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SUMMARY 

 

Thyroid cancers are the most common endocrine malignancies and their incidence 

continues to rise.  Over-expression of the human pituitary tumor transforming gene (hPTTG) in 

thyroid carcinomas is a prognostic indicator of tumour recurrence.  hPTTG is multifunctional with 

roles in mitotic control, DNA repair, genetic instability, cell transformation and apoptosis. 

Importantly, hPTTG transactivates expression of growth factors implicated in proliferation and 

angiogenesis, and represses the sodium iodide symporter (NIS), which is essential to radioiodine 

treatments in thyroid cancer.  hPTTG interacts with a binding factor (PBF) which is an 

independent transforming gene and also represses iodine uptake.    

Work described in this thesis provides evidence for the existence of thyroidal autocrine 

regulatory pathways involving hPTTG and growth factors in vitro. We directly investigated the 

role of hPTTG in thyroid tumourigenesis through the generation and characterisation of a murine 

transgenic model with thyroid-targeted hPTTG over-expression (hPTTG-Tg mice). Unexpectedly, 

hPTTG over-expression was not sufficient for thyroid tumourigenesis. Investigations performed 

in hPTTG-Tg and Pttg-/- knockout mice indicated a particularly important relationship between 

hPTTG and the epidermal growth factor (EGF) in vivo. hPTTG and PBF were confirmed as 

repressors of NIS in vivo following studies in hPTTG-Tg and PBF-Tg mice respectively. The 

studies described in this thesis highlight the therapeutic potential of targeting hPTTG and PBF in 

thyroid cancer. To this effect, specific tyrosine kinase inhibitors prevented autocrine induction of 

hPTTG by growth factors, and siRNA depletion of PBF restored NIS function to normal levels in 

hPBF-Tg thyrocytes. 

Based on these data, hPTTG appears to play a dual role in endocrine tumourigenesis, 

being involved in both tumour initiation and subsequent progression towards more aggressive 

phenotypes.            
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1.1 Pathogenesis of thyroid cancer 

 

1.1.1 Epidemiology and classification 

 

Thyroid cancers are the most common endocrine malignancies and have the fastest 

rising incidence of all cancers (Howlader et al. 2011).  In the United Kingdom, thyroid 

carcinomas have an annual incidence of 2.6 per 100,000, affecting 1 in 1200 adults (British 

Thyroid Association and Royal College of Physicians 2007), while in the USA, they account 

for 0.85 % and 2.5 % of new cancer cases in men and women respectively (Jemal et al. 2003).  

Most patients have a favourable prognosis following surgery and administration of 

radioiodine, resulting in low mortality rates of 0.21 % and 0.3 % for men and women 

respectively (Schneider and Ron 2005).   However, thyroid cancer incidence has been steadily 

rising over the past 30 years and has approximately tripled in the USA and other developed 

regions during this time (Albores-Saavedra et al. 2007; Davies and Welch 2006; Burgess and 

Tucker 2006; Colonna et al. 2007).  The increase in incidence is generally attributed to 

advances in diagnostic approaches including high-resolution imaging, as well as the increased 

use of fine-needle aspiration (FNA) biopsies and susbsequent cytologic examination.  

However, exposure to ionizing radiation due to wider use of medical radiation or nuclear 

power accidents such as Chernobyl are well known risk factors in thyroid cancer that may 

also contribute to increased incidence (Rabes et al. 2000; Nikiforov et al. 1997; Bounacer et 

al. 1997; Smida et al. 1999; Hamatani et al. 2008; Takahashi et al. 2007).   

Three to five percent of thyroid cancers arise from parafollicular or C cells and give rise 

to medullary thyroid carcinomas.  All other thyroid cancers originate in thyroid follicular 

epithelial cells and are further classified as well-differentiated papillary (80-85 %) and 

follicular carcinomas (10-15 %), poorly differentiated or insular carcinoma (< 2 %) and 

anaplastic or dedifferentiated carcinoma (1-2 %).  Follicular adenomas are benign entities that 
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may develop into follicular carcinomas.  Disease progression and subsequent dedifferentiation 

of follicular carcinomas can result in development of insular or anaplastic carcinomas, 

although these subtypes can also develop de novo (Nikiforov and Nikiforova 2011; Nikiforov 

2009; Delellis et al. 2004).   

In contrast to thyroid cancer, benign thyroid disease in the form of diffuse or nodular 

thyroid enlargement, termed goitre, is highly prevalent.  Goitres are characterised by 

hyperplasia, which is typically driven by elevated levels of thyroid stimulating hormone 

(TSH), growth factors and circulating stimulatory antibodies.  While erroneous thyroidal 

metabolism, dietary goitrogens and goitrogenic chemicals can cause goitres, nutritional iodine 

deficiency represents the major cause of TSH-induced goitrogenesis worldwide.  

Consequently, incidence rates of goitre are highly influenced by the iodine status of a 

population, but goitre occurrence remains prevalent even in iodine-sufficient regions.  For 

example, the Whickham survey described a comprehensive population survey of 2,749 people 

in Northern England and identified that 15.5 % of the participants had a palpable goitre (8.6 

% had a small goitre) with a female to male ratio of 4.5:1 (Tunbridge et al. 1977). 

   

1.1.2 Molecular genetics of thyroid cancer 

     

External irradiation is a well-defined pathogenetic factor associated with thyroid 

carcinoma, but others such as hormonal (oestrogen and TSH), dietary, environmental and 

genetic factors have all been implicated (Schneider and Ron, 2005).  Most malignant thyroid 

cancers are monoclonal in origin, meaning that transforming events are caused by genetic 

alterations in a single cell, giving rise to clonal cell populations conferred with a growth 

advantage (Moniz et al. 2002; McCarthy et al. 2006; Fagin 2005b).  Subsequent propagation 

of tumour growth is driven by extracellular growth factors regulating critical growth and 
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survival pathways.  Molecular components of these highly complex and intricate pathways 

may act as oncogenes or tumour suppressor genes.  In recent years, we have enhanced our 

knowledge of genetic aberrations that cause activation of oncogenes or inactivation of tumour 

suppressor genes, which appear to have important roles in thyroid tumourigenesis (Fagin 

2005b; Nikiforov and Nikiforova 2011).   

 

1.1.3 Oncogenes in thyroid cancer 

 

Initiation and progression of thyroid cancer occurs through gradual accumulation of 

genetic alterations.  Various critical genes, mutated by single point mutations or chromosomal 

rearrangements, are associated with specific etiologic factors in thyroid carcinogenesis.  The 

prevalence of these genetic alterations are summarised in Table 1-1 and discussed in detail in 

subsequent sections.   

 

Table 1-1: Summary of thyroid cancer classifications and associated genetic mutations.  Adapted 

from (Nikiforov and Nikiforova 2011).   

 

 

 

Characteristics Papillary 

Carcinoma

Follicular 

Carcinoma

Poorly 

Differentiated

Carcinoma

Anaplastic

Carcinoma

Medullary

Carcinoma

Cell type origin Follicular Follicular Follicular Follicular C cell

Prevalence (%) 80-85 10-15 < 2 1-2 3-5

Route of spread Local lymph-node 

metastasis

Haematogenous 

metastasis (bones 

and lungs)

Invasive local 

growth, lymph-node 

and 

haematogeneous

metastases

Invasive local 

growth, lymph-node 

and 

haematogeneous

metastases

Lymph-node and 

haematogeneous

metastases

10-year survival (%) 95-98 90-95 ~50 < 10 60-80

Prevalence of 

common mutations 

(%)

BRAF 40-45

RAS 10-20

RET/PTC 10-20

TRK <5

RAS 40-50

PAX8/PPARγ 30-35

PIK3CA <10

PTEN <10

RAS 20-40

TP53 20-30

BRAF 10-20

CTNNB1 10-20

PIK3CA 5-10

AKT1 5-10

TP53 50-80

CTNNB1 5-60

RAS 20-40

BRAF 20-40

PIK3CA 10-20

PTEN 5-15

AKT1 5-10

Familial: RET > 95

Sporadic: RET 40-50

RAS 25
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1.1.3.1 Tyrosine receptor kinase rearrangements 

 

The Rearranged in Transformation (RET) gene encodes a receptor tyrosine kinase for 

members of the glial cell line-derived neurotrophic factor family of extracellular signalling 

molecules and is usually only expressed in neuronal, neuro-endocrine and kidney cells 

(Knowles et al. 2006).  Rearranged in transformation/papillary thyroid carcinomas (RET/PTC) 

is a clonal chromosomal rearrangement observed in 10-20 % of papillary thyroid cancers 

(PTCs) (Zhu et al. 2006; Guerra et al. 2011; Santoro et al. 1992), where its presence is 

associated with a high risk of development of metastases (Jhiang et al. 1992).  Detection of 

RET/PTC rearrangements are very common in small PTCs, leading to speculation that it 

represents an early event in thyroid cell transformation (Kim et al. 2003).  In these 

rearrangements, a fragment of the RET gene coding for the C-terminal tyrosine kinase domain 

of the RET protein forms chimeric fusion genes with active promoters of other genes.  

Transgenic mouse models have demonstrated that this results in the expression of a 

constituitively active RET/PTC protein that persistently stimulates mitogen-activated protein 

kinase (MAPK), independent of ligand-binding, thereby promoting thyroid tumourigenesis 

(Jhiang et al. 1996; Santoro et al. 1996; Powell et al. 1998).   

Neurotrophic tyrosine receptor kinase type 1 (NTRK1) codes the receptor for nerve 

growth factor (NGF).  NTRK1 forms fusion genes with at least 3 different partner genes in 

thyroid papillary carcinomas, but is significantly less prevalent than RET/PTC rearrangements 

(Radice et al. 1991; Greco et al. 1992; Miranda et al. 1994; Bongarzone et al. 1989).      

 

1.1.3.2  Nuclear receptor mutants 

 

The PAX8/PPARγ rearrangement results in a fusion gene between part of the thyroid 

transcription factor gene, paired box gene 8 (PAX8), and the peroxisome proliferator-activator 



Chapter 1  General Introduction 

 

5 
 

receptor γ1 (PPARγ) gene, which encodes a DNA-binding nuclear receptor that is involved in 

regulating adipocyte differentiation and lipid metabolism (Kroll et al. 2000; Powell et al. 

2004; Evans et al. 2004).  Although the transforming mechanisms of PAX8/PPARγ are poorly 

understood, this genetic translocation occurs in 30-35 % of follicular thyroid carcinomas 

(French et al. 2003; Nikiforova et al. 2003b; Dwight et al. 2003).   

In addition, mutations in the thyroid hormone receptor (TR) α1 and β1 transcripts have 

been reported in papillary thyroid cancers (Puzianowska-Kuznicka et al. 2002).  Aged 

transgenic mice with thyroid targeted expression of a mutant TRβ that is inactive (TRβ
PV/PV 

mice), develop invasive follicular thyroid cancers, suggesting a role for TRβ in thyroid cancer 

progression (Suzuki et al. 2002).   

 

1.1.3.3 RAS mutations 

 

Human Harvey rat sarcoma viral oncogene (HRAS), Kirsten rat sarcoma viral oncogene  

(KRAS) and neuroblastoma rat sarcoma viral oncogene (NRAS) encode G‐proteins which are 

involved in the transduction of intracellular signalling from cell surface receptor tyrosine 

kinases and G-protein coupled receptors, to the nucleus (Marshall 1996).  RAS proteins 

hydrolyse GTP to GDP and activate MAPK, phosphoinositide 3-kinase (PI3K) and other 

pathways to stimulate cell proliferation and suppress differentiation (Mendoza et al. 2011; 

Marshall 1996).  Activating point mutations in RAS genes have been identified in various 

thyroid tumours, including 10-20 % of papillary carcinomas, 40-50 % of follicular carcinomas 

and 20-40 % of insular and anaplastic carcinomas (Suarez et al. 1990; Esapa et al. 1999; 

Motoi et al. 2000; Manenti et al. 1994; Namba et al. 1990; Karga et al. 1991; Ezzat et al. 

1996).  The presence of RAS mutations in benign follicular adenomas (Esapa et al. 1999; 

Motoi et al. 2000; Namba et al. 1990) and in thyroid malignancy as above, suggests that 
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aberrant control of RAS may drive thyroid tumour progression from benign to well-

differentiated to anaplastic thyroid tumour subtypes.   

 

1.1.3.4 BRAF mutations 

 

Serine/threonine-protein kinase (BRAF) is one of the three isoforms of the serine-

threonine kinase RAF, which is activated by RAS, resulting in its translocation to the cell 

membrane where it phosphorylates and activates the MAPK pathway.  In thyroid cancer, 

BRAF can become constituitively active following point mutations or chromosomal 

rearrangements.  The most common mechanism of BRAF activation is caused by a point 

mutation resulting in a valine-to-glutamate replacement at residue 600 (BRAF
V600E

) (Kimura 

et al. 2003; Cohen et al. 2003).  This particular mutation represents 99 % of all BRAF 

mutations found in thyroid cancer, where it occurs in 40-45 % of papillary carcinomas (Xing 

2005; Fukushima et al. 2003; Nikiforova et al. 2003a; Fagin 2005a) and in 20-40 % of insular 

and anaplastic carcinomas (Namba et al. 2003; Nikiforova et al. 2003a; Begum et al. 2004; 

Ricarte-Filho et al. 2009).  The results of the various studies above imply that BRAF
V600E 

mutations are an early event, predisposing tumours to progressive dedifferentiation and 

development of an anaplastic disease state.  In support of this, transgenic mice with thyroid 

targeted BRAF
V600E 

expression develop goitre and papillary thyroid cancers, which 

progressively transitions to poorly differentiated carcinomas  (Knauf et al. 2005).   

 

1.1.3.5 Accumulation of other oncogene mutations 

 

In addition to BRAF and RAS mutations, a number of additional oncogenic mutations 

have been identified in poorly differentiated and anaplastic carcinomas, but not in well-

differentiated tumour types, suggesting these mutations are late events in thyroid 
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tumourigenesis.  The catenin (cadherin-associated protein) beta 1 (CTNNB1) gene encodes a 

β-catenin involved in cell-adhesion and Wnt signalling, and a point mutation in this gene has 

been found in up to 60 % of anaplastic carcinomas (Garcia-Rostan et al. 1999; Garcia-Rostan 

et al. 2001; Kurihara et al. 2004).  In addition, studies have demonstrated that poorly 

differentiated and anaplastic carcinomas harbour mutations of PI3K pathways components 

including phosphoinositide-3-kinase catalytic alpha polypeptide (PIK3CA) itself (10-20%), 

phosphatise and tensin homologue (PTEN) (5-15%) and v-akt murine thymoma viral 

oncogene homolog 1 (AKT1) (5-10%) (Ricarte-Filho et al. 2009; Garcia-Rostan et al. 2005; 

Santarpia et al. 2008; Hou et al. 2007; Dahia et al. 1997). 

 

1.1.4 Tumour suppressor genes in thyroid cancer 

Tumour suppressor genes serve to arrest cell division and/or induce apoptosis in 

response to genetic mutations.  Mutations of the important cell cycle regulator tumour protein 

p53 (TP53) exist in over 50 % of all cancers (Hollstein et al. 1994).  p53 is stabilised in 

response to DNA damage and elicits protective effects by activating downstream target genes 

that prevent cell cycle progression, such as p21 (Dulic et al. 1994).  Mutations of p53 have 

been found in 50-80 % of anaplastic carcinomas where its inactivity results in unrestrained 

tumour cell growth (Fagin et al. 1993; Donghi et al. 1993; Dobashi et al. 1994; Ito et al. 

1992).  The rare occurrence of this mutation in preceding tumour stages suggests that p53 

mutations are a late event in thyroid tumourigenesis.   

 Another tumour suppressor gene is p16, a direct inhibitor of cyclin-dependent kinase 4 

(CDK4), inactivation of which is associated with the development of spontaneous neoplasms 

and increased sensitivity to carcinogenic stimuli (Serrano et al. 1996).  The expression of p16 

has been shown to be reduced in papillary thyroid cancer (Liang et al. 2009).   
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1.1.5 Prognosis of thyroid cancer 

 

Retrospective studies have enabled us to recognise certain factors that adversely affect 

prognosis of thyroid cancer and risk is assessed in patients with DTC using a prognostic 

scoring system.  Tumour size, Node metastases and distant Metastases (TNM) is the most 

frequently used system and is summarised in Table 1-2.  While most patients have a good 

prognosis following surgery and administration of radioiodine, BTA guidelines suggest 10 

year disease specific mortality for stage I as 1.7 %, rising to 60.9 % for stage IV disease 

(British Thyroid Association and Royal College of Physicians 2007; Loh et al. 1997).  5-30% 

of patients will develop locoregional recurrence (British Thyroid Association and Royal 

College of Physicians 2007; Jonklaas et al. 2006; Mazzaferri and Jhiang 1994), with 

subsequent five year survival of 87 %.  If distant metastases are present, five year survival 

falls to 72 % (Jonklaas et al. 2006).  The prognostic accuracy of the staging and grading 

systems used in differentiated thyroid cancer has increased (D'Avanzo et al. 2004).  Factors 

associated with a worse prognosis are male gender, age greater than 40 years and tumours of 

the follicular subtype or greater than 1 cm in size (British Thyroid Association and Royal 

College of Physicians 2007; Mazzaferri and Jhiang 1994).   
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Table 1-2: Table summarising Tumour size, Node metastases and distant Metastases 

(TNM) prognostic scoring system and associated mortality rates.  Adapted from (British 

Thyroid Association and Royal College of Physicians 2007; D'Avanzo et al. 2004; Loh et al. 

1997) 
 

The gold standard for diagnosing thyroid malignancy remains FNA cytology (FNAC).  

Recent advances in molecular analysis of FNA present novel approaches to providing 

individualised treatment strategies to patients.  Currently, indeterminate cytology indicating 

an inability to conclusively discern benign from malignant nodules is found in 10-20 % of 

patients with thyroid nodules and malignancy is diagnosed in only 20 % of these.  

Consequently, unnecessary surgery is performed in 60-90 % of these patients (Baloch et al. 

2002; Baloch et al. 2008; Mazzaferri 1993).  Advances in the molecular analysis of the 

Disease

Stage

< 45 years of age > 45 years of age 10 year cancer-

specific 

mortality (%)

STAGE I

- Any T, any N, M0 - pT1, N0, M0 1.7

STAGE II

-Any T, any N, M1 -pT2, N0, M0

- pT3, N0, M0

15.8

STAGE III

-pT4, N0, M0

- Any pT, N1, M0

30.0

STAGE IV

- Any pT, any N, M1 60.9

*  Undifferentiated or anaplastic carcinomas are all STAGE IV.  

Primary tumour

pT1 Intrathyroidal tumour, ≤ 1 cm in greatest dimension

pT2 Intrathyroidal tumour, >1-4 cm in greatest dimension

pT3 Intrathyroidal tumour, > 4 cm in greatest dimension

pT4 Tumour of any size, extending beyond thyroid capsule

pTX Primary tumour cannot be assessed

Regional lymph nodes (cervical or upper mediastinal)

N0 No nodes involved

N1 Regional nodes involved

If possible, subdivide

N1a Ipsilateral cervical nodes

N1b Bilateral, midline or contralateral cervical nodes or mediastinal nodes

NX Nodes cannot be assessed

Distant metastases

M0 No distant metastases

M1 Distant metastases

MX Distant metastases cannot

be assessed
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mutational markers described above (see section 1.1.3), represent opportunities to identify 

specific cancer subtypes and to provide highly improved diagnostic accuracy and to avoid 

unnecessary surgical procedures.  For example, the collective results of 22 studies of thyroidal 

FNA samples revealed that in 1,117 nodules deemed positive for the BRAF
V600E 

mutation, 

99.3 % were subsequently histologically classified as papillary carcinomas, thereby 

demonstrating the irrefutable accuracy of BRAF
V600E

 mutations as an indicator of cancer 

(Nikiforova and Nikiforov 2009; Kim et al. 2010; Kim et al. 2011; Nam et al. 2010).   

 

1.2 Identification of the Pituitary Tumor Transforming Gene (PTTG) 

 

Rat Pttg was first cloned using mRNA differential display polymerase chain reaction, 

where mRNA was exclusively expressed at high levels in rat pituitary tumour cells (GH4) but 

not in normal pituitary tissue (Pei and Melmed 1997).  A human homologue of PTTG was 

cloned from a foetal liver cDNA library by using rat Pttg cDNA as a screening probe, and 

subsequently 89 % sequence homology was shown between rat and human PTTG (hPTTG) 

(Zhang et al. 1999b).  Contemporaneously, a human homologue was cloned from thymus 

(Dominguez et al. 1998) and testis (Kakar and Jennes 1999).  A further two hPTTG 

homologues have now been identified, including hPTTG2 on chromosome 4p12 (Kakar and 

Jennes 1999; Prezant et al. 1999) and hPTTG3 on 8q22 (Prezant et al. 1999), which are 91 % 

and 89 % homologous to hPTTG1 respectively.  A further variant of hPTTG1 with altered 

functional capabilities was also detected (Wang and Melmed 2000b).  However, hPTTG1 on 

chromosome 5q33 (Zhang et al. 1999b) is the most abundant variant that is highly associated 

with oncogenesis and hence the most extensively studied form of hPTTG1.  All of the studies 

described in subsequent chapters are focused on hPTTG1 and is denoted as hPTTG in 

accordance with convention.   
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1.2.1 Characterisation of hPTTG 

 

Following observation of hPTTG over-expression in tumour cells, several studies have 

demonstrated the potent transforming capabilities of both rat and hPTTG in vitro and in vivo.  

Stable transfection of hPTTG in NIH3T3 mouse fibroblast cells caused an increase in cellular 

proliferation, augmented anchorage-independent growth in soft agar and induced tumour 

formation after subcutaneous injection into athymic nude mice (Pei and Melmed 1997; Zhang 

et al. 1999b; Kakar and Jennes 1999).  Thus, the identification of hPTTG as a novel 

transforming gene has prompted many studies investigating its potential involvement in 

carcinogenesis. 

 

Figure 1-1: Characterisation of hPTTG as a potent transforming gene in vitro and in vivo.  A  

Colony formation of NIH3T3 cells transfected with vector only (pCI-neo), wild type or mutant hPTTG 

expression vector on soft agar. The transforming ability of hPTTG, abrogated by mutation of its 

TUMOUR WEIGHT (mg)

N1 0 1000 100

N2 0 560 0

N3 0 670 0

N4 0 770 0

N5 0 940 0

VECTOR CONTROL WT - hPTTG Mutant - hPTTG

A.

B.

C.

tumour
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proline rich domain is observed by the formation of large and abundant colonies. B. Tumour 

formation induced following subcutaneous injection of NIH3T3 stable transfectants into nude mice. 

Each mouse was injected with 3 x 105 control (n = 5), wild type (n = 5) or mutant hPTTG-over-

expressing (n = 5) cells. After 2 weeks mice were photographed, sacrificed and their tumours excised 

and weighed (weight data in C) (Adapted from (Zhang et al. 1999b)). 

 

1.2.1.1 Structure of hPTTG 

 

hPTTG has an open reading frame of 609 bp that encodes a 202 amino-acid protein 

(Zhang et al. 1999b).  hPTTG is functionally divided into an N-terminal basic domain and a 

C-terminal acidic domain that harbour regulatory and functional domains respectively 

(Dominguez et al. 1998; Zhang et al. 1999b; Kakar and Jennes 1999). 

   

 

Figure 1-2: Schematic representation of the hPTTG protein. The following functional domains are 

displayed in pink (amino acids are given in brackets): KEN box (9 - 11), Destruction box (61 - 68), 

PBF binding domain (123 - 154) and SH3-interacting domain (163 - 173). The DNA binding domain 

is found between amino acids 61 and 118 and a transactivation domain lies between 119 and 164.  

The red star indicates the phosphorylation site of human PTTG.   

 

In the regulatory N-terminal domain, a KEN box (amino acids 9-11) and a destruction 

box (DB) (amino acids 61-68) are substrates for the anaphase promoting complex (APC), and 

together are important for ubquitination of hPTTG by the APC to allow progression from 

metaphase to anaphase during mitosis (Zou et al. 1999; Zur and Brandeis 2001).  

Ubiquitination of hPTTG was unaffected or only partially inhibited by sole mutations in the 

KEN box and DB respectively.  In contrast, double mutations of both motifs resulted in 

1 2029-11 61-68 123-154 163-173

NH2 COOH

PHOSPHORYLATION-SITE

(Ser 165)

DNA BINDING DOMAIN TRANSACTIVATION

DOMAIN
SH3-INTERACTING

DOMAIN

KEN Box Destruction Box PBF Binding Domain
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completely abolished hPTTG degradation, suggesting they act in unison to ensure hPTTG 

levels are regulated correctly (Zou et al. 1999; Zur and Brandeis 2001).   

Incorporating the DB box, a DNA binding domain is  present from amino acids 61-

118 with a transactivational region immediately downstream of this (Zhang et al. 1999b; Pei 

2000; Wang and Melmed 2000b), allowing hPTTG to act as a transcription factor.  

Interestingly, prospective transcriptional targets of hPTTG include growth factors such as 

vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) (Kim et al. 

2006a; Zhang et al. 1999b) the sodium iodide symporter (NIS) (Boelaert et al. 2007) and the 

proto-oncogene c-myc (Pei 2001).  Although the transactivational properties of hPTTG 

require its presence in the nucleus, hPTTG is predominantly a cytoplasmic protein (Chien and 

Pei 2000) without a consensus nuclear localisation sequence.  Studies have implicated a role 

for both MAPK phosphorylation cascades (Pei 2000) and an interaction with a specific 

hPTTG binding factor (PBF) (Chien and Pei 2000) for the nuclear translocation of hPTTG 

(see section 1.5.1).  The PBF interacting domain lies within the transactivating domain (amino 

acids 123-154) (Chien and Pei 2000).   

hPTTG contains a proline-rich region (amino acids 163-173) in the C-terminal that is 

critical to its transactivational and transforming capabilities (see sections 1.3.6 and 1.4).  Two 

PXXP motifs confer a highly conserved and putative Src-homology-3 (SH-3) interacting 

domain (Zhang et al. 1999b) that when mutated result in abrogation of hPTTG-mediated 

transformation in vitro, tumourigenesis in vivo and growth factor induction (Zhang et al. 

1999b; Pei 2000; Wang and Melmed 2000b; Ishikawa et al. 2001; McCabe et al. 2002; 

Boelaert et al. 2003a).  The serine at residue 165 is within the SH-3 interacting domain and is 

the only reported phosphorylation site of hPTTG, which is thought to be important for the 

actions of hPTTG during mitosis (Pei 2000; Ramos-Morales et al. 2000; Boelaert et al. 2004). 
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1.2.1.2 hPTTG expression in human tissues 

 

hPTTG is expressed at low levels in most normal adult tissues including colon, small 

intestine, pancreas, brain and thymus (Zhang et al. 1999b; Pei 1999).  It is abundantly 

expressed in the testis, with evidence for a role during spermatogenesis (Pei 1999).  Following 

the discovery of high hPTTG expression in pituitary adenomas (Pei and Melmed 1997), 

increased hPTTG expression has been found in various neoplasms including those of the 

thyroid (Heaney et al. 2001; Boelaert et al. 2003a), breast (Puri et al. 2001), colon (Heaney et 

al. 2000), ovary (Puri et al. 2001), oesophagus (Shibata et al. 2002), lung (Kakar and Malik 

2006) and liver (Jung et al. 2006).  Other studies report hPTTG over-expression in 

haematopoietic neoplasms (Dominguez et al. 1998; Saez et al. 2002),  astrocytomas (Tfelt-

Hansen et al. 2004) and in metastatic gastric carcinomas (Wen et al. 2004).  Furthermore, high 

hPTTG expression is present in all transformed cell lines (Zhang et al. 1999b; Yu and 

Melmed 2001; McCabe and Heaney 2003; Yu and Melmed 2004).  With over-expression so 

frequently observed in tumour tissues, hPTTG presents itself as a potentially crucial proto-

oncogene.   

 

Figure 1-3: hPTTG expression in normal tissues.  Northern blot analysis of hPTTG (top panel) 

and human β-actin (bottom panel showing relative amounts of RNA on each lane) mRNA expression in 

the indicated human adult tissues. Figure adapted from (Dominguez et al. 1998). 
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1.2.1.3 hPTTG expression in thyroid cancer 

 

Several studies have independently demonstrated the over-expression of hPTTG in 

thyroid cancer.  hPTTG mRNA and protein was found to be significantly over-expressed in 

thyroid tumours compared to normal tissue controls with particularly high levels in 

hyperplastic thyroid lesions and follicular tumours (adenomas and carcinomas) (Heaney et al. 

2001).   In this study, over-expression of hPTTG was less marked in papillary carcinomas 

than in hyperplastic or follicular lesions, a result that contrasts with our own findings of 

hPTTG over-expression in 19 papillary as well as 8 follicular carcinomas, but not in 38 

hyperplastic thyroid lesions compared to normal tissue controls (Boelaert et al. 2003a).  In 

this study, hPTTG was identified as an independent prognostic indicator of early tumour 

recurrence (Boelaert et al. 2003a).  An additional study using immunohistochemistry showed 

high expression of hPTTG in 65 % of differentiated thyroid carcinoma tissue samples that 

were associated with nodal and distant metastases, as well as disease persistence (Saez et al. 

2006).   

 

Figure 1-4: hPTTG is over-expressed in differentiated thyroid cancer.  A  Qualitative RT-PCR 

data displaying relative fold changes in hPTTG mRNA expression in 11 normal, 25 multinodular 
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goiter (MNG), 13 Graves’ disease, and 27 cancer specimens.  B  Western blot analysis of hPTTG 

protein expression in two representative samples of normal thyroid, two MNGs, two Graves’ disease 

specimens, and two thyroid cancers showing markedly increased expression of PTTG in thyroid 

cancer. JEG-3 choriocarcinoma cells served as a positive control (+VE).  ** p < 0.01.  NS = non-

significant.  (Adapted from (Boelaert et al. 2003a)).   

 

1.2.1.4 Regulation of hPTTG expression 

 

Thus far, no mutations have been discovered in either the coding or non-coding 

regions of hPTTG (Zhang et al. 1999b; Kanakis et al. 2003), suggesting hPTTG upregulation 

rather than mutational events underly its pathological effects described in section 1.2.1.2.  The 

following sections describe studies that have investigated various mechanisms of hPTTG 

regulation.   

 

1.2.1.4.1 Regulation of hPTTG by hormones 

 

Oestrogen was the first hormonal regulator of Pttg to be identified when it was shown 

to induce pituitary Pttg expression in vitro and in vivo (Heaney et al. 1999).  In vitro, Pttg 

mRNA expression was induced in rat pituitary GH3 cells at 24 hours following treatment with 

the synthetic oestrogen, diethylstilboestrol (0.1-10 nM).  This effect was abolished by 

addition of the oestrogen-receptor antagonist, anti-E4-hydroxytamoxifen (Heaney et al. 1999).  

GH3 cells transiently transfected with full length mouse Pttg and treated with oestrogen, 

demonstrated an approximate 220 % increase in Pttg promoter activity, as determined by 

luciferase reporter assays.  This induction was shown to be via the action of oestrogen upon 

oestrogen response elements (EREs) (Heaney et al. 1999).  Subsequent studies have 

confirmed the presence of EREs in the hPTTG promoter (Kakar and Jennes 1999).   

In vivo, ovariectomised Fischer 344 rats develop pituitary lactotroph tumours 4 weeks 

after treatment with oestrogen coincident with increased levels of circulating prolactin (PRL).  
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Pttg mRNA and protein expression was optimally induced by a 1000 ng dose of oestrogen 

after 48 hours of administration via an osmotic pump (Heaney et al. 1999).  Notably, the 

highest Pttg expression was observed at an early stage of pituitary transformation, consistent 

with a role for hPTTG in the initiating events of tumourigenesis (see section 1.3).  

Furthermore, the increased pituitary Pttg expression at this stage coincided with induction of 

pituitary Vegf and Fgf-2 expression, as well as the development of pituitary arterial networks, 

supporting the hypothesis that elevated hPTTG expression contributes to tumour progression 

(Heaney et al. 1999).  A subsequent study by the same group provided further support for 

these findings, demonstrating cyclical expression of Pttg, Vegf and Fgf-2, concordant with 

oestrogen levels during the oestrus cycle of Fischer 344 rats (Heaney et al. 2002).  There was 

an approximately 3-fold induction of pituitary Pttg, Vegf and Fgf-2 mRNA during pre-oestrus 

and oestrus, concomitant with increased proliferating cell nuclear antigen (PCNA) expression 

during maximal pituitary growth proliferation.   

 Having observed that treatment of primary human pituitary tumour cells with anti-

oestrogen suppressed hPTTG expression in vitro, reduced Pttg expression was demonstrated 

in vivo following co-administration of oestrogen and anti-oestrogen via osmotic mini-pump in 

rats.  Furthermore, serum levels of PRL were reduced by 88 % and pituitary tumour growth 

was suppressed by 41 %, suggesting anti-oestrogens could be an important therapeutic tool in 

treatment of pituitary tumours through repression of hPTTG expression (Heaney et al. 2002). 

TSH has been directly implicated in the regulation of thyroidal hPTTG, where treatment 

of rat thyroid FRTL-5 and human primary follicular thyroid cells with TSH resulted in a 

significant induction of rat Pttg and hPTTG mRNA respectively (Heaney et al. 2001).  

Adding further complexity to our understanding of the regulation of hPTTG by hormones is 

the finding that oestrogen can stimulate increased TSH secretion in women (Clark et al. 1985; 
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McTiernan et al. 1984; Prestonmartin et al. 1987; Prestonmartin et al. 1993).  It is therefore 

possible that oestrogen’s regulation of hPTTG in thyroid cells is through increased serum 

TSH levels.  Thyroid cancer is approximately 3 times more common in women (Fagin 2005b) 

and 25 % of thyroid cancers express oestrogen receptors (Clark et al. 1985), in keeping with a 

potential role for oestrogen in thyroid neoplasia.  It is clear that further investigation is 

required to elucidate the exact interactions between hPTTG and hormones and to determine 

whether such hormones are in fact primary tumour promoters. 

 Other studies have demonstrated a role for insulin in the regulation of hPTTG.  There 

was an approximate 2.5-fold increase in hPTTG mRNA expression following treatment with 

insulin in human breast cancer, MCF-7 cells.  Luciferase reporter assays revealed a dose-

dependent increase in the hPTTG promoter activity following insulin treatments and pre-

treatment with the transcription inhibitor actinomycin-D completely abrogated induction of 

hPTTG mRNA expression, suggesting that hPTTG regulation by insulin is transcriptionally 

driven (Thompson and Kakar 2005).  Another study reported upregulation of hPTTG mRNA 

and protein expression by insulin in U87MG and U138MG malignant astrocytes.  This effect 

was completely abrogated by treatment with the PI3K inhibitors LY294002 and Wortmannin, 

but only partially blocked by the MAPK inhibitor PD98059.  However, Pttg was not induced 

by insulin in non-tumourous primary rat embryonal astrocytes suggesting that insulin 

regulation of hPTTG may differ between malignant and non-malignant cell types (Chamaon 

et al. 2005).   

 

1.2.1.4.2 Regulation of hPTTG by growth factors 

 

There is increasing evidence that hPTTG has an important relationship with growth 

factors, where its expression is induced by various growth factors and hPTTG itself is capable 
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of transactivating expression of some of these mitogenic factors (see sections 1.4.3 and 1.4.4).   

 One study described over-expression of hPTTG in astrocytomas and subsequently 

demonstrated hPTTG induction by the epidermal growth factor receptor (EGFR) ligands, 

epidermal growth factor (EGF) and transforming growth factor alpha (TGF-α), in 

xenotransplantable U87 human glioma cells.  This effect was abrogated by treatment with the 

specific EGFR inhibitor, AG1478.  The c-met ligand, hepatocyte growth factor (HGF), also 

induced hPTTG expression but to a lesser extent (Tfelt-Hansen et al. 2004).  A subsequent 

study demonstrated similar regulation of hPTTG by EGF and TGF-α in pituitary 

folliculostellate TtT-GF cells.  Once again, these effects were blocked following inhibition of 

EGFR, by treatment with either AG1478 or gefitinib.  Rapid phosphorylation of EGFR and 

subsequent activation of the MAPK and PI3K pathways was demonstrated, suggesting that 

these pathways are important in hPTTG regulation.  EGF induction of hPTTG was cell-cycle 

dependent where its expression peaked at the S-G2 transition and the effect was absent 

following early S-phase blockade (Vlotides et al. 2006).   

 Insulin-like growth factor 1 (IGF-1) has been shown to regulate hPTTG expression in 

human breast cancer MCF-7 cells (Thompson and Kakar 2005) and in malignant and non-

malignant astrocytes (Chamaon et al. 2005).  In both studies, hPTTG induction by IGF-1 was 

partially or completely blocked by treatment with either of the specific PI3K inhibitors, 

LY294002 and Wortmannin, or the specific MAPK inhibitor PD98059.  Interestingly, the 

latter study demonstrated interactions between both kinases and endogenous hPTTG in both 

malignant astrocytes and non-tumourous neuronal cells.  In addition to enhancement of 

hPTTG transcription following treatment with IGF-1, it was speculated that a second and 

more direct route of hPTTG regulation may be mediated via direct binding to MAPK or PI3K 

(Chamaon et al. 2005).   
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 The relationship between hPTTG and FGF-2 is well established (see sections 1.4.1 

and 1.4.3) with studies demonstrating induction of hPTTG by FGF-2 treatment in NIH3T3 

cells (Heaney et al. 1999) and in primary cultures of uterine leiomyomas, benign tumours of 

myometrial smooth muscle tissue (Tsai et al. 2005).  

 

1.2.1.4.3 Transcription factors involved in regulation of hPTTG 

 

Promoter studies of the mouse (Wang and Melmed 2000a), rat (Pei 1998) and human 

(Kakar and Jennes 1999) PTTG homologues have revealed the presence of one or more 

conserved specificity protein 1 (SP1) box motifs, implying that this transcription factor may 

play a role in regulating hPTTG expression.  Mutation of the SP1 binding site -520 bp 

upstream of the hPTTG translational start site resulted in 70 % reduced overall promoter 

activity, whereas over-expression of SP1 in human PC-3 prostate cancer cell and HS27 

fibroblast cells significantly increased hPTTG promoter activity (Clem et al. 2003).  However, 

site-directed mutagenesis targeting the SP1 binding site in the rat Pttg promoter did not 

significantly affect promoter activity (Pei 1998).   

hPTTG mRNA and protein expression were repressed by triiodothyronine (T3) in 

hepatocellular carcinoma (HCC) cell lines and this was dependent on expression of thyroid 

hormone receptors (TRs) and mediated through repression of SP1 (Chen et al. 2008).  Further, 

stable short hairpin RNA (shRNA) knockdown of SP1 resulted in reduced hPTTG expression 

and reduced proliferation.  Stable shRNA knockdown of hPTTG directly, had a similar effect 

on proliferation.  In vivo, Pttg and Sp1 expression were repressed in the livers of 

thyroidectomised rats treated with T3.  Furthermore, in human HCCs, hPTTG and SP1 were 

over-expressed while TR expression was reduced in comparison to matched normal liver, 

providing a potential mechanism for hPTTG over-expression in HCC, through modulation by 

thyroid hormone. (Chen et al. 2008). 
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A recent study treated various thyroid cancer cell lines with drugs synthetically 

derived from the triterpenoid glycyrrhetinic acid, CDODA-Me and CF3DODA-Me, and 

reported inhibition of their growth (Chintharlapalli et al. 2011).  This was at least in part due 

to reduced expression of specificity proteins (SPs), including SP1.  Reduced SP1 expression 

was associated with subsequent repression of hPTTG, FGF-2, VEGF and c-myc, as well as 

induction of apoptosis (Chintharlapalli et al. 2011).  As well as providing further evidence for 

hPTTG regulation by SP1, these findings provide additional support for the relationship 

between hPTTG, growth factors and other proto-oncogenes (see sections 1.3.6 and 1.4).   

Further studies of the hPTTG promoter identified four CAAT boxes, which are 

binding sites for the nuclear factor Y (NF-Y) transcription factor (Clem et al. 2003).  

Interestingly, there is evidence to suggest that NF-Y and SP1 act in unison to control 

transcriptional activation on various gene promoters (Inoue et al. 1999; Chang et al. 1999; Hu 

et al. 2000; Xiong et al. 2000; Kim et al. 2001).  Two studies have described direct interaction 

between NF-Y and SP1 (Roder et al. 1999; Yamada et al. 2000).  The interaction between 

NF-Y and SP1 appears to be significant in hPTTG regulation where mutation of the NF-Y 

binding site in the hPTTG promoter caused a 25 % repression of promoter activity, whereas a 

double mutation of both NF-Y and SP1 binding sites caused 90 % reduced promoter 

activation (Clem et al. 2003).  A further study proposed a potential mechanism for hPTTG 

downregulation by p53 (see section 1.3.5), whereby p53 was shown to interact with NF-Y 

thereby preventing initiation of transcription on the hPTTG promoter (Zhou et al. 2003).   

Several studies have reported a role for transcription factor 4 (TCF-4), a downstream 

effector of β-catenin signalling pathways, in the regulation of hPTTG.  A TCF-4 binding 

element was identified in the hPTTG promoter and binding of TCF-4 to this region was 

demonstrated (Zhou et al. 2005; Hlubek et al. 2006; Pan et al. 2007).  Subsequently, stable 
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transfectants of β-catenin in human embryonic kidney 293 (HEK293) cells demonstrated 

increased hPTTG mRNA and protein expression (Zhou et al. 2005) and siRNA transfections 

against β-catenin in colorectal carcinoma cells resulted in reduced hPTTG mRNA expression 

(Hlubek et al. 2006).  In both of these studies, an accumulation of β-catenin correlated with 

over-expression of hPTTG in human esophageal squamous cell carcinomas [ESCCs] (Zhou et 

al. 2005) and in human colorectal adenomas and carcinomas (Hlubek et al. 2006), 

respectively.  Regulation of hPTTG and the proto-oncogene c-myc by γ-catenin was observed 

in colon cancer cell lines, following both over-expression and siRNA knockdown studies (Pan 

et al. 2007).   

 Another study provides strong evidence for the involvement of a further transcription 

factor, Octamer-binding transcription factor-1 (OCT-1), in the regulation of hPTTG 

expression.  Two OCT-1-binding motifs were identified in the hPTTG promoter and 

chromatin immunoprecipitation assays using HEK293 cells demonstrated direct binding of 

OCT-1 to these regions.  Over-expression of OCT-1 resulted in increased hPTTG promoter 

activity and a subsequent 4-fold increase in hPTTG mRNA and protein expression.  

Conversely, siRNA knockdown of OCT-1 resulted in reduced hPTTG mRNA and protein 

expression.  Furthermore, confocal immunofluorescent imaging showed a strong correlation 

between OCT-1 and hPTTG expression in 75 % of pituitary tumours (n=79), 61 % of breast 

tumours (n=77) and 65 % of colorectal tumours (n=71) (Zhou et al. 2008).   

 Other transcription factors may have a role in hPTTG expression.  Additional motifs 

present in the hPTTG promoter include activator protein 1 (AP1) and 2 (AP2) binding 

sequences, a cyclic-AMP (cAMP) response element sequence, a cell cycle dependent element 

(CDE) motif  as well as a cell cycle homology region (CHR) motif (Kakar 1999).  Further 

studies are required to determine the functional significance of these promoter elements.   
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1.2.1.4.4 Epigenetic mechanisms and hPTTG expression 

 

No mutations in the coding nor in the non-coding regions of hPTTG were identified by 

RT-PCR in pituitary tumours (Zhang et al. 1999b), and following studies of the hPTTG 

promoter in 25 pituitary adenomas (Kanakis et al. 2003) respectively.  A small number of 

studies have investigated epigenetic mechanisms that may be involved in the control of 

hPTTG expression.   

One investigation treated prostate cancer cells with 5-Azacytidine to cause genome 

wide demethylation, but reported no effect on hPTTG protein expression (Hidalgo et al. 

2008).  A CpG island comprised within a 650 bp region was identified as having high 

probability of being subject to epigenetic control.  However, subsequent methylation-specific 

PCR analysis revealed unmethylated CpG island in both differentiated thyroid carcinomas 

and matched normal samples.  Furthermore, loss of heterozygosity (LOH) studies using 

Affymetrix microarray technology and FRET analysis did not identify any allelic imbalances 

encompassing the hPTTG locus (Hidalgo et al. 2008).   

However, histone modifications have recently been implicated in hPTTG regulation, 

where over-expression of histone acetyltransferase (HAT) p300 resulted in increased hPTTG 

promoter activity, as well as mRNA and protein expression in 293T cells.  The HAT activity 

of p300 was crucial for its regulation of hPTTG and chromatin immunoprecipitation assays 

revealed increased histone H3 acetylation on the hPTTG promoter following over-expression 

of p300.  Further, treatment of 293T cells with histone deacetylase (HDAC) 3 resulted in 

reduced hPTTG expression and conversely, treatment with an HDAC inhibitor caused 

upregulation of hPTTG.  Interestingly, co-expression of NF-YA and NF-YB with p300 

synergistically increased hPTTG promoter activity, providing further insights into the 
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involvement of NF-Y transcription factors in hPTTG regulation, whereby they possibly bind 

and recruit p300 to the hPTTG promoter (Tian et al. 2009).   

 

1.2.1.4.5 Cell-cycle dependent subcellular localisation of hPTTG 

 

Various studies have demonstrated that hPTTG expression is cell-cycle dependent.  

An early study identified hPTTG as the vertebrate securin, where levels of hPTTG protein 

were shown to increase during S-phase and peak in G2- and M-phase in HeLa S3 cells (Zou et 

al. 1999).  Consistent with this, extracts from HeLa cells arrested in each stage of the cell 

cycle revealed low hPTTG expression in S, increasing expression in G2 and highest 

expression in M-phase, before returning to low levels once more in G1 (Ramos-Morales et al. 

2000).  Furthermore, in both HeLa and COS-7 cells, hPTTG expression was low following 

serum starvation, elevated during rapid proliferation following addition of serum and 

downregulated once again as cells became confluent (Ramos-Morales et al. 2000).  Another 

study confirmed increased hPTTG mRNA and protein expression progressively through S-, 

G2- and M-phase as above, and subsequently these observations were elegantly supported 

following live cell imaging in synchronised human choriocarcinoma JEG-3 cells (Yu et al. 

2000b).  Following over-expression of hPTTG or hPTTG-EGFP in JEG-3 cells, 

immunofluorescent staining during live cell imaging revealed that hPTTG was largely 

localised to the nucleus during interphase with only a small amount of cytosolic hPTTG 

detected.  Predominantly nuclear hPTTG expression in JEG-3 cells was confirmed by 

Western blots of nuclear and cytoplasmic cell fractions following transfection with hPTTG-

EGFP (Yu et al. 2000b).   

Although the same study replicated these findings in NIH-3T3, GH3 and AtT20 rat 

pituitary tumour, SKOV-3 human ovarian cancer, MCF-7 and COS-7 cell lines, there are 
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contrasting data to suggest otherwise.  Early studies using subcellular fractionation in Jurkat T 

lymphoma cells (Dominguez et al. 1998) and immunohistochemistry in pituitary adenomas, 

and in lung and breast adenocarcinomas (Saez et al. 1999) indicated that hPTTG was 

predominantly localised to the cytoplasm, with only partial nuclear expression (see Figure 

1-5).  A further study used fluorescence microscopy to demonstrate that transfection of 

pCMX-GFP-hPTTG resulted in predominantly nuclear hPTTG in HeLa, COS-7 and DU145 

cells, but that hPTTG expression was diffuse throughout the cytoplasm and nucleus in A549, 

DLD-1 and NIH3T3 cells (Mu et al. 2003).  It therefore seems possible that the subcellular 

localisation of hPTTG is cell-specific and dependent on experimental techniques employed.  

Thus far, no functional role for cytoplasmic hPTTG has been identified and its presence here 

is considered to be a form of negative regulation of hPTTG presence in the nucleus where it 

has functional outputs.  Indeed, hPTTG’s presence in the nucleus is essential for all its 

functions described in subsequent sections.  hPTTG itself does not have a nuclear localisation 

signal (NLS) (see section 1.2.1.1), but is thought to be able to diffuse freely across the nuclear 

membrane given its small molecular weight.  However, an hPTTG binding factor (PBF) has 

been identified and shown to specifically interact with hPTTG and facilitate its nuclear entry 

via its own NLS (Chien and Pei 2000). 
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Figure 1-5: Contrasting data of hPTTG localisation during interphase.  A  Interphase localisation 

of hPTTG in JEG-3 cells. Cells were transfected with plasmids encoding WT-hPTTG-FLAG or EGF-

hPTTG. hPTTG protein was visualised using immunofluorescent staining and EGFP-hPTTG protein 

was visualised directly (left) and was localised mainly in the nucleus. Cells were also stained with 

Hoechst 33258 to highlight the nuclei and chromosomes and to determine the cell cycle (middle). The 

images of cells expressing hPTTG or hPTTG-EGFP were overlaid with images of the cells stained 

with Hoechst (right), again illustrating hPTTG mainly to be localised to the nucleus (figure adapted 

from (Yu et al, 2000b)).  B  Immunohistochemical detection of hPTTG in pituitary adenomas (left), 

lung adenocarcinomas (middle) and breast adenocarcinomas (right), demonstrating predominantly 

cytoplasmic localisation of hPTTG, with rare staining of nuclear PTTG indicated by the black arrow 

(right) (figure adapted from (Saez et al. 1999)).   
 

Interestingly, observations from one study imply that hPTTG is a secreted protein.  

hPTTG expression was observed in the Golgi apparatus and vesicles in both human pituitary 

adenomas and mouse pituitary AtT-20 cells, consistent with a potential role in membrane 

trafficking mechanisms.  Further, secreted hPTTG was detected in the cell culture supernates 

taken from pituitary tumour cell lines (Minematsu et al. 2007).  The authors speculated that 

hPTTG itself may be a signalling molecule involved in pituitary autocrine and paracrine 
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pathways.  However, additional studies are required to validate this finding and to identify 

specific functions for secreted hPTTG.   

The live cell imaging studies in JEG-3 cells described previously, made the critical 

observation that hPTTG co-localised with the mitotic spindles while it was upregulated during 

mitosis (Yu et al. 2000b).  Similar studies by the same group reported that hPTTG localised to 

mitotic chromosomes in H1299 cells (Yu et al. 2003).  These observations are consistent with 

hPTTG’s primary function as the human securin involved in mitotic regulation (see section 

1.3.1) and further support for this was provided by a study that reports the phosphorylation of 

hPTTG during this phase of the cell cycle (Ramos-Morales et al. 2000). 

