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Abstract 
 

This thesis empirically evaluates three key financial and macroeconomic issues: 

 

Essay 1 examines the effectiveness of China fuel oil futures in hedging a domestic 

spot fuel oil position as well as hedging a spot position in the Singapore fuel oil 

market. To the best of our knowledge, this is the first study of this kind. Dynamic 

Bi-variate GARCH and constant volatility models are estimated to derive the optimal 

hedging ratios and hedging effectiveness of China fuel oil futures. That effectiveness 

is assessed by several criteria, for both in- and out-of-sample periods.  

 

Essay 2 aims to investigate the relationship between the oil, gold and US stock 

markets. By employing a Tri-variate GARCH(1,1) model, this is the first study to 

explore how volatility is transmitted among those three markets. Additionally, this is 

the first study to compare Tri-variate GARCH and Bi-variate GARCH modelling 

strategies as vehicles for determining the volatility interrelations between these 

markets.  

 

Essay 3 explores the power of conventional macroeconomic factors to explain the 

currency fluctuations over recent years, including the 1997 crises, in six Asian 

countries. Two regimes Markov Switching TGARCH and constant volatility models 

are used to determine the causes of market pressures on exchange rates, and the 

probability of the timing of a currency attack. The Markov Switching models do not 

require an ex-ante definition of a threshold value to distinguish stable and volatile 

state like Logit models do, and they can capture the appreciating currency attacks as 

well as the depreciating ones. The Markov Switching models are also compared with 

Multinomial Logit models in their ability to detect crises.  
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Introduction 

 

With the development of complex financial markets, inter-related futures markets, 

massive cross border capital flows, globalisation and international integration, it is 

now widely agreed that financial and real assets’ return volatilities and correlations 

are time-varying, interrelated with each other and with persistent dynamics. This is 

true across assets, asset classes, time periods, and countries. Variation in market 

returns and other economy-wide risk factors is a main feature of asset and portfolio 

management and play a key role in asset evaluation, especially in derivatives and 

pricing models. Volatility becomes central to finance, whether in asset pricing, 

portfolio allocation, or market risk measurement. Considerable evidence indicates that 

financial market volatility is related to news (arrival of information). Hence 

econometricians have devoted considerable attention to analyse behaviour under 

uncertainty, based on an analytical framework with a central feature of modelling the 

second moments. One of the most prominent tools used to model the second moments 

is due to Engle (1982). Engle (1982) suggested that these unobservable second 

moments could be modelled by specifying functional form for the conditional 

variance and modelling the first and second moments jointly, giving what is called in 

the literature the Autoregressive Conditional Heteroskedasticicity (ARCH) model. 

This linear ARCH model was generalized by Bollerslev (1986) and extended in many 

other ways, thus called the GARCH type of models. These models have been applied 

extensively in the literature. However, given the growing complexity of asset markets, 
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and the changing structure of the transmission mechanism for shocks to the system, 

more research needs to be done in particular to test for market efficiency and mean 

reversion. 

 

This thesis consists of three different topics, discussing several major issues in the 

analyses of financial and commodity markets. Although the topics are different and 

disparate, they are united in the common methodological, institutional and globalised 

structure discussed above. All of these three studies endogenise market risk and set up 

model based on the GARCH framework to take the second moments (volatility) into 

consideration, so as to investigate the optimal hedging strategies of futures contract, to 

explore the volatility transmission between markets and to detect the timing of 

financial crises.  

 

 

1) The first study 

 

The prices of fuel and its derivatives have risen considerably in recent years, as has 

their trend. China is the largest consumer of fuel oil in Asia. Its fuel oil demand has 

increased dramatically concomitant with its rapid economic growth. On 25 August 

2004, China launched the fuel oil futures at the Shanghai Futures Exchanges (SHFE). 

Because hedging has widely been viewed as a major market activity and also the 

reason for the existence of futures markets, examining the effectiveness of China fuel 
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oil futures as a vehicle for hedging is of paramount importance. 

 

In Essay 1, in order to derive optimum hedge ratios and hedging strategies in the 

futures market, we estimate models that assume dynamic relationships in and between 

the volatilities of the returns in the two markets, as well as constancy in those 

volatilities. Considering the important role that Singapore fuel oil market plays in the 

pricing of China fuel oil futures, cross hedging of China fuel oil futures in the 

Singapore market is also examined for comparison. To the best of our knowledge, this 

is the first study to investigate the hedging strategies and hedge effectiveness of 

China’s fuel oil futures market.  

 

One critical thing in hedging is to derive the optimal hedge ratios. Three approaches 

are employed to derive the hedge ratios in our study, which are the minimum variance 

hedge ratio, the maximum expected utility hedge ratio and the minimum semivariance 

hedge ratio. Accordingly, the hedging effectiveness is evaluated, respectively, by the 

variance reduction criterion, expected utility maximisation criterion and the risk 

reduction criterion based on the semivariance.  

 

Empirical findings confirm the theoretical advantage of dynamic models over the 

constant models in the in-sample period, under all three criteria, for both domestic and 

cross hedging. However, in the out-of-sample period, the dynamic models lose their 

superiority, especially under the variance reduction criterion. One distinctive finding 
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of this study is the outstanding hedging performance of China fuel oil futures when 

using the semivariance risk reduction criterion, in both in- and out-of-sample periods. 

Although the China fuel oil futures generates somewhat disappointing hedging 

outcome when designed to reduce the total risk, it is an effective tool in reducing the 

downside risk, which would be more useful in practice, therefore, should investors 

only want to avoid the downside risk whilst maintaining the upside profit potential.  

 

 

2) The second study 

 

The increasing integration of major financial markets throughout the world has 

generated great interest in examining the transmission of financial market shocks 

across markets. A particular focus has been the conditional (or predictable) volatility 

spills over from one market to another. Essay 2 contributes to the existing literature 

by investigating the volatility spillovers between oil, gold and stock markets. Our 

research is the first of this kind to investigate the relations between these three 

markets. This research, for example, can provide information for risk assessment and 

forming optimal hedging strategies across markets and the volatilities derived in the 

study can be used as important inputs into macro-econometric models.     

 

Tri-variate GARCH models are employed to capture the interrelationships (which are 

shown to exist) between the second moments across the oil, gold and stock markets. 
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Such models allow the conditional variance of one market potentially to be dependent 

upon the past information from its own market, as well as from the other two markets. 

The conditional variance also depends upon the conditional covariance of each pair of 

the three markets. The Tri-variate GARCH estimates for the three markets are 

compared with the estimates from Bi-variate GARCH models for each pair of the 

markets to discover the “true” relationships across those markets. The data that we use 

in this study are for the world oil and gold markets and the US stock market, ranging 

from April 1999 to November 2007. Data are split into three sub-sample periods 

according to their relative volatility. Such division is warranted by the fact that the 

variance-covariance structure of the return series is dynamic, conditional on the past 

information in the markets.  

 

We find volatilities spill over from the oil market to the stock market, from the gold 

market to the stock market. The gold market is exogenous in terms of its second 

moment: its volatility affects both oil market and stock market, but is not affected by 

these two markets, confirming that gold is the “safe” investment when market is very 

volatile. The volatility spillovers between oil and stock market are bi-directional.  

 

We also discover that, by adding an additional market to the existing Bi-variate 

GARCH framework, the Tri-variate GARCH can reveal some otherwise unobserved 

breaks in, or break, some existing relationships between the markets. In forecasting 

the variance of a market or the covariance between any two markets, taking into 
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consideration of the third market can provide useful information.  

 

 

3) The third study 

 

The outbreak of the Asian financial crises in 1997-98 triggered a surge in both 

theoretical and empirical studies on the factors that contribute to the occurrence of a 

currency crisis. The first generation currency crisis models (e.g. Krugman 1979, 

Agenor et al., 1992 Flood and Garber, 1984) showed that fiscal and monetary policies 

inconsistent with the fixed exchange rate regime lead to a gradual loss in reserves and 

ultimately to a speculative attack against the currency. The second generation models 

(see, e.g. Obstfeld, 1996) emphasized the importance of market expectation. The 

economy can jump from a good, “no attack”, equilibrium to an “attack equilibrium” 

triggered by an unexpected shift in market expectation. Thus a crisis can arise mainly 

because the macroeconomic fundamentals are in the zone of vulnerability. Economies 

with strong fundamentals are impervious to changing market sentiments. Essay 3 

evaluates empirically the first and second generation models in explaining 1997-98 

Asia crises by exploring the effect of macroeconomic variables on exchange market. 

 

Exchange market pressure, MP, is measured as a weighted average of the change in 

the exchange rate, the loss in reserves and the change in domestic interest rate, with 

the weights being the inverse of their respective variance. Markov Regime-Switching 
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approaches are adopted to account for the presence of two potential regimes: stable 

and volatile. The attractiveness of the Markov Regime-Switching approach is that 

there is no need to distinguish ex-ante between stable and volatile states. Such 

information will be supplied in the estimation results. By allowing regression 

parameters to switch between different regimes, Markov Regime-switching mimics 

the existence of multiple equilibria in the exchange market.  

 

Markov models with a TGARCH specification and with constant variance are 

examined. Those models are also compared with the Multinomial Logit models in 

terms of their ability to detect appreciating and depreciation currency crises. The 

empirical findings give credence to the view that fundamental variables can still 

explain the market pressure on the exchange rate and the Asian currency crises. 

However, we did not find that the Markov Regime-Switching models with dynamic 

variance (i.e., with TGARCH specification) completely dominated the Markov 

Switching constant models, although in general they were superior.  

 

Our study differs in several ways from previous published studies on currency crises. 

For example, we determine the number of potential regimes though Neyman’s ( )C   

test, in addition to the conventional (and somewhat inexact) log likelihood ratio test. 

More substantially, we test for the presence of more than one regime by determining 

whether the residuals from the estimation from the assumption of only one regime are 

or are not normally distributed. Any deviation from normality points to distortion 
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arising from the presence of other regimes being embodied in the set of observations. 

Bootstrapping methods are used for that purpose. Additionally, having established that 

more than one regime exists, using the estimates of the conditional probabilities that 

the currency market is in a given regime, we test which regime relates to which state 

in the market (for example, volatile or stable) using score based tests, including the 

quadratic probability score (QPS) test, the log probability score (LPS) test and the 

Global squared bias (GSB) test. 
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Essay 1 Hedging effectiveness of China fuel 

oil futures 
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1.1 Introduction: China fuel oil market 

 

Fuel oil is a very important energy source, especially for the fast growing emerging 

market. It is mainly used in power generation, transportation and petrochemical 

industries. China is the largest consumer of fuel oil in Asia. Its fuel oil demand has 

increased dramatically with China’s rapid economic growth. In 2004, China imported 

30 million tones of fuel oil, while in 1995 the number was just 6 million tones. Since 

2004, the demand for fuel oil in China keeps decreasing, but the amount is still large. 

The domestic supply, however, is limited. The increasingly larger demand in domestic 

fuel oil market has to be fulfilled by importing. China is the biggest importer of fuel 

oil in Asia, whose imports take up to 50% of China’s fuel oil consumption in recent 

years.  

 

Fuel oil is regarded as the most liberalised oil product in China, being the least 

controlled by the government. On 25 August 2004, the fuel oil futures was launched at 

the Shanghai Futures Exchanges (SHFE). For about five years, it has successfully 

attracted many domestic investors, and the trading of the fuel oil futures continuously 

increasing (see Figures 1.B.1 and 1.B.2). According to the SHFE’s position-hold list, 

the majority of fuel oil importers and some end-user have participated in trading. 

Among them, speculators hold the majority of long positions, while the bulk of short 

positions are held by physical players in oil market who trade in futures market with 

the main aim to hedge the risks of trading in physical market.  
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Singapore is one of the main refined product markets and distribution center. It 

provides about 30% of fuel oil imports to China. The Mean of Platts Singapore 

(MOPS) is the benchmark for Singapore fuel oil price, as well as the benchmark for 

China’s fuel oil import price. According to a survey by the National Statistics Bureau, 

70% of the China fuel oil prices are determined by the prices in the Singapore fuel oil 

market. The Platts 180CST fuel oil has the quality mostly close to China’s fuel oil 

futures’s underlying fuel oil commodity. It’s the main constitute in MOPS thus the 

base of pricing fuel oil in Singapore, and its price is also an important factor that is 

used in pricing of fuel oil futures in China.  

 

Since its launch, the China fuel oil futures were highly correlated with WTI crude oil 

futures. However, such correlation was gradually decreasing. According to a report 

from SHFE, from 1 Dec 2004 to 15 April 2009, the correlation of Shanghai fuel oil 

futures and WTI crude oil futures is 0.93, where the correlation reduced to 0.62 in the 

first four months of 2009. The correlation between China fuel oil futures prices and 

Singapore 180CST fuel oil spot prices decreases as well, reducing from 0.94 between 

Jan 2005 and Dec 2008 to 0.5 in the first four month of 2009. There is a trend that the 

China fuel oil futures market is decreasingly impacted by Singapore and the 

international oil market passively, but increasingly reflects the supply and demand in 

domestic market.  
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In recent years, the fluctuation of fuel oil prices poses a large risk to those companies 

that trade or consume large volumes of fuel oil. Volatile fuel prices make budgeting 

difficult. The potential increase in fuel costs may exceed the profit margin of the 

business. For example, Figure 1.B.3 portrays the influence of the fuel oil price on the 

domestic small oil refineries. There are times that the sales price may fall short of the 

import prices and therefore generate losses in those oil refinery firms. As risk 

management has become one of the most important objectives for enterprises, 

hedging of the extensive oil price risk is of paramount importance for those firms. 

Futures no doubt is the most wildly used and effective tool for hedging. Using futures 

market to hedge is to take opposite positions in these two markets, in order to offset 

the price movements and reduce the volatility. Figure 1.B.4 portrays the fuel oil spot 

and futures prices1. We can observe that that both spot and futures prices are trending 

upward. As the China fuel oil futures is the only oil futures product in the Chinese 

market, it is not surprising that trading in that market are increasing, especially with 

the big turmoil in the oil market in recent years.  

 

There are other reasons for why the fuel oil futures has become a popular tool for 

hedging: first, not like in the spot market with strict short selling restriction, investors 

can short sell the futures contracts as well as long in them. Second, same as other 

commodity futures, fuel oil futures provide low transaction cost comparing to trading 

in physical products. Third, the higher leverage that can be used in futures trading can 

                                                        
1 In the Figure, the Huangpu physical price is used as the representative of fuel oil spot price in China. 
Such is explained in the Data section.  
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create possible speculative gains (losses) with relative small amount of investment 

required.  

 

Because hedging has widely been viewed as a major function and also the reason for 

the existence of futures markets, examining the effectiveness of China fuel oil futures 

as a tool of hedging is of paramount importance. Hence, in this study, we examine the 

effectiveness of China fuel oil futures in hedging a domestic spot position. In addition 

to the domestic hedging, this study also investigate the cross hedging of China fuel oil 

futures in hedging a corresponding spot position in the Singapore market. As 

discussed earlier, Singapore and China’s fuel oil market are closely related, and the 

fuel oil spot price in Singapore is an important indicator for the pricing of China fuel 

oil futures. Moreover, Singapore, as Asia’s main bunkering port, has decades of 

trading experiences together with integrated and expanding network of refineries and 

storage facilities. Its fuel oil market is more liberalised, involving less restrictions and 

barriers than the China fuel oil market. Though China is ambitious to shrug off 

Singapore’s dominance and establish its own pricing system for fuel oil product, that 

will take time. Investigating the cross hedging of China fuel oil futures in the 

Singapore market can give a hint on the usefulness of China fuel oil futures in the 

international market.  

 

Academic studies of China’s fuel oil futures market are limited. To the best of our 

knowledge, this is the first study to explore the hedging strategies and hedging 
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effectiveness of the China fuel oil futures, in both domestic hedging as well as cross 

hedging in the Singapore market. Moreover, most applications of time-varying models 

of hedging have imposed constant variance or dynamic conditional variance with 

GARCH process, where positive or negative shocks have the same impact on the 

conditional volatility 2 . So far, only Switzer and El-Khoury (2006) incorporate 

asymmetries in volatility in the oil market to derive optimal hedge ratios. In this study, 

we also incorporate asymmetric information in volatility to generate hedging ratio and 

investigate whether incorporating such asymmetric effects can improve the hedging 

performance. Differ from most of the studies of hedging effectiveness, we have 

specifically included the test of equality for means and variances of the hedged 

portfolios, to see if any significant changes exist in the mean and variance of the 

hedged portfolio (measured according to Ederington, 1979) when it is constructed 

under different hedging models.  

 

The remainder of this study is organized as follows. Section 2 provides a brief review 

of the literature. Section 3 lists theoretical framework for deriving optimal hedging 

ratios and various criteria for evaluating hedging performances. In Section 4, we 

describe our data and methodology. Empirical results for dynamic and constant 

variance models are provided in Section 5. In Sections 6 and 7, we present efficiency 

tests and hedging analysis for in-sample and out-of-sample period. Summaries and 

conclusions are provided in section 8.  

                                                        
2 See the methodology section for more information on the symmetric and asymmetric effects of 
positive/negative shocks. 
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1.2 Literature review 

 

Among various techniques available for reducing and managing risk, the simplest and 

perhaps the most widely used is hedging by means of futures contracts. Traditionally, 

investors simply measure the position in the underlying asset and take an equal but 

opposite position in the futures contract to hedge risk. This method is nowadays 

referred to as a naïve approach. Studies suggest that for hedging effectively, investors 

need to determine the proportions of spot to futures positions for an asset, which are 

commonly referred to as Optimal Hedge Ratios (OHRs). The optimal hedge ratios 

depend on the particular objective function to be optimised. One of the most 

widely-used hedging strategies is to employ a minimum-variance (MV) framework, 

which is based on minimisation of the variance of the hedged portfolio (e.g., see 

Ederington, 1979; Johnson, 1960; Myers & Thompson, 1989).  

 

For several reasons the minimum-variance framework has become the benchmark in 

the hedging literature. First, MV hedge ratio is optimal for exceptionally risk averse 

traders (Ederington, 1979; Kahl, 1983). Second, as has been verified in several 

empirical studies (for example, Baillie and Myers, 1991; Martin and Garcia, 1981) the 

MV hedge ratio is still optimal when futures markets are unbiased. However, one 

drawback is that the MV hedge ratio completely ignores the expected return of the 

hedged portfolio. Therefore, this strategy generally is not consistent with the mean 

variance framework unless the individuals are infinitely risk averse or futures prices 
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follow a pure martingale process (i.e., expected futures price change is zero) (Chen et 

al., 2003). Moreover, the minimum variance hedge ratio has been criticized because 

negative and positive returns are given equal weight, whereas investors may concern 

more about the variability in losses rather than in gains. A survey by Adams and 

Montesi (1995) points out that corporate managers care about the “downside risk” 

much more than the “upside potential”. Investors adopting a hedging strategy may 

wish to keep the upside potential whilst eliminating the downside risks. In such case, 

the conventional minimum variance hedge strategy is inappropriate.  

 

As a result, strategies that incorporate both the expected return and risk (variance) of 

the hedged portfolio and the strategies considering the asymmetry in upside and 

downside risk were developed. For the former, these strategies can be consistent with 

a mean-variance expected utility framework (e.g., see Cecchetti, Cumby, & Figlewski, 

1988; Howard & D’Antonio, 1984; Hsin, Kuo, & Lee, 1994). The maximisation of 

expected utility approach (e.g., Cecchetti et al., 1988; Lence, 1995, 1996) requires the 

use of a specific utility function and specific return distribution. It can be shown that 

if the futures price follows a pure martingale process, then the optimal mean-variance 

hedge ratio will be the same as the MV hedge ratio. The latter strategies consist of 

minimisation of the mean extended-Gini (MEG) coefficient hedge ratio (e.g., see 

Cheung, Kwan, & Yip, 1990; Kolb & Okunev, 1992, 1993; Lien & Luo, 1993a; Lien 

& Shaffer, 1999; Shalit, 1995), and the generalized semivariance (GSV) or lower 

partial moments (e.g., see Chen, Lee, & Shrestha, 2001; De Jong, De Roon, & Veld, 
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1997; Lien & Tse, 1998, 2000). Most recent development is to derive the OHR based 

on the VaR (Value at Risk), which is proposed by Hung, Chin and Lee (2006) and 

Cotter and Hanly (2006). Details of these methods are given in Section 1.3.1. 

 

However, in part because of the theoretical justification of finding unbiased markets 

and in part because components of the MV hedge ratio may be retrieved from 

variance and covariance estimates of underlying spot and futures prices (see, e.g., 

Baillie and Myers, 1991; Kroner and Sultan, 1993), MV has continued to be the most 

widely applied methodology.  

 

Early studies in the estimation of OHR provide empirical support for MV using 

traditional OLS technique, where OHR is simply derived from the slope coefficient 

when the spot price series is regressed against the futures price series. Because the 

hedge ratio derived from this method is constant, this is the so called constant model. 

Despite its robustness during the early stages, the OLS approach has been subject to 

many challenges. Many studies criticized the inefficiency of the residuals in the OLS 

method used to estimate the OHRs. For example, Herbst, Kare and Marshall (1989) 

argue that the OLS residuals suffer from the problem of serial correlation and are thus 

inappropriate to be used in the estimation of OHR. Park and Bera (1987) point out the 

simple regression model ignores the heteroskedasticity often encountered in cash and 

futures price series. Another obvious shortcoming of the conventional methodology is 

that it assumes the covariance matrix of cash and futures prices—and hence the hedge 
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ratio—is constant throughout time. Many studies (for example, Bell and Krasker, 

1986; Mers and Thompson, 1989) argue that the covariance between dependent and 

explanatory variable and the variance of the explanatory variable under the optimal 

hedging rule should be conditional moments which depend on the information set 

available at the time the hedging decision is made. Therefore the hedge ratio should 

be adjusted continuously based on conditional information and thus on the conditional 

variance and covariance which are changing over time.  

 

Introduced by Engle (1982) and generalized by Bollerslev (1986), the Autoregressive 

Conditional Heteroskedasticity (ARCH) framework, with various extensions, has 

proved to be an effective method to solve the above mentioned problems. The ARCH 

and GARCH (Generalised ARCH) specifications take the heteroskedasicity of the 

spot and futures prices series into consideration. Instead of searching for possible 

information variables, they call upon their own history of spot and futures prices to 

explain the variations in variances and covariances in estimating the optimum hedge 

ratios. In the early stage of incorporating the GARCH model in OHR estimation, most 

studies assume time-varying conditional variances but constant correlation between 

the spot returns and futures returns (Cecchetti et al, 1988; Baillie and Myer, 1991; 

Kroner and Sultan, 1993; etc.). However, Haigh and Holt (2000) argue that this, while 

parsimonious, does not allow the spot-futures covariance (and, therefore, OHRs) to 

switch signs in the short run as spot and futures prices move in opposite directions, 

implying that such a specification may be overly restrictive.  
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Research has now been extended to finding a dynamic sequence of optimal hedge 

ratios while making allowances for time varying conditional variances and also the 

covariance of spot and futures returns, using multivariate GARCH models. Given the 

apparent theoretical advantages of its dynamic feature over the static ones and over 

the dynamic ones with constant correlations, a number of studies have employed the 

Bi-variate GARCH framework to examine the hedging performance of various assets. 

For example, Gagnon, Lypny and McCurdy (1998) model the time variation in the 

variances and covariances between components of a hedge with a Bi-variate GARCH 

process. Park and Switzer (1995), using three types of stock index futures, find that 

the Bi-variate GARCH-based dynamic hedging strategy provides improvements in 

forecasting accuracy over the static hedge. Most of these studies have shown that, by 

accounting for the time-variation in the joint distribution of the changes in spot and 

futures prices, the dynamic hedging models perform better than the constant or 

traditional OLS models. They offer greater risk-reduction and utility maximisation 

than the constant hedge models do. 

 

Asymmetry is another feature that typically found in equities, of which negative price 

shocks associate with greater volatility than positive price shocks do; resulting in the 

so-called leverage effects. Such effects can be modelled by the Threshold GARCH 

model (TGARCH model, also called GJR model, after its originators Glosten, 

Jagannathan, and Runkle, 1993). Some hedging studies take such asymmetric effects 



 20

into consideration. Brooks, Henry, and Persand (2002) demonstrate that there are 

benefits in allowing for asymmetry effects in volatility when deriving optimal hedge 

ratios for commodity futures. Switzer and El-Khoury (2006), for the first time, 

incorporate asymmetries in volatility in the oil market to derive optimal hedge ratios 

for oil and conclude that hedging performance is improved when such asymmetries 

are incorporated into the hedging procedures, based on out-of-sample estimates.  

 

More recently, econometric methods have allowed regime switches to affect the spot 

and futures dynamics. They argue that GARCH model tend to impute a high degree of 

persistence to the conditional volatility. It is argued that if regime switches occur, the 

optimal hedge ratio is also likely to be state dependent, so that by allowing the 

volatility to switch stochastically between different processes under different market 

conditions, one may obtain more robust estimates of the conditional second moments 

and, as a result, more efficient hedge ratios compared to other methods such as 

GARCH models or OLS (Alizadeh, Nomikos and Pouliasis, 2007). Despite the 

conceptual superiority of utilizing a model that allows for regime switches, there is 

mixed support for the use of regime switching models in estimating OHR.  For 

example, Alizadeth and Nomikos (2004) find that constant volatility Markov 

Switching models outperform conventional measures in the in sample period, for the 

S&P500 and FTSE100. However, in the out of sample, a multivariate GARCH model 

provided the greatest variance reduction for the S&P500. Lee and Yoder (2007) used 

a Bivariate Markov Switching GARCH process to estimate dynamic OHRs for corn 
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and nickel contracts. They find that although by allowing the covariance matrix to be 

state dependent improves out of sample hedging effectiveness, the improvements are 

statistically insignificant. Given the mixed performance of Markov Switching models 

and the fact that the oil market is relatively stable in our sample period, we only 

experiment with GARCH and constant models in this study.  

 

The performances of these models are assessed by their hedging effectiveness. 

Ederington (1979) defines hedging effectiveness as the reduction in variance and 

states that the objective of a hedge is to minimise the risk. Howard and D’Antonio 

(1984) define hedging effectiveness as the ratio of the excess return per unit of risk of 

the optimal portfolio consisting of the spot and the futures instrument, to the excess 

return per unit of risk of the portfolio containing the spot position alone. However, it 

is argued that the second order conditions derived by Howard and D’Antonio are 

incorrect (see, Chang and Shanker, 1987; Satyanarayan, 1998 and Section 1.3.1). Hsin 

et al (1994) derive the OHR by considering both risk and returns in the hedging, thus 

utility maximisation can be used to gauge the hedging effectiveness. Cotter and Hanly 

(2006) illustrate some new developments in evaluating hedging performances, which 

include the risk reduction based on semivariance criterion, the Lower Partial Moment 

(LPM) criterion and VaR criterion. More detailed theoretical discussion about 

hedging performance evaluation methods are given in Section 1.3.2.  

 

Thus far, the dynamic models seem to outperform the conventional models at least in 
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markets “where trading restrictions are minimal, trading information is more readily 

available, and timeliness of trading information is high and market liquidity is higher” 

(e.g. see, Park and Switzer, 1995; Gagnon and Lypny, 1997; Lypny and Powalla,1998; 

and Yang, 2001, Ford, Pok and Poshakwale, 2005). However, despite statistical 

soundness of dynamic models and greater risk-reduction they can provide than the 

constant hedging models according to the in-sample period comparisons, their 

advantage are not as significant in some other cases, especially, in the out-of-sample 

period comparisons. A number of explanations have been offered for the inability of 

the GARCH models to achieve ex ante superior hedging performance. First, Ghose 

and Kroner (1994) suggest common persistence in the conditional variances of spot 

and futures prices as a possible explanation for the similar performance between 

conventional and GARCH hedge strategies. Second, the long-term forecast 

performance of the GARCH model is very poor. Unless the GARCH estimators are 

updated frequently, the forecasts of variances and covariances will be unreliable; as, 

therefore, will the GARCH hedge ratios. Third, given the persistence in the 

conditional covariance matrix and poor long-term forecasting ability, the presence of 

an outlier can erroneously affect the investor’s hedging position enormously and for a 

number of subsequent time periods. This could very well destabilize the investor’s 

portfolio variance. Fourth, the estimated GARCH parameters could be time-varying 

leading to possible biases in the assumed hedging position. Also, there is the problem 

that the hedging instrument (i.e. the nearby futures contract in most cases) continually 

expires. Hence, the futures price series does not describe the behaviour of a single 
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asset.  
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1.3 Theoretical framework on optimal hedge ratios and hedging 

performance evaluation 

 

1.3.1. Alternative theories for deriving the optimal hedge ratios and 

criteria for measuring hedging effectiveness  

 

One of the main theoretical issues in hedging involves the determination of the 

optimal hedge ratio, which is defined by Hull (2003) as “the ratio of the size of the 

portfolio taken in futures contracts to the size of the exposure”. Only with correct 

hedge ratios, effective hedging can be achieved. The optimal hedge ratio depends on 

the particular objective function to be optimized. Based on the objective functions, 

optimal hedge ratios are derived and hedging effectiveness are evaluated. Many 

different objective functions are currently being used. Here we illustrate several 

alternative approaches with the corresponding criteria to assess hedging effectiveness 

 

 

 

1.3.1 a) Minimum variance hedge ratio and risk reduction based on variance 

 

The Minimum variance hedging is the most widely-used hedging strategy. It is based 

on minimisation of the variance of the hedged portfolio (Johnson, 1960; Ederington, 

1979). This is the well-known MV hedge ratio.  
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Assuming that the only hedging instrument available to the investor is the futures 

contract, a hedge portfolio consisting of spot and futures is constructed. Let us 

consider the following model, which allows for time-varying variances of the spot and 

futures prices. Assume an investor purchases one unit of the spot and shorts (short sell) 

in t  units of the futures at time t, the payoff (return) of the hedged portfolio, 1tX  , at 

time t+1 is 1tX  :  

           1 1 1t t t tX s f                                                   (1.1) 

Where 1tf   is the changes in the prices of the futures between time t and t+1, and 

1ts   is the changes in the prices of the spot between time t and t+1. 

The variance of the hedged portfolio is  
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To minimise 1( )tVar X  , according to the first order condition,  
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Thus we get the optimal hedge ratio:  
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                                               (1.4) 

 

For the conventional time-varying MV hedge ratio strategy, the hedging effectiveness 

of the different portfolios is measured as the percentage reduction in the variance of 

the hedged portfolio in comparison to the unhedged portfolio (Ederington1 (1979), 

following the work of Working (1953, 1962), Johnson (1960) and Stein (1961)). 
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Hence, the measure of hedging effectiveness ( ) is herein defined as the ratio of the 

variance of the unhedged portfolio minus the variance of the hedged position, over the 

variance of the unhedged position:  

( ) ( )

( )

Var U Var H

Var U
 
                                            (1.5) 

Here, ( )Var U  denotes the variance of unhedged portfolio (spot position) and 

( )Var H  represents the variance of the hedged portfolio. 

 

 

 

1.3.1 b) Expected Utility maximisation hedge ratio and utility maximisation 

criterion 

 

Several models to determine the OHRs are based on the corresponding utility 

maximisation of the investors (e.g. Hsin et al., 1994; Lence, 1995). One distinct 

advantage of these models is that they have incorporated both risk and return in the 

derivation of hedge ratios.  

 

With the payoff of the hedged portfolio is given in Equation (1.1), the investor with a 

mean-variance expected utility function will maximize the following function (see, 

e.g., Hsin et al, 1994): 

 

2
1 1 1( ) ( ) ( )t t t t t tE U x E x x                                   (1.6) 
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Where the constant term,  ，denotes the level of risk aversion. The expectation and 

variance operators are subscripted with t to denote that they are calculated conditional 

on all information available at time t. By definition, the predictable component of 

volatility in the return is the conditional variance, and thus, risk is measured by 

conditional variance. The utility maximizing hedge ratio at time t is  
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                                (1.7) 

Assuming that the investment in futures contracts is a zero sum game, or futures 

prices are martingale (i.e. 1( )t t tE F F  , then 1( ) 0t tE f    ), Equation (1.6) simplifies 

to  
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                                           (1.8) 

Which is the conventional MV hedge ratio. 

 

Thus the corresponding criterion used to evaluate the hedging performance is based 

on the utility comparison. Utility of different modelling specifications can be 

calculated using the following equation(1.6):  

2
1 1 1( ) ( ) ( )t t t t t tE U x E x x                                   

Different value of   may give different rankings of a same set of models. Hence, the 

utility maximization criterion also reflects the role an investor’s risk preference plays 

in his choices of hedging strategies  
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1.3.1 c) Sharpe hedge ratio and Sharpe ratio criterion 

 

Another way of incorporating the portfolio return in the hedging strategy is to use 

Sharpe ratio based criterion, which considers the risk-return tradeoff as well. Howard 

and D’Antonio (1984) consider the optimal amount of futures contracts by 

maximizing the ratio of the portfolio’s excess return to its volatility: 

( )
max f

X

E X R






                                        (1.9) 

Where 2 ( )X Var X   and fR  represents the risk-free interest rate. In this case the 

optimal hedge ratio is: 
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Where 2 ( )s Var s   and 2 ( )f Var f  ,   is the correlation coefficient between s  

and f  (see Howard and D’Antonio, 1984 for detailed derivations). 

Again, if ( ) 0E f  , then   reduces to: 

s

f

 


                                               (1.11) 

which is same as the MV hedge ratio. 

 

One drawback of this approach, as pointed out by Chen et al. (2001), is that the 

Sharpe ratio is a highly non-linear function of the hedge ratio. This lead to the 

possibility that the hedge ratio derived from first order condition (i.e. the first 

derivative with respect to the hedge ratio equal to zero) would minimize the Sharpe 
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ratio, instead of maximizing it, when the second derivative is positive.  

 

The hedging performance of this approach can be evaluated in two ways. First, the 

hedging effectiveness can be defined as the ratio of the Sharpe Ratio of the hedged 

portfolio over the Sharpe Ratio of the unhedged portfolio.  

          
( ( ) ) /

( ( ) ) /
f H

f U

E H R

E U R










                                    (1.12) 

The higher the ratio, the better the hedging performance. 

 

Another way is to define the hedge effectiveness as the different between the Sharpe 

ratios of the hedged and unhedged portfolio, which is shown as follows: 
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                                  (1.13) 

 

 

 

1.3.1 d) Minimum Mean extended-Gini coefficient hedge ratio and risk reduction 

based on MEG coefficient 

 

Another type of hedge ratio is the Mean extended Gini (MEG) coefficient hedge ratio 

(Cheung et al., 1990; Kolb and Okunev, 1992; Lien and Luo, 1993; Shalit, 1995; and 

Lien and Shaffer, 1999). This approach of deriving the OHRs is consistent with the 

concept of stochastic dominance and involves the use of the MEG coefficient. The 
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OHRs can be derived by minimizing the MEG coefficient ( )v X , which is defined 

as follow:   

1( ) ( , (1 ( )) )v
v X vCov X G X                                (1.14) 

Here, G is the cumulative probability distribution and v is the risk aversion parameter. 

Note that 0 ≤ v < 1 implies risk seekers, v = 1 implies risk-neutral investors, and v > 1 

implies risk-averse investors. Shalit (1995) shows that the minimum-MEG hedge ratio 

will reduce to the MV hedge ratio if the futures and spot returns are jointly normally 

distributed.  

 

There are different ways to estimate the MEG hedge ratio. Kolb and Okunev (1992) 

proposed the empirical distribution method to estimate the MEG hedge ratio where 

the cumulative probability density function is estimated by ranking the observed 

return on the portfolio. Alternatively, Shalit (1995) use the instrumental variable (IV) 

method to find the MEG hedge ratio, which is an analytical solution. Lien and Luo 

(1993) derived the MEG hedge ratio by estimating the cumulative distribution 

function using a non-parametric kernel function instead of using a rank function as in 

Kolb and Okunev (1992).  

 

The corresponding hedge effectiveness measurement criterion has not been address in 

literature. But base on the objective function, hedging effectiveness   can be 

defined as the risk reduction based on MEG coefficient: 
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1.3.1 e) Optimal Mean extended-Gini coefficient hedge ratio and utility 

maximisation based on MEG coefficient 

 

The minimum MEG hedge ratio does not consider the risk return trade-off. To address 

this issue, Kolb and Okunev (1993) consider maximizing the utility function based on 

GEM coefficient. The objective function is defined as follows:  

( ) ( ) ( )vU X E X X                                  (1.16) 

The hedge ratio derived from the above objective function is denoted as M-MEG 

hedge ratio, which considers the expected return on the hedged portfolio. It manifests 

under the condition of joint normal distribution of futures and spot returns or if the 

futures returns follow a pure martingale.  

 

Hedging performance is measured by the magnitude of the utility derive based on the 

above function (Eq. 1.16). The higher the utility, the better the hedging strategy. 

 

 

 

1.3.1 f). Minimum Generalized semivariance hedge ratio and risk reduction 

based on the Generalised semivariance 

 

An alternative approach for determining the hedge ratio has been suggested by Chen 

et al., 2001; De Jong et al., 1997; Lien & Tse, 1998, 2000, which focus on the 



 32

downside risk. A survey by Adams and Montesi (1995) also points out that the 

managers care about the variability of losses (e.g. the return below a target value) 

much more than variability of gains. The variability of losses is normally denominated 

as the “downside risk” and the variability of gains as “upside potential” (Lee and Rao, 

1988). The investors using hedging instrument with the purpose of minimizing the 

downside risk whilst preserving the upside potential will find the conventional 

minimum variance hedge strategy inappropriate (lien and Tse, 2000). When an 

investors try only to avoid the downside risk, Bawa (1975)’s general definition of 

downside risk—the generalized semivariance (GSV) or Lower Partial Moments 

(LPM), and Fishburn (1977)’s ( , )   model are more appropriate. The development 

of GSV is a milestone in measuring the downside risk. In this case, the optimal hedge 

ratio is obtained by minimising the GSV the objective function as follows: 

, ( ) ( ) ( ), 0V X X dG X a
 

  


                               (1.17) 

where ( )G X  is the probability distribution function of the return on the hedged 

portfolio. The parameters δ and α are both real numbers, they are used to represent the 

target return and risk aversion, respectively. The function assumes that investors 

consider the investment as risky only when return is below the target return. It can be 

shown (see Fishburn, 1977) that α < 1 represents a risk-seeking investor and α > 1 

represents a risk-averse investor. Again, the Minimum GSV hedge ratio would be the 

same as the MV hedge ratio if the futures and spot returns are jointly normally 

distributed and if the futures price follows a pure martingale process, as shown by 

Lien and Tse (1998).  
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Correspondingly, the hedge performance is evaluated by calculation the risk reduction 

of the downside risk, GSV of the hedged portfolio comparing to the unhedge 

underlying3. 

,
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                                           (1.18) 

 

The GSV approach has several advantages as an examination of hedging 

performances. First, it has been shown by Bawa (1975) that GVS is robust to 

non-normalitiy. Thus it does not require the assumption of normality in the return 

distribution. Second, analyzing the hedging performance under GSV criterion may 

reveal information with respect of the asymmetry of the joint distribution between 

spot and futures returns for a given asset. Therefore, it overcomes the primary 

shortcoming of conventional variance based on risk reduction measure of hedging 

performance which assumes symmetric information. Eftekhari (1998) provides 

evidence that the lower partial moment (GSV) hedge ratios are effective in reducing 

downside risk and increasing returns.  

 

 

 

1.3.1 g). Minimum Semivariance hedge ratio and risk reduction based on the 

semivariance 

                                                        
3 This is the LMP hedging effectiveness criterion in Cotter and Hanly (2006). 
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Semivariance is defined as the variability of returns below the mean. The minimum 

semivariance approach4 is a special case of the minimum GSV hedge ratio, where 

risk aversion parameter is assumed to be equal to 2, and the target return is set to be 

the expected return. Thus the objective function to be optimised is:  

          2( ) ( ), 0SemiVar X dG X a




                              (1.19) 

Where  , the target return, is set to be the expected return. As before, the hedge ratio 

would be same as the MV hedge ratio if the futures and spot returns are jointly 

normally distributed and the futures price follows a pure martingale process. 

 

The hedging performance is then measured by the reduction in the semivariance of the 

hedged portfolio to the unhedged position. It is shown as 

          
( )

1
( )

SemiVar H

SemiVar U
                                         (1.20) 

 

From the Equation (1.19), we can see that the deviations from the target return 

( )X   are squared. As a result, if the distribution is symmetric and the target return 

is set to mean, then the semivariance is just half of the variance. Then the hedging 

performance evaluated by risk reduction in semivariance will be the same as that 

evaluated by the risk reduction in variance. However, for a non-symmetric 

distribution, the results from the two methods are different. The semivariance can 

address the primary shortcoming of the variance measure when hedging downside risk 

is more of the concern.   

                                                        
4 Following the work by Roy (1952), which proposes the safety-first criterion. 
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1.3.1 h). Optimal generalized semivariance hedge ratio and utility maximisation 

based on the generalised semivariance 

 

Chen et al. (2001) extend the GSV hedge ratio to a mean-GSV (M-GSV) hedge ratio 

by considering the mean return in the optimal hedge ratio, which enables 

incorporating the risk and return trade-off into the GSV strategy. The M-GSV hedge 

ratio is obtained by maximising the following utility function: 

,( ) ( ) ( )U X E X V X                                  (1.21) 

Again, the M-GSV hedge ratio would be the same as the MV hedge ratio if the futures 

prices follow a pure martingale process and returns are jointly normal.  

 

The hedging effectiveness is measured by the magnitude of expected utility based on 

GSV of the hedged and unhedged positions, using Equation (1.21) 

 

 

 

1.3.1 i) VaR hedge ratio and risk reduction based on VaR 

 

In recent years a new approach for determine the hedge ratio has been developed. This 

approach uses VaR (Value at Risk) as a measure of downside risk. Due to the 

simplicity of quantitative measurement, VaR emerges as the essential and standard 

risk management tools of many financial institutions and is widely used for 



 36

investment decisions, supervisory decisions and capital allocations decisions. Using 

Jorion (2000)’s definition of VaR as an absolute size of losses associated with the 

hedging strategy, the downside risk of the hedged portfolio over a period   and 

confidence level   as the object function (see, Hung, Chiu and Lee, 2006): 

( ) ( )a XminVaR X Z E X


                                (1.22) 

Where ( )VaR X  represent the absolute VaR of the hedged portfolio and Z  is the 

left percentile at   for the standard normal distribution. Generally, VaR is the 

(100 )th  percentile of return distribution of the change in the asset/portfolio over 

the period  . Therefore, VaR gives the return that is exceeded with (100 )%  

probability. It is possible, however, that two portfolios with the same VaR will have 

different potential losses. This is because VaR does not account for the magnitude of 

losses beyond the (100 )th  percentile. Conditional VaR developed by Tasche 

(2002) addresses such shortcomings.  

 

The hedge ratio for this kind of VaR approach is (see Chun et al., 2006 for detailed 

derivation of the hedge ratio): 

2

2 2 2

1
( )

( )
s s

f f f

E f
Z E f

   
  


 


                        (1.23) 

Similarly, the VaR hedge ratio converges to MV hedge ratio if the martingale property 

of futures holds.  

 

Cotter and Hanly (2006) give the performance measuring criterion as the percentage 

reduction in VaR, using 1% significant level (or 99% confidence level).  
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1%

1%

( )
1

( )

VaR H

VaR U
                                           (1.24) 

 

 

 

1.3.2 Approaches to determine the optimal hedge ratio and hedging 

evaluation criteria in this study 

 

This study derives the optimal hedge ratios based on three objective functions: the 

traditional risk minimizing, “expected utility” maximisation and semivariance 

minimisation5. Accordingly, we access the hedging effectiveness of different models 

used to derive the optimal hedge ratio based on three criteria, namely, risk reduction 

base on variance (variance reduction), expected utility maximization and risk 

reduction based on semivariance. The three methods are chosen for the following 

reasons. 

 

First, the variance reduction criterion is the most widely used in the literature. 

However, as we discussed before, it has several shortcomings, including that it doesn’t 

take the expected mean values into consideration and give positive and negative 

returns equal weight, etc. The other two criteria are employed to address these issues. 

The expected utility maximization criterion is used to account for the risk and return 

trade-offs of the hedged portfolio. Meanwhile, because there is a risk aversion 

                                                        
5 More detailed technical introduction of these is given in next section. 
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parameter in the expected utility function, this criterion also takes into account 

investor’s risk preference. The minimum semivariance hedge ratio and the risk 

reduction based on semivariance hedging performance evaluation criterion is 

employed to address the downside risk for the investor, which is believe to be more 

crucial. Such approach seems more practical as most investors tend to avoid the 

downside risk but desire to maintain the upside potential.  

 

Second, as shown in the later sections, our empirical estimates show that the futures 

prices follow a martingale process. If the futures prices follow a martingale process, 

that is, the expected futures return is zero, we know that the Sharpe hedge ratio and 

VaR hedge ratio will be the same as the MV hedge ratio. Therefore, the hedged 

returns will be the same that derived using Minimum Variance criterion, so will the 

rankings of different models.  

 

Third, in theory, the Maximum Utility hedge ratio also reduces to MV hedge ratio 

when the expected value of futures return is zero. However, in this study, we still 

derive and examine the hedging effectiveness of different hedging strategies using the 

utility maximisation criterion by incorporating the actual (expected) mean futures 

returns of the sample being examined. We do so because, although those values are 

statistically not different from zero, excluding the constant term in the mean equation 

of the models6 will make the estimations unable to achieve convergence. Thus we 

                                                        
6 Different models are described in the next section.  
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retain the actual intercept value in deriving the hedge ratios under the Utility 

Maximisation criterion. Because the intercept value is very close to zero, the hedge 

ratios derived under Utility Maximisation criteria will be only slightly different from 

those derived under Variance Minimisation criteria, so should be the rankings. 

Moreover, this approach enables us to examine the effect of the investors’ risk 

aversion on deriving the hedge ratios and choosing hedging strategies.  

 

Forth, although the futures prices follow a martingale process, the spot and futures 

price series are not jointly normally distributed. MEG and M-MEG hedge ratio, GSV 

and M-GSV hedge ratio should be different from the MV hedge ratio. However, the 

hedge ratios under those objective functions cannot be found mathematically, or could 

be very difficult to calculate because the complexity of the mathematical methods. 

Most studies on those use approximations. Because of these, we only examine one 

special case, that is, the semivariance hedge ratio, where MV hedge ratio is used as 

the proxy. We access the ability of those models in reducing downside risk given the 

circumstance that hedge ratios are derived with the objective function of minimising 

variance of the hedged portfolio.   
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1.4 Data and Methodology 

 

1.4.1 Data 

 

Data for the China fuel oil futures are from Shanghai Futures Exchanges (SFHE). As 

any futures contract is associated with expiration, it is necessary to construct a 

continuous series of futures prices. The conventional approach relies upon the prices 

of the “most nearest to maturity” contracts, because these tend to be the most liquid 

and therefore the best delegates for the futures market information, except perhaps 

during the maturity month. However, an examination of the Shanghai futures markets 

reveals a different story. Peck (2004) finds that the most nearest to maturity futures 

contract is hardly the most liquid contract in China. It was reported that the most 

liquid contracts are 4 or 5 months to maturity for copper and 3 or 4 months to 

maturity for aluminum. For the oil futures, we can determine from the data that the 

most liquid contracts are 2 to 3 months to maturity. Thus the futures data we used in 

this study corresponds to daily closing prices of the most active nearby contracts. For 

the spot prices, we follow the commonly adopted practice in the literature by using the 

daily closing prices of the corresponding commodity.  

 

We note that there is no standard fuel oil price series in the Chinese market. 

Guangdong province in Huanan area takes 80% of the fuel oil imports and accounts 

for 35% of the total oil demand in China, and the Huanan fuel oil market is the most 
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active and closest to a perfectly competitive market in China. Hence we choose 

Huanan 180CST fuel oil prices (also called Huagpu 180CST) as the underlining spot 

prices for the Chinese market. 

 

The Platts 180CST industry fuel oil has quality mostly similar to the contracted fuel 

oil in SHFE. Moreover, it is used as the benchmark of pricing fuel oil prices in 

Singapore. Thus we use the Platts 180CST fuel oil as the underlying spot in the cross 

hedging, which is compared with the domestic hedging in assessing the China fuel oil 

futures. The data for the Huanan (Huangpu) 180CST and Platts 180 CST fuel oil 

prices series are taken from Heilongjiang Tianqi Futures Exchange 7 

(http://www.tqfutures.com). The data begin on August 25, 2004 (the day when the 

futures started to trade) and end on September 29, 20068. Returns of the futures and 

spot prices are calculated by computing the first differences in the natural logarithm of 

price series multiplied by 100. In total, we have 548 observations of which the first 

500 (from August 25 2004 to July 25, 2006) observations are used for estimation 

purposes and the remaining 48 observations (from July 26 to September 06) are used 

for out-of-sample forecasting.  

 

 

                                                        
7 An Exchange for commodity futures in China.  
8 Data end on September 2006 because it was the most up-to-date data at the time the research 
was conducted. In the final revision of the thesis, I attempted to update the data to April 2009, 
reexamining the hedging effectiveness of China fuel oil futures and comparing the first two years 
performance with the most recent two years performance. However, data on spot fuel oil prices are 
no longer available from the source. 

http://www.tqfutures.com/�
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1.4.2 Methodology  

 

1.4.2 (A) Estimation of Optimal Hedge Ratios 

 

To derive the time-varying OHRs for China fuel oil futures, we estimate Bi-variate 

GARCH(1,1) and TGARCH(1,1) models to capture time-varying second moment 

effects in the joint distribution of spot and futures returns. TGARCH models were 

used because of the possibility of capturing the measure of any asymmetric 

information effect. Thus we compare five models, Bi-variate GARCH(1,1) general 

and diagonal, Bi-variate TGARCH(1,1) general and diagonal and traditional constant 

models.  

 

The most general representation of the joint distribution of spot and futures returns 

used can be expressed as (Ford, et al, 2005):   

),0(~|; 1 ttttttttt HNVGECy            (1.25) 

Where ( , ) 't t ty f s  is a vector of observations of the spot and futures returns 

(log-differenced price series), ( , ) 't st ft    is a vector of conditional means to be 

estimated and ( , ) 't ft st    is a vector of residuals.   and   are column vectors 

of parameters,; EC is the error correction term from any cointegrating relationship 

between the two prices; G is a (2 2)  diagonal matrix with conditional variance 

terms from GARCH(1,1) estimation on the diagonal. The term V  represents the 

possible variables that can determine the returns of spot and futures, multiplied by 
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their parameters. The inclusion of the error correction term is due to the important role 

that any cointegration between spot and futures prices can play in determining optimal 

hedge ratios. Ghosh (1993) and Lien (1996) argued that if spot and futures are 

cointegrated and the resultant error-correction term is not included in the regression, 

minimum variance hedge ratio estimates are biased downwards due to 

mis-specification.   

 

We assume that the residuals are normally distributed and are conditional on past 

information, 1t , with zero mean vector and with conditional variance-covariance 

matrix:  

1 1 1t t t tH C C A A B H B   
                                       (1.26) 

Where C, A and B are (2 2)   parameter matrices. This is the Bi-variate 

GARCH(1,1) setting. The conditional variance and covariance matrix tH  is 

estimated recursively and must be a positive definite matrix for all possible 

evaluations of , 1i t  . In addition, the GARCH process must be stationary. Various 

parameterizations of the multivariate GARCH process have been proposed (see Engle 

and Bollerslev, 1986). In this study, we adopt the parameterization introduced by 

Engle and Kroner (1995), henceforce the BEKK representation, which (whereas in 

tH  in Eq.(1.27)) defines the C matrix to be lower triangular to ensure that the 

conditional covariance matrix is positive definite. In explicit format, the 

conditional-variance and covariance matrix H is: 
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      (1.27) 

This system can be estimated with no restrictions on H  and is thus referred to here 

as the general model. The diagonal model proposed by Bollerslev, Engle and 

Wooldridge (1988) restricts the off-diagonal elements of A and B to be zero, 

i.e., 0 12 21 12 21: 0H        . Covariance Stationary of the GARCH(1,1) process 

requires the eigenvalues of ( )A A B B    be less than one in modulus9 (See 

Engle and Kroner, 1995). 

 

The static or constant model arises when all elements of A and B are set to zero, i.e. 

0 11 22 12 21 11 22 12 21: 0H                . The hedge ratio that the static 

model produces is constant and equivalent to that obtained by using traditional OLS 

estimations. Diagonal and constant models can be seen as nested models: the constant 

model is nested in the diagonal model and diagonal in the general. So the competing 

structures can be evaluated by likelihood ratio test.  

 

                                                        
9 For the Bi-variate GARCH(1,1) model, 1 1 1H C C A A B H Bt t t t         , hence we have 

'( ) ( ' ) ( ) ( ) ( ) ( )1 1 1h vec H vec C C A A vec B B vec Ht t t t t         . It follows that the 

unconditional covariance matrix is 1[ ( ) ( )] ( )I A A B B vec C C     .  For the diagonal model, 

the stationary condition can be reduced to 2 2 1, 1, 2a b iii ii   , because the eigenvalues of a 

diagonal matrix are simply the elements along the diagonal and the conditions detailed imply that 
all other diagonal elements are also less than 1 in absolute value.  
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The general and diagonal models of hedging impose symmetry on the responses of 

volatility to positive or negative shocks. This study also examines the asymmetric 

effect of oil futures by employing an asymmetric model, the TGARCH specification. 

El-Khoury (2006) suggests that incorporating the asymmetric effect could improve 

the hedge effectiveness for the NYMEX’s Light Sweet Crude Oil contract. We 

examine if this is the case in the Chinese oil market. The asymmetric general model 

(TGARCH General) differs from the symmetric general Bi-variate GARCH approach 

in that the covariance matrix Eq. (1.26) is replaced by :  

1 1 1 1 1t t t t t tH C C A A B H B D D       
                             (1.28) 

Where D is a (2 2)  matrix of coefficients, and t  is the additional quadratic form 

of the vector of negative return shocks, defined as 1 1t tI   , where 1tI   if 0t   

and 0 otherwise. The inclusion of t  in the conditional variance-covariance matrix 

not only accounts for any asymmetry effects in the conditional variances but also 

allows for possible asymmetric effects in the conditional covariance. The TGARCH 

Diagonal model restricts the off-diagonal elements of matrix A, B, D to be zero. The 

constant model restricts all elements in matrices A, B and D to be zero. The 

stationarity of the TGARCH(1,1) process requires that the eigenvalues of 

( )A A B B D D     be less than one in modulus.  

 

All these models are estimated through maximum likelihood. Under conditional 

normality, the log likelihood function is as follow: 

1

1

1
( ) log(2 ) (log ( ) ( ) ( ) ( ))

2

T

t t t t
t

L T H H  



                     (1.29) 
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Where T is the number of observations of the sample.   is the parameter vector to 

be estimated. 1 2( , )t t t    is a 1x2 vector of residuals at time t. 1cov( )t t tH    , 

where the diagonal elements of tH  are the conditional variances, the cross diagonal 

elements are the conditional covariances of the spot and futures returns. The 

log-likelihood function is maximised subject to the constraint that the conditional 

variances be positive. Initial values are required for all the parameters and those found 

from the univariate GARCH regressions are used for this purpose. For those 

parameters for which the initial guesses cannot be obtained from the univariate 

GARCH estimations, we used a value 0.05 for all parameters in most of the cases. 

