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ABSTRACT 
 

Design of Experiments (DOE) is a powerful technique for understanding, characterising and 

modelling products and processes and improving their performance. Whilst the bulk of its 

literature revolves around how it should be applied, little attention, if any, is devoted to the 

manner in which it is being implemented in practice particularly in manufacturing. One 

objective of this study was to bridge this gap by reviewing practical applications in three 

manufacturing journals. This revealed not only limited use but also multiple deficiencies. Many 

of these concerned a lack of familiarity with the concept of aliasing; the use of fractional 

factorial designs and pooling methods to analyse unreplicated trials; and a misunderstanding of 

the concepts underpinning the use and interpretation of p-values and factorial effects’ 

importance measures. With respect to aliasing, a novel simple method for generating its pattern 

is proposed. Besides its ease of application, it can be linked to the three main criteria for 

measuring the degree of aliasing (maximum resolution, minimum aberration and generalised 

minimum aberration) in a manner devoid of mathematical complications.  Regarding the use of 

fractional factorial designs and pooling methods, simulation experiments were used to assess 

the performance of certain experimentation strategies to arrive at the same conclusions had a 

full factorial trial been performed. In the context of two-level designs, the L16 together with the 

Pooling Up method or the Half Normal Probability plot yielded a satisfactory performance. 

Similarly, the strategy of using the Best Subset selection procedure in conjunction with the L18 

design was the best among the examined three-level ones. To attain a robust performance, it 

was found that the use of small designs such as the L8 and the L9 should, as far as possible, be 

avoided. The concepts concerning the use of the p-values and the effect’s importance measures 

are clarified and to facilitate communication between Engineers, Managers and Statisticians, an 

importance measure that can be related to three quality engineering techniques is suggested. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Organisations are facing rapid and continuous technological, economical, social and 

regulatory changes that impact their ability to remain competitive. With markets globalisation, 

business competition is very severe and attaining customer satisfaction and delight becomes 

an essential requirement for an organisation to survive. The breakthrough improvement in 

information technology has led to increase customer awareness of the varied products, 

services and levels of quality available. Consequently, the task of meeting the expectations of 

today’s well informed customers and gaining their loyalty requires organisations to steadily 

improve the quality of their products and services. In addition they need to provide high 

quality goods and services to the customers who want it, where they want it, and in the 

quantity and at the price they want it.  

Quality here is reflected by what Goh (2000) called the universal set of criteria: on-target 

performance, least variation and minimum cost. Meeting these criteria entails making vital 

decisions to improve an organisation’s products and processes based on the recognised needs 

and the identified objectives. The latter include productivity, efficiency, response time and 

cost targets which should be translated into performance measures quantifying the extent to 

which the specified objectives are met. The process or product parameters that are known, or 

at least are believed to affect these measures, should then be identified. Finally, a set of 

feasible alternative courses of actions in terms of the different combinations of the values of 

the product/process parameters should be formulated.  
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As is the case in any decision situation, each course of action can have a significant effect 

on the performance of the entity under study and there is always some doubt as to which 

alternative should be selected.  One option is to make the decision on the basis of past 

experiences and trial and error. As this relies on subjective personal judgment and opinions 

this approach suffers from problems such as cognitive bias and the limited capability of 

human brains to deal with complexity. Consequently it can result in serious time and financial 

waste besides threatening an organisation’s survival in today’s highly competitive market. 

Alternatively a scientific data-driven approach can be adopted so that decisions regarding 

product or process improvement can be made on the basis of facts rather than subjective 

feelings and opinions. In this respect, an effective methodology is the Design of Experiments 

(DOE). This is a cost effective technique for identifying the key product/process parameters 

and establishing a functional relationship between them and the appropriate performance 

measure so that their settings can be adjusted to bring the performance measure on-target and 

minimise its variation around that target. Utilising DOE, organisations can improve the 

quality of their products while lowering the cost of production. Furthermore, they can bring 

products to market quicker and at minimal research and development costs (Antony, 2001).  

Although DOE can be utilised in any area, Manufacturing Engineering is the main field 

around which the scope of its study in this thesis is centred. This is due to the pivotal role this 

branch of engineering plays in any industry. In fact, Manufacturing Engineering is concerned 

with providing the know-how needed to make a product. According to Finkin (1987), it has 

the principal responsibility within a company for attaining meaningful cost reductions in 

products through changes in the methods, processes and equipment used in their manufacture.  
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1.2 Motive, Objectives and Methodology 

Most studies in the DOE literature tend to focus on how the technique should be applied. 

Far too little attention has been devoted to investigating the way in which it is actually being 

employed particularly in Manufacturing Engineering. The initial interest and motivation to 

carry out this research stem from the need to examine the extent of agreement between what 

is practiced and what is “preached” regarding the application of DOE. Its aim is to attain a 

better understanding of the technique by suggesting improvements to its practice in 

Manufacturing Engineering thereby helping practitioners assimilate how to foster this 

powerful technique in their product and process improvement endeavours.  

The steps towards this end can be represented by the following objectives: 

 Highlight the importance of DOE as an effective technique for performance 

improvement; 

 Review DOE methodology and its practice in Manufacturing Engineering;  

 Investigate any differences between the way in which it is applied in Manufacturing 

and that recommended in the DOE literature;  

 Identify the aspects that warrant further clarification and assimilation and relate them 

to potential gaps in the literature ; 

 Propose methods and provide suggestions and recommendations to bridge any gap 

identified and mitigate the impediments to an effective use of DOE in practice; 

The methodology adopted to meet these objectives involves conducting a literature review 

of DOE and its applications in Manufacturing Engineering; performing simulation 

experiments to assess the performance of certain DOE strategies; examining published 

experimental data; and carrying out physical trials in an effort to assess the substantiality of 

the conclusions arrived at using the simulation experiments. 
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1.3 Structure of the Thesis  

The thesis comprises nine Chapters. Following the introduction, Chapter 2 provides an 

overview of the main theoretical concepts of DOE and the fundamentals underpinning its use. 

The importance of DOE as a powerful performance improvement technique is also 

emphasised. 

Chapter 3 presents a review of how DOE has been applied in three manufacturing 

journals. The need for the review is emphasised and its methodology explained together with 

the aspects investigated. Its findings are also presented and discussed, and the practices of 

DOE that need improvements are highlighted. Some of these are dealt with in the Chapter 

whereas others are handled in subsequent ones. 

Aliasing which was found to be one of the main misconceived topics in the conducted 

review is addressed in Chapter 4. Its nature and underlying concepts are discussed together 

with its impact on the experimental inferences. A simple method is proposed for constructing 

its pattern that can be used with two- and three-level designs. Also highlighted is the way in 

which the postulated method can be used to employ the main criteria for measuring the degree 

of aliasing.  

Chapter 5 describes the planning stage of the simulation experiments that were conducted 

to assess the performance of certain DOE strategies. It points out the main objectives of the 

performed trials along with the performance measure that was adopted in their execution. The 

manner in which the examined factors and their levels were specified and the simulation 

methodology are also presented. The results of the experiments are highlighted and discussed 

in Chapter 6.   
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In Chapter 7, the credibility of the inferences drawn from the simulation trials is assessed. 

For this purpose, data from published and performed experiments are utilised. The 

conclusions arrived at using the latter are compared with those that were drawn from the 

simulation experiments and the reasons for any disagreement outlined.  

The issues regarding the p-value and the factorial effects’ importance measures are the 

focus of Chapter 8. The misuses of the former and the problem associated with its 

misinterpretation are indicated and dealt with. The Chapter also investigates the underpinning 

concepts of two importance measures that are frequently confused in practice. The rational, 

derivation and bias of each quantity is examined and used to compare their performances. A 

third measure that is rarely employed is recommended and its usefulness with regard to 

improving the communications between Engineers, Managers and Statisticians is highlighted.  

The main conclusions from this research are outlined in Chapter 9. It comprises an 

aggregation of this study’s chief findings and outcomes, and culminates with a discussion of 

its limitations and suggestions for future research directions.  

Apart from the first and the last Chapters, each one is prefaced with a brief introduction 

that offers an overview of its major theme and objectives and each concludes with a summary 

of its main findings.  
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CHAPTER 2: DESIGN OF EXPERIMENTS 

 

2.1 Introduction 

DOE is a powerful technique for improving product or process quality and reducing their 

performance measures variability around the targeted level in an effective and efficient 

manner. It is an effective approach for exploring, understanding and establishing the causal 

relationship between the system parameters and their performance measures. The execution of 

an experiment involves purposefully changing the parameters that are known or at least 

believed to affect the performance of a studied process so that knowledge about their 

performance can be obtained, extended or verified. DOE was initially developed by Sir R. A. 

Fisher at Rothamsted Agricultural Station in England in the early 1920s (Fisher, 1971). Its 

emergence marked a significant change from the old “scientific” tradition of varying only one 

parameter at a time to the simultaneous examination of the studied parameters in order to 

assess their various interaction effects in a cost effective way.  Since its evolution, DOE has 

undergone a remarkable development involving its design and data analysis aspects. This 

Chapter will cast some light on the main theoretical concepts and ideas that underline DOE, 

its bulk being devoted to the importance of the technique which has been accorded scant 

attention in the literature. DOE is firstly defined together with its associated jargon. The 

importance of DOE and the role it plays in the product and process improvement endeavour 

are then introduced. This is followed by a discussion of the types of DOE and its history. The 

Chapter culminates with a summary of its main conclusions.  

2.2 What is Statistical Experimental Design?     

An experiment can be defined as “a test under controlled conditions that is made to 

demonstrate a known truth, examine the validity of a hypothesis, or determine the efficacy of 
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something previously untried” (Elias, 2007). Montgomery (2010) defined it as “a test or series 

of tests in which purposeful changes are made to the input variables of a process or system so 

that it may be possible to observe and identify the reasons for changes that may occur in the 

output response”. The process of planning an experiment so that appropriate data that can be 

analysed by statistical methods will be collected, resulting in valid and objective conclusions 

is referred to as DOE (Montgomery, 2010). Antony and Kaye (2000) defined DOE as a 

powerful technique used for discovering the most influential process’s parameters and 

determine at what levels they must be set to optimise the associated performance measures. 

Throughout the remainder of this thesis, the terms product and process are used 

interchangeably since what is discussed is equally applicable to both. 

 Clearly, none of the above presented definitions is complete. In fact, each of them focuses 

on important aspects of DOE. Consequently, in this research they are viewed as 

complementary to each other.   

As is inevitable with any subject, certain terms are used in the literature when discussing 

DOE. Since these will be used throughout the remainder of this thesis, the most important will 

now be explained. 

1. Response is the experimental result corresponding to the setting of the process’s 

parameters (Anderson and McLean, 1974). It represents a key measurable 

characteristic of a process performance that reflects the customers’ needs 

(Barrentine, 1999). In quality engineering studies, the response is referred to as a 

Critical to Quality characteristic (Goh and Xie, 2004) or a Performance Measure.    

2. Factors are those process’s parameters that are expected to have some influence 

on the response. They can be quantitative or measurable (e.g. temperature, 

pressure, time, etc.) or qualitative or categorical (e.g. different material suppliers, 
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or presence/absence of some attribute etc.). Factors can be classified as either 

design /control or nuisance/noise. The former are those that can be easily 

controlled not only while experimenting but also in day-to-day operations, while 

the latter are ones which are difficult or impossible to control or those which vary 

during the use of the product or process such as ambient temperature and humidity. 

In this work the terms factor and parameter will be used interchangeably. 

3. Levels are the values that a factor can assume or take; they are sometimes referred 

to as treatments especially in agricultural, medical and biological experiments 

(Hicks and Turner, 1999). The simplest designs use only two levels of each factor. 

In the absence of non-linear responses, this will usually provide the information 

needed in the most efficient manner. The levels may be fixed i.e. specific levels of 

interest; which means that the statistical inferences made about the factors are 

confined to these specific values, or they can be random i.e. chosen at random 

from a larger population of possible levels. In this case the experimenter can draw 

conclusions about the entire population of levels, not just those that were used in 

the experimental design.  

4. Effect is the change in the average response rendered by a change in the levels of a 

factor. This is frequently called a main effect because it refers to the primary 

factors of interest in the experiment. 

5. Interaction is the failure of one factor to produce the same effect on the response 

at different levels of another factor i.e. the difference in response between the 

levels of one factor is not the same at all levels of the other factors. 

6. Experimental unit is an object, material or unit to which treatments are applied. 
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2.3 Performance Improvement Approaches 

The business world is being transformed worldwide as a result of globalisation. Managers 

have been complaining of the increasing competition pressures and its associated high cost 

(Mintzberg, 1994). The substantial improvements that have been made in information 

technology means that customers are more informed today than ever before and so their 

demands for better products and more responsive services have greatly increased. Improved 

products and services constantly raise the level of expectation for the next generation. This 

has led to rapidly changing and highly competitive business environments in which 

organisations must steadily improve the quality of their products and services to ensure their 

profitability and survival. To be competitive in such an environment, organisations need to 

effectively survey the market so that the customer needs, wants and expectations from an 

existing or even a potential product can be defined or predicted. Broadly, these needs fall 

under the categories of timely delivery, competitive pricing and zero-defect quality. Having 

identified the customer’s requirements, organisations need firstly to translate them into 

process performance metrics such as cycle times, operational costs and defect rates and 

secondly to determine the target performance level for each of the established measures. In 

order to attain the required levels with minimum variation, critical decisions have to be made 

regarding the organisation’s processes pertaining to the identification of the most influential 

parameters and their settings. Broadly, there are two approaches to making such decisions: 

experiential and data-driven.  

2.3.1 Experiential Approach   

The decision about how to improve a process using this approach relies on personal 

judgement utilising experience or using a trial and error method. Being dependent primarily 

on past experience and previous decision situations that are similar to the one currently 
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confronted, Ackoff (1999) calls this approach clinical. Although its use may involve utilising 

formal observed quantitative data, they are incorporated into a pool of attitudes and beliefs 

that is dominated by the qualitative experience outputs.  Ackoff et al (2005) noted that most 

managers and many consultants adopt this attitude in decision making. The outcomes of 

implementing this approach can be “satisficing”; a term combining the ideas of satisfying and 

optimising coined by Simon (1976) to characterise solutions that are good enough but not 

necessarily the best. In this era, where customer expectations for product integrity have never 

been higher and where constant market competition pressures have led to minimum standards 

for quality and reliability below which it is impossible for any organisation to survive, this 

subjective approach can lead to results that are less than attractive. In fact it can be wasteful in 

terms of time and money as there is no guarantee that the best results will be attained. A 

further, rather more serious, limitation of this approach pertains to the fact that the 

accelerating rates of technological, market and social change has rendered the experience no 

longer the best teacher. Ackoff, (1999) stated that it is not even a good teacher as it is too 

slow, too ambiguous and too imprecise. Solberg (1988) admonished managers not to use the 

experiential approach and emphasised the risk of its associate trial and error practice in 

studying Manufacturing systems. He stated that: 

“The ability to apply trial and error learning to tune the performance of Manufacturing 

systems becomes almost useless in an environment in which changes occur faster than the 

lessons can be learned. There is now a greater need for formal predictive methodology based 

on understanding of cause and effect” 

 Considering the above highlighted limitations, one is entitled to infer that the decision 

making process can be improved by replacing the experiential, qualitative, judgemental and 
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satisficing approach with a more formal, experimental, quantitative, scientific and 

“optimising” one.  

2.3.2 Data-Driven Approach 

Effective decisions concerning process improvements can be made when a rational basis 

such as collected data is utilised. However, as Hunter (1986) observed, data can sometimes be 

collected mindlessly resulting in numbers that are difficult to interpret or reflect upon. Thus 

careful thought must be given to what data to collect and how they are going to be analysed 

(Hines et al, 2003).  Statistics is a science concerned with the collection, analysis, 

interpretation and presentation of data (Montgomery and Runger, 2010). Consequently it is 

instructive to use statistical tools to gather and objectively analyse data so that judicious 

decisions regarding the necessary process changes are made on the basis of facts rather than 

subjective feelings or opinions.  

Broadly, the use of statistical tools for process improvement (particularly in 

Manufacturing) has progressed in three stages. The first is product inspection, where sampling 

plans were used to sort good from bad products at the final inspection stage of production. 

The objective was merely to detect products not conforming to specifications and prevent 

them from reaching customers. At the next stage, attention was turned upstream to the process 

(on-line) that generated the products. The main concept that underpins the on-line quality and 

performance improvement effort is that every process generates information that can be used 

to improve it (Bisgaard, 1990). Such information may be obtained by informative 

observational statistical techniques such as Statistical Process Control (SPC) (Box and 

Bisgaard, 1987). Hunter (1986) called this “listening” to the processes. According to Goh 

(1993) and Grant and Leavenworth (1996) this approach is effective in preventing the 
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generation of unsatisfactory products but it is passive as no attempt is made to change the 

process so that its performance is improved. The attainment of the latter requires “conversing” 

with processes by purposefully changing their parameters to observe and identify the reasons 

for any associated changes that may occur. DOE is an effective technique for accomplishing 

this task. Attention in the third stage was moved further upstream to the design stage (off-line) 

aiming to prevent the occurrence of any problems i.e. doing the right thing first time. DOE is 

the dominant technique at this stage as its effective use can result in having “built in” product 

and process quality thereby eliminating the need for final product inspection and reducing the 

on-line quality endeavour. 

2.4 Importance of Experimental Design  

A process, as schematically represented in Figure ‎2-1 (Montgomery, 2010), is a set of 

connected activities in which inputs are transformed into outputs for a specific purpose (Hoerl 

and Snee, 2002). Some of the process’s parameters (X1, X2….Xn) are controllable, whereas 

others (N1, N2,….Nk) are uncontrollable (although they may be controllable during 

experimentation). There is no direct control over the performance measure (response variable) 

Yi; in the classical cause and effect approach, it is the effect. The causes are what dictate the 

response. To control the response, the causes i.e. the process’s variables X1, X2….Xn must be 

controlled. Both manufacturing and service systems may be viewed as processing systems as 

they process items through a series of activities. In Manufacturing, raw materials (inputs) are 

transformed into finished products (outputs); whereas in services, customers enter with some 

service need (inputs) and depart as serviced customers (outputs). The performance measures, 

Yi, are derived from the process output. For example in Manufacturing the surface roughness 

of a finished product may be used as a performance measure while the customer waiting times 

in, say, a Bank can be used to measure the performance of its service system.  
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Figure ‎2-1: General Schematic Representation of a Process (adapted from Montgomery (2010)) 

DOE can be used to improve the performance of Manufacturing and service processes in 

many ways as discussed below. 

2.4.1 Screening  

Processes are often described by many parameters, the role of which may not be 

understood especially at the early stages of the design and development effort when the 

relevant scientific and engineering knowledge may be limited. Applying DOE to identify the 

most influential controllable process’s parameters (factors) is critical to its eventual successful 

improvement. Without a proper screening experiment a considerable amount of time may be 

wasted in guessing which parameters are important, in lengthening the performance 

improvement lead time and in possibly missing important deadlines regarding the 

improvement projects. Therefore, screening experiments are essential for both on-line and off-

line improvement endeavours. Goh (1996) suggested that in such experiments all conceivable 
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controllable parameters X1, X2….Xn should be included so that the key ones that exert 

considerable effect on the performance measure of interest Yi can be detected.   

2.4.2 Characterising 

DOE can be used to identify how the subset of controllable factors, already identified as 

important, should be adjusted so that the average value of the associated performance measure 

could be shifted to its desired level (Goh, 1989). DOE can also be used to identify where to 

set the influential X's so that the variability of Yi around its target level is minimised (Kacker, 

1985). 

2.4.3 Optimising  

Another use is to manipulate the most influential process’s parameters to levels or settings 

that result in the “best” obtainable set of operating conditions. If it is the case that the larger 

the value of Yi the better the performance, the setting of the influential X's to maximise Yi 

must be determined. Alternatively if the best performance is associated with the smallest 

value of the performance measure, then the settings rendering the minimum Yi must be 

specified. 

2.4.4 Dealing with Complexity 

According to Gershenson and Heylighen (2005) complexity stems from the Latin 

complexus, meaning entwined or connected together. Although a process may consist of 

many activities, parameters and resources, it is not the number of these elements that make it 

complex. It is their level of interdependences and variability. It may be quite easy to 

understand and predict the effect of each of the process’s parameters when taken in isolation 

from the others. However, the performance of a process does not depend on the independent 

effect of each parameter but on how each interact with the rest to affect its behaviour. The 
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effect of simple interdependences may be easy to comprehend in the absence of variability in 

the activities involved. Similarly the variability of the activities that operate independently of 

each other can be simple to analyse. In fact it is the combination of interdependences and 

variability that produce a complex unpredictable process performance. Unaided, the human 

mind is not very good at analysing and understanding complex processes. Simon (1957) 

referred to this as “the principal of bounded rationality” and stated that “the capacity of the 

human mind for formulating and solving complex problems is very small compared with the 

size of the problem whose solution is required for objectively rational behaviour in the real 

world, or even for a reasonable approximation to such objective rationality” (Simon, 1957). 

