
 

    

 

Cross Linked Sulphonated Poly(ether ether 

ketone) for the Development of Polymer 

Electrolyte Membrane Fuel Cell 
 

 

Abdul Ghaffar Al Lafi, MSc. 

 

A Thesis Submitted for the Degree of 

Doctor of Philosophy 

                                                                                                                                                       

The School of Metallurgy and Materials, The College of Engineering and Physical Sciences, 

The University of Birmingham, Birmingham, UK. 

                                                             

                                                                                                                        September 2009 



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



  

 ii

Synopsis 

Ion irradiation has been investigated as a route for the preparation of mechanically stable and 

highly durable cross linked sulphonated PEEK for fuel cell application. Ion irradiation was 

carried out using the University of Birmingham’s Scanditronix MC-40 Cyclotron operating at 

11.7 MeV for H+ and 30 MeV for He2+ and the irradiated materials were characterized 

focusing on structural, thermal, morphological as well as dielectrical properties. 

Alterations produced in the molecular structure of amorphous PEEK by ion irradiation have 

been interpreted as due to chain scission and formation of cross links, as confirmed by sol-gel 

analysis in MSA using the well known Charlesby–Pinner equation.  

The thermal decomposition of irradiated PEEK was similar to that of untreated PEEK in that 

it occurred by a random chain scission process. The thermal decomposition temperature and 

kinetic data for irradiated PEEK films quantitatively suggest that these films still have 

sufficient thermal stability for long term applications as fuel cell membranes. 

The observed Tg increased linearly with cross link density in accordance with the DiBenedetto 

equation. The DSC results also indicated that the cross links which accompanied irradiation 

retard the crystallization, but no changes were observed in the mechanism of crystallization.  

The apparent activation enthalpy of the glass forming process, determined from DRS, 

however, decreased and analysis of the dielectric response by Cole-Cole, Havrilak-Negami 

and Kohlrausch-Williams-Watts equations indicated that the dipole relaxation was broadened 

and becoming more asymmetric with cross link density. This was interpreted as the cross 

linked network progressively restricting the length of the chain segments involved in dipole 

relation process yet adding to the complexity of the modes of segmental motions.  

The sulphonation of the cross linked PEEK was investigated in concentrated sulphuric acid 

following the kinetics of the reaction at room temperature. The rate of reaction decreased with 

the degree of cross linking and the progress with time was consistent with diffusion control of 
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the sulphuric acid into the cross linked matrix. The results were consistent with the efficiency 

of the ions in cross linking PEEK and in particular with the differences in their linear energy 

transfer (LET). 

The materials properties of different cross linked SPEEK membranes have been investigated 

focusing on water uptake kinetics, stability tests and the performance in a single fuel cell. 

Increasing cross link density resulted in more bound water present in the equilibrated 

membranes and increasing the ion exchange capacity (IEC) gave rise to more free water. The 

results indicated that the cross linked membranes have lower methanol permeability and 

electro-osmotic drag as well as improved mechanical stability. The presence of a nano-

structure in the cross linked membranes was confirmed and the sizes of pore present were 

comparable to those of Nafion. The effects of cross linking and IEC on the membranes 

stability in chemical, oxidative and thermal environments have also been considered. Cross 

linking had little effect in improving both thermal and oxidative stabilities but its effect in 

improving the chemical stability in particular in methanol solution was pronounced. 

The polarisation curves indicated that film thickness, IEC, cross link density as well as 

temperature affect the performance of the PEM fuel cell, but that the IEC values had a greater 

effect than cross link density. The performance of the cross linked membranes was very 

similar to that of non cross linked PEM suggesting the same mechanism of proton transport 

was present in both systems. The cross linked membranes showed better performance (higher 

power output and current density) compared to those of the non cross linked solvent cast 

SPEEK membranes of similar IEC due to the solvent effect. The measurement of power 

output and energy efficiency suggested that the cross linked PEMs produced in this work are 

promising candidates to replace Nafion membranes but more information is required, in 

particular on their long term stability under fuel cell operating conditions, and also in 

understanding the relationship between material properties and cross linking density. 
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Chapter 1                                                   

Polymer Electrolyte Membrane Fuel Cells:             

Systems and Applications 

 

 

 

 

 

1.1 Introduction 

Polymer electrolyte membranes based fuel cells have reached a technological stage where 

they offer a real challenge to conventional power generating technologies, particularly for 

transportation. The first working fuel cell was invented by Sir William Grove in 1843 by 

reacting oxygen and hydrogen on separate platinum electrodes that were immersed in dilute 

sulphuric acid inside five cells of a gas voltaic battery and using the current produced to 

electrolyse water in another similar cell [1-3]. However, fuel cells found their first major 

application when NASA utilised hydrogen-powered fuel cells to produce electricity and water 

for the Gemini space missions. The high cost and short lifetimes of fuel cells prevent their use 

in mass markets.  

 

Unlike internal combustion engines, ICE, fuel cells offer the potential to generate energy very 

efficiently, without any of the emissions usually associated with combustion. The comparison 

between fuel cells and batteries is obvious because they serve many of the same applications; 

however, fuel cells differ from batteries in two distinct characteristics. First, fuel cells are 
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considered to be energy conversion devices whereas batteries are both energy storage and 

energy devices. Fuel cells do not need to be recharged with an external source of power such 

as batteries, they simply need to be replenished or refilled with an appropriate fuel. This 

brings up the second major difference between batteries and fuel cells; the fuel in a battery is 

stored internally, whereas a fuel cell stores its fuel externally to its core components. 

 

 

The hydrogen fuel cell is defined as an electrochemical energy conversion device that 

converts the chemical energy of burning hydrogen in oxygen into electricity and heat by 

electrochemical redox reactions at the anode and the cathode of the cell, respectively, and 

produces water as the only by-product.  

 

The fuel cell has a high-energy conversion efficiency of more than 40–50%. This is more 

efficient than a coal fired power station or an internal combustion engine. It has no moving 

parts apart from the air and fuel blowers and is therefore more reliable and less noisy; it has 

lower maintenance costs and longer operating life compared to an equivalent coal-fired power 

station or internal combustion engine.  

 

Its modular compact design enables the consumer to increase or decrease power by simply 

adding or removing modules without having to redesign and reconstruct the whole plant.  It is 

a clean technology and therefore, has very low chemical pollution. It can use pure hydrogen 

or a variety of primary fuels such as natural gas or methanol that can be used directly or used 

to produce hydrogen fuel. In a high temperature fuel cell, combined heat and power 

generation increases efficiency. 
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There are six main types of fuel cell of commercial importance: the alkaline fuel cell, AFC, 

the phosphoric acid fuel cell, PAFC; the molten carbonate fuel cell, MCFC; solid oxide fuel 

cell, SOFC; the proton exchange membrane fuel cell, PEMFC; and the direct methanol fuel 

cell, DMFC. These major types of fuel cells, classified by the electrolyte, are outlined in 

Table 1.1[1, 4]. 

 

 

Table 1.1: Types of fuel cells [1, 4]. 

Fuel cell Temperature 

(oC) 

Efficiency

(%) 

Electrolyte 

AFC 50-90 50-70 Aqueous solution of potassium hydroxide 

soaked matrix 

PAFC 175-220 40-45 Phosphoric acid soaked in a matrix 

MCFC 600-650 50-60 Solution of lithium, sodium and/or 

potassium carbonates soaked in a matrix 

SOFC 800-1000 50-60 Solid zirconium oxide with a small amount 

of yttrium as Y2O3 

PEMFC* 60-100 40-50 Solid organic polymer 

DMFC* 50-120 25-40 Solid organic polymer 

 

 (*) Sometimes a DMFC is categorised as another type of fuel cell, despite it having the same 

electrolyte as PEMFC. 

 

Fuel cell technology has drawn most attention because of its simplicity, viability, quick start-

up, and the fact that it has been used in almost all conceivable applications.  
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Table 1.2 [1, 4] shows briefly some of these applications as well as the advantages and 

disadvantages associated with each. 

 

Table 1.2: Fuel cells application [1, 4]. 

Fuel cell Application Advantages 

 

Disadvantages 

 

AFC Space 

application 

High efficiency 

 

Intolerant to CO2 in impure H2 

and air, corrosion and 

expensive. 

PAFC Stand-alone, 

combined heat 

and power 

Tolerant to impure 

H2 , commercial 

Low power density, corrosion 

and sulphur poisoning. 

MCFC Central, stand-

alone, combined 

heat and power 

High efficiency, 

near commercial 

Electrolyte instability, corrosion 

and sulphur poisoning. 

SOFC Central, stand-

alone, combined 

heat and power 

High efficiency and 

direct fossil fuel 

High temperature, thermal 

stress failure and sulphur 

poisoning. 

PEMFC Vehicle and 

portable 

High power 

density, low 

temperature 

Intolerant to CO in impure H2 

and expensive. 

DMFC Vehicle and 

small portable 

No reforming, high 

power density and 

low temperature 

Low efficiency, methanol 

crossover and poisonous by-

product. 
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1.2 Proton Exchange Membrane Fuel Cells 

Fuel cells based on the Proton Exchange Membrane, PEM, also known as the Polymer 

Electrolyte Membrane, are one of several types of fuel cell devices.  Figure 1.1 shows the 

simplest hydrogen fuel cell, H2-PEMFC, consisting of cathode, anode and PEM. 

 

 

Figure 1.1:  Basic description of a PEMFC [5]. 

 

The anode and cathode current collector conduct the electrical current and are designed to 

distribute the H2 and O2 evenly to the anode and cathode. These have a porous backing, 

typically made of carbon, which are electrically conducting and allow the gases to diffuse to 

the Membrane Electrode Assembly, MEA, which is the heart of the fuel cell [1]. 

 

The membrane electrode assembly consists of two electrically and ionically conducting 

electrodes containing the platinum catalyst bonded to the proton exchange membrane. A 

schematic of the MEA is shown in Figure 1.2. 

The electrodes contain either unsupported as in methanol fuel cells, or supported catalysts as 

in hydrogen fuel cells and are usually composed of the same copolymer as the proton 
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exchange membrane. The precious metal loading determines the amount of catalyst per active 

area and can vary between 5-20% weight, depending on the application requirements. 

 

 

Figure 1.2: The membrane electrode assembly (MEA). 

 

 

The PEM is coated with a thin catalyst layer, represented by the middle blue area, see Figure 

1.2. This consists of nano-size platinum catalyst particles coated onto fine porous carbon 

particles, which are coated with a very thin layer of polymer electrolyte, typically Nafion a 

per-fluoro sulphuric acid ionomer. 

 

There are several functions that the PEM must fulfil. These are conduction of protons from 

the anode to the cathode, act as a support for the catalyst and a barrier for the fuel gases 

preventing crossover and it must be a non-conductor for electrons, so separating the anode 

and cathode [1]. 
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1.3   Review on the Nafion Based PEMFC Technology: Achievements and 

Challenges 

 
For many years, the standard material used for PEM was the per-fluorinated copolymers 

containing sulphuric acid groups, PFSA.
 
PFSA membranes are composed of carbon-fluorine 

backbone chains with per-fluoro side chains containing sulphonic acid groups [6]. The 

sulphonic acid groups are highly acidic due to the effect of the strongly electronegative 

fluorine atoms that are located next to it. This class of polymers has the trade name Nafion 

and is manufactured by several companies; but mostly by DuPont™.  The chemical structure 

of PFSA is shown in Figure 1.3 along with the structure parameters which depend on the 

manufacturer [7]. 

 

( ) ( ) −−−−− yx CFCFCFCF 2222

( ) ( ) HSOCFOCFCFO nm 322 −−−−−

3CF  

Figure 1.3: Molecular structure of PFSA polymer. The structure parameters are: (m=1; n=2; 

x=5-13.5, y=1) DuPont, Nafion, (m=0, n=1-5) Asashi Glass, Flemion, (m=0; n=2-5, x=1.5-

14) Asashi Chemicals, Aciplex, and (m=0; n=2, x=3.6-10) Dow Chemical, Dow [7]. 

 

The side chain ends contain SO3
- ion and H+ ion, but because of ionic binding they are 

associated with SO3H group. But in the presence of water dissociation occurs with migration 

of H3O+ ion. The group –CF2-SO3H is a strong acid and in water is extensively ionized, e.g., 

HSOCF 32 −− +− +−− HSOCF 32                                

The polymer acts as an ionomer and the ionic nature makes the side chains tend to cluster 

within the overall structure of the membrane, resulting in two distinct regions. A hydrophobic 
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region contained the Teflon-like molecular backbone which gives these materials excellent 

long-term stability to both oxidative and reductive agents. A lifetime of over 60,000 hours has 

been reported with commercial Nafion membranes [7]. Hydrophilic regions are also created 

by clusters of the sulphonated side chains. These clusters allow the membranes to absorb 

relatively large amounts of water, up to 50% by weight and transport of the H+ ions within the 

well-hydrated regions results in proton conductivity. These membranes exhibit a protonic 

conductivity as high as 0.10 S.cm-1
 
under fully hydrated conditions but they dehydrate above 

80oC and cease to conduct protons [1, 2].  

 

The membrane serves, at the same time, as a catalyst support and an effective gas separator. 

This is achieved by its excellent mechanical properties and low gas permeability [6] . On the 

other hand, these types of membranes suffer from high crossover rates for methanol as the 

fuel. In addition to the high price of Nafion (~800 $ m-2) and the environmental hazards 

associated with its synthesis and disposal [8, 9]. The following is a brief summary of the 

achievements and challenges for the PFSA-based PEMFC technologies.  

1.3.1 Water Management 

At room temperature, Nafion membranes equilibrated with 100% RH water vapour or with 

liquid water, the drag coefficient was reported to be in the range of 0.9 to 3.2 [6, 7]. Under 

fuel cell operating conditions, especially at higher temperatures and equilibrated with a water-

methanol mixture, these values will be even higher [10, 11]. 

During operation of a PEMFC, the electro-osmotic drag causes dehydration of the membrane 

at the anode and leads to a dramatic decrease in conductivity. In addition, increase in the 

water content results in increased swelling. Conversely reduction in water content leads to 

shrinkage of the membranes, which in turn leads to deterioration of the membrane-catalyst 

interface or even a breaking up of the membrane. Therefore, an effective humidification 
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system of both the fuel and the oxidant is necessary. On the other hand, the presence of water 

limits the operational temperature to below 100 °C under atmospheric pressure and typically 

to around 80 °C. Operation of a PEMFC at such a temperature close to the boiling point of 

water involves a dual-phase water system. When the humidification is too high, water 

condenses and the gas diffusion electrodes are flooded. Careful management of the water 

balance is needed and is indeed one of the key issues in fuel cell system design and operation. 

For high-temperature operation, high water vapour pressures in the feed-gas stream are 

needed, which in turn require a high total pressure otherwise a low reactant-gas partial 

pressure results in increased concentration over-potentials. At a partial pressure of 0.5 atm for 

example, of reactant gases in a water-saturated feed stream, to maintain 90% of the relative 

humidity at 150 °C requires pressurization to at least 8 atm [7]. 

1.3.2 The CO Poisoning Effect 

Another critical issue related to the low operational temperature is the reduced tolerance to 

fuel impurities, e.g., CO, in the hydrogen stream. At a typical operational temperature of 80 

°C with a PFSA polymer membrane electrolyte fuel cell, a CO content as low as 20 ppm in 

the fuel stream will result in a significant loss in cell performance. As a consequence very 

pure hydrogen is needed for the operation of PEMFCs. This poisoning effect has been 

investigated and shown to be less pronounced at higher temperatures [12, 13]. 

1.3.3 Direct Hydrogen 

When pure hydrogen is used as the fuel in the PEMFC, the cell performance is higher than 0.6 

W cm-2 under atmospheric pressure or over 1.0 W cm-2 at higher pressures. The PEMFC 

stacks have achieved a power output higher than 1 kW kg-1 or 1 kW l-1 at a practical cell 

voltage, e.g., system efficiency above 40%. This technology has weight, volume, and other 

features which compete with those of the internal-combustion-engine propulsion systems. 
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However, the industry of new hydrogen infrastructure faces technological problems and 

economic uncertainties such as compact and lightweight hydrogen storage, hydrogen supply, 

distribution and refuelling systems [7].  

1.3.4 Methanol Reformate 

Methanol is an efficient and economical way to bring hydrogen into a fuel cell system 

because its storage and refuelling needs little infrastructure changes. Currently, methanol is 

used in an indirect way, e.g., via reforming. The reformate gas contains hydrogen, carbon 

dioxide, carbon monoxide, and residual water and methanol as well [14-16]. The three overall 

reactions which can be written for the given reactants and products are shown in Scheme 1.1. 

OHOHCH 23 +
k+R

k-R

22 3 HCO +

OHCO 2+
k+W

k-W

22 HCO +

OHCH 3

k+D

k-D

22 HCO +

(b )

(c )

(a )

 

Scheme 1.1: The overall reactions in methanol-stream reforming [15].  

 
where the subscript R refers to stream reforming, W the water-gas shift, WGS,  reaction and 

D refers to decomposition. 

 

As discussed above due to the CO poisoning effect, considerable efforts have been made to 

develop CO-tolerant catalysts. Among these the Pt-Ru alloys is considered to be the most 

promising candidates but a significant performance loss is still observed at CO concentration 

above 100 ppm at 80 °C [17]. Therefore, careful purification of the reformed hydrogen is of 
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prime importance to remove CO traces. This is carried out by different ways such as the 

water-gas shift reaction, preferential oxidation, membrane separation, or methanation. In the 

case of a small dynamic load as in a vehicle, the main challenge for an on-board fuel 

processing system is the complexity, which produces increased cost, weight, and volume. 

Such a fuel processing system generally covers 40-50% of the total cost of fuel cell power 

systems and the CO-cleanup unit accounts for the major increase in weight, volume, and cost 

of the fuel processing system. A CO-tolerant PEMFC would indeed simplify the power 

system [7]. 

1.3.5 Direct Methanol 

Direct fuelling with methanol is a preferable option for propulsion of vehicles and other 

purposes. However, the direct methanol fuel cell (DMFC) technology suffers from two 

technical challenges [7, 18]. Firstly, the PFSA membranes have a large methanol crossover 

rate of about 10-6 mol cm-2 s-1. This corresponds to a performance loss of current density of 

50-100 mA cm-2, which results in waste of fuel as well as decrease in energy efficiency and 

cell performance due to the mixed electrode potential [19]. 

 

Secondly, the anodic catalyst is not sufficiently active, leading to a high anodic over-potential 

loss of 350 mV, compared to 60 mV for hydrogen. The insufficient activity of the anode 

catalyst is due to the slow kinetics of the methanol oxidation and the strong poisoning effect 

of the intermediate species (CO) from methanol oxidation. If, however, the fuel processing 

system is eliminated, it is believed that a power density as low as 0.2 W cm-2 at a cell voltage 

above 0.5 V for a direct methanol fuel cell would be competitive with a power density of 0.5-

0.6 W cm-2 from a direct hydrogen fuel cell. Such a power density target is difficult to achieve 

even at high operational pressures (3-5 atm) and high noble metal loadings (2-8 mg cm-2) [7]. 

Both effects could be considerably improved by increasing the temperature of the DMFC. 



  

 12

1.3.6 Heat Recovery 

The heat energy from a PEMFC stack operating at around 80 °C is too low to recover, either 

for stationary or for mobile applications. If the operational temperature is increased to, say, 

200 °C, then steam would be produced at 15 atm from a fuel cell stack. This heat can be 

directly used for heating so that the overall efficiency would be improved for stationary 

purposes. It can also be used to operate the system at high pressures or to produce stream for 

fuel reforming. For stream reforming of both natural gas at 800 °C and methanol at 300 °C, 

preheating fuels and water up to 200 °C will significantly improve the overall efficiency [7]. 

 

1.4 The Need for Developing High Temperature PEM 

It follows from the above discussion that most of the problems associated with the PFSA 

membranes operating at low temperature can be overcome or avoided by developing 

alternative membranes operational at temperatures higher than 100 °C. Operating the fuel cell 

at these temperatures results in [7, 20]:  

 

1) The kinetics for both electrode reactions being enhanced. This is more advantageous 

for the direct oxidation of methanol in DMFC.  

2) Operation of PEMFCs involves only a single water phase, e.g., vapour, and therefore 

the system is simplified. 

3) The required cooling system will be simple and technically possible due to the 

increased temperature gradient between the fuel cell stack and the coolant. 

4) The heat can be recovered as stream, which in turn can be used either for direct 

heating or steam reforming or for pressurized operation. In this way the overall system 

efficiency is significantly increased. 
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5) The CO tolerance is increased from 10-20 ppm of CO at 80 °C, to 1000 ppm at 130 

°C, and up to 30000 ppm at 200 °C [21]. This makes it possible for a fuel cell system 

to be directly fuelled with hydrogen from a simple reformer, so that the water-gas-shift 

reactor, the selective oxidizer, and/ or the membrane separator for the CO cleanup can 

be eliminated from the fuel processing system.  

6) Operating a fuel cell at a temperature around 200 °C allows for integration of the fuel 

cell with a methanol reformer or a high-capacity hydrogen storage tank as this 

temperature is close to temperatures for methanol reforming and for hydrogen 

desorption of the newly developed high capacity storage materials. The integration is 

expected to give the overall power system advantages including higher efficiency, 

smaller size, lighter weight, simple construction and operation, and efficient capital 

and operational cost [22]. High reliability, less maintenance, and better transient 

response capacities can also be expected as the potential features of the high-

temperature PEMFC technology [7]. 

 

1.5 High Temperature Polymer Electrolyte Membranes 

Generally, there are two directions in the development of PEMs. The first is to synthesize new 

membranes to substitute PFSA membranes for low-temperature operation due to the high cost 

and environmental hazards of PFSA. The second is to modify the PFSA or synthesize new 

classes of high temperature operating PEM. These approaches have generated new materials 

which have been studied extensively as PEMs for both low and high temperature fuel cell.  

 

The resultant PEMs have been classified into three groups: (1) modified PFSA membranes, 

(2) alternative sulphonated polymers and their composite membranes, and (3) acid-base 

polymer membranes [7]. 
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1.5.1 Modification of PFSA Membranes 

One disadvantage of PFSA membranes is their low conductivity under low humidification 

and at elevated temperatures (above 90°C) because of water loss. Considerable efforts have 

been made to modify the PFSA membranes to achieve high temperature operation by 

replacing water with non-aqueous and low-volatile materials such as phosphoric acid, organic 

acids, and aprotic dipolar solvents [7, 20]. 

 

Savinell and co-workers [23] incorporated phosphoric acid in Nafion and achieved a 

conductivity of 0.05 S cm-1 at 150 °C.  Another group [24] impregnated Nafion-117 

membranes with a phosphotungstic acid, PTA, in acetic acid. A high temperature fuel cell 

performing at 110 °C has been compared to that with the non-impregnated Nafion. Above 110 

°C, the acetic acid evaporates.  

 

Improving water management is necessary to simplify the low-temperature operation and also 

to enable a high temperature operation. The water balance in a PEMFC involves the following 

mechanisms [7]: (1) water supplied from the fuel and oxidant (humidification); (2) water 

produced at the cathode (current density); (3) water drag from the anode to the cathode 

(current density, humidity, temperature); and (4) back-diffusion of water from the cathode to 

the anode (concentration gradient and capillary forces),  see Figure 1.4.  

 

Figure 1.4: Water transport processes in a PEM fuel cell. 
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To achieve low humidification operation at both low (80 °C) and high (above 100 °C) 

temperatures, three approaches have been discussed [7].  

 

The first approach is using thinner membranes which lowers the internal resistance, reduces 

material cost and improves water management during PEMFC operation [25]. On the other 

hand, increased water content reduces the mechanical strength, especially on swelling and at 

high temperatures. This can be overcome by the use of composite PFSA membranes with 

reinforcement such as a porous PTFE sheet or micro PTFE fibrils. By the use of 

reinforcement, PFSA membranes of 5-30 mμ  thickness, having good conduction and 

mechanical properties have been produced. The effective back-diffusion of water from the 

cathode to the anode side through such thin membranes improves water management and 

conductivity [7, 20].  

 

The second approach has been to recast Nafion membranes with mixed hygroscopic oxides 

such as SiO2 and TiO2.  This is an effective way to achieve low-humidity and high-

temperature operation of the PFSA membranes. It has been shown that the water uptake by 

the oxide-containing membrane is higher than that of the pristine Nafion [26-28]. As a result 

of the water adsorption on the oxide surface, the back-diffusion of the cathode-produced 

water is enhanced and the water electro-osmotic drag from anode to cathode is reduced.  

 

The third approach is to incorporate bi-functional particles such as hetero-poly-acids and 

zirconium phosphate, being both hydrophilic and proton conducting, into the PFSA 

membranes.  This development was aimed at improving the hydration characteristics and 

raising the operational temperature. The presence of hydrophilic inorganic additives decreases 

the chemical potential of the water inside the membrane and therefore creates an additional 
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pathway for proton conduction. At the same time, they provide hydrogen-bonding sites for 

water in the membrane so that the hydration of the membrane is increased and the transport 

and evaporation of water will be reduced [27-29]. The enhanced water retention enables low 

humidification and high temperature operation of both DMFC and H2/O2 (air) fuel cells. 

 

1.5.2 Alternative Sulphonated Polymer Membranes and Their Composites 

A great number of polymer materials have been prepared and functionalized as membrane 

electrolytes principally for low temperature PEMFC. Some of these materials, especially the 

sulphonated hydrocarbons, show interesting features for possible high-temperature operation. 

The essential requirements for polymer membrane electrolyte materials of PEMFC include (1) 

proton conductivity; (2) thermal and chemical stability; (3) good mechanical properties 

(strength, flexibility, and processability); (4) low gas permeability and low water drag; (5) fast 

kinetics for electrode reactions; and (6) low cost and environmental friendly.  

 

As a starting point these polymers should have high chemical and thermal stability. Two main 

groups of polymers have been widely investigated for this purpose. One group is polymers 

containing inorganic elements, e.g., fluorine in fluoro-polymers and silicon in polysiloxanes. 

The other group is aromatic polymers with phenylene backbones [7, 20, 26]. 

1.5.2.1 Fluoro-Polymers 

An example of this group of polymer is poly (tetrafluoroethylene-hexafluoropropylene), FEP. 

The FEP film is first irradiated, and then styrene groups are grafted onto it with 

divinylbenzene, DVB, as a cross linker. The proton conductivity is introduced by 

sulphonating the aryl groups. Recent work reported a fuel cell lifetime over 5000 hours at 85 

°C based on this type of membrane [20]. 
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1.5.2.2 Polysiloxanes  

An example of high temperature-resistant polymers is the silicone polymers, such as 

poly(dimethyl siloxanes).  Attempts have been made to develop proton-conducting 

membranes for fuel cell applications by using arylsulphonic anions or alkylsulphonic anions 

grafted onto the benzyl group. The poly(benzylsulphonic acid siloxane), structure (1) in 

Figure 1.5. Membranes can also be cross linked by hydrosilylation, and they have been 

reported to exhibit a proton conductivity of 10-2 S cm-1 at room temperature and a thermal 

stability of the amorphous network up to 200 °C with optical transparency and chemical 

stability [7, 20]. 
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Figure 1.5:  The molecular structures of (1) poly(benzylsulphonic acid siloxane), (2) SPPBP, 

(3) PEEK-WC and (4) PBI.  

 

1.5.2.3 Aromatic Hydrocarbons 

Aromatic hydrocarbons represent a large group of polymers which although expensive are 

available commercially.  Here are a few examples including the most widely investigated 

systems for developing polymer electrolytes membranes for fuel cells.  

The poly(aryl ether ketones) are a class of polymers consisting of sequences of ether and 

carbonyl linkages between phenyl rings, see Figure 1.6.  
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Figure 1.6: The molecular structures of some poly(arylether ketones). 

 

 

A series of sulphonated poly(arylether ketones) have been developed. The level of 

sulphonation in this class of materials is dependant on the number of aromatic rings bridged 

by oxygen atoms as only O-phenyl- O units are sulphonated, while O-phenyl-CO groups 

remain un-sulphonated. Hence, increasing the proportion of ether groups relative to carbonyl 

groups leads to an increase in the number of sites available for sulphonation on the poly(aryl 

ether ketone) backbone.  

 

A sulphonation level of around 60% has been found to be a good compromise between high 

conductivity and good mechanical properties. The conductivity of this material was found to 

be high at room temperature (~0.06 S cm-1, compared with 0.1S cm-1 for fully hydrated 

Nafion-117). Durability of at least 4000 hours in a direct hydrogen fuel cell at 50°C has also 

been demonstrated [7, 20]. 
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A variation on PEEK structure has been achieved by the condensation of phenolphthaleine 

with 4,4`-dichlorobenzophenone [30, 31] to produce poly(oxa-p-phenylene-3,3-phthalido- p-

phenylene-oxa-p-phenylene-oxy-phenylene), PEEK-WC, as shown in Figure 1.5, structure 

(3). This amorphous polymer has been sulphonated with chlorosulphuric acid ,and sulphuric 

acid  and has been demonstrated to be a good candidate to prepare PEM for fuel cell [32, 33]. 

 

Another material is a poly(p-phenylene) derivative, see Figure 1.5, structure (2), and by a 

direct sulphonation it is reported that a good proton conducting polymer is produced [34]. 

This material is reported to have higher water uptake and proton conductivity than 

sulphonated PEEK at an equivalent sulphonation level. The higher water uptake of these 

materials may be due to the flexible pendant side chains of it. These may also allow the 

membrane to maintain a more hydrated state above 100°C, giving this material a distinct 

advantage over Nafion and sulphonated PEEK, whose conductivities drop sharply due to 

dehydration. 

1.5.2.4 Irradiation Application to PEM Synthesis 

A relatively low-cost mode of production of proton-exchange membranes involves grafting of 

ionogenic groups onto a fluorinated polymer matrix. Radiation grafted membranes are 

produced from commercial films, such as poly(vinylidene fluoride), by irradiation with 

electron beams or γ  rays to generate free radicals in the polymer material. By irradiation in 

the presence of styrene, grafting side chains of mostly polystyrene, are produced which can be 

sulphonated. 

 

 It has been reported that the production of such membranes is economically more feasible 

than that of Nafion. This technique allows modification of fluorinated polymers, but the 
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resulting products have not been used to make PEMs. Variation in degree of grafting and 

sulphonation produced quite variable results.  

 

 

( )nCHCH 2−

SO
3

H

Main chain

Side chain of sulphonated
polystyrene

 

Figure 1.7: Irradiation grafted PEM [35]. 

 

 

Other polymer backbones include PEEK, copolymer of vinylidene fluoride and 

hexafluoropropylene with different co-monomer content but copolymers of 

tetrafluoroethylene and hexafluoropropylene have also been used. The proton conductivities 

of the membranes with a high degree of grafting compare well with those of Nafion 

membranes (up to 0.11 S cm-1 at 100% humidity and room temperature). One disadvantage of 

such membranes is their greater tendency to swell than that of Nafion membranes [36, 37].  

 

However, because of the degradation of sulphonated polystyrene when used as membranes in 

fuel cells due to the attack of peroxides formed at the cathode these copolymers show little 

promise but other graft species have been investigated. Radiation induced grafting of acrylic 

acid onto poly(tetrafluroroethylne-co-hexafluropropylene), FEP, followed by sulphonation 

produces a membrane having appreciable ionic conductance, acceptable mechanical 

properties and a  stable performance in a fuel cell test up to 100 hr [38]. 
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1.5.3 Acid-Base Polymer Membranes 

Acid-base complexation represents an effective approach to the development of proton-

conducting membranes. Polymers with basic sites such as ether, alcohol, imine, amide, or 

imide groups react with strong acids such as phosphoric acid and sulphuric acid. The basicity 

of the polymers produces hydrogen bonds with acids. In other words, the basic polymers act 

as a solvent in which the acid undergoes some further dissociation. Because of their unique 

proton conduction mechanism by self-ionization and self-dehydration, H3PO4 and H2SO4 

exhibit effective proton conductivity even in an anhydrous form. When a basic polymer is 

present, the interaction between these acids and the polymer through hydrogen bonding or 

protonation increases the acid dissociation, compared to that of anhydrous acids. A number of 

basic polymers have been investigated for preparing acid-base electrolytes and the H3PO4-

doped PBI is one example [39]. 

Another type of acid-base polymer membranes involves the use of acid-base blends. These 

blends constitute a new class of proton-conducting membranes with high conductivity, 

thermal stability, and mechanical flexibility and strength [40].  

1.5.3.1 Acid-Doped PBI Membranes 

Polybenizimidazole, PBI, structure (4) in Figure 1.5, is an amorphous thermoplastic polymer 

with a glass transition temperature of 425-436 °C. It has good chemical resistance and 

excellent textile fibre properties. When doped with acids as well as strong bases a PBI 

polymeric electrolyte is formed and it has been used as a PEM in a fuel cell membrane 

electrolytes at temperatures above 100 °C [7, 41]. 

 

PBI was cast from N,N-dimethyl acetamide, DMAc,  and the film doped with phosphoric acid 

by immersing in 11 M phosphoric acid at room temperature.  The equilibrium uptake is about 



  

 22

5 molecules of H3PO4 per repeat unit of PBI; about 2 molecules of phosphoric acid are 

bonded to each repeat unit of PBI, consistent with the fact that there are two nitrogen sites for 

the hydrogen bonding to the PBI monomer unit. The rest of the acid is un-bonded “free acid”, 

which can be easily washed out of the system. The conductivity of acid-doped PBI electrolyte 

was found to be strongly dependent on the acid-doping level, temperature, and atmospheric 

humidity. An electro-osmotic drag due to the proton transport was observed. It was defined as 

the number of water molecules which moved with each proton in the absence of a 

concentration gradient. For PBI membranes, however, the water drag coefficient was found to 

be close to zero indicating that the conductivity of the acid doped PBI membranes is less 

demanding on the fuel humidification during the fuel cell operation [7, 20]. 

1.5.3.2 Acid-Base Polymer Blends  

New ionomer blend membranes have been synthesised by ionic cross linking of polymeric 

nitrogen-containing bases (N-bases) with polymeric sulphonic acids. The sulphonic acid 

groups interact with the N-bases either to form hydrogen bonds or by protonation of the basic 

N-sites as shown in Figure 1.8 [40]. 

`
3 .......... PNHSOP −−

[ ] [ ]`3
`

3 PNHSOPPNHSOP −−+−→−+− +−

Hydrogen bonding

Protonation

.......