 

 

 

1.4.2 (B) Accessing hedging effectiveness in- and out-of-sample 

 

This study derives the optimal hedge ratios based on three objective functions: the 

traditional variance minimisation, the “expected utility” maximisation and the 

semivariance minimisation10. Accordingly, we access the hedging effectiveness of 

different models used to derive the optimal hedge ratio based on three criteria, namely, 

risk reduction base on variance (variance reduction), expected utility maximisation 

and risk reduction based on semivariance (semivariance reduction).  

 

                                                        
10 More detailed technical introduction of these is given in the previous section. 
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For the variance minimisation criterion, the MV hedge ratio, 1t

 will be: 

(1) for the constant model  

* ( , )

( )

Cov s f

Var f
                                                      (1.30) 

(2) for the dynamic model 

,* 1

1 ,

ˆ( , | )
ˆ( | )
sf tt t t

t t f t

hCov s f

Var f h
 




 


                                         (1.31) 

where ˆ
th  is the conditional variance estimated at time t-1. 

 

For the “expected utility” maximisation criterion, we use the mean-variance 

representation of expected utility following Kroner and Sultan (1993). As a result, the 

objective functions to be maximised to obtain the optimal hedge ratios are:  

(1) for a constant model 

( ) ( ) ( )t t t t tE U R E R Var R                                           (1.32) 

(2) for the dynamic models 

1 1 1( | ) ( | ) ( | )t t t t t t t tE U R E R Var R                                   (1.33) 

Where *
1t t t tR s f   , is the return of the hedged portfolio, and   is the coefficient 

of risk aversion. Thus the utility maximisation distinguishes investors who may have 

different risk preferences.  

 

The maximisation of expected utility gives the 1t

  as below: 

(1)for the constant model  

* ( , ) 1 ( )

( ) 2 ( )

Cov s f E f

Var f Var f



                                           (1.34) 
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(2) for the dynamic model: 

1 1

1 1

( , | ) ( | )1
*

( | ) 2 ( | )
t t t t t

t t t t

Cov s f E f

Var f Var f



 

 

 
 

 
                               (1.35) 

 

There is an additional term in the 1t

  comparing to MV OHRs, which describes the 

speculative demand for futures which reflect the mean and variance trade-off in the 

unhedged futures positions as well as the investors’ attitude toward risk.   

 

To derive the optimal hedge ratio under semivariance minimisation objective, the 

optimisation of the econometric models should be based on semivariance instead of 

variance as we did for the MV hedge ratios. The semivariance assumes that the 

positive and negative returns distribute asymmetrically. If the returns are symmetric, 

there will be no difference between minimising semivariance and minimising variance 

because semivariance is just half of the variance. However, when the residuals are not 

normally distributed, the use of maximum likelihood to estimate the GARCH and 

constant models is not appropriate. Under such circumstance, derivation of the 

optimal hedge ratios under the semivariance minimisation criterion is impossible or 

can only be done by incorporating very complex methods11. As a result, most recent 

literatures use the MV hedge ratio to approximate the semivariance hedge ratio (e.g. 

Cotter and Hanly, 2005, 2006). Therefore, we also use MV hedge ratios as an 

approximation and based on these ratios, we examine the hedging performance of 

                                                        
11 For example, kernel density estimation method was used by Lien and Tse (2000), conditional 
heteroscedastic model was employed by Lien and Tse (1998) to estimate the optimal hedge ratios. 
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those competing models in reducing the downside risk.  

 

Hedging effectiveness of different models is examined in both in- and out-of-sample 

periods. The traditional approach measures the hedging as the percentage reduction in 

the variance of the hedged position in comparison to the unhedged position 

(Ederington, 1979), following the work of Working (1953, 1962), Johnson (1960) and 

Stein (1961). The hedge effectiveness ( ) is measured using the formula: 

( ) ( )

( )

Var H Var U

Var U
 
                                            (1.36) 

Where ( ) ( )tVar U Var s , and *
1( ) ( )t t tVar H Var s f   .  

 

The variance reduction is on an average basis over the whole of the in-sample and 

out-of-sample period and at each day during that latter period. The model that records 

the highest percentage variance reduction would be the one considered to be the most 

effective. Unlike most of the existing literatures, we also include equality tests for the 

means and variances of the hedged portfolio to see if there is any significant change in 

means and variances of the hedged portfolio derived from different hedging models, 

following Ford et al. (2005).  

 

The expected utility comparisons in assessing the model performance for both in- and 

out-of-sample hedging strategies are based on the values of obtained from using Eq. 

(1.32) and (1.33). In terms of expected utility the comparison is based on the average 

of expected utility values over of the forecast period and also on the time path of 
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expected utility values over each day of the forecast period. The higher value of 

expected utility the model can generate the superior the model is relative to other 

models. Equality tests for the means and variances of the hedged portfolio under risk 

minimisation criterion are employed as well.  

 

The risk reduction based on the semivariance is accessed using the following 

equation: 

          
( ) ( )

( )

SemiVar H SemiVar U

SemiVar U
 
                                   (1.37) 

Where ( ) ( )tSemiVar U SemiVar s , and *
1( ) ( )t t tSemiVar H SemiVar s f   .  

 

Same to the variance reduction criterion, we access the semivariance risk reduction 

based on both average and time path of the forecast period, and the model that records 

the highest percentage semivariance reduction would be the one considered to be the 

most effective.  

 

One important issue in accessing the hedging performance is the computation of 

hedging ratios in the out-of-sample period. Unlike the in-sample hedge ratios which 

are calculated from the conditional variance and covariance, the computation of the 

out-of-sample hedge ratios is more complicated. The latter are computed based on the 

parameters obtained from the in-sample estimation for the out-of-sample period to 

up-date tH  continuously. Therefore, the out-of-sample hedge ratios are based on all 

information that is available at the time each hedging decision is made. The 
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information set 1t  contains the history of spot and futures rates of returns to the 

given current time during the forecast period. The predicted hedged portfolio returns 

are then obtained based on the calculated hedge ratios to forecast the following day 

return of the hedged portfolio. 
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1.5 Estimation results 

 

1.5.1 Descriptive Statistics 

 

Table 1.1 reports some basic statistics for daily returns for the China fuel oil futures 

returns (denoted as RF), China Huanan fuel oil spot returns (denoted as RS) and 

Singapore Platt’s fuel oil price returns (denoted as RSX). Returns are calculated as the 

difference of the nature logarithms of the closing prices multiplied by 100. 

 

Table 1. 1Descriptive Statistics of return series of Futures and Spot returns 

 

  RF RS RSX 

 Mean  0.054093  0.068074  0.065437 

 Median  0.091827  0.000000  0.000000 

 Maximum  4.222263  7.020426  8.318446 

 Minimum -5.016596 -5.706072 -11.21173 

 Std. Dev.  1.422809  1.194955  1.931239 

 Skewness -0.207686  0.255625 -0.637181 

 Kurtosis  4.149266  8.654918  8.361978 

        

 Jarque-Bera  34.03585  734.7913  692.2925 

 Probability  0.000000  0.000000  0.000000 

        

)5(Q  11.741** 6.169 6.7104 

  22.774*** 16.819*** 16.923*** 

ARCH-LM  13.3119** 15.0571** 15.98175*** 

Note: (5)Q and 
2

(5)Q denote the Ljung-Box Q statistics for the test of significance of autocorrelations up to 5th 

order in return and squared returns series respectively. *, **, *** denote statistical significance at the 10%,5% and 

1% level. 

 

 

From Table 1.1, we can observe that the mean returns of the futures are lower than 

that of the spot returns in both of the Chinese and Singapore markets. However, the 

2 (5)Q
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standard deviation for the futures returns is larger than the standard deviation of spot 

returns in the Chinese market, which is smaller than that in the Singapore market. 

This may due to the fact that trading in The Singapore market is more active. 

Skewness12, kurtosis13 and thus Jacque Bera (JB) statistics14 for all three series are 

significant, so rejecting the null hypothesis of normal distributions. Kurtosis for the 

spot returns is much higher than for the futures return, so that the spot returns have 

more peakedness. The Ljung-Box (1987) Q(5) statistics for the futures return series is 

significant but not for the two spot return series; while Q(5) statistics for the squared 

return series are mostly significant, which indicate that although autocorrelation in 

returns series is not strong, it is strong for the squared returns. Thus, the second 

moments of returns are time varying and changing in a predictable fashion. This kind 

of volatility clustering —large changes tend to be followed by large changes, of either 

sign, and small changes tend to be followed by small changes, of either sign—can be 

observed in Figure 1.1. In sum, the return series in this study exhibit all the typical 

characteristics of high frequency financial return series: skewness, leptokurtosis, and 

highly significant linear and nonlinear serial correlations. Moreover, the significance 

of the ARCH-LM test (Engle, 1982) statistics also suggests that an ARCH/GARCH 

type model is an appropriate specification. 

 

                                                        
12 Skewness is a measure of asymmetry of the distribution of the series around its mean; the 
skewness of a symmetric distribution, such as the normal distribution, is zero. 
13 Kurtosis measures the peakedness or flatness of the distribution of the series, in other words, 
how fat the tails of the distribution are. The kurtosis of the normal distribution is 3. 
14 A JB statistic for a normal distribution is 0, which indicates that the distribution has a skewness 
of 0 and a kurtosis of 3. Skewness values other than 0 and a kurtosis values farther away from 3 
lead to increasingly large JB values. And the Critical value for normal distribution at 5%level is 
5.99. 
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The correlations of the three returns are reported in Table 1.2. We can observe that 

those of China’s fuel oil futures are more related to the spot prices changes in the 

Singapore market. The price in the Chinese market is largely influenced by the price 

changes in the Singapore market.  

 
Table 1. 2 Correlations between RF, RS and RSX 

 

 RF RS RSX 

RF  1.000000  0.355813  0.467944 

RS  0.355813  1.000000  0.324992 

RSX  0.467944  0.324992  1.000000 

 

 

 

1.5.2 Diagnostic checks on the distributional properties 

 

As discussed in the previous section that the presence of a cointegrating relationship 

between spot and futures prices will produce downwardly biased hedge ratios unless 

an error correction term is incorporated into the mean equation. Also for an adequate 

estimation with Bi-variate GARCH we need to ensure that the components variables 

(the mean returns) are stationary. Thus unit root tests are necessary. In this study, we 

conduct both the Augmented Dickey-Fuller (ADF) and Kwiatkowski, Phillips, 

Schmidt and Shin (KPSS) tests to test for stationary in the natural logarithm of prices 

series and also in the return series. The null hypothesis for the ADF test is that the 

series has a unit root; while the null hypothesis for KPSS is that the series is stationary. 

The test results are reported in Table 1.3.
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Table 1. 3 Unit root test  

 

(1) Unit Root test for the level series (log of the prices series) 

 LF LS LSX 

 ADF KPSS ADF KPSS ADF KPSS 

intercept 

Lag 1 -1.31614 24.69540* -1.57216 23.88512* -1.67102 22.84567* 

Lag 2 -1.34791 16.48799* -1.60328 15.95067* -1.65577 15.2699* 

Lag 3 -1.37309 12.38246* -1.60734 11.98272* -1.65825 11.48018* 

Lag 4  -1.42362 9.918913* -1.60901 9.601885* -1.71471 9.205771* 

Lag 5 -1.39602 8.276574* -1.61353 8.01461* -1.65381 7.689283* 

Trend and intercept 

Lag 1 -0.28649 2.934404* -0.51119 3.505677* -1.48543 3.543713* 

Lag 2 -0.02025 1.975631* -0.68915 2.354065* -1.44472 2.386529* 

Lag 3 -0.32942 1.495056* -0.7394 1.777943* -1.43759 1.80712* 

Lag 4  -0.29891 1.206754* -0.54393 1.432338* -1.35666 1.459327* 

Lag 5 -0.15025 1.014756* -0.50723 1.201965* -1.02593 1.227515* 

 

 
(2) Unit Root test for the Return series (log differences of the prices series) 

 RF RS RSX 

  ADF KPSS ADF KPSS ADF KPSS 

None       
Lag 1 -18.21708* - -14.98325* - -16.44549* - 

Lag 2 -13.10897* - -12.32162* - -13.44293* - 

Lag 3 -11.34618* - -11.51614* - -11.91796* - 

Lag 4  -10.5497* - -10.36032* - -11.69414* - 

Lag 5 -10.0398* - -9.341099* - -11.32247* - 

intercept 

Lag 1 -18.25134* 0.28769 -15.03655* 0.340917 -16.45982* 0.170777 

Lag 2 -13.14702* 0.30941 -12.3811* 0.322044 -13.46278* 0.170692 

Lag 3 -11.39320* 0.30395 -11.58804* 0.309994 -11.94648* 0.171005 

Lag 4  -10.60281* 0.30204 -10.44012* 0.308774 -11.73007* 0.172901 

Lag 5 -10.09977* 0.30635 -9.42671* 0.309055 -11.36721* 0.180307 

Note: Critical value (for 5% significance) for ADF test:  with intercept, - 2.865; with trend and intercept, -3.417.   

Critical value (for 5% significance) for KPSS test : with intercept, 0.463, with intercept and trend, 0.146. 

Here * indicate rejection of null hypothesis at 5% significance level. 
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Figure 1.2 portrays the three log price series (LF, LS and LSX represent the log of 

China fuel oil futures, China fuel oil and Singapore fuel oil spot price series). We can 

observe that all the series are upward slopping. Thus the units root tests with intercept 

and trend for the log price series. Results from both the ADF test and the KPSS test 

reveal that all of the three price series are non-stationary at 5% significant level. For 

the return series, we can observe from the figure there is no intercept or trend in the 

series. Hence we only perform unit roots test with “none” as well as “with intercept”. 

ADF test results for all three series reject the null hypothesis of non-stationarity, and 

the KPSS test results show the null hypothesis of stationary should not be rejected at 

5% significant level. As the return series is the first difference of log prices series, the 

above results indicate that the log futures and spot price series are all following an I(1) 

process. We then adopt Johanson’s cointegration test (1991, 1995) to test whether the 

cointegration relationships between futures and spot prices exists. The results are 

reported in Table 1.4.  

 

As shown in Table 1.4, both the Trace and Max-eigenvalue tests indicate that there is 

no cointegrating relationship between the fuel oil futures and China fuel oil spot 

prices. While for China fuel oil futures and spot prices in the Singapore market, both 

the Trace and Max-eigenvalue tests indicate there exists one cointegrating relationship. 

However, we have to cast doubt on such. Cointegration states the long run 

co-movements of two series, but we have only two years data available. The time 

span is too short for us to draw any meaningful conclusions from the tests. Moreover, 

we cannot find consistent cointegration vectors because the residuals are not normally 



 57

distributed, although in most cases we find that the coefficient on the futures return in 

the first cointegration vector was 1 or nearly 1, which is approximately the value in 

theory. When we assumed that such a cointegration relation exists and used an error 

correction term composed as the difference between the one period lag of the two 

prices in the regression for the hedging in the Singapore market, we found that it did 

not have a statistically significant impact on the returns. Additionally, the inclusion of 

the error correction term made it impossible to obtain estimates of the parameters of 

tH  sometimes; or making the system singular or non-convergent. Consequently, no 

results from using an error correction term are reported here.  

 

 
 
Table 1. 4 Johanson’s cointegration test 

 

(1) Cointegration test for China fuel oil futures prices and China Huanan fuel oil spot prices 

 

Hypothesized Trace Test  Max-Eigen  

No. of CE(s) Statistic Prob. Statistic Prob. 

None  14.79088  0.0636  12.40089  0.0965 

At most 1  2.389989  0.1221  2.389989  0.1221 

 

(2) Cointegration test for China fuel oil futures prices and Singapore fuel oil spot prices 

  
Hypothesized Trace Test  Max-Eigen  

No. of CE(s) Statistic Prob. Statistic Prob. 

None  26.94548*  0.0006  24.46388*  0.0009 

At most 1  2.481599  0.1152  2.481599  0.1152 

Note: * denotes rejection of the hypothesis at the 0.05 level  



 58

1.5.3 Models Estimation Results 
 

 

We investigate the hedging ability of China fuel oil futures when it is used to hedge 

spot positions in the domestic and Singapore markets. We employ different models 

with different variance specifications (TGARCH-General, TGARCH-Diagonal, 

GARCH-General, GARCH-Diagonal and constant model) in order to unveil the most 

appropriate one for deriving the optimum hedging ratios.  

 

Numerous variations of the models were experimented with, for a given structure of 

tH , in respect of the specification of each of the mean equations. We found that, for 

both the Bi-variate GARCH(1,1) and TGARCH(1,1) models, the most minimal 

specifications with random means were generally the most acceptable, statistically 

speaking. Such is consistent with Ford et al. (2005). Thus the estimation results we 

report here are for GARCH and TGARCH models with the mean structure containing 

only intercepts. A further point that might need highlighting is the estimation of 

GARCH and TGARCH structure. Engle and Kroner (1995) suggest that the BHHH 

(Berndt, Hall, Hall and Hausman, 1974) optimization algorithm15 might be the most 

appropriate for estimation of multivariate GARCH models. However, Ford et al (2005) 

                                                        
15 The BHHH algorithm follows Newton-Raphson, but replaces the negative of the Hessian by an 
approximation formed from the sum of the outer product of the gradient vectors for each 
observation’s contribution to the objective function. The advantages of approximating the negative 
Hessian by the outer product of the gradient are that (1) we need to evaluate only the first 
derivatives, and (2) the outer product is necessarily positive semi-definite. The disadvantage is that, 
away from the maximum, this approximation may provide a poor guide to the overall shape of the 
function, so that more iterations may be needed for convergence.  
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point out that the Marquardt algorithm16 provided estimates that were identical to or 

better than those obtained from the use of BHHH. Our experiments confirm those 

findings.  

 

The maximum likelihood estimation results for the hedging-ability of the China fuel 

oil futures in hedging a domestic spot position are reported in Table 1.5 and the 

estimation results for hedging a spot position in the Singapore market are reported in 

Table 1.6.  

 

First, consider the mean structure for futures and spot returns. From Tables 1.5 and 1.6, 

we observe that the estimated mean of futures returns f  are not significantly 

different from zero at 5% significant level for all the models. The expected means for 

Chinese fuel oil spot returns and Singapore fuel oil commodity returns are 

insignificantly different from zero as well. Comparing the two tables, we find that the 

estimated mean spot returns in the Chinese market are smaller than those in the 

Singapore market. Although the estimation results suggest that the futures returns are 

not significantly different from zero at a 5% significance level and therefore the 

futures prices follows a martingale process, we cannot estimate the dynamic GARCH 

models with the mean equations being just dependent upon white noise, because 

convergence were not able to be achieve; or even when convergence was ensured, the 

                                                        
16 The Marquart algorithm modifies the Gauss-Newton algorithm in exactly the same manner as 
quadratic hill climbing modifies the Newton-Raphson method by adding a correction matrix (or 
ridge factor) to the Hessian approximation. The ridge correction handles numerical problems when 
the outer product is near singular and may improve the convergence rate. The algorithm pushes the 
updated parameter values in the direction of the gradient.  
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covariance stationary of the GARCH structures were violated. However, including 

those intercept variables will make the coefficients in A, B, and C matrix changed 

slightly 17. Thus in calculating the utility maximisation hedge ratios, the actual 

expected value is used instead of zero, which make the hedge ratios slightly differ 

from the MV hedge ratios, so as the ranking of different models.  

 

Now we turn to the covariance structure for the domestic and cross border hedging. 

From Table 1.5 (a) we can observe that for the TGARCH(1,1) general and diagonal 

models, all the estimated coefficients ijd , which capture the asymmetric effects 

(positive and negative shocks increase the variances by different magnitudes) are 

insignificant at 95% significant level. We further perform the Wald exclusion tests for 

the asymmetric coefficients. The test result (5.0008 with p-value equal 0.2872) cannot 

reject the null hypothesis that these coefficients are jointly zero, implying that markets 

react to positive and negative shocks in a similar manner. Such results diverge from 

those in the existing literature on the asymmetric effects in equity returns, most of 

which indicate the negative shocks have greater and longer effects than positive 

shocks. For the general models and diagonal models reported in Table 1.5(b), we 

observe most parameters are significant, implying that the distribution of spot and 

futures variances and covariances are time-varying. For the constant model, all the 

coefficients are significant at a 5% significance level. The Ljung-Box Q-statistics for 

residuals and squared residuals in their normalised form are calculated to test the 

                                                        
17 Not their significance, but values.  
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Table 1. 5 Maximum Likelihood Estimation for the China fuel oil futures when used for 

hedging the spot position in the domestic market.  

 

(A) TGARCH(1,1) and constant model 

 TGARCH-General TGARCH-Diagonal Constant 

 Coeff. Std. Err T-stat Coeff. Std. Err T-stat Coeff. Std.Err T-stat 

Mean Structure         

f  0.0797  0.0577  1.3815 0.1001 0.0585 1.7122 0.1056  0.0618  1.7093 

s  0.0835  0.0555  1.5064 0.0920 0.0515 1.7869 0.1024  0.0542  1.8882 

Covariance Structure   

11c  0.4254**  0.1228  3.4648 0.3631** 0.0623 5.8329 1.3758**  0.0347  39.6115 

21c  0.8486**  0.2030  4.1803 0.1351** 0.0254 5.3200 0.4266**  0.0446  9.5681 

22c  0.3794  0.3834  0.9897 0.1016 0.0647 1.5697 1.1177**  0.0202  55.2120 

11a  0.2709**  0.0932  2.9067 0.4229** 0.0473 8.9330 - - - 

12a  -0.4993**  0.0452  -11.0503 - - - - - - 

21a  0.0191  0.0600  0.3177 - - - - - - 

22a  0.2261**  0.0681  3.3226 0.1190** 0.0160 7.4365 - - - 

11b  0.9530**  0.0312  30.5633 0.8795** 0.0216 40.7860 - - - 

12b  0.2070**  0.0603  3.4351 - - - - - - 

21b  -0.1704  0.1739  -0.9803 - - - - - - 

22b  0.1652  0.1317  1.2546 0.9815** 0.0068 144.74 - - - 

11d  0.0340  0.4621  0.0737 0.0018 14.6257 0.0001 - - - 

12d  0.0394  0.3619  0.1088 - - - - - - 

21d  0.0385  0.2688  0.1431 - - - - - - 

22d  0.1671  0.2000  0.8355 0.0016 3.6078 0.0004 - - - 

          
Ljung-Box Statistics   

Futures Q-statistic P-value  Q-statistic P-value  Q-statistic P-value 

(15)Qs  13.8620  0.5360  14.1960 0.5110 20.7910  0.1440  

2 (15)
s

Q  11.4540  0.7200  7.7706 0.9330 42.5820  0.0000  

Spot Q-statistic P-value  Q-statistic P-value  Q-statistic P-value 

(15)Qs  18.8230  0.2220  15.4540 0.4190 19.0200  0.2130  

2 (15)
s

Q  12.0410  0.6760  13.0010 0.6020 28.6650  0.0180  

     

LF -1567.73   -1581.36 -1627.58   

LR   27.2520 92.4460   

     

Covariance Stationary tests        
TGARCH-General Model: Eigenvalues: 0.9701; 0.0890; 0.2111 and 0.2677    
TGARCH-Diagonal Model: Eigenvalues: 0.9136; 0.9136; 0.9524 and 0.9775       

Note: ** represents significant at 5% significant level. The critical values for T-test is 1.96. 

     Log-likelihood and likelihood ratio test statistics of the restrictions denoted as LF and LR 

respectively. LR statistics reported here test the general against diagonal and diagonal against 

constant. LR is distributed as Chi-square ( 2 ) with degrees of freedom equal to the number of 

restrictions. The critical value for 2 (6)  at 5% significant level is 12.59.
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(B) GARCH(1,1) and constant model 

 

 GARCH-General GARCH-Diagonal Constant 

 Coeff. Std.Err T-stat Coeff. Std. Err T-stat Coeff. Std.Err T-stat 

Mean Structure         

f  0.0797  0.0567  1.4045 0.0908 0.0576 1.5780 0.1056  0.0618  1.7093 

s  0.0770  0.0530  1.4541 0.0840 0.0518 1.6220 0.1024  0.0542  1.8882 

Covariance Structure   

11c  0.4106**  0.1347  3.0484 0.3542** 0.0576 6.1447 1.3758**  0.0347  39.6115 

21c  0.9185**  0.2587  3.5507 0.1608** 0.0233 6.8960 0.4266**  0.0446  9.5681 

22c  -0.2521  0.8338  -0.3024 0.0004 13.2148 0.0000 1.1177**  0.0202  55.2120 

11a  -0.2834**  0.0811  -3.4947 0.4331** 0.0394 10.9838 - - - 

12a  0.4899**  0.0400  12.2316 - - - - - - 

21a  -0.0059  0.0532  -0.1111 - - - - - - 

22a  -0.2037**  0.0553  -3.6845 0.1455** 0.0140 10.4178 - - - 

11b  0.9485**  0.0299  31.7405 0.8810** 0.0189 46.5407 - - - 

12b  0.1993**  0.0601  3.3144 - - - - - - 

21b  -0.1368  0.1635  -0.8368 - - - - - - 

22b  0.1676  0.1388  1.2076 0.9802** 0.0049 200.6259 - - - 

          

Ljung-Box Statistics        

Futures Q-statistic P-value  Q-statistic P-value  Q-statistic P-value  

(15)Qs  13.7620  0.5440   14.0740 0.5200  20.7910  0.1440   

2 (15)
s

Q  11.6220  0.7070   7.6953 0.9350  42.5820  0.0000   

Spot Q-statistic P-value  Q-statistic P-value  Q-statistic P-value  

(15)Qs  18.8660  0.2200   14.8890 0.4590  19.0200  0.2130  

2 (15)
s

Q  13.2140  0.5860   10.4490 0.7910  28.6650  0.0180  

         

LF -1570.98   -1583.80 -1627.58   

LR   25.65 87.5560   

     

Covariance Stationary tests        
TGARCH-General Model: Eigenvalues: 0.9714; 0.2095; 0.0553 and 0.2469    
TGARCH-Diagonal Model: Eigenvalues: 0.9265; 0.9334; 0.9637 and 0.9896     

Note: ** represents significant at 5% significant level. The critical values for T-test is 1.96 at 5% 

significant level. 

     Log-likelihood and likelihood ratio test statistics of the restrictions denoted as LF and LR 

respectively. LR statistics reported here test the general against diagonal and diagonal against 

constant. LR is distributed as Chi-square ( 2 ) with degrees of freedom equal to the number of 

restrictions. The critical value for 2 (6)  at 5% significant level is 12.59.
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Table 1. 6 Maximum Likelihood Estimation for the China fuel oil futures when used for 

hedging the spot position in the Singapore market.  

 

(A) TGARCH(1,1) and constant models 

 TGARCH-General TGARCH-Diagonal Constant 

  Coeff. Std. Err T-stat Coeff. Std. Err T-stat Coeff. Std. Err T-stat 

Mean Structure         

f  0.0948  0.0621  1.5273  0.1047  0.0603  1.7351  0.1056  0.0620  1.7031 

s  0.0957  0.0902  1.0620  0.0991  0.0823  1.2039  0.1131  0.0885  1.2780 

covariance Structure        

11c  0.3443**  0.0543  6.3439  0.4903** 0.0643  7.6225  1.3758**  0.0353  39.0293 

21c  -0.0215  0.0898  -0.2390  0.2363** 0.0424  5.5768  0.8873**  0.0777  11.4133 

22c  -0.0004  74.510 0.0000  0.2206** 0.0684  3.2250  1.6986**  0.0306  55.5574 

11a  0.3217**  0.0492  6.5373  0.3788** 0.0492  7.7016  - - - 

12a  -0.1367**  0.0442  -3.0924  - - - - - - 

21a  -0.0164  0.0334  -0.4927  - - - - - - 

22a  0.2738**  0.0396  6.9223  0.2716** 0.0270  10.0455  - - - 

11b  0.9211**  0.0229  40.1847  0.8571** 0.0302  28.3655  - - - 

12b  0.1061**  0.0247  4.2935  - - - - - - 

21b  -0.0059  0.0132  -0.4481  - - - - - - 

22b  0.9336**  0.0155  60.4149 0.9499** 0.0094  101.2110 - - - 

11d  -0.0722  0.2988  -0.2418  -0.0951  0.1884  -0.5049  - - - 

12d  0.0001  0.2672  0.0004  - - - - - - 

21d  0.0174  0.1445  0.1202  - - - - - - 

22d  0.0678  0.1897  0.3575  0.0438  0.1320  0.3313  - - - 

          

Ljung-Box Statistics        

Futures Q-statistic P-value  Q-statistic P-value  Q-statistic P-value  

(15)Qs  14.5010  0.4880   15.1510  0.4410  20.7910  0.1440   

2 (15)
s

Q  9.2718  0.8630   9.2723  0.8630  42.5820  0.0000   

Spot Q-statistic P-value  Q-statistic P-value  Q-statistic P-value  

(15)Qs  23.6210  0.0720   15.3200  0.1210  28.5480  0.0180   

2 (15)
s

Q  5.0264  0.9920   4.7467  0.9940  38.2260  0.0010   

          

LF -1776.00    -1779.36   -1836.00    

LR    6.7100   113.2760    

          

Covariance Stationary tests        

TGARCH-General Model: Eigenvalues: 0.9468±0.0685i; 0.9593 and 0.9419    

TGARCH-Diagonal Model: Eigenvalues: 0.8871; 0.9128; 0.9593 and 0.9780       

Note: ** represents significant at 5% significant level. The critical values for T-test is 1.96 at 5% 

significant level.. 

     Log-likelihood and likelihood ratio test statistics of the restrictions denoted as LF and LR 

respectively. LR statistics reported here test the general against diagonal and diagonal against 

constant. LR is distributed as Chi-square ( 2 ) with degrees of freedom equal to the number of 

restrictions. The critical value for 2 (6)  at 5% significant level is 12.59.
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(B) GARCH(1,1) and constant models.  

 

 GARCH-General GARCH-Diagonal Constant 

  Coeff. Std. Err T-stat Coeff. Std. Err T-stat Coeff. Std.Err T-stat 

Mean Structure         

f  0.0963  0.0611  1.5775  0.1044  0.0594 1.7584  0.1056  0.0620  1.7031 

s  0.0926  0.0831  1.1141  0.0990  0.0802 1.2346  0.1131  0.0885  1.2780 

Covariance Structure        

11c  0.4172**  0.0619  6.7410  0.4882** 0.0632 7.7221  1.3758** 0.0353  39.0293 

21c  0.0273  0.0941  0.2906  0.2256** 0.0401 5.6272  0.8873**  0.0777  11.4133 

22c  0.0006  53.6582  0.0000  0.2317** 0.0602 3.8488  1.6986**  0.0306  55.5574 

11a  0.3584**  0.0496  7.2192  0.3820** 0.0401 9.5229  - - - 

12a  -0.1396**  0.0444  -3.1419  - - - - - - 

21a  -0.0241  0.0359  -0.6710  - - - - - - 

22a  0.2917**  0.0406  7.1913  0.2756** 0.0251 10.9872  - - - 

11b  0.8910**  0.0289  30.7886  0.8589** 0.0292 29.4055  - - - 

12b  0.1039**  0.0282  3.6771  - - - - - - 

21b  -0.0001  0.0146  -0.0044  - - - - - - 

22b  0.9327**  0.0154  60.6049  0.9496** 0.0088 108.5054 - - - 

          

Ljung-Box Statistics        

Futures Q-statistic P-value  Q-statistic P-value  Q-statistic P-value  

(15)Qs  14.7880  0.4670   15.1150  0.4430  20.7910  0.1440   

2 (15)
s

Q  8.4913  0.9030   9.0493  0.8750  42.5820  0.0000   

Spot Q-statistic P-value  Q-statistic P-value  Q-statistic P-value  

(15)Qs  23.5990  0.0720   23.2980  0.0780  28.5480  0.0180   

2 (15)
s

Q  4.8186  0.9940   4.7225  0.9940  38.2260  0.0010   

          

LF -1776.12    -1779.55   -1836.00    

LR    6.8520   112.8980    

          

Covariance Stationary tests        

General Model: Eigenvalues: 0.9366±0.0356i; 0.9429 and 0.9321    

Diagonal Model: Eigenvalues: 0.8837; 0.9209; 0.9209 and 0.9777       

Note: ** represents significant at 5% significant level. The critical values for T-test is 1.96 at 5% 

significant level. 

     Log-likelihood and likelihood ratio test statistics of the restrictions denoted as LF and LR 

respectively. LR statistics reported here test the general against diagonal and diagonal against 

constant. LR is distributed as Chi-square ( 2 ) with degrees of freedom equal to the number of 

restrictions. The critical value for 2 (6)  at 5% significant level is 12.59.
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robustness of these models. We can observe that for the all dynamic models, 

Q-statistics for up to 15 lags are insignificant, for both level and squared normalised 

residuals, which suggest that the dynamic models can effectively remove the serial 

correlations both in levels and in their second movements. However, the Q-statistics 

for the constant models are significant, which implies that constant specification 

cannot remove the serial correlation in these series; heteroscedasticity still remains in 

the residuals. Consequently, we can conclude the dynamic models are more robust 

than the constant models and the optimal hedge ratios are indeed time-varying. The 

likelihood ratio (LR) tests are employed to test the general specifications against the 

diagonal and the diagonal against the constant. LR statistics are given at the bottom of 

Table 1.5 and also summarized in Table 1.7. The statistics suggest that the general 

models dominate diagonal models and the diagonal models dominate the constant 

model. The GARCH General model seems to be the most appropriate and should be 

accepted. Covariance stationary tests of these dynamic GARCH models are also 

provided. We can observe that for each modelling specifications all the eigenvalues 

have modulus less than 1,  which indicate stationary in covariance.   

 

For the covariance structure of the futures returns and spot returns in the Singapore 

market (shown in Table 1.6), we find similar results. For the asymmetric models, all 

the coefficients ( ijd ) capturing asymmetric effects are insignificantly different from 

zero. For the coefficient matrix A ( ija ) and coefficient matrix B( ijb ), most of their 

components are significant under the dynamic modelling specifications, which 
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provide strong support for the claim that the variances and covariances are time 

varying and conditional on past information. For the constant models, all the 

parameters are significant at the 5% level. However, the constant models are not 

robust because there are serial correlations in the residual series as well as in the 

second moment of the residuals, as shown by the Ljung-Box Q statistics. The Q 

statistics also show that the dynamic models remove all the serial correlations and 

heteroscedasticity in the return series and thus are robust. The Likelihood ratio test for 

model restrictions are provided at the bottom of the table and also summarized in 

Table 1.7. According to the LR values for joint restrictions between different models 

reported in Table 1.7, we see that the LR statistics is not significant for the TGARCH 

General model to be nested to TGARCH Diagonal, nor is for GARCH General to be 

nested to GARCH Diagonal. This implies that for the cross-hedging of the Singapore 

oil spot, the GARCH Diagonal model seems to be the most appropriate. Again, as 

suggested by the eigenvalues, all the dynamic modelling specifications are covariance 

stationary. 

Table 1. 7 Summary of Log Likelihood Ratio (LR) Statistics between different models 

 

 Domestic Hedging Cross Hedging 

TG-General to TG-Diagonal 27.252 6.71 

TG-General to Constant 119.698 119.986 

TG-Diagonal to Constant 92.446 113.276 

   

G-General to G-Diagonal 25.650 6.852 

G-General to Constant 113.206 119.75 

G-Diagonal to Constant  87.556 112.898 

   

TG-Genearl to G-General 6.492 0.236 

TG-Diagonal to G-Diagonal 4.89 0.378 

Note: At 5% significant level, The critical value for 2 (6) 12.59  , 2 (4) 9.49  , and 2 (2) 5.99 



 67

1.6 Hedging performance in-sample  

 

1.6.1 Hedging ratios under different criteria 

 

1.6.1 (A) Descriptive statistics of the covariance matrices and hedge ratios under 

Risk Minimisation criterion 

 

Figures 1.4(b) to 1.9(b) portray the estimated in-sample conditional variance and 

covariance of spot and futures returns from the five different models for both 

domestic hedging and cross hedging. At the same time, we also portray the 

unconditional variance and covariance of the spot and futures returns together with 

their conditional variables, in Figures 1.4(a) to 1.9(a). The descriptive statistics of the 

conditional covariance matrices from the five models and the unconditional variance 

and covariance of spot and futures returns for the in-sample period are given in Tables 

1.8 and 1.9. Table 1.8 reports those statistics for domestic hedging and Table 1.9 for 

hedging in the Singapore market. From Figures 1.4 to 1.9, we can see that for almost 

all the dynamic models, the properties of the estimated conditional risks are generally 

“smoother” than their unconditional counterparts. This is also the case for the constant 

model. Relative statistics provided in Tables 1.8 and 1.9 further substantiate such a 

view. In addition, we notice there is bigger divergence between the estimated 

conditional variances and covariances under different modelling specifications for the 

domestic hedging than for hedging in the Singapore market. This implies that there is 
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more unexpected turbulence in the domestic spot market.  

 

Figure 1.10 portrays the estimated in-sample OHRs when China fuel oil futures is 

used for hedging the spot positions in the domestic market. Figure 1.11 portrays the 

estimated optimal hedge ratios for hedging the spot positions in the Singapore market. 

Throughout the period there is a wide divergence between hedge ratios estimated 

using dynamic models and constant models, in both markets. The hedge ratios clearly 

change as new information arrives and are time-varying. For hedging of domestic spot 

risks, we can observe from Figure 1.10 that the OHRs estimated under the GARCH 

General model diverge from the hedge ratios estimated under other three dynamic 

models throughout. However, for hedging of Singapore spot positions, the estimated 

hedge ratios under different dynamic modelling specifications move more or less in 

synergy. Comparing the two figures we can also observe that the hedge ratios for 

hedging the Singapore spot position are much higher than for the domestic hedging.  

 

These figures only give a general picture of the features of the hedge ratios. We 

further examine the dynamics of these hedge ratios, using simple time-series analysis. 

Tables 1.10 and 1.11 report the summary statistics for the hedge ratios estimated 

in-sample under different model specifications for futures and spot series in both the 

domestic and the Singapore market. 

 

For the domestic hedging, Table 1.10 shows that the mean hedge ratio of the diagonal 
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Table 1. 8 Conditional and unconditional variances and covariances for the domestic 

hedging: In-sample period 

 

   Mean  Maximum  Minimum  Std. Dev.  Skewness  Kurtosis Jarque-Bera 

TG-Gen h11 2.0052  6.1595  0.6421  1.0525  1.1521  4.0519  133.1334  

TG-Dia h11 2.0725  7.4015  0.6603  1.2042  1.5380  5.6643  343.6287  

G-Gen  h11 2.0034  6.0517  0.6503  1.0370  1.1190  3.9266  121.7522  

G-Gen  h11 2.1406  7.7353  0.6468  1.2719  1.5203  5.5716  329.0538  

Const  h11 1.8930  1.8930  1.8930  0.0000   NA  NA  NA 

Var(f) 1.8955  25.7266  0.0000  3.3839  3.2900  15.8908  4346.4930 

TG-Gen h22 1.4662  5.9917  0.9563  0.7437  3.0061  13.6977  3124.6780 

TG-Dia h22 1.3391  2.3200  0.8744  0.3321  0.7392  2.9169  45.4921  

G-Gen  h22 1.4619  5.8204  1.0006  0.6999  3.0609  14.1319  3348.9230 

G-Gen  h22 1.4292  2.8937  0.7864  0.4739  0.8326  3.1153  57.8125  

Const  h2 1.4313  1.4313  1.4313  0.0000   NA  NA  NA 

Var(s) 1.4324  48.3335  0.0000  3.9413  7.1562  68.9965  94627.9400 

TG-Gen h12 0.5743  1.5603  -1.6551  0.3678  -2.1305  11.8602  2005.6770 

TG-Dia h12 0.5784  1.4969  -0.0339  0.2352  1.2061  4.6882  179.8645  

G-Gen  h12 0.5685  1.4208  -1.7696  0.3766  -2.4350  13.0331  2580.8710 

G-Gen  h12 0.6912  1.8456  -0.0706  0.2954  1.2121  4.6784  180.3886  

Const  h12 0.5869  0.5869  0.5869  0.0000   NA  NA  NA 

Cov(f,s) 0.5886  23.0249  -7.6132  2.2127  4.0361  32.7965  19774.5500 

 

 

Table 1. 9 Conditional and unconditional variances and covariances for hedging in the 

Singapore market: In-sample period 

 

  Mean Maximum Minimum Std. Dev. Skewness Kurtosis Jarque-Bera 

TG-Gen h11 1.9303 5.3975  0.8402  0.8736  1.1948  4.1634  146.5620  

TG-Dia h11 1.9598 6.2304  0.9471  0.9086  1.7591  6.8189  559.4629  

G-Gen  h11 1.9265 5.6482  0.9090  0.8725  1.4390  5.1900  271.3992  

G-Gen  h11 1.9601 6.1293  0.9516  0.8988  1.7039  6.4834  492.7429  

Const  h11 1.8930 1.8930  1.8930  0.0000   NA  NA  NA 

Var(f) 1.8955 25.7266  0.0000  3.3839  3.2900  15.8908  4346.4930  

TG-Gen h22 3.8079 17.5175  1.4194  2.2729  2.3994  10.4220  1620.8730  

TG-Dia h22 3.9022 18.2302  1.5385  2.5331  2.2534  8.9969  1167.6730  

G-Gen  h22 3.8551 18.3909  1.5365  2.3770  2.4481  10.6073  1698.2480  

G-Gen  h22 3.9211 18.4469  1.5355  2.5560  2.2571  9.0385  1179.4520  

Const  h2 3.6725 3.6725  3.6725  0.0000   NA  NA  NA 

Var(s) 3.6745 127.2376  0.0000  10.3940  7.5601  74.9770  112243.1000 

TG-Gen h12 1.2022 3.8820  -0.7671  0.5918  0.9589  5.1021  168.0041  

TG-Dia h12 1.2825 4.4741  -0.2184  0.6142  1.7167  7.2773  624.2249  

G-Gen  h12 1.1864 3.8703  -0.9222  0.5633  0.9652  5.7701  236.5462  

G-Gen  h12 1.2947 4.6917  -0.2534  0.6464  1.7393  7.4071  654.0964  

Const  h12 1.2208 1.2208  1.2208  0.0000   NA  NA  NA 

Cov(f,s) 1.2231 28.7417  -10.0058  3.3600  3.7522  24.0325  10347.6500  
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Table 1. 10 Statistics for estimated hedge ratios for domestic hedging: In-sample period 

 

 TG-Gen TG-Dia G-Gen G-Dia Constant 

 Mean 0.3652 0.3351 0.3603 0.3908 0.3101 

 Median 0.3567 0.3212 0.3697 0.3672 0.3101 

 Maximum 0.7577 0.8043 0.8427 0.9721 0.3101 

 Minimum -0.0737 -0.0088 -0.4835 -0.0176 0.3101 

 Std. Dev. 0.1578 0.1482 0.2161 0.1789 0.0000 

 Skewness -0.0764 0.4284 -0.7206 0.4898 NA 

 Kurtosis 2.5473 2.8385 4.2802 2.9429 NA 

      

Jarque-Bera 4.7374 15.7742 77.1094 19.9782 NA 

Probability 0.0936 0.0004 0.0000 0.0000 NA 

      

ADF -5.2518 -4.1124 -8.1993 -4.0987  

 [0.0000] [0.0000] [0.0000] [0.0000]  

PP -5.4764 -4.2476 -13.2868 -4.2506  

 [0.0000] [0.0000] [0.0000] [0.0000]  

 

 

 

Table 1. 11 Statistics for estimated hedge ratios for cross hedging: In-sample period 

 TG-Gen TG-Dia G-Gen G-Dia Constant 

Mean 0.6750 0.7079 0.6784 0.7115 0.6449 

Median 0.6669 0.6852 0.6699 0.6832 0.6449 

Maximum 1.8257 1.8031 1.8611 1.8822 0.6449 

Minimum -0.1919 -0.1006 -0.2078 -0.1180 0.6449 

Std. Dev. 0.2811 0.2913 0.2955 0.3039 0.0000 

Skewness 0.5674 1.0613 0.6334 1.1951 NA 

Kurtosis 4.8498 5.3203 4.8707 5.7263 NA 

      

Jarque-Bera 97.7268 205.2026 105.9124 272.7746 NA 

Probability 0.0000 0.0000 0.0000 0.0000 NA 

      

ADF with -5.0859 -4.7690 -5.5072 -4.7367  

Intercept [0.0000] [0.0000] [0.0000] [0.0000]  

PP with -5.0859 -4.7540 -5.6603 -4.7367  

Intercept [0.0000] [0.0000] [0.0000] [0.0000]  
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model (0.3908) exceeds that of the TGARCH general model (0.3652) and General 

model (0.3603), which exceeds that of the TGARCH Diagonal model (0.3351). The 

Constant model generates the lowest hedge ratio (0.3101). The hedge ratios estimated 

from the GARCH General model have the largest standard deviation; while hedge 

ratios estimated using TGARCH diagonal model have the lowest variation. The 

estimated hedging ratios for cross-hedging in the Singapore market which are reported 

in Table 1.11, exhibit similar characteristics. The dynamic models yield higher mean 

hedge ratio than the constant models; within the dynamic models, diagonal model 

yields the largest mean hedge ratio. However, in the Singapore market, hedge ratios 

estimated from the TGARH General model have the lowest standard deviation.  

 

Comparing Tables 1.10 and 1.11, we find that the means of hedge ratios for hedging 

spot positions in the Singapore market are much higher than their counterparts in the 

domestic market, no matter which specification is employed. Meanwhile, the standard 

deviations for the hedge ratios in the Singapore market are also higher. Both ADF and 

PP unit root tests on the estimated hedge ratios from the dynamic models reject the 

null hypothesis of the existence of unit root for all models in both markets, implying 

that the hedge ratio are by and large I(0). This suggests that the oil futures hedge 

ratios are mean reverting and any impact of a shock to the hedge ratio eventually 

becomes negligible. Jarque-Bera statistics are all significant, implying that the hedge 

ratios calculated from the conditional information set exhibit a high degree of 

non-normality. This may be due to the fact that the returns tend to be clustered 
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through time and thus so are the hedge ratios.   

 

 

 

1.6.1 (B) Descriptive statistics of Hedge ratios derived from maximizing expected 

utility  

 

Tables 1.12 and 1.13 report the descriptive statistic for the hedge ratios derived from 

utility maximisation for domestic and cross hedging, with different risk aversion 

assumptions. We can see from the tables that hedge ratios differ with when investors 

risk preferences differ. As discussed before that if the futures returns follow a 

Martingale process, i.e., if the conditional expected value of futures returns is zero, 

then the optimal hedge ratios under variance minimisation criterion are identical to 

from those under utility maximisation. However, the actual mean values instead of 

zero value for the futures returns are used, thus the hedge ratios estimated under 

variance minimisation may be different from those estimated under utility 

maximisation. For the same reason, the hedge ratios also change with the different 

assumptions of the value of the risk aversion parameter. Figures 1.12 to 1.15 portray 

the hedge ratios under different risk aversion assumption when using different models 

(we only report two models for domestic and cross-border hedging each; other models 

give similar results). We can observe there is divergence between hedge ratios 

estimated under different criterion and with different risk aversion assumptions.  
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Table 1. 12 Descriptive statistics of OHRs derived from maximizing expected utility under 

different risk aversion assumption for domestic hedging: In-sample period  

(1) 0.25   

0.25   TG-Gen TG-Dia G-Gen G-Dia Constant 

 Mean 0.2504  0.2087  0.2594  0.2780  0.1984  

 Median 0.2566  0.1953  0.2867  0.2560  0.1984  

 Maximum 0.6066  0.5900  0.6034  0.7718  0.1984  

 Minimum -0.1104  -0.0610  -0.5337  -0.0629  0.1984  

 Std. Dev. 0.1238  0.1110  0.1821  0.1431  0.0000  

 Skewness -0.0022  0.7029  -1.2508  0.6762   NA 

 Kurtosis 3.0202  3.8804  5.4380  3.7189   NA 

      

 Jarque-Bera 0.0089  57.0853  253.1897 48.6718   NA 

 Probability 0.9956  0.0000  0.0000  0.0000   NA 

      

ADF with -5.3981  -4.0402  -9.8332  -4.0238   

Intercept [0.0000]  [0.0013]  [0.0000]  [0.0014]   

PP with -5.5804  -4.0463  -15.6522  -4.1255   

Intercept [0.0000]  [0.0013]  [0.0000]  [0.0010]   

 

(2) 0.5   

0.5   TG-Gen TG-Dia G-Gen G-Dia Constant 

 Mean 0.3078  0.2719  0.3099  0.3344  0.2542  

 Median 0.3026  0.2586  0.3289  0.3162  0.2542  

 Maximum 0.6707  0.6937  0.7202  0.8707  0.2542  

 Minimum -0.0921  -0.0349  -0.5086  -0.0403  0.2542  

 Std. Dev. 0.1393  0.1274  0.1984  0.1595  0.0000  

 Skewness -0.0825  0.5255  -0.9681  0.5599   NA 

 Kurtosis 2.7311  3.2783  4.7876  3.2754   NA 

      

Jarque-Bera 2.0653  24.5233  144.0993  27.5899   NA 

Probability 0.3561  0.0000  0.0000  0.0000   NA 

      

ADF with -5.3533  -4.0354  -8.9393  -4.0421   

Intercept [0.0000] [0.0014[  [0.0000] [0.0013]  

PP with -5.5892  -4.1742  -14.4758  -4.2037   

Intercept [0.0000] [0.0008[  [0.0000] [0.0007]   
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(3) 1   

1   TG-Gen TG-Dia G-Gen G-Dia Constant 

 Mean 0.3365  0.3035  0.3351  0.3626  0.2822  

 Median 0.3291  0.2879  0.3488  0.3416  0.2822  

 Maximum 0.7137  0.7490  0.7814  0.9210  0.2822  

 Minimum -0.0829  -0.0219  -0.4960  -0.0289  0.2822  

 Std. Dev. 0.1483  0.1374  0.2071  0.1689  0.0000  

 Skewness -0.0872  0.4675  -0.8395  0.5195   NA 

 Kurtosis 2.6259  3.0317  4.5167  3.0935   NA 

      

Jarque-Bera 3.5347  18.1576  106.2304  22.5836   NA 

Probability 0.1708  0.0001  0.0000  0.0000   NA 

      

ADF with -5.3064  -4.0688  -8.5513  -4.0676   

Intercept [0.0000]  [0.0012]  [0.0000]  [0.0012]   

PP with -5.5370  -4.1986  -13.8767  -4.2417   

Intercept [0.0000]  [0.0000]  [0.0000]  [0.0006]   

 

 

Table 1. 13 Descriptive statistics of OHRs derived from maximizing expected utility under 

different risk aversion assumption for cross hedging: In-sample period 

 

 (1) 0.25   

0.25   TG-Gen TG-Dia G-Gen G-Dia Constant 

 Mean 0.5562 0.5792 0.5601 0.5859 0.5333 

 Median 0.5460 0.5368 0.5409 0.5384 0.5333 

 Maximum 1.6980 1.7009 1.7354 1.7862 0.5333 

 Minimum -0.2393 -0.1971 -0.2916 -0.2152 0.5333 

 Std. Dev. 0.2616 0.2686 0.2738 0.2822 0.0000 

 Skewness 0.7364 1.3482 0.8027 1.4447 -2.9106 

 Kurtosis 5.3794 6.4308 5.4638 6.7749 9.4714 

      

Jarque-Bera 178.1456 433.1856 196.7251 514.1136 1723.6390 

Probability 0.0000 0.0000 0.0000 0.0000 0.0000 

      

ADF with -5.4466 -5.2388 -5.9267 -5.1963  

Intercept [0.0000] [0.0000] [0.0000] [0.0000]  

PP with -5.4466 -5.2388 -6.1206 -5.1963  

Intercept [0.0000] [0.0000] [0.0000] [0.0000]  
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(2) 0.5   

 

0.5   TG-Gen TG-Dia G-Gen G-Dia Constant 

 Mean 0.6128 0.6390 0.6157 0.6446 0.5891 

 Median 0.5956 0.6085 0.6042 0.6050 0.5891 

 Maximum 1.7618 1.7520 1.7982 1.8311 0.5891 

 Minimum -0.2156 -0.1488 -0.2497 -0.1666 0.5891 

 Std. Dev. 0.2677 0.2756 0.2814 0.2883 0.0000 

 Skewness 0.6581 1.2310 0.7207 1.3476 NA 

 Kurtosis 5.1653 5.9983 5.2056 6.4052 NA 

      

Jarque-Bera 146.0732 342.4180 157.9293 429.0597 NA 

Probability 0.0000 0.0000 0.0000 0.0000 NA 

      

ADF with -5.4453 -5.1468 -5.8978 -5.1104  

Intercept [0.0000] [0.0000] [0.0000] [0.0000]  

PP with -5.4453 -5.1193 -6.1017 -5.1104  

Intercept [0.0000] [0.0000] [0.0000] [0.0000]  

 

 

 

(3) 1   

 

1   TG-Gen TG-Dia G-Gen G-Dia Constant 

 Mean 0.6411 0.6988 0.6434 0.6740 0.6170 

 Median 0.6281 0.6744 0.6391 0.6391 0.6170 

 Maximum 1.7938 1.8031 1.8296 1.8567 0.6170 

 Minimum -0.2037 -0.1006 -0.2288 -0.1423 0.6170 

 Std. Dev. 0.2715 0.2844 0.2858 0.2920 0.0000 

 Skewness 0.6153 1.1032 0.6773 1.2923 -2.9106 

 Kurtosis 5.0358 5.5263 5.0590 6.1920 9.4714 

      

Jarque-Bera 128.74 255.95 138.19 383.76 1723.64 

Probability 0.0000 0.0000 0.0000 0.0000 0.0000 

      

ADF with -5.4369 -5.0637 -5.8764 -5.0685  

Intercept [0.0000[ [0.0000] [0.0000] [0.0000]  

PP with -5.4369 -5.0552 -6.0841 -5.0685  

Intercept [0.0000] [0.0000] [0.0000[ [0.0000]  
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1.6.2 Hedging performance Evaluation under different criteria 

 

1.6.2 (A) Risk minimisation and variance reduction 

 

Tables 1.14 and 1.15 report the variance reduction comparisons for the in-sample 

hedging of spot positions in the domestic and the Singapore markets. Tables 1.16 and 

1.17 report the equality test results for means and variances of the hedged portfolios in 

both hedging. Such equality tests enable us to tell if there are any significant changes 

across different hedging models.  

