
ON THE COMPOSITIONALITY OF ROUND
ABSTRACTION

by

MOHAMED NABIH MENAA

A thesis submitted to the
University of Birmingham

for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
University of Birmingham
April 2012

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

ABSTRACT

Game Semantics is an approach to denotational semantics that has been successful

in providing accurate, fully abstract models for various programming languages. It

has thereafter been applied, amongst other things, to model checking, access control

analysis, information flow analysis, and recently, hardware synthesis.

While the roots of modern Game Semantics are sequential, several game mod-

els of asynchronous concurrency have since been devised. However, synchronous

concurrency has not been considered hitherto.

This thesis studies synchronous concurrency in game-like models. The central

idea is to investigate deriving such synchronous models from their asynchronous

counterparts using round abstraction—a technique that allows aggregating a sequence

of computational steps to form a larger, more abstract macro-step.

We define round abstraction within a trace-semantic setting that generalises

game semantic models. We note that, in general, round abstraction is not com-

positional. We then identify sufficient conditions to guarantee correct composition,

thereby proposing a framework for round abstraction that is sound when applied

to synchronous and asynchronous behaviours.

We explore extensions of our synchronous model with causality, global clocks

and determinism.

i

ACKNOWLEDGEMENTS

First, I would like to thank my supervisor, Dan Ghica; his confidence in my ideas,

in addition to his support, guidance and advice have had a profound influence on

the development of my research.

I drew much motivation and inspiration from many researchers I met during

my time as a doctoral student. I am especially grateful to the following people for

invaluable discussions and comments about my research: Samson Abramsky, Pierre

Clairambault, Olaf Klinke, Pasquale Malacaria, Louis Mandel, Michael Mendler,

Andrzej Murawski, Alan Mycroft, Prakash Panangaden, Roly Perera, Uday Reddy,

Moshe Vardi and Walter Vogler.

I thank my examiners, Paul Levy and Glynn Winskel, for reading this work with

care and offering many useful suggestions.

Thanks to my colleagues at Birmingham—in particular, my officemates in CS

125 and G4 in Chem West—I have had a happy and productive time. Elsewhere, I

thank Adel, Karim, Soumia, Mohamed T. and Yasser for their kindness and friend-

ship over the years.

It is hard to accurately express how much I owe to my parents for their support

in all I undertook, my brothers for endless entertainment, and my wife Amaria for

everything. To them, I dedicate this work.

iii

CONTENTS

1 Introduction 1

1.1 Motivation . 1

1.2 Outline and Contributions . 3

1.3 Publications . 5

2 Background 7

2.1 Synchrony and Asynchrony . 8

2.1.1 Asynchrony . 9

2.1.1.1 Communicating Sequential Processes 9

2.1.2 Synchrony . 12

2.1.2.1 Synchronous Languages . 13

2.1.3 Relating Synchrony and Asynchrony . 16

2.2 Game Semantics . 17

2.2.1 Introduction to Game Semantics . 18

2.2.2 Concurrency in Game Semantics . 24

2.3 Hardware Compilation via Geometry of Synthesis 26

2.3.1 Introduction to GoS . 27

2.3.2 Basic Syntactic Control of Interference . 28

2.3.3 A Category of Handshake Circuits . 31

2.3.4 A Game-Like Semantics for BSCI . 33

2.4 The Problem in Essence . 38

2.4.1 Methodology . 40

3 A Trace Model of Processes 41

3.1 Traces and Processes . 41

3.1.1 Signatures . 42

3.1.2 Traces . 43

3.1.3 Processes . 45

3.2 Categorical Structure . 46

3.2.1 Monoidal Structure . 57

3.2.2 Closed Structure . 61

v

4 Compositional Round Abstraction 67

4.1 Alur-Henzinger Round Abstraction . 67

4.2 Round Abstraction on Processes . 70

4.3 Compositionality of Partial Round Abstraction . 72

4.4 Total Round Abstraction . 80

4.5 Discussion . 82

5 Causal Processes and Asynchronous Processes 85

5.1 Justified Traces and Causal Processes . 85

5.1.1 Signatures . 85

5.1.2 Traces . 87

5.1.3 Processes . 88

5.1.4 A Category of Synchronous Causal Processes 89

5.2 Asynchronous Processes . 100

5.2.1 A Category of Asynchronous Processes . 106

5.3 Round Abstraction on Causal Processes . 124

5.4 Discussion . 128

6 Global Clocks and Determinism 131

6.1 Clock Monad and Clock Monoid . 131

6.2 Clocked Processes . 153

6.3 Observable Determinism . 163

6.4 Discussion . 169

7 Conclusion 173

7.1 Summary . 173

7.2 Further Directions . 175

LIST OF FIGURES

2.1 A landscape of relevant literature . 7

2.2 A subset of CSP syntax . 10

2.3 The trace semantics of CSP . 11

2.4 Asynchronous product versus synchronous product of automata 12

2.5 Some Esterel statements . 14

2.6 A cyclic Esterel program . 15

2.7 The arena of natural numbers nat . 20

2.8 The product arena of A and B . 21

2.9 The function arena of A and B . 21

2.10 The addition of 5 and 7 produced by composition 24

3.1 Coherence condition for α . 61

3.2 Coherence condition for λ and ρ . 61

3.3 Coherence conditions for γ . 62

4.1 A Counter in Reactive Modules . 69

4.2 A round abstracted Counter . 69

4.3 Round abstraction on automata . 70

4.4 When compatibility is too strong . 74

4.5 Totality of �u in Lemma 4.10 . 78

5.1 Lemma 5.16, Case 2 . 93

5.2 Lemma 5.16, Case 3 . 93

5.3 Pointer structure inheritance in Lemma 5.20 . 96

5.4 Causality in idA⊗B. 98

6.1 Clock monad . 134

6.2 Justification pointers in traces u ∈ αCk,Ck,Ck; idCk ⊗ spCk; spCk in Lemma 6.4 142

6.3 Justification pointers in traces v ∈ spCk ⊗ idCk; spCk in Lemma 6.4 142

6.4 Justification pointers in traces u ∈ csCk ⊗ idCk; spCk in Lemma 6.4 142

6.5 Justification pointers in traces v ∈ λCk in Lemma 6.4 142

vii

6.6 A diagrammatic representation of the monoid axioms 142

6.7 A circuit representation of the double strength map. 151

6.8 A circuit representation of composition in the Kleisli category SynProcT. 152

6.9 A circuit representation of (idB ⊗T τ) ;T evalB,CT. 152

CHAPTER 1

INTRODUCTION

Abstractions are everywhere. Each instant, our brains ignore millions of stimuli, selectively

processing those deemed relevant; our very perception of the world is an abstraction [SCME06].

In computer science, our study of systems is guided by formal models that abstract away

from the physical world. Process calculi conveniently model observable events, an idealisation

of reality. Models of synchronous languages assume an infinitely powerful machine that allows

instantaneous computation. Automata use discrete time steps.

This thesis examines the use of a form of temporal abstraction in correlating two distinct

views of concurrent behaviour—synchronous and asynchronous—compositionally and thereby

lays the foundations for a synchronous formulation of Game Semantics.

1.1 Motivation

One taxonomy for concurrency theory classifies its models into two broad categories: syn-

chronous and asynchronous. In general, synchronous systems are those that synchronise their

operation on a clock, be it global or local. In contrast, asynchronous systems are those that

lack this feature, and therefore, whose components proceed independently according to a set

protocol.

In this thesis, the fulcrum of this distinction lies in the presence or absence of the notion of

simultaneity. Hence, the key difference between the two is that in a synchronous setting, we

must consider the case of two events occurring simultaneously whereas in the asynchronous

case, it is impossible to ascertain that. This view is common in process calculi, for example,

where the failure of simultaneity is expressly stated.

1

2 CHAPTER 1. INTRODUCTION

“We can validly ignore the possibility that two events occur simultaneously; for if they did,

the observer would still have to record one of them first and then the other, and the order in

which he records them would not matter.” [Hoa85]

Consequently, application areas for the two paradigms have typically been different: asyn-

chronous concurrency is used when bounds on the time necessary for interaction cannot be

guaranteed (e.g. distributed systems), or when time is intentionally abstracted (e.g. high-level

programming languages), whereas synchronous concurrency is commonly used when time is

an essential facet of the system (e.g. safety-critical systems).

The correlation of synchrony and asynchrony has been an object of research for a long

time. Starting with Milner’s seminal work in the 1980s, several authors demonstrated how

asynchronous models can be derived from [Mil83, BCG99] or simulated by [HM06] their syn-

chronous counterparts. Hence, it is commonly accepted that synchronous models are more

expressive. The opposite direction, from asynchrony to synchrony, has received less attention.

So, while the naive synchronous representation of an asynchronous process is inefficient, de-

riving a low-latency representation is arguably challenging. Even recovering synchronicity after

it is removed from a specification is a non-trivial procedure [BCG99].

In their specification language, Reactive Modules, Alur and Henzinger take a more general

approach [AH99]. In particular, they describe a technique, which they name round abstraction,

that allows arbitrarily many computational steps to be aggregated into a single macro-step.

This forms the basis for an elegant solution to the problem of building synchronous systems

from asynchronous specifications. We consider round abstraction, essentially, as an approxi-

mation technique that removes some of the timing information between events in a process.

One area in which the correlation between synchrony and asynchrony has yet to be investi-

gated is Game Semantics [HO00, AJM00]. This denotational intensional semantics has met with

success in the 1990s when it led to fully abstract models for the prototypical language PCF, a

challenge that was outlined nearly two decades earlier [Plo77]. Several asynchronous concur-

rent game models have subsequently appeared in the literature, e.g. [Lai01b, Lai06, GM08]; but

no synchronous homologue as yet.

This thesis studies the compositionality of round abstraction in causal and non-causal trace

1.2. OUTLINE AND CONTRIBUTIONS 3

models, and thereby lays the foundations for the formulation of a synchronous game seman-

tics. We formulate round abstraction within a game-like locally synchronous model that can

accommodate synchronous and asynchronous behaviours. We then study the compositionality

of round abstraction, a question unanswered in the original work. We also explore how round

abstracted models can be extended with global synchrony and determinism.

1.2 Outline and Contributions

The thesis is structured as follows.

1 – Introduction.

2 – Background. This chapter explores concepts that underpin the topic of this thesis, includ-

ing synchronous and asynchronous concurrency, Game Semantics, and hardware compi-

lation using Geometry of Synthesis. We discuss relevant literature, placing the thesis in

the context of its broader influences, and finish with a more elaborated statement of the

problem addressed herein.

3 – A Trace Model of Processes. We introduce the details of the setting in which the problem

will be studied. We extend the notion of a trace to allow recording simultaneous events.

Subsequently, we describe a trace model of low-level concurrency, which we show to

have a closed symmetric monoidal structure.

4 – Compositional Round Abstraction. After reviewing round abstraction in its original for-

mulation, we define a compositional form thereof within the setting outlined in Chap-

ter 3. We introduce two notions of round abstraction on processes: partial and total,

which represent different levels of accuracy in the abstraction. So, while partial round

abstraction only requires that all traces in the abstraction approximate those in the orig-

inal process, its total homologue additionally states that all traces in the original process

be abstracted. We show that, in general, neither notion is compositional. We then pro-

ceed to identifying sufficient conditions that guarantee compositionality of partial round

abstractions. We discuss total round abstraction as an open problem.

4 CHAPTER 1. INTRODUCTION

Contribution. The original notion of round abstraction applies to whole systems and does

not address the question of whether round abstracted systems interact correctly with each

other. We remedy this by introducing the first compositional formulation of round ab-

straction.

5 – Causal Processes and Asynchronous Processes. We augment the trace model of Chapter 3

with causality in the form of justification pointers and obtain a closed symmetric monoidal

category. Then, we introduce a category of interleaved asynchronous processes, in the

style of Ghica and Murawski’s concurrent game model [GM08]. We prove that partial

round abstraction is compositional in both the causal and asynchronous settings.

Contribution. We prove that partial round abstraction is compositional on causal and

asynchronous processes. The conditions guaranteeing compositionality are the same

ones used for non-causal processes. New alternative formulations of copycat and asyn-

chronous identities are introduced alongside new categorical proofs, cf. [GM08].

6 – Global Clocks and Determinism. We demonstrate that locally synchronous processes can

be extended with a global clock in a principled fashion. Following an established tradi-

tion, we use a computational monad. The monad describes how globally clocked pro-

cesses should be wired. We then describe a category of clocked processes, where events

are globally synchronised with the clock. We use this globally synchronous category to

study determinism. We find that deterministic processes can be defined when justifica-

tion pointers encode sufficient causality information.

Contribution. While computational monads are, by now, an established technique to en-

rich categorical models with new features, the idea of a clock monad is, to our knowledge,

novel. We define a category of globally clocked processes. We discover that subtle prob-

lems in characterising deterministic processes in the synchronous setting arise when we

rely on justification pointers as a sufficient notion of causality.

7 – Conclusion. We conclude by summarising our results and suggesting potential avenues

for further research.

1.3. PUBLICATIONS 5

1.3 Publications

This thesis is partly based upon the following publications.

[GM11] D. R. Ghica and M. N. Menaa. Synchronous game semantics via round abstraction.

In M. Hofmann, editor, FOSSACS ’11: Proceedings of the 14th International Conference on

Foundations of Software Science and Computational Structures (Saarbrücken, Germany), vol-

ume 6604 of Lecture Notes in Computer Science, pages 350–364. Springer, 2011.

[GM10] D. R. Ghica and M. N. Menaa. On the compositionality of round abstraction. In P.

Gastin and F. Laroussinie, editors, CONCUR ’10: Proceedings of the 21th International Con-

ference on Concurrency Theory (Paris, France), volume 6269 of Lecture Notes in Computer

Science, pages 417–431, 2010.

In addition, this thesis is partly based on the following unpublished work.

[GM] D. R. Ghica and M. N. Menaa. Low-latency synchronous representations of asynchronous

processes. Submitted to the Journal of the ACM.

[Men10] M. N. Menaa. On the compositionality of round abstraction. Short paper presented

at the 25th Annual Symposium on Logic in Computer Science (LICS ’10), Edinburgh,

Scotland, UK, 2010.

[Men09] M. N. Menaa. Towards a synchronous game semantics. Slides presented at the 4th

Workshop on Games for Logic and Programming Languages (GaLoP IV), York, UK, 2009.

6 CHAPTER 1. INTRODUCTION

CHAPTER 2

BACKGROUND

We begin by examining some topics that will help situate this thesis in the context of its broader

influences. The original motivation for our work stems from Geometry of Synthesis [Ghi07], a

hardware compilation technique from higher-order programming languages to digital circuits

via Game Semantics. While compiling to asynchronous hardware has been previously demon-

strated [GS11], targeting synchronous hardware presents new challenges stemming from the

discrepancy between the asynchronous input of the compiler and the desired synchronous out-

put.

Asynchronous Synchronous

Process calculi CSP [Hoa85] CRP [BRS93], SCCS [Mil83]

Programming languages ICA [GM08], BSCI [Rey78] Esterel[BMR83], ReactiveML [MP05]

Games Hyland-Ong [HO00] ???

Hardware Event logic [Sut89] Clocked circuits

[GS11] [Ghi07]

Demonstrated

Desideratum

This thesis

Figure 2.1: A landscape of relevant literature

We first contrast synchronous and asynchronous forms of concurrency, taking Communi-

cating Sequential Processes [Hoa85] and Esterel [BMR83] as prime examples. We then briefly

introduce the main notions of Game Semantics [HO00], focusing on the concurrent formulation

due to Ghica and Murawski [GM08]. Finally, we review hardware compilation using Geome-

7

8 CHAPTER 2. BACKGROUND

try of Synthesis. These topics are only examined insofar as the subsequent exposition requires;

the following sections are by no means representative of their topics. References for further

reading are provided throughout.

2.1 Synchrony and Asynchrony

In early days, computers were essentially viewed as sequential machines. This useful ab-

straction led to the development of a rich theory—including Turing machines and the lambda

calculus—which in turn had a deep impact on subsequent developments in computing. Issues

of parallel computation were primarily motivated by operating system design, for example, Di-

jkstra’s semaphores [Dij65]. However, the advent of computer networks in the 1970s dictated

the need for a different class of concurrent models. In contrast to sequential models, where

processes only communicate when they terminate, concurrent ones consist of independent se-

quential components proceeding in parallel while communicating.

Later developments yielded two broad classes of concurrent models: synchronous and

asynchronous, depending on the nature of communication between concurrent processes. The

key distinction between the two is that in the former, one must consider the case of two or more

events occurring simultaneously whereas in the latter, it is impossible to ascertain that.

It is perhaps due to this convenient abstraction that asynchronous concurrency developed

rapidly. Petri Nets [Pet62] were among the first and most influential models of concurrency and

are still studied to this day. Other prominent examples include Mazurkiewicz traces [Maz77]

and Winskel’s event structures [Win87]. These three models share a common trait that sepa-

rates them from others: they all model concurrency in an explicit and so called non-interleaved

way. In other words, the internal components of a concurrent system can be discerned.

On the opposite side of the spectrum, process calculi like the Calculus of Communicating

Systems (CCS) [Mil80] and Communicating Sequential Processes (CSP) [Hoa85] together with

their semantic models, respectively synchronisation trees [Mil80] and Hoare traces [Hoa80] are

interleaved models. These hide their internal structure and describe computation as sequential

observations of the aggregate behaviour of their components. As a result, they have often been

criticised for reducing concurrency to nondeterminism.

2.1. SYNCHRONY AND ASYNCHRONY 9

On the other side of the fence, synchronous concurrency appeared in the beginning of the

1980s with Milner’s seminal work on the Synchronous Calculus of Communicating Systems

(SCCS) [Mil83] and Austry and Boudol’s MEIJE calculus [AB84, Bou85].

Around the same time, a somewhat different approach to synchronous concurrency was

taken by a community of scientists motivated by real-time systems. Seminal papers on Es-

terel [BMR83], Statecharts [HP85], Lustre [BCH+85] and SIGNAL [LGBBG86] marked the in-

ception of synchronous programming languages.

2.1.1 Asynchrony

A full review of asynchronous models of concurrency is beyond the scope of this thesis. A good

survey of some of these models using a categorical approach can be found in [WN95]. We will

instead give an overview of one of the pioneering (asynchronous) process calculi, Communi-

cating Sequential Processes (CSP), and its trace semantic model [Hoa80], often called Hoare

traces. These share our approach to asynchronous concurrency as described in Chapter 3: lin-

ear time and interleaved. Moreover, CSP is an important precursor to Game Semantics and

therefore, serves as a gentle introduction to it. This idea was aptly described by Abramsky in a

recent essay [Abr10].

There are many good CSP references, for example [Hoa85, Ros98, Sch00]. For a historical

overview of the development of process calculi, including CSP see [Bae05].

2.1.1.1 Communicating Sequential Processes

The basic element in process calculi is called a process. It is an idealised description of the

behavioural pattern of a system. Behaviour is anything that can be observed and idealisation

implies that a process is often an abstraction of the real behaviour. In the case of CSP, a process

is described by events, which are instantaneous atomic observable actions that a system can

exhibit. The set of all events occurring in the process description, denoted by αP for a process

P, is called its alphabet. The possibility that two distinct events occur simultaneously is always

ignored, and whenever two processes synchronise on the same event, it is only recorded once∗.

∗This limited form of synchrony is often called rendezvous or handshake communication.

10 CHAPTER 2. BACKGROUND

P ::= STOP Deadlocking process
| SKIP Terminating process
| x → P Prefixing
| P \ X Hiding
| P� P External choice
| P u P Nondeterministic choice
| P ‖ P Parallel composition
| P9 P Interleaving
| P ; P Sequential composition

Figure 2.2: A subset of CSP syntax

CSP offers a set of algebraic primitives to build more complex processes from basic ones.

Figure 2.2 shows a subset of CSP syntax. The primitive processes considered here are STOP

and SKIP which model deadlock and termination respectively. The process x → P is one

which partakes in the event x and behaves like P afterwards. In the process P \ X, every event

in the set X is removed from the description of P. This is called hiding and corresponds to

internalising a subset of the interface of a process so that it is no longer visible to its environ-

ment. Whereas the process P�Q lets the environment choose whether it subsequently behaves

like P or like Q, this choice is made internally and nondeterministically in P u Q. CSP allows

two main concurrency constructs: interleaving, where processes proceed autonomously; and

parallel composition, where processes have to synchronise on common events.

Every primitive in CSP has rules governing how processes involving it can be rewritten

without altering their meaning. Hence, some of these laws induce a simple notion of syntactic

equivalence. For example, parallel composition is both symmetric and associative. Therefore,

P ‖ (Q ‖ R) = (Q ‖ P) ‖ R. Additionally, some of these laws allow us to simplify a process

expression. For instance, P ‖ STOP = STOP and SKIP ; P = P

We will now look at the trace model of CSP. The basic idea is to model the behaviour of a

process using traces: sequences of events over its alphabet. An often used metaphor is that of a

neutral observer writing the events of a process in a notebook as they occur. The semantics of

the process, therefore, is the collection of all its possible traces. This naturally yields a notion of

process equivalence: processes are trace equivalent when their respective sets of traces are equal.

Along with its simplicity, trace equivalence is known to be the least discriminating process

equivalence. For example, although P� Q is trace equivalent to P u Q, these two processes

2.1. SYNCHRONY AND ASYNCHRONY 11

will generally not behave the same when interacting with their environment. CSP has been

given several other semantic models that yield increasingly discriminating notions of process

equivalence.

First, we need to introduce some notation. The empty trace is written ε. If s and t are traces,

we write their concatenation as s · t. Moreover, if s is a trace in P and X ⊆ αP, then s � X is

the trace obtained by deleting all non members of X from s. For the sake of uniformity, we use

the same notation for similar notions introduced in later chapters. This does not necessarily

comply with the original notation of CSP [Hoa85].

For any CSP process P, its set of traces, traces(P), is

• nonempty: it always contains the empty trace ε which corresponds to the behaviour of

the process up to the point where it engages in its first event,

• prefix-closed: if s · t is a trace of P, then s is also a trace of P. This models the history of

execution: if we can observe the behaviour s · t, we must have previously observed the

behaviour s.

The trace semantics of CSP is defined inductively over its syntax by rules for each opera-

tor and primitive. In Figure 2.3, we describe those corresponding to the syntax in Figure 2.2.

Successful termination is denoted by the reserved symbolX.

Note that these definitions result in a compositional semantics: the meaning of a process is a

function of the meanings of its components.

traces(STOP) = {ε}
traces(SKIP) = {ε,X}
traces(a→ P) = {a · s | s ∈ traces(P)}
traces(P \ X) = {s � (αP− X) | s ∈ traces(P)}
traces(P�Q) = traces(P) ∪ traces(Q)
traces(P uQ) = traces(P) ∪ traces(Q)
traces(P ‖ Q) = traces(P) ∩ traces(Q)
traces(P9 Q) = {s | s � αP ∈ traces(P) and s � αQ ∈ traces(Q)}
traces(P ; Q) = traces(P) ∪ {s ·X · t | s ·X ∈ traces(P) and t ∈ traces(Q)}

Figure 2.3: The trace semantics of CSP

12 CHAPTER 2. BACKGROUND

2.1.2 Synchrony

The synchronous paradigm has a long pedigree in hardware design. Synchronous digital cir-

cuits synchronise their operation using a global clock that sets a strict upper bound on when

they must stabilise. This results in an abstraction whereby these circuits proceed in consecutive

discrete steps. All events occurring during one such step are considered to be simultaneous.

The same idea eventually found its way to concurrency theory. Milner’s Synchronous Cal-

culus of Communicating Systems (SCCS) [Mil83] was the first notable work in this direction. It

models simultaneity using an Abelian semigroup of actions as follows.

Agents are drawn from a class P. Moreover, there is a set Act of atomic actions: time is

assumed to be discrete and actions indivisible in time. For each action a ∈ Act a transition

relation is defined over P, where

P a−→ P′

indicates that the agent P may perform a and subsequently become P′. The class of agents is

quotiented by bisimulation (a notion of process equivalence) to yield processes.

The product of the Abelian semigroup is used as follows. If P a−→ P′ and Q b−→ Q′, then

P× Q ab−→ P′ × Q′. That is, the system consisting of P and Q may perform a and b simultane-

ously and transform into the system consisting of P′ and Q′. Figure 2.4, adapted from [Cas01],

contrasts this synchronous product with its asynchronous equivalent. Idleness can be mod-

elled using a reserved action ‘1’ and further requires that (Act,×, 1) is an Abelian monoid.

Asynchronous Synchronous

AC

a

~~

b

A

a

��

C

b

��

AC

ab

��

BC

b

AD

a

~~

B D BD

BD

Figure 2.4: Asynchronous product versus synchronous product of automata

2.1. SYNCHRONY AND ASYNCHRONY 13

This is important because it allows SCCS to model asynchronous behaviour through stuttering.

A process is said to stutter if it may nondeterministically ‘do nothing’.

The idea of using a monoid of actions as a basis for a synchronous calculus was further

explored by Austry and Boudol in their MEIJE calculus [AB84, Bou85]. See [De 85] for a joint

presentation.

SCCS and MEIJE paved the way for a family of programming and specification languages

called synchronous languages.

2.1.2.1 Synchronous Languages

Synchronous languages combine synchronous concurrency (à la SCCS) and determinism. They

assume the synchronous hypothesis, an idealisation stipulating that, on some level of abstraction,

processes compute and communicate in zero time. It is therefore left to the implementation to

correctly approximate the synchronous assumptions [PBEB07].

According to Benveniste and Berry, systems under the synchronous hypothesis “compose

very well and turn out to be easier to describe and analyze than asynchronous ones” [BB91]. Further-

more, it facilitates deterministic concurrency. This is a desirable and often compulsory feature

in reactive systems [HP85, Hal93], which are often required to guarantee the same behaviour

for any input.

Another assumption in synchronous languages is the discretisation of time into instants.

Hence, as in SCCS, programs execute in successive atomic reactions.

In the following, we will succinctly review Esterel [BMR83], an imperative synchronous

programming language. Since its inception, it has been industrially adopted in avionics and

wireless communication hardware, and more generally in reactive embedded systems.

An Esterel program typically consists of several modules. Each module has a header and a

reactive body. The header declares the name of the module and its interface. The body consists of

concurrent threads that execute with respect to a global clock, whose ticks delineate successive

instants. During any instant, each thread executes independently, and either terminates or halts

to resume in the next instant. Communication across threads is achieved using signals: globally

visible events that are instantaneously broadcast.

14 CHAPTER 2. BACKGROUND

nothing no-op
pause hold until the next instant

p ; q sequential composition
p ‖ q parallel composition

loop p end infinite iteration
emit S emit signal S

present S then p else q end signal branching
suspend p when S pre-emption test

if v then p else q end conventional branching

Figure 2.5: Some Esterel statements

There are no global declarations of signals or variables, and therefore, modules exclusively

communicate using the signals declared in their headers. A single module called the root mod-

ule instantiates other modules, which in turn, can instantiate further modules using the run

command. Nested module declarations and recursive instantiation are not permitted. The run

statement is a form of inlining: instantiating a module instructs the compiler to replace the run

statement in the caller module by the reactive body of the instantiated module with the appropriate

instantiation of formal parameters [PBEB07]. Observe that Esterel does not support functions.

In every instant, executing reactive code amounts to evaluating the status and data value of

each signal in a deterministic way. This proceeds in two ways. First, at the start of each instant,

all signals are in an ‘undetermined’ state (except input signals) and become present only if an

emit statement is executed. Second, as soon as the emission of a signal is deemed impossible

by the control flow, it is set to absent. It is easy to see the possibility for the presence of a signal

to depend on itself. The program in Figure 2.6 illustrates this: X depends on Y being present

and vice versa.

Instantaneous cycles are identified via causality analysis. Intuitively, an event A causes an-

other event B if the occurrence or absence of B is sufficient to determine the occurrence or

absence of A [PBEB07]. Hence, causality defines an execution order within each reaction.

There are three types of causal dependencies: sequencing, signal communication, and access to

shared variables. Usually, non-causal program have no semantics and therefore, are rejected by

the compiler. This is enforced using a semantics based on constructive logic [TvD88]. For more

on the theory of causality, refer to [Ber99].

2.1. SYNCHRONY AND ASYNCHRONY 15

module Cycle :
output X, Y
present X then emit Y end
‖
present Y then emit X end

Figure 2.6: A cyclic Esterel program

Other important semantic concepts in Esterel include reincarnation and schizophrenia. Since

most language constructs in Esterel execute instantaneously, it is possible for a loop iteration

to end and the following one to begin within the same instant. This may cause a signal to be

emitted in one iteration and the loop to restart with a fresh copy in the next. This phenomenon

is known as reincarnation. If several copies of the same signal have different statuses in the

same instant, it is called schizophrenic. Reincarnation and schizophrenia are handled in the

semantics in order to preserve the synchronous nature of the language [PBEB07]. However,

alternative methodologies have been proposed [TdS04, SW01] to eliminate this phenomenon

altogether.

The family of synchronous languages also includes Lustre [HCRP91] and Signal [LLGL91].

See [BB91] for a survey circa 1991. More recent ones appear in [Hal98] and [BCE+03].

Finally, we note that similar ideas have independently appeared elsewhere in computer sci-

ence. For instance, Bulk Synchronous Parallel (BSP) [Val90] is a parallel programming model that

shares some of the basic ideas of synchronous languages. It prescribes independent sequential

execution of processes that are connected by a communication mechanism, and which syn-

chronise globally. BSP programs execute in a sequence of super-steps, each composed of three

phases:

1. Each process executes its local sequential code. It can request data from other (remote)

processes.

2. The environment (network) delivers the requested data.

3. A global synchronisation event occurs, therefore making the data available at the start of

the next super-step.

Languages implementing BSP include Bulk Synchronous Parallel ML (BSML) [LHF00, LGG+08]

and Minimally Synchronous Parallel ML [LGAD04].

16 CHAPTER 2. BACKGROUND

2.1.3 Relating Synchrony and Asynchrony

A focal point in theoretical computing is the study of correlations between models of compu-

tation. For example, in [NSW93], Nielsen, Sassone and Winskel establish formal relationships

between some well-known models of asynchronous concurrency, allowing to translate between

them.

Given the aforementioned synchronous/asynchronous dichotomy, an interesting question

concerning the correlation of the synchronous and asynchronous paradigms arises: can we

derive one from the other?

Milner was the first to establish that asynchronous computation can be modelled using a

synchronous calculus (SCCS) [Mil83], also showing how the asynchronous Calculus of Com-

municating Systems (CCS) [Mil80] can be derived from SCCS by allowing processes to stutter.

Later work showed similar results in varied contexts. For example, in [HB02] and [HM06],

the authors show that synchronous Mealy machines can model asynchronous behaviour by

introducing stuttering through sporadic activation and nondeterminism through additional

arbitrary inputs (also called oracles).

Mixing synchrony and asynchrony has also received considerable attention. The Glob-

ally Asynchronous Locally Synchronous paradigm [Cha84] has been proposed to employ syn-

chronous modules in an asynchronous environment. Several approaches were suggested to

map synchronous systems into this framework, for instance, [Ben01, PBC07]. Related ap-

proaches include Communicating Reactive Processes [BRS93], in which synchronous modules

communicate via CSP rendezvous and Multiclock Esterel [BS01], which substitutes local clocks

for a global one.

Deriving synchronous formalisms from asynchronous ones has not received as much at-

tention; perhaps due to a lack of practical applications to motivate it. It is known that a naive

synchronous representation of asynchronous processes can be achieved by limiting the num-

ber of simultaneous events to one. However, this is unsuitable if what is desired is not just a

correct encoding, but one that additionally has a low-latency. This is not easy; even recovering

synchronicity after it is removed from a specification is a non-trivial procedure [BCG99].

A first step in this direction was afforded by the specification language Reactive Mod-

2.2. GAME SEMANTICS 17

ules [AH99]. In addition to combining synchronous and asynchronous primitives, it provides a

technique, called round abstraction, allowing synchronous specifications to be constructed from

asynchronous ones. Round abstraction is a central notion in our work, and is introduced in

some detail in Chapter 4.

2.2 Game Semantics

Contrary to what may appear upon first encountering the term, Game Semantics is neither a

misnomer nor an oxymoron. To understand the ‘game’ metaphor and how it came to be used

for ‘semantics’, one has to delve into its history.

Immediate precursors of Game Semantics, dialogue games, have been known since Aristo-

tle [Ari28] and studied throughout history [Ham70], in a mostly informal fashion. For instance,

medieval literature describes so called obligationes, a sort of debate challenge involving two pro-

tagonists: a Respondens and an Opponens. Assuming the truth of a typically false statement, the

aim of the former is to give rational answers to questions from the Opponens, while the latter

tries to drive him into logical contradiction [Hod04]. In the late 1950s, dialogue games were

formalised by Lorenzen [Lor60, Lor61, LL78] and his student Lorenz [Lor68] and proposed as

a semantic model for constructive logic.

Lorenzen’s idea was not too different from medieval obligationes. He proposed to interpret

a logical statement as a two-person game between a Proponent and an Opponent. While the

Proponent defends the truth of the formula the Opponent aims to refute it. A proof of the

formula is then equivalent to the existence of a winning strategy for the Proponent, in the game-

theoretic sense. For a historical perspective on the inception of dialogue games as a model for

logic see [Lor01].

Another breakthrough came in 1976. While investigating how numbers arise from a certain

class of games, Conway [Con76] laid the foundation for a compositional treatment of games.

Indeed, he introduced the crucial notion of playing games in parallel. Building on his work,

Joyal [Joy77] formulated the first category of games and strategies by taking the sum in Conway

Games as the tensor product, which results in a compact closed structure.

In 1992, Blass [Bla92] produced the first game semantic model for Girard’s linear logic [Gir87].

18 CHAPTER 2. BACKGROUND

This was shortly followed by a paper by Abramsky and Jagadeesan [AJ92, AJ94] which over-

came some technical problems in Blass’s work and gave a fully complete model of the unit-

free multiplicative fragment of linear logic. While Blass [Bla92] had already alluded to the

idea, Abramsky and Jagadeesan’s work had the additional merit of drawing explicit paral-

lels between game semantic notions, used until then to model logic, and computational pro-

cesses [Hoa85, Mil80]. This analogy together with the full completeness result were significant,

as they foreshadowed the possibility of using Game Semantics to tackle the long-standing prob-

lem of full abstraction for PCF, which remained unsolved for over 15 years.

First formulated in the work of Milner [Mil75] and Plotkin [Plo77], the full abstraction prob-

lem can be roughly understood as finding a syntax free model for a programming language,

that is as precise as possible, or in Milner’s words not “over-generous”. This requires for any

two objects in the model to be the same precisely when their responding terms in the lan-

guage behave likewise. The problem was first formulated for the programming language PCF

in [Mil77, Plo77].

In 1993, the problem finally fell at the hands of three independent research teams: Abram-

sky, Jagadeesan and Malacaria [AJM00]; Hyland and Ong [HO00]; and Nickau [Nic94]. All

three fully abstract models used game models. This result marked the inception of mod-

ern Game Semantics and sparked interest in modelling programming language features using

games. Game models for recursive types [AM94], local state [AM97b], call-by-value [AM97a],

polymorphism [Hug97, AJ05], control [Lai97, Lai03], general references [AHM98, Lai07], pas-

sive types [AM99a], nondeterminism [HM99], exceptions [Lai01a], and concurrency [Lai01b,

Lai06, GM08, Mur10] have been introduced.

Game Semantics has also been used for model checking [AGMO04, DGL06, GM06, BG08,

GB09, BG09, BDGL10], access control analysis [AJ09] and information leakage [CKP09], among

other applications. It remains an active research area, as demonstrated by recent advances at

the foundational level, e.g. [DH01, HL06, Mel06, MM07, CM10].

2.2.1 Introduction to Game Semantics

We informally introduce the salient concepts of Game Semantics in the style of Hyland and

Ong [HO00]. In the following exposition, we assume we are working in a call-by-name frame-

2.2. GAME SEMANTICS 19

work. For further insight, the interested reader is encouraged to consult some of the many good

introductory papers in the literature, for example [Abr97a, Abr97b, Hyl97, McC97, AM99b,

Abr01, J0̈2, Ghi09a].

As the game metaphor suggests, Game Semantics models computation as a game between

two players: a Proponent (P) representing the system (or term) and an Opponent (O) repre-

senting its environment (or the context in which the term occurs).

Game Semantics is denotational in nature: it uses mathematical objects as a basis for se-

mantics. The objects in question here are strategies played on arenas. These model terms and

types respectively. Arenas are defined by a poset of atomic actions, called moves and used

to model computational steps. Moves can belong to either the Opponent or the Proponent

and can be either questions or answers. This yields the following taxonomy of moves (adapted

from [Abr97b]).

O question request output from P

O answer provide input to P

P question request input from O

P answer provide output to O

The partial order in arenas formalises the idea that some moves cannot occur unless enabled, or

justified, by moves occurring earlier. Only questions can enable further moves, which can be

questions or answers. Furthermore, Opponent moves can only enable Proponent moves, and

vice versa.

Strategies are sets of traces, called plays or positions, defined as finite sequences of moves.

They model the behaviour of a system by describing how it interacts with its environment, i.e.,

its a priori semantics in the terminology of Francez et al. [FHLR79]. Strategies must obey the

rules of the game, which depend on the programming language being modelled. For example,

for PCF [HO00], the Opponent always starts first and the players take turns playing. Moreover,

plays must satisfy the principles of polite conversation: a question is only asked if an earlier

question warrants it; if several questions are pending, the most recent one is answered first;

and no answer should be given to a question that was not asked.

In so called pointer games, plays are equipped with justification pointers such that each move

20 CHAPTER 2. BACKGROUND

occurrence must point to an earlier one that can enable it in the arena. For example, the follow-

ing plays, where q denotes a question and a an answer, are illegal.

qP

qO q′Ott

qO qPtt aOvv

qO qPtt aO

With the concepts introduced so far, we can already give interesting examples. The arena

nat corresponding to natural numbers has the shape depicted in Figure 2.7. Any play of this

type begins with the Opponent question q, to which the Proponent answers by producing a

natural number. For instance, the constant 5 has the following play.

nat

O q

P 5

This style for writing plays is common in Game Semantics, and should be read downwards.

Justification pointers are often dropped when they can be inferred.

Given arenas for base types, we can form product and function arenas in a systematic way.

The product arena A× B corresponds to the arenas operating sides by side. The function arena

allows B to ‘query’ A. This requires the O/P polarities of A moves to be reversed, and each

tree in B to be connected to its own copies of each tree in A.

As an example, consider the constant (5, 7), which has the following two plays.

q

0 1 ...2 3

Figure 2.7: The arena of natural numbers nat

2.2. GAME SEMANTICS 21

A B

Figure 2.8: The product arena of A and B

BA

Figure 2.9: The function arena of A and B. Note that B consists of a single tree whereas A has
two

nat × nat nat × nat

O q O q

P 5 P 7

O q O q

P 7 P 5

Observe that the evaluation of the pair has no inherent directionality.

Using the function arena, we can model functions. Addition for example has the following

typical play.

nat × nat ⇒ nat

O q

P q

O n

P q

O m

P n + m

22 CHAPTER 2. BACKGROUND

It starts by the Opponent prompting the addition term to start evaluating, at which point the

Proponent requests the first and the second arguments, successively, which are provided by

the Opponent. Finally, the Proponent returns the value corresponding to the addition of the

two arguments. Note that while the product of two nat arenas does not imply directionality,

our definition of the addition function forces a left to right evaluation of its arguments.

Higher-order functions can also be defined. For example, λ f . f (f (1)) has the following

typical play.

(nat ⇒ nat) ⇒ nat

O q

P q

O q

P q

O q

P 1

O n

P n

O m

P m

Observe that the two plays of nat ⇒ nat are interleaved in this example. At higher-order

types, this interleaving can cause ambiguity if justification pointers are not used. This brings

us back to importance of justification pointers. Consider the following situation, described

in [AM99b]. Let terms M, N be defined as, M = λ f . f (λx. f (λy.y)) and N = λ f . f (λx. f (λy.x))

and played on arena ((nat1 ⇒ nat2)⇒ nat3)⇒ nat4. While M has plays of the form,

((nat1 ⇒ nat2) ⇒ nat3) ⇒ nat4

O q

P q

00

O q

00

P q

;;

O q

00

P q

00

2.2. GAME SEMANTICS 23

the second term, N, has plays of the following shape.

((nat1 ⇒ nat2) ⇒ nat3) ⇒ nat4

O q

P q

00

O q

00

P q

;;

O q

00

P q

::

Discarding the pointer structure results in the identification of these two different lambda

terms.

In certain game models, justification pointers are dropped, either because situations akin

to the previous example do not arise, or when the justification structure is implicit and can be

recovered from the structure of the play [GM03].

One of the most important operations in game semantics is composition. It describes how

two systems interact, hence providing a way to build ‘larger’ systems from smaller ones. Given

two strategies σ, τ on arenas A ⇒ B and B ⇒ C respectively, we can compute the composite

strategy σ; τ on arena A⇒ C. Intuitively, this is achieved by synchronising on the moves of the

two B arenas (which have complementary O/P polarities), then hiding them. This has often

been described as ‘parallel composition followed by hiding’ in the sense of CSP. Figure 2.10

depicts the composition of the addition strategy with the strategy for the constant (5, 7).

The final notion we examine is that of copycat strategies. For each arena A, there exists a

strategy on A ⇒ A, where the Proponent replicates the moves issued by the Opponent in one

copy of A, in the other. At arena nat, for example, we get the following play.

nat ⇒ nat

O q

P q

O n

P n

24 CHAPTER 2. BACKGROUND

nat × nat nat × nat ⇒ nat

qOQ

qPQ

00

qOQ

5PA

88

5OA

WW

qPQ

DD

qOQ

7PA

88

7OA

XX

12PA

QQ

Figure 2.10: The addition of 5 and 7 produced by composition of the appropriate strategies.
The dotted lines depict synchronisation while only the bold moves remain after hiding.

Such strategies are called copycat, and represent identities for composition.

2.2.2 Concurrency in Game Semantics

The three seminal game semantic models of PCF were strictly alternating: Opponent and Pro-

ponent take turns playing. Hence, the first generation of subsequent game semantic models fo-

cused on sequential languages, for example, ML and Algol. Introducing concurrency to Game

Semantics was a natural next step.

In [AM99c], Abramsky and Melliès describe concurrent games, essentially a reformulation of

Game Semantics in the tradition of event structures. In this setting, games are defined as com-

plete lattices of plays and strategies as closure operators on them. Concurrent games were then

used to model multiplicative-additive linear logic. By contrast, Ghica and Murawski [GM08]

used an interleaved form of pointer games to model Idealized Concurrent Algol (ICA). Using

a similar approach, Laird gave a game semantics for Idealized CSP [Lai01b] and later to the

asynchronous π-calculus [Lai05b]. Finally, Melliès and Mimram combined the two approaches

(interleaved and non-interleaved) in their work on asynchronous games [MM07]. Melliès later

demonstrated how the simply typed lambda calculus can be modelled in this setting [Mel06].

2.2. GAME SEMANTICS 25

We will briefly discuss, by contrast with earlier models, how concurrency was introduced

in Ghica and Murawski’s game semantics of ICA.

ICA extends Idealized Algol [Rey81] with static fine-grained shared-variable concurrency.

Besides parallel composition, the syntax includes semaphores as a base type for which syn-

chronisation constructs are provided. Like [HO00], the game semantic model uses justified

plays—essentially sequences equipped with pointer structures. However, it abandons alterna-

tion in favour of interleaved plays that obey the following two rules.

• Fork: only a pending question (one that has yet to be answered) can enable further moves.

• Join: a question can only be answered once all questions enabled by it have been an-

swered.

Asynchrony is simulated using saturation under certain swappings, a common feature of

asynchronous models [Udd86, JJH90]. The salient idea is to close strategies under inessential

differences—caused by the asynchronous communication—in the order in which moves are

observed.

This is formalised using a preorder ., which we describe next. Let PA be the set of all

justified plays satisfying Fork and Join for arena A. We define a relation .0 on PA satisfying,

for all s, s′ ∈ PA, we have s′ .0 s whenever,

1. s′ = s0 · o · s1 · s2 and s = s0 · s1 · o · s2, or

2. s′ = s0 · s1 · p · s2 and s = s0 · p · s1 · s2,

where o is an Opponent move and p is a Proponent move and the justification pointers in s′

are ‘inherited’ from s. We then define the preorder . on PA as the least reflexive and transitive

relation containing .0.

Note that since s and s′ are legal by definition, the causality structure encoded by justifica-

tion pointers is sound in s′; in other words, a cause and effect cannot be swapped.

A strategy is called saturated if it is closed under the above permutations; that is, if it is

downward closed with respect to.. The identity strategy is obtained by saturating the strictly

26 CHAPTER 2. BACKGROUND

alternating copycat strategy. Arenas and saturated strategies are shown to form a Cartesian

closed category, and hence, they can be used to model the lambda calculus fragment of the

language in a canonical way. Finally, the imperative part of the language is modelled by given

morphisms in the category.

2.3 Hardware Compilation via Geometry of Synthesis

Synthesising digital circuits from behavioural specifications written in high-level programming

languages, known as hardware compilation, is an old idea. However, it has remained a princi-

pally academic endeavour for a long time. This can be partly attributed to its inefficacy: high-

level specifications can hardly aspire to be as efficient as low-level designs. One of the main rea-

sons for this is poor support for concurrency in general-purpose programming languages. This

so-called semantic gap [SSC01] focused efforts on extending conventional programming lan-

guages with low-level constructs leading to the emergence of languages that are closer to metal.

Examples include HandelC [Cel], HardwareC [KD90] and Transmogrifier C [Gal95]. These

typically extend programming languages (C in particular), or a subset thereof, with lower-

level constructs that allow the programmer to use explicit parallelism and introduce temporal

constraints.

The advent of reconfigurable hardware and programmable components—for example, Field-

Programmable Gate Arrays (FPGAs)—renewed practical interest in hardware compilation. As

integrated circuit transistor counts are ever increasing [PPE+97], weaker performance is be-

coming an acceptable trade-off for lower design costs.

In [Pag96], Page demonstrated that hardware compilation is achievable if performance is

sidestepped. Programs are directly translated to a netlist graph (i.e. boxes and wires), where

variables are mapped into clocked registers and expressions into combinational circuits. The

transformation also maps control structures in the programming language into specified con-

trol structures in hardware. As a result, compiling imperative programs into hardware can be

automated.

Nevertheless, since every expression in the program yields a combinational circuit and

every addition symbol results in an adder, the complexity of the output can rapidly become

2.3. HARDWARE COMPILATION VIA GEOMETRY OF SYNTHESIS 27

intractable. The solution, therefore, is to introduce an abstraction mechanism and to handle

sharing of circuitry. The common abstraction unit in hardware languages, the module, allows to

abstract some behaviour and provide it with an interface in such a way that it can be reused.

However, sharing these modules is not supported by the hardware languages as this burden is

relegated to the programmer.

Building on Page’s hardware compilation ideas, Wirth [Wir98] suggests the introduction

of subroutines by adding a mechanism for suspending and resuming circuitry and a stack

identifying suspended circuits. Each time a subroutine is called, the caller is stopped and only

resumed after the called circuit has terminated. Wirth then contends that,

“subroutines [. . .] introduce a significant degree of complexity into a circuit. It is in-

deed highly questionable whether it is worthwhile considering their implementation in hard-

ware.”

Naturally, if subroutines are viewed as an extension or an afterthought, the results may

be cumbersome. The Geometry of Synthesis (GoS) hardware compilation framework [Ghi07]

takes a more organic approach to the problem. It endows a higher-order imperative program-

ming language with a game-like semantics expressed in terms of circuits. This semantics can

subsequently be synthesised into digital circuits. Consequently, higher-order functions are

first-class citizens and their bookkeeping is handled through canonical structures borrowed

from category theory—in particular, closed monoidal categories. The issue of sharing of re-

sources is tackled by combining an elegant type system due to Reynolds [Rey78] with diagonal

morphisms, which Ghica re-brands as activation managers in the context of hardware compila-

tion [Ghi09b].

2.3.1 Introduction to GoS

With such notions as process, event and handshake communication, process calculi exhibit the

right level of abstraction to act as an interface for hardware compilation. Indeed, there is an im-

portant body of work revolving around this idea, for example, [Mar86, Mar87, NvRS88, vS88,

OBL98]. Under this light, Geometry of Synthesis (GoS) [Ghi07] can be viewed as a refinement

28 CHAPTER 2. BACKGROUND

of this early work by using Game Semantics, in lieu of process calculi, as an intermediary for

hardware compilation from programming languages to digital circuits.

The highly intensional nature of game semantics yields a natural correspondence between

its fundamental notions and those of digital circuits. Geometry of Synthesis identifies and

exploits this fact. If we consider strategies as circuits (or description thereof) and their arenas

as circuit interfaces, we get the following analogy.

• An Opponent/Proponent move is an input/output port.

• A question/answer is a request/acknowledgement port.

• A move occurrence is a signal on a port.

• A play is a waveform on an interface.

This idea underlies the formulation of a denotational semantics based on a class of hand-

shake circuits [BKR+91], which can subsequently be refined and synthesised into digital cir-

cuits. We begin with an overview of the programming language used in GoS.

2.3.2 Basic Syntactic Control of Interference

Syntactic Control of Interference (SCI) is a typing discipline invented by Reynolds to simplify

reasoning about imperative programs, by restricting the way functions interact with their ar-

guments [Rey78]. Its salient feature is ruling out the phenomenon of covert interference: when

distinct terms can affect each other’s outcome in a way that is not syntactically evident. How-

ever, interest in SCI went beyond its original stated reason, as it raised several challenging tech-

nical issues regarding its type system and semantic model [YH98, OPTT99, Lai05a, McC07].

The programming language resulting from the application of SCI typing to Idealized Al-

gol [Rey81] has been dubbed Basic SCI (BSCI) by O’Hearn [O’H03]. It forbids aliasing; so, no

distinct identifiers can refer to the same memory location. This is achieved through the use of

a multiplicative application rule that forbids functions from sharing identifiers with their argu-

ments.

Reddy formulated the first semantic model for BSCI using ‘object spaces’ [Red96]. His

model was later shown to be fully abstract by McCusker [McC02].

2.3. HARDWARE COMPILATION VIA GEOMETRY OF SYNTHESIS 29

The semantic properties of BSCI make it an interesting programming language for particu-

lar applications. On the one hand, BSCI is an expressive higher-order imperative (‘Algol-like’)

programming language and its syntactic restrictions rarely impinge on implementing useful

algorithms. Moreover, any term of BSCI (with finite data types) can be given a finite-state

model [GMO06]. This makes it possible to automatically verify BSCI programs using conven-

tional finite-state model checking techniques [GM06]. For the same reason, it is the language

of choice for hardware compilation through Geometry of Synthesis.

The ground types of BSCI are commands, expressions and variables (memory cells), given

by the grammar,

σ ::= com | exp | var

In GoS, expressions and variables are assumed to be boolean in nature. However, this is not

assumed in our presentation. BSCI allows product and function types.

θ ::= σ | θ × θ′ | θ(θ′

Typing judgements for terms have the form,

x1 : A1, . . . , xn : An ` M : A,

where xi are distinct identifiers, Ai and A are types and M is a term. We use Γ, ∆, . . . to range

over contexts, i.e., the (unordered) list of identifier type assignments above. Well-typed terms

are captured by the following rules.

Axiomx : A ` x : A

Γ, x : A ` M : B
AbstractionΓ ` λx : A.M : A(B

∆ ` M : A(B Γ ` N : A Application
Γ, ∆ ` MN : B

Γ ` M : A Γ ` N : B Product
Γ ` 〈M, N〉 : A× B

Γ ` M : B Weakening
Γ, x : A ` M : B

Observe that the application rule above requires Γ and ∆ to be disjoint.