 

1.2.1.5 Phosphorylation of hPTTG 

 

In the study described above, where hPTTG protein expression in HeLa cell extracts 

was cell cycle dependent, it was also demonstrated in Western blot analyses that hPTTG 

migrated as a doublet in M-phase extracts compared to a single band observed in other 

phases, indicating that hPTTG is phosphorylated during mitosis (see Figure 1-6).  These 

findings were confirmed in studies incubating M-phase HeLa cell extracts with an alkaline 

phosphatase in the presence or absence of a phosphatase inhibitor.  In the absence of 

phosphatase inhibitor, expression of the heavier band representing phospho-hPTTG was 

reduced and there was a concomitant upregulation of the lighter band representing non-

phosphorylated hPTTG.  Addition of the inhibitor prevented this, suggesting the effect was 

specific to phosphorylation status of hPTTG.  Further support for mitotic phosphorylation of 

hPTTG was provided by demonstrating enhanced phosphorylation of purified recombinant 

hPTTG in vitro following incubation with mitotic HeLa cell lysates compared to interphase 

lysates (Ramos-Morales et al. 2000).  hPTTG contains putative phosphorylation sites for 
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cAMP- and cGMP-dependent protein kinases, casein kinase II, AKT and protein kinase C 

(PKC) (Dominguez et al. 1998) but thus far, the Ser165 residue on hPTTG is the only 

confirmed phosphorylation site of hPTTG.  This residue is located within the first PXXP 

motif (see Figure 1-2) and is a consensus site (T/SPXK/R) for cyclin-dependent kinase 2 

(CDC2) (Moreno and Nurse 1990; Nigg 1991; Zhou et al. 1994; Ramos-Morales et al. 2000), 

which is important for mitotic progression (Nurse 1994; Yu et al. 2000a).  Immunodepletion 

of the kinase CDC2 in mitotic cell lysates resulted in reduced hPTTG phosphorylation and, 

conversely, immunopurified CDC2 from mitotic cell lysates increased hPTTG 

phosphorylation in phosphorylation assays in vitro.  Treatment with the specific CDC2 

inhibitor, butyrolactone I, significantly reduced hPTTG phosphorylation in vitro.  

Furthermore, mutation of the Ser165 residue abolished CDC2-mediated phosphorylation of 

hPTTG (Ramos-Morales et al. 2000).  CDC2 is a regulator of many downstream targets 

involved in crucial mitotic events and so the finding that CDC2 directly phosphorylates 

hPTTG could be indicative of a requirement for hPTTG to be phosphorylated to perform its 

role as a securin (see section 1.3.1).    

 

Figure 1-6: Cell cycle-dependent expression and phosphorylation of hPTTG protein. A  Western 

blot of HeLa cell extracts arrested in the different phases of the cell cycle demonstrating the double 
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band during mitosis. B  Densitometry of the immunoblot indicating highest levels of hPTTG 

expression during mitosis (figure adapted  from(Ramos-Morales et al. 2000)). 

 

Phosphorylation of hPTTG by the DNA-dependent protein kinase (DNA-PK) was 

reported as part of a mechanism that involves hPTTG in DNA damage responses (see section 

1.3.5).  However, further studies are required to identify the site of hPTTG phosphorylation 

by this kinase, as well as the exact functional output following DNA-PK induced 

phosphorylation (Romero et al. 2001).    

The presence of a consensus MAPK phosphorylation site (Pro-X-Ser/Thr-Pro) 

(Alvarez et al. 1991) in the transactivation domain of Pttg, prompted one group to investigate 

the regulation of Pttg by Mapk activation.  It was found that rat Pttg is phosphorylated by 

Mapk at Ser162, which is the analogous site to human Ser165, and this was mediated by a 

direct interaction between an N-terminus Pttg Sh3-interacting domain and mitogen-activated 

protein kinase kinase 1 (Mek1).  Phosphorylation of Ser162 by Mapk facilitated nuclear 

translocation and subsequent transactivational function of Pttg, as determined by increased 

Fgf-2 transcription (see section 1.3.6).   Point mutations in either Mek1 or Mapk interacting 

regions of Pttg resulted in cytoplasmic retention of Pttg and loss of its transactivational 

functions (Pei 2000).   

Together, these results suggest that phosphorylation of hPTTG is important for its 

nuclear translocation where it has multiple roles including those as a mitotic regulator and 

gene transactivator.  Given the presence of other putative phosphorylation sites on hPTTG, it 

is clear that further studies are required to identify alternative mechanisms of hPTTG 

phosphorylation and to resolve the various functional outputs of phosphorylated hPTTG.    
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1.3 hPTTG initiates tumourigenesis 

 

1.3.1 hPTTG as a securin  

 

The findings of the various studies described above, that hPTTG is periodically 

expressed and phosphorylated in the nucleus throughout the cell cycle, peaking at the 

metaphase-anaphase boundary when it colocalises with mitotic spindles, are indicative of a 

crucial role for hPTTG in mitosis.   

Securins are proteins that are involved in the prevention of premature separation of 

sister chromatids during the metaphase to anaphase transition in mitosis.  In normal cell 

division, chromosomes are replicated before sister chromatids are segregated to opposite 

poles of the cell, ensuring production of diploid daughter cells that are genetically identical to 

the parent cell (Nasmyth et al. 2001; Nasmyth 2001; Nasmyth 2002).  Failure of the 

mechanisms that control the timely separation of sister chromatids results in inappropriate cell 

division causing aneuploidy and genetic instability.   

Eukaryotic chromosomal replication occurs during S-phase and sister chromatids are 

bound together by cohesin complexes that oppose the splitting forces exerted by microtubules 

(Michaelis et al. 1997; Zur and Brandeis 2001).  The cohesion complex is made up of 

multiple subunits of which mutation has been reported to cause improper separation of sister 

chromatids (Nasmyth 2001; Peters 2002).  The cysteine protease, separase, is involved with 

proteolytic degradation of cohesins during mitosis (Nasmyth et al. 2001; Nasmyth 2001; 

Nasmyth 2002).  Separase is a large 2121 amino-acid protein that is critically phosphorylated 

at Ser1126 and mediates its proteolytic activity through the key catalytic residue cys2029, 

which is conserved in all proteases (Uhlmann et al. 2000; Chestukhin et al. 2003).   In the first 

instance, cohesins are largely removed from the long arms of chromosomes during prophase 

and prometaphase by the actions of the kinases Aurora B and polo-like kinase 1 (PLK1) 
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(Losada et al. 1998; Losada et al. 2002; Waizenegger et al. 2000; Hauf et al. 2001; Peters 

2002; Sumara et al. 2002).  Subsequently, separase is activated at the start of anaphase and is 

required for the degradation of remaining cohesin complexes that are preferentially located 

proximally to centromeres, to allow the segregation of sister chromatids (Waizenegger et al. 

2000; Hauf et al. 2001; Peters 2002).   

Throughout most of the cell cycle, the proteolytic activity of separase is inhibited by a 

direct interaction with securin/hPTTG (Jallepalli et al. 2001; Jallepalli and Lengauer 2001).  

As described previously in human cells (see sections 1.2.1.4.5 and 1.2.1.5), hPTTG 

accumulates during G1 and G2 phases, with maximal expression in M-phase before an abrupt 

decline of hPTTG expression at the end of metaphase immediately prior to the onset of 

anaphase.  hPTTG expression diminishes rapidly at this stage as it is a substrate of the APC, 

which is a large cell cycle regulated ubiquitin-protein ligase made up of at least 11 subunits.  

The APC ubiquitinates a number of proteins involved in cell cycle regulation, resulting in 

their degradation at the 26S proteasome (Zachariae and Nasmyth 1999; Nasmyth 2001).  

Regulation of hPTTG/securin in this way allows the release of functional separase to 

breakdown remaining cohesins and ultimately, the progression to anaphase (Zou et al. 1999; 

Jallepalli et al. 2001).  APC substrates possess D-box and KEN box consensus sequences 

essential for their recruitment to the APC and mutations of both of these domains in hPTTG 

abolished hPTTG degradation during mitosis (Zou et al. 1999; Zur and Brandeis 2001; 

Glotzer et al. 1991; Pfleger and Kirschner 2000; Peters 2002).  Co-activators, such as CDC20 

and CDH1 bind to the the D-box and KEN box of APC substrates before assembling with the 

APC as part of a degradation recruitment mechanism.  In early mitosis, MAD2 (mitotic arrest 

deficient 2) inhibits Cdc20-APC assemblies as part of a complex spindle checkpoint system 

that prevents premature separase activity while chromosomes align correctly on mitotic 
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spindles (Peters 2006; Nasmyth 2001; Michel et al. 2001).  Once this checkpoint is passed, 

Cdc20-APC becomes active until the end of anaphase when Cdh1-APC activity is reported to 

be more prominent and continues until the next G1-phase is reached (Peters 2002). 

 

Figure 1-7: Schematic diagram and simplified representation of metaphase to anaphase transition 

during mitosis. hPTTG is ubquitinylated at the destruction box (DB) by the APC, which in turn is 

controlled by CDC20 and CDH1.  Following the degradation of hPTTG, separase cleaves the 

cohesins and both sister chromatids migrate to one side of the mitotic spindle. 
 

The APC complex mediates proteolysis of various other mitotic regulators including 

cyclins A and B (Zachariae and Nasmyth 1999; Nasmyth 2001; Peters 2002).  Cyclin B 

(CCNB1) is the regulatory subunit of CDC2 and together they inactivate separase by direct 

phosphorylation at Ser1126.  The CDC2/CCNB1 complex cannot phosphorylate separase 

while it is associated with hPTTG, suggesting that the APC complex releases active separase 

by proteolysis of hPTTG and cyclin B in two independent regulatory pathways (Gorr et al. 

2005; Stemmann et al. 2001; Peters 2002; Holland and Taylor 2006).  The existence of 
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multiple regulatory mechanisms provides a possible explanation for cell viability in the 

absence of hPTTG in vitro and in vivo (Jallepalli et al. 2001; Wang et al. 2001).   

 

1.3.2 hPTTG over-expression and genetic instability 

 

Thyroid cancers originate from a single transformed cell that acquires enhanced 

activity of proliferation and survival pathways.  Genomic instability in a cell can initiate 

further genetic aberrations including chromosomal imbalances, amplifications, deletions and 

translocations (Cooper 1995).  A number of studies have highlighted the presence of genetic 

instability in thyroid cancer, including the identification of specific chromosomal regions that 

are susceptible to allelic deletions in thyroid tumours (Kubo et al. 1991; Zedenius et al. 1995; 

Grebe et al. 1997; Marsh et al. 1997; Tung et al. 1997; Ward et al. 1998).  Aneuploidy is a 

common form of chromosomal instability (CIN) whereby various chromosomal 

rearrangements occur, including the complete loss or gain of whole chromosomes.  As a result 

of such aberrations, daughter cells may over-express oncogenes or under-express tumour 

suppressor genes.  Indeed, aneuploidy is characteristic of differentiated thyroid tumours and 

transformed thyroid cancer cell lines (Joensuu et al. 1986; Joensuu and Klemi 1988) and is 

associated with high mortality rates in papillary thyroid carcinomas (Sturgis et al. 1999).  

Mitosis is a complex process that is stringently regulated in order to ensure diploid cell 

division and genomic stability (Nasmyth et al. 2001; Nasmyth 2001; Nasmyth 2002).  The 

complexity of the processes required for the segregation of sister chromatids during 

metaphase and anaphase depends on multiple proteins that if aberrantly expressed may cause 

aneuploidy.  Identification of hPTTG as the human securin directly involved in sister 

chromatid segregation (see section 1.3.1) meant hPTTG was presented as a strong candidate 

for inducing aneuploidy in thyroid cancer when aberrantly expressed (see Figure 1-8).    
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Figure 1-8: Proposed model of hPTTG-induced aneuploidy. Left: normal mitosis, where the 

degradation of securin by the APC at the end of metaphase releases tonic inhibition of separin (now 

known as separase) thereby allowing cohesin degradation and equal distribution of chromatids 

between 2 daughter cells. Right: Abnormal mitosis in cells over-expressing hPTTG, when aneuploidy 

results from dysregulated sister chromatid separation (figure from(Yu et al. 2003)). 

 

 

Studies have shown induction of aneuploidy following transient or stable over-

expression of EGFP-tagged hPTTG in MG-63 osteosarcoma cells, as determined by increased 

frequency and severity of micronuclei, macronuclei and chromosomal bridges.  Untransfected 

or EGFP control transfected MG-63 cells had very low levels of basal aneuploidy (Yu et al. 

2000a).     

 One important study employed an approach of single cell live imaging to study the 

effects of hPTTG over-expression on mitosis, where they were able to use a CCD digital 

camera to capture phase-contrast or fluorescence images every minute (during metaphase and 

anaphase) or every few hours (post-telophase) over a 48-hour period (Yu et al. 2003) (see 

Figure 1-9).  Individual human lung cancer H1299 cells with low endogenous hPTTG 

expression were utilised for the study, where untransfected or EGFP control transfected cells 
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displayed normal cell division resulting in diploid daughter cell production (see Figure 1-9 

A).  Cells transfected with hPTTG-EGFP demonstrated effects dependent on expression 

levels.  In cells where hPTTG-EGFP levels were low, hPTTG was typically degraded before 

anaphase and normal mitosis ensued.  However, high levels of hPTTG-EGFP over-expression 

resulted in a prolonged prophase and metaphase, asymmetric cytokinesis, ultimately causing 

catastrophic cell division (see Figure 1-9 B).  Most frequently, total failure to segregate 

metaphase chromosomes led to all chromosomes moving towards one pole in conjunction 

with cell elongation and development of a midline furrow.  Consequentially, one daughter cell 

contained all the parental DNA content forming a macronucleus and the other was a non-

viable cell without a nucleus.  In other cells, hPTTG-EGFP over-expression caused partial 

segregation of sister chromatids.  This resulted in development of ‘anaphase bridges’ where 

chromatin breakages between partially fused chromatids occur under the opposing forces 

exerted by microtubules and ultimately leading to the appearance of micronuclei.  

Furthermore, over-expression of a mutated hPTTG lacking the KEN box and D-box domains 

that allow it to be targeted for degradation by the APC (see section 1.3.1), also resulted in 

asymmetrical cytokinesis (Yu et al. 2003).  The results discussed above strongly indicate that 

that over-expression of hPTTG or lack of hPTTG degradation results in inappropriate cell 

division and a state of aneuploidy.   
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Figure 1-9: Live-imaging of single H1299 cells with phase-contrast microscopy and EGFP 

fluorescent-microscopy.  A  Visualisation of normal cell division of a single H1299 cell expressing 

EGFP alone into 2 daughter cells during mitosis.  Time when images were taken is shown for each 

frame; Bar: 10 m.  B  Chromosome non-segregation and aneuploidy resulting from failure of 

hPTTG-EGFP degradation. Single live H1299 cells expressing hPTTG-EGFP were continuously 

observed. The complete absence of cytokinesis results in one daughter cell with a macronucleus and 

one non-viable daughter cell. Arrow: non-segregated chromosomes.  (Figure adapted from (Yu et al. 

2003)).  
 

A. B.

METAPHASE

ANAPHASE

TELOPHASE

PHASE

CONTRAST EGFP
PHASE

CONTRAST EGFP

METAPHASE

CHROMOSOME 

POLAR 

MOVEMENT

ASYMMETRICAL

CYTOKINESIS

INTERPHASE

H1299 Cell Expressing EGFP H1299 Cell Expressing PTTG-EGFP



Chapter 1  General Introduction 

 

37 
 

To assess the importance of hPTTG in inducing genetic instability in thyroid cancer, our 

group employed a fluorescent intersimple sequence repeat PCR assay (FISSR-PCR) which 

was first used to measure intra-chromosomal instability in sporadic colorectal cancers (Basik 

et al. 1997).  We demonstrated that genomic instability was variable, but overall higher in 

thyroid cancer tissue samples compared to normal tissue controls (increased genomic 

instability index of 6.7-72.7 %).  Importantly we found a very strong correlation (R
2
 = 0.8, p = 

0.007) between hPTTG expression and genomic instability in thyroid cancers (Kim et al. 

2005).  Furthermore, over-expression of hPTTG in FTC133 human thyroid follicular 

carcinoma cells induced genetic instability in a dose-dependent manner (Kim et al. 2005).  

These findings strengthen evidence for a relationship between hPTTG and genetic instability 

in vitro and in vivo, indicating that hPTTG at least in part, may be a causal factor in the 

chromosomal aberrations observed in differentiated thyroid cancers.   

 

1.3.3 hPTTG over-expression in mouse models 

 

Two studies have directly investigated the effects hPTTG over-expression in vivo 

through studies in transgenic mice.  hPTTG was targeted to the pituitary glands of mice using 

the α-subunit of glycoprotein hormone (α-GSU) promoter, which is the earliest expressing 

pituitary hormone gene product.  Female αGSU.PTTG mice had significantly enlarged 

pituitary glands and elevated serum IGF-1 levels compared with WT mice.  However, the 

study focused on a more aggressive phenotype in male αGSU.PTTG mice, which 

demonstrated plurihormonal focal pituitary transgene expression with LH-, TSH- and, 

unexpectedly, also GH-cell focal hyperplasia and adenoma, associated with increased serum 

LH, GH, testosterone, and IGF-I levels.  MRI scans demonstrated large and irregularly shaped 

pituitary glands in αGSU.PTTG mice (see Figure 1-10).  Some of these mice died prematurely 
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from urinary tract obstruction, caused by prostate and seminal vesicle hyperplasia due to 

elevated serum hormone levels.  Critically, this study provided evidence of a role for hPTTG 

over-expression in enhanced pituitary cell growth and specifically in the promotion of 

differentiated polyhormonal cell focal expansion (Abbud et al. 2005).   

 

Figure 1-10: Enlarged pituitary glands in αGSU.PTTG mice.  Sagittal (A) and coronal (B) MRI 

images of representative WT and αGSU.PTTG mice.  White arrows indicate the pituitary gland.  

Adapted from (Abbud et al. 2005).  

 

  Following observation of hPTTG over-expression in ovarian cancers (Puri et al. 

2001), a transgenic mouse model was developed to directly investigate the effect of hPTTG 

over-expression in the ovary (El-Naggar et al. 2007).  Increased hPTTG expression was 

evident in the ovarian surface epithelium and granulosa cells of transgenic mice, driven by the 

Mullerian inhibitory substance type II receptor gene promoter (MISIIR).  Although female 

MISIIR-PTTG transgenics did not develop ovarian tumours,  the study reported an overall 

increased mass of the corpus luteum, generalised hypertrophy of the myometrium of uteri, 

with cystic glandular and hyperplasia of the endometrium.  The study concluded that hPTTG 

is involved with the initial transformation of ovarian epithelial cells and may be important in 

WT αGSU.PTTG

A.

B.



Chapter 1  General Introduction 

 

39 
 

creating pre-cancerous conditions, but its over-expression alone is not sufficient for ovarian 

tumourigenesis (El-Naggar et al. 2007).   

 

1.3.4 hPTTG under-expression and genetic instability 

 

Following the identification of hPTTG as the human securin with a crucial role in 

regulating sister chromatid segregation thereby ensuring the maintenance of euploidy, it was 

predicted that cells lacking hPTTG would not be viable.  It was therefore surprising that both 

hPTTG-null cells and Pttg knockout mice are viable (Jallepalli et al. 2001; Wang et al. 2001).   

Human colorectal HCT116 cells, which have a stable karyotype and intact DNA 

damage and mitotic spindle checkpoints, were used to establish an hPTTG-null cell line 

(hSecurin
-/-

) by means of homologous recombination.  Although hSecurin
-/- 

cells generally 

grew more slowly, the percentage of cells in apoptosis, mitosis or interphase was almost 

identical to that of hSecurin
+/+

 cells, thereby indicating their viability.  Multiplex fluorescent 

in situ hybridisation (M-FISH) was used to analyse chromosome number and structure in 

metaphase spreads and loss of chromosomes was revealed in greater than 80 % of hSecurin
-/-

 

cells.  Time-lapse microscopy studies were used to analyse key mitotic events and over one 

third of hSecurin
-/-

 cells failed to separate metaphase chromosomes.  Despite non-completion 

of anaphase, hSecurin
-/-

 cells eventually exited mitosis after an extensive delay at the 

metaphase to anaphase transition and daughter cells were associated with budded nuclei, 

chromosomal instability and gross aneuploidy (Jallepalli et al. 2001).   

 Subsequently, the development of a Pttg knockout (Pttg
-/-

) mouse has provided insight 

to the effects of the absence of Pttg in vivo (Wang et al. 2001; Wang et al. 2003).  Pttg
-/-

 mice 

are viable and fertile, despite females being deemed subfertile following observation of 

reduced average litter sizes.  Major characteristics of Pttg
-/-

 mice are testicular and splenic 
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hypoplasia, thymic hyperplasia and thrombocytopenia.  Although the reason for these 

phenotypes is unclear, Pttg levels are abundant in normal testes and thymus, so the organ-

specific varying phenotypes described in this study indicate cell type specific regulation of 

growth by Pttg.  Mouse embryonic fibroblasts (MEFs) derived from Pttg
-/-

 mice had a 

shortened G1-phase and a prolonged G2- to M-phase transition.  Interestingly, the phenotype 

of a high percentage of Pttg
-/-

 MEFs being in G2- and M-phase, was reversed by retroviral 

introduction of Pttg.  Cytogenetic analyses revealed that Pttg
-/-

 MEFs had frequently damaged 

nuclei, chromosomal abnormalities particularly in centromeric regions and up to 15 % of 

nuclei were bi- or multinucleated.  Metaphase chromosomal spreads revealed premature 

centromere division, up to 6 % chromosomal abnormality including quadriradial and triradial 

chromosome formations and overall 10-15 % aneuploidy in Pttg
-/-

 MEFs compared to Pttg
+/+

 

MEFs (Wang et al. 2001).   

 The results of the studies described above clearly lend further support to the function 

of hPTTG as a securin, though the viability of hSecurin
-/-

 HCT116 cells and Pttg
-/-

 mice is 

indicative of the existence of alternative mechanisms driving cell cycle progression and 

survival when hPTTG expression is lacking.  As discussed in section 1.3.1, one potential 

mechanism is the inhibitory phosphorylation of separase at Ser1126 by the CCNB1/CDC2 

complex, where separase is only activated once cyclin B (CCNB1) is ubiquitinylated by the 

APC (Stemmann et al. 2001; Gorr et al. 2005; Holland and Taylor 2006).  Supporting this, a 

further study in hSecurin
-/-

 HCT116 cells demonstrated that progression to anaphase and 

specifically the event of centromere separation, was dependent on an active proteasome 

(Gimenez-Abian et al. 2005).   

 Further work using hSecurin
-/-

 HCT116  cells revealed that the characteristic loss of 

chromosomes in these cells, as discussed above (Jallepalli et al. 2001), is in fact overcome 
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following continued passaging of these cells.  Despite persistently low separase activity, cells 

regained chromosomal stability and normal cell division with complete segregation of sister 

chromatids (Pfleghaar et al. 2005).  Another study highlighted the redundancy of Pttg and 

separase in mitotic regulation by mutating the Ser1121 phosphorylation residue of separase in 

Pttg
-/-

 MEFs, thereby generating double mutant securin 
-/-

 separase  
-/S1121A 

MEFs.  Following 

arrest of asynchronously growing cells in G2-/M-phase through nocodazole treatments, it was 

apparent that sister chromatids were separated prematurely in double mutant cells, though 

cells remained viable.  However, only a small degree of activation of separase was observed 

suggesting other mechanisms of separase inhibition may exist, at least in MEFs (Huang et al. 

2005).  Although the studies described above indicate Pttg function is subject to redundancy, 

a complex phenotype observed in 6 month old male Pttg
-/-

 mice suggests that this is not true 

for all cell types.  These mice exhibit hyperglycaemia and insulinopaenia typical of diabetes, 

though collectively the phenotype did not conform to either Type I or Type II diabetes.  The 

observed features were due to impaired proliferation in Pttg
-/-

 pancreatic β-cells, where the 

presence of macronuclei were also observed, consistent with aberrant cell division due to lack 

of Pttg (Wang et al. 2003).  Further investigations of this phenotype revealed that p21 was 

activated in young mice and genes associated with DNA damage were progressively 

upregulated in adult Pttg
-/-

 mice.  It was concluded that reduced pancreatic β-cell mass was 

caused by a combination of apoptosis and senescence, secondary to DNA damage 

(Chesnokova et al. 2009).   

 Despite some evidence for hPTTG redundancy, the studies described above clearly 

demonstrate that lack of hPTTG causes genetic instability.  Taken together with the 

abundance of studies demonstrating genetic instability as a result of hPTTG over-expression 

(see section 1.3.2), it is possible that hPTTG represents an important gene at an early stage of 
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tumourigenesis, where genetic instability is widely recognised as a critical factor of tumour 

development (Melmed 2003).   

 

1.3.5 hPTTG, P53, apoptosis and DNA damage responses 

It is possible that over-expression of hPTTG can further contribute to initiating events 

in thyroid cancer, as well as to subsequent phases of disease progression, through interactions 

with vital cell cycle and DNA repair genes.  p53 is mutated in over 50 % of malignancies and 

is therefore of particular importance in many cancers (Hollstein et al. 1994).  It is a tumour 

suppressor gene that is activated in response to DNA damage and elicits protective effects 

through induction of cell cycle arrest, DNA repair and apoptotic pathways (Levine 1997; 

Vousden 2000).  The protective activities of p53 are mediated through transcriptional 

activation of downstream target genes (El-Deiry 1998; Lakin and Jackson 1999; Wahl and 

Carr 2001) and loss of p53 activity or the ability to induce a p53 response can cause malignant 

progression (Vousden 2006).  Over-expression of oncogenes causes cellular stress through 

DNA damage, as is true for over-expression of hPTTG in cells (see section 1.3.2) and thus 

elicits protective cellular responses.  Interestingly, several studies have described interactions 

between hPTTG and p53 in association with apoptosis.   

hPTTG induction of apoptosis was initially observed following over-expression of 

EGFP-hPTTG in JEG-3 cells (Yu et al. 2000b).  In a subsequent study by the same group, 

over-expression of hPTTG in MCF-7 cells with WT levels of p53 caused induction of 

apoptosis following upregulation and nuclear translocation of p53.  This effect was enhanced 

by contransfections with p53 and abrogated by expression of the p53 inactivator, human 

papillomavirus E6 protein.  However, hPTTG over-expression in p53 null MG-63 cells also 

resulted in apoptosis suggesting that hPTTG over-expression activates apoptotic pathways via 
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p53-dependent and p53-independent mechanisms.  Moreover, hPTTG induced aneuploidy in 

p53 null MG-63 cells, but not in MCF-7 or JEG-3 cells with WT p53 expression, suggesting 

p53 is capable of preventing hPTTG-induced aneuploidy (Yu et al. 2000a).  Another study 

provided further support for p53-mediated hPTTG induction of apoptosis, where over-

expression of either hPTTG or p53 in HEK293 cells caused apoptosis.  hPTTG was shown to 

indirectly mediate p53 transcription via activation of c-myc expression, which subsequently 

bound directly to the p53 promoter.  Enhanced expression of the well established pro-

apoptotic p53 effector, BAX, was representative of increased p53 function following hPTTG 

over-expression (Hamid and Kakar 2004; Nagashima et al. 2003).  Together, these results 

suggest that cells can respond to potentially harmful levels of hPTTG over-expression through 

induction of apoptotic pathways.  However, failure of these mechanisms could support 

survival of aneuploid cells and sustained tumour growth.   

The relationship between hPTTG and p53 is ambiguous due to contrasting data 

between studies.  Pull-down and coimmunoprecipitation assays demonstrated a direct and 

specific interaction between hPTTG and p53 in vitro and in vivo (Bernal et al. 2002).  This 

interaction blocked p53 binding to DNA, p53 transcriptional capabilities and in contrast to the 

findings above, p53-induced apoptosis was prevented by over-expression of hPTTG.  In 

addition, a potentiation of the apoptotic and transactivating functions of p53 was 

demonstrated in hPTTG
 

deficient cells (hPTTG
-/-

 human colorectal HCT116 cells), 

highlighting the physiological relevance of this interaction (Bernal et al. 2002).  Adenoviral 

vector delivery of siRNA against hPTTG in SH-J1 hepatoma cells resulted in activation of 

p53 leading to increased p21 levels and induction of apoptosis.  Further, in vivo study of SH-

J1 tumor xenografts established in nude mice observed reduced tumour growth following 

intra-tumour delivery of adenoviral hPTTG siRNA (Jung et al. 2006).  Apoptosis was induced 
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by UV irradiation in HeLa cells, and apoptosis was enhanced in cells with depleted hPTTG 

levels following siRNA knockdown and reduced in cells over-expressing hPTTG (Lai et al. 

2007).  In the context of hPTTG inhibition of p53-mediated apoptosis, reduced apoptosis in 

tumour cells with high hPTTG expression could explain the prolonged survival of these cells, 

thereby promoting tumourigenesis. 

The relationship between hPTTG and p53 is further complicated by the finding that 

hPTTG is itself a transcriptional target of p53.  Doxorubicin and bleomycin are drugs known 

to cause double stranded DNA breaks (Povirk 1996; Gewirtz 1999).  Treatment of cells with 

these drugs induced DNA damage and repression of hPTTG expression was reported, an 

effect that was entirely dependent on the presence of p53.  Further analysis of the hPTTG 

promoter indicated that following DNA damage, functionally activated p53 prevents NF-Y 

binding to the hPTTG promoter and subsequent regulation of its transcription (Zhou et al. 

2003).  An additional study has since demonstrated direct binding of p53 to the hPTTG 

promoter resulting in hPTTG suppression (Kho et al. 2004).  Repression of hPTTG 

expression following DNA damage induced by UV irradiation was commonly observed in 

multiple cell lines and occurred independently of p53.  Instead, reduced hPTTG expression 

was attributed to two independent mechanisms involving decreased hPTTG protein synthesis 

and increased proteasomal degradation of hPTTG.  hPTTG was however required for cell 

cycle arrest following UV irradiation and lack of hPTTG resulted in premature mitosis and 

increased apoptosis (Romero et al. 2004).  hPTTG degradation was thought to be APC-

mediated due to the stability of a double D-box and KEN box mutant (Romero et al. 2004), 

though more recently, SKP1-CUL1-βTrCP E3 was identified as the ubiquitin ligase that 

mediates hPTTG degradation following UV irradiation (Limon-Mortes et al. 2008).  In 

contrast, hPTTG was induced in both RKO (wild-type p53) and SW480 (mutant p53) 
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colorectal carcinoma cells following X-ray radiation.  Further, cytotoxicity and apoptosis was 

increased in hPTTG-null HCT116 cells compared with wild-type HCT116 cells (Chiu et al. 

2007).  Together these results suggest that increased levels of hPTTG in colorectal carcinoma 

cells following X-ray radiation may be associated with protective induction of apoptosis. 

Further evidence for the critical role of hPTTG in DNA damage response pathways is 

the finding that hPTTG can form complexes with Ku heterodimers (Romero et al. 2001).  The 

Ku heterodimer containing Ku70 and Ku80 binds to DNA and facilitates non-homologous 

DNA end-joining (NHEJ) repair of double-strand DNA breaks through recruitment of the 

catalytic component of DNA-PK (Kharbanda et al. 1998; Smith and Jackson 1999).   hPTTG 

binds to Ku70 at a region located at its N-terminal forming an inhibitory complex; in the 

presence of DNA damage, Ku70 dissociates to allow DNA-PK-dependent DNA repair.  The 

ability of DNA-PK to phosphorylate hPTTG may facilitate its dissociation from Ku70 

(Romero et al. 2001).  Concordant with this, hPTTG over-expression inhibits Ku70 DNA 

binding and represses repair of double-stranded DNA breaks (Kim et al. 2007b).  Together, 

these data suggest that hPTTG over-expression can cause aberrant sequestration of Ku 

proteins and thus inhibit appropriate DNA repair mechanisms, leading to further genetic 

instability.  Consistent with this, studies observed reduced cellular proliferation rates 

accompanied by altered patterns of end resection in NHEJ assays following DNA damage in 

hPTTG-null HCT116 cells compared with normal HCT116 cells (Bernal et al. 2008).   

It is clear that we only have a partial understanding of the complex and intricate 

relationship between hPTTG, p53 and other DNA repair mechanisms and these remain to be 

elucidated in the context of the thyroid.  This is a fascinating and important area of research 

since the progression of many cancers requires cells to escape normal regulation of apoptosis 

by p53 and the activation of DNA repair pathways, which could indeed be a fundamental 
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consequence of hPTTG over-expression observed in differentiated thyroid cancer, causing 

prolonged cell survival and increased genetic instability.   

 

1.3.6 hPTTG as a gene transactivator 

 

The early observations that hPTTG has a similar peptide sequence to DNA binding 

proteins, and shows partial nuclear localisation, suggested that hPTTG may transactivate other 

genes (Dominguez et al. 1998).  A fusion protein of hPTTG and the DNA binding protein 

GAL4 was able to activate GAL4 responsive elements to drive expression of the his3 and 

lacZ genes in yeast, as well as the luciferase gene in mammalian cells.  Deletion of amino 

acids 124-202 abolished the transactivational ability of hPTTG, whereas mutation of the N-

terminus (amino acids 1-122) did not, confirming that the C-terminal part of hPTTG is 

responsible for this function (Dominguez et al. 1998).   

Indeed, the C-terminus of hPTTG is an acidic region containing multiple glutamic 

acid and proline residues, which are characteristic of transactivation domains (Dominguez et 

al. 1998; Wang and Melmed 2000b; Pei 2000).  Within the proline-rich region, there are two 

PXXP motifs that are putative SH3-interacting sites; highly conserved regions that govern 

transduction of intracellular signalling pathways.  Crucially, point mutations in the PXXP 

motifs resulted in abolished transcriptional activation, as well as hPTTG’s in vitro 

transforming and in vivo tumour-inducing activity (Zhang et al. 1999b).  Similarly, point 

mutation of a key proline residue in murine Pttg abrogated transcriptional activity and 

transforming capability in NIH3T3 cells (Wang and Melmed 2000b), suggesting that the 

transactivation and transforming abilites of hPTTG are intrinsically linked.  Interestingly, in 

vitro studies demonstrated that Egf stimulation of the Mapk cascade resulted in nuclear 

translocation of rat Pttg and subsequent transcriptional activity.  These effects were dependent 
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on Mapk phosphorylation of Ser162 within the transactivation domain, in addition to a 

specific interaction between Mek1 and an SH3-interacting domain located between amino 

acids 51 and 54 (Pei 2000).  The corresponding residue in hPTTG, Ser165, has thus far only 

been described as a phosphorylation target for CDC2 (Ramos-Morales et al. 2000) and the 

association with MAPK remains to be verified (see section 1.2.1.5).   

 

1.3.6.1 hPTTG and c-Myc 

 

 Several transcriptional targets of hPTTG have been identified, including genes 

involved in cellular growth and angiogenesis, as will subsequently be discussed (see section 

1.4).  Initially, cDNA PCR array analysis was performed in order to broadly identify 

transcription targets of hPTTG.  A number of genes were upregulated in cell lines following 

induction of rat Pttg including Mek1, mitogen-activated protein kinase kinase 3 (Mek3), 

protein-kinase C beta (Pkcβ-1) and
 
heat shock protein 70 (Hsp70).  However, the c-Myc 

oncogene was identified as a major Pttg transcription target and was subject to further 

investigation (Pei 2001).  c-Myc is a transcription factor that is deregulated in various human 

tumour types (Patel et al. 2004), possibly through its critical role in control of cellular 

proliferation, with over-expression of c-Myc resulting in cell-cycle progression, cell 

transformation and block of differentiation (Henriksson and Luscher 1996).  Induction of Pttg 

in HeLa cells resulted in increased proliferation and transformation following activation of c-

Myc expression by direct binding to the c-Myc promoter in a complex with the ubiquitously 

expressed upstream stimulatory factor (USF1).  Interestingly, Pttg-mediated c-Myc activation 

was dependent on phosphorylation of Pttg, suggesting Pttg phosphorylation may be of 

importance in Pttg gene transactivation (Pei 2001).  Induction of p53 by hPTTG (see section 

1.3.5) was shown to be an indirect effect dependent on prior activation of c-Myc, which 



Chapter 1  General Introduction 

 

48 
 

formed heterodimers with its binding partner MAX to drive the p53 promoter (Hamid and 

Kakar 2004).   

Given the similar effects of hPTTG and c-Myc over-expression, in addition to the 

dependency of some hPTTG effects on c-Myc activation, it is possible that hPTTG’s 

oncogenic actions are mediated via c-Myc.  However, high levels of hPTTG expression in 

pituitary tumours was not associated with increased c-Myc expression (Boggild et al. 1994; 

Woloschak et al. 1994; Saez et al. 1999; Zhang et al. 1999a).  Furthermore, hPTTG is 

predominantly expressed during G2/M-phase (see section 1.3.1), whereas c-Myc is an S-

phase protein (Thompson 1998) suggesting they are independently expressed throughout the 

cell-cycle.  Although these observations suggest hPTTG has tumourigenic effects independent 

of c-Myc, it remains plausible that hPTTG induction of c-Myc plays a role in tumour 

initiation.   

 

1.3.6.2 hPTTG and other interacting factors 

 

Chromatin immunoprecipitation (ChIP)-on-Chip experiments were used to 

simultaneously assess 20,000 gene promoters in JEG-3 cells, and demonstrated a global 

transcriptional effect of hPTTG (Tong et al. 2007).  Binding of hPTTG was observed in a 

total of 746 promoters with functions relating to cell cycle, metabolic control and signal 

transduction.  SP1 binding sites were frequently identified in hPTTG-binding promoters and 

subsequent co-immunoprecipitation and pull-down assays confirmed a specific interaction 

between hPTTG and SP1 both in vivo and in vitro via hPTTG’s N-terminal (amino acids 1-

120).  The results of this study show that hPTTG exhibits properties of a global transcription 

factor and may act through formation of transcription factor complexes by binding other 

proteins (Tong et al. 2007).   
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Yeast two-hybrid systems were designed to identify proteins physically associating 

with hPTTG in human testicular cells.  In vitro binding assays and co-immunoprecipitation 

assays identified a specific interaction, conferred by the C-terminal of Pttg, between rat Pttg 

and the molecular chaperone HSJ2 and ribosomal protein S10.   The functional significance of 

these interactions remain unknown, but Pttg was expressed at specific stages of 

spermatogenesis suggesting it has an important role in this process (Pei 1999). 

Using protein microarray screening, hPTTG was found to have protein-protein 

interactions with approximately 80 proteins.  Interaction with S10 was confirmed and 

associations with transcription factors such as TATA box-binding protein-like protein 1 

(TBPL1) and activator of basal transcription 1 (ABT1) were identified, providing further 

evidence that hPTTG is important in transcriptional regulation (Tong et al. 2008; Tong and 

Eigler 2009).  A specific interaction with Aurora-A kinase was identified and validated using 

His-tag pull-down assays and co-immunoprecipitation assays in HCT116 cells.  hPTTG over-

expression resulted in inhibition of Aurora-A kinase activity and abnormally condensed 

chromatin.  hPTTG-null cell proliferation was more sensitive to Aurora-A knock down and to 

Aurora kinase Inhibitor III treatment compared to WT cells, indicating that hPTTG 

knockdown could be a potential approach to improve the efficacy of Aurora kinase inhibitors 

(Tong et al. 2008).   

Overall, hPTTG seems to exert its transcriptional effects either by direct DNA binding 

or by interacting with proteins at both the N- and C-terminal regions to facilitate or inhibit 

transcriptional processes.  However, the effects observed following mutations in the C-

terminal transactivation domain suggest that this region is particularly important in hPTTG’s 

transactivational and transforming capabilities.   
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1.4 hPTTG promotes tumour progression 

 

Aside from the role of hPTTG in initiating thyroid cancer through the pathways 

described above, hPTTG has been shown to interact with growth factors and cytokines that 

are implicated in further dysregulation thereby driving disease progression. The relationships 

between hPTTG, FGF-2 and VEGF are the most clearly established and appear to be of 

critical importance in tumour progression through promotion of growth and angiogenesis.  

Angiogenesis is the normally quiescent process of blood vessel development that is thought to 

become highly activated during tumourigenesis and is necessary for tumour growth and 

invasion (Folkman 1992; Folkman and Shing 1992; Risau 1997; Hanahan and Folkman 1996; 

Folkman 1972; Folkman 1990).  Endocrine organs are typically highly vascular, but thyroid 

tumours acquire an even greater blood supply (Goldenberg et al. 1998; Akslen and LiVolsi 

2000; Turner et al. 2003), driven by altered levels of pro-angiogenic growth factors such as 

FGF-2 (Bikfalvi et al. 1997; Powers et al. 2000; Turner et al. 2003) and VEGF (Ferrara and 

DavisSmyth 1997) and inhibitors, as well as extracellular matrix changes that allow 

endothelial migration (Folkman 1992; Folkman and Shing 1992; Hanahan and Folkman 1996; 

Turner et al. 2003).  The critical roles of FGF-2 and VEGF are well established where both 

molecules act synergistically to modulate tumour angiogenesis and invasion (Gospodarowicz 

et al. 1987; Bikfalvi et al. 1997; Ferrara and DavisSmyth 1997).   

 

1.4.1 FGF-2 

 

FGF-2 belongs to a family of small poly-peptide growth factors, comprising 23 

members, which share common certain structural characteristics, are expressed by almost all 

tissues and are mitogenic to many cell types.  FGFs are secreted into the extracellular 

environment where they form a reservoir by binding the heparin-like glycosaminoglycans 
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(HLGAGs) or the extracellular matrix (ECM).  Subsequently, their activity is mediated 

through digestion of the ECM or by secreted FGF binding proteins (Powers et al. 2000).  

Though four FGF-receptors (FGFR 1-4) sharing common structures including an intracellular 

tyrosine kinase domain have been identified, FGF-2 preferentially interacts with FGFR1 

(Powers et al. 2000; Maher 1996).  FGFR1 is expressed in the nuclear fraction of various cell 

types (Maher 1996), including thyroid follicular cells (Patel et al. 1996), and nuclear FGFR1 

is associated with proliferation (Maher 1996; Stachowiak et al. 1997).  The binding of FGF-2 

to FGFR1 results in receptor dimerisation, autophosphorylation of tyrosine kinase residues 

and the subsequent activation of various signal transduction pathways (Lemmon and 

Schlessinger 1994; Bikfalvi et al. 1997; Pawson 1995).  The major pathways with reported 

involvement in FGF signalling are the Phospholipase C-γ (PLC-γ), v-crk sarcoma virus CT10 

oncogene homolog (CRK) and RAS/MAPK signalling pathways (Bikfalvi et al. 1997; 

Kouhara et al. 1997; LaVallee et al. 1998; Powers et al. 2000).  FGF-2 has important 

physiological roles in embryonic development where it is involved in the regulation of 

growth, differentiation and function of various systems (Bikfalvi et al. 1997; Powers et al. 

2000; Logan et al. 1991; McAvoy et al. 1991; Unsicker et al. 1992; Baird 1994).  In addition, 

FGF-2 is a potent angiogenic molecule which stimulates smooth muscle cell growth, wound 

healing and tissue repair in vivo and in vitro (Folkman and Shing 1992; Bikfalvi et al. 1997; 

Powers et al. 2000) and through these mitogenic and angiogenic capabilities can contribute to 

tumour development (Murai et al. 1996).    

 

1.4.2 VEGF 

 

Similarly to FGF-2, VEGF is a potent mitogen but acts in a highly specific manner on 

micro- and macrovascular endothelial cells (Leung et al. 1989; Plouet et al. 1989) and 
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activates serine proteases urokinase-type and tissue-type plasminogen activators known to be 

involved in cellular invasion and tissue remodelling (Pepper and Montesano 1990).  

Furthermore it affects vascular permeability, promotes the expression of adhesion molecules 

on endothelial cells, induces vasodilatation and influences monocyte chemotaxis (Senger et al. 

1983; Roberts and Palade 1995; Ferrara and DavisSmyth 1997).  Alternative splicing of a 

single VEGF gene results in the synthesis of four different isoforms (VEGF121, VEGF165, 

VEGF189, VEGF206) that have different tissue expression.  However, VEGF165 is the 

predominant isoform and thus commonly referred to as VEGF (Ferrara and DavisSmyth 

1997; Ramsden 2000).  The actions of VEGF are facilitated by binding to either VEGFR-1 

(FLT-1) or VEGFR-2 (KDR), which both have consensus tyrosine kinase sequences that are 

autophosphorylated following formation of multimeric VEGF receptor complexes (Vaisman 

et al. 1990; Ferrara and DavisSmyth 1997; Ramsden 2000; Guo et al. 1995).  Subsequently, 

SH2- containing proteins are recruited to the complex and activate intracellular transduction 

pathways involving PLC-γ and the ras GTP-ase activating protein (Ferrara and Davis-Smyth, 

1997).  The importance of VEGF in tumour development is evidenced by a correlation 

between VEGF mRNA expression and tumour vascularity (Brown et al. 1995; Viglietto et al. 

1997; Kerbel et al. 1998) and increased levels of circulating VEGF in cancer patients (Kondo 

et al. 1994).  Furthermore, upregulation of FLT-1 and KDR mRNA has been found in the 

endothelial cells associated with tumours (Plate et al. 1994; Brown et al. 1995).  Specifically 

in thyroid malignancies VEGF represents an important bio-marker as there is a strong 

correlation between its expression and tumour aggressiveness and metastasis (Soh et al. 1997; 

Bunone et al. 1999; Klein et al. 2001).   
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1.4.3 hPTTG, FGF-2, VEGF and angiogenesis 

 

Various studies have described the induction of FGF-2 by hPTTG.  Stable over-

expression of hPTTG in NIH3T3 cells resulted in increased FGF-2 mRNA expression and 

secretion as determined by ELISA.  Mutation within the SH3-interacting domain of hPTTG 

resulted in abrogation of these effects and also prevented in vitro transformation and in vivo 

tumourigenesis, indicating that enhanced FGF-2 signalling is an important event in these 

processes (Zhang et al. 1999b).  Subsequently, it was demonstrated that FGF-2 in turn induces 

hPTTG mRNA expression in NIH3T3 cells, suggesting the existence of autocrine pathways 

of regulation between hPTTG and FGF-2.  This effect was blocked by antiserum against 

FGF-2, which also reduced basal hPTTG expression providing further evidence for an auto-

regulatory feedback mechanism (Heaney et al. 1999).  Our group’s own studies demonstrated 

that expression of FGF-2 was induced following hPTTG over-expression in human primary 

follicular thyroid cells.  This effect was unaltered by mutation of the hPTTG phosphorylation 

site (S165A) but was significantly reduced by mutation of the SH3-interacting domain 

(Boelaert et al. 2003a).  Furthermore, a positive correlation between high levels of hPTTG 

and FGF-2 expression was observed in differentiated thyroid cancers.  Both can be considered 

important prognostic indicators, as hPTTG over-expression was associated with tumour 

recurrence and the expression of FGF-2 mRNA was independently associated with lymph 

node invasion and distant metastases (Boelaert et al. 2003a).  Further, use of luciferase 

reporter assays in COS-7 cells demonstrated that hPTTG regulation of FGF-2 was a direct and 

promoter-specific effect (Chien and Pei 2000).   
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Figure 1-11: hPTTG and FGF-2 as potential prognostic indicators.  A  Fold changes in hPTTG 

mRNA in recurrent and non-recurrent thyroid cancers.  B  Fold changes in FGF-2 mRNA in thyroid 

cancers with and without nodal involvement.  Gene expression is relative to a value of 1.0 in normal 

thyroid tissue. ***, p < 0.001.   Also displayed are the results of multiple linear regression analysis 

relating hPTTG mRNA to recurrence (A) and relating FGF-2 mRNA to nodal metastases (B).  Results 

shown are mean ΔCt ± SEM.  Adapted from (Boelaert et al. 2003a).   
 

Our group has also performed studies that have elucidated an additional auto-

regulatory mechanism involving hPTTG and VEGF.  Having reported increased hPTTG 

levels in 111 pituitary adenomas examined (McCabe et al, 2003), we also examined the 

expression of VEGF and KDR in these tumours (n = 103) (McCabe et al, 2002). Non-

functioning pituitary tumours (n = 81) demonstrated markedly raised VEGF mRNA (3.2-fold, 

p < 0.05) and protein concentrations compared with samples of normal pituitary (n = 10).  

Moreover a significant positive correlation between VEGF and hPTTG mRNA was noted (R
2
 

= 0.22, p < 0.001).  The expression of KDR mRNA was also highly induced in non-

functioning tumours (14-fold, p < 0.001) as well as in the whole cohort of pituitary tumours 

(14-fold, p < 0.0001) and again a positive correlation with hPTTG mRNA was demonstrated 

(R
2
 = 0.14, p < 0.001). Western blotting confirmed higher KDR expression at protein level 

(McCabe et al, 2002).  hPTTG over-expression resulted in upregulation of both FGF-2 and 

VEGF expression in NT-2, MCF-7 and JEG-3 cells.  Once again the phosphorylation status 

did not alter hPTTG upregulation of FGF-2 and VEGF, whereas mutation of the SH3 domain 

reduced this effect (McCabe et al. 2002).  FGF-2 itself has previously been shown to 
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modulate VEGF expression in endothelial cells (Seghezzi et al. 1998; Saadeh et al. 2000).  

However, in this study, depletion of secreted FGF-2 in the cell media failed to influence the 

effect of hPTTG on VEGF expression suggesting that hPTTG affects VEGF expression via a 

mechanism that is independent of hPTTG-mediated transactivation of FGF-2 (McCabe et al. 

2002).  In a further study by our group, cDNA PCR array analyses revealed that mRNA 

expression of VEGF and the pro-angiogenic gene DNA-binding 3 (ID3) were induced 

following over-expression of hPTTG in human primary thyroid follicular cells.  Induction of 

ID3 was subsequently demonstrated to be via the SH3-interacting domain, further evidencing 

the importance of this region in the transactivational capabilities of hPTTG (Kim et al. 

2006b).  Subsequent studies in follicular thyroid cancer FTC-133 cells demonstrated that 

hPTTG induces expression of ID3 following upregulation of VEGF and its receptor KDR 

revealing another potentially important autocrine feedback mechanism involving VEGF in 

thyroid cancer.  Thyroid epithelial cells were shown to express a functional KDR receptor 

through which VEGF could promote proliferation via the KDR-dependant MAPK pathway.  

