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Abstract 
   

An understanding of the crystal structure can aid in the rationalisation of physicochemical 

properties exhibited by a crystalline material. Advances in the area of direct space crystal 

structure solution means that it is becoming easier to determine crystal structures from 

powder diffraction data. However, due to the number of structural models generated during 

structure solution calculations, direct space methods are computationally demanding. 

Work presented in this thesis reports the optimisation of a differential evolution (DE) 

algorithm and a cultural differential evolution (CDE) algorithm to reduce the computational 

demands of direct space methods. Characteristics particular to certain crystal structures are 

identified as having a significant effect on the efficiency and robustness of structure solution 

calculations by DE and CDE. 

The development of a new algorithm that closely mimics the natural evolution of a species is 

discussed. Results presented in this thesis demonstrate that this new algorithm is significantly 

more efficient than the DE algorithm. 

Despite the complexity of powder diffraction patterns recorded for biphasic crystalline 

materials, in this thesis, the successful development and application of a direct space method 

to the simultaneous structure solution of two crystals from a biphasic powder pattern is 

reported. 
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Chapter 1 Introduction  

1.1 Understanding crystal structure 
In modern society organic crystalline materials are used in a wide range of applications 

including pharmaceuticals, dyes, lasers and nonlinear optics. 1-4 The desire to treat an 

increasing range of health problems means that research into organic crystalline materials 

that have beneficial pharmaceutical properties is becoming increasingly lucrative for 

industry. An organic crystalline material can be defined as a type of matter in which 

organic molecules are arranged in a three-dimensional translational periodic pattern. 

Polymorphism can be defined as the ability of a chemical compound to adopt more than 

one crystal structure. 3-6 
 
A significant proportion of the compounds that form the active component of modern 

pharmaceutical products are administered in the crystalline form. 1,3-5,7 Crystalline 

compounds are preferred because the act of crystallisation usually removes any 

impurities from the final product (although impurities such as unreacted reagents can 

cocrystallise with the desired product), and because the solubility and bioactivity of 

crystalline phases are generally more constant compared to other formulations such as 

amorphous materials, 7 which are often hygroscopic and can potentially crystallise in 

forms with undesirable bioactivity. However, many crystalline pharmaceutical 

compounds can occur in multiple polymorphic forms. Different geometric rearrangement 

of the atoms, ions or molecules of a crystal structure can have a considerable affect on the 

bioactivity of a crystalline compound. For example, mebendazole, 5-benzoyl-2-

benzimidazolecarbamic acid methyl ester (a general purpose anthelminthic) 8, 9 can be 

recrystallised in three common anhydrous polymorphic forms. The solubility of the forms 

decreases in the order B > C > A. However, form B is toxic, form A is not bioactive and 

renders medication useless when it is present in concentrations >= 30%, only form C 

displays the desired bioactivity. 

Additionally one polymorphic form may have physical properties that make it more 

suitable for delivery to patients. The commonly used antibacterial agent sulfamerazine 5 

can be crystallised in two main polymorphic forms; polymorph [I] which can be 

recrystallised from methanol and polymorph [II] which can be recrystallised from 

acetonitrile. Figure 1.1 below (taken from reference 5) shows the different crystal 

structures adopted by polymorphs [I] and [II]. 
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Figure 1.1, the crystal structures of two polymorphic forms of sulfamerazine, polymorph [I] on the left and 

polymorph [II] on the right 5 
 
The figure shows that the crystal structure of both of the polymorphs is built up from 

stacked sheets of interlinked molecules of sulfamerazine. Whereas molecules in the same 

sheet are linked by relatively strong hydrogen bonds, the separate sheets are only held 

together by weak Van der Waals forces. The figure shows that whereas the sheets 

forming polymorph [I] are flat, the sheets forming polymorph [II] are puckered. This 

means that the sheets forming polymorph [I] can slide across each other more easily than 

the sheets forming polymorph [II]. This means that crystals of form [I] are more easily 

compressed than crystals of form [II]. The existence of slip planes in form [I] means that 

it can be compressed into more robust tablets than form [II]. 
 
Poor biopharmaceutical properties rather than toxicity or lack of efficacy mean that < 1% 

of potential drug compounds are finally marketed. 10 Alternative formulations can be 

used to address this, such as cocrystallisation which can be used to tune the 

biopharmaceutical properties of a bioactive crystalline compound. 

 
A cocrystal can be defined as a neutrally charged supramolecular assembly of homo or 

heteromeric synthons, 7, 10 thus the components of a cocrystal occupy the same crystal 

lattice. To be considered as a cocrystal, the cocrystal and its individual components must 

all be in the solid state at standard temperature and pressure. 7 Thus a solvate (in which 

solvent molecules occupy sights within the lattice) cannot be classed as a cocrystal at 
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room temperature and pressure. Similarly if the separate synthons become electrically 

charged for example through the transfer of a proton from one synthon to another, the 

solid supramolecular assembly is considered as a salt. 
 
The physical and chemical properties of a specific crystalline compound can be 

manipulated in a systematic fashion by crystallising the compound with a homologous 

series of complementary supramolecular synthons. 7, 10 One example of property control 

through cocrystallisation is through the use of a family of dicarboxylic acids. The melting 

point of aliphatic dicarboxylic acids containing an even number of carbon atoms in the 

backbone of the molecule decreases monotonically as the length of the carbon backbone 

increases. 10  If a homologous series of aliphatic dicarboxylic acids is used to form a 

series of isostructural cocrystals with a specific bioactive compound, the melting point of 

the cocrystal is reflected in the melting point of the isolated dicarboxylic acid. Thus the 

melting point (thermal stability) of the cocrystal can be engineered. The solubility of a 

bioactive compound can also be controlled through cocrystallisation with different 

molecules as demonstrated by the solubility of the anticancer drug 

hexamethylenebisacetamide being improved by a factor of 2.5 10 by cocrystallisation with 

different dicarboxylic acids. Since cocrystallisation does not involve changing the 

molecular structure of the participant molecules, the solubility of the drug molecule can 

be manipulated without altering the molecular structure of the bioactive molecule. 

 
To maximise the utility of a compound that can crystallise in multiple forms it is 

necessary to control the production of the compound in order to maximise synthesis of 

the preferred form. Interactions between solvent and product molecules can promote or 

inhibit the crystallisation of a particular form. Sulphathiazole can be crystallised in four 

main forms 7 but the choice of solvent and the presence of a reaction precursor during the 

final crystallisation stage affect the mechanism of crystal growth and hence the form of 

sulphathiazole obtained. The use of propanol as solvent prevents the formation of a 

hydrogen-bond motif common to forms [II]-[IV] so only form [I] can be obtained. 

Although the growth of crystals of form [I]-[III] can continue in the presence of a 

reaction precursor the growth mechanism adopted by crystals of form [IV] is inhibited. 

Thus form [IV] can only be obtained from pure solutions of sulphathiazole. Unless it is 

possible to perform a systematic study of all the synthetic routes and crystallisation 

procedures that can be employed to synthesise a target material (thereby identify the most 

suitable combination of production procedures), it is useful to have an understanding of 
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how the choice of reagents and solvent used to synthesise the target material affect the 

formation, the crystallisation and the structure of the target material. It is key to access 

the structural information in organic crystalline materials such as polymorphs and 

cocrystals so that synthetic routes and crystallisation conditions can be used in crystal 

design and favour the crystallisation of the compound in the desired form. 

 
1.2 X-ray crystallography 

“Crystallography as a discipline has its origins in the pre diffraction era when the term 

referred to the study of the morphology of crystals”. 2 Nineteenth century 

crystallographers could measure the angles between different faces of a crystal and the 

lengths of face edges to determine the symmetry of the crystal and assign relative lengths 

to the three crystal axes. At the beginning of the 20th century Bragg demonstrated a 

technique that could be used to determine the actual location of atoms inside the unit cell 

of a crystal. Since the atoms, ions or molecules that form the crystal structure are 

arranged in a three-dimensional periodic pattern, the crystal structure can be visualised as 

lattice planes that intersect each other at regular intervals. The length of atomic bonds is 

of the order of one angstrom (1 x 10-10 m), and hence the spacing between different 

planes is also of the order of one angstrom. Thus the crystal structure acts as a three-

dimensional diffraction grating for electromagnetic radiation of an appropriate 

wavelength. 
 
X-rays are high energy electromagnetic radiation with wavelengths in the range 1-10s of 

angstroms. Thus they diffract as they travel through a crystal. X-rays interact much more 

strongly with electrons than with atomic nuclei so when travelling through a crystal the 

X-rays are diffracted by areas of high electron density rather than the atomic nuclei 

themselves. However since the electrons within the crystal lattice are localised around 

atomic nuclei the X-rays can be used to determine the location of the atoms within the 

unit cell of the crystal. Bragg demonstrated that if a beam of monochromatic X-rays is 

directed through a perfect single crystal onto a photographic plate, a series of spots 

(diffraction maxima) is observed on the plate. The distances between the different spots 

can be used to calculate the distance between the different lattice planes, and along with 

intensity data, this information can be used to determine the position of individual atoms 

inside the unit cell of the crystal. 

 



5 
 

1.2.1 Bragg’s Law 

If a specific lattice plane is orientated at an angle (Q) to an incoming beam of X-rays, X-

rays will be reflected from the plane at an angle Q. X-rays will also be reflected at an 

angle q from any other parallel lattice planes. If a monochromatic X-ray beam is directed 

at an angle Q onto parallel planes A and B that are separated by a distance (D) 

monochromatic X-rays will be reflected from both planes with an angle Q. X-rays that 

travel through plane A without being reflected and instead are reflected by plane B will 

travel further than X-rays that are reflected by plane A. The path length of X-rays that are 

reflected from plane B is (2 x D x sinQ) longer than the path length of X-rays that are 

reflected by plane A. If X-rays that are reflected by plane B are exactly in phase with X-

rays reflected by plane A, complete constructive interference will occur and produce a 

single X-ray with twice the amplitude of the two reflected X-rays. Conversely if the X-

rays reflected by plane B are exactly half of a wavelength (180°) out of phase with X-rays 

reflected by plane A, complete destructive interference will occur. If the two reflected X-

rays are neither exactly in phase or 180° out of phase. less destructive interference will 

occur and a low intensity X-ray will be detected. Since the intensity of a wave is 

proportional to the square of the amplitude of the wave, complete constructive 

interference produces X-rays with high intensity that are observed as bright diffraction 

maxima on the photographic plate. If intense diffraction maxima are observed at a certain 

angle Q it can be assumed that complete constructive interference is occurring within the 

crystal structure. This means that the difference in the path lengths of two different X-

rays reflected by different parallel planes is an integer multiple of the wavelength of the 

X-ray beam. Thus the wavelength of the X-ray beam is related to (D x sinQ) by an 

integer multiple N. For simplicity of calculation, crystallographers assign N a value of 

one. Thus if the X-ray wavelength and the angle Q are known, it is possible to calculate 

the distance D that separates two parallel lattice planes.  

Bragg’s law states that (N x L = 2 x D x sinQ) 11 where L is the X-ray wavelength in 

metres, N = 1, D is the interplanar separation in metres and Q is the angle at which the 

incoming X-ray beam strikes parallel planes of atoms. The factor of two accounts for the 

fact that one of the X-rays travels through plane A without reflecting to plane B, is 

reflected by plane B and travels back to plane A. Thus D = L/(2 x sinQ). 
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1.2.2 The Phase Problem 

The diffraction maxima observed during an X-ray crystal diffraction experiment are a 

reciprocal representation of the crystal structure. The position of the observed diffraction 

maxima is determined by the unit cell parameters and the symmetry of the crystal. The 

intensity of the diffraction maxima is determined by the distribution of atoms in the unit 

cell. The intensity of maxima I(s) is proportional to the square of a complex number, the 

structure factor amplitude |F|. The scattering vector (s) is a point on the crystal lattice 

corresponding to specific diffraction maxima. The structure factor is determined by both 

the amplitude and phase of the detected X-ray and hence it is necessary to know both the 

amplitude and phase to determine the position of atoms inside the unit cell. 12 However it 

is the intensity of a reflection that is measured and this is related to the structure factor by 

equation 1.1. Each diffraction maxima has an associated structure factor F(s) with 

amplitude |F(s)| and phase α(s). The structure factor is related to the distribution of 

scattering matter by equation 1.2.  Thus as the phase of a detected X-ray cannot be 

measured it is not possible to determine the crystal structure directly from a diffraction 

pattern.  

 

I (s) ∝ |F (s)|2        (1.1) 

F s( )= F(s)exp 2πiα(s)[ ]= ρ(r)exp∫ (2πis ⋅ r)dr
   (1.2) 

 

A technique that can be employed to estimate the phases is the Patterson technique. 12-16 

This technique involves determining the position of significantly heavy atoms inside the 

unit cell. Heavy atoms such as transition metals or halides with many electrons scatter X-

rays more strongly than lighter atoms such as C, N and O with few electrons. The 

scattering of X-rays by these heavy atoms produces diffraction maxima with significantly 

high intensity. If the crystal structure only contains a relatively small number of heavy 

atoms it is possible to determine the position of the heavy atoms from the small number 

of highly intense diffraction maxima. Models can then be used to estimate the phase of 

these highly intense maxima. The best model can be used to assign appropriate phases to 

the remaining maxima that are caused by diffraction by the lighter atoms. However when 

the crystal structure contains no dominant scatterers, the Patterson technique cannot be 

used to estimate the phases. In these circumstances direct methods are used. Direct 

methods are commonly used to determine crystal structure when high quality data can be 
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obtained from single crystal diffraction experiments. 12, 16, 17 Direct methods can be used 

to determine crystal structure by exploiting known phase relationships that occur between 

specific groups of maxima. Models are generated by assigning estimated phase values to 

individual maxima. Statistical analysis such as symbolic addition is used to evaluate each 

of the models and determine the best. The best model is then used to determine the 

crystal structure. 

 

1.2.3 Powder Diffraction 

In cases when it is not possible to grow a sufficiently perfect crystal to perform single 

crystal X-ray diffraction experiments, powder diffraction experiments can be used to 

determine the crystal structure. Powder X-ray diffraction involves passing a 

monochromatic X-ray beam through a powder sample of micro crystals (crystallites). The 

crystallites are packed in a sample holder and it is assumed that the orientation of each 

crystallite with respect to the sample holder is random. As the number of crystallites in 

the sample increases, the probability that each different lattice plane in the crystal 

structure is orientated in the same direction with respect to the sample holder increases. 

When a monochromatic X-ray beam is passed through a powder sample containing many 

crystallites diffraction occurs from all the lattice planes simultaneously. As the sample 

holder is rotated the angle between each set of parallel lattice planes with respect to the 

X-ray beam changes. At a certain angle of Q each set of parallel planes will satisfy (N x 

L=2 x D x sinQ) and produce an observable diffraction maximum. 11 

Single crystal and powder diffraction patterns both contain the same amount of structural 

information but this information is more easily extracted directly from a single crystal 

pattern. In a single crystal diffraction pattern, each diffraction maximum corresponds to 

one particular set of parallel lattice planes that satisfy (N x L=2 x D x sinQ). However, in 

a powder pattern, one peak may correspond to multiple different lattice planes that 

simultaneously satisfy (N x L=2 x D x sinQ). Powder diffraction results in the production 

of cones of intensity, 18 (figure 1.2) rather than the clearly defined diffraction maxima 

observed during single crystal diffraction experiments. 

The powder diffraction pattern is obtained by sampling the diffraction cones along the 2Q 

axis. This results in diffraction data from all three dimensions being compressed into one 

dimension, causing significant overlap of diffraction peaks. This overlap makes it hard to 



 

Figure 1.2, Diffraction cones resulting from simultaneous crystal diffraction by multi
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conventional laboratory diffractometer. This is because determination of crystal structure 

using direct methods requires the measurement of accurate peak intensities from the 

diffraction pattern. Molecular crystals usually have large unit cells and low crystal 

symmetry which results in severe peak overlap in the diffraction pattern. 12 The severe 

peak overlap frustrates the accurate measurement of individual peak intensities. The 

peaks observed in diffraction patterns recorded at synchrotron sources are often more 

clearly defined and less overlapped than peaks observed in diffraction patterns recorded 

using conventional laboratory diffractometers. Thus it is less difficult to accurately 

measure the intensity of diffraction peaks recorded at synchrotron sources and use direct 

methods to determine the crystal structure.  Direct methods are however significantly 

more appropriate for structure determination of inorganic crystals that usually have small 

unit cells and high symmetry resulting in diffraction patterns that suffer less from peak 

overlap. 

The crystal structure of molecular crystals is increasingly being determined by the direct 

space technique. This is because the ability of the technique to determine crystal structure 

is not significantly reduced by peak overlap and the direct space technique requires little 

intensity data to be extracted directly from the diffraction pattern. Only the position of 

diffraction peaks needs to be measured to determine the unit cell parameters and crystal 

symmetry. 

 
1.3. The direct space technique 

The direct space approach involves the computer generation of a three-dimensional 

model of the crystal structure in a unit cell that has been derived using the resolvable 

peak positions in the powder diffraction pattern. The plausibility of the computer-

generated model is then evaluated using various "cost functions". 21-23 The idea behind 

this approach is that the best model as defined by the best cost function will be 

representative of the real crystal structure, 24 thus the crystal structure can be determined 

without having to ‘extract’ a significant amount of structural information directly from 

the powder diffraction pattern. 

 

1.3.1. Cost functions 

One of the cost functions used in direct space methods is the Rwp factor, also commonly 

used in the Rietveld refinement process. 25,26 This technique involves simulating a 
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diffraction pattern for a computer generated model of a crystal structure and 

quantitatively comparing the simulated pattern with the real diffraction pattern recorded 

for the sample. To quantitatively compare the simulated pattern with the real pattern, the 

Rietveld procedure digitises the two diffraction patterns. Each digitised point in each of 

the patterns is considered as an individual intensity measurement. The goodness of fit 

between the simulated and real patterns is determined by measuring the difference in the 

intensity of equivalent points in the simulated and real diffraction patterns. Equation 1.3 

below shows the most common quantity used to compare digitised simulated and real 

diffraction patterns, Rwp. 

Rwp =
w Iobs − Icalc( )2∑

w Iobs( )2∑     (1.3) 

Thus the Rwp cost function does not directly assess the integrated intensity of peaks in the 

experimental diffraction pattern. The Rietveld technique can be used to simulate a 

powder diffraction pattern for a computer generated model of a crystal structure and 

compare it with an experimental powder diffraction pattern recorded for a real powder 

sample of the material. Thus peak overlap is taken into account and the need to assign 

individual peak intensities is negated by matching the more complex whole profile shape 
4, 21, 27 of the simulated and experimental powder diffraction patterns. 

Additionally, the Rwp factor cost function is tolerant with respect to the quality of the 

experimental data, as long as the pattern simulated from the computer generated model is 

of similar quality. A study in which the quality of the experimental powder diffraction 

pattern recorded for a test compound was manually varied, 28 showed that the correct 

structure could be consistently found using Rwp to locate the structure, despite significant 

reduction in data quality, although the difference in Rwp values between the correct 

structure and other possible but incorrect structures became smaller as the quality of the 

experimental pattern decreased. This means that data recorded using laboratory X-ray 

diffractometers can be used for direct space methods rather than relying on data recorded 

at synchrotron facilities, which tends to be used for traditional structure solution 

techniques involving accurate measurement of intensities of individual peaks. 

The chi-squared cost function 29,30 can also be used to quantitatively compare simulated 

and experimental diffraction patterns. However the chi-squared technique does not 
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digitise the entire simulated and experimental patterns, instead the difference in the 

integrated intensity of peaks in the simulated and experimental patterns is measured. This 

technique assigns the best cost function value to the simulated pattern that has peaks with 

the same integrated intensities as equivalent peaks in the experimental pattern. As this 

technique does not evaluate every point in the diffraction pattern it is a much less 

computationally demanding cost function than the Rwp function, which digitises complete 

simulated and experimental patterns and compares them point by point. 

The crystal structure of form B of famotidine 29 (figure 1.3) has been determined by the 

direct space technique using a cost function based on chi squared. 

 

Figure 1.3, The crystal structure of form B of famotidine (figure taken from [29]). 

 
However as the cost function based on chi-squared only uses peak intensities to assess the 

fitness it can be significantly less accurate than the cost function based on Rwp. 
28

 

The cost function can also take the form of a crystal lattice or potential energy calculation 
28,31,32 in which the best solution corresponds to the most energetically favourable 

structural arrangement. In some cases 28,33 both types of cost functions (potential energy 

and Rwp fit) have been used as a combined weighted function in an attempt to improve 

the accuracy of direct space crystal structure solution. 

It is possible for different crystal structures to have different lattice energies and physical 

properties but to have similar diffraction patterns. For example; a carboxylic acid and 

organic amide adduct could either form a cocrystal in which each of the two components 

are neutrally charged, or as a salt involving the transfer of a proton from the carboxylic 

acid to the amide. It is likely that the cocrystal and salt forms would have different lattice 

energies and solubilities. Since the salt contains charged adducts, the energy of solvation 

is likely to be significantly greater for the salt than for the neutral cocrystal. However the 

crystal packing of the cocrystal would be very similar to that of the salt. Indeed, the 

powder diffraction patterns of the two structures would be very similar as the non-
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hydrogen atom positions in the structure are essentially identical, with the difference 

based entirely on the position of the proton which is a weak X-ray scatterer. 

Conversely it is possible for similar structures with similar lattice energies 28 to produce 

different diffraction patterns. Molecules with long alkyl chains can form crystal structures 

that are potentially complex to determine by direct space techniques that only use an Rwp 

cost function to assess the quality of model structures. 28 The flexibility of the alkyl chain 

means that many plausible model crystal structures have similar lattice energies but 

different X-ray diffraction patterns. Thus computer generated models of molecules with a 

high degree of intramolecular flexibility can adopt the same crystal packing motif and 

have similar crystal lattice energies but produce different simulated diffraction patterns. 

However, it is also important that direct space techniques should not rely on cost 

functions that only use potential energy calculations to assess the quality of model 

structures as many theoretically plausible structures can have energies within a few 

kJ/Mol of the correct structure. 31 

1.3.2. Describing the computer generated model 

Traditional structure determination methods rely on the intensity of diffraction peaks to 

provide information on the number and location of atoms present in the unit cell, making 

them most applicable for small molecules with few atoms, or non-molecular crystalline 

materials containing heavy atoms that scatter X-rays strongly. 3 Direct space methods 

however, are most useful for crystal structure solution of large structurally rigid 

molecules. This is because direct space methods can make use of any inherent knowledge 

about the structure to be solved, and then apply this knowledge to the structure solution 

process. 

If the structure under study is molecular and the connectivity of the molecule is already 

known, the structure solution problem becomes a matter of placing the component 

molecular fragments in the unit cell in the correct position and orientation, 22 rather than 

the traditional method of correctly locating a collection of unconnected atoms in the unit 

cell. Under these circumstances, the complexity of the problem is not defined by how 

many atoms the molecule contains, but how many ways its structurally rigid fragments 

may orientate with respect to one another and within the unit cell. 3 

Every rigid molecule can be defined as having six degrees of freedom (DOF) in three 
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dimensional space; three components of translation along the x, y and z axes, and three 

mutually perpendicular axes about which the molecule or fragment can rotate. Additional 

degrees of freedom such as torsion angles accompany intramolecular rotation, making 

direct space structure solution of non-rigid molecules more complex. 34 Each individual 

molecule in a unit cell must be able to move independently, thus if the unit cell contains 

more than one molecule (a cocrystal for example) 22 each molecule must be described by 

a separate set of structure parameters, making the structure solution more complex. 

 

1.4. Crystal structure determination by global 
optimisation 

 
1.4.1.  Random search 

Many techniques have been developed to tackle the "trial and error" nature of direct 

space methods, optimising the movement and hence the calculation needed as each trial 

structure is evaluated. The simplest search technique is a completely random search 

involving the calculation of the fitness of randomly generated crystal structures within the 

unit cell. The search is likely to be quicker than an exhaustive search of all possible 

crystal structures. However, as not every structure is evaluated and the search is not 

guided in a logical progression from model structures that are poor representations of the 

actual crystal structure towards better ones, it is difficult to identify whether the structure 

that is assigned the highest fitness in a single search progression is the global optimum 

(real crystal structure). 

 

1.4.2. Grid search 

The simplest "controlled" search method is the grid search method in which every 

possible structural arrangement of the molecule is systematically investigated. A grid 

search has the advantage that as long as the translation and rotation step sizes between 

successive structures are sufficiently small, every possible arrangement that is defined by 

the “grid” will be evaluated and the best not missed as the fitness function is run after 

each structural perturbation. 4 However, it is the investigation of all possibilities that 

makes the grid search hugely inefficient. 35 For example, in a 10Å side length cube with a 

coarse translation step of 1Å, 103 positions are created on which the molecule can be 

placed, each of which must be evaluated. In addition, a rigid molecule also has three 
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introduced as the central Fe [II] ion was fixed at (0,0,0), leaving only half of the 

symmetrical [Fe(TEEC)6] [II] ion with half the number of intramolecular parameters and 

with no translational parameters to be determined. In addition, the number of grid points 

used in the search space was reduced by increasing the rotational step size to ten degrees. 

Various other methods for guiding the grid search exist, including interatomic potential 

energy calculations. As most electrostatic potentials between atoms can be calculated 

with reasonable accuracy, 24 a guided search using this technique may avoid the 

evaluation of unfeasible structures. 36 

 

1.4.3.  The landscape of global optimisation 
To improve the efficiency of the search, it is essential to reintroduce some randomness in 

order to avoid evaluating every structure. The art is not to use the cost function purely to 

evaluate the plausibility of the proposed structure, but also as a method for controlling 

where the search may look next, i.e incorporation of randomness with rules. The cost 

function (in this case based on the Rwp factor between observed and calculated powder 

patterns), can be used to create a "fitness landscape" or "hypersurface" corresponding to 

the structural search space (figure 1.5). The hills or maxima in the landscape represent 

structural arrangements that differ significantly from the real structure; whereas the 

depressions or minima in the landscape correspond to arrangements that correspond to 

the correct structure solution that enables a successful Rietveld refinement against the 

experimental powder data. 

Figure 1.5, Two dimensional representation of an Rwp fitness landscape. 
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A grid search can be used to map out the complete fitness landscape defined by the cost 

function, whereas the more advanced optimisation algorithms do not explore the whole 

landscape and are tooled up to explore the depressions most thoroughly. 38 This is still a 

complex problem, with the landscape having as many dimensions as the model has 

parameters. 

1.4.4.  The Monte Carlo Method 
The Metropolis Monte Carlo (MC) method 39 is a common approach that can be 

considered as the next step up from the grid search, in that it is a random search that 

seeks improvements with each progressive structure. The algorithm begins by randomly 

placing the molecule or structure under consideration in the unit cell, and calculates the 

fitness, e.g. Rwp, for that particular arrangement. Each parameter of the problem is then 

altered by a random amount, but constrained by a user defined maximum step size. This 

produces a "child" structure which is evaluated by the cost function. This process 

involves calculation of the value Z defined as the Rwp fitness of the child - the Rwp fitness 

of the parent. If Z <= 0 this indicates that the child is fitter than the parent so the child is 

immediately accepted and the parent discarded. If Z > 0 this indicates that the child is less 

fit than the parent. However the child is not automatically discarded. The child can still 

replace the parent with a degree of probability that can be influenced by the user 

(otherwise this would be a straightforward cost function minimisation). If Z > 0 a random 

number between zero and one is automatically generated, the child is then accepted if the 

random value is <= exp(-Z/S), where S is a scale factor that can be considered akin to 

temperature and is assigned a value by the user. 14 If the random number is > exp(-Z/S) 

the child is rejected, the parent is retained and an alternative child created. To prevent the 

Monte Carlo search becoming trapped in the first minima that it finds, it has the ability to 

escape by acceptance of children with lower fitness than their parents, (when the random 

number <= exp(-Z/S)). As the value of S is manually decreased by the user the 

probability that a child structure with a low fitness value is able to replace a parent 

structure with a higher fitness value decreases. Thus as the search progresses the search 

becomes confined in the minima.  This step-by-step search generates a ‘Markov chain’ of 

structures and the Metropolis Monte Carlo search is driven to move down hill towards the 

deepest depression on the landscape, "the Global Minimum”, representing the structure 

with a simulated powder pattern that is the best match with the experimental data. 
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All global optimisation techniques are susceptible to becoming trapped in local minima, 
40 a problem only avoided implicitly by the grid search method. For the Monte Carlo 

search, the value S and maximum step size are initially set high, so that the search may 

easily escape from minima. These values are often reduced as the calculation progresses, 

until the child structures have a 40% acceptance rate. 14 The search is allowed to proceed 

for a set number of generations as there is no termination criterion to stop the search once 

a structure with high fitness has been located. The global minimum cannot be determined 

with certainty unless S is decreased to 0, because until this point, the search still has some 

hill climbing ability. However, if S is set to 0, the search will become trapped in the first 

minima it finds, making this setting impractical. 

Some crystal structures that have been solved using the MC search include the organic 

cocrystal 1,2,3-trihydroxybenzene-HMTA [22] (figure 1.6) and the red polymorph of 

fluorescein. 41 Although the MC search is capable of solving structures of significant 

complexity such as an organic cocrystal, a MC search can require the computation of 

many model structures before the best is located. The Markov chain of the MC search 

used to solve the structure of 1,2,3-trihydroxybenzene-HMTA was 500,000 structures 

long. 

 

 

Figure 1.6, Stereoview of the crystal structure of the cocrystal 1,2,3-trihydroxybenzene-HMTA (figure 

taken from [22]). 

 

1.4.5.  Simulated Annealing 
A variant of the Metropolis Monte Carlo technique is the simulated annealing (SA) 
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search, in which the value S is decreased automatically, reducing the hill climbing ability 

of the search as it reaches convergence. 4, 24 The value S (or temperature) is initially set so 

that the child structures have a 90% survival rate, but reduced so that only 70% of child 

structures are accepted over their parents. 24 Crystal structures that have been determined 

using the SA method include: AlVO4, K2HCr2AsO10 and [Co(NH3)3CO3]NO3.H2O, 24 the 

red polymorph of tetrahexylsexithiophene, 42 the pigment p-haematin (figure 1.7), 43 

lactose and paracetamol 44 and the crystal structure of form B of famotidine. 29 The SA 

search is potentially more efficient than the MC search but it can still require many model 

structures to be generated and evaluated before the best structure is located. The Markov 

chain of the SA search used to solve the crystal structure of the red polymorph of 

tetrahexylsexithiophene, described by 13 structure parameters, was 1,200,000 structures 

long. 

 

Figure 1.7, The crystal structure of the pigment p-haematin (figure taken from [43]). 
 

1.4.6.  Parallel Tempering 

The landscape representing particularly complex crystal structures with many degrees of 

freedom may have numerous local minima besides the global minimum. The existence of 
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the local minima frustrates the search process because the search will explore many local 

minima before it locates the global minimum. Initially assigning a high value to the 

temperature parameter of the MC or SA searches encourages the search to initially 

explore the whole landscape and increases the probability that the search escapes local 

minima and locates the global minimum. Decreasing the temperature either manually as 

in the MC search or automatically in the SA search encourages the search to only explore 

the minima and increases the probability that the search terminates inside the global 

minimum. However if the temperature is reduced too rapidly the search can become 

trapped in local minima and fail to reach the global minimum. Parallel tempering, 45 a 

variant of the MC and SA search, maintains the ability to explore the whole landscape 

during a single search progression whilst simultaneously the parallel tempering search is 

encouraged to thoroughly explore any minimum that is located. 

The parallel tempering search involves performing multiple MC searches simultaneously, 

however each individual search is assigned a different temperature. Periodically the 

individual searches exchange structures. Thus if a low temperature search becomes 

trapped in a local minimum the structure can be released if it is exchanged into a search 

operating at a higher temperature. Conversely if a search operating at a high temperature 

locates a deep minimum it is unlikely that the structure will fully descend into the 

minimum before the search selects a structure with a lower fitness value and moves to a 

different area of the landscape. However if the structure is exchanged into a search 

operating at a lower temperature the structure is more likely to remain in the minimum, 

facilitating a more thorough exploration of the minimum. Although parallel tempering 

requires multiple individuals to simultaneously explore the same landscape, it can be a 

more computationally efficient search than the MC or SA searches. 45 

 

1.4.7.  Constrained searches 

A technique used to rein in MC or SA searches so that the search only explores areas of 

the landscape near the global minimum is to coarsely map the electron density of the unit 

cell to a chosen resolution, for example 2.5Å, and then to orientate the molecule within 

this volume of high electron density. 46 This technique not only reduces the area of 

landscape to be searched, but also greatly constrains the orientation of the molecule as it 

now has to fit into the volume of high electron density, which is based on the molecular 

shape, restricts intramolecular rotations and the overall molecular orientation. When this 
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structure envelope approach was applied to a complex peptide, 46 nine of the seventeen 

intramolecular rotations were constrained to 60° (rather than the full 360), greatly 

reducing the amount of landscape needed to be explored by the simulated annealing 

search. 

 

1.5. Population based searches 

For all the guidance that can be given to grid search, MC and SA methods, the fact that 

only one individual is exploring the landscape at any one time means that they are 

inherently slow searches. As the initial structure is created with random parameters, the 

search will more than likely start far from the global minimum with its progression 

towards the global minimum frustrated by the presence of hills and local minima. A 

search technique that placed a number of individuals upon a landscape, allowing them to 

communicate data with each other concerning the relative merits of their surroundings, 

would not only sample a far larger area of landscape for a given time period, but would 

also put the relevance of any minima found into perspective, as the relative position of 

the minima on the landscape could immediately be calculated, thus avoiding unnecessary 

exploration of all but the deepest minimum. Evolutionary algorithms do all this, but 

concomitantly are able to move their populations of individuals across the landscape to 

cluster around likely sites for the global minimum without the individuals having to 

navigate their own way there. 

1.5.1.  Genetic Algorithms 

The processes of evolution and survival of the fittest are harnessed in genetic algorithms 

GAs, 47 in which a population of individuals is created and allowed to breed, with little 

supervision, so that the process of natural selection will guide the population towards 

creating ideal individuals. 48,49 GAs are more complex than the previous global 

optimisation methods discussed in this chapter, and are more efficient when used to solve 

complicated search problems. 50 When applied to the problem of direct space structure 

solution, each member of the population represents a possible structural conformation, 

each with a fitness value assessed by the cost function and a position on the fitness 

landscape. This means that the genetic algorithm carries out a "parallel search" 49,51 in 

which many dissimilar conformations may be investigated simultaneously, unlike the MC 

and SA searches which consider only one individual and move from one conformation to 



21 
 

the next. The MC and SA methods have only one starting point and one landscape 

explorer which must travel to the global minimum for success: the population based 

design of genetic algorithms means that the landscape explorer can move quickly to 

explore likely areas of the landscape. In this way, both the speed of the GA search, and 

the chance that an initial structure is near the global minimum, is greatly increased in 

comparison. The fact that GAs usually evolve populations containing more individuals 

than the total number of individuals used in a typical parallel tempering search means that 

GAs are potentially more computationally efficient than parallel tempering searches. 

The GA creates child structures from the initial population by "cross-over" - the sharing 

of genetic information between a number of parent individuals, and "mutation" - random 

variation to the genetic information of an individual. These operations have opposing 

effects; whilst cross-over encourages homogeneity in the population in which individuals 

congregate around a single point, mutation forces individuals to be different, effectively 

pushing the search back out to explore more of the landscape to look for a better solution 

to the problem. Once a new population of children has been created, the algorithm will 

perform a selection process on the original parents and the new children, based upon their 

fitness, so that the best individuals proceed into the next generation, and in turn create the 

next generation. 

There are many ways in which the processes of population member selection, parent 

selection, mutation and genetic representation can be performed; these will now be 

discussed. 

1.5.1.1. Genetic Representation 

In a similar way to the methods discussed previously, the parameters that describe and 

quantify the degrees of freedom of a model used for structure solution from powder 

diffraction data define the input for the algorithm. The translation, orientation and 

intermolecular rotation parameters are stored as a data string often referred to as a 

chromosome. 48,52  It is worth noting that the way in which the chromosome is written can 

have a significant impact on the efficiency of the search process. 48 Traditional GAs use 

binary encoding for the chromosome, but this introduces "Hamming cliffs" 48 in the 

problem parameters. These occur when real numbers of similar value are represented by 

very different binary numbers; for example seven (binary 0111) and eight (binary 1000). 

This large binary difference means that it is unlikely for a chromosome to undergo small 
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mutations near the end of the search, as a parameter with the value of seven may not 

easily be changed to eight. Thus the search can frequently overstep the correct solution 

by consistently making excessively large variations to individuals. It is therefore far more 

effective where possible, to represent the chromosome as real numbers, 47 preventing the 

occurrence of "Hamming cliffs" and allowing small perturbations to individuals and 

overall a more efficient search. 

1.5.1.2. Parent Selection 

Crossover is the process of sharing genetic material between parents to produce children. 

In doing so, individuals communicate genetic information to each other and reflect the 

relative quality of the area of the fitness landscape that they inhabit. 51 As a child 

structure formed from two fit parents is more likely to be fitter than a child formed from 

one fit and one unfit parent, the search can quickly move towards the better structures by 

selection of the fitter children to become the parents in the next generation. This also 

excludes unfit individuals from parenthood so that the search only explores preferred 

areas of the landscape. If all individuals could be equally selected for parenthood, poor 

quality individuals would be chosen as often as fit individuals and the search process 

would become less efficient. 48 

1.5.1.2.1. Roulette Wheel Selection 

For Roulette Wheel selection, the fitness of all individuals is "normalised" 48 in 

proportion to the fittest member of the population.  This is done by dividing the fitness 

value of each individual by the maximum fitness value and creating a distribution of 

values ranging between zero and one. An individual is then selected at random, and 

becomes a parent if it has a normalised fitness value equal to or larger than a random 

number between zero and one. 48,49,52 Therefore the fitter an individual is, the more 

chance it has of becoming a parent. Population diversity is not unnecessarily reduced 

during the initial stages of the search, allowing a wide area of the landscape to be 

explored, as even unfit individuals have a chance of being selected. However, reduction 

in population diversity does become an issue when the search reaches a local minimum in 

the landscape when many individuals are clustered together with similar gene and fitness 

values. 
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1.5.1.2.2. Tournament Selection 

Tournament selection is not as susceptible to the influence of extremely fit or unfit 

individuals. Rather than comparing one individual against the whole population, pairs of 

individuals are selected to compete against each other. 52 Each pair is chosen at random 

so that all individuals, even unfit ones, have a chance of becoming parents. As only the 

fittest of the pair is selected as a parent, the exclusion of the poorest individual from the 

next generation is assured. 48 

1.5.1.3. Elitism 

Population growth would be an inherent feature of genetic algorithms, as the children 

created by crossover do not directly replace the parents. To avoid rampant population 

growth, individuals from the current population can be culled in order to maintain a given 

population size; this process is referred to as elitism. 49,53 A selection of the best 

individuals, both parents from previous generations and children, are ranked in order of 

fitness but only a portion of the best are chosen to go on to the next generation. Elitism 

therefore not only keeps down population size, but provides only the best individuals for 

the parent selection process. As only the best individuals are chosen to enter the potential 

parent population, the overall quality of fitness of the population will not decrease from 

generation to generation. 49,54 

1.5.1.4. Crossover 

Child structures can be created by splicing together genetic material from the parents in a 

number of ways. The simplest and most applicable for individuals with a small number of 

genes is single point crossover. 49 Each parent chromosome is cut at the same place and 

the halves are swapped between the parents, producing two children. For direct space 

structure solution, this crossover process can be implemented by swapping over the 

translational and rotational genes of the parents. In this example (figure 1.8), two models 

of rigid molecules undergo single point crossover: each model structure has three 

translational degrees of freedom X, Y and Z and three rotational degrees of freedom 

represented by T, F and S. 

This process produces two children from one pair of parents, causing inefficiencies if that 

particular pair is picked more than once. To increase the number of different children that 

can be produced from a given pair, two point crossover can be implemented, in which  
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Parent (A)  X1,Y1,Z1,T1,F1,S1 Parent (B) X2,Y2,Z2,T2,F2,S2 

 

--------------Crossover-------------- 

 

Child (A) X1,Y1,Z1,T2,F2,S2     Child (B) X2,Y2,Z2,T1,F1,S1 
 

Figure 1.8, Single-Point Crossover 

 
 
each chromosome is randomly cut at two places and the intervening genes exchanged. 38 

To improve single point crossover the two ends of each chromosome string can be joined 

together, forming two chromosome loops. In this way many different children are 

produced when corresponding gene sets are randomly swapped between parents as the 

chances of splicing the same gene for each pair is greatly decreased. 38  

The GA now has a system for selecting individuals that represent good solutions to the 

problem, by combining genetic material from parents with high fitness, to create better 

children and moving towards the global minimum. However, by swapping parameters 

from only good parents, the GA is susceptible to becoming trapped in local minima. 

When all selected individuals have similar parameters representing a solution to a non-

global minimum, the search "stagnates" 52,54 as any variation in the children created 

during crossover from these individuals merely explores the landscape within the 

minimum. 

To escape from a local minimum, an individual must develop enough genetic variation so 

that it no longer occupies this area of the landscape.  Clearly the creation of an outlier 

individual requires some other process than crossover, hence GAs need the ability to 

mutate the genetic material of individuals. 

1.5.1.5. Mutation 

Mutation involves the active alteration of the genes of an individual by either a 

completely random "static mutation", 49 or a more guided "dynamic mutation" approach. 
48, 50, 52 The individual chosen for mutation can either be a new child structure 51 or an 

existing parent. 50 However, mutation often produces unfit individuals, so all mutated 

individuals are automatically placed into the next generation without undergoing any 

selection process:  49,50,55 this ensures transmission of the new genetic material. 
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Individual X1,Y1,Z1,T1,F1,S1 

 

-----------Mutation----------- 

 

Mutant X1,Y(JJ),Z1,T1,F1,S1 

 

Figure 1.9, Mutation of an Individual. 
 
 
For a model of a rigid molecule with three translational and three rotational degrees of 

freedom (using the notation in previous sections), Figure 1.9 demonstrates the system 

undergoing mutation. 

 

1.5.1.5.1. Static mutation 

Static mutation is more appropriate for initial generations and involves the change of one 

or more genes in the selected individual by a randomly generated value. 50 Although 

simple to implement, mutants can be created far from their parent individual, which 

towards the end of a search progression, means that the search is continuously widened 

rather than being allowed to converge on the optimal solution. 

1.5.1.5.2. Dynamic mutation 

Dynamic mutation involves the change of one or more of the parental genes by a random 

but limited step size to produce the child. 50 Ideally, a scaling mutation function is used, 

that will produce large mutation variations for initial generations encouraging exploration 

across the landscape but produce small mutation variations as the population converges 

permitting careful exploration around minima. Thus the genetic diversity of a population 

remains high during initial generations, reducing the probability that the population 

becomes trapped in local minima, whilst only small mutations occur when the population 

is close to converging on the global minimum. To achieve an efficient scaling mutation 

function for Genetic Algorithms, it is necessary to use an annealing function similar to 

that used in a Simulated Annealing search. 48 Unfortunately, to do this, it is necessary to 

have an idea of how many generations are likely to be required to get the search in the 

general region of the global minimum. This behaviour is addressed by the autonomous 

scaling search of the Differential Evolution algorithm (chapter 2). 
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Crystal structures that have been solved using genetic algorithms include: the structure of 

a polypeptide, 56 a lead pyridine-3,4 dicarboxylate complex, 57 ortho-thymotic acid 58 and 

a cocrystal formed between benzoic acid and pentafluorobenzoic acid, containing four 

independent molecules in the asymmetric unit (figure 1.10). 59 

 

 

 
 

Figure 1.10, The structure of the cocrystal formed between benzoic acid and pentafluorobenzoic acid 
(figure taken from [59]) 

 
 

1.6. Differential evolution 

Like GAs, differential evolution (DE) is a population based search method that applies 

the natural processes of mating, mutation and natural selection to solve an optimisation 

problem. However unlike GAs that use crossover and mutation functions to combine 

genetic material from multiple parents to create child structures, DE is a vector based 

search. To create a child structure, DE computes the vectors that join a group of 

individuals on the landscape and combines these vectors to produce a child structure. 

Thus in differential evolution the processes of crossover and mutation are performed 

simultaneously over all dimensions or structural parameters, each time a child is created. 
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This is in direct contrast with GAs that perform crossover and mutation operations 

separately. 

The nature of a vector based search technique means that the crossover and mutation 

vectors are scaled automatically as the population converges. During the initial 

generations of a search the genetic diversity of the population is likely to be high causing 

individuals to be spread widely across the landscape. Thus the vectors joining a group of 

individuals are likely to be long, resulting in the generation of a child at a considerable 

distance from the parent. As individuals cluster together the vectors joining a group of 

individuals become much shorter, resulting in the generation of a child significantly 

closer to the parent. Thus individuals that are clustered together automatically conduct a 

local search of the immediately surrounding landscape. 

One of the other main features of DE is that it is controlled by a small number of 

arithmetic functions in contrast to GAs that use probability functions to control the 

various evolutionary operations: during each generation, DE systematically selects every 

individual in the population to act as the parent rather than using probability functions to 

select the fitter individuals in the population.  The features of DE and its application to 

the solution of crystal structures from powder diffraction data will be discussed in detail 

in the following chapters of this thesis. 

 

1.7. Thesis Overview 

• Previous work 60-63 has demonstrated that DE can be used to solve crystal 

structures from powder diffraction data. DE is governed by a small number of 

arithmetic expressions and hence a human operator is only required to define the 

value of a small number of DE control parameters to influence the evolution of a 

population and therefore the efficiency and reliability of an optimisation. In 

chapter three, this thesis explores how different combinations of DE control 

parameters can affect the computational efficiency and the probability that an 

accurate crystal structure is located by a single DE search. This was done 

primarily by performing multiple crystal structure determination calculations 

using different combinations of these DE control parameters deducing the optimal 

combination of control parameters from these results. The simplicity of DE 

algorithm also means that it is relatively simple to apply additional evolutionary 



28 
 

control strategies to the population. Cultural DE 23, 64 uses information gathered 

by ancestral individuals during previous generations to influence the evolution of 

individuals in the current generation. This use of individuals to explore the 

landscape in order to locate the global minimum and simultaneously gather and 

pass information about the landscape onto future generations can significantly 

reduce the number of generations required by a population to converge in the 

global minimum. This information can be used to discourage current individuals 

from exploring regions of the landscape which have already been found to 

represent poor solutions to the problem. Chapter three explores how the 

computational efficiency of DE and the probability that an accurate crystal 

structure is located by a single DE search is affected by applying cultural control 

strategies. The application of different variants of cultural strategy and their effect 

on the evolutionary process is also explored. Chapter three demonstrates that 

influencing the evolution of a population by applying cultural guidance in an 

arbitrary manner can significantly reduce the efficiency of cultural DE. 

• The size of the landscape representing a particular optimisation problem is 

defined by the number of structure parameters needed to describe the crystal 

structure. Thus when larger populations are initialised inside a particular 

landscape the landscape will have a higher population density than when a smaller 

population is initialised. The higher population density increases the probability 

that an initial individual is close to the global minimum. The reduced distance 

between this initial best individual and the global minimum reduces the number of 

generations required for evolutionary processes to move the best individual into 

the global minimum. Thus larger populations can locate the optimal structure in 

fewer generations than smaller populations. However, each generation every 

individual in the population is systematically selected to act as parent and produce 

a child structure. Thus the number of child fitness evaluations computed during 

the evolution of a population increases as the size of the population increases. 

Evaluating the fitness of an individual is a significantly computationally 

demanding procedure, thus the “rate determining step” of DE is the evaluation of 

the child structures. As a result, larger populations have a higher computational 

demand and take longer to converge in real time than smaller populations. 

Chapter four explores the concept of “eugenic” DE. To increase population 
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density and the probability that an initial individual is near the global minimum, 

the eugenic DE initially explores the landscape with a large population. However 

to reduce the computational demand the eugenic DE reduces the size of the 

population by pruning out the most unfit individuals as the search converges. 

• If X-ray powder diffraction is used to record data for a multiphasic sample 

(containing different crystalline phases), peaks resulting from each of the different 

crystal structures will be observed in the diffraction pattern. The relative intensity 

of a peak corresponding to one phase is proportional to the relative abundance of 

that phase in the mixture of phases. 65-67 If the crystal structures are known, 

structural data for each phase can be combined to simulate a multiphasic powder 

diffraction pattern. Rietveld refinement can then be used to refine the relative 

intensities of peaks corresponding to the different phases and hence determine the 

relative abundance of each of the phases. 66-70 This technique for quantitative 

phase analysis has been applied to various industrial applications where the 

necessary crystal structure data is freely available. 

Previously, iron was produced by mixing and crushing appropriate amounts of 

iron ore, calcium carbonate and coke into a coarse ‘lumpy’ mixture which was fed 

into a blast furnace. However, owing to the depletion of ‘lump’ iron ore and the 

necessary use of ‘fine’ ores this method of production is becoming impractical. 68 

In order to process fine ore, appropriate amounts of fine ore and calcium 

carbonate are combined, finely crushed and ‘baked’ at high temperature 

producing a physically strong sinter which can be crushed into suitable lumps that 

can be mixed with coke and fed into a blast furnace. Silicoferrites of calcium and 

aluminium are an important sinter bonding phase and their composition, structural 

type and texture greatly affect the physical properties of the sinter which in turn 

impact the production of iron. In situ X-ray powder diffraction experiments have 

been used 68 to study the mechanism of formation of the silicoferrite phase in 

order to determine the combination of reaction conditions that produce the best 

sinter. 

Bauxite, (the chief ore from which aluminium is extracted) is a mixture of 

minerals including gibbsite Al(OH)3, boehmite AlOOH, kaolinite Al2Si2O8(OH)4, 

hematite Fe2O3 and goethite FeOOH. Bauxite is processed in the Bayer process 69 
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to produce alumina (Al2O3) which when molten yields aluminium via electrolysis. 