 

Figure 1.8: Specific interaction in the acid base blends [40]. 

 

Examples of this type of membrane blends are those based on sulphonated poly(ether ether 

ketone), S-PEEK, or ortho-sulphone-sulphonated poly(ethersulphone), SPSU, as the acidic 

component, and polybenzimidazole, PBI, as the basic component. 

These membranes show excellent thermal stabilities (decomposition temperatures ranging 

between 270 and 350°C) and good proton conductivities. Their performance in direct 
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hydrogen fuel cells at 70°C is similar to that of Nafion-112 membrane. However, only limited 

durability of around 300h has been demonstrated.  In addition to direct hydrogen testing, 

preliminary studies in DMFCs has shown their suitability for this application and it is reported 

that their methanol permeability is significantly lower than that of Nafion [42].  

 

1.6 Scope of Research 

Among the various polymers, which have been investigated over the past few years, are those 

based on polyaryls, in particular poly (ether ether ketone). These have shown considerable 

promise. Attempts to develop these instead of perfluorinated polymers were based mainly on 

cost and stability of the polymers [8, 9, 34, 43]. 

 

Sulphonated PEEK, SPEEK, membranes have been found to be thermally and chemically 

stable, and to possess high proton conductivity depending on the degree of sulphonation [44-

46]. However, there are two problems that appear when operating these fuel cells: there is 

excessive osmotic swelling which results in low mechanical strength [9, 43]. This mechanical 

weakness of sulphonated polymers has initiated a number of attempts to develop more stable 

cross linked materials.  

 

Sulphonated PEEK can be cross linked by using multi-functional cross linking agents, which 

react with the sulphonic acid groups on the polymer chains [47-51]. In spite of the 

improvement in mechanical and other properties, there is still a problem associated with the 

decrease in proton conductivity of the cross linked materials. Some researchers have 

impregnated the membranes with low molecular weight strong acids, i.e. H3PO4, to improve 

the conductivity [52]. However, these low molecular weight acids are leached out of the 

membranes over time [51].   
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Cross linking of PEEK has been reported to occur by thermal, chemical and irradiation 

methods [53-58]. However, the cross linked materials have not been given full consideration 

in PEM synthesis due to the fact that cross links limit the degree of sulphonation. 

1.6.1 Objectives 

The main focus of the present study includes: 

• The identification of cross linking methods to modify PEEK and sulphonated PEEK.  

• The synthesis of cross linked proton exchange membranes for PEMFC applications, 

which possess high proton conductivity (of the order of 0.1 S cm-1), high thermal and 

oxidative stabilities, and mechanically strong and stable in water and methanol. 

• Characterisation of the membranes prepared using various characterisation techniques. 

• Single fuel cell fabrication from available materials and subsequent testing. 

1.6.2 Research Structure 

• The cross linking will be carried out using ion irradiation due to availability and 

effectiveness in altering the properties of PEEK. 

• The characterization of irradiated PEEK was carried out to evaluate the effect of cross 

linking on structural and thermal properties.  

• The sulphonation of cross linked PEEK was studied to investigate the effect of cross 

links in limiting the degree of sulphonation as well as to ascertain the ideal degree of 

sulphonation required for high conductivity and stability.  

• The characterisation of the resultant materials as a candidate proton exchange 

membrane, PEM, for low temperature fuel cells (FC) will be addressed.   

• The cross linking of sulphonated poly(ether ether ketone), SPEEK, using chemical 

methods based on the reduction of the carbonyl groups will also be addressed. 
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Chapter 2                                                   

Materials, Experimental Techniques and Apparatus 

 

 

 

 

 

2.1 Materials and Reagents 

2.1.1 Poly (perfluoro-sulphonylfluoride ethyl-propyl-vinyl ether), PSEPVE, 

NafionTM 

NafionTM membranes are manufactured by several companies; the most well known is 

DuPont™.  They are labeled with a letter N, followed by a 3-or 4- digit number, where the 

first two numbers indicate equivalent weight divided by 100, and the last digit or two 

represents the membrane thickness in mills (1mill = 10-3 inch = 25.4μm). The material 

properties of Nafion are summarized in Table 2.1[59]. 

 

In the present research, Nafion-112 (51μm) was obtained from Sigma-Aldrich Co., while 

Nafion-115 (127 μm) was supplied with the PEM cell hardware and purchased from H-Tec 

UK. Nafion-117 (178μm) was supplied by DuPont. 
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Table 2.1: Properties of Nafion membranes (from manufacturer data sheet) [59]. 

Properties  Typical value 

Conductivity (S cm-1) 0.10* 

Available Acid Capacity (meq g-1) 0.90*  

Total Acid Capacity (meq g-1) 0.95 to 1.01 

Density (g cm-3) 1.98 

Water Uptake (%) 38 

Tensile Modulus (MPa) 249a, 114b, 64c 

Tensile Strength (MPa) 43a, 34b, 25c 

Elongation at Break (%)  225a, 200b, 180c 

 

a50% RH, 23 °C bwater soaked, 23 °C cwater soaked, 100 °C, * minimum value 

 

2.1.2 Poly (oxy-1.4-phenyleneoxy-1.4- phenylenecarbonyl-1.4-phenylene), 

PEEK 

Poly (ether ether ketone), PEEK is a semi-crystalline engineering polymer with outstanding 

properties. These include good processability, high thermal stability, high mechanical 

strength, excellent resistance to irradiation and to a wide range of chemical reagents. PEEK is 

commercially available under two trade names; PEEK Gatone from Garda Chemical Limited, 

and Victrex PEEKTM. The later was used in this research and was obtained from Goodfellow 

Ltd. UK. PEEK™ polymer was used in the form of film, powder and granules.  A summary 

of the key physical properties of PEEK used in this research e.g., PEEK 100 μm film, PEEK 

granules grade G450 and PEEK powder grade P150, is listed in Table 2.2 [60]. 
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Table 2.2: Properties of PEEK materials (from manufacturer data sheet) [60]. 

Property  Typical value 

Density (g cm-3) (amorphous) 

                            (crystalline) 

1.26  

1.32  

Glass Transition Temperature (oC) 143 

Melting Temperature  (oC) 343 

Melt Viscosity(kN s m-2) (P150)  

                                         (G450) 

0.135  

0.468  

Tensile Modulus (GPa) 3.5 

Tensile Strength (MPa) 97 at 23 oC 

Elongation at Break (%)  Up to 60% 

Dielectric Strength (kV cm-1) 190 (film of 0.002 in) 

Dielectric Constant (50 Hz, 0-150 oC) 3.2 

                                (50 Hz, 200 oC) 4.5 

Loss Factor 0.003 

Volume Resistivity (1016 Ω cm) 4.9 

 

 

2.1.3 Solvents 

Methane sulphonic acid, MSA, was used as a solvent for PEEK and a swelling agent for cross 

linked PEEK. Dimethylformamide (DMF, b.p. 153 oC), dimethylacetamide (DMAc, b.p. 165 

oC) were used to cast films of sulphonated PEEK for PEM preparation. Methanol was also 

used as solvent for highly sulphonated PEEK and as a rinsing agent. They were obtained as a 

reagent grade from Sigma-Aldrich Co. and used without further purification.  
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2.1.4 Reagents 

Concentrated sulphuric acid (H2SO4), Sigma-Aldrich 97.5%, was used as a solvent and 

sulphonating agent for PEEK and a swelling agent for cross linked PEEK.  

 

Aqueous solution of hydrogen peroxide H2O2 (3-30%) and ferrous sulphate FeSO4.7H2O (4-

30 ppm) obtained from Sigma-Aldrich, is well known as Fenton’s reagent. It was used to 

determine the stability of the membranes to oxidation.  

 

Sodium hydroxide, hydrochloric acid (35.5%) and phenolphthalein indicator were used to 

determine the ion exchange capacity of sulphonated PEEK. 

 

Sodium borohydride NaBH4, used as cross linking agent for sulphonated PEEK, was obtained 

from Sigma-Aldrich Co. and used as received.  

2.2 Experimental Procedures and Apparatus 

2.2.1 Cross Linking of PEEK 

2.2.1.1 Ion irradiation 

Irradiation was carried out using the University of Birmingham’s Scanditronix MC40 

Cyclotron.  For this work, either a 11.7 or 12.5 MeV proton beam and 30.0 or 33.0 MeV 

helium ions were used.  In each case, the beam passed through a 30 micron Havar window, 

then about 40 mm of air, followed by a stack of PEEK foils which was mounted in air in a 

water-cooled holder. The beam was defocused on to a spot size of approximately 10 mm in 

diameter and scanned over an area of up to 32×32 mm2 by applying saw-tooth wave forms to 

the inputs of a pair of steering magnets.  This experimental setup is shown in Figure 2.1.  
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Figure 2.1: Schematic diagram of the ion irradiation equipment. 

 

 

After allowing for the energy lost in the Havar window and the air gap, the energy of the 

protons incident on the first foil was calculated to be 11.0 or 11.2 MeV.  The flux of helium 

ion irradiation was 200 nA and the incident energy on the first PEEK foil was 25.6 MeV. 

Generally, ion irradiation times varied from 10 to 130 minutes depending on the required 

dose. 

 

The penetration ranges of  11.0 MeV protons and 25.6 MeV He2+ ions in amorphous PEEK 

were approximately 1.2 and 0.45 mm respectively, so a stack of 10  and 4 foils, each 100μm 

thick, covers almost the entire energy range for 11.0 MeV H+ and 25.6 MeV He2+ 

respectively. The stopping power and projected range of PEEK for H+ and He2+ ions were 

calculated using the TRIM89 code (version 92.12). Table 2.3 shows the ion energy on entry to 

each foil, and the stopping power in that foil.   
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2.2.1.2 Dosimetry 

The absorbed dose, D (MGy), was calculated using the following equation [61]: 

                                           
incZ

QSD ×=                                                                (2.1)                  

where S is the mass stopping power of the material (MeV m2 kg-1), Q is the fluence (C m-2) 

and Zinc is the charge number of the incident ion. The absorbed dose of the first PEEK layer 

was calculated based on the incident energy and those of the other PEEK layers were 

calculated based on the inlet energy after the ions had passed through the previous layer.  

 

In some of the irradiation experiments, the total fluence was measured from the integrated 

charge entering the foil holder.  The size of the irradiated area was determined by inspection 

of the irradiated foils, which are discoloured by the beam, and hence the flux (ions per unit 

area) was determined, assuming that the discoloured area was uniformly irradiated.  

 

Table 2.3:  Stopping power and projected range 

 

(a) He2+ ions. 

Layer 

No. 

Energy at    surface 

(MeV) 

Stopping power 

(MeV m2 kg-1) 

Projected range 

(×10-3 m) 

1 25.6 25.2 0.455 

2 22.4 28.0 0.355 

3 18.9 32.0 0.255 

4 14.9 38.6 0.155 
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(b) H+ ions. 

Layer 

No. 

Energy at surface 

(MeV) 

Stopping power 

(MeV m2 kg-1) 

Projected range 

(×10-3 m) 

1 11.0 4.10 1.200 

2 10.5 4.24 1.100 

3 10.0 4.42 1.010 

4 9.4 4.63 0.905 

5 8.8 4.87 0.809 

6 8.2 5.16 0.710 

7 7.6 5.51 0.620 

8 6.9 5.96 0.522 

9 6.1 6.54 0.420 

10 5.3 7.34 0.327 

 

 

This approach provides no indication of the uniformity of irradiation and suffers from errors 

in absolute charge collection due to escape of secondary electrons.  Therefore, a 25 μm 

copper monitor was used; see Figure 2.1. In this case the Zn-65 activity produced in the 

copper monitor foil was used to determine the fluence.  The Zn-65 yield was evaluated by 

detecting the characteristic 1115 keV gamma rays using an HPGe detector whose efficiency 

had previously been determined. The yield Y (atoms) in mass M of copper was converted to a 

fluence of incident ions using the relation  

                                             σ×=
me
MQY
.
.                                                                             (2.2)           

where m is the mass of each copper atom, e is the charge carried by each ion, and σ is the 

cross section of the nuclear reaction.  Based on the evaluated cross sections published by the 
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IAEA [62], values of =σ 200 mb (2.0×10-29 m2) for the H+ reaction and 650 mb (6.5×10-29 

m2) for the He2+reaction were used.  

Initially, the average flux over the whole area (32mm x 32mm) was determined, then the 

sample was cut into sixteen separate squares, each approximately 8mm x 8mm, and the flux 

was also determined in each.  Any differences in area were allowed for by weighing the 

individual copper squares to determine their masses M. Table 2.4 summarizes the results 

obtained using this procedure. 

2.2.1.3 Irradiation Cost  

The operating cost for the MC-40 was estimated by Prof. D. J. Parker, a member of the 

School of Physics and Astronomy, The University of Birmingham,  to be 200 £ h-1. This 

charge included irradiation type, energy and any other additional experimental conditions 

such as cooling. It must be mentioned that irradiation experiments in this research were 

carried out free of charge. 

 

Table 2.4: Irradiation dose evaluation.  

Irradiation Proton Helium 

Individual fluence range, (C m-2) 7.8 – 10.9 2.6-4.6 

Average fluence over the whole irradiated area,(C m-2) 9.4 3.4 

Standard deviation 0.9 0.7 

Dose at first PEEK layer, (MGy) 37.9 ± 3.6 42.9 ± 8.8 

 

2.2.2 Gel Content Measurement 

The gel content of the irradiated films was determined by immersing samples (~10 mg) in 10 

cm3 of MSA at room temperature for 24 h. At the end of this period, the solvent was 
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decanted; the remaining gel was thoroughly washed in distilled water and methanol, and left 

to dry in air for 24 h and in a vacuum oven for at least 12 h at 60 oC before finally being 

weighed. Gel percentages were calculated using the following equation: 

                                           100%
0

×=
m
mGel                                                                        (2.3)                  

where 0m and m  are the masses of samples before and after extraction, respectively. 

 

2.2.3 Sulphonation Reaction 

The sulphonation of PEEK, G450, was carried out using a three necked round bottom flask in 

air using two procedures: samples of PEEK were dried in a vacuum oven at 130o C for 48 h 

and other samples were used as received. Both were reacted at a concentration of 2.4 w/v % 

of polymer in concentrated H2SO4 at 20o C.  The desired amount of PEEK was added to 700 

cm3 of concentrated H2SO4 and the solution stirred mechanically. In order to study the effect 

of time on the extent of sulphonation samples of 100 cm3 of this solution were precipitated 

after 24, 48, 72, 96, 120, 144 and 168 h by drop-wise addition of the solution to 500 cm3 of 

ice cooled distilled water. The samples were washed until the excess acid was removed, dried 

in air for 48 h and finally in an oven at 40oC for 24 h. 

 

Similar experiments were carried out on other PEEK samples namely P150 and PEEK film. 

PEEK is soluble in concentrated sulphuric acid [63], and also sulphuric acid acted as a 

swelling and sulphonating agent for cross linked PEEK. Sulphonation of the cross linked 

PEEK was carried out using 100 μm films (about 7mg). The film was removed after various 

reaction times, washed with water and weighted.  The change in weight, Δ% , was measured 

from the following equation: 
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                                                   %100% ×
−

=Δ
init

initsul

w
ww

                                                   (2.4)             

 

where sulw  and initw  are the dried weight of the sulphonated and initial samples [64]. The 

conditions for each PEEK sample and sulphonation experiment are summarized in Figure 2.2. 

 

 

Figure 2.2: Schematic diagram of the preparation of sulphonated PEEK.  

 

2.2.4 Sulphonated PEEK; Membranes Casting and Cross Linking 

In the present work, films were obtained by casting a 2.4 % SPEEK solution in DMAc on 

glass Petri dishes followed by drying at room temperature in a fume cupboard for several days 

and finally in vacuum oven at 120o C for 24 h. The membranes were removed by submerging 
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in distilled water, and carefully peeled from the dishes using tweezers. They were then 

washed with distilled water before drying again in vacuum oven at 120o C for another 24 h. 

The thickness of the membranes was in the range 30 to 80 μm. 

The choice of the solvent DMAc was based on the film properties since the use of DMF lead 

to opaque films and films obtained from methanol solution were mechanically weak. 

Two different methods for cross linking SPEEK were investigated. First the films were 

thermally treated at 120 oC in a vacuum oven for various periods.  The second approach 

involved the use of different amounts of sodium borohydride as a reducing agent followed by 

thermal treatment. 

 

2.2.5 Ion Exchange Capacity, IEC and Degree of Sulphonation, DS 

A weighed amount of the SPEEK polymer was dissolved in 10 cm3 of DMF and the solution 

titrated against standard 0.1N NaOH using phenolphthalein as an indicator. The volume of 

alkali required to change the indicator to red using 10 cm3 of DMF was subtracted from all 

results (VR = 0.1 cm3). This procedure was used rather than soaking the polymer in excess 

sodium hydroxide solution overnight and titrating against HCl. This method proved to be 

irreproducible. 

The ion exchange capacity, IEC, of SPEEK expressed in meq g-1 is given by the equation: 

                                           
W

VVN
IEC RS )( −

=                                                                      (2.5)                   

where VS, VR are the NaOH volume in cm3 taken in the titration of the sample and reference 

respectively and W is the weight of dry polymer in g. 

The sulphonation degree, DS, is defined as the ratio of the moles of sulphonated PEEK units, 

N SPEEK,  to that of the total moles of sulphonated PEEK and un-sulphonated units of PEEK, N 

PEEK, such that, 
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                                    100% ×
+

=
PEEKSPEEK

SPEEK

NN
N

DS                                                           (2.6)                  

N SPEEK was obtained from the IEC, such that  

                                     IECWN SPEEK ××= −310                                                                   (2.7)                   

and N PEEK from the expression,  

                                    
PEEK

SPEEKSPEEK
PEEK M

NMW
N

)( ×−
=                                                        (2.8)                  

where W was the polymer dried weight in g, M SPEEK and M PEEK  were the molecular weights 

of the repeat units of sulphonated PEEK and PEEK, (368 and 288 g respectively). For 

SPEEK samples that did not dissolve in DMF as well as for the cross linked SPEEK samples, 

the IEC was determined by FTIR spectroscopy, discussed later. 

 

2.2.6 Water Uptake, Hydration Number and Swelling Ratio 

SPEEK film samples were dried at 120o C for 24 h, and the dried polymer films immersed in 

water at three different temperatures, namely 23, 50 and 70±2 oC. The water uptake was 

determined by removing samples after various times ranging from 0 to 900 hrs, drying off the 

surface water using a filter paper and weighting. The water uptake was calculated from the 

following equation, 

                              100%
1

12 ×
−

=
W

WWeWaterUptak                                                              (2.9)             

where, W2 and W1 were the masses of the sample in water and the initial dried sample 

respectively. 

The hydration number, λ, e.g., the number of water molecules absorbed per sulphonic acid 

unit present was calculated from the mass of water absorbed and the ion content of the dry 

copolymer, such that  
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1

12 2
)(

WIEC
MWW OH

×

−
=λ                                                               (2.10)                   

where OHM
2

 is the molecular weight of water (18.01 g mol-1), W2 and W1 are as above and 

IEC is the ion exchange capacity of the dry copolymer in equivalents per gram [65]. 

The swelling ratio was calculated from films 5 cm long and 1cm in width from the equation: 

                             100% ×
−

=
dry

drywet

L
LL

RatioSwelling                                                      (2.11)   

where L dry and L wet are the lengths  of dry and wet films, respectively [66]. 

 

2.2.7 Oxidative Stability of PEM; Fenton Test 

Currently the stability of fuel cell membranes to oxidation is assessed approximately using the 

Fenton test: the membrane is soaked in an aqueous solution of H2O2 (3-30%) and FeSO4 (4-

30 ppm), and membrane stability measured in terms of weight loss as a function of immersion 

time and time required for the membrane to break up or to begin to dissolve. In the present 

work, the oxidative stability was determined at 25 o C using a solution of 30% H2O2 and 4ppm 

FeSO4. 

 

2.2.8 FT-IR Spectroscopy 

2.2.8.1 Theory 

Infrared spectroscopy is one of the most important and widespread structural characterisation 

methods used in polymer science. Infra-red absorbance is due to the interaction of the electric 

field vector with the molecule dipole transition moments due to molecular vibrations and the 

absorption of quanta of light.  
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Individual bonds may absorb at more than one frequency due to the fact that each covalent 

bond may vibrate in several modes, such as stretching or bending. Although, bending 

absorption is very weak it is useful in differentiating similar type of bonds in particular 

substituents on aromatic rings. It is also important to note that symmetrical vibrations do not 

absorb in the IR region. In general, bond order and the type of atoms joined by the bond are 

the most important factors in determining the frequency at which a chemical bond will absorb. 

Conjugation and nearby atoms also change the frequency that a specific bond absorbs. 

Therefore, the same or similar functional group in different molecules will typically absorb 

within the same and specific frequency range [67-69]. 

 

Hooke's law states that the IR frequency at which a chemical bond absorbs is inversely 

proportional to the square root of the reduced mass of the bonded atoms, such that  

                                                     
μπ

ν k
2
1

=                                                                     (2.12)                  

where v is the  wave number in cm-1, μ is the reduced mass, 
21

21

mm
mm

+
, in which m1 and m2 are 

the atomic masses of two elements which makes the bond and  k  is the force constant.  

The complex lower region below 1000 cm-1 is known as the fingerprint region because almost 

every organic compound produces a unique pattern in this area, therefore identity can often be 

confirmed by comparison of this region to a known spectrum [68, 69]. 

The % transmission is simply the intensity of sample beam (It) divided by the intensity of 

reference beam, I0, e.g. 

                                                   100%
0

×=
I
I

T t                                                                  (2.13)              

A more useful parameter for quantitative work is the absorbance, A, or optical density, O.D., 

of a band, 
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                                      T
TI

I
A

t

%log21loglog 0 −===                                                    (2.14) 

The transmission data (percent) is converted to absorbance data using eq. (2.14). 

2.2.8.2 Experimental Procedure 

The equipment employed for infrared spectroscopy experiments was a Nicolet Magna-IR 860 

ESP spectrophotometer. An attenuated total reflectance, ATR, attachment was used with a 

Golden Gate Accessory and a DTGS detector. All spectra were recorded from 600-3800 cm-1 

at a resolution of 2cm-1 and total of 200 scans accumulated for each. A background absorption 

spectrum was taken after each run and subtracted from the sample spectrum. 

 

2.2.9 Differential Scanning Calorimetry, DSC 

2.2.9.1 Theory 

Differential scanning calorimetry, DSC, is one of the most widely used thermal analysis 

techniques to determine the thermodynamic properties of polymers. DSC measures the 

temperatures and heat flow associated with transitions in materials as a function of time and 

temperature. The technique provides qualitative and quantitative information about physical 

and chemical changes that involve endothermic or exothermic processes or changes in heat 

capacity using minimal amounts of sample. It has many advantages including fast analysis 

time, easy sample preparation, applicability to liquids and solids, a wide range of temperature 

and excellent quantitative capability [70].  

 

DSC can be used to determine the glass transitions, melting point, degree of crystallinity, 

heats of fusion and reactions and specific heat and heat capacity. It is also used to study 

crystallization and reaction kinetics, as well as oxidative and thermal stabilities. 
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Figure 2.3: The DSC head. 

 

 

2.2.9.2 Experimental Procedure 

2.2.9.2.1 Characterization of Cross Linked PEEK 

The thermal properties of the PEEK samples (7 ± 1 mg) were measured using a Perkin-Elmer 

differential scanning calorimeter, DSC-7. Measurements were carried out in argon at a flow 

rate of 20 cm3 min-1 and heating and cooling rates of 20oC min-1. The first heating scan was 

performed from 50 to 360oC by which temperature PEEK had completely melted. A cooling 

scan was subsequently performed from 360oC to the start temperature followed by a second 

heating run to 360 oC.  

 

The glass transition temperature, Tg, was determined from the midpoint of the inflection of 

the specific heat plot with temperature, using PYRIS software. 

A baseline was established for the instrument using two empty aluminium DSC pans. This 

baseline allowed for the correction of heat flow variation due to the equipment by subtracting 

the baseline heat flow from the sample heat flow. Temperature and enthalpy calibrations were 
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carried out using ultra pure metal standards: indium (m.pt: 429.78 K, =Δ fH  29.2 J g-1), tin 

(m.pt: 505.06 K) and lead (m.pt: 600.65 K).  

 

A DSC-2 equipped with a water-cooled jacket was used to study isothermal crystallization 

adopting procedures developed previously for the study of the crystallization and melting of 

PEEK [71]. Isothermal crystallization was performed at a sensitivity of 8.3mW under Argon 

flow of 20 cm3 min-1.  Initially the samples were heated to 650 K at 320 K min-1 and held at 

this temperature for 5 min to ensure complete melting. The samples were then cooled to the 

crystallization temperate at 160 K min-1 and the rate of crystallization followed with time 

isothermally until the calorimeter response returned to the baseline. The melting endotherm 

was then determined from the heating run after each complete crystallization. 

2.2.9.2.2 State of Water in PEMs 

A Perkin-Elmer differential scanning calorimeter, DSC-7, was used to determine the amount 

of freezing and non freezing waters present in the polymer samples.  Measurements were 

carried out at heating and cooling rates of 5 oC min-1 in the temperature range from -35 to 

15oC. Temperature and enthalpy calibrations were carried out using ultra pure metal standard: 

indium (m.pt: 429.78 K, =Δ fH  29.2 J g-1).  

The weight of freezable water was calculated assuming that the heat of fusion of free water in 

the PEMs was the same as that of the ice (322 J g-1), e.g. 

                                      ( )
ice

f
tfbftb H

H
wwwww

Δ

Δ
−=+−=                                                (2.15)                  

where Wt  is the total water content in g; Wb is the amount of  bound water in g; Wf and Wfb are 

the amounts of  free water and bound water in g, respectively. fHΔ  and iceHΔ  are the heat of 

fusion, J g-1, of free water in sample and that of ice respectively [72]. 
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2.2.10 Thermogravimetric Analysis, TGA 

2.2.10.1 Theory 

This technique measures the weight of a sample as a function of temperature (or time) under a 

controlled atmosphere. The mass is recorded using a highly sensitive electronic microbalance. 

TGA is commonly used to determine polymer degradation temperatures, residual solvent 

levels, absorbed moisture content, and the amount of inorganic (non-combustible) filler in 

polymer or composite material. 

TGA tests can be carried out in a dynamic mode at some controlled heating rate, or 

isothermally, in a flowing inert or oxidative gas atmosphere. Typical weight loss profiles are 

analyzed for the fractional or percent weight loss at any temperature, the fractional or percent 

of non-combusted residue at some final temperature, and the temperatures of sample 

degradation processes. It is also possible to evaluate the thermal degradation kinetics and 

predict materials life time [73]. 

2.2.10.2 Experimental Procedure 

2.2.10.2.1 Thermal Degradation Kinetics of Cross Linked PEEK 

Thermal degradation measurements were carried out using a Netzsch Jupiter STA 449C. This 

consisted of a thermobalance, temperature control unit and PC which was used to store and 

analyze the weight loss-temperature data. Samples of 5.0±0.5 mg were used and the thermal 

decomposition was carried out in an inert atmosphere of argon at a flow rate of 100 cm3 min-1 

over a temperature range of 75 to 850 oC at a constant heating rate of 10 oC min-1. A baseline 

correction was made before each experiment by operating the TG analyzer using two empty 

ceramic crucibles and scanning over the same temperature range.  In polymer degradation 

kinetics, the weight fraction conversion, α, was defined as, 
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where W0, Wt and W∞ are the initial weight of the sample, at a given temperature or time t 

and the final weight in mg. 

2.2.10.2.2 Thermal Stability of PEMs 

Dry samples of the sulphonated polymer (5±0.5mg) were analyzed in flowing argon or air 

atmospheres at rate of 100 or 75 cm3 min-1, and over a temperature range 30 to 850 oC, at a 

heating rate of 10oC min-1. 

 

2.2.11 Fuel Cell Systems and Testing 

2.2.11.1 Junior Basic Fuel Cell System 

The working fuel cell, shown in Figure 2.4, and attachments were obtained from H-tec with a 

range of accessories which included decade resistors, 2 multimeters and a lamp to activate the 

solar module. The PEMFC could be dismantled and used to test different membranes for 

comparison purposes, see Figure 2.5.  

 

Figure 2.4: View of Junior Basic fuel cell system (H-tec)[74]. 



  

 44

 

Figure 2.5: View of PEMFC Kit (H-tec)[74]. 

2.2.11.2 Testing of PEM in Fuel Cell 

All measurements were carried out using the fuel cell connected in the circuit as shown in 

Figure 2.6. 

 

Figure 2.6: Setup for fuel cell testing (FC=fuel cell) [74]. 

 

The performance of a PEM fuel cell was characterized by the following measurements: 



  

 45

2.2.11.2.1 Voltage-Current Density Relationship 

The output of the fuel cell depends on the external load resistance of the circuit and this was 

determined by changing the resistance and measuring the current at optimum power yield. 

The current-voltage characteristics were recorded with open circuit voltage and then by 

decreasing the resistance to smaller values. Approximately 20 s was allowed to elapse 

between each reading and each experiment was repeated three times. The mean values were 

taken with standard deviation. 

2.2.11.2.2 Efficiency 

The efficiency of the fuel cell in the circuit was measured with the apparatus set to produce 

the optimum power yield. The hydrogen consumption was recorded with time along with the 

current and voltage values. 

The effect of temperature on the PEM fuel cell performance was carried out with a homemade 

cell placed in a furnace where temperature could be varied in the range 30 to 120 oC.  

 

2.2.11.3 Building the K18 Hard Graphite Fuel Cell 

The individual components of a single-cell are shown in Figure 2.7. 

 

Figure 2.7: Components of a single fuel cell [75]. 



  

 46

The Membrane Electrode Assembly, MEA, consists of a polymer electrolyte membrane, the 

anode and cathode catalyst layers and the anode and cathode gas diffusion layer, GDL. When 

the electrocatalyst is directly applied to the GDL as opposed to the membrane, the resulting 

electrode is often referred to as a gas diffusion electrode, GDE. The electrodes contain either 

an unsupported e.g. the methanol fuel cell or a supported, e.g. a hydrogen fuel cell catalysts 

and are usually composed of the same copolymer as the proton exchange membrane. The 

precious metal loading is determined by the amount of catalyst per active area and the 

ionomer content of the electrode can vary between 5-20 weight percent, depending on the 

application’s requirements. 

 

A 5 layers MEA was purchased from Fuel Cell Store for the incorporation in the cell, 

consisting of Nafion-112 and catalyst loading of 0.5 mg cm-2 on the cathode side and 0.2 mg 

cm-2 on the anode.  

 

Edge gaskets on either side of the MEA provide a gas-tight seal between the flow channel and 

the membrane upon compression. The seal prevents reactant gases from leaking from the cell 

or crossing over from one electrode to the other. Gaskets are often made from 

polytetrafluoroethylene, PTFE, sheets or PTFE-filled fibre glass fabric. Silicon rubber gaskets 

were used. This was obtained as a sheet of 0.5 cm thick and was used up to temperatures as 

high as 120 oC.  

 

The flow channels deliver reactant gases to the GDL, and because they have to be good 

thermal and electrical conductors, they are made of graphite. Hard graphite was obtained as a 

sheet of 0.5 cm thickness. The flow channels were drilled in the School of Metallurgy and 

Materials workshop, Figure 2.8. 
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Figure 2.8: Hard graphite flow channels [76]. 

 

Current collector plates, Figure 2.9, made from copper, gold coated to prevent corrosion, were 

located on the backside of the graphite flow channels; the cell leads and voltammeter leads 

were connected to these plates [76].   

 

Figure 2.9: Current collector Gold coated Copper plates [76]. 

 

Finally, the end plates were torqued together to provide mechanical compression and 

connection of the fuel cell components, to seal the cell to inhibit gas leaks, and to reduce 

contact resistances. The end plates were fabricated in the School workshop from 1.5 cm thick 

aluminum. The gas inlet and outlet were drilled into both sides of the end plate and the screws 

used to hold all components together. 

Figure 2.10 shows the end product; the K18 hard graphite fuel cell. 
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Figure 2.10: The K18 hard graphite fuel cell. 

 

2.2.11.4 The K18 Fuel Cell; Testing and Further Developments 

The home made fuel cell was initially tested using the 5 layers MEA and the H-tec solar 

system using the same setup as outlined in Figure 2.6. The performance deteriorated after a 

few minutes due to gas leakage. This was overcome by adding another gasket between the 

end plates and the graphite layers. However, the performance was not as good as the H-tec 

cell due to the poor contact between the various components and the soft rubbery gasket 

employed in the H-tec model. The components obviously play an important part in 

determining the performance of the fuel cells. 

Further development of the K18 hard graphite fuel cell was carried out by exchanging the 

graphite flow channels and the copper electrodes with the H-tec nickel alloy electrodes. The 

later was designed to be a current collector as well as flow channels. Moreover, this allowed 

more control of the cell hardware to achieve the maximum contact between all components.  

Measurements were carried out at elevated temperature, the electrodes and SPEEK / Nafion 

membranes were sandwiched between isolated end plates and the whole system was isolated 
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by wrapping in glass wool. These cells were studied over a range of temperature from 35 to 

100 oC. The temperature was controlled using a Stuart CB162 heater and a Digitron T228 

thermometer.  

 

2.2.12 Dielectric Relaxation Spectroscopy, DRS 

2.2.12.1 Theory 

Dielectric measurements rely on the application of a sinusoidal voltage to the sample and 

measuring the current [77-80]. This current can be resolved into two fundamental dielectric 

characteristics: capacitance and conductance see Figure 2.11.  

Ι  C o n d u c ta n c e
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Ι  C o n d u c ta n c e = Ι  M e a s .× c o s δ

Ι  C a p a c ita n c e = Ι  M e a s .× s in δ

 

Figure 2.11: Schematic representation of current in the DETA. 

 

The materials capacitance, C, and conductance, λ , are then calculated using the following 

equations: 

                                          
wV
I

C C=                                                                                     (2.17)                  

                                         cIV
R

×==
1λ                                                                          (2.18)    

where fw ×= π2 is the angular frequency, f is the frequency in Hz and V is the applied 

voltage in V. 
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In practice, the capacitance and conductivity responses of the material are expressed as the 

dimensionless quantities 'ε and "ε . 