This is in agreement with the observation of the philosopher Alfred North Whitehead that “we 

think in generalities; we live in details” (Ceder, 2007). As Goh (1999) explained, most of the 

processes are not only too complex to be understood by the unaided human mind but also by 

the theoretical principles of Science and Engineering. Dealing with complexity requires both a 

philosophy and powerful techniques to put it in action. The philosophical requirement is 

embodied in statistical thinking (Britz, 2000; John et al, 2001; Hoerl and Snee, 2002) which is 

best and more effectively implemented using DOE. Statistical thinking is a philosophy of 

learning and action based on the following fundamental principles (ASQ, 1996):  

 all work occurs in a system of interconnected processes; 

 variation exists in all processes;  

 understanding and reducing variation are keys to success. 

Snee (1990) defined statistical thinking as “ thought  processes  which recognise that 

variation is all around us and present in everything we do, all work is a series of 

interconnected processes, and identifying, characterising, quantifying, controlling and 

reducing variation provide opportunities for improvement”. Contrary to the traditional view of 
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statistics as a set of tools and techniques, statistical thinking views the work as a network of 

interdependent processes that are joined together to accomplish certain goals. Of vital 

importance to its effective use is the ability to understand the degree and nature of the 

relationship and interdependence between the work processes and between the input, 

activities and output of each process which is an essential aspect of dealing with complexity. 

To this end, DOE is a powerful technique for gaining knowledge relating to the 

interdependences (interactions) between a process’s parameters X1, X2….Xn , their joint effect 

on and functional linkage with the performance measure of interest Yi. DOE enables the 

experimenter to vary all the studied parameters simultaneously hence allowing their 

interactions, which are forms of interdependence, to be investigated utilising small numbers 

of experiments.  

Another way in which DOE deals with interdependence is through its ability to understand 

and empirically model the cause-and-effect relationship between the process’s parameters and 

the performance measure in an effective and efficient manner (Montgomery, 1999). This 

enables the experimenter to judiciously manipulate the influential parameters to attain the 

target performance level. There are two types of cause-and-effect models: deterministic and 

probabilistic (Harvey, 2001). In the former, the process’s parameters are the necessary and 

sufficient variables for determining the value of the response or the dependent variable. 

Although such models are very common in scientific areas such as physics, they are rarely 

encountered in engineering practice. On the other hand, probabilistic cause-and-effect models 

in which the process’s parameters are the necessary but not sufficient variables for identifying 

the value of the response are commonly dealt with in practice. In fact most of the DOE 

empirical models are of this type. Mathematically, they can be represented as follows:  
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 Yi = f (X1, X2….Xn) + e (2.1)  

where e is a surrogate for all those variables that are omitted from the model but that 

collectively affect Yi . As Box (1993) stated “knowledge about our world is, and always must 

be, partial knowledge”. Consequently, no model is perfect. The term e includes (i) all the 

noise variables either known or unknown, controllable or uncontrollable; (ii) factors and 

interactions that have such a small effect that their inclusion in the model is not practical; (iii) 

the error in measurements of the studied factors and the observed response along with the 

latter intrinsic unexplainable variability; and (iv) the error resulting from using a wrong 

functional mathematical model to link the Xs with Yi such as  using a linear equation to 

represent a quadratic relationship. 

 In addition to modelling process’s parameters interdependences, the development of a 

formal empirical model provides an explicit and, to a large extent, an unambiguous 

representation of the process and offers a common language for communicating the findings 

to those involved in the decision making or evaluation process. Furthermore, it facilitates a 

what-if analysis which is very useful in devising robust recommendations (Bouyssou et al, 

2000). The way in which statistical thinking and DOE deal with the second aspect of 

complexity (i.e. variability) is discussed next. 

2.4.5 Dealing with Variability  

DOE is a vital technique for studying and reducing processes’ variability which is a major 

aspect of complexity and an essential component of the statistical thinking philosophy. 

Variability is a characteristic inherent in any process (Britz at al,1997; Makrymichalos et al, 

2005). For example different people can perform the same activity in different ways; different 

suppliers of supposedly identical inputs can provide variable inputs; different machines that 
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are supposed to perform identically can be inconsistent. A fundamental principal of statistical 

thinking that is rooted in work of the quality pioneer Deming (1986) is variance 

understanding and reduction. In fact, Deming’s 14 points are all based on understanding 

variation (Hare et al, 1995). He once said “If I had to reduce my message for management to 

just a few words, I would say it all had to do with reducing variation” (Stupak and Leitner, 

2001). Certainly, manufacturers prefer working with suppliers whose performance is stable; 

employees value working for managers with predictable behaviours and actions and managers 

in turn reward employees whose performance level is consistent around their expectations. 

 Deming (1986) highlighted two approaches for reducing variation: problem solving and 

process improvement. The former concerns the elimination of special causes of variation i.e. 

causes that result in an unanticipated and excessive variation causing a process to become 

unstable. In this context, DOE is very effective in identifying the influential X's so that the 

variability of the average value of the performance measure Yi around its target is minimised. 

The process improvement approach revolves around the reduction of the common cause 

variation that is inherent in the process. By incorporating the noise factors into the 

experiment, DOE can be used to determine the settings of the important X’s so that the 

common cause variability, to which Deming attributes more than 85% of the processes’ 

problems (Snee, 1990), is minimised. Figure ‎2-2 shows schematically how variation reduction 

can be used to improve product or process quality. Another approach to variability reduction 

is to anticipate its sources and then design processes that are insensitive or robust to them. 

This predict-and-prepare approach focuses on designing processes with high “built in” quality 

and productivity rather than transforming the existing ones to attain such capability i.e. 

prevention rather than cure. To this end, the DOE approach pioneered by Taguchi (Taguchi 

and Wu, 1985; Taguchi et al, 1989) is of vital importance. Taguchi advocated using DOE for 
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parameter design, which aims to predict the sources of variation at the design phase and use 

experimental design to identify the settings of the process’s parameters that  

 make the process robust to environmental, and other factors that are difficult, 

expensive or even impossible to control; 

 eliminate or reduce the process sensitivity to the variation transmitted from its 

components;  

 attain the target performance level with minimum variation.  

The conventional approach to achieving these objectives is to use high quality components 

with tighter tolerances, advanced technologies or expensive input material. This can result in 

overdesigned and expensive products. The power of DOE lies in its ability to attain these 

objectives without additional capital investment.  

 

Figure ‎2-2: Improving Quality through Variation Reduction (Snee, 1990) 

2.4.6 Flexibility 

 One of the distinct features of DOE is its ability to be integrated with other process 

improvement techniques such as simulation (Law and Kelton, 2000) and mathematical 
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programming (Taha, 2002). The former can be defined as the imitation of the operation of a 

real-world process or system over time (Banks, 1999) while the latter may be defined as a 

mathematical representation aimed at programming or planning the best possible allocation of 

scarce resources (Bradley et al,  1977). Broadly speaking experiments can be conducted on 

the actual process under study or on a model (Figure ‎2-3). The latter approach is adopted 

whenever the experimentation time or the cost using the actual process is prohibitive. A 

model can, broadly speaking, be classified into two categories: simulation and analytical 

mathematical (see Figure ‎2-3). DOE is becoming an integral part of simulation modelling, in 

fact many simulation books such as those by Banks (1998) and Law and Kelton (2000)  

devote a separate Chapter to explaining the technique; in addition an entire text (Kleijnen, 

2008) and many research papers (Sacks et al, 1989; Welch et al 1990; Kleijnen and 

Standridge, 1988; Kleijnen 1995, 2005) are dedicated to explaining the use of DOE in            

.. 
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simulation modelling. This is natural as simulation is essentially an experimentation tool in 

which a computer model of a new or existing process is created for the purpose of conducting 

what-if analyses.  

Regarding mathematical programming which represents an example of analytical 

mathematical models, DOE can provide a valuable input to its modelling stage which 

involves developing a mathematical model representing the objective of the study in terms of 

a measurable quantity such as profit, cost or revenue i.e. the objective function. As a powerful 

technique for establishing empirical mathematical models linking the process’s performance 

measures with its main parameters, DOE can be very effective in developing the objective 

functions in studies that utilise mathematical programming as an improvement technique. At 

the same time, mathematical programming methods are of vital importance to optimisation 

DOE studies, the objective being to utilise the derived empirical model to identify the “best” 

settings of the process’s parameters.    

2.4.7 Improving the Process of Formal Decision Making  

According to Goh (1992, 2000) the factors behind the achievement of superior quality can 

be put into three building blocks of an overall quality framework; namely, a quality 

management system, quality technology and quality information. DOE is an integral part of 

the quality information gathering and learning process which should be utilised to inform 

decisions and actions. According to Sage and Armstrong (2000) a formal approach to 

decision-making should involve: i) formulating alternative courses of action; ii) analysing 

their impacts; and iii) interpreting and selecting the appropriate options for implementation. 

As its studies incorporate all of these, DOE possesses the capability of being an effective 

formal decision-making technique. For example, screening identifies the most influential 

parameters that affect process performance. The identification of all or a subset of the 
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combinations of the influential factors’ levels parallels the formulation of alternative courses 

of action as each represents a candidate decision to be taken.  

Regarding the analysis of the action impacts, DOE firstly enables the experimenter to 

obtain (in a physical experiment) or predict (in a simulation experiment) the outcome of each 

of the candidate courses of action. Furthermore, it encompasses a powerful set of statistical 

tools such as Analysis of Variance (ANOVA) that can be used to analyse the experimental 

results and test the statistical significance of the studied factors. It also provides quantitative 

techniques that can be exploited to isolate and estimate the effect of each of the factors and 

interactions under study.  

With regard to the interpretation stage, DOE utilises very powerful, yet simple, graphical 

tools such as main effects and contour plots (Antony, 2003; Cornell, 1990) which are very 

helpful in interpreting the obtained results. Furthermore, mathematical procedures such as 

steepest ascent (Myers et al, 2009) and linear and non-linear programming methods (Tang and 

Xu, 2002; Kim and Lin, 2006) which are response surface DOE tools are very powerful in the 

process of selecting the “best” course of action to choose.  

There have been many attempts to classify the types of decisions made in an organisation. 

Of particular interest are the following four types postulated in Anthony (1965) and Anthony 

et al (1992):  

 Strategic planning decisions: those made to choose highest level policies and 

objectives, and associated resource allocations; 

 Management control decisions: those made to ensure effectiveness in the 

acquisition and use of resources; 
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 Operational control decisions: those made to ensure effectiveness in the 

performance of operations; 

 Operational performance decisions: day-to-day decisions made while 

performing operations. 

Whenever the cost impact of the decision exceeds that of performing the experiment, DOE 

is very effective in dealing with the management control and operational performance and 

control decisions. Generally it is very powerful in applications that involve well defined and 

repetitive processes that encompass interdependent and variable activities and events. 

Although intrinsic in Manufacturing processes, these characteristics are not uncommon in all 

business processes. In fact, Harrington, (1991) observed that 80 percent of all business 

processes were repetitive. Despite this, the use of DOE is not common in this sector. In a 

recent article, this was criticised by Ariely (2010) who argued that “companies continue to 

pay overly confident consultants big money to supply answers rather than gather evidence in 

experiments to help them make their own decisions”. He went on to emphasise that “only an 

experiment gives you the evidence you need” and that “intuition is a remarkably bad thing to 

rely on”. It is the author’s opinion that a combination of experiments and intuition can prove 

to be very effective in dealing with business decisions. Although DOE may not be as effective 

a tool in making strategic decisions as it is in operational ones, it is important to remember 

that the quality, effectiveness, precision, and strategic forethought of decisions made 

throughout an organisation (whether they be management control or operational), have vital 

consequences for the overall success of its strategy. Moreover, the flexibility of DOE enables 

its integration with many helpful tools such as Decision Support Systems (DSS) (Turban and 

Aronson, 1997) to provide a valuable input to strategic decision-makers. In fact, DOE is of 

essential importance to the development (Alberti et al, 2009) and the empirical assessments 
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(King and Rodriguez, 1981; Sharda et al,1988; Daily et al, 1996) of the DSS. It can also be 

very useful in their application.  

A further possible use of DOE in strategic decision-making relates to the use of strategic 

interactive planning proposed by Ackoff (1979, 1981) who suggested that in the case of 

failing to generate a consensus among the participants in the planning process, experiments 

should be designed to resolve the issue causing the disagreement. He further suggested that 

the participants should be involved in designing these experiments as their agreement on this 

should facilitate the consensus achievement on the experiments’ results and subsequently on 

the conflict. The main reason for such disputes is the absence of data without which everyone 

is an expert and as Snee (1986) observed “discussions produce more heat than light”. By 

generating the required data to understand the scope and the root causes of the disagreement, 

DOE can be an effective technique for generating consensus among the strategic planning 

participants.   

2.4.8  Ability to Express the Improvement Effects in Monetary Terms  

Of vital importance to attract the attention of any organisation’s management to the value 

of a technique is the ability to show the impact of its use on the bottom line. Taguchi (1986) 

proposed the loss function to communicate the monetary gains of using DOE to reduce 

process variation. He established a quadratic relationship between the loss and the functional 

specifications. For example, if Y is a performance characteristic with target T and tolerance 

interval T ± ∆, then when Y = T, no loss is incurred. However, the loss continually increases 

as Y deviates from the target value and when it exceeds T - ∆ or T + ∆, the quality loss is 

equal to the cost C of the product disposal or manufacture as indicated by the quadratic loss 

function in Figure ‎2-4. Taguchi modelled this loss function, L (Y) (Phadke, 1995), as 
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 L(Y) = K [(Y-T)
2
] (2.2)  

 

 

Figure ‎2-4: Taguchi’s Loss Function 

where the value of K is a constant depending on the cost at the specification limits and the 

width. The above equation represents the loss for an individual part. The average loss per part 

for a group of parts is 

 L(Y) = K [S
2
 + ( Y -T)

2
] (2.3)  

where Y  and S
2
 are respectively the average and variance of the performance measures of the 

group. Clearly the above functions will penalise even small deviations from the target which 

is a departure from traditional thinking, where costs are only incurred when Y is outside 

specification. Depending on the objective of the experiment, Taguchi derived several loss 

functions as detailed in Ross (1996). It was through the use of these measures, according to 

Pignatiello and Ramberg (1991), that the DOE technique gained considerable attention and 

support among managers. It is important to note that the expected bottom line monetary 
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outcomes of any experimental design initiative are dependent upon its objective. One should 

not expect the outcomes of a screening experiment where the objective is to identify the key 

parameters to be the same as an optimisation one that aims to identify the best parameter 

settings (Goh, 2001). 

2.4.9 Tool for Scientific Investigation 

Crombie (1953) observed that the idea that scientific progress is attained by an iterative 

process comprising both induction and deduction has been known since the time of Robert 

Grosseteste, one of the founders of Oxford University, who attributed it to Aristotle (384-322 

BC). Generally the investigator starts with some data or facts, from which a possible theory, 

hypotheses conjecture, or idea is inferred. This can then be represented by a tentative model 

which leads, using deduction, to consider what should happen if that model was true and what 

data ought to be collected to compare that with what actually occurred. This can lay the 

ground for appropriately modifying the model and so on (Box and Youle, 1955). This 

iterative process is represented diagrammatically in Figure ‎2-5 and was shown by Box and 

Liu (1999) and Box (1999) to be equivalent to the plan- do- check- act process (Shewhart        

.                           

 

Figure ‎2-5: Scientific Investigation Process (Box, 2001) 
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1980; Deming 1986). Box (1994, 2001) ascertained that sequential DOE was vital in this 

case. He quoted R. A. Fisher: “The best time to design an experiment is after you have done 

it” (Box, 1992) indicating that experimentation should (whenever feasible) be sequential, with 

subsequent experiments being designed using the knowledge obtained from prior ones. The 

reason is that as the initial experimental runs are executed, insight into factor effects is 

accumulated and used to select the next set of runs. Daniel (1976) suggested using 50–67 % 

of the available resources on the first experiment, whereas Box et al (1978) recommended at 

most 25 %.  

It is clear from the above discussion that experimental design is, as Goh (2002) 

emphasised, too important to be left to Statisticians; thus Engineers, particularly in 

Manufacturing, around which this work is centred, should have a good understanding of the 

technique and its associated benefits. Publications by Antony (1998, 2002, 2006) and Antony 

and Antony (2001) are devoted to explaining DOE to Engineers and Managers.  Moreover, 

there are many case studies presenting its successful applications to improve product or 

process performance within the Manufacturing sector. These include Antony (1999, 2001), 

Antony et al (1999, 2001, 2004, 2006), Rowlands et al (2000), Antony and Kaye (2000), 

Antony and Roy (1999). There have also been many examples of the use of DOE to improve 

non-Manufacturing processes including  Donahue et al (1996) in Marketing; Pean et al (1998) 

and Gratteri et al (1996) in Pharmacy; and Smith et al (1996) and Stolle et al (2002) in Law. 

Moreover, Condra (1995) explained how Managers should use experimental design as a 

method for adding value to their organisations’ products.  

The basic principles of DOE together with its implementation stages are presented in 

Appendix 1 and a detailed discussion of the statistical analysis associated with the technique 

is provided in Appendix 2. 
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2.5 Types of Statistical Design of Experiments 

The appropriate DOE to choose depends on such things as the objective of the experiment, 

the number of factors involved, the number of levels of these factors and the restrictions that 

need to be considered while experimenting. There are several ways to classify the DOE types. 

An excerpt of the common criteria that are adopted for this purpose is shown in Figure ‎2-6. 

Each will now be discussed apart from Experiment Objectives which has already been 

described in Section 2.4. 

2.5.1 Number of Studied Factors 

On the basis of the number of factors under study, the design type can be classified into 

single factor and factorial. The former involves studying one factor only at two or more 

levels. The objective is usually to compare these levels and find the best with respect to a 

certain performance measure. In factorial experiments, two or more factors are varied 

simultaneously. It is a more efficient alternative to the one-factor-at-a-time experiments as it 

requires fewer runs and enables the interaction effects to be estimated. Moreover, factorial 

experiments allow the effects of a factor to be estimated at several levels of the other factors, 

yielding conclusions that are valid over a range of experimental conditions. Factorial 

experiments are further categorised into two-level, three-level or four-level experiments 

according to the number of levels of the studied factors. By the same token, when factors with 

different numbers of levels are used, the experiment is called a mixed level trial.  

2.5.2 Execution Restrictions 

Designs can be classified into completely randomised, blocked, split-plot or nested ones 

depending on the presence (or absence) and the nature of certain restrictions on the way in 

which the experiment is performed. Some of these relate to how noise factors are dealt with 

....  
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Figure ‎2-6: Classification of DOE Types 
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For example, in cases where the noise factors are unknown and uncontrolled, completely 

randomising the run is the best way as their effects are “averaged out”. When noise factors are 

known but uncontrollable, their values should at least be observed at each run and accounted 

for in the analysis using such techniques as Analysis of Covariance (Montgomery, 2010). 

When noise factors are known and controllable, blocking is a systematic method for 

eliminating their effects, randomisation being performed within each block. However, there 

are instances where this is not at all feasible. For example, the factors of interest may be hard-

to-vary while the others are easy. The order in which the experimental runs are performed is 

determined by the ordering of these hard-to-vary factors. So for the same settings, the runs 

may be performed sequentially (varying only the easy-to-vary factors) without resetting them 

between the runs. In such experiments, each setting of the hard-to-vary factors is called a plot 

(a word inherited from agricultural applications). Thinking of the settings of the easy-to-vary 

factors as a splitting of the plot into a number of parts, one for each setting, leads to a split-

plot type of experiment. A nested type of experiment is used when the levels of one or more 

factors are similar but not identical for different levels of another factor. This differs from the 

factorial design in the property that the levels of each factor are unique to that factor. An 

example might be a company that purchases three batches of raw material from three different 

suppliers and needs to compare their quality. If the batches from each supplier are unique to 

that particular supplier then the experiment should be performed as a nested trial. 

2.5.3 Factors’ Levels Interest Domain  

Depending on the interest domain of the levels of the factors under study, DOE may be 

classified into fixed, random and mixed effect experiments. If interest lies in studying 

particular levels of each factor, then the experiment is called fixed effect. In this case, the 

domain of the inferences’ validity regarding each factor is limited to its selected levels i.e. the 
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conclusions concerning each factor cannot be generalised to its possible levels that were not 

explicitly considered in the experiment. In random effect experiments, the experimenter is 

interested in examining all the possible levels of each of the studied factors. As the number of 

possible levels may be very large, it is necessary to choose a sample of levels from the 

population of all possible levels. In such a case the conclusions regarding the significance of 

each factor can be generalised to the entire population of its levels, not just those that were 

considered in the experiment.  In some experimental situations, the objective may entail 

studying some fixed effect factors along with other random effect ones. Such experiments are 

called mixed effect. 

2.5.4 Approach Pioneer 

The DOE approach may be identified by the name of its pioneer, examples include Fisher 

(or Box), Taguchi and Shainin. The first, referred to as “conventional” or “classical” designs, 

were named after Sir R. A. Fisher and one of his eminent scholars George Box. One of the 

main characteristics of this approach is that it is centred around studying the average response 

and its variation around its target along with the causes of this variation i.e. the control 

factors. The variation of the individual response values around their average is treated as 

constant and its causes- the noise factors- are handled by either randomisation or blocking. A 

sequential and adaptive approach is strongly advocated when performing such experiments. In 

fact the approach encourages starting with a two-level screening experiment to identify the 

key factors and following this by the use of optimising experiments with  factors at more than 

two levels for studying their non-linear effects and identifying their “best” settings.  