30 CHAPTER 2. BACKGROUND

The imperative part of BSCI is given by the following constants.

skip : com no-op

n : exp natural number constants

� : exp× exp(exp arithmetic and arithmetic-logic operators

; : com× A(A sequential composition, A ∈ {com, nat, var}

|| : com(com(com parallel command composition

:= : var× exp(com assignment

! : var(exp dereferencing

if : exp× A× A(A selection, A ∈ {com, exp, var}

while : exp× com(com iteration

newvar : (var(A)(A local variable, A ∈ {com, exp}.

While typing rules allow sharing of identifiers in pairs of terms, they disallow sharing of

identifiers between a function and its arguments. It follows that programs using nested func-

tion application (· · · f (· · · f (· · ·) · · ·) · · ·)—in particular, general recursion—do not type. Se-

quential operators such as arithmetic, composition, and assignment can share arguments and

conventional imperative programs, including iterative ones, type correctly. Non-sequential

operators (||) have a type which prevents sharing of identifiers, and hence race conditions,

through the type system; note that this also makes it impossible to implement shared-memory

concurrency.

As a final note on expressiveness, SCI can be generalised to a richer type system called

Syntactic Control of Concurrency (SCC), which allows shared-memory concurrency [GMO06].

Moreover, it was recently shown that almost any recursion-free Idealized Concurrent Algol

programs [GM08], barring pathological examples, can be automatically ‘serialised’ into BSCI

via SCC [GS11].

The operational semantics of BSCI is the standard one for an Algol-like language, i.e., call-

by-name beta reduction with local-state variable manipulation. A full description may be

found in [Ghi07, McC02, McC10].

2.3. HARDWARE COMPILATION VIA GEOMETRY OF SYNTHESIS 31

2.3.3 A Category of Handshake Circuits

In this section and the next one, we review Ghica’s denotational semantics for BSCI [Ghi07],

expressed in terms of handshake circuits. As previously indicated, the adopted abstraction stip-

ulates that circuits are defined by an interface and a behaviour. The interface consists of ports,

each of which has a pair of polarities: input (i) or output (o), and request (r) or acknowledge-

ment (a).

The behaviour of a circuit is given in terms of outputs it produces in reaction to inputs from

its environment. Input ports can be connected to output ports by extending a wire between

them. As a result, a signal is conducted after a nonzero delay. Note that the lengths of wires are

inconsequential at this level of abstraction.

We will draw these circuits in the same direction as the morphisms they represent. The

input/output polarity of each port is further stressed using arrows. For example the circuit

corresponding to f : A→ B is

f
A(or)

A(ir)

A(oa)

A(ia)

B(ir)

B(ia)
B(or)

B(oa)

The semantic model is based on a Cartesian category (an affine category with product) of

simple handshake circuits, which are handshake circuits with constrained behaviour. We begin

by outlining the structure of the more general category HC of handshake circuits.

An object A is a set of ports LA associated with a polarity function λA : LA → {i, o} × {r, a}.

We write λio
A and λra

A for the composition of λA with the first and second projections respectively.

Morphisms f : A→ B are circuits with the following interface.

LA→B = LA + LB

λA→B = [〈λoi
A, λra

A 〉, λB]

Note that the input/output polarity of the A ports is reversed while their request/acknowledgement

polarity remains unchanged.

32 CHAPTER 2. BACKGROUND

Given circuits f : A → B and g : B → C, their composition is the circuit f ; g : A → C

formed by connecting f and g as follows.

f
A(or)

A(ir)

A(oa)

A(ia)

B(ir)

B(ia)
B(or)

B(oa)
g

B(or)

B(ir)

B(oa)

B(ia)

C(ir)

C(ia)
C(or)

C(oa)

In the wake of composition, the labels in the B interface become internal. This is reflected in

the type of the resulting circuit.

The identity circuit id : A → A directly connects inputs and outputs with the same re-

quest/acknowledgement polarity.

id

A(or)

A(ir)

A(oa)

A(ia)

A(ir)

A(ia)
A(or)

A(oa)

Handshake circuits form a closed monoidal category, whose structure we outline next. The

tensor product is defined as the disjoint union on objects,

LA⊗B = LA + LB

λA⊗B = [λA, λB].

On morphisms, f ⊗ g : A⊗ C → B⊗ D has the following form.

f
A(or)

A(ir)

A(oa)

A(ia)

B(ir)

B(ia)
B(or)

B(oa)

g
B(or)

B(ir)

B(oa)

B(ia)

C(ir)

C(ia)
C(or)

C(oa)

2.3. HARDWARE COMPILATION VIA GEOMETRY OF SYNTHESIS 33

The unit of the tensor, denoted by I, is the empty set of ports.

Given a pair of objects A and B there is an object A⇒ B defining the interface of a morphism

f : A → B as described above. The evaluation circuit evalA,B : A1 ⊗ (A2 ⇒ B1) → B2 is

isomorphic to idA ⊗ idB.

Proposition 2.1 ([Ghi07]). HC is a closed symmetric monoidal category.

In order to allow for circuit reuse, a notion of Cartesian product is necessary. Since, the

category HC is too degenerate to admit one, the behaviour of its circuits needs to be restricted.

These well-behaved circuits, dubbed simple-handshake, satisfy the following conditions.

1. Alternation: inputs and outputs alternate.

2. Well-bracketedness: requests and acknowledgements must be well-bracketed in the game

semantic sense [HO00].

3. Initialisation: the outermost request is an initial port—one that is drawn from a desig-

nated subset of input requests I satisfying, IA⊗B = IA×B = IA + IB and IA⇒B = IB.

4. Seriality: throughout the lifetime of a circuit, there must not be more than a single action

on a request port without an intervening action on its corresponding acknowledgement

port.

Proposition 2.2 ([Ghi07]). The category of simple-handshake circuits SHC is a Cartesian subcategory

of HC.

In the following section, we describe a model of BSCI within the category SHC.

2.3.4 A Game-Like Semantics for BSCI

BSCI types are modelled as objects in the category SHC. The base types are interpreted as

follows.

JcomK = {R 7→ (i, r), D 7→ (o, a)}

JexpK = {Q 7→ (i, r), T 7→ (o, a), F 7→ (o, a)}

JvarK = {WT 7→ (i, r), WF 7→ (i, r), Q 7→ (i, r), D 7→ (o, a), T 7→ (o, a), F 7→ (o, a)}

34 CHAPTER 2. BACKGROUND

where R stands for ‘run’, D for ‘done’ and W for ‘write’; and IJcomK = {R}, IJexpK = {Q},

IJvarK = {WT, WF, Q}. For product and function types we have,

Jθ × θ′K = JθK× Jθ′K

Jθ ⇒ θ′K = JθK⇒ Jθ′K.

Terms x1 : A1, . . . , xn : An ` M : A will be interpreted as a map,

⊗
1≤i≤n

JAiKs
Jx1 :A1,...,xn :An`M:AK−−−−−−−−−−−−→ JAKs.

The imperative constants of the language are interpreted using morphisms in SHC. We will

review these in succession.

Jskip : comK J1 : expK J0 : expK

R
D

Q

F
T

Q
T
F

The basic constants are interpreted by immediately responding to an input request on a corre-

sponding output acknowledgement port.

J; : (com1 × com2)→ com3K

R1
D1

R2

R3
D3

D2

Upon receiving an initial request (R3), the sequential composition circuit sends a run request

to its first argument (R1), then, waits until it terminates (D1) to run its second argument (R2).

Finally, the circuit acknowledges completion (D3) when its second argument terminates (D2).

2.3. HARDWARE COMPILATION VIA GEOMETRY OF SYNTHESIS 35

J:= : (var1 × exp2)→ com3K

Q2
T2
F2

WT1
WF1
D1

R3
D3

Q1
T1
F1

The initial request (R3) on the assignment circuit causes the expression to be evaluated (Q2).

Then, depending on the value received (T2/F2), 1 or 0 are written to the first argument (WT1/WF1).

The acknowledgement received from the last action (D1) leads the circuit to acknowledge com-

pletion (D3).

J! : var1 → exp2K

WT1
WF1
D1

Q2
T2

Q1
T1
F1

F2

Dereferencing is an even simpler circuit which connects requests and acknowledgements be-

tween its argument and its return expression.

While the circuits so far only required simple wiring, we need to introduce the following

auxiliary circuits for more complex control structures.

+ C
OP

T1
F1

T2
F2

T F

The JOIN circuit (denoted by +) relays any input it receives on either of its two input ports as an

output. By contrast, the C-circuit only produces output after receiving signals on both its input

ports. Finally, the OP circuit is a stateful, self-resetting circuit that performs logical operations.

Note that besides the JOIN circuit, these circuits are not simple handshake.

36 CHAPTER 2. BACKGROUND

J‖ : com1 ⇒ com2 → com3K

R1
D1

R2

R3
D3

D2

C

Parallel composition does not wait for the termination of one of its arguments to execute the

other. It terminates when both its arguments do. Naturally, sequential composition can be

viewed as straightjacketed version of this circuit. Note that parallel composition is not a simple-

handshake circuit because it violates alternation, well-bracketedness and seriality. We further

remark that race conditions are prevented by the type system which disallows the sharing of

identifiers between concurrent subterms.

Jif : (exp1 × com2 × com3)→ com4K

Q1
T1
F1

R2
D2

R3

R4

D4

D3
+

If the guard evaluates to true (T1), the branching circuit initiates its second argument. Oth-

erwise, the third argument is executed. The circuit acknowledges completion whenever the

triggered command terminates. Note that well-bracketedness and seriality prevent D2 from

acknowledging R3 and D3 from responding to R2.

Jwhile : (exp1 × com2)→ com3K

Q1
T1
F1

R2
D2

R3
D3

+

2.3. HARDWARE COMPILATION VIA GEOMETRY OF SYNTHESIS 37

As long as the guard evaluates to true (T1) in the iteration circuit, the body of the loop is

executed (R2). The circuit terminates (D3) when the guard becomes false (F1).

J� : (exp1 × exp2)→ exp3K

Q1
T1
F1

Q2
T2

Q3
T3
F3

F2

+

OP

For logical operators, an initial request (Q3) results in the evaluation of the first and second

arguments in succession. After that, the result is computed using the OP circuit and returned.

Jnewvar : (var1 ⇒ com2)→ com3K

R2
D2

WT1
WF1
D1

R3
D3

Q1

+

CELL
T1
F1

The CELL circuit is a binary memory location. It has type var and therefore behaves accord-

ingly. The second argument is necessary to allow the circuit to be self-resetting. This property,

which also holds for all circuits above ensures that circuits behave correctly with the diagonal

morphism.

The lambda calculus part of the language is interpreted in the standard way using the struc-

ture of the category SHC.

Jx : θ ` x : θK = idJθK

JΓ, x : θ ` x : θK = !⊗ idJθK

JΓ ` λx.M : θ′ → θK = Λ(JΓ, x : θ′ ` M : θK)

38 CHAPTER 2. BACKGROUND

JΓ, ∆ ` FM : θK = (J∆ ` M : θ′K⊗ JΓ ` F : θ′ → θK); eval

JΓ ` 〈M, N〉 : θ × θ′K = δJΓK; (JΓ ` M : θK⊗ JΓ ` N : θ′K);

A soundness theorem is given, which is also a correctness result for the compilation tech-

nique.

Theorem 2.3 ([Ghi07]). For any closed BSCI term M : com such that M ⇓, it follows that JMK is

equivalent to JskipK.

2.4 The Problem in Essence

The purpose of this chapter has been to gather prerequisites for later chapters and situate this

thesis in the context of its influences. It also allows us to give a more elaborated description of

the problem at hand.

The game semantic models found in the literature, like their process calculus forerunners,

are asynchronous: moves cannot be observed simultaneously. For example, the identity in Game

Semantics is the copycat strategy, where one player mimics the actions of the other. However,

this strategy proceeds in steps: one player issues a move then the other repeats it. Hence, the

copycat strategy fits within an asynchronous model of communication commonly found in

hardware where connectors have an arbitrary delay. By contrast, connectors in clocked syn-

chronous platforms conduct input to output within the same clock cycle. In abstract terms, this

represents a synchronous wire that instantly copies any input it receives on one side to the other.

Such synchronous identities have previously appeared in synchronous models, for exam-

ple, in the interaction category SProc [AGN96]. Hence, reconciling the asynchronous nature

of the copycat strategy with synchronous behaviour is achievable. Nevertheless, doing so fur-

ther raises challenges in composition as phenomena akin to instant feedback, causal loops and

schizophrenia appear.

In practical terms, Geometry of Synthesis [Ghi07] allows asynchronous games to be directly

compiled into asynchronous circuits [GS10]. This is characterised by the restriction that wires

2.4. THE PROBLEM IN ESSENCE 39

conduct signals after a bounded nonzero delay. However, given that synchronous platforms

(e.g. FPGAs) are now pervasive, it is also desirable to be able to compile into synchronous

clocked circuits. The discrepancy between the asynchronous input and synchronous output of

the compiler is resolved in an ad hoc fashion. The compiler introduces additional delays (in the

form of flip-flops), which negatively impacts the efficiency of the resulting circuitry.

An optimisation can be subsequently applied to produce more efficient circuits with lower

latency. Initially, we developed an algorithm based on round abstraction [AH99]—especially in

its formulation over automata [AHR98]—to fulfil this task. It operates on BSCI strategies con-

structs represented as transition systems. In essence, the idea is to group as many transitions

as legally possible onto a single one. The algorithm forbids the aggregation of transitions that

have the same label; as this corresponds, in the circuitry, to receiving the same signal several

times on the same port, within the same clock cycle. The algorithm improves the efficiency of

the resulting circuitry, since widely used circuits in the hardware compiler, such as the identity,

no longer introduce any delays [Ghi09b].

One of the main motivations of our work stems from this dichotomy between the input

and output of the GoS hardware compiler: respectively, asynchronous games and synchronous

digital circuits. Optimisation post compilation, as described above, does not guarantee cor-

rectness. In fact, it may produce erroneous circuits. For example, contrary to initial intuitions

suggesting that simultaneous read and write accesses should be allowed, we see in Chapter 4

that such behaviour may lead to race conditions.

Ultimately, we aim to develop a game semantics that appropriately captures the synchronous

concurrency encountered at the level of hardware. This will not only subsume the aforemen-

tioned optimisation, but also result in provably correct circuits that compose well.

The present thesis is a first step towards that goal. It lays the foundations for a new re-

search programme focusing on round abstraction as a technique relating asynchronous and

synchronous frameworks compositionally. We are especially interested in synchronous and

asynchronous models that have a game-like structure. This leads us to study round abstraction

on non-causal processes, then on process augmented with justification pointers, and finally,

on interleaved asynchronous processes. We also explore how synchronous processes can be

extended with global clocks and how the notion of determinism is affected by moving from

40 CHAPTER 2. BACKGROUND

sequential to synchronous traces.

2.4.1 Methodology

We aim at reusing existing game semantic models by applying the technique of round abstrac-

tion [AH99] to them. This first requires defining round abstraction within a compositional

setting and establishing its basic properties, a focal point in this thesis. By keeping our study

sufficiently general, our results are not limited to this application, and should transpose with-

out difficulty to other low-level concurrent models.

In the course of this thesis, we define several categories. We view the construction of each

category as a sanity check. Each studied phenomenon—for example, causality, global clocks

and determinism—requires definitions that usually stem from corresponding physical pro-

cesses. We construct categories to check that the definitions are sensible and capture the correct

intuition.

CHAPTER 3

A TRACE MODEL OF PROCESSES∗

We introduce the trace model that will underlie our study of round abstraction. Since we focus

on compositionality, it is formulated in the style of game models for concurrency [GMO06,

GM08]. We introduce the ability to describe synchronous behaviour by updating the classical

notion of trace as a sequence [Hoa85] to allow for more than a single event to be observed

at the same time. By analogy, we have the following correspondence between the concepts

introduced in this chapter and those from Game Semantics.

signature arena

trace position / play

process strategy

label move

event move occurrence

In Section 3.1, we introduce locally synchronous traces as a means to describe synchronous

behaviours. We then lift these to synchronous processes and find that they form a category.

Later, in Section 3.2, we detail the categorical structure of the model.

3.1 Traces and Processes

We construct a low-level model of concurrency where events are atomic: not implicitly buffered

or tagged. As a result, events are consumed as they are produced. Processes describe system

behaviour over time. Each process has an interface, which we call its signature, and its be-

haviour is described by a set of traces of input and output events over the signature. Each trace
∗Extended and revised version of [GM10, Sec. 2]

41

42 CHAPTER 3. A TRACE MODEL OF PROCESSES

corresponds to a possible behaviour record or history. This vision accords with what Francez

et al. [FHLR79] call a priori semantics: the behaviour of a process is given by the set of all its

possible behaviours when placed in any environment.

3.1.1 Signatures

Definition 3.1 (Signature). A signature A is a finite set equipped with a labelling function. Formally,

it is a pair 〈LA, πA〉 where,

• LA is a finite set of labels.

• πA : LA → {i, o} maps each label to an input/output polarity.

Signatures are akin to game semantic arenas—more accurately, pre-arenas [Wal04]. We call

the elements of LA, depending on context, labels or ports. The input and output polarities are not

absolute: they refer to how a port is perceived by the process. We will see that, in composition,

the same port will be an input to one process and an output to another.

We write π∗ for a labelling function that is like π, but has the input/output polarities re-

versed; similarly for arena A∗. Note that this operation is an involution; that is, (π∗)∗ = π.

We introduce two composite signatures: a tensor signature (⊗) and an arrow signature (⇒).

Intuitively, the former amounts to grouping two signatures together, while the latter addition-

ally reverses the polarities of the left operand. They are defined as follows.

LA⊗B = LA + LB

πA⊗B = [πA, πB]

LA⇒B = LA + LB

πA⇒B = [π∗A, πB]

Note the similarity of these definitions to those of the product and exponential arenas in Game

Semantics [HO00, AJM00]. Furthermore, note that polarity may be ignored in this chapter. The

proofs and definitions, tensor and arrow signatures notwithstanding, remain the same. This is

not the case for the refined trace model in Chapter 5.

3.1. TRACES AND PROCESSES 43

3.1.2 Traces

We update the classical notion of trace—typically given as a string, sequence or totally-ordered

set. To allow for more than a single event to be observed simultaneously, we instead use a

preordered set to describe the temporal position of each event. Additionally, we disentangle a

common ambiguity between a label and its occurrence in a trace. For example, such ambiguity

can be found in Mazurkiewicz traces [Maz95] and Game Semantics [GM08], where a may cor-

respond to either the event a or the sequence consisting of the single event a. We instead use a

carrier set together with a labelling function. We begin with the general notion of pre-traces.

Definition 3.2 (Locally synchronous pre-trace). A locally synchronous pre-trace s over a sig-

nature A is a triple 〈Es,�s, λs〉 where Es is a finite set of events, �s is a total preorder on Es and

λs : Es → LA is a function mapping events to labels in A.

The total preorder signifies temporal precedence; for an element e ∈ Es, if λs(e) = a ∈ LA

we say that e is an occurrence of a, or an a-event. We denote by ∆(A) the set of pre-traces over A.

It is convenient to define the following notion.

Definition 3.3 (Simultaneity). Given a pre-trace 〈E,�, λ〉 over signature A, we say that two events

e1, e2 ∈ E are simultaneous, written e1 ≈ e2 if e1 � e2 and e2 � e1.

In each pre-trace, the total preorder � induces a total order on the equivalence classes of

the associated equivalence relation ≈. We interpret each equivalence class as a collection of

‘simultaneous’ events.

Example 3.4. For illustration, we will often use a simplified notation that reflects the intuition

of Remark 3.8. So, the pre-trace,

〈{e1, e2, e3, e4}, tr({(e1, e2), (e2, e3), (e3, e4), (e4, e3)}), λ〉

over A where LA = {a, b, c}, tr denotes transitive closure and λ = {e1 7→ a, e2 7→ b, e3 7→

a, e4 7→ c} is simply denoted by a.b.〈a, c〉. The pre-trace consists of an a-event, followed by a

b-event, followed by an a-event and a c-event at the same time.

We will work with pre-traces that respect the following restriction.

44 CHAPTER 3. A TRACE MODEL OF PROCESSES

Definition 3.5 (Singularity). The events of a pre-trace 〈E,�, λ〉 over signature A are singular if for

any two events e1, e2 ∈ E, if e1 ≈ e2 and λ(e1) = λ(e2), then e1 = e2.

A pre-trace has singular events if it does not have any distinct simultaneous occurrences

of the same label (or, intuitively, if it represents a sequence of sets according to the notation of

Example 3.4). This restriction is not inherent to synchronous concurrency but, is essential for

modelling low-level behaviour where events are atomic, i.e., not implicitly buffered or tagged.

By definition, we rule out phenomena akin to schizophrenia in Esterel [BG88, SW01]. We call a

pre-trace satisfying singularity, a trace.

Definition 3.6 (Locally synchronous trace). A locally synchronous trace is a pre-trace with sin-

gular events.

We denote by Θ(A) the set of traces over A. Traces are equivalent if there is a bijection

between their carrier sets acting homomorphically on event labelling and temporal ordering.

Definition 3.7 (Trace equivalence). Two pre-traces are considered equivalent, written s ∼= t, if they

only differ in the choice of their carrier sets. Formally, pre-traces s = 〈Es,�s, λs〉 and t = 〈Et,�t, λt〉

are equivalent if there exists a bijection φ : Es → Et satisfying (∀e, e′ ∈ Es)(e �s e′ ⇔ φ(e) �t φ(e′))

and λs = λt ◦ φ.

In practice, since the choice of carrier sets is irrelevant, we will work with the quotient sets

∆/ ∼= and Θ/ ∼=, only distinguishing pre-traces and traces up to ∼=-equivalence. In the sequel,

for traces s and t, we will write s = t to mean that they belong to the same equivalence class.

Remark 3.8. The definition of pre-traces may look, at first, unnecessarily low-level and convo-

luted. A more direct characterisation is to see a pre-trace as a sequence of nonempty multisets.

However, while this alternative view is simpler and closer to intuition, it makes subsequent

definitions more complex. Our definition has the additional advantage of offering a straight-

forward way to compare pre-traces for synchrony: a pre-trace s is more synchronous than t if,

roughly, �t ⊆ �s. This will turn out to be important as we will see in Chapter 4.

Our conception of synchrony is a minimalistic one; time is discretised and events can be

simultaneous, which is the salient feature of a synchronous process [BG88]. However, our

notion of trace does not rely on a global clock. Instead, we assume that each system has its own

3.1. TRACES AND PROCESSES 45

internal and abstract clock, relative to which simultaneity is defined; and that these clocks can

compose. The notion of synchrony we have is a local one [Cha84].

In Chapter 6, we will see that the local synchrony assumption is sufficiently expressive. We

also see that our setting can be lifted, in a principled way, to a globally synchronous one.

We define the concatenation of two traces at the level of rounds; that is, all the events of the

second trace come after the events of the first one.

Definition 3.9 (Trace concatenation). The concatenation of two traces s = 〈Es,�s, λs〉, t = 〈Et,�t

, λt〉, denoted by s · t, is the trace defined by the triple 〈Es + Et,�s +�t + (Es × Et), [λs, λt]〉.

Trace fusion is like concatenation but the final round of the first trace and the initial round of

the second trace are taken to be simultaneous. Let the last round of a trace s be defined in the

obvious way, last(s) = {e ∈ Es | (∀e′ ∈ Es)(e′ �s e)}. The first round is defined in an analogous

way.

Definition 3.10 (Trace fusion). The fusion of two traces s, t, denoted by s ∗ t, is the trace defined by

the quadruple 〈Es + Et,�′, [λs, λt]〉, where �′ = �s +�t + Es × Et + first(t)× last(s).

3.1.3 Processes

Using the definitions of traces, we can now introduce processes. We define a prefix preorder 4

on Θ(A) as the least reflexive and transitive relation containing ∼= and satisfying for traces s

and t, s 4 s · t. A set S is said to be downward closed with respect to an order, say 4, if y 4 x

and x ∈ S implies y ∈ S.

Definition 3.11 (Process). A process σ over signature A, σ : A, is a nonempty and 4-downward

closed set of traces.

Processes that are 4-closed are said to be prefix-closed. Given an arbitrary set of traces τ, let

pc(τ) be the smallest process that contains τ.

For any signatures A, B and C we define the set of interaction traces, written int(A, B, C),

as Θ((A ⇒ B) ⇒ C). Given another signature D, let int(A, B, C, D) be the set Θ((A ⇒ B) ⇒

C)⇒ D). Let s � A be the trace obtained from s by deleting all events with labels not belonging

to LA.

46 CHAPTER 3. A TRACE MODEL OF PROCESSES

Composition of processes is defined similarly to game semantic composition. It can be

understood as parallel composition followed by hiding, in the process calculi sense.

Definition 3.12 (Interaction). Let σ : A → B and τ : B → C be two processes. Their interaction is

σ τ = {u ∈ int(A, B, C) | u � A + B ∈ σ and u � B + C ∈ τ}.

Definition 3.13 (Composition). Let σ : A → B and τ : B → C be two processes. Their composition

is σ; τ : A→ C =
{

u � A + C | u ∈ σ τ
}

.

The result below indicates that the formalism so far makes sense, allowing us to model the

function space and function application.

Theorem 3.14. Processes form a closed symmetric monoidal category called SynProc.

3.2 Categorical Structure

This section presents the details of the categorical structure of our trace model, and may be

skipped without loss of continuity.

The category SynProc of processes has

• signatures A, B, C . . . as objects,

• processes σ, τ, υ . . . as morphisms,

• a composition operation on pairs of processes,

σ : A→ B τ : B→ C
σ; τ : A→ C

• for any object A, an identity morphism idA : A→ A defined below.

The identity morphism is an instantaneous version of the copycat strategy in Game Seman-

tics [GM08].

Definition 3.15 (Identity morphism). The identity morphism for object A, denoted by idA, is the

process consisting of traces u over A⇒ A satisfying, for all events e in Eu, there exists an event e′ 6= e,

such that e ≈u e′ and [λu(e) = inl(a) if and only if λu(e′) = inr(a)] and [λu(e) = inr(a) if and only

if λu(e′) = inl(a)], where a ∈ LA.

3.2. CATEGORICAL STRUCTURE 47

We will need the following definitions.

Definition 3.16 (Trace injection). Injection on traces is a function in : Θ(A)→ Θ(A + B), such that

for every t = 〈E,�, λ〉 in Θ(A)

in(t) = 〈E,�, λ′〉

where λ′ = lin ◦ λ and lin is the injection on labels lin : LA → LA + LB.

In this thesis, we sometimes abuse notation by omitting label injections when no confusion

may arise.

Definition 3.17 (Trace projection). Projection on traces is a function out : Θ(A + B)→ Θ(A) such

that for every t = 〈E,�, λ〉 in Θ(A + B)

out(t) = 〈E′,�′, λ′〉

where

• E′ = {e ∈ E | λ(e) ∈ lin(LA)},

• �′= �∩ (E′ × E′),

• λ′ = lout ◦ λ where lout is the projection on labels lout : LA + LB ⇀ LA.

Projection on labels is a partial function since it is undefined for labels in LB. We alterna-

tively denote trace projection using �. For example, we may write the projection above as t � A.

If u is a trace over B + C, we may write u �BC to emphasise that the projection deletes C-events

and keeps B-events. We denote by σ � A the projection over A applied pointwise on a process

σ.

We begin by showing that SynProc is a category. The next two lemmas demonstrate that

singularity is preserved by the basic operations on traces.

Lemma 3.18. Injection on traces preserves singularity.

Proof. Let s = 〈E,�, λ〉 be a trace over A + B. Let in(s) = 〈E,�, lin ◦ λ〉, where lin : LA →

LA + LB, be an injection. If e, e′ ∈ E and e ≈ e′ and (lin ◦ λ)(e) = (lin ◦ λ)(e′), then λ(e) = λ(e′)

because lin is injective. It follows that e = e′ because s is a trace. �

48 CHAPTER 3. A TRACE MODEL OF PROCESSES

Lemma 3.19. Projection preserves the temporal order, i.e. if s is a trace over A + B and e, e′ ∈ Es such

that λs(e), λs(e′) ∈ lin(LA) and e �s e′, then e �s�A e′.

Proof. This follows from the definition of projection as, �s�A = �s ∩ (E′ × E′) where E′ = {e ∈

Es | λs(e) ∈ lin(LA)}. �

Lemma 3.20. Projection on traces preserves singularity.

Proof. Let s be a trace over A + B. Let s � A = 〈E0 = {e ∈ Es | λs(e) ∈ lin(LA)},�0 =

�s ∩ (E0 × E0), lout ◦ λs〉, where lout : LA + LB ⇀ LA, be the projection of s over A. Let us

denote by ≈0 the simultaneity relation of the projection; that is, ≈0 = �0 ∩ �−1
0 . If e, e′ ∈ E0

and e ≈0 e′ and (lout ◦ λs)(e) = (lout ◦ λs)(e′), then λs(e) = λs(e′) because lout is a partial

injection and is defined on λs(e), λs(e′). Additionally, we have e ≈s e′ since projection preserves

the temporal order by Lemma 3.19. Finally, we conclude that e = e′ because s is a trace. �

In the following lemmas, we show that composition is well defined.

Lemma 3.21. Composition preserves singularity.

Proof. Let σ : A → B and τ : B → C be processes. Following Lemma 3.20, it is sufficient to

show that interaction preserves singularity. Let u ∈ σ τ. Suppose e, e′ ∈ Eu and e ≈u e′ and

λu(e) = λu(e′). We have the following cases.

• If λu(e), λu(e′) ∈ LA, then e ≈u�A+B e′ (because projection preserves the temporal order

by Lemma 3.19) and λu�A+B(e) = λu�A+B(e′). Since u � A + B ∈ σ and σ is a process, we

deduce that e = e′.

• If λu(e), λu(e′) ∈ LC, then e ≈u�B+C e′ (because projection preserves the temporal order

by Lemma 3.19) and λu�B+C(e) = λu�B+C(e′). Since u � B + C ∈ τ and τ is a process, we

deduce that e = e′.

• If λu(e), λu(e′) ∈ LB, we use either previous argument to deduce that e = e′. �

We will need the following lemma in the sequel.

3.2. CATEGORICAL STRUCTURE 49

Lemma 3.22. Projection distributes over concatenation. That is, for any trace u = s · t ∈ Θ(A + B),

u � A = (s � A) · (t � A).

Proof. This follows from the definitions of trace concatenation (Definition 3.9) and trace projec-

tion (Definition 3.17). �

The next lemma shows that composition preserves the basic property of a process.

Lemma 3.23. Composition preserves prefix-closure.

Proof. Let σ : A → B and τ : B → C be processes. We begin by showing that σ τ is prefix-

closed. Take u ·u′ ∈ σ τ. By Definition 3.12, this entails u ·u′ � A+ B ∈ σ and u ·u′ � B+C ∈ τ.

Using Lemma 3.22, we get u · u′ � A + B = (u � A + B) · (u′ � A + B) and u · u′ � B + C = (u �

B + C) · (u′ � B + C). So, (u � A + B) · (u′ � A + B) ∈ σ and (u � B + C) · (u′ � B + C) ∈ τ.

Since σ and τ are prefix-closed, we get u � A + B ∈ σ and u � B + C ∈ τ. This implies, by

Definition 3.12, that u ∈ σ τ. So, σ τ is prefix-closed.

Next, we show that σ; τ is prefix-closed. Let v = v1 · v2 ∈ σ; τ. By Definition 3.13, we know

that there exists u ∈ σ τ such that u � A + C = v. Without loss of generality, let Ev = Eu�A+C.

We show that u = u1 · u2 and u1 � A + C = v1. Let u1 be defined as follows.

• Eu1 = Ev1 + {e ∈ Eu | λu(e) ∈ LB and (∀e′ ∈ last(v1))(e �u e′)}

• �u1= �u ∩ (Eu1 × Eu1)

• λu1 = λu � Eu1

Let u2 be defined as follows.

• Eu2 = Ev2 + {e ∈ Eu | λu(e) ∈ LB and (∀e′ ∈ last(v1))(e′ �u e and e 6�u e′)}

• �u2= �u ∩ (Eu2 × Eu2)

• λu2 = λu � Eu2

Note that the decomposition of u into u1 and u2 is unique—i.e. Eu1 ∩ Eu2 = ∅ and Eu1 ∪ Eu2 =

Eu. It is also clear, by construction, that u1 � A + C = v1. Since σ τ is prefix-closed, u1 ∈ σ τ

and hence v ∈ σ; τ. �

50 CHAPTER 3. A TRACE MODEL OF PROCESSES

Now, we can prove that the basic axioms of a category hold.

Lemma 3.24. For each object A in SynProc, idA is the identity morphism.

Proof. Let σ : A→ B be a process and idB : B→ B′. We want to show that σ; idB = σ.

We begin by proving that σ; idB ⊆ σ. After unfolding the definitions, this is equivalent to

proving that for any u ∈ int(A, B, B′)

if u � A + B = s ∈ σ (3.1)

and u � B + B′ ∈ idB (3.2)

then u � A + B′ = s (3.3)

Let (3.1) and (3.2) be true. To prove (3.3), we need to show a bijection φ : Es → Eu�A+B′ such that

(∀e1, e2 ∈ Es)(e1 �s e2 iff φ(e1) �u�A+B′ φ(e2)) and λs = λu�A+B′ ◦ φ. We define φ as follows.

φ(e) =

e if λs(e) ∈ inl(LA)

e′ if λs(e) ∈ inr(LB), where e′ ≈u e and λu(e) = inl(inr(b)) and λu(e′) = inr(b)

and b ∈ LB

We know φ is well-defined because the definition of id ensures the existence and singularity

ensures the uniqueness of the output. In addition, its inverse φ−1 is defined as,

φ−1(e) =

e if λu�A+B′(e) ∈ inl(LA)

e′ if λu�A+B′(e) ∈ inr(LB′), where e′ ≈u e and λu(e) = inr(b)

and λu(e′) = inl(inr(b)) and b ∈ LB

and is a function. Therefore, φ is a bijection. Next, we show that e1 �s e2 iff φ(e1) �u�A+B′ φ(e2).

First, we prove the left to right implication through a case analysis. For all e, e′ ∈ Es,

• if e �s e′ and φ(e) = e and φ(e′) = e′, then φ(e) �u�A+B′ φ(e′)

• if e �s e′ and φ(e) = e and φ(e′) ≈u e′, then φ(e) �u�A+B′ φ(e′)

• if e �s e′ and φ(e) ≈u e and φ(e′) = e′, then φ(e) �u�A+B′ φ(e′)

3.2. CATEGORICAL STRUCTURE 51

• if e �s e′ and φ(e) ≈u e and φ(e′) ≈u e′, then φ(e) �u�A+B′ φ(e′)

For the right to left implication, we use the definition of φ−1. For all e, e′ ∈ Eu�A+B′ ,

• if e �u�A+B′ e′, then and φ−1(e) = e and φ−1(e′) = e′, then φ−1(e) �s φ−1(e′)

• if e �u�A+B′ e′, then and φ−1(e) = e and φ−1(e′) ≈u e′, then φ−1(e) �s φ−1(e′)

• if e �u�A+B′ e′, then and φ−1(e) ≈u e and φ−1(e′) = e′, then φ−1(e) �s φ−1(e′)

• if e �u�A+B′ e′, then and φ−1(e) ≈u e and φ−1(e′) ≈u e′, then φ−1(e) �s φ−1(e′)

Finally, we show that λs = λu�A+B′ ◦ φ. First, note that domains of the two functions are

φ-bijective and the codomains are equal (LA + LB = LA + LB′). We show that for all e ∈ Es, we

have λs(e) = λu�A+B′ ◦ φ(e).

Let λs(e) = inl(a), a ∈ LA. It follows, by definition of φ, that φ(e) = e. We also have

if λs(e) = inl(a), a ∈ LA, then λu(e) = inl(inl(a)), which in turn implies that λu�A+B′(e) =

inl(a). So, λu�A+B′ ◦ φ(e) = inl(a) = λs(e). Let λs(e) = inr(b), b ∈ LB. It follows, by definition

of φ, that φ(e) = e′, where e ≈u e′ and λu(e) = inl(inr(b)) and λu(e′) = inr(b). So, λu�A+B′ ◦

φ(e) = inr(b) = λs(e).

Next, we prove σ ⊆ σ; idB. Let s ∈ σ. We will find an interaction trace u ∈ int(A, B, B′) such

that u � A + B = s and u � B + B′ ∈ idB and u � A + B′ = s. Let u be defined as follows.

• Eu = Es�A + Es�B + Es�B. Let us refer to these subsets using injections in1 : Es�A → Eu,

in2 : Es�B → Eu and in3 : Es�B → Eu.

• λu = λs�A + λs�B + λs�B

• The preorder �u is defined as follows. For all e, e′ ∈ Es,

P1 if e, e′ ∈ Es�A, then e �s e′ ⇔ in1(e) �u in1(e′)

P2 if e ∈ Es�A and e′ ∈ Es�B, then [e �s e′ ⇔ in1(e) �u in2(e′)⇔ in1(e) �u in3(e′)]

P3 if e ∈ Es�B and e′ ∈ Es�A, then [e �s e′ ⇔ in2(e) �u in1(e′)⇔ in3(e) �u in1(e′)]

P4 if e, e′ ∈ Es�B, then [e �s e′ ⇔ in2(e) �u in2(e′) ⇔ in3(e) �u in3(e′) ⇔ in2(e) �u

in3(e′)⇔ in3(e) �u in2(e′)]

52 CHAPTER 3. A TRACE MODEL OF PROCESSES

We first argue that �u is a total preorder. As �s is reflexive, (P1) and (P4) ensure that �u

is reflexive too. Since �s is total, �u is also total because every two events are comparable: A-

events are comparable with A-events by (P1), A-events are comparable with B-events by (P2)

and (P3), A-events are comparable with B′-events by (P2) and (P3), B-events are comparable

with B-events by (P4), B-events are comparable with B′-events by (P4) and B′-events are com-

parable with B′-events by (P4). Next, we show that �u is transitive. The proof can be achieved

via a long case analysis (27 cases). We will consider all cases at once by using subscript vari-

ables. Let inj(e1) �u ink(e2) and ink(e2) �u inl(e3) where j, k, l ∈ {1, 2, 3}. By definition of �u,

we have e1 �s e2 and e2 �s e3. Because �s is transitive, we get e1 �s e3. By inspecting the

definition of �u, we get inj(e1) �u inl(e3).

Note that u has singular events because s respects singularity and the B′-events that are

made simultaneous with B-events in (P4) are labelled by a different copy of B (i.e. B′).

Finally, we show that u satisfies the conditions set out above. Because �s is reflexive, (P4)

implies that (∀e ∈ Es�B)(in2(e) ≈u in3(e)). We also have λu�B+B′(in2(e)) = inl(b) if and only if

λu�B+B′(in3(e)) = inr(b), b ∈ LB. So, u � B + B′ ∈ idB. We briefly argue that u � A + B = s. We

have Eu�A+B = Es�A + Es�B. There is a bijection φ : Es → Eu�A+B defined as

φ(e) =

in1(e) if λs(e) ∈ inl(LA)

in2(e) if λs(e) ∈ inr(LB)

We need to prove that (∀e, e′ ∈ Es)(e �s e′ iff φ(e) �u�A+B φ(e′)). We have e �s e′ ⇔ inj(e) �u

ink(e′)⇔ inj(e) �u�A+B ink(e′) where j, k ∈ {1, 2}.

The proof that u � A + B′ = s is similar.

The proof that idA; σ = σ is similar to the proof of σ; idB = σ. �

The following ancillary concept will be useful in the sequel.

Definition 3.25 (Trace composition). The interaction of traces s ∈ Θ(A ⇒ B) and t ∈ Θ(B ⇒ C)

is given by s t = {u ∈ int(A, B, C) | u � A + B = s and u � B + C = t} and their composition by

s; t = {u � A + C | u ∈ s t}.

3.2. CATEGORICAL STRUCTURE 53

Lemma 3.26. Let s be an interaction trace over int(A, B, C) and t be a trace over C → D. We have

(s �A+C
B) t = (s t) �A+C+D

B .

Proof. First, we prove (s �A+C
B) t ⊆ (s t) �A+C+D

B . Let u ∈ (s �A+C
B) t; that is, u ∈ int(A, C, D)

and u � A + C = s � A + C and u � C + D = t. To show that u ∈ (s t) �A+C+D
B , we construct a

trace v ∈ int(A, B, C, D) such that v � A + C + D = u and v � A + B + C = s and v � C + D = t

as follows. Without loss of generality, we assume that Es�A+C = Eu�A+C. This allows us to

simplify the proof by avoiding the use of trace equivalence isomorphisms.

• Ev = Eu�A + Es�B + Eu�C + Eu�D. In the sequel, we will omit injections on events; for

example, we will write e where it should be inj(e), j ∈ {1, 2, 3, 4}. This is possible because

the sets Eu�A, Es�B, Eu�C and Eu�D are disjoint. It should improve readability at the cost of

abusing notation.

• λv = λu�A + λs�B + λu�C + λu�D

• We define �v in two steps. Let �1 be the relation satisfying the following.

– (∀e, e′ ∈ Eu�A + Eu�C + Eu�D)(e �u e′ ⇔ e �1 e′)

– (∀e, e′ ∈ Eu�A + Es�B + Eu�C)(e �s e′ ⇔ e �1 e′)

Note that the only events that are not comparable using �1 are B-events with respect to

D-events. We define a second relation �2 as follow. For all e ∈ Es�B and e′ ∈ Eu�D

– (∃e′′ ∈ Ev)(e′ �1 e′′ and e′′ �1 e) if and only if e′ �2 e

– (∃e′′ ∈ Ev)(e �1 e′′ and e′′ �1 e′) or (∀e′′ ∈ Ev)
(
(e 6�1 e′′ or e′′ 6�1 e′) and (e′ 6�1

e′′ or e′′ 6�1 e)
)

if and only if e �2 e′

We then set �v to be the union of �1 and �2.

We first show that �v is a total preorder. Since �u and �s are reflexive, we know that �1

is reflexive. So, �v is reflexive. Totality of �v is ensured by �2. Next, we show that �v is

transitive, i.e. for all e, e′, e′′ ∈ Ev, if e �v e′ and e′ �v e′′, then e �v e′′. Let e �v e′ and e′ �v e′′.

The proof can be achieved via a case analysis of 64 cases. Forty eight of these are covered by

the definition of�1 and the fact that�u and�s are transitive. The remaining 16 cases are those

54 CHAPTER 3. A TRACE MODEL OF PROCESSES

where one event in {e, e′, e′′} is a B-event and another is a D-event. Discarding symmetric cases,

we consider the following three nontrivial cases.

1. If e ∈ Es�B and [e′ ∈ Eu�A or e′ ∈ Eu�C] and e′′ ∈ Eu�D, we use the definition of �2 to

conclude that e �v e′′.

2. If e ∈ Eu�A and e′ ∈ Es�B and and e′′ ∈ Eu�D, then by the definition of �2 we have the

following two cases.

(a) There is e0 ∈ Ev such that e′ �1 e0 and e0 �1 e′′. Note that e0 is either an A-event or

a C-event because it is related to both e′ and e′′. We have e �v e′ ⇔ e �s e′ and e′ �1

e0 ⇔ e′ �s e0. Since �s is transitive, we get e �s e0. Since u � A + C = s � A + C,

we get e �u e0. We also have e0 �1 e′′ ⇔ e0 �u e′′. Using the transitivity of u, we

conclude that e �u e′′. We then use the definition of �1 to conclude that e �v e′′.

(b) There is no e0 ∈ Ev satisfying e′ �1 e0 �1 e′′ or e′′ �1 e0 �1 e′. Let us refer to

this assumption by (?). Since �u is total, we have e �u e′′ or e′′ �u e. Assume to

the contrary that e′′ �u e. By definition of �v, this is equivalent to e′′ �1 e. Since

e �v e′ ⇔ e �s e′ ⇔ e �1 e′, it contradicts (?). So, e �u e′′ and therefore e �v e′′.

3. If e ∈ Eu�B and e′ ∈ Es�D and and e′′ ∈ Eu�B, then by the definition of �2 we have the

following two cases.

(a) There are e0, e2 ∈ Ev such that e �1 e0 and e0 �1 e′ and e′ �1 e2 and e2 �1 e′′. Note

that e0, e2 are labelled by A or C because they are related to both e′ and e′′. We have

e0 �u e2 by the transitivity of �u. It follows e0 �s e2 since u � A + C = s � A + C.

Since�s is transitive, we get e0 �s e′′. We use the transitivity of�s again to conclude

that e �s e′′ and therefore e �v e′′.

(b) There is no e0 ∈ Ev satisfying e �1 e0 �1 e′ or e′ �1 e0 �1 e and there is e2 ∈ Ev such

that e′ �1 e2 and e2 �1 e′′. Let us refer to this assumption by (F). Since �s is total,

we have e �s e′′ or e′′ �s e. Assume to the contrary that e′′ �s e. By definition of �v,

this is equivalent to e′′ �1 e. We also have e2 �1 e′′ ⇔ e2 �s e′′. Since�s is transitive,

we get e2 �s e⇔ e2 �1 e. However, we already have e′ �1 e2 so e′ �1 e2 and e2 �1 e

which contradicts (F). So, e �s e′′ and therefore e �v e′′.

3.2. CATEGORICAL STRUCTURE 55

The interaction trace v respects singularity because s has singular events and u has singular

events and s � A + C = u � A + C; and �2 only relates B-event and D-events. Now we show

that the conditions set above are satisfied by �v.

We first prove that v � A + B + C = s. We have Ev�A+B+C = Es�A + Es�B + Es�C. There is a

bijection φ : Es → Ev�A+B+C defined as

φ(e) =

in1(e) if λs(e) ∈ inl(inl(LA))

in2(e) if λs(e) ∈ inl(inr(LB))

in3(e) if λs(e) ∈ inr(LC)

We need to prove that for all e, e′ ∈ Es, we have e �s e′ iff φ(e) �v�A+B+C φ(e′). We have

e �s e′ ⇔ inj(e) �1 ink(e′)⇔ inj(e) �v ink(e′)⇔ inj(e) �v�A+B+C ink(e′) where j, k ∈ {1, 2, 3}.

Next, we show that v � A + C + D = u. We have Ev�A+C+D = Eu�A + Eu�C + Eu�D. There is

a bijection ψ : Eu → Ev�A+C+D defined as

ψ(e) =

in1(e) if λu(e) ∈ inl(inl(LA))

in2(e) if λu(e) ∈ inl(inr(LC))

in4(e) if λu(e) ∈ inr(LD)

We need to prove that for all e, e′ ∈ Eu, we have e �u e′ iff ψ(e) �v�A+C+D ψ(e′). We have e �u

e′ ⇔ inj(e) �1 ink(e′)⇔ inj(e) �v ink(e′)⇔ inj(e) �v�A+C+D ink(e′) where j, k ∈ {1, 2, 3}.

Finally, v � C + D = t follows from the following two facts: v � A + C + D = u and

u � C + D = t.

Now, we prove (s �A+C
B) t ⊇ (s t) �A+C+D

B . Let u ∈ s t; that is, u ∈ int(A, B, C, D) and u �

A + B + C = s and u � C + D = t. Applying the projection over A + C + D, we get u � A +

C + D ∈ int(A, C, D) and u � A + C = s � A + C and u � C + D = t. So, u ∈ (s �A+C
B) t. �

Corollary 3.27. Let σ : A → B, γ : B → C and τ : C → D be processes. We have (σ γ �A+C
B) τ =

((σ γ) τ) �A+C+D
B .

Lemma 3.28. Let s be a trace in Θ(A + B + C). We have (s �A+B
C) �AB= s �AB+C.

56 CHAPTER 3. A TRACE MODEL OF PROCESSES

Proof. This is trivial as removing all C-events, then all B-events from s yields the same trace as

removing all events labelled by either B or C in one step. �

Lemma 3.29. Composition is associative.

Proof. Let σ : A → B, τ : B → C and γ : C → D be morphisms in SynProc. To prove that

composition is associative, i.e. (σ; τ); γ = σ; (τ; γ), we first show that interaction is associative.

That is, (σ τ) γ = σ (τ γ). We expand (σ τ) γ using Definition 3.12,

(σ τ) γ = {u ∈ int(A, B, C, D) | u �A+B+C
D ∈ σ τ and u �C+D

A+B∈ γ}

= {u ∈ int(A, B, C, D) | (u �A+B+C
D) �A+B

C ∈ σ and (u �A+B+C
D) �B+C

A ∈ τ

and u �C+D
A+B∈ γ}

Using Lemma 3.28, we get,

(σ τ) γ = {u ∈ int(A, B, C, D) | u �A+B
C+D∈ σ and u �B+C

A+D∈ τ and u �C+D
A+B∈ γ}

Expanding σ (τ γ) using Definition 3.12 yields,

σ (τ γ) = {u ∈ int(A, B, C, D) | u �A+B
C+D∈ σ and u �B+C+D

A ∈ τ γ}

= {u ∈ int(A, B, C, D) | u �A+B
C+D∈ σ and (u �B+C+D

A) �B+C
D ∈ τ

and (u �B+C+D
A) �C+D

B ∈ γ}

Using Lemma 3.28, we get,

σ (τ γ) = {u ∈ int(A, B, C, D) | u �A+B
C+D∈ σ and u �B+C

A+D∈ τ and u �C+D
A+B∈ γ}

So, (σ τ) γ = σ (τ γ). We denote this result by (F).

In the next step, we use the above intermediate result to show that composition is associa-

tive. By Definition 3.13, composition consists in hiding the internal channels using projection

3.2. CATEGORICAL STRUCTURE 57

after interaction. So, we can write σ; τ = σ τ �A+C
B . Hence,

(σ; τ); γ = ((σ τ �A+C
B) γ) �A+D

C

= ((σ τ) γ �A+C+D
B) �A+D

C by Corollary 3.27

= (σ τ) γ �A+D
B+C by Lemma 3.28

= σ (τ γ) �A+D
B+C by (F)

= (σ (τ γ) �A+B+D
C) �A+D

B by Lemma 3.28

= (σ (τ γ �B+D
C)) �A+D

B by Corollary 3.27

= σ; (τ; γ). �

The following Proposition sums up our results so far.

Proposition 3.30. SynProc is a category.

3.2.1 Monoidal Structure

The monoidal structure is defined by the identity object I, which is the signature with an empty

set of labels ∅, and a notion of tensor product. This structure is subject to the usual coherence

conditions. Intuitively, tensoring signatures amounts to taking their disjoint union, while ten-

sored processes are interleaved.

Definition 3.31 (Tensor product). The tensor product is a bifunctor ⊗ : SynProc× SynProc →

SynProc defined as follows.

• On objects: see the definition of tensor signature in Section 3.1.1.

• On morphisms: for processes σ : A→ B, τ : C → D, their tensor product is,

σ⊗ τ = {t ∈ ∆(A⊗ C ⇒ B⊗ D) | t � A + B ∈ σ and t � C + D ∈ τ}

Next, we show that SynProc satisfies the axioms of a monoidal category.

Lemma 3.32. The tensor product preserves singularity.

58 CHAPTER 3. A TRACE MODEL OF PROCESSES

Proof. Let σ : A→ B and τ : C → D be processes. Tensoring processes preserves singularity as

labels are disjoint in A⇒ B and C ⇒ D. �

Lemma 3.33. The tensor product preserves prefix-closure.

Proof. We use the same strategy underlying the first part of the proof of Lemma 3.23. �

Lemma 3.34. The tensor product preserves identity morphisms; that is, idA ⊗ idB = idA⊗B.

