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Abstract 

Design techniques for two-port coupled resonator filters are extended here to four-port 

coupled resonator circuits. Formulations to represent scattering parameters in terms of the 

general coupling matrix for four-port coupled resonator circuits are derived. The major part of 

this work is concerned with the synthesis of the coupled resonator hybrid couplers. Two types 

of hybrid couplers, 90° and 180°, are presented. The design approach is based on an analytic 

solution, calculating the coupling matrix from the equivalent circuit of conventional hybrids. 

To verify the design methodology, an X-band coupled resonator 90° hybrid coupler is 

implemented using waveguide cavities. 
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Chapter    1                                                                           

Introduction 

1.1    Purpose of study 

Inter-coupled resonators have been used for many years to make microwave filters [1]. A    

simplest topology for a two-port coupled resonator filter is given in Figure 1.1, where the 

solid dots are resonators and the line linking two resonators represents the coupling between 

them.  

1 2 3 4

Input Output
 

Figure 1.1: A two-port coupled resonator filter. 

Synthesis of two-port coupled resonator filters has been well presented in literature such as 

[2]. A general technique for the design of coupled resonator filters is based on coupling 

coefficients of inter-coupled resonators and external quality factors of the input and output 

resonators [3]. The design technique used for two-port filters has been extended to three-port 

circuits such as power dividers and diplexers [4]. The novel network in [4] can do the function 

of filtering and power division at the same time. However, this theory can also be extended to 

a four-port network as depicted in Figure 1.2.  
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Input Output 1

Output 2Output 3
 

Figure 1.2: A four-port coupled resonator circuits. 

This research work aims to design hybrid couplers based on inter-coupled resonators. The 

proposed coupled resonator hybrid couplers will have an embedded filtering function, and 

will be used in a new type of Butler matrix [5]. The Butler Matrix is a very attractive beam-

forming network due to its ability to form orthogonal beams in a simple design.  

Once the resonator configuration is known for the whole Butler matrix, the whole matrix can 

be considered as a resonator superstructure [6], allowing for optimisation of bandwidth and 

band shape.  

A recent work [7] proposed a 60 GHz smart antenna receiver subsystem, where an antenna 

array, a 4×4 Butler matrix, and bandpass filters are integrated into a single substrate. This 

subsystem has been proven suitable for low-cost 60GHz indoor communication. Shown in 

Figure 1.3 is the block diagram of the RF front-end with the antenna array.  
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Figure 1.3: Block diagram of the RF front-end with antenna array. 

Compared with the subsystem shown in Figure 1.3, the proposed structure will potentially 

reduce the size of whole system since the filtering function is embedded in the couplers. The 

topology of such a resonator superstructure is given in Figure 1.4. 
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Figure 1.4: A resonator superstructure. 

1.2    Structure of thesis 

An introduction to directional couplers and hybrid couplers is given in the rest of this chapter, 

along with some of the most common applications. We briefly describe related theories of a 

two-port coupled resonator filter, including the coupling matrix representation and 

formulations for coupling coefficients and external quality factors. 

The general coupling matrix is of importance for representing two-port filter topologies. In 

Chapter 2, we extend this concept to general four-port coupled resonator circuits. An 

important formulation to represent the scattering parameters in terms of the general coupling 

matrix is derived. This formula provides the basis for this research work. 

In Chapter 3, an approach to design coupled resonator hybrid couplers is proposed. Both 90° 

hybrid couplers and 180° hybrid couplers are covered. For each section, we start by 

discussing some general properties of the conventional hybrid coupler, and then synthesize a 
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coupled resonator hybrid coupler from the equivalent circuit. Calculations of coupling 

coefficients and external quality factors are explained in details. Numerical examples of 

coupled resonator hybrids are also given.  

Chapter 4 presents the implementation of an X-band 90° hybrid coupler using waveguide 

cavity resonators. Waveguide cavity resonators are chosen because of their high unloaded 

quality factors. After a brief introduction to some general properties of the waveguide cavity 

resonator, we discuss the extraction of coupling coefficients and external quality factors from 

physical structures. Design of the physical dimensions of the coupled-resonator 90  hybrid 

coupler is also provided. Finally, we discuss the fabrication and measurement results of the 

proposed device. 

The final chapter provides conclusions drawn from this research work and suggestions of 

further research directions.  

1.3    Directional couplers overview 

Directional couplers [8] are passive microwave devices used for power division or power 

combining. Figure 1.5 (a) shows an arbitrary power division, where an input signal is divided 

by the coupler into two signals of lesser power. When used as a combiner, the coupler takes 

two signals to provide only one output. The coupler may be a three-port component as 

illustrated in Figure 1.5, or maybe a four-port component. 
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Coupler

P2=αP1

P3=(1-α)P1

P1

Coupler

P2

P1=P2+P3

P3

(a)

(b)  

Figure 1.5: (a) An arbitrary power division and (b) power combining [9]. 

With reference to Figure 1.6 (a), which is a commonly used symbol for directional couplers, 

the ideal directional coupler has the property that a wave incident in port 1 couples power into 

ports 2 and 3 but not into port 4. For the wave incident in port 4, the power is coupled into 

ports 2 and 3 but not into port 1. Thus ports 1 and 4 are uncoupled. Similarly, ports 2 and 3 

are also uncoupled. However, port 4 is usually terminated with a matched load and not 

accessible to the user. This results in a three-port component as shown in Figure 1.6 (b). 
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Input Through

CoupledIsolated

1 2

34

Input Through

Coupled

1 2

3

(a)

(b)  

Figure 1.6: (a) Symbol for directional couplers and (b) symbol for a directional coupler with 

port 4 terminated with a matched load [9]. 

The performance of a directional coupler is characterized by two parameters, the coupling and 

the directivity. The coupling factor indicates the fraction of the input power that is coupled to 

the output port, and the directivity is a measure of how well the power is coupled in the 

desired direction. Let 1P
 
be the power supplied to port 1, 3P  be the coupled power in the 

forward direction in port 3 and 4P  be the power coupled in the backward direction in port 4. 

The coupling in decibels is then given by 

 1

3

10log
P

C
P

  (1.1) 
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The directivity is defined as 

 3

4

10log
P

D
P

  (1.2) 

Ideally, the power 
4P
 
coupled in port 4 should be zero, and therefore the directivity of the 

coupler would be infinite.  

The ideal directional coupler, as illustrated in Figure 1.6 (a), is a lossless reciprocal four-port 

network matched at all ports with 14 23 0S S  . Thus the scattering matrix [9] has the form 

  

12 13

12 24

13 34

24 34

0 0

0 0

0 0

0 0

S S

S S
S

S S

S S

 
 
 
 
 
 

 (1.3) 

Several properties of the ideal directional coupler may be deduced from the symmetry and 

unitary properties of its scattering matrix [10]. If we take the product of row 1 with the 

conjugate of row 4 in (1.3), and similarly row 2 with the conjugate of row 3, we obtain 

 * *

12 24 13 34 0S S S S   (1.4) 

 * *

12 13 24 34 0S S S S   (1.5) 

If we note that *

12 24 12 24S S S S , (1.4) and (1.5) are seen to give 

 12 24 13 34S S S S  (1.6) 

 12 13 24 34S S S S  (1.7) 

Now divide (1.6) by (1.7) to obtain 
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 24 13

13 24

S S

S S
  (1.8) 

which implies that 

 13 24S S  (1.9) 

so that the coupling between ports 1 and 3 equals that between ports 2 and 4.  

Use of (1.9) in (1.6) gives 

 12 34S S  (1.10) 

so that the coupling between ports 1 and 2 is the same as that between ports 3 and 4. 

Then the product of the first row with its conjugate in (1.3) yields 

 
2 2

12 13 1S S   (1.11) 

similarly, 

 
2 2

12 24 1S S   (1.12) 

By properly choosing the terminal planes on ports 1 and 3, we can adjust the phase angle of 

scattering parameters, so that 

 12 34 1S S C   (1.13) 

 13 2

jS C e   (1.14) 

 24 2

jS C e   (1.15) 
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where 
1C  and 

2C  are real, and  and   are phase constants to be determined. 

Use of (1.13) and (1.14) in (1.11) gives 

 2 2

1 2 1C C   (1.16) 

Substituting (1.13) to (1.15) into (1.4) yields a relation between the two phase constants as 

 2n       (1.17) 

In practice, there are two particular choices: 

1. The 90° coupler: The phase constants are chosen equal, 2    . Then the 

scattering matrix has the form 

  

1 2

1 2

2 1

2 1

0 0

0 0

0 0

0 0

C jC

C jC
S

jC C

jC C

 
 
 
 
 
 

 (1.18) 

2. The 180° coupler: The phase constants are chosen to be 180° apart, 0  ,   . 

Then the scattering matrix has the form 

  

1 2

1 2

2 1

2 1

0 0

0 0

0 0

0 0

C C

C C
S

C C

C C

 
 


 
 
 

 

 (1.19) 

1.4    Hybrid couplers overview 

Directional couplers can be designed for arbitrary power division. However, hybrid couplers 

[9] are special cases of directional couplers with equal power division (3dB), which implies 
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 1 2

1

2
C C   (1.20) 

Hybrid couplers have either a 90° or a 180° phase shift between the output ports.  

1.4.1    90° hybrid couplers functional description 

The 90° hybrid coupler, also known as the quadrature hybrid coupler, is a 3dB directional 

coupler with 90° phase difference in the two output ports. With reference to a 90° hybrid 

symbol shown in Figure 1.7, a signal applied to port 1 will be evenly split into two 

components with a 90° phase difference at ports 2 and 3, and port 4 will be isolated.  

90°

hybrid

1 2

34

0°

90°

-3dB

-3dB

Input

Isolated

Output

Output

 

Figure 1.7: Symbol of a 90° hybrid coupler [9]. 

The branch-line hybrid coupler [9] has a 90° phase difference between ports 2 and 3 when fed 

at port 1, and is an example of the 90° hybrid coupler. Its scattering matrix has the form 

  

0 1 0

1 0 01

0 0 12

0 1 0

j

j
S

j

j

 
 
 
 
 
 

 (1.21) 

1.4.2    180° hybrid couplers functional description 

The 180° hybrid coupler is a 3dB directional coupler with a 180° phase shift between the two 

output ports. It can also be operated so that the two outputs are in phase. With reference to 
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Figure 1.8, a signal applied to port 4 will be split equally into two components with 180° 

phase difference at ports 2 and 3, and port 1 will be isolated. If the input is applied to port 1, it 

will be evenly divided into two in-phase components at port 2 and 3, and port 4 will be 

isolated. Conversely, signals input into ports 2 and 3 will add at port 1 and the difference of 

the two signals will appear at port 4. 

180°

hybrid

1 2

34

 

Figure 1.8: Symbol for a 180° hybrid coupler. 

