A model driven approach to analysis and synthesis of sequence diagrams

Ameedeen , Mohamed Ariff (2012). A model driven approach to analysis and synthesis of sequence diagrams. University of Birmingham. Ph.D.

[img]
Preview
Ameedeen_12_PhD.pdf
PDF

Download (1MB)

Abstract

Software design is a vital phase in a software development life cycle as it creates a blueprint for the implementation of the software. It is crucial that software designs are error-free since any unresolved design-errors could lead to costly implementation errors. To minimize these errors, the software community adopted the concept of modelling from various other engineering disciplines. Modelling provides a platform to create and share abstract or conceptual representations of the software system – leading to various modelling languages, among them Unified Modelling Language (UML) and Petri Nets. While Petri Nets strong mathematical capability allows various formal analyses to be performed on the models, UMLs user-friendly nature presented a more appealing platform for system designers. Using Multi Paradigm Modelling, this thesis presents an approach where system designers may have the best of both worlds; SD2PN, a model transformation that maps UML Sequence Diagrams into Petri Nets allows system designers to perform modelling in UML while still using Petri Nets to perform the analysis. Multi Paradigm Modelling also provided a platform for a well-established theory in Petri Nets – synthesis to be adopted into Sequence Diagram as a method of putting-together different Sequence Diagrams based on a set of techniques and algorithms.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Behzad , BordbarUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Computer Science
Funders: None/not applicable
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
URI: http://etheses.bham.ac.uk/id/eprint/3282

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year