Proof. For u ∈ idA and events e, e′ ∈ Eu, where u ∈ idA, let us write e�u e′ when e ≈u e′ and

[λu(e) = inl(a) if and only if λu(e′) = inr(a)] and [λu(e) = inr(a) if and only if λu(e′) = inl(a)],

where a ∈ LA. We want to show that idA ⊗ idB = idA⊗B.

First, we show that idA ⊗ idB ⊆ idA⊗B. Let u ∈ idA ⊗ idB; that is, u ∈ Θ(A ⊗ B ⇒

A′ ⊗ B′) and u � A + A′ ∈ idA and u � B + B′ ∈ idB. Using Definition 3.15, we get u ∈

Θ(A⊗ B ⇒ A′ ⊗ B′) and (∀e ∈ Eu�A+A′ , ∃e′ ∈ Eu�A+A′)(e�u�A+A′ e′) and (∀e ∈ Eu�B+B′ , ∃e′ ∈

Eu�B+B′)(e�u�B+B′ e′). Since Eu = Eu�A+A′ ∪ Eu�B+B′ and (∀e, e′ ∈ Eu)(if e ≈u�A+A′ e′ or

e ≈u�B+B′ e′, then e ≈u e′), we conclude that for all e ∈ Eu, there is e ∈ Eu such that e�u e′.

Therefore, u ∈ idA⊗B.

Now, we show that idA ⊗ idB ⊇ idA⊗B. Let u ∈ idA⊗B; that is, u ∈ Θ(A ⊗ B ⇒ A′ ⊗

B′) and (∀e ∈ Eu, ∃e ∈ Eu)(e�u e′). After projecting u over A + A′, we get u � A + A′ ∈

Θ(A⇒ A′) and (∀e ∈ Eu�A+A′ , ∃e′ ∈ Eu�A+A′)(e�u�A+A′ e′); that is, u � A + A′ ∈ idA. Project-

ing u over B+ B′ yields u � B+ B′ ∈ Θ(B⇒ B′) and (∀e ∈ Eu�B+B′ , ∃e′ ∈ Eu�B+B′)(e�u�B+B′ e′);

that is, u � B + B′ ∈ idB. So, u ∈ idA ⊗ idB. �

Lemma 3.35. Let σ : A → B, γ : B → C and τ : D → E be processes. We have (σ γ �A+C
B)⊗ τ =

((σ γ)⊗ τ) �A+C+D+E
B .

Proof. We use the same strategy underlying the proof of Lemma 3.26. �

Lemma 3.36. The tensor product preserves composition.

Proof. Let σ : A → B, τ : B → C, α : D → E and β : E → F be processes. We need to show that

(σ; τ)⊗ (α; β) = (σ⊗ α); (τ ⊗ β). We first prove that (σ τ)⊗ (α β) = (σ⊗ α) (τ ⊗ β).

LHS = {u ∈ ∆((A⊗ D ⇒ B⊗ E)⇒ C⊗ F) | u � A+B+C ∈ σ τ and u � D+E+F ∈ α β}

3.2. CATEGORICAL STRUCTURE 59

= {u ∈ ∆((A⊗ D ⇒ B⊗ E)⇒ C⊗ F) | u � A+B ∈ σ and u � B+C ∈ τ and u � D+E ∈ α

and u � E + F ∈ β}

RHS = {u ∈ ∆((A⊗ D ⇒ B⊗ E)⇒ C⊗ F) | u � A+D+B+E ∈ σ⊗ α and

u � B+E+C+F ∈ τ ⊗ β}

= {u ∈ ∆((A⊗ D ⇒ B⊗ E)⇒ C⊗ F) | u � A+B ∈ σ and u � B+C ∈ τ and u � D+E ∈ α

and u � E + F ∈ β}

Hence, LHS = RHS. Let us refer to this intermediate result by (?). Next, we show that

(σ; τ)⊗ (α; β) = (σ⊗ α); (τ ⊗ β).

(σ; τ)⊗ (α; β) = (σ τ � A + C)⊗ (α β � D + F) by Definition 3.13

=
(
(σ τ)⊗ (α β)

)
� A + C + D + F by Lemma 3.35

=
(
(σ⊗ α) (τ ⊗ β)

)
� A + C + D + F by (?)

= (σ⊗ α); (τ ⊗ β) �

Next, we show the existence of the monoidal natural isomorphisms. The proofs of natural-

ity are omitted.

Lemma 3.37. The tensor product is associative. That is, there exists a natural isomorphism called the

associator, assigning to each triple of objects A, B, C an isomorphism,

αA,B,C : (A⊗ B)⊗ C → A⊗ (B⊗ C)

such that the pentagon diagram in Figure 3.1 commutes.

Proof. It is clear from the definition of tensor product that the only difference between sig-

natures (A⊗ B)⊗ C and A⊗ (B⊗ C) is in the tagging of labels in the disjoint union. In other

words, (A⊗ B)⊗C and A⊗ (B⊗C) are equivalent up to associativity of disjoint union. There-

fore, there exists an isomorphism (A⊗ B)⊗C → A⊗ (B⊗C) for every triple of objects A, B, C,

whose action is to retag the labels and whose traces are equivalent, up to retagging of labels by

inl and inr, to those in idA⊗B⊗C. We call this isomorphism αA,B,C. The coherence condition in

60 CHAPTER 3. A TRACE MODEL OF PROCESSES

Figure 3.1 then follows from the definitions of the tensor product and α. �

Lemma 3.38. The tensor product has I as left and right identity. That is, there exists two natural

isomorphisms called left and right unitors, assigning to each object A the following isomorphisms,

λA : I ⊗ A→ A

ρA : A⊗ I → A

such that the triangle diagram in Figure 3.2 commutes.

Proof. Since I is the object with an empty label set, 〈∅, π∅〉, it follows that for any A ∈ SynProc,

I ⊗ A and A⊗ I are equivalent to A up to tagging of A-events in the disjoint union. Therefore,

we define the left identity isomorphism λA and the right identity isomorphism ρA as those with

the signatures above, and which consist of exactly the same traces, up to retagging of labels by

inl and inr, as idA. The coherence condition in Figure 3.2 directly follows from the definitions

of the tensor product, λ, and ρ. �

In the next part, we show that SynProc is symmetric.

Proposition 3.39. SynProc is a symmetric monoidal category. That is, there exists a natural isomor-

phism called symmetry that assigns to every pair of objects A, B an isomorphism, γA,B : A ⊗ B →

B⊗ A such that the hexagon diagrams in Figure 3.3 commute and γA,B; γB,A = idA⊗B.

Proof. For any A, B ∈ SynProc, let γA,B : A ⊗ B → B ⊗ A be the isomorphism consisting

of exactly the same traces, up to retagging of labels by inl and inr, as idA⊗B. It satisfies the

coherence conditions in Figure 3.3. It is then clear that γA,B; γB,A has the same traces, up to

retagging of labels by inl and inr, as idA⊗B; idA⊗B. However, as γA,B changes the tags of labels

and γB,A changes them back according to (?), γA,B; γB,A = idA⊗B; idA⊗B = idA⊗B.

LA⊗B⇒A′⊗B′ = inl(inl(A)) ∪ inl(inr(B)) ∪ inr(inl(A′)) ∪ inr(inr(B′))

LA⊗B⇒B′⊗A′ = inl(inl(A)) ∪ inl(inr(B)) ∪ inr(inl(B′)) ∪ inr(inr(A′)) (?)

LB′⊗A′⇒A⊗B = inl(inl(B′)) ∪ inl(inr(A′)) ∪ inr(inl(A)) ∪ inr(inr(B)) �

3.2. CATEGORICAL STRUCTURE 61

((A⊗ B)⊗ C)⊗ D

(A⊗ (B⊗ C))⊗ D

A⊗ ((B⊗ C)⊗ D)

A⊗ (B⊗ (C⊗ D))(A⊗ B)⊗ (C⊗ D)

αA,B,C⊗idD

<<

αA,B⊗C,D

""

idA⊗αB,C,D

��

αA⊗B,C,D

��

αA,B,C⊗D
//

Figure 3.1: Coherence condition for α

(A⊗ I)⊗ B A⊗ (I ⊗ B)

A⊗ B

αA,I,B //

idA⊗λB
yy

ρA⊗idB
%%

Figure 3.2: Coherence condition for λ and ρ

We can now state the following.

Proposition 3.40. SynProc is a symmetric monoidal category.

3.2.2 Closed Structure

The closed structure requires every two objects A and B in the category to have an object A⇒

B, called the exponential, that may be used to model the function space, and an evaluation

morphism, evalA,B, that may be used to model function application. The former is the arrow

signature introduced in Section 3.1.1. The latter is isomorphic to idA⊗B.

Equivalently, SynProc is a closed symmetric monoidal category if there exists a natural

isomorphism Λ that assigns to any objects A, B, C a bijection ΛA,B,C : SynProc(A ⊗ B, C) →

SynProc(A, B ⇒ C). We define ΛA,B,C as follows. For all σ : A ⊗ B → C, s ∈ σ ⇔ ψ(s) ∈

ΛA,B,C(σ) where ψ(s) is defined by the following.

62 CHAPTER 3. A TRACE MODEL OF PROCESSES

B⊗ (C⊗ A)(B⊗ C)⊗ A

A⊗ (B⊗ C) (A⊗ B)⊗ C (B⊗ A)⊗ C

B⊗ (A⊗ C)
α−1

B,C,A

oo

γA,B⊗C

��

α−1
A,B,C // γA,B⊗idC //

αB,A,C

��

idB⊗γA,C

oo

(C⊗ A)⊗ BC⊗ (A⊗ B)

(A⊗ B)⊗ C A⊗ (B⊗ C) A⊗ (C⊗ B)

(A⊗ C)⊗ BαC,A,B
oo

γA⊗B,C

��

αA,B,C // idA⊗γB,C //

α−1
A,C,B

��

γA,C⊗idB

oo

Figure 3.3: Coherence conditions for γ

• Eψ(s) = Es

• �ψ(s) = �s

• λψ(s) is defined as follows.

λψ(s)(e) =

inl(a) if λs(e) = inl(inl(a)), a ∈ LA

inr(inl(b)) if λs(e) = inl(inr(b)), b ∈ LB

inr(inr(c)) if λs(e) = inr(c), c ∈ LC

Definition 3.41 (Evaluation morphism). The evaluation morphism evalA,B : (A ⇒ B)⊗ A → B

is given by, evalA,B = Λ−1
A⇒B,A,B(idA⇒B) = {t ∈ Θ(((A1 ⇒ B1)⊗ A2) ⇒ B2) | t � A1 + A2 ∈

idA and t � B1 + B2 ∈ idB}.

We can now show that SynProc is closed.

Proposition 3.42. SynProc with −⊗−, I, evalA,B is a closed symmetric monoidal category.

Proof. We show that for every morphism σ : A⊗ B → C, we have (ΛA,B,C(σ)⊗ idB); evalB,C =

σ. Let idB : B′ → B′′ and evalB,C : B′′ ⊗ (B⇒ C)→ C′.

We begin by proving that (ΛA,B,C(σ) ⊗ idB); evalB,C ⊆ σ. After unfolding the definitions,

3.2. CATEGORICAL STRUCTURE 63

this is equivalent to proving that for any u ∈ int(A⊗ B′, (B⇒ C)⊗ B′′, C′)

if u � A + B + C = t ∈ ΛA,B,C(σ) (3.4)

and u � B′ + B′′ ∈ idB (3.5)

and u � B + B′′ ∈ idB (3.6)

and u � C + C′ ∈ idC (3.7)

then u � A + B′ + C′ = ψ−1(t) (3.8)

Let (3.4), (3.5), (3.6) and (3.7) be true. Let us denote ψ−1(t) by s. To prove (3.8), we need to show

a bijection α : Es → Eu�A+B′+C′ such that (∀e1, e2 ∈ Es)(e1 �s e2 iff α(e1) �u�A+B′+C′ α(e2)) and

λs = λu�A+B′+C′ ◦ α. We first define a bijection φ : Et → Eu�A+B′+C′ as follows. For all e ∈ Et,

• if λt(e) ∈ inl(LA), then φ(e) = e,

• if λt(e) ∈ inr(inl(LB)), then there is e′′ ∈ Eu such that φ(e) = e1 and e1 ≈u e′′ ≈u e and

λu(e) = inl(inr(inl(inl(b)))) and λu(e′′) = inl(inr(inr(b))) and λu(e1) = inl(inl(inr(b))),

b ∈ LB,

• if λt(e) ∈ inr(inr(LC)), then φ(e) = e2 where e2 ≈u e and λu(e) = inl(inr(inl(inr(c))))

and λu(e2) = inr(c), c ∈ LC.

We know φ is well-defined because the definition of id ensures the existence and singularity

ensures the uniqueness of the output. In addition, its inverse φ−1, defined as follows for all

e ∈ Eu�A+B′+C′ , is a function.

• If λu�A+B′+C′(e) ∈ inl(inl(LA)), then φ−1(e) = e.

• If λu�A+B′+C′(e) ∈ inl(inr(LB)), then there is e′′ ∈ Eu such that φ−1(e) = e1 and e1 ≈u

e′′ ≈u e and λu(e1) = inl(inr(inl(inl(b)))) and λu(e′′) = inl(inr(inr(b))) and λu(e) =

inl(inl(inr(b))) and b ∈ LB.

• If λu�A+B′+C′(e) ∈ inr(LC), then φ−1(e) = e2 where e2 ≈u e and λu(e2) = inl(inr(inl(inr(c))))

and λu(e) = inr(c), c ∈ LC.

64 CHAPTER 3. A TRACE MODEL OF PROCESSES

Therefore, φ is a bijection. Since Es = Et, it follows α = φ ◦ id is a bijection. We can show that

e1 �t e2 iff φ(e1) �u�A+B′+C′ φ(e2) using a case study like the one in the proof of Lemma 3.24.

Since �s=�t and Es = Et we get e1 �s e2 iff α(e1) �u�A+B′+C′ α(e2).

Next, we show that λs = λu�A+B′+C′ ◦ α. First, note that domains of the two functions are

bijective and the codomains are equal (LA + LB + LC = LA + LB′ + LC′). We then prove that for

all e ∈ Es, we have λs(e) = λu�A+B′+C′ ◦ α(e).

Let λs(e) = inl(inl(a)), a ∈ LA. So, λt(e) = inl(a). We have φ(e) = e. Since u � A+ B+C =

t, we have λu(e) = inl(inl(inl(a))). Hence, λu�A+B′+C′(e) = inl(inl(a)).

Let λs(e) = inl(inr(b)), b ∈ LB. So, λt(e) = inr(inl(b)). We have φ(e) = e1 such that e ≈u e1

and λu(e) = inl(inr(inl(inl(b)))) and λu(e1) = inl(inl(inr(b))). We then have λu�A+B′+C′(e1) =

inl(inr(b)).

Let λs(e) = inr(c), c ∈ LC. So, λt(e) = inr(inr(c)). We have φ(e) = e2 such that e ≈u e2 and

λu(e) = inl(inr(inl(inr(c)))) and λu(e2) = inr(c). We then have λu�A+B′+C′(e2) = inr(c).

Now we prove (ΛA,B,C(σ)⊗ idB); evalB,C ⊇ σ. Let s ∈ σ. We will find an interaction trace

u ∈ int(A⊗ B′, (B ⇒ C)⊗ B′′, C′) such that u � A + B + C = ψ−1(s) = t and u � B + B′′ ∈ idB

and u � B′+ B′′ ∈ idB and u � C +C′ ∈ idC and u � A+ B′+C′ = s. Let u be defined as follows.

• Eu = Es�B + Es�A + Es�B + Es�B + Es�C + Es�C. Let us refer to these subsets using injections

in1 to in6.

• Eu = λs�B + λs�A + λs�B + λs�B + λs�C + λs�C.

• The preorder �u is defined as follows. For all e, e′ ∈ Es,

P1 if e, e′ ∈ Es�A, then e �s e′ ⇔ in2(e) �u in2(e′)

P2 if e, e′ ∈ Es�B, then e �s e′ ⇔ in1(e) �u in1(e′) ⇔ in1(e) �u in3(e′) ⇔ in1(e) �u

in4(e′) ⇔ in3(e) �u in1(e′) ⇔ in3(e) �u in3(e′) ⇔ in3(e) �u in4(e′) ⇔ in4(e) �u

in1(e′)⇔ in4(e) �u in3(e′)⇔ in4(e) �u in4(e′),

P3 if e, e′ ∈ Es�C, then [e �s e′ ⇔ in5(e) �u in5(e′) and in6(e) �u in6(e′) and in5(e) �u

in6(e′) and in6(e) �u in5(e′)]

P4 if e ∈ Es�A and e′ ∈ Es�B, then [e �s e′ ⇔ in2(e) �u in1(e′) ⇔ in2(e) �u in3(e′) ⇔

in2(e) �u in4(e′)]

3.2. CATEGORICAL STRUCTURE 65

P5 if e ∈ Es�A and e′ ∈ Es�C, then [e �s e′ ⇔ in2(e) �u in5(e′)⇔ in2(e) �u in6(e′)]

P6 if e ∈ Es�B and e′ ∈ Es�A, then [e �s e′ ⇔ in1(e) �u in2(e′) ⇔ in3(e) �u in2(e′) ⇔

in4(e) �u in2(e′)]

P7 if e ∈ Es�B and e′ ∈ Es�C, then [e �s e′ ⇔ in1(e) �u in5(e′) ⇔ in1(e) �u in6(e′) ⇔

in3(e) �u in5(e′)⇔ in3(e) �u in6(e′)⇔ in4(e) �u in5(e′)⇔ in4(e) �u in6(e′)]

P8 if e ∈ Es�C and e′ ∈ Es�A, then [e �s e′ ⇔ in5(e) �u in2(e′)⇔ in6(e) �u in2(e′)]

P9 if e ∈ Es�C and e′ ∈ Es�B, then [e �s e′ ⇔ in5(e) �u in1(e′) ⇔ in5(e) �u in3(e′) ⇔

in5(e) �u in4(e′)⇔ in6(e) �u in1(e′)⇔ in6(e) �u in3(e′)⇔ in6(e) �u in4(e′)]

We use the same strategy as the proof of Lemma 3.24 to show that �u is a total preorder

and u respect singularity. We can also check, following the structure of the proof of Lemma 3.24

that u respects the conditions set out above. �

66 CHAPTER 3. A TRACE MODEL OF PROCESSES

CHAPTER 4

COMPOSITIONAL ROUND ABSTRACTION∗

Having introduced, in Chapter 3, a model of synchronous behaviours, we return to a question

we asked in Chapter 2: how to derive synchronous processes from asynchronous ones?

In [BCG99], Benveniste et al. demonstrated that even recovering synchrony, after it is re-

moved, is nontrivial. A more general answer appears in the work of Alur and Henzinger.

Round abstraction is a technique allowing synchronous systems to be built from asynchronous

ones by aggregating serialised events into more abstract macro-steps.

We will build on this notion by reformulating it within our compositional trace model.

Our choice is motivated by the generality and simplicity of round abstraction: by aggregating

events together, we can form lower-latency processes. In particular, when these processes stem

from asynchronous processes, they can also be viewed as locally-synchronous processes.

We begin with an overview of the original formulation of round abstraction in Section 4.1.

Then, in Section 4.2, we recast round abstraction within the trace model of Chapter 3. We

demonstrate, using examples, that round abstraction is not compositional in general. We then

seek sufficient conditions to guarantee compositionality in Section 4.3. We finish with a discus-

sion in Section 4.5.

4.1 Alur-Henzinger Round Abstraction

Reactive Modules (RM) [AH99] is a specification language that supports a round-based form of

synchrony: computation proceeds in a sequence of globally-synchronised steps during which

variables are updated by both the environment and the system.
∗Extended and revised version of [GM10]

67

68 CHAPTER 4. COMPOSITIONAL ROUND ABSTRACTION

The basic computational unit, called a reactive module, consists of a declaration and a body.

The former is a set of typed variables partitioned into,

• a subset of private variables, writable to the module but hidden from the environment,

• a subset of interface variables, writable to the module and readable to the environment,

• a subset of external variables, readable to the module and writable to the environment.

The body is a set of atoms, each pairing a set of variables with some guarded behaviour, subject

to some consistency and acyclicity conditions. Module execution starts by a single initialisation

round where all private and interface variables are assigned values. This is followed by up-

date rounds during which, the external variables are assigned values and then the atoms of the

module are run in order.

As a simple example, consider the toy module in Figure 4.1 specifying a counter, where

latched (or updated) values are denoted by primed variable names. The first atom counts the

number of rounds (or global clock cycles). The second atom counts the number of rounds when

a certain signal (tick represented by a boolean variable) is present. The last atom issues a signal

(eq) whenever the first counter holds a value that is twice the value of the second.

Reactive Modules introduces the notion of abstraction both on the space and the time axes.

Spatial abstraction essentially amounts to hiding implementation details; for example, a system

may be built from smaller components but appears atomic. Temporal abstraction hides com-

putational steps, such that a computation may consist of several steps but appears atomic to an

external observer. Moreover, RM provides the means to move along both axes. Consequently,

it is possible to convert a synchronous system to an asynchronous one using variable hiding to

introduce stuttering, and conversely, using round abstraction. Only the latter will be of interest

to us.

Round abstraction is a technique that allows temporal scaling by introducing a variable

notion of what constitutes a computational step. It has important precursors in the notion of

multiform time in synchronous languages [BLJ91, Hal93]; and work on action refinement [AH89,

AH94, GGR94, GR01], abstract interpretation [CC77], and clock variables [AH97b]. It allows the

aggregation of many computational steps into a single macro-step. In Reactive Modules, this

4.1. ALUR-HENZINGER ROUND ABSTRACTION 69

module Counter
external tick : B

interface eq : B

private roundcount, tickcount : N

atom roundcount reads roundcount
init
8 true→ roundcount′ := 0

update
8 true→ roundcount′ := roundcount + 1

atom tickcount reads tickcount awaits tick
init
8 true→ tickcount′ := 0

update
8 tick?→ tickcount′ := tickcount + 1

atom eq reads roundcount, tickcount
init update
8 roundcount = tickcount ∗ 2→ eq!

Figure 4.1: A Counter in Reactive Modules

is achieved using the operator next: given a module P and a set Y of interface variables, the

module next Y for P is one where all consecutive rounds between two changes in any element

of Y are collapsed into a single round. For example, a module behaving like next eq for Counter

is depicted in Figure 4.2.

One can think of round abstraction in slightly broader terms [AHR98]: if M is a system spec-

ification, and φ is a condition on the variables of M, then the round abstraction next φ for M

gathers as many transitions of M as necessary to satisfy φ, and hides the intermediate steps.

In [AW99], Alur and Wang study round abstraction as a heuristic for model checking. In

the same vein as [AHR98], the paper exploits the fact that round abstraction typically results

in fewer states. Subsequently, it seeks to establish a congruence result between a process and

its round abstraction. This turns out to hold when round abstraction does not aggregate tran-

sitions that access shared variables. We will encounter a similar problem in Section 4.5.

module RACounter
external tick : B

interface eq : B

private roundcount, tickcount : N

atom eq reads roundcount, tickcount
init update
8 roundcount = tickcount ∗ 2→ eq!

Figure 4.2: A round abstracted Counter

70 CHAPTER 4. COMPOSITIONAL ROUND ABSTRACTION

1

a
��

1

a,b

��

2

b
��

3 3

Figure 4.3: Round abstraction on automata

Round abstraction is interesting because it defines a simple technique for constructing syn-

chronous systems from asynchronous ones. Indeed it introduces a clock, such that the notion

of a round is solely based on the input/output behaviour of systems. However, the original

formulation of round abstraction is monolithic and applies to whole systems, not addressing

the question of whether round-abstracted systems still interact correctly with each other.

In the next section, we will proceed by defining round abstraction within our trace model of

processes. We will avoid the choice of a clock, which is arbitrary, and thus provide a more gen-

eral notion of round abstraction. In particular, we will discuss a round abstraction where the

intermediate events are not hidden. We therefore consider round abstraction as an approxima-

tion technique which removes some of the timing information between events in a process. In

the lack of a global clock, our definition of round abstraction resembles so-called polychronous

operators in SIGNAL [BLJ91, LTL03].

4.2 Round Abstraction on Processes

Our goal is to develop a notion of round abstraction that can be applied to asynchronous pro-

cesses compositionally. In other words, we would like to establish, for processes σ : A → B

and τ : B→ C, that if σ′ is a round abstraction of σ and τ′ is a round abstraction of τ, then σ′; τ′

is a round abstraction of σ; τ.

We start with the simple notion of round abstraction of traces, which we obtain by gather-

ing serialised events in coarser-grained rounds that we interpret as consisting of simultaneous

events.

4.2. ROUND ABSTRACTION ON PROCESSES 71

At this juncture, it may be observed that locally-synchronous traces have an inherent order of

synchronicity. For example, for each possible succession of unique events, the least synchronous

trace is the one where they occur one after the other, while the most synchronous trace is the

one where they all occur simultaneously.

Definition 4.1 (Round abstraction on traces). Let s = 〈Es,�s, λs〉, t = 〈Et,�t, λt〉 be traces on A.

We say that t is a round abstraction of s, written s @− t, if there exists a bijection φ : Es → Et such

that 〈Es, λs〉 and 〈Et, λt〉 are φ-isomorphic, i.e. λs = λt ◦ φ, and φ is monotonic relative to temporal

ordering, i.e. for any e, e′ ∈ Es, if e �s e′, then φ(e) �t φ(e′).

It follows from the definition that simultaneity is preserved; that is, if e ≈s e′, then φ(e) ≈t

φ(e′). The converse is obviously false, since round abstraction can make non-simultaneous

events in s simultaneous in t.

The next step is to lift the definition of round abstraction to processes. In order to appreciate

the challenges we need to address, let us first informally introduce two definitions of round

abstraction on processes, which we shall call partial and total. Partial round abstraction, σ @− τ,

requires that τ, the ‘abstracted’ process, has no ‘junk’ traces which do not stem from σ. A

stronger property, total round abstraction, written σ @∼ τ, additionally requires that all the

behaviour of σ can be found, in an abstracted form, in τ. In general, it is not the case that

σ @− σ′ and τ @− τ′ implies σ; τ @− σ′; τ′, or σ @∼ σ′ and τ @∼ τ′ implies σ; τ @∼ σ′; τ′. This

situation is akin to the non-compositionality of abstract interpretation [Abr90]. As immediate

counter-examples, consider the following.

Example 4.2. Let σ, σ′ : A → B and τ, τ′ : B → C be processes, with LA = {a}, LB = {b1, b2},

LC = {c}, defined as follows.

σ = pc({b2.b1.a}) @− σ′ = pc({〈b2, b1〉.a})

τ = pc({c.b1.b2}) @− τ′ = pc({c.〈b1, b2〉})

We then have σ; τ = pc({c}) but σ′; τ′ = pc({c.a}) 6A− σ; τ.

Example 4.3. Let σ, σ′ : A → B and τ, τ′ : B → C be processes, with LA = {a}, LB = {b1, b2},

72 CHAPTER 4. COMPOSITIONAL ROUND ABSTRACTION

LC = {c}, defined as follows.

σ = pc({b1.b2.a}) @∼ σ′ = pc({〈b1, b2〉.a})

τ = pc({c.b1.b2}) @∼ τ′ = pc({c.b1.b2})

Then, we have σ; τ = pc({c.a}) but σ′; τ′ = {c} 6A∼ σ; τ.

In these examples, and typically, the way deadlock is handled will play the key role, because

round abstraction can both resolve and introduce deadlocks. In Example 4.2, the two processes

do not compose because the order in which b1, b1 are issued by σ does not coincide with the

order in which they can be received by τ; round abstraction makes the two events simultaneous

and thus solves the deadlock. In Example 4.3, round abstraction requires the two B-events to

be simultaneous in σ′ and consecutive in τ′ thereby introducing deadlock.

In the next section, we formalise partial round abstraction, then seek sufficient conditions

to guarantee compositionality.

4.3 Compositionality of Partial Round Abstraction

We define partial round abstraction on processes as follows.

Definition 4.4 (Partial round abstraction). For processes σ and τ over A, we say that τ is a partial

round abstraction of σ, written σ @− τ, if for any t ∈ τ there is s ∈ σ such that s @− t.

In a partial round abstraction, the abstracted process does not contain any ‘junk’ traces

which do not correspond to traces in the original process. However, it is possible for some

traces in the original process to have no corresponding trace in the abstraction.

The following technical lemma and its corollary will be useful in later proofs.

Lemma 4.5. For traces s, s′ over signature A + B, if s @− s′, then s � A @− s′ � A.

Proof. Projection does not affect the temporal order of those events that remain after projection.

By definition, s @− s′ implies that Es = Es′ and λs = λs′ . So, {e ∈ Es | λs(e) ∈ lin(LA)} = {e′ ∈

Es′ | λs′(e′) ∈ lin(LA)}; that is, Es�A = Es′�A. Since �s ⊆ �s′ and using Lemma 3.19, it follows

that �s�A ⊆ �s′�A. �

4.3. COMPOSITIONALITY OF PARTIAL ROUND ABSTRACTION 73

Corollary 4.6. For processes σ, σ′ : A→ B and τ, τ′ : B→ C, if σ τ @− σ′ τ′, then σ; τ @− σ′; τ′.

A trace is a permutation of another if it has the ‘same events’ irrespective of order.

Definition 4.7 (Permutation). Traces s and t over A are permutations of each other, written s ∼ t, if

there exists a bijection φ : Es → Et satisfying λs = λt ◦ φ.

Given a trace v over A, let Π(v) be the set of its permutations.

In order to prevent round abstraction from resolving deadlocks, as in Example 4.2, we in-

troduce the following condition.

Definition 4.8 (Compatibility). Processes σ : A → B and τ : B → C are compatible, written

σ � τ, when the following conditions hold.

1. For any s ∈ σ, and any u ∈ int(A, B, C) such that u � B + C ∈ τ, if

• u � B ∈ Π(s � B)

• and u � A = s � A

then u � A + B ∈ σ.

2. For any t ∈ τ, and any u ∈ int(A, B, C) such that u � A + B ∈ σ, if

• u � B ∈ Π(t � B)

• and u � C = t � C

then u � B + C ∈ τ.

Compatibility ends up ensuring compositionality for partial round abstraction almost by

definition. Its merit is rather as a characterisation of the main cause of failure of composition

for partial round abstraction. Going back to Example 4.2, the composition of b2.b1.a ∈ σ and

c.b1.b2 ∈ τ fails because they produce the same B-events in different orders.

Nevertheless, in some contexts, compatibility may be too strong a requirement. For exam-

ple, the game model of [GM08] does not guarantee that the strategies in Figure 4.4 are compat-

ible.

74 CHAPTER 4. COMPOSITIONAL ROUND ABSTRACTION

I ⇒ ((com1 ⇒ com2) ⇒ com3) ((com1 ⇒ com2) ⇒ com3) ⇒ com4

ri

ri ro

00

ro

--

ri

00

di

55

do

55

ro

22

ri

..

di

55

do

55

Figure 4.4: When compatibility is too strong

We therefore introduce a weaker version of compatibility which takes round abstraction

into account. Instead of requiring processes not to deadlock in composition, we only require

traces whose round abstractions compose not to cause deadlock.

Definition 4.9 (Post-compatibility). Processes σ′ : A → B and τ′ : B → C are post-compatible

with respect to processes σ : A → B and τ : B → C, respectively, written σ′ à τ′, when the following

conditions hold.

1. For any s ∈ σ and any u ∈ int(A, B, C) such that u � B + C ∈ τ, if

• s has a round abstraction s′ ∈ σ′ and u � B + C has a round abstraction t′ ∈ τ′, such that

s′ � B = t′ � B

• and u � A = s � A

then u � A + B ∈ σ.

2. For any t ∈ τ and any u ∈ int(A, B, C) such that u � A + B ∈ σ, if

• u � A + B has a round abstraction s′ ∈ σ′ and t has a round abstraction t′ ∈ τ′, such that

s′ � B = t′ � B

• and u � C = t � C

then u � B + C ∈ τ.

One of our main results is the soundness of composition relative to partial round abstrac-

tion. It is guaranteed by either compatibility or post-compatibility.

4.3. COMPOSITIONALITY OF PARTIAL ROUND ABSTRACTION 75

Lemma 4.10. Let σ, σ′ : A → B and τ, τ′ : B → C be processes such that σ @− σ′ and τ @− τ′. For all

u′ ∈ σ′ τ′, there are interaction traces u, v ∈ int(A, B, C) and traces s ∈ σ and t ∈ τ satisfying,

1. u @− u′ and u � A + B = s and u � B ∈ Π(t � B) and u � C = t � C

2. v @− u′ and v � B + C = t and v � B ∈ Π(s � B) and v � A = s � A.

Proof. Let u′ ∈ σ′ τ′; that is, u′ � A + B ∈ σ′ and u′ � B + C ∈ τ′. Since σ @− σ′ and τ @− τ′,

it follows there are s ∈ σ and t ∈ τ such that s @− u′ � A + B and t @− u′ � B + C. So, let

φ : Es → Eu′�A+B and ψ : Et → Eu′�B+C be bijections such that λs = λu′�A+B ◦ φ and λt =

λu′�B+C ◦ ψ. Without loss of generality, we will assume that φ and ψ are identities, implying

that Es = Eu′�A+B and Et = Eu′�B+C. It follows that Es�B = Et�B and so s � B is a permutation of

t � B.

The interaction trace u is defined as follows.

• Eu = Eu′

• λu = λu′

• We define �u as follows. First, note that for any preorder �, there is an associated strict

partial order≺, defined as a ≺ b if and only if a � b and b 6� a. Let the relations�1 ⊆ �u′

and �2 ⊆ �u′ be defined as follows, for all e, e′ ∈ Eu.

P1 e ≺u′ e′ ⇔ e �1 e′.

P2 If e, e′ ∈ Es, then e �s e′ ⇔ e �2 e′.

P3 If e, e′ ∈ Et�C, then e �t e′ ⇔ e �2 e′.

P4 If e ∈ Et�C and e′ ∈ Es�B, then e ≈u′ e′ ⇔ e �2 e′.

P5 If e ∈ Et�C and e′ ∈ Es�A, then e ≈u′ e′ ⇔ e �2 e′.

P6 If e ∈ Es and e′ ∈ Et�C, then e 6�2 e′.

We then set �u = �1 ∪�2.

We first show that �u is a total preorder. Since �s and �t are reflexive, (P2) and (P3) ensure

that �u is reflexive. Next, we prove that �u is total, i.e. (∀e, e′ ∈ Eu)(e �u e′ or e′ �u e)

76 CHAPTER 4. COMPOSITIONAL ROUND ABSTRACTION

using a case analysis. Take e, e′ ∈ Eu. There are nine cases corresponding to the possible label

assignments of e and e′. We abuse notation by omitting label injections.

1. If [λu(e) ∈ LA or λu(e) ∈ LB] and [λu(e′) ∈ LA or λu(e′) ∈ LB], then e �s e′ or e′ �s e

since �s is total. Using (P2), we get e �u e′ or e′ �u e.

2. If λu(e) ∈ LC and λu(e′) ∈ LC, we use the same strategy as the first case with (P3) and the

fact that �t is total.

3. If [λu(e) ∈ LC and λu(e′) ∈ LB] or [λu(e) ∈ LB and λu(e′) ∈ LC], then given that �u′ is

total, we have e �u′ e′ or e′ �u′ e. We can rewite this as e ≺u′ e′ or e′ ≺u′ e or e ≈u′ e′. In

the first two cases, we use (P1). In the third case, we (P4).

4. If [λu(e) ∈ LC and λu(e′) ∈ LA] or [λu(e) ∈ LA and λu(e′) ∈ LC], then given that �u′ is

total, we have e �u′ e′ or e′ �u′ e. We can rewite this as e ≺u′ e′ or e′ ≺u′ e or e ≈u′ e′. In

the first two cases, we use (P1). In the third case, we (P5).

We now show that �u is transitive, i.e. (∀e, e′, e′′ ∈ Eu)(if e �u e′ and e′ �u e′′, then e �u e′′).

Let e �u e′ and e′ �u e′′. We have the following four cases.

1. If e �1 e′ and e′ �1 e′′, then e ≺u′ e′ and e′ ≺u′ e′′. Since ≺u′ is a strict partial order, we get

e ≺u′ e′′. Using (P1), we get e �u e′′.

2. If e �1 e′ and e′ �2 e′′, then e ≺u′ e′ and e′ �u′ e′′. Expanding the definition of ≺u′ , we

get e �u′ e′ and e′ 6�u′ e and e′ �u′ e′′. Since �u′ is transitive, we get e �u′ e′′. Suppose

to the contrary that e′′ �u′ e. Then, as �u′ is transitive, we get e′ �u′ e which contradicts

e′ 6�u′ e. So e′′ 6�u′ e. We conclude that e ≺u′ e′′ then use (P1) to get e �u e′′.

3. If e �2 e′ and e′ �1 e′′, then we use the same strategy as the second case.

4. If e �2 e′ and e′ �2 e′′, then we consider the 27 cases corresponding to all possible label

assignments to the events e, e′, e′′. For the sake of succinctness, we will denote label as-

signments by a triple. So we write (X, Y, Z) to mean that e is an X-event, e′ is a Y-event

and e′′ is a Z-event.

• Cases (A, A, A), (A, A, B), (A, B, A), (A, B, B), (B, A, A), (B, A, B), (B, B, A), (B, B, B).

We use (P2) and the fact that �s is transitive.

4.3. COMPOSITIONALITY OF PARTIAL ROUND ABSTRACTION 77

• Case (C, C, C). We use (P3) and the fact that �t is transitive.

• Cases (A, A, C), (A, B, C), (A, C, A), (A, C, B), (A, C, C), (B, A, C), (B, B, C), (B, C, B),

(B, C, A), (B, C, C), (C, A, C), (C, B, C) are not possible by definition.

• Cases (C, A, A), (C, A, B), (C, B, A), (C, B, B). From e �2 e′ and e′ �2 e′′, we get e ≈u′

e′ and e′ �s e′′ ∴ e′ �u′ e′′. Since �u′ is total, we have either

– e′′ �u′ e, which yields e ≈u′ e′′ since �u′ is transitive. Then, depending on the

specific case, we use (P4) or (P5) to get e �u e′′.

– e′′ 6�u′ e, so e ≺u′ e′′. By (P1), e �u e′′.

• Cases (C, C, A), (C, C, B). From e �2 e′ and e′ �2 e′′, we get e �t e′ ∴ e �u′ e′ and

e′ ≈u′ e′′. Since �u′ is total, we have either

– e′′ �u′ e, which yields e ≈u′ e′′ since �u′ is transitive. Then, depending on the

specific case, we use (P4) or (P5) to get e �u e′′.

– e′′ 6�u′ e, so e ≺u′ e′′. By (P1), e �u e′′.

The trace u has singular events because u′ respects singularity and �u⊆�u′ .

Next, we show that u satisfies the conditions outlined in the lemma.

• First, we show that u @− u′. This follows from the following facts: Eu = Eu′ , λu = λu′ and

�u⊆�u′ .

• Then, we prove that u � B ∈ Π(t � B). This follows from Eu�B = Eu′�B = Et�B and

λu�B = λu′�B = λt�B.

• Next, we need to show that u � A + B = s. We have Eu�A+B = Eu′�A+B = Es and

λu�A+B = λu′�A+B = λs. We need to show that �s=�u�A+B. The left to right inclusion

follows from (P2). For the right to left inclusion, take e, e′ ∈ Eu�A+B such that e �u e′.

Using the definition of �u, we get either e �s e′ or e ≺u′ e′. In the first case, we are done.

Expanding the definition of the second case, we get e �u′ e′ and e′ 6�u′ e. Since �s is total,

we have e �s e′ or e′ �s e. We also have that �s⊆�u′ . However, since e′ 6�u′ e we get

e′ 6�s e. So e �s e′.

• Finally, we can demonstrate that u � C = t � C using the same strategy used to show that

u � A + B = s.

78 CHAPTER 4. COMPOSITIONAL ROUND ABSTRACTION

A oo
P2

//zz

P1,P5

$$
EE

P2

YY B oo
P1,P4

//
EE

P2

YY CEE

P3

YY

Figure 4.5: Totality of �u in Lemma 4.10

The second part of the proof is symmetric. So, we only give the definition of the interaction

trace v.

• Ev = Eu′

• λv = λu′

• We define �v as follows. Let the relations �3 ⊆ �u′ and �4 ⊆ �u′ be defined as follows,

for all e, e′ ∈ Eu.

1. e ≺u′ e′ ⇔ e �3 e′.

2. If e ∈ Et and e′ ∈ Et, then e �t e′ ⇔ e �4 e′.

3. If e, e′ ∈ Es�A, then e �s e′ ⇔ e �4 e′.

4. If e ∈ Es�B and e′ ∈ Es�A, then e ≈u′ e′ ⇔ e �2 e′.

5. If e ∈ Et�C and e′ ∈ Es�A, then e ≈u′ e′ ⇔ e �2 e′.

We then set �v = �3 ∪�4. �

Theorem 4.11 (Soundness I). For any processes σ, σ′ : A → B and τ, τ′ : B → C, if σ @− σ′ and

τ @− τ′ and σ � τ, then σ; τ @− σ′; τ′.

Proof. By Corollary 4.6, it is sufficient to show that σ τ @− σ′ τ′. Let u′ ∈ σ′ τ′. By Lemma 4.10,

there is a trace t ∈ τ and an interaction trace u1 ∈ int(A, B, C) satisfying u1
@− u′ and u1 �

A + B ∈ σ and u1 � B ∈ Π(t � B) and u1 � C = t � C. Using compatibility, we deduce that

u1 � B + C and hence u ∈ σ τ. Since u1
@− u′ we are done. Note that the proof can also be done

symmetrically using σ instead of τ. �

Theorem 4.12 (Soundness II). For any processes σ, σ′ : A → B and τ, τ′ : B → C, if σ @− σ′ and

τ @− τ′ and σ′ à τ′, then σ; τ @− σ′; τ′.

4.3. COMPOSITIONALITY OF PARTIAL ROUND ABSTRACTION 79

Proof. By Corollary 4.6, it is sufficient to show that σ τ @− σ′ τ′. Let u′ ∈ σ′ τ′. By Lemma 4.10,

there are traces s ∈ σ, t ∈ τ and interaction traces u1, u2 ∈ int(A, B, C) satisfying

• u1
@− u′ and u1 � A + B = s and u1 � B ∈ Π(t � B) and u1 � C = t � C

• u2
@− u′ and u2 � B + C = t and u2 � B ∈ Π(s � B) and u2 � A = s � A

Since u1
@− u′ and u1 � A + B = s, it follows, by Lemma 4.5, that s @− u′ � A + B. Since u2

@− u′

and u2 � B + C = t, it follows, by Lemma 4.5, that t @− u′ � B + C. Using post-compatibility, we

get u1 � B + C ∈ τ and u2 � A + B ∈ σ. So, u1, u2 ∈ σ τ. Since u1
@− u′ and u2

@− u′, we are

done. �

Since tensoring processes interleaves their traces, round abstraction is straightforwardly

compositional with respect to the tensor product.

Theorem 4.13 (Soundness III). For any processes σ, σ′ : A → B and τ, τ′ : B → C, if σ @− σ′ and

τ @− τ′, then σ⊗ τ @− σ′ ⊗ τ′.

Proof. Let v′ ∈ σ′ ⊗ τ′; that is, v′ � A + B ∈ σ and v′ � C + D ∈ τ. Since σ @− σ′ and τ @− τ′, it

follows there are traces s ∈ σ and t ∈ τ such that s @− v′ � A + B and t @− v′ � C + D.

So, let φ : Es → Ev′�A+B and ψ : Et → Ev′�C+D be bijections such that λs = λv′�A+B ◦ φ and

λt = λv′�C+D ◦ ψ and (∀e, e′ ∈ Es)(if e �s e′, then φ(e) �v′�A+B φ(e′) and (∀e, e′ ∈ Et)(if e �t

e′, then ψ(e) �v′�B+C ψ(e′).

We show that there is a trace v ∈ σ ⊗ τ such that v @− v′. The trace v is constructed as

follows.

• Ev = Es + Et

• λv = λs + λt

• Let α : Ev → Ev′ = φ + ψ. Let �v be the relation satisfying

1. for all e, e′ ∈ Ev, if α(e) �v′ α(e′) and α(e′) 6�v′ α(e), then e �v e′

2. for all e ∈ Ev and for all e′ ∈ Ev such that α(e) ≈v′ α(e′)

(a) if e, e′ ∈ Es, then e �s e′ ⇔ e �v e′

80 CHAPTER 4. COMPOSITIONAL ROUND ABSTRACTION

(b) if e, e′ ∈ Et, then e �t e′ ⇔ e �v e′

(c) if e ∈ Es and e′ ∈ Et, then e �v e′

Note that in (2c), the choice of ordering is irrelevant. So, we choose to make the events of s

before those of t by default. We know that �v is reflexive because of (1), (2a) and (2b); and

transitive and total by construction. Additionally, v has singular events because v′ respects

singularity and �v ⊆ �v′ .

We briefly argue that v ∈ σ ⊗ τ. We prove that v � A + B = s and v � B + C = t. Let

e, e′ ∈ Ev�A+B = Es. We show that e �v�A+B e′ iff e �s e′. The right to left implication is

straightforward. For the left to right implication, let e �v�A+B e′. So, e �v e′. Since v @− v′, it

follows α(e) �v′ α(e′). This means either

• α(e) �v′ α(e′) and α(e′) 6�v′ α(e) ∴ φ(e) �v′�A+B φ(e′) and φ(e′) 6�v′�A+B φ(e) ∴ e �s e.

• α(e) ≈v′ α(e′). Since e �v e′ and e, e′ ∈ Es, it follows that e �s e′.

The proof that v � B + C = t is symmetric. �

4.4 Total Round Abstraction

Total round abstraction is a stronger notion of round abstraction: one that not only requires

the abstracted process be junk-free, but also that no behaviour be lost. In general, ensuring the

compositionality of total round abstraction is more difficult. In this section, we will informally

discuss how this may be achieved. Note that we do not introduce any formal results.

Total round abstraction may be defined as follows.

Definition 4.14 (Total round abstraction). For asynchronous process σ : A → B and process σ′ :

A → B, we say that σ′ is a total round abstraction of σ, written σ @∼ σ′, if σ @− σ′ and for any s ∈ σ

there exist w ∈ ∆(A⇒ B) and s′ ∈ σ′ such that s · w ∈ σ and s · w @− s′.

Total round abstraction has a more complicated technical definition because prefix-closure

is defined at the level of rounds rather than at the level of events. It says that any trace in

4.4. TOTAL ROUND ABSTRACTION 81

the original process can be ‘padded’ with some events so that it matches a trace in the ab-

stracted process. The reason is that prefix-closure will generate more prefixes for an asyn-

chronous trace than for its synchronous, round abstraction; however, we want round abstrac-

tion to automatically extend to prefixes. For example, at the level of traces, a.b.c @− 〈a, b, c〉 but

pc(a.b.c) = {ε, a, a.b, a.b.c} whereas pc(〈a, b, c〉) = {ε, 〈a, b, c〉}; using Definition 4.14, we have

pc(a.b.c) @∼ pc(〈a, b, c〉). Note that, unlike partial round abstraction, the above definition is not

transitive: from σ @∼ σ′ and σ′ @∼ σ′′, we cannot conclude that σ @∼ σ′′. This fact does not hinder

our subsequent discussion, but it presents a challenge that must be addressed in any future

solution.

Immediately, there are two problems that seem to hinder compositionality. The first is illus-

trated by the following example.

Example 4.15. Let σ, σ′ : A → B and τ, τ′ : B → C, with LA = {a}, LB = {b1, b2, b3}, LC = {c},

be the following processes.

σ = pc({b1.b2.a}) @∼ σ′ = pc({〈b1, b2, a〉})

τ = pc({c.b1.b3}) @∼ τ′ = pc({〈c, b1, b3〉})

Then, we have σ; τ = pc({c}) but σ′; τ′ = {ε} 6A∼ σ; τ.

In this example, the original processes σ and τ compose well up to b1 then deadlock as they

attempt to synchronise on mismatched events. Because σ′ and τ′ are single-round processes,

the failure of composition prevents the creation of any complete rounds; therefore, it produces

only the empty-trace process as a result. A possible solution is to require processes to interact

safely: if, at any point in the interaction of two processes, one is able to produce an output, then

the other must be able to receive it as input.

The second problem was demonstrated in Example 4.3: the possibility that round abstrac-

tion may introduce deadlock. This suggests that round abstraction should be subject to re-

strictions. The following conditions stem immediately from assuming a locally synchronous

setting.

Input receptivity: successive inputs can be received in succession as well as simultaneously,

82 CHAPTER 4. COMPOSITIONAL ROUND ABSTRACTION

Instant feedback receptivity: an input following an output may also be received simultane-

ously.

In essence, these rules stipulate that the environment can produce input either instantly or

later, and the system must handle both situations. Note that safety and the two receptivity

conditions model the requirement that processes must handle all legal inputs from their envi-

ronment. This may be viewed as an example of Nain and Vardi’s Principle of Comprehensive

Modelling [NV07]. In fact, Nain and Vardi used the term receptiveness to refer to processes

that possess this very property [NV07, NV09]. Receptiveness, however, has a long pedigree

in computer science. The term was originally coined by Dill in his Ph.D. dissertation [Dil88].

In [AL93], Abadi and Lamport study it as a correctness property of compositional specifica-

tions. Similar notions have also appeared in [LT89, AL91, GSSAL94, AH95, AH97a].

In general, further restrictions may be required. For instance, the notion of interference

[Rey78]—where computations affect each other’s outcome—seems of interest to round abstrac-

tion. For example, in BSCI, functions do not share identifiers, and therefore do not interfere,

with their arguments. By contrast, pairs of arguments may interfere with each other.

Intuitively, events from noninterfering computations may be allowed to occur simultane-

ously in the round abstraction since their order is arbitrary in any original process [McC02].

However, making interfering events simultaneous is dangerous as it may result in either the

round abstraction resolving or introducing deadlocks. We discuss an example of this subtle

problem in the next section.

4.5 Discussion

Failure of process compatibility (or post-compatibility) can give rise to subtle problems in syn-

chronous implementations. Let us consider an example from Geometry of Synthesis [Ghi07].

Suppose that an implementer wants to use round abstraction to reduce the latency of (binary)

memory locations, as much as possible. Following the game semantic model, these are driven

using the ports r (read), t (produce 1), f (produce 0), wt (write 1), wf (write 0), ok (acknowledge

write). Singularity prevents multiple reads and multiple writes per round, but one read and

one write per round could be implemented. A proper (asynchronous) memory cell trace such

4.5. DISCUSSION 83

as wf.ok.r.f.wt.ok.r.t could be presumably abstracted as 〈wf , ok, r, f 〉 · 〈wt, ok, r, t〉. This is rea-

sonable, and in fact, assignable variables in certain synchronous languages (e.g. Esterel) and

registers in hardware are implemented in this way. However, such an abstraction is incompat-

ible with round abstraction because it breaks process compatibility and therefore partial round

abstraction.

The reason is that Basic Syntactic Control of Interference, the language used in GoS, allows

asynchronous programs to generate local variable traces that are not consistent with stateful

behaviour, but are permutations of well-formed traces. These bad traces are then eliminated

via composition with a local variable binder. However, round abstraction may erroneously

identify a good trace and a bad trace. For example, an ill-formed trace such as r.f.wf.ok.r.t.wt.ok

can also be abstracted to 〈wf , ok, r, f 〉 · 〈wt, ok, r, t〉, which is the same as the abstraction of the

well-formed trace above. At the level of the programming language, it means that programs

x := 0; x := 1; if x = 1 diverge and x := 0; if x = 1 diverge; x := 1 could end up with the same

implementation, which is obviously erroneous!