 

Table 1. 14 Variance reduction for hedging in the domestic market: In-sample period 

 

  No hedge TG-Gen TG-Dia G-Gen  G-Dia Constant 

Mean 0.10239  0.05641 0.06517  0.05300  0.05889  0.06963  

Variance  1.43414  1.18037 1.19003  1.17257  1.18717  1.25179  

Variance reduction -0.17695 -0.17021  -0.18239  -0.17221  -0.12715  

Ranking (2) (4) (1) (3) (5) 

 

 

 

Table 1. 15 Variance reduction for hedging in the Singapore market: In-sample period 

 

  No hedge TG-Gen TG-Dia G-Gen  G-Dia Constant 

Mean 0.11307  0.06276  0.06477  0.06342  0.06591  0.04493  

Variance  3.67988  2.76403  2.77491  2.76885  2.77832  2.89097  

Variance reduction -0.24888  -0.24592  -0.24757  -0.24500  -0.21438  

Ranking (1) (3) (2) (4) (5) 

 

 

We can observe from Table 1.14 and 1.15 that the hedging effectiveness of China fuel 

oil futures in terms of risk reduction is very low. Previous studies show that the risk 
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reduction of commodity futures is normally around 70% to 90% in the developed 

markets with little market friction and around 50-70% in the emerging market with 

immature regulation and market frictions. However, the risk reduction for the China 

fuel oil futures in hedging domestic fuel oil commodity is below 20%, and is around 

25% in hedging the Singapore fuel oil price fluctuations. For the hedging of a spot 

position in the Singapore market, because it is a cross-border hedging, considering the 

regulation restrictions and China’s controlled exchange rate, etc, the 25% risk 

reduction is in line with expectation. These administrative obstacles and restrictions 

could prevent an efficient hedging across the border. However, the risk reduction of 

China’s fuel oil futures in hedging of the domestic spot position was expected to be 

higher. There are some reasons for the limited realized gains in domestic hedging: 

First, China fuel oil futures prices are largely determined by the price changes of the 

fuel oil in the Singapore market. Second, the physical fuel oil price in China is still 

largely controlled and adjusted by the government. Thus the spot prices do not reflect 

the market demand and supply, nor do they adjust to the information shock effectively. 

The adjustments in prices tend to occur with a lag. On the other hand, fuel oil futures 

are much more volatile and fluctuated with the international oil prices. Fuel oil futures 

are much more volatile than the price of the underlying spot. If a spot position is over 

hedged, the hedging strategy may actually introduce additional volatility than desired.  

 

Comparing the unhedged and the hedged positions in Tables 1.14 and 1.15, we find 

that the hedged portfolios have lower expected returns than the unhedged positions, 
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but the risk associated is also lower. Ranking of different models are provided in the 

bottom of the two tables. We observe that the constant model provides the lowest 

degree of variance reduction, no matter domestic hedging or hedging of Singapore 

spot positions. The dynamic models are obviously superior to the constant model in 

terms of variance reduction.  

 

For the hedge effectiveness within the dynamic modelling framework, we can observe 

from Tables 1.14 and 1.15 that the TGARCH General model is better than the 

TGARCH Diagonal model, and the GARCH General model is better than the 

GARCH Diagonal model, for both domestic and cross hedging. This implies that the 

general models, with or without taking the asymmetric information effect into 

consideration, provide better performance than when they are restricted to diagonal 

models, in terms of risk reduction. Comparing the TGARCH General to the GARCH 

General model, the ranking of their risk reduction ability for domestic hedging is 

opposite to their ranking for cross hedging. It seems that for cross hedging, taking 

asymmetric effects into consideration in calculating conditional variance and 

covariance (indicated by ijd s) would help achieve better hedging results, but not for 

the domestic hedging. Given that all the asymmetric parameters ( ijd ) are insignificant, 

any conclusion about the relative performance of these models would be dubious. 

This is also the case for TGARCH Diagonal versus GARCH Diagonal models.  

 

Within the dynamic models, we can also observe from these two tables that the model 
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which generates higher risk reduction (i.e. has smaller variance) has lower mean 

return as well. This implies that the dynamic models follow the risk and return 

trade-off rule, that the one which generates higher returns is associated with higher 

risk. However, when taking the constant model into consideration, the risk-return 

trade-off is sometimes violated. In the cross hedging, the mean return for the hedged 

portfolio constructed using the constant framework is the lowest but the variance is 

the highest. Thus the dynamic models outperform the constant models not only in 

terms of risk reduction, but sometimes even in terms of mean return.  

 

Descriptive statistics of the returns of hedged portfolio are given in Tables 1.16 and 

1.17, and the equality tests for the means and variances of the returns of the hedged 

portfolio are provided in Table 1.18 and 1.19. It is worth noting that no matter which 

method we use, the equality test results suggest that the means and variances of the 

hedged portfolio by different modeling specifications only marginally different from 

each other. Consequently, the disparities between them might not be statistically 

significant. Therefore the superiority of any modelling method is not obvious and may 

be subject to data and the time period under consideration. For our in-sample period, 

all the competing dynamic and constant models are in fact effectively identical.  
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Table 1. 16 Statistics summary of the actual spot returns, and returns of the hedged portfolio 

constructed using different models in the in-sample period for domestic hedging 

 

 Actual TG-Gen TG-Dia G-Gen G-Dia Constant 

 Mean 0.1024  0.0564  0.0652  0.0530  0.0589  0.0696  

 Median 0.0000  0.0455  0.0491  0.0451  0.0364  0.0500  

 Maximum 7.0204  6.5418  6.5870  6.6370  6.5171  6.3611  

 Minimum -5.7061  -5.1537  -5.1601  -5.0614  -5.1722  -5.1703  

 Std. Dev. 1.1976  1.0865  1.0909  1.0829  1.0896  1.1188  

 Skewness 0.4014  0.3700  0.3833  0.3943  0.3600  0.3755  

 Kurtosis 8.5187  7.8622  8.1836  7.9716  7.9310  8.0790  

       

Jarque-Bera 645.3322  501.9077  569.7408  525.7799  515.2967  546.9847  

Probability 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

       

ADF with -21.3502  -24.0044  -23.9834  -23.5330  -24.5584  -23.5119  

Intercept [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  

PP with -21.3316  -24.1942  -24.1465  -23.6878  -24.7968  -23.6313  

Intercept [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  

Note: Probability of ADF and PP Unite root tests are give in [ ]. 

 

 

 

Table 1. 17 Statistics summary of the actual spot returns, and returns of the hedged portfolio 

constructed using different models in the in-sample period for cross hedging 

 

 Actual TG-Gen TG-Dia G-Gen G-Dia Constant 

Mean 0.1131 0.0628 0.0648 0.0634 0.0659 0.0449 

Median 0.0000 0.0432 0.0278 0.0458 0.0281 0.0552 

Maximum 8.3184 7.0724 7.0073 6.9905 6.9315 7.7681 

Minimum -11.2117 -9.1249 -9.2100 -9.2241 -9.2155 -9.6043 

Std. Dev. 1.9183 1.6625 1.6658 1.6640 1.6668 1.7003 

Skewness -0.6683 -0.6422 -0.6576 -0.6532 -0.6553 -0.6401 

Kurtosis 9.0544 8.4093 8.3840 8.4277 8.3343 9.0441 

       

Jarque-Bera 797.6794 641.3797 637.3773 646.7023 626.0668 792.0320 

Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

       

ADF with -21.2911 -22.6574 -22.7603 -22.6103 -22.7794 -22.9219  

Intercept [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] 

PP with -21.5401 -23.3067 -23.4500 -23.2075 -23.4533 -24.6449  

Intercept [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] 

Note: Probability of ADF and PP Unite root tests are give in [ ]. 
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Table 1. 18 Equality Test of Means and Variances for the returns of the hedged portfolios for 

the domestic hedging: in-sample period 

 

  Mean of return Variance of return 

  F-statistic Probability F-statistic Probability 

TGGeneral-TGDiagonal 0.016139 0.8989 1.008182 0.9277 

TGDiagonal-Constant -0.063659 0.9493 1.051898 0.5730 

TGGeneral-Constant 0.035798 0.8500 1.060505 0.5128 

TGGeneral-GGeneral 0.008603 0.9261 1.014295 0.8744 

TGDiagonal-GDiagonal 0.091036 0.9275 1.002411 0.9786 

TGGeneral-GDiagonal 0.005217 0.9424 1.013626 0.8801 

TGDiagonal-GGeneral 0.001289 0.9714 1.005756 0.9490 

General-Diagonal 0.003203 0.9549 1.020133 0.8243 

General-Constant 0.009699 0.9216 1.075664 0.4165 

Diagonal-Constant 0.023584 0.878 1.054435 0.5549 

 

 

 

 

 

Table 1. 19 Equality Test of Means and Variances for the returns of the hedged portfolios for 

the cross hedging in the Singapore market: in-sample period 

 

 

  Mean of return Variance of return 

  F-statistic Probability F-statistic Probability 

TGGeneral-TGDiagonal 0.000216 0.9883 1.003779 0.9664 

TGDiagonal-Constant 0.033646 0.8545 1.041917 0.647 

TGGeneral-Constant 0.169067 0.8658 1.045855 0.6171 

TGGeneral-GGeneral -0.004278 0.9966 1.001663 0.9852 

TGDiagonal-GDiagonal 0.000128 0.9910 1.001244 0.9889 

TGGeneral-GDiagonal 0.000677 0.9793 1.005027 0.9554 

TGDiagonal-GGeneral 0.000108 0.9917 1.002113 0.9812 

General-Diagonal 0.000472 0.9827 1.003359 0.9702 

General-Constant 0.030008 0.8625 1.044118 0.6302 

Diagonal-Constant 0.037861 0.8458 1.040623 0.6570 
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1.6.2 (B) Expected utility maximisation hedge ratios and comparison of the 

expected utilities of competing models.  

 

Now we turn to comparing the competing models under utility maximisation criterion. 

Expected utility of the hedged portfolios generated by different modelling strategies 

are reported in Tables 1.20 and 1.21, for domestic and Singapore hedging respectively. 

As the expected utility also depends upon the assumption of the investors risk 

aversion parameter, we examine the results when the risk aversion is assumed to be 

0.25, 0.5 and 1.   

 

 

Table 1. 20 Expected Utility of domestic hedging: in-sample 

 

 TG-Gen TG-Dia G-Gen G-Dia Constant 

0.25   -0.22985 -0.22712 -0.23196 -0.22759 -0.23679 

 (3) (1) (4) (2) (5) 

0.5   -0.52939 -0.52936 -0.52909 -0.52888 -0.55206 

 (4) (3) (2) (1) (5) 

1   -1.12091 -1.12585 -1.11649 -1.12382 -1.17817 

 (2) (4) (1) (3) (5) 

 

 

Table 1. 21 Expected Utility of cross hedging in the Singapore market: in-sample 

 

 

Note: Ranking of different models is given in () 

 TG-Gen TG-Dia G-Gen G-Dia Constant 

0.25   -0.62459 -0.62336 -0.62514 -0.62299 -0.67046 

 (3) (2) (4) (1) (5) 

0.5   -1.31871 -1.32061 -1.32055 -1.32110 -1.39470 

 (1) (3) (2) (4) (5) 

1   -2.70020 -2.70773 -2.70449 -2.70994 -2.83876 

 (1) (3) (2) (4) (5) 
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From Tables 1.20 and 1.21, we can see that the expected utility of the hedged 

portfolio under constant model is smaller than those from the dynamic estimation, in 

both the domestic and the Singapore market, regardless the assumption on the risk 

aversion parameter. Such a result indicates that the dynamic models are superior to 

the constant models in term of utility maximisation. This is same as our previous 

findings under the risk minimisation criterion. However, within the dynamic 

specifications, there is no certain pattern regarding the ranking of their performances. 

This is because the expected utility does not only depend on the estimated hedging 

ratios, which is influenced by the conditional variance, conditional expected return, 

but also on the assumption of the risk aversion factors. The lack of surety in ranking 

of the dynamic models further substantiates our findings in the risk minimisation that 

all the dynamic models are in fact effectively identical. We cannot conclude which 

one is superior to the other. 

 

 

1.6.2 (C) Risk reduction based on semivariance  

 

Most recent approaches to evaluate hedging performance emphasis investors react 

differently to downside risk and upside risk. Investors using futures to hedge their 

positions desire to eliminate the downside return but retain the upside potential. In 

such case, the MV is inappropriate. More intuitive measures of hedging performance 

focusing on downside risk have been developed, including the risk reduction based on 
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the semivariance, the GSV and VaR. In this study, we examine the hedging 

performance under semivariance risk reduction criterion.  

 

The semivariance criterion is based on the concept that an investor preferring to 

minimize the probability of falling below some predefined level of returns. This return 

is the target return or the minimum acceptable return for the investor. Choosing the 

target return is critical under the semivariance risk reduction criterion because when 

the target return differs, optimal hedging ratio and risk reduction ability of the model 

would differ as well. In this study, we set the target value to be zero. For one reason, 

investors try to avoid negative returns in practice; for another, the mean of hedged 

portfolio returns are quite close to zero.  

 

The risk reduction under semivariance criterion is reported in Tables 3.22 and 3.23, 

respectively, for the domestic and cross hedging. We observe that all model perform 

quite well, comparing to the variance reductions we examined earlier. The 

semivariance reduction of the hedged portfolio in the Chinese market is about 40%, 

and for Singapore is about 30%. China fuel oil futures are more affective in hedging 

the downside risk than the total risk. 

 

For both domestic and cross hedging, the constant model always ranks at the bottom. 

This is consistent with the conclusion drawn from the minimum variance risk 

reduction criterion; the dynamic models are superior to the constant model.  
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Within the dynamic model, the GARCH Diagonal model is the most superior and the 

GARCH General model is the most inferior one, for both domestic and cross hedging. 

Asymmetric models lie in between. Such is different from the minimum variance 

reduction. Another distinct feature under semivariance risk reduction criterion is that 

the domestic hedging can achieve higher risk reduction than the cross hedging.  

 
 
 
Table 1. 22 In-sample variance reduction for domestic market spot returns based on 

semivariance minimisation criterion 

 

  No hedge TG-Gen TG-Dia G-Gen G-Dia Constant 

Mean 0.10239  0.05641  0.06517  0.05300  0.05889  0.06963  

Variance  1.94657  1.13075  1.13509  1.13880  1.11428  1.19276  

Variance reduction -0.41911 -0.41687 -0.41497 -0.42757  -0.38725  

 (2) (3) (4) (1) (5) 

 

 

Table 1. 23 In-sample variance reduction for Singapore market spot returns based on 

semivariance minimisation criterion 

 

  No hedge TG-Gen TG-Dia G-Gen G-Dia Constant 

Mean 0.11307  0.06276  0.06477  0.06342  0.06591  0.04493  

Variance  4.51620  3.02324  2.98139  3.02766  2.95527  3.22324  

Variance reduction -0.33058 -0.33985 -0.32960 -0.34563  -0.28629  

 (3) (2) (4) (1) (5) 
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1.7 Out-of-sample predictions of volatility and variance 

reduction and expected utility comparisons over time 

 

The parameter estimates of each model from the in-sample period were used to update 

tH (except, of course for the constant model) continuously throughout the 48 

out-of-sample observations. The subsequent time series of the variances of the two 

returns and their covariance for each model, along with the unconditional values of 

those variances and covariances, are depicted in Figures 1.16 to 1.21.  

 

Those figures suggest that in general all models tend to underestimate the actual 

variances and covariances. Moreover, there are greater divergences between the 

estimated variances and covariances under different modelling specifications in the 

domestic hedging than they are in the cross hedging in the Singapore market: the 

results are more stable for Singapore. This may be due to the fact that the Chinese oil 

market is still in an early stage of its development and trading can be influenced by 

plenty of noise and speculation. Hence, returns are much harder to predict than that of 

the comparatively mature and well-regulated Singapore market. This also implies that 

in the out-of-sample periods, it is harder for the hedging models to perform well in the 

domestic market than it is in the Singapore market, as confirmed by the risk reduction 

results reported later. Detailed descriptive statistics for the estimated conditional and 

unconditional variance and covariance of the China fuel oil futures, fuel oil spots in 

the Chinese and the Singapore markets are given in Tables 1.24 and 1.25. The 
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predictions do not track the unconditional values well for all the models in the 

out-of-sample period. 

 

 

Table 1. 24 Statistics of conditional and unconditional variances and covariances for 

positions in the Chinese market in the out-of-sample period  

 

  Mean  Maximum  Minimum  Std. Dev.  Skewness  Kurtosis Jarque-Bera

TG-Gen h11 3.0108  5.7545  1.2907  1.3869  0.5276  1.7147  5.5309  

TG-Dia h1 1 3.1512  6.8160  1.0719  1.6579  0.7091  2.1864  5.3460  

G-Gen  h1 1 2.7326  5.0731  1.4096  1.0924  0.6907  2.1112  5.3969  

G-Gen  h1 1 3.2638  7.1010  1.0887  1.7412  0.7085  2.1770  5.3705  

Cons t   h 1 1 1.8930  1.8930  1.8930  0.0000   NA  NA  NA 

Var(f)   3.3490  23.1250  0.0077  5.1574  2.3786  8.3805  103.1637  

TG-Gen h22 1.5018  2.0662  1.1773  0.2420  0.8328  2.6338  5.8168  

TG-Dia h2 2 1.2821  1.6453  1.1103  0.1478  1.0081  2.8653  8.1665  

G-Gen  h2 2 1.1342  1.8007  0.8866  0.1853  1.9206  6.5019  54.0357  

G-Gen  h2 2 1.3684  1.9150  1.1147  0.2187  1.0405  2.9689  8.6629  

Cons t   h 2 2 1.4313  1.4313  1.4313  0.0000   NA  NA  NA 

Var(s) 1.3810  27.5037  0.0047  4.0835  5.6615  36.4446  2493.5040 

TG-Gen h12 0.5959  1.0507  0.1704  0.1864  0.3866  3.3121  1.3904  

TG-Dia h1 2 0.6091  1.3192  0.2479  0.3009  0.7131  2.3985  4.7918  

G-Gen  h1 2 0.6330  1.2702  -0.2927  0.2979  -0.4469  4.4243  5.6547  

G-Gen  h1 2 0.7294  1.6102  0.2816  0.3741  0.7078  2.3901  4.7523  

Cons t   h 1 2 0.5869  0.5869  0.5869  0.0000   NA  NA  NA 

Cov(f,s) 0.7731  11.5772  -1.6585  2.2702  3.1868  13.8436  316.4131  
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Table 1. 25 Statistics of conditional and unconditional variances and covariances for 

positions in the Singapore market in the out-of-sample period 

 

  Mean  Maximum Minimum  Std. Dev.  Skewness  Kurtosis Jarque-Bera 

TG-Gen h11 2.7592  5.3057  1.3156  1.1729  0.6274  1.9699  5.2716  

TG-Dia h1 1 2.7719  5.5102  1.1942  1.2559  0.7286  2.2212  5.4593  

G-Gen  h11 2.7011  5.2656  1.2568  1.1703  0.6423  2.0186  5.2272  

G-Gen  h11 2.7266  5.4401  1.2011  1.2312  0.7634  2.3037  5.6324  

Const   h 1 1 1.8930  1.8930  1.8930  0.0000  0.0000 0.0000  0.0000 

Var(f)   3.3490  23.1250  0.0077  5.1574  2.3786  8.3805  103.1637  

TG-Gen h22 4.0673  6.5453  2.7232  0.9573  0.9733  3.5173  8.1139  

TG-Dia h2 2 3.6483  6.1286  1.7464  1.1435  0.2042  2.3055  1.2981  

G-Gen  h22 3.9416  6.5930  2.4559  1.0277  0.8456  3.2717  5.8679  

G-Gen  h22 3.6402  6.1493  1.7436  1.1430  0.2377  2.3503  1.2962  

Const   h 2 2 3.6725  3.6725  3.6725  0.0000  0.0000 0.0000  0.0000 

Var(s) 4.2535  30.6032  0.0002  6.7347  2.4745  8.9118  118.8834  

TG-Gen h12 1.5531  2.9150  0.4995  0.5698  0.7599  3.3587  4.8765  

TG-Dia h1 2 1.5815  3.6139  0.6709  0.6632  0.8855  3.3616  6.5338  

G-Gen  h12 1.4772  2.9081  0.3357  0.5791  0.5385  3.2441  2.4389  

G-Gen  h12 1.6077  3.6638  0.6352  0.6961  0.8382  3.1674  5.6772  

Const   h 1 2 1.2208  1.2208  1.2208  0.0000  0.0000 0.0000  0.0000 

Cov(f,s) 1.9117  23.5243  -3.8065  4.5976  2.6738  12.0564  221.2305  
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1.7.1 Performance of hedging models out-of-sample: Risk minimisation 

and variance reduction 

 

1.7.1(A) Estimated hedge ratios under the risk minimisation criterion 

 

As there are obvious divergences in the variance and covariance predicted under 

different models, it can be reasonable to assume that the minimum variance hedge 

ratios estimated by different models will be different in the out-of-sample period. The 

forecasted hedge ratios are depicted in Figures 1.22 and 1.23 for domestic and cross 

hedging, respectively, and the descriptive statistics for the two predicted hedge ratio 

series are reported in Tables 1.26 and 1.27. From Figures 1.22 and 1.23 we observe 

that predicted hedge ratio is more different between one and the other for the domestic 

hedging. From the descriptive statistics, we observe that, different from the in-sample 

findings, constant models give the highest mean hedge ratios in the out-of-sample 

forecasting. TGARCH general models have a higher standard deviation than the 

TGARCH Diagonal models, and the GARCH general have a higher standard 

deviation than the Diagonal model. All the estimated hedge ratio series are not 

normally distributed; they are skewed and have large pickedness. For most dynamic 

models, the hedge ratio series follow an I(0) process and are thus mean reverting. 

However, for the hedge ratios estimated from the TGARCH general and the GARCH 

Diagonal models in the domestic market, they exhibit a unit root in the series. This 

suggests that the hedge ratios estimated in out-of-sample forecasting are more likely 
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to veer away from its mean. 

 

Table 1. 26 Descriptive statistics for estimated hedge ratios in the out-of-sample period when 

hedging the domestic spot positions 

 

 TG-Gen TG-Dia G-Gen G-Dia Constant 

 Mean 0.2367  0.2078  0.2569  0.2397  0.3101  

 Median 0.2241  0.1988  0.2778  0.2317  0.3101  

 Maximum 0.5079  0.3612  0.4115  0.4257  0.3101  

 Minimum 0.0401  0.0977  -0.0624  0.1132  0.3101  

 Std. Dev. 0.1082  0.0703  0.1060  0.0843  0.0000  

 Skewness 0.3004  0.3659  -1.1107  0.3938   NA 

 Kurtosis 2.7130  2.1266  4.0527  2.1296   NA 

      

ADF -3.1260  -2.6288  -5.9984  -2.5679   

 [0.0312]  [0.0943]  [0.0000]  [0.1066]   

PP -3.1279  -2.4061  -6.1292  -2.3393   

 [0.0311]  [0.1454]  [0.0000]  [0.1643]   

 

 

 

Table 1. 27 Descriptive statistics for estimated hedge ratios in the out-of-sample period when 

hedging the Singapore spot positions 

 

 TG-Gen TG-Dia G-Gen G-Dia Constant 

Mean 0.6108 0.6034 0.5969 0.6189 0.6449 

Median 0.6043 0.5945 0.6003 0.6118 0.6449 

Maximum 1.0315 1.0746 1.0833 1.0951 0.6449 

Minimum 0.2173 0.2616 0.1355 0.2518 0.6449 

Std. Dev. 0.2044 0.1749 0.2223 0.1799 0.0000 

Skewness -0.1258 0.3494 -0.0992 0.3212 NA 

Kurtosis 1.9728 2.8858 2.2986 2.8977 NA 

      

Jarque-Bera 2.2369 1.0025 1.0626 0.8464 NA 

Probability 0.3268 0.6058 0.5878 0.6550 NA 

      

ADF with -2.1350 -2.1576 -2.1806 -2.0800  

Intercept [0.2323] [0.2240] [0.2158] [0.2534]  

PP with -2.2857 -2.3317 -2.3292 -2.2816  

Intercept [0.1806] [0.1665] [0.1673] [0.1819]  
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1.7.1(B) Out-of-sample variance Reduction 

 

For the out-of-sample hedging performance of different models, the results are quite 

different from the in-sample findings. Table 1.28 illustrates the variance reduction 

comparison for the out-of-sample hedging of spot positions in the domestic market. 

All the models underperform in terms of variance reduction in the out-of-sample 

period, which reduce the variance by only around 3% to 9%. The mean return of 

China’s fuel oil spot is lower than the mean return of any hedged portfolio, no matter 

which method is used. Meanwhile, the magnitude of mean returns of the hedged 

portfolios is not associated with their variances. For the dynamic models, we can 

observe that the two diagonal models, TGARCH diagonal and GARCH diagonal, 

outperform their general counterparts, TGARCH general and GARCH General, in 

terms of risk reduction based on variance, which is contrary to the in-sample findings. 

In general, the diagonal models surpass the constant model and the constant models 

surpass the general models in the out-of-sample period, although the reduction is 

really small.  

 

Table 1.29 shows the variance reduction comparison for the out-of-sample hedging in 

the Singapore market under different model specifications. In general, the hedged 

portfolios have higher mean returns and lower variance than the unhedged positions. 

Compared with the in-sample variance reduction, all the models have poorer 

performance in the out-of-sample period. The constant model reduces the risk to the 
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largest extent, thus outperforming all dynamic models. Among the dynamic models, 

two general models yield the higher variance reduction than their diagonal counterpart, 

same as the ranking in the in-sample period of the domestic hedging.  

 

 

Table 1. 28 Out-of-sample variance reduction for the domestic hedging 

 

 

  No hedge TG-Gen TG-Dia G-Gen G-Dia Constant 

Mean -0.28652  -0.15007  -0.16463  -0.17814  -0.14545  -0.14256  

Variance  1.28188  1.23665  1.17133  1.22593  1.18643  1.21134  

Variance reduction -0.03528  -0.08624  -0.04364  -0.07446  -0.05503  

Ranking (5) (1) (4) (2) (3) 

 

 

 

Table 1. 29 Out-of-sample variance reduction for the cross hedging in The Singapore market 

 

 

  No hedge TG-Gen TG-Dia G-Gen G-Dia Constant 

Mean -0.39687  -0.09631  -0.09696  -0.10567  -0.09260  -0.09743  

Variance  4.12307  3.28003  3.30362  3.27764  3.31314  3.23101  

Variance reduction -0.20447  -0.19875  -0.20505  -0.19644  -0.21636  

Ranking (3) (4) (2) (5) (1) 

 

 

For both domestic and cross hedging, the dynamic models lose their superiority in the 

out-of-sample period. One reason is, as argued before, due to that the long-term 

forecast performance of the GARCH model is very poor. The presence of any outlier 

could erroneously affect the investors’ hedged positions enormously and for a number 

of subsequent time periods.  
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In any case, the risk reduction based on variance for all the constant and dynamic 

models is very low. The most plausible reason is that although the fuel oil is the most 

liberalised oil product in China with the least control by the government, its prices are 

still largely influenced by the government, thus the existence of the lag in price 

adjustment compared to the futures. Under such a situation, the futures are far more 

volatile than the spot market. Any over-hedged positions might lead to additional risk. 

Another reason may be related to the fact that investors trading fuel oil futures are 

more likely to be driven by speculative motivations rather than the hedging of risk. 

Consequently, markets are influenced by a large stream of trading noise, which make 

the power of theoretical forecast very poor. The forecasting results imply that on 

average, the fuel oil futures is not a good tool in hedging risk for the investors, at least 

in short term. However, this aggregated results do not diminishing the potential 

usefulness of fuel oil futures in individual transactions, for either speculating or 

hedging.  

 

Overall, the differences in risk reduction between each pair of models are very small. 

Any significant differences across different models need to be examined further. We 

employ equality tests in dealing with this issue.  

 

Before performing the equality test, we depict the return of hedged portfolio under 

different hedging strategies in Figures 1.24 and 1.25. As we can observe, although the 

hedge ratios appear to be obviously different from each other, the returns of the 
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hedged portfolio are not. They tend to move in a similar pattern. We give the 

descriptive statistics of the returns of different hedged portfolios in Tables 1.30 and 

1.31 and also depict their histogram diagram in Figures 1.26 and 1.27, for hedging in 

the domestic and Singapore market respectively. From those tables and graphs, it is 

clear that the returns of hedged portfolios are moving together and following a similar 

pattern. We further perform mean and variance equality tests and the results are 

reported in Table 1.32 and 1.33 implying that all the models are actually giving 

similar results so we cannot simply conclude which one is outperforming the other. 
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Table 1. 30 Summary of statistics of the actual spot returns, and returns of hedged portfolios 

computed using different models in the out-of-sample period for the Chinese market. 

 

 Actual TG-Gen TG-Dia G-Gen G-Dia Constant 

 Mean -0.2865  -0.1501  -0.1646  -0.1781  -0.1455  -0.1426  

 Median 0.0000  -0.1884  -0.1213  -0.1987  -0.1215  -0.2571  

 Maximum 2.2285  2.1198  2.1126  2.0980  2.0925  2.1112  

 Minimum -5.1762  -5.0971  -4.9033  -4.8559  -4.8549  -4.7351  

 Std. Dev. 1.1322  1.1120  1.0823  1.1072  1.0892  1.1006  

 Skewness -1.6524  -1.6309  -1.6021  -1.3327  -1.5403  -1.2919  

 Kurtosis 8.8702  9.7648  9.2225  8.2168  8.8631  7.8575  

       

Jarque-Bera 90.7628  112.8028  97.9734  68.6383  87.7314  60.5423  

Probability 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

       

ADF with -5.7776  -6.0109  -6.2425  -6.1167  -6.3592  -6.5340  

Intercept [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000] 

PP with -5.7913  -6.0143  -6.2433  -6.1200  -6.3592  -6.5331  

Intercept [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000] 

 

 

Table 1. 31 Summary statistics of the actual spot returns and returns of hedged portfolios 

computed using different models in the out-of-sample period in the Singapore market. 

 

 Actual TG-Gen TG-Dia G-Gen G-Dia Constant 

Mean -0.3969 -0.0963 -0.0970 -0.1057 -0.0926 -0.0974 

Median -0.0373 0.0954 0.0784 0.0517 0.0470 0.1680 

Maximum 4.3318 3.9968 3.9709 4.0046 3.9423 3.8685 

Minimum -5.4638 -5.4568 -5.4554 -5.4595 -5.4557 -5.4432 

Std. Dev. 2.0305 1.8111 1.8176 1.8104 1.8202 1.7975 

Skewness -0.3738 -0.4000 -0.4053 -0.4047 -0.4081 -0.4064 

Kurtosis 3.1644 3.5571 3.6146 3.5947 3.5992 3.6275 

       

Jarque-Bera 1.1718 1.9008 2.0699 2.0175 2.0502 2.1091 

Probability 0.5566 0.3866 0.3552 0.3647 0.3588 0.3484 

       

ADF with -8.1356 -6.7288 -6.5145 -6.6800 -6.4197 -6.1333  

Intercept [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] 

PP with -8.1333 -6.7269 -6.5199 -6.6778 -6.4267 -6.1238  

Intercept [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] 
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Table 1. 32 Test of Equality for Means and Variances of the hedged portfolio returns in the 

Chinese market: Out-of-sample period 

 

  Mean of return Variance of return 

  F-statistic Probability F-statistic Probability 

TGGeneral-TGDiagonal 0.004225 0.9483 1.055771 0.8532 

TGDiagonal-Constant 0.009819 0.9213 1.034163 0.9088 

TGGeneral-Constant 0.001108 0.9735 1.020895 0.9438 

TGGeneral-GGeneral 0.015355 0.9016 1.008745 0.9763 

TGDiagonal-GDiagonal 0.007488 0.9312 1.012898 0.9651 

TGGeneral-GDiagonal 0.000423 0.9836 1.042328 0.8876 

TGDiagonal-GGeneral 3.65E-03 0.9519 1.046619 0.8765 

General-Diagonal 0.021259 0.8844 1.033291 0.9111 

General-Constant 0.02494 0.8749 1.012044 0.9674 

Diagonal-Constant 0.000168 0.9897 1.020994 0.9435 

 

 

 

 

 

 

Table 1. 33 Test of Equality for Means and Variances of the hedged portfolio returns in the 

Singapore market: Out-of-sample period 

 

 

  Mean of return Variance of return 

  F-statistic Probability F-statistic Probability 

TGGeneral-TGDiagonal 3.12E-06 0.9986 1.007191 0.9805 

TGDiagonal-Constant 1.60E-06 0.999 1.022472 0.9396 

TGGeneral-Constant 9.25E-06 0.9976 1.015172 0.9591 

TGGeneral-GGeneral 0.000641 0.9799 1.00073 0.998 

TGDiagonal-GDiagonal 0.000138 0.9906 1.002883 0.9922 

TGGeneral-GDiagonal 0.0001 0.992 1.010095 0.9727 

TGDiagonal-GGeneral 0.000553 0.9813 1.007926 0.9785 

General-Diagonal 0.001244 0.9719 1.010832 0.9707 

General-Constant 0.000501 0.9822 1.014431 0.961 

Diagonal-Constant 0.000171 0.9896 1.02542 0.9318 
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1.7.2 Hedge performance under utility maximisation criterion 

out-of-sample 

 

Table 1.34 and Table 1.35 report the expected utility in the out-of-sample period for 

the two hedges. For domestic hedging, we can observe that, by and large, the diagonal 

models give a higher expected utility than the general counterparts, and constant 

models perform in between. This is similar to our findings under risk minimisation 

criterion. For the Singapore hedging, we find the constant models yield higher 

expected utility than the dynamic models, except when the risk aversion equals 0.25.  

 

 

Table 1. 34 Expected Utility of domestic hedging: out-of-sample 

 

 TG-Gen TG-Dia G-Gen G-Dia Constant 

0.25   -0.48521 -0.48313 -0.51303 -0.45501 -0.48008 

 (4) (3) (5) (1) (2) 

0.5   -0.76608 -0.75196 -0.82725 -0.73342 -0.74589 

 (4) (3) (5) (1) (2) 

1   -1.36295 -1.31648 -1.47508 -1.30826 -1.32359 

 (4) (2) (5) (1) (3) 

 

 

Table 1. 35 Expected Utility of cross hedging: out-of-sample 

 

 TG-Gen TG-Dia G-Gen G-Dia Constant 

0.25   -0.93796 -0.93901 -0.93006 -0.92579 -0.93216 

 (4) (5) (2) (1) (3) 

0.5   -1.71140 -1.72936 -1.71963 -1.72408 -1.62373 

 (2) (5) (3) (4) (1) 

1   -3.31150 -3.33757 -3.31792 -3.33978 -3.25887 

 (2) (4) (3) (5) (1) 
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For the estimated covariance matrix, the hedge ratios and the hedged portfolio returns 

all follow the same pattern as those estimated under risk minimisation; we do not 

provide figures of the series and tables for the descriptive statistics. Also we do not 

provide the equality test results for the same reason. In fact all the strategies produce 

similar performances and the small changes in variance reduction do not significantly 

support the existence of a systematically superior optimal hedge ratio estimation 

technique.  

 

 

 

1.7.3 Hedging performance under risk reduction based on semivariance 

risk reduction: out-of-sample  

 

The out-of-sample risk reductions of China oil fuel futures in hedging domestic spot 

positions based on semivariance are reported in Table 1.36 and Table 1.37 report that 

for hedging of Singapore spot positions. 

 

At a glance, the risk reductions based on semivariance are much higher than that 

based on the variance, for both domestic and cross hedging. Although it seems that the 

China fuel oil is not a good hedging instrument in reducing the overall risk, at lease 

during the first two years since its launches, it is an effective hedging tool in reducing 

the downside risk. In practice, avoiding downside risk and maintain upside potential is 
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more important for investors. Thus we argue that the China fuel oil futures is very 

successful market wide in hedging downside risks. There is no doubt why the China 

fuel oil futures become increasingly popular in the market.  

 

Different from the hedging performance based on variance reduction criterion, 

domestic hedging have higher risk reduction based on the semivariance than the cross 

hedging in Singapore market. But same as the hedging performance based on variance 

reduction criterion, there is no clear pattern which model is more superior to the other 

in the out-of-sample period. The dynamic models lose their superiority in the 

domestic hedging. Although for the cross hedging in the Singapore market the 

constant model still generates the smallest risk reduction, the divergence between 

constant and dynamic models is much smaller than in the in-sample period.  

 

Comparing the in-sample and out-of-sample hedging based on semivariance reduction, 

we find that the models give even higher reduction in the out-of-sample period for the 

domestic hedging. In contrast, for the cross hedging, the models show less effective 

performance in the out-of-sample period. Comparing the in-sample and out-of-sample 

hedging for both hedging under the two risk reduction criteria, we find that the 

hedging in the Singapore market have more stable results, while the risk reduction is 

quite different for the fuel oil hedging in domestic market based on the two criteria. 

This may be caused by the fact that the returns of fuel oil in the Chinese market, 

which is less developed, have larger negative sknewess and asymmetric distribution. 
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On the other hand, the returns are more symmetrically distributed in the Singapore 

market.  

 

 
Table 1. 36 Out of sample variance reduction for domestic market spot returns based on 

semivariance minimisation criterion 

 

  No hedge TG-Gen TG-Dia G-Gen G-Dia Constant 

Mean -0.28652  -0.15007 -0.16463 -0.17814 -0.14545  -0.14256  

Variance  2.50095  1.36325  1.42943  1.26795  1.40681  1.32310  

Variance reduction -0.45491 -0.42845 -0.49301 -0.43749  -0.47096  

 (3) (5) (1) (4) (2) 

 

 

Table 1. 37 Out of sample variance reduction for Singapore market spot returns based on 

semivariance criterion minimisation criterion 

 

  No hedge TG-Gen TG-Dia G-Gen G-Dia Constant 

Mean -0.39687  -0.09631 -0.09696 -0.10567 -0.09260  -0.09743  

Variance  5.45792  3.80928  3.84380  3.84016  3.84137  3.90409  

Variance reduction -0.30206 -0.29574 -0.29640 -0.29618  -0.28469  

 (1) (4) (2) (3) (5) 

 

 

 

 

 

1.7.4 Hedging performance: time path of risk reduction based on variance 

and semivariance and of expected utility maximisation 

 

The above provides the performance comparison of average risk reduction and 

average expected utility over the out-of-sample period. However, more useful 

comparisons between the performances of the models are those between the time 
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paths of the variance reductions under different modelling specifications and between 

the time paths of expected utility given a risk aversion parameter. We calculate these 

attributes of the models upon a day-by-day revision of the forecasts of variance 

reduction and of expected utilities. Thus better information can be provided about the 

models than do the average estimates of variance reduction or expected utility over a 

given period. Figures 1.28 to 1.29 graph, for domestic and cross hedging respectively, 

the time paths of the variance reductions based on variance of different hedging 

strategies when hedging decision are updated each day to incorporate all available 

information. Accordingly, Figures 1.30 and 1.31 portray the time paths of the 

expected utility, and Figure 1.32 and 1.33 depict the time paths of the risk reduction 

based on semivariance for the domestic and cross hedging.  

 

On this basis, the dynamic models seem to be superior to the constant model, no 

matter under the two risk minimisation criteria or expected utility criterion, for 

hedging in both markets. For the domestic hedging, the general model seems to be 

superior in terms of variance reduction, and the diagonal model is superior in terms of 

utility maximization and semivariance reduction. On the other hand, for hedging in 

the Singapore market, the TGARCH General model seems to beat others in terms of 

variance reduction and expected utility maximisation, diagonal model is superior in 

terms of semivariance reduction.  

 

The best models are seen to possess the GARCH(1,1) dynamic structures. The 
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Constant model is the inferior to them. It performance cannot match the dynamic 

models under all three criteria. The plausible reason is that the constant model 

ignoring some of the factors that affect the volatility of spot and futures returns. 

Investors relay on the dynamic models to formulating hedging strategies should 

update the forecast more frequently to generate outstanding performance.  
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1.8 Summary and conclusion 

 

This study investigates the optimal futures hedging using both dynamic and constant 

models. As proved in the literature, the distribution of futures and spot returns both 

have the characteristics of non-normality. Thus a GARCH framework in the 

derivation of OHRs, which are dependent upon to their variance and covariance 

structure, has distinct theoretical advantage over the constant models and hence 

should provide a better hedging performance. Many previous studies provide 

evidences for such statistical and economic improvements of dynamic models, 

although most are based on data in the developed market where there are little market 

frictions.  

 

In this study, we examined the effectiveness of dynamic hedging models for the fuel 

oil futures traded in SHFE, which has only two years history by the time we conduct 

the study. To provide the most useful information to market participants, we also take 

into consideration of the close relation between the fuel oil market in China and that 

in Singapore by comparing the fuel futures hedging for spot positions in both markets. 

Our findings provide to the hedgers, speculators and policy makers some insight 

information about the performance of the China fuel oil futures as a hedging tool. 

  

The empirical findings for the in-sample period analysis are consistent with those of 

previous studies in that the dynamic models surpass the constant model. When 
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investigating the asymmetric effect of positive and negative shocks in influencing the 

hedging ability of China fuel oil futures, we find the coefficients capturing the 

asymmetric effect for both domestic and cross border hedging are insignificant and 

the likelihood ratio test statistics suggest that these parameters should be omitted in 

the model specification. However, by including the asymmetric matrix in our 

modelling specification, we do get higher variance reductions for cross hedging in the 

Singapore market, although this is not the case for the domestic hedging. Results from 

likelihood tests suggest that the GARCH General model is the best accepted model 

for the domestic hedging and the GARCH Diagonal is superior to other modelling 

specifications for the cross hedging in the Singapore Market.  

 

Three different criteria are employed to assess the hedging performance of different 

hedging strategies from different perspectives, including the hedging ability to 

minimise total risk, to minimise downside risk and to maximise the expected utility. 

In terms of variance reduction, we find that GARCH General is the best modelling 

strategy for domestic hedging followed by TGARCH General, GARCH Diagonal and 

TGARCH Diagonal. For hedging in the Singapore market, TGARCH general is more 

superior, followed by the GARCH general, TGARCH Diagonal and GARCH 

Diagonal. Under the utility maximisation criterion, we find the constant models are 

still always inferior to the dynamic models. However, within the dynamic 

specification, there is no certain pattern for the relative ranking of each model, since 

the expected value of futures returns are not effectively zero in our sampling period. 
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Moreover, we can conclude that individuals risk preferences also influence their 

choice of hedging strategies. Under the semivariance reduction criterion, the GARCH 

Diagonal model is the most superior and constant model is the most inferior. Further 

evidence is found on that the dynamic models perform better than the constant model.  

 

In the in-sample period, there are some findings that are unique for the China fuel oil 

futures. First, the reductions in variance for hedging in both markets are very low, 

much lower that the hedging effectiveness of other oil futures in the international oil 

market that have been studied so far. Second, the domestic hedging have even lower 

variance reduction than the cross border hedging in the Singapore market. Third, 

China fuel oil futures are more effective in hedging downside risks based on the 

semivariance reduction than total risk reduction. And in terms of hedging downside 

risk, domestic hedging is more effective than the cross hedging in the Singapore 

market. Fourth, the models do not strictly follow the risk and return trade-off rule; the 

model that yields a higher reduction may also generate higher hedged portfolio 

returns.  

 

Our empirical findings in the out-of-sample period are somewhat disappointing for 

hedging of the spot positions in the Chinese market under variance minimisation 

criterion, where all the dynamic and constant models perform extremely poorly. The 

risk reduction results based on variance imply the inability of China oil futures in 

hedging spot risks, on the market average. For hedging in the Singapore market, all 
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models underperform the in-sample ones, especially the dynamic models. The 

Constant model gives a relatively stable variance reduction both in- and out-of-sample. 

Such results are consistent with some of the literature in that dynamic hedging 

modeling does not have obvious advantages over the constant modeling in terms of 

risk reduction in the out-of-sample period due to the limitations of GARCH models in 

forecasting. In contrast, the findings of the China fuel oil futures’ ability in hedging 

market downside risk are promising, especially for the domestic hedging. The 

hedging effectiveness with all the models increases in terms of semivariance reduction 

in the out-of-sample period where there is more uncertainty in the market. 

 

Empirically, hedging downside risk is more important to the market participates 

because returns below some target value could be disastrous for them; whereas returns 

above the target value could be beneficial. In this sense, we believe that the China fuel 

oil futures market is an effective hedging instrument, especially for the investors in 

domestic fuel oil market. For those who use the China fuel oil futures to hedge the 

downside risk, dynamic model is obviously a good choice than the constant model.  

 

In evaluating the out-of-sample hedging performance, this study also provides the 

performance comparison of the time path of the risk reduction and of the time path of 

the expected utility of different hedging strategies. Different from the out-of-sample 

period performance evaluation based on the average risk reduction and average 

expected utility, the dynamic models constantly give superior result than the constant 
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models, for both domestic and cross hedging.  

 

Comparing to the existing literature, we take a further step to investigate our findings 

by conducting an equality test for means and variances of the hedged portfolios. 

According to the insignificance of most results in the equality test, we find that one 

hedging strategy is not significantly outperforming the other, for both domestic and 

cross hedging.  
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Appendix 1 A  

 
Figure 1. 1 Daily return series 
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Figure 1. 2 Daily Log price series  
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Note: LF represents the log price of China fuel oil futures. LS represents the log price of China 

fuel oil spot and LSX represents the log price of Singapore fuel oil spot. 
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Figure 1. 3 Pairs of daily log price series 
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Figure 1. 4 Conditional Variances of Futures Returns for Domestic Hedging: In-sample period 
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(b) 
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Figure 1. 5 Conditional Covariance of Spot and Futures Returns for Domestic Hedging: In-sample period  
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(b) 
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Figure 1. 6 Conditional Variance of Spot Returns for Domestic Hedging: In-sample Period  
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(b) 
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Figure 1. 7 Conditional Variance of Futures Returns for Cross Border Hedging: In-sample period  
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(b) 
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Figure 1. 8 Conditional Variance of Spot Returns for Cross Hedging: In-sample period  
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(b) 
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Figure 1. 9 Conditional Covariance of Spot and Futures Returns for Cross Hedging: In-sample period  
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(b) 
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Figure 1. 10 Estimated hedge ratios of the domestic hedging: In-sample period  
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Figure 1. 11 Estimated hedge ratios for cross hedging in the Singapore market: In-sample period 
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Figure 1. 12 Estimated hedge ratios with the TGARH General model for domestic hedging under Utility Maximisation criterion: In-sample period 
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Figure 1. 13 Estimated hedge ratios under the TGARCH-Diagonal model for domestic hedging under Utility Maximisation criterion: In-sample period 
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Figure 1. 14 Estimated hedge ratios using the TGARCH general for cross hedging under Utility Maximisation criterion: In-sample period 
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Figure 1. 15 Estimated hedge ratios using the GARCH General model for the cross hedging under Utility Maximisation criterion: In-sample period 
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Figure 1. 16 Predicted variance (Pred var) and the unconditional variance (Unconditional 

var) of futures returns for the domestic hedging: out-of-sample 
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Figure 1. 17 Predicted variance (Pred var) and the unconditional variance (Unconditional 

var) of the spot returns for the domestic hedging: out-of-sample 
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Figure 1. 18 Predicted covariance (Pred cov) and the unconditional covariance 

(Unconditional cov) of Spot and futures returns for the domestic hedging: out-of-sample 
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Figure 1. 19 Predicted variance (Pred var) and the unconditional variance (Unconditional 

var) of futures returns for the cross hedging: out-of-sample 
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Figure 1. 20 Predicted variance (Pred var) and the unconditional variance (Unconditional 

var) of spot returns for the cross hedging: out-of-sample 
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Figure 1. 21 Predicted covariance (Pred cov) and the unconditional covariance 

(Unconditional cov) of Spot and futures returns for the cross hedging: out-of-sample  
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Figure 1. 22 Predicted hedge ratios of hedging domestic spot positions: out-of-sample period 
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Figure 1. 23 Predicted hedge ratios of cross hedging in the Singapore market: out-of-sample 

period 
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Figure 1. 24 Return of hedged portfolios of the domestic hedging under variance 

minimisation: out-of-sample 
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Figure 1. 25 Return of hedged portfolios of the cross hedging in the Singapore market under 

variance minimisation: out-of-sample 
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Figure 1. 26 Histogram of hedge ratios estimated using different models for the domestic 

hedging: out-of-sample period 
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Figure 1. 27 Histogram of hedge ratios estimated using different models for the cross 

hedging in the Singapore market: out-of-sample period 
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Figure 1. 28 Time path of risk reduction of the domestic hedging under risk minimisation 

criterion: out-of-sample period 
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Figure 1. 29 Time path of risk reduction of the cross hedging over time under risk 

minimisation criterion: out-of-sample period 
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Figure 1. 30 Expected utility of the domestic hedging over time under utility maximisation 

criterion: out-of-sample period 
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(3) 1   
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Figure 1. 31 Expected utility of the cross hedging in The Singapore market over time under 

utility maximisation criterion: out-of-sample period 
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Figure 1. 32 Time path of risk reduction of the domestic hedging based on semivariance: 

out-of-sample period 
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Figure 1. 33 Time path of risk reduction of the cross hedging based on semivariance: 

out-of-sample period 
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Appendix 1 B 

 

Figure 1.B 1 Monthly position of China fuel oil futures (lot). 

 

 

 

 

 

Figure 1.B 2 Average monthly turn of China fuel oil futures. 
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Figure 1.B 3 Sales price and cost of some oil refineries 

 

 

Note: Guangdong province in China takes 80% of fuel oil imports. 

 

 

 

Figure 1.B 4 China fuel oil futures and spot price series 

 

 
 

Source of above figures: Guangzhou Twinace Petroleum and Chemicals Co., Ltd. 
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2.1 Background and Literature   

 

Oil and gold are two very important commodities in the financial market. Oil, as one 

of goods with substantial volume of trades in world markets, is very essential in every 

economy. Its importance as a source of energy and economic growth can hardly be 

exaggerated. This is especially true for the world’s leading economy, the U.S., where 

oil makes possible the functioning of nearly every component of the economy, 

directly or indirectly. It provides 40% of the nation’s power supply—far more than 

any other source. Figure 2.B1 in Appendix 2.B shows the percentage of US to the 

world oil production, imports and demand. The US oil demand takes up to a quarter of 

the world total oil demand, much more than the percentage it can produce. Oil price 

have behaved with wide swings in history. Figure 2.B2 depicts the crude oil price for 

the past 50 years based on yearly average data. We have witnessed the general upward 

trend of the price of oil. The inflation adjusted oil price series portrayed in Figure 

2.B3 show that the oil price has picked in 1980 and 200818, following 1997 currency 

crisis and 2007 financial crisis, both of which lead to severe economic recession.  

 

The linkage between economic growth (hence, the stock price) and oil markets 

appears to be quite natural. Huang et al. (1996) opine that if oil plays an important 

role in an economy, it would be expected that changes in the oil price to be correlated 

with changes in stock prices. Mussa (2000) argues that by affecting economic activity, 

                                                        
18 Oil price has started to drop from its peak in July 2008 (as shown in Figure 3.B4) and is 
averaged about 52 dollars a barrel in the first seven month in 2009.  
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corporate earnings, inflation and monetary policy, an increase in the oil price has 

implications for asset prices and financial markets. While summing up contemporary 

research relating to oil prices and capital markets, Jones et al. (2004) comment that: 

“Ideally stock values reflect the market’s best estimate of the future profitability of 

firms, so the effect of oil price shocks on the stock market is a meaningful and useful 

measure of their likely economic impact. Since asset prices are the present discounted 

value of the future net earning of firms, both the current and expected futures impacts 

of an oil price shock should be absorbed fairly quickly into stock prices and returns 

without having to wait for those impacts to actually occur.” 

 

On the other hand, with the geopolitical uncertainties and some of the turmoil 

afflicting the financial markets, the price of gold has been sent soaring as well, as 

shown in Figure 2.B5. Gold is a precious metal which is also classed as a commodity 

and monetary asset. It has acted as a multi-faceted metal down through the centuries. 

It possesses similar characteristics to money in that it acts as a store of wealth, 

medium of exchange and a unit of value (Goodman 1956; Solt and Swanson, 1981). It 

has also played an important role as a precious metal with significant portfolio 

diversification properties (see, e.g., Ciner, 2001). It is used in industrial components, 

jewellery, as an investment asset as well as reserve asset. Gold is often used as a 

hedge against inflation, political risk, and currency exchange risk. According to Smith 

(2002), “when the economic environment becomes more uncertain attention turns to 

investing in gold as a safe haven.” The gold holding in the United States is on average 
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up to one quarter of the world total holdings, as shown in Figure 2.B6.   

 

As can be observed in the financial market for the past few decades, it is a general 

rule that when the price of crude oil rallies, the price of gold tends to follow suit. 

Higher oil prices act like an inflation tax on consumer and producers, whereas 

investing in the gold market turns out to be the best hedging strategy. Over the last 50 

years or so, gold and oil have generally moved together in terms of price, with a 

positive price correlation of over 80 percent (Nick Barisheff, 2005). We depict the last 

50 years oil and gold price series in Figure 2.B7 and their monthly price series since 

1990s in Figure 2.B8.  

 

From the Figures, we observe strong correlations between the oil and gold markets. 

Each of these two markets has significant effects on the economy, which is reflected 

in some way by the movement of the stock market in that economy. Despite the 

apparent links between the oil and gold markets, there are few studies on their 

relationship. For the literature on oil and stock market, while many studies have 

examined how changes in oil prices can affect the macroeconomy, especially its 

growth, the literature exploring the impact of oil on the stock markets still remains 

sparse, with only a few studies. Generally an adverse linkage between the higher oil 

prices and economic growth is well documented in the literature (e.g. Hamilton, 1983; 

Gisser and Goodwine, 1986; Mussa, 2000; IEA, 2004; Jones et al., 2004). For the 

relation between the oil and stock markets, Jones and Kaul (1996) provide evidence 
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that aggregate stock market returns in the USA, Canada, Japan and the UK responsed 

negatively to oil price shocks on the economies of these countries. Using a standard 

cash-flow dividend valuation model, they found, however, that only in the US and 

Canada can this reaction be accounted for completely by the impact of the oil shocks 

on real cash flows. Huang, Masulis, and Stoll (1996) examined the relationship 

between daily oil futures returns and daily U.S. stock returns. Using a VAR model, 

they found that oil futures returns lead some individual oil company stock returns but 

they do not have much impact on the broad-based market indices such as the S&P 500. 

Sadorsky (1999), utilizing an unrestricted VAR and using US monthly data, examined 

the links among fuel oil prices, stock prices, short-term interest rate and industrial 

production of the economy. He found, in contrast to Huang et al.’s finding, that oil 

price movements are important in explaining movements in broad-based stock returns. 

Hammoudeh and Aleisa (2002), using monthly data from 1991 to 2000 and 

employing the two-step univariate GARCH models, found mean spillovers from oil 

markets to stock markets in the case of Bahrain, Indonesia, Mexico, and Venezuela. 

Hammoudeh, Dibooglu and Aleisa (2004) investigate the relationship among U.S. oil 

prices and oil industry equity indices based on daily data. They found that the oil 

futures market has a matching or echoing volatility effect on the stocks of some oil 

sectors and a volatility-dampening effect on the stocks of others. El-Sharif, Brown, 

Burton, Nixon and Russell (2005) study the relationship between the price of crude oil 

and equity values in the oil and gas sector using data relating to the United Kingdom 

and find the volatility in the price of crude oil has a positive and significant impact on 
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share values within the sector.  