The Bayer process involves dissolving bauxite in concentrated sodium hydroxide 

solution in the temperature range 423-523 K producing a solution of sodium 

aluminate and a suspension of insoluble iron oxides and oxyhydroxides. The 

insoluble material is precipitated in settling tanks and the clarified liquor is 

cooled, precipitating gibbsite which is calcined to produce alumina. However, 

iron oxides and oxyhydroxides seed premature gibbsite precipitation in the 

settling tanks and the formation of various aluminium containing scales on the 

process equipment. This reduces the amount of useful gibbsite that can be 

collected and impedes the flow of liquor through the equipment as well as the 

transfer of heat to and from the liquor, reducing the efficiency of the Bayer 

process. In situ X-ray diffraction experiments 69 have been used to study the 

mechanism of goethite seeded gibbsite precipitation. An understanding of this 

reaction could be used to optimise the reaction conditions of the Bayer process, 

minimising gibbsite losses. 

Portland cement is an important building material and various chemical reactions 

occur during its production and use. 71 Initially appropriate quantities of 

limestone, quartz sand, shale and iron oxide 70 are combined and heated in a kiln 

at ca 1650 K producing a clinker material. The clinker is composed of four major 

phases; alite Ca3SiO5, belite Ca2SiO4 aluminate Ca3Al 2O6 and ferrite Ca2AlFeO5. 
72 The clinker is combined with gypsum and additional limestone in a mill 70 to 

produce Portland cement. Knowledge of the phase composition of the clinker and 

cement can be used to predict the physical properties of the cement 70,71 as well as 

providing information about the efficiency of the manufacturing process. 

Knowledge of the clinker and cement phase composition can be used to control 

production such as kiln temperature, kiln and mill retention time and the feed rate 

of clinker and gypsum into the mill. 70 Previously, analytical techniques such as 

the Bogue method 73 were used to analyse cement composition. However this 

method involves a lengthy analytical procedure 70 which prevents the acquired 

knowledge being used to control the manufacturing process in real-time. X-ray 

powder diffraction combined with Rietveld refinement has been used to analyse 

the clinker and cement phase composition. 70,71,74 The advantage of an in situ X-

ray powder diffraction/Rietveld refinement procedure 70 is that analytical results 
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can be obtained within minutes and used in real time to control the manufacturing 

process. 

However, if a multiphasic powder pattern is recorded and the crystal structures are 

unknown it is not possible using the Rietveld method 66,67 to perform quantitative 

phase analysis. Similarly, if the abundance of each phase in the mixture is 

unknown it is not possible using current techniques to perform crystal structure 

determination. Chapter five explores the technique of simultaneous direct space 

crystal structure solution of two different crystalline phases in a bi-phasic mixture 

using the DE technique and simultaneous quantitative phase analysis by Rietveld 

refinement. 

• Finally, appendix (C) explores coevolution and how coevolutionary strategies can 

be applied to global optimisation algorithms to increase their efficiency at 

locating the optimal solution to a problem. 75,76 A number of strategies that could 

be used to create a cooperative coevolutionary DE suitable for solving the 

structure of molecular crystals are identified and discussed.  
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Chapter 2 Methodology 

2.1 Crystal Structure Determination from Powder Diffraction 
Data 

The process of crystal structure determination from powder diffraction data can be broken down 

into three distinct primary activities: indexing of the powder pattern, structure solution and 

structure refinement. 1 The three stages are carried out sequentially, thus the success of the latter 

stages depends on the success of the preceding ones. 2  Figure 2.1 shows a schematic diagram of 

the process of crystal structure determination. 

 

 

 

 

 

 

 

 

 

Figure 2.1, The Stages of Crystal Structure Determination. (Figure taken from [3]). 

 

2.1.1 Preparation for Structure Solution 
 

2.1.1.1 Indexing 

Indexing involves determination of the unit cell (or lattice) parameters a, b, c, alpha, beta and 

gamma by analysis of the peak positions in the diffraction pattern. Nowadays indexing is largely 

performed automatically, relying on computer programs such as ITO, 4 TREOR, 5 DICVOL 6 

and Crysfire 7 (which brings together many of the programs in the form of a suite) to identify 

potential lattice parameter solutions for a powder diffraction pattern. These programs usually 
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require a minimum of 20 non-overlapped diffraction peaks to generate possible reliable unit 

cells. However, due to the peak overlap intrinsic to powder diffraction, indexing of powder 

patterns can often be difficult, and as it is not possible to perform structure solution and structure 

refinement until the pattern has successfully been indexed, severe peak overlap which prevents 

indexing can make determination of the crystal structure impossible. 

The indexing of a powder diffraction pattern can also be treated as a global optimisation 

problem. A genetic algorithm 8 has been successfully used to index powder diffraction patterns. 

The GA generates a population of possible unit cells. Unit cells are generated with random lattice 

parameters and the value of the parameters define the chromosomes of each unit cell. A powder 

diffraction pattern is simulated for each unit cell and compared using a cost function based on 

Rwp with the powder pattern recorded for the real sample. In this way the fitness of each unit cell 

in a population is assessed. The unit cell that is assigned an R factor with the lowest value 

represents the current best model unit cell. By evolving the population of unit cells the GA can 

optimise the lattice parameters and determine a more realistic unit cell. Because a cost function 

based on Rwp is used to compare simulated and real powder patterns peak overlap is taken into 

account. Thus this technique can be used to index powder diffraction patterns that display 

considerable peak overlap. 

 
2.1.1.2 Determination of Space Group 

The space group is determined by identifying peaks that are absent from the diffraction pattern. 

If groups of peaks are systematically absent from the pattern it suggests that the crystal structure 

adopts a specific space group or choice of space groups. 1 Knowledge of the space group can be 

used to determine the contents (the number of independent molecules) in the asymmetric unit 

and symmetry elements that can aid the structure solution. If a molecule is located on a ‘special’ 

position (for example a molecular centre of inversion coincides with a crystallographic centre of 

inversion) the molecule has no translational degrees of freedom and only half the structure need 

be solved as the structure of the other half can be inferred through symmetry. Determination of 

the space group reduces the complexity of the structure solution even when the molecule is not 

located on a ‘special' position. If the unit cell contains multiple asymmetric units, structure 

solution can be used to locate the molecule within one asymmetric unit and the position of the 

molecules in the other asymmetric units determined through symmetry. 
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2.1.1.3 Profile fitting 

Once the lattice parameters and space group have been determined, the Le Bail profile fitting 

technique 9 or Pawley fitting approach 10 is used to prepare the intensity data needed to solve the 

crystal structure. The purpose of the Le Bail technique is to fit (generate a mathematical 

description of) the diffraction pattern by refinement of profile variables that describe the pattern. 

These variables include peak position (defined by lattice and zero point parameters), background 

intensity distribution, peak width and peak shape and peak intensity. Unlike the structure 

refinement process where peak intensity is generated by atomic positions, the Le Bail technique 

treats these as variables. The values of the lattice parameters determined by the indexing 

procedure are initially used to fit the pattern, however, as the Le Bail fitting procedure considers 

peak shapes as well, it determines the lattice parameters with greater accuracy, thus the 

subsequent direct space structure solution stage uses these more accurate values to generate the 

unit cell. Once a good Le Bail fit (usually indicated by an Rwp factor of < 10%) has been 

achieved, the values of the refined lattice and profile parameters can be used in the structure 

solution stage to simulate accurate powder diffraction patterns for each computer generated 

model of a crystal structure. In traditional crystal structure solution approaches, this stage also 

generates a set of extracted integrated intensities through the peak fitting routine. These 

intensities are then used to generate a structure solution through direct methods or can be used to 

calculate chi-squared through direct-space methods. 

 

2.1.2 Structure solution 

The purpose of crystal structure solution is to develop a sufficiently accurate model of the crystal 

structure that can be refined, during the structure refinement stage, to a good representation of 

the real crystal structure. 

The Le Bail fit is achieved without placing any scattering matter inside the unit cell and hence 

the R factor assigned to the Le Bail fit indicates how well that pattern can be fitted. The R factor 

assigned to the Le Bail pattern will be less than the R factor assigned to a model that is a good 

representation of the real crystal structure, but will be significantly less than the R factor assigned 

to a model that is a poor representation of the real structure. Thus the R factor assigned to a 

model found during the structure solution stage can be used to indicate the quality of the model. 
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Due to the peak overlap in powder diffraction patterns it is not always possible to identify one 

group of systematically absent peaks and assign a unique space group to the crystal structure. 1,2 

If multiple space groups are possible, it is necessary to perform the structure solution stage with 

each possible space group in order to determine which space group gives the best model. 

Once a good Le Bail fit has been achieved, scattering matter is introduced into the refined unit 

cell through the structure solution process. In the work discussed in the following chapters, 

structure solution is performed using the DE algorithm implemented in the POSSUM package 11 

to generate model structures, and the Rietveld refinement 12 feature of the GSAS package 13 to 

evaluate the models. 

The POSSUM package uses the provided information about the molecular connectivity to 

assemble the appropriate number and type of atoms into a model structure. This model is 

generated and sometimes optimised in terms of molecular geometry within ChemOffice Chem 

3D. 14 Although in reality sigma and pi bonds are of different lengths, during this model 

generation step one ‘standard’ bond length is specified. Thus for example the standard C-C bond 

length used in POSSUM = 1.6Å, the standard C-O bond = 1.45Å and the standard C-N bond = 

1.55Å. This model is placed in a random position and orientation, and if appropriate, 

conformation inside the unit cell. The individual parameters quantifying the degrees of freedom 

describing the model are assembled into a chromosome string and stored in the differential 

evolution program. The Rietveld refinement application of GSAS is then used to simulate a 

powder diffraction pattern for the model and compare it with the real powder pattern. The R 

factor value is then associated with the chromosome string and represents the fitness of that 

model. 

The POSSUM package continues to generate models in this way until the differential evolution 

has stored a population containing the designated number of models, each with an associated 

fitness value. Once the population contains the required number of models, evolution of the 

population is initiated and continues until convergence of the population and completion of the 

optimisation so that each model in the population has an R factor with the same value. At this 

point it is assumed that all model structures are identical and that the optimum structure solution 

has been found. This crystal structure can then be used as a starting point in the structure 

refinement stage to determine the final real crystal structure. However, this final stage of the 
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process is often only pursued if the model makes structural ‘sense’ (if intermolecular distances or 

intramolecular torsions are as expected), if the model has a reasonable R-factor (based on the Le 

Bail fit value) and a similar optimum structural model has been located in more than one DE run. 

 
 

2.1.3 Structure refinement 
 
During structure refinement, the variables defining the simulated powder diffraction profile and 

structural variables defining the model are refined to achieve an optimal fit between the 

diffraction pattern simulated for the model and the pattern recorded for the real sample. The fit 

between the simulated and real patterns is refined using the least squares technique. 12 The two 

patterns are digitised so that the difference between the simulated and real intensities at each 

point is calculated. The Rwp cost function is commonly used to quantify the difference between 

the simulated and real patterns using the following equation. 

      (2.1) 

During least squares minimisation, the variables defining the simulated profile and structural 

model are adjusted to minimise the total difference in the intensities at each point in the 

corresponding real and simulated patterns. In this way the model is refined to a more accurate 

representation of the real crystal structure. 1,2,12 Although the fit between the simulated and real 

patterns is commonly quantified by Rwp 
12 other R-factors can be used such as RB. 15  Some 

packages that can be used to perform Rietveld refinement include; GSAS, 13 RIETAN, 16 

PROFIL, 17 FULLPROF, 18 DBW 19 and TOPAS. 20 

The structural variables refined during this least squares minimisation are not the same variables 

optimised during the structure solution approach used in this work. During structure solution, 

interatomic bond lengths and bond angles are fixed at predetermined values and the model is 

treated, where possible, as a collection of rigid fragments that are moved about the unit cell. 

During structure refinement, the constraints on bond lengths and geometry are relaxed so that the 

model can be refined to actual real values of the structure under consideration. 1, 2 This relaxation 

has a major effect on the improvement of the profile fit, but often relies on restraints being used 

Rwp =
w Iobs− Icalc( )2

∑
w Iobs( )2

∑
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in the structure refinement. 21 Despite this significant effect on the fit, it is still more efficient to 

reduce the number of variables in the structure solution process by consideration of rigid 

fragments where possible, although a combination of the two has been used. 22 This structure 

determination strategy uses a genetic algorithm to perform structure solution and Rietveld 

refinement to refine each model in the population after each generation. The GA explores the 

Rwp fitness landscape using a population of model structures and controls the evolution of the 

population using conventional (crossover, mutation and Darwinian survival of the fittest) 

operations. However, refinement of the parameters defining each model after each generation 

allows each model to locate the bottom of the nearest local minimum after each generation. Once 

a model has been refined, it is placed back into the population where it can contribute genetic 

information to the rest of the population in the next generation. This evolutionary strategy 

represents Lamarckian evolution. “In the Lamarckian concept of evolution, characteristics that 

are acquired by an individual in the course of its lifetime can be passed on to its offspring. In 

Darwinian evolution on the other hand, the genetic characteristics passed on by a parent to its 

offspring are those that the parent itself possessed when it was born”. 22 Thus a model does not 

necessarily locate the global minimum by evolutionary processes alone. As the refinement of a 

model allows it to reach the bottom of the nearest local minimum, a model evolved by the GA 

that locates the top of the global minimum can reach the bottom in one Lamarckian step rather 

than relying on evolutionary processes to move the model to the bottom of the global minimum 

(which is likely to take multiple generations). This combined structure solution and structure 

refinement strategy can potentially determine a crystal structure in fewer generations than a GA 

using conventional crossover, mutation and Darwinian survival of the fittest operations. 

The ability of Rietveld refinement to determine an accurate crystal structure relies on the 

accuracy of the variables used to fit the powder profile and the model located during structure 

solution. In general terms, as long as half the scattering matter in the structural model located by 

structure solution is within 1Å of the position of the atoms in the real structure, Rietveld 

refinement is expected to be successful. 23 However, if the model is a poor representation of the 

real crystal structure, the refinement can become trapped in a local minimum during the least 

squares refinement or 'explode' as structural variables are refined to incorrect values. As 

discussed above, geometric constraints are often used to prevent the model from adopting 

implausible conformations and to ensure that atomic intramolecular distances are realistic. This 
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reduces the probability that the least squares minimisation is trapped in a local minimum or 

destroys the model and increases the probability of successful refinement. 

As protons are weak X-ray scatterers, the location of hydrogen atoms in the crystal structure has 

limited influence on the profile of the diffraction pattern. During structure solution, the small 

difference between the simulated and experimental diffraction patterns caused by the incorrect 

location of hydrogen atoms is obscured by the considerable difference between these patterns 

caused by the incorrect location of the non-hydrogen atoms within the structural model. Thus if 

the cost function used to evaluate model structures during structure solution is based only on 

profile fitting such as Rwp, it is difficult to determine the position of hydrogen atoms in the 

crystal structure. As a result, structure solution is often performed using incomplete models from 

which many of the hydrogen atoms have been removed. However, if the structure solution 

locates a model which is a good representation of the real crystal structure, the non-hydrogen 

atoms will be in roughly the correct location, thus the difference between simulated and 

experimental patterns caused by the incorrect location of hydrogen atoms becomes more 

obvious. During structure refinement, the hydrogen atoms that have been excluded from the 

structure solution can be returned to the model and their correct position in the crystal structure 

determined. 

 

2.2 Differential Evolution 

Differential Evolution is a vector based global optimisation algorithm that self regulates the area 

of landscape searched during each generation according to the extent of convergence of the 

population. Unlike GAs (see section 1.5) in which parameter values (chromosomes) of selected 

individuals are combined to create child structures, DE uses the "differences" between 

chromosomes possessed by individuals to create a child. 24 Therefore, as the population 

converges on the global minimum and the genetic differences between individuals decrease, the 

area of landscape in which children are created decreases concomitantly. Furthermore, the DE 

algorithm does not use probability functions to control evolutionary operations such as mutation 

and parent selection, instead the population of individuals is evolved using a small number of 

arithmetic operations. This makes it easier to find the optimal combination of parameters used to 

control the operation of DE 25 and so DE is more easily adapted to the optimisation of a variety 
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of problems than GAs which are usually more complex to implement and control. In DE, ‘child’ 

solutions are created from parent ‘solutions’ using two main arithmetic operations. These 

operations are; a) recombination (which is analogous to the crossover operation used by GAs) 

and b) mutation. These two arithmetic operations are each controlled using a separate control 

parameter, recombination K and mutation F. Since K and F are each independently assigned a 

value by the user between zero and one the user can adapt the optimisation to suit different kinds 

of problems by using different combinations of K and F. 

Differential evolution has been used in a wide variety of applications including optimisation of 

the design of digital filters, 26 industrial heat exchangers, 27 chemical reaction conditions 28,29 and 

in the determination of the crystal structure of proteins 30 and the crystal structure of disordered 

crystals. 31 

 

2.2.1 Defining the Structural Model 
 

In this implementation of DE 11 (used to solve the structure of molecular crystals from powder 

X-ray diffraction data), the first procedure is the generation of a population of model crystal 

structures. Each model is defined by a set of structure parameters each of which is assigned an 

appropriate but random value. Parameters that correspond to crystallographic fractional 

coordinates used to define the position of the model inside the unit cell are each assigned a 

random value between zero and one. Parameters that define the overall orientation of the model 

inside the unit cell are each assigned a random value between zero and 360°. If the molecular 

structure possesses intramolecular flexibility, torsion parameters are used to define the relative 

orientation between the rigid molecular fragments. If steric factors do not hinder the rotation of 

these fragments, or prior knowledge of potential conformation is not applied, each torsion 

parameter is assigned a random value between zero and 360°. If the rotation of the fragments is 

sterically hindered or prior knowledge is available, this can be incorporated into the structural 

model by limiting the range of values of the torsion parameters. 

 

2.2.2 Controlling Population Size 
 

The performance and efficiency of DE is significantly affected by the dimensionality of the 
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landscape. 25, 32 When DE is used to solve a crystal structure, the dimensionality of the problem 

is determined by the number of parameters needed to define a model. A rigid model (such as that 

representing the structure of benzene) possessing three translation and three orientation 

parameters would generate a landscape with six dimensions. The addition of a rigid functional 

group (such as the double ring system of baicalein) would increase the total number of structure 

parameters and landscape dimensions to seven (as shown in Figure 2.2). For reasons that are 

demonstrated in the next chapter (chapter 3) it is sometimes necessary to use larger population 

sizes to successfully optimise complex problems which require description by a greater number 

of structure parameters. As the complexity of a problem is largely dependent on the number of 

structure parameters to be optimised, it is logical to regulate the size of a population by the 

number of structure parameters. In this implementation of DE the size of a population (NP) is 

defined as a simple multiple of the number of structure parameters. Results discussed in chapter 

3 show that for most searches to have a high probability of solving a crystal structure a search 

should use a population containing at least 10 times as many models as parameters defining the 

model. Thus a crystal structure solution that requires a model defined by seven parameters 

should be performed by a search using a population size of 7 x 10 = 70 models. 

 

 

 

 

 

 

 

 

 

Figure 2.2, Structural models of benzene (left) and baicalein (right). 
 
 

2.2.3 Recombination and mutation parameter 
 

The recombination parameter K and the mutation parameter F are assigned values between zero 

and one. (It is not necessary for K and F to have the same value). Previous work 11 has shown 
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that a K of one causes a search to converge rapidly but this can increase the probability that the 

search converges prematurely in a local minimum. However, assigning K a value of 0.99 reduces 

the probability of premature convergence whilst maintaining a fast rate of convergence. The 

mutation constant F is usually assigned a value in the range 0.4-0.7 for this application of 

structure solution. Increasing the value of F reduces the probability that a search converges 

prematurely in a local minimum but increases the number of generations required by a search to 

converge. 
 

2.2.4 The search 
 

The search proceeds in a series of generations. During each generation, each model is 

systematically selected to act as a parent P, and each parent produces one child, C, per 

generation. To reduce the rate at which the genetic diversity of a population is lost, three new 

random individuals, R1, R2 and R3, are selected in each case to assist each new parent in the 

creation of a child. 

A child (or trial) is created by the sum of a pair of vectors joining the parent and the three 

randomly selected individuals (as represented by figure 2.3). The first vector of the pair 

represents "recombination" of genetic material from two individuals and is calculated from the 

parent P to the first randomly selected individual R1. The second vector represents "mutation" of 

that genetic material to ensure that the child is sufficiently different from its parent to avoid 

premature convergence. The mutation vector is calculated from the second randomly selected 

individual R2 to the third randomly selected individual R3. The child is then defined using the 

following expression. 

 
trial = parent + K(random1 - parent) + F(random2 - random3)  (2.2). 

 

In this way, a recombination vector (first term) and a mutation vector (second term) are 

calculated. The direction of the recombination vector is determined by the difference between P 

and R1, and its length determined or scaled by the value of the recombination parameter K. The 

direction of the mutation vector is determined by the difference between R2 and R3, and its 

length scaled by the value of the mutation parameter F. The child is created in a multi-

dimensional space by simultaneous variation of all the structural parameters used to define the 
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Figure 2.3, Representation of a parent P and three random individuals R1, R2 and R3 in a two-dimensional 

landscape creating a child C. The figure shows that the parent and random 1 individual are joined by a 
recombination vector and the remaining random 2 and 3 individuals are joined by a mutation vector. (Figure taken 

from [3]). 
 

parent and three random models through addition of these two vectors (scaled using K and F 

respectively) from the parent position. 

The fitness of the child is assessed by the cost function (in this work Rwp), and if Rwp child - Rwp 

parent <= zero, the child immediately replaces the parent as an active (breeding) member of the 

population. Hence, as soon as a "better" solution to a problem is found, it can immediately 

contribute genetic information to the rest of the population. 3 This is another way in which DE 

differs from GAs in which a population is updated with better solutions only at the end of each 

generation.  If Rwp child - Rwp parent > zero the child is discarded and the parent retained. 

The length of the recombination and mutation vectors are determined by the distance between 

the models selected as P, R1, R2 and R3. As models cluster together the distance between four 

models selected as P, R1, R2 and R3 decreases. Thus, although the values of K and F remain 

constant throughout a search, the length of the recombination and mutation vectors decrease 

automatically as a search progresses. During the initial generations of a search there is a high 

probability that models selected as P, R1, R2 and R3 will be spread over a considerable area of 

the landscape and that the recombination and mutation vectors will be long. As a result a child is 

likely to be created at a considerable distance from the parent. If the child is fitter than the parent 

the search can rapidly move to a distant part of the landscape by accepting the child. This 
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increases the probability that a search initially explores a significant area of the landscape and 

locates the global minimum. During latter generations of a search (when many models are 

clustered around the global minimum), there is a high probability that models selected as P, R1, 

R2 and R3 will be spread over a much smaller area of the landscape. Consequentially the 

recombination and mutation vectors joining four models selected as P, R1, R2 and R3 will be 

significantly shorter. This increases the probability that a child is created much nearer the parent. 

If the child is fitter than the parent it indicates that the child is likely to be nearer the global 

minimum than the parent and the search can move slightly nearer the global minimum by 

accepting the child. Thus without changing the values of K and F, a DE search can initially 

rapidly explore a significant area of the landscape and once models cluster around the global 

minimum the search can conduct a detailed exploration of the global minimum and locate the 

optimal solution. 

 

2.2.5 Terminating a search 
 

A search continues until a termination criterion is reached. Ideally a search is terminated 

automatically when all the model structures converge on the global minimum. The model that is 

located at the global minimum is the model structure that produces the simulated diffraction 

pattern most like the pattern recorded for the real crystal structure. Thus the model located at the 

global minimum is the best possible representation of the real crystal structure that can be found 

by structure solution. The successful convergence of the population on a single point is indicated 

by all models being assigned an R factor of the same value. However if a search fails to locate 

the global minimum (solve the crystal structure) in a convenient number of generations, the 

search can be aborted by using the control parameter Gmax. Gmax can be used to specify the 

maximum number of generations allowed for a search. If a number of individuals become 

irrevocably trapped in different local minima it is likely that a search will not converge and 

hence will fail to solve the crystal structure. If this happens a search will be aborted after Gmax 

number of generations. 

If a search is conducted using an insufficient rate of mutation it is likely that the genetic diversity 

of a population will decrease rapidly and cause the search to converge prematurely in a local 

minimum. Even though all the models are assigned an R factor of the same value it does not 
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necessarily indicate that the optimal solution has been located. In order to prove that a search has 

converged in the global minimum and that a model that has been assigned an R factor with a 

particular value is the optimal solution it is necessary to perform multiple DE runs to solve one 

crystal structure. As the models in the initial population are generated at random, initiating 

multiple DE runs decreases the probability that a search converges in the same minima. 

Increasing the value of F decreases the rate at which genetic diversity of a population is lost and 

thus decreases the probability that a search converges prematurely in a local minimum. If 

multiple DE runs using different rates of mutation all converge and locate models that are 

assigned an R factor with the same value it suggests that the models are in fact the optimal 

solution. 

 

2.2.6 Landscape Boundaries 
 

Since DE is a vector based search, the child structure can be generated in an area of the 

landscape that is some distance from the four individuals used to create it, or in a portion of 

landscape that corresponds to parameter values outside the defined limits of the problem. 3,11,27,32 

In direct space structure determination, these parameter values may correspond to space outside 

the unit cell eg less than zero or more than one, rotational space less than zero or more than 360° 

or, due to steric hindrance, physically impossible conformations of the molecular structure. 

Although in this crystallographic application, areas outside the original unit cell and the 

rotational space can be considered as equivalent these sensible boundaries to the landscape 

maintain control over the parameterisation and enhance efficiency. To maintain the child 

structures within the landscape, DE invokes "boundary" conditions. This ensures that stray 

children are placed back into the area of interest i.e the landscape corresponding to the unit cell 

with the added advantage that sensible limits can be placed on internal torsion parameters so that 

prior information can be included in the search, without the disruption of pathways between 

parent and child. 

The simplest "reset" approach is to place a child half way between the parameter value of the 

parent and the boundary value that has been exceeded. 3 This median-point reset function (as 

represented in figure 2.4) has been found to be more successful than a more complex, scaled 

reset, in which the distance a child is placed back inside the boundary is proportional to the 
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distance a child exceeds the boundary. 3 

 

 
Figure 2.4, A child that has exceeded a certain boundary is replaced half way between the parent and the boundary. 

(Figure taken from [3]). 
 

The use of fixed boundaries and the inherent rescaling of the recombination and mutation vectors 

as a search converges leads to passive confinement of a population. However, active 

confinement, in which the boundaries are driven inwards upon the converging population, can 

accelerate the rate of convergence. For example, by the reduction of the amount of 

intramolecular rotational freedom so that children are prevented from inheriting unfavourable 

structural configurations that have previously been evaluated and rejected. 33 Such active 

confinement requires the provision of additional boundary information by either previous studies 

or information provided by the optimisation itself, 33-35 i.e provided by previous generations to 

tell the DE where in the landscape the model structures are clustering and which boundaries can 

be most effectively moved to enhance efficiency. 

 
 

2.3 Cultural Differential Evolution 
 
The notion of guiding the evolution of the individuals in the current generation of a search 

towards the global minimum by using knowledge acquired by individuals during previous 

generations has been likened to human culture, 3,26,33-35 where the behaviour of individuals is 
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influenced by social trends, that are set by influential members of the population. 

Cultural evolution algorithms maintain two distinct search spaces: population space and belief 

space. Population space stores the parameters of the individuals used to optimise the problem 

while belief space stores the behavioural traits of previous generations. An effective cultural 

algorithm requires a method of transmitting information between the population and belief 

spaces. This function must specify the effect of an individual's experience on the belief space, 

and the influence of belief space on the evolution of the population. Thus, both belief space and 

population space are constantly adapting due to the influence of the other. 

In our implementation of cultural differential evolution, 3,33 population space stores the 

parameters used to define the model structures and belief space stores information about where 

in the landscape these model structures are located. The information stored in the belief space is 

used to control the position of the boundaries that define the population space. When the belief 

space detects clustering of individuals in particular areas of the landscape the position of the 

boundaries are adjusted to confine the search so that individuals can only explore the areas of the 

landscape with a high population density. This implementation of CDE is relatively simple 

compared to the implementation developed by Becerra et al. 36 where the belief space is divided 

into four distinct knowledge sources that influence the population space in different ways and 

additional functions control which knowledge source(s) have the greatest influence on the 

population. 

In the Becerra et al. implementation of cultural differential evolution, 36 belief space is divided 

into situational, normative, topographical and history knowledge sources. Acceptance and 

influence functions control how information is transmitted between the population and belief 

spaces respectively. 

The acceptance function is used to control how many individuals in a single generation can 

transmit information from the population space to the belief space. At the start of a search, a 

default number of accepted individuals can transmit information to the belief space. As the 

search progresses, the number of accepted individuals is decreased, however if the best 

individual does not change for a defined number of generations the number of accepted 

individuals is increased to the default. At the start of a search the influence function has an equal 
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probability of selecting each of the four knowledge sources to affect the evolution of the 

population. As the search progresses the influence function selects a knowledge source with 

greater probability if the knowledge source causes a greater number of parents to be replaced by 

fitter children relative to the other knowledge sources. In this way, the influence function learns 

which knowledge sources, if selected, are more likely to cause a search to converge rapidly. 

The situational knowledge source is continuously updated with the best individual that has been 

located by the search. If situational knowledge is used to affect the evolution of a population, the 

recombination vector (that is used to create a child) is calculated from a parent to the current best 

individual that is stored in the situational knowledge: referring to equation 2.2 in section 2.2.4 

this would mean that R1 is replaced with the current best individual. In effect, this pushes a child 

towards the best point on the landscape. 

The normative knowledge source uses the landscape boundaries to store information about areas 

of the landscape where relatively fit individuals are clustering. This knowledge source also 

controls a scale factor that can be used to scale the mutation function and influence how far a 

child is created from the parent. At the start of a search, each pair of dimension-specific 

landscape boundaries are placed in their respective default positions. After each generation, the 

position of the children accepted to transmit information to the belief space in each dimension in 

the landscape is collated. If all accepted children are located inside the boundary pair, these 

boundaries are adjusted inwards, whereas if some children are outside the boundary pair the 

boundaries are adjusted outwards. The distance between a pair of boundaries is also used to 

calculate a dimension-specific scale factor used to adjust the mutation function. Thus as a search 

converges, children cluster on one small area of landscape, the boundaries are adjusted to lie 

close to either side of the children and therefore a small dimension scale factor will be 

calculated. During the next generation the mutation vector will be short and hence a child will be 

created close to the parent and have a high probability of being created inside these boundaries. 

The topographical knowledge is used to generate a map of significantly fit individuals in the 

landscape. Each dimension of the landscape is divided into 'cells' and the position of the best 

model in each cell is recorded. If the topographical knowledge is selected by the influence 

function to affect the evolution of the population, children that are generated inside a particular 

cell are encouraged to move towards the best individual. 
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The history knowledge stores information about the position of an individual if it remains the 

best individual for a specified number of generations. If a search fails to locate a better solution 

within this number of generations, it suggests that the current best individual occupies a 

minimum. However, without a systematic search of the whole landscape it is not possible to state 

that the best individual is located in the global minimum. If an individual remains the ’best’ 

individual for a specified number of generations, the influence function is then used to decrease 

the probability that children are created near the best individual, thus encouraging the search to 

explore the landscape further and locate a better solution. 

Our implementation of cultural differential evolution (CDE) 3,33 combines the ideas of population 

and belief space using a less complex approach based loosely on the idea behind the normative 

knowledge source and the movement of boundaries within the search. In the CDE method used 

here, areas of the landscape which have a high population density (where models are clustering) 

are determined by collating the position of the children in the multi-dimensional landscape. 

Areas of the landscape with a low child population density determined by the ‘population under 

threshold’, parameter NUT, are then removed and the search is prevented from exploring these 

areas. During each generation, the position of each child on the landscape is recorded regardless 

of whether the child has a higher fitness value than the parent and accepted, or a lower fitness 

value than the parent and rejected. At the end of each generation, the CDE determines where in 

the landscape the children created during the present generation are clustering. The positions of 

all the children are determined by sorting and analyzing the structure parameters defining each 

child structure. The position of a child in each dimension of the landscape is defined by a 

dimension-specific structure parameter. Thus the position of the children in an N-dimensional 

landscape is stored in an N-dimensional record. After each generation, the values of the structure 

parameters in each dimension of the record are placed in sequence of increasing value and the 

sorted values are then placed into histogram bins. 3,33 Figure 2.5 shows the distribution of 

parameter values used to define the x fractional coordinate of 70 models. The 70 parameter 

values have been sorted into a total of 22 histogram bins. The maximum and minimum values of 

the histogram bins at each end of the distribution of parameter values are defined by the current 

maximum and minimum values of the dimension specific landscape boundaries: thus each bin 

represents a defined area of one dimension of the landscape. The number of bins is constant 

throughout a search thus the number of parameters in one bin can be used to determine the child  
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Figure 2.5, the distribution of parameter values representing the x fractional coordinate of 70 model structures 
across 22 histogram bins.  Bins are removed from each end of the distribution until four individuals have been 

pruned from each end of the distribution. One bin is then reinstated at each end.  (Figure taken from [33]). 
 

population density in each area of each dimension. This approach in which the boundaries of 

each parameter are treated independently is significantly different from the rest of the DE 

process in which the changes in all the parameters are treated simultaneously. 

Bins are removed from each end of the distribution until the number of children that have been 

removed from each end of the distribution is equal to the value of the user-defined cultural 

pruning parameter NUT. 3,33 One bin is then restored to each end of the distribution to prevent 

aggressive pruning. The maximum and minimum parameter values of the pruned distribution 

specify the new maximum and minimum values of the dimension specific landscape boundaries. 

In this way children generated in the next generation are prevented from exploring areas of the 

landscape in which (during the current generation), few children clustered. Figure 2.5 shows a 

distribution of 70 parameter values across 22 histogram bins where the 'under population 

threshold' NUT is equal to 4. Therefore, in this example bins at each end of the distribution are 

removed until four individuals have been pruned from each end of the distribution. When a 

population is created, all boundaries are placed in their respective default positions, thus 

parameters that correspond to crystallographic fractional coordinates used to define the position 

of the model inside the unit cell are each assigned a random value in the range zero and one. In 

this example, after only 80 generations, the population space is pruned so that the value of the 

parameter that corresponds to the crystallographic x fractional coordinate can only be assigned 
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Figure 2.6, The maximum and minimum parameter values of the pruned distribution specify the new maximum and 

minimum values of the dimension specific landscape boundaries as shown in the blue line.  The distribution of x 
coordinate values is denoted by a red dot for each member of the population.  (Figure taken from [33]). 

 

values in the range 0.2-0.7 (figure 2.6). 

The record of the positions of the children is deleted after each generation so that each generation 

is only influenced by the position of the children created during the immediately preceding 

generation. As a search begins to converge, the parameter values (representing cultural trend 

setters) cluster together into distinct groups and occupy a small number of histogram bins, 

leaving social "outliers" to sparsely populate the remaining bins covering the rest of the 

landscape. Thus, during a search, progressively more bins are removed and a search is 

increasingly confined to only explore the area of the landscape with a high population density. 

Increasing the value of NUT increases the probability that a greater number of bins are removed 

at any one time. Thus increasing the value of NUT increases the rate at which a search is 

confined. Confining a search to a smaller area of landscape increases the probability that a search 

converges after a smaller number of generations. 

In this thesis, traditional differential evolution (without cultural guidance) and cultural 

differential evolution searches have been used to solve previously determined crystal structures. 

Chapter 3 examines the effect of using different combinations of F (mutation), NP (population 

size) and NUT (cultural pruning) control parameters on DE and CDE searches used to solve 

different crystal structures. 
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2.4 Accelerating Evolution by Eugenic Population Pruning 
 

The results presented in chapter 3 demonstrate that searches using larger population sizes solve 

the crystal structure (locate the global minimum) in fewer generations than searches using 

smaller population sizes. This is because larger population sizes create higher population 

densities in the landscape. For a particular optimisation problem the size of the landscape is 

determined by the number and range of the parameters defining a structural model. When larger 

populations are initialised in a particular landscape, the landscape will have a higher population 

density than when a smaller population is initialised. As these models are generated at random, 

an increase in the population density results in an increase in the probability that an initial model 

is generated close to the global minimum. The reduced distance between the initial best model 

and the global minimum then reduces the number of generations required for the evolutionary 

processes to optimise this initial best model. However, searches using larger population sizes are 

significantly more computationally intensive than those using a smaller population size. As every 

model in the DE population is systematically selected in each generation to produce a child 

structure, the number of child structure fitness evaluations required increases with the size of the 

population. As the Rietveld fitness calculation is the most computationally demanding procedure 

(in this work it is ‘the rate determining step’ of direct space crystal structure solution), a search 

using a larger population takes significantly longer in real time to solve the crystal structure than 

a search using a smaller population. In summary, optimisation using a larger population can 

solve the crystal structure in fewer generations but smaller populations solve the crystal structure 

in less real time. 

In order to address these conflicting requirements for efficiency of the search algorithm, this 

thesis presents the development and application of the ‘Eugenic’ DE method. The Eugenic DE is 

a search technique that exploits the greater searching capacity of large populations and the ability 

of small populations to solve a crystal structure with significantly less computational effort. 

 

Eugenics, noun. ’The science of improving stock, whether human or animal’. 
Webster Unabridged Dictionary. (1913). 

 

Eugenics, noun. ’Selective breeding as proposed human improvement’. 
Encarta pocket dictionary. Microsoft Corporation. (1999). 

In nature, due to predation or disease, the probability that an offspring individual reaches 
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maturity and breeds is low. Thus many more offspring are created than is actually needed for the 

survival of the species. By initially generating a large population that contains many more 

models than can be practically evolved to convergence and discarding over 90% of the models 

that are assigned the lowest fitness, the Eugenic DE mimics natural evolution and survival of the 

fittest more closely than other search techniques that evolve a population of constant size. 

The Eugenic DE technique itself is very simple. A search using a large (primary) population is 

initially used to explore the landscape and through the production of models with high fitness 

values, identify deep minima. Once a sufficient number of models with high fitness have been 

located, the majority of the most unfit models are pruned out of the primary population. This 

leaves a smaller (secondary) population that contains a high proportion of highly fit individuals 

that are likely to be close to the global minimum. The secondary population is used to explore 

the landscape using the traditional DE approach and hence solve the crystal structure. However, 

the secondary population is now biased towards the area of landscape that contains the fittest 

individuals, resulting in what should be a more efficient search. A similar approach has been 

employed, 37 to significantly reduce the number of fitness evaluations calculated during searches 

based on particle swarm optimisation. 

Particle swarm optimisation (PSO) developed in the 1990's 26,38 uses a search technique inspired 

by the collaborative 'swarm' behaviour of biological populations such as flocks of birds or 

schools of fish. In PSO, a population of individual 'particles' is generated in a landscape and each 

particle is 'flown' through the landscape in a series of generations to locate the optimal solution. 

In each generation, the direction and speed of flight of each individual is calculated using 

information about the current position of the individual, its position in previous generations and 

the current position of the best individual. Hence unlike DE and GA techniques, PSO 

intrinsically uses historical knowledge to influence a search. The position of each individual 

changes in each generation, hence for a swarm of NP individuals that is allowed to evolve for G 

generations, NP x G fitness evaluations are calculated during a search for the optimal solution. 

Variation of the number of individuals in a population is found to decrease the total number of 

fitness evaluations calculated by a PSO search. 37 One search technique initially explores a 

landscape with a small population and increases the number of individuals in the population as 

the search converges on the optimal solution and the average fitness of the individuals increases. 
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The second technique initially explores the landscape with a large population and periodically 

prunes individuals with the lowest fitness from the population. Both search techniques reduce the 

total number of fitness evaluations during a search by approximately 60% compared to a PSO 

using a population of constant size. However, the search that increases the number of individuals 

in a population is significantly less likely to locate the optimal solution than a PSO using a 

population of constant or decreasing size. 37 Initial exploration of a landscape with a small 

population increases the probability that a significant proportion of the individuals cluster in a 

local minimum and are assigned a relatively high fitness value. If the size of the population is 

then increased as the search progresses by the generation of new individuals in random positions, 

the new individuals are more likely to be assigned lower fitness values than the individuals 

clustered in the local minimum. As a result, the new individuals are more likely to travel towards 

the local minimum rather than explore the landscape and locate the global minimum. The second 

approach in which the number of individuals in the population is decreased is more likely to 

locate the optimal solution because the large initial population increases the probability that one 

or more individuals rapidly locate the global minimum and are assigned a relatively high fitness 

value. These individuals then attract the rest of the population towards the global minimum. 

Periodic pruning of the individuals that are assigned the lowest fitness values reduces the number 

of individuals in the population and hence the total number of fitness evaluations calculated 

during the remainder of the search. 

However, the PSO in which the population size is reduced differs from our eugenic DE in two 

significant ways: the eugenic DE reduces the size of a primary population in one 'massive 

pruning event' rather than multiple smaller ones as used by the PSO approach, 37 and the eugenic 

DE prunes the primary population once a certain portion of the individuals in a primary 

population are assigned a relatively high fitness value, rather than after an arbitrary number of 

generations. 

The results from this new eugenic DE approach are discussed in chapter 4 and demonstrate that 

the DE using a eugenic adaptation is able to solve a crystal structure with high probability, whilst 

calculating the fitness of significantly fewer children than a traditional DE search using a 

population of constant size. Thus the eugenic DE can solve a crystal structure in significantly 

less real time than a traditional DE search. 



58 

 

2.5 Simultaneous SOLUTION of Multiple Crystal Structures 
and Quantitative Phase Analysis from MultiPhasic 
Diffraction Data. 

 
When a new crystalline material is synthesised, it may not be possible to prepare a pure 

crystalline sample without any trace of impurity or additional phase. This is often the case in 

molecular cocrystal engineering. The technique of cocrystal engineering can be used to improve 

the biopharmaceutical properties of an active pharmaceutical ingredient (API), by cocrystallising 

the API with other biologically inert crystalline materials. If the individual starting materials are 

not combined in perfect stoichiometric quantities, either by experimental error or intentionally as 

a method of forcing the formation of a particular product with a certain stoichiometry, the 

desired product may crystallise simultaneously with quantities of unreacted starting material or 

new crystalline bi-products. Lamotrigine (6-(2,3- dichlorophenyl)-1,2,4-triazine-3,5-diamine), is 

one example of an API with poor physical properties. It is used primarily as an anticonvulsant 

drug for the treatment of epilepsy, 39 however in the isolated form it displays low solubility 

which reduces its efficacy as a useful API. In order to increase the solubility of Lamotrigine, 

attempts were made 39 to synthesis cocrystals of Lamotrigine with other pharmaceutically 

approved biologically inert compounds. Production of the form [I] of the 1:1 Lamotrigine 

methylparaben cocrystal by dissolving the two solid components in tetrahydrofuran and leaving 

the solution to evaporate slowly caused crystallisation of the desired Lamotrigine methylparaben 

cocrystal concomitantly with methylparaben and a Lamotrigine THF solvate. 

When the solventless dry grinding technique 40 is employed to grind together multiple crystalline 

starting materials; traces of unreacted starting material may disperse throughout the desired 

cocrystal product. This problem also arises if multiple products in terms of composition, 

stoichiometry or multiple polymorphic forms recrystallise from the solution. 40-44 The powder 

diffraction pattern collected from a sample containing multiple crystalline phases necessarily 

contains multiple sets of diffraction peaks that each result from diffraction by different crystal 

structures and are superimposed to produce a single ‘mixed’ multiphasic pattern. In some cases 

the different crystalline materials produce observable diffraction peaks with different and 

distinctive shapes. 44 In these circumstances it is possible to visually separate these diffraction 

peaks into sets that each result from diffraction by one of the materials. It is then possible to 
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determine the different crystal structures by straightforward peak exclusion and subsequent use 

of existing crystal structure determination techniques, although this is often only done when the 

‘other’ peaks arise from relatively small amounts of impurities. However it is more common that 

the different sets of diffraction peaks that each result from diffraction by the different crystal 

structures will not have distinctive shapes, and that these different sets of diffraction peaks 

overlap. In such cases, it is not trivial to separate the observable diffraction peaks into distinct 

phase sets. Since the observed peak spacing will not be compatible with any single unit cell, 

attempts to index a multiphasic pattern using a single unit cell will fail unless it is possible to 

identify a discrete set of peaks that correspond to diffraction by one crystalline phase. 

Pattern decomposition methods 8,45,46 (discussed further in chapter 5) can be used to sort the 

observable diffraction peaks into distinct sets that each result from diffraction by one crystal 

structure. Although these pattern decomposition methods are not always capable of sorting a 

sufficient number of peaks corresponding to one crystal structure to allow the crystal structure to 

be determined directly from the pattern, the pattern decomposition methods can identify a 

sufficient number of peaks to allow the lattice parameters of each of the crystals to be 

determined.  

Despite the peak overlap intrinsic to powder X-ray diffraction, providing the lattice parameters 

of a crystal structure are known, direct space methods can be used to solve a crystal structure 

from monophasic powder diffraction data. If a cost function based on Rwp is used to evaluate 

model structures generated in the direct space method, the overlap of peaks in a diffraction 

pattern can be taken into account and the need to fit individual peak positions and intensities is 

negated by matching the whole profile shape of simulated and real powder diffraction patterns. 

Since direct space methods are capable of solving crystal structures from monophasic powder 

patterns despite the overlap of peaks, direct space methods are potentially capable of solving 

crystal structures from multiphasic powder diffraction patterns. Chapter 5 of this thesis explores 

the possibilities of solving one (or two crystal structures simultaneously) from a biphasic powder 

diffraction pattern. Additionally quantitative phase analysis by Rietveld refinement 47-51 is used to 

improve the fit between simulated and experimental biphasic powder diffraction patterns. 

In a diffraction pattern recorded for a multiphasic sample the intensity of a peak that results from 

diffraction by one crystal phase relative to the intensity of other peaks that result from diffraction 
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by different crystal phases is proportional to the relative abundance of that crystal phase 47,48 This 

relationship between the intensity of a peak and the abundance of a crystal phase forms the basis 

of quantitative phase analysis by Rietveld refinement. As discussed in section 2.1.3 of this thesis, 

the Rietveld method involves simulating a diffraction pattern for a computer generated model of 

a crystal structure and quantitatively comparing the simulated pattern with a pattern recorded for 

a real sample of the crystal. During each cycle of refinement a scale factor that is one variable 

defining the simulated profile is refined so that simulated diffraction peaks have the same 

magnitude of intensity as equivalent peaks in the real pattern. If the scale factor was not refined it 

is unlikely that a diffraction pattern simulated for a model structure that was a good 

representation of the real crystal structure would match the real diffraction pattern. This would 

result in a model that was a good representation of the real crystal structure being assigned an R 

factor with a high value, therefore it would be unlikely that the refinement process would 

determine an accurate crystal structure. 

Rietveld refinement can be used to simulate diffraction patterns for multiphasic crystalline 

materials and by refining a scale factor specific to each crystal phase (so that simulated peaks 

have the same intensity as equivalent peaks in the real multiphasic pattern), determine the 

relative abundance of a crystalline phase that is present in a multiphasic material. In order to 

calculate a phase-specific scale factor it is necessary to know the crystal structure. 51 In the work 

discussed in chapter 5 of this thesis, model structures generated by the direct space method are 

used to supply the structural information used in the quantitative phase analysis by Rietveld 

refinement. 

 
 

2.6 Coevolution 
 
"Coevolution refers to the simultaneous evolution of multiple populations with coupled fitness", 
52 and as such can be considered as a strategy for increasing the efficiency of population-based 

algorithms. Interactions between individuals of different populations can be either competitive 52, 

53 or cooperative. 54-56 In competitive coevolution, an individual in one population competes with 

other similar individuals in the same population by evolving strategies that allow that individual 

to exploit characteristics displayed by (competing) individuals in different populations. The 

individual assigned the highest fitness value in one population will be the most "ruthless 
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exploiter" of the greatest number of competing individuals. In cooperative coevolution, an 

individual in one population competes with other similar individuals in the same population by 

evolving strategies that allow the individual to interact synergistically with (cooperating) 

individuals in different populations. The individual that is assigned the highest fitness value will 

therefore be the individual that is able to interact most sympathetically with the greatest number 

of cooperating individuals. The "natural" predator-prey relationship of competitive coevolution 

has been applied to evolutionary algorithms to investigate game playing strategies. 52-54,57 In 

these examples, each individual in a particular population represents a particular style of game 

playing strategy. The fitness value assigned to an individual is determined by the rate of success 

of an individual at beating individuals in other populations that represent opposing strategies. 

Cooperative coevolution has moved away from its roots in natural symbiosis and has been 

applied to global optimisation techniques 54-56,58 where it is used to increase the efficiency of the 

algorithms. 

Although competitive coevolution is not obviously applicable to crystal structure solution, 

cooperative coevolution has the potential to increase the efficiency of differential evolution 

applied to crystal structure solution from powder diffraction data by direct space methods. 

Appendix (C) discusses some of the operations specific to cooperative coevolutionary global 

optimisation algorithms (CCGOAs) including problem decomposition, collaboration and fitness 

assignment. The discussion concludes by identifying some evolutionary operators that appear 

most appropriate for the creation of a hypothetical cooperative coevolutionary differential 

evolution that could be used to solve crystal structures from powder diffraction data by the direct 

space method.  
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Chapter 3. Optimisation of differential and cultural differential 
evolution algorithms applied to structure solution of 

molecular crystals. 
 
 
Although global optimisation algorithms can and have been successfully applied to direct space 

methods and used to solve crystal structures, these algorithms suffer from intrinsic limitations. 

One disadvantage is the large number of model structures generated during a single search 

progression and the significant computational effort required to evaluate all these models before 

a sufficiently accurate model is located. Unlike the exhaustive grid search method, global 

optimisation algorithms do not evaluate every possible crystal structure and can converge 

prematurely in local minima (locating an incorrect model) if governed by control parameters 

with non-optimal values. 

In this chapter, DE and CDE algorithms using different combinations of control parameters are 

applied to the direct space method and used to solve three different crystal structures that have 

been previously solved by our DE technique. Since the crystal structures have already been 

solved by our DE technique it is possible to evaluate the success and efficiency of each structure 

solution calculation using different combinations of control parameters.   