Another problem that may occur in total round abstractions is instant feedback. Suppose

we disallow simultaneous access to variables to overcome the problem above. It follows that a

program such as x :=!x takes time to run. Further, let us take the round abstraction of the no-op

command skip as 〈r, d〉. This is acceptable, since it agrees with the conditions we set out in this

chapter. In fact, Esterel has an equivalent implementation, the instantly terminating command

nothing. However, in the program x :=!x; skip, the circuit corresponding to sequential com-

position requires the ability to deal with both commands that take time and those that instantly

terminate.

84 CHAPTER 4. COMPOSITIONAL ROUND ABSTRACTION

CHAPTER 5

CAUSAL PROCESSES AND ASYNCHRONOUS

PROCESSES

Causality is central to many theoretical frameworks including concurrency theory [Win87,

Maz95], synchronous languages [Ber99] and component-based systems [GMR10].

In interleaved models of concurrency, the ability to assign an actual cause to each event in

a trace is a prerequisite to describing asynchronous behaviour. This is because the order of the

occurrence of events must be closed under certain permutations that are not allowed to swap

an event and its cause. In higher-level systems, such as games or data flow [GKW85], causality

can be encoded directly, as justification pointers or token tags, respectively. Alternatively, in

a lower-level system, such as hardware, it is necessary to be able to recover this information

implicitly from the structure of the trace [GS10]. In certain game models, justification pointers

can also be recovered from the structure of the play [GM03]. We will see in Chapter 6 that

causality is also required to describe deterministic synchronous processes.

In the following section, we refine the trace model of Chapter 3 to enable causality to be

recorded at the level of the trace. We then describe a category of asynchronous processes in

Section 5.2. Finally, in Section 5.3, we show that partial round abstraction is compositional on

causal and asynchronous processes.

5.1 Justified Traces and Causal Processes

5.1.1 Signatures

We revisit signatures to add a causality relation between labels.

85

86 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

Definition 5.1 (Signature). A signature A is a finite set equipped with a labelling function and a

causality relation. Formally, it is a triple 〈LA, πA,`A〉 where,

• LA is a finite set of labels.

• πA : LA → {i, o} maps each label to an input/output polarity.

• `A ⊆ (LA + {?})× LA is a relation called causality that satisfies the following conditions.

– Let `T
A be the transitive closure of `A. For all a, b ∈ LA, if a `T

A b, then b 6`T
A a.

– If ? `A a, then πA(a) = i and [b `A a⇔ b = ?].

– If a `A b and a 6= ?, then πA(a) 6= πA(b).

Signatures are similar to game semantic arenas —in particular, to their formulation in [AM99a].

The causality relation, akin to game semantic enabling, will turn out to be technically impor-

tant. Intuitively, it models the fact that a b-event cannot happen unless some a-event causes it.

Note that causality is both descriptive, when an input causes an output, but also prescriptive,

when an output can require the environment to only produce certain inputs. The asymmetry

condition on the causality relation indicates that it must be acyclic. This allows us to rule out

causality cycles in rounds. We denote by IA the elements of LA caused by the special label ?

and call them initial.

We modify the tensor and arrow signatures to take causality into account. Intuitively, the

former amounts to grouping two signatures together, while the latter corresponds to forming

a function space, where one signature can be queried by the other. They are defined as follows.

LA⊗B = LA + LB

πA⊗B = [πA, πB]

? `A⊗B a ⇔ ? `A a or ? `B a

a `A⊗B b ⇔ a `A b or a `B b

LA⇒B = LA + LB

πA⇒B = [π∗A, πB]

? `A⇒B a ⇔ ? `B a

a `A⇒B b ⇔ a `A b or a `B b or (? `B a and ? `A b)

5.1. JUSTIFIED TRACES AND CAUSAL PROCESSES 87

Again, note the similarity of these definitions to those of the product and exponential arenas in

Game Semantics [HO00, AJM00], in particular, those in [AM99a].

5.1.2 Traces

We now modify the definition of pre-trace to include pointers. The causality relation at the

level of signatures allows for an event to have multiple a priori causers. However, traces record

‘occurrences’, each of which can only have a single cause.

Definition 5.2 (Partially justified pre-trace). A partially justified locally synchronous pre-trace

over a signature A is a quadruple 〈E,�, λ,x〉 where E is a finite set of events, � is a total preorder on

E, λ : E → LA is a function mapping events to labels in A and x: E \ {e ∈ E | λ(e) ∈ IA} ⇀ E is a

partial function such that x(e) = e′ implies e′ � e and λ(e′) `A λ(e).

If x (e) = e′, we write e′ x e and say that e′ causes or justifies e. We denote by ∆J(A) the

set of partially justified pre-traces over A.

Justified traces are pre-traces where the justification function is total.

Definition 5.3 (Justified synchronous trace). A justified locally synchronous trace is a justified

pre-trace 〈E,�, λ,x〉 with singular events and where x is a function.

We denote by ΘJ(A) the set of justified traces over A. Trace equivalence is modified accord-

ingly.

Definition 5.4 (Justified trace equivalence). Two justified pre-traces are considered equivalent, writ-

ten s ∼= t, if they only differ in the choice of their carrier sets. Formally, pre-traces s = 〈Es,�s, λs,xs〉

and t = 〈Et,�t, λt,xt〉 are equivalent if there exists a bijection φ : Es → Et satisfying for all events

e1, e2 ∈ Es

• e1 �s e2 ⇔ φ(e1) �t φ(e2) and

• λs = λt ◦ φ and

• e1 xs e2 ⇔ φ(e1) xt φ(e2).

We will work with the quotient sets ∆J/ ∼= and ΘJ/ ∼=, only distinguishing justified pre-

traces and justified traces up to∼=-equivalence. In the sequel, for justified traces s and t, we will

write s = t to mean that they belong to the same equivalence class.

88 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

5.1.3 Processes

We first need to refine our previous notion of prefix-closure. Let us define a function d−e :

ΘJ(A) → Θ(〈LA, πA〉) which maps each justified trace u to 〈Eu,�u, λu〉; that is, to u without

its justification structure.

Definition 5.5 (Prefix). Let u be a justified trace over A such that due = dve · w. We say that v is a

prefix of u when xv = xu ∩ (Ev × Ev).

We define the prefix preorder 4 on ΘJ(A) as the least reflexive and transitive relation satis-

fying for justified traces s and t, s 4 t if s is a prefix of t. The next lemma directly follows from

the previous definition.

Lemma 5.6. The prefix of a justified trace is a justified trace.

We call processes consisting of justified traces causal.

Definition 5.7 (Causal process). A causal process σ over signature A, σ : A, is a nonempty and

4-downward closed set of justified traces.

Let s � A be the pre-trace obtained from s by deleting all events with labels not belonging to

LA. For any signatures A, B and C we define the set of interaction traces, written intJ(A, B, C), as

ΘJ((A ⇒ B) ⇒ C). Given another signature D, let intJ(A, B, C, D) be the set ΘJ((A ⇒ B) ⇒

C)⇒ D).

Definition 5.8 (Interaction). Let σ : A→ B and τ : B→ C be two causal processes. Their interaction

is σ τ = {u ∈ intJ(A, B, C) | u � A + B ∈ σ and u � B + C ∈ τ}.

Let u ∈ intJ(A, B, C) be an interaction trace. We define u � A + C as the subtrace of u

consisting of all events labelled by A and C. Moreover, for all a, b, c ∈ Eu such that λu(a) ∈

LA, λu(b) ∈ LB, λu(c) ∈ LC, if c xu b and b xu a, then c xu�A+C a.

Definition 5.9 (Composition). Let σ : A → B and τ : B → C be two causal processes. Their

composition is σ; τ : A→ C =
{

u � A + C | u ∈ σ τ
}

.

The result below indicates the formalism so far makes sense, allowing us to model the

function space and function application.

5.1. JUSTIFIED TRACES AND CAUSAL PROCESSES 89

Theorem 5.10. Causal processes form a closed symmetric monoidal category, which we call SynProcP.

The proof is detailed in the next section.

5.1.4 A Category of Synchronous Causal Processes

We need a new definition for the identity morphism, which now takes pointers into account.

Definition 5.11 (Identity morphism). The identity morphism for object A, denoted by idA, is the

causal process consisting of traces u over A1 ⇒ A2 satisfying, for all events e in Eu, there exists an

event e′ 6= e, such that

1. e ≈u e′ and

2. [λu(e) = inl(a) if and only if λu(e′) = inr(a)] and [λu(e) = inr(a) if and only if λu(e′) =

inl(a)] and

3. (a) if λu(e) ∈ IA1 , then e′ xu e

(b) if λu(e) ∈ IA2 , then e xu e′

(c) if λu(e) 6∈ IA1 and λu(e) 6∈ IA2 , then there are e1, e2 ∈ Eu such that e1 xu e and e2 xu e′

and e1 ≈u e2 and [λu(e1) = inl(a′) if and only if λu(e2) = inr(a′)] and [λu(e1) = inr(a′)

if and only if λu(e2) = inl(a′)]

where a, a′ ∈ LA. For any two e, e′ ∈ Eu, if conditions 1–3 hold, we write e�u e′.

The tensor product and the evaluation morphism are as defined as in Chapter 3 but we

require their traces to be justified. Trace projection is modified as follows.

Definition 5.12 (Justified trace projection). Projection on justified traces is a function out : ΘJ(A +

B)→ ∆J(A) such that for every t = 〈E,�, λ,x〉 in ΘJ(A + B)

out(t) = 〈E′,�′, λ′〉

where

• E′ = {e ∈ E | λ(e) ∈ lin(LA)},

90 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

• �′= �∩ (E′ × E′),

• λ′ = lout ◦ λ where lout is the projection on labels lout : LA + LB ⇀ LA.

• x= x∩ (E′ × E′)

We begin by showing that SynProcP is a category. In the following proofs, we sometimes

abuse notation by omitting label injections when no confusion may arise.

First, note that projection and composition preserve singularity. The proofs are the exactly

the same as for Lemma 3.20 and Lemma 3.21.

Next, we show that composition is well-defined.

Lemma 5.13. The composition of causal processes consists of justified traces.

Proof. Let σ : A → B and τ : B → C be causal processes and v ∈ σ; τ. Take u ∈ σ τ such

that u � A + C = v. Since u is an interaction of justified traces, it is itself justified. We have

to show that for any event e ∈ Ev such that λv(e) 6∈ IC, there is e′ ∈ Ev such that e′ �v e and

λv(e′) ` λv(e) and e′ xv e.

1. If λv(e) ∈ LC, then λu(e) ∈ LC. Therefore, there is a C-event e′ ∈ Eu such that e′ �u e and

λu(e′) ` λu(e) and e′ xu e. After projection over A + C, e′ justifies e.

2. If λv(e) ∈ LA, then λu(e) ∈ LA. There are two cases: either e is caused by an A-event in u

or e is caused by a B-event in u.

(a) In the former case, we use the same reasoning as Case 1 to conclude that there is an

A-event in v that justifies e.

(b) In the latter case, e must be initial in A. Its cause in u � A + B must be an initial

event e′ in B. So, e′ must be justified in u � B + C by an initial event e′′ in C. By the

definition of composition, e′′ justifies e in v. �

The composition of causal processes preserves prefix-closure.

Lemma 5.14. Let s be a trace over A + B. We have dse � B = ds � Be.

Proof. By inspection of the definition of trace projection and d−e. �

5.1. JUSTIFIED TRACES AND CAUSAL PROCESSES 91

Lemma 5.15. Composition preserves prefix-closure.

Proof. Let σ : A → B and τ : B → C be processes. We begin by showing that σ τ is prefix-

closed. Take u ∈ σ τ; that is, u � A + B = s ∈ σ and u � B + C = t ∈ τ. Let due = dve · w such

that v is a prefix of u, i.e. xv = xu ∩ (Ev × Ev).

Since due = dve · w, we have due � A + B = dve · w � A + B. Using Lemma 3.22, we obtain

due � A + B = (dve � A + B) · (w � A + B). By Lemma 5.14, we get du � A + Be = (dv �

A + Be) · (w � A + B). Moreover, from xv = xu ∩ (Ev × Ev) we get xv�A+B = xu�A+B ∩

(Ev�A+B × Ev�A+B) by definition of trace projection. We deduce that v � A + B is a prefix of

u � A + B. Since σ is prefix-closed and u � A + B ∈ σ, it follows that v � A + B ∈ σ.

We use the same reasoning to conclude that v � B + C ∈ τ and therefore v ∈ σ τ. So, σ τ

is prefix-closed.

Next, we show that σ; τ is prefix-closed. Take v ∈ σ; τ and let dve = dv1e · v2 such that v1 is

a prefix of v, i.e. xv1 = xv ∩ (Ev1 × Ev1). By Definition 5.9, we know that there exists u ∈ σ τ

such that u � A + C = v. So, du � A + Ce = dv1e · v2 and xv1 = xu�A+C ∩ (Ev1 × Ev1).

Without loss of generality, let Ev = Eu�A+C. We show that u has a prefix u1, i.e. due =

du1e · u2 and xu1=xu ×(Eu1 × Eu1), satisfying u1 � A + C = v1. Let u1 be defined as follows.

• Eu1 = Ev1 + {e ∈ Eu | λu(e) ∈ LB and (∀e′ ∈ last(v1))(e �u e′)}

• �u1= �u ∩ (Eu1 × Eu1)

• λu1 = λu � Eu1

• xu1= xu ∩ (Eu1 × Eu1)

Let u2 be defined as follows.

• Eu2 = Ev2 + {e ∈ Eu | λu(e) ∈ LB and (∀e′ ∈ last(v1))(e′ �u e and e 6�u e′)}

• �u2= �u ∩ (Eu2 × Eu2)

• λu2 = λu � Eu2

92 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

It is clear, by construction, that u1 � A + C = v. Since σ τ is prefix-closed, u1 ∈ σ τ and hence

v1 ∈ σ; τ. �

Now, we can prove that the basic axioms of a category hold. From its definition, the identity

morphism is a causal process.

Lemma 5.16. For each object A in SynProcP, idA is the identity morphism.

Proof. The proof is exactly the same as for Lemma 3.24 but we need to additionally show that

the pointer structure is preserved.

Let φ : Es → Eu�A+B′ be defined as in the first part of the proof of Lemma 3.24. We need to

prove that (∀e, e′ ∈ Es)(e xs e′ ⇔ φ(e) xu�A+B′ φ(e′)).

Without loss of generality, let Eu�A+B = Es and Eu�B′ = Et�B′ . First, we show the left to right

implication. Let e xs e′ which implies e �s e′ and λs(e) `A⇒B λs(e′). We have already shown

that e �s e′ iff φ(e) �u�A+B′ φ(e′). It is impossible for A-events to justify B-events, so we have

the following three cases.

1. If λs(e) ∈ inl(LA) and λs(e′) ∈ inl(LA), then

• φ(e) = e and φ(e′) = e′

• e xu e′ ∴ φ(e) xu�A+B′ φ(e′)

2. If λs(e) ∈ inr(LB) and λs(e′) ∈ inl(LA), then

• φ(e) ≈u e and φ(e′) = e′ such that λu(e) = inl(inr(b)) implies λu(φ(e)) = inr(b),

b ∈ LB

• φ(e) xu�B+B′ e because e is initial in B (using the definition of identity)

• φ(e) xu�B+B′ e and e xs e′ implies φ(e) xu�A+B′ φ(e′)

3. If λs(e) ∈ inr(LB) and λs(e′) ∈ inr(LB), then

• φ(e) ≈u e and φ(e′) ≈u e′ such that [λu(e) = inl(inr(b)) implies λu(φ(e)) = inr(b)]

and [λu(e′) = inl(inr(b′)) implies λu(φ(e′)) = inr(b′)], b, b′ ∈ LB

• Using the definition of identity, it follows that φ(e) xu�B+B′ φ(e′).

5.1. JUSTIFIED TRACES AND CAUSAL PROCESSES 93

• Since λu�B+B′(φ(e)), λu�B+B′(φ(e)) ∈ LB′ , we have φ(e) xu φ(e′) which implies

φ(e) xu�A+B′ φ(e′)

The proof of the left to right implication is similar using φ−1.

In the second part of the proof, let the pointer structure of u be defined as follows. For all

e, e′ ∈ Es,

J1 If e, e′ ∈ Es�A, then e xs e′ ⇔ in1(e) xu in1(e′).

J2 If e ∈ Es�B and e′ ∈ Es�A, then e xs e′ ⇔ in2(e) xu in1(e′).

J3 If e, e′ ∈ Es�B, then e xs e′ ⇔ in2(e) xu in2(e′)⇔ in3(e) xu in3(e′).

J4 e ∈ Es�B and λs(e) ∈ IB ⇔ in3(e) xu in2(e).

J5 The only pointers in xu are those specified by (J1)–(J4); that is,

– if e ∈ Es�A and e′ ∈ Es�B, then [in1(e) 6xu in2(e′) and in1(e) 6xu in3(e′)],

– if e ∈ Es�B, then in2(e) 6xu in3(e′),

– if e ∈ Es�B and e′ ∈ Es�A, then in3(e) 6xu in1(e′).

By construction, u is justified because all A-events and B-events are justified according to s

whereas B′-events are justified according to the definition of identity. �

A → B B → B′

...
...

e′
��

e′ φ(e′)ww

e

Figure 5.1: Lemma 5.16, Case 2

A → B B → B′

...
...

e e φ(e)

e′

HH

e′

HH

φ(e′)

TT

Figure 5.2: Lemma 5.16, Case 3

Lemma 5.17. Let s be a justified interaction trace over intJ(A, B, C) and t be a justified trace over

C → D. We have (s �A+C
B) t = (s t) �A+C+D

B .

94 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

Proof. First, we prove (s �A+C
B) t ⊆ (s t) �A+C+D

B . Let u ∈ (s �A+C
B) t; that is, u ∈ intJ(A, C, D)

and u � A + C = s � A + C and u � C + D = t. To show that u ∈ (s t) �A+C+D
B , we construct a

trace v ∈ intJ(A, B, C, D) such that v � A +C + D = u and v � A + B +C = s and v � C + D = t

as follows.

Without loss of generality, we assume that Es�A+C = Eu�A+C. This allows us to simplify the

proof by avoiding trace equivalence maps.

We extend the definition of the trace v from the proof of Lemma 3.26 by adding justification

pointers.

• Ev = Eu�A + Es�B + Eu�C + Eu�D. In the sequel, we will omit injections on events; for

example, we will write e where it should be inj(e), j ∈ {1, 2, 3, 4}. This is possible because

the sets Eu�A, Es�B, Eu�C and Eu�D are disjoint. It should improve readability at the cost of

abusing notation.

• λv = λu�A + λs�B + λu�C + λu�D

• We define �v in two steps. Let �1 be the relation satisfying the following.

– (∀e, e′ ∈ Eu�A + Eu�C + Eu�D)(e �u e′ ⇔ e �1 e′)

– (∀e, e′ ∈ Eu�A + Es�B + Eu�C)(e �s e′ ⇔ e �1 e′)

Note that the only events that are not comparable using �1 are B-events with respect to

D-events. We define a second relation �2 as follow. For all e ∈ Es�B and e′ ∈ Eu�D

– (∃e′′ ∈ Ev)(e′ �1 e′′ and e′′ �1 e) if and only if e′ �2 e

– (∃e′′ ∈ Ev)(e �1 e′′ and e′′ �1 e′) or (∀e′′ ∈ Ev)
(
(e 6�1 e′′ or e′′ 6�1 e′) and (e′ 6�1

e′′ or e′′ 6�1 e)
)

if and only if e �2 e′

We then set �v to be the union of �1 and �2.

• We define xv as follows. For all e, e′ ∈ Ev,

J1 if e, e′ ∈ Es�A, then e xv e′ ⇔ e xs e′ ⇔ e xu e′,

J2 if e, e′ ∈ Es�B, then e xv e′ ⇔ e xs e,

J3 if e, e′ ∈ Es�C, then e xv e′ ⇔ e xs e′ ⇔ e xu e′,

5.1. JUSTIFIED TRACES AND CAUSAL PROCESSES 95

J4 if e, e′ ∈ Es�D, then e xv e′ ⇔ e xu e′,

J5 if e ∈ Es�B and e′ ∈ Es�A, then e xv e′ ⇔ e xs e′,

J6 if e ∈ Es�C and e′ ∈ Es�B, then e xv e′ ⇔ e xs e′,

J7 if e ∈ Eu�D and e′ ∈ Eu�C, then e xv e′ ⇔ e xu e′.

J8 The only pointers in xv are those specified by (J1)–(J7); that is, if [e ∈ Eu�D and

e′ ∈ Es�B] or [e ∈ Eu�D and e′ ∈ Es�A] or [e ∈ Es�C and e′ ∈ Eu�D] or [e ∈ Es�C and

e′ ∈ Es�A] or [e ∈ Es�B and e′ ∈ Eu�D] or [e ∈ Es�B and e′ ∈ Es�C] or [e ∈ Es�A and

e′ ∈ Eu�D] or [e ∈ Es�A and e′ ∈ Es�C] or [e ∈ Es�A and e′ ∈ Es�B], then e 6xv e′.

We have shown in the proof of Lemma 3.26 that �v is a total preorder and that v has singular

events. We additionally need to show that v is a justified. This follows from the definition of

xv and the fact that u and s are justified.

Now we show that the conditions set above are satisfied by �v.

We first prove that v � A + B + C = s. We have shown in the proof of Lemma 3.26 that

dv � A + B + Ce = dse, i.e. 〈Es,�s, λs〉 = 〈Ev�A+B+C,�v�A+B+C, λv�A+B+C〉. There is a bijection

φ : Es → Ev�A+B+C defined as

φ(e) =

in1(e) if λs(e) ∈ inl(inl(LA))

in2(e) if λs(e) ∈ inl(inr(LB))

in3(e) if λs(e) ∈ inr(LC)

We need to show that (∀e, e′ ∈ Es)(e xs e′ ⇔ φ(e) xv�A+B+C φ(e′)). This follows from the

definition of xv and the fact that s � A + C = u � A + C.

The proof that v � A + C + D = u is similar.

The proof that v � C + D = t follows from the following two facts: v � A + C + D =

u and u � C + D = t. Now, we prove (s �A+C
B) t ⊇ (s t) �A+C+D

B . Let u ∈ s t; that is,

u ∈ intJ(A, B, C, D) and u � A + B + C = s and u � C + D = t. Applying the projection over

A+C+ D, we get u � A+C+ D ∈ intJ(A, C, D) and u � A+C = s � A+C and u � C+ D = t.

So, u ∈ (s �A+C
B) t. �

96 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

Corollary 5.18. Let σ : A⊗ B → C and τ : C → D be causal processes. We have (σ �A+C
B) τ =

(σ τ) �A+C+D
B .

Lemma 5.19. Let s be an interaction trace over intJ(A, B, C, D). We have (s �A+C+D
B) �A+D

C =

(s �A+B+D
C) �A+D

B = s �A+D
B+C .

Proof. By inspection of the definition of composition. �

After projecting interaction traces, the pointer structure is preserved: so for events a, b, c, d ∈

Eu where u ∈ σ τ γ and pointers assigned following Figure 5.3, whether we remove B-events

first, then C-events, or remove C-events first then B-events second, we will have d x a.

A → B B → C C → D

d
~~

c
~~

c

b
~~

b

a

Figure 5.3: Pointer structure inheritance in Lemma 5.20

Lemma 5.20. Composition is associative.

Proof. Let σ : A → B, τ : B → C and γ : C → D be processes. It is easy to see, following

Lemma 3.29, that (σ τ) γ = σ (τ γ). Let us refer to this result as (F).

By Definition 5.9, composition consists in hiding the internal channels in interaction traces

and extending justification pointers. So, σ; τ = σ τ �A+C
B .

(σ; τ); γ = ((σ τ �A+C
B) γ) �A+D

C

= ((σ τ) γ �A+C+D
B) �A+D

C by Corollary 5.18

= (σ τ) γ �A+D
B+C by Lemma 5.19

= σ (τ γ) �A+D
B+C by (F)

= (σ (τ γ) �A+B+D
C) �A+D

B by Lemma 5.19

= (σ (τ γ �B+D
C)) �A+D

B by Corollary 5.18

= σ; (τ; γ). �

5.1. JUSTIFIED TRACES AND CAUSAL PROCESSES 97

The following Proposition sums up our results so far.

Proposition 5.21. SynProcP is a category.

Next, we demonstrate that SynProcP is a monoidal category.

Lemma 5.22. The tensor product of causal processes consists of justified traces.

Proof. This follows directly from the definitions of justified trace and tensor product. �

We verify that the tensor is a functor.

Lemma 5.23. The tensor product preserves the identity morphism.

Proof. We want to show that idA ⊗ idB = idA⊗B.

First, we prove idA ⊗ idB ⊆ idA⊗B. Let u ∈ idA ⊗ idB; that is, u ∈ ΘJ(A ⊗ B ⇒ A′ ⊗

B′) and u � A + A′ ∈ idA and u � B + B′ ∈ idB. Using Definition 5.11, we get u ∈ ΘJ(A ⊗

B ⇒ A′ ⊗ B′) and (∀e ∈ Eu�A+A′ , ∃e′ ∈ Eu�A+A′)(e�u�A+A′ e′) and (∀e ∈ Eu�B+B′ , ∃e′ ∈

Eu�B+B′)(e�u�B+B′ e′). Since Eu = Eu�A+A′ ∪Eu�B+B′ and (∀e, e′ ∈ Eu)(if e ≈u�A+A′ e′ or e ≈u�B+B′

e′, then e ≈u′ e′) and for all a ∈ Eu�A+A′ , b ∈ Eu�B+B′ , we have λu�A+A′(a) = λu(a) and

λu�B+B′(b) = λu(b), we conclude that for all e ∈ Eu, there is e′ ∈ Eu such that e�u e′. Therefore,

u ∈ idA⊗B.

Now, we prove idA ⊗ idB ⊇ idA⊗B. Let u ∈ idA⊗B; that is, u ∈ ΘJ(A ⊗ B ⇒ A′ ⊗

B′) and (∀e ∈ Eu, ∃e′ ∈ Eu)(e�u e′). After projecting u over A + A′, we get u � A + A′ ∈

ΘJ(A⇒ A′) and (∀e ∈ Eu�A+A′ , ∃e′ ∈ Eu�A+A′)(e�u�A+A′ e′); that is, u � A+ A′ ∈ idA. Project-

ing u over B + B′ yields u � B + B′ ∈ ΘJ(B ⇒ B′) and (∀e ∈ Eu�B+B′ , ∃e′ ∈ Eu�B+B′)(e�u�B+B′

e′); that is, u � B + B′ ∈ idB. So, u ∈ idA ⊗ idB. �

Note that, in signature A⊗ B ⇒ C⊗ D, initial D-events may cause initial A-events. How-

ever, in idA⊗B, the definition of identity assigns pointers in a way that guarantees only initial

B′-events cause initial B-events. This is depicted in Figure 5.4.

Lemma 5.24. Let σ : A → B, γ : B → C and τ : D → E be causal processes. We have (σ γ �A+C
B

)⊗ τ = ((σ γ)⊗ τ) �A+C+D+E
B .

98 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

A ⊗ B → A' ⊗ B'

Figure 5.4: Causality in idA⊗B.

Proof. We use the same strategy underlying the proof of Lemma 5.17. �

Lemma 5.25. The tensor preserves composition.

Proof. The proof is the same as for Lemma 3.34 but we use Lemma 5.24 instead of Lemma 3.35.

�

Next, we show the existence of the monoidal natural isomorphisms. The proofs of natural-

ity are omitted.

Lemma 5.26. The tensor product is associative. That is, there exists a natural isomorphism called the

associator, assigning to each triple of objects A, B, C an isomorphism,

αA,B,C : (A⊗ B)⊗ C → A⊗ (B⊗ C)

such that the pentagon diagram in Figure 3.1 commutes.

Proof. It is clear from the definition of tensor product that (A⊗ B)⊗ C and A⊗ (B⊗ C) have

the same labels tagged differently. Therefore, there exists an isomorphism (A ⊗ B) ⊗ C →

A ⊗ (B ⊗ C) for every triple of objects A, B, C, whose action is to retag the labels and whose

traces are equivalent, up to retagging of labels by inl and inr, to those in idA⊗B⊗C. We call this

isomorphism αA,B,C. The coherence condition in Figure 3.1 then follows from the definitions of

the tensor product and α. �

5.1. JUSTIFIED TRACES AND CAUSAL PROCESSES 99

Lemma 5.27. The tensor product has I as left and right identity. That is, there exists two natural

isomorphisms called left and right unitors, assigning to each object A the following isomorphisms,

λA : I ⊗ A→ A

ρA : A⊗ I → A

such that the triangle diagram in Figure 3.2 commutes.

Proof. Since the tensor product is (roughly) defined as the disjoint union on objects, and I is

the object with an empty label set, 〈∅, π∅〉, it follows that for any A ∈ SynProcP, I ⊗ A and

A⊗ I are clearly isomorphic to A as tensoring with I only retags its elements. Therefore, we

define the left identity isomorphism λA and the right identity isomorphism ρA as those with

the signatures above, and which consist of exactly the same traces, up to retagging of labels by

inl and inr, as idA. The coherence condition in Figure 3.2 directly follows from the definitions

of the tensor product, λ, and ρ. �

Next, we show that SynProcP is symmetric.

Proposition 5.28. SynProcP is a symmetric monoidal category. That is, there exists a natural isomor-

phism called symmetry that assigns to every pair of objects A, B an isomorphism, γA,B : A ⊗ B →

B⊗ A such that the hexagon diagrams in Figure 3.3 commute and γA,B; γB,A = idA⊗B.

Proof. For any A, B in SynProcP, let γA,B : A ⊗ B → B ⊗ A be the isomorphism consisting

of exactly the same traces, up to retagging of labels by inl and inr, as idA⊗B. It satisfies the

coherence conditions in Figure 3.3. It is then clear that γA,B; γB,A has the same traces, up to

retagging of labels by inl and inr, as idA⊗B; idA⊗B. However, as γA,B changes the tags of labels

and γB,A changes them back according to (?), γA,B; γB,A = idA⊗B; idA⊗B = idA⊗B.

LA⊗B⇒A′⊗B′ = inl(inl(A)) ∪ inl(inr(B)) ∪ inr(inl(A′)) ∪ inr(inr(B′))

LA⊗B⇒B′⊗A′ = inl(inl(A)) ∪ inl(inr(B)) ∪ inr(inl(B′)) ∪ inr(inr(A′)) (?)

LB′⊗A′⇒A⊗B = inl(inl(B′)) ∪ inl(inr(A′)) ∪ inr(inl(A)) ∪ inr(inr(B)) �

Finally, we show that SynProcP is closed.

100 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

Proposition 5.29. SynProcP with −⊗−, I, evalA,B is a closed symmetric monoidal category.

Proof. We need to show that eval satisfies the universal property: for every morphism σ : A⊗

B → C, there exists a unique morphism τ : A → B ⇒ C such that σ = (τ ⊗ idB); evalB,C. It can

be easily verified that τ with the same set of traces as σ satisfies the property. It is also clear that

τ is unique: its traces have to be the same as those of σ since evalB,C is isomorphic to idB ⊗ idC

and therefore, (−⊗ idB); evalB,C only retags the events in the traces of any morphism placed in

the hole (−) according to the following.

LA⊗B⇒C = inl(inl(A)) ∪ inl(inr(B)) ∪ inr(C)

LA⇒B⇒C = inl(A) ∪ inr(inl(B)) ∪ inr(inr(C)) �

5.2 Asynchronous Processes

By contrast to a synchronous trace, an asynchronous trace is one where the simultaneity rela-

tion is equal to the identity.

Definition 5.30 (Asynchronous trace). A justified trace 〈E,�, λ,x〉 over signature A is asyn-

chronous if � is a total order.

Definition 5.30 reflects the failure of synchrony in asynchronous systems, as no two distinct

events can be ascertained to occur precisely at the same time. We denote by Γ(A) the set of

asynchronous traces over A

For an asynchronous trace t of length n, we define a bijective enumeration post : {1, . . . , n} →

Et satisfying (∀e, e′ ∈ Et)(e �t e′ ⇔ pos−1
t (e) < pos−1

t (e′)).

As discussed in Section 2.2.2, traces of an asynchronous process must be closed under cer-

tain permutations of events, corresponding to inputs occurring earlier and outputs occurring

later. To maintain consistency, we require that causality between events is not changed by the

permutations. For this reason, asynchronous processes must determine the causal dependency

between events.

Definition 5.31 (Saturation preorder). We define a relation .sm on Γ(A) satisfying s′ .sm s when

there is an event e ∈ Es and a bijection φ : Es → Es′ satisfying

5.2. ASYNCHRONOUS PROCESSES 101

1. For all e1, e2 ∈ Es \ {e}, we have e1 �s e2 if and only if φ(e1) �s′ φ(e2).

2. λs = λs′ ◦ φ.

3. For all e1, e2 ∈ Es, we have e1 xs e2 if and only if φ(e1) xs′ φ(e2).

4. (a) e is an input and pos−1
s′ (φ(e)) ≤ pos−1

s (e), or

(b) e is an output and pos−1
s (e) ≤ pos−1

s′ (φ(e)).

We define a preorder . on Γ(A) as the least reflexive and transitive relation containing .sm.

This preorder is a reformulation of a saturation principle which has long been used to model

asynchronous systems [Udd86, JJH90]. It has been used in game models for asynchronous

languages [Lai01b, Lai05b, Lai06] and circuits [Fos07]. In particular, it is a formalisation of the

definition that appears on [GM08].

Intuitively, the relation .sm relates a trace s to a trace s′ when an input e occurs earlier in s′

or an output e occurs later in s′ and the justification pointers of s′ are ‘inherited’ from s. It is

useful to have a ‘big-step’ explicit version of the preorder.

Definition 5.32. Let .0 be the relation on Γ(A) satisfying s′ .0 s if there is a bijection φ : Es → Es′

such that the following conditions hold.

1. λs = λs′ ◦ φ

2. (∀e, e′ ∈ Es)(e xs e′ if and only if φ(e) xs φ(e′))

3. If e �s e′ and e is an input and e′ is an output, then φ(e) �s′ φ(e′)

We need to verify that the two definitions define the same preorder.

Lemma 5.33. Let s, s′ ∈ Γ(A). We have s′ .0 s if and only if s′ . s.

Proof. First, we show the left to right implication. Let s′ .0 s. Without loss of generality, we

assume the bijection in Definition 5.32 is an identity, i.e. Es = Es′ , λs = λs′ and xs = xs′ . We

show that if |Es| = n, there exists a series of n− 1 permutations of s such that s′ = sn . sn−1 .

. . . . s1 . s0 = s. We describe an algorithm that constructs sk+1 from sk, k ∈ {0, . . . , n− 1}.

102 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

Define B1 = ∅ and Bk+1 = {e ∈ Esk | e �sk possk(k)}. Define Ak+1 = {e ∈ Esk | possk(k +

1) �sk e and e 6= poss′(k + 1)}.

We can now describe the algorithm.

• If possk(k + 1) = poss′(k + 1), then sk+1 = sk

• If possk(k + 1) 6= poss′(k + 1), then sk+1 is defined as follows.

– Esk+1 = Esk

– λsk+1 = λsk

– xsk+1 = xsk

– �sk+1 is defined as follows, for all e, e′ ∈ Esk .

P1 If e, e′ ∈ Bk+1, then e �sk e′ ⇔ e �sk+1 e′.

P2 If e, e′ ∈ Ak+1, then e �sk e′ ⇔ e �sk+1 e′.

P3 If e ∈ Bk+1 and e′ ∈ Ak+1, then e �sk+1 e′.

P4 If e ∈ Bk+1, then e �sk+1 poss′(k + 1).

P5 If e ∈ Ak+1, then poss′(k + 1) �sk+1 e.

P6 poss′(k + 1) �sk+1 poss′(k + 1)

For each si, i ≤ n, we have the respective prefixes of si and s′ consisting of the first i events are

equal. The proof is a straightforward induction on the length of traces and is omitted.

Most of the proof that sk+1 is an asynchronous trace is routine and omitted. Assuming sk

is an asynchronous trace, we verify that (∀e, e′ ∈ Esk+1)(e xsk+1 e′ ⇒ e �sk+1 e′). We have

e xsk+1 e′ ∴ e xsk e′ ∴ e �sk e′. We know e, e′ could be members of the following 3 sets Bk+1,

Ak+1, {poss′(k + 1)}. Note that Bk+1 ∪ Ak+1 ∪ {poss′(k + 1)} = Esk . We have the following

cases.

• If e, e′ ∈ Bk+1, then e �sk+1 e′ by (P1).

• If e, e′ ∈ Ak+1, then e �sk+1 e′ by (P2).

• If e ∈ Bk+1 and e′ ∈ Ak+1, then e �sk+1 e′ by (P3).

• If e ∈ Bk+1 and e′ = poss′(k + 1), then e �sk+1 e′ by (P4).

5.2. ASYNCHRONOUS PROCESSES 103

• If e = poss′(k + 1) and e′ ∈ Ak+1, then e �sk+1 e′ by (P5).

• If e ∈ Ak+1 and e′ ∈ Bk+1, then possk(k + 1) �sk e and e′ �sk possk(k) so since �sk is

transitive, e′ �sk e. However, we also have e �sk e′; since �sk is antisymmetric, e = e′.

This contradicts e xsk e′.

• If e = poss′(k + 1) and e′ ∈ Bk+1, then e′ �sk possk(k). Since possk(k) �sk poss′(k + 1), we

get e′ �sk e. We then follow the same reasoning as the previous case.

• If e ∈ Ak+1 and e′ = poss′(k + 1), then possk(k + 1) �sk e and e 6= poss′(k + 1). We have

e xsk e′ ∴ e xs e′ ∴ e xs′ e′. Since the prefixes of sk and s′ consisting of the first k events

are equal, then e ∈ Bk+1. This contradicts e ∈ Ak+1.

We will require the following facts in the sequel. Note that for any preorder �, there is an

associated strict partial order ≺, defined as a ≺ b if and only if a � b and b 6� a.

Fact 1. If e ≺sk e′ and k < pos−1
sk
(e) < pos−1

sk
(e′), then e ≺s e′.

The proof is by induction on k. The base case (k = 0) is trivial as s0 = s. For the inductive

step, let e ≺sk+1 e′ and k + 1 < pos−1
sk+1

(e) < pos−1
sk+1

(e′). If sk+1 = sk, then we apply the inductive

hypothesis. Otherwise, we find that possk+1(k + 1) ≺sk+1 e ≺sk+1 e′. So, poss′(k + 1) ≺sk+1 e ≺sk+1

e′. From the definition of �sk+1 , we get e, e′ ∈ Ak+1. Using (P2) yields e ≺sk e′. By definition of

Ak+1, we also find that k < pos−1
sk
(e) < pos−1

sk
(e′). We then apply the induction hypothesis.

Fact 2. If possk+1(k+ 1) is an output, then all events in {possk(i) | k+ 1 ≤ i < pos−1
sk
(possk+1(k+

1))} are outputs.

The proof is as follows. Suppose to the contrary that an event e0 at position i in sk, such

that k + 1 ≤ i < pos−1
sk
(possk+1(k + 1)), is an input. Using Fact 1, e0 �s possk+1(k + 1). We

also know that the respective prefixes of sk and s′ consisting of the first k events are equal

and possk+1(k + 1) = poss′(k + 1). Since e0 6= possk+1(k + 1) and k + 1 ≤ pos−1
sk
(e0), it follows

that possk+1(k + 1) �s′ e0. In summary, we have e0 �s possk+1(k + 1) and e0 is an input and

possk+1(k + 1) is an output and e0 6�s′ possk+1(k + 1). This contradicts s′ .0 s.

We can now verify that sk+1 . sk. The bijection between Esk and Esk+1 is the identity. The

event at position k + 1 in sk+1 occurs at position x in sk where k + 1 ≤ x ≤ n. If possk+1(k + 1)

104 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

is an input, then making it earlier is consistent with .sm. If it is an output, then all events in

E0 = {possk(i) | k + 1 ≤ i < x} are outputs by Fact 2 and therefore making all events in E0 later

than possk+1(k + 1) is consistent with .; that is, if |E0| = m, there are m traces sj, j ∈ {1, . . . , m}

such that sk+1 = sm .sm sm−1 .smsm s1 .sm sk.

Now, we prove the right to left implication. Let s′ . s. Without loss of generality, we

assume the bijection in Definition 5.31 is an identity, i.e. Es = Es′ , λs = λs′ and xs = xs′ . From

s′ . s, we know that there are n traces si, i ∈ {1, . . . , n} such that s′ = sn .sm sn−1 .smsm

s1 .sm s0 = s. Again, without loss of generality, we assume the bijection between each si and

si+1 is an identity. We need to verify that the conditions of Definition 5.32 hold. It is sufficient

to show that: if e �si e′ and e is an input and e′ is an output, then e �si+1 e′. This follows from

Definition 5.31. �

In the sequel, we use the preorders . and .0 interchangeably.

Another requirement that asynchronous processes must satisfy is O-completeness. This con-

dition, used in the game model of asynchronous concurrency [GM08], models the fact that the

environment (or the Opponent in the terminology of Game Semantics) cannot be controlled.

Therefore, the process should expect any legal input at any time.

Definition 5.34 (O-completeness). A process σ : A consisting of asynchronous traces is O-complete

if the following condition holds. If s ∈ σ and there is t ∈ Γ(A) such that s is a prefix of t and dte =

dse · i, where i is an input, then t ∈ σ.

It is convenient to define an O-extension preorder0 on Γ(A) as the least reflexive and transi-

tive relation satisfying for asynchronous traces s and t, t 0 s if s is a prefix of t and dte = dse · i,

where i is an input.

We can now introduce asynchronous processes.

Definition 5.35 (Asynchronous process). An asynchronous process over signature A is a nonempty,

O-complete, prefix and .-downward closed set of asynchronous traces.

Processes that are .-closed are said to be saturated.

Interaction and composition of asynchronous processes are defined in the same way as for

causal processes. The only difference is that we require interaction traces to be asynchronous;

5.2. ASYNCHRONOUS PROCESSES 105

that is, we define the set intA(A, B, C) of interaction traces over A, B and C as Γ((A⇒ B)⇒ C).

The definition of tensor product of processes similarly only contains asynchronous interleav-

ings of traces.

Note that although all asynchronous processes are also morphisms in SynProcP, they do

not form a subcategory thereof. The identity for causal processes, in general, is synchronous,

instantly replicating any input at one end as an output on the other. Physically, it corresponds

to a set of wires directly connecting input and output. Conceptually, it is an instantaneous

version of the game semantic copycat strategy. Hence, the synchronous causal identity is not

an asynchronous process. However, asynchronous processes have their own notion of identity,

similar to the copycat strategy in asynchronous games [GM08].

Define Γalt(A) as the set of alternating asynchronous traces over A, i.e., those traces where

no two consecutive events have the same polarity.

Definition 5.36 (Alternating copycat). The alternating copycat over A, written ccA, is the set of

traces u ∈ Γalt(A⇒ A′) satisfying the following condition. There is an injection

iccopyu : {e ∈ Eu | π ◦ λu(e) = o} → {e ∈ Eu | π ◦ λu(e) = i}

assigning to each output an input copy such that for each output e ∈ Eu,

C1 iccopyu(e) �u e and there is no e′ ∈ Eu satisfying e′ 6= e and e′ 6= iccopyu(e) and iccopyu(e) �u

e′ �u e and

C2 λu(iccopyu(e)) = inl(a) iff λu(e) = inr(a) and λu(iccopyu(e)) = inr(a) iff λu(e) = inl(a)

and

C3 • if λu(e) ∈ IA or λu(iccopyu(e)) ∈ IA′ , then iccopyu(e) xu e

• if λu(e) 6∈ IA and λ(iccopyu(e)) 6∈ IA′ , then there are e1, e2 ∈ Eu such that e1 xu e and

e2 xu iccopyu(e) and e1 = iccopyu(e2).

Note that for each u ∈ Γalt(A⇒ A′), if iccopyu exists, it is necessarily unique by (C1).

The copycat is adapted to the asynchronous framework by allowing the output to be de-

layed.

106 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

Definition 5.37 (Asynchronous identity). The asynchronous identity on A is the set of all asyn-

chronous traces u on A⇒ A′ for which there exists an injection

icopyu : {e ∈ Eu | π ◦ λu(e) = o} → {e ∈ Eu | π ◦ λu(e) = i}

assigning to each output an input copy such that for each output e ∈ Eu,

I1 icopyu(e) �u e and

I2 λu(icopyu(e)) = inl(a) iff λu(e) = inr(a) and λu(icopyu(e)) = inr(a) iff λu(e) = inl(a)

and

I3 • if λu(e) ∈ IA or λu(icopyu(e)) ∈ IA′ , then icopyu(e) xu e

• if λu(e) 6∈ IA and λ(icopyu(e)) 6∈ IA′ , then there are e1, e2 ∈ Eu such that e1 xu e and

e2 xu icopyu(e) and e1 = icopyu(e2).

Note that the inverse of icopyu is a partial function, denoted by ocopyu, that maps inputs

to their output copies.

Theorem 5.38. Asynchronous processes form a closed symmetric monoidal category that we call AsyProc.

The proof is detailed in the next section.

5.2.1 A Category of Asynchronous Processes

Intuitively, the category AsyProc is equivalent to the full subcategory of G—the category of

multi-threaded saturated strategies [GM08, pp. 14–18]—whose objects consist of questions

only.

We first show that composition is well-defined.

Lemma 5.39. Composition preserves saturation.

Proof. A similar result appears in [GM08]. We adopt the same strategy here. We need to show

that if v′ . v and v ∈ σ; τ, then v′ ∈ σ; τ. By Definition 5.31, we know that v′ . v implies

5.2. ASYNCHRONOUS PROCESSES 107

there are traces vi, i ∈ {1, . . . , n− 1} such that v′ = vn .sm vn−1 .smsm v1 .sm v. So, it is

sufficient to show: if v′ .sm v and v ∈ σ; τ, then v′ ∈ σ; τ

In the following, i is an input event, o is an output event, e is an arbitrary event, and uB is a

sequence of B-events.

1. Let v = v1 · e · i · v2 ∈ σ; τ. It follows that there exists u = u1 · e · uB · i · u2 ∈ σ τ satisfying

u � A + C = v and u1 � A + C = v1 and u2 � A + C = v2. Making i earlier in uB still

results in interaction traces. This is possible because σ and τ are saturated. So, if i is a

C-event we call upon τ and if it is an A-event we use σ. Moreover, if i is a C-event, it

cannot be caused by B-events, and if it is an A-event, it still cannot be caused by B-events

because it is an input. Hence, u = u1 · e · i · uB · u2 ∈ σ τ. At this point, if both e and i

are A-events (respectively C-events) and e 6x i, then by the saturation of σ (respectively

τ), we get u1 · i · e · uB · u2 ∈ σ τ. Otherwise, u1 · i · e · uB · u2 ∈ σ τ, by the definition of

interaction (Definition 3.12). We conclude that, in all cases, v1 · i · e · v2 ∈ σ; τ.

2. Let v = v1 · o · e · v2 ∈ σ; τ. It follows that there exists u = u1 · o · uB · e · u2 ∈ σ τ

satisfying u � A + C = v and u1 � A + C = v1 and u2 � A + C = v2. Making o later in uB

still results in interaction traces. This is possible because σ and τ are saturated. So, if o is

a C-event we call upon τ and if it is an A-event we use σ. Moreover, if o is a A-event, it

cannot cause B-events, and if it is an C-event, it still cannot cause B-events because it is

an output. Hence, u = u1 · uB · o · e · u2 ∈ σ τ. At this point, if both o and e are A-events

(respectively C-events) and o 6x e, then by the saturation of σ (respectively τ), we get

u1 · uB · e · o · u2 ∈ σ τ. Otherwise, u1 · uB · e · o · u2 ∈ σ τ, by the definition of interaction

(Definition 3.12). We conclude that, in all cases, v1 · e · o · v2 ∈ σ; τ. �

Lemma 5.40. If σ : A → B and τ : B → C are asynchronous processes, then σ; τ is an asynchronous

process.

Proof. We need to check that σ; τ is prefix-closed, saturated and O-complete. The proof that σ; τ

is prefix-closed is exactly like the proof of Lemma 5.15. We have proved that σ; τ is saturated

in Lemma 5.39. We now prove that σ; τ is O-complete.

Let v ∈ σ; τ. Suppose u ∈ σ τ such that u � A+C = v. So, u � A+ B ∈ σ and u � B+C ∈ τ.

108 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

Let w = v · i ∈ Γ(A ⇒ C). By definition of asynchronous trace, we have the following

cases.

1. There is an event e′ ∈ Ev such that e′ xw i and λw(e′) `A⇒C λw(i). If i is a C-event then

(u � B + C) · i ∈ Γ(B ⇒ C) because e′ ∈ Ev ⇔ e′ ∈ Eu�B+C and e′ xw i ⇔ e′ xu�B+C·i i

and λw(e′) `A⇒C λw(i) ⇔ λu�B+C·i(e′) `B⇒C λu�B+C·i(i). Since τ is O-complete, we have

(u � B + C) · i ∈ τ. So, u · i ∈ σ τ. Finally, we get v · i ∈ σ; τ. If i is an A-event, there are

two cases.

• If e′ is an A-event we use the same reasoning as the first case and the fact that σ is

O-complete.

• If e′ is a C-event, then, by definition of interaction, there is a B-event b such that

e′ xu�B+C b and b xu�A+B·i i. We then use the same reasoning as the previous case.

2. Or i is initial. If i is an A-event, we use the fact that σ is O-complete. If i is an C-event, we

use the fact that τ is O-complete. �

Most required proofs are exactly the same as those we presented for SynProcP. In particu-

lar, the proof of associativity of composition uses the same strategy as the proof of Lemma 5.20.

However, we use the following variant of Lemma 3.26 and Lemma 5.17.

Lemma 5.41. Let s be an asynchronous interaction trace over intA(A, B, C) and t be an asynchronous

trace over C → D. We have (s �A+C
B) t = (s t) �A+C+D

B .

Proof. First, we prove (s �A+C
B) t ⊆ (s t) �A+C+D

B . Let u ∈ (s �A+C
B) t; that is, u ∈ intA(A, C, D)

and u � A + C = s � A + C and u � C + D = t. To show that u ∈ (s t) �A+C+D
B , we construct a

trace v ∈ intA(A, B, C, D) such that v � A+C+ D = u and v � A+ B+C = s and v � C+ D = t

as follows.

Without loss of generality, we assume that Es�A+C = Eu�A+C. This allows us to simplify the

proof by avoiding trace equivalence maps.

We define the trace v exactly as in the proof of Lemma 5.17.

• Ev = Eu�A + Es�B + Eu�C + Eu�D. In the sequel, we will omit injections on events; for

example, we will write e where it should be inj(e), j ∈ {1, 2, 3, 4}. This is possible because

5.2. ASYNCHRONOUS PROCESSES 109

the sets Eu�A, Es�B, Eu�C and Eu�D are disjoint. It should improve readability at the cost of

abusing notation.

• λv = λu�A + λs�B + λu�C + λu�D

• We define �v in two steps. Let �1 be the relation satisfying the following.