 

The existing literature on the relationship between the gold market and stock market is 

even sparser. Chan and Faff (1998) investigate the extra-market sensitivity of the 

Australian industry equity returns to a gold price factor over the period 1975 to 1994. 

They find that there has been a widespread sensitivity of Australian industry returns to 

gold price returns, over and above market returns. The sensitivity is found to be 

positive for resource and mining sector industries, whereas it is negative for the 

industrial sector. They also find that the gold price sensitivities are changing over time. 

Blose and Shieh (1995) studied the elasticity of gold mining stocks to the changes in 

gold price. Using monthly data over a ten year period from 1981 through 1990, they 

found 23 out of 24 publicly traded gold mining companies in their sample have a gold 

price elasticity greater than one.  

 

With the ever-increasing integration of financial markets, it is well accepted that the 

economic growth benefit from risk sharing, improvements in allocation efficiency and 

reductions in macroeconomic volatility and transaction costs (see Prasad et al., 2003; 

Baele at al., 2004). Whilst financial market integration encompasses many different 

aspects of the complex inter-relationships across various financial markets, we focus 

on the interrelation between oil, gold and US stock markets. As far as we know, there 

is not a single literature which has studied the linkage between these three markets. 

Understanding the links between financial markets is of great importance for a 
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financial hedger, portfolio manager, asset allocator, or other financial analysts. The 

study of volatility spillover from one market to another is a crucial part of the issue. 

(Martin Agren, 2006). Thus, instead of studying the price and return movements, our 

study focuses on the volatilities spillover between these markets, that is, the linkage in 

their second moments. Although there is no existing literature exploring such second 

moment linkages between these three markets, there are many studies on the volatility 

spillover in financial markets, especially among different stock markets and currency 

markets. Most of these studies employ the GARCH framework, univariate or 

multivariate, as the GARCH model is generally believed to be the best to describe 

financial return data. For example, Kearney and Patton (2000) employed a 

multivariate GARCH model to study the volatility transmission mechanism among 

different exchange rates in the European Monetary System. Ewing, Malik, and 

Ozfidan (2002) used a similar model to study the linkage between the oil and natural 

gas markets. They find that there exists significant volatility spillover between the two 

markets. Malik and Hammoudeh (2005) used a Multivariate GARCH model to study 

the volatility and shock transmission mechanism among US equity, global crude oil 

market, and equity markets of Saudi Arabia, Kuwait, and Bahrain. They find 

significant transmission among second moments. In our study, we investigate the 

volatility linkage by employing both Tri-variate GARCH specification for the oil, 

gold and stock market returns and Bi-variate GARCH for each of the two markets. 

This enables us to examine how the variances of one markets is affected by the shocks 

from the another market. Meanwhile, by comparing the variances and covariances 
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estimated from Tri-variate and Bi-variate GARCH models, we can investigate how, 

by including a third market to the existing two markets framework, the changes in the 

third market can affect the linkage between the two markets being investigated.  

 

Daily data beginning April 1991 to November 200719 are used for the purpose of this 

study. Moreover, three sub-samples are examined (reasons of which are given in later 

section). We find that, in terms of volatility, the gold market is “exogenous”, despite 

the close price or return links between gold and the oil market. The gold market 

volatility spills over to the oil and stock markets. The spillovers between the oil and 

stock markets are generally bi-directional. This provides evidence of the existence of 

the strong linkage between the oil and the stock market, and with the US economy. 

Gold, being regarded as a “safe haven” asset and being largely held by individuals and 

institutional investors to hedge risk, had a low volatility itself and had not been 

affected by oil and stock market shocks. The existence of volatility spillovers between 

the oil and gold markets, indicated by the Bi-variate GARCH modelling, actually 

emanate from their relations with the third market, the stock market. Similarly, the 

volatility spillovers between the gold and stock markets are due to their links with the 

oil market.   

 

The remainder of the chapter is organized as follows. Section 2 describes the data and 

methodology. Empirical findings are presented in Section 3. A summary and 

                                                        
19 This period is chosen because of the financial integration growing rapidly since the early 1990s.  
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conclusion are provided in Section 4.  
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2.2. Data and Methodology 

 

2.2.1 Data 

 

The data used in this study, namely world oil, gold and US stock prices, are sourced 

from DataStream. World oil price is represented by the nearby futures price series of 

the world’s most liquid and most actively traded oil futures contract, the NYMEX’s 

Light Sweet Crude Oil contract. The futures prices are chosen instead of spot prices 

because the futures are far more heavily traded than the commodity itself and also are 

far more sensitive to the arrival of new information. The NYMEX’s Light Sweet 

Crude oil futures is chosen over other oil futures because this contract is traded in the 

US market and is the world’s largest futures contract in terms of trading volume on a 

physical commodity. It is widely used as the benchmark for determining crude oil and 

refined product prices in the United States and abroad. For similar reasons, we use the 

continuous gold futures price series from Chicago Mercantile Exchange as the 

indicator of world gold prices. For the stock index, S&P500 is generally used as the 

representative of the US stock market and the economy. The data begin on 1 April 

1991 and end on 5 November 2007. 

 

We also split our data set into three sub-sample periods for investigative purposes, 

which are detailed in Section 2.3. All returns are calculated by computing the 

differences in the natural logarithm of the price multiplied by 100. 
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2.2.2 Methodology 

 

To explore the dynamics of the price volatility process, autoregressive conditional 

heteroskedasticity (ARCH) and generalised ARCH (GARCH) models that take into 

account the time-varying variances of time series data are employed (suitable surveys 

of ARCH modelling may be found in Bollerslev, et al. 1992; Bera and Higgins, 1993 

and Pagan, 1996). The GARCH type models are more parsimonious than the ARCH 

type models and are commonly used to capture the features of financial data and to 

explore the volatility and volatility transmission of financial markets. In our study, we 

first employ the Tri-variate GARCH (1, 1)20 model to examine the relations between 

oil, gold and US stock market. Then we employ a Bi-variate GARCH (1, 1)21 model 

to examine the relation between each pair of the three markets. The results obtained 

from Tri-variate GARCH model are compared with those obtained from the 

Bi-variate GARCH model.  

 

The most general Tri-variate GARCH(1,1) model we postulated to represent the joint 

distribution of the oil, gold and stock returns is:   

           
1

n

t t i t i t
i

Y Y  


   ;   ),0(~| 1 HNtt                      (2.1) 

                                                        
20 Tri-variate GARCH (m,n) (m>=1, n>=1) models are also experimented for this study. However, 
we found that when we include higher orders in the GARCH specification, all the parameters for 
conditional and unconditional variance, except for the first order, are mostly statistically 
insignificant from zero.  
21 Same as Tri-variate GARCH models, higher orders in Bi-variate GARCH specification were 
also experimented with in the study. The results also suggest that the Bi-variate GARCH (1,1) is 
the most appropriate.  
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Where ,( , ) 't t tY ro rg rsp  is a vector of observations of the log-differenced prices of 

oil futures, gold futures and S&P 500 stock index, multiplied by 100, 

( , , ) 't ot gt st    is a vector of conditional means to be estimated and 

( , , ) 't ot gt st     is a vector of residuals. This is a general VAR for the mean 

equation where one variable is a function of its own lagged values, and lagged values 

of all the other variables, from time t - 1 , to time t n . Starting from experiment 

with the most general model, we then reduce the mean structure to more parsimonious 

specifications. The residuals are assumed to be normally distributed and are 

conditional on past information, 1t , with zero mean vector and with conditional 

variance-covariance matrix:  

                1 1 1t t t tH C C A A B H B   
                               (2.2) 

Where C is (3 3)  symmetric parameter matrix, and A and B are (3 3)   

parameter matrices. In our estimation, we use the most general form, all full rank A, B 

and C matrix for our maximum likelihood estimation. In the cases that estimation is 

not possible to obtain because the positive feature of tH  is violated, we adopt a 

positive definite parameterization following Engle and Kroner (1995), henceforce the 

BEKK representation, where 21 31 32 0c c c   . Such specification guarantees that 

the conditional covariance matrix is positive definite so that conditional variances are 

always nonnegative. In explicit format, we can express the conditional 

variance-covariance matrix H in the following form: 
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  (2.3) 

 

The Tri-variate GARCH model is estimated using maximum likelihood method. 

Under conditional normality, the log likelihood function is as follow: 

1

1

1
( ) log(2 ) (log ( ) ( ) ( ) ( ))

2

T

t t t t
t

L T H H  



                      (2.4) 

Where T is the number of observations of the sample.   is the parameter vector to 

be estimated. 1, 2, 3,( , , )t t t t     is a (1 3)  vector of residuals at time t. 

1cov( )t t tH    , with the diagonal elements of tH  are the conditional variances, 

the cross diagonal elements are the conditional covariances of spot and futures returns. 

The log-likelihood function is maximized subject to the constraint that the conditional 

variances be positive. The Tri-variate GARCH model is first estimated using the 

SIMPLEX22 algorithm. Such preliminary estimation is used to refine the initial 

parameter values before switching to our final estimation method. With the values 

obtained from Simplex estimation are then used as initial values, the final parameters 

                                                        
22 The Simplex Method is a search procedure which requires only function evaluations, not 
derivatives. It starts by selecting K+1 points in K-space, where K is the number of parameter. It is 
normally used as a preliminary estimation method to refine the initial parameter values before 
switching to one of the other estimation methods. 
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are estimated by the BFGS23 method. The initial values for the Simplex estimation 

are found from the univariate GARCH estimation. For those parameters for which the 

initial guesses cannot be obtained from the linear estimations, we used a value 0.05. 

 

The specification of the Bi-variate GARCH (1,1) model is as follows: 

             
1

n

t t i t i t
i

Y Y  


   , ),0(~| 1 HNtt                      (2.5) 

Where 1 , 2( ) 't t tY y y  is a vector of observations of the log-differenced prices of oil 

and gold, gold and S&P500 or oil and S&P500. 1 2( , ) 't t t    is a vector of 

conditional means to be estimated and 1 2( , ) 't t t    is a vector of residuals. We 

assume that the residuals are normally distributed and are conditional on past 

information, 1t , with zero mean vector and with conditional variance-covariance 

matrix 
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      (2.6) 

 

Similarly, the Bi-variate models are estimated by maximum likelihood, with the log 

                                                        
23  The BFGS (Broyden, Fletcher, Goldfarb, Shanno) method uses the matrix of analytic 

derivatives of the log likelihood in forming iteration updates and in computing the estimated 

covariance matrix of the coefficients. At each iteration, it is updated based upon the changes in 

parameters and in the gradient in an attempt to match the curvature of the function.  
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likelihood function is as follow: 

1

1

1
( ) log(2 ) (log ( ) ( ) ( ) ( ))

2

T

t t t t
t

L T H H  



                   (2.7) 

This time, 1 2( )t t t    is a 1x2 vector of residuals at time t. The choice of initial 

values and estimation method follow those used for the Tri-variate GARCH.  

 

Stationarity of the Multivariate GARCH(1,1) process, Bi-variate and Tri-variate 

GARCH in our case, requires that the eigenvalues of ( )A A B B    be less than 

one in modulus24(See Engle and Kroner, 1995).  

 

To give a more clear illustration of the volatility spillover, we expand the matrix form 

of the variance and covariance. For the Tri-variate GARCH models, the expanded 

matrix can be written as a set of equations, as show on next page (Eq 2.8). The error 

terms represent the previous day’s shocks realized in that market. Whether such 

shocks, or information realized in one market can affect the conditional volatility of 

the other market can be examined by the significance of the parameters on the shocks. 

                                                        
24 For the Multivariate GARCH(1,1) model, 1 1 1H C C A A B H Bt t t t         , hence we have 

'( ) ( ' ) ( ) ( ) ( ) ( )1 1 1h vec H vec C C A A vec B B vec Ht t t t t         . It follows that the 

unconditional covariance matrix is 1[ ( ) ( )] ( )I A A B B vec C C     .  For the diagonal 

Bi-variate GARCH model, the stationary condition can be reduced to 2 2 1, 1, 2a b iii ii   , 

because the eigenvalues of a diagonal matrix are simply the elements along the diagonal and the 

conditions detailed imply that all other diagonal elements are also less than 1 in absolute value. 

Similarly, the stationary condition for the diagonal Tri-variate GARCH model can be reduced to  

22 2 1, 1, 2, 3ciia b iii ii    . 
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For example, to investigate whether the oil shocks can affect the volatility of gold, we 

need to determine whether the coefficient 2
12a  is significantly different from zero. 

Similarly, the significance of coefficients 2
21a , 2

31a  can give indications of how the 

past shocks in the gold and stock markets, respectively, affect the conditional 

volatility in the oil market. Following the same algorithm, the significance of 

coefficients 2
ijb  represent the conditional variance of market i  has significant 

impact on the conditional variance of market j . The coefficients 2
iia  and 2

iib  

represent how the conditional variance of one market is affect by its own past shocks 

and past conditional variance. Thus there exists spillover from market i  to market 

j  when 2 0ija   and/or 2 0ijb  . If 2 0ija   and 2 0ijb  , volatilities do not spill over 

from market i  to market j . The volatility spillovers for the Bi-variate models can 

be identified by the same mechanism. The expanded form of conditional variance and 

covariance for the Bi-variate GARCH model is as follows (Eq.2.9). 
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Eq.2.8. The conditional variance-covariance for oil, gold and stock index in an expanded form. 
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Eq.2.9. The conditional variance-covariance of a Bi-variate GARCH in an expanded form 
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2.3. Estimation results 

 

2.3.1 Descriptive Statistics for the whole sample 

 

Figure 2.1 and 2.2 in Appendix 2.A portray the price in logarithms for oil and gold 

futures and the S&P500 stock index. Table 2.1 reports the basic statistics for daily 

returns for the world oil futures returns (denoted as ro), gold futures returns (denoted 

as rg) and US stock market index S&P500 returns (denoted as rsp), including 

normality tests of the returns series and unit root tests, all of which are to ensure the 

modelling specifications we proposed are appropriate.  

 

Table 2. 1 Descriptive statistics for return series 

 RO RG RSP 

 Mean 0.0366 0.0187 0.0323 

 Median 0.0000 0.0000 0.0166 

 Maximum 14.2309 8.8872 5.5732 

 Minimum -16.5445 -7.5740 -7.1127 

 Std. Dev. 2.0859 0.8704 0.9732 

 Skewness -0.2517 0.0839 -0.1353 

 Kurtosis 7.0390 12.2394 7.3567 

    

 Jarque-Bera 2988.96 15406.51 3437.64 

 Probability 0.0000 0.0000 0.0000 

    

Q(10) 15.06 21.26** 23.12** 

Q2(10) 207.30** 270.14** 1175.20** 

ARCH_LM 26.91** 28.84** 85.45** 

    

ADF -65.49** -66.95** -67.15** 

KPSS 0.2000 0.6805 0.2290 

Note: Critical value ( for 5% significance) for ADF test: with intercept, - 2.865; with trend and intercept, -3.417.   

Critical value (for 5% significance) for KPSS test: with intercept, 0.463, with intercept and trend, 0.146. 

Here ** indicate rejection of null hypothesis at 5% significance level.
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From Table 2.1, we observe that the returns for oil gold and stock market are slightly 

positive. The oil market has the biggest deviation between maximum and minimum 

values. Standard deviations also suggest that the oil returns are more volatile than the 

gold futures returns and stock returns. Although we cannot observe noticeable 

significance in the skewness25, a considerable significant kurtosis26 is found in each 

of the three series, which suggests higher frequencies of extreme peakedness in these 

series. The significance of Jarque-Bera27 (JB) statistics suggest that the series are not 

normally distributed, thus linear regressions cannot be used. Ljung-Box(1987) Q(10) 

statistics are significant for gold and S&P500 return series, which suggest the 

existence of serial correlations. Ljung-Box Q-statistics for all squared return series 

( 2 (10)Q ) are significant, indicating strong autocorrelation in the squared return series; 

thus, the second moments of returns are time varying and changing in a predictable 

fashion. This kind of volatility clustering —large changes tend to be followed by large 

changes, of either sign, and small changes tend to be followed by small changes, of 

either sign— can also be observed in Figure 2.3. In sum, the return series in this study 

exhibit all the typical characteristics of high frequency financial return series: 

skewness, leptokurtosis, and highly significant linear and nonlinear serial correlations. 

Empirical modelling shows that the GARCH type models are adequate for modeling 

                                                        
25 Skewness is a measure of asymmetry of the distribution of the series around its mean; the 
skewness of a symmetric distribution, such as the normal distribution, is zero.  
26 Kurtosis measures the peakedness or flatness of the distribution of the series, in other words, 
how fat the tails of distribution are. The kurtosis of the normal distribution is 3. 
27 A JB statistic for normal distribution is 0, which indicates that the distribution has a skewness 
of 0 and a kurtosis of 3. Skewness values other than 0 and kurtosis values farther away from 3 lead 
to increasingly large JB values. And the Critical value for normal distribution at 5%level is 5.99. 
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daily price movements in financial market. The significance of the ARCH-LM test 

(Engle, 1982) statistics also suggests that ARCH/GARCH type model is an 

appropriate specification. For an adequate estimation with Bi-variate GARCH we 

need to ensure that the components variables (the mean returns) are stationary. Thus 

unit root tests become necessary. In this study, we conduct the Augmented 

Dickey-Fuller (ADF) and the Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test to 

examine the existence of stationary in the return series. The null hypothesis for ADF 

test is that the series has a unit root; while the null hypothesis for KPSS is that the 

series is stationary. The test results are shown at the bottom of Table 2.1. ADF test for 

the return series are all significant at 95% significant level, and KPSS are all 

insignificant at 95% significant level. Both test results confirm that the three return 

series are covariance stationary.  

 

ADF and KPSS tests are also performed on the natural logarithm of the three price 

series, with the results indicating that the price series are following an I(1) process. To 

ensure the adequacy of our estimation model, we need to test the possible existence of 

cointegration between variables. The cointegration relationships are normally 

regarded as the long run or stationary relationships between the endogenous variables. 

If cointegration relationships exist between variables, the model specifications need to 

be adjusted by inclusion of the lagged cointegration vectors ( 1tEC  ). If the log price 

series are cointegrated and the resultant error correction terms are not included in the 

regression, the estimation results will be biased. Johanson’s cointegration test (1991, 
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1995) were adopted and the results are reported in Table 2.2. Based on the Figure 2.2 

of the price series in logarithm, the Johanson’s cointegration test specification we 

used assumes intercept but no trend in the cointegration vector.  

 

Table 2. 2 Cointegration test for the price series 

 

 

 

 

As shown in Table 2.2, both the Trace and Max-eigenvalue28 tests indicate that there 

is no cointegration relations between the three price series.  

 

 

 

                                                        
28 The Max-eigenvalue test is not regarded as reliable as the Trace test.  

Unrestricted Cointegration Rank Test (Trace)   

Hypothesized  Trace 0.05   

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None  0.003875  23.12317  29.79707  0.2401 

At most 1  0.000955  6.320129  15.49471  0.6577 

At most 2  0.000505  2.185199  3.841466  0.1393 

 Trace test indicates no cointegration at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values   

          

Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

Hypothesized  Max-Eigen 0.05   

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None  0.003875  16.80304  21.13162  0.1815 

At most 1  0.000955  4.134930  14.26460  0.8448 

At most 2  0.000505  2.185199  3.841466  0.1393 

 Max-eigenvalue test indicates no cointegration at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values   



 172

 

2.3.2 Estimation results for the whole sample period29 

 

In our estimation, we experimented with numerous specification of the mean equation, 

for the given structure of conditional variance and covariance (H). For the structure of 

the latter, we use full rank in the C matrix. However, when it is impossible to obtain 

estimates of the parameters of H, because of singularity or lack of convergence, we 

follow the BEKK strategy to set the upper off-diagonal elements equal zero, which 

ensures the positive definition of conditional variance and covariance matrix.  

 

From all the permutations of the specification within and across the three returns of 

oil, gold futures and stock index for both Tri-variate the Bi-variate GARCH models, 

the most minimal specification, of random means, was generally the most acceptable 

statistically speaking 30. Where this was not the case, the best mean equations 

contained only an intercept or an intercept and one period lagged variables.  

 

The Tri-variate GARCH estimation results are reported in Appendix 2.A. Table 2.A1. 

As we can observe, most elements in A and B matrix are significantly different from 

zero, indicating that the variance and covariance of each returns series are 

time-varying and are impacted by the shocks from its own past and shocks from other 

                                                        
29 Sample period will be divided into three sub-sample periods. Thus we use the whole sample 
period here. More explanations about the sample splitting are provided later.  
30 The appropriate mean settings are chosen by comparing the parameter significance statistics, 
LR test results for omitting one or more variables and also the log likelihood values for the 
estimation  
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market, hence the appropriateness of a GARCH framework. The parameters in matrix 

A capture the effects from unexpected shocks and the parameters in matrix B capture 

the effects from the past conditional volatilities. The diagnostic tests for the maximum 

likelihood estimations are provided at the bottom of Table 2.A1. The Ljung-Box Q(10) 

Statistics for error terms suggest the autocorrelations in the oil and gold futures 

returns have been removed, however, this is not the case for the stock index returns. 

Ljung-Box Q statistics for the squared error terms ( 2 (10)Q ) are all significantly 

different from zero at 5% significance level, which indicate that the serial correlations 

still exist in the second moments of all series. Moreover, we can observe from the 

eigenvalues given in the bottom of Table 2.A1 that one of the eigenvalues exceeds 1. 

Therefore, the Tri-variate GARCH model for the whole sample period is not 

covariance stationary.  

 

To investigate spillovers from Tri-variate GARCH estimation, we also compare these 

with the results from Bi-variate GARCH estimation of each pair of variables. The 

Bi-variate estimates are reported in Table 2.A2. Again we observe that most elements 

in the A and B matrices are significantly different from zero at the 5% significance 

level, pointing to the existence of GARCH relations among the error terms. However, 

the diagnostic tests suggest that the Bi-variate estimates for the whole sample period 

are not covariance stationary for the oil-gold and gold-stock market models (As 

reported in at the bottom of the Table 2.A.2, eigenvalues for the two models are not 

always smaller than one). The Q(10) statistics for the oil returns series are significant, 
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suggesting the existence of serial correlations. Q(10) statistics for the squared return 

series in all of the three markets are strongly significant, so the autocorrelations in the 

second moments are not fully removed. Eigenvalues given in Table 2.2 also indicate 

the covariance stationary are not satisfied for the Bi-variate estimation of the relations 

between oil and gold market, or for the estimation between gold and stock market. 

 

As discussed earlier, the transmission of volatility can be examined by the parameters 

in conditional covariance matrix. We summarize the volatility transmission patterns 

for Tri- and Bi-variate GARCH estimation of the oil, gold and stock market in Table 

2.4. We can conclude from the three Bi-variate estimations that volatilities transmitted 

uni-directionally from the gold market to the oil market, from the stock market to the 

gold market, and bi-directionally from the oil to the stock market. Except for the 

transmission between the oil and stock markets, the relationships are not in line with a 

priori expectations. It is normally believed that during the past decade, when the oil 

price rallied, the gold price would follow suit. This is because an oil price increase 

will raise expected inflation. Investors will buy more gold as it is a reserve asset, 

which will raise its price. However, from the volatility point of view, oil market 

shocks do not affect gold market volatility directly, at least over a short period. This 

indicates that gold is a good hedging asset. On the other hand, the oil market is quite 

sensitive to gold market shocks. Gold market volatility is affected by the shocks 

emanating from the stock market, but not vice versa.  
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In contrast, the Tri-variate GARCH estimates show that the volatility spillovers are 

bi-directional between all three markets, which suggests that oil, gold and stock 

markets are intertwined through second moments. The difference between Bi-variate 

and Tri-variate GARCH estimation may come from the fact that the Bi-variate results 

are obtained when we do not control for any effects from the third market. It seems 

that we cannot omit the effect of the third market when we consider the relations 

between any pair of markets, at least when describing their second moment 

inter-dependence.  

 

The conditional variance and covariance series estimated under different modelling 

specification for the three markets are portrayed in Figures 2.4 to 2.9. We can observe 

from the Figures 2.4 to 2.6 that the conditional volatility of oil, gold and stock market 

estimated by using Tri-variate and two Bi-variate GARCH models follow a similar 

pattern. In contrast, the conditional covariances estimated between different methods 

obviously diverge from each other, for each of the three markets. This is a 

confirmation that the correlations between the two specific markets are largely 

affected by the third market.  

 

Descriptive statistics for the conditional variance and covariance series estimated 

using different modelling specification are reported in Tables 2.5 and 2.6. In general, 

the divergences are very small between different models, especially for the 

conditional variance. All the variance and covariance series exhibit non-normality. 
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We can also conclude from Table 2.5 and 2.6 that the variance and covariance 

estimated under Bi-variate GARCH models exhibit more peakedness in the estimated 

series and consequently larger Jarque-Bera statistics; and the standard deviation for 

the covariances estimated using Bi-variate models are higher than those estimated 

using the Tri-variate model. All those alternatives bear out the importance of a third, 

inter-correlating market.  

 

To investigate whether the variance and covariance series estimated under different 

models are statistically similar or not, we perform Equality test for means and 

variances for all these series. The results are reported in Table 2.7.  
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Table 2. 3 Volatility spillovers for the whole sample period 

 

 
ijh   

2
ij  

 oil gold  stock  oil  gold  stock 

oil  √ √ √  √ √ √ 

gold  √ √ √  x √ x 

stock √ √ √  √ x √ 

        

 oil gold   oil gold  

oil √ √   √ √  

gold x √   x √  

        

 oil stock   oil stock  

oil √ √   √ √  

stock √ √   √ √  

        

 gold stock   gold stock  

gold √ √   √ x  

stock x √   x √  

Note:  √ indicate significant volatility spillover at 5% level 

X indicate no significant volatility spillover at 5% level 

 

 

Table 2. 4 Conditional variances estimated using different models for the whole sample 

period 

 Var(oil) Var(gold) Var(S&P500) 

 

Tri-GARCH 

 

Bi-GARCH 

(RO&RG)  

Bi-GARCH 

(RO&RSP) 

Tri-GARCH

 

Bi-GARCH

(RO & RG) 

Bi-GARCH 

(RG &RSP)

Tri-GARCH 

 

Bi-GARCH 

(RO & RSP) 

Bi-GARCH 

(RG & RSP)

 Mean 4.4547  4.4296  4.4568  0.8137 0.8099 0.8100 0.9544  0.9538 0.9535 

 Median 4.0836  4.0270  4.0424  0.6446 0.6322 0.6405 0.6454  0.6380 0.6461 

 Maximum 14.2323  17.9486  15.6205  4.5736 4.8943 4.6511 4.9246  5.2415 5.6397 

 Minimum 1.1525  1.2879  1.0727  0.0986 0.0964 0.0928 0.1830  0.1707 0.2242 

 Std. Dev. 2.1904  2.1467  2.3606  0.6549 0.6659 0.6587 0.7807  0.8082 0.8252 

 Skewness 1.3260  1.3885  1.5499  2.2077 2.3195 2.2327 2.0454  2.1742 2.3649 

 Kurtosis 5.2664  5.9702  6.1515  9.4735 10.1805 9.6362 7.8883  8.6279 9.7546 

          

Jarque-Bera 2194.13  2980.79  3523.00  11070.29 13175.65 11534.79 7325.30  9119.35 12259.12 

Probability 0.0000  0.0000  0.0000  0.0000 0.0000 0.0000 0.0000  0.0000 0.0000 
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Table 2. 5 Statistics for conditional covariances estimated using different models for the 

whole sample period  

 

 Cov(oil,gold) Cov(oil, sp) Cov(gold, sp) 

 

Tri-GARCH 

 

Bi-GARCH

(RO & RG)

Tri-GARCH 

 

Bi-GARCH 

(RO & RSP) 

Tri-GARCH 

 

Bi-GARCH 

(RG & RSP) 

 Mean 0.2827  0.2883 -0.0524 -0.0456 -0.0667  -0.0608  

 Median 0.2126  0.1879 -0.0552 -0.0486 -0.0457  -0.0410  

 Maximum 1.7707  3.5514 1.4450 1.6626 0.4260  0.4835  

 Minimum -1.5554  -0.9063 -1.5844 -1.7198 -0.7467  -0.9399  

 Std. Dev. 0.3571  0.4073 0.2777 0.3061 0.1298  0.1425  

 Skewness 0.9719  2.3527 0.2985 0.2574 -0.9522  -1.1643  

 Kurtosis 5.9036  13.3936 8.5007 8.5139 6.1712  8.0714  

       

Jarque-Bera 2201.14  23468.35 5519.54 5529.23 2466.97  5614.42  

Probability 0.0000  0.0000 0.0000 0.0000 0.0000  0.0000  

 

 

Table 2. 6 Equality test for the whole sample period 

 

   Mean   Variance  

   Value Probability Value Probability 

Var(oil) Tri-(oil,gole, s&p) & Bi-(oil,gold) 0.2895  0.5906  1.0411  0.1853  

 Tri-(oil,gole, s&p) & Bi-(oil, s&p) 0.0019  0.9652  1.1615  0.0000  

 Bi-(oil,gold)& Bi-(oil, s&p) 0.3149  0.5747  1.2092  0.0000  

       

Var(gold) Tri-(oil,gole, s&p) & Bi-(oil,gold) 0.0741  0.7854  1.0339  0.2723  

 Tri-(oil,gole, s&p) & Bi-(gold, s&p) 0.0680  0.7943  1.0118  0.6999  

 Bi-(oil,gold)& Bi-(gold, s&p) 0.0002  0.9897  1.0219  0.4762  

       

Var(sp) Tri-(oil,gole, s&p) & Bi-(oil,s&p) 0.0012  0.9720  1.0717  0.0228  

 Tri-(oil,gole, s&p) & Bi-(gold, s&p) 0.0027  0.9589  1.1172  0.0003  

 Bi-(oil,s&p)& Bi-(gold, s&p) 0.0003  0.9868  1.0425  0.1712  

       

Cov(oil,gold) Tri-(oil,gole, s&p) & Bi-(oil,gold) 0.4541  0.5004  1.3008  0.0000  

       

Cov(oil,sp) Tri-(oil,gole, s&p) & Bi-(oil, s&p) 1.1736  0.2787  1.2146  0.0000  

       

Cov(gold,sp) Tri-(oil,gole, s&p) & Bi-(gold, s&p) 4.0415  0.0444  1.2056  0.0000  
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From Table 2.7, we can observe that in most cases, the means of the conditional 

variance and covariance series estimated using different models are not significantly 

different from each other. However, their variances are different. For the conditional 

variance of oil, there is no big divergence between Tri-variate GARCH model and 

Bi-variate GARCH model for oil and gold. This suggests that including or not the 

stock index return into the endogenous variables group do not affect the estimation 

results of the oil variance. On the other hand, the gold shocks cannot be omitted for 

the estimation of conditional variance for oil. The variance of gold returns is 

somewhat independent from the oil and stock markets. The conditional variance of 

S&P returns are both related to oil and gold shocks, as shown by the significance of 

the equality test for variance estimated using Tri-variate and Bi-variate GARCH 

models. For the conditional covariance of each pair of variables, we can observe that 

they largely different between the Tri-variate and Bi-variate specifications. Link back 

to the statistic significance of the coefficients on variances and covariances, the 

equality tests provide confirmation that the Tri-variate specification is needed for 

analyzing the variance and covariance structure of the oil, gold and stock market.  

 

The diagnostic tests for both Tri-variate and Bi-variate GARCH models show that the 

serial correlations in squared residuals have not been completely eliminated and 

models are not stationary. Thus the models we employed are not appropriate for 

describing the whole sample period data. However, we did find the existence of 

GARCH effects in the conditional volatility of these three return series. There is a 
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need to redefine the sample period for the models to work. Given the data of 

conditional variance and covariance portrayed in Figure 2.4 to Figure 2.9 in Appendix 

2.B, the non-stationary estimation results for Tri-variate and Bi-variate GARCH 

model are not of surprise. It further suggests that the variance and covariance structure 

is affected by the conditions surrounding the markets, which the compartmentalizing 

of the data via our three sub-periods aims to capture.  

 

 

2.3.3 Results for the sub-periods analysis 

 

2.3.3(A) Descriptive statistics for the three sub-samples 

 

From Figure 2.4 and Figure 2.6, we observe that during Oct 1997 to July 2003, the 

conditional volatility of oil market and conditional volatility of stock market are much 

higher than during the rest of the sample period. Recall that in the late half 1997, there 

was huge turmoil in financial markets—the Asia financial crisis. The latter began to 

emerge on 2 July 1997 when Thailand abandoned its currency (Baht) peg to the US 

dollars. When the financial market opened that day, Baht plunged 15% against the US 

dollar and created a currency devaluation panic that spread over the rest of Southeast 

Asia. Contagion effects were felt in the whole of the world’s financial markets. 

Thereafter, the US financial market experienced a relatively high volatility period, and 

the financial market experienced a record expansion after the Asia crisis until 2000. 
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During that period, many stocks had been overvalued, especially those of the internet 

companies. In August of 2000, the US stock market experienced a crash, as the 

dot-com bubble burst. Then after a short recovery, US stock market slid into a big 

Crash from September 11 2001, subsequent to the terrorist attacks on the United 

States. Oil prices also declined sharply, largely on increased fear of a sharper 

worldwide economic downturn (and therefore sharply lower oil demand). Until the 

end of 2001, the stock market began to rally as investors’ confidence came back. 

However, staring from March 2002 stock indices started to slid, with dramatic decline 

in July and September leading to lows last reaches in 1997 and 1998. At the same 

time, oil prices began to increase due to oil production cuts by OPEC and non-OPEC 

at the beginning of 2002, plus unrest in the Middle East. At the end of 2003, the US 

economy started to resuscitate and the financial markets enter into a relatively low 

volatility period.  

 

Thus, we split our whole sample into three sup-samples: pre-crisis period, from 1 

April 1991 to 31 March 1997, with relatively low turmoil in the financial market; 

crisis period, from 1 April 1997 to 31 July 2003, with relatively high turmoil and thus 

high volatility in the financial market; and post-crisis period, 1 August 2003 to 5 

November 2007, when volatility in financial market were relatively low. 

 

The descriptive statistics for the three sub-sample periods are reported in Table 2.A3 

to 2.A5 in Appendix 2.A, with unit root test results shown at the bottom of each table. 
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The cointegration tests have been performed on the price series to ensure an adequate 

modelling specification for our Tri- and Bi-variate GARCH specification. The 

Johanson’s cointegration tests results are shown in Table 2.A6 to 2.A8.  

 

Comparing Table 2.A3, 2.A4 and 2.A5, we can conclude that the mean returns for oil 

and gold market are increasing during time; the stock market, has its the largest mean 

return during the pre-crisis period and the smallest mean in the crisis period. The 

standard deviations for oil and stock returns increase in the crisis period, and then 

decrease in the post crisis period. For the gold market, the standard deviation is 

increasing throughout the three periods, with the post-crisis period exhibiting the 

highest volatility. All of the three return series have negative skewness in each period, 

expect for the gold return series which has a positive skewness in the crisis period. 

The kurtosis statistics are all much higher than the critical value at 5% significance 

level, so are the Jarque-Bera statistics. These suggest that the three return series in all 

periods have significant peakedness and are not normally distributed. The ADF test 

for unit root rejects the null hypothesis that a unit root exist in the series and the KPSS 

test result cannot reject the null hypothesis that a unit root does not exist in the return 

series. Hence all three series follow an I(0) process in all three sub-periods.  

 

Both Trace and Maximum Eigenvalue test statistics for the Johanson’s cointegration 

test shown in Tables 2.A6 to 2.A8 support that there is no cointegrating relationship 

between the three price series. These findings together with the fact that return series 
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are all I(0) provide the preconditions for our modelling specification.  

 

 

2.3.3(B) Estimation results for the three sub-sample periods. 

 

Results for the Tri-variate and Bi-variate GARCH estimates of the conditional 

variance and covariance structures are reported in Table 2.A9 to Table 2.A14 in 

Appendix 2.A. We observe that the majority of the element in the A and B matrices 

are significantly different from zero. The diagnostic checks for both Tri-variate and 

Bi-variate GARCH specifications in all the three sub-periods are reported at the 

bottom of each table. The Ljung-Box Q(10) statistics show that, for both Bi-variate 

and Tri-variate estimation, serial correlations were successfully removed for all 

residuals and squared residuals, eliminating potential biases in the estimates. The 

eigenvalues for each modelling estimation all have modulus smaller than 1, so that 

both types of model are covariance stationary in the three sub-sample periods. Recall 

that covariance stationary was not satisfied for the whole sample period; variance and 

covariance do change with time and with changes in market conditions.   

 

We summarise the volatility transmission between different markets for the three 

sub-sample periods in Table 2.8 to 2.10. In the pre-crisis period, from the Bi-variate 

GARCH estimation for oil and gold returns, we can observe that the previous days 
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Table 2. 7 Volatility spillovers for the pre-crisis period (1/04/91—31/03/97). 

 

 
ijh   

2
ij  

 oil gold  sp  oil  gold  sp 

oil  √ x √  √ x √ 

gold  x √ x  x √ x 

sp x √ √  √ √ √ 

        

 oil gold   oil gold  

oil √ √   √ x  

gold √ √   √ √  

        

 oil sp   oil sp  

oil √ x   √ x  

sp x √   x √  

        

 gold sp   gold sp  

gold √ √   √ √  

sp √ √   √ √  

Note:  √ indicate significant volatility spillover at 5% level. X indicate no significant volatility spillover at 5% level 

 

Table 2. 8 Volatility spillovers for the crisis period (1/04/97—31/07/03) 

 

 
ijh   

2
ij  

 oil gold  sp  oil  gold  sp 

oil  √ x x  √ √ x 

gold  x √ x  x √ x 

sp √ √ √  √ x √ 

        

 oil gold   oil gold  

oil √ x   √ √  

gold √ √   x √  

        

 oil sp   oil sp  

oil √ √   √ x  

sp √ √   √ √  

        

 gold sp   gold sp  

gold √ x   √ x  

sp x √   x √  

Note:  √ indicate significant volatility spillover at 5% level. X indicate no significant volatility spillover at 5% level 
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Table 2. 9 Volatility spillovers for the post-crisis period (1/08/03—5/11/07). 

 

 
ijh   

2
ij  

 oil gold  sp  oil  gold  sp 

oil  √ x √  √ √ x 

gold  x √ x  x √ x 

sp √ x √  x x √ 

        
 oil gold   oil gold  
oil √ √   √ √  
gold √ √   x √  
        
 oil sp   oil sp  
oil x √   √ √  
sp √ √   x √  
        
 gold sp   gold sp  
gold √ √   √ x  
sp x √   x √  

Note:  √ indicate significant volatility spillover at 5% level. X indicate no significant volatility spillover at 5% level 

 

 

 

shocks in the oil market will spill over to the gold market directly, indicated by the 

significance of coefficient 2
12a . The insignificance of coefficient 2

21a  implies that 

shocks from the gold market in the previous day do not spill over to the oil market 

directly. However, the conditional volatility in the oil market is impacted by the 

conditional volatility of the gold market, represented by the coefficient 2
21b . Because 

the coefficient 2
22a  is significant, the conditional variance of the gold market is 

significantly affected by its own past shocks. Following a similar mechanism, we can 

conclude from the Bi-variate GARCH estimates for the oil and gold markets, that the 

volatility transmission is bi-directional. Bi-variate estimates for the oil and stock 

markets suggest that there is no volatility transmission between them. Bi-variate 
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estimates for gold and S&P returns indicate that the transmission between them is 

bi-directional.   

 

Tri-variate GARCH estimates indicate that volatility in the oil market is influenced by 

the shocks from its own market as well as by shocks from the stock market. The 

lagged gold market shocks have no direct impact on the oil volatility. Gold market 

volatility is not affected by shocks from the oil or the stock markets, while the stock 

market volatility is affected by the shocks from both gold and stock markets. Thus the 

volatility transmission between oil and stock markets is bi-directional. Gold market 

volatility looks exogenous. Instead of affect the oil market directly, gold market 

volatility transmits to stock market first and then exert impact on the oil market 

through its influence on the volatility of the stock market.   

 

Comparing the conclusions we draw from Bi-variate and Tri-variate estimation, we 

find that Tri-variate GARCH estimation, which takes into consideration the effect of 

conditional and unconditional volatilities of each of the three markets and also the 

time varying covariance between each two markets, break the “connections” that 

seem to exist between oil and gold, gold and stock market under Bi-variate estimation. 

For example, the direct linkage in their second moment between the oil and gold 

markets disappear when taking the stock market impact on these two markets into 

consideration. In the other way round, we may explain the second moment linkage 

between the oil and gold markets as a result of their relations with the stock market. In 
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contrast, the volatility transmission between the oil and stock markets, which is not 

obvious when estimated by the Bi-variate GARCH framework, is actually significant 

if a Tri-variate GARCH model is used to control the potential gold market impact on 

these two markets.  

 

For the crisis period，when the prices for the oil and stock markets are quite volatile, 

we can observe from Table 2.9 that, under Bi-variate estimation, volatility between oil 

and gold markets is bi-directional. The oil and stock markets also have Bi-variate 

volatility transmission. The Bi-variate GRACH estimation results also suggest that 

there is no volatility transmission between the gold and stock markets.  

 

The Tri-variate GARCH estimation results reported in Table 2.9 show that volatility 

in gold market is exogenous, rather than being affected by the past shocks in oil 

market and/or the stock market. Volatility of the oil market is caused by its past 

shocks as well as the conditional variance of gold market. Stock market volatility is 

determined by its own past shocks, as well as by shocks from the oil and gold markets. 

Volatility transmission is uni-directional from the gold market to the oil market, from 

the oil market and gold markets to the stock market.  

 

So, Tri-variate estimation gives different structures for the volatility transmission 

from the Bi-variate estimation. This again demonstrates that considering the third 

market impact can break certain relations that seemed to exist when the third market 



 188

was excluded. Meanwhile, the Tri-variate estimation may also unveil some of the 

relations that seemed not to exist under the Bi-variate framework, for example, the 

volatility spillover from the gold market to the stock market.  

 

For the post-crisis period, the volatility of the oil and stock markets become much 

smaller than in the crisis period. The volatility transmission relations are shown in 

Table 2.10. From the Bi-variate estimation between each pair of markets, we observe 

that the volatility transmission between the oil and gold markets are bi-directional, so 

is that between the oil and stock markets. Volatility is transmitted from the stock 

market to the gold market, but not vice versa. The Tri-variate estimates for the after 

crisis period show that the conditional variance, or the volatility of the oil market is 

affected by its own past shocks, shocks from stock market as well as shocks from gold 

market. The gold market volatility is still exogenous, independent of shocks realized 

in either the oil or stock markets. Stock market volatility is affected by its past shocks 

as well as shocks from the oil market. So, volatility transmission between the oil and 

stock markets is bi-directional. However, volatility spillover is unidirectional from the 

gold market to the oil market.  

 

We sum up the volatility transmission mechanism between the three markets using 

different modelling specifications in Diagram 2.1. From the three-way volatility 

transmission modelled by a Tri-variate GARCH specification, we can observe that, 

although generally, in the financial market, when the price of oil goes up the gold 
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price will follow; when it comes to volatility, the gold market takes the lead. There 

was insignificant volatility spillover between the oil and gold markets in the pre-crisis 

period. With the increasing importance of oil as a resource as well as a financial asset, 

we find there are significant volatility spillovers from the gold market to the oil 

market in the crisis and post-crisis periods. This suggests that gold is a financial asset 

with very low volatility and is not sensitive to the shocks in oil or stock markets. This 

explains why gold is one of the most favourable hedging instruments and is normally 

regarded as a “safe haven” asset.  

 

 

Diagram 2.1  

 Pre Crisis  Crisis Post Crisis 

Three-way 

Volatility  

Spillover 

(From 

Tri-variate 

GARCH) 

   

Two-way 

Volatility  

Spillover 

(From 

Bi-variate 

GARCH) 

   

     Represent oil market,       represent gold market and        represent the US stock market.     

  Represent the direction of volatility spillover.  
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In contrast to the three-way estimation, the results from Bi-variate GARCH 

estimations for the oil and gold markets in the three sub-sample periods all indicate 

strong bi-directional linkage in their second moments. Compared with the Tri-variate 

estimation, we find that such links between the oil and gold markets is actually 

generated from their relations with the stock market. The oil market is very sensitive 

to shocks in the gold and stock markets, which accords with expectation. For example, 

Gold is a hedging asset largely used by oil companies and international financial 

institutions that hold large positions in the oil market. The linkage between the oil and 

stock markets is straightforward. Oil, as an extremely important industrial input, is 

largely used in every aspect of an economy nowadays. The changes in the economy, 

reflected in stock market indices can influence the demand and consumption of oil 

substantially.  

 

From Diagram 2.1, we can also observe from the three-way volatility transmission 

that stock market volatilities are largely affected by the shocks from the oil and gold 

markets. We know that futures markets can normally absorb information quickly. 

Thus the spillover from the oil and gold futures markets to the stock market matches 

the economic theory. There is substantial hedging in oil and gold markets, altering the 

volatility transmission mechanisms across market, thus our results.  

 

The descriptive statistics for the conditional variance and covariance for Tri-variate 

and Bi-variate GARCH estimation in the three sub-sample periods are reported in 
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Table 2.11 to Table 2.16, and corresponding data series are portrayed in Figures 2.10 

to 2.27.  

 

Comparing the data in Tables 2.11, 2.13 and 2.15, we observe that in the pre-crisis 

period, the means of conditional variance for all three series are the lowest. In both the 

oil and stock markets, the mean of volatility increased substantially (from around 2.7 

to 6.2 for the oil market and from 0.4 to 1.7 for the stock market respectively) during 

the crisis period when there were large upheavals in financial markets, then falls after 

the crisis, but to a level higher than before the crisis period. Meanwhile, the standard 

deviation of the volatility series increases during the crisis period and falls after the 

financial market turmoil as well. However, the standard deviation for the oil market in 

the post-crisis period is smaller than the pre-crisis period, whereas that for gold 

market is higher in the post-crisis than in the pre-crisis period. In the gold market, 

mean and standard deviation for the conditional variance of gold returns increase over 

time. 

 

The patterns of covariances between each pair of markets also change over time. The 

correlation is positive between the oil and gold markets, and negative between the oil 

and stock markets. Such findings are consistent with the literature. For example, Nick 

Barisheff (2005) state that gold and oil prices moved together with a positive price 

correlation. Hammoudeh, Dibooglu and Aleisa (2004) find positive correlation 

between the oil market and oil industry equity indices. 
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Table 2. 10 Statistics for the Conditional variances estimated using different models in the 

pre-crisis period (1/04/91—31/03/97).  

 

 Var (oil) Var (gold) Var (S&P500) 

 

Tri-GARCH 

 

Bi-GARCH 

(RO & RG)  

Bi-GARCH 

(RO & RSP) 

Tri-GARCH

 

Bi-GARCH

(RO & RG) 

Bi-GARCH 

(RG & RSP) 

Tri-GARCH 

 

Bi-GARCH 

(RO & RSP) 

Bi-GARCH 

(RG & RSP)

 Mean 2.7667  2.7724  2.7823  0.3642 0.3622 0.3617 0.4173  0.4156 0.4086 

 Median 2.4612  2.4345  2.3989  0.2774 0.2736 0.2734 0.3922  0.3932 0.3953 

 Maximum 8.8675  8.4179  10.3275  2.0522 2.1906 2.2826 0.8607  0.8943 0.6714 

 Minimum 0.9856  1.0017  0.8767  0.0861 0.0808 0.0771 0.2418  0.2302 0.2490 

 Std. Dev. 1.3204  1.3183  1.4650  0.3038 0.3071 0.3146 0.1092  0.1180 0.0956 

 Skewness 1.4904  1.4679  1.7156  2.9771 3.0665 3.2002 0.7736  0.6707 0.4220 

 Kurtosis 5.8638  5.4946  6.8847  13.6892 14.6251 15.5957 3.1122  2.9404 2.2218 

          

Jarque-Bera 1112.03  965.98  1748.42  9743.67 11243.54 12991.66 156.60  117.35 85.78 

Probability 0.0000  0.0000  0.0000  0.0000 0.0000 0.0000 0.0000  0.0000 0.0000 

 

 

 

Table 2. 11 Statistics for the conditional covariances estimated using different models in the 

pre-crisis sample period (1/04/91—31/03/97).  

 

 Cov (oil,gold) Cov (oil, sp) Cov (gold, sp) 

 Tri-GARCH Bi-GARCH 

(RO & RG) 

Tri-GARCH Bi-GARCH 

(RO & RSP)

Tri-GARCH Bi-GARCH 

(RG & RSP) 

 Mean 0.0574  0.0613 -0.0661 -0.0621 -0.0548  -0.0530  

 Median 0.0384  0.0404 -0.0586 -0.0536 -0.0472  -0.0469  

 Maximum 0.8014  1.1334 0.3526 0.3923 0.1620  0.0952  

 Minimum -0.6662  -0.3571 -0.6266 -0.6655 -0.2171  -0.3224  

 Std. Dev. 0.1766  0.1559 0.1390 0.1397 0.0500  0.0435  

 Skewness 0.4678  1.6914 -0.2987 -0.4021 -0.3712  -1.7003  

 Kurtosis 6.0373  9.9716 3.6645 4.0314 4.3080  9.2552  

       

Jarque-Bera 657.38  3908.11 51.97 111.31 147.22  3299.22  

Probability 0.0000  0.0000 0.0000 0.0000 0.0000  0.0000  
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Table 2. 12 Statistics for the Conditional variances estimated using different models in the 

crisis period (1/04/97—31/07/03). 

 

 Var(oil) Var(gold) Var(S&P500) 

Bi-GARCH Bi-GARCH Bi-GARCH Bi-GARCH Bi-GARCH Bi-GARCH  Tri-GARCH 

(RO & RG)  (RO & RSP)

Tri-GARCH

(RO & RG) (RG & RSP)

Tri-GARCH 

(RO & RSP) (RG & RSP)

 Mean 6.2251  6.2437  6.2771 0.8524 0.8557 0.8509 1.7390  1.7340 1.7439 

 Median 5.5118  5.5294  5.5319 0.7630 0.7538 0.7602 1.5115  1.5159 1.4934 

 Maximum 31.6854  26.6439  27.8946 9.8043 8.4215 7.1668 5.1424  5.8889 6.0640 

 Minimum 3.5848  3.5016  3.5427 0.6596 0.6011 0.6038 0.8595  0.9423 0.8296 

 Std. Dev. 2.6672  2.6174  2.7695 0.4137 0.4491 0.4043 0.7203  0.7252 0.8079 

 Skewness 3.8549  3.3899  3.6462 11.2546 8.4411 7.5376 1.8754  2.3246 2.1460 

 Kurtosis 24.2076  18.9647  21.1056 186.4524 103.0052 82.6316 6.8371  9.3647 8.4661 

          

Jarque-Bera 34986.62  20670.15  26177.51 2347177 706737.4 451307.7 1978.27  4268.53 3318.53 

Probability 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000 

 

 

 

 

 

Table 2. 13 Statistics for the conditional covariances estimated using different models in the 

crisis period (1/04/97—31/07/03). 

  

 Cov(oil,gold) Cov(oil, sp) Cov(gold, sp) 

Bi-GARCH Bi-GARCH Bi-GARCH  Tri-GARCH 

(RO & RG)

Tri-GARCH

(RO & RSP)

Tri-GARCH

(RG & RSP) 

 Mean 0.2987  0.3042 -0.0370 0.0040 -0.1339  -0.1346  

 Median 0.2714  0.2793 0.0375 0.0258 -0.1199  -0.1114  

 Maximum 3.2961  3.6978 1.7732 3.1121 2.6496  1.0645  

 Minimum -6.0751  -4.4946 -5.5407 -6.9189 -0.9091  -0.9553  

 Std. Dev. 0.3939  0.4019 0.6214 0.6028 0.1917  0.1952  

 Skewness -1.9191  -0.3970 -1.9071 -1.5084 2.6506  -0.2336  

 Kurtosis 51.1727  27.2533 12.5742 19.6102 38.8921  6.9996  

       

Jarque-Bera 160457.7  40458.93 7297.76 19581.78 90443.69  1114.09  

Probability 0.0000  0.0000 0.0000 0.0000 0.0000  0.0000  
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Table 2. 14 Statistics for Conditional variances estimated using different models in the post 

crisis period (1/08/03—5/11/07).  

 

 Var(oil) Var(gold) Var(S&P500) 

Bi-GARCH Bi-GARCH Bi-GARCH Bi-GARCH Bi-GARCH Bi-GARCH  Tri-GARCH 

(RO & RG)  (RO & RSP)

Tri-GARCH

(RO & RG) (RG & RSP)

Tri-GARCH 

(RO & RSP) (RG & RSP)

 Mean 3.8826  3.9171  3.9021 1.1520 1.1681 1.1581 0.5087  0.5012 0.5023 

 Median 3.8404  3.7786  3.7957 1.0113 1.0121 1.0101 0.4651  0.4459 0.4580 

 Maximum 6.7500  7.2884  5.9833 3.7502 4.0884 3.7735 1.4965  1.4829 1.3618 

 Minimum 2.6896  2.5447  3.7011 0.5143 0.5063 0.5144 0.3050  0.2869 0.2986 

 Std. Dev. 0.7062  0.7213  0.2839 0.5775 0.6139 0.5830 0.1675  0.1799 0.1604 

 Skewness 1.1127  1.3158  2.9306 2.0464 2.1409 2.0579 2.4735  2.4578 2.3596 

 Kurtosis 4.9227  5.4315  14.1976 7.3992 7.9630 7.5289 11.2710  10.8358 10.3571 

          

Jarque-Bera 400.04  593.73  7387.93 1669.79 1987.13 1732.10 4295.81  3957.33 3533.40 

Probability 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000 

 

 

 

Table 2. 15 Statistics for the conditional covariances estimated using different models in the 

after crisis sample period (1/08/03—5/11/07). 

 

 Cov(oil,gold) Cov(oil, sp) Cov(gold, sp) 

Bi-GARCH Bi-GARCH Bi-GARCH  Tri-GARCH 

(RO & RG)

Tri-GARCH

(RO & RSP)

Tri-GARCH

(RG & RSP) 

 Mean 0.5678  0.5544 -0.0349 -0.0367 0.0477  0.0461  

 Median 0.5206  0.4970 -0.0493 -0.0239 0.0423  0.0449  

 Maximum 1.8397  2.2956 0.4026 0.2223 0.3563  0.4294  

 Minimum 0.0756  -0.1313 -0.3474 -0.9950 -0.1932  -0.2841  

 Std. Dev. 0.3280  0.3884 0.1311 0.0885 0.0920  0.0832  

 Skewness 1.5030  1.4631 0.6222 -3.1798 0.2393  0.4502  

 Kurtosis 5.8548  5.9604 3.5305 24.6693 3.1491  6.3442  

       

Jarque-Bera 794.83  801.36 84.64 23587.62 11.62  554.73  

Probability 0.0000  0.0000 0.0000 0.0000 0.0030  0.0000  
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The correlation between gold and stock market is negative in the pre-crisis and crisis 

period, but positive after the crisis period. Chan and Faff (1988) found that gold has a 

positive sensitivity to the resource and mining sector industries, but negative 

sensitivity in industrial sectors. Thus it is not surprising to find that the correlation 

between the gold and stock markets is not constant during time, depending upon the 

effects across different sectors. Moreover, the intensive use of gold as a hedging 

method in the post-crisis period may also make the correlations between the gold and 

stock markets hard to capture. The correlation relationship may change with the 

change of time-span in consideration.  