Crucially, in FTC133 thyroid cells, over-expression of hPTTG resulted in an increase in 

VEGF mRNA expression and secretion (see Figure 1-12).  There was also an increase in 

KDR expression, which is consistent with the finding that KDR expression is elevated in 

thyroid cancer (Kim et al. 2006a).  Together, these data suggest that autocrine pathways of 

interaction exist between growth factors and hPTTG in thyroid cells, and that dysregulation of 

these pathways in thyroid cancer can contribute to tumour proliferation and angiogenesis. 
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Figure 1-12: hPTTG regulates expression and secretion of VEGF in thyroid follicular carcinoma 

FTC-133 cells.  A  Fold change in VEGF mRNA expression in FTC133 cells transfected with hPTTG 

compared with and normalized to VO-transfected controls.  B  VEGF secretion from hPTTG-

transfected cells compared with VO-transfected control cells measured using ELISA. Results shown 

are mean ΔCt ± SEM.  *** p <  0.001.  Adapted from (Kim et al. 2006a).   

 

The evidence that hPTTG regulates expression of growth factors such as FGF-2 and 

VEGF provides possible mechanisms by which hPTTG mediates angiogenesis and overall 

disease progression.  One study directly investigated the effects of hPTTG on angiogenesis.  

Consistent with previous findings (Zhang et al. 1999b), hPTTG over-expression induced 

FGF-2 secretion in NIH3T3 cells (Ishikawa et al. 2001).  Subsequently, the conditioned 

medium from NIH3T3 cells stably over-expressing WT-hPTTG induced proliferation, 

migration and tube formation of human umbilical vein endothelial cells (HUVEC cells) in 

vitro.  In vivo, concentrated media from WT-hPTTG transfected NIH3T3 cells induced chick 

chorio-allantoic membrane (CAM) spoke-wheel-like appearances (see Figure 1-13).  

Moreover, conditioned medium derived from hPTTG transfectants harbouring the same C-

terminal mutation which abrogated FGF-2 induction (Zhang et al. 1999b), induced weaker 

angiogenic activity than that of WT-hPTTG transfected cells (Ishikawa et al. 2001). 
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Figure 1-13: hPTTG induces angiogenesis in vivo.  A  Chrorio-allantoic membrane (CAM) assays 

demonstrating enhanced vascularisation following incubation with concentrated medium from WT-

hPTTG transfected (WT-hPTTG-CM) NIH3T3 cells (right) compared with those treated with serum 

free DMEM (left).  B  Quantification of induced vessels counted under stereomicroscopy.  * p < 0.01.  

Adapted from (Ishikawa et al. 2001). 

 

 

A number of investigations in animal models have provided further in vivo evidence of 

the role of Pttg and growth factors in tumour progression.  Notably, in the rat model of 

oestrogen-induced pituitary lactotroph tumour formation, increased expression of Pttg is an 

early event, thereby supporting a role for Pttg in the earlier stages of tumourigenesis (Heaney 

et al. 1999).  However, the same study makes observations that support the hypothesis that 

Pttg’s relationship with growth factors could similarly promote tumour progression by driving 

proliferation and angiogenesis.  In this model, an increase in Fgf-2 and Vegf expression 

correlated with the peak in Pttg expression at the hypertrophic to hyperplastic transition of 

pituitary lactotroph tumour formation (Heaney et al. 1999).  A subsequent study in rats 
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rat oestrus cycle, further highlighting the interplay between Pttg, hormones and growth factors 

(Heaney et al. 2002).   

TRβ
PV/PV 

mice spontaneously develop follicular thyroid cancer, and show increased 

vascularisation, progression to metastasis and high levels of Pttg in the primary thyroid 

tumours, as well as in the secondary and distant lung metastases (Ying et al. 2006).  A double 

mutant transgenic line, TRβ
PV/PV

/Pttg
–/–

, with deletion of Pttg, provided important insights 

into the effects of Pttg on tumour development (Kim et al. 2007a).  In the absence of Pttg, 

mice developed thyroid tumours, but vascular invasion and metastases were reduced, in line 

with a reduction in expression of Fgf-2, Fgfr1 and Vegf (Kim et al. 2007a), providing strong 

support for a role of Pttg in thyroid tumour progression through interactions with growth 

factors.  Similarly, a recent study indicated reduced FGF-2 and VEGF mRNA and protein 

expression in thyroid cancer cell lines treated with drugs that reduce hPTTG expression 

(Chintharlapalli et al. 2011).   

Additionally, there is evidence in various types of human tumours that links hPTTG 

with angiogenesis adding to our own study described above (McCabe et al. 2002).  Higher 

hPTTG mRNA expression was observed in highly vascular colorectal cancers compared with 

less vascular specimens (Heaney et al. 2000).  High hPTTG expression was associated with 

poor prognosis in hepatocellular carcinoma (HCC).  hPTTG, FGF-2 and VEGF expression 

were all positively correlated and associated with intratumoural microvessel density, 

indicating transactivation of FGF-2 and VEGF by hPTTG as a key event in HCC progression 

(Fujii et al. 2006). Similar results were obtained in studies of hPTTG and FGF-2 in 

endometrial carcinoma (Wang et al. 2004) and hPTTG and VEGF in pituitary adenomas 

(Minematsu et al. 2006). 
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1.4.4 hPTTG and other growth factors and cytokines involved in tumour progression 

 

Despite a significant body of evidence demonstrating the relationship between 

hPTTG, FGF-2 and VEGF, there is evidence for regulation of other factors by hPTTG.  This 

was highlighted by our own studies identifying ID3 as a pro-angiogenic gene regulated by 

hPTTG in human primary thyroid follicular cells.  In the same array, IGF-1, which stimulates 

proliferation, survival and anti-apoptotic pathways, was induced 3.1-fold.  Further, anti-

angiogenic genes such as thrombo-spondin 1 (TSP-1) were downregulated (Kim et al. 2006b).  

In addition to FGF-2, IGF-1 mRNA expression was positively correlated with hPTTG in 

pituitary adenomas, providing further evidence that hPTTG-mediated IGF-1 transcription may 

be involved in tumourigenesis (Chamaon et al. 2010).  Further, in thyroids from mutant 

TRβ
PV/PV

 mice, which spontaneously develop follicular thyroid cancers, Pttg and Tgf-α 

expression was elevated at the time of metastatic spread (Ying et al. 2003).  Together these 

results indicate that interactions between hPTTG and multiple growth factors is of importance 

in tumour development.   

hPTTG over-expression in HEK293 cells upregulated interleukin-8 (IL-8) expression 

in vitro and in vivo, in tumours developed in nude mice following injection of these cells 

(Hamid et al. 2005).  The expression and secretion of matrix metalloproteinase 2 (MMP-2) 

was also elevated in these models and subsequent treatments of HUVECs with the 

conditioned medium taken from hPTTG-transfected HEK293 cells induced proliferation, 

migration and tube formation in vitro.  The addition of an MMP-2 antibody significantly 

decreased these effects (Malik and Kakar 2006).   

Together, these findings suggest that hPTTG regulates multiple downstream targets 

that are involved in proliferative and angiogenic pathways.  The described autocrine 

mechanisms of interaction between hPTTG, FGF-2 and VEGF are well established and 
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clearly important but further investigation is required in thyroid models to determine whether 

hPTTG is a key mediator of other autocrine mechanisms involving growth factors that drive 

tumour progression when aberrantly controlled.   

 

1.5 PTTG Binding Factor 

 

1.5.1 PBF characterisation and structure 

 

The PTTG-Binding Factor (PBF) was isolated and identified as a novel protein that 

interacts with hPTTG using a two yeast hybrid screening system.  PBF, also known as 

PTTG1-interacting protein (PTTG1IP), is located on chromosome 21q22.3 and contains an 

open reading frame of 179 amino-acids with a predicted molecular mass of 22 kDa (Chien 

and Pei 2000).  It has since become clear that PBF had previously been cloned, when it was 

termed C21orf3 (also known as C21orf1).  C21orf3 was thought to have a role in cell 

trafficking mechanisms as a Type 1a integral membrane cell surface glycoprotein, following 

initial protein prediction studies identifying a potential N-terminal signal peptide, 

transmembrane domain, endocytosis motif and two putative N-glycosylation sites (Yaspo et 

al. 1998).  Further analysis identified potential sites for post-translational modifications such 

as phosphorylation sites for cAMP- and cGMP-dependent kinase, PKC and casein kinase II 

and five glycosylation sites for N-linked and O-linked oligosaccharides (Chien and Pei 2000). 

Additionally, an extracellular N-terminal cysteine-rich putative protein-binding domain, 

common to plexins, semaphorins and integrins and thereby referred to as a PSI domain, is 

also found in PBF (Bork et al. 1999).  However, PBF was demonstrated to contain a C-

terminal bipartite NLS suggesting that it may also have nuclear functions (Chien and Pei 

2000).  The direct and specific interaction between hPTTG and PBF was confirmed in vitro 

and in vivo, using glutathione S-transferase pull-down and co-immunoprecipitation assays in 
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COS-7 cells.  Furthermore, deletion analysis identified the hPTTG binding domain in PBF to 

be located within the C-terminal 30 amino acids and the corresponding domain in hPTTG to 

be between amino acids 123 and 154 within the transactivating domain (Chien and Pei 2000). 

 

Figure 1-14: Schematic representation of the putative domains of the PBF protein.  A cleavable 

signal peptide is located at the N-terminus between amino acids 1 - 32.  The PSI domain forms the 

remaining extracellular region between amino acids 39 - 92, next to the transmembrane domain 

located between amino acids 95 - 122.  An NLS and endocytosis motif are found at the C-terminus 

from amino acids 149 and 174 respectively. The site of interaction with hPTTG, within the C-terminal 

30 amino acids, is highlighted in red (Figure adapted from (Smith et al. 2010)). 

 

 

1.5.2 PBF expression and regulation   

 

Northen blot analysis in a variety of human tissues demonstrated that PBF is 

ubiquitously expressed in normal tissue (Chien and Pei 2000; Yaspo et al. 1998).  

Subsequently, studies within our own group demonstrated a 5.7-fold over-expression of PBF 

mRNA in 111 pituitary tumours (described in section 1.4.3) compared with normal pituitary 

tissue.  Interestingly, a significant positive correlation between the expression of hPTTG and 

that of PBF mRNA was observed in pituitary adenomas but not in normal pituitaries (McCabe 

et al. 2003).  Furthermore, we found significant over-expression of PBF mRNA and protein in 

the same thyroid cancer specimens in which hPTTG was over-expressed (see section 1.2.1.3), 

indicating an important relationship between hPTTG and PBF in thyroid cancer (Stratford et 

al. 2005).  Additionally, PBF itself was identified as an independent predictor of early tumour 
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recurrence.  The coding region of PBF was sequenced in 24 thyroid carcinomas but no 

mutations were detected (Stratford et al. 2005). 

 

Figure 1-15: PBF is over-expressed in thyroid cancer.  A  TaqMan RT-PCR data demonstrating 

over-expression of PBF mRNA in thyroid cancer.  B  Representative Western blot analysis of four 

normal and matched thyroid tumour specimens, demonstrating over-expression of PBF protein in 

thyroid cancer (Figure adapted from (Stratford et al. 2005)).   
 

Interestingly, over-expression of hPTTG in human primary thyroid cells or hPTTG-null 

HCT116 cells induced PBF mRNA expression, an effect that was dependent on the SH3-

interacting domain.  Similarly, stable over-expression of hPTTG in NIH3T3 cells resulted in 

elevated PBF mRNA expression and conversely, stable PBF over-expression had no effect on 

hPTTG transcription (Stratford et al. 2005). 

Studies comparing C3H10T1/2 mouse embryonic fibroblasts constitutively over-

expressing Runx2 with WT cells, identified Pbf as a transcriptional target gene for the Runx2 

transcription factor.  Runx2 bound to consensus sequences upstream of Pbf in gel shift assays 
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and Runx2 over-expression increased activity of a 1.8 kb Pbf promoter fragment in reporter 

assays (Stock et al. 2004).   

Treatment with the growh factors, EGF and TGF-α, had no effect on PBF mRNA 

expression in folliculostellate TtT-GF cells, indicating alternative mechanisms of PBF 

regulation compared with that for hPTTG (Vlotides et al. 2006).  However, treatment of ER-

α-positive MCF-7 cells with diethylstilbestrol (DES) and 17β-estradiol (EST) induced 

significant PBF mRNA and protein expression, following direct binding of the estrogen 

receptor α (ERα) to the PBF promoter (Watkins et al. 2010).   

 

1.5.3 PBF localisation and function 

 

PBF demonstrates no sequence homology with other human proteins, indicating that it 

is functionally unique.  It is however, highly conserved across other species (77 % homology 

to rat, 75 % mouse, 60 % chicken), suggesting that it is functionally important, though its 

primary function remains to be determined.   

Identification of the interaction between PBF and hPTTG prompted further 

characterisation studies to investigate the functional significance of this relationship (Chien 

and Pei 2000).  Immunofluorescence and subcellular fractionation techniques were used to 

investigate the subcellular localisation of hPTTG and PBF following their transfection into 

COS-7 cells (see Figure 1-16).  GFP-tagged hPTTG demonstrated mainly cytoplasmic 

localisation, but its expression in the nucleus was greatly enhanced following co-transfection 

with PBF-HA, suggesting PBF facilitates translocation of hPTTG to the nucleus.  When the 

NLS site was deleted in PBF, GFP-hPTTG expression was confined to the cytoplasm, 

demonstrating a specific dependency on PBF for nuclear translocation.  Functionally, PBF 

translocation of hPTTG to the nucleus resulted in a more than 3-fold induction in FGF-2 
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promoter activity, whereas in the absence of PBF little FGF-2 transcription occurred.  It 

therefore appears that PBF may be required for some of hPTTG’s transactivational 

capabilities (Chien and Pei 2000). 

 

Figure 1-16: Nuclear translocation of hPTTG by PBF. COS-7 cells were transfected with A. 

hPTTG-GFP; B. hPTTG-GFP + PBF-HA or C. hPTTG-GFP and HA-tagged mutant PBF with a 

deleted NLS (mPBFNLS). 24 hours after transfection, cells were fixed and stained. GFP-hPTTG was 

detected by green fluorescence (figure adapted from(Chien and Pei 2000)). 
   

The original prediction that PBF is a cell-surface glycoprotein (Yaspo et al. 1998) was 

further supported by immunofluorescent studies within our own group, demonstrating a 

strong presence of PBF in intracellular vesicles where it colocalised with the late endosomal 

marker CD63, following internalisation (Smith et al. 2009).  Deletion of the C-terminal 30 

amino acids results in PBF accumulation at the plasma membrane suggesting the tyrosine-

based sorting signal within this region is functional (Smith et al. 2009).   

 

1.5.4 PBF as a proto-oncogene 

 

Crucially, clones selected from NIH3T3 cells with stable over-expression of either 

hPTTG (see section 1.2.1) or PBF led to significant colony formation in soft agar assays, thus 

demonstrating the transforming capabilities of both in vitro.  hPTTG mutants lacking a 

functional SH3-interacting domain, as described previously, cannot induce PBF mRNA 

expression or interact with the PBF protein.  In this study, the hPTTG SH3-mutant did not 
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induce transformation, indicating that PBF could be an effector of hPTTG-induced 

transformation and tumourigenesis.  To this effect, PBF was identified as an independent 

proto-oncogene following injection of NIH3T3 cells stably expressing PBF into nude mice.  

This induced tumour formation, thereby demonstrating the tumourigenic ability of PBF in 

vivo (Stratford et al. 2005).   

 

Figure 1-17: PBF has transforming capabilities independent of hPTTG.  A total of 5 x10
6
 cells from 

vector-only or PBF-expressing stable NIH3T3 lines were injected into athymic nude mice.  Examples 

of tumour formation in PBF injected mice are indicated by the black arrows, where the PBF mouse on 

the right developed a tumour weighing 1.4g (inset) (Figure adapted from (Stratford et al. 2005)). 
 

 

To further investigate the oncogenic potential of PBF in vivo, our group recently 

generated a murine transgenic model with thyroid targeted over-expression of PBF.  This 

model was the subject of some of the investigations reported within this thesis, which led to 

publication of these data.  hPBF-Tg transgenic mice exhibited a striking enlargement of the 

thyroid gland associated with hyperplastic and macrofollicular lesions, mediated by activation 

of Akt and Tshr, both known regulators of thyrocyte proliferation (Read et al. 2011).     
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Figure 1-18: Mice with thyroid targeted over-expression of PBF develop enlarged thyroid glands.  

A  Representative images of thyroid glands from 52-week-old PBF-Tg and WT mice. Dotted line 

indicates margin of thyroid lobes.  B  Composite image of an entire thyroid lobe from a 78-week-old 

PBF-Tg mouse with diffuse goitre (DG) and hyperplastic regions (HP). Scale bars, 100 mm. 

 

1.6 Sodium Iodide Symporter (NIS) 

 

1.6.1 Characterisation of NIS 

 

The ability of thyroid cells to accumulate iodide has been known for a long time, 

being reported as early as 1915 (Marine and Feiss 1915).  Though the existence of an iodide 

transporter was inferred from studies elucidating some of the properties of this phenomenon 

throughout the 20
th

 century, NIS was only cloned in 1996 and marked a major advance in the 

field of thyroid biology (Dai et al. 1996; Smanik et al. 1996; Dohan et al. 2003).  NIS 

mediates the active transport of I
- 
into thyroid follicular cells, which is the critical and rate-

limiting step of thyroid hormone biosynthesis, where I
- 

is a fundamental constituent of 
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triiodothyronine (T3) and thyroxine (T4).  NIS is an integral plasma membrane glycoprotein 

located at the basolateral membrane of thyroid follicular cells and co-transports 2 Na
+
 and 1 I

-
 

ion into the cytoplasm of these cells.  This occurs against the I
- 
electrochemical gradient, but 

is driven by the Na
+ 

electrochemical gradient maintained by the Na
+
/K

+
 ATPase (Spitzweg et 

al. 2001; Boelaert and Franklyn 2003; Dohan et al. 2003; Riesco-Eizaguirre and Santisteban 

2006).  Cell polarisation is important in I
- 

transport and cytoplasmic I
- 

is driven across the 

apical membrane of thyroid follicular cells by the Cl
-
/I

- 
transporter, pendrin (Scott et al. 1999), 

or the apical I
-
 transporter (AIT) (Rodriguez et al. 2002) in a process called I

-
 efflux.  At this 

stage, free I
- 

is organified at the cell-colloid interface.  In a complex reaction catalysed by 

thyroid peroxidase (TPO), I
- 

is oxidised and incorporated onto tyrosyl residues of 

thyroglobulin (Tg), leading to the coupling of iodotyrosine residues to form T3 and T4.  

Iodinated Tg is stored in the colloid until it is endocytosed back into thyroid follicular cells 

and T3 and T4 are secreted into the blood stream in response to a biological demand for 

thyroid hormones.  This entire process is primarily regulated by activation of the adenylate 

cyclase-cAMP pathway following binding of TSH to the TSH-receptor (TSHR) located in the 

basolateral membrane of thyroid follicular cells (Spitzweg et al. 2001; Dohan et al. 2003; 

Riesco-Eizaguirre and Santisteban 2006; Weiss et al. 1984; Nissim et al. 1987).   
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Figure 1-19: Schematic illustration of the key aspects of iodine transport and organification in the 

thyroid gland. TSHR, TSH receptor, TPO thyroid peroxidase, Tg, thyroglobulin, AIT, apical iodide 

transporter (Figure adapted from (Spitzweg et al. 2001; Dohan et al. 2003).   

 

 

Importantly, our knowledge of the thyroid’s ability to take up iodide has allowed us to 

exploit this mechanism to provide diagnostic and therapeutic tools in benign and malignant 

thyroid disease.  Scintigraphic imaging is used diganostically to visualise the thyroid and 

thyroid function, as well as to detect thyroid cancer metastases.  In addition, therapeutic doses 

of 
131

I are administered to patients with Graves’ disease, multinodular goitre, functional 

differentiated thyroid cancers and their metastases in order to ablate pathological tissue in a 

highly targeted manner (Spitzweg et al. 2001; Boelaert and Franklyn 2003; Dohan et al. 2003; 

Riesco-Eizaguirre and Santisteban 2006).   
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1.6.2 NIS in thyroid disease 

 

Immunohistochemical studies of normal thyroid tissue have demonstrated that NIS 

protein is heterogeneously expressed at the basolateral membrane of a minority of thyroid 

follicular cells (Caillou et al. 1998; Castro et al. 1999a).  However, thyroidal NIS expression 

is often altered in diseased states.  Immunohistochemical analysis of thyroid specimens from 

Graves’ disease patients revealed strong over-expression of NIS protein in the basolateral 

membrane of most thyroid follicular cell, consistent with the clinically observed increase in 

radioiodine uptake in acute Graves’ thyrotoxicosis (Saito et al. 1997; Caillou et al. 1998; Joba 

et al. 1999; Castro et al. 1999a).  Further, there is evidence that NIS is a novel thyroid 

autoantigen, where NIS autoantibodies have been detected in the sera of patients with auto-

immune thyroid disease (AITD).  The results of these studies are detailed in two reviews, 

which both conclude that the biological function of anti-NIS autoantibodies remains 

undetermined (Spitzweg and Morris 2002; Dohan et al. 2003).  Expression of NIS protein in 

AITD is similar to normal thyroid tissue with strongest expression near to lymphocytic 

infiltrates (Caillou et al. 1998).  Toxic multinodular goitres demonstrate stronger 

heterogeneous expression of NIS protein than normal thyroid (Caillou et al. 1998), whereas 

levels are low in non-toxic MNG and diffuse iodine deficiency goitres (Joba et al. 1999).  

Similarly, NIS levels are increased in autonomously functioning thyroid nodules (hot nodules) 

with increased radio-iodine uptake and are decreased in cold nodules with low or absent 

uptake of radio-iodine (Joba et al. 1999).  

Critically, I
- 
uptake is reduced in many thyroid cancers and their metastases compared 

with normal thyroid, thereby limiting the efficacy of radio-iodine therapies (Maxon and Smith 

1990).  Even after TSH stimulation, 10-20 % of tumours with reduced I
- 

uptake remain 

incapable of sufficient I
- 
concentration for effective radio-ablation therapy (Kogai et al. 2006; 
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Robbins et al. 1991; Schmutzler and Koehrle 2000).  A correlation between NIS expression 

and I
- 
uptake in thyroid tumours has been confirmed (Caillou et al. 1998; Castro et al. 1999a) 

and tumours with reduced NIS activity are associated with a poor prognosis (Ward et al. 

2003).   

Various mRNA (Smanik et al. 1997; Lazar et al. 1999; Ringel et al. 2001; Arturi et al. 

2003; Park et al. 2000; Ryu et al. 1999; Ward et al. 2003) and protein studies using specific 

poly- and monoclonal antibodies (Jhiang et al. 1998b; Caillou et al. 1998; Castro et al. 1999a; 

Castro et al. 1999b; Faggiano et al. 2007; Gerard et al. 2003; Trouttet-Masson et al. 2004) 

have demonstrated reduced NIS expression in thyroid cancer tissue, suggesting repression of 

I
- 
uptake is caused by a transcriptional effect.  However, contrasting studies observed normal 

or even increased levels of NIS expression in as many as 70 % of thyroid cancers at the level 

of mRNA (Arturi et al. 1998; Luciani et al. 2003; Saito et al. 1998; Tanaka et al. 2000) or 

protein (Dohan et al. 2001; Saito et al. 1998; Wapnir et al. 2003).  Immunohistochemical 

analysis of NIS over-expression in these thyroid cancers, revealed that NIS was primarily 

localised to the cytoplasm and not at the basolateral membrane where it is required to be in 

order to be functional (Castro et al. 1999b; Dohan et al. 2001; Wapnir et al. 2003).  This 

indicates that reduced I
- 

uptake is at least in part attributable to mislocalisation of NIS 

following interference with intracellular trafficking or plasma membrane retention 

mechanisms.  Together these results suggest that an understanding of the mechanisms of both 

NIS induction and NIS localisation are required to develop therapeutic strategies to improve 

radioiodide treatment in thyroid cancer (Spitzweg and Morris 2002; Dohan et al. 2003). 



Chapter 1  General Introduction 

 

71 
 

 

Figure 1-20: Functional levels of NIS are regulated by factors affecting expression (A) and 

subcellular localisation of NIS (B).    

   

1.6.3 Regulation of NIS expression and function 

 

Regulation of NIS expression and function is characteristically intricate, with multiple 

factors effecting NIS transcription, translation, post-translational modification and cellular 

trafficking mechanisms controlling its localisation.  As mentioned previously, TSH is the 

major regulator of thyroid function and has been shown to induce NIS transcription and 

translation, resulting in enhanced I
-
 uptake by rat thyroid FRTL-5 cells (Kogai et al. 1997; 

Ohno et al. 1999; Riedel et al. 2001) and human primary thyroid follicular cells (Saito et al. 

1997; Kogai et al. 2000).   Further, TSH regulation of NIS has been demonstrated in vivo, 

including studies in rat (Levy et al. 1997) and human (Martino et al. 2000) systems.  In a 

secondary mechanism of NIS regulation, TSH levels have also been shown to effect the 

localisation or retention of NIS to the basolateral membrane where it is functional (Riedel et 

al. 2001; Kogai et al. 1997).  NIS is a phospho-protein with phosphorylation patterns 

governed by TSH in FRTL-5 cells (Riedel et al. 2001).  Targeting of NIS to the basolateral 

membrane was proposed to be mediated by phosphorylation of the C-terminal, but despite the 

presence of various phosphorylation residues, none have been confirmed to play a role in NIS 

trafficking (Vadysirisack et al. 2007).  However, activation of the PI3K pathway in MCF-7 

cells interfered with cell-surface trafficking and induction of endogenous and exogenous NIS 
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function (Knostman et al. 2007b).  Furthermore, two recent studies have described regulation 

of NIS expression by the PI3K pathway (Zaballos et al. 2008; Kogai et al. 2008).   

Aside from TSH, high levels of I
-
 itself have long been known to reduce thyroid 

function.  The Wolff-Chaikoff effect describes a highly specialised intrinsic autoregulatory 

system, whereby I
-
 organification by TPO is acutely blocked upon receipt of high doses of I

-
, 

resulting in reduced NIS activity.  However, an adaptation of the system occurs as early as 2 

days after, restoring I
- 
uptake to allow normal biosynthesis of thyroid hormones (Wolff and 

Chaikoff 1948; Wolff et al. 1949).  Despite extensive investigation, the precise mechanisms 

underlying the inhibition of iodide organification by high levels of I
- 

remain poorly 

understood, though studies in FRTL-5 cells have reported transcriptional (Spitzweg et al. 

1999) and post-translational (Eng et al. 2001) regulation of NIS following treatment with I
-
. 

Other regulators of NIS include various cytokines and growth factors that repress NIS 

expression and function in a time- and dose-dependent manner.  Transforming growth factor 

beta (TGF-β), IGF-1, tumor necrosis factor alpha (TNF-α) and beta (TNF-β), interferon 

gamma (IFN-γ), interleukin alpha (IL-1α), beta (IL-1β) and 6 (IL-6) have been proven to 

inhibit NIS mRNA expression and iodide uptake activity in FRTL-5 and human thyroid cells 

(Ajjan et al. 1998; Pekary et al. 1997; Pekary et al. 1998; Garcia and Santisteban 2002).  IFN-

γ repression of NIS has also been demonstrated in vivo (Caturegli et al. 2000).  Thyroglobulin 

also acts as a potent suppressor of NIS transcription and subsequently I
-
 uptake (Suzuki et al. 

1999; Ulianich et al. 1999; Kohn et al. 2001).  Though the mechanism is poorly understood, it 

is thought that this may represent a negative feedback autoregulatory mechanism that 

counterbalances TSH stimulation of follicular function.  Furthermore, oestradiol promotes 

proliferation and inhibits NIS expression and I
-
 uptake in FRTL-5 cells, providing a 
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mechanism that potentially contributes to higher incidence of thyroid disease in women 

(Furlanetto et al. 1999; Furlanetto et al. 2001).   

 

1.6.4 hPTTG, PBF and NIS 

 

Of particular importance to our own research interests, both hPTTG and PBF have 

been implicated in the regulation of NIS and I
-
 uptake.  hPTTG regulation of NIS was 

originally observed in rat FRTL-5 cells over-expressing hPTTG (Heaney et al. 2001).  I
-
 

uptake was strongly repressed in cells over-expressing hPTTG and subsequent Northern blot 

analysis demonstrated that this was due to reduced NIS mRNA expression.  Further, hPTTG 

over-expression induced transcription and secretion of FGF-2.  Treatment of FRTL-5 cells 

with FGF-2 also caused reduced NIS mRNA expression and I
-
 uptake, at similar levels to 

those observed following hPTTG over-expression (Heaney et al. 2001).  FGF-2 mediated 

repression of I
-
 uptake has also been demonstrated in human primary thyrocytes (Cocks et al. 

2003).  Together these results suggest that hPTTG effects on NIS are mediated at least in part 

through induction of FGF-2 as part of autocrine feedback mechanisms involving hPTTG and 

FGF-2 (Heaney et al. 2001).  Subsequently, in a study confirming hPTTG expression as a 

prognostic indicator for persistent disease, immunohistochemical analysis of 16 human 

differentiated thyroid tumours demonstrated strong hPTTG over-expression that was 

associated with reduced  I
-
 uptake in patients (Saez et al. 2006).  Studies within our own 

group demonstrated that both hPTTG and its binding factor PBF repress expression of NIS 

mRNA and inhibit I
-
 uptake in FRTL-5 cells and human primary thyroid follicular cells 

(Boelaert et al. 2007).  Promoter studies in FRTL-5 cell and human primary thyroid cells 

demonstrated that repression of NIS by hPTTG and PBF was via specific binding to a PAX8-

upstream stimulating factor 1 (USF1) response element within a 1 kb element in the NIS 

promoter known as the human upstream enhancer element (hNUE).  Depletion of secreted 



Chapter 1  General Introduction 

 

74 
 

FGF-2 partially inhibited NIS repression by hPTTG, providing further support for the 

existence and importance of autocrine pathways involving hPTTG and growth factors.  FGF-2 

depletion had no effect on NIS repression by PBF in human primary thyroid cells, implying 

that PBF acts independently of FGF-2.  Increased hPTTG, PBF and FGF-2 expression were 

significantly correlated with reduced NIS expression in human thyroid cancers demonstrating 

the importance of these interactions in vivo (Boelaert et al. 2007).  Furthermore, our group 

have demonstrated a further mechanism of NIS regulation by PBF, whereby PBF modulates 

the internalisation of NIS from the basolateral membrane of thyroid follicular cells (Smith et 

al. 2009).  Subcellular localisation studies in COS-7 cells, demonstrated the redistribution of 

NIS from the plasma membrane into intracellular vesicles following over-expression of PBF.  

Reduced expression of NIS in the plasma membrane was confirmed in cell-surface 

biotinylation assays and coimmunoprecipitation and GST-pull-down experiments 

demonstrated a direct interaction between NIS and PBF.  I
-
 uptake studies were performed in 

FRTL-5 cells to demonstrate the functional consequence of this interaction.  Over-expression 

of WT PBF repressed iodide uptake by FRTL-5 cells by 39.4 ± 5 % (P<0.001) compared with 

VO control.  In contrast, over-expression of three deletion mutants of PBF, which do not 

localise within intracellular vesicles in COS-7 or FRTL-5 cells, lost the ability to inhibit NIS 

activity (Smith et al. 2009). 
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Figure 1-21: PBF and hPTTG repress expression and activity of the sodium iodide 

symporter in human primary thyroid cultures.  A  TaqMan RT-PCR data demonstrating 

repression of NIS mRNA following over-expression of either PBF or hPTTG.  B    Iodide 

uptake assays were performed in 24-well plates, 48 h after transient transfection and 

demonstrate reduced uptake following PBF or hPTTG over-expression.  Data were adjusted 

for transfection efficiency, as assessed by β-gal staining (Figures A and B adapted from 

(Boelaert et al. 2007)).  C  In an alternative mechanism, PBF alters the subcellular 

localisation of NIS into intracellular vesicles. (i) Immunofluorescent detection of NIS-HA and 

endogenous PBF in cells transfected with NIS-HA and VO control. (ii) PBF over-expression 

is associated with an increase in NIS staining within intracellular vesicles. Scale bars: 20 

µM.  (Figure adapted from (Smith et al. 2009)).   

 

 Together, these findings suggest that over-expression of hPTTG and PBF in thyroid 

cancer (see sections 1.2.1.3 and 1.5.2) has serious implications for expression and activity of 

NIS, resulting in a significant negative impact upon the efficacy of radioiodine ablation and 
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therapy.  We have conducted further studies of these relationships reported in CHAPTER  and 

some of these results were recently published (Read et al. 2011).   

 

1.7 Hypothesis and aims 

The hypothesis that is paramount to the investigations described in this thesis is that 

hPTTG has a dual role in thyroid tumourigenesis.  In the first instance, hPTTG initiates 

tumourigenesis by causing aneuploidy and genetic instability through its role as a securin.  

Secondly, hPTTG promotes mitogenic and angiogenic mechanisms of tumour expansion 

through auto- and paracrine interactions with growth factors.  In addition, hPTTG negatively 

impacts upon efficacy of radiodine treatment through repression of NIS expression and 

function (see Figure 1-22). 

 Following on from previous studies demonstrating that hPTTG is a transforming gene 

over-expressed in thyroid tumours and is involved in the regulation of growth factors and 

NIS, we further explored this hypothesis under the following broad aims: 

 

1.  Work described in this thesis has sought to establish whether hPTTG is involved in 

autocrine mechanisms of interaction with the growth factors EGF, TGF-α and IGF-1, 

in thyroid cells in vitro.  Transient transfection studies and growth factor treatments 

were performed in thyroid cancer cell lines and human primary thyroid follicular cells. 

 

2. In order to directly test our dual hypothesis, we set out to generate a murine transgenic 

model with thyroid-targeted hPTTG over-expression (hPTTG-Tg mice).  Transgenic 

colonies were obtained following pronuclear injection of a DNA construct containing 

hPTTG under control of the bovine thyroglobulin promoter.   
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3. Having obtained a transgenic colony of hPTTG-Tg mice, we sought to determine the 

effects of thyroidal hPTTG over-expression on thyroid cell growth and function 

through extensive characterisation studies including histological and thyroid function 

analysis, as well as primary murine thyroid cell cultures.     

 

4. In parallel studies, we aimed to determine gene expression alterations in hPTTG-Tg 

mice, including effects on growth factor induction by hPTTG in vivo, using gene-

specific TaqMan RT-PCR assays and ELISAs.  Angiogenesis-specific PCR cDNA 

arrays were performed to assess gene expression in hPTTG-Tg thyroid glands. 

 

5. Finally, we sought to challenge our group’s in vitro observations of NIS repression by 

hPTTG and PBF, through conducting in vivo studies in hPTTG-Tg and PBF-Tg mice.  

Importantly, we aimed to determine whether hPTTG and PBF represent novel 

therapeutic targets for enhancing treatment with radioiodine in thyroid disease.  
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Figure 1-22: Schematic diagram illustrating the proposed model of thyroid tumourigenesis, 

including the major hypotheses investigated within this thesis.  hPTTG initiates tumourigenesis 

through induction of aneuploidy and genetic instability.  hPTTG contributes to tumour development 

through autocrine interactions with growth factors that promote proliferation and angiogenesis.  

hPTTG impairs 131I radioiodine ablation therapy through downregulation of NIS expression and 

function.   
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2.1 Cell lines 

Thyroid papillary carcinoma TPC-1 and anaplastic thyroid carcinoma SW1736 cells 

were kindly provided by Dr Rebecca Schweppe (Division of Endocrinology, Metabolism, & 

Diabetes, University of Colorado Denver, Aurora, Colorado), and thyroid papillary 

carcinoma K1 cells were obtained from the Health Protection Agency Culture Collections, 

UK.  All thyroid carcinoma cell lines were routinely cultured in RPMI 1640 (Life 

Technologies, Grand Island, NY, USA) supplemented with 10 % fetal bovine serum 

(Invitrogen; EU approved, South American origin), penicillin (10
5
 U/l) and streptomycin 

(100 mg/l) [Invitrogen].  Cells were passaged twice weekly.  

 

2.2 Thyroid samples and human primary thyroid culture 

Collection of thyroid specimens was with approval of the Local Research Ethics 

committee and following informed written consent from patients.  All tissues were surplus to 

pathological requirement. Human thyroid follicular cells were prepared from surgical 

specimens, and consisted mainly of multinodular goitres and normal thyroid tissue from the 

contralateral lobe, as previously described (Eggo et al. 1996; Eggo 1998; Ramsden et al. 

2001).  Thyroid tissue was digested by 0.2 % type II collagenase (Worthington 

Biochemicals).  Follicles were plated in 12-well plates in medium described previously by 

Ambesi-Impiombato et al. (Ambesiimpiombato et al. 1980), supplemented with thyrotrophin 

(300 mU/l) [Sigma], insulin (100 μg/l) [Sigma], penicillin (105 U/l), streptomycin (100 mg/l) 

and 5 % fetal calf serum. Serum was omitted after 72 hours of culture, and experiments were 

performed between days 7-11 of the culture.  Generally, these cultures survive and maintain 

function for more than 4 weeks and fibroblast as well as endothelial cell contamination is 

negligible under these conditions (Eggo 1998). 
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2.3 Murine primary thyrocyte culture 

A method for mouse primary thyrocyte culture was adapted from a previously 

described approach (Jeker et al. 1999).  Thyroids from mice of different genotypes were 

aseptically dissected before being disrupted mechanically in PBS and digested in 0.2 % 

collagenase for 45 minutes at 37 ºC on a rotator.  Collagenase was inactivated by addition of 

culture medium and cells were centrifuged for 10 minutes at 700 g to obtain a pellet 

containing mainly single thyroid follicles.  After discarding the supernatant, the pellet was 

resuspended in 1 ml of culture medium and pipetted up and down until no fragments were 

macroscopically visible.  Cells from each thyroid (2 wells for each hPTTG-Tg or WT 

thyroid; 4 wells for each hPBF-Tg thyroid) were seeded into 12-well plates in medium 

described by Ambesi-Impiombato et al. (Ambesiimpiombato et al. 1980), supplemented with 

thyrotrophin (300 mU/l), insulin (10 mg/ml), transferrin (5 mg/ml) [Sigma], hydrocortisone 

(3.5 ng/ml) [Sigma], somatostatin (10 ng/ml) [Sigma], glycyl-L-histidyl-L-lysine acetate (2 

ng/ml) [Sigma],  penicillin (105 U/l), streptomycin (100 mg/l) and 5 % fetal calf serum.  

After 72 hours, serum was omitted and experiments were performed between days 7-14 of 

the culture.   

 

2.4 RNA extraction and reverse transcription 

 

 Total RNA was extracted from cells, utilising a single step acid guanidinium phenol-

chloroform extraction method [Tri-reagent (250 µl per well of a 12-well plate), Ambion, 

Austin, TX, USA] (Chomczynski and Sacchi 1987). Following manufacturer’s guidelines, 

chloroform (99+ %, 50 µl; Sigma-Aldrich, St. Louis, MO, USA) was added to each reaction, 

mixed thoroughly and left to stand at room temperature for 15 minutes before centrifugation 

at 12,000 g for 15 minutes at 4 ºC, which separates the mixture into 3 phases. The uppermost 

colourless aqueous phase containing RNA was transferred into a fresh tube and isopropanol 

(99+ %, 125 µl; Sigma-Aldrich, St. Louis, MO, USA) was added. After mixing, the sample 
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was left to stand at room temperature for 5-10 minutes before centrifugation at 12,000 g for 

10 minutes at 4 ºC, which results in the formation of an RNA pellet at the bottom of the tube. 

The supernatant was discarded and the pellet washed in 75 % ethanol (250 µl) then 

centrifuged at 7500 g for 5 minutes at 4 ºC. The ethanol was discarded and the pellet dried at 

room temperature before elution in 30 µl of nuclease-free water and storage at -80 ºC. 

 Tissue samples from mouse organs excised for RNA studies were stored at -20 ºC in 

RNAlater RNA stabilisation reagent (Qiagen, UK).  Total RNA was extracted from up to 5 

mg of tissue using the RNeasy Microkit (Qiagen, UK), as per the manufacturer’s instructions.   

 500 nanograms of RNA (determined by spectroscopy at λ260 nm using a NanoDrop 

spectrometer (NanoDrop Products, Wilmington, DE, USA)) was reverse transcribed (RT) 

with avian myeloblastosis virus (AMV) reverse transcriptase in a total reaction volume of 10 

μl, with 5 pmol random hexamer primers, 1 μl 10 AMV reverse transcriptase buffer, 1 μl 

deoxynucleotide triphosphate (dNTP) mix (200 μM each), 10 units ribonuclease inhibitor 

(RNasin
™

) and 7.5 units AMV reverse transcriptase (All reagents from Promega, Madison, 

WI, USA). 

 

2.5  Quantitative polymerase chain reaction PCR (QT-PCR) 

Relative fold changes in expression of mRNAs encoding various proteins were 

calculated with control samples as a reference (given an arbitrary value of 1).  These 

experiments were performed using the ABI 7500 Sequence Detection System, which employs 

TaqMan
TM 

chemistry for highly accurate quantitation of mRNA levels (Wang and Brown 

1999). 

A fluorogenic TaqMan probe consists of an oligonucleotide with a 5’ reporter dye 

(FAM 6-carboxy-fluorescein or VIC) and a 3’ quencher dye (TAMRA 6-carboxy-

tetramethyl-rhodamine).  Fluorescent quenching of the reporter depends on the spatial 
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proximity of its quencher.  PCR amplification releases the reporter into solution, away from 

its quencher, yielding a signal that can be read by a LASER and CCD camera.  One such 

event occurs for each PCR product generated, enabling real time detection of cDNA 

amplification.  Quantitative primers and probe were designed (Primer Express
TM

 software, 

PE Biosystems, USA) for a unique sequence of each gene ensuring that the PCR product 

spanned at least one exon boundary, and hence avoiding genomic DNA amplification.  

Alternatively, pre-optimised specific gene-expression assays for QT-PCR were purchased 

(Applied Biosystems, Warrington, UK).   

PCR was carried out in 25 µl volumes on 96 well plates, in a reaction buffer 

containing 1x TaqMan Universal PCR Master Mix (Applied Biosystems, Warrington, UK) [3 

mM Mg(OAc)2, 200 µM dNTPs, 1.25 units Ampli-Taq Gold polymerase, 1.25 units 

AmpErase UNG], 175 nM TaqMan probe and 900 nM primers with 1 µl of the RT reaction.  

All target gene probes were labelled with FAM, and the housekeeping genes, 18S and DS-

CAM, with VIC.  All reactions were multiplexed where possible.  For specific gene-

expression assays that were not validated for multiplexing, reactions were singleplexed.  The 

18S primers and probe are provided as a pre-optimised control system (Applied Biosystems, 

Warrington, UK), enabling data to be expressed in relation to an internal reference, to allow 

for differences in RT efficiency.  Reactions were as follows: 50 °C for 2 minutes, 95 °C for 

10 minutes; then 44 cycles of 95 °C for 15 seconds and 60 °C for 1 minute.   

As per the manufacturer’s guidelines, data were expressed as Ct values (the cycle 

number at which logarithmic PCR plots cross a calculated threshold line) and used to 

determine ΔCt values (ΔCt = Ct of the target gene minus Ct of the housekeeping gene 18S).  

Measurements were carried out in duplicate for each sample.  The fold change of mRNA in 

an experimental group compared to the control group is calculated using the equation fold 

change = 2
-(ΔCt of experimental group – ΔCT of control group)

 or 2
-ΔΔCt

. 
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2.6 Western blot analysis 

 

Proteins were prepared from thyroid tissues in lysis buffer (100 mmol/L sodium 

chloride, 0.1 % Triton X-100, and 50 mmol/L Tris, pH 8.3) containing enzyme inhibitors (1 

mmol/L phenylmethylsulphonylfluoride, 0·3 µmol/L aprotinin, and 0·4 mmol/L leupeptin).  

Protein concentration was determined using the BCA Protein Assay kit (Thermo-Fisher 

Scientific, Rockford, IL, USA) with bovine serum albumin standards.  10-60 µg of protein 

was denatured in 4 x laemlli buffer (Bio-Rad, Hertfordshire, UK) for 5 minutes at 95 ºC.    

Western blot analyses were performed as we have described previously (Boelaert et 

al. 2003a; Kim et al. 2005; Smith et al. 2009).  Soluble proteins (10-60 µg) were separated by 

electrophoresis in 12.5 % sodium dodedecyl sulphate polyacrylamide gels, transferred to 

polyvinylidene fluoride membranes, incubated in 5 % non-fat milk in tris-buffered saline 

with 0.1 % Tween, followed by incubation with appropriate primary antibodies for 16 hours 

at 4 °C.  After washing in tris-buffered saline plus 0·1 % Tween, blots were incubated with 

appropriate secondary antibodies conjugated to horseradish peroxidase for 1 hour at room 

temperature.  After further washes, antigen-antibody complexes were visualised by the ECL 

plus and ECl advance chemiluminescence detection systems (GE Healthcare, UK) on x-ray 

film (Kodak, UK).  Actin expression was determined in all Western blot analyses 

(monoclonal anti-β-Actin Clone AC-15 (Sigma-Aldrich), used at 1:10 000) to assess potential 

differences in protein loading.  Scanning densitometry studies were performed to quantify 

differences in protein expression (Image J Software). 

 

2.7 Immunohistochemistry 

 

Formalin-fixed, paraffin-embedded sections of wild-type and PTTG-Tg mouse thyroid 

specimens were immunostained using an avidin-biotin peroxidise technique (Vectastain Elite; 
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Vector Laboratories, Peterborough,UK). All reagents were prepared according to the kit 

instructions. 

Briefly, the slides were dewaxed in Histoclear and rehydrated in an ethanol 

concentration gradient. After washing in 20 mm Tris/0.15 m sodium chloride with 0.3 % 

Tween 20 (pH 7.4) (TBS-T), slides were incubated in 1 mg/ml hyaluronidase in 0.1 m 

sodium acetate (pH 5.5) at 37 ºC for 30 minutes, washed, and then incubated in 0.03 % 

hydrogen peroxide in 20 mM Tris/0.15 M sodium chloride (pH 7.4) to block endogenous 

peroxidase activity. Slides were then blocked in 5 % normal goat serum (NGS) in TBS-T for 

30 minutes in a humidity chamber before being incubated with primary antibody in blocking 

buffer for 16 hours at 4 ºC in a humidity chamber. For negative controls, the primary 

antibody was replaced by 10 % normal goat serum. After three 5-minute washes in TBS-T, 

the sections were incubated in biotinylated anti-rabbit antibody for 30 minutes at room 

temperature, followed, after additional TBS-T washes, by addition of the avidin-biotin-

peroxidase complex. The reaction was developed using the DAB peroxidise substrate kit for 

5-10 minutes and then counterstained in Mayer’s hematoxylin. Slides were dehydrated, 

cleared, and mounted.  Immunostained thyroid tissue sections were viewed under a light-

microscope (Zeiss) and images captured using Axiovision software (Version 4).   

 

2.8 Statistical analysis 

 

Data were analysed using Sigma Stat and SPSS version 11.5 software (SPSS Science 

Software UK Ltd, Birmingham UK).  Distributions of data were determined using the 

Kolmogorov-Smirnov test.  Student’s t-test and the Mann Whitney U test were used for 

comparison between two groups of parametric and non-parametric data respectively.  

Analysis of Variance (ANOVA) and Kruskal-Wallis tests were used for between-group 

comparisons of multiple groups of parametric and non-parametric data respectively.  The 
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combined effects of mouse genotypes and time on body weight changes were analyzed using 

a two-way ANOVA with repeated measurements over time.  Correlations between pairs of 

mRNA results were examined using Spearman rank correlation.  Scanning densitometry data 

with fewer than five data points were assumed to be Gaussian following use of the Anderson-

Darling test, and subsequently subject to analysis by student’s t-test or ANOVA for 

comparison between two groups or multiple groups of data respectively.    Kaplan-Meier 

mouse survival analysis was performed using the XLSTAT add-on to Microsoft Excel.  The 

log-rank (Mantel-Cox) test was used to compare the survival distribution of two sample sets 

(non-parametric data, non-informative censorship).  Significance was taken as p < 0.05. 
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3.1 Introduction 

 

hPTTG is expressed at low levels in most normal adult tissues but over-expression of 

hPTTG has been described in numerous primary tumours and neoplasms (see section 

1.2.1.2). 

hPTTG over-expression in thyroid disease was first described in a relatively small 

study, where Northern blot analysis revealed an abundance of hPTTG in a subset of 

specimens of thyroid hyperplasia, follicular adenomas and follicular carcinomas, with no 

increased expression evident in papillary cancers (Heaney et al. 2001).  Furthermore, TSH 

treatment of rat FRTL5 thyroid cells and human thyroid cells in primary culture, was reported 

to induce hPTTG expression in vitro, consistent with a role for hPTTG in controlling thyroid 

cell growth (Heaney et al. 2001).  A further study conducted by our own group used highly 

accurate quantitative RT-PCR to demonstrate an approximately 2-fold increase in hPTTG 

mRNA expression in hyperplastic thyroid conditions (n = 38) and a striking 9.5-fold 

induction in pretranslational hPTTG expression in differentiated thyroid cancers (n = 27).  In 

contrast to the study by Heaney et al., no difference in hPTTG expression was detected when 

comparing follicular and papillary carcinomas (Boelaert et al. 2003a).   

hPTTG over-expression is associated with inappropriate cell divison, cell 

transformation and transactivation of other genes that have critical roles in tumourigenesis 

(see sections 1.3 and 1.4).  Furthermore, hPTTG represses NIS mRNA expression in thyroid 

cells leading to reduced iodide uptake (Boelaert et al. 2007), an effect which has significant 

consequences for the treatment of thyroid cancer with radioiodine.  Based on the current 

evidence, hPTTG over-expression may have significant implications in the progression and 

treatment of thyroid cancer.  Thus far, no mutations have been discovered in either the coding 

or non-coding regions of hPTTG (Zhang et al. 1999b; Kanakis et al. 2003) and there is 

insufficient explanation for hPTTG over-expression in tumour tissues.  Whilst the regulation 
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of hPTTG has not been clarified completely, hormones such as oestrogen (Heaney et al. 

1999; Kakar and Jennes 1999; Heaney et al. 2002), TSH (Heaney et al. 2001) and insulin 

(Chamaon et al. 2005; Thompson and Kakar 2005) have been implicated (see section 

1.2.1.4).  Furthermore, there is increasing evidence that hPTTG expression is regulated by a 

number of growth factors.   

 One study described over-expression of hPTTG in astrocytomas and subsequently 

demonstrated hPTTG induction by the EGFR ligands, EGF and TGF-α, in xenotransplantable 

U87 human glioma cells.  This effect was abrogated by treatment with the specific EGFR 

inhibitor, AG1478.  The c-met ligand, HGF, also induced hPTTG expression but to a lesser 

extent (Tfelt-Hansen et al. 2004).   