P1 (∀e, e′ ∈ Eu�A + Eu�C + Eu�D)(e �u e′ ⇔ e �1 e′)

P2 (∀e, e′ ∈ Eu�A + Es�B + Eu�C)(e �s e′ ⇔ e �1 e′)

Note that the only events that are not comparable using �1 are B-events with respect to

D-events. We define a second relation �2 as follow. For all e ∈ Es�B and e′ ∈ Eu�D

P3 (∃e′′ ∈ Ev)(e′ �1 e′′ and e′′ �1 e) if and only if e′ �2 e

P4 (∃e′′ ∈ Ev)(e �1 e′′ and e′′ �1 e′) or (∀e′′ ∈ Ev)
(
(e 6�1 e′′ or e′′ 6�1 e′) and (e′ 6�1

e′′ or e′′ 6�1 e)
)

if and only if e �2 e′

We then set �v to be the union of �1 and �2.

• We define xv as follows. For all e, e′ ∈ Ev,

J1 if e, e′ ∈ Es�A, then e xv e′ ⇔ e xs e′ ⇔ e xu e′.

J2 if e, e′ ∈ Es�B, then e xv e′ ⇔ e xs e.

J3 if e, e′ ∈ Es�C, then e xv e′ ⇔ e xs e′ ⇔ e xu e′.

J4 if e, e′ ∈ Es�D, then e xv e′ ⇔ e xu e′.

J5 if e ∈ Es�B and e′ ∈ Es�A, then e xv e′ ⇔ e xs e′.

J6 if e ∈ Es�C and e′ ∈ Es�B, then e xv e′ ⇔ e xs e′.

J7 if e ∈ Eu�D and e′ ∈ Eu�C, then e xv e′ ⇔ e xu e′.

J8 The only pointers in xv are those specified by (J1)–(J7); that is, if [e ∈ Eu�D and

e′ ∈ Es�B] or [e ∈ Eu�D and e′ ∈ Es�A] or [e ∈ Es�C and e′ ∈ Eu�D] or [e ∈ Es�C and

e′ ∈ Es�A] or [e ∈ Es�B and e′ ∈ Eu�D] or [e ∈ Es�B and e′ ∈ Es�C] or [e ∈ Es�A and

e′ ∈ Eu�D] or [e ∈ Es�A and e′ ∈ Es�C] or [e ∈ Es�A and e′ ∈ Es�B], then e 6xv e′.

We have shown in the proof of Lemma 3.26 that �v is a total preorder and that v has singular

events. We also proved that v is a justified in Lemma 5.17.

110 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

We only need to verify that �v is antisymmetric; i.e., for all e, e′ ∈ Ev, if e �v e′ and e′ �v

e, then e = e′. The proof is by case analysis. There are sixteen cases corresponding to the

label assignments of e and e′. Cases (A, A), (A, B), (A, C), (A, D), (B, A), (B, B), (B, C), (C, A),

(C, B), (C, C), (C, D), (D, A), (D, C), (D, D) are similar, so we only prove it for the case where

λv(e), λv(e′) ∈ LA. We have e �v e′ ⇔ e �1 e′ ⇔ e �s e′ by (P1). Similarly, e′ �v e⇔ e′ �1 e⇔

e′ �s e by (P1). We get e �s e′ and e′ �s e. So, e = e′ because �s is antisymmetric.

The remaining two cases are symmetric so we only consider one of them. Let λv(e) ∈ LB

and λv(e′) ∈ LD. We have

• e �v e′ ⇔ e �2 e′ iff

– (∃e0 ∈ Ev)(e �1 e0 and e0 �1 e′) (let us refer to this by (?)) or

– (∀e′′ ∈ Ev)
(
(e 6�1 e′′ or e′′ 6�1 e′) and (e′ 6�1 e′′ or e′′ 6�1 e)

)
(let us refer to this by

(N))

• e′ �v e⇔ e′ �2 e⇔ (∃e1 ∈ Ev)(e′ �1 e1 and e1 �1 e) (let us refer to this by (�))

We have (N) and (�) is a contradiction. Suppose (?) and (�). We have (?)⇔ (∃e0 ∈ Ev)(e �s

e0 and e0 �u e′) and (�) ⇔ (∃e1 ∈ Ev)(e′ �u e1 and e1 �s e). We also have e0, e1 ∈ Eu�A+C =

Es�A+C. Since �s and �u are total orders, we have either e0 �s e1 and e0 �u e1 or e1 �s e0 and

e1 �u e0. It follows that e �s e0 �s e1 and e0 �s e1 �s e or e1 �u e0 �u e′ and e′ �u e1 �u e0,

both of which are contradictions.

The rest of the proof is similar to Lemma 5.17. �

We will now present the lemmas related to the identity and saturation.

Lemma 5.42. The alternating copycat is contained within the identity, i.e. ccA ⊆ idA.

The proof is immediate from Definition 5.36.

Lemma 5.43. The asynchronous identity is an asynchronous process.

Proof. The fact that the identity is prefix-closed and O-complete follows directly from its defi-

nition. We prove that the identity is saturated.

5.2. ASYNCHRONOUS PROCESSES 111

Suppose s ∈ idA and s′ . s; that is, there is a bijection φ : Es → Es′ such that the following

conditions hold.

S1 λs = λs′ ◦ φ

S2 (∀e, e′ ∈ Es)(e xs e′ if and only if φ(e) xs′ φ(e′))

S3 If e �s e′ and e is an input and e′ is an output, then φ(e) �s′ φ(e′)

We set icopys′(e) = φ(icopys(φ
−1(e))). We need to prove that s′ with icopys′ satisfies con-

ditions (I1)–(I3) of Definition 5.37. Take an output e in s′ and let e′ = icopys(φ
−1(e)). So,

icopys′(e) = φ(e′).

• We first show that icopys′(e) �s′ e. We have by Definition 5.37, icopys(φ
−1(e)) �s φ−1(e).

So, e′ �s φ−1(e). Since e′ is an input and φ−1(e) is an output, we use (S3) to find φ(e′) �s

φ(φ−1(e)). Hence, icopys′(e) �s′ e.

• We have λs(e′) = inl(a) iff λs(φ−1(e)) = inr(a), a ∈ LA. By (S1), λs(e′) = inl(a) iff

λs′(φ(e′)) = inl(a) and λs(φ−1(e)) = inr(a) iff λs′(e) = inr(a). So, λs′(φ(e′)) = inl(a) iff

λs′(e) = inr(a). Using the same reasoning, we can prove λs′(φ(e′)) = inr(a) iff λs′(e) =

inl(a).

• Let λs′(φ(e′)) ∈ IA′ or λs′(e) ∈ IA. By (S1), we get λs(e′) ∈ IA′ or λs(φ−1(e)) ∈ IA. Since

s ∈ idA, we use (I3) in Definition 5.37 to obtain e′ xs φ−1(e). We then use (S2) to find

φ(e′) xs′ e.

• Let λs′(φ(e′)) 6∈ IA′ and λs′(e) 6∈ IA. By (S1), we get λs(e′) 6∈ IA′ and λs(φ−1(e)) 6∈ IA.

Since s ∈ idA, we use (I3) in Definition 5.37 to find that there are e1, e2 ∈ Es such that e1 xs

e′ and e2 xs φ−1(e) and e2 = icopys(e1). We then use (S2) to find φ(e1) xs′ φ(e′) and

φ(e2) xs′ e and icopys′(φ(e1)) = φ(icopys(φ
−1(φ(e1)))) = φ(icopys(e1)) = φ(e2). �

Lemma 5.44. Let σ : A→ B be an asynchronous process and ccB : B→ B′ be the alternating copycat

over B. If u ∈ σ ccB and u � B + B′ has even length, then u � A + B′ .0 u � A + B.

Proof. Let u ∈ σ ccB and u � B + B′ has even length. Following Definition 5.32, we first need

to provide a bijection φ : Eu�A+B → Eu�A+B′ such that λu�A+B = λu�A+B′ ◦ φ and (∀e, e′ ∈

Eu�A+B)(e xu�A+B e′ if and only if φ(e) xu�A+B′ φ(e′)).

112 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

Define ccopy = iccopyu�B+B′ ∪ iccopy−1
u�B+B′ . Note that the domains of iccopyu�B+B′ and

iccopy−1
u�B+B′ are disjoint and so are their codomains. Moreover, the domain and codomain of

ccopy is equal to Eu�B+B′ . By Definition 5.36 (copycat), we know that the input copy of each

output in u � B + B′ is the event that directly precedes it. Since u � B + B′ has even length,

its last event is an output, and so each input has an output copy. Therefore, iccopy−1
u�B+B′ is an

injection. So, ccopy is a bijection. Additionally, note that ccopy is an involution.

Define φ : Eu�A+B → Eu�A+B′ as follows, for all e ∈ Eu�A+B.

φ(e) =

e if λu(e) ∈ LA

ccopy(e) if λu(e) ∈ LB.

Its inverse φ−1 is defined as follows, for all e ∈ Eu�A+B′ .

φ−1(e) =

e if λu(e) ∈ LA

ccopy(e) if λu(e) ∈ LB′ .

It is clear that φ is a bijection.

We first prove that λu�A+B = λu�A+B′ ◦ φ. Let e ∈ Eu�A+B. If λu�A+B(e) ∈ LA, then φ(e) = e.

We have λu�A+B(e) = a ∈ LA ∴ λu(e) = a ∴ λu�A+B′(e) = a ∴ λu�A+B′(φ(e)) = a. If

λu�A+B(e) ∈ LB, then φ(e) = ccopy(e). We have λu�A+B(e) = b ∈ LB ∴ λu(e) = inl(inr((b)) ∴

λu�B+B′(e) = inl(b). Using Definition 5.36 (copycat), we get λu�B+B′(ccopy(e)) = inr(b) ∴

λu(φ(e)) = inr(b) ∴ λu�A+B′(φ(e)) = b.

Next we show that (∀e, e′ ∈ Eu�A+B)(e xu�A+B e′ ⇔ φ(e) xu�A+B′ φ(e′)). For the left to

right implication, suppose e, e′ ∈ Eu�A+B and e xu�A+B e′. We have the following cases.

• If λu(e), λu(e′) ∈ LA, then φ(e) = e and φ(e′) = e′. We have e xu�A+B e′ ∴ e xu e′ ∴

e xu�A+B′ e′ ∴ φ(e) xu�A+B′ φ(e′).

• If λu(e), λu(e′) ∈ LB, then φ(e) = ccopy(e) and φ(e′) = ccopy(e′). We have e xu�A+B e′ ∴

e xu e′ ∴ e xu�B+B′ e′. We then have the following two cases.

– Let e be an input and e′ be an output in u � B + B′. Using Definition 5.36, e xu�B+B′

5.2. ASYNCHRONOUS PROCESSES 113

e′ ∴ iccopy−1(e) xu�B+B′ iccopy(e′). So, ccopy(e) xu�B+B′ ccopy(e′) ∴ φ(e) xu

φ(e′) ∴ φ(e) xu�A+B′ φ(e′).

– Let e be an output and e′ be an input in u � B + B′. Using Definition 5.36, e xu�B+B′

e′ ∴ iccopy(e) xu�B+B′ iccopy−1(e′). So, ccopy(e) xu�B+B′ ccopy(e′) ∴ φ(e) xu

φ(e′) ∴ φ(e) xu�A+B′ φ(e′).

• If λu(e) ∈ LB and λu(e′) ∈ LA, then φ(e) = ccopy(e) and φ(e′) = e′. From e xu�A+B e′ ∴

e xu e′, we know e is initial in B and e′ is initial in A. By Definition 5.36, iccopy(e) xu�B+B′

e. So, ccopy(e) xu�B+B′ e ∴ φ(e) xu e. By definition of composition, we get φ(e) xu�A+B′

e′ and hence φ(e) xu�A+B′ φ(e′).

For the right to left implication, suppose e, e′ ∈ Eu�A+B and φ(e) xu�A+B′ φ(e′).

• If λu(e), λu(e′) ∈ LA, then φ(e) = e and φ(e′) = e′. We have φ(e) xu�A+B′ φ(e′) ∴

φ(e) xu φ(e′) ∴ φ(e) xu�A+B φ(e′) ∴ e xu�A+B e′.

• If λu(e), λu(e′) ∈ LB, then φ(e) = ccopy(e) and φ(e′) = ccopy(e′). We have φ(e) xu�A+B′

φ(e′) ∴ φ(e) xu φ(e′) ∴ φ(e) xu�B+B′ φ(e′). We then have the following two cases.

– Let φ(e) be an input and φ(e′) be an output in u � B + B′. Using Definition 5.36,

φ(e) xu�B+B′ φ(e′)∴ iccopy−1(φ(e)) xu�B+B′ iccopy(φ(e′)). So, ccopy(φ(e)) xu�B+B′

ccopy(φ(e′)) ∴ φ−1(φ(e)) xu φ−1(φ(e′)) ∴ e xu�A+B′ e′.

– Let φ(e) be an output and φ(e′) be an input in u � B + B′. Using Definition 5.36,

φ(e) xu�B+B′ φ(e′) ∴ iccopy(φ(e)) xu�B+B′ iccopy−1(φ(e′)). So, ccopy(φ(e)) xu�B+B′

ccopy(φ(e′)) ∴ φ−1(φ(e)) xu φ−1(φ(e′)) ∴ e xu�A+B′ e′.

• If λu(e) ∈ LB and λu(e′) ∈ LA, then φ(e) = ccopy(e) and φ(e′) = e′. From φ(e) xu�A+B′

φ(e′), we know φ(e) is initial in B′ and e′ is initial in A. By the definition of compo-

sition, there exists e0 such that φ(e) xu�B+B′ e0 and e0 xu�A+B e′. By Definition 5.36,

φ(e) xu�B+B′ iccopy−1(φ(e)) ∴ φ(e) xu�B+B′ ccopy(φ(e)) ∴ φ(e) xu�B+B′ φ−1(φ(e)) ∴

φ(e) xu�B+B′ e. So, e = e0 and therefore e xu�A+B e′.

Now, we show that the third condition in Definition 5.32 holds, i.e. for all e, e′ ∈ Eu�A+B if

e �u�A+B e′ and e is an input and e′ is an output, then φ(e) �u�A+B′ φ(e′). Let e �u�A+B e′ and e

be an input and e′ be an output. We have the following cases.

114 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

• If e, e′ ∈ Eu�A, then φ(e) = e and φ(e′) = e′. We have e �u�A+B e′ ∴ e �u e′ ∴ e �u�A+B′

e′ ∴ φ(e) �u�A+B′ φ(e′).

• If e, e′ ∈ Eu�B, then φ(e) = ccopy(e) and φ(e′) = ccopy(e′). We have e �u�A+B e′ ∴

e �u e′ ∴ e �u�B+B′ e′ ∴ ccopy(e) �u�B+B′ ccopy(e′) [since ccopy(e) �u�B+B′ e and

e′ �u�B+B′ ccopy(e′)] ∴ ccopy(e) �u ccopy(e′) ∴ φ(e) �u φ(e′).

• If e ∈ Eu�A and e′ ∈ Eu�B, then φ(e) = e and φ(e′) = ccopy(e′). We have e �u�A+B

e′ ∴ e �u e′ ∴ e �u ccopy(e′) [since e′ �u�B+B′ ccopy(e′)] ∴ e �u�A+B′ ccopy(e′) ∴

φ(e) �u�A+B′ φ(e′).

• If e ∈ Eu�B and e′ ∈ Eu�A, then φ(e) = ccopy(e) and φ(e′) = e′. We have e �u�A+B e′ ∴

e �u e′ ∴ ccopy(e) �u e′ [since ccopy(e) �u�B+B′ e] ∴ ccopy(e) �u�A+B′ e′ ∴ φ(e) �u�A+B′

φ(e′). �

Corollary 5.45. Let σ : A → B be an asynchronous process and ccB : B → B′ be the alternating

copycat over B. If u ∈ σ ccB and u � B + B′ has even length, then u � A + B′ . u � A + B.

Proof. Let u ∈ σ ccB and u � B + B′ has even length. Using Lemma 5.44, we find u � A + B′ .0

u � A + B. We then use Lemma 5.33 to conclude that u � A + B′ . u � A + B. �

We need the following ancillary notions in the sequel.

Definition 5.46. Define the preorder .int on intA(A, B, C) as the relation satisfying u′ .int u when

u � B = u′ � B and there is a bijection φ : Eu → Eu′ such that the following conditions hold.

1. λu = λu′ ◦ φ

2. (∀e, e′ ∈ Eu)(e xu e′ if and only if φ(e) xu φ(e′))

3. If e �u e′ and [e is a C-input or a B-input] and [e′ is a C-output or a B-output], then φ(e) �u′

φ(e′)

4. If e �u e′ and [e is a B-output or an A-output] and [e′ is a B-input or an A-input], then φ(e) �u′

φ(e′)

5.2. ASYNCHRONOUS PROCESSES 115

Definition 5.47. Define the preorder0int on intA(A, B, C) as the least reflexive and transitive relation

satisfying for asynchronous traces u and u′, u 0 u′ when u is a prefix of u′ and du′e = due · e, where e

is a C-input or an A-output.

In the previous two definitions, we want the preorders to be consistent with the saturation

and O-extension preorders on Γ(A ⇒ B). This accounts for the change in the polarity of A-

events.

We can now state the following lemmas.

Lemma 5.48. Let u and u′ be interaction traces in intA(A, B, C) and u0, u′0 ∈ Γ(A ⇒ C) such that

u � A + C = u0 and u′ � A + C = u′0. If u .int u′, then u0 . u′0.

Lemma 5.49. Let u and u′ be interaction traces in intA(A, B, C) and u0, u′0 ∈ Γ(A ⇒ C) such that

u � A + C = u0 and u′ � A + C = u′0. If u 0int u′, then u0 0 u′0.

Lemma 5.50. Let u and u′ be interaction traces in intA(A, B, C). If u 4 u′, then u � A + C 4 u′ �

A + C.

Lemma 5.51. The asynchronous identity is an identity to asynchronous processes.

Proof. Let σ : A→ B be an asynchronous process and idB : B→ B′.

We first prove σ ⊆ σ; idB. Let s ∈ σ. We will find an interaction trace u ∈ intA(A, B, B′) such

that u � A + B = s and u � B + B′ ∈ idB and u � A + B′ = s. Let u be defined as follows.

• Eu = Es�A + Es�B + Es�B. Let us refer to these subsets using injections in1 : Es�A → Eu,

in2 : Es�B → Eu and in3 : Es�B → Eu.

• λu = λs�A + λs�B + λs�B

• The preorder �u is defined as follows. For all e, e′ ∈ Es,

P1 if e, e′ ∈ Es�A, then e �s e′ ⇔ in1(e) �u in1(e′)

P2 if e ∈ Es�A and e′ ∈ Es�B, then [e �s e′ ⇔ in1(e) �u in2(e′)⇔ in1(e) �u in3(e′)]

P3 if e ∈ Es�B and e′ ∈ Es�A, then [e �s e′ ⇔ in2(e) �u in1(e′)⇔ in3(e) �u in1(e′)]

P4 if e, e′ ∈ Es�B and e 6= e′, then [e �s e′ ⇔ in2(e) �u in2(e′) ⇔ in3(e) �u in3(e′) ⇔

in2(e) �u in3(e′)⇔ in3(e) �u in2(e′)]

116 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

P5 e ∈ Es�B ⇔ in2(e) �u in2(e)⇔ in3(e) �u in3(e)

P6 e ∈ Es�B and π ◦ λs(e) = i⇔ in3(e) �u in2(e)

P7 e ∈ Es�B and π ◦ λs(e) = o ⇔ in2(e) �u in3(e)

• The function xu is defined as follows. For all e, e′ ∈ Es,

J1 if e, e′ ∈ Es�A, then e xs e′ ⇔ in1(e) xu in1(e′)

J2 if e ∈ Es�B and e′ ∈ Es�A, then e xs e′ ⇔ in2(e) xu in1(e′)

J3 if e, e′ ∈ Es�B, then [e xs e′ ⇔ in2(e) xu in2(e′)⇔ in3(e) xu in3(e′)]

J4 λs(e) ∈ IB ⇔ in3(e) xu in2(e)

J5 The only pointers in xu are those specified by (J1)–(J4); that is,

– if e ∈ Es�A and e′ ∈ Es�B, then [in1(e) 6xu in2(e′) and in1(e) 6xu in3(e′)],

– if e ∈ Es�B, then in2(e) 6xu in3(e′),

– if e ∈ Es�B and e′ ∈ Es�A, then in3(e) 6xu in1(e′).

We first argue that �u is a total order. As �s is reflexive, (P1) and (P5) ensure that �u is

reflexive too. Because �s is total, �u is total as every two events are comparable: A-events are

comparable with A-events by (P1); A-events are comparable with B-events by (P2) and (P3); A-

events are comparable with B′-events by (P2) and (P3); B-events are comparable with B-events

by (P4) and (P5); B-events are comparable with B′-events by (P4), (P6) and (P7); and B′-events

are comparable with B′-events by (P4) and (P5). Next, we show that �u is transitive. The proof

can be achieved via a long case analysis (27 cases). We will consider all cases at once by using

subscript variables. Let inj(e1) �u ink(e2) and ink(e2) �u inl(e3) where j, k, l ∈ {1, 2, 3}. By

definition of �u, we have e1 �s e2 and e2 �s e3. Because �s is transitive, we get e1 �s e2. By

inspecting the definition of �u, we get inj(e1) �u inl(e3).

Next, we need to verify that �u is antisymmetric, i.e. for all e, e′ ∈ Eu, if e �u e′ and e′ �u

e ⇒ e = e′. The proof is by case analysis. There are nine cases corresponding to the label

assignments of e, e′.

1. λ(e) ∈ LA and λ(e′) ∈ LA. By (P1), e �u e′ ⇔ in−1
1 (e) �s in−1

1 (e′) and e′ �u e ⇔

in−1
1 (e′) �s in−1

1 (e). Since �s is antisymmetric, we conclude that in−1
1 (e) = in−1

1 (e′) and

so e = e′.

5.2. ASYNCHRONOUS PROCESSES 117

2. λ(e) ∈ LA and λ(e′) ∈ LB. By (P2), e �u e′ ⇔ in−1
1 (e) �s in−1

2 (e′) and by (P3) e′ �u e ⇔

in−1
2 (e′) �s in−1

1 (e). Since �s is antisymmetric, we conclude that in−1
1 (e) = in−1

2 (e′). This

is a contradiction since in1 and in2 have disjoint domains.

3. λ(e) ∈ LA and λ(e′) ∈ LB′ . We follow the same reasoning as the second case.

4. λ(e) ∈ LB and λ(e′) ∈ LA. We follow the same reasoning as the second case.

5. λ(e) ∈ LB′ and λ(e′) ∈ LA. We follow the same reasoning as the second case.

6. λ(e) ∈ LB and λ(e′) ∈ LB′ . There are two cases.

• in−1
2 (e) 6= in−1

3 (e′). By (P4), e �u e′ ⇔ in−1
2 (e) �s in−1

3 (e′) and e′ �u e⇔ in−1
3 (e′) �s

in−1
2 (e). Since �s is antisymmetric, we conclude that in−1

2 (e) = in−1
3 (e′). This is a

contradiction since in−1
2 (e) 6= in−1

3 (e′).

• in−1
2 (e) = in−1

3 (e′). By (P7), e �u e′ ⇒ π(λ(in−1
2 (e))) = o and by (P6) e′ �u e ⇒

π(λ(in−1
2 (e))) = i thus leading to contradiction.

7. λ(e) ∈ LB′ and λ(e′) ∈ LB. We follows the same reasoning as the sixth case.

8. λ(e) ∈ LB and λ(e′) ∈ LB. There are two cases.

• in−1
2 (e) 6= in−1

2 (e′). By (P4), e �u e′ ⇔ in−1
2 (e) �s in−1

2 (e′) and e′ �u e⇔ in−1
2 (e′) �s

in−1
2 (e). Since �s is antisymmetric, we conclude that in−1

2 (e) = in−1
2 (e′). This is a

contradiction since in−1
2 (e) 6= in−1

2 (e′).

• in−1
2 (e) = in−1

2 (e′). So e = e′.

9. λ(e) ∈ LB′ and λ(e′) ∈ LB′ . We use the same strategy as the eighth case.

Next, we need to verify that u is justified, i.e. for all e ∈ Eu \ {e ∈ Eu | λu(e) ∈ IB′}, there is

e′ ∈ Eu such that e′ xu e.

• If e is an A-event, we use (J1) and (J2) and the fact that s is justified.

• If e is a noninitial B-event, we use (J3) and the fact that s is justified.

• If e is an initial B-event, we use (J4).

• If e is a noninitial B′-event, we use (J3) and the fact that s is justified.

118 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

Additionally, (J5) guarantees that xu is a function, i.e. no event is assigned more than one

cause.

Now, we show (∀e, e′ ∈ Eu)(e xu e′ ⇒ (e �u e and λu(e) ` λu(e′)). Suppose e xu e′. By

definition of xu, we have the following cases.

• If e, e′ ∈ Eu�A, then e xu e′ ∴ in−1
1 (e) xs in−1

1 (e′) by (J1) ∴ in−1
1 (e) �s in−1

1 (e′) ∴ e �u

e′ by (P1)

• If e, e′ ∈ Eu�B, then e xu e′ ∴ in−1
2 (e) xs in−1

2 (e′) by (J3) ∴ in−1
2 (e) �s in−1

2 (e′) ∴ e �u

e′ by (P4)

• If e, e′ ∈ Eu�B′ , then e xu e′ ∴ in−1
3 (e) xs in−1

3 (e′) by (J3) ∴ in−1
3 (e) �s in−1

3 (e′) ∴ e �u

e′ by (P4)

• If e ∈ Eu�B′ and e′ ∈ Eu�B, then e xu e′ ∴ in−1
3 (e) = in−1

2 (e) and λs(in−1
3 (e)) ∈ IB by (J4) ∴

π ◦ λs(in−1
3 (e)) = i ∴ e �u e′ by (P6)

• If e ∈ Eu�B and e′ ∈ Eu�A, then e xu e′ ∴ in−1
2 (e) xs in−1

1 (e) by (J2) ∴ in−1
2 (e) �s

in−1
1 (e) ∴ e �u e′ by (P3)

Note that in each case λu(e) ` λu(e′).

Finally, we show that u satisfies the conditions set out above, i.e. u � B + B′ ∈ idB and

u � A + B = s and u � A + B′ = s. For u � B + B′ ∈ idB, we show that u � B + B′ ∈ ccB. Let

iccopyu�B+B′(e) =

in3(in−1

2 (e)) if λu(e) ∈ lin2(B)

in2(in−1
3 (e)) if λu(e) ∈ lin3(B)

We verify that u � B + B′ with iccopyu�B+B′ satisfies the conditions of Definition 5.36. Let e be

an output in u � B + B′.

• We first show that iccopyu�B+B′(e) �u�B+B′ e. If e is a B′-event, then in−1
3 (e) ∈ Es and

iccopyu�B+B′(e) = in2(in−1
3 (e)). Note that if e is a B′-output in u � B+ B′ then in−1

3 (e) is an

output in s. By (P7), we have in2(in−1
3 (e)) �u in3(in−1

3 (e)). So, iccopyu�B+B′(e) �u e and

hence, iccopyu�B+B′(e) �u�B+B′ e. If e is a B-event, then in−1
2 (e) ∈ Es and iccopyu�B+B′(e) =

5.2. ASYNCHRONOUS PROCESSES 119

in3(in−1
2 (e)). Note that if e is a B-output in u � B + B′ then in−1

2 (e) is an input in s.

By (P6), we have in3(in−1
2 (e)) �u in2(in−1

2 (e)). So, iccopyu�B+B′(e) �u e and hence,

iccopyu�B+B′(e) �u�B+B′ e.

• We now show that there is no e′ ∈ Eu�B+B′ such that e′ 6= e and e′ 6= iccopyu�B+B′(e) and

iccopy(e) �u�B+B′ e′ �u�B+B′ e. Suppose to the contrary that there is e′ ∈ Eu�B+B′ such

that e′ 6= e and e′ 6= iccopyu�B+B′(e) and iccopy(e) �u�B+B′ e′ �u�B+B′ e. So, iccopy(e) �u

e′ �u e. We have the following cases.

– If e is a B′-event, then in−1
3 (e) ∈ Es and iccopyu�B+B′(e) = in2(in−1

3 (e)).

∗ If e′ is a B-event, then using (P4), we have iccopyu�B+B′(e) �u e′ ∴ in2(in−1
3 (e)) �u

e′ ∴ in−1
2 (in2(in−1

3 (e))) �s in−1
2 (e′) ∴ in−1

3 (e) �s in−1
2 (e′) and e′ �u e ∴

in−1
2 (e′) �s in−1

3 (e). Since �s is antisymmetric, we get in−1
2 (e′) = in−1

3 (e). We

use (P5) to find that in2(in−1
3 (e)) �u in2(in−1

2 (e′)) ∴ iccopyu�B+B′(e) �u e′ and

in3(in−1
3 (e)) �u in3(in−1

2 (e′)) ∴ e �u e′ and in2(in−1
2 (e′)) �u in2(in−1

3 (e)) ∴

e′ �u iccopyu�B+B′(e) and in3(in−1
2 (e′)) �u in3(in−1

3 (e)) ∴ e′ �u e. We then use

the fact that �u is antisymmetric to find that e = e′ = iccopyu�B+B′(e) which

contradicts our assumptions.

∗ If e′ is a B′-event, then using (P4), we have iccopyu�B+B′(e) �u e′ ∴ in2(in−1
3 (e)) �u

e′ ∴ in−1
2 (in2(in−1

3 (e))) �s in−1
3 (e′) ∴ in−1

3 (e) �s in−1
3 (e′) and e′ �u e ∴

in−1
3 (e′) �s in−1

3 (e). Since �s is antisymmetric, we get in−1
3 (e′) = in−1

3 (e). Since

in3 is injective, we conclude that e = e′ which contradicts our assumptions.

– If e is a B-event, we use the same reasoning as the previous case.

• The fact that u � B+ B′ with iccopyu�B+B′ satisfies condition (C2) of Definition 5.36 is clear

from the definition of λu.

• We verify that condition (C3) of Definition 5.36 holds.

– Suppose λu�B+B′(e) ∈ IB or λu�B+B′(iccopyu�B+B′(e)) ∈ IB′ . It follows that λs(in−1
2 (e)) ∈

IB. By (J4), in3(in−1
2 (e)) xu in2(in−1

2 (e)). Therefore, iccopyu�B+B′(e) xu e. Hence,

iccopyu�B+B′(e) xu�B+B′ e.

– Suppose λu�B+B′(e) 6∈ IB and λu�B+B′(iccopyu�B+B′(e)) 6∈ IB′ . Let e be a B-event.

By definition of λu, we have λs(in−1
2 (e)) 6∈ IB. Since s is justified, there is e′ ∈ Es

120 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

such that e′ xs in−1
2 (e). Using (J3), we get in2(e′) xu in2(in−1

2 (e)) ∴ in2(e′) xu

e ∴ in2(e′) xu�B+B′ e and in3(e′) xu in3(in−1
2 (e)) ∴ in3(e′) xu iccopyu�B+B′(e) ∴

in3(e′) xu�B+B′ iccopyu�B+B′(e). Since in3(e′) is an B′-output in u � B + B′, we get

iccopyu�B+B′(in3(e′)) = in2(in−1
3 (in3(e′))) = in2(e′). The case where e is a B′-event

is similar.

We briefly argue that u � A + B = s. We have Eu�A+B = Es�A + Es�B. There is a bijection

φ : Es → Eu�A+B defined as

φ(e) =

in1(e) if λs(e) ∈ inl(LA)

in2(e) if λs(e) ∈ inr(LB)

We need to prove that for all e, e′ ∈ Es, e �s e′ iff φ(e) �u�A+B φ(e′). We have e �s e′ ⇔

inj(e) �u ink(e′)⇔ inj(e) �u�A+B ink(e′) where j, k ∈ {1, 2}.

The proof that u � A + B′ = s is similar.

Next, we show the opposite inclusion, i.e. σ; idB ⊆ σ. It is sufficient to prove that for any

u ∈ intA(A, B, B′)

if u � A + B = s ∈ σ (5.1)

and u � B + B′ = t ∈ idB (5.2)

then u � A + B′ ∈ σ (5.3)

We will show that u � A + B′ is in the O, prefix and saturated closures of s. Suppose (5.1)

and (5.2) are true. In the following, let us call inputs e in Ew such that ocopyw(e) is undefined

pending.

1. Let u1 be a trace that is like u, but where all pending B′-inputs occur at the end of u1 in

the same order they occur in u; that is,

• Eu1 = Eu.

• λu1 = λu.

5.2. ASYNCHRONOUS PROCESSES 121

• xu1=xu.

• Define P′ = {e ∈ Eu | λu(e) ∈ LB′ and π ◦ λt(e) = i and ocopyt(e) is undefined}.

Let �u1 be defined by the following, for all e, e′ ∈ Eu.

P1.1 If e, e′ ∈ Eu \ P′, then e �u e′ ⇔ e �u1 e′.

P1.2 If e, e′ ∈ P′, then e �u e′ ⇔ e �u1 e′.

P1.3 If e ∈ Eu \ P′ and e′ ∈ P′, then e �u1 e′.

We can show that u1 is an asynchronous trace; the proof is omitted. We show that u .int

u1. First note that u � B = u1 � B. Define the bijection φ : Eu1 → Eu as the identity. We

have by definition of u1 that λu1 = λu and xu1=xu. For the last condition of Definition

5.46, let e �u1 e′.

• If [e is a B′-input or a B-input] and [e′ is a B′-output or a B-output], then e, e′ ∈ Eu1 \ P′

because e′ is not a B′-input and if e ∈ P′, then e �u1 e′ implies e′ ∈ P′ by (P1.2). Using

(P1.1), we find that e �u e′.

• If [e is a B-output or an A-output] and [e′ is a B-input or an A-input], then e, e′ ∈

Eu1 \ P′. Using (P1.1), we find that e �u e′.

Note that u1 � A + B = s. Applying Lemma 5.48 to u .int u1 we get u � A + B′ . u1 �

A + B′. Let us call this result (?).

2. Let u2 be a trace that is like u1, but where all pending B′-inputs are removed. It is clear

that u1 0int u2 and u2 � A + B = s. Applying Lemma 5.49 to u1 0int u2 we get u1 �

A + B′ 0 u2 � A + B′. Let us call this result (N).

3. Let u3 be a trace that is like u2, but where all pending B-inputs in u2 have output copies

concatenated at the end in the same order their input copies occur in u2; that is, define

P = {e ∈ Eu2 | λu2(e) ∈ LB and π ◦ λu2�B+B′(e) = i and ocopyu2�B+B′(e) is undefined}

and

• Eu3 = Eu2 + P.

• λu3 = λu2 + λu2 � P.

• Let �u3 be defined by the following, for all e, e′ ∈ Eu2 .

122 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

P3.1 If e, e′ ∈ Eu2 , then e �u2 e′ ⇔ in1(e) �u3 in1(e′).

P3.2 If e, e′ ∈ P, then e �u2 e′ ⇔ in2(e) �u3 in2(e′).

P3.3 If e ∈ Eu2 and e′ ∈ P, then in1(e) �u3 in2(e′).

• Let xu3 be defined by the following, for all e, e′ ∈ Eu2 .

J3.1 If e, e′ ∈ Eu2 , then e xu2 e′ ⇔ in1(e) xu3 in1(e′).

J3.2 e ∈ P and e0 xu2 e⇔ in1(icopyu2�B+B′(e0)) xu3 in2(e).

The proof that u3 is an asynchronous trace is omitted. It is clear that u2 4 u3 and u3 �

A + B = s. Note that u3 � B + B′ is of even length since each input has an output copy

and vice versa. Applying Lemma 5.50 to u2 4 u3 we get u2 � A + B′ 4 u3 � A + B′. Let

us call this result (•).

4. Let u4 be a trace that is like u3, but where each B′-output directly follows its input copy

in u4 and each B′-input directly precedes its output copy in u4; that is,

• Eu4 = Eu3 .

• λu4 = λu3 .

• xu4=xu3 .

• Define copy = icopyu3�B+B′ ∪ ocopyu3�B+B′ . We have copy is a well defined injection

because the domains of icopyu3�B+B′ and ocopyu3�B+B′ are disjoint, and so are their

codomains. Note that copy is an involution. The preorder �u4 is defined as follows.

For all e, e′ ∈ Eu3 ,

P4.1 if e, e′ ∈ Eu3�A, then e �u3 e′ ⇔ e �u4 e′

P4.2 if e ∈ Eu3�A and e′ ∈ Eu3�B, then [e �u3 e′ ⇔ e �u4 e′ ⇔ e �u4 copy(e′)]

P4.3 if e ∈ Eu3�B and e′ ∈ Eu3�A, then [e �u3 e′ ⇔ e �u4 e′ ⇔ copy(e) �u4 e′]

P4.4 if e, e′ ∈ Eu3�B and e 6= e′, then [e �u3 e′ ⇔ e �u4 e′ ⇔ copy(e) �u4 copy(e′) ⇔

copy(e) �u4 e′ ⇔ e �u4 copy(e′)]

P4.5 e ∈ Eu3�B and π ◦ λu3�B+B′(e) = i⇔ e �u4 copy(e)

P4.6 e ∈ Eu3�B and π ◦ λu3�B+B′(e) = o ⇔ copy(e) �u4 e.

We show that (∀e, e′ ∈ Eu4)(e xu4 e′ ⇒ e �u4 e′) via a case study on the labels of e, e′.

5.2. ASYNCHRONOUS PROCESSES 123

• If e, e′ ∈ Eu4�A, then e xu4 e′ ∴ e xu3 e′ ∴ e �u3 e′ as u3 is well-formed ∴ e �u4

e′ by (P4.1).

• If e, e′ ∈ Eu4�B, then e xu4 e′ ∴ e xu3 e′ ∴ e �u3 e′ as u3 is well-formed ∴ e �u4

e′ by (P4.4).

• e, e′ ∈ Eu4�B′ , then e xu4 e′ ∴ e xu3 e′. By Definition 5.37, copy(e) xu3 copy(e′) ∴

copy(e) �u3 copy(e′). By (P4.4), copy(copy(e)) �u4 copy(copy(e′)). So, e �u4 e′

since copy is involutary.

• e ∈ Eu4�B and e′ ∈ Eu4�A, then e xu4 e′ ∴ e xu3 e′ ∴ e �u3 e′ as u3 is well-formed ∴

e �u4 e′ by (P4.3).

• e ∈ Eu4�B′ and e′ ∈ Eu4�B, then e xu4 e′ ∴ e xu3 e′. By Definition 5.37, e =

icopyu3�B+B′(e
′). We then use (P4.6) to find that e �u4 e′.

• All other label assignments are impossible.

The rest of the proof that u4 is an asynchronous trace is omitted. We show that u3 .int u4.

Note that u3 � B = u4 � B. Define the bijection φ : Eu4 → Eu3 as the identity. We have by

definition of u4 that λu4 = λu3 and xu4=xu3 . For the last condition of Definition 5.46, let

e �u4 e′.

• If e is a B′-input and e′ is a B′-output, then by (P4.4), copy−1(e) �u3 copy−1(e′).

Since copy is involutary, copy(e) �u3 copy(e′). Since u3 � B+ B′ ∈ idB, we know that

icopyu3�B+B′(copy(e)) �u3�B+B′ copy(e) and copy(e′) �u3�B+B′ icopy−1
u3�B+B′(copy(e′)).

So, e �u3 e′.

• If e is a B′-input and e′ is a B-output, then by (P4.4), copy(e) �u3 e′. We use the fact

that icopyu3�B+B′(copy(e)) �u3 copy(e) to find that e �u3 e′.

• If e is a B-input and e′ is a B′-output, then by (P4.4), e �u3 copy(e′). We use the fact

that copy(e′) �u3�B+B′ icopy−1
u3�B+B′(copy(e′)) to find that e �u3 e′.

• If e is a B-input and e′ is a B-output, then by (P4.4), e �u3 e′.

• If [e is a B-output or an A-output] and [e′ is a B-input or an A-input], then we use the

same reasoning as the above four cases with (P4.1), (P4.2), (P4.3) or (P4.4) depending

on the labels of e and e′.

124 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

Applying Lemma 5.48 to u3 .int u4 we get u3 � A + B′ . u4 � A + B′. Let us call this

result (�). We also have u4 � B + B′ ∈ ccB because each input is directly followed by

its output copy, and u4 � A + B = s from (P4.1)–(P4.3). Using Corollary 5.45, we get

u4 � A + B′ . s. Let us call this result (H).

Putting together (?), (N), (•), (�) and (H) yields

u � A + B′ . u1 � A + B′ 0 u2 � A + B′ 4 u3 � A + B′ . u4 � A + B′ . s

Hence, u � A + B′ ∈ σ.

The proof that idA; σ = σ is similar. �

Lemma 5.52. If σ : A→ B and τ : C → D are asynchronous processes, then σ⊗ τ is an asynchronous

process.

Proof. To prove that σ ⊗ τ is prefix-closed, we use the same strategy as the proof of Lemma

5.15. For saturation, we follow the same strategy used in the proof of Lemma 5.39. Finally, the

proof that σ⊗ τ is O-complete is similar to the proof in Lemma 5.40. �

Lemma 5.53. Tensor preserves the identity, i.e., idA ⊗ idB = idA⊗B.

The proof follows directly from Definition 5.37.

5.3 Round Abstraction on Causal Processes

In this section, we will show that partial round abstraction is compositional in SynProcP. We

extend our definition of round abstraction to justified traces as follows.

Definition 5.54 (Round abstraction on justified traces). Let s and t be justified traces on A. We

say that t is a round abstraction of s, written s @− t, if there exists a bijection φ : Es → Et such that

〈Es, λs,xs〉 and 〈Et, λt,xt〉 are φ-isomorphic, i.e. λs = λt ◦ φ and xs = xt ◦ φ, and φ is monotonic

relative to temporal ordering, i.e. for any e, e′ ∈ Es, if e �s e′, then φ(e) �t φ(e′).

We define partial round abstraction on causal and asynchronous processes exactly as we

defined it on processes.

5.3. ROUND ABSTRACTION ON CAUSAL PROCESSES 125

Definition 5.55 (Partial round abstraction). For causal processes σ and τ over A, we say that τ is a

partial round abstraction of σ, written σ @− τ, if for any t ∈ τ there is s ∈ σ such that s @− t.

Partial round abstraction can be applied to causal and asynchronous processes composi-

tionally.

Lemma 5.56. Let σ, σ′ : A → B and τ, τ′ : B → C be causal processes such that σ @− σ′ and τ @− τ′.

For all u′ ∈ σ′ τ′, there are interaction traces u, v ∈ intJ(A, B, C) and traces s ∈ σ and t ∈ τ

satisfying,

1. u @− u′ and u � A + B = s and u � B ∈ Π(t � B) and u � C = t � C

2. v @− u′ and v � B + C = t and v � B ∈ Π(s � B) and v � A = s � A

The proof modifies the algorithm for constructing u and v by adding justification pointers.

So we need to ensure, for each e justified by e′, that e′ occurs before or simultaneously with e.

In all other respects, it is exactly like the proof of Lemma 4.10.

Proof. Let u′ ∈ σ′ τ′; that is, u′ � A + B ∈ σ′ and u′ � B + C ∈ τ′. Since σ @− σ′ and τ @− τ′,

it follows there are s ∈ σ and t ∈ τ such that s @− u′ � A + B and t @− u′ � B + C. So,

let φ : Es → Eu′�A+B and ψ : Et → Eu′�B+C be bijections such that λs = λu′�A+B ◦ φ and

λt = λu′�B+C ◦ ψ. Without loss of generality, we will assume that φ and ψ are identities, i.e. that

Es = Eu′�A+B and Et = Eu′�B+C. It follows that Es�B = Et�B and so s � B is a permutation of t � B.

The interaction trace u is defined as follows.

• Eu = Eu′

• λu = λu′

• xu=xu′

• We define �u as follows. First, note that for any preorder �, there is an associated strict

partial order ≺, defined as a ≺ b if and only if a � b and b 6� a. Let the relations �1⊆�u′

and �2⊆�u′ be defined as follows, for all e, e′ ∈ Eu.

P1 e ≺u′ e′ ⇔ e �1 e′.

126 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

P2 If e, e′ ∈ Es, then e �s e′ ⇔ e �2 e′.

P3 If e, e′ ∈ Et�C, then e �t e′ ⇔ e �2 e′.

P4 If e ∈ Et�C and e′ ∈ Es�B, then e ≈u′ e′ ⇔ e �2 e′.

P5 If e ∈ Et�C and e′ ∈ Es�A, then e ≈u′ e′ ⇔ e �2 e′.

P6 If e ∈ Es and e′ ∈ Et�C, then e 6�2 e′.

We then set �u=�1 ∪ �2.

We need to check that u is justified. Each non-initial is assigned a cause by xu because u′ is

justified and Eu = Eu′ and xu=xu′ . We still need to verify that (∀e, e′ ∈ Ev)(e xu e′ ⇒ e �u

e′). Suppose e xu e′. Then, e xu e′ ⇔ e xu′ e′ ⇔ e �u′ e′. There are two cases.

• e ≺u′ e′. By (P1), e �u e′.

• e ≈u′ e′. At this point, we have to consider the labels of e, e′.

– If λu(e) ∈ LC and λu(e) ∈ LC, then we have e xu′ e′ ∴ e xu′�B+C e′ ∴ e xt e′

because t @− u′ � B + C. So, e �t e′ because t is justified. By (P3), e �u e′.

– If λu(e) ∈ LB and λu(e) ∈ LB, or λu(e) ∈ LA and λu(e) ∈ LA, or λu(e) ∈ LB and

λu(e) ∈ LA, then we have e xu′ e′ ∴ e xu′�A+B e′ ∴ e xs e′ because s @− u′ � A + B.

So, e �s e′ because s is justified. By (P2), e �u e′.

– If λu(e) ∈ LC and λu(e) ∈ LB, then by (P4), e �u e′.

The rest of the proof is exactly the same as the proof of Lemma 4.10. The only addition is

when we need to check that u satisfies the properties outlined above. For justification pointers,

we use the following facts: xu=xu′ and xu�A+B=xs and xu�C=xt�C. �

We can now restate the main theorems.

Theorem 5.57 (Soundness I). For any causal processes σ, σ′ : A → B and τ, τ′ : B → C, if σ @− σ′

and τ @− τ′ and σ � τ, then σ; τ @− σ′; τ′.

Theorem 5.58 (Soundness II). For any causal processes σ, σ′ : A → B and τ, τ′ : B → C, if σ @− σ′

and τ @− τ′ and σ′ à τ′, then σ; τ @− σ′; τ′.

5.3. ROUND ABSTRACTION ON CAUSAL PROCESSES 127

The proofs as exactly as given in Chapter 4.

Theorem 5.59 (Soundness III). For any causal processes σ, σ′ : A→ B and τ, τ′ : B→ C, if σ @− σ′

and τ @− τ′, then σ⊗ τ @− σ′ ⊗ τ′.

The proof is like the proof of Lemma 4.13, but we need to specify xv, which we define as

xs + xt. The proof that v is justified and pointers are preserved between v and v′ is omitted.

The above theorems also hold if σ and τ are asynchronous and σ′ and τ′ are causal. In this

case, for Theorem 5.59, we additionally need to show that �v is antisymmetric; the proof is

omitted. For Theorem 5.57 and Theorem 5.58, we use the following variant of Lemma 5.56. Let

ΠA(s) denote the set of asynchronous permutations of s.

Lemma 5.60. Let σ : A → B, τ : B → C be asynchronous processes and σ′ : A → B, τ′ : B → C

be causal processes such that σ @− σ′ and τ @− τ′. For all u′ ∈ σ′ τ′, there are interaction traces

u, v ∈ intA(A, B, C) and traces s ∈ σ and t ∈ τ satisfying,

1. u @− u′ and u � A + B = s and u � B ∈ ΠA(t � B) and u � C = t � C

2. v @− u′ and v � B + C = t and v � B ∈ ΠA(s � B) and v � A = s � A

Proof. Let u′ ∈ σ′ τ′; that is, u′ � A + B ∈ σ′ and u′ � B + C ∈ τ′. Since σ @− σ′ and τ @− τ′,

it follows there are s ∈ σ and t ∈ τ such that s @− u′ � A + B and t @− u′ � B + C. So,

let φ : Es → Eu′�A+B and ψ : Et → Eu′�B+C be bijections such that λs = λu′�A+B ◦ φ and

λt = λu′�B+C ◦ ψ. Without loss of generality, we will assume that φ and ψ are identities, i.e. that

Es = Eu′�A+B and Et = Eu′�B+C. It follows that Es�B = Et�B and so s � B is a permutation of t � B.

The interaction trace u is defined as in Lemma 5.56.

• Eu = Eu′

• λu = λu′

• xu=xu′

• We define �u as follows. First, note that for any preorder �, there is an associated strict

partial order ≺, defined as a ≺ b if and only if a � b and b 6� a. Let the relations �1⊆�u′

and �2⊆�u′ be defined as follows, for all e, e′ ∈ Eu.

128 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

P1 e ≺u′ e′ ⇔ e �1 e′.

P2 If e, e′ ∈ Es, then e �s e′ ⇔ e �2 e′.

P3 If e, e′ ∈ Et�C, then e �t e′ ⇔ e �2 e′.

P4 If e ∈ Et�C and e′ ∈ Es�B, then e ≈u′ e′ ⇔ e �2 e′.

P5 If e ∈ Et�C and e′ ∈ Es�A, then e ≈u′ e′ ⇔ e �2 e′.

P6 If e ∈ Es and e′ ∈ Et�C, then e 6�2 e′.

We then set �u=�1 ∪ �2.

We need to check that �u is antisymmetric, i.e. (∀e, e′ ∈ Eu)(e �u e′ and e′ �u e ⇒ e = e′). Let

e �u e′ and e′ �u e, it follows from (P1) that e �2 e′ and e′ �2 e. The proof is by case analysis

on the labels of e and e′. By (P4) and (P5), cases (A, C), (B, C), (C, A), (C, B) are impossible.

The remaining cases are (A, A), (A, B), (B, A), (B, B), (C, C). They are similar, so we only

prove it for the case where λv(e), λv(e′) ∈ LA. We have e �2 e′ ⇔ e �s e′ by (P2). Similarly,

e′ �2 e⇔ e′ �s e by (P2). We get e �s e′ and e′ �s e. So, e = e′ because �s is antisymmetric.

The rest of the proof is exactly the same as the proof of Lemma 5.56. In particular, we proved

that u � B ∈ Π(t � B). Since u is an asynchronous trace, then u � B is an asynchronous pre-trace

and therefore u � B ∈ ΠA(t � B). �

5.4 Discussion

We built on Chapter 3 to introduce justification pointers to synchronous processes thereby

defining SynProcP, a category of causal synchronous processes. Justification pointers allow

us to encode causality in traces in a way that is preserved by the various operations of the

category—in particular, the tensor product.

Alternatively, instead of explicit justification pointers, we may assign causality according

to rules or principles that take into account the structure of the trace. For example, the ‘serial

causation’ principle used in pointer-free game models [GM03, GS10] assigns, to each event,

the most recent occurrence of an event that can cause it as its justifier. However, it is a signifi-

cant challenge to formulate such principles so that they are stable with respect to various trace

operations, in particular, interleaving.

5.4. DISCUSSION 129

We then described AsyProc, a category of asynchronous processes. Structurally, this cate-

gory is equivalent to the full subcategory of G—the category of multi-threaded saturated strate-

gies [GM08, pp. 14–18]—whose objects consist of questions only. We introduced new formal-

isations of the saturation preorder (Definition 5.31 and Definition 5.32), alternating copycat

(Definition 5.36) and asynchronous identity (Definition 5.37); and presented new categorical

proofs.