 

'ε  is the dielectric constant or permittivity. It represents the amount of alignment of the 

dipoles in the electric field. It is low for hydrocarbon polymers at low temperature, below 

thermal transitions, because the molecules are frozen in place and the dipoles cannot move to 

align themselves with the electrical field. Likewise, it is low for highly cross linked 

thermosetting resins. 

 

"ε  is the loss factor and it measures the amount of energy needed to align the dipoles and 

move ions. Ionic conduction is not significant until the polymer becomes fluid (e.g. above Tg 

or Tm).   

 

                                    (a)                                                           (b) 

Figure 2.12: Response of polymeric material to an electric field (a) ionic conductivity and (b) 

dipole alignments [80]. 

 

The loss tangent, δtan , is also defined as: 

                                                   
'
"tan

ε
εδ =                                                                         (2.19)      

For parallel plate electrodes, 'ε and "ε  can be calculated from the measurements of 

capacitance and conductance respectively, for a homogenous sample, as follows: 
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where C is the capacitance, R is the resistance, A is the electrode plate area, D is the plate 

spacing between the electrodes or sample thickness and oε  is the absolute permittivity of free 

space (8.85 × 10-12 F m-1). 

2.2.12.2 Experimental Procedures 

A dielectric thermal analyzer, DETA, manufactured by Polymer Laboratories Ltd was used to 

follow the change in dielectric constant, `ε , dielectric loss, ``ε  and tan δ with applied 

frequency and temperature. The DETA equipment consisted of a measuring cell, temperature 

controller and analyzer. The measuring cell consisted of circular parallel plate electrodes, 20 

mm in diameter, placed in a thermostated furnace with a temperature range from –150 to 

300oC.  A fixed AC voltage, 1V, was used at various frequencies in the range of 50 to 105 Hz. 

 

Dynamic experiments were carried out using five different frequencies namely 0.1, 1.0, 5.0, 

10.0 and 50.0 kHz in the temperature range -140 to 240 oC at a heating rate of 1 oC min-1. Step 

isothermal experiments were also carried out and the loss and dielectric constant were 

determined at twenty frequencies and recorded at isothermal temperatures from 120 to 240 oC 

in steps of 5 oC and soaking time of 10 minutes between each step.  

 

In order to ensure a good level of conduction between the surfaces of the sample and the 

electrodes, the samples were coated with gold using a Polaron E5000 sputter coating unit.  
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2.2.13 Electrochemical Impedance Spectroscopy, EIS 

2.2.13.1 Theory 

In this technique, a small sinusoidal AC voltage or current signal of known amplitude and 

frequency (typically from 1Hz to 1 kHz) are imposed on an electrochemical cell and the AC 

amplitude and phase response of the cell monitored. Properties of the electrochemical system 

commonly evaluated using impedance spectroscopy include ohmic resistance, electrode 

properties such as charge transfer resistance and double layer capacitance, and transport 

effects.  

A sinusoidal current signal, )(wI , is defined from its amplitude, ACI , and angular 

frequency, w , as follow: 

                                          ( )wtIwI AC sin.)( =                                                      (2.22)        

where t is time in second. The output AC voltage signal from the electrochemical cell is 

defined as,  

                                                 ( )θ−= wtVwV AC sin.)(                                               (2.23)            

where ACV  is the amplitude of the output voltage signal in volts and θ  is the phase angle in 

radians which represents the difference in the phase of the sinusoidal voltage and current 

signals. In the case of an AC signal, the resistance of an electrochemical device which is not 

purely resistive is a function of the frequency of oscillation of the input signal. It follows from 

Ohm’s Law for the AC case that, 

                                                            
)(
)()(

iwI
iwViwZ =                                                          (2.24) 

where )(iwZ is the complex impedance in ohm, and 1−≡i  is the imaginary operator. 

Equation 2.24 indicates that impedance depends on the frequency at which it is measured. It 

can be written as: 
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                                                         "' ZZZ +=                                                                   (2.25)     

where θcos' ZZ = is the real, in phase, component of the impedance, θsin" ZZ = is the 

imaginary, out of phase, component of the impedance, 22 )"()'( ZZZ +=  is the magnitude 

of the impedance and ( )'"tan 1 ZZ−=θ is the phase angle. 

 

 It should be noted that the original time-variance of V and I, the input/ response signal 

defined by Eq. 2.22 and 2.23, have disappeared in Eq. 2.24 and 2.25 and the impedance at a 

fixed frequency itself is a time-invariant as long as the system itself is time invariant [4, 81]. 

2.2.13.2 Experimental Procedures 

A Solartron 1250 Frequency Response Analyzer, FRA, coupled with a Solartron 1286 

Electrochemical Interface, EI, was used. Measurements were carried out at a fixed AC 

potential of 10 to 100 mV over the frequency range from 10-3 to 6.5×104 Hz and at different 

temperatures. Calibration of the EIS apparatus was carried out using a home-made “Dummy 

Cell” with two types of connection, with four and two terminals, as well as a Randels circuit 

with three terminals, see Figure 2.13.  

 

 In testing fuel cell, connections were made with four terminals. The equivalent circuit 

analyses were consistent with the theoretical values of R and C. The equivalent circuit fit is a 

useful way to establish the electrical properties of the different component in the fuel cell. 
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Figure 2.13: Impendence plots for the Dummy cell. 

 

 

The EIS is used to carry out the following measurements: 

2.2.13.2.1 Conductivity Measurement 

The conductivity of the membranes was calculated using [82]: 

                                         
RS

l
=σ                                                                                 (2.26)                   

where σ is the ionic conductivity in S cm-1, l is thickness of the membrane,  R membrane 

resistance, taken as  the resistance corresponding to the phase angle closest to zero in the 

Bode diagram, and S the cross sectional area of the membrane, respectively. 
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2.2.13.2.2 Impedance Spectroscopy of PEM Fuel Cell 

To carry out fuel cell testing we used the simple experimental set-up shown in Figure 2.14. 

The impedance spectroscopy was carried out on the working PEM fuel cell to monitor the 

different types of losses such as ohmic resistance, fuel crossover and transport limitations.  

 

 

Figure 2.14: Experimental set-up for fuel cell test station. 

 

The Nyquist plot for the Randels circuit representation of an electrochemical half-cell with 

finite ohmic resistance is shown schematically in Figure 2.15.  Depending on the operational 

conditions used with the PEM fuel cell, similar plots are obtained, with one or two loops. The 

smaller the diameter of the loop the lower is the charge transfer resistance and the better is the 

electrochemical performance of the cell. 

Moreover, by fitting the results to equivalent circuit such as Randels circuit, the values of 

Rohm, Rct, Cdl and Cct can be calculated and different PEM / MEA or different operating 

conditions can be compared to optimize the performance of a fuel cell. 
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Figure 2.15:  Complex plane representation of impedance data for an equivalent circuit 

analogue of an electrochemical half-cell consisting of an ideal parallel resistor-capacitor (Rct-

Cdl) network in series with a finite ohmic resistance (Rohm) [4]. 

 

2.2.13.2.3 Linear Sweep Voltammetry, LSV, and Cyclic Voltammetry, CV 

This experiment was used to evaluate two key properties of the hydrogen PEM fuel cell 

namely, hydrogen fuel crossover through the membrane and electrochemically active area of 

the electrode. The experiment was carried out using the Electrochemical Interface alone, e.g., 

the Solartron 1286 EI. 
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Crossover of hydrogen occurs from one electrode to the other by permeation through the 

membrane and this degrades the performance of the cell by reducing the open circuit voltage 

of the cell through induced mixed potentials and by decreasing fuel efficiency. Oxidant 

crossover can also occur through a similar mechanism. 

 

Another source of loss within a fuel cell is that when direct conduction of electrons occurs 

between the electrodes through the membrane. This is the case if small portions of the 

individual electrode make contact with one another due to membrane thinning. This is known 

as internal short circuiting and degrades the performance of the cell.  

A fuel crossover (or internal short circuits) current of 1 to 2 mA cm-2 may be acceptable if the 

operating current density of the system is around 400 mA cm-2. This equates to a loss in 

efficiency of 0.25-0.5%. 

 

Experimentally, the fuel crossover is determined by linear sweep Voltammetry, LSV. An inert 

gas is used to purge the fuel cell cathode while hydrogen is passed through the anode. The 

potential of the fuel cell cathode (the working electrode) is swept by means of a linear scan 

until a potential is reached at which any hydrogen present is instantaneously oxidized. The 

plot of working electrode current against working electrode potential is used to derive the 

hydrogen crossover flux from Faraday’s law. The presence of significant internal shorting 

within a fuel cell is manifested as a positive slope in the current against potential plot.  
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Chapter 3                                                   

Structural and Thermal Properties of Irradiated PEEK 

 

 

 

 

 

3.1 Introduction 

Irradiation is a versatile route for polymer modifications. When irradiated with gamma rays, 

electron beam, EB, or X-rays the radiation passing throughout matter, such as polymers loses 

energy by interacting with the electrons of the polymer and produces free electrons, ionized 

atoms or molecules in excited states. The incident radiation and some of the electrons 

produced have high enough energy to cause chemical bond cleavage in the irradiated 

polymer. As a result, active species such as radicals, ions and excited states are formed, which 

in turn react in different ways leading to chain scission, cross linking, and formation of low 

molar mass volatiles and unsaturation. If irradiation is carried out in air, reactions of the active 

species with oxygen results in the formation of oxy radicals, peroxy radicals and hydro 

peroxides. These undergo further reaction and lead to the formation of functional groups such 

as carbonyl and hydroxy groups [83-87]. 

 

Different polymers have different responses to radiation. A parameter called the “G value” is 

used to quantify the chemical yield resulting from the radiation and is defined as the absolute 

chemical yield expressed as the number of individual chemical events occurring per 100 eV 

(1.6×10-17 J) of absorbed energy. Therefore the G values for cross linking, G(X), and for chain 
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scission G(S), is a measure of the number of cross links and chain scissions produced per 100 

eV respectively [83, 84, 86].  

 

Cross linking and degradation (through chain scission) are two competing processes that 

always co-exist under radiation. The ratio G(S)/G(X) can be used to indicate which process is 

dominant, such that, when G(S)/G(X) > 1 materials tend to undergo degradation and when 

G(S)/G(X) <1 materials tend to cross linking. 

However, the overall effect depends on which of the two is predominant under the 

experimental conditions adopted. It should also be emphasized that for a given polymer G(X) 

and G(S) both change with radiation type and experimental conditions such as temperature, 

atmosphere and absorbed dose. The amount of energy absorbed per unit mass is measured in 

Gray (Gy) units =1 J kg-1.  

 

For some polymers, elevated temperature increases the mobility of the polymer chains and 

makes them more favourable to cross linking. Oxygen in the air usually assists degradation 

through the production of peroxides and this lead to a radical mechanism. In an oxygen-free 

atmosphere cross linking is more favourable. Both G(X) and G(S) increase with the dose, but, 

G(S) for a polymer generally increases more than G(X). The G values for a polymer are also 

affected by the radiation type. The so-called linear energy transfer, LET, is used to quantify 

the effect of different radiation types on a material. LET is defined as the energy deposition 

rate per track length (-dE/dx) of the radiation source and generally G(X) values increased with 

increasing LET values [83-89].  

3.2 Irradiation of PEEK 

The irradiation of PEEK with ions [56, 57, 61, 90], electron beams, EB, [61, 91-97] and 

gamma rays [55, 98] has been extensively studied, the effects of irradiation evaluated using 
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both thermal and mechanical techniques and less frequently by solvent extraction techniques. 

It has been found that crystalline PEEK has excellent resistance to irradiation over 50 MGy 

under non-oxidative conditions and that the main mechanism which accounts for the change 

in mechanical and physical properties in amorphous PEEK is due to the formation of cross 

links. Irradiation with EB results in the formation of gel when the absorbed dose exceeds 6 

MGy, and the percentage of gel was noted to increase with absorbed dose [93].  

 

The mechanical properties of the polymer have been reported to deteriorate with increasing 

irradiation dose, such that the elongation to break is reduced. The presence of cross links in 

the polymer reduces the rate of crystallization and the final degree of crystallinity achieved on 

crystallizing from the melt.  It also depresses the observed melting points and at a sufficiently 

high degree of cross linking no crystallization or melting was observed [55-57, 61, 90-98].  

 

3.3 Results and Discussions 

3.3.1 Ion Irradiation and Dose Evaluation 

The size of the irradiated area was determined by inspection of the irradiated foils, which 

were discoloured by the beam, and the flux (ions per unit area) determined, assuming that the 

discoloured area was uniformly irradiated. The principal uncertainty in the determination of 

dose arises from uncertainty in measurement of the integrated charge. This may be as large as 

20%. The dose delivered is concentrated into narrow parallel tracks passing through the foil.  

Table 3-1 lists the track density Φ  (number of ions incident on unit area) for each type of 

radiation, from which an estimate of the average tracks spacing, can be obtained 

as ( ) 5.087.0 −Φ× .  As can be seen from Table 3.1 in the present study the damage tracks 

effectively overlap and so cover the entire irradiated area. 
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Table 3.1: Irradiation conditions and dose evaluation for H+ and He 2+ ions. 

Irradiation 

ions 

Total charge 

(×10-4 C) 

Area 

(× 10-4 m2) 

Fluence 

(C m-2) 

Ions per 

unit area 

(× 1018 m-2) 

Average track 

spacing 

(× 10-10 m) 

Dosea 

(MGy) 

2.4 4.2 0.57 3.60 5.70 2.3 

1.5 0.8 1.90 12.00 3.10 7.8 

10.1 4.2 2.40 15.00 2.80 9.9 

12.0 2.3 5.20 32.50 1.76 21.3 

H+ 

 

21.0 2.3 9.09 56.70 1.33 37.3 

1.2 2.3 0.52 1.62 0.84 6.6 

2.4 2.3 1.04 3.25 0.60 13.1 

He 2+ 

4.8 2.3 2.08 6.50 0.42 26.2 

a at the first layer. 

 

3.3.2 Structural Characterization of Irradiated PEEK 

3.3.2.1 Gel Contents 

The gel content of the irradiated films was determined by swelling in the solvent, MSA, 

which has been reported as a non-sulphonating solvent for PEEK, even after one week in 

contact with it [45, 63]. Figure 3.1 shows the relationship between gel content and dose on 

irradiating amorphous PEEK with proton H+ and helium He2+ ions. Similar dependence was 

observed for both ions namely an increase in the percentage of gel formed with increasing 

irradiation dose. This behaviour indicates that the effect of irradiating amorphous PEEK by 

ion occurs predominantly by a cross linking process. Although there is a similar dependence 

of gel content with dose, the He2+ ions were more effective in producing gel at a lower dose 
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than the H+ ions. The maxima in gel content observed were 85± 5% and 75 ± 5% at a dose of 

30 and 45 MGy on irradiation with He2+ and H+ ions respectively. Similar results have been 

reported by Vaughan and Stevens [93] on the effect of electron irradiation on the percentage 

gelation in amorphous PEEK. The gel content was observed to level off at about 75% with 

increasing dose up to 100 MGy. 
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Figure 3.1: Gel content of irradiated PEEK samples obtained by solvent extraction with 

MSA. 

 

3.3.2.2 Gel-Sol Fraction Analysis 

Gelation in polymers occurs on the formation of cross linking between the chains in a 

macromolecule, usually by the formation of covalent bonds. If these covalent bonds are 

formed from two tri-functional units the resultant is referred to as cross link or H-link. If, on 
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the other hand, one tri-functional unit is involved in the formation of a network the resultants 

is referred to as end-link or Y-link, see Figure 3.2 [83]. 

 

 

 

Figure 3.2: Cross linking of polymers, (a) H-link and (b) Y-link [83]. 

 

In order to determine quantitatively the cross link and chain scission reaction yields occurring 

during irradiation of PEEK, the well known Charlesby–Pinner equation [83] was used, such 

that,                      

                                         Duqq
pss

..
2

00

0 +=+                                                         (3.1)     

where S is the soluble fraction of polymer ( GelS −= 1 ), D is the radiation dose in Mrad (1 

rad = 100 ergs g-1= 0.01 Gy), q0 is the proportion of cross linked units per unit irradiation 

dose, p0 is the ratio of main chain breaks to chain units per unit irradiation dose, and u 

( w
M wu =  with Mw the weight average molecular weight and w  the repeat unit molecular 

weight) is the weight average of the initial degree of polymerization. This equation applies 

only for polymers having a random initial molecular weight distribution, and predicts a linear 

relationship between ( ss +  ) and 1/D.  

The G values can also be obtained from the following equations: 

                                         (a)           
w

q
XG H

0
61048.0

)(
×

=                                                 (3.2)                
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                                          (b)          
w

p
SG H

0
61096.0

)(
×

=      

where w  is the repeating unit molecular weight (288 g mol-1) and the subscript H refers to the 

cross linking mechanism. 

 

Figure 3.3 shows the Charlesby–Pinner plots for both sets of ions and it can be seen that 

ss +  is a linear function of 1/D with regression coefficients of 0.997 and 0.996 for H+ and 

He2+ respectively. 
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Figure 3.3: The variation in solubility with inverse dose, according to the Charlesby–Pinner 

equation, for ion irradiated amorphous PEEK films. 

 

The p0/q0 values were calculated from the intercept of the lines and were found to be 0.45 ± 

0.02 and 0.27 ± 0.05 for irradiation with H+ and He2+ ions respectively. The gel dose, Dg, was 

determined by interpolating the lines to a value of 2=+ ss  and the G values were 
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calculated from equation (3.2) a and b.  These are listed in Table 3.2 from which it is evident 

that PEEK tends to undergo more cross linking on He2+ irradiation at lower doses than 

protons. The ratios HH SGXG )()( , see Table 3.2, were greater than 1.0 for both ions 

suggesting that cross linking is more favourable in irradiating PEEK with ions.  

 

Table 3.2: Gelation dose and G values of amorphous PEEK determined from the Charlesby–

Pinner equation.  

G(X) G(S) Ions oq  

(% MGy-1) Event per 100 

eV 

)(
)(

SG
XG

 
Gel dose, Dg

(MGy) 

H+ 0.343 0.057 0.052 1.11 8.3 

He2+ 0.447 0.075 0.040 1.83 5.7 

 

Saito [99] has shown that for the Y-linking mechanism the soluble fraction, S, dependence on 

the dose, D in kGy, can be defined by the following equation[100]:  

                                DMXGXG
SGs

nYY

Y

..)(
10930.1

)(
)(231

0,

7×
+=+                                     (3.3)           

where G(S) Y, G(X) Y and M n,0 are the main chain scission yield, the yield of end-linking and 

the initial number average molecular weight respectively. 

 

Figure 3.4 shows the Saito plots for both sets of ions. As can be seen the soluble fraction 

varied linearly with dose (r = 0.996 and 0.990 for H+ and He2+ irradiation respectively) and the 

gel dose, Dg, was determined by interpolating the lines to a value of 431 =+ s . The G values 

were calculated from the slopes and the intercepts of the lines. The cross linking and fracture 

density were calculated from equations (3.2) and are listed in Table 3.3.   
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Figure 3.4: The variation of solubility with inverse dose according to the Saito equation, for 

ion irradiated amorphous PEEK films. 

 

 

Table 3.3: Gelation dose and G values of amorphous PEEK determined from the Saito 

equation. 

G(X) G(S) Ions oq   

(% MGy-1) Event per 100 

eV 

)(
)(

SG
XG

 
Gel dose, Dg

(MGy) 

H+ 0.489 0.082 0.085 0.96 9.5 

He2+ 0.695 0.116 0.108 1.00 6.1 

 
 

As can be seen from Tables 3.3, the ratios YY SGXG )()(  for both ions were identical and 

equal to about 1.0, consistent with only one of the two new chain ends formed by chain 
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scission of the polymer is active and can form a cross link. The other chain end may degrade 

by an alternative reaction, such as abstraction of hydrogen atom, to form a stable end group.  

 

The issue of whether Y-linking or H-linking plays the dominant role in the radiation 

chemistry of PEEK could not be resolved from the gel-sole fraction analysis. It has been 

reported [100, 101] that the calculation of G values from measurements of the molecular 

weight of the irradiated materials could provide evidence for cross link mechanism, if the 

agreement with the analysis of sol-gele fraction is achieved. Due to the high doses used in this 

research to irradiate PEEK with both ions this could not be carried out, but instead the FTIR 

spectroscopy was used for the investigation of any structural evidence of the cross linked 

formation on irradiation as discussed below. 

 

3.3.2.3 Analyses by FTIR Spectroscopy 

The FTIR spectra of amorphous and crystalline PEEK films are shown in Figure 3.5 from 

which the following peak assignments was made, 

 

PEEK Absorbance (cm-1) Assignment 

3100-3200 Aromatic C-H stretching vibration 

1650 Carbonyl stretching 

1600, 1490, 1414 Aromatic ring vibration 

1300-1000 Various C-O- , C-C  and C-H vibration modes (stretching & 

bending)  

860-840 A single broad peak characteristic of the out-of-plane C-H 

bending of two hydrogens of 1,4- disubstituted  
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The carbonyl stretching band and the  shoulder at 1252 cm-1 have been reported to be 

sensitive to crystallization [102] such that the carbonyl stretching vibrations are at 1655 and 

1648  cm- 1  for amorphous and crystallize PEEK respectively, see Figure 3.5. This shift in the 

carbonyl stretching to lower frequency was attributed to the increased conjugation as a 

consequence of the co-planarity of the phenyl groups on crystallization in the diphenyl ketone 

moiety. In addition, the shoulder at 1252 cm-1 is weaker in absorbance on crystallization.  
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Figure 3.5: The FTIR spectra of amorphous and crystalline PEEK. 

 

Figure 3.6 shows the FTIR spectra of ion irradiated PEEK. On irradiation, new bands 

developed at 1725, 1775 and 3300 cm-1 and these were accompanied by the progressive 

yellowing of the polymer film with dose. These are, however, minor bands of low intensity. 

The bands were attributed to the production of carbonyl and hydroxyl groups [67-69] 

produced by the reaction of chain scission radicals with molecular oxygen and subsequent 

decomposition of the peroxy radicals. No differences from the FTIR spectra could be revealed 

on irradiation with H+ and He2+ except that the changes occurred at lower doses with He2+.  
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Figure 3.6: The FTIR spectra of different PEEK and irradiated PEEK samples in the region 

600 to 2000 cm-1. 

 

To gain further information on the cross links structure, FTIR spectroscopic analysis was 

carried out on the insoluble gel after washing and drying, see Figure 3.7.  This treatment 

significantly reduced the absorbances of the two bands at 1725 and 1775 cm-1 and indicated 

that these bands were present primarily in the soluble residue produced as a result of chain 

scission, in line with the primary radicals reacting with molecular oxygen.  

FTIR spectra were also recorded on materials obtained after melting and re-crystallizing 

during DSC analysis, see Figure 3.8. No changes in the spectra were observed on irradiation 

with H+, below a dose of 50 MGy, or He2+ below 23 MGy, and the FTIR spectra were similar 

to that of crystalline PEEK. At the higher doses used in this study, however, the irradiated 

samples showed a spectra characteristic of amorphous PEEK indicating that irradiation had 

stopped the crystallization from developing. Bands were also present at 1725 and 1775 cm-1 

but greatly reduced by the heating and cooling treatment.  
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Figure 3.7: The FTIR spectra of (a) proton irradiated PEEK with dose of 38.1 MGy and (b) 

the dried gel of the same sample. 
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Figure 3.8: The FTIR spectra of irradiated PEEK samples after DSC scan. 
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3.3.3 Thermal Characterization of Irradiated PEEK 

3.3.3.1 DSC Analysis 

3.3.3.1.1 General Irradiation Effects 

PEEK is readily characterized by its DSC response and Figure 3.9 showed that on heating an 

amorphous sample a glass transition occurs at about 145oC, as shown by a step change in the 

specific heat at gT , pCΔ ( gT ).  This is followed by a sharp crystallization exotherm at 180o C 

and a broad melting endotherm with a peak at about 335oC. 
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Figure 3.9: DSC profiles of amorphous PEEK as indicated; heating and cooling scans are 20 

oC min-1. 

 

On cooling to room temperature at 20oC min-1, PEEK re-crystallizes at about 280 oC and on 

reheating the gT  was raised to 152 oC with a greatly reduced value of pCΔ ( gT ) as well as a 

higher melting temperature, Tm, 342 oC, in line with its higher crystallization temperature on 

cooling from the melt [103]. 
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Figure 3.10: DSC thermal response of PEEK samples (first scan) after irradiation with (a) H+ 

and (b) He2+ ions. 
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On ion irradiation and as the dose increases, a number of changes become apparent in the 

thermal properties of amorphous PEEK, see Figure 3.10. There was a progressive increase in 

the observed gT  with dose as measured during the first heating scan, see Figure 3.11, and with 

a reduction in the value of pCΔ ( gT ). This was followed by an increase in the crystallization 

temperature, Tc, taken as the temperature corresponding to the maximum in rate, a broadening 

of the temperature range over which crystallization occurred and a decrease in the exotherm. 

At a high dose no crystallization was observed and the polymer remained amorphous.  

 

Although the irradiated samples crystallized at a higher temperature the observed melting 

point, Tm, decreased as well as the subsequent re-crystallization temperature, Trc, on cooling 

with radiation dose. There was a decrease in heats of crystallization, ΔHc, of fusion, ΔHm, and 

re-crystallization, ΔHrc, on subsequent cooling, consistent with the weight degree of 

crystallinity, X c,w ( expressed as X c,w =  0
m

H
H m

Δ
Δ

, where 0
mHΔ  is the heat of fusion for totally 

crystalline PEEK) decreasing.  o
mHΔ was taken to be 122.5 J g-1 [103]. The effect of 

irradiation on melting and crystallization processes of PEEK will be discussed in details in 

Chapter 4. 

 

3.3.3.1.2 Cross Link Density, Tg and The DiBenedetto Equation 

Figure 3.11 shows the progressive increase in gT  with ions irradiation dose. As can be seen, 

the observed gT  on the first heating scan increases linearly with absorbed dose at a rate of 

0.14 and 0.21 ± 0.01 oC MGy-1 on irradiation with H+ and He2+ respectively (regression 

coefficient were 0.982 and 0.991).  
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The value of gT  is affected by many factors such as the chemical structure of repeating units 

of the polymer, crystallinity, interaction of chains and presence or absence of cross links 

[104]. 

 

In the present case, it is reasonable to attribute the rise in gT  by irradiation to restriction of 

chain mobility caused by the cross linking network developed in the amorphous regions of the 

polymer with increasing irradiation dose. This increase in gT  is clear evidence that cross 

linking is the more important mechanism on irradiation of amorphous PEEK. By comparison, 

chain scission would be expected to produce a decrease in gT , with the reciprocal number 

average degree of polymerization. No reduction was observed on irradiation, even at low 

doses. 

 

Figure 3.11: The dependence of the glass transition temperature of PEEK on the irradiated 

dose in the first and second heating scan, (a) H+ and (b) He2+ ion. 
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At a given dose, the gT was observed to shift to higher temperatures on the second heating 

scan compared to the first. This increase in gT values is due to the effect of crystallization, 

since the second heating run was made on samples which had been cooled from the molten 

state at a relatively slow cooling rate of 20°C min -1.  

 

The extent of this increase is dependent of the degree of crystallinity achieved. As the dose 

increased the degree of crystallinity reduced and the increase in value of gT  on the second 

heating scan was reduced until at a certain dose (above 50 and 35 MGy for H+ and He2+ 

respectively) it became similar to the value of gT  on the first heating scan. A full description 

of the dependence of gT  on dose can be found in Vaughan and Stevens works [96], who 

developed a model based on both the overall crystallinity and lamella thickness to 

quantitatively account for the observed dependence of gT  on the second heating run on the 

irradiation dose with EB. Similar dependence is presented in Figure 3.11 (a) and (b). 

 

To analyze the influence of cross links on the glass transition temperature, as measured from 

the first heating scan, the DiBenedetto equation was used. This equation has been successfully 

applied to study curing reaction of polymer [105], and it relates the observed glass transition, 

gT , to cross link density, Xc, since  
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where 0
gT  is the glass transition of the uncross linked polymer and mx EE  is the ratio of the 

lattice energies of cross linked and uncross linked repeating units. mx FF is the mobility ratio 
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at the glass transition temperatures. It is expected that the mobility of a cross linked unit at the 

glass transition temperature is essentially zero, thus eq. (3.4) simplifies to, 

 

                                                   
c

c

g

gg

X
XK

T
TT

−
=

−
10

0

                                           (3.5)   

                

where K is a constant and Xc is the cross links density expressed as the mole fraction of repeat 

units present as cross links corresponding to the gT .  The cross link density was defined as the 

proportion of units cross linked and taken as the product ( Dq ×0 ) where 0q  is evaluated from 

Charlesby-Pinner equation and listed in Table 3.2 and D is the absorbed dose in MGy. 

 

Figure 3.12 shows the results obtained by applying eq. (3.5) to the present gT  data. The cross 

links constants were found to be   0.081 ± 0.004 and 0.088 ± 0.005 for samples irradiated with 

proton and helium ions respectively (regression coefficient were 0.994 and 0.992).  As can be 

seen the values are identical, within experimental error, and this indicates that the cross link 

constant is independent of the ion used.  

 

The implication of this is that the same cross link structure is being produced by both type of 

ions, and also that the proposed equation is applicable to describe the relationship between gT  

and cross linking introduced by ion irradiation. 
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Figure 3.12: The dependence of glass transition temperature on the cross link Density 

according to DiBenedetto equation. 

 

3.3.3.2 Thermogravimetric Analysis 

3.3.3.2.1 General Irradiation Effects 

The thermal decomposition of PEEK has been extensively studied by thermogravimetry, from 

450-600 oC,  and the mechanism of decomposition attributed to  random scission reactions 

involving the cleavage of the ether and carbonyl bonds to produce volatile products such as 

phenol, benzophenone and low molecular weight chain fragments [106].  

 

Figure 3.13 shows the fractional conversion α, rate of conversion, e.g., the first derivative of 

conversion against time (dα/dt) and second derivative (d2α/dt2) plotted against temperature at 

a heating rate of 10 K min-1 for un-irradiated PEEK (a) compared to that of various samples 

irradiated with both ions to different doses (b and c). Table 3.4 lists the onset degradation 
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temperature, Td, the temperature corresponding to maximum in dtd /α , maxT , and the yield of 

char at 850 oC.  
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Figure 3.13: The fractional conversion, α,  rate (dα/dt) and second derivative (d2α/dt2) plotted 

as a function of temperature for (a) unirradiated PEEK, (b) irradiated with 40.2 MGy protons 

and (c) irradiated with 13.1 MGy helium ions. 

 

Un-irradiated PEEK did not lose weight before 500oC but above this temperature there was a 

single step loss due to the production of volatiles, e.g., phenol, and benzophenone [106]. A 

similar trend was observed with all the irradiated samples but the temperature of onset 

decreased progressively with radiation dose. However, loss of volatiles was not observed 

below 360oC and the irradiated material was considered to have sufficient thermal stability for 

many commercial purposes. 

 

In the initial stages of thermal decomposition volatile production is accompanied by cross link 

formation [54, 106] and this leads to the production of a char, which is stable up to 850oC. 

Cross linking followed by aromatisation leads to stabilisation of the structure and char 

formation. Irradiation with ions, however, had no effect on the final yield of char and this 
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remained at about 50±5% weight for all the samples studied. Chain scission during irradiation 

creates more chain ends and this could account for the decrease in thermal stability, as 

measured by decrease in the onset of temperature for volatile production with dose.  

 

Table 3.4: The effect of irradiation on the thermal stability of PEEK films. 

Radiation 

method 

Dose 

(MGy) 

Td 

(± 10 oC) 

T max 

(± 2 oC) 

% Char residue 

(± 5) 

Un-irradiated 0 510 563 53 

2.3 490 560 53 

9.3 470 568 50 

10.5 500 568 50 

21.3 430 563 50 

40.2 410 557 50 

H+ 

66.7 380 553 53 

7.3 480 563 50 

13.1 470 558 50 

He2+ 

40.1 400 554 51 

 

3.3.3.2.2 Thermal Degradation Kinetics  

Several analytical equations have been derived to evaluate the thermal degradation kinetics of 

polymer from its TG dynamic response at constant heating rate. These make use of the 

relationship between the conversion rate of the reaction,α , and absolute temperature T to 

determine the kinetic parameters, e.g. activation energy E, reaction order n, and pre-

exponential factor Z.  
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The value of n was obtained directly from the symmetrical index of a derivative 

thermogravimetry (2DTG), from the second Kissinger method [107]: 

                                               
R

L

dtd

dtd
n

22

22

88.1
α

α
×=                                                             (3.6)                   

where L and R correspond to the maximum and minimum 22 dtd α  values on the second 

derivative thermogravimetry (2DTG) curves, see Figure 3.13 as an example.  

The n values for PEEK and irradiated samples are listed in Table 3.5. They were found to be 

fractional at 1.5 ± 0.3 indicating a complex series of reactions involved in the thermal 

decomposition, such as initiation, propagation and bimolecular termination of radicals. 

 

The activation energy E and the frequency factor Z values were obtained using Chang 

equation [108], such that 
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The dependence of the left hand term on 1/T was linear in the range of α  from 0.1 to 0.5, see 

Figure 3.14.  E values and Zln  were obtained from the slope and intercept of the lines 

respectively ( regression coefficients were larger than 0.980) and these are listed in Table 3.5.  

The activation energy of PEEK thermal decomposition is within the range of reported values 

of 223.5 and 219.7 kJ mol-1, as determined from dynamic and isothermal procedures 

respectively [109] , and as can be seen from Table 3.5 this value decreased with dose due to 

the production of thermally less-stable products on irradiation. The same trend was found 

with the frequency factor which can be used as a measure of the lifetime of the materials. The 

reaction order was consistent with the same degradation kinetics involved on all samples 

studied, although it is a complex mechanism. 
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Table 3.5: Thermal degradation kinetic parameters for different PEEK samples using the 

Chang and second Kissinger techniques at 10oC min-1 in Argon. 

irradiation Dose 

(MGy) 

Activation 

energy, E 

(kJ mol-1 ) 

Frequency 

factor, ln Z 

(min-1) 

Reaction order 

2nd Kissinger 

n  ± 0.3 

Un-irradiated 0 265 ± 10 37 ± 2 1.6 

2.3 260 ± 5 36 ± 2 1.4 

9.3 245 ± 15 34 ± 2 1.2 

10.2 250 ± 20 35 ± 3 1.2 

21.3 225 ± 10 31 ± 2 1.5 

44.3 200 ± 5 28 ± 1 1.4 

H+ 

66.7 170 ± 5 24 ± 1 1.5 

7.3 240 ± 5 34 ± 1 0.9 

13.1 230 ± 5 32 ± 1 1.4 

He2+ 

40.1 165 ± 15 23 ± 2 1.7 

 

3.3.3.2.3 Lifetime Estimation 

The kinetics parameters of the thermal degradation were used to estimate the lifetime ft  of 

PEEK samples to failure at different temperatures. This was calculated at a weight loss of 5 

wt%, by the following equation [110]: 
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Figure 3.14: Application of Chang method to the thermal degradation kinetics of different 

PEEK samples.  

