Radical mediated reactions of dithiocarbamates

McMaster, Claire (2013). Radical mediated reactions of dithiocarbamates. University of Birmingham. Ph.D.

[img]
Preview
McMaster13PhD.pdf
PDF - Accepted Version

Download (3MB)

Abstract

Chapter one reviews the use of acyl radicals and the various functional groups from which they have been derived. The earlier work on the use of dithiocarbamates as a source of acyl radicals has been progressed. Systems with the potential to follow either a 6-exo or competing 7-endo cyclisation pathway have been made.

Chapter two is about the radical mediated reduction of the dithiocarbamate group. Previously reported dithiocarbamate group transfer reactions are reviewed along with existing methods for the reductive removal of the dtihiocarbamate and related xanthate groups. The development of conditions for a general method of the reduction is reported, with various examples being shown.

Chapter three begins with a review of the synthesis of a range of twisted amides. The formation of a twisted amide precursor, containing a dithiocarbamate groups is reported. The attempts to form the bicyclic twisted amide, by used of carabamoyl radicals generated from dithiocarbamates are described.

Chapter four discusses previous attempts at the synthesis of the natural occurring compound stemofoline. The attempted formation of the dithiocarbamate containing precursor for a 7-endo-trig cyclisation, 5-exo-trig transannular cyclisation, group transfer reaction to give the azatricyclic system, analogous to the tricyclic core of stemofoline is discussed.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Grainger, Richard S.UNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Chemistry
Funders: None/not applicable
Subjects: Q Science > QD Chemistry
URI: http://etheses.bham.ac.uk/id/eprint/3886

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year