Next, we demonstrated that partial round abstraction is compositional on processes in ei-

ther category. So, we may apply partial round abstraction to reduce the latency of processes

within SynProcP. Moreover, when applied to processes in AsyProc, partial round abstraction

yields locally synchronous processes. This is one of the main contributions of this thesis: a

technique that allows deriving synchronous representations of asynchronous processes com-

positionally. Since justification pointers are only needed to define saturated processes, our

results transpose without difficulty to any models where causality may be unambiguously

determined—for example, models of hardware circuits [GS10].

Further, our results are of particular interest to hardware synthesis using GoS [Ghi07] be-

cause they permit deriving lower latency synchronous processes from game semantic strate-

gies. Nevertheless, partial round abstraction allows traces from the original process to have

no corresponding traces in the abstraction. Hence, in order to obtain synchronous processes

that most accurately represent the original asynchronous semantics, we require a total form of

round abstraction, as described in Section 4.4. The results of this chapter may therefore be seen

as a stepping stone towards a more comprehensive form of compositional round abstraction.

130 CHAPTER 5. CAUSAL PROCESSES AND ASYNCHRONOUS PROCESSES

CHAPTER 6

GLOBAL CLOCKS AND DETERMINISM

In this chapter, we show that the locally synchronous framework of Chapter 3 can be wired

with a global clock. To this end, we demonstrate that locally-synchronous processes can be

lifted to global synchrony in a principled way. As a consequence, the results of Chapter 4 can

be extended to systems using global clocks, the predominant digital design paradigm.

We will also study deterministic processes. Determinism is a desirable and sometimes nec-

essary feature of real-time systems. In particular, reactive systems [HP85, Hal93, BB91] are often

required to guarantee the same behaviour for each input. For this reason, determinism is an

essential facet of synchronous languages.

In Section 6.1, we introduce the notions of clock monoid and clock monad, which are construc-

tions that allow us to extend processes with global clocks. Next, in Section 6.2, we describe a

category of processes that synchronise with a global clock. We then study deterministic pro-

cesses in Section 6.3. We finish with a discussion.

6.1 Clock Monad and Clock Monoid∗

Monads are category theoretic constructions [Mac98] that have been used to model computa-

tional effects since Moggi [Mog89, Mog91]. In this section, we follows Moggi’s methodology

to extend our model of processes with a global clock. In particular, we use a strong monad

[Koc70, Koc72], which has a natural transformation that relates tensor product and monad.

Let us first recall a few definitions.
∗Extended version of [GM10, Section 2.1]

131

132 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

Definition 6.1 (Monad). A monad on a category C is a triple 〈T, η, µ〉, where T is an endofunctor in

C, η : I → T, µ : T2 → T are natural transformations, and the following diagrams commute.

T3A
µTA //

TµA

��

T2A

µA

��

TA
ηTA //

idTA ##

T2A

µA

��

TA
TηAoo

idTA{{
T2A

µA
// TA TA

Definition 6.2 (Strong monad). A strong monad on a symmetric monoidal category C is a monad,

〈T, η, µ〉 equipped with a tensorial strength natural transformation t that associates to each pair of

objects A, B, a morphism tA,B : A⊗ TB→ T(A⊗ B) such that the following diagrams commute.

(A⊗ B)⊗ TC
tA⊗B,C //

αA,B,TC

��

T((A⊗ B)⊗ C)

TαA,B,C

((

I ⊗ TA
tI,A //

λTA

&&

T(I ⊗ A)

TλA

��
A⊗ (B⊗ TC)

idA⊗tB,C

// A⊗ T(B⊗ C)
tA,B⊗C

// T(A⊗ (B⊗ C)) TA

A⊗ T2B
idA⊗µB //

tA,TB

��

A⊗ TB

tA,B

&&

A⊗ B
idA⊗ηBoo

ηA⊗B

��
T(A⊗ TB)

TtA,B

// T2(A⊗ B)
µA⊗B

// T(A⊗ B)

The strength of a strong monad 〈T, η, µ, t〉 on a symmetric monoidal category C gives rise to

a costrength natural transformation t′ that associates to each pair of objects A and B, a morphism

t′A,B : TA⊗ B→ T(A⊗ B) defined as follows.

t′A,B : TA⊗ B
γTA,B−−→ B⊗ TA

tB,A−−→ T(B⊗ A)
TγB,A−−−→ T(A⊗ B)

A strong monad is commutative when the following diagram commutes.

T(TA⊗ B)
Tt′A,B // T2(A⊗ B)

µA⊗B

((
TA⊗ TB

tTA,B
66

t′A,TB ((

T(A⊗ B)

T(A⊗ TB)
TtA,B

// T2(A⊗ B)
µA⊗B

66

6.1. CLOCK MONAD AND CLOCK MONOID 133

Definition 6.3 (Monoid). A monoid 〈M, η, µ〉 in a monoidal category C is an object M together with

two morphisms η : I → M and µ : M⊗M→ M such that the following diagrams commute.

(M⊗M)⊗M
αM,M,M //

µ⊗idM

��

M⊗ (M⊗M)
idM⊗µ // M⊗M

µ

��
M⊗M

µ
// M

I ⊗M
η⊗idM //

λM
&&

M⊗M

µ

��

M⊗ I
idM⊗ηoo

ρM
xx

M

If C has a symmetry γ and γ; µ = µ, then the monoid is commutative.

We can now define our clock monad. Let Ck be a reserved one-port object in SynProcP with

a single label tick. The functor T : SynProcP → SynProcP is defined as follows.

On objects: T(A) = A⊗ Ck,

On morphisms: T(f) = f ⊗ idCk

We also define natural transformation (at object A) ηA : A→ T(A) as,

ηA = {s ∈ ΘJ(A⇒ A′ ⊗ Ck) | s � (A + A′) ∈ idA}

and natural transformation (at object A) µA : T2(A)→ T(A) as,

µA = {s ∈ ΘJ(((A⊗ Ck)⊗ Ck′)⇒ A′ ⊗ Ck′′) |

s � (A + A′) ∈ idA and s � (Ck + Ck′′) ∈ idCk and s � (Ck′ + Ck′′) ∈ idCk}.

The clock monad is a specification of how processes equipped with a clock should be ‘wired’.

It does not describe nor enforce how the processes use the clock.

Applying T to processes interleaves them with the behaviour of the clock. The effect of ηA

and µA is to remove and to duplicate the clock behaviour, respectively. These constructions are

illustrated by the circuit-like diagrams in Figure 6.1. Signature A has an arbitrary number of

134 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

f
A* B

CkCk *

T(f)

A* A

Ck

ηA

A* A

Ck

μA

Ck*

Ck*

Figure 6.1: Clock monad

ports, but Ck is single-port; we show its input/output polarity with arrows for extra clarity.

The following are alternative characterisations. We have ηA = ρ−1
A ; idA ⊗ csCk where csCk :

I → Ck is the set of traces consisting of tick occurrences, i.e. tick∗. Similarly, µA = αA,Ck,Ck; idA⊗

spCk where spCk : Ck ⊗ Ck → Ck is the set of traces defined by {s ∈ ΘJ(Ck ⊗ Ck′ ⇒ Ck′′) |

s � (Ck + Ck′′) ∈ idCk and s � (Ck′ + Ck′′) ∈ idCk}. A direct informal characterisation is

〈tick, tick′, tick′′〉∗ where tick ∈ LCk, tick′ ∈ LCk′ and tick′′ ∈ LCk′′ .

We first show that 〈Ck, spCk, csCk〉 is a monoid in SynProcP.

Lemma 6.4. The triple 〈Ck, spCk, csCk〉 is a monoid in SynProcP.

Proof. We have to show the following equalities.

αCk,Ck,Ck; idCk ⊗ spCk; spCk = spCk ⊗ idCk; spCk. (6.1)

α−1
Ck,Ck,Ck; spCk ⊗ idCk; spCk = idCk ⊗ spCk; spCk. (6.2)

csCk ⊗ idCk; spCk = λCk. (6.3)

idCk ⊗ csCk; spCk = ρCk. (6.4)

We begin by proving (6.1). Expanding the definitions, we have,

LHS = {u ∈ ΘJ(((((Ck4 ⊗ CK5)⊗ Ck6)⇒ (Ck′4 ⊗ (CK′5 ⊗ Ck′6)))⇒ Ck2 ⊗ Ck3)⇒ Ck1) |

u � Ck2 + Ck1 ∈ idCk and u � Ck3 + Ck1 ∈ idCk and u � Ck′4 + Ck2 ∈ idCk and

u � Ck′5 + Ck3 ∈ idCk and u � Ck′6 + Ck3 ∈ idCk and u � Ck4 + Ck′4 ∈ idCk and

u � Ck5 + Ck′5 ∈ idCk and u � Ck6 + Ck′6 ∈ idCk} � Ck4 + Ck5 + Ck6 + Ck1

RHS = {v ∈ ΘJ((((Ck4 ⊗ CK5)⊗ Ck6)⇒ Ck2 ⊗ Ck3)⇒ Ck1) |

v � Ck2 + Ck1 ∈ idCk and v � Ck3 + Ck1 ∈ idCk and v � Ck4 + Ck2 ∈ idCk and

6.1. CLOCK MONAD AND CLOCK MONOID 135

v � Ck5 + Ck2 ∈ idCk and v � Ck6 + Ck3 ∈ idCk} � Ck4 + Ck5 + Ck6 + Ck1

We first show that αCk,Ck,Ck; idCk ⊗ spCk; spCk ⊆ spCk ⊗ idCk; spCk.

Let us recall some notation introduced in Chapter 3. For u ∈ idA and events e, e′ ∈ Eu, where

u ∈ idA, let us write e�u e′ when e ≈u e′ and [λu(e) = inl(a) if and only if λu(e′) = inr(a)] and

[λu(e) = inr(a) if and only if λu(e′) = inl(a)] where a ∈ LA.

Let u ∈ αCk,Ck,Ck idCk ⊗ spCk spCk. We find a trace v ∈ spCk ⊗ idCk spCk such that u �

Ck4 + Ck5 + Ck6 + Ck1 = v � Ck4 + Ck5 + Ck6 + Ck1. We define v as follows.

• Ev = Eu�Ck4+Ck5+Ck6+Ck2+Ck3+Ck1

• λv = λu�Ck4+Ck5+Ck6+Ck2+Ck3+Ck1

• �v=�u�Ck4+Ck5+Ck6+Ck2+Ck3+Ck1

• xv is defined as follows, for all e, e′ ∈ Ev.

JV1 If e, e′ ∈ Eu�Ck2+Ck3+Ck1 , then e xu e′ ⇔ e xv e′.

JV2 If e ∈ Eu�Ck2 and e′ ∈ Eu�Ck4 , then (∃e′′ ∈ Eu�Ck′4
)(e xu e′′ and e′′ xu e′)⇔ e xv e′.

JV3 If e ∈ Eu�Ck2 and e′ ∈ Eu�Ck5 , then (∃e5 ∈ Eu�Ck′5
, ∃e3 ∈ Eu�Ck3 , ∃e1 ∈ Eu�Ck1)(e1 xu

e and e1 xu e3 and e3 xu e5 and e5 xu e′)⇔ e xv e′.

JV4 If e ∈ Eu�Ck3 and e′ ∈ Eu�Ck6 , then (∃e′′ ∈ Eu�Ck′6
)(e xu e′′ and e′′ xu e′)⇔ e xv e′.

JV5 The only pointers in xv are those specified by (JV1)–(JV4); that is, if [e ∈ Eu�Ck1 and

e′ ∈ Eu�Ck4] or [e ∈ Eu�Ck1 and e′ ∈ Eu�Ck5] or [e ∈ Eu�Ck1 and e′ ∈ Eu�Ck6] or [e ∈ Eu�Ck2

and e′ ∈ Eu�Ck6] or [e ∈ Eu�Ck3 and e′ ∈ Eu�Ck4] or [e ∈ Eu�Ck3 and e′ ∈ Eu�Ck5]

or [e ∈ Eu�Ck4 and e′ ∈ Eu�Ck1] or [e ∈ Eu�Ck4 and e′ ∈ Eu�Ck2] or [e ∈ Eu�Ck4 and

e′ ∈ Eu�Ck3] or [e ∈ Eu�Ck4 and e′ ∈ Eu�Ck4] or [e ∈ Eu�Ck4 and e′ ∈ Eu�Ck5] or [e ∈ Eu�Ck4

and e′ ∈ Eu�Ck6] or [e ∈ Eu�Ck5 and e′ ∈ Eu�Ck1] or [e ∈ Eu�Ck5 and e′ ∈ Eu�Ck2]

or [e ∈ Eu�Ck5 and e′ ∈ Eu�Ck3] or [e ∈ Eu�Ck5 and e′ ∈ Eu�Ck4] or [e ∈ Eu�Ck5 and

e′ ∈ Eu�Ck5] or [e ∈ Eu�Ck5 and e′ ∈ Eu�Ck6] or [e ∈ Eu�Ck6 and e′ ∈ Eu�Ck1] or [e ∈ Eu�Ck6

and e′ ∈ Eu�Ck2] or [e ∈ Eu�Ck6 and e′ ∈ Eu�Ck3] or [e ∈ Eu�Ck6 and e′ ∈ Eu�Ck4] or

[e ∈ Eu�Ck6 and e′ ∈ Eu�Ck5] or [e ∈ Eu�Ck6 and e′ ∈ Eu�Ck6], then e 6xv e′.

136 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

We show that v is justified, i.e. that xv: Ev \ {e ∈ Ev | λv(e) ∈ ICk1} → Ev is total and

(∀e, e′ ∈ Ev)(e xv e′ ⇒ (e �v e and λv(e) ` λv(e′)). By inspection of the definition, we can see

that the partial function xv is total because every non-initial event has a pointer. In particular,

for any e′ ∈ Eu�Ck5 , the existence of events e, e5, e3, e1 in the definition is guaranteed since u �

Ck2 + Ck1 ∈ idCk and u � Ck3 + Ck1 ∈ idCk and u � Ck′5 + Ck3 ∈ idCk and u � Ck5 + Ck′5 ∈ idCk.

Now, we show (∀e, e′ ∈ Ev)(e xv e′ ⇒ (e �v e and λv(e) ` λv(e′)). Suppose e xv e′. By

definition of xv, we have the following cases.

• If e, e′ ∈ Eu�Ck2+Ck3+Ck1 , then e xv e′ ∴ e xu e′ ∴ e �u e′ ∴ e �v e′.

• If e ∈ Eu�Ck2 and e′ ∈ Eu�Ck4 , then e xv e′ ∴ (∃e′′ ∈ Eu�Ck′4
)(e xu e′′ and e′′ xu e′) ∴

(∃e′′ ∈ Eu�Ck′4
)(e �u e′′ and e′′ �u e′) ∴ e �u e′ ∴ e �v e′.

• If e ∈ Eu�Ck2 and e′ ∈ Eu�Ck5 , then e xv e′ ∴ (∃e5 ∈ Eu�Ck′5
, ∃e3 ∈ Eu�Ck3 , ∃e1 ∈ Eu�Ck1)(e1 xu

e and e1 xu e3 and e3 xu e5 and e5 xu e′). Since Ck is a single-event signature, in

each trace s ∈ idCk, we have by the definition of id that e xs e′ implies e ≈s e′. As

u � Ck2 + Ck1 ∈ idCk and u � Ck3 + Ck1 ∈ idCk and u � Ck′5 + Ck3 ∈ idCk and u �

Ck5 + Ck′5 ∈ idCk, we get e ≈u e1 ≈u e3 ≈u e5 ≈u e′ ∴ e �v e′.

• If e ∈ Eu�Ck3 and e′ ∈ Eu�Ck6 , then (∃e′′ ∈ Eu�Ck′6
)(e xu e′′ and e′′ xu e′) ∴ (∃e′′ ∈

Eu�Ck′6
)(e �u e′′ and e′′ �u e′) ∴ e �u e′ ∴ e �v e′.

Note that in each case λv(e) ` λv(e′).

If follows from its definition that v satisfies v � Ck2 + Ck1 ∈ idCk and v � Ck3 + Ck1 ∈ idCk.

The fact that v � Ck4 + Ck2 ∈ idCk follows from u � Ck′4 + Ck2 ∈ idCk and u � Ck4 + Ck′4 ∈ idCk

and the definition of xv. The fact that v � Ck6 + Ck3 ∈ idCk follows from u � Ck′6 + Ck3 ∈ idCk

and u � Ck6 + Ck′6 ∈ idCk and the definition of xv.

We still have to show v � Ck5 + Ck2 ∈ idCk. Let e5 ∈ Eu�Ck5 . We have the following facts.

• Since u � Ck5 + Ck′5 ∈ idCk, there is e′5 ∈ Eu�Ck′5
such that e5�u�Ck5+Ck′5

e′5.

• As u � Ck′5 + Ck3 ∈ idCk, there is e3 ∈ Eu�Ck3 such that e′5�u�Ck′5+Ck3
e3.

• Because u � Ck3 + Ck1 ∈ idCk, there is e1 ∈ Eu�Ck1 such that e3�u�Ck3+Ck1 e1.

6.1. CLOCK MONAD AND CLOCK MONOID 137

• Since u � Ck2 + Ck1 ∈ idCk, there is e2 ∈ Eu�Ck2 such that e1�u�Ck2+Ck1 e2.

Since �u is transitive, e1 ≈u e2 ≈u e3 ≈u e5. So, for all e5 ∈ Eu�Ck5 there is e2 ∈ Eu�Ck2 such that

e5�u�Ck5+Ck2 e2. We use the same reasoning to conclude that for all e2 ∈ Eu�Ck2 there is e5 ∈

Eu�Ck5 such that e5�u�Ck5+Ck2 e2. In essence, for all e ∈ Eu�Ck5+Ck2 , there is e′ ∈ Eu�Ck5+Ck2 such

that e�u�Ck5+Ck2 e′. Since Ev = Eu�Ck4+Ck5+Ck6+Ck2+Ck3+Ck1 and λv = λu�Ck4+Ck5+Ck6+Ck2+Ck3+Ck1

and �v=�u�Ck4+Ck5+Ck6+Ck2+Ck3+Ck1 , we have for all e ∈ Ev�Ck5+Ck2 , there is e′ ∈ Ev�Ck5+Ck2 such

that e�v�Ck5+Ck2 e′.

We need to verify that xv�Ck5+Ck2 conforms to Definition 5.11. This can be noted by inspect-

ing the definition of xv.

We now show that u � Ck4 + Ck5 + Ck6 + Ck1 = v � Ck4 + Ck5 + Ck6 + Ck1. From

the definition of v and the definition of projection, Ev�Ck4+Ck5+Ck6+Ck1 = Eu�Ck4+Ck5+Ck6+Ck1 ,

λv�Ck4+Ck5+Ck6+Ck1 = λu�Ck4+Ck5+Ck6+Ck1 and �v�Ck4+Ck5+Ck6+Ck1=�u�Ck4+Ck5+Ck6+Ck1 . Next, we

prove that for all e, e′ ∈ Eu�Ck4+Ck5+Ck6+Ck1 , we have e xu�Ck4+Ck5+Ck6+Ck1 e′ ⇔ e xv�Ck4+Ck5+Ck6+Ck1

e′ through a case study on the labels of e, e′.

• Case: λu(e) ∈ LCk1 and λu(e′) ∈ LCk4 . This is similar to the following case. We use (JV1)

and (JV2).

• Case: λu(e) ∈ LCk1 and λu(e′) ∈ LCk5 . Let e xv�Ck4+Ck5+Ck6+Ck1 e′. So, there is e2 ∈ Eu�Ck2

such that e xv e2 and e2 xv e′. Using (JV3) on e2 xv e′, there is e1 ∈ Eu�Ck1 such that

e1 xu e2 and e1 xu�Ck4+Ck5+Ck6+Ck1 e′. Using (JV1) on e xv e2, we get e xu e2. Therefore,

e1 = e, so e xu�Ck4+Ck5+Ck6+Ck1 e′. For the opposite direction, let e xu�Ck4+Ck5+Ck6+Ck1 e′.

So, there are e3 ∈ Eu�Ck3 , e5 ∈ Eu�Ck′5
such that e xu e3 and e3 xu e5 and e5 xu e′. Since

u � Ck2 + Ck1 ∈ idCk, there is e2 ∈ Eu�Ck2 such that e xu e2. By (JV1), e xv e2. By (JV3),

e2 xv e′. So, e xv�Ck4+Ck5+Ck6+Ck1 e′.

• Case: λu(e) ∈ LCk1 and λu(e′) ∈ LCk6 . This is similar to the previous case. We use (JV1)

and (JV4).

• All other label assignments are illegal.

Next, we show that αCk,Ck,Ck; idCk ⊗ spCk; spCk ⊇ spCk ⊗ idCk; spCk.

138 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

Let v ∈ spCk ⊗ idCk spCk. We find a trace u ∈ αCk,Ck,Ck idCk ⊗ spCk spCk such that v �

Ck4 + Ck5 + Ck6 + Ck1 = u � Ck4 + Ck5 + Ck6 + Ck1. We define u using the same algorithm

described in the proof of Lemma 3.24.

• Eu = Ev�Ck1+Ck2+Ck3+Ck4+Ck5+Ck6 + Ev�Ck4+Ck5+Ck6

• λu = λv�Ck1+Ck2+Ck3+Ck4+Ck5+Ck6 + λv�Ck4+Ck5+Ck6

• �u is defined as follows for all e, e′ ∈ Ev.

P1 If e, e′ ∈ Ev�Ck1+Ck2+Ck3 , then e �v e′ ⇔ in1(e) �u in1(e′)

P2 If e ∈ Ev�Ck1+Ck2+Ck3 and e′ ∈ Ev�Ck4+Ck5+Ck6 , then e �v e′ ⇔ in1(e) �u in1(e′) ⇔

in1(e) �u in2(e′)

P3 If e ∈ Ev�Ck4+Ck5+Ck6 and e′ ∈ Ev�Ck1+Ck2+Ck3 , then e �v e′ ⇔ in2(e) �u in1(e′) ⇔

in1(e) �u in1(e′)

P4 If e, e′ ∈ Ev�Ck4+Ck5+Ck6 , then e �v e′ ⇔ in1(e) �u in1(e′) ⇔ in2(e) �u in2(e′) ⇔

in1(e) �u in2(e′)⇔ in2(e) �u in1(e′)

• xu is defined as follows, for all e, e′ ∈ Ev.

J1 If e, e′ ∈ Ev�Ck1+Ck2+Ck3 , then e xv e′ ⇔ in1(e) xu in1(e′).

J2 If e ∈ Ev�Ck2 and e′ ∈ Ev�Ck4 , then e xv e′ ⇔ in1(e) xu in2(e′)⇔ in2(e′) xu in1(e′).

J3 If e ∈ Ev�Ck3 and e′ ∈ Ev�Ck5 , then (∃e1 ∈ Ev�Ck1 , ∃e2 ∈ Ev�Ck2)(e1 xv e and e1 xv

e2 and e2 xv e′)⇔ in1(e) xu in2(e′)⇔ in2(e′) xu in1(e′).

J4 If e ∈ Ev�Ck3 and e′ ∈ Ev�Ck6 , then e xv e′ ⇔ in1(e) xu in2(e′)⇔ in2(e′) xu in1(e′).

J5 The only pointers in xu are those specified by (J1)–(J4); that is,

– if [e ∈ Ev�Ck1 and e′ ∈ Ev�Ck4] or [e ∈ Ev�Ck1 and e′ ∈ Ev�Ck5] or [e ∈ Ev�Ck1

and e′ ∈ Ev�Ck6] or [e ∈ Ev�Ck2 and e′ ∈ Ev�Ck5] or [e ∈ Ev�Ck2 and e′ ∈ Ev�Ck6]

or [e ∈ Ev�Ck3 and e′ ∈ Ev�Ck4] or [e ∈ Ev�Ck4 and e′ ∈ Ev�Ck4] or [e ∈ Ev�Ck5

and e′ ∈ Ev�Ck5] or [e ∈ Ev�Ck6 and e′ ∈ Ev�Ck6], then in1(e) 6xu in1(e′) and

in1(e) 6xu in2(e′)

– if [e ∈ Ev�Ck4 and e′ ∈ Ev�Ck4] or [e ∈ Ev�Ck5 and e′ ∈ Ev�Ck5] or [e ∈ Ev�Ck6 and

e′ ∈ Ev�Ck6], then in2(e) 6xu in2(e′)

6.1. CLOCK MONAD AND CLOCK MONOID 139

– if [e ∈ Ev�Ck4 and e′ ∈ Ev�Ck1] or [e ∈ Ev�Ck4 and e′ ∈ Ev�Ck2] or [e ∈ Ev�Ck4

and e′ ∈ Ev�Ck3] or [e ∈ Ev�Ck5 and e′ ∈ Ev�Ck1] or [e ∈ Ev�Ck5 and e′ ∈ Ev�Ck2]

or [e ∈ Ev�Ck5 and e′ ∈ Ev�Ck3] or [e ∈ Ev�Ck6 and e′ ∈ Ev�Ck1] or [e ∈ Ev�Ck6

and e′ ∈ Ev�Ck2] or [e ∈ Ev�Ck6 and e′ ∈ Ev�Ck3], then in1(e) 6xu in1(e′) and

in2(e) 6xu in1(e′)

– if [e ∈ Ev�Ck4 and e′ ∈ Ev�Ck5] or [e ∈ Ev�Ck4 and e′ ∈ Ev�Ck6] or [e ∈ Ev�Ck5 and

e′ ∈ Ev�Ck4] or [e ∈ Ev�Ck5 and e′ ∈ Ev�Ck6] or [e ∈ Ev�Ck6 and e′ ∈ Ev�Ck4] or

[e ∈ Ev�Ck6 and e′ ∈ Ev�Ck5] or e 6= e′ ∈ Ev�Ck4 or e 6= e′ ∈ Ev�Ck5 or e 6= e′ ∈

Ev�Ck6 , then in1(e) 6xu in1(e′) and in1(e) 6xu in2(e′) and in2(e) 6xu in1(e′) and

in2(e) 6xu in2(e′).

We can show that �u is a total preorder order and that u respects singularity using the same

structure as the proof of Lemma 3.24.

Then, we have to show that u is justified. By inspection of the definition, we can see that the

partial function xu is total because every non-initial event has a pointer. In particular, for any

e′ ∈ Eu�Ck5 , the existence of events e, e1, e2 in the definition is guaranteed since v � Ck2 + Ck1 ∈

idCk and u � Ck3 + Ck1 ∈ idCk and u � Ck5 + Ck2 ∈ idCk.

Now, we show (∀e, e′ ∈ Eu)(e xu e′ ⇒ (e �u e and λu(e) ` λu(e′)). Suppose e xu e′. By

definition of xu, we have the following cases.

• If e, e′ ∈ Eu�Ck1+Ck2+Ck3 , then e xu e′ ∴ in−1
1 (e) xs in−1

1 (e′) by (J1) ∴ in−1
1 (e) �s

in−1
1 (e′) ∴ e �u e′ by (P1)

• If e ∈ Eu�Ck′4
and e′ ∈ Eu�Ck4 , then e xu e′ ∴ in−1

2 (e) = in−1
1 (e′) by (J2) ∴ e �u e′ by (P4)

• If e ∈ Eu�Ck′5
and e′ ∈ Eu�Ck5 , then e xu e′ ∴ in−1

2 (e) = in−1
1 (e′) by (J3) ∴ e �u e′ by (P4)

• If e ∈ Eu�Ck′6
and e′ ∈ Eu�Ck6 , then e xu e′ ∴ in−1

2 (e) = in−1
1 (e′) by (J4) ∴ e �u e′ by (P4)

• If e ∈ Eu�Ck2 and e′ ∈ Eu�Ck′4
, then e xu e′ ∴ in−1

1 (e) xv in−1
2 (e′) by (J2) ∴ in−1

1 (e) �v

in−1
2 (e′) ∴ e �u e′ by (P2)

• If e ∈ Eu�Ck3 and e′ ∈ Eu�Ck′5
, then e xu e′ ∴ (∃e1 ∈ Ev�Ck1 , ∃e2 ∈ Ev�Ck2)(e1 xv

in−1
1 (e) and e1 xv e2 and e2 xv in−1

2 (e′)) by (J3). Since Ck is a single-event signature,

140 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

in each trace s ∈ idCk, we have by the definition of id that e xs e′ implies e ≈s e′. As

v � Ck2 + Ck1 ∈ idCk and v � Ck3 + Ck1 ∈ idCk and u � Ck2 + Ck5 ∈ idCk, we get

in−1
1 (e) ≈v e1 ≈v e2 ≈v in−1

2 (e′) ∴ e �u e′ by (P2)

• If e ∈ Eu�Ck3 and e′ ∈ Eu�Ck′6
, then e xu e′ ∴ in−1

1 (e) xv in−1
2 (e′) by (J4) ∴ in−1

1 (e) �v

in−1
2 (e′) ∴ e �u e′ by (P2)

Note that in each case λu(e) ` λu(e′).

We need to verify that u ∈ αCk,Ck,Ck idCk ⊗ spCk spCk.

• u � Ck2 + Ck1 ∈ idCk and u � Ck3 + Ck1 ∈ idCk follow from (P1), (J1) and the fact that

v � Ck2 + Ck1 ∈ idCk and v � Ck3 + Ck1 ∈ idCk.

• u � Ck′4 + Ck2 ∈ idCk follows from (P2), (P3), (J2) and v � Ck4 + Ck2 ∈ idCk.

• u � Ck′6 + Ck3 ∈ idCk follows from (P2), (P3), (J4) and v � Ck6 + Ck3 ∈ idCk.

• u � Ck4 + Ck′4 ∈ idCk follows from (P4), (J2) and the fact that �v is reflexive.

• u � Ck5 + Ck′5 ∈ idCk follows from (P4), (J3) and the fact that �v is reflexive.

• u � Ck6 + Ck′6 ∈ idCk follows from (P4), (J4) and the fact that �v is reflexive.

We still have to show u � Ck′5 + Ck3 ∈ idCk. Let e ∈ Eu�Ck′5
. It follows that there is e5 ∈ Ev�Ck5

such that e = in2(e5) and in1(e5) ∈ u � Ck5 and e ≈u in1(e5) and e xu�Ck5+Ck′5
in1(e5). Let us

refer to the previous fact by (♦). For all e5 ∈ Ev�Ck5 , we have the following facts.

• Since v � Ck5 + Ck2 ∈ idCk, there is e2 ∈ Ev�Ck2 such that e5�v�Ck5+Ck2 e2.

• As v � Ck2 + Ck1 ∈ idCk, there is e1 ∈ Ev�Ck1 such that e2�v�Ck2+Ck1 e1.

• Because v � Ck3 + Ck1 ∈ idCk, there is e3 ∈ Ev�Ck1 such that e1�v�Ck3+Ck1 e3.

Since�v is transitive, e2 ≈v e5. We use (P2) and (P3) to find that e2 ≈u in1(e5) and e2 ≈u in2(e5).

We use (♦) to find that for all e ∈ Eu�Ck′5
there is e2 ∈ Eu�Ck2 such that e�u�Ck′5+Ck2

e2. We use the

same reasoning to conclude that for all e2 ∈ Eu�Ck2 there is e ∈ Eu�Ck′5
such that e�u�Ck′5+Ck2

e2.

In essence, for all e ∈ Eu�Ck′5+Ck2
, there is e′ ∈ Eu�Ck′5+Ck2

such that e�u�Ck′5+Ck2
e′.

6.1. CLOCK MONAD AND CLOCK MONOID 141

We now show that xv�Ck5+Ck3 conforms to Definition 5.11. This can be noted by inspecting

the definition of xu.

We now need to show that u � Ck4 + Ck5 + Ck6 + Ck1 = v � Ck4 + Ck5 + Ck6 + Ck1.

From the definition of u and the definition of projection, we see that Eu�Ck4+Ck5+Ck6+Ck1 =

in1(Ev�Ck4+Ck5+Ck6+Ck1) and λu�Ck4+Ck5+Ck6+Ck1 = λv�Ck4+Ck5+Ck6+Ck1 ◦ in1. We can also verify

that (∀e, e′ ∈ Ev�Ck4+Ck5+Ck6+Ck1)(e �v�Ck4+Ck5+Ck6+Ck1 e′ ⇔ in1(e) �u�Ck4+Ck5+Ck6+Ck1 in1(e′)).

Next, we prove that for all e, e′ ∈ Ev�Ck4+Ck5+Ck6+Ck1 , we have e xv�Ck4+Ck5+Ck6+Ck1 e′ ⇔

in1(e) xu�Ck4+Ck5+Ck6+Ck1 in1(e′) through a case study on the labels of e, e′

• Case: λu(e) ∈ LCk1 and λu(e′) ∈ LCk4 . This is similar to the following case. We use (J1)

and (J2).

• Case: λu(e) ∈ LCk1 and λu(e′) ∈ LCk5 . Let e xu�Ck4+Ck5+Ck6+Ck1 e′. So, there are e3 ∈ Eu�Ck3

and e5 ∈ Eu�Ck′5
such that e xu e3 and e3 xu e5 and e5 xu e′. Using (J3) on e3 xu e5, there

are e1 ∈ Ev�Ck1 , e2 ∈ Ev�Ck2 such that e1 xv in−1
1 (e3) and e1 xv e2 and e2 xv in−1

2 (e5).

Using (J1) on e xu e3, we get in−1
1 (e) xv in−1

1 (e3). Therefore, e1 = in−1
1 (e). Using (J3)

on e5 xu e′, we get in−1
2 (e5) = in−1

1 (e′). So, in−1
1 (e) xv e2 and e2 xv in−1

1 (e′). So,

in−1
1 (e) xv in−1

1 (e′). For the opposite direction, let e xv�Ck4+Ck5+Ck6+Ck1 e′. So, there

is e2 ∈ Ev�Ck2 such that e xv e2 and e2 xv e′. Since v � Ck3 + Ck1 ∈ idCk, there is

e3 ∈ Ev�Ck3 such that e xv e3. By (J1), in1(e) xu in1(e3). By (J3), in1(e3) xu in2(e′) and

in2(e′) xu in1(e′). So, in1(e) xv�Ck4+Ck5+Ck6+Ck1 in1(e′).

• Case: λu(e) ∈ LCk1 and λu(e′) ∈ LCk6 . This is similar to the previous case. We use (J1) and

(J4).

• All other label assignments are illegal.

The proofs of (6.2), (6.3) and (6.4) are omitted but follow the same structure as the proof of

(6.1). �

142 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

Ck4 Ck′4
uu

Ck2
uu

Ck1
uu

��
Ck5 Ck′5

uu
Ck3

uu

��
Ck6 Ck′6

uu

Figure 6.2: Justification pointers in traces u ∈
αCk,Ck,Ck; idCk ⊗ spCk; spCk in Lemma 6.4

Ck4 Ck2
uu

��
Ck1

uu

��
Ck5

Ck6 Ck3
uu

Figure 6.3: Justification pointers in traces v ∈
spCk ⊗ idCk; spCk in Lemma 6.4

Ck2 Ck1
uu

��
Ck4 Ck3

uu

Figure 6.4: Justification pointers in traces u ∈
csCk ⊗ idCk; spCk in Lemma 6.4

Ck4 Ck1
uu

Figure 6.5: Justification pointers in traces v ∈
λCk in Lemma 6.4

Ck'4

Ck'5

Ck'6

Ck2

Ck3

Ck1Ck4

Ck5

Ck6

Ck4

Ck5

Ck6

Ck2

Ck3

Ck1

=

Ck'4

Ck'5
Ck'6

Ck2

Ck3

Ck1Ck4

Ck5
Ck6

Ck4

Ck5
Ck6

Ck2

Ck3

Ck1

=

Ck4

Ck2

Ck3

Ck1 Ck4 Ck1=

Ck4 Ck2

Ck3

Ck1 Ck4 Ck1=

Figure 6.6: A diagrammatic representation of the monoid axioms

6.1. CLOCK MONAD AND CLOCK MONOID 143

Lemma 6.5. The triple 〈Ck, spCk, csCk〉 is a commutative monoid in SynProcP.

Proof. We need to prove that γCk1,Ck2 ; spCk = spCk. We have

LHS = {u ∈ ΘJ(((Ck2 ⊗ Ck3)⇒ Ck′3 ⊗ Ck′2)⇒ Ck1) | u � Ck′3 + Ck1 ∈ idCk and

u � Ck′2 + Ck1 ∈ idCk and u � Ck2 + Ck′2 ∈ idCk and u � Ck3 + Ck′3 ∈ idCk} � Ck2 + Ck3 + Ck1

RHS = {v ∈ ΘJ(Ck2 ⊗ Ck3 ⇒ Ck1) | u � Ck2 + Ck1 ∈ idCk and u � Ck3 + Ck1 ∈ idCk}

We begin by proving that γCk1,Ck2 ; spCk ⊆ spCk. Let u ∈ γCk1,Ck2 spCk. We find a trace

v ∈ spCk such that u � Ck2 + Ck3 + Ck1 = v. We define v as follows.

• Ev = Eu�Ck2+Ck3+Ck1

• λv = λu�Ck2+Ck3+Ck1

• �v=�u�Ck2+Ck3+Ck1

• xv is defined as follows, for all e, e′ ∈ Eu.

JV1 If e ∈ Eu�Ck1 and e′ ∈ Eu�Ck2 , then (∃e′′ ∈ Eu�Ck′2
)(e xu e′′ and e′′ xu e′)⇔ e xv e′.

JV2 If e ∈ Eu�Ck1 and e′ ∈ Eu�Ck3 , then (∃e′′ ∈ Eu�Ck′3
)(e xu e′′ and e′′ xu e′)⇔ e xv e′.

JV3 The only pointers in xv are those specified by (JV1)–(JV2); that is, if [e ∈ Eu�Ck2 and

e′ ∈ Eu�Ck1] or [e ∈ Eu�Ck2 and e′ ∈ Eu�Ck3] or [e ∈ Eu�Ck3 and e′ ∈ Eu�Ck1] or [e ∈ Eu�Ck3

and e′ ∈ Eu�Ck2], then e 6xv e′.

We first show that v is justified, i.e. that xv: Ev \ {e ∈ Ev | λv(e) ∈ ICk1} → Ev is total and

(∀e, e′ ∈ Ev)(e xv e′ ⇒ (e �v e and λv(e) ` λv(e′)). By inspection of the definition, we

can see that the partial function xv is total because every non-initial event has a pointer. In

particular, for any e′ ∈ Eu�Ck2 , the existence of events e′′ in the definition is guaranteed since

u � Ck′2 + Ck1 ∈ idCk and u � Ck2 + Ck′2 ∈ idCk. The same is true for events e′ ∈ Eu�Ck2 .

Now, we show (∀e, e′ ∈ Ev)(e xv e′ ⇒ (e �v e and λv(e) ` λv(e′)). Suppose e xv e′. By

definition of xv, we have the following cases.

• If e ∈ Eu�Ck1 and e′ ∈ Eu�Ck2 , then e xv e′ ∴ (∃e′′ ∈ Eu�Ck′2
)(e xu e′′ and e′′ xu e′) ∴

(∃e′′ ∈ Eu�Ck′2
)(e �u e′′ and e′′ �u e′) ∴ e �u e′ ∴ e �v e′.

144 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

• If e ∈ Eu�Ck1 and e′ ∈ Eu�Ck3 , then e xv e′ ∴ (∃e′′ ∈ Eu�Ck′3
)(e xu e′′ and e′′ xu e′) ∴

(∃e′′ ∈ Eu�Ck′3
)(e �u e′′ and e′′ �u e′) ∴ e �u e′ ∴ e �v e′.

Note that in each case λv(e) ` λv(e′).

If follows from its definition that v satisfies v � Ck2 + Ck1 ∈ idCk and v � Ck3 + Ck1 ∈ idCk.

So, v ∈ spCk.

We now need to show that u � Ck2 +Ck3 +Ck1 = v. From the definition of v and the defini-

tion of projection, Ev = Eu�Ck2+Ck3+Ck1 , λv = λu�Ck2+Ck3+Ck1 and�v�Ck2+Ck3+Ck1=�u�Ck2+Ck3+Ck1 .

Next, we prove that for all e, e′ ∈ Eu�Ck2+Ck3+Ck1 , we have e xu�Ck2+Ck3+Ck1 e′ ⇔ e xv e′ through

a case study on the labels of e, e′.

• Case: λu(e) ∈ LCk1 and λu(e′) ∈ LCk2 . Let e xu�Ck2+Ck3+Ck1 e′. So, there is e2 ∈ Eu�Ck′2

such that e xu e2 and e2 xu e′. Using (JV1) we get e xv e′. For the opposite direction, let

e xv e′. So, there is e2 ∈ Eu�Ck′2
such that e xu e2 and e2 xu e′. By definition of projection,

e xu�Ck2+Ck3+Ck1 e′.

• Case: λu(e) ∈ LCk1 and λu(e′) ∈ LCk3 . This is similar to the previous case. We use (JV2).

• All other label assignments are illegal.

Next, we show that γCk1,Ck2 ; spCk ⊇ spCk. Let v ∈ spCk. We find a trace u ∈ γCk1,Ck2 spCk

such that v = u � Ck2 + Ck3 + Ck1. We define u using the same algorithm described in the

second half of the proof of equation (6.1) in Lemma 6.4.

• Eu = Ev + Ev�Ck2+Ck3

• λu = λv + λv�Ck2+Ck3

• �u is defined as follows for all e, e′ ∈ Ev.

P1 If e, e′ ∈ Ev, then e �v e′ ⇔ in1(e) �u in1(e′)

P2 If e ∈ Ev and e′ ∈ Ev�Ck2+Ck3 , then e �v e′ ⇔ in1(e) �u in1(e′)⇔ in1(e) �u in2(e′)

P3 If e ∈ Ev�Ck2+Ck3 and e′ ∈ Ev, then e �v e′ ⇔ in2(e) �u in1(e′)⇔ in1(e) �u in1(e′)

P4 If e, e′ ∈ Ev�Ck2+Ck3 , then e �v e′ ⇔ in1(e) �u in1(e′) ⇔ in2(e) �u in2(e′) ⇔

in1(e) �u in2(e′)⇔ in2(e) �u in1(e′)

6.1. CLOCK MONAD AND CLOCK MONOID 145

• xu is defined as follows, for all e, e′ ∈ Ev.

J1 If e ∈ Ev�Ck1 and e′ ∈ Ev�Ck2 , then e xv e′ ⇔ in1(e) xu in2(e′)⇔ in2(e′) xu in1(e′).

J2 If e ∈ Ev�Ck1 and e′ ∈ Ev�Ck3 , then e xv e′ ⇔ in1(e) xu in2(e′)⇔ in2(e′) xu in1(e′).

J3 The only pointers in xv are those specified by (J1)–(J2); that is,

– if [e ∈ Ev�Ck2 and e′ ∈ Ev�Ck1] or [e ∈ Ev�Ck3 and e′ ∈ Ev�Ck1], then in1(e) 6xv

in1(e′) and in2(e) 6xv in1(e′).

– if e, e′ ∈ Ev�Ck2 or e, e′ ∈ Ev�Ck3 , then in1(e) 6x in1(e′) and in1(e) 6x in2(e′) and

in2(e) 6x in2(e′).

– if [e ∈ Ev�Ck2 and e′ ∈ Ev�Ck3] or [e ∈ Ev�Ck3 and e′ ∈ Ev�Ck2] or e 6= e′ ∈ Ev�Ck2

or e 6= e′ ∈ Ev�Ck3 , then in1(e) 6xv in1(e′) and in1(e) 6xv in2(e′) and in2(e) 6xv

in1(e′) and in2(e) 6xv in2(e′).

We can show that �u is a total preorder order and that u respects singularity using the same

structure as the proof of Lemma 3.24. Then, we can show that u is justified following the same

structure as the second half of the proof of equation (6.1) in Lemma 6.4.

We need to verify that u ∈ γCk1,Ck2 spCk.

• u � Ck2 + Ck′2 ∈ idCk follows from (P4), (J1) and the fact that �v is reflexive.

• u � Ck3 + Ck′3 ∈ idCk follows from (P4), (J2) and the fact that �v is reflexive.

• u � Ck′2 + Ck1 ∈ idCk follows from (P1), (P4), (J1) and the fact that v � Ck2 + Ck1 ∈ idCk

• u � Ck′3 + Ck1 ∈ idCk follows from (P1), (P4), (J2) and the fact that v � Ck3 + Ck1 ∈ idCk

We now show that xv�Ck5+Ck3 conforms to Definition 5.11. This can be noted by inspecting

the definition of xu.

Next, we need to show that u � Ck2 + Ck3 + Ck1 = v. From the definition of u and the

definition of projection, we see that Eu�Ck2+Ck3+Ck1 = in1(Ev) and λu�Ck2+Ck3+Ck1 = λv ◦ in1. We

can also verify that (∀e, e′ ∈ Ev�Ck2+Ck3+Ck1)(e �v e′ ⇔ in1(e) �u�Ck2+Ck3+Ck1 in1(e′)). Next,

we prove that for all e, e′ ∈ Ev�Ck2+Ck3+Ck1 , we have e xv e′ ⇔ in1(e) xu�Ck2+Ck3+Ck1 in1(e′)

through a case study on the labels of e, e′

146 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

• Case: λv(e) ∈ LCk1 and λv(e′) ∈ LCk2 . Let e xv e′. By (J1), in1(e) xu in2(e′) and

in2(e′) xu in1(e′). By definition of projection, e xu�Ck2+Ck3+Ck1 e′. For the opposite

direction, let e xu�Ck2+Ck3+Ck1 e′. So, there is e2 ∈ Eu�Ck′2
such that e xu e2 and e2 xu e′.

Using (J1) we get e xv e′.

• Case: λv(e) ∈ LCk1 and λv(e′) ∈ LCk3 . This is similar to the previous case. We use (J2).

• All other label assignments are illegal. �

Before demonstrating that 〈T, η, µ〉 is a monad, we state the following lemmas. The first

one follows from the naturality of α.

Lemma 6.6. Let σ : A → B, τ : C → D, υ : E → F be causal processes. We have σ ⊗ (τ ⊗ υ) =

α−1
A,C,E; (σ⊗ τ)⊗ υ; αB,D,F and (σ⊗ τ)⊗ υ = αA,C,E; σ⊗ (τ ⊗ υ); α−1

B,D,F.

The other two appear in the literature.

Lemma 6.7 ([JS93, Prop. 1.1]). ρA⊗B = αA,B,I ; idA ⊗ ρB.

Lemma 6.8 ([JS93, Prop. 1.1]). λA⊗B = α−1
I,A,B; λA ⊗ idB.

Lemma 6.9. 〈T, η, µ〉 is a monad.

Proof. We need to prove the following.

T(µA); µA = µTA; µA (6.5)

T(ηA); µA = idTA (6.6)

ηTA; µA = idTA (6.7)

For (6.5), we have

T(µA); µA = αA,Ck,Ck ⊗ idCk; (idA ⊗ spCk)⊗ idCk; αA,Ck,Ck; idA ⊗ spCk by definition

= αA,Ck,Ck ⊗ idCk; αA,Ck⊗Ck,Ck; idA ⊗ (spCk ⊗ idCk); α−1
A,Ck,Ck; αA,Ck,Ck;

idA ⊗ spCk by Lemma 6.6

= αA,Ck,Ck ⊗ idCk; αA,Ck⊗Ck,Ck; idA ⊗ (spCk ⊗ idCk); idA ⊗ spCk

6.1. CLOCK MONAD AND CLOCK MONOID 147

= αA,Ck,Ck ⊗ idCk; αA,Ck⊗Ck,Ck; idA ⊗ (spCk ⊗ idCk; spCk) by functoriality of ⊗

= αA,Ck,Ck ⊗ idCk; αA,Ck⊗Ck,Ck; idA ⊗ (αCk,Ck,Ck; idCk ⊗ spCk; spCk) monoid laws

= αA,Ck,Ck ⊗ idCk; αA,Ck⊗Ck,Ck; idA ⊗ αCk,Ck,Ck; idA ⊗ (idCk ⊗ spCk);

idA ⊗ spCk by functoriality of ⊗

= αA⊗Ck,Ck,Ck; αA,Ck,Ck⊗Ck; idA ⊗ (idCk ⊗ spCk); idA ⊗ spCk by coherence of α

= αA⊗Ck,Ck,Ck; αA,Ck,Ck⊗Ck; α−1
A,Ck,Ck⊗Ck; (idA ⊗ idCk)⊗ spCk; αA,Ck,Ck;

idA ⊗ spCk by Lemma 6.6

= αA⊗Ck,Ck,Ck; (idA ⊗ idCk)⊗ spCk; αA,Ck,Ck; idA ⊗ spCk

= µTA; µA

For (6.6), we have

T(ηA); µA = (ρ−1
A ; idA ⊗ csCk)⊗ idCk; αA,Ck,Ck; idA ⊗ spCk by definition

= ρ−1
A ⊗ idCk; (idA ⊗ csCk)⊗ idCk; αA,Ck,Ck; idA ⊗ spCk by functoriality of ⊗

= ρ−1
A ⊗ idCk; αA,I,Ck; idA ⊗ (csCk ⊗ idCk); α−1

A,Ck,Ck; αA,Ck,Ck; idA ⊗ spCk by Lemma 6.6

= ρ−1
A ⊗ idCk; αA,I,Ck; idA ⊗ (csCk ⊗ idCk); idA ⊗ spCk

= ρ−1
A ⊗ idCk; αA,I,Ck; idA ⊗ (csCk ⊗ idCk; spCk) by functoriality of ⊗

= ρ−1
A ⊗ idCk; αA,I,Ck; idA ⊗ λCk monoid laws

= ρ−1
A ⊗ idCk; ρA ⊗ idCk coherence of ρ

= (ρ−1
A ; ρA)⊗ idCk by functoriality of ⊗

= idA ⊗ idCk

= idA⊗Ck by functoriality of ⊗

= idTA

For (6.7), we have

ηTA; µA = ρ−1
A⊗Ck; idA⊗Ck ⊗ csCk; αA,Ck,Ck; idA ⊗ spCk by definition

= ρ−1
A⊗Ck; (idA ⊗ idCk)⊗ csCk; αA,Ck,Ck; idA ⊗ spCk by functoriality of ⊗

148 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

= ρ−1
A⊗Ck; αA,Ck,I ; idA ⊗ (idCk ⊗ csCk); α−1

A,Ck,Ck; αA,Ck,Ck; idA ⊗ spCk by Lemma 6.6

= ρ−1
A⊗Ck; αA,Ck,I ; idA ⊗ (idCk ⊗ csCk); idA ⊗ spCk

= ρ−1
A⊗Ck; αA,Ck,I ; idA ⊗ (idCk ⊗ csCk; spCk) by functoriality of ⊗

= ρ−1
A⊗Ck; αA,Ck,I ; idA ⊗ ρCk monoid laws

= ρ−1
A⊗Ck; ρA⊗Ck by Lemma 6.7

= idA⊗Ck

= idTA �

We define the component of the strength of the clock monad as tA,B = α−1
A,B,Ck. Its costrength

natural transformation has canonical component t′A,B = γTA,B; tB,A; T(γB,A) [Jac94].

The following two lemmas are immediate from the coherence of the symmetry γ [JS93].

Lemma 6.10. t′A,B = γA⊗Ck,B; α−1
B,A,Ck; γB,A ⊗ idCk = αA,Ck,B; idA ⊗ γCk,B; α−1

A,B,Ck

Lemma 6.11. γA,B⊗C = α−1
A,B,C; γA,B ⊗ idC; αB,A,C; idB ⊗ γA,C; α−1

B,C,A.

We can now show that the clock monad is a commutative strong monad.

Theorem 6.12. 〈T, η, µ, t〉 is a commutative strong monad.