The rat-race hybrid coupler [9] has a 180° phase shift between ports 2 and 3 when fed at port 

4, and is an example of the 180° hybrid coupler. Its scattering matrix has the form 

  

0 1 1 0

1 0 0 11

1 0 0 12

0 1 1 0

S

 
 


 
 
 

 

 (1.22) 

1.4.3    Hybrid couplers common applications 

Hybrid couplers are used in many practical circuits such as power dividers, power combiners, 

mixers [11] and other microwave components and systems. An example of 90° hybrid 

couplers being used in power splitter and power combiner networks to produce a power 

amplifier [12] is given in Figure 1.9. 
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90°

hybrid

90°  -3dB

90°

hybrid

90°

hybrid

20dB

Signal in

180°  -3dB

180°  -6dB

270°  -6dB

270°  -6dB

0°  -6dB

90°

hybrid

90°

hybrid

90°

hybrid

Signal out

180°  14dB

270°  14dB

20dB

20dB

20dB

0°  17dB

270°  14dB

0°  14dB

90°  17dB 180°  20dB

Power splitter network Power combiner network

 

Figure 1.9: 90° hybrid couplers used in a power amplifier. 

The hybrid couplers can be used to combine power as well as splitting it. As shown in Figure 

1.9, an input signal is first split up to feed multiple low power amplifiers, then combined to 

produce a single output with high power. The phases of inputs to each power combiner are 

arranged such that the inputs are 90° out of phase with each other. With reference to Figure 

1.10, this causes the power to add at the output of the combiner and to cancel at the isolation 

port. 

90°

hybrid 180°, 180°

90°, 270°

Signals add

Signals cancel
0°

90°

 

Figure 1.10: Phase arrangement on a 90° hybrid power combiner. 
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The 90° hybrid couplers, together with phase shifters, are also used in beam-forming 

networks [13], such as the Butler matrix [14], to create a radio beam in any prescribed 

direction. The Butler matrix was first described by Jesse Butler and Ralph Lowe [15]. It takes

2n
 inputs and performs a spatial Fast Fourier Transform (FFT) to provide 2n orthogonal 

beams. The schematic diagram of a 4 4  Butler matrix is shown in Figure 1.11.  

45°

A4A2

90°

hybrid

45°

A3A1

90°

hybrid

90°

hybrid

90°

hybrid

Crossover

Phase shifter Phase shifter

1R2L2R1L

Crossover

 

Figure 1.11: Schematic diagram of a 4 4  Butler matrix. 

With reference to Figure 1.11, the Butler matrix splits the input power into 4 outputs with 

same amplitude but with linear phase taper. The phase taper is different for each input port. 

The outputs are linearly combinations of the inputs and can expressed as 

 1 2 3 4

1
1 ( 225 270 315 0 )

4
L A A A A         (1.23) 
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1 2 3 4

1
2 ( 270 45 180 315 )

4
R A A A A         (1.24) 

 
1 2 3 4

1
2 ( 315 180 45 270 )

4
L A A A A         (1.25) 

 
1 2 3 4

1
1 ( 0 315 270 225 )

4
R A A A A         (1.26) 

Systematic design procedure for the Butler matrix is well explained in [16]. Because the 

Butler matrix is a passive reciprocal network, it works the same when it transmits energy as 

when it receives energy. Each beam can be used by a dedicated transmitter or receiver. Figure 

1.12 shows a 4 4  Butler matrix used as a feed circuit for an antenna array. 

45°

P1

P2

90°

hybrid

45°

P3

P4

90°

hybrid
90°

hybrid

90°

hybrid

P5

P6

P7

P8

Crossover Crossover

Phase shifter

Phase shifter

Butler matrix
Antenna array

 

Figure 1.12: A 4 4  Butler matrix with antenna array. 
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1.5    Coupled resonator filters overview 

Coupled resonator filters have been extensively studied in literature [17-20]. There is a 

general technique for the design of coupled resonator filters based on coupling coefficients of 

inter-coupled resonators and external quality factors of the input and output resonators. This 

design method can be applied to any type of resonator despite its physical structure [3]. 

1.5.1    General coupling matrix of two-port coupled resonator filters 

The general coupling matrix is of importance for representing different coupled-resonator 

filter topologies. As presented in [3], the general coupling matrix can be derived either from a 

set of node equations or from a set of loop equations.  

Figure 1.13 (a) shows the equivalent circuit for node equation formulation. As can be seen, all 

the resonators are electrically coupled together, thus a set of node equations can be formed. iL , 

iC  and iG  denote the inductance, capacitance and conductance, respectively; si  is the source 

current; and iv  represents the node voltage.  

However, the couplings associated with the n-coupled resonators are based on mutual 

inductance in Figure 1.13 (b), where iL , iC  and iR  denote the inductance, capacitance and 

resistance, respectively; se  is the source voltage; and ii  represents the loop current. Hence we 

can obtain a set of loop equations. 



17 

 

C1L1G1 v1 C2L2 v2 Cn-1Ln-1 vn-1 CnLn vn Gn

C1

L1

R1

i1
C2L2 Rn

i2

Cn-1Ln-1
in-1

Ln

Cn

in-1

in

(a)

(b)

is

es

Figure 1.13: Equivalent circuits of n-coupled resonators for (a) node-equation formulation and 

(b) loop-equation formulation [3]. 

Regardless of the type of coupling, a general normalized matrix  A  of a two-port n-coupled 

resonator filter are found as [3] 

        A q p U j m    (1.27) 

where  q  is the general external quality factor matrix with all entries zero, except for 

11 11 eq q  and 1nn enq q , 0

0

1
( )p j

FBW



 
  is the complex lowpass frequency variable, 

 U  is the n n  identity matrix, and  m  is the general coupling matrix. 

The transmission and reflection scattering parameters can be expressed in terms of the general 

normalized matrix  A  as [3] 
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 

 

1

11 11
1

1

21 1

1

1
(1 )

1
2

e

n

e en

S A
q

S A
q q





  



 (1.28) 

1.5.2    Filter synthesis in terms of coupling coefficients and external quality factors 

Design formulations for Butterworth lowpass prototype filters and Chebyshev lowpass 

prototype filters have been presented in many reference books [21]. However, these equations 

are given in terms of the so called g  value, which is the numerical value either of inductance 

in henries or of capacitance in farads. The coupling coefficients and the external quality 

factors for a coupled resonator bandpass filter with midband frequency of 0 , lower passband 

edge of l , and upper passband edge of u  can be obtained from the g  values as [3] 

 , 1

1

, 1, 2, 1i i

i i

FBW
M for i N

g g




    (1.29) 

 0 1
1e

g g
Q

FBW
  (1.30) 

 1N N
eN

g g
Q

FBW

  (1.31) 

where FBW  is the fractional bandwidth of the bandpass filter defined as 

 
0

u lFBW
 




  (1.32) 
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Chapter    2                                                                          

Four-Port Coupled Resonator Circuits 

In the previous chapter, we briefly described how coupled resonator filters are analyzed and 

synthesised in terms of coupling coefficients and external quality factors. However, this 

design technique can be extended to four-port coupled resonator circuits. In this chapter, we 

will derive the general coupling matrix representation for four-port n-coupled resonators. This 

formula provides the basis for this research work, and will be used in the synthesis of the 

coupled resonator hybrid couplers in Chapter 3. Analogous to the two-port resonator filter, the 

general coupling matrix can be formulated either from a set of loop equations or from a set of 

node equations [3].  

2.1    Loop equation formulation 

Figure 2.1 depicts an equivalent circuit of a lossless four-port n -coupled resonator circuit, 

where iL , iC  and iR  denote the inductance, capacitance and resistance, respectively; se  is the 

voltage source; and ii  represents the loop current. With reference to Figure 2.1, resonators 1, 

2, n-1, n are connected to four ports, and a voltage source is connected to port 1. It is assumed 

that resonators are magnetically coupled together, and the magnetic couplings are represented 

by dash lines in Figure 2.1. 
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L1
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C2

Ln-1

Cn-1

Rn Rn-1

R2
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In-2

 

Figure 2.1: Equivalent circuit of four-port n-coupled resonators for loop equations [3].  

According to voltage law, a set of loop equations for the circuit illustrated in Figure 2.1 can be 

obtained as  

 

1 1 1 12 2 1( 2) 2 1( 1) 1 1

1

21 1 2 2 2 2( 2) 2 2( 1) 1 2

2

( 2)1 1 ( 2)2 2 2 2 ( 2)( 1) 1 (

2

1
( )

1
( ) 0

1
( )

n n n n n n s

n n n n n n

n n n n n n n

n

R j L i j L i j L i j L i j L i e
j C

j L i R j L i j L i j L i j L i
j C

j L i j L i j L i j L i j L
j C

    


    


    


   

   

      


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 (2.1)  

where ij jiL L  denotes the mutual inductance across resonators i  and j . 

Arrange this set of loop equations in matrix form 
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 
 
 

 

or 

     Z i v  (2.2) 

where  Z  is an n n  impedance matrix. 

For simplicity, let us consider all resonators resonate at the same frequency 0 1 LC  , 

where 1 2 2 1n n nL L L L L L       and 1 2 2 1n n nC C C C C C      . The impedance 

matrix in (2.2) may be expressed by 

   0Z L FBW Z      
 (2.3) 

where 0FBW     is the fractional bandwidth, and Z 
 

 is the normalized impedance 

matrix. From (2.2) and (2.3), we obtain  
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 
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 


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


































 

(2.4) 

with 

 0

0

1
( )p j

FBW



 
   (2.5) 

Notice that 

 
0

1
1, 2, 1,i

ei

R
for i n n

L Q
    (2.6) 

where eiQ  is the external quality factor of the input or output resonator. Defining the coupling 

coefficient as 

 
ij

ij

L
M

L
  (2.7) 

and assuming 0 1    for a narrow-band approximation,  the impedance matrix in (2.4) can 

be simplified as 
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12 1( 2) 1( 1) 1

1

21 2( 2) 2( 1) 2

2
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1
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

 

    
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    

   
en

p
q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (2.8) 

where eiq  denotes the scaled external quality factor 

 1, 2, 1,ei eiq Q FBW for i n n     (2.9) 

and 
ijm  represents the normalized coupling coefficient 

 
ij

ij

M
m

FBW
  (2.10) 

To derive the scattering parameters of the four-port coupled-resonator circuit, the circuit in 

Figure 2.1 is represented by a four-port network as shown in Figure 2.2. The voltage and 

current variables at the ports are denoted by iV  and iI , and ia
 
and ib  are the wave variables.  
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R2

Four-port 

n-coupled resonator 

circuit

I1 I2

V1 V2

a1

b2

a2

b1

Rn Rn-1

In In-1

Vn Vn-1

an

bn-1

an-1

bn

es

 

Figure 2.2: Network presentation of the circuit shown in Figure 2.1. 