The three known crystal structures used for these tests are; baicalein (section 3.2), adipamide 

(section 3.3) and acetarsone (section 3.4). An attempt is made to determine if there is a 

‘universal’ optimal combination of DE control parameters that increases the probability that a 

search is successful (locates the correct crystal structure), or if certain ‘test’ structures are best 

solved by a combination of DE parameters particular to that structure. This prior knowledge 

could be used to reduce the number of model structures evaluated during a search (thus the time 

needed to solve a structure), and increase the probability that a search converges successfully, 

therefore reducing the need for computationally demanding multiple searches. 

 

 
3.1 The Differential Evolution algorithm 
 
The differential evolution algorithm used in this thesis and in previous work, to solve crystal 

structures, 1-3 has four control parameters (discussed in sections 2.2.2-2.2.5) that can be assigned 
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values by the user. These four control parameters are: (K) the recombination rate, (F) the 

mutation rate, (NP) the number of structural models in a population and (Gmax) a user defined 

stopping criteria. Although each of these parameters is used to control specific operations of the 

differential evolution algorithm, their effect on the efficiency and reliability of the search is 

coupled. Hence it is feasible to systematically test different combinations of these control 

parameters and analyse what effect these different combinations have on the search. 

 
3.1.1 The Gmax control parameter 

From experience it is possible to make an educated guess regarding how many generations will 

be required to allow a search of defined complexity to converge on a solution (although this may 

not always be the global optimum). If a search fails to converge within a certain number of 

generations it often indicates that the search has become trapped in a local minimum. To avoid 

continuing the calculation of trapped searches, the parameter Gmax is used to terminate searches 

that have failed to converge after a convenient number of generations. 

 
3.1.2 K, the recombination control parameter 

The recombination parameter K (discussed in section 2.2.3) can be assigned any value between 

zero and one. It has been demonstrated 1,2 that assigning K a value of one causes a search to 

converge rapidly but can increase the probability that the search converges prematurely. 

Reducing the value of K to 0.99 maintains a fast rate of convergence whilst also reducing the 

probability that a search will converge prematurely in a local minimum, failing to locate the 

optimal solution (correct crystal structure). 3 In the work presented here K is always assigned a 

value of 0.99. Having established that the values of Gmax and K can be pre-defined at optimal 

values, in the work discussed in this chapter, the combination of only two control parameters, F 

and NP, are investigated.  

 
3.1.3 F, the mutation control parameter 

The value of the mutation parameter F (discussed in section 2.2.3) controls the rate at which new 

genetic material is introduced into the population. F can be assigned any value between zero and 

one. However, in this application of DE, F is usually assigned a value in the range 0.3-0.8. 1-3 

High mutation rates (achieved by assigning F a large value) ensure that the level of genetic 
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diversity in the population remains high for a greater number of generations. This high level of 

genetic diversity encourages a thorough exploration of the landscape, increasing the probability 

that a search locates the global minimum. However, if the value of F is too large, the 

convergence rate of the population will be inconveniently slow, requiring more generations to 

converge and maybe terminated by Gmax. Smaller values of F cause the population to converge 

rapidly, but if the mutation rate is too small the genetic diversity of the population is rapidly lost. 

This increases the probability that a search converges prematurely. Thus a compromise must be 

found such that searches have a high probability of solving the crystal structure but do this in the 

least number of generations. 

 
3.1.4 NP, the population size 

The value of NP, the population size, determines how many models or individuals are in a 

population. This means that the value of NP has significant influence on the initial amount of 

genetic diversity in a population and hence is considered as an algorithmic control parameter. 

The size of the landscape representing a particular crystal structure solution problem depends on 

the number and range of values of the structure parameters that define a model (as discussed in 

section 2.2.1). The size of the landscape is not dependent on the size of a population, thus when a 

larger population is initialised in a particular landscape, that landscape will have a higher 

population density than if a smaller population is used. The increased population density 

increases the probability that an initial model is generated near the global minimum. The 

reduction in the distance between this initial “best” model and the global minimum reduces the 

number of generations required for the evolutionary processes to move the best model into the 

global minimum. This means that searches using larger populations can converge successfully in 

fewer generations than searches using smaller populations. However, excessive genetic diversity 

caused by a large population can also slow the convergence rate of a search. The greater the 

population size, the longer it takes for the evolutionary process to reduce the genetic diversity of 

the population so that all models become identical and converge. It is also computationally more 

demanding to evolve a large population as every model breeds one child per generation, each of 

which must then have a fitness evaluated. Thus again, a compromise between high genetic 

diversity and low computational demand needs to be made. 

The parameter NP can either be assigned a value that is independent from the problem or a value 
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that is related to the particular optimization problem under consideration. As discussed in 

sections 1.3.2 and 2.2.1, the complexity of crystal structure solution by direct space methods is 

linked to the number of structure parameters needed to define the orientation, conformation and 

position of a model in the unit cell. Thus as the number of structure parameters needed to define 

a model increases it is logical to use a larger population size as this increases the initial genetic 

diversity of a population. In these studies, the size of the population is automatically calculated 

as a multiple of the number of parameters needed to define a model. For example, the crystal 

structure solution of baicalein is performed using a model defined by seven parameters (figure 

3.1), hence searches were carried out using population sizes of 49 (7x7), 70 (7x10), 105 (7x15) 

140 (7x20) and 280 (7x40). The crystal structure solution of adipamide required a structural 

model defined by eight parameters (figure 3.4), and hence searches with population sizes of 56 

(8x7), 80 (8x10), 160 (8x20) and 320 (8x40) were used. Crystal structure solution of acetarsone 

is performed using a model (figure 3.5) defined by nine parameters. Hence searches using 

population sizes of 63 (9x7), 90 (9x10), 135 (9x15), 180 (9x20) and 360 (9x40) models were 

used to solve the crystal structure. 

 
3.1.5 Cultural differential evolution 

As discussed in section 2.3, the addition of cultural knowledge to the DE search can increase the 

rate at which a search converges. It is postulated that before a search begins to converge rapidly, 

a significant number of models cluster around a single point in parameter space. The 

identification of a cluster of models can be used to restrict the exploration of a search by actively 

adjusting the position of the landscape boundaries as the search progresses, resulting in a 

confined search that is encouraged to only explore the area of landscape near the global 

minimum. In our implementation of CDE 4,5 the position of the landscape boundaries is 

controlled by measuring which areas of the landscape have a relatively low population density 

and excluding these areas from the search. This means that rather than waiting for a cluster of 

models to locate the global minimum before moving the boundaries (which may take a 

considerable number of generations), it is possible to begin confining a search as soon as a 

significant number of models start to cluster. In this way cultural knowledge can be used to 

control the position of the boundaries after fewer generations, potentially further reducing the 

number of generations required by a search to converge. 
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3.1.6 Initiating the cultural pruning 

In our implementation of CDE, 4,5 a conventional DE search is performed for the first 50 

generations of a search, with boundaries maintained at their default positions and models allowed 

to explore the whole landscape. It is assumed that during this stage of the search, many parent 

models are replaced by fitter children and the Darwinian survival of the fittest principle promotes 

the clustering of models in minima. After the 50th generation, it is assumed that most models 

will have clustered in small groups and only relatively few remain sparsely spread across areas 

of the landscape with a relatively low population density. Thus after the 50th generation, cultural 

knowledge is applied to prevent further exploration of the areas of the landscape with relatively 

low population density. 

 
3.1.7 Population under-threshold NUT parameter 

As discussed in section 2.3, NUT is used to define how many models will be considered as 

cultural outliers after each generation. Increasing the value of NUT increases the number of 

models in a population that are treated as cultural outliers therefore causing the landscape 

boundaries to move more rapidly, and in theory, increase the rate of convergence of the search. 

The cultural differential evolution algorithm is controlled by the parameter NUT in combination 

with the parameters NP, F, K and Gmax. CDE searches were used to solve the crystal structures 

of baicalein, adipamide and acetarsone using different combinations of NP, F and NUT in order 

to determine relationships between these parameters and identify the optimal combination. 

Compared with an analogous DE search using the same NP and F combination, the optimal 

value for NUT is the value that results in the fastest convergence rate whilst not reducing the 

probability that a search locates the optimum crystal structure. 

 

 
3.2 The crystal structure solution of baicalein 
 
3.2.1 Background 

Baicalein (5, 6, 7-trihydroxyflavone) is a flavone that is commonly used in Chinese herbal 

medicine, and displays a variety of useful biological properties including; anti-inflammatory, 

anti-viral and anti-cancer activity. 6-11 The crystal structure of baicalein has been determined 
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using data obtained from single crystal diffraction experiments performed at ambient 12 and low 

temperature 13. 

 
3.2.2 Optimisation of the DE algorithm 

The direct space structure solution of baicalein requires no constraints to be placed on the 

position or orientation of the molecule within the unit cell as the space group symmetry requires 

one molecule in a general position. The structural model of baicalein is then defined by seven 

parameters; three parameters to define the position (x,y,z: between 0 and 1) and orientation 

(ϕ,ψ,θ: between 0 and 360) of the molecule and one torsion parameter (τ1: between 0 and 360) 

to define the intramolecular rotation between the two rigid units as shown in figure 3.1. 

Figure 3.1. The structural model of baicalein used in the DE calculations.  Arrows indicate torsional flexibility, 
figure taken from. 5 

Baicalein is a suitable test case for control parameter optimisation of DE because the searches 

consistently solve the crystal structure within a convenient number of generations using a variety 

of combinations of F and NP control parameters. Thus it is possible to draw meaningful 

conclusions on how different combinations of the population size and mutation rate affect a 

search.  

In the case of baicalein, for a successful Rietveld refinement of the crystal structure based on a 

successful structure solution, the model located by the search was required to have an R factor 

(Rwp) <= 15.6%. All models assigned an R factor <= 15.6% were judged to be close enough for 

successful refinement.  The DE structure solution calculation was run five times for each 

combination of NP and F parameters: NP=49, 70, 105 and 140 with F=0.3-0.6 and NP=280 with 

F=0.1-0.6. For each combination of NP and F, the R factor of the optimum solution located by 

each of the five searches was recorded. If the R factor of the final solution was <= 15.6%, the 
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search was judged to be successful.  The results of these successful searches are shown in Table 

3.1.  

 

           Number of Generations  

NP 49 70 105 140 280   
F 
0.1     80 

64 
 

0.2     179 
103 

 

0.3 0 
0 

224 
182 

263 
217 

346 
256 

534 
444 

 

0.4 239 
238 

419 
419 

582 
463 

825 
766 

1157 
1011 

0.5 429 
403 

680 
479 

884 
687 

1360 
879 

1893 
1811 

0.6 644 
403 

879 
702 

1157 
996 

1471 
1471 

0 
0 

 
 

Table 3.1: Structure solution of baicalein by DE using different combinations of NP (population size) and F 
(mutation rate).  The success rate over the five calculations for each NP and F combination is indicated in the colour 
chart: blue for 100% success and red for 0% success rate. The number in bold is the average number of generations 

required for convergence over the five runs.  The number in italics is the number of generations required for 
convergence in the quickest run within each group of five. For searches performed with NP=49, 70, 105 and 140 

Gmax=1500, for searches with NP=280 Gmax=2000. 

 

3.2.3 Optimised combination of the NP and F control parameters 

Table 3.1 shows that in general, as the population size increases, the success rate of the search 

also increases. Calculations using the smallest population size (49) are the least successful in 

solving the crystal structure using the mutation range used in this study. For example, a mutation 

rate of 0.4, and a population size of 49 has a 40% success rate, whereas populations of 70, 105, 

140 and 280 solve the crystal structure with 20%, 100%, 80% and 60% success respectively. 

Similar trends can be seen for other mutation rates, demonstrating that searches using larger 

population sizes with greater initial genetic diversity are more likely to converge successfully 

than searches using smaller population sizes with less initial genetic diversity. 

The last column (in table 3.1) shows the results from a population size of 280 in which the 

amount of genetic diversity initially generated in the population is increased. The high level of 

genetic diversity means that searches are often more efficient (and successful) using smaller 

 

0 % 
20 % 
40 % 
60 % 
80 % 
100 % 

Success rate 
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mutation rates, such as F=0.1 and 0.2, and hence these additional runs were performed for 

NP=280. The large size of the population reduces the probability that a significant number of 

models cluster in a single local minima causing a search to converge prematurely. If searches 

with NP=280 are performed with large F the convergence rate is reduced and hence the specified 

(Gmax) number of generations was increased for NP=280. 

The trend in success rate clearly shows a correlation between mutation rate and population size 

with the only conclusion being that it seems with a higher population size, lower F values can be 

used. The most successful combination is that of median population size (NP=105 and 140), with 

median mutation rate (F=0.3-0.5) in which 29/30 runs were successful. There is however a clear 

trend that an increase in the mutation rate increases the number of generations required by a 

search to converge on the correct solution (figure 3.2). The four plots shown in this figure have  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.2, The convergence rate of four DE searches with NP=70 and F=0.3, 0.4, 0.5 and 0.6. Dots indicate the 
mean Rwp of the population, whereas the line shows the evolution of the fittest within each generation, Rwp best. For 

each set of parameters, the most efficient calculation is shown. 
 

roughly the same shape but clearly show that searches performed with larger F take significantly 

more generations to converge. In all four cases, we can clearly see the convergence of the 

calculation as the optimum fitness and the mean fitness of the population become the same.  It is 

clear from table 3.1 that for every increase in the mutation rate of 0.1, the average number of 

generations required for convergence increases significantly. As the size of the population 
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increases this slowing in the convergence rate by increasing the mutation rate becomes more 

significant. For example, in the case of NP=140, searches with F=0.5 require approximately four 

times as many generations as those with F=0.3. When F=0.6, a significant number of the 

searches fail to converge successfully within the specified maximum number of generations and 

the effect on success rate is clearly shown (table 3.1). This trend is demonstrated further in the 

results obtained using a population size of 280, in which some searches using F=0.5-0.6 fail to 

converge within the specified maximum number of generations. 

These results also demonstrate the effect of population size on the speed of convergence and 

clearly show that as the population size increases, the average number of generations required 

also increases. This can clearly be seen by examination across a row in table 3.1, for example 

F=0.5. As the population size increases, the amount of genetic diversity in the initial population 

also increases. For a search to converge, all models in a population must have the same genetic 

information. If two populations of different size evolve using the same rate of mutation and 

recombination, it will take more generations for the larger population to reduce its larger initial 

amount of genetic diversity and converge. This is illustrated further in figure 3.3 which shows 

the convergence rate of four searches with F=0.3 and increasing population size. 

However, by using very small mutation rates it is possible to use large population sizes to solve 

the crystal structure in fewer generations than those searches using smaller population sizes. 

Table 3.1 shows that the DE search with NP=280 and F=0.2 converges with 100% success on 

average in 179 generations. We can compare this with the DE search with NP=105 and F=0.3 

which converges with 100% success on average in 263 generations. A population size of 280 

initially generates a higher population density in the landscape than a population size of 105, and 

hence there is a greater probability that members of the initial population are generated closer to 

the global minimum in the larger population. The small mutation rate then allows the search with 

NP=280 to converge more rapidly than that with NP=105. The increased genetic diversity of the 

larger population reduces the probability that a significant number of models cluster in one local 

minimum causing the search to converge prematurely.  

 

 

 



74 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.3, The convergence rate of four searches with F=0.3 and NP=70, 105, 140 and 280. Dots indicate the mean 
Rwp of the population, whereas the line shows the evolution of the fittest within each generation, Rwp best. For each 

set of parameters, the most efficient calculation is shown. 
 
 
However, when comparing different population sizes, searches that converge in the least 

generations are not necessarily the quickest to converge in real time as the rate determining step 

of direct space crystal structure solution is the child fitness evaluation step. DE systematically 

selects every model in the population to act as parent in each generation, so the Rwp fitness 

evaluation must be calculated NP times in each generation. Hence, with NP=280 and F=0.2, the 

DE search solves the crystal structure on average in 179 generations or 179x280=50120 child 

fitness evaluations. In comparison the search with NP=105 and F=0.3 converges on average in 

263 generations or 263x105=27615 child fitness evaluations. Hence care must be taken in 

interpretation of these results and although the number of generations for convergence is useful 

for comparison within a given NP value, the number of fitness evaluations will be used later in 

this thesis to assess efficiency. 
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 Number of Fitness Evaluations 

NP 49 70 105 140 280   
F 

0.1     22400 
17920 

 

0.2     50120 
28840 

 

0.3 0 
0 

15680 
12740 

27615 
22785 

48440 
35840 

149520 
124320 

 

0.4 11711 
11662 

29330 
29330 

61110 
48615 

115500 
107240 

323960 
283080 

0.5 21021 
19747 

47600 
33530 

92820 
72135 

190400 
123060 

530040 
507080 

0.6 
31556 
19747 

61530 
49140 

121485 
104580 

205940 
205940 

0 
0 

 
Table 3.2, The average number of child fitness evaluations calculated by searches using different combinations of 

NP and F. 

Table 3.2 shows that in terms of the most reliable and most efficient calculation in terms of 
fitness evaluations, the combination of median NP=105 and F=0.3 is optimum, whereas the 
quickest single calculation was that, as expected, with the smallest NP=49 and F=0.3. 

 
3.2.4 Optimised combination of NP, F and NUT control parameters 

The CDE was run for baicalein, using the same model, data and criteria as the DE calculation, 
five times for each combination of NUT, NP and F. The results of these searches are shown in 
Tables 3.3a-e. 
 

 

 

 

       

 

 

 
 

Table 3.3: Structure solution of baicalein by CDE using different combinations of 
F (mutation rate) and NUT (cultural pruning parameter) for populations of a)49, b)70, c)105, d)140 and e)280. The static column 
indicates a conventional DE search with no cultural pruning. The success rate over the five calculations for each NP, F and NUT 

combination is indicated in the colour chart: blue for 100% success and red for 0% success rate. The number in bold is the 
average number of generations required for convergence over the five runs.  The number in italics is the number of generations 
required for convergence in the quickest run within each group of five. For searches performed with NP=49 Gmax=1500, for all 

other NP values Gmax=2000. 

 Mean Gcon 

Nut 
static 1 2 3 4 5 6 

F 

0.3 0 
0 

0 
0 

121 
121 

0 
0 

147 
147 

0 
0 

0 
0 

0.4 
239 
238 

279 
175 

331 
266 

281 
245 

246 
246 

0 
0 

219 
219 

 0.5 
429 
403 

550 
550 

369 
306 

328 
222 

207 
207 

1201 
1201 

0 
0 

0.6 
644 
403 

412 
314 

722 
415 

598 
598 

289 
203 

251 
229 

0 
0 

(a) 
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Table 3.3. Continued 
 

 
 

 

Nut static 1 2 3 4 5 6 7 8 
F 

0.3 224 
182 

179 
170 

245 
224 

174 
153 

150 
150 

181 
173 

170 
153 

163 
163 

0 
0 

0.4 419 
419 

396 
343 

325 
246 

370 
315 

257 
257 

269 
258 

225 
225 

232 
185 

0 
0 

0.5 680 
479 

690 
644 

656 
430 

597 
450 

532 
412 

405 
397 

297 
288 

0 
0 

193 
193 

0.6 879 
702 

1127 
1033 

977 
846 

845 
637 

675 
560 

491 
368 

359 
325 

274 
233 

247 
247 

 
 

 

Mean Gcon 

Nut static 3 4 5 6 7 8 9 10 11 12 
F 

0.3 263 
217 

287 
252 

254 
236 

242 
235 

296 
275 

194 
181 

193 
177 

257 
191 

183 
183 

0 
0 

166 
120 

0.4 582 
463 

540 
260 

417 
345 

399 
276 

398 
310 

406 
291 

318 
251 

282 
234 

267 
248 

195 
195 

261 
261 

0.5 884 
687 

949 
851 

818 
561 

721 
630 

588 
498 

447 
391 

380 
372 

349 
299 

333 
274 

293 
241 

0 
0 

0.6 1157 
996 

1644 
1502 

1435 
926 

1175 
1001 

926 
763 

602 
539 

498 
461 

347 
294 

390 
307 

337 
304 

283 
274 

  

 

Mean Gcon 

Nut static 3 4 5 8 9 10 11 12 13 14 15 
F 

0.3 346 
256 

402 
174 

293 
240 

284 
237 

249 
224 

230 
185 

247 
231 

219 
161 

225 
196 

214 
193 

188 
179 

249 
249 

0.4 825 
766 

747 
587 

630 
522 

690 
608 

389 
274 

342 
258 

355 
308 

302 
272 

235 
213 

294 
235 

260 
226 

406 
406 

0.5 1360 
879 

1256 
840 

1291 
1172 

989 
773 

593 
446 

527 
461 

429 
360 

441 
400 

364 
321 

352 
328 

311 
279 

268 
257 

0.6 1471 
1471 

1460 
1293 

1658 
1285 

1613 
1470 

951 
747 

747 
587 

630 
522 

513 
439 

470 
377 

418 
346 

424 
395 

354 
307 

(b) 

(d) 

Mean Gcon 

(c) 



 
 

 

Nut 
static 5 8 10 13 14 

F 

0.1 
80 
64 

68 
68 

85 
74 

81 
81 

83 
71 

70 
70 

0.2 179 
103 

198 
115 

192 
156 

172 
123 

191 
156 

169 
126 

0.3 534 
444 

519 
312 

619 
440 

415 
326 

347 
291 

428 
348 

0.4 
1157 
1011 

1182 
1182 

1004 
723 

997 
798 

824 
707 

595 
494 

0.5 1893 
1811 

1758 
1723 

1862 
1696 

1732 
1561 

1487 
1297 

1042
999 

0.6 0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

1779
1668

 
 
 
 
 
 

(e) 

Mean Gcon 

 15 16 17 18 19 20 21 22 

 
 

78 
78 

72 
66 

82 
82 

91 
89 

79 
67 

0 
0 

74 
62 

83 
75 

 
126 

169 
143 

155 
105 

167 
148 

156 
114 

167 
143 

151 
130 

150 
146 

148 
109 

171
154

 
 

393 
378 

316 
253 

296 
247 

280 
231 

304 
284 

287 
253 

253 
239 

244 
209 

212
180

 
 

702 
495 

600 
494 

431 
404 

476 
393 

435 
387 

411 
372 

402 
336 

398 
336 

289
260

1042 
 

1042 
971 

960 
754 

740 
69 

676 
569 

646 
581 

608 
511 

562 
502 

556 
494 

416
365

1779 
1668 

1758 
1486 

1428 
1218 

1241 
1046 

1085 
964 

838 
758 

819 
663 

786 
666 

790 
525 

494
445

 
 

Table 3.3. Continued 

 

26 28 30 32 34 

56 
56 

268 
268 

82 
77 

74 
74 

90 
90 

171 
154 

124 
107 

169 
153 

139 
128 

159 
138 

212 
180 

223 
212 

199 
193 

209 
209 

180 
180 

289 
260 

289 
256 

262 
250 

239 
218 

252 
244 

416 
365 

354 
280 

314 
279 

283 
258 

265 
259 

494 
445 

458 
441 

400 
354 

365 
303 

398 
352 
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Tables 3.3a-e demonstrate that the addition of cultural evolution to a traditional DE search can 

reduce the number of generations required for convergence. The results also show that as the 

value of NUT is increased, searches progressively require fewer generations to converge. For 

example, a static DE with NP=70 and F=0.5 (Table 3.3b) converges on average in 680 

generations, while the analogous CDE searches with NUT=2-5 converge on average in 656, 597, 

532 and 405 generations respectively. This increase in efficiency is more marked with greater 

population size such as NP=280, in which the static DE search with F=0.4 converges on average 

in 1157 generations and the analogous CDE searches with NUT = 20-26 converge on average in 

411, 402, 398 and 289 generations respectively. 

These results also demonstrate that as the size of the population is increased the value of NUT 

can also be significantly increased without reducing the probability that a CDE search is 

successful. This is immediately clear for example from table 3.3b (NP = 70) in which pruning 

with NUT > 5 results in less success than the static DE search. However, for NP = 280 (table 

3.3e), only a value of NUT > 30 results in CDE searches with a lower success rate than the static 

DE.  As the value of NUT is increased, more members of the population are treated as outliers. 

The area of the landscape occupied by outliers is removed from the search, and thus a higher 

value of NUT confines the search to a smaller area of landscape. As a search becomes more 

confined, the genetic diversity of the population decreases and the probability that a search will 

become trapped in local minima increases. 

Larger populations initially have higher levels of genetic diversity than smaller populations and 

hence can withstand greater amounts of cultural pruning. This is illustrated by the greater success 

rate and efficiency following cultural pruning with NP = 280 but the detrimental effect the CDE 

approach has on the success and speed of the small population NP = 49 calculations (table 3.3a).  

It is also clear from this set of results that there may be an optimum relationship between the NP 

and NUT ratios. 

There is also a small effect of mutation rate on success aligned with an increase in F with NUT, 

but this trend is not as marked as other combinations discussed.  Since mutation introduces new 

genetic material into a population thus slowing the convergence rate and the cultural function 

reduces the genetic diversity of a population thus increasing the convergence rate it is logical to 

observe this relationship between the NUT and F control parameters. 
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The CDE tables demonstrate that CDE searches with sufficiently large NP and F can converge in 

significantly fewer generations than that required by static DE searches. For example, in table 

3.3e, the DE search with F = 0.5 converges with 40% success on average in 1893 generations, 

whereas the analogous CDE searches with NUT = 28 converge with 100% success on average in 

354 generations, representing an increase in efficiency of 81%. 

 

3.2.5 Summary 

These results demonstrate that the size of a population, mutation rate and amount of cultural 

pruning all affect the success and efficiency of a search. Searches using larger populations are 

significantly more likely to be successful than those using smaller populations because of more 

initial genetic diversity. Searches using larger populations can also converge in fewer 

generations but a better indicator of real calculation time is that of the number of structure 

evaluations calculated which means that searches conducted using large populations tend to be 

slower.  In general, searches conducted using larger mutation rates often take longer to converge, 

and smaller values of F can be used with larger NP. Cultural pruning can be used to dramatically 

reduce the number of generations required for a successful solution, but aggressive pruning can 

significantly reduce this success rate. An increase in the mutation rate can increase the success 

rate but the contrasting effect on the genetic diversity of NP, F and NUT means that it is not 

trivial to find the optimal combination of these three parameters. 

 
 

3.3 The crystal structure solution of adipamide 
 
3.3.1 Optimisation of the DE algorithm 

The crystal structure of the triclinic form of adipamide (1,6-hexanediamide, C6H12N2O2) has 

been previously solved by the direct space method, 2 and is known to adopt the P-1 space group 

through an internal centre of symmetry. However, here the structure solution is attempted in the 

P1 space group. The position of the molecule in the unit cell is hence arbitrary and the structure 

solution requires no constraints on the orientation or flexibility of the molecule. Unlike baicalein, 

adipamide has considerable intramolecular flexibility, with the model defined by eight structure 

parameters; three parameters define the orientation (ϕ,ψ,θ: between 0 and 360) of the model and 
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Figure 3.4. The structural model of adipamide used in the DE calculations.  Arrows indicate torsional flexibility. 

 

five torsion parameters (τ1-t5: between 0 and 360) define the intramolecular flexibility as shown 

in figure 3.4.  Adipamide was chosen as a suitable test case because the searches consistently 

solve the crystal structure within a convenient number of generations and it demonstrates that the 

exclusion of prior knowledge of symmetry from a search does not prevent location of a structure 

that is compatible with the known crystal structure. In addition, it will test the ability of DE to 

solve the crystal structure of a molecule with more flexibility. 

For adipamide, a successful structure solution was deemed to be a model located by the search 

with an R factor (Rwp) <= 16.0%. Hence, all models assigned an R factor <= 16.0% were judged 

to be close enough for successful Rietveld refinement.  The DE structure solution calculation 

was run five times for each combination of NP and F: NP = 56 with F = 0.5-0.8, NP = 80 with F 

= 0.3-0.8, NP = 160 and 320 with F = 0.1-0.8. For each combination of NP and F, the R factor of 

the optimum solution located by each of the five searches was recorded. The results of these 

searches are shown in Table 3.4. 

 

3.3.2 Optimised combination of NP and F control parameters 

The results presented in table 3.4 demonstrate that the mutation rate has a significant effect on 

the success of the search. The smallest F values generally have the least success (NP = 80 and 

160), whereas those with F = 0.4-0.8 converge in most cases, although there is no clear trend 

within these results. Unlike the structure solution of baicalein where searches with NP = 49 and 

70 have relatively low success rates compared to searches with larger NP, for solution of 

adipamide there is not such a significant decrease in success rate with decreasing population size. 

For F=0.5-0.8 searches with NP = 56,160 and 320 solve the structure of adipamide with the same 

overall success rate. The fact that searches with smaller NP still have relatively high success 

rates suggests that the structure solution of adipamide is different in character to that of baicalein. 



 

NP
F 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

Table 3.4: Structure solution of adipamide by DE using different combinations of 
(mutation rate).  The success rate over the five calculations for each 
chart (as in Table 3.1). The number in
five runs.  The number in italics is the number of generations require

each group of five. For NP=56 searches 

The Rwp landscape representing the crystal structure

whereas that of baicalein is seven. However,

greater influence on the character

intramolecular flexibility of adipamide means that

conformations. Although there is still only one correct solution, some of these 

conformations will be more plausible than others. 

numerous local minima, so there is a high probability that the adipamide search explores many 

local minima before locating the global minimum. 

potentially means that at least one minim

search converging in a local minim

successful i.e. close enough for succe

contrast, the structural model of baicalein 

degree of freedom. This means that 

contains few local minima. This 

local minima before locating the global minimum.

Number of Generations 

NP 56 80 160 320 

  0 
0 

52 
49 

  86 
86 

124 
90 

 0 
0 

171 
146 

251 
216 

 224 
182 

358 
256 

371 
357 

217 
159 

369 
245 

516 
462 

699 
543 

436 
329 

497 
413 

802 
676 

880 
628 

616 
550 

689 
575 

1107 
769 

1265 
1028 

752 
571 

1113 
886 

1322 
1203 

1543 
1362 

                      
: Structure solution of adipamide by DE using different combinations of NP 

(mutation rate).  The success rate over the five calculations for each NP and F combination is indicated in the colour 
The number in bold is the average number of generations required for convergence over the 

five runs.  The number in italics is the number of generations required for convergence in the quickest
searches were performed with Gmax=1500, whereas for 

Gmax=2000. 
 
 

landscape representing the crystal structure solution of adipamide has

is seven. However, the shape of these two landscape

on the character of a search than the landscape 

adipamide means that structural models can ado

Although there is still only one correct solution, some of these 

conformations will be more plausible than others. This results in an Rwp landscape 

so there is a high probability that the adipamide search explores many 

local minima before locating the global minimum. Additionally, the high density of local minima 

potentially means that at least one minimum is significantly near the global minimum. Thus a 

search converging in a local minimum that is very near the global minimum can

successful i.e. close enough for successful Rietveld refinement of the non

the structural model of baicalein comprises two rigid units linked with one torsional 

degree of freedom. This means that few different conformations can be adopted

This reduces the probability that the baicalein search explores many 

local minima before locating the global minimum. It also reduces the probability that a search 
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 (population size) and F 
combination is indicated in the colour 

bold is the average number of generations required for convergence over the 
d for convergence in the quickest run within 

for NP=80,160 and 320, 

solution of adipamide has eight dimensions 

landscapes will have a 

landscape dimensionality. The 

can adopt many different 

Although there is still only one correct solution, some of these incorrect 

landscape that contains 

so there is a high probability that the adipamide search explores many 

the high density of local minima 

is significantly near the global minimum. Thus a 

ry near the global minimum can be considered 

ssful Rietveld refinement of the non-global solution. In 

linked with one torsional 

conformations can be adopted so the landscape 

reduces the probability that the baicalein search explores many 

It also reduces the probability that a search 
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that converges in a local minimum is considered successful. 

This is similar to the conclusion from a previous study 14 in which the efficacy of the direct space 

method using an Rwp-based cost function was investigated in the solution of the crystal structure 

of Ph2PO(CH2)7POPh2. The flexibility of the aliphatic chain means that many different 

conformations of the model are possible, resulting in an Rwp landscape containing many local 

minima. Since a cost function based only on Rwp evaluates the model as a whole, a search cannot 

easily identify perturbations to parameters defining the aliphatic chain that produce significantly 

better models. As a result, a search is likely to visit many local minima before locating the global 

minimum. During this study, 14 a SA search indeed evaluated many incorrect models before 

locating the global minimum. 

In cases where the landscape contains numerous local minima it is likely that a DE search spends 

a significant number of generations exploring and escaping local minima. Higher mutation rates 

increase the probability that the search escapes local minima and converges in the global 

minimum. An increase in population size increases the genetic diversity and density of the 

population in the landscape, but if it is difficult to identify better models, increasing the size of a 

population merely creates more models that do not assist the search to rapidly locate the global 

minimum. Thus the ability of a search to converge successfully is less dependent on the size of a 

population and more dependent on the mutation rate as illustrated in table 3.4. However, table 

3.4 demonstrates that increasing the population size decreases the convergence rate. Searches 

with equivalent F values e.g: for F = 0.6 and NP = 56 and 160 converge on average in 436 and 

802 generations respectively. It is possible that searches with NP = 320 and F = 0.8 would have 

been more successful if Gmax had been assigned a larger value. Although higher mutation rates 

are generally more successful, as expected, this also increases the number of generations 

required by a search to converge, e.g: for NP = 80 and F = 0.5-0.6 searches converge on average 

in 369 and 497 generations respectively.  

Again, although table 3.4 demonstrates that searches using larger population sizes and small 

mutation rates successfully converge in the fewest generations, the calculation time is still longer 

because significantly more child fitness evaluations are calculated by a search with NP = 320 

than a search with NP = 56 (table 3.5). The quickest single calculation is that with the smallest 

NP = 56 and F = 0.5 carried out in this study. 



 

NP 

F 
0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

 0.8 

Table 3.5, The average number of child fitness evaluations calculated by searches using diff

 

Comparison of the results for 

values of F (0.1-0.6), demonstrates

average in significantly fewer generations

However, a more accurate measure of search efficien

tables 3.2 and 3.5 respectively show

NP = 56 for adipamide. The number of models

the number of parameters required for model definition by fifteen for baicalein and seven for 

adipamide. 

Table 3.2 shows that the fastest 

and F = 0.3 converge with 100% success 

Table 3.5 shows that the fastest 

and F = 0.6 converge with 100% success 

Thus comparing tables 3.2 and 3.5 shows that 

more efficient. 

 

 

Number of Fitness Evaluations 

56 80 160 320 

  0 
0 

16640 
15680 

  13760 
13760 

39680 
28800 

 0 
0 

27360 
23360 

80320 
69120 

 17920 
14560 

57280 
40960 

118720 
114240 

12152 
8904 

29520 
19600 

82560 
73920 

223680 
173760 

24416 
18424 

39760 
33040 

128320 
108160 

281600 
200960 

34496 
30800 

55120 
46000 

177120 
123040 

404800 
328960 

42112 
31976 

89040 
70880 

211520 
192480 

493760 
435840 

   
, The average number of child fitness evaluations calculated by searches using diff

NP and F. 

for baicalein (table 3.1) and adipamide (table 3.4

, demonstrates that the structure of adipamide is solved 

fewer generations despite searches using a smaller population size

However, a more accurate measure of search efficiency can be achieved by comparison between 

respectively showing the results of searches with NP = 105

The number of models in each population is calculated by multiplying 

quired for model definition by fifteen for baicalein and seven for 

the fastest searches used to solve the structure of baicalein with 

with 100% success calculating on average 27615 child fitness evaluations. 

the fastest searches used to solve the structure of adipamide with 

with 100% success calculating on average 24416 child fitness evaluations.

Thus comparing tables 3.2 and 3.5 shows that the searches for adipamide are not particularly 
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, The average number of child fitness evaluations calculated by searches using different combinations of 

table 3.4) with equivalent 

is solved successfully on 

despite searches using a smaller population size. 

cy can be achieved by comparison between 

= 105 for baicalein and 

in each population is calculated by multiplying 

quired for model definition by fifteen for baicalein and seven for 

searches used to solve the structure of baicalein with NP = 105 

27615 child fitness evaluations. 

searches used to solve the structure of adipamide with NP = 56 

16 child fitness evaluations. 

searches for adipamide are not particularly 



3.3.3 Optimised combination of 

The CDE was also run for adipamide

calculation, five times for each combination of 

shown in Tables 3.6a-d. 

 

Nut 

F 

0.5 

0.6 

0.7 

0.8 

 

 

 

Nut

F 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

 

 

(a) 

(b) 

Optimised combination of NP, F and NUT control parameters

run for adipamide, using the same model, data and criteria as the DE 

calculation, five times for each combination of NUT, NP and F. The results of these 

Mean Gcon 

static 1 2 3 4 5 6 

217 
159 

246 
164 

286 
286 

195 
144 

0 
0 

0 
0 

0 
0 

436 
329 

352 
319 

356 
334 

264 
224 

0 
0 

0 
0 

0 
0 

616 
550 

484 
430 

511 
429 

332 
332 

0 
0 

356 
356 

0 
0 

752 
571 

732 
610 

604 
401 

493 
431 

322 
307 

0 
0 

0 
0 

 

Mean Gcon 

ut static 3 4 5 6 7 

0 
0 

103 
103 

0 
0 

0 
0 

0 
0 

0 
0 

224 
182 

201 
201 

194 
194 

186 
186 

128 
128 

0 
0 

369 
245 

280 
200 

0 
0 

0 
0 

0 
0 

260 
260 

497 
413 

407 
412 

320 
290 

335 
316 

0 
0 

356 
356 

689 
575 

514 
427 

474 
447 

444 
340 

332 
221 

298 
280 

1113 
886 

857 
722 

625 
484 

546 
469 

475 
454 

0 
0 
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control parameters  

, using the same model, data and criteria as the DE 

. The results of these searches are 

 

 
 

 
 
 
 
 
 



85 

 

  

Mean Gcon 

Nut static 3 4 5 8 9 10 11 12 13 
F 

0.1 0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0.2 86 
86 

116 
70 

0 
0 

108 
108 

82 
82 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0.3 171 
146 

189 
158 

200 
160 

210 
186 

160 
139 

176 
176 

0 
0 

0 
0 

126 
126 

170 
170 

0.4 358 
256 

311 
239 

335 
272 

294 
270 

230 
208 

253 
216 

359 
249 

785 
202 

0 
0 

190 
173 

0.5 516 
462 

502 
381 

451 
395 

485 
391 

338 
325 

366 
278 

232 
232 

310 
310 

361 
361 

287 
287 

0.6 802 
676 

841 
640 

792 
526 

653 
572 

518 
491 

440 
372 

497 
444 

312 
299 

368 
298 

359 
359 

0.7 1107 
769 

1074 
818 

1207 
837 

844 
584 

734 
605 

521 
468 

547 
430 

601 
446 

846 
338 

596 
522 

0.8 1322 
1203 

1441 
944 

1294 
959 

1365 
1082 

1021 
767 

982 
798 

767 
615 

792 
602 

590 
558 

633 
480 

 

 

 Mean Gcon 

Nut static 10 12 14 16 18 20 22 24 26 28 30 32 
F 

0.1 
52 
49 

0 
0 

46 
46 

68 
68 

0 
0 

46 
46 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

40 
40 

0.2 124 
90 

107 
99 

124 
114 

118 
117 

116 
88 

126 
116 

120 
120 

101 
101 

86 
86 

112 
112 

0 
0 

113 
97 

0 
0 

0.3 251 
216 

235 
196 

191 
140 

194 
188 

231 
217 

219 
219 

194 
174 

0 
0 

219 
219 

0 
0 

156 
140 

183 
183 

0 
0 

0.4 371 
357 

370 
282 

329 
237 

275 
236 

269 
229 

238 
218 

281 
239 

257 
211 

224 
206 

212 
212 

207 
196 

201 
190 

0 
0 

0.5 699 
543 

628 
391 

493 
334 

476 
396 

455 
406 

353 
309 

386 
344 

328 
270 

341 
282 

360 
360 

335 
335 

276 
276 

232 
232 

0.6 880 
628 

911 
819 

844 
560 

810 
601 

735 
541 

527 
408 

485 
445 

417 
388 

386 
336 

345 
306 

329 
300 

323 
282 

371 
371 

0.7 1265 
1028 

1144 
830 

1107 
888 

890 
724 

1042 
754 

843 
735 

595 
485 

548 
456 

539 
472 

499 
434 

455 
410 

390 
390 

447 
370 

0.8 1543 
1362 

1645 
1305 

1449 
1309 

1317 
852 

1234 
1149 

844 
703 

898 
696 

864 
638 

687 
534 

649 
588 

597 
523 

465 
442 

416 
416 

  
Table 3.6: Structure solution of adipamide by CDE using different combinations of 

F (mutation rate) and NUT (cultural pruning parameter) for populations of a)56, b)80, c)160, and d)320. The static 
column indicates a conventional DE search with no cultural pruning. The success rate over the five calculations for 

each NP, F and NUT combination is indicated as in table 3.1. The number in bold is the average number of 
generations required for convergence over the five runs.  The number in italics is the number of generations required 
for convergence in the quickest run within each group of five. For searches performed with NP=56 Gmax=1500, for 

all other NP values Gmax=2000. 
 

(d) 

(c) 
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Tables 3.6a-d show that in general, cultural searches converge in fewer generations than 

analogous DE searches, and that unlike static DE searches (table 3.4), cultural searches are 

significantly more successful if performed with large NP and F. Table 3.6d shows that DE 

searches with F = 0.6 and 0.8 converge with 80% and 60% success on average in 880 and 1543 

generations respectively. CDE searches with F = 0.6 and NUT = 26 converge with 100% success 

on average in 345 generations. CDE searches with F = 0.8 and NUT = 28 converge with 100% 

success on average in 597 generations. In these two cases the CDE searches are 61% more 

efficient than the analogous DE searches. 

Since applying cultural pruning to a search decreases the level of genetic diversity in the 

population, tables 3.6a-d show that as expected, the success rate of cultural searches increases 

with the size of the mutation rate. Table 3.6b shows that for CDE searches with NP = 80, NUT = 

3 and F = 0.3-0.8 searches converge with 20%, 20%, 60%, 80%, 80% and 100% success 

respectively. Increasing the initial amount of genetic diversity by using larger population sizes 

also increases the probability that cultural searches converge successfully. CDE searches with F 

= 0.6, NUT = 4 and NP = 56, 80 and 160 converge with 0%, 40% and 100% success 

respectively. 

Similar to the results presented in tables 3.3a-e, tables 3.6a-d show that the convergence rate of 

searches generally increases as the value of NUT is increased. Table 3.6c shows that CDE 

searches with NP = 160, F = 0.5 and NUT = 3-13 converge on average in 502, 451, 485, 338, 

366, 232, 310, 361 and 287 generations respectively. However, tables 3.6a-d show that the 

success rate of CDE searches decreases as the value of NUT increases. Table 3.6c shows that 

CDE searches with NP = 160, F = 0.5 and NUT = 3-13 converge with 100%, 100%, 100%, 40%, 

100%, 20%, 20%, 20% and 20% success respectively. Comparing tables 3.6c and 3.6d shows 

that searches using larger populations can be performed with larger NUT without compromising 

success. Table 3.6d shows that CDE searches with NP = 320, F = 0.5 converge with 100% 

success NUT = 14-18 but only 20% success for NUT >=26. 

Tables 3.3e and 3.6d respectively show the results of CDE searches used to solve the crystal 

structures of baicalein and adipamide. The size of each population is calculated by multiplying 

the number of parameters defining each structural model by 40, giving NP = 280 for baicalein 

and NP = 320 for adipamide. Comparing table 3.3e with table 3.6d shows that although the CDE 
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searches use a smaller population to solve the structure of baicalein than adipamide, cultural 

searches for baicalein can be performed with larger NUT (more aggressive pruning) than 

searches with equivalent F for adipamide without compromising success. Table 3.3e shows that 

CDE searches with F = 0.3 converge with 100% success NUT = 10, 13, 14, 16, 17, 19, 20, 21, 22 

and 26. CDE searches with F = 0.6 converge with 100% success NUT = 15, 16, 18, 19, 20, 21, 

22, 26, 30 and 32. 

Table 3.6d shows that CDE searches with F = 0.3 converge with 80% success NUT = 10, 12, 14 

and 16, 20% NUT = 18 and 60% success NUT = 20. Searches with F=0.6 converge with 100% 

success NUT = 10, 12, 14, 16, 18, 20 and 26 and 40% success NUT = 28 and 30. This suggests 

that reducing levels of genetic diversity by encouraging models to cluster increases the 

probability that CDE searches converge prematurely in local minima. 

The actual shape of the landscape representing the crystal structure of adipamide potentially 

decreases the probability that cultural searches are successful. Table 3.4 demonstrates that the 

mutation rate of a DE search has a significant influence on the success rate. The use of large F 

decreases the probability that models remain in minima for many generations and forces models 

to explore the landscape. Since the landscape representing adipamide contains numerous local 

minima it is likely that during cultural searches performed using small F, a significant number of 

models cluster in local minima. The cultural pruning encourages a search to explore areas of the 

landscape with a high population density. Thus in this case, pruning discourages models 

clustered in local minima from leaving and locating the global minimum. This suggests that 

cultural searches with small F are less likely to be more efficient than an analogous static DE 

search for solving crystal structures represented by Rwp landscapes containing numerous local 

minima.  

 
 

3.4 The crystal structure solution of acetarsone 
 
3.4.1 Background 

Despite its toxicity, acetarsone ((3-acetylamino-4-hydroxyphenyl)arsonic acid) (C8H10AsNO5) is 

used to treat parasitic infections, particularly protozoal infections of the intestine and genito-

urinary tract. 15 The molecule contains multiple H-bond donors and acceptors, facilitating the 
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possible formation of different H-bonded networks in the crystal structure. 

 

3.4.2 Optimisation of the DE algorithm 

The crystal structure of acetarsone was previously determined by the direct space method, 5 and 

is known to adopt the space group P21, so the model will hence require nine parameters for 

definition within the unit cell.  

 

 
Figure 3.5. The structural model of acetarsone used in the DE calculations.  Arrows indicate torsional flexibility, 

(figure taken from [5]). 
 

In the actual molecule, arsenic forms a pi bond with one oxygen and sigma bonds with the other 

two oxygen atoms. However, as shown in figure 3.5 (and discussed in section 2.1.2 standard 

bond lengths are used) and in our model all three As-O bonds are equivalent. This structure 

solution requires no constraints on the position or orientation of the molecule within the unit cell 

as the space group symmetry requires one molecule in a general position. The structural model of 

acetarsone is defined by three parameters to define the position (x,y,z: between 0 and 1), 

orientation (ϕ,ψ,θ: between 0 and 360) and torsion parameters (τ1-t3: between 0 and 360) to 

define the intramolecular rotation between the arsenic acid group and phenyl ring and the 

flexibility of the acetylamino side chain as shown in figure 3.5. Unlike the previous cases, 

baicalein and adipamide, acetarsone contains one ‘heavy’ arsenic atom which is a strong X-ray 

scatterer compared to the rest of the structure. This should mean that structures in which the 

arsenic atom is in approximately the correct position, are likely to be assigned relatively low R 

factors even if the rest of the organic structure remains non-optimal. 

For acetarsone, a successful crystal structure solution has been attained when the model located 

by the search has an R factor Rwp <= 14.5%. All models obtained with an R factor of this value 

were judged to be close enough for successful Rietveld refinement. The DE structure solution 

calculation was run five times for each combination of NP and F parameters: NP = 63, 90, 135 
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and 180 with F = 0.3-0.8 and 

R factor of the optimum solution located by each of the five searches was recorded. The results 

of these searches are shown in Table
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Table 3.7: Structure solution of acetarsone by DE using different combinations of 
The success rate over the five calculations for each 
The number in bold is the average number of generations required for convergence over the five runs.  The number in italics 

the number of generations required for convergence in the quickest run within each group of five. Searches performed with 
NP=63,90 are assigned Gmax=1500, 

 

 

3.4.3 Optimised combination of 

Table 3.7 demonstrates that searches with 

360 and F = 0.3-0.7 converge with 100% success. However, searches with 

0.1, 0.2 fail to converge, demonstrating that the genetic diversity injected into the population as it 

evolves by the mutation rate is 

the trend seen with baicalein (table 3.1) in which searches w

relatively high success rates. In the largest population sizes, 40 times the number of parameters 

required for model definition, searches with 

60 and 100% success. This suggests that the R

acetarsone contains sufficient local minima to prevent sear

converging in the global minimum.

0.8 and NP = 360 with F = 0.1-0.8. For each combination of 

factor of the optimum solution located by each of the five searches was recorded. The results 

of these searches are shown in Table 3.7. 
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1192 
923 
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1060 

0 
0 
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: Structure solution of acetarsone by DE using different combinations of NP (population size) and F (mutation rate).

The success rate over the five calculations for each NP and F combination is indicated in the colour chart as shown in table 3.1. 
The number in bold is the average number of generations required for convergence over the five runs.  The number in italics 

the number of generations required for convergence in the quickest run within each group of five. Searches performed with 
=1500, NP=135,180 are assigned Gmax=2000, and NP=360 are assigned 

Optimised combination of NP and F control parameters

searches with NP = 360 are the most successful, searches with 

0.7 converge with 100% success. However, searches with 

0.2 fail to converge, demonstrating that the genetic diversity injected into the population as it 

evolves by the mutation rate is necessary to prevent premature convergence. 

the trend seen with baicalein (table 3.1) in which searches with large NP

relatively high success rates. In the largest population sizes, 40 times the number of parameters 

required for model definition, searches with F = 0.1 and 0.2 solve the structure of baicalein with 

This suggests that the Rwp landscape representing the crystal structure of 

acetarsone contains sufficient local minima to prevent searches with small mutation rates 

converging in the global minimum.  
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0.8. For each combination of NP and F, the 

factor of the optimum solution located by each of the five searches was recorded. The results 

(population size) and F (mutation rate).  
combination is indicated in the colour chart as shown in table 3.1. 