The Taguchi approach (see Section 2.4.5) on the other hand, focuses on studying both the 

variation of the average response around its target and that of the individual responses around 

their average. It emphasises the importance of including the causes of both types of variation 
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i.e. the control and noise factors in the experiment. In so doing, Taguchi advocates a one-shot 

large experiment approach where a crossed (product) array design comprising an inner array 

containing the control factors (dominated by a three-level arrays), and an outer one containing 

the noise factors is utilised. Taguchi derives a novel variability performance statistic called 

the signal-to-noise ratio (S/N) that represents the ratio of the average (signal) to the variance 

(noise) and is directly related to and derived from Taguchi’s loss function. Although his 

philosophy has been endorsed by both researchers and practitioners, his experimentation 

strategy and data analysis method have generated much controversy among Statisticians and 

Researchers (Box, 1988; Box et al 1988; Hunter 1985; Montgomery, 1990;  Nair et al, 1992). 

 Shainin DOE was initially introduced in 1957. (Shainin, 1957). Its main objective is to 

identify the most influential parameters on a process performance. Shainin and Shainin (1988) 

proposed a five-step methodology for implementing this approach. The first four may be 

considered as a systematic search for the key causes of a performance measure variation 

utilising such statistical techniques as confidence intervals and SPC. The fifth step involves 

conducting a conventional factorial to determine the “best” settings of the key factors. The 

main advantage of this approach is its simplicity. It is primarily a problem solving approach 

i.e. in most cases it aims to bring a deviant process performance to its acceptable conditions 

rather than seeking any breakthrough improvement. Despite this, Ledolter and Swersey 

(1997) found no good reason to use such an approach as an alternative to the conventional 

one. Further details on Shainin’s design and its performance compared with Taguchi’s can be 

found in Thomas and Antony (2005).   

The types of DOE that have been discussed were developed over four eras according to 

Montgomery (2010). These are presented in the following section. 
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2.6 A Brief History of Statistical Experimental Design 

The first era of DOE is the agricultural which was led by the pioneering work of Fisher in 

the 1920s and early 1930s, who according to Cox and Reid (2000), was the first to provide a 

systematic discussion of DOE. While being responsible for statistics and data analysis at the 

Rothamsted Agricultural Experimental Station (England), Fisher found that carrying out 

experiments improperly hampered the analysis of the data. Due to the nature of agriculture, its 

experiments tended to be large, took a long time to complete and were subject to various 

sources of variation in the field. These characteristics led Fisher, through interacting with 

Scientists and Researchers in many fields, to introduce the concepts of randomisation, 

replication, and blocking alongside the principals of factorial designs and ANOVA. 

The second (the industrial) era initially started with attempting to apply Fisher’s DOE 

techniques to solve problems in Chemical Engineering. It was pioneered by G.E.P Box and 

his co-workers at Imperial Chemical Industries who discovered that new techniques had to be 

developed to deal with the two unique characteristics of industrial experiments: immediacy 

and sequentiality. Immediacy relates to the fact that the performance measure can usually be 

observed (nearly) immediately whereas sequentiality relates to the ability to quickly learn 

crucial information from a small group of runs that can be used to plan the next experiment. 

In contrast to agricultural experiments where the principal objective is to compare treatments, 

process modelling and optimisation were the main objectives in industrial experiments. This 

led to new techniques for DOE, notably response surface and optimal designs, which became 

widely recognised in the chemical and process industries, mostly in research and development 

work. However, the application of statistical design at the plant or Manufacturing process 

level was still not widespread. 
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As a result of the increasing interest of Western industry in quality improvement that 

began in the late 1970s, the third era of statistical design began. This was led by the work of 

Genichi Taguchi who suggested highly fractioned factorial designs and other Orthogonal 

Arrays (OAs) along with some novel statistical methods including robust parameter and 

tolerance designs. By this time, designed experiments became more widely used in many 

industries, including automotive and aerospace Manufacturing, electronics and 

semiconductors. 

One of the positive outcomes of the Taguchi approach was the start of the fourth era of 

statistical experimental design. The debate regarding the effectiveness of his design and 

analysis methods resulted in renewing the interest in DOE and led to the development of 

many new and useful approaches to put Taguchi's philosophy regarding variance reduction 

and robustness into action in an efficient and effective manner. 

Goh (2002) added a fifth era which he associated with the emergence of the Six Sigma 

quality initiative. As Taguchi simplified DOE and presented it in a way that Managers could 

understand, Goh attributed to Mikel Harry (the pioneer of the fifth era) the “packaging” of 

DOE to gain the support of bottom-line oriented CEOs. DOE is considered to be an important 

technique in Six Sigma due to its power to simultaneously investigate the potential causes of 

variation. It is prominently utilised in the improve phase of its five projects’ implementation 

phases: Define-Measure-Analyse-Improve-Control (DMAIC). Moreover, it is a vital 

technique for the design and optimise phases of the Identify-Design-Optimise-Verify (IDOV) 

implementation framework of Design For Six Sigma (DFSS) (Goh, 2009). Examples of the 

use of DOE in the context of Six Sigma can be found in Chan and Spedding (2001) and 

Conklin (2004).  Goh (2002) argues that Harry has taken DOE a step further than Taguchi in 

several ways. These include extending its applications to the transactional processes alongside 
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physical ones; demonstrating the impact of its outcome on the business bottom line thereby 

attracting the attention of CEOs and top management; and integrating its training with the 

“Belts” certification of competence system which comprises a hierarchy of designations such 

as “Master Black Belts”, “Black Belts” and “Green Belts” (Goh, 2002).     

2.7 Summary 

There are two main approaches to making decisions regarding process improvement, 

experiential and data-driven. The former is based on subjective feeling, opinion and past 

experience. It utilises a trial and error approach and can be wasteful in terms of time and 

money as there is no guarantee that effective decisions will be reached. The data-driven 

approach, on the other hand, makes use of actual data and objective mathematical principles 

to produce sound decisions. DOE is one of the powerful techniques of this approach. It has 

been proven to be among the most effective and reliable techniques employed by twenty-first 

century globally competitive organisations (Antony et al, 2004). It is very useful for 

identifying key process’s parameters and determining their settings so that the “best” 

performance is attained. In terms of the cause-and-effect relationship between the key 

process’s parameters and the performance measure, DOE is not only powerful for 

understanding its nature but also for representing it by means of an empirical model. 

Alongside the statistical thinking philosophy, DOE comprises an arsenal of field tested and 

proven approaches for dealing with complexity and its two main constituting elements: 

interdependence and variability. Due to the appropriateness of its sequential approach for the 

induction-deduction cycle, DOE is a pivotal technique for scientific research. Although 

valuable in its own right, DOE can, utilising its flexibility, be effectively integrated with 

many powerful quantitative techniques such as simulation and mathematical programming.  
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In general, the attention of top management can be drawn to the importance of DOE 

through expressing its application’s outcomes in monetary and bottom line terms using such 

techniques as Taguchi’s loss functions.  

Several experimental designs are available, their classification depending on criteria such 

as the number of studied factors, execution restrictions, factor levels domain of interest, 

objectives and approach pioneer. The development of the various types has spanned over five 

eras; namely agricultural, industrial, Taguchi’s variance reduction, alternative robust DOE 

and Six Sigma.  

Considering the importance of DOE and the concepts underpinning its use, it is interesting 

to examine the way in which it is being employed in practice. This is the topic of the next 

Chapter.  
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CHAPTER 3: A REVIEW OF THE PRACTICE OF DOE IN 

MANUFACTURING  

3.1 Introduction 

 Generally, much of the DOE literature is centred around the question of how the 

methodology should be applied, while less attention has been devoted to how it is actually 

being practiced.  Alongside other statistical quality improvement tools and techniques, many 

survey studies examine the extent to which DOE is used within various industries in different 

countries. For example, Araujo et al (1996) and Antony and Banuelas, (2002) studied the 

frequency with which DOE has been used compared to other quality improvement techniques 

in the UK. Similarly, Arvidsson et al (2003), Gremyr et al (2003) and Bergquist and Albing 

(2006) surveyed the use of several statistical methods including DOE in Swedish industry. In 

the Basque Country, Tanco et al (2008) examined the knowledge and use of DOE within 

Manufacturing companies. Ilzarbe et al (2008) provided a collection of published engineering 

case studies in which DOE was employed during the period 2001-2005. A common thread 

throughout these studies is their emphasis on how frequently DOE has been applied and the 

practitioners’ perception concerning its usefulness rather than the way in which it has been 

employed particularly in Manufacturing Engineering.  

The objectives of this Chapter are to identify gaps between the way in which DOE should 

be used (as presented in the literature) and how it is actually employed and to highlight 

aspects that warrant further clarification and assimilation in order to bridge these gaps. This 

will enable recommendations to be made for improving Manufacturing Engineering DOE 

practice. The methodology implemented in this review is firstly described; then its results are 

presented and discussed. Finally, the upshot of this Chapter is provided.   
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3.2 Review Methodology     

A valuable indicator of any methodological practice is the published literature that has 

been peer reviewed. Assuming that the way in which DOE is being employed in publications 

is indicative of the skills and knowledge held by the authors, an examination of how DOE is 

being applied can be used to assess which of its aspects practitioners are both acquainted and 

not very well acquainted with. The first step in this review was to select relevant 

Manufacturing Engineering journals which had recent published papers on DOE applications. 

Manufacturing covers such a broad area; Groover (2007) for example described it as “the 

application of physical and chemical processes to alter the geometry, properties and/or the 

appearance of a given starting material to make parts or products”, while Sharma (2005) 

stated that it includes such aspects as behaviour and properties of materials and their 

processes; the design of product, equipment and tooling necessary for their manufacture; 

management of the Manufacturing enterprises; and the design and operations of 

Manufacturing systems. Therefore, it was also necessary to define the scope for the review. In 

so doing the extent to which experimental work was likely to be performed was a key 

criterion. This led to focusing on journals that deal with the science and technology of 

Manufacturing processes, materials (including, metal, ceramics, polymers and composites) 

and the machines and tools applied to their manufacture. Another criterion that was used in 

selecting the journals was their impact factor. The journals listed under the category of 

Manufacturing Engineering in the journal citation reports (Thompson Reuters, 2010) were 

therefore examined to find those that were in line with the scope of the review and had 

attained a reasonable impact factor. The Journal of Materials Processing Technology (JMPT), 

the International Journal of Machine Tools and Manufacture (IJMTM) and the CIRP Annals - 

Manufacturing Technology (CIRP-MT) fitted the bill and so these were selected.  
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All of the articles published in these journals during the year 2009 were accessed through 

the ScienceDirect
®
 database. The process of selecting the relevant papers was performed in 

two stages. Firstly, the abstract of each article was read to identify those that involved 

experimentation, thus review articles and non-experimental studies were omitted. The 

methodology section of each selected articles was then read to exclude those in which DOE 

was not employed. The aspects that were considered for the review were: 

1. Design Related and Conducting Aspects  

 The number of studied factors and the number of their levels; 

 The type of design used, for example orthogonal array and response surface 

designs; 

 Whether a full or fractional factorial design was used;  

 Whether conventional or Taguchi DOE was used - the latter was recognised by the 

use of Taguchi’s designs or by the data analysis techniques employed;  

 The objective of the experiment i.e. was it conducted to study the response average, 

variation or both; 

 Whether the experiment was replicated or not; 

 The examination of aliasing patterns in fractional factorial designs; 

 Whether any factor interactions were studied;  

 Whether the experimental runs were randomised. 

2. Data Analysis Aspects 

 The use of pooling methods in analysing unreplicated experiments; 

 The use of ANOVA;  

 In the case of hypothesis testing, whether the tested hypotheses were stated and the 

p-values reported;  
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 Whether regression modelling was employed; 

 When used, the kind of effect size or measure employed to identify the relative 

importance of the studied effects. 

3. Results Interpretation and other Aspects  

 Whether the p-values were interpreted and the meaning of statistical significance 

explained; 

 The distinction between fixed-effect and random-effect inferences; 

 The performance of confirmation trials;  

 The use of DOE references including books and articles that explain the DOE 

methodology; 

 When used and stated, the statistical package employed in performing the DOE 

data analyses. 

3.3 Results and Discussion 

Having examined all the concerned DOE aspects in the reviewed articles, the collected 

data were analysed using SPSS v17 (SPSS, 2007). Details of the investigated articles are 

given in Appendix 3. As shown in Figure ‎3-1, a total of 765 articles were published in the 

JMPT, 148 in the IJMTM and 145 in the CIRP-MT during 2009. Of these, the numbers of 

articles that involved experimental work were, respectively 550 (71.9%), 119 (80.4%) and 74 

(51%) with DOE being used in 41 (7.5%), 13 (10.9%) and 4 (5.4%) respectively. Since some 

of these incorporated more than one experimental phase, a total of 62 applications were noted.  

3.3.1 Design Related and Conducting Aspects 

As shown in Figure ‎3-2, the number of factors studied in the experiments ranged between 

1 and 10 with the most frequent being 4. In fact, in 85.5% of the cases, six factors or fewer  
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Figure ‎3-1: Article Types in the Reviewed Journals 

were examined. In all but three of the applications, these were control factors; noise factors 

were used in the others (their numbers ranged from 1 to 3). Generally the number of factors 

used in Manufacturing experiments is relatively low, which could explain why in some of the 

studies, a sequential approach was adopted when the numbers of studied factors were 10 

(Lauderbaugh, 2009), 8 (Tsai et al, 2009) and even 6 (Ali et al, 2009). Normally initial          

...  

 

Figure ‎3-2: Number of Studied Factors in the Surveyed Experiments 
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screening experiments are conducted when the number of studied factors is regarded as large. 

This observation is in agreement with that of Ilzarbe et al (2008) who noted that, generally, 

Engineers utilise their prior knowledge and unpublished initial experiments to minimise the 

number of factors in their published ones. The reason for omitting initial experiments is their 

likely poor results (Ilzarbe et al, 2008).  

The majority of the applications were three-level experiments (43.5%), the percentages of 

two- and mixed-level trials were respectively 25.8% and 21%. The most frequently used 

designs were the L18 (22.6%), L9 (19.4%), L16 (11.3%), L8 (9.7%), L27 (9.7%) and L12 (6.5%) 

orthogonal arrays. The Central Composite Design (CCD) was used in 4.8% of the 

experiments. Approximately, three quarters of the applications were based on fractional 

designs. Very large full factorial designs were associated with simulation experiments as can 

be seen in Venkatachalam et al (2009) and Jeang and Li (2009)  where an L243 (3
5
) design was 

employed. Smaller full factorial designs were also observed in such applications as training a 

neural network model as was the case in Karayel (2009) who conducted a 4
3
(=64) 

experiment. Another application included a sequential investigation where the screening 

experiments detected four three-level factors as the most influential and subsequently a 3
4
 

(=81) experiment was performed (Tsai et al 2009).  

 While the conventional objective of a DOE study is to improve the average response, 

Taguchi’s philosophy emphasises the reduction of its variation. It was found that the 

conventional philosophy was more frequently adopted; in fact, the scope of 69.4% of the 

experiments was limited to studying the average response. A joint study of the response 

average and variation was the objective of 22.6% of the experiments while an examination of 

the response variation alone was observed in the remainder.  Despite the literature on its 

pitfalls and inefficiencies (Box et al, 1988; Nair et al, 1992; Montgomery, 1999) Taguchi’s 
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orthogonal arrays and data analysis methods were more common than the conventional ones. 

In addition, Taguchi’s signal-to-noise (S/N) ratios were the only performance measures used 

in all the experiments where the response variation was examined despite their criticism 

(León et al, 1987; Box, 1988).  It is unclear whether the rationale behind their use and what 

exactly they measure is understood since in one of the studies, the factors that significantly 

affected the S/N ratio were automatically taken to have a substantial effect on the average 

response (Tsai et al, 2009). In fact, a S/N ratio was used to screen the important factors which 

were then examined in a full factorial design to model their effect on the average - the 

implication being that the S/N ratio and the average response are interchangeable. 

   The popularity of Taguchi’s techniques is not surprising as their simplicity appears to 

have made them more attractive to practitioners than those of the conventional approach. 

However, it is interesting to note that they have been used predominantly for merely studying 

the average response. In their study, Phatak et al (2009) adopted an amalgamated approach in 

which their experiment was conducted using a Taguchi orthogonal array but the results were 

analysed using conventional regression analysis. In the study carried out by Yang et al (2009), 

a conventional 2
3
 design was used but it was reported as a Taguchi orthogonal array.  

Just over half of the experiments were unreplicated. This may be attributed to time, cost 

and technological constraints. Of the replicated experiments, the majority were performed to 

study the response variation. Partial replication, in the form of replicating the runs associated 

with the central point settings was observed in five of the studies. 

Of those experiments based on fractional trials, aliasing patterns were examined in only 

two of them. Taguchi’s linear graphs and the concept of resolution (Chapter 4) were the only 

techniques employed in this respect. Despite the criticism of the former (Tsui, 1988) and the 

extensions of the latter (Fries and Hunter, 1980; Chen et al, 1993), none of the contemporary 
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aliasing examination techniques and criteria were applied. As will be detailed in the following 

Chapter, aliasing can affect both the estimated effects and the experimental error variance. 

Therefore, failing to examine it can distort the conclusions drawn regarding which factors and 

interactions are significant.  One possible reason for omitting aliasing is that the postulated 

methods to generate and evaluate its patterns in the DOE literature are not easy to assimilate. 

A further reason relates to the practitioners possible lack of awareness of the impact of 

overlooking aliasing consequences. These issues are dealt with in Chapter 4.  

 A related problem concerns the examination of factor interactions. 69.4% of the studies 

dealt with the investigation of main effects only. Interactions were ignored even where there 

were sufficient degrees of freedom to estimate some or all of them. This can, in no small part, 

be ascribed to the adoption of Taguchi’s view regarding interactions. In fact, Taguchi and Wu 

(1985) stated that “no interactions are calculated even if they exist”.  They went on to say that 

“these interactions are treated as errors, so it is advantageous to have the effects of these 

interactions uniformly distributed in all (design matrix) columns". Thus Taguchi believed that 

the main effect estimates would not be affected by the presence of factor interactions, since 

their effects are evenly distributed across all the array columns. This is confirmed in his 

suggestion that non-regular orthogonal arrays (where main effects are partially aliased with 

their interactions) such as the L18 and L12 should be used so that the interaction effects can 

cancel each other out (Taguchi et al, 2004). This view has been shown to be fallacious 

(Hamada and Wu, 1992; Box and Meyer, 1993). Yet, it was explicitly adopted in the studies 

undertaken by Tsai et al (2009) and Marafona and Araujo (2009). The presence of interactions 

can distort the main effect estimates in terms of both their magnitude and direction thereby 

impairing the drawing of valid inferences. It must be borne in mind that a major reason for 

recommending the factorial experimental approach as an alternative to the one-factor-at-a-
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time is its ability to study factor interactions. Ignoring this feature may indicate a lack of 

understanding of one of the chief driving forces behind the proposal of factorial designs; 

namely the potential interdependency between factors in exerting their effect on the studied 

response.  

Another important aspect relates to randomising the experimental runs. Both the allocation 

of experimental material and the order in which the experiments are performed should be 

randomly determined. Randomisation provides protection against any unknown factors that 

may impact the response under study. It reduces the potential bias that could result from the 

improvement of the experimenter’s skill as the runs are performed. The DOE statistical 

analysis is based on the assumption that the experimental results are independent random 

variables. Although randomisation validates this assumption it was reported in only 12.9% of 

the experiments reviewed. It is not clear whether randomisation was performed, but not 

reported, in the others – this could be because of a lack of appreciation of the importance of 

this aspect. Of course, constraints such as investigating hard- or expensive-to -vary factors 

may render complete randomisation infeasible. In such cases, techniques such as blocking 

may be employed so that the randomisation restrictions can be accounted for in the analysis 

stage (further details on randomisation can be found in Cox (2006) and Hinkelmann and 

Kempthorne (2008)). 

3.3.2 Data Analysis Aspects 

The data analysis aspects comprise testing the statistical significance of the studied factors 

and interactions and estimating their effect sizes. In the experiments that were reviewed, over 

half incorporated one or more formal statistical significance testing procedures while the 

remainder were analysed graphically. As most of the experiments were unreplicated, there 

were no degrees of freedom available to estimate the experimental error. Thus, in the studies 
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where the effects’ significance were formally tested (53.13%), pooling techniques were used 

to identify those that should be combined to estimate the error variance. These included: 

Normal Probability Plot (NPP) (Daniel, 1959), Stepwise Regression (SWR) Pareto Plot (PP), 

the Unassigned (empty) Columns (UC) pooling and the Rules of Thumb (ROT) pooling. The 

last one refers to the process of selecting what are determined or even predicted to be 

reasonably small effects and pooling them (Logothetis and Wynn, 1989; Peace, 1993). Figure 

‎3-3 shows the percentage of cases in which each of the pooling methods was used. Clearly, 

subjective and informal methods such as the UC and ROT were more popular than the            

.. 