By inspecting Figure 2.1 and Figure 2.2, it can be found that 1 1I i ,  2 2I i  , 1 1n nI i   , 

n nI i  , and 1 1 1sV e i R  , 2 2 2V i R , 1 1 1n n nV i R   , n n nV i R . With reference to [3], the 

relationships between the wave variables and the voltage and current variables are defined as 

 

1
( )

2

1
( )

2

n
n n n

n

n
n n n

n

I
a V Y

Y

I
b V Y

Y

 

 

 (2.11) 

Hence the scattering parameters are calculated as 
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2 1 2 1

2 1 2 1

1 2 21 1 1 2
11 21
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1 1 1 11
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22
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,
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R R ib R i b
S S

a e a e

R R i R R ib b
S S

a e a e

 

 

     

 


     

    

   

 (2.12) 

By solving (2.2) and (2.3), the loop current ii  are found as 

 

1 1

1 211 21
0 0

1 1

1 ( 1)1 1
0 0

s s

s s
n nn n

e e
i Z i Z

L FBW L FBW

e e
i Z i Z

L FBW L FBW

 

 

 

 

 

        

        

 (2.13) 

Substituting (2.13) into (2.12) yields 

 

1 11 21
11 2111 21

0 0

1 11 1 1

( 1)1 1( 1)1 1
0 0

22
1 , ,

2 2
,

n n

n nn n

R RR
S Z S Z

L FBW L FBW

R R R R
S Z S Z

L FBW L FBW
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 

 

 

 

         

        

 (2.14) 

which can be simplified using (2.6) and (2.9) as 

 

1 1

11 2111 21
1 1 2

1 1

( 1)1 1( 1)1 1
1 ( 1) 1

2 2
1 , ,

2 2
,

e e e

n nn n
e e n e en

S Z S Z
q q q

S Z S Z
q q q q

 

 

 


        

       

 (2.15) 
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2.2    Node equation formulation 

In this section, we will analyze four-port resonators with electric couplings. Figure 2.3 depicts 

the equivalent circuit of a lossless four-port n-coupled resonator circuit, where 
iL , 

iC  and 
iG  

denote the inductance, capacitance and conductance, respectively; 
si  is the source current; and 

iv  represents the node voltage. With reference to Figure 2.3, resonators 1, 2, n-1, n are 

connected to four ports, and a voltage source is connected to port 1. The electric couplings are 

represented by dash lines in Figure 2.3. 

L1C1

Gn Gn-1

G2G1 v1is L2C2 v2

LnCn vn Ln-1Cn-1vn-1

L3C3 v3

Ln-2Cn-2vn-2

 

Figure 2.3: Equivalent circuit of four-port n-coupled resonators for node equations [3]. 

According to current law, a set of node equations for the circuit illustrated in Figure 2.3 can 

be obtained as  
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(2.16)  

where 
ij jiC C  denotes the mutual capacitance across resonators i  and j . 

Arrange this set of node equations in matrix form 
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or 

     Y v i  (2.17) 

where  Y  is an n n  admittance matrix. 
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Similarly, let us consider all resonators resonate at the same frequency 0 1 LC  , where 

1 2 2 1n n nL L L L L L       and 
1 2 2 1n n nC C C C C C      . The admittance matrix 

in (2.17) may be expressed by 

   0Y L FBW Y      
 (2.18) 

where 
0FBW     is the fractional bandwidth, and Y 

 
 is the normalized admittance 

matrix. From  (2.17) and (2.18), we obtain  
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(2.19) 

with 

 0

0

1
( )p j
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

 
   (2.20) 

Notice that 

 
0

1
1, 2, 1,i

ei

G
for i n n

C Q
    (2.21) 

where eiQ  is the external quality factor of the input or output resonator. Defining the coupling 

coefficient as 
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  (2.22) 

and assuming 
0 1    for a narrow-band approximation,  the admittance matrix in (2.19) 

can be simplified as 
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 (2.23) 

where eiq  denotes the scaled external quality factor 

 1, 2, 1,ei eiq Q FBW for i n n     (2.24) 

and ijm  represents the normalized coupling coefficient 

 
ij

ij

M
m

FBW
  (2.25) 

Similarly the circuit in Figure 2.3 can be represented by a four-port network as shown in 

Figure 2.4. The voltage and current variables at the ports are denoted by iV  and iI , and ia
 

and ib  are the wave variables.  
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Figure 2.4: Network representation of a four-port n-coupled resonator circuit. 

By inspecting Figure 2.3 and Figure 2.4, it can be found that 1 1V v , 2 2V v , 1 1n nV v  , 

n nV v  and 1 1 1sI i v G  , 2 2 2I v G  , 1 1 1n n nI v G    , n n nI v G  . Using (2.11), the 

scattering parameters can be calculated as 

 

2 1 2 1
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a i a i

 

 

     
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

     

    

   

 (2.26) 

The node voltages iv  can be calculated from (2.17) and (2.18) 
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 (2.27) 

Replacing the node voltages in (2.26) with those given by (2.27) results in 
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1 11 1 1
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 (2.28) 

which can be simplified using (2.21) and (2.24) as 
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        

       

 (2.29) 

2.3    General coupling matrix 

From the previous sections, we note that the formulation of the normalized impedance matrix 

in (2.8) is identical to that of the normalized admittance matrix in (2.23). So we would have a 

general formulation for four-port n-coupled resonators regardless of whether the coupling is 

magnetic or electric. The scattering parameters of four-port n-coupled resonators may be 

generalized from (2.15) and (2.29) as [22] 
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 (2.30) 

with  

        A q p U j m    (2.31) 

where  q  is the n n  matrix with all entries zero, except for 11 11 eq q , 22 21 eq q ,

( 1)( 1) ( 1)1n n e nq q   , 1nn enq q ,  U  is the n n  identity matrix, and  m  is the general 

coupling matrix. 

The general matrix  A  derived here is of importance for representing different four-port 

coupled resonator circuit topologies. The formulations in (2.30) and (2.31) will be employed 

in the synthesis of coupled resonator hybrid couplers in the next chapter. 
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Chapter    3                                                                    

Synthesis of coupled resonator hybrid couplers 

Hybrid couplers are passive microwave devices used to evenly divide the input signal into 

two signals of less power, and are used in many practical circuits such as balanced mixers 

[23], amplifiers and so forth. There are many available designs and configurations for hybrid 

couplers, including branch-line hybrid couplers and rat-race hybrid couplers [24-27]. In this 

chapter, an approach to design coupled resonator hybrid couplers is proposed. We first discuss 

some general properties of the conventional branch-line hybrid coupler, and then synthesize a 

coupled resonator 90° hybrid coupler from the equivalent circuit of the branch-line hybrid. 

The equations of the scattering parameters in terms of the general coupling matrix, derived in 

the previous chapter, will be used. Calculations of coupling coefficients and external quality 

factors are illustrated. Numerical examples of coupled resonator 90° hybrids, the simplest 

form and the one with an improved performance, will also be given. Finally the analysis and 

design of the coupled resonator 180° hybrid coupler are treated in a similar manner. 

3.1    Conventional branch-line hybrid coupler 

The branch-line hybrid coupler [28] shown in Figure 3.1 can easily be constructed in planar 

(microstrip or stripline) form. As illustrated in Figure 3.1, the branch-line hybrid has four 

ports with the terminal impedance 0Z . It consists of two quarter-wavelength transmission line 

sections of characteristic impedance 01Z . The two transmission line sections are connected by 

two shunt branches, which are both quarter-wavelength transmission line sections of 

characteristic impedance 02Z , at both ends. With reference to Figure 3.1, a signal applied to 
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port 1 will be evenly split into two components with a 90° phase difference at ports 2 and 3, 

and port 4 will be isolated. Observe that the branch-line hybrid is symmetrical, so any port 

can be used as the input port. 

λg/4

λg/4

Input

Isolated

Output1 2

34 Output

Z0 Z0

Z0Z0

Z01

Z02 Z02

Z01

 

Figure 3.1: Geometry of a branch-line hybrid coupler [9]. 

3.1.1    Design of a branch-line hybrid coupler 

At the centre frequency, scattering parameters of the branch-line hybrid are given by [29] 

 01

21

0

Z
S j

Z
   (3.1) 

 01
31

02

Z
S

Z
   (3.2) 

 11 41 0S S   (3.3) 

Thus the complete scattering matrix can be expressed as 



35 

 

 
 

01 01

0 02

01 01

0 02

01 01

02 0

01 01

02 0

0 0

0 0

0 0

0 0

Z Z
j

Z Z

Z Z
j

Z Z
S

Z Z
j

Z Z

Z Z
j

Z Z

 
  

 
 
  
 
 
  

 
 

  
 

 (3.4) 

From (1.18) and (3.4), we have 

 01 0 1Z Z C  (3.5) 

 01
02

2

Z
Z

C
  (3.6) 

Then using (1.20)  in (3.5) and (3.6) gives 

 01 0

1

2
Z Z  (3.7) 

 02 0Z Z  (3.8) 

3.1.2    Performance of a branch-line hybrid coupler 

The analysis of the branch-line hybrid can be carried out using the even- and odd-mode 

approach [30]. As shown in Figure 3.2, we first draw the schematic circuit of branch-line 

coupler in normalized form, where each line represents a transmission line with the 

characteristic impedance normalized to 0Z . We then assume that a wave of unit amplitude

1 1A   is incident at port 1. 
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Figure 3.2: Schematic circuit of the normalized branch-line coupler [9]. 

The circuit of Figure 3.2 can be decomposed into the superposition of an even-mode 

excitation and an odd-mode excitation, as shown in Figure 3.3. 
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Figure 3.3: (a) Even-mode excitation and (b) Odd-mode excitation [9].  
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Because the circuit is linear, the actual response of Figure 3.2 can be obtained from the sum of 

the responses to the even-mode and odd-mode excitations. The amplitude of the emerging 

wave at each port of the branch-line hybrid coupler can be expressed as 

 
1

1 1

2 2
e oB      (3.9) 

 
2

1 1

2 2
e oB T T   (3.10) 

 
3

1 1

2 2
e oB T T   (3.11) 

 
4

1 1

2 2
e oB      (3.12) 

where ,e oT  and ,e o  are the even- and odd- mode transmission and reflection coefficients for 

the two port networks of  Figure 3.3.  