 

Figure 3.15 represents the estimated lifetime as a function of temperature at constant 

irradiation dose. The analyses of PEEK degradation by this mean predict a lifetime of 10 

years at 300oC. 

 

A value that is consistent with the previous work [109] and well represents the high thermal 

stability of PEEK in inert atmosphere. On irradiation the lifetime decreased significantly but 

the irradiated materials was still considered to have good thermal stability for many industrial 

applications. The effect of irradiation dose on the estimated lifetime is presented in Figure 

3.16 at three temperatures. It is clear that helium ions had a more marked effect in decreasing 

the lifetime and in general changing the materials properties of PEEK. 



  

 84

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

-10

-5

0

5

10

15

20

25

30

35

ln
 li

fe
tim

e,
 y

ea
rs

1000 / T, K-1

 0.0 MGy
 21.3 MGy, H+

 66.7 MGy, H+

 40.1 MGy, He2+

 

Figure 3.15: Estimated lifetime curves for PEEK samples. 
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Figure 3.16: Estimation of lifetime at three different temperatures and the effect of dose. 

 

3.3.4 Discussions 

Irradiation effects on organic materials depend upon many factors such as the temperature, the 

atmospheric composition and dose. However, when the effects of different radiation sources 

are investigated another factor must be considered, that is the so-called linear energy transfer, 
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LET, [83, 85] which is defined as the energy deposition rate per track length (-dE/dx).  The 

LET depends on the kinetic energy of the particles traversing the polymer, and on irradiating 

amorphous PEEK with protons and helium ions this dependence is shown in Figure 3.17. The 

LET for both ions increases with increasing energy, E, and reaches a maximum corresponding 

to relatively low values of E; 0.1 and 0.6 MeV for 40 MeV protons and 40 MeV helium 

respectively. Figure 3.17 also indicates that the LET is not constant nor a linear function of 

the energy, but for the energies used for the two ions, the LET of the helium ions was 

approximately five times higher than that of the protons. 
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Figure 3.17: Linear energy transfer, LET, for helium and proton ions in amorphous PEEK; 

plotted as a function of ion energy. 

 
This explains why the effect of irradiation with helium at low dose is more pronounced than 

with protons. Similar observation have been reported by Sasuga and Kudoh [61], who studied 

the effect of different radiation sources including electron, proton and helium on the thermal 

and mechanical properties of PEEK. It has also been reported, in the case of polystyrene [111, 

112] and poly (methyl methacrylate) [113] that G(X) increases and G(S) decreases on 
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irradiation with ions of high LET. This phenomenon is explained in terms of the high density 

of excitation and a higher probability of recombination of active species [61, 111-113]. 

 

3.4 Conclusions 

Alterations produced in the molecular structure of amorphous PEEK by irradiation with 11.7 

MeV H+ and 25.6 MeV He2+ ions have been interpreted as due to chain scission and formation 

of cross links.  The efficiency of the ions in inducing these changes is dependent on their 

relative LET effects, but both ions altered the polymer’s physical and thermal properties to a 

similar extent.  

 

The detailed structure of the cross link units could not be established from the FT-IR spectra 

due to their relatively low concentration. However, there were little or no changes in the 

observed spectra on irradiation indicating that the molecular structure of PEEK is resistant to 

irradiation. The observed Tg increases linearly with cross link density in accordance with the 

DiBenedetto equation from which the cross linking constants were determined.  Since these 

two constants were very similar the cross link structure produced by both ions must be very 

similar. The only difference between the two ions is their efficiency in cross linking in line 

with their LET effect.  

 

The thermal decomposition of irradiated PEEK was similar to that of untreated PEEK and 

seems to be a random chain scission process. The thermal decomposition temperature and 

kinetic data for irradiated PEEK films quantitatively suggest that these films still have 

sufficient thermal stability for many long term applications. 
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Chapter 4                                                   

Melting and Isothermal Crystallization Studies of 

Irradiated PEEK 

 

 
 
 
 

4.1 Introduction 

The study of the melting process of polymers provides useful information into the nature of 

crystals being destroyed and the thermal history of the sample, as well as determining the 

upper service temperature. The melting point determines the processing temperature of a 

polymer and also the onset of high temperature crystallization. The rate of crystallization at a 

given temperature depends upon the degree of supercooling of the melt. Therefore if the 

melting temperature is altered in any way, the crystallization behaviour will change 

accordingly.   

 

It is well known that the properties of semi-crystalline polymers such as PEEK depend on the 

crystallization behaviour. Therefore, a study of the morphology and kinetics of crystallization 

is of prime importance in understanding the role of irradiation in suppressing the development 

of crystallinity and changing the nucleation character as well as gaining further information in 

to the use of irradiated PEEK, in the field of aerospace systems, fusion reactors [55, 61] and 

as a membrane for fuel cells [58]. 
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4.2 Melting Point Theory 

The melting point mT  is defined as the temperature at which an equilibrium between the 

liquid and crystalline phases in the materials is established, e.g., when the chemical potentials 

of the polymer repeating unit in the two phases are equal, such that o
c

o
l μμ =  [114]. 

High molecular weight crystalline materials do not have a single, well-defined melting 

temperature but they melt over a broad temperature interval as measured by DSC. This 

behaviour suggests that a range of crystal stabilities exists within the structure, each melts at a 

different temperature, and that the broad melting peak observed represents a distribution of 

different crystal stabilities. 

4.2.1 The Thermodynamic Melting Point, o
mT   

The thermodynamic (equilibrium) melting temperature, o
mT , is defined as that for an infinitely 

thick crystal. The observed melting temperature, Tm, as measured by DSC is well below this 

equilibrium value due to the thickness [115-118] of the lamellae produced at each 

crystallization temperature, Tc. Hoffman and Weeks [116] have derived a relationship 

between melting point, Tm,  and crystallization temperature, Tc, which enables o
mT  to be 

determined, namely 

                                                   c
o

mm TTT
ββ 2
1

2
11 +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=                                    (4.1)   

where 
e

e

l
l

σ
σ

β = , σ  is the fold surface free energy, l  is the lamellae thickness and the 

subscript e refers to equilibrium conditions. A plot of Tm against Tc is linear with slope β21  

and 0.1=β  in the absence of re-crystallization or annealing [117, 119] during melting. This 

line interpolates to the equilibrium condition of Tm = Tc at o
mT , but its slope must be 0.5. 
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4.2.2 Melting Point Depression 

The melting point, mT , depends on the composition of the liquid phase. If a diluent is present 

in the liquid phase, mT  may be regarded alternately as the temperature at which the specified 

composition is that of a saturated solution. If the liquid polymer is pure, o
uu μμ ≡ , where o

uμ  

represents the chemical potential in the standard state, which in accordance with the custom in 

the treatment of solution we take to be the pure liquid at the same temperature and pressure. 

At the melting point of the pure polymer o
mT , therefore, c

u
o
u μμ = . To the extent that the 

polymer contains impurities (solvent or copolymerized units) uμ will be less than o
uμ . Hence 

uμ after the addition of a diluent to the polymer at the temperature o
mT  will be less than c

uμ , 

and in order to re-establish the condition of equilibrium a lower temperature mT  is required. 

 

The quantitative relationship between the equilibrium temperature and the composition of the 

liquid phase can be derived using this thermodynamic approach [114]. The condition of 

equilibrium can be expressed as follow: 

The difference between the chemical potential of the crystalline repeating unit and the unit in 

the standard state (the pure liquid polymer at the same temperature and pressure), must be 

equal to the decrease in chemical potential of the polymer unit in the solution relative to the 

same standard state. 

                                              o
uu

o
u

c
u μμμμ −=−                                                         (4.2)   

The former difference in the left hand side of eq. (4.2) is simply the negative of the free 

energy of fusion uGΔ . Hence it may be written as  
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                                ( )uuu
o
u

c
u STHG Δ−Δ−=Δ−=− μμ                                     (4.3) 

Where uHΔ and uSΔ  are the heat and entropy of fusion per repeating unit. At o
mTT =  the 

difference in chemical potential is zero and the ratio o
u

o
u SH ΔΔ  can be assumed to be 

constant in the temperature range o
mT  to T and equal to o

mT .  Eq. (4.3) is then expressed as 

follows: 

( )o
mu

o
u

c
u TTH −Δ−=− 1μμ                                                      (4.4) 

 

An expression for o
uu μμ −  is also required as this represents the lowering of the chemical 

potential of the unit in the liquid phase due to the presence of diluent. In the case of an ideal 

solution, 222 ln NRTo −=− μμ , where N2 is the mole fraction of the crystallizing component 

(which is the solvent if melting point depressions are considered and the solute if the results 

are tabulated as solubilities). By combining this relation with eq. (4.4) we arrive at the 

solubility relationship for an ideal solution 

                                          2
2

ln11 N
H
R

TT o
mm Δ

−=−                                            (4.5) 

where 2HΔ is the heat of fusion of the major component, 2. 

Similarly,  in a copolymer system consist of monomer units which crystallize and structurally 

different units which did not and these are  placed randomly along the chain, Flory [114] 

showed that: 

                                      A
u

o
mm

N
H
R

TT
ln11

Δ
−=−                                            (4.6) 

where NA is the mole fraction of monomer units, R is the gas constant and uHΔ  is the heat of 

fusion per repeat unit.  
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4.3 Crystallization Kinetics 

Crystallization is the transformation of a liquid into a crystalline phase and involves two basic 

processes, e.g., nucleation, initiation of the new phase from the parent phase and growth of 

the new phase [120].  

4.3.1 Nucleation 

In cooling a molten polymer there is a tendency for the randomly organized molecules in the 

melt to become aligned and form small ordered regions, which are called nuclei. This process 

is called nucleation. There are two types of nucleation, e.g., homogeneous and heterogeneous. 

The homogeneous process has a higher energy than the liquid and requires the polymer to be 

supercooled for a crystal to be created spontaneously in the interior of a uniform substance. 

On the other hand, nucleation can also occur heterogeneously on a foreign substrate such as 

bubbles, dust particles and surfaces. Heterogeneous nucleation always occurs at lower 

supercooling, since nucleation on an existing surface area has a lower free energy barrier. 

 

Homogeneous nucleation can be subdivided according to the mode of formation, e.g., 

primary, secondary and tertiary nucleation. The formation of a polymer crystal from the liquid 

state starts with primary nucleation in which a few molecules pack parallel to one another and 

form small embryos of the crystalline state. After that the additions are accompanied by chain 

folding. In this step a crystal surface is created which has an excess of surface energy 

proportional to the surface area. Incorporating more molecules to the crystal leads to a 

decrease in the free energy by a factor which is proportional to the crystal volume. The 

surface-to-volume ratio gives an indication of the free energy of nucleus formation, nGΔ , 

such that when the ratio is high 0>Δ nG  due to excess of surface energy over bulk. nGΔ  

increases and reach a maximum corresponding to the  critical size of the nucleus, after which  
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nGΔ  decreases. Finally the free energy will be less than that of the melt. These competing 

effects are shown graphically in Figure 4.1[120]. 

 

The secondary nucleation is the process by which a new layer grows on a pre-existing surface. 

It is similar to primary nucleation but with a lower free enthalpy barrier since the surface area 

newly created is smaller. On the other hand, the rate of crystal growth is nucleation controlled 

at low super cooling.  

 

Tertiary nucleation only involves the formation of new layers between two pre-existing 

surfaces and determines the rate of covering a nucleated crystal surface. It has the lowest 

surface-to-bulk free energy ratio compared to primary and secondary nucleation.  

 

 

Figure 4.1: Schematic representation of the variation of free energy with nucleus size for the 

formation of a stable polymer crystal nucleus [120]. 
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4.3.2 Crystal Growth 

Crystals begin to grow on the surfaces once the critical size nucleus is formed. This process is 

called secondary nucleation. If the cross sectional area of the polymer chain is denoted as 

( ba × ), where a and b are the breadth and width of the crystallographic unit cell respectively, 

then the chain spreads gradually across the crystal face. After this initial chain attachment, 

molecular strands lay down gradually on a smooth crystal surface followed by additional 

chains adhering once more to this interface by a chain folding process. These chains then fold 

across the surface, thereby extending the growth front and crystal dimensions at a rate that 

depends on the under cooling [120]. 

 

4.3.3 The Temperature Dependence of Growth Rate   

The overall temperature dependence of rate of growth, g, of a crystal is bell shaped and has 

been accounted for by the Gibbs-Thomson equation [121]. This has been modified by 

Hoffman and Lauritzen [119, 120, 122, 123] specifically for polymer crystallization, such 

that, 
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with og a constant and, 
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K
f

o
meo

g Δ
=

σσ                                                              (4.8)       

                  

The first exponential term of eq.(4.7) describes the effect of the temperature dependence of 

melt viscosity and accounts for the reduced molecular mobility as the temperature approaches 

the glass transition temperature, and in particular the thermodynamic glass transition 
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temperature 30−=∞ gTT . Hoffman has assigned a value of 6300 J mol-1 for E which 

represents the activation energy for chain transport and also viscous flow.  

 

The second exponential term accounts for the rate determining effect of primary nucleation on 

the crystallization at low degrees of supercooling. The parameter ( )o
mTT

Tf
+

=
2  is a correction 

factor which accounts for the change in the latent heat of fusion that occurs with temperature. 

 

The nucleation constant gK  contains the surface free energy product, eσσ , where σ  is the 

lateral surface energy and eσ  fold surface free energy of the critical size nucleus, the heat of 

fusion fHΔ  per unit volume, the unit cell dimension, 0b , the separation between two adjacent 

fold planes, which in the case of PEEK is 0.592 nm [124], and k the Boltzmann constant. 

 

The nucleation constant, gK , depends on the nucleation regime for which Lauritzen and 

Hoffman defined three regimes predominating at different temperatures. These are termed as 

regime III ,  and III  and in eq. (4.8) n = 4 for regimes I and III  and 2 for regime II . 

 

In regime I , each nucleation on the growing crystal surface leads to rapid completion of the 

growth strip by chain folding prior to the next nucleation event, this occurs at temperatures 

approaching the melting point. At much lower temperatures there is prolific multiple 

nucleation on the growth surface and this is referred to as regime III . Regime II occurs 

between these two limits where there is competition between chain folding and nucleation.  
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4.3.4 The Avrami Equation  

The kinetics of phase change on crystallization has been described by Avrami. This approach 

has been highly successful in describing crystallization in polymers [71]. The Avrami 

equation relates the extent of crystallinity to time [125-127], such that                                      

     )exp(1 nt Zt
X
X

−=−
∞

                                                      (4.9)   

in which Xt, is the fractional crystallinity, which has developed at time t, Z is a composite rate 

constant incorporating nucleation and growth rate constants and n is an integer constant 

whose value depends on the crystallization mechanism. The corresponding expressions for n 

and Z are listed in Table 4.1. 

 

In addition to assuming random nucleation in a supercooled melt, the Avrami equation was 

derived making the following assumption [120]: 

1. The rates of nucleation and growth increase are constant with time. 

2. Only primarily crystallization process and no secondary crystallization occur. 

3. The volume remains constant during crystallization. 

4. When one crystallite impinges upon another growth ceases. 

5. The crystal keeps its original shape in one, two or three dimension (rods, discs or 

spheres, respectively) until impingement take place. 

6. There is no induction time before crystallization. 
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Table 4.1: Avrami parameters for different types of crystallization mechanism[120]. 

Crystallization mechanism n Z * Geometric restriction 

4 lg 332 π  3 dimensions Spheres Sporadic 

predetermined 3 Lg 334 π  3 dimensions 

3 ldg 231 π  2 dimensions Discs Sporadic 

predetermined 2 dLg 2π  2 dimensions 

2 241 rglπ  1 dimension Rods Sporadic 

predetermined 1 221 rgLπ  1 dimension 

 

* where g is crystal growth rate; l is nucleation rate; L is density of nuclei; d is constant 

thickness of discs and r is constant radius of rods. 

 

4.4 Results and Discussions 

4.4.1 Proton Irradiation 

The details of ion irradiation were discussed in chapter 3; see Table 3.1 and paragraph 3.2. 

For the isothermal crystallization kinetics study only the PEEK samples irradiated with 

protons, using the same stopping power (the same layer number), with doses ranging from 0-

10 MGy were considered. This clarified the effect of dose on the crystallization process and 

eliminated any changes that may arise from the particle track structure in amorphous PEEK 

and the LET effect [61, 83].  
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4.4.2 General Irradiation Effects on Melting and Crystallization Processes 

Figures 4.2 and 4.3 show the changes in the crystallization characteristics of PEEK on ion 

irradiation. In the case of un-irradiated amorphous PEEK, crystallization occurs rapidly on 

heating above gT , to give a narrow exotherm and an enthalpy of 22.0 J g-1.  As the absorbed 

dose increased, both the temperature of crystallization and the peak width increased, but the 

enthalpy of crystallization decreased.  

 

On the other hand, the recrystallization temperature Trc and the enthalpy of recrystallization, 

rcHΔ , on cooling from the molten state decreased as the dose increased. This behaviour of Tc 

and Trc with dose was consistent with the occurrence of cross linking as the later reduced the 

extent of crystallization of the polymer [55, 61, 91, 93, 96, 97]. The degree of cross linking 

increased with increasing dose [57, 83] in both irradiations, consequently the restriction of the 

re-crystallization process in amorphous PEEK was more apparent at higher doses and was of 

sufficient severity to prohibit crystallization of the material above 50 and 23 MGy on 

irradiation with H+ and He2+,  respectively. 

 

The melting point Tm of the un-irradiated PEEK shifted to higher values on second heating 

due to the change in chain conformation of the polymer after re-crystallizing on cooling from 

the molten state.  As the dose increased, both Tm on the first and second heating runs 

decreased. This effect was a direct result of crystallization retardation above gT  and as a 

result of the development of cross links.  

 

The enthalpy of fusion, mHΔ , was observed to decrease with increasing irradiation dose 

indicating that molecular changes prevented crystallization from developing. This decrease 
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also indicated a lower weight degree of crystallinity, wcX , , ( wcX ,  was measured as 0
mm HH ΔΔ  

[104], where 0
mHΔ  is the heat of fusion for completely crystalline PEEK and was taken as 

122.5 J g-1 [103]) due to the development  of cross links on irradiation.  
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Figure 4.2: The dependence of Tc, cHΔ  , Trc and  rcHΔ  for irradiated PEEK samples  on 

dose; (a) crystallization temperature, (b) recrystallization temperature, (c) the enthalpy of 

crystallization, and (d) the enthalpy of recrystallization. 
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Figure 4.3: The dependence of Tm and  mHΔ  for irradiated PEEK samples on dose. (a), (b) 

the melting point in first and second scan and (c), (d) the enthalpy of fusion in first and 

second scan respectively. 

 

 

4.4.3 Melting Point Study 

Figure 4.4 shows the Hoffman & Weeks plots for various PEEK samples. The linear fit of 

melting point against crystallization temperature gave slopes of 0.50 ± 0.05 consistent with 

equilibrium conditions, and on interpolation to Tm =Tc gave the o
mT  values listed in Table 4.2.  
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Figure 4.4: Hoffman & Weeks plots for amorphous and irradiated PEEK samples. 

 

 

Table 4.2: The thermodynamic melting points of the PEEK samples. 

Dose 

(MGy) 

β ± 0.05 o
mT  ± 2.0 

(K) 

1-NA ± 0.002 

(mole fraction ) 

0 1.02 662.6 0.000 

2.3 1.00 661.1 0.015 

7.8 0.98 659.8 0.027 

9.9 0.96 657.2 0.055 

11.7 1.06 653.2 0.078 
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The value of o
mT  obtained for PEEK compared favorably with values reported by Blundell 

[115, 128] and Proter [129]  respectively namely 668.0, 670.1 and 663.0 K but there was a 

progressive decrease in o
mT  value with increasing irradiation dose, see Figure 4.5. 
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Figure 4.5: The thermodynamic melting point as a function of irradiated dose. 

 

It is known that the thermodynamic o
mT  of crystalline polymers decreases with the number of 

impurity defects in the chain [130] if these are non-crystallizable since these defects restrict 

the length of the segments between adjacent defects along the chain which can crystallize, and 

so reduce the average length of the crystallizable units. 

The depression of the thermodynamic melting point was analyzed by eq. (4.6) derived by 

Flory [114], using the analogy that the irradiated polymer consist of repeating units which 

crystallize and structurally different units which did not and these are  placed randomly along 
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the chain.  The effect of irradiation dose on the depression of the equilibrium melting point of 

PEEK is shown in Figure 4.5.  The heat of fusion of PEEK [103] was taken to be 122.5 J g-1 

and the mole fraction of non-crystallizable units produced on irradiation calculated from eq. 

(4.6), shown in Table 4.2. As can be seen, the fraction of non-crystallizable units increased 

progressively with dose.  

 

The glass transition temperature also increases linearly with the concentration of impurity 

groups as determined by the depression of the equilibrium melting point, see Figure 4.6.  It 

would appear that these structural irregularities are cross links as they alone would increase 

the glass transition temperature and increase with irradiation dose.   
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Figure 4.6: The increase in glass transition temperature with impurity concentration. 



  

 103

4.4.4 Isothermal Crystallization Study 

4.4.4.1 Analysis of Crystallization Data; TMR Model 

Figure 4.7 shows typical crystallization curves for amorphous PEEK at different isothermal 

temperatures as measured by rapid cooling to the crystallization temperature and after 

correcting for the cooling curve. The heat flow response was measured for sufficient time to 

enable the calorimeter response to return to the baseline when crystallization was considered 

to be complete. This procedure was repeated with the series of samples listed in Table 4.3 in 

order to determine the effect of the low irradiation dose on the overall crystallization rates 

characteristics. 
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Figure 4.7: Isothermal crystallization of amorphous PEEK. 
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The half life of the crystallization, t1/2, as measured from the time to reach the maximum rate 

of the crystallization [131], TMR, was used as a relative measure of the rate of crystallization 

since it was directly measured from the calorimeter response and did not require any 

assumptions about mechanism of crystal growth and suitable rate equations. It varied, see 

Figure 4.8, markedly with crystallization temperature, Tc, and showed a clear displacement of 

the half lives to lower temperature, by as much as 10-15 K, with radiation dose. Below 560 K 

the half lives of crystallization were too short for a clear separation of this trend. In the 

temperature range studied, the unirradiated PEEK samples crystallized fastest with shortest 

TMR and the rate decreased with increasing crystallization temperature.  
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Figure 4.8: Variation of the TMR between the irradiated samples. 
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4.4.4.2 Crystallization Kinetics; Avrami Equation 

A more detailed investigation on the effect of irradiation was carried out by an analysis of the 

crystallization kinetics using eq. (4.9). tX  was measured from the ratio of the two areas 

between the heat flow-time curve and baseline [131, 132], from t = 0 to t = t and from t = 0 to 

t = ∞, such that, 
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Rearranging the Avrami equation gave, 
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The average value for the rate constant, Z, was calculated from the half-life, t1/2, and the 

Avrami exponent n obtained from the slope of the plot of ( )( )tX−− 1lnlog against log t, since, 

                                                    
( )nt

Z
2/1

2ln
=                  (4.12)        

 

Figure 4.9 shows plots of ( )( )tX−− 1lnlog  against log t for un-irradiated PEEK. These plots 

were linear up to 75-85 % conversion where the slope changes to 1.0. This was interpreted as 

due to a change in mechanism from primary to secondary crystallization. 

 

The rate constants and n values along with t1/2 are listed in Table 4.3 as a function of 

crystallization temperature for PEEK and the irradiated samples. The n values were 

essentially constant within experimental error at 3.0 ± 0.2, consistent with the growth of 
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predetermined spherulites. For each sample, t1/2 increased and Z decreased, with increasing 

crystallization temperature, see Table 4.3, but in every case PEEK crystallized at a faster rate 

than the irradiated samples at the same temperature.                   
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Figure 4.9: An Avrami plot for the isothermal crystallization of PEEK. 

 

Similar conclusions were reached from the logarithmic plots of the half-lives, ln (t1/2) against 

crystallization temperature, Tc, in that the half lives progressively increased with irradiation 

and the crystallization rates were displaced to lower crystallization temperatures with dose, 

see Figure 4.10. 

Irradiated samples were observed to crystallize at the same rate as PEEK at 6 to 10 K lower 

than PEEK. This could be due to changes in the equilibrium melting point, o
mT , or to changes 

in the critical size nucleus. 
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Figure 4.10: The effect of dose on the crystallization of PEEK. (a). Logarithmic plots of the 

half-life, 
2

1ln t , vs. crystallization temperature Tc and (b). Logarithmic plots of the rate 

constant, Zln , vs. crystallization temperature Tc. 
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Table 4.3:  The Avrami parameters for PEEK samples. 

Dose 

(MGy) 

Crystallization 

Temperature (K) 

Half-life t1/2 

(min) 

n ± 0.2 Z× 10-4 

min-n 

588.1 5.6 2.8 56.0 

590.1 7.9 2.9 17.3 

592.2 9.4 3.0 8.3 

594.2 13.2 2.9 3.9 

0 

 

596.2 19.6 3.0 0.9 

586.3 6.3 2.9 33.3 

587.3 8.3 3.0 12.1 

588.3 9.8 3.1 5.9 

589.3 12.3 2.9 4.8 

2.3 

 

590.3 14.9 2.7 4.7 

578.7 3.3 2.7 276 

580.7 4.5 2.9 88.4 

582.7 6.7 2.7 40.8 

584.7 10.0 2.8 11.0 

7.8 

 

586.8 13.9 3.0 2.6 

576.2 7.2 2.7 33.6 

578.3 8.4 3.0 11.7 

580.3 11.3 2.7 9.9 

582.3 19.0 2.8 1.8 

9.9 

 

584.3 33.5 3.0 0.2 
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Close to the melting point of a polymer the rate of crystallization is controlled by the critical 

size of the nucleus and there is a dependence of the rate on the degree of supercooling, 

c
o

m TTT −=Δ . Since, however, the maximum depression of the equilibrium melting point is 

about 5 K this alone is not sufficient to account for the total retardation in crystallization rate.   

 

As can be seen from Figure 4.11 the dependence of the half-life on degree of super cooling 

was still displaced by as much as 9 K and so other criterion must have a more marked effect 

on the retardation of the crystallization than the depression of the melting point alone.  
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Figure 4.11:  The effect of the degree of supercooling on the crystallization half-lives of 

PEEK samples. 
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4.4.5 Nucleation Control and Surface Free Energy 

The primary nucleation was observed to be heterogeneous, e.g., 0.3=n , and the nucleation 

density was assumed to be constant and independent of temperature over the narrow 

crystallization temperature range studied, the linear growth rate g is then related to the Avrami 

composite rate constant Z, since  

                                                         nAZg /1=                (4.13)  

with A is constant and n the Avrami exponent [122].  Considering eq. (4.15), it can be written 

that, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∝

2
1

1ln tg   and the nucleation constant, Kg, can be determined from the slope of the 

linear plots, see Figure 4.12(a), of { ( )30
1ln

2/1 +−+⎟
⎠
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⎝
⎛

gTTR
E

t } against { ( )TTTf o
m −

1 } 

and the values are listed in Table 4.4. The nucleation constant Kg was observed to change on 

irradiation and this in turn was attributed to a change in the surface free energy product, eσσ , 

listed in Table 4.4.  

 

Table 4.4: Analysis of PEEK samples. 

Hoffman and Lauritzen model Mandelkern Model Dose 

(MGy) -Kg ×105 

(K2) 

σσe×10-3 

(J2 m-4) 

-Slope ×103 

(K) 

σe ×10 -3     (*) 

(J m-2) 

0 6.45 ± 0.14 0.88 ± 0.02 0.871± 0.055 51.3 ± 1.4 

2.3 8.37 ± 0.38 1.14 ± 0.05 1.136 ±0.0 23 66.9 ± 3.2 

7.8 8.23 ± 0.26 1.12 ± 0.04 1.095 ± 0.037 64.5 ± 2.2 

9.9 10.04 ± 0.70 1.37 ± 0.10 1.370 ± 0.108 80.7 ± 6.4 

(*) calculation based on the cell parameters of the PEEK crystal (a=7.781, b=5.922 and 

c=10.056 Ao [124]).  
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The effect of changes in the glass transition temperature on the temperature dependence of the 

half life of crystallization can be determined by comparing the above approach with a 

procedure outlined by Mandelkern et al. [133]. They simplified eq. (4.7) by rewriting it as 
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where A is a constant, vHΔ  is the heat of fusion per unit volume and R is the gas constant. 

This ignores any changes in gT .  The surface free energy product is then obtained from the 

slope of the linear plot of {–ln (t1/2)} against { ( )c
o

mc

o
m

TTT
T

−
}, see Figure 4.12(b).  The results of 

this analysis are summarized in Table 4.4.  

 

The free energy of the lateral surface,σ , arises from the parallel packing of the molecular 

chain in the crystal.  It should not change with the presence of impurity groups and so it was 

assumed to be constant at vHΔ×= 1.0σ [134]. The free energy of the chain fold surface, eσ , is 

a measure of the relative packing of the chains emerging from the crystal. It has been 

observed to be sensitive to the composition of the melt and molecular irregularities, such as 

cross links and branches [135] which are rejected from the crystalline regions. Variations in 

the product eσσ  are thus attributed to changes in eσ only. The product, eσσ , for PEEK is 

slightly lower than that reported in the literature, (σ = 38×10-3 J m -2 and eσ = 49×10-3 J m-2) 

[122, 136] but eσ  changes markedly on irradiation, from 51.3 to 80.7 ×10 -3 J m-2.   

 

The large increase in eσ  must represent an increase in steric hindrance near the fold surface 

from the accumulation of bulky cross links which cannot be accommodated within the crystal. 
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Figure 4.12: Analysis of crystallization half-lives, (a) according to Hoffman and Lauritzen 

and (b) Mandelkern. 



  

 113

4.5 Conclusions 

Proton irradiation has a significant effect on the melting and crystallization behaviour of 

amorphous PEEK. The DSC results indicate that the cross links which accompanied 

irradiation retard the crystallization, but no changes were observed in the mechanism of 

crystallization. 

 

The equilibrium melting point, o
mT , decreased with increasing irradiation dose and this 

depression was analyzed using the Flory equation [114] to calculate the concentration of non-

crystallizable units in the molecular structure of irradiated PEEK. There was also a linear 

correlation between the amounts of these units and the increase in gT  which implies that these 

units are cross links.  

 

The depression in o
mT  alone was not sufficient to account for the overall retardation of the 

crystallization. In addition, the fold surface energy, eσ , increased on irradiation.  This increase 

resulted from the increasing amount of cross linking within the amorphous regions, which 

also depressed the melting points and reduced the rate of crystallization. The average length 

of the repeating unit sequence between adjacent cross links determines the size of the lamellar 

thickness and since this decreases with increasing cross link density, it directly accounts for 

the inhibition of crystallization and its eventual cessation at high radiation dose.  
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Chapter 5                                                   

Dielectric Relaxation Spectroscopy of Irradiated PEEK 

 

 

 

 

 

5.1 Introduction  

Dielectric relaxation spectroscopy, DRS, measures changes in dielectric response of materials, 

such as polarization, permittivity, and conductivity, with temperature, applied voltage and 

frequency. This technique has been successfully applied to study molecular transitions and 

dielectric relaxations in polymers over a broad frequency range (from 10-3 to 109 Hz) and a 

wide temperature range, and has been used to model molecular motions in dynamic systems 

[77, 78, 137]. 

 

Studying the dielectric behaviour of polymers provides direct practical information 

concerning electric insulation properties as well as microwave adsorption characteristics of 

polymers. This is important for amorphous polymers which are used traditionally for cable 

insulation as well as for passivation layers in modern electronic devices like microchips. 

Microwave adsorption characteristics of polymers that are necessary in relation to microwave 

transmission and reflection through or from materials used in telecomunication techniques or 

in radar applications. This is also directly related to the microwave heating characteristic of a 

polymer used in a microwave cooker [137].  
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5.1.1 Theory of Dielectric Analysis 

The complex dielectric constant of a material, *ε , can be separated into real, 'ε  (permittivity) 

and imaginary, "ε ( loss factor) components. Both are related to the permittivity of free 

space, oε , (equal to 8.85 ×10-12 F m-1), and are dependent on frequency. 

                "'* εεε i−=                                                            (5.1) 

When a sample is subjected to an applied electric field the dipoles in the material will orient 

in the direction of the electric field. The orientation process requires a characteristic time, 

called the dipole relaxation time,τ . The simplest model to describe the orientation 

mechanism was developed by Debye, who assumed a single relaxation time,τ , for all 

molecules and expressed the relative permittivity and loss factor as [77, 78, 137], 
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Direct current, DC, conductivity contributes only to the imaginary part of permittivity, where 

σ  is the specific DC conductivity of the material. The difference in the frequency dependence 

of the dipolar and the DC conductivity terms allows their experimental separation, as will be 

discussed later. 

The Debye model was sufficient to analyze relaxation processes in gases and some liquids but 

failed to account for the majority of experimental results in complex systems, such as 

polymers, which were characterized by broader and usually asymmetric dielectric loss peaks. 

The dielectric response of such systems have been described quite well by fitting permittivity 

plots by a number of empirical expressions in the frequency or time domain [77].  

To study the mechanism of the −α relaxation process in polymer materials, the complex 

dielectric constant, *ε , is given by the general equation, 
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with 10 <≤ β  and 10 ≤< α . 

where w  is the angular frequency ( fw π2= ) and τ is the relaxation time. 0ε  and ∞ε  are the 

low and high frequency limiting values of the dielectric constant respectively. The dielectric 

strength is defined by the following relationship, 

( ) )()( TTT o ∞−=Δ εεε                                                              (5.5) 

and is proportional to the number of dipoles per unit volume which are capable of absorbing 

energy from the applied field at a given temperature.  