Proof. We need to prove the following.

tA⊗B,C; T(αA,B,C) = αA,B,TC; idA ⊗ tB,C; tA,B⊗C (6.8)

tI,A; T(λA) = λTA (6.9)

idA ⊗ ηB; tA,B = ηA⊗B (6.10)

idA ⊗ µB; tA,B = tA,TB; T(tA,B); µA⊗B (6.11)

tTA,B; T(t′A,B); µA⊗B = t′A,TB; T(tA,B); µA⊗B (6.12)

For (6.8), we have

LHS = α−1
A⊗B,C,Ck; αA,B,C ⊗ idCk

= αA,B,C⊗Ck; idA ⊗ α−1
B,C,Ck; α−1

A,B⊗C,Ck by coherence of α

= RHS

6.1. CLOCK MONAD AND CLOCK MONOID 149

For (6.9), we use Lemma 6.8. For (6.10), we have

LHS = idA ⊗ (ρ−1
B ; idB ⊗ csCk); α−1

A,B,Ck

= idA ⊗ ρ−1
B ; idA ⊗ (idB ⊗ csCk); α−1

A,B,Ck by functoriality of ⊗

= idA ⊗ ρ−1
B ; α−1

A,B,I ; (idA ⊗ idB)⊗ csCk; αA,B,Ck; α−1
A,B,Ck by Lemma 6.6

= idA ⊗ ρ−1
B ; α−1

A,B,I ; idA⊗B ⊗ csCk by functoriality of ⊗

= ρ−1
A⊗B; idA⊗B ⊗ csCk by Lemma 6.7

= RHS

For (6.11), we have

LHS = idA ⊗ (αB,Ck,Ck; idB ⊗ spCk); α−1
A,B,Ck

= idA ⊗ αB,Ck,Ck; idA ⊗ (idB ⊗ spCk); α−1
A,B,Ck by functoriality of ⊗

= idA ⊗ αB,Ck,Ck; α−1
A,B,Ck⊗Ck; (idA ⊗ idB)⊗ spCk; αA,B,Ck; α−1

A,B,Ck by Lemma 6.6

= idA ⊗ αB,Ck,Ck; α−1
A,B,Ck⊗Ck; idA⊗B ⊗ spCk by functoriality of ⊗

= α−1
A,B⊗Ck,Ck; α−1

A,B,Ck ⊗ idCk; αA⊗B,Ck,Ck; idA⊗B ⊗ spCk by coherence of α

= RHS

For (6.12), we have

RHS = γA⊗Ck,B⊗Ck; α−1
B⊗Ck,A,Ck; γB⊗Ck,A ⊗ idCk; α−1

A,B,Ck ⊗ idCk; αA⊗B,Ck,Ck; idA⊗B ⊗ spCk

= αA,Ck,B⊗Ck; idA ⊗ γCk,B⊗Ck; α−1
A,B⊗Ck,Ck; α−1

A,B,Ck ⊗ idCk; αA⊗B,Ck,Ck; idA⊗B ⊗ spCk

by Lemma 6.10

= αA,Ck,B⊗Ck; idA ⊗ (α−1
Ck,B,Ck; γCk,B ⊗ idCk; αB,Ck,Ck; idB ⊗ γCk,Ck; α−1

B,Ck,Ck); α−1
A,B⊗Ck,Ck;

α−1
A,B,Ck ⊗ idCk; αA⊗B,Ck,Ck; idA⊗B ⊗ spCk by Lemma 6.11

= αA,Ck,B⊗Ck; idA ⊗ α−1
Ck,B,Ck; idA ⊗ (γCk,B ⊗ idCk); idA ⊗ αB,Ck,Ck; idA ⊗ (idB ⊗ γCk,Ck);

idA ⊗ α−1
B,Ck,Ck; α−1

A,B⊗Ck,Ck; α−1
A,B,Ck ⊗ idCk; αA⊗B,Ck,Ck; idA⊗B ⊗ spCk by functoriality of ⊗

= αA,Ck,B⊗Ck; idA ⊗ α−1
Ck,B,Ck; α−1

A,Ck⊗B,Ck; (idA ⊗ γCk,B)⊗ idCk; αA,B⊗Ck,Ck; idA ⊗ αB,Ck,Ck;

α−1
A,B,Ck⊗Ck; (idA ⊗ idB)⊗ γCk,Ck; αA,B,Ck⊗Ck; idA ⊗ α−1

B,Ck,Ck; α−1
A,B⊗Ck,Ck; α−1

A,B,Ck ⊗ idCk;

150 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

αA⊗B,Ck,Ck; idA⊗B ⊗ spCk by Lemma 6.6

= α−1
A⊗Ck,B,Ck; αA,Ck,B ⊗ idCk; (idA ⊗ γCk,B)⊗ idCk; α−1

A,B,Ck ⊗ idCk; αA⊗B,Ck,Ck; idA⊗B ⊗ γCk,Ck;

id(A⊗B)⊗(Ck⊗Ck); idA⊗B ⊗ spCk

by functoriality of ⊗ and the following equalities stemming from the coherence of α,

• αA,Ck,B⊗Ck; idA ⊗ α−1
Ck,B,Ck; α−1

A,Ck⊗B,Ck = α−1
A⊗Ck,B,Ck; αA,Ck,B ⊗ idCk and

• αA,B⊗Ck,Ck; idA ⊗ αB,Ck,Ck; α−1
A,B,Ck⊗Ck = α−1

A,B,Ck ⊗ idCk; αA⊗B,Ck,Ck and

• αA,B,Ck⊗Ck; idA ⊗ α−1
B,Ck,Ck; α−1

A,B⊗Ck,Ck; α−1
A,B,Ck ⊗ idCk; αA⊗B,Ck,Ck = id(A⊗B)⊗(Ck⊗Ck).

We have

LHS = α−1
A⊗Ck,B,Ck; (γA⊗Ck,B; α−1

B,A,Ck; γB,A ⊗ idCk)⊗ idCk; αA⊗B,Ck,Ck; idA⊗B ⊗ spCk

= α−1
A⊗Ck,B,Ck; (αA,Ck,B; idA ⊗ γCk,B; α−1

A,B,Ck)⊗ idCk; αA⊗B,Ck,Ck; idA⊗B ⊗ spCk by Lemma 6.10

= α−1
A⊗Ck,B,Ck; αA,Ck,B ⊗ idCk; (idA ⊗ γCk,B)⊗ idCk; α−1

A,B,Ck ⊗ idCk; αA⊗B,Ck,Ck; idA⊗B ⊗ spCk

by functoriality of ⊗

= α−1
A⊗Ck,B,Ck; αA,Ck,B ⊗ idCk; (idA ⊗ γCk,B)⊗ idCk; α−1

A,B,Ck ⊗ idCk; αA⊗B,Ck,Ck;

idA⊗B ⊗ (γCk,Ck; spCk) by commutativity of the monoid

= α−1
A⊗Ck,B,Ck; αA,Ck,B ⊗ idCk; (idA ⊗ γCk,B)⊗ idCk; α−1

A,B,Ck ⊗ idCk; αA⊗B,Ck,Ck; idA⊗B ⊗ γCk,Ck;

idA⊗B ⊗ spCk by functoriality of ⊗

= RHS �

The commutative strong monad 〈T, η, µ, t〉 induces a symmetric monoidal monad [Koc72]

〈T, η, µ, m〉, where m is a natural transformation, assigning to each pair of objects, A and B, a

morphism mA,B : TA⊗ TB→ T(A⊗ B) defined as follows.

mA,B = tTA,B; T(t′A,B); µA⊗B
∼= idA ⊗ idB ⊗ spCk

TA⊗ TB T(TA⊗ B) T(T(A⊗ B)) T(A⊗ B)
tTA,B //

Tt′A,B // µA⊗B //

6.1. CLOCK MONAD AND CLOCK MONOID 151

Jacobs [Jac94] calls the natural transformation m a double strength map. Its existence corresponds

to driving two processes from the same clock source in a unique way. This is illustrated in

Figure 6.7.

Using the clock monad we can canonically derive a Kleisli category of processes equipped

with a clock. Using standard definitions [Mac98], the Kleisli category SynProcT is defined as

follows.

• The objects of SynProcT are those of SynProcP.

• The set of morphisms homSynProcT
(A, B) is homSynProcP

(A, TB).

• The composition of σ : A→ TB and τ : B→ TC is defined by,

σ ;T τ = σ; T(τ); µC

• The identity morphism over A is ηA.

Diagrammatically, the Kleisli composition of processes f : A → TB and g : B → TC is

depicted in Figure 6.8.

Lemma 6.13 ([Jac94, Theorem 4.3]). If T is a commutative monad on a symmetric monoidal category

C, then the Kleisli category CT is also a symmetric monoidal category, defined by

• A⊗T B = A⊗ B

• f ⊗T g = (f ⊗ g); m

• IT = I ⊗ Ck

A
B

C

D

Ck

f

g

m

Figure 6.7: A circuit representation of the double strength map.

152 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

f
gA*

B*B
C

Ck
Ck

Figure 6.8: A circuit representation of composition in the Kleisli category SynProcT.

Corollary 6.14. SynProcT is a symmetric monoidal category.

We will identify a subcategory SynProc′ of SynProcT wherein for each morphism σ : A→

B, initial events in A are always caused by B-events rather than Ck-events. We will call pro-

cesses that satisfy this property pure.

Definition 6.15 (Pure Process). A process σ : A → B in SynProcT is called pure when all s ∈ σ

satisfy the following. For all e ∈ Es�A, if e′ xs e and λs(e) ∈ IA, then λs(e′) ∈ IB.

This technical condition allows us to identify a closed monoidal subcategory of SynProcT.

Incidentally, disallowing clock events from causing other events is akin to disallowing clock

gating in digital design—a technique that allows controlling local clock signals using combina-

tional logic [ZRM90].

Note that the identity in SynProcT is pure by definition.

Lemma 6.16. If σ : A→ B and τ : B→ C in SynProcT are pure, then σ;T τ is pure.

Proof. Let v ∈ σ;T τ. It follows by definition of composition that there is a trace u ∈ σ τ ⊗

idCk µC over ΘJ(((A ⇒ B ⊗ Ck4) ⇒ (C ⊗ Ck2)⊗ Ck3) ⇒ C′ ⊗ Ck1) such that u � A + C′ +

id

τ

ev
al
B,
C

C

CC

B BB

A
Ck

BB

C

Ck

CkCk Ck

Ck

Figure 6.9: A circuit representation of (idB ⊗T τ) ;T evalB,CT.

6.2. CLOCKED PROCESSES 153

Ck1 = v. Suppose e′ xv e and λv(e) ∈ IA. By definition of composition, there are events

e1 ∈ Eu�C+Ck2+Ck3 , e2 ∈ Eu�B+Ck4 such that λu(e1) ∈ IC⊗Ck2⊗Ck3 and λu(e2) ∈ IB⊗Ck4 and e′ xu e1

and e1 xu e2 and e2 xu e. We use the fact that σ is pure with e2 xu e and λu(e) ∈ IA to

conclude that λu(e2) ∈ IB. Then, from e1 xu e2 and λu(e2) ∈ IB we find that λu(e1) ∈ IC since

τ is pure. Finally, we use the definition of identity (Definition 5.11) on e′ xu e1 and λu(e1) ∈ IC

to conclude that λu(e′) ∈ IC′ . �

Lemma 6.17. If σ : A→ B and τ : C → D in SynProcT are pure, then σ⊗T τ is pure.

Proof. We use the same strategy used in the proof of Lemma 6.16. �

The various monoidal isomorphisms are given by tensoring (in the sense of Definition 3.31)

αA,B,C, λA, ρA, γA,B and evalA,B in SynProcP with csCk. These are pure as tensoring does not

alter justification pointers.

Proposition 6.18. SynProc′ is a symmetric monoidal closed category.

The proof follows the same structure as Proposition 3.42. A circuit representation of the

universal property is depicted in Figure 6.9.

Note that the monad construction is flexible and general enough to allow the definition of

different clock domains using different clocks and clock monads. In the following section, we

will identify a category of clocked processes. Later, we study determinism in the context of

clocked processes.

6.2 Clocked Processes

In the preceding section, we saw that the clock monad does not force processes to use the clock.

However, this means that processes may contain traces where a clock event does not occur in

every round; for example, 〈e1, tick〉 · e2 · 〈e2, tick〉. Such traces have no obvious interpretation.

In a globally synchronous setting, the clock is universal and therefore, all events fall within its

domain. Moreover, the clock divides time into logical segments with no interceding gaps. So,

it is not possible for events to occur between two consecutive clock cycles.

154 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

We will therefore work with the collection of processes in SynProc′ that synchronise with

the global clock Ck. That is, those that can only receive inputs and produce outputs simultane-

ously with the clock reserved event tick. In other words, we want to remove traces that do not

correspond to a physical realisation of the clock: those where the clock event does not occur in

every round. We therefore define a category CkProc of clocked processes. Its objects are those

of SynProc′. We begin by defining clocked traces. These are justified traces where each event is

simultaneous with a clock event.

Definition 6.19 (Clocked trace). A clocked trace s over A is a justified trace satisfying for all e ∈ Es,

there exists e′ ∈ Es such that e ≈s e′ and λs(e′) = tick.

We denote by ΘC(A) the set of clocked traces over A. In the following proofs, we sometimes

include the clock object in the signature for extra clarity.

Definition 6.20 (Clocked process). A clocked process σ : A → B is a causal pure process only

containing clocked traces over ΘJ(A⇒ B⊗ Ck).

Note that all clocked processes are also processes in SynProc′.

For any signatures A, B and C we define the set of interaction traces, written intC(A, B, C) as

ΘC((A⇒ B)⇒ C).

Definition 6.21 (Interaction of clocked processes). The interaction σ Cτ of clocked processes σ :

A→ B and τ : B→ C is the set {u ∈ intC(A, B, C) | u � A+ B+Ck ∈ σ and u � B+C +Ck ∈ τ}.

Definition 6.22 (Composition of clocked processes). Let σ : A → B and τ : B → C be clocked

processes. Their composition σ;C τ is the set {u � A + C + Ck | u ∈ σ Cτ}.

Intuitively, the clocked identity is the largest clocked process contained in ηA, where ηA is

the identity process in SynProcT. It is defined as follows.

Definition 6.23 (Clocked identity). The identity morphism for object A, denoted by idA, is the clocked

process consisting of traces u over A1 ⇒ A2 satisfying, for all events e in Eu \ {e ∈ Eu | λu(e) ∈

lin(Ck)}, there exists an event e′ 6= e, such that

1. e ≈u e′ and

6.2. CLOCKED PROCESSES 155

2. [λu(e) = inl(a) if and only if λu(e′) = inr(a)] and [λu(e) = inr(a) if and only if λu(e′) =

inl(a)] and

3. (a) if λu(e) ∈ IA1 , then e′ xu e

(b) if λu(e) ∈ IA2 , then e xu e′

(c) if λu(e) 6∈ IA1 and λ(e) 6∈ IA2 , then there are e1, e2 ∈ Eu such that e1 xu e and e2 xu e′

and e1 ≈u e2 and [λu(e1) = inl(a′) if and only if λu(e2) = inr(a′)] and [λu(e1) = inr(a′)

if and only if λu(e2) = inl(a′)]

where a, a′ ∈ LA. For any two e, e′ ∈ Eu, if conditions 1–3 hold, we write e�u e′.

On objects, the tensor product is defined exactly as in SynProc′. On morphisms, it is de-

fined as follows.

Definition 6.24 (Tensor product). The tensor product σ ⊗C τ of clocked processes σ : A → B and

τ : C → D is the set {u ∈ ΘC(A⊗ C ⇒ B⊗ D) | u � A + B + Ck ∈ σ and u � C + D + Ck ∈ τ}.

Lemma 6.25. For clocked processes σ : A → B and τ : B → C, we have σ Cτ = (σ T(τ) µC) �

A + B + C + Ck.

Proof. Showing that σ Cτ ⊇ (σ T(τ) µC) � A + B + C + Ck is straightforward. So, we only

prove that σ Cτ ⊆ (σ T(τ) µC) � A + B + C + Ck.

LHS = {v ∈ ΘC((A⇒ B)⇒ C⊗ Ck) | u � A + B + Ck ∈ σ and u � B + C + Ck ∈ τ}

RHS = {u ∈ ΘC(((A⇒ B⊗ Ck4)⇒ (C′ ⊗ Ck2)⊗ Ck3)⇒ C⊗ Ck) | u � A + B + Ck4 ∈ σ

and u � B + C′ + Ck2 ∈ τ and u � Ck4 + Ck3 ∈ idCk and u � C′ + C ∈ idC

and u � Ck2 + Ck ∈ idCk and u � Ck3 + Ck ∈ idCk}

Take v ∈ σ Cτ. We construct a trace u ∈ σ T(τ) µC such that u � A + B + C + Ck = v as

follows.

• Eu = Ev + Ev�Ck + Ev�Ck + Ev�C+Ck.

• λu = λv + λv�Ck + λv�Ck + λv�C+Ck.

156 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

• The preorder �u is the relation satisfying the following, for all e, e′ ∈ Ev.

P1 if e, e′ ∈ Ev�A+B, then in1(e) �u in1(e′)

P2 if e ∈ Ev�A+B and e′ ∈ Ev�Ck, then e �v e′ ⇔ in1(e) �u in1(e′)⇔ in1(e) �u in2(e′)⇔

in1(e) �u in3(e′)⇔ in1(e) �u in4(e′)

P3 if e ∈ Ev�A+B and e′ ∈ Ev�C, then e �v e′ ⇔ in1(e) �u in1(e′)⇔ in1(e) �u in4(e′)

P4 if e ∈ Ev�Ck and e ∈ Ev�A+B, then e �v e′ ⇔ in1(e) �u in1(e′) ⇔ in2(e) �u in1(e′) ⇔

in3(e) �u in1(e′)⇔ in4(e) �u in1(e′)

P5 if e ∈ Ev�C and e ∈ Ev�A+B, then e �v e′ ⇔ in1(e) �u in1(e′)⇔ in4(e) �u in1(e′)

P6 if e ∈ Ev�Ck and e ∈ Ev�C, then e �v e′ ⇔ in1(e) �u in1(e′) ⇔ in1(e) �u in4(e′) ⇔

in2(e) �u in1(e′) ⇔ in2(e) �u in4(e′) ⇔ in3(e) �u in1(e′) ⇔ in3(e) �u in4(e′) ⇔

in4(e) �u in1(e′)⇔ in4(e) �u in4(e′)

P7 if e ∈ Ev�C and e ∈ Ev�Ck, then e �v e′ ⇔ in1(e) �u in1(e′) ⇔ in1(e) �u in2(e′) ⇔

in1(e) �u in3(e′) ⇔ in1(e) �u in4(e′) ⇔ in4(e) �u in1(e′) ⇔ in4(e) �u in2(e′) ⇔

in4(e) �u in3(e′)⇔ in4(e) �u in4(e′)

P8 if e, e′ ∈ Ev�C, then e �v e′ ⇔ in1(e) �u in1(e′) ⇔ in1(e) �u in4(e′) ⇔ in4(e) �u

in1(e′)⇔ in4(e) �u in4(e′)

P9 if e, e′ ∈ Ev�Ck, then e �v e′ ⇔ in1(e) �u in1(e′) ⇔ in1(e) �u in2(e′) ⇔ in1(e) �u

in3(e′) ⇔ in1(e) �u in4(e′) ⇔ in2(e) �u in1(e′) ⇔ in2(e) �u in2(e′) ⇔ in2(e) �u

in3(e′) ⇔ in2(e) �u in4(e′) ⇔ in3(e) �u in1(e′) ⇔ in3(e) �u in2(e′) ⇔ in3(e) �u

in3(e′) ⇔ in3(e) �u in4(e′) ⇔ in4(e) �u in1(e′) ⇔ in4(e) �u in2(e′) ⇔ in4(e) �u

in3(e′)⇔ in4(e) �u in4(e′)

• Let xu be defined as follows, for all e, e′ ∈ Ev.

J1 If e, e′ ∈ Ev�A+B, then e xv e′ ⇔ in1(e) xu in1(e′).

J2 If e, e′ ∈ Ev�C, then e xv e′ ⇔ in1(e) xu in1(e′) ⇔ in4(e) xu in4(e′), and λv(e) ∈

IC ⇔ in4(e) xu in1(e).

J3 If e ∈ Ev�C and e′ ∈ Ev�B, then e xv e′ ⇔ in1(e) xu in4(e)⇔ in4(e) xu in1(e′).

J4 If e ∈ Ev�Ck, then in1(e) xu in2(e)⇔ in1(e) xu in3(e)⇔ in3(e) xu in4(e).

J5 The only pointers in xu are those specified by (J1)–(J4); that is,

6.2. CLOCKED PROCESSES 157

– if e ∈ Ev�A and e′ ∈ Ev�B, then in1(e) 6xu in1(e′),

– if e ∈ Ev�A+B and e′ ∈ Ev�C, then in1(e) 6xu in1(e′) and in1(e) 6xu in4(e′),

– if e ∈ Ev�A+B and e′ ∈ Ev�Ck, then in1(e) 6xu in1(e′) and in1(e) 6xu in2(e′) and

in1(e) 6xu in3(e′) and in1(e) 6xu in4(e′),

– if e ∈ Ev�C and e′ ∈ Ev�A, then in1(e) 6xu in1(e′) and in4(e) 6xu in1(e′),

– if e ∈ Ev�C and e′ ∈ Ev�B, then in1(e) 6xu in1(e′),

– if e ∈ Ev�C and e′ ∈ Ev�Ck, then in1(e) 6xu in1(e′) and in1(e) 6xu in2(e′) and

in1(e) 6xu in3(e′) and in1(e) 6xu in4(e′) and in4(e) 6xu in1(e′) and in4(e) 6xu

in2(e′) and in4(e) 6xu in3(e′) and in4(e) 6xu in4(e′),

– if e, e′ ∈ Ev�Ck, then in1(e) 6xu in1(e′) and in1(e) 6xu in4(e′) and in2(e) 6xu

in1(e′) and in2(e) 6xu in2(e′) and in2(e) 6xu in3(e′) and in2(e) 6xu in4(e′) and

in3(e) 6xu in1(e′) and in3(e) 6xu in2(e′) and in3(e) 6xu in3(e′) and in4(e) 6xu

in1(e′) and in4(e) 6xu in2(e′) and in4(e) 6xu in3(e′) and in4(e) 6xu in4(e′),

– if e ∈ Ev�Ck and e′ ∈ Ev�A+B, then in1(e) 6xu in1(e′) and in2(e) 6xu in1(e′) and

in3(e) 6xu in1(e′) and in4(e) 6xu in1(e′),

– if e ∈ Ev�Ck and e′ ∈ Ev�C, then in1(e) 6xu in1(e′) and in2(e) 6xu in1(e′) and

in3(e) 6xu in1(e′) and in4(e) 6xu in1(e′) and in1(e) 6xu in4(e′) and in2(e) 6xu

in4(e′) and in3(e) 6xu in4(e′) and in4(e) 6xu in4(e′).

We first need to verify that �u is a total preorder, that u respects singularity and that u

is justified. These proofs follow the same structure as e.g. the second half of the proof of

equation (6.1) in Lemma 6.4.

We additionally need to check that u is clocked. Take e ∈ Eu.

• λu(e) ∈ LA or λu(e) ∈ LB or λu(e) ∈ LC. So, e = in1(e′) and e′ ≈v c where c is a clock

event. We use (P2) and (P3) to find that e ≈u in1(c).

• λu(e) ∈ LC′ . So, e = in4(e′) and e′ ≈v c where c is a clock event. We use (P6) and (P7) to

find that e ≈u in4(c).

• All cases where e is a clock event are trivial because �u is reflexive.

Next we need to verify that u satisfies the conditions set earlier.

158 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

• u � C′ + C ∈ idC follows from (P8), (J2) and the fact that �v is reflexive.

• u � Ck4 + Ck3 ∈ idCk follows from (P9), (J4) and the fact that �v is reflexive.

• u � Ck2 + Ck ∈ idCk follows from (P9), (J4) and the fact that �v is reflexive.

• u � Ck3 + Ck ∈ idCk follows from (P9), (J4) and the fact that �v is reflexive.

• u � A + B + Ck4 ∈ σ. We define a bijection φ : Ev�A+B+Ck → Eu�A+B+Ck4 as follows.

φ(e) =

in1(e) if e ∈ Ev�A+B

in4(e) if e ∈ Ev�Ck

The proof that the conditions in Definition 5.4 are met follows from the definitions of Eu

and λu; (P1); (P2); (P4); (P9); (J1) and (J4).

• u � B + C′ + Ck2 ∈ τ We define a bijection φ : Ev�B+C+Ck → Eu�B+C′+Ck2 as follows.

φ(e) =

in1(e) if e ∈ Ev�B

in4(e) if e ∈ Ev�C

in2(e) if e ∈ Ev�Ck2

The proof that the conditions in Definition 5.4 are met follows from the definitions of Eu

and λu; (P3); (P4); (P5); (P6); (P7); (P9); (J1) and (J4).

Finally, we prove that u � A + B + C + Ck = v. From the definition of u and the definition of

projection, we see that Eu�A+B+C+Ck = in1(Ev) and λu�A+B+C+Ck = λv ◦ in1. We can also verify,

by inspection of the definition of �u that (∀e, e′ ∈ Ev)(e �v e′ ⇔ in1(e) �u�A+B+C+Ck in1(e′)).

Next, we prove that for all e, e′ ∈ Ev, we have e xv e′ ⇔ in1(e) xu�A+B+C+Ck in1(e′) through a

case study on the labels of e, e′ ∈ Ev.

• Case: λv(e) ∈ LC and λv(e′) ∈ LC. By (J2), in1(e) xu in1(e′) so in1(e) xu�A+B+C+Ck

in1(e′).

• Case: λv(e) ∈ LB and λv(e′) ∈ LB. By (J1), in1(e) xu in1(e′) so in1(e) xu�A+B+C+Ck

in1(e′).

6.2. CLOCKED PROCESSES 159

• Case: λv(e) ∈ LA and λv(e′) ∈ LA. By (J1), in1(e) xu in1(e′) so in1(e) xu�A+B+C+Ck

in1(e′).

• Case: λv(e) ∈ LC and λv(e′) ∈ LB. By (J3), in1(e) xu in4(e) and in4(e) xu in1(e′) so

in1(e) xu�A+B+C+Ck in1(e′).

• Case: λv(e) ∈ LB and λv(e′) ∈ LA. By (J1), in1(e) xu in1(e′) so in1(e) xu�A+B+C+Ck

in1(e′).

• All other label assignments are illegal. �

Corollary 6.26. For clocked processes σ : A→ B and τ : B→ C, we have σ;C τ = σ;T τ.

Following the same strategy as the previous lemma, we can prove the following.

Lemma 6.27. For clocked processes σ : A→ B and τ : C → D, we have σ⊗C τ = σ⊗T τ.

The proofs of the following two lemmas follow straightforwardly from the definitions.

Lemma 6.28. If σ : A→ B and τ : B→ C are clocked processes, then σ;C τ is a clocked process.

Lemma 6.29. If σ : A→ B and τ : C → D are clocked processes, then σ⊗C τ is a clocked process.

We now show that the clocked identity is well defined.

Lemma 6.30. The clocked identity is the identity for clocked processes

Proof. Let σ : A → B be a clocked process. We have to prove that σ;C idB = σ. Since

idB ⊆ µB and since all clocked processes are also processes in SynProcT, it is easy to see that

σ;C idB ⊆ σ. We then prove that σ;C idB ⊇ σ. The proof follows the same structure as the proof

of Lemma 3.24.

Let s ∈ σ. We will find an interaction trace u ∈ intC(A, B, B′) such that u � A + B + Ck = s

and u � B + B′ + Ck ∈ idB and u � A + B′ + Ck = s. Let u be defined as follows.

• Eu = Es + Es�B.

• λu = λs + λs�B.

• The preorder �u is defined as follows. For all e, e′ ∈ Es,

160 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

P1 if e, e′ ∈ Es, then e �s e′ ⇔ in1(e) �u in1(e′)

P2 if e ∈ Es and e′ ∈ Es�B, then e �s e′ ⇔ in1(e) �u in2(e′)

P3 if e ∈ Es�B and e′ ∈ Es, then e �s e′ ⇔ in2(e) �u in1(e′)

P4 if e, e′ ∈ Es�B, then [e �s e′ ⇔ in1(e) �u in1(e′) ⇔ in2(e) �u in2(e′) ⇔ in1(e) �u

in2(e′)⇔ in2(e) �u in1(e′)]

• Define xu as follows, for all e, e′ ∈ Es.

J1 If e, e′ ∈ Es�A, then e xs e′ ⇔ in1(e) xu in1(e′)

J2 If e ∈ Es�B and e′ ∈ Es�A, then e xs e′ ⇔ in1(e) xu in1(e′)

J3 If e, e′ ∈ Es�B, then e xs e′ ⇔ in1(e) xu in1(e′)⇔ in2(e) xu in2(e′)

J4 λs(e) ∈ IB ⇔ in2(e) xu in1(e)

J5 The only pointers in xu are those specified by (J1)–(J4); that is,

– if e ∈ Es�A and e′ ∈ Es�B, then [in1(e) 6xu in1(e′) and in1(e) 6xu in2(e′)],

– if e ∈ Es�B, then in1(e) 6xu in2(e′),

– if e ∈ Es�B and e′ ∈ Es�A, then in2(e) 6xu in1(e′).

The proofs that �u is a total preorder and u respects singularity follow the same structure as

the proof of Lemma 3.24. We prove that u is justified. It is clear from (J1) and (J2) that all non-

initials in u have a pointer. We verify that (∀e, e′ ∈ Eu)(e xu e′ ⇒ e �u e′) through a case

study. Suppose e xu e′. There are three possibilities given by the definition of xu.

• in−1
1 (e) xs in−1

1 (e′) ∴ in−1
1 (e) �s in−1

1 (e′) because s is justified ∴ e �u e′ by (P1).

• in−1
2 (e) xs in−1

2 (e′) ∴ in−1
2 (e) �s in−1

2 (e′) because s is justified ∴ e �u e′ by (P4).

• in−1
2 (e) = in−1

1 (e′) and in−1
2 (e), in−1

1 (e′) ∈ Es�B ∴ in−1
2 (e) �s in−1

1 (e′) as �s is reflexive

∴ e �u e′ by (P4).

The trace u satisfies purity by construction. We check that u is clocked. Take e ∈ Eu

• λu(e) ∈ LA or λu(e) ∈ LB. So, e = in1(e′) and e′ ≈s c where c is a clock event. We use (P1)

to find that e ≈u in1(c).

6.2. CLOCKED PROCESSES 161

• λu(e) ∈ LB′ . So, e = in2(e′) and e′ ≈s c where c is a clock event. We use (P2) and (P3) to

find that e ≈u in1(c).

• All cases where e is a clock event are trivial because �u is reflexive.

Finally, we show that u satisfies the conditions set out above. First, note that since u is

clocked, then u � A + B + Ck and u � B + B′ + Ck and u � A + B′ + Ck are clocked.

Because �s is reflexive, (P4) implies that (∀e ∈ Es�B)(in1(e) ≈u in2(e)). We also have

λu�B+B′(in1(e)) = inl(b) iff λu�B+B′(in2(e)) = inr(b), b ∈ LB. Moreover, (J3) and (J4) ensure

that pointers are assigned according to Definition 6.23. So, u � B + B′ + Ck ∈ idB. We briefly

argue that u � A + B = s. We have Eu�A+B+Ck = in1(Es) and λu�A+B+Ck = λs ◦ in1. From the

definition of �u, we can see that (∀e, e′ ∈ Es)(e �s e′ ⇔ in1(e) �u�A+B+Ck in1(e′). We need to

prove that (∀e, e′ ∈ Es)(e xs e′ ⇔ in1(e) xu�A+B+Ck in1(e′). This is clear from the definition of

xu.

We then show that u � A + B′ + Ck = s. We have Eu�A+B′+Ck = Es�A+Ck + Es�B. There is a

bijection φ : Es → Eu�A+B+Ck defined as

φ(e) =

in1(e) if e ∈ Es�A+Ck

in2(e) if e ∈ Es�B

It follows from the definition of u that λs�A+Ck = λs ◦ φ. The proofs that (∀e, e′ ∈ Es)(e �s e′ ⇔

φ(e) �u�A+B+Ck φ(e′) and (∀e, e′ ∈ Es)(e xs e′ ⇔ φ(e) �u�A+B+Ck φ(e′) are by case study on

the labels of e, e′ and follow straightforwardly from the definition of u.

The proof that u � A + B′ = s is similar. �

Next, we demonstrate that the tensor product preserves the identity.

Lemma 6.31. The tensor product preserves the clocked identity.

Proof. We want to show that idA ⊗C idB = idA⊗B.

First, we prove idA ⊗C idB ⊆ idA⊗B. Let u ∈ idA ⊗C idB; that is, u ∈ ΘC(A⊗ B⇒ A′ ⊗ B′ ⊗

Ck) and u � A+ A′+Ck ∈ idA and u � B+ B′+Ck ∈ idB. Expanding this using Definition 6.23,

we get

162 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

• u ∈ ΘC(A⊗ B⇒ A′ ⊗ B⊗ Ck) and

• (∀e ∈ Eu�A+A′+Ck, ∃e′ ∈ Eu�A+A′+Ck)(e�u�A+A′+Ck e′) and

• (∀e ∈ Eu�A+A′+Ck, ∃e′ ∈ Eu�A+A′+Ck)(e ≈u�A+A′+Ck e′ and λu�A+A′+Ck(e′) = tick) and

• (∀e ∈ Eu�B+B′+Ck, ∃e′ ∈ Eu�B+B′+Ck)(e�u�B+B′+Ck e′).

• (∀e ∈ Eu�B+B′+Ck, ∃e′ ∈ Eu�B+B′+Ck)(e ≈u�B+B′+Ck e′ and λu�B+B′+Ck(e′) = tick)

Since Eu = Eu�A+A′+Ck ∪ Eu�B+B′+Ck and (∀e, e′ ∈ Eu)(if e ≈u�A+A′+Ck e′ or e ≈u�B+B′+Ck e′,

then e ≈u′ e′) and for all a ∈ Eu�A+A′+Ck, b ∈ Eu�B+B′+Ck, we have λu�A+A′+Ck(a) = λu(a) and

λu�B+B′+Ck(b) = λu(b), we conclude that for all e ∈ Eu, there is e′ ∈ Eu such that e�u e′ and for

all e ∈ Eu there is e′ ∈ Eu such that e ≈u e′ and λu(e′) = tick. Therefore, u ∈ idA⊗B.

Now, we prove idA ⊗ idB ⊇ idA⊗B. Let u ∈ idA⊗B; that is, u ∈ ΘC(A⊗ B ⇒ A′ ⊗ B′ ⊗ Ck)

and (∀e ∈ Eu, ∃e ∈ Eu)(e�u e′) and (∀e ∈ Eu, ∃e′ ∈ Eu)(e ≈u e′ and λu(e′) = tick). After

projecting u over A + A′ + Ck, we get

• u � A + A′ + Ck ∈ ΘC(A⇒ A′ ⊗ Ck) and

• (∀e ∈ Eu�A+A′+Ck, ∃e′ ∈ Eu�A+A′+Ck)(e�u�A+A′ e′) and

• (∀e ∈ Eu�A+A′+Ck, ∃e′ ∈ Eu�A+A′+Ck)(e ≈u�A+A′+Ck e′ and λu�A+A′+Ck(e′) = tick)

that is, u � A + A′ + Ck ∈ idA. Projecting u over B + B′ + Ck yields

• u � B + B′ + Ck ∈ ΘC(B⇒ B′ ⊗ Ck) and

• (∀e ∈ Eu�B+B′+Ck, ∃e′ ∈ Eu�B+B′+Ck)(e�u�B+B′+Ck e′) and

• (∀e ∈ Eu�B+B′+Ck, ∃e′ ∈ Eu�B+B′+Ck)(e ≈u�B+B′+Ck e′ and λu�B+B′+Ck(e′) = tick)

that is, u � B + B′ ∈ idB. So, u ∈ idA ⊗ idB. �

Lemma 6.32. CkProc is a symmetric monoidal category.

Proof. In addition to Lemmas 6.30 and 6.31, we need to verify the following.

6.3. OBSERVABLE DETERMINISM 163

• Associativity of composition. Take clocked processes σ : A → B, τ : B → C and γ :

C → D. We know that all clocked processes are processes in SynProc′, so (σ;T τ);T γ =

σ;T (τ;T γ). By Corollary 6.26, we get (σ;C τ);C γ = σ;C (τ;C γ).

• Tensor preserves composition. Take clocked processes σ : A → B, τ : B → C, α :

D → E and β : E → F. We know that all clocked processes are processes in SynProc′,

so (σ;T τ)⊗T (α;T β) = (σ ⊗T α);T (τ ⊗T β). By Corollary 6.26 and Lemma 6.27, we get

(σ;C τ)⊗C (α;C β) = (σ⊗C α);C (τ ⊗C β).

• The isomorphisms αA,B,C, λA, ρA, γA,B are built using the clocked identity. The detailed

argument follows the same structure as similar proofs in Section 3.2.1 �

We can now state the following.

Theorem 6.33. CkProc is a symmetric monoidal closed category.

The morphism evalA,B is built using the clocked identity. Then the proof, which is omitted,

follows the structure of Proposition 3.42.

6.3 Observable Determinism

Building on the results of the previous section, we define and study the compositionality of

deterministic processes.

Define final(s), the set of final round events in a trace s, as follows.

final(s) = {e ∈ Es | (∀e′ ∈ Es)(e′ �s e)}

We define finali(s), finalo(s) as the obvious restrictions to inputs and outputs, respectively. Let

rest(s) denote the trace s less the last round. Formally, rest(s) is defined by the following.

• Erest(s) = Es \ final(s)

• λrest(s) = λs � Erest(s)

• �rest(s)= �s ∩ E2
rest(s)

164 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

• xrest(s)= xs ∩ E2
rest(s)

In light of the standard definition of determinism [HO00], it is tempting to think of a deter-

ministic synchronous process as one where all traces that are equal up to the penultimate round

and receive the same inputs in the last round, must produce the same outputs. Intuitively,

if rest(s) = rest(s′) and finali(s) = finali(s′), then finalo(s) = finalo(s′) (6.13)

However, such definition yields an erroneous characterisation of determinism. Consider the

following example.

Example 6.34. Let processes σ : A→ B and τ : B→ C, with LA = {a1, a2}, LB = {b1, b2, b3, b4},

`B = {(b1, b2), (b3, b4)}, LC = {c}, defined as follows.

σ = pc({ 〈 bi
1 , bo

2

ww
, ao

1

||
〉, 〈 bi

3 , bo
4

ww
, ao

2

||
〉 }

τ = pc({ ci ·〈 bo
1

yy
, bi

2

ww
〉, ci ·〈 bo

3
yy

, bi
4

ww
〉 }

According to (6.13), σ and τ are deterministic. However, their composition {ci · ao
1, ci · ao

2} is

not. The problem is that τ is erroneously identified as deterministic. Since both b1 and b3 are

caused by c, their occurrence should be ruled as nondeterministic.

Our definition of deterministic process extends the usual definition (see for example [HO00])

to synchronous processes.

Definition 6.35 (Observably deterministic process). A process σ : A is observably deterministic

if in every distinct history, the output is uniquely determined with respect to the temporal order. That

is, for all nonempty traces s, s′ ∈ σ such that rest(s) = rest(s′), where φ : Es → Es′ is the trace

equivalence bijection, we have for every output event o in final(s) and all inputs i ∈ Es and i′ ∈ Es′ ,

1. if i xs o and i 6≈s o, then (∃o′ ∈ final(s′))(λs(o) = λs′(o′) and φ(i) xs′ o′)

2. if i xs o and i ≈s o and i′ ∈ final(s′) and λs(i) = λs′(i′), then (∃o′ ∈ final(s′))(λs(o) =

λs′(o′) and i′ xs′ o′)

6.3. OBSERVABLE DETERMINISM 165

Note that this definition only accounts for observable determinism; that is, it only uses in-

formation that can be observed about the process: the temporal order and justification pointers.

This is not always an accurate characterisation of determinism as we discuss in the next sec-

tion. In the remainder of the current section, whenever we mention determinism, we refer to

the above definition.

In any trace of a clocked process, every event is simultaneous with the clock event tick. We

can therefore use it as a counter. In each trace v, let tickv
n represent the nth clock event, where

n ∈ N, [tickv
n] the nth round, and vn, the shortest prefix of v containing tickv

n. By convention,

we let v0 = ε.

Lemma 6.36. For traces s ∈ σ : A→ B and t ∈ τ : B→ C, where σ and τ are clocked processes, there

is at most one interaction u ∈ σ τ such that u � A + B + Ck = s and u � B + C + Ck = t.

Proof. By Definition 6.22, s and t synchronise on B-events and Ck-events. The are two cases.

• Either s � B + Ck 6= t � B + Ck and therefore, s t = ∅

• Or, s � B + Ck = t � B + Ck; that is, s and t have the same number of rounds and they are

driven by the same clock. In any interaction u of s and t, since [ticks
n] � B + Ck = [tickt

n] �

B + Ck, we have [ticku
n] = ([ticks

n] � A + B + Ck) + ([tickt
n] � C).

It follows that when s and t interact, they produce a single trace. �

For traces s ∈ σ : A → B and τ : B → C, where σ and τ are clocked processes, if s t 6= ∅,

we say that s and t are composable. By slight abuse of notation, we refer to the unique trace in

s t by s t and its projection over A + C + Ck by s; t.

We now show that determinism is a compositional property in CkProc. In the following

lemma, we show that the traces in the composition of two deterministic processes have unique

origins in the components. This may seem surprising, but recall that all events have to syn-

chronise with the global clock. In a locally synchronous setting, this lemma is obviously not

correct.

Lemma 6.37. Let σ : A→ B and τ : B→ C be deterministic processes in CkProc, with traces s, s′ in

σ and t, t′, in τ. If s and t are composable and s; t = s′; t′, then s = s′ and t = t′.

166 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

Proof. By Definition 6.22, we have that s; t = s′; t′ implies,

(s t) � A + C + Ck = (s′ t′) � A + C + Ck (6.14)

We prove that s t = s′ t′ by induction over the length of traces s, t, s′, t′ given by the number

of rounds n. Let u = s t and u′ = s′ t′

• Base case (n = 1). Suppose b is a B-event in final(u). Let b be justified by an event e.

– If b is initial in B then e is an input in final(t). By (6.14), e ∈ final(t′). Since τ is

deterministic, b ∈ final(t′).

– If b is not initial in B, then because `A⇒B and `B⇒C are acyclic by Definition 5.1,

there is a finite set of B-events Z = {e1, . . . , ek, b} such that e1 xu . . . xu ek xu b

and e1 is an initial B-event. We prove by induction that all events in Z are in final(u′).

∗ Base case (k = 1). We have ei
1 xu b. Then, there is a C-event c ∈ final(t) such

that c xt eo
1. By (6.14), c ∈ final(t′). Since τ is deterministic, eo

1 ∈ final(t′). Since

s′ and t′ compose, ei
1 ∈ final(s′). Since σ is deterministic, b ∈ final(s′).

∗ Inductive step. Suppose all events ei ∈ Z where i ∈ {1, . . . , m} are in final(u′).

Now we consider the next event em+1 in Z. Suppose em+1 ∈ final(u) and em xs

em+1. Let em+1 be an output in final(s). By the inductive hypothesis, em ∈

final(s′). Since σ is deterministic, we get em+1 ∈ final(s′). Let em+1 be an in-

put in final(s). Then, since s and t are composable, em+1 is an output in final(t).

By the inductive hypothesis, em ∈ final(t′). Since τ is deterministic, we get

em+1 ∈ final(t′).

• Inductive step. Suppose (s t)n = (s′ t′)n. We show that rounds n + 1 are also equal

in s t and s′ t′. Suppose b is a B-event in final(u). Let b be justified by an event e. If

e ≈u b, then we use the same reasoning as the base case. In particular, e is either initial or

is transitively justified by an initial event e1 in the same round or in rest(u). The base case

already covers the first two cases, so it is sufficient to consider the case where e 6≈u b. If b

is an output in s then b ∈ final(s′) because σ is deterministic and if b is an output in t then

b ∈ final(t′) because τ is deterministic.

6.3. OBSERVABLE DETERMINISM 167

We need to verify that (∀e, e′ ∈ Eu)(e xu e′ ⇔ e xu′ e′).

• If e is a C-event and e′ is a C-event, then e xu′ e′ from (6.14).

• If e is a A-event and e′ is a A-even, then e xu′ e′ from (6.14).

• If e is a B-event and e′ is a B-event, then if e ≈u e′ we use the inductive argument above,

otherwise e xu′ e′ because σ and τ are deterministic.

• If e is a C-event and e′ is a B-event, then e′ is an output in t. We have e xu′ e since τ is

deterministic.

• If e is a B-event and e′ is a A-event, then e′ is an output in s. We have e xu′ e since σ is

deterministic. �

We can now show that deterministic processes compose.

Lemma 6.38 (Compositionality). If σ : A → B and τ : B → C are deterministic processes in

CkProc, then σ; τ is a deterministic process.

Proof. Let σ : A → B and τ : B → C be deterministic processes in CkProc. By Definition 6.35,

for all s, s′ ∈ σ and t, t′ ∈ τ such that rest(s) = rest(s′) and rest(t) = rest(t′) we have,

if i xs o and i 6≈s o, then o ∈ final(s′) (6.15)

if i xs o and i ≈s o and i ∈ final(s′), then o ∈ final(s′) (6.16)

if i xt o and i 6≈t o, then o ∈ final(t′) (6.17)

if i xt o and i ≈t o and i ∈ final(t′), then o ∈ final(t′) (6.18)

We show that σ; τ conforms to Definition 6.35.

Take traces v, v′ in σ; τ such that s; t = v and s′; t′ = v′ with s, s′ ∈ σ and t, t′ ∈ τ.

For the first part of the proof, we assume that rest(v) = rest(v′) and i xv o and i 6≈v o

and show that o ∈ final(v′). Using Lemma 6.37, it follows that rest(s) = rest(s′) and rest(t) =

rest(t′). From i xv o and i 6≈v o, we have either of the following cases.

168 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

• The event o is a C-event. This means that it is justified by a C-event i. Additionally, it

follows from Definition 6.22 and assumption i 6≈v o, that i 6≈t o. Since i and o are C-

events, i xv o implies i xt o. So we have i xt o and i 6≈t o. Using (6.17), we conclude

that o ∈ final(t′), and therefore o ∈ final(v′).

• The event o is an A-event. This means that it is justified by an event i which may either

be an A-event or a C-event.

– In the first case, by Definition 6.22, we have i 6≈v o implies i 6≈s o. Since i and o are

A-events, i xv o implies i xs o. So we have i xs o and i 6≈s o. Hence, using (6.15),

we conclude that o ∈ final(s′) and therefore, o ∈ final(v′).

– In the second case, it ensues that o is justified by a B-event b in s, which in turn, is

justified by i in t; that is, b xs o and i xt b. Moreover, we have by assumption

i 6≈v o, which implies i 6≈t b or b 6≈s o (by Definition 6.22). To sum up, we have

b xs o and i xt b and (i 6≈t b or b 6≈s o). This logically implies (b xs o and b 6≈s

o) or (i xt b and i 6≈t b). In the first case, we use (6.15) and in the second, we use

(6.17) to conclude that o ∈ final(v′).

For the second part, we assume that rest(v) = rest(v′) and i xv o and i ≈v o and i ∈

final(v′) and show that o ∈ final(v′). Using Lemma 6.37, it follows that rest(s) = rest(s′) and

rest(t) = rest(t′). From i xv o and i ≈v o and i ∈ final(v′), we have either of the following

cases.

• The event o is a C-event. This means that i is a C-event. Also, by Definition 6.22, it follows

from assumption i ≈v o that i ≈t o and from assumption i ∈ final(v′) that i ∈ final(t′).

So we have i xt o and i ≈t o and i ∈ final(t′), and hence, using (6.18) we conclude that

o ∈ final(t′), and therefore o ∈ final(v′).

• The event o is an A-event. This means that it is justified by an event i which may either

be an A-event or a C-event.

– In the first case, by Definition 6.22, i ≈v o implies i ≈s o and i ∈ final(v′) implies

i ∈ final(s′). So we have i xs o and i ≈s o and i ∈ final(s′). Using (6.16) we conclude

that o ∈ final(s′), and therefore o ∈ final(v′).

6.4. DISCUSSION 169

– In the second case, it follows that o is justified by a B-event b in s, which in turn,

is justified by i in t; that is, b xs o and i xt b. Moreover, we have by assumption

i ≈v o, which implies i ≈t b and b ≈s o (by Definition 6.22). Additionally, we have

i ∈ finali(v′) which implies i ∈ finali(t′). Using (6.18), we deduce that b ∈ finalo(t′).

This implies that b ∈ finali(s′) because s′ and t′ are assumed to be composable. Using

(6.16), we deduce that o ∈ final(s′) and consequently, o ∈ final(v′). �

We can now state the following result.

Theorem 6.39. There is a lluf subcategory of CkProc consisting of deterministic processes and identity

morphisms.

The above theorem reflects the fact that identity morphisms are not observably determin-

istic according to our definition; see Example 6.40. Our characterisation of deterministic pro-

cesses assumes that the notion of causality encoded by justification pointers is comprehensive;

that is, the possibility of occurrence of an event only depends on the observation of its cause.

However, this is not true in the case of the copycat strategy in Game Semantics. There is im-

plicit causality information in the temporal order that is obfuscated by its round abstraction,

the identity process. We further discuss this problem in the next section.

6.4 Discussion

We defined a way to extend the locally synchronous setting of Chapter 3 to global synchrony

using a clock monad. Consequently, one can add global clocks to round abstracted models in a

principled fashion. This operation is akin to mapping a hardware specification onto a physical

medium. For example, while in a locally synchronous setting, the time elapsed between two

successive rounds is unknown, it must be specified as clock ticks in a globally synchronous

setting.

We saw that the clock monad provides a canonical way to wire processes with a global

clock; however, it does not specify nor enforce the use of the clock. Hence, we defined a cat-

egory of processes whose events synchronise on the global clock. We called such processes

clocked.

170 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

We then explained how deterministic processes may be defined within the category of

clocked processes. The definition of determinism in a synchronous setting has to take causality—

expressed as justification pointers—into account. Ignoring it can lead to an erroneous charac-

terisation of deterministic processes.

However, the importance of justification pointers extends beyond. If we reassign the point-

ers in a deterministic process in a legal manner, we may render the process nondeterministic.

For example, consider the deterministic process σ : A where i1 `A o2 and i2 `A o3, which only

consists of the following two traces.

i1 · i2 · 〈 i1 , o2
yy

〉

i1 · i2 · 〈 i2 , o3
yy

〉

Another legal pointer assignment may be,

i1 · i2 · 〈 i1 , o2
xx 〉

i1 · i2 · 〈 i2 , o3
zz

〉

which renders σ nondeterministic.

Consequently, when working with low-level models lacking pointers, such as those used

to represent synchronous hardware [Ghi07], we need to be able to derive the pointer causality

from the structure of the traces in a unique and unambiguous way. Examples of this include

the game semantic model of First-Order Idealized Algol [GM03] and the game semantics of

Syntactic Control of Interference (SCI) [GS10].

Our discussion up to this point assumed that justification pointers encode sufficient causal-

ity. However, this assumption fails in the case of the identity process. It is thusly misidentified

as nondeterministic.

To define determinism accurately, it is important to have a precise notion of causality. In

our setting, the only form of causality is encoded by the justification pointers. However, these

encode necessary rather than sufficient causality. As a result, some implicit causality information

represented by the temporal ordering may be lost when moving from an asynchronous setting

6.4. DISCUSSION 171

to a synchronous one.

