18 

 

 

 

During heating the boric acid is converted to boron oxide by releasing water.7 In step 2, the 

reduction of B2O3 with carbon monoxide occurs. Alizadeh et al.19 suggests that this becomes 

thermodynamically feasible above 1400°C.19 The temperature of the furnace is usually 

maintained at >2000°C to increase the rate of the overall reaction. This process is highly 

endothermic.7 

 

4H3BO3 + 7C    B4C + 6CO + 6H2O         

The reaction proceeds in three steps 

4H3BO3  2B2O3 + 6H2O  (1) 

B2O3 + 3CO 2B + 3CO   (2) 

B + C  B4C                        (3) 
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The carbothermic reduction process of boric acid can occur in two types of electric heating 

furnaces. One furnace that can be used is an electric arc furnace. In this process, boric acid 

and petroleum coke is melted at very high temperatures. This is followed by crushing the 

resultant product and mixing it with a similar quantity of boric acid, which is then remelted. 

The reaction and cool down takes place over a long period of time due to the slow rate of 

heat conduction that controls the process.20 The sintered mass of product which is produced 

then requires physical size reduction in order to achieve fine particle size suitable for 

densification. It is important to achieve a fine particle size with a high surface/volume ratio 

as this can enhance sintering compared to coarse particles. This can be done by crushing 

and grinding. However due to the extreme hardness of boron carbide, the size reduction 

step is extremely difficult and expensive and results in contamination of the product.21  

 

The second type of furnace is the Acheson type furnace. This uses a graphite rod as the 

heating element. Partially reacted charge (boric acid and carbon) from a previous run is 

added around the graphite heating rod. On top of this, the new charge mixture of boric acid 

and carbon is added.7 The furnace is then heated causing a reaction near the graphite rod 

and carbon dioxide to escape through the charge above. As the reaction continues, the 

charge is heated by conduction as well as by the heat of the escaping CO.7 The process 

begins with boric acid (H3BO3) losing its water content and converting to boron oxide (B2O3). 

With further heating the B2O3 melts and forms a glassy film preventing CO escaping from the 

reduction zone.7  The gases from the product form bubbles which increase in size as the 

pressure rises and consequently burst, causing some of the partially reacted charge to be 

ejected from the furnace and boron to escape in the form of boron oxide vapours into the 

atmosphere.7 Following completion of the process, the top is broken open and the boron 
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carbide surrounding the graphite rod is manually collected. The boron carbide is then 

crushed into a finer size, which is washed in water and leached in acid to remove 

contaminations.7 In each run only a small amount of the charge is converted to carbide and 

the remainder is recycled in further runs.7 Therefore, in this process conversion in each turn 

is low and the loss of boron is high. This process however is used for commercial production 

because of the cheap starting materials. 

 

The electric arc furnace and the Acheson furnace processes have very similar reaction 

sequences. In these carbothermic reduction processes, petroleum coke or graphite can be 

used as reducing agents. Temperature and heat transfer are very important parameters in 

the formation of boron carbide. By influencing these parameters, the process can be 

improved by increasing the product quality and conversion efficiency. The formation of 

boron carbide is also highly dependent on phase changes of the reactant from solid to liquid 

to gaseous boron oxide as well as the heating rate and ultimate temperature.21 A slow 

heating rate (< 100 K s-1) results in the formation of boron carbide by nucleation and 

growth, showing a reaction through liquid boron oxide. An intermediate heating rate (103   –

105 K s-1) results in formation of large and small crystallites, showing the reaction of carbon 

with liquid boron oxide and gaseous boron suboxides. A rapid heating rate (>105 K s-1) 

results in smaller crystallite sizes, indicating a reaction through gaseous boron suboxides.  

Therefore to produce fine boron carbide powders which are required for dense articles, a 

fast heating rate is required.7 

 

The carbothermic reduction process is used for commercial powder production due to the 

simple equipment and the cheap raw materials required which makes it economical. The 
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powder prepared by this method has morphology and surface characteristics that are 

suitable for hot pressing and hot isostatic pressing.19
 

 

1.4.1.1. Problems with Commercially Produced Boron Carbide 

 

There have been many different methods for producing boron carbide due to problems 

encountered in the production of commercially processed B4C. Complete reaction of carbon 

is very difficult because the reaction by-product, such as carbon monoxide carries volatile 

boric species away from the reaction site, breaking the stoichiometry. This results in the 

final boron carbide containing a considerable amount of free carbon residue, hence 

deterioration of the final properties.27 Due to boron carbides extreme hardness it is also 

difficult and expensive to grind the product into particle sizes fine enough for 

densification.21 This factor as well as the high temperature furnace operations make it a very 

high energy intensive approach. This results in high cost of powder and low production 

capacity.22
 Approximately only 500t of boron carbide is produced every year. This is very 

small in comparison to steel, which yielded approximately 127 million metric tons (mmt) in 

April 2011 according to the World Steel Association23. Thus due to the limited availability of 

the materials there is a high demand for it and naturally the price for boron carbide is higher 

than other materials. For example, typical armour grade B4C powder costs approximately 

$50/lb compared to its cheaper alternative sintered aluminium oxide at approximately 

$15/lb.23 The high price and low production capacity of boron carbide have resulted in the 

readily available steel and aluminium alternatives being more commonly used materials for 

vehicle and body armour. 
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Another major drawback of carbothermic reduction process is the control of temperature 

above 2027 °C is not possible. This leads to the vaporization of boron from the system 

affecting the B/C ratio. Therefore, more than 65 % of excess B2O3 is used to compensate for 

the loss of boron during the process.24 Other issues which occur during the synthesis of 

commercially produced boron carbide powder include the non-uniform heating in the 

furnace. The central zone of the electric arc furnace reaches 2200 – 2500 °C and results in a 

B4C composition. However the outer zones of the furnace are not as hot (1200 – 2200 °C) 

and results in unreacted products, which must be recycled.5  The size reduction step also 

causes contamination with impurities.21 As a result of these problems, several studies have 

investigated alternative methods for producing boron carbide powder. 

 

Finally, the production of fully dense boron carbide needed for armour must undergo a hot 

pressing process. During this process hydrostatic pressure causes a decrease in stability of 

boron carbide, and segregated boron and graphite layers occur, which can accommodate 

between icosahedra.25 Graphitic layers along intericosahedral voids correspond to slightly 

displaced B12 icosahedra.25 B12 structure has B-C-C chains which are weaker chains than B-C-

B chains resulting in a lower Hugoniot elastic limit (HEL). Therefore B-C-C chains are more 

likely to collapse under high impact, such as ballistic attack. It is required to minimise free 

carbon as it will reduce HEL and the chance of fracture through shear-induced 

amorphization.25 
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1.4.2. Synthesis from Elements 

 

Boron carbide can be synthesised in many different methods. One method is to process it 

from elemental boron and carbon directly. This process begins by thoroughly mixing boron 

and carbon to form a uniform powder mixture. This is then pelletized and reacted at high 

temperature of >1500 °C in a vacuum or inert atmosphere.7  The high temperature 

combined with a long holding time is required for complete conversion of the elements in 

B4C. This is because the formation of a boron carbide layer causes further reaction to slow 

down due to slow diffusion of reacting species through this layer.7 Boron carbide (B4C) is 

then achieved by crushing and grinding the partially sintered pellet. In order to achieve high 

purity B4C, high purity elemental boron is often used. This is produced by a fused salt 

electrolytic process.26 This process has excellent control of purity and carbon content, and 

there is no loss of boron. However, due to the high cost of elemental boron this process is 

considered uneconomical. Consequently this process is only used for specialised 

applications such as, B10 enriched or very pure boron carbide. These compounds are used as 

neutron absorbers in the nuclear industry.  

 

1.4.3. Magnesiothermic Reduction 

 

Another alternative method for producing boron carbide is through reduction of boron 

oxide with magnesium metal.21  This is known as a magnesiothermic reduction process.  

 

This process can be presented as the following:7 
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Typically, the reactants (boron oxide, carbon and magnesium) are mixed and reacted by 

either heating to a sufficient temperature or through the use of electrical ignitors.21 The 

thermite reaction is highly exothermic and self-propagating.21 Due to the high vapour 

pressure of magnesium at the reaction temperature of >1000 °C, a cover gas such as argon 

is used.7 This process can produce fine powders, however it is unsatisfactory for producing 

high purity powders because the powders are easily contaminated with residual magnesium 

.21 The removal of these magnesium compounds is extremely difficult even after repeated 

digestions with hot acids.27  This process will soon be obsolete for regular production of B4C 

due to magnesium’s high cost and impurities in the powder. 7  

 

1.4.4. Chemical Vapour Deposition 

 

Due to the slow and non-uniform heating, chemical impurities, and subsequent processing 

complications of commercially produced boron carbide, there has been extensive research 

in producing high-purity, submicron size powders directly through vapour phase reactions. 