The number in bold is the average number of generations required for convergence over the five runs.  The number in italics is 
the number of generations required for convergence in the quickest run within each group of five. Searches performed with 

=360 are assigned Gmax=3000. 

control parameters  

successful, searches with NP = 

0.7 converge with 100% success. However, searches with NP = 360 and F = 

0.2 fail to converge, demonstrating that the genetic diversity injected into the population as it 

to prevent premature convergence. This is different to 

ith large NP and small F have 

relatively high success rates. In the largest population sizes, 40 times the number of parameters 

0.1 and 0.2 solve the structure of baicalein with 

landscape representing the crystal structure of 

ches with small mutation rates from 
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Examination across a row in table 3.7 shows that increasing population size generally increases 

the success rate of searches. However, searches with NP = 63 are relatively successful once F >= 

0.5, searches with NP = 63 and F = 0.6 and 0.8 converge with 100% success. This demonstrates 

that if a sufficiently large mutation rate is used a large population is not essential. Most searches 

with the mutation rate >=0.4 are successful, although with higher NP and F searches are slower 

to converge so insufficient Gmax can significantly reduce the success rate. A high initial level of 

genetic diversity generated by a large population that is maintained by a large rate of mutation 

can prevent a search converging within a convenient number of generations and hence Gmax was 

increased to 3000 for the largest NP value 

As expected, Table 3.7 shows that increasing the mutation rate also increases the number of 

generations required for convergence. For example, searches with NP = 90 and F = 0.5-0.7 

converge on average in 420, 575 and 956 generations respectively while an increase in 

population size increases the number of generations required for convergence to 635, 722 and 

1278 generations for the same F range and NP = 180. 

Table 3.8 presents the results of these searches in child fitness evaluations rather than in number 

of generations. This demonstrates that although searches with a larger population and a small F 

converge in fewer generations (e.g: NP = 360, F = 0.3, 258 generations, 92880 evaluations), 

searches with a smaller population and larger F (NP = 63, F = 0.6, 420 generations, 26460 

evaluations) converge more efficiently, requiring in this case the calculation of 72% fewer child 

fitness evaluations. 
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Table 3.8, The average number of child fitness evaluations calculated by searches using different combinations of 
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107280 
83070 

176445 
143100 

0 
0 
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530280

 
average number of child fitness evaluations calculated by searches using different combinations of 

NP and F. 
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average number of child fitness evaluations calculated by searches using different combinations of 
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Tables 3.9a-e. 
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Table 3.9: Structure solution of acetarsone by CDE using different combinations of
F (mutation rate) and NUT (cultural pruning parameter) for populations of a)

column indicates a conventional DE search with no cultural pruning. The success rate over the five calculations for each 
and NUT combination is indicated in the colour chart (as in Table 3.1). The number in bold is the average number 
required for convergence over the five runs.  The number in italics is the number of generations required for convergence in 

quickest run within each group of five. For searches performed with 

(b) 

(a) 

3.4.4 Optimised combination of NP, F and NUT control parameters

The CDE was run for acetarsone, using the same model, data and criteria as the DE calculation, 

five times for each combination of NUT, NP and F. The results of these s
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: Structure solution of acetarsone by CDE using different combinations of
(cultural pruning parameter) for populations of a) 63, b) 90, c) 135, d)

column indicates a conventional DE search with no cultural pruning. The success rate over the five calculations for each 
combination is indicated in the colour chart (as in Table 3.1). The number in bold is the average number 

required for convergence over the five runs.  The number in italics is the number of generations required for convergence in 
quickest run within each group of five. For searches performed with NP = 63, 90, 135 Gma x= 1500, 

NP = 360 Gmax = 3000. 
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control parameters  

, using the same model, data and criteria as the DE calculation, 

. The results of these searches are shown in 
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: Structure solution of acetarsone by CDE using different combinations of 
135, d) 180 and e) 360. The static 

column indicates a conventional DE search with no cultural pruning. The success rate over the five calculations for each NP, F 
combination is indicated in the colour chart (as in Table 3.1). The number in bold is the average number of generations 

required for convergence over the five runs.  The number in italics is the number of generations required for convergence in the 
1500, NP = 180 Gmax = 2000 and 
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It is clear that compared to the CDE searches used to solve baicalein and adipamide, the CDE 

searches solve acetarsone with relatively low success rates and that CDE searches with larger NP 

and F are generally more successful. However, table 3.9d shows that if large F is combined with 

large NP, CDE searches are frequently terminated by Gmax. 

Table 3.9b shows that CDE searches with NUT = 2 and F = 0.4-0.8 converge with 40%, 60%, 

100%, 100% and 100% success respectively. Tables 3.9a-e show that CDE searches with F = 

0.4, NUT = 5 and NP = 63-360 converge with 0%, 0%, 20%, 60% and 100% success 

respectively.  However, cultural searches with large F can calculate more child fitness 

evaluations than static DE searches using smaller F, making the static searches more efficient. 

Table 3.9c shows that DE searches with NP = 135 and F = 0.4-0.5 converge with 100% success 

in 325 and 542 generations (or 43875 and 73170 fitness evaluations). With NP = 135, the fastest 

CDE with 100% success has F = 0.7, NUT = 5 and converges on average in 983 generations or 

132705 fitness evaluations. 

Unlike CDE searches for baicalein and adipamide, increasing the value of NUT does not 

necessarily cause the CDE searches to solve the structure of acetarsone in significantly fewer 

generations. Table 3.9d shows that DE searches with NP = 180 and F = 0.6 converge with 80% 

success on average in 722 generations. Analogous CDE searches with NUT = 4-9 converge on 

average in 897, 765, 737, 681 and 738 generations respectively, demonstrating that in this case, 

only CDE searches with NUT = 7 converge on average in fewer generations than the analogous 

DE search.  Comparing tables 3.3d and 3.9d shows that CDE searches with large NUT are 

significantly more efficient and successful at solving the structure of baicalein than acetarsone. 

In each case the respective crystal structure is solved by CDE searches with NP = 140 and 180, 

20 times the number of parameters required for model definition. 

Table 3.3d shows that CDE searches with F = 0.6 generally converge with low success rates until 

NUT >= 8. Due to the large population size and high mutation rate, many CDE searches fail to 

converge within Gmax generations. However, CDE searches with NUT = 8-11 converge with 

100% success and in fewer generations than the analogous DE search. Table 3.9d shows that 

CDE searches with F = 0.6 generally take longer to converge than the analogous DE search and 

fail to converge once NUT > 9. 
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Comparing tables 3.3c-e and tables 3.9c-d shows that whereas the success rate of CDE searches 

for baicalein gradually decrease as NUT increases, the success rate of CDE searches for 

acetarsone seems to abruptly fall once NUT increases to a certain value. In general, tables 3.9c-d 

show that CDE searches with NUT >= 7 and NUT >= 9 respectively fail to converge. 

 
 

3.5 Problems with cultural DE 

As discussed in section 2.3, the CDE 4,5 determines which areas of the landscape have a high 

population density by consideration of the position of the children in the landscape. During each 

generation, the position of each child is recorded regardless of whether the child has a higher 

fitness value than the parent and is accepted or a lower fitness value and is rejected. At the end of 

each generation the CDE determines where the children created during the present generation 

have clustered and those areas with low child population density (determined by NUT) are 

pruned so that the next generation of children cannot be created in these areas. 

A comparison of the distribution of children across the landscapes representing the structures of 

baicalein and adipamide during the CDE searches showed that during the CDE search used to 

solve the structure of baicalein, the current best model regularly occupies an area of landscape 

with a high child population density as represented by a histogram bin in the middle of the 

distribution in Figure 5 in chapter 2. Thus the landscape boundaries lie either side of the area 

occupied by the best model and cultural pruning encourages the search to explore the landscape 

occupied by the best model. Conversely, it was found that during the CDE search used to solve 

the structure of acetarsone, the best model frequently occupies an area of landscape represented 

by a histogram bin at one end of the distribution with a low child population density. Thus during 

a CDE search, the pruning frequently removes the bin representing the area of landscape 

occupied by the best model causing the position of the boundaries to be adjusted to exclude this 

area. This both increases the number of generations required for convergence compared to a 

static DE search and also reduces the success rate. 
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3.6 Alternative CDE implementations 

Two alternative implementations of the cultural aspects of CDE were then developed and tested 

by application to the crystal structure solution of baicalein and acetarsone with a view to 

establishing an approach in which the cultural pruning could be utilized in a more robust manner. 

 

3.6.1 ‘ChildBest’ CDE 

In this first adaption, the original cultural differential evolution 4,5 (now referred to as oCDE) was 

modified so that the current best model could not be treated as an outlier, i.e: bins representing 

areas of the landscape occupied by the best model cannot be removed, regardless of their 

population density. Thus if the bin representing the area of landscape occupied by the current 

best model has a low child population density and lies at one extreme end of the distribution, the 

NUT pruning criteria is only allowed to remove bins from the opposite end of the distribution, 

(as a consequence moving the furthest boundary towards the best model.) The landscape 

boundaries always lie either side of the best model and a search is not prevented from exploring 

the area of the landscape occupied by the best model. This version of cultural differential 

evolution is referred to as cbCDE. 

 

3.6.2 ‘PopulationBest’ CDE 

The ‘original’ cultural DE 4,5 controls the position of the landscape boundaries by measuring the 

position of children created during the previous generation. However, many of these children are 

immediately discarded because the child has a lower fitness value than the parent. Thus during 

both oCDE and cbCDE the parameters of rejected children are frequently used to control the 

position of the landscape boundaries.  Hence, an alternative CDE implementation was created in 

which only accepted children and unbeaten parents are used for cultural pruning.  

This version of cultural differential evolution, pbCDE, determines which areas of the landscape 

have a high population density by consideration of the position of the accepted children and 

unbeaten parents in the landscape. At the end of each generation, the N dimensional record stores 

the positions of these individuals and the structure parameters in each dimension are placed in 

sequence of increasing size and sorted into appropriate histogram bins. Bins are then removed as 

before from each end of the distribution until NUT parameters have been pruned from each end 
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of the distribution and the new values define the landscape boundaries. In addition the CDE is 

forbidden to remove histogram bins that represent areas of the landscape occupied by the best 

model regardless of the population density of the bin. 

 
 

3.7 Trial of alternative cultural DE algorithms 
 

3.7.1 The crystal structure solution of baicalein 

Searches with NP = 140 and F = 0.3-0.6 were used to test these alternative CDE approaches and 

the results are presented in tables 3.10a-c. The relatively large population size was chosen since 

it increases the initial amount of genetic diversity and decreases the probability of premature 

convergence. Since the searches were unlikely to converge prematurely through lack of genetic 

diversity a wide range of NUT values could be trialed with low probability of compromising the 

success of searches. Searches were run with different F values to determine whether the new 

cultural implementations responded differently to different mutation rates. Each search was run 

five times for each combination of F and NUT trialed, and as previously, a solution with an R 

factor <= 15.6% was judged to be a success. 

The results shown in tables 3.10a-c demonstrate that the three different variants of CDE 

converge on average in fewer generations than the analogous static DE. Consideration of the 

searches with NP = 140 and F = 0.3 show convergence of the DE with 100% success on average 

in 346 generations. The oCDE search (F = 0.3) with NUT = 4 and 8 converges with 80% and 

100% success respectively on average in 293 and 249 generations, whereas for the cbCDE 

searches this is 100% success on average in 319 and 239 generations and the pbCDE searches 

converge with 100% success on average in 316 and 281 generations respectively. These results 

demonstrate that the cbCDE and oCDE searches, using the same combination of NP, F and NUT, 

converge with similar rates of success and in a similar number of generations. These variants of 

cultural DE use the clustering behaviour of all children to control the movement of the landscape 

boundaries. As the current best model of baicalein regularly occupies an area of the landscape 

represented by a histogram bin with a high child population density and towards the centre of the 

distribution, the cbCDE can regularly remove all the histogram bins to satisfy the NUT criteria 

and prune as in a similar way to the oCDE.  
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Table 3.10c shows that for pbCDE searches increasing NUT does increase the convergence rate 

but not as significantly as for the other two cultural implementations, implying that pbCDE 

searches need to be pruned much more vigorously than oCDE and cbCDE searches to gain an 

equivalent increase in efficiency.  However, when cultural searches are performed with F = 0.3-

0.4 and NUT > 10, the oCDE and cbCDE searches frequently converge with less success (in 

some cases only 20%) than the equivalent pbCDE searches (80 and 100% success). This 

suggests that using the clustering behavior of the “accepted” children and the unbeaten parents 

reduces the rate at which the boundaries are pushed inwards on the population and hence the 

models in the population are not rapidly constrained to only explore a small area of landscape. 

This reduces the rate at which models cluster and genetic diversity lost. 
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Table 3.10: Crystal structure solution of baicalein using a) ‘Original’, b)‘ChildBest’ and c)‘PopulationBest’ CDE. 
The success rate over the five calculations for each 
table 3.1). The number in bold is the average number of generations required for convergence over the five runs.  

The number in italics is the number of generations required for convergence in the quickest run within each group of 
five. All s
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524 

589 
465 

537 
408 

410 
335 

383 
304 
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251 

275
244

1165 
1014 

922 
752 

927 
638 

699 
612 

706 
577 

494 
451 

351
332

1589 
1243 

1622 
1399 

1455 
1292 

1361 
1032 

989 
762 

659 
513 

703
490

Mean Gcon 

5 6 7 8 10 12

303 
246 

288 
182 

294 
209 

281 
195 

274 
233 

242
170

588 
473 

624 
447 

465 
369 

589 
549 

558 
434 

552
369

1109 
947 

1122 
924 

1117 
941 

1105 
874 

802 
707 

870
724

1654 
1393 

1561 
1462 

1324 
886 

1525 
1341 

1373 
1089 

1347
1032

 

: Crystal structure solution of baicalein using a) ‘Original’, b)‘ChildBest’ and c)‘PopulationBest’ CDE. 
The success rate over the five calculations for each F and NUT combination is indicated in the colour
table 3.1). The number in bold is the average number of generations required for convergence over the five runs.  

The number in italics is the number of generations required for convergence in the quickest run within each group of 
five. All searches were performed using Gmax=2000. 
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12 15 

225 
196 

249 
249 

235 
213 

406 
406 

364 
321 

268 
257 

470 
377 

354 
307 

12 15 

235 
176 

192 
192 

275 
244 

233 
233 

351 
332 

307 
276 

703 
490 

419 
374 

12 15 

242 
170 

239 
185 

552 
369 

450 
288 

870 
724 

768 
663 

1347 
1032 

1222 
824 

: Crystal structure solution of baicalein using a) ‘Original’, b)‘ChildBest’ and c)‘PopulationBest’ CDE. 
combination is indicated in the colour chart (as in 

table 3.1). The number in bold is the average number of generations required for convergence over the five runs.  
The number in italics is the number of generations required for convergence in the quickest run within each group of 
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3.7.2 The crystal structure solution of acetarsone 

Structure solution tests on acetarsone were performed by searches with NP = 180 and F = 0.3-0.8 

and the results of these searches presented in tables 3.11a-c. The relatively large population size 

was chosen since it increases the initial amount of genetic diversity, decreases the probability of 

premature convergence and allows a wide range of NUT values to be trialed without 

compromising the success of searches. Searches were run with different F values to determine 

whether the new cultural implementations responded differently to different mutation rates. Each 

search was run five times for each combination of F and NUT trialed and the search judged to be 

a success if the R factor of the final solution was <= 14.5%. 

Table 3.11a shows that oCDE searches are capable of solving the crystal structure of acetarsone 

but only with high success if F>=0.6. However, the use of large F slows the rate of convergence, 

and hence the oCDE searches do not provide greater efficiency than the static DE searches.  

Table 3.11b demonstrates that cbCDE searches that are prevented from pruning the area of 

landscape occupied by the best model have higher success rates than oCDE searches. However, 

many of the results in this table show that the cbCDE searches require more generations to 

converge than the analogous static DE searches. It is only the cbCDE searches with F=0.5 that 

converge with high success rates and in fewer generations than the static DE search. 

The pbCDE searches with small F shown in table 3.11c are more likely to solve the crystal 

structure of acetarsone than oCDE and cbCDE searches. Table 3.11c shows that pbCDE searches 

with F = 0.4 converge with 100% success on average in 337 and 286 generations with NUT = 4 

and 6 respectively. This suggests that using the clustering behavior of the accepted children and 

unbeaten parents to control the movement of the landscape boundaries results in a search that is 

not so aggressively pruned compared to the other two cultural implementations that use the 

clustering behavior of all children. With less vigorous pruning the pbCDE searches do not 

converge in significantly fewer generations than analogous DE searches for example, F = 0.7 

over the range NUT = 4-9. Table 3.11c demonstrates that although the pbCDE search converges 

with greater success than the oCDE and cbCDE cultural implementations, the pbCDE does not 

frequently converge in significantly fewer generations than analogous DE searches. Thus the 

pbCDE cultural implementation is not significantly more efficient than static DE searches when 

used to solve the structure of acetarsone. 



 

Nut 

F 
0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

 

Nut 

F 
0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

 

Nut static
F 

0.3 0
0

0.4 350
271

0.5 635
490

0.6 722
622

0.7 1278
1169

0.8 0
0

Table 3.11: Crystal structure solution of acetarsone using a)‘Original’, b)‘ChildBest’ and c)‘PopulationBest
The success rate over the five calculations for each F and NUT combination is indicated in the colour chart (as in 
table 3.1). The number in bold is the average number of generations required for convergence over the five runs.  

The number in italics is the number of generations required for convergence in the quickest run within each group of 
five. All searches were performed using 

(a) 

(b) 
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Mean Gcon 
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0 
0 
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0 
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0 
0 

0 
0 

350 
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230 

0 
0 
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321 
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514 
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474 
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0 
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738 
721 

1278 
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936 

1266 
1042 
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1055 
1055 

0 
0 
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1520 

1580 
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1461 
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1313 

1055 
969 
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0 
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0 
0 
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0 

0 
0 
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313 
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0 
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861 
655 

835 
480 
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588 
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550 
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1169 

1105 
946 

1294 
1015 

1277 
977 

1159 
912 

864 
714 

0 
0 

1626 
1357 

1527 
1473 

1589 
1033 

1365 
838 

1158 
751 
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0 
0 
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0 
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0 
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480 
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344 

392 
357 

574 
509 

501 
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722 
622 

819 
712 

869 
630 

831 
542 

901 
613 

632 
573 

1278 
1169 

1236 
1033 

1248 
863 

1119 
985 

1079 
984 

1127 
1004 

0 
0 

1543 
1211 

1585 
1353 

1585 
1079 

1437 
1069 

1295 
1083 

 
: Crystal structure solution of acetarsone using a)‘Original’, b)‘ChildBest’ and c)‘PopulationBest

The success rate over the five calculations for each F and NUT combination is indicated in the colour chart (as in 
table 3.1). The number in bold is the average number of generations required for convergence over the five runs.  

s is the number of generations required for convergence in the quickest run within each group of 
five. All searches were performed using Gmax=2000. 
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11 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

11 
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0 
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746 

 1307 
1051 

: Crystal structure solution of acetarsone using a)‘Original’, b)‘ChildBest’ and c)‘PopulationBest’ CDE. 
The success rate over the five calculations for each F and NUT combination is indicated in the colour chart (as in 
table 3.1). The number in bold is the average number of generations required for convergence over the five runs.  

s is the number of generations required for convergence in the quickest run within each group of 
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3.8 Auspicious cultural pruning 

During the initial generations of a search it is unlikely that many models cluster near the global 

minimum. If cultural pruning is initiated prematurely it increases the probability that models near 

the global minimum are treated as outliers and a search is discouraged from exploring near the 

global minimum. To prevent this, pruning should only be initiated once a cluster of models has 

formed near the global minimum. However, if pruning is initiated too late, many models are 

already clustered near the global minimum thus the use of cultural pruning does not significantly 

reduce the number of generations required by a search to converge. 

In this thesis and in the previous work, 4,5 pruning is initiated at generation 50 regardless of the 

clustering of the models. It was found 4,5 that initiating pruning at this arbitrary number of 

generations caused the original implementation of cultural searches to reliably converge in fewer 

generations than static DE searches. However, it is likely that the solution of different crystal 

structures or the use of different combinations of NP, F and NUT will alter the clustering 

behavior of models during a search and hence the arbitrary initiation of pruning at generation 50 

may not be optimal for all cultural searches.  

In order to test this theory, the original cultural implementation described in 4,5 and in section 2.3 

was used to solve baicalein and adipamide and pruning initiated after different generations. The 

generation at which pruning is initiated is defined by the user controlled parameter PruneStart. 

For each structure solution, pruning was initiated after 1, 25, 50, 100 and 200 generations. 

During this test, CDE searches used to solve the different structures are not assigned identical 

combinations of F, NP and NUT; instead each CDE search is assigned a combination of NP, F 

and NUT that increases the probability that searches solve the particular structure. 

 

3.8.1 The crystal structure solution of baicalein 

The structure solution of baicalein was performed with NP = 140, F = 0.3 and NUT = 8 in which 

average convergence was after 346 generations for the static DE and 249 for oCDE initiating 

pruning at generation 50 (as shown in table 3.3d). Five structure solution calculations were 

performed for each value of PruneStart. As previously discussed in section 3.2.2, searches that 

converge locating a solution that is assigned an R factor <= 15.6% are judged successful. The 

average number of generations required for successful convergence is calculated and presented 



103 

in table 3.12. Table 3.12 shows that delaying the initiation of pruning increases the average 

number of generations required by a search to converge. Searches that initiate pruning after 25 

generations converge in the smallest number of generations with 100% success. Comparison of 

the average number of generations required by a search to converge, shows that searches that 

initiate pruning after 25 generations converge in significantly fewer generations than searches 

that initiate pruning after 50, 100 and 200 generations. Searches that initiate pruning after 50, 

100 and 200 generations require on average approximately the same number of generations to 

converge. This behaviour suggests that initiating pruning after 50 generations does not guide a 

significant number of models towards the global minimum. It suggests that after 50 generations a 

significant number of models in a population with NP = 140 and F = 0.3 are already clustered 

near the global minimum. Thus table 3.12 suggests that the optimal generation at which to 

initiate cultural pruning for structure solution of baicalein using NP = 140, F = 0.3 and NUT = 8 

is between generation one and fifty. 

 

            Number of Generations  

Prune 
Start 

Static 
DE 

1 25 50 100 200   

  
 346 140 185 249 248 274  

 
Table 3.12: Structure solution of baicalein using CDE in which cultural pruning is initiated after different 

generations. Each column denotes the generation at which pruning was initiated. The success rate over the five 
calculations is indicated in the colour chart (as in table 3.1) and the number in bold is the average number of 

generations required for convergence over the five runs. 
 
 
3.8.2 The crystal structure solution of adipamide 

The structure solution of adipamide was performed with NP = 160, F = 0.5 and NUT = 5 in 

which average convergence was after 516 generations for the static DE and 485 for oCDE 

initiating pruning at generation 50 (as shown in table 3.6c). Five structure solution calculations 

were performed for each value of PruneStart. As previously discussed section 3.3.1, searches that 

converge locating a solution that is assigned an R factor <=16.0% are judged successful. The 

average number of generations required for successful convergence is calculated and presented 

in table 3.13. 
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            Number of Generations  

Prune 
Start 

Static 
DE 

1 25 50 100 200 

  

 516 490 378 485 443 454 

 
Table 3.13: Structure solution of adipamide using CDE in which cultural pruning is initiated after different 

generations. Each column denotes the generation at which pruning was initiated. The success rate over the five 
calculations is indicated in the colour chart (as in table 3.1) and the number in bold is the average number of 

generations required for convergence over the five runs. 
 
 
Table 3.13 shows that searches initiating pruning after 25 generations converge in the smallest 

number of generations with 100% success and that searches initiating pruning after 50, 100 and 

200 generations require more generations to converge. However, searches that initiate pruning 

after one generation require more generations to converge than any other cultural search. This 

suggests that initiating cultural pruning after one generation frustrates the exploration of the 

landscape and the identification of the global minimum. Since the Rwp landscape representing the 

crystal structure of adipamide contains numerous local minima it is likely that during the initial 

generations of a search many models that are assigned relatively low R factors occupy local 

minima. If cultural pruning is initiated after one generation it will detect this and restrict the 

search to explore these local minima. As a consequence a search is discouraged from exploring 

the whole landscape and identifying the global minimum. Table 3.13 demonstrates that cultural 

pruning should not be initiated after the first generation of a search when used to solve the 

structure of adipamide and that the ideal generation at which to initiate pruning for structure 

solution of adipamide using NP = 160, F = 0.5 and NUT = 5 is between generation two and fifty. 

 
3.8.3 Summary 

In order to maximize the potential of a cultural search, it is necessary to identify the optimal 

generation at which to initiate pruning. Ideally pruning is initiated once a certain number of 

models in a population have achieved a relatively low R factor as this indicates that a number of 

models have located one or more deep minima that have a high probability of being the global 

minimum. 
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3.9 Conclusions 

Sections 3.2.3, 3.3.2 and 3.4.3 demonstrate that certain combinations of NP and F do increase the 

probability that a DE search solves a particular crystal structure and can significantly influence 

the efficiency of the search. However, the results presented in these sections demonstrate that 

there is no ‘universal’ optimal combination of NP and F. Tables 3.1 and 3.2 demonstrate that if a 

crystal structure is likely to be represented by an Rwp landscape with few local minima it is more 

efficient to solve the structure using a DE search with a moderate population size and relatively 

small F since this increases the probability that a search solves the structure calculating as few 

child fitness evaluations as possible. However, if a crystal structure is likely to be represented by 

an Rwp landscape containing numerous local minima tables 3.4 and 3.5 for adipamide and 3.7 

and 3.8 for acetarsone show that it is more efficient to use a small population and moderate to 

large F since this decreases the probability that many models explore local minima, increases the 

probability that the search converges in the global rather than a local minimum and calculates 

fewer child fitness evaluations. 

Although the addition of culture to a search can significantly reduce the number of generations 

required by a search to converge, aggressive over-pruning can reduce the probability that a 

search converges successfully and it may additionally increase the number of generations 

required for convergence compared to an analogous static DE search. If no consideration is given 

to the relationship between the location of the best model in the landscape and where children are 

clustering, the cultural search can prune the area of landscape occupied by the best model from 

the search, preventing successful convergence. Cultural searches that identify the area of 

landscape occupied by the best model and do not prune this area of landscape from the search, 

are significantly more likely to converge in the global minimum. 

No definite conclusions can be drawn concerning whether searches that consider the clustering 

behaviour of all children to control the position of the boundaries are more efficient than 

searches that consider the clustering of only accepted children and unbeaten parents. Cultural 

pruning should not be applied to a search in an arbitrary manner. Table 3.12 demonstrates that if 

pruning is initiated too late its use does not significantly increase the efficiency of a cultural 

search compared to an analogous static DE search since many models are already clustered near 

the global minimum. However, table 3.13 demonstrates that if pruning is initiated prematurely, 
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models may be prevented from reaching the global minimum and encouraged to cluster in local 

minima.  
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Chapter 4. Eugenic differential evolution. 
 
 
Eugenics, noun.  ‘The science of improving stock, whether human or animal.’ Webster 

Unabridged Dictionary. (1913). 

Eugenics, noun.  ‘Selective breeding as proposed human improvement.’ Encarta pocket 

dictionary. Microsoft corporation. (1999). 
 
4.1 Stages in the evolution of a population 
 
4.1.1 Initial population. 

As previously discussed in sections 1.3.2, 2.2.1 and 2.4 of this thesis, the size and dimensionality 

of the landscape representing a particular direct space structure solution problem is determined 

by the number of parameters used to define the position, orientation and conformation of a model 

in the unit cell, not the size of the population. When a large population is initialised in a 

particular landscape, the landscape has a higher population density than when a smaller 

population is used. When a population is initialised, models are generated at random across the 

landscape and hence as the population size is increased, the probability that an initial model is 

randomly generated near the global minimum increases. A model that is generated near the 

global minimum has a higher probability of accessing the global minimum in fewer generations 

than a model that is generated further away. 

 
4.1.2 Exploration of a landscape 

4.1.2.1 Local minima act as traps 

As models explore the landscape, fitter models (with similar gene values) cluster in minima. If a 

parent and three random models are selected from one cluster to create a child, the child will 

likely have similar gene values and be created in or near the same cluster and hence have a high 

probability of being created in the same minimum. A child that is fitter than the parent is likely 

to occupy a deeper part of the minimum and the search will proceed deeper in this direction, 

whereas a child nearer the lip of the minimum is likely to be less fit than the parent and be 

rejected. This interbreeding between models clustered in a minimum causes the genetic diversity 

to decrease and drives the models to the bottom of the minimum reducing the probability that the 

search converges in the global minimum. 
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4.1.2.2 Escape 

A model trapped in a local minimum can escape by breeding a child that is both fitter and does 

not occupy the same local minimum. This can be done in two ways: 

(a) If the mutation vector is sufficiently long, the child has a low probability of being created 

near the parent. If the child is fitter than the parent, the parent is replaced by the child and 

relocates to a distant part of the landscape. Therefore a large F value increases the probability 

that the child structures can escape local minima. 

(b) A larger population size initially increases the number of genetically diverse models in the 

landscape and the probability that the parent and randomly selected models used to create a child 

occupy different areas of the landscape. If two models used to calculate the mutation vector for a 

child occupy distant parts of the landscape, the mutation vector will be long regardless of the F 

value, increasing the probability that the child is created at a considerable distance from the 

parent and increasing the probability that models can escape local minima.  In addition, a larger 

population size reduces the probability that a significant number of models cluster in one local 

minimum and hence reduces the probability that a child is created using models that occupy one 

local minimum. Thus for larger population sizes the minimum value of F required to prevent 

premature convergence decreases. Table 3.1 clearly demonstrates that DE searches with large NP 

and small F converge with greater success than searches with small NP and large F. 

 
4.1.3 Final solution 

As the number of models in a population with relatively high fitness (near the global minimum) 

increases, the probability that models near the global minimum interbreed also increases. This 

means that children can be created close by and rapidly increase the population density around 

the global minimum. Models with relatively low fitness (at a considerable distance from the 

global minimum) that breed with models near the global minimum are likely to create children 

nearer the global minimum and the proportion of the population near the global minimum 

increases. This process is illustrated in figures 3.2 and 3.3, by the rapid increase in the 

convergence rate of the search as it nears completion. 

As discussed in section 2.2.4, DE is a vector-based global optimisation algorithm that 



 

autonomously regulates the area of landscape searched in each generation according to the exten

of population convergence. Thus whilst using the same values of 

initially rapidly explore a significant area of the landscape but once models cluster near the 

global minimum concentrate around the global minimum. If a parent and 

clustered near the global minimum are selected to create a child, the recombination and mutation 

vectors will be relatively short and the child created near the parent and global minimum. 

However, the rate at which the search self

will be created much nearer the parent if 

0.99 is optimal for structure solution calculations. This means that once a significant proportion 

of models in the population are clustered near the global minimum the value of 

affects the rate at which the population density increases around the global minimum. As a 

result, once the global minimum has been located by a proportion of the populat

with smaller F converge faster than searches with larger 

 
4.1.4 The effect of increasing population size and decreasing mutation 

rate 

The following two figures show the evolutionary progress of two searches using different 

and F values. Figure 4.1 shows the progress of a DE search with 

figure 4.2 illustrates a search with 

 

Figure 4.1, Progress of a DE search used to solve the crystal structure of baicalein with 

autonomously regulates the area of landscape searched in each generation according to the exten

of population convergence. Thus whilst using the same values of K and 

initially rapidly explore a significant area of the landscape but once models cluster near the 

global minimum concentrate around the global minimum. If a parent and 

clustered near the global minimum are selected to create a child, the recombination and mutation 

vectors will be relatively short and the child created near the parent and global minimum. 

However, the rate at which the search self-scales is influenced by the values of 

will be created much nearer the parent if K and F are small. As discussed in section 3.1.2, 

0.99 is optimal for structure solution calculations. This means that once a significant proportion 

in the population are clustered near the global minimum the value of 

e rate at which the population density increases around the global minimum. As a 

result, once the global minimum has been located by a proportion of the populat

with smaller F converge faster than searches with larger F.  

4.1.4 The effect of increasing population size and decreasing mutation 

The following two figures show the evolutionary progress of two searches using different 

. Figure 4.1 shows the progress of a DE search with NP = 280 and 

figure 4.2 illustrates a search with NP = 70 and F = 0.5. 

 
, Progress of a DE search used to solve the crystal structure of baicalein with 
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autonomously regulates the area of landscape searched in each generation according to the extent 

and F, a DE search can 

initially rapidly explore a significant area of the landscape but once models cluster near the 

global minimum concentrate around the global minimum. If a parent and three random models 

clustered near the global minimum are selected to create a child, the recombination and mutation 

vectors will be relatively short and the child created near the parent and global minimum. 

s is influenced by the values of K and F, the child 

are small. As discussed in section 3.1.2, K = 

0.99 is optimal for structure solution calculations. This means that once a significant proportion 

in the population are clustered near the global minimum the value of F significantly 

e rate at which the population density increases around the global minimum. As a 

result, once the global minimum has been located by a proportion of the population, searches 

4.1.4 The effect of increasing population size and decreasing mutation 

The following two figures show the evolutionary progress of two searches using different NP 

280 and F = 0.1, whereas 

 

, Progress of a DE search used to solve the crystal structure of baicalein with NP = 280 and F = 0.1. 



 

The initial 280 models generated at random have a mean 

model at 36.04%. After the search has progressed for 20 generations with 

factor of the population has decreased to 35.22% while

decreased to 25.34%. After 40 generations the progress plot shows that the search has completed 

the stage of rapid convergence and the mean 

model at 13.11%. After 40 generations the se

 

Figure 4.2, Progress of a DE search used to solve the crystal structure of baicalein with 
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The initial 280 models generated at random have a mean R factor of 40.62% with the best initial 

model at 36.04%. After the search has progressed for 20 generations with 

factor of the population has decreased to 35.22% while the R factor of the best model has 

decreased to 25.34%. After 40 generations the progress plot shows that the search has completed 

the stage of rapid convergence and the mean R factor is 13.99% with the 

model at 13.11%. After 40 generations the search is close to converging on the global minimum.

 
, Progress of a DE search used to solve the crystal structure of baicalein with 

Figure 4.2 shows that with the smaller population, the initial 70 models have a mean 

40.71%. The best initial model has an R factor of 37.06% and with F =

35.29% after 20 generations with the mean R factor of the population at 37.22%. After 40 

factor has only decreased to 36.65% and the best model decreased to 

29.46%; not even near the global minimum. It is only at about 400 generations that rapid 

convergence of the population begins. 

NP = 280 not only converges in fewer generations than the search 

70, it also converges in less time, requiring the calculation of 15680 child fitness 

evaluations, whereas the search with NP = 70 calculates 33530 evaluations.
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, Progress of a DE search used to solve the crystal structure of baicalein with NP = 70 and F = 0.5. 
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280 not only converges in fewer generations than the search 

70, it also converges in less time, requiring the calculation of 15680 child fitness 

70 calculates 33530 evaluations. 
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4.1.5 Summary 

As the population size increases the probability that a significant proportion of models in the 

population cluster in one local minimum decreases. Thus searches with larger NP are less likely 

to converge prematurely, even if F is assigned a small value. For a particular problem, the larger 

the population size the higher the population density in the landscape and the greater the 

probability that an initial model is generated near the global minimum and accesses the global 

minimum in relatively few generations. Once the best model accesses the global minimum it can 

breed with other models and cause children to be generated near the global minimum, rapidly 

increasing the local population density. Thus as the population size increases the probability that 

a significant proportion of models are located near the global minimum after relatively few 

generations increases. Once a certain proportion of models are clustered near the global 

minimum the search is prevented from converging in a local minimum, and the size of the 

mutation rate only affects the rate of convergence on the global minimum. If F is assigned a 

smaller value, parents near the global minimum can breed children that are more likely to be 

nearer the global minimum than if F is assigned a larger value. Since searches with larger NP are 

less likely to converge prematurely it becomes advantageous to assign searches with large NP 

small F as this increases the convergence rate. However, as demonstrated in chapter 3, due to the 

number of child fitness evaluations calculated by a search, searches with larger population sizes 

and small mutation rates are generally slower to converge in real time than searches with smaller 

population sizes and larger mutation rates. 

 

4.2 Eugenic DE 

4.2.1 Principles of eugenic DE 

It is this ability of a search with large NP and small F to locate the global minimum in few 

generations by ‘saturating’ a landscape with models, combined with the ability of a search with 

small NP and large F to converge on the global minimum requiring the calculation of 

significantly fewer child fitness evaluations that is exploited to create the eugenic differential 

evolution approach. 

The eugenic DE has two basic principles:  
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(a) The search is initiated using a large primary population and assigned a small mutation rate. 

This creates a high population density in the landscape, increasing the probability that an initial 

model is generated near the global minimum. The small mutation rate causes the DE to act as an 

R factor minimisation algorithm so that the models ‘fall’ into the nearest minima. 

(b) Once a certain proportion of models in the primary population have a relatively low R factor, 

a smaller secondary population is initiated and populated with the fittest models selected from 

the primary population. A proportion of the models in the primary population with the lowest R 

factor are transferred into the secondary population; the remaining models in the primary 

population are discarded. The smaller secondary population is assigned a larger mutation rate to 

reduce premature convergence. This encourages the search to explore the landscape further. 

However, as a significant proportion of the secondary population are already located in deep 

minima the search is biased to explore these favoured areas of the landscape and there is a high 

probability that it will converge successfully in fewer generations. Combining these evolutionary 

features in this way, a eugenic DE search can converge requiring significantly fewer child fitness 

evaluations (hence in less real time) than a traditional DE search with fixed NP and F. 

 
4.2.2 Auspicious population pruning 

If the primary population is pruned too early, the secondary population will be created containing 

few models clustered near the global minimum. As a result, it is unlikely that the search will be 

sufficiently biased to only explore the landscape around the global minimum and the secondary 

search will spend additional generations needlessly exploring local minima, reducing the 

efficiency of a eugenic search. However, if the primary population is pruned too late, many 

models will have already located the global minimum by the time the secondary population is 

created, but with a large primary population, a large number of child fitness evaluations will 

have been calculated, again reducing the efficiency of a eugenic search. The eugenic DE should 

prune a primary population as soon as a sufficient number of models are clustered near the global 

minimum, but this is dependent on the complexity of the particular problem, which in turn is 

affected by the number of parameters defining a model and the number and shape of local 

minima in the landscape. A search is likely to require a greater number of generations to 

optimise a model defined by many parameters and if the landscape contains numerous local 
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minima. Hence the optimal moment to prune must be established by following the evolutionary 

process and must be computer controlled. 

 
4.2.3 Determining the complexity of a crystal structure solution 

problem 

A characteristic that can be used to indicate the complexity of a particular structure solution 

problem is the difference between the R factor assigned to the initial best model and the mean R 

factor assigned to the whole initial population. If the structure solution is relatively complex, it is 

unlikely that many of the randomly generated initial models will have optimal combinations of 

parameters and hence the mean R factor of the initial population is likely to be significantly 

greater than that of the initial best model. Conversely if the structure solution problem is 

relatively simple, it is likely that the mean R factor and that of the initial best model have more 

similar values. As the number of initial models with better combinations of parameters increases, 

the number of generations required for sufficient clustering of the primary population decreases. 

The R factor difference will be investigated as a potential indicator as to when a primary 

population is pruned. 

 
4.2.4 The pruning criteria 

It is important to establish not only when but by how much the population should be pruned. In 

this eugenic DE, the R factor assigned to the initial best model in the primary population is set as 

the ‘target R factor’. As the primary population evolves, more models are assigned an R factor 

<= the ‘target R factor’. Once a certain proportion of the population (defined by the user) is 

assigned an R factor <= the ‘target R factor’, the primary population is pruned and the secondary 

population generated. As the complexity of a crystal structure solution increases, the number of 

generations required for this proportion to be reached also increases and thus the primary 

population evolves for a greater number of generations before it is used to bias the secondary 

search towards the global minimum. 

In this implementation, the number of models in the primary population required to have an R 

factor <= the ‘target R factor’ before pruning, is automatically calculated from the value of the 

user defined parameter ‘RequireFrac.’  A ‘RequireFrac’ value of 0.25 means that the primary 
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population is pruned when 0.25 of the population transferred into the secondary population have 

an R factor <= the ‘target R factor’. A ‘RequireFrac’ value of 0.5 means that half of the models 

transferred into the secondary population have an R factor <= the ‘target R factor’ and hence as 

‘RequireFrac’ is increased, so is the bias of the secondary search. 

 
4.2.5 Determining the size of the primary and secondary populations 

The results from the DE searches in chapter 3 (table 3.1 for baicalein and table 3.4 for 

adipamide) both show the most successful combinations of NP and F parameters. For larger NP 

(baicalein NP = 280, adipamide NP = 320) and smaller F (0.1-0.3) searches can rapidly locate 

the global minimum of a landscape and therefore a suitable NP for the primary population will 

be calculated by multiplying the number of parameters required for structural model definition 

by 40. 

For smaller NP (baicalein NP = 70, adipamide NP = 80) successful convergence was obtained in 

general with F >= 0.5, and hence with these control parameters the secondary population should 

have a relatively high probability of converging successfully. Therefore the secondary NP will be 

calculated by multiplying the number of parameters required for structural model definition by 

10. 

 
 

4.3 Crystal structure solution by eugenic DE 

Appendix B shows the eugenic DE subroutine, written in the Perl language. 

 
4.3.1 Initial test 

The eugenic DE was first tested and used to solve the crystal structure of adipamide. A detailed 

discussion of the events occurring during one test structure solution calculation using the eugenic 

DE is presented here and illustrated by figure 4.3. Figure 4.3 shows the convergence of the 

population in a similar way to figures 4.1 and 4.2. 

As in section 3.3.1, eight parameters are used to define the structural model of adipamide, hence 

primary NP = 320 and primary F = 0.1, secondary NP = 80 and secondary F = 0.6, with 

‘RequireFrac’ = 0.25. Hence in this calculation, the primary population is pruned at the end of a 
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generation once a minimum of (80x0.25) = 20 models are assigned an R factor <= the ‘target R 

factor’. Figure 4.3a shows that the initial best model in the primary population is assigned an R 

factor = 36.93%. Therefore for this structure solution calculation, the ‘target R factor’ is set to 

36.93%. The inset histogram in figure 4.3a shows that after five generations, three models have 

been assigned an R factor<=the ‘target R factor’ whereas after six generations this number has 

risen to seven models.  After eight generations, 23 models have been assigned an R factor <= 

36.93% and pruning is initiated. The best 80 members of the population (those with the lowest R 

factors, including the 23 models with R factors <= the target factor) are transferred to the 

secondary population; the 240 models with the highest R factors are discarded and hence the 

remainder of the eugenic calculation progresses with a population of 80. The secondary search 

then converges successfully (figure 4.3b) with the entire eugenic process taking a total of 192 

generations. The primary population evolves for eight generations whilst the secondary 

population evolves for 184 generations. Thus during the whole search, the eugenic DE calculates 

a total of (320x8) + (80x184) = 17280 child fitness evaluations. 
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Figure 4.3. Progress of the eugenic DE search used to solve the structure of adipamide for (a) the first 20 
generations and for (b) the complete evolutionary process. The red circles denote the mean Rwp of the population 

and the blue line the best individual at that generation. The shaded green area highlights when the primary 
population is used and the inset histogram the number of individuals with Rwp <= the ‘target R-factor’. 

 
 
 
  

(a) 

(b) 
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4.3.2 The crystal structure solution of baicalein by eugenic DE 

The structure solution of baicalein is performed using a model defined by seven parameters and 

for the search to be considered successful, the final solution is required to have an R factor <= 

15.6%. The average number of child fitness evaluations calculated by successful searches using 

the same combination of control parameters is used as an indicator of efficiency. In the 

traditional DE searches, a certain combination of NP and F is used for each set of five 

calculations. Due to the increased efficiency of the eugenic DE, each combination of primary 

NP, secondary NP, secondary F and RequireFrac is used in a set of ten searches. The total 

number of child fitness evaluations needed by the traditional DE searches are shown in table 4.1 

(table 3.2 from chapter 3 presented again here for ease of comparison) and the number needed by 

the eugenic searches shown in table 4.2. 

Comparison of tables 4.1 and 4.2 demonstrates that the eugenic DE searches solve the crystal 

structure of baicalein in fewer child fitness evaluations than many of the traditional DE searches. 

The fastest eugenic search with RequireFrac = 0.5 converges with 100% success, calculating on 

average, 13538 child fitness evaluations. This can be compared with the fastest traditional DE 

search with NP = 105 and F = 0.3 that converges with 100% success in an average of 27615 

child fitness evaluations. The results in table 4.2 also showed significant increase in overall 

performance when compared to the traditional DE in which the secondary NP = 70 was used 

throughout the calculation. 

Table 4.2 also demonstrates that as the value of RequireFrac increases, the total number of child 

fitness evaluations calculated decreases. Thus as more models that are clustered near the global 

minimum are located and transferred into a secondary population, a search using the secondary 

population is increasingly biased towards the global minimum and converges more rapidly. 

However, it is not possible to conclude from this limited set of results what effect the value of 

RequireFrac has on the success rate of a search. 

 



 

Table 4.1: Structure solution of baicalein by traditional DE using different combinations of NP (population size) and 
F (mutation rate).  The success rate over the five calculations for each 

colour chart: blue for 100% success and red for 0% success rate. The number in bold is the average number of child 
fitness evaluations required for convergence over the five runs.  The number in italics is the optimum calculation 

from each set of runs in terms of spe

 
 
 
 
 
 
 
 

Table 4.2, Structure solution of baicalein by eugenic DE. As shown in table 4.1, except that data is pres
ten calculations rather than five.  Each column represents a RequireFrac proportion.  Calculations were carried out 

with Primary NP

 
 
 
4.3.3 The crystal structure solution of adipamide

The structure solution of adipamide is performed using a model defined by eight parameters. As 
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times. The number of child fitness evaluations calculated by the traditional DE searches are 
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4.3.3 The crystal structure solution of adipamide by eugenic DE

The structure solution of adipamide is performed using a model defined by eight parameters. As 

NP and F is used five times, whereas each eugenic DE search using 

a certain combination of primary NP, secondary NP, secondary F and RequireFrac is 

The number of child fitness evaluations calculated by the traditional DE searches are 

shown in table 4.3 (table 3.5 from chapter 3 presented again here for ease of comparison), and 

those by the eugenic DE searches are shown in table 4.4. 
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t: blue for 100% success and red for 0% success rate. The number in bold is the average number of child 
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Table 4.3, Structure solution of adipamide by traditional DE (as denoted in table 4.1). 

 
  
   

 Number of Fitness Evaluations  

RequireFrac 0.25 0.333 0.5 

F(prim/sec) 

0.1/0.5 24133 
15600 

17400 
16160 

17760 
11600 

 
 

Table 4.4, Structure solution of adipamide by eugenic DE. As shown in table 4.2.  Calculations were carried out 
with Primary NP = 320 and F = 0.1; Secondary NP = 80 and F = 0.5; K = 0.99. 

 

Although table 4.4 shows that the eugenic searches do not converge with 100% success, the 

searches require the calculation of fewer child fitness evaluations than many of the traditional 

DE searches (table 4.3). The fastest eugenic search with RequireFrac = 0.333 converges on 

average in 17400 child fitness evaluations, whereas the fastest traditional DE search with NP = 

80 converges at best with an average of 17920 child fitness evaluations. Again, it is clear that as 

the value of RequireFrac increases, the total number of child fitness evaluations calculated by 

eugenic searches generally decreases. 
 

 Number of Fitness Evaluations  

NP 56 80 160 320 
F 

0.1   0 
0 

16640 
15680 

0.2   13760 
13760 

39680 
28800 

0.3  0 
0 

27360 
23360 

80320 
69120 

0.4  17920 
14560 

57280 
40960 

118720 
114240 

0.5 12152 
8904 

29520 
19600 

82560 
73920 

223680 
173760 

0.6 24416 
18424 

39760 
33040 

128320 
108160 

281600 
200960 

0.7 34496 
30800 

55120 
46000 

177120 
123040 

404800 
328960 

0.8 42112 
31976 

89040 
70880 

211520 
192480 

493760 
435840 
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4.3.4 The crystal structure solution of acetarsone by eugenic DE 

In the case of acetarsone, the structure solution is performed using a model defined by nine 

parameters. Each traditional DE search was carried out using a certain combination of NP and F 

five times. Each eugenic DE search using a certain combination of primary NP, secondary NP, 

secondary F and RequireFrac is performed 10 times. The number of child fitness evaluations 

calculated by the traditional DE searches used to solve the crystal structure of acetarsone are 

shown in table 4.5 (table 3.8 from chapter 3 presented again here for ease of comparison), and 

the number of child fitness evaluations calculated by the eugenic DE searches are shown in table 

4.6. 

  Number of Fitness Evaluations  

NP 
63 90 135 180 360 

F  

0.1 
    0 

0 

0.2     0 
0 

0.3 0 
0 

0 
0 

19035 
19035 

0 
0 

92880 
76680 

0.4 0 
0 

20700 
19530 

43875 
22950 

63000 
48780 

146160 
114840 

0.5 21987 
18711 

37800 
33840 

48780 
32040 

114300 
52200 

346680 
200520 

0.6 26460 
23499 

51750 
44010 

114885 
97335 

129960 
111960 

494280 
339120 

0.7 40320 
25137 

86040 
63180 

162675 
125820 

230040 
210420 

643320 
455040 

0.8 
71190 
55944 

107280 
83070 

176445 
143100 

0 
0 

613080 
530280 

 
Table 4.5, Structure solution of acetarsone by traditional DE (as denoted in table 4.1). 

 
 

 Number of Fitness Evaluations  

RequireFrac 0.25 0.333 0.5 

F(prim/sec) 

0.1/0.5 23490 
16020 

22928 
20430 

31253 
18810 

 
Table 4.6, Structure solution of acetarsone by eugenic DE. As shown in table 4.2.  Calculations were carried out  

with Primary NP = 360 and F = 0.1; Secondary NP = 90 and F = 0.5; K = 0.99. 
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Table 4.6 shows that again the eugenic searches converge requiring the calculation of fewer child 

fitness evaluations than many of the traditional DE searches (table 4.5) and faster than most of 

the NP = 90 calculations.  The fastest eugenic search is with RequireFrac = 0.333 and converges 

with 80% success calculating on average 22928 child fitness evaluations. However, these results 

suggest that it is also possible to disrupt a search if the secondary population is created 

containing an excessive number of models that are assigned an R factor <= the target R factor. In 

this example, unlike baicalein, eugenic searches with RequireFrac = 0.5 converge calculating on 

average significantly more child fitness evaluations than when RequireFrac = 0.25 or 0.333. 