The ability to determine the causal order of events in a round is a focal problem in syn-

chronous languages. One solution [BB91] is to view each round (called a macrostep) as consist-

ing of many atomic microsteps which have an intrinsic causality order. In Reactive Modules

[AH99], each round receives all inputs before producing outputs.

To illustrate the loss of information that may occur in round abstraction, consider the fol-

lowing example.

Example 6.40. Take the clocked identity over A where LA = {a1, a2, a3} and a1 ` a2, a1 ` a3. It

contains the following two traces.

s1 = 〈 tick , ai
1 , ao

1

ww
〉 · 〈 ai

2

zz
, ao

2

||
, tick 〉

s2 = 〈 tick , ai
1 , ao

1

ww
〉 · 〈 ai

3

zz
, ao

3

||
, tick 〉

In an asynchronous trace, there may be implicit causality information encoded by the tem-

poral order of events which could be obfuscated when applying round abstraction. In our

example, the occurrences of ao
2 and ao

3 cause the apparent nondeterminism. However, this con-

clusion does not account for the fact that copycat traces always take an input before producing

its corresponding output copy. Since the justified synchronous identity is a round abstraction

of copycat, the previous fact is obscured by making inputs simultaneous with their respec-

tive output copies. In this case, justification pointers alone do not encode sufficient causality

information to accurately specify a deterministic process.

So, what can be done? We need traces that encode comprehensive causality information.

In other words, for each event in a trace, we need to specify a set of events that must occur

before or simultaneously with it. This causality information must be preserved in the round

abstraction.

Possible ways of representing this causality include multiple justification pointers [Wal04]

and partial orders [Win80, Jan08]. Both of these introduce challenges in the synchronous setting

that must be addressed separately. For example, multiple justification pointers may introduce

causality cycles in a round.

172 CHAPTER 6. GLOBAL CLOCKS AND DETERMINISM

Finally, the two notions studied in this chapter, global synchrony and determinism, are

essential facets of synchronous languages à la Esterel. The categories introduced here combine

these two characteristics and may therefore offer a platform for studying connections between

round abstraction and synchronous languages.

CHAPTER 7

CONCLUSION

“Et puis sans rien nier je repars à nouveau,

Je suis le point final d’un roman qui commence.”
MALEK HADDAD

7.1 Summary

We examined the use of round abstraction in the adaptation of asynchronous trace models

into the synchronous framework. Originally, round abstraction is a useful idea that forms an

intrinsic part of the Reactive Modules language [AH99]. It was used in the context of model

checking [AHR98, AW99], but its monolithic definition impinged upon its applicability to game

models.

We began by introducing a trace model of low-level concurrency. The idea is to construct

a basic category that allows modelling synchronous and asynchronous behaviour but avoids

unnecessary restrictions.

In Chapter 4, we used our trace model to formulate and study the first compositional form

of round abstraction. Unlike its precursor, our round abstraction does not hide intermediate

events, and therefore, only strips some timing information. We defined two levels of abstrac-

tion: a partial one, requiring that all traces in the round abstraction stem from the original pro-

cess; and a total round abstraction, additionally stipulating that all original traces be abstracted.

For partial round abstraction, we identified sufficient conditions guaranteeing compositional-

ity, yielding the concepts of compatibility and post-compatibility. Compositionality of total

round abstraction is still an open question. We explored some pointers for further research.

173

174 CHAPTER 7. CONCLUSION

Next, in Chapter 5, we extended the definition of synchronous process with justification

pointers. The ability to assign an actual cause to each event in a trace is a prerequisite to

describing asynchronous and deterministic behaviours. In certain game models, justification

pointers can also be recovered from the structure of the trace [GM03]. However, this requires

processes to satisfy stringent conditions; for example, restricting the game model to the first-

order subset of a programming language. We chose to add pointers explicitly on traces in order

to retain generality.

We then described a category of asynchronous processes. Intuitively, this category is struc-

turally the same as the full subcategory of G—the category of multi-threaded saturated strate-

gies [GM08, pp. 14–18]—whose objects consist of questions only. Its processes simulate in-

terleaved asynchrony by saturation under certain event permutations, a well-established idea

in the literature [Udd86, JJH90, Lai01b, Lai05b, Lai06, GM08, Fos07]. We introduced new for-

malisations of the saturation preorder (Definition 5.31 and Definition 5.32), alternating copycat

(Definition 5.36) and asynchronous identity (Definition 5.37); and presented previously unpub-

lished categorical proofs (e.g. Lemma 5.51).

We ended Chapter 5 by showing that the compositionality of partial round abstraction

holds in the causal and asynchronous categories. This result allows deriving sound synchronous

representations of asynchronous processes, compositionally.

We demonstrated, in Chapter 6, that our locally synchronous processes can be lifted to a

globally synchronous setting in a principled way. To this end, we introduced the ideas of clock

monoid and clock monad. These categorical constructions allow us to extend our trace model

with a global clock. Computational monads have been used, since Moggi [Mog89, Mog91],

to extend categorical models with various effects but, to our knowledge, the notion of a clock

monad is novel. It is important to note that clock monads describe how processes that have a

global clock should be wired. However, it does not describe how the clock should be used. So, in

the following section, we saw how a category of processes that synchronise on the clock can be

constructed. Within this setting, we defined determinism on clocked processes and identified

a subcategory of identity and deterministic processes.

We noted that despite our physical conceptions about the behaviour of the clocked identity,

it is nondeterministic according to our definition. The problem is that clocked traces do not

7.2. FURTHER DIRECTIONS 175

contain sufficient causality information to allow an accurate characterisation of determinism.

Indeed, justification pointers encode necessary rather than sufficient causality. We discussed

how this problem may be overcome.

7.2 Further Directions

This thesis has established a compositional form of round abstraction and laid the foundation

for the game-semantic analysis of synchrony. However, several aspects of our solution merit

further study. There are also opportunities for new ideas to be built on this thesis. We explore

some of these in the following points.

Generalisations. Compatibility and post-compatibility are sufficient to guarantee the com-

positionality of partial round abstraction. It would be interesting to see whether necessary

conditions can be identified. Moreover, our setting reflects a low-level view of concurrency,

where events are atomic and connectors do not implicitly buffer events. Eliminating these re-

strictions would lead to higher-level semantic models where round abstraction may reduce the

cost of communication by sending larger ‘packets’ instead of individual events.

Total round abstraction. The question of compositionality of total round abstractions is an

open problem. Immediately, there are two problems that seemingly hinder compositionality.

The first one, illustrated in Example 4.15, is that round abstraction may introduce deadlock

by aggregating mismatched events with those that compose well. The second is that round

abstraction may introduce deadlock simply by assigning events to rounds in an inconsistent

way (see Example 4.3). More generally, eliminating these problems may not be sufficient and

further restrictions may be required. For instance, the notion of interference [Rey78]—a term

given to the effect of the execution of a computation on another’s outcome—seems of interest

to total round abstraction. For example, the BSCI type system disallows functions from sharing

identifiers—and therefore, from interfering—with their arguments. By contrast, pairs of argu-

ments may interfere with each other. Intuitively, events from noninterfering computations may

be allowed to occur simultaneously in the round abstraction since their order is arbitrary in any

176 CHAPTER 7. CONCLUSION

original process [McC02]. However, making interfering events simultaneous is dangerous as it

may result in either the round abstraction resolving or introducing deadlocks.

Synchronous game semantics. Synchronous representations of game models may be derived

through partial round abstraction. However, in general, we are more interested in synchronous

representations that fully capture the asynchronous behaviour of the original strategies. In this

context, the compositionality of total round abstraction is important. This may be circumvented

by designing a custom round abstraction that is total under certain conditions.

Geometry of Synthesis. GoS will, in principle, benefit from applying our results in the con-

struction of provably correct compilers into synchronous circuits. The performance of the re-

sulting circuits remains to be evaluated by practical case studies. Further optimisations at the

level of circuitry should also be possible.

New synchronous languages. It is generally assumed that synchrony is too strong for prac-

tical use in high-level programming languages. One attempt at bridging this gap is Mandel

and Pouzet’s ReactiveML [MP05], which extends ML with synchronous primitives by adding

processes and signals—entities that are orthogonal to the type system. By modelling pro-

cesses as strategies and taking the start and end of computation as signals, it may be pos-

sible to design intrinsically synchronous programming languages. Imperative synchronous

languages, like Esterel, already provide a rich set of primitives. Let us consider, for example,

the statement await, which blocks until a signal is emitted. It may be given the type signature

com1 ⇒ com2 × com3 and the following interpretation.

com1 ⇒ com2 × com3

r1 r2

d1 d2

r3

r2 d3

When activated (r3), the strategy waits until com2 is initiated, then terminates. Otherwise, the

circuits behaves like the synchronous identity.

7.2. FURTHER DIRECTIONS 177

Connections with Interaction Categories. Interaction Categories [AGN96] are a general se-

mantics framework for sequential and concurrent computation. They can express both syn-

chronous and asynchronous behaviours, and have been used in conjunction with specification

structures for guaranteeing certain properties, such as deadlock-freeness [AGN99]. Moreover,

they have been shown to interpret Milner’s SCCS calculus [AGN96] and model some syn-

chronous programming languages [GN93]. Because of these reasons, they provide a general

and flexible setting in which round abstraction should be expressed and studied.

Round abstraction and synchronous languages. Connections between round abstraction in

general and synchronous languages should be investigated. As previously mentioned, Inter-

action Categories should provide a good platform for the study of round abstraction, and al-

low connections with Milner’s SCCS and other synchronous languages to be established. On

a more speculative note, round abstraction may be of use in the compilation of synchronous

languages, either as an optimisation or a scheduling method. For instance, various Esterel com-

pilers generate intermediate representations to which round abstraction can be applied; be it

automata [BG92] or graphs [PBdS03].

Determinism on synchronous and clocked processes. Correctly defining determinism on

synchronous processes is a nontrivial task. We demonstrated that a straightforward exten-

sion of the classical definition is incorrect. We then found that round abstraction may destroy

information that is vital to discerning determinism. This led us to distinguish observable de-

terminism and comprehensive determinism. The latter requires that justification is sufficiently

encoded. It would be interesting to investigate the use of multiple justification and partial

orders to overcome this problem.

178 CHAPTER 7. CONCLUSION

REFERENCES

[AB84] D. Austry and G. Boudol. Algèbre de processus et synchronisation. Theoretical
Computer Science, 30:91–131, 1984.

[Abr90] S. Abramsky. Abstract interpretation, logical relations and Kan extensions. Logic
and Computation, 1(1):5–41, 1990.

[Abr97a] S. Abramsky. Games in the semantics of programming languages. In P. Dekker,
M. Stokhof, and Y. Venema, editors, Proceedings of the 11th Amsterdam Colloquium,
pages 1–6. ILLC, Dept. of Philosophy, University of Amsterdam, 1997.

[Abr97b] S. Abramsky. Semantics of interaction: an introduction to game semantics. In
P. Dybjer and A. Pitts, editors, Proceedings of the 1996 CLiCS Summer School, Isaac
Newton Institute, pages 1–31. Cambridge University Press, 1997.

[Abr01] S. Abramsky. Algorithmic game semantics: A tutorial introduction. In H. Schicht-
enberg and R. Steinbrüggen, editors, Proceedings of the NATO Advanced Study In-
stitute, Marktoberdorf, chapter Proof and System Reliability, pages 21–47. Kluwer
Academic Publishers, 2001.

[Abr10] S. Abramsky. From CSP to game semantics. In A. Roscoe, C. B. Jones, and K. R.
Wood, editors, Reflections on the Work of C.A.R. Hoare, History of Computing, pages
33–45. Springer, London, 2010.

[AGMO04] S. Abramsky, D. R. Ghica, A. S. Murawski, and C.-H. L. Ong. Applying game
semantics to compositional software modeling and verification. In K. Jensen and
A. Podelski, editors, TACAS ’04: Proceedings of the 10th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (Barcelona, Spain),
volume 2988 of Lecture Notes in Computer Science, pages 421–435. Springer, 2004.

[AGN96] S. Abramsky, S. Gay, and R. Nagarajan. Interaction categories and the founda-
tions of typed concurrent programming. In M. Broy, editor, Proceedings of the 1994
Marktoberdorf Summer School on Deductive Program Design, pages 35–113. Springer-
Verlag, 1996.

[AGN99] S. Abramsky, S. J. Gay, and R. Nagarajan. A specification structure for deadlock-
freedom of synchronous processes. Theoretical Computer Science, 222:1–53, 1999.

[AH89] L. Aceto and M. Hennessy. Towards action-refinement in process algebras. In LICS
’89: Proceedings of the 4th Annual Symposium on Logic in Computer Science (Pacific
Grove, California, USA), pages 138–145. IEEE Computer Society Press, 1989.

[AH94] L. Aceto and M. Hennessy. Adding action refinement to a finite process algebra.
Information and Computation, 115(2):179–247, 1994.

179

180 REFERENCES

[AH95] R. Alur and T. A. Henzinger. Local liveness for compositional modeling of fair
reactive systems. In P. Wolper, editor, CAV ’95: Proceedings of the 7th International
Conference on Computer Aided Verification (Liège, Belgium), volume 939 of Lecture
Notes in Computer Science, pages 166–179. Springer, 1995.

[AH97a] R. Alur and T. A. Henzinger. Modularity for timed and hybrid systems. In A. W.
Mazurkiewicz and J. Winkowski, editors, CONCUR ’97: Proceedings of the 8th Inter-
national Conference on Concurrency Theory (Warsaw, Poland), volume 1243 of Lecture
Notes in Computer Science, pages 74–88. Springer, 1997.

[AH97b] R. Alur and T. A. Henzinger. Real-time system = discrete system + clock variables.
International Journal on Software Tools for Technology Transfer, 1(1–2):86–109, 1997.

[AH99] R. Alur and T. A. Henzinger. Reactive Modules. Formal Methods in System Design,
15:7–48, 1999.

[AHM98] S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics for
general references. In LICS ’98: Proceedings of the 13th Annual Symposium on Logic
in Computer Science (Indianapolis, Indiana, USA), pages 334–344. IEEE Computer
Society, 1998.

[AHR98] R. Alur, T. A. Henzinger, and S. K. Rajamani. Symbolic exploration of transition
hierarchies. In TACAS’ 98: Proceedings of the 4th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (Lisbon, Portugal), volume
1384 of Lecture Notes in Computer Science, pages 330–344. Springer, 1998.

[AJ92] S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative
linear logic (extended abstract). In R. K. Shyamasundar, editor, FSTTCS ’92: Pro-
ceedings of the 12th Conference on Foundations of Software Technology and Theoretical
Computer Science (New Delhi, India), volume 652 of Lecture Notes in Computer Sci-
ence, pages 291–301. Springer, 1992.

[AJ94] S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative
linear logic. The Journal of Symbolic Logic, 59(2):543–574, 1994.

[AJ05] S. Abramsky and R. Jagadeesan. A game semantics for generic polymorphism.
Annals of Pure and Applied Logic, 133:3–37, 2005.

[AJ09] S. Abramsky and R. Jagadeesan. Game semantics for access control. Electronic
Notes in Theoretical Computer Science, 249:135–156, 2009.

[AJM00] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Information
and Computation, 163:409–470, 2000.

[AL91] M. Abadi and L. Lamport. An old-fashioned recipe for real time. In J. W. de Bakker,
C. Huizing, W. P. de Roever, and G. Rozenberg, editors, REX Workshop, volume 600
of Lecture Notes in Computer Science, pages 1–27. Springer, 1991.

[AL93] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Pro-
gramming Languages and Systems, 15(1):73–132, 1993.

[AM94] S. Abramsky and G. McCusker. Games for recursive types. In C. Hankin, I. Mackie,
and R. Nagarajan, editors, Theory and Formal Methods, pages 1–20. Imperial College
Press, 1994.

REFERENCES 181

[AM97a] S. Abramsky and G. McCusker. Call-by-value games. In M. Nielsen and
W. Thomas, editors, CSL ’97: Proceedings of the 11th International Workshop on Com-
puter Science Logic (Aarhus, Denmark), volume 1414 of Lecture Notes in Computer
Science, pages 1–17. Springer, 1997.

[AM97b] S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract game
semantics for Idealized Algol. In P. O’Hearn and R. D. Tennent, editors, Algol-like
Languages, pages 317–348. Birkhaüser, 1997.

[AM99a] S. Abramsky and G. McCusker. Full abstraction for Idealized Algol with passive
expressions. Theoretical Computer Science, 227:3–42, 1999.

[AM99b] S. Abramsky and G. McCusker. Game semantics. In H. Schwichtenberg and
U. Berger, editors, Computational Logic: Proceedings of the 1997 Marktoberdorf Summer
School, pages 1–56. Springer-Verlag, 1999.

[AM99c] S. Abramsky and P.-A. Melliès. Concurrent games and full completeness. In LICS
’99: Proceedings of the 14th Annual Symposium on Logic in Computer Science (Trento,
Italy), pages 431–442. IEEE Computer Society Press, 1999.

[Ari28] Aristotle. Topics. Clarendon Press, Oxford, 1928.

[AW99] R. Alur and B.-Y. Wang. “Next” heuristic for on-the-fly model checking. In J. C. M.
Baeten and S. Mauw, editors, CONCUR ’99: Proceedings of the 10th International Con-
ference on Concurrency Theory (Eindhoven, The Netherlands), volume 1664 of Lecture
Notes in Computer Science, pages 98–113. Springer, 1999.

[Bae05] J. C. M. Baeten. A brief history of process algebra. Theoretical Computer Science,
335(2-3):131–146, 2005.

[BB91] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time
systems. Proceedings of the IEEE, 79(9):1270–1282, September 1991.

[BCE+03] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and R. de Si-
mone. The synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64–
83, January 2003.

[BCG99] A. Benveniste, B. Caillaud, and P. L. Guernic. From synchrony to asynchrony. In
J. C. M. Baeten and S. Mauw, editors, CONCUR ’99: Proceedings of the 10th Interna-
tional Conference on Concurrency Theory (Eindhoven, The Netherlands), volume 1664
of Lecture Notes in Computer Science, pages 162–177. Springer, 1999.

[BCH+85] J. L. Bergerand, P. Caspi, N. Halbwachs, D. Pilaud, and E. Pilaud. Outline of a real-
time data-flow language. In Proceedings of the IEEE Real-Time Systems Symposium
(San Diego, USA), San Diego, 1985.

[BDGL10] A. Bakewell, A. Dimovski, D. R. Ghica, and R. Lazic. Data-abstraction refinement:
a game semantic approach. International Journal on Software Tools for Technology
Transfer, 12(5):373–389, 2010.

[Ben01] A. Benveniste. Some synchronization issues when designing embedded systems
from components. In T. A. Henzinger and C. M. Kirsch, editors, EMSOFT ’01: Pro-
ceedings of the 1st International Workshop on Embedded Software (Tahoe City, California,
USA), volume 2211 of Lecture Notes in Computer Science, pages 32–49. Springer,
2001.

182 REFERENCES

[Ber99] G. Berry. The constructive semantics of pure Esterel. Draft book. Available at
http://www.esterel-technologies.com/, 1999.

[BG88] G. Berry and G. Gonthier. The Esterel synchronous programming language: de-
sign, semantics, implementation. Technical Report 842, INRIA-Sophia Antiopolis,
1988.

[BG92] G. Berry and G. Gonthier. The Esterel synchronous programming language: de-
sign, semantics and implementation. Science of Computer Programming, 19(2):87–
152, 1992.

[BG08] A. Bakewell and D. R. Ghica. On-the-fly techniques for game-based software
model checking. In C. R. Ramakrishnan and J. Rehof, editors, TACAS ’08: Pro-
ceedings of the 14th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (Budapest, Hungary), volume 4963 of Lecture Notes in
Computer Science, pages 78–92. Springer, 2008.

[BG09] A. Bakewell and D. R. Ghica. Compositional predicate abstraction from game
semantics. In S. Kowalewski and A. Philippou, editors, TACAS ’09: Proceedings
of the 15th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (York, UK), volume 5505 of Lecture Notes in Computer Science,
pages 62–76. Springer, 2009.

[BKR+91] K. V. Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij. The VLSI-
programming language Tangram and its translation into handshake circuits. In
Proceedings of the conference on European Design Automation, pages 384–389. IEEE
Computer Society Press, 1991.

[Bla92] A. Blass. A game semantics for linear logic. Annals of Pure and Applied Logic, 56(1-
3):183–220, 1992.

[BLJ91] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous programming with
events and relations: the SIGNAL language and its semantics. Science of Computer
Programming, 16(2):103–149, 1991.

[BMR83] G. Berry, S. Moisan, and J.-P. Rigault. Esterel: Towards a synchronous and seman-
tically sound high level language for real time applications. In Proceedings of the
IEEE Real-Time Systems Symposium, pages 30–40, 1983.

[Bou85] G. Boudol. Notes on algebraic calculi of processes. In Logics and Models of Concur-
rent Systems, pages 261–303. Springer, 1985.

[BRS93] G. Berry, S. Ramesh, and R. K. Shyamasundar. Communicating Reactive Processes.
In POPL ’93: Conference Record of the 20th Annual Symposium on Principles of Pro-
gramming Languages (Charleston, South Carolina), pages 85–98. ACM, 1993.

[BS01] G. Berry and E. Sentovich. Multiclock esterel. In T. Margaria and T. F. Melham, ed-
itors, CHARME ’01: Proceedings of the 11th IFIP WG 10.5 Advanced Research Working
Conference on Correct Hardware Design and Verification Methods (Livingston, Scotland),
volume 2144 of Lecture Notes in Computer Science, pages 110–125. Springer, 2001.

[Cas01] P. Caspi. Embedded control: From asynchrony to synchrony and back. In T. A.
Henzinger and C. M. Kirsch, editors, EMSOFT ’01: Proceedings of the 1st Interna-
tional Workshop on Embedded Software (Tahoe City, California, USA), volume 2211 of
Lecture Notes in Computer Science, pages 80–96. Springer, 2001.

http://www.esterel-technologies.com/

REFERENCES 183

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL ’77:
Conference Record of the 4th ACM Symposium on Principles of Programming Languages
(Los Angeles, California, USA), pages 238–252. ACM, 1977.

[Cel] Celoxica Ltd. Handel-C language reference manual. http://www.celoxica.
com available at http://babbage.cs.qc.edu/courses/cs345/Manuals/
HandelC.pdf.

[Cha84] D. M. Chapiro. Globally-asynchronous locally-synchronous systems. PhD thesis, Stan-
ford University, 1984.

[CKP09] K. Chatzikokolakis, S. Knight, and P. Panangaden. Epistemic strategies and games
on concurrent processes. In M. Nielsen, A. Kucera, P. B. Miltersen, C. Palamidessi,
P. Tuma, and F. D. Valencia, editors, SOFSEM ’09: Proceedings of the 35th Confer-
ence on Current Trends in Theory and Practice of Computer Science (Spindleruv Mlýn,
Czech Republic), volume 5404 of Lecture Notes in Computer Science, pages 153–166.
Springer, 2009.

[CM10] A. C. C. Calderon and G. McCusker. Understanding game semantics through co-
herence spaces. In P. Selinger, editor, MFPS XXVI: Proceedings of the 26th Conference
on the Mathematical Foundations of Programming Semantics (Ottawa, Ontario, Canada),
number 265 in Electronic Notes in Theoretical Computer Science, pages 231–244.
Elsevier, 2010.

[Con76] J. H. Conway. On Numbers and Games. Academic Press, London, 1976.

[De 85] R. De Simone. Higher-level synchronising devices in MEIJE-SCCS. Theoretical
Computer Science, 37:245–267, 1985.

[DGL06] A. Dimovski, D. R. Ghica, and R. Lazic. A counterexample-guided refinement
tool for open procedural programs. In A. Valmari, editor, SPIN ’06: Proceedings of
the 13th International SPIN Workshop on Model Checking Software (Vienna, Austria),
volume 3925 of Lecture Notes in Computer Science, pages 288–292. Springer, 2006.

[DH01] V. Danos and R. Harmer. The anatomy of innocence. In L. Fribourg, editor, CSL
’01: Proceedings of the 15th International Workshop on Computer Science Logic (Paris,
France), volume 2142 of Lecture Notes in Computer Science, pages 188–202. Springer,
2001.

[Dij65] E. W. Dijkstra. Cooperating sequential processes. EWD 123 available
at http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/
EWD123.html, September 1965.

[Dil88] D. L. Dill. Trace theory for automatic hierarchical verification of speed-independent cir-
cuits. PhD thesis, Carnegie Mellon University, Feb. 1988.

[FHLR79] N. Francez, C. A. R. Hoare, D. J. Lehmann, and W. P. D. Roever. Semantics of
nondeterminism, concurrency, and communication. Journal of Computer and System
Sciences, 19:290–308, 1979.

[Fos07] L. Fossati. Handshake games. Electronic Notes in Theoretical Computer Science,
171(3):21–41, 2007.

http://www.celoxica.com
http://www.celoxica.com
http://babbage.cs.qc.edu/courses/cs345/Manuals/HandelC.pdf
http://babbage.cs.qc.edu/courses/cs345/Manuals/HandelC.pdf
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

184 REFERENCES

[Gal95] D. R. Galloway. The Transmogrifier C hardware description language and com-
piler for FPGAs. In FCCM ’95: Proceedings of the 3rd IEEE Symposium on Field-
Programmable Custom Computing Machines (Napa Valley, California, USA), pages
136–144. IEEE Computer Society, 1995.

[GB09] D. R. Ghica and A. Bakewell. Clipping: A semantics-directed syntactic approxi-
mation. In LICS ’09: Proceedings of the 24th Annual Symposium on Logic in Computer
Science (Los Angeles, California, USA), pages 189–198. IEEE Computer Society, 2009.

[GGR94] U. Goltz, R. Gorrieri, and A. Rensink. On syntactic and semantic action refinement.
In M. Hagiya and J. C. Mitchell, editors, TACS ’94: Proceedings of the International
Conference on Theoretical Aspects of Computer Software (Sendai, Japan), volume 789 of
Lecture Notes in Computer Science, pages 385–404. Springer, 1994.

[Ghi07] D. R. Ghica. Geometry of Synthesis: A Structured Approach to VLSI Design. In
POPL ’07: Proceedings of the 34th Annual Symposium on Principles of Programming
Languages (Nice, France), pages 363–375. ACM Press, 2007.

[Ghi09a] D. R. Ghica. Applications of game semantics: From software analysis to hardware
synthesis (invited tutorial paper). In LICS ’09: Proceedings of the 24th Annual Sympo-
sium on Logic in Computer Science (Los Angeles, California, USA), pages 17–26. IEEE
Computer Society Press, 2009.

[Ghi09b] D. R. Ghica. Function interface models for hardware compilation: Types, signa-
tures, protocols. CoRR, abs/0907.0749, 2009.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.

[GKW85] J. R. Gurd, C. C. Kirkham, and I. Watson. The Manchester prototype dataflow
computer. Communications of the ACM, 28(1):34–52, 1985.

[GM] D. R. Ghica and M. N. Menaa. Synchronous game semantics via round abstraction.
Submitted to the Journal of the ACM.

[GM03] D. R. Ghica and G. McCusker. The regular-language semantics of first-order Ide-
alized Algol. Theoretical Computer Science, 309(1–3):469–502, 2003.

[GM06] D. R. Ghica and A. S. Murawski. Compositional model extraction for higher-order
concurrent programs. In H. Hermanns and J. Palsberg, editors, TACAS ’06: Proceed-
ings of the 12th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (Vienna, Austria), volume 3920 of Lecture Notes in Computer
Science, pages 303–317. Springer, 2006.

[GM08] D. R. Ghica and A. Murawski. Angelic semantics of fine-grained concurrency.
Annals of Pure and Applied Logic, 151(2–3):89–114, 2008.

[GM10] D. R. Ghica and M. N. Menaa. On the compositionality of round abstraction. In
P. Gastin and F. Laroussinie, editors, CONCUR ’10: Proceedings of the 21th Interna-
tional Conference on Concurrency Theory (Paris, France), volume 6269 of Lecture Notes
in Computer Science, pages 417–431. Springer, 2010.

[GM11] D. R. Ghica and M. N. Menaa. Synchronous game semantics via round abstraction.
In M. Hofmann, editor, FOSSACS ’11: Proceedings of the 14th International Conference

REFERENCES 185

on Foundations of Software Science and Computational Structures (Saarbrücken, Ger-
many), volume 6604 of Lecture Notes in Computer Science, pages 350–364. Springer,
2011.

[GMO06] D. R. Ghica, A. S. Murawski, and C.-H. L. Ong. Syntactic control of concurrency.
Theoretical Computer Science, 350(2–3):234–251, 2006.

[GMR10] G. Gößler, D. L. Métayer, and J.-B. Raclet. Causality analysis in contract violation.
In H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. J. Pace, G. Rosu,
O. Sokolsky, and N. Tillmann, editors, RV: Proceedings of the 1st International Con-
ference on Runtime Verification (St. Julians, Malta), volume 6418 of Lecture Notes in
Computer Science, pages 270–284. Springer, 2010.

[GN93] S. J. Gay and R. Nagarajan. Modelling SIGNAL in interaction categories. In G. L.
Burn, S. J. Gay, and M. Ryan, editors, Theory and Formal Methods, Workshops in
Computing, pages 148–158. Springer, 1993.

[GR01] R. Gorrieri and A. Rensink. Action refinement. In J. Bergstra, A. Ponse, and
S. Smolka, editors, Handbook of Process Algebra, pages 1047–1146. Elsevier, 2001.

[GS10] D. R. Ghica and A. Smith. Geometry of Synthesis II: From games to delay-
insensitive circuits. In P. Selinger, editor, MFPS XXVI: Proceedings of the 26th Con-
ference on the Mathematical Foundations of Programming Semantics (Ottawa, Ontario,
Canada), volume 265 of Electronic Notes in Theoretical Computer Science, pages 301–
324, 2010.

[GS11] D. R. Ghica and A. Smith. Geometry of Synthesis III: Resource management
through type inference. In T. Ball and M. Sagiv, editors, POPL ’11: Proceedings
of the 38th Annual Symposium on Principles of Programming Languages (Austin, Texas,
USA), pages 345–356. ACM, 2011.

[GSSAL94] R. Gawlick, R. Segala, J. F. Søgaard-Andersen, and N. A. Lynch. Liveness in timed
and untimed systems. In S. Abiteboul and E. Shamir, editors, ICALP ’94: Proceed-
ings of the 21st International Colloquium on Automata, Languages and Programming,
volume 820 of Lecture Notes in Computer Science, pages 166–177. Springer, 1994.

[Hal93] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic
Publishers, 1993.

[Hal98] N. Halbwachs. Synchronous programming of reactive systems. In A. J. Hu and
M. Y. Vardi, editors, CAV ’98: Proceedings of the 10th International Conference on Com-
puter Aided Verification (Vancouver, BC, Canada), volume 1427 of Lecture Notes in
Computer Science, pages 1–16. Springer, 1998.

[Ham70] C. L. Hamblin. Fallacies. Methuen, London, 1970.

[HB02] N. Halbwachs and S. Baghdadi. Synchronous modelling of asynchronous systems.
In A. L. Sangiovanni-Vincentelli and J. Sifakis, editors, EMSOFT ’02: Proceedings of
the 2nd International Workshop on Embedded Software (Grenoble, France), volume 2491
of Lecture Notes in Computer Science, pages 240–251. Springer, 2002.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, 1991.

186 REFERENCES

[HL06] R. Harmer and O. Laurent. The anatomy of innocence revisited. In S. Arun-Kumar
and N. Garg, editors, FSTTCS ’06: Proceedings of the 26th Conference on Foundations
of Software Technology and Theoretical Computer Science (Kolkata, India), volume 4337
of Lecture Notes in Computer Science, pages 224–235. Springer, 2006.

[HM99] R. Harmer and G. McCusker. A fully abstract game semantics for finite nondeter-
minism. In LICS ’99: Proceedings of the 14th Annual Symposium on Logic in Computer
Science (Trento, Italy), pages 422–430. IEEE Computer Society Press, 1999.

[HM06] N. Halbwachs and L. Mandel. Simulation and verification of asynchronous sys-
tems by means of a synchronous model. In Proceedings of the 6th International Con-
ference on Application of Concurrency to System Design, pages 3–14, 2006.

[HO00] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II, and III. Infor-
mation and Computation, 163(2):285–408, 2000.

[Hoa80] C. A. R. Hoare. A model for communicating sequential processes. In R. M. McK-
eag and A. M. Macnaghten, editors, On the Construction of Programs. Cambridge
University Press, 1980.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International,
1985. Available at http://www.usingcsp.com/cspbook.pdf.

[Hod04] W. Hodges. Logic and games. In E. N. Zalta, editor, The Stanford Encyclopedia of Phi-
losophy. Stanford University, 2004. Also available at http://plato.stanford.
edu/entries/logic-games/.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems. In K. R. Apt,
editor, Logics and models of concurrent systems, volume 13 of NATO ASI Series, pages
477–498. Springer-Verlag, 1985.

[Hug97] D. J. D. Hughes. Games and definability for System F. In LICS ’97: Proceedings
of the 12th Annual Symposium on Logic in Computer Science (Warsaw, Poland), pages
76–86. IEEE Computer Society Press, 1997.

[Hyl97] M. Hyland. Game semantics. In P. Dybjer and A. Pitts, editors, Proceedings of
the 1996 CLiCS Summer School, Isaac Newton Institute, pages 131–184. Cambridge
University Press, 1997.

[J0̈2] J. Jürjens. Games in the semantics of programming languages. Synthese, 133(1–
2):101–120, October/November 2002.

[Jac94] B. Jacobs. Semantics of weakening and contraction. Annals of Pure and Applied
Logic, 69(1):73–106, 1994.

[Jan08] R. Janicki. Relational structures model of concurrency. Acta Informatica, 45(4):279–
320, 2008.

[JJH90] H. Jifeng, M. B. Josephs, and C. A. R. Hoare. A theory of synchrony and asyn-
chrony. In Proceedings of the IFIP Working Conference on Programming Concepts and
Methods, pages 459—478. Elsevier, 1990.

[Joy77] A. Joyal. Remarques sur la théorie des jeux à deux personnes. Gazette des Sciences
Mathématiques du Quebec, 1(4), 1977.

http://www.usingcsp.com/cspbook.pdf
http://plato.stanford.edu/entries/logic-games/
http://plato.stanford.edu/entries/logic-games/

REFERENCES 187

[JS93] A. Joyal and R. Street. Braided tensor categories. Advances in Mathematics Advances
in Mathematics, 102:20–78, 1993.

[KD90] D. Ku and G. DeMicheli. HardwareC – a language for hardware design version
2.0. Technical Report CSL-TR-90-419, Stanford University, 1990.

[Koc70] A. Kock. Monads on symmetric monoidal closed categories. Archiv der Mathematik,
21:1–10, 1970.

[Koc72] A. Kock. Strong functors and monoidal monads. Archiv der Mathematik, 23(1):113–
120, 1972.

[Lai97] J. Laird. Full abstraction for functional languages with control. In LICS ’97: Pro-
ceedings of the 12th Annual Symposium on Logic in Computer Science (Warsaw, Poland),
pages 58–67. IEEE Computer Society Press, 1997.

[Lai01a] J. Laird. A fully abstract games semantics of local exceptions. In LICS ’01: Pro-
ceedings of the 16th Annual Symposium on Logic in Computer Science (Boston, Mas-
sachusetts, USA), pages 105–114, 2001.

[Lai01b] J. Laird. A game semantics of Idealized CSP. In MFPS XVII: Proceedings of the
17th Conference on the Mathematical Foundations of Programming Semantics (Aarhus,
Denmark), volume 45 of Electronic Notes in Theoretical Computer Science, pages 1–26,
2001.

[Lai03] J. Laird. A game semantics of linearly used continuations. In A. D. Gordon, editor,
FOSSACS ’03: Proceedings of the 6th International Conference on Foundations of Soft-
ware Science and Computational Structures (Warsaw, Poland), volume 2620 of Lecture
Notes in Computer Science, pages 313–327. Springer, 2003.

[Lai05a] J. Laird. Decidability in syntactic control of interference. In L. Caires, G. F. Ital-
iano, L. Monteiro, C. Palamidessi, and M. Yung, editors, ICALP ’05: Proceedings
of the 32nd International Colloquium on Automata, Languages and Programming (Lis-
bon, Portugal), volume 3580 of Lecture Notes in Computer Science, pages 904–916.
Springer, 2005.

[Lai05b] J. Laird. A game semantics of the asynchronous π-calculus. In M. Abadi and
L. de Alfaro, editors, CONCUR ’05: Proceedings of the 16th International Conference
on Concurrency Theory (San Francisco, CA, USA), volume 3653 of Lecture Notes in
Computer Science, pages 51–65. Springer, 2005.

[Lai06] J. Laird. Game semantics for higher-order concurrency. In S. Arun-Kumar and
N. Garg, editors, FSTTCS ’06: Proceedings of the 26th Conference on Foundations of
Software Technology and Theoretical Computer Science (Kolkata, India), volume 4337 of
Lecture Notes in Computer Science, pages 417–428. Springer, 2006.

[Lai07] J. Laird. A fully abstract trace semantics for general references. In L. Arge,
C. Cachin, T. Jurdzinski, and A. Tarlecki, editors, ICALP ’07: Proceedings of the 34nd
International Colloquium on Automata, Languages and Programming (Wroclaw, Poland),
volume 4596 of Lecture Notes in Computer Science, pages 667–679. Springer, 2007.

[LGAD04] F. Loulergue, F. Gava, M. Arapinis, and F. Dabrowksi. Semantics and implemen-
tation of Minimally Synchronous Parallel ML. International Journal of Computer and
Information Science, 5(3):182–199, 2004.

188 REFERENCES

[LGBBG86] P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier. Signal: A data flow-
oriented language for signal processing. IEEE Transactions on Acoustics, Speech and
Signal Processing, 34(2):362–374, 1986.

[LGG+08] F. Loulergue, F. Gava, L. Gesbert, G. Hains, and J. Tesson. Bulk Synchronous Par-
allel ML 0.4 beta Reference Manual, October 2008. Available at http://bsmllib.
free.fr/.

[LHF00] F. Loulergue, G. Hains, and C. Foisy. A calculus of functional BSP programs. Sci-
ence of Computer Programming, 37:253–277, 2000.

[LL78] P. Lorenzen and K. Lorenz. Dialogische Logik. Wissenschaftliche Buchgesellschaft,
Darmstadt, Germany, 1978.

[LLGL91] P. Le Guernic, M. Le Borgne, T. Gauthier, and C. Le Maire. Programming real time
applications with SIGNAL. Proceedings of the IEEE, 79(9):1321–1336, 1991.

[Lor60] P. Lorenzen. Logik und agon. Atti del Congresso Internazionale di Filosofia, 4:187–194,
1960.

[Lor61] P. Lorenzen. Ein dialogisches konstruktivitätskriterium. In Infinitistic Methods
(PWN, Warsaw, 1959), pages 193–200, Warsaw, 1961. Pergamon Press.

[Lor68] K. Lorenz. Dialogspiele als semantische grundlage von logikkalkülen. Archiv für
mathematische Logik und Grundlagenforschung, 11(3):73–100, 1968.

[Lor01] K. Lorenz. Basic objectives of dialogue logic in historical perspective. Synthese,
127(1):255–263, 2001.

[LT89] N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2(3):219–246, 1989.

[LTL03] P. Le Guernic, J.-P. Talpin, and J.-C. L. Lann. Polychrony for system design. Journal
of Circuits, Systems, and Computers, 12(3):261–304, 2003.

[Mac98] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1998.

[Mar86] A. J. Martin. Compiling communicating processes into delay-insensitive VLSI cir-
cuits. Distributed Computing, 1(4):226–234, 1986.

[Mar87] A. J. Martin. A synthesis method for self-timed VLSI circuits. In Proceedings of the
IEEE International Conference on Computer Design: VLSI in Computers and Processors,
pages 224–229. IEEE Computer Society Press, 1987.

[Maz77] A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI
Tech. Rep. PB-78, Aarhus University, 1977.

[Maz95] A. Mazurkiewicz. Introduction to trace theory. In V. Diekert and G. Rozenberg,
editors, The Book of Traces. World Scientific Books, 1995.

[McC97] G. McCusker. Games and definability for fpc. Bulletin of Symbolic Logic, 3(3):347–
362, September 1997.

[McC02] G. McCusker. A fully abstract relational model of Syntactic Control of Interference.
In J. C. Bradfield, editor, CSL ’02: Proceedings of the 16th International Workshop on
Computer Science Logic (Edinburgh, Scotland), volume 2471 of Lecture Notes in Com-
puter Science, pages 247–261. Springer, 2002.

http://bsmllib.free.fr/
http://bsmllib.free.fr/

REFERENCES 189

[McC07] G. McCusker. Categorical models of syntactic control of interference revisited,
revisited. LMS Journal of Computation and Mathematics, 10:176–206, 2007.

[McC10] G. McCusker. A graph model for imperative computation. Logical Methods in
Computer Science, 6(1):1–35, 2010.

[Mel06] P.-A. Melliès. Asynchronous games 2: The true concurrency of innocence. Theoret-
ical Computer Science, 358(2-3):200–228, 2006.

[Men09] M. N. Menaa. Towards a synchronous game semantics. Slides presented at the 4th
Workshop on Games for Logic and Programming Languages (GaLoP IV). Avail-
able at http://www.comlab.ox.ac.uk/galop09/, 2009.

[Men10] M. N. Menaa. On the compositionality of round abstraction. Short paper pre-
sented at the 25th Annual Symposium on Logic in Computer Science (LICS ’10),
Edinburgh, Scotland, 2010.

[Mil75] R. Milner. Processes: A mathematical model of computing agents. In H. Rose
and J. Shepherdson, editors, Proceedings of the Logic Colloquium ’73,, volume 80 of
Studies in Logic and the Foundations of Mathematics, pages 157–173. Elsevier, 1975.

[Mil77] R. Milner. Fully abstract models of typed λ-calculi. Theoretical Computer Science,
4(1):1–22, 1977.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com-
puter Science. Springer, 1980.

[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25(3):267–310, 1983.

[MM07] P.-A. Melliès and S. Mimram. Asynchronous games: Innocence without alterna-
tion. In L. Caires and V. T. Vasconcelos, editors, CONCUR ’07: Proceedings of the
18th International Conference on Concurrency Theory (Lisbon, Portugal), volume 4703
of Lecture Notes in Computer Science, pages 395–411. Springer, 2007.

[Mog89] E. Moggi. Computational lambda-calculus and monads. In LICS ’89: Proceedings
of the 4th Annual Symposium on Logic in Computer Science (Pacific Grove, California,
USA), pages 14–23. IEEE Computer Society, 1989.

[Mog91] E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991. Selections from 1989 IEEE Symposium on Logic in Computer
Science.

[MP05] L. Mandel and M. Pouzet. ReactiveML, a reactive extension to ML. In PPDR
’05: Proceedings of the 7th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (Lisbon, Portugal), pages 82–93. ACM, 2005.

[Mur10] A. S. Murawski. Full abstraction without synchronization primitives. In
P. Selinger, editor, MFPS XXVI: Proceedings of the 26th Conference on the Mathemati-
cal Foundations of Programming Semantics (Ottawa, Ontario, Canada), number 265 in
Electronic Notes in Theoretical Computer Science, pages 423–436. Elsevier, 2010.

[Nic94] H. Nickau. Hereditarily sequential functionals. In A. Nerode and Y. Matiyasevich,
editors, LFCS ’94: Proceedings of the 3rd International Symposium on Logical Foun-
dations of Computer Science (St. Petersburg, Russia), volume 813 of Lecture Notes in
Computer Science, pages 253–264. Springer, 1994.

http://www.comlab.ox.ac.uk/galop09/

190 REFERENCES

[NSW93] M. Nielsen, V. Sassone, and G. Winskel. Relationships between models of concur-
rency. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Proceedings
of the REX School/Symposium: A Decade of Concurrency, Reflections and Perspectives
(Noordwijkerhout, The Netherlands), volume 803 of Lecture Notes in Computer Science,
pages 425–476. Springer, 1993.

[NV07] S. Nain and M. Y. Vardi. Branching vs. linear time: Semantical perspective. Auto-
mated Technology for Verification and Analysis, pages 19–34, 2007.

[NV09] S. Nain and M. Y. Vardi. Trace semantics is fully abstract. In LICS ’09: Proceedings
of the 24th Annual Symposium on Logic in Computer Science (Los Angeles, California,
USA), pages 59–68. IEEE Computer Society, 2009.

[NvRS88] C. Niessen, C. H. van Berkel, M. Rem, and R. W. J. J. Saeijs. VLSI programming and
silicon compilation; a novel approach from Philips Research. In IEEE International
Conference on Computer Design: VLSI in Computers and Processors, pages 150–151.
IEEE Computer Society Press, 1988.

[OBL98] J. O’Leary, G. Brown, and W. Luk. Verified compilation of communicating pro-
cesses into clocked circuits. Formal Aspects of Computing, 9(5-6):537–559, 1998.

[O’H03] P. W. O’Hearn. On bunched typing. Journal of Functional Programming, 13(4):747–
796, 2003.

[OPTT99] P. W. O’Hearn, J. Power, M. Takeyama, and R. D. Tennent. Syntactic control of
interference revisited. Theoretical Computer Science, 228(1-2):211–252, 1999.

[Pag96] I. Page. Constructing hardware-software systems from a single description. VLSI
Signal Processing, 12(1):87–107, 1996.

[PBC07] D. Potop-Butucaru and B. Caillaud. Correct-by-construction asynchronous im-
plementation of modular synchronous specifications. Fundamenta Informaticae,
78(1):131–159, 2007.

[PBdS03] D. Potop-Butucaru and R. de Simone. Optimizations for faster execution of esterel
programs. In MEMOCODE ’03: Proceedings of the 1st ACM & IEEE International
Conference on Formal Methods and Models for Co-Design (Mont Saint-Michel, France),
pages 227–236. IEEE Computer Society, 2003.

[PBEB07] D. Potop-Butucaru, S. A. Edwards, and G. Berry. Compiling ESTEREL. Springer,
2007.

[Pet62] C. A. Petri. Fundamentals of a theory of asynchronous information flow. In Pro-
ceedings of the IFIP Congress, pages 386–390. North-Holland, Amsterdam, 1962.

[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5(3):223–255, 1977.

[PPE+97] Y. N. Patt, S. J. Patel, M. Evers, D. H. Friendly, and J. Stark. One billion transistors,
one uniprocessor, one chip. IEEE Computer, 30(9):51–57, 1997.

[Red96] U. S. Reddy. Global state considered unnecessary: An introduction to object-based
semantics. Lisp and Symbolic Computation, 9(1):7–76, 1996.

REFERENCES 191

[Rey78] J. C. Reynolds. Syntactic control of interference. In POPL ’78: Conference Record
of the 5th Annual ACM Symposium on Principles of Programming Languages (Tucson,
Arizona, USA), pages 39–46. ACM, 1978.

[Rey81] J. C. Reynolds. The essence of Algol. In Proceedings of the 1981 International Sympo-
sium on Algorithmic Languages, pages 345—372. North-Holland, 1981.

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, London, 1998.

[Sch00] S. Schneider. Concurrent and Real-time Systems: the CSP Approach. Worldwide Series
in Computer Science. Wiley, Chichester, 2000.

[SCME06] C. Stetson, X. Cui, P. R. Montague, and D. M. Eagleman. Motor-sensory recalibra-
tion leads to an illusory reversal of action and sensation. Neuron, 51(5):651–659,
September 2006.

[SSC01] G. Snider, B. Shackleford, and R. J. Carter. Attacking the semantic gap between
application programming languages and configurable hardware. In FPGA ’01:
Proceedings of the 9th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (Monterey, California, USA), pages 115–124. ACM, 2001.

[Sut89] I. E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738, 1989.

[SW01] K. Schneider and M. Wenz. A new method for compiling schizophrenic syn-
chronous programs. In CASES: Proceedings of the International Conference on Compil-
ers, Architecture, and Synthesis for Embedded Systems (Atlanta, Georgia, USA), pages
49–58. ACM, 2001.

[TdS04] O. Tardieu and R. de Simone. Curing schizophrenia by program rewriting in Es-
terel. In MEMOCODE ’04: Proceedings of the 2nd ACM & IEEE International Confer-
ence on Formal Methods and Models for Co-Design (San Diego, California, USA), pages
39–48. IEEE, 2004.

[TvD88] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics: an Introduction.
North-Holland, 1988.

[Udd86] J. T. Udding. A formal model for defining and classifying delay-insensitive circuits
and systems. Distributed Computing, 1(4):197–204, 1986.

[Val90] L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103, 1990.

[vS88] C. H. van Berkel and R. W. J. J. Saeijs. Compilation of communicating processes
into delay-insensitive circuits. In Proceedings of the IEEE International Conference on
Computer Design: VLSI in Computers and Processors, pages 157–162. IEEE Computer
Society Press, 1988.

[Wal04] M. Wall. Games for Syntactic Control of Interference. PhD thesis, University of Sussex,
2004.

[Win80] G. Winskel. Events in Computation. PhD thesis, University of Edinburgh, 1980.

[Win87] G. Winskel. Event structures. In W. Brauer, W. Reisig, and G. Rozenberg, editors,
Petri Nets: Applications and Relationships to Other Models of Concurrency, volume 255
of Lecture Notes in Computer Science, pages 325–392. Springer, 1987.

192 REFERENCES

[Wir98] N. Wirth. Hardware compilation: Translating programs into circuits. IEEE Com-
puter, 31(6):25–31, 1998.

[WN95] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. M. Gab-
bay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science Vol. 4,
pages 1–148. Oxford University Press, 1995.

[YH98] H. Yang and H. Huang. Type reconstruction for syntactic control of interference,
part 2. In ICCL ’98: Proceedings of the International Conference on Computer Languages
(Chicago, Illinois, USA), pages 164–173. IEEE Computer Society, 1998.

[ZRM90] Y. Zhang, J. Roivainen, and A. Mämmelä. Clock-gating in FPGAs: A novel and
comparative evaluation. In Proceedings of the 9th EUROMICRO Conference on Digital
System Design: Architectures, Methods and Tools. IEEE, 584–590.

	Introduction
	Motivation
	Outline and Contributions
	Publications

	Background
	Synchrony and Asynchrony
	Asynchrony
	Communicating Sequential Processes

	Synchrony
	Synchronous Languages

	Relating Synchrony and Asynchrony

	Game Semantics
	Introduction to Game Semantics
	Concurrency in Game Semantics

	Hardware Compilation via Geometry of Synthesis
	Introduction to GoS
	Basic Syntactic Control of Interference
	A Category of Handshake Circuits
	A Game-Like Semantics for BSCI

	The Problem in Essence
	Methodology

	A Trace Model of ProcessesExtended and revised version of [Sec. 2]GM10
	Traces and Processes
	Signatures
	Traces
	Processes

	Categorical Structure
	Monoidal Structure
	Closed Structure

	Compositional Round AbstractionExtended and revised version of GM10
	Alur-Henzinger Round Abstraction
	Round Abstraction on Processes
	Compositionality of Partial Round Abstraction
	Total Round Abstraction
	Discussion

	Causal Processes and Asynchronous Processes
	Justified Traces and Causal Processes
	Signatures
	Traces
	Processes
	A Category of Synchronous Causal Processes

	Asynchronous Processes
	A Category of Asynchronous Processes

	Round Abstraction on Causal Processes
	Discussion

	Global Clocks and Determinism
	Clock Monad and Clock MonoidExtended version of [Section 2.1]GM10
	Clocked Processes
	Observable Determinism
	Discussion

	Conclusion
	Summary
	Further Directions

