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ABSTRACT 

 

Immunity to Salmonella infection requires an integrated immune response, encompassing 

Th1 cell-mediated and humoral immunity at discrete stages of infection. Primary infection 

of mice with attenuated Salmonella Typhimurium (STm) drives an atypical B cell 

response, characterised by a rapid expansion of extrafollicular (EF) plasma cells which 

precedes germinal centre (GC) formation. This thesis examines elements of the GC and EF 

antibody response, and their regulation.  

 

We show that the signalling, adhesion receptor CD31, the cytokines IL4, IL13 and IL6, 

and the transcription factor T-bet, have selective roles in regulating facets of the B cell 

response to STm. Antibody responses are severely impaired in CD31-/- mice during 

primary infection, as is protective immunity after subunit immunisation. The Th2-

associated cytokines IL4, IL13 and IL6 promote optimal GC formation during STm 

infection, however only total loss of IL6 leads to defective class-switched antibody 

production. We further identify a B cell-intrinsic role for T-bet in IgG2a class-switching 

during STm infection, whilst T cell-intrinsic T-bet is completely dispensable for this 

response. In addition, a selective role for T-bet in GC responses to Th2 antigens is shown. 

These data identify some similarities and differences between the regulation of B cell 

responses to Th1 and Th2 antigens.   
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CHAPTER 1: INTRODUCTION

 

1.1 Coordination of the Immune Response  

Constant exposure to a plethora of antigenic material requires a robust and highly 

coordinated immune response. The rapid recruitment of innate immune cells into an 

infection site is critical for the early control of pathogen replication, but is not always 

sufficient for resolution. Under these circumstances, a delayed yet highly specific adaptive 

immune response must occur for complete pathogen elimination. As such, our immune 

system has evolved to encompass two distinct, yet not entirely autonomous, phases.  

 

1.1.1 Linking innate and adaptive immunity 

The innate immune system provides the rapid, non-specific first line of defence against 

foreign material and is comprised of multiple components. The skin and internal epithelial 

surfaces of the body provide an important physical barrier against the external 

environment, presenting the first challenge to the microorganisms attempting to breach it. 

As well as being a physical barrier, the epithelial surfaces contribute to innate immunity 

through the production and release of numerous antimicrobial substances, which can 

directly kill a number of pathogenic microbes, as well as stimulating cellular responses 

(1,2).  
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Cells of the innate immune system arise from progenitors in the bone marrow and include 

monocytes/macrophages, neutrophils, dendritic cells (DC) and natural killer (NK) cells (3). 

Microbes that penetrate the epithelial barriers and enter tissues encounter tissue resident 

macrophages, the mature form of blood monocytes, that are capable of ingesting pathogens 

by phagocytosis (4). Neutrophils can also engulf foreign material in this way, and are 

recruited into tissues in response to the pro-inflammatory environment created by 

macrophages (5). Following phagocytosis, macrophages and neutrophils release 

bactericidal agents that allow killing of the ingested pathogen (6).  

 

Innate immune cells use a number of pattern recognition receptors (PRR) to identify 

pathogen-associated molecular patterns (PAMP) on the surface of microbes, through which 

they initiate their effector functions (7). Examples of PRR include acute phase proteins, 

mannose and scavenger receptors, nucleotide binding and oligomerisation domain (NOD)-

like receptors and toll-like receptors (TLR) (3). Numerous TLR have now been identified 

on mammalian cells. Upon ligation, TLR signalling pathways can enhance phagocytosis 

and stimulate the release of pro-inflammatory cytokines (8). Another important feature of 

TLR is the activation of antigen presenting cells (APC) such as DC, a key requirement for 

priming the later, adaptive immune response (9). Thus, TLR can be seen as ‘bridging the 

gap’ between innate and adaptive immunity.  

 

Other innate immune components link innate and adaptive immunity, such as the system of 

complement proteins. Activation of complement pathways can lead to the direct lysis of 

bacteria through the formation of a membrane attack complex (MAC), or to the 

opsonisation of microbes, marking them for uptake by phagocytes (10). The latter of these 
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functions is enhanced in the presence of antibody, which is produced by bone marrow-

derived cells (B cells) and largely associated with the adaptive response. However, certain 

subsets of B cells, known as B1 cells, are able to produce antibody rapidly following 

antigen encounter and are also responsible for providing a pool of ‘natural antibody,’ 

which can be detected in the absence of exogenous antigen (11). Due to the rapid 

production and non-specific nature of such antibody, B1 cells are often described as innate-

like B cells. However, some reports suggest a potential role for B1 cells during the 

adaptive response to infection (12-14). 

 

Effector cells of the delayed, yet highly specific, adaptive response arise from a common 

lymphoid progenitor in the bone marrow. Despite this common origin, B lymphocytes (B 

cells) mature within the bone marrow whilst T lymphocytes (T cells) develop in the 

thymus. Throughout lymphocyte development, receptor gene rearrangement occurs, 

allowing for huge diversification within the lymphocyte pools and a high degree of 

specificity at an individual cell level (15). Following development in primary lymphoid 

tissue, T and B cells migrate to highly organised secondary lymphoid tissue, such as the 

lymph nodes (LN), white pulp areas of the spleen and peyers patches (PP). Here, multiple 

cellular interactions lead to the initiation of an adaptive immune response.    

 

1.1.2 Organisation of secondary lymphoid organs 

Secondary lymphoid organs (SLO) provide niches in which antigen presentation to 

lymphocytes and T cell-B cell (T-B) collaboration can occur, whilst also supplying 

survival signals (16). Figure 1.1 shows the organisation of T and B cells within the LN and 
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white pulp area of the spleen (17). Migration of lymphocytes to and within SLO is 

governed by adhesion molecules, chemokine receptors, and stromal-expressed 

chemokines. Mice that are deficient in the chemokine receptor CCR7 (18) or its ligands, 

CCL21 and CCL19 (19,20), exhibit defects in naive T cell homing to SLO and 

inappropriate localisation of T cells within these structures. Mice with a disruption in the 

gene encoding the chemokine receptor CXCR5 highlight the importance of this receptor 

for B cell homing to the follicles (21). The ligand for CXCR5, CXCL13, has been shown 

to direct B cells to follicles within SLO (22,23), and also directs trafficking of B cells 

across high endothelial venules (HEV) (24).  

  

Entry of recirculating B cells into the follicular niche is required for B cell survival (25), 

via signals delivered by the follicular stroma such a B cell activation factor (BAFF). 

Following entry, B cells remain in the follicle for 12-24 hours before leaving and 

continuing the recirculation process between SLO, in search of foreign antigen. Those B 

cells that encounter antigen in the blood or marginal zone (MZ) interact with resident 

splenic T cells, whilst antigen encounter in the draining lymph nodes leads to interactions 

with T cells in the lymph node paracortex (26). The rarity of T and B cells possessing 

antigen receptors with compatible specificities provides an explanation for the delayed 

adaptive immune response during primary infection. However, the unique ability of T and 

B lymphocytes to acquire ‘immunological memory’ following antigen exposure, leads to 

the faster onset of an adaptive response upon pathogen re-encounter (27). Together, the 

innate and adaptive immune systems encompass multiple components, which must 

coordinate appropriately upon immunological challenge for successful pathogen clearance. 

B lymphocytes participate in both phases of the immune response, however variations in 
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development, function and anatomical location, provide individual B cell subsets with 

unique identities.   

 

 

 

 
Figure 1.1 Structure and organisation of secondary lymphoid tissue. a) A white pulp area 
of murine spleen. The spleen is made up of red pulp interspersed with areas of lymphoid 
tissue known as the white pulp. Lymphocytes and antigen arrive in the white pulp via the 
blood, which drains into a central arteriole. Lymphocytes then pass into the marginal sinus, 
which is surrounded by the MZ. T cells migrate to the periarteriolar lymphoid sheath 
(PALS), shown as the T cell zone, via surface expressed CCR7 responding to chemokines 
CCL19 and CCL21. B cells that emigrate from the bone marrow follow the chemokine 
CXCL13, via surface expressed CXCR5, to the follicular areas of the white pulp. 
Separating the white pulp from the red pulp is the MZ, which contains a heterogeneous 
population of cells including MZ B cells and macrophages. b) The T and B cell areas of a 
lymph node, showing a similar organisation to the splenic white pulp. The main route of 
lymphocyte entry is through HEV, which perfuse the T cell-rich paracortex (green). B cells 
migrate to the follicles after entry through HEV or afferent lymph. Figure taken from 
Mebius and Kraal. Nature Reviews Immunology. 2005. 5(8): 606 (17).  
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1.2 B Cell Development and Function 

1.2.1 Developmental pathways of B cell subsets 

Several peripheral B cell subsets have now been identified, however some are less well 

characterised than others. The greatest level of understanding surrounds the population of 

recirculating, follicular B2 cells, which form the most abundant B cell population in human 

and murine SLO (28). Arising from the same progenitor in the bone marrow is the MZ 

population of B2 cells, which are restricted to the spleen, although a population of B cells 

with a similar phenotype can be found residing in the medullary cords of LN (29). Less 

well understood is the developmental pathway of B1 cells, which make up the majority of 

B cells in the peritoneal and pleural cavities of the body, with a small number also being 

found in the spleen and lymph nodes.   

 

1.2.1.1 B2 cell generation 

The generation of B2 cells is a sequential process occurring in human and murine foetal 

liver and in foetal/adult bone marrow (30). As shown in figure 1.2 (31), different cell 

markers are expressed at each stage of development, with expression of a surface B cell 

receptor (BCR) of the immunoglobulin (Ig) µ (IgM) isotype occurring at the immature B 

cell stage. Expression of surface IgM is preceded by Ig heavy (H) and light (L) chain gene 

rearrangement which occurs throughout B cell development. Formation of a functional H 

chain involves rearrangement of the variable (V), diversity (D) and joining (J) gene 

segments, whilst L chain expression requires V and J gene rearrangement (32). Heavy 

chain rearrangement can be detected by the progenitor (pro)-B cell stage (33), whilst 

expression of the IgM H chain is evident within the cytoplasm of precursor (pre)-B cells. 
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Essential to the continuing development of B cells is the pairing of the µ H chain with a 

surrogate light chain (SLC) in pre-B cells, giving rise to the pre-BCR (34). This allows for 

the selection of successfully rearranged Ig H chains and expression of a functional BCR on 

the immature B cell. Subsequent B cell maturation in the periphery leads to co-expression 

of both surface IgM and IgD. Recirculating, follicular B2 cells can be identified as IgMlo 

IgDhi CD19+ B220+ CD5- CD23hi CD21int, whilst MZ cells are IgMhi IgDlo CD19+ B220+ 

CD5- CD23lo CD21hi. Stringent selection mechanisms are incorporated along the 

developmental continuum in the bone marrow and within the periphery, allowing for the 

elimination of autoreactive B cells (35).  

 

1.2.1.2 B1 cell generation 

In mice, B1 cells can be identified by their IgMhi IgDlo CD19+ B220lo CD23- CD21int/lo 

phenotype, and can be further split into two populations based on the presence (B1a) or 

absence (B1b) of surface expressed CD5 (36,37). Expression of CD21 on B1 cells has been 

described as both intermediate and low in the literature (38-40). A possible reason for this 

discrepancy comes from data describing different levels of CD21 expression on CD11b+ 

and CD11b- B1 cells in the peritoneum (41). Over half of the B1 cells present in the 

peritoneal cavity express CD11b, and these cells express the lowest amounts of CD21.    

Examination of the reconstitution potential of CD11b- B1 cells, suggested  that this fraction 

may represent B1 cells at an earlier stage of development, rather than an entirely distinct 

population  (41). As such, it is thought that the differentiation of B1 cells from CD11b- to 

CD11b+ represents the differentiation of B1 cells into effector cells. In response to a 

protein antigen expressed on the surface of Salmonella, the B1 cells that expand in the 

peritoneal cavity are largely CD11b+ and are also CD21lo (13). For this reason, B1 cells are 
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identified as CD21lo throughout this thesis. Despite some controversy surrounding the 

existence of B1 cells in humans, a phenotypically distinct population of B cells, with 

functional characteristics akin to those of B1 cells in mice, has recently been identified in 

human umbilical cord and peripheral blood (42).  

 

 

 

Figure 1.2 B2 cell development within the bone marrow and release into the periphery. 
Haematopoietic stem cells (HSC) within the bone marrow give rise to a common lymphoid 
progenitor (CLP), which has the capacity to differentiate into an early thymic progenitor 
(ETP) or an early pro-B cell (pre-pro B cell). The pre-pro B cell then passes through a pro-
B and pre-B cell stage, before differentiating into an immature B cell expressing a 
functional BCR of the IgM isotype on the surface. Immature B cells then exit the bone 
marrow to continue the maturation process in secondary lymphoid tissue, where they 
further differentiate into follicular or MZ B2 cells (spleen) and have the capacity to 
become antibody-secreting plasma cells following antigenic challenge. Figure taken from 
Nagasawa, T. (2006)  Nature Reviews immunology.6:107-116 (31). 
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Uncertainty surrounding the existence of a specific B1 cell progenitor has led to research 

into the developmental pathway of B1 cells. Suggestive of a distinct B1 progenitor cell is 

the observation that pro-B cells isolated from the foetal liver reconstitute the CD5+ IgDlo 

fraction of B cells in the spleen and peritoneal cavity after transfer into severe combined 

immunodeficiency (SCID) mice, whereas pro-B cells isolated from adult bone marrow 

repopulate the CD5- IgDhi cells in the spleen and peritoneal cavity (28). A distinct 

population of pro-B cells with a lineage- CD45Rlo-neg CD19+ phenotype that are capable of 

reconstituting the CD11b+CD5+ and CD11b+CD5- peritoneal B cell populations of Balb/c 

and SCID mice, but not the B2 cell populations of the spleen in the same mice, have also 

been identified in foetal and adult murine bone marrow (43). When isolated from foetal 

bone marrow, these progenitor cells were more effective at reconstituting the CD11b+CD5+ 

B1a cell population, whereas those from adult marrow effectively reconstituted 

CD11b+CD5- B1b cells. This indicates that the different B1 cell populations may differ in 

their renewal potential and/or mechanisms during adult life. Despite the self-renewing 

capacity of B1 cells (44), one feature that sets them apart from B2 cells, recent evidence 

shows that B cells exiting the bone marrow can replenish the B1 cell pool of adult mice 

(45). Whilst the origin and development of murine B1 cells is beginning to be unravelled, 

the development of human B1 cells is less well characterized. The phenotypic 

characterisation of human B1 cells (42) will no doubt facilitate future investigation into 

this process.    
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1.2.2 B cell immunity 

Whilst having numerous roles within the immune system, such as immunomodulation, 

cytokine secretion and antigen presentation, a major and possibly dominant effector 

function of the B cell is the secretion of Ig as antibody. Antibody offers important 

protection against both bacterial and viral pathogens, and is the basis of most vaccination 

programmes. Antibody protects against invading pathogens in a number of ways. Firstly, 

antibody can bind to the receptor binding domain of bacterial toxins or viruses, thereby 

preventing their entry into host cells (46,47). Alternatively, antibody can activate 

complement or directly opsonise pathogens for phagocytosis by macrophages, DC and 

neutrophils (48). NK cells can also eliminate antibody-bound pathogens via antibody 

dependent cellular cytotoxicity (ADCC). Here, NK cells bind antibody-antigen complexes 

via surface-expressed fragment constant (Fc) receptors, and release cytotoxic granules, 

directly killing the target (49).  

 

B cells can be induced to differentiate into antibody-secreting plasma cells by both T cell-

dependent (T-D) and T cell-independent (T-I) antigens, reflecting a flexible requirement 

for T cell help (50). Recirculating B2 cells rely upon T cell help during an immune 

response, whereas B1 cells responding to antigen have the capacity to secrete antibody in 

the absence of T cells (13). Whilst recirculating B2 cells can be recruited into germinal 

centre (GC) reactions, which require T cells for their maintenance, as well as 

extrafollicular (EF) reactions, B1 and MZ B cells responding to TI antigens are largely 

restricted to EF growth (26).   
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1.2.2.1 T-dependent antibody responses 

1.2.2.1.1. B cell activation through the BCR 

During T-D antibody responses, B cells must receive two separate activation signals before 

undergoing terminal differentiation into antibody-secreting plasma cells. Signal one is 

provided by the antigen itself, whilst the other is provided by T cell interaction. Antigen is 

recognised by the B cell through the fragment antigen binding (Fab) portion of its surface-

expressed BCR, which can recognise both soluble and membrane bound antigen. However, 

it is now generally thought that much BCR triggering occurs via the recognition of antigen 

bound to APC such as DC (51,52). Ligation of the BCR leads to BCR cross linking and 

signal transduction into the cell, which is dependent upon the phosphorylation of 

immunoreceptor tyrosine activation motifs (ITAM) present in the Igα/β sheath that 

associates with the BCR (53). The subsequent formation of a signalosome, a signalling 

complex including a number of tyrosine kinases (TK) and adaptor molecules, allows for 

the initiation of downstream events associated with B cell activation (54). These include 

calcium (Ca2+) mobilisation, gene expression and antigen internalisation, processing and 

presentation. It is this ability to present antigen that allows a B cell to receive a second 

critical signal, arising from T-B interaction (55).  

 

1.2.2.1.2. T-B interaction 

Prior to B cell differentiation, cognate interaction between T cells and B cells must occur at 

the T-B border in SLO (figure 1.3). To initiate T-B interaction, B cells migrate to the outer 

T-zone of SLO and present recently encountered antigen to T cells (56). Upon recognition 

of peptide bound in major histocompatibility complex (MHC) II molecules on the B cell, 
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activated T cells up-regulate CD40 ligand (CD40L) expression (57), allowing an 

interaction with B cell-expressed CD40 to take place. This engagement, along with 

interactions between T and B cell expressed co-stimulatory molecules, forms an essential 

part of the second signal delivered to B cells during a T-D immune response. During this 

initial interaction, germline switch transcripts of the Ig heavy chain constant region are 

produced in B cells (56). Following T-B communication, B cells are induced to proliferate 

either on follicular dendritic cell (FDC) stromal networks in the follicles where germinal 

centres (GC) are formed, or as plasmablasts in the EF areas of SLO (58) (figure 1.3). These 

responses are discussed in detail in later sections. A number of T cell subsets have now 

been identified within the immune system, including CD8+ and CD4+ T cells. It is the CD4+ 

T-helper (Th) cells that provide critical signals to recirculating B2 cells during an immune 

response, an absence of which results in defective GC formation and antibody class 

switching in vivo (55). 
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Figure 1.3 Development of T-D B cell responses. T-D antibody responses are initiated in 
SLO, when T cells that have been primed by antigen-loaded DC in the T zone migrate to 
the T-B border. Here, primed T cells interact with B cells that have recently encountered 
antigen through the BCR. Following cognate interaction at the T-B border, activated B 
cells follow one of two differentiation pathways. One pathway of expansion occurs when B 
cells migrate to the splenic red pulp areas bordering the white pulp (bridging channels), or 
to the medullary cords of lymph nodes, forming EF foci of dividing plasmablasts before 
undergoing full differentiation into short lived plasma cells. Alternatively, B cells 
proliferate within follicles where they form GC, which require further T cell help for their 
maintenance.  Within GC, B cells undergo somatic hypermutation (SHM) in the dark zone 
and class-switch recombination (CSR) in the light zone, allowing for the generation of B 
cells with a high affinity for foreign antigen. Following selection by T cells and follicular 
dendritic cells (FDC), B cells can exit the GC and differentiate into long lived plasma cells 
or memory B cells. Alternatively, B cells return to the GC for further rounds of SHM. 
Those B cells that do not receive survival signals form T cells die in situ by apoptosis. 
Figure adapted from I.C.M MacLennan. 
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1.2.2.1.2.1 T-helper cells 

As introduced above, CD4+ Th cells recognise protein antigen presented by APC in the 

context of MHC class II molecules (59). APC include DC, macrophages and B cells, 

however DC are considered the most efficient and possibly exclusive cell for initial T cell 

priming in vivo (60,61). Upon antigen encounter in the tissues, DC mature and carry 

information to T cells in the T-zones of secondary lymphoid tissue (see figure 1.3). Here, 

interactions between APC and naïve T cells allow polarisation of Th cells along several 

different lineages (figure 1.4). Much like B cells, T cells must receive at least two signals 

before polarisation is initiated; the TCR must be engaged with antigen presented on MHC 

class II molecules and co-stimulation of CD28 on the T cell with CD80/86 on the APC 

must also occur (62). Co-stimulation up-regulates expression of CD40L on the T cell, 

which upon engagement of CD40 on the APC, reactivates the APC and drives the cytokine 

production necessary to allow T cell differentiation along the appropriate pathway (63,64). 

 

The discovery that T cells could be separated into distinct lineages based upon the 

cytokines to which the T cells were exposed, gave rise to the Th1/Th2 paradigm (65). Th1 

cells eliminate intracellular organisms, whilst Th2 cells fight extracellular pathogens and 

were originally considered the sole T cell subset promoting B cell secretion of antibody 

(66). It is now clear that both Th1 and Th2 cells can shape B cell responses, and the 

emergence of further T cell lineages has added considerably to our understanding of how B 

cell responses are regulated by T cells in vivo. Numerous Th cell lineages have now been 

identified, each polarised under different conditions, with cytokines being one of the most 

important determining factors (figure 1.4). These include, but are not limited to Th1, Th2, 

Tfh, Th17 and Th9 cells. In addition to Th cells, T regulatory (Treg) cells, that suppress T 
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cell activation subsequent autoimmune disease, have also been described (67,68). The Th 

cells that are discussed in the context of this thesis are Th1, Th2 and Tfh cells. 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 
 
 
Figure 1.4 T cell polarisation and cytokine signature. Following interactions with DC, 
polarising cytokines induce naïve T cells to differentiate along one of at least five different 
pathways. The T helper cell subsets shown above that support B cell function include Th1, 
Th2, Th17 and T follicular helper (Tfh) cells, whilst regulatory T cells (Treg) are 
responsible for dampening Th cell responses and preventing excessive inflammation. Each 
T cell subset has a unique effector cytokine profile that shapes the subsequent immune 
response. Figure taken from Jelley-Gibbs, D et al. (2008) Immunology and Cell Biology. 
86(4): 343-352 (69).      
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Th1 cells 

Infection with intracellular bacteria requires an immune response in which T cells 

differentiate to Th1, stimulating IFNγ production and the activation of macrophages. 

During Th1 responses in mice, antibody class-switching is dominated IgG2a and IgG2b 

(70,71). Key cytokines involved in the Th1 lineage decision are IL12 and IFNγ produced 

by APC, with IL18 having a later, less critical role in this process (62). Essential to Th1 

lineage commitment is the expression of T-box transcription factor T-bet in the 

differentiating T cell  (72), whose actions simultaneously repress the Th2 programme in 

the same cell (73). T-bet expression is induced in T cells via IFNγ signalling (74), leading 

to the activation of Janus kinase (JAK) 1 and 2 and subsequent phosphorylation of signal 

transducer and activator of transcription (STAT) 1 (75). T-bet directly transactivates the 

IFNγ gene, allowing IFNγ production and further Th1 differentiation via an autocrine loop 

(72,76). Reinforcement of the Th1 phenotype is also controlled by T-bet, which induces 

IL12Rβ2 expression on T cells (76), stimulating further IFNγ production via a 

JAK2/tyrosine kinase (TK)2-STAT 4-dependent pathway (77). Thus, T-bet-/- T cells are 

unable to secrete IFNγ in vivo (78) and T-bet-/- mice fail to mount Th1 responses to 

infections such as Leishmania Major (L. Major) (71) and Salmonella enterica serovar 

Typhimurium (STm) (79). On the other hand, a failure to induce Th1 inflammatory 

responses in the absence of T-bet is protective during autoimmune diseases such as colitis 

and crohn’s disease (80).  

 

Aside from a critical role in directing Th1 differentiation, T-bet deficient DC may also 

impair Th1 responses via inefficient T cell priming, which has been demonstrated in an in 

vivo model (81). An inability to mount Th1 responses further impacts upon antibody 
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production, as IFNγ directs Ig class-switching in B cells to IgG2a in vitro (82). In keeping 

with this, T-bet-/- mice infected with STm for 14 days failed to induce antibody class 

switching to IgG2a, however IgG2b responses were not apparent in either WT or T-bet-/- 

mice (79). The lack of IgG2a production was considered an effect of T-bet absence and 

subsequent IFNγ loss in Th1 cells, however in vitro studies have shown that T-bet-/- B cells 

fail to complete class switch recombination (CSR) to IgG2a (83). Thus, this defect may 

have been controlled in a B cell intrinsic manner. Considering these data, as well as the 

expansion in our understanding of other Th subsets, the role of Th1 cells in directing B cell 

class-switching in vivo may require some re-appraisal. One aim of this thesis was to 

examine the role of T-bet in T cells and B cells for antibody class-switching during STm 

infection.  

 

Th2 cells 

Th2 cells are effective in controlling host defence against extracellular organisms and 

parasites (66), but are also generated during the immune response to model protein 

antigens, such as alum-precipitated (alum-ppt) protein (84). Following Th2 differentiation, 

the cytokines released by these cells include IL4, IL5, IL9, IL10 and IL13, which help to 

shape the subsequent immune response (85). One classic feature of such responses is 

antibody production by B cells, with sequential class-switching to IgG1 and then IgE (86). 

As T-bet is able to suppress the Th2 programme (73) T-bet-/- mice have been reported to 

produce higher levels of these antibody isotypes (83).     

 

Early in vitro studies describe IL4 as the main cytokine driving Th2 differentiation (87), 

through a JAK1/3-STAT 6-mediated pathway (88). This pathway leads to the expression 
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of the zinc finger transcription factor GATA-3 and a concomitant suppression of the Th1 

programme (89). IL4 and IL13 signal via a receptor with a common subunit, the IL4Rα 

chain (90), and as such have some overlapping functions in vivo (91). In vitro studies have 

demonstrated impaired development of cells with a Th2 profile in the absence of IL13 

(92). However, in vivo studies have since shown that an absence of IL4,  IL13 or the 

IL4Rα chain, does not impede the development of Th2 cells in vivo (93,94), or the 

initiation of Th2 antibody responses following immunisation with non-viable protein 

antigen (93). However, IL4 is essential for the maintenance of the Th2 clones in vivo (95) 

and for optimal IgE and IgG1 antibody production during late primary and memory 

responses to Th2-associated antigens (91,95,96). Furthermore, mice double deficient in IL4 

and IL13, or the IL4Rα exhibit defects in GC size at a point when B cells are selected by T 

cells in GC (93,94). 

 

Other soluble mediators shown to influence Th2 cell differentiation include IL10 and IL6, 

which unlike IL4 and IL13 can be produced by DC (97,98). Human studies have shown 

that production of IL10 by DC inhibits IL12 synthesis, down-regulating the IL12βR2 and 

inhibiting Th1 development (98). IL6 has long been recognised as a differentiation factor 

for plasma cells and a growth factor for myeloma cells (99), but has since been shown to 

drive Th2 differentiation in three ways, two of which involve autocrine production of IL4 

to promote the Th2 phenotype. One of the IL4-dependent pathways requires nuclear factor 

of activated T cells (NFAT)c2 up-regulation (100), whilst the other promotes IL4 

expression via a STAT 3-c-maf dependent mechanism (101). An indirect, IL4-independent 

pathway also exists, in which IL6 suppresses IFNγ signalling and subsequent Th1 

differentiation, thus skewing the balance in favour of Th2 development (102). Following 
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immunisation with model protein antigens, impaired GC and class-switched antibody 

responses have been reported in IL6-/- mice (103,104). However, the defect in antibody 

production is not limited to Th2-related isotypes, highlighting a possible role for IL6 in GC 

reactions and class-switched antibody production to a range of antigenic stimuli. The 

cytokines referred to here are studied in the context of B cell responses to STm in this 

thesis, and are therefore discussed in more detail in the relevant results chapter.     

 

Tfh cells 

In addition to the classic Th cell lineages described above, a subset of CD4+ T cells that 

migrate to follicles during T-D immune responses and provide help to GC B cells, has 

recently been described as a unique T cell lineage; T follicular helper (Tfh) cells (105). 

Exactly when in ontogeny T cells commit to this lineage is a matter of ongoing debate, and 

some controversy still surrounds the exact differentiation pathway and phenotype of Tfh 

cells. This is further compounded by the probable existence of numerous Tfh subsets that 

interact with B cells at different locations within SLO (106). It is now generally accepted 

that the Tfh cells that interact with B cells in the GC differ, at least phenotypically, from 

pre-GC T cells that provide B cells with signals at the T-B border (107), or those that 

provide B cell help in EF areas of the tissue (108). There is evidence to suggest that full 

differentiation into a GC Tfh cell, and subsequent T cell entry into the GC reaction, relies 

upon sustained T-B interaction (109). Probably the most accurate description of a bona-

fide Tfh cell at present is one that is located within GC, expressing high levels of some 

signature markers. A number of groups have now shown that expression of the 

transcriptional repressor B cell lymphoma-6 (Bcl-6) is essential for Tfh cell lineage 

commitment (110-112). This in turn drives expression of CXCR5, which is highly 
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expressed by GC Tfh cells and allows movement into the B cell follicle (113-115). Other 

phenotypic markers include programmed cell death-1 (PD1) (116) and inducible 

costimulator (ICOS) (105), which are expressed at higher levels by Tfh cells when 

compared to other Th cells. ICOS is crucially important to the development and function of 

Tfh cells, ligation of which initiates a PI3K signalling pathway, culminating in IL21 and 

IL4 expression via the actions of transcriptions factors NFAT and c-Maf (117). The 

importance of the PI3K signalling pathway in Tfh cells is highlighted by the reduced 

number of GC B cells, Tfh cells and impaired memory antibody responses that occur in its 

absence (118). The adaptor molecule SLAM-associated protein (SAP) is also essential for 

Tfh cell function, as it allows stable contacts to form between Tfh cells and GC B cells 

(119). The downstream signalling of pathway of SAP is not yet clearly defined and 

warrants further investigation.  

 

Cytokines also have a role in Tfh cell development, the primary candidates being IL6 and 

IL21. Tfh cells can develop when either of these cytokines are absent in isolation 

(120,121), commensurate with their shared ability to activate STAT 3 (60,122,123).  

However, a loss of both cytokines impairs, but does not eliminate, Tfh cell differentiation 

(124). These findings indicate a redundant role for IL6 and IL21 in Tfh cell formation, but 

also highlight the existence of numerous signalling pathways that facilitate Tfh cell 

differentiation. A number of groups have attempted to dissect the cytokine signature of Tfh 

cells, with IL21, IL4, IFNγ and IL17 being amongst those reported (112,125,126). 

However, it is again important to consider differences between GC Tfh cells and pre-GC 

Tfh cells in this regard. IL21 is consistently reported at high levels in CXCR5hi T cells, and 

IL4 is often present at substantial levels in these cells (112,125). Whilst IFNγ can be 
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expressed by GC Tfh cells (126), it is often expressed at higher levels by CXCR5int T cells 

in areas outside the follicle, as is the case with IL17.  What seems likely, is that the 

cytokine profile of the Tfh cell is dictated by the nature of the immune response.   

 

1.2.2.1.3 B cell differentiation pathways  

Following cognate interaction with T cells, B cells expand either in follicles where GC are 

formed, or as plasmablasts in the EF areas of SLO (58) (figure 1.3). Whilst the signals that 

determine the route of B cell differentiation are not fully understood, the expression of 

certain transcriptional repressors by B cells can be used as an indicator of cell fate. B cells 

that express Bcl-6 after T-B communication migrate to B cell follicles and generate GC 

(127). In accordance, mice deficient in Bcl-6 fail to form GC to T-D antigens (128). Bcl-6 

acts by repressing B lymphocyte-induced maturation protein 1 (BLIMP-1) (129), a 

transcriptional repressor essential for the terminal differentiation of plasma cells (130). 

Thus, Blimp-1 expression signifies B cells that follow a pathway of EF growth, however 

plasma cells that form as a result of the GC reaction will also eventually express Blimp-1. 

Expression of Epstein-Barr virus-induced gene 2 (EB12) in B cells is also crucial to the 

formation of normal EF plasma cell responses to T-D antigens (131).  

 

The Germinal Centre Response 

Germinal centres are areas of intense, antigen-driven B cell proliferation and selection, in 

which B cells somatically mutate their Ig variable region genes and undergo Ig class 

switching (132). Two compartments known as the dark zone and the light zone exist within 

the GC, (see figure 1.3) the segregation of which involves the chemokine receptor CXCR4, 

which is preferentially expressed by B cells that migrate to the dark zone (133,134). 
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According to classical models of GC dynamics, proliferation of B blasts, known as 

centroblasts, occurs within the dark zone, whilst their non-dividing progeny, centrocytes, 

undergo selection within the light zone (132,135,136). Despite the recent advent of several 

modified interpretations of GC events (137-140), the fundamental features of the original 

model remain remarkably intact two decades-on. 

  

In the dark zone, centroblasts down regulate their germline encoded BCR and undergo 

massive clonal expansion and somatic hypermutation. This programmed mutation process, 

driven by activation-induced cytidine deaminase (AID) (141,142), promotes BCR 

diversification and the selection of centrocytes bearing a BCR with a high affinity for 

antigen within the light zone (143). Both FDC and Tfh cells are involved in the selection 

process. FDC form a stromal network within the GC light zone, where they capture 

antigen-bound antibody, known as immune complexes, and present them to the centrocytes 

that migrate here (144). This interaction is highly dependent upon complement-derived 

ligands held on FDC and their contact with B cell-expressed CD21 (145). Centrocytes that 

pass this initial checkpoint are able to process the captured antigen and present it to Tfh 

cells, forming a second checkpoint in the GC B cell fate decision. Survival of centrocytes 

relies heavily upon the proliferation, survival and differentiation signals provided by Tfh 

cells (143) through CD40L (146) and cytokines. Whilst Tfh cells will rescue a minority of 

centrocytes from apoptosis in this way, the unsuccessful majority of centrocytes will either 

undergo programmed cell death or, according to traditional interpretations, return to the 

dark zone for further gene rearrangement (132).  
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More recently, imaging experiments have visualised cell division taking place in both 

zones, suggesting that proliferation may not be limited to the dark zone and that further 

somatic hypermutation may not require dark zone re-entry (147). Intravital microscopy has 

allowed the movement of GC B cells to be tracked in real time and their directional 

motility assessed (138). The paucity of GC B cells visualised crossing the dark zone-light 

zone border suggests that this is a rare event during the GC reaction, challenging original 

models in which frequent trafficking of B cells between the zones is required. Other 

models support a random walk theory of B cell movement within the GC (137,140) which 

contrasts to the chemokine-driven directionality of B cells as described by the classical 

cyclic re-entry model (133).  