With a small primary F = 0.1, models in the primary population have a high probability of 

rapidly moving into minima. If the landscape contains multiple relatively deep minima, models 

in the primary population can gain a relatively low R factor by moving into more than one deep 

minimum. If this happens, when the primary population is pruned, models with relatively low R 

factors occupying different minima are transferred into the secondary population and ‘compete’ 

to bias a search towards their particular minima, rather than guiding the search towards the 

global minimum. Our pruning criteria based on target-R-factor cannot distinguish between this 

case and that in which one deep minimum has been found. The search will not converge until the 

models in the wrong minima relocate to the global minimum, and this may take many more 

generations and child fitness evaluations. One possible explanation for the trend observed in the 

results presented in table 4.6 is that the Rwp landscape representing the crystal structure solution 

of acetarsone has multiple relatively deep minima into which models in a primary population can 

move. Increasing the value of RequireFrac then increases the probability that many models 

occupying these deep minima are transferred into a secondary population and compete during the 

secondary search.  In contrast, if the Rwp landscapes representing the crystal structures of 

adipamide and baicalein only have one relatively deep minimum, models located by the primary 

population with relatively low R factors are more likely to be near this deep minimum. Thus a 

secondary search is more likely to be biased to explore only the global minimum rather than 

‘multiple’ relatively deep local minima; an increase in the value of RequireFrac for these 

searches does not increase the number of competing models transferred into a secondary 

population. However, the only way to map the Rwp landscapes representing the crystal structures 

of baicalein, adipamide and acetarsone and determine the nature of the local and global 
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minimum is to run a grid search for each structure. Section 1.4.2 discusses why grid searches are 

very computationally demanding and because of these computational limitations it has not been 

practical to perform these grid searches. 

 
 

4.4 Optimisation of eugenic DE 

The value of primary and secondary NP, primary and secondary F and RequireFrac all affect the 

total number of child fitness evaluations required for convergence of a eugenic search. In this 

section, different combinations of primary NP, secondary NP, secondary F and RequireFrac are 

evaluated in order to determine the optimal combination; defined as the combination that causes 

the eugenic search to converge with a high success rate whilst calculating the least number of 

child fitness evaluations. These combinations are tested on eugenic searches used to solve the 

crystal structures of baicalein, adipamide and the 1:1 salt formed between isonicotinamide and 

oxamic acid. This salt structure, defined by an Rwp landscape with a total of 14 dimensions, was 

chosen as a significantly more complex example than other structure solution calculations 

attempted in this and the previous chapter. The eugenic DE was run 10 times for each different 

combination of control parameters investigated. In the cases of baicalein and adipamide, the 

structural models and criteria for successful solution are as presented previously. 

 
4.4.1 The crystal structure solution of baicalein 

Table 4.7 demonstrates that in general, increasing the secondary mutation rate increases the 

probability that a search converges successfully; suggesting that although most searches using a 

secondary population are biased towards the global minimum, it is still possible for a search with 

a low mutation rate to converge prematurely in a local minimum. 

Increasing the number of models in a primary population whilst maintaining both the number of 

models in a secondary population and the secondary mutation rate, does not significantly 

increase the probability of successful convergence. Runs in which the secondary population is 

constant have the same number of models with R factors <= the target R factor transferred into 

the secondary population, and hence the search is equally biased towards the global minimum 

regardless of the number of models in the primary population.  Increasing the number of models 

in the primary population does increase the number of child fitness evaluations calculated by 
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searches, but not as significantly as seen in traditional DE. The eugenic searches with secondary 

NP = 70, RequireFrac = 0.25, secondary F = 0.5 and primary NP = 280, 560 and 1120 calculate 

on average 15062,18002 and 26273 child fitness evaluations respectively. Given that the primary 

population containing 1120 models is four times that containing 280, the searches with primary 

NP = 1120 on average only calculate 74% more child fitness evaluations than searches with 

 

 

 

Table 4.7 Structure solution of baicalein by eugenic DE using different combinations of secondary F, primary and 
secondary NP and RequireFrac.  The top half of the table denotes calculations with a secondary NP = 70; the bottom 
half denotes calculations with a secondary NP = 140. The success rate over the ten calculations for each combination 

is indicated in the colour chart: blue for 100% success and red for 0% success rate.  The number in bold is the 
average number of child fitness evaluations required for convergence over the ten runs, the number in italics denotes 

the quickest within each set of runs.  Calculations were carried out with K = 0.99. 

  Number of Fitness Evaluations  

NP (prim/sec) 280/70 560/70 1120/70 

RequireFrac 
0.25 0.5 0.25 0.5 0.25 0.5 

F(prim/sec) 

0.1/0.3 11284 
7070 

7245 
7070 

11634 
11060 

0 
0 

20720 
13650 

25788 
15680 

0.1/0.4 
9888 
8610 

14728 
12250 

16463 
14140 

16758 
11620 

22840 
15400 

24127 
15120 

0.1/0.5 
15062 
8400 

11818 
7560 

18002 
14210 

19981 
15610 

26273 
16380 

24936 
19320 

0.1/0.6 
15523 
11200 

14709 
11340 

19341 
14980 

19600 
14280 

25401 
16520 

28187 
18200 

0.1/0.7 
21656 
15470 

21686 
14770 

25953 
16100 

22435 
16030 

31204 
21000 

38010 
29120 

0.1/0.8 
30716 
19460 

27020 
18970 

33364 
26670 

32760 
25060 

38057 
30380 

36540 
25620 

NP 280/140 560/140 1120/140 

0.1/0.3 
17472 
15540 

17808 
9660 

23485 
19740 

22260 
16380 

37730 
28280 

33530 
28140 

 0.1/0.4 30100 
10780 

24588 
13720 

32452 
19880 

29162 
14980 

40623 
32200 

39158 
27020 

0.1/0.5 33896 
19880 

35126 
17500 

44030 
21980 

35042 
17780 

45842 
35140 

38142 
25760 

0.1/0.6 
57295 
24500 

38556 
25480 

43358 
27020 

37816 
28700 

52262 
41440 

52780 
39900 

0.1/0.7 74130 
35280 

52640 
30940 

63000 
43120 

47418 
35700 

67452 
47460 

63224 
45220 

0.1/0.8 91910 
65240 

57190 
44520 

63683 
50820 

66885 
52360 

83188 
55440 

79114 
66080 
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primary NP = 280. Increasing the size of the primary population increases the probability that 

initial models are near the global minimum. As the size of a primary population increases, the 

number of models with R factors <= the target R factor required to initiate population pruning are 

located in fewer generations.  The number of models in the secondary population has a greater 

effect on the total number of child fitness evaluations calculated by a search. Searches with 

primary NP = 280, RequireFrac = 0.25, secondary F = 0.5 and with secondary NP = 70 and 140 

calculate on average 15062 and 33896 child fitness evaluations respectively. Thus the searches 

with the secondary population containing twice as many models calculate at least twice as many 

child fitness evaluations. Hence an increase in the size of the secondary population significantly 

reduces the efficiency of the eugenic searches. 

Variation of the number of models transferred into the secondary population, RequireFrac, 

(assigned R factors <= the target R factor) does not have a completely predictable effect on either 

the total number of child fitness evaluations required or the success rate of the search. In some 

cases RequireFrac = 0.25 and 0.5 converge with the same success rate with the larger 

RequireFrac value requiring fewer child fitness evaluations. For example, (a) primary NP = 280, 

secondary NP = 70, secondary F = 0.5, RequireFrac = 0.25 and 0.5 converge with 60% success 

calculating on average 15062 and 11818 child fitness evaluations respectively, (b) primary NP = 

280, secondary NP = 70, secondary F = 0.6, RequireFrac = 0.25 and 0.5 converge with 80% 

success calculating on average 15523 and 14709 child fitness evaluations respectively. Whereas 

there are other cases in which an increase in RequireFrac results in more child fitness 

evaluations. The effect on success rate can also be unpredictable. For example, (a) primary NP = 

560, secondary NP = 70, secondary F = 0.5, RequireFrac = 0.25 and 0.5 converge with 60 and 

90% success respectively, calculating on average 18002 and 19981 child fitness evaluations, (b) 

primary NP = 560, secondary NP = 70, secondary F = 0.6, RequireFrac = 0.25 and 0.5 converge 

with 100% and 90% success respectively, calculating on average 19341 and 19600 child fitness 

evaluations. 

Increasing the value of RequireFrac should increase the bias of the secondary search reducing the 

number of child fitness evaluations calculated by this part of the search. However, increasing the 

value of RequireFrac increases the number of relatively fit models that need to be located by the 

primary population which may then need to evolve for more generations. As the primary 
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population contains significantly more models than the secondary population, evolution of the 

primary population for an increased number of generations potentially requires the calculation of 

an overall greater number of child fitness evaluations than if evolution of the secondary 

population required an increased number of generations. When assigning the value of 

RequireFrac, a compromise needs to be made between the number of child fitness evaluations 

calculated by the primary and secondary populations. From the results presented in table 4.7 

alone, it is not possible to conclude whether it is more efficient to assign RequireFrac a large or 

small value to optimise the eugenic evolution. 

 

4.4.2 The crystal structure solution of adipamide 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Table 4.8, Structure solution of adipamide by eugenic DE using different combinations of secondary F, primary and 
secondary NP and RequireFrac.  The results are presented as in table 4.7. 

  Number of Fitness Evaluations  

NP (prim/sec) 320/80 640/80 1280/80 

RequireFrac 
0.25 0.5 0.25 0.5 0.25 0.5 

F(prim/sec) 
 

0.1/0.4 

  17760 
15440 

13280 
9040 

17344 
13840 

14080 
14080 

0.1/0.5   18180 
12960 

19714 
13840 

24891 
18480 

24507 
22400 

0.1/0.6 23634 
13360 

20446 
15120 

22302 
18640 

20516 
16320 

28950 
21200 

28229 
20160 

0.1/0.7 28790 
16000 

25646 
18240 

28127 
20720 

27460 
20880 

37076 
23360 

31392 
27600 

0.1/0.8 43590 
26880 

45938 
26560 

42570 
28000 

38860 
27520 

47067 
34640 

40880 
27440 

NP 320/160 640/160  

0.1/0.3 19840 
14720 

17200 
16480 

18944 
14720 

23488 
20960 

  

 0.1/0.4 32320 
17600 

21440 
18400 

24580 
21120 

31223 
22880 

  

0.1/0.5 38960 
20000 

27460 
17600 

35063 
24960 

33404 
23200 

  

0.1/0.6 51893 
30240 

44480 
25600 

46160 
31840 

36060 
25900 

  

0.1/0.7 55253 
30880 

52366 
40320 

69831 
40640 

62200 
36960 

  

0.1/0.8 111238 
68000 

76278 
43520 

105248 
53920 

81720 
52360 

  

Success rate 
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Table 4.8 demonstrates that once the secondary F >= 0.5, increasing F does not significantly 

increase the success rate of a search. This suggests that many secondary searches are sufficiently 

biased towards the global minimum and increasing the secondary mutation rate does not assist a 

search to locate the global minimum. This table also demonstrates that increasing the secondary 

mutation rate increases the total number of child fitness evaluations calculated by a search and 

hence there is no advantage of using eugenic searches with large secondary Fs. 

Increasing the number of models in the primary population does not significantly increase the 

total number of child fitness evaluations calculated by a search or the success rate of the search. 

For example, secondary NP = 80, secondary F = 0.6, RequireFrac = 0.25 and primary NP = 320, 

640 and 1280 calculate on average 23634, 22302 and 28950 child fitness evaluations with 70%, 

90% and 80% success respectively.  However, increasing the number of models in the secondary 

population significantly increases the number of child fitness evaluations required. Searches with 

primary NP = 320, secondary F = 0.6, RequireFrac = 0.25 and secondary NP = 160 calculate on 

average more than twice as many child fitness evaluations than the equivalent search with 

secondary NP = 80. Increasing the number of models in the secondary population does not 

predictably increase the success rate, hence there is no clear advantage gained by increasing the 

size of the secondary population. 

Increasing the value of RequireFrac generally decreases the total number of child fitness 

evaluations calculated by a search, demonstrating that increasing the bias of secondary searches 

causes searches to converge more rapidly.  However, considering the results presented in table 

4.8, it is not possible to conclude whether increasing the value of RequireFrac increases the 

success rate of a search. 

 
4.4.3 The crystal structure solution of the isonicotinamide : oxamate 

1:1 salt.  

The structure of the 1:1 salt formed between isonicotinamide and oxamic acid has been 

previously solved by the direct space method using traditional DE, 1,2 thus it is possible to test 

whether eugenic DE solves the structure with greater efficiency. The direct space structure 

solution of isonicotinamide : oxamate 1:1 requires no constraints on the orientation, position or 

flexibility of the two models within the unit cell as the space group symmetry (P21/n) requires 
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the two molecules in a general position. The original structure solution was performed 

considering this molecular adduct as a cocrystal so the two independent units will be the neutral 

isonicotinamide and oxamic acid molecules. The two independent molecules are each defined by 

seven structure parameters; three parameters to define the position (x,y,z: between 0 and 1), three 

orientation (ϕ,ψ,θ: between 0 and 360) of the molecule and one torsion parameter (τ1: between 0 

and 360) as shown in figure 4.4; thus the overall structure is defined by 14 parameters. 

 

 
 

Figure 4.4 The structural model of the isonicotinamide and oxamic acid adduct used in the structure solution 
calculations.  Arrows indicate torsional flexibility. Hydrogen atoms were excluded from the structure solution. 

 

In the case of isonicotinamide : oxamate, a successful structure solution is required to have an R 

factor <= 18.0% at which all models were judged to be close enough for successful Rietveld 

refinement. For each successful search, the mean number of fitness evaluations calculated by 

successful searches was calculated.  The eugenic DE structure solution calculation was run 10 

times for each combination of primary and secondary NP, secondary F and RequireFrac. The 

results of the eugenic searches are given in Table 4.9.  For comparison, additional calculations 

were carried out using the traditional DE using different combinations of NP and F. Due to the 

extra time needed for traditional DE structure solution calculations, five searches were 

performed for each combination of NP and F: NP = 140 and 280 with F = 0.1-0.6 and NP = 560 

with F = 0.1-0.4. The results of structure solution by traditional DE are presented in table 4.10. 
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Table 4.9, Structure solution of isonicotinamide : oxamate 1:1 by eugenic DE using 
different combinations of secondary F, primary NP and RequireFrac.  The results 

are presented as in table 4.7. 
 
  
  

 

 
 

Table 4.10, Structure solution of isonicotinamide : oxamate 1:1 by traditional DE. 
The results are presented as in previous tables. 

 
Table 4.9 shows that increasing the secondary mutation rate increases the total number of child 

fitness evaluations calculated. However, searches with smaller secondary F can also have 

relatively high success rates, so again there is no definite advantage of assigning a large value of 

secondary F. In some cases, increasing the number of models in the primary population can 

decrease the total number of child fitness evaluations calculated by a search for example with 

secondary F = 0.8 in which searches with primary NP = 560 and 1120 calculate on average 

   Number of Fitness Evaluations   

NP (prim/sec) 560/140 1120/140 

RequireFrac 
0.25 0.5 0.25 0.5 

F(prim/sec) 

0.1/0.5 53340 
39340 

48944 
41860 

58450 
48300 

55650 
32900 

0.1/0.6 81676 
60620 

65357 
56140 

77035 
51660 

72730 
55440 

0.1/0.7 120360 
83860 

128996 
119140 

151200 
138880 

110343 
98980 

0.1/0.8 184007 
155680 

204480 
136500 

167230 
132160 

159600 
142100 

 Number of Fitness Evaluations  

NP 140 280 560   

F 
0.1 0 

0 
0 
0 

0 
0 

 

0.2 0 
0 

0 
0 

0 
0 

 

0.3 0 
0 

0 
0 

445200 
413840 

 

0.4 0 
0 

306227 
268520 

871080 
812000 

0.5 108990 
107520 

516880 
513800 

 

0.6 192220 
182980 

704947 
655480 

 

Success rate 
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204480 and 159600 child fitness evaluations respectively. This is because an increase in the 

number of models in the primary population increases the population density in the landscape 

and the probability that an initial model is generated near the global minimum. The landscape 

representing this salt structure is defined by twice as many dimensions as that of an example 

such as baicalein, hence to create a high population density the population must contain 

relatively more models. This is in contrast with the majority of the results presented in tables 4.7 

and 4.8 which demonstrate that a larger primary population increases the number of child fitness 

evaluations calculated (although there are results in these tables that also show the opposite 

trend). 

In this example, increasing the value of RequireFrac can increase the success rate of a search. 

Since the Rwp landscape representing the salt structure is defined by twice as many dimensions 

than that of an example such as baicalein, primary populations created in the landscape 

representing the salt structure have a comparatively low population density. Increasing the value 

of RequireFrac significantly increases the number of models clustered near the global minimum 

that are transferred into the secondary population, increasing the bias of the secondary search and 

increasing the probability that the search converges in the global minimum. Higher RequireFrac 

can also reduce the total number of child fitness evaluations required, suggesting that complex 

crystal structures represented by landscapes with many dimensions should be solved using 

eugenic searches that transfer relatively many models that are assigned R factors <= the target R 

factor into the secondary population. 

Comparison of the number of child fitness evaluations calculated by eugenic searches (table 4.9) 

with those required by traditional DE searches (table 4.10) shows that many of the eugenic 

searches are significantly more efficient than many of the traditional DE searches. The fastest 

eugenic search with primary NP = 560, secondary NP = 140, secondary F = 0.5 and RequireFrac 

= 0.5 converges on average in 48944 child fitness evaluations, while the fastest traditional DE 

search with NP = 280 and F = 0.5 converges on average in 108990 child fitness evaluations. In 

terms of the optimum run in each case, the fastest eugenic DE calculation converged in 39340 

child fitness evaluations (primary NP = 560, secondary F = 0.5, RequireFrac = 0.25) whereas the 

traditional DE required 107520 (NP = 140 and F = 0.5). 
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4.5 Pruning after an arbitrary number of generations 
 
4.5.1 Justification for delayed pruning 

Increasing the number of models transferred into the secondary population that are assigned an R 

factor <= the target R factor can increase the bias of the secondary search towards the global 

minimum and reduce the total number of child fitness evaluations required by a search. 

However, increasing the number of relatively fit models that need to be located by the primary 

population increases the probability that the primary population evolves for more generations 

and calculates even more child fitness evaluations. Since a significant number of child fitness 

evaluations are calculated during the evolution of the primary population, delaying pruning and 

transferring more fit models into a secondary population may reduce the efficiency of a eugenic 

search.  To determine whether late pruning has a significant detrimental effect on the total 

number of child fitness evaluations calculated, FixedGenPrune searches were developed in 

which the pruning is initiated after an arbitrary number of generations defined by the user. 

 

4.5.2 FixedGenPrune DE 

A large primary population is created and assigned F = 0.1, thus models in the primary 

population rapidly fall into the nearest minimum. These models have a high probability of being 

assigned low R factors relative to the rest of the population and hence this primary population 

search can rapidly locate models that are likely to be near the global minimum. After a number 

of generations (defined by the user), the primary population is pruned and the secondary 

population created. The models in the primary population are placed in order of increasing R 

factor. A proportion of the models with the highest R factors are discarded and a proportion of 

the models with the lowest R factors are transferred into the secondary population, thus the 

secondary search is biased towards the minima located by the primary population. The mutation 

rate is increased to 0.6 to reduce the probability that a search converges prematurely. 

In the work discussed here, two different sizes of primary population are investigated. The value 

of primary NP = 40 and 80 times the number of parameters defining a structural model in the 

unit cell.  Hence for baicalein the primary NP = 280 (7*40) and 560 (7*80), for adipamide the 

primary NP = 320 (8*40) and 640 (8*80) and for the isonicotinamide : oxamate salt, the primary 
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NP = 560 (14*40) and 1120 (14*80).  The number of models transferred into the secondary 

population is calculated at 10 times the number of parameters defining a model.   Hence for 

baicalein, the secondary NP = 70, for adipamide, the secondary NP = 80 and for isonicotinamide 

: oxamate, the secondary NP = 140. Each set of FixedGenPrune searches were run 10 times for 

each combination of primary population size and the generation at which pruning is initiated. 

Success of solution was judged according to the R-factor criteria described in earlier sections. 

 
4.5.3 The crystal structure solution of baicalein 
 

  Number of Fitness  
Evaluations   

NP (prim/sec) 280/70 560/70 
GenPrune   

5 22626 
10570 

21858 
14350 

10 16840 
12040 

18370 
15260 

15 14856 
10220 

18822 
16520 

20 14376 
10710 

20510 
17640 

   

RequireFrac 0.25 15523 
11200 

19341 
14980 

RequireFrac 0.5 14709 
11340 

19600 
14280 

 
Table 4.11, Structure solution of baicalein by FixedGenPrune DE using different pruning criteria.  GenPrune 

indicates the generation at which the primary population is pruned and is compared with the RequireFrac results.  
Calculations were performed with secondary NP = 70, primary F = 0.1, secondary F = 0.6, K = 0.99.  The results are 

denoted as in previous tables. 
 

The results presented in table 4.11 for FixedGenPrune searches with primary NP = 280 show that 

delaying pruning decreases the total number of child fitness evaluations calculated by a search, 

suggesting that delaying pruning increases the number of models clustered near the global 

minimum that are transferred into the secondary population, increasing the bias of a search 

towards the global minimum. However, for searches with primary NP = 560 delaying pruning 

decreases and then increases the number of child fitness evaluations calculated. This suggests 

that if the primary population is sufficiently large, delaying pruning causes a significant number 

of fitness evaluations to be calculated during evolution of the primary population without 
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simultaneously increasing the bias of the secondary search towards the global minimum. Thus as 

the number of fitness evaluations calculated during evolution of the primary population 

increases, the number of fitness evaluations calculated during evolution of the secondary 

population does not decrease in proportion. These results suggest that as the number of models in 

the primary population increases, the advantage gained by delaying pruning decreases. There is 

no predictable effect of delayed pruning on the success rate of the search. 

Comparing the number of child fitness evaluations calculated by FixedGenPrune searches and 

eugenic searches using RequireFrac as the pruning criteria using a secondary NP = 70, 

demonstrates that overall there is no significant improvement with the FixedGenPrune searches 

within a particular primary population size. 

 
4.5.4 The crystal structure solution of adipamide 
 

  Number of Fitness  
Evaluations  

NP (prim/sec) 320/80 640/80 

GenPrune   
5 18930 

12240 
24423 
18400 

10 16144 
11280 

20409 
15680 

15 15472 
10800 

21110 
18320 

20 16350 
13600 

23467 
19440 

   

RequireFrac 0.25 23634 
13360 

22302 
18640 

RequireFrac 0.5 20446 
15120 

20516 
16320 

 
Table 4.12, Structure solution of adipamide by FixedGenPrune DE using different pruning criteria.  GenPrune 

indicates the generation at which the primary population is pruned and is compared with the RequireFrac results.  
Calculations were performed with secondary NP = 80, primary F = 0.1, secondary F = 0.6, K = 0.99.  The results are 

denoted as in previous tables. 
 

Table 4.12 demonstrates that as pruning is delayed from 5 to 20 generations, the number of child 

fitness evaluations calculated by a search decreases before it increases again as FixedGenPrune 

gets larger. This suggests that evolution of the primary population for more generations requires 
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the calculation of more child fitness evaluations without increasing the bias of a secondary 

search. Again, there is no clear effect on the success rate of the searches. 

Comparing the number of child fitness evaluations calculated by FixedGenPrune and eugenic 

RequireFrac searches, shows that FixedGenPrune searches with NP = 320 solve the structure of 

adipamide with consistently higher efficiency (the fastest on average in 15472 child fitness 

evaluations for GenPrune = 15), whereas for NP = 640, the efficiency of the two methods is 

similar. 

 
4.5.5 The crystal structure solution of the isonicotinamide : oxamate 

1:1 salt 
 

  Number of Fitness  
Evaluations  

NP (prim/sec) 560/140 1120/140 

GenPrune   
5 57610 

56700 
68635 
64960 

10 96133 
48440 

71645 
65520 

15 62944 
57540 

69020 
69020 

20 51660 
51660 

76240 
63560 

   

RequireFrac 0.25 81676 
60620 

77035 
51660 

RequireFrac 0.5 65357 
56140 

72730 
55440 

 
Table 4.13, Structure solution of isonicotinamide : oxamate by FixedGenPrune DE using different pruning criteria.  
GenPrune indicates the generation at which the primary population is pruned and is compared with the RequireFrac 
results.  Calculations were performed with secondary NP = 140, primary F = 0.1, secondary F = 0.6, K = 0.99.  The 

results are denoted as in previous tables. 
 

Table 4.13 demonstrates that delaying pruning has no predictable effect on the number of child 

fitness evaluations calculated by searches with primary NP = 560 especially in the case of 

FixedGenPrune = 10 where this value seems exceptionally high. For searches with primary NP = 

1120, delaying pruning does not significantly change the number of fitness evaluations required. 

Delaying pruning for searches with primary NP = 1120 may increase the success rate but results 

are not conclusive. 
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These results show that increasing the size of the primary population generally increases the 

number of child fitness evaluations calculated by a search. If increasing the size of the primary 

population does not increase the bias of the secondary search it suggests that the primary 

population does not locate a sufficient number of models clustered near the global minimum that 

can be transferred into the secondary population. As the size of the primary population increases, 

the number of child fitness evaluations calculated during evolution of this primary population 

increases, but the number of fitness evaluations calculated during the evolution of the secondary 

population does not decrease simultaneously.  Using significantly larger primary populations or 

delaying pruning for longer, is likely to result in primary populations locating more models near 

the global minimum that can be transferred to the secondary population and successfully bias the 

secondary search. However, using a larger primary population or further delaying pruning is 

likely to increase the overall number of fitness evaluations calculated during evolution of an even 

larger primary population.  Since models located in minima are assigned lower R factors relative 

to other models, these models can be transferred into the secondary population as well as models 

near the global minimum. Although delaying pruning increases the probability that more models 

near the global minimum are transferred, delaying pruning also increases the probability that a 

greater proportion of models in the population evolve and locate local minima, thus delaying 

pruning may increase the probability that more models located in local minima are transferred. 

As the proportion of models in the secondary population that are initially located in local minima 

increases, the probability that a search converges prematurely also increases and the probability 

that a search converges within a convenient number of generations decreases; thus delaying 

pruning further may not be advantageous.  The results presented in table 4.13 suggest that 

FixedGenPrune searches may be unsuitable for use in the solution of relatively complex crystal 

structures. 
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4.6 Convergence rate accelerator 
 
4.6.1 Theory 

The results so far in this chapter have shown that the initial implementation of the eugenic DE is 

likely to be more robust, solving a greater variety of structures with higher rates of success even 

when governed by a non-optimal combination of control parameters. This is based on the 

initiation of pruning once a certain proportion of models have acquired a low R factor relative to 

the primary population rather than after an arbitrary number of generations. To increase the 

probability that a search is successful it is clear that pruning should ideally be initiated by criteria 

that indicate the clustering of models near the global minimum rather than after an arbitrary 

number of generations. 

An indicator of the clustering of models near the global minimum is to measure the convergence 

rate of a search. As discussed in section 4.1.3 and demonstrated in figures 3.2, 3.3, 4.1 and 4.2, 

as the number of models in a population near the global minimum increases, the convergence 

rate accelerates.  The convergence rate can be measured by monitoring the rate of change in the 

mean R factor assigned to a population. The figures demonstrate that the mean R factor initially 

decreases relatively rapidly as parents with significantly low fitness are frequently replaced by 

fitter children. After a small number of generations, the rate of change of the mean R factor 

decreases as models in the population explore the landscape and parents are replaced by fitter 

children less frequently. The rate of change in the value of the mean R factor does not increase 

again until the terminal stage of the search when a significant number of models are near the 

global minimum and children are rapidly replacing the parents as there is rapid final 

convergence. Thus the value of the mean R factor assigned to models in the primary population 

will be investigated as an indicator of the clustering of models near the global minimum. 

 
4.6.2 The Accelerator DE 

The Accelerator DE first initiates a large primary population to increase the probability that an 

initial model is generated near the global minimum; the primary population is assigned F = 0.1 to 

increase the convergence rate. After the first and tenth generations, the value of the mean R 

factor is recorded and the ‘baseline convergence rate’ (defined as the average rate of change in 
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the mean R factor over the first 10 generations) calculated using equation 4.1. The ‘threshold 

convergence rate’ is then calculated using equation 4.2. The value of the ‘threshold multiplier’ is 

defined by the user before the structure solution calculation is initiated. 

 
Baseline convergence rate=(([MeanR generation1]–[MeanR generation10])/10)  (4.1) 

 

Threshold convergence rate=([baseline convergence rate]*[threshold multiplier]) (4.2) 
 

Once a search has evolved the primary population for 11 generations, the mean R factor is 

recorded after each generation and a ‘generation specific convergence rate’ is calculated using 

equation 4.3. 

 
Generation specific convergence rate=([MeanR generationX-1]-[MeanR generationX]) (4.3) 

 

If the value of the ‘generation specific convergence rate’ is greater than the ‘threshold 

convergence rate’ the value of a ‘threshold rate exceed counter’ is increased by one. Once a 

significant proportion of the models in the primary population cluster near the global minimum, 

the convergence rate accelerates. The value of the ‘generation specific convergence rate’ 

frequently exceeds the ‘threshold convergence rate’ and the value of the ‘threshold rate exceed 

counter’ increases. When the value of the ‘threshold rate exceed counter’ exceeds the value of 

the control parameter ‘Exceed’ (defined by the user), pruning is initiated. The R factors of the 

models in the primary population are placed in order of increasing value and a proportion of the 

models with the lowest R factors are transferred into the secondary population. The models that 

remain in the primary population are then discarded and the mutation rate is increased to 

decrease the probability that the secondary search converges prematurely. 

The values of the ‘threshold multiplier’ and the parameter ‘Exceed’ control how rapidly the 

primary population is pruned. Increasing the value of the ‘threshold multiplier’ increases the size 

of the ‘threshold convergence rate’ relative to the ‘baseline convergence rate’ and decreases the 

probability that the value of the ‘generation specific convergence rate’ exceeds the ‘threshold 

convergence rate’. Thus increasing the value of the ‘threshold multiplier’ decreases the 

probability that pruning is initiated.  Increasing the value of ‘Exceed’ increases the number of 
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generations required to have a ‘generation specific convergence rate’ greater than the ‘threshold 

convergence rate’ before pruning is initiated. 

In the work discussed here, two different sizes of primary population are investigated. The value 

of primary NP is calculated at 40 and 80 times the number of parameters required to define a 

model in the unit cell. Hence for baicalein, the primary NP = 280 and 560, for adipamide the 

primary NP = 320 and 640 and for the isonicotinamide : oxamate salt, the primary NP = 560 and 

1120.  The number of models transferred into the secondary population is calculated at 10 times 

the number of parameters required to define a model: hence for baicalein, the secondary NP = 

70, for adipamide the secondary NP = 80 and for the isonicotinamide : oxamate salt the 

secondary NP = 140. Two values of ‘Exceed’, 2 and 4 are evaluated.  Each structure solution 

calculation was run 10 times using different combinations of primary NP, secondary F and 

‘Exceed’. The value of the ‘threshold multiplier’ was fixed at 1.5 for all calculations. 

 
 
4.6.3 The crystal structure solution of baicalein 
 
 

  Number of Fitness Evaluations  

NP (prim/sec) 280/70 560/70 

Exceed 2 4 2 4 
F(prim/sec) 

0.1/0.6 16740 
14700 

15400 
9870 

31255 
22330 

29225 
22400 

0.1/0.8 24458 
20510 

23144 
18900 

38430 
30030 

39235 
28210 

RequireFrac 0.25 0.5 0.25 0.5 

0.1/0.6 15523 
11200 

14709 
11340 

19341 
14980 

19600 
14280 

0.1/0.7 21656 
15470 

21686 
14770 

25953 
16100 

22435 
16030 

0.1/0.8 30716 
19460 

27020 
18970 

33364 
26670 

32760 
25060 

 
 

Table 4.14, Structure solution of baicalein by accelerator DE using different values of Exceed.  Calculations were 
performed with secondary NP = 70, primary F = 0.1, threshold multiplier = 1.5, K = 0.99, with different values of 

secondary F and Exceed.  For comparison, results from earlier calculations using RequireFrac (table 4.7) are 
included.  The results are denoted as in previous tables. 
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Table 4.14 demonstrates that increasing the secondary mutation rate increases the success rate of 

the search. Thus although secondary searches are biased towards the global minimum, searches 

are still vulnerable to premature convergence and increasing the secondary mutation rate still 

helps to prevent this. However, increasing the secondary mutation rate increases the number of 

child fitness evaluations required. Thus when assigning a value to secondary F, a compromise 

needs to be made between speed of convergence and success rate. 

Increasing the value of ‘Exceed’ and hence the required number of generations in which the 

convergence rate is greater than the threshold convergence rate before initiating pruning, 

generally reduces the number of child fitness evaluations required by a search. This demonstrates 

that delaying pruning increases the number of models clustered near the global minimum that are 

transferred into the secondary population. However, increasing the value of Exceed does not 

necessarily increase the probability that a search converges successfully. 

An increase in the size of the primary population also increases the success rate of the searches: 

in table 4.14, all searches with primary NP = 560 converge with 100% success. This suggests 

that increasing the number of models in a primary population significantly increases the 

probability that models clustered near the global minimum are transferred into the secondary 

population. 

Overall the accelerator DE and the eugenic DE are similar in terms of efficiency at solving the 

structure of baicalein. Table 4.14 shows that the fastest accelerator DE search to converge with 

100% success was with primary NP = 280, Exceed = 2 and secondary F = 0.8 and calculates on 

average 24458 child fitness evaluations. The fastest eugenic search with 100% convergence and 

primary NP = 280, secondary NP = 70, secondary F = 0.7 and RequireFrac = 0.25 required on 

average 21686 child fitness evaluations. 

 

4.6.4 The crystal structure solution of adipamide 

Table 4.15 demonstrates that increasing the secondary mutation rate again increases the number 

of child fitness evaluations calculated by a search, although in this case the effect on success rate 

is not as predictable. If the Rwp landscape representing the crystal structure of adipamide contains 

numerous local minima, there is a relatively high probability that models cluster in local minima 
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as well as the global minimum. In the primary population, models that cluster in local minima 

are also assigned a relatively low R factor and hence when models are transferred into the 

secondary population there is a high probability that models clustered in local minima as well as 

the global minimum are transferred. This decreases the probability that a search converges within 

a convenient number of generations and increases the probability of premature convergence. 

This is in contrast with traditional differential evolution (table 4.3) where increasing the mutation 

rate increases the probability that a search converges successfully. 

 

  Number of Fitness Evaluations  

NP (prim/sec) 320/80 640/80 

Exceed 2 4 2 4 
F(prim/sec) 

0.1/0.6 16810 
13680 

11040 
11040 

25568 
23120 

33027 
26560 

0.1/0.8 27093 
21680 

25440 
25440 

38260 
24080 

40520 
33440 

RequireFrac 0.25 0.5 0.25 0.5 

0.1/0.6 23634 
13360 

20446 
15120 

22302 
18640 

20516 
16320 

0.1/0.7 28790 
16000 

25646 
18240 

28127 
20720 

27460 
20880 

0.1/0.8 43590 
26880 

45938 
26560 

42570 
28000 

38860 
27520 

 
 

Table 4.15, Structure solution of adipamide by accelerator DE using different values of Exceed.  Calculations were 
performed with secondary NP = 80, primary F = 0.1, threshold multiplier = 1.5, K = 0.99, with different values of 

secondary F and Exceed.  For comparison, results from earlier calculations using RequireFrac (table 4.8) are 
included.  The results are denoted as in previous tables. 

 

Table 4.15 demonstrates that increasing the size of the primary population increases the number 

of child fitness evaluations calculated by a search and in general increases the success rate. This 

suggests that increasing the number of models in a primary population increases the probability 

that a greater number of models clustered near the global minimum are transferred into the 

secondary population although this does increase the total number of child fitness evaluations 

calculated. In this case, delaying pruning by increasing the value of Exceed does not have a 

predictable effect on the success rate or the total number of child fitness evaluations required. 

When the searches with primary NP = 320, increasing the value of Exceed decreases the number 
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of child fitness evaluations calculated, whereas with primary NP = 640, increasing the value of 

Exceed increases the number of child fitness evaluations. 

When the primary population is initiated containing 320 models, the landscape has a lower 

population density (than primary NP = 640) reducing the probability that many models cluster in 

local minima. Increasing the value of Exceed can increase the number of models near the global 

minimum transferred into the secondary population. This can increase the bias of a search 

towards the global minimum and accelerate convergence. However, in this case, increasing the 

value of Exceed and delaying pruning may increase the probability that a significant number of 

models clustered in local minima are also transferred. When a search is initiated using primary 

NP = 640, the higher population density increases the probability that models cluster in local 

minima. Therefore the value of Exceed and the point at which pruning is initiated has less effect 

on the number of models clustered in local minima transferred and the probability that a search 

converges prematurely. However, delaying pruning means that many more fitness evaluations 

are calculated during evolution of the primary population. These results suggest that delaying 

pruning increases the number of fitness evaluations calculated during evolution of the larger 

primary population without simultaneously reducing the number of fitness evaluations calculated 

during evolution of a secondary population. 

It is not easy to predict or analyse the effect that a particular combination of control parameters 

may have on the accelerator DE search applied to the structure solution of adipamide, and it may 

be that this particular search technique is unsuitable for this particular example. 

 
4.6.5 The crystal structure solution of the isonicotinamide : oxamate 

1:1 salt. 

Table 4.16 demonstrates that increasing the secondary mutation rate again increases the total 

number of child fitness evaluations required, but does not predictably increase the success rate of 

the searches. Increasing the size of the primary population has a similar effect on both success 

and number of evaluations and hence neither of these combinations of control parameters are 

advantageous. 

Increasing the value of Exceed and delaying pruning, reduces the total number of child fitness  
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  Number of Fitness Evaluations  

NP (prim/sec) 560/140 1120/140 

Exceed 2 4 2 4 
F(prim/sec) 

0.1/0.6 60600 
54600 

56000 
51240 

111900 
69160 

97020 
82880 

0.1/0.8 138740 
125720 

133392 
122500 

199040 
154560 

176316 
154840 

RequireFrac 0.25 0.5 0.25 0.5 

0.1/0.6 81676 
60620 

65357 
56140 

77035 
51660 

72730 
55440 

0.1/0.7 120360 
83860 

128996 
119140 

151200 
138880 

110343 
98980 

0.1/0.8 184007 
155680 

204480 
136500 

167230 
132160 

159600 
142100 

 
 

Table 4.16, Structure solution of the isonicotinamide:oxamate salt by accelerator DE using different values of 
Exceed.  Calculations were performed with secondary NP = 140, primary F = 0.1, threshold multiplier = 1.5, K = 
0.99, with different values of secondary F and Exceed.  For comparison, results from earlier calculations using 

RequireFrac (table 4.9) are included.  The results are denoted as in previous tables. 
 

 

evaluations calculated by a search, demonstrating that delaying pruning increases the probability 

that more models cluster near the global minimum and are transferred into the secondary 

population, increasing the bias of the secondary search. However, delaying pruning often 

decreases the success rate of the searches, therefore when deciding when to prune, a compromise 

needs to be made between speed of convergence and success rate. 

Comparing the number of child fitness evaluations and success rate of the accelerator and the 

eugenic DE searches, the accelerator DE is clearly more efficient. The fastest accelerator search 

converging with 70% success with primary NP = 560, secondary F = 0.6 and Exceed = 2 

calculates on average 60600 child fitness evaluations, whereas the fastest eugenic search, also 

with 70% success with primary NP = 560, secondary F = 0.7 and RequireFrac = 0.25 calculates 

on average 120360 child fitness evaluations. 
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4.7 Conclusions 

The results obtained by using the three different search techniques discussed in this chapter 

demonstrate that searches in which the size of a population is decreased as a search progresses 

are generally more efficient than searches that use a population of constant size. Pruning many of 

the most unfit models (with the highest R factors) from a population once the global minimum 

has been approximately located, significantly reduces the number of child fitness evaluations 

required whilst a search converges on the optimal solution. 

Increasing the mutation rate once a significant number of models have been removed from a 

population may increase the probability that the optimal solution is located by a search, but 

increasing the mutation rate can slow the convergence rate and increase the number of child 

fitness evaluations calculated. 

Although evolution of a large primary population containing many models requires the 

calculation of a significant number of child fitness evaluations, delaying pruning may reduce the 

total number of child fitness evaluations by allowing a greater number of models clustered near 

the global minimum to be located and transferred into the secondary population. As a result, a 

search is concentrated around the global minimum and rapidly converges on the optimal solution 

requiring the calculation of fewer child fitness evaluations. However, in some cases delaying 

pruning may increase the number of child fitness evaluations calculated during evolution of the 

primary population without simultaneously reducing the number of fitness evaluations calculated 

during evolution of the secondary population. 

Since the eugenic and accelerator searches prune a population when a significant number of 

models are near the global minimum, these two search techniques are potentially more robust 

than FixedGenPrune searches that prune a population after an arbitrary number of generations 

(regardless of how many models are near the global minimum). Thus eugenic and accelerator 

searches are more likely to successfully solve a greater variety of crystal structures even when a 

search is governed by a non-optimal combination of control parameters. This increases the utility 

of eugenic DE as the user is not required to ponder what combination of control parameters 

might be optimal for a particular calculation. 
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Additional Note. 

Since the work in this thesis has been carried out, the Eugenic DE has been used by others in the 

Tremayne research group and has successfully solved the structure of a previously unknown 

cocrystal, 1:1 nicotinamide:succinic acid from powder diffraction data3.  The structural model 

was comprised of two individual molecular components requiring definition by a total of 15 

structural parameters.  The traditional DE solved the structure successfully in 444,300 child 

fitness evaluations (NP = 300, K = 0.99, F = 0.4, Generations = 1481) whereas the eugenic DE 

solved the structure in 60,750 child fitness evaluations (primary NP = 600, secondary NP = 150, 

K = 0.99, primary F = 0.1, secondary F = 0.5, RequireFrac = 0.25, Generations = 378). A view 

of the final crystal structure is shown in Figure 4.5. 

 

 
Figure 4.5, A View of the Crystal Structure of the Nicotinamide : Succinic Acid 1:1 Cocrystal 
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Chapter 5 Analysing Biphasic Crystalline Materials 
using X-ray Powder Diffraction. 

 

Section 1.7 of this thesis discusses how Rietveld refinement is used to evaluate 

multiphasic powder diffraction patterns recorded for mixtures of crystalline phases and 

determine the abundance of each crystalline phase. However, quantitative phase analysis 

(QPA) by Rietveld refinement is only possible when each crystal structure is known a 

priori, as this structural information is used to simulate multiphasic powder patterns that 

are compared with the real multiphasic pattern. Due to the overlap of diffraction peaks 

that each result from diffraction by different crystal phases, the intensity and position of 

peaks observed in the real pattern may not correspond to any ‘single’ crystal structure. It 

may also be difficult to distinguish between overlapped peaks and single peaks that 

correspond to one phase. Thus it is significantly more difficult to determine a crystal 

structure from a multiphasic diffraction pattern. 

Although most crystal structures are determined from monophasic diffraction patterns, 

sometimes it is not possible to produce a ‘pure’ monophasic sample of the target material 

and record a monophasic diffraction pattern. In these cases only a multiphasic pattern can 

be recorded, hence it becomes necessary to determine the structure of the target material 

directly from the multiphasic pattern. 

 

5.1 Multiphasic crystalline materials  
 
5.1.1 Simultaneous polymorphism 

Although recrystallisation generally removes impurities from the final product it is not 

unknown for multiple materials to crystallise simultaneously. Section 2.5 of this thesis 

discusses the simultaneous crystallisation of cocrystals with quantities of unreacted 

starting material and a solvate. 1 It is also not unknown for multiple polymorphs to 

crystallise simultaneously. 2-11 Figure 5.1 shows the crystal shape of two polymorphs of 

the 2:1 4-cyanopyridine : 4,4'-biphenol cocrystal that crystallise simultaneously, whereas 

Figure 5.2 shows the different packing arrangements of these two polymorphs. 
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Figure 5.1. Two polymorphs of 2:1 4-cyanopyridine : 4,4'-biphenol cocrystals that crystallise 

simultaneously from the mother liquor. (a) Form [I] irregular hexagons, (b) form [II] parallelepiped plates. 

Figure taken from reference 6. 

 

Figure 5.2. Crystal packing of two polymorphs of 2:1 4-cyanopyridine : 4,4'-biphenol cocrystals, (a) form 

[I] (b) form [II]. Molecules are coloured according to the symmetry equivalence. Figure taken from 

reference 6. 

 

5.1.2 Determination of crystal structure. 

When it is visually obvious that a material is comprised of crystals of different shape or 

colour it is possible to manually separate the different crystals and determine their 

respective structures separately. 6,8,9,11 However, it is not always obvious that a material 

contains multiple crystal phases, for example, two polymorphs of cyclopentadienyl 

rubidium were simultaneously synthesised as a white powder. 3 When it is not visually 

obvious that a material is multiphasic, it is not possible to manually separate the phases 
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and determine their respective structures separately. In these circumstances, it is 

necessary to record a diffraction pattern for the multiphasic material and determine the 

different crystal structures from the multiphasic pattern. Once the separate crystal 

structures are known, it may be possible to design synthetic routes to favour production 

of one form. However, it is not necessarily trivial to determine crystal structure from a 

multiphasic diffraction pattern. Since the observed peak spacing is not compatible with 

one unit cell, traditional indexing attempts to index a multiphasic pattern using a single 

unit cell will fail unless a discrete set of peaks corresponding to diffraction by one crystal 

phase can be identified. 

 

5.1.2.1 Crystal structure determination of cyclopentadienylrubidium. 

In this example, a powder diffraction pattern was recorded for a material containing two 

polymorphs of cyclopentadienylrubidium, and to the unsuspecting eye it was not obvious 

that the pattern contained peaks corresponding to different crystal structures. Initially, 

attempts to index the powder pattern with a single set of lattice parameters failed. 

However, two sets of peaks with distinct shapes (one much narrower than the other) 

could be identified (figure 5.3). 3 It was possible to index the different sets of peaks to 

two different orthorhombic unit cells and use ab initio techniques to determine each 

crystal structure. 

 

Figure 5.3, A plot showing the FWHM for both phases of cyclopentadienylrubidium extracted from the 

biphasic powder diffraction pattern. The pattern contains two sets of peaks of distinct shape, one much 

broader than the other. The open circles mark peaks that cannot be assigned to one phase. Figure taken 

from reference 3. 
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5.1.2.2 Crystal structure determination of Sb3O4I. 

Initially all attempts to index the single crystal diffraction pattern recorded for crystals of 

Sb3O4I failed. 2 The pattern displays perfect non-crystallographic extinction conditions 

that are often associated with twinning, however no twinning operation could be found to 

reconcile the observed diffraction data with a single unit cell. It was discovered that the 

diffraction pattern was compatible with the single crystals being comprised of two 

intergrown polymorphs. 2 Identification of systematic absences was used to postulate a 

unit cell and the crystal structure of one polymorph was found to be compatible with this 

first unit cell. A second unit cell compatible with the structure of the second polymorph 

was generated by using the first unit cell as a model and altering its symmetry until lattice 

parameters that were compatible with a sensible structure and the remaining peaks were 

generated. 

 

5.1.3 Non-separable peaks. 

Once the unit cells of the two forms of cyclopentadienylrubidium had been determined it 

was possible to assign many peaks in the biphasic powder pattern to a particular phase. 

However, some peaks could not be assigned to either phase. If peaks that each result from 

diffraction by different crystal structures overlap, the position and intensity of the 

resultant peak may not be compatible with the unit cell of either structure. Thus for 

successful indexing of either unit cell overlapped peaks must be identified and excluded. 

 

5.2  Indexing multiphasic diffraction patterns 

 
5.2.1 The pattern subtraction method 

A technique that can be used to do this is the pattern subtraction method. 5,12-14 If a 

multiphasic pattern is recorded for a multiphasic material containing one unidentified 

crystal phase, a diffraction pattern can be recorded for all the identifiable phases and 

superimposed on the multiphasic pattern. Peaks resulting from the identified phases can 

then be subtracted from the multiphasic pattern, generating a pseudo-monophasic pattern. 

Although some overlapped peaks may remain in the pseudo-monophasic pattern, most of 

the remaining peaks will result from diffraction by the unidentified phase. A process of 

elimination during indexing is likely to reveal which are the overlapped peaks, and once 
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these overlapped peaks are excluded, indexing is likely to be successful. It is not 

necessary to know the crystal structure of the identifiable phases to use the pattern 

subtraction method, 5 it is only necessary to be able to identify and record a diffraction 

pattern for all but one phase. Three examples of cocrystals, 1:1 caffeine : acetic acid and 

forms [I] and [II] of 1:1 caffeine : trifluoroacetic acid have been prepared, 5 by combining 

the respective components without solvent, using pestle and mortar (a technique known 

as ‘cocrystal controlled solid-state synthesis’, 15 or ‘mechanochemistry’. 16 Since no 15 or 

lit tle 16 solvent is used during this technique the product is not automatically purified by 

recrystallisation. Therefore if the starting materials are not combined in exact 

stoichiometric quantities or not ground for sufficient time, traces of unreacted starting 

material may persist amongst the product. 5,16 Examination of the powder patterns 

recorded for the three cocrystals 5 revealed that traces of unreacted crystalline anhydrous 

caffeine were present. Although the crystal structure of anhydrous caffeine is not known 5 

it was possible to record a powder pattern for a pure sample of crystalline anhydrous 

caffeine and subtract this pattern from the biphasic pattern recorded for each cocrystal 

and caffeine impurity.  