 

The comparison of variances and covariance between different models are portrayed 

in Figures 2.10 to 2.27, for pre-crisis, crisis, and post-crisis periods. The divergences 

between the conditional variances of oil, gold and stock returns estimated with 

different models are not obvious from the figures, except for the conditional variance 

of oil in the after crisis period. The conditional variance estimated from Bi-variate 

GARCH model for oil and S&P returns largely diverge from that estimated from the 

Tri-variate GARCH specification as well as from the Bi-variate GARCH specification 

between oil and gold. The divergence between covariance estimated using the 

Bi-variate and Tri-variate models is apparent. The graphs give a general idea of the 

estimated conditional variance and covariance comparisons. To examine these in a 

much clearer manner, we perform the equality test for the means and variances of 

those conditional series.  
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The Equality test results are reported in Tables 2.17-2.19 for each of the three 

sub-sample periods. The means of the conditional variance and covariance series are 

almost equal under different modelling strategies. However, most variances estimated 

using different modelling specifications are not equal. For the pre-crisis period, the 

conditional variance of oil is not significantly affected by its correlation with the stock 

market or by the correlation between the gold and stock markets. The conditional 

variance of gold is relatively exogenous. As shown in Table 2.17, the conditional 

variance for gold estimated using different models give similar answers. The 

conditional variance of oil is affected by shocks from both the oil and gold markets. 

The conditional covariance between the oil and gold, the gold and stock markets are 

different when estimated by Tri-variate or Bi-variate models. However, the 

conditional covariance of the oil and stock markets estimated using different models 

are more or less the same. For the crisis period, although the conditional variances 

estimated under different modelling strategies are different from each other, the 

conditional covariance between each two markets is more or less the same under 

Tri-variate and Bi-variate modelling strategy. For the after crisis period, the 

conditional covariances show large divergences between the Tri-variate or Bi-variate 

models, as they do in the pre-crisis period. Conditional variances generated using 

these two modelling strategies are also different in terms of variance equality.  
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Table 2. 16 Equality test for the pre-crisis period (1/04/91—31/03/97). 

 

   Mean  Probability Variance Probability 

Var(oil) Tri-(oil,gole, s&p) & Bi-(oil,gold) 0.0144  0.9046  1.0032  0.9495  

 Tri-(oil,gole, s&p) & Bi-(oil, s&p) 0.0974  0.7550  1.2309  0.0000  

 Bi-(oil,gold)& Bi-(oil, s&p) 0.0395  0.8424  1.2349  0.0000  

       

Var(gold) Tri-(oil,gole, s&p) & Bi-(oil,gold) 0.0340  0.8537  1.0219  0.6688  

 Tri-(oil,gole, s&p) & Bi-(gold, s&p) 0.0494  0.8242  1.0726  0.1661  

 Bi-(oil,gold)& Bi-(gold, s&p) 0.0016  0.9682  1.0497  0.3385  

       

Var(sp) Tri-(oil,gole, s&p) & Bi-(oil, s&p) 0.1916  0.6616  1.1680  0.0022  

 Tri-(oil,gole, s&p) & Bi-(gold, s&p) 5.6430  0.0176  1.3036  0.0000  

 Bi-(oil, s&p) & Bi-(gold, s&p) 3.2642  0.0709  1.5225  0.0000  

       

Cov(oil,gold) Tri-(oil,gole, s&p) & Bi-(oil,gold) 0.4264  0.5138  1.2835  0.0000  

       

Cov(oil,sp) Tri-(oil,gole, s&p) & Bi-(gold, s&p) 0.6426  0.4228  1.0100  0.8439  

       

Cov(gold,sp) Tri-(oil,gole, s&p) & Bi-(gold, s&p) 1.2502  0.2636  1.3174  0.0000  

 

 

Table 2. 17 Equality test for the crisis period (1/04/97—31/07/03)  

 

   Mean Probability Variance Probability 

Var(oil) Tri-(oil,gole, s&p) & Bi-(oil,gold) 0.0412  0.8391  1.0385  0.4437  

 Tri-(oil,gole, s&p) & Bi-(oil, s&p) 0.3017  0.5829  1.0781  0.1269  

 Bi-(oil,gold)& Bi-(oil, s&p) 0.1261  0.7226  1.1196  0.0219  

       

Var(gold) Tri-(oil,gole, s&p) & Bi-(oil,gold) 0.0483  0.8261  1.1783  0.0009  

 Tri-(oil,gole, s&p) & Bi-(gold, s&p) 0.0113  0.9154  1.0473  0.3484  

 Bi-(oil,gold)& Bi-(gold, s&p) 0.1049  0.7461  18.1759  0.0000  

       

Var(sp) Tri-(oil,gole, s&p) & Bi-(oil, s&p) 0.0396  0.8423  1.0135  0.7857  

 Tri-(oil,gole, s&p) & Bi-(gold, s&p) 0.0326  0.8568  1.2581  0.0000  

 Bi-(oil, s&p) & Bi-(oil,gold) 0.1349  0.7134  1.2413  0.0000  

       

Cov(oil,gold) Tri-(oil,gole, s&p) & Bi-(oil,gold) 0.1583  0.6908  1.0411  0.4141  

       

Cov(oil,sp) Tri-(oil,gole, s&p) & Bi-(oil, s&p) 3.6988  0.0545  1.0629  0.2159  

       

Cov(gold,sp) Tri-(oil,gole, s&p) & Bi-(gold, s&p) 0.0123  0.9116  1.0367  0.4640  
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Table 2. 18 Equality test for the post-crisis period (1/08/03—5/11/07).   

 

   Mean Probability Variance Probability 

Var(oil) Tri-(oil,gole, s&p) & Bi-(oil,gold) 1.2934  0.2556  1.0435  0.4784  

 Tri-(oil,gole, s&p) & Bi-(oil, s&p) 0.7239  0.3949  6.1870  0.0000  

 Bi-(oil,gold)& Bi-(oil, s&p) 0.4167  0.5186  6.4559  0.0000  

       

Var(gold) Tri-(oil,gole, s&p) & Bi-(oil,gold) 0.4009  0.5267  1.1300  0.0417  

 Tri-(oil,gole, s&p) & Bi-(gold, s&p) 0.0610  0.8050  1.0192  0.7512  

 Bi-(oil,gold)& Bi-(gold, s&p) 0.1528  0.6959  1.1087  0.0856  

       

Var(sp) Tri-(oil,gole, s&p) & Bi-(oil, s&p) 1.0240  0.3117  1.1536  0.0173  

 Tri-(oil,gole, s&p) & Bi-(gold, s&p) 0.8490  0.3569  1.0898  0.1518  

 Bi-(oil, s&p) & Bi-(oil,gold) 0.0211  0.8845  1.2572  0.0001  

       

Cov(oil,gold) Tri-(oil,gole, s&p) & Bi-(oil,gold) 0.7600  0.3834  1.4019  0.0000  

       

Cov(oil,sp) Tri-(oil,gole, s&p) & Bi-(oil, s&p) 0.1511  0.6975  2.1941  0.0000  

       

Cov(gold,sp) Tri-(oil,gole, s&p) & Bi-(gold, s&p) 0.1837  0.6682  1.2240  0.0008  
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2.4 Conclusion and further research 

 

2.4.1 Conclusion 

 

This research aims to examine the relationships between the oil, gold and stock 

markets. With the integration of financial markets and the increasing importance of oil 

and gold as commodities as well as financial instruments, an investigation of the 

relations between the three markets is very important. Instead of focusing on the price 

and returns relations, we focus on the second moments relationships. Our research is 

the first (to the best of our knowledge) of this kind and can be very useful in many 

aspects. For example, it can provide information for investors to speculate in financial 

markets, for investors or companies to hedge risk, or for decision markers to 

understand the market.  

 

Tri-variate GARCH (1,1) models are adopted to examine volatility spillovers between 

oil, gold and stock markets. To investigate fully such volatility transmission relations, 

we compare the results from Tri-variate GARCH estimation to those from Bi-variate 

estimation for each pair of markets. US data are examined because it is the leading 

economy in the world and plays an important role in both the oil and gold markets. 

We also split the whole sample into three sub-sample periods for investigative 

purposes.  
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Our findings are consistent with the past literature in that we find volatility spills over 

from the oil market to the stock market, from the gold market to the stock market. 

Despite the obvious price and return links between oil and gold markets, the volatility 

inter-relations are not so obvious between them. The gold market is kind of 

exogenous in terms of volatility. The bi-directional volatility transmission between 

the oil and gold markets, which is suggested by the Bi-variate GARCH estimates, 

actually results from their linkage with the stock market. The oil market is quite 

sensitive to the shocks from both the gold and stock markets, and the stock market is 

strongly impacted by the volatility in the oil and gold markets.  

 

Comparing the estimation results from Bi-variate and Tri-variate GARCH models, 

our research finds that the Tri-variate GARCH model, by adding an additional 

variable to the existing Bi-variate GARCH framework, can break some of the existing 

relationships between the variables and can also reveal some of the linkages we 

cannot observe in the Bi-variate estimation.  

      

Equality tests are performed on the conditional variance and covariance series 

estimated using Tri-variate and Bi-variate modelling strategies to examine whether 

these estimated values are statistically different. Over all, the mean equality tests 

statistics for the variance are generally not significant at the 5% level. However, most 

variance equality tests statistics for the covariance are significantly different from zero. 

The mean and variance equality test statistics for the covariances are mostly 
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significance at the 5% level. These indicate that the conditional variances and 

covariances estimated using the Tri-variate model and Bi-variate models are 

effectively different. The covariance between two markets is significantly affected by 

the third market. Tri-variate GARCH models can capture these effects and offer 

potentially more information concerning the inter-relationship between the three 

markets.  

 

 

 

2.4.2 Further research 

 

One possible use of this research is to provide useful information for market hedgers 

to hedge risk. For example, assume an investor hold a position in stock market. When 

stock market is not performing well, investors tend to buy gold as a means to reserve 

value (which may lead to higher gold value when the stock price falls). However, 

holding physical gold is costly. For one thing, holding gold in the beginning of the 

investment period instead of holding futures would tie up capital that could be 

invested in a market with potential higher return, e.g. stock market. This is the 

opportunity cost of holding physical gold commodity. For another, holding physical 

gold can lead to storage cost. An alternative choice for the investor is to use futures, 

which is more flexible and less costly. The investor can go long gold in the futures 

market if they expect a slump in the stock market in future. If the stock return does 

fall as expected or fall more than expected, the investor can buy gold with the price 
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which has been locked up in the futures contract, which tend to be lower than the 

market gold price at that time. If the stock returns do not fall as expected, investors 

can just taking an offsetting position in the futures market. This could possibly lead to 

some losses in the futures trading, but the loss will be fully or partially offset by the 

gain in the stock market. One important issue for the hedging is deciding the number 

of gold futures contract to buy. In such case, the investor needs to calculate the 

optimal hedge ratios31, which is a function of the variance and covariance of the stock 

and gold markets. Traditionally, only these two markets (products) will be considered 

to derive the optimal hedging ratio. However, these two markets are both linked to a 

third market, the oil market. Our study find that when taking the oil market into 

consideration, the conditional variance and covariance between the stock and gold 

market will change, and therefore the derived optimal hedge ratios. Such is also true 

for hedging strategies in other markets. One further study that may be very interesting 

is to investigate whether the hedging effectiveness can be improved when taking a 

third market impact into consideration.  

 

This study can also be extended in other ways. For example, with the rapid growth of 

developing countries like China and India, their market-shares in the oil consumption 

and gold trading are increasing. Our research can be extended to examine how 

volatilities are transmitted across the world oil, gold markets and the stock market in 

developing countries. Moreover, different sectors have different oil and gold 

                                                        
31 Optimal hedging ratio derivation and hedging effectiveness evaluation are discussed in the 
Essay 1 of this thesis.  
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sensitivity. To explore how different sectors in an economy are linked to the oil and 

gold markets is also a very interesting research topic to work on. 
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Figure 2. 1 Oil and gold price in logarithm 
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Figure 2. 2 Price series in logarithm 
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Figure 2. 3 Returns series for oil gold and stock index 
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Figure 2. 4 Conditional variance of the oil returns for the whole sample period 
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Figure 2. 5 Conditional variance of the gold returns for the whole sample period 
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Figure 2. 6 Conditional variance of the stock index (S&P 500) returns for the whole sample period 
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Figure 2. 7 Conditional Covariance between the oil and gold markets for the whole sample period 
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Figure 2. 8 Conditional Covariance between the oil and stock markets for the whole sample period 
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Figure 2. 9 Conditional Covariance between the gold and stock markets for the whole sample period 
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Figure 2. 10 Conditional variance of the oil returns in the pre-crisis period (1/04/91—31/03/97). 
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Figure 2. 11 Conditional variance of the gold returns in the pre-crisis period(1/04/91—31/03/97). 
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Figure 2. 12 Conditional variance of the stock returns in the pre-crisis period (1/04/91—31/03/97). 
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Figure 2. 13 Conditional Covariance between the oil and gold market in the pre-crisis period (1/04/91—31/03/97). 
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Figure 2. 14 Conditional Covariance between the oil and stock markets in the pre-crisis period (1/04/91—31/03/97). 
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Figure 2. 15 Conditional Covariance between the gold and stock markets in the pre-crisis period (1/04/91—31/03/97). 
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Figure 2. 16 Conditional variance of the oil returns in the crisis period (1/04/97—31/07/03). 
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Figure 2. 17 Conditional variance of the gold returns in the crisis period (1/04/97—31/07/03). 
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Figure 2. 18 Conditional variance of the S&P 500 returns in the crisis period (1/04/97—31/07/03). 
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Figure 2. 19 Conditional Covariance between the oil and gold returns in the crisis period (1/04/97—31/07/03). 
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Figure 2. 20 Conditional Covariance between the oil and stock returns in the crisis period(1/04/97—31/07/03). 
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Figure 2. 21 Conditional Covariance between the gold and stock returns in the crisis period (1/04/97—31/07/03). 
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Figure 2. 22 Conditional variance of the oil returns in the post-crisis period (1/08/03—5/11/07). 
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Figure 2. 23 Conditional variance of the gold returns in the post-crisis period (1/08/03—5/11/07). 
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Figure 2. 24 Conditional variance of the stock returns in the post-crisis period (1/08/03—5/11/07). 
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Figure 2. 25 Conditional Covariance between the oil and gold returns in the post-crisis period (1/08/03—5/11/07). 
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Figure 2. 26 Conditional Covariance between the oil and stock returns in the post-crisis period (1/08/03—5/11/07). 
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Figure 2. 27 Conditional Covariance between the gold and stock returns in the post-crisis period (1/08/03—5/11/07). 
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Appendix 2 A  

 
Table 2.A 1 Estimation results from the Tri-variate GARCH model in the whole sample 

period 

 
2

, , , 11 21 31 11 12 13 11 21 31 , 1 , 1 , 1 , 1 ,

, , , 12 22 32 21 22 23 12 22 32

, , , 13 23 33 31 32 33 13 23 33

oo t og t os t o t o t g t o t s t

t og t gg t gs t

os t gs t ss t

h h h c c c c c c a a a

H h h h c c c c c c a a a

h h h c c c c c c a a a

              
                
             

1 11 12 13
2

, 1 , 1 , 1 , 1 , 1 21 22 23
2

, 1 , 1 , 1 , 1 , 1 31 32 33

11 21 31 , 1 , 1 , 1

12 22 32 , 1 , 1 , 1

13 23 33 , 1

o t g t g t g t s t

o t s t g t s t s t

oo t og t os t

og t gg t gs t

os t g

a a a

a a a

a a a

b b b h h h

b b b h h h

b b b h h

    
    



    

    

  

  



   
   
   
     

 
   
  

11 12 13

21 22 23

, 1 , 1 31 32 33s t ss t

b b b

b b b

h b b b 

   
   
   
     

 

 

Variable Coeff Std Error T-Stat Signif 

11c  0.1325*** 0.0255 5.1866 0.0000 

21c  ---- ---- ---- ---- 

31c  ---- ---- ---- ---- 

12c  -0.0153  0.0105 -1.4569 0.1451 

22c  0.0308*** 0.0119 2.5829 0.0098 

32c  ---- ---- ---- ---- 

13c  0.0160  0.0174 0.9173 0.3590 

23c  -0.0375*** 0.0121 -3.0977 0.0020 

33c  0.0001  0.0311 0.0047 0.9962 

11b  0.9747*** 0.0077 126.81 0.0000 

21b  0.0171*** 0.0052 3.2791 0.0010 

31b  -0.2533** 0.1101 -2.3011 0.0214 

12b  0.0068*** 0.0020 3.4802 0.0005 

22b  0.9820*** 0.0030 322.27 0.0000 

32b  0.1517*** 0.0231 6.5527 0.0000 

13b  -0.0807*** 0.0198 -4.0667 0.0000 

23b  0.0479*** 0.0111 4.3073 0.0000 

33b  -0.9698*** 0.0076 -128.45 0.0000 

11a  0.1530*** 0.0178 8.6101 0.0000 

21a  -0.0488*  0.0265 -1.8416 0.0655 

31a  -0.0858*** 0.0294 -2.9137 0.0036 

12a  -0.0051  0.0046 -1.0928 0.2745 

22a  0.1704*** 0.0188 9.0624 0.0000 

32a  -0.0106  0.0145 -0.7323 0.4640 

13a  0.0180*** 0.0045 3.9861 0.0001 

23a  0.0036  0.0066 0.5520 0.5810 

33a  0.1702*** 0.0227 7.4807 0.0000 

     
Ljung-Box Statistics   
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(10)Q  Q-Stat   P-Value 

Oil 22.4036   0.4565 

Gold 13.6303   0.1905 

S&P 28.6129   0.0014 

2 (10)Q      

Oil 71.8881   0.0000 

Gold 164.42   0.0000 

S&P 72.6336   0.0000 

     
LL Value -19542.46    

     
Covariance stationary test   
Eigenvalues:  0.09937, 1.0007, 0.9982, 0.9968, -0.9482, -0.9377, -0.9457, -0.9374 

             0.9972 

Note: ***, ** and * represents significant at 1%, 5% and 10% significant level. 

                    Log-likelihood test results is denoted as LL Value  
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Table 2.A 2 Estimation results of the Bi-variate GARCH models for the whole sample period 

 
2

11, 12, 11, 1 12, 111 21 11 12 11 21 11 12 11 211, 1 1, 1 2, 1
2

12, 22, 12, 1 22, 112 22 21 22 12 22 21 22 12 221, 1 2, 1 1, 1

t t t tt t t
t

t t t tt t t

h h h hc c c c
H

h h h hc c c c

       
       

   

   

             
                

             

11 12

21 22

 
 
 
 
 

 

 oil and gold oil and S&P Gold and S&P 

Variable Coeff Std Error T-Stat Coeff Std Error T-Stat Coeff Std Error T-Stat 

11c  -0.0941***  0.0228  -4.1184 0.1355*** 0.0267 5.0688 0.0345***  0.0102  3.3939 

21c  0.0884***  0.0231  3.8306 ---- ---- ---- ---- ---- ---- 

12c  0.0254***  0.0070  3.6443 0.0167  0.0394 0.4229 -0.0712***  0.0148  -4.8067 

22c  -0.0270***  0.0069  -3.8957 -0.0414  0.0297 -1.3932 -0.0064  0.0254  -0.2503 

11b  -0.9706***  0.0105  -92.0648 -0.9732*** 0.0084 -115.77 0.9831***  0.0054  181.4681 

21b  0.8619***  0.1261  6.8347 0.2555** 0.1258 2.0307 0.1455***  0.0458  3.1746 

12b  0.0270  0.0185  1.4619 0.0741*** 0.0230 3.2171 0.0305  0.0554  0.5503 

22b  0.9724***  0.0092  105.44 0.9716*** 0.0079 123.2103 -0.9732***  0.0074  -131.17 

11a  0.1678***  0.0207  8.0908 0.1673*** 0.0197 8.5075 0.1722***  0.0165  10.4366 

21a  -0.0830***  0.0244  -3.4049 -0.0970*** 0.0239 -4.0573 -0.0202  0.0166  -1.2181 

12a  -0.0011  0.0035  -0.3236 0.0177*** 0.0054 3.2652 0.0042  0.0130  0.3203 

22a  0.1794***  0.0201  8.9080 0.1853*** 0.0227 8.1585 0.2082***  0.0205  10.1429 

          
Ljung-Box Statistics      

(10)Q   Q-Stat P-Value  Q-Stat P-Value  Q-Stat P-Value

 Oil 10.3549 0.4099 Oil 8.9532 0.5366 Gold 14.1439  0.1665 

 Gold 12.6294 0.2451 S&P 29.4811 0.0010 S&P 24.3089  0.0068 

2 (10)Q       

 Oil 51.0827 0.0000 Oil 59.6375 0.0000 Gold 170.4528  0.0000 

 Gold 133.96 0.0000 S&P 61.9162 0.0000 S&P 24.5504  0.0063 

         

LL -14108    LL -14520  LL -10496  

        
Covariance stationary test        
Eigenvalue of Bi-GARCH for oil and gold market : 0.9940, 1.004, -0.9369; -0.9371 

                      For oil and S&P      : 0.9253, 0.9971, -0.9001, -0.8968 

                      For gold and S&P     : 1.0007, 0.9260, -0.8900, -0.8899 

Note: ***, ** and * represents significant at 1%, 5% and 10% significant level. 
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Table 2.A 3 Descriptive statistics of return series in pre-crisis period (1/04/91—31/03/97). 

 

 RO RG RSP 

 Mean 0.0036  -0.0018  0.0455  

 Median 0.0000  0.0000  0.0155  

 Maximum 8.5395  2.6222  2.8962  

 Minimum -9.1199  -5.7085  -3.7271  

 Std. Dev. 1.6629  0.5923  0.6452  

 Skewness -0.1214  -0.6658  -0.2937  

 Kurtosis 5.6985  11.9599  5.2945  

    

 Jarque-Bera 478.68  5350.50  365.80  

 Probability 0.0000  0.0000  0.0000  

    

(10)Q  20.05** 8.73  16.47  

2 (10)Q  102.85** 119.43** 29.38** 

ARCH_LM 11.74** 13.22** 4.39** 

    

ADF -38.81** -40.30** -37.86** 

KPSS 0.0476  0.0995  0.2014  

Note: ** represents significant at 1% significance level. 

 

 

Table 2.A 4 Descriptive statistics of return series in crisis period (1/04/97—31/07/03). 

 
 RO RG RSP 

 Mean 0.0244  0.0005  0.0162  

 Median 0.0000  0.0000  0.0000  

 Maximum 14.2309  8.8872  5.5732  

 Minimum -16.5445  -5.1049  -7.1127  

 Std. Dev. 2.4792  0.9299  1.3201  

 Skewness -0.3464  1.0892  -0.0490  

 Kurtosis 7.1659  14.5912  5.1359  

    

 Jarque-Bera 1228.37  9580.65  314.88  

 Probability 0.0000  0.0000  0.0000  

    

(10)Q  15.3600  11.1900  10.2700  

2 (10)Q  48.97** 97.94** 193.52** 

ARCH_LM 7.78** 12.40** 17.25** 

 

ADF -30.40** -40.59** -41.57** 

KPSS 0.0796  0.2715  0.4805  

Note: ** represents significant at 1% significance level. 
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Table 2.A 5 Descriptive statistics of return series in post crisis period (1/08/03—5/11/07). 

 

 RO RG RSP 

 Mean 0.1011  0.0745 0.0375 

 Median 0.0735  0.0460 0.0624 

 Maximum 7.3689  4.5008 2.8790 

 Minimum -7.6977  -7.5740 -3.5343 

 Std. Dev. 1.9790  1.0808 0.7160 

 Skewness -0.0398  -0.7822 -0.3101 

 Kurtosis 3.5915  6.8626 4.6991 

    

Jarque-Bera 16.50  804.68 151.59 

Probability 0.0003  0.0000 0.0000 

    

(10)Q  10.71  13.49 17.30 

2 (10)Q  33.10** 47.51** 142.14** 

ARCH_LM 3.58** 5.28** 7.42** 

    

ADF -35.33** -34.70** 0.04** 

KPSS 0.0505 0.0801 -36.2180 

Note: ** represents significant at 1% significance level. 
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Table 2.A 6 Cointegration test for logarithm price series in pre-crisis period 

(1/04/91—31/03/97). 

 

Unrestricted Cointegration Rank Test (Trace)   

          

       

Hypothesized  Trace 0.05   

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

          

       

None  0.008597  17.79686  29.79707  0.5811 

At most 1  0.002741  4.292770  15.49471  0.8785 

At most 2  4.21E-07  0.000658  3.841466  0.9809 

          

 Trace test indicates no cointegration at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values   

       

Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

          

       

Hypothesized  Max-Eigen 0.05   

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

          

       

None  0.008597  13.50409  21.13162  0.4070 

At most 1  0.002741  4.292112  14.26460  0.8273 

At most 2  4.21E-07  0.000658  3.841466  0.9809 

          

 Max-eigenvalue test indicates no cointegration at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values   
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Table 2.A 7 Cointegration test for logarithm price series in crisis period (1/04/97—31/07/03). 

 
 

Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None  0.011026  29.08214  29.79707  0.0603 

At most 1  0.004911  10.75451  15.49471  0.2270 

At most 2  0.001582  2.617177  3.841466  0.1057 

 Trace test indicates no cointegration at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  

     

Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None  0.011026  18.32763  21.13162  0.1181 

At most 1  0.004911  8.137328  14.26460  0.3649 

At most 2  0.001582  2.617177  3.841466  0.1057 

 Max-eigenvalue test indicates no cointegration at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  
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Table 2.A 8 Cointegration test for logarithm price series in post-crisis period (1/08/03— 

5/11/07). 

 

 
 

Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None  0.010491  18.49654  29.79707  0.5296 

At most 1  0.005910  6.768937  15.49471  0.6047 

At most 2  0.000159  0.177183  3.841466  0.6738 

 Trace test indicates no cointegration at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  

     

Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None  0.010491  11.72760  21.13162  0.5747 

At most 1  0.005910  6.591755  14.26460  0.5385 

At most 2  0.000159  0.177183  3.841466  0.6738 

 Max-eigenvalue test indicates no cointegration at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  
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Table 2.A 9 Estimation results from the Tri-variate GARCH model in the pre-crisis period 

(1/04/91—31/03/97). 

 
2

, , , 11 21 31 11 12 13 11 21 31 , 1 , 1 , 1 , 1 ,

, , , 12 22 32 21 22 23 12 22 32

, , , 13 23 33 31 32 33 13 23 33

oo t og t os t o t o t g t o t s t

t og t gg t gs t

os t gs t ss t

h h h c c c c c c a a a

H h h h c c c c c c a a a

h h h c c c c c c a a a

              
                
             

1 11 12 13
2

, 1 , 1 , 1 , 1 , 1 21 22 23
2

, 1 , 1 , 1 , 1 , 1 31 32 33

11 21 31 , 1 , 1 , 1

12 22 32 , 1 , 1 , 1

13 23 33 , 1

o t g t g t g t s t

o t s t g t s t s t

oo t og t os t

og t gg t gs t

os t g

a a a

a a a

a a a

b b b h h h

b b b h h h

b b b h h

    
    



    

    

  

  



   
   
   
     

 
   
  

11 12 13

21 22 23

, 1 , 1 31 32 33s t ss t

b b b

b b b

h b b b 

   
   
   
     

 

 

 

Variable Coeff Std Error T-Stat Signif 

11c  0.1126*** 0.0390 2.8867 0.0039  

21c  ---- ---- ---- ---- 

31c  ---- ---- ---- ---- 

12c  -0.0215  0.0217 -0.9901 0.3221  

22c  0.0377*  0.0202 1.8682 0.0617  

32c  ---- ---- ---- ---- 

13c  0.0767*** 0.0201 3.8178 0.0001  

23c  0.0344  0.0754 0.4554 0.6488  

33c  0.0001  0.0737 0.0008 0.9994  

11b  0.9790*** 0.0039 253.9343 0.0000  

21b  0.0185  0.0113 1.6421 0.1006  

31b  -0.0746** 0.0352 -2.1162 0.0343  

12b  -0.0003  0.0014 -0.2508 0.8020  

22b  0.9784*** 0.0035 281.2925 0.0000  

32b  -0.0008  0.0055 -0.1506 0.8803  

13b  0.0098  0.0061 1.6101 0.1074  

23b  -0.0102** 0.0048 -2.1250 0.0336  

33b  0.9778*** 0.0096 101.8052 0.0000  

11a  0.1672*** 0.0244 6.8401 0.0000  

21a  -0.0686  0.0426 -1.6120 0.1070  

31a  0.1818** 0.0836 2.1750 0.0296  

12a  -0.0009  0.0049 -0.1751 0.8610  

22a  0.1989*** 0.0207 9.5870 0.0000  

32a  0.0063  0.0132 0.4752 0.6347  

13a  -0.0330*** 0.0103 -3.2007 0.0014  

23a  0.0398*  0.0208 1.9124 0.0558  

33a  0.1390*** 0.0470 2.9574 0.0031  

Ljung-Box Statistics   
(10)Q  Q-Stat P-Value 
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Oil 10.2245 0.4210  

Gold 11.6752 0.3074  

S&P 12.9007 0.2293  

2 (10)Q   

Oil 10.8304 0.3709  

Gold 16.5473 0.0850  

S&P 7.1713 0.7092  

  

LL -5638.65  

Covariance stationary test 

Eigenvalues: 0.9735±0.0289i, 0.9874±0.0099i, 0.9903, 0.9962, 0.9874±0.0101i 

           0.9876 
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Table 2.A 10 Estimation results of the Bi-variate GARCH models in the pre-crisis period 

(1/04/91—31/03/97). 

 
2

11, 12, 11, 1 12, 111 21 11 12 11 21 11 12 11 211, 1 1, 1 2, 1
2

12, 22, 12, 1 22, 112 22 21 22 12 22 21 22 12 221, 1 2, 1 1, 1

t t t tt t t
t

t t t tt t t

h h h hc c c c
H

h h h hc c c c

       
       

   

   

             
                

             

11 12

21 22

 
 
 
 
 

 

 

 oil and gold oil and S&P Gold and S&P 

Variable Coeff Std Error T-Stat Coeff Std Error T-Stat Coeff Std Error T-Stat

11c  0.1656***  0.0354 4.674 0.1451*** 0.0475 3.0563 0.0452***  0.0111 4.0619

21c  ---- ---- ---- ---- ---- ---- ---- ---- ---- 

12c  0.0452***  0.0107 4.2456 0.0101 0.0654 0.1552 -0.001 0.0225 -0.0423

22c  -0.00003 0.0053 -0.0056 0.0759*** 0.0307 2.4698 0.058 0.047 1.2335

11b  -0.9768***  0.0053 -184.09 -0.9752*** 0.0078 -125.44 0.9840***  0.0056 176.13

21b  0.4210***  0.1274 3.3057 0.0378 0.0843 0.4485 0.1340***  0.0315 4.2543

12b  0.0147***  0.0023 6.3481 -0.0071 0.0112 -0.6324 -0.1379**  0.0565 -2.4394

22b  0.9720***  0.0036 271.31 -0.9800*** 0.0119 -82.13 -0.9977***  0.0143 -69.78

11a  0.1745***  0.0224 7.7817 0.1980*** 0.027 7.3428 0.2168***  0.0224 9.698

21a  0.0627 0.0448 1.3993 0.1146 0.1881 0.6092 0.0272*  0.0157 1.734

12a  -0.0069**  0.0032 -2.1995 -0.0252 0.0272 -0.9237 -0.0306**  0.0137 -2.2442

22a  0.2117***  0.0195 10.83 0.1501*** 0.0480 3.123 -0.1251**  0.0599 -2.0895

          
Ljung-Box Statistics       

(10)Q   Q-Stat P-Value Q-Stat P-Value  Q-Stat P-Value

 Oil 9.1896 0.5142 Oil 7.8938 0.6392 Gold 11.1324 0.3473

 Gold 11.7266 0.3038 sp 21.2177 0.0196 sp 13.7804 0.1832

2 (10)Q      

 Oil 8.1094 0.6182 Oil 8.5675 0.5736 Gold 11.4232 0.3255

 Gold 12.0096 0.2844 SP 7.5956 0.6683 SP 8.6022 0.5702

         
LL  -4167.71 -4416.22  -2725.55  
      
Covariance Stationary Test    
Eigenvalue of Bi-GARCH for oil and gold market  : 0.9911,  0.9953,  -0.9190 and -0.9183 

                      For oil and S&P       : 0.9912, 0.9821±0.0134i, 0.9886 

                      For gold and S&P      : 0.9959, 0.9919, -0.9896, -0.9895 
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Table 2.A 11 Estimation results from the Tri-variate GARCH model in the crisis period 

(1/04/97—31/07/03). 

 
2

, , , 11 21 31 11 12 13 11 21 31 , 1 , 1 , 1 , 1 ,

, , , 12 22 32 21 22 23 12 22 32

, , , 13 23 33 31 32 33 13 23 33

oo t og t os t o t o t g t o t s t

t og t gg t gs t

os t gs t ss t

h h h c c c c c c a a a

H h h h c c c c c c a a a

h h h c c c c c c a a a

              
                
             

1 11 12 13
2

, 1 , 1 , 1 , 1 , 1 21 22 23
2

, 1 , 1 , 1 , 1 , 1 31 32 33

11 21 31 , 1 , 1 , 1

12 22 32 , 1 , 1 , 1

13 23 33 , 1

o t g t g t g t s t

o t s t g t s t s t

oo t og t os t

og t gg t gs t

os t g

a a a

a a a

a a a

b b b h h h

b b b h h h

b b b h h

    
    



    

    

  

  



   
   
   
     

 
   
  

11 12 13

21 22 23

, 1 , 1 31 32 33s t ss t

b b b

b b b

h b b b 

   
   
   
     

 
 

   Variable Coeff Std Error T-Stat Signif 

11c  0.5327  0.3562 1.4954 0.1348  

21c  -0.4604** 0.2088 -2.2052 0.0274  

31c  0.1774*  0.1029 1.7235 0.0848  

12c  0.2570** 0.1305 1.9686 0.0490  

22c  0.4805*** 0.1446 3.3241 0.0009  

32c  -0.0344  0.0655 -0.5243 0.6001  

13c  0.0927  0.0823 1.1265 0.2600  

23c  0.1584** 0.0626 2.5316 0.0114  

33c  0.1488*  0.0817 1.8222 0.0684  

11b  0.8844*** 0.0607 14.5802 0.0000  

21b  0.3378  0.2805 1.2045 0.2284  

31b  0.0444  0.0581 0.7650 0.4443  

12b  0.0021  0.0082 0.2496 0.8029  

22b  0.7353*** 0.2015 3.6486 0.0003  

32b  -0.0293  0.0433 -0.6755 0.4993  

13b  0.0186** 0.0089 2.0958 0.0361  

23b  -0.1729*** 0.0242 -7.1570 0.0000  

33b  0.9359*** 0.0160 58.4032 0.0000  

11a  0.3004*** 0.0550 5.4571 0.0000  

21a  -0.1973** 0.0923 -2.1369 0.0326  

31a  0.0129  0.0583 0.2204 0.8255  

12a  0.0019  0.0140 0.1338 0.8935  

22a  0.3132*** 0.1164 2.6910 0.0071  

32a  0.0010  0.0635 0.0157 0.9874  

13a  -0.0271** 0.0129 -2.1011 0.0356  

23a  0.1007  0.0655 1.5385 0.1239  

33a  0.2214*** 0.0342 6.4733 0.0000  

  

Ljung-Box Statistics    
(10)Q  Q-Stat P-Value 

Oil 13.2249 0.2114  

Gold 4.7409 0.9078  
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S&P 8.4579 0.5842  

2 (10)Q   

Oil 19.3644 0.0359  

Gold 3.3327 0.9725  

S&P 5.5936 0.8482  

  

LL -8648.67  

Covariance stationary test  
Eigenvalues: 0.6006, 0.9678, 0.8822, 0.9197, 0.7231, 0.7448, 0.9204,  

0.7232, 0.7465 
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Table 2.A 12 Estimation results of the Bi-variate GARCH models in the crisis period 

(1/04/97—31/07/03) 

 
2

11, 12, 11, 1 12, 111 21 11 12 11 21 11 12 11 211, 1 1, 1 2, 1
2

12, 22, 12, 1 22, 112 22 21 22 12 22 21 22 12 221, 1 2, 1 1, 1

t t t tt t t
t

t t t tt t t

h h h hc c c c
H

h h h hc c c c

       
       

   

   

             
                

             

11 12

21 22

 
 
 
 
 

 

 

 oil and gold oil and S&P Gold and S&P 

Variable Coeff Std Error T-Stat Coeff Std Error T-Stat Coeff Std Error T-Stat 

11c  0.6815***  0.1752  3.8905 0.8539*** 0.2152 3.9682 0.3079***  0.0962  3.2025 

21c  0.0839  1.0802  0.0777 -0.0367 0.2849 -0.1287 -0.1851*  0.0982  -1.8844 

12c  0.2231  0.4276  0.5217 0.2252*** 0.0695 3.2395 0.2332***  0.0567  4.1131 

22c  0.3670***  0.0860  4.2676 -0.0097 0.1013 -0.0955 0.1463**  0.0674  2.1719 

11b  -0.8824***  0.0912  -9.6748 -0.8615*** 0.0523 -16.4789 0.8824***  0.0793  11.1281 

21b  -0.4393  0.5254  -0.8361 0.4382* 0.2473 1.7718 -0.0148  0.0207  -0.7127 

12b  -0.1160*  0.0597  -1.9438 0.1582** 0.0670 2.3614 -0.0658  0.0581  -1.1316 

22b  0.8203***  0.1997  4.1066 0.9043*** 0.0434 20.8571 0.9376***  0.0153  61.0846 

11a  0.2871***  0.0755  3.8009 0.2985*** 0.0518 5.7639 0.2538***  0.0765  3.3188 

21a  -0.1980***  0.0645  -3.0674 0.0787 0.0744 1.0581 0.0061  0.0462  0.1332 

12a  0.0121  0.0136  0.8903 -0.0262** 0.0129 -2.0293 0.0522  0.0643  0.8117 

22a  0.2774**  0.1156  2.3992 0.2417*** 0.0351 6.8789 0.2574***  0.0296  8.7087 

         

Ljung-Box Statistics       

(10)Q   Q-Stat P-Value Q-Stat P-Value  Q-Stat P-Value

 Oil 12.6739  0.2425 Oil 12.7543 0.2377 Gold 3.0667  0.9798 

 Gold 3.2703  0.9743 SP 8.0699 0.6220 SP 7.6371  0.6642 

2 (10)Q      

 Oil 19.4061  0.0354 Oil 19.0893 0.0391 Gold 2.8843  0.9840 

 Gold 3.3998  0.9704 SP 5.9706 0.8177 SP 5.6659  0.8425 

          
LL  -5937.97  -6527.24  -4874.27   

        
Covariance stationary test        
Eigenvalue of Bi-GARCH for oil and gold market : 0.9079, 0.8044, -0.6971, -0.6928 

                      For oil and S&P      : -0.7754, 0.8955, 0.9454, -0.7718 

                      For gold and S&P     : 0.8258, 0.8918, 0.9648, 0.8914 
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Table 2.A 13 Estimation results from the Tri-variate GARCH model in the post-crisis period 

(1/08/03—5/11/07). 
2
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a a a

a a a
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    Variable Coeff Std Error T-Stat Signif 

11c  0.0928** 0.0383 2.4235 0.0154  

21c  0.0000 0.0000 0.0000 0.0000  

31c  0.0000 0.0000 0.0000 0.0000  

12c  0.0758*** 0.0208 3.6408 0.0003  

22c  0.0090 0.0386 0.2319 0.8166  

32c  0.0000 0.0000 0.0000 0.0000  

13c  -0.0252 0.0837 -0.3015 0.7630  

23c  0.1230** 0.0374 3.2903 0.0010  

33c  -0.0418 0.0573 -0.7303 0.4652  

11b  0.9940*** 0.0023 434.0444 0.0000  

21b  -0.0077 0.0089 -0.8665 0.3862  

31b  0.0470** 0.0211 2.2253 0.0261  

12b  0.0001 0.0018 0.0726 0.9421  

22b  0.9856*** 0.0032 312.6862 0.0000  

32b  0.0100 0.0154 0.6509 0.5151  

13b  -0.0051*** 0.0017 -2.9429 0.0033  

23b  0.0013 0.0066 0.1920 0.8478  

33b  0.9614*** 0.0119 80.6452 0.0000  

11a  -0.1041*** 0.0191 -5.4530 0.0000  

21a  0.1342*** 0.0319 4.2070 0.0000  

31a  -0.0652 0.0483 -1.3502 0.1770  

12a  0.0105 0.0103 1.0244 0.3056  

22a  0.1432*** 0.0207 6.9086 0.0000  

32a  -0.0114 0.0478 -0.2383 0.8117  

13a  -0.0046 0.0082 -0.5598 0.5756  

23a  0.0022 0.0289 0.0775 0.9382  

33a  0.2000*** 0.0237 8.4407 0.0000  

   

Ljung-Box Statistics  

(10)Q  Q-Stat P-Value 

Oil 9.1779 0.5153  

Gold 4.2583 0.9349  

S&P 11.2955 0.3350  
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2 (10)Q   

Oil 26.7801 0.0028  

Gold 11.5327 0.3175  

S&P 11.0184 0.3561  

  

LL -5040.0583  

Covariance stationary test  

Eigenvalues: 0.9530±0.0170i, 0.9944, 0.9923, 0.9698±0.0108i, 0.9341 

           0.9701±0.0118i 
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Table 2.A 14 Estimation results of the Bi-variate GARCH models in the post-crisis period 

(1/08/03—5/11/07). 
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 oil and gold oil and S&P Gold and S&P 

Variable Coeff Std Error T-Stat Coeff Std Error T-Stat Coeff Std Error T-Stat 

11c  0.3474**  0.1560  2.2265 1.8908*** 0.1114 16.9767 -0.0885***  0.0202  -4.3723 

21c  -0.3640***  0.1234  -2.9497 0.0000  0.0000 0.0000 0.0000  0.0000  0.0000 

12c  0.0509  0.0913  0.5579 -0.0343  0.0214 -1.5990 -0.0909***  0.0063  -14.3551 

22c  -0.0527  0.0974  -0.5407 0.0000  0.0448 0.0003 -0.0898***  0.0056  -16.0573 

11b  -0.9237***  0.0265  -34.9179 -0.1764  0.2830 -0.6233 0.9864***  0.0028  356.48 

21b  1.0203***  0.0949  10.7524 -0.2081** 0.1010 -2.0605 -0.1486**  0.0642  -2.3139 

12b  0.0446**  0.0207  2.1519 0.0454*** 0.0097 4.7036 0.0086  0.0060  1.4286 

22b  0.9599***  0.0136  70.5830 -0.9685*** 0.0085 -114.30 -0.9659***  0.0061  -157.08 

11a  -0.2015***  0.0358  -5.6209 -0.1711*** 0.0628 -2.7236 0.1487***  0.0199  7.4655 

21a  0.1509***  0.0268  5.6288 -0.3895*** 0.1441 -2.7027 0.0015  0.0310  0.0485 

12a  0.0123  0.0081  1.5153 -0.0023  0.0130 -0.1747 0.0094  0.0279  0.3369 

22a  0.1554***  0.0180  8.6404 0.1930*** 0.0234 8.2641 -0.1901***  0.0310  -6.1287 

       
Ljung-Box Statistics     

(10)Q   Q-Stat P-Value Q-Stat P-Value  Q-Stat P-Value

 Oil 8.4347  0.5865 Oil 10.7940 0.3738 Gold 4.3601  0.9296 

 Gold 4.1254  0.9415 SP 10.0421 0.4368 SP 10.6339  0.3867 

2 (10)Q       

 Oil 17.3645  0.0667 Oil 37.4626 0.0000 Gold 11.5329  0.3175 

 Gold 12.2035  0.2717 SP 8.1964 0.6097 SP 9.6729  0.4696 

     

LL  -3882.29  -3494.08  -2770.65  

          
Covariance stationary test        
Eigenvalue of Bi-GARCH for oil and gold market : 0.9407, 0.9937, -0.9657, -0.9653 

                      For oil and S&P      : 0.1012±0.0103i, 0.9625, 0.1464 

                      For gold and S&P     :0.9936, 0.9676, -0.9793, 0.9798 
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Appendix 2 B  

 

Figure 2.B 1 Percentage of oil production, imports and demand in US to the World  
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Figure 2.B 2 World crude oil price ($/bbl) for past 50 years (yearly average) 
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Figure 2.B 3 Inflation adjusted world oil prices over past 50 years (yearly average, $/bbl) 
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Figure 2.B 4 Monthly oil price series from 1990s 
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Figure 2.B 5 World gold price for past 50 years (yearly average, $/ounce) 
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Figure 2.B 6 Percentage gold holding of US to the world 
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Figure 2.B 7 Oil and oil price over the past 50 years (Based on yearly data) 
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Figure 2.B 8 Oil and gold monthly price series since 1990s 
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Essay 3 Re-examining the Asian Currency 

Crises: A Markov Switching TGARCH 

approach 
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3.1. Introduction    

 

The outbreak of the Asia financial crisis in 1997-1998 triggered a surge in both 

theoretical and empirical studies on the factors that contribute to the occurrence of a 

currency crisis. Some authors claim that the Asia currency crises were predictable and 

can be explained by economic fundamentals, whereas others contend that the crises 

are self-fulfilling, where speculative attacks on a country are based on the probability 

that the attacks will be successful and hence profitable, regardless of the 

macroeconomic fundamentals of a country.  

 

Currency crises have been traditionally viewed as retribution for governments that 

have mismanaged the economy and/or lack credibility. The basic ‘first generation’ 

model (see e.g., Krugman, 1979) accentuates domestic fiscal and monetary policies 

inconsistent with the fixed exchange rate policy leading to currency overvaluation and 

reserve depletion. In these models the presence of inconsistent policies generates a 

speculative attack against the local currency, and pushes the economy into a crisis. 

The degree of severity of these inconsistencies will determine the timing of the crisis. 

The ‘second generation’ model (see e.g., Obstfeld, 1996) emphasizes the importance 

of market expectations which can trigger a crisis by shifting the macroeconomy from 

a “good” no-crisis equilibrium to a crisis equilibrium, even when macroeconomic 

policies are consistent with the exchange rate policy. These models emphasize the role 

of policymaker’s preferences, and suggest that the option of abandoning a fixed 
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exchange rate regime may be an ex-ante optimal decision for the policymakers, 

considering that economic authorities face tradeoffs. The ‘third generation’ model (see 

e.g., Corsetti et al., 1999) focuses on deficiencies in domestic and foreign financial 

sectors that result in a ‘feast and famine’ pattern of capital flows. Those models tend 

to focus on the financial liberalization in Asia capital markets, accompanied by a 

combination of asymmetric information and moral hazard problems and by the 

inadequate market regulation, supervision and management in this region, which led 

to excessive borrowing (e.g., Mishkin, 1999; Corsetti, Pesenti, & Roubini, 1999). 

Rather than following the path of the third generation models we confine ourselves to 

the potential of the first and second generation currency crisis models for explaining 

(or accounting for) the Asian currency crisis in this study.  

 

A currency crisis is usually identified as an episode in which there is a sharp 

depreciation of the currency, a large decline in foreign reserves, a dramatic increase in 

domestic interest rate or a combination of these elements. The empirical literature on 

currency crisis are vast, and mainly focus on trying to explain and predict crises in the 

developing countries. 

 

In this study, we use a Markov Switching approach to account for the presence of two 

potential regimes: stable and volatile. We also include an Asymmetric Generalised 

Autoregressive Conditional Heteroscedasticity (GARCH) specification to capture the 

fact that within each regime, the volatility of market pressure is not constant. The 
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attractiveness of the Markov Switching approach is that we do not need to distinguish 

ex-ante between stable and volatile states. Instead, the estimation results will supply 

us with such information. By allowing regression parameters to switch between 

different regimes, Markov-switching mimics the existence of multiple equilibriums.  

 

Moreover, the mainstream analyses and empirical studies concentrate on depreciating 

currency attacks. In reality, however, speculative attacks also take place when 

currency appreciates. The Markov Switching models we employed are also able to 

capture appreciating currency attacks. In stead of converting the measure of market 

pressure on the exchange rate into a binary variable (Eichengreen, Rose and Wyplosz, 

1996, Frankel and Rose, 1996, and Kruger, Osakwe, and Page, 1998), we assume a 

currency will have higher probability to depreciate if it has high market pressure, and 

will appreciate when it has very low market pressure. When market pressure has very 

low or high values, it is considered to be potentially in a volatile state. When market 

pressure lies in the medium range, it is considered to be in a stable state.  

 

Existing empirical studies have suggested that the deteriorating fundamentals do 

increase the probability of a crisis (see, e.g., Kaminsky, Lizondo and Reinhart, 1997; 

Berg and Patillo, 1998), but the timing of a crisis cannot be predicted with precision. 

In our approach, we examine the explanatory power of several fundamental variables, 

including the indicators for international reserves, the real exchange rate and domestic 

credit growth. The model can be used for out-of-sample forecasting. Unfortunately, 
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due to the short data sample, we only limit our study to understanding the variables 

and modeling specifications.  

 

The remainder of this paper is organized as follows. Section 3.2 and section 3.3 

review the theoretical framework and empirical studies on currency crisis. Section 3.4 

discusses the measure of market pressure on the exchange rate and the construction of 

macroeconomic fundamentals. Section 3.5 discusses the methodology: the Markov 

switching models with constant variances and with Asymmetric GARCH 

specification in variances. Empirical estimation results are presented in section 3.6. In 

section 3.7, we compare our findings from Markov switching model with the results 

from Multinomial Logit models. Section 3.8 concludes.  



 260

3.2 Theoretical Framework for currency crisis 

 

This section provides a review of selected works on explanations for speculative 

attacks and currency crisis that have been presented in the theoretical literature. The 

aim is to provide some theoretical background and to provide an explanation why a 

variety of indicators have been used for currency crisis in our later empirical studies. 

 

 

3.2.1 First Generation Crisis models: Fundamentals perspective 

 

The first generation models explain currency crisis as a result of unsustainable 

development in fundamental macroeconomic variables, which widens the discrepancy 

between the promises and the proclaimed goal of the monetary authorities (e.g. Blejer, 

1998). Krugman (1979) shows that, under a fixed exchange rate, domestic credit 

expansion in excess of money demand growth leads to a gradual but persistent loss of 

international reserves and ultimately to a speculative attack on the currency. This 

attack immediately depletes reserves and forces the authorities to abandon parity. The 

process ends with an attack because economic agents understand that a fixed 

exchange rate regime will ultimately collapse, and that in the absence of an attack the 

agents would suffer a capital loss on their holdings of domestic money. Krugman’s 

analysis parallels obviously the analysis in the theory of exhaustible resources in that 

foreign reserves are used to peg an exchange rate. He illustrates a currency crisis from 

the viewpoint of monetary model. In this respect, his model predicts that exchange is 
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dependent on the supply of domestic and foreign currency relative to demands. Due to 

non-linearities in his model, the Krugman (1979) model was not able to determine the 

timing of the collapse of the fixed exchange rate regime. Flood and Garber (1984) 

using a linear model provided a solution to the timing of the collapse.  

 

Agenor, Bhandari and Flood (1992) present a framework to analyze the process 

leading to a balance of payments crisis, consisting of a simple continuous time and 

perfect foresight model. This model is a log linear formulation which can solve 

explicitly for the timing of a crisis by assuming that the exchange rate is allowed to 

float permanently in the post-crisis regime. We provide an examination of this model. 

 

Consider a small open economy whose residents consume a single traded good whose 

domestic supply is exogenously fixed at y . The central bank fixes the exchange rate 

of its currency relative to that of a large foreign country. Purchasing power parity 

(PPP) holds, so that *P SP  ( P  is the domestic price level, S  is the exchange 

rate the *P  is the foreign price level). In log notation with *P  normalized to 1, the 

PPP can be written as p s . p  and s  are the domestic price level and exchange 

rate in logarithms. Assuming there are no private banks in the economy, the money 

supply equals the sum of domestic credit issued by the central bank and domestic 

currency value of foreign reserves held by the central bank. Domestic credit is 

assumed to grow at a constant rate  . Finally, agents have perfect foresight. The 

model is defined as follow: 
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t t tm p y i              , 0a                            (3.1) 

(1 )t t tm d r              0 1                           (3.2) 

td &                   0                              (3.3) 

t tp s                                                    (3.4) 

*
1t t t ti i E s   &                                               (3.5) 

 

All variables except interest are measured in logarithms. tm  denotes the nominal 

money stock, td  is the domestic credit, tr  is the domestic currency value of the 

government’s holding of foreign reserves, ts  is the spot exchange rate, tp  is the 

domestic price level, ti  is the domestic interest rate and *
ti  is the foreign interest 

rate. *
ti  is assumed to be constant. tE  denotes the expectation operator conditional 

on information available at time t . A dot over a variable denotes a time derivative.  

 

Equation (3.1) defines real money demand as a positive function of income and a 

negative function of the domestic interest rate. Equation (3.2) is a log-linear 

approximation of the link between the money stock and reserves and domestic credit. 

 denotes the share of domestic credit in the money stock32. Equation (3.3) gives that 

the domestic credit grows at a constant rate  . Purchasing power parity and 

uncovered interest parity are assumed to be hold and are defined in Equation (3.4) and 

Equation (3.5), respectively. Under perfect foresight, 1 1t t tE s s & & .  

 
                                                        
32 /t tD M   at the point of linearisation, usually the sample mean. tD denotes the domestic 

credit and tM denotes the nominal money stock, in level. 
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From this model, the operating properties of a floating exchange rate and fixed 

exchange regime can be determined. For convenience, we set 0y  . Combining 

Equation (3.1), (3.4) and (3.5) yields, 

1*t t t ts i m aE s    &                                         (3.6) 

When the exchange rate is fixed at s , the anticipated rate of change in exchange rate 

is zero, 1 0t tE s  & . *i  is assumed to be constant and so the central bank must 

accommodate any change in money demand through the purchase from or sale to the 

public of foreign reserves. Using Equation (3.2) and (3.6) yields, 

*( ) /(1 )t t tr s d i                                          (3.7) 

And under these assumptions 

/tr   &     where (1 ) /                               (3.8) 

When domestic credit is excessive (exceeding the demand for money), the continual 

growth in domestic credit will cause reserves to decline steadily as the central bank 

intervenes in foreign exchange markets to maintain the fixed exchange rate. If the 

central bank will not continue to defend the current exchange rate after the reserves 

reach a lower bound, r , the exchange rate will be forced to float or will be devalued. 

The rational agents will anticipate that without speculation reserves will at some time 

fall to the lower bound and will anticipate the ultimate impending collapse of the 

fixed exchange rate. Hence, to avoid a loss of profit at the time of collapse rational 

agents will force a crisis before reserves reach r .  