 

Whilst the intricacies of GC dynamics remain a topic of debate, the fundamental purpose 

of the GC reaction is clear: it allows for the selection of class switched, high affinity B 

cells into the long lived plasma and memory B cell repertoire. This said, the generation of 

such cells does not come without limitations. The somatic hypermutation that occurs 

within GC provides an opportunity for the production of autoreactive B cells. As such, a 

central function served by Tfh cells is the elimination of these cells, highlighting their 

importance in the control of peripheral B cell tolerance (143).  

 

 

The Extrafollicular Response 

An alternative differentiation pathway for B cells during T-D responses arises from EF 

growth. Following T cell help, B cells migrate to the splenic red pulp areas bordering the 

white pulp (bridging channels), or to the medullary cords of lymph nodes, and form EF 
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foci of dividing plasmablasts (26). Migration to these areas is thought to be governed by 

plasmablast-expressed CXCR4, responding to chemokine CXCL12 (148). Following a 

period of growth, some of these plasmablasts will differentiate into non-dividing plasma 

cells, an event dependent upon association with CD11chigh dendritic cells (149). There is 

also some evidence to suggest that plasmablasts make contact with T cells in EF areas of 

the tissue, however these cells differ from those Tfh cells found within the GC and may 

only be relevant in autoimmune settings (150).  Most of the plasma cells generated via EF 

growth following exposure to T-D antigens are short lived, dying by apoptosis in situ after 

about three days (151). Whilst Ig class switching can occur during EF responses, plasma 

cells generated in this way do not classically mutate their Ig V region genes, resulting in 

lower affinity antibody production when compared to GC-derived plasma cells (26). 

However, manipulating certain parameters such as antigen type, antigen persistence and 

antigen concentration, has lead to high affinity, class switched antibody production in mice 

that lack GC (152,153). These findings indicate that GC presence is not an unqualified 

requirement for affinity maturation in individual cells.  

 

Of all the B cells that are recruited into follicular and EF reactions, a proportion will 

become non-dividing, long-lived plasma cells. These cells enter certain niches in the bone 

marrow (154), splenic red pulp (155) and gut lamina propria  (156), where interaction with 

the stroma supports their prolonged survival.  

 

1.2.2.2 T-independent antibody responses  

Unlike recirculating, follicular B2 cells, B1 cells and MZ B cells confer protection against 

a range of antigens in the absence of T cell help (157). As such, these responses do not 
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induce sustainable GC reactions (158), although a role for MZ cells in T-D antibody 

responses has been described previously, along with an ability to participate in GC 

reactions (159). As outlined in earlier sections (1.2.1.2), B1 cells are comprised of B1a and 

B1b cells and provide an immediate source of antibody towards invading pathogens (160). 

B1a cells produce a source of ‘natural IgM antibody,’ which can be detected in the blood 

in the absence of exogenous antigenic stimuli (161). The repertoire of antigens recognised 

by B1a cells include a number of common bacterial components, such as 

lipopolysaccharide (LPS) (162) and phosphorycholine (163) which are collectively known 

as T-I type 1 (T-I 1) antigens. Upon stimulation, B1a cells can migrate from the peritoneal 

cavity to the mesenteric lymph nodes (MLN), spleen and gut-associated lymphoid tissue 

(GALT), where they differentiate into antibody-secreting plasma cells (164). As the main 

constituent of the B cell pool during infancy (28), B1a cells provide crucial protection 

against bacterial infection in neonates. 

 

B1b cells also confer early protection against a range of bacterial antigens, however these 

antibodies are thought to arise primarily after antigen exposure (14). B1b and MZ cells 

collectively form the main line of defence against T-I type 2 (T-I 2) antigens, characterised 

by high molecular weight and repeating epitopes (14). Examples of these are bacterial 

polysaccharides, present in the capsules of Streptococcus pneumoniae,(S. pneumoniae) 

Neisseria meningitidis and Haemophilus influenzae (165). Antibody towards such antigens 

is not produced early in ontogeny, resulting in frequent infant death by diseases such as 

meningitis and pneumonia (166). As well as these typical T-I 2 antigens, B1b cells can be 

recruited into antibody responses to Borrelia hermsii (B.hermsii) (167). A novel finding 

was the discovery that B1b cells can produce protective antibody responses to B. Hermsii 
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(12), a finding that has since been extended to other bacterial infections, including S. 

pneumoniae (14) and a protein from the outer membrane of STm, which is effective at 

protecting against subsequent STm infection (13). It is also possible that the anatomical 

location of MZ cells (see figure 1.1) allows them to form antibody responses to protein 

antigens on blood borne pathogens (168). 

 

An antigen for studying the kinetics of T-I 2 antibody responses can be created by 

haptenating the polysaccharide Ficoll with (4-hydroxy-3-nitrophenyl) acetyl (NP) (NP-

Ficoll). Despite not requiring specific T cell help, B cells responding to NP-Ficoll have 

been shown to migrate to the T-zone following antigen recognition (165). It was suggested 

that the responding B cells may require alternative signals, provided within the T-zone, for 

their progression into plasma cells. Typically, immunisation of mice with T-I 2 antigens 

results in an early wave of EF plasma cells and IgM antibody production, followed by class 

switching to IgG3 after a week of infection (14,165). Further studies have shown that the 

early EF plasmablasts seen in the spleen following immunisation with blood borne 

particulate T-I antigen arise from both MZ and B1 cells (169). In contrast to T-D EF 

responses, T-I 2 responses are also characterised by their longevity, as NP-specific 

plasmablasts have been detected in the spleen several months following NP-Ficoll 

immunisation, which may relate to the slow degradability of T-I 2 antigens in vivo (170).  

 

1.2.3 Regulation of B cell activation by inhibitory receptors 

The efficient initiation of an immune response is critical to the timely clearance of 

invading pathogens. Of equal importance, however, is the cessation of the response upon 
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resolution, a failure of which leads to persistent inflammation and autoimmune disease. A 

number of inhibitory receptors, that negatively regulate B cell activation, have now been 

identified. Many of these receptors belong to the Ig-superfamily, including FcγRIIb, PD-1, 

CD22, paired Ig-like receptor binding protein (PIR-B), Ig-like transcript (ILT)-2, CD5, 

leucocyte-associated Ig-like receptor (LAIR)1, CD66a and platelet-endothelial cell 

adhesion molecule 1 (CD31) (171,172). Each of these receptors has an extracellular 

portion made up of Ig-like domains, as well as a cytoplasmic tail containing 

immunoreceptor tyrosine inhibitory motifs (ITIM). Tyrosine phosphorylation of ITIM by 

the TK lyn, allows for the recruitment of Src-homology 2 (SH2) domain-containing 

phosphatases to the cytoplasmic tail. Subsequent binding and activation of these 

phosphatases, which include protein tyrosine phosphatases (PTP) SHP-1 and SHP-2 and 

phosphoinositol phosphatases SHIP and SHIP2, activates various downstream signalling 

pathways that mediate cellular inhibition (172).  Gene-targeting in mice has established a 

role for these receptors in B cell survival (173), regulation of B cell activation (173,174) 

and autoimmune disease (175-177).  

 

1.2.3.1 CD31 

CD31 was originally classified as an adhesion molecule, through homophilic binding of its 

extracellular domains on opposing cells (178-180). Further analysis of the cytoplasmic tail 

revealed two ITIM surrounding amino acid residues Y663 and Y686 (181), suggesting that 

CD31 may also have inhibitory role within the immune system. However, further 

comparisons with the consensus sequence for ITAM revealed that CD31 also conforms to 

an ITAM signature (182). It has since become clear that CD31 is a dual function molecule, 

able to activate and inhibit a range of cellular processes.   
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Expression of CD31 is not limited to lymphocytes, but extends to all other haematopoietic 

cells, endothelial cells and platelets (183,184). The role of CD31 on non-lymphocytes has 

been extensively investigated. CD31 is known to support the transendothelial cell 

migration of non-lymphocytes (185-187), the migration of leucocytes into inflammatory 

milieu (188) and megakaryocyte (MK) migration within the bone marrow (189).  An 

ability to regulate apoptosis has also been demonstrated in endothelial cells (EC) (190) and  

transmigrating peripheral blood mononuclear cells (PBMC), via homophilic CD31:CD31 

interactions (191). The clinical importance of this anti-apoptotic role is highlighted by the 

high levels of CD31 expression in many human malignancies, including haematopoietic 

and vascular cell cancers (192), and the resistance to chemotherapy-induced apoptosis 

conferred by it (193). 

 

The role of CD31 on lymphocytes has been less well characterised, with the majority of 

research carried out in vitro. These studies show that CD31 can regulate β1 integrin-

mediated adhesion on T cells (194,195) and prevent T cell apoptosis (196) (197). Further 

in vitro studies suggest that CD31 can negatively regulate lymphocyte signalling. During 

the transition from a naïve to a memory T cell (194), CD31 expression is down-regulated 

and it can also dampen T cell receptor (TCR) signalling in a SHP-2-dependent manner 

(198). Furthermore, Zap-70 phosphorylation following CD3 ligation is partially inhibited 

by CD31 triggering (197). Similar inhibitory effects have been reported in B cells. 

Crosslinking of the BCR in parallel with PECAM-1 inhibits the release of Ca2+ and 

subsequent NFAT activity that is induced by BCR crosslinking alone (199). This inhibitory 

activity requires phosphorylation of tyrosine residues Y663/ Y686 and involves PTP SHP-1 

and SHP-2.  
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The expression of CD31 on diverse leucocyte populations and its proposed role in 

regulating processes such as adhesion, migration, apoptosis and lymphocyte activation, 

suggested this molecule as a potential candidate for regulating multiple facets of the 

immune and inflammatory response. This is supported by studies in CD31-/- mice, that 

despite a near normal resting phenotype (184), undergo excessive anaphylactic responses 

(200) and have a heightened susceptibility to LPS-induced endotoxic shock (201). The 

potential role for CD31 as an inhibitory receptor is further reflected in models of 

autoimmunity, such as experimental autoimmune encephalomyelitis (EAE) (176) and 

collagen-induced arthritis (CIA) (177), to which CD31-/- mice display a greater 

susceptibility. An autoimmune B cell phenotype (202) and a failure to induce tolerance in a 

model of T cell-mediated allograft rejection (197) have also been reported in CD31-/- mice.  

 

These results indicate that CD31 deficiency enhances susceptibility to autoimmune disease 

and results in a poorer prognosis when placed under immunological stress, however the 

contribution of CD31 to a normal resolving infection had not been addressed. As such, we 

investigated the role of CD31 in immunity to STm, clearance of which depends upon the 

effector functions of CD4+ T cells. Following infection with STm, T cell homeostasis was 

impaired in CD31-/- mice, resulting in a failure to effectively resolve infection (203). 

During these studies we noticed a high frequency of GC and lower numbers of follicular B 

cells in the spleens of uninfected CD31-/- mice. These data form a prelude to the first 

chapter of my PhD project, which focuses upon the contribution of CD31 to B cell 

immunity during STm infection. 
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1.3 Salmonella 

The Salmonella genus consists of three species: Salmonella enterica, Salmonella bongori 

and Salmonella subterranean, with Salmonella enterica being accountable for the vast 

majority of significant human Salmonella infections worldwide (204). Salmonella enterica 

are gram-negative, intracellular bacteria that cause a range of diseases, depending upon the 

serovar and strain encountered (205). Millions of cases of typhoid fever caused by 

Salmonella enterica serovar Typhi (S. Typhi) occur each year, resulting in hundreds of 

thousands of deaths. Other strains, such as STm and Salmonella enterica serovar enteritidis 

(S.  Enteritidis) can be transmitted from animals to humans or humans to humans, and may 

cause fever, diarrhoea and/or a fatal bacteraemia (206). Apart from being a problem for the 

food industry, these illnesses are a major concern in developing countries where a high 

incidence of infant mortality is reported. Immunity to Salmonella encompasses aspects of 

innate, cell-mediated and humoral immunity (207), making this a good model to dissect 

interactions between these three arms of the immune system.  

 

1.3.1 Immunity to Salmonella   

1.3.1.1 Innate immunity to Salmonella 

Following oral infection with Salmonella, bacteria cross the intestinal epithelial barrier by 

invading M cells in the peyers patches (208), or via DC that use their processes to breach 

the epithelium and capture bacteria from the gut lumen (209). The subsequent release of 

IL-8 by epithelial cells and attraction of neutrophils to the gut, is dependent upon the 

ligation of epithelial-expressed TLR5 by bacterial flagellin and signalling via the 
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NFkappaB pathway (210). Signalling through this pathway results in the release of 

numerous pro-inflammatory cytokines, including IL-18, IL-12, IFNγ and TNFα.  

 

These initial events and bacterial dissemination stimulate the recruitment neutrophils, 

macrophages, DC and NK cells into bacteria-harbouring tissues (211). These include the 

spleen, liver, MLN and PP, where the majority of bacteria are found residing within 

macrophages (205). During these early stages of the murine innate response, bacterial 

replication in the tissues is controlled by the Nramp1 gene of resistant mice, which is 

expressed in macrophages and granulocytes. Nramp1 encodes for a membrane 

phosphoglycoprotein that is recruited to the bacteria-containing phagosome and functions 

as a divalent metal ion pump (212). Susceptibility to  STm infection in mice is associated 

with a natural Gly-Asp mutation at amino acid 169 of Nramp1 (213), leading to the rapid 

replication of bacteria in reticuloendothelial organs.  

 

In the murine spleen, absolute neutrophil and macrophage numbers increase substantially 

by day 5 following oral administration of virulent Salmonella and appear to provide the 

main source of tumour necrosis factor (TNF)α and IFNγ at early stages of the response 

(214). Cytokine production by phagocytes is instrumental in controlling early bacterial 

replication, as they stimulate the production of highly bactericidal reactive oxygen 

intermediates (ROI) and later reactive nitrogen intermediates (RNI) (205). Uncontrollable 

spread of infection throughout the host is further prevented by the formation of 

pathological lesions by phagocytes, a process governed by the cytokines TNFα, IFNγ, IL18 

and IL12 (206). Thus, the release of pro-inflammatory cytokines has a number of 
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important functions during the innate response to Salmonella infection, whilst also 

prompting the Th1-driven adaptive response 

 

1.3.1.2 The role of T cells in immunity to STm 

The importance of CD4+ Th1 cells in clearance of primary STm is demonstrated in mice 

deficient in MHC class II molecules, the TCR β chain, or the IFNγ receptor. These mice 

have a severe defect in their ability to clear bacteria from the spleen and liver compared to 

heterozygous littermates (215). Furthermore, mice deficient in T-bet are unable to produce 

IFNγ-secreting T cells in response to attenuated Salmonella immunisation, resulting in 

increased splenic bacterial burdens and a higher mortality rate (79). A failure of activated 

CD4+ T cells to survive in OX40-/-CD30-/- mice (216) mice, or a failure to maintain CD4+ T 

homeostasis during infection of CD31-/- mice, also results in a marked failure to resolve 

infection (203). Conversely, mice deficient in surface MHC class I molecules do not 

display defects in bacterial clearance from the spleen and liver, providing evidence against 

a crucial role for CD8+ T cells in the clearance of primary Salmonella infection (217). 

Human studies supporting a CD4+ Th1-mediated clearance include reports of enhanced 

susceptibility to Salmonella in individuals with IL-12 receptor (218,219) or IFN-γ receptor 

(219) signalling deficiencies.  

 

1.3.1.3 The role of B cells in immunity to STm 

As an intracellular pathogen, a role for B cells in Salmonella resolution has long been 

debated. B cell-deficient mice to not succumb to infection with attenuated Salmonella 

(220), which is in stark contrast to the mortality observed in T cell-deficient mice. 

However, a role for B cells has been demonstrated in B cell-deficient mice following oral 
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infection with virulent Salmonella (221), and vaccination of adults against typhoid with 

purified polysaccharide Vi antigen from S. Typhi is sufficient to protect against invasive 

disease (222,223).  

 

It is also clear that B cells are recruited into the immune response to STm, as evidenced by 

the strong, EF plasma cell response that occurs within three days of immunisation with 

attenuated STm (70). This response is dominated first by IgM and later by IgG2a and 

IgG2b. Although this early IgM response is T-independent, class switching relies on the 

presence of T cells (13). The production of class-switched IgG2a during STm is reportedly 

dependent upon B cell-intrinsic MyD88 signals, an absence of which attenuates IFNγ 

production by CD4+ T cells (224). High titres of class-switched antibody production 

coincides with the later appearance of GC, which do not appear until around a month into 

infection with STm, when bacterial infection has largely resolved (70). However the 

splenic bacterial load resolves at similar rates in WT and CD40L-deficient mice that lack 

GC, demonstrating that high affinity antibody production is not required for the resolution 

of primary infection (70). Although antibody cannot prevent the progress of infection in 

the tissues, antibody can reduce bacteraemia during the primary response to STm in the 

mouse (70). This observation is strengthened by the association between bacteraemia and 

antibody-absence in Malawian children. Bacteraemia from non-typhoidal strains of 

Salmonella is most prevalent amongst children aged 4 months-2 years, a period when 

maternal antibody is lost and host anti-NTS antibodies have not yet developed (225).   

 

A crucial role for B cells during secondary responses to Salmonella infection has also been 

reported. B cell-deficient mice fail to survive after  STm vaccination and oral rechallenge 
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with virulent Salmonella, whereas WT mice are effectively protected by the vaccination 

(226). Immune serum transfer experiments have provided varied results. Early experiments 

show that protection against oral challenge with virulent Salmonella  requires the transfer 

of both immune serum and immune cells, including antigen-experienced T cells (227). 

Later experiments failed to restore protection in immunised B cell-deficient mice with the 

transfer of immune serum prior to rechallenge with virulent organisms. This occurred 

despite the presence of functional, antigen experienced T cells, (226) leading to the 

suggestion that alternative B cell functions, such as antigen presentation and cytokine 

production, contribute to the protective nature of B cells following Salmonella rechallenge. 

In line with this, a role for B cells in antigen presentation and effective development of 

memory T cell responses during STm has been described recently (228). On the other 

hand, the different antigen doses used for rechallenge in these studies may explain some of 

the discrepancies observed.     

 

An interesting recent observation comes from within our laboratory, where antibody 

produced towards the outer membrane protein (Omp) D of STm confers protection against 

attenuated and virulent Salmonella (13). At least a proportion of this antibody arose from 

B1b cells, highlighting a novel role for these cells in protective antibody responses to 

Salmonella. 

 

1.3.2   STm as a model of infection 

Despite causing typhoid fever in humans, S. Typhi does not cause typhoid fever in many 

other mammals, aside from some higher primates. However, infection of innately 
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susceptible mice with STm causes a systemic, typhoid-like disease with bacterial 

dissemination to the spleen, liver and bone-marrow (229). As such, this model is 

commonly used to study the development of innate and acquired immunity to typhoid 

fever. Common infection routes using this model include oral, intravenous (i.v) and 

intraperitoneal (i.p) administration of bacteria. Virulent Salmonella, when given i.v or i.p, 

are lethal at doses as low as 1 organism (230). Whilst higher oral doses of virulent STm 

can be administered to susceptible mouse strains, the infection is always lethal (227), 

limiting the study potential of this strain. Furthermore live, attenuated STm, when 

delivered orally, fails colonise effectively. On the other hand, i.p or i.v infection of 

susceptible mouse strains with attenuated STm provides a model that retains many features 

of disseminated infection, such as induction of a low grade bacteraemia. Whilst i.v 

infection is not reduced by the presence of immune sera, i.p infection is, enabling the role 

of antibody in protection to be assessed. Thus, the i.p route of infection is used throughout. 

 

When administered i.p into WT mice, live, attenuated STm, strain SL3261, results in a 

slowly resolving infection, characterized by a high splenic bacterial burden and severe 

splenomegally (70) (figure 1.5). Large numbers of bacteria are also recovered from the 

liver and bone marrow. Bacterial loads in the tissues fall gradually over the course of 

infection, reaching low levels from day 35 post-infection (p.i) onwards. Typically, the 

infection is cleared completely within two months (231). Splenomegally gradually 

increases after the initial infection, peaking at day 20 when bacterial loads are already 

falling, then reducing greatly by day 35 (figure 1.5). Thus, i.p. infection with STm elicits 

an antigen-specific inflammatory immune response, which has both an induction and 

resolution phase. This provides an excellent model for studying the innate and adaptive T 
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and B cell response to a normal, resolving infection. In the current study, live, attenuated 

STm, strain SL3261 aroA, was used throughout. 

 

 

 

 

Figure 1.5 Splenic bacterial burden and spleen weight in WT mice before throughout STm 
infection. Following immunisation with STm, the number of bacteria in the spleen remains 
high throughout the first week p.i., when the innate system controls the infection (left 
panel). Bacterial numbers are falling by day 20 p.i. and reach low or undetectable levels by 
day 35 p.i. Alongside this, splenomegally increases gradually until a peak at day 20 p.i, 
after which spleen mass begins to recover. By day 35, the spleen weight has not 
completely recovered, despite only low levels bacteria remaining in the spleen. Figure 
taken from Cunningham, A.F et al, (2007) J. Immunol. 178: 6200-6207 (70). 
 

1.4 Study Rationale 

Extensive use of the mouse typhoid model has significantly advanced our understanding of 

host-pathogen interactions during Salmonella infection, identifying a critical role for CD4+ 

Th1 cells in the clearance of primary infection (79,217). The role of B cells in Salmonella 

immunity has received increasing attention over the years, not least because of their 

essential role in protective immunity (226,227). However, primary Salmonella infection 

resolves in the absence of B cells (220), which is somewhat surprising given their active 
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recruitment and persistent nature during this phase of the response (70,226,227). 

Furthermore, as discussed previously, the splenic EF and GC response to STm is rather 

atypical (70). Following infection, a rapid, massive, EF plasma cell response develops in 

the absence of a concomitant GC response, which is delayed until a month into the 

infection. This response contrasts with that to typical Th2 antigens, such as alum-ppt 

protein, where EF and GC responses develop in parallel (70). Whilst a number of model 

antigen systems are used to study the B cell response to Th2 antigens, antibody responses 

to Th1 antigens are relatively under-studied and less well understood. Furthermore, whilst 

model antigens have been instrumental to our understanding of B cell responses in vivo, 

they are limited by their inability to mimic an infection scenario where B cell responses 

develop within an inflammatory milieu. Thus, understanding the factors that regulate the B 

cell response during primary Salmonella infection will not only further our understanding 

of protective antibody generation, but also provides an excellent tool for dissecting the B 

cell response to a viable, Th1 antigen, both within an inflammatory setting and when 

natural resolution of the infection occurs.  

 

1.4.1 Aims and objectives 

The original focus of this project was to establish the role of CD31 in B cell immunity to 

STm, an area we were keen to pursue following our finding that T cell homeostasis and 

immunity to STm is severely impaired in CD31-/- mice (203). Unfortunately, we were 

unable to take the CD31 B cell project as far as anticipated, due to some unforeseen 

problems with the CD31 colony (discussed in chapter 3). As such, the first results chapter 
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included here presents data from the CD31 project. Thereafter, we maintained a focus on 

STm and antibody responses, but broadened the scope of the study to include other factors. 

 

Thus, the overall aim of this thesis was to address the following key question: 

 

How are Th1 GC and EF B cell responses, induced by STm, regulated, and how do 

they differ from classic, Th2 B cell responses? 

 

In addressing the above question, the realigned objectives of this project were to:  

A) Investigate the role of CD31 in B cell responses to STm 

B) Investigate the role of classic Th2 cytokines in Th1 antibody  responses to STm 

C) Investigate the role of the transcription factor T-bet in antibody class-switching 

during STm infection   
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CHAPTER 2: MATERIALS AND METHODS 

A list of the media and buffers used throughout can be seen in appendix 1. All reagents 

used were purchased from Sigma-Aldrich (Poole, UK), unless otherwise specified. 

 

2.1 Mice  

Mice used for animal studies were age- and sex-matched and were 6-12 weeks old at the 

beginning of each procedure. Wild type (WT) C57BL6/J mice were obtained from HO 

Harlan OLAC Ltd. (Bicester, U.K.) and wild type Balb/C mice were sourced from colonies 

maintained at the Biomedical Services Unit (BMSU) at The University of Birmingham. 

Genetically modified mice were obtained from colonies bred and maintained under 

specific pathogen free (SPF) conditions at the BMSU.  Generation of CD31-/- (184),  T-bet-

/- (71), IgHkappa-/- (232), TCRβδ (233)  IL6-/- (234), IL4-/- (235), IL4Rα-/- (90),  IL13-/- 

(92), SM1 (236) and EYFP (237) mice have been described previously. Brief descriptions 

and the original sources are detailed in table 2.1. All experiments were performed with 

approval from the UK ethics committee. 
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Table 2.1. Genetically modified mice used herein 

Mouse Strain Description Source 
CD31-/- 

(C57BL6/J background) 
Disruption of the CD31 
gene by homologous 
recombination. 

Dr. Susan Nourshargh 
Imperial College London 

T-bet-/- 

(C57BL6/J background) 
Disruption of the T-bet 
gene by homologous 
recombination. 

Jackson Laboratory 

IL6-/- 

(C57BL6/J background) 
Disruption of the IL6 gene 
by homologous 
recombination 

Charles River Laboratories 

IL4-/- 

(BALB/c background) 
Disruption of the IL4 gene 
by homologous 
recombination 

Professor Manfred Kopf 
Basel Institute for 
Immunology 

IL4Rα-/- 

(BALB/c background) 

Impaired IL4 and IL-13 
signalling by deficiency of 
the IL-4 receptor alpha 
chain following Cre-
mediated recombination of 
the IL4-receptor alpha 
allele through the cre/loxP 
system. 

Professor James Alexander  
University of Strathclyde 

IL13-/- 

(BALB/c background) 
Disruption of the IL13 
gene by homologous 
recombination. 

Dr. Andrew McKenzie 
MRC Laboratory of 
Molecular Biology, 
Cambridge 

IgH-/-kappa-/- 

(C57BL6/J background) 
B-cell deficient. Generated 
by breeding out the QM 
IgH transgene from QM 
mice, which have the other 
IgH locus inactivated. 

Dr. Kai Toellner 
The University of 
Birmingham 

TCRβδ-/- 

(C57BL6/J background) 
Absent γδ and αβ T cells 
through targeted deletion 
of beta and delta TCR 
genes. 

Jackson Laboratory 

SM1 
(RAG2-deficient, 
C57BL6/J  background) 

αβTCR transgenic specific 
for STm flagellin peptide 
residues 427-441 bred to 
Rag-2 deficient mice. 

Professor Paul Garside  
University of Strathclyde. 

EYFP (C57BL6/J 
background 

EYFP inserted into the 
ROSA26 locus preceded 
by a loxP-flanked stop 
sequence. Crossing with a 
Cre transgenic mouse 
leads to constitutive EYFP 
expression 

Professor Graham 
Anderson 
University of Birmingham 
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2.2 Immunisation Procedures 

2.2.1 Salmonella Typhimurium (STm) 

For infection studies, 5x105 or 105 STm strain SL3261 (238) was used throughout. Primary 

infection was for 7, 20, 35, 42 or 55 days, whilst for vaccination experiments, STm was 

given as a 4 day infection following primary immunisation with porins, as described in 

2.2.4. STm was prepared by growing a bacterial colony overnight (ON) in sterile L.B 

medium with shaking (180 revolutions per minute (rpm)) at 37ºC. Bacteria were harvested 

in mid-exponential phase (optical density (O.D) λ600nm of 0.8-1.0) by centrifugation at 

6000 x g for 5 minutes. The bacteria were then washed twice in 1ml sterile PBS with 

spinning at 6000 x g for 5 minutes, resuspended in sterile PBS (Sigma) and the 

O.Dλ600nm re-assessed. The O.Dλ600nm was used to quantify the number of bacteria/ml 

using a growth curve for SL3261. Salmonella were then diluted to the desired volume and 

administered via i.p injection in a volume of 200µl/mouse. At the stated time points p.i, 

mice were sacrificed and tissues removed for various analyses as indicated in the text.   

 

2.2.2 Soluble FliC (sFliC) 

Primary immunisation with 25µg soluble flagella protein FliC (sFliC) was for 7 or 14 days. 

Secondary boost experiments were performed by giving 25µg sFliC for 35days, followed 

by a 20µg boost for 4 days. sFliC was routinely prepared by Jessica Hitchcock or Charlotte 

Cook in conjunction with Dr. Margaret Goodall and has been previously described (239). 

A detailed protocol can be seen in appendix 2. The resultant antigen was stored at -20ºC. 

Before use, the antigen was thawed, diluted in sterile PBS and administered i.p in a volume 
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of 200µl. At the appropriate time point p.i, mice were sacrificed and tissues removed for 

analysis as indicated in the text.  

 

2.2.3 Alum precipitated protein (alum-protein) 

Primary immunisation with 25µg alum-precipitated chicken-γ-globulin (CGG) (Jackson 

ImmunoResearch Laboratories, Newmarket, UK) (alum-CGG) was for 7 or 14 days. 

Memory responses to alum-CGG were assessed by an initial immunisation of 25µg alum-

CGG for 35 days followed by 20µg soluble NP-CGG for 4 days. Conjugation of NP 

(Biosearch Technologies, Novato, USA ) to CGG was performed by Chandra Raykundalia 

and has been previously described (240). A detailed description of this methodology can be 

seen in appendix 3. Alum-CGG was prepared by mixing 150µl of CGG at 5mg/ml with 

150µl 9% Alu-Gel-S (alum) (Serva Electrophoresis, Heidelberg, Germany). The pH was 

adjusted to ≥ 6.5 by adding 6.7-8.3µl of 10M NaOH. The preparation was kept in the dark 

at room temperature for 30 minutes, with gentle spinning to mix. After incubation, the 

protein was washed twice with sterile PBS pH 7.4 with spinning at 250 x g for 5 minutes. 

Protein was then resuspended in sterile PBS to give the desired concentration and 

administered via i.p injection in a volume of 200µl/mouse. At the stated time points p.i, 

mice were sacrificed and tissues removed for analysis as indicated in the text.   

 

2.2.4 Porins  

Vaccination experiments were carried out by immunising with 20µg porins from STm for 

21days, followed by 5x105 STm for 4 or 5 days. In some experiments, porins were given 

twice, with the second immunisation taking place on day 21 for 14 days, followed by 
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5x105 STm for 4 days. Porins were kindly provided by Constantino Lopez Macias 

(Medical Research Unit on Immunochemistry; Mexico) and prepared by Dr. Cristina Gil as 

described (13). A detailed protocol is provided in appendix 4. Before use, porins were 

thawed and kept at 37ºC for 1 hour, before being diluted in sterile PBS and administered 

i.p in a volume of 200µl/mouse. At the relevant time point p.i, mice were sacrificed tissues 

removed for the indicated analyses.  

 

2.3 Bone Marrow Chimeras 

2.3.1 IL-6 chimeras 

Bone marrow chimeras were constructed in which mice lacked IL6 on either radiation-

resistant cells or haematopoietic cells. Recipient WT, WT-enhanced yellow fluorescent 

protein (EYFP) or IL6-/- mice received 9 Grays (Gy) of γ-radiation over 2 doses of 450rads.  

Donor WT, WT-EYFP or IL6-/- total BM cells were then transferred i.v into recipient mice 

to make four groups of (donor – recipient) chimeras (WT(EYFP) – WT), (WT(EYFP) – 

IL6-/-), (IL6-/- - WT(EYFP)  and (IL6-/- - IL6-/- ).  BM cells were prepared under sterile 

conditions by flushing the femur and tibia from each leg in 10mls sterile RPMI_1640 

media (Sigma). Cells were then centrifuged at 350 x g, resuspended in sterile full culture 

medium and counted using a haemocytometer. After spinning, cells were washed twice in 

sterile PBS and resuspended to 5x107/ml. Cells were then administered via i.v injection to 

recipient mice in a volume of 200µl sterile PBS, giving 107 cells/mouse.  Tail bleeds were 

taken from all chimeras at 8 weeks post-transfer, to assess for the elimination of host cells 

by flow cytometry through the presence or absence of EYFP cells in the blood. After 12 
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weeks of reconstitution the mice were infected with 105 STm. At day 35 p.i, mice were 

sacrificed and tissues removed for the indicated analyses.  

 

2.3.2 Mixed bone marrow chimeras 

Mice lacking T-bet in either T cells (T-bet-/-Tcell) or B cells (T-bet-/-Bcell) alone were created 

using a mixed bone marrow chimera system (241).  For T-bet-/-Tcell chimeras, TCRβδ-/- mice 

that lack all T cells were used as recipients, whilst donor BM consisted of 80%  TCRβδ-/- 

BM mixed with 20% T-bet-/- BM. The same principle was applied to the T-bet-/-Bcell 

chimeras, using IgH-/-kappa-/- mice that lack B cells as recipients and IgH-/-kappa-/- mice 

and T-bet-/- mice as donors. The resultant mice therefore lacked T-bet in all T cells or B 

cells whilst the remainder of the cells were largely T-bet sufficient. For all experiments, 

control mice were constructed by substituting the T-bet-/- BM with WT BM. Donor BM 

cells were prepared as described in 2.3.1. Once prepared, cells from the TCRβδ-/- or 

IgHkappa-/- suspension were mixed with cells from either the WT or T-bet-/- suspension at a 

ratio of 80:20. A total of 107 cells were then administered i.v to recipient mice that had 

received 8 Gy of γ-radiation over 2 doses of 400rads, in a volume of 200µl sterile PBS. 