 

Figure ‎3-3: Percentage of Pooling Methods Usage in the Studies that Employ them 

formal and even the simple graphical ones. This could be attributed to a lack of awareness 

regarding the usefulness of such a simple method as the NPP, a lack of familiarity with how 

formal methods can be employed or perhaps a combination of both. With regard to the 

publications in which NPP and PP were used, the statistical package Minitab was employed to 

construct both of them so that the effects that should be pooled and those that were deemed 

significant were automatically selected. In fact, this package uses Lenth’s method (Lenth, 
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1989) to analyse unreplicated experiments and to identify the effects that should be pooled to 

test the significance of the remaining ones. Therefore, both the NPP and PP were merely used 

as graphical representations of the results of applying Lenth’s method. Yet, the latter was not 

mentioned in any of the studies that reported their use despite the fact that no control was 

exercised as regards the selection of the effects that should be pooled or those that were 

regarded as noticeably large. 

In analysing the fully and partially replicated experiments, pooling methods such as NPP, 

PP and ROT were used in 60% of them. Two different ways of use were distinguished. The 

first was associated with experiments where the signal-to-noise ratio was calculated for each 

trial rendering an unreplicated response variable. In this case, the pooling methods were used 

as already described in the context of unreplicated experiments. The second way was 

observed in cases where replicated experiments were used merely to study the average 

response and also in some of the partially replicated experiments. Pooling methods were used 

along with replication to estimate the error variance.  Conventionally, when small effects are 

pooled in a replicated experiment, their overall significance should be tested utilising the error 

variance estimated from replication i.e. using a lack of fit test. However, in the experiments 

examined, the way in which the significance testing was performed varied according to the 

pooling method used. When ROT pooling was performed, no lack of fit test was conducted, 

thus there was no objective method to examine the validity of the resultant estimate of the 

error. Fortunately, when NPP and PP were applied, the replications were appropriately 

exploited to obtain an unbiased estimate of the error variance. This is due to the use of the 

Minitab package which employs a t-test (Appendix 2) in such cases and uses the NPP and PP 

as graphical representations of the test outcome.  
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The use of the UC pooling method is another reflection of the impact of Taguchi’s 

strategy on the practice of DOE in which the convention is to deemphasise or ignore the 

effects allocated to the unassigned columns. When using an orthogonal array to conduct a full 

or fractional factorial experiment each column, be it explicitly assigned an effect or not, 

accommodates a main or an interaction effect. If any of those that the unassigned columns 

accommodate is large, the use of the UC method will result in a biased estimate of the 

experimental error. Consequently, the statistical inferences arrived at using such an estimate 

are invalid. Rather than deciding to use the unassigned columns to estimate the error, it is 

better to estimate the effects that these columns accommodate and ensure that they are small 

enough to be pooled (Daniel, 1959).    

The ANOVA technique was used in just over half of the reviewed experiments. Its 

standard version was employed in 28 studies while the remaining used Regression ANOVA 

(see Appendix 2). Regression Modelling was reported in 13 of the reviewed experiments. In 4 

of these, the developed regression models only were reported with no ANOVA. Their quality 

was judged by comparing their predicted values with the experimental results. 

Hypothesis testing was performed as part of implementing ANOVA, Lenth’s method or 

the t-test in 40 of the examined experiemnts. Of these, none stated the tested hypothesis and 

the p-value was reported in only 19. An examination of the assumptions that underlie the 

applied inferential statistical techniques was reported in only 7 studies. It is possible that the 

assumptions’ verification was performed but not reported, however, it is important to 

emphasise that adopting any statistical test without giving thought to its associated 

assumptions could produce invalid results. An awareness of the importance of validating the 

assumptions is a necessary but not sufficient condition for the appropriate use of statistical 

tests. It is also essential to know how to appositely examine these assumptions. For example, 
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in the study of Tsai et al (2009), it was noted that the Normality assumption was tested by 

plotting the residuals against the order in which the experimental runs were performed. 

Although such a plot will detect any unusual patterns in the experimental results, it does not 

illustrate the statistical distribution of the residuals; simple graphical tools such as NPP and 

Histograms are more effective.    

With regard to measuring the Factorial Effects (FE) importance, the employed measures 

can be classified as mean-related and variance-related. The former examines the average 

change in the response variable produced by changing the levels of a FE whereas the latter 

estimates the amount of variability in the response explained by each FE. The mean-related 

measures were presented in numerical and graphical forms, the latter involving main effect 

and interaction plots. The numerical mean-related measures were arrived at using either least 

squares estimation (in regression models) or the level average method – in this case for each 

of the FEs under study, the average response associated with each of its levels was computed; 

the relative impact of each FE can then be determined by computing the range of the relevant 

average response values.  

Four variance-related importance measures were used depending on the analysis technique 

employed. Where ANOVA was used, two different measures of the variation explained by 

each FE were used under the same label i.e. the Percentage Contribution (PC). Denoting the 

sum of squares by SS, these were: 

 PC1= SSFE/SStotal (3.1)  

and 

 

total

FEFE
2

SS

)MSE(dfSS
PC


  

(3.2)  
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where dfFE is the FE’s degrees of freedom and the MSE is the mean square error of the 

experiment. In the context of regression analysis, the two conventional measures of the 

overall explained variation, R
2
 and R

2
adj, were used.  

The percentages of the reviewed applications using the mean- and variance-related 

importance measures are shown in Table ‎3-1. As some studies reported the use of more than 

one measure, the total percentage exceeds 100%. Clearly, the mean-related measures were the 

more common with their graphical representations more frequently used than the numerical 

ones. One major reason for this is that the main objective of the studies was to identify the 

“best” settings of the factors that exert a significant effect on the response. Hence, it is not the 

knowledge of the individual numerical value of each FE mean-related measure that matters 

but rather the sign (direction) and relative value of each to the others. These are best 

communicated in terms of the main effect and interaction plots.  

Table ‎3-1: Mean and Variance related Importance Measures Usage 

FE Importance Measures % Use 

Mean-Related 
Numerical 31 

Graphical 40 

Variance-

Related 

PC1 10 

PC2 8 

R
2
 11 

R
2

Adj 6 

With regard to the use of variance-related measures, the way in which both PC1 and PC2  

were used causes some concern. One is the extent to which the difference between them is 

appreciated. They seem to have been used interchangeably as not only did they share the same 

label but also the same interpretation. Moreover, in three of the experiments, negative values 

were rendered when the PC2 measure was used. No explanation was given as regards the 

meaning and reason for this. Furthermore, the negative values were handled in two different 



51 

 

ways. Luo and Chen (2009) and Senthilkumar et al (2009) pooled their effects with the error. 

However, Shyha et al (2009) replaced them with zeros. The former treatment is more 

appropriate than the latter - see Chapter 8 for more details. Another concern regarding the use 

of the PC relates to confusing its estimation with the ANOVA. Although the estimation of 

PC1 and PC2 can be considered as a complementary step in performing the ANOVA, it was 

taken to be the ANOVA in 5 studies. None of the conventional elements of the ANOVA such 

as the sum of squares, degrees of freedom and the F-statistic were stated. In fact, only the 

effects’ PCs were reported and used to subjectively judge their significance.       

3.3.3 Results Interpretation and Other Aspects 

An examination of how the results of applying the DOE techniques were interpreted in the 

studies revealed several issues most of which were centred around statistical significance and 

the p-value. Among the prime concerns are: 

 Confusing statistical and practical significance - this was common in most of the studies 

 The use of the F-statistic as a measure of the FE’s importance (Jeang and Li, 2009; 

Chattopadhyay et al, 2009) 

 Misinterpreting the p-value. For example Boronat et al (2009) plotted the p-values in 

descending order and interpreted each value as a measure of “how far an effect is from 

behaving randomly”. By the same token, a p-value of less than 0.05 was taken to 

“suggest that the large F ratio is real and not a random error” in Rakwal and Bamberg 

(2009). Rosa et al (2009) defined the p-value as “the probability value which gives the 

degree of confidence at which the factor (or interaction) is significant”. On the other 

hand, Lin and Ho, (2009) subtracted the p-value from one and used the results as a 

measure of the FE’s importance.   
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A detailed discussion of these is given in Chapter 8. A further interpretation issue relates 

to differentiating between fixed and random effect inferences. In all of the reviewed 

experiments a subset of the levels of interest for each factor was specified but the conclusions 

were generalised to all possible levels. While such inferences are valid when the factor levels 

are randomly selected, this is not the case in fixed effect experiments where the  conclusions 

regarding any factor must be conditioned on its selected  levels.   

As already mentioned, Taguchi’s approach to DOE was adopted in most of the reviewed 

studies. The approach is characterised by running a one-shot fractional experiment to identify 

the important factors and their “best” settings. Several confirmation runs are then performed 

to verify that the experiment’s objective is met at the identified settings. In fact, the 

confirmation experiment is necessary for validating Taguchi’s assumptions regarding the 

absence of interactions, the statistical inference assumptions and the suitability of the S/N 

ratio. Such runs were only performed in 19 of the surveyed studies. Of these, 5 relied merely 

on comparing the result of the confirmation trial with either an initial value of the response 

variable or a value predicted using the developed model. No confidence interval was 

constructed. This is not a sound method for confirming the experimental results as no 

information regarding the predicted response variability was considered. Thus repeating the 

whole experiment may render a predicted response value that can be quite different from the 

confirmation experiment result.  In fact, without a proper confirmation experimental 

procedure, there is no way to validate the findings of any conducted experiment especially 

when the limitations highlighted in this Chapter are considered.  

The statistical software package used to analyse the experimental results was specified in 

only 22 of the studies. The reported packages and their usage percentage are shown in Figure 

‎3-4.  
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Figure ‎3-4: Reported Software Packages and their Usage 

Only 34 of the reviewed articles included a reference to DOE books and/or articles. The 

references used in the remaining articles involved other Manufacturing Engineering papers in 

which DOE was applied. It would appear therefore, that the same methodology was applied 

perhaps without a rigorous understanding of the underpinning concepts which can have 

serious consequences.   

The tendency to favour Manufacturing Engineering DOE application articles over other 

DOE references in the reviewed studies may, in no small part, be ascribed to their practicality, 

similarity to the application at hand and their limited DOE theoretical discussion. This is 

borne out by Tanco et al (2008) in their survey where they found that one of the major 

barriers for applying DOE was the lack of “real” applications in DOE references. In the same 

context, Goh (2001) highlighted that industrial applications could not be based on the 

standard experimental format presented in textbooks. Moreover, Penzias (1989) and Bisgaard 

(1991) argued that it is due to emphasising the theoretical aspects of statistics that 

practitioners are finding it difficult to employ them in practice.  
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In general, this review has cast some light on the limited use of DOE in the recent 

publications of the examined journals. Although, they may involve some non-academic 

participants, the published studies are predominantly conducted by academics. Interestingly, 

the reported frequency of DOE use in various industries, mainly by non-academic 

practitioners, exceeded that of the surveyed academics use. For example Antony and Banuelas 

(2002) found that among the companies that adopted six sigma programmes in the UK about 

54% used DOE. This is in line with the findings of Arvidsson et al (2003) and Gremyr et al 

(2003) who respectively reported that 46% and 52% of the surveyed Swedish Manufacturing 

companies employ DOE. A lesser rate of use was observed in the Basque industries (Tanco et 

al, 2008) as only 20% of the companies investigated in that region of Spain were found to 

apply DOE.  

 Box (2001) noted that while journals in medical, social, and agricultural sciences feature a 

wide use of statistics, this is not the case in Engineering. In part, he attributed this to the lack 

of interest and awareness of the benefits of using statistics. Box’s observation seems to be 

valid as far as the examined journals are concerned.   

3.4 Summary 

A snapshot of the contemporary practice of DOE in Manufacturing Engineering was 

provided in this Chapter by reviewing how it was applied in articles of three prominent 

journals in the field published in 2009. The review showed that DOE was far from being 

widely used. In the cases where it was applied, it was found that a gap existed between the 

DOE design and analysis techniques recommended in the statistical research literature and 

those that were actually used in the reviewed articles. Taguchi’s philosophy regarding 

variance reduction was not widely adopted, but authors relied heavily on his design and 

analysis techniques to study the response average; rarely were any of the contemporary 
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alternative robust techniques reported. Although highly fractional designs were commonly 

used, very seldom was the aliasing structure examined despite its potential impact. Moreover, 

Taguchi’s dogmatic view regarding deemphasising interactions was adopted in the majority of 

the studies examined. Randomisation was not apparent in most of the articles reviewed and 

the assumptions underlying the used statistical tests were rarely reported.  

Although the majority of the reviewed experiments were unreplicated, the practice of 

using pooling methods was poor. This was due to an overreliance being placed on either 

unaided subjective methods or unquestioned default options in the statistical packages used to 

analyse the results. Various misconceptions were identified with respect to the meaning of 

statistical significance, p-value interpretation, FE importance measures and the difference 

between fixed and random effect inferences. Despite the predominant use of Taguchi’s 

approach, confirmation experiments were only conducted in a small proportion of the cases. 

DOE textbooks and papers were not cited in many of the articles reviewed but rather use was 

made of similar applications.       

The results of this study cannot be generalised for all Manufacturing Engineering journals 

however, the importance and the high quality of the research reported in those reviewed 

cannot be ignored. It is reflective of an essential and considerable segment within the arena of 

Manufacturing Engineering research. Thus, even if the findings cannot be generalised, they do 

provide a platform for understanding and improving the practice of DOE in Manufacturing 

Engineering. Since this is a major objective of this research project, some of the issues have 

been dealt with in this Chapter; the others will be discussed in subsequent ones.  
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CHAPTER 4: ALIASING CONCEPT AND A METHOD FOR 

CONSTRUCTING ITS PATTERN  

 

4.1 Introduction 

Once the factors to be studied are decided upon, the next two interrelated steps are the 

selection of the OA and the assignment of the factors to its columns. The latter is 

straightforward when a full factorial OA is selected; however, this is not the case when a 

fractional factorial is used. The problem associated with selecting the fractional OA columns 

to accommodate the factors is that a pattern of aliasing exists which dictates what effects are 

interdependently estimated. In fact, losing the capability to independently estimate all the 

factorial effects is the price of using smaller OAs in such experiments. As revealed in the 

previous Chapter, little attention has been drawn to the aliasing problem in Manufacturing 

Engineering DOE applications. The main objectives of this Chapter are firstly to explain the 

nature of aliasing and the main methods for developing its pattern and measuring its degree; 

secondly to propose a simple method for obtaining the aliasing patterns and to demonstrate 

how it can be used to obtain the main measures of aliasing degree; and thirdly to illustrate 

how aliasing can impact the conclusions drawn from an experiment. After addressing each of 

the aforementioned objectives, the main conclusions to be gleaned from this Chapter are 

summarised.       

4.2 The Concept of Aliasing  

Aliasing is a form of linear relationship between some or all of the columns of the 

examined factorial effects. It may be perfect (complete) or partial. In the former case, given 

the entries of one column the elements of its alias columns can be completely determined 

whereas in the latter each of the effect’s aliases carries only a certain part of its information. 
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Aliasing is a design related phenomenon in the sense that its presence in one design does not 

mean that the levels of the actual factors under study are interrelated. Its impact depends a 

great deal on the validity of the hierarchical ordering principle, according to which three-

factor and higher order interaction effects are likely to be negligible.  For example, in 

studying the effects of five two-level factors on a certain response, one option is to conduct a 

full factorial (2
5
 =32 runs) experiment. Of the 31 degrees of freedom associated with this 

design, 16 are devoted to estimating three-factor and higher interactions. Assuming these are 

negligible, the remaining 15 degrees of freedom may be estimated by a smaller design such as 

the L16. If due to resources constraints only 8 trials could be carried out, an L8 (Table 1 in 

Appendix 1) comprising 3 main effect and 4 interaction columns could be used. A key 

question then is in which of the 4 interactions columns should the other 2 new main effects be 

put. Suppose the five factors under study are A, B, C, D and E and that the AB and AC 

interaction columns will respectively accommodate factors D and E then the resultant L8 

design is not capable of distinguishing the effect estimates of D from that of AB and similarly 

E from AC. Although, conventionally the expressions D=AB and E= AC are called design 

generators, they are not the only aliased effect in this case.  

Before explaining the classical method of obtaining the complete aliasing pattern it is 

necessary to explain a multiplication rule that is commonly used for this purpose. When two 

identical letters (columns) are multiplied the resultant letter is I which denotes the identity 

column. All of its entries are 1s as it is used to estimate the overall average. Multiplying an 

effect represented by one or more letters by another yields an effect represented by the 

combination of the multiplied letters excluding the common ones. For example, multiplying 

ABC by ADE yields BCDE. The mathematical foundation of this multiplication can be found 

in Burton and Connor (1957). Applying this multiplication rule, the generating relation of the 
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aforementioned L8 design can be arrived at by multiplying the generators D=AB and E= AC 

respectively by D and E yielding I= ABD and I=ACE. These along with their generalised 

interaction (ABD*ACE =BDCE) constitute what is called the defining relation: 

I = ABD=ACE= BDCE 

 Assuming that interactions of order five or higher are negligible, the complete aliasing 

pattern shown in Table ‎4-1 can be obtained by multiplying each effect by the elements of the 

defining relation using the above rule.   

Table ‎4-1: The Complete Aliasing pattern for the 2
5-2 

design with generators D=AB and E =AC  

 

 

 

 

 

Generally, a S
k-p

 fractional factorial design is called a ½
p
 fraction of the S

k
 design. It has k 

factors each at S levels and S
k-p

 runs. If p = 0, it is a full factorial design whereas if p > 0, the 

design is fractional i.e. it requires a selection of p independent generators. These along with 

their generalised interactions form a defining relation of the design. If Y and Z represent the 

selected generators (i.e. p = 2), then I = Y and I = Z are called the generating relations for the 

design. The complete defining relation for the design consists of all the columns that are equal 

to the identity column I. This comprises the (S
p
 -1)/(S-1) elements, which are Y, Z, and their 

generalised interaction YZ i.e. the defining relation is I = Y = Z = YZ. Each of these is called 

a word and the number of letters contained within it is known as the word length. The aliases 

of any effect are obtained by multiplying it by each word in the defining relation. 

Aliasing Pattern for the L8  Design with the  

Defining Relation 

I = ABD = ACE = BCDE  

A = BD =CE  

B =AD = CDE =BACE 

C =AE = BDE=ABCD 

D =AB =BCE=ACED 

E =AC =BCD =ABDE 

BC = ACD = ABE  =DE 

BE =ADE= ABC = CD 



59 

 

On the basis of their aliasing pattern, OAs can be classified into two categories: regular 

and non-regular. A regular OA can be determined or constructed by its defining relation and 

has a simple aliasing structure in that any two effects are either orthogonal or fully aliased. A 

non-regular OA, on the other hand, cannot be determined by a defining relation and exhibits a 

complex aliasing structure as some of the effects are neither orthogonal nor fully aliased 

(partially aliased). The L8, L9,and L16 are examples of regular OAs whereas the Plackett and 

Burman (1946) L12 and the L18 exemplify the non-regular OAs. 

When assigning factors to OAs, two situations have to be distinguished. The first is when 

prior knowledge suggests that the main effects and certain interactions are likely to be 

important. The general practice in this case is to assume that any unspecified interaction is 

negligible. To deal with this, Greenfield (1976) suggested using a searching algorithm for 

rendering the appropriate factor assignment so that none of the important effects is aliased.  

Franklin and Bailey (1977) and Franklin (1985) proposed some improvements on this but 

since their implementation requires computer programming their algorithms were rarely used 

in practice. As an alternative, Taguchi proposed a series of linear graphs which 

diagrammatically illustrate where each factor and interaction are located in the columns of an 

OA (Taguchi et al, 2004). Their main drawback is that they do not provide the complete 

aliasing relationship. Tsui (1988) suggested that aliasing tables should be used to rectify this 

drawback. Graphical representations of these tables were provided for both two-level (Kacker 

and Tsui, 1990; Wu and Chen, 1992) and three-level (Sun and Wu, 1994) OAs.  

  The second situation when assigning factors to columns of an OA arises when there is 

little or no knowledge about the relative sizes of the factorial effects or when all the factorial 

effects are equally important. This is the most frequently encountered situation in practice 



60 

 

(Box et al, 2005). In this case it is required to select designs with good overall properties 

under the hierarchical principal using certain criteria to measure the degree of aliasing. 

4.3 Measures of Overall Aliasing 

Several criteria have been proposed in the DOE literature, of which the main three are 

maximum resolution, minimum aberration and minimum generalised aberration. The first two 

are proposed for measuring the aliasing degree in regular OAs and the last in non-regular two-

level and three-level (regular and non-regular) OAs. 

4.3.1 Maximum Resolution 

 A design resolution (R) is defined as the length of the shortest word in the defining 

relation. Generally, a design is of resolution R if no p-factor effect is aliased with another 

effect containing less than R – p factors (Box and Hunter, 1961a). Therefore the best 

fractional design is the one that has the highest possible resolution. For example consider the 

defining relation of the 2
5-2

 design in Table ‎4-1. Its shortest two words consist of three letters 

i.e. it is of resolution III. In such designs the main effects are not aliased with each other but 

they are aliased with two-factor interactions. By the same token designs of resolution IV do 

not alias main effects with each other or with any two-factor interaction but they do alias two-

factor interactions with each other. Clearly, a lower resolution design involves words with 

shorter length reflecting the presence of aliasing among lower order effects. As these are more 

important than the higher order effects, it is best to select a design with maximum resolution. 