This process produces boron carbide by reacting carbon or hydrocarbons, using laser or 

plasma energy sources via chemical vapour deposition (CVD). The deposition is controlled 

by mass transfer and surface kinetics, which affects the stoichometry and the properties of 

the boron carbide phases grown.7 

2B2O3 + 6Mg + C  B4C + 6MgO         

The reaction proceeds in two steps 

2B2O3 + 6Mg  4B + 6MgO  (1) 

4B + C  B4C     (2) 
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In laser CVD the energy of a laser beam is used to heat the surface of a substrate to the 

temperature needed for chemical vapour deposition. This results in deposits of boron 

carbide crystallites with high purity, high degree of crystallinity and good thermal stability. 

These attributes are a result of deposition occurring one atom at a time created by the 

focused laser spot.7  

 

Plasma enhanced CVD provides a means for fabricating boron carbide thin films without the 

use of high temperatures (>1000 °C) and pressures (>50 Torr).28 The process deposits thin 

films from a gas to a solid state on a substrate. This occurs after creation of plasma by radio 

frequency or dc discharge between two electrodes, the space between which is filled with 

reacting gases.7 Different precursors such as BCl3, BBr3 and B2H6 have been used to grow 

boron carbides.29  

 

Laser or plasma heating of reactant gases has several advantages. For example, the heating 

and cooling rates of the reactants are almost instantaneous, it has short and uniform 

reaction time (fractions of a second) with minimal exposure to high temperatures, and it 

produces submicron, uniform sized boron carbide.21 However, while gas phase synthesised 

powders produce many of the desirable qualities, they are expensive to produce due to the 

high cost of processing equipment and gaseous raw materials (e.g. BCl3). Care must also be 

taken when handling because the gases are hazardous. Using this process it is difficult to 

produce B4C powder suitable for densification and large scale production.7 Therefore, gas 

routes may not be practical for commercial use.21 
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 1.4.5. Synthesis from Polymeric Precursors 

 

 A promising alternative to the high temperature reaction techniques for producing boron 

carbide powder is by using polymer precursors at lower temperatures. This process can be 

carried out in the temperature range 1000 to 1500 °C in a vacuum or inert atmosphere. 

Studies have researched several different types of polymer precursors because they have 

many advantages. For example, the use of polymer precursors will allow for precise control 

of ceramic composition, it can be formed into a desired shape and converted to a ceramic 

with possible retention of form, and it can undergo decomposition at lower temperatures 

allowing ceramic formation under milder conditions. These advantages all contribute to 

reducing costs.30  

 

There have been several studies that have reported findings of producing boron carbide 

using polymeric precursors. Table 3 gives a comparison of these previous studies and their 

processing conditions and results. 

 

Mirabelli et al.31 reported a production route of B4C using poly(vinylpentaborane) as a 

precursor. They found that 2 – (H2C = CH) B5H8 will undergo thermal polymerization to 

vinylpentaborane oligomers, which can be converted to boron carbide when heated at 1000 

°C for 8 hours in Ar flowing atmosphere. This produces B4C with high ceramic yields under 

milder conditions than commercially produced boron carbide.31 However, boranes are 

highly explosive and expensive starting materials making this process commercially 

unviable.31 
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Therefore researchers have studied the use of inexpensive, non-hazardous and readily 

available polymer precursors, which are used as a carbon source for the synthesis of boron 

carbide. In particular borate esters with B-O-C bonds of various polyols, such as glycerin32 

citric acid6, cellulose33, glucose33 and polyvinylalcohol (PVA)1 have recently been studied as 

promising precursors of B4C powders. 

 

Wada et al1 reported boron carbide synthesis from boric acid and glycerin precursor by 

heating at a relatively low temperature of 1300°C for 4 hours. However, the product 

contained a large amount of residual carbon. This is a common disadvantage of boron 

carbide synthesis using organic precursors.1 A study by Kakiage31 overcame this problem by 

performing a pyrolysis process in air before the carbothermal reduction process. This study 

successfully synthesised crystalline B4C powder without residual carbon by mixing equimolar 

amounts of boric acid and glycerine, which they then pyrolysed and heat treated at 1250 °C 

for 5 hours in an argon flow.32 

 

Sinha et al6 produced B4C powder by a carbothermal process using boric acid and citric acid 

as raw materials. The starting materials form a stable gel under controlled pH condition 

when mixed. This gel was then pyrolysed under a vacuum at 700 °C, followed by heat 

treatment under vacuum at 1450 °C for 2 hours. A B4C powder was produced comprising of 

equiaxial particles that show a narrow size distribution and a median particle size of 2.25 

µm. However, this contained 11.1 wt% free carbon (graphite). This study also demonstrated 

that B4C formation did not occur until heating the precursor powder to around 1050 °C.6 
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A study by Sudoh et al32 reported B4C microcrystals were synthesised from precursors 

composed of saccharides, such as glucose and cellulose, and boric acid at a relatively low 

temperature of 1500 – 1600 °C for 1 hour in an Ar flow. However, similarly to other studies 

using polymeric precursors there was a high amount of free carbon and residual boron 

oxide contained in the products.33 

 

Finally, polyvinylalcohol (PVA) has been shown by Yanase et al.1 to produce boron carbide 

when mixed with boric acid and prepared via carbothermic reduction process1. In this study, 

polyvinylborate (PVBO) was prepared by the condensation of PVA and boric acid, and used 

as a precursor for boron carbide. A PVA:H3BO3 molar ratio of 4.2:1 was used to prepare 

PVBO. PVA (2.47 g) was dissolved in 30 ml of distilled water by stirring and heating in a 

water bath at 80 °C. H3BO3 (0.795 g) was then dissolved in 30 ml of distilled water and added 

to the PVA solution under a hot condition with constant stirring. This formed a PVBO gel 

that was dried in an oven at 120 °C, followed by grinding into white PVBO powder. This 

powder was pyrolysed in air at 450 – 700 °C for 2 hours, and was then ground and heated at 

1100 – 1300 °C for 5 hours at a heating rate of 10 °C/min in an Ar flow. The resulting 

product was characterised by powder x-ray diffraction (XRD). The results showed that 

pyrolysis at 600 °C for 2 hours resulted in the optimum C/B2O3 molar ratio of 3.3. Crystalline 

B4C powder with minimal free carbon was then synthesized by heating the pyrolysed 

product at 1300 °C for 5 hours under Ar flow.1 
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Table 3. Comparison of boron carbide synthesis methods using polymer precursor 

 

Limitations in commercially produced boron carbide has encouraged interest in the 

production of B4C using a low cost, non-toxic and readily available polymer precursor 

through a pyrolysis and low temperature heat treatment route. Several studies have shown 

that crystalline boron carbide powder with a B4C stoichometry can be produced in this 

process. However, a common problem found in these studies was a high amount of free 

carbon in the final product. Yanase et al1 has shown the most promise in using 

polyvinylalcohol(PVA) and boric acid in producing B4C at a low temperature with low free 

carbon.   

 

Polymer 
Precursors 

Study 
Pyrolysis 

Temp ( °C) 

Heat 
Treatment 
Temp (°C) 

Hold Time 
(hours) 

Atmosphere Final Product 

Polvinylpenta 
borate 

Mirabelli 
et al. 

... 1000 8 Ar 
Amorphous 

boron carbide 

Boric acid 
and Glycerin 

Wada et 
al. 

... 1300 4 Ar 
B4C with large 

amount  of 
residual carbon 

Boric acid 
and Glycerin 

Kakiage 550 1250 5 Ar 
B4C crystalline 

powder 
Boric acid 
and Citric 

acid 

Sinha et 
al. 

700 1450 2 Vacuum 
B4C with 11.1 

wt% free carbon 

Boric acid 
and Glucose 

Sudoh et 
al. 

... 1500 1 Ar 

B4C with large 
amount of 

residual carbon 
and  boron oxide 

Boric acid 
and PVA 

Yanase et 
al. 

600 1300 5 Ar 
B4C with small 
amount of free 

carbon 
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An overview of the different processing routes of the production of boron carbide is shown 

in Table 4. 