 

In equilibrium under perfect foresight, agents will never expect a discrete jump in the 
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level of exchange rate which will provide a profitable arbitrage opportunity. Arbitrage 

in the foreign exchange market fixes the exchange rate at the time of collapse equal to 

the fixed exchange rate prevailing at the time of attack. Thus the time of attack can be 

determined by two steps. First, from the law of motion of the exchange rate, we solve 

for the floating exchange rate given the current level of domestic credit and contingent 

on net reserves being at the minimum level of reverse. This contingent exchange rate 

is known as the shadow floating exchange rate, s%. Second, we find the time T  at 

which the shadow floating exchange rate s% equals the fixed exchange rate s .  

 

To find the shadow floating exchange rate, first assume that at the time of collapse, 

0r  , so Equation (3.2) becomes 

t tm d                                                   (3.9) 

And so  

tm d  &&                                              (3.10) 

Substitution in Equation (3.6), the solution for the floating exchange rate is  

*t t ts s i d     %                                     (3.11) 

In the post collapse regime, the exchange rate depreciates steadily and proportionally 

to the rate of domestic credit growth.  

 

Assume that domestic credit grows with a deterministic trend: 0td d t    and at 

the time of collapse, t tm d , then from Equation (3.11) we can determine the time 

of collapse  
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*
0( ) /cT s i d                                       (3.12) 

*
0( )

c

s i d
T

  


 
                                       (3.13) 

Given 0 0* (1 )s i d r       

0(1 )
c

r
T

 



                                            (3.14) 

Equation (3.13) shows that the higher initial stock of reserves or the lower the rate of 

domestic credit growth, the longer it will take before the collapse occurs in the 

absence of a speculative attack. The (semi) interest rate elasticity of money demand 

( ) determines the size of the downward shift in money demand and reserves when 

the fixed exchange rate collapses and the nominal interest rate rises to reflect the 

expected depreciation of the domestic currency. The larger the value of  , the sooner 

the collapse. Although it is assumed reserves are run down to zero to determine 

shadow floating rate, the model indicates that the attack always occurs before the 

central bank would have run out of reserves in the absence of speculation.  

 

The model can be depicted in Figure 3.1. Prior to the attack, the exchange rate is fixed 

with no anticipated depreciation, so nominal money demand and supply are constant. 

Nevertheless, domestic credit is continuously rising, and this is matched by the fall in 

reserves. At the time of attack, nominal money demand falls discontinuously to 
cTD . 

The supply of money is reduced accordingly through an attack that drives reserves 

discontinuously to zero. From cT  onward, the money stock is identical to and grows 
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Figure 3. 1 Money, domestic credit and reserves in a speculative attack.  

 

 
Source: Agenor, Bhandari and Flood (1992)
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with domestic credit. Note that if the right side of Equation (3.14) is negative, one 

should interpret the analysis as showing that a speculative attack must take place 

immediately on date 0 (Obstfeld and Rogoff, 1996).  

 

 

3.2.2 The second generation models of currency crisis (Self-fulfilling 

speculative attacks) 

 

The second generation models extend as well as modify the first generation models 

whereby dependence on market expectations for the occurrence of a crisis creates an 

element of uncertainty and multiple (non-unique) equilibria, rather than the 

fundamental macroeconomic variables and their developments cause a currency crisis. 

It focus on non-linearities in government behaviour, namely, what happens when 

government policy reacts to changes in private behaviour or when the government 

faces an explicit trade-off between the fixed exchange rate policy and other goals. 

Krugman (1996) point out that the policy dilemma facing by these countries have 

centered on such issues as real overvaluation, interest rates and unemployment, rather 

than facing a sharply defined foreign reserves constraint, to maintain a fixed exchange 

rate regime. Second generation models generally exhibit multiple equilibria so that 

speculative attacks can occur because of self-fulfilling expectations. “Then a fixed 

exchange rate that would have lasted indefinitely in the absence of a speculative 

attack may collapse because financial markets are persuaded, by otherwise irrelevant 
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information, that the rate will not be sustained." (Krugman, 1996). For example, if 

private agents expect a high rate of devaluation, interest rate or wage demands can 

increase, worsening the prospects for lower debt service, a sounder banking system or 

reduced unemployment. The government will be more willing to actually allow for a 

high rate of devaluation because the situation implies a high “cost” to be paid by the 

government if the government does not actually change the exchange rate. The 

government’s decision to devalue validates expectations, making expectations 

self-fulfilling (Marion, 1999). 

 

The second generation models assume that the government in every single period of 

time evaluates the cost and the benefits from keeping the exchange rate fixed. Such is 

achieved by the government to optimise an explicit objective function (see, for 

example, Obstfeld, 1994). Consider the case of an agent, the government, which 

trying to minimise a loss function must decide whether or not to defend an 

exogenously determined exchange parity. We take directly from Krugman (1996) the 

reduced form representation, which derives the explicit loss function from a 

Mundell-Fleming type of open economy macro model with sticky prices. In such a 

model, output is a function of the real exchange rate and real interest rate.  

*( ) ( )y s p p i                                        (3.15) 

Where *p  and p  are the foreign and domestic price levels in logarithm, and   is 

the expected rate of inflation. The money demand is a function of income and interest 

rate:  
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( , )m p L y i                                              (3.16) 

 

Assuming perfect capital mobility with equalization of returns 

*i i s  &                                                 (3.17) 

Where *i  is the foreign interest rate the s& is the expected rate of depreciation. The 

government’s loss function is stated in terms of deviation of output from a desired 

level: 

2( )dH y y                                              (3.18) 

Now define the ds  as the log of the exchange rate that would leave the output equal 

to its target level in the absence of any expected depreciation. (i.e., ds  is the desired 

exchange rate). Hence: 

* *( ) ( )d dy s p p i                                     (3.19) 

So that  

* *1/ ( ) ( )d ds y p p i                                   (3.20) 

Therefore 

2
( ) ( )dH s s s     &                                      (3.21) 

Let ds  be the exchange rate that government would choose if it faces no credibility 

concerns and s  be the parity to which it has staked it reputation. s& is the expected 

rate of depreciation: es s , where es is the market expectation of the current 

exchange rate. 

 

Assume that the government faces a fixed private cost if the government unexpectedly 
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abandon the peg and let the currency devaluate, probability in the form of loss 

reputation. Sachs, et al (1996) show that such cost need not be proportional to the size 

of the devaluation or any other macroeconomic variable. 

 

Assume the government’s loss function is:  

2
( ) ( ) ( )dH s s s R       &                                 (3.22) 

Where ( )R   takes the value C  when the government allows the exchange rate to 

change while ( )R   equal 0 when the exchange rate does not change. Thus C  is a 

fixed “reputation” cost that the government incurs when it abandons the peg.  

 

Assume that the government is currently pegging its exchange rate. The market might 

expect that the government will continue to do so: es s , or that the government will 

abandon the peg in the next period, then e ds s . Then the decision about whether to  

maintain the peg will depend on the comparison of the cost or loss from staying on the 

peg with the credibility cost of abandoning the peg, that is, whether 

        
2

min ( ) ( )d eH s s s s C                                 (3.23) 

If the market does not expect a depreciation, then the second term in equation (3.23) 

will vanish and the government will want to maintain its peg, fulfilling the market 

expectations (i.e. es s ) as long as 

2
( )dH s s C                                           (3.24) 

On the other hand, if the market expects a depreciation (i.e., e ds s ), then the second 

term will become positive and the government will abandon the peg and fulfill market 
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expectations as long as  

2
( )( )dH s s C                                         (3.25) 

Then we have multiple equilibria as long as  

2 2
( ) ( )( )d ds s C s s                                       (3.26) 

Equation (3.26) shows that self-fulfilling crises are possible when the parameters of 

the economy are in a range. Whether the regime survives or collapses will depend on 

the government’s reaction to market expectations. In loose terms, the above 

government objective function states that the conditions for a crisis-proof fixed 

exchange regime include a high cost to abandoning the peg and a peg that is very 

close to the desired or “right” level, ds . 

 

Some other versions of second generation models have also been developed (e.g. 

Obstfeld, 1996; Masson, 1999, etc). These models generally developed following the 

European Exchange Rate Mechanism (ERM) crisis in 1992/1993, when no critical 

developments in fundamental macroeconomic variables could be noticed. The second 

generation models stress the influence of self-fulfilling expectation and market panics 

on a currency, as well as the influence of “triggers” that initiate these panics and shift 

all the expectations in the market in the coherent or same direction. 

 

According to second-generation models, a currency crisis occurs due to: 1) coherent 

self-fulfilling expectations, 2) rational heard behavior and 3) contagion (Blejer, 1998). 

Second generation models accurately describe developments immediately preceding a 
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currency crisis. However, they overestimate the importance of expectation and 

triggers in setting off the wave of pessimism and coherent expectations in the market 

which results in currency devaluation (Babic and zigman, 2001). When the 

second-generation models are used as a complements to first-generation model, more 

sound theoretical results for currency crises can be achieved. The current economic 

policy of the government as well as its economic objectives and methods for 

achieving these objectives are reflected in the fundamental macroeconomic variables.  

The greater the deviation of the current economic policy from the optimum policy the 

government claimed to maintain the stability of the exchange rate regime (e.g. fixed 

exchange rate), the greater the probability of currency attack to take place and thus the 

occurrence of currency crisis. Due to various market fractions like transaction costs, 

difficulties in arranging credit lines for currency attack and the delay of revealing 

government policy indicators, currency crisis may not unfold as soon as the 

government policy begins to deviate from the proclaimed optimum policy. 

Accordingly, emphasis on the role of various events, especially various political 

events, that can trigger and turning point in market expectation has increased.  

 

 

3.2.3 Summary of the models 

 

First generation currency crisis models have focused on the primacy of deteriorating 

fundamentals in triggering a speculative attack. The deterioration of the fundamentals 
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such as a growing budget deficit (perhaps financed by a growing domestic credit) or 

real exchange rate appreciation which implies a loss of competitiveness, leads 

invariably to a loss of reserves to the threshold level that triggers a speculative attack. 

The fixed exchange rate becomes increasingly incompatible with the state of 

fundamental, thereby raising the floating exchange rate above the peg. There are 

many extended version of first generation model (see, e.g. Floor and Garbet, 1984 and 

Santoso, 2001).  

 

The second generation models endogenise government policy on the exchange rate. 

The peg is abandoned either as a result of deteriorating fundamental, or as a result of a 

speculative attack driven by self-fulfilling. The models focus on the market 

expectations which lead to currency crises, rather than the fundamental 

macroeconomic variables and their development. However, the fact that the attack is 

self-fulfilling does not mean that fundamental variables are no longer important, 

because these models require that the fundamentals in a vulnerable range for the 

attack to be successful.  

 

Flood and Marion (1998) assert that the first- and second-generation model differ in a 

variety of ways, but most of the differences can be traced to one crucial assumption 

that first generation models assume the commitment to a fixed exchange rate is state 

invariant, whereas second generation models allow it to be state dependent. The 

assumption of a state-invariant commitment does not match well with common 
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observation that monetary authority’s commitment to the fixed exchange rate is often 

constrained by such factors as unemployment, the fragility of the banking system, the 

size of the public debt, or upcoming election. The state dependent behaviour inspires 

us to build an empirical model of the currency crisis that incorporates state/regime 

switching. The Markov Regime-Switching models are discussed in the section 3.4.  
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3.3 Previous empirical studies 

 

The empirical literature on currency crisis is extensive, and mainly focuses on trying 

to explain and predict crises in the developing countries. There are three methods or 

approaches for predicting currency crises that have been developed in the literature. 

 

One class of models is the probit/logit regression approach developed by Frankel and 

Rose (1996). They apply probit analysis on a panel of annual data for 105 developing 

countries for the period between 1971 and 1992 to investigate how international debt 

structure and external factors affect the probability of currency crises. Their model 

identifies the significant variables as output growth, foreign direct investment/total 

debt, reserves, domestic credit growth, external debt and foreign interest rates. Their 

findings also suggest that currency crises tend to occur when the growth of domestic 

credit and foreign interest rates are high, and foreign direct investment and output 

growth are low. Probit approach has also been used by Glick and Moreno (1999). 

Based on data from January 1972 to October 1997, they study the crises in Asia and 

Latin America. Results of their analysis suggest that reductions in real domestic credit 

and foreign reserves, as well as appreciation in the real exchange rate increase the 

probability of financial crises. Geochoco-Bautista (2000) uses a probit model based 

on data from the Philippines spanning the period between 1980 and 1997. Regression 

results indicate that the coefficient of short-term interest rate differential, change in 

international reserves, real exchange rate, and the growth of domestic credit to public 
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sector are the significant variables in explaining the financial crisis in the Philippines. 

More recently, Bussiere and Fratzscher (2006) develop a new early warning system 

model based on a multinomial Logit with three outcomes (tranquil, pre-crisis and 

post-crisis) showing that such a specification leads to a better out-of-sample forecast 

and solves what they call the“post-crisis bias.” 

 

A second class of models might be termed the “signal approach”, which attributed to 

Kaminsky et al. (1998). Macroeconomic series that behave abnormally during periods 

prior to a crisis are selected and a warning system based on signals issued by those 

variables is produced, normally with a threshold level beyond which a signal would 

be generated. Then they assess the individual and combined ability of those variables 

to predict crises. Kaminsky et al. (1998) find that the variables that have most 

explanatory power based on the noise-to-signal ratio are the deviation of real 

exchange rates from a deterministic trend, the occurrence of a banking crisis, the 

export growth rate, the stock price index growth rate, M2/reserves growth rate, output 

growth, excess M1 balances, growth of international reserves, M2 multiplier growth, 

and the growth rate of the domestic credit to GDP ratio. Berg and Pattillo (1999), by 

studying five European and eight emerging market economies from April 1970 to 

April 1995 under the signal approach, find that the crisis probabilities generated by 

this model for the period between May 1995 and December 1996 are statistically 

significant predictors of actual crisis occurrence over the following 24 months. They 

discover that the probability of a currency crisis increases when domestic credit 
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growth is high, the real exchange rate is overvalued relative to trend, and the ratio of 

M2 to reserves is high. Using variants of the signals approach, Kaminsky (1998), 

Kaminsky and Reinhart (1999), and Goldstein et al. (2000) claim some success in 

predicting the Asian crisis. 

 

A third class of models set up a crisis index and explain the currency crisis based on 

traditional linear or non-linear regression approach (for example, Tornell, 1999; IMF, 

World Economic Outlook, 1998; Radelet and Sachs, 1998; Corsetti, Pesenti and 

Roubini, 1999). Moreno (1995) builds a linear probability model for eight Asian 

countries based on monthly data from 1980 to 1994. He finds that depreciation is 

positively associated with larger budget deficits and higher growth in domestic credit.  

Sachs, Tornell and Velasco's (1996) use cross-country regressions to explain the 

Tequila (Mexican) crisis of 1995. Using a crisis index defined as the weighted sum of 

the percentage decrease in foreign reserves and the percentage depreciation of the 

peso, they conclude that countries have more severe attacks when they have low 

foreign reserves, their banking systems are weak and their currencies overvalued. 

Tornell’s (1999), using a linear model in studying the Tequila and Asian crises suggest 

that the crises did not spread in a purely random way. Rather, there was a set of 

fundamentals help to explain cross-country variation of severity of the crises, which 

includes the strength of the banking system, the real appreciation and the international 

liquidity of the country. He also finds that the same model that explains the spread of 

the crisis in Latin American in 1995 also explains the cross-country variation in the 
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1997 crisis. Krkoska (2000) estimates a restricted VAR on quarterly data from 1994 to 

1999 to analyze the vulnerability in transition countries. Results of the VAR reveal 

that overvaluation, a slowdown in the EU, as well as the gap between the current 

account and FDI, are the significant predictors of vulnerability in transition countries. 

More recently, Markov Switching approach has been adopted to explain the currency 

crisis in different regimes. Abdul Abiad (2003) uses a time-varying transition 

probability Markov-switching model on monthly data for five Asian crisis economies 

from January 1972 to December 1999. He initially explores 22 indicators of 

macroeconomic imbalances, capital flow and financial fragility. The indicators that 

can explain the currency crisis for different countries are slightly different. 

Furthermore, he suggests that panel data regression models with parameter equality 

across countries may lead to incorrect estimates and poor predictive performance.  

 

These approaches have limitations. For example, the signal approach requires the 

ex-ante definition of a threshold and the transformation of the variables into binary 

variables, with a significant loss of information; the Logit/Probit approach requires 

the definition of a crisis dummy, with potential misclassifications (Brunetti, Mariano, 

Scotti and Tan, 2007).  

 

In summary, empirical studies suggest that deteriorating fundamentals increase the 

probability of a crisis. However, the exact timing of a crisis has not been predicted 

with high precision. Speculators will observe that weak fundamentals drive a currency 
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to a vulnerable zone to be attacked. However, the decision to attack is determined by 

the probability that speculators will gain profit by attacking the currency.  
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3.4 Exchange Rate Market Pressure (MP) and explanatory 

variable 

 

Exchange market pressure has been variously defined in the literature, but the most 

commonly used definition sees MP as an excess money phenomenon driven by 

abnormally large excess domestic currency demand or supply, which forces the 

monetary authorities to take measures to stem disruptive appreciation or depreciation 

of the currency. Defined in this way, MP reflects monetary disequilibrium that drives 

the demand for a safe-haven currency, and may be exacerbated by foreign exchange 

market intervention. Following the pioneering study of Girton and Ruper (1977), the 

measure of speculative market pressure on the exchange rate, MP, is measured as a 

weighted average of the percentage changes of exchange rate and the percentage 

change (loss) in international reserve, where the weights are equal to the inverse of the 

(sample period) standard deviation or variance33. Such design is used to capture the 

monetary authorities’ interventions in attempting to stabilize the exchange rate. It is 

often argued that interest rate changes should be included in the weighted average (see, 

e.g., Eichengreen et al., 1996; Kaminsky & Reinhart, 2000), but these are frequently 

omitted since data on interest rates for developing economies are not complete34. 

Some other studies exclude interest rates as they argue that the increase in interest 

rates in the presence of speculative pressure is highly correlated with the 

                                                        
33 In Girton and Ruper (1977) the weights were set at one, given the theoretical underpinnings of 
their work.  
34 In fact, these limitations on the measurement of MP have been faced by many researches (e.g. 
International Money Fund, 1998; Glick and Rose, 1998; and Tornell, 1999). 
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non-sterilized foreign exchange invention leading to a fall in the reserve. We include 

interest rate changes in the measure of MP.  

 

MP is generally a good index of currency crisis as it reflects different manifestations 

of speculative attacks, be they successful or otherwise. The MP which consists of a 

weighted average of nominal exchange rate, reserves and interest rate changes usually 

implies a sample-dependent crisis threshold level which is set (arbitrarily), sometimes, 

to ensure a certain percentage of crisis in the sample (e.g., Caramazza et al, 2000). 

However, there are drawbacks in this method of identifying crisis: in large samples, a 

high volatility regime will tend to dominate the whole sample, and the fixed threshold 

will also fail to identify a crisis that happened in a low volatility regime. Therefore, a 

fixed threshold tends to ignore the shift in exchange rate regime. To avoid mistakenly 

identifying the effect of high inflation for speculative pressure, a separate definition of 

crisis is sometimes used for high inflation countries35. 

 

The (weighted average) exchange market pressure index may also be defined by 

removing the restriction of a fixed variance for the constituents of MP, thus the 

weights are the inverse of the conditional variances of the constituents. By allowing 

the conditional variance of the MP be time-varying, MP index will have higher 

volatility with this volatility being generated by market uncertainty or shocks36. The 

                                                        
35 Kaminsky et al (1998) uses a different index for subsamples when inflation in the last 6 months 
exceeded 150%; Corsetti et al (1998) omits the changes in the depreciation component of the crisis 
index when the rate of depreciation is less than the previous three-year average.  
36 By using fixed weights (i.e., a fixed sample period specific variance) shocks and market 
uncertainty have the same influence. 
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weights (inverse of the conditional variance) may be set to be proportionate or 

specific to each constituent37. The one period ahead forecast variance (conditional 

variance) may be captured by the changes in nominal exchange rate conditioned on 

the macroeconomic variables that have the most impact on MP. Conditional variances 

are estimated using a GARCH (Generalized Autoregressive Conditional 

Heteroscedasticity) model. However, we find the use of GARCH structures makes it 

even harder to use any estimated Markov regime-switching model for “prediction” 

purposes. Thus in this study we use the constant weights based on the sample period 

data instead of using the time varying weights.  

 

The macroeconomic variables we employed to explain the MP include (1) the ratio of 

international reserves to broad money, RM2; (2) the real exchange rate, RER; (3) the 

growth of real domestic credit, GDC; and (4) exchange risk premium, Risk. All these 

variables are familiar from the literature and will require no further analysis or 

rationalizations. Therefore, we provide just a brief description of these variables.  

 

The ratio of international reserves to broad money, RM2, is calculated as foreign 

reserves (IFS38 line 1l.d) converted into domestic currency using end of period 

exchange rate (IFS line AE) divided by broad money (IFS line 34 plus 35). RM2 

serves as a proxy for the government’s contingent liabilities (Sache et al., 1996). 

                                                        
37 For example, Eichengreen et al (1995) use equal conditional variance weights and Lumdaine 
and Prasad (2003) use proportionate weights of the conditional variance of output growth 
fluctuations.  
38 IFS stands for International Money Fund’s International Financial Statistics.  
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Tornell (1999) argues that if a government is not willing to let the exchange rate to 

depreciate, it must be prepared to cover all the liabilities of the banking system with 

reserves. During a crisis banks are likely to experience runs. If the central bank does 

not act as a lender of last resort, generalized bankruptcies are likely to follow. Since, 

in most circumstances, authorities will not find it optimal to allow the economy to 

experience generalized bankruptcies, the central bank will have to be prepared to 

exchange the amount withdrawn by depositors for foreign exchange. Thus, it is M2, 

and not simply the monetary base, that must be the relevant proxy of the central 

bank's contingent liabilities. Accordingly, the RM2 represents financial fragility due 

to reserves inadequacy. Esquivel and Iarrain (1998) argue that this measure of reserve 

availability reflects better the vulnerability of the central bank to possible runs against 

currency. An expected decline in RM2, i.e., rising reserves inadequacy tends to 

increase MP since the market foresees that the stock of reserves will be inadequate to 

defend the exchange rate in the event of a speculative attack. We expect to find a 

negative relation between RM2 and MP. However, it may also be possible that a rising 

RM2 could enhance the possibility of a crisis, since it may highlight the potential 

danger of reversal of capital inflows. The latter may have contributed to increasing 

M2 in the first instance. 

 

The real exchange rate, RER, is measured in two steps (following Ford, et al, 2007). 

First, we take the natural logarithms of the average exchange rate of domestic 

currency against US dollars (IFS line RF) multiplied by US consumer price index 
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(IFS line 64) and divided by domestic consumer price index (IFS line 64). Second, we 

subtract the first figure from their past 36 months’ average. This two-step procedure is 

a measure of the deviation of real exchange rate from its three years’ previous average. 

One benefit of the two step procedure of measuring RER is that the resultant data will 

be more likely to be stationary than the unadjusted data. A positive (negative) real 

exchange rate indicates a real depreciation (appreciation) of domestic currency. The 

real exchange rate effect is ambiguous. An expected increase in the real exchange rate, 

i.e., a depreciating real exchange rate will tend to exert upward pressure on MP (e.g. 

see, Kaminsky and Reinhart, 1999; Corsetti et al, 1998; Sachs et al, 1996) if the 

increase is driven by rising pressure on the nominal exchange rate in a fixed or tightly 

managed exchange rate regime, by reducing the price competitiveness of exports, 

culminating in large current account deficits and eventually declining economic 

growth. This is highly probable if the market perceives rising macroeconomic 

imbalances such as credit growth and rising stock of non-performing loans, current 

account imbalances and declining reserves sustained over a period of time. Otherwise, 

a rising real exchange rate can be beneficial for an economy since it effectively 

improves the trade competitiveness of domestic exports. This can happen in normally 

high inflation economies where stabilization policies are effective. Another reasons 

for the exchange rate impact to be ambiguous is that the exchange rate have a 

tendency towards overshooting if the response of output to a currency depreciation is 

small following an increase in the money supply, under price rigidities (Obstfeld and 

Rogoff, 1995).  
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The growth of real domestic credit, GDC, is calculated as a first difference of the 

natural logarithm of total domestic credit (IFS line 32) adjusted for inflation using 

consumer price index (IFS line 64). It is widely accepted that linkage between 

domestic credit and speculative attacks on the currency exist. Excessive growth of 

domestic credit may serve as an indicator of the fragility of the banking system. 

Although it is not an ideal indicator for financial fragility, this variable is available on 

a timely basis and is comparable across countries39. Domestic Credit usually rises in 

the early phase of the banking crisis. It may be that as the crisis unfolds, the central 

bank may be injecting money to the banks to improve their financial situation. A 

larger amount of credit increases the chances of bad loans and bank failures (see, 

Mete Feridun, 2006). The growth of real domestic credit will reflect budgetary policy 

and the potential for inflation. Higher credit implies a larger amount of money supply. 

Currency crises have been linked to rapid growth in credit and the monetary 

aggregates. As the growth rate of domestic credit captures the effects of monetary 

policies, it is usually expected to have a positive effect on currency market pressure. A 

number of empirical studies in the literature have found that domestic credit is one of 

the significant indicators of currency crises (for example, Moreno, 1995; Frankel and 

Rose, 1996; Kaminsky et al., 1997; Berg and Patillo, 1999; Glick and Moreno, 1999; 

Geochoco-Bautista, 2000; Krkoska, 2000 and Krznar, 2004). 

                                                        
39 According to Aaron Tornell, 1999, ideally, one should measure the weakness of the banking 
system with the "true" share of bad loans. Unfortunately, this information is available neither on a 
timely basis nor in data sources that ensure cross-country comparability. First it may not 
comparable because the accounting rule they adopted, second is the problem arised from 
misreporting.  
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The risk premium, Risk, is calculated, following Frankel and MacArthur (1988), as 

the forward discount rate less the expected (proxied by the one period ahead; as per 

rational expectation) rate of depreciation of the domestic currency. The foreign 

exchange risk premium represents compensation required by risk-averse investors for 

holding an asset whose only risk depends on being issued in a particular currency. A 

decrease in the risk premium would produce an increase in the demand for 

home-currency denominated assets, thereby, easing or overturning the depreciating 

pressure on the domestic currency, therefore, lowering the exchange market pressure.  

 

Data used in this study are monthly data over the period January 1980 to May 2008, 

and data source is the International Monetary Fund’s International Financial 

Statistics (IFS). Using data from such source makes the data reliable and comparable 

across countries.  

 

We plot the Market pressure and its components for the six countries in Figures 3.A.1 

to 3.A.6, Appendix 3.A. Descriptive statistics and cross correlations between 

dependent and independent variables are reported in Tables 3.A.1 to 3.A.12. 

Augmented Dickey-Fuller(ADF) unit root test (1997) and Kwiatkowski Phillips 

Schmidt Shin test (KPSS) (1992) test40 are employed to examine the rank of these 

variables, which confirms that all the variables are stationary, expect that the GDC 

                                                        
40 The null hypothesis for ADF test is that the series has a unit root; while the null hypothesis for 
KPSS is that the series is stationary. Intercept but no trend was included in the test equations. 
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and RM2 for Thailand and Malaysia, RM2 for Korea and Philippines are I(1). ADF 

and KPSS unit root test statistics and critical values are given in the bottom of the 

tables. The equation has potential spurious relations since the dependent variable and 

the independent variables seem to contain similar information. However, the zero 

order correlation matrix as well as the cross correlation with 36 leads and lags41 show 

small correlation coefficients between MP and each of the independent variables. 

Thus the concerns are not substantial and as a matter of fact, similar formulation has 

been used by International Monetary Fund (1998) and other literature (see for e.g. 

Tornell, 1999; Ford et al, 2007 and International Monetary Fund, 1998). Therefore, 

we can confirm that we can use the model for our analyses. 

 

 

                                                        
41 The resultant extensive tables for the cross correlations are available upon request.  
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3.5 Methodology 

 

Markov Switching models are chosen in this study to explain the exchange market 

pressure because it has several theoretical advantages. First, in contrast to OLS and 

Probit models, Markov switching allows for nonlinear behavior, that is, behaviour that 

varies depending on the state, thus do a better job in describing the speculative attack 

than the simple linear models (Jeanne and Masson, 2000; Piard, 1997 and Psaradakis 

et al. 1997). Second, Markov Switching can provide an explicit measure of the 

probability of a crisis as Probit/Logit models do. Meanwhile, it permits full use of the 

continuous dependent variable while endogenously determining the probability of a 

switching regime. This could overcome the problem of information loss and sample 

bias when using Probit/Logit modelling methods, which involves creation of the a 

discrete dependent variable and arbitrary cutoff in the underlying Market Pressure in 

defining a period of crisis according to an ex-ante threshold value42. 

 

Since the inception of the state-dependent Markov-switching model, which was 

developed by Hamilton (1989) to model time series with changes in regime, various 

extensions and empirical tests have been carried out. One development is to combine 

Markov-Switching with the ARCH (termed as SWARCH model) and GARCH 

                                                        
42  Flood and Marion (1998) argue that many models of speculative attack indicate that 
unanticipated devaluations produce the largest jump in the MP. The size of jumps in the MP at the 
time of attack is reduced by the extent to which the attack is anticipated. Thus, selection of only 
extreme values of the MP (as inconstruction of the dependent variable for probit models) may 
reduce the share of predictable crises in the sample and reduce the number of crises that are likely 
to be correlated with fundamental economic determinant. 



 289

models, as introduced by Hamilton and Susmel (1994), Cai (1994) and Gray (1996). 

For all those models, the conditional volatility process is allowed to switch 

stochastically between a finite numbers of regimes. The timing of regime switching is 

usually assumed to follow a first-order Markov process. The transition probability of 

the Markov process determines the probability of switching to another regime, and 

thus the average length of time before a specific other regime is reached. Transition 

probabilities may be constant or a time-varying function of exogenous variables, 

depending on which is appropriate to describe the data. Hamilton and Susmel (1994) 

and Cai (1994) consider regime switching models with ARCH innovations. They 

argued that it cannot be extended into a switching GARCH model since the model is 

path-dependent and thus difficult to estimate. Gray (1996) introduced 

path-independent switching GARCH, which is more general regime switching model 

that allows for GARCH dynamics. In our study, we extend Gray’s (1996) Markov 

Switching GARCH model by incorporating an asymmetric component in to the model. 

One argument about using GARCH type model is that such models can only have 

relevance, and indeed be found to be so, when weekly or daily data are being used. 

However, weekly and daily data are not available for most explanatory variables of 

the exchange market pressure. Although the argument in the literature seems to be 

valid, in the empirical work, better results were obtained by using GARCH, than 

assuming constant variances for market pressure across and within the two regimes 

(see, e.g., Ford, et al., 2007). Baillie and Bollerslev (1989) also shown that the 

GARCH type models is able to capture the volatility dynamics of exchange rates at 
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monthly frequencies. Even if the GARCH effect dissipates as the length of the 

sampling interval increases, there is still heteroscedasticity and volatility clustering at 

monthly frequencies.  

 

Recent studies provide strong evidence that real exchange rates are characterisd by 

mean reverting process (Taylor, 2000). It has been shown that adjustment to 

equilibrium value is related not only to the size but also to the sign of shocks 

(undervaluation and overvaluation, the so called asymmetric effect). Within the 

GARCH type models, Threshold GARCH (TGARCH) and Exponential GARCH 

(EGARCH) models are normally employed to incorporate the asymmetric effects. 

Although it is argued in some literature that EGARCH model is superior in modelling 

asymmetric effect by allowing the separation of good news effects from bad news 

effects, EGARCH model is too sophisticated that its performance is highly subject to 

data frequency. Given only monthly data are the availability for the fundamental 

variables to set up the model, the TGARCH model is chosen in this study rather than 

the EGARCH model.  

 

Now we turn to the methodology we employed in this study. First, let’s consider the 

regression model for currency crisis in a single economic regime. One observation 

that emerges from survey of the currency models is that MP rises to the crisis 

threshold level when macroeconomic fundamentals deteriorate. The market may 

perceive that the fundamentals are becoming increasingly inconsistent with the 
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(implicit) peg, therefore, attack on the currency is launched, which induces reserves 

losses and consequently, a high MP. Because of market inefficiency, the market reacts 

to the changes in the state of the fundamentals with a lag. However, it is reasonable to 

expect that the current level of MP is determined by the “expected” values of the 

macroeconomic fundamentals held in the previous period, of the state of the 

fundamentals in the next period. The growing market integration makes this even 

more likely.  

 

There are several ways to model the impact of market expectations of the 

fundamentals43. We adopt the specification of Duesenberry (1958)44. The mechanism 

of Duesenberry’s specification is based on the premise that the market forms an 

expectation at time t-1 of what the macroeconomic variables will be at time t, by 

reference to their experience of the past realized values of those variables and their 

recent change. In its simplest form, the expected value of x can be written as  

1 1 1 2 1 1( )t t t t t t tE x x x x x x                                   (3.27) 

Alternatively, the expected value of x may be determined by its recent past value and 

its change at the end of the current period. Therefore, the expected value of x is as 

follows: 

1 1 1( )t t t t t t tE x x x x x x                                    (3.28) 

 

                                                        
43 For example, the adaptive expectations mechanism that was first popularized by Cagan (1956), 
the polynomial distributed lags (PDL) proposed by Almon (1965) and the specification proposed 
by Duesenberry (1958).  
44  Duesenberry’s formulation gives the best statistical results overall among the ones we 
experimented with.  
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Following the Duesenberry’s type of adaptive expectations, the dynamic equation of 

MP can be written as 

0 1 1 2 1 3 1 4 1
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            (3.29) 

where 12 2 2t t tDRM RM RM   ,  1t t tDRER RER RER    

       1t t tDGDC GDC GDC   ,  and 1t t tDRisk Risk Risk    

Equation (3.29) is the core/base equation for market pressure. We can write the 

equation using matrix 

t t ty x          ),0(...~ 2 Ndiit                               (3.30) 

Where tx  is a 1 k  vector of exogenous variables (where 

1 1 1 1( 2 , , , , 2 , , , )t t t t t t t t tx RM RER GDC Risk DRM DRER DGDC DRisk     and t ty MP . 

To estimate the parameters of the model, the density and log likelihood functions are  
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                               (3.32) 

 

The log likelihood function can be maximised with respect to   and 2 . 1t   

denotes the vector of observations obtained through date t-1 and   is the vector of 

unknown parameter ( 2( , )    ). 

 

Now we consider modelling the volatility. Following the standard assumption about 

the serial dependence of t  (Hamilton, 1994), the conditional variance can be 
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modelled as  

t t th                                                (3.33)                

Where t  is an i.i.d sequence with zero mean and unit variance. Hamilton (1994) 

maintains that ‘even if those assumptions are invalid, the ARCH specification can still 

offer a reasonable result on which to base a linear forecast of the squared value of 

t ’.  

 

The behaviour of th  in equation (3.33) determines the presence and nature of any 

conditional heteroscedasticity. The specifications that we use in this study are:  

1. No ARCH effects (constant volatility) 

2 constantth                                            (3.34) 

2. TGARCH(1,1)45 (Glosten, Jaganathan and Runkle, 1993) 

2 2
0 1 1 2 1 3 1( 0)t t t t th V V V h V                                   (3.35) 

In this model, positive shock ( 0)t  and negative shock ( 0)t  have different 

impact on the conditional variance. Positive shock has an impact of 1V , and negative 

shock has an impact of 1 3V V . Should 3 0V  , asymmetric information shock exists. 

The covariance stationary condition is satisfied when 1 2 1V V   or 1 2 3 1V V V   .  

 

Second, we relax the assumption of a single economic regime and let the regression 

coefficients differ in each regime to account for the possibility. Thus we have the 

                                                        
45 Several GARCH-type specifications, including the general GARCH, TGARCH, and Diagonal 
GARCH, in both single regime models and 2 regimes Markov Switching models, were experimented 
with in this study. Among them, TGARCH models dominate the others, according to the LR test 
statistics and significance of the coefficients in the TGARCH specification. 
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regime switching model to account for the possibility that the economic mechanism 

that generates the dependent variables may undergo a finite number of changes over 

the sample period. In the Markov switching model, although the states are not 

observable, their probability of occurrence can be estimated, conditional on the given 

information set. In our study, we assume that the model has two states, tS  (in our 

study, the two states are a stable state and a volatile state). In regime 1, we have 

0tS  , and in regime 2, we have 1tS  . Regime switching is assumed to be directed 

by a first-order Markov process with transition probabilities given by 

11 21

12 22

1
Pr

1

P P P Q

P P P Q

   
      

                               (3.36) 

Where  

 1Pr 0 | 0t tS S P    

 1Pr 1| 0 1t tS S P     

 1Pr 1| 1t tS S Q    

 1Pr 0 | 1 1t tS S Q     

tS  is the latent Markov chain of order one. P  and Q  are transitional probabilities, 

which determines the probability of the system remaining in the same state. We note 

the conditional probability that it is in state i  at time t, given the latest observations 

on the variables in the system, as i , where 1Pr{ | }i t tS i    . 1t  denotes the 

information on the system at the end of period t-1. The regime probability is thus the 

ex-ante probability of a particular state at time t, conditional on the information 

available at time t-1 and is a key input for forecasting.  
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A model with a structural break in the parameter (Kim and Nelson, 1999) can be 

formulated as 

t t ty x       ),0(...~ 2 Ndiit                                   (3.37) 

0 1
(1 ) ( )

tS S t S tS S                                               (3.38) 

0 1
(1 ) ( )

tS S t S th h S h S                                              (3.39) 

0tS   or 1tS                                                   (3.40) 

0S  represent parameters in state 0tS  , and 
1S  represent the parameters when 

1tS  , same for 
0S  and 

1S . 

 

If tS  is observable and known a priori, equation (3.37) can be estimated as a model 

with the dummy variable, tS . However, if tS  is unobserved at time t and is not 

known a priori, Markov Switching model offers a way to estimate it (Kim and Nelson, 

1999). First, the joint density of ty  and the unobserved tS  variable is a product of 

the conditional and marginal densities as follows: 

1 1 1( , | ) ( | , ) ( | )t t t t t t t tf y S f y S f S                            (3.41) 

Second, by summing over all possible values of tS , the marginal density of ty  is:  
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       (3.42) 

Where  

     

     
   
   

1 1 1 1
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and 

     
   

   

1 1 1 1

1 1 1

1 1 1 1

Pr 1| Pr 1| 0 Pr 0 |

Pr 1| 1 Pr 1|

(1 ) Pr 0 | (1 Pr 0 |

t t t t t t

t t t t

t t t t

S S S S

S S S

P S Q S

 



 

   

  

   

     

    

       

 (3.44) 

The log likelihood function (L) is given by  
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   (3.45) 

 

At the end of time t, when ty  is observed, it is possible to make infer which regime 

was the more likely to have been responsible for producing the observation 

ty (Hamlition, 1994). The filtered probability of regime 0tS   is given by (Kim and 

Nelson, 1999; Hamilton, 1994) 

   ( | , ) Pr 0 |
Pr 0 |

( | )
t t t t t

t t
t t

f y S S
S

f y

 



 

                        (3.46) 

Whereas the filtered probability of the state 1tS   is given by  

   Pr 1| 1 Pr 0 |t t t tS S                                      (3.47) 

The unconditional or steady state probability of tS  is given by  

0

1

1

2

1

2

Q

P Q

P

P Q






 
          
   

                                     (3.48) 

 

In this instance, we assume that the transitional probability is constant. The 

transitional probability can also be time varying, which was developed by Biebold et 

al. (1994). Actually, we estimated the models with time varying transitional 
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probabilities for currency crisis following Peria (2002) and Brunetti et. al (2007)46. 

The time varying transitional probabilities were determined by the variables that are 

assumed to affect market pressure. However, the estimates produced were chaotic. 

There were no clear indications of different states. Moreover, models with constant 

transitional probability were preferred than the time varying counterparts as indicated 

by various tests. Therefore, this study abandoned the use of time varying transitional 

probability and focus on the models with constant transitional probability.  

 

In practice, the log likelihood function is maximised by different non-linear 

algorithms 47 . Engle and Kroner (1995) suggest that BHHH is particularly 

advantageous for GARCH(1,1) models, by comparing the biasedness, the size and 

power of tests between the BHHH and BFGS. In this study, we estimated the models 

using both of the above two algorithms, we find that BHHH do not show more 

advantage than BFGS methods for the Markov Switching model with TGARCH(1,1) 

set up and BFGS methods helps to achieve convergence for the Markov Switching 

models. 

 

                                                        
46 In Peria (2002), instead of modelling MP, the percentage change in the exchange rate itself were 
modeled by a 3-variable VAR regime switching model. The time varying transitional probabilities 
are estimated as logistic functions of a conditioning matrix 1tx  , as shown below 

0

0

1

1

exp( )

1 exp( )
t S

t S

x
P

x












 and   1

1

1

1

exp( )

1 exp( )
t S

t S

x
Q

x












 

47 Hamilton (1994) shows that the mixture density in Equation (3.42) has the property that a 
global maximum of the log likelihood in Equation (3.45) does not exist. A singularity may arise, 
but normally it does not cause a serious problem, since numerical maximisation procedures 
typically converge to a reasonable local maximum rather than a singularity. If a numerical 
maximisation algorithm becomes stuck at a singular solution, we can simply ignore it and try 
again with different starting values.   
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Maximisation of the log likelihood Equation (3.45) provides a time-path of the 

conditional regime probability. By maximising the log likelihood equation, we 

estimate the parameters including the transitional probabilities of Markov Switching 

Model. Through the estimates of the transitional probabilities, we can estimate several 

important characteristics of each regime: (a) their unconditional probabilities, or 

“limit”, which is given by   ; (b) forecasts of the probability that a given regime 

will follow a currency regime in the next period, which is given by Equations (3.42) 

and (3.43); (c) when the system is in a given regime, the expected duration of each 

regime, which is given by 121 P  and 211 P . 48  In addition, which conditional 

probability relates to a given state of the economy at a particular period can be 

conjectured, by using indicators of when the market pressure is “high” or “low”, as 

depictions of “volatile” regime/state, and when market pressure is in the middle range, 

as depiction of “stable” regime/state. Which unconditional probability applies to 

which type of regime can then be assessed by a probability forecasting statistics of 

those indicator, for example, quadratic probability score (QPS) used by Diebold and 

Rudebusch (1989). Additional statistics, such as the log probability score (LPS) test 

and the global squared bias (GSB) test are also employed in our study to access the 

forecast calibration of the probabilities49, so to determine the state of the exchange 

market pressure at a given time.  

 

                                                        
48 “Limit” is the description given in the mathematical literature on Markov chains (see, for 
example, Kemeny and Snell (1976)). Full detail on the derivations of (a), (c) can be found in that 
text: the relevant formulae are provided in Goldfeld and Quandt (1973). (b) is covered in Hamilton 
(1994), as is (a), amongst other sources.     
49 Such tests were also used in Ford, et al (2009) in a similar manner.  
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The determination of how many regimes (i.e. one regime versus two regimes) are 

there is also accessed in our study. This is not straightforward in these models. 

Applying the standard LR statistic to test one versus two regimes is problematic. As 

argued by Cho and White (2007), ‘this lead to the geometric growth of the population 

variance of the log-likelihood first derivative under the null, ruling out application of 

standard central limit results’. Moreover, the power of such a test turns out to be 

weaker than in the standard cases (e.g., Hansen, 1992, obtained a lower bound for the 

limiting distribution of a standardized LR statistic). Cho and White (2007) attempt to 

surmount these problems by formulating a Quasi-likelihood Ratio (QLR) test, which 

is sensitive to the mixture aspect of the regime–switching process and thus a test with 

appealing power, however, they can provide no general distributions by which we can 

evaluate QLR. As a result, most studies of regime-switching models rely upon the 

conventional LR test for determine the number of regimes (see, e.g. Peria, 2002). 

Lindsay (1995) gave an alternative test for whether more than one regime exists. He 

argued that such an assessment can be determined by an evaluation of the normality 

of residuals from one regime model. If the residuals from one regime model are not 

normally distributed, the assumption of only one regime is distorted by the existence 

of other regimes which those residuals cannot accommodate. Therefore, a Jaque-Bera 

test (JB) and Lindsay (1995) ( )C   score distortion test can be used to test normality. 

Bootstrapping methods50 were also employed as a supplement for such purpose. The 

                                                        
50 Bootstrapping is the practice of estimating properties of an estimator (such as its variance) by 
measuring those properties when sampling from an approximating distribution. In the case where 
a set of observations can be assumed to be from an independent and identically distributed 
population, this can be implemented by constructing a number of resamples of the observed 
dataset (and of equal size to the observed dataset), each of which is obtained by random sampling 
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bootstrapping methods were used to establish that the residuals from the 1 Regime 

model estimates are random sample from a given population. Consequently, we assess 

the JB statistics for 500 replications of the distribution of the residuals. We do this to 

see if the JB statistic obtained can be acceptable at the 95% confidence level. Also, we 

use 100 replications to determine the number of modes in the distribution to see if the 

distribution to the residuals has more than 1 mode. If it should have more than 1 mode 

then the residuals cannot be normally distributed and there is an a priori presumption 

that more than 1 regime lies behind the data on the MP variable. Another alternative, 

which can be used to detect not only whether more than one regime exists, but also 

the number of regimes, is the Neyman’s ( )C   test. The test was designed to deal 

with hypothesis testing of a parameter of primary interest in the presence of nuisance 

parameters. Different from the version of Lindsay (1995) ( )C   score distortion test, 

which is concerned with a measure of whether the residuals of the one regime model 

differ from normality thus we can use it to estimate only for the assumption that there 

is a single regime within the Markov switching model, this version of ( )C   test is 

calculated by means of regressions to circumvent the fact that the second derivatives 

of the log likelihood with respect to the parameters will be zero, so making it 

impossible to use the Information Equality matrix to arrive at ( )C  . As this version 

is designed to deal with hypothesis testing of a parameter of primary interest in the 

presence of nuisance parameters, therefore can be used as a supplement to the 

problematic standard LR test to evaluate the number of regimes. There are two ways 

                                                                                                                                                               
with replacement from the original dataset. 
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of calculating Neyman’s ( )C  statistics, given by Davidson and Mackinnon (1993) 

and Breusch and Pagan (1980) respectively. We use the latter in this study. The matrix 

algebra (formula) and regression method of the ( )C   test are given in Appendix 4.B. 

The critical values for the ( )C   test can be obtained from a 2
  distribution, with 

  being the number of restrictions, when one regime is excluded51.  

 

To sum up, we have defined the conditional mean and the conditional variance for the 

single regime and Markov-switching models, for our estimation of exchange Market 

Pressure. The conditional mean for the single regime model is given by 

0 1 1 2 1 3 1 4 1
( ) ( ) ( ) ( ) ( ) ( )

5 6 7 8
( ) ( ) ( ) ( ) ( ) ( )

2

2

t t t t t
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t t t t t
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DRM DRER DGDC DRisk

    

    

   
     

     

    

    
           (3.29) 

The conditional variance is as formulated in Equations (3.34) and (3.35). The 

conditional mean for Markov-Switching two regime model is defined as 

0 1 0 1

0 1 0 1 0 1

0 0 1 1

2 2 3 3 , , ,

( (1 ) ) ( (1 ) ) 2

( (1 ) ) ( (1 ) ) ( (1 ) )

t S t S t S t S t t

S t S t t S t S t t S t t S t t

MP S S S S RM

S S RER S S GDC S S

   

     

     

        
(3.49) 

Where  

         
0 1 0 1, , , ,( (1 ) ) ( (1 ) )S t t S t t S t t S t tS S h S h S                           (3.50) 

The conditional variance for Markov-switching is given by: 

(1) No ARCH effects (constant variance) 

0 1
[ (1 ) )] constantS t t S t th S h S                                  (3.51) 

(2) Threshold or asymmetric GARCH(1,1) effects 

                                                        
51 An excellent exposition of the statistic and the related Rao score statistic (RS) can be found in 
Bera and Bilias (2001). They also provide an alternative regression method to that of Breusch and 
Pagan (2001). Also see Davidson and MacKinnon (1991) on the application of the regression 
method. 
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  (3.52) 

 

One thing need to be mentioned is that the Markov Switching models we proposed 

above and Logit approaches (binary and multinomial Logit models) that we are going 

to discuss in section 3.7 which redefine MP in a “threshold” manner all use the market 

pressure as an indication of potential currency crisis. Apart from this, there are other 

ways to model currency crisis. One possible method is to model the percentage 

change in the exchange rate itself rather than MP, as in Peria (2002)’s study. Peria 

used a 3-variables VAR regime-switching model, which is based on a 3 equation 

VAR for the three constituents of MP (exchange rate change, change in reserves and 

interest rate change). It is also possible, of course, just to model the exchange rate 

depreciation/appreciation as function of the fundamental variables.
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3.6 Empirical analysis 

 

In this section, we present the results for the empirical estimations for six Asian 

countries, namely, Thailand, Malaysia, Korea, Indonesia, Singapore and Philippines, 

for the period from January 1980 to February 2008. For each country, the single 

regime constant (OLS) and TGARCH models were first estimated to evaluate the 

impact of the fundamental explanatory variables to the currency market pressure. 

Markov Switching models with constant variance and with TGARCH specification 

are then estimated. We find that when we model the exchange market pressure with 

two distinct regimes (stable and volatile), different behaviours for each regime 

emerge.  

 

 

3.6.1 Empirical analysis for Korea 

 

The constant (OLS) and TGARCH estimates for MP ignoring the possibility that 

alternative regimes exist, rather than the estimates from Markov-switching model 

under the assumption that there is one regime, is given in Table 3.1. For the constant 

model, the coefficients on RM2 and Risk are statistically not significantly different 

from zero at 5% significance level. For the TGARCH estimates, coefficients on RM2, 

GDC and DGDC are insignificant. All other fundamentals and risk variable have 

substantial impact on the exchange market pressure. However, the GDC, DGDC and 
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DRisk variables present incorrect expected sign. The Wald coefficient test is 

performed to test the joint restriction that the coefficients on the TGARCH conditional 

variances are jointly zero (i.e., 1 2 3 0V V V   ). The test statistics52 reject the null 

hypothesis at 5% significance level. The significance of coefficients in the conditional 

variances imply that variance of market pressure is time dependent and conditional on 

past information. The significance of 3V  imply that asymmetric effect exist in the 

conditional variances, with positive shocks have larger effect on the volatility of 

market pressure. The conditional variance process is stationary, as 1 2 3 1V V V    in 

the conditional variance structure. 

 

The graphs depicting the actual and fitted MP and the residuals from the fitted 

equations are portrayed on Figure 3.2, with constant model in Figure 3.2 (1) and 

TGARCH model in Figure 3.2(2). The estimated equation appears to track the 

movement market pressure well. This can also be proved by the estimation fitness, 

2R  (reported at the bottom in Table 3.1), which indicate the around 80% of the 

market pressure can be explained by the fundamental variables in both of the single 

regime equation specifications. Jaque-Bera tests are larger than the critical value 5.99 

at 5% significant level shows that the residuals from both estimations, which indicate 

the residuals are not normally distributed.  

 

The empirical estimation results from the two regimes Markov Switching models for 

                                                        
52 Wald test statistics (for all six countries in our study) are not reported in the table, but available upon 
request.  
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Table 3. 1 Estimation Results from Single Regime models for Korea 

 

 Korea 

 Constant Variance TGARCH 

 Coeff Std Error Signif Coeff Std Error Signif 

1  0.00237  0.00395 0.54970 0.00235 0.00238  0.32400  

2  0.02989  0.00628 0.00000 0.03480 0.00743  0.00000  

3   -0.20073  0.06182 0.00130 -0.00067 0.04832  0.98900  

4  -0.00390  0.01361 0.77470 0.05123 0.00640  0.00000  

5  -0.86115  0.07831 0.00000 -0.68450 0.06840  0.00000  

6  0.83101  0.03100 0.00000 0.73579 0.04110  0.00000  

7  -0.12518  0.04546 0.00620 -0.04542 0.03471  0.19070  

8  -0.06934  0.01908 0.00030 -0.06190 0.02311  0.00740  

0V     0.00000 0.00000  0.90350  

1V     0.14072 0.03889  0.00030  

3V     -0.14703 0.03928  0.00020  

2V     0.94910 0.01198  0.00000  

       
2R  0.79772    0.77924   
2R  0.79342    0.77177   

JB  3516.18    1048.80   

Log(L) 1022.86    1047.66   

LR 49.60       

 Note: The critical value for 2 (3) 7.81  ,  2 (2) 5.99   
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Figure 3. 2 Actual and fitted value of MP from single regime estimation: Korea 

 

(1) Constant (OLS) model 
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(2) TGARCH(1,1) model 
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Korea are reported in Table 3.2. Those for 1 regime are not reported here but available 

upon request. Panel A is for the results from the Regime-Switching model with 

constant variances. Our finding confirms that the fundamental and risk variables play 

significant roles in triggering currency crisis. Coefficients on RER and Risk are not 

significant in the volatile state53, but they are significant in the stable state. The 

coefficients on RM2 are not significant at 5% significance level in the stable state. All 

other variables have substantial on the market pressure in each state.  

 

Now we turn to examine the Markov Switching TGARCH model for Korea reported 

in Table 3.2 Panel B. In the mean structure, majority of fundamental and risk variables 

are significant in the volatile state and all the explanatory variables are significant at 

5% significant level in the stable state. Every variable has a statistically significant 

impact on market pressure in one regime or another.  

 

In the conditional variance structure for the Markov-switching TGARCH model, 

coefficient 1V  measures the persistence of market pressure shocks and 2V  measures 

the persistence of shocks on conditional variance. The coefficient 3V  measures the 

asymmetric effect of positive and negative market pressure shocks. We can observe 

that the in the volatile state, all the three coefficients in the conditional variance are 

significant at 5% level. For the stable state, only the coefficient on the past squared 

                                                        
53 The volatile and stable state can be readily identified in a 2 regime model, by drawing the 
probability of one regime against the MP series. However, statistical evidences for which regime 
represents which state (volatile or stable) is reported and discussed latter in this section. These 
methods to distinguish regimes of their states are particularly useful when there are more than two 
regimes, in which case the relationship between regimes and states are not that obvious. 
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residuals is significant. In both states, the 3V  coefficients are negative, which suggest 

that negative shocks have smaller effect. This means that the positive shocks, which 

increase currency market pressure, have larger impact on the market pressure 

volatility, though the impact is not significant in the stable state. In both state, we 

have 1 2 3 1V V V   , and 1 2 1V V  . Therefore, the TGARCH process is stationary54.   

 

As reported in Table 3.2, the transition probabilities of one regime switching to 

another, 12P  and 21P , are significant at 95% confidence level. Since 12 212 1P P   , 

we can conclude that the process is likely to be persist in its current state rather than 

switching to the other. The average persistence of each state is reported in the bottom 

of the table. We can observe that the average persistence of volatile state is much 

lower than the persistence of the stable state. Another feature is the average 

persistence for the volatile states reduces in the TGARCH model comparing to in the 

constant model. In contrast, the average persistence for the stable state increases from 

18.33 months under the constant model to 24.59 months under the TGARCH in the 

stable state. The unconditional probability of being in each regime (volatile or stable 

regime, represented by 
0S and

1S respectively), is reported in the bottom of Table 3.2 

as well. It is apparent that the unconditional probability of MP to be in the volatile 

state at a given time is much lower that the probability it is in the stable state.  