 A subsequent study demonstrated similar regulation of hPTTG by EGF and TGF-α in 

pituitary folliculostellate TtT-GF cells.  Once again, these effects were blocked following 

inhibition of EGFR, by treatment with either AG1478 or gefitinib.  Rapid phosphorylation of 

EGFR and subsequent activation of the MAP-Kinase and PI3-Kinase pathways were 

demonstrated following treatment with EGF and TGF-α, suggesting that these pathways are 

important in hPTTG regulation.  EGF induction of hPTTG was cell-cycle dependent where 

its expression peaked at the S-G2 transition and the effect was absent following early S-phase 

blockade (Vlotides et al. 2006).   

 IGF-1 has been shown to regulate hPTTG expression in human breast cancer MCF-7 

cells (Thompson and Kakar 2005) and in malignant and non-malignant astrocytes (Chamaon 

et al. 2005).  In both studies, hPTTG induction by IGF-1 was partially or completely blocked 

by treatment with either of the specific PI3-Kinase inhibitors, LY294002 and Wortmannin, or 

the specific MAP-Kinase inhibitor PD98059.  Interestingly, the latter study demonstrated a 

direct interaction between both kinases and endogenous hPTTG in both malignant astrocytes 

and non-tumourous cells.  In addition to enhancement of hPTTG transcription following 
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treatment with IGF-1, it was suggested that a second and more direct route of hPTTG 

regulation may be mediated via direct binding of either kinase (Chamaon et al. 2005).   

 The induction of hPTTG expression by FGF-2 (see section 1.2.1.4.2) has been 

demonstrated in NIH3T3 cells (Heaney et al. 1999) and in primary cultures of uterine 

leiomyomas, benign tumours of myometrial smooth muscle tissue (Tsai et al. 2005).  

The transcription factor SP1 is well established as a critical regulator of hPTTG 

expression (Pei 1998; Kakar and Jennes 1999; Wang and Melmed 2000b; Clem et al. 2003; 

Zhou et al. 2003), where mutation of the SP1 binding site in the hPTTG promoter resulted in 

70 % reduced overall promoter activity (Clem et al. 2003).  A recent study described reduced 

hPTTG, FGF-2 and VEGF expression in various thyroid cancer cell lines treated with drugs 

inhibiting SP1 (Chintharlapalli et al. 2011) and VEGF expression was upregulated following 

phosphorylation of SP1 by MAP-Kinase and PI3-Kinase (Milanini-Mongiat et al. 2002; Pore 

et al. 2004).   

hPTTG expression is cell-cycle dependent and it is most abundant during G2/M-phase 

where it is reportedly phosphorylated by the kinase CDC2 at the Ser-165 residue (Zou et al. 

1999; Yu et al. 2000b; Ramos-Morales et al. 2000).  While hPTTG expression is upregulated 

during mitosis, the observation that over-expression of hPTTG in differentiated thyroid 

cancer did not correlate with expression of the proliferation marker, PCNA, suggests that 

hPTTG over-expression is at least partly independent of increased mitotic rates (Boelaert et 

al. 2003a). 

   Collectively, these studies suggest that hPTTG is induced by a number of mitogenic 

factors via complex pathways involving activation of multiple kinases, transcription factors 

and cell-cycle regulators.  The aim of this study was to assess whether hPTTG expression is 

regulated by growth factors in thyroid cells as part of the investigation of our hypothesis that 

hPTTG and growth factors are involved in autocrine and paracrine mechanisms of regulation 
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that may be aberrantly controlled in thyroid tumours.  Malignant thyroid cell lines and human 

primary thyrocytes were treated with various growth factors and potential mechanisms of 

hPTTG regulation were investigated through use of specific inhibitors and siRNA 

knockdown studies.   

 

3.2 Materials and Methods 

 

3.2.1 Cell lines and treatment with growth factors and inhibitors 

 

Human thyroid papillary carcinoma TPC-1 and K1 cells, and human anaplastic thyroid 

carcinoma SW1736 cell lines, were routinely cultured as described in section 2.1.  For 

treatment experiments with growth factors, TPC-1, K1 and SW1736 cells were seeded in six-

well plates at a density of 9 x 10
4
, 1.3 x 10

5
 and 1.2 x 10

5 
cells/well respectively.  After 24 

hours, media was replaced with serum free media for a further 24 hours to obtain 

synchronised cells.  In the first instance, preliminary dose-response and timecourse 

experiments were performed in synchronised K1 cells as described in section 3.3.3.1.  

Subsequently, synchronised TPC-1, K1 and SW1736 cells were incubated with EGF (5 nM), 

TGF-α (5 nM) [Sigma-Aldrich, UK], IGF-1 (10 ng/ml) or FGF-2 (5 nM) [Peprotech, UK] 

with or without PD98059 (30 µM), Wortmannin (50 nM) or LY294002 (50 µM) 

[Calbiochem, La Jolla, CA].  Concentrations of inhibitors were determined from the literature 

(Thompson and Kakar 2005; Chamaon et al. 2005).  Cells were harvested in protein lysis 

buffer at the times indicated.  

 

3.2.2 siRNA transfection studies 

 

TPC-1 cells were transfected with siRNAs targeting SP1 (60 nM # S13318) or CDC2 

(30 nM # S464) transcripts and controlled for by equivalent scrambled (# AM4635) siRNA 

transfections (Life Technologies, Grand Island, NY, USA).  All siRNA transfections were 
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performed using the siPORT™ NeoFX™ Transfection Agent (Life Technologies, Grand 

Island, NY, USA) according to the manufacturer’s instructions.  24 hours post-transfection, 

cells were synchronised and treated with growth factors as described above (see section 

3.2.1), or with anisomycin (100 µM) for 8 hours (Sigma-Aldrich, UK).  Cells were harvested 

in protein lysis buffer or 0.5 ml Tri Reagent (Life Technologies, Grand Island, NY, USA).   

 

3.2.3 Thyroid samples, human primary thyroid culture and transfections 

 

Collection of thyroid samples was with approval of the Local Research Ethics 

committee and thyroid cells were cultured as described in section 2.2.  All serum, insulin and 

TSH was removed from human primary thyrocytes for at least 24 hours before treatment with 

growth factors or inhibitors, which were performed as described above in section 3.2.1. 

Human primary thyrocytes were transfected with 1 µg DNA/well using FuGENE-6 

Transfection Reagent (Roche, Indianapolis, IN, USA), with an optimised ratio of 6 µl per 1 

µg plasmid DNA using either pCI-neo-hPTTG or equal amounts of blank plasmid (vector-

only, VO, control).  In siRNA studies, human primary thyrocytes were transfected with a 

specific CDC2 siRNA (60 nM) and controlled for by equivalent scrambled siRNA 

transfections (see section 3.2.2) using the lipofectamine-2000 transfection agent (Invitrogen, 

UK) according to the manufacturer’s instructions.   

 

3.2.4 RNA extraction, reverse transcription, QT-PCR 

 

Total RNA was extracted from TPC-1, K1, SW1736 cells and human primary 

thyrocytes as described in section 2.4.  Reverse transcription and QT-PCR techniques were as 

described above (see sections 2.4 and 2.5).  Primers and probes for hPTTG mRNA detection 

were designed as described above (see section 2.5) and the sequences are given in Table 3-1.  
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Gene-specific expression assays for EGFR (Hs01076078_m1), IGF1R (Hs00609566_m1) 

and FGFR1 (Hs00915142_m1) were purchased from Applied Biosystems (Warrington, UK).  

 
Table 3-1:  Oligonuleotide sequences of PCR primers and TaqMan probe used to detect hPTTG 

mRNA expression. All TaqMan primers run at 59°C and yield amplicons of 70-150bp.   

 

 

3.2.5 Western blot analysis 

 

Protein extraction, quantification and subsequent Western blotting methods were as 

described previously (see section 2.6).  Blocked membranes were subsequently incubated 

with primary antibodies against hPTTG (2 µg/ml) [Invitrogen, UK], CDC-2 (1:1000), SP1 

(1:500), phospho-P44/42 ERK1/2 (1:1000) and phospho-AKT (1:1000) [Cell Signalling 

Technology, Boston, MA, USA].  After washing in TBS-T, blots were incubated with 

appropriate secondary antibodies conjugated to horseradish peroxidise (Dakocytomation, 

UK) for 1 hour at room temperature before being visualised by techniques described in 

section 2.6.   

 

3.2.6 MTT cell viability assays 

 

The rate of cellular proliferation of synchronised TPC-1 cells treated with growth 

factors was assessed by internalisation and reduction of 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT).  Cells were seeded in 96-well plates, synchronised and 

treated with growth factors as described above (see sections 3.2.1 and 3.2.2).  Cells were 

incubated with 0.8 mg/ml MTT (Sigma-Aldrich, UK) for the last 3 hours of culture 

incubation.  Cells were then washed with cold PBS before formazan crystals were solubilised 

Sequence Name Sequence 

hPTTG Probe CGTCTTGCCACCGGCTTCCCT 

hPTTG Forward Primer GAGAGAGCTTGAAAAGCTGTTTCAG 

hPTTG Reverse Primer TCCAGGGTCGACAGAATGCT 
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by addition of 100 µl dimethyl sulfoxide for 15 minutes.  The absorbance at 540 nm was 

measured using a Wallac 1420 Victor plate-reader (Perkin-Elmer, Massachusetts, USA).   

 

3.2.7 Statistical analysis 

 

Data were analysed as described in section 2.8. 

 

3.3 Results 

 

3.3.1 Endogenous hPTTG expression in thyroid cells 

 

To predict whether hPTTG is regulated by growth factors in thyroid cells, we first 

analysed the endogenous expression levels of hPTTG and growth factor receptors (see 

section 3.3.2) in human primary thyrocytes, TPC-1 and K1 thyroid papillary carcinoma cells 

and in SW-1736 anaplastic thyroid carcinoma cells.  Real-Time PCR analysis revealed a 8.1-, 

11.9- and 25.5-fold increased expression of hPTTG mRNA in TPC-1 (n = 4, p < 0.001), K1 

(n = 4, p < 0.001) and SW1736 (n = 4, p < 0.001) cells respectively, compared with normal 

human primary thyrocytes (n = 12).  SW1736 cells had significantly higher expression of 

hPTTG mRNA compared with TPC-1 (p < 0.01) but not K1 cells.  Western blot analysis 

confirmed hPTTG protein over-expression in transformed cell lines compared with normal 

human primary thyrocytes, where expression was heterogeneous but at generally low levels.  

Further Western blot analysis using a lower length of exposure was performed to determine 

the relative levels of hPTTG protein in thyroid cancer cell lines.  TPC-1 cells had the lowest 

levels of over-expression of hPTTG protein; K1 cells had moderate over-expression of 

hPTTG protein; and SW1736 cells had very strong over-expression of hPTTG protein.  These 

results are indicative of higher levels of hPTTG expression in cells derived from a more 

aggressive tumour type (see Figure 3-1).   



Chapter 3  Regulation of hPTTG by Growth Factors In Vitro  

 

95 
 

 

Figure 3-1: Endogenous expression of hPTTG in human primary thyrocytes, TPC-1, K1 

and SW1736 cell lines. A  Endogenous hPTTG mRNA expression levels in thyroid cells, 

determined by TaqMan RT-PCR using hPTTG-specific primers and probes.  In this and 

following histograms, gene expression is displayed relative to a value of 1.0 for human 

primary thyrocytes (normal thyroid cells). The number of samples used for each group are 

given in the corresponding columns in the table underneath the graph.  Error bars represent 

the standard error of the mean (SEM) (** p < 0.01, *** p < 0.001, NS = non-significant).  B  

Endogenous hPTTG protein expression levels in thyroid cells, determined by Western blot 

analysis, demonstrating strong over-expression of hPTTG in thyroid cancer cell lines 
compared to low heterogeneous expression in normal human primary thyrocytes.  C  Lower 

exposure Western blot analysis demonstrating relative hPTTG expression levels in thyroid 

cancer cell lines.   
 

 

3.3.2 Growth factor receptor expression in thyroid cells 

 

EGFR, IGF1R and FGFR1 are growth factor receptors that have been implicated in 

thyroid malignancies and in facilitating signalling by growth factors that regulate hPTTG 

(Chamaon et al. 2005; Tfelt-Hansen et al. 2004; Thompson and Kakar 2005; Heaney et al. 

1999; Tsai et al. 2005; Lee et al. 2007; Landriscina et al. 2011; Lam et al. 2011; Belfiore et 
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al. 1999; St Bernard et al. 2005; Cocks et al. 2003).  The mRNA expression of these growth 

factor receptors was analysed in thyroid cell lines and compared to expression levels in 

normal human primary thyrocytes (n = 12) to determine responsiveness of these cell types to 

treatment with growth factors.  EGFR mRNA was over-expressed 1.75-, 2.38- and 3.08-fold 

in TPC-1 (n = 4, p = NS), K1 (n = 4, p = 0.05) and SW1736 (n = 4, p < 0.01) cells 

respectively.  IGF1R was expressed in transformed thyroid cell lines but showed a 0.45-, 

0.23- and 0.45-fold reduction of mRNA expression in TPC-1 (n = 4, p < 0.05), K1 (n = 4, p < 

0.001) and SW1736 (n = 4, p < 0.05) cells respectively, when compared with primary cells.  

FGFR1 mRNA was over-expressed 5.86-, 6.53- and 5.24-fold in TPC-1 (n = 4, p < 0.05), K1 

(n = 4, p < 0.05) and SW1736 (n = 4, p < 0.05) cells respectively, compared to normal human 

primary thyrocytes (n = 12) (see Figure 3-2). 
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Figure 3-2: Histograms displaying endogenous mRNA expression of growth factor receptors in 

human primary thyrocytes, TPC-1, K1 and SW1736 cell lines, determined by TaqMan RT-PCR. A  

EGF-R mRNA expression in thyroid cells, showing significant over-expression in K1 and SW1736 

thyroid cancer cell lines.  B  IGF1R mRNA expression in thyroid cells, showing significantly reduced 

expression in thyroid cancer lines. C FGF-R1 mRNA expression in thyroid cells, showing significant 

over-expression in thyroid cancer cell lines.  Error bars represent the SEM (* p < 0.05, ** p < 0.01, 

*** p < 0.001, NS = non-significant).     
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3.3.3 hPTTG regulation by growth factors in thyroid cells 

Having determined expression levels of hPTTG and growth factor receptors in those 

thyroid cells being tested, we investigated the regulation of hPTTG protein expression 

following treatment with either EGF, TGF-α (EGFR ligands), IGF-1 (IGF1R ligand) or FGF-

2 (FGFR1 ligand).  

 

3.3.3.1 Preliminary time-course and dose-response experiments  

  In the first instance, time-course and dose-response experiments were performed in 

K1 cells to determine the optimal duration of treatment time and growth factor concentration.  

For dose-response experiments, synchronised K1 cells were incubated with varying growth 

factor concentrations for 24 hours.  hPTTG protein was induced in a dose-dependent manner 

by EGF and TGF-α (0.5, 5 and 50 nM) peaking with a dose of 5 nM, and no further induction 

was observed following treatment with 50 nM doses.  Similarly, IGF-1 (1, 10 and 100 

ng/mL) induced hPTTG protein in a dose-dependent manner but hPTTG protein expression 

was only marginally increased with the higher 100 ng/mL dose compared to treatment with 

10ng/mL.  All concentrations of FGF-2 (0.5, 5 and 50 nM) caused a mild induction of 

hPTTG protein.  Subsequently, the most relevant doses for each growth factor were decided 

to be 5 nM EGF, 5 nM TGF-α, 10 ng/mL IGF-1 and 5 nM FGF-2, based on the responses 

observed (see Figure 3-3 A). 

 In timecourse experiments, treatment of K1 cells with the doses of growth factor 

decided above caused no response at 0-12 hours, but there was evidence of hPTTG protein 

induction at 24-36 hours, with maximal growth factor induced hPTTG expression observed at 

24 hours (see Figure 3-3 B).   
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Figure 3-3: Preliminary dose-response and timecourse treatments of K1 cells with growth 

factors.  A  Western blot analyses demonstrating hPTTG regulation by different doses of EGF [0.5, 

5.0, 50 nM] (i), TGF- α [0.5, 5.0, 50.0 nM] (ii), IGF-1 [1.0, 10.0, 100.0 ng/mL] (iii) and FGF-

2 [0.5, 5.0, 50.0 nM](iv).  B  Western blot analyses demonstrating regulation of hPTTG by 5 

nM EGF, 5 nM TGF-α, 10 ng/mL IGF-1 and 5 nM FGF-2 at 0 (i), 12 (ii), 24 (iii) and 36 

hours (iv).  UT = untreated, V = vehicle treated.   
 

 

3.3.3.2 hPTTG regulation by growth factors in presence and absence of inhibitors 

 

Having determined appropriate treatment times and doses, synchronised thyroid cells 

(TPC-1, K1, SW1736, human primary thyrocytes) were incubated with either 5 nM EGF, 5 

nM TGF-α, 10 ng/ml IGF-1 or 5 nM FGF-2 for the duration of 24 hours.  Western blot 

analysis and scanning densitometry studies were performed to determine hPTTG protein 

expression in GF-treated cells compared to vehicle-only treated cells.  Treatment with 5 nM 

EGF induced hPTTG protein expression in human primary thyrocytes (3.2-fold, n = 3, p ˂ 

0.05), TPC-1 cells (6.4-fold, n = 5, p ˂ 0.001), K1 cells (3.2-fold, n = 5, p ˂ 0.001) and in 

SW1736 cells (1.7-fold, n = 3, p = NS).  Similarly, 5 nM TGF-α treatments induced 3.5-, 6.9-

, 3.8- and 1.5-fold elevation of hPTTG protein expression in human primary thyrocytes (n = 

3, p < 0.01), TPC-1 cells (n = 5, p ˂ 0.001), K1 cells (n = 5, p < 0.001) and SW1736 cells (n 
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= 3, p = NS), respectively.  For all cell types except SW1736 cells (where hPTTG was not 

significantly induced by EGFR ligands) these effects were abrogated upon addition of the 

MAP-Kinase-specific inhibitor PD98059 (30 µM) (see Figure 3-4). 

 

Figure 3-4:   Induction of hPTTG protein expression following treatment of thyroid cells with growth 

factors ± inhibitors.  A Representative Western blot analyses demonstrating hPTTG protein 

expression following treatment with EGF (5 nM) and TGF-α (5 nM) ± PD98059 (30 µM), for 24 

hours, in synchronised human primary thyrocytes (i), TPC-1 (ii), K1 (iii)  and SW1736 cell lines (iv).  

B  Scanning densitometry studies demonstrate hPTTG protein expression levels given as a value 

relative to 1.0 for vehicle only control treatments, ± SEM.  Results are based on ≥ 3 separate 

experiments.  (* p < 0.05, ** p < 0.01, *** p < 0.001, NS = non-significant).    
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cell types except SW1736 cells, hPTTG induction by IGF-1 was abrogated by treatment with 

either of two PI3-Kinase specific inhibitors, Wortmannin (50 nM) or LY294002 (50 µM).  

Treatment with 5 nM FGF-2 had no effect on hPTTG protein expression in human primary 

thyrocytes (1.2-fold, n = 3, p = NS), K1 cells (1.4-fold, n = 3, p = NS) or SW1736 cells (1.5-

fold, n = 3, p = NS), but resulted in a striking 8.8-fold induction in TPC-1 cells (n = 3, p < 

0.001).  This effect was not investigated further due to the inconsistent responses 

demonstrated between different thyroid cell types (see Figure 3-5). 

 

Figure 3-5: Induction of hPTTG protein expression following treatment of thyroid cells with 

growth factors ± inhibitors.  A  Representative Western blot analyses demonstrating hPTTG protein 

expression following treatment with IGF-1 (10 ng/mL) ± LY294002 (50 µM) or Wortmannin (50 nM) 

and FGF-2 (5 nM), for 24 hours, in synchronised human primary thyrocytes (i), TPC-1 (ii), K1 (iii) 

and SW1736 cells (iv).  B  Scanning densitometry studies demonstrating hPTTG protein expression 
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levels given as a value relative to 1.0 for vehicle only control treatments, ± SEM.  Results are based 

on ≥ 3 separate experiments.  (* p < 0.05, ** p < 0.01, *** p < 0.001, NS = non-significant). 

 

Notably, treatment with growth factors resulted in increased expression of both 

unphosphorylated and phosphorylated hPTTG, where the heavier upper band of the doublet 

represents phosphorylated hPTTG (Ramos-Morales et al. 2000).  Together these results 

provide evidence that hPTTG protein expression and phosphorylation is upregulated in 

thyroid cells via the MAP-Kinase and PI3-Kinase pathways, following activation of the EGF-

Receptor and the IGF1-Receptor respectively.   

 

3.3.4 Confirmation of MAP-kinase and PI3-kinase activation by treatment with 

growth factors 

 

To confirm activation of the MAP-kinase and PI3-kinase pathways in response to 

growth factor treatment, we analysed phospho-P44/42 ERK1/2 and phospho-AKT expression 

10, 30 and 90 minutes following treatment in TPC-1, K1 and SW1736 cells (Vlotides et al. 

2006).  Treatment with EGF (5 nM) or TGF-α (5 nM) stimulated ERK-phosphorylation from 

10 minutes post-treatment and was sustained throughout the timecourse.  Furthermore, there 

was significant activation of the PI3-kinase pathway as evidenced by increased p-AKT 

expression.  These effects were partially or completely abrogated following pre-incubation 

with PD98059 (30 µM).  Similarly, treatment with IGF-1 (10 ng/mL) resulted in the AKT-

phosphorylation after 10 minutes that was sustained throughout the experiment.  Once again, 

increased p-ERK expression was indicative of MAP-kinase pathway activation following 

IGF-1 treatment.  These effects were partially or completely abrogated following pre-

incubation with LY294002 (50 µM) (see Figure 3-6). 
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Figure 3-6: Western blot analyses confirming MAP-kinase and PI3-kinase activation in thyroid 

cell lines following treatment with EGF, TGF-α and IGF-1.  A-C, Western blot analyses of timecourse 

experiment showing detection of phospho-P44/42 ERK1/2 and phospho-AKT in TPC-1 (A), K1 (B) 

and SW1736(C) cells following treatment with EGF (5 nM) and TGF-α (5 nM) ± PD98059 (30 µM) 

(i) or IGF-1 (10 ng/mL) ± LY249002 (50 µM) (ii) at early time-points of 10, 30 and 90 minutes.  V = 

vehicle, PD = PD98059, LY = LY294002.   
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3.3.5 Regulation of hPTTG by growth factors is independent of SP1 and CDC2 

 

Given the reported roles of the transcription factor SP1 and the kinase CDC2 (CDK1) 

in the regulation of hPTTG expression and phosphorylation respectively (Clem et al. 2003; 

Ramos-Morales et al. 2000), we set out to investigate the potential involvement of these 

proteins in the mechanism of hPTTG regulation by growth factors in thyroid cells.  TPC-1 

cells were chosen for these studies as they were the most responsive to treatment with growth 

factors and were consistently amenable to transfection.  Growth factor treatments of TPC-1 

cells were repeated following knockdown of SP1 and CDC2 transcripts.  hPTTG protein 

expression was determined following successful SP1 and CDC2 knockdown through Western 

blotting and scanning densitometry.  As expected, we observed a strong induction of hPTTG 

protein expression by either EGF (2.7-fold, n = 4, p < 0.05) or TGF-α (3.1-fold, n = 4, p < 

0.01) following transfection with scrambled siRNA.  Basal levels of hPTTG protein in 

vehicle treated cells showed a marked 0.27-fold reduction in expression following SP1 

knockdown (n = 4, p < 0.05) compared to scrambled controls (n = 4), consistent with a role 

for SP1 in regulating basal hPTTG expression.  Nonetheless, even with depleted SP1 levels, 

hPTTG protein expression was induced following treatment with EGF (4.6-fold, n = 4, p < 

0.01) and TGF-α (5.2-fold, n = 4, p < 0.01) compared with vehicle treated controls (n = 4) 

(see Figure 3-7). 



Chapter 3  Regulation of hPTTG by Growth Factors In Vitro  

 

105 
 

 

Figure 3-7: hPTTG regulation by growth factors is independent of SP1. A  Western blot analysis 

demonstrating persistent regulation of hPTTG by growth factors when SP1 levels are depleted in 

TPC-1 cells.  B  Scanning densitometry studies demonstrating hPTTG protein expression levels 

relative to a value of 1.0 for vehicle treated scrambled only controls, ± SEM.  Results are based on n 

= 4 repeats of the described experiment.  (* p < 0.05, ** p < 0.01).  V = vehicle.   

 

CDC2 siRNA transfections resulted in successful knockdown of CDC2 expression, 

determined by Western blot analysis at the time of treatment and the time of termination.  As 
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further induction of hPTTG expression (13.8-fold, n = 3, p = NS), compared with vehicle 

treated controls (see Figure 3-8). 
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Figure 3-8: hPTTG regulation by growth factors is independent of CDC2.  A  Western blot 

analysis demonstrating successful knockdown of CDC2 protein throughout the duration of the 

experiment.  B  Representative Western blot analysis demonstrating successful knockdown of CDC2, 

causing a generic increase in hPTTG expression and phosphorylation that is further enhanced upon 

addition of EGF in TPC-1 cells.  C  Scanning densitometry studies demonstrating hPTTG protein 

expression levels relative to a value of 1.0 for vehicle treated scrambled only controls, ± SEM.  

Results are based on n = 3 repeats of the described experiment.  (* p < 0.05, NS = non-significant).  

V = vehicle.     
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(see Figure 3-9).  To clearly demonstrate that CDC2 depletion results in upregulation of both 

phosphorylated and unphosphorylated hPTTG we used primary thyrocytes transfected with 

WT or Phos- hPTTG (which cannot be phosphorylated) as controls.  The lack of the heavier 

band following transfection with Phos- hPTTG clearly illustrates that this band represents a 

phosphorylated form of hPTTG.  This band migrates more slowly due to the increased 

molecular mass caused by an additional phosphate group (PSO43-), where the additional 

negative charge is negated by use of SDS (see Figure 3-9 A.i.).   

 

Figure 3-9: CDC2 regulates expression and phosphorylation of hPTTG.  A+B  Representative 

Western blot analyses and scanning densitometry confirming an increase in hPTTG expression and 

phosphorylation following repression of CDC2 in TPC-1 cells (A i-ii) and human primary thyrocytes 

(B i-ii).  Scanning densitometry studies demonstrate hPTTG protein expression levels relative to a 

value of 1.0 for scrambled only transfection controls, ± SEM.  Results are based on n ≥ 3 repeats of 

the described experiment.  (* p < 0.05, ** p < 0.01).  P+ hPTTG = Phosphorylated hPTTG, P- 

hPTTG = Unphosphorylated hPTTG.   
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CDC2 is due to transcriptional or post-translational events.  Firstly, we performed CDC2 

knockdown experiments in TPC-1 cells followed by treatment with anisomycin (100 µM) to 

inhibit translation 36 hours post-transfection.  Western blot analysis demonstrated that the 

upregulation of hPTTG caused by repression of CDC2 is abrogated upon the addition of 

anisomycin, suggesting that this effect is transcriptionally driven.  Concordant with this, 
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Real-Time PCR analysis revealed that hPTTG mRNA expression was significantly 

upregulated (1.7-fold, n = 8, p < 0.01) when CDC2 was depleted, providing further evidence 

that CDC2 is a criticial mediator of hPTTG transcription (see Figure 3-10).   

 

Figure 3-10: CDC2 regulates transcription of hPTTG.  A  Representative Western blot analysis 

demonstrating that hPTTG upregulation following CDC2 repression is inhibited by treatment with 

anisomycin (100 µM), implicating this as a transcriptional effect.  B  Consistent with this, TaqMan 

RT-PCR analysis confirmed that hPTTG mRNA expression was induced following CDC2 repression.  

hPTTG mRNA expression is given as value relative to 1.0 for scrambled only transfection controls.  N 

= 3 experiments.  Error bars represent the SEM (** p < 0.01).   

 

 

3.3.7 Upregulation of hPTTG by growth factors is not associated with increased 

proliferation; CDC2 repression causes reduced cell proliferation 
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proliferation.  To test this we performed MTT cell viability assays and simultaneously 

investigated proliferative effects following CDC2 depletion in the absence or presence of 
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vehicle treated cells (n = 3, p < 0.001) compared to scrambled siRNA controls, suggesting 

that the observed increase in hPTTG expression following CDC2 knockdown results in 

reduced cell proliferation.  When CDC2 expression was repressed, there was no significant 

difference in cell viability following treatment with growth factors (n = 3) compared to 

vehicle treated controls (see Figure 3-11). 

 

Figure 3-11: MTT cell viability assays demonstrating that hPTTG induction by growth factors is 

not as a result of increased proliferation, but that CDC2 repression results in a significantly reduced 

proliferation rate in TPC-1 cells.  N = 3 experiments.  Error bars represent the SEM (*** p < 0.001, 

NS = non-significant).   
 

3.4 Discussion 

 

The precise mechanisms of hPTTG over-expression in thyroid cancer have not been 

fully elucidated.  Since hPTTG is induced by EGF, TGF-α, IGF-1 and FGF-2 in non-thyroid 

human cell types (Tfelt-Hansen et al. 2004; Vlotides et al. 2006; Chamaon et al. 2005; 

Thompson and Kakar 2005; Heaney et al. 1999; Tsai et al. 2005), we investigated if similar 

effects were observed in human thyroid cells.  This study demonstrated that hPTTG 

expression and phosphorylation is regulated by EGF, TGF-α and IGF-1 in both malignant 

and non-malignant thyroid cells, though hPTTG was not induced by FGF-2 in all cell types 
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investigated.  Interestingly, these effects were independent of the known regulators of hPTTG 

expression (SP1) and phosphorylation (CDC2).  Furthermore, CDC2 was identified as a 

novel regulator of hPTTG expression in thyroid cells.   

3.4.1 Expression of hPTTG and growth factor receptors in thyroid cells 

 

Endogenous hPTTG mRNA and protein were over-expressed in transformed thyroid 

papillary carcinoma cell lines compared to normal human primary thyrocytes, consistent with 

hPTTG over-expression in thyroid malignancies, where its expression correlates with 

aggressiveness of tumour subtypes (Boelaert et al. 2003a; Heaney et al. 1999).  Indeed, 

hPTTG over-expression was greater in SW1736 cells derived from an anaplastic thyroid 

carcinoma, compared with TPC-1 and K1 cells derived from papillary thyroid cancers.   

EGFR, IGF1R and FGFR1 are tyrosine kinase receptors that facilitate the signalling 

capabilities of EGF and TGF-α, IGF-1 and FGF-2, respectively.  The MAPK and PI3K 

signalling cascades are the major pro-survival, anti-apoptotic pathways activated by EGFR, 

IGF1R and FGFR1 following ligand binding, receptor dimerisation and tyrosine auto-

phosphorylation (Oda et al. 2005; Riedemann and Macaulay 2006).  High expression of 

EGFR in TPC-1 (albeit statistically non-significant), K1 and SW1736 cell lines was 

consistent with previous studies demonstrating its over-expression in six thyroid cancer cell 

lines (Yeh et al. 2006) and in thyroid tumours where elevated EGFR expression was 

associated with disease progression (Landriscina et al. 2011; Lee et al. 2007; Lam et al. 

2011).  Taken together with observations that the thyroid is an EGF-rich environment 

(Kajikawa et al. 1991) and that TGF-α is over-expressed in thyroid tumours (Lam et al. 

2011), enhanced EGFR signalling appears to be an important process in thyroid cancer 

progression.   

Similarly, our findings of elevated levels of FGFR1 in TPC-1, K1 and SW1736 cells 

compared to normal human primary thyrocytes is consistent with other observations of 
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enhanced FGFR1 expression in ex vivo human specimens of thyroid hyperplasia (Thompson 

et al. 1998) and cancer (St Bernard et al. 2005).  In addition, expression of the FGFR1 ligands 

FGF-1 and FGF-2 is increased in thyroid hyperplasia and cancer (Thompson et al. 1998; 

Eggo et al. 1995), suggesting FGF signalling is involved in thyroid disease progression.  

Moreover, FGF-2 expression positively correlated with elevated hPTTG expression in 

thyroid cancer specimens, where it was identified as an independent prognostic indicator of 

metastasis (Boelaert et al. 2003a).  Subsequently, FGF-2 induction by hPTTG was 

demonstrated in thyroid cells (Boelaert et al. 2004).  Together, these observations suggest that 

hPTTG could have an important role in mediating increased autocrine FGF-2 signalling to 

drive thyroid tumour progression.   

Under-expression of IGF1R mRNA in TPC-1, K1 and SW1736 cells compared with 

human primary thyrocytes is contradictory to reports of increased IGF1R protein expression 

in TPC-1 and three other thyroid carcinoma cell lines (Belfiore et al. 1999).  Further, both 

IGF-1 (mRNA and protein) and IGF1R (protein) upregulation has been reported in ex vivo 

human thyroid adenomas and carcinomas, supporting a role for enhanced IGF1R signalling in 

disease progression where their expression positively correlated with tumour aggression 

(Maiorano et al. 2000).  However, our results were consistent, statistically significant and 

obtained using a robust technique in TaqMan RT-PCR.    

3.4.2 Regulation of hPTTG expression and phosphorylation by growth factors 

 

Despite varying levels of growth factor receptor expression, all thyroid cells tested 

were responsive to treatments with EGF, TGF-α and IGF-1, resulting in induction of hPTTG 

protein expression and phosphorylation.  However, induction of hPTTG by growth factors in 

SW1736 cells was less clear than in TPC-1, K1 and human primary thyroid cells and 

scanning densitometry studies revealed non-significant hPTTG induction.  It is plausible that 
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since endogenous hPTTG expression levels are high in SW1736 cells, the effects of growth 

factor treatment on further hPTTG induction are attenuated.  

hPTTG expression and phosphorylation were strikingly enhanced  following treatment 

with FGF-2 in TPC-1 cells, whereas no significant effects were observed in other cell types.  

It is possible that normal human primary thyrocytes were not responsive due to low FGFR1 

expression compared with increased expression in thyroid cancer cells as observed in this and 

previous studies (St Bernard et al. 2005).  Effects of growth factors on hPTTG expression 

were generally less striking in SW1736 cells and further dose-response and time-course 

studies may clarify hPTTG regulation by FGF-2 in K1 cells, since preliminary dose-response 

and timecourse experiments indicated FGF-2 induction of hPTTG expression.  FGF-2 effects 

were not investigated further due to the inconsistent responses demonstrated between 

different thyroid cell types.   

Given the role of hPTTG as the human securin (Zou et al. 1999; Zur and Brandeis 

2001; Yu et al. 2000b), it may be difficult to discern direct effects on hPTTG and those 

secondary to stimulation of cellular proliferation.  MTT assays in TPC-1 cells revealed no 

change in proliferation following addition of growth factors, implying direct effects on 

hPTTG regulation, consistent with the observation that hPTTG over-expression did not 

correlate with PCNA expression in human thyroid tumours (Boelaert et al. 2003a). 

The effects of EGFR ligands and IGF-1 were abrogated following additional 

treatments with specific MAPK (PD98059) or PI3K (LY294002 and Wortmannin) inhibitors 

respectively, consistent with observations in non-thyroid cells (Chamaon et al. 2005; Tfelt-

Hansen et al. 2004).  Analysis of phospho-P44/42 ERK1/2 and phospho-AKT expression 

confirmed rapid activation of the MAPK and PI3K cascades respectively, by both EGFR 

ligands and IGF-1.  Notably, these pathways were also activated in SW1736 cells suggesting 

high levels of endogenous hPTTG in this cell type is driven by alternative pathways.  Our  
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findings add to increasing evidence of significant levels of crosstalk between these signalling 

pathways (Castellano and Downward 2011; Vlotides et al. 2006), and therapeutic targeting of 

both pathways has been proposed in the management of thyroid cancer (Miller et al. 2009).   

3.4.3 Mechanisms of hPTTG regulation by growth factors 

 

Subsequent investigations were performed in TPC-1 cells since these were the most 

responsive to growth factors and highly amenable to siRNA transfection.  Given the 

established role of SP1 as a regulator of hPTTG transcription (Chintharlapalli et al. 2011; 

Clem et al. 2003) and its reported activation by MAPK and PI3K (Milanini-Mongiat et al. 

2002; Pore et al. 2004), we investigated whether SP1 mediates hPTTG induction by growth 

factors.  Observation of reduced hPTTG in vehicle treated cells following SP1 depletion 

confirmed its role in hPTTG transcription, consistent with siRNA studies in hepatocellular 

carcinoma cells (Chen et al. 2008).  Following SP1 knockdown, hPTTG was nonetheless 

inducible by growth factors suggesting the effect is independent of SP1, concurrent with 

studies of hPTTG regulation by EGF in pituitary folliculostellate TtT/GF cells (Vlotides et al. 

2006).   

CDC2 is the sole-confirmed phosphorylator of hPTTG (Ramos-Morales et al. 2000) 

and we assessed its importance in growth factor mediated phosphorylation of hPTTG.  

Unexpectedly, CDC2 depletion caused a striking upregulation of unphosphorylated and 

phosphorylated hPTTG protein in vehicle-only treated cells.  This finding is in contrast to a 

study demonstrating direct phosphorylation at Ser165 of hPTTG by CDC2 during mitosis in 

HeLa cells  (Ramos-Morales et al. 2000).  Induction of hPTTG was further enhanced, albeit 

non-significantly, upon addition of EGF, and so it is conceivable that growth factor effects on 

hPTTG expression and phosphorylation are independent of CDC2 and that alternative 

mechanisms of hPTTG phosphorylation exist.  MAPK directly phosphorylates Ser162 on rat 

Pttg, which is the analogous site to Ser165 in hPTTG (Pei 2000).  Moreover, a direct 
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interaction between hPTTG and both MAPK and PI3K was observed in malignant and non-

neoplastic astrocytes, as well as human testis (Chamaon et al. 2005).  It is tempting to 

speculate that activation of these kinases by growth factors leads to the direct 

phosphorylation of hPTTG, though this requires further investigation.  

3.4.4 Regulation of hPTTG by CDC2 

 

Induction of hPTTG protein expression and phosphorylation following CDC2 

depletion was confirmed in TPC-1 cells and human primary thyrocytes.  This effect was 

abrogated by treatment with the translation inhibitor, anisomycin, suggesting the effect is not 

post-translational.  Subsequently, TaqMan RT-PCR studies revealed upregulation of hPTTG 

mRNA expression following knockdown of CDC2, suggesting a transcriptionally driven 

effect.  Thus we have identified CDC2 as a novel regulator of hPTTG expression.  

Proliferation of TPC-1 cells was significantly reduced following CDC2 depletion, potentially 

as a result of TPC-1 induced hPTTG expression with high levels of hPTTG resulting in 

mitotic inhibition through its role as a securin (Boelaert et al. 2003b).   

3.4.5 Conclusion 

 

This study confirmed that EGF, TGF-α and IGF-1 activate MAPK and PI3K 

pathways via the EGFR and IGF1R respectively to induce hPTTG expression and 

phosphorylation in thyroid cells.  Enhanced expression of growth factors and their receptors 

in thyroid cancer could provide an explanation for hPTTG over-expression in thyroid 

malignancies.  SP1 and CDC2 are not involved in regulating growth factor mediated hPTTG 

expression and phosphorylation, though CDC2 was identified as an independent regulator of 

hPTTG expression.  Further investigations of the exact mechanisms by which growth factors 

regulate hPTTG expression and phosphorylation may elucidate novel potential targets to 

reduce hPTTG expression in thyroid cancer. 
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4.1 Introduction 

 

As demonstrated and discussed in Chapter 3, hPTTG expression and phosphorylation is 

induced by growth factors.  In addition, several studies have demonstrated that hPTTG in turn 

transactivates growth factors. 

hPTTG induction of the angiogenic growth factors, FGF-2 and VEGF, has been 

described in various studies.  Initially, an increase in FGF-2 expression was observed 

following hPTTG over-expression in NIH3T3 fibroblasts.  Further, increased FGF-2 

secretion was detected in the conditioned media of cells, and both of these effects were 

dependent on the SH3-interacting domain of hPTTG (Zhang et al. 1999b).  A subsequent 

study made similar observations through investigating the effect of hPTTG over-expression 

in angiogenesis.  Increased proliferation, migration and tube formation were observed in 

human umbilical vein endothelial cells (HUVECs), following treatment with the conditioned 

media from hPTTG-transfected NIH3T3 cells.  The pro-angiogenic effects of hPTTG over-

expression were  significantly reduced by mutation of the SH3-interacting domain or by 

addition of a neutralising FGF-2 antibody (Ishikawa et al. 2001).  Luciferase reporter assays 

performed in COS-7 cells indicated that hPTTG regulation of FGF-2 expression is as a result 

of direct effects on the FGF-2 promoter (Chien and Pei 2000).  Two studies from our own 

group have provided strong evidence for FGF-2 upregulation by hPTTG in thyroid cancer.  In 

the first instance, over-expression of both hPTTG and FGF-2 was demonstrated in 

differentiated thyroid cancer, where there was a strong positive correlation of the expression 

of hPTTG and FGF-2 transcripts.  Importantly, this study identified hPTTG and FGF-2 as 

potential prognostic indicators of tumour recurrence and metastasis, respectively (Boelaert et 

al. 2003a).  Subsequently, hPTTG induction of FGF-2 in thyroid cells was demonstrated 

more directly following over-expression of hPTTG in primary human thyrocytes, where the 
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SH3-interacting domain of hPTTG was once again critical to regulation of FGF-2 (Boelaert 

et al. 2004).   

A further study from our laboratory indicated there was increased expression of VEGF 

and its receptor, KDR, in pituitary tumours with high hPTTG expression.  In addition, 

hPTTG over-expression induced both FGF-2 and VEGF expression in NT-2, MCF-7 and 

JEG-3 cells via its SH3-interacting domain.  hPTTG regulation of VEGF was shown to be 

independent of FGF-2 induction through depletion of secreted FGF-2 in the cell media 

(McCabe et al. 2002). 

Our group used an angiogenesis-specific cDNA PCR array to investigate the regulation 

of other angiogenic genes by hPTTG in thyroid cells.  Notably, cells over-expressing hPTTG 

induced the pro-angiogenic genes VEGF, ID3 and IGF-1, and downregulated the anti-

angiogenic gene thrombospondin-1 (TSP-1), suggesting hPTTG may be a critical regulator of 

multiple genes that are important in angiogenesis and tumour progression in thyroid cancer 

(Kim et al. 2006b).  The SH3-interacting domain was necessary for regulation of ID3, which 

was later shown to be mediated by the stimulation of VEGF and KDR (Kim et al. 2006a).   

A recent study revealed positive correlations between expression of hPTTG, FGF-2 

and IGF-1 transcripts in pituitary adenomas, providing further evidence of hPTTG’s 

interaction with these growth factors in tumours (Chamaon et al. 2010).  It is possible that 

other growth factors are also regulated by hPTTG and thyroids from mutant TRβ
PV/PV

 mice 

which spontaneously develop follicular thyroid cancers demonstrated elevated Pttg and TGF-

α expression at the time of metastatic spread (Ying et al. 2003). 

The growing body of research that describes a correlation between increased hPTTG 

and growth factor expression in a variety of tumours strongly suggests that their relationship 

is important in angiogenesis and disease progression.  We have demonstrated that hPTTG is 

regulated by growth factors in thyroid cells (Chapter 3) and in turn, hPTTG has been shown 
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in previous studies to induce expression of some growth factors in both thyroid (Boelaert et 

al. 2003a; Kim et al. 2006a; Kim et al. 2006b) and non-thyroid cell types (Zhang et al. 1999b; 

Heaney et al. 1999; Chien and Pei 2000; Ishikawa et al. 2001; McCabe et al. 2002).  In 

addition, human thyroid follicular and endothelial cells express growth factors as well as their 

receptors, mediating cross talk between these cell types and thus facilitating mitogenesis and 

angiogenesis (Fagin 2005b; Patel et al. 2003).  Based on these observations we performed 

studies to test the hypothesis that hPTTG and growth factors may regulate each other through 

auto/paracrine feedback mechanisms that are aberrantly controlled in thyroid cancer.   

Following on from studies in Chapter 3, which confirmed that hPTTG expression is 

induced by EGF, TGF-α and IGF-1, the aim of this study was to investigate whether hPTTG 

itself transactivates these growth factors.  Thyroid cells were transiently transfected with 

hPTTG and growth factor expression was determined through quantitative TaqMan RT-PCR.  

Thyroid cells were treated with conditioned media taken from vector only control or 

WT/mutant hPTTG-transfected cells in order to investigate autocrine and paracrine induction 

of hPTTG and to infer a mechanism of growth factor regulation.  Specific neutralising 

antibodies and growth factor receptor inhibitors were used to determine the significance of 

each signalling pathway implicated in the auto-regulation of hPTTG and growth factors in 

thyroid cells.   

4.2 Materials and methods 

 

4.2.1 Cell culture and transfections 

 

Human thyroid papillary carcinoma TPC-1 and K1 cell lines were routinely cultured 

as described in section 2.1.  For transfection experiments, TPC-1 and K1 cells were seeded in 

12-well plates at a density of 4.5 x 10
4
 and 6.5 x 10

4 
cells, respectively.  Cells were left 24 

hours before transfection. 
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Collection of thyroid samples was with approval of the Local Research Ethics 

committee and samples were cultured as described in section 2.2.  All serum, insulin and 

TSH was removed from human primary thyrocytes for at least 24 hours before transfection.   

For hPTTG over-expression studies, we utilised a collection of constructs consisting 

of the pCI-neo vector housing either wild-type hPTTG, hPTTG with a Ser165 mutation 

(termed Phos-), or hPTTG with PXXP motif mutations (termed SH3-), all as previously 

described (Boelaert et al. 2004).  Cells were transfected with 1 µg DNA/well using FuGENE-

6 Transfection Reagent (Roche, Indianapolis, IN, USA), with an optimised ratio of 6 µl per 1 

µg plasmid DNA.  Control transfections utilised equal amounts of blank plasmid (vector-

only, VO, control).  Transfection efficiency of human primary thyrocytes was predicted by 

Western blotting, parallel transfections of β-galactosidase (β-gal staining) or GFP 

(fluorescence microscopy).  Cells were harvested 48 hours post-transfection in protein lysis 

buffer or 250 µl Tri Reagent.  Growth factor expression was determined in experiments 

where a minimum of 30 % transfection efficiency had been achieved.   

4.2.2 Conditioned media treatments 

 

Conditioned media from transfected human primary thyrocytes were collected and 

centrifuged at 600 g for 10 minutes at room temperature to remove particulates.  Cell culture 

supernatant was then used to treat primary thyrocytes derived from the same specimen, with 

or without the addition of neutralising antibodies against EGF (20 µg/ml), IGF-1 (20 µg/ml) 

[R&D SYSTEMS, UK] and TGF-α (1 : 40) [Biovision Inc., California, USA], or gefitinib 

(Iressa, 100 µM) and picropodophyllin (PPP, 20 µM) [Tocris Bisoscience, Missouri, USA].  

Gefitinib and picropodophyllin are highly specific inhibitors of phosphorylation of the 

tyrosine kinase domains of EGFR and IGFR respectively.  Inhibitors were added to cells 30 

minutes prior to treatment with conditioned media in order to block growth factor receptor 

activity.  Further inhibitor was added at the same time as conditioned media in order to 
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sustain inhibition of growth factor receptor activity.  Cells were harvested 24 hours later in 

protein lysis buffer.   

4.2.3 RNA extraction, reverse transcription, QT-PCR 

 

Total RNA was extracted from TPC-1, K1 cells and from human primary thyrocytes 

as described in section 2.4.  Reverse transcription and QT-PCR techniques were as described 

above (see sections 2.4 and 2.5).  hPTTG mRNA was detected using the primers and probe 

described above (see Table 3-1).  Gene-specific expression assays for EGF 

(Hs01099999_m1), TGF-α (Hs_00608187_m1) and IGF-1 (Hs01547656_m1) were 

purchased from Applied Biosystems (Warrington, UK).   

4.2.4 Western blot analysis 

 

Protein extraction, quantification and subsequent Western blotting methods were as 

described previously (see section 2.6).  Blocked membranes were subsequently incubated 

with primary antibodies against hPTTG (2 µg/ml) [Invitrogen, UK].  After washing in TBS-

T, blots were incubated with appropriate secondary antibodies conjugated to horseradish 

peroxidise (Dakocytomation, UK) for 1 hour at room temperature before being visualised by 

techniques described in section 2.6.   

4.2.5 Enzyme-linked immunosorbent assays (ELISAs) 

 

Conditioned medium from primary thyrocytes was collected 48 hours following 

transfection with VO and WT-hPTTG plasmids. The medium was then centrifuged at 12000 g 

for 15 minutes at 4 ºC to remove particulates.  EGF and IGF-1 concentration were assayed in 

200 µl and 50 µl of the supernatant respectively, using the Quantikine HS human EGF and 

human IGF-1 enzyme-linked immunosorbent assays (R&D Systems, Inc.) as per the 

manufacturer’s instructions.  Following the preparation of reagents and standards, cell culture 

or standard (200 µl EGF; 50 µl IGF-1) was added to assay diluent (50 µl EGF; 150 µl IGF-1) 
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in each well of a 96 well plate.  After 3 hours incubation at room temperature (18-23 °C), 

plates were washed and 200 µl of either EGF or IGF-1 basic conjugate was added to each 

well.  After a further 2 hour incubation period at room temperature, plates were washed and 

200 µl of substrate solution was added to each well.  Following a further 30 minute 

incubation period, the reaction was terminated by the addition of 50 µl stop solution to the 

wells.  The optical density of each well was determined within 30 minutes using a microplate 

reader set to 450 nm.  Readings were also taken at 570 nm wavelength and these were 

subtracted from the readings at 450 nm to correct for optical imperfections in the plate.    

4.2.6 Statistical analysis 

 

Data were analysed as described in section 2.8. 

 

4.3 Results 

 

4.3.1 Effects of hPTTG expression on growth factor expression in thyroid cells 

 

hPTTG has been shown to induce expression of proangiogenic growth factors 

including VEGF and FGF-2 (Kim et al. 2006a; Boelaert et al. 2004).  We set out to 

investigate whether hPTTG is capable of upregulating expression of mitogenic growth factors 

implicated in thyroid tumour progression, including EGF, TGF-α and IGF-1 (Hoelting et al. 

1994; Holting et al. 1995; Lam et al. 2011; Maiorano et al. 2000).  We explored this through 

transient transfection studies in thyroid cells where either vector only controls or wild-type 

hPTTG were over-expressed in thyroid cells.   