 

Table 4. Comparison of boron carbide synthesis methods 

Production 
Method 

 
Boron Source Carbon Source Advantages Disadvantages 

Carbothermic 
Reduction 

 B2O3  Petroleum 
coke 

 Graphite 

 Activated 
carbon 

 Simple equipment 

 Cheap raw materials 

 Suitable for hot 
pressing 

 High amount of free 
carbon 

 High loss of boron 

 Non-uniform heating 

 Requires subsequent 
grinding operations 

 Contamination 
during size reduction 

Synthesis 
form 
Elements 

 Boron  Carbon  No loss of boron 

 Good control of purity 
and carbon content 

 Expensive starting 
materials 

Magnesio-
thermic 
Reduction 

 B2O3  Petroleum 
coke 

 Graphite 

 Activated 
carbon 

 Produces fine powders  Easily contaminated 
with residual 
magnesium 

 High cost of 
magnesium 

Chemical 
Vapour 
Deposition 

 BCl3 

 BBr3 

 Bl3 

 B6H6 

 B2O3 

 CH4 

 C2H4 

 C2H6 

 C2H2 

 CCl4 

 High B4C purity 

 High degree of 
crystallinity 

 Good thermal stability 

 Almost instantaneous 
heating and cooling 
rates 

 Short and uniform 
reaction time 

 Produces submicron 
uniform sized B4C 

 Suitable for thin films, 
fibres, whiskers 

 Expensive process 

 Not amenable for 
large scale 
production 

 Difficult to produce 
B4C powder suitable 
for densification 

Polymeric 
Precursors 

 H3BO3 

 B2O3 

 Polyvinylpe
ntaborane 

 Glycerin 

 Citric acid 

 Cellulose 

 Glucose 

 PVA 

 Precise control of 
ceramic composition 

 Low temperature 
process 

 High amount of free 
carbon 

 Still in laboratory 
stage 
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1.5. Proposed Study 

 

The aim of the proposed study is to achieve a low cost boron carbide powder with a 

stoichometry of B4C with low free carbon. A study by Yanase et al.1 achieved this by using 

polyvinylalcohol (PVA) and boric acid (H3BO3) as the starting materials. This is the only study 

to date that has achieved crystalline B4C using PVA as a polymeric precursor and therefore 

this needs to be supported to increase the validity of the results.  

 

There are several weaknesses of the study which need to be addressed and further 

investigated. This includes a lack of detail in the experimental method making it a difficult 

study to replicate. For example, the molecular weight of the starting materials is not 

provided, they do not provide an explanation as to why they used a PVA:H3BO3 molar ratio 

of 4.2:1, and no detail was given as to why the pyrolysis temperature range was 450 – 700 

°C with a holding time of 2 hours. Similarly, details are not provided to why they used a 

temperature range of 1100 – 1300 °C with a holding time of 5 hours. The study focuses on 

the synthesis route of boron carbide powder and does not look at the structural changes 

occurring during pyrolysis. The relationship between the structural arrangement of the 

precursor and the lowering of the synthesis temperature of boron carbide powder has not 

yet been investigated.  

 

Another weakness of the study is they do not replicate their findings. The results only show 

one XRD trace and therefore the findings lack validity. The XRD trace of their final product 

has a small carbon peak, which the study attributes to a small amount of residual carbon in 



 30 

the sample. To increase the validity of this result, the amount of free carbon needs to be 

measured. 

 

The weaknesses of the Yanase et al.1 study means that further investigation in the synthesis 

of boron carbide powder from PVA and boric acid is required. Therefore the proposed study 

will aim to replicate the Yanase el al.1 study as well as increase the findings of PVA and boric 

acid synthesis route in creating boron carbide by investigating different variables in the 

synthesis route that have not been published before. This will include different molar ratios 

of PVA and boric acid, and how it affects the C/B2O3 ratio, and the structure of pyrolysed 

product. The study will also investigate the structural changes occurring during pyrolysis 

when heated at different temperatures and holding times. The relationship between the 

pyroslysis structure and the final boron carbide structure after heat treatment will be 

analysed. The temperature and holding time of the heat treatment process will also be 

varied to find the optimum conditions needed to achieve a crystalline boron carbide powder 

with a stoichometry of B4C. If B4C is achieved, the study will also measure the amount of 

free carbon in the final product with an aim of minimising it. 

 

The proposed study will use polyvinylborate (PVBO) as the preceramic precursor. PVBO is 

formed in a condensation reaction from B-OH and PVA-OH units, from boric acid and PVA, 

respectively.33 PVA is a water-soluble polymer with a hydroxyl group as a side chain and 

readily forms a B-O-C bond with H3BO3.
32

 The reaction allows the introduction of boron 

atoms into an organic polymer, which acts as a means of crosslinking units. The synthesis 

reaction of PVBO and the idealised structure of PVBO is illustrated in Scheme 1.33 
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Scheme 1. Condensation reaction from PVA and boric acid forming PVBO31 

 

A simple and cheap chemical route for the synthesis of PVBO is achieved by dissolving PVA 

and H3BO3 in hot water (above 80 °C), followed by blending the solution and drying until all 

water is evaporated.1 FTIR analysis can be used to provide evidence of the formation of 

PVBO.  

 

The PVBO will then be pyrolysed before the carbothermal reduction process. Pyrolysis is a 

thermochemical decomposition induced in organic materials through the absence of oxygen 

at elevated temperatures.34 During the pyrolysis process previous studies1, 6, 32 have shown 

that carbonization of PVA occurs while boric acid converts into B2O3. This results in a 

precursor consisting of carbon and B2O3, which are the elements needed to produce boron 

carbide. The pyrolysis process also removes residual carbon and any other unwanted 

components meaning that crystalline boron carbide can then be prepared with a small 

amount of free carbon at low temperatures.33  

 

Following the pyrolysis of PVBO, synthesis of boron carbide is achieved in a carbothermal 

reduction process i.e. the reaction between carbon and B2O3.34
 The advantage of using B2O3 

and carbon produced from pyrolysis of PVBO over the conventional method of mixing 

elemental boron and carbon is that it produces finer boron oxide which can be mixed 
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intermittently with carbon. This results in the ability to produce a carbothermal reaction at 

lower temperatures.  The overall carbothermic reduction reaction can be presented as the 

following: 

 

2B2O3 + 7C = B4C + 6CO1 

 

This reaction shows that the optimum carbon to boron oxide (C/B2O3) molar ratio is 3.5. 

Therefore in order to determine the optimum amount of carbon in the pyrolysed PVBO 

precursor, the C/B2O3 can be calculated from weight of removed B2O3 and remaining 

carbon.1 Boron oxide is soluble in hot water and therefore is easily removed by washing in 

hot water.35  

 

Yanase et al.1 showed that pyrolysed PVBO precursor with a C/B2O3 ratio of 3.3 can be 

heated at 1300 °C to form a boron carbide powder with a stoichiometry of B4C, and a low 

amount of free carbon through a carbothermic reduction process. 

 

1.6. Aim of Proposed Study 

 

The aim of the study is to achieve a low cost boron carbide powder with a stoichiometry of 

B4C and a small amount of free carbon. The low cost will come from using inexpensive 

polyvinylalcohol and boric acid as the starting materials. This study will also heat treat at 

lower temperatures compared to commercially produced boron carbide. To achieve B4C 

powder, different molar ratios of PVA and boric acid will be pyrolysed at different 

temperatures and holding times. The C/B2O3 ratio will be calculated to find the optimum 
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molar ratio. The pyrolsyed PVBO precursors will be heated to different temperatures at 

different holding times to achieve the optimum B4C powder. Through varying the ratios of 

the starting materials and the environmental conditions by using previous studies as a 

starting reference, the aim is to achieve B4C powder with little free carbon. 

The study will investigate the structural changes occurring during pyrolysis when heated at 

different temperatures and times and the relationship between the pyrolysed structure and 

the final boron carbide structure after heat treatment.  
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2. Experimental Methods 

2.1. Materials 

 

Boric Acid (H3BO3) powder > 99.5 % hydrolysed and Poly(vinylalcohol) (PVA) powder 98% 

hydrolysed  with typical Mw of 13,000 – 23,000 supplied by Sigma Aldrich was used in this 

study.  