4.3.2 Minimum Aberration 

Fries and Hunter (1980) observed that fractional designs which have maximum resolution 

are not equally good and suggested an alternative criterion which they called minimum 
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aberration. Let Ai(d) denote the number of words of length i in the defining relation for the 

design d. The vector 

 W(d) = ( A1(d), A2(d), A3(d), A4(d), …..) (4.1)  

is called the world length pattern (Wu and Zhang, 1993). The resolution of a design d is the 

smallest i such that Ai(d) ≥ 1. For any two 2
k-p

 designs d1 and d2, let i be the smallest integer 

such that Ai(d1) ≠ Ai(d2). Then design d1 is said to have less aberration than d2 if Ai(d1) 

<Ai(d2). If there is no design with less aberration than d1 then it has the minimum aberration. 

Consider the 2
5-2

 design in Table ‎4-1. As its defining relation has no word of length 1 or 2 and 

as there are 2 words of length 3 and 1 of length 4, the word length pattern of this design is (0, 

0, 2, 1). Since the first non-zero entry of the vector is associated with the number of words of 

length 3, the design is of resolution III. The rationale behind the minimum aberration criterion 

is that by sequentially minimising the number of words of shortest length, the number of 

aliased low order effects which are regarded more important than the high order ones is 

minimised. For illustration, consider the following two possible 2
7-2

 designs (d1 and d2) 

obtained by two different sets of generators. For d1 let the generators be F=ABD and G=ACE  

and for d2 let them be F=ABCD and G=ABCE.  Consequently the defining relation of design 

d1  is 

I = ABDF = ACEG = BCDEFG 

and that of d2 is 

I = DEFG = ABCDF = ABCEG 

The word length patterns for designs d1 and d2 are (0, 0, 0, 2, 0, 1) and (0, 0, 0, 1, 2) 

respectively.  Clearly both of the designs are of resolution IV; however since A4(d2) <A4(d1), 
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d2 is considered to be better than d1 because it has lower aberration i.e. d1 has a fewer number 

of aliased low order effects than d2.  

 Details on the methods of obtaining minimum aberration designs can be found in Franklin 

(1984), Chen (1992) and Chen and Wu (1991). A useful catalogue of minimum aberration 

designs is published in Chen et al (1993). 

4.3.3 Minimum Generalised Aberration 

For two-level non-regular OAs, Tang and Deng (1999) proposed an extension of the 

minimum aberration criterion. For an experimental design d with n runs and m columns, let s 

={c1,c2…ck} be a subset of k columns of d, and define   

 
Jk (s) =  iki2

n

1i

i1 .......ccc


 
(4.2)  

where cij is the i
th

 component of column cj and Jk (s) is the absolute value of the sum of entry 

wise products for k of the m columns (Deng and Tang, 1999). Given Jk (s) define 

 Bk(d) = n
-2 2

ks

k ](s)[J


 (4.3)  

For two designs d1 and d2 let i be the smallest integer such that Bi(d1) ≠ Bi(d2). if Bi(d1) 

<Bi(d2) then d1 has lower generalised aberration (lower G2 aberration) than d2. If no other 

design has lower G2 aberration than d1 then it has the minimum G2 aberration (Tang and 

Deng, 1999).  

Xu and Wu (2001) extended the above criterion to multilevel designs and proposed a 

generalised minimum aberration. For a factorial design of size N, the full ANOVA model for 

an experiment involving m factors is: 

 Y = α0 X0+ α1 X1 + .....+ αmXm+ e (4.4)  
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where Y is the response vector, α0 the general mean, αk is the vector of all k-factor effects, X0 

is the vector of 1’s and Xk = [xij
(k)

] is the matrix of contrast coefficients for αk. Let 

 Ak(d) = 
 

nk

1s

2
N

1i

(k)
ij

2- xN  (4.5)  

 where nk is the number of all k-factor effects. For the vector of generalised word length 

pattern W(d) =( A1(d), A2(d), ….. Am(d)) the generalised minimum aberration can be obtained 

by sequentially minimising Ak(d)  for k = 1,2, 3 .....m.  

For regular two-level designs both G2 aberration and the generalised aberration reduce to 

minimum aberration (Cheng and Tang, 2005). Thus their rationale is the same as that of the 

minimum aberration criteria. Details of the construction of generalised aberration designs can 

be found in Fang et al, (2003).    

4.4 A Method for Generating the Aliasing Pattern 

Before explaining the proposed method for obtaining aliasing patterns, it is necessary to 

recall some algebraic concepts. A vector is a set of n numbers arranged in a definite order 

(Pease, 1965). When the average of its elements is subtracted from their individual values, it 

is referred to as a mean-centred vector, the sum of its elements becoming zero (Gentle, 2003). 

The length of a vector (or its magnitude) is the square root of the sum of its squared elements. 

When each of the elements of a vector is divided by its length it is said to be normalised.  

 Two vectors are said to be orthogonal if they are at right angles (Williams, 2009) and 

aliasing is a form of departure from orthogonality. Therefore, viewing the columns of any OA 

as vectors, the degree of aliasing or lack of orthogonality between any two columns  may be 

measured by the extent to which the angle between them differs from 90
0
.  Rather than 

finding the angles between the columns, it is easier to obtain their cosines. Generally, the 

inner product of any two mean-centred normalised vectors yields the cosine of the angle 

http://www.google.co.uk/search?hl=en&sa=N&rlz=1T4RNTN_enGB375GB375&tbs=bks:1&q=inauthor:%22Marshall+Carleton+Pease%22&ei=qfxtTN-3A93Q4wat3P3eCA&ved=0CC0Q9Ag
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between them (Massart and Vandeginste, 1997). If the angle between two columns is 90
0
 (or -

90
0
) then the value of its cosine is zero i.e. they are orthogonal. However, as the cosine value 

departs from zero, the degree of aliasing increases. For any non-zero cosine value that lies 

between -1 and +1 (exclusively), the two columns are said to be partially aliased. However, 

for cosine values of 1 or -1 the two columns are said to be perfectly aliased in the same or 

opposite directions respectively. 

Using these concepts, the steps of implementing the proposed method for obtaining the 

aliasing pattern are as follows: 

1. For a given design array, construct the corresponding model array M using an 

appropriate coding system. This should incorporate all the effects for which the aliases 

are to be determined. 

2. Let xij be the i
th

 entry of column j, x j be the average of the entries of column j and 

denote the number of rows in the model array by n. For each column of M, use  

 
 



n

i

2
jij

jij

)x(x

xx
 

(4.6)  

to generate the corresponding column in the mean-centred normalised model array Xn 

3. Generate the aliasing array Xn
T
Xn  

The entries of this resultant array are the cosines of the angles between all the possible 

pairs of the model array’s columns. Therefore, the degree of aliasing between any two effects 

can be measured using their corresponding entry in the Xn
T
Xn array. Three examples will now 

be used to show the applications of this method. The first deals with the regular two-level L8 

2
5-2 design presented in section 4.2 whereas the second concerns a non-regular two-level L12 
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design used to study five factors, and the third example is based on a non-regular L18 design 

used to study three factors at three levels.  

4.4.1 Regular Two-Level L8 

As highlighted in Section 4.2 the two generators of the L8 (2
5-2

)
 
design are D=AB and E= 

AC (see Table ‎4-2). The first step in implementing the suggested model is to construct the 

model array M, shown in Table ‎4-3. Assuming that interactions of order three or higher are 

negligible, this should comprise the main effects and all of their two factor interaction 

columns. Due to the adoption of the (-1,+1) coding system, the interaction columns can be 

rendered by multiplying the individuals elements of the columns that accommodate the  

interacting factors. If the (1,2) Taguchi coding system is used then the interaction columns 

can be formed using a special rule whereby an interaction value of "1" is used if the rows of 

the two interacting factors contain either "1" and "1" or "2" and "2",whereas an interaction 

value of "2" is used when these rows contain "1" and "2" or "2" and "1”. The second step in 

the proposed method is to mean-centre and normalise each of the M columns as shown in 

Table ‎4-4. Finally the aliasing array Xn
T
Xn is constructed and is shown in Table ‎4-5. The 

entries of the aliasing array are referred to as the aliasing coefficients as they quantify the 

degree of aliasing between the studied effects. An aliasing coefficient of value 1 or -1 reflects 

a perfect aliasing whereas any other non-zero value indicates a partial aliasing. Zero aliasing 

coefficients imply that the corresponding effects are orthogonal. As the L8 is a regular OA, the 

entries of its Xn
T
Xn can assume one of three values; namely -1, 0 and 1. This is because in 

regular designs the effects are either fully aliased (in the same or opposite direction) or 

orthogonal. The entries on the main diagonal of the Xn
T
Xn give the aliasing coefficient of one  
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Table ‎4-2: 2
5-2 

L8 Design Array 

 

 

 

 

 

Table ‎4-3: Model Array for the L8 Design 

A B C D E AB AC AD AE BC BD BE CD CE DE 

-1 -1 -1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 1 

1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 

-1 1 -1 -1 1 -1 1 1 -1 -1 -1 1 1 -1 -1 

1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 -1 1 -1 

-1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 1 -1 -1 

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 

-1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

Table ‎4-4: Mean-Centred Normalised Model Array for the L8 Design 

A B C D E AB AC AD AE BC BD BE CD CE DE 

-0.35 -0.35 -0.35 0.35 0.35 0.35 0.35 -0.35 -0.35 0.35 -0.35 -0.35 -0.35 -0.35 0.35 

0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 0.35 0.35 0.35 0.35 0.35 0.35 

-0.35 0.35 -0.35 -0.35 0.35 -0.35 0.35 0.35 -0.35 -0.35 -0.35 0.35 0.35 -0.35 -0.35 

0.35 0.35 -0.35 0.35 -0.35 0.35 -0.35 0.35 -0.35 -0.35 0.35 -0.35 -0.35 0.35 -0.35 

-0.35 -0.35 0.35 0.35 -0.35 0.35 -0.35 -0.35 0.35 -0.35 -0.35 0.35 0.35 -0.35 -0.35 

0.35 -0.35 0.35 -0.35 0.35 -0.35 0.35 -0.35 0.35 -0.35 0.35 -0.35 -0.35 0.35 -0.35 

-0.35 0.35 0.35 -0.35 -0.35 -0.35 -0.35 0.35 0.35 0.35 -0.35 -0.35 -0.35 -0.35 0.35 

0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

 

 

 

No. A B C D =AB E = AC 

1 -1 -1 -1 1 1 

2 1 -1 -1 -1 -1 

3 -1 1 -1 -1 1 

4 1 1 -1 1 -1 

5 -1 -1 1 1 -1 

6 1 -1 1 -1 1 

7 -1 1 1 -1 -1 

8 1 1 1 1 1 
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Table ‎4-5: Aliasing Array for the 2
5-2 

L8 Design 

 
A B C D E AB AC AD AE BC BD BE CD CE DE 

A 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 

B 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

C 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 

D 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

AB 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 

AC 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

AD 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

AE 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 

BC 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

BD 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 

BE 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

CD 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

CE 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 

DE 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

 

effect with itself which is always 1 and the entries off the main diagonal are the pair-wise 

aliasing coefficients between all the considered effects. To obtain the aliases of, say, factor A 

all the non-zero entries of its row in the Xn
T
Xn array should be examined. Clearly both BD 

and CE are fully aliased with A. This is in line with the results of using the conventional 

method of obtaining the aliasing pattern displayed in Table ‎4-1. As the three-factor and higher 

order interactions were deemed negligible, they were not incorporated in the model array of 

the L8 design. Consequently, their impact on aliasing was not manifested in the Xn
T
Xn . In the 

cases where these effects are thought to exert considerable effects on the response variable, 

they should be included in the model array so that their impact on aliasing can be examined. 

4.4.2 Non-regular Two-Level L12 

One major drawback of the conventional method of generating aliasing patterns relates to 

the difficulty associated with its extension to deal with aliasing in non-regular designs such as 

the L12. This problem can be alleviated by adopting the proposed method of which the 
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primary advantage lies in the capability of dealing with regular and non-regular, two-level and 

three-level designs in a unified manner. To illustrate this consider the L12 design array shown 

in Table ‎4-6. The first five columns are used to accommodate the five factors under study. 

The first step of the proposed method is to construct the model array. Assuming that the         

.. 

Table ‎4-6: L12 Design Array 

 
A B C D E 

      

 

No. 1 2 3 4 5 6 7 8 9 10 11 Response 

1 1 1 1 1 1 1 1 1 1 1 1 23.6 

2 1 1 -1 1 -1 1 -1 -1 -1 1 -1 10.4 

3 1 1 -1 -1 1 -1 1 -1 -1 -1 1 10.4 

4 -1 1 1 -1 -1 1 1 1 -1 -1 -1 3.6 

5 1 -1 -1 1 -1 -1 1 1 1 -1 -1 -5.6 

6 -1 1 -1 -1 1 -1 -1 1 1 1 -1 -9.6 

7 -1 -1 -1 -1 -1 1 1 -1 1 1 1 2.4 

8 1 -1 1 -1 -1 -1 -1 1 -1 1 1 -8.4 

9 -1 1 1 1 -1 -1 -1 -1 1 -1 1 3.6 

10 -1 -1 1 1 1 -1 1 -1 -1 1 -1 -0.4 

11 -1 -1 -1 1 1 1 -1 1 -1 -1 1 2.4 

12 1 -1 1 -1 1 1 -1 -1 1 -1 -1 -8.4 

main effects and two-factor interactions are the only effects of interest, the design array 

selected columns can be used to generate all the possible two-factor interaction columns so 

that the model array M is constructed - see Table ‎4-7. The columns of these should then be 

mean-centred and normalised to yield Xn (Table ‎4-8). The aliasing pattern associated with the 

examined effects can be generated by constructing the Xn
T
Xn array which is shown in Table 

‎4-9. Clearly each main effect is partially aliased, with an aliasing coefficient of ±0.333, with 

every two-factor interaction not involving itself. Furthermore, certain two-factor interactions 

are partially aliased with each other to the same degree. The proposed model, therefore, 

provides a straightforward method for obtaining the aliasing pattern in non-regular two-level 

designs.   
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Table ‎4-7: Model Array for the L12 Design Array 

A B C D E AB AC AD AE BC BD BE CD CE DE 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 -1 1 -1 

1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 

-1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 1 

1 -1 -1 1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 

-1 1 -1 -1 1 -1 1 1 -1 -1 -1 1 1 -1 -1 

-1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 

1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 -1 -1 1 

-1 1 1 1 -1 -1 -1 -1 1 1 1 -1 1 -1 -1 

-1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 

-1 -1 -1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 1 

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 

 

Table ‎4-8: Mean-Centred Normalised Array for the L12 Design Array 

A B C D E AB AC AD AE BC BD BE CD CE DE 

0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 

0.29 0.29 -0.29 0.29 -0.29 0.29 -0.29 0.29 -0.29 -0.29 0.29 -0.29 -0.29 0.29 -0.29 

0.29 0.29 -0.29 -0.29 0.29 0.29 -0.29 -0.29 0.29 -0.29 -0.29 0.29 0.29 -0.29 -0.29 

-0.29 0.29 0.29 -0.29 -0.29 -0.29 -0.29 0.29 0.29 0.29 -0.29 -0.29 -0.29 -0.29 0.29 

0.29 -0.29 -0.29 0.29 -0.29 -0.29 -0.29 0.29 -0.29 0.29 -0.29 0.29 -0.29 0.29 -0.29 

-0.29 0.29 -0.29 -0.29 0.29 -0.29 0.29 0.29 -0.29 -0.29 -0.29 0.29 0.29 -0.29 -0.29 

-0.29 -0.29 -0.29 -0.29 -0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 

0.29 -0.29 0.29 -0.29 -0.29 -0.29 0.29 -0.29 -0.29 -0.29 0.29 0.29 -0.29 -0.29 0.29 

-0.29 0.29 0.29 0.29 -0.29 -0.29 -0.29 -0.29 0.29 0.29 0.29 -0.29 0.29 -0.29 -0.29 

-0.29 -0.29 0.29 0.29 0.29 0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 0.29 0.29 0.29 

-0.29 -0.29 -0.29 0.29 0.29 0.29 0.29 -0.29 -0.29 0.29 -0.29 -0.29 -0.29 -0.29 0.29 

0.29 -0.29 0.29 -0.29 0.29 -0.29 0.29 -0.29 0.29 -0.29 0.29 -0.29 -0.29 0.29 -0.29 

 

4.4.3 Three-level L18 designs  

To study three factors at three levels using the L18, three columns need to be selected. As they 

are associated with the generalised minimum aberration (Xu, 2001), columns 3, 4 and 5 were 

selected as shown in Table ‎4-10.  To implement the proposed method with this design, the     

..  
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Table ‎4-9: Aliasing Array for the L12 Design 

 
A B C D E AB AC AD AE BC BD BE CD CE DE 

A 1 0 0 0 0 0 0 0 0 -0.33 0.33 0.33 -0.33 0.33 -0.33 

B 0 1 0 0 0 0 -0.33 0.33 0.33 0 0 0 0.33 -0.33 -0.33 

C 0 0 1 0 0 -0.33 0 -0.33 0.33 0 0.33 -0.33 0 0 0.33 

D 0 0 0 1 0 0.33 -0.33 0 -0.33 0.33 0 -0.33 0 0.33 0 

E 0 0 0 0 1 0.33 0.33 -0.33 0 -0.33 -0.33 0 0.33 0 0 

AB 0 0 -0.33 0.33 0.33 1 0 0 0 0 0 0 0.33 0.33 0.33 

AC 0 -0.33 0 -0.33 0.33 0 1 0 0 0 0.33 0.33 0 0 0.33 

AD 0 0.33 -0.33 0 -0.33 0 0 1 0 0.33 0 0.33 0 0.33 0 

AE 0 0.33 0.33 -0.33 0 0 0 0 1 0.33 0.33 0 0.33 0 0 

BC -0.33 0 0 0.33 -0.33 0 0 0.33 0.33 1 0 0 0 0 0.33 

BD 0.33 0 0.33 0 -0.33 0 0.33 0 0.33 0 1 0 0 0.33 0 

BE 0.33 0 -0.33 -0.33 0 0 0.33 0.33 0 0 0 1 0.33 0 0 

CD -0.33 0.33 0 0 0.33 0.33 0 0 0.33 0 0 0.33 1 0 0 

CE 0.33 -0.33 0 0.33 0 0.33 0 0.33 0 0 0.33 0 0 1 0 

DE -0.33 -0.33 0.33 0 0 0.33 0.33 0 0 0.33 0 0 0 0 1 

Table ‎4-10: L18 Design Array 

   
A B C 

   

 
1 2 3 4 5 6 7 8 

1 1 1 1 1 1 1 1 1 

2 1 1 2 2 2 2 2 2 

3 1 1 3 3 3 3 3 3 

4 1 2 1 1 2 2 3 3 

5 1 2 2 2 3 3 1 1 

6 1 2 3 3 1 1 2 2 

7 1 3 1 2 1 3 2 3 

8 1 3 2 3 2 1 3 1 

9 1 3 3 1 3 2 1 2 

10 2 1 1 3 3 2 2 1 

11 2 1 2 1 1 3 3 2 

12 2 1 3 2 2 1 1 3 

13 2 2 1 2 3 1 3 2 

14 2 2 2 3 1 2 1 3 

15 2 2 3 1 2 3 2 1 

16 2 3 1 3 2 3 1 2 

17 2 3 2 1 3 1 2 3 

18 2 3 3 2 1 2 3 1 
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first step is to construct the model array M. In so doing there are various methods for coding 

the design array as discussed in Appendix 2. As some of them are orthogonal and others are 

not, each coding system leads to a different aliasing pattern. Due to its orthogonality, the L-Q 

system is adopted in this study. Consequently it was used to generate the M array for the L18 

design as displayed in Table ‎4-11. Again the interactions of order three and higher were 

ignored and the two-factor interaction columns were rendered from the inner product of the 

columns of the factors that comprise them. The second step is to mean-centre and normalise 

the model array to generate the Xn array seen in Table ‎4-12. To obtain the aliasing pattern, the 

array Xn
T
Xn should be constructed - see Table ‎4-13. Clearly, there is partial aliasing between 

the main effects and certain two-factor interactions and among the two-factor interactions. 