 

Two cases of eq. (5.4) were considered for this study: the first case is according to Havriliak–

Negami (HN) [138, 139], in which the parameters hnβ  and hnα  are characteristic of the 

symmetric and asymmetric broadening of the relaxation time distribution. They are unique 

and they represent the distribution of relaxation times. The parameters 10 << hnβ  and 

10 << hnα represent the breadth and the skewness of the distribution of relaxation times but 

lack physical meaning. 

 

The second case is according to Cole and Cole [140, 141], in which the parameter 1=α , 

and 10 << ccβ , where ccβ  represents the symmetrical distribution of the relaxation times τ . 

 

The data were also analyzed in term of the Kohlrausch-Williams-Watts (KWW) model [142, 

143]. In this model the relaxation function, )(tφ  exhibits a stretched exponential dependence 

on time, t, according to the equation, 
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o

o β

τφ
εε
εε

exp)(
*                                                      (5.6) 
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where 0.00.1 >> KWWβ , and oε , *ε and ∞ε  have their usual meaning. τ  is an average 

relaxation time and KWWβ  is a measure of the breadth of the relaxation times of the processes 

involved in the dielectric relaxation and  is inversely proportional to the extent of peak 

broadness. 

5.1.2 The Dielectric Relaxation Time 

The average relaxation time,τ , describes the transition probabilities between consecutive 

minimum energy configurations of the dipoles [77]. The rotational motion of each dipole 

presents a characteristic relaxation time and hindered dipoles will show higher,τ , and 

therefore their motion will be observed only at higher temperatures and low frequencies. 

The relaxation time is temperature dependent, and different functional forms of this 

dependence have been described. The simplest case is of dipoles floating in a viscous fluid, 

the relaxation time at a particular temperature is the same for each unit and dependent upon 

the viscosity of the system. This is known as Debye model and an Arrhenius equation has 

been accepted to represent the relaxation time-temperature dependence, such that,  

( ) ⎟
⎠
⎞

⎜
⎝
⎛ Δ

=
kT
HT exp0ττ                                                                             (5.7) 

where 0τ is the pre-exponential factor and k is Boltzman constant. 

Eq. (5.7) has been shown to be applicable for −β and −γ relaxation mechanisms in amorphous 

polymers, when uncorrelated rotations of side groups or local motions of short segments are 

involved [77]. The apparent activation enthalpy of the relaxation process, HΔ , depends on 

both the internal rotation barriers and the environment of the rotating unit. For truly local 

processes due to isolated polar units, 0τ  should be of the order of 1 ns. Values lower than 

1610−  s imply an activation entropy, *SΔ , as defined in eq. (5.8), greater than zero, which in 

turn indicates more complex molecular motions, e.g., cooperativity. In the latter case, HΔ has 
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been reported in the range 100-200 kJ mol-1, as frequently observed for the highly restricted 

conformational main chain motions [77]. 

τlnln* k
h

kTkS −⎟
⎠
⎞

⎜
⎝
⎛=Δ                                                                              (5.8) 

where h is Planck’s constant and k is Boltzmann constant. 

Relaxation mechanisms of dipoles located in dissimilar environments, or originating from 

complex forms of molecular or ionic motion, usually exhibit a non-Arrhenius dependence. 

This curvature is usually interpreted in terms of the semi-empirical Williams–Landel–Ferry, 

WLF, equation [144], such that, 

( )
R

R

R
T TTC

TTC
a

−+
−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1loglog
τ
τ                                                                   (5.9) 

where Ta  is a shift factor, τ and Rτ are the relaxation times at temperatures T and RT , 

respectively, and C1 and C2 are the WLF constants. The WLF equation is a consequence of a 

general principle, known as the time-temperature superposition principle, TTS, and describes, 

for a wide range of materials, the effect of the free volume on the relaxation behaviour of 

polymers in the temperature range between the glass transition temperature gT  and o
gT 100+ . 

For segmental −α relaxations and similarly complex relaxation signals, the Vogel-

Tammann–Fulcher–Hesse, VTFH, equation [145-147]  has been widely used in dielectric 

literature to describe the frequency dependence of the relaxation times in the −α relaxation 

region and over a wide frequency range , such that, 

( )o

f
o TTR

E
ff

−

Δ
−=

303.2
loglog max                                                          (5.10) 

Here, maxf  is the frequency corresponding to the maximum in dielectric loss at the isothermal 

temperature, T and πτ21max =f  with τ  the average relaxation time associated with the 

transition; of  is the frequency at oT ; R is the gas constant and fEΔ is an energy term related 
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to bond rotational energies which we will relate to the activation energy. oT  is the Vogel 

reference temperature or the thermodynamic glass transition temperature, located 30-70 

degrees below gT .   

 

5.2 Results and Discussions 

5.2.1 Ion Irradiation 

Irradiation was carried out using the new procedure described in Chapter 2 to cover larger 

surface areas, as well as to investigate the homogeniousity of irradiation. Table 5.1 

summarizes the irradiation setup for this study. The analysis of the irradiated materials was 

carried out by mean of DSC and the results were consistent with those reported in Chapter 3. 

The only differences were the higher irradiation doses used here. The cross link densities were 

calculated using the previous G values (see Chapter 3) and they are quoted in Table 5.2 along 

with the glass transition temperatures for the samples used in this study. 

 

Table 5.1: Irradiation setup and dose evaluation for H+ and He 2+ ions. 

Irradiation 

ions 

Total charge 

(×10-4 C) 

Fluencea 

(C m-2) 

Ions per unit 

area 

(× 1018 m-2) 

Average track 

spacing 

(× 10-10 m) 

Doseb 

(MGy) 

H+ 96.3 9.4 58.65 1.40 37.9 

He 2+ 34.8 3.4 21.20 2.33 42.9 

 

a The irradiated area was the same for all samples at 10.24 cm2 

b at the first layer. 
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Table 5.2: Dose, glass transition temperature, Tg, and cross link density of PEEK samples.  

Irradiation Dose 

(MGy)

Tg 

( ± 1.0 oC)

% unit cross linked  

(± 0.5) 

As Received 0 145.4 0.0 

39.3 152.7 16.8 

50.5 154.2 21.6 

59.1 156.0 25.3 

Proton, H+ 

74.9 158.2 32.0 

42.9 155.4 22.0 Helium, He2+ 

54.4 158.1 28.0 

 

 

5.2.2 Dielectric Spectrum of Amorphous PEEK 

The dynamic dielectric behaviour of amorphous PEEK was investigated at a heating rate of 

1.0 K min-1 over the temperature range from -130 to 240 oC. Figure 5.1(a) shows the variation 

in both the dielectric constant, 'ε , and dielectric loss, "ε , of amorphous PEEK with 

temperature, and highlights the presence of two relaxations at -50 and 150 oC. These are 

accompanied by an increase in dielectric constant and a peak in dielectric loss and were 

assigned to the −β  and −α relaxations respectively. Above the −α transition, the dielectric 

constant decreases sharply corresponding to the onset of crystallization, and then recovers at 

higher temperatures. The relaxation of the newly formed crystal portion was evident as a 

broad but distinct shoulder in dielectric loss located on the high-temperature side of the glass 

transition loss peak [148]. Finally, there was a large increase in the dielectric loss, "ε , due to 

increasing ionic conductivity with temperature. The overlap of the temperature response of 
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the dielectric loss in the region 130 to 240 oC was resolved using appropriate relationships for 

the temperature dependence [149], e.g., assuming a Gaussian shape for the −α relaxation. As 

can be seen from Figure 5.1 (b), the three distinct regions associated with the mobility of the 

molecular chains are clearly present in the change in the dielectric loss of amorphous PEEK 

with temperature. 
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Figure 5.1:  (a) Temperature dependence of the dielectric loss, "ε , and dielectric constant 'ε  

at 1kHz for  amorphous PEEK, (b) dielectric loss, "ε , as a function of temperature at 1.0 kHz 

for amorphous PEEK; showing the dipole and conductivity contributions. 
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5.2.3 Dielectric Spectrum of Ion Irradiated PEEK 

The dynamic dielectric behaviour of ion irradiated PEEK was also investigated at heating 

rates of 1.0 K min-1 over the temperature range from -130 to 240 oC. The results of this 

analysis are shown in Figure 5.2.  

 

On irradiation, similar behaviour was observed with the two transitions ( −α and −β ) but 

they occurred at slightly higher temperatures depending on radiation dose.  Differences also 

existed above the −α transition in that there was a single peak in "ε followed by a rapid 

increase with temperature. As previously observed [56, 57] crystallization of amorphous 

PEEK is progressively suppressed by irradiation and, at a sufficiently high degree of cross 

linking, is completely inhibited. This appears to be the case with the irradiated sample shown 

in Figure 5.2. 
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Figure 5.2: Temperature dependence of the dielectric loss, "ε , and dielectric constant 'ε  at 

1kHz for  irradiated PEEK samples with 56.1 MGy He2+. 
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5.2.4 The Effects of Irradiation on the Relaxation Processes 

The dielectric relaxations of irradiated PEEK have not been given full attention, and only few 

studies have been published on the effect of −γ rays and electron beam irradiation [150-152].  

It has been reported that the glass transition temperature taken as the peak corresponding to 

the maximum in the dielectric loss increased with radiation dose indicating cross link 

formation. The results of the frequency dependency of the dielectric loss and constant have 

been analyzed by the Cole-Cole empirical function from which it was concluded that the 

magnitude of the induced dipoles and ions as well as the relaxation intensity increased with 

increasing radiation doses. 

5.2.4.1 The −β Relaxation 

The temperature dependence of the dielectric loss of amorphous and irradiated PEEK in the 

temperature range -120 to 20 oC is shown in Figure 3 (a), corresponding to the region of the 

sub-ambient −β relaxation of PEEK.  The dielectric loss increased with radiation dose but no 

change in the temperature corresponding to the maximum in "ε  was observed for samples that 

were allowed to equilibrate with water vapour in the laboratory.   

Equilibration with water was necessary as the amount present in the PEEK sample had a 

marked effect on the intensity and temperature of the sub-ambient −β transition, as defined by 

the maximum in "ε . Amorphous PEEK samples scanned immediately after drying in vacuum at 

80 °C for 48 h, equilibrating in the laboratory for 24 h and after soaking in water at 50 °C for 

24 h exhibited very different responses, as shown in Figure 3 (b).  There was an increase in 

dielectric loss and the peak maximum temperature decreased with increasing moisture content, 

from -57 °C for the water equilibrated sample to -42 °C for the vacuum dried sample. These 

results have been explained by water acting as a plasticizer for the sub-ambient −β relaxation in 

PEEK[153]. 
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The activation enthalpies, βHΔ , for the sub-ambient −β transition was determined from the 

frequency dependence of the transition temperature, βT , assuming an Arrhenius dependence, 

such that, 

( )ββ RTHAf Δ−= exp                                                                    (5.11) 

 

The values of βHΔ were very similar at 45 ± 5 kJ mol-1 and were not markedly dependent on 

irradiation dose.  

 

The sub-ambient −β relaxation is associated with phenyl ring motions,  and while it is 

influenced by a number of factors such as water content, ageing history and morphology [153], 

it is reasonable to attribute the increase in intensity with irradiation to the introducing polar 

groups via oxidation as previously observed on the irradiation of polyethylene [154-156]. This 

is also consistent with the increase in sulphonation degree with irradiation observed in a 

previous article [157]. 

 

Moreover, it has been reported from a dielectric study of model aromatic compounds and 

related polymers by Schartel and Wendorff [158] that the sub-ambient −β relaxations in 

aromatic polymers are associated with inter and intra-molecular motions on a length scale 

equivalent to a single repeat unit, and accordingly cross linking does not have a marked effect 

on the mobility of such a small localised group. 
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Figure 5.3: (a) The effect of irradiation dose on the −β relaxation of laboratory equilibrated 

PEEK samples and (b) The effect of moisture content on the −β relaxation of PEEK. 

 

 

5.2.4.2 The −α Relaxation 

The glass transition temperatures of the irradiated samples, as measured by the temperature 

corresponding to the maximum in "ε , were greater than that of the amorphous PEEK sample, 

shifting to higher temperature with increasing irradiation dose, see Figure 5.4. This is in 

agreement with the calorimetric results reported earlier [56, 57] and indicated that the main 

mechanism of ion irradiation effects in PEEK is that of cross linking.   
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Figure 5.4: The dipole dielectric loss, "ε of irradiated PEEK samples as a function of 

temperature. Heated at 2 K min-1 at fixed frequency of 1.0 kHz. 

 

Because of the complex behaviour observed in the dielectric response of PEEK and irradiated 

PEEK, stepwise isothermal scans were carried out over a wide frequency range from 0.05 to 

100 kHz at 5K intervals. These results are presented in Figure 5.5 showing the changes in 

δtan , and dielectric constant, 'ε , with temperature, where '"tan εεδ = .  

 

Both "ε and δtan appeared to change with increasing temperature in a similar way, and 

corresponded to the presence of a glass transition, second glass transition due to 

crystallization and ionic conduction in amorphous PEEK.  In the irradiated specimens 

crystallization was absent. The glass transition temperature of the un-irradiated samples were 

less frequency dependent, shifting from 250 to 257 oC, than the irradiated specimens, 167 to 

195 oC while the overall relaxation processes have also broadened.   
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Figure 5.5: Change in dielectric constant and δtan  with temperature at different frequencies 

for PEEK (a), (b) helium irradiated PEEK with 42.9 MGy (c), (d) and proton irradiated PEEK 

with 74.9 MGy (e), (f). 
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The conventional step-change in 'ε of the irradiated samples were observed and this is 

associated with a change from the un-relaxed to relaxed values of 'ε , e.g., from 0ε to ∞ε . It 

was observed that the value of the dielectric strength, 0εε −∞ decreases with frequency and 

increases on irradiation. 

 

The dielectric loss and the dielectric constant dependencies on the applied frequency at 

different temperatures above the −α transition are presented in Figure 5.6 for amorphous and 

irradiated PEEK. As can be seen, the distribution of both `ε and ``ε  follow the usual trend.  

 

It can be seen from Figure 5.6 that the frequency corresponding to the maximum in dielectric 

loss increases with increasing temperature and this was used to estimate the activation 

enthalpy of the −α process, αHΔ ,  using the Arrhenius relationship, such that,   

 

( )RTHAf αΔ−= expmax                                                                    (5.12) 

 

where R is the gas constant, and A is a pre-exponential factor. The frequency, maxf , 

corresponding to the maximum in dielectric loss "ε  was taken to be a measure of the 

relaxation time, τ , since πτ21max =f , at the isothermal temperature T [159].    

 

Although the temperature dependence of the frequency exhibited considerable curvature, see 

Figure 5.7 (a) Arrhenius plots were used for comparison and for determining the effect of 

cross linking on the dynamics of the glass transition, see Table 5.3. The value of 950 ± 100 kJ 

mol-1 obtained for amorphous PEEK compares favourably with the values quoted in the 

literature [160], but there was a marked decrease in activation enthalpy with irradiation dose. 
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Figure 5.6: Dielectric dispersion curves ( fvs ln'ε ) and dielectric loss curves ( fvs ln."ε ) for 

PEEK (a), (b) irradiated PEEK with 42.9 MGy He2+ (c), (d) and irradiated PEEK with 74.9 

MGy (e), (f) in the region of the glass transition. 
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The Vogel-Fulcher equation eq. (5.10) is considered to be a better empirical expression to 

describe the frequency dependence of the −α relaxation temperature over a wider frequency 

range. 

Equation (5.10) was a better fit of the data over the full frequency range than the Arrhenius 

relationship, see Figure 5.7 (b), and the results of these analyses are presented in Table 5.3. 

 

Table 5.3: The Vogel-Fulcher parameters of the PEEK samples.  

Irradiation Dose 

(MGy) 

fEΔ  

(kJ mol-1) 

log of  

(Hz) 

To±10.0 

(K) 

Activation enthalpy * 

αHΔ (kJ mol-1) 

As received  0 9.6 ± 0.3 14.7 ± 0.5 388.0 950 ± 100 

50.5 9.4 ± 0.3 11.9 ± 0.3 395.0 480 ± 80 

59.1 7.7 ± 0.3 11.3 ± 0.2 398.0 470 ± 80 

Proton, H+ 

74.9 8.3 ± 0.5 11.8 ± 0.5 400.0 550 ± 75 

42.9 6.9 ± 0.1 10.2 ± 0.1 396.0 620 ± 50 Helium, He2+ 

54.4 8.0 ± 0.2 11.2 ± 0.2 400.0 630 ± 130 

* calculated using eq. (5.12) 

 

The same trend was observed in that the activation energy term in the VFT analysis decreased 

with increasing irradiation dose, but the Vogel reference temperature was observed to increase 

with dose.  

The WLF constants for the calorimetric gT are [161],  

 
gRg

gg

TTC
CC

C
−+

=
2

21
1                                                     (5.13) 

gRg TTCC −+= 22                                                               (5.14) 
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gC1  and gC2 are the WLF constants at gT . 

The apparent activation energy at gT , ( )ga TE , follows a temperature dependence such that 

[161], 

( ) ( )
g

g
ga C

TgRC
TE

2

2
1303.2

=                                                      (5.15) 

At high temperatures the intra-molecular, or primitive, activation energy, which is associated 

with local barriers opposing rotation, is calculated from [161],  

gg CRCE 21303.2=                                                             (5.16) 

The calculated values of the parameters gC1 , gC2  and E are listed in Table 5.4 along with the 

Vogel temperature oT  given by [161],  

ggo CTT 2−=                                                                    (5.17) 

The values of ( )ga TE  increased with irradiation dose which implies a reduction in segmental 

mobility with cross link density.  

 

Figure 5.7: Effect of irradiation dose on transition temperature (a) Arrhenius dependence and 

(b) Vogel-Fulcher plots. 



  

 132

Table 5.4: The WLF parameters at gT  of different PEEK samples. 

Irradiation Dose 

(MGy) 

RT  

(oC) 

gC1  gC2  

(K) 

oT  

(K) 

( )ga TE  

(kJ mol-1) 

E 

(kJ mol-1)

As Received 0 156 13.7 51.0 367.4 900  13.3 

50.5 170 17.6 58.8 368.4 1050 19.9 

59.1 165 13.6 45.9 383.1 1040 12.0 

Proton, H+ 

74.9 170 13.3 43.7 387.5 1100 11.2 

42.9 170 14.9 50.9 377.5 1030 14.6 Helium, He2+ 

54.4 170 14.6 45.0 386.1 1150 12.5 

 

 

5.2.4.3 The DC Conductivity 

The extent of conduction at high temperature above gT was observed to vary with the 

reciprocal frequency, f, and "ε  are related to the ionic conductance, σ , by 

⎟
⎠
⎞

⎜
⎝
⎛=

D
A

0`` ωεσε                                                                              (5.18) 

where 0ε  is the permittivity of free space (8.86 × 10-12 F m-1), A/D is the ratio of the electrode 

area (A) to the plate separation or sample thickness, D, and f.2πω = is the angular 

frequency.  The ionic conductances, σ , were determined from linear plots of dielectric loss 

against reciprocal frequency at constant temperature, see Figure 5.8. The conductivity 

increased with irradiation dose suggesting insertion of ionic species on irradiation. 
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Figure 5.8: The ionic conductances of irradiated PEEK samples. 

 

 

The increase in conductivity with temperature was similar in the irradiated samples to that 

observed for the amorphous sample, implying that cross linking had little effect on the ionic 

conductivity. The temperature dependence of the conductivity was first analyzed using the 

Arrhenius equation, see Figure 5.9 (a), such that, 

RT
H

o
Δ

−= σσ lnln                                                             (5.19) 

As can be seen from Table 5.5, the increase in both activation enthalpy and the pre-

exponential factor with irradiation dose was only apparent at high doses reflecting the greatly 

reduced mobility of the cross linked matrix and the energetics of the migration of the ion.  
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Table 5.5: The Vogel-Fulcher parameters of the PEEK samples at αTT > . 

Irradiation Dose 

(MGy) 

fEΔ  

(kJ mol-1) 

oσln−  σHΔ (*)± 50 

(kJ mol-1) 

oσ (*) 

(S.m-1) 

amorphous 0 6.6 ± 0.1 10.7 ± 0.1 190 2.2×1012 

50.5 7.1 ± 0.2 9.9 ± 0.3 190 1.1×1012 

59.1 6.0 ± 0.1 10.4 ± 0.1 190 6.5×1013 

Proton, H+ 

74.9 7.0 ± 0.2 8.4 ± 0.1 205 2.6×1018 

42.9 7.4 ± 0.2 8.9 ± 0.2 245 4.3×1015 Helium, He2+ 

54.4 7.2 ± 0.1 8.4 ± 0.1 225 8.6×1017 

 (*) calculated using eq. (5.19) 

 

However, it was observed that the temperature dependence was better described by a VFTH 

form, see Figure 5.9 (b), such that, 

)(
lnln

o

f
o TTR

E
−

Δ
−= σσ                                                 (5.20) 

 

The results were obtained using the same oT  values reported in Table 5.4 and they are shown 

in Table 5.5. It is noteworthy that the values of activation energy determined from the 

conductivity analysis using the Arrhenius relationship are far less than those obtained for the 

dipole relaxations. This indicates that migration of the ions is independent of concerted 

segmental motion of the polymer chains as envisaged in the glass relaxation process.  
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Figure 5.9: Effect of irradiation dose on conductivity, (a) Arrhenius dependence and (b) 

Vogel-Fulcher plots. 

 

5.2.5 Details of the Effect of Irradiation on the −α Relaxation 

The temperature dependence of the dielectric relaxation with time was also analysed using the 

Williams-Landel-Ferry (WLF) relationship, eq. (5.9). Ta  was determined from isothermal 

plots of the dielectric constant, 'logε , against temperature and a master curve determined at 

the designated temperature. An example is shown in Figure 5.10. 

 

Figure 5.10: Time temperature superposition for PEEK sample irradiated with 42.9 MGy 

He2+ ions. (a) Dependence of the shift parameter on frequency and (b) Master curve at 170 oC. 
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Different models have been suggested to analyse the dielectric dispersion curve of the −α  

relaxation process in polymers. For a broad relaxation process, the complex dielectric 

constant, *ε , is given by the Havriliak-Negami equation, eq. (5.4) 

 

Plotting the dielectric loss against the dielectric constant for PEEK, see Figure 5.11, a skewed 

semi-circular arc was obtained and as shown the agreement between the experimental data 

and data calculated using the Cole-Cole and HN models is obtained for all samples indicating 

that both routines can be used to describe the dielectric response in this region.  

Subsequently hnα , hnβ  and ccβ were determined from eq. (5.4) for PEEK and irradiated PEEK 

as a function of irradiation dose and temperature.  These are listed in Tables 5.6, 5.7 and 5.8.  

 

Table 5.6:  The Cole-Cole and Havrilak–Negami best fit parameters for amorphous PEEK. 

Cole – Cole analysis Havrilak–Negami analysis Reference Temp. 

(oC) 
εΔ  ccβ  

(±0.05)

310×τ  

(s) 

εΔ  hnβ  hnα  310×τ  

(s) 

154 1.98 0.45 2.90 1.66 0.60 0.48 6.90 

156 1.66 0.50 0.36 1.58 0.70 0.43 1.67 

This work 

158 1.44 0.59 0.11 1.42 0.76 0.41 0.62 

Ref [162] 154 1.09 0.58 0.38 1.09 0.75 0.51 1.15 

Ref [148] 154 1.24 0.64 0.126 1.25 0.84 0.44 0.44 

 156 1.34 0.66 0.062 1.45 1.00 0.32 0.28 

 158 1.37 0.63 0.022 1.54 0.86 0.36 0.10 

Ref [160] 158 2.21 0.41 0.49 1.26 1.00 0.32 0.34 
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Figure 5.11: Best fit of the Cole-Cole and Havrilak–Negami relationship to the dielectric data 

of (a) Amorphous PEEK at 156oC, (b) 59.1 MGy proton irradiated PEEK at 175 oC and (c) 

54.4 MGy helium irradiated PEEK at 175 oC. 
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Table 5.7 :  Cole-Cole best fit parameters for irradiated PEEK. 

Irradiation Dose 

(MGy) 

Temp. 

(oC) 

εΔ  ccβ  

(±0.05) 

310×τ  

(s) 

170 1.44 0.33 3.95 

175 1.35 0.37 0.82 

50.5 

180 1.33 0.38 0.095 

170 1.87 0.39 0.097 

175 1.74 0.43 0.090 

59.1 

180 1.68 0.43 0.015 

170 2.41 0.34 5.50 

175 2.03 0.39 0.23 

Pr
ot

on
, H

+  

74.9 

180 1.94 0.41 0.032 

170 1.58 0.34 0.360 

175 1.43 0.38 0.022 

42.9 

180 1.43 0.38 0.033 

170 2.31 0.32 17.5.0 

175 2.10 0.34 0.82 

H
el

iu
m

, H
e2+

 

54.4 

180 1.99 0.37 0.095 

 

 

For PEEK, the skewness of the relaxation as measured by the Cole-Cole ccβ  value increased 

from 0.45±0.05 to 0.59±0.05 with temperature, implying that the relaxation was less skewed 

at higher temperatures but the values, observed at the same temperatures, compared 

favourably with reported values in the literature, see Table 5.6.  
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Table 5.8: Havrilak–Negami best fit parameters for irradiated PEEK. 

Irradiation 

 

Dose 

(MGy) 

Temp. 

(oC) 

εΔ  hnβ  hnα  310×τ  

(s) 

170 1.32 0.39 0.87 4.20 

175 1.31 0.40 0.76 0.67 

50.5 

180 1.28 0.43 0.66 0.24 

170 1.81 0.42 0.85 1.62 

175 1.69 0.48 0.67 0.26 

59.1 

180 1.65 0.55 0.59 0.10 

170 2.19 0.38 0.91 5.47 

175 1.92 0.45 0.70 0.72 

Pr
ot

on
, H

+  

74.9 

180 1.82 0.51 0.66 0.21 

170 1.51 0.39 0.76 6.54 

175 1.41 0.42 0.67 0.77 

42.9 

180 1.32 0.50 0.53 0.16 

170 2.23 0.35 0.83 25.4 

175 2.06 0.37 0.78 1.92 

H
el

iu
m

, H
e2+

 

54.4 

180 2.02 0.40 0.61 0.51 

 

 

Figure 5.12(a) shows the dependence of the Cole-Cole broadening parameter on the cross link 

density at the normalised temperature, taken as T= gT +15. Figure 5.12(b) show the 

dependence on the irradiation dose. It is evident that the deviation from the Debay behaviour 

increased with increasing cross link density and more complex systems are formed on 
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irradiation. The results also show that Cole-Cole formalism can be used to detect the LET 

effect as evident from Figure 5.12(b).  

 

 

Figure 5.12: The dependence of the Cole-Cole broadening parameter at the normalised 

temperature on the portion of cross linking (a) and on the absorbed irradiation dose (b). Lines 

are guides for the eyes. 

 

However, the H-N routine is more advantageous due to the possibility of relating the H-N 

parameters to molecular motion in polymers. According to Schlosser and Schönhals [163-

165], two scaling parameters m  and n  are defined to relate the molecular motion of the 

polymer with the HN parameters [166]. The authors suggest that the mobility of the polymer 

chain segments at gT  is controlled by both intra- and intermolecular interactions. The 

parameter m  describes the dielectric response in the low frequency region (i.e., 1<<τw ) that 

is related to the intermolecular correlation between chains and their segments. The parameter 

n  describes the dielectric response in the high frequency region (i.e., 1>>τw ) that is related 
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to the local chain dynamics. These parameters are correlated with the HN parameters such 

that hnhnn βα ×=  and hnm β= . 

 

Figure 5.13 (a) shows the dependence of both parameters m and n on the cross linking density 

at the normalised temperature. As can be seen the parameter n  was nearly independent of cross 

link density suggesting that the local motions in amorphous PEEK were unaffected by 

irradiation. On the other hand, the parameter m  decreased from 0.8 to 0.3 with increasing 

irradiation dose indicating that a slowing down of the long-range molecular motions is 

occurring with increasing cross linking density of the polymer. This results are in agreement 

with previous investigations in networks based on styrene-butyl acrylate divinylbenzene with a 

moderate degree of cross-linking in which n was not affected [167]. 

On the other hand, Figure 5.13(b) provide an evidence for the well know LET effect, and as 

observed earlier [57] helium ion was more effective in cross linking PEEK than proton ion at 

similar doses. 

1 
Similar conclusion was made from the analysis of the dielectric dispersion data using the 

Kohlrausch-Williams-Watts equation*, KWW, eq. (5.6). Figure 5.14 summarizes the results 

of this analysis and shows the variation in KWWβ  with temperature plotted for different 

amorphous and ion irradiated PEEK samples. All the irradiated samples had broader 

distributions and they also broadened with increasing temperatures. There was a general 

tendency for the value of KWWβ  to decrease, and so the relaxation to broaden, with irradiation 

dose and temperature.  

 

                                                 
*

 The dielectric data were fitted to the KWW function using Relax software provided by Prof.  J Matecki. 
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Figure 5.13: The scaling parameters m and n according to Schönhals and Schlosser, plotted at 

the normalised temperature as a function of cross linking (a) and absorbed dose (b). Lines are 

guides for the eyes. 

 

The importance of network formation in lowering the observed KWWβ  values can be seen from 

Figure 5.15(a) in which the effect of cross link density in broadening the distribution of life 

time can be seen to be independent of the irradiation ion used, although this was not the case 

with dose, as shown in Figure 5.15(b).  Differences existed between the efficiencies of the 

two ions used in cross linking PEEK, in having different LET values. 
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Figure 5.14: Temperature variation of the breadth, KWWβ , of the dielectric relaxation, (error is 

±0.03). 

 

 

Figure 5.15: The effect of cross link density and absorbed dose on the breadth, KWWβ , of the 

dielectric relaxation. 
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According to the coupling model proposed by Ngai et al. the deviation from Debye behaviour 

is due to the intermolecular coupling of relaxing species with neighbouring non-bonded ones 

[168, 169]. The degree of coupling (cooperativity), n  increased with decreasing the 

experimentally observed KWWβ  value since KWWn β−= 1 . This is the case with the irradiated 

samples studied, the observed decrease of KWWβ  is the results of the increase of inter-chain 

coupling between the relaxing units caused by the additional constraints introduced by the 

cross-linking. These results are in accordance with previous investigations in networks based 

on a model heterocyclic polymer [170]. 

 

5.3 Conclusions 

The specific influence of ion irradiation on the relaxations in poly(ether ether ketone)  has 

been described by dielectric relaxation spectroscopy. The −β  transition appears to be 

sensitive to the amounts of water present and altered by oxidation. The measured activation 

enthalpy of 45 kJ mol-1 is consistent with molecular motions associated with onset of rotation 

of localised groups of the size of a chain link.   This makes the overall relaxation insensitive 

to the development of the cross linked network produced on irradiation. By contrast the 

−α transition is extremely sensitive to the cross linking density and the glass transition 

temperature increases progressively with dose.  However, the activation enthalpy of the 

relaxation is substantially reduced from about 950 to 450 -600 kJ mol-1.  By analogy to the 

activation enthalpy of the −β transition, the large activation enthalpies associated with the 

−α transition is attributed to concerted rotational mobility of chain segments involving 

possibly 15 to 25 monomer units. The reduction in activation enthalpy on irradiation arises 

from the increased restrictions imposed by the progressive development of networks and to 

the onset of rotation of the smaller segments between cross links. 
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The results also showed that the Cole-Cole, Havriliak-Negami and the Kohlrausch-Williams-

Watts formalisms could equally well describe the dielectric spectrum for both amorphous and 

irradiated PEEK in the frequency and temperature range studied.  

 

With the H-N function, it was possible to describe the results in light of the Schönhals and 

Schlosser phenomenological model. It was found that the n parameter was nearly independent 

on the ion used or the cross link density, suggesting that the local motions of PEEK were 

uninhibited by the development of cross links. Furthermore, the analysis showed that the m 

parameter decreased with the progressive development of cross links indicating that a slowing 

down of the long-range molecular motions is occurring with increasing cross linking of the 

polymer.  

 
 

With the KWW function, it was possible to describe the results in light of the coupling model. 

The observed decrease in the KWWβ  parameter resulted from the increase of inter-chain 

coupling between the relaxing units caused by the growing hindrance with increasing degree 

of cross linking. 

 

The analysis clearly indicated that the dielectric properties of polymers are influenced by the 

LET effect of the irradiated ion used.  
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Chapter 6                                                   

Synthesis and Characterization of Sulphonated PEEK 

 

 

 

 

 

6.1 Introduction 

Sulphonation is a powerful and versatile route to polymer modification that especially suits 

polymers containing an aromatic ring in their repeat unit. It is an electrophilic substitution 

reaction in which the more electronegative atoms of oxygen draw the electron density from 

the sulphur atom, which then becomes an electrophilic centre. This electrophilic centre can 

react with the delocalized π electron system of an aromatic ring at the position with the 

highest electron density, which is controlled by the position and type of other groups located 

around the aromatic ring.  

 

Sulphonation reactions proceed easily in the presence of groups such 

as Cl− , 2NH− , OH− , SH− , etc., due to the increased electron density on the aromatic ring. 

On the other hand, sulphonation occurs slowly in the presence of substituents, which reduce 

the electron density on the aromatic ring, such as = NR2, OC => , etc.  

 

Polymers are sulphonated to convert them into ionomers, which are able to conduct protons 

and therefore can be used in preparing proton exchange membranes, PEM. The sulphonation 

of these polymers is usually carried out by one of the following methods: 
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1) Direct sulphonation of the polymer backbone, e.g., the sulphonation of PEEK [44]. 

2) Radiation grafting of monomers onto the polymer backbone followed by sulphonation, 

e.g., PVDF-PS [171]. 

3) Chemical grafting of sulphonated monomers onto the polymer backbone, e.g., 

sulphonated polybenzimidazole PBI [172]. 

4) The polymer is built from monomeric units, which contain the sulphonic acid groups, 

e.g., sulphonated polyimide SPI [173]. 

 

Whatever method is used, the extent of sulphonation and the swelling properties of the PEM 

are extremely important, as they dictate the PEM performance by controlling proton 

conduction and mechanical properties. 

 

6.2 Sulphonation Reaction 

Scheme 6.1 shows the reactions involved in aromatic sulphonation using two sulphonating 

agents namely (a) SO3 and (b) SO3H+.  