 

2.2. Materials Processing 

2.2.1. Synthesis of Polyvinylborate (PVBO)  

 

Poly(vinylborate) (PVBO) was prepared via a dehydration condensation reaction of PVA and 

H3BO3. PVA was dissolved in 30ml of distilled water by heating the water to 80°C using a hot 

plate and stirring continuously for 10 minutes. H3BO3 was also dissolved in 30ml of distilled 

water at 80 °C in the same process. The solutions were added together whilst continuously 

stirring to create a white PVBO gel. This gel was then dried in a box furnace at 100 °C until all 

water had been evaporated (approximately 1 hour). This was followed by grinding the white 

PVBO into powder using a pestle and mortar. Weight ratios of PVBO included:   

 

 3.1:1 (2.47 g PVA, 0.795 g H3BO3)1 

 1:1 (2 g PVA, 2 g H3BO3) 

 2:1 (4 g PVA, 2 g H3BO3) 

 3:1 (3 g PVA, 1 g H3BO3) 

 4:1 (4 g PVA, 1 g H3BO3).  



 35 

 

The starting ratio of 3.1:1 was chosen based on previous literature1. The other ratios were 

chosen to gain a wide range of results after pyrolysis to see the effect it has on the structure 

of the precursor and find the optimum C/B2O3 molar ratio of 3.5. Following results found 

during the study, weight ratios of 3.3:1, 3.5:1 and 3.7:1 were pyrolysed and analysed to find 

the optimum C/B2O3. 

 

2.2.2. Pyrolysing Poly(vinylborate) Powder Samples (PVBO)  

 

The PVBO powders were placed in an alumina crucible and pyrolysed at 500, 600 and 700 °C 

for 1, 2 or 3 hours in an ‘Elite Tube Furnace’ (TSH16/2J/180) with a flowing argon 

atmosphere at a flow rate 4 LPM and a heating rate of 10 °C min-1. This process was used to 

carbonize the PVA and remove water from boric acid. This left carbon and boron oxide, the 

elements required to process boron carbide. Pyrolysis also helped remove any residual 

carbon to minimise free carbon in the final product. The parameters were chosen based on 

previous literature1 and on thermogravimetric analysis (TGA) of PVBO. The pyrolysis of PVBO 

left a black precursor that was ground into powder before heat treatment. 

 

2.2.3. C/B2O3 ratio 

 

Carbon to boron oxide (C/B2O3) molar ratio was calculated for each pyrolysed sample. To 

calculate the C/B2O3 ratio the mass of the sample was first weighed, followed by leaching 

out B2O3. Boron oxide is soluble in hot water and therefore was removed through 



 36 

submerging the pyrolysed sample in 80 °C distilled water that was heated by a hot plate. 

This was continuously stirred for 10 minutes to leave a solution containing carbon and 

dissolved B2O3 in water. 

 

The solid carbon is separated from the dissolved B2O3 solution to find the carbon content 

produced after pyrolysis. The carbon was filtered out of the solution using a PTFE 

membrane filter paper with a pore size of 1 μm. The filter paper was left to dry and was 

then reweighed. This weight was subtracted from the original weight of the sample and 

filter paper to determine the remaining carbon. This was then subtracted from the original 

weight of the sample to give the amount of boron oxide. 

 

From the mass of carbon and boron oxide in the PVBO precursor, the molar ratio was 

calculated. The calculation is shown in Appendix 1.  

 

The optimum C/B2O3 ratio to produce boron carbide powder through heat treatment is 3.51. 

 

2.2.4. Heat Treatment of Pyrolysed Samples 

 

The pyrolysed PVBO samples were placed in an alumina crucible (8mm length) and heated 

at 1200-1500 °C for 1, 5 or 10 hours in an ‘Elite Tube Furnace’ (TSH16/2J/180) with a flowing 

argon atmosphere  at a flow rate of 4 LPM and a heating rate of 10 °C min-1. The parameter 

of 1300 °C for 5 hours was chosen based on previous literature1 to increase the validity of 
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their results. The time and temperature was varied to show the effect that these 

parameters had on the final boron carbide structure. 

 

2.3. Materials Characterisation 

2.3.1 Thermogravimetric Analysis (TGA) 

 

The PVBO powders were analysed using a ‘Netzsch Sta 449 C Cell’ thermogravimetic 

analyser to measure the weight change of a sample as a function of temperature. The 

heating range was 50 - 800 °C with a flowing argon atmosphere and a heating rate of 10 °C 

min-1
. TGA analysis was used to help determine the pyrolysis temperature.  

 

2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)  

 

FTIR analysis was used in this study to identify the sample obtained by mixing PVA with 

H3BO3 via a condensation reaction. FTIR shows the infrared absorption spectrum which can 

be used to determine the chemical bonds in the composition. Powder samples are prepared 

through milling with potassium bromide (KBr) to form a very fine powder. The KBr was first 

dried in a box furnace at 100 °C. Approximately 2 % of the PVBO precursor was mixed with 

the KBr and ground into very fine powder using a pestle and mortar. This powder was then 

compressed in a hydraulic press to create a thin pellet which was analysed in a ‘Nicolet 

8700’ FTIR. 
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2.3.3. X-Ray Diffraction (XRD) 

 

The structure of the pyrolysed samples and heat treated samples were characterised using a 

powder x-ray diffractometer. The pyrolysed samples were scanned at a 2ɵ angle range of 0 

– 80° with a scan rate of 0.044 °/s and the heat treated samples were scanned at a 2ɵ angle 

range of 20 - 80° with a scan rate of 0.33 °/s using CuKɑ radiation by a ‘Bruker D8 Advance’ 

X-Ray diffractometer. The XRD patterns were used to determine the crystal structure of B4C 

and phase idenitifcation. 

 

2.3.4. Scanning Electron Microscope 

 

The morphology of the samples were studied using scanning electron microscopy with a 

‘Joel 6060’ microscope. The images were taken using SEI. 

 

2.3.5. Raman Spectroscopy 

 

Raman spectra of boron carbides were characterised using a ‘Renishaw inVia’ Raman 

microscope by a series of Raman bands extending from 50 to 2000 cm-1 with 20 

accumulations at a 10 % laser power. This was used to identify the amount of free carbon in 

the boron carbide powder as a function of processing conditions. 
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3. Results and Discussion 

3.1. Polyvinyolborate (PVBO) 

3.1.1. Fourier Transform Infrared Spectroscopy (FTIR) 

 

The product produced by mixing PVA and H3BO3 via a condensation reaction was analysed 

using FTIR. The results were compared to FTIR spectra of PVA and H3BO3.By comparing the 

absorption peaks of each material which corresponds to the frequencies of vibrations 

between the bonds of the atoms, it is possible to identify if polyvinylborate (PVBO) is 

synthesised.  

 

 

Figure 9. FTIR spectra of (a) Boric acid (H3BO3) and (b) Poly(vinylalcohol) (PVA)1 
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Figure 10. FTIR spectra of the Poly(vinylborate) (PVBO)(2.47 g PVA, 0.795 g H3BO3). The two 

lines show two different spectrums of the same sample to show the repeatability of the 

results. 

 

Wavenumber (cm-1) Assignment 

3361 Stretching O-H 

1287 Stretching B-O-C 

1198 Deformation B-OH 

 

Table 5. Main FTIR absorption of polyvinylborate (PVBO).  

 

Figure 9 shows FTIR spectra of the starting materials, PVA and H3BO3 
1. Figure 10 shows the 

FTIR spectra of poly(vinylborate) (PVBO); a precursor processed by mixing 2.47 g PVA and 

0.795 g Boric Acid (3.1:1 PVA:H3BO3 weight ratio) in a condensation reaction. When 
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comparing the results it demonstrates that PVBO was successfully formed. The main 

absorption bands and their assignments are displayed in Table 5. Figure 10 shows a broad 

absorption at 3361.76 cm-1 (line 1) and 3362.38 cm-1 (line 2). This is corresponded to the 

stretching band of O-H. However, this is less than that of PVA shown in Figure 9. This 

suggests that the consumption of the O-H group occurred by a reaction between alcohols 

and carboxylic acids to make an ester. Absorption observed at 1287.2 and 1286.44 cm-1 (Fig 

9.) was attributed to stretching bands of B-O-C bonds, which confirm the occurrence of PVA 

chain cross-linking with H3BO3. Finally, the absorption band at 1198 cm-1 in H3BO3 spectrum 

(Fig. 9) is assigned to the deformation of B-OH which has disappeared in PVBO (Fig. 10). This 

confirms that a reaction has taken place and therefore caused the structure to change. The 

FTIR results show that borate ester (PVBO) was successfully formed when mixing PVA and 

Boric acid in a condensation reaction.  