4.5 Obtaining the Aliasing Measures using the Proposed Method  

The discussion of the three main aliasing measures revealed that they rely to a great extent on 

the word length pattern. In fact, once this is obtained for, say, each of two designs, the best in 

terms of aliasing can be identified by sequentially minimising the number of words of length 

k (Ak(d))  for k = 1,2, 3 .....m, where m is the length of the longest word. A key advantage of 

the method discussed in the previous section is the ease with which the word length pattern of 

any design can be obtained from the aliasing array Xn
T
Xn. To illustrate this, assume that three 

two-level factors with negligible interactions of order three or above were studied and 

consider the four sub-matrices of the Xn
T
Xn array shown in Table ‎4-14. The sub-matrix A is a 

squared matrix in which the number of rows and columns is equal to the number of main 

effects under study. Its “off diagonal” entries are measures of the aliasing between main 

effects. If the two main effects, A and B, are perfectly aliased then the corresponding 

generator would be A=B. Multiplying both sides by A the resultant word would be I = AB     

..  
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Table ‎4-11: Model Array for the L18 Design Array 

 

 

 

 

 

 

 

 

 

 

 

 

Al Aq Bl Bq Cl Cq AlBl AlBq AlCl AlCq AqBl AqBq AqCl AqCq BlCl BlCq BqCl BqCq 

-1 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 

0 -2 0 -2 0 -2 0 0 0 0 0 4 0 4 0 0 0 4 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

-1 1 -1 1 0 -2 1 -1 0 2 -1 1 0 -2 0 2 0 -2 

0 -2 0 -2 1 1 0 0 0 0 0 4 -2 -2 0 0 -2 -2 

1 1 1 1 -1 1 1 1 -1 1 1 1 -1 1 -1 1 -1 1 

-1 1 0 -2 -1 1 0 2 1 -1 0 -2 -1 1 0 0 2 -2 

0 -2 1 1 0 -2 0 0 0 0 -2 -2 0 4 0 -2 0 -2 

1 1 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 -1 1 1 

-1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 

0 -2 -1 1 -1 1 0 0 0 0 2 -2 2 -2 1 -1 -1 1 

1 1 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 0 0 4 

-1 1 0 -2 1 1 0 2 -1 -1 0 -2 1 1 0 0 -2 -2 

0 -2 1 1 -1 1 0 0 0 0 -2 -2 2 -2 -1 1 -1 1 

1 1 -1 1 0 -2 -1 1 0 -2 -1 1 0 -2 0 2 0 -2 

-1 1 1 1 0 -2 -1 -1 0 2 1 1 0 -2 0 -2 0 -2 

0 -2 -1 1 1 1 0 0 0 0 2 -2 -2 -2 -1 -1 1 1 

1 1 0 -2 -1 1 0 -2 -1 1 0 -2 -1 1 0 0 2 -2 
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Table ‎4-12: Mean-Centred Normalised Array for the L18 Design 

Al Aq Bl Bq Cl Cq AlBl AlBq AlCl AlCq AqBl AqBq AqCl AqCq BlCl BlCq BqCl BqCq 

-0.29 0.17 -0.29 0.17 -0.29 0.17 0.35 -0.20 0.35 -0.20 -0.20 0.12 -0.20 0.12 0.35 -0.20 -0.20 0.12 

0.00 -0.33 0.00 -0.33 0.00 -0.33 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.47 0.00 0.00 0.00 0.47 

0.29 0.17 0.29 0.17 0.29 0.17 0.35 0.20 0.35 0.20 0.20 0.12 0.20 0.12 0.35 0.20 0.20 0.12 

-0.29 0.17 -0.29 0.17 0.00 -0.33 0.35 -0.20 0.00 0.41 -0.20 0.12 0.00 -0.24 0.00 0.41 0.00 -0.24 

0.00 -0.33 0.00 -0.33 0.29 0.17 0.00 0.00 0.00 0.00 0.00 0.47 -0.41 -0.24 0.00 0.00 -0.41 -0.24 

0.29 0.17 0.29 0.17 -0.29 0.17 0.35 0.20 -0.35 0.20 0.20 0.12 -0.20 0.12 -0.35 0.20 -0.20 0.12 

-0.29 0.17 0.00 -0.33 -0.29 0.17 0.00 0.41 0.35 -0.20 0.00 -0.24 -0.20 0.12 0.00 0.00 0.41 -0.24 

0.00 -0.33 0.29 0.17 0.00 -0.33 0.00 0.00 0.00 0.00 -0.41 -0.24 0.00 0.47 0.00 -0.41 0.00 -0.24 

0.29 0.17 -0.29 0.17 0.29 0.17 -0.35 0.20 0.35 0.20 -0.20 0.12 0.20 0.12 -0.35 -0.20 0.20 0.12 

-0.29 0.17 0.29 0.17 0.29 0.17 -0.35 -0.20 -0.35 -0.20 0.20 0.12 0.20 0.12 0.35 0.20 0.20 0.12 

0.00 -0.33 -0.29 0.17 -0.29 0.17 0.00 0.00 0.00 0.00 0.41 -0.24 0.41 -0.24 0.35 -0.20 -0.20 0.12 

0.29 0.17 0.00 -0.33 0.00 -0.33 0.00 -0.41 0.00 -0.41 0.00 -0.24 0.00 -0.24 0.00 0.00 0.00 0.47 

-0.29 0.17 0.00 -0.33 0.29 0.17 0.00 0.41 -0.35 -0.20 0.00 -0.24 0.20 0.12 0.00 0.00 -0.41 -0.24 

0.00 -0.33 0.29 0.17 -0.29 0.17 0.00 0.00 0.00 0.00 -0.41 -0.24 0.41 -0.24 -0.35 0.20 -0.20 0.12 

0.29 0.17 -0.29 0.17 0.00 -0.33 -0.35 0.20 0.00 -0.41 -0.20 0.12 0.00 -0.24 0.00 0.41 0.00 -0.24 

-0.29 0.17 0.29 0.17 0.00 -0.33 -0.35 -0.20 0.00 0.41 0.20 0.12 0.00 -0.24 0.00 -0.41 0.00 -0.24 

0.00 -0.33 -0.29 0.17 0.29 0.17 0.00 0.00 0.00 0.00 0.41 -0.24 -0.41 -0.24 -0.35 -0.20 0.20 0.12 

0.29 0.17 0.00 -0.33 -0.29 0.17 0.00 -0.41 -0.35 0.20 0.00 -0.24 -0.20 0.12 0.00 0.00 0.41 -0.24 
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Table ‎4-13: Aliasing Array for the L18 Design 

 

Al Aq Bl Bq Cl Cq AlBl AlBq AlCl AlCq AqBl AqBq AqCl AqCq BlCl BlCq BqCl BqCq 

Al 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.31 0.18 0.18 0.31 

Aq 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.31 0.31 -0.18 

Bl 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 -0.31 0.18 0.00 0.00 0.18 0.31 0.00 0.00 0.00 0.00 

Bq 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.18 0.31 0.00 0.00 0.31 -0.18 0.00 0.00 0.00 0.00 

Cl 0.00 0.00 0.00 0.00 1.00 0.00 -0.31 0.18 0.00 0.00 0.18 0.31 0.00 0.00 0.00 0.00 0.00 0.00 

Cq 0.00 0.00 0.00 0.00 0.00 1.00 0.18 0.31 0.00 0.00 0.31 -0.18 0.00 0.00 0.00 0.00 0.00 0.00 

AlBl 0.00 0.00 0.00 0.00 -0.31 0.18 1.00 0.00 0.13 0.22 0.00 0.00 -0.22 0.13 0.13 0.22 -0.22 0.13 

AlBq 0.00 0.00 0.00 0.00 0.18 0.31 0.00 1.00 0.22 -0.13 0.00 0.00 0.13 0.22 -0.22 0.13 -0.13 -0.22 

AlCl 0.00 0.00 -0.31 0.18 0.00 0.00 0.13 0.22 1.00 0.00 -0.22 0.13 0.00 0.00 0.13 -0.22 0.22 0.13 

AlCq 0.00 0.00 0.18 0.31 0.00 0.00 0.22 -0.13 0.00 1.00 0.13 0.22 0.00 0.00 -0.22 -0.13 0.13 -0.22 

AqBl 0.00 0.00 0.00 0.00 0.18 0.31 0.00 0.00 -0.22 0.13 1.00 0.00 -0.13 -0.22 0.22 -0.13 0.13 0.22 

AqBq 0.00 0.00 0.00 0.00 0.31 -0.18 0.00 0.00 0.13 0.22 0.00 1.00 -0.22 0.13 0.13 0.22 -0.22 0.13 

AqCl 0.00 0.00 0.18 0.31 0.00 0.00 -0.22 0.13 0.00 0.00 -0.13 -0.22 1.00 0.00 0.22 0.13 -0.13 0.22 

AqCq 0.00 0.00 0.31 -0.18 0.00 0.00 0.13 0.22 0.00 0.00 -0.22 0.13 0.00 1.00 0.13 -0.22 0.22 0.13 

BlCl -0.31 0.18 0.00 0.00 0.00 0.00 0.13 -0.22 0.13 -0.22 0.22 0.13 0.22 0.13 1.00 0.00 0.00 0.00 

BlCq 0.18 0.31 0.00 0.00 0.00 0.00 0.22 0.13 -0.22 -0.13 -0.13 0.22 0.13 -0.22 0.00 1.00 0.00 0.00 

BqCl 0.18 0.31 0.00 0.00 0.00 0.00 -0.22 -0.13 0.22 0.13 0.13 -0.22 -0.13 0.22 0.00 0.00 1.00 0.00 

BqCq 0.31 -0.18 0.00 0.00 0.00 0.00 0.13 -0.22 0.13 -0.22 0.22 0.13 0.22 0.13 0.00 0.00 0.00 1.00 
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Table ‎4-14 Sub-Matrices of the Xn
T
Xn Aliasing Array 

 
Main Effects 

Two-factor 

interaction 

A B C AB AC BC 

Main 

Effects 

A 

Sub-matrix A Sub-matrix B B 

C 

Two-factor 

Interactions 

AB 

Sub-matrix C Sub-matrix D AC 

BC 

which is of length 2. As the sub-matrix A is symmetrical, each of its aliasing coefficients 

appears twice (above and below the diagonal elements). Each entry of say 1 (or -1) represents 

a word of length two. Thus the number of words of length 2 can be obtained by computing the 

sum of squares of the “off diagonal” entries of the sub-matrix A divided by 2. With regard to 

sub-matrix B, it is clear that the number of rows is equal to the number of studied main effects 

whereas the number of its columns is equal to that of the two-factor interactions. As its entries 

measure the aliasing between main effects and two-factor interactions, each entry of 1 or -1 

represents a word of length 3. However, in this case each of the sub-matrix entries appears 

three times. For example the entry corresponding to the main effect A and the two factor 

interaction BC appears in two other forms, one of which is represented by the coefficient of 

aliasing between the main effect B and the two-factor interaction AC and the other 

corresponds to the aliasing coefficient of the main effect C and the two-factor interaction AB. 

Therefore, the number of words of length 3 can be obtained by summing the squares  of the 

entries of the sub-matrix B divided by 3. Using a similar argument the number of words of 

length 4 can be obtained by calculating the sum of the “off diagonal” entries of the sub matrix 

D squared divided by 6. Hence, by examining the number of times each word appears in the 

appropriate sub-matrix, the number of words of any length can be obtained from the aliasing 

array Xn
T
Xn. This is equivalent to obtaining the word length pattern using the defining 



76 

 

relation or the generalised minimum aberration measures (equations 4.3 and 4.5). To illustrate 

this consider the aliasing array of the 2
5-2 

L8 shown in Table ‎4-5. Clearly all the “off diagonal” 

entries of the sub-matrix A are zeros indicating the absence of words of length 2. For the sub-

matrix B, the sum of its squared entries is 6. So the number of words of length 3 is 6/3=2. For 

words of length 4, the sum of the “off diagonal” entries of the sub-matrix D squared is 6. 

Therefore, the number of words of length 4 is 6/6=1. Consequently, the word length pattern of 

this 2
5-2 

design is (0, 0, 2, 1). This can be verified from the defining relation of this design 

(Table ‎4-1) which comprises two words of length 3 and one of length 4. 

Applying the same method described above to the aliasing arrays of the L12 and L18 the 

resultant word lengths are (0, 0, 1.11, 0.56) and (0, 0, 0.5) respectively. The latter can be 

verified by examining Xu’s (2001) study in which the same word lengths pattern was arrived 

at when investigating the L18 model array shown in Table ‎4-11. An aspect of interest here is 

that despite the presence of non-zero entries in the sub-matrix D of the L18 aliasing array 

(Table ‎4-13), no words of length 4 were observed in its word lengths pattern. This is due to 

the fact that all the latter entries correspond to two-factor interactions that share at least one 

letter. For example the interactions AlBq and BlCq are partially aliased with a coefficient of 

0.13. Nevertheless, their ability to form a word of length 4 is impaired by the presence of B in 

each of them. 

The upshot of the preceding discussion is that the proposed method can be used to  

 construct the aliasing array of any fractional design,  

 obtain its word length pattern as a means of measuring the degree of its associated 

aliasing,  

 obtain the best subset of fractional designs’ columns that render a word length 

pattern with minimum aberration. 
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4.6 Impact of Aliasing on the Statistical Analyses of Experimental Data 

The presence of aliasing between the studied effects can seriously affect the quality of the 

conclusions drawn from an experiment, since it impacts both estimation and hypothesis 

testing. To explain this, the t-statistic, presented in equation 13 of Appendix 2, will be used to 

demonstrate how aliasing can affect the regression coefficient estimate and its standard error. 

Denoting an aliasing coefficient by ω, the aliasing between factors A and B may be 

mathematically represented by the following equation 

 XA= ωXB + c (4.7)  

where XA and XB are the factor columns  and c is a stochastic error term. If A is perfectly 

aliased with B then ω =1 and c=0 indicating that column A is fully determined by column B. 

In the case of partial aliasing ω can assume any non-zero value between -1 and +1 exclusively 

and c is a non-zero value reflecting the overall impact of all the other partially aliased effects 

that completely determine XA. Assume that the true relation between the response variable 

and factors A and B can be approximated by the following model: 

 
B2A1oi Xβ̂Xβ̂β̂Y   (4.8)  

When A and B are perfectly aliased, substituting the value of XA from equation 4.7 in 

equation 4.8 yields 

 
B21oi )Xβ̂β̂(ωβ̂Y   (4.9)  

Clearly the effect of factor B is indistinguishable from A and may be either overestimated 

or underestimated, depending on the signs of β 1, β 2 and ω. Generally, the impact of aliasing 

on the effect estimate β 1 can be quantified using the following formula: 
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kk2211 β......ωβωβ)β̂E(   (4.10)  

This arises not only when A and B are perfectly aliased but also when the non-zero 

partially aliased effects are not included in the fitted model. In fact if all the non-zero effects 

that are partially aliased with A were included then the estimate of all the regression 

coefficients would be unbiased. Consider the L12 simulated experimental results displayed in 

Table ‎4-6 for which the true model is 

 Yi = 2+ 3XA+5XB+2.6XC+7XAB+4XBC (4.11)  

 

The aliasing array of the L12 (Table ‎4-9) shows that factors A and C were partially aliased 

with interactions BC and AB respectively with an aliasing coefficient of -0.333. As all of the 

aliased effects are included in equation 4.11, they are all correctly estimated.  

A common, but misconceived view of the L12 is that it cannot be used to examine factor 

interactions. Suppose it was decided to only include the main effects in the fitted model, then 

it would be 

 Yi = 2+ 1.67XA+5XB+0.27XC (4.12)  

 

Evidently, the effect estimates of both A and C were biased by -1.33 (i.e -0.33*4) and -

2.33 (i.e. -0.33*7) respectively i.e. the result of multiplying the aliasing coefficent by the size 

of the excluded non-zero effect. Because none of its aliases was included in the true model, 

the estimate of the factor B effect was not impacted. Thus the estimated effiects can be 

considerably distorted by aliasing.    
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The effect of aliasing on a regression coefficient’s standard error (MSE*Cjj)
1/2

 can be 

demonstrated by assessing how it affects its design related element i.e. Cjj. According to 

Brownlee (1965): 

 
 


n

i

2
j

2
jij

jj

)R(1*)x(x

1
C  

(4.13)  

where xij is the i
th

 entry of column j, x j is the average of  the x values in column j and Rj
2
 is the 

coefficient of determination that results from regressing the Xj column on the remaining ones 

included in the model and measures the extent to which the effect Xj is aliased with the other 

effects in the model and can take any value between 0 and 1 inclusive. In orthogonal arrays, 

its value is zero; and the value of Cjj becomes 1/Σ(xij- jx ). The larger the value of Rj
2
 the 

larger the value of Cjj and consequently the larger the standard error. It was for this reason 

that Marquardt (1970) called the quantity 1/(1- Rj
2
) the Variance Inflation Factor (VIF). 

Increasing the standard error, decreases the value of the t-statistic and can lead to pronouncing 

significant effects as inert. It must be borne in mind that by influencing the regression 

coefficients and their corresponding Cjj, aliasing affects the sum of squares of each regression 

coefficient. This is because the latter is the result of dividing the squared regression 

coefficient by its Cjj as shown in equation 16 of Appendix 2. 

To shed further light on how aliasing affects Cjj, again consider the L12 simulated 

experimental results (Table ‎4-6). Under the true model (equation 4.11) the only effect that is 

orthogonal with the other terms in the model is B. Therefore, its Cjj = 1/12 = 0.0833. As the 

remaining effects are partially aliased with each other, their individual Rj
2
 is 0.111. 

Consequently the VIF of each of these is 1.125. Therefore, the partial aliasing of each effect 

inflated the orthogonal Cjj value by 1.125 resulting in a Cjj value of 0.094. Interestingly, since 
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the main effect model (equation 4.12) comprises orthogonal effects, their individual Cjj is 

0.083. Particularly noticeable here is the inverse effect of aliasing on the regression 

coefficients and the Cjj values. When the true model is fitted, the estimated regression 

coefficients are unbiased but their Cjj are inflated whereas under the reduced model the 

regression coefficients are distorted but their Cjj are improved. In the case of over fitting the 

true model by including non-significant effects the regression coefficients will not be 

affected; however regarding the Cjj there are two outcomes. The first occurs if the added 

terms are orthogonal to those included in the model and thus exert no effect on their Cjj 

values. The second is when the added effects are partially aliased with some or all the terms 

of the true model. In this case, the appropriate Rj
2 

will increase as the number of added terms 

increases thereby inflating the standard error of the corresponding regression coefficients.  

Such situations may only arise in the case of partial aliasing as it is not possible to fit the true 

model if any of its terms are perfectly aliased.  

4.7 Summary 

The interdependence between some or all the studied factorial effects is called aliasing. 

When small fractional designs are employed, two situations are commonly encountered. The 

first arises when subject knowledge suggests that while certain effects are important the others 

are inert. Tools such as linear graphs and aliasing tables are apposite here. The second 

situation occurs when all the studied effects are regarded as equally important and the aim is 

to select a fractional design so that the overall aliasing is minimised. To attain this, criteria 

such as maximum resolution, minimum aberration and generalised minimum aberration are 

postulated in the conventional DOE literature. A simple unified method that can be 

implemented using an Excel spreadsheet has been presented for constructing the aliasing 

pattern of regular and non-regular OAs. A discussion has also been included to show how, 
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using the proposed method, the word length pattern can be obtained and used to select a 

design that satisfies any of the main aliasing measuring criteria. Furthermore, an explanation 

has been given about how aliasing can affect both the estimated factorial effects and their 

standard errors and in turn the t-statistics used to test each effect’s statistical significance.   
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CHAPTER 5: ASSESSING THE PERFORMANCE OF 

CERTAIN DOE STRATIGIES USING SIMULATION 

 

5.1 Introduction 

The results of the review presented in Chapter 3 revealed a predominant use of 

unreplicated fractional factorial designs. This can be ascribed to time and cost limitations 

since full factorial experiments are likely to entail a prohibitive number of runs as the number 

of studied factors increases and replication, if not expensive, can be time consuming or even 

infeasible. Unreplicated responses can also be encountered in replicated experiments, when 

summary statistics such as a signal-to-noise ratio or a sample variance is calculated for each 

trial. In such cases an estimate of the experimental error requires certain factorial effects to be 

pooled together. Although there are many methods that can used to appropriately identify 

these effects (see Appendix 2) the results of the conducted review showed that (i) unaided 

subjective pooling methods were extensively relied upon (ii) practitioners did not appear to 

appreciate the need for and the importance of using formal pooling methods and (iii) they did 

not appear to be very well acquainted with which method to use under certain circumstances. 

In general, the use of unreplicated fractional factorial designs stimulates the investigation of 

several interesting aspects including  

 their ability to identify the same important effects that would have been detected had a 

full factorial experiment been conducted,   

 the performance of pooling methods i.e. whether they perform equally well in terms of 

identifying the “right” effects to be pooled,  

 the extent to which the above two aspects are robust to such uncontrollable variables as 

the size and number of significant effects. 
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In the DOE literature, some of these aspects have been assessed in the context of two-level 

experiments. For example, Miller et al (1993) examined the first using data from a published 

full factorial experiment, while Hamada and Balakrishnan (1998) studied the performance of 

certain pooling methods using simulated data from an L16 OA. Only descriptive statistics were 

presented in both studies. The author could find no examples related to the third aspect. 

Moreover, to date no examples were found related to any of the aspects being investigated in 

the context of three-level experiments which have frequently been used in practice. Simulated 

multi-phased full factorial experiments were used in this research to study the three aspects 

simultaneously in the context of both two- and three-level trials using DOE.  