Diflorasone diacetate, a steroidal anti-inflammatory drug, has been prepared in three 

anhydrous and one solvated form. 12 The anhydrous forms [I] and [III] and the solvate 

can all be produced as monophasic materials, and the crystal structures of these three 

forms have been determined from monophasic powder patterns. However, the anhydrous 

form [II] is obtained as a mixture of anhydrous forms [I] and [II] by heating the solvated 

form to 90°C. 12 Instead of physically separating form [I] from form [II], a biphasic 

powder pattern was recorded for a mixture of forms [I] and [II] and the powder pattern 

recorded for form [I] was subtracted from the biphasic pattern. The crystal structure of 

form [II] was successfully determined using the remaining peaks in the pseudo 

monophasic pattern. 12 

However, the pattern subtraction method can only be used when all but one of the phases 

in a multi-phasic material can be identified. If a triphasic diffraction pattern is recorded, 

and only one of the phases can be identified, subtracting a pattern recorded for this one 

identifiable phase from the triphasic pattern will produce a pseudo-biphasic pattern. Thus 

in this case the subtraction method does not aid in the assignment of peaks to a particular 

phase. Also, if a multiphasic pattern is recorded and a significant number of peaks 

resulting from diffraction by an identifiable phase and an unidentified phase overlap, 
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subtracting a pattern recorded for the identifiable phase destroys much of the information 

about the unidentified phase. 

 

5.2.2 Anisotropic thermal expansion 

A technique that has been used to increase the number of individual peaks that can be 

resolved in monophasic powder diffraction patterns relies on the fact that many low 

symmetry molecular crystals exhibit anisotropic thermal expansion. 17-20  When the 

temperature of a crystal exhibiting anisotropic thermal expansion is increased, the lengths 

of different crystal axes change at different rates. Since the position of peaks in a 

diffraction pattern are dependent on the lattice parameters, recording multiple diffraction 

patterns at different temperatures for a crystalline material exhibiting anisotropic thermal 

expansion causes different peaks to ‘shift’ different amounts. Thus peaks that overlap in a 

pattern recorded at one temperature may shift different amounts and not overlap in 

another pattern recorded at a different temperature. Thermally induced change in the 

overlap of diffraction peaks is best revealed using synchrotron data. 19 The high 

resolution intrinsic to synchrotron data means that small changes in peak position can be 

more accurately measured. 

The anisotropic thermal expansion technique for resolving overlapped peaks in 

monophasic powder diffraction patterns has been applied to multiphasic patterns. 17 The 

technique is most effective when the different crystal phases display considerably 

different rates of thermal expansion as this maximises the relative amount of observable 

peak shift.  Figure 5.4 shows biphasic diffraction patterns recorded at different 

temperatures for one sample of an alloy composed of 98% plutonium and 2% uranium. 

Many peaks corresponding to Pu and U which are superimposed in a pattern recorded at 

one temperature can be resolved into individual peaks if a different pattern is recorded at 

a different temperature. 17 

Since the number of overlapping peaks in a multiphasic diffraction pattern increases as 

the number of different crystal phases in a multiphasic material increases, more patterns 

would need to be recorded at different temperatures for materials containing more phases. 
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Figure 5.4. Biphasic powder diffraction patterns recorded at different temperatures for one alloy composed 

of 98% plutonium and 2% uranium. Figure taken from reference 17. 

 

This technique has a significant advantage over the pattern subtraction method. In order 

to use this technique, it is not necessary to first identify any phases present in a 

multiphasic material in order to identify a discrete set of peaks that can be assigned to one 

phase. Thus, if multiple new crystalline materials are synthesised forming a ‘uniform’ 

white powder (as in the case of cyclopentadienylrubidium), 3 anisotropic thermal 

expansion can be used to identify a discrete set of peaks that result from diffraction by 

one phase, whereas the pattern subtraction method could not be used. 

As the temperature range over which multiphasic powder patterns are collected is 

increased, the probability that a crystal phase change is induced in one phase increases. 

This is potentially useful. The change to a different crystal structure is likely to cause 

peaks that result from diffraction by that phase to significantly shift position. However, 

the position of peaks that result from diffraction by other phases that do not undergo a 

phase change at that particular temperature will not shift significantly. Thus a crystal 

phase change can be used to identify and separate peaks into discrete sets that each result 

from diffraction by different phases. 
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5.2.3 Indexing multiphasic patterns by global optimisation. 

Section 2.1.1.1 of this thesis discusses how the overlap of peaks in a monophasic powder 

diffraction pattern can prevent the indexing of the pattern. A technique that can index 

monophasic patterns despite peak overlap treats indexing as a global optimisation 

problem. 21 In this technique, a genetic algorithm generates a population of model unit 

cells. The values of the lattice parameters of each unit cell are treated as chromosomes, 

thus the GA can evolve the population of model unit cells. A powder diffraction pattern is 

simulated for each model and quantitatively compared with the real pattern that is being 

indexed using a cost function based on R factor. Model unit cells that generate simulated 

patterns that are a better fit with the real pattern are assigned an R factor with a lower 

value. Evolution of the population improves the quality of the models and a model unit 

cell that is assigned a significantly low R factor can be assumed to be a good 

representation of the real unit cell and used in the following stages of profile fitting and 

structure solution. Since a cost function based on R factor is used, peak overlap is taken 

into account and the need to fit peak spacing is negated by matching the whole profile 

shape. 

Since any powder diffraction pattern can be indexed using a unit cell of sufficient 

volume, the volume of a model unit cell is defined (within limits) by the user before the 

GA indexing procedure is initiated. This prevents a search from indexing a pattern by 

optimising an excessively large model. Since the volume of the unit cell is defined by the 

user the best model will only fit all the peaks that result from diffraction by one crystal 

phase. Thus when a biphasic powder pattern is recorded the procedure is prevented from 

indexing both sets of peaks using one model unit cell. Since peaks that result from 

diffraction by one phase do not fit the model used to index a different phase, when the 

quality of model unit cells is assessed, peaks resulting from other phases contribute a 

constant amount to the R factor regardless of the quality of the model. Thus the best 

model unit cell can still be defined as the model that is assigned an R factor with the 

lowest value. This technique has been successfully used to index a biphasic pattern. 21 
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5.3  Quantitative Phase Analysis by X-ray Powder 
Diffraction 

 
5.3.1 Using predetermined structural information 

In a multiphasic diffraction pattern, the intensity of a peak that results from diffraction by 

a particular crystal phase relative to the intensity of peaks that result from diffraction by a 

different crystal phase is proportional to the relative abundance of each phase. 22-29 This 

relationship forms the basis of quantitative phase analysis (QPA) by Rietveld refinement. 
22-25,27-36 As discussed in section 2.1.3 of this thesis, the Rietveld method 37 involves 

simulating a diffraction pattern for a computer generated model of a crystal structure and 

quantitatively comparing the simulated pattern with the real pattern. Refinement of 

parameters defining the model causes the model to become more realistic and improves 

the fit between simulated and real patterns. During each cycle of refinement, a scale 

factor is refined so that simulated diffraction peaks have the same magnitude of intensity 

as equivalent real peaks. If the scale factor is not refined it is unlikely that a diffraction 

pattern simulated for a model that is a good representation of the real crystal structure fits 

the real pattern. This means that a good model is assigned an R factor with an 

inappropriately high value and decreases the probability of a successful refinement. 

Rietveld refinement can be used to simulate multiphasic diffraction patterns and 

quantitatively compare them with real multiphasic patterns. Each phase in the simulated 

pattern is treated separately and assigned its own phase-specific scale factor. During 

multiphasic Rietveld refinement, each phase-specific scale factor is also refined 

separately. Hence simulated peaks resulting from diffraction by one phase can be fitted to 

equivalent peaks in the real multiphasic pattern. Once a good fit between simulated and 

real multiphasic patterns is achieved, the value of each phase-specific scale factor can be 

used to calculate the relative abundance of each crystalline phase in the real sample. 

The intensity of a peak that results from diffraction by one crystal phase is related to the 

abundance of that phase by a phase specific calibration constant shown in equation 5.1. 

 

   (5.1) 

 
where wi is the weight fraction of phase i, S is the refined Rietveld scale factor, ZMV is 

the calibration constant, Z is the number of formula units per unit cell, M is the mass of 

the formula unit and V is the volume of the unit cell 24. 
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The structure specific calibration constant is calculated using the volume of the unit cell, 

the number of formula units inside one unit cell and the mass of one formula unit. 24 

Hence if the structure of a crystal is known, it is possible to calculate the structure 

specific calibration constant. If all the structures of all the crystal phases present in a 

multiphasic material are known and a multiphasic diffraction pattern is recorded for the 

material, the Rietveld technique can be used to refine each phase-specific scale factor and 

calculate the relative abundance of each of the phases. 

 

5.3.2 Relative and absolute abundance 

The Rietveld technique can only calculate a relative abundance because Rietveld 

refinement does not account for any amorphous material (such as glassy materials) 32 that 

may be present in a material. Since amorphous material does not scatter X-rays 

coherently, Rietveld refinement cannot simulate sharp diffraction peaks for amorphous 

material. To determine the absolute abundance of a crystalline phase in a multiphasic 

material containing amorphous material it is necessary to use a calibration standard. 28,32 

If the crystal structure of a material is known, it can be used as a calibration standard. A 

measured mass of the calibration standard is added to a measured mass of the multiphasic 

material, thus the total abundance of the standard in the material is known. A multiphasic 

diffraction pattern is then recorded. Since the crystal structure and absolute abundance of 

the standard is known, the intensity of peaks resulting from diffraction by the standard 

provides a standard intensity, against which the intensity of peaks resulting from 

diffraction by the other crystal phases can be measured. Thus it is possible to determine 

the absolute abundance of each of the crystal phases. If the total abundance of all crystal 

phases does not equal one, it indicates that amorphous material is present in the material 

and that the absolute abundance of amorphous material is the difference between the total 

abundance of all crystal phases and one. 

 

5.3.3 The reliance on previously acquired structural knowledge 

Previously the Rietveld refinement technique has only been used for QPA when the 

crystal structure of each phase in a multiphasic material is known a priori. A study 34 was 

conducted to investigate the accuracy of QPA by Rietveld refinement using test 

multiphasic materials prepared containing known quantities of: (a) different inorganic 

crystalline minerals or (b) different molecular crystals. The study 34 demonstrated that 
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Rietveld refinement could more accurately determine the composition of multiphasic 

material comprised of mineralogical phases than molecular phases. This is because 

molecular crystals generally have more complex crystal structures that are more difficult 

to determine than inorganic minerals. This means that more accurate structural models of 

the minerals can be generated and so more realistic multiphasic patterns are simulated for 

multiphasic material comprised of mineral phases. 

Section 1.1 of this thesis discusses how different polymorphs of an active pharmaceutical 

ingredient (API) can have different biological activity. For example, mebendazole has 

been recrystallised in three anhydrous polymorphic forms. 38 The presence of form B in 

medication increases the toxicity of the medication, whereas form A has no anthelminthic 

properties and renders medication useless when form A is present in concentrations 

greater than 30%, thus form C is the most suitable form for pharmaceutical application. 

However, traces of the A and B forms have been detected in samples of packaged 

medication. 38 If sufficiently accurate structural models of the three polymorphs of 

mebendazole could be generated, QPA by Rietveld refinement could be used as a quality 

control technique and to determine the abundance of each polymorph in the final product. 

However, the inability to generate sufficiently accurate structural models of APIs can 

hinder the pharmaceutical industry in using this method of quality control. 

 

5.4 Direct space structure solution from biphasic 
powder diffraction data 

Despite the peak overlap observed in monophasic powder diffraction patterns, direct 

space methods can successfully solve crystal structures. The following work discussed in 

this chapter investigates the application of direct space methods to solving molecular 

crystal structures from biphasic powder diffraction data. Quantitative phase analysis by 

Rietveld refinement using the models generated by the direct space method is also 

attempted 

 

5.5  Sample preparation 

Biphasic materials were prepared by manually mixing two crystalline organic amides in 

known quantities using a pestle and mortar. Since both molecules contain the same 

functional group a reaction forming a new third phase is prevented. Biphasic materials 
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were prepared by mixing different quantities of: (a) the triclinic form of adipamide (1,6-

hexanediamide C6H12N2O2) with nicotinamide (3-pyridinecarboxamide C6H6N2O), or (b) 

the triclinic form of adipamide with oxamide (1,2-ethyldiamide C2H4N2O2). 

The published crystal structure of the triclinic form of adipamide was determined from 

powder diffraction data recorded at 273 K. 39 The structure adopts the space group P-1 

and has the following lattice parameters: a = 5.1097(2)Å, b = 5.5722(2)Å, c = 

7.0473(3)Å, α = 69.575(1)°, β = 87.120(3)° and γ = 75.465(3)°, giving a unit cell 

volume=181.87(2)Å3. 

Figure 5.5, Two views of the published crystal structure of the triclinic form of adipamide 39. 

 

The published crystal structure of nicotinamide was determined from single crystal 

diffraction data recorded at 295 K. 40 The structure adopts the space group P21/c and has 

the lattice parameters: a = 3.975(5)Å, b = 15.632(8)Å, c = 9.422(4)Å and β = 99.03(7)° 

giving a unit cell volume = 578 Å3.  

 

Figure 5.6, Two views of the published crystal structure of nicotinamide 40.  

 

The published crystal structure of oxamide was determined from single crystal diffraction 

data recorded over the temperature range 283-303 K. 41 The structure adopts the space 

group P-1 and has the following lattice parameters: a=3.618(1)Å, b=5.180(1)Å, 
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c=5.651(1)Å, α=83.77(1), β=113.97(1) and γ=114.94(1)° giving a unit cell 

volume=87.497Å3. 

Figure 5.7, Two views of the published triclinic crystal structure of oxamide 41. 

 

Since the crystal structure of these amides is already known, the ability of the direct space 

method to solve the crystal structures from biphasic powder data can be evaluated. 

Similarly, since the biphasic materials were prepared by mixing the two amides in known 

quantities the accuracy of quantitative phase analysis using models generated by our 

direct space method can be evaluated. 

Adipamide and nicotinamide were chosen because their molecular structures are 

considerably different. Adipamide is a linear molecule with five internal degrees of 

freedom. However, nicotinamide is based on a rigid pyridine ring substituted with one 

amide group and only has one internal degree of freedom. This provides a suitable case to 

test if the direct space method is equally capable of solving both fairly flexible and rigid 

structures from the same biphasic pattern. 

Adipamide and oxamide were chosen because the two molecules have similar structures, 

(both linear diamides) unlike adipamide and nicotinamide. However, oxamide has only 

three internal degrees of freedom. This provides a second opportunity to test the 

capability of direct space structure solution from a biphasic pattern.  
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5.5.1 Methodology 

Since the crystal structures of the amides used in these experiments are known, no 

attempt was made to index biphasic patterns recorded for the samples containing: (a) 

adipamide and nicotinamide or (b) adipamide and oxamide. Instead, the position of peaks 

in the biphasic patterns was inspected and was confirmed to be compatible with the 

published structures. Appendix A describes in detail the experimental apparatus used to 

record the biphasic patterns and also shows some of the powder profiles that were 

recorded. A Le Bail fit was generated for each biphasic pattern using the published lattice 

parameters. Initially the experimentally estimated relative abundance of each phase was 

used to specify values of phase abundance variables used by GSAS 43 to fit the pattern. In 

GSAS, the abundance of a phase is expressed as a mass rather than a molar ratio. 

Diffraction data recorded in the angular range 10-40° was used for the generation of the 

Le Bail fits and structure solution. As discussed in section 2.1.2, once a good Le Bail fit 

is achieved, scattering matter is introduced into the refined unit cells manually and 

through the structure determination process. Initially the DE structure solution was used 

to solve the crystal structure of one amide from the biphasic powder pattern whilst the 

crystal structure of the other amide was manually completed. In the work discussed in 

this chapter, the structure that is actively solved is defined as the ‘target’ structure and the 

manually completed structure is defined as the ‘recreated’ structure. Thus biphasic 

patterns are simulated for pairs of target and manually recreated structural models. 

 

5.5.2  Biphasic sample 1.  Crystalline adipamide and 
nicotinamide combined in a molar ratio of 1:3 

The Le Bail fit generated for the biphasic powder diffraction pattern recorded for sample 

1 was assigned an R factor = 10.3%. The refined lattice parameters of adipamide were 

assigned the following values: a = 5.150(3)Å, b = 5.64(3)Å, c = 7.03(1)Å, α = 69.18°, β 

= 85.84(5)° and γ = 73.12° giving a unit cell volume = 182.5Å3.  The refined lattice 

parameters of nicotinamide were assigned the following values: a = 3.970(3)Å, b = 

15.600(2)Å, c = 9.410(4)Å, α = γ = 90°, β = 99.05(3)°, giving a unit cell volume = 

575.5Å3. Due to the crystal symmetry of nicotinamide there are four equivalent 

molecules inside the unit cell.  Using the published crystal structure of nicotinamide, 40 

the structure of one molecule was manually completed (the other three are generated by 

symmetry).  
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As discussed in section 3.3.1, the crystal structure of adipamide is solved using a model 

defined by eight parameters. Five DE searches were run and the DE was assigned the 

control parameters, NP = 160, F = 0.5, K = 0.99, Gmax = 2000. The five searches 

converged successfully. The mean R factor assigned to these solutions was 17.78%. 

Figure 5.8 shows two views of the solution that was assigned the R factor with the lowest 

value of 17.74%. 

  
Figure 5.8,  The best model structure of adipamide located by direct space structure solution from the 

biphasic powder pattern recorded for a sample of crystalline adipamide and nicotinamide in a 1:3 molar 

ratio. 

The left hand structure in figure 5.8 is a side-view of the solution. This view shows the 

molecule orientated along the b axis as in the published structure (fig 5.5). Fig 5.8 shows 

that the solution is correctly orientated inside the unit cell but is shifted slightly along the 

b axis. The right hand structure in figure 5.8 is an end-on-view of the solution. Both 

views show that the solution is in the correct confirmation forming the characteristic 

amide dimer motif. It is likely that this solution would refine successfully. 

The structure solution of nicotinamide was attempted using the same biphasic pattern 

recorded for sample 1.  Using the published crystal structure of adipamide, 39 the 

structure of adipamide was manually completed and the structure of nicotinamide 

deleted.  Since nicotinamide adopts P21/c symmetry, three parameters define the position 

of a model inside the unit cell, three parameters define the orientation of the model and 

one torsion parameter defines the rotation of the amide group with respect to the pyridine 

ring; therefore a total of seven parameters are used to define the structural model. Five 

DE searches were used to solve the crystal structure of nicotinamide. The DE was 

assigned the control parameters, NP = 140, F = 0.5, K = 0.99, Gmax = 2000. The five 

searches converged successfully and were assigned a mean R factor = 16.54%. Figure 5.9  



161 
 

 

 
Figure 5.9, The best model structure of nicotinamide located by direct space structure solution from the 

biphasic powder pattern recorded for sample 1. 
 

shows two views of the solution that was assigned an R factor with the lowest value of 

16.07%. 

Comparing the solution shown in fig 5.9 with the published structure shown in fig 5.6 

demonstrates that the solution is in the correct orientation but that there is a slight 

translation of the model along the b axis. Fig 5.9 also shows the alternate flip of the 

amide group. In the published structure the two nitrogen atoms adopt a syn conformation 

whereas in this solution the amide group has rotated so the nitrogen atoms adopt an anti 

conformation. Since O and N atoms have nearly the same X-ray scattering power it is 

difficult to detect this flip during the DE search which uses the R factor to evaluate 

possible solutions. However, it is strightforward to determine the correct orientation 

during Rietveld refinement by manually flipping between the syn and anti conformations 

and selecting the solution that is assigned the lowest R factor. 

 

5.5.3  Biphasic sample 2. Crystalline adipamide and nicotinamide 
combined in a molar ratio of 3:1 

The Le Bail fit generated for the biphasic powder diffraction pattern recorded for sample 

2 was assigned an R factor = 12.2%. The refined lattice parameters of adipamide were 

assigned the following values: a = 5.126(9)Å, b = 5.589(1)Å, c = 7.063(9)Å, α = 69.5°, β 

= 87.1°, γ = 75.4° giving a unit cell volume = 183.3 Å3.  The refined lattice parameters of 

nicotinamide were assigned the following values: a = 3.984(6)Å, b = 15.72(3)Å, c = 

9.44(1)Å, α = γ = 90.0°, β = 99.1, giving a unit cell volume = 583.8 Å3. 

Using the published crystal structure of nicotinamide, 40 the structure of one molecule 

was manually completed, and as described previously, the crystal structure of adipamide 

was solved using a model defined by eight parameters. Five DE searches were run with 

 
 



162 
 

the control parameters, NP = 160, F = 0.5, K = 0.99 and Gmax = 2000.  The five searches 

converged successfully and were assigned a mean R factor of 18.91%. Figure 5.10 shows 

two views of the solution that was assigned an R factor with the lowest value=18.83%. 

Comparing the side view of the solution shown in fig 5.10 with the published structure 

shown in fig 5.5, demonstrates that the solution is tilted slightly away from the b axis. 

The end-on-view shows that the solution is in the wrong position and that the 

confirmation is incorrect. 

Figure 5.10, The best model structure of adipamide located by direct space structure solution from the 

biphasic powder pattern recorded for sample 2. 

 

The structure solution of nicotinamide was attempted using the same pattern recorded for 

sample 2. Using the published crystal structure of adipamide, 39 the structure of 

adipamide was manually completed and the structure of nicotinamide deleted. As 

previously discussed, the crystal structure of nicotinamide was solved using a model 

defined by seven parameters. Five DE searches were used to solve the crystal structure of 

nicotinamide. The DE was assigned the control parameters, NP = 140, F = 0.5, K = 0.99, 

Gmax = 2000.  The five searches converged successfully and the five solutions gave a 

mean R factor = 34.18%. Figure 5.11 shows two views of the solution that was assigned 

an R factor with the lowest value of 34.15%. 

 

 
 

Figure 5.11, The best model structure of nicotinamide located by direct space structure solution from the 
biphasic powder pattern recorded for sample 2. 
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Comparison of the solution shown in fig 5.11 with the published structure shown in fig 

5.6 demonstrates that although the solution is in roughly the correct position the 

orientation is wrong. Fig 5.11 shows that the solution has rotated, so that atoms forming 

the amide group and part of the aromatic ring occupy space that should be occupied by 

atoms forming the ring, and that part of the ring is where the amide group should be. This 

incorrect orientation is probably due to C, N and O having nearly equal X-ray scattering 

factors. Comparing fig 5.11 with the published structure fig 5.6, shows that although the 

C, N and O atoms are in the wrong place, they each occupy space that should be occupied 

by a different C, N or O atom. This is a good example of a search that has converged in a 

local minimum. Fig 5.11 also shows that the amide group has flipped and adopts the anti 

conformation as in fig 5.9. 

 

5.5.4  Simultaneous Crystal Structure Solution and Quantitative 
Phase Analysis 

Section 5.5.2 demonstrates that providing the abundance of each phase is known to a 

reasonable level of accuracy, direct space structure solution can solve a crystal structure 

from a biphasic powder diffraction pattern. Next, simultaneous structure solution and 

quantitative phase analysis was attempted. Each time a pair of target and recreated 

structural models was evaluated by Rietveld refinement, the value of each phase-specific 

scale factor was refined (as described in section 5.3.1) to improve the fit between the real 

and simulated biphasic patterns. GSAS then used the refined scale factors to determine 

the relative abundance of each phase. 

The technique was initially tested using the diffraction data recorded for sample 1. The 

Le Bail fit previously generated for this biphasic pattern was used and the phase ratio 

parameters were each assigned a value of 1. An attempt was made to improve the Le Bail 

fit by using the Rietveld refinement function of GSAS to refine the value of the phase 

ratio parameters. However, this failed to improve the profile fit. Examination revealed 

that the value of the phase ratio parameters had not changed during refinement. Since the 

purpose of the Le Bail technique is to fit the diffraction pattern by refinement of profile 

variables that describe the pattern without any scattering matter in the unit cell[s] each 

phase-specific scale factor is assigned an arbitrary value. Hence it is not possible to 

determine the abundance of each phase during the Le Bail fit. 

Using the published crystal structure of nicotinamide, 40 a complete structure of one 
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molecule of nicotinamide was manually created and the crystal structure of adipamide 

solved using a model defined by eight parameters. Five DE searches were run with the 

control parameters, NP = 160, F = 0.5, K = 0.99, Gmax = 2000. The five searches 

converged successfully and the five solutions assigned a mean R factor = 16.42%. Figure 

5.12 shows two views of the solution that was assigned an R factor with the lowest value 

of 16.33%. For comparison, the best model of adipamide solved from the pattern 

recorded for sample 1 without refinement of the phase ratio (shown in figure 5.8) was 

assigned an R factor = 17.74%. 

Figure 5.12, The best structure of adipamide located by direct space structure solution and simultaneous 

quantitative phase analysis from the biphasic powder pattern recorded for sample 1. 

The two views of the solution show that the model is in the correct position and 

orientation. However, the right hand end-on view shows that the conformation is wrong. 

The conformation of the carbon chain is distorted so that both amide groups are 

orientated in the same direction. In the published structure the amide groups are 

orientated in opposite directions forming the dimer motif. It is not possible to say if 

Rietveld refinement of this solution would be successful. 

The structure solution of nicotinamide and simultaneous quantitative phase analysis from 

the same powder pattern recorded for sample 1 was then attempted, using the published 

crystal structure of adipamide 39 manually entered and the complete structure of 

nicotinamide unknown. As before, the crystal structure of nicotinamide was solved using 

a model defined by seven parameters. Five DE searches were used to solve the crystal 

structure of nicotinamide, and assigned the control parameters, NP = 140, F = 0.5, K = 

0.99, Gmax = 2000.  Five searches converged successfully and the five solutions were 

assigned a mean R factor = 14.66%. Figure 5.13 shows two views of the solution that was 

assigned an R factor with the lowest value of 14.46%. For comparison, the best model 

structure of nicotinamide solved from the pattern recorded for sample 1 without 
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refinement of the phase ratio (figure 5.9) was assigned an R factor = 16.07%. Comparing 

the solution shown in fig 5.13 with the published structure fig 5.6, demonstrates that the 

solution is in the correct position and orientation but there has been a crystallographic 

translation of the unit cell from +b to -b. Fig 5.13 also shows that the amide group has 

adopted the incorrect anti conformation. Since this solution would refine to the correct 

structure it can be considered as successful. 

Figure 5.13, The best model structure of nicotinamide located by direct space structure solution and 
simultaneous quantitative phase analysis from the biphasic powder pattern recorded for sample 1. 

 

Determining the accuracy of the quantitative phase analysis. 

Sample 1 was prepared by combining adipamide and nicotinamide in the molar ratio of 

1:3 (adipamide, C6H12N2O2, molar mass = 144.16g/mol-1; nicotinamide, C6H6N2O, molar 

mass = 122.13g/mol-1; molar mass of sample 1 = 510.55g/mol-1). Table 5.1 shows the 

abundance of each phase (presented as a mass fraction) as determined by the Rietveld 

based QPA function of GSAS during the structure solution of adipamide. The first 

column records the R factor assigned to the final solution located, the second column 

records the abundance of the adipamide phase and the third column records the 

abundance of the nicotinamide phase. The final row shows the mean value calculated for 

each column. 

Table 5.1 shows that during solution of adipamide the Rietveld based QPA has decreased 

the abundance of the adipamide phase and increased the abundance of the nicotinamide 

phase from the prepared ratio of 1:3. Since the adipamide solution shown in figure 5.12 

adopts the wrong conformation, in this case a biphasic pattern is simulated for a wrong 

structure of adipamide and a correct structure of nicotinamide. It is possible that some 

diffraction peaks resulting from simulated diffraction by the wrong adipamide model 

were in the wrong position or had the wrong intensity. 
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Table 5.1, Structure solution of adipamide and quantitative phase analysis for sample 1. 

Run Converged best R AdipMsR NicMsR 
1 16.55% 0.207 0.793 
2 16.39% 0.208 0.792. 
3 16.43% 0.210 0.790. 
4 16.39% 0.207 0.793. 
5 16.33% 0.209 0.791. 
    

Mean 16.42% 0.208 0.792 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio = (mass ratio of crystal * molar mass of sample)/molar mass of crystal. 
      Molar ratio adipamide = (0.208*510.55)/144.16 = 0.74mol. 
      Molar ratio nicotinamide = (0.792*510.55)/122.13 = 3.31mol. 
 
This could potentially cause the Rietveld based QPA to improve the fit between 

simulated and real biphasic patterns by decreasing the abundance of adipamide to 

compensate for the wrong structure. 

Table 5.2 shows the abundance of each phase (presented as a mass fraction) as 

determined by the Rietveld based QPA during structure solution of nicotinamide. Data 

for each structure solution calculation is presented as in table 5.1. 

 
Table 5.2, Structure solution of nicotinamide and quantitative phase analysis for sample 2. 

Run Converged best R NicMsR AdipMsR 
1 14.96% 0.780 0.213 
2 14.47% 0.791 0.209 
3 14.46% 0.791 0.209 
4 14.96% 0.780 0.220 
5 14.47% 0.791 0.209 
    

Mean 14.66% 0.787 0.212 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.212*510.55)/144.16 = 0.75mol. 
      Molar ratio nicotinamide = (0.787*510.55)/122.13 = 3.29mol. 
 
Table 5.2 also shows that during the structure solution of nicotinamide, the abundance of 

nicotinamide has been increased and the abundance of adipamide decreased. However, 

during solution of nicotinamide, the manually completed structure of adipamide is 

correct. Thus in this case, biphasic patterns are simulated for a structural model of 

nicotinamide and a correct structure of adipamide. Therefore all peaks resulting from 

simulated diffraction by adipamide should be correct and the Rietveld based QPA should 

not need to improve the fit between simulated and real patterns by decreasing the 

abundance of the correct adipamide phase. 
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Another possible cause for the error in this QPA technique is that diffraction data 

recorded on different diffractometers and under different conditions is combined in these 

experiments. In these experiments, lattice parameters of two crystal phases are refined 

using data extracted from a biphasic powder pattern recorded using one diffractometer 

under ambient conditions. However, the published crystal structures used for the non-

target phase have been recorded under different diffraction conditions. The single crystal 

pattern recorded for nicotinamide was recorded at a higher temperature than the powder 

pattern recorded for adipamide. Due to thermal effects, it is unlikely that the atoms from 

the published structures are placed in exactly the correct positions for the experimental 

powder diffraction data used here. This causes a constant amount of mismatch between 

simulated and real biphasic patterns and could result in the Rietveld refinement of an 

incorrect phase ratio. Experimental error could also be the reason for the discrepancy 

between the experimentally prepared and QPA determined ratio, i.e. not combining 

adipamide and nicotinamide in the exact 1:3 ratio as intended. 

However, figures 5.12 and 5.13 suggest that it is possible to use the direct space method 

to solve a crystal structure with reasonable accuracy directly from a biphasic pattern 

without subtracting peaks corresponding to the other phase. Tables 5.1 and 5.2 also 

demonstrate that it is not necessary to know the abundance of each phase before 

attempting structure solution and that it is possible to determine the abundance of each 

phase with reasonable accuracy using Rietveld based QPA simultaneously with structure 

solution. 

 

5.5.5  Biphasic Sample 3. Crystalline adipamide and oxamide 
combined in a molar ratio of 1:1 

Initially structure solution was attempted whilst the values of the phase ratio parameters 

were fixed at the ratio in which the sample was prepared as in section 5.5.2. The Le Bail 

fit generated for the biphasic powder diffraction pattern recorded for sample 3 was 

assigned an R factor = 16.5%. The refined lattice parameters of adipamide were assigned 

the following values: a = 5.105(1)Å, b = 5.565(1)Å, c = 7.042(1)Å, α = 69.5°, β = 87.1°, 

γ = 75.4° giving a unit cell volume = 181.2Å3.  The refined lattice parameters of oxamide 

were assigned the following values: a = 3.618(0)Å, b = 5.176(1)Å, c = 5.648(0)Å, α = 

83.9°, β = 114.0°, γ = 115.0° giving a unit cell volume = 87.4Å3. 
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Using the published crystal structure of oxamide, 41 the complete structure of oxamide 

was manually created and the crystal structure of adipamide was solved using a model 

defined by eight parameters. Five DE searches were used and assigned the control 

parameters, NP = 160, F = 0.5, K = 0.99, Gmax = 2000.  The five searches converged 

successfully giving five solutions that were assigned a mean R factor = 18.24%. Figure 

5.14 shows two views of the solution that was assigned an R factor with the lowest value 

= 18.14%. 

  
Figure 5.14, The best model structure of adipamide located by direct space structure solution using a 

biphasic powder pattern recorded for a sample of crystalline adipamide and oxamide in a 1:1 molar ratio. 

The left hand view shows the solution running correctly along the b axis and both views 

show that the solution is correctly positioned. The right hand view shows that there is a 

slight distortion of the carbon chain but it is expected that this could be successfully 

resolved during refinement. 

The structure solution of oxamide was also attempted using the same pattern recorded for 

sample 3. Using the published crystal structure of adipamide, 39 the complete structure of 

adipamide was manually created and the structure of oxamide was determined. Although 

oxamide adopts P-1 symmetry, here structure solution was attempted in P1 symmetry 

without the constraint of an internal inversion centre. Therefore the position of the model 

inside the unit cell is arbitrary and three positional parameters are not required. Three 

parameters were used to define the orientation of the model and three more to define its 

intramolecular flexibility, thus six parameters were used in total to define the model of 

oxamide. Five DE searches were used with the control parameters, NP = 120, F = 0.5, K 

= 0.99, Gmax = 2000.  The five searches converged successfully giving five solutions 

with a mean R factor = 20.32%. Figure 5.15 shows two views of the solution that was 

assigned an R factor with the lowest value of 20.23%.  
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Figure 5.15, The best model structure of oxamide located by direct space structure solution from the 
biphasic powder pattern recorded for sample 3. 

Comparison of the solution in fig 5.15 with the published structure of oxamide in fig 5.7 

shows that this solution is incorrect. Fig 5.7 shows that oxamide is planar with a trans 

relationship between the nitrogen atoms of the two amide groups. The published structure 

is located in the middle of the unit cell and also lies in the a plane. Fig 5.15 shows that 

although the solution is planar, the two amide groups adopt a cis conformation. The 

solution is not quite located in the middle of the unit cell and although the model is 

centred on the a plane, it is slightly tilted out. 

Next, simultaneous structure solution and QPA was attempted as in section 5.5.4. 

Simultaneous structure solution of adipamide and QPA was then attempted using the 

biphasic pattern recorded for sample 3. Using the published crystal structure of oxamide, 
41 the complete structure of oxamide was manually created and the structure of adipamide 

solved using a model defined by eight parameters. Five DE searches were run with the 

control parameters, NP = 160, F = 0.5, K = 0.99, Gmax = 2000. Five searches converged 

successfully. The five solutions were assigned a mean R factor = 17.20%. Figure 5.16 

shows two views of the solution that was assigned an R factor with the lowest value of 

17.14%. For comparison, the best model of adipamide located by structure solution from 

the biphasic pattern recorded for sample 3 without simultaneous quantitative phase 

analysis (figure 5.14) was assigned an R factor = 18.14%. 
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Figure 5.16, The best model structure of adipamide located by direct space structure solution and 

simultaneous quantitative phase analysis from the biphasic powder pattern recorded for sample 3. 

The solution shown in fig 5.16 compares favourably with the published structure fig 5.5. 

The solution is correctly positioned and runs along the b axis. The conformation of the 

carbon chain is nearly correct and it is likely that refinement of this structure would be 

successful. 

Simultaneous structure solution of oxamide and quantitative phase analysis was then 

attempted using the biphasic pattern recorded for sample 3. Using the published crystal 

structure of adipamide, 39 the complete structure of adipamide was manually created and 

the structure of oxamide was solved using a model defined by six parameters. Five DE 

searches were run with the control parameters, NP = 120, F = 0.5, K = 0.99, Gmax = 

2000. The five searches converged successfully with the five solutions assigned a mean R 

factor = 18.87%. Figure 5.17 shows two views of the solution that was assigned an R 

factor with the lowest value of 18.79%. For comparison, the best model of oxamide 

located by structure solution using the biphasic pattern recorded for sample 3 without 

simultaneous quantitative phase analysis (figure 5.15) was assigned an R factor = 

20.23%. 

 

 
 

 
Figure 5.17, The best model structure of oxamide located by direct space structure solution and 

simultaneous quantitative phase analysis from the biphasic powder pattern recorded for sample 3. 
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Comparison of the solution in fig 5.17 with the published structure fig 5.7 demonstrates 

that this solution is incorrect. Although the solution is planar, the two amide groups adopt 

a cis conformation. The position of the solution is also incorrect, not in the middle of the 

unit cell and tilted out of the a plane. Although the solution has shifted position by 

roughly half a unit cell, the crystal symmetry means that this shifted position is nearly 

equivalent with the correct position. It is unlikely that this solution would refine 

successfully. 

 

Determining the accuracy of the quantitative phase analysis. 

Sample 3 was prepared by combining adipamide and oxamide in a molar ratio of 1:1 

(oxamide, C2H4N2O2, molar mass = 88.07g/mol-1; adipamide, C6N2O2H12, molar mass = 

144.16g/mol-1; molar mass of sample 3 = 232.23g/mol-1). 

Table 5.3 shows the abundance of each phase (presented as a mass fraction) as 

determined by the Rietveld based QPA during the structure solution of adipamide. Data 

for each structure solution calculation is presented as in table 5.1. 

 
Table 5.3, Structure solution of adipamide and quantitative phase analysis for sample 3. 

Run Converged best R AdipMsR OxamMsR 
1 17.23% 0.538 0.462 
2 17.20% 0.541 0.459 
3 17.19% 0.538 0.462 
4 17.24% 0.538 0.462 
5 17.14% 0.539 0.461 
    

Mean 17.20% 0.539 0.461 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.539*232.23)/144.16 = 0.87mol. 
      Molar ratio oxamide = (0.461*232.23)/88.07 = 1.22mol. 
 

Table 5.4 shows the abundance of each phase (presented as a mass fraction) as 

determined by the Rietveld based QPA during structure solution of oxamide. Data for 

each structure solution calculation is presented as in table 5.1. Although the solution for 

adipamide (fig 5.16) is nearly correct and much better quality than the solution for 

oxamide (fig 5.17), tables 5.3 and 5.4 show that in both cases the QPA has increased the 

abundance of oxamide and decreased the abundance of adipamide from the prepared 1:1 

ratio. 
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Table 5.4, Structure solution of oxamide and quantitative phase analysis for sample 3. 

Run Converged best R OxamMsR AdipMsR 
1 18.92%   0.479 0.521 
2 18.92% 0.479 0.521. 
3 18.80% 0.492 0.508 
4 18.92% 0.480 0.520 
5 18.79% 0.495 0.505 
    

Mean 18.87% 0.485 0.515 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.515*232.23)/144.16 = 0.83mol. 
      Molar ratio oxamide = (0.485*232.23)/88.07 = 1.28mol. 
 
 

5.5.6  Biphasic sample 4. Crystalline adipamide and oxamide 
combined in a molar ratio of 1:2 

Initially the structure solution was attempted whilst the values of the phase ratio 

parameters were fixed using the ratio in which the sample was prepared as in section 

5.5.2. The Le Bail fit generated for the biphasic pattern recorded for sample 4 was 

assigned an R factor = 15.0%. The refined lattice parameters of adipamide were assigned 

the following values: a = 4.975(2)Å, b = 5.611(3)Å, c = 6.973(6)Å, α = 69.5°, β = 86.9°, 

γ = 75.5° giving a unit cell volume = 176.4 Å3. The refined lattice parameters of oxamide 

were assigned the following values: a = 3.618(1)Å, b = 5.181(2)Å, c = 5.642(1)Å, α = 

83.8°, β = 113.8°, γ = 115.0° giving a unit cell volume = 87.4 Å3. 

Using the published crystal structure of oxamide, 41 the complete structure of oxamide 

was manually created and the structure of adipamide solved using a model defined by 

eight parameters. Five DE searches were run with the control parameters, NP = 160, F = 

0.5, K = 0.99, Gmax = 2000.  The five searches converged successfully with the five 

solutions assigned a mean R factor = 19.64%. Figure 5.18 shows two views of the 

solution that was assigned an R factor with the lowest value of 19.51%.  

Comparison of fig 5.18 with the published structure fig 5.5 demonstrates that this is a 

poor solution. Although the solution is orientated along the b axis the conformation of the 

carbon chain is significantly distorted. It is unlikely that this solution would refine 

successfully. 
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Figure 5.18, The best model structure of adipamide located by direct space structure solution from the 

biphasic powder pattern recorded for sample 4. 

The structure solution of oxamide was then attempted from the same biphasic pattern 

recorded for sample 4. Using the published crystal structure of adipamide, 39 the complete 

structure of adipamide was manually created and the crystal structure of oxamide solved 

using a model defined by six parameters. Five DE searches were run with the control 

parameters, NP = 120, F = 0.5, K = 0.99, Gmax = 2000. Four searches converged 

successfully and the four solutions were assigned a mean R factor = 19.27%. Figure 5.19 

shows two views of the solution that was assigned an R factor with the lowest value of 

19.08%. 

 
 

Figure 5.19, The best model structure of oxamide located by direct space structure solution from the 
biphasic powder pattern recorded for sample 4. 

Comparison of the solution in fig 5.19 with the published structure fig 5.7 shows that the 

solution has adopted the correct trans relationship between the two amide groups. 

However, the solution is not planar. The solution is correctly centred on the a plane but is 

tilted slightly out of the plane. Although the solution has shifted position by roughly half 

a unit cell, the crystal symmetry of oxamide means that this shifted position is nearly 

equivalent with the correct position. It is likely that this solution would refine 

successfully. 

Simultaneous structure solution of adipamide and quantitative phase analysis was 
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attempted from the biphasic pattern recorded for sample 4. Using the published crystal 

structure of oxamide, 41 the complete structure of oxamide was manually created and the 

crystal structure of adipamide was solved using the model defined by eight parameters. 

Five DE searches were run with the control parameters, NP = 160, F = 0.5, K = 0.99, 

Gmax = 2000.  The five searches converged successfully giving five solutions with a 

mean R factor = 19.07%. Figure 5.20 shows two views of the solution that was assigned 

an R factor with the lowest value of 18.94%. For comparison, the best model structure of 

adipamide solved using the pattern recorded for sample 4 without refinement of the phase 

ratio (figure 5.18) was assigned an R factor = 19.51%. 

  
Figure 5.20, The best model structure of adipamide located by direct space structure solution and 

simultaneous quantitative phase analysis from the biphasic powder pattern recorded for sample 4. 

Comparison of the solution in fig 5.20 with the published structure fig 5.5 demonstrates 

that this is a poor solution. Although the solution is orientated along the b axis the 

conformation of the carbon chain is significantly distorted. It is unlikely that this solution 

would refine successfully. 

Simultaneous structure solution of oxamide and quantitative phase analysis was then 

attempted from the biphasic pattern recorded for sample 4. Using the published crystal 

structure of adipamide, 39 the complete structure of adipamide was manually created and 

the structure of oxamide solved using the model defined by six parameters. Five DE 

searches were run with the control parameters, NP = 120, F = 0.5, K = 0.99, Gmax = 

2000. The five searches converged successfully giving five solutions with a mean R 

factor = 19.18%. Figure 5.21 shows two views of the solution that was assigned an R 

factor with the lowest value of 19.04%. For comparison, the best model structure of 

oxamide solved from the pattern recorded for sample 4 without refinement of the phase 

ratio (figure 5.19) was assigned an R factor = 19.08%. 
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Figure 5.21, The best model structure of oxamide located by direct space structure solution and 
simultaneous quantitative phase analysis from the biphasic powder pattern recorded for sample 4. 

The solution shown in fig 5.21 is similar to the solution shown in fig 5.19, however, in 

fig 5.21 the incorrect cis conformation has been adopted. It is likely that during 

refinement, the correct trans conformation could be determined by manually flipping one 

amide group and that overall refinement of solution 5.21 would be successful. 

 

Determining the accuracy of the quantitative phase analysis. 

Sample 4 was prepared by combining crystalline adipamide and oxamide in a molar ratio 

of 1:2 (molar mass of sample 4 = 320.3g/mol-1). 

Table 5.5 shows the abundance of each phase (presented as a mass fraction) as 

determined by the Rietveld based QPA during structure solution of adipamide. Data for 

each structure solution calculation is presented as in table 5.1. 

 
Table 5.5, Structure solution of adipamide and quantitative phase analysis for sample 4. 

Run Converged best R AdipMsR OxamMsR 
1 19.10% 0.563 0.437 
2 19.04% 0.572 0.428 
3 19.21% 0.565 0.435 
4 18.94% 0.573 0.428 
5 19.04% 0.572 0.428 
    

Mean 19.07% 0.569 0.431 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.569*320.3)/144.16 = 1.26mol. 
      Molar ratio oxamide = (0.431*320.3)/88.07 = 1.57mol. 
 

Fig 5.20 shows that the best model of adipamide located by these searches is a poor 

solution. However, table 5.5 shows that the QPA has increased the abundance of 

adipamide and decreased the abundance of oxamide from the prepared 1:2 ratio. This is 

an interesting result, since in this case the manually created structure of oxamide is 
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correct. Hence in this case the QPA has improved the fit between simulated and real 

biphasic patterns by increasing the abundance of a wrong solution and decreasing the 

abundance of the correct structure. 

Table 5.6 shows the abundance of each phase (presented as a mass fraction) as 

determined by the Rietveld based QPA during structure solution of oxamide. Data for 

each structure solution calculation is presented as in table 5.1. 

 
Table 5.6, Structure solution of oxamide and quantitative phase analysis for sample 4. 

Run Converged best R OxamMsR AdipMsR 
1 19.28% 0.607 0.393. 
2 19.09% 0.615 0.385 
3 19.04% 0.609 0.391 
4 19.38% 0.606 0.394 
5 19.09% 0.615 0.385 
    

Mean 19.18% 0.610 0.390 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.390*320.3)/144.16 = 0.87mol. 
      Molar ratio oxamide = (0.610*320.3)/88.07 = 2.22mol. 
 
Figure 5.21 shows that although the solution has adopted the wrong cis conformation it is 

a good solution that could be refined successfully. Table 5.6 shows that in this case the 

QPA has increased the abundance of oxamide and decreased the abundance of adipamide 

from the prepared 1:2 ratio. Hence in this case the QPA has increased the abundance of a 

nearly correct structure and decreased the abundance of the correct structure. 

 
5.5.7  Biphasic sample 5. Crystalline adipamide and oxamide 

combined in a molar ratio of 2:1 

Initially the structure solution was attempted whilst the values of the phase ratio 

parameters were fixed using the ratio in which the sample was prepared. The Le Bail fit 

generated for the biphasic pattern recorded for sample 5 was assigned an R factor = 

13.6%. The refined lattice parameters of adipamide were assigned the following values: a 

= 5.107(6)Å, b = 5.57(0)Å, c = 7.042(9)Å, α = 69.6°, β = 87.1°, γ = 75.4° giving a unit 

cell volume = 181.5Å3.  The refined lattice parameters of oxamide were assigned the 

following values: a = 3.621(4)Å, b = 5.179(9)Å, c = 5.651(7)Å, α = 83.9°, β = 114.0°, γ 

= 115.0° giving a unit cell volume = 87.5Å3. 
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Using the published crystal structure of oxamide, 41 the complete structure of oxamide 

was manually created and the crystal structure of adipamide solved using the model 

defined by eight parameters. Five DE searches were run with control parameters, NP = 

160, F = 0.5, K = 0.99, Gmax = 2000.  The five searches converged successfully giving 

five solutions with a mean R factor = 17.39%. Figure 5.22 shows two views of the 

solution that was assigned an R factor with the lowest value of 17.16%. 

  
Figure 5.22, The best model structure of adipamide located by direct space structure solution from the 

biphasic powder pattern recorded for sample 5. 

Comparison of the solution shown in fig 5.22 with the published structure fig 5.5 

demonstrates that this is a good solution. The solution is orientated along the b axis and 

the carbon chain is not significantly distorted. Although both amide groups are flipped 

the same way, it would be possible to determine which group is incorrect by manually 

flipping each group during refinement. It is likely that Rietveld refinement of this 

solution would be successful. 

Structure solution of oxamide was then attempted from the same pattern recorded for 

sample 5. Using the published crystal structure of adipamide, 39 the complete structure of 

adipamide was manually created and the structure of oxamide solved using the model 

defined by six parameters. Five DE searches were used and assigned the control 

parameters, NP = 120, F = 0.5, K = 0.99, Gmax = 2000. The five searches converged 

successfully. The five solutions were assigned a mean R factor = 16.12%. Figure 5.23 

shows two views of the solution that was assigned an R factor with the lowest value of 

16.01%. 
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Figure 5.23, The best model structure of oxamide located by direct space structure solution from the 
biphasic powder pattern recorded for sample 5. 

Comparison of this solution with the published structure fig 5.7 demonstrates that this 

solution is wrong and that refinement of this solution is unlikely to be successful. The 

solution in fig 5.23 does lie in the a plane but the conformation of the model is not planar. 

Simultaneous structure solution of adipamide and quantitative phase analysis was then 

attempted from the pattern recorded for sample 5. Using the published crystal structure of 

oxamide, 41 the complete structure of oxamide was manually created while the structure 

of adipamide was solved using the model defined by eight parameters. Five DE searches 

were used with the control parameters, NP = 160, F = 0.5, K = 0.99, Gmax = 2000. The 

five searches converged successfully giving five solutions with a mean R factor = 

16.57%. Figure 5.24 shows two views of the solution that was assigned an R factor with 

the lowest value of 16.50%. For comparison, the best model structure of adipamide 

solved from the pattern recorded for sample 5 without refinement of the phase ratio 

(figure 5.22) was assigned an R factor = 17.16%. 

  
Figure 5.24, The best model structure of adipamide located by direct space structure solution and 

simultaneous quantitative phase analysis from the biphasic powder pattern recorded for sample 5. 

The solution shown in fig 5.24 is similar to the solution in fig 5.22. Solution 5.24 is 

orientated along the b axis and the carbon chain is not significantly distorted. Although 

both amide groups are flipped the same way, it would be possible to determine which 

group is incorrect by manually flipping each group during refinement. It is likely that 
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Rietveld refinement of solution 5.24 would be successful. 

Simultaneous structure solution of oxamide and quantitative phase analysis was then 

attempted from the pattern recorded for sample 5. Using the published crystal structure of 

adipamide, 39 the complete structure of adipamide was manually created and the structure 

of oxamide solved using the model defined by six parameters. Five DE searches were 

used with the control parameters, NP = 120, F = 0.5, K = 0.99, Gmax = 2000. The five 

searches converged successfully giving five solutions with a mean R factor = 15.67%. 