4.3.1.1 Growth factor expression following hPTTG over-expression in transformed 

thyroid cell lines 

 

In the first instance, we performed transient transfection experiments in TPC-1 and 

K1 papillary thyroid carcinoma cells since they were most consistently amenable to 

transfection.  Successful hPTTG over-expression was confirmed by Western blot analysis.  
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Forty eight hours post-transfection, TaqMan RT-PCR revealed that there was no significant 

induction of EGF or TGF-α mRNA expression by hPTTG in either TPC-1 or K1 cells.  IGF-

1 mRNA expression was completely undetectable in both cell lines (see Figure 4-1).   

 
Figure 4-1: hPTTG does not induce growth factor expression in TPC-1 and K1 transformed cell 

lines.  A  Representative Western blot anlalysis demonstrating successful transfection of TPC-1 and 

K1 cells with wild-type hPTTG.  B  TaqMan RT-PCR data showing relative mRNA expression levels 

of EGF, TGF-α and IGF-1 following transient hPTTG over-expression compared to vector only 

transfection controls.  N = 3 experiments.  Error bars represent the SEM (NS = non-significant).   

 

4.3.1.2 hPTTG over-expression induces growth factor expression in human primary 

thyrocytes 

 

  Given the above findings, we performed further transient transfection experiments in 

human primary thyrocytes in which endogenous hPTTG expression is low (see Figure 3-1) 

and which express all three growth factors being investigated.  Transfection efficiency was 

determined by Western blot analysis or by detection of beta-galactosidase and GFP control 

transfections.  In cell preparations where transfection efficiency was demonstrated to be >30 
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%, growth factor expression was analysed.  At 48 hours post-transfection TaqMan RT-PCR 

revealed that hPTTG over-expression induced EGF (1.7-fold, n = 6, p < 0.001), TGF-α (1.5-

fold, n = 5, p < 0.001) and IGF-1 (1.6-fold, n = 7, p < 0.001) mRNA expression compared to 

vector only transfected cells (see Figure 4-2). 

 

Figure 4-2: Over-expression of hPTTG in human primary thyrocytes induces growth factor 

mRNA expression.  A  Representative Western blot analyses (i) demonstrating successful transient 

over-expression of hPTTG in human primary thyrocytes derived from different specimens.  β-

galactosidase staining (ii) and GFP fluorescence microscopy (iii) demonstrating 30-50 % transfection 

efficiency of human primary thyrocytes.  B  TaqMan RT-PCR data showing relative mRNA expression 

levels of EGF, TGF-α and IGF-1 following transient hPTTG over-expression compared to vector only 

transfection controls.  N indicates number of repeat experiments.  Error bars represent the SEM (*** 

p < 0.001).  
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4.3.2 hPTTG and growth factors are involved in paracrine and autocrine feedback 

mechanisms 

 

To investigate whether the increase in growth factor mRNA expression results in 

enhanced translation and secretion of these growth factors and subsequent paracrine 

upregulation of hPTTG by these growth factors, we performed treatments of human primary 

thyrocytes with the conditioned media of transfected cells from the same thyroid specimen.  

We also transfected hPTTG mutants to infer the mechanism involved in growth factor 

regulation by hPTTG.  Western blot analysis demonstrated that cells treated with the 

conditioned media from wild-type hPTTG transfectants showed a 7-fold induction of 

endogenous hPTTG (n = 4, p < 0.001) compared to vector only controls (n = 4).  This effect 

was dependent upon the SH3-interacting domain of hPTTG, since cells treated with 

conditioned media following transfection with SH3- hPTTG showed a non-significant 

upregulation of endogenous hPTTG (1.9-fold, n = 4, p = NS).  However, transfection with 

Phos- hPTTG resulted in a 7.3-fold induction of hPTTG protein (n = 4, p < 0.001), similar to 

effects following wild-type hPTTG transfection, indicating that these effects are independent 

of hPTTG phosphorylation (see Figure 4-3). 
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Figure 4-3: Over-expression of hPTTG in vitro induces further autocrine and paracrine 

upregulation of hPTTG.  A  Representative Western blot analysis and scanning densitometry data (B) 

demonstrating hPTTG expression following treatment of human primary thyrocytes with conditioned 

media from wild-type or mutant hPTTG-transfected cells from the same specimen.  Results are based 

on n = 4 repeats of the described experiment (*** p < 0.001, NS = non-significant).    
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Figure 4-4: EGF and IGF-1 levels in human primary thyrocyte cell culture supernatants were 

undetectable by ELISA.  A-B  Concentration standard curves and exemplary calculations of growth 

factor concentrations for EGF (A) and IGF-1 (B).  
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specific inhibitors of phosphorylation of the tyrosine kinase domains of EGFR and IGF1R 

respectively.  Western blot analysis demonstrated that additional treatment of cells with 100 

µM gefitinib completely prevented upregulation of hPTTG following treatment with 

conditioned media.  Additional treatments with 20 µM PPP only partially abrogated the 

hPTTG response.  Thus, autocrine upregulation of hPTTG expression could be attenuated by 

preventing EGF, TGF-α and IGF-1 signalling via their respective receptors (see Figure 4-5).   

 

 

Figure 4-5: Intervention of hPTTG auto-regulation with neutralising antibodies against growth 

factors and selective inhibitors of growth factor receptor tyrosine kinase activity.  A+B  

Representative Western blot  analyses showing effects on hPTTG induction following treatment with 

conditioned media, by addition of neutralising antibodies against EGF, TGF-α, IGF-1(A), the EGFR 

inhibitor gefitinib (100 µM) or the IGFR inhibitor picropodophyllin (20 µM) (B).  Western blots are 

representative of n ≥ 2 separate experiments.    
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hPTTG and that of both EGF (Rs = 0.2177, p < 0.01) and IGF-1 (Rs = 0.2104, p < 0.01).  

There was a weak correlation between hPTTG and TGF-α mRNA expression (Rs = 0.0793, p 

= 0.101) that was not statistically significant (see Figure 4-6).   

 

Figure 4-6: Correlation between mRNA expression for hPTTG and growth factors in normal 

thyroids and multinodular goitres. Significant associations are illustrated between hPTTG and EGF 

(A) and IGF-1 (B), but not with TGF-α (C). Data are given as ΔCT values and the R2 and p values 

are also displayed.  N = 34 normal or multinodular goitre thyroid specimens.   
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hPTTG is regulated by EGF, TGF-α and IGF-1 in thyroid cells, we investigated whether 

hPTTG in turn regulates these growth factors.  To this effect, we demonstrated that hPTTG 

regulated expression and secretion of EGF, TGF-α and IGF-1 as part of autocrine feedback 

mechanisms in vitro, which led to further upregulation of hPTTG.  Treatments with specific 

neutralising antibodies or tyrosine kinase inhibitors resulted in abrogation of autocrine 

hPTTG induction.  Thus, intervention of these autocrine pathways represents a potential 

therapeutic strategy to reduce hPTTG over-expression in thyroid cancer.   

4.4.1 Induction of growth factors by hPTTG in thyroid cells 

 

In the first instance, studies were performed in TPC-1 and K1 papillary thyroid 

carcinoma cells due to our ability to consistently over-express hPTTG in these cell types.  

However, TaqMan RT-PCR revealed no significant alterations in EGF and TGFα mRNA 

expression following hPTTG over-expression.  IGF-1 mRNA was not expressed in either cell 

type, consistent with studies demonstrating lack of IGF-1 expression in thyroid cancer cell 

lines (Belfiore et al. 1999).  We considered the possibility that pathways driving expression 

of EGF and TGFα may already be strongly activated in these cells where endogenous hPTTG 

expression is already very high (see section 3.3.1).  To test this, we performed further 

transient transfection studies in human primary thyrocytes, which have low levels of 

endogenous hPTTG (see section 3.3.1) and which express all three growth factors being 

investigated.  Achieving a consistent level of transfection was challenging, but we were able 

to verify or refute successful transfection through Western blot analysis, β-gal staining and 

GFP microscopy.  All cells examined had 30-50 % transfection efficiency and TaqMan RT-

PCR analysis revealed that EGF, TGF-α and IGF-1 mRNA expression was induced 

following hPTTG over-expression.  EGFR (Landriscina et al. 2011; Lee et al. 2007; Lam et 

al. 2011) and IGF1R (Belfiore et al. 1999; Maiorano et al. 2000) upregulation in thyroid 

cancer is associated with disease progression.  Moreover, the thyroid is an EGF-rich 
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environment (Kajikawa et al. 1991) and TGF-α (Lam et al. 2011) and IGF-1 (Maiorano et al. 

2000) are over-expressed in thyroid tumours.  Together these findings suggest that enhanced 

EGFR and IGF1R signalling appears to be critical in thyroid cancer progression.   Our 

findings suggest that over-expression of growth factors in thyroid cancer may be partly 

mediated by hPTTG over-expression and that pathways of growth factor regulation by 

hPTTG could provide novel therapeutic targets to reduce growth factor expression and 

prevent disease progression.   

 

4.4.2 Secretion of growth factors and autocrine regulation of hPTTG 

 

Given the induction of hPTTG by growth factors (see section 3.3.3) and having 

determined upregulation of EGF, TGF-α and IGF-1 mRNAs by hPTTG in thyroid cells, we 

sought to establish whether growth factor secretion is enhanced and leads to autocrine 

upregulation of hPTTG.  Treatments with the conditioned media of transfected cells induced 

hPTTG protein expression in cell cultures derived from the same specimen, suggesting 

increased secretion of growth factors.  Transfections with hPTTG mutants revealed that this 

effect was dependent on the SH3-interacting domain but independent of hPTTG 

phosphorylation, concurrent with various studies demonstrating transactivational capabilities 

of hPTTG owing to its SH3-interacting domain.  Induction of FGF-2 by hPTTG is well 

established and this effect was dependent on an intact SH3-interacting domain in NIH3T3 

mouse fibroblasts (Zhang et al. 1999b) and human primary thyrocytes (Boelaert et al. 2004).  

Furthermore, FGF-2 mediated angiogenesis following hPTTG over-expression in HUVEC 

cells was diminished  following introduction of a point mutation in the region coding for the 

SH3-interacting domain (Ishikawa et al. 2001).  Similarly, hPTTG induction of VEGF in 

NT2, MCF-7 and JEG-3 cells (McCabe et al. 2002) and of ID3 in human primary thyrocytes 

(Kim et al. 2006b) was mediated via the SH3-interacting domain.  These findings, together 
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with the observations of the current study, emphasise the importance of hPTTG’s C-terminal 

SH3-interacting domain in the transactivation of growth factors involved in tumour growth 

and vascularisation.   

We used ELISAs to try and confirm the specific growth factors involved and their 

relative contribution to autocrine regulation of hPTTG.  However, failure to detect EGF or 

IGF-1 in this approach suggested that concentration levels were beyond the limits of 

detection of the assays used.  Alternatively, there could have been a technical issue with 

growth factor degradation as a result of long term storage of samples. 

As a result, an alternative strategy was adopted that allowed us to confirm the specific 

pathways involved in hPTTG autoregulation and provide insight into possible therapeutic 

approaches.  In repeats of conditioned media treatments, additional treatments with 

neutralising antibodies against EGFR ligands or the specific EGFR tyrosine kinase inhibitor 

gefitinib prevented autocrine regulation of hPTTG, strongly supporting a relationship 

between hPTTG, EGFR ligands and EGFR in thyroid cells.  Addition of an IGF-1 

neutralising antibody or the specific IGF1R inhibitor PPP only partially abrogated the effect, 

suggesting this pathway may be less important.  Alternatively, hPTTG may be involved in 

interactions with IGF-2, which also binds IGF1R and is implicated in neoplasia (Riedemann 

and Macaulay 2006; Pollak et al. 2004).  In addition, other receptor types may be involved 

since IGF signalling is complicated by the ability of the IGF1R to dimerise with the insulin 

receptor [IR] (Riedemann and Macaulay 2006).  Some IGF1R inhibitors including PPP only 

inactivate IGF1R and not IR (Vasilcanu et al. 2008) and thus IGF1R inhibition may not 

completely prevent IGF-1/IGF-2 activity.  Indeed, IGF1R/IR dimers are over-expressed in 

thyroid cancer (Belfiore et al. 1999) and this may be important in terms of specificity and 

toxicity when employing treatments targeting the IGF system. 
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This section of work provokes discussion regarding the benefits of targeting EGFR 

and IGF1R in thyroid cancer.  Gefitinib (Iressa, AstraZeneca) selectively binds the ATP site 

of the EGFR tyrosine kinase enzyme and has been shown to slow or block growth of thyroid 

cancer cell lines (Schiff et al. 2004; Nobuhara et al. 2005).  It is currently used in the 

treatment of non-small cell lung cancer where the clinical response correlates with mutational 

activation of EGFR (Brown et al. 2010).  An early phase II clinical trial using gefitinib to 

treat 27 patients with advanced differentiated thyroid cancer reported mild tumour volume 

reduction and prolonged stable disease in some patients, although this did not meet ‘partial 

response criteria’ (Pennell et al. 2008).  Erlotinib (Tarceva, OSI/Genentech) and Lapatanib 

(Tykerb, GlaxoSmithKline) are alternative EGFR tyrosine kinase inhibitors that are FDA 

approved for lung/pancreatic and breast cancer respectively, while cetuximab (Erbitux, 

ImClone/Bristol-Myers Squib) and panitumumab (Vectibix, Amgen) are FDA approved 

monoclonal antibodies that block the EGFR ligand binding site.   

PPP is a cyclolignan that inhibits tyrosine phosphorylation of Y1136 in the activation 

loop of IGF1R (Girnita et al. 2004; Vasilcanu et al. 2004), and treatment with this agent has 

been shown to induce significant tumour regression and to inhibit metastasis in various cell 

systems and xenografted mice (Girnita et al. 2006; Vasilcanu et al. 2006; Stromberg et al. 

2006).  In order to assess its suitability as a drug for targeting IGF1R, ongoing research 

continues to investigate mechanisms of tumour cell resistance to PPP following long-term 

exposure (Hashemi et al. 2011) and PPP remains a highly promising drug for future cancer 

treatments.  Many other drugs targeting IGF1R are in phase I clinical trials (Lopez-Calderero 

et al. 2010), including monoclonal antibodies that bind IGF1R and induce internalisation of 

the receptor by endocytosis.  αIR3 was the first monoclonal antibody targeting IGF1R to 

demonstrate anti-cancer effects in vivo (Arteaga et al. 1989), and more recently developed 

antibodies such as CP-751,871 [figitumumab, Pfizer] (Cohen et al. 2005) and IMC-A12 
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[cixutumumab, Imclone] (Wu et al. 2005) are showing promise in trials in a wide range of 

malignancies including multiple myeloma, Ewing’s sarcoma, neuroendocrine tumours, 

colorectal, prostate, breast, pancreatic, liver, and head and neck cancers (Lopez-Calderero et 

al. 2010).  Moreover, trials of newly developed tyrosine kinase inhibitors targeting IGF1R 

such as INSM-18 [Insmed] (Ryan et al. 2008) and OSI-906 [OSI Pharmaceuticals] (Carden et 

al. 2009; Lindsay et al. 2009) have demonstrated significant potential for future use in clinical 

practice.   

Further trials in patients with thyroid cancer are required to determine the overall 

benefits of treatments targeting EGFR and IGF1R signalling but the studies described in this 

chapter demonstrate that one advantage of this approach could be the desirable intervention 

in the autocrine feedback mechanisms involving hPTTG and growth factors.   

4.4.3 hPTTG and growth factor correlation studies in human thyroid samples 

 

Several studies have investigated the correlation between hPTTG and growth factors 

in endocrine malignancies.  Our group’s own study demonstrated a positive correlation of 

hPTTG and FGF-2 expression in 27 differentiated thyroid cancers compared with 11 normal 

thyroids, where hPTTG and FGF-2 were identified as independent markers of tumour 

recurrence and metastasis, respectively (Boelaert et al. 2003a).  There was also strong 

positive correlation between hPTTG and FGF-2, as well as IGF-1 mRNA expression in 103 

pituitary adenomas (Chamaon et al. 2010).  Another study in pituitary adenomas, conducted 

by our own group, observed positive correlation between hPTTG and VEGF, as well as the 

VEGF receptor, KDR (McCabe et al. 2002).  Further, in mutant TRβ
PV/PV

 mice which 

spontaneously develop follicular thyroid cancers, Pttg and Tgf-α were both strongly 

upregulated at the metastatic stage (Ying et al. 2003).  Given these findings and the 

observations of the current study that hPTTG induces expression of EGF, TGF-α and IGF-1, 

we performed studies to correlate mRNA expression in 37 human thyroid specimens taken 
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from normal thyroid tissue or multinodular goitre.  Moderate positive correlations were 

observed between hPTTG and all three growth factor transcripts investigated, though the 

relationship between hPTTG and TGF-α was not significant.  These observations further 

support the existence of important relationships between hPTTG and growth factors in 

normal and hyperplastic thyroid cells.  In this setting, only a weak to moderate correlation 

was evident, potentially since growth factor expression is influenced by activation of multiple 

pathways.  It would be of great interest to investigate whether this relationship is maintained 

or enhanced in a malignant setting, by performing further correlation studies in thyroid cancer 

samples.   

4.4.4 Conclusion 

 

This study confirmed that hPTTG over-expression causes upregulation of EGF, TGF-

α and IGF-1 expression and secretion in human thyroid cells via its SH3-interacting domain.  

Moreover, treatments with conditioned media demonstrated that hPTTG induced growth 

factor secretion is capable of autocrine upregulation of hPTTG.  The work in this and the 

previous chapter collectively establish the existence of autocrine pathways of interaction 

between hPTTG and growth factors, which may be aberrantly controlled in thyroid tumours.  

Specific depletion of growth factors with neutralising antibodies or treatments with growth 

factor receptor tyrosine kinase inhibitors revealed that EGFR signalling may be of particular 

importance in hPTTG autoregulation, while IGF1R signalling may also be significant.  

Treatments with gefitinib and PPP, already used in some clinical settings, may be used to 

disrupt autocrine growth factor signalling at the site of the EGFR and IGF1R respectively, 

thereby reducing hPTTG expression.  Further investigations of the exact mechanisms by 

which hPTTG regulates growth factors and vice versa, may elucidate novel potential targets 

to reduce hPTTG and growth factor expression in thyroid cancer.   
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5.1 Introduction 

 

Following the discovery of rat Pttg (Pei and Melmed 1997) and the subsequent cloning of 

hPTTG in several contemporaneous studies (Zhang et al. 1999b; Dominguez et al. 1998; 

Kakar and Jennes 1999), it was demonstrated that both rat and hPTTG are potent 

transforming genes in vitro and in vivo.  Stable transfection of hPTTG in NIH3T3 mouse 

fibroblast cells caused an increase in cellular proliferation, augmented anchorage-independent 

growth in soft agar and induced tumour formation after subcutaneous injection into athymic 

nude mice (Pei and Melmed 1997; Zhang et al. 1999b; Kakar and Jennes 1999).   

 Subsequently,  hPTTG was found to be over-expressed in various human tumours 

including those of the pituitary (Zhang et al. 1999a; McCabe et al. 2003), breast (Puri et al. 

2001), colon (Heaney et al. 2000), ovary (Puri et al. 2001), oesophagus (Shibata et al. 2002), 

lung (Kakar and Jennes 1999) and liver (Jung et al. 2006).  Other studies reported hPTTG 

over-expression in haematopoietic neoplasms (Dominguez et al. 1998; Saez et al. 2002), 

astrocytomas (Tfelt-Hansen et al. 2004) and in metastatic gastric carcinomas (Wen et al. 

2004).  Furthermore, studies have elucidated critical tumour-promoting mechanisms of 

hPTTG, including induction of aneuploidy and genetic instability through its role as a securin 

(see sections 1.3.1 and 1.3.2) and stimulation of growth factors and angiogenesis (see section 

1.4 and Chapter 5).   

Together, these findings suggest that hPTTG over-expression may have crucial roles 

in both the initiation and progression of many tumour types.   However, the precise function 

of hPTTG in vivo, and the oncogenic potential of hPTTG in a specific organ has not been 

widely tested.  Further insight has been provided by two studies that investigated the effects 

of targeted hPTTG over-expression in the pituitary glands (Abbud et al. 2005) and ovaries 

(El-Naggar et al. 2007) of transgenic mice.  These studies reported hPTTG-induced pituitary 

hyperplasia and cystic glandular hyperplasia of the endometrium respectively (see section 



Chapter 5 Generation of a Murine Model with Thyroid-Targeted hPTTG Expression 

 

137 
 

1.3.3 and Chapter 6).  Studies by our own group and those of others have demonstrated that 

hPTTG is over-expressed in thyroid tumours (Heaney et al. 2001; Boelaert et al. 2003a).  

Furthermore, our group’s own in vitro studies have demonstrated specific interactions 

between hPTTG and growth factors in thyroid cells (Boelaert et al. 2003a; Kim et al. 2006a), 

as well as an inhibitory effect on NIS expression and function, with implications for 

radioiodide therapies in thyroid disease (Boelaert et al. 2007).  At this stage, it was therefore 

of significant interest to generate a transgenic mouse model with thyroid targeted hPTTG 

expression in order to perform in vivo investigations of the precise role of hPTTG in thyroid 

tumourigenesis.   

A major approach for the generation of transgenic mice was first described in 1980, 

where exogenous DNA becomes randomly integrated into the mouse genome following 

microinjection into the male pronuclei of fertilised oocytes, which are subsequently 

implanted into pseudopregnant foster mothers (Gordon et al. 1980).  Typically, thyroid-

targeted transgene expression has been achieved using this technique to introduce DNA 

constructs with transgene expression under control of the thyroid-specific bovine 

thyroglobulin promoter.  For example, this technique has been employed successfully to 

demonstrate that transgenic mice with thyroid targeted BRAF
V600E 

expression develop goitre 

and papillary thyroid cancers (Knauf et al. 2005).  More recently, out group has also 

successfully generated a murine transgenic model with thyroid-specific over-expression of 

PBF, using a DNA construct containing the bovine thyroglobulin promoter  and demonstrated 

significant goitrogenesis and hyperplasia (Read et al. 2011).  Given the success of these and 

numerous other studies, the same methodology was chosen to investigate the in vivo effects 

of thyroid-specific over-expression of hPTTG.   

The aims of the work reported in this chapter were therefore to generate a murine 

transgenic model with thyroid-targeted hPTTG over-expression, to investigate the hypothesis 
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that increased hPTTG expression in thyroid follicular epithelial cells promotes thyroid 

growth and neoplasia.  Moreover, we sought to perform studies to determine whether several 

important in vitro observations, including increased growth factor expression and repression 

of NIS in response to hPTTG over-expression, could be validated in an in vivo model.   

 

5.2 Materials and methods 

 

5.2.1 Generation of transgene construct: TG-hPTTG-FLAG 

 

5.2.1.1 PCR amplification of 3'-FLAG tagged hPTTG cDNA 

 

PCR primers were designed to amplify hPTTG cDNA with the addition of a sequence 

encoding a FLAG epitope (N-DYKDDDDK-C) at the 3' end, from the vector pCI-neo-

hPTTG (Zhang et al. 1999b; Boelaert et al. 2004).  The forward primer contained an EcoRI 

restriction enzyme site and the reverse primer contained a BamH1 restriction enzyme site 

following the stop codon (see Figure 5-1).   

 

Figure 5-1: Sequence and features of the PCR primers designed to amplify and tag the hPTTG 

cDNA on the 3' end with the FLAG epitope. 

 

 The PCR reaction consisted of 500 ng pCI-neo-hPTTG plasmid DNA template, 600 

nM each of forward and reverse primers (Alta Bioscience), 250 µM dNTPs, 1.5 mM MgCl2 

(Bioline, London, UK), 0.5x NH2 reaction buffer (Bioline), 2.5 U Biotaq™ DNA polymerase 

(Bioline), which was made up to a total volume of 50 µl with nuclease-free water.  

The PCR cycling conditions used were 95 ºC for 5 min for the initial denaturation of 

DNA template before holding at 78 ºC at which stage the DNA polymerase in NH2 reaction 

5’ – GCC GAA TTC ATG GCT ACT CTG ATC TAT GTT GAT AAG GAA – 3’

5’ –GCC GGA TCC TTA CTT GTC GTC ATC GTC TTT GTA GTC AAT ATC TAT GTC ACA GCA AAC AGG TGG CA– 3’

FWD

REV

EcoR1 hPTTG cDNA

hPTTG cDNAFLAG epitopeSTOPBamH1
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buffer was added.  Subsequently, there were 40 cycles of 94 ºC for 30 sec (denaturation), 65 

ºC for 30 sec (primer annealing) and 72 ºC for 1 min 30 sec (extension), followed by a final 

extension step of 72 ºC for 7 min.  This was performed on a Mastercycler gradient 

(Eppendorf, Hamburg, Germany).  The PCR product was subsequently electrophoresed on a 

1.5 % agarose (Bioline) gel in 1x TAE (Tris-Acetate-EDTA) buffer (Eppendorf) (see Figure 

5-2).   

 

Figure 5-2:  Agarose gel illustrating the hPTTG-FLAG PCR product (~600 bp).  PCR1 and 2 

show PCR products for two separate PCR reactions.  Plasmid = undigested/unamplified pCI-neo-

hPTTG plasmid.  DNA Hyperladder IV was used to indicate band sizes (Bioline).   

 

 

5.2.1.2 Gel extraction of PCR product 

 

The PCR product (~600 bp in size) was excised from the gel using a scalpel and 

extracted from the agarose using the QIAquick gel extraction kit (Qiagen, Hilden, Germany), 

according to the manufacturer’s instructions.  Briefly, the gel fragment was dissolved in 3 

volumes of Buffer QG to 1 volume of gel (100 mg ~ 100 ml) at 50 ºC.  One gel volume of 

isopropanol was added and the solution centrifuged through a QIAquick column.  After 

discarding the flow-through, the column was washed with Buffer QG and then twice with 

Buffer PE, which contained ethanol.  A final centrifugation step minus wash solution ensured 

maximal removal of ethanol before elution in 30 µl nuclease-free water.   

~600bp 

plasmidPCR 2PCR 1
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5.2.1.3 Restriction digestion and ligation of pSG5 and PCR product 

 

The next step was to subclone the FLAG-tagged hPTTG gene into the pSG5 plasmid 

downstream of the beta-globin intron II and a T7 promoter, and upstream of an SV40 

polyadenylation (poly-A) tail, between the EcoR1 and BamH1 restriction enzyme sites (see 

Figure 5-4).   

In a total volume of 25 µl, 1 µg pSG5 and 14 µl gel extracted PCR product were 

digested using 15 U EcoRI (Promega), 15 U BamH1 (Promega), 10x acetylated BSA and 10x 

Buffer H (Promega) for 2 hours at 37 ºC.  Digested vector and PCR product were 

electrophoresed on a 1.5 % agarose gel and gel extracted using the QIAquick gel extraction 

kit as described in section 5.2.1.2.  The ligation reaction was carried out at 6 ºC overnight and 

consisted of digested vector and PCR product in a 1:3 Molar ratio, 10x T4 DNA ligase buffer 

(Promega) and 3 U T4 DNA ligase (Promega) in a total volume of 20 µl.   

5.2.1.4 Transformation into DH5α cells 

 

According to the manufacturer’s instructions, 2 µl of the ligation reaction were 

transformed into Subcloning Efficiency™ DH5™ Competent Cells (Invitrogen).  The 

ligation reaction was added to 50 µl bacterial cells and incubated on ice for 30 minutes.  The 

cells were heat-shocked for 20 seconds at 42 ºC and returned to ice for a further 2 minutes.  

Lysogeny broth (LB) was added to a total volume of 1 ml and the cells incubated at 37 ºC for 

1 hour with shaking at 200 rpm.  The cells were subsequently pelleted by centrifugation at 

13,000 rpm for 3 minutes and, after the supernatant was decanted off, resuspended in the 

~50-100 µl remaining LB.   The cell suspension was then spread on an LB-agar (1 % agar) 

plate with 100 µg/ml carbenicillin (Sigma-Aldrich) and incubated at 37 ºC for 16 hours. 

Colonies were screened for plasmid containing hPTTG-FLAG cDNA by PCR using 

the primers described in Figure 5-1.  Each bacterial colony was boiled for 10 minutes at 95 ºC 

in 10 µl water to release the plasmid DNA.  The PCR reaction comprised of 10 µl plasmid 
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DNA, 600 nM forward and reverse primers (Alta Bioscience), 500 µM dNTPs, 1.5 mM 

MgCl2 (Bioline), 1x NH2 reaction buffer (Bioline) and 2.5 Units Biotaq™ DNA polymerase 

(Bioline), which was made up to a total volume of 50 µl with nuclease-free water.  The PCR 

cycling conditions used were 95 ºC for 5 minutes, 40 cycles of 94 ºC for 30 seconds, 60 ºC 

for 30 seconds and 72 ºC for 45 seconds, followed by 72 ºC for 7 minutes.  The 600 bp PCR 

products were subsequently electrophoresed on a 1.5 % agarose gel. 

5.2.1.5 Plasmid DNA purification 

 

Bacterial colonies in which the hPTTG-FLAG cDNA was successfully ligated into the 

plasmid vector were used to inoculate 5 ml LB containing carbenicillin (100 µg/ml) and 

incubated at 37 ºC for 1 hour with shaking at 200 rpm.  Plasmid DNA was purified from 

these cultures using the Wizard
®
 Plus SV Minipreps DNA Purification System (Promega) 

according to the manufacturer’s instructions.  Briefly, the cells were pelleted by 

centrifugation and supernatant discarded.  The pellet was resuspended and cells lysed.  The 

addition of alkaline protease solution was followed by incubation at room temperature for 5 

minutes to inactivate endonucleases.  Cell lysis was terminated with neutralisation solution 

and centrifugation produced a cleared lysate, which was transferred to a spin column.  The 

DNA bound to the column was washed twice with an ethanol-based wash solution and then 

centrifuged without wash solution present to ensure maximal removal of ethanol.  Finally, 

plasmid DNA was eluted from the column with 50 µl nuclease-free water. 

 

5.2.1.6 DNA sequencing of pSG5-hPTTG-FLAG minipreps 

 

10 µl DNA sequencing reactions containing 500 ng miniprep DNA, 2 µl sequencing 

primer (5 pmol/µl) and water were analysed by the Genomics Laboratory (University of 

Birmingham) using an ABI 3730 DNA analyser.  DNA sequence analyses were viewed using 
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Chromas Lite Version 2.0 (Technelysium Pty Ltd, Australia) and compared with template 

sequences using BLAST software (http://blast.ncbi.nlm.nih.gov/Blast.cgi).  The sequencing 

primers used at this step were a T7 primer (5’ TAA TAC GAC TCA CTA TAG GG ‘3) and 

primers E, F, G and K (see Figure 5-6 B) [All provided by Alta Biosciences, UK]. 

 

5.2.1.7 Maxiprep of pSG5-hPTTG-FLAG 

 

Once the cDNA sequences had been confirmed, larger quantities of DNA were 

purified by maxiprep.  Originating from the same colonies that were selected initially for 

plasmid DNA purification and sequencing, 150 ml bacterial cultures were incubated at 37 ºC 

for 16 hours.  Plasmid DNA was subsequently isolated using the GenElute™ HP Plasmid 

Maxi-Prep Kit (Sigma) following the manufacturer’s instructions.  To pellet the bacterial 

cells, 100 ml culture was centrifuged at 7500 g for 10 minutes at 4 ºC.  Following 

resuspension, the cells were lysed with an alkaline-SDS solution, in which chromosomal 

DNA was denatured.  When the lysate was neutralised by acidic sodium acetate, 

chromosomal DNA renatured and formed aggregates, which were co-precipitated along with 

protein-SDS complexes and high molecular weight RNA.  This material was removed by 

passing through a filter syringe.  The filtered lysate was centrifuged at 3000 g for 2 minutes 

to bind the plasmid DNA to a column and again to wash the DNA with an ethanol-based 

solution.  Another 5 minute wash step was performed before the DNA was eluted in 3 ml 

nuclease-free water by centrifugation at 3000 g for 7 minutes.  The quantity of plasmid DNA 

obtained was determined by measuring absorbance at a wavelength of 260 nm using a 

NanoDrop spectrometer (NanoDrop Products, Wilmington, DE, USA).   

5.2.1.8 Introduction of XhoI restriction enzyme site to pSG5-hPTTG-FLAG 

 

PCR primers were designed to introduce a XhoI restriction enzyme site to pSG5-

hPTTG-FLAG at the 3’ end downstream of the poly-A tail (see Figure 5-3). 
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Figure 5-3: Sequence and features of the PCR primers designed to introduce a Xho1 restriction 

enzyme site to pSG5-hPTTG-FLAG at the 3’ end downstream of the poly-A tail.   

 

 PCR amplification of pSG5-hPTTG-FLAG was carried out as per reactions and 

thermo-cycling protocols described in section 5.2.1.1.  The PCR product (~1500 bp in size) 

was excised from the gel using a scalpel and extracted from the agarose using the QIAquick 

gel extraction kit (Qiagen) as described in section 5.2.1.2.   

5.2.1.9 Restriction digestion and ligation of pBSK plasmid and PCR product 

 

The pBSK plasmid containing the bovine thyroglobulin promoter was kindly provided 

by Dr. Jeffrey Knauf and Prof. James Fagin (Memorial Sloan-Kettering Cancer Centre, New 

York, USA).  This pBSK plasmid and the PCR product with a region of cDNA containing the 

beta-globin intron II, hPTTG-FLAG and the poly-A tail, were digested using Xho1 and Cla1 

restriction enzymes.  Reactions were identical to those described in section 5.2.1.3.  Digested 

vector and PCR product were electrophoresed on a 1.5 % agarose gel and gel extracted using 

the QIAquick gel extraction kit as described in section 5.2.1.2.  The ligation reaction was 

carried out as described in section 5.2.1.3. Transformation of the ligation product into 

DH5α cells and subsequent PCR screening of colonies was performed as decribed in section 

5.2.1.4.  The PCR primers used were those described in Figure 5-3.   

5.2.1.10 Plasmid DNA purification and sequence verification  

 

Bacterial colonies in which the cDNA was successfully ligated into the plasmid vector 

were cultured overnight as described in section 5.2.1.5.  Plasmid DNA was purified from 

5’ – GCC ATC GAT CCT GAG AAC TTC AGG GTG A – 3’

5’ – GCC CTC GAG CAG ACA TGA TAA GAT ACA – 3’

FWD

REV

B-globin intron II cDNA

POLY-A Tail cDNAXho1
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these cultures using the Wizard
®
 Plus SV Minipreps DNA Purification System (Promega) as 

described in section 5.2.1.5.  

The correct nucleotide sequence was confirmed using the primers described in the 

table in Figure 5-6 B and by DNA sequencing analysis as described in 5.2.1.6.  Once cDNA 

sequences had been confirmed, larger quantities of DNA were purified by maxiprep using the 

Qiagen EndoFree Plasmid Maxi Kit (Qiagen).  The protocol is similar to that described in 

section 5.2.1.7, except for the inclusion of an extra step that removes all endotoxins released 

during the lysis step of plasmid purification.  This extra step was essential to obtain the high 

levels of DNA purity for transgenic animal work.   

5.2.1.11 Isolation and microinjection of the transgene 

 

The final linearised transgene construct was isolated using restriction enzyme digest 

reactions and diagnostic agarose gels.  Restriction enzyme digest of pBSK-TG-hPTTG-FLAG 

was performed in reactions similar to those described in 5.2.1.3  using Xho 1, Spe 1 and Pvu 

1.  The reaction product following digestion with Xho 1, Spe 1 and Pvu 1 was 

electrophoresed on a 1.5 % agarose gel and the presence of a DNA fragment for the predicted 

size of ~3500 bp was gel extracted and purified as described in 5.2.1.2.  Following further 

purification steps carried out by Andrea Bacon  (Biomedical Services Unit, University of 

Birmingham), the generation of the hPTTG-Tg transgenic line was performed by 

microinjection of fertilized mouse oocytes with the TG-hPTTG-FLAG transgene and 

subsequent transfer into pseudopregnant females, as per standard protocols (Bacon et al. 

2007; Hogan et al. 1994; Read et al. 2011).  WT and transgenic PTTG-Tg mice were bred at 

the University of Birmingham and all experiments performed in accordance with U.K. Home 

Office regulations.  
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5.2.2 Cell culture 

 

Normal rat thyroid FRTL5 cells (purchased from the Health Protection Agency 

Culture Collections, UK) were maintained in identical media to that described for human 

primary thyrocytes (see section 2.2).  Human non-small cell lung carcinoma H1299 cells 

were kindly provided by Dr. Andy Turnell (School of Cancer Sciences, University of 

Birmingham), were grown in RPMI 1640 medium, supplemented with 10 % fetal bovine 

serum, 1 % L-glutamine and 1 % pen/strep (Life Technologies, Inc., Grand Island, NY, 

USA).  Human colorectal cancer HCT116 cells (kindly provided by Prof. Vogelstein, MD, 

USA) were grown in McCoy’s 5A modified medium, supplemented with 10 % fetal bovine 

serum, 1 % L-glutamine and 1 % pen/strep (Life Technologies, Inc., Grand Island, NY, 

USA). 

5.2.3  Transfections 

 

FRTL5, H1299 and HCT116 cells were seeded at 5.0 x 10
4
 and 1.0 x 10

5
 cells/well in 

12 and 6-well plates respectively.  Cells were transfected with 1 µg (12-well plate) and 2 µg 

(6-well plate) of plasmid DNA/well using FuGENE-6 Transfection Reagent (Roche, 

Indianapolis, IN, USA), with an optimised ratio of 3 µl per 1 µg plasmid DNA.  Control 

transfections utilised equal amounts of blank plasmid (vector-only, VO, control).  Cells were 

harvested 48 hours post-transfection in protein or RNA lysis buffer.   

5.2.4 Tissue DNA extraction 

 

Genomic DNA of potential founder mice was extracted from mouse ear clippings 

using the DNeasy Blood and Tissue kit (Qiagen), as per the manufacturer’s instructions.  In 

brief, tissue samples were first lysed using proteinase K for 3 hours at 56 ºC.  RNase A was 

added for 2 minutes to ensure RNA free genomic DNA was yielded.  Subsequently, buffering 

conditions were adjusted to provide optimal DNA binding conditions and the lysate was 
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loaded onto the DNeasy Mini spin column.  During centrifugation, DNA was selectively 

bound to the DNeasy membrane as contaminants pass through.  Remaining contaminants and 

enzyme inhibitors are removed in two efficient wash steps and DNA is then eluted in water.  

DNA concentration and purity was determined by spectroscopy at λ260 nm using a 

NanoDrop spectrometer (NanoDrop Products, Wilmington, DE, USA) where DNA routinely 

demonstrated high purity with A260/A280 ratios of 1.8–2.0. 

5.2.5 Screening by conventional PCR 

 

 Potential transgenic mice were screened by PCR using up to four different primer sets 

(Figure 5-9 B) in order to demonstrate reproducibility of genotyping results and to improve 

the reliability of this assay.  The PCR reaction consisted of 100 ng mouse genomic DNA 

template, 600 nM each of forward and reverse primers (Alta Bioscience), 200 µM dNTPs, 2.5 

mM MgCl2 (Bioline, London, UK), 1x TaqMaster PCR Enhancer (5Prime, Hamburg, 

Germany), 0.5x NH2 reaction buffer (Bioline), 2.5 U Biotaq™ DNA polymerase (Bioline), 

which was made up to a total volume of 50 µl with nuclease-free water.    

 The PCR cycling conditions used were 95 ºC for 5 minutes for the initial denaturation 

of DNA template before holding at 78 ºC at which stage the DNA polymerase in NH2 

reaction buffer was added.  Subsequently, there were 40 cycles of 94 ºC for 30 seconds 

(denaturation), 58/62 ºC for 30 seconds (primer annealing) and 72 ºC for 1 minute 30 seconds 

(extension), followed by a final extension step of 72 ºC for 7 minutes.  This was performed 

on a Mastercycler gradient (Eppendorf, Hamburg, Germany).  PCR products were 

subsequently electrophoresed on a 1.5 % agarose (Bioline) gel in 1x TAE (Tris-Acetate-

EDTA) buffer (Eppendorf) before gels were visualised to identify ~ 600 bp bands 

representative of transgenic mice.   
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5.2.6 Screening and genotyping through QT-PCR zygosity assay 

 

The genotype of transgenic mice was determined by Real-Time RT-PCR analysis 

essentially as described previously (Ballester et al. 2004; Read et al. 2011).  Primers used to 

specifically detect the human PTTG gene were as described in Table 3-1.  Real-Time PCR 

reactions and data analysis were carried out as described in section 2.5, except that PCR 

reactions were also performed using primers and probe directed to an 89 bp sequence in the 

Dscam gene to normalise DNA levels, which is a conserved sequence in both mouse and 

human genomes (Table 5-1).  Low amounts of mouse genomic DNA (5 ng) were amplified 

and ΔΔCT values calculated from Ct values for hPTTG in human placenta and liver DNA 

controls.   

 

Table 5-1: Oligonuleotide sequences of PCR primers and TaqManTM probe used to detect an 89 

bp sequence in the DSCAM gene expression as a genomic DNA control for zygosity assays.  VIC = 5’ 

reporter dye.   

 

 

5.2.7 RNA extraction, reverse transcription, QT-PCR 

 

Total RNA was extracted from FRTL-5, HCT116 and H1299 cells using the 

Stratagene Absolutely RNA miniprep kit [Agilent Technologies UK Ltd.].  Total RNA was 

extracted from mouse thyroid glands and control tissue organs using the RNeasy microkit 

(Qiagen, UK).  In both instances, adherent cells or mouse tissue was homogenised in lysis 

buffer containing β-Mercaptoethanol before isolating RNA according the manufacturer’s 

protocols.  In both kits, RNA was isolated using an RNA-binding spin column and treated 

with DNase I to ensure an RNA yield with a high level of purity.  Extracting RNA of high 

Sequence Name Sequence

DSCAM Probe 5’ VIC-TTCAAGTGCATTATCCCCTCCTCGGTG-3’

DSCAM Forward Primer 5’-CAGAAAACCATGAGAGGCAATG-3’

DSCAM Reverse Primer 5’-TTCTCCCATGAGACGACAGTGA-3’
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purity is critical because contaminating DNA present in the RNA sample can give rise to 

amplification products that mimic the amplification product expected from the RNA target. 

Subsequent reverse transcription and QT-PCR techniques were as described (see 

sections 2.4 and 2.5).  hPTTG mRNA was detected using the primers and probe described 

previously (see Table 3-1). 

5.2.8 Western blot analysis 

 

Protein extraction, quantification and subsequent Western blotting methods were as 

described previously (see section 2.6).  Blocked membranes were subsequently incubated 

with either of two primary antibodies against hPTTG; Pds1 (mouse anti-hPTTG; 1:1000) 

[Labvision, Thermofisher, UK] or hPTTG1 (rabbit anti-hPTTG; 2 µg/ml) [Invitrogen, UK].  

After washing in TBS-T, blots were incubated with appropriate secondary antibodies 

conjugated to horseradish peroxidise (Dakocytomation, UK) for 1 hour at room temperature 

before being visualised by techniques described in section 2.6.   

5.2.9 Immunohistochemistry 

 

Immunohistochemical analysis of hPTTG expression in formalin-fixed, paraffin-

embedded sections of wild-type and PTTG-Tg mouse thyroid specimens was carried out as 

described in section 2.7.  A primary antibody against hPTTG was used (2 µg/ml) [Invitrogen, 

UK].   

5.2.10 Statistical analysis 

 

Data were analysed as described in section 2.8 
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5.3 Results 

 

5.3.1 Generation of an hPTTG-FLAG transgene construct 

 

A multi-step cloning strategy was adopted in order to generate a transgene construct 

consisting of a human PTTG-FLAG-tagged cDNA downstream of the bovine thyroglobulin 

promoter.  In the first instance, a FLAG-tagged hPTTG cDNA was cloned into the pSG5 

vector downstream of the rabbit beta-globin intron II and upstream of an SV40 

polyadenylation (poly-A) tail.  Subsequently, a DNA fragment containing the rabbit beta-

globin intron II, FLAG-tagged hPTTG and the poly-A tail was cloned into a pBSK plasmid 

containing the bovine thyroglobulin promoter, kindly provided by Professor James Fagin 

(Memorial Sloane-Kettering Cancer Centre, New York) (see Figure 5-4). 
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Figure 5-4: Schematic overview of the multi-step cloning strategy for the development of the Tg-

hPTTG-FLAG transgene construct.  A  hPTTG-FLAG cDNA was ligated into the pSG5 construct 

following digestion with the EcoR1 and BamH1 restriction enzymes.  B  A DNA fragment consisting 

of the beta-globin intron II, hPTTG-FLAG and a poly-A-tail was isolated following digestion with Cla 

1 and Xho 1 restriction enzymes.  C  The fragment obtained in B was ligated into the pBSK plasmid 

containing the bovine thyroglobulin promoter (TG), following digestion with Xho 1 and Cla 1 

restriction enzymes.  D  The final transgene construct was isolated following restriction digests with 

Xho 1 and Spe 1.    
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5.3.2 Verification of Transgene Activity and Specificity 

 

To assess the activity and specificity of the transgene construct, transient transfections 

of pBSK-VO/hPTTG or a control plasmid pSG5-VO/hPTTG, were performed in normal rat 

thyroid FRTL5, human colorectal cancer HCT116 and human lung cancer H1299 cells.  

hPTTG mRNA expression was analysed using TaqMan RT-PCR to assess transgene activity 

in each cell type.  As expected, hPTTG mRNA expression was increased in FRTL5 (5692-

fold, n = 3, p < 0.001), HCT116 (8-fold, n = 3, p < 0.001) and H1299 (128-fold, n = 3 , p < 

0.001), following transfection with pSG5-hPTTG compared with VO controls.  Importantly, 

there was a 421-fold increase of hPTTG mRNA expression in FRTL-5 cells transfected with 

pBSK-hPTTG (n = 3, p < 0.001) with no expression observed in either HCT116 or H1299 

cells (see Figure 5-5). 
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Figure 5-5: TaqMan RT-PCR demonstrating relative hPTTG mRNA expression following 

transient transfection with either pSG5-PTTG or pBSK-PTTG in FRTL5 cells (A), HCT116 cells (B) 

and H1299 cells (C).  Data are given as a value relative to 1.0 for appropriate transfection controls.  

Error bars represent the SEM (*** p < 0.001, NS = non-significant).   

 

5.3.2.1 Verification of construct by DNA sequencing 

 

Having confirmed thyroid specific expression of hPTTG mRNA following 

transfection with pBSK-hPTTG, the transgene construct was further validated by direct 
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sequencing that verified the correct nucleotide sequence and orientation of all construct 

components (see Figure 5-6). 

 
Figure 5-6: Direct sequencing of the pBSK-TG-hPTTG-FLAG construct confirmed the correct 

nucleotide sequence and orientation of the construct.  A  The nucleotide sequence for the transgene 

construct from the Spe 1 to Xho I restriction sites (3563 bp).  B  Table of sequencing primers used 

(marked as underlined and in italics in A).   

5.3.2.2     Preparation and microinjection of transgene construct 

 

A linearised transgene construct was isolated using restriction enzyme digest reactions 

and diagnostic agarose gels.  Digestion with only Xho 1 and Spe 1 resulted in two bands of 

A.

B.