For the even-mode two-port circuit shown in Figure 3.3 (a), eT  and e  can be calculated from 

multiplying the ABCD  matrices of each cascade component in the circuit. Assume the 

branch-line hybrid coupler has a centre frequency of of , which implies that each branch has 

the length 

 0 0

04 4 2

c f c
l

 


    (3.13) 

where 0  and 0  are the wavelength and radian frequency corresponding to the centre 

frequency of , respectively. 
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With reference to [9], the ABCD  matrix of a transmission line section of length l  and 

characteristic impedance 
cZ can be expressed as 

 
cos sin

sin cos

c

c

l jZ lA B

jY l lC D

 

 

  
   

   
 (3.14) 

where c   is the phase constant. Substituting the impedance of Figure 3.2 into (3.14) 

gives the ABCD  matrix of the main branch as 
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2 22
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 (3.15) 

However, for the open-circuited stub, the impedance is given as 

 cotoc cZ jZ l   (3.16) 

where the length of each stub is 0

08 4
l

  


  . 

The ABCD  matrix of the shunt open-circuited stub can be obtained as 
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 (3.17) 

Thus for the two-port even-mode excitation, the ABCD  matrix is found as 
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 (3.18) 
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The transmission and reflection coefficients can be converted from the ABCD  matrix [9] as 
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 (3.19) 
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Similarly, for the odd-mode excitation, we obtain the ABCD  matrix for the two port network 
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which gives the transmission and reflection coefficients as 
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
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 (3.22) 
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 (3.23) 

Then the scattering parameters of the branch-line hybrid coupler are obtained as 
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with the amplitude of the incident wave 
1 1A  . 

The calculated frequency responses are plotted in Figure 3.4 and Figure 3.5.  

 

Figure 3.4: S parameter magnitudes versus frequency for branch-line hybrid coupler. 
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Figure 3.5: Phase difference between two outputs for branch-line hybrid coupler. 

At the design frequency 0f , we obtain perfect 3dB power division in ports 2 and 3, perfect 

isolation and return loss in ports 4 and 1, and perfect 90° phase difference between ports 3 and 

2. However, all of these quantities degrade quickly as the frequency departs from 0f . 

3.1.3    Equivalent circuit of a conventional branch-line hybrid coupler 

A branch-line hybrid coupler as shown in Figure 3.1 consists of four quarter-wavelength 

transmission line sections. Each quarter-wavelength transmission line section can be 

expressed by its equivalent lumped elements as shown in Figure 3.6. 
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Figure 3.6: (a) A transmission line section and (b) its lumped element equivalent. 

The values of the lumped elements can be obtained by equating the ABCD matrix parameters 

for both structures. For a lossless transmission line section of characteristic impedance cZ  

and electrical length  , the ABCD matrix is given by [9] 

 

cos sin

sin
cos

c

c

jZ
A B

jC D
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 


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 
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 (3.28) 

The ABCD matrix of a   lumped-element network as shown in Figure 3.6 (b) is given by 
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 (3.29) 

which can be simplified as 
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 (3.30) 

where   denotes the radian frequency. 
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By equating the matrix parameters in (3.28) and (3.30) accordingly, we obtain 

 
sincZ

L



  (3.31) 

 
1 1 cos

1 cosc

C
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

 





 (3.32) 

For a quarter-wavelength transmission line section ( 90  ), the values of the lumped 

elements are found as 

 cZ
L


  (3.33) 

 
1

c

C
Z 

  (3.34) 

A branch-line coupler shown in Figure 3.1 consists quarter-wavelength transmission line 

sections of characteristic impedances 01Z  and 02Z . By replacing these sections with equivalent 

lumped elements, the equivalent circuit for the branch-line hybrid coupler is obtained [31]. 

The diagram given in Figure 3.7 is the lumped-element equivalent circuit of the conventional 

branch-line hybrid coupler. 
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Figure 3.7: Lumped element equivalent circuit for a branch-line hybrid coupler [31]. 

The values of the lumped elements are given by 

 01
01 01

0 01 0

1Z
L C

Z 
   (3.35) 

 02
02 02

0 02 0

1Z
L C

Z 
   (3.36) 

where 0  represents the radian frequency corresponding to the centre frequency of the 

branch-line coupler. Substituting (3.7) and (3.8) into (3.35) and (3.36) gives 

 0
01 01

0 00

2

2

Z
L C

Z 
   (3.37) 



45 

 

 0
02 02

0 0 0

1Z
L C

Z 
   (3.38) 

3.2    Coupled resonator 90° hybrid coupler 

In Section 3.1, we obtained the lumped element equivalent circuit for a branch-line hybrid 

coupler. However, in this section, we will synthesis a coupled resonator 90° hybrid coupler 

based on this equivalent circuit. We know that a parallel resonator can be seen as an open 

circuit at resonance. Hence four parallel resonators can be added to the four corners of the 

circuit shown in Figure 3.7, while the quarter-wavelength transmission lines can be seen as 

the couplings between resonators [32]. The topology of the proposed hybrid coupler is given 

Figure 3.8, where the black dot represents the resonator and the coupling is depicted by the 

line connecting two dots.  
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Figure 3.8: Topology of a four-coupled resonator hybrid coupler. 

The proposed coupled resonator hybrid coupler can be synthesized using different ways: 

analytic solutions to calculate the required coupling coefficients ijM  and external quality 
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factors 
eiQ , or optimization techniques to synthesis the coupling matrix [4;19;33]. However, 

in this work, we focus on the analytic solutions and will explicitly explain the calculation of 

coupling coefficients and external quality factors. 

3.2.1    Equivalent circuit  

Near resonance, a microwave resonator can usually be modelled by either a series or parallel 

LC lumped-element equivalent circuit. However, as discussed in the previous section, the 

branches are in shunt with the main line, so it is more convenient to consider a parallel 

resonant circuit. Four shunt resonators can thus be added to the lumped-element equivalent 

circuit of the branch-line hybrid coupler without changes in the behaviour of the device at the 

centre frequency. Shown in Figure 3.9 is the lumped-element equivalent of the 90° hybrid 

coupler with four parallel resonant circuits. 
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Figure 3.9: Equivalent circuit of a coupled resonator 90° hybrid coupler [29]. 
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3.2.2    Coupling matrix representation 

The four-port coupled-resonator 90° hybrid coupler as described in previous section can be 

represented in terms of coupling matrix. Figure 3.10 depicts an equivalent circuit of such a 

coupled resonator hybrid coupler, where
iL , 

iC  and 
iG  denote the inductance, capacitance 

and conductance, respectively; 
si  is the source current; and iv  represents the node voltage. 

The dash line connecting two resonators stands for the coupling between them. To derive the 

scattering parameters of this hybrid coupler, the circuit in Figure 3.10 is represented by a four-

port network of Figure 3.11, where voltage and current variables at the ports are denoted by 

iV
 
and iI , and ia

 
and ib  are the wave variables.  
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L4C4
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G2G1 v1 v2
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Figure 3.10: Equivalent circuit of a four-port four-coupled resonator hybrid coupler. 
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Figure 3.11: Network representation of four-port four-coupled resonator hybrid coupler. 

Referring to Chapter 2, we have  
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 (3.39) 

The normalized matrix  A  of the four-coupled resonator hybrid coupler are found as 
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        A q p U j m    (3.40) 

where  q  is a 4 4  matrix with all entries zero, except for 
11 11 eq q , 

22 21 eq q , 33 31 eq q ,

44 41 eq q , U  is the 4 4  identity matrix, and  m  is the general coupling matrix. 

3.2.3    Coupling coefficients and external quality factors extraction 

Assume that the coupling coefficients introduced in Section 3.2.2 are based on mutual 

capacitance, and the associate couplings are electric couplings. The lumped element 

equivalent circuit for a synchronously tuned resonator circuit with electric coupling is shown 

in Figure 3.12, where L  and C  are self-inductance and self-capacitance, and mC  represents 

the mutual capacitance. The angular resonant frequency of the uncoupled resonator is 

1 LC  . 

CL C L

Cm

 

Figure 3.12: Synchronously tuned resonators with electric coupling. 

However, the electric coupling can be represented by an admittance inverter mJ C . Figure 

3.13 shows an alternative form of the equivalent circuit. 



50 

 

-Cm -CmCL C L

Cm

Admittance inverter

J=ωCm 
 

Figure 3.13: An alternative form with an admittance inverter to represent the coupling. 

The electric coupling coefficient is given by [3] 

 m
E

C
k

C
  (3.41) 

Shown in Figure 3.14 (a) is the lumped element equivalent circuit of the main branch in the 

branch-line hybrid coupler, with the values of the lumped elements given by (3.37). An 

alternative form of the equivalent circuit is given in Figure 3.14 (b). 

C01

L01

C01 -Cm1 -Cm1

Cm1

(a) (b)  

Figure 3.14: (a) Lumped element equivalent of the main branch in a branch-line hybrid 

coupler and (b) Alternative form of (a) with an admittance inverter. 
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By equating the ABCD  matrices of the two configurations in Figure 3.14, the value of 
mC  

can be found. Thus we can calculate the corresponding coupling coefficient.  

At resonant frequency, the ABCDmatrix of the configuration of Figure 3.14 (a) has the form 

 
01

01

0

0

j LA B

j CC D





  
   

   
 (3.42) 

However, the ABCD  matrix of the configuration of Figure 3.14 (b) is given by 

 1

1

1
0

0

m

m

jA B
C

C D
j C





 
      

 
  

 (3.43) 

Equating the elements in two ABCD  matrices accordingly, we have 
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1

01 1

1

m

m

j L j
C

j C j C




 

 

 

 (3.44) 

which gives 

 

1 01

1 2

01

1

m

m

C C

C
L

 

 

 (3.45) 

Using (3.37) in (3.45)yields 

 
1

0

2
mC

Z 
   (3.46) 

So, the coupling coefficient between resonators 1 and 2 is obtained as 
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 1
1

0

2m
E

C
k

C Z C
    (3.47) 

Similarly, the coupling coefficient between resonators 2 and 3 can be calculated as 

 1
2

0

1m
E

C
k

C Z C
    (3.48) 

The external quality factors are obtained by transforming (2.21) as 

 
0 1, 2, 3, 4ei

i

C
Q Z C for i

G


    (3.49) 

3.2.4    Frequency responses and adjustable bandwidth 

For bandpass filters, the external quality factors become coarsely equal to the inverse of the 

fractional bandwidth ( FBW ) [21]. This is also true for a coupled-resonator hybrid coupler. 

For a hybrid coupler with a FBW  of 10% , eQ  is found as 1 10FBW  . With reference to 

Figure 3.8, the coupling matrix can be calculated using (3.47) to (3.49) as 

  

0 0.1414 0 0.1

0.1414 0 0.1 0

0 0.1 0 0.1414

0.1 0 0.1414 0

M

 
 
 
 
 
 

 (3.50) 

The frequency response of the coupled-resonator hybrid coupler is plotted in Figure 3.15. 