 

H

SO3 SO3 SO3H

+ SO3
-
+

-H+
-

+H+

-

+

H

SO3H SO3H

+
-
+

-H+

+

+
SO3H

(a)

(b)

 

Scheme 6.1: Sulphonation of an aromatic system with (a) SO3 and (b) SO3H+[174]. 
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The kinetics of sulphonation is assumed to follow the general reactions of Scheme 6.2.  Both 

reacting molecules determine the rate of sulphonation, and this electrophilic substitution can 

be considered to be a bimolecular reaction of the second order. This is in agreement with the 

proposed Scheme 6.2 and consistent with the results of kinetic studies [174-178]. In step 1, a 

fast reversible reaction occurs between an aromatic compound and an electrophilic agent, e.g., 

SO3 and leads to the formation of a π -complex. No experimental evidence for the existence 

of the π -complex has been published, but it is assumed that the π -complex will be 

transformed slowly fromπ - toσ -complex (e.g., to the arenium ion) by the second reaction 

(step 2). This reaction then is the rate determining step. Although theσ -complex has been 

isolated, it is a highly reactive intermediate, which stabilizes itself by a further reaction step. 

At the end, (step 3), this electrophilic substitution is quickly terminated by the release of ⊕X . 

If ⊕X  is a proton, then a base B is necessary to ensure its removal[174]. 

 

 

Scheme 6.2: General mechanism of the sulphonation reaction, showing three steps: formation 

of the π -complex (step 1), formation of the arenium ion or the σ -complex (step 2) and 

termination by the release of ⊕X (step 3) [174]. 
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6.2.1 Desulphonation 

The term desulphonation (or hydrolysis of HSO3−  group) is used to describe the reverse 

reaction of sulphonation. Reaction conditions are such that the equilibrium between the 

sulphonation and desulphonation reactions is usually shifted toward sulphonation. The 

HSO3−  groups can be removed from sulphonated compounds with dilute solutions of acids 

or with water, Scheme 6.3. 

4223 SOHRHOHHSOR +→+−  

Scheme 6.3: Desulphonation reaction [174]. 

 

The hydrolysis is represented by the electrophilic release of the –SO3H group by the 

participation of a proton in this reaction. In the presence of sulphuric or hydrochloric acid, 

hydrolysis runs simultaneously with the sulphonation because of high concentration of ⊕H  

ions. Reaction conditions determine the direction of the reaction. Sulphonation itself prefers 

high concentrations of sulphuric acid; however, partial desulphonation has been observed 

even in the presence of  concentrated sulphuric acid [174].  

There are several causes for desulphonation such that, (1) the HSO3− group is not conjugated 

with the benzene ring, (2) a strong, partially positive charge on the sulphur atom increases the 

electron density at the meta-position of the benzene ring and on the carbon atom of the C–S 

bond, (3) after the release of a proton, a negative charge located on the –SO3H group can 

facilitate the hydrolysis of the HSO3− group; (4) substituents that support sulphonation can 

also promote hydrolysis of the HSO3− group, because of the increase of the electron density 

on the carbon atom of the C-S bond. When the formation of the sulphonic acid is easy, the 

hydrolysis also occurs readily [174]. 
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6.2.2 Sulphone Formation 

Because of the presence of relatively a highly reactive –SO3H groups, cross linking reactions 

can occur between the molecules of the sulphonated product, adding more complexity to the 

assumed reaction scheme. Very little information on this cross linking mechanism has been 

found. However, it seems that its rate increases with increasing temperature [174]. Cross links 

formed from sulphone formation are very stable and their decomposition can only be achieved 

on melting in the presence of alkaline hydroxides, Scheme 6.4. 

 

42232 SOHRSORHSOR +−−→−

RHNaSORNaOHRSOR +−→+−− 32

(a)

(b)
 

Scheme 6.4: Cross linking reaction (a) and sulphone decomposition (b) [174]. 

 

6.2.3 Factors Affecting the Sulphonation Reaction 

The choice of reaction conditions for sulphonation is usually made from consideration of 

three factors; the first is the degree of sulphonation, the second is the type of products 

required and isomers produced, and the third is the yield of sulphonic acid.  

The sulphonation reactions described in the literature were carried out over a wide range of 

temperatures, usually from -20°C to 300°C. Sulphonation gave a better yield at elevated 

temperatures, especially in the case of sulphonation to higher yields. However, sulphone 

formation is also increased by enhanced temperatures. In addition, the concentration of the 

sulphuric acid or oleum used as the sulphonating agent influences the course of sulphonation. 

Sulphonation prefers high concentrations of sulphonating agents, while water formed as a side 

product in the sulphonation reaction reduces the rate of sulphonation.  
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Only mercuric compounds (e.g., HgSO4) have been found to catalyse the reaction but at 

concentrations above 1 wt%, they change the ratio and yield of  isomers produced, when 

oleum was used as the sulphonating agent [174]. 

 

6.2.4 Sulphonating Agents 

Sulphonating agents can be classified by the type of the reaction they produce. They react as 

three types of reagents, namely as electrophiles, nucleophiles and radicals [174]. The first 

group of sulphonating agents are used most frequently to sulphonate aromatic compounds and 

manufacture sulphonic acids. They are mainly reagents derived from sulphur trioxide, such as 

sulphuric acid, oleum, chlorosulphonic acid, free sulphur trioxide and complexes such as 

acetyl sulphate which can be prepared by the reaction in Scheme 6.5. The addition of acetic 

acid to the reaction reduces the risk of oxidation and cross linking of the substrate and acetyl 

sulphate is used as a mild sulphonating agent.  

 

The second group contains nucleophilic agents such as sulphites and hydrogen sulphites, and 

sulphur dioxide, which react with halogen derivatives and unsaturated compounds containing 

multiple bonds.  

 

The third group consists of radical initiators such as sulphurylchloride (SOCl2) and blends of 

gases e.g., sulphur dioxide and chlorine (SO2 + Cl2), sulphur dioxide and oxygen (SO2 + O2 ). 

 

( ) 4223333332 SOHOCOCHCOOHCHHCOOSOCHSOCOOHCH +↔+↔+
 

Scheme 6.5: Acetyl sulphate formation[174]. 
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6.3 Sulphonation of Polymers 

Generally, polymer sulphonation can be carried out as a heterogeneous reaction or as a 

homogeneous reaction in hydrocarbons or chlorinated solvents. The sulphonation of some 

polymers, namely PEEK, PEI, PS and PP are discussed below. 

6.3.1 Sulphonation of PEEK 

The sulphonation of commercially available PEEK (Victrex ICI, Gatone) using 96–98% 

sulphuric acid [44, 46, 179-185], mixtures of sulphuric acid and methane sulphonic acid 

[180], mixtures of concentrated sulphuric acid and fuming sulphuric acid [186-188] have been 

described in the literature. The kinetics of PEEK sulphonation in concentrated H2SO4 was 

investigated in the temperature range of 25–75oC and an activation energy around 82.8 kJ 

mol-1 has been reported [189, 190]. The sulphonation of cross linked PEEK has been recently 

described using chlorosulphonic acid as both swelling and sulphonating agent [58] as well as 

concentrated sulphuric acid [157]. The kinetics of cross linked PEEK sulphonation in 

concentrated sulphuric acid at room temperature has been shown to follow diffusion 

controlled mechanism [157]. 

 

Scheme 6.6 shows the chemical structure of the repeat unit of PEEK and the corresponding 

sulphonation reaction. Substitution takes place in one of the four equal positions on the 

aromatic ring between the ether bridges because the electron withdrawal nature of the 

neighbouring carbonyl group deactivates the other two aromatic rings [44]. At room 

temperature with the concentrated sulphuric acid used as the sulphonating agent, only one 

SO3H group is attached to each repeat unit owing to the electron withdrawing nature of the 

acid sulphonic group introduced.  
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(a)

(b)

 

Scheme 6.6: The chemical structure of PEEK and possible sulphonation sites (a) and 

sulphonation reaction (b) [44]. 

 

The sulphonation of PEEK in concentrated H2SO4 is essentially free of degradation and cross 

linking reactions if the concentration of the acid is kept below 100%. It is believed that the 

presence of water decomposes the pyrosulphonate intermediates, which act as inter- and intra- 

molecular sulphone cross links [44].  Evidence of the chemical modification induced by 

sulphonation using concentrated sulphuric acid and of the degree of sulphonation has been 

obtained from infrared FTIR and NMR spectroscopies, elemental analysis and acid content 

titration. The extent of sulphonation can be controlled by changing reaction time, temperature 

and acid concentration and can produce a degree of sulphonation up to 100% mono-

substitution of the repeat unit [44].  

 

6.3.2 Sulphonation of other Polymers 

6.3.2.1 Sulphonation of Poly Ether Imide, PEI 

Polyimides are high-performance polymers that have been used in a wide variety of 

applications due to their excellent properties–price–processability balance. These polymers 

have excellent thermal stability, high mechanical strength, good film-forming ability, superior 
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radiation and chemical resistance, good adhesion properties and low dielectric constant [191, 

192]. Poly(ether imide)s, PEI, are one of these polymer, the chemical structure of which is 

given in Scheme 6.7 along with that of sulphonated PEI, which are potential candidates for 

producing PEM. 

(a)

 

(b)

 

 

Scheme 6.7: Repeat unit of poly(ether imide) (Ultem®) (a) and sulphonated PEI (b) [193]. 

 

The modification of PEIs by sulphonation, with the aim of developing proton exchange 

membranes, PEM, has been achieved using different sulphonating agents such as 

acetylsulphate [193] and chlorosulphonic acid [194] . 

 

The sulphonation of PEI is expected to take place on the electron-rich benzene rings of PEI, 

e.g., the bis-phenol-A segment. After introduction of one HSO3−  group into the ring it is 

deactivated and further sulphonation on the same ring does not readily occur. Under mild 

sulphonating conditions (e.g., at low temperature) and depending on the duration of the 

reaction, one or two SO3H groups are expected to be introduced per repeat unit. The extent of 

sulphonation can be determined by elemental analysis and determination of sulphur content.  

 



  

 155

The theoretical sulphur content if one sulphonic acid group is present per repeat unit is 4.76% 

and if two sulphonic acids are present then it is around 8.5%  [193, 194]. 

 

6.3.2.2 Sulphonation of Polystyrene, PS 

Polystyrene, PS,  is an amorphous polymer with good mechanical and thermal stabilities. The 

first studies on the sulphonation of PS were published before World War II by Turbak who 

sulphonated polystyrene in a homogeneous phase reacting polystyrene with complexes of 

triethyl phosphate and sulphur trioxide as sulphonating agents in dichloroethane [174].  

 

Makowski et al. also prepared lightly sulphonated polystyrene by using acetyl sulphate 

complexes as sulphonating reagent in a solution of dichloroethane. In this reaction, random 

ionic functionalities along the polymer chains are generated without significant degradation or 

cross linking of the reaction product [195]. Various methods of sulphonating polystyrene have 

been described in the literature [174, 196-198], see Scheme 6.8 as an example.  

 

 

PS  

Scheme 6.8: Sulphonation of PS[198]. 

 
 

6.3.2.3 Sulphonation of Polypropylene, PP 

Polypropylene, PP, has a highly crystalline structure, which gives it good rigidity, strength, 

and chemical resistance to organic solvents, acids, and alkalis. It is usually used as the 
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isotactic form in which the PP chains are attached in a head-to-tail fashion and all the methyl 

groups are aligned on the same side of the polymer chain. PP, a vinyl polymer, is structurally 

similar to polyethylene. One major difference is that PP has three different types of carbons, 

primary, secondary, and tertiary, in the repeating unit. It is known that these carbons show 

different reactivates in chemical reactions. It has been reported that the sulphonation of PP 

followed by slight oxidation and the formation of C=C bonds is enhanced with increasing 

reaction temperature and time [199]. The mechanism for the sulphonation of PP with fuming 

sulphuric acid has been outlined with consideration of the PP molecular structure [200].  

 

 

6.4 Results and Discussions  

6.4.1 Structural Analyses by FT-IR Spectroscopy 

Figure 6.1(a) shows the FTIR spectra of PEEK and sulphonated PEEK, from which changes 

in the structure of PEEK on sulphonation was deduced. These corresponded with the 

appearance of new absorption bands and the splitting of others, consistent with the presence 

of -SO3H group on the 1.4-di-ether aromatic ring, see Scheme 6.6, and confirmed that the 

sulphonation reaction occurred in the absence of degradation or cross linking [44, 46, 67, 

181]. 

New absorption bands at 3340, 1250 and 1078 cm-1 were assigned to the stretching of the O-

H of the -SO3H group and to the asymmetric and symmetric stretching of the O=S=O group 

respectively. A single broad band between 860 and 840 cm-1 was characteristic of the out-of-

plane C-H bending of two hydrogen atoms of 1, 4- di-substituted aromatic ether ring. This 

later band splits upon sulphonation into two, characteristic of an isolated hydrogen in a 1, 2, 4 

tri-substituted aromatic ring. 
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The aromatic ring absorption bands at 1490 and 1414 cm-1 were split on sulphonation and 

new bands appeared at 1470 and 1402 cm-1 respectively.  The intensity of the new band at 

1470 cm-1 increased with increasing sulphonation time as well as the ratio of absorbances, 

A1470/ A1490, as can be seen from Figure 6.1(b), thereby indicating that FTIR technique can be 

used for determination of the extent of sulphonation. These ratios were determined using 

OMNIC software by drawing a base line in the region1430–1520 cm-1 and measuring the 

heights of these peaks. It has been reported [181] that the degree of sulphonation (calculated 

from elemental analyses and NMR spectroscopy) correlates linearly with the ratio of the 

absorbances of the bands at 1470 and 1490 cm-1.  

Analysis of the FTIR spectra also confirmed that sulphonation of the irradiated membranes, 

see Figure 6.2, had taken place and that the splitting of the band at 1490 cm-1 was not due to 

ion irradiation.  

 

 

Figure 6.1: Changes to the FTIR spectrum on the sulphonation of PEEK, 450G: The 

spectrum of PEEK and sulphonated PEEK after reacting for 120 h (a) and variation of 

absorbance ratio (A1470/A1490) with reaction time (b). 
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Figure 6.2: FTIR Spectra of cross linked PEEK (sample X) and sulphonated cross linked 

PEEK after 76 h sulphonation (samples S). 

 
 

6.4.2 Solubility of SPEEK 

PEEK has excellent resistance to a wide range of chemical reagents. The strong 

intercrystalline forces in PEEK make the polymer only soluble in concentrated strong acids, 

such as sulphuric acid [201]. The sulphonation process makes the polymer soluble in many 

other solvents such as dimethylsulphoxide, DMSO. It is noteworthy that the dissolution 

properties of SPEEK are strongly dependent upon the degree of sulphonation, DS, such that 

below 30% sulphonation the samples are insoluble, at least at moderate temperatures, in all 

common solvents. Above 30% sulphonation the samples are soluble in hot DMF, DMAc and 

DMSO; above 40 % in the same solvents at room temperature, above 70% in methanol and at 
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100% in hot water [44, 180]. The solubility of various sulphonated PEEK in the free acid 

form after different reaction time is quoted in Tables 6.1, 6.2 and 6.3. 

The solubility test was carried out to find the most suitable solvent to cast SPEEK 

membranes. DMF and DMAc both were found to be the most suitable to prepare PEM. This 

was not the case however with the cross linked sulphonated membranes; these were not 

soluble and membranes were produced without casting. However, the solubility test was of 

prime importance as it provided information about the behaviour of the membranes in water 

and methanol.  It was noted that the cross linked membranes only swelled in methanol and hot 

water and the extent of swelling depended on reaction time. 

 

6.4.3 The Effect of Reaction Conditions on IEC and DS 

The ion exchange capacity, IEC, of the PEM materials is an important material property since 

it determines proton conductivity, water uptake, and dimensional stability.  Table 6.1 lists the 

IEC and the corresponding degree of sulphonation, DS, obtained by titration of the non cross 

linked sulphonated PEEK, 450G, with standard alkali. The correlation between these values 

and the ratio of the absorbances, A1470/ A1490 lead to the following relationship: 

                               874.0/)03.0(
1490

1470 −=
A
A

IEC                                      (6.1)      

FT-IR spectroscopy was used to determine the extent and follow the kinetics of the 

sulphonation reaction. As can be seen from Table 6.1, the degree of sulphonation as well as 

the IEC increased progressively in the initial stages of sulphonation and showed non linear 

time dependence in the final stages of the reaction.  This has been explained as due to the 

negative effect of de-sulphonation of the product, SPEEK [189, 190] and the following rate 

expression  has been shown to describe the sulphonation kinetics of PEEK in a large excess of 
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concentrated sulphuric acid, such that its concentration and the water content can be assumed 

to be constant through out the reaction, that is, 

                                  
)( 0

1

CCk
Ck

dt
dC

d −
=−                                             (6.2)                

Rearranging and integrating from the initial concentration of PEEK, Co, to concentration, C, at 

time t gives the following equation, 

                         t
Ck

k
C
C

C
CC

d 0

1

00

0 1ln =−
−

−                                     (6.3)   

where k1 is the rate constant of sulphonation, and kd is the rate constant of the reaction, in 

which the product inhibits sulphonation. (Co-C) is the concentration of product at time t. 

It is more convenient to write the previous equations in term of the IEC, since the 

concentration of the substrate is defined as, 

                ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=

∞IEC
IEC

CIECCC t18.2 00                                 (6.4)   

where IECt and IEC∞ correspond to the ion exchange capacity at time t and at the end of the 

reaction when the sulphonation degree is 100%. The IEC∞ was taken as 2.8 meq g-1, assuming 

that only one sulphonic acid group is attached to each PEEK repeat unit [44], as outlined in 

Scheme 6.6. 

Substitution eq. (6.4) in eq. (6.3) leads to the following rate expression, 

                  t
Ck

k
IEC
IEC

IEC
IEC

d

tt

0

1 1)1ln( =−−−
∞∞

                                     (6.5)     

 

As can be seen from Table 6.1, the dried samples sulphonated to a higher degree than the un-

dried and drying the polymer for a longer period lead to an increase in IEC. This is the case 

with samples 3, 8 and 12, which were dried for 0, 48 and 168 hours and were reacted using 

the same conditions. Water, present in the polymer, appeared to inhibit the reaction as the un-
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dried sample sulphonated at a lower rate than the dried ones; rate constants, dkk /1 , are 2.8 ± 

0.2 ×10-3 and 3.8 ± 0.1 × 10-3 respectively, see Figure 6.3.   

 

Table 6.1: The IEC and DS values for sulphonated PEEK, 450 G. 

Sample 

No. 

Drying 

time (h) 

Reaction 

time* (h) 

IEC ± 0.04 

(meq g-1) 

DS ± 5.0 

(%) 

Solvents 

1 48 1.21 38 DMAc, DMF 

2 72 1.41 46 DMAc, DMF 

3 96 1.67 56 DMAc, DMF 

4 120 1.71 59 DMAc, DMF 

5 144 1.99 68 Methanol  

6 

Un-dried 

168 2.16 75 Methanol  

7 72 1.53 50 DMAc, DMF 

8 96 1.76 59 DMAc, DMF 

9 120 1.96 67 DMAc, DMF 

10 144 2.18 76 Methanol 

11 

48 

168 2.32 82 Methanol  

12 168 96 2.53 92 Hot water 

 

* The time scale starts from the addition of PEEK to the sulphonation agent. 

 

In addition, stirring plays an important role not only in obtaining homogeneous products but 

also in achieving higher IEC and sulphonation degree, see Table 6.2. The rate constant on 

stirring was found approximately 10 times higher than that without stirring. The rate constants 

are 3.2 ± 0.4 ×10-3 and 4.7 ± 0.1 × 10-4 respectively see Figure 6.4.   
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Figure 6.3: Sulphonation kinetics of PEEK pellets, G450, in concentrated sulphuric acid at 

room temperature; effect of drying. 

 

Table 6.2: The IEC and DS values for sulphonated PEEK, P150. 

Sample 

No. 

Note  Reaction 

time* (h) 

IEC ± 0.04 

(meq g-1) 

DS ± 5.0 

(%) 

Solvents  

13 48 0.36 11 Insoluble  

14 72 0.78 25 DMF, DMAc 

15 

Without 

stirring 

120 0.81 26 DMF, DMAc 

16 24 0.81 25 DMF, DMAc 

17 48 1.31 47 DMF, DMAc 

18 72 1.46 49 DMF, DMAc 

19 96 1.79 61 DMF, DMAc 

20 

With 

mechanical 

stirring 

120 2.00 70 Methanol  

* The time scale starts from the addition of PEEK to the sulphonation agent. 
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Figure 6.4: Sulphonation kinetics of PEEK powder, P150, in concentrated sulphuric acid at 

room temperature; effect of stirring. 

 

It was also noted that the concentration of PEEK and its physical form became a significant 

factor to be considered when the reaction was carried out without stirring. 

No effect of molecular weight was observed in the sulphonation reaction as both P150 and 

G450 (melt viscosities 0.135 and 0.468 respectively) have the same rate constant within 

experimental error. 

 

The polymer physical state was noted to have an effect on the IEC and higher IEC values 

were obtained by sulphonating of PEEK powder and film, see Table 6.3. This may be due the 

difference in dissolution time of the polymer in sulphuric acid, since only 2 hours was taken 

to dissolve film or powder and more than 12 hours for the PEEK pellet at the same 

concentration. However, the polymer may be sulphonated to a small localised extent while it 

is dissolving. 
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Table 6.3: The IEC and DS values for sulphonated PEEK, 100 μ film. 

Sample 

No. 

Reaction 

time* (h) 

IEC ± 0.04 

(meq g-1) 

DS ± 5.0 

(%) 

Solubility  

21 24 1.40 46 DMF, DMAc 

22 48 2.20 77 Methanol  

23 72 2.46 87 Hot water 

24 96 2.84 102 Hot water 

 

* The time scale starts from the addition of PEEK to the sulphonation agent. 

 

Increasing the reaction temperature has been reported to increase the IEC and DS 

significantly, and found to be independent of the initial PEEK concentration [189]. Dissolving 

PEEK in methane sulphuric acid, MSA, prior to sulphonation with H2SO4 has been shown to 

produce random SPEEK in the lower DS range (less than 20-30%) [45]. Sulphonation of 

other commercially available PEEK, Gatone from Garda Chemical Limited, has been reported 

to differ from that of Victrex PEEK in terms of the ease of sulphonation and product 

properties such as conductivity and water uptake [46]. 

 

6.4.4 The Effect of Cross Linking on IEC and DS 

Cross linking was used to increase the mechanical strength and decrease the swelling 

properties of the resultant membranes. This has been carried out after sulphonation using 

thermal method [47, 48] and also using suitable cross linking agents such as amines [49], 

halides [50] and alcohols [51]. One of the drawbacks of this method is that conductivity is 

decreased since cross linking occurs through the coupling of sulphonic acid groups.   
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Cross linking the polymer can also be achieved prior to sulphonation. This solvent free 

procedure, however, leads to diffusion limiting the degree of sulphonation. The preparation of 

cross linked PEEK has been reported to occur via imine formation at carbonyl groups [53], 

and by a thermal method [54] but the sulphonation of the resultant polymers has not yet been 

investigated.  

 

Cross linked PEEK was also prepared by irradiation using different radiation sources [55-58], 

and the interest of the following paragraphs is to discuss the effect of the cross links 

introduced by ions irradiation on the sulphonation reaction of PEEK as well as on the final 

degree of sulphonation, DS, achieved.  

 

6.4.4.1 Mass Change Analyses 

Figure 6.5 shows the change in mass of the irradiated film samples on immersing in sulphuric 

acid and sulphonation. There was a loss in mass consistent with the removal of soluble 

polymer but this became less with increasing dose as cross linking developed progressively 

and the polymer became less soluble.  

 

The increase in mass with time is partly due to the increase of the polymer hydrophilicity on 

sulphonation and as a result to increasing amounts of ionically bound water in the polymer 

matrix, which did not evaporate under the drying conditions used in the present study. This 

was consistent with increasing the sulphonation degree of the films.  
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Figure 6.5: Mass changes for PEEK irradiated (a) with proton and (b) with helium ions, and 

sulphonated as indicated. 

 

 

 

6.4.4.2 IEC vs Cross Link Density 

Figure 6.6 shows the IEC of the cross linked films after various sulphonation times. At each 

sulphonation period the degree of sulphonation and the IEC decreased in proportion to the 

cross linking density [57] and increasing irradiation dose. However, the IEC for sample 

irradiated with He2+ ions were found to be higher than those obtained on irradiation with 

protons and in some cases those values were higher than that of the non cross linked samples.  

 

This may be due to the higher probability of end-linking reaction on irradiation with helium, 

which produced hydroxyl group on the aromatic rings which in turn will increase the 

reactivity of the aromatic ring to sulphonation. 
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Figure 6.6: IEC vs cross linking density on sulphonation of irradiated PEEK (a) with protons 

and (b) with helium ions. 

 

 

6.4.4.3 Diffusion Controlled Reaction 

The sulphonation of PEEK has been widely studied and is a somewhat complicated reaction 

but the rate expression generally accepted is [189, 190] 

                            
OHd a

a

CCk
Ck

dt
dC SOH

2

42

2

0

1

)(
×

−
=−                                   (6.6)     

where k1 and kd are the reaction rate constants for sulphonation and de-activation by the 

product and C, and (Co – C) are the concentrations of PEEK, and sulphonated product, 

42SOH
a is the activity of sulphuric acid which is proportional to its concentration, Cs, in the 

system and OHa
2

 is the activity of water which is proportional to its concentration in the 

system.  The second order dependence on acid is attributed to a bimolecular reaction in which 

the sulphonating species is produced.  
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 In a homogeneous solution and in the presence of excess concentrated acid, the quantities of 

sulphuric acid consumed and the water produced are both very small compared with their 

initial amounts, then the factor of OHaa
SOH 242

2  in eq. (6.6) can be treated as a constant and the 

rate equation simplifies to eq. (6.2). 

However, this is not the case in the sulphonation of cross linked PEEK samples if diffusion of 

the sulphuric acid is the rate determining step and the local concentration of sulphonating 

species changes with time, t.  

The reaction conditions adopted for sulphonating the cross linked films are consistent with 

diffusion of the sulphuric acid into the film, for which Fick’s second law is appropriate [202]  

 

                                             2

2

x
C

D
t

C ss

∂
∂

=
∂

∂
                                                       (6.7)    

where C is concentration at distance x from the surface of the film at time t, and D is the 

diffusion coefficient. The boundary conditions for sulphuric acid is 0,sCC =  at the film 

surface, by ignoring film edge effects the cumulated concentration of sulphuric acid in the 

film of thickness l, at time t is tsC ,  

 

                             
20,, 2

l
DtCC sts π

=                                                                               (6.8)      

From eq. (6.6) the sulphonation of PEEK is second order in sulphuric acid and first in PEEK 

repeating unit such that the rate of sulphonation in the presence of diffusion control is,  

                  tC
CCk

Ck
l
D

dt
dC

s
d

.
)(

4 2
0,

0

1
2 −

=−
π

                                    (6.9) 

Since 0,sC  is constant and present in large excess and the equivalent of eq.(6.5) in the 

presence of diffusion is  
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                            (6.10) 

Plots of ( ) ( )∞∞ −−− IECIECIECIEC tt 1ln   against t were linear (with regression coefficient larger 

than 0.975), see Figure 6.7, and the slope, ( )( )01
24 CkklD dπ  is a relative measure of the 

diffusion coefficient, D. This decreased in proportion to the cross linking density and 

increasing irradiation dose. Cross linking limited the degree of swelling of the films and 

decreased the rate of diffusion of sulphuric acid into the films, see Figure 6.8.  
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Figure 6.7: The sulphonation of cross linked PEEK films; kinetic treatments. 

 

Moreover, the ratio of the intercept at zero cross linking density ( 01 Ckk d ) to values at other 

degree of cross linking is a measure of ( 24 lD π ) from which D was evaluated and its 

dependence on cross link density is shown in Figure 6.9. 
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Figure 6.8: Diffusion controlled sulphonation of cross linked PEEK films; plot of slopes 

determined from eq. (6.10) as a function of cross linking density. 
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Figure 6.9: Relative diffusion coefficient of sulphuric acid into cross linked PEEK film as a 

function of cross link density. 
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6.5 Conclusions 

The sulphonation of PEEK in concentrated sulphuric acid at room temperature was studied. 

The kinetics treatment indicated that both stirring and drying period play a role in determining 

the sulphonation degree. The sulphonation of cross linked membranes was also achieved by 

the use of concentrated sulphuric acid and this was confirmed by FTIR spectroscopy. The IEC 

of the cross linked membrane was shown to be dependent on the cross linking density and 

decreased with increasing irradiation dose.  

 

The end groups such as hydroxyl introduced by irradiation increases the final ion exchange 

capacity of the cross linked membrane compared with the original materials. This effect was 

more pronounced in the case of the films irradiated with helium ions, confirming their higher 

efficiency in producing cross and end linking compared to proton ions.  

 

The kinetics treatment using Fick’s second law [202] was found to be a good model to 

describe the diffusion controlled feature of the sulphonation reaction of cross linked PEEK 

films. This model predicts a similar decrease in diffusion coefficient with increasing cross 

link density but this decrease was dependent on the irradiation ions used.  
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Chapter 7                                                   

Water Uptake, State of the Water and 

Thermoporometry of Cross Linked PEM 

 

 

 

 

 

7.1 Introduction 

The main properties of the fuel cell membrane is to promote protonic conductivity and water 

transport, inhibit gas permeation as well as maintaining physical properties such as 

mechanical strength and dimensional stability. All of these properties are strongly dependent 

on the total water content as well as on the different types of water present in the membrane 

[2, 203].  

 

7.2 The Effect of Water Uptake on PEM Properties 

Water uptake itself strongly depends on the state of water used to equilibrate the membrane. It 

has been reported that a Nafion membrane has roughly a λ  value (e.g., the number of water 

molecules per sulphonic acid group) of about 22 and 14 when equilibrated with liquid water 

and water vapour, respectively [204]. Moreover, water uptake from the liquid phase is 

dependent on the membranes pre-treatment in particular the drying temperature. It has been 

reported that water uptake after the Nafion membrane had been completely dried out at 105°C 
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is significantly smaller than if the membrane had been dried out at room temperature; λ  = 12 

to 16 depending on the temperature of rehydration for the membrane previously dried out at 

105°C compared with λ  = 22. It is also independent of the temperature of rehydration for the 

membrane previously dried at room temperature [205].  This was explained as due to changes 

in morphology occurring in the polymer at elevated temperatures [2].  

 

7.2.1 Proton Conductivity 

The protonic conductivity of Nafion membranes has been shown to be a strong function of 

water content and temperature. For a fully hydrated membrane, =λ 22, the protonic 

conductivity is about 0.1 S cm-1 at room temperature, and at =λ 14 (membrane equilibrated 

with water vapour) about 0.06 S cm-1. Protonic conductivity dramatically increases with 

temperature and at 80 ºC reached a maximum of 0.18 S cm-1 for a membrane immersed in 

water [205]. 

 

The mechanism of proton conduction in Nafion has been extensively studied, and is reported 

to occur by a combination of proton hopping (the Grotthuss mechanism) and vehicular 

diffusion [206, 207]. It has been suggested that the Grotthuss mechanism is preferred in media 

which supports strong hydrogen bonding, e.g., in the centre of a water-swollen pore, while the 

vehicle mechanism is characteristic of species with weaker bonding. Consequently, the 

Grotthuss-type mechanism progressively gives way to vehicular diffusion with increasing 

temperature [208]. 

Moreover, the protonated clusters H3O+, H5O2
+, and H9O4

+ are considered mobile but short-

lived, as shown by Kreuer [207] who estimated that hydrogen bond breaking and forming 

occurs at a rate of 1011 s-1. As this rate decreases with increasing temperature, transport by the 

Grotthus mechanism is also believed to decrease. In addition, the Grotthus mechanism has 
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been shown to enhance proton transport because the transport of alkali metal cations through 

perfluorinated membranes, where the mechanism is absent, is much lower [209, 210] . 

 

7.2.2 Mechanical Properties 

On the other hand, excessive water uptake in a PEM leads to unacceptable mechanical 

properties, which could lead to weakness or dimensional mismatch when incorporated into a 

membrane electrode assembly, MEA [211-213]. The dimensional changes have been reported 

to be of the order of magnitude of 10% for Nafion membranes equilibrated under different 

conditions, e.g., 50% relative humidity, water at 23 oC and boiled in water at 100 oC, see 

Table 2.1 [2]. The mechanical strength of PEMs has also been related to their water uptake 

and swelling such that the hydration number, λ , after 1 h of full immersion in distilled water 

has been reported to be inversely proportional to the elastic modulus for various polymers of 

the S-PEEK family [213]. 

 

7.2.3 Water Transport 

Water is carried into the fuel cell via the humidified gas streams entering gas diffusion 

electrodes. An additional source of water is the oxygen reduction reaction occurring at the 

cathode. The rate of water generation (in mole s-1cm-2) is [2]: 

F
iN genOH 2,2

=                                                                                 (7.1) 

where i  is current density (A cm-2), and F is Faraday's constant. 

Water in the membrane is transported in two main ways: electro-osmotic drag of water by 

protons transported from anode to cathode and diffusion via concentration gradients that build 

up. The existence of concentration gradients across the membrane is visualized when one 
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considers that electro-osmotic drag and water production by the oxygen reduction reaction 

both tend to create an excess of water near the cathode. Back-diffusion of water from cathode 

to anode tends to oppose the build-up of water and normalise the water concentration profile 

across the membrane [2, 204]. 

The flux of water due to electro-osmotic drag (in mole s-1cm-2) is [2]: 

( )
F
iN dragOH λξ=,2

                                                                            (7.2) 

where ξ is the electro-osmotic drag coefficient. It is defined as the number of water molecules 

per proton and it is a function of membrane hydration λ .  

Water generation and electro-osmotic drag creates a large concentration gradient across the 

membrane and because of this gradient, some water diffuses back from the cathode to the 

anode. The rate of water diffusion (in mole s-1cm-2) is [2]: 

( )
z
cDN diffOH Δ

Δ
= λ,2

                                                                            (7.3) 

 

where D is the water diffusion coefficient in an ionomer having a water content of λ  and 

zc ΔΔ is a water concentration gradient along the z-direction (through the membrane).  