                                                                        BOVINE THYROGLOBULIN PROMOTER                 Spe I site ACTAGT 

 BETA GLOBIN INTRON II                    BamH1 site GGATCC 

                                                                        T7 PROMOTER                      Cla I site ATCGAT 

HUMAN PTTG                   EcoR1 site GAATTC 

FLAG-TAG                                         Xho 1 site CTCGAG 

POLY-A TAIL                                  Sal 1 site GTCGAC 

                STOP SITE  TAA 

 

ATTAACCCTCACTAAAGGGA.....................ACTAGTGGATCCAGGAGGGAGAGGTGAGAGGGCCAGAGGTGAGGAGCCTGCAGAGAGGATGGAGACCCAAGCCAGGAGCGG

GCTCACGGAGGCCAGACCAAGGAGTTGGTGCTGAGTTTCCGTAGAGCATCCTCCTGGCTCACGAGGCATCAGATGATGGTAGGAGCTGAGTCATCGTGAGAAAGAGGTTTTC

ACGGTGTGGAGGCAGCGCCTGGCATGGCTCTCTCCAAGCTCATCGCTTCATTGCTGGAGTGGAGAGAAGCACCTCTCCTTCCAGGTACACTGTTTTGACTCAGAAGGAAGCC

CGGGCGGCTCTCACCCTCACTGACTCTGCTGTGCCTCTTCCCAGGGGCCAGGCCAGGGAGAATGACTCAGCACACAAGCTGGCCTGTGCAAGACCCTGCCTGCATGCATGG

GTGGGGGAAGCATGAGGAGTGGGCTTTCTGGTAGACCTCAGTCATGGTCTCAGCATTATTTTTTAAAAGGATTTTATTTATTTGTTTTGATGTGGACCAGTTTTAAAATCTTTATT

GAATTTGTTACCATGTTGCTTCTGTTTTATGTTTTGGTTTTTTGGCCACGAGGCATGGGGGATGTTAGCTCCCCGACCAGGGACTGAACCCTTGCCCCCTGCATGGAAAGGTCA

AGTCTTAACTTCTTGACTGCCTAGGAAGTCCCGGTTTCAACATTTTAGAAAATTCATCTGCTTTAGAACACCTGGACCTGGAGAGCTGGCAAGGGCTGCACATGGCCAGGCTC

ACGGTAATATTACAGCGTCTCCATAGCCTGGGCAGAACTTGGCTTGTGTGATTGGGGCTGTGGGCTCCCCAGGTGGTGCTAGTGGTAAAGAACCCTTCTGCCAGTGCAGGAG

ACATAAGAGATGCGGGTTCTATCCCTGGATCAGGAAGATCCCCTGGAGAAGGAAATGGCAACCTGCTCCAGGATTCTTGCCTGGAGAATCCCAAGGACAGAAGAGCCTGGC

GGGCCGTAGTCCATGGCGTTGCAAAGAGTCAGACACAACCGAAGCGACTTAGCACCCAATGGGGGCTGGAGAGGGCCAAGCTGGGGGATTCTAATTCTCCAGTAAATGCCA

GCATGTCTTCTCAAATCATCTTTACCTAAAACCTAAGGCTCATTGTGATCTCCCTCACTCCCAAGTGCTCTCCCACACCTGCCCACCTACCTTCTGAACACCCATGGAGCCTGT

CTCCATCCCCCACCCCTTTAATGGGAGAAGCCACTGGAGAAAGCTCACTGATGTACAGGCTTTATGTGGAAGACAAGCTTCCTGCTGCCTTTTGGTTGTCTGACGTCCTGGGA

CAGAGGGGAAAGGGGGATGACTACGAGTATGACTGTGCGTGTGTTTGGCTTATCTCATCAAAATCTCTACATTCTGTGTTAATGGATCTGCCTGTTTTGTTCCCTGCCATATCC

TCATGGCCTAGAATAGTGTCTGCTTCTCTATCAGACTCTAAAGAAACATTGCTAGGAGGGAAGGAAGGAGCATGGATGAGGAGGGAGGGAGCATTGTGTTTCTCTCACGGTG

GGCCTGAACGTGTGGCCCACCAAGTTGTTAACTTTGGCCTTTACCCCTGAAGATGAATTATGAAGCCACACCCCCAGTTCTTCCTTGGTGGCTCAGATGGTCAAGAATCCACC

TGCAATGCGGGAGACCTGGGTTTGATCCCTGGGTTGGGAAGATCCCCTGGAGAAGGGAATGGCTACCCACTCCAGTATTCTGGCCTGGAGAATCCCATGGACAGAGGAGCC

TGGCGGGATGCAGTCCATGGGGTCTCAGAGAGTCAGATGTGACTGAGCGACTTTCACACACATTCGTCCCTGGTTCTGCTCCCCTACAGCCTCCACAAGATTTTCACCCCACA

CTGGCCACATGAGTGTCCTCCAGGGGAACAGACGCAGGTGGAGGACCTCCTTGTGACCAGCAGAGAAAACAGGGTGGGCACTGCTTCCCTGAGTGCCTGTGGGTGGGGGC

TAAGTACCCACAGCAGTGCTATAAAGGCTCCTTGGCCAGAGCCCTAAGGTGGGCAGCAGGGGATCCCCCGGGCTGCAGGAATTCGATAtCAAGCTTATCGATCCTGAGAACT

TCAGGGTGAGTTTGGGGACCCTTGATTGTTCTTTCTTTTTCGCTATTGTAAAATTCATGTTATATGGAGGGGGCAAAGTTTTCAGGGTGTTGTTTAGAATGGGAAGATGTCCCTT

GTATCACCATGGACCCTCATGATAATTTTGTTTCTTTCACTTTCTACTCTGTTGACAACCATTGTCTCCTCTTATTTTCTTTTCATTTTCTGTAACTTTTTCGTTAAACTTTAGCTTG

CATTTGTAACGAATTTTTAAATTCACTTTTGTTTATTTGTCAGATTGTAAGTACTTTCTCTAATCACTTTTTTTTCAAGGCAATCAGGGTATATTATATTGTACTTCAGCACAGTTTT

AGAGAACAATTGTTATAATTAAATGATAAGGTAGAATATTTCTGCATATAAATTCTGGCTGGCGTGGAAATATTCTTATTGGTAGAAACAACTACATCCTGGTCATCATCCTGCC

TTTCTCTTTATGGTTACAATGATATACACTGTTTGAGATGAGGATAAAATACTCTGAGTCCAAACCGGGCCCCTCTGCTAACCATGTTCATGCCTTCTTCTTTTTCCTACAGCTC

CTGGGCAACGTGCTGGTTATTGTGCTGTCTCATCATTTTGGCAAAGAATTGTAATACGACTCACTATAGGGCGAATTCATGGCTACTCTGATCTATGTTGATAAGGAAAATGGA

GAACCAGGCACCCGTGTGGTTGCTAAGGATGGGCTGAAGCTGGGGTCTGGACCTTCAATCAAAGCCTTAGATGGGAGATCTCAAGTTTCAACACCACGTTTTGGCAAAACGT

TCGATGCCCCACCAGCCTTACCTAAAGCTACTAGAAAGGCTTTGGGAACTGTCAACAGAGCTACAGAAAAGTCTGTAAAGACCAAGGGACCCCTCAAACAAAAACAGCCAA

GCTTTTCTGCCAAAAAGATGACTGAGAAGACTGTTAAAGCAAAAAGCTCTGTTCCTGCCTCAGATGATGCCTATCCAGAAATAGAAAAATTCTTTCCCTTCAATCCTCTAGACT

TTGAGAGTTTTGACCTGCCTGAAGAGCACCAGATTGCGCACCTCCCCTTGAGTGGAGTGCCTCTCATGATCCTTGACGAGGAGAGAGAGCTTGAAAAGCTGTTTCAGCTGGG

CCCCCCTTCACCTGTGAAGATGCCCTCTCCACCATGGGAATCCAATCTGTTGCAGTCTCCTTCAAGCATTCTGTCGACCCTGGATGTTGAATTGCCACCTGTTTGCTGTGACAT

AGATATTGACTACAAAGACGATGACGACAAGTAAGGATCCAGATCTTATTAAAGCAGAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTC

ACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGCTCGAGGTCGAC...............AATGGGTTGAATTAGCGGAA 

 

PRIMER NAME SEQUENCE DIRECTION START REGION 

Primer A 5’-ATTAACCCTCACTAAAGGGA-3’ FORWARD T3 promoter (plasmid) 

Primer B 5’-CTGGAGAAGGAAATGGC-3’ FORWARD Bov. Tg. promoter 

Primer C 5’-TGAAGAGCACCAGATTGC-3’ FORWARD Bov. Tg. promoter 

Primer D 5’-CCTGGAGAAGGGAATGGCTA-3’ FORWARD Bov. Tg. Promoter 

Primer E 5’-AGAAACAACTACATCCTGGTC-3’ FORWARD Beta-globin intron II 

Primer F 5’-TGAAGAGCACCAGATTGC-3’ FORWARD hPTTG 

Primer G 5’-CTTGAGTGGAGTGCCTC-3’ FORWARD hPTTG 

Primer H 5’-TCAGTGAGGGTGAGAGC-3’ REVERSE Bov. Tg. Promoter 

Primer I 5’-GGCAGGTGTGGGAGAGC-3’ REVERSE Bov. Tg. Promoter 

Primer J 5’-GAGCCTTTATAGCACTG-3’ REVERSE Bov. Tg. Promoter 

Primer K 5’-CCATCTAAGGCTTTGAT-3’ REVERSE hPTTG 

Primer L 5’-TTACCCAACTTAATCGCCTT-3’ REVERSE pBSK plasmid 
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DNA migrating very closely together, representing the ~3500 bp transgene and a similarly 

sized fragment from the remainder of the plasmid.  Additional digestion with Pvu 1 caused 

cuts at two further sites within the pBSK plasmid so that the transgene fragment was more 

easily isolated on an agarose gel.  The reaction product obtained following digestion with 

Xho 1, Spe 1 and Pvu 1 was migrated on an agarose gel and the presence of a DNA fragment 

for the predicted size of ~3500 bp was confirmed.  Following further restriction digests of 

pBSK-TG-hPTTG-FLAG and migration of the products on an agarose gel, the transgene 

fragment was extracted from the gel and purified (see Figure 5-7).   

 

 

Figure 5-7: Isolation of the linearised TG-hPTTG-FLAG transgene construct.  A  Diagnostic 

agarose gel illustrating the products of various restriction digest reactions.  Red circle demonstrates 

the difficulty in resolving between the two fragments when just Xho 1 and Spe 1 are used.  Green 
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~1500bp 

~1000bp 

undigested Xho I Spe I Pvu I Xho I

+

Spe I

Xho I

+

Pvu I
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+

Pvu I

Xho I

+

Spe I

+

Pvu I
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hPTTG FLAG
POLY-A-
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circle highlights the identification of the transgene fragment (~3500 bp) following digestion with Xho 

1, Spe 1 and Pvu 1.  B  Agarose gel showing migration of a sample of the linearised transgene 

following excision from original agarose gels and a purification step.  The clean, sharp appearance of 

the band indicates a pure and non-denatured DNA sample.     
 

The purified transgene construct was given to Andrea Bacon at the transgenic facility 

of the Biomedical Services Unit, University of Birmingham, who performed further 

purification steps before injecting into the male pronuclei of fertilised oocytes from the 

FVB/N mouse strain.  Oocytes were then implanted into the oviducts of pseudopregnant 

foster mothers for development to term (see Figure 5-8). 

 

 

Figure 5-8: Schematic diagram illustrating pronuclear injection of the transgene construct before 

introduction to a pseudopregnant foster mother, resulting in offspring litters containing potential 

founder mice.    
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5.3.3 Identification and propogation of transgenic lines 

 

5.3.3.1 Conventional PCR analysis to identify potential founders 

 

PCR primer sets were designed in order to amplify an approximately 600 bp fragment 

spanning the region between the beta-globin intron and hPTTG.  This design strategy was 

adopted to ensure specific detection of the transgene and avoid amplification of the 

endogenous murine Pttg gene.  PCR primer sets and reaction conditions were validated and 

optimised by performing PCR amplifications directly from the pBSK-Tg-hPTTG plasmid and 

visualising agarose gels (see Figure 5-9). 

 

Figure 5-9: Design and validation of PCR primers for screening of transgene in potential 

founders.  A  Schematic diagram illustrating PCR primer design strategy for specific detection of the 

transgene.  B  Table of primer pairs and sequences with validated optimal melting temperatures.  C  

Migration of PCR products on an agarose gel following transgene amplification directly from the 

pBSK-TG-hPTTG-FLAG plasmid using primer pairs 1, 2 and 3.  (Primer set 4 was similarly 

validated).   

PRIMER PAIR PRIMER NAME PRIMER SEQUENCE Optimal Melting  
Temp. ( ºC) 

PAIR 1 
Primer 1 FWD CTGGTCATCATCCTGCCTTTCTC 

62 
Primer 3 REV GCTTGGCTGTTTTTGTTTGAGG 

PAIR 2 
Primer 4 FWD CGTGCTGTTATTGTGCTGT 

62 
Primer 5 REV GAGAGGCACTCCACTCAAGG 

PAIR 3 
Primer 4 FWD CGTGCTGTTATTGTGCTGT 

62 
Primer 6 REV CATCATCTGGAGGCAGGAACA 

PAIR 4 
Primer 8 FWD GCCTTCTTCTTTTTCCTACAGC 

58 
Primer 9 REV CAGGCAGGTCAAAACTCTCA 

hPTTG FLAG POLY - A - TAIL BETA - GLOBIN INTRON BOVINE THYROGLOBULIN PROMOTER 

FWD 

REV 

3’ 5’ 

3’ 5’ 

5’ 

3’ 5’ 

3’ ------ ~600bp  ------ 

A. 

B. 

C. 
~600bp  

Amount of DNA (µg) 0.05 0.10 0.00 0.05 0.10 0.00 0.05 0.10 0.00 

Primer Pair 1 2 3 
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Subsequently, DNA was extracted from ear tissue clippings from mice in potential 

transgenic founder litters and subject to rigorous screening by conventional PCR, using all 

four different PCR primer sets to validate results.  Positive control PCR reactions were 

routinely set up to detect mouse Notch1 in order to confirm the presence of genomic mouse 

DNA in each sample and to verify efficient PCR amplifications.  These were important 

controls to minimise the risk of false negatives whereby transgene-positive founder mice may 

have been misidentified as transgene-negative WT mice (see Figure 5-10).  

 

Figure 5-10: Screening of potential founder mice by conventional PCR.  A  Demonstration of 

Notch-1 amplification in 9 potential founder DNA samples, confirming the presence of mouse 

genomic DNA and successful PCR amplification.  B  Agarose gels demonstrating identification and 

confirmation of 3 TG-hPTTG-FLAG transgenic founder mice (# 1-3) and 1 WT mouse (# 4) through 

use of all four primer pairs.  C  Agarose gel demonstrating the identification of 9 founder mice (A-I) 

out of a total of 95 screened.  +/-  = hemizygous hPTTG founder mouse.   
 

Mouse Sample 1 2 3 4 -ve 1 2 3 4 -ve 1 2 3 4 -ve 1 2 3 4 -ve

Genotype +/- +/- +/- WT +/- +/- +/- WT +/- +/- +/- WT +/- +/- +/- WT

Primer Pair 1 2 3 4

~600bp 

B.

C.

~600bp 

Potential Founder A B C D E F G H I WT -ve

~Xbp

NOTCH 1

fragment

SAMPLE 1 2 3 4 5 6 7 8 9 -ve -ve

A.
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Further confirmation of screening results was achieved by TaqMan RealTime-PCR 

using a primer and probe set that specifically amplified hPTTG and not murine Pttg.  Using 

this approach, 9 founder mice identified above were confirmed as transgene-positive (see 

Figure 5-11). 

 

Figure 5-11: Confirmation of conventional PCR screening results through quantitative TaqMan 

RealTime-PCR.  A  Table showing sequences of primers and probe that specifically amplify hPTTG 

and not murine Pttg.  B  Real-Time PCR reaction curves for the 9 founder mice (in duplicate) 

demonstrating amplification of the hPTTG transgene.  C  Table of Ct values highlighting the presence 

of the hPTTG transgene in the 9 founder mice (A-I) and complete lack of detection in potential 

founder mice considered transgene-negative.   

 

Nine mice were identified as transgenic founders from 95 mice in a total of 20 

potential founder litters.  Mice identified as positive for the transgene were set up with WT 

breeding partners to propagate transgenic lines in order to confirm transmission of the 

transgene to subsequent generations, and to obtain mouse tissue for the assessment of hPTTG 

expression in the thyroid glands and control organs of transgenic mice.   

 

Sequence Name Sequence

hPTTG Probe 5’-CGTCTTGCCACCGGCTTCCCT-3’

hPTTG Forward Primer 5’-GAGAGAGCTTGAAAAGCTGTTTCAG-3’

hPTTG Reverse Primer 5’-TCCAGGGTCGACAGAATGCT-3’

SAMPLE hPttg Ct Average Ct

FOUNDER A 27.7 27.5

27.3

FOUNDER B 20.4 20.5

20.5

FOUNDER C 24.1 24.0

23.9

FOUNDER D 23.0 22.2

21.4

FOUNDER E 19.6 19.4

19.2

FOUNDER F 24.6 24.6

24.7

FOUNDER G 26.2 25.1

24.1

FOUNDER H 21.6 21.6

21.6

FOUNDER I 25.3 25.2

25.0

PF 10 Undet. Undet.

Undet.

PF 11 Undet. Undet.

Undet.

PF 12 Undet. Undet.

Undet.

PF 13 Undet. Undet.

Undet.

PF 14 Undet. Undet.

Undet.

A.

B. C.

A

B

C

D

E

F
G
I

H
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5.3.3.2 Evaluation of hPTTG mRNA expression in transgenic thyroids 

 

From the original 9 founder mice, 1 was infertile while the 8 others successfully 

transmitted the transgene.  Total RNA was extracted from the thyroid glands of transgenic 

mice in each of the remaining 8 lines and hPTTG mRNA expression was evaluated by 

TaqMan RT-PCR.  Five of these lines failed to express hPTTG mRNA in the thyroid and 

were terminated (data not shown).  Hemizygous mice in the remaining 3 lines (termed lines 

A, B and C) demonstrated expression of hPTTG mRNA in excised thyroid glands.  

Hemizygous mice in line A showed a 13,076-fold increase in thyroid hPTTG mRNA 

expression (n = 3, p ˂ 0.001), whilst lines B and C demonstrated a significantly lower 22- (n 

= 3, p ˂ 0.05) and 13-fold (n = 3, p ˂ 0.05) over-expression of hPTTG mRNA respectively 

(see Figure 5-12). 

 

Figure 5-12: TaqMan RT-PCR data demonstrating strong thyroid hPTTG mRNA expression in 

Line A (A) and significantly weaker over-expression in Lines B and C (B).  Error bars represent the 

SEM (* p < 0.05, *** p < 0.001).   
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5.3.3.3  Evaluation of hPTTG protein expression in transgenic thyroids 

  

Concomitantly to analysis of thyroid hPTTG mRNA over-expression in lines A, B 

and C, we determined hPTTG protein expression levels in excised thyroid glands of 6-week-

old transgenic mice by Western Blot analysis.  Surprisingly, FLAG-tagged hPTTG 

expression was undetectable using any of three commercial FLAG antibodies (data not 

shown).  However, using a hPTTG antibody (Cambridge Biosciences), it was confirmed that 

transgenic mice in line A had over-expression of hPTTG protein (n=4) in the thyroid gland 

but mice from lines B (n=5) and C (n=6) did not (see Figure 5-13). 

 

Figure 5-13: Western blot analyses confirming hPTTG protein expression in thyroids from 

transgenic mice in line A (A+B) but not in lines B (A) and C (B).    

Consequently, lines B and C were terminated, while line A was investigated further to 

determine whether hPTTG expression was successfully confined to the thyroid gland.   

5.3.3.4 Determination of thyroid specific hPTTG mRNA expression in Line A 

 

Having identified line A as a transgenic line with significant over-expression of 

hPTTG mRNA and protein in the the thyroid gland, we investigated the specificity of 

transgene expression.  Total RNA was extracted from the thyroid glands, heart, lungs, 

kidneys, spleen and liver of transgenic mice from line A and hPTTG mRNA expression was 

WT LINE A LINE B

LINE A LINE CWT

# 1 # 2 # 1 # 2 # 1 # 2 # 3 # 4 # 5

# 1 # 2 # 3 # 4 # 5 # 6# 3 # 4# 3

hPTTG 

m β-actin  

 28kDa

 44kDa

hPTTG 

m β-actin  

 28kDa

 44kDa

A.

B.
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evaluated by TaqMan RT-PCR.  As before, stong over-expression of hPTTG mRNA was 

demonstrated in the thyroid gland (28,143-fold, n = 4, p < 0.001).  hPTTG mRNA was 

completely undetected in liver, heart, kidney and spleen (n = 4) but was mildly over-

expressed in lung tissue (280.5-fold, n = 4, p < 0.001).  As murine Pttg is not amplified by 

our hPTTG TaqMan RT-PCR primers, fold changes were calculated by comparing to the 

average WT background signal and are therefore not representative of absolute expression 

differences (see Figure 5-14). 

 

Figure 5-14: TaqMan RT-PCR demonstrating significant over-expression of hPTTG mRNA in the 

thyroid glands compared to control organs of transgenic mice in line A.  hPTTG mRNA was 

completely undetected in liver, heart, kidney and spleen control organs but relatively mild over-

expression of hPTTG mRNA in lung tissue suggests partial activation of the transgene in the lung.  

Error bars represent the SEM (*** p < 0.001).   

  

 

5.3.3.5 Propagation and maintenance of a murine transgenic colony 

 

Following confirmation of line A as an appropriate transgenic line, this line was 

propagated by strategically inbreeding hemizygous transgenic mice in order to fully establish 
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a murine colony with thyroid-specific over-expression of hPTTG for subsequent 

investigations (see Figure 5-15). 

 

Figure 5-15: Schematic diagram of the inbreeding strategy employed to establish a homozygous 

murine transgenic colony with thyroid hPTTG over-expression.    

 

DNA was extracted from tissue clippings taken from the offspring of hemizygote-

hemizygote breeding pairs to determine the genotype of mice using a RealTime-PCR-based 

zygosity assay.  hPTTG DNA was detected using the primer and probe set specifically 

designed for hPTTG amplification and results were normalised to expression of the Dscam 

genomic DNA control.  From the zygosity assay it was predicted by comparison to human 

DNA controls that hemizygous mice have approximately 9 randomly inserted copies of the 

transgene, resulting in homozygous mice possessing approximately 18 (see Figure 5-16).     
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Figure 5-16: TaqMan Real-Time PCR zygosity assay.  A  Representative image of hPTTG 

amplification reaction curves for mouse DNA samples and human DNA controls.  B  Table 

demonstrating an example of mouse genotyping calculations.  hPTTG is completely undetectable in 

WT mice, while hPTTG-Tg+/+ mice have approximately double the amount compared to hPTTG-Tg+/- 

mice.  C  Histogram presenting the predicted copy number of the randomly inserted hPTTG transgene 

in hPTTG-Tg+/- and hPTTG-Tg+/+ mice, determined by comparison to human DNA controls.      
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Mean copy number 8.80 17.14

N 16 9

SAMPLE DSCam Average Pttg Ct Average ΔCt Ave ΔCt ΔΔCt Fold Change Fold change*2 Zygosity

1 25.318 25.427 23.394 23.289 -1.924 -2.138 -2.138 4.402 8.803 hemizygote
25.536 23.184 -2.352

2 25.071 25.189 23.094 22.982 -1.977 -2.206 -2.206 4.614 9.228 hemizygote
25.306 22.871 -2.435

3 25.549 25.514 22.61 22.565 -2.939 -2.949 -2.949 7.722 15.444 homozygote
25.478 22.519 -2.959

4 25.221 25.319 22.109 22.228 -3.112 -3.091 -3.091 8.518 17.036 homozygote
25.417 22.348 -3.069

5 25.298 25.342 Undet. Undet. Undet. WT
25.386 25.342 Undet. Undet.

6 25.758 25.751 Undet. Undet. Undet. WT
25.744 25.751 Undet. Undet.

7 25.033 25.135 23.079 22.933 -1.954 -2.202 -2.202 4.600 9.199 hemizygote
25.236 22.787 -2.449

8 25.193 25.212 23.239 23.086 -1.954 -2.127 -2.127 4.368 8.736 hemizygote
25.232 22.932 -2.3

9 25.077 25.094 21.832 21.927 -3.245 -3.167 -3.167 8.979 17.957 homozygote
25.111 22.023 -3.088

10 25.105 25.105 22.048 22.035 -3.057 -3.071 -3.071 8.401 16.801 homozygote
25.106 22.022 -3.084

11 25.291 25.268 21.845 21.941 -3.446 -3.326 -3.326 10.028 20.057 homozygote
25.244 22.038 -3.206

Human Liver 26.132 26.078 26.774 26.738 0.642 0.661

26.023 26.703 0.68

Average ΔCt 
Human Controls

Human Placenta 25.734 25.938 26.306 26.418 0.572 0.48 0.570

26.143 26.531 0.388

DNA -ve control Undet. Undet. Undet.

Undet. Undet. Undet.
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In the first instance, mice identified as homozygotes were set up into homozygote-

homozygote breeding pairs in order to generate a colony of homozygous mice for 

investigation of our hypotheses, removing the need to perform any further genotyping.  

However, it was identified early on that homozygous mice were subfertile with only 2 out of 

8 homozygote-homozygote pairings able to reproduce and the finding of small litter sizes (≤ 

6 pups).  Homozygote-hemizygote breeding pairs were set up as an alternative approach to 

maintaining a transgenic colony and were significantly more productive, giving rise to both 

hPTTG hemi- and homozygous colonies for subsequent studies.     

5.3.3.6 Further validation of hPTTG protein expression in transgenic mice 

 

Following establishment of a transgenic line, hPTTG protein expression was fully 

validated in both hemi- and homozygous hPTTG transgenic mice.  Having identified an 

optimal hPTTG antibody (Zymed laboratories), hPTTG protein expression in 6-week-old 

excised transgenic thyroid glands was demonstrated by Western Blot analyses, where there 

was an approximately 2-fold increase in homozygous mice compared to that of hemizygous 

mice, consistent with transgene copy number.  This observation was reproduced in a further 

Western Blot that simultaneously demonstrated the thyroid specificity of hPTTG protein 

over-expression, where hPTTG protein was completely undetectable in protein extracts from 

lung, kidney, spleen and liver controls (see Figure 5-17). 
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Figure 5-17: Western blot analyses confirming thyroid-specific hPTTG protein expression in 

transgenic mice from line A.  A  Western blot analysis demonstrating an approximately 2-fold 

increase in hPTTG protein expression in hPTTG-Tg+/+ mice compared to hPTTG-Tg+/- mice with 

none being detected in WT mice.  B  Further Western blot analysis demonstrating hPTTG protein 

expression in the thyroid glands but not in any of the other organs of transgenic mice.  

 

Analysis of hPTTG protein expression in the thyroids of transgenic mice was further 

studied by immunohistochemistry techniques using paraffin embedded thyroid tissue from 

WT, hemi- and homozygous hPTTG mice.  As expected, hPTTG was undetectable in WT 

thyroid sections thereby confirming the specificity of the antibody to hPTTG.  There was 

significant staining of thyroid follicular cells in thyroid sections from hPTTG hemizygotes 

that was further intensified in those from hPTTG homozygotes.  At 100x magnification, it 

was clearly apparent that hPTTG was localised to both the cytoplasm and the nuclei of 

thyroid follicular epithelial cells, consistent with a role for hPTTG in both cellular 

compartments (see Figure 5-18).   

WT
hPTTG

+/-

hPTTG

+/+

THYROID LUNG SPLEEN KIDNEY LIVER

hPTTG 

m β-actin  

 28kDa

 44kDa

hPTTG 

m β-actin  

 28kDa

 44kDa

WT
hPTTG

+/-

hPTTG

+/+
WT

hPTTG

+/-

hPTTG

+/+
WT

hPTTG

+/-

hPTTG

+/+
WT

hPTTG

+/-

hPTTG

+/+
WT

hPTTG

+/-

hPTTG

+/+

A.

B.



Chapter 5 Generation of a Murine Model with Thyroid-Targeted hPTTG Expression 

 

166 
 

 

Figure 5-18: Immunohistochemistry demonstrating hPTTG expression and localisation in the 

thyroid glands of hPTTG transgenic mice.  A  Lack of brown staining indicative of absence of hPTTG 

expression in WT mice.  B-C  Significant brown staining in hPTTG-Tg+/- sections (B) with increased 

intensity of staining in hPTTG-Tg+/+ sections (C) consistent with thyroidal hPTTG protein expression 

levels dependent on transgene copy number.  D  Magnification at 100X clearly shows detection of 

hPTTG protein in both the cytoplasm and the nucleus of thyroid follicular cells in hPTTG transgenic 

mice.     

 

 

5.4 Discussion 

 

The work reported in this chapter describes the successful generation of a murine 

model with thyroid targeted hPTTG over-expression.  Key stages of the development of this 

transgenic model raise important discussion points and considerations regarding the 

complexity and limitations of such a model.  Nevertheless, completion of this chapter of work 

represents an important milestone in the overall project, providing an in vivo model of 

hPTTG over-expression in the thyroid glands of mice for subsequent investigation of its role 

in thyroid pathogenesis and physiology.  
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5.4.1 Considerations of human PTTG over-expression in murine thyroids 

As we set about our investigation, we had to decide whether to create a murine 

transgenic line with thyroidal over-expression of hPTTG or murine Pttg.  Since hPTTG was 

cloned (Zhang et al. 1999b; Kakar and Jennes 1999; Dominguez et al. 1998), most studies 

have focused on characterisation of the functions and interactions of hPTTG.  We therefore 

believed that the best approach to build on these studies was to over-express hPTTG, with the 

aim of validating some of the important findings of these previous studies.  hPTTG protein 

shares 66 % sequence homology with murine Pttg (Wang and Melmed 2000a) and so we 

could expect that hPTTG functions similarly to murine Pttg.  However, it was important for 

us to consider that the full functional properties of hPTTG may be compromised when over-

expressed in a murine organ.  Providing further confidence in our decision, two other groups 

observed phenotypes associated with over-expression  of hPTTG in the pituitary glands 

(Abbud et al. 2005) and ovarian epithelium (El-Naggar et al. 2007) of transgenic mice.  In 

addition, we believe that by over-expressing hPTTG, any phenotypes we observe will provide 

more compelling insight in relation to human thyroid disease.   

5.4.2 Validation of transgene construct 

 

Following a series of restriction enzyme digests and ligation steps, we successfully 

cloned hPTTG-FLAG into the pBSK plasmid downstream of the bovine thyroglobulin 

promoter.  At this stage, we sought to validate the activity and specificity of the transgene by 

analysing hPTTG expression following transient transfections in human cell lines.  Analysis 

by TaqMan RT-PCR revealed that hPTTG mRNA expression was specifically induced in 

FRTL5 cells, but not in non-thyroid cell lines.  Direct sequencing of the pBSK-hPTTG 

plasmid demonstrated the correct nucleotide sequence and orientation of the construct, 

providing us with further confidence.  Moreover, a parallel study by our own group 

successfully demonstrated transgenic PBF expression in the thyroids of transgenic mice, 
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having used an identical cloning strategy to that described in this study (Read et al. 2011).  

Together, these results provided enough evidence for the validity of our transgenic construct 

for us to proceed with microinjections.   

5.4.3 Random integration of the transgene 

 

Microinjection of exogenous DNA into the male pronuclei of fertilised oocytes was 

first described by Gordon et al. in 1980 where recombinant plasmid DNA derived from the 

bacterial plasmid pBR322 was injected into the fertilised oocytes of CD-1 mice.   DNA is 

injected at an early stage into the single-cell zygote to avoid mosaicism and becomes 

randomly integrated into the genome, if at all (Gordon et al. 1980).  We observed around a 10 

% success rate of random integrations (9/95 potential founders identified as positive for our 

transgene), which was considered highly successful.  Interestingly, 8/9 of the lines derived 

from these transgenic founder mice failed to produce mice that over-expressed thyroid-

specific hPTTG protein, with 1 founder considered infertile and 7 lines failing to demonstrate 

either enhanced thyroid hPTTG transcription or translation despite successful transmission of 

the transgene.  This low success rate highlights the inefficiency and challenges faced in this 

approach to in vivo genetic manipulation.  It is apparent that successful random integration of 

the transgene does not necessarily confer its desired activity and expression.  Though the 

mechanisms are not fully understood, randomly inserted transgenes are highly susceptible to 

silencing and expression levels are thought to be influenced by the specific insertion site and 

the variable copy number inserted at this site (Clark et al. 1994; Dorer 1997; Garrick et al. 

1998).  However, we have successfully identified and established a transgenic line that 

overcomes this issue and expresses high levels of hPTTG in the thyroid glands of mice. 

Another important issue concerning random integration is that the transgene may 

localise to part of the coding or regulatory regions of endogenous genes or is in fact 

completely deleterious, causing disruption of their normal function and inducing secondary 
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phenotypes.  It is possible that the subfertility observed in homozygous mice is due to 

transgene insertion at an undesirable locus, where male subfertility and infertility are 

frequently reported in other transgenic models (Jhappan et al. 1994; Magram and Bishop 

1991; Meng et al. 2002; Woychik and Alagramam 1998; Walters et al. 2009; Zhang et al. 

2011).  Alternatively, the effects of high thyroidal hPTTG expression may be embryonically 

lethal, resulting in reduced litter sizes.  The latter seems more likely as the subfertility was 

not gender specific.  Further investigations are required to provide a full explanation for this.  

However, it was important to consider the possibility of insertional mutagenesis during our 

characterisation studies (Chapter 6) as we tried to discern between specific and non-specific 

phenotypes.   

Elegant studies have combined the use of a thyroglobulin promoter with the Cre-lox 

expression system to specifically alter thyroid gene expression in vitro and in vivo (Lin et al. 

2004; Muller et al. 2011).  Indeed, recent studies have generated highly targeted and 

inducible transgenic models using homologous recombination of Cre-lox and FLP-FRT 

systems in embryonic stem cells (Zwaka and Thomson 2003; Urbach et al. 2004; Suzuki et 

al. 2008; Di Domenico et al. 2008; Irion et al. 2007; Davis et al. 2008; Ruby and Zheng 2009; 

Zou et al. 2009; Sakurai et al. 2010).  This approach enables site-specific insertion of a single 

copy of a transgene, thus overcoming mistargeting and multiple copy number issues, and we 

accept some of the limitations of the approach employed in this study.   

5.4.4 Transgene copy number and expression levels 

 

As mentioned above, a limitation of in vivo genetic modification by random 

integration of a transgene is that the total number of transgene copies inserted cannot be 

controlled.  In a TaqMan Real-Time PCR based zygosity assay, it was predicted by 

comparing to human DNA controls that in our transgenic model hemi- and homozygous mice 

possessed approximately 9 and 18 copies respectively.  The zygosity assay has proven to be 
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highly reliable and we observed consistent predictions of transgene copy number across 

multiple generations resulting in consistent genotyping throughout the study.  Our results 

suggest that the founder mouse had ~9 transgene copy insertions on the same chromosome at 

the same integration site (probably in the form of head-tail concatemers, as is typically 

described in such models (Bishop and Smith 1989)) as opposed to 9 separate genome 

integration events in different genomic regions, which would have made for a highly complex 

transgenic model to manage.   

In some transgenic models, severity of phenotype is directly proportional to transgene 

copy number.  For example, high-copy RET/PTC1 transgenic mice have an earlier onset of 

papillary thyroid tumour formation, increased thyrocyte proliferation, aberrant follicle 

formation and reduced iodide uptake in comparison to low-copy number transgenics (Jhiang 

et al. 1998a).  Having decided to maintain a colony of both hemi- and homozygous hPTTG 

mice, it has been of interest in downstream investigations to compare phenotypes for both 

genotypes in order to determine whether they are copy number dependent.  Certainly, a clear 

increase in thyroid hPTTG protein expression was observed in homozygotes compared to 

hemizygotes, as determined by Western Blot and immunohistochemical analyses, and 

subsequent studies have sought to compare the functional outputs of this expression 

difference.  However, even hemizygotes in our transgenic line have high thyroid expression 

of hPTTG (up to 28,000-fold hPTTG mRNA expression) and it would have been interesting 

to study an alternative line with much lower expression levels.  Indeed, we might have 

expected to observe dose-dependent phenotypes of thyroid hPTTG over-expression given the 

in vitro findings in fetal brain NT-2 cells that low hPTTG over-expression causes enhanced 

proliferation while high levels of hPTTG over-expression has the opposite effect (Boelaert et 

al. 2003b). 
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Given the discussed disadvantages of this model, an alternative transgenic line would 

have been useful for parallel investigations in order to validate key phenotypes as being 

specific to thyroid hPTTG over-expression, and Chapter 8 describes the generation of an 

alternative line for this purpose.  Unfortunately, with the failings of 8/9 transgenic founder 

lines, only one transgenic line was available for investigation at this stage.  

5.4.5 Thyroid-specificity of hPTTG expression 

In order to investigate the effects of increased thyroid hPTTG expression, it was of 

great importance to successfully target expression of the transgene specifically to the thyroid 

gland.  As described, we aimed to achieve this through the creation of a construct where 

hPTTG expression is driven by the upstream activation of the bovine thyroglobulin promoter.  

Hypothetically, the bovine thyroglobulin promoter should only be activated in thyroid cells 

by thyroid-specific transcription factors such as TTF1, TTF2 and PAX8 (Civitareale et al. 

1989; Mizuno et al. 1991; Lazzaro et al. 1991; Mascia et al. 1997; Plachov et al. 1990; di 

Magliano et al. 2000; Di Palma et al. 2003), but this promoter has not been fully 

characterised and it is possible that it has ‘leaky’ activity in non-thyroid cells, resulting in 

partial mistargeting of hPTTG expression.  Strong induction of hPTTG mRNA expression 

was demonstrated in the thyroid glands of our transgenic mouse line compared to 

background.  However, a relatively mild induction of hPTTG mRNA expression was detected 

in lung tissue from transgenic mice, where there was none in other control tissues.  The group 

that first characterised the tissue-specificity of the bovine thyroglobulin gene promoter did so 

by generating transgenic mice that express the bacterial enzyme chloramphenicol 

acetyltransferase (CAT), and they reported entirely thyroid-specific CAT activity (Ledent et 

al. 1990).  Subsequently other thyroid-specific transgenic models were generated using this 

promoter sequence (Ledent et al. 1991; Ledent et al. 1992).  Another study used the same 

promoter to generate a murine transgenic line with thyroid over-expression of mutant guanine 
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nucleotide stimulatory factor (Gs) α-subunit, and specifically reported no expression in the 

lung tissue of transgenic mice following analysis of reverse transcripts by conventional PCR 

(Michiels et al. 1994).  Two more recent studies on thyroid cancer used the same promoter 

sequence to drive thyroid expression of the BRAF
V600E

 mutation and the RET/PTC1 gene 

rearrangement (Knauf et al. 2005; Jhiang et al. 1998a; Cho et al. 1999), and thyroid-

specificity was declared, though data were not shown.   

Taking these studies into account, it is tempting to speculate that our transgene has 

randomly inserted at a locus in close proximity to a promoter or enhancer that is specific to 

lung cells, thus causing some expression in the lung tissue of transgenic mice.  However, in 

our group’s murine model of thyroid targeted expression of PBF using the same promoter 

sequence, PBF mRNA expression was also detected in lung tissue from transgenic mice.  

Given that this model is likely to have originated from a random insertion at an altogether 

different locus, it seems that we are consistently detecting a specific activity of the bovine 

thyroglobulin promoter in the lung cells of mice.  Thyroid transcription factor 1 (TTF1) is 

expressed in the lung where it regulates the expression of lung-specific genes (Guazzi et al. 

1990; Boggaram 2009).  It is therefore a possible explanation that TTF1 is capable of limited 

activation of the bovine thyroglobulin promoter in lung cells, but that this promoter is more 

strongly activated in thyroid cells where other thyroid-specific transcription factors are 

present.  However, hPTTG protein expression was not demonstrated in lung tissue from 

transgenic mice, which was consistent with validation results in the PBF transgenic mouse 

study.  It is possible that the increase in lung hPTTG transcription does not result in hPTTG 

translation, and that the mRNA may be targeted for degradation.  Alternatively, the 

expression of lung hPTTG protein may be so low that it was undetectable by Western Blot 

analyses.  Irrespective of these possibilities, it was important to consider if mistargeted 
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hPTTG expression was present, especially when characterising the hPTTG-Tg mouse 

phenotypes (Chapter 6).    

Furthermore, hPTTG protein expression was observed by immunohistochemistry in 

both the cytoplasm and the nucleus.  While hPTTG is predominantly a cytoplasmic protein 

(Chien and Pei 2000), its translocation to the nucleus facilitates its transforming and 

transactivational properties (see section 1.2.1.1).  The presence of hPTTG in the nuclei of 

transgenic mouse thyroid follicular cells may be indicative of fully functional hPTTG protein.  

Thus, we would expect the phenotype corresponding to hPTTG over-expression to manifest 

in subsequent characterisation work.   

5.4.6 Conclusion 

 

It is clear from the work completed in this chapter that in vivo transgenesis can 

provide a variety of challenges.  Through rigorous expression studies, development of a 

robust genotyping assay and strategic inbreeding, we were able to overcome some of these 

difficulties and generated a murine transgenic colony with thyroid-targeted hPTTG protein 

expression.  This model provided us with a platform to directly study the effects of thyroidal 

hPTTG over-expression on thyroidal cell growth and tumourigenesis in vivo for the first time.     
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6.1 Introduction 

 

Many studies to date have described that hPTTG acts as a critical transforming gene with 

significant oncogenic potential conferred by its induction of genetic instability and 

transactivation of other tumour promoting genes.  However, direct in vivo investigations of 

hPTTG’s tumourigenic capabilities are currently limited.  The successful generation of a 

transgenic mouse model with thyroid-specific over-expression of hPTTG described in 

Chapter 5 has allowed us to directly investigate the hypothesis that thyroidal hPTTG over-

expression induces thyroid growth and neoplasia.   

Currently, only two other studies have investigated the effects of organ specific hPTTG 

over-expression.  hPTTG was targeted to the pituitary glands of mice using the α-subunit of 

glycoprotein hormone (α-GSU) promoter, which is the earliest expressing pituitary hormone 

gene product.  Female αGSU.PTTG mice had significantly enlarged pituitary glands and 

elevated serum IGF-1 levels compared with WT mice.  However, the study focused on a 

more aggressive phenotype in male αGSU.PTTG mice, which demonstrated plurihormonal 

focal pituitary transgene expression with LH-, TSH- and GH-cell focal hyperplasia and 

adenoma, associated with increased serum LH, GH, testosterone, and IGF-I levels.  Some 

mice died prematurely due to obstruction of the urinary tract, caused by prostate and seminal 

vesicle hyperplasia due to elevated serum hormone levels.  Critically, this study provided 

evidence of a role for hPTTG over-expression in enhanced pituitary cell growth and 

specifically in the promotion of differentiated polyhormonal cell focal expansion (Abbud et 

al. 2005).   

  hPTTG is also over-expressed in ovarian cancers (Puri et al. 2001) and a transgenic 

model was generated to directly investigate the effect of hPTTG over-expression in the ovary 

(El-Naggar et al. 2007).  Increased hPTTG expression was evident in the ovarian surface 

epithelium and granulosa cells of transgenic mice, driven by the Mullerian inhibitory 
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substance type II receptor gene promoter (MISIIR).  Although female MISIIR-PTTG 

transgenics did not develop ovarian tumours, the study reported an overall increased mass of 

the corpus luteum, generalised hypertrophy of the myometrium of uteri, with cystic glandular 

and hyperplasia of the endometrium.  The study concluded that hPTTG is involved with the 

initial transformation of ovarian epithelial cells and may be important in creating pre-

cancerous conditions, but its over-expression alone is not sufficient for ovarian 

tumourigenesis (El-Naggar et al. 2007).   

 In addition to a potential role in cell transformation, hPTTG has transactivational 

properties that can promote tumour progression as discussed in detail previously (see sections 

1.3.6 and 1.4).  Our group’s own studies have demonstrated hPTTG-mediated induction of 

FGF-2 and VEGF in thyroid cells (Boelaert et al. 2003a; Kim et al. 2006a) and we have 

elucidated further relationships between hPTTG, EGF, TGF-α and IGF-1 in thyroid cells, in 

studies described in Chapters 3 and 4.  In addition, our group previously performed an 

angiogenesis cDNA PCR array following over-expression of hPTTG in human primary 

thyroid follicular cells.  A number of pro-angiogenic genes such as ID3 (3.5-fold induction), 

and anti-angiogenic genes such as TSP-1 (2.5-fold reduction), demonstrated altered 

expression, indicating that hPTTG may represent a critical regulator of the angiogenic switch 

in thyroid tumourigenesis (Kim et al. 2006b).   

 Following on from the successful generation of a murine transgenic model (see 

Chapter 5), the aim of this study was to fully characterise this model to investigate the 

hypothesis that thyroid-targeted hPTTG over-expression will induce thyroid tumourigenesis.  

hPTTG-Tg mice were carefully monitored throughout the study and were evaluated 

macroscopically and histologically to determine phenotypes.  Qualitative RT-PCR, murine 

primary thyrocyte culture and ELISA assays were used in order to verify our in vitro 

observations including the induction of growth factors.  Further investigations were 
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performed in order to contrast some of these observations in the thyroid glands of Pttg
-/-

 

knockout mice.  Angiogenesis cDNA PCR arrays were performed in order to broadly 

evaluate the effect of enhanced thyroidal hPTTG expression on genes involved in 

angiogenesis in vivo.   

 

6.2 Materials and methods 

 

6.2.1 Transgenic mice 

 

hPTTG-Tg mice were generated and validated as described in Chapter 5.  Pttg
-/-

 

knockout mice were kindly provided by Professor Melmed [UCLA, USA] (Wang et al. 

2001).  Transgenic hPTTG-Tg, Pttg
-/-

 knockout and WT mice were bred at the University of 

Birmingham and all experiments performed in accordance with U.K. Home Office 

regulations.   

6.2.2 Murine primary thyrocyte culture 

 

Murine thyroid follicular cells were isolated and cultured from WT and hPTTG-Tg 

thyroid glands as described previously in section 2.3.  This culture system was extensively 

validated in Chapter 7 (see section 7.3.2.2).     

6.2.3 Post-mortem and macroscopic evaluation of transgenic mice 

 

hPTTG-Tg mice that became ill were culled by cardiac puncture under terminal 

anaesthesia.  Subsequently, mice were dissected and thorough post-mortem analysis 

performed with the guidance of expert mouse pathologists at the Biomedical Services Unit, 

University of Birmingham.    
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6.2.4 Mouse thyroid dissection 

A microdissection technique was developed to routinely excise mouse thyroid glands 

for downstream analyses.  In summary, the outer layer of fur and skin was removed to reveal 

the salivary glands, which are relatively large compared to their human counterparts.  The 

salivary glands were pulled laterally to reveal the infrahyoid muscles running across the 

trachea.  Using a dissecting microscope, these “strap muscles” were cut away to clearly 

expose the trachea, to which the thyroid gland is attached.  Thyroid glands were then 

carefully excised, weighed and stored in formalin (histology), RNA later (RNA analysis), 

liquid nitrogen (protein analysis) or PBS (primary cell culture) (see Figure 6-1). 

 
Figure 6-1: Mouse thyroid dissection.  A  Fur and skin are cut away to expose neck region.  B  

Salivary glands are pulled laterally to reveal infrahyoid muscles.  C  Infrahyoid muscles are cut away 

to expose thyroid lobes attached to the trachea.   

 

6.2.5 Histological evaluation of mouse thyroids 

 

Thyroid glands were removed from mice aged between 1.5 and 18 months using a 

dissecting microscope and stored in formalin.  Mouse thyroids were sectioned and subject to 

hematoxylin and eosin (H&E) staining performed by the Cellular Pathology Department, 

University Hospital Birmingham NHS Foundation Trust.  Stained thyroid tissue sections 

were viewed under a light-microscope (Zeiss) and images captured using Axiovision 

software (Version 4).  Histological analysis was performed with the guidance of expert 
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human thyroid histopathologist, Dr. Adrian Warfield (University Hospital Birmingham NHS 

Foundation Trust).   

6.2.6 Serum thyroid hormone concentration 

 

Mouse blood samples were extracted from mice by cardiac puncture and left to clot 

overnight at 4 ºC.  Subsequently, bloods were centrifuged at full speed for 30 minutes at 4 ºC 

and the supernatant (serum) was stored at -80 ºC.  Mouse serum TSH concentrations were 

determined by the laboratory of Professor Samuel Refetoff (University of Chicago). Details 

of this assay have been published (Pohlenz et al. 1999).    

Total T4 and total T3 in serum of WT and hPTTG-Tg mice were measured using 

radioimmunoassay kits (MP Biomedicals).  In brief, standards and mouse serum samples 

were added to tubes coated with either T4 or T3 monoclonal antibodies.  Subsequently, a 

tracer solution containing radiolabelled T4 or T3 was added to the tube.  Unlabeled and labeled 

analyte compete for a limited number of available binding sites on an antibody which has 

equal affinity for the standard and the analyte in the sample. Increasing quantities of 

unlabeled analyte reduce the amount of labeled analyte bound to antibody. The level of 

radioactivity bound is, therefore, inversely related to the concentration of analyte.  At the end 

of a 1 hour incubation period, tubes were decanted and rinsed with distilled water before the 

bound radioactivity on coated tubes was counted using a gamma counter.  The concentration 

of T4 or T3 in serum samples was determined by interpolation from a standard curve of % of 

Trace Level versus μg/dL T4 or T3.     

6.2.7 RNA extraction, reverse transcription and QT-PCR 

 

Total RNA was extracted from murine primary thyrocytes as described previously in 

section 2.4.  Mouse thyroid glands were stored in RNAlater RNA stabilisation reagent at  
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-20 ºC before total RNA was extracted using the RNeasy microkit (Qiagen, UK), as per the 

manufacturer’s instructions.   

Subsequent reverse transcription and QT-PCR techniques were as described above (see 

sections 2.4 and 2.5).  Murine gene-specific expression assays for Pttg (Mm00479224_m1), 

Pbf (Mm00521473_m1), Vegf (Mm01281449_m1), Fgf-2 (Mm00433287_m1), Tshr 

(Mm00442027_m1), Tg (Mm01200340_m1), Nis (Mm01351811_m1), Egf 

(Mm00438696_m1), Igf-1 (Mm00439560_m1), Tgf-α (Mm00446232_m1), Egfr 

(Mm00433023_m1) and Igf1r (Mm00802831_m1) were purchased from Applied Biosystems 

(Warrington, UK).  Primers used to amplify hPTTG were those described in Table 3-1.   

6.2.8 Enzyme-linked immunosorbent assays (ELISAs) 

 

Conditioned medium was collected from WT and hPTTG-Tg murine primary 

thyrocytes 5 days following serum removal.  Cell culture supernatants were prepared as 

previously described (see section 4.2.5).  Egf and Igf-1 concentrations were assayed in 50 µl 

of the supernatant, using the Quantikine mouse EGF and mouse/rat IGF-1 enzyme-linked 

immunosorbent assays (R&D Systems, Inc.) as per the manufacturer’s instructions described 

in brief previously (see section 4.2.5).   

6.2.9 Angiogenesis-specific cDNA PCR arrays 

 

RNA from mouse thyroid glands was obtained as described in section 6.2.7.  RNA 

was converted to cDNA using the RT
2
 First Strand Kit (SA Biosciences) as per the 

manufacturer’s guidelines.  Briefly, 25 ng of RNA was mixed with 2 µl of Genomic DNA 

Elimination Mixture and water in 10 µl reactions, and incubated at 42 ºC for 5 minutes before 

being chilled on ice.  10 µl of RT cocktail containing RT buffer (BC3; 4 µl), Primer and 

external control mix (P2; 1 µl), RT enzyme mix (RE3; 2 µl) and water (3 µl) was added to 

each 10 µl RNA mixture.  Reactions were incubated at 42 ºC for 15 minutes before 



Chapter 6 Characterisation of a Murine Model with Thyroid-Targeted hPTTG Expression 

 

181 
 

termination by heating at 95 ºC for 5 minutes.  Each 20 µl cDNA sample was diluted by 

addition of 91 µl of water.  cDNA quality and specific expression of hPTTG and Nis was 

determined in samples by TaqMan RT-PCR, as described in section 6.2.7.  Subsequently, 102 

µl of cDNA was added to 1350 µl of 2X RT
2
 SYBR Green qPCR Master Mix (SA 

Biosciences) and 1248 µl of water.  25 µl of experimental cocktails were loaded into each 

well of mouse angiogenesis-specific cDNA PCR array plates (96-well format) (# PAMM-

024, SA Biosciences).  PCR plates were sealed and centrifuged for 1 minute at 1000 g to 

remove bubbles.  PCR reactions were performed using an ABI 7900HT Fast Real-Time PCR 

System.  Reactions were as follows: 95 °C for 10 minutes; then 40 cycles of 95 °C for 15 

seconds and 60 °C for 1 minute.  Inspection of in-built controls determined that PCR array 

results were not affected by genomic DNA contamination or RNA impurities.  Data were 

compared using the ΔΔCt method described in section 2.5, but by comparing genes of 

interest to an average of multiple house-keeping genes.   

6.2.10 Statistical analysis 

 

Data were analysed as described in section 2.8. 

 

6.3 Results 

 

6.3.1 Survival of hPTTG-Tg mice 

 

Overall, survival of hPTTG-Tg
+/-

 mice (75.7 ± 9.6 %, n = 43) was non-significantly 

decreased compared with WT mice (96.5 ± 2.4 %, n = 68) by 18 months of age (p = 0.147).  