As illustrated in Chapter 2, DOE is a powerful technique for decision making. However, 

its very implementation involves making decisions regarding, say, the selection of a design 

array and a pooling method and hence it can be exploited in making such decisions. From this 

perspective, design arrays such as the L16 and the L8 can be viewed as levels of a controllable 

factor called the employed OAs. Similarly, methods such as the UC and Lenth can be 

regarded as levels of another controllable factor labelled pooling methods. The noise factors 

would be those over which the experimenter exerts no control such as the size and number of 

active effects. Besides enabling any possible interactions between these factors to be formally 

assessed, this approach allows the concept of robustness postulated by Taguchi and Wu 

(1985) to be utilised in identifying the settings of the controllable factors that make the 

detection of the “true” significant effects insensitive to the impact of the noise factors. The 

planning stage of the conducted experiments is firstly discussed, followed by a description of 

how they were performed. The Chapter culminates with a summary of the main findings.    
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5.2 Planning Stage 

The planning stage involved stating the objectives, selecting the performance measure, the 

factors and their levels and choosing the experimental design.  

The three main objectives of the simulation experiments were to: 

 Study how the selected fractional design, the pooling method,  and the number and size of 

the significant effects influenced the ability to detect the “true” active effects identified in 

the full factorial experiments.  

 Identify the appropriate combination of fractional design and pooling method that would 

lead to maximising the detection of the “true” active effects whilst reducing the 

sensitivity to the noise factors i.e. the number and size of significant effects.  

Given the objectives of the experiments, a continuous performance measure that would 

capture the quantities of interest was defined. This was the percentage of effects correctly 

detected as in the full factorial experiments for each combination of fractional design, pooling 

method, and number and size of active effects under study i.e. an estimate of the Power 

corresponding to each configuration of the studied factors.  

5.3 Selection of Factors and Their Levels  

The term “factor” is henceforth used to denote the controllable and the noise variables 

examined in the simulation experiments. Those associated with the levels of two of these, 

namely the number and sizes of active effects are referred to as “parameters”. The simulation 

trials were conducted in four main phases. Each involved a sub-phase in which only the 

controllable factors were varied according to a full factorial array whilst random settings of 

the noise factors were used. At each phase, large full factorial experiments were simulated 

with a certain number of studied parameters of which some of specific sizes were designed to 
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be active. The number and sizes of the specified active effects constituted the levels of two 

noise factors. Having generated the full factorial experiment, the appropriate runs for the 

examined fractional designs were extracted and analysed using the appropriate pooling 

methods (see Appendix 2). As already noted, the assessed fractional designs and pooling 

methods represent the levels of two controllable factors.  

5.3.1 Phase-1  

The scope of this phase focused on investigating the performance of two-level fractional 

designs and six pooling methods in cases where only main effects were significant. The 

number of studied parameters in the full factorial design was kept constant at a value specified 

utilising the results of the review discussed in Chapter 3. It was found that the number of 

studied factors was 4 or less in 60% of the cases and 6 or less in 85.5%. These results were 

found to be in line with that of Ilzarbe et al (2008) who reported that the number of studied 

factors was 5 or less in 71% of the general engineering DOE applications they reviewed. The 

number of studied factors in this phase was set at 7. The reason for not using 4 or 5 was that 

the size of their associated full factorial experiments (2
4
 =16  and 2

5
 = 32 runs) were not felt 

to be sufficiently large to demonstrate the impact of using fractional designs. In fact, the 

larger the difference between the full and the fractional factorial designs the clearer is the 

effect of using smaller designs. The two noise factors investigated in this phase were the 

number of active parameters out of the studied 7 and their sizes. In order to determine their 

levels, it was necessary to find an approximate estimate of the percentage of parameters that 

are likely to be declared significant in practice.  To this end, Box and Meyer (1986) found, 

using the results from 10 published experiments, that the percentage was 0.2. This was 

estimated by calculating the average of the results of dividing the number of significant 

effects by the total number of estimable effects in the used OA for each of the examined 
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experiments. One problem with this approach is that for the same number of studied and 

significant effects, different percentages may be observed depending on the size of the 

employed OA. As the scope of this phase precluded studying the interaction effects, it was felt 

that one way to deal with this problem was to estimate the percentage as the number of 

significant main effects over the number of studied parameters. This was calculated for each 

of the reviewed experiments and the results are shown in Figure ‎5-1. In 81% of the cases, the 

percentage of significant main effects was 75% or less and the percentage lying between 26% 

and 50% was the largest. On this basis, the selected numbers of significant effects were 3, 4 

and 5 representing 42.9%, 57% and 71% respectively thereby accounting for a reasonable 

segment of the practical situations. The specification of the active parameters out of the 

studied ones was made randomly. With respect to the sizes of the significant effect, one 

approach could be to select their values subjectively as appeared to be the case in Hamada and 

Balakrishnan (1998). One problem with this is that there is no way to examine the extent to 

which the selected sizes reflect those that may be encountered in practice. Another approach  

 

Figure ‎5-1: Fractions of the Significant Factors Percentage in the Surveyed Experiments 

could be to estimate the effect sizes from the reviewed experiments (Chapter 3) but in this 

case a serious limitation was recognised. This related to the fact that the majority of trials 
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were fractional and their aliasing pattern and its consequences regarding the estimated effect 

sizes were rarely examined. Generally, the reliability of the effect estimates depends a great 

deal on the degree of aliasing among the studied effects. Goh (2001) recommended that when 

reliable estimates of the factorial effects are needed, full factorial or the highest possible 

resolution fractional design should be used. Consequently, it was necessary to limit the effect 

size estimation to the full factorial experiments only. Unfortunately, it was found that besides 

being limited in their number, only a few of them incorporated the raw data or any effect 

estimates. Consequently, another review was conducted to find studies where full factorial 

experiments were employed and their data reported.  The advanced search properties of the 

ScienceDirect
®

 database were used to look for articles in which “full factorial” experiments 

were used during the period 1999-2009 (inclusive) in the same three journals as before, i.e. 

the  JMPT, IJMTM, and CIRP. Of those found only 37 met the requirement that one or more 

full factorial data sets were reported. In fact, these incorporated 83 full factorial experiments, 

the results of which were used to estimate the effects of the studied factors and interactions as 

detailed in Appendix 4. As the trials involved two-and three-level experiments, all the studied 

effects in the latter case, be they factors or interactions, were decomposed into single degree 

of freedom effects. For example, factors at three levels were split up into linear and quadratic 

components using the Linear-Quadratic (L-Q) system (see Appendix 2). Rather than using a 

mean- or a variance-related effect measure, it was decided to use a standardised mean-related 

measure. This was arrived at by dividing the effect’s regression coefficient by the square root 

of the mean square error, i.e. the mean-related effect was presented in multiples of σ, the error 

standard deviation. The advantages of this Standardised Effect Size (SES) are discussed in 

Chapter 8. After standardising the single degree of freedom effects it was realised that there 

was no observable difference between the sizes of the main effects and those associated with 



88 

 

interactions. Consequently, these were grouped together to provide a practical insight into the 

sizes of the active factorial effects be they factors or interactions not only in this phase but 

also in subsequent ones and are shown in Figure ‎5-2. 83% of the effect sizes were between 

0.51 and 3.5. It was infeasible to examine all the possible values within this interval since 

they are continuous in nature. Thus certain discrete values had to be selected. The first two 

were the mid-point and the maximum of the modal interval: 0.51-1.5. Two further values 

were the mid-points of the next two most frequently observed intervals, i.e. 2.51-3.5 and 1.51-

2.5. The selected levels of the effect size were therefore 1, 1.5, 2, and 3 which should reflect a 

plausible range of effects that might be encountered in practice. The signs of these were 

randomly assigned.  

 

Figure ‎5-2: Percentages of Observed Absolute Standardised Factorial Effect Sizes 

In terms of  the fractional designs, the three most frequently used two-level OAs: the L16, 

L12 and the L8 were chosen as the levels of this factor. 3 and 4 generators were needed in the 

L16 and L8 respectively to study 7 factors. In specifying these, the minimum aberration 



89 

 

criterion (Chapter 4) was employed. There are many ways to choose both the columns and 

their signs to generate the required design. For example, the following two sets of generators: 

E = ±ABC, F = ±BCD, G = ±ACD 

E = ±ABC, F = ±ABD, G = ±ACD 

render 16 equivalent L16 (2
7-3

) minimum aberration designs. Examining all the possibilities 

can result in a prohibitively large experiment, so, the default choice of two of the frequently 

used statistical packages in practice, Minitab and Design-Expert, was adopted with the 

generators 

E = +ABC, F = +BCD, G = +ACD 

The selected generator resembled what Montgomery (2010) called the principal fraction i.e. 

the one with positive generators. The same concept was applied in choosing the L8 (2
7-4

) 

design and the generators: 

D = +AB, E = +AC, F = +BC, G = +ABC 

were used. For the L12 design, Sun (1996) showed that all the possible ways of choosing 7 out 

of the design’s 11 columns lead to equivalent designs in terms of estimation capability, so 

again the default selection of the Minitab package was used.  

Six of the pooling methods discussed in Appendix 2 were selected for examination. The 

first was the Half Normal Probability (HNP) plot which was seldom employed in practice 

despite its simplicity. Its use involves an element of subjectivity in deciding which effect is 

large enough to be pronounced significant. Thus its use was limited to specifying the effects 

that should be pooled to form an estimate of the error variance. This was then utilised in the 

ANOVA to formally test the significance of the other effects. A default pooling method in the 

Minitab package - Lenth Method (LM) - was used in some of the reviewed experiments. 
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Therefore, it was important to examine its performance along with that of its Modified version 

(MLM) proposed by Ye and Hamada (2000). In both cases the individual test’s margin of 

error (see Appendix 2) was adopted, the reason being that in terms of Power, its use has better 

performance than that of the simultaneous margin of error. The review also showed that 

Taguchi analysis techniques were commonly employed. Among the popular pooling methods 

applied in this approach are the Pooling Up (PU), Pooling Down (PD) and Unassigned 

Columns (UC) methods. Ross (1996) and Roy (2001) presented a limited theoretical 

discussion about the performance of the first two; however the last one receives neither 

theoretical nor empirical assessment. Consequently, all these were examined in this study. Of 

course when 7 factors are examined using the L8 it is infeasible to use the UC method, all the 

columns being accommodated. This was dealt with by regarding the columns associated with 

the factors that were designated to be inert as unassigned. Regarding the inflated residuals’ 

estimates encountered in the initial stages of the PD method, an α value of 0.1 was used to 

alleviate this problem. The same α level was adopted in implementing the PU method to 

handle the t-statistic robustness problem associated with its first step (see Chapter 6). The 

factors examined in this first phase along with their levels are shown in Table ‎5-1.  

Table ‎5-1: Phase-1 Factors and their Levels 

Factor Description Type 
Levels 

1 2 3 4 5 6 

A 
Fractional 

OA 
Controllable L16 L12 L8    

B 
Pooling 

Methods 
Controllable HNP LM MLM PU PD UC 

C 
No. of Active 

Effects 
Noise 3 4 5    

D 
Size of Active 

Effects 
Noise 1 1.5 2 3   
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One problem in robust designs is that some of the configurations of noise factors may not 

exactly mirror those encountered in practice. For example, despite the selection of magnitudes 

derived from actual applications, choosing active factors of the same sizes in each of the noise 

factor settings may represent rare situations. However, this is unavoidable here as choosing 

effects of different magnitudes would impair the ability to investigate the impact of the size of 

active effects which is a major objective of this phase. To circumvent this problem, a further 

sub-phase of experimentation was added in order to examine the impact of using different 

numbers and sizes of active effects on the way controllable factors affected the studied 

response. The numbers and sizes of active effects in six of the reviewed full factorial 

experiments (Appendix 4) where no interaction effect was detected, were firstly identified and 

are shown in Table ‎5-2. These were then used to simulate 6 full factorial experiments  each 

with 7 factors. The appropriate runs for the examined OAs were extracted from each trial and 

analysed using the six pooling methods. Consequently, against each of the possible 

configurations of the controllable factors, 6 replications of the studied response were arrived 

at. The average and sample variance of each set of replications were subsequently calculated 

and analysed.  

Table ‎5-2: Number and Sizes of Active Effects at Sub-Phase-1 

Study 
No. of Active 

Main Effects 

Effect Sizes 

1 2 3 4 

Gunaraj and Murugan (1999) 3 1.7 2.4 -3.1 
 

Sun et al (2004) 3 -1.9 -0.9 0.6 
 

Dutta and Pratihar (2007) 4 1.3 0.6 -0.5 -1.9 

Darwish (2000) 3 5.4 0.9 -1.2 
 

Raghukandan and Senthilvelan (2004) 3 2.6 4.1 0.7 
 

Kannan & Murugan (2006) 2 2.5 -3 
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5.3.2 Phase-2 

The controllable factors’ impact on the studied response was assessed in this phase where 

both main and interaction effects were active in two-level experiments.  

Again the number of studied factors was 7 and the same levels of the noise factors 

examined in phase-1 were adopted in the current one. From the results of the review detailed 

in Chapter 3, it was clear that the majority of the experiments ignored factor interactions. In 

the few that did examine them, only two-factor interactions were considered. This was also 

the case in the full factorial experiments’ review (Appendix 4). It was also noted in both that a 

weak version of the heredity principal was valid, i.e. for each of the active two-factor 

interactions at least one of the main effects that comprised it was active. As already 

mentioned in phase-1, since the reviewed experiments involved both two- and three-level 

experiments all the observed interactions were decomposed into single degree of freedom 

effects. Irrespective of the experimental type, the observed numbers of active two-factor 

interactions were 1, 2 or 3 in 95.8% of the cases - see Figure ‎5-3. Consequently, these were 

the number of active two-factor interactions selected. After specifying the active main effects,  

 

Figure ‎5-3: Numbers of Active Two-Factor Interactions in the Surveyed Experiments 
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these were determined randomly from all the possible two-factor interactions that satisfied the 

weak heredity principal, their signs were randomly assigned.     

Owing to the substantial interdependence in choosing their levels, the consideration of the 

interactions in this phase impacted both the examined fractional OAs and the pooling 

methods. In fact, selecting any of the former dictates the feasible options of the latter. For 

example, the examination of two-factor interactions while maintaining orthogonality among 

the studied effects is feasible in the L16. This is an essential condition for using pooling 

techniques such as HNP, LM and MLM which require the estimated effects to be 

uncorrelated. However, the situation is different for the L12 as every main effect is partially 

aliased with every two-factor interaction not involving it. In fact, regression analysis is needed 

to study interactions in this design where variable selection techniques such as Backward 

Elimination (BE) and Forward Selection (FS) act as pooling methods. One problem with the 

BE is that the full model incorporating all the main effects and two-factor interactions has to 

be fitted. For 7 factors, there are 21 (
7
C2) possible two-factor interactions, so 28 degrees of 

freedom are required. With only 11 degrees of freedom available in such a design the use of 

BE is infeasible. A better alternative to either the BE or the FS is a procedure that combines 

the use of both, i.e. Stepwise Regression (SWR). Another applicable technique is the Best 

Subset Selection (BSS). A description of these variable selection techniques is provided in 

Appendix 2.  

A problem associated with the L8 is that it has only 7 degrees of freedom. In one of the 

examined conditions, 5 active main effects and 3 two-factor interactions were simulated, 

thereby exceeding this number. It was therefore necessary to augment the L8 designs with 

further runs to enable the estimation of these active effects. This is advantageous as it allows 

some of the augmentation strategies to be examined. The first decision regarding the 
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augmentation related to the number of additional runs. This was set at 4 in order to make both 

the L8 and L12 comparable in terms of the number of runs. Two augmenting methods were 

applied, the D-optimal (DO) and Box’s Method (BM). The D in the former stands for 

determinate as it aims to augment the design so that the determinant IXT
XI 

is maximised 

where X is the resultant model array. By so doing the variance of the least square estimates is 

minimised (Wu and Hamada, 2000). The DO augmentation process requires the true, or at 

least a suspected, model to be specified. In order to examine its performance, it was assumed 

that the true model was known and was used to generate the augmenting runs. Box’s method 

of augmentation (Box et al, 2005) relies upon the principle of effect sparsity. For example, the 

first step for enabling the 7 two-level factors to be studied using the L8 design was to generate 

the full factorial array and regard each of its entries as a candidate for being selected to 

augment the L8. Then, utilising the original L8 data, all the possible models comprising the 

studied 7 or all possible subsets of them and their 2-factor interactions that required no more 

than 7 degrees of freedom were fitted. Against each of the candidate runs (2
7
=128) each of the 

derived models was used to predict a response value given the entries of the corresponding 

run. Consequently, a number of predicted responses equivalent to that of the derived models 

were generated and their standard deviation calculated. Of the obtained 128 standard 

deviation values the top largest four were selected as being powerful in distinguishing 

between the fitted models. Thus they were expected to be the most influential in identifying 

the true model. The DO and BM were implemented using the Design-Expert and the R-

statistical software packages respectively. Once augmented and the two-factor interactions 

incorporated, the L8 was no longer orthogonal as it involved partial aliasing. Therefore, 

variable selection techniques were again needed for analysing its data. 
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From the above discussion, it is clear that each OA requires a different pooling technique. 

Therefore, a single controllable factor combining the designs and their appropriate pooling 

method was used. The HNP method was employed with the L16 while SWR and BSS were 

used to analyse the L12 and the augmented L8. In the case of SWR, αin was taken to be 0.1 and 

αout 0.1 to account for the inflated variance in the initial steps. For the BSS, the best fitting 

subset models of each possible size were produced. Choosing between models of different 

sizes can be difficult, so only the top fitted model (highest R
2

adj) of the same size as the “true” 

model was examined to assess whether it consisted of the same effects detected in the full 

factorial design. The factors investigated at this phase and their levels are shown in Table ‎5-3. 

Table ‎5-3: Phase-2 Factors and their Levels 

Factor Description Type 
Levels 

1 2 3 4 5 6 7 

A 
OAs & Pooling 

Methods  
Controllable 

L16-

HNP 

L12-

BSS 

L12-

SWR 

L8-

BM-

BSS 

L8-

BM-

SWR 

L8-

DO-

BSS 

L8-

DO-

SWR 

B 
No. of Active 

Main Effects 
Noise 3 4 5     

C 

No. of Active 

Two-Factor 

Interactions 

Noise 1 2 3     

D 
Size of Active 

Effects 
Noise 1 1.5 2 3    

The issue of using effects of identical sizes was handled in the same manner as in sub-

phase-1. Six two-level trials involving active main effects and two-factor interactions were 

selected from the reviewed full factorial experiments. Their number and size of active effects 

(Table ‎5-4) were used to examine the controllable factor performance under a variety of noise 

factor settings. Consequently, a single factor experiment with six replications was conducted 

in this sub-phase. 

 

 



96 

 

Table ‎5-4 Number and Sizes of Active Effects at  Sub-Phase-2 

No. Study 

Effects Number and Sizes 

Main Effects 

  

Two-Factor 

Interactions 

1 2 3 4 5 
 

1 2 3 

1 Ganjigatti et al (2007) -2.9 -2.3 0.6 0.4 -1.2 
 

1 -0.4 0.5 

2 Aggarwal et al (2008) 8.4 3.2 7.4 2.5 
  

1.9 
  

3 Gunaraj and Murugan (1999) 2.7 3.4 -1.3 -1.1 
  

-1.2 1.5 
 

4 Darwin et al (2008) 0.7 -3.2 -1.4 -0.5 
  

0.4 -0.6 
 

5 Pei et al (2003) -2.5 4.9 1.9 
   

-2.3 -0.8 1.7 

6 Kannan and Murugan (2006)  0.7 2.1 -1 1.6 
  

-0.6 1.2 
 

 

5.3.3 Phase-3 

Under the premise that only main effects were significant, the performance of the 

fractional three-level OAs and pooling methods was investigated in this phase. The analysis 

of three-level experiments is more time consuming than that for two-level. One reason is that 

steps such as the array coding and the effects pooling for two-level experiments can be 

implemented using any of the widely used menu-driven statistical packages. This is not the 

case for three-level trials where performing these steps entails writing routines in Excel or the 

R-software. As such it was necessary to keep the number of performed experiments in this 

and the following phases to a minimum. To accomplish this, one option was to reduce the 

number of studied factors. This was deemed inappropriate as it would have seriously affected 

the objectives of this study. Alternatively, though less effective, it was decided to keep the 

number of factor levels as small as possible bearing in mind the study’s main purposes.  

As was the case in the previous phases, the number of studied parameters was kept 

constant. Its value was specified as 4 -the number studied in the majority of the reviewed 

experiments discussed in Chapter 3. This rendered a large full factorial three-level trial of 84 

runs. The number of active main effects was chosen to be 2 and 3 respectively representing 
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50% and 75% of the studied parameters (as shown in Figure ‎5-1, they belong to two of the 

percentage of active effects’ intervals that collectively encompass 58% of observed values). 

Each three-level parameter was decomposed into two single degree of freedom components 

using the L-Q system, thus it was necessary to specify how many linear and quadratic 

components should be simulated to be significant when there are 2 and 3 active main effects. 

According to the results of Chapter 3 and the full factorial reviews, it was rarely the case that 

all the components comprising the active parameters were significant. In fact, almost 100% of 

the linear components of the active effects were found significant, whereas only 48% of the 

quadratic ones were declared active. Therefore, the presence of 2 active parameters was 

translated to mean 2 active linear components and 1 active quadratic. Similarly, for the 3 

active parameters, 3 linear and 2 quadratic components were simulated to be significant. With 

regard to the sizes of the active effects, the same levels used in the previous phases were 

adopted as they were determined from the standardised single degree of freedom effects.  