 

3.1.2. Thermogravimetric Analysis (TGA) 

 

Following results showing polyvinylborate (PVBO) synthesis, the thermal behaviour was 

investigated via thermogravimetic analysis (TGA) to determine a suitable low-temperature 

for pyrolysis. The polymer was heated from 50 – 800 °C with a heating rate of 10 °C min-1 in 

a flowing argon atmosphere.  
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Figure 11. TG curve of PVA (98% Hydrolysed) at 10 °C/min (Ar flow) 

 

Figure 11 shows the weight % as a function of temperature of the starting material, PVA. A 

first weight loss of PVA happened between 150 – 220 °C, followed by a dramatic second 

weight loss at 250 – 300 °C and a third weight loss at 400 – 500 °C. This left a residue of 10 

wt% and a total weight loss of 86.6 wt%. The first weight loss is attributed to the elimination 

of polymer side groups and volatile products, such as water. Dehydration and elimination of 

side groups occurs due to the polymer melting. With the molten polymer, the mobility of 

the chains increases and hydrogen transfer occurs leading to depropagation and formation 

of alkyne end-groups31.  The second weight loss is due to the partial breakdown of the 

polymer backbone because of an increase in temperature. The third weight loss is a result of 
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the remaining polymer backbone elimination. This is consistent with previous studies by 

Weimer et al. (1992)31and Campbell et al. (2008)32. 

 

Figure 12 shows the thermal behaviour of PVBO with a weight ratio of 3.1 g PVA and 1 g 

H3BO3. This weight ratio was used based on the previous research by Yanase1. The TGA 

parameters used for PVA were repeated. The results show a first weight loss between 120 – 

320 °C, a second weight loss between 340 – 390 °C and a third weight loss between 400 – 

500 °C. This left a residue of 2 wt% with a total weight loss of 88.26 %. 

 

 

Figure 12. TG curve of PVBO polymer with a composition of 3.1 g PVA and 1 g H3BO3 at 10 

°C/min (Ar flow) 
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Figure 13 shows the thermal behaviour of PVBO with a weight ratio of 3.7 g PVA and 1 g 

H3BO3. A first weight loss takes place between 120 – 300 °C, a second weight loss between 

320 – 395 °C and a third weight loss between 400 – 500 °C. This left a residue of 20 wt% and 

a total weight loss of 76.85 %. The results were consistent with PVA with the elimination of 

side-groups at lower temperatures, followed by breakdown of the polymer backbone at 

higher temperatures. 

 

 

Figure 13. TG curve of PVBO polymer with a composition of 3.7 g PVA and 1 g H3BO3 at 10 

°C/min (Ar flow) 
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Figure 14 shows a comparison of the thermal behaviours of PVA, PVBO with a composition 

of 3.1 g PVA and 1 g H3BO3 and PVBO with a composition of 3.7 g PVA and 1 g H3BO3.  

 

 

Figure 14. TG curves comparing PVA with PVBO (3.1 g PVA : 1 g H3BO3) and PVBO (3.7 g PVA 

: 1 g H3BO3)  at 10 °C/min (Ar flow) 

 

The results show that decomposition temperature of the PVBO sample was higher than that 

of pure PVA. This shows that PVBO has a better thermal stability than PVA. This 

improvement is due to the formation of B-O-C bonds during the condensation reaction. B-O-

C bonds have a better thermal resistance than the C-O bonds of PVA. This is also confirmed 

by the FTIR measurement (Fig. 9 and 10). The residual substances remaining after heating 
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PVBO above 500 °C show carbonization was induced. Previous studies1,6, 32 have shown that 

carbonization of PVA occurs and boric acid converts into B2O3 during pyrolysis. The results 

show that pyrolysis should take place at temperatures above 500 °C. This will result in a 

precursor consisting of carbon and boron oxide, which are the elements needed to produce 

boron carbide. The results also show that by increasing the proportion of PVA in the PVBO 

precursor causes an increase in residual substance after pyrolysis. This may be because an 

increase in the proportion of PVA will result in an increase in carbon. It is important to 

investigate different ratios and other parameters, such as temperature and time to find the 

optimum pyrolysis conditions that can then be heat treated to produce boron carbide with a 

stoichometry of B4C and a small amount of free carbon. 

 

3.1.3. XRD analysis of PVBO precursor 

 

Figure 15 shows an XRD pattern of PVBO (3.7 g PVA : 1 g H3BO3) before pyrolysis. The hump 

indicates an amorphous polymer with crosslinking chains33. 
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Figure 15.  XRD pattern of PVBO (3.7 g PVA : 1 g H3BO3) 

 

3.2. Pyrolysis 

3.2.1. PVBO Compositions 

 

Different compositions of PVBO were synthesised at temperatures 500, 600 and 700 °C for 2 

hours. The temperature range is based on the TG results and previous literature1. The 

holding time of 2 hours is also based on previous research1, however various holding times 

for pyrolysis will be investigated in this study. The PVBO compositions were synthesised 

from different weight ratios of PVA and H3BO3. These weight ratios are shown in Table 5. 

 

 

PVBO (3.7 g PVA : 1 g H3BO3) 

2ө (degrees) 

Intensity 
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Table 5. Weight ratios (PVA and H3BO3) of PVBO precursors for pyrolysis. 

 

3.2.2. Carbon to Boron Oxide (C/B2O3) ratio 

 

The pyrolysis of PVBO led to the formation of a precursor consisting of carbon and boron 

oxide which are the elements required for the synthesis of boron carbide. Production of B4C 

is achieved via a carbothermal reduction process. This can be presented as the following: 

 

2B2O3 + 7C = B4C + 6CO1 

 

Polyvinyl(alcohol) (PVA) (g) Boric Acid (H3BO3) (g) PVA : H3BO3 

2 2 1 : 1 

3 1 3 : 1 

2.47 0.795 3.1 : 1 

3.3 1 3.3 : 1 

3.5 1 3.5 : 1 

3.7 1 3.7 : 1 

4 1 4 : 1 
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The reaction shows that the optimum carbon to boron oxide (C/B2O3) molar ratio is 3.5. 

Therefore it is essential to obtain a C/B2O3 ratio as close to 3.5 as possible in order to 

produce boron carbide after further heat treatment with a stoichometry of B4C and with 

small amounts of free carbon. The C/B2O3 molar ratios of the various PVBO compositions 

after pyrolysis at 500, 600 or 700 °C for 2 hours in a flowing Ar atmosphere were calculated. 

The results are shown in Table 6 and Figure 16. 

 

 

C/B2O3 

PVA : H3BO3  

Pyrolysis Temperature ( °C ) 

500 600 700 

1 : 1 0.183 0.175 0.652 

2 : 1 1.029 1.368 1.907 

3 : 1 1.245 2.281 2.56 

3.1 : 1 1.372 2.382 2.546 

3.3 : 1 1.47 2.47 2.785 

3.5 : 1 1.551 3.23 3.16 

3.7 : 1 1.572 3.42 4.11 

4 : 1 1.968 4.6 5.473 

 

Table 6. C/B2O3 molar ratios of different ratios of PVA and H3BO3 after heating at 500, 600 or 

700 °C for 2 hours in a flowing Ar atmosphere. Figures highlighted in red represent the best 

C/B2O3 ratio. 
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Figure 16. C/B2O3 molar ratio of different compositions of PVBO when pyrolysed at 500, 600 

and 700 °C for 2 hours in a flowing Ar atmosphere. The dotted line indicates the optimum 

stoichiometric C/B2O3 molar ratio of 3.5. 

 

Table 6 and Figure 16 shows that the C/B2O3 molar ratio closest to 3.5 is PVBO synthesised 

from a weight ratio of 3.7 g PVA and 1 g H3BO3 when pyrolysed at 600 °C for 2 hours. This 

gave an average value of 3.42. The results also show that PVBO synthesised from 3.5 g PVA 

and 1 g H3BO3 resulted in a C/B2O3 molar ratio of 3.23 when pyrolysed at 600 °C and a ratio 

of 3.16 when pyrolysed at 700 °C. These PVBO precursors are predicted to synthesise boron 

carbide with a stoichometry of B4C and a low amount of free carbon because they are close 

to the optimum ratio of 3.5. 

3.5 
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Figure 16 shows there is a general trend of an increase in C/B2O3 ratio when there in an 

increase in PVA. This is because an increase in PVA will result in a greater proportion of 

carbon in the PVBO precursor due to PVA carbonisation during pyrolysis. This therefore 

causes an increase in the C/B2O3 ratio. 

 

The results also show that pyrolysis at 500 °C led to a low C/B2O3 ratio even with an 

increased PVA content. This may be because the polymer chains have not completely 

broken down at 500 °C, therefore complete carbonisation of PVA may not have occurred. 