Note that at the centre frequency, we obtain perfect 3dB power division in ports 2 and 3, and 

perfect return loss and isolation in ports 1 and 4.  
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Figure 3.15: Frequency response of a four-coupled resonator 90  hybrid coupler. 

Figure 3.16 shows the phase response of the 90° four-coupled resonator hybrid coupler. A 

perfect 90° phase difference between two output ports is achieved at the centre frequency. 
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Figure 3.16: Phase difference between two output ports of a four-coupled resonator 90° 

hybrid coupler. 

The FBW  of the hybrid coupler can be changed by altering the coupling coefficients and 

external quality factors accordingly. The relationship between these quantities is given as 

 

'

'

'

ei ei

ij ij

Q Q a

M M a

FBW FBW a



 

 

 (3.51) 

For example, if we double the coupling coefficients ( 2a  ) and half the external quality 

factors, a hybrid coupler with a FBW  twice as large as the original one can be achieved. 

Figure 3.17 shows the S parameter magnitudes in decibel of two outputs with FBW  of 10% 

and 20%. 
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Figure 3.17: S parameter magnitudes of two output ports with different FBW .  

Generally, a wider bandwidth coupled-resonator hybrid coupler can be achieved by stronger 

couplings between resonators.  

3.3    Improved coupled resonator 90° hybrid coupler 

As shown in Figure 3.15, a perfect 3dB power division can be obtained at the centre 

frequency, however, the performance degrades quickly as the frequency departs from 0f . This 

can be improved by adding two additional resonators to the current coupled-resonator hybrid 

coupler. Shown in Figure 3.18 is the topology of a 90° hybrid coupler consisting of six inter-

coupled resonators. 
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Figure 3.18: Topology of a six-coupled resonator hybrid coupler. 

The coupling matrix for this topology is expressed as 
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 (3.52) 

while the external quality factor matrix has the form 
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 
  

 (3.53) 

Analogous to the four-coupled resonator hybrid coupler, the coupling coefficients of the six-

coupled resonator hybrid coupler can be calculated from the impedances of the three-branch 

branch-line coupler. Figure 3.19 depicts the geometry of a branch-line coupler with three 

shunt branches. 
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Figure 3.19: Geometry of a three-branch branch-line coupler [34]. 

The coupling coefficients are obtained from (3.34), (3.41) and (3.45) as 
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   (3.54) 
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   (3.55) 
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Z C
   (3.56) 

while the external quality factors are given by (3.49) as 

 1 2 3 4 0e e e eQ Q Q Q Z C     (3.57) 

With reference to [30], for 3dB coupling, the impedances of a branch-line coupler with three 

shunt branches are found as  

 01 03 0

1

2
Z Z Z   (3.58) 

 02 0

1

2 1
Z Z


 (3.59) 
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Hence we can calculate the required coupling coefficients for the coupled resonator hybrid 

coupler. For a hybrid coupler with a FBW  of 10%, 
eQ  is found as 1 10FBW  . The 

coupling matrix is calculated as 

 

0 0.1414 0 0 0 0.0414

0.1414 0 0.1414 0 0.1414 0

0 0.1414 0 0.0414 0 0
[ ]

0 0 0.0414 0 0.1414 0

0 0.1414 0 0.1414 0 0.1414

0.0414 0 0 0 0.1414 0

M

  
 
  
 
  

  
  

   
 
  

 (3.60) 

The S parameters can be represented in terms of the normalized coupling matrix and 

normalized external quality factor matrix. The frequency responses of the six-coupled 

resonator hybrid coupler are illustrated in Figure 3.20 and Figure 3.21. 

 

Figure 3.20: Frequency response of six-coupled resonator hybrid coupler. 
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Figure 3.21: Phase difference between two output ports. 

Shown in Figure 3.22 are the frequency responses of the conventional branch-line coupler, 

four-coupled resonator hybrid coupler and the six-coupled resonator hybrid coupler with the 

same 3dB bandwidth. As can be seen, all these hybrid couplers have perfect even power 

division near the centre frequency. As the frequency departs from 0f , the performance of the 

hybrid couplers degrade at different rates. With reference to Figure 3.22, the 1dB bandwidth 

of the conventional branch-line coupler is around 25%. For four-coupled resonator hybrid 

coupler, it is around 20%. However, the bandwidth can be increased to 30% with the six-

coupled resonator hybrid coupler at the cost of an increased number of resonators.  
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Figure 3.22: Comparison of S parameter magnitudes of output ports. 

3.4    Coupled resonator 180° hybrid coupler 

Similar to the synthesis of the coupled resonator 90° hybrid coupler, we will start by looking 

into the conventional rat-race hybrid coupler. The design of a rat-race hybrid coupler is given, 

and the frequency responses will be shown. We then obtain the equivalent circuit of the rat-

race by substituting each section of transmission line with its lumped-element equivalent. 

Finally, the synthesis of the coupled-resonator 180° hybrid coupler is presented with a 

numerical example. 

3.4.1    Conventional rat-race hybrid coupler 

The rat-race hybrid coupler shown in Figure 3.23 can easily be fabricated using planar circuit 

construction. The ring hybrid has four ports with the terminal impedance 0Z . The spacing 

between ports 2 and 4 is 3 / 4g , and the spacing between all other adjacent ports is / 4g . 
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With reference to Figure 3.23, a signal applied to port 4 will be split equally into two 

components with 180° phase difference at ports 2 and 3, and port 1 will be isolated. If the 

input is applied to port 1, it will be evenly divided into two in-phase components at port 2 and 

3, and port 4 will be isolated. 
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Figure 3.23: A rat-race hybrid coupler [10]. 

At the centre frequency, the scattering parameters of the circuit are given by [29] 

 0
12

02

Z
S j

Z
   (3.61) 

 0
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Z
S j

Z
   (3.62) 

 11 14 0S S   (3.63) 

and 
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The scattering matrix of the ring hybrid has the form 
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By properly choosing the values of 01Z
 
and 02Z , the circuit can operate like a rat-race hybrid 

coupler. From scattering matrices (1.19) and (3.67) we have 

 0
01

2

Z
Z

C
  (3.68) 

 0
02

1

Z
Z

C
  (3.69) 

Substituting(1.20) in (3.68) and (3.69) gives 

 01 02Z Z  (3.70) 

 02 02Z Z  (3.71) 
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The analysis of a rat-race hybrid coupler can be carried out using the even- and odd-mode 

approach [30], which has been well explained in the analysis of the branch-line coupler. The 

frequency response of the conventional rat-race hybrid coupler is shown in Figure 3.24. Note 

that an input signal applied to port 4 is evenly split between ports 2 and 3 at the centre 

frequency. 

 

Figure 3.24: S parameter magnitudes versus frequency for rat-race hybrid coupler. 

The phase difference between two output ports is plotted in Figure 3.25, where a perfect 180° 

phase difference is achieved at the centre frequency. 
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Figure 3.25: Phase difference between two output ports.  

3.4.2    Equivalent circuit 

A rat-race hybrid coupler as shown in Figure 3.23 consists of three quarter-wavelength 

transmission line sections and a three-quarter-wavelength transmission line section. Each 

transmission line section can be expressed by its equivalent lumped elements as shown in 

Figure 3.6. For a quarter-wavelength transmission line section ( 90  ), the values of the 

lumped elements are given in (3.33) and (3.34). However, a three-quarter-wavelength 

transmission line section ( 270  ) can be seen as three sections of quarter-wavelength 

transmission line. With reference to Figure 3.23, a rat-race hybrid coupler consists 

transmission line sections of characteristic impedances 01 02Z Z  and 02 02Z Z . By 

replacing these sections with equivalent lumped elements, the equivalent circuit for the rat-

race hybrid coupler is obtained and shown in Figure 3.26. 
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Figure 3.26: Lumped element equivalent circuit for a rat-race hybrid coupler [29]. 

The values of the lumped elements are given by 

 0
01 01

0 0 0

2 1

2

Z
L C

Z 
   (3.72) 

 0
02 02

0 0 0

2 1

2

Z
L C

Z 
   (3.73) 

By adding six additional resonators to the equivalent circuit of the rat-race hybrid coupler, the 

equivalent circuit for a coupled-resonator 180° hybrid coupler is obtained and shown in 

Figure 3.27.  
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Figure 3.27: Lumped-element equivalent of a coupled-resonator 180° hybrid coupler [29]. 

3.4.3    Coupling coefficients and external quality factors 

The topology of a six-coupled resonator 180° hybrid coupler is shown in Figure 3.28, where 

the black dot represents the resonator and the coupling is depicted by the line connecting two 

dots. The coupling coefficient can be calculated directly from the impedance of the 

corresponding transmission line section as 

 12 34 45 56

0

1

2
M M M M

Z C
      (3.74) 

and 



67 

 

 23 61

0

1

2
M M

Z C
    (3.75) 

while the external quality factors are given by 

 
1 2 3 4 0e e e eQ Q Q Q Z C     (3.76) 
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Figure 3.28: Topology of a six-coupled resonator 180 hybrid coupler. 

3.4.4    Frequency responses 

For a hybrid coupler with a FBW  of 10%, eQ  is found as 1 10FBW  . The coupling matrix 

can be calculated as 
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0 0.0707 0 0 0 0.0707

0.0707 0 0.0707 0 0 0

0 0.0707 0 0.0707 0 0
[ ]
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  

  
 
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 (3.77) 

The frequency responses of the six-coupled resonator 180° hybrid coupler are given in Figure 

3.29 and Figure 3.30, where a perfect performance at centre frequency can be seen.  

 

Figure 3.29: Frequency response of the six-coupled resonator 180  hybrid coupler. 
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Figure 3.30: Phase difference between two output ports. 

3.4.5    180° coupled resonator hybrid coupler with improved response 

The coupled resonator hybrid coupler synthesized in the previous section is based on the 

conventional rat-race hybrid coupler. Although it operates perfectly at the centre frequency, 

the bandwidth is narrow. An improved rat-race hybrid coupler is proposed in [35] and the 

configuration is given in Figure 3.31. As can be seen four quarter-wave transformers are 

added to the four ports of the conventional rat-race hybrid coupler. Values of the parameters 

of the improved rat-race hybrid coupler are given in Table 1. 



70 

 

c

Y1

Y2 Y2

Y4

λg/4

λg/4
λg/4

2

1 3

4

c

λg/4

λg/4 λg/4

Y3Y3

Y0
Y0

Y0 Y0

Y1cY1c

Y2cY2c

 

Figure 3.31: Configuration of an improved rat-race hybrid coupler [35]. 

The same method is used to obtain the equivalent circuit of the improved rat-race hybrid. 

Based on the topology shown in Figure 3.28, the topology of the improved 180° coupled 

resonator hybrid coupler can be obtained by adding four resonators to four ports, and is given 

in Figure 3.32.  

Table 1: Optimized values of the parameters of the improved rat-race hybrid coupler [35]. 