The fractional OA, the ANOVA type and the pooling methods are the three controllable 

factors that were investigated in this phase. With regard to the first, the most frequently used 

three-level OAs: the L9 and L18 were examined. In the case of the L9, all the columns were 

used to accommodate the 4 factors under study. For the L18, the minimum generalised 

aberration criterion was used to select the four columns based on the L-Q coding system. The 

review in Chapter 3 revealed that two types of ANOVA, standard and regression, were 

employed in practice. Although, these are equivalent in the case of two-level experiments, this 

is not the case for  three-levels. Both types of ANOVA were examined in this phase to assess 

their impact on the studied response. In the case of using the standard ANOVA, the separated 

OAs’ columns were re-united so that each main effect was associated with two degrees of 

freedom. Since the PU and PD methods were suitable for dealing with both types of ANOVA, 
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they were examined in this phase. In the context of regression ANOVA, these are equivalent 

to the BE and FS techniques. In implementing them, the same values of α adopted in phase 1 

were used. The factors assessed in this phase and their selected levels are shown in Table ‎5-5.  

Table ‎5-5: Phase-3 Factors and their Levels 

Factor Description Type 
Levels 

1 2 3 4 

A 
Fractional 

OAs  
Controllable L9 L18  

 

B 
ANOVA  

Type 
Controllable 

Standard 

ANOVA 

Regression 

ANOVA 
  

C 
Pooling  

Methods 
Controllable PU PD   

D 
No. of Active 

Main Effects 
Noise 2 3   

E 
Size of Active 

Effects 
Noise 1 1.5 2 3 

 

A further experiment was conducted to assess the impact of this phase’s controllable 

factors on the studied response under six cases where the settings of the noise factors were 

specified using actual published data. This allowed for the consequence of using active effects 

of different numbers and sizes to be investigated. The six combinations are shown in Table 

‎5-6.  

Table ‎5-6: Number and Sizes of Active Effects at Sub-Phase-3 

 

 

  

 

 

 

Study 

Active Main Effect Sizes 

Linear 
 

Quadratic 

1 2 3 
 

1 2 

Correia and Ferraresi (2007) -3.4  
  

-1.8 
 

Chattopadhyay et al (2009) -11.2 -1.4 1.2 
   

Gaitonde et al  (2008) -0.8 1.4 1.4 
 

-0.7 
 

Dhar et al (2007) 4.3 0.8 
  

-1.9 
 

Dhar et al (2007) 1.5 1.5 2.7 
 

-1.4 
 

Davim (2003) 1.2 1.4 1.1 
 

1.1 
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5.3.4 Phase-4 

This phase involved studying the effect of the three-level fractional OAs and pooling 

methods on the studied response in the presence of active main effects as well as two-factor 

interactions.  The number of studied parameters and of active main effects selected in the 

previous phase were also used in this one, as were the values of the sizes of the active effects. 

Again, the L9 and L18 were examined. In order to study two-factor interactions, partial aliasing 

was involved and hence effects’ pooling was performed using variable selection methods. 

Techniques such as BE were not applicable in the case of the L9 since the required degrees of 

freedom for fitting the full model exceeded those available. Hence, SWR and BSS were 

employed.  

Regarding the number of active two-factor interactions, the two most frequently observed 

values of 1 and 2 were used. As shown in Figure ‎5-3, these account for 79% of the 

encountered number of active interactions in the conducted reviews. Using the L-Q coding 

system, there were four components associated with each three-level two-factor interaction; 

namely the LxL, LxQ, QxL and the QxQ. Of the interactions investigated in the reviewed 

experiments involving three-level factors, these represented 71.5%, 17.8%, 10.7% and 0% 

respectively. The LxL was the most encountered whereas the QxQ was almost absent. That 

the LxL is more likely to happen than the others in practice follows from the fact that it is the 

only interaction component considered in second order response surface models (Box and 

Draper, 2007). In light of this, it was decided to only use the LxL component in cases where 

only one interaction was active; however, where two were significant, one was selected to be 

LxL, and the other was randomly specified as either LxQ or QxL. The factors examined in 

this phase along with their levels are shown in Table ‎5-7. 
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Table ‎5-7: Phase-4 Factors and their Levels 

Factor Description Type 
Levels 

1 2 3 4 

A OAs  Controllable L9 L18   

B 
Pooling  

Methods 
Controllable SWR BSS   

C 
No. of Active 

Main Effects 
Noise 2 3   

D 
No. of Active 

Interactions 
Noise 1 2   

E 
Size of Active 

Effects 
Noise 1 1.5 2 3 

 

As in the previous cases, the impact of using different combinations of noise factor levels 

was assessed in sub-phase 4. Six of the reviewed full factorial three-level experiments 

involving active main effects and two-factor interactions were used to select the settings of 

the number and sizes of active effects as shown in Table ‎5-8. 

Table ‎5-8: Number and Sizes of Active Effects at Sub-Phase-4 

5.3.5 Selection of Experimental Design 

Having specified the factors under study and their levels, the next step was to select the 

experimental designs, i.e. the arrays according to which the simulation experiments were 

performed. Conventionally, this should be based on the required effects to be estimated and 

their respective degrees of freedom. However, in the absence of prior knowledge regarding 

the likelihood of the significance of certain effects, all the possible ones, be they factors or 

Study 

Main Effects  Two-Factor Interactions 

Linear Quadratic  LxL LxQ QxL 

1 2 3 1 2  1 2 1 2 1 

Correia and Ferraresi (2007) -1.8 3.7  1.6   0.9     

Dhar et al (2007) -1.2 6.3 0.7 -0.8 11  -0.7     

Ghani et al (2004) 0.8 2.4 -1 0.9   -1.5  2.6  -3.6 

Davim et al (2008) -2.9 -0.6  1.4     2.6   

Davim (2000) 0.7 6 1.9 0.7 4.7  0.6 1.9    

Chattopadhyay et al (2009) 12.6 -2.1 -2.6    -1     
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interactions, were deemed equally important. Consequently, it was decided to conduct full 

factorial simulation experiments for the factors stated in the previous sections. Broadly, robust 

experiments have two execution arrangements, each entailing a certain analysis approach. 

One is the cross arrays proposed by Taguchi (1986) wherein two separate arrays are generated 

for controllable and noise factors, referred to as the Control Array (CA) and Noise Array 

(NA). If there are n1 and n2 runs associated respectively with the CA and NA, then the run 

size of the cross array is n1 x n2. Denoting the response for the combination of the i
th

 control 

setting and the j
th

 noise setting by yij, for each control setting i, there are n2 responses across 

the NA. These can be regarded as the noise replicates and their sample mean and variance can 

each be modeled as a function of the controllable factors. The objective is to determine the 

controllable factor settings so that the targeted mean value is attained whilst minimising the 

variance. The second approach is to use a single array to accommodate both the controllable 

and noise factors (Welch et al, 1990; Shoemaker et al, 1991), the idea being to model the 

response y as a function of both the controllable and noise factors and to explicitly investigate 

the existence of interaction between them. These can be exploited to achieve robustness. For 

example, consider the two-factor interaction between the controllable factor x and the noise 

factor z in Figure ‎5-4. Clearly, when there is no interaction between x and z (Figure ‎5-4 (a)), 

the effect of z and hence the variability it causes in the response variable Y is the same at the 

two levels of x. Thus selecting either level will not affect the variability in Y. On the other 

hand, when there is a significant interaction between x and z as shown in Figure ‎5-4 (b) the 

effect of the noise factor z is very small (as measured by the slope of the line) when x is at the 

high level (x =1). Consequently, the variability transmitted to the response by that in z is 

reduced by setting x at the high level. Generally, unless there is at least one considerable 

interaction 
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Figure ‎5-4 The Role of Controllable-Noise Interaction in Robust Design (adapted from Montgomery 

(2010)) 

interaction between control and noise factors, there is no robust design problem. Though 

implicit, this is also the case in the cross array approach. Both the single and cross array 

arrangements were used in the simulation experiments. In the cases where the number and 

sizes of active effects were treated as factors at specific levels, the single array design and 

analysis approach was adopted. This is because a better process understanding is gained from 

the explicit examination of the interaction between the controllable and noise factors in this 

approach. The cross array approach was employed in the experiments where six different sets 

of number and sizes of active effects were used with each of the possible configurations of the 

controllable factors under study. In these, the selected sets of the number and sizes of active 

effects were regarded as six levels of a noise factor studied using a NA, whereas all the 

possible combinations of the studied controllable factors resembled the CA. Consequently, 

the CA’s row sample means and variances were studied.  

Considering the large number of trials required and the available time, the maximum 

feasible number of replications was set at 50. Therefore, each of the recorded responses of the 

Power represents the average of 50 replicated trials.  
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5.4 Simulation Experiments 

The simulation experiments were conducted utilising a Monte Carlo approach. This is a 

form of static simulation where the state of the simulated process is independent of time. It 

relies on generating observations from a certain statistical probability distribution and using 

them in such a way that the random process under study is directly simulated and its observed 

behaviour is used to infer the desired solution (Winston, 2003; Kalos and Whitlock, 2008). 

The simulation procedures can be summarised as follows: 

1. Fifty random samples were generated from a Normal distribution with mean zero and 

variance 4 i.e. N (0, 4) using the Minitab package. Their values were plotted on Normal 

probability graphs using the same package to ensure their compliance with the 

requirements. In the case of the two-level experiments the size of each sample was 128 

whereas it was 81 in the three-level trials. Each sample was used as the stochastic error 

component of a simulated response and its individual values were denoted by ei. 

2. The full factorial orthogonal arrays were constructed in Excel. For two-level trials, the 

size of the array was 128 (2
7
) and its entries were coded using the -1 , +1 system. In the 

case of the three-level experiments, the array size was 81 (3
4
) and its entries were coded 

using the L-Q system (Appendix 2). 

3. A regression model was then used to generate the deterministic components of each of 

the simulated responses where the dependent variable was the deterministic response Yd 

and the independent variables were the selected active effects (factors and interactions). 

Their possible values were the entries of their columns in the full factorial orthogonal 

array. The coefficients of the independent variables were chosen to attain the required 

sizes of the effects in terms of the number of error standard deviations. For example, in 

order to simulate the Yd in the case where two active two-level factors A and B were both 
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of size, say, 2σ, the effects should both be 4. This is because the error σ is 2 and 4/2 

equals 2. Thus, the initial regression model should be  

 Ydi =   2XAi+2XBi (4.1)  

where i =1, 2, 3.... 128. The simulated response can be arrived at by adding the error 

random components (step1) to the deterministic components generated using equation 4.1 

i.e.  Yi = Ydi + ei. The three-level effects can be simulated in the same manner bearing in 

mind the effects’ interpretation difference between the two- and three-level effects (see 

Appendix 2).  

4. For each simulated response in the full factorial designs, the subset of runs that 

corresponded to the two- and three-level fractional designs under study were extracted. 

The appropriate pooling methods as explained in each experimental phase were then used 

to identify the effects that could be flagged as significant.  

Against each of the possible configurations of the studied controllable and noise factors, 

fifty simulated responses were generated. For each, the percentage of the effects correctly 

detected (the Power) as in the appropriate full factorial design was firstly computed. Then the 

average Power over the fifty replications was estimated.  

5.5 Summary 

Of principal importance when conducting an unreplicated fractional factorial experiment 

is the aspect relating to its capability of detecting the same active effects that would have been 

identified had a full factorial experiment been conducted. Also important is the extent to 

which this is impacted by the choice of pooling method. In this Chapter, the planning stage 

was presented for robust simulation experiments that were conducted to investigate these 

aspects. In these trials, the selected fractional OAs along with the pooling methods were 
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regarded as controllable factors whereas the number of active effects and their sizes were 

handled as noise factors. The studied response was the Power and the robust DOE approach 

was adopted. The major reason for this was to allow the possibility of finding certain settings 

of the controllable factors that attain ruggedness of the Power against the examined noise 

factors to be investigated; an aspect that, to date, has not been addressed in the literature. In 

specifying the levels of the studied controllable and noise factors the results of the review 

detailed in Chapter 3 were utilised. A further review concerning published full factorial 

experimental data was conducted in this Chapter. The objective of this was to provide reliable 

estimates for the active effect sizes which were then used to determine the levels of the 

corresponding noise factor. The simulated experiments were full factorial types with both 

single and cross array arrangements for performing robust experiments. Cross arrays were 

adopted in the cases where the number and sizes of active effects were specified on the basis 

of published experiments that matched the required properties in terms of the type of studied 

and active effects. 

Having explained the planning and execution procedures for the simulated experiments, 

their results are presented and discussed in the next Chapter.   
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CHAPTER 6: RESULTS AND DISCUSSION OF THE 

SIMULATION EXPERIMENTS 

 

6.1 Introduction 

In this Chapter, the results of the simulation experiments, detailed in the previous Chapter, 

are presented, analysed and discussed. The method adopted in analysing the results is firstly 

outlined. Then, the results of each experimental phase are addressed and dealt with separately. 

The Chapter culminates with a summary of the main findings.  

6.2 Analysing Method     

DOE techniques were generally used to analyse the data, however aliasing was not 

examined, since the experiments used full factorial designs. For each of the studied factors, 

the hypothesis of no effect was tested using the ANOVA. As the experiments were 

unreplicated, the interactions of order three or higher were used to estimate the experimental 

error  so that the statistical significance of all the studied main effects and two-factor 

interactions could be investigated. Of the latter, the ones that incorporated controllable and 

noise factors were of particular interest since they could possibly be used to attain robustness. 

Another reason for using high order interactions to estimate the experimental error was that 

they rarely exhibit effects that are distinguishable from noise (Montgomery, 2010; Box et al, 

2005).  

Having performed the ANOVA significance tests, the inert main effects and two-factor 

interactions were pooled with the initial estimate of the error variance. To assess the 

importance of the studied effects, their variance PCs were estimated. For reasons which will 

be explained in Chapter 8, the PC measure of equation 3.2 was adopted. Besides quantifying 

the effects’ importance, this measure provides an objective means for examining both the 
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aptness of selected effects for pooling and also the adequacy of the active effects for 

representing the process under study. These are judged by examining the PC associated with 

the experimental error. If this turns to be small (15% or less), the selected active effects may 

be regarded as adequate. Otherwise, further investigation is necessary on the studied effects, 

the measurement error and the effect sizes (see Chapter 8).  

The assumptions of the ANOVA were examined by plotting the residuals against both the 

estimated response values and the order of performing the experiments, and by plotting them 

on a Normal probability plot. Whenever a violation was suspected, the Box-Cox plot (Box 

and Cox, 1964) was used to assess the suitability of the power family of transformation for 

rendering satisfactory plots of the residuals. The significant main effects and two-factor 

interactions were plotted in order to visually assess how they affected the responses. The 

Minitab and Design-Expert statistical packages were used for analysing the data. The results 

of the performed simulation experiments are presented in Appendix 5. 

6.3 Phase-1  

The ANOVA and the PC of the effects (listed in Table 5-1) that had statistically 

significant impacts on the Power of detecting the correct active factors at an α level of 0.05 

are presented in Table 6-1. On the basis of the estimated PCs, the most influential factor was 

the pooling methods (B) followed by the size of active effects (D) and the employed OA (A). 

The smallest significant effects were the number of active effects (C) and its interaction with 

the employed OA. Despite its small explained variance (1.17%) the latter is very instructive in 

terms of casting some light on how robustness can be attained. This controllable-noise 

factors’ interaction (Figure ‎6-1) shows that the L8 was not only associated with the smallest 

Power but also with the highest sensitivity to the number of active effects - evident from the 
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fact that its response line has a steeper slope than those associated with the L12 and the L16. 

Thus the variance transmitted to the Power due to the variability in the number of active  

Table ‎6-1: Phase-1 ANOVA for Power 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

PC 

(%) 

A 1.54 2 0.77037 7358.85 < 0.0001 18.13 

B  3.56 5 0.71295 6810.35 < 0.0001 41.92 

C 0.17 2 0.08474 809.44 < 0.0001 2 

D 3.10 3 1.03248 9862.71 < 0.0001 36.51 

AC 0.10 4 0.02443 233.37 < 0.0001 1.17 

Residual 0.020832 199 0.00010 

  

 

 Total 8.490943 215 

   

 

 

 

Figure ‎6-1: Phase-1 AC interaction Plot for Power 

effects, over which no control can be exercised in practice, may be minimised by using the 

L16 or the L12. The error PC of 0.27 % indicates that the considered effects provide a very 

good representation of the response. The main effects plot of the statistically significant 

factors  (shown in Figure ‎6-2) shows that the highest Power was attained when the L16 was 

analysed using either the PU or the HNP plot in the cases where the number of active effects 

was 3 and the size of each was 3σ. It also shows that the larger the size of the employed OA  
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Figure ‎6-2: Phase-1 Main Effects Plot for Power 

the higher the Power which decreases as the number of active effects increases while it 

increases as their sizes increase. 

To provide a theoretical justification for these results, consider the t-distribution used in 

testing the statistical significance of the simulated parameters. Under the null hypothesis of no 

effect, the distribution is central and its degrees of freedom are specified based on those 

available to estimate the error. However, when an effect is significant with a certain SES, the 

reference distribution is a non-central t-distribution which has, in addition to degrees of 

freedom, another characterising parameter called the non-centrality parameter (Lynch, 1993; 

Oehlert and Whitcomb, 2001), defined by   

 δ = βi/ ijC x MSE   (6.1)  

where βi is the estimated regression coefficient as defined in Appendix 2, the MSE is the error 

mean square and Cij is as defined in equation (4.13). In the absence of aliasing, as was the 

case in this phase, the Cij of any of the studied two-level OA is reduced to (1/n). 

Consequently, δ can be rewritten as SES x n . Clearly, δ increases as either or both of the 

SES and n increase. Generally, the larger the δ, the higher the Power. Figure ‎6-3 shows a  
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Figure ‎6-3: Graphical Representation of Power under a Non-central t-distribution with δ =3, dfe =10 

graphical representation of the Power for a non-central t distribution with δ = 3 and the error 

degrees of freedom (dfe) =10.  For the same SES and tabulated +tα/2, dfe value, the larger the 

size of the OA the larger the δ and consequently the larger the Power. For a given value of δ, 

the larger the tabulated tα/2,dfe value the smaller the Power. On the other hand, for a fixed α 

level the values of tα/2, dfe relate inversely to the dfe . For small values of the latter, the rate of 

change in the tα/2,dfe value is considerably high. For example consider the relationship between 

the tabulated t-values and the dfe when α =0.05 portrayed graphically in Figure ‎6-4. As can be 

seen, the largest t-value (6.314) is associated with a dfe of 1 but this value reduces to 2.92 and 

2.353 when the dfe increases to 2 and 3 respectively. Clearly, by increasing the dfe from 1 to 

2, the reduction in the t-values markedly exceeded that which was observed when the dfe 
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Figure ‎6-4: Standard t-statistic Values vs. Error Degrees of Freedom at α =0.05 

was increased from 2 to 3. Moreover, the values of the t-statistic associated with a dfe of 6 or 

more exhibit a much smaller rate of change than those associated with smaller dfes. From this, 

one can infer that for the t-test to be robust, a dfe of 6 or more is required. Furthermore, the t-

test reliability is seriously low when the dfe is 1.  The value of tα/2,dfe depends on the number 

of active effects; in fact, the larger the latter the fewer the available dfe and subsequently the 

larger its value. Consequently, the Power is reduced as the number of active effects increases. 

Note that due to their equivalence (Appendix 2), the discussion related to the Power of the 

tα/2,dfe statistic is also applicable to the Fα,1,dfe statistic. Generally, any results related to Power 

can be explained in terms of the components that form δ as well as the level of α and the dfe. 

However, the complexity arises from the interdependence between these terms. For example, 

consider the situation where 5 active factors of size 2σ were simulated. Although, the 

generated full factorial data matched the simulated conditions, this was not the case for the 

extracted fractional design data. The rendered βi and MSE values and their consequent SESs 

were, more often than not, noticeably different from the intended ones. From this it can be 

inferred that, using a small fractional design, it may be difficult if not impossible to obtain 
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reliable estimates of the factorial effects under study. This can be used to explain Goh’s 

(2001) recommendation regarding the necessity of using a full factorial experiment whenever 

credible estimates of the factorial effects are needed. In fact, it is not only aliasing that can 

impact the reliability of the estimated SES but also the reduction in the number of runs along 

with the reliance on a single replicate of the experiment. It is due to the joint effect of these, 

that a distorted effects’ estimate may be observed in small experiments despite the absence of 

aliasing. The difference between the full factorial SES estimates and those of the fractional 

OA should not be surprising in the light of the expected difference in the MSE estimates 

rendered by the two designs. Due to the larger number of degrees of freedom available to 

estimate the MSE, its full factorial design estimate is more reliable than that of the fractional 

one. For the latter, the matter becomes more complicated when considering that its small dfe 

may not be correctly specified depending on the employed pooling method. It was with regard 

to such interrelations that the use of simulation experiments was deemed necessary for 

empirically estimating the Power associated with the investigated DOE strategies