This results in low carbon content and therefore a low C/B2O3 ratio. The increase in C/B2O3 

molar ratio has resulted from an increase in temperature. It can be concluded that 

increasing the pyrolysis temperature promotes breakdown of the polymer chain and 

therefore an increases the carbonisation of PVA.1  

 

3.2.3. XRD analysis of pyrolysed PVBO precursors 

 

Figure 17 shows XRD patterns of the PVBO precursors with different PVA and boric acid 

content when heated at 500, 600 and 700 °C for 2 hours under Ar flow.  
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A - PVBO (2 g PVA : 1 g H3BO3) 

2ө (degrees) 

Intensity 

B - PVBO (3.1 g PVA : 1 g H3BO3) 

2ө  (degrees) 

Intensity 
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C - PVBO (3.3 g PVA : 1 g H3BO3) 

2ө (degrees) 

Intensity 

D - PVBO (3.5 g PVA : 1 g H3BO3) 

2ө (degrees) 
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Figure 17. XRD patterns of PVBO precursors produced from various weight ratios of PVA and 

boric acid after pyrolysis at temperatures 500, 600 and 700 °C for 2 hours under Ar flow. 

 

In figure 17A, the peaks occur at angles 15, 18 and 40 degrees. These peaks correspond to 

the formation of B2O3. These peaks also occur in Figure 17B, 17C and 17D. In figure 17E 

there are no crystalline peaks and therefore the polymer is still amorphous. 

 

The XRD patterns show that when PVBO is pyrolysed under the right conditions it results in 

crystalline boron oxide (B2O3). When the pyrolysed PVBO precursor is heat treated at 

elevated temperatures, as shown in Figure 20, it produces carbon containing phase, such as 

B4C and free carbon. Therefore it can be concluded that the precursors contain amorphous 

carbon as it does not appear in the XRD pattern (Fig. 17) in addition to B2O3. The results 

E - PVBO (3.7 g PVA : 1 g H3BO3) 

2ө (degrees) 

Intensity 
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show that by pyrolysing PVBO it results in the formation of boron oxide and carbon which 

are required to produce boron carbide. 

 

XRD patterns A, B, C and D in Figure 17 all show that the intensity of B2O3 peaks is highest 

when pyrolysed at 600 °C compared to 500 and 700 °C. Therefore the temperature 600 °C 

was selected as the optimum temperature for the pyrolysis process. 

 

The XRD patterns show that different PVBO compositions results in the same boron oxide 

phases. However, an increase in PVA results in a decrease in the intensity of the boron oxide 

peaks. This is because a lower amount of PVA will result in a lower amount of carbon after 

pyrolysis and therefore there will be a higher proportion of B2O3. This supports this study’s 

C/B2O3 molar ratio results that show an increase in PVA results in an increase in carbon to 

boron oxide 

 

Figure 17E shows that when the PVA content is too high compared to boron oxide content, 

the precursor remains amorphous after pyrolysis at 500, 600 and 700 °C for 2 hours. This is 

because the polymer chains of the PVBO precursor have not completely broken down even 

at the elevated temperature of 700 °C. This is due to the increase proportion of PVA. When 

comparing this to the XRD pattern of PVBO before pyrolysis (Fig. 15) the hump has 

broadened. This broadening is assigned to the formation of a graphitic carbon phase33 and 

therefore shows that carbonisation of the polymer has begun. Despite the PVBO precursor 
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remaining amorphous, the C/B2O3 ratio still remains high due to the increased amount of 

PVA and therefore an increased amount of carbon. 

 

3.2.4. XRD analysis of leached PVBO after pyrolysis 

 

Figure 18 shows an XRD pattern of a PVBO precursor after it has been stirred in hot water. 

The XRD pattern shows the disappearance of boron oxide peaks. It can therefore be 

concluded that the boron oxide has been leached out during this process. This provides 

support that the method of calculating the C/B2O3 molar ratios was accurate (Appendix 1).  

 

Figure 18. XRD pattern of PVBO (2 g PVA : 1 g H3BO3) that has been pyrolsyed at 600 °C for 2 

hours in Ar flow after being placed in hot water (80 °C) and continuously stirred for 5 

minutes. 

PVBO (2 g PVA : 1 g H3BO3) 

2ө (degrees) 

Intensity 
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3.2.5. Dwell time during pyrolysis 

 

The holding time during pyrolysis of PVBO were also investigated in this study. Figure 19 

compared XRD patterns of a PVBO precursor synthesised from 3.5 g PVA and 3.5 g H3BO3 

after pyrolysis at 600 °C for 1 and 2 hours. 

 

 

Figure 19. XRD pattern of PVBO (3.5 g PVA : 1 g H3BO3) pyrolsyed at 600 °C  for 1 and 2 

hours in a flowing Ar atmosphere. 

 

2ө (degrees) 

Intensity 
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Figure 19 shows that pyrolysing PVBO for 1 hour results in an amorphous precursor. This is 

because complete reaction has not taken place and there are still polymer chains present. 

The peaks shown following pyrolysis for 2 hours occurs at angles 15, 28, 29 degrees. These 

peaks correspond to the formation of B4C. These results show that a 2 hour hold time is 

required. 

 

3.2.6. Optimum pyrolysis parameters 

 

Analysis of the C/B2O3 molar ratios and the XRD patterns of the pyrolysed PVBO precursors 

show that the optimum temperature is 600 °C and the optimum holding time is 2 hours. 

These results support the study by Yanase et al.1 who found that B4C with small amount of 

free carbon was achieved by pyrolysing a composition of 2.47 g PVA and 0.795 g H3BO3 

(3.1:1) at 600 °C for 2 hours followed by heat treatment at 1300 °C for 5 hours.  Therefore 

these pyrolysis conditions will be used before heat treating the different PVBO compositions 

to elevated temperatures to see if boron carbide is produced. The results however show 

different C/B2O3 ratio results than Yanase et al.1. They found that 2.47 g PVA and 0.795 g 

H3BO3 when heated at 600 °C resulted in a C/B2O3 ratio of 3.3. This study found that this 

gave a C/B2O3 ratio of 2.4. The ratio closest to 3.5 in this study was 3.4 which was achieved 

from 3.7 g PVA and 1 g H3BO3. A possible reason for the discrepancy between this study and 

Yanase et al.1 could be due to a different molecular weight being used for the starting 

materials. Therefore it is important to investigate different PVBO compositions. 
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3.3. Heat Treatment 

3.3.1. XRD analysis of heat treated samples with different PVBO 

compositions 

 

The results so far have shown that by mixing PVA and H3BO3 in a condensation reaction and 

pyrolysing this sample under the right conditions has resulted in a powder precursor 

consisting of carbon and boron oxide. Previous studies1, 6, 18, 31, 34 have shown that these 

elements can then be heat treated to achieve boron carbide via a carbothermal reduction 

method. The aim is to achieve a boron carbide powder with a stoichometry of B4C and a low 

amount of free carbon using low temperatures. This has been achieved by Yanase et al.1 but 

without any supporting evidence or repeated results. This study aims to support and 

improve these findings by investigating different parameters including; different PVA and 

H3BO3 ratios, different temperatures and different holding times. 

 

Using the optimum pyrolysis conditions, different compositions of PVA and H3BO3 were then 

heat treated at 1300 and 1400 °C for 5 hours. The powders were analysed using XRD and 

the results are shown below. 

 

Figure 20 shows a PVBO precursor of 2 g PVA and 1 g H3BO3 heated to 1300 and 1400 °C for 

5 hours. 
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Figure 20. XRD patterns of PVBO with composition of 2 g PVA and 1 g H3BO3, pyrolysed at 

600 °C for 2 hours and heat treated at 1300 °C (Fig. 20A) and 1400 °C (Fig. 20B) for 5 hours 

under Ar flow. 
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Figure 20A shows that no reaction has taken place when there is a low amount of PVA (2g) 

at 1300 °C. The XRD pattern shows there are still only boron oxide peaks. However, when 

this composition is heated to 1400 °C, as shown in figure 20B, some boron carbide begins to 

form. The XRD pattern shows that some boron carbide was produced with a stoichometry of 

B13C and B4C in the sample. The B13C is a result of a low C/B2O3 ratio, meaning there will be a 

high proportion of boron oxide in the sample resulting in a boron rich boron carbide. The 

pattern also shows boron oxide is still present which means complete reaction has not 

occurred. By comparing the two XRD patterns it shows that an increase in temperature 

promoted the reaction and resulted in the formation of boron carbide even at a very low 

C/B2O3 ratio. 