In addition to diffusion, due to the concentration gradient, water may be hydraulically pushed 

from one side of the membrane to the other if there is a pressure difference between the 

cathode and the anode. The rate of hydraulic permeation (in mole s-1cm-2) is [2]: 

( )
z
PkN hydhydOH Δ

Δ
= λ,2

                                                                      (7.4) 

where hydk  is the hydraulic permeability coefficient of the membrane of water content λ , and 

zP ΔΔ  is a pressure gradient along the z-direction (through the membrane). 

For a thin membrane, water back diffusion may be sufficient to counteract the anode-drying 

effect due to the electro-osmotic drag. However, for a thicker membrane, drying may occur on 



  

 176

the anode side. Buchi and Scherer [214]  created thick membranes by combining several 

layers of Nafion membranes and found  that the membrane resistance is independent of 

current density for the membranes up to 120 mμ , but it does increase for thicker membranes. 

The resistance of each layer was measured and only the layer next to the anode exhibited 

resistance increase with current density. This indicated that drying due to electro-osmotic drag 

occurred close to the anode, because back diffusion was not sufficient to counteract the 

electro-osmotic drag [2]. 

 

7.2.4 Gas Permeation 

One requirement which a PEM should meet is to be impermeable to reactant species, in order 

to prevent their mixing before they have had a chance to participate in the electrochemical 

reaction. However, because of the porous structure of the membrane, its water content and the 

solubility of hydrogen and oxygen in water, some gas does permeate through the membrane. 

Permeability, mP , is defined as the product of diffusivity, D , expressed in cm2 s-1 and 

solubility, S , expressed in mole cm-3 Pa-1, e.g., 

SDPm ×=                                                                                   (7.5) 

It has been reported that permeability of both hydrogen and oxygen through wet Nafion is an 

order of magnitude higher than that through dry Nafion. It was also observed that the 

permeation through the wet membrane was lower than permeation through water, and 

permeation through dry Nafion was lower than permeation through Teflon [2]. 

 

7.3 Understanding the Effect of Water on PEM Properties 

The transport properties and the swelling behaviour of Nafion and different sulphonated poly 

ether ketones have been related to differences in the microstructures and the acidicity of the 
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sulphonic groups, see Figure 7.1. The less pronounced hydrophobic/hydrophilic separation of 

sulphonated poly ether ketones compared to Nafion results in narrower, less connected 

hydrophilic channels and larger separations between less acidic sulphonic acid functional 

groups. At high water contents, this is shown to reduce significantly the electro-osmotic drag 

and water permeation whilst maintaining high proton conductivity [215].  

 

The state of water in a PEM has been reported to have more effect than the bulk water content 

on the electrochemical properties of a membrane [203]. The state of water in a PEM has been 

classified into three types:  the first is non-freezing water, e.g., water that is strongly bound to 

the polymer chain and has a role in effective glass transition plasticization; the second is the 

freezable loosely bound water, e.g., water that is weakly bound to the polymer chain or 

interacts weakly with non-freezing water and displays a relatively broad melting point; the 

third is free water, e.g., water that is not intimately bound to the polymer chain and behaves 

like bulk water. It exhibits a sharp melting point at 0 °C [203, 216-218]. 

 

Using the state of water rather than the total water uptake makes the correlation between 

water content and other electrochemical and physical PEM properties more interpretable. It 

also helps to compare the properties of different membranes. It has been reported that the 

bound water leads to a depression of the glass transition temperature of the PEM. This 

depression affects the temperature of visco-elastic induced morphological relaxation and as an 

indirect result influences the proton conductivity and reduces the upper limit temperature of 

use for the PEMFCs. A larger amount of bound water leads to a lower electro-osmotic 

coefficient indicating that the concentration of loosely bound and free water plays a more 

important role in transport across the membrane than merely the total water uptake. Moreover, 

It has been suggested that an important reason for the higher methanol permeability for 
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Nafion is its higher fraction of freezable water compared to that of poly(arylene ether)-based 

copolymers [203]. 

 

 

Figure 7.1: Schematic representation of the microstructures of Nafion and a sulphonated 

PEEKK (After Kreuer [215]). 

 

 

7.4 Results and Discussions 

7.4.1 Membranes Casting  

Dimethylformamide (DMF, b.p. 153 oC), dimethylacetamide (DMAc, b.p. 165 oC) and N- 

methyl-2-pyrrolidone (NMP, b.p. 202 oC) were used as solvents from which the sulphonated 

aromatic polymers were cast into PEM.  



  

 179

It has been demonstrated that DMF enters into strong hydrogen bonding with sulphonic acid 

groups of SPEEK, reducing the number of protons available for charge transfer, and 

dramatically reducing the PEM conductivity, see Scheme 7.1 (a). It has also been shown that 

both DMF and DMAc solvents may react with residual sulphuric acid during drying, resulting 

in the formation of dimethylaminium sulphate and the corresponding carboxylic acid, see 

Scheme 7.1 (b). The immediate result of this interaction is a decrease in conductivity due to 

the decrease in sulphonic acid concentration [219, 220]. NMP was reported to be the least 

susceptible solvent to adverse interactions but it is more difficult to get rid of NMP residues 

as it has the highest boiling point. 

 

All of the limitations associated with solvent casting were eliminated by the one step film 

preparation of membranes. The cross linked PEEK films did not dissolve and were not 

deformed while being sulphonated in sulphuric acid, so that the PEM was directly prepared 

by sulphonation, without using the membrane casting process. 
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Scheme 7.1: A possible configuration of H-bonding between –SO3H groups of SPEEK and 

DMF molecules (a) and reaction of DMF or DMAc transformation in presence of sulphuric 

acid (b) [219, 220]. 
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7.4.2 Irradiation Cost Consideration 

The cost of a 100 mμ  thick PEEK film bought from Goodfellow Ltd., [221] was £ 251.0  for 

0.6×2.0 m.  Based on the most recent ion irradiation experiments, which were carried out on 

an area of 32×32 mm2 using 12 MeV proton beam of current of 500 nA and a 30 MeV helium 

ion beam of current of 200 nA, it took approximately 90 minutes to achieve a cross linking 

density of 0.14 in the first PEEK layer. As 4-10 layers were irradiated and all of them could 

be used to prepare PEM so the cost of irradiation was about £ 300 divided by the total 

irradiated area, e.g., 40.9 and 102.3 cm2 for irradiation with helium and proton respectively.  

This gave proton irradiation cost of 2.9 £ cm-2 compared to 7.3£ cm-2 for helium irradiation. 

The cost of helium irradiation was considerably higher due to the shorter projected range and 

only four films could be irradiated at one time.  

 

It must be noted that using thinner membranes is desirable for fuel cells application and this 

would reduce the cost of irradiation. For example starting with PEEK film of 20 mμ  would 

result in irradiation cost of about 0.5 and 1.3£ cm-2 for irradiation with proton and helium ions 

respectively.   

 

Further reduction of the cost could be achieved by increasing the energy of the incident beam, 

which should lead to an increase in the ion projected range, see Figure 7.2 and as a result 

increasing the total irradiated area. It should also be mentioned that increasing the radiation 

energy would result in a reduction in the LET effect, see Figure 7.2 and as consequence, the 

cross link density would be lowered. However, the later case was not covered in this study 

and it needs to be investigated in detail for an accurate estimation of the irradiation and final 

membrane cost.  
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Figure 7.2: LET effect and penetration depth of (a) protons and (b) helium ions in amorphous 

PEEK, calculated by TRIM-89. 

 

 

7.4.3 Alternative Approach to Preparing Cross Linked Sulphonated PEEK 

It is well known that an alcohol can be formed by the reduction of a ketone. Many different 

reducing agents have been used, such as LiAlH4 and NaBH4, to do this. Sodium borohydride 

NaBH4 is much less reactive than LiAlH4 and due to its excellent solubility in water and 

methanol the later was used as a solvent for the reduction [175-178]. In general sodium 

borohydride (NaBH4) is an excellent reagent for the reduction of ketones or aldehydes in the 

presence of esters, hydroxyl groups α to the carbonyl, a carbohydrate residue or a halogens in 

the α position.  Aryl ketones or aldehydes are also easily reduced and the yields are 

commonly greater than 80% [175]. The possibility of cross linking sulphonated PEEK by 

forming ether cross links between the polymer chains was investigated by the reduction of the 

carbonyl groups followed by elimination of water, see Scheme 7.2. 
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Scheme 7.2: Suggested chemical reaction for cross link formation in SPEEK. 
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To investigate the possibility of using this reaction scheme, different ratios of reducing agent 

were added to the methanol solutions of SPEEK samples having =IEC 2.53 meq g-1. The 

solid product was characterized by FTIR spectroscopy and its spectrum is shown in Figure 

7.3.  

 

It was observed that the intensity of the carbonyl group at 1640 cm-1 reduced from 40% to 

20% of the aromatic CC =  band at 1600 cm-1 taken as a reference, using a ratio of 

SPEEK:NaBH4 1:1. No absorbance was observed using a ratio of 1:5. However, the FTIR 

spectra indicated that other structural changes had taken place. The intensities of most of the 

absorption bands had increased on the reaction, which was interpreted as due to decrease in 

the reference peak, which in turn was indicative of reduction of the aromatic CC = . In 

addition, the peak at 920 cm-1 which was assigned to the diphenyl ether band, 

e.g., PhOPh −− , decreased on  reduction and disappeared at a ratio of 1:5.  
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Figure 7.3: FTIR spectra of SPEEK samples before and after chemical modification. 
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Other experiments were carried out using SPEEK with =IEC 2.2 meq g-1. A film was cast 

from DMAc and after the solvent had been evaporated at room temperature in a fume 

cupboard, it was washed with distilled water and finally dried in a vacuum oven at 160oC for 

24 h. The film was washed with distilled water and immersed in NaOH for 24 h prior to the 

addition of a 10% solution of the reducing agent. The reaction was stopped after 2 h by 

washing the film in distilled water and immersing in a solution 0.5 M sulphuric acid for 24 h. 

Finally the film was left to dry at room temperature. A red coloured film was obtained. 

 

Changes in the FTIR spectrum were detected only on drying at 120 oC, see Figure 7.4. These 

included a decrease in intensity of the two 2SO− bands between 1000-1100 cm-1, the 

appearance of a new band at 1350 cm-1 and the shift of the carbonyl band from 1640 to 1655 

cm-1. The reduction in intensity was assigned as due to the thermal condensation of the 

sulphonic acid groups of SPEEK [47], as shown in Scheme 7.3. 
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Figure 7.4: Chemical modification of SPEEK as characterized by FTIR spectroscopy. 
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Scheme 7.3: Cross linking of SPEEK by heating at 120°C under vacuum [47]. 

 

 

Similarly, a reduction in intensity of the two 2SO−  bands between 1000-1100 cm-1 was 

observed when treating the SPEEK powder at 120 oC, see Figure 7.5 (a). On the other hand, 

many attempts to cross link SPEEK film casted from DMF or DMAc by thermal treatments at 

120, 130 and 160 oC in a vacuum failed and the FTIR spectroscopy did not show any 

evidence of cross linking, see Figure 7.5 (b).  Mikhailenko and co-workers [51] reported no 

cross linking occurred on thermal treatment in the temperature range 120-150 oC  in spite of 

Yen and co-workers [47] having already patented the formation of cross linking at 120 oC.   

 

It was concluded that the reducing agent (at low concentration) may have destroyed the bond 

between the solvent and SPEEK and enabled thermal condensation reaction to proceed. On 

the other hand, using high ratios of the reducing agent:SPEEK may have resulted in the 

reduction of other bonds such as  the aromatic rings which was undesirable and further 

investigation of the effect of such reaction on the molecular structure of SPEEK is required to 

elucidate these effects. 
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Figure 7.5: FT-IR spectra of SPEEK powder treated at 120 oC in air (a) and SPEEK 

membrane from DMAc after thermal treatment at 160 oC (b). 

 

7.4.4 Characterization of the Cross Linked Membranes 

7.4.4.1 Water Uptake Analysis 

Figure 7.6 (a) shows typical kinetics of water uptake by cross linked sulphonated PEEK with 

different IEC at 22 oC. The water uptake was expressed as λ , the number of water molecules 

per sulphonic acid group present per monomer unit and was normalized with respect to the 

thickness of the membranes in order to compare the data [222]. It was observed that λ  

increased rapidly with time and reached a stable value which was observed to increase on 

increasing the IEC of the membranes. Figure 7.6 (b) shows the water uptake results obtained 

at 50 oC for membranes having similar IEC values of 1.84±0.04 meq g-1 but the cross linking 

density varied in the range 0.13 to 0.23.  Cross link density acted in the opposite sense, and a 

significant decrease in the equilibrium water uptake was observed with increasing the cross 

link density at a constant IEC. 
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Figure 7.6: Water uptake kinetics of cross linked SPEEK membranes, (a) at 22 oC for a cross 

link density of 0.13 and different IEC values and (b) at 50 oC for IEC of 1.84±0.04 and 

different cross link densities. 

 

Figures 7.7 (a) and (b) show the water uptake results at three different temperatures for 

membranes having similar IEC but different cross link densities. As can be seen, a significant 

improvement of the water uptake occurred on increasing the cross link density. It was 

interesting that all cross linked membranes did not dissolve even at higher water uptake. In 

comparison the un-cross linked PEMs broken up or dissolved with increasing temperature. 

The effect of cross linking was more apparent at higher temperature and with increasing cross 

link density from 0.13 to 0.23, the hydration number decreased from 150 to 50.  

 

In conclusion, water sorption increased with increasing IEC and decreasing cross link density, 

but the later had less effect on the swelling by water. In comparison, the water uptake of 

SPEEK membranes equilibrated at room temperature over night have been reported to range 

from λ = 5 to 20 with increasing the IEC with a loss of their mechanical integrity. It reaches 

indeterminably large values with increasing temperature and equilibration time [223].  
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Figure 7.7: Water uptake kinetics by cross linked SPEEK membrane at different 

temperatures.  Cross link densities were 0.23 and 0.13 for (a) and (b) respectively, the IEC 

values were similar at 1.84±0.04 meq g-1. 

 

7.4.4.1.1 Water Diffusion Coefficient 

Chemical diffusion coefficients, D, of water in the cross linked polymer membranes were 

measured from the water sorption kinetics using an approximate solution of Fick’s second law 

in which the chemical diffusion coefficient, D, is expressed by the following equation [202], 

 

( )
( )

⎥
⎦

⎤
⎢
⎣

⎡ +−
×

+
−= ∑

∞=

=∞
2

22

0
22 4

12exp
12

181
l

tnD
nM

M n

n

t π
π

                                          (7.6) 

where l  is the thickness of the polymer film. For the earlier stages of water uptake eq. (7.6) 

simplifies to [213, 222], 
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The water diffusion coefficients were calculated from the initial slope, s, of the plots of   

∞MM t  versus t , using the relation, 

( )2

16
slD π

=                                                                    (7.8) 

 

The results of the previous analysis are reported in Figures 7.8 (a) and 7.9 (a) as a function of 

the ion exchange capacity and cross link density. As can be seen, the diffusion coefficient 

increased with increasing IEC values due to the increasing hydrophilicity of the membranes 

which in turn facilitates the water transport throughout the PEM.  

 

In addition, cross link density had little effect on the diffusion of water due to the fact that 

water transports through the hydrophilic region of the membranes and this is controlled by the 

IEC.  

 

Moreover, the diffusion coefficients increased with increasing temperature indicating a 

thermally activated process. The activation energy, ΔΕ , was calculated from an Arrhenius 

relationship between the diffusion coefficient, D, and temperature, T, such that, 

⎟
⎠
⎞

⎜
⎝
⎛ Δ−

=
RT

EDD o exp                                                   (7.9) 

where ΔΕ   is the activation energy of diffusion, R the ideal gas constant and Do is the pre-

exponential factor which is proportional to the number of molecules diffusing. 

 

The results are plotted in Figures 7.8(b) and 7.9(b) as a function of IEC and Xc and were 

consistent with the values of the diffusion coefficients such that higher activation energies 

were observed for membranes with lower diffusion coefficient. 
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Figure 7.8: A plot of (a) the chemical diffusion coefficient at different temperatures and (b) 

the corresponding activation energy as a function of the ion exchange capacity for membranes 

having different cross link density as indicated. 
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Figure 7.9 : A plot of (a) the chemical diffusion coefficient and (b) the corresponding 

activation energy as a function of the cross link density for membranes having similar IEC 

value of 1.2 meq g-1. 
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It was concluded that cross linking did not alter the transport of water in the membranes but it 

did decrease the total water uptake. This was understood by the fact that cross links were 

formed before the sulphonation process and the formation of hydrophilic region in the 

membranes taking place. The cross linking process may have resulted in different 

distributions of different sizes of the channels through the membranes along which the water 

transports. 

7.4.4.1.2 Detailed Effect of Cross Linking and IEC on Water Uptake 

More detailed analysis of the water content in the cross linked PEM were carried out by 

considering the effect of water volume fraction, Xv, which is defined by the following 

equation [224, 225]: 

membranewet

water
v V

V
X =                                                                 (7.10) 

It is related to the number of water molecules absorbed per HSO3− group, λ , by the equation: 

( ) λ
λ

+
=

WM
v VV

X                                                               (7.11) 

where 
o

M
EWV
ρ

≈  in which wMnEW .=  is the equivalent weight in g mole-1 (taken as 368 for 

all cross linked samples assuming that only the repeat units with no cross link in it is 

sulphonated). oρ is the density of dry PEM in g cm-3 and 13.0.18 −= molecmV W  

 

It is also of interest to estimate the acid concentration, [ ]HSO3 , in the PEM at different water 

content.  [ ]HSO3  was determined from the following equation [218, 224, 225]: 
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All data were measured after sufficient times to allow the PEMs to reach an equilibrium 

amount of water. Test times were varied from 400 to 900 hrs depending on the temperature of 

measurements. Figure 7.10 (a) shows the dependence of λ on Xv from which it was observed 

that λ values did not change significantly (20-40) over a narrow range of Xv from 0.5 to 0.7 at 

the three temperatures studied. It was also evident that higher values of both λ and Xv were 

achieved at higher temperatures. 

 

Figure 7.10: The hydration number, λ, as a function of Xv (a) and the estimated acid 

concentration Vs. Xv (b) for different cross linked sulphonated PEEK samples. 

 

The dependence of acid concentration, [ ]HSO3 , on the volume fraction, Xv, is shown in Figure 

7.10 (b). [ ]HSO3  achieved a maximum at Xv=0.45 and then decreased progressively with 

increasing Xv. Similar conclusions were made by examining the relationship between [ ]HSO3  

vs. λ, see Figure 7.11.  The high water content of the cross linked membranes may be due to 

their more porous structure. It was interesting that the cross linked membranes were able to 
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hold high water contents without completely losing mechanical integrity, and the sample 

returned to its original dimensions upon drying. This was attributed to the presence of cross 

links distributed through out the membranes. 
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Figure 7.11: The estimated acid concentration vs. hydration number. 

 
 
To a first approximation, [ ]HSO3  would be expected to increase with higher IECs, since this 

implies that there are a greater number of sulphonic acid groups present. However, as can be 

seen in Figure 7.12 (a), [ ]HSO3  actually decreases due to a disproportionate increase in water 

content with increasing IEC.  The decrease was more apparent in a plot of [ ]HSO3  against the 

normalized IEC, e.g., the ratio IEC/Xc, see Figure 7.12 (b).  Although higher water contents 

enable greater dissociation of protons, and hence higher proton mobility, a significant increase 

in water content results in a dilution of the available sulphonic acid groups and thus a 

decrease in the observed values of [ ]HSO3 . In other words, the water content must achieve a 

level at which proton dissociation is high enough for good mobility, yet there must not be too 

much water because this leads to dilution of the available acid sites [225]. 
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Figure 7.12:  Detailed water uptake analysis; the dependence of [ ]HSO3  (a) and (b), λ  (c) 

and (d) and vX  (e) and (f) on the IEC and the normalised IEC/Xc.. 
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Due to the hydrophilic nature of the HSO3− group, IEC can have a strong influence on the 

equilibrium water content; on both λ and XV. The examination of such influence is presented 

in Figure 7.12 (c) and (e) and as can be seen there was a trend in which both λ and XV 

increased with increasing IEC. It was also observed that at low cross link density the data was 

widely scattered and did not show any simple dependence of λ , XV or [ ]HSO3  on the 

normalised IEC/Xc. This may be due to the fact that crystallisation at low cross link density 

was sufficient to act as physical cross linking (crystalline regions do not absorb water) which 

caused the deviation presented in Figures 7.12 (b), (d) and (f). 

 

7.4.4.1.3 State of Water in Cross Linked Membranes 

DSC has been used for the quantitative determination of the amounts of freezing and non- 

freezing water present in membranes [203, 216-218].  Figures 7.13 (a) and (b) show the DSC 

profiles for hydrated to equilibrium cross linked SPEEK samples, while Table 7.1 summarizes 

the properties of these membranes.  

 

Figure 7.13: The heating (a) and cooling (b) DSC responses for hydrated membranes as listed 

in Table 7.1. 
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It is evident from Figure 7.13 and Table 7.1 that both cross link density and IEC have an 

effect on the state that water exists in the membranes. The water uptake decreased with 

increasing cross link density and increased with increasing IEC. Although the values were 

very high, the membranes did not break or dissolve unlike the un-cross linked SPEEK which 

gels and looses its shape or completely dissolved at such values of water uptake. These high 

values of water uptake were explained by the fact that the sulphonation reaction occurs at 

sulphonation tracks, through which the sulphuric acid can penetrate into the cross linked 

PEEK films. Therefore, a more distinct phase separation structure is possible to occur in the 

membranes, leading to the easy formation of water clusters in the membranes [58]. 

 

Table 7.1: Water absorption characteristics. 

Curve ID IEC±0.04 

(meq g-1) 

Cross link 

density, Xc 

(±0.005) 

(%) 

Water uptake(a) 

 (±5) 

(%) 

Freezable 

water 

λ 

(±2) 

1 1.18 0.113 40 8 18 

2 1.72 0.133 300 240 100 

3 1.86 0.133 670 540 200 

4 1.73 0.186 110 50 35 

5 1.63 0.229 100 45 36 

6 1.60 0.114 350 330 122 

Nafion-112 0.90 - 35 30 21 

Nafion-1135(b) 0.90 - 35 30 20 

Nafion-117(c) 0.97 - 35 30 20 

 

(a) water uptake at 50 oC before DSC measurements (b) see Ref. [203] (c) see Ref. [218]. 
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Figure 7.14 shows the dependence of both freezable and total water content expressed as λ on 

the IEC and cross link density.  As can be seen, increasing the cross link density resulted in a 

decrease in free water, which was zero below cXIEC /  = 9, while increasing the IEC gave 

rise to more free water. This was consistent with reducing methanol permeability and electro-

osmotic drag as well as improving mechanical stability as discussed in the introduction [203]. 
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Figure 7.14: Freezable and equilibrium water uptake dependence on the IEC and cross link 

density. 

  

7.4.4.1.4 Thermoporometry of Cross Linked Membranes 

Thermoporometry is a widely used calorimetric method that measures pore size based on the 

melting or solidification point depression of a liquid, usually water, confined in a pore. The 

determination of the pore size distribution from the DSC thermogram depends on a number of 
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reasonable assumptions. These include that water present in the capillaries are considered to 

be freezable or non-freezable; the later water is formed from monolayers that lies along the 

inner pore surface. The analysis is also based on the assumption that the pores are fully 

saturated with liquid water [226-230]. 

 

According to Brun et al [226] the pore radius, pR   and differential pore volume, PdRdV  can 

be calculated from the DSC thermogram by observing the melting point depression, TΔ , and 

changes in heat flow, q (W g-1), such that, 

T
BARP Δ

−=                                                                    (7.13) 

( )
( )TH

qTk
dR
dV

aP Δ
Δ

=
2

                                                               (7.14) 

for CT o400 −>Δ>  

 

where k is a ‘calibration constant’ given by BdtdTk ρ)(1=  with dtdT  the heating or 

cooling rate, and ρ the density (taken to be as 1.000 g cm-3) [227]. The apparent heat of 

fusion, ( )TH aΔ , is temperature dependent and can be described by the formula [228-230] 

 

( ) ( ) fa HTDTCTH Δ+Δ+Δ=Δ 2                                        (7.15) 

 
where fHΔ  is the heat of fusion of the penetrant water under normal conditions (332 J g-1 for 

water). The numerical values of the constants A to D depend on the measurement conditions 

(heating or cooling), pore geometry and penetrant. In this study water was used as the 

penetrating liquid and a cylindrical pore shape was assumed for which Brun et al.[226] have 

reported the values shown in Table 7.2. 
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Table 7.2: Numerical values for constants in Eqs. (7.13) and (7.15)( after Brun et al[226]). 

Constant A (nm) B (nm K) C(J g-1K-1) D(J g-1K-1) 

Heating in cylindrical pores 0.68 32.33 11.39 0.0550 

Cooling  in cylindrical pores 0.57 64.67 7.43 0.0556 

 

 

Figure 7.15 (a) shows the DSC profiles of some water equilibrated cross linked membranes 

heated at 5.0 K min-1. The curve A represents a membrane with a small pore sizes, and water 

inside the pores and free water outside the membrane give separate peaks from which the pore 

size distribution could be calculated.  In curves B and C, the data was fitted to separate the 

two components of the melting peak as shown in Figure 7.15 (b). A membrane having a broad 

pore size distribution exhibits thermogram D and water inside the pores could not be 

separated from that of free water.  

 

 

Figure 7.15:  (a) Different melting DSC thermogram used to calculate pore size and (b) 

Fitting procedure showing two melting peaks corresponding to water in the pores and bulk 

water. 
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Only the melting process was used in the pore size analysis in this study; the pores 

corresponding to the maximum of the distribution curves )( PP RfdRdV =  were considered 

as the average pore size present in the sample. Thermoporometry has been applied 

successfully for characterising the porosity in carbon/polymers composite electrodes [231], 

composite PEMs [232, 233] and it was applied to study the porosity in cross linked 

sulphonated PEEK membrane. 

 

Figure 7.16 shows the pore size distribution determined for some of the cross linked 

membranes examined in this study. As can be seen the average pore sizes were very similar at 

7±1 nm over a wide range of IEC values and cross link densities. However, the distribution 

broadened at the highest IEC values and the lowest cross link density, indicating that more 

than one distribution might be present in these membranes. This was confirmed in Figure 

7.17, in which thermoporometry experiments showed evidence of the presence of two pore 

distributions as well as an important decrease in pore size with increasing cross link density. 

The full results of this analysis are shown in Table 7.3 along with the water content of the 

membranes before the DSC measurements were carried out.  

 

It was concluded that both cross link density and the IEC had an effect on the pore size in the 

cross linked membranes, but the IEC had a more marked effect. This was consistent with the 

previous conclusion made by analysing the water uptake kinetics. Moreover, the presence of a 

nano-structure in the cross linked membranes was confirmed and the sizes of pore present 

were comparable to those reported in Nafion using NMR cryoporometry [234], e.g, 1-3 nm. 
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Figure 7.16: Pore size distribution curves for different cross linked sulphonated PEEK 

membranes, the effect of IEC and cross link density. 
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Figure 7.17: The effect of cross link density on pore size distribution for different cross 

linked sulphonated PEEK membranes. 
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Table 7.3: Properties of cross linked membranes and Thermoporometry analysis. 

IEC±0.04 

(meq g-1) 

Xc 

 

Pore size 

(nm) 

EWC 

(%) 

λ  

(moleH2O/mole HSO3H)

1.18 0.133 26-71 38 18 

1.19 0.161 16-40 37 17 

1.20 0.186 15-63 33 15 

1.64 0.131 7 316 90 

1.72 0.133 6.5 305 89 

1.79 0.130 6-7 180 54 

1.83 0.161 6 232 55 

1.96 0.100 7 205 58 

2.57 0.149 6-12 300 61 

 

 

7.5  Conclusions 

The materials properties of different cross linked SPEEK membranes have been investigated 

focusing on the extent and rate of water uptake and mechanical strength. The advantage of 

cross linking PEEK films by irradiation before sulphonation has been shown to be the one 

step preparation of the PEM and eliminating the drawbacks of using solvents to cast SPEEK 
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into film. On the other hand, this method has been shown to be very costly due to the high 

resistivity of PEEK to ion irradiation. 

 

The chemical reduction of the carbonyl groups has been applied successfully as an alternative 

method of cross linking highly sulphonated PEEK but the structure of the resultant PEM has 

not been studied in detail. At the higher reduction agent ratios used a possible reduction of 

other chemical bond in the molecular structure of SPEEK was observed from analysis by 

FTIR spectroscopy, but by using lower ratios of the reduction agent it was possible to remove 

residual solvents and so allow the condensation reaction by which cross links were formed to 

proceed.   

 

The main reason for cross linking the PEM was to reduce the extent of swelling in the 

presence of solvents and to attain high water content without loosing dimensional stability. 

The IEC values had a greater effect than the cross link density in controlling the water content 

and diffusion of water through the PEM, but cross linking enabled the PEMs to reach very 

high water content without loosing mechanical integrity.  

 

It was concluded from DSC analysis that increasing cross link density resulted in more bound 

water present in the equilibrated membranes and increasing the IEC gave rise to more free 

water. The results indicated that the cross linked membranes have lower methanol 

permeability and electro-osmotic drag as well as improved mechanical stability.  

Both cross link density and the IEC had an effect on the pore size in the cross linked 

membranes, but the IEC had a more marked effect. The presence of a nano-structure in the 

cross linked membranes was confirmed and the sizes of pore present were comparable to 

those reported for Nafion. 
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Chapter 8                                                          

Stability Testing of Cross Linked PEMs and Their 

Performance in a Single PEM Fuel Cell 

 

 

 

 

 

8.1 Stability of Polymer Electrolyte Membrane 

A proper understanding of the mechanism of oxidative degradation in sulphonated PEEK is 

critical in order to improve the stability of the working proton exchange membrane in the fuel 

cell. It has been reported that early failures of the membranes (<1000 h) are usually due to 

oxidative decomposition and loss of structural integrity [235]. Many experimental procedures 

have been developed to assess the stability of PEMs, but thermal and oxidative stabilities 

have been used most frequently.  

Good thermal stability is an important requirement for a PEM, especially when used at 

elevated operating temperatures. As a family, the poly(aryl ether) polymers have good 

thermal stability with decomposition temperatures in excess of 500 oC, and with TG analysis 

exhibiting a single weight loss curve [57]. However, the introduction of sulphonic acid groups 

significantly reduces the thermal stability and multiple weight loss steps are generally 

observed [236]. 

In an active fuel cell, radical species such as •HO  and •HOO  are produced from reactant 

diffusion through the membrane from incomplete oxygen reduction. It is known that oxidative 
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attack by •HO  and •HOO  radicals occur mainly within the hydrophilic domains and results 

in the degradation of the polymer by chain scission. On the other hand, transition metal ions 

such as Fe2+, Ti2+, or Cu2+ released from the bipolar plates accelerate the membrane 

deterioration due to the formation of reactive oxygen radicals such as •HO  and •HOO , see 

Scheme 8.1 reactions (1) and (2). The •HO  radical can then attack an organic substrate or the 

membrane, RH, by H-abstraction, Scheme 8.1 reaction (3). The •R radicals derived from the 

polymer combine with triplet oxygen to produce peroxy radicals and thus initiate a 

degradation cascade. Therefore, the useful lifetime of the fuel cell largely depends on the 

oxidative stability of the membrane [237]. 

 

 

Scheme 8.1: Production of •HO and •HOO  radicals in fuel cell and degradation of 

PEM[237]. 

 

The stability of the polymer electrolyte membrane in hydrogen peroxide (H2O2) solution has 

been used as an important indication of the lifetime of membranes [238-240]. The sulphuric 

groups in the Nafion structure can be cross linked under the influence of hydrogen peroxide 

and the breakdown of hydrogen bonding in the polymer decreases the proton conductivity of 

the membrane. It was also observed that the decomposition behaviour of the PEM by 

Fenton’s reagent (solution containing H2O2 and transition metal ions) was similar to that of 

the PEMs in fuel cells. Thus, both chemical stability and structural stability of the membrane 

are critical for the long-term performance stability of the PEM fuel cells.  
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8.2  Hydrogen Fuel Cell Testing 

The performance of fuel cell is characterised by several experimental protocols, but most 

importantly by its voltage-current density relationship, power density and efficiency. In order 

to understand the significance of each type of performance, the thermodynamics of the fuel 

cell reaction are discussed in the following paragraphs. 

8.2.1  Open Circuit Voltage 

One advantage of hydrogen is that it readily reacts electrochemically with oxygen under mild 

conditions, see Scheme 8.2. At the anode, hydrogen is oxidized liberating two electrons and 

two protons. The protons are conducted from the anode surface through the proton exchange 

membrane and the electrons travel through the external electronic circuit. At the cathode, 

oxygen is reduced, and the overall cell reaction is shown in Scheme 8.2. 

 

 

Scheme 8.2: Electrochemical reactions of a hydrogen fuel cell [2]. 

 

The standard electrochemical potential, oE , for the H2/O2 cell reaction is defined by the 

change in Gibbs free energy, oGΔ , of the cell reaction at unit activity of reactants and 

products by the relation, 

                                                
nF

STH
Fn

GE
ooo

o Δ−Δ
−=

Δ
−=

.
                                              (8.1)                   

where n is 2,  the number of electrons involved in the cell reaction and F is Faraday constant 

(96485 coulombs equivalent-1). 
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The change in Gibbs free energy is dependent on temperature and on the state of reactants and 

product. For the overall reaction in Scheme 8.2 at 25 oC, oGΔ  is -237.3 and -228.1 kJ mole-1 

for liquid and vapour water respectively. Substitution in eq. (8.1) gives oE  values of 1.23 V 

when liquid water is produced and 1.18 V when water vapour is produced. The dependence of 

oGΔ upon temperature is described by the equation, 

TTTTTG o .40.16.1054808.1.0069.0)ln(..933.3203.204 362 +×−++−=Δ −           (8.2) 

with oGΔ  in J mol-1 and T in K and assuming that water vapour is produced. Equations (8.1) 

and (8.2) were used to calculate the theoretical cell voltage under unit activity conditions. 

However, in practice (using air and water vapour pressure) the activities of the reactant and 

products are less than unity.  

The Nernst equation, used to calculate the reversible cell voltage, E , under non-standard 

conditions is, 
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where R is the gas constant (8.314 J mol-1 K-1), P is the partial pressure of H2 and O2. It is 

clear from eq. (8.3) that increasing the pressure, increases the concentration of reactants and 

will increases E . It also increases with temperature [1, 2, 4]. 