Tail bleeds were taken from all chimeras at 6 weeks post cell transfer, to assess for 

reconstitution by flow cytometry.  Mice were infected with 105 STm at 10 weeks post 

transfer or remained uninfected as controls. At day 7 or 35 p.i, mice were sacrificed and 

spleens were removed for various analyses as outlined in the text.  
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2.4 SM1 T Cell Transfer 

SM1 T cell transfer experiments were carried out, in order to enhance the number of 

antigen specific T cells in WT and T-bet-/- mice prior to immunisation with sFliC (2.2.2). 

Spleens were removed from SM1 mice and prepared for fluorescence activated cell sorting 

(FACS) under sterile conditions.  Spleen cells were obtained by teasing the tissue through 

a 70µm pore cell strainer and rinsing the filter through with 5mls of full culture medium. 

Cells were then centrifuged at 350 x g for 10 minutes and the red blood cells lysed using 

ACK buffer. Following centrifugation at 350 x g for 10 min, cells were resuspended in 

blocking buffer, and kept on ice for 30 minutes.  After centrifugation, antibodies targeting 

non-T cells were added to the sample at the desired dilution (table 2.2) in 2% BSA/PBS. 

The antibody targets were Gr1, F480, CD11c, CD11b, NK1.1. This was done to eliminate 

as many non-T cells as possible (SM1 do not have B cells-see table 2.1) during sorting, 

thus enriching the T cell population without directly labelling the cells with antibody. After 

incubation on ice for 30 minutes, unlabelled antibody was removed by washing twice with 

sterile PBS and centrifugation at 350 x g for 10 minutes. Cells were then resuspended in 

300µl RPMI_1640 supplemented with 10% FCS and filtered to remove clumps. 

Unlabelled cells were collected by Roger Bird using a MoFlo high speed cell sorter (Dako, 

Ely, UK). After sorting, cells were washed x 2 in sterile PBS with centrifugation at 350 x 

g. Cells were then resuspended in sterile PBS to give 1.5x106 cells/200µl, and transferred 

i.v into WT or T-bet-/- recipients. Subsequent staining of the sorted cell population revealed 

that ≥ 96% of the transferred cells were T cells. 24hr post-transfer, mice that had received 

cells were immunised with 25µg sFliC (2.2.2), alongside a second group of control WT 

and T-bet-/- mice that had not received cells. At 14d p.i, all mice were sacrificed and blood 

was collected for measurement of serum antibody.  
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2.5 Bacterial Culture 

Upon sacrifice of STm infected mice, spleens were removed and weighed and a portion 

was used to enumerate the total number of bacteria per spleen. This was achieved by 

teasing the portion of spleen through a 70µm pore cell strainer (BD Biosciences, Oxford, 

UK), rinsing the filter through with 1ml sterile RPMI (Sigma) and diluting appropriately. 

100µl of the culture was then transferred onto an agar plate and spread until dry. The plates 

were incubated ON at 37ºC and bacterial colonies per plate were counted. Numbers were 

adjusted to the dilution and the spleen weight to give the total colony forming units (CFU) 

per spleen. 

 

2.6 Flow Cytometry 

Single cell suspensions from the spleen and peritoneal cavity were prepared for flow 

cytometry. Peritoneal exudate cells were collected from mice by peritoneal lavage in 5mls 

PBS and diluted in 5mls RPMI_1640. Spleen cells were obtained by teasing the tissue 

through a 70µm pore cell strainer and rinsing the filter through with 5mls RPMI_1640. 

Cells were then centrifuged at 350 x g for 10 minutes, the red blood cells lysed where 

appropriate using ACK buffer and counted using a haemocytometer. Cells were 

resuspended to 1x107/ml in RPMI_1640 and 106 cells/sample added to FCS-coated 96-well 

flexie-plates (BD Biosciences, Oxford, UK). Plates were centrifuged at 350 x g for 10 

minutes and blocked in blocking buffer for 30 minutes on ice. After centrifugation and 

where necessary, biotinylated antibodies were diluted appropriately (table 2.2) in 2% 

BSA/PBS and added to the cells for 30 minutes on ice. Following incubation, cells were 

washed twice in cold PBS and secondary and directly conjugated antibodies were added 
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(table 2.2) at the appropriate dilution for 30 minutes on ice. Cells were then washed twice 

in cold PBS with centrifugation at 350 x g for 4 minutes and resuspended in 100µl of 2% 

BSA/PBS. Cells were added to FCS-coated FACS tubes containing 200µl of 2% BSA/PBS 

and analysed using a CyAn ADP flow cytometer (Dako, Ely, UK).  

 

Table 2.2.  Primary, secondary and directly conjugated antibodies for flow cytometry 

Target Fluorochrome Supplier and 
clone. 

Stock 
concentration 

Dilution 

Mouse CD31 Biotin AbD Serotec 
(Oxford, UK) 
ER-MP12 

0.1mg/ml 1:100 

Biotin Streptavidin PE-
Texas Red 

BD 
Biosciences 
(Oxford, UK) 

0.2mg/ml 1:1000 

Mouse CD21 APC BD 
Biosciences 
7G6 

0.2mg/ml 1:300 

Mouse CD23 PE BD 
Biosciences 
B3B4 
 

0.2mg/ml 1:200 

Mouse CD5 FITC eBioscience 
(Hatfield, UK) 
53-7.3 
 

0.5mg/ml 1:100 

Mouse IgM PECy7 e-Bioscience 
II/41 

0.2mg/ml 1:100 

Mouse B220 efluor 450 eBioscience 
RA3-6B2 
 

0.2mg/ml 1:100 

Mouse B220 FITC eBioscience 
RA3-6B2 

0.5mg/ml 1:100 

Mouse CD19 APC BD 
Biosciences 
ID3 

0.2mg/ml 1:300 

Mouse CD19 APC-Cy7 BD 
biosciences 
ID3 

0.2mg/ml 1:300 

Mouse CD8 FITC eBioscience  0.5mg/ml 1:100 
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2.7 Immunohistochemistry 

2.7.1 Sectioning 

Spleens for sectioning were snap frozen in liquid nitrogen following removal and stored at 

-80ºC. Frozen spleens were cut using a cryostat. Spleens were mounted in O.C.T. 

compound (Sakura Finetek, Zoeterwoude, NL) and trimmed at 25µm until the white pulp 

area was clearly visible. 5µm sections were cut from the spleen and mounted onto 4-spot 

slides (Hendley, Essex, UK). Sections were left to dry for 30 minutes, fixed in cold acetone 

for 20 minutes and air dried for 10 minutes. Slides were then stored at -20ºC until further 

use.  

53-6.7 

Mouse CD62L PE eBioscience 
MEL14 

0.2mg/ml 1:300 

Mouse CD3 APC eBioscience 
145-2C11 

0.2mg/ml 1:100 

Mouse CD4  eFluor 450 eBioscience 
RM4-5 

0.2mg/ml 1:100 

Mouse Gr1 FITC eBioscience 
RB6-8C5 

0.5mg/ml 1:100 

Mouse F480 FITC eBioscience 
BM8 

0.5mg/ml 1:100 

Mouse NK1.1 FITC eBioscience 
PK136 

0.5mg/ml 1:100 

Mouse CD11b FITC eBioscience 
M1/70 

0.5mg/ml 1:100 

Mouse CD11c FITC eBioscience 
N418 

0.5mg/ml 1:100 
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2.7.2 Staining 

Prior to staining, slides were defrosted at room temperature and washed in Tris buffer pH 

7.6. Primary antibodies were then added at 75µl/section at the appropriate dilutions (table 

2.3). Of note, C57BL/6 mice express the IgG2c allotype as opposed to IgG2a.  The anti-

mouse IgG2a antibody used for histology staining (table 2.3) was raised against a mixture 

of IgG2a and IgG2c antibodies, and is therefore appropriate for the detection of both the 

IgG2a and IgG2c allotypes (see product technical data sheet). Slides were incubated for 1h 

in a moist chamber and then washed twice in Tris buffer pH 7.6. Normal mouse serum 

(NMS) was diluted 1:10 in Tris buffer 7.6 and absorbed with secondary antibodies where 

appropriate (table 2.4), specific to the species of the primary antibody. Secondary 

antibodies were either biotinylated (bt) or horseradish peroxidase (HRP)-linked. These 

were added at 75µl/section, incubated for 45 minutes in a moist chamber and then washed 

in Tris buffer pH 7.6. When staining for FliC positive cells only, an additional step was 

included in between the primary and secondary antibody stage; 75µl  of sheep anti-biotin 

was added to the sections, diluted 1/800 in Tris buffer 7.6, for 45 min. The AP complex 

(ABComplex, Vector Laboratories) was made by adding 10μl of avidin and 10µl bt AP to 

1ml Tris buffer 7.6 and allowing to mix for 30 minutes. The complex was added at 

75µl/section, followed by a 40 minute incubation in a moist chamber. Slides were then 

washed twice in Tris buffer pH 7.6 and developed using peroxidise and AP substrates (see 

appendix 1) to give brown and blue staining respectively. The peroxidise substrate was 

added first, until the desired positivity was obtained. Slides were then washed in Tris 

buffer pH 7.6 before addition of the AP substrate. Once developed, slides were washed in 

Tris buffer pH 7.6, rinsed in dH2O and air-dried at room temperature before mounting 

using immunomount (Thermo Electron Corporation, Pittsburgh). 
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2.7.3 Quantification of cell numbers and densities 

GC areas were quantified using a point counting method (242), in which all intersections 

of a 1cm2 graticule occupied by GC and/or by follicle were counted, except for the farthest 

right and bottom intersections. This was repeated in several fields of view, covering the 

whole tissue section. The proportion of follicle occupied by GC was calculated based on 

these counts. To quantify total GC volume, the average number of intersections occupied 

by GC in each field of view was calculated and adjusted for magnification, giving the  

fraction of tissue occupied by GC. The percentage per mm2 occupied by the tissue was then 

calculated and applied to the total spleen. The spleen weight was converted into a volume, 

based upon the assumption that 1g of tissue is equal to 1cm3. The proportion of spleen 

occupied by GC could then be expressed as a volume. 

 

Cell numbers were quantified by counting all positive cells within the 1cm2 graticule. This 

was repeated in several fields of view, covering the whole tissue section. The mean number 

of cells per mm2 was then calculated, based upon the magnification used.. Counts were 

adjusted to spleen weight by multiplying the number of cells/cm3 by the spleen weight, 

based upon the assumption that 1g is equal to 1cm3. Published data from our laboratory has 

shown that the quantification of class- switched plasma cells by intracellular IgG flow 

cytometry staining, returns similar numbers to those produced using the histological 

counting method (243).  
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Table 2.3. Primary and directly conjugated antibodies used for immunohistology 

Antibody Target Species Dilution Source and clone 

IgM Rat 1/600 AbD Serotec 
LO-MM-9 

IgD Sheep 1/1000 Abcam (Cambridge, UK) 
Polyclonal 

IgG1 Rat 1/300 AbD Serotec 
LO-MG1-2 

IgG2a Rat 1/200 BD Biosciences          
R11-89 

IgG2b Rat 1/200 AbD Serotec 
LO-MG2b-2 

Biotinylated 
peanut agglutinin 
(PNA)  

Goat 1/200 Vector Laboratories 
(Peterborough, UK) 

Biotinylated sFliC STm 1/400 The University of 
Birmingham 

Biotinylated CGG Chicken 1/300 Biotinylated at The 
University of Birmingham 

NP Conjugated to 
sheep IgG 

1/2500 Conjugated to sheep IgG 
at the University of 
Birmingham  

 
 
Table 2.4.  Secondary antibodies used for immunohistology staining 
 
Antibody  Species Dilution Source 
Anti-sheep (Px) Donkey 1/100 The Binding Site 

(Birmingham, UK) 
Anti-sheep (Bt) Donkey 1/100 The Binding site  
Anti-rat (Bt) Rabbit 1/600 Dako  
Anti-rat (Px) Rabbit 1/80 Dako 
 

2.8 Confocal Microscopy 

The presence of Tfh cells in the spleens of uninfected and Salmonella infected mice was 

assessed by confocal microscopy. Tissues were sectioned as described in 2.7.1 and frozen 

at -20ºC until further use. Before staining, slides were defrosted at room temperature and 

rehydrated in PBS for 10 minutes. All subsequent steps were carried out in a moist 
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chamber protected from the light, at room temperature. Slides were first blocked in 

75µl/spot of 10% normal horse serum (NHS)/PBS for 10 minutes. Slides were then washed 

2x in PBS for 5 minutes before addition of the primary antibody for 1hr, diluted to the 

optimal concentration (see table 2.5) in 10%NHS/PBS. After washing a further 2 times in 

PBS, the appropriate secondary antibodies (see table 2.6) were added to the slides for 1hr, 

followed by washing x 2. All spots then received 75µl of anti-FITC 488 (Invitrogen) at a 

dilution of 1/200 was then added to the slides for 30 mins before washing x 2 in PBS. 

Slides were then incubated in Hoescht 33258 nuclear counterstain (Sigma) for 2 minutes, 

washed, and mounted with a coverslip using glycerol containing anti-fade reagent DABCO 

(Sigma). Slides were then wrapped in aluminium foil and stored at -20ºC until analysis. 

Staining was visualised on an LSM510 confocal microscope (Zeiss, Germany) and images 

taken using Zeiss LSM image software (Zeiss).   

 

Table 2.5 Primary antibodies used for confocal microscopy staining 

Target Species Concentration Dilution Source and 
clone 

Mouse CD3 Armenian 
hamster 

0.5mg/ml 1:200 BD biosciences 
145-2C11 

Mouse PD1 Rat 0.5mg/ml 1:200 Biolegend 
(Cambridge, 
UK) RMP1-14 

Mouse Bcl6 Rabbit 0.2mg/ml 1:30 SantaCruz 
(Heidelberg, 
Germany) N3 

- Armenian 
hamster IgG 

0.5mg/ml 1:200 eBioscience 

- Rat IgG2a 0.5mg/ml 1:200 Biolegend 
- Rabbit IgG 0.5mg/ml 1:30 Cambridge 

Bioscience 
(Cambridge, 
UK) 
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Table 2.6 Secondary antibodies used for confocal microscopy staining 

Target Species Concentration Dilution Source 
Rabbit Donkey (FITC) 1.2mg/ml 1/300 Jackson 

Laboratories 
Armenian 
hamster 

Goat (Cy5) 1mg/ml 1/100 Jackson 
Laboratories 

Rat Donkey (Cy3) 1mg/ml 1/150 Jackson 
Laboratories 

 

 

2.9 Enzyme-Linked Immunosorbent Assay (ELISA) 

Relative antigen-specific serum antibody titres were assessed by ELISA. Peripheral blood 

was obtained by cardiac puncture from WT and gene knockout mice at various days after 

infection or immunisation with the antigens described. Blood was allowed to clot at room 

temperature and serum was separated from blood cells by spinning at 6500 x g for 10 

minutes. Serum was aliquoted and frozen at -80 ºC until further use. To assess for STm-

specific antibody, an outer membrane protein (OMP) preparation was used to coat ELISA 

plates (MaxiSorp plates, Nunc) at 5µg/ml coating buffer. The OMP preparation was 

prepared by Jessica Hitchcock or Charlotte Cook and has been described (244). For a 

detailed description of this preparation see appendix 5.  Soluble FliC (2.2.2) was used to 

coat ELISA plates at 5µg/ml coating buffer.  Detection of anti-CGG and anti-NP antibody 

was achieved by coating plates with 5µg/ml CGG or NP15BSA. After an overnight 

incubation at 4°C, plates were washed x 3 in PBS and blocked for 1h at 37°C in 100µl 1% 

BSA/PBS to prevent non-specific binding. After incubation, plates were washed x3 in 

PBS. Sera were diluted in PBS/1% BSA/0.05%Tween 20 and added to each row in four-

fold serial dilutions. Plates were then incubated for 1h at 37°C followed by washing x3. 

AP-linked goat anti-mouse IgM, IgG2a, IgG2b, or IgG1 (all from Southern Biotechnology 
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Associates, Birmingham, USA) were added to the appropriate wells, diluted in PBS/1% 

BSA/0.05%Tween 20 at 1:1000 and incubated for 1h at 37°. Plates were then washed x3 

and antibodies detected using 100µl/well Sigma fast p-Nitrophenyl phosphate solution. 

Plates were incubated at 37°C to develop the colour reaction and O.D were read at 405nm 

using the softmax Pro programme.  Relative antibody titres were determined by plotting 

the dilution against the O.D values and taking the dilution of each sample at a constant O.D 

value, set in the mid-exponential phase of the curve. 

 

2.10 Real-Time Reverse Transcriptase Polymerase Chain 

Reaction (RT-PCR) 

 

2.10.1 RNA Extraction and generation of a cDNA template 

Cell sorting of purified cells for RNA extraction were obtained by FACS, which was 

kindly carried out by Roger Bird. Cells were prepared for sorting as described in 2.5. From 

the mixed bone marrow chimeras, 2x105 CD19+ B220+ B cells and 2x105 CD3+ T cells 

were isolated from each chimera. For IL6-/- mice at day 30 and 42 p.i, 2x105 CD19+ B220+ 

B cells and 2x105 CD3+ CD4+ T cells were isolated from each mouse.  Following isolation, 

cells were pelleted, washed and immediately lysed in buffer RLT from the Qiagen RNeasy 

mini kit (Qiagen UK).  Cell lysates were stored at -80ºC until further use. Prior to RNA 

extraction, lysates were thawed and RNA extracted using the RNeasy micro kit as per the 

manufacturer’s instructions. RNA was eluted in H2O and immediately reverse transcribed 



55 

 

to yield a cDNA template. Reverse transcription was carried out using the Superscript Vilo 

cDNA synthesis kit (Invitrogen) according to the manufacturer’s guidelines. Reverse 

transcription was carried out on Techne 312 Thermal Cycler PCR machine using the 

following conditions: 25ºC for 10 min, 42ºC for 120 min, 85ºC for 5 min. The 

concentration of cDNA in each sample was measured on a Nanodrop 100 

spectrophotometer (Thermo Scientific, Wilmington, USA) and the template was 

subsequently diluted to a concentration of 100ng/µl, before storing at -80ºC. 

 

2.10.2 RT-PCR 

Relative expression of the gene of interest to β-actin message was quantified by TaqMan 

RT-PCR. Reactions were carried out in a 96-well optical reaction PCR plate in a final 

volume of 20μl. The reaction mix contained a forward primer, a reverse primer and a 

probe, specific to both the gene of interest and the housekeeping gene (β-actin). These 

were diluted to their optimal pre-determined working concentrations. Probes for the house-

keeping and target gene were labelled with VIC and FAM, respectively. 10µl of  2 x ABI 

PCR master mix (Applied Biosystems, Warrington, U.K) was also added to each reaction, 

along with 2µl of cDNA template and the volume was made up to 20µl using RNase free 

H2O (Qiagen, UK).  Primer sequences can be viewed in table 2.7.  TaqMan probes and 

primers were designed using Primer Express computer software (Applied Biosystems, 

Warrington, U.K) and synthesised by Eurogentec. Before running the reaction, the plate 

was sealed using a MicroAmp™ Clear Adhesive Film and centrifuged for 1 min at 350 x g. 

The reaction was run using standard TaqMan PCR conditions on a 7900 qPCR machine 

(Applied Biosystems, Warrington, U.K). Relative quantification of signal per cell or tissue 
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was achieved as described (93). Briefly, fluorescent thresholds were set within the 

logarithmic phase of the PCR for the house-keeping gene and the target gene, and the cycle 

number at which the threshold was reached (CT) was determined. The CT for the target 

gene was subtracted from the CT for the house-keeping gene to give ∆CT.  The ∆CT of a 

fixed sample was then subtracted from all ∆CT within the experiment to give ∆∆CT.  The 

relative amount was calculated as 2-∆∆CT. 

 

Table 2.7 Primer and probe sequences for RT-PCR 

Gene  Forward Primer Reverse 
Primer 

Probe 

Β-actin CGTGAAAAGATG
ACCCAGATCA 

TGGTACGACCAGAG
GCATACAG 

TCAACACCCCAGCCA
TGTACGTAGCC 

IFNγ TCTTCTTGGATAT
CTGGAGGAACTG 

GAGATAATCTGGCTC
TGCAGGATT 

TTCATGTCACCATCC
TT 

γ2a 
germline- 
switch 
transcripts 

GGAACACTAAAG
CTGCTGACACAT 

AACCCTTGACCAGGC
ATCCT 

AGCCCCATCGGTCTA
TCCACTGGC 

Bcl-6 GCCAGGCAAGTC
CCTAATGA 

CGAGTAGATGTTGCT
GTGACACAA 

CCAGCCATGGAGGT
GTCCCCC 

AID GTCCGGCTAACC
AGACAACTTC 

GCTTTCAAAATCCCA
ACATACGA 

TGCATCTCGCAAGTC
ATCGACTTCGT 

 

2.11 Statistical Analysis 

Differences between the medians of two groups were calculated using the two-tailed, non-

parametric Mann-Whitney sum of ranks test. All p values were calculated using the 

statistics programme included in GraphPad Prism version 4.0, and p values of ≤ 0.05 were 

accepted as significant. The majority of experiments were performed at least twice, to 

check for consistency in results. Where experiments were not repeated, this is indicated in 

the figure legend. 
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CHAPTER 3: B CELL IMMUNITY TO STM IN CD31-/- 

MICE 

3.1 Introduction 

The adhesion, signalling receptor CD31 is involved in numerous immune processes, 

including adhesion, migration, apoptosis regulation and the regulation of lymphocyte 

activation. As a multi-functional molecule and negative regulator of cellular processes, a 

role for CD31 in controlling the balance between appropriate and excessive immune 

activation, has previously been considered. Taken together, these studies conclude that 

CD31 deficiency results in a poorer prognosis when placed under conditions of 

immunological stress (200,201) or autoimmunity (176,177,197,200,201,245). Despite a 

clear role in regulating inflammation and lymphocyte activation, no studies had assessed 

the contribution of CD31 to a normal resolving infection, such as STm. Immunity to STm 

infection involves complex interactions between innate and adaptive immune cells, as well 

as the proliferation and survival of effectors, within a highly inflammatory environment. 

Clearance of primary STm infection is dependent upon CD4+ T cells, whilst B cells are 

rapidly recruited to the primary response and are essential for protective immunity. Such a 

model allows the role of CD31 in multiple elements of the immune response to be 

assessed.  

 

CD31 was first identified on the surface of B cells almost 20 years ago (246) and later 

identified as a negative regulator of B cell signalling (202,247). An autoimmune B cell 

phenotype has now been described in CD31-/- mice, including fewer peripheral B2 cells, 
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elevated numbers of peritoneal B1a cells, high titres of anti-nuclear antibodies (ANAs) and 

a systemic lupus erythematosus (SLE)-like disease with age (202).  This phenotype reflects 

that of other B cell-inhibitory receptor knock-out mice (248). A breakdown of B cell 

tolerance within the periphery (245) has also been reported in CD31-/- mice.  

 

During my MSc degree, we began to assess the role of CD31 in T cell immunity to STm 

(203). The ability of CD31-/- mice to resolve STm infection was assessed by quantifying 

the bacterial load in the spleen at various time points p.i. Strikingly, CD31-/- mice were 

unable to effectively resolve infection, the defect being consistent with times when CD4+ T 

cells contribute to bacterial clearance. T cell-depletion studies revealed that a loss of CD31 

on CD4+ T cells was accountable, in the large part, for this failure to resolve.  The T cells 

from CD31-/- mice had a heightened proliferative capacity, coupled with a greater 

propensity to undergo apoptosis, resulting in defective accumulation in the spleen during 

infection. We therefore concluded that CD31 on T cells regulates T cell homeostasis 

during STm infection, allowing for effective coordination of T cell immunity (203).  

 

During these studies it became apparent that CD31 loss also affected B cell homeostasis 

both before and during infection. The in vivo data addressing normal B cell immunity in 

CD31-/- mice is limited. One study measured antibody responses to a model Th2 antigen, 

reporting no defect in IgM production or isotype switching in CD31-/- mice (202), however 

B cell responses during a resolving infection have not been studied. Thus, the aim of this 

chapter is to assess the role of CD31 in primary B cell responses to STm infection, as well 

as in protective immunity.  
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3.2 Results 

3.2.1 Defective bacterial clearance in CD31-/- mice  

The defect in bacterial clearance in CD31-/- mice (203) is shown in figure 3.1. WT and 

CD31-/- mice were infected with 5x105 STm and splenic bacterial burden was assessed at 

various time points p.i. From one week after infection, splenic bacterial numbers began to 

fall in WT mice, and infection had largely resolved by day 42 p.i. In contrast, there was a 

severe delay in bacterial clearance in CD31-/- mice, so that at day 20, 35 and 42 p.i, the 

bacterial burden was significantly greater than that of WT mice (p ≤ 0.05).  

 

3.2.2 Uninfected CD31-/- mice have altered splenic B cell numbers 

Whilst investigating the T cell responses to STm, immunohistological staining of spleen 

sections revealed some B cell abnormalities in resting CD31-/- mice. These included 

reduced numbers of follicular B2 cells, a near absence of MZ B2 cells (figure 3.2A) and an 

increased frequency of GC within the B cell follicles (figure 3.2B). These observations led 

us to study the impact of infection upon B cell-expressed CD31, and the effect of its loss 

upon B cell homeostasis during infection and following vaccination. 
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Figure 3.1. Bacterial burden in WT and CD31-/- mice during infection with STm.
WT and CD31-/- mice were infected with 5x105 STm and the number of colony
forming units (CFU) per spleen were quantified at various days p.i. Data are
representative of ≥ three experiments giving similar results. * p ≤ 0.05.
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Figure 3.2 Splenic architecture and organisation in resting WT and CD31-/- mice.
Uninfected mice were sacrificed and spleen sections were stained with A, IgM
(blue) to identify MZ cells and IgM+ plasma cells and IgD (brown) to identify
mature B cells B, PNA (blue) to identify GC and IgD (brown) to identify mature B
cells. Photos are representative of at least 8 mice per time point. GC = germinal
centre; T = T cell zone; F = B cell follicle; RP = Red pulp; MZ = marginal zone.
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3.2.3 CD31 is expressed on all B cell subsets before and during STm 

Before assessing the B cell response to infection in CD31-/- mice, CD31 expression was 

measured on WT B cells by flow cytometry. CD31 expression has previously been 

reported on all murine peripheral B cells (202), however subset-specific differences and 

the impact of infection upon expression levels have not been addressed.  As the spleen and 

peritoneal cavity are important sites of B1 and B2 cell responses during STm infection, 

CD31 expression on B cells from these sites was assessed. Recirculating B2 cells were 

identified by their IgM+CD19+B220+CD5-CD23+CD21int/lo phenotype, whilst splenic MZ 

cells were identified as IgM+CD19+B220+CD5-CD23loCD21hi (figure 3.3A). By day 7 of 

infection, there was a peak in CD31 expression on recirculating B2 cells from the spleen, 

and peritoneal cavity (figure 3.3B left panel). In the spleen, CD31 expression remained 

higher than uninfected levels at all time points studied p.i, whilst it returned to background 

levels after day 7 p.i on recirculating cells in the peritoneal cavity (figure 3.3B left panel). 

As with recirculating B cells in the spleen, CD31 expression increased on MZ B cells by 

day 7 of infection, remaining elevated thereafter (figure 3.3B right panel). Thus, the overall 

pattern of CD31 expression on B2 cells was a tendency to increase after infection.                                   
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Figure 3.3. CD31 expression on recirculating and MZ B2 cells before and after
STm infection. A. Representative flow cytometry staining of WT splenocytes,
showing the gating procedure for recirculating B2 cells, identified as
IgM+CD19+B220+CD5-CD23hiCD21int and MZ B2 cells, identified as
IgM+CD19+B220+CD5-CD23loCD21hi. CD31 expression on each population is
shown (red) alongside the isotype control (blue). B. CD31 expression on
recirculating B2 cells (left panel) and MZ B2 cells (right panel) before and at the
indicated time points after infection. CD31 expression data are from 2 experiments
per time point. One point represents one mouse. MFI = median fluorescence
intensity. PEC = peritoneal exudate cells. * p ≤ 0.05; **p ≤ 0.01
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B1a and B1b cells were identified as IgM+CD19+CD23loCD21loB220intCD5hi and 

IgM+CD19+CD23loCD21loB220loCD5lo respectively. An example of the gating strategy for 

the identification of B1 cells in the peritoneal cavity is shown in figure 3.4A. CD31 

expression increased on B1a cells from the spleen and peritoneal cavity by day 7, fell again 

by day 20 p.i and increased by day 35 (figure 3.4B left panel). CD31 expression pattern on 

B1b cells in the peritoneal cavity was higher than background levels at day 7, but similar to 

uninfected levels at day 20 and 35 p.i. (figure 3.4B right panel). Thus, there was a tendency 

to increase CD31 expression on all B1 cells during the early stages of infection, and aside 

from a dip in expression on B1a cells at day 20 p.i, expression was otherwise similar to 

background levels. Overall, CD31 expression was maintained on all B cell subsets during 

infection. We next assessed the impact of CD31 loss upon B cell numbers before and 

during STm infection. 
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Figure 3.4. CD31 expression on B1 cells before and during STm infection. A.
Representative flow cytometry staining of WT PEC cells showing the gating
procedure for B1a cells, identified as IgM+CD19+CD23loCD21loB220intCD5hi, and
B1b cells, identified as IgM+CD19+CD23loCD21loB220loCD5lo. CD31 expression
on each population is shown (red) alongside the isotype control (blue). B. CD31
expression on splenic and peritoneal exudate B1a cells (left panel) and
peritoneal exudate B1b cells (right panel) before and at the indicated time points
after infection. Expression data are from 2 experiments per time point. One point
represents one mouse. *p ≤0.05
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3.2.4 Loss of CD31 negatively impacts upon B2 but not B1 cell numbers. 

The individual B cell subsets were identified by flow cytometry according to the staining 

protocols shown figures 3.3 and 3.4. Consistent with our earlier observations (figure 3.2), 

fewer recirculating B2 cells were observed in the spleen (p ≤ 0.05) and peritoneal cavity (p 

≤ 0.05) of resting CD31-/- mice when compared to WT mice (figure 3.5A and Bi). Prior to 

infection, splenic MZ B cell numbers were also markedly impaired in CD31-/- mice, the 

reduction compared to WT mice being almost 100-fold (p ≤ 0.05) (figure 3.5A and Bii).  

 

During infection, the proportion of recirculating B2 cells in the spleen reduced 

dramatically in WT and CD31-/- mice (figure 3.5A).  However, the massive expansion in 

spleen size allowed overall numbers to remain fairly consistent over the time-course in WT 

mice, although there may have been an increase in numbers between day 35 and 42 p.i 

(figure 3.5Bi). A similar pattern was observed in CD31-/- mice, aside from a dip at day 35 

p.i, which had recovered by day 42 p.i. At each time point, CD31-/- mice had significantly 

lower numbers of recirculating B2 cells in the spleen when compared to WT mice (p ≤ 

0.05) (figure 3.5Bi). Splenic MZ B cell numbers were less consistent in WT mice 

throughout infection, with a ten-fold reduction in cell numbers occurring by day 20 p.i 

(figure 3.5A and Bi). MZ B cell numbers remained low on day 35 p.i but had recovered to 

pre-infection levels in WT mice by day 42 p.i (figure 3.5Bii). In contrast, the reduced 

numbers of MZ B cells in resting CD31-/- spleens persisted throughout infection (figure 

3.5A and Bii), being significantly lower than in WT mice at day 7 and 42 p.i (p ≤ 0.05) 

(figure 3.5Bii).  
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Numbers of recirculating peritoneal B2 cells did not alter markedly in WT mice over the 

time course, however a slight increase in numbers was observed once the infection had 

resolved (figure 3.5Biii). A different pattern was observed in CD31-/- mice, where an 

increase in cell number was observed between day 0 and 7. After this, cell numbers fell 

again and were significantly reduced below WT numbers at day 20 and 35 pi (p ≤ 0.05). 