1Y
 2Y

 3Y
 4Y

 1cY
 2cY

 

0.7446 1.0114 1.128 1.128 0.9962 1.3758 
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Figure 3.32: Topology of the improved coupled resonator 180  hybrid coupler. 

The coupling matrix can be calculated from the values in Table 1 by using the equation 

1 i
Ei

i

Y
M

Z C C 
    , and the external quality factors are given by 

1 2 3 4 0e e e eQ Q Q Q C Y    . When FBW  is 30%, eQ  is found as 1 3.33FBW  . The 

coupling matrix is calculated as 

  
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 
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 
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 
 
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 
 
 
 
  

(3.78) 

The frequency response and phase response are given in Figure 3.33 and Figure 3.34 

respectively.  
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Figure 3.33: Frequency response of the ten-coupled resonator 180  hybrid coupler. 

 

Figure 3.34: Phase response of the ten-coupled resonator 180  hybrid coupler. 
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The comparison of the response curves of the conventional rat-race, six-coupled resonator 180° 

hybrid coupler, and ten-coupled resonator 180° hybrid coupler is shown in Figure 3.35. Here, 

both the rat-race and six-coupled resonator hybrid coupler have a perfect performance at 

centre frequency. However, the ten-coupled resonator hybrid coupler realizes a wider 

bandwidth at the expense of ±0.5dB deviation from 3dB at the centre frequency. 

 

Figure 3.35: Comparison of the rat-race hybrid coupler, the six-coupled resonator hybrid 

coupler and the ten-coupled resonator hybrid coupler. 
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Chapter    4                                                                  

Waveguide Resonator Implementation of a 90° Hybrid Coupler 

The previous chapter discusses the synthesis and numerical design of both 90° and 180° 

coupled resonator hybrid couplers. In this chapter, the implementation of an X-band 90° 

hybrid coupler using waveguide cavity resonators is presented. Waveguide cavity resonators 

are chosen because of their high unloaded quality factors. We will first describe some general 

properties of the waveguide cavity resonator, including the resonant frequency and the 

unloaded quality factor. Then we will extract coupling coefficients and external quality 

factors from physical structures. Design of the physical dimensions of the coupled-resonator 

90° hybrid coupler is also provided. Finally, we discuss the fabrication and measurement 

results of the proposed device. 

4.1    Properties of waveguide cavity resonators 

The waveguide cavity resonator [9] is constructed from a closed section of waveguide. Figure 

4.1 depicts the geometry of a rectangular waveguide cavity. It consists of a length d  of 

waveguide shorted at both ends ( 0z  , d ).  
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Figure 4.1: Geometry of a rectangular waveguide resonator [9]. 

The transverse electric fields ( xE ,
yE ) of the mnTE  or mnTM rectangular waveguide mode can 

be written as [9] 

    , , , mn mnj z j z

tE x y z e x y A e A e
       (4.1) 

where  ,e x y  is the transverse variation of the mode, and A
, A

 are amplitudes of the 

forward and backward travelling waves. The propagation constant of TE  or TM  mode is 

given as [9] 
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where k   , and  ,   are the permeability and permittivity of the material filling the 

waveguide.  

Applying the boundary condition that 0tE   at 0z   to (4.1) implies that A A  . Then 

apply the condition that 0tE   at z d  yields 

    , , , 2 sin 0t mnE x y d e x y A j d    (4.3) 

which implies 

 , 1, 2, 3,mnd l l    (4.4) 

Thus the waveguide cavity must be an integer multiple of a half-guide wavelength long at the 

resonant frequency. A cutoff wavenumber for the rectangular cavity can be defined as [9] 
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     
 (4.5) 

where m , n , l  refer to the number of variations in the standing wave pattern in the x , y , z  

directions, respectively. For the mnlTE  or mnlTM  mode, the resonant frequency is given by [9] 
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If b a d  , the dominant resonant mode (lowest resonant frequency) is the 101TE  mode. 

From (4.6) we found that the resonant frequency for 101TE  mode is 
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The unloaded quality factor 
uQ , which describes the quality of the resonator in terms of losses 

and energy storage, is generally defined as 

 
u

average energy stored in the resonator
Q

average power lost in the resonator
  (4.8) 

The losses may come from the finite conductivity of the cavity walls, the lossy dielectric 

filling material, and the radiation. Formally, the unloaded quality factor is defined as 

 
1 1 1 1

u c d rQ Q Q Q
    (4.9) 

If the cavity is filled with air and there is no radiation loss, the last two terms on the right in 

(4.9) are equal to zero. Thus the unloaded quality factor can be evaluated from the finite 

conductivity losses as [9] 
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where     is the wave impedance, and 
2

sR



  is the resistance of the conducting 

walls with a conductivity  . 

Generally, the insertion loss of the coupled-resonator circuit is inversely proportional to the 

unloaded quality factor. Waveguide cavity resonators are chosen because of their high 

unloaded quality factor, thus low insertion loss. 
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4.2    Extraction of the coupling coefficient from the physical structure 

The coupling coefficient of coupled microwave resonators can be found by using full-wave 

EM simulation. CST [36] is one of the commercially available software packages and is used 

to perform EM simulations throughout this work. Figure 4.2 shows the physical model used to 

extract the coupling coefficient of two coupled waveguide cavity resonators.  

 

Figure 4.2: Model used to deduce the coupling coefficient of a pair of coupled resonators. 

Note that the two coupled resonators should be weakly coupled to the input and output 

external ports so as to minimise the influence of the external coupling. This is achieved by a 

narrow iris between the resonator and the external port as shown in Figure 4.2. The simulated 

frequency response 21S  of the coupling structure is given in Figure 4.3, where two peaks can 

been seen at frequency 1  and 2 . For a pair of synchronously tuned resonators, the coupling 

coefficient is defined as [3] 
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Figure 4.3: Frequency response of two coupled resonators showing two peaks. 

From (4.11) it can be seen that the wider the separation between two peaks, the stronger the 

coupling. By altering the width of the coupling iris w  between two resonators, the desired 

coupling coefficient can be achieved. A series of EM simulations may be performed by CST 

to produce the graph of the coupling coefficient against varying coupling iris dimensions, as 

shown in Figure 4.4  
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Figure 4.4 Coupling coefficient against varying coupling iris dimensions 

4.3    Extraction of the external quality factor from the physical structure 

Similarly, the external quality factor can be extracted from the frequency response of the 

resonator. Simulations are carried out using the structure as shown in Figure 4.5, where the 

resonator is symmetrically coupled to the input and output ports.  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

7 8 9 10 11 12 13 14

C
o

u
p
li
n
g
 c

o
ef

fi
c
ie

n
t

Coupling iris width w (mm)



81 

 

 

Figure 4.5: Model used to extract external quality factor of a waveguide cavity resonator. 

The doubly loaded external quality factor [3] is defined as 

 ' 0

3 2

e
e

dB

Q
Q




 


 (4.12) 

where 3dB  is the bandwidth for which the attenuation for 21S  is 3dB from that at resonance, 

as indicated in Figure 4.6. The doubly loaded external quality factor '

eQ  can be calculated 

from the frequency response by using (4.12). Then the external quality factor eQ  is simply 

twice of '

eQ . By symmetrically altering the coupling iris dimensions, the desired external 

quality factor can be obtained. However, the introduction of external coupling iris causes a 

decrease in the resonant frequency. Therefore the dimensions of the cavity must be slightly 

altered until the desired centre frequency is again obtained. A graph of the external quality 

factor against different coupling iris dimensions is plotted in Figure 4.7.  
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Figure 4.6: Frequency response of a doubly loaded resonator. 

 

Figure 4.7: External quality factor against varying coupling iris dimensions. 
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4.4    Design of physical hybrid coupler dimensions 

Given in Figure 4.8 is the physical model of the 90° hybrid coupler. The waveguide has an 

inner dimension of a  by b . The lengths of the waveguides and cavity resonators are labelled 

with l  and d , respectively. However, parameters 
0w , 

1w  and 
2w  denote the widths of the 

coupling apertures. Note that the thickness of the coupling iris is chosen to be 2mm. 

 

Figure 4.8: Model of the air gap inside the 90° hybrid coupler. 

A 90° hybrid coupler is designed at X-band with a centre frequency of 10GHz and a 5% 

FBW . The standard X-band waveguide has internal dimensions of 22.86mm by 10.16mm 

[10]. In order to let the waveguide cavity resonant at 10GHz, the length of the waveguide 

cavity is calculated from (4.7) as 19.88mm. 

We then calculate coupling coefficients and external quality factors from (3.47) to (3.49) as 
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 (4.13) 

 1 2 3 4 20e e e eQ Q Q Q     (4.14) 

In order to use the coupling matrix and external coupling factors in the physical design of the 

coupler, we need to find out the relationship between these parameters and the physical 

dimensions. As mentioned in Section 4.2 and Section 4.3, a series of EM simulations can be 

performed by CST to produce plots of coupling coefficients and external quality factors 

against varying coupling iris dimensions. The plots of the coupling coefficients against 

varying coupling iris width are given in Figure 4.9 and Figure 4.10. Figure 4.11 shows the 

external quality factor plotting against varying coupling iris width.  

 

Figure 4.9: Coupling coefficient against varying iris width w1. 
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Figure 4.10: Coupling coefficient against varying iris width w2. 

 

Figure 4.11: External quality factor against varying coupling iris width w0. 
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The required physical dimensions of the 90° hybrid coupler can be read from Figure 4.9 to 

Figure 4.11 by finding the width of the coupling iris corresponding to the required coupling 

coefficient or external quality factor. Note that the introduction of external coupling iris 

causes a decrease in the resonant frequency, so the length of the cavity is slightly shortened 

until the 10GHz centre frequency is obtained.  

However, this can only provide a good starting point for the design, further optimization for 

the best performance is needed. One common method is to use CST to perform EM 

simulations for the whole structure and then optimize the response. The original dimensions 

as well as the optimized dimensions of the 90° hybrid coupler are described in Table 2. With 

reference to Table 2, the original dimensions obtained from the theoretical analysis and the 

final dimensions from the optimization have a difference of less than 8% .  

Table 2: Dimensions of the 90° hybrid coupler before and after optimization. 

Parameter Original 

Value (mm) 

Optimized 

Value (mm) 

Description 

a  22.86 22.86 Width of the cavity 

b  10.16 10.16 Height of the cavity 

d  14.2 14.46 Length of the cavity 

l  20.00 20.00 Length of the waveguide 

0w  12.05 11.77 Width of the coupling iris 

1w  10 9.2 Width of the coupling iris 

2w  
10.3 10.84 Width of the coupling iris 

 



87 

 

Shown in Figure 4.12 is the frequency response of the 90° hybrid coupler before and after 

optimization. It can be seen that the theoretical analysis provides a good starting point for the 

optimization of the performance of the device.  