 

We comment now to the comparison of the parameter significance across the constant 

                                                        
54 It is also the case in the single-regime estimation. 
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variance (Panel A) and TGARCH Markov (Panel B) switching models. The likelihood 

ratio test is employed for this purpose. The likelihood ratio (LR) statistics are reported 

at the bottom of the table. The LR test follows a 2  distribution. Under the null 

hypothesis that the parameter for TGARCH ( 1V , 2V and 3V  are all zero in both state), 

we need to compare the LR Statistics to 2 (6) , with critical value of 12.59 at 5% 

significant level. Apparently, the LR statistics for Korea (39.75) is larger than the 

critical value, indicating the TGARCH effects are important in the Markov Switching 

model for Korea. Same conclusion can also be obtained from examining the 

significance of the TGARCH parameters in the variance, most of which are 

significant, especially in the volatile state. 

 

Figure 3.3 (1) plots the actual and the fitted value of MP and residuals from the 

Markov Switching model with constant variance; and Figure 3.3 (2) for the Markov 

Switching TGARCH model. At a glance, we can see that the fitted values track the 

actual MP very well, for both constant and TGARCH models. Particularly they can 

track the increases in market pressure in Nov 1997 to Jan 1998. However, both 

models do not perform as well for the strong reduction in market pressure (possible 

appreciation currency crisis), for example, in the early period of 1982. In general, we 

can conclude the fundamental variables do have power in explaining the movement of 

MP.  
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Table 3. 2 Parameter estimates and related statistics for Markov Regime Switching models: Korea 

 

 Panel A  Panel B 

 Constant Variance: Korea  Threshold GARCH: korea 

 Regime 1 (Volatile State) Regime 2 (Stable State)  Regime 1 (Volatile State) Regime 2 (Stable State) 

Variable Coeff Std Error Signif Coeff Std Error Signif  Coeff Std Error Signif Coeff Std Error Signif 
/12 21P P  0.41683  0.10947  0.00014 0.05454 0.01624 0.00078  0.68902 0.16386 0.00003 0.04067 0.01459  0.00531  

1  -0.08820  0.02648  0.00087 0.00028 0.00136 0.83869  -0.02380 0.02610 0.36179 -0.00363 0.00165  0.02753  

2  0.03658  0.02534  0.14887 0.02569 0.00316 0.00000  0.13634 0.02195 0.00000 0.02824 0.00249  0.00000  

3   -0.46334  0.12419  0.00019 -0.25477 0.02023 0.00000  -2.30885 0.14674 0.00000 -0.24412 0.01967  0.00000  

4  0.01961  0.05026  0.69644 0.03313 0.00792 0.00003  0.24378 0.02579 0.00000 0.02081 0.00719  0.00377  

5  -1.07692  0.35261  0.00226 -0.93009 0.02824 0.00000  -2.65854 0.34312 0.00000 -0.95275 0.03048  0.00000  

6  0.87408  0.08103  0.00000 0.66611 0.01762 0.00000  0.73812 0.42277 0.08083 0.64105 0.02353  0.00000  

7  0.29147  0.12656  0.02127 -0.21874 0.01582 0.00000  0.54503 0.06227 0.00000 -0.21735 0.01812  0.00000  

8  -0.15391  0.03909  0.00008 -0.10588 0.01216 0.00000  -0.30196 0.10444 0.00384 -0.12942 0.01473  0.00000  

0V  0.00064  0.00009  0.00000 0.00003 0.00000 0.00000  0.00000 0.00002 0.85296 0.00002 0.00000  0.00000  

1V         0.19484 0.02465 0.00000 0.46666 0.14613  0.00141  

2V         0.75572 0.10924 0.00000 0.00004 0.10832  0.99969  

3V         -0.19109 0.02584 0.00000 -0.19053 0.18026  0.29051  

              

  0.1157    0.8843    0.0557   0.9443   

Average Persistence 2.40    18.33    1.45    24.59   

Log(L) 1167.06        1186.94      

LR 39.75              

Note: The critical value for 2 (6) 12.59 
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Figure 3. 3 Actual and fitted value of MP from Markov switching models: Korea 
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Figure 3. 4 Market Pressure and Probability of volatile state for Korea 
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The Markov switching model can be used to predict for the 1997 crisis. We portray 

probability of potential crisis and MP with crisis band in Figure 3.4 (1) and (2), for 

constant and TGARCH estimates respectively. The upper halves of the figures give 

the inferred probabilities of being in the volatile state. This is the probability 

perceived by the agent in the currency market that the market is in the volatile state 

conditional on the past information about market pressure. Here, we assume that, 

when the inferred probabilities of being in regime one are higher than 0.5, which is 

 1Pr 0 | 0.5t tS     in our model set up (for simplicity, we use *p  to represent the 

inferred probability), we have a higher probability of being in the volatile state.  

 

The lower parts of Figures 3.4 (1) and (2) portray the market pressure and the bands 

for considering currency market being in crisis or under a crisis attack. Previous 

studies using Logit models define a crisis occurring when 

( ) * ( )t t tMP mean MP a std MP  , where a  is usually set at 1.5 or 2. We mentioned 

earlier that the Markov switching model can explain not only depreciating crisis 

attacks, but also appreciating currency attacks. Accordingly, we define the currency 

market is in the volatile state (with high potential of being attacked) when 

( ) * ( )t t tMP mean MP a std MP   or when ( ) * ( )t t tMP mean MP a std MP   in our 

study. We assess the results when a  is set equal to 1, 1.5 and 2, respectively. For 

reporting purposes, we only show the figures when a  is equal to 1.5. Figures for 

other cases are available upon request. From Figure 3.4 (2), we can see that the 

inferred probabilities are very high when the currency crisis actually occurring. In 
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November 1997, when the crisis occurred in Korea, the inferred probability of crisis is 

1 in the constant model and 0.98 in the TGARCH model. The Markov Switching 

constant and TGARH models can detect accurately the currency crises in 1997. As a 

matter of fact, both models have detected the crisis in October, one month earlier than 

the actual surge in the exchange market pressure. Comparing Figure 3.4 (1) and (2), it 

seems that the Markov switching TGARCH model can predict the currency crisis 

more precisely than the Markov switching constant variance model.  

 

One important issue that we need to make comment on is the determination of number 

of regimes: whether two regimes is a better choice than a single regime for modelling 

the exchange market pressure. As we noted earlier on, we employ the standard LR test, 

normality tests for residuals from single regime estimation, and the Neyman’s 

( )C  tests to address this issue. 

 
 
Table 3. 3 Korea: Test for 2 regimes versus 1 regime.  

 
TGARCH     
No. of Regimes Log. Likelihood LR  ( )C   JB 

2 1186.94     
1 1098.03  177.82  124.10  338.49  

     

Constant Variance Log. Likelihood LR  ( )C   JB 

No. of Regimes     
2 1167.06     
1 1021.74  290.65  69.76  3619.93  

Note: At 5% significant level, 2
(14) 21.06   2

(11) 19.68  , 2
(2) 5.99   
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Table 3.3 summarises the tests statistics for the presence of one versus two regimes 

for Korea. First we perform the normality test on the residuals obtained from one 

regime estimation models. The JB statistics is much higher than the critical value 

2 (2)=5.99. As stated previously, we also supplement the test using bootstrapping 

method to assessing the JB statistics for 500 resampled replications and assessing the 

number of modes using 100 replications. Both of these tests based on simulations 

indicate that the residuals from the constant single regime model are not normally 

distributed, nor did those from the TGARCH single regime model; and hence, 

possibly being distorted by the presence of at least another regime.  

 

The log likelihood values for single and two regimes estimates are also quoted in 

Table 3.3. Accordingly we calculate the associated Likelihood Ratio (LR) statistics. 

LR is 177.82 for the TGARCH model, significantly larger than the critical value 

2 (14) 21.06   at 5% significant level. The significance of Neyman’s ( )C  test 

statistics confirms such results for the TGARCH models (with the critical value 

2 (14) 21.06  ). Similar results can be found for the Constant Variance models 

between single and two regimes, that LR and Neyman’s ( )C  test statistics both 

larger than the critical value 2 (11) 19.68   at 5% significance level. All these tests 

give consistent implication that more than one regime should be examined. Thus two 

regimes Markov switching models should be more suitable than their one regime 

counterparts to explain the currency market pressure and the currency crisis.  
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Although by portraying the probability of a regime against MP, it is straightforward to 

distinguish which regime relate to which state in a 2 regimes Markov Switching 

model: high/low market pressure and thereby probably accompanying a volatile state; 

or a stable regime that market pressure fall in the medium range, we provide statistical 

evidence for the identification of the regimes in this study55. One method is to 

calculate Brier’s (1950) quadratic probability score (QPS). QPS is often used to 

evaluate probability forecasts (see Diebold and Rudebush, 1989). The forecast 

accuracy, which refers to the closeness, on average, of predicted probabilities and 

observed realisations, is measured by a zero-one dummy variable. QPS is a function 

of the probability-forecast analog of mean squared error, which is formulated as 

2

1

)(2)/1( tt

T

t

RrPTQPS  


                                 (3.53)           

Here: tPr  is the probability that the given regime will occur; and tR is the 

realisation (1 or 0) that it has occurred. According to the formula, we need to specify 

two things to calculate the QPS: (i) the probability that one regime will occur, which 

can be by taking the estimate of the conditional probability for that regime, and (ii) 

the outcome, the realized state of a given MP. To capture the state of MP, we follow 

the Logit analysis literature, by comparing MP with some threshold values. Here we 

take various limiting values: the mean value of MP plus or minus 1 standard deviation, 

1.5 standard deviations and 2 standard deviations. When MP exceeds the range of its 

mean value plus or minus 1/1.5/2 standard deviation, we refer the realized state as 

volatile state. When MP lies within the range, the state is referred to as the stable state. 

                                                        
55 This can be particularly useful when there are more than two regimes.  
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Obviously, the QPS statistics ranges from 0 to 2, with a score of 0 corresponding to 

perfect accuracy. The QPS results for Korea are reported in Table 3.4(a). The statistics 

clearly indicate the regime 1 is the volatile state and regime 2 is the stable state for 

Korea, for both constant variance and TGARCH Markov switching models.  

 

QPS achieves a strict minimum under truthful revelation of the probabilities by the 

forecaster. We also consider another strictly proper accuracy-scoring rule, the log 

probability score (LPS), given by:  

1

1

[(1 ) ln(1 ) ln( )]
T

t t t t
t

LPS T R R



     Pr Pr                      (3.54) 

Still, tPr  is the forecasted probability that a given regime will occur; and tR is the 

realisation (1 or 0) that it has occurred, defined in the same as in QPS. The LPS range 

from 0 to ∞, with a score of 0 corresponding to perfect accuracy. The LPS depends 

exclusively on the probability forecast of the event that actually occurred, assigning as 

a score of the log of the assessed probability (see Diebold and Rudebush, 1989).  

 

An additional statistic, GSB, which can be appropriate for our purpose, is examined in 

our study. GSB is the global squared bias, which assesses the overall forecast 

calibration of the probabilities: 

22( )GSB R Pr                                        (3.55) 

Here rP  is the average of the relevant probability values and R  is the average of 

the realization of the outcome. LPS and GSB statistics are reported in Table 3.4 (b) 

and (c) for Korea, which confirm that regime one is the volatile state and regime two 
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is the stable state.  

 
 
Table 3. 4 Korea: QPS, LPS and GSB test statistics 

 
(a) 

QPS Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.17950  1.66463  0.18666  1.75612  

MP Plus/minus 1.5 stdevs 0.12603  1.71810  0.07694  1.86584  

MP Plus/minus 2 stdevs 0.11398  1.73015  0.06860  1.87419  

Stable Zone 

MP Plus/minus 1 stdevs 1.66463  0.17950  1.75612  0.18666  

MP Plus/minus 1.5 stdevs 1.71810  0.12603  1.86584  0.07694  

MP Plus/minus 2 stdevs 1.73015  0.11398  1.87419  0.06860  

 
(b) 

LPS Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.32082  2.28501  0.35917  2.74582  

MP Plus/minus 1.5 stdevs 0.17376  2.43207  0.13910  2.96589  

MP Plus/minus 2 stdevs 0.16006  2.44577  0.09999  3.00500  

Stable Zone         

MP Plus/minus 1 stdevs 2.28501  0.32082  2.74582  0.35917  

MP Plus/minus 1.5 stdevs 2.43207  0.17376  2.96589  0.13910  

MP Plus/minus 2 stdevs 2.44577  0.16006  3.00500  0.09999  

 
(c) 

GSB Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.00001  1.20155  0.00740  1.38877  

MP Plus/minus 1.5 stdevs 0.01043  1.44482  0.00039  1.64947  

MP Plus/minus 2 stdevs 0.01520  1.49616  0.00168  1.70430  

Stable Zone 

MP Plus/minus 1 stdevs 1.20155  0.00001  1.38877  0.00740  

MP Plus/minus 1.5 stdevs 1.44482  0.01043  1.64947  0.00039  

MP Plus/minus 2 stdevs 1.49616  0.01520  1.70430  0.00168  
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3.6.2 Empirical analysis for Indonesia 

 

Similarly, we perform single regime constant and TGARCH estimations first for the 

market pressure in Indonesia and the estimates are reported in Table 3.5. Most 

parameters in the two models are significant. For both models, the coefficients on 

GDC and DGDC do not differ from zero at 5% significant level. Thus the real 

domestic credit growth does not have significant impact on the exchange market 

pressure. Besides, it does not have the anticipated sign, in both of its level or first 

difference, so as the Risk variable in its first difference. Covariance stationary is 

achieved in the TGARCH model specification; however, in the case of Indonesia, the 

negative shocks of market pressure have larger impact on its volatility.  

 

Actual and fitted MP and the residuals from the fitted equation are portrayed in Figure 

3.5. The estimated equation appears to track the movement market pressure well. 

From Table 3.5, we can see that the fitness of estimation equation ( 2R ) is 67.86% for 

the constant and 65.05% for the TGARCH model.  

 

The estimation results from 2 regimes Markov Switching Constant and TGARCH 

models for Indonesia are reported in Table 3.6 (1) and (2) respectively. For the 

constant model, we observe that in the stable state, all the variables are significant, 

with GDC, DGDC, and DRisk not having the expected signs; in the volatile state, 

GDC has insignificant impact on market pressure in both its level and first difference; 
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however, the signs are consistent with our expectation. Risk in its first difference does 

not have significant impact on the market pressure, nor is its sign following 

expectation. For the TGARCH model, we found that all the fundamental and risk 

variables have significant impact on the market pressure, although the signs for GDC, 

DGDC and Risk are not in line with anticipation. Most variables have larger impact in 

the volatile state than in the stable state, shows by the absolute value of their 

coefficients.  

 

The covariance structure for the TGARCH model is stationary, as indicted by 

1 2 3 1V V V    in both states. Same as in the single regime model, the coefficient 3V  

is positive. This imply that asymmetric effects exist in Indonesia currency market, 

with negative shocks have larger impact on the market pressure. From the significance 

of LR test between the TGARCH and constant model, as well as the significance of 

most coefficients in the TGARCH variances specification, we can conclude that the 

variance is time varying and TGARCH specification for the conditionally variance is 

necessary in the Markov Switching model for Indonesia.   

 

The transitional probability for each state is significantly different from zero at 95% 

confidence level for both constant and TGARCH Regime-Switching estimates. 

12 212 1P P    confirms the persistence of each state. Average persistence for the 

volatile state in Indonesia is under 4 months and under 26 months for the stable state. 
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Table 3. 5 Estimation Results from Single Regime models for Indonesia 

 
 Indonesia 

 Constant Variance TGARCH 

 Coeff Std Error Signif Coeff Std Error Signif 

1  -0.02627  0.01451 0.07110 -0.02948 0.00994  0.00300  

2  0.05322  0.00691 0.00000 0.07061 0.00504  0.00000  

3   -0.00234  0.02695 0.93100 -0.02359 0.03359  0.48260  

4  0.05735  0.01435 0.00010 0.11251 0.00821  0.00000  

5  -1.08591  0.06903 0.00000 -1.03849 0.04520  0.00000  

6  0.54389  0.03183 0.00000 0.49426 0.02258  0.00000  

7  -0.01485  0.01982 0.45420 -0.02738 0.02597  0.29180  

8  -0.05970  0.01622 0.00030 -0.04896 0.01493  0.00100  

0V     0.00001 0.00000  0.01380  

1V     0.04200 0.01516  0.00560  

3V     0.17587 0.06255  0.00490  

2V     0.86045 0.02241  0.00000  

       
2R  0.6786    0.6505   
2R  0.6708    0.6376   

JB  5085.74    499.00   

Log(L) 810.61    866.39   

LR 111.56       

Note: The critical value for 2 (3) 7.81  ,  2 (2) 5.99   
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Figure 3. 5 Actual and fitted value of MP from single regime estimation: Indonesia 
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(2) TGARCH(1,1) model 
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Table 3. 6 Parameter estimates and related statistics for Markov Regime Switching models: Indonesia 

 
  Panel A   Panel B 

 Constant Variance:Indonesia  Threshold GARCH: Indonesia 

 Regime 1 (Volatile State) Regime 2 (Stable State)  Regime 1 (Volatile State) Regime 2 (Stable State) 

Variable Coeff Std Error Signif Coeff Std Error Signif  Coeff Std Error Signif Coeff Std Error Signif 
/12 21P P  0.25054  0.07957  0.00164 0.03946 0.01309 0.00257  0.37329 0.11278 0.00093 0.05055 0.01464 0.00055  

1  0.18207  0.03160  0.00000 -0.01775 0.00237 0.00000  0.00400 0.00010 0.00000 -0.00376 0.00231 0.10402  

2  0.05266  0.02874  0.06693 0.03077 0.00423 0.00000  0.12966 0.01282 0.00000 0.03692 0.00175 0.00000  

3   0.23243  0.15249  0.12744 -0.03984 0.01049 0.00015  0.00735 0.00012 0.00000 -0.02785 0.00759 0.00024  

4  0.20596  0.06290  0.00106 0.04230 0.00438 0.00000  0.23718 0.01873 0.00000 0.02897 0.00390 0.00000  

5  -1.32433  0.20936  0.00000 -1.07729 0.03097 0.00000  -1.25319 0.09856 0.00000 -1.06797 0.02883 0.00000  

6  0.45843  0.09117  0.00000 0.54445 0.01472 0.00000  0.48225 0.03231 0.00000 0.58705 0.01235 0.00000  

7  0.17500  0.12382  0.15756 -0.03306 0.00694 0.00000  -0.00679 0.00012 0.00000 -0.03043 0.00537 0.00000  

8  -0.01765  0.05087  0.72865 -0.08229 0.00936 0.00000  -0.02179 0.03000 0.00000 -0.05756 0.00739 0.00000  

0V  0.00222  0.00042  0.00000 0.00012 0.00001 0.00000  0.00238 0.00029 0.00000 0.00009 0.00000 0.00000  

1V         0.30825 0.07750 0.00000 0.20169 0.07962 0.01130  

2V         -0.23974 0.00952 0.00000 -0.00932 0.00373 0.01238  

3V         0.21871 0.00511 0.00000 0.11909 0.01905 0.00000  

              

  0.1361    0.8639    0.1193   0.8807   

Average Persistence 3.99    25.34    2.68    19.78   

Log(L) 921.37        936.40      

LR 30.05              

Note: The critical value for 2 (6) 12.59 
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Figure 3. 6 Actual and fitted value of MP from Markov switching models: Indonesia 
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Figure 3. 7 Market Pressure and Probability of volatile state for Indonesia 
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The actual and fitted MP are portrayed in Figure 3.6 (1) and (2), for the Markov 

Switching models with constant variance and with TGARCH conditional variance 

respectively. Still, the fitted MP tracks the actual MP well. We cannot tell from the 

figures whether TGARCH or constant models have better tracking ability than the 

other, nor can we tell, by comparing to Figure 3.5, whether the single regime or 2 

regimes model is better in tracking the movement of MP. However, the ability of each 

model in correctly predicting the state of market pressure is provided and compared in 

the later section.   

 

 

Table 3. 7 Indonesia: Test for 2 regimes versus 1 regime.  

 
TGARCH     
No. of Regimes Log. Likelihood LR  ( )C   JB 

2 936.40     
1 818.99  234.81  27.40  704.46  

     

Constant Variance     
No. of Regimes Log. Likelihood LR  ( )C   JB 

2 921.37     
1 802.53  237.69  22.87  5549.01  

Note: At 5% significant level, 2
(14) 21.06   2

(11) 19.68  , 2
(2) 5.99   

 

 

 

Information on the criteria used to determine the number of regimes is provided in 

Table 3.7. Similarly, we assess JB statistics and using bootstrapping to establish 

resampled population of residuals from the single regime estimations to determine if 

the residuals are normally distributed. All these diagnostic tests suggest that the 
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residuals are diverged from normal distribution, implying the existence of other 

regime/regimes. LR and Neyman’s ( )C   tests statistics also provide further 

evidence that 2 regimes rather than 1 regime should be used.  

 

 

Figure 3.7 (1) and (2) depict the market pressure and the inferred probability of 

volatile state from the two Markov switching models. Again, both models detect the 

currency crisis in August 1997 in Indonesia.  

 

Now we examine the identification of the 2 regimes. The QPS, GSB and LPS 

statistics are reported in Table 3.8. All these statistics indicate that regime 1 is the 

volatile state for Indonesia. 
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Table 3. 8 Indonesia: QPS, LPS and GSB test statistics 

(a) 

QPS Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.22717  1.60123  1.55654  0.23585  

MP Plus/minus 1.5 stdevs 0.14848  1.67992  1.65982  0.13257  

MP Plus/minus 2 stdevs 0.15524  1.67316  1.66839  0.12400  

Stable Zone 

MP Plus/minus 1 stdevs 1.60123  0.22717  0.23585  1.55654  

MP Plus/minus 1.5 stdevs 1.67992  0.14848  0.13257  1.65982  

MP Plus/minus 2 stdevs 1.67316  0.15524  0.12400  1.66839  

 

(b) 

LPS Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.45369  2.25492  0.44472  2.12766  

MP Plus/minus 1.5 stdevs 0.31247  2.39613  0.30075  2.27162  

MP Plus/minus 2 stdevs 0.24490  2.46370  0.22373  2.34864  

Stable Zone         

MP Plus/minus 1 stdevs 2.25492  0.45369  2.12766  0.44472  

MP Plus/minus 1.5 stdevs 2.39613  0.31247  2.27162  0.30075  

MP Plus/minus 2 stdevs 2.46370  0.24490  2.34864  0.22373  

 

(c) 

GSB Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.93911  0.00297  0.00615  0.98606  

MP Plus/minus 1.5 stdevs 1.18295  0.00410  0.00161  1.23557  

MP Plus/minus 2 stdevs 1.31541  0.01521  0.00988  1.37087  

Stable Zone 

MP Plus/minus 1 stdevs 0.00297  0.93911  0.98606  0.00615  

MP Plus/minus 1.5 stdevs 0.00410  1.18295  1.23557  0.00161  

MP Plus/minus 2 stdevs 0.01521  1.31541  1.37087  0.00988  
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3.6.3 Empirical analysis for Thailand 

 

Table 3.9 reports the constant and TGARCH estimates under the assumption that there 

is one regime. For the constant model, the RM2 and GDC are not statistically 

different from zero at 5% significance level. For the TGARCH model, RM2 and RER 

do not significantly different from zero. For both models, two out of four explain 

variables have significant impact on market pressure in their levels, with GDC has the 

wrong a priori sign. When turning to the changes (first difference) in the macro 

variables and risk, all have statistically significant impacts on exchange market 

pressure. However, the DGDC and DRisk variables present incorrect expected sign. 

The coefficients on the TGARCH conditional variances are all significant, indicating 

that variance of market pressure is time dependent and conditional on past 

information; and there is asymmetric effect in the conditional variances, with positive 

shocks have larger effects on the volatility of market pressure.  

 

The graphs depicting the actual and fitted MP and the residuals from the fitted 

equations are portrayed in Figure 3.8. The estimated equation appears to track the 

movement of market pressure well. This can also be proved by the estimation fitness, 

2R  (reported in the bottom of Table 3.1), which indicate that around 80% of the 

market pressure can be explained by the fundamental variables in the equations of 

single regime models. Jaque-Bera tests are larger than the critical value 5.99 at 5% 

significant level shows that the residuals from both estimations, which indicate the 
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Table 3. 9 Estimation Results from Single Regime models for Thailand 

 
 Thailand 

 Constant Variance TGARCH 

 Coeff Std Error Signif Coeff Std Error Signif 

1  0.00080  0.00286 0.77910 -0.00269 0.00279  0.33520  

2  0.02298  0.00569 0.00010 0.00667 0.00547  0.22220  

3   -0.07836  0.05482 0.15380 -0.11082 0.04759  0.01990  

4  0.04920  0.01675 0.00350 0.02993 0.01337  0.02510  

5  -0.87408  0.06482 0.00000 -0.93860 0.06017  0.00000  

6  0.79246  0.03219 0.00000 0.67889 0.02783  0.00000  

7  -0.11341  0.04587 0.01390 -0.13755 0.03736  0.00020  

8  -0.06641  0.01760 0.00020 -0.11566 0.00950  0.00000  

0V     0.00002 0.00001  0.00000  

1V     0.59028 0.17765  0.00090  

3V     -0.43661 0.16769  0.00920  

2V     0.37769 0.12335  0.00220  

       
2R  0.8175    0.7951   
2R  0.8136    0.7881   

JB  198.42    71.3318   

Log(L) 1101.90    1140.52   

LR 77.25       

Note: The critical value for 2 (3) 7.81  ,  2 (2) 5.99   
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Figure 3. 8 Actual and fitted value of MP from single regime estimation: Thailand 
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(2) TGARCH(1,1) model 

-.04

-.02

.00

.02

.04

.06

-.12

-.08

-.04

.00

.04

.08

.12

.16

1985 1990 1995 2000 2005

Residual Actual Fitted

 



 332

Table 3. 10 Parameter estimates and related statistics for Markov Regime Switching models: Thailand 

 
  Panel A   Panel B 

 Constant Variance: Thailand  Threshold GARCH: Thailand 

 Regime 1 (Volatile State) Regime 2 (Stable State)  Regime 1 (Volatile State) Regime 2 (Stable State) 

Variable Coeff Std Error Signif Coeff Std Error Signif  Coeff Std Error Signif Coeff Std Error Signif 
/12 21P P  0.43510  0.14130  0.00207 0.06085 0.02574 0.01809  0.23665 0.08460 0.00515 0.12950 0.27743 0.00000  

1  0.05747  0.02084  0.00583 -0.00461 0.00236 0.05033  0.02680 0.00060 0.00000 -0.00668 0.00274 0.01474  

2  -0.08224  0.03473  0.01787 0.03642 0.00450 0.00000  0.04862 0.00392 0.00000 0.00673 0.00235 0.00423  

3   0.17042  0.22678  0.45236 -0.08798 0.04946 0.07528  -0.41285 0.01783 0.00000 -0.06352 0.05100 0.21300  

4  0.33240  0.10115  0.00102 0.01015 0.01377 0.46096  0.01937 0.00937 0.03860 0.02027 0.01472 0.16836  

5  -1.77628  0.30334  0.00000 -0.83936 0.06308 0.00000  -1.77889 0.06476 0.00000 -0.76778 0.06780 0.00000  

6  0.52296  0.12866  0.00005 0.78370 0.02765 0.00000  0.72797 0.02070 0.00000 0.67859 0.03343 0.00000  

7  -0.05072  0.19148  0.79109 -0.13251 0.04063 0.00111  -0.36536 0.02217 0.00000 -0.11545 0.04536 0.01092  

8  -0.07391  0.05317  0.16456 -0.07611 0.01613 0.00000  -0.04488 0.00830 0.00000 -0.16167 0.02154 0.00000  

0V  0.00013  0.00004  0.00257 0.00005 0.00001 0.00000  0.00000 0.00000 0.00037 0.00002 0.00000 0.00000  

1V         0.01299 0.00755 0.08512 0.57755 0.10951 0.00000  

2V         0.58324 0.05333 0.00000 0.32828 0.06403 0.00000  

3V         -0.01451 0.00809 0.07289 -0.41594 0.14252 0.00352  

              

  0.1227    0.8773    0.3537   0.6463   

Average Persistence 2.30    16.43    4.23    7.72    

Log(L) 1128.92        1180.33      

LR 102.82              

Note: The critical value for 2 (6) 12.59 
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Figure 3. 9 Actual and fitted value of MP from Markov switching models: Thailand 
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Figure 3. 10 Market Pressure and Probability of volatile state for Thailand 
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residuals are not normally distributed.  

 

The empirical estimates from the two regimes Markov switching models for Thailand 

are reported in Table 3.10. Panel A is for the results from the constant variances mode 

and Panel B is for that from the TGARCH model. In the mean structure, our findings 

confirm that the fundamental and risk variables play significant roles in triggering 

currency crisis, as all variables are significant in at least one regime or another, for 

both models. For the variance structure in the Markov switching TGARCH model, we 

can observe that asymmetric effects are significant with positive shocks have larger 

impact. Moreover, covariance stationary is guaranteed because 1 2 3 1V V V    and 

1 2 1V V  , in both volatile and stable states. Although 1V  and 3V  differ from zero at 

10% instead of 5% significant level, the test for that the coefficients in the conditional 

variance structures are jointly zero has a LR statistics equal to 102.82, larger that than 

the critical value at the 5% level, implying imposing constraint on the TGARCH 

coefficients can be rejected. The TGACH model should not be nested to constant 

model.  

 

The transitional probabilities 12P and 21P  are significant at 90% confidence level. 

Since 12 212 1P P   , we conclude that the process is likely to persist in its current 

state rather than switching to the other. The average persistence of volatile state 

increase from 2.3 months with the constant model to 4.23 with the TGARCH model, 

however, the average persistence of stable states reduce from 16.43 to 7.72.  The 
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unconditional probabilities are given in the bottom of the table.  

 

Figures 3.9 (1) and (2) depict the actual and fitted MP along with the residuals from 

the estimation models for Korea. And Figures 3.10 (1) and (2) present the inferred 

probability of volatile state and market pressure. It can be observed that the models 

track the MP well and can detect the currency crisis. Both constant and TGARCH 

Markov switching model can correctly predict the currency crisis in July 1997 for 

Thailand.  

 

Table 3. 11 Thailand: Test for 2 regimes versus 1 regime.  

 
TGARCH     

No. of Regimes Log. Likelihood LR  ( )C   JB 

2 1180.33     
1 1128.73  103.20  47.90  66.74  

     

Constant Variance     
No. of Regimes Log. Likelihood LR  ( )C   JB 

2 1128.92     
1 1090.89  76.06  20.23  197.92  

Note: At 5% significant level, 2
(14) 21.06   2

(11) 19.68  , 2
(2) 5.99   

 

Table 3.11 reports the tests for determining the number of regimes. The LR, JB 

Newman’s ( )C   test statistics, as well as bootstrapping tests all imply that there 

should be two regimes rather than one.  

 

The QPS, GSB and LPS statistics are reported in Table 3.12 for identifying each 

regime. The statistics all corroborate our observation that regime 1 is the volatile state 
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where currency crisis likely to happened and regime 2 is the stable state.   

 

Table 3. 12 Thailand: QPS, LPS and GSB test statistics 

(a) 

QPS Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.23248  1.51926  0.32580  0.77564  

MP Plus/minus 1.5 stdevs 0.15402  1.59773  0.33233  0.76910  

MP Plus/minus 2 stdevs 0.12506  1.62669  0.33677  0.76466  

Stable Zone 

MP Plus/minus 1 stdevs 1.51926  0.23248  0.77564  0.32580  

MP Plus/minus 1.5 stdevs 1.59773  0.15402  0.76910  0.33233  

MP Plus/minus 2 stdevs 1.62669  0.12506  0.76466  0.33677  

 

(b) 

LPS Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.81879  3.16228  0.57160  0.87123  

MP Plus/minus 1.5 stdevs 0.63315  3.34792  0.55234  0.89049  

MP Plus/minus 2 stdevs 0.55914  3.42193  0.55174  0.89109  

Stable Zone 

MP Plus/minus 1 stdevs 3.16228  0.81879  0.87123  0.57160  

MP Plus/minus 1.5 stdevs 3.34792  0.63315  0.89049  0.55234  

MP Plus/minus 2 stdevs 3.42193  0.55914  0.89109  0.55174  

 

(c) 

GSB Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.00090  1.07698  0.14066  0.40028  

MP Plus/minus 1.5 stdevs 0.00641  1.31760  0.23536  0.55171  

MP Plus/minus 2 stdevs 0.01112  1.37656  0.26066  0.59009  

Stable Zone 

MP Plus/minus 1 stdevs 1.07698  0.00090  0.40028  0.14066  

MP Plus/minus 1.5 stdevs 1.31760  0.00641  0.55171  0.23536  

MP Plus/minus 2 stdevs 1.37656  0.01112  0.59009  0.26066  
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3.6.4 Empirical analysis for Malaysia 

 

Table 3.13 reports the estimation results for Malaysia from single regime constant and 

TGARCH models. Actual and fitted MP are portrayed in Figure 3.11. The macro and 

risk variables are all significant at 95% confidence level, expect the RM2, in both 

models. These variables can explain up to 85% of the MP in Malaysia. Asymmetric 

effect in the volatility is not significant for Malaysia in the TGARCH model, indicated 

by the insignificance of 3V .  

 

The estimates from 2 regimes Markov Switching constant and TGARCH models are 

shown in Table 3.14. From the constant estimates, we found that, in the volatile state, 

DGC does not have substantial impact on MP, no matter in its level or first difference. 

RER is not significant in its level, but significant in the first difference. In the stable 

state, however, all variables expect RM2 are statistically significant. Signs on the 

coefficients are not always as anticipation, especially for the DGDC. For the 

TAGARCH Markov estimates, we find all variables are significant, expect the RM2 

in the stable state. The model is covariance stationary in both volatile and stable state, 

as 1 2 3 1V V V   . Coefficient 3V  is positive in the volatile state and negative in the 

stable state, however, both of which are not significantly different from zero. The LR 

test for the joint significance of the coefficients in the conditional variances ( 1V , 2V  

and 3V  are zero in both states) has a statistics of 1.01, smaller than the critical value 

2 (6) 12.59  . Thus the null hypothesis that these coefficients are jointly zero cannot 
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Table 3. 13 Estimation Results from Single Regime models for Malaysia 

 
 Malaysia 

 Constant Variance TGARCH 

 Coeff Std Error Signif Coeff Std Error Signif 

1  -0.00206  0.00149 0.16770 0.00022 0.00132  0.86690  

2  0.02653  0.00459 0.00000 0.04066 0.00369  0.00000  

3   -0.05032  0.01205 0.00000 -0.08628 0.01252  0.00000  

4  0.04213  0.01174 0.00040 0.03062 0.01048  0.00350  

5  -0.35652  0.02627 0.00000 -0.45686 0.02305  0.00000  

6  0.83603  0.02576 0.00000 0.82125 0.01673  0.00000  

7  -0.04749  0.00883 0.00000 -0.08333 0.00756  0.00000  

8  -0.03664  0.01530 0.01720 -0.03985 0.00884  0.00000  

0V     0.00002 0.00000  0.00000  

1V     0.46559 0.15379  0.00250  

3V     0.54779 0.21747  0.01180  

2V     -0.02547 0.04155  0.53980  

       
2R  0.8659    0.84918   
2R  0.8630    0.84408   

JB  1074.02    23.8504   

Log(L) 1201.05    1253.81   

LR 108.13       

Note: The critical value for 2 (3) 7.81  ,  2 (2) 5.99   
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Figure 3. 11 Actual and fitted value of MP from single regime estimation: Malaysia 
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Table 3. 14 Parameter estimates and related statistics for Markov Regime Switching models: Malaysia 

 
  Panel A   Panel B 

 Constant Variance: Malaysia  Threshold GARCH: Malaysia 

 Regime 1 (Volatile State) Regime 2 (Stable State)  Regime 1 (Volatile State) Regime 2 (Stable State) 

Variable Coeff Std Error Signif Coeff Std Error Signif  Coeff Std Error Signif Coeff Std Error Signif 
/12 21P P  0.15900  0.05860  0.00668 0.05310 0.01950 0.00655  0.27170 0.10530 0.00988 0.08420 0.03060 0.00595  

1  -0.01190  0.00529  0.02411 -0.00014 0.00097 0.88164  -0.00168 0.00065 0.00000 -0.00095 0.00112 0.39469  

2  0.00385  0.01010  0.70453 0.03400 0.00299 0.00000  0.02770 0.00131 0.00000 0.03420 0.00379 0.00000  

3   0.04690  0.03610  0.19357 -0.08980 0.00840 0.00000  -0.02300 0.00115 0.00000 -0.07560 0.01140 0.00000  

4  0.09140  0.03430  0.00775 0.03150 0.00800 0.00008  0.03630 0.00146 0.00000 0.04260 0.01010 0.00003  

5  -0.35180  0.06250  0.00000 -0.43580 0.01420 0.00000  -0.38920 0.01120 0.00000 -0.39500 0.01970 0.00000  

6  0.93170  0.05910  0.00000 0.72020 0.01750 0.00000  0.98650 0.23744 0.00000 0.73660 0.02060 0.00000  

7  0.02450  0.02500  0.32810 -0.08520 0.00366 0.00000  -0.00558 0.00019 0.00000 -0.07280 0.00524 0.00000  

8  -0.00888  0.03730  0.81199 -0.08750 0.01470 0.00000  -0.02710 0.00576 0.00000 -0.06060 0.01790 0.00071  

0V  0.00008  0.00001  0.00000 0.00002 0.00000 0.00000  0.00007 0.00005 0.00000 0.00001 0.00000 0.00000  

1V         0.36320 0.14320 0.01118 0.03250 0.04420 0.46196  

2V         -0.07540 0.01841 0.00000 0.26270 0.09210 0.00435  

3V         0.01800 0.14960 0.90447 -0.02890 0.05400 0.59200  

              

  0.2504    0.7496    0.2366   0.7634   

Average Persistence 6.29    18.85    3.68    11.87   

Log(L) 1269.45        1269.96      

LR 1.01              

Note: The critical value for 2 (6) 12.59 
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Figure 3. 12 Actual and fitted value of MP from Markov switching models: Malaysia 
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be rejected. The LR test indicates the TGARCH structure in the Markov 2 regime 

switching model may be not necessary.  

 

For the Markov switching models, we have the transitional probabilities for the 

volatile and stable state,  12P  and 21P , are significantly differ from zero at 95% 

significance level. The average persistence of the volatile state reduces under the 

TGARCH modelling specification than under the constant modelling specification, so 

as that of the stable state. The unconditional probability of being in the stable state is 

more than 70%.  

 

Figure 3.12 graphs the actual and fitted MP and model residuals for the Markov 

Switching models. Still, the fitted MP tracks the MP very well, indicating the 

explanatory power of the fundamental variables. Comparing Figure 3.12 with the 

results from single regime estimation, we cannot claim if the 2 regimes models are 

better than their one regime counterpart in terms of tracking MP. However, the LR and 

Newman’s ( )C   test statistics reported in Table 3.15 shows that the 2 regimes 

models rather than the 1 regime ones should be used. JB statistics and bootstrapping 

methods also support such conclusion.  

 

Figure 3.13 present market pressure the inferred probability of volatile state and with 

presumed crisis band. In July 1997 when the market pressure is high, the inferred 

probability of volatile state is higher than 99%, for both constant and TGARCH 
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model. The occurrence of crisis is correctly detected in Malaysia. The figure also 

shows that Markov switching TGARCH model can predict the currency crisis in a 

more precise manner than the constant variance model.  

 

Finally we examine the identification of the 2 regimes. The QPS, GSB and LPS 

statistics are reported in Table 3.16. All these statistics clearly indicate that regime 1 is 

the volatile state for Malaysia. 

 

 

 

Table 3. 15 Malaysia: Test for 2 regimes versus 1 regime.  

 

TGARCH     
No. of Regimes Log. Likelihood LR  ( )C   JB 

2 1269.96     
1 1246.48  46.95  25.23  22.45  

     

Constant Variance     
No. of Regimes Log. Likelihood LR  ( )C   JB 

2 1269.45     
1 1199.54  139.83  21.14  1329.92  

Note: At 5% significant level, 2
(14) 21.06   2

(11) 19.68  , 2
(2) 5.99   
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Figure 3. 13 Market Pressure and Probability of volatile state for Malaysia 
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Table 3. 16 Malaysia: QPS, LPS and GSB test statistics 

 

(a) 

QPS Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.31091  1.32052  0.26053  1.27110  

MP Plus/minus 1.5 stdevs 0.29828  1.33315  0.24627  1.28535  

MP Plus/minus 2 stdevs 0.30088  1.33055  0.24489  1.28674  

Stable Zone 

MP Plus/minus 1 stdevs 1.32052  0.31091  1.27110  0.26053  

MP Plus/minus 1.5 stdevs 1.33315  0.29828  1.28535  0.24627  

MP Plus/minus 2 stdevs 1.33055  0.30088  1.28674  0.24489  

 

(b) 

LPS Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.48649  1.65393  0.43236  1.46534  

MP Plus/minus 1.5 stdevs 0.41315  1.72727  0.36082  1.53688  

MP Plus/minus 2 stdevs 0.38461  1.75581  0.32755  1.57015  

Stable Zone         

MP Plus/minus 1 stdevs 1.65393  0.48649  1.46534  0.43236  

MP Plus/minus 1.5 stdevs 1.72727  0.41315  1.53688  0.36082  

MP Plus/minus 2 stdevs 1.75581  0.38461  1.57015  0.32755  

 

(c) 

GSB Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.03019  0.72407  0.02618  0.74456  

MP Plus/minus 1.5 stdevs 0.07123  0.89128  0.06499  0.91400  

MP Plus/minus 2 stdevs 0.10365  0.99824  0.09609  1.02228  

Stable Zone 

MP Plus/minus 1 stdevs 0.72407  0.03019  0.74456  0.02618  

MP Plus/minus 1.5 stdevs 0.89128  0.07123  0.91400  0.06499  

MP Plus/minus 2 stdevs 0.99824  0.10365  1.02228  0.09609  
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3.6.5 Empirical analysis for Singapore 

 

Table 3.17 reports the estimation results for Singapore from single regime models. 

Actual and fitted MP are portrayed in Figure 3.14. We observe that all the macro and 

risk variables are significant at 95% confidence level. These variables can explain 

more than 80% of the MP. Asymmetric effect in the conditional volatility of market 

pressure is not significant in the TAGARCH single regime model.   

 

The empirical estimates from the 2 regimes Markov switching models for Singapore 

are reported in Table 3.18. Panel A is for the results from the Markov switching model 

with constant variances. Our finding confirms that the fundamental and risk variables 

play significant roles in triggering currency crisis, as all the variables are significantly 

different from zero at 5% significance level for both states, expect for DGDC in the 

volatile state, which is significant at 10% significance level.  

 

The TGARCH Markov Switching estimates are reported in Panel B. Similar to the 

constant model, all variables differ from zero at 95% confidence level expect for 

DGDC. Signs on the Risk and DGC variables, in their level or first difference, are still 

not always consistent with the theoretical expectation. The GARCH process is 

stationary in both volatile and stable state, as 1 2 3 1V V V   . However, in the volatile 

state, 1 2 1V V  . This indicate that when 0t  , the volatility do not die away after 

periods but intent to expand instead. Coefficient 3V  is negative and significant in the 
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volatile state, indicating that the asymmetric affect of positive shocks can increase the 

next period volatility of market pressure to a larger extent than the negative shocks. In 

the stable state, however, 3V  is positive, which means that the negative shocks have 

large impact on the conditional volatility in the next period.  2V  in both state are 

indifferent from zero at 5% significant level, implying that the volatility of market 

pressure do not depend on the past conditional volatility. However, past shocks has 

significant impact on the conditional volatility. The joint significance test for the 

TGARCH structure gives 48.34LR  , larger than the critical value, suggesting that 

the TGARCH structure should not be eliminated.  

 

The transitional probability 12P  and 21P , are significant at 95% confidence level in 

the constant model, However, for the TGARCH model, the transitional probability is 

not significant at 5% significance level for the stable state, but only significant at 10% 

level. Since 12 212 1P P   , we can conclude that the process is likely to persist in its 

current state rather than switching to the other. The average persistent is about 4 

months for the volatile state and much larger for the stable state. The persistence of 

stable states in the constant model is higher than in the TGARCH model. On the other 

hand, the persistence of volatile state from the two modelling specification are more 

or less the same. The unconditional probabilities of the market pressure being in each 

state are given in the bottom of the table. 



 349

Table 3. 17 Estimation Results from Single Regime models for Singapore 

 
 Singapore 

 Constant Variance TGARCH 

 Coeff Std Error Signif Coeff Std Error Signif 

1  -0.00703  0.00055 0.00000 -0.00648 0.00048  0.00000  

2  0.03479  0.00490 0.00000 0.03286 0.00460  0.00000  

3   -0.04472  0.01172 0.00020 -0.04440 0.01170  0.00010  

4  0.07905  0.01408 0.00000 0.06963 0.01284  0.00000  

5  -0.12249  0.02053 0.00000 -0.12991 0.01433  0.00000  

6  0.72834  0.02472 0.00000 0.68261 0.02278  0.00000  

7  -0.03877  0.00768 0.00000 -0.04006 0.00474  0.00000  

8  -0.08853  0.01622 0.00000 -0.11910 0.01313  0.00000  

0V     0.00000 0.00000  0.02740  

1V     0.24683 0.10406  0.01770  

3V     -0.00159 0.10229  0.98760  

2V     0.60859 0.11026  0.00000  

       
2R  0.8413    0.8380   
2R  0.8379    0.8325   

JB  19.2843    0.0490   

Log(L) 1290.81    1310.39   

LR 39.15       

Note: The critical value for 2 (3) 7.81  ,  2 (2) 5.99   
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Figure 3. 14 Actual and fitted value of MP from single regime estimation: Singapore 
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Table 3. 18 Parameter estimates and related statistics for Markov Regime Switching models: Singapore 

 
  Panel A   Panel B 

 Constant Variance:Singapore  Threshold GARCH: Singapore 

 Regime 1 (Volatile State) Regime 2 (Stable State)  Regime 1 (Volatile State) Regime 2 (Stable State) 

Variable Coeff Std Error Signif Coeff Std Error Signif  Coeff Std Error Signif Coeff Std Error Signif 
/12 21P P  0.21000  0.06940  0.00247 0.03090 0.01450 0.03317  0.20568 0.07892 0.00916 0.05057 0.02942 0.08559  

1  -0.01640  0.00217  0.00000 -0.00587 0.00050 0.00000  -0.00738 0.00043 0.00000 -0.00577 0.00049 0.00000  

2  0.09470  0.01470  0.00000 0.03090 0.00504 0.00000  0.03713 0.00390 0.00000 0.03220 0.00440 0.00000  

3   -0.12550  0.03240  0.00011 -0.06480 0.01300 0.00000  -0.03192 0.00948 0.00076 -0.06773 0.01137 0.00000  

4  0.23910  0.03590  0.00000 0.04310 0.01330 0.00118  0.17105 0.01042 0.00000 0.03732 0.01337 0.00525  

5  -0.06780  0.03000  0.02400 -0.16260 0.02200 0.00000  -0.16923 0.03442 0.00000 -0.14944 0.02254 0.00000  

6  0.96390  0.04730  0.00000 0.64340 0.02480 0.00000  0.89744 0.02283 0.00000 0.63292 0.01285 0.00000  

7  -0.02090  0.01220  0.08532 -0.05750 0.00963 0.00000  -0.01568 0.00516 0.00236 -0.05838 0.00727 0.00000  

8  0.08180  0.02540  0.00131 -0.13150 0.01690 0.00000  0.02428 0.01701 0.15341 -0.14287 0.00477 0.00000  

0V  0.00002  0.00000  0.00030 0.00002 0.00000 0.00000  0.00000 0.00000 0.43604 0.00002 0.00000 0.00000  

1V         2.06228 0.45896 0.00001 -0.04248 0.00325 0.00000  

2V         0.15742 0.11690 0.17808 0.02181 0.06639 0.74258  

3V         -2.02622 0.46345 0.00001 0.61133 0.09889 0.00000  

              

  0.1283    0.8717    0.1974   0.8026   

Average Persistence 4.76    32.41    4.86    19.77   

Log(L) 1315.34        1339.51      

LR 48.34              

Note: The critical value for 2 (6) 12.59 
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Figure 3. 15 Actual and fitted value of MP from Markov switching models: Singapore 
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(2)Markov Switching TGARCH model 

 

-.08

-.06

-.04

-.02

.00

.02

.04

.06

.08

80 82 84 86 88 90 92 94 96 98 00 02 04 06

MP FITTEDMP

 

 



 353

Figure 3. 16 Market Pressure and Probability of volatile state for Singapore 
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Figures 3.15 (1) and (2) present the actual and fitted MP along with the residuals from 

the estimation models for Singapore; and Figure 3.16 (1) and (2) illustrate the inferred 

probability of volatile state and market pressure. From the figures we can see that the 

models have predictive power for the currency crisis. Both constant and TGARCH 

Markov switching model can correctly predict the 1997 currency crisis. 

 

We turn now to Table 3.19 to comment on the determination of the number of regimes. 

The LR test statistics suggest that two regimes rather than one regime should be used. 

However, the Newman’s ( )C   test statistics is 4.81 for the TGARCH and 4.22 for 

the constant model respectively, both of which are less than their critical values. These 

results contradict with the LR test results and indicating that one regime may be 

proper. The JB statistics for the residuals from one regime model is larger than its 

critical value for the constant model, but smaller for the TGARCH model. However, 

when we use bootstrapping method to establish a population from the residuals and 

then use 500 replications for the JB and 100 replications to test for the number of 

modes in the residuals, these simulation test results give that the residuals are not 

normally distributed. The results from these tests do not agree with each other. Recall 

earlier we find that the transitionally probability in the stable state for the TGARCH 

estimation is not significant from zero at 5% significance level. The inconsistent test 

statistics together with the estimation results made us to be cautious in claiming the 

existence of a second regime in the Singapore exchange market. Further test may be 

needed before drawing any conclusion.  
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We turn now to the identification of the 2 regimes (if two 2 regimes are presented and 

Markov switching models are used). The QPS, GSB and LPS statistics are reported in 

Table 3.20, which all corroborate our observation that regime 1 is the volatile state 

where currency crisis likely to happened and regime 2 is the stable state.   

 

 

Table 3. 19 Singapore: Test for 2 regimes versus 1 regime.  

 
TGARCH     
No. of Regimes Log. Likelihood LR  ( )C   JB 

2 1339.51     
1 1301.29  76.44  4.81  0.26  

     

Constant Variance     
No. of Regimes Log. Likelihood LR  ( )C   JB 

2 1315.34     
1 1283.02  64.64  4.22  18.68  

Note: At 5% significant level, 2
(14) 21.06   2

(11) 19.68  , 2
(2) 5.99   
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Table 3. 20 Singapore: QPS, LPS and GSB test statistics 

(a) 

QPS Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.29940  1.41944  0.39137  1.33942  

MP Plus/minus 1.5 stdevs 0.28456  1.43428  0.28892  1.44187  

MP Plus/minus 2 stdevs 0.28783  1.43101  0.25545  1.47534  

Stable Zone 

MP Plus/minus 1 stdevs 1.41944  0.29940  1.33942  0.39137  

MP Plus/minus 1.5 stdevs 1.43428  0.28456  1.44187  0.28892  

MP Plus/minus 2 stdevs 1.43101  0.28783  1.47534  0.25545  

 

(b) 

LPS Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.43473  1.91435  0.54797  1.85123  

MP Plus/minus 1.5 stdevs 0.38527  1.96382  0.41296  1.98624  

MP Plus/minus 2 stdevs 0.37548  1.97361  0.32758  2.07162  

Stable Zone         

MP Plus/minus 1 stdevs 1.91435  0.43473  1.85123  0.54797  

MP Plus/minus 1.5 stdevs 1.96382  0.38527  1.98624  0.41296  

MP Plus/minus 2 stdevs 1.97361  0.37548  2.07162  0.32758  

 

(c) 

GSB Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.03593  0.83052  0.00322  0.65675  

MP Plus/minus 1.5 stdevs 0.07064  0.97524  0.01175  0.95166  

MP Plus/minus 2 stdevs 0.08234  1.01750  0.03567  1.11509  

Stable Zone 

MP Plus/minus 1 stdevs 0.83052  0.03593  0.65675  0.00322  

MP Plus/minus 1.5 stdevs 0.97524  0.07064  0.95166  0.01175  

MP Plus/minus 2 stdevs 1.01750  0.08234  1.11509  0.03567  
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3.6.6 Empirical analysis for Philippines 

 

Single regime estimates from constant and TGARCH models are reported in Table 

3.21. Actual and fitted MP are portrayed in Figure 3.17. We can observe that for both 

model, GDC and DGDC are not significant from zero, therefore do not have 

significant impact on the market pressure. All other fundamentals and risk variables 

are significant at 95% confidence level. These variables can explain more than 80% of 

the MP in Philippines. Covariance is stationary for TGARCH model, with significant 

asymmetric effect in the conditional volatility. 