Similar to WT mice, there was an increase in cell number between day 20 and 42 p.i. It is 

noteworthy that the accuracy of B cell number quantification in the peritoneal cavity is 

hampered somewhat by the technicalities of obtaining peritoneal washes, which may 

account for some of the variability in B cell numbers in CD31-/- mice. Overall however, 

defects in B2 cell numbers were seen consistently in CD31-/- mice in the two sites before 

and during STm infection. 
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Figure 3.5. Splenic and peritoneal B2 cells in WT and CD31-/- mice before and after STm
infection. WT and CD31-/- mice were infected with 5x105 STm or remained uninfected as
controls. A. Representative flow cytometry plots gated on IgM+ CD19+B220+CD5- splenic
B cells as shown in figure 3.3. Plots show splenic recirculating B2 (CD23+ CD21int/lo) and
MZ (CD23lo CD21hi) B2 cells in WT and CD31-/- mice before and at day 20 of infection.
Percentages denote cell populations as a proportion of total splenocytes. B. total number
of i) splenic recirculating B2 cells ii) splenic MZ B2 cells and iii) peritoneal recirculating B2
cells in WT and CD31-/- mice before and at the indicated time points after infection. Data
are representative of ≥ 2 experiments giving similar results. One point represents one
mouse. D = day. * p ≤ 0.05.
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In contrast, B1a and B1b cell numbers were similar in WT and CD31-/- mice at the majority 

of time points studied (figure 3.6). In the spleen of WT mice, B1a cell numbers were 

unchanged throughout infection (figure 3.6Bi), although a slight increase was observed to 

day 20, after which the numbers returned to resting levels. A similar kinetic was observed 

in CD31-/- spleens. Although CD31-/- mice had fewer splenic B1a cells than WT mice at 

day 0 (p ≤ 0.05), cell numbers were similar to WT mice throughout infection. Enhanced 

numbers of B1a and B1b cells were observed in the peritoneal cavity of resting CD31-/- 

mice when compared to WT mice (p ≤ 0.05) (figure 3.6A, Bii and Biii). B1a cell numbers 

remained constant in WT mice throughout infection, however a loss of cells was apparent 

in CD31-/- mice between day 0 and day 20. Thus, whilst CD31-/- B1a cell numbers in the 

peritoneal cavity were similar to WT mice for the majority of the infection, at day 20 they 

were significantly lower  (p ≤ 0.05) (figure 6A, Bii). B1b cells from the peritoneal cavity 

were also largely unchanged in WT mice throughout infection, aside from a slight increase 

during the late infection. CD31-/- B1b cell numbers in the lavage fluid did not alter 

throughout infection and were generally similar to WT numbers, apart from at day 20 p.i 

when a reduction was apparent (p ≤ 0.05). Overall, the effect of CD31 loss on B1 cell 

numbers was marginal, however large differences were apparent in B2 cell numbers at all 

time points studied. We therefore questioned whether the paucity of B2 cells in CD31-/- 

mice had functional implications during STm infection. 
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Figure 3.6. Splenic and peritoneal B1 cells in WT and CD31-/- mice before and during STm
infection. WT and CD31-/- mice were infected with 5x105 STm or remained uninfected as
controls. A. Representative flow cytometry plots gated on IgM+ CD19+CD21loCD23lo peritoneal
B cells as shown in figure 3.4. Plots show splenic B1a (CD5hi B220int) and B1b (CD5lo B220lo)
cells in WT and CD31-/- mice before and at day 20 of infection. Percentages denote cell
populations as a proportion of total PEC. B. Total number of i) splenic B1a cells ii) peritoneal
exudate B1a cells and iii) peritoneal B1b cells in WT and CD31-/- mice before and at the
indicated time points after infection. Data are representative of ≥2 experiments giving similar
results. One point represents one mouse. * p ≤ 0.05.
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3.2.5 The EF plasma cell response is maintained in CD31-/- mice 

Recent evidence suggests that B1b cells contribute significantly to the early EF plasma cell 

response to STm (13,70). Later in the infection, plasma cells may arise from B1 or B2 

cells, or both. Given the different effects of CD31 loss on B1 and B2 cell numbers, the EF 

plasma cell response was examined in WT and CD31-/- mice before and during STm 

infection. At all time points studied, WT and CD31-/- mice had comparable numbers of 

IgM+ plasmacytoid cells in the spleen (figure 3.7A and 3.8A), as determined by 

immunohistochemistry staining (figure 3.7A) and cell counting (figure 3.8A). Consistent 

with the study that originally classified this model (70), a 10-fold induction of IgM+ 

plasma cells was seen by day 7 p.i in both groups. A very gradual decline in IgM+ plasma 

cell numbers followed in WT mice, however numbers remained elevated above 

background levels at day 42 p.i. After the initial increase, IgM+ plasma cell numbers 

remained elevated in CD31-/- mice throughout the infection.   

 

The switched, IgG2a+ plasma cell response was also similar in the two groups (figure 3.7B 

and 3.8B). As expected (70), an early, large induction of IgG2a+ plasma cells occurred in 

WT mice, and this was also evident in CD31-/- mice. Despite the similar response kinetics, 

there was a tendency towards lower numbers of switched cells in CD31-/- mice during the 

latter stages of infection, with a significant difference apparent at day 35 p.i (p ≤ 0.05). 

However, aside from these relatively modest defects, the EF plasma cell response to STm 

remained intact in CD31-/- mice. A second avenue of antibody production is the GC; we 

therefore compared the development of GC in WT and CD31-/- mice throughout infection.



72 

 

          

Figure 3.7 Splenic EF IgM+ and IgG2a+ plasma cells in WT and CD31-/- mice
during STm infection. WT and CD31-/- mice were infected with 5x105 STm or
remained uninfected as controls. Spleens were stained for A. IgM (blue) and IgD
(brown) to detect non-switched plasmacytoid cells and B, IgG2a (blue) and IgD
(brown) to detect class-switched plasmacytoid cells in the extrafollicular areas of
the spleen. Representative photographs from at least 8 WT and CD31-/- mice are
shown, at day 7 and 20 of infection.
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Figure 3.8. Splenic EF IgM+ and IgG2a+ plasma cell numbers in WT and CD31-/-

mice before and after STm infection. WT and CD31-/- mice were infected with 5x105

STm or remained uninfected as controls. The total number of A, IgM+ and B, IgG2a+

plasmacytoid cells in the extrafollicular areas of the spleen were quantified by
counting before and at the indicated time points after infection. Data are
representative of ≥ 2 experiments giving similar results. One point represents one
mouse. * p ≤ 0.05.
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3.2.6 Germinal centres are present in CD31-/- mice throughout STm 

infection.   

One of our initial observations was the presence of GC in the spleens of uninfected CD31-/- 

mice (figure 3.2). Consistent with this, the overall volume and proportion of follicle 

occupied by GC was significantly higher in resting CD31-/- spleens when compared to WT 

mice (p ≤ 0.05) (figure 3.9B). Throughout infection, GC were present in CD31-/- spleens 

and were more abundant than in WT mice until day 35 p.i, when the first expansion in WT 

GC was observed (figure 3.9A and B). In WT mice, GC expand only once the infection is 

waning (70), coinciding with a recovery in splenic B cell proportions. GC take up less of 

the total follicular area in WT mice when compared to CD31-/- mice, which have 

consistently lower numbers of follicular B cells throughout infection (figure 3.5A).  

Histological analysis of spleen sections at day 20 revealed a huge expansion of the red pulp 

in CD31-/- mice and a relative paucity of white pulp areas (figure 3.9A). Thus, whilst the 

histology suggests a suppression of GC in CD31-/- mice at this time point, the rare follicles 

were usually occupied by GC, leading to an overall increase in GC as a proportion of total 

follicle (figure 3.9B).  
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Figure 3.9 Splenic GC in WT and CD31-/- mice before and during STm infection. WT and
CD31-/- mice were infected with 5x105 STm. A. Spleens were removed and stained with
PNA (blue) to identify GC and IgD (brown) to identify mature B cells. The photos are taken
from representative points in the early infection (D7), at the peak of infection (D20) and
during the late infection (D42). B. i) The volume of GC per spleen and ii) the proportion of
follicle that is GC, was quantified by histology before and at the indicated time points during
infection. Data are representative of ≥2 experiments giving similar results. * = p ≤ 0.05.
Photos are representative of at least 8 mice per time point.
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3.2.7 Striking defects in Salmonella-specific, class-switched antibody 

production by CD31-/- mice  

A large proportion of antibody produced in the early stages of STm infection arises from 

B1 cells (160). High affinity, class-switched antibody is produced after day 35 p.i in WT 

mice (70), consistent with high affinity antibody arising from GC. As EF and GC 

responses were present in CD31-/- mice, we predicted that antibody production would also 

be intact. Serum antibody titres, specific to an OMP preparation from STm, were measured 

over the course of infection (figure 3.10). Heightened background levels of IgM antibody 

were detected in the sera of CD31-/- mice when compared to WT mice (figure 3.10A), 

whereas no class-switched antibody was detected in either group before infection (figure 

3.10B and C). An increase in anti-OMP IgM occurred in WT mice over the first three 

weeks of infection, reaching a plateau thereafter. Whilst CD31-/- mice maintained a steady 

level of anti-OMP IgM antibody over the first week of infection, this had reduced by day 

20 p.i and was almost absent at day 35 and 42 p.i. When compared to WT mice, IgM was 

significantly reduced at day 20 and 35 pi (p ≤ 0.05). A more striking observation was the 

complete lack of switched IgG2b and IgG2a antibody in CD31-/- sera at all time-points p.i. 

(figure 3.10B and C).  Class-switched antibody began to appear in WT mice after 2-3 

weeks of infection, whilst CD31-/- mice had virtually undetectable titres of switched 

antibody throughout infection. Statistical analysis showed these reductions to be significant 

at day 20, 35 and 42 p.i (IgG2b) and at day 35 and 42 p.i (IgG2a) (all p ≤ 0.05). Thus, 

despite the presence of GC and EF plasma cells throughout infection, no class-switched 

antibody was produced by CD31-/- mice. 

 



77 

 

          

Figure 3.10. OMP-specific antibody titres in WT and CD31-/- mice throughout
STm infection. WT and CD31-/- mice were infected with 5x105 STm or remained
uninfected as controls. OMP-specific A, IgM B, IgG2b and C, IgG2a serum
antibody was quantified in WT and CD31-/- mice before and at the indicated time
points after infection. Data are representative of ≥ 3 experiments giving similar
results. * = p ≤ 0.05; N.D = None detected
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 3.2.8 A single vaccination with porins from STm offers reduced levels of 

protection against Salmonella rechallenge in CD31-/- mice.   

Recently published data shows that immunisation of WT mice with OMP from STm offers 

good, antibody-dependent protection against rechallenge with attenuated and virulent STm 

(13). Specifically, the porin OMPD was identified as the protein target of the antibody 

required to restrict bacterial growth. As protection was conferred largely by class-switched 

antibody, we predicted that CD31-/- mice would not be protected by vaccination with 

purified porins.  

 

In the absence of vaccination, WT and CD31-/- mice had similar, high levels of bacteria 

present in the spleen at day 4 p.i (figure 3.11A). Following a three week vaccination and 

subsequent challenge with attenuated STm for 4 days, both groups displayed a significant 

reduction in splenic bacterial load (p ≤ 0.05). However, the median splenic bacterial 

burden was ≥10-fold higher in CD31-/- mice when compared to WT mice (p ≤ 0.05).  When 

2 porin vaccinations were given, the degree of protection against subsequent STm infection 

was enhanced further in CD31-/- mice (p ≤ 0.05), and the splenic bacterial burden was now 

similar in WT and CD31-/- mice.  

 

Protection conferred by porins is antibody-mediated. As such, serum antibody titres were 

assessed. As expected, infecting the mice with STm for 4 days induced an IgM response in 

both groups, whilst switched antibody production was absent (figure 3.11B). Upon 

vaccination, a significant increase in OMP-specific IgM antibody was apparent in WT sera 

(p ≤ 0.05), whilst the increase observed in CD31-/- mice was far less marked. Some class-

switched antibody was now detected in WT and CD31-/- mice, however a notable 
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difference was observed in IgG2b titres, which were significantly higher in WT mice when 

compared to CD31-/- mice after one vaccination (p ≤ 0.05). This observation was consistent 

across two experiments. Following two vaccinations, antibody titres of each subclass were 

similar in WT and CD31-/- mice. These data indicate that antibody-mediated protection 

against attenuated STm is less effective in CD31-/- mice, however this protection can be 

restored after boosting with porins. Therefore, CD31-/- mice have a defect in class-switched 

antibody production during infection, but this is not necessarily recapitulated following 

immunisation with protein antigens. 

 

Having made these interesting observations, we were next keen to investigate the 

mechanism behind the defects in antibody production. Unfortunately, at this point we were 

experiencing some severe breeding problems with our CD31 colony. In order to recover 

the line, we decided to refresh our mice with some CD31-/- mice from Prof. Sussan 

Nourshargh’s group in London (186), who had originally provided us with this strain. 

Upon arrival in Birmingham, the mice underwent the required rederivation process before 

experimentation could continue. Following this, we carried out a phenotypic assessment of 

the mice, comparing them to our original CD31 colony. For clarity, the new, rederived 

CD31-/- colony was named PECAM-/-, whilst the original colony remained as CD31-/-.  
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Figure 3.11. Bacterial burden and antibody production before and after
immunisation against STm. WT and CD31-/- mice were either infected with STm for
4 days, or immunised once or twice with porins from STm before subsequent
challenge with 5x105 STm for 4 days. Immunisation one was for 21 days and
vaccination two was for 14 days. A. The number of CFU in the spleen of WT and
CD31-/- mice following infection with STm for 4 days, in the presence or absence
of porin immunisation. B. Serum anti-OMP IgM (top left), IgG1 (top right), IgG2b
(bottom left) and IgG2a (bottom right) antibody titres in WT and CD31-/- mice
following STm infection for 4 days in the presence or absence of porin vaccination.
Data are representative of ≥ 2 experiments giving similar results. One point
represents one mouse. * p ≤ 0.05.
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3.2.9 Resting PECAM-/- mice have no defect in splenic B2 cell numbers  

Following rederivation, PCR analysis was carried out on PECAM-/- tissue to confirm the 

presence of the disrupted CD31 gene. Homozygous CD31 deficiency was confirmed in all 

PECAM-/- mice, by the presence of 1500bp fragment, corresponding to the disrupted gene 

(data not shown). These mice were used as breeders for all future experiments. . 

Subsequent flow cytometry cell surface staining for CD31 revealed a complete absence of 

CD31 expression on total splenocytes from PECAM-/- mice (figure 3.12). This staining was 

carried out on all mice used, with WT and CD31-/- mice stained alongside for comparison. 

Despite confirmed CD31 deficiency in PECAM-/- mice, assessment of PECAM-/- spleens 

revealed that the defect in B cell numbers was not apparent. Both histological (figure 

3.13A) and flow cytometric (figure 3.13B) analysis revealed near normal proportions of 

follicular B2 and normal proportions of MZ B cells in the spleens of resting PECAM-/- 

mice. This observation was made in several mice. Furthermore, whilst initial experiments 

showed the GC phenotype to be retained in the PECAM-/- mice, over time this phenotype 

disappeared (figure 3.13Aii). It was therefore clear that these mice were phenotypically 

different from the CD31-/- mice we had been working on thus far. Having made these 

observations, we infected the PECAM-/- mice alongside the original CD31-/- mice, to assess 

whether infection would cause a diminution of B cell numbers. 
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CD31

WT

CD31

CD31-/-

CD31

PECAM-/-

CD31

Isotype control

Figure 3.12. Total splenocytes from PECAM-/- mice lack surface CD31
expression. Total splenocytes from WT, CD31-/- and PECAM-/- mice were
stained by f low cytometry for cell surface expression of CD31. Histogram
overlays show CD31 expression in red and isotype control staining in green.
Histograms are representative of at least 15 mice per group giving the same
result.
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Figure 3.13 Follicular and MZ B cells in resting WT, CD31-/- and PECAM-/- mice.
Uninfected WT, CD31-/- and PECAM-/- mice were sacrif iced and the spleens
removed for analysis by histology and f low cytometry. A. Representative
photographs showing staining for i) IgM (blue) to identify MZ cells and IgM+

plasma cells and IgD (brown) to identify mature B cells and ii) PNA (blue) to
identify GC and IgD (brown) to identify mature B cells. B. Representative f low
cytometry plots showing follicular B2 and MZ B2 cells in uninfected spleens.
Percentages denote follicular and MZ cells as a proportion of total splenocytes.
Cells were identif ied as shown in f igure 3.3 Photos are representative of 8 mice
per group. Flow cytometry plots are representative of at least 4 mice per group.
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3.2.10 B cell numbers in PECAM-/- mice are similar to WT mice throughout STm infection 

Quantification of total B2 cell numbers before infection confirmed the histological 

analysis, revealing normal total numbers of follicular (figure 3.14A) and MZ (figure 

3.14B) B2 cell numbers in the spleens of PECAM-/- mice. Infection of PECAM-/- mice with 

STm for 7, 20 and 42 days did not impact upon B cell numbers, so that unlike CD31-/- 

mice, numbers of follicular (figure 3.14A) and MZ (figure 3.14B) B2 cells were similar to 

WT numbers at all stages of infection. Splenic B1a cell numbers were also comparable to 

WT mice (figure 3.13C), however this was not unexpected. As there appeared to be no 

impact of CD31 loss upon B cell numbers, we assessed B cell function by measuring 

antibody titres in the serum at the various stages of infection. 

     

3.1.11 STm-specific antibody production is similar in WT and PECAM-/- 

mice  

Unfortunately, upon assessment of antibody responses to STm in PECAM-/- mice, findings 

were also inconsistent with our previous data (figure 3.15). Anti-OMP IgM, IgG2b and 

IgG2a titres in PECAM-/- mice were comparable to WT mice throughout infection. As 

expected, with the exception of IgM titres at day 7 p.i, CD31-/- mice produced little or no 

anti-OMP antibody during the infection. As the B cell results from our new PECAM-/- 

colony were inconsistent with the data already produced, we were left with no choice but 

to terminate this part of the project. As such, we maintained a focus upon B cell responses 

during STm infection, but expanded the project to focus specifically upon the factors that 

regulate GC responses and antibody class-switching in this model.        



85 

 

    

Figure 3.14 Splenic B2 cells in WT, CD31-/- and PECAM-/- mice before and
af ter STm infection. WT, CD31-/- and PECAM-/- mice were infected with 5x105

STm and spleens removed for f low cytometry analysis at the time points
indicated. The total number of A, splenic recirculating B2 cells, B, MZ B2
cells and C, B1a cells in WT, CD31-/- and PECAM-/- mice is shown. Cell
populations were determined as shown in f igure 3.3 and 3.4. Data are from
1-2 experiments per time point. One point represents one mouse.
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Figure 3.15. OMP-specif ic antibody titres throughout STm infection in WT,
CD31-/- and PECAM-/- mice. Mice were infected with 5x105 STm and OMP-
specif ic A, IgM, B, IgG2b, and C, IgG2a (bottom panel) serum antibody was
quantif ied at the indicated time points after infection. Data are representative of
2 experiments giving similar results.
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3.3 Discussion 

Clearance of primary STm infection requires an efficient, Th1-driven adaptive immune 

response (79,217), whilst B cells can prevent bacteraemia (70,217) and are essential for 

subsequent protective immunity (226). CD31 is expressed on multiple immune cells, 

including T and B lymphocytes, and has been implicated in numerous immune processes. 

We therefore examined the immune response to STm in CD31-/- mice, revealing a striking 

defect in the ability of CD31-/- mice to clear bacteria from the spleen (203). This defect was 

shown to be largely T cell-dependent and was confirmed when CD31-/- mice were 

backcrossed onto green fluorescent protein (GFP) mice, as well as in the rederived 

PECAM-/- strain. Our published data also detailed the down-regulation of CD31 expression 

on CD4+ T cells after activation, which correlates with CD4+ T cell proliferation. A loss of 

CD31 on T cells resulted in increased cell death after activation, consistent with CD31 

playing a regulatory role in infection (203). These data are in agreement with the purported 

role for CD31 as a negative regulator of T cell signalling (197,198). 

 

During this work, histological analysis of spleen sections revealed a marked loss of 

follicular and MZ B2 cells in the resting CD31-/- mouse. Since CD31 expression on T cells 

was dependent upon activation status, we assessed whether CD31 expression on WT B 

cells changed during infection. Consistent with previous reports (184,202), we observed 

CD31 expression by flow cytometry on all peripheral B cells in resting mice. As CD31 has 

been reported to inhibit B cell signalling (199) and hyperproliferation (202), we anticipated 

seeing a reduction in CD31 expression on B cells during infection. However, CD31 was 

consistently expressed on all B2 and B1 cells throughout infection, only falling on B1 cells 

in the peritoneum between day 7 and 20 p.i. An increase in CD31 expression was observed 
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on all B cells early in the infection, suggesting that a loss of CD31 is not required for B cell 

activation.  One potential caveat when interpreting this finding is that B cell activation was 

not directly assessed.  However, little spread was observed in the CD31 expression peaks 

throughout infection, suggesting uniform expression within subsets. It may have been more 

informative, however, to assess CD31 expression on plasmablasts during the response, 

which could be achieved using intracellular IgG and surface CD31 staining.     

 

As a functionally diverse molecule, CD31 may serve an alternative function on B cells, 

such as facilitating B cell recruitment. It is known that CD31 supports the migratory 

activity of leucocytes and modulates chemokine receptor polarisation (186,187,199,249), 

and this may account for the lower numbers of splenic, but higher numbers of PEC, B1a 

cells in resting CD31-/- mice when compared to resting WT mice. However, in our current 

work, B2 and B1 cell numbers increased in the spleens of CD31-/- mice at day 7 p.i and B2 

cell numbers increased in the peritoneum. This suggests that CD31 is not essential for B 

cell recruitment, although this could be masked by a hyperproliferative response, which 

has previously been reported in CD31-/- mice (202).   

 

An alternative function for CD31 on B cells could be a pro-survival one. CD31 has been 

implicated in the regulation of B cell activation (199) and CD31-expressing cells are 

purportedly more resistant to apoptosis (190,193,196), which could explain the lack of B 

cells in CD31-/- mice. On the other hand, MZ B cells are severely depleted in WT mice 

after STm infection, despite the maintenance of CD31 expression on the remaining cells. It 

is plausible however, that only the surviving cells retain CD31 expression, or that the 

observed decline in MZ B cells represents their recruitment into the EF plasma cell 
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response, rather than their demise. Recent evidence suggests this early response to be T-

independent and involve B1b cells (13,70), but may also involve MZ B cells. Indeed, MZ 

cells have been shown to unite with B1b cells in early antibody responses to T-I 2 antigens 

(169) and may also respond to protein antigens on blood borne bacteria (250).  

 

As WT B cells express CD31 throughout infection, we assessed how a loss of this 

molecule would affect B cell responses to STm in CD31-/- mice. Our initial data were very 

interesting, highlighting clear defects in B cell function in CD31-/- mice. Most notably, the 

antibody response to STm infection was severely attenuated, despite the presence of EF 

plasma cells and GC in the spleen throughout infection. Moreover, the antibody-mediated 

protection to STm conferred by porins (13) was limited in CD31-/- mice. Having made 

these observations we were keen to assess the cellular basis for these defects. 

Unfortunately, due to the inconsistent responses revealed in the PECAM-/- strain upon 

rederivation, we were unable to progress further with this work. The phenotype reversal in 

PECAM-/- mice was B cell specific, with the T cell features remaining consistent, albeit to 

a lesser degree. It is unclear which B cell phenotype is most representative of CD31 

deficiency. Placing our findings into context with the published CD31 literature is likely to 

be informative in this regard.  

 

Although less marked than shown here, a previous study reported a deficiency in 

peripheral B2 cells and an elevation in peritoneal B1a cells in resting CD31-/- mice (202). 

These and our data may relate to the purported inhibitory role of CD31 on B cells (199).  A 

loss of B cell inhibitory receptors results in B cell survival defects (173) and an inability to 

effectively regulate B cell activation, which can result in an autoimmune phenotype  
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(173,174). The lack of peripheral B2 cells observed in CD31-/- mice here suggests a 

possible survival defect, whilst the abundance of GC in the spleen prior to antigenic 

challenge is suggestive of an autoimmune phenotype. Studies supporting a survival defect 

include adoptive transfer experiments, in which transferred CD31-/- B cells failed to survive 

over time (202). We attempted to assess antibody responses in CD31-/- mice following total 

splenocyte transfer into RAG1-/- hosts, which have no T cells or B cells, however CD31-/- B 

cells were unable to reconstitute the spleen (data not shown), which could further indicate 

a survival defect.  Previous reports also show that CD31-/- B cells are more susceptible to 

tolerance breakdown (245) and CD31-/- mice are more likely to develop B cell (202) and T 

cell driven (176,177) autoimmune conditions. An over-production of autoreactive B cells 

could itself explain the lack of recirculating B2 cells in CD31-/- mice. Entry into secondary 

lymphoid tissue is required for follicular B cell survival, however this space cannot 

accommodate the huge numbers of B cells that leave the bone marrow each day (25,177). 

As such, fierce competition exists for follicular entry and self-reactive B cells are 

eliminated from the B cell pool (25).      

 

An alternative reason for the lack of B2 cells could relate to a developmental defect within 

the bone marrow. Wilkinson and colleagues (202) reported a maturational block in B2 cells 

between the immature and mature B cell stage in CD31-/- mice. Our observation, that B2 

cells are diminished in the absence of CD31 whilst B1 cells are not, suggests a relationship 

with B cell ontogeny and a possible defect at the progenitor stage within the bone marrow.  

This has not been addressed in detail here, however some preliminary flow cytometry data 

suggests that B cell numbers at each maturational stage in the bone marrow are similar in 

WT and CD31-/- mice (data not shown). More extensive analyses would be required to 
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confirm this.  A developmental failure could also occur in the spleen, where immature B 

cells mature into either MZ cells or follicular B2 cells. This lineage decision is thought to 

involve a signal strength model, in which strong signalling through the BCR favours 

follicular B cell development and vice versa (250). Mice deficient in CD22, a negative 

regulator of B cell signalling, receive mainly strong signals through the BCR, resulting in 

fewer MZ cells (173). As a negative regulator of B cell signalling, a similar scenario may 

also occur in CD31-/- mice, although no concomitant increase in follicular B cells is 

observed.  

 

The above outlines some research that supports our original CD31-/- B cell phenotype data. 

With regard to B cell function, we observed a severe defect in class-switched antibody 

production during primary infection with STm, which is in stark contrast to the normal 

antibody responses to the T-D antigen alum-precipitated dinitrophenol-keyhole limpet 

hemocyanin (DNP-KLH), reported by Wilkinson and colleagues (202). These incongruent 

findings may relate to the different antigens used. Alum-ppt protein drives a Th2 response 

with antibody class-switching to IgG1 (94), and hyper-responsive Th2 cells have 

previously  been reported in mice lacking B cell-inhibitory receptors (174). Thus, CD31-/- 

mice may produce IgG1 more efficiently than IgG2a or IgG2b.  A second consideration is 

that during STm infection, high titres of switched antibody become detectable only once 

splenic GC form, which coincides with bacteria in the spleen falling to below 104 CFU 

(70). The defect in bacterial clearance and the high number of background GC in CD31-/- 

spleens, suggest that the GC observed throughout infection are not STm specific. As such, 

the reduction in antibody titres may be partly due to the inability of CD31-/- mice to resolve 

infection, rather than an inherent inability to produce class-switched antibody. In support 
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of this, WT and CD31-/- mice produced equal levels of class-switched OMP-specific 

antibody after two porin immunisations and challenge with STm, demonstrating that 

CD31-/- mice can form productive GC and mount memory B cell responses, albeit with 

delayed kinetics. It is however surprising that despite the largely intact EF plasma cell 

response during primary infection, no antibody was detectable throughout.  

 

A second finding from Wilkinson and colleagues (202) was heightened T-I antibody 

responses to alum-precipitated DNP-ficoll in CD31-/- mice. We observed higher 

background levels of natural anti-OMP IgM in CD31-/- sera and B1a cells are a likely 

source of this antibody (161). B1a cells were elevated in the peritoneal cavity of CD31-/- 

mice in this work and that of Wilkinson and colleagues, consistent with the heightened 

natural antibody titres. Furthermore, in the current study, IgM+ and IgG2a+ plasma cell 

numbers and IgM antibody titres were similar in WT and CD31-/- mice at day 7 p.i, and 

B1b cells are thought to contribute significantly to this response (13,70). Taken together, 

these data indicate that B1 cell function remains intact in CD31-/- mice. 

 

Thus, whilst B cell function has not previously been extensively investigated in CD31-/- 

mice, much of the available evidence supports the data produced using our original CD31-/- 

colony. Furthermore, other B cell-inhibitory receptor knockout mice have a similar 

phenotype to that observed here, suggesting that our original CD31-/- colony may be more 

representative of this strain than the rederived PECAM-/- colony. What factors may have 

contributed to the dramatic change in phenotype observed in the rederived PECAM-/- 

strain? The CD31-/- and PECAM-/- colonies were housed in separate institutions for some 

time, were initially bred and maintained in different rooms within the animal facility at the 
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University of Birmingham and underwent different patterns of rederivation, breeding and 

backcrossing. These factors, as well as an absence of inter-colony phenotypic variation, 

make it impossible to ascribe these variations to stochastic events. Variations in 

autoantibody production in genetically identical mice have previously been described in 

this way, however all other potential confounders were controlled for (251). 

 

Environmental factors may influence phenotypes, especially in autoimmune-susceptible 

strains. The PECAM-/- mice were rederived and bred in isolators for some time upon 

arrival in Birmingham. As such, these mice were not exposed to the same environmental 

antigens as the CD31-/- mice. The autoimmune-like phenotype observed in the CD31-/- 

mice, such as reduced B2 cells and large numbers of splenic GC, may have been driven by 

exposure to environmental antigens in the animal facility. Susceptibility to autoimmunity is 

well described in these mice, which could explain why WT mice bred under the same 

conditions do not have a similar phenotype.   

 

Changes in the gut flora have also been described in genetically identical rodents housed in 

different rooms within the same animal facility, resulting in alterations to metabolic 

phenotype (252,253). Changes in the composition of gut microflora and subsequent 

metabolic profile can significantly alter the response of the host to newly introduced 

substances (254). Whilst most applicable to mucosal immunity and responses to orally 

administered drugs, these data highlight how seemingly small differences in husbandry can 

have a significant impact upon biological data.      
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Genetic background is also able to influence mouse phenotypes, due to epistatic modifiers. 

Of note, genetic background is often the difference between a healthy and an autoimmune 

phenotype. Alterations in autoimmune susceptibility have been reported when B cell-

inhibitory receptor knockout mice, such as the FcγRIIB-/-, are backcrossed onto different 

genetic backgrounds (175). Although  the CD31-/- and PECAM-/- strains were both on a 

C57BL/6 background, the original generation of CD31-/- mice involved disruption of the 

CD31 gene in 129 embryonic stem (ES) cells and injection into C57BL/6 blastocysts 

(184). Despite being an efficient and widely utilised approach, this method of gene 

disruption has received some criticism (255,256). Even with extensive backcrossing onto 

the desired genetic background (in this case C57BL/6), the area proximal to the targeted 

gene will always reflect the genetic background of the ES cell strain (257). As such, 

researchers have questioned whether the phenotype of mice produced in this way is 

influenced by the closely surrounding genes of the 129 background, rather than by 

disruption of the targeted gene (255). It is therefore plausible that the remaining 129 region 

in the CD31-/- mice gives rise to the observed B cell phenotype. As the new PECAM-/- 

colony had undergone rederivation in London, further rounds of backcrossing and 

rederivation again in Birmingham, perhaps such effects of the 129 background had been 

substantially reduced.    

 

Without extensive investigation, it is impossible to attribute these phenotypic changes to an 

individual factor.  PCR analysis of CD31-/- and PECAM-/- tissue, to assess for remaining 

129 genes, may be informative in this regard. To provide more concrete answers however, 

microarray analysis would need to be carried out on the original and rederived strain, to 

assess for differences in gene expression that might contribute to alterations in phenotype. 
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Analysing gut flora in the two strains and pinpointing any phenotypic changes occurring as 

a result could also add to our understanding of this problem. All of these approaches were 

beyond the scope of this project, and as such, these findings can be considered a cautionary 

tale for investigators using genetically modified animals to answer research questions. 

These data also highlight the importance of collaborative efforts between institutions for 

data validation purposes.  

 

Despite the termination of the CD31-/- project, some interesting B cell observations, 

consistent with the published literature, were made. The CD31-/- model was complex, 

emphasising the need to address the fundamental factors regulating B cell responses during 

STm infection. Germinal centre responses and antibody class-switching during T-

dependent responses to non-viable model antigens are now well characterised, however the 

control of B cell responses to viable Th1 antigens is less well understood. The remainder of 

this project focused specifically upon investigating the factors that regulate GC formation 

and antibody class-switching during systemic infection with STm. We first addressed 

whether cytokines with known involvement in GC responses to protein antigens, can also 

influence GC development and function in this model.    
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CHAPTER 4: CYTOKINE REGULATION OF 

GERMINAL CENTRE RESPONSES DURING  STM 

INFECTION  

 

4.1 Introduction 

During T-D antibody responses to viable or non-viable antigen, EF and GC responses can 

develop simultaneously (93) or distinctly (70). Cytokines have an important role in the 

development and maintenance of EF and GC reactions and in shaping the antibody 

repertoire. The cytokine-mediated control of Th2 GC responses is now understood in some 

detail, however those that regulate GC reactions during the immune response to viable, 

Th1 antigens, are less well characterised.  

 

Immunisation with model protein antigens gives rise to IL4, IL5 and IL13-expressing Th2 

cells, with antibody class-switching dominated by IgG1 and IgE (93,96,258). Early studies 

using  IL4-/- mice show this cytokine to be essential for the maintenance of the Th2 clones 

in vivo (95) and for optimal IgE and IgG1 antibody production in late primary and memory 

responses to Th2-associated antigens (91,95,96). Closer analysis of IL4-/- and IL13-/- mice 

reveal that the early features of Th2 B cell response are retained in these mice, such as the 

initial induction of γ1 germline switch transcripts and antigen specific IgG1+ plasma cell 

induction. Whilst IL4-/- and IL13-/- mice also form GC normally in response to NP-CGG 

and Bordetella pertussis, (B. pertussis) IL4-/-IL13-/- double-deficient mice have a smaller 

GC area than WT mice or single cytokine deficient mice at day 7 of this response (93). In 
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agreement with this, mice deficient in the IL4-receptor alpha chain (IL4Rα-/-) have smaller 

GC and  lower levels of γ1 and ε germline switch transcript expression in B cells at day 7 

of the response to alum-ppt protein, a point at which B cell selection by T cells is occurring 

in the GC (94). Double deficiency in IL4 and IL13 (91) or IL4 alone (91,95), also leads to 

diminished IgG1 and augmented IgG2a and IgG2b responses during recall responses to 

alum-ppt protein (91). These data collectively show that the initiation of the Th2 responses 

can occur in the absence of IL4 and IL13 signalling, however these cytokines are important 

for the maintenance of Th2 responses and recall responses to such antigens.  

 

The importance of IL4 signalling within the GC may relate to the ability of Tfh cells to 

express (114,126,259) and produce this cytokine (126,260). B cells interacting with IL4+ 

Tfh cells up-regulate expression of γ1 switch transcripts following infection with 

Leishmania Major (L. Major), whilst those that communicate with IFNγ+ Tfh cells produce 

γ2a switch-transcripts (126). These data further illustrate how cytokines within the GC can 

influence the direction of Ig class-switching.  