8.2.2  Voltage - Current Density Relationship, Polarization Curves 

The current density is defined as the current of the electrochemical system divided by the 

active electrode area of the device. When a load is applied to the cell, non-equilibrium 

conditions are produced due to a net current flow across the cell. The cell voltage then 

becomes smaller as the net reaction rate increases and because of irreversible losses. These 

losses for a given fuel cell arises from its geometry, catalyst/electrode characteristics and 

membrane properties and operating conditions such as concentration, flow rate, pressure, 
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temperature and relative humidity. The losses are defined as kinetic or activation, ohmic and 

mass transfer resistances, see Figure 8.1 [1, 2].  

8.2.2.1  Ohmic Resistance 

Voltage loss due to resistance to ionic current in the electrolyte and electronic current in the 

electrodes is known as the ohmic polarization, ohmη , and is related to the current by the 

equation, 

                                                   ohmohm Ri.=η                                                                (8.4)   

where ohmR  is the ohmic resistance of the cell ( 2.cmΩ ).  

 

Electronic resistance arise from the cell electrodes, gas diffusion layers, current collectors and 

leads as well as contact resistances at junctions between these components. These types of 

resistances are usually much smaller than those associated with the resistance to ion, e.g., H+, 

transport through the electrolyte, PEM, and across the catalyst layer. In practice, many 

techniques have been used to determine the ohmic resistance of the fuel cell, such as, the 

current interrupt method and impedance spectroscopy [1, 2, 4, 81]. 

8.2.2.2  Transport Limitations 

This is also known as concentration polarization, concη , and occurs as a result of consumption 

of reactant at the surface of the electrode that causes a concentration gradient to develop 

between the bulk and the electrode surface.  It is given by, 

                                      ⎟⎟
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limlog
.
.303.2η                                                  (8.5) 

where limi  is the limiting current density (A cm-2) and is defined as the reaction rate at which 

the surface concentration of reactant is zero. Concentration polarization is affected by the 
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concentration and the flow rate of the reactants fed to their respective electrodes, the cell 

temperature and the structure of the gas diffusion and catalyst layers. 

 

The mass-transfer-limiting region of the current-voltage polarization curve is apparent at very 

high current density. In this region, increasing current density results in a depletion of reactant 

immediately adjacent to the electrode. When the current is increased to a point where the 

concentration at the surface falls to zero, a further increase in current is impossible. The 

current density corresponding to zero surface concentration is called the limiting current 

density, limi [1, 2]. 

 

 

Figure 8.1: Voltage-current characteristic of a PEMFC [2]. 
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8.2.2.3  Kinetic Resistance 

This is also known as activation polarization, actη , and is associated with overcoming the 

energy barrier of the electrode reaction. Temperature and other factor such as pressure, 

concentration and electrode properties all alter the activation polarization. Assuming that no 

other over voltage is present, which is the case if the current is small and therefore deviation 

from the equilibrium state is also small, then the following equation for the current-voltage 

relation, can be written, 

                              ⎟⎟
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where oi  is the exchange current density and α is the anodic and cathodic transfer coefficient.  

 

The exchange current density represents the rate at which the forward and backward reaction 

is equal. The transfer coefficient is an experimental parameter determined from the current-

voltage relationship. It is equal to the inverse of the Tafel slope, b, expressed in units of 

FRT303.2 . At low temperature, kinetic resistances dominate the low current density portion 

of the polarization curve of fuel cells, where deviations from equilibrium are relatively small. 

Under these conditions, reactants are plentiful (no mass transfer limitation) and the current 

density is so small that ohmic losses are negligible. The Tafel equation [2] then describes the 

current density-voltage polarization curve in this region, 

                                                aibact −= log.η                                                              (8.7)    

where actη  is voltage loss due to activation polarization (V), a  is kinetic parameter 

proportional to the ( )oilog  (V) and b is the Tafel slope, (V dec-1). Cathode dominated 

activation polarization is observed for PEM fuel cells because the oxygen reduction reaction 

on platinum is sluggish in comparison to the relatively facile hydrogen oxidation reaction. 
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The exchange current density for oxygen is 103 times less than for the hydrogen oxidation on 

platinum. The Tafel equation can be written in terms of the cathodic transfer coefficient cα as, 
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Rearranging gives, 
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or, 
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where b is the Tafel slope in volt decade-1 of current density for the cathodic reaction. The 

Tafel slope is primarily a function of the reaction mechanism, electrode material, structure 

and surface condition, temperature and reaction environment (electrolyte), and can take a 

range of values. For oxygen reduction on Pt, for example, Tafel slope ranges from 0.04 to 

0.12 V dec-1 [1, 2, 241]. 

8.2.2.4  Fuel Crossover and Internal Currents 

Even when no current is drawn from a fuel cell, there is an irreversible voltage loss due to 

parasitic reactions. These produce energy losses due to crossover of fuel and electronic 

conduction, e.g., electronic short through the electrolyte, and oxidation of catalyst and 

electrode materials. The losses due to fuel crossover and electronic short are generally small. 

The combined effects of fuel crossover, internal short and parasitic oxidation, e.g., corrosion 

reactions occurring at the cathode are the source of the difference between the measured open 

circuit cell voltage and the theoretical cell potential [1, 2, 4]. 

The measurement of hydrogen crossover, in particular at open circuit voltage (OCV), at which 

the most severe crossover occurs, is of prime importance for the fundamental understanding 
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of fuel cell degradation and membrane failure. In a fuel cell, hydrogen crossover usually takes 

place from the anode side to the cathode side through the membrane. Hydrogen crossover can 

result in fuel efficiency reduction, cathode potential depression, and progressive peroxide 

radical formation. The hydrogen which crosses over can directly react with oxygen at the 

cathode surface, resulting in a lowering of the cathode potential.  This direct reaction between 

H2 and O2 at the cathode can also produce peroxide radicals, which not only attack the catalyst 

layer but also the membrane, causing significant catalyst-layer and membrane degradation 

[242, 243].  

 

The electrolyte membrane deteriorates during operation of the cell, in particular under low 

humidification [243]. It has also been reported that the degradation is more significant under 

open-circuit conditions, e.g., without net current [244]. That is because the rate of gas 

crossover is the highest under open-circuit conditions as no gases are consumed at the 

electrodes through the electrochemical fuel cell reactions. 

8.2.3  Cell Voltage 

The observed cell voltage at any given current density can be represented as the reversible 

voltage minus the activation, ohmic and concentration losses, such that, 

                             ( ) ( )aconccconcohmaactcactcell EV ,,,, ηηηηη +−−+−=                             (8.11)      

 

For H2/O2 cell with pure hydrogen as the fuel, the anode losses are generally much smaller 

than cathode losses and are frequently neglected. The dominant source of ohmic losses is due 

to the electrolyte membrane, and to ion transport. Further losses also occur at the electrode 

interface due to resistance to proton transport across these layers. Ohmic losses, due to contact 

resistance and electronic resistance within the electrodes and leads, are negligible in a well-
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designed setup. Applying these assumptions and substituting the respective polarization 

relationships leads to a simplified equation that describes the complete cell voltage-current 

density relationship for the H2/O2 PEM fuel cell [1, 2, 4], such that 
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8.2.4  Cell Efficiency 

Fuel cell efficiency can be defined in several ways. Energy efficiency energyη  represents the 

amount of the input energy inputE  which leaves the system, in the case of fuel cell, in the form 

of actually useful energy usefulE . 
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where V, I and t are the voltage (V), current (A) and time (s),  VH2 is the consumed volume of 

hydrogen (m3)  and Hl is the heat produced. For hydrogen, this is 10.8 × 106 J m-3. 

To take account of the energy lost as heat STQ Δ= . , an ideal efficiency idη is defined as the 

ratio of the free energy GΔ and the reaction enthalpy HΔ , such that, 
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SΔ  is the reaction entropy. 

The faraday efficiency of the fuel cell is obtained from the equation: 
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Faraday First Law of Electrolysis relates the magnitude of the current flowing to the 

consumed volume of gas and so: 
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where: R is the universal gas constant, P is the ambient pressure (1.013 ×105 Pa), F is 

Faraday’s constant (96485 C mole-1), T is the ambient temperature (K), I is the current (A), t 

is the time (s), and Z is the number of electrons released in the reaction, Z=2 [2, 74]. 

8.2.5  Power Density 

The power density delivered by a fuel cell is the product of the cell voltage and the current 

density, e.g., power density (W cm-2) Vi.= . Power density is a non-linear function of current 

density and typically reaches a maximum at approximately 66% of the limiting current 

density [1, 4]. 

 

8.3  Results and Discussions 

8.3.1  Thermal Stability 

Figure 8.2 shows TG traces of % mass loss against temperature for both PEEK and SPEEK 

samples. It is evident that PEEK has a much higher thermal stability, significant mass loss for 

PEEK only occurring at about 510oC. This is a result of main chain decomposition of the 

polymer. 
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Figure 8.2: Example of TG (a) and DTG (b) curves for PEEK and SPEEK, 67%. 

 

The introduction of SO3H groups into PEEK decreased the thermal stability substantially, 

mostly due to an acid-catalyzed degradation [236]. Three-step mass loss was observed with 

SPEEK samples; see Table 8.1, up to 200, 200-450 and above 450oC. The mass loss from 60-

200oC in SPEEK is due to the loss of physically and chemically bound water and to the 

unwashed free acid. The observed mass loss in the temperature range 200-450oC may be 

attributed to degradation of sulphonic acid groups and was noted to increase with increasing 

sulphonation degree [46, 181]. Similar to PEEK, breakdown of the polymer backbone takes 

place above 450oC in SPEEK samples.  

 

The thermal degradation mechanism of sulphonated PEEK, SPEEK, with various degrees of 

sulphonation has been studied by pyrolysis-gas chromatography/mass spectrometry, Py-

GC/MS, and thermogravimetry, TG [236]. It has been shown that both SPEEK and PEEK 

have quantitatively similar pyrograms (except for the SO2 peak), but the pyrolyzate 

distribution of SPEEK depends strongly on the sulphonation degrees as well as the pyrolysis 
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temperature. Isothermal and dynamic TG data suggested a kinetic model based on random 

degradation of polymer chains. Two degradation processes were observed for SPEEK and 

were explained as due to degradation of the segments substituted by sulphonic acid groups 

(the first, lower degradation step) and, identical to that of PEEK, to random chain scission and 

transfer reactions (the second step) [236]. 

 

An attempt was made to correlate the mass loss in the region 200-450oC with the degree of 

sulphonation, DS, assuming that it represents the decomposition of –SO3H group only. A 

linear relationship was observed; see Figure 8.3, indicating that an increase in DS leads to an 

increase in mass loss in the region 200-450 oC. 

 

Table 8.1: Results of TG analysis of PEEK and SPEEK samples. 

%Mass loss (± 5.0) 
Sample 

DS ± 5.0 

(%) 60-200 oC 200-450 oC Above 450 oC 

% Char residue 

(± 5.0) 

PEEK 0 0 0 46.6 53 

1 38 7.1 10.8 35.7 47 

2 50 7.5 13.4 29.4 50 

3 59 8.5 14.8 32.1 45 

4 59 7.2 14.7 33.4 45 

5 67 9.1 16.4 30.2 44 

6 68 6.2 14.7 32.2 47 

7 75 7.3 18.6 28.0 46 
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Figure 8.3: Mass loss % due to sulphonic acid as a function of DS, (calculated by titration). 

 
 

In a sample with 100% DS the calculated mass loss due to SO3 volatilization would be 

approximately 22%. However, if one calculates the theoretical mass loss based on the 

experimentally determined values of DS, the observed mass loss is slightly higher.  This may 

be due to loss of phenol along with SO3 group by a random chain scission catalyzed by the 

acid group [236]. 

 

The thermal stability of the cross linked PEEK was discussed in Chapter 3 and Figure 8.4 

shows the TG traces of some cross linked sulphonated PEEK. The TG profiles of the cross 

linked membranes were similar to those of sulphonated PEEK but the char residual was 

observed to be higher and increased with increasing the degree of sulphonation. This could be 

attributed to the fact that no low molecular weight fractions, produced on irradiation as a 

result of chain scission, were present in the membranes after sulphonation reaction. The 
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increase in char with increasing degree of sulphonation must be due to the development of 

stable structures which did not decompose at the temperature range used in the present TG 

experiments. 

 

The decomposition of Nafion membranes also involved three stages, the first one being water 

loss (moisture only) from 50 to 180°C, the second one from 310 to 380°C, due to sulphonic 

groups loss, and the last one from 420 to 590°C, due to the decomposition of the 

perfluorinated matrix [245]. As far as the PEM stability is concerned, it was concluded that 

both cross linked SPEEK and SPEEK samples were thermally stable when compared to 

Nafion within the temperature range for PEMFC application. 
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Figure 8.4: Thermal stability in nitrogen for membranes having the same cross link density of 

0.15 and ion exchange capacity of A = 1.2, B=1.9 and C= 2.4 meq g-1. 
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8.3.2  Oxidative Stability and Chemical Resistance 

In this study the oxidative stability of the membranes was estimated at room temperature by 

measuring the time taken for the membranes to breakdown or dissolve in Fenton reagent 

(30% H2O2 and 15 ppm FeSO4). It was observed that the stability of the membranes, in 

general, decreased with increasing IEC, but the cross linked membranes showed higher 

oxidative stability and this in turn was less dependent on the IEC content, compared to 

SPEEK having similar IEC. SPEEK membranes, having IEC in the range 0.8 to 2.4 meq g-1, 

were observed to dissolve completely in Fenton reagent after 12 to 48 h. On the other hand, 

the breakdown of the cross linked sulphonated PEEK membranes having higher ratios of 

cXIEC / occurred only after 72 h of treatment. Complete dissolution was not observed even 

after a one week test. This was attributed to the presence of an oxidative stable structure in the 

membranes produced by the cross linking process. Nafion membranes as well as other cross 

linked membranes, e.g., chemically cross linked sulphonated PEEK and irradiated membranes 

with lower ratio of cXIEC /  showed the highest oxidative stability and did not breakdown in 

the time scale of the experiment (one week).  

 

While sulphonated PEEK dissolved in many aprotic polar solvents such as DMAc and DMF, 

the cross linked membranes were found to be insoluble in all organic solvents and to have 

very good chemical resistance. However, the test in methanol showed that only membranes 

with low IEC did not break down with increasing exposure time. It was observed that most of 

the irradiated membranes having IEC ≥ 2.0 meq g-1 absorbed up to 50% of their original 

weight during the first two hour of immersing in methanol and more than 100% after 20 h and 

were found to break up after one week. On the other hand, irradiated membranes with the 

highest cross linking density, e.g., =cX 0.23 and =IEC  1.68 and 1.82 meq g-1 showed the 
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lowest equilibrium methanol uptake, e.g., 56 and 95% and did not break up during the 

experiment.  

 

In addition, the chemically modified sulphonated PEEK was observed to dissolve in methanol 

on stirring overnight but after treating of the membranes at 120oC, they were insoluble in all 

solvents and absorbed up to 40% of methanol. This was attributed to the reduction of IEC due 

to the thermal condensation of the sulphonic acid groups as discussed earlier. It was 

concluded that the IEC values played a more important role than cross linking density in 

dictating the methanol permeability of the membranes. 

 

8.3.3  Polarization Curve of PEM Using the Junior Basic Fuel Cell System  

A polarization curve is the most important characteristic of a fuel cell and its performance. It 

can be used to investigate the effect of operating conditions on fuel cell output in addition to 

that other useful information about the fuel cell performance can be obtained from the 

potential-current data, e.g., power density is a product of potential and current density. 

8.3.3.1  Effect of Membranes Thickness and IEC 

Figures 8.5 (a) and (b) show the voltage-current and power curves for Nafion membranes with 

different thicknesses. The performance of the cell was improved by using a thinner 

membrane, and was consistent with the literature [246]. This has been explained as due to a 

lowering of the internal resistance of the cell and improving water management in the thinner 

membrane. For the same reason the performance of the cell improved with increasing IEC of 

the SPEEK membranes, as shown in Figures 8.5 (c) and (d) which represented the results 

obtained using sulphonated PEEK membranes having the same thickness, e.g., 60±5 mμ , but 

they differed in IEC values. 
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Figure 8.5: The voltage-current characteristic and the power curves for different membranes. 

The effect of Nafion thickness (a) and (b) and the effect of IEC of 60 ± 5 mμ  in sulphonated 

PEEK membranes (c) and (d). 

 

8.3.3.2  Effect of Oxidant Partial Pressure and Electrode Materials  

Generally, the operation of fuel cells at elevated pressures lead to a higher cell potential as 

evident from the Nernst equation eq. (8.3), and due to the increase in exchange current density 

because of increasing concentration of reactant gases at the electrodes. In the same way, 

elevated pressure increases the limiting current density by improving mass transfer of gaseous 

species [2]. 
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Exchange current density, oi , at pressure, P , different from ambient pressure, oP , is given by 

the equation: 
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For given conditions, the gain resulting from a pressure increase from one atmosphere to 200 

kPa is 34 mV, and from one atmosphere to 300 kPa is 55 mV. This gain applies at any current 

density, and results in an improved polarization curve at elevated pressures [2]. A similar 

performance improvement is observed using oxygen (100%) instead of air (21% O2), see 

Figure 8.6 (a) to (d).  

 

Further improvement to cell performance was observed when testing the MEA, using the 

same membrane, e.g., Nafion-112. This improved performance was related to conductivity 

enhancement by a well-designed MEA (improved water back diffusion by making the 

reaction occur at the surface of the membrane) as well as to the increase in catalyst loading on 

the cathode side (lowering the catalytic activity of Pt as the reaction proceeds) [246, 247]. 
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Figure 8.6: The voltage-current characteristic and the power curves for different membranes. 

The effect of catalyst loading and oxidant partial pressure on Nafion-112 (a) and (b) and 

effect of oxidant partial pressure on sulphonated PEEK membrane (c) and (d). 

 

8.3.3.3  Effect of Operating Temperature 

Generally, fuel cell performance has been reported to improve at elevated temperature. 

Although potential losses arise at higher temperatures due to: (i) the term 
nF

ST oΔ
−  in eq. (8.1) 

and (ii) an increase in the Tafel slope [2]. On the other hand, increased temperature results in 

higher exchange current density and there is a significant improvement in mass transport 

properties [2, 4].  
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Figure 8.7: The voltage-current characteristic and the power curves for different membranes. 

The effect of operating temperature on Nafion-112 (a) and (b) and sulphonated PEEK (c) and 

(d)  and the effect of water content on the performance of sulphonated PEEK membranes (e) 

and (f). 
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Figures 8.7 (a) and (c) show the results of an experiment carried out using Nafion-112 and 

SPEEK in which the cell temperature was increased from 25 to 100°C, and the resulting 

power curves clearly indicated output gain with increased temperature, see Figures 8.7 (b) and 

(d). 

 

Although the open circuit voltage decreased, the cell output increased by approximately 30% 

by increasing the temperature to 60 oC.  On the other hand, membrane dehydration occurred 

and was the reason for the cell performance collapsing at higher temperatures. Moreover, 

increasing the temperature to 100 oC resulted in the membrane breaking up and accounted for 

the dramatic decrease in performance at higher current density. 

 

In addition, the water content of the membrane plays an important role in lowering the 

membrane resistance and improving the performance of the cell.  This is shown in Figures 8.7 

(e) and (f) which show the results obtained with SPEEK membranes equilibrated under 

different conditions prior to fuel cell testing, e.g., by immersing in distilled water at room 

temperature or in hot distilled water at 70oC for 3 hours. 

 

8.3.3.4  The Performance of Cross Linked Membranes 

The results obtained on operating the PEM fuel cells with two cross linked membranes are 

shown in Figures 8.8. Sample HX-10 was obtained by sulphonating a proton irradiated PEEK 

film for 50 h and sample HEX-3 was obtained by sulphonating a helium irradiated PEEK film 

for 76 h. Both membranes had the same cross link density of 0.30. As can be seen the 

performance was comparable to that of Nafion-117 and proved that cross linking before 

sulphonation was an effective route for preparing PEM. 
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Figure 8.8: The voltage-current characteristic and the power curves at different temperature 

for different cross linked membranes.  Both membranes HX-10 and HEX-3 had similar cross 

link densities of 0.30 and IEC of 1.8 and 2.2 meq g-1 respectively. 

 

 

Two main conclusions can be drawn from these results. Firstly the cross linked membranes 

showed better performance (higher power output and current density) comparing to those of 

non cross linked solvent cast SPEEK membranes of similar IEC, see Figures 8.5 (c), (d) and 
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8.8 (c), (d). This was attributed to solvent effects as discussed in paragraph 7.4.1. Secondly, 

the effect of temperature on the effectiveness of the cross linked membranes was identical to 

that of the non cross linked membranes, e.g., increasing temperature led to an improvement in 

the cell performance which was observed to deteriorate after a limiting temperature due to 

drying of the membranes, see Figures 8.7 (c), (d) and 8.8 (a), (b).   

 

8.3.4  Efficiency of a PEM Fuel cell 

Figure 8.9 shows the relationship between the cell efficiency and power density for different 

membranes. For a fuel cell operated with Nafion, the maximum power was reached at an 

efficiency of 31%. This is significantly lower than the maximum theoretical fuel cell 

efficiency of 83%, calculated from eq. (8.17). A higher efficiency may be reached with the 

same fuel cell, but at significantly lower power densities. This means that for a required 

power output a fuel cell may be made larger (with a larger active area) and more efficient, or 

more compact but less efficient, by selecting the operating point anywhere on the polarization 

curve or on the efficiency-power density plot. Typically, a fuel cell rarely works anywhere 

close to the maximum power density [2]. 

 

More commonly, the operating point is selected at cell potential around 0.7 V. For the graph 

in Figure 8.9, this would result in power density of 33 mW cm-2 and efficiency of 43% for 

membrane HEX-3. For applications where a higher efficiency is required, a higher nominal 

cell potential may be selected (0.8 or higher), which would result in a 55% to 60% efficient 

fuel cell, but the power density would be less than 10 mW cm-2. Similarly, for applications 

where fuel cell size is important, a lower nominal cell potential may be selected (around 

0.6V), which would result in a higher power density, that is, a smaller fuel cell. 
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Although Figure 8.9 shows that fuel cell efficiencies above 60% are possible at very low 

current and power densities, at very low current densities hydrogen crossover and internal 

current losses, although very small, become important, and the efficiency-power dependence 

drops off [2].  

0 10 20 30 40 50 60 70 80
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 HEX-3
 Nafion-117
 HX-10

Power density, mW cm-2

C
el

l v
ol

ta
ge

, V

0

10

20

30

40

50

60

70

 
 
 

 E
nergy efficiency, %

 

Figure 8.9: Energy efficiency and power output of PEM fuel cells operating with membranes 

as indicated. 
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8.4  Conclusions 

The effects of cross linking and the extent of IEC on membrane stability in chemical, 

oxidative and thermal environments have been considered. Cross linking had little effect in 

improving both thermal and oxidative stabilities but its effect in improving the mechanical 

stability, in particular in methanol solution, was pronounced. This suggests that the lower 

methanol permeability of the cross linked membranes was consistent with the results on the 

form of water existing in the membranes, as reported in Chapter 7.  

 

The polarisation curves indicate that thickness, IEC, cross link density, as well as temperature, 

alter the performance of the PEM fuel cell, but the IEC values had a greater effect than the 

cross link density. The performance of the cross linked membranes was very similar to that of 

non cross linked PEM suggesting that the same mechanism of proton transport is involved in 

both systems. The measurement of power output and energy efficiency suggests that the cross 

linked PEM produced in this work is a promising candidate to replace Nafion membranes but 

more information is required, in particular under fuel cell operating conditions, to understand 

the material property relationship in the cross linked membranes.   
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Chapter 9                                                   

Conclusions and Future Work 

 

 

 

 

 

9.1 Summary  

Ion irradiation has been employed as an effective means of cross linking PEEK in the 

preparation of long service thermally, mechanically and chemically stable PEMs. 

 

Alterations produced in the molecular structure of amorphous PEEK by irradiation with 11.7 

MeV H+ and 25.6 MeV He2+ ions have been interpreted as due to chain scissions as well as 

the formation of cross links.  The efficiency of the ions in inducing these changes was 

dependent on their relative linear energy transfer (LET) effects, but both ions altered the 

polymer’s physical and thermal properties to a similar extent. The cross link densities were 

determined from sol-gel fraction analysis using the well known Charlesby–Pinner equation 

and were found to be 0.34 and 0.45% MGy-1 for irradiation with H+ and He2+ ions 

respectively.  

 

The chemical structure of the cross link units could not be established from the FT-IR spectra 

due to their relatively low concentration. However, there were little or no changes in the 

observed spectra on irradiation indicating that the molecular structure of PEEK is resistant to 

irradiation.  
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The measured Tg increases linearly with cross link density in accordance with the 

DiBenedetto equation from which the cross linking constants were found to be similar for 

both ion at 0.082. Since these two constants were very similar, the cross link structures 

produced by both ions must be very similar. The only difference between the two ions is their 

efficiency in cross linking in line with their LET effect.  

 

The thermal decomposition of irradiated PEEK was similar to that of untreated PEEK and 

seems to be a random chain scission process. The thermal decomposition temperature and 

kinetic data for irradiated PEEK films quantitatively suggest that these films still have 

sufficient thermal stability for many long term applications. 

 

Irradiation has a significant effect on the melting and crystallization behaviour of amorphous 

PEEK. The DSC results indicate that the cross links which accompanied irradiation retard the 

crystallization, but no changes were observed in the mechanism of crystallization. 

 

The equilibrium melting point, o
mT , decreased with increasing irradiation dose and this 

depression was analyzed using the Flory equation to calculate the concentration of non-

crystallizable units in the molecular structure of irradiated PEEK. There was also a linear 

correlation between the amounts of these units and the increase in Tg which implies that these 

abnormal structures were cross links.  

 

The depression in o
mT  alone was not sufficient to account for the overall retardation of the 

crystallization. In addition, the fold surface energy, eσ , increased on irradiation.  This increase 

resulted from the increasing amounts of cross link within the amorphous regions, which also 

depressed the melting points and reduced the rate of crystallization. The average length of the 



  

 232

repeating unit sequence between adjacent cross links determines the size of the lamellar 

thickness, and since this decreases with increasing cross link density, it directly accounts for 

the inhibition of crystallization and its eventual cessation at high radiation dose.  

 

Cross linking by ion irradiation has a complex effect on the molecular relaxation of PEEK, 

and the −α and −β transitions are altered in different ways.  The −β transition appeared to 

be sensitive to the amount of water present but unaltered by radiation dose; the measured 

activation enthalpy of 45 kJ mol-1 was consistent with molecular motions associated with 

onset of rotation of localised groups of the size of a chain link. This made the overall 

relaxation insensitive to the development of the cross linked network produced on irradiation.  

By contrast the −α transition is extremely sensitive to the cross link density and the glass 

transition temperature increases progressively with dose.  However, the activation enthalpy of 

the relaxation is substantially reduced from about 950 to 450 -600 kJ mol-1.  By analogy to the 

activation enthalpy of the −β transition, the large activation enthalpies associated with the 

−α transition is attributed to concerted rotational mobility of chain segments involving 

possibly 15 to 25 monomer units. The reduction in activation enthalpy on irradiation arises 

from the increased restrictions imposed by the progressive development of networks and to 

the onset of rotation of the smaller segments between cross links. 

 

The dielectric response at the glass transition has been interpreted by the KWW relationship 

in terms of a series of relaxations with a broad distribution of relaxation times, the breadth of 

the distribution being related to the reciprocal value of the exponent KWWβ .  Irradiation 

decreased the value of KWWβ  and increased the spread of the relaxation times of the processes 

involved due to the formation of the cross linked network. 
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SPEEK membranes with different degrees of sulphonation and cross linking were 

successfully prepared using sulphuric acid as the sulphonating agent. The formation of 

sulphonic acid group in SPEEK membranes was confirmed by FTIR spectroscopy. The 

kinetics of the sulphonation reaction indicated that both stirring and drying periods played a 

role in determining the sulphonation degree. The sulphonation of cross linked membranes was 

also achieved by the use of concentrated sulphuric acid and this was confirmed by FTIR 

spectroscopy. The ion exchange capacity (IEC) of the cross linked membrane was shown to 

be dependent on cross linking density and decreased with increasing irradiation dose.  

 

Substitution of hydroxyl groups onto the chains by irradiation increases the final IEC of the 

cross linked membrane compared with the original materials. This effect was more 

pronounced in the case of films irradiated with helium ion, confirming its higher efficiency in 

producing cross links and functionality on the chain, compared to irradiation with protons.  

 

The kinetic treatment using Fick’s second law was found to be a good model to describe the 

diffusion controlled feature of the sulphonation reaction of cross linked PEEK films. This 

model predicts a similar decrease in diffusion coefficient with increasing cross link density 

but this decrease was dependent on the irradiation ions used.  

 

Chemical reduction of the carbonyl groups was also successfully applied as an alternative 

method of cross linking highly sulphonated PEEK but the structure of the resultant PEM has 

not been studied in detail. At the higher reduction agent ratios used, a possible reduction of 

other chemical entities in the molecular structure of SPEEK was observed by FTIR 

spectroscopy, but at lower ratios it was possible to remove residual solvents and so allow the 

cross link forming condensation reaction to proceed.   
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The materials properties of different cross linked SPEEK membranes have been investigated 

focusing on water uptake and stability studies. The main reason for cross linking the PEM 

was to reduce the swelling in the presence of solvents and to attain high water content without 

losing dimensional stability. The IEC values had a greater effect than the cross link density in 

controlling the water content and diffusion of water through the PEM but cross linking 

enabled the PEMs to reach very much higher water content without losing mechanical 

integrity.  

 

It was concluded from DSC analysis that increasing the cross link density resulted in more 

bound water present in the equilibrated membranes, and increasing the IEC gave rise to more 

free water. The results indicated that the cross linked membranes have lower methanol 

permeability and electro-osmotic drag, as well as improved mechanical stability.  

 

It was shown that both cross link density and the IEC had an effect on the pore size in the 

cross linked membranes, but the IEC had a more pronounced effect. Moreover, the presence 

of a nano-structure in the cross linked membranes was confirmed and the sizes of pores 

present were comparable to those reported in Nafion using NMR cryoporometry, e.g, 1-3 nm. 

 

The effects of cross linking and IEC on the membranes stability in chemical, oxidative and 

thermal environments have also been considered. Cross linking had little effect in improving 

both thermal and oxidative stabilities but its effect in improving the chemical stability in 

particular in methanol solution was pronounced. 

The polarisation curves indicate that thickness, IEC, cross link density as well as temperature 

affect the performance of the PEM fuel cell, but the IEC values had a greater effect than the 

cross link density. The performance of the cross linked membranes was very similar to that of 
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the non cross linked PEM, suggesting the same mechanism of proton transport was involved 

in both systems. The cross linked membranes showed better performance (higher power 

output and current density) compared to that of the non cross linked solvent cast SPEEK 

membranes of similar IEC due to solvent effect. The effect of temperature on the performance 

of the cross linked membranes was identical to that of the non cross linked membranes, e.g., 

increasing temperature led to an improvement in the cell performance but led to deterioration 

after a limited time due to drying out of the membranes.  

 

The measurement of power output and energy efficiency suggests that the cross linked PEM 

produced in this work is a promising candidate to replace Nafion membranes, but that more 

information is required in particular under fuel cell operating conditions to understand the 

material property relationship in the cross linked membranes.   

 

9.2 Importance and Limitation of the Work 

The advantage of cross linking PEEK films before sulphonation in preparing PEM in a simple 

step has been shown in that it eliminates the drawbacks of using solvents to cast films. It has 

also been shown that the cross linking process enabled high values of IEC to be attained with 

the result that the water content increased, meaning high conductivity. Cross linking after 

sulphonation significantly reduced the conductivity of the membranes. The higher water 

content was achieved due to sulphonation reaction, and may occur along tracks in the 

membrane through which the sulphuric acid would penetrate into the cross linked PEEK 

films. Therefore, more distinct phase separation occurs in the cross linked membranes, 

leading to the formation of water clusters in the membranes. This was confirmed by 

measurement of the pore size in the cross lined membranes, which confirmed the presence of 

nano-structures similar to these in Nafion. The cross linked membranes immersed in water 
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contained an increased water content but still retained mechanical strength and they did not 

dissolve or break up at these high water contents. 

 

On the other hand, cross linking by ion irradiation has been shown to be very costly due to the 

high resistivity of PEEK to ion irradiation. 

 

9.3 Future Work 

There is still a great deal of information that needs to be ascertained in order to completely 

understand the structure-property relationships of the cross linked polymers and their effects 

on membrane properties, in particular under fuel cell operation conditions. Three major areas 

of future interest are outlined below. 

 

• Preparation of cross linked polymers:  

Recent work conducted in the School laboratory has shown that thermal treatment of 

PEEK at temperatures below its decomposition temperature, leads to the formation of 

cross links. This was confirmed by gel-sole analysis and DSC measurement. The 

evaluation of the cross link density and mechanism, as well as the comparison to ion 

irradiation, will be the next step before considering the use of cross linked polymers in the 

sulphonation process and in the production of PEMs. Extending these two methods 

(thermal and irradiation) to other polymeric system such as polyamides will be of 

considerable interest. 

 

• Characterisation of cross linked PEM: 

It is expected that the conductivity of the cross link PEM is similar to that of non cross 

linked PEEK and Nafion. However, the investigation of conductivity at high temperature 
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and low humidity would provide useful information to better understand the transport 

process in these cross linked membranes. 

The determination of other PEM properties such as mechanical properties of the wet 

membranes, Tg as well as methanol and fuel permeability is another area worthy of study. 

This includes hydrolytic stability and loss of IEC on boiling the PEM in water. 

 

 

• Fuel cell testing: 

Although a great deal of time and effort has been spent in building the fuel cell test station 

it was not possible to test all the PEMs under all conditions of humidity and temperature. 

However, the irradiated PEMs should be tested in a commercial fuel cell test station such 

as a Scribner FC-850e over an extended period of time. The use of impedance 

spectroscopy to analyze fuel cell performance would be invaluable in considering the 

limitations and further development of new PEMs as well as other fuel cell components 

such as the membranes electrode assembly (MEA). Experiments including linear sweep 

voltammetry, cyclic voltammetry as well as durability testing would enable properties 

such as fuel crossover, active electrode area and lifetime of the MEA to be assessed 

quantitatively.  
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