Figure 5.25 shows two views of the solution that was assigned an R factor with the lowest 

value of 15.55%. For comparison, the best model structure of oxamide solved from the 

pattern recorded for sample 5 without refinement of the phase ratio (figure 5.23) was 

assigned an R factor = 16.01%. 

 

 

Figure 5.25, The best model structure of oxamide located by direct space structure solution and 
simultaneous quantitative phase analysis from the biphasic powder pattern recorded for sample 5. 

The solution shown in fig 5.25 is similar to the solution shown in fig 5.19. Solution 5.25 

has adopted the correct trans relationship between the two amide groups. However, the 

solution is not planar. The solution is correctly centred on the a plane but is tilted slightly 

out of the plane. Although the solution has shifted position by roughly half a unit cell, the 

crystal symmetry means that this shifted position is nearly equivalent with the correct 

position. It is likely that solution 5.25 would refine successfully. 

 

Determining the accuracy of the quantitative phase analysis. 

Sample 5 was prepared by combining adipamide and oxamide in a molar ratio of 2:1 

(molar mass of sample 5 = 376.4g/mol-1). 

Table 5.7 shows the abundance of each phase (presented as a mass fraction) as 

determined by the Rietveld based QPA during structure solution of adipamide. Data for 

each structure solution calculation is presented as in table 5.1. 
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Table 5.7, Structure solution of adipamide and quantitative phase analysis for sample 5. 

Run Converged best R AdipMsR OxamMsR 
1 16.50% 0.819 0.181 
2 16.62% 0.819 0.181 
3 16.51% 0.819 0.181 
4 16.62% 0.819 0.181 
5 16.60% 0.819 0.181 
    

Mean 16.57% 0.819 0.181 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.819*376.4)/144.16 = 2.1mol. 
      Molar ratio oxamide = (0.181*376.4)/88.07 = 0.8mol. 
 
Figure 5.24 shows that the best model for adipamide located during these searches is a 

good solution. Table 5.7 shows that during these searches the QPA has slightly increased 

the abundance of adipamide and decreased the abundance of oxamide from the prepared 

2:1 ratio. 

Table 5.8 shows the abundance of each phase (presented as a mass fraction) as 

determined by the Rietveld based QPA during structure solution of oxamide. Data for 

each structure solution calculation is presented as in table 5.1. 

 
Table 5.8, Structure solution of oxamide and quantitative phase analysis for sample 5. 

Run Converged best R OxamMsR AdipMsR 
1 15.56%; 0.188 0.812 
2 15.95%; 0.172 0.828 
3 15.64%; 0.186 0.814. 
4 15.67%; 0.188 0.812 
5 15.55%; 0.190 0.810 
    

Mean 15.67 0.185 0.815 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.815*376.4)/144.16 = 2.1mol. 
      Molar ratio oxamide = (0.185*376.4)/88.07 = 0.8mol. 
 
Figure 5.25 shows that the best model of oxamide located by these searches is a good 

solution. Table 5.8 shows that during these searches the QPA has slightly increased the 

abundance of adipamide and decreased the abundance of oxamide from the prepared 2:1 

ratio. 
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5.5.8 Summary 

Section 5.5.2 demonstrates that if a biphasic powder pattern is recorded for a material 

containing one known and one unidentified crystal phase, providing that the pattern can 

be indexed to reveal the lattice parameters of the unidentified phase, it is sometimes 

possible to use direct space methods to solve the structure of the unidentified phase 

directly from the biphasic pattern without the necessity of subtracting peaks 

corresponding to the known phase from the biphasic pattern. 

Although our combined direct space and QPA method is capable of locating a model 

solution that is a fair representation of the real crystal structure and estimating the 

abundance of each crystal phase, the structure solution experiments investigated here 

demonstrate that correct solutions are not found with high success rates. Additionally the 

QPA technique does not determine the abundance of each phase with reliable accuracy. 

This is illustrated by the simultaneous structure solution and QPA searches performed 

using sample 4; prepared by combining adipamide and oxamide in a ratio of 1:2. Fig 5.20 

shows that the best model of adipamide located by these searches is a poor solution. 

However, table 5.5 shows that the QPA has increased the abundance of adipamide and 

decreased the abundance of oxamide from the prepared 1:2 ratio. Figure 5.21 shows that 

although the oxamide solution has adopted the wrong cis conformation it is a good 

solution that could be refined successfully. Table 5.6 shows that in this case the QPA has 

increased the abundance of oxamide and decreased the abundance of adipamide from the 

prepared 1:2 ratio. Hence in both cases the QPA has improved the fit between simulated 

and real biphasic patterns by increasing the abundance of the target structure and 

decreasing the abundance of the manually created correct structure. 

This is in contrast with the results of the simultaneous structure solution and QPA 

searches performed using sample 5; prepared by combining adipamide and oxamide in a 

ratio of 2:1. Figure 5.24 shows that the best model for adipamide located during these 

searches is a good solution. Table 5.7 shows that during these searches the QPA has 

increased the abundance of adipamide and decreased the abundance of oxamide from the 

prepared ratio. Figure 5.25 shows that the best model of oxamide located by these 

searches is a good solution. Table 5.8 shows that during these searches the QPA has 

slightly increased the abundance of adipamide and decreased the abundance of oxamide 

from the prepared ratio. Hence in both cases the abundance of adipamide is increased. 
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As discussed in section 5.5.4, a possible reason for these inaccurate results is that 

diffraction data recorded on different diffractometers and under different conditions is 

combined in these experiments. In the above experiments, lattice parameters of two 

crystal phases are refined using data extracted from a biphasic powder pattern recorded 

using one diffractometer under ambient conditions. However, the published crystal 

structures used for the non-target phase have been recorded under different diffraction 

conditions, often single crystal experiments performed at different temperatures. Due to 

thermal effects, it is unlikely that the atoms from the published structures are placed in 

exactly the correct positions for the experimental powder diffraction data used here. This 

causes a constant amount of mismatch between simulated and real biphasic patterns and 

could result in either a) the Rietveld refinement of an incorrect phase ratio or b) failure of 

the structure solution.  

In the following sections an attempt is made to simultaneously solve both structures 

directly from the biphasic powder pattern. This means that structural information 

obtained from different diffraction patterns recorded under different conditions is not 

needed. Since all the diffraction data used in each experiment comes from one pattern 

there should be no thermally induced mismatch between simulated and real biphasic 

patterns. 
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5.6   Simultaneous multiple direct space structure 
 solution and quantitative phase analysis from 
 biphasic powder diffraction data 
 

The ‘Double’ DE implementation was developed from the original DE implementation. 42 

This new ‘Double’ DE was created to investigate the possibility of simultaneously 

solving two independent crystal structures. To do this, the double DE uses two 

populations of structural models to represent the different crystal structures. Solutions are 

evaluated by selecting a model from each population and simulating a biphasic pattern 

for the pair. The simulated biphasic pattern is compared with the real biphasic pattern 

using the Rietveld refinement application of GSAS 43 and the resultant R factor is 

assigned to the pair. Quantitative phase analysis by the Rietveld refinement application of 

GSAS is performed simultaneously during the calculation of each R factor. 

Since both crystal structures are simultaneously solved in pairs, one landscape represents 

both crystal structures. However, each model occupies separate landscape dimensions. 

Thus the total number of dimensions of the landscape is the sum of the number of 

parameters defining each model, e.g., if two models are each defined by seven and eight 

parameters respectively, the landscape is defined by a total of 15 dimensions. 

 

5.6.1  Biphasic sample 6. Crystalline adipamide and nicotinamide 
 combined in a molar ratio of 1:1 
The Le Bail fit generated for the biphasic powder diffraction pattern recorded for sample 

6 was assigned an R factor = 9.4%. The refined lattice parameters of adipamide were 

assigned the values: a = 5.184(2)Å, b = 5.654(2)Å, c = 7.044(1)Å, α = 69.4°, β = 86.0° 

and γ = 72.4° giving a unit cell volume = 184.1 Å3.  The refined lattice parameters of 

nicotinamide were assigned the values: a = 3.972(0)Å, b = 15.626(4)Å, c = 9.425(1)Å, α 

= γ = 90.0°, β = 99.0°, giving a unit cell volume = 577.7 Å3. 

As previously discussed, the structure of adipamide was solved using a model defined by 

eight parameters and the structure of nicotinamide defined by seven, thus the biphasic 

landscape is defined by 15 dimensions. Due to the assumed complexity of this double 

structure solution, the value of NP is calculated at 40 times the number of parameters 

required for landscape definition, i.e in this case NP = 600. Due to the large population 

size, it was assumed that a sufficiently rapid convergence rate could be achieved by 
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assigning F = 0.3 without significantly increasing the probability of premature 

convergence. Five DE searches were used to simultaneously solve both structures. The 

DE was assigned the control parameters: NP = 600, F = 0.3, K = 0.99, Gmax = 10,000. 

The five searches converged successfully giving five solutions with a mean R factor = 

15.59%. Figure 5.26 shows three views of the solution that was assigned an R factor with 

the lowest value of 15.56%. 
 

 
Figure 5.26, The best model structures of nicotinamide and adipamide simultaneously located by direct 
space structure solution and quantitative phase analysis from the biphasic powder pattern recorded for a 

sample of crystalline adipamide and nicotinamide combined in a molar ratio of 1:1. 

The two left hand views show the solution for nicotinamide, the right hand view shows 

the solution for adipamide. The two left hand views show that the solution for 

nicotinamide has adopted the wrong anti conformation. However, the solution is in the 

correct orientation and position. It is likely that this nicotinamide solution could be 

refined successfully. The right hand view shows that the solution for adipamide is wrong. 

Although the conformation of the carbon chain is correct the orientation and position of 

the model in the unit cell is wrong. It is unlikely that this solution would refine 

successfully. 

 
Determining the accuracy of the quantitative phase analysis. 

The molar mass of sample 6 = 266.29g/mol-1. Table 5.9 shows the abundance of each 

phase (presented as a mass fraction) as determined by the Rietveld based QPA during 

simultaneous structure solution of adipamide and nicotinamide. Data for each structure 

solution calculation is presented as in table 5.1. 

Table 5.9 shows that the abundance for the wrong adipamide solution is significantly 

decreased and the abundance of the correct nicotinamide solution is increased. Hence in 

these searches, the QPA has improved the fit between simulated and real biphasic 

patterns by almost eliminating peaks corresponding to adipamide from the simulated 

biphasic pattern. 
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Table 5.9, Simultaneous structure solution of adipamide and nicotinamide and quantitative phase analysis 
for sample 6. 

  Run Converged best R   AdipMsR    NicMsR  
1 15.56% 0.065 0.935 
2 15.57% 0.064 0.936 
3 15.58% 0.065 0.935 
4 15.67% 0.064 0.938 
5 15.57% 0.064 0.936 
    

Mean 15.59% 0.064 0.936 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.064*266.29)/144.16 = 0.12mol. 
      Molar ratio nicotinamide = (0.936*266.29)/122.13 = 2.04mol. 
 
A possible cause for the successful solution for nicotinamide and failed solution for 

adipamide is the way in which the simultaneous double structure solution and QPA is 

performed. The R factor reflects how well a biphasic diffraction pattern simulated for a 

‘pair’ of models fits the real biphasic pattern. Thus it is possible for a biphasic pattern 

simulated for a pair in which one model is a good and one model a poor representation of 

the respective real crystal structures to be fitted with the real biphasic pattern by 

increasing the abundance of the better quality model. From figure 5.26, this is clearly the 

case; as the nicotinamide solution matches well with the published structure (fig 5.6) but 

the adipamide solution does not. Hence in this case the abundance of the correct 

nicotinamide solution has been significantly increased and the abundance of the wrong 

adipamide solution (which does not exist in reality) significantly decreased. 

This is potentially a significant problem if in reality, one phase is significantly more 

abundant, and if a model representing the more abundant phase is optimised before a 

model representing the less abundant phase. 

A more rigorous strategy for evaluating individual models that can only be evaluated in 

pairs, is to pair each model with multiple ‘partners’ and calculate an average R factor. If a 

‘test’ model that is a good representation of the real crystal structure is evaluated with 

multiple ‘partners’, the test model is more likely to be assigned an average R factor with a 

relatively low value. Conversely, if a test model that is a poor representation of the real 

crystal structure is evaluated with multiple partners, the test model is more likely to be 

assigned an average R factor with a relatively high value. Using such a strategy increases 

the probability that better quality models are located and reduces the probability that the 

fit between simulated and real biphasic patterns is improved by excessively increasing the 
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abundance of a better quality model. 

As the number of partners that a test model is evaluated with increases, the probability 

that the test model is assigned an average R factor with an appropriate value increases. 

Ideally, each model in each population is paired and evaluated with every model in the 

complementary population. However, the computational effort required to evaluate all 

combinations is significant, making this exhaustive selection impractical. An alternative 

selection strategy is an ‘elitist’ strategy. 

 

5.6.2 Elitist selection strategy 
In this implementation, two populations of models representing different crystal 

structures are generated. For this discussion, the two populations are labelled ‘A’ and ‘B’. 

Each initial model in population ‘A’ is paired with a different initial model in population 

‘B’ and evaluated. The pair that is assigned an R factor with the lowest value is identified 

as the best pair. Model ‘A’ is copied from the best pair and stored as ‘elite model A’. 

For a number of generations defined by the parameter elite paring ‘EP’, population ‘B’ 

evolves. Each child produced by parents in population ‘B’ is evaluated in combination 

with ‘elite model A’. If the R factor assigned to the child and ‘elite model A’ has a lower 

value than the R factor assigned to the parent ‘B’ paired with its previous partner ‘A’, the 

child replaces the parent ‘B’. After ‘EP’ generations, evolution of population ‘B’ is 

paused. The model in population ‘B’ that is assigned the lowest R factor when paired 

with ‘elite model A’ is then selected as ‘elite model B’. The procedure is reversed and for 

‘EP’ generations, population ‘A’ evolves and the children paired and evaluated with ‘elite 

model B’. After population ‘A’ has evolved for ‘EP’ generations, both populations evolve 

simultaneously. A child produced by a parent ‘A’ is evaluated with a child produced by a 

parent ‘B’. Both children replace the parents if the R factor assigned to the pair of 

children has a lower value than the R factor assigned to the pair of parents. 

Simultaneous evolution of both populations continues until convergence or until Gmax 

generations have been calculated. The value of ‘EP’ is defined by the user before the 

structure solution calculation. 

Five DE searches using this elitist strategy and quantitative phase analysis were used to 

simultaneously solve the structures of adipamide and nicotinamide using the biphasic 
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pattern recorded for sample 6. The searches were assigned the control parameters NP = 

600, F = 0.3, EP = 2, K = 0.99, Gmax = 10,000. Four searches converged successfully 

giving four solutions with a mean R factor = 15.74%. Figure 5.27 shows three views of 

the solution that was assigned an R factor with the lowest value of 15.57%. 

 
 
 

 
 

 

 

  

Figure 5.27, The best model structures of adipamide and nicotinamide simultaneously located by elitist 
direct space structure solution and quantitative phase analysis from the biphasic powder pattern recorded 

for sample 6. 

The left hand view shows the solution for adipamide and the two right hand views show 

the solution for nicotinamide. The left view shows that although the conformation of the 

carbon chain is correct, the orientation and position of the solution is wrong. It is unlikely 

that this solution for adipamide would refine successfully. The two right hand views 

show that the solution for nicotinamide has adopted the wrong anti conformation. The 

solution is in the correct orientation and has undergone a crystallographic translation. 

However, as in fig 5.13, due to crystal symmetry this translation shown in fig 5.27 is 

equivalent with the published structure shown in fig 5.6. It is likely that this solution for 

nicotinamide would refine successfully. 

 
Determining the accuracy of the quantitative phase analysis. 

Table 5.10 shows the abundance of each phase (presented as a mass fraction) as 

determined by the Rietveld based QPA during simultaneous structure solution of 

adipamide and nicotinamide. Data for each structure solution calculation is presented as 

in table 5.1.  

Figure 5.27 demonstrates that although models in each population have been evaluated 

with two different partner models from the other population, the ‘double DE’ with elitist 

strategy has failed to solve the structure of adipamide. However, table 5.10 shows that as 

in table 5.9, the abundance of the wrong solution for adipamide is decreased and the 

abundance of the correct solution for nicotinamide is increased. 
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Table 5.10, Simultaneous structure solution of adipamide and nicotinamide and quantitative phase analysis 
for sample 6. 

Run Converged best R AdipMsR NicMsR 
1 Failed to Converge 
2 15.65% 0.064 0.936 
3 16.09% 0.065 0.935 
4 15.57% 0.064 0.936 
5 15.64% 0.065 0.935 
    

Mean 15.74% 0.065 0.936 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.065*(144.16+122.13))/144.16 = 0.12mol. 
      Molar ratio nicotinamide = (0.936*(144.16+122.13))/122.13 = 2.04mol. 
 
A second set of five calculations was run to investigate the effect of increasing the value 

of EP from 2 to 8. Thus more children produced by each population were evaluated with 

an elitist standard. Five elitist DE searches were assigned the control parameters NP = 

600, F = 0.3, EP = 8, K = 0.99, Gmax = 10,000. Five searches converged successfully 

giving five solutions with a mean R factor = 15.65%. Figure 5.28 shows three views of 

the solution that was assigned an R factor with the lowest value of 15.58%. 

 

 
Figure 5.28, The best model structures of adipamide and nicotinamide simultaneously located by elitist 
direct space structure solution and quantitative phase analysis from the biphasic powder pattern recorded 

for sample 6. 

The left hand view shows the solution for adipamide and the two right hand views show 

the solution for nicotinamide. The left view shows that as in the two previous figures, the 

solution for adipamide is wrong. This solution is unlikely to refine successfully. The two 

right hand views show that the solution for nicotinamide is in the correct orientation but 

the solution has adopted the wrong anti conformation and is not in the correct position. 

However, it is likely that these errors could be resolved and that this solution would 

refine successfully. 

 
Determining the accuracy of the quantitative phase analysis. 

Table 5.11 shows the abundance of each phase (presented as a mass fraction) as 
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determined by the Rietveld based QPA during simultaneous structure solution of 

adipamide and nicotinamide. Data for each structure solution calculation is presented as 

in table 5.1. 

 
Table 5.11, Simultaneous structure solution of adipamide and nicotinamide and quantitative phase analysis 

for sample 6. 

Run Converged best R AdipMsR NicMsR 
1 15.61% 0.065 0.935 
2 15.67% 0.066 0.934 
3 15.65% 0.067 0.933 
4 15.75% 0.062 0.938 
5 15.58% 0.063 0.937 
    

Mean 15.65% 0.065 0.935. 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.065*(144.16+122.13))/144.16 = 0.12mol. 
      Molar ratio nicotinamide = (0.935*(144.16+122.13))/122.13 = 2.04mol. 
 
Table 5.11 shows that as in tables 5.9 and 5.10, the abundance of the wrong solution for 

adipamide is decreased and the abundance of the correct solution for nicotinamide is 

increased. 

A third set of five calculations was run to investigate the effect of increasing the value of 

EP from 8 to 10. Five elitist DE searches were assigned the control parameters NP = 600, 

F = 0.3, EP = 10, K = 0.99, Gmax = 10,000. Four searches converged successfully giving 

four solutions with a mean R factor = 16.40%. Figure 5.29 shows three views of the 

solution that was assigned an R factor with the lowest value of 15.89%. 

 

 
Figure 5.29, The best model structures of adipamide and nicotinamide simultaneously located by elitist 
direct space structure solution and quantitative phase analysis from the biphasic powder pattern recorded 

for sample 6. 

The left hand view shows the solution for adipamide, the two right hand views show the 

solution for nicotinamide. The left view shows that the solution for adipamide cannot be 

refined; the conformation, orientation and position are all wrong. The two right hand 

views show that the solution for nicotinamide has adopted the wrong anti conformation 
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but the orientation and position are correct. It is likely that this solution would refine 

successfully. 

 
Determining the accuracy of the quantitative phase analysis. 

Table 5.12 shows the abundance of each phase (presented as a mass fraction) as 

determined by the Rietveld based QPA during simultaneous structure solution of 

adipamide and nicotinamide. Data for each structure solution calculation is presented as 

in table 5.1. 

 
Table 5.12, Simultaneous structure solution of adipamide and nicotinamide and quantitative phase analysis 

for sample 6. 

Run Converged best R AdipMsR NicMsR 
1 16.58% 0.025 0.975 
2 15.89% 0.062 0.938 
3 16.55% 0.026 0.974 
4 Failed to Converge 
5 16.57% 0.026 0.974. 
    

Mean 16.40% 0.035 0.965 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.035*(144.16+122.13))/144.16 = 0.065mol. 
      Molar ratio nicotinamide = (0.965*(144.16+122.13))/122.13 = 2.10mol. 
 
Table 5.12 shows that as in the previous tables the abundance of the wrong solution for 

adipamide is decreased and the abundance of the correct solution for nicotinamide is 

increased. 

Comparing the convergence rate of the traditional type ‘double DE’ that evolves both 

populations of structural models simultaneously for all generations (shown in figure 5.30) 

with the convergence rate of the elitist type ‘double DE’ (presented in figures 5.31-5.33) 

clearly shows that use of the elitist strategy slows the convergence rate. 
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Figure 5.30, The convergence rate of the traditional type ‘double DE’ for five runs. Circles indicate the 

mean fitness of the population, whereas the line shows the evolution of the fittest within each generation. 

On average, searches converge in 861 generations. 

 

 
Figure 5.31, The convergence rate of the elitist type ‘double DE’ for five runs with EP = 2. Circles indicate 

the mean fitness of the population, whereas the line shows the evolution of the fittest within each 

generation. On average, searches converge in 1698 generations. 
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Figure 5.32, The convergence rate of the elitist type ‘double DE’ for five runs with EP = 8. Circles indicate 

the mean fitness of the population, whereas the line shows the evolution of the fittest within each 

generation. On average, searches converge in 1916 generations. 

 

 
Figure 5.33, The convergence rate of the elitist type ‘double DE’ for five runs with EP = 10. Circles 

indicate the mean fitness of the population, whereas the line shows the evolution of the fittest within each 

generation. On average, searches converge in 2057 generations. 
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The plots shown in figures 5.31-5.33 suggest that as the value of EP is increased, the 

average number of generations required for convergence increases. A possible 

explanation for the decreased search efficiency of elitist DE searches is that use of the 

elitist strategy increases the probability that models become trapped in local minima. 

The elitist strategy selects ‘elite model A’ from the initial best pair of models. The lower 

the value of the R factor assigned to the best pair, the higher the probability that ‘elite 

model A’ occupies a minimum. The children produced by parents in population ‘B’ will 

be assigned an R factor with a lower value if the pattern simulated for the child and ‘elite 

model A’ is a good fit with the experimental biphasic pattern. Thus if ‘elite model A’ 

occupies a local minimum, evolution of population ‘B’ increases the probability that 

children are ‘biased’ and only assigned an R factor with a low value if paired with a 

model in population ‘A’ that occupies this particular minimum. If many biased children 

replace the parents ‘B’, it increases the probability that a significant number of models in 

population ‘B’ become biased. Thus when the elitist strategy selects ‘elite model B’, 

there is a high probability that a biased model is selected. Evolution of population ‘A’ 

and evaluating children with a biased ‘elite model B’ increases the probability that 

parents ‘A’ are replaced by children occupying the minimum located by ‘elite model A’. 

Thus the elitist strategy causes models in each population to cluster, but not necessarily 

near the global minimum. Since models are evaluated in pairs, a pair of models is more 

likely to be assigned an R factor with a relatively low value if the models are located in 

the clusters. This ‘feedback loop’ between the populations reduces the probability that 

clustered models explore the landscape, and locate the global minimum. Increasing the 

value of EP increases the number of models clustered together. Therefore, increasing the 

value of EP increases the number of generations required for the cluster to disperse and 

the models to locate the global minimum. 

 

5.6.3 Systematic selection strategy 
An alternative ‘systematic’ strategy was developed to select a ‘standard’ model to 

represent each population. This strategy selects a model regardless of the R factor 

assigned to the model. 

In this strategy, two populations (labelled ‘A’ and ‘B’) of models representing different 

crystal structures are generated. Each initial model in population ‘A’ is paired with a 
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different initial model in population ‘B’ and evaluated. Model (1) in population ‘A’ is 

copied and stored as ‘standard model A’. Population ‘B’ is evolved for one generation 

and each child is evaluated with ‘standard model A’. If the R factor assigned to the child 

and ‘standard model A’ has a lower value than the R factor assigned to the parent ‘B’ 

paired with its previous partner ‘A’, the child replaces the parent ‘B’. After one 

generation model (2) is copied from population ‘A’ and stored as the new ‘elite model 

A’. This cycle iterates for a number of generations defined by the value of the parameter 

standard pair ‘SP’. After ‘SP’ generations, evolution of population ‘B’ is paused. Model 

(1) is copied from population ‘B’ and stored as ‘standard model B’. The procedure is then 

reversed. For one generation, population ‘A’ evolves and children are evaluated with 

‘standard model B’. After one generation, model (2) is copied from population ‘B’ and 

stored as the new ‘standard model B’. This cycle iterates for ‘SP’ generations. After 

population ‘A’ has evolved for ‘SP’ generations, both populations evolve simultaneously. 

A child produced by a parent ‘A’ is evaluated with a child produced by a parent ‘B’. Both 

children replace the parents if the R factor assigned to the pair of children has a lower 

value than the R factor assigned to the pair of parents. Simultaneous evolution of both 

populations continues until convergence or until Gmax generations have been calculated. 

The value of ‘SP’ is defined by the user before the structure solution calculation. 

Since a standard model is selected regardless of R factor, a standard model has an equal 

probability of occupying any part of the landscape. This reduces the probability that 

children evaluated with a standard model are only assigned an R factor with a relatively 

low value if paired with a standard model occupying a minimum. Additionally, since a 

new standard model is selected each generation, there is a high probability that children 

are evaluated with standard models occupying different parts of the landscape. This 

reduces the probability that many children become biased. 

Five DE searches using the systematic strategy and quantitative phase analysis were used 

to simultaneously solve the structures of adipamide and nicotinamide using the biphasic 

pattern recorded for sample 6. The searches were assigned the DE control parameters NP 

= 600, F = 0.3, SP = 2, K = 0.99, Gmax = 10,000. The five searches converged 

successfully giving five solutions with a mean R factor = 15.72%. Figure 5.34 shows 

three views of the solution that was assigned an R factor with the lowest value of 15.53%. 
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Figure 5.34, The best model structures of adipamide and nicotinamide simultaneously located by 

systematic direct space structure solution and quantitative phase analysis from the biphasic powder pattern 
recorded for sample 6. 

The left hand view shows the solution for adipamide, the two right hand views show the 

solution for nicotinamide. The left hand view shows that the solution for adipamide 

cannot be refined. The two right hand views show that the solution for nicotinamide is in 

the correct orientation. However, the solution has adopted the wrong anti conformation 

and is in the wrong position. It is not possible to say if this solution could be refined 

successfully. 

 
Determining the accuracy of the quantitative phase analysis. 

Table 5.13 shows the abundance of each phase (presented as a mass fraction) as 

determined by the Rietveld based QPA during simultaneous structure solution of 

adipamide and nicotinamide. Data for each structure solution calculation is presented as 

in table 5.1. Table 5.13 shows that as in the previous tables the abundance of the wrong 

solution for adipamide is decreased and the abundance of the correct solution for 

nicotinamide increased. 

 
Table 5.13, Simultaneous structure solution of adipamide and nicotinamide and quantitative phase analysis 

for sample 6 

Run Converged best  R AdipMsR NicMsR  
1 16.17%  0.049 0.951 
2 15.55%  0.064 0.936. 
3 15.67%  0.065 0.935 
4 15.66%  0.064 0.936 
5 15.53%  0.063 0.937 
    

Mean 15.72%  0.061 0.939. 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.061*(144.16+122.13))/144.16 = 0.11mol. 
      Molar ratio nicotinamide = (0.939*(144.16+122.13))/122.13 = 2.05mol. 
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A second set of five calculations was run to investigate the effect of increasing the value 

of ‘SP’ from 2 to 8. Five systematic DE searches were assigned the control parameters 

NP = 600, F = 0.3, SP = 8, K = 0.99, Gmax = 10,000.  The five searches converged 

successfully giving five solutions with a mean R factor = 15.66%. Figure 5.35 shows 

three views of the solution that was assigned an R factor with the lowest value of 15.56%. 

 

 
Figure 5.35, The best model structures of adipamide and nicotinamide simultaneously located by 

systematic direct space structure solution and quantitative phase analysis from the biphasic powder pattern 
recorded for sample 6. 

The left hand view shows the solution for adipamide, the two right hand views show the 

solution for nicotinamide. The left hand view shows that the solution for adipamide 

cannot be refined. The two right hand views show that the solution for nicotinamide is in 

the correct orientation but has adopted the wrong anti conformation. The solution has 

shifted position but due to symmetry, this position is crystallographically equivalent with 

the position shown in the published structure (fig 5.6). It is likely that this solution would 

refine successfully. 

 
Determining the accuracy of the quantitative phase analysis. 

Table 5.14 shows the abundance of each phase (presented as a mass fraction) as 

determined by the Rietveld based QPA during simultaneous structure solution of 

adipamide and nicotinamide. Data for each structure solution calculation is presented as 

in table 5.1. Table 5.14 shows that as in the previous tables the abundance of the wrong 

solution for adipamide is decreased and the abundance for the correct solution for 

nicotinamide is increased. 
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Table 5.14, Simultaneous structure solution of adipamide and nicotinamide and quantitative phase analysis 
for sample 6 

Run Converged best  R AdipMsR NicMsR 
1 16.01%  0.059 0.941 
2 15.56%   0.064 0.936. 
3 15.56%  0.064 0.936 
4 15.59% 0.065 0.935 
5 15.60%  0.065 0.935. 
    

Mean 15.66%  0.063 0.937 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.063*(144.16+122.13))/144.16 = 0.12mol. 
      Molar ratio nicotinamide = (0.937*(144.16+122.13))/122.13 = 2.04mol. 
 
 

Figures 5.36 and 5.37 show the convergence rate of DE searches using the systematic 

selection strategy. 

 

 
Figure 5.36, The convergence rate of the DE using systematic selection with SP = 2. Circles indicate the 

mean fitness of the population, whereas the line shows the evolution of the fittest within each generation. 

On average, searches converge in 1015 generations. 
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Figure 5.37, The convergence rate of the DE using systematic selection with SP = 8. Circles indicate the 

mean fitness of the population, whereas the line shows the evolution of the fittest within each generation. 

On average, searches converge in 984 generations. 

 

Comparison of figures 5.36 and 5.37 with figures 5.31-5.33 demonstrates that the 

searches using the systematic selection converge faster than the searches using the elitist 

selection strategy. From the limited results presented in figures 5.36 and 5.37, it is not 

possible to conclude whether using different values of SP to control the systematic 

selection strategy has a significant effect on the convergence rate. 

 

5.6.4 Random selection strategy 
To determine why searches using the elitist selection strategy require more generations to 

converge, a third selection strategy was investigated. This strategy selects a standard 

model from each population regardless of the R factor. However, a new standard model is 

not selected each generation. 

In this implementation, two populations (labelled ‘A’ and ‘B’) of models representing 

different crystal structures are generated. Each initial model in population ‘A’ is paired 

with a different initial model in population ‘B’ and evaluated. Model (1) in population 

‘A’ is copied and stored as ‘standard model A’.  Population ‘B’ evolves for a number of 

generations defined by the value of the parameter fixed standard pair ‘FSP’. Each child 
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produced by a parent ‘B’ is evaluated with ‘standard model A’. If the R factor assigned to 

the child and ‘standard model A’ has a lower value than the R factor assigned to the 

parent B paired with its previous partner ‘A’, the child replaces the parent ‘B’. After 

‘FSP’ generations, evolution of population ‘B’ is paused and model (1) is copied from 

population ‘B’ and stored as ‘standard model B’. The procedure is then reversed. For 

‘FSP’ generations, population ‘A’ evolves and the children are evaluated with the 

‘standard model B’. After population ‘A’ has evolved for ‘FSP’ generations, both 

populations evolve simultaneously. A child produced by a parent ‘A’ is evaluated with a 

child produced by a parent ‘B’. Both children replace the parents if the R factor assigned 

to the pair of children has a lower value than the R factor assigned to the pair of parents. 

Simultaneous evolution of both populations continues until convergence or until Gmax 

generations have been calculated. The value of ‘FSP’ is defined by the user before the 

structure solution calculation. 

Since a standard model is selected regardless of the R factor, a standard model has an 

equal probability of occupying any part of the landscape. This reduces the probability that 

children evaluated with a standard model are only assigned an R factor with a relatively 

low value if paired with a model that occupies a minimum. However, since the standard 

model is not changed after each successive generation, all children produced by one 

population are paired and evaluated with one standard model for multiple generations. 

This increases the probability that many biased children are produced in each population 

and cluster in a small area of the landscape. Thus compared with the elitist strategy, the 

random strategy decreases the probability that children cluster in local minima, but it 

does not decrease the probability that children cluster in one area of the landscape. 

Five DE searches using the random strategy and quantitative phase analysis were used to 

simultaneously solve the structures of adipamide and nicotinamide using the biphasic 

pattern recorded for sample 6. The searches were assigned the control parameters NP = 

600, F = 0.3, FSP = 8, K = 0.99, Gmax = 10,000.  The five searches converged 

successfully giving five solutions with a mean R factor = 15.91%. Figure 5.38 shows 

three views of the solution that was assigned an R factor with the lowest value of 15.55%. 
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Figure 5.38, The best model structures of adipamide and nicotinamide simultaneously located by random 
direct space structure solution and quantitative phase analysis from the biphasic powder pattern recorded 

for sample 6. 

The left hand view shows the solution for adipamide and the two right hand views show 

the solution for nicotinamide. The left view shows that the solution is in the wrong 

conformation, position and orientation. It is unlikely that this solution would refine 

successfully. The two right hand views show that the solution for nicotinamide has 

adopted the wrong anti conformation and the model is not exactly in the correct position. 

However, the solution is in the correct orientation and it is likely that this solution would 

refine successfully. 

 
Determining the accuracy of the quantitative phase analysis. 

Table 5.15 shows the abundance of each phase (presented as a mass fraction) as 

determined by the Rietveld based QPA during simultaneous structure solution of 

adipamide and nicotinamide. Data for each structure solution calculation is presented as 

in table 5.1. 

 
Table 5.15, Simultaneous structure solution of adipamide and nicotinamide and quantitative phase analysis. 

for sample 6. 

  Run Converged best R  AdipMsR NicMsR  
1 15.63% 0.065 0.935 
2 17.06% 0.027 0.973 
3 15.72% 0.063 0.937 
4 15.55% 0.064 0.936 
5 15.57% 0.064 0.936 
    

Mean 15.91% 0.057 0.943 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.057*(144.16+122.13))/144.16 = 0.11mol. 
      Molar ratio nicotinamide = (0.943*(144.16+122.13))/122.13 = 2.06mol. 
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Table 5.15 shows that the abundance of the wrong solution for adipamide is decreased 

and the correct solution for nicotinamide is increased. 

Figure 5.39 shows the convergence rate of these DE searches using the random selection 

strategy. Comparison of figure 5.39 with figures 5.31-5.33 demonstrates that although the 

random and elitist selection strategies both select one model from each population to act 

as the standard model and reuse this standard model for multiple generations, DE 

searches using the random strategy converge in fewer generations. Although both 

strategies are equally likely to cause children to cluster in one area of the landscape, the 

elitist strategy is more likely to cause children to cluster in local minima whereas the 

random strategy can cause children to cluster in any part of the landscape with equal 

probability. However, figure 5.30 shows that traditional type DE searches that evolve 

both populations simultaneously for all generations are still the fastest to converge. 

 

 

 
Figure 5.39, The convergence rate of the DE using random selection with FSP = 8. Circles indicate the 

mean fitness of the population, whereas the line shows the evolution of the fittest within each generation. 

On average, searches converge in 1052 generations. 
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The four different implementations of the ‘double DE’ investigated here can locate 

models that are reasonable representations of the real crystal structure of nicotinamide but 

fail to solve the structure of adipamide. As a consequence, the QPA improves the fit 

between simulated and real biphasic patterns by significantly reducing the abundance of 

adipamide and eliminating peaks corresponding to adipamide from the biphasic pattern. 

Hence the fit between simulated and real biphasic patterns is almost entirely influenced 

by the quality of the model for nicotinamide. Although the QPA has failed to determine 

the 1:1 ratio in which sample 6 was prepared, the elimination of peaks corresponding to 

adipamide and the successful solution for nicotinamide demonstrates that the success of 

solving one crystal structure is not dependent on the success of solving the other. 

A possible reason for the successful solution for nicotinamide but failed solution for 

adipamide is preferred orientation. The triclinic form of adipamide tends to crystallise in 

significantly large sheets whereas nicotinamide tends to crystallise in much smaller 

platelets. Thus the probability that crystallites are packed into the sample holder in one 

orientation is much higher for adipamide than nicotinamide. This increases the 

probability that the biphasic patterns recorded for samples 1, 2 and 6 contain significantly 

more structural information for nicotinamide than adipamide. 

Although ‘double DE’ searches using the systematic selection strategy require more 

generations to converge than the traditional type ‘double DE’ that evolves both 

populations simultaneously for all generations, searches using the systematic selection 

strategy are potentially more robust than the traditional type ‘double DE’ searches. This 

is because in the systematic searches each child is initially paired and evaluated with 

multiple standard models. This decreases the probability that a good model is assigned an 

unrepresentatively high R factor and missed simply because it is paired and evaluated 

with a much poorer model. 

 

5.6.5  Biphasic sample 3. Crystalline adipamide and oxamide 
 combined in a molar ratio of 1:1 
The DE using the systematic selection strategy was used to solve the crystal structures. 

This implementation was chosen because it is potentially more robust than the traditional 

type ‘double DE’. 

The Le Bail fit generated for the biphasic powder diffraction pattern recorded for sample 
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3 was used. The value of the phase ratio parameters were each assigned a value of 1. The 

Le Bail fit was assigned an R factor = 16.5%. The crystal structure of adipamide was 

solved using a model defined by eight parameters and the structure of oxamide by a 

model defined by six. The combined landscape is therefore defined by a total of 14 

parameters. Five systematic DE searches were used to simultaneously solve the structures 

of adipamide and oxamide. The searches were assigned the control parameters NP = 280, 

F = 0.3, SP = 8, K = 0.99, Gmax = 3000.  The five searches converged successfully 

giving five solutions with a mean R factor = 20.74%. Figure 5.40 shows three views of 

the solution that was assigned an R factor with the lowest value of 18.93%. 

 

 
Figure 5.40, The best model structures of adipamide and oxamide simultaneously located by direct space 
structure solution and quantitative phase analysis from the biphasic powder pattern recorded for sample 3. 

The left hand view shows the solution for adipamide, the two right hand views show the 

solution for oxamide. The left view shows that the two amide groups are in the correct 

orientation and that the overall position and orientation of the model is similar to the 

published structure (fig 5.5). However, the distorted conformation of the carbon chain 

and the translation of the model from the correct position means that successful 

refinement of this solution is unlikely. The two right hand views show that the solution 

for oxamide has adopted the correct planar trans conformation. The model is centred on 

the a plane but is tilted slightly outwards. The model is located sufficiently near the 

middle of the unit cell for successful refinement. 

 
Determining the accuracy of the quantitative phase analysis. 

Sample 3 was prepared by combining adipamide and oxamide in a molar ratio of 1:1 

(molar mass of sample 3 = 232.23g/mol-1). Table 5.16 shows the abundance of each 

phase (presented as a mass fraction) as determined by the Rietveld based QPA during 
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simultaneous structure solution of adipamide and oxamide. Data for each structure 

solution calculation is presented as in table 5.1. 
 

Table 5.16, Simultaneous structure solution of adipamide and  oxamide and quantitative phase analysis. 
for sample 3. 

  Run Converged best R  AdipMsR OxamMsR  
1 21.57% 0.529 0.471 
2 21.34% 0.566 0.434 
3 18.93% 0.521 0.479 
4 22.39% 0.602 0.398 
5 19.45% 0.593 0.407 
    

Mean 20.74% 0.562 0.438. 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.562*(144.16+88.07))/144.16 = 0.905mol. 
      Molar ratio oxamide = (0.438*(144.16+88.07))/88.07 = 1.155mol. 
 
Although the solution for adipamide shown in fig 5.40 is wrong, table 5.16 shows that the 

QPA is close to confirming the prepared 1:1 ratio of sample 3. In an attempt to improve 

the quality of the final solution, the rate of mutation was increased from 0.3 to 0.4. Five 

systematic DE searches were used to simultaneously solve the structures of adipamide 

and oxamide. The searches were assigned the control parameters NP = 280, F = 0.4, SP = 

8, K = 0.99, Gmax = 3000.  Four searches converged successfully giving four solutions 

with a mean R factor = 18.97%. Figure 5.41 shows three views of the solution that was 

assigned an R factor with the lowest value of 18.63%. 

 

 
 

 
Figure 5.41, The best model structures of adipamide and oxamide simultaneously located by direct space 
structure solution and quantitative phase analysis from the biphasic powder pattern recorded for sample 3. 

The left hand view shows the solution for adipamide, the two right hand views show the 

solution for oxamide. The left view shows that the two amide groups are correctly 

orientated and the overall position and orientation of the model is reasonable. The 
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conformation of the carbon chain is slightly less distorted than in fig 5.40. It may be 

possible to successfully refine the solution for adipamide shown in fig 5.41. The two right 

hand views in fig 5.41 show that the solution for oxamide is planar but has adopted the 

wrong cis conformation. The model is located near the middle of the unit cell and is 

centred on the a plane. However, the significant tilt of this model means that refinement 

may not be successful. Hence, in this case, increasing the mutation rate has resulted in a 

better solution for adipamide but a poorer solution for oxamide. 

 
Determining the accuracy of the quantitative phase analysis. 

Table 5.17 shows the abundance of each phase (presented as a mass fraction) as 

determined by the Rietveld based QPA during simultaneous structure solution of 

adipamide and oxamide. Data for each structure solution calculation is presented as in 

table 5.1. 

 
Table 5.17, Simultaneous structure solution of adipamide and  oxamide and quantitative phase analysis 

for sample 3. 

  Run Converged best R   AdipMsR  OxamMsR   
1 19.13% 0.594 0.406 
2 18.63% 0.553 0.447. 
3 18.86% 0.625 0.375. 
4 Failed To Converge 
5 19.26% 0.523 0.477 
    

Mean 18.97% 0.574 0.426 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.574*(144.16+88.07))/144.16 = 0.92mol. 
      Molar ratio oxamide = (0.426*(144.16+88.07))/88.07 = 1.12mol. 
 
Table 5.17 shows that the QPA is close to confirming the prepared 1:1 ratio. However, 

figures 5.40 and 5.41 show, that in each case, only one crystal structure has been solved 

successfully. These results suggest that the apparent accuracy of the QPA is merely 

chance. 

 
5.6.6  Biphasic sample 4. Crystalline adipamide and oxamide 
 combined in a molar ratio of 1:2 
The DE using the systematic selection strategy was used to solve the structures. The Le 

Bail fit generated for the biphasic powder diffraction pattern recorded for sample 4 was 

used. The value of the phase ratio parameters were each assigned a value of 1. The Le 

Bail fit was assigned an R factor = 15.0%. The crystal structures of adipamide and 
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oxamide were solved using models defined by eight and six parameters respectively. Five 

searches were used with the control parameters NP = 280, F = 0.3, SP = 8, K = 0.99, 

Gmax = 3000. Five searches converged successfully. The five solutions were assigned a 

mean R factor = 18.41%. Figure 5.42 shows three views of the solution that was assigned 

an R factor with the lowest value of 17.34%. 

 

  
 
Figure 5.42, The best model structures of adipamide and oxamide simultaneously located by direct space 
structure solution and quantitative phase analysis from the biphasic powder pattern recorded for sample 4. 

The left hand view shows the solution for adipamide, the two right hand views show the 

solution for oxamide. The left view shows that the conformation of the carbon chain is 

significantly distorted. This solution for adipamide will not refine. The two right hand 

views show that intramolecular geminal bond lengths and angles are distorted, the N-H 

bond is unusually long. However, the model has adopted the correct trans planar 

conformation and is in the correct position and orientation. Once the obvious 

intramolecular distortion is manually corrected successful refinement of this model is 

likely. 
 
Determining the accuracy of the quantitative phase analysis. 

Sample 4 was prepared by combining adipamide and oxamide in a molar ratio of 1:2 ( 

molar mass of sample 4 = 320.3 g/mol-1). 

Table 5.18 shows the abundance of each phase (presented as a mass fraction) as 

determined by the Rietveld based QPA during simultaneous structure solution of 

adipamide and oxamide. Data for each structure solution calculation is presented as in 

table 5.1. Table 5.18 shows that during these searches the QPA has increased the 

abundance of the wrong adipamide solution and decreased the abundance of the better 

oxamide solution. 
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Table 5.18, Simultaneous structure solution of adipamide and  oxamide and quantitative phase analysis 
for sample 4. 

  Run Converged best R  AdipMsR  OxamMsR    
1 18.86% 0.477 0.523 
2 18.26% 0.600 0.400 
3 17.34% 0.593 0.407. 
4 19.08% 0.550 0.450. 
5 18.51% 0.667 0.334 
    

Mean 18.41% 0.577 0.423. 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.577*320.3)/144.16 = 1.3mol. 
      Molar ratio oxamide = (0.423*320.3)/88.07 = 1.5mol. 
 
In an attempt to improve the quality of final solutions, the rate of mutation was increased 

from 0.3 to 0.4. Five systematic DE searches were used to simultaneously solve the 

structures of adipamide and oxamide. The searches were assigned the control parameters 

NP = 280, F = 0.4, SP = 8, K = 0.99, Gmax = 3000.  Four searches converged 

successfully giving four solutions with a mean R factor = 17.92%. Figure 5.43 shows 

three views of the solution that was assigned an R factor with the lowest value of 17.47%. 

 

 
 

 
Figure 5.43, The best model structures of adipamide and oxamide simultaneously located by direct space 
structure solution and quantitative phase analysis from the biphasic powder pattern recorded for sample 4. 

The left hand view shows the solution for adipamide, the two right hand views show the 

solution for oxamide. The left view shows that the conformation of the carbon chain is 

significantly distorted. Successful refinement of this solution for adipamide is unlikely. 

The two right hand solutions show a solution for oxamide similar to the oxamide solution 

5.42. Here the N-H bond is significantly stretched. However, once the obvious 

intramolecular distortions are manually corrected refinement is likely to be successful. 
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Determining the accuracy of the quantitative phase analysis. 

Table 5.19 shows the abundance of each phase (presented as a mass fraction) as 

determined by the Rietveld based QPA during simultaneous structure solution of 

adipamide and oxamide. Data for each structure solution calculation is presented as in 

table 5.1. 

 
Table 5.19, Simultaneous structure solution of adipamide and  oxamide and quantitative phase analysis 

for sample 4. 

  Run Converged best R  AdipMsR   OxamMsR    
1 17.78% 0.561 0.439 
2 18.19% 0.563 0.437 
3 Failed to Converge 
4 17.47% 0.546 0.454 
5 17.95% 0.601 0.391 
    

Mean 17.92% 0.568 0.430 
 
      Molar ratios calculated from mass ratios. 
      Molar ratio adipamide = (0.568*320.3)/144.16 = 1.3mol. 
      Molar ratio oxamide = (0.430*320.3)/88.07 = 1.6mol. 
 
Table 5.19 shows that during these searches the QPA has increased the abundance of the 

wrong solution for adipamide and decreased the abundance of the better solution for 

oxamide. 
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5.6.7 Conclusions 
Section 5.5.2 demonstrates that if a biphasic powder pattern is recorded and the structure 

of one crystal is already known, together with the abundance of each of the two crystal 

phases, the direct space method is capable of solving the structure of the other crystal. 

However, section 5.5.3 demonstrates a case where the same technique fails to solve either 

structure. 

Section 5.5.7 demonstrates that if a biphasic pattern is recorded and the structure of one 

crystal is known but the abundance of each phase is not, it is possible to perform 

simultaneous structure solution and quantitative phase analysis and solve the structure of 

the unknown crystal. However, section 5.5.6 demonstrates a case where this same 

technique fails to solve the crystal. Section 5.5.7 also demonstrates that the QPA does not 

accurately determine the abundance of each phase even when the structure solution is 

successful. 

Figure 5.41 and table 5.17 in section 5.6.5 suggest that it is possible to perform QPA 

whilst simultaneously solving both crystal structures from a biphasic pattern. However, 

all other attempts to achieve this have failed, so the apparent success may only be chance. 

Clearly, these limited successes do not prove that simultaneous two-structure solution and 

QPA is possible. Significantly more work is needed to test and develop the simultaneous 

two-structure solution and QPA technique. 

Most of these attempts to solve the crystal structure of nicotinamide have located 

solutions that adopt the wrong anti conformation between the nitrogen of the amide 

group and the nitrogen of the ring. Since nitrogen and oxygen have very similar X-ray 

scattering powers, a 180° rotation of the amide group will have little effect on the R 

factor assigned to a solution. Thus it is difficult for our direct space technique to 

determine the correct orientation of an amide group. Although it is trivial to determine 

the correct orientation during Rietveld refinement by manually flipping the amide group, 

the fact that most of these structure solution searches find the wrong anti conformation 

demonstrates a bias in our technique. As discussed in section 2.1.2, the POSSUM 

package uses standard bond lengths to generate structural models. The standard C-O 

bond used is 1.45Å and the standard C-N bond = 1.55Å. Since this work was carried out, 

DE searches have been conducted for nicotinamide using different standard bond lengths. 

It has been discovered that using a slightly shorter standard C-N bond and a slightly 
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longer standard C-O bond increases the probability that DE searches locate the correct 

orientation of the amide group. 