 

Cytokines involved in Tfh development can also promote GC development and subsequent 

antibody responses. IL6 and IL21 operate in a redundant fashion to promote Tfh cell 

differentiation (124) however, a loss of IL6 (103,104) or IL21 (120,121,124,261) alone can 

significantly impair GC development and subsequent antibody responses. Whilst GC 

defects are seen consistently in IL21-deficient mice (120,121,124,261), the data linking 

IL6-deficiency with GC and antibody defects are more varied.  IL6 has long been known to 

promote B cell growth and support the generation of antibody secreting plasma cells (99). 

A role for IL6 in optimal GC formation has also been reported in response to model protein 
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antigens in vivo (103,104). Radiation chimeras demonstrated that FDC-derived IL6 was 

essential for this process and for the promotion of somatic hypermutation (SHM) in vitro 

(104). In these studies, sub-optimal IgG responses were linked to the GC defects. On the 

other hand, infection models have produced varied results. Some early studies support a 

role for IL6 in IgA production (262), whilst others suggest that IL6 is dispensable for 

optimal IgA and IgG production (263). More recently, GC B cell development was not 

impaired and plasma cell development only modestly impacted during acute lymphocytic 

choriomeningitis virus (LCMV) infection of IL6-/- mice, despite a marked reduction in viral 

IgG titres. Thus, a role for IL6 in the regulation of GC reactions and EF responses is likely 

to be antigen dependent and remains to be fully defined. 

 

Cytokines are instrumental in promoting effective class-switched antibody responses, 

however the role of cytokines in the B cell response to STm has not been dissected. Using 

a number of gene-deficient mouse strains, this chapter addresses the cytokine dependency 

of GC development, EF plasma cell responses and antibody class-switching during STm 

infection. Specifically, we question whether the cytokines that facilitate antibody responses 

to model, protein antigens, such as IL4, IL13, and IL6, can also influence GC and EF 

responses during infection with a live, Th1-dominant antigen.  
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4.2 Results 

4.2.1 IL4 and IL13 promote optimal GC formation during STm infection  

The cytokines IL4 and IL13 regulate GC responses to protein antigens (93). To assess 

whether these cytokines can influence GC development during a Th1-dominated response, 

WT, IL4-/-, IL13-/- and IL4Rα-/- mice were infected with STm and sacrificed at day 42 p.i, 

when the GC reaction is established in WT mice. The ability of these mice to resolve 

infection was assessed by quantifying the CFU per spleen at day 42 p.i, revealing no 

difference in bacterial burden between the four groups (figure 4.1A). To assess whether 

GC form optimally in the absence of IL4, IL13 and IL4Rα, spleens were stained with PNA 

and IgD before infection (staining not shown) and at day 42 p.i, to identify GC within the 

B cell follicles (figure 4.1B I). Examination of spleen sections prior to infection revealed 

low levels of background GC in WT, IL4-/- and IL4Rα-/- spleens, whilst IL13-/- mice had 

significantly higher numbers of background GC in the spleen when compared to WT mice 

(p ≤ 0.05) (figure 4.1B II and III). By day 42 p.i, splenic GC were present in abundance in 

all four groups of mice (figure 4.1B I), however closer analysis revealed that the total GC 

volume (figure 4.1B II) and the proportion of follicle occupied by GC (figure 4.1B III), had 

a tendency to be lower in IL4-/-, IL13-/- and IL4Rα-/- mice when compared to WT mice. The 

reduction in GC size and volume below that of WT mice was very similar in all three 

groups of gene-deficient mice, however statistical analysis showed these differences to be 

borderline significant. 
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Figure 4.1. GC development in WT, IL4-/-, IL4rα-/- and IL13-/- mice following STm
infection. WT and gene-deficient mice were infected with 5x105 STm for 42 days
and A, the total CFU per spleen were quantified; B, spleens were removed and
stained with PNA (blue) to identify GC and IgD (brown) to identify mature B cells.
GC II volume and III size were quantified by histology before infection and at D42
p.i. Photos show a representative example of splenic GC at day 42 p.i, from at
least 4 mice per group. Data are from one experiment. One point represents one
mouse. * p ≤ 0.05.
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4.2.2 Class switching to IgG2a is not enhanced in IL4-/-, IL13-/- and 

IL4Rα-/- mice    

Previous studies report that class-switching to IgG2a can be enhanced in the absence of 

IL4 (91,95). Having noticed a modest impairment in GC development, we next addressed 

whether the plasma cell response and direction of class-switching in IL4-, IL13- and 

IL4Rα-deficient mice at this point reflects that of WT mice. Before and at day 42 of 

infection, spleen sections were stained for IgM+ and IgG2a+ plasma cells by histology and 

cell numbers were quantified by counting.  Prior to infection, all groups had high numbers 

of background IgM+ plasma cells in the spleen, however no differences in cell number 

were observed between WT mice and the gene-deficient mice (figure 4.2A). Similarly, at 

day 42 p.i, IgM+ plasma cell numbers were comparable in all four groups of mice. Staining 

for IgG2a+ plasma cells (figure 4.2B) revealed a high frequency of these cells in uninfected 

IL13-/- spleens (figure 4.2B II), consistent with the elevated GC volume shown in figure 

4.1. WT, IL4-/- and IL4Rα-/- spleens contained similar numbers of background IgG2a+ 

plasma cells and at day 42 of infection, IgG2a+ cell numbers had increased 10-100-fold in 

these three groups. An increase in IgG2a+ plasma cell numbers was also observed in IL13-/- 

mice, however this was masked substantially by the high numbers of switched cells in 

uninfected IL13-/- spleens. When compared to WT mice, all of the gene-deficient mice 

produced similar numbers of IgG2a+, class-switched plasma cells in response to STm 

infection. Thus, the marginal aberrations in GC development caused by an absence of IL4, 

IL13 and IL4Rα were not paralleled by a defect in IgG2a+ plasma cell formation.                                                                                     



102 

 

        

Figure 4.2. EF plasma cell numbers in WT, IL4-/-, IL4rα-/- and IL13-/- mice at day 42 of 
STm infection. WT and gene-deficient mice were infected with 5x105 STm for 42 days 
or remained uninfected as controls. Spleens were removed and stained for IgM and 
IgD to identify non-switched plasma cells and IgG2a and IgD to identify class-switched 
plasma cells. Graphs show total number of  A. IgM+ and B. IgG2a+ plasma cells in the 
spleens of uninfected and infected WT and gene deficient mice, as quantified by 
histology. Photographs are representative of at least 4 mice per group. One point 
represents one mouse.  
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4.2.3 WT, IL4-/-, IL13 and IL4Rα-/- mice show a similar serum antibody 

profile at day 42 of infection  

To assess whether the defect in GC development impacted upon antibody secretion, OMP-

specific serum antibody titres were quantified by ELISA in WT, IL4-/-, IL13 and IL4Rα-/- 

mice before and at day 42 p.i. Before infection, low levels of OMP-specific IgM were 

detected in some mice, but class-switched IgG2b and IgG2a antibody was completely 

absent in all groups. At day 42 p.i, anti-OMP IgM (figure 4.3A), IgG2b (figure 4.3B) and 

IgG2a (figure 4.3C) titres were comparable in all four groups of mice. Thus IL4-/-, IL13-/- 

and IL4Rα-/- mice produced similar levels of Th1-associated Ig subclasses to WT mice in 

response to STm infection. These data indicate that both IL4 and IL13 can optimise GC 

formation during STm infection, however a loss of these cytokines does not affect antigen-

specific antibody production in this model. We therefore investigated the role of IL6 in 

antibody responses to STm infection, as this cytokine is important for optimal GC 

formation, antibody class-switching and B cell affinity maturation following immunisation 

with model Th2 antigens (103,104). 
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Figure 4.3. OMP-specific antibody titres before and at day 42 of STm infection.
WT, IL4-/-, IL4rα-/- and IL13-/- mice were infected with 5x105 STm or remained
uninfected as controls. OMP-specific A, IgM B, IgG2b and C, IgG2a serum
antibody was quantified by ELISA in all mice before and at day 42 p.i. One point
represents one mouse. Data are from one experiment.
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4.2.4 IL6-/- mice resolve STm infection effectively but have delayed GC 

development  

Germinal centres do not form in WT mice until infection is largely resolved (70). To 

compare the rate of bacterial clearance in the two groups, splenic bacterial load was 

quantified in WT and IL6-/- mice from two weeks after infection. Whilst higher numbers of 

bacteria have previously been observed in IL6-/- spleens at day 7 of infection (our own 

unpublished observations), similar numbers of bacteria were recovered from the spleens of 

WT and IL6-/- mice at day 18, 42 and 55 p.i, revealing no defect in bacterial clearance in 

IL6-/- mice (figure 4.4A). We next assessed GC formation in the spleen by histological 

analysis. Spleen sections from uninfected mice revealed low numbers of background GC in 

WT and IL6-/- mice (figure 4.4 B) and these remained largely absent  at day 18 p.i. By day 

42 p.i, GC were abundant in WT mice, however there were markedly fewer in the spleens 

of IL6-/- mice (figure 4.4B) (p ≤ 0.05). By day 55 p.i, GC appeared to be physically smaller 

in IL6-/- mice when compared to WT mice (figure 4.4BI), however their abundance 

resulted in a similar total GC volume to WT mice (figure 4.4BII). Thus, IL6 deficiency 

resulted in a delay in GC development during STm infection. To assess whether antibody 

class-switching remained intact in IL6-/- mice, the EF plasma cell response was assessed at 

each time point. 
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Figure 4.4 Splenic germinal centres in WT and IL6-/- mice before and during STm
infection. WT and IL6-/- mice were infected with 5x105 STm, or remained uninfected as
controls. Spleens were removed and A, the CFU per spleen were quantified at various
days p.i. and B I stained with PNA (blue) to identify GC and IgD (brown) to identify
mature B cells at the time points specified. The total II GC volume and III GC as a
proportion of total follicle was quantified by histology. Photos are representative of at
least 7 mice in each group per time point. Data are representative of ≥ 2 experiments. * p
≤0.05.
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4.2.5 Class-switched EF plasma cell responses are maintained in IL6-/- 

mice  

A defect in class-switching to IgG2a and IgG2b has previously been reported in IL6-/- mice 

in response to protein antigens (103), and conflicting data exists on the necessity of IL6 for 

IgA production (262,263). WT and IL6-/- spleens were stained by histology for IgM+ 

(staining not shown), IgA+, IgG2b+ and IgG2a+ plasmacytoid cells (figure 4.5) and 

numbers were subsequently quantified by counting (figure 4.6). Staining demonstrated that 

IL6-/- mice can develop a strong, non-switched (not shown) and class-switched EF plasma 

cell response during STm infection (figure 4.5). Quantification of total cell numbers 

revealed that prior to infection, similar background numbers of all plasma cell isotypes 

were present in the spleens of WT and IL6-/- mice (figure 4.6 A-D), with the exception of 

IgA+ plasma cells, which were observed in higher frequencies in IL6-/- mice (figure 4.6B).  

After infection, the IgM+ plasma cell response developed with similar kinetics in WT and 

IL6-/- mice (figure 6A). There was a tendency for IgA+ (figure 4.6B) and IgG2b+ (figure 

4.6C) plasma cell numbers to be lower in IL6-/- mice than in WT mice throughout 

infection, however at no point were these differences statistically significant. There was no 

observed defect in the IgG2a EF plasma cell response in IL6-/- mice, aside from a slight 

reduction in cell number at day 18 p.i. (figure 4.6D). As GC development was impaired in 

IL6-/- mice, but the EF plasma cell response was largely maintained, we addressed the 

impact of this upon antigen specific antibody production. 
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Figure 4.5. Splenic EF class-switched plasma cells in WT and IL6-/- mice at the late
stages of STm infection. WT and IL6-/- mice were infected with 5x105 STm. Spleens
were removed at the specified time points after infection and stained for IgM (not
shown) IgA (left panels) IgG2b (middle panels) and IgG2a (right panels) (all blue) to
detect class switched plasmacytoid cells and IgD (brown) to detect mature B cells.
Photos are representative of at least 7 mice per group at each timepoint.
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Figure 4.6. Splenic EF plasma cell numbers in WT and IL6-/- mice during STm infection.
WT and IL6-/- mice were infected with 5x105 STm or remained uninfected as controls.
Spleens were removed at the specified time points and the number of A, IgM+ B, IgA+ C,
IgG2b+ and D, IgG2a+ plasmacytoid cells were quantified by histology. One point
represents one mouse. Data are representative of ≥ 2 experiments giving similar results.
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4.2.6 IL6-/- mice have sub-optimal antibody responses during STm 

infection 

During STm infection of WT mice, the appearance of GC coincides with enhanced titres of 

class-switched antibody in the serum (70). As GC development was impaired in IL6-/- 

mice, whilst the EF plasma cell response remained largely intact, OMP-specific serum 

antibody titres were quantified in WT and IL6-/- mice by ELISA, before and during STm 

infection. Prior to infection, low levels of anti-OMP IgM were detected in the sera of some 

WT and IL6-/- mice, however switched OMP-specific antibody was undetectable in both 

groups (figure 4.7). At each time point p.i, titres of serum IgM were similar between the 

two groups, with the exception of day 18 when IgM antibody titres were significantly 

lower in IL6-/- mice compared to WT mice (p ≤ 0.05) (figure 4.7A). As expected, by day 42 

p.i, WT mice had high levels of switched IgA, IgG2b and IgG2a OMP-specific antibody in 

the serum (figure 4.7 B-D). In contrast, IL6-/- mice had decreased levels of each of these 

subclasses when compared to WT mice (all p ≤ 0.05), however antibody titres had 

recovered by day 55 p.i. Thus, the delay in GC formation in IL6-/- mice coincides with a 

delay in class-switched antibody production, whilst EF plasma cell development is only 

modestly impacted by a loss of IL6.  
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Figure 4.7. OMP-specific antibody titres in WT and IL6-/- mice throughout STm infection.
WT and IL6-/- mice were infected with 5x105 STm or remained uninfected as controls. Anti-
OMP A, IgM+, B, IgA+, C, IgG2b+ and D, IgG2a+ serum antibody was quantified in WT and
IL6-/- mice before and at the indicated time points after infection. One point represents one
mouse. Data are representative of ≥ 2 experiments giving similar results. * p ≤ 0.05.
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4.2.7 Selective defects in mRNA gene expression in STm-exposed IL6-/- B 

cells   

During T-D antibody responses, class-switching in B cells is initiated during the initial 

cognate T-B interaction at the T-B border in SLO, at which point, germline switch-

transcripts are up-regulated in B cells (56). Given the presence of a class-switched EF 

response, we hypothesised that T-B interaction in the spleen and switch transcript 

induction would remain intact in IL6-/- B cells.  To test this B220+ CD19+ splenic B cells 

were FACS sorted from WT and IL6-/- mice that had been exposed to STm for either 30 

days or 42 days, for gene expression analysis by RT-PCR. Unpublished data from our 

laboratory shows that two peaks in γ2a-germline switch transcript-expression occurs 

during STm infection, one at day 4 and day 35 p.i, whilst at day 7 and 21, expression is at 

uninfected levels. Consistent with this, at day 30 p.i, some of the WT and IL6-/- mice 

analysed here expressed very low levels of γ2a-germline switch transcript mRNA, whilst 

by day 42 p.i, expression levels had increased in both groups (figure 4.8A). Importantly, 

there was no difference in expression between WT and IL6-/- mice at either time point, 

indicating that T-B interactions were probably taking place in the spleens of IL6-/- mice.  

 

The processes of CSR and SHM in B cells both require AID (141,142), and as such, this 

enzyme is highly expressed in GC B cells. As GC development and optimal class-

switching is defective in IL6-/- mice, we assessed AID expression in CD19+B220+ B cells at 

day 30 and 42 p.i. Consistent with this, mRNA expression of AID was significantly lower 

in IL6-/- B cells than in WT B cells at day 30 p.i (p ≤ 0.05), but had reached expression 

levels that were similar to WT by day 42 p.i (figure 4.8B). B cells that enter GC reactions 

also up-regulate Bcl6 (127), as do the specialized subset of Tfh cells that facilitate GC 
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reactions (111,112,121). IL6 has been shown to influence Tfh development and as such, 

mRNA expression of Bcl6 was measured in FACS sorted B220+ CD19+ B cells and CD3+ 

CD4+ T cells from STm-exposed WT and IL6-/- mice by RT-PCR. This analysis revealed 

that IL6-loss did not affect BCL6 expression in T cells and B cells at day 30 or 42 p.i. 

(figure 4.8C). We therefore sought to determine whether Tfh cells could be detected in the 

spleens of STm infected IL6-/- mice.  

 

4.2.8 Tfh cells are largely absent from the spleens of IL6-/- mice until day 

55 p.i 

Spleen sections were stained by confocal microscopy, using the markers CD3, PD1 and 

Bcl6 to identify Tfh cells, as described previously (107). At day 18 of infection, no cells of 

this phenotype could be detected in the spleens of WT or IL6-/- mice (data not shown). By 

day 42 p.i, numerous Tfh cells of this phenotype were detectable in WT GC, however these 

cells were only sporadic in IL6-/- spleens (figure 4.9). By day 55 however, when IL6-/- mice 

had formed GC, Tfh cells could be observed at higher frequencies within these structures. 

Thus, these data may infer that a loss of IL6 impairs GC-Tfh development during STm 

infection. However, it is difficult to determine whether the lack of Tfh cells is due to the 

paucity of GC, or whether GC do not develop as a consequence of Tfh absence. To help us 

determine the cellular source of the IL6 that drives optimal GC responses during STm 

infection, we created radiation chimeras in which IL6 was absent in either haematopoietic 

cells, or in radiation-resistant cells. Cells of both origins are able to secrete IL6 and may 

therefore have a role in mediating effective antibody responses during STm infection. 
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Figure 4.8. Relative γ2a-germline switch transcript, AID and Bcl-6 expression in WT
and IL6-/- cells during the late stages of STm infection. WT and IL6-/- mice were
infected with 5x105 STm and at the specified time points, splenic CD19+B220+ B cells
and CD3+CD4+ T cells were sorted by FACS. Relative mRNA gene expression of A,
γ2a germline-switch transcripts in B cells B, AID expression in B cells and C, Bcl6 in T
cells and B cells was quantified by RT-PCR. Samples were normalized to β-actin. One
point represents one mouse. Data are from one experiment. * p ≤ 0.05.
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Figure 4.9. Tfh cells in WT and IL6-/- mice during the late stages of STm infection.
WT and IL6-/- mice were infected with 5x105 STm and at the specified time points,
spleens were removed and stained for CD3+(blue) PD1+(red) Bcl6+(green) Tfh
cells by confocal microscopy. White squares represent enlarged areas shown
below. Photos are representative of at least 7 mice per group.
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4.2.9 Bone-marrow chimeras with selective deficiency in IL6 resolve STm 

infection comparatively  

WT and IL6-/- mice were lethally irradiated (recipient) and reconstituted with WT or IL6-/- 

bone marrow cells (donor). Where possible, EYFP WT mice were used either as donors or 

recipients, in order to assess reconstitution by flow cytometry. Four groups of 

donor>recipient chimeric mice were created as follows: WT(EYFP)>WT, 

WT(EYFP)>IL6-/-, IL6-/->WT(EYFP) and IL6-/->IL6-/- (figure 4.10) resulting in mice that 

were IL6 sufficient in all cells, haematopoietic cells alone, radiation-resistant cells alone or 

no cells respectively. In the WT(EYFP)>WT and WT(EYFP)>IL6-/- mice, 100% of the 

haematopoietic cells were expected to be EYFP+, whilst in the IL6-/->WT(EYFP) mice, 0% 

of the haematopoietic cells should be EYFP+. For clarity, the EYFP denotations will no 

longer be referred to in the text. Flow cytometric analysis revealed that CD3+CD4+ T cells 

and CD19+IgM+ B cells reconstituted the spleen at the expected frequency (data not 

shown). Staining of total splenocytes by flow cytometry revealed that the vast majority of 

host cells had been replaced by the donor population (figure 4.11A). Typically, ≥ 90% of B 

cells and T cells in the spleen were of donor BM origin (figure 4.11B). Elimination of host 

cells and replacement by donor BM cells was consistently more effective in the IL6-/->WT 

group when compared to the other chimeras. This suggests that some of the non-EYFP 

cells found in the WT>WT and WT>IL6-/- groups may arise from the small population of 

non-EYFP cells that, in our experience, are found in EYFP mice. Following reconstitution, 

chimeric mice were infected with 105 STm for 35 days, a point at which the GC response 

would be established if bacterial infection had largely resolved. As expected, quantification 

of splenic bacteria found all chimeras to have similar bacterial burdens at day 35 p.i (figure 

4.12), demonstrating an equal capacity to resolve the infection across groups.  
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Figure 4.10. Creation of BM chimeras with selective deficiency in IL6. EYFP WT
or IL6-/- mice were lethally irradiated (9Gys) (recipient, labelled on the cartoon)
and then reconstituted with EYFP WT or IL6-/- total bone marrow cells (donor,
shown above the cartoon). Four groups of doner>recipient mice were created as
follows: WT>WT, WT>IL6-/-, IL6-/->WT and IL6-/->IL6-/-. Following reconstitution,
chimeric mice were infected with 105 STm for 35 days.
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Figure 4.11. Splenic reconstitution of BM chimeras at day 35 of infection with
STm. WT and IL6-/- mice were lethally irradiated and reconstituted with WT or
IL6-/- total bone marrow cells. Following reconstitution, chimeric mice were
infected with 105 STm for 35 days and splenocytes were stained for the
presence of EYFP+ cells in WT>WT (not shown) and WT>IL6 mice and for the
absence of EYFP cells in Il6>WT mice. EYFP presence/absence is shown on
total splenocytes (top histograms), B cells (middle histograms) and CD4+ T cells
(bottom histograms). Plots are representative of 8 mice in each group. FS =
forward scatter; SS = side scatter.
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Figure 4.12. Number of bacteria per spleen in bone marrow chimeras at day 35 of
infection with STm. WT and IL6-/- mice were lethally irradiated and reconstituted with
WT or IL6-/- total bone marrow cells. Following reconstitution, chimeric mice were
infected with 105 STm for 35 days and the number of CFU per spleen were
quantified. One point represents one mouse . Data are pooled from 3 individual
experiments.
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4.2.10 IL6 produced by either haematopoietic or radiation-resistant cells 

is sufficient to restore normal B cell responses during STm infection 

To help determine the origin of the IL6 required for optimal GC formation and antibody 

production during STm infection, splenic GCs were quantified by histology in the four 

groups of chimeric mice. Staining of spleen sections revealed that, as expected, GC 

development was  impaired in the IL6-/->IL6-/- chimeras when compared to the WT>WT 

chimeras (p ≤ 0.05) at day 35 of infection (figure 4.13). Surprisingly however, both the 

WT>IL6-/- and IL6-/->WT chimeras had a similar GC volume and proportion of follicle 

occupied by GC to WT>WT mice (figure 4.13BI). Furthermore, examination of the splenic 

EF plasma cell response revealed that whilst IL6-/->IL6-/- mice had fewer IgM+, IgG2b+ and 

IgG2a+ plasma cells than WT>WT mice (p ≤ 0.05), plasma cell numbers in WT>IL6-/- and 

IL6-/->WT mice were comparable to WT>WT mice (figure 4.14). Antigen-specific 

antibody responses were next measured by ELISA, revealing that IgM production was 

similar in all groups (figure 4.15 A). Analysis of class-switched IgG2b and IgG2a antibody 

identified a clear defect in class-switched antibody production by IL6-/->IL6-/- mice, 

whereas no difference in antibody titres was observed in WT>IL6-/- and IL6-/->WT mice 

when compared to WT>WT mice (figure 4.15B and C). Thus, the provision of IL6 from 

either haematopoietic or radiation resistant cells was sufficient to restore GC development 

and antibody class-switching during STm infection. Thus, IL6 can be considered an 

important cytokine in the regulation of B cell responses during STm infection, however 

redundancy in the cellular source of IL6 that promotes these functions are apparent in this 

model.           
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Figure 4.13. GC development in bone marrow chimeras at day 35 of infection with
STm. WT and IL6-/- mice were lethally irradiated and reconstituted with WT or IL6-/- total
bone marrow cells. Following reconstitution, chimeric mice were infected with 105 STm
for 35 days. A. Spleens were stained for PNA (blue) to identify GC and IgD (brown) to
identify follicular B cells. B. II total GC volume and III the proportion of follicle occupied
by GC was quantified by histology. Photos are representative of 7-8 mice per group.
One point represents one mouse. Data are combined from three individual experiments.
** p ≤ 0.01

WT-WT

WT-IL6

IL6-WT

IL6-IL6

Donor-Recipient

0.002

0.004

0.006

G
C

 v
ol

um
e 

cm
3

WT>
WT

WT>
IL6-/-

IL6-/->
WT

IL6-/->
IL6-/-

0.000

0

5

10

15

20

%
 o

f f
ol

lic
le

 o
cc

up
ie

d 
by

 G
C

**

**

A. B.

I

II

WT>
WT

WT>
IL6-/-

IL6-/->
WT

IL6-/->
IL6-/-

 

 



122 

 

   

Figure 4.14. GC development in bone marrow chimeras at day 35 of infection with STm.
WT and IL6-/- mice were lethally irradiated and reconstituted with WT or IL6-/- total bone
marrow cells. Following reconstitution, chimeric mice were infected with 105 STm for 35
days. Spleens were stained for IgM (left panels), IgG2b (middle panels) and IgG2a (right
panels) to identify non-switched and switched EF plasma cells Photos are representative
of 7-8 mice per group. One point represents one mouse. Data are combined from three
individual experiments. * p ≤ 0.05
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Figure 4.15. OMP-specific serum antibody titres in bone marrow chimeras at
day 35 of infection with STm. WT and IL6-/- mice were lethally irradiated and
reconstituted with WT or IL6-/- total bone marrow cells. Following reconstitution,
chimeric mice were infected with 105 STm for 35 days. Anti-OMP serum A, IgM,
B, IgG2b and C, IgG2a antibody titres were quantified by ELISA. One point
represents one mouse. Data are combined from three individual experiments. *
p ≤ 0.05
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4.3 Discussion  

Cytokines have an important role in driving and regulating GC responses and antibody 

class-switching following immunisation with protein antigens. This chapter assessed the 

contribution of IL4, IL13 and IL6 to GC and EF antibody responses during STm infection.  

Whilst EF plasma cell development was maintained in IL4-/-, IL13-/- and IL4Rα-/- mice, GC 

development was somewhat attenuated in each of these groups. These aberrations did not 

affect antibody output, as antigen-specific serum antibody titres were comparable to WT 

mice at the time point studied. Furthermore, a loss of IL4 and/or IL13 signalling did not 

result in enhanced levels of serum IgG2a or IgG2b in response to STm, as might be 

expected based on previous data (91,94,95). Conversely, IL6-/- mice were unable to mount 

effective antibody responses to STm, with GC development and optimal class-switched 

antibody production delayed until day 55 p.i. Smaller defects were apparent in the EF 

pathway of B cell differentiation into class-switched plasma cells, although differences 

between WT and IL6-/.- mice may have been masked by small group numbers. 

Surprisingly, the provision of IL6 from either radiation-resistant or haematopoietic cells 

was sufficient to restore the GC response and antibody class-switching following STm 

infection. Thus, this work reveals some similarities and some differences in the way that 

Th1 and Th2 GC responses develop and are maintained.   

 

4.3.1 Regulation of GC formation and antibody class switching by IL4 

and IL13 

Infection of IL4-/-, IL13-/- and IL4Rα-/- mice show these cytokines to be dispensable for 

bacterial clearance. These findings contradict those that describe IL4 as detrimental to the 
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resolution of Salmonella infection (264), as the elimination of this cytokine did not 

accelerate recovery. The absence of IL13 did appear to accelerate clearance, however 

further unpublished data from our laboratory did not confirm this. As bacterial clearance 

was efficient in all groups of mice, any observed defect in GC development could not be 

attributed to a failure to resolve infection. Whilst numerous GC were present in the spleens 

of IL4-/-, IL13-/- and IL4Rα-/- mice following STm infection, there was a diminution in the 

total GC volume and proportion of follicle occupied by GC in each of these groups at day 

42 p.i. Furthermore, the extent of the defect was remarkably similar in all groups, which 

taken together, suggests a probable role for IL4 and IL13 in optimising GC development in 

during STm infection. These data further imply some overlap in IL4 and IL13 function in 

this model. One confounding factor is the high number of background GC observed in the 

spleens of uninfected IL13-/- mice. The median volume of GC in the spleen actually 

reduced in this group following infection, making the data more difficult to interpret. 

However, this finding is consistent with the ability of STm to suppress GC development 

(70), and the high titres of class-switched antibody in the sera of IL13-/- mice at day 42 p.i 

confirm the antigen specificity of these GC.  

 

In response to model protein antigens, neither IL4 nor IL13 deficiency alone alters GC 

formation, however double deficiency in IL4 and IL13, or an inability to respond to these 

cytokines via the IL4Rα, does cause a reduction in GC size at a point when B cells are 

being selected in GC (93) (94). The data from the current study suggest that IL4 and IL13 

do not operate in a redundant fashion to promote GC development, however this could 

explain the data from experiments using non-viable protein antigens, as the presence of 

either IL4 or IL13 is sufficient to restore the defect that occurs when both cytokines or the 
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receptor alpha-chain is absent. Thus, IL4 and IL13 may have a generic role in GC 

formation, highlighting an ability for GC to Th1 and Th2 antigens to develop in the same 

way. One cell that may be important in this regard is the Tfh cell, as they can express 

(114,126,259) and produce IL4 (126,260), although IL13 expression has not been reported 

in these cells. It could be argued that IL4 from Tfh cells supports GC reactions per se, 

rather than having a bias for Th2 responses. Arguing against this is the finding that Tfh 

cells can also secrete IFNγ (126) and the Ig isotype produced by B cells that have entered 

GC reactions is dependent upon the cytokine expression profile of the interacting Tfh cell 

(126). Thus, during STm infection, where production of IgG2a and Igg2b is dominant, one 

would assume that Tfh cells secrete IFNγ and that IL4 is dispensable. Indeed, no defect in 

IgG2a or IgG2b switched antibody was observed in IL4-/-, IL13-/- or IL4Rα-/- mice at this 

time point. Perhaps in the absence of these cytokines, the capacity for B cells to switch to 

Th1-related isotypes is enhanced, and the less abundant GC actually mask this effect. 

Previously, enhanced Th1 activity, including higher levels of T-bet and γ2a-switch 

transcript expression, was reported in spleens from IL4Rα-/- mice following immunisation 

with alum-ppt protein (94). Others report enhanced IgG2a secretion in IL4-/- mice (95), and 

enhanced IgG2a and IgG2b in IL4 and IL4-/-IL13-/- double deficient mice (91)  during recall 

responses to N. brasiliensis and alum ppt-protein. 

 

Given the presence of antigen-specific, class-switched antibody in IL4-/-, IL13-/- and 

IL4Rα-/- mice during infection, the reduced GC volume in these mice is unlikely to impact 

upon primary antibody responses to STm. Switched IgG1 antibody, which is associated 

with Th2 responses that induce IL4 ad IL13 production, is not secreted during primary 

responses in this model. However, this sub-class of antibody can be detected in the sera of 
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WT mice following Salmonella infection and rechallenge (79).  It would therefore be 

interesting to ascertain whether IL4 and/or IL13 have a role in protective immunity to 

STm. Furthermore, enhanced IgG2a production may only become apparent during recall 

responses, as seen previously in IL4 or IL4-/-IL13-/- double deficient mice (91,95). 

 

4.3.2 Regulation of GC formation and antibody class switching by IL6 

Infection of IL6-/- mice with STm revealed that IL6 is not required for bacterial clearance, 

although heightened bacterial burdens have previously been shown in IL6-/- mice during 

the early infection (our unpublished observations). Here we show that optimal GC 

formation and class-switched antibody production is dependent upon IL6, a cytokine that 

has long been recognised as a growth factor for B cells (265) and is known for its role in 

plasmablast proliferation and survival (266). Consistent with this, several studies report 

impaired antibody responses in the absence of IL6 (103,104,267). During T-D B cell 

responses, antibody can arise from either EF- or GC-derived plasma cells. In the current 

study, the production of class-switched EF plasma cells was marginally affected by IL6 

loss, whilst optimal GC development and class-switched antibody secretion was markedly 

impaired. These findings suggest that the GC pathway of antibody production is impaired 

in IL6-/- mice, with the low titres of class-switched antibody present in the sera of IL6-/- at 

day 42 p.i arising from the EF pathway of plasma cell growth. These data are inconsistent 

with others that attribute defects in antibody production in IL6-/- mice to defects in EF 

plasma cell secretion (121,124). A recent study reported marked defects in anti-viral 

antibody responses following IL6 blockade in C57BL6 mice, which coincided with a 

modest reduction in EF plasma cells numbers but no reduction in GC B cell numbers 
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(124). Others have reported significantly reduced IgG titres in IL6-/- mice infected with 

LCMV for 8 days, despite no diminution in GC B cell numbers. These titres recovered by 

day 15, suggesting a defect in the earlier-onset EF plasma cell response (121). Whilst our 

data also show a delay in optimal antibody production, this is likely to reflect a GC defect, 

as GC development is also impaired and a high proportion of the antibody secreted into the 

sera at day 42 p.i arises from the GC (70).  

 

In support of our data, GC defects have been reported in IL6-/- mice immunised with model 

protein antigens. A reduction in GC volume was observed in IL6-/- mice at day 9 after 

immunisation with DNP-OVA, despite the normal formation of GC by day 7 (103). These 

data suggest a defect in GC maintenance, rather than GC induction, which differs from our 

data, although GC persistence was not directly assessed here. Other studies have reported 

defective GC formation in IL6-/- mice in a dose-dependent manner; whilst GC formation 

was impaired following a low dose of alum-ppt protein, they developed independently of 

IL6 at higher antigen doses (104). Importantly, these defects in GC formation were linked 

to impaired IgG2a and IgG2b (103) or total IgG (104) antibody production, findings that 

are consistent with our data.  