 

Figure 21 shows a PVBO precursor of 3.1 g PVA and 1 g H3BO3 heated to 1300 and 1400 °C 

for 5 hours. 
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Figure 21. XRD patterns of PVBO with composition of 3.1 g PVA and 1 g H3BO3, pyrolysed at 

600 °C for 2 hours and heat treated at 1300 °C (Fig. 21A) and 1400 °C (Fig. 21B) for 5 hours 

under Ar flow. 
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Figure 21A shows the XRD pattern for a PVBO composition of 3.1 g PVA and 1 g H3BO3 when 

heated at 1300 °C for 5 hours. These conditions replicate the study by Yanase et al.1 who 

found that it resulted in the formation of B4C with a low amount of free carbon. The results 

shown in figure 20B are very different to the findings of Yanase et al.1. This was expected 

due to the different C/B2O3 molar ratio. This study found that some reaction had taken place 

at 1300 °C when there is an increased proportion of PVA, however it resulted in the 

formation of boron carbon (B25C). This is due to the low C/B2O3 ratio and therefore the high 

proportion of boron oxide. There was however still a large proportion of boron oxide in the 

sample. When the composition is heated to 1400 °C (Fig. 21B) it resulted in boron carbide 

(B4C), carbon and a small amount of boron oxide. There is no indication of B25C present in 

the powder sample. The results show that increasing the proportion of PVA results in some 

reaction taking place at 1300 °C. When there is an increase in temperature there is an 

increase in the reaction but also a decrease in the amount of boron in the reacted boron 

carbide. This shows that increasing the temperature causes a greater loss of boron through 

vaporisation during the heat treatment process. 

 

Figure 22 shows a PVBO precursor of 3.3 g PVA and 1 g H3BO3 heated to 1300 and 1400 °C 

for 5 hours. 
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Figure 22. XRD patterns of PVBO with composition of 3.3 g PVA and 1 g H3BO3, pyrolysed at 

600 °C for 2 hours and heat treated at 1300 °C (Fig. 22A) and 1400 °C (Fig. 22B) for 5 hours 

under Ar flow. 
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Figure 22A shows the XRD pattern of 3.3 g PVA and 1 g H3BO3 when heated to 1300 °C. The 

pattern shows the presence of boron carbide in the formation of B13C and B4C, high amount 

of free carbon and small proportion of unreacted B2O3. When comparing this to figure 20A 

and 21A it further illustrates that an increase in PVA content results in an increase in 

reaction taking place. This is the first indication of B4C forming under the lower temperature 

of 1300 °C. The patterns show that by obtaining a C/B2O3 ratio closer to the optimum ratio 

of 3.5 results in B4C forming at lower temperatures.  

 

When the temperature is increased to 1400 °C (Fig. 22B), boron carbide is synthesised only 

in the formation of B4C. There is also a reduction in the amount of free carbon and a 

reduction in the proportion of boron oxide. This again shows the increase in temperature 

helps promote the reaction and increases the amount of boron lost through vaporisation. 

When comparing figure 22B with 21B it shows that by increasing C/B2O3 ratio results in a 

decrease in the amount of free carbon. 

 

Figure 23 shows a PVBO precursor of 3.5 g PVA and 1 g H3BO3 heated to 1300 and 1400 °C 

for 5 hours. 
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Figure 23. XRD patterns of PVBO with composition of 3.5 g PVA and 1 g H3BO3, pyrolysed at 

600 °C for 2 hours and heat treated at 1300 °C (Fig. 23A) and 1400 °C (Fig. 23B) for 5 hours 

under Ar flow. 
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Figure 23A shows a similar XRD pattern to figure 22A. The small increase in the amount of 

PVA in the PVBO composition (3.5 g PVA : 1 g H3BO3) results in boron carbide (B4C, B13C), 

small amount of unreacted B2O3  and a decrease in free carbon when compared to figure 

22A. When the temperature is increased to 1400 °C (Fig. 23B) it forms only B4C and free 

carbon. This is the first time complete reaction has taken place. Therefore by increasing the 

C/B2O3 ratio and temperature helps facilitate a complete reaction. 

 

Figure 24 shows a PVBO precursor of 3.7 g PVA and 1 g H3BO3 heated to 1300 and 1400 °C 

for 5 hours. 
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Figure 24. XRD patterns of PVBO with composition of 3.7 g PVA and 1 g H3BO3, pyrolysed at 

600 °C for 2 hours and heat treated at 1300 °C (Fig. 24A) and 1400 °C (Fig. 24B) for 5 hours 

under Ar flow 

Figure 24A and figure 24B show a PVBO composition of 3.7 g PVA and 1 g H3BO3 after heat 

treatment at 1300 and 1400 °C respectively. Figure 24A  shows a complete reaction has 

taken place and synthesised B4C and free carbon at a lower temperature of 1300 °C. Figure 

24B also shows a similar XRD pattern with B4C but with a lower amount of free carbon. 

 

To summarise, the results found by heating various PVBO compositions that have been 

pyrolysed at 600 °C for 2 hours and heat treated at 1300 and 1400 °C for 5 hours under Ar 

flow are as follows: 

 3.5 g PVA and 1 g H3BO3 at 1400 °C and 3.7 g PVA and 1 g H3BO3 at 1300 and 1400 °C 

resulted in complete reaction taking place and producing boron carbide with a B4C 
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formation and free carbon. 3.7 g PVA and 1 g H3BO3 at 1400 °C for 5 hours resulted 

in the lowest amount of free carbon. 

 An increase in temperature promotes reaction and therefore decreases the 

unreacted raw materials. 

 An increase in temperature causes an increase in the loss of boron through 

vaporisation. Therefore by increasing the temperature, PVBO with low C/B2O3 molar 

ratio, still produces B4C. 

 An increase in C/B2O3 ratio nearer to the value of 3.5 results in B4C forming at lower 

temperatures and a reduction of the amount of free carbon. 

 

Following the results of different PVBO compositions, it is important to investigate other 

variables including heating temperature, holding time and pyrolysis temperature. As the 

PVBO composition of 3.7 g PVA and 1 g H3BO3 produced the best results when heated at 

1400 °C for 5 hours, this condition was used for further investigation. 

 

4.3.2. XRD analysis of heat treated samples after different pyrolysis 

temperatures 

 

 

It is important to investigate the dwelling time of the heat treatment process and the effects 

it has on the production of B4C and free carbon. 
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Figure 25 shows a comparison of PVBO precursors (3.7 g PVA and 1 g H3BO3) that have been 

pyrolysed at 500, 600 and 700 °C for 2 hours, followed by heat treatment at 1400 °C for 5 

hours.  

 

 

Figure 25. Comparative XRD patterns of PVBO (3.7 g PVA : 1 g H3BO3)  pyrolysed at 500, 600 

and 700 °C for 2 hours under Ar flow followed by heat treatment at 1400 °C for 5 hours 

under Ar flow. 

 

Figure 25 shows the precursor pyrolysed at 500 °C exhibits B4C and C peaks but also B2O3 

peaks. This B2O3 is not present in the precursor pyrolysed at 600 °C. It can therefore be 

concluded that pyrolysis at 500 °C and heat treatment does not result in complete reaction 

taking place. This may be because complete breakdown of the polymer chains did not occur 
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at 500 °C. When the sample is pyrolysed at 700 °C and heat treated it remains amorphous. 

This may be due to a high amount of boron being lost during pyrolysis because of the high 

temperature. This will result in a high proportion of amorphous carbon and therefore no 

reaction has occurred and boron carbide is not produced. The results show that the 

optimum pyrolysis temperature is 600 °C.  

 

4.3.3. XRD analysis of different heat treatment temperatures 
 

 

Figure 26 compares samples that have been heat treated at 1200, 1300, 1400 and 1500 °C 

for 5 hours under Ar flow. 
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Figure 26. Comparative XRD patterns of PVBO (3.7 g PVA : 1 g H3BO3)  pyrolysed at 600 for  2 

hours followed by heat treatment at 1200, 1300, 1400 and 1500 °C for 5 hours under Ar 

flow. 

 

 The results show that at 1200 °C no reaction has taken place. The XRD pattern is the same 

as the XRD pattern of the pyrolysed precursor. At 1300 °C complete reaction has occurred 

and resulted in B4C and carbon peaks. A similar pattern is shown when the sample is heated 

at 1400 °C, however there is a decrease in the amount of free carbon. This shows that 

increasing the temperature promotes reaction and results in a reduction in residual carbon. 