 

Figure 4.12: Frequency response of the 90° hybrid coupler before and after optimization. 

Finally, four 90° E-plane waveguide bends of inner radius 18r mm  are added to the hybrid 

coupler to help with the connecting to the measuring system. Figure 4.13 shows the structure 

of the 90° hybrid coupler with embedded waveguide bends. 
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Figure 4.13: Model of the 90° hybrid coupler with embedded E-plane waveguide bends. 

4.5    Fabrication and measured results 

With reference to the structure shown in Figure 4.13, the hybrid coupler can be implemented 

using three metal blocks. However, due to the finite radiuses of the drills used to fabricate the 

device, round corners must be considered when further altering the dimensions.  
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Figure 4.14: (a) 3D model of the middle block of the hybrid coupler and (b) its top view with 

labelled radiuses. 
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Shown in Figure 4.14 (a) is the 3D model of the middle block of the hybrid coupler with 

round corners, and its top view is given in Figure 4.14 (b), where the radiuses of  round 

corners are 1.1mm  and 1.6mm .  

The hybrid coupler with round corners is then simulated in CST to further optimize the 

response. The final optimized values of the parameters are given in Table 3. Note that the 

value of d  is increased, and this is because the round corners reduce the effective length of 

the resonator. 

Table 3: Dimensions of the 90° coupled resonator hybrid coupler with round corners. 

Parameter Without Round Corners (mm) With Round Corners (mm) 

a  22.86 22.86 

b  10.16 10.16 

d  14.46 14.7 

l  20.00 20.00 

0w  11.77 11.77 

1w  9.2 9.2 

2w  
10.84 10.72 

 

Figure 4.15 shows photographs of the 90° hybrid coupler fabricated from three pieces of 

aluminium blocks.  
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Figure 4.15: Photographs of the 90° hybrid coupler. 

Finally, the measured results of the device without tuning are given in Figure 4.16 and Figure 

4.17. As can be seen, there is a good agreement between measurements and simulations. The 

measured magnitudes of 21S  and 31S  at centre frequency are within ±0.2dB from the designed 

-3dB. The measured phase difference between 21S  and 31S  at centre frequency is 87° 

compared to the simulated 90°.  
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Figure 4.16: (a) Simulated and measured magnitude responses of 90° hybrid coupler and (b) 

centre frequency details. 
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Figure 4.17: (a) Simulated and measured phase responses of the 90°hybrid coupler and (b) 

centre frequency details.
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Chapter    5                                                                                    

Conclusions and further work 

5.1    Conclusions 

A general technique for the design of coupled resonator filters is based on coupling 

coefficients of inter-coupled resonators and external quality factors of the input and output 

resonators. It can be applied to any type of resonator despite its physical structure. The work 

presented here has extended the design techniques used for two-port filters to four-port hybrid 

couplers. In particular, an X-band 90°coupled resonator hybrid coupler has been constructed 

using this principle. This thesis may be categorised into three sections, each corresponding to 

a step in the design process for coupled resonator hybrid couplers. The first of these steps is to 

obtain the possible topologies of the coupled resonator hybrid couplers. The second is the 

synthesis of the coupling matrix and external quality factors, achieved here by calculation 

from existing hybrid coupler designs. Finally, design the physical dimensions of the hybrid 

coupler from a particular coupling matrix and external quality factors. 

The general coupling matrix is of importance for representing various coupled resonator 

topologies. It can be derived from a set of loop equations or a set of node equations, 

depending on whether the couplings are magnetic or electric. The transmission and reflection 

scattering parameters for four-port coupled resonator circuits have been derived in terms of 

the general coupling matrix. These useful formulas provide the fundamental of this work. 

The equivalent circuit of the conventional branch-line hybrid coupler has been obtained by 

replacing each branch with its lumped element equivalent. Because the parallel resonator can 
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be seen as open circuit at resonance, it can be added to the conventional branch-line hybrid 

coupler without changes in the response at the centre frequency. Formulations used to 

calculate the coupling coefficients and external quality factors have been derived. A 90° four-

coupled resonator hybrid coupler has been successfully synthesised based on the equivalent 

circuit of the conventional branch-line coupler. It has also been proven that different 

fractional bandwidth of the hybrid coupler can be achieved by altering the coupling 

coefficients and external quality factors accordingly. An improved 90° hybrid coupler has 

been synthesised with six coupled resonators, corresponding to the three-branch branch-line 

hybrid coupler. A comparison among the conventional branch-line coupler, the four-coupled 

resonator hybrid coupler and the six-coupled resonator hybrid coupler has been carried out 

with the same 3dB bandwidth. The results show that the four-coupled resonator hybrid 

coupler has a performance comparable with conventional branch-line, while in the six-

coupled resonator hybrid coupler has a flatter frequency response near the centre frequency. 

The 180° six-coupled resonator hybrid coupler and an improved 180° ten-coupled resonator 

hybrid coupler have been synthesised based on the conventional rat-race hybrid coupler and 

the improved rat-race hybrid respectively.  

Finally, an X-band 90° coupled resonator hybrid coupler has been implemented using 

waveguide cavity resonators, providing validation for using coupling matrix model in the 

design process for four-port coupled resonator circuits. Waveguide cavity resonators are 

chosen because of their high unloaded quality factors. The relationship between the coupling 

coefficients and the physical dimensions has been demonstrated. The frequency 

characteristics of the fabricated hybrid coupler agree well with the design. The measured 

magnitudes of 21S  and 31S  at centre frequency are within ±0.2dB from the designed -3dB. 
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The measured phase difference between 
21S  and 

31S  at centre frequency is 87° compared to 

the simulated 90°. 

5.2    Further work 

The work on coupled resonator circuits could be pursued further in several different ways. 

First, the coupled resonator 90° hybrid couplers can be used together with crossovers to form 

the Butler matrix as shown in Figure 1.12. The crossover as shown in Figure 5.1 is 

constructed from two back-to-back 90° coupled resonator hybrid couplers. The signal incident 

at port 1 is coupled to port 3, while the input signal at port 4 will be coupled to port 2. 
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Figure 5.1: Topology of a coupled resonator crossover. 

Another area where the current work could be extended is to optimize the coupling matrix so 

as to produce a filtering response. As presented in Section 3.4.5, the ten-coupled resonator 90° 

hybrid coupler has two return zeros and a maximum 25dB return loss. More complicated 

structures can be developed to improve the selectivity. The response of the filtering coupler 

can be compared with that of the conventional coupler connected with filters. 

There are also opportunities to conduct research into the synthesis of more complicated 

devices with more input and output ports. The design procedure presented in this work can be 
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generalised to multi-port coupled resonator components, such as multiplexers and N-way 

power dividers, which are important components in microwave communication systems. As 

the complexity of the device increases, it may be too complicated to use the analytic solution, 

thus efficient optimization techniques are required to synthesis the coupling matrix. 



98 

 

Bibliography 

 

 [1]  H. Jia-Sheng and M. J. Lancaster, "Cross-coupled microstrip hairpin-resonator 

filters," Microwave Theory and Techniques, IEEE Transactions on, vol. 46, no. 1, pp. 

118-122, Jan.1998. 

 [2]  R. J. Cameron, C. M. Kudsia, and R. R. Mansour, Microwave filters for 

communication systems: fundamentals, design, and applications Wiley-Interscience, 

2007. 

 [3]  J. S. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications 

Wiley, 2001. 

 [4]  T. F. Skaik, M. J. Lancaster, and F. Huang, "Synthesis of multiple output coupled 

resonator circuits using coupling matrix optimisation," Microwaves, Antennas & 

Propagation, IET, vol. 5, no. 9, pp. 1081-1088, June2011. 

 [5]  R. L. Haupt, Antenna Arrays: A Computational Approach John Wiley & Sons, 2010. 

 [6]  Professor M Lancaster, Dr P Gardner, and Dr F Huang, "Terahertz Micromachined 

Resonator Superstructures," 2010. 

 [7]  F. H. Fan, W. Ke, H. Wei, H. Liang, and C. Xiao-Ping, "Low-Cost 60-GHz Smart 

Antenna Receiver Subsystem Based on Substrate Integrated Waveguide 

Technology," Microwave Theory and Techniques, IEEE Transactions on, vol. 60, no. 

4, pp. 1156-1165, Apr.2012. 

 [8]  S. B. Cohn and R. Levy, "History of Microwave Passive Components with 

Particular Attention to Directional Couplers," Microwave Theory and Techniques, 

IEEE Transactions on, vol. 32, no. 9, pp. 1046-1054, Sept.1984. 

 [9]  D. M. Pozar, Microwave engineering J. Wiley, 2005. 

 [10]  R. E. Collin, Foundations for microwave engineering IEEE Press, 1992. 

 [11]  S. A. Maas, Microwave mixers Artech House, 1993. 

 [12]  A. V. Räisänen and A. Lehto, Radio engineering for wireless communication and 

sensor applications Artech House, 2003. 

 [13]  R. J. Mailloux, Phased array antenna handbook Artech House, 2005. 

 [14]  K. Fujimoto, Mobile antenna systems handbook Artech House, 2008. 

 [15]  J. Butler and R. Lowe, "Beam-Forming Matrix Simplifies Design of Electronically 

Scanned Antennas," Electronic Design, vol. 9, pp. 170-173, Apr.1961. 



99 

 

 [16]  T. N. Kaifas and J. N. Sahalos, "On the design of a single-layer wideband Butler 

matrix for switched-beam UMTS system applications [Wireless Corner]," Antennas 

and Propagation Magazine, IEEE, vol. 48, no. 6, pp. 193-204, Dec.2006. 

 [17]  A. Atia, A. Williams, and R. Newcomb, "Narrow-band multiple-coupled cavity 

synthesis," Circuits and Systems, IEEE Transactions on, vol. 21, no. 5, pp. 649-655, 

Sept.1974. 

 [18]  H. C. Bell, Jr., "Canonical Asymmetric Coupled-Resonator Filters," Microwave 

Theory and Techniques, IEEE Transactions on, vol. 30, no. 9, pp. 1335-1340, 

Sept.1982. 

 [19]  R. J. Cameron, "General coupling matrix synthesis methods for Chebyshev filtering 

functions," Microwave Theory and Techniques, IEEE Transactions on, vol. 47, no. 4, 

pp. 433-442, Apr.1999. 

 [20]  R. J. Cameron, "Advanced coupling matrix synthesis techniques for microwave 

filters," Microwave Theory and Techniques, IEEE Transactions on, vol. 51, no. 1, pp. 

1-10, Jan.2003. 

 [21]  G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters, impedance-

matching networks, and coupling structures Artech House Books, 1980. 