 

Whilst a number of studies support a role for IL6 in Ig class-switching, some infection 

models disagree with this requirement. Mice deficient in IL6 were shown to produce 

enhanced levels of antigen specific IgG2a in response to infection with Candida. albicans, 

despite producing lower levels of IFNγ and higher levels of IL4 than WT mice (268). 

Other conflicting results from IL6-/- mice relate to IgA production. Whilst some research 

supports a role for IL6 in local IgA production (262), others find IL6 to be dispensable for 
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local intestinal GC formation, lavage-fluid IgA and serum IgG production, in response to 

infectious antigens (263). Release of IgA at mucosal surfaces is likely to have a role during 

STm infection and IL6 is released by intestinal epithelial cells during the response (269). 

Our data clearly demonstrate that IgA+ EF plasma cells can form in the spleens of IL6-/- 

mice, however titres of serum IgA are impaired at day 42p.i. Incongruent research findings 

may relate to the different antigens used to stimulate the antibody response, however 

antigen dose may also be a contributory factor. IL6 is thought to regulate the production of 

complement component C3 (103), and the disruption of C3 ligation to CD21 (complement 

receptor 2; CR2) was linked to attenuated antibody responses and GC formation in 

response to DNP-OVA (103). Other studies have shown that blocking CR2 ablates IgG 

antibody responses only at suboptimal concentrations of antigen (270), suggesting that at  

high antigen doses, the need for IL6-mediated binding of C3 to CR2, may be overcome.  

Since GC development coincides with a dramatic reduction in bacterial burden during STm 

infection, IL6 may be important for complement-mediated, GC derived antibody 

production in this system.    

 

An alternative explanation is that antibody defects arise from a loss of IL6 signalling in 

lymphocytes. A previous report, analysing the cytokines present in different areas of the 

lymph node during T-D antibody responses, revealed that IL6 is expressed at the highest 

level within the T cell zone and that CD11c+ DC are the main source of this cytokine 

(271). As such, IL6 may be important for T cell priming and subsequent interactions with 

B cells may be delayed in its absence. In support of this, IL6-/- DC pulsed with keyhole 

limpet hemocyanin (KLH) antigen were unable to induce antigen-specific IgG1 or IgG2a 

antibody following injection into WT mice (122). This suggests that IL6 can act on T cells 
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to induce antibody production by B cells. In agreement, IL6 has been shown to up-regulate 

IL21 in T cells when stimulated in vitro or ex vivo, which in turn stimulates B cells to 

produce class-switched antibody (267). An IL6-mediated increase in class-switched 

antibody production via IL21 was also demonstrated in vivo, using inactive influenza 

vaccination in conjunction with IL6 (267). Thus, IL6 can promote antibody production by 

B cells via indirect, T cell mediated mechanisms, suggesting that T-B interactions may be 

negatively affected in the absence of IL6. Numerous factors induce AID expression in B 

cells, one of these being CD40-CD40L engagement in combination with cytokine 

stimulation (272,273). The induction of AID was delayed in IL6-/- mice, which may reflect 

aberrant T-B communication prior to GC or EF growth. A loss of CD40-CD40L signals 

could also explain defects in GC formation, as these structures do not form adequately in 

the absence of these molecules (55,274). On the other hand, mRNA expression of γ2a-

germline switch transcripts was not compromised in IL6-/- mice at day 30 or 42 of STm 

infection, implying that T-B interactions did occur in IL6-/- mice at these times (56). 

Although AID expression was defective in IL6-/- B cells it was not completely absent, 

which may reflect a lack of the integrated signalling required to optimise AID expression. 

This in turn would explain why optimal CSR is not apparent until later in IL6-/- mice. 

 

The expansion of B cells in EF, rather than follicular sites, suggests a possible defect in B 

cell or T cell GC entry. This could not be attributed to a failure of IL6-/- B cells or T cells 

to express Bcl-6, as expression levels were equivalent to WT B cells. A requirement for B 

cells and Tfh cell movement into follicles is the expression of CXCR5. Blocking T helper 

cell activation inhibits CXCR5 expression by T cells and GC reactions are subsequently 

impaired (275). IL6 has not been reported to modulate CXCR5 expression, or the 
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migration of T and B cells into follicles, however a closer analysis of chemokines and 

chemokine receptors within various areas of IL6 deficient spleens would help to address 

this issue. 

 

A second, critical point of T-B interaction occurs once B cells enter the GC reaction. Much 

recent interest has surrounded the signals that govern T cell differentiation into Tfh cells, 

for which IL6 and IL21 are both primary candidates. Whilst both of these cytokines can 

contribute to Tfh development, mice lacking either of these cytokines in isolation are able 

to generate Tfh cells in vivo (120,121). In agreement, recent data highlights a redundant 

role for IL6 and IL21 in Tfh development (124), commensurate with their shared ability to 

signal through STAT-3 (276). As such, we were not surprised to see Bcl6 expressed at 

similar levels in WT and IL6-/- T cells during STm infection, data that is in agreement with 

others (121). However, Bcl-6 alone cannot identify Tfh cells. The Tfh cells that are found 

within GC are phenotypically distinct from those pre-GC-Tfh cells that interact with pre-

GC B cells at the T-B border, however both express Bcl-6 (107). Staining for Tfh cells by 

confocal revealed a near absence of CD3+PD1+Bcl-6+ cells in IL6-/- mice at day 42 p.i, a 

time at which numerous cells of this phenotype were detected in the spleens of WT mice, 

localised within GC. By day 55 p.i, when GC had developed in IL6-/- mice, these cells 

were now visible in the spleen. The presence of Tfh within GC is essential for the 

maintenance of GC reactions, as highlighted by the GC that develop during T-I immune 

responses, which collapse once T cell help becomes necessary (158). Thus, it is tempting 

to speculate that defects in GC development in IL6-/- mice are due to a lack of GC-Tfh cell 

development, however it is important to consider cause and effect. The T-I GC data (158) 

suggest that GC Tfh cells are not necessary for the initial induction of GC reactions, but 
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rather for their maintenance. Recent data shows that effective contact time between pre-GC 

Tfh cells and pre-GC B cells is required for Tfh cells to enter and sustain a forming GC 

reaction (109), showing that Tfh cells maintain but do not initiate GC reactions. It seems 

likely that in the current study, GC do not form for another reason and the absence of GC 

Tfh cells is a consequence of this. Thus, the inability to form GC in IL6-/- mice may be 

attributable to a failure B cells to migrate to, or expand within, the follicles following T-B 

interaction. Defective expansion of GC B cells in the follicles may explain why GC were 

smaller in IL6-/- mice at day 55 p.i. 

 

In an attempt to identify the source of the IL6 that drives GC reactions, we created BM 

chimeras in which IL6 was deficient either in haematopoietic cells or in radiation-resistant 

cells. Numerous cells produce IL6, including T cells (277), B cells (278), macrophages 

(277), dendritic cells (271), endothelial cells (279), follicular dendritic cells (FDC) (104) 

and fibroblasts (280). Unpublished data generated during my MSc degree shows that most 

of the IL6 expressed at day 18 and 35 of STm infection comes from non-T, non-B cells. 

Whilst T cells express some IL6 at day 35, B cells express very little at either time point. 

Thus, an alternative candidate is likely to provide the IL6 that optimises GC responses in 

this system. The role of IL6 in T cell priming by DC has already been discussed.  

Alternatively, radiation-resistant cells may be the source of the IL6 that promotes effective 

GC responses. It has been reported that FDC, which are stromal in origin, are the sole 

source of IL6 in the GC and this facilitates class switch recombination and SHM in B cells 

(103,104). Surprisingly, we found that IL6 provided by either haematopoietic or radiation-

resistant cells was able to correct the defect in GC development and antibody class 

switching seen in IL6-/- and IL6-/->IL6-/- chimeras.  The WT-WT chimeras did display a 
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lower than expected antibody response to STm, when compared to a normal infection of 

C57BL6 mice, which masked the differences between WT>WT and IL6-/->IL6-/- mice 

somewhat. However, the ability to form GC and class-switched antibody responses were 

clearly diminished in IL6>IL6 mice.   

 

Thus, these studies have produced a novel finding, showing that haematopoietic and 

radiation resistant cells can act in a redundant fashion to provide the IL6 necessary to 

support optimal humoral responses to STm infection. Identifying the cells that respond to 

IL6 in this system will be key to understanding how this compensatory mechanism 

operates. It would be intriguing in this regard, to identify those cells that up-regulate or 

acquire the IL6R during the later stages of STm infection, when IL6 becomes important for 

initiating GC responses. IL6 signalling is initiated when IL6 binds to a receptor complex, 

consisting of the specific IL6R and a second, common signalling component, gp130 (281). 

Whilst a number of cells express the membrane bound IL6R, a soluble form of the IL6R 

(sIL6R) also exists, allowing cells that express gp130, but not the IL6R, to become 

responsive to IL6 during an immune response (276). This signalling mechanism may also 

enhance the repertoire of cells from which the responsive cells can acquire IL6 signals, 

helping to explain the bone-marrow chimera data. As such, the regulation of antibody 

responses in this model may not require IL6 production by one specific cell type and its 

effects are likely to be multifaceted. Overall, the data presented in this chapter show that 

there are some, previously unappreciated similarities in the way that GC and class-

switched antibody responses develop during immune responses to Th1 and Th2 antigens. 

We next focused specifically upon the control of antibody class-switching during infection, 

by defining the role of the transcription factor T-bet in antibody responses to STm.    
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CHAPTER 5: THE ROLE OF T-BET IN ANTIBODY 

CLASS-SWITCHING DURING STM INFECTION 

 

5.1 Introduction 

The T-box transcription factor T-bet is essential for Th1 lineage commitment (72). As 

such, CD4+ T cell-expressed T-bet and (79) subsequent IFNγ production (217) are critical 

for the control of numerous intracellular infections, including STm.  Cytokines such as IL4 

(264) and IL10 (282) are not associated with protection against STm infection due to their 

anti-inflammatory properties and suppression of IFNγ (264,282). To this end, mice 

deficient in T-bet produce higher levels of IL-10 during infection with Mycobacterium 

Tuberculosis (283) and splenocytes from T-bet-/-,  STm infected mice secrete more IL10 

than those isolated from WT mice (79). Thus, T-bet controls infection with intracellular 

bacteria by stimulating IFNγ production and suppressing the anti-inflammatory cytokine 

IL10. 

 

T-bet is widely recognised as the global regulator of Th1 differentiation, however the 

literature suggests multiple additional roles for T-bet within the immune system. T-bet has 

been proposed to regulate the migration of CD4+ T cells (284), Tregs (285) mast cells 

(286) and cytotoxic T lymphocytes (287). Furthermore, T-bet deficiency in DC can lead to 

sub-optimal CD4+ T cell priming (81,288), and the cytotoxic function of CD8+ T cells is 

impaired in the absence of T-bet (289). Deficiency of T-bet in NK and NKT cells results in 
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developmental, survival and functional defects, including reduced IFNγ production during 

infection responses (290). 

 

Of particular interest here, is the association of T-bet with CSR to IgG2a in B cells. Whilst 

T-bet independent pathways of IgG2a production do exist (83), a number of studies have 

highlighted an important role for T-bet in this process (79,83,291,292). In vitro assays 

show that T-bet-/- B cells cannot produce IgG2a under a variety of stimulation conditions 

and IgG2a germline and post-switch transcripts are absent in these cells following 

stimulation with IFNγ and LPS (83). Furthermore, TLR9 stimulation of B cells with 

cytosine-phosphate-guanine (CpG) DNA can upregulate T-bet expression in B cells (293), 

as well as γ2a-switch transcript induction and antibody secretion (293,294). In vivo, 

pathogenic IgG2a production is severely depleted when T-bet-/- mice are intercrossed with  

the lupus-prone mouse strain MRL/MpJ-Faslpr/lpr, whilst the Th2-related antibody isotypes, 

IgG1 and IgE, are elevated (83). IgG2a antibody is also absent in the sera of T-bet deficient 

mice at day 14 of infection with STm (79), in which class switching is T cell dependent 

(70). Contrary to this, T-bet-/- mice immunised with non-viable T-D antigens purportedly 

produce normal levels of IgG2a, whilst failing to produce this subclass when immunised 

with TI antigens (291). Thus, conflicting data in the literature may reflect an antigen and 

context specific role for T-bet in controlling CSR to IgG2a. 

 

Whilst in vivo data support a role for T-bet in the IgG2a response to viable T-D antigens, it 

is not clear whether this response is regulated by T cell- or B cell-intrinsic T-bet 

expression, or indeed both. Recent work has shown that IFNγ produced by CD8 T cells can 

skew antibody class-switching from IgG1 to IgG2a or IgG2b, in response to immunisation 
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with alum-precipitated ovalbumin (OVA) (292). The switch to IgG2a required T-bet 

expression in B cells, but not T cells or non-lymphocytes, whilst the production of IgG2b 

in this system was T-bet independent. Whether T cell-intrinsic T-bet becomes important 

for guiding switching to IgG2a during a Th1 infection response is unclear.  During STm 

infection, class-switching is almost entirely T cell-dependent (70) and IgG2a production is 

T-bet dependent (79), suggesting that T cell intrinsic T-bet may be important in guiding 

this response. On the other hand, whilst some studies show expression of T-bet in 

specialized Tfh cells (295), others report its absence (105), suggesting that T-bet 

expression in T cells may be dispensable for class-switching.    

 

This chapter addresses the cellular basis for T-bet dependent class switching to IgG2a 

during STm infection, and examines whether class-switching to IgG2b is T-bet dependent 

in this system. We were also interested in the purported ability of T-bet deficient mice to 

produce enhanced titres of the Th2-related antibody subclass IgG1 (83). STm drives class-

switching to IgG2a, however immunisation with certain protein components of the 

bacterium, such as sFliC, induces a Th2 immune response with antibody class-switching to 

IgG1 (239). As such, two separate hypotheses are investigated here; firstly we examine the 

hypothesis that class-switching to IgG2a during STm infection is dependent upon both T 

cell-intrinsic and B cell-intrinsic T-bet, whilst class-switching to IgG2b is T-bet-

independent. The second half of this chapter investigates the hypothesis that antibody 

responses are enhanced in T-bet-/- mice following immunisation with sFliC.     
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5.2 Results 

5.2.1 T-bet-mediated control of class-switching during STm infection 

 

5.2.1.1 T-Bet-/- mice fail to clear STm infection despite normal levels of CD4+ T 

cell activation 

During the first week of STm infection, bacterial replication is controlled by the innate 

immune system, however clearance requires IFNγ production by Th1 cells (79). T-bet is 

the global transcriptional regulator of Th1 cells and in its absence, mice fail to control 

infection with STm (79). To confirm these data, we infected T-bet-/- mice with STm and 

quantified the CFU per spleen at day 7 and 35 p.i.  As expected, similar numbers of 

bacteria were recovered from the spleens of WT and T-bet-/- mice at day 7 p.i. (figure 5.1). 

Bacterial numbers had fallen substantially in WT spleens by day 35 of infection, however 

T-bet-/- mice were unable to resolve the infection, with the CFU being ≥ 100-fold greater 

than in WT spleens (p ≤ 0.05).  

 

As CD4+ T cells are required for bacterial clearance, splenic CD4+ T cell numbers were 

quantified and their activation status assessed by flow cytometry. Both before and during 

the infection, no difference was observed in the total numbers of CD4+ T cells in WT and 

T-bet-/- spleens (figure 5.2B I). Using CD62L loss as a marker of T cell activation, we 

observed that T-bet deficient T cells were able to activate during the infection (figure 5.2A 

and BII).  The proportion of activated splenic T cells was similar in WT and T-bet-/- mice 

prior to infection and at day 7 p.i. However, at day 35p.i, a significantly greater proportion 

of T cells remained activated in T-bet-/- spleens (p ≤ 0.05).                  
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Figure 5.1. Bacterial burden in WT and T-bet-/- mice during STm infection. WT
and T-bet-/- mice were infected with 105 STm and the number of CFU per spleen
were quantified at day 7 and day 35 p.i. One point represents one mouse. Data
are representative of ≥ 2 individual experiments giving similar results. * p ≤ 0.05
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Figure 5.2. Splenic T cell numbers in WT and T-bet-/- mice before and during STm
infection. WT and T-bet-/- mice were infected with 105 STm or remained uninfected as
controls. At the specified time points, mice were sacrificed and splenic T cell numbers
were quantified by flow cytometry. A. Representative flow cytometry plots showing the
activation status of CD3+CD4+ splenocytes from WT and T-bet-/- mice, based upon
CD62L staining. Percentages denote the proportion of total CD4+ T cells that are
activated (CD62Llo) and naive (CD62Lhi). B. I Total number of splenic CD4+ T cells in
WT and T-bet-/- spleens before and during infection with STm. II Proportion of splenic
CD4+ T cells that are naive (dots) and activated (triangles) in WT and T-bet-/- mice
before and after infection. Each point represents one mouse. Data are representative of
≥ 2 experiments giving similar results. * p ≤ 0.05.
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5.2.1.2 T-bet-/- mice have normal numbers of follicular B2 cells but fewer 

splenic MZ cells than WT mice 

As we were interested in assessing the antibody response to infection, we next examined 

whether splenic B cell numbers were similar in WT and T-bet-/- mice. Using flow 

cytometry, the total number of splenic recirculating and MZ B2 cells were quantified in 

WT and T-bet-/- mice before and during infection. Cells were identified as previously 

described (see figure 3.3). Before infection, T-bet-/- mice had similar numbers of splenic 

follicular B cells but fewer MZ B cells when compared to WT mice (figure 5.3A and B). 

During the infection, the proportion of follicular B cells was lower in T-bet-/- mice (figure 

5.3A), however the exaggerated splenomegally resulted in similar total numbers of 

follicular B cells when compared to WT mice (figure 5.3BI). Marginal zone B cells 

remained significantly lower in T-bet mice at day 7 and 35 p.i (p≤ 0.05). The dramatic 

difference between WT and T-bet-/- MZ cell numbers at day 35p.i. presumably reflects the 

presence of an active infection in T-bet-/- mice at this point. Having quantified B cell 

numbers, we next sought to define the role of T-bet in antibody class-switching to IgG2a 

and IgG2b during STm infection. 
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Figure 5.3. Splenic B cell numbers in WT and T-bet-/- mice before and during STm
infection. WT and T-bet-/- mice were infected with 105 STm or remained uninfected as
controls. At the specified time points, mice were sacrificed and splenic B cell numbers
were quantified by flow cytometry. A. Representative flow cytometry plots showing
recirculating follicular and MZ B cell staining of WT and T-bet-/- splenocytes, before
and during STm infection. Percentages denote MZ or recirculating B2 cells as a
proportion of total splenocytes. B. I Total number of splenic recirculating B cells in WT
and T-bet-/- spleens before and during infection. II Total number of splenic MZ B cells in
WT and T-bet-/- spleens before and during infection. Each point represents one mouse.
Data are representative of ≥ 2 experiments giving similar results. * p ≤ 0.05.
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5.2.1.3 T-Bet is required for class- switching to IgG2a but not IgG2b during 

STm  infection 

The dominant isotypes of switched-antibody produced during primary STm infection are 

IgG2a and IgG2b. To compare the role of T-bet in switching to these isotypes, spleen 

sections from WT and T-bet-/- mice were examined for the presence of non-switched and 

class-switched EF plasma cells during the early and late infection. As shown in figure 5.4, 

IgM+ and class-switched IgG2b+ plasma cells were clearly present in the spleens of WT 

and T-bet-/- mice at both stages of infection. However, whilst large numbers of IgG2a+ 

plasma cells were detected in WT spleens, this response was not evident in T-bet-/- spleens 

(figure 5.4). Consistent with these observations, anti-OMP IgM (figure 5.5A) and IgG2b 

(figure 5.5B) antibody production was normal in T-bet-/- mice, whilst IgG2a secretion was 

completely absent (figure 5.5C). These data indicate that T-bet independent mechanisms 

control class-switching to IgG2b, whilst switching to IgG2a is T-bet-dependent. Anti-OMP 

IgG1 was undetectable in WT sera and the majority of T-bet-/- sera throughout infection 

(figure 5.5D). Those T-bet-/- mice that produced some IgG1 antibody did so at very low 

titres, indicating that T-bet-/- mice do not compensate for a lack of IgG2a by reverting to a 

Th2 pathway of antibody production.  

 

As antibody class-switching during STm infection is T cell-dependent (70) and IgG2a 

class-switching is T-bet dependent, we hypothesised that T cell-intrinsic T-bet would be 

necessary for CSR to IgG2a.  To test this we used an established, mixed bone marrow 

chimera model (241) in which mice containing a T-bet-deficient T cell compartment (T-

bet-/-TCELL) were generated alongside mice whose T cell compartment was T-bet sufficient 

(T-bet+/+TCELL). 
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Figure 5.4. Staining of EF plasma cells in WT and T-bet-/- mice before and during
STm infection. WT and T-bet-/- mice were infected with 105 STm or remained
uninfected as controls. At the specified time points, mice were sacrificed and the
spleens were stained with left panels; IgM (blue) and IgD (brown) to detect non-
switched EF plasma cells, middle panel; IgG2b (blue) and IgD brown and right
panels IgG2a (blue) and IgD (brown) to detect class-switched EF plasma cells.
Experiments were performed at least twice and photographs are representative of
≥ 8 mice per group at each time point.
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Figure 5.5. Antibody titres in WT and T-bet-/- mice before and during STm infection. WT
and T-bet-/- mice were infected with 105 STm or remained uninfected as controls. At the
specified timepoints, mice were sacrificed and A, IgM, B, IgG2b, C, IgG2a and D, IgG1
serum antibody titres were measured by ELISA. One point represents one mouse. Data
are representative of ≥ 2 experiments giving similar findings. * p ≤ 0.05
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5.2.1.4 T-bet-/- T cells activate during STm infection but fail to promote 

bacterial clearance 

Following reconstitution, T cell chimeras were infected with STm for 7 or 32 days. All 

mice satisfactorily reconstituted the splenic T and B cell compartments and these data are 

discussed below. At day 7 and 35 of infection the splenic bacterial burden was assessed in 

the chimeras. At day 7 p.i, the CFU per spleen was similar in T-bet+/+TCELL and T-bet-/-TCELL 

mice (figure 5.6), reflecting the innate control of bacterial replication at this point. As 

expected, at day 32 p.i, T-bet-/-TCELL mice had failed to resolve the infection, with the 

median CFU being almost 1000-fold higher when compared to T-bet+/+TCELL mice (p ≤ 

0.001). 

 

Flow cytometric analysis revealed normal splenic CD4+ T cell reconstitution in both T-

bet+/+TCELL and T-bet-/-TCELL mice, although fewer CD4+ T cells were detected in T-bet-/-

TCELL spleens during infection (p ≤ 0.05) (figure 5.7A and BI).  Consistent with our earlier 

data, we observed that T cells from T-bet-/-TCELL mice were able to activate during the 

infection, as the proportion of CD4+ T cells that were also CD62Llo increased over the time 

course (figure 5.7A and BII). However, we previously observed a higher proportion of 

activated T cells in T-bet-/- mice at day 35 of infection when compared to WT mice, whilst 

here the proportion of activated CD4+ T cells was significantly lower in T-bet-/-TCELL mice 

(p ≤ 0.001) at both stages of infection. Although not pursued, perhaps this reflects a 

suppression of T-bet-/- T cell activation by T-bet+/+ B cells or other cells.  
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Figure 5.6. Bacterial burden in chimeric mice with either T-bet-sufficient
or T-bet-deficient T cells. Chimeras were infected with 105 STm and the
number of CFU per spleen were quantified at day 7 and day 35 p.i One
point represents one mouse. Data are pooled from 2 individual
experiments. *** p ≤ 0.001
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Figure 5.7. Splenic T cell numbers in chimeric mice with either T-bet-sufficient or T-bet-
deficient T cells before and during STm infection. Chimeras were infected with 105 STm or
remained uninfected as controls. At the specified time points p.i, mice were sacrificed and
splenic T cell numbers were quantified by flow cytometry. A. Representative flow cytometry
plots showing the activation status of CD3+CD4+ splenocytes from from T-bet+/+TCELL and T-
bet-/-TCELL mice, based on CD62L staining. Numbers on histograms denote the proportion of
total CD4+ T cells that are activated (CD62Llo) and naive (CD62Lhi). B. I Total number of
splenic CD4+ T cells in T-bet+/+TCELL and T-bet-/-TCELL spleens before and during infection. II
Proportion of splenic CD4+ T cells that are CD62Lhi and CD62Llo in T-bet+/+TCELL and T-bet-/-
TCELL mice before and after infection. Each point represents one mouse. Data are pooled
from 2 individual experiments. * p ≤ 0.05; *** p ≤ 0.001.
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5.2.1.5 B cell numbers are similar in T-bet+/+TCELL and T-bet-/-TCELL mice  

throughout infection 

To assess B cell reconstitution in the T cell chimeras, flow cytometric analysis of splenic 

recirculating and MZ B cells was carried out on T-bet+/+TCELL and T-bet-/-TCELL mice before 

and during infection. The numbers of these B cells in uninfected T-bet+/+TCELL and T-bet-/-

TCELL mice were similar to those seen in uninfected WT C57BL6 and T-bet-/- mice and no 

differences were observed between the two groups of chimeras (figure 5.8). Throughout 

infection, recirculating B cell numbers were also similar in T-bet+/+TCELL and T-bet-/-TCELL 

mice (figure 5.8BI). Unlike our observations in T-bet-/- mice, MZ B cell numbers were 

similar in T-bet+/+TCELL and T-bet-/-TCELL mice throughout infection, despite the T-bet-/-TCELL 

mice remaining heavily infected at day 32 p.i. This partly reflects the less efficient 

recovery of MZ B cell numbers in T-bet+/+TCELL mice when compared to WT mice. Overall, 

the T cell chimeras were able to reconstitute the splenic B cell compartment effectively and 

we next assessed the ability of these B cells to undergo CSR to IgG2a and IgG2b during 

infection.   
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Figure 5.8. Splenic B cell numbers in chimeric mice with either T-bet-sufficient- or T-bet-
deficient T cells before and during STm infection. Chimeras were infected with 105 STm or
remained uninfected as controls. At the specified timepoints, mice were sacrificed and
splenic B cell numbers were quantified by flow cytometry A. Representative flow cytometry
plots showing recirculating follicular and MZ B cell staining of splenocytes from T-
bet+/+TCELL and T-bet-/-TCELL mice. Numbers denote MZ or recirculating B2 cells as a
proportion of total splenocytes. B. I Total number of splenic recirculating B cells in T-
bet+/+TCELL and T-bet-/-TCELL spleens before and during infection. II Total number of splenic
MZ B cells in T-bet+/+TCELL and T-bet-/-TCELL spleens before and during infection. Each point
represents one mouse. Data are pooled from 2 experiments.
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5.2.1.6 T-bet expression in T cells is dispensable for CSR to IgG2a during STm 

infection 

To assess the class-switched plasma cell response in the chimeras, spleen sections were 

stained for IgM+, IgG2b+ and IgG2a+ plasma cells, which were subsequently quantified by 

counting. Consistent with our earlier data, comparable numbers of IgM+ and IgG2b+ 

plasma cells were detected in the spleens of T-bet+/+TCELL and T-bet-/-TCELL mice before and 

during infection (figure 5.9 and 5.10A and B).  Surprisingly, the two groups of mice also 

formed similar numbers of IgG2a+ plasma cells at each stage of infection (figure 5.9A and 

5.10C). The low numbers of class-switched plasma cells in uninfected T-bet-/-TCELL mice 

strongly suggested this response to be antigen specific. To assess this further, OMP-

specific serum antibody titres were measured by ELISA, confirming that T-bet expression 

in T cells is not required for the secretion of antigen-specific IgM, IgG2b or IgG2a 

antibody (figure 5.11). Thus, the signals delivered to B cells by T cells during STm 

infection allow antibody class switching to IgG2a in the absence of T cell-intrinsic T-bet. 

As such, we used the same chimera system to assess whether B cell-intrinsic T-bet is 

necessary for this response, following which we carried out RT-PCR analysis on T cells 

and B cells from both sets of chimeric mice.    
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Figure 5.9. Staining of EF plasma cells in chimeric mice with either T-bet-sufficient
or T-bet-deficient T cells before and during STm infection. Chimeras were infected
with 105 STm or remained uninfected as controls. At the specified time points, mice
were sacrificed and the spleens were stained for EF plasma cells. Representative
photographs from T-bet+/+TCELL and T-bet-/-TCELL spleens stained with left panels IgM
(blue) and IgD (brown) to detect non-switched EF plasma cells, middle panels
IgG2b (blue) and IgD brown and right panels IgG2a (blue) and IgD (brown) to
detect class-switched EF plasma cells. Photographs are representative of at least 7
mice per groups at day 7 and 35 and at least 3 mice at day 0.
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Figure 5.10. EF plasma cell numbers in chimeric mice with either T-bet-sufficient
or T-bet-deficient T cells before and during STm infection. Chimeras were infected
with 105 STm or remained uninfected as controls. At the specified time points, mice
were sacrificed and the spleens were stained for EF plasma cells. Graphs show
the total number of splenic A, IgM+, B, IgG2b+ and C, IgG2a+ plasma cells in T-
bet+/+TCELL and T-bet-/-TCELL mice at the specified time points, as determined by
histology. One point represents one mouse. Data are pooled from 2 individual
experiments.
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Figure 5.11. OMP-specific antibody titres in chimeric mice with either T-bet-
sufficient or T-bet-deficient T cells before and during STm infection. Chimeras
were infected with 105 STm or remained uninfected as controls. At the specified
time points, mice were sacrificed and A, IgM, B, IgG2b and C, IgG2a serum
antibody titres were measured by ELISA. One point represents one mouse. Data
are pooled from 2 individual experiments. * p ≤ 0.05
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5.2.1.7 B cell-intrinsic T-bet expression is not required for clearance of STm 

infection or splenic T cell activation 

Since T-bet in T cells is not required for IgG2a class-switching, chimeric mice lacking T-

bet in all B cells (T-bet-/-BCELL) were generated alongside T-bet-sufficient B cell chimeras 

(T-bet+/+BCELL), and mice were infected with STm for 7 or 35 days. As discussed below, 

reconstitution of the T and B cell compartments in these mice was normal. Clearance of 

primary STm infection does not require B cells (220), however modified B cell 

compartments can alter clearance kinetics (228). Nevertheless, a loss of T-bet in B cells did 

not affect infection resolution, as no difference in bacterial burden was observed between 

T-bet+/+BCELL and T-bet-/-BCELL mice at day 7 or 35 p.i (figure 5.12).  

 

Splenic CD4+ T cell numbers were quantified next, showing comparable total numbers in 

T-bet+/+BCELL and T-bet-/-BCELL mice before and throughout infection (figure 5.13B I). The 

proportion of activated CD4+ T cells in resting T-bet+/+BCELL and T-bet-/-BCELL mice was 

higher than expected prior to infection (figure 5.13A and  BII), as was the case in the T-

bet-/-TCELL chimeras, albeit to a lesser extent. This masked the infection-mediated activation 

of CD4+ T cells somewhat, however the proportion of activated CD4+ T cells was 

increased above background in both groups of mice during the infection. Furthermore, the 

equal capacity of T-bet+/+BCELL and T-bet-/-BCELL mice to resolve infection demonstrates 

appropriate CD4+ T cell effector function in both groups of mice. 
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Figure 5.12. Bacterial burden in chimeric mice with either T-bet-sufficient
or T-bet-deficient B cells. Chimeras were infected with 105 STm and the
number of CFU per spleen were quantified at day 7 and day 35 p.i. One
point represents one mouse. Data are pooled from 2-3 individual
experiments.
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Figure 5.13. Splenic T cell numbers in chimeric mice with either T-bet-sufficient or T-bet-
deficient B cells before and during STm infection. Chimeras were infected with 105 STm
or remained uninfected as controls. At the specified time points, mice were sacrificed and
splenic T cell numbers were quantified by flow cytometry. A. Representative flow
cytometry plots showing the activation status of CD4+ T cells from T-bet+/+BCELL and T-
bet-/-BCELL mice, based on CD62L staining. Numbers in the histograms denote the
proportion of total CD4+ T cells that are activated (CD62Llo) and naive (CD62Lhi). B. I
Total number of splenic CD4+ T cells in T-bet+/+BCELL and T-bet-/-BCELL spleens before and
during infection with STm. II Proportion of splenic CD4+ T cells that are naive and
activated in T-bet+/+BCELL and T-bet-/-BCELL mice before and after infection with STm.
Each point represents one mouse. Data are pooled from 2-3 experiments.
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5.2.1.8 Splenic B cell reconstitution is not affected by the absence of T-bet in B 

cells    

In order to assess the capacity of T-bet-deficient B cells to reconstitute the splenic B cell 

compartment, recirculating and MZ B cells were quantified by flow cytometry before and 

during infection. Equal numbers of recirculating B cells were identified in the spleens of T-

bet+/+BCELL and T-bet-/-BCELL mice before and during infection, although there was a 

tendency towards lower total numbers in T-bet-/-BCELL mice (figure 5.14A and BI). 