However if the temperature is increased too much it can cause oxidation to occur. This is 

shown by the XRD pattern of the sample after heat treatment at 1500 °C. The pattern 

exhibits B4C, carbon and B2O3 peaks. This may be because the increase in temperature has 
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promoted reaction and resulted in no remaining carbon to react with boron to produce 

boron carbide and therefore leaving boron oxide. If a higher temperature was used there 

would need to be an increase in PVA and therefore subsequently an increase in carbon. The 

aim of the study is to use low temperature synthesis to save on cost, therefore the results 

show that the optimum heat treatment temperature for this composition is 1400 °C. 

 

3.3.4. XRD analysis of different heat treatment dwell times 
 

 

Figure 27 compares PVBO precursors that have been heated to 1400 °C for 1, 5 and 10 

hours.  

 

Figure 27. Comparative XRD patterns of PVBO (3.7 g PVA : 1 g H3BO3) pyrolysed at 600 °C for 

2 hours followed by heat treatment at 1400 °C for 1, 5 and 10 hours. 
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The XRD pattern shows that after 1 hour no reaction has taken place. After 5 hours 

complete reaction has taken place. This shows that for boron carbide to form it requires 

heating for several hours to give enough time for the boron oxide to react with carbon. The 

XRD pattern shows that heating for 10 hours results in B4C, an increased amount of free 

carbon and boron oxide begins to form. The increase in free carbon may be due to 

oxidisation occurring. The XRD pattern shows boron oxide peaks which results in remaining 

carbon and therefore an increased amount of residual carbon.  

 

3.3.5. Optimum heat treatment parameters 

 

The XRD results show that the optimum conditions for producing boron carbide powder 

with a stoichiometry of B4C and a low amount of residual carbon was produced by mixing 

3.7 g PVA with 1 g H3BO3 in a condensation reaction, pyrolysing the samples at 600 °C for 2 

hours and heat treating at 1400 °C for 5 hours. 

 

3.4. Microstructural Analysis 

 

The powder produced using the optimum process conditions was analysed using Scanning 

Electron Microscopy. The micrographs are shown in figure 28 and 29. 
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Figure 28. Micrographs (A and B) of boron carbide powder  synthesised from 3.7 g PVA, 1 g 

H3BO3, pyrolysed at 600 °C for 2 hours and heat treated at 1400 °C for 5 hours. 

 

A 

B 
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Figure 28 provides support that boron carbide was produced. The micrographs show many 

equiaxial B4C particles. 

 

  

Figure 29. Micrographs of boron carbide powder  synthesised from 3.7 g PVA, 1 g H3BO3, 

pyrolysed at 600 °C for 2 hours and heat treated at 1400 °C for 5 hours. 

 

Figure 29 again shows B4C icosahedral particles. There is also evidence of a rod shaped 

particle, which are commonly produced during carbothermic reduction B2O3
36

 

 

 

 

 

Equiaxial B4C particle 

Rod-shaped particle 
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3.5. Raman Spectroscopy 

 

Raman spectroscopy was carried out on the boron carbide processed by the optimum 

conditions to observe the amount of free carbon. A typical experimental Raman spectrum of 

residual carbon is shown in Figure 30. 

 

 

Figure 30. A typical Raman spectrum of carbon showing characteristics D and G bands37 

 

In Figure 30, the D band (1300 – 1360 cm-1) is observed in carbons containing vacancies, 

impurities or other symmetry-breaking defects. The G band (1589 cm-1) derives from the in-

plane stretching vibration of the double C=C bonds38.  
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The B4C powder synthesised using the optimum processing conditions found in this study 

were examined using Raman spectroscopy. The results are shown in figure 31. 

 

 

Figure 31. Raman spectrum of B4C synthesised from 3.7 g PVA, 1 g H3BO3, pryolysed at      

600 °C for 2 hours and heat treated at 1400 °C for 5 hours. 

 

Figure 31 shows intensity peaks at 1350 cm-1 and 11589 cm-1. This shows the presence of 

free carbon in the boron carbide powder. This supports the findings found in the XRD 

analysis. 
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4. Conclusion 

 

Due to the slow and non-uniform heating, chemical impurities and subsequent processing 

complications of commercially produced boron carbide, this study investigated the 

production of B4C from a polymer precursor at low temperatures. The aim of the study was 

to produce a low cost boron carbide powder with a stoichometry of B4C and a small amount 

of free carbon. This was achieved through mixing polyvinylalcohol (PVA) with boric acid 

(H3BO3), which was subsequently pyrolysed and then heat treated. Several parameters were 

investigated, including: 

 PVA and H3BO3 composition 

 Pyrolysis temperature 

 Pyrolysis dwell time 

 Heat treatment temperature 

 Heat treatment dwell time 

 

The following conclusions can be drawn from the results and discussion section: 

 

 

 

 



 80 

 

4.1. Optimum conditions 
 

 

 The optimum conditions for the synthesis of B4C with low amount of free carbon was 

achieved by the following: 

o 3.7 g PVA and 1 g H3BO3 was mixed together in a dehydration condensation 

reaction to form polyvinylborate (PVBO). 

o The PVBO was pyrolysed at 600 ºC for 2 hours at a heating rate of 10 ºC min-1 

under Ar flow. This resulted in the elements boron oxide and carbon. 

o The pyrolysed sample was heated at 1400 ºC for 5 hours at a heating rate of 

10 ºC min-1 under Ar flow. 

o The resulting product was B4C powder with a relatively low amount of free 

carbon. 

 

4.2. Pyrolysis  
 

 

 During pyrolysis the PVBO breaks down in three stages: 

o Stage 1 – Elimination of polymer side groups and volatile products. 

o Stage 2 – Partial breakdown o f polymer backbone. 

o Stage 3 – Remaining polymer backbone breakdown. 
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 Pyrolysis should take place at temperatures above 500 ºC and with a minimum dwell 

time of 2 hours. This will result in a precursor consisting of carbon and boron oxide. 

 Increasing the temperature promotes breakdown of the polymer chain. 

 A long enough dwell time is required for complete breakdown to occur.  

 

4.3. Heat Treatment 

 

 Increasing the temperature promotes reaction. 

 A C/B2O3 molar ratio near to 3.5 is required to achieve complete reaction and result 

in B4C. 

 A minimum temperature of 1300 ºC and a minimum dwell time of 5 hours were 

required for complete reaction to occur. 

 

The study shows it is possible to produce boron carbide powder from a polymeric precursor. 

The advantages of this method Is the low temperature operation and low material costs. It 

also results in B4C powder and therefore does not require subsequent grinding operations. 

However, a major drawback of this approach was that although residual carbon was 

minimised it was not removed. Further investigation of this method is required before it can 

be considered as a possible replacement to the commercially produced boron carbide. 
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5. Recommendations for Further Work 

 

5.1 Use of alternative polymeric precursors 

 

Several different polymer precursors have been investigated as a carbon source for the 

synthesis of boron carbide. However, it is a relatively new area of research with very few 

studies conducted. Therefore, further investigation of alternative polymers (e.g. citric acid, 

glucose, glycerine) could be conducted to validate existing results and to increase these 

findings by exploring different variables.  

 

5.2. Removal of residual carbon 

 

A potential method to remove the remaining residual carbon in the final B4C product was 

shown by Takano et al.39 This study showed that carbon could be removed successfully by 

applying hydrogen. Therefore, potential further work of this study could be to heat treat the 

pyrolysed sample in a flowing hydrogen atmosphere rather than an argon atmosphere. 

 

5.3. Densification of powder 

 

In order to compare the B4C powder produced in this study with commercially produced 

B4C, the properties need to be compared. Therefore, the author suggests that the powder is 

densified by application of external pressure, for example, hot pressing or hot isostatic 

pressing with the possible addition of a sintering aid. The small amount of residual carbon 

could be seen as beneficial during densification because it acts as a sintering aid. It has been 
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shown that carbon can reduce the oxide layer of the boron carbide powder and therefore 

promote sintering and hinder grain growth36. Other sintering aids that could be investigated 

include carbide or boride additives. These have been found to increase the flexural strength 

and fracture toughness of B4C by grain refinement.36 

 

5.4. Pyrolysis and Heat treatment in a single operation 

 

 

The process used in this study could be improved by pyrolysing and heat treating the sample 

in a single operation. This will reduce a process step and therefore reduce the overall cost. 

The author suggests that an investigation is carried out to heat the PVBO sample to 600 ºC 

for 2 hours and then heat to 1400 ºC for 5 hours to see if the same results are achieved. 
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7. Appendix 

Appendix 1 

 
Equation to calculate C/B2O3 molar ratio: 
 
Number of moles = mass (g) / molar mass for each constituents. 

C / B2O3 = Ratio number of carbon moles / Number of B2O3 moles. 

 