 
5.6.8 Further work 
A potentially more successful way to perform simultaneous direct space crystal structure 

solution and QPA is to use the DE to optimise both the structural models and parameters 

defining the abundance of each phase. This could be done by assigning one additional 

chromosome to each model to define the phase mass fraction for that model. Thus for this 

hypothetical technique, when a biphasic pattern is simulated for a pair of models the 

values of the mass fraction parameters of each model are used to calculate each phase 

specific scale factor and Rietveld refinement would only be used to compare the 

simulated and real biphasic patterns. In this technique the determination of the phase 

abundance would become part of the optimisation problem. 

The mass fraction and structure parameters could be optimised either: (a) simultaneously 

for all generations or (b) sequentially. For example, the structure parameters could be 

optimised until a certain quality of fit was achieved between simulated and real biphasic 

patterns when the mass fraction parameters would also be included in the search. 
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6 Conclusions and Further Work 

6.1  Optimising DE based direct space crystal structure 
 solution 
Although results presented in chapter 3 demonstrate that it may be possible to predict 

how changing the value of a specific DE control parameter may affect the progress of a 

structure solution calculation, the results demonstrate that there is no optimal 

combination of DE control parameters ‘universal’ to all crystal structures. 

Table 3.1 shows that the success rate of searches for the structure of baicalein using the 

same mutation rate generally increases as the population size increases. Since the R factor 

landscape representing the crystal structure of baicalein contains relatively few local 

minima, increasing the population size decreases the probability that a significant number 

of models cluster in one local minimum causing premature convergence. Increasing the 

mutation rate decreases the convergence rate but does not significantly decrease the 

probability that a search converges prematurely. 

Searches using larger population sizes and small mutation rates converge in fewer 

generations than searches using smaller populations and larger mutation rates. Table 3.1 

shows that searches with NP = 280 and F = 0.2 converge with 100% success in the least 

generations, but searches with NP = 105 and F = 0.3 converge in the least time as the 

smaller population size means that fewer child fitness evaluations are calculated. 

Table 3.4 shows that the success rate of searches for the structure of adipamide generally 

increases as the mutation rate increases, but the success rate is not significantly affected 

by the population size. Since the R factor landscape representing the crystal structure of 

adipamide contains numerous local minima, it is likely that many models explore many 

local minima before locating the global minimum. Increasing the mutation rate increases 

the probability that models escape local minima and locate the global minimum. 

Increasing the population size increases the proportion of models in a population that 

explore local minima before converging, thus searches using smaller populations are not 

significantly more likely to converge prematurely. 

Comparing tables 3.1 and 3.4 shows that although the crystal structure of adipamide is 

represented by a landscape with greater dimensionality and more local minima than the 
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landscape for baicalein, searches with smaller population sizes are significantly more 

successful at solving the structure of adipamide. The quickest searches for adipamide 

with 100% success use NP = 56 and F = 0.6. The quickest searches for baicalein with 

100% success use NP = 105 and F = 0.3. 

Table 3.7 shows that searches using larger populations and mutation rates for the 

structure of acetarsone are generally more successful. This suggests that the landscape 

representing the structure of acetarsone contains sufficient local minima to trap models 

and cause premature convergence. Acetarsone contains an arsenic atom (a relatively 

strong X-ray scatterer) and certain local minima may represent near optimal positions for 

the arsenic atom but a non-optimal position and orientation for the rest of the molecule. 

Thus models that have optimised the position of the arsenic atom can be trapped in a 

local minimum. Increasing the population size reduces the proportion of models that 

locate one local minimum and increasing the mutation rate increases the probability that 

models escape local minima and converge in the global minimum. 

Crystal structures that are likely to be represented by R factor landscapes containing 

relatively few local minima are more likely to be solved efficiently by DE searches using 

moderate population sizes and small mutation rates. However, structures represented by 

R factor landscapes containing many local minima are likely to be most efficiently solved 

with larger mutation rate and possibly large population size. 

 

6.2 Optimising cultural DE 
Tables 3.3 and 3.6 demonstrate that cultural DE searches can converge in fewer 

generations than the analogous static DE. Increasing the value of NUT generally 

decreases the number of generations required for convergence but if NUT is too large it 

can reduce the success rate compared with analogous DE searches. Searches using larger 

population sizes or larger mutation rates can support more pruning. However, the 

complex relationship between NP, F and NUT means that much experimentation may be 

required to discover the optimal combination for a particular crystal structure. Since it is 

unlikely an optimal combination is chosen for a new crystal structure, a cultural search is 

unlikely to be significantly more efficient or successful than a static DE search when used 

to solve a new structure. 
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Table 3.9 demonstrates that cultural searches are not suitable for solving some crystal 

structures. If the best model frequently leads the population by a significant distance, the 

area occupied by the best model can be pruned from the search space. Tables 3.11a-b 

demonstrate that preventing a search from pruning the area of landscape occupied by the 

best model can increase the success rate of cultural searches. 

Changing how the clustering of models is measured, can affect the convergence and 

success rate of cultural searches. Table 3.11c shows that pbCDE searches are more 

successful at solving the structure of acetarsone than oCDE and cbCDE searches (tables 

3.11a-b). However pbCDE searches that control the position of the landscape boundaries 

by consideration of the accepted children and unbeaten parents are generally slower to 

converge than oCDE and cbCDE searches using analogous NP, F and NUT 

combinations. 

 
Auspicious cultural pruning 
Tables 3.12 and 3.13 demonstrate that searches used to solve different crystal structures 

develop clustering behaviour at different rates. If pruning is initiated too early, models 

may be encouraged to remain in local minima, increasing the probability that searches 

converge prematurely and increasing the number of generations required for successful 

convergence. However, if pruning is initiated too late, many models are already clustered 

near the global minimum and restricting the search space does not guide many models 

towards the global minimum and increase the convergence rate compared with an 

analogous static DE. Therefore to increase the efficiency of cultural DE, pruning should 

be initiated by criteria that indicate the clustering of models near the global minimum: 

pruning should not be initiated after an arbitrary number of generations. In a similar way 

to the eugenic DE, cultural pruning could be initiated when a certain proportion of the 

models in a population are assigned an R factor with a relatively low value. 

 

6.3 Eugenic DE 
The results presented in section 4.4 demonstrate that eugenic DE is more efficient than 

static DE. The robust nature of eugenic DE is demonstrated by the successful solution of 

crystal structures of considerably different complexity using the same combination of 

control parameters in less time than DE searches. This means that when the technique is 
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used to solve a new crystal structure, eugenic DE using a general combination of control 

parameters is likely to be more efficient than static DE and it is not necessary for the user 

to have a detailed understanding of the landscape representing the crystal structure to 

solve the structure quickly. This is in contrast with the cultural DE where the speed of 

convergence and success rate of searches is more dependent on the combination of 

control parameters used for the particular structure. 

Since the eugenic and accelerator searches prune a population when a significant number 

of models are near the global minimum, these two search techniques are potentially more 

robust than FixedGenPrune searches that prune a population after an arbitrary number of 

generations (regardless of how many models are near the global minimum). Table 4.11 

shows the solution of baicalein by FixedGenPrune searches. Table 4.11 shows that for 

searches with primary NP = 280, delaying pruning generally increases the efficiency of 

searches. However for searches with primary NP = 560, it is not clear that delaying 

pruning increases efficiency. Similar results are presented in table 4.12 which shows the 

structure solution of adipamide by FixedGenPrune searches with primary NP = 320 and 

640. 

 

6.4  Crystal structure solution from Biphasic Powder 
 diffraction data 
Section 5.5.2 demonstrates that if a biphasic powder diffraction pattern is recorded for a 

biphasic sample containing one known and one unknown crystal phase, providing the 

abundance and the lattice parameters of each crystal are known, it is possible to use the 

direct space method to solve the unknown crystal directly from the biphasic pattern 

without subtracting peaks corresponding to the known structure from the biphasic pattern. 

This is a potentially useful technique if a significant number of peaks corresponding to 

each phase are overlapped in the biphasic pattern, since in this case subtraction of peaks 

corresponding to the known structure is likely to destroy many peaks corresponding to 

the unknown structure, decreasing the probability that this unknown structure is solved. 

However, section 5.5.3 demonstrates a similar case where the direct space method is 

unable to solve a crystal structure from a biphasic pattern. 

Section 5.5.7 demonstrates that if a biphasic pattern is recorded and the structure of one 

crystal is known but the abundance of each crystal is not, it is possible to perform 



 

 

217

simultaneous structure solution and quantitative phase analysis and solve the structure of 

the unknown crystal and determine the abundance of each crystal. However, section 5.5.6 

demonstrates a case where this same technique fails. 

The direct space solution of one crystal structure and the simultaneous determination of 

the abundance of each crystal is a challenging problem because in this case the structure 

solution and QPA processes are linked. The structure is solved and the abundance of each 

phase is determined by quantitatively comparing the fit between simulated and real 

biphasic patterns. Thus the quality of fit is affected by the quality of the model and the 

abundance of each phase combined. If a biphasic pattern is simulated for a poor quality 

model it is unlikely that peaks corresponding to the model will be correctly located or 

have the correct intensity in the simulated pattern. This increases the probability that the 

Rietveld refinement based QPA fits the simulated and real biphasic patterns by reducing 

the abundance of the phase represented by the model. Hence, once the quality of the 

model has little effect on the quality of fit between simulated and real biphasic patterns it 

is unlikely that the direct space method locates a model that is a good representation of 

the real crystal structure. 

The simultaneous direct space solution of two crystal structures and Rietveld based 

quantitative phase analysis from a biphasic powder pattern is clearly an even harder 

problem. Here, only figure 5.41 and table 5.17 presented in section 5.6.5 suggest that this 

might be possible. 

Figure 5.26 in section 5.6.1 demonstrates that if the direct space technique only locates 

one model that is a good representation of the real crystal structure, the QPA can fit the 

simulated and real biphasic patterns by significantly increasing the abundance of this 

solved structure and decreasing the abundance of the structure represented by the poorer 

quality model. Decreasing the abundance of the structure represented by the poorer 

quality model, means that simulated peaks corresponding to this model have little effect 

on the fit between simulated and real biphasic patterns. Although this demonstrates that 

successful solution of one structure is not dependent on successful solution of the other, it 

does suggest that if one structure is solved before the other, the QPA may increase the 

abundance of the solved structure, preventing successful solution of the other structure. 
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When simultaneously solving two structures from a biphasic pattern, evaluating models 

with different partners as in ‘double DE’ searches using the elitist, systematic and random 

selection strategy may decrease the probability that a model that is a good representation 

of one real crystal structure is assigned an R factor with a high value, and missed because 

it is paired and evaluated with a model that is a significantly bad representation of the 

other real crystal structure. It also reduces the probability that the QPA improves the fit 

between simulated and real biphasic patterns by significantly increasing the abundance of 

the structure represented by the better model which potentially prevents solution of the 

second structure. However, the results presented in sections 5.6.2-5.6.4 show that DE 

searches using the elitist, systematic and random strategies are not more successful or 

efficient than the traditional type ‘double DE’ (section 5.6.1) that does not evaluate each 

model with different partners. 

Section 5.6.2 shows that the use of an elitist strategy significantly reduces the efficiency 

of structure solution. Elitist strategies can require twice as many generations to converge 

than traditional type ‘double DE’ searches. 

Comparison of the results of searches using the elitist strategy with the results of searches 

using the random selection strategy (section 5.6.4) suggests that use of the elitist strategy 

increases the probability that a significant proportion of the models in one or both 

populations cluster in local minima and are prevented from exploring the landscape and 

converging in the global minimum. 

Section 5.6.3 demonstrates that searches using the systematic selection strategy require 

slightly more generations to converge than the traditional type ‘double DE’. However, 

searches using the systematic selection strategy converge in significantly fewer 

generations than those using the elitist strategy. 

Although no attempt has been made to index the biphasic patterns recorded for the six 

samples used in this thesis, two pattern decomposition/indexing techniques are identified 

and discussed in sections 5.2.2 and 5.2.3 as possible alternatives to the established pattern 

subtraction method 5.2.1. Although one of these techniques (5.2.3) has already been used 

to index a biphasic powder pattern recorded for a biphasic sample containing a trace 

impurity phase, further work is needed to test if this technique is capable of indexing a 
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biphasic powder pattern recorded for a sample in which the two phases are equally 

abundant. 

As discussed in section 5.6.8, further work is also needed to investigate the development 

of an algorithm in which the phase abundance calculation is an integral part of the 

optimisation process. It is theoretically feasible to use an additional structure parameter to 

define the abundance of a phase and use the DE algorithm to optimise the phase 

abundance instead of the Rietveld refinement calculation. 

A potential advantage of this hypothetical technique is that it is possible to prevent the 

DE algorithm from improving the fit between simulated and real biphasic patterns by 

increasing the abundance of the structure represented by a better quality model. This 

hypothetical DE algorithm could be programmed to optimise both structural and 

abundance parameters simultaneously for the first few initial generations of a search, and 

then to only optimise the structural parameters until the search is close to convergence, 

when optimisation of the abundance parameters could be continued. During the initial 

few generations of a search, all models are likely to be equally poor solutions, hence the 

DE is unlikely to significantly increase the abundance of a relatively good model. 

However, initial optimisation of the abundance parameters would allow the DE to 

evaluate and reject significantly incorrect abundance values. Allowing the DE to only 

optimise the structure parameters until the search is close to convergence, forces the DE 

to solve both structures simultaneously rather than solving one structure and improving 

the fit between simulated and real biphasic patterns by significantly increasing the 

abundance of this better model. Once both models are relatively good representations of 

the real crystal structures it would then be possible to optimise the abundance parameters 

without sacrificing one model. However, there is no guarantee that if developed, such an 

algorithm would be more successful at simultaneous multiple crystal structure solution 

and QPA than the technique investigated here, using the direct space method to solve the 

crystal structures and Rietveld refinement based QPA. 



 

 

220

6.5 Further work 
a)  Develop the cultural search so that pruning is initiated once a proportion of the models 

in the population are near the global minimum rather than after an arbitrary number of 

generations. One potential way of initiating the cultural pruning is to use the RequireFrac 

criteria used by the eugenic DE. Once a certain proportion of the models in the 

population are assigned a relatively low R factor, pruning is initiated and the boundaries 

used to confine the search. 

b)  Determine what clustering behaviour should be used to control the movement of the 

boundaries in the cultural search. The ChildBest implementation considers the clustering 

of all children whereas the PopulationBest considers the clustering of the accepted 

children and unbeaten parents. 

c)  Determine whether the accelerator search is more efficient at solving significantly 

complex crystal structures (such as organic salts and cocrystals) than the eugenic search. 

d)  Continue to test the technique of simultaneous direct space crystal structure solution 

and quantitative phase analysis. Searches using the elitist strategy are clearly the least 

efficient. However, more experiments are needed to determine whether the traditional 

type ‘double DE’ is the fastest to converge and is equally robust as the searches using the 

systematic selection strategy, especially when one crystal phase is significantly more 

abundant. 

e)  Use the pattern decomposition techniques (discussed in chapter 5 as alternatives to the 

pattern subtraction method) to index multiphasic powder diffraction patterns. Evaluate 

the practicalities of recording multiphasic diffraction patterns at different temperatures 

and use anisotropic thermal expansion of crystal structures to resolve overlapped 

diffraction peaks. Determine if the GA based indexing algorithm is able to index biphasic 

patterns recorded for materials in which the two crystal phases are equally abundant and 

if the technique can index patterns recorded for materials containing more than two 

crystal phases. 

f)  Develop a DE algorithm capable of simultaneously solving two crystal structures and 

determining the abundance of each phase from a biphasic pattern rather than using 

Rietveld refinement for quantitative phase analysis. 



221 

 

Appendix A:  Experimental 

 
A.1 Collection of X-ray data 

In this work, powder samples are prepared by placing crystalline material between two pieces of 

transparent Scotch tape, creating a circular sample area of approximately 0.5-1 cm2. A Bruker 

AXS D5000 high resolution powder diffractometer with Ge-monochromated CuKα1 (λ=1.54056 

Å) radiation and a small angle position sensitive detector covering 8º in 2θ is used to record 

powder diffraction patterns. Data is collected using the D5000 diffractometer in transmission 

mode under ambient pressure and temperature.  All data collection details are given below, 

except for Sample 6 (adipamide and nicotinamide in a molar ratio of 1:1) for which the data are 

not shown and the data set was recorded over the range 5º<2θ<85º in 0.0202º steps over a period 

of 15 hours. 

  
A.2 Data processing 

Le Bail fits1 are generated for experimental powder diffraction patterns using the Le Bail fit 

application of the GSAS2 package. Direct space crystal structure solution is performed using the 

differential evolution algorithm written in the Perl language, version 5.03, implemented in the 

Possum package4. An initial model that is manually ‘drawn’ using ChemOffice Chem5 is used to 

supply the Possum package with structural information such as molecular connectivity, bond 

angles and bond lengths. Model structures generated by the DE algorithm are evaluated using the 

Rietveld refinement6 application of GSAS to simulate a powder diffraction pattern for each 

model and using the Rwp cost function, quantitatively compare the simulated pattern with the 

experimental pattern and thus assign an R factor to each model. Differential evolution is used to 

evolve populations of structural models and thus solve the crystal structure. A search is judged to 

have converged when all models are assigned an R factor of the same value. However, a search 

is automatically terminated if the search fails to converge within Gmax generations. Quantitative 

phase analysis is performed using the Rietveld refinement application of GSAS. Structure 

solution calculations are performed on individual desktop PCs running SuSe Linux.  
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A.3 Experimental Powder Diffraction Profiles 
 

Sample 1.  Adipamide and nicotinamide combined in a molar ratio of 1:3 

This data set was recorded over the range 5º<2θ<40º in 0.0197º steps over a period of 2 hours. 
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Sample 2.  Adipamide and nicotinamide combined in a molar ratio of 3:1 

This data set was recorded over the range 5º<2θ<40º in 0.0197º steps over a period of 2 hours. 

 

 

Sample 3.  Adipamide and oxamide combined in a molar ratio of 1:1 

This data set was recorded over the range 10º<2θ<40º in 0.0197º steps over a period of 1 hour. 
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Sample 4.  Adipamide and oxamide combined in a molar ratio of 1:2 

This data set was recorded over the range 10º<2θ<40º in 0.0197º steps over a period of 1 hour. 

 

 

Sample 5.  Adipamide and oxamide combined in a molar ratio of 2:1 

This data set was recorded over the range 10º<2θ<40º in 0.0197º steps over a period of 2 hours. 
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Appendix B:  Eugenic DE Subroutine 

 
#! /usr/bin/perl 

# This code is for Eugenic DE. 

#### Duncan Bell. 

#### May 12th 2010. 

#### Use this to control the primary population size. 

     # The primary population size will be calculated by 

     # multiplying the number here by the number of landscape dimensions 

$PopSize = 40; 

#### This controls what fraction of the secondary population will already have beaten the 

initial best to initiate pruning 

     # example 4 = quarter. 

$RequireFrac = 4; 

#### This sets the secondary F value 

$Secondary_F = 0.6; 

#### maximum number of generations allowed before run terminated. 

$Gmax = 1000; 

$total_no_runs = 10; 

#### The recombination rate 

$K = 0.99; 

my $SET_NP = $PopSize*$D; 

my $SET_F = 0.1; 

$best_division = ($PopSize/10); 

sub differential_evolution 

{ 

    @population_best = (); 

    @rank = (); 

  initialise_data(\@population,\@atom_vectors,\@atom_names,\ 

@orthogonal_matrix,\@inverse_matrix,\@SpaceGroup,$total_no_atoms,$NP, 

$D,\@fragData,\@no_atom, $no_indep_frag); 

     @rank = sort ascend @r; 

    my $best_r = @rank[0]; 
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  my $total = 0; 

    for (my $i=0; $i<$NP; $i++) 

  { 

      $total += $r[$i]; 

      if ($r[$i] == $best_r) 

    { 

      for (my $j=0; $j<$D; $j++) 

{ 

    $population_best[0][$j] = $population[$i][$j]; 

} 

    } 

  } 

  $mean_r = $total/$NP;  

my $best_r = $r[0]; 

foreach my $r (@r) 

{ 

if ($r <= $best_r) 

{ 

$best_r = $r; 

$best_solution = $pos; 

} 

$pos++; 

} 

foreach (0..$D-1) 

{ 

$best[$_] = $population[$best_solution][$_]; 

} 

   save_best_from_initial(\@best,\@atom_vectors,\@atom_names,\ 

@orthogonal_matrix,\@inverse_matrix,\@SpaceGroup,$total_no_atoms,\ 

@fragData,\@no_atom, $no_indep_frag); 

open (RESULTS, ">>$filename1") or die "Can't access $filename1:$!\n"; 

  print RESULTS "from the initial population "; 

  printf RESULTS ("best r = %.2f ", $best_r); 
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  printf RESULTS ("Mean r = %.4f", $mean_r); 

  print RESULTS "\n"; 

  close RESULTS; 

 

#### emptying rank array. 

@rank = (); 

my $initial_best = $best_r; 

$Prune_count = 1; 

$no_fes = 0; 

$generation = 1; 

while ($generation <= $Gmax) 

  { 

####  Reset Counters for each generation 

    $accepted = 0; 

    $total = 0;     

$Num_Good_Models = 0; 

    for (my $i = 0;$i<$NP; $i++) 

    { 

#### Pick 3 random relatives. 

    do { $r1 = int(rand()*($NP-1)); } 

         while ($r1 == $i); 

   do { $r2 = int(rand()*($NP-1)); } 

         while ($r2 == $i or $r2 == $r1); 

     do { $r3 = int(rand()*($NP-1)); } 

         while ($r3 == $i or $r3 == $r1 or $r3 == $r2); 

#### Create child from parent and relatives. 

     for (my $j=0;$j<$D;$j++) 

     { 

         $tmp[$j] = 

$population[$i][$j] + $K*($population[$r3][$j] - $population[$i][$j]) +  

$F*($population[$r1][$j]-$population[$r2][$j]); 

 #### Checking that parameters of child are inside boundaries 

         $tmp[$j] = 
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($population[$i][$j] + $lo[$j])/2 if ($tmp[$j] < $lo[$j]); 

         $tmp[$j] = 

($population[$i][$j] + $hi[$j])/2 if ($tmp[$j] > $hi[$j]); 

    } 

 

#### Child is formed and checked, now evaluate. 

     $trial = 

evaluate_cost(\@tmp,\@atom_vectors,\@atom_names,\@orthogonal_matrix,\@inverse_matrix,

\@SpaceGroup,$total_no_atoms,\@fragData,\@no_atom, $no_indep_frag); 

#### If child better than parent, replace parent with child. 

     if ($trial <= $r[$i]) 

     { 

          $accepted++; 

          for (my $j=0;$j<$D;$j++) 

          { 

            $population[$i][$j] = $tmp[$j]; 

          } 

          $r[$i] = $trial; 

#### If child is better than current population best, replace current best with child. 

          if ($trial <= $best_r) 

          { 

my $count = 0; 

foreach (@tmp) 

{ 

$best[$count] = $_; 

$count++; 

} 

       for (my $j=0; $j<$D; $j++) 

             { 

   $population_best[0][$j] = $tmp[$j]; 

             } 

             $best_r = $trial; 

                 copy ("MC.EXP", "BEST_SOL$no_run.EXP"); 
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                 copy ("trial.pdb", "best_sol$no_run.pdb"); 

          } 

       } 

       $total += $r[$i]; 

if ($Prune_count < 1.5) 

{ 

 if ($r[$i] <= $initial_best) 

  { 

$Num_Good_Models++; 

 } 

} 

      } 

$mean_r = $total/$NP; 

#### % of children that have replaced their parents during generation 

      $percent_acc = $accepted/$NP * 100; 

#### total number of children evaluated since start of DE run 

$no_fes += $NP; 

open (RESULTS, ">>$filename1") or die "Can't open $filename1:$!\n"; 

print RESULTS "generation $generation, "; 

printf RESULTS ("best_r %.2f, ", $best_r,); 

printf RESULTS ("mean_r %.4f, ", $mean_r); 

printf RESULTS ("%.2f", $percent_acc); 

print RESULTS ("% of children accepted.\n"); 

close (RESULTS); 

#### If population has not been pruned yet, 

#### determine how many models have R factors as good as initial best. 

if (($Prune_count < 1.5) && 

   ($Num_Good_Models >= (($NP/$best_division)/$RequireFrac))) 

{ 

     $Prune_count = 10; 

#### Primary population is ready to be pruned. 

#### Calculate how many models to transfer into secondary population. 

@rank = sort ascend @r; 
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my $best_fraction = @rank[($NP/$best_division)-1]; 

$F = $Secondary_F; 

#### Move the selected models into holding array and bin the rest. 

@store_division = (); 

$split_count = 0; 

for (my $i = 0; $i < $NP; $i++) 

{ 

#### If model is good enough to go into secondary population and 

#### holding array is not yet full, save this model. 

if (($split_count < ($NP/$best_division)) && ($r[$i] <= $best_fraction)) 

{ 

$store_division[$split_count] = $r[$i]; 

for (my $j = 0; $j <$D; $j++) 

{ 

$store_division[$split_count][$j] = $population[$i][$j]; 

} 

$split_count++; 

} 

#### If model is not good enough for secondary population 

#### or holding array is full, bin this model. 

else 

{ 

$rank[0] = $r[$i]; 

for (my $j = 0; $j < $D; $j++) 

{ 

$rank[0][$j] = $population[$i][$j]; 

} 

} 

} 

#### Prepare the secondary population. 

@rank = (); 

@r = (); 

$NP = $NP/$best_division; 
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#### Now move the saved models from holding array into secondary population. 

for (my $i = 0; $i < $NP; $i++) 

{ 

$r[$i] = $store_division[$i]; 

for (my $j = 0; $j <$D; $j++) 

{ 

$population[$i][$j] = $store_division[$i][$j]; 

} 

} 

#### Secondary population is created and ready to go! 

open (RESULTS, ">>$filename1") or die "Can't open $filename1:$!\n"; 

print RESULTS "pruned population to $NP structures, F = $F\n"; 

close RESULTS; 

} 

$generation++; 

#### If mean R very similar to best R terminate the search. 

      last if ( ($mean_r - $best_r) < 0.01) 

   } 

   return ($best_r); 

} 
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Appendix C:  Coevolution 

C.1  The intrinsic inefficiency of one-population 
algorithms 

Our implementation of DE uses one population of individuals each defined by a complete 

set of parameters (chromosomes) to represent a complete (though not necessarily optimal 

structural model). The fitness value assigned to an individual reflects how well all the 

parameters defining the individual combine to produce a complete solution. If one 

parameter defining an individual reaches its optimal value whilst the remaining 

parameters remain significantly non-optimal it is likely that the individual is assigned a 

low fitness value and not identified as a ‘promising’ member of the population. An 

individual defined by no optimal parameters but fewer significantly non-optimal 

parameters is likely to be assigned a higher fitness value. Since in DE parent and child 

compete in a ‘knockout tournament’ this increases the probability that a child with one 

optimal parameter is rejected and a parent individual with no optimal parameters is 

retained. This makes the use of just one population in the evolution of complete solutions 

intrinsically inefficient. 

Cooperative coevolutionary algorithms have been implemented using separate 

populations to optimise different parameters of the same problem.1-5 Relatively simple 

mathematical functions have been solved using coevolutionary algorithms.1,3 In this work 

the value of each function variable is optimised by a separate population. The separately 

optimised variables are periodically combined into a ‘whole solution’ and evaluated to 

assess how well the separate variables solve the function. In Simao et al 5, a cooperative 

coevolutionary genetic algorithm is used to optimise the process schedule of an oil 

refinery. An oil refinery is a continuous processing system that simultaneously uses 

different pieces of equipment to process various crude oil fractions and produce a range 

of products. Due to the number of different tasks involved and by the necessity to use one 

piece of equipment to process different oil fractions it is a complex optimization problem. 

In addition, some tasks have precedence constraints and require to be scheduled first. In 

this work, one population is used to optimise the order in which processes are carried out 
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and a second population is used to optimise the assignment of processes to equipment. 

Periodically two separate parts are selected from each population and combined to 

evaluate the proposed refinery schedule. 

Some of the evolutionary techniques used by these algorithms could be used to create a 

cooperative coevolutionary DE applied to direct space crystal structure solution. As each 

population would only be used to optimise one specific parameter, individuals defined by 

that optimal parameter would be more conspicuous amongst individuals defined by less 

optimal parameters. As each parameter reached its optimal value it could be copied and 

combined with the other (separately optimised) parameters to produce a complete fully 

optimised solution. 

Parameters defining a model used in direct space crystal structure solution have been 

determined sequentially (thus independently) using the Patterson method,6,7 by attributing 

significantly intense peaks in a diffraction pattern to dominant X-ray scatterers in the 

crystal structure. For molecular structures, dominant scatterers can include rigid structural 

fragments such as aromatic systems that give characteristic sets of reflections in a powder 

diffraction pattern and "relatively" heavy atoms with greater scattering power than most 

atoms found in organic crystals (H,C,N,O).6,7 

When the dominant scatterer is a single heavy atom joined to a more complex fragment, 

structure solution can begin by translating this dominant scatterer attempting to match 

some of the more dominant reflections in the experimental pattern. Once this heavy atom 

has been correctly located, it can act as a pivot point for the rest of the structure thus 

making the remainder of the structure solution more efficient.  In cases where there are 

no ‘dominant scatterers’, the identification of the correct orientation of a rigid molecular 

fragment is more important in the direct space search, as the orientation of the fragment 

often has a far greater impact on the quality of fit between simulated and experimental 

powder patterns than the fractional position of the fragment. Thus, division of the DE 

process between multiple populations of a cooperative coevolutionary DE that 

sequentially explore the orientational and translational parameters could significantly 

enhance the efficiency of the structure solution. In this approach, the orientational 



234 

 

parameters could be identified first and the translational parameters considered when a 

certain quality of fit between simulated and experimental patterns had already been 

achieved by the orientational search alone). 

Alternatively, the Rwp landscape representing the complete optimisation problem could be 

divided into smaller ’territories’. Each ‘territory’ could then be explored by a single 

population that is confined by ‘territory-specific-population-boundaries’ (analogous to 

the independent evolution and branching of a species that is confined to isolated islands).8 

The increased efficiency of this island coevolution search is brought about by the use of 

multiple populations, each with its own unit cell volume and molecular orientational 

arrangements to explore. Although only one population would be able to locate the global 

minimum, (others are clearly excluded from finding the global minimum, through the 

definition of territory boundaries), this population would have less landscape area to 

explore, with fewer local minima, and thus find the global minimum faster than one 

population exploring the whole landscape. Knowledge of the crystal symmetry could be 

used to further reduce the unit cell volume searched. For example, if a mirror plane is 

known to bisect the unit cell or the molecule lies on an inversion centre it would not be 

necessary to divide up and search the whole unit cell. If through symmetry multiple 

equivalent territories exist, it would only be necessary to search one of the equivalent 

territories as the position of scattering matter in equivalent territories could be inferred 

and used to generate a complete model structure. 
 
 
 
 
 
 
C.2  Aspects of cooperative coevolutionary algorithms 
 
C.2.1 Separable and non-separable parameters 

Although it has been demonstrated 1 that cooperative coevolutionary global optimisation 

algorithms (CCGOAs) (that simultaneously use multiple populations to separately 

optimise different problem parameters) can evolve each parameter to its optimal value 

and assemble a complete optimal solution in fewer generations than a traditional type 

algorithm using one population, it is not always possible to optimise each parameter in 
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complete isolation.1,4,5,9,10 The original CCGOA developed by Potter and De Jong 1 

consists of associated genetic algorithms that each optimise one problem parameter. 

Potter and De Jong initially used their algorithm to solve mathematical functions by using 

each population to optimise the value of one function variable. Individuals in each 

population are selected and combined and the separately optimised function variables are 

evaluated as a whole solution to the equation. Functions consisting entirely of separable 

variables could be solved by the cooperative coevolutionary GA requiring the calculation 

of fewer fitness evaluations than a traditional type GA using one population. However 

functions that involved the calculation of a product term between non-separable variables 

generally could not be solved in fewer fitness evaluations by the coevolutionary GA. If 

each population is assigned one variable and is used to optimise that variable in isolation 

from other variables, it is possible for each population to determine a value for the 

specific variable that is optimal for that particular population but when combined with the 

other separately optimised variables produces a non-optimal solution. 10  This limitation 

of CCGOAs in theory extends to the problem of direct space structure solution. 

If the algorithm developed by Potter and De Jong was used to solve the crystal structure 

of baicalein for example via the direct space method, seven populations of individuals 

would be generated to optimise the seven parameters defining a model. However, in each 

population only one parameter evolves. In theory, the individual in each population that 

is assigned an R factor with the lowest value is defined by the best evolving parameter. 

However, since only one parameter is optimised by each population, in this case each 

individual is defined by six parameters with randomly generated values. The molecular 

asymmetry of baicalein means that the orientation of a model in the unit cell has greater 

influence on the fit between a pattern simulated for the model and the experimental 

diffraction pattern than the fractional position of the model. Thus the value of an R factor 

assigned to the individual in a population used to optimise a translational parameter is 

influenced more by the parameters defining orientation. Thus the individual that is 

assigned an R factor with the lowest value is likely to be the individual that is defined by 

the best combination of randomly generated orientational parameters and not necessarily 

the optimal translational parameter. This simple example demonstrates that it is not 
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necessarily more efficient to separate and optimise parameters using separate 

populations. 

A simple strategy that could be used to reduce this effect is to periodically exchange 

genetic material between the fittest individuals in each population. This information can 

be used to ‘update’ the values of the non-evolving parameters so that each individual in 

each population is defined by one parameter that is optimised by that population and 

parameters optimised by and copied from the best individuals in the other populations. 

However, a potentially more successful strategy is to identify interdependent non-

separable parameters and to combine non-separable parameters into sets that are each 

optimised by one population. 

 
 
C.2.2 Automatic problem decomposition 

Although it is theoretically possible to manually decompose a problem that has non-

separable parameters into sets of non-separable parameters and to use one population to 

optimise each set, it is often unclear to a human operator which parameters are non-

separable.4,9 Thus manual problem decomposition is likely to result in the wrong 

parameters being combined into one set. Additionally the manual decomposition of a 

problem at the start of the optimisation process means that parameters are assigned to 

specific sets and cannot be reassigned into different sets if the interdependence between 

parameters changes during the optimisation. It is therefore more efficient to make the 

decomposition process computer controlled. Making the decomposition process 

automatic, means that if the interdependence between parameters changes during 

optimisation the decomposition can be adjusted so that parameters that evolve and 

become non-separable can be optimised by one population.4,9 

In the implementation of cooperative coevolutionary DE developed by Tang et al 4, 

problem decomposition is achieved by initially decomposing a problem defined by N 

parameters into N populations and using each population to optimise one specific 

parameter. Each population is also assigned a population-specific ‘separability’ 

parameter. Initially each population is assigned a separability parameter with a randomly 
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generated value in the range zero and one. During a ‘cycle’ of generations each of the 

populations is used to optimise the assigned parameter. At the end of the ‘cycle’ 

parameter values are copied from individuals in each population to construct possible 

solutions in a process known as ‘collaboration.’ During ‘collaboration’ the separability 

parameters are themselves optimised. As each population is only defined by one 

separability parameter the extra computational demand required to optimise the 

separability parameters is insignificant compared to the computational demand required 

to optimise the actual problem parameters.4 As the value of a separability parameter 

increases, the probability that the population will ‘merge’ with other populations 

increases. When populations merge the problem parameters that are assigned to each of 

the separate populations are combined into one set and optimised by one population in 

the next cycle. As a result redundant populations are eliminated. If the ‘merger’ of 

populations produces fitter individuals the value of the separability parameter is 

increased, increasing the probability that the particular problem parameters continue to be 

optimised together. However if the ‘merger’ of populations results in individuals being 

assigned lower fitness values the value of the separability parameter is decreased and the 

parameters separated at the end of the cycle and reassigned to separate populations. This 

allows different sets of parameters to form and decay as the interdependency between 

parameters changes during optimisation. 

 
 

C.3  Collaboration 

Since the different populations of a CCGOA only optimise one parameter (or set of 

interdependent parameters), even if each population contains complete individuals that 

can evolve independently for a ‘cycle’ of generations, it is necessary for individuals in 

different populations to periodically collaborate and combine parameters to construct the 

best possible solution. 1-3,9 Depending on the type of problem it is possible that multiple 

equally optimal solutions can be found, depending on how different combinations of 

parameters are combined. For example, multiple equally optimal process schedules of an 

oil refinery 5 or industrial chemical reaction process 11 are possible, where factors such as 

pressure, temperature, material flow rate, reaction rate and manufacturing cost are 
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considered. Collaboration therefore not only generates the best possible solution, 

collaboration can identify different combinations of parameters that produce equally 

optimal solutions. Different collaboration schemes may be more appropriate for different 

optimisation problems.1,3,12 It may be more appropriate to optimise a problem that has 

one definite solution such as a mathematical function or crystal structure using a 

collaboration scheme that constructs a solution from parameters copied from the best 

individual in each population.1,3 However, it may be more appropriate to optimise a 

problem that has multiple equally optimal solutions using a collaboration scheme that 

constructs a solution from parameters copied from individuals in each population 

regardless of fitness value. This increases the probability that multiple equally optimal 

solutions are evaluated.3,12 

In other circumstances 1,13 an algorithm decomposes a problem into populations that 

contain incomplete individuals (individuals that are not defined by a complete set of 

parameters), which cannot be directly evaluated. Thus to evaluate one individual it is 

necessary for populations to collaborate constantly to generate a complete solution by 

combining ‘test’ parameters copied from incomplete individuals.1,13 Thus there is a 

choice of collaboration scheme. One combination of parameters copied from the best 

individual in each of the populations can be combined with a ‘test’ parameter, or multiple 

combinations of parameters copied from different individuals in each population can be 

combined with a test parameter. In addition, if a test parameter is combined and evaluated 

with multiple combinations of parameters, the optimisation procedure becomes more 

complex. A test parameter can be combined with parameters copied from a number of 

relatively fit individuals in other populations, or a test parameter can be combined with 

parameters copied from individuals that have been selected at random from the other 

populations. Furthermore, if a test parameter is combined and evaluated with multiple 

combinations of parameters the test parameter can be assigned three different fitness 

values; ‘optimistic’, ‘hedge’ and ‘pessimistic. 3,12 

The ‘optimistic’ strategy involves assigning a test parameter the highest fitness value 

achieved by combining the test parameter with the best combination of parameters. The 
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hedge strategy involves assigning a test parameter the mean fitness value calculated from 

all the combinations and the pessimistic strategy involves assigning a test parameter the 

lowest fitness value achieved by the worst combination. Therefore two main aspects of 

the collaboration process that require careful consideration are; (a) the collaboration 

scheme and (b) the method of fitness assignment. 

 
 
C.3.1 Collaboration schemes 

Four common collaboration schemes are complete, best, random and mixed.3,12 Complete 

collaboration involves evaluating each parameter with every possible combination of 

parameters. Best or ‘elite’ collaboration involves evaluating a ‘test’ parameter with 

parameters copied from the best individuals. Random collaboration involves evaluating a 

‘test’ parameter with one or more combinations of parameters copied from randomly 

selected individuals. Mixed collaboration combines the best and random schemes.  

Although complete collaboration guarantees that the best combination of parameters is 

evaluated and thus the best possible solution located, complete collaboration is extremely 

computationally demanding.10 If a problem is decomposed into J populations each 

containing NP individuals, JN̂P combinations need to be evaluated to find the best 

combination. Thus a CCGOA employing the complete collaboration scheme will require 

significantly more real time to solve a problem than CCGOAs using alternative 

collaboration schemes. The best, random and mixed collaboration schemes only sample 

the various possible combinations, however, CCGOAs that use the best, random and 

mixed collaboration schemes are significantly less computationally demanding. 

Potter and De Jong 1 demonstrated that a cooperative coevolutionary GA using the best 

collaboration scheme could solve functions comprised of entirely separable variables 

requiring the calculation of fewer fitness evaluations than a traditional type GA. 

However, when used to solve functions containing non-separable variables the 

coevolutionary GA required the calculation of more fitness evaluations than the 

traditional type GA. A second cooperative coevolutionary GA using a mixed 

collaboration scheme that selected the best and one random combination solved the 
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functions containing non-separable variables requiring the calculation of approximately 

the same number of fitness evaluations as the traditional GA. However, when used to 

solve functions comprised of separable variables the coevolutionary GA using mixed 

collaboration required the calculation of more fitness evaluations than the coevolutionary 

GA using best collaboration. 

Compared with best collaboration, the use of mixed or random collaboration increases 

the probability that a test parameter is evaluated with a diverse range of multiple 

combinations of parameters during a single collaboration event. However, since multiple 

combinations of parameters are combined with each test parameter, a mixed or random 

collaboration scheme is intrinsically more computationally demanding than the best 

collaboration scheme. Thus the coevolutionary GA using mixed or random collaboration 

often calculates more fitness evaluations than the coevolutionary GA using best 

collaboration when used to solve functions comprised of separable variables. 3 

Furthermore, since the genetic diversity in the different populations decreases as 

individuals converge, the probability that a test parameter is evaluated with a genetically 

diverse range of combinations of parameters decreases. Thus as a search converges, the 

advantage of mixed or random collaboration over best collaboration decreases. Therefore 

unnecessary use of mixed collaboration can in fact decrease the efficiency of the 

optimisation. 

A possible solution to increase the probability that a CCGOA converges requiring the 

calculation of as few fitness evaluations as possible (without prior knowledge of whether 

the problem is separable or non-separable), is to use a mixed collaboration scheme but to 

reduce the number of randomly selected combinations of parameters used to evaluate 

each test parameter as the search converges.14 Compared with best collaboration this 

strategy increases the probability that a test parameter is evaluated with a diverse range of 

parameters during the initial generations, but compared with mixed collaboration using a 

fixed number of collaborators, only evaluated with better combinations of parameters 

when the search is close to convergence. 
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Mathematical functions comprised of separable variables and functions containing non-

separable variables were solved using a cooperative coevolutionary GA employing a 

variable number mixed collaboration scheme.14 This scheme selects the best and nine 

other individuals at random for the first five generations, and then the best and one other 

random individual until convergence. For comparison the functions were also solved by 

coevolutionary GAs using fixed number mixed collaboration. When used to solve 

functions containing non-separable variables, the coevolutionary GA using variable 

number mixed collaboration converged requiring the calculation of fewer fitness 

evaluations than the coevolutionary GAs using fixed number mixed collaboration.14 This 

demonstrates that as a search converges and the genetic diversity of populations decrease, 

it is not advantageous to evaluate a test parameter with many randomly selected 

combinations of parameters. When used to solve functions comprised entirely of 

separable variables, the GA using variable number mixed collaboration converged 

requiring the calculation of approximately the same number of fitness evaluations as GAs 

using fixed number mixed collaboration.14 Since the results presented in reference 14 do 

not compare the coevolutionary GA using variable number mixed collaboration with a 

coevolutionary GA using best collaboration, it is not possible to determine whether 

variable number mixed collaboration is more efficient than best collaboration when used 

to solve functions comprised entirely of separable variables. However, these results do 

demonstrate that variable number mixed collaboration is no less efficient than fixed 

number mixed collaboration when used to solve functions comprised entirely of 

separable variables. 

Although Panait and Luke 14 suggest that it is potentially more efficient to control the 

number of randomly selected collaborators in proportion to the genetic diversity in the 

populations, (‘gradually’ decreasing the number of randomly selected collaborators as a 

search converges), these initial results demonstrate the increase in efficiency achieved by 

reducing the number of randomly selected collaborators after an arbitrary number of 

generations. 
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C.3.2 Fitness assignment 

The use of best collaboration 1,3,5,12 necessarily means that only optimistic fitness 

assignment is possible. The use of complete collaboration means that all (optimistic, 

hedge and pessimistic) strategies are possible but since complete collaboration is 

computationally demanding it is rarely used. When using random or mixed collaboration, 

it is necessary to decide which fitness assignment strategy optimistic, hedge or 

pessimistic to use. The hedge fitness assignment is commonly used in competitive 

coevolution 2,3,5 because an individual must be able to dominate a variety of competitive 

individuals. Cooperative coevolutionary algorithms using the optimistic strategy have 

been found to be more efficient (computing fewer fitness evaluations per search) than 

cooperative algorithms using the hedge or pessimistic strategies regardless of whether the 

random or mixed collaboration scheme is used. 3,5,14 If a relatively optimal test parameter 

is combined with different combinations of relatively non-optimal parameters and 

pessimistic fitness assignment is used to evaluate the combinations, the fitness value of 

the worst combination is assigned to the test parameter. Thus use of the pessimistic 

strategy increases the probability that a relatively optimal test parameter is assigned a low 

fitness value and overlooked. Similarly, if a relatively optimal test parameter is combined 

with different combinations of relatively non-optimal parameters and the hedge fitness 

assignment is used, the test parameter is likely to be assigned a relatively low fitness 

value. Use of pessimistic and hedge strategies is likely to increase the number of fitness 

evaluations calculated by a search. The use of the hedge and pessimistic fitness 

assignments or a traditional type global optimisation algorithm (where all parameters are 

optimised simultaneously by one population) decreases the probability that a relatively 

optimal test parameter is identified until the optimisation has located many near optimal 

parameters, increasing the probability that an individual defined by many optimal 

parameters is evaluated. Conversely, if a relatively optimal test parameter is combined 

with different combinations of relatively non-optimal parameters and the optimistic 

fitness assignment is used, the fitness value of the best combination is assigned to the test 

parameter. Thus use of the optimistic strategy increases the probability that an optimal 

test parameter is assigned a relatively high fitness value and rapidly identified. Thus use 
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of the optimistic strategy increases the probability that a search quickly completes 

optimisation calculating as few fitness evaluations as possible. 

 
 

C.4  Direct space structure solution using hypothetical 
cooperative coevolutionary differential evolution 
CCDE 

  
C.4.1 Separability 

The structure solution of asymmetric molecules means that not all the parameters 

defining the position and orientation of a model in the unit cell are separable. Since the 

orientation of an asymmetric model in the unit cell has a greater impact on the fit between 

simulated and experimental diffraction patterns than the position of the model, it is 

unlikely that a population used to optimise a parameter defining the position of the model 

in complete isolation from parameters defining the orientation of the model will locate 

the optimal position. In addition, the orientation of an asymmetric model about a certain 

rotation axis potentially has a smaller influence on the value of an R factor assigned to a 

model in a certain position along the rotation axis than the orientation of the model about 

other rotation axes. For example, the rotation of models about the x axis potentially has a 

smaller effect on the value of the R factors assigned to models at different positions along 

the x axis than the rotation of the models about the y and z axes. Thus certain structural 

parameters are likely to have different levels of separability during optimisation. This 

means that a manual decomposition of a structure solution problem and the assignment of 

specific structure parameters to specific populations is likely to reduce the probability 

that an optimal solution is located. Therefore it is necessary to use an automatic 

decomposition such as that developed by Tang et al 4 that can adjust the problem 

decomposition during optimisation. However, it is potentially beneficial to initially 

optimise all structure parameters in one population and to decompose the problem into 

separate populations after a certain number of generations. Figures 3.2 and 3.3 

demonstrate that the value of the mean R factor calculated for the whole population 

decreases relatively rapidly during initial generations as many poor models defined by 
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bad combinations of parameters are frequently replaced by better models. This suggests 

that it may be more advantageous to optimise all structure parameters using one 

population until the rate of change in the value of the mean R factor decreases (around the 

20th generation) when it becomes more advantageous to optimise different parameters 

using separate populations. 
 
 
 
C.4.2 Collaboration scheme 

Once separate populations are used to optimise different structure parameters during 

‘cycles’ of generations, it will become necessary at the end of each cycle to copy 

parameters from individuals in each population to evaluate the separately optimised 

parameters or sets of parameters. Thus a collaboration scheme is needed. The previous 

work by Potter et al 1 and De Jong et al 3,12 demonstrates that cooperative coevolutionary 

GAs using the best collaboration scheme calculate more fitness evaluations than 

traditional GAs when used to solve functions containing non-separable variables. Since 

not all the structural parameters are separable the best collaboration scheme is not 

suitable. The use of a mixed collaboration scheme is more efficient for optimising 

problems containing non-separable problems and decreases the rate at which the amount 

of genetic diversity decreases, reducing the probability that a search converges 

prematurely. However the advantage of mixed collaboration decreases as a search 

converges and an algorithm using a mixed scheme potentially calculates more fitness 

evaluations than is necessary. 

Using a variable number mixed collaboration scheme 14 can reduce the number of fitness 

evaluations calculated, and decrease the rate at which the amount of genetic diversity 

decreases, reducing the probability that a search converges prematurely. Therefore a 

search using a variable number mixed collaboration scheme is potentially the most 

efficient scheme for direct space structure solution. However, unlike the cooperative 

coevolutionary GA developed by Panait and Luke 14 which uses collaboration to evaluate 

each parameter in each generation, the CCDE would only use collaboration to evaluate 

parameters at the end of each cycle of generations. Thus during a search most fitness 

evaluations would be calculated to evaluate models generated during the optimisation 
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cycles and relatively few evaluations would be calculated during collaboration. Thus the 

number of combinations of parameters selected during each collaboration event would 

have less impact on the total number of fitness evaluations calculated. It is therefore 

practical to select a considerable number of combinations of parameters during each 

collaboration event and only decrease the number when all populations are close to 

convergence. When many of the combinations of parameters are assigned R factors of 

similar value it indicates that the populations are close to converging and that switching 

to the best collaboration scheme is likely to decrease the total number of fitness 

evaluations calculated without significantly increasing the probability of premature 

convergence. 
  
C.4.3 Cycle length 

In the implementation of CCDE developed by Tang et al 4, once a parameter or set of 

parameters are assigned to one population the parameters are optimised for a cycle of 50 

generations before collaborating. This arbitrary cycle length is likely to be non-optimal 

for our direct space structure solution and the appropriate cycle length can only be found 

through experimentation. However, it is suggested that if one population locates a new 

best individual that is assigned a significantly lower R factor (such as 5%), the cycle 

should be interrupted so that the parameters of this individual can be evaluated through 

collaboration and communicated to the other populations. 
 
 
C.4.4 Fitness assignment 

When applied to cooperative coevolutionary algorithms the use of the optimistic fitness 

assignment increases the probability that an optimal parameter is quickly identified. Thus 

to decrease the total number of fitness evaluations calculated by a search, a CCDE 

applied to direct space structure solution should use the optimistic fitness assignment. 
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