Marginal zone B cell numbers were similar in uninfected T-bet+/+BCELL and T-bet-/-BCELL 

spleens (figure 5.14A and BII). During infection, there was a large amount of spread in MZ 

B cell numbers in both groups, however overall numbers were similar in both groups of 

mice at this time point, as well as at day 35 p.i (figure 5.14 BII). As B cell reconstitution 

was effective in the chimeric mice, we next assessed antibody class-switching in response 

to STm infection.  
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Figure 5.14. Splenic B cell numbers in chimeric mice with either T-bet-sufficient or T-
bet-deficient B cells before and during STm infection. Chimeras were infected with 105

STm or remained uninfected as controls. At the specified time points, mice were
sacrificed and splenic B cell numbers were quantified by flow cytometry A.
Representative flow cytometry plots showing recirculating follicular and MZ B cell
staining of splenocytes from T-bet+/+BCELL and T-bet-/-BCELL mice. Numbers denote MZ
or recirculating B2 cells as a proportion of total splenocytes. B. I Total number of
splenic recirculating B cells in T-bet+/+BCELL and T-bet-/-BCELL spleens before and during
infection with STm. II Total number of splenic MZ B cells in T-bet+/+BCELL and T-bet-/-
BCELL spleens before and during infection with STm. Each point represents one mouse.
Data are pooled from 2-3 experiments.
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5.2.1.9 B cell-intrinsic T-bet is required for antibody class-switching to IgG2a 

during STm infection 

Staining of spleen sections by immunohistology revealed higher background numbers of  

splenic IgM+ and IgG2b+ plasma cells in uninfected T-bet+/+BCELL and  T-bet-/-BCELL mice, 

than would be expected in C57BL6 WT mice (figure 5.15 and 5.16A and B). However, 

plasma cell numbers increased after infection and no difference in IgM+ and IgG2b+ 

plasma cell numbers were observed in T-bet+/+BCELL and  T-bet-/-BCELL spleens at either 

stage of infection (figure 5.15 and 5.16A and B). Staining for IgG2a+ plasma cells revealed 

that at day 0, T-bet+/+BCELL plasma cell numbers were again higher than expected, however 

IgG2a+ plasma cells were rare and only sporadic in T-bet-/-BCELL spleens (figure 5.15 and 

5.16C BIII).   By day 7 p.i, an increase above background numbers occurred in T-bet-/-

BCELL mice, however  IgG2a+ plasma cell numbers were >4-fold lower when compared to 

T-bet+/+BCELL mice (p ≤ 0.001).  Strikingly, by D35p.i when GC contribute to plasma cell 

output, the number of IgG2a+ plasma cells was no higher than background in T-bet-/-BCELL 

mice and >100 fold lower than in T-bet+/+BCELL mice (p ≤ 0.001) (figure 5.16 C). 

 

Consistent with these findings, OMP-specific IgM+ and IgG2b+ antibody titres were 

similar in the two groups of mice at both stages of infection (figure 5.17A and B), whilst 

IgG2a+ switched antibody was completely undetectable in T-bet-/-BCELL mice at day 35 pi 

(figure 5.17C). This was in stark contrast to T-bet+/+BCELL mice, that produced marked 

IgG2a titres at this point (p ≤ 0.001). Thus, T-bet expression in B cells is required for 

optimal switching to IgG2a during the early stages of infection and becomes an absolute 

requirement during the later stages of the response.  
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Figure 5.15. Staining of EF plasma cells in chimeric mice with either T-bet-
sufficient or T-bet-deficient B cells before and during STm infection. Chimeras
were infected with 105 STm or remained uninfected as controls. At the specified
time points, mice were sacrificed and the spleens were stained for EF plasma
cells. Representative photographs from T-bet+/+BCELL and T-bet-/-BCELL spleens
stained with left panels IgM (blue) and IgD (brown) to detect non-switched EF
plasma cells, middle panels IgG2b (blue) and IgD brown and right panels IgG2a
(blue) and IgD (brown) to detect class-switched EF plasma cells. Photographs are
representative of at least 7 mice per group at day 7 and 35 p.i and 3 mice at day 0.
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Figure 5.16. EF plasma cell numbers in chimeric mice with either T-bet-sufficient
or T-bet-deficient B cells before and during STm infection. Chimeras were infected
with 105 STm or remained uninfected as controls. At the specified time points, mice
were sacrificed and the spleens were stained for EF plasma cells. Total number of
splenic A, IgM+, B, IgG2b+ and C, IgG2a+ plasma cells in T-bet+/+BCELL and T-bet-/-
BCELL mice at the specified time points, as quantified by histology. One point
represents one mouse. Data are pooled from 2-3 individual experiments. *** p ≤
0.001
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Figure 5.17. OMP-specific antibody titres in chimeric mice with either T-bet-
sufficient or T-bet-deficient B cells before and during STm infection. Chimeras
were infected with 105 STm or remained uninfected as controls. At the specified
time points, mice were sacrificed and A, IgM, B, IgG2b and C, IgG2a serum
antibody titres were measured by ELISA. One point represents one mouse. Data
are pooled from 2-3 individual experiments. *** p ≤ 0.001
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5.2.1.10 Germinal centres and Tfh cells develop normally in T-bet-/-BCELL 

chimeras  

As the IgG2a response was absent in T-bet-/-BCELL chimeras by day 35 p.i, GC and Tfh cell 

development was assessed.  Germinal centres form by day 35 of infection with STm and 

this coincides with the detection of high titres of switched IgG2a antibody in WT mice 

(70). Staining of spleen sections for GC revealed T-bet-/-BCELL mice were able to form GC 

during STm infection (data not shown). Tfh cells, identified by confocal microscopy 

staining as CD3+PD1+Bcl-6+ cells, were clearly evident within these structures (figure 

5.18). Thus, a complete loss of IgG2a by day 35 could not be attributed to a failure to 

develop the GC or the T cells that support class-switched antibody responses within them. 

We therefore examined the possibility that the defect in IgG2a class-switching occurred 

prior to GC entry, during cognate interaction with T cells at the T-B border. 
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Figure 5.18. Tfh cells in chimeric mice with either T-bet-sufficient or T-bet-
deficient B cells during STm infection. Chimeras were infected with 105 STm and
at day 35 p.i, mice were sacrificed and the spleens stained for Tfh cells by
confocal microscopy. Tfh cells were identified as CD3+ (blue) PD1+ (red) BCL6+

(green). The white box shows the enlarged area below and the white arrows on
the enlarged image identify Tfh cells. Images are representative of 7 mice per
group.
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5.2.1.11 Defective IgG2a class-switching in T-bet-/- B cells is reflected in 

impaired γ2a germline switch transcript production  

During T-D antibody responses, germline-switch transcripts are first up-regulated in B 

cells during their interaction with T cells at the T-B border in secondary lymphoid tissue 

(56).  To address the timing of the IgG2a defect in T-bet-/-BCELL mice, CD19+ B220+ B cells 

were sorted by FACS from T cell and B cell chimeric mice and relative γ2a-germline 

switch transcript mRNA expression was measured as described previously (93). By day 7 

of infection, γ2a-germline switch transcripts expression increased nearly 10-fold above 

background levels in B cells from T-bet+/+TCELL mice and T-bet-/-TCELL mice. Consistent 

with the plasma cell and antibody data, real-time PCR analysis of CD19+ B220+ B cells 

revealed similar mRNA expression levels of γ2a-germline switch transcripts in T-

bet+/+TCELL and T-bet-/-TCELL mice at both day 7 and 35 p.i. (figure 5.19A). In the B cell 

chimeras, T-bet+/+BCELL mice had high background expression of γ2a-germline switch 

transcripts, whilst expression was absent in B cells from T-bet-/-BCELL mice. By day 7 p.i, 

γ2a-switch transcript expression had increased in T-bet-/-BCELL mice, however importantly, 

mRNA expression was significantly lower compared to T-bet+/+BCELL mice (p ≤ 0.01) 

(figure 5.19B). At day 35 p.i, when switch transcripts remained detectable in T-bet+/+BCELL 

mice, they were either undetectable or very weakly expressed in B cells from T-bet-/-BCELL 

mice (p ≤ 0.001).  
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Figure 5.19. γ2a germline-switch transcript mRNA expression in chimeric mice with T-
bet-sufficient or T-bet-deficient T cells and T-bet sufficient or T-bet-deficient B cells.
Chimeras were infected with 105 STm or remained uninfected as controls. At the
specified timepoints, CD19+ B220+ B cells were isolated from the spleen by FACS and
mRNA gene expression was quantified by RT-PCR. A. γ2a-germline switch transcript
mRNA expression, relative to β-actin, in B cells from T-bet+/+TCELL and T-bet-/-TCELL

mice. B. γ2a-germline switch transcript mRNA expression, relative to β-actin, in B cells
from T-bet+/+BCELL and T-bet-/-BCELL mice. One point represents one mouse. ** p ≤ 0.01;
*** p ≤ 0.001. Data are pooled from 2 individual experiments.
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5.2.1.12 Class-switching to IgG2a during STm infection is not dependent upon 

normal IFNγ mRNA expression by T cells 

The diminution  of γ2a germline-switch transcripts in T-bet-/-BCELL mice suggested a defect 

either during or before initial T-B interaction at the T-B border. As IFNγ can induce IgG2a 

class switching in B cells (291), we measured expression of mRNA for this cytokine by 

RT-PCR in T and B cells from both sets of chimeras. In other published data from our 

group and others (78,79) no IFNγ protein has been detected in T-bet-/- T cells during STm 

infection. In the T cell chimeras, IFNγ was expressed in T cells from T-bet+/+TCELL 

chimeras prior to infection, increasing significantly during the infection (p ≤ 0.05) (figure 

5.20A left panel and 5.20B merged). IFNγ expression did not alter significantly between 

day 0 and 7 in T cells from T-bet-/-TCELL chimeras, although an increased was observed by 

day 35 p.i (p ≤ 0.05). Despite this increase, IFNγ expression was markedly lower in T cells 

from T-bet-/-TCELL chimeras when compared to T-bet+/+TCELL chimeras at day 7 (p ≤ 0.01) 

and 35 (p ≤ 0.001) of infection. In comparison to T cells, IFNγ expression in T-bet 

sufficient B cells was consistently lower in both T-bet+/+TCELL and T-bet-/-TCELL chimeras 

(figure 5.20A right panel and 5.20B merged), but no differences were observed between 

the two groups, showing that a loss of T-bet and reduced IFNγ expression in T cells did not 

impact upon IFNγ mRNA expression in B cells. Thus, B cells were able to class-switch to 

IgG2a in the absence of normal IFNγ expression in T cells, but may still require intrinsic 

IFNγ induction or IFNγ from other sources.  
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Figure 5.20. IFNγ mRNA expression in chimeric mice with T-bet-sufficient or T-bet-
deficient T cells. Chimeras were infected with 105 STm or remained uninfected as
controls. At the specified time points, CD19+ B220+ B cells and CD3+ T cells were
isolated from the spleen by FACS and mRNA gene expression was quantified by RT-
PCR. A. IFNγ mRNA expression, relative to β-actin, in T cells (T) and B cells (B) from
T-bet+/+TCELL and T-bet-/-TCELL mice. B. Merged data from A. One point represents one
mouse. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. Data are pooled from 2 individual
experiments.
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To assess whether a link exists between B cell-intrinsic T-bet and B cell intrinsic IFNγ 

expression, we measured IFNγ expression in T-bet+/+BCELL and T-bet-/-BCELL chimeras 

(figure 5.21). The background level of IFNγ expression was high in T cells from these 

chimeras (figure 5.21 left panel), consistent with the elevated levels of T cell activation 

shown in figure 5.12. However, throughout infection, the T cells from T-bet+/+BCELL and T-

bet-/-BCELL chimeras expressed high levels of IFNγ with no significant differences observed 

between the two groups (figure 5.21A left panel and 5.21B merged). Again, B-cell 

expressed IFNγ was consistently lower than that expressed in T cells, but increased above 

background levels during infection (figure 5.21A right panel and 5.21B merged). A loss of 

T-bet in B cells had no impact upon B cell-expressed IFNγ, indicating that the absence of 

IgG2a class switching in T-bet-/-BCELL chimeras is not due to an inability to up-regulate 

intrinsic IFNγ mRNA expression.     

 

To summarise, T-bet expression in B cells is requisite for optimal IgG2a class-switching 

during STm infection and this defect appears to occur at the transcriptional level. Germinal 

centres develop in the absence of T-bet in B cells, which are probably supporting class-

switching to other isotypes such as IgG2b, which is T-bet independent. It is unlikely that 

IFNγ-secretion by T cells is required for the IgG2a response, however IFNγ from other 

sources may be important. The exact signals that drive T-bet dependent IgG2a class-

switching are yet to be identified within this model.   
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Figure 5.21. IFNγ mRNA expression in chimeric mice with T-bet-sufficient or T-bet-
deficient B cells. Chimeras were infected with 105 STm or remained uninfected as
controls. At the specified time points, CD19+ B220+ B cells and CD3+ T cells were
isolated from the spleen by FACS and mRNA gene expression was quantified by RT-
PCR. A. IFNγ mRNA expression, relative to β-actin, in T cells and B cells from T-
bet+/+BCELL and T-bet-/-BCELL mice. B. Merged data from A. One point represents one
mouse. Data are pooled from 2 individual experiments.
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During the STm infection studies, IgG1 antibody production was measured in T-bet-/- mice 

and T-bet-/-BCELL chimeras, to assess for compensatory switching mechanisms. However, 

no IgG1 was detected, which contrasts with the enhanced production of IgG1 previously 

reported in T-bet-/- mice (83). We predicted that heightened IgG1 production in T-bet-/- 

mice may occur only during responses that naturally induce CSR to this subclass. Whilst 

infection with STm drives a Th1 response with class-switching to IgG2a and IgG2b, 

immunisation with sFliC from STm drives a Th2 response with dominant switching to 

IgG1 (239). We therefore investigated the antibody responses to this protein in T-bet-/- 

mice.  

 

5.2.2 T-bet-mediated control of antibody responses to Th2 antigens  

 

5.2.2.1 Minor defects in early germinal centre development in T-bet-/- mice 

following immunisation with sFliC 

Primary i.p immunisation with sFliC drives a splenic GC response without a concomitant 

EF plasma cell response, whilst memory responses induce both GC and EF plasma cell 

development (239). The GC response to sFliC was assessed by histology in WT and T-bet-

/- mice following primary sFliC immunisation. The total GC volume per spleen was slightly 

lower in T-bet-/- mice at day 7 and 14 p.i but these differences were not significant (figure 

5.22A). Assessment of GC as a proportion of the total follicle produced a similar result 

(figure 5.22B). In order to assess the output of the GC, anti-FliC antibody titres were 

assessed in the two groups of mice.  
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Figure 5.22. Splenic GC volume and size in WT and Tbet-/- mice after primary sFliC
immunisation. WT and Tbet-/- mice were immunised with 25μg sFliC. The A, total
volume of germinal centre per spleen and B, proportion of follicle that is germinal
centre was quantified by histology at the indicated time points p.i. Data are
representative of two experiments giving similar results. One point represents one
mouse.
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5.2.2.2 Antibody class switching to IgG1 is significantly reduced in T-bet-/- mice 

following immunisation with sFliC 

At day 7 following immunisation with sFliC, the antibody response is dominated by non-

switched IgM, whilst high titres of IgG1 are produced by day 14 p.i (239). Assessment of 

serum anti-FliC antibody by ELISA produced a surprising finding. Whilst IgM production 

was similar in WT and T-bet-/- mice, class switching to IgG1 was significantly impaired by 

day 14 p.i (p ≤ 0.05) (figure 5.23A and B). Furthermore, IgG2b, which is also produced 

during the sFliC response, was significantly reduced in T-bet-/- mice at day 14 p.i (figure 

5.23C) (p ≤ 0.05). Whilst only produced at low levels following primary immunisation 

with sFliC, some IgG2a antibody is detectable in the sera of WT mice by day 14 p.i. As 

expected, no IgG2a antibody was produced by T-bet-/- mice at any point (figure 5.23D). 

These observations were consistent across a number of similar experiments. Thus, contrary 

to expectations, T-bet-/- mice were consistently unable to mount optimal antibody responses 

to an antigen that elicits an IgG1-dominated response. In order to assess this further, the 

memory response to sFliC was assessed in the two groups of mice. 
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Figure 5.23. FliC-specific antibody titres before after primary sFliC immunisation. WT
and T-bet-/- mice were immunised with 25µg of sFliC or remained non-immunised as
controls. FliC-specific A, IgM, B, IgG1, C, IgG2b and D, IgG2a serum antibody was
quantified in all mice before and at the times specified p.i. Data are representative of ≥
2 experiments giving similar findings. One point represents one mouse. * p≤ 0.05.
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5.2.2.3 The antibody response to sFliC largely recovers in T-bet-/- mice during 

the memory response 

As mentioned previously, memory responses to sFliC drive a concomitant GC and EF 

antibody response. Having identified a defect in primary antibody responses to sFliC in T-

bet-/- mice, the GC and EF plasma cells response was assessed by histology after two 

antigen doses. WT and T-bet-/- mice were immunised with sFliC for 35 days and given a 

secondary sFliC challenge for 4 days. Analysis of spleen sections revealed that the GC 

volume (figure 5.24 A) and the proportion of follicle occupied by GC (figure 5.24 B) were 

comparable in WT and T-bet-/- mice. Furthermore, staining of spleen sections with 

biotinylated sFliC revealed that the total number of FliC+ EF plasma cells was similar in 

WT and T-bet-/- mice (figure 5.25A). Double staining for isotype-specific FliC+ cells 

showed a tendency towards fewer FliC+ switched plasma cells in T-bet-/- mice, however 

these differences were not significant (figure 5.25B I). Furthermore, the majority of the 

FliC+ cells detected in the spleen were also IgG1 (figure 5.25B II). Assessment of FliC-

specific serum antibody by ELISA confirmed these results (figure 5.26A-D). Although 

switched IgG1 and IgG2b antibody titres were lower in T-bet-/- when compared to WT 

mice, these differences were not as marked as during the primary response. In a second 

similar experiment, antibody titres were also comparable in WT and T-bet-/- mice (data not 

shown). As expected, no FliC-specifc IgG2a was produced by T-bet-/- mice.   
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Figure 5.24. Splenic GC volume and size in WT and T-bet-/- mice after
secondary sFliC immunisation. WT and T-bet-/- mice were immunised with 25μg
sFliC for 35 days and then boosted with 15μg sFliC for a further 4 days. The A,
total volume of GC per spleen and B, proportion of follicle occupied by GC were
quantified by histology after the 4 day secondary immunisation. One point
represents one mouse. Data are representative of ≥ 2 experiments giving similar
results.
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Figure 5.25. FliC-specific plasma cells in WT and T-bet-/- mice after secondary FliC
immunisation. WT and Tbet-/- mice were immunised with 25μg soluble flagella protein FliC for
35 days and then boosted with 15μg FliC for a further 4 days. Spleens were stained with
biotinylated FliC to detect FliC+ plasma cells. A. Total number of FliC+ plasma cells in WT
and T-bet-/- mice as quantified by histology. B. I Total number of FliC+ IgM+/ IgG1+

/IgG2b+/IgG2a+ double positive plasma cells in the spleens of WT and T-bet-/- mice after
secondary immunisation with FliC, as determined by histology. II Representative spleen
sections stained with biotinylated FliC (blue) and IgG1 (brown), showing that the majority of
EF FliC+ plasma cells in the spleens of WT and T-bet-/- mice are IgG1+. Data are
representative of 2 experiments giving similar results. One point represents one mouse.
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Figure 5.26. FliC-specific antibody titres after secondary sFliC immunisation. WT and T-
bet-/- mice were immunised with 25µg of sFliC for 35 days and boosted with 15µg sFliC for
4 days, or remained non-immunised as controls. FliC-specific A, IgM, B, IgG1, C, IgG2b
and D, IgG2a serum antibody was quantified in all mice. One point represents one mouse.
Data are representative of 2 experiments giving similar results.
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5.2.2.4 Transfer of FliC-specific T cells into T-bet-/- mice rescues antigen-

specific antibody production following primary immunisation with sFliC   

As defects in antibody production were most marked during the primary response to sFliC, 

we questioned whether the availability of antigen-specific T cell help may be lacking in T-

bet-/- mice. To test this, we transferred antigen-specific T cells from transgenic SM1 mice 

into WT and T-bet-/- hosts, 24h before sFliC immunisation for 14 days. As a control, a 

second group of WT and T-bet-/- mice were immunised with sFliC in the absence of SM1 T 

cell transfer. As expected, the T-bet-/- mice that had not received SM1 T cells produced 

lower levels of switched IgG1 (figure 5.27B) (p ≤ 0.05) and IgG2b (figure 5.27C)  antigen-

specific antibody when compared to WT mice under the same condition. However, 

following SM1 T cell transfer and immunisation, T-bet-/- mice produced significantly more 

IgG1 (p ≤ 0.05) (figure 5.27B)  and IgG2b (p ≤ 0.05) (figure 5.27C)  than T-bet-/- mice that 

had not received SM1 cells. WT mice also produced higher titres of IgG2b following 

transfer (p ≤ 0.05). Importantly, in the presence of SM1 T cells, T-bet-/- mice produced 

similar levels of switched IgG1 and IgG2b antibody to WT mice (figure 5.27B and C).  

However, the transfer of antigen-specific, T-bet-expressing T cells into T-bet-/- mice, was 

not sufficient to recover the IgG2a response in T-bet-/- mice (figure 5.27D).   
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Figure 5.27. FliC-specific antibody titres in WT and T-bet-/- mice following antigen-specific
(SM1) T cell transfer and FliC immunisation. WT and T-bet-/- mice were immunised or 14
days with sFliC in the absence or presence of SM1 T cell transfer. Graphs show sFliC-
specific A, IgM, B, IgG1, C, IgG2b and D, IgG2a serum antibody titres under the two
conditions. Data are pooled 2 experiments. One point represents one mouse. *p ≤ 0.05; **p
≤ 0.01.
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Having observed this defect in IgG1 class switching in T-bet-/- mice, we addressed whether 

immunisation with a classic Th2 protein antigen would elicit the same effect. Therefore, T-

bet-/- mice were immunised with alum-CGG, which drives a concomitant GC and an EF 

plasma cell response following primary and secondary immunisation. 

 

5.2.2.5 Immunisation with alum-CGG induces discrete effects upon GC and EF 

responses in T-bet-/- mice 

Following primary immunisation with alum-CGG for 8 and 14 days, the splenic GC size 

and volume was assessed by histology in WT and T-bet-/- mice.  Whilst both of these 

parameters were similar in WT and T-bet-/- mice at day 8 p.i, a significant impairment was 

observed in GC volume (figure 5.28A) and size (figure 5.28B) in T-bet-/- mice at day 14 p.i 

(p ≤ 0.05). As alum-CGG also drives an EF plasma cell response, this B cell differentiation 

pathway was examined in WT and T-bet-/- mice at each time point. Staining for CGG+ 

plasma cells by immunohistochemistry revealed that the EF plasma cell response was not 

greatly impacted by T-bet loss. Total numbers of splenic CGG+ -specific plasma cells were 

similar in WT and T-bet-/- mice at both time points studied (figure 5.29A) and the majority 

of these plasma cells had switched to IgG1 by day 14 p.i (figure 5.29B). As plasma cell 

class-switching was largely normal in T-bet-/- mice, the antibody response was analysed 

(figure 5.30A-D). Apart from the expected absence of IgG2a antibody in T-bet-/- sera 

(figure 5.30D), and a marginal delay in reaching peak IgG1 titres (figure 5.30B), antibody 

production was similar in WT and T-bet-/- mice after primary alum-CGG immunisation.  

Thus limited, distinct defects were observed in the development of B cell responses to 

alum-CGG in T-bet-/- mice. 
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Figure 5.28. Splenic GC volume and size in WT and T-bet-/- mice after alum-
CGG immunisation. WT and T-bet-/- mice were immunised with 50μg alum-
CGG. The A, volume of germinal centre per spleen and B, proportion of follicle
that is germinal centre was quantified by histology at the indicated time points
after immunisation. One point represents one mouse. * p ≤ 0.05
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Figure 5.29. Switched and non-switched CGG+ plasma cells in WT and T-bet-/- mice after
alum-CGG immunisation. WT and T-bet-/- mice were immunised with 50μg alum-CGG.
The A, total number of CGG+ plasma cells and B, proportion of CGG+ plasma cells that
are IgM+, IgG1+ and IgG2a+ were quantified by histology at the indicated time points after
immunisation. One point represents one mouse.
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Figure 5.30. CGG-specific antibody titres before after primary alum-CGG immunisation.
WT and T-bet-/- mice were immunised with 50µg of alum-CGG or remained non-immunised
as controls. CGG-specific A, IgM, B, IgG1, C, IgG2b and D, IgG2a serum antibody was
quantified in all mice before and at the times specified p.i. One point represents one
mouse. Data are representative of ≥ 2 experiments giving similar results.
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5.2.2.6 GC development is impaired but class-switching is intact in T-bet-/- 

mice during the memory response to alum-CGG 

To assess whether the defect in GC development was corrected during the memory 

response, WT and T-bet-/- mice were immunised with alum-CGG for 35days and boosted 

with soluble NP-CGG for a further 4 days. Assessment of GC in the spleen by histology 

revealed that GC development was still markedly impaired in T-bet-/- mice, with both the 

total splenic GC volume (figure 5.31A) and the proportion of follicle occupied by GC 

(figure 5.31B) being  reduced below that of WT mice (p ≤ 0.05). Despite this, the number 

of CGG+  plasma cells was similar in the spleens WT and T-bet-/- mice after the second 

immunisation (figure 5.32A) and the ability to class-switch to IgG1 was not compromised 

in T-bet-/- mice (figure 5.32B). Consistent with a defect in the initiation of the immune 

response, the total number of NP-specific plasma cells in the spleen was significantly 

lower in T-bet-/- mice when compared to WT mice (figure 5.32A). Despite the vast 

majority of NP-specific cells being IgM+ at this early stage, a small proportion of these 

cells had switched to IgG1 in WT mice (figure 5.32C), however an IgG1 switched 

response to NP was almost completely absent in T-bet-/- mice, consistent with a delay in the 

initiation of class-switching. Antibody titres were next assessed by ELISA, showing that 

despite the near absence of splenic GC, T-bet-/- mice were able to produce comparable 

titres of class-switched antibody to WT mice, with the obvious exception of IgG2a (figure 

5.33A-D). NP-specific IgM was also produced in similar quantities in the two groups 

(figure 5.33E) and no NP-specific class-switched antibody was detected in either WT or T-

bet-/- mice (data not shown).  
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Figure 5.31. Splenic GC size and volume in WT and T-bet-/- mice after alum-
CGG immunisation and NP-CGG boost. WT and T-bet-/- mice were immunised
with 50μg alum-CGG for 35 days and boosted with 20µg sNP-CGG for 4 days.
The A, volume of GC per spleen and B, proportion of follicle that is GC was
quantified by histology. One point represents one mouse. * p ≤ 0.05

0

5

10

15

20

25

%
 o

f f
ol

lic
le

 o
cc

up
ie

d 
by

 G
C

0.001

0.002

0.003

0.004

0.005

G
C

 v
ol

um
e/

cm
3

0.000
Alum-CGG
NP-CGG 

1º 35d
2º 4d

Alum-CGG
NP-CGG 

1º 35d
2º 4d

A.

B.

*

*

 



187 

 

          

Figure 5.32. CGG and NP specific plasma cells in WT and T-bet-/- spleens after
alum-CGG immunisation and NP-CGG boost. WT and T-bet-/- mice were
immunised with alum-CGG for 35 days and boosted with sNP-CGG for 4 days.
A. Total number of splenic CGG+ (left panel) and NP+ plasma cells (right panel)
as quantified by histology. B. The proportion of CGG+ plasma cells and C, NP+

plasma cells that are IgM (left panel), IgG1 (middle panel) and IgG2a (right
panel). One point represents one mouse. Data are represeentative of 2
experiments giving similar results.
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Figure 5.33. Anti-CGG and NP antibody titres in WT and T-bet-/- spleens after alum-CGG
immunisation and NP-CGG boost. WT and T-bet-/- mice were immunised with alum-CGG for
35 days and boosted with soluble NP-CGG for 4 days. Anti-CGG serum A, IgM B, IgG1, C,
IgG2b and D, IgG2a and E, anti-NP antibody titres were measured after the four day boost.
One point represents one mouse. Data are representative of 2 experiments giving similar
results.
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Thus, the reduced antibody titres in T-bet-/- mice following immunisation with Th2 

antigens are most prominent during the primary response and may be context and/or 

antigen dependent. The recovery of antibody titres during the memory response to sFliC 

and following the provision of antigen-specific T cells, suggests a possible defect in the 

provision of T cell help, which could relate to a delay in T cell priming or subsequent T-B 

interactions. Overall, the studies carried out in this chapter highlight a role for T-bet in 

multiple facets of the antibody response, extending beyond the control of Th1 cell 

differentiation and subsequent antibody class-switching to IgG2a. 
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5.3 Discussion  

The global transcriptional regulator of Th1-differentiation, T-bet, promotes IFNγ secretion 

by T cells (72) and Ig class switching to IgG2a (83,291-293). In vitro studies show that T-

bet expression in B cells can be induced by direct antigen stimulation (293) or via indirect 

mechanisms such as IFNγ (83,293), leading to IgG2a and IgG2b production by B cells.  

Previously, T-bet-/- mice failed to produce IgG2a-class switched antibody in response to 

STm infection, however the importance of T and B cell-expressed T-bet for this response 

was not addressed (79). We postulated that switching to IgG2a during STm infection 

would require T cell- and B cell-intrinsic T-bet expression, whilst IgG2b production would 

be T-bet independent.  

 

Here we report that T cell expressed T-bet is dispensable for IgG2a class-switching during 

STm infection, whilst B cell-intrinsic T-bet is essential for this response. Conversely, T-bet 

expression is not required for IgG2b production in this model. A second, surprising finding 

is the selective role of T-bet in the antibody response to Th2 antigens. T-bet-/- mice 

immunised with sFliC produced lower levels of IgG1 and IgG2b antibody than WT mice, a 

defect that was corrected upon the provision of antigen specific T cells. This defect may be 

antigen specific, as immunisation with alum-CGG revealed only modest defects in the B 

cell response, mainly relating to GC development.  These data emphasise the multiple roles 

of T-bet within the immune system and highlight its involvement in antibody responses on 

multiple levels.  
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5.3.1 T-bet-mediated regulation of antibody responses to STm infection 

Consistent with a previous report (79) our data confirm that T-bet expressed in T cells is 

essential for the clearance of STm infection. This failure to clear occurred despite CD4+ T 

cell activation, as assessed by CD62L loss, which we have previously shown to be a good 

marker of T cell activation in this model (203). T-bet-/- mice in the current study 

demonstrated normal levels of T cell activation, however in the T-bet-/-TCELL chimeras, 

proportions of activated cells were lower than in T-bet+/+TCELL mice. The reason for this 

discrepancy is unclear, however may relate to an ability of other T-bet+/+ cells to regulate 

T-bet-/- T cells. Despite this difference, T-bet-/- T cells from the chimeras did activate above 

background levels during infection. Equal activation and proliferation capabilities have 

previously been demonstrated in antigen-specific, T-bet-deficient T cells during STm 

infection (79). As such, the failure to clear STm infection has been attributed to a failure of 

T-bet-/- T cells to secrete high levels of IFNγ (79). Consistent with this, we observed 

significantly lower levels of IFNγ expression in T cells from T-bet-/-TCELL chimeras when 

compared to those from T-bet+/+TCELL chimeras, and recently published data from our group 

shows that T-bet-/- T cells do not secrete IFNγ (78).  

 

As IgG2b production is not defective in T-bet-/- mice, it suggests that switching to this 

isotype during STm infection is not IFNγ-dependent. Total splenocytes from STm infected 

T-bet-/- mice produce little or no IFNγ (79), consistent with T-bet-mediated IFNγ 

production by cells such as NK cells (72) and DC (81). It is likely that CSR to IgG2b can 

be controlled by alternative mechanisms, such as transforming growth factor (TGF)-β, 

which has previously been shown to directly regulate IgG2b class switching (296). It is 

possible that TGF-β is produced during STm infection to regulate the Th1-driven 
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inflammatory response, especially during the latter stages of infection. This 

immunomodulatory function of TGF-β has previously been shown to dampen disease in 

murine EAE (297).  

 

As IFNγ production by T cells is controlled by T-bet (72,76) we predicted that T-bet 

deficient T cells would be unable to induce IgG2a switching in B cells. IFNγ can up-

regulate T-bet in B cells, leading to IgG2a production via a STAT 1 mediated pathway 

(83,293). However, no defect in IgG2a+ plasma cell induction or antibody production was 

observed in T-bet-/-TCELL chimeras. These data illustrate that the critical T cell signals 

supporting class-switching during STm infection do not include T-bet and IFNγ.  However, 

IFNγ produced by a non-T cell may be important for IgG2a switching, as the lack of IgG2a 

production in T-bet-/- mice is corrected in T-bet-/-TCELL chimeras, where a lack of T-bet and 

subsequent IFNγ production is restricted to the T cell compartment. Establishing a direct 

link between IFNγ production and IgG2a class switching during STm can be achieved 

using IFNγ-/- mice, a colony that is now established at the The University of Birmingham. 

The data presented here suggest that T cells may act to ‘licence’ to IgG2a switching in B 

cells, by providing other important signals such as CD40-CD40L interaction, rather than 

by directly instigating the IgG2a CSR transcriptional programme.  

 

Aside from IFNγ, other factors are able to drive IgG2a production by B cells. The T-bet-/-

BCELL chimeras illustrate that IgG2a switching is dependent, almost entirely, upon B cell 

intrinsic T-bet expression. Type 1 interferons can induce IgG2a switching in B cells (83), 

however this occurs in a T-bet independent manner. Whilst there may be some T-bet 

independent IgG2a switching occurring at day 7 of infection, when some IgG2a class-
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switching is detectable in T-bet-/-BCELL chimeras, it is unlikely to play a role during the later 

response.   

 

A pathway that has received some recent attention is the CpG-induced induction of T-bet 

in B cells (293) and subsequent IgG2a production (293,294). This pathway operates via 

direct TLR 9 ligation on the B cell, leading to T-bet expression via a MyD88-dependent, 

STAT-1 independent mechanism. Supporting a TLR-mediated mechanism is previous 

work in mice with a B cell-intrinsic defect in MyD88. These mice are unable to produce  

IgG2a during STm infection, whilst IgG2b production is only moderately affected (224). 