 [22]  A. Garcia-Lamperez, M. Salazar-Palma, and T. K. Sarkar, "Analytical synthesis of 

microwave multiport networks,", 2 ed 2004, pp. 455-458. 

 [23]  C. Bowick, J. Blyler, and C. Ajluni, RF circuit design Elsevier Science & 

Technology, 2007. 

 [24]  K. W. Eccleston and S. H. M. Ong, "Compact planar microstripline branch-line and 

rat-race couplers," Microwave Theory and Techniques, IEEE Transactions on, vol. 

51, no. 10, pp. 2119-2125, Oct.2003. 

 [25]  C. Kuo-Sheng, L. Ken-Min, W. Yen-Hsiu, T. Tzu-Hao, and Y. Yu-Jie, "Compact 

Dual-Band Branch-Line and Rat-Race Couplers With Stepped-Impedance-Stub 

Lines," Microwave Theory and Techniques, IEEE Transactions on, vol. 58, no. 5, pp. 

1213-1221, May2010. 

 [26]  H. Ghali and T. A. Moselhy, "Miniaturized fractal rat-race, branch-line, and 

coupled-line hybrids," Microwave Theory and Techniques, IEEE Transactions on, 

vol. 52, no. 11, pp. 2513-2520, Nov.2004. 

 [27]  G. P. Riblet, "A Directional Coupler with Very Flat Coupling," Microwave Theory 

and Techniques, IEEE Transactions on, vol. 26, no. 2, pp. 70-74, Feb.1978. 

 [28]  W. M. Fathelbab, "The Synthesis of a Class of Branch-Line Directional Couplers," 

Microwave Theory and Techniques, IEEE Transactions on, vol. 56, no. 8, pp. 1985-

1994, Aug.2008. 



100 

 

 [29]  R. Mongia, I. J. Bahl, P. Bhartia, and J. Hong, RF and microwave coupled-line 

circuits Artech House, 2007. 

 [30]  J. Reed and G. J. Wheeler, "A Method of Analysis of Symmetrical Four-Port 

Networks," Microwave Theory and Techniques, IRE Transactions on, vol. 4, no. 4, 

pp. 246-252, Oct.1956. 

 [31]  M. Caulton, B. Hershenov, S. P. Knight, and R. E. DeBrecht, "Status of Lumped 

Elements in Microwave Integrated Circuits---Present and Future," Microwave 

Theory and Techniques, IEEE Transactions on, vol. 19, no. 7, pp. 588-599, 

July1971. 

 [32]  H. Uchida, N. Yoneda, Y. Konishi, and S. Makino, "Bandpass Directional Couplers 

with Electromagnetically-Coupled Resonators," 2006, pp. 1563-1566. 

 [33]  S. Amari, "Synthesis of cross-coupled resonator filters using an analytical gradient-

based optimization technique," Microwave Theory and Techniques, IEEE 

Transactions on, vol. 48, no. 9, pp. 1559-1564, Sept.2000. 

 [34]  R. Levy and L. F. Lind, "Synthesis of Symmetrical Branch-Guide Directional 

Couplers," Microwave Theory and Techniques, IEEE Transactions on, vol. 19, no. 2, 

pp. 80-89, Feb.1968. 

 [35]  I. K. Dong and Y. Naito, "Broad-Band Design of Improved Hybrid-Ring 3-dB 

Directional Couplers," Microwave Theory and Techniques, IEEE Transactions on, 

vol. 30, no. 11, pp. 2040-2046, Nov.1982. 

 [36]   "Computer Simulation Technology (CST)," 2010. 

 
 

 

 

 

 

 

 

 



101 

 

Appendix: Publications 

Shuli Li, Shani Lu, and Michael J. Lancaster, “WR-3 Band Butler Matrix Design Using SU-8 

Photo-Resist Technology,” IET seminar on Passive RF and Microwave Components, London 

UK, March 2012. 



WR-3 Band Butler Matrix Design Using SU-8 Photo-Resist 

Technology 
Shuli Li, Shani Lu, Michael J. Lancaster 

School of Electronic, Electrical and Computer Engineering, The University of Birmingham, U.K. 

Email: sxl971@bham.ac.uk 

Abstract 

A design of WR-3 band 2x2 Butler Matrix feeding a 2-element slotted waveguide antenna array is presented in this 

paper. The whole design is based on an SU-8 multi-layer structure, which is expected to be fabricated by metal-

coated SU-8 thick resist technology [1]. Each layer of the SU-8 wafer has a thickness of 0.432mm, which matches 

the narrow-wall height of a WR-3 (220-325GHz) waveguide. To examine the performance of the proposed Matrix, 

prior to adding antennas, a simulation on the 90 degree resonator based hybrid coupler was carried out using the 

CST Microwave Studio [2]. The simulation results agree well with the theoretical predictions, validating the 

proposed design. 

I. Introduction 

The Butler Matrix is a very attractive beamforming system due to its ability to form orthogonal beams in a simple 

design. This system can limit the interference of signals in order to increase the channel capacity of communication 

systems [3].Conventional planar structure microstrip Butler Matrices have been demonstrated [4-5]. As the 

development of high performance millimeter wave and sub-millimeter wave components and systems, terahertz 

micromachined circuits have been increasingly utilized [6]. A schematic diagram of the WR-3 band 2x2 Butler 

Matrix is shown in Fig1. (a). This whole structure is constructed by one 90 degree hybrid coupler and a 2-element 

slotted waveguide antenna array. This Butler Matrix can be extended to a 2nx2n Butler Matrix by increasing the 

number of 90 degree hybrid couplers and crossovers. The whole structure is to be fabricated on metal-coated SU-8 

thick resist and is designed to be built by three layers of SU-8. Such an assembly for the Butler Matrix is illustrated 

in Fig.1 (b). The antenna has been realized by slotted waveguide antenna array. This antenna array structure has 

two elements that are spaced by λ0 at 270GHz in order to fit the WR-3 band waveguide dimensions and get 

orthogonal beams at the same time. The coupler is shown in Fig1. (b) and is based on four resonators coupled 

together. 

 
                                  (a)                                                                                                        (b) 

Fig1. (a) Schematic Diagram for a 2x2 Butler Matrix (b) Assembly of the 2x2 Butler Matrix feeding a 2-element Slotted 

Waveguide Antenna Array 

II. Resonator Design 

The 90 degree hybrid coupler in this design is based on waveguide cavity resonators. It is developed from the 

conventional branch-line coupler as shown in Fig.2, which consists of two quarter-wavelength transmission line 

sections of characteristic impedance Z01.The two transmission line sections are connected by two shunt branches, 

which are both quarter-wavelength transmission lines of characteristic impedance Z02 at both ends. The branch-line 

coupler has four ports with the terminal impedance Z0. By properly choosing the values of Z01 and Z02 

asZ01=0.707Z0 and Z02=Z0 separately, this circuit can operate as a 90 degree hybrid coupler with equal power split 

at ports 2 and 3 [7]. 
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Fig.2 Branch-line Directional Coupler in Microstrip 

To implement the resonator based 90 degree hybrid coupler, four resonators with appropriate couplings between 

each other are introduced [8]. The correct external quality factor (Qe) between ports and resonators also need to be 

taken into consideration. The topology of this hybrid coupler is shown in Fig.3, as circles of this represent the 

resonators, while the couplings are depicted by the lines between the circles.  

                                                     
Fig.3 Topology of the Coupled Resonator 90 Degree Hybrid Coupler 

For a 90 degree hybrid coupler with a center frequency of 270GHz, and a fractional bandwidth (FBW) of 0.05, the 

coupling matrix and external quality factors can be calculated as [8-9]: 
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Qe1=Qe2=Qe3=Qe4=20 

Fig.4 (a) shows the frequency response of this 90 degree hybrid coupler with the center frequency 270GHz, and 

FBW=0.05. Fig4. (b) is the phase difference between port2 and port3, it is 90 degree at the center frequency. 

 
                                           (a)                                                                                     (b)             

Fig4. (a) Frequency Response of Magnitude for the 90 Degree Hybrid Coupler calculated from coupling matrix. (b) Frequency 

Response of Phase Shift Between S21 and S31 for the 90 Degree Hybrid Coupler 
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III. Waveguide Design 

This 90 degree hybrid coupler is implemented by cavity resonators [8], each with a length of half guided 

wavelength [10], the design has been tailored to suit a simple fabrication for the SU-8 photo-resist technology, for 

this WR-3 band hybrid coupler, it is constructed by only one layer of SU-8 wafer with a thickness of 0.432mm as 

shown in Fig.5. The main dimensions for the structure are illustrated in Table 1. 
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Fig.5 90 Degree Hybrid Coupler with Coupled Waveguide Cavity Resonators 

 

Waveguide Dimensions a х b 0.864mm x 0.432mm 

Waveguide Cavity Resonator Length d 0.495mm 

Aperture Between Port and Resonator  W x t 0.475mm x 0.100mm 

Aperture Between Resonator 1 and 2 W1 x t1 0.375mm x 0.100mm 

Aperture Between Resonator 2 and 3  W2 x t2 0.485mm x 0.060mm 
Table 1 Summary of Main Design Dimensions 

The optimised frequency response simulated by CST Microwave Studio (as shown in Fig.6 (a) by dashed lines) is 

compared with the response calculated by the coupling matrix mentioned in Part II. It can be noted that the 

isolation between two output ports is -22.35dB, and the return loss (RL) is also larger than -30 dB. We can further 

optimize the design to get better RL and isolation, but this will degrade the responses of S21 and S31 to an extent 

that they cannot both get to exactly –3dB at the center frequency. Fig.6 (b) is comparison of phase difference 

between port 2 and port 3. From these two figures, the simulation results agree well with the theoretical calculation. 

The signal fed into port 1 is divided equally at port 2 and port 3 with a phase different of 90 degree. 

 
    (a)                                                                                        (b)  

Fig.6 (a) Comparison of Frequency Response for the 90 Degree Hybrid Coupler with Coupled Waveguide Cavity Resonators 

(b) Comparison of Phase Shift between S21 and S31 for the 90 Degree Hybrid Coupler Coupled Waveguide Cavity Resonators 
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IV. Future Work and Conclusion 

In this paper, the idea of a WR-3 band Butler Matrix constructed by a resonator-based 90 degree hybrid coupler 

feeding a 2-element slotted waveguide antenna array has been implemented. All the structure is built on multi-

layers and is tailored to suit the SU-8 photo-resist technology. The simulated results agree well with the theoretical 

calculation, which will lead to a more accurate measurement result after construction. The optimization of the 8-

slot waveguide antenna will continue. Theoretical predictions of radiation patterns will be predicted in order to 

compare with the optimization result by CST. Experimental measurements will be carried out on this system, and 

the obtained results will be presented and discussed in the future. 
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