In contrast, survival of hPTTG-Tg
+/+

 mice (28.5 ± 8.1 %, n = 57) was strikingly reduced 

compared with either WT (p < 0.0001) or hPTTG-Tg
+/-

 mice (p < 0.0001) by 18 months of 

age.  Notably, hPTTG-Tg
+/+

 mice became ill from ~3 months of age onwards, with 38.1 ± 6.8 

% dying by 6 months of age.  Comparison of survival trends between male (29.9 ± 10.5 %, n 

= 35) and female (24.2 ± 13.1 %, n = 31) hPTTG-Tg
+/+ 

mice demonstrated that both genders 
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of this genotype have decreased survival, with no significant difference observed by 18 

months of age (p = 0.702) (see Figure 6-2).   

 

Figure 6-2: Kaplan-Meier survival analyses.  A  Survival curves for WT (blue, n =68), hPTTG- 

Tg+/-(green, n = 43), hPTTG-Tg+/+(red, n = 57) mice demonstrating significantly reduced survival 

rates of hPTTG-Tg+/+mice.  B Survival curves for male (n = 35) and female (n =31) hPTTG-

Tg+/+mice demonstrating gender-independent phenotype.  Circles represent censorsed event (mouse 

deliberately harvested for experiments), intersection represents spontaneous death of mouse (*** p < 

0.001, NS = non-significant). 

   

Wherever possible, ill mice were culled by cardiac puncture under terminal 

anaesthesia prior to post-mortem evaluation.  Subsequently, serum and histological analyses 

were performed to investigate cause of illness/death, as described in subsequent sections.    
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6.3.2 Total body weight of transgenic mice 

 

Total body weight data were collected by weighing mice at the time of harvest at 1.5, 

3, 6, 12 or 18 months of age.  Overall, there were no significant differences in the total body 

weight of female hPTTG-Tg mice, except at 3 months of age, where hPTTG-Tg
+/+

 females (n 

= 11) were significantly under-weight compared with WT females (9.5 % reduced weight, n 

= 23, p < 0.01).  In contrast, a number of significant differences in total body weight of 

hPTTG-Tg males were identified.  At 1.5 months of age, hPTTG-Tg
+/-

 males (n = 4) were 

significantly over-weight compared with WT controls (12.5 % excess weight, n = 39, p < 

0.05) and hPTTG-Tg
+/+ 

mice (14.2 % excess weight, n = 14, p < 0.01).  At 3 months, hPTTG-

Tg
+/+ 

males (n = 10) were significantly under-weight compared with WT controls (8.3 % 

reduced weight, n = 25, p < 0.05) and hPTTG-Tg
+/-

 mice (9.4 % reduced weight, n = 20, p < 

0.01).  At 6 and 12 months there were no significant differences, but at 18 months of age, 

hPTTG-Tg
+/+ 

males (n = 5) were significantly under-weight compared with hPTTG-Tg
+/-

 

males (17.7 % reduced weight, n = 13, p < 0.05) (see Figure 6-3 A).  However, throughout 

the study we observed great variation in weight data due to factors including parentage and 

litter size.  In setting up hPTTG-Tg
+/+ 

x hPTTG-Tg
+/-

 breeding pairs, we had an in-built 

control in that we could compare the weights of the resulting hPTTG-Tg
+/+ 

and hPTTG-Tg
+/- 

littermates.  We consistently observed that between ~ 3 and 7 weeks of age that both male 

and female hPTTG-Tg
+/+ 

mice were significantly under-weight compared to hPTTG-Tg
+/- 

littermates.  Representative results are presented in Figure 6-3 B and C.   
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Figure 6-3: Analysis of mouse total body weight data.  A  Bar chart displaying total body weight 

of WT, hPTTG-Tg
+/-

 and hPTTG- Tg
+/+

 mice (Males in shades of blue, females in shades of 

pink) at 1.5, 3, 6, 12 and 18 months of age.  B+ C  Representative total body weight analyses 

demonstrating reduced body weight of hPTTG- Tg
+/+

 males (B) and females (C) compared 

with hPTTG-Tg
+/-

 littermates.  Error bars represent the SEM (* p < 0.05, ** p < 0.01, NS = non-

significant).   

 

6.3.3 Evaluation of ill hPTTG-Tg mice 
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mice that became ill were culled by cardiac puncture under terminal 

anaesthesia.  Post-mortem examination of 3-8 month old hPTTG-Tg
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mice that became ill 

rarely revealed any abnormalities that were macroscopically evident.  Many of these mice 

were lean, had a distended bladder and an abnormal caecum that was shrivelled and compact.  

However, this was later described by a mouse pathologist as typical features found in non-

specifically ill mice.  One 2.5 month old female hPTTG-Tg
+/+

 mouse that became ill had 

obvious enlargement of the salivary glands, kidneys, spleen and lymph nodes, and 

histopathologoical evaluation confirmed the diagnosis of B-cell lymphoma.  An ill 3.5 month 
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old male hPTTG-Tg
+/+

 mouse presented with an abnormal intestine, the cause of which 

remains unknown.  Similarly, an 8 month old male hPTTG-Tg
+/+

 mouse had a distended 

stomach containing a large amount of undigested food, and again the cause remains 

unknown.  Crucially, thyroid glands in all ill hPTTG-Tg mice at this age (3-8 months) were 

of a normal size, with no macroscopic evidence of goitre or tumour formation (see Figure 

6-4). 
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Figure 6-4: Macroscopic evaluation of ill hPTTG-Tg mice.  A  Dishevelled and hunched 

appearance of an ill mouse.  B  Representative photographs of a frequent observation in both male 

and female hPTTG-Tg
+/+

 mice that become ill between 3-8 months of age.  A distended bladder is 

indicated by the red arrow.  The caecum is indicated by the black arrow and is noticeably dark and 

compact in hPTTG-Tg+/+ mice (left).  C  Photographs of a hPTTG-Tg+/+ female with a B-cell 

lymphoma.  Red arrows indicate enlarged spleen (left) and salivary glands (right).  D  Photograph of 

hPTTG-Tg+/+ male with an abnormal intestine indicated by the red arrow.  E  Photograph of a 

hPTTG-Tg+/+ male with a distended stomach indicated by the red arrow and its undigested contents 

by a yellow arrow.  F  Representative photographs demonstrating no macroscopically evaluated 

differences between the thyroid glands of WT (left) and ill hPTTG-Tg+/+ (right) mice at ~ 3.5 months 

of age.   
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hPTTG-Tg
+/- 

and hPTTG-Tg
+/+

 mice were aged to 12 and 18 months in order to study 

the long term effects of thyroidal over-expression of hPTTG.  As hPTTG-Tg mice 

approached the 18 month time point, there were a number of mice that presented with 

pathologies.  An 18 month old   hPTTG-Tg
+/- 

female had a large uterine tumour (2.3 g); two 

18 month old hPTTG-Tg
+/- 

males had lung tumours (0.98 g and 0.32 g); and one hPTTG-

Tg
+/+ 

female had a cancerous liver (7.1 g) (see Figure 6-5). 

 

 

Figure 6-5: Pathologies identified in aged hPTTG-Tg mice (indicated by red arrows).  A  18 

month old hPTTG-Tg
+/-

 female with a uterine tumour (2.3 g).  B  18 month old hPTTG-Tg
+/- 

male with a lung tumour (0.98 g).  C  Lung tumour from an 18 month old hPTTG-Tg
+/-

 male.  

D  17 month old hPTTG-Tg
+/+ 

female with a cancerous liver (7.1 g).   
 

  

6.3.4 Evaluation of thyroid weight in hPTTG mice 

 

Thyroid glands in aged hPTTG-Tg
+/- 

and hPTTG-Tg
+/+ 

mice appeared to be of normal 

size compared to age-matched WT mice, with no macroscopic evidence of goitre or tumour 

formation (see Figure 6-6).   
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Figure 6-6: Macroscopic evaluation of thyroid glands in aged hPTTG-Tg mice.  Representative 

photographs of thyroid glands in situ of WT (blue), hPTTG-Tg+/- (green) and hPTTG-Tg+/+(red) 

thyroids at 12 months (top row) and 18 months (bottom row).  The gender, body weight and thyroid 

weight of each animal is also indicated beneath each photograph.   

 

Thyroid glands were excised from mice and the weights were determined.  

Interestingly, hPTTG-Tg
 
thyroids were reduced in size compared with WT, with a stronger 

phenotype evident in hPTTG-Tg
+/+ 
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Given that hPTTG-Tg mice variously have reduced body weight (see section 6.3.2), it 

is possible that the reduced thyroid size observed is a consequence of the lower total body 

weight.  We therefore also analysed weight data by calculating the thyroid:total body weight 

ratio of mice.  Between 1.5 and 12 months of age hPTTG-Tg
+/- 

mice still demonstrated a 

generally lower mean thyroid:total body weight ratio compared with WT controls.  However, 

this was only statistically significant at 3 months (0.070 ± 0.004, n = 8, p < 0.05) and 12 

months (0.077 ± 0.002, n = 22, p < 0.01), compared with age-matched WT controls, with a 

mean of 0.079 ± 0.002 (n = 48) and 0.090 ± 0.005 (n = 11) respectively.  By 18 months of 

age, hPTTG-Tg
+/- 

mice (0.099 ± 0.006, n = 19, p = NS) had a thyroid:total body weight ratio 

comparable to WT controls (0.089 ± 0.004, n = 8).   

hPTTG-Tg
+/+ 

mice had significantly lower thyroid:total body weight ratios at 1.5 

months (0.080 ± 0.002, n = 30, p < 0.05), 6 months (0.069 ± 0.005, n = 13, p < 0.05) and 12 

months (0.076 ± 0.003, n = 6, p < 0.05) compared with age-matched WT controls, with mean 

ratios of 0.087 ± 0.001 (n = 85), 0.093 ± 0.003 (n = 6) and 0.077 ± 0.002 (n = 22), 

respectively.  At 3 months (0.080 ± 0.004, n = 21, p = NS) and 18 months (0.083 ± 0.005, n = 

9, p = NS) of age, there was no significant difference compared with WT control ratios of 

0.079 ± 0.002 (n = 48) and 0.089 ± 0.004 (n = 8), respectively.  See Figure 6-7 B. 

Thyroid:total body weight ratios were calculated for ill hPTTG-Tg mice to confirm 

that these mice did not have enlarged thyroids.  Data from ill mice was compared with WT 

data from the most relevant time point.   At 3 (0.077 ± 0.009, n = 5, p = NS), 6 (0.085 ± 

0.013, n = 5, p = NS) and 18 (0.083 ± 0.014, n = 3, p = NS) months of age, ill hPTTG-Tg 

mice showed no significant difference compared with WT ratios (detailed above).  At 12 

months of age, ill hPTTG-Tg mice demonstrated a significantly reduced mean ratio of  0.069 

± 0.005 (n = 3, p < 0.05) compared with 12 month WT mice (as above) (see Figure 6-7 C). 
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Figure 6-7: Analysis of thyroid gland weights in hPTTG-Tg mice.  A  Comparison of raw thyroid 

weights in WT and hPTTG-Tg mice.  B   Comparison of thyroid:total body weight ratios in WT and 

hPTTG-Tg mice.  C  Bar chart form of data presented in B (3-18 months only), with additional 

comparative analysis of thyroid:total body weight ratio in ill hPTTG-Tg mice.  WT (blue), hPTTG-

Tg+/- (green), hPTTG-Tg+/+(red), ill hPTTG-Tg (black).  Error bars represent the SEM (* p < 0.05, ** 

p < 0.01, NS = non-significant).   

 

6.3.5 Histological evaluation of hPTTG-Tg mouse thyroids 

 

To examine mouse thyroid glands microscopically, we performed H&E staining on 

sections from hPTTG-Tg and WT mice.  Composite images of complete thyroid lobes 

demonstrated normal thyroid histology in ill hPTTG-Tg
+/+

 mice compared with WT mice (see 

Figure 6-8). 
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Figure 6-8: Histological analysis of thyroids from ill hPTTG-Tg+/+ mice.  A  Representative 

images of H&E stained thyroid sections from ill hPTTG-Tg+/+ mouse and WT mouse (4.5-6 months of 

age).  B  Coronal section of neck region from ill hPTTG-Tg+/+ mouse (age 3 months).  Scale bars: 100 

µm.  TC = Tracheal cartilage, TL = Tracheal lumen, CC = Cricoid cartilage, CT = Cricothyroid 

muscle, T = Thyroid cartilage (ic = inferior cornu, sc = superior cornu), A = Arytenoid cartilage, C 

= Corniculate cartilage. 
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Composite images of thyroid lobes from 12 and 18 month old hPTTG-Tg
+/- 

and 

hPTTG-Tg
+/+ 

mice revealed no histological abnormalities and were comparable to age-

matched WT controls (see Figure 6-9). 

 

Figure 6-9: Histological analysis of thyroids from aged hPTTG-Tg mice.  Representative images 

of H&E stained thyroid sections from 12 and 18 month old WT (left), hPTTG-Tg+/- (middle) and 

hPTTG-Tg+/- (right).  Scale bars: 100 µm.   
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6.3.6 Thyroid  hormone concentrations 

 

Serum thyroid hormone concentrations were determined in order to assess the effect 

of transgene expression on thyroid function.  Measurement of serum TSH concentration was 

restricted by sample availability (no samples available from ill hPTTG-Tg
+/+

 male mice or 18 

month old WT mice) and assay limitations.  We therefore focused on characterisation of 

thyroid function in hPTTG-Tg
+/- 

mice due to their increased rate of survival, but were able to 

include some samples from ill and aged hPTTG-Tg
+/+

 mice to give an indication of their 

thyroid status.  There was no significant difference in serum TSH concentrations in male 

hPTTG-Tg
+/- 

mice at either 6 weeks (57.4 ± 12.9 ng/mL, n = 6, p = NS) or 12 months (89.8 ± 

16.7 ng/mL, n = 3, p = NS) of age, compared with age-matched WT controls with average 

concentrations of 48.2 ± 13.9 ng/mL (n = 6) and 118.3 ± 7.2 ng/mL (n = 3), respectively.  In 

contrast, serum TSH concentrations were below the limits of detection in hPTTG-Tg
+/- 

females at 6 weeks of age.  In accord with the lowest detectable value in the assay, hPTTG-

Tg
+/- 

females were assigned a nominal mean of 10 ng/mL which was significantly lower (n = 

6, p < 0.05) compared with age-matched WT controls (24.1 ± 3.7 ng/mL, n = 6).  There was 

no significant difference in serum TSH concentration in 12 month old hPTTG-Tg
+/- 

females 

(25.4 ± 8.1 ng/mL, n = 3, p = NS) compared with age-matched WT females (28.2 ± 16.5 

ng/mL, n = 3).  Serum TSH concentrations in hPTTG-Tg
+/+

females that became ill at ~ 3.5 

months of age (29.7 ± 6.0 mg/mL, n = 5, p = NS) were comparable to those in 6 week old 

WT females (as above).  18 month old hPTTG-Tg
+/+ 

males (114.6 ± 44.6 mg/mL, n = 3, p = 

NS) and females (48.5 ± 1.6 mg/mL, n = 3, p = NS) had serum TSH concentrations that were 

comparable to 12 month old gender-matched WT controls (as described above) (see Figure 

6-10).   
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Figure 6-10: Serum TSH concentrations in 6 week and 12 month old WT (males – light blue, 

females – light pink) and hPTTG-Tg+/- mice (males – dark blue, females – dark pink).  TSH 

concentrations in 3.5 month old ill hPTTG-Tg+/+ females (black) were compared against 6 week old 

WT females.  TSH concentrations in 18 month old hPTTG-Tg+/+ males (dark purple) and females 

(light purple) were compared against gender-matched 12 month old WT mice.  Error bars represent 

SEM (* p < 0.05, NS = non-significant).   

 

 Further analyses were performed to determine serum concentrations of total 

triiodothyronine (T3) and thyroxine (T4).  Once again, 3.5 month old ill hPTTG-Tg
+/+

 females 

were compared to 6 week old WT females, and since no 18 month old WT samples were 

available, 18 month old hPTTG-Tg mice were compared to gender matched 12 month old 

WT mice.  There were no significant alterations of serum T3 concentrations in hPTTG-Tg 

male or female mice at any time-point, compared with WT controls.  Similarly, there were no 

significant alterations of serum T4 concentrations in hPTTG-Tg female mice at any time-

points and there were no marked alterations of total T4 concentrations in aged hPTTG-Tg 

males.  However, 6 week old hPTTG-Tg
+/+ 

(15.8 ± 3.8 ng/dL, n = 5, p < 0.001) males had 

significantly higher total T4 concentrations compared with WT controls (2.0 ± 0.2 ng/dL, n = 

6) (see Figure 6-11). 
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Figure 6-11: Analysis of serum concentration of total triiodothyronine (T3) [A] and thyroxine (T4) 

[B].    WT (males – light blue, females – light pink), hPTTG-Tg+/- (males- middle blue, females – 

middle pink), hPTTG-Tg+/+ (males – dark blue, females – dark pink).  T3 and T4 concentration in 3.5 

month old ill hPTTG-Tg+/+ females (black) were compared against 6 week old WT females. T3 and T4 

levels in 18 month old hPTTG-Tg mice were compared against gender-matched 12 month old WT 

mice.  Error bars represent SEM (*** p < 0.001, NS = non-significant).  
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were unaltered in hPTTG-Tg
+/- 

mice (0.51-fold, n = 11, p = NS) and hPTTG-Tg
+/+ 

mice 

(1.44-fold, n = 3, p = NS) compared with WT controls (n = 9).  Similarly, Pbf levels were 

unaltered in hPTTG-Tg
+/- 

mice (0.74-fold, n = 11, p = NS) and hPTTG-Tg
+/+ 

mice (0.86-fold, 

n = 3, p = NS) compared with WT controls (n = 9).  Surprisingly, hPTTG-Tg
+/- 

mice (1.22-

fold, n = 12, p = NS) and hPTTG-Tg
+/+ 

mice (1.03-fold, n = 3, p = NS) had similar levels of 

Vegf compared with WT controls (n = 14).   While hPTTG-Tg
+/- 

mice had significantly 

elevated levels of Fgf-2 (1.88-fold, n = 12, p < 0.001), hPTTG-Tg
+/+ 

mice unexpectedly 

demonstrated contrasting data with unaltered levels of Fgf-2 (1.36-fold, n = 3, p = NS) 

compared with WT controls (n = 9).  hPTTG-Tg
+/+ 

mice showed unaltered levels of Tshr 

(1.41-fold, n = 3, p = NS) and Tg (1.31-fold, n = 3, p = NS) compared with WT controls (n = 

10) (see Figure 6-12).         

 
Figure 6-12: TaqMan RT-PCR data displaying expression levels of mRNAs encoding Pttg, Pbf, 

Vegf, Fgf-2, Tshr and Tg in 6 week old WT and hPTTG-Tg mice.  Error bars represent SEM (*** p < 

0.001, NS = non-significant).  
 

6.3.8 hPTTG regulation of Egf, Igf-1 and Tgf-α in vivo 

 

In Chapter 5, induction of EGF, IGF-1 and TGF-α mRNA by hPTTG was observed in 

human primary thyrocytes.  To test this in vivo, thyroidal expression of Egf, Igf-1 and Tgf-α 

were evaluated in 6 week old hPTTG-Tg mice.   Thyroids excised from hPTTG-Tg
+/- 

mice 

had similar levels of Egf (0.89-fold, n = 7, p = NS) and Igf-1 (0.84-fold, n = 7, p = NS) 

mRNA expression compared with age-matched WT controls (n = 29).  In contrast, Egf (2.02-
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fold, n = 13, p < 0.001) and Igf-1 (1.46-fold, n = 12, p < 0.05) levels were significantly 

elevated in hPTTG-Tg
+/+ 

mice compared with age-matched WT controls (n = 29).  Tgf-α 

expression levels were only evaluated in hPTTG-Tg
+/+ 

mice (1.26-fold, n = 10, p = NS) 

where levels were not significantly altered compared with WT controls (n =11) (see Figure 

6-13). 

 

Figure 6-13: TaqMan RT-PCR analysis demonstrating mRNA expression levels of Egf, Igf-1 and 

Tgf-α in 6 week old WT and hPTTG-Tg mice.  Error bars represent SEM (* p < 0.05, *** p < 0.001, 

NS = non-significant).  
 

 

Subsequently, mouse primary thyrocytes were isolated and cultured from 6 week old 

WT and hPTTG-Tg mice (see Chapter 7 for in-depth details on mouse thyroid cell culture), 

and the conditioned media collected 5 days after serum removal were analysed by ELISAs 

specific to Egf and Igf-1. Consistent with the mRNA expression data, there was no significant 

increase in Egf secretion by hPTTG-Tg
+/-

 transgenic thyrocytes (13.1 ± 2.1 pg/mL, n = 7, p = 

NS), but Egf secretion was significantly elevated in hPTTG-Tg
+/+

 transgenic thyrocytes (20.9 

± 3.4 pg/mL, n = 12, p < 0.01) compared with WT controls (9.5 ± 2.0 pg/mL, n = 17).  In 

contrast, thyroid cultures from either hPTTG-Tg
+/-

 (217.5 ± 53.4 pg/mL, n = 13, p = NS) or 

hPTTG-Tg
+/+

 (170.4 ± 20.0 pg/mL, n = 26, p = NS) transgenic mice showed no significant 

difference in Igf-1 secretion compared to WT controls (160.9 ± 23.5 pg/mL, n = 28) (see 

Figure 6-14).   
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Figure 6-14: Histograms showing secretion levels of Egf (A) and Igf-1 (B) respectively, from 

primary mouse thyrocytes derived from WT and hPTTG-Tg mice, determined by ELISA.  Data are 

presented as the mean growth factor concentration (pg/mL) ± SEM.  (** p < 0.01, NS = non-

significant). 

 

Further qualitative RT-PCR confirmed that mouse primary thyrocytes expressed both 

Egfr and Igf1r, and thus have all components required to facilitate autocrine mechanisms 

involving Pttg and growth factors.  There was no significant difference in Egfr or Igf1r 

expression between WT and hPTTG-Tg transgenic mice (see Figure 6-15).     

 

 

Figure 6-15: TaqMan RT-PCR analysis demonstrating mRNA expression levels of Egfr and Igf1r 

in WT and hPTTG-Tg mice.  Error bars represent the SEM (NS = non-significant).  
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6.3.9 Expression of Egf, Igf-1 and Tgf-α in Pttg
-/-

 knockout mice 

 

To explore the effects of reduced endogenous PTTG expression in vivo, we next 

examined Egf, Tgf-α and Igf-1 mRNA expression in thyroid glands of Pttg
-/-

 knockout mice 

(Wang et al. 2001). Qualtitative RT-PCR analysis revealed a significant reduction in Egf 

mRNA expression in thyroid glands of Pttg
-/-

 mice (0.4-fold, n = 5, p < 0.01), whereas Tgf-α 

(1.0-fold, n = 5, p =NS) and Igf-1 (1.6-fold, n = 5, p =NS) mRNA expression levels were 

unaltered compared to WT controls (n = 5) (see Figure 6-16). 

 

Figure 6-16: TaqMan RT-PCR demonstrating reduced Egf and unaltered Tgf-α and Igf-1 mRNA 

expression in the thyroid glands of Pttg-/- knockout mice.  Error bars represent the SEM (** p < 0.01, 

NS = non-significant). 
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expression in accordance with the phenotype described in detail in Chapter 7 (see Figure 

6-17).   

 
Figure 6-17: Validation of individual hPTTG-Tg+/+ thyroid cDNA samples for cDNA PCR array 

analyses.  TaqMan RT-PCR data demonstrating high expression levels of hPTTG mRNA (A) and 

reduced Nis mRNA expression (B) in individual hPTTG-Tg+/+ mouse thyroid glands.    

 

 Subsequent PCR array analysis revealed various alterations in gene expression in 

hPTTG-Tg
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thyroids compared with WT.  These included changes in expression of 

Cytokine (C-X-C motif) ligand 1 (Cxcl1; 3.24-fold increase), Coagulation Factor II (F2; 

2.06-fold increase), Fibroblast growth factor 6 (Fgf-6; 11.1-fold reduction), Midkine (Mdk; 

2.34-fold increase), Matrix metallopeptidase 9 (Mmp9; 2.0-fold reduction), T-box 1 (Tbx1; 

3.8-fold reduction), T-box 4 (Tbx4; 14.3-fold reduction), Tumour necrosis factor (Tnf-α; 2.0-

fold reduction) and Tumor necrosis factor alpha-induced protein 2 (Tnfaip2; 2.16-fold 

increase).  We also looked closely at other genes of specific interest including Egf (1.33-fold 

reduction), Tgf-α (1.43-fold increase), Igf-1 (1.44-fold increase), Vegf (1.47-fold increase), 

Fgf-2 (1.82-fold increase), Tsp-1 (1.67-fold increase) and Kdr (1.46-fold increase) (see 

Figure 6-18). 
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Figure 6-18:  Angiogenesis cDNA PCR array analysis in hPTTG-Tg+/+ thyroids compared with 

WT.  Genes that demonstrated a  2.0-fold differential expression (either increased or reduced) in 

hPTTG-Tg+/+ thyroids compared with WT controls were identified as significant and these thresholds 

are indicated by black dashed lines.  Pro-angiogenic and anti-angiogenic gene expression alterations 

are shown in green and red respectively.  The average fold change of other genes of specific 

interested are shown in orange.   

 

 

6.4 Discussion 

The mechanisms governing thyroid cell growth in hyperplasia and neoplasia remain to 

be fully defined, despite recent progress in our understanding of the role of other oncogenes 

such as BRAF (Knauf et al. 2005; Franco et al. 2011).  The aim of the present chapter was to 

investigate the hypothesis that thyroidal over-expression of hPTTG would induce thyroid 

growth and neoplasia.  Following the successful generation of a murine transgenic model 

with thyroid-targeted hPTTG expression (see Chapter 5), the current chapter of work 

describes the characterisation of this transgenic model.   
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6.4.1 Survival of hPTTG-Tg mice 

 

Given that various murine models of thyroid cancer developed cancers from 6 months 

onwards (Knostman et al. 2007a; Kim and Zhu 2009), hPTTG-Tg mice were aged up to 18 

months in order to study the potential development of thyroid cancers.  In our concurrent 

investigation of transgenic mice with thyroidal PBF over-expression, PBF-Tg mice 

demonstrated a higher incidence of macrofollicular lesions and hyperplasia at 18 months of 

age compared with earlier time-points (Read et al. 2011).  Strikingly, only 28.5 % of hPTTG-

Tg
+/+ 

survived to 18 months of age and many became ill from ~ 3 months onwards.  In 

contrast, hPTTG-Tg
+/- 

mice generally survived to 18 months of age, with a survival trend 

comparable to WT mice.  There was no significant difference in survival trends between male 

and female hPTTG-Tg
+/+ 

mice suggesting that this phenotype was independent of gender.  Ill 

hPTTG-Tg
+/+ 

mice were subject to extensive investigations to determine a cause of death.  

Crucially, thyroids from ill hPTTG-Tg
+/+ 

mice were microscopically and histologically 

normal.  Further post-mortem evaluation with the support of expert mouse pathologists 

revealed no consistent cause of death in these mice, where frequent observation of a 

distended bladder or abnormal gut were dismissed as typical effects seen in any ill mouse. 

There were no consistent differences observed between genotypes of mice when 

evaluating mouse total body weight data across all time points, though general trends 

suggested both male and female hPTTG-Tg
+/+ 

mice were under-weight compared with WT 

and hPTTG-Tg
+/- 

mice.  Total body weight varied considerably and was dependent on factors 

such as litter size and parentage, and this was investigated more closely.  Following our 

strategy of having hPTTG-Tg
+/- 

X hPTTG-Tg
+/+ 

breeding pairs (see section 5.3.3.5), total 

body weights of the resulting hPTTG-Tg
+/- 

and hPTTG-Tg
+/+ 

offspring were compared, which 

confirmed that male and female hPTTG-Tg
+/+ 

mice were consistently under-weight compared 

with hPTTG-Tg
+/- 

littermates between 3 and 7 weeks of age.   
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In a mouse model of inherited hypothyroidism, hyt/hyt autosomal recessive mutants 

demonstrate similarly retarded growth from weaning age into adulthood, in association with 

low serum T4 and elevated serum TSH (Beamer et al. 1981).  However, analysis of serum 

thyroid hormone levels in ill hPTTG-Tg
+/+ 

females revealed that there was no significant 

difference in TSH, T3 or T4 concentrations compared with WT controls.  The reasons for 

illness and death in hPTTG-Tg
+/+ 

mice were therefore not identified after post-mortem 

analysis, histological evaluation and thyroid function analyses.  In the absence of any thyroid 

phenotype, it appears increasingly likely that this may have been a non-specific effect, 

possibly caused by the disruption of a critical gene at the insertion site of the transgene 

construct.  Supporting this logic, hPTTG-Tg
+/- 

mice demonstrated a similar survival pattern to 

WT mice, possibly explained by the fact that they would presumably possess one normal 

copy of the potentially disrupted gene that is sufficient for normal function and survival.  In 

order to verify this, it may be possible to determine the transgene insertion site by performing 

inverse-PCR analyses in order to amplify and subsequently sequence the flanking regions of 

DNA (Ochman et al. 1988).  However, following careful consideration work to fully 

characterise surviving hPTTG-Tg
+/- 

mice and hPTTG-Tg
+/+ 

mice was continued.   

The survival of 28.5 % of hPTTG-Tg
+/+ 

mice to 18 months raises further questions as 

to why some mice of this genotype become ill but others do not.  Aged hPTTG-Tg
+/+ 

mice 

continued to express hPTTG protein (data not shown) and therefore survival was not due to 

“switching off” of the transgene.  It is possible that disruption of a gene at the site of 

transgene insertion does not effect hPTTG-Tg
+/+ 

mice with 100 % penetrance.  Alternatively, 

reduced hPTTG-Tg
+/+ 

survival could be the fatal effect of toxicity caused by excessive over-

expression of the transgene, which is feasible given the multiple transgene copy numbers and 

high levels of hPTTG expression observed in this transgenic line (see Figure 5-14, 5-17, 5-18 
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and 5-19).  On this basis, varying levels of total hPTTG expression in hPTTG-Tg
+/+ 

mice may 

determine death or survival.    

6.4.2 Characterisation of surviving hPTTG-Tg mice 

Despite many hPTTG-Tg
+/+ 

mice becoming ill before reaching an age at which 

enhanced thyroid growth would be expected,  we were able to investigate phenotypes in those 

that survived, and in hPTTG-Tg
+/- 

mice, which also demonstrated significant over-expression 

of hPTTG in the thyroid (see Figure 5-14, 5-17, 5-18, 5-19).  A number of aged hPTTG-Tg 

mice presented with different tumour types at around 18 months of age.  Given that a low 

level of mistargeted hPTTG mRNA expression was observed in the lungs of hPTTG-Tg mice 

(see Figure 5-14), it was interesting that two hPTTG-Tg
+/- 

mice developed lung tumours.   

However, the occurrence of lung tumours in 18 month old WT mice (data not shown) 

indicated that this was not a specific effect of hPTTG over-expression in the lung.  Indeed, 

spontaneous development of a variety of lesions, and of lung tumours in particular, has been 

reported in non-transgenic ageing FVB/N mice (Mahler et al. 1996).   

Microscopic analysis at the point of dissection revealed no visible evidence of goitre 

formation or tumour development in either hPTTG-Tg
+/- 

or hPTTG-Tg
+/+ 

mice between 1.5 

and 18 months of age.  Furthermore, hPTTG-Tg thyroid glands were deemed histologically 

normal with no evidence of benign or malignant lesions.  Unexpectedly, thyroid weight 

analysis indicated that hPTTG-Tg
+/- 

thyroids were generally smaller than those of WT mice, 

though this was only statistically significant at 12 months of age.  hPTTG-Tg
+/+ 

thyroids were 

even smaller compared with WT and demonstrated statistical significance at every age 

investigated, indicating a copy number dependent phenotype of reduced thyrocyte 

proliferation.  However, following the observation that hPTTG-Tg
+/+ 

mice were under-

weight, thyroid weight data were also analysed in relation to total body weight.  Thyroid:total 

body weight ratios of hPTTG-Tg mice were still generally lower than that of WT mice, 
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though this was not consistently observed or statistically significant at every time-point.  The 

inconsistency of results potentially reflects a subtle phenotype that has been difficult to 

elucidate given high levels of variation and difficulties in accurately determining thyroid 

weights.  Future studies should aim to verify or refute reduced cellular proliferation in 

hPTTG-Tg thyroids by analysis of mitotic markers such as PCNA and cyclin D1. 

  Nonetheless, the lack of enhanced thyroid growth was inconsistent with previous 

data showing that subcutaneous expression of murine fibroblasts over-expressing hPTTG 

induced high-grade malignant tumour formation in athymic nude mice (Zhang et al. 1999b; 

Kakar and Jennes 1999).  Furthermore, our observations contrast with other transgenic 

models of organ-specific hPTTG over-expression describing hPTTG-induced hyperplasia in 

the pituitary glands (Abbud et al. 2005) and ovaries (El-Naggar et al. 2007) of transgenic 

mice.  One study from our laboratory identified hPTTG as a critical regulator of proliferation 

in fetal neuronal NT-2 cells, showing that low transient expression of hPTTG resulted in a 

significant proliferative effect, whereas high levels of hPTTG expression inhibited cell 

turnover through its role as a securin (Boelaert et al. 2003b).  It is possible that a dose-

dependent response to hPTTG exists in vivo, where both hPTTG-Tg
+/- 

and hPTTG-Tg
+/+ 

mice 

demonstrate high levels of hPTTG expression and reduced thyroid size.  Consistent with this 

theory, MISIIR-PTTG transgenic mice that develop hypertrophy of the corpus luteum have 

relatively low expression of transgenic hPTTG in the ovarian epithelium (El-Naggar et al. 

2007).  Alternatively, hPTTG-induced apoptosis (Yu et al. 2000a) might explain reduced 

thyroid size in hPTTG-Tg mice and this could be investigated through the use of apoptosis 

assays.    

The lack of thyrocyte transformation in hPTTG-Tg mice indicates that over-

expression of hPTTG alone is not sufficient for thyroid tumourigenesis.  Major pathogenetic 

factors associated with thyroid cancer include dietary iodine deficiency and exposure to 
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external radiation (Schneider and Ron 2005; Nikiforov and Nikiforova 2011).  It would 

therefore be interesting to test whether hPTTG over-expression facilitates the transition to 

malignancy following induction of TSH-driven goitre formation in hPTTG-Tg mice on an 

iodine deficient diet.  Similarly, given the potential role of hPTTG in DNA damage response 

pathways (see section 1.3.5), and in particular the observation that over-expression of hPTTG 

can repress DNA repair (Kim et al. 2007b), it would be of significant interest to test whether 

exposure to ionizing radiation causes a greater incidence of thyroid tumour development in 

hPTTG-Tg mice compared with WT mice.  Alternatively, it is possible that another oncogene 

is required to facilitate hPTTG mediated thyroid cell transformation.  It has already been 

described that follicular thyroid tumours in TRβ
PV/PV

 mice demonstrated reduced 

proliferation and vascular invasion when Pttg was absent (TRβ
PV/PV

/Pttg
–/– 

mice) (Kim et al. 

2007a). It is therefore possible that hPTTG over-expression may lead to more aggressive 

phenotypes acting in concert with other oncogenes in other mouse models of thyroid cancer.   

It is often the case that the introduction of two oncogenes is required for 

tumourigenesis in transgenic models of disease.  For example, crossing of the Pten
L/L

;TPO-

Cre mouse with mice harboring a Kras oncogenic mutation led to invasive and metastatic 

follicular carcinomas, whereas neither the Pten
L/L

;TPO-Cre or Kras
G12D

 mouse model alone 

developed thyroid carcinomas (Miller et al. 2009).  The most obvious oncogenic partner for 

hPTTG is its binding factor PBF and to this effect, we have established a hPTTG.PBF-Tg 

bitransgenic colony which is currently being investigated in our laboratory.  While hPTTG 

and PBF have important functions that are independent of each other, PBF facilitates nuclear 

localisation and transactivational capabilities of hPTTG (Chien and Pei 2000) and their 

interaction at oncogenic expression levels may yield highly interesting phenotypes.  PBF-Tg 

mice develop goitres with 100 % penetrance (Read et al. 2011) and it will be of great interest 
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to see whether concerted over-expression of hPTTG results in the development of thyroid 

malignancies.   

6.4.3 Serum thyroid hormone concentrations 

 

Serum concentrations of TSH were determined by the laboratory of Professor Samuel 

Refetoff (University of Chicago) in a method previously described (Pohlenz et al. 1999).  

Generally, there were no significant differences in serum TSH concentrations in either young 

or aged hPTTG-Tg mice.  However, TSH concentrations were undetectable in female 

hPTTG-Tg
+/- 

serum samples and thus significantly lower than WT controls.  This may have 

been a result of sample degradation and Professor Refetoff advised that assay measurements 

at the lower limit of detection are unreliable, and it is therefore unlikely that this is a true 

observation.  In addition, the phenotype of reduced thyroid size was not female specific, 

suggesting that low TSH concentration does not underly this phenotype in hPTTG-Tg mice.  

Serum levels of T3 were also similar in hPTTG-Tg and WT mice and although hPTTG-Tg 

mice demonstrated a general trend of increased serum T4 concentration, this was only 

significant at 6 weeks of age in hPTTG-Tg
+/+ 

males.  Elevated concentrations of serum T3 and 

T4 might reflect underlying hyperthyroidism, which could represent an explanation for 

reduced total body weight in 3-7 week old hPTTG-Tg
+/+ 

mice.  However, this was not 

accompanied by reduced serum TSH concentration, and relative T3 and T4 levels did not 

always correlate as would be expected.  Given the discrepancies and high variability of the 

data, it appears that hPTTG-Tg mice are euthyroid, though further measurements should seek 

to confirm this. 

6.4.4 Gene expression analyses 

 

hPTTG-Tg
+/+

 mice showed no changes in mRNA expression of Tshr and Tg 

compared with WT, indicating that hPTTG-Tg mice maintain thyroid differentiation.  
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hPTTG-Tg
 
mice demonstrated similar levels of endogenous Pttg and Pbf compared with WT 

mice.  The lack of induction of Pbf expression by exogenous hPTTG in hPTTG-Tg mice was 

in contrast with previous in vitro observations (Stratford et al. 2005).  Although hPTTG 

protein shares 66 % homology with murine Pttg (Wang and Melmed 2000a), it is possible 

that the full transactivational capabilities of hPTTG are compromised in murine thyroid cells.  

Failure of hPTTG to transactivate other protooncogenes such as Pbf and c-Myc (not 

investigated in the current study) may contribute to the failure of thyroid cell transformation 

in hPTTG-Tg mice.  Given that PBF causes transformation independently of hPTTG in vivo 

(Stratford et al. 2005), it is conceivable that hPTTG-induced transformation is mediated via 

transactivation of PBF.  Indeed, a mutant form of hPTTG that does not induce PBF 

expression failed to transform NIH3T3 cells in vitro (Stratford et al. 2005).  The points raised 

here emphasise the importance of our ongoing investigation of phenotypes in hPTTG.PBF-Tg 

bitransgenic mice.   

The finding that hPTTG-Tg
 
mice had levels of Vegf and Fgf-2 thyroidal mRNA 

expression comparable to WT was inconsistent with studies from our own group 

demonstrating hPTTG induction of VEGF and FGF-2 mRNA expression in human thyroid 

cells in vitro (Boelaert et al. 2003a; Kim et al. 2006a).  Again, this may be attributed to the 

inability of hPTTG to induce these factors in murine thyroid cells.  In addition, we generally 

observed high variability in mRNA expression in mouse thyroids and Vegf and Fgf-2 

expression should be studied in greater numbers of hPTTG-Tg
 

mice to obtain more 

meaningful data.  Indeed, having decided to focus on validation of EGF, IGF-1 and TGF-α 

induction by hPTTG as described in Chapter 4, investigation of a large number of mice was 

required to overcome the high variability observed and elucidate important relationships.  We 

successfully demonstrated that WT and hPTTG-Tg thyroid tissues express Egf, Tgf-α and 

Igf-1, as well as their receptors, Egfr and Igf1r respectively.  While Egf and Igf-1 mRNA 
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expression were unaltered in hPTTG-Tg
+/- 

mice, their expression was significantly increased 

in hPTTG-Tg
+/+ 

mice, indicating a copy number dependent phenotype.  However, Tgf-α 

mRNA expression was not significantly induced in hPTTG-Tg
+/+ 

mice.  Subsequent ELISAs 

demonstrated that Egf secretion was enhanced in cultures derived from hPTTG-Tg
+/+ 

mice 

compared with WT, whereas in contrast to mRNA expression data Igf-1 secretion was 

unaltered (there is currently no mouse Tgf-α assay available).  The failure of hPTTG to 

induce Tgf-α emphasises that the full transactivational capabilities of hPTTG may be 

compromised in this model.  In addition, increased transcription may not necessarily lead to 

increased translation and secretion of growth factors as was the case for Igf-1.  However, 

these observations confirm important pathways of interaction between hPTTG and EGF, and 

validate the in vitro findings in human primary thyrocytes described in Chapter 4.  

Supporting this further, Egf mRNA was under-expressed in Pttg
-/-

 thyroids, whereas Tgf-α 

and Igf-1 mRNA expression were not significantly altered. 

Following the observations in this chapter and in Chapter 4, that hPTTG induces the 

expression of various growth factors, angiogenesis-specific cDNA PCR array analyses were 

performed in mouse thyroid glands to broadly assess the effect of thyroidal hPTTG over-

expression on other genes involved in proliferation and angiogenesis.  Cxcl1, F2, Mdk and 

Tnfaip2 are all pro-angiogenic genes that demonstrated a greater than 2.0-fold upregulation in 

hPTTG-Tg
+/+ 

thyroids.  Interestingly, human homologues of Cxcl1 and Mdk were also 

induced in an angiogenesis-specific microarray following transient expression of hPTTG in 

human primary thyroid follicular cells (Kim et al. 2006b), and MDK is over-expressed in 

papillary thyroid carcinomas (Kato et al. 2000).  Tnf-α, an anti-angiogenic gene that promotes 

cell death and tumour regression (Carswell et al. 1975; Old 1985), was repressed in hPTTG-

Tg
+/+ 

thyroids.  Notably, hPTTG also downregulated several pro-angiogenic genes including 

Fgf-6, Mmp-9, Tbx-1 and Tbx-4.  Repression of Fgf-6 was in contrast to induction of FGF-6 
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by hPTTG in the microarray analysis described above (Kim et al. 2006b).  Despite not 

reaching the 2.0-fold threshold, Fgf-2 and Igf-1 were induced by hPTTG, consistent with our 

detailed mRNA expression studies (see Figure 6-12 and 6-13).  In contrast with previous 

observations, Egf expression was repressed while Vegf and Tgf-α were induced in hPTTG-

Tg
+/+ 

thyroids (see Figure 6-12 and 6-13), illustrating the variability of mRNA expression 

results we have observed throughout the study.  Repression of the anti-angiogenic gene, TSP-

1, has been implicated in thyroid tumour progression (Tanaka et al. 2002).  The observation 

of hPTTG-induced Tsp-1 (below the threshold) was inconsistent with our group’s previous 

report of TSP-1 repression by hPTTG (Kim et al. 2006b).  Expression of the pro-angiogenic 

gene, Kdr, was induced by hPTTG albeit to levels below the 2.0-fold threshold, consistent 

with previous observations of KDR induction by hPTTG in follicular thyroid carcinoma FTC-

133 cells (Kim et al. 2006a).  Although extensive validation of these observations are 

required, it is clear that hPTTG may promote tumour progression by regulating the 

expression of multiple genes with both pro- and anti-angiogenic properties, and may thus be a 

key gene in triggering the angiogenic switch in thyroid tumorigenesis.   

6.4.5 Conclusions 

 

This in vivo investigation of transgenic mice with thyroid-targeted hPTTG expression 

has presented a variety of challenges.  Nonetheless, the data shows that transgenic mice with 

high levels of thyroidal hPTTG expression do not develop thyroid hyperplasia or neoplasia, 

but in fact have smaller thyroid glands.  The exact mechanisms underlying this phenotype 

remain to be determined.  It will be important to create an alternative transgenic line with low 

levels of thyroidal hPTTG over-expression to define the in vivo dose-dependent effects of 

hPTTG on thyroid cell proliferation and transformation.  Work towards this aim is described 

in Chapter 8.  Several important considerations have been discussed within this chapter, but 

the results suggest that ongoing study of hPTTG.PBF-Tg bitransgenic mice represents an 
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important avenue of research whereby concerted over-expression of hPTTG and PBF may 

induce tumour formation.   

Importantly, several of our in vitro observations described in Chapter 4 were validated 

in the transgenic mouse model.  Chiefly, an important relationship between hPTTG and Egf 

in vivo was confirmed through studies in both hPTTG-Tg and Pttg
-/-

 knockout mice.  

Angiogenesis-specific cDNA PCR array analysis highlighted the potential relationship 

between hPTTG and a number of genes critically involved in tumour proliferation and 

angiogenesis and has opened up opportunities for further research. 
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7.1 Introduction 

 

The sodium iodide symporter (NIS) is an integral membrane glycoprotein which 

mediates active transport iodide (I
-
) into thyroid follicular cells, as the critical and rate-

limiting first step in thyroid hormone biosynthesis (Kogai et al. 2006; Dohan et al. 2003; 

Boelaert and Franklyn 2003).  Importantly, this physiological mechanism has been exploited 

using 
131

I or 
99m

Tc scintigraphic imaging as a diagnostic tool or by administering therapeutic 

doses of 
131

I for the treatment of patients with benign and malignant thyroid diseases, as well 

as their metastases, through ablation of pathological tissue in a highly targeted manner 

(Spitzweg et al. 2001; Dohan et al. 2003; Boelaert and Franklyn 2003; Riesco-Eizaguirre and 

Santisteban 2006; Kogai et al. 2006).      

However, I
- 
uptake is reduced in most thyroid cancers and their metastases compared 

with normal thyroid, thereby limiting the efficacy of radio-iodine therapies (Maxon and Smith 

1990).  Treatment with recombinant human TSH may be used to stimulate I
- 
uptake by the 

thyroid, but even then, 10-20 % of tumours remain incapable of sufficient I
- 
concentration for 

effective radio-ablation therapy (Kogai et al. 2006; Robbins et al. 1991; Schmutzler and 

Koehrle 2000).  It is therefore of critical importance to understand the mechanisms involved 

in repression of I
- 
uptake in thyroid cancer, in order to develop strategies to improve treatment 

with radioiodine.   

Various mRNA (Smanik et al. 1997; Lazar et al. 1999; Ringel et al. 2001; Arturi et al. 

2003; Park et al. 2000; Ryu et al. 1999; Ward et al. 2003) and protein studies using specific 

poly- and monoclonal antibodies (Jhiang et al. 1998b; Caillou et al. 1998; Castro et al. 1999a; 

Castro et al. 1999b; Faggiano et al. 2007; Gerard et al. 2003; Trouttet-Masson et al. 2004) 

have demonstrated reduced NIS expression in thyroid cancer tissue, suggesting repression of 

I
- 

uptake is caused by a reduction in the amount of NIS expression.  However, in several 

contrasting studies NIS expression was normal or increased (Arturi et al. 1998; Luciani et al. 
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2003; Saito et al. 1998; Tanaka et al. 2000; Dohan et al. 2001; Wapnir et al. 2003), but 

immunohistochemical analysis of NIS cellular localisation showed that NIS was 

predominantly present in the cytoplasm, indicating that intracellular trafficking of NIS away 

from the basolateral membrane may be a further cause of reduced I
- 

uptake in malignancy 

(Castro et al. 1999b; Dohan et al. 2001; Wapnir et al. 2003).   

While TSH and I
- 

itself are well established major regulators of NIS expression and 

function, modulation of NIS activity is complicated and is effected by various factors (see 

section 1.6.3).  Both hPTTG and PBF have been implicated in regulation of NIS in vitro.  

Over-expression of hPTTG in rat thyroid FRTL-5 cells resulted in reduced NIS mRNA 

expression and I
- 
uptake.  This effect was at least partly dependent on hPTTG-induced FGF-2 

expression, providing further evidence for important interactions between hPTTG and growth 

factors (Heaney et al. 2001).  Subsequently, in a study confirming hPTTG expression as a 

prognostic indicator for persistent disease, immunohistochemical analysis of 16 human 

differentiated thyroid tumours demonstrated strong hPTTG over-expression that was 

associated with reduced  I
-
 uptake in patients (Saez et al. 2006).  Studies within our group 

demonstrated reduced NIS mRNA expression and I
-
 uptake in FRTL-5 cells and human 

primary thyrocytes following over-expression of hPTTG or PBF (Boelaert et al. 2007).  

Detailed promoter studies confirmed that this was a transcriptional effect mediated by specific 

binding of PBF or hPTTG to a PAX8-upstream stimulating factor 1 (USF1) response element 

within a 1 kb element in the NIS promoter known as the human upstream enhancer element 

(hNUE).  Once again, hPTTG repression of NIS was mediated partly through FGF-2 

induction, while PBF acted independently of FGF-2 to suppress NIS.  Increased hPTTG, PBF 

and FGF-2 expression was significantly correlated with reduced NIS expression in human 

thyroid cancers demonstrating the importance of these interactions in vivo (Boelaert et al. 

2007).  In an additional study, our group have demonstrated a further mechanism of NIS 
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regulation by PBF, whereby PBF directly binds to and internalises NIS into intracellular 

vesicles.  The result of this mechanism was reduced NIS protein expression in the basolateral 

membrane and subsequent reduction of I
-
 uptake by FRTL-5 cells (Smith et al. 2009).  

Together, these findings suggest that over-expression of hPTTG and PBF in thyroid cancer 

(see sections 1.2.1.3 and 1.5.2) has significant implications for expression and function of 

NIS, thereby reducing the efficacy of 
131

I in the ablation and treatment of thyroid tumours. 

The aim of this study was to assess whether hPTTG and PBF over-expression affect 

the expression and function of NIS in vivo.  Thyroidal expression of NIS mRNA and protein 

was evaluated in our recently generated transgenic mouse models with thyroid-targeted 

expression of hPTTG (see Chapter 5) and PBF (see section 1.5.4).  Further, 
125

I radioiodine 

uptake assays were performed in murine primary thyroid cultures derived from transgenic 

mice.  siRNA knockdown studies were performed in transgenic murine primary thyrocytes 

and normal human primary thyrocytes to evaluate the potential of hPTTG and PBF as targets 

for enhancing NIS activity and therefore improving radioiodide therapies. 

 

7.2 Materials and methods 

 

7.2.1 Murine primary thyrocyte culture 

 

Murine thyroid follicular cells were isolated and cultured from WT, hPTTG-Tg and 

PBF-Tg thyroid glands as described previously in section 2.3.   

7.2.2 Human thyroid samples and primary culture 

 

Collection of thyroid samples was with approval of the Local Research Ethics 

committee and samples were cultured as described in section 2.2.   