 
Table 3. 21 Estimation Results from Single Regime models for Philippines 

 

 Philippine 

 Constant Variance TGARCH 

 Coeff Std Error Signif Coeff Std Error Signif 

1  0.00616  0.00286 0.03200 0.00422 0.00227  0.06350  

2  0.06858  0.00579 0.00000 0.04499 0.00487  0.00000  

3   0.01301  0.01837 0.47930 0.01854 0.01782  0.29830  

4  -0.01792  0.01129 0.11350 -0.02555 0.01068  0.01670  

5  -0.18118  0.03486 0.00000 -0.19104 0.02824  0.00000  

6  0.81748  0.02959 0.00000 0.79753 0.02131  0.00000  

7  -0.01186  0.01422 0.40500 0.00060 0.01705  0.97220  

8  -0.10443  0.01504 0.00000 -0.09378 0.00949  0.00000  

0V     0.00001 0.00000  0.00670  

1V     0.22764 0.04935  0.00000  

3V     0.00988 0.07084  0.88910  

2V     0.71260 0.03825  0.00000  

       
2R  0.8343    0.8232   
2R  0.8308    0.8172   

JB  825.82    33.6678   

Log(L) 1051.27    1117.48   

LR 132.41       

Note: The critical value for 2 (3) 7.81  ,  2 (2) 5.99   
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Figure 3. 17 Actual and fitted value of MP from single regime estimation: Philippines  
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(2) TGARCH(1,1) model 
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Table 3. 22 Parameter estimates and related statistics for Markov Regime Switching models: Philippines 

 
  Panel A   Panel B 

 Constant Variance: Philippines  Threshold GARCH: Philippines 

 Regime 1 (Volatile State) Regime 2 (Stable State)  Regime 1 (Volatile State) Regime 2 (Stable State) 

Variable Coeff Std Error Signif Coeff Std Error Signif  Coeff Std Error Signif Coeff Std Error Signif 
/12 21P P  0.13980  0.05280  0.00807 0.04340 0.01580 0.00586  0.15200 0.01910 0.00000 0.04390 0.00916 0.00000  

1  0.00427  0.00875  0.62517 0.00234 0.00169 0.16516  0.00690 0.00024 0.00000 0.00155 0.00162 0.33901  

2  0.10950  0.01070  0.00000 0.03690 0.00402 0.00000  0.11750 0.02162 0.00000 0.03110 0.00284 0.00000  

3   -0.12660  0.04430  0.00429 0.02460 0.01110 0.02736  0.03110 0.01117 0.00000 0.02070 0.00248 0.00000  

4  0.04000  0.01680  0.01687 -0.02410 0.00655 0.00023  0.01410 0.00094 0.00000 -0.02500 0.00293 0.00000  

5  -0.25480  0.10830  0.01857 -0.21450 0.02330 0.00000  -0.12910 0.00400 0.00000 -0.22890 0.00966 0.00000  

6  0.89530  0.02760  0.00000 0.71610 0.02280 0.00000  0.80910 0.06026 0.00000 0.69810 0.03490 0.00000  

7  -0.18800  0.03510  0.00000 0.00813 0.00978 0.40586  -0.06110 0.00205 0.00000 0.00531 0.00189 0.00497  

8  -0.06600  0.01450  0.00001 -0.12040 0.01170 0.00000  -0.06870 0.00286 0.00000 -0.14050 0.01260 0.00000  

0V  0.00027  0.00004  0.00000 0.00004 0.00000 0.00000  0.00010 0.00001 0.00000 0.00001 0.00000 0.00000  

1V         0.86250 0.05085 0.00000 0.06930 0.01390 0.00000  

2V         -0.07950 0.00528 0.00000 0.69590 0.02300 0.00000  

3V         -0.01700 0.00049 0.00000 0.09470 0.04880 0.05230  

              

  0.2369    0.7631    0.2241   0.7759   

Average Persistence 7.15    23.04    6.58    22.79   

Log(L) 1116.13        1128.47      

LR 24.68              

Note: The critical value for 2 (6) 12.59 
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Figure 3. 18 Actual and fitted value of MP from Markov switching models: Philippines 
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Figure 3. 19 Market Pressure and Probability of volatile state for Philippines 
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Table 3.22 reports the estimates from 2 regimes Markov Switching constant and 

TGARCH models for Philippines. In the constant model, we found that RM2 is not 

significant in both states, and DGDC is not significant in stable state. All variables are 

significant in the TGARCH switching model expect RM2 in the stable regime. 

Markov Switching TGARCH model is covariance stationary in every regime.  

 

For the Markov switching models, the transitional probabilities are significantly 

different from zero at 95% significant level. The average persistence of volatile and 

stable state both reduces under the TGARCH modelling specification than under the 

constant modelling specification. The unconditional probability of being in the stable 

state is more than 75%.  

 

Figure 3.18 graphs the actual and fitted MP and the residuals for the Markov 

Switching models with constant variance and with TGARCH conditional variance. 

Still, the fitted MP tracks the MP very well, indicating the explanatory power of the 

fundamental variables. But we can not tell which model perform better only through 

the graphs. For the information on 1 v.s. 2 regimes, the LR and Newman’s ( )C   test 

statistics reported in Table 3.23 give contradicting results. JB statistics and 

bootstrapping methods for the residuals from 1 regime estimates show that the 

residuals are not normally distributed, which support the 2 regimes rather than a 

single regime should be modelled.  
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Figure 3.19 presents market pressure the inferred probability of volatile state and with 

presumed crisis band. TGARCH model detects the currency crisis one month before 

the high market pressure took place in July 1997, however, the constant model only 

detect the currency crisis one month later after. For the identification of the 2 regimes, 

The QPS, GSB and LPS statistics are reported in Table 3.24. All these statistics 

clearly indicate that regime 1 is the volatile state for Philippines. 

 

 

Table 3. 23 Philippines: Test for 2 regimes versus 1 regime.  

 
TGARCH     
No. of Regimes Log. Likelihood LR  ( )C   JB 

2 1128.47     
1 1106.16  44.63  20.38  31.75  

     

Constant Variance     
No. of Regimes Log. Likelihood LR  ( )C   JB 

2 1116.13     
1 1040.61  151.05  15.51  824.29  

Note: At 5% significant level, 2
(14) 21.06   2

(11) 19.68  , 2
(2) 5.99   
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Table 3. 24 Philippines: QPS, LPS and GSB test statistics 

(a) 

QPS Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.29940  1.41944  0.27935  1.33273  

MP Plus/minus 1.5 stdevs 0.28456  1.43428  0.24034  1.37174  

MP Plus/minus 2 stdevs 0.28783  1.43101  0.24467  1.36741  

Stable Zone 

MP Plus/minus 1 stdevs 1.41944  0.29940  1.33273  0.27935  

MP Plus/minus 1.5 stdevs 1.43428  0.28456  1.37174  0.24034  

MP Plus/minus 2 stdevs 1.43101  0.28783  1.36741  0.24467  

 

(b) 

LPS Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.43473  1.91435  0.39784  1.79395  

MP Plus/minus 1.5 stdevs 0.38527  1.96382  0.32635  1.86545  

MP Plus/minus 2 stdevs 0.37548  1.97361  0.32003  1.87177  

Stable Zone         

MP Plus/minus 1 stdevs 1.91435  0.43473  1.79395  0.39784  

MP Plus/minus 1.5 stdevs 1.96382  0.38527  1.86545  0.32635  

MP Plus/minus 2 stdevs 1.97361  0.37548  1.87177  0.32003  

 

 

 

(c) 

GSB Constant Variance TGARCH 

  Regime 1 Regime2 Regime 1 Regime2 

Volatile Zone 

MP Plus/minus 1 stdevs 0.03593  0.83052  0.03214  0.84936  

MP Plus/minus 1.5 stdevs 0.07064  0.97524  0.06528  0.99565  

MP Plus/minus 2 stdevs 0.08234  1.01750  0.07654  1.03834  

Stable Zone 

MP Plus/minus 1 stdevs 0.83052  0.03593  0.84936  0.03214  

MP Plus/minus 1.5 stdevs 0.97524  0.07064  0.99565  0.06528  

MP Plus/minus 2 stdevs 1.01750  0.08234  1.03834  0.07654  
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3.6.7 Comparison and summarisation of the empirical results of the six 

Asian countries  

 

Now we turn to compare and summarise the empirical results of the six Asian 

countries. For all six countries, we find that most of the explanatory variables are 

significant in their levels and their first differences. The domestic credit growth, in its 

level and in its first difference, has the highest frequency of being insignificant. 

Moreover, the signs on the GDC variables violate the theoretical expectation quite 

often. Although domestic credit growth is a very important factor in the first and 

second generation models for currency crisis, the empirical results in these six Asian 

countries are not supportive. Another variable, Risk, in its level and in its first 

difference, also frequently have a sign do not match the theoretical anticipation. The 

RER variable is always significant in the stable state for all six countries, and mostly 

significant in the volatile state except that in the Markov switching constant model for 

Korea and Malaysia. RER always has a positive sign, and has larger impact in the 

volatile state than in the stable state, with the only exception in the volatile state of 

Thailand using constant model.  

 

The covariance structure in the Markov Switching TGARCH model is always 

stationary for all six countries. In most cases, the asymmetric effect in the conditional 

volatility is significant. For all the countries except Malaysia, the LR test statistics 

reject the null hypothesis that parameters on the conditional variance are jointly zero. 
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The TGARCH specification for the conditional variance in the Markov Switching 

model should not be restricted to zero.  

 

For Thailand, Indonesia, Malaysia and Philippines, the average persistence of volatile 

state is lower in the TGARCH model than in the constant model, so as that of the 

stable state. For Singapore, the TGARCH model reduces the average persistence of 

stable state but not that of the volatile state; and it is the opposite for Korea. In general, 

the TGARCH modelling specification tends to reduce the average persistence of 

either state.  

 

All the Markov Switching models can correctly detect the currency crisis in 1997, as 

depicted in the market pressure and inferred probability of volatile state figures. 

However, it is hard to justify from the figures which model, TGARCH or Constant, is 

superior in tracking and detecting currency crisis. We provide further prediction 

evaluation for the Markov Switching TGARCH and Constant Variance models.  

 

Assume that the trigger point for a currency attack is ( ) * ( )t tmean MP a std MP . 

When the inferred probability p* > 0.5 and at the same time  

( ) * ( )t t tMP mean MP a std MP   or ( ) * ( )t t tMP mean MP a std MP     

the observation is assigned a value one to indicate that the crisis is correctly predicted 

at the time. Similarly, when the inferred probability of stable state is bigger than 0.5, 

which is equivalent to that (1-p*)>0.5, and at the same time 
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( ) * ( ) ( ) * ( )t t t t tmean MP a std MP MP mean MP a std MP      

We assume a non-crisis state is correctly predicted at the time. Because as the value of 

a change, the predictive power of the model may change, we set a to equal to different 

values (1.5, 1 and 2) for evaluation purpose. The actual and correctly predicted total 

number of crisis and non-crisis state using Markov Switching TGARCH and Constant 

Variance models are listed in Table 3.25 (1) to (3), for 1.5a  , 1a   and 2a   

respectively. Then the percentages of correct predictions are calculated.  

 

From Table 3.25, we found that the “percentage correct” for non-crisis (stable) state is 

higher than for the crisis (or volatile) state, using both constant variance and 

TGARCH models, in all the six countries. When a=1.5, the correct percentage of the 

non-crisis state is higher than when a=2 but lower than when a=1. In contrast, for the 

correct prediction of crisis state, it is highest when a=2 and lowest when a=1, with 

when a=1.5 lies in between. We also find that the TGARCH Markov switching 

models give better results in focusing non-crisis status and constant model is 

somewhat superior in focusing the crisis status. In any case, the correct percentage of 

prediction for the currency crisis is low. When a=1.5 , the regime switching models 

for Philippines give the highest correct percentage in predicting crisis, with 63.16% 

under the TGARCH and 84.21% under the constant variance specifications; whilst the 

models give the lowest correct prediction percentage of crisis for Thailand, with only 

29.17% under the constant model. The performance of TGARCH and constant models 

are mixed, we can not claim one is absolutely superior than the other in explaining 
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and predicting exchange market pressure, albeit we claimed earlier, by considering the 

LR statistics, that the asymmetric GARCH specification in the conditional volatility 

of the Markov Switching models should not be restricted to constant.
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Table 3. 25 Markov Switching Models Crisis Prediction Evaluation 

 
(1) a=1.5 
 

 Markov Switching Models 

 TGARCH  Constant Variance 

   Percentage   Percentage

 Actual Predicted Correct Actual Predicted Correct 

Korea 

No Crisis 321 314 97.82  321 301 93.77  

Crisis 13 7 53.85  13 8 61.54  

Sum 334 321 96.11  334 309 92.51  

       

Indonesia 

No Crisis 303 288 95.05  303 285 94.06  

Crisis 31 15 48.39  31 18 58.06  

Sum 334 303 90.72  334 303 90.72  

       

Thailand 

No Crisis 312 280 89.74  312 299 95.83  

Crisis 22 13 59.09  22 8 36.36  

Sum 334 293 87.72  334 307 91.92  

       

Malaysia 

No Crisis 310 269 86.77  310 256 82.58  

Crisis 24 13 54.17  24 16 66.67  

Sum 334 282 84.43  334 272 81.44  

       

Singapore 

No Crisis 295 256 86.78  295 279 94.58  

Crisis 39 18 46.15  39 21 53.85  

Sum 334 274 82.04  334 300 89.82  

       

Philippines 

No Crisis 315 266 84.44  315 260 82.54  

Crisis 19 12 63.16  19 16 84.21  

Sum 334 278 83.23  334 276 82.63  
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(2) a=1 
 

 Markov Switching Models 

 TGARCH  Constant Variance 

   Percentage   Percentage

 Actual Predicted Correct Actual Predicted Correct 

Korea 

No Crisis 296 292 98.65  296 282 95.27  

Crisis 38 10 26.32  38 14 36.84  

Sum 334 302 90.42  334 296 88.62  

       

Indonesia 

No Crisis 275 264 96.00  275 264 96.00  

Crisis 59 19 32.20  59 25 42.37  

Sum 334 283 84.73  334 289 86.53  

       

Thailand 

No Crisis 286 265 92.66  286 279 97.55  

Crisis 48 24 50.00  48 14 29.17  

Sum 334 289 86.53  334 293 87.72  

       

Malaysia 

No Crisis 288 255 88.54  288 242 84.03  

Crisis 46 21 45.65  46 24 52.17  

Sum 334 276 82.63  334 266 79.64  

       

Singapore 

No Crisis 256 228 89.06  256 247 96.48  

Crisis 78 29 37.18  78 28 35.90  

Sum 334 257 76.95  334 275 82.34  

       

Philippines 

No Crisis 297 252 84.85  297 249 83.84  

Crisis 37 16 43.24  37 23 62.16  

Sum 334 268 80.24  334 272 81.44  
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(3) a=2 
 

 Markov Switching Models 

 TGARCH  Constant Variance 

   Percentage   Percentage

 Actual Predicted Correct Actual Predicted Correct 

Korea 

No Crisis 326 317 97.24  326 305 93.56  

Crisis 8 5 62.50  8 7 87.50  

Sum 334 322 96.41  334 312 93.41  

       

Malaysia 

No Crisis 323 276 85.45  323 262 81.11  

Crisis 11 7 81.82  11 9 81.82  

Sum 334 283 84.73  334 271 81.14  

       

Thailand 

No Crisis 318 284 89.31  318 305 95.91  

Crisis 16 11 68.75  16 8 50.00  

Sum 334 295 88.32  334 313 93.71  

       

Indonesia 

No Crisis 317 297 93.69  317 292 92.11  

Crisis 17 10 58.82  17 11 64.71  

Sum 334 307 91.92  334 303 90.72  

       

Singapore 

No Crisis 314 267 85.03  314 291 92.68  

Crisis 20 10 50.00  20 14 70.00  

Sum 334 277 82.93  334 305 91.32  

       

Philippines 

No Crisis 320 269 84.06  320 262 81.88  

Crisis 14 10 71.43  14 13 92.86  

Sum 334 279 83.53  334 275 82.34  
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3.7 The Multinomial Logit Estimation 

 

3.7.1 Methodology 

 

The Binary Logit/Probit regressions have been widely used to examine currency 

crises. Such are referred to as the discrete-dependent-variable approaches. In these 

approaches, it normally involves converting the exchange market pressure index 

(which is used as the currency crises indicator) into a binary variable. Currency crisis 

is occurring when market pressure is bigger than a threshold value, which is often 

defined as the mean of market pressure plus a times it’s standard deviation. Thus the 

binary dependent variable tY  is often defined as: 

1    if  ( ) * ( )

0   otherwise
t

t

MP mean MP a Std MP
Y

 
 


 

The crisis index tY  is explained by a set of independent variable tX  includes 

fundamental variables like RM2, RER, and GDC, Risk, etc. The aim of the model is 

to estimate the impact of the indicators tX  on the probability of experiencing a 

crisis.  

 

The logit model is defined using a logistic distribution: 

exp( )
( 1) ( )

1 exp( )
t

t t
t

X
prob Y X

X

 


   


                         (3.54) 

Where (.)  indicates the logistic cumulative distribution function.  

The link function follows a linear regression: 
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t tY X                                                        (3.52) 

In our study, it can be written as  

0 1 1 2 1 3 1 4 1
( ) ( ) ( ) ( ) ( ) ( )

5 6 7 8
( ) ( ) ( ) ( ) ( ) ( )

2

2

t t t t t
or or

t t t t t
or or

Y RM RER GDC Risk

DRM DRER DGDC DRisk

    

    

   
     

     

    

    
            (3.53) 

 

The probit model is defined as 

( 1) ( )t tprob Y X                                          (3.55) 

(.) the cumulative distribution function of the standard normal distribution 

 

There are some defects of the Binary Logit/Probit models. One drawback is that, 

using the above settings, they can only detect if there is currency crisis triggered by 

currency depreciation. However, as we claimed earlier, the 2 regimes Markov 

Switching models in our study can be used to detect not only the depreciation but also 

the appreciation currency attacks. To overcome this obvious shortcoming of Binary 

Logit/Probit models, Multinomial models are used to study the MP and compared 

with the estimation results from the Markov Switching models.  

 

The Multinomial Logit model is used rather than the Multinomial Probit models 

because it is more appropriate for our data. Hahn and Soyer (2005) suggest that Logit 

provides a better fit in the presence of extreme independent variable levels and 

conversely that Probit better fit random effects models with moderate data sets. 

Finney (1952) suggests using the Logit over the Probit transformation when data are 

http://en.wikipedia.org/wiki/Cumulative_distribution_function�
http://en.wikipedia.org/wiki/Normal_distribution�
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not normally distributed. Maddala (1992) shows that in the case of disproportionate 

sampling in two binary groups, i.e., very few response ( 1tY  , tY  defined below) or 

very few non-response ( 0tY  ), the Logit coefficients model is not affected. However, 

Probit model is not valid in estimating the disproportionate sample. In our case, there 

are very few observations where 1tY  , Logit mode is a proper choice.  

 

The Multinomial Logit (Mlogit) model is a straightforward extension of the Binary 

Logit model. Suppose dependent variable has M+1 categories. One value (typically 

the first, the last or the value with the highest frequency of the dependent variable) is 

designated as the reference category. The probability of membership in other 

categories is compared to the probability of membership in the reference category.  

 

For a dependent variable with M+1 categories, this requires the calculation of M 

equations, or for each category relative to the reference category, to describe the 

relationship between dependent variable and the independent variables.  

 

Hence, if the first category is the reference, then, for m= 1, …, M 

1

( )

( 0)

K
i

m mk ik mi
ki

P Y m
In a b X Z

P Y 


  

                             (3.56) 

Hence, for each category, there will be M predicted log odds, one for each category 

relative to the reference category. The probability is a little more complicated than it 

was in logistic regression. For m=1,…,M 
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                                 (3.57) 

For the reference category 

1

1
Pr( 0)

1 exp( )
i M

hi
h

Y
Z



 


                                  (3.58) 

 

For our estimation of currency crises, we assume there are three categories, namely, 

the stable state, depreciation state and appreciation state. The stable state is used as 

the reference/base state, and the other two states are in a volatile state as defined in the 

Markov Switching models. 

 

Hence the Mlogit model can be written as 

,

1      if ( ) * ( )

2      if ( ) * ( )

0      otherwise

t t t

i t t t t

MP mean MP a std MP

Y MP mean MP a std MP

 
  



                  (3.59) 

The probabilities for each category is 

1 1 2 2, ( ) ( )

1
Pr( 0)

1 t ti t X XY
e e     

 
                            (3.60) 
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3.7.2 Estimation results for Multinomial Logit Models  

 

The Multinomial Logit models estimation results, when a=1.5, are reported in Table 

3.26. The estimation results for Mlogit models when a=1 and a=1.5 are available 

upon request. For the multinomial estimations of the six countries, we find that more 

than half the estimated parameters are statistically not significantly different from zero, 

for all the six countries; and signs on the GDC, DGDC, Risk and DRisk variables are 

not always matching anticipation. Nonetheless, we find the Mlogit model with these 

fundamental and risk factors as explanatory variables can describe the market pressure 

and detecting crisis well, as shown below.  

 

One objective is to evaluate the ability of the Logit model in predicting a crisis 

correctly based on a specified prediction rule. Here we use the conventional cut-off 

rule of a probability of 0.5 or 50%. The “correct” predictions of state 1, the high 

market pressure (i.e. the depreciation currency attacks/crisis) are obtained when the 

predicted probability ˆ( 1) ( )t tprob Y X   
)

 is larger than 0.5 and the observed 

1tY  . Similar, the “correct” predictions for state 2, (i.e., the appreciation currency 

attacks/crisis) are obtained when the predicted probability ˆ( 2) ( )t tprob Y X   
)

 is 

larger than 0.5 and the observed 2tY  . The “correct” predictions for State 0, or 

stable non-crisis state, follow the same mechanism. These are reported in Table 3.26 

(1) to (3), for a=1.5, 1 and 2 respectively. Comparing with the results obtained from 

Markov Switching models in Table 3.25 (1) to (3), we can observe that the Mlogit 
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model gives overall better prediction for the market pressures than the Markov 

switching models. Our results do not provide evidence that 2 regimes switching 

models are better for the modelling currency crisis than the Logit models, as claimed 

in other literature (e.g. Ford, et al 2007). One argument is that we use 3 states in the 

Logit model but only 2 in the Markov Switching model. Using 3 regimes in the 

Markov Switching model may improve the results.  

 

Figure 3.20 (1) to (6) charts the predicated probabilities and market pressure dummies. 

The upper halves of the graphs are the predicted probabilities of a crisis generated by 

the Mlogit model, and the lower halves graph the timing of crises according to the 

market pressure dummy. When the upper halves graphs the predicted probability of 

being in state 1 (predicated occurrence of depreciation crises), the lower halves of the 

figures mark the timing of the depreciation crisis, i.e., 

( ) 1.5* ( )tMP mean mp Std MP  . When the upper halves graphs the predicted 

probability of being in state 2 (predicated occurrence of appreciation crises), the lower 

halves of the figures mark the timing of the depreciation crisis, i.e., 

( ) 1.5* ( )tMP mean mp Std MP  . From the figure for the four countries, we can 

conclude the Mlogit model does provide a good explanation of cause and timing of 

the crises, especially for the depreciating currency crises. When come to explaining 

the appreciating market pressures, the model do not give as good results as explaining 

the depreciating currency attacks. 
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Table 3. 26 Parameter Estimates and Related Statistics for Multinomial Logit models 

 
 Korea  Indonesia 

 Coefficient Std.Error t-prob  Coefficient Std.Error t-prob

State (1)    

1  -20.9376  17.6300 0.2360  -14.0711 5.4460  0.0100 

2  9.2472  11.8000 0.4340  6.9461 2.1260  0.0010 

3   -77.7059  73.0000 0.2880  15.7203 7.2640  0.0310 

4  -1.1779  23.9700 0.9610  12.6292 4.9330  0.0110 

5  -207.4140  125.0000 0.0980  -45.1566 15.2200  0.0030 

6  134.2930  62.4700 0.0320  20.5874 10.6200  0.0530 

7  -8.9432  33.9600 0.7920  -5.2047 4.2510  0.2220 

8  -18.9671  36.5700 0.6040  -13.1312 7.3510  0.0750 

State (2)    

1  -2.3140  11.0800 0.8350  -11.1159 5.1710  0.0320 

2  0.1317  6.5350 0.9840  0.5990 1.9530  0.7590 

3   146.1340  117.8000 0.2160  -3.3944 7.2200  0.6390 

4  39.5459  40.6600 0.3320  1.9444 3.6030  0.5900 

5  461.4340  246.0000 0.0620  93.7569 23.6800  0.0000 

6  -235.5530  106.7000 0.0280  -46.0423 11.7300  0.0000 

7  -85.3047  64.8800 0.1890  -2.9408 6.1790  0.6340 

8  42.5171  26.4000 0.1080  10.5506 5.0160  0.0360 

    

log-likelihood -16.4044   -64.8263  

zeroline log-lik -71.7509   -130.9684  

Test: Chi^2( 16) 110.69   132.28  

AIC 68.8087   165.6525  

AIC/T 0.2036   0.4901  

Note: The critical value for 2 (16) 26.30   
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Table 3.26 continued: 

 

 Thailand  Malaysia 

 Coefficient Std.Error t-prob  Coefficient Std.Error t-prob

State (1)    

1  -89.8642  44.3600 0.0440  -36.7083 8.4250  0.0000 

2   -1.93463  9.3220 0.8360  16.6959 7.6000  0.0290 

3   -52.6395  90.7700 0.5620  -34.3530 26.8700  0.2020 

4  30.4145  31.2800 0.3320  -2.0497 10.9400  0.8510 

5  -163.0070  146.0000 0.2650  -201.6810 61.7100  0.0010 

6  627.2510  331.3000 0.0590  195.3750 50.1600  0.0000 

7  -202.4310  136.4000 0.1390  0.5644 22.0800  0.9800 

8  -20.0897  34.0900 0.5560  -6.3652 16.0200  0.6910 

State (2)    

1  -33.4229  6.3580 0.0000  -30.6169 7.3970  0.0000 

2  -19.4058  8.6420 0.0250  -10.3613 7.3920  0.1620 

3   -100.7980  51.8600 0.0530  -5.5259 15.1900  0.7160 

4  -7.9427  16.9600 0.6400  -37.3219 22.5700  0.0990 

5  38.4748  52.4200 0.4640  -0.0312 56.4200  1.0000 

6  -175.1770  46.2100 0.0000  -73.6461 42.3100  0.0830 

7  39.1766  42.5800 0.3580  2.0332 9.6160  0.8330 

8  15.3195  18.8600 0.4170  147.9890 54.4700  0.0070 

    

log-likelihood -26.6217   -33.6451  

zeroline log-lik -371.3310   -371.3310  

Test: Chi^2( 16) 689.42   675.37  

AIC 85.2434   99.2901  

AIC/T 0.2522   0.2938  

Note: The critical value for 2 (16) 26.30   
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Table 3.26 continued: 

 

 Singapore  Philippines 

 Coefficient Std.Error t-prob  Coefficient Std.Error t-prob

State (1)    

1  -21.3109  7.9050 0.0070  -29.5624 6.7710  0.0000 

2  45.5617  18.4300 0.0140  -0.2455 5.7820  0.9660 

3   -26.2597  40.3000 0.5150  -28.2019 25.3800  0.2670 

4  120.3760  59.7000 0.0450  24.5317 10.4200  0.0190 

5  -49.4505  72.1500 0.4940  54.0947 31.3800  0.0860 

6  447.7180  180.4000 0.0140  155.0430 43.4600  0.0000 

7  -14.4528  18.8400 0.4440  -2.0390 17.4900  0.9070 

8  -135.0380  55.6400 0.0160  -27.3876 10.7000  0.0110 

State (2)    

1  -6.6467  1.1870 0.0000  -21.0370 4.3300  0.0000 

2  -9.4092  5.9310 0.1140  -14.2625 5.6460  0.0120 

3   -4.4800  16.8100 0.7900  4.4503 23.0400  0.8470 

4  -52.2844  21.9700 0.0180  73.3318 23.0800  0.0020 

5  64.9997  32.6900 0.0480  20.6464 26.8300  0.4420 

6  -262.4630  56.9500 0.0000  -206.5900 54.5900  0.0000 

7  16.5257  14.8800 0.2670  5.7050 22.6000  0.8010 

8  43.9516  26.7900 0.1020  -48.5689 17.0900  0.0050 

    

log-likelihood -37.8523   -33.5652  

zeroline log-lik -371.3310   -371.3310  

Test: Chi^2( 16) 666.96   675.53  

AIC 107.7047   99.1305  

AIC/T 0.3187   0.2933  

Note: The critical value for 2 (16) 26.30   
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Table 3. 27 Crisis Prediction Evaluation for Multinomial Logit Models 

 
(1) a=1.5 
 

 Korea 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 322 0 1 323 0.9969  

State 1 2 5 0 7 0.7143  

State 2 2 0 6 8 0.7500  

Sum pred 326 5 7 338 0.9852  

 Indonesia 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 300 2 3 305 0.9836  

State 1 8 8 0 16 0.5000  

State 2 9 0 8 17 0.4706  

Sum pred 317 10 11 338 0.9349  

Thailand 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 314 1 1 316 0.9937  

State 1 1 12 0 13 0.9231  

State 2 3 0 6 9 0.6667  

Sum pred 318 13 7 338 0.9822  

 Malaysia 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 310 3 1 314 0.9873  

State 1 5 12 0 17 0.7059  

State 2 3 0 4 7 0.5714  

Sum pred 318 15 5 338 0.9645  

 Singapore 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 294 2 3 299 0.9833  

State 1 3 15 0 18 0.8333  

State 2 8 0 13 21 0.6190  

Sum pred 305 17 16 338 0.9527  

 Philippines 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 311 4 4 319 0.9749  

State 1 3 10 0 13 0.7692  

State 2 3 0 3 6 0.5000  

Sum pred 317 14 7 338 0.9586  
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(2) a=1 
 

 Korea 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 286 2 10 298 0.9597  

State 1 7 11 0 18 0.6111  

State 2 10 0 12 22 0.5455  

Sum pred 303 13 22 338 0.9142  

 Indonesia 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 268 4 5 277 0.9675  

State 1 12 21 0 33 0.6364  

State 2 11 0 17 28 0.6071  

Sum pred 291 25 22 338 0.9053  

 Thailand 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 283 2 3 288 0.9826  

State 1 6 16 0 22 0.7273  

State 2 17 0 11 28 0.3929  

Sum pred 306 18 14 338 0.9172  

 Malaysia 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 281 3 7 291 0.9656  

State 1 3 22 0 25 0.8800  

State 2 12 0 10 22 0.4545  

Sum pred 296 25 17 338 0.9260  

 Singapore 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 248 6 6 260 0.9538  

State 1 14 24 0 38 0.6316  

State 2 16 0 24 40 0.6000  

Sum pred 278 30 30 338 0.8757  

 Philippines 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 290 4 6 300 0.9667  

State 1 6 13 1 20 0.6500  

State 2 14 0 4 18 0.2222  

Sum pred 310 17 11 338 0.9083  
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(3) a=2 
 

 Korea 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 329 0 0 329 1.0000  

State 1 1 4 0 5 0.8000  

State 2 1 0 3 4 0.7500  

Sum pred 331 4 3 338 0.9941  

 Indonesia 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 318 1 2 321 0.9907  

State 1 6 5 0 11 0.4545  

State 2 3 0 3 6 0.5000  

Sum pred 327 6 5 338 0.9645  

 Thailand 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 320 1 1 322 0.9938  

State 1 1 9 0 10 0.9000  

State 2 1 0 5 6 0.8333  

Sum pred 322 10 6 338 0.9882  

 Malaysia 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 326 1 0 327 0.9969  

State 1 3 5 0 8 0.6250  

State 2 1 0 2 3 0.6667  

Sum pred 330 6 2 338 0.9852  

 Singapore 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 313 1 3 317 0.9874  

State 1 1 8 0 9 0.8889  

State 2 4 0 8 12 0.6667  

Sum pred 318 9 11 338 0.9734  

 Philippines 

 State 0 State 1 State 2 Sum actual correct prob 

State 0 319 3 2 324 0.9846  

State 1 1 10 0 11 0.9091  

State 2 3 0 0 3 0.0000  

Sum pred 323 13 2 338 0.9734  

 



 384

Figure 3. 20 Multinomial Logit models: Market pressure and Probability of Crisis 
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(2) Indonesia 
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(3) Thailand 
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(4) Malaysia 
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(5) Singapore 
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(6) Philippines 
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3.8 Conclusion 

 

3.8.1 Summary of results 

 

This study examines the power of the conventional macroeconomic factors to explain 

the 1997-98 Asia currency crises in six countries, namely, Korea, Malaysia, Thailand, 

Indonesia, Singapore and Philippines, based on the Markov Switching models. Two 

types of Markov switching modelling specifications were examined. One is to assume 

that the conditional variance of market pressure follows an asymmetric GARCH 

process. The other one is to assume the conditional variance of market pressure is 

constant. We can conclude that the Markov Switching specifications have several 

advantages: (1) they can explain the appreciating currency attacks as well as 

depreciating currency attacks; (2) by allowing regression parameters to switch 

between different regimes, they mimic the existence of multiple equilibria relations, 

(3) not like Logit/Probit models which require an ex-ante definition of a threshold 

value to distinguish stable and volatile state, they can supply us with such 

information.  

 

In this study, we model the economy having two regimes, namely, stable state and 

volatile state. Different from other studies using Markov switching framework in 

modelling currency crises, we provide tests to congregate which regime relate to 

which state. The tests we employ include the quadratic probability score (QPS) test, 
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the log probability score (LPS) test and the Global squared bias (GSB) tests. These 

statistics measures the accuracy of the probabilities in forecasting the current state. 

Although the state of a regime can be readily identified in a 2-regime model through 

graphing the inferred probability of being in a certain state against MP, it is not the 

case where there are more than two regimes. These statistics can then be very helpful 

for detecting regimes in those situations.  

 

Another distinct feature of our study is that we use a more reliable statistics to test for 

the number of regimes (1 regime versus 2 regimes). The convention likelihood ratio 

test for the same purpose is argued to be questionable because of the problems poised 

by the presence of nuisance parameters and the parameter boundary problem. The 

Neyman’s ( )C  test we employed, however, is design to rectify such problems. 

Moreover, we test 1 versus more than 1 regimes by accessing whether the residuals 

from one regime models estimation are non-normally distributed which may result 

from the distortion of the existence of other regimes. Bootstrapping methods are used 

for such purpose.  

 

The empirical estimates from Markov Switching models give credence to the view 

that fundamental variables can still explain the market pressure on the behaviour of 

the exchange rate and the Asian currency crises. In these models, the majority of those 

macroeconomic fundamental variables are significant at 5% significant level. Thus we 

believe the crises are not purely self-fulfilling phenomena; detrimental of economic 
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fundamentals do have some impact on the trigging of currency crises. Different from 

previously studies on Asian financial crises, we find that the real growth of domestic 

credit is not a powerful indicator for currency crises in Asia. The inferred probabilities 

for the presence of a volatile state that estimated from the Markov switching models 

have substantial informative content in explaining the Asian currency crises in 1997. 

We can observe that at, or close to, the time of the currency crises attacks, the filtered 

probability increase significantly. 

 

Our results show that, although Markov Regime Switching TGARCH model is by and 

large more favourable than the Markov Regime Switching constant model, it is not 

necessary always the case. Multinomial Logit model is also examined for its ability to 

predict currency crisis. We find that the Mlogit model performs better in predicting 

depreciating currency attacks than in predicting the appreciating ones.  

 

 

3.8.2 Further Research 

 

This study may be extended in two ways. First, this study is based on the first and 

second generation currency crises theory. It may be extended by including factors that 

capture the deficiencies of banking and financial sectors — the “third generation” 

currency crisis model. Financial deregulations, inadequate supervisory, together with 

credit market imperfections or distortions that take the form of explicit or implicit 
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government bailout guarantees can create moral hazard. Such financial instability 

raise largely through a bank channel mechanism might create or encourage a currency 

crisis. Example indicators for the possible role of the bank lending channel and 

financial fragility include: the ratio of foreign currency denominated assets to total 

assets, the ratio of foreign currency denominated liabilities to total liabilities, the ratio 

of non-performing banking loans to total credit grant.  

 

Another extension can be made by assuming three regimes. As we mentioned before, 

extreme high exchange market pressure and extreme low exchange market pressure 

can both trigger currency attacks and currency crisis. Instead of using two regimes 

Markov Switching model, we can experiment with three regimes Markov Switching 

model to capture the three possible states in exchange market: an appreciating regime 

(possible “speculative”), a stable regime, and a depreciating regime (possible 

“speculative”). The latter would be regarded as a text book currency attack, but the 

first regime could also be observed in the market.  
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Appendix 3.A Data Analysis and Descriptive Statistics for MP and it’s 
determinants 
Figure 3.A 1 MP and its components for Korea 
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Figure 3.A 2 MP and its components for Indonesia 
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Figure 3.A 3 MP and its components for Thailand 
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Figure 3.A 4 MP and its components for Malaysia 
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Figure 3.A 5 MP and its components for Singapore 
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Figure 3.A 6 MP and its components for Philippines 
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Table 3.A 1 Descriptive Statistics of MP and its determinants for Korea 

 

 MP RM2 RER GDC RISK DRM2 DRER DGDC DRISK 

 Mean -0.0010 0.1997  0.0064 0.0085 -0.0232 0.0008 0.0002  0.0000  -0.0003 

 Median -0.0016 0.1639  0.0078 0.0083 -0.0250 0.0011 -0.0004  0.0020  -0.0005 

 Maximum 0.2965 0.4158  0.6395 0.0920 0.3190 0.0373 0.3379  0.0589  0.2309 

 Minimum -0.1314 0.0660  -0.2009 -0.0358 -0.2746 -0.0380 -0.1019  -0.0983  -0.4956 

 Std. Dev. 0.0265 0.0990  0.1120 0.0147 0.0420 0.0092 0.0271  0.0209  0.0435 

 Skewness 4.2794 0.6368  1.5846 0.6229 0.8056 0.0377 5.7596  -0.8073  -4.1564 

 Kurtosis 53.3446 2.2499  9.3565 6.5914 20.4000 5.5499 76.0838  5.0795  58.1133 

    

 ADF -11.3045 0.4326  -2.7161 -18.5105 -7.3707 -17.6239 -12.6155  -12.8100  -12.3886 

 KPSS 0.1258 1.8239  0.2201 0.2235 0.3773 0.3255 0.0333  0.0835  0.1543 

Note: Critical value for ADF test: 1% level, -3.45; 5% level, -2.87 and 10% level, -2.57 

Critical value for KPSS test: 1% level, 0.739; 5% level, 0.463 and 10% level, 0.347. 

 

 

Table 3.A 2 Correlation of MP and its determinants for Korea 

 

 MP RM2 RER GDC RISK DRM2 DRER DGDC DRISK 

MP 1.0000 -0.0942  0.2125 0.0942 0.0466 -0.1044 0.8491  -0.0538  -0.5102 

RM2 -0.0942 1.0000  -0.3319 -0.0965 -0.0208 0.1132 -0.0153  0.0029  0.0027 

RER 0.2125 -0.3319  1.0000 0.0585 -0.2119 0.0456 0.1168  -0.0330  -0.1417 

GDC 0.0942 -0.0965  0.0585 1.0000 0.2123 -0.3428 0.0879  0.7098  0.0977 

RISK 0.0466 -0.0208  -0.2119 0.2123 1.0000 -0.2332 0.0857  0.1693  0.5002 

DRM2 -0.1044 0.1132  0.0456 -0.3428 -0.2332 1.0000 0.1491  -0.2170  -0.3370 

DRER 0.8491 -0.0153  0.1168 0.0879 0.0857 0.1491 1.0000  -0.0818  -0.5376 

DGDC -0.0538 0.0029  -0.0330 0.7098 0.1693 -0.2170 -0.0818  1.0000  0.2395 

DRISK -0.5102 0.0027  -0.1417 0.0977 0.5002 -0.3370 -0.5376  0.2395  1.0000 

 

 

Table 3.A 3 Descriptive Statistics of MP and its determinants for Indonesia 

 

 MP RM2 RER GDC RISK DRM2 DRER DGDC DRISK 

 Mean 0.0001 0.2632  0.0565 0.0088 -0.0786 -0.0005 -0.0009  0.0002  -0.0003 

 Median -0.0032 0.2636  0.0120 0.0099 -0.0880 -0.0006 -0.0028  0.0026  0.0003 

 Maximum 0.2220 0.5392  1.2151 0.7021 0.6183 0.2019 0.5949  0.7669  0.5855 

 Minimum -0.1038 0.1038  -0.2330 -0.7415 -0.7674 -0.1030 -0.2885  -0.6789  -0.9617 

 Std. Dev. 0.0387 0.0920  0.1895 0.0758 0.1175 0.0236 0.0612  0.1099  0.0970 

 Skewness 1.7532 0.6485  2.8719 -0.8686 -0.4439 1.8271 2.8448  0.1699  -2.5652 

 Kurtosis 10.8483 3.1072  15.0488 51.9259 11.6911 21.6090 36.7608  23.2127  40.5175 

    

 ADF -15.1216 -3.2887  -3.6416 -23.6077 -3.0494 -20.2153 -15.2654  -15.2388  -15.6839 

 KPSS 0.1323 0.3595  0.3440 0.2211 0.6376 0.3126 0.0214  0.2492  0.0382 
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Table 3.A 4 Correlation of MP and its determinants for Indonesia 

 

 MP RM2 RER GDC RISK DRM2 DRER DGDC DRISK 

MP 1.0000 -0.0236  0.2928 0.1890 0.1272 0.0089 0.6133  0.0878  -0.3773 

RM2 -0.0236 1.0000  0.1868 -0.0926 0.1218 0.0952 -0.0029  0.0093  -0.1325 

RER 0.2928 0.1868  1.0000 -0.0269 -0.2428 0.1724 0.1616  -0.0037  -0.2496 

GDC 0.1890 -0.0926  -0.0269 1.0000 0.0382 0.0138 0.2057  0.7239  -0.1423 

RISK 0.1272 0.1218  -0.2428 0.0382 1.0000 -0.0400 0.1547  -0.0299  0.4096 

DRM2 0.0089 0.0952  0.1724 0.0138 -0.0400 1.0000 0.6109  0.0256  -0.5230 

DRER 0.6133 -0.0029  0.1616 0.2057 0.1547 0.6109 1.0000  0.1242  -0.5685 

DGDC 0.0878 0.0093  -0.0037 0.7239 -0.0299 0.0256 0.1242  1.0000  -0.1377 

DRISK -0.3773 -0.1325  -0.2496 -0.1423 0.4096 -0.5230 -0.5685  -0.1377  1.0000 

 

 

Table 3.A 5 Descriptive Statistics of MP and its determinants for Thailand 

 

 MP RM2 RER GDC RISK DRM2 DRER DGDC DRISK 

 Mean -0.0015 0.1961  0.0209 0.0062 -0.0183 0.0006 -0.0004  0.0000  -0.0002 

 Median -0.0030 0.2268  -0.0059 0.0064 -0.0227 0.0007 -0.0016  0.0011  -0.0002 

 Maximum 0.1500 0.3523  0.6209 0.0529 0.1809 0.0408 0.1579  0.0512  0.2188 

 Minimum -0.1021 0.0677  -0.1460 -0.0598 -0.3060 -0.0692 -0.1772  -0.0738  -0.3965 

 Std. Dev. 0.0216 0.0680  0.0937 0.0131 0.0436 0.0096 0.0252  0.0150  0.0381 

 Skewness 1.7607 -0.5218  2.0435 -0.3377 -0.1443 -0.7235 1.1823  -0.4433  -2.8708 

 Kurtosis 16.9902 1.9823  10.4908 6.0193 10.2268 14.5148 25.5016  6.0031  43.4154 

    

 ADF -11.8306 -0.1717  -3.1336 -1.6501 -3.4408 -9.2239 -13.7019  -13.4081  -15.8925 

 KPSS 0.1100 1.7540  0.1700 0.9714 0.4196 0.3190 0.0657  0.1630  0.0795 

 

 

Table 3.A 6 Correlation of MP and its determinants for Thailand 

 

 MP RM2 RER GDC RISK DRM2 DRER DGDC DRISK 

MP 1.0000 -0.0263  0.2601 0.2572 0.0869 0.1418 0.8299  0.1144  -0.5033 

RM2 -0.0263 1.0000  -0.2350 -0.1737 -0.0196 0.1240 0.0180  0.0071  -0.0618 

RER 0.2601 -0.2350  1.0000 -0.1182 -0.1603 0.0050 0.1517  -0.0300  -0.1825 

GDC 0.2572 -0.1737  -0.1182 1.0000 -0.2055 0.1023 0.3898  0.5716  -0.2197 

RISK 0.0869 -0.0196  -0.1603 -0.2055 1.0000 -0.0131 0.0841  0.0718  0.4331 

DRM2 0.1418 0.1240  0.0050 0.1023 -0.0131 1.0000 0.4768  0.1441  -0.4869 

DRER 0.8299 0.0180  0.1517 0.3898 0.0841 0.4768 1.0000  0.2252  -0.5803 

DGDC 0.1144 0.0071  -0.0300 0.5716 0.0718 0.1441 0.2252  1.0000  -0.1080 

DRISK -0.5033 -0.0618  -0.1825 -0.2197 0.4331 -0.4869 -0.5803  -0.1080  1.0000 
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Table 3.A 7 Descriptive Statistics of MP and its determinants for Malaysia 

 

 MP RM2 RER GDC RISK DRM2 DRER DGDC DRISK 

 Mean -0.0003 0.2557  0.0356 0.0073 0.0072 0.0013 -0.0004  0.0000  -0.0002 

 Median -0.0009 0.2437  0.0211 0.0072 0.0050 0.0004 -0.0013  0.0001  0.0001 

 Maximum 0.1347 0.5143  0.5085 0.4540 0.1367 0.2509 0.1401  0.6604  0.2064 

 Minimum -0.1163 0.1001  -0.1106 -0.6549 -0.2530 -0.0998 -0.1698  -0.6701  -0.3774 

 Std. Dev. 0.0187 0.0977  0.0805 0.0508 0.0376 0.0222 0.0199  0.0746  0.0308 

 Skewness 0.6617 0.5172  1.9649 -4.6567 -0.5661 5.3373 -0.3116  0.6054  -4.4402 

 Kurtosis 21.0253 2.4031  9.5510 108.3365 10.2824 59.1347 30.6218  53.7530  75.6270 

    

 ADF -13.0690 -1.0708  -2.5567 -19.7787 -3.5531 -17.1921 -14.7237  -11.9792  -14.4153 

 KPSS 0.1151 1.2591  0.1625 0.1432 0.6398 0.1132 0.0708  0.1696  0.0222 

 

 

Table 3.A 8 Correlation of MP and its determinants for Malaysia 

 

 MP RM2 RER GDC RISK DRM2 DRER DGDC DRISK 

MP 1.0000 -0.1008  0.2598 0.0574 0.0834 -0.0375 0.8711  0.0411  -0.5541 

RM2 -0.1008 1.0000  -0.3125 -0.0714 -0.2057 0.0942 -0.0377  0.0005  -0.0146 

RER 0.2598 -0.3125  1.0000 -0.0631 0.0550 0.0362 0.1432  0.0004  -0.1462 

GDC 0.0574 -0.0714  -0.0631 1.0000 -0.0411 -0.3973 0.0203  0.7339  -0.0581 

RISK 0.0834 -0.2057  0.0550 -0.0411 1.0000 0.0280 0.0257  -0.0069  0.4018 

DRM2 -0.0375 0.0942  0.0362 -0.3973 0.0280 1.0000 0.1990  -0.2687  -0.1042 

DRER 0.8711 -0.0377  0.1432 0.0203 0.0257 0.1990 1.0000  0.0128  -0.5730 

DGDC 0.0411 0.0005  0.0004 0.7339 -0.0069 -0.2687 0.0128  1.0000  -0.0476 

DRISK -0.5541 -0.0146  -0.1462 -0.0581 0.4018 -0.1042 -0.5730  -0.0476  1.0000 

 

 

 

Table 3.A 9 Descriptive Statistics of MP and its determinants for Singapore 

 

 MP RM2 RER GDC RISK DRM2 DRER DGDC DRISK 

 Mean -0.0042 0.8513  0.0087 0.0082 0.0271 -0.0006 -0.0004  -0.0001  -0.0001 

 Median -0.0036 0.8362  0.0088 0.0038 0.0258 0.0004 -0.0004  0.0002  0.0002 

 Maximum 0.0605 0.9829  0.2084 0.3211 0.1046 0.0685 0.0628  0.3813  0.0713 

 Minimum -0.0622 0.6936  -0.1280 -0.2799 -0.0765 -0.1420 -0.0591  -0.5895  -0.1365 

 Std. Dev. 0.0132 0.0720  0.0608 0.0433 0.0238 0.0158 0.0137  0.0688  0.0211 

 Skewness 0.1100 0.3118  0.3287 2.2684 0.0108 -2.1425 -0.1837  -1.0767  -0.9229 

 Kurtosis 6.3546 1.8222  2.9382 26.5659 4.0086 22.5291 5.5891  26.6642  10.1559 

    

 ADF -13.0103 -2.1963  -1.9920 -23.9051 -6.7115 -19.3411 -15.2183  -10.9883  -11.8471 

 KPSS 0.1898 0.1303  0.1814 0.3241 0.5036 0.0703 0.1481  0.3241  0.2577 
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Table 3.A 10 Correlation of MP and its determinants for Singapore 

 

 MP RM2 RER GDC RISK DRM2 DRER DGDC DRISK 

MP 1.0000 0.0750  0.3248 -0.0684 0.0836 -0.0519 0.8575  -0.0205  -0.5380 

RM2 0.0750 1.0000  -0.0346 -0.0337 -0.1958 0.0964 0.1413  -0.0096  0.0033 

RER 0.3248 -0.0346  1.0000 -0.0098 0.0841 -0.1021 0.1463  0.0094  -0.1079 

GDC -0.0684 -0.0337  -0.0098 1.0000 0.0746 -0.4197 -0.0028  0.7930  0.0460 

RISK 0.0836 -0.1958  0.0841 0.0746 1.0000 -0.1085 0.0458  -0.0173  0.4399 

DRM2 -0.0519 0.0964  -0.1021 -0.4197 -0.1085 1.0000 0.0657  -0.2947  -0.0752 

DRER 0.8575 0.1413  0.1463 -0.0028 0.0458 0.0657 1.0000  0.0378  -0.4408 

DGDC -0.0205 -0.0096  0.0094 0.7930 -0.0173 -0.2947 0.0378  1.0000  0.0125 

DRISK -0.5380 0.0033  -0.1079 0.0460 0.4399 -0.0752 -0.4408  0.0125  1.0000 

 

 

Table 3.A 11 Descriptive Statistics of MP and its determinants for Philippines 

 

 MP RM2 RER GDC RISK DRM2 DRER DGDC DRISK 

 Mean 0.0043 0.2176  0.0173 0.0029 -0.0404 0.0001 -0.0001  -0.0005  0.0000 

 Median 0.0017 0.2259  0.0103 0.0020 -0.0354 -0.0012 0.0024  -0.0004  0.0011 

 Maximum 0.2225 0.3911  0.3826 0.5931 0.2010 0.0814 0.5755  0.2026  0.2454 

 Minimum -0.0655 0.0344  -0.2399 -0.1158 -0.2976 -0.0725 -0.5059  -0.0962  -0.2929 

 Std. Dev. 0.0263 0.0968  0.1052 0.0446 0.0553 0.0176 0.0564  0.0257  0.0478 

 Skewness 3.7091 -0.3548  0.5276 6.9150 -0.2408 0.2593 0.6871  2.1832  -0.6991 

 Kurtosis 28.8064 1.8972  3.4734 92.6242 6.2559 5.5831 53.1439  20.4435  15.0530 

    

 ADF -13.7940 -1.6144  -2.2286 -14.9181 -4.1427 -17.5814 -15.2912  -13.7276  -16.7823 

 KPSS 0.4408 1.0274  0.1734 0.1967 0.2533 0.2846 0.1534  0.1467  0.1488 

 

 

Table 3.A 12 Correlation of MP and its determinants for Philippines 

 

 MP RM2 RER GDC RISK DRM2 DRER DGDC DRISK 

MP 1.0000 -0.2103  0.4009 0.1726 -0.0095 -0.1159 0.0065  0.8589  -0.5812 

RM2 -0.2103 1.0000  -0.1956 0.0258 0.3193 0.0962 0.0095  -0.0410  0.0252 

RER 0.4009 -0.1956  1.0000 -0.1134 -0.1150 0.0040 -0.0342  0.1541  -0.1540 

GDC 0.1726 0.0258  -0.1134 1.0000 0.1266 -0.1683 0.6318  0.2600  -0.0770 

RISK -0.0095 0.3193  -0.1150 0.1266 1.0000 -0.2105 0.0212  0.0712  0.4319 

DRM2 -0.1159 0.0962  0.0040 -0.1683 -0.2105 1.0000 -0.0673  -0.0263  -0.1098 

DRER 0.0065 0.0095  -0.0342 0.6318 0.0212 -0.0673 1.0000  0.0582  -0.0336 

DGDC 0.8589 -0.0410  0.1541 0.2600 0.0712 -0.0263 0.0582  1.0000  -0.5191 

DRISK -0.5812 0.0252  -0.1540 -0.0770 0.4319 -0.1098 -0.0336  -0.5191  1.0000 
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Appendix 3.B  Neyman’s ( )C   test 

 

The ( )C   tests were designed to deal with hypothesis testing of a parameter of 

primary interest in the presence of nuisance parameter. In particular, Neyman 

dispenses with the maximum likelihood estimates and utilizes only n -consistent 

estimates that are relatively easy to find. Another attractive feature of the optimal 

( )C   tests statistics is that by design it satisfies a certain optimality principle; it 

maximizes the slope of the limiting power function under “local alternative” to the 

null hypothesis.  

 

Assume that there are n  independent observations, 1y , 2y ,… ny  with identical 

density function ( ; )f y   where   is a 1p  parameter vector with p  ¡ . 

The log-likelihood function, score function, and the information matrix are then 

defined, respectively, as  

1

( ) ln ( , )
n

i
i

l f y 


                                              (3.B.1) 

( )
( )

l
s








                                                    (3.B.2) 

and  

2 ( )
( )

l
E

 
 

 
     

                                            (3.B.3) 

 

Suppose that ( , )      and interest centers on testing the null hypothesis 

0 0:H    which in practice requires knowledge of the parameter  . The parameter 
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  is the parameter of primary interest while the parameter   is the nuisance 

parameter.  

 

Let ( , ) ( , ) /s l         and ( , ) ( , ) /s l        . Denote the part of 

information matrix that corresponds to   by ( , )    and the notation ( , )    

( , )    and ( , )   have analogous meanings. Neyman’s (1959) finding is that 

asymptotic optimality in the sense mentioned above suggests that hypothesis testing 

should be based on the statistic 

1
0 0 0 0

11
0 0 0 0

1
0 0 0 0

( ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

C s s

s s

   

   

   

          

           

         







   

   
   

         (3.B.4) 

with all the score and information quantities evaluated at the null value of  , 0  

and   replaced by a n -consistent estimator.  

 

Apart from its relatively easy method of calculation, the matrix algebra expression 

itself can be prove difficult to use because the information matrix (essentially the 

second derivatives of the likelihood function) would not have zero elements, but 

would be singular. Therefore, its generalized inverse would have to be used; but the 

key matrix then, that of the eigenvalues, might also be found to be singular. That 

means that the generalized inverse of the information matrix have to be obtained 

which make the process become one of the infinite regress.  

 

A welcome feature of the ( )C   test statistic is that it can be readily obtained from an 
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artificial regression. Breusch and Pagan (1980) suggested one type of artificial 

calculation. With some algebraic manipulation, Equation (3.B.4) can be written as  

1 1
0 0 0 0 0( ) ( , ) ( , ) ( , ) ( , ) ( , )C s s s s                              (3.B.5) 

 

Let ( )S   be a n p matrix with ln ( , ) /i jf y     as its typical ( , )i j th  element. 

Note that the first r  columns correspond to the parameters of primary interest56 and 

the last ( )p r  to the nuisance parameters57 . 

 

We use 
0

S
  to denote the n r  submatrix of ( )S   with parameters of primary 

interest (denoted as 0( )S  ) , while S
  to denote the matrix of 0( , )S    with the 

parameters of primary interest and the nuisance parameters. The statistics can be 

obtained in two steps. First, regress 
0

S
  and S

  on residuals obtained from 

estimates considering the primary interest only, respectively. Save the two 2R s from 

the each regression. Second, calculate the ( )C   test statistics as n  times the 

difference of two 2R  obtained from regress. The critical values for the ( )C   test 

can be obtained from a 2
  distribution, with   being the number of restrictions, 

when one regime is excluded.  

 

 

 

 

 

                                                        
56 In our study of the Markov Regime Switching models, these are the parameters from the single 
regime estimation.  
57 These are the additional parameters when estimating using 2 regimes Markov Switching model.   