However, a loss of B cell-intrinsic MyD88 also attenuated IFNγ production by T cells and 

this was held at least partly accountable for the lack of IgG2a switched antibody in these 

mice (224). In contrast, we observed normal levels of IFNγ expression in T cells from T-

bet-/-BCELL chimeras. Although protein levels were not assessed here, the mice were able to 

effectively clear STm infection, indicating that IFNγ production by T cells is not 

compromised by T-bet loss in B cells. This does not discount the possibility that IgG2a 

class switching in our model is controlled by a TLR-MyD88-T-bet pathway, but infers that 

a loss of MyD88 in B cells negatively affects multiple B cell functions. For example, 

recent evidence shows that Salmonella antigens can induce shedding of CD62L on B cells 

in a MyD88-dependent, TLR9-independent fashion (298). This shedding directs B cell 

traffic to the spleen and away from lymph nodes, a mechanism that may allow 

programming of the T cell response described previously by Barr and colleagues (224). It 

would be interesting to assess antibody responses in TLR 9-deficient mice during STm 

infection, to assess for aberrations in IgG2a class-switching. Furthermore, an analysis of 

STAT 1 phosphorylation in STm-exposed WT B cells may give an indication of the 
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mechanisms that regulate IgG2a class switching via T-bet. Whilst IFNγ-mediated T-bet 

induction and IgG2a production operates through STAT 1, the CpG-TLR9 pathway is 

STAT 1 independent (293).  

 

A second interesting observation made during this work was the induction of a modest, yet 

apparent, IgG2a plasmablast response by day 7 in T-bet-/-BCELL mice, which had completely 

disappeared by day 35 p.i. Whilst there may be some T-bet independent mechanisms 

involved in early switching (83) this also questions whether T-bet in B cells is 

differentially involved in EF versus GC IgG2a responses. The plasma cells produced at day 

7 of infection arise entirely from the EF pathway of growth, and these are likely to be short 

lived and therefore absent by day 35 p.i, when GC contribute to the plasma cell response. 

T-bet clearly contributes to EF IgG2a switching early during STm infection, as plasma cell 

numbers and γ2a-switch transcripts were reduced in T-bet-/-BCELL mice at this point when 

compared to T-bet+/+ B cells. However, the complete absence of IgG2a switching at day 35 

p.i suggests a more specific defect in GC IgG2a switching. In the current study T-bet-/-

BCELL mice exhibit no obvious deficiency in GC development, and whilst not examined in 

detail, Tfh cells were present within these structures. This contrasts with work carried out 

in MyD88-/-BCELL mice, where defects in GC development coincide with defective IgG2a 

antibody responses (224). It is possible that T-bet is important for switching to IgG2a 

within the GC, rather than in GC development. On the other hand, the observed absence of 

γ2a-germline switch transcripts in B cells from T-bet-/-BCELL mice suggests that the defect 

in class-switching occur at the T-B border, prior to GC entry (56). In order to examine this 

further, a kinetic series of studies would be required to closely assess the timing of IgG2a 

switching-loss. An in depth analysis of T-bet expression in WT B cells at each stage of 
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STm infection would also help to ascertain when T-bet becomes important for class-

switching. 

 

Thus, whilst it is clear that T-bet in B cells drives class-switching to IgG2a during STm, 

the exact signals that facilitate this process have not yet been identified. The PCR data 

provide some information as to the timing of the defect and we can likely eliminate T-cell-

produced IFNγ as a critical mediator of this response. However, further experiments using 

gene-deficient mice, as well as a closer analysis of the genes that regulate T-bet induction 

in B cells, will be key to establishing the exact mechanism driving this response.  

  

5.3.2 T-bet mediated control of antibody responses to non-viable protein 

antigen 

The second key finding of this chapter is that a loss of T-bet selectively impairs antibody 

responses to Th2 antigens, during which IgG1 production is dominant. Previously, an 

overproduction of Th2-associated switched antibody subclasses has been reported in mice 

lacking T-bet (83) or IFNγ (299), however our results suggest that the opposite occurs, in 

an antigen specific manner. Primary immunisation with sFliC resulted in defective 

switched antibody responses to IgG1 and IgG2b. This defect was not recapitulated to the 

same degree when mice were immunised with alum-CGG, despite some defects in GC 

maintenance and a marginal delay in switched plasma cell induction. As expected, no 

IgG2a was produced at any time in T-bet-/- mice, arguing against suggestions that T-bet is 

dispensable for IgG2a switching to T-D antigens, but not for IgG2a switching to T-I 

antigens (291). Of note, the transfer of T-bet-expressing SM1 T cells into T-bet-/- mice was 
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not sufficient to restore the IgG2a response to sFliC, supporting the B cell-intrinsic control 

of IgG2a switching observed during STm infection.    

  

The defect in class switching following primary sFliC immunisation was not restricted to 

IgG1 and the immunisation regimes used here and previously (83,291) show that T-bet-/- 

mice can produce this subclass of antibody. Moreover, this defect recovered substantially 

during the memory response, suggesting that readily available T cell help can restore 

switching, although switched memory B cells with higher affinity for the antigen may also 

contribute to these heightened responses. Supporting the T cell help hypothesis was the 

recovery of the antibody response following antigen-specific SM1 T cell transfer and 

primary sFliC immunisation. It is therefore unlikely that T-bet directly regulates 

transcription of the IgG1 gene, but rather that it exerts indirect effects on GC responses via 

an alternative mechanism. One possibility is a defect in T cell priming, due to a loss of T-

bet in DC. Transgenic T cells primed with T-bet-deficient DC produce less IFNγ than 

those primed with WT DC (81). In an arthritis model, antigen-loaded T-bet-/- DC failed to 

effectively prime T cells in vivo, resulting in a lack of IFNγ, IL4 and IL2 production by T 

cells. This was not due a failure of DC to accumulate in LN or up-regulate expression of 

the chemokine receptors that facilitate this process (300). Whilst the priming defect of T-

bet-/- DC has been linked mainly to defects in initiating Th1 responses, it has been 

postulated that T-bet regulates the transcription of multiple genes in DC that are required 

for optimal T cell priming (81). As such, this function of T-bet in DC may not be restricted 

to the Th1 programme. Arguing against this is recent work form our lab, showing that T 

cells from T-bet-/- mice immunised with sFliC express similar levels of IL4 mRNA to WT 

mice at day 4 p.i  (78). 
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An alternative mechanism by which T-bet could regulate antibody responses relates to its 

proposed role in CD4+ T cell trafficking into inflammatory sites. T-bet has been shown to 

modulate T cell binding to P-selectin and expression of the chemokine receptor CXCR3 

(284). Whilst these molecules and chemokines are largely related to Th1 responses, the 

dynamics of Th2 responses have not been studied in depth in T-bet-/- mice.  It is possible 

that the migration of T cells is also altered in T-bet-/- mice in response to Th2 antigens, 

resulting in delayed T-B interactions and sub-optimal antibody responses. This being said, 

defects in T cell priming or trafficking would be likely to result in impaired antibody 

production in T-bet-/- mice immunised with alum-CGG as well as sFliC. One difference 

between the primary response to sFliC and that to alum-CGG, is the parallel induction of 

an EF and GC plasma cell response in the latter, with the former producing antibody solely 

via the GC pathway. GC maintenance was impaired in T-bet mice following alum-CGG 

immunisation and GC were virtually absent following an NP-CGG boost. However, no 

defects in class-switched antibody production were observed, suggesting that EF responses 

are sufficient to produce high levels of IgG1 antibody in this system and may be less 

vulnerable to the loss of T-bet than are GC responses. Aberrant T cell migration within GC 

could lead to altered GC responses. Indeed, there may also be a role for T-bet in B cell 

migration to or within the GC. Analysis of chemokines and chemokine receptors in T-bet-/- 

mice during the various responses may help to dissect some of the mechanisms at play 

here.  

 

A second consideration, relating to the antigen specificity of the IgG1 defect, is the 

difference in immune priming mechanisms during sFliC and alum-CGG responses. The 

understanding of how aluminium adjuvants exert their stimulatory effects upon the 
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immune system is still incomplete (301), however there is evidence to suggest that it is not 

TLR mediated (302,303). Whilst, there are probably some shared features in the two 

responses, such as activation of the inflammasome through NLR (304,305)  bacterial 

flagellin also utilizes TLR5, which is integral for its stimulation of the innate immune 

system (306). Whilst humoral immunity elicited by flagellin may not rely entirely upon 

TLR5, mice lacking TLR5 show significant decreases in IgG1 production during the 

primary response, as do MyD88-/- mice (307). As discussed, T-bet is linked to TLR 

signalling pathways (293) and an absence of T-bet in DC has also been reported to 

diminish the adjuvant activity of CpG oligodeoxynucleotides (288). As such, T-bet may be 

linked to other TLR pathways, such as TLR 5, and enhance the adjuvant activity of 

proteins that stimulate the immune system in this way. Assessing T-bet expression in DC, 

for example, stimulated with various TLR agonists, could help to establish a link between 

T-bet and TLR signalling pathways.  

 

To conclude, a novel role for T-bet in switched antibody responses to IgG1 has been 

identified here. Whilst this is unlikely to reflect a direct link between T-bet and IgG1-gene 

transcription, it may indicate a role for T-bet in DC following sFliC immunisation, or in 

chemokine regulation and migration in T or B cells. Overall, these data emphasise the 

multifunctional role of T-bet within the immune system and highlight its ability to regulate 

antibody responses on several different levels.  
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CHAPTER 6: GENERAL DISCUSSION 

 

The key focus of this thesis was to identify the factors that regulate B cell responses to 

STm, with particular emphasis on the GC reaction, EF responses and mechanisms of 

antibody class-switching. Initial experiments assessed the role of CD31 in B cell responses 

during primary infection with STm and following vaccination, whilst subsequent chapters 

addressed how cytokines associated with Th2 responses, and the transcription factor T-bet,   

influence B cell responses in this model. The data presented herein highlight two key 

points; firstly, EF and GC responses to STm infection are regulated by different 

mechanisms and secondly, there are some, previously unappreciated similarities in the way 

that Th1 and Th2 B cell responses are controlled.   

  

A number of the gene-deficient mice studied here, including IL4-/-, IL13-/-, IL4Rα-/- and 

IL6-/- mice, displayed defects in GC development, yet a concomitant suppression of the EF 

plasma cell response was not observed. Previous studies have reported differential control 

of EF and GC plasma cell generation in IL6-/- (121,124) and IL4Rα-/- (94) mice. 

Furthermore, cytokine expression levels vary at different sites within the same tissue (271), 

indicating that cytokines are influential at discrete microanatomical sites within SLO. 

Previous data have associated IL4 and IL13 most closely with GC reactions, as opposed to 

EF class-switching, possibly explaining why the defect reported here was specific to GC 

development. Mice deficient in either of these cytokines display no defect in the 

production of early class-switched IgG1+ EF plasma cells (93),  however GC are smaller in 

IL4Rα-/- mice at a point when B cells are selected in GC by T cells (94). Furthermore, IL4-

expressing Tfh cells are commonly found within the GC and are able to facilitate class-
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switching (126,260,308), whilst IFNγ expressing Tfh cells are less frequent within this 

niche. Whilst this may reflect the antigens used in these studies, it cannot be excluded that 

IL4 is a signature cytokine produced by Tfh cells. Indeed, disruption of the PI3K signalling 

pathway, which is essential for Tfh function, results in attenuated IL21 and IL4 

transcription (117). As such, IL4 may be important for GC B cell selection to a range of 

TD antigens, whilst being dispensable for the EF plasma cell development. One important 

feature of the IL4-/- and IL13-/- data presented here, was the lack of a discernible 

augmentation of the IgG2a or IgG2b response. A reason for this may be that increases in 

IgG2a production only become apparent during recall responses, as seen in previous 

studies in IL4-/- and IL4-/-IL13-/- double deficient mice, in response to alum-ppt proteins 

(91,95). 

 

The marked defect in GC development in IL6 deficient mice probably reflects a different 

mechanism of action when compared to IL4 and IL13. We considered the possibility that 

the FDC stromal network within the GC may provide the IL6 required to form effective 

GC responses to STm, as has been shown previously using model antigens (104). This 

would explain why GC, but not EF plasma cell responses were defective in IL6-/- mice. 

Unfortunately, the chimera data presented here did not provide an unequivocal answer 

regarding the source of IL6 that is important for driving such reactions. Nevertheless, it 

shows that there is redundancy in the sources of IL6 during this response and our findings 

support the pleiotropic functions of IL6 within the immune system, as well the fact that 

numerous cells can produce and respond to IL6 (276).  This contrasts with the expression 

pattern and purported roles of IL4 and IL13, which are less diverse that that of IL6.  
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IL6-/- mice produced very low titres of class-switched antibody at day 42 p.i, which can 

probably be explained by the near absence of GC in IL6-/- mice at this time point. When 

GC did appear in IL6-/- mice, so did high titres of class-switched antibody.  This suggests 

that in this model, IL6 does not control class-switching per se, but rather in the absence of 

IL6, the defect in GC formation indirectly results in a failure to optimise class-switched 

antibody production. These data emphasise the requisite role of the GC in driving effective 

class-switched antibody responses to STm, as shown during the original characterisation of 

this model (70).  

 

Whilst necessary for effective antibody production, the presence of GC structures does not 

necessarily guarantee the production of class-switched antibody during STm infection, as 

highlighted by the T-bet-/-BCELL chimeras and CD31-/- mice. Little or no class-switched 

antibody was produced by CD31-/- mice in response to STm, despite the presence of GC in 

the spleen throughout infection. However, owing to the abundance of GC in the spleens of 

uninfected CD31-/- mice, these GC were unlikely to be STm specific. It is unfortunate that 

circumstances did not allow us to examine the defects in CD31-/- mice further.  T-bet-/-BCELL 

mice were also able to form GC in response to STm infection and Tfh cells could be 

clearly visualised within these structures, however no IgG2a+ class-switching was 

observed at day 35 p.i. The GC reactions that developed in these mice were probably 

supporting class-switching to other isotypes, such as IgG2b, which was unaltered in the 

absence of T-bet. The absence of IgG2a switch transcripts in T-bet-/-BCELL mice suggests 

that this defect occurred at the T-B border, prior to GC entry (56), but this doesn’t rule out 

the possibility that T-bet in B cells is also required for class-switching to IgG2a within the 

GC. 
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There was some early, EF IgG2a class-switching that was independent of T-bet in B cells, 

however this was lost by day 35 p.i. It is possible that different subsets of B cells respond 

at discrete stages of STm infection, and class-switching may be differentially regulated in 

each cell type. Data from our lab shows that the early EF IgM response to STm infection is 

mediated by B1b cells and is T-I (13). Whilst class-switching during STm is T-D (70), 

some of the switched cells may arise from B1b cells, in which class-switching could be 

differentially regulated. For example, type 1 interferons can induce IgG2a class switching 

in the absence of T-bet (83). Collectively, these data highlight the different signals that 

control class-switch transcript up-regulation, facilitate GC entry and drive EF reactions 

during STm infection.   

 

A second interesting finding from the work described in this thesis is that similarities exist 

in the factors that regulate Th1 and Th2 B cell responses. Cytokines classically associated 

with Th2 responses influenced GC development during STm infection. Although marginal, 

a defect in GC size and volume was apparent in IL4-/-, IL13-/-, IL4Rα-/- mice, data that are 

strengthened by the similar extent of the defect across all groups. This reflects a generic 

role for IL4 and IL13 in GC reactions to Th1 and Th2 antigens, possible reasons for which 

are outlined above. Whilst not a signature cytokine of the Th2 response, IL6 is thought to 

direct T cells towards a Th2 phenotype (100,102,309) and defects in GC formation in IL6-/- 

mice have been reported following immunisation with model Th2 antigens (103,104).  Our 

finding of impaired GC development in IL6-/- mice during infection with a Th1 antigen, 

again reflects similarities in GC development and function during Th1 and Th2 responses. 

Possibly the most surprising finding reported in this context was the selective role of T-bet 

in optimal IgG1 responses to Th2 antigens. The correction of the IgG1 defect during the 
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memory response to FliC, and upon provision of antigen specific T cells, suggests a 

possible defect in the ability of T cells to provide efficient help to B cells. On the other 

hand, GC development did not recover during the memory response to alum-CGG, despite 

an ability to produce high titres of class-switched antibody. This could highlight a role for 

T-bet in the expansion or maintenance of GC reactions and may again reflect differences in 

the regulation of EF- and GC-derived antibody responses.    

 

5.1 Future Directions  

The data presented in this thesis identify several areas that warrant further investigation. 

For the reasons discussed in chapter 3, the CD31 B cell project was put on hold. Without 

identifying the reason for our incongruent findings in the original CD31-/- strain and the 

rederived PECAM-/- strain, further investigation into the mechanisms surrounding our 

observations were not justified, scientifically, financially or strategically .  

 

5.1.1 T-bet mediated control of antibody class-switching 

 Two avenues can be pursued with regard to the T-bet data, one concerning the signals that 

drive B cell intrinsic, T-bet-mediated switching to IgG2a, and the other relating to the role 

of T-bet in optimal IgG1 antibody responses. Initially, it will be interesting to ascertain 

whether a link exists between IFNγ, T-bet and IgG2a class-switching during STm 

infection. A colony of IFNγ-/- mice has recently been established by our group at the 

University of Birmingham, allowing this question to be addressed. Some very preliminary 

data suggest that early, splenic IgG2a class-switching is dependent upon IFNγ, however 



204 

 

these data require confirmation and extension to later time points, to identify when IFNγ 

might be involved. If IFNγ is required for IgG2a class-switching, a link between IFNγ and 

T-bet in B cells would need to be established. Whilst IFNγ and T-bet may both be required 

for class-switching to IgG2a during STm infection, these signals may be independent of 

one another. This can be addressed by looking at T-bet expression in B cells in IFNγ-/- mice 

during infection. 

 

In the absence of a link between T-bet and IFNγ, other factors that control T-bet 

transcription would need to be considered. Using STm-exposed B cells to measure the 

expression of transcription factors operating upstream of T-bet, may give some clues as to 

the mechanism of T-bet induction. For example, IFNγ-mediated T-bet induction and IgG2a 

production operates through STAT-1, whilst other pathways of T-bet induction in B cells, 

such as the CpG-TLR9 pathway, are STAT 1 independent (293). If phosphorylation of 

STAT-1 does not occur in STm-exposed WT cells, this may be indicative of TLR9-

mediated IgG2a class-switching. It would be interesting to establish a line of TLR 9-/- mice 

at The University of Birmingham, in order to assess this possibility further.  

 

It would also be informative to extend the STAT-1 analysis to sFliC-exposed B cells, as 

the low level of IgG2a produced in this system appears to be independent of T-bet in T 

cells, and is therefore likely to be controlled by B cell intrinsic T-bet. Assessing the 

transcription factors in the two models may uncover different pathways of T-bet mediated 

IgG2a production in response to the same antigen, presented in a different context. The 

defect in IgG1 and IgG2b class-switching in T-bet-/- mice immunised with Th2 antigen 

sFliC also warrants further investigation. It will be necessary to establish whether there is a 
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defect in T-B interaction in the spleen, either at the T-B border, or within GC. It would be 

informative in this regard, to measure the expression of γ1 and γ2b-germline switch 

transcripts in purified WT and T-bet-/- B cells, at various time points following primary 

immunisation with sFliC, in order to gain a clear understanding of when class-switching is 

initiated in T-bet-/- B cells in this system. The defect in IgG2b production in this system is 

intriguing, as IgG2b production was not defective in T-bet-/- mice infected with STm. An 

analysis of chemokines and chemokine receptors in T and B cells in the two models may 

also be informative, as there may be defects in migration that affect EF plasma cell or GC 

formation, expansion or function. 

 

5.1.2 IL6-mediated control of antibody class-switching 

Although interesting, the defect in GC formation in IL4-, IL13- and IL4Rα-deficient mice 

did not impact upon class-switched antibody production, and was therefore not pursued 

here. However, it would be interesting to pursue the IL6 project and determine exactly 

where IL6 exerts its effects. Firstly, it would be informative to carry out an extensive 

analysis of the cell populations that up-regulate or acquire the IL6R during STm infection, 

at a time when GC are forming. This would allow identification of the populations that 

could respond to IL6 at this time point, and the elimination of others. I would also like to 

assess the expression of chemokine receptors on pre-GC T and B cells, to in order to 

identify whether they may be defects in the responsiveness of these cells to chemokine 

gradients, that prevent their entry into GC. Further characterisation of the Tfh cells, or pre-

GC Tfh-cells in IL6-/- spleen during the STm response is also required, in order to further 
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understand whether productive T-B interactions are taking place, and whether these 

interactions facilitate EF growth rather than GC entry.    

 

5.3 Summary and final conclusions  

This thesis provides evidence that the signalling, adhesion receptor CD31, the cytokines 

IL4, IL13 and IL6, and the transcription factor T-bet, all have selective roles in regulating 

facets of the B cell response to STm infection. T-bet in B cells is required for initiating 

IgG2a switch-transcript induction, a failure of which impacts upon both EF and GC IgG2a 

class-switching, whilst IgG2b production is independent of T-bet expression. T-bet can 

also modify Th2 antibody responses, in an antigen specific manner. Following T-B 

interaction, IL6 arising from either haematopoietic or radiation-resistant cells is required 

for the formation of GC during STm infection, but is less important for the development of 

an EF plasma cell response. An absence of IL6 has a negative effect upon all sub-classes of 

antibody, as does a loss of CD31. Upon entry into the GC, there may be a role for IL4 and 

IL13 signalling in B cell selection, as evidenced by the smaller, less abundant GC in the 

absence of these cytokines.  

 

Therefore, B cell immunity to STm infection requires the coordinated actions of multiple 

signals, each working to optimise a distinct aspect of the B cell response. Furthermore, 

whilst the existence of ‘typical’ T-D antibody responses to Th1 and Th2 antigens cannot be 

disputed, this work emphasises that divergence from these simplified concepts is inevitable 

within the complexities of the immune system. 
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APPENDIX 1:  MEDIA, SOLUTIONS AND BUFFERS 

 

All reagents used were purchased from Sigma-Aldrich (Poole, UK), unless otherwise 

specified. 

 
Full culture medium  RPMI_1640 
        10% foetal calf serum   
 (Biosera, E.Sussex UK)  
 2mM glutamine 
 100U/ml penicillin 
 100µg/ml streptomycin 
  
Ammonium Chloride (ACK)  1litre (L) dH2O  
red blood cell lysis buffer          8.29g NH4Cl 
 1g KHCO3 
 37.2mg EDTA (all filter sterilised) 
 
Luria Bertani (L.B) Medium          1L dH2O 
 20g Lennox. L Broth base (Invitrogen, 

Paisley, UK) 
 Autoclaved to sterilise 
 
Phosphate buffered saline (PBS)  1LdH2O  
pH 7.4 8.5g NaCl 
 1.07g Na2HPO4 

 0.39g NaH2PO4 

 Autoclaved to sterilise 
 
Agar plates 1LdH2O 
 20g granulated agar (Melford, Ipswich, 

UK). 
  20g Lennox. L Broth base 
 Autoclaved to sterilise and pour plated 
 
 
Fc receptor blocking buffer 2% Bovine serum albumin (BSA)/PBS 
 16/32 fc blocking antibody (ebioscience 

Hatfield, UK) diluted 1:50 
 10%FCS 
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Tris buffer pH 7.6 1LdH2O 
 3.75ml 10.1M HCl (Fisher scientific, 

Loughborough UK) 
 3.188g NaCl ((Melford, Ipswich, UK) 
 6.057g Trizma base  
 
Tris buffer pH  9.2 As above but at pH 9.2. Initially pH 200 

ml to give pH 9.2 using HCl (dropwise 
with 1M or greater) and make up to 
desired volume with NaCl. 

 

Peroxidase Substrate 15mls Tris buffer pH 7.6 
 10mg of 3,3 deaminobenzidine 

tetrahydrochloride (DAB) 
 Two drops of hydrogen peroxide added 

to filtered solution 
 
Alkaline phosphatase (AP) 10mls Tris buffer pH 9.2 
substrate 8mgs levimasole  
 4mgs naphthol-AS-MX-phosphate 
 10mgs fast blue BB salt 
 Filtered 
 
Enzyme-Linked ImmunoSorbent 1 capsule carbonate-bicarbonate 
Assay (ELISA) coating buffer pH 9.6 dissolved in 100ml dH2O 
 
 
ELISA AP substrate 1 Sigma fast p-Nitrophenyl phosphate 

tablet and 1 Tris buffer tablet/20ml 
dH2O 

 
 
DABCO 90% glycerol   

 2.5g 1,4-diazabicyclo (2,2,2) octane
 (DABCO) (Sigma) (for 100mls)  

 10% PBS 
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APPENDIX 2: GENERATION OF sFLIC 

 

sFliC was generated by Jessie Hitchcock or Charlotte Cook in conjunction with Dr. 

Margaret Goodall and has been described (78,239). As this antigen was generated by 

others, these preparation details have been taken with minor adaptations from the PhD 

thesis of Dr. Saeeda Bobat (Bobat, S. 2011. Characterising the immune response to 

Salmonella during a systemic infection. The University of Birmingham eTheses 

Repository).   

 

Protocol 

FliC was amplified from SL3261 and ligated into pET22b+ (Merck Chemicals, 

Nottingham, UK) to create pET22b+ FliC Xho1 containing a C-terminal His-Tag, 

expressed beta-lactamase conferring ampicillin resistance, and expressed FliC under the 

control of Isopropyl β-D-Thiogalactopyranoside (IPTG) (Promega, Southampton, UK)  

induction of the Lac operon through the T7 promoter. This was transformed into 

chemically competent BL21 DE3. sFliC was then isolated following over-expression in LB 

medium. Bacteria were incubated overnight at 37°C with aeration, in LB supplemented 

with ampicillin. The culture was then diluted 1:100 in fresh media and incubated at 37°C 

until mid-log phase (ODλ600 0.6-0.8). Following this, IPTG was added at a final 

concentration of 1 mM, to induce sFliC expression. Once induced, culturing was continued 

for 2.5 hours, after which the cell paste was harvested at 6000 x g for 20 minutes at 4°C.  
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Protein purification was achieved via a two-step process. Initially, cells were re-suspended 

in Bugbuster (Merck Chemicals, Nottingham, UK) and agitated at room temperature for 20 

min. The cell lysate was centrifuged at 16, 000 x g for 20 minutes at 4ºC to remove cellular 

debris. The resulting lysate was filtered through a 0.22 µm filter (Millipore, MA, USA) 

and incubated with Ni-NTA Sepharose (Qiagen, Hilden, Germany) for 45 minutes at room 

temperature. Flagellin was then purified by Nickle-affinity chromatography using a 

disposable Polypropylene Column (Qiagen). After the lysate had passed through, the 

column was washed with five volumes of PBS and the His-tagged protein (sFliC) was 

eluted in 5 ml PBS containing 100mM Imidazole (Melford Laboratories). Flagellin was 

then extensively dialysed against PBS under gentle agitation at 4°C. Subsequently, sFliC 

was filtered and purified to homogeneity by affinity chromatography using an anti-FliC 

monoclonal antibody in conjunction with Dr Margaret Goodall.  

 

Purified sFliC was further dialysed and protein identity and purity was assessed by 

Sodium-Dodecyl-Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE), revealing 

the presence of sFliC at the expected molecular weight (56 kDa) and the absence of 

contaminating protein post affinity chromatography. Protein concentration was determined 

using the bicinchoninic acid (BCA) assay (Thermo Fisher Scientific, MA, USA) adapted 

for use in microplates. In brief, 50 µl of the purified protein and diluent were mixed with 

200 µl of the BCA working reagent (BCA and copper complex) and incubated at 37°C for 

30 minutes, alongside albumin protein standards. Following incubation, the colour change 

observed upon the simultaneous reduction of copper in the working reagent upon protein 

binding, and the chelating of BCA by this resulting cuprous ion, was read at 550 - 570 nm 

using an Emax Precision Microplate reader (Molecular Devices). A standard curve of 
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absorbance was constructed against known concentrations of the protein standards, which 

was used to determine the concentration of the protein. LPS contamination was assessed 

using the Sigma E-TOXATE Kit as per manufacturer’s guidelines and shown to be ≤1 

Endotoxin Unit EU/300μg. Sterile antigen was stored at -20ºC.  
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APPENDIX 3: CONJUGATION OF NP TO CGG 

 

NP was conjugated to CGG by Chandra Raykundalia and has been previously described 
(240). 
 
 
 
Buffers  
 
 
Coupling buffer 0.2M NaHCo3/Na2CO3 pH9.0 Prepare 0.2M NaHCO3 

Adjust pH with 0.2MNa2CO3 
 
0.2M Boratebuffer pH 8.4 6.18g H3BO3 
 9.4g Na2borate 
 9gNaCl    
 
 

Protocol 

CGG was dialysed against 0.2M NaHCo3/Na2CO3 pH 9.0 and the solution was stirred on 

ice. NP-OSuc was dissolved in DMF (10mg/ml) and the appropriate amount was added 

drop-wise to the CGG solution, at a ratio of 1:20 (NP:CGG). The solution was then stirred 

for 2-3hr. Unbound hapten was removed by extensive dialysis against PBS, consisting of 4 

buffer changes over two nights, at 4ºC.  The coupling rate was determined by measuring 

the OD430nm (NP) and the OD280nm (protein), by diluting NP-CGG 1:10 in borate buffer pH 

8.4.  As NP has some absorption at 280nm, standard curves were produced for NP-OSuc at 

430nm and NP-OSuc and CGG at 280nm.  The NP concentration in NP-CGG was 

measured using the OD 430nm, then the NP absorption at 280nm was subtracted from the 

OD280nm.  The solution was then sterile filtered. Sterile antigen was stored at 4ºC. 
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APPENDIX 4: PREPARATION OF PURIFIED 

PORINS FROM STM 

 

Purified porins from STm (strain ATCC 14028) were extracted by Dr. Cristina-Gil Cruz 

and their preparation has been described (13). As I did not make the porins used for 

immunisations, the preparation details given below are taken with minor adaptations from 

the PhD thesis of Dr. Saeeda Bobat (Bobat, S. 2011. Characterising the immune response 

to Salmonella during a systemic infection. The University of Birmingham eTheses 

Repository).   

  

Buffers 
 
All prepared with MilleQ H2O and filter sterilised with a 0.45 µm filter (Millipore, MA, 
USA)  
 
 
Wash Buffer  50 mM Tris.HCl (pH 7.4) 
 
Solubilisation Buffer      50 mM Tris.HCl (pH 7.4) 
 2% Sodium Dodecyl Suplate 

(SDS) 
 
Nikaido Solubilisation Buffer    50 mM Tris.HCl (pH 7.4) 

1% Sodium Dodecyl Suplate 
(SDS) 
3.25 mM EDTA 

0.05% β2-mercaptoethanol 

 
 Nikaido Purification Buffer     50 mM Tris.HCl (pH 7.4) 

0.5% Sodium Dodecyl Suplate 
(SDS) 
3.25 mM EDTA 
200 mM NaCl 
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Protocol 

Purified porins from STm (strain ATCC 14028) were obtained through repeated extraction 

with SDS. STm was incubated in minimal salts medium (MAM) containing 0.1% yeast 

extract, 0.5% glucose and 0.1% MgSO4 at 37°C with aeration (200 rpm) until late log 

phase (ODλ600nm of 1). Cells were then diluted 1:10 in 1.5 L MAM and further incubated 

until late log phase.  

 

Cells were harvested at 6000 x g for 15 minutes at 4°C and washed in wash buffer, 

followed by resuspension and disruption using a French pressure cell at 20, 000 psi. Un-

broken cells were removed at 6000 x g for 20 minutes at 4°C and the lysate was 

centrifuged at 30,000 x g for 40 minutes at 4°C. The resulting envelope fraction was re-

suspended in 100ml solubilisation buffer and incubated for 2 hours with aeration at 

120rpm at 37°C. The soluble inner membrane fraction was then separated from the 

insoluble outer membrane (OM) by centrifugation at 30, 000 x g for 45 minutes at 4°C. 

This extraction step was performed twice. Pelleted cells (OM envelope) were re-suspended 

in Nikaido buffer and incubated for 1 hour at 37°C with aeration (120 rpm) before 

centrifugation at 30, 000 x g for 1 hour at 20°C. The resulting supernatant contained the 

OM fraction.  

 

Final purification was by FPLC gel filtration on a Sephacryl S-200 column with Nikaido’s 

purification buffer. Fractions with an O.D at λ280 nm of > 0.2 were pooled and extensively 

dialysed against PBS containing 0.1% (w/v) SDS. Purity was assessed by SDS-PAGE and 

protein concentration was assessed using the BCA assay (Thermo Fisher Scientific) (see 
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appendix 2). The LAL assay showed LPS contamination to be 0.06 EU/480 µg protein. 

Protein identity was confirmed by trypsin digest and Quadrupole Time of Flight (QTOF) 

mass spectrometry at the School of Biosciences Functional Proteomics Unit (University of 

Birmingham). Protein was stored at -80ºC. 
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APPENDIX 5: PREPARATION OF TOTAL OMP 

ANTIGEN 

 

Total OMP were prepared by Jessica Hitchcock or Charlotte Cook and has been described 

(244). As I did not prepare the OMP for ELISA, the preparation details given below are 

taken, with minor adaptions, from the PhD thesis of Dr. Saeeda Bobat (Bobat, S. 2011. 

Characterising the immune response to Salmonella during a systemic infection. The 

University of Birmingham eTheses Repository).   

 

Total OMP preparations were prepared by 2% Triton X-100 extraction. Cells were 

harvested at an ODλ600 nm of 1.0 by centrifugation at 10,000 x g for 10 minutes at 4°C. 

Cells were then washed in 10 mM Tris-HCl (pH 7.4) under the same conditions and re-

suspended in the same buffer containing 2 mM PMSF (Roche). Cells were then disrupted 

using a French pressure cell at 20,000 psi and harvested at 6,000 x g for 10 minutes at 4°C 

to remove unbroken cells. The lysate was centrifuged at 30,000 x g for 90 minutes at 4°C. 

Pelleted cell envelopes were incubated in 10 mM Tris-HCl containing 2% Triton X-100 for 

15 minutes at room temperature, followed by centrifugation at 30,000 x g as before. The 

soluble OMP were then washed extensively in 10 mM Tris-HCl. The total OMP 

preparation was re-suspended in this buffer and protein concentration was determined 

using the BCA assay (see appendix 2). The antigen was stored at -20°C until further use.  
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