7.2.3 siRNA transfection studies 

Between days 7-10 of culture, murine and human primary thyrocytes cells were 

transfected with siRNAs targeting hPTTG (100 nM # 46028) or human PBF (50 nM # 
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147350, 50 nM # 14399) transcripts and controlled for by equivalent scrambled (100 nM # 

AM4635) siRNA transfections (Life Technologies, Grand Island, NY, USA).  All siRNA 

transfections were performed using the lipofectamine-2000 transfection agent (Invitrogen, 

UK) according to the manufacturer’s instructions.  Cell culture medium was replaced between 

4-6 hours to minimise the toxic effects of lipofectamine-2000.  After 72 hours, iodide uptake 

assays were performed and cell lysates were harvested in protein lysis buffer or 0.25 ml Tri 

Reagent (Life Technologies, Grand Island, NY, USA).   

7.2.4 RNA extraction, reverse transcription, QT-PCR 

 

Total RNA was extracted from murine and human primary thyrocytes as described 

previously in section 2.4.  Mouse thyroid glands and human thyroid tissue samples were 

stored in RNAlater RNA stabilisation reagent at – 20 ºC before total RNA was extracted using 

the RNeasy microkit (Qiagen, UK), as per the manufacturer’s instructions.  Subsequent 

reverse transcription and QT-PCR techniques were as described above (2.4 and 2.5).  hPTTG 

mRNA was detected using the primers and probe described above (Table 3-1).  Gene-specific 

expression assays for Pbf (Mm00521473_m1), Tshr (Mm00442027_m1) and Nis 

(Mm01351811_m1) were purchased from Applied Biosystems (Warrington, UK).   

7.2.5 Immunohistochemistry 

 

Immunohistochemical analysis of NIS protein expression in formalin-fixed, paraffin-

embedded sections of wild-type, hPTTG-Tg and hPBF-Tg mouse thyroid specimens was 

carried out as previously described in section 2.7.  A rabbit anti-rat NIS antibody was used 

(20 µg/mL) [# TIT11-A, Alpha Diagnostic International, SA, Texas, USA] (Josefsson et al. 

2002).   
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7.2.6 Immunoperoxidase cell staining 

 

Murine primary thyrocytes were cultured on 8-well chamber slides [BD Biosciences 

Ltd.].  On day 7 of cultures, cells were fixed in ethanol for 10 minutes at room temperature.  

Cells were briefly washed in PBS before being incubated in 5 % normal goat serum (NGS) in 

PBS for 20 minutes at room temperature, followed by a specific primary anti-HA antibody 

(1:500) [# sc-805, Santa Cruz Biotechnology] for 1 hour at room temperature.  After two 5-

minute washes in PBS, cells were incubated in biotinylated anti-rabbit secondary Ab for 30 

minutes at room temperature.  Cells were again washed with PBS, before incubation with 3 % 

hydrogen peroxide for 10 minutes to block endogenous peroxidase activity.  After further 

PBS washes, the avidin-biotin-peroxidase complex was added to cells for at least 30 minutes, 

followed by further PBS washes before the reaction was developed using the DAB peroxidase 

substrate kit for 5-10 minutes and then counterstained in Mayer’s hematoxylin. Slides were 

dehydrated, cleared, and mounted.   

7.2.7 Western blot analysis 

 

Protein extraction, quantification and subsequent Western blotting methods were as 

described previously (see section 2.6).  For PBF detection, membranes were incubated with 

rabbit primary antibodies against PBF (1:1000) (Smith et al. 2009; Watkins et al. 2010) and 

HA (1:500) [# sc-805, Santa Cruz Biotechnology]. 

7.2.8 Iodide uptake assays 

 

Murine and human primary thyrocytes were grown in 12 well plates in 0.5 ml 

medium.  The incorporation of 
125

I was used as a standard marker of thyroid cell function and 

was assayed by the addition of NaI (final concentration of 10
-7

 and 10
-9 

moles/l in human and 

murine cells, respectively) and 0.05 µCi 
125

I (Hartmann Analytic, Germany) per well for 2 

hours as previously described (Eggo et al. 1996; Boelaert et al. 2007).  The cell layer was 
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rapidly washed with HBSS to remove unincorporated iodide and the cells lysed in 2 % SDS 

protein lysis buffer or 0.25 mL Tri Reagent.  Incorporated radioactivity was counted in a 

gamma counter.  Relative iodide uptake was corrected for protein concentration as measured 

by the Bradford assay. 

7.2.9 Statistical analysis 

Data were analysed as described in section 2.8 

 

7.3 Results 

 

7.3.1 hPTTG and PBF repress NIS expression in vivo 

 

To investigate the effects of thyroidal hPTTG and PBF over-expression on NIS in 

vivo, we performed investigations using hPTTG-Tg and hPBF-Tg mice.  Analysis of whole 

thyroid glands using Real-Time PCR revealed reduced NIS mRNA expression in 6-week-old 

age and gender matched hPTTG-Tg
+/-

 (0.62-fold, n = 5, p < 0.05), hPTTG-Tg
+/+

 (0.64-fold, n 

= 3, p < 0.05) and hPBF-Tg (0.52-fold, n = 10, p < 0.001) mice compared with WT controls 

(see Figure 7-1).   
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Figure 7-1: hPTTG and PBF over-expression reduce NIS mRNA expression in vivo.  TaqMan RT-

PCR data showing relative thyroidal NIS mRNA expression in hPTTG-Tg+/- and hPTTG-Tg+/+ (A), 

and hPBF-Tg (B)mice compared with wild-type controls.  Error bars represent the SEM (* p < 0.05, 

*** p < 0.001). 

 

Assessment of NIS immunostaining in thyroid sections from 6-week-old age and 

gender matched mice, revealed a heterogeneity of NIS expression across whole thyroid lobes, 

but with an overall reduction in NIS protein expression in hPTTG-Tg and hPBF-Tg mice 

compared to WT (see Figure 7-2). 
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Figure 7-2: hPTTG and PBF over-expression reduce NIS protein expression in vivo.  A  Detection 

of NIS by immunohistochemistry of WT (ii), hPTTG-Tg+/- (iii) and hPTTG-Tg+/+ (iv) thyroids.  A no 

primary antibody control demonstrates the specificity of the HRP-conjugated secondary antibody (i).  

B   Detection of NIS by immunohistochemistry of WT (i) and hPBF-Tg (ii) thyroids.  Scale bars: 100 

µm.  Images are representative of n ≥ 3 experiments.    

 

 

 

 

 

No primary Ab control WT

hPTTG-Tg +/- hPTTG-Tg +/+

i. ii.

iv.iii.

WT hPBF-Tg

A.

B. i. ii.



Chapter 7                                                     Regulation of Expression and Function of the Sodium Iodide Symporter (NIS) by hPTTG and PBF 

 

221 
 

7.3.2 Analysis of NIS function in vivo 

 

Given that hPTTG-Tg and hPBF-Tg mice showed repressed NIS mRNA and protein 

expression, we set out to investigate NIS function in these transgenic mouse models.   

7.3.2.1 Establishment of murine thyrocyte cell culture 

 

We adopted an approach involving the routine culture of murine primary thyrocytes, 

using a technique adapted from previously described methods for murine and human primary 

thyroid culture.  The morphology of cell cultures was microscopically examined daily to help 

determine the optimal culture conditions, culminating in the final protocol described in the 

materials and methods (see section 2.3).  Isolated thyroid follicles (primary follicles) adhered 

to culture plates on day one and progressively flattened to form multiple layers of cells.  By 

day 5, most follicles had lost their 3-dimensional structure and a monolayer of thyrocytes 

began filling the inter-follicular spaces.  Cells continued to spread, becoming more confluent 

by day 10, at which point numerous secondary follicles appeared to form (see Figure 7-3). 
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Figure 7-3: Murine primary thyroid cell culture.  A  Day one – isolated primary follicles adhere 

to cell culture plate.  B  Day 5 – Primary follicles have flattened and a monolayer of thyrocytes begins 

to fill inter-follicular spaces.  C/D  Day 10 – Cells have continued to spread and form secondary 

follicular structures.  

  

 

7.3.2.2 Validation of murine thyrocyte cell culture system 

 

Prior to carrying out full scale investigations, we performed several critical validation 

experiments to determine the suitability of murine primary thyrocyte cultures as a model for 

our studies.  We adopted two approaches to determine whether transgene expression is 

maintained by primary thyrocytes in culture, following digestion of whole thyroids.  Firstly, 

analysis of PBF-HA expression in murine primary thyrocytes by immunocytochemistry 

demonstrated strong staining in PBF-Tg cultures compared with minimal non-specific 
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staining in WT cultures.  Secondly, Real-Time PCR analysis revealed strong hPTTG mRNA 

expression in hPTTG
+/-

 cultures, which was approximately double in hPTTG
+/+

 cultures, 

compared with completely undetectable levels in WT cultures.  Importantly, these results 

demonstrate that our cultures were thyroid-specific and maintain transgene expression (see 

Figure 7-4).  

 
Figure 7-4: Murine primary thyrocytes derived from transgenic thyroid glands maintain 

transgene expression in culture.  A  Immunohistochemistry demonstrating detection of hPBF-HA 

protein in hPBF-Tg but not WT primary thyrocytes.  B  TaqMan RT-PCR data showing detection of 

high hPTTG expression in hPTTG+/- and hPTTG+/+ primary thyrocytes. Error bars represent the SEM. 
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3).    hPTTG-Tg
+/-

 (0.77-fold, n = 16, p = NS) and hPTTG-Tg
+/+

 (0.6-fold, n = 11, p = NS) 

mouse primary thyrocytes (n = 14) demonstrated a trend of reduced NIS mRNA expression 

compared with WT cultures, similar to that described in whole thyroid glands in section 7.3.1.  

In this instance, the trend was non-significant due to highly variable results observed in the 

cultures.  Importantly, these results indicated that murine primary thyrocytes maintained NIS 

expression in culture and were likely to be responsive to TSH in the culture medium – a 

critical regulator of NIS expression and function (see Figure 7-5).  Preliminary iodide (
125

 I) 

uptake assays in WT cultures verified that our murine primary thyrocyte cultures were 

functional, demonstrating an average uptake of 4222.1 cpm/µg protein (n = 20).   

 

Figure 7-5: TaqMan RT-PCR data demonstrating maintained NIS mRNA expression in WT and 

hPTTG-Tg murine primary thyrocytes.  Error bars represent the SEM (NS = non-signifcant).   
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assays after 7 days of culture.  Results were corrected for protein concentration and revealed 

potent and significant repression of 
125

I uptake in hPTTG-Tg
+/-

 (0.57-fold, n = 15, p < 0.05), 

hPTTG-Tg
+/+

 (0.35-fold, n = 14, p < 0.001) and hPBF-Tg mice (0.27-fold, n = 14, p < 0.001) 

compared with WT (n = 14) (see Figure 7-6). 

 

Figure 7-6: Relative 125I uptake in primary thyrocyte cultures from WT (n = 14), hPTTG-Tg+/- (n 

= 15), hPTTG-Tg+/+ (n = 14) and hPBF-Tg mice (n =14).  Error bars represent the SEM (* p < 0.05, 

*** p < 0.001, NS = non-significant).  

 

 

7.3.3 PBF knockdown rescues NIS phenotype 

 

Adequate radioiodide uptake is a critical determinant of successful treatment of benign 

and malignant thyroid disease.  We set out to investigate whether repressed 
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I uptake in 

hPTTG-Tg and hPBF-Tg thyroid cultures could be ameliorated.  Primary thyrocyte cultures 

from hPTTG-Tg or hPBF-Tg mice were transfected with siRNA targeted to hPTTG and 

human PBF respectively.  Unfortunately, we were unable to consistently knockdown 

transgenic hPTTG expression in hPTTG-Tg thyrocytes (data not shown).  However, 

following successful PBF knockdown in hPBF-Tg thyrocytes, 
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I uptake increased 2.4 ± 

0.64-fold (n = 20, p < 0.05) to levels indistinguishable from WT (n = 8, p = NS), whereas 

transfection using a scrambled siRNA did not alter 
125

I uptake (n = 20, p = NS) (see Figure 

7-7).   
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Figure 7-7: NIS function is restored following knockdown of PBF in hPBF-Tg primary thyrocytes.  

A + B  Western blot analyses demonstrating successful knockdown of transgenic PBF expression in 

hPBF-Tg primary thyrocytes, using either a PBF (A) or an HA (B) antibody.  C  Histogram displaying 

restoration of 125I uptake in hPBF-Tg primary thyrocytes following PBF knockdown, to levels similar 

to those in WT cultures. Error bars represent the SEM (* p < 0.05, ** p < 0.05, NS = non-significant).  

 

 

7.3.4 PBF and hPTTG as therapeutic targets 

 

To investigate the potential of PBF and hPTTG as therapeutic targets in human 
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in murine cultures, Western blot analysis confirmed successful repression of PBF protein 

expression in human thyrocytes.  Reduced PBF expression was associated with a significant 

increase in NIS mRNA expression (2.1-fold, n = 9, p < 0.05) at 72 hours post-transfection.  

Crucially, targeted repression of endogenous PBF expression in human thyrocytes resulted in 
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a significant increase in radioiodide uptake (2.0-fold, n = 11, p < 0.001), compared with 

scrambled controls (n = 11) (see Figure 7-8). 

 

Figure 7-8: PBF as a therapeutic target in human thyroid disease.  A  Western blot analysis 

demonstrating successful knockdown of endogenous PBF in normal human primary thyrocytes.  B  

TaqMan PCR data demonstrating increased NIS mRNA expression in normal human primary 

thyrocytes following PBF knockdown.  C  Histogram displaying enhanced 125I uptake by normal 

human primary thyrocytes following repression of PBF.  N = 4 experiments.  Error bars represent the 

SEM (* p < 0.05, ** p < 0.001).   
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Figure 7-9: hPTTG as a therapeutic target in human thyroid disease.  A  Western blot analysis 

demonstrating partial knockdown of endogenous hPTTG in normal human primary thyrocytes.  B  

Histogram displaying 125I uptake levels by normal human primary thyrocytes following repression of 

hPTTG.  N = 3 experiments.  Error bars represent the SEM (NS = non-significant).   
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reversal of hPBF-Tg NIS phenotypes described in section 7.3.3 was due to specific repression 

of transgenic human PBF expression.  See Figure 7-10. 

 
Figure 7-10: Effect of PBF siRNA transfections on endogenous mouse PBF and NIS expression and 

function in WT murine primary thyrocytes.  A + B  TaqMan RT-PCR demonstrating that endogenous 

mouse PBF (A) and NIS (B) mRNA expression are unaltered in WT murine primary thyrocytes 

following transfection with hPBF siRNA. C  Histogram displaying no alteration in 125I uptake in WT 

cultures following transfection with hPBF siRNA.  Error bars represent the SEM (NS = non-

significant).     
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7.4 Discussion 

 

  Radioiodine ablation therapies are central to the treatment of thyroid cancer and toxic 

nodular hyperthyroidism, and are also increasingly used as first-line therapy in Graves’ 

disease (Weetman 2007) and to induce size reduction of benign goiters (Hegedus et al. 2003).  

The sodium iodide symporter (NIS) facilitates delivery of radioiodine but expression and 

activity of NIS are often repressed in thyroid cancers (Dohan et al. 2003; Boelaert and 

Franklyn 2003; Kogai et al. 2006).  In vitro studies have demonstrated that hPTTG and PBF 

repress NIS transcription (Heaney et al. 2001; Boelaert et al. 2007) and that PBF also 

regulates intracellular localisation of NIS (Smith et al. 2009), both resulting in reduced I
-
 

uptake by thyroid cells.  In this chapter of work, we have conducted studies in transgenic mice 

with thyroid-targeted hPTTG and PBF expression to investigate whether these interactions 

exist in vivo.  This, together with our knowledge that hPTTG (Heaney et al. 2001; Boelaert et 

al. 2003a) and PBF (Stratford et al. 2005) are over-expressed in thyroid cancer, suggests they 

represent potential targets for enhancing active NIS expression and radioiodide therapies in 

thyroid disease.  To explore this, we performed siRNA knockdown studies in murine and 

human primary thyroid cells to determine if targeting PBF and hPTTG expression enhances 

NIS expression and activity.   

7.4.1 NIS expression and function in hPTTG-Tg and PBF-Tg mice 

 

Given that hPTTG and PBF regulate NIS expression and activity in vitro, we analysed 

expression levels of NIS in our transgenic mouse models with thyroid-targeted over-

expression of hPTTG and hPBF (Heaney et al. 2001; Boelaert et al. 2007; Smith et al. 2009).  

TaqMan RT-PCR analysis revealed that NIS mRNA expression was reduced by 

approximately 40 % in both hPTTG-Tg
+/-

 and hPTTG-Tg
+/+ 

thyroids, and by approximately 

50 % in hPBF-Tg thyroids.  Reduced NIS protein expression in hPTTG-Tg
+/-

, hPTTG-Tg
+/+

 

and hPBF-Tg thyroids was confirmed by immunohistochemical analysis.   
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To investigate the functional consequence of reduced NIS expression in our transgenic 

mouse models, we established a protocol for routine culture of murine primary thyroid 

follicular cells and performed extensive validation studies to ascertain its suitability as an 

experimental model.  Microscopic analysis of murine thyroid cultures demonstrated our 

ability to isolate thyroid follicular cells that adhere, spread and form secondary follicular 

structures, as previously described (Jeker et al. 1999).  Critically, transgene expression was 

maintained in murine primary cultures derived from transgenic thyroid glands, as determined 

by immuncytochemistry and TaqMan RT-PCR, suggesting that we could expect any in vivo 

transgene effects to be preserved in ex vivo cultures.  In addition, given that transgene 

expression is theoretically confined to thyrocytes, this confirmed the purity of our cultures, 

specifically containing mouse thyroid follicular cells with minimal contamination by 

fibroblasts.    

TSH is the major hormonal regulator of thyroid cell function (Dohan et al. 2003; 

Boelaert and Franklyn 2003; Kogai et al. 2006) and TaqMan RT-PCR analysis demonstrated 

expression of TSH-R in WT cultures, indicating that our murine primary thyroid cells would 

be responsive to TSH in the culture medium.  Further TaqMan RT-PCR analysis 

demonstrated that expression of NIS mRNA in WT cultures was comparable to that of WT 

whole thyroid glands, indicating our ex vivo cell culture system was representative of in vivo 

biology and possessed the major components required for I
- 
uptake.  In addition, hPTTG-Tg

+/-
 

and hPTTG-Tg
+/+ 

cultures demonstrated a trend of reduced NIS mRNA expression compared 

with WT cultures, similar to that described in whole thyroid glands in section 7.3.1.  In this 

instance, the trend was non-significant due to the relatively variable results observed in the 

cultures, but suggested that transgenic phenotypes were preserved in culture.  Finally, 

preliminary 
125

I
 
uptake assays demonstrated significant uptake by WT murine primary 

thyrocytes with an average of 4222.1 cpm/µg protein, thereby confirming functionality.   
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Crucially, 
125

I
 
uptake was reduced in hPTTG-Tg

+/- 
(0.57-fold), hPTTG-Tg

+/+ 
(0.35-

fold) and PBF-Tg (0.27-fold) thyroid cultures compared with WT, confirming that reduced 

NIS mRNA and protein expression in transgenic mice caused reduced I
- 

uptake.  PBF-Tg 

cultures showed a 73 % repression of I
- 
uptake, which in combination with our observation of 

~50 % inhibition of NIS mRNA expression, suggests that repressed I
- 

uptake in PBF-Tg 

cultures may additionally encompass altered subcellular localisation of NIS in accord with our 

group’s in vitro observations (Smith et al. 2009).  Thyroid hyperplasia in PBF-Tg mice is 

driven by activation of the TSH-R and AKT (Read et al. 2011); thus, repression of NIS 

expression and function in PBF-Tg thyroids may be partly mediated by activation of PI3-

Kinase, which has been implicated in downregulating NIS expression (Zaballos et al. 2008; 

Kogai et al. 2008) and trafficking to the basolateral membrane (Knostman et al. 2007b).   

7.4.2 PBF and hPTTG as targets to improve I
- 
uptake in thyroid disease 

 

hPTTG (Heaney et al. 2001; Boelaert et al. 2003a) and PBF (Stratford et al. 2005) are 

over-expressed in thyroid cancer, and while hPTTG expression is unaltered in multinodular 

goitre (MNG) (Boelaert et al. 2003a), PBF expression is increased in MNG in association 

with reduced NIS expression (Read et al. 2011).  PBF-Tg mice have normal thyroid function 

and exhibit a striking enlargement of the thyroid gland associated with hyperplastic and 

macrofollicular lesions, bearing similarities to human MNG (Read et al. 2011), while no 

thyroid growth was observed in hPTTG-Tg mice (see Chapter 6).   

Following confirmation of reduced I
- 
uptake in transgenic thyroid cultures, we set out 

to investigate hPTTG and PBF expression as potential therapeutic targets by performing 

siRNA knockdown studies.  Unfortunately, we were unable to consistently knockdown 

hPTTG protein expression in hPTTG-Tg thyroid cultures, even with a high dose of 100 nM 

hPTTG siRNA.  Future repeats of this study should focus on optimisation of hPTTG 

knockdown in hPTTG-Tg primary thyrocytes.  However, PBF protein expression was 
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strongly and reproducibly repressed following transfection with PBF siRNA.  Critically, PBF 

depletion resulted in full rescue of the PBF-Tg NIS phenotype, where 
125

I
 
uptake by PBF-Tg 

primary thyrocytes was restored to levels comparable to those of WT cultures.  This exciting 

result verifies the specificity of the PBF-induced NIS phenotype and highlights PBF as a 

potential therapeutic target.   

In order to investigate whether PBF represents a potential therapeutic target in human 

thyroid disease, we used primary cultures of normal human thyrocytes, and investigated the 

effects of altered PBF expression on radioiodide uptake.  PBF depletion resulted in a ~2.0-

fold enhancement of 
125

I
 
uptake by human primary thyrocytes in association with increased 

expression of NIS mRNA, providing further evidence for the functional interaction between 

PBF and NIS.  In a parallel study, we investigated the therapeutic potential of hPTTG.  In 

contrast to studies performed in hPTTG-Tg murine primary thyrocytes, moderate knockdown 

of hPTTG protein was successful but did not result in altered 
125

I
 
uptake.  It is possible that 

knockdown of hPTTG was not strong enough to elicit an alteration in NIS function.  

Alternatively, hPTTG regulation of NIS transcription could be an acquired function that is 

only active when hPTTG is over-expressed as it is in thyroid malignancies, but does not 

regulate NIS when expressed at physiological levels as it is in normal thyroid tissue or MNG 

(Boelaert et al. 2003a).  In contrast, PBF appears to regulate NIS expression and activity in 

normal thyroid tissue and this function is enhanced when PBF is over-expressed in thyroid 

disease (Read et al. 2011; Stratford et al. 2005).   

7.4.3 Conclusion 

 

Overall, these results provide critical in vivo evidence that both hPTTG and PBF 

downregulate thyroidal NIS expression and reduce I
- 
uptake, which has important implications 

for the efficacy of radiodine therapies in thyroid disease where hPTTG and PBF are over-

expressed.  The resemblance between PBF-Tg mouse phenotypes and human MNG indicates 
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that PBF may be important in the aetiology and treatment of hyperplastic thyroid diseases, in 

addition to its more established role in thyroid cancer.  While further investigations are 

required to determine the benefits to radioiodide uptake by targeting hPTTG expression, we 

have crucially demonstrated that the binding partner of hPTTG, PBF, represents a novel 

therapeutic target to overcome radioiodine resistance in thyroid tumors and their metastases, 

as well as more generally in other thyroid diseases. 
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8.1 Introduction 

 

In Chapters 5 and 6 we described the generation and characterisation of a murine 

transgenic model with thyroid-targeted over-expression of hPTTG (hPTTG-Tg mice).  The 

major limitation of this study was that only one transgenic line was available for 

investigation.  Our observation that hPTTG-Tg mice had smaller thyroids compared with WT 

mice was in contrast to studies reporting hPTTG-induced tumour formation in athymic nude 

mice (Zhang et al. 1999b; Kakar and Jennes 1999), and hPTTG-induced hyperplasia in the 

pituitary glands (Abbud et al. 2005) and ovaries (El-Naggar et al. 2007) of transgenic mice.  

In a study from our own group, low levels of hPTTG over-expression caused increased 

proliferation in fetal neuronal NT-2 cells, while high levels of hPTTG resulted in inhibited 

cell growth (Boelaert et al. 2003b).  Accordingly, hPTTG-Tg mice demonstrated high levels 

of thyroidal hPTTG over-expression associated with reduced thyroid size.  This observation 

prompted the hypothesis that hPTTG effects on thyroid cell proliferation in vivo may be 

dependent on expression levels.  In order to test this hypothesis, we set out to create 

alternative transgenic lines and aimed to investigate thyroid phenotypes in a model with low 

levels of thyroidal hPTTG over-expression. 

Having previously failed to detect hPTTG-FLAG using FLAG antibodies (Chapter 5), 

the aim of the work described in this chapter was to adapt the Tg-hPTTG-FLAG transgene 

construct to replace the FLAG epitope with an HA epitope (Tg-hPTTG-HA).  This work 

provides another transgene construct for pronuclear injection in order to generate alternative 

transgenic lines with varying levels of thyroidal hPTTG expression.  In turn, this will allow us 

to define if phenotypes are dependent upon the level of thyroidal hPTTG over-expression in 

vivo.   
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8.2 Materials and methods 

 

8.2.1 Site-directed mutagenesis of pBSK-Tg-hPTTG-FLAG 

 

pBSK-Tg-hPTTG-FLAG was as described in Chapter 5 (see Figure 5-4 and 5-7).  The 

C-terminal FLAG sequence was converted to an HA sequence through site-directed 

mutagenesis (see Figure 8-1), using the QuickChange site-directed mutagenesis kit 

(Stratagene, UK), as per the manufacturer’s instructions.  Briefly, 50 µl mutagenesis reactions 

contained 40 ng of plasmid dsDNA, 5 µl 10 x reaction buffer, 1 µl dNTP mix, 125 ng of 

forward and reverse mutagenic primers, water and 1 µl PfuTurbo DNA polymerase (2.5 

U/μl).  Mutagenic primers were as described in Figure 8-1 C and D.  Mutagenic PCR 

reactions were performed using a Mastercycler gradient (Eppendorf, Hamburg, Germany).  

Reactions were as follows: 95 °C for 30 seconds; then 17 cycles of 95 °C for 30 seconds, 55 

°C for 1 minute, and 68 °C for 6 minutes (1 minute/1 kb plasmid DNA).  Subsequently, 1 µl 

of DpnI restriction enzyme (10 U/µl) was added to reaction products and incubated at 37 °C 

for 1 hour in order to digest digest the parental DNA template and to select for mutation-

containing synthesised DNA. 

 

8.2.2 Transformation into DH5α cells 

Transformation of 1 µl of mutation-containing synthesised DNA into 50 µl DH5α 

cells was performed as decribed in section 5.2.1.4.   

 

8.2.3 Plasmid DNA purification and sequence verification  

Bacterial colonies were cultured overnight as described in section 5.2.1.5.  Plasmid 

DNA was purified from these cultures using the Wizard
®
 Plus SV Minipreps DNA 

Purification System (Promega) as described in section 5.2.1.5. 
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8.2.4 DNA sequencing of miniprep DNA 

DNA sequencing was performed as described in section 5.2.1.6 in order to confirm 

incorporation of the desired mutations.  Sequencing primers F and L (see Figure 5-6 B) were 

used for this purpose.   

8.2.5 Maxiprep of pBSK-Tg-hPTTG-HA 

Following confirmation of successful mutation, bacterial cultures originating from the 

same colonies were set up and larger quantities of DNA were purified by maxiprep as 

described in section 5.2.1.7.   

8.2.6 DNA sequencing of pBSK-Tg-hPTTG-HA 

The correct nucleotide sequence and orientation was confirmed using the primers 

described in the table in Figure 5-6 B and by DNA sequencing analysis as described in section 

5.2.1.6. 

8.2.6.1 Isolation of transgene for pronuclear injection 

The final linearised transgene construct was isolated using restriction enzyme digest 

reactions and diagnostic agarose gels.  Restriction enzyme digest of pBSK-TG-hPTTG-FLAG 

was performed in reactions similar to those described in section 5.2.1.3  using Xho 1, Spe 1 

and Pvu 1.  The reaction product following digestion with Xho 1, Spe 1 and Pvu 1 was 

electrophoresed on a 1.5 % agarose gel and the presence of a DNA fragment for the predicted 

size of ~3500 bp was gel extracted and purified as described in section 5.2.1.2.   

8.2.6.2 Isolation of transgene for pronuclear injection 

The final linearised transgene construct was isolated using restriction enzyme digest 

reactions and diagnostic agarose gels as previously described (see section 5.2.1.11). 
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8.3 Results 

 

8.3.1 Strategy for generation of hPTTG-HA transgene construct 

 

Following failure to detect hPTTG-FLAG in hPTTG-Tg mice using FLAG antibodies 

(Chapter 5), we decided to create alternative transgenic lines using a construct consisting of 

hPTTG cDNA with a C-terminus HA-tag.  Other components of the transgene construct 

remained identical.  The pBSK-Tg-hPTTG-FLAG created in Chapter 5 (see Figure 5-4 and 5-

6), was mutated directly to avoid other cloning steps.  A two-step site-directed mutagenesis 

strategy was adopted to mutate 16 base pairs within the FLAG sequence, converting this to a 

sequence encoding the HA-epitope.  See Figure 8-1.   
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Figure 8-1: Generation of the Tg-hPTTG-HA transgene construct.  A  Schematic diagram 

illustrating the strategy for generation and isolation of the Tg-hPTTG-HA construct (1. Site-directed 

mutagenesis, 2. Restriction enzyme digest, 3. Isolated Tg-hPTTG-HA construct).  B  Nucleotide 

sequences of FLAG (red) and HA (orange) epitopes, with amino-acid sequences underneath (blue).  C 

+ D  Mutagenic primers for step 1 (C) and step 2 (D).  Mutated base pairs following step 1 are 

indicated in purple, while those from step 2 are indicated in pink.   
 

8.3.2 Verification of construct by DNA sequencing 

 

Following each mutagenesis step, sequencing of DNA minipreps using Primers F and 

L (see Figure 5-6 B) confirmed that reactions had successfully incorporated the desired 

mutations.  Having extensively validated activity of the pBSK-Tg-hPTTG-FLAG construct in 

vitro and in vivo in Chapter 5, we did not perform any further in vitro validation studies at this 

stage with the pBSK-Tg-hPTTG-HA contstruct.  However, as undesired spontaneous 
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mutations can occur during site-directed mutagenesis and DNA maxi-preps, we used the same 

primers as detailed previously (see Figure 5-6 B) to verify the correct nucleotide sequence and 

orientation of all construct components (see Figure 8-2). 

 

Figure 8-2: Direct sequencing of the pBSK-Tg-hPTTG-HA construct confirmed the correct 

nucleotide sequence and orientation of the construct.  The nucleotide sequence for the transgene 

construct from the Spe 1 to Xho I restriction sites (3566 bp) is shown.  Sequencing primer details are 

given in Figure 5-6 B.   

  

8.3.3 Isolation and preparation of the transgene construct 

A linearised transgene construct was isolated using restriction enzyme digest reactions 

and diagnostic agarose gels.  As described previously (Chapter 5), digestion with only Xho 1 

and Spe 1 resulted in two bands of DNA migrating very closely together, representing the 

~3500 bp transgene and a similarly sized fragment from the remainder of the plasmid.  

Additional digestion with Pvu 1 caused cuts at two further sites within the pBSK plasmid so 

                                                                        BOVINE THYROGLOBULIN PROMOTER                   Spe I site ACTAGT 

 BETA GLOBIN INTRON II                    BamH1 site GGATCC 

                                                                        T7 PROMOTER                       Cla I site ATCGAT 

HUMAN PTTG                   EcoR1 site GAATTC  

                 HA-TAG                                                         Xho 1 site CTCGAG 

POLY-A TAIL                                  Sal 1 site GTCGAC 

                STOP SITE  TAA 

 

ATTAACCCTCACTAAAGGGA.....................ACTAGTGGATCC AGGAGGGAGAGGTGAGAGGGCC AGAGGTGAGGAGCCTGC AGAGAGG ATGGAGACCC AAGC CAGGAGCGG

GCTC ACGGAGGCC AGACC AAGGAGTTGGTGC TGAGTTTCCGTAGAGC ATCCTCCTGGCTC AC GAGGC ATC AGATGATGGTAGGAGCTGAGTC ATCGTGAGAAAGAGGTTTTC

AC GGTGTGGAGGC AGCGCCTGGC ATGGCTC TCTCC AAGC TC ATCGCTTC ATTGC TGGAGTGGAGAGAAGC ACC TCTCC TTCC AGGTAC ACTGTTTTGAC TC AGAAGGAAGCC

CGGGCGGCTCTCACCCTCACTGACTCTGCTGTGCCTC TTCCC AGGGGCC AGGCC AGGGAGAATGAC TC AGC AC AC AAGCTGGCCTGTGC AAGACCCTGCCTGC ATGC ATGG

GTGGGGGAAGC ATGAGGAGTGGGC TTTC TGGTAGACC TC AGTC ATGGTCTC AGC ATTATTTTTTAAAAGGATTTTATTTATTTGTTTTGATGTGGACC AGTTTTAAAATCTTTATT

GAATTTGTTACC ATGTTGC TTC TGTTTTATGTTTTGGTTTTTTGGCC ACGAGGC ATGGGGGATGTTAGCTCCCCGACC AGGGACTGAACCCTTGCCCCCTGC ATGGAAAGGTC A

AGTCTTAAC TTCTTGAC TGCC TAGGAAGTCCCGGTTTC AAC ATTTTAGAAAATTC ATC TGCTTTAGAAC ACCTGGACCTGGAGAGCTGGC AAGGGCTGC AC ATGGCC AGGC TC

AC GGTAAT ATTAC AGCGTC TCC ATAGCCTGGGC AGAACTTGGCTTGTGTGATTGGGGC TGTGGGC TCCCCAGGTGGTGCTAGTGGTAAAGAACCCTTCTGCCAGTGC AGGAG

AC AT AAGAGATGCGGGTTC TATCCCTGGATC AGGAAGATCCCCTGGAGAAGGAAATGGC AACCTGCTCC AGGATTC TTGCCTGGAGAATCCC AAGGAC AGAAGAGCCTGGC

GGGCCGTAGTCC ATGGCGTTGC AAAGAGTC AGAC AC AACCGAAGC GAC TTAGC ACCC AATGGGGGCTGGAGAGGGCC AAGC TGGGGGATTC TAATTCTCC AGTAAATGCC A

GC ATGTC TTCTC AAATC ATCTTTACC TAAAACC TAAGGCTC ATTGTGATCTCCCTC AC TCCC AAGTGCTCTCCCACACCTGCCCACCTACCTTCTGAAC ACCC ATGGAGCCTGT

CTCC ATCCCCC ACCCCTTTAATGGGAGAAGCC ACTGGAGAAAGC TC AC TGATGTAC AGGC TTTATGTGGAAGAC AAGCTTCCTGCTGCCTTTTGGTTGTC TGACGTCCTGGGA

CAGAGGGGAAAGGGGGATGAC TAC GAGTATGACTGTGCGTGTGTTTGGC TTATCTC ATC AAAATCTC TAC ATTC TGTGTTAATGGATC TGCC TGTTTTGTTCCCTGCC ATATCC

TC ATGGCC TAGAAT AGTGTC TGC TTC TCTATC AGAC TCTAAAGAAAC ATTGCTAGGAGGGAAGGAAGGAGC ATGGATGAGGAGGGAGGGAGC ATTGTGTTTC TCTC AC GGTG

GGCCTGAACGTGTGGCCC ACC AAGTTGTTAAC TTTGGCCTTTACCCCTGAAGATGAATTATGAAGCC AC ACCCCC AGTTCTTCCTTGGTGGCTC AGATGGTC AAGAATCC ACC

TGC AATGCGGGAGACC TGGGTTTGATCCCTGGGTTGGGAAGATCCCCTGGAGAAGGGAATGGCTACCCACTCC AGTATTC TGGCCTGGAGAATCCC ATGGAC AGAGGAGCC

TGGCGGGATGC AGTCC ATGGGGTCTC AGAGAGTC AGATGTGAC TGAGCGAC TTTC AC AC AC ATTCGTCCCTGGTTCTGCTCCCCTAC AGCCTCC AC AAGATTTTC ACCCC AC A

CTGGCC AC ATGAGTGTCC TCC AGGGGAAC AGACGC AGGTGGAGGACCTCCTTGTGACC AGC AGAGAAAAC AGGGTGGGC AC TGC TTCCCTGAGTGCCTGTGGGTGGGGGC

TAAGTACCC AC AGCAGTGCTATAAAGGCTCCTTGGCC AGAGCCCTAAGGTGGGC AGC AGGGGATCCCCCGGGC TGC AGGAATTC GATAtC AAGC TTATCGAT CCTGAGAACT

TC AGGGTGAGTTTGGGGACCCTTGATTGTTCTTTC TTTTTCGCTATTGTAAAATTC ATGTTATATGGAGGGGGC AAAGTTTTC AGGGTGTTGTTTAGAATGGGAAGATGTCCCTT

GTATC ACC ATGGACCCTC ATGAT AATTTTGTTTCTTTC ACTTTCTACTC TGTTGAC AACC ATTGTC TCCTC TTATTTTCTTTTC ATTTTCTGTAAC TTTTTCGTTAAACTTTAGCTTG

CATTTGTAACGAATTTTTAAATTC AC TTTTGTTTATTTGTC AGATTGTAAGTACTTTCTC TAATC AC TTTTTTTTC AAGGC AATC AGGGTAT ATTATATTGTAC TTC AGC AC AGTTTT

AGAGAAC AATTGTTATAATTAAATGAT AAGGTAGAATATTTC TGC ATAT AAATTC TGGCTGGCGTGGAAATATTCTTATTGGTAGAAACAACTACATCCTGGTCATC ATCC TGCC

TTTC TCTTTATGGTTAC AATGATATAC ACTGTTTGAGATGAGGATAAAAT ACTC TGAGTCC AAACCGGGCCCCTCTGC TAACC ATGTTC ATGCCTTCTTC TTTTTCCTAC AGCTC

CTGGGC AACGTGC TGGTTATTGTGC TGTCTC ATC ATTTTGGC AAAGAATTG TAATACGACTC ACTATAGGGCGAATTC ATGGCTACTC TGATC TATGTTGAT AAGGAAAATGGA

GAACC AGGC ACCCGTGTGGTTGC TAAGGATGGGC TGAAGC TGGGGTCTGGACC TTC AATCAAAGCCTTAGATGGGAGATC TC AAGTTTC AAC ACC ACGTTTTGGC AAAACGT

TCGATGCCCC ACC AGCCTTACCTAAAGCTAC TAGAAAGGC TTTGGGAAC TGTC AAC AGAGCTAC AGAAAAGTCTGTAAAGACC AAGGGACCCCTC AAAC AAAAAC AGCC AA

GCTTTTCTGCC AAAAAGATGAC TGAGAAGAC TGTTAAAGC AAAAAGCTC TGTTCCTGCCTC AGATGATGCC TATCC AGAAATAGAAAAATTC TTTCCCTTC AAT CCTCTAGAC T

TTGAGAGTTTTGACC TGCCTGAAGAGCACCAGATTGCGCACCTCCCCTTGAGTGGAGTGCCTCTCATGATCC TTGAC GAGGAGAGAGAGCTTGAAAAGC TGTTTC AGC TGGG

CCCCCCTTC ACC TGTGAAGATGCCCTC TCC ACC ATGGGAATCC AATC TGTTGC AGTC TCCTTC AAGC ATTCTGTCGACCCTGGATGTTGAATTGCC ACC TGTTTGCTGTGAC AT

AGATATTTACCC ATACGACGTCCC AGACTACGC TTAAGGATCC AGATC TTATTAAAGC AGAAC TTGTTTATTGC AGC TTATAATGGTTAC AAATAAAGC AAT AGCATC AC AAAT

TTC AC AAATAAAGC ATTTTTTTC ACTGC ATTCTAGTTGTGGTTTGTCC AAAC TC ATC AATGTATC TTATC ATGTC TGC TCGAGGTCGAC...............AATGGGTTGAATTAGCGGAA 
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that the transgene fragment was more easily isolated on an agarose gel.  The reaction products 

obtained following multiple digestions using Xho 1, Spe 1 and Pvu 1 were migrated on an 

agarose gel and the presence of DNA fragments for the predicted size of ~3500 bp were 

confirmed.  The transgene fragments were excised from the gel and subject to gel extraction 

and purification before being passed on to the Biomedical Services Unit for further 

purification and microinjection as described in section 5.3.2.2 (see Figure 8-3). 

 

Figure 8-3: Isolation of the linearised Tg-hPTTG-HA transgene construct.  A  Diagnostic agarose 

gel illustrating the products of various restriction digest reactions.  Red circle demonstrates the 

difficulty in resolving between the two fragments when just Xho 1 and Spe 1 are used.  Green circle 
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highlights the identification of the transgene fragment (~3500 bp) following digestion with Xho 1, Spe 

1 and Pvu 1.  B  Agarose gel demonstrating migration and excision of transgene fragments (Green 

circles) following digestion with Xho 1, Spe 1 and Pvu 1.  C  Agarose gel showing migration of 1, 2 

and 3 µl samples of the linearised transgene following excision from original agarose gels and a 

purification step.  The clean, sharp appearance of the band indicates a pure and non-denatured DNA 

sample.     

 

 

8.4 Discussion 

 

The work reported in this chapter describes the successful creation of a transgene 

construct containing hPTTG cDNA with a C-terminal HA-epitope downstream of the bovine 

thyroglobulin promoter.  The linearised transgene construct was isolated and purified in 

preparation for pronuclear microinjection.  Subsequent generation of alternative transgenic 

lines with thyroid-targeted hPTTG over-expression will facilitate the investigation of relative 

hPTTG over-expression levels on thyroid phenotypes in vivo.  From this point onwards, 

investigations were carried out by other members of the group.    
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The work in this thesis has investigated some of the roles of the proto-oncogene 

hPTTG in the growth and function of thyroid cells.  Based on the hypothesis that hPTTG 

affects thyroid neoplasia by the initiation as well as the promotion of tumourigenesis, the 

complex interplay between hPTTG, growth factors and other key genes was examined in 

thyroid cells in vitro and in vivo.  In vivo investigations were facilitated by the successful 

generation of a murine transgenic line with thyroid-targeted hPTTG over-expression.  

Furthermore, due to the key roles of hPTTG and PBF in the regulation of NIS expression and 

function, the expression of these oncogenes as potential therapeutic targets for enhancing 

radioiodine treatments was investigated.   

9.1 Autocrine interactions between hPTTG and growth factors 

 

Expression and phosphorylation of hPTTG was induced by EGF, TGF-α and IGF-1 

following activation of pathways involving MAPK and PI3K in both malignant and non-

malignant human thyroid cells.  These effects were independent of known regulators of 

hPTTG expression and phosphorylation, SP1 and CDC2 respectively.  Interestingly, CDC2 

was identified as an independent regulator of hPTTG expression.  Subsequently, we 

confirmed that in turn, hPTTG over-expression causes upregulation of EGF, TGF-α and IGF-

1 expression and secretion in human follicular thyroid cells via its SH3-interacting domain, 

and enhanced levels of growth factors caused autocrine induction of hPTTG.  Collectively, 

these studies define the existence of autocrine pathways of interaction between hPTTG and 

growth factors, which may be aberrantly controlled in thyroid tumours.  Subsequent 

investigations in hPTTG-Tg
 
and Pttg

-/- 
knockout mice confirmed a particularly important 

interaction between hPTTG and EGF in vivo.  

Continued investigations into the exact mechanisms by which growth factors regulate 

hPTTG expression and phosphorylation may elucidate novel potential targets to reduce 
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hPTTG expression in thyroid cancer.  To this effect, further siRNA knockdown studies of 

other transcription factors  implicated in the regulation of hPTTG including OCT-1 (Zhou et 

al. 2008), AP1 and AP2 (Kakar 1999), may provide further insights and identify novel 

strategies in this respect.   

CDC2 is the only reported regulator of hPTTG phosphorylation (Ramos-Morales et al. 

2000), which is in contrast with the work described in this thesis.  Future studies should aim 

to identify alternative mechanisms of hPTTG phosphorylation.  Given reports of a direct 

interaction between MAPK and PI3K with hPTTG (Chamaon et al. 2005), and the fact that 

Mapk directly phosphorylates rat Pttg (Pei 2000), it would be of specific interest to 

investigate whether MAPK and PI3K directly phosphorylate hPTTG in thyroid cells in 

response to growth factors. 

Whilst a moderate correlation between transcripts of hPTTG and growth factors was 

observed in normal human thyroid tissue, it would be interesting to perform correlation 

studies in thyroid cancer specimens.  We would propose to assess expression of hPTTG, EGF, 

TGF-α and IGF-1 in our group’s recently collected cohort of “matched” thyroid cancer 

specimens.  Thus, we would be able to verify the relationship between hPTTG and these 

growth factors in human thyroid cancer and determine whether the expression of these growth 

factors is, in addition to FGF-2 (Boelaert et al. 2003a), useful in predicting aggressive thyroid 

tumour behaviour.     

9.2 Further investigations of thyroid-targeted hPTTG over-expression 

 

We generated a murine transgenic model with thyroid-targeted over-expression of 

hPTTG (hPTTG-Tg mice) in order to directly investigate the tumourigenic effects of thyroidal 

hPTTG over-expression in vivo.  Unexpectedly, transgenic mice with high levels of thyroidal 

hPTTG expression do not develop thyroid hyperplasia or neoplasia, but in fact have smaller 

thyroid glands.   
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Future studies should aim to verify reduced proliferation in thyroids from hPTTG-Tg 

mice through expression analyses of proliferation markers such as PCNA and cyclin-D1.  In 

addition, following on from work described in Chapter 8, we are currently generating and 

characterising alternative murine transgenic lines with thyroid-targeted hPTTG expression.  

These studies will enable us to define the in vivo dose-dependent effects of hPTTG on thyroid 

cell proliferation and transformation, and to test the hypothesis that low levels of thyroidal 

hPTTG over-expression results in thyroid tumourigenesis.  Furthermore, additional transgenic 

lines with higher levels of thyroidal hPTTG over-expression will provide the means to 

validate and give credence to the conclusions derived from our studies in current hPTTG 

transgenic mice.   

 We recently sourced a low-iodine mouse chow (Teklad Laboratories) for ongoing 

studies using our standard model of goitre induction (Ramsden et al. 2005) in WT, hPTTG-Tg 

and Pttg
-/-

 knockout mice to investigate the effects of thyroidal hPTTG over- and under-

expression on TSH-driven goitrogenesis.  In addition, we are performing preliminary 

experiments to investigate whether we can successfully target mouse thyroid glands in situ, 

with doses of ionising radiation using the irradiator facility at the Biomedical Services Unit 

(University of Birmingham).  These studies will provide important insight into the oncogenic 

potential of thyroidal hPTTG over-expression in the context of elevated serum TSH levels or 

DNA damage following exposure to external radiation.   

Ongoing characterisation of hPTTG.PBF-Tg bitransgenic mice remains an 

investigation of priority.  Given the striking hyperplasia observed in PBF-Tg mice (Read et al. 

2011) and that PBF facilitates the nuclear translocation and transactivational capability of 

hPTTG (Chien and Pei 2000), it will be interesting to see if tumourigenesis is facilitated by 

their concerted over-expression in the thyroid.  In addition, given the reported roles of hPTTG 

and PBF in causing genetic instability, investigations using fluorescent inter-simple sequence 
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repeat PCR (FISSR-PCR) are being conducted to determine the relative levels of genetic 

instability in hPTTG-Tg, PBF-Tg and hPTTG.PBF-Tg mice compared with WT controls.  

This study may provide important insight concerning genetic aberrations that underlie key 

phenotypes.   

9.3 hPTTG and regulation of other angiogenic genes 

 

Angiogenesis-specific cDNA PCR array analysis highlighted the potential relationship 

between hPTTG and a number of genes critically involved in tumour proliferation and 

angiogenesis, and has opened up opportunities for further research.   

hPTTG upregulation of the pro-angiogenic genes Cxcl1 and Mdk, and repression of 

the anti-angiogenic gene Tnf-α, was of particular interest.  We propose that thyroidal 

expression changes of these genes should be validated in greater numbers of hPTTG-Tg mice 

using gene-specific TaqMan RT-PCR assays (Applied Biosystems) and 

immunohistochemistry on paraffin embedded thyroid sections.  Upon validation of these 

alterations in hPTTG-Tg mice, expression analyses should also be performed in our cohort of 

‘matched’ human thyroid specimens.   

9.4 hPTTG and PBF as therapeutic targets for enhancing treatment with radioiodine 

 

Work described in this thesis confirmed that both hPTTG and PBF downregulate 

thyroidal NIS expression and reduce I
- 
uptake in vivo, which has important implications for 

the efficacy of radiodine therapies in thyroid disease where hPTTG and PBF are over-

expressed.  Crucially, we demonstrated that PBF represents a novel therapeutic target to 

overcome radioiodine resistance in thyroid tumors and their metastases, as well as more 

generally in other thyroid diseases.   

Our inability to consistently achieve strong repression of hPTTG expression in hPTTG-

Tg thyrocytes or human primary thyrocytes hampered our investigations of hPTTG as a 
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potential therapeutic target for enhancing 
131

I
 
uptake.  Successful knockdown of PBF was 

achieved by using a combination of siRNAs targeting PBF transcripts.  We propose that a 

similar strategy should be adopted to optimise knockdown of hPTTG expression in order to 

fully determine the potential of hPTTG as a therapeutic target to alleviate NIS repression in 

thyroid cancer.   

Following demonstration of these critical phenotypes in an ex vivo primary culture 

system, it would be interesting to confirm these findings through in vivo visualisation of 
124

I 

accumulation using positron emission topography (PET) imaging, as has been described 

previously (Roepke et al. 2009).  Further, studies of non-thyroid cancers have used novel 

approaches using hPTTG siRNA to reduce hPTTG expression in vivo, resulting in inhibition 

of tumour development (Kakar and Malik 2006; Jung et al. 2006).  Therefore, an exciting 

prospective study would be to combine in vivo siRNA treatments with PET-imaging in 

hPTTG-Tg and PBF-Tg mice to demonstrate the therapeutic potential of targeting hPTTG and 

PBF over-expression in live mice.  In the future, this approach may evolve into a therapeutic 

approach, with progress continuing in the development of siRNA delivery techniques that 

allow over-expressed genes to be specifically targeted in cancer cells without affecting normal 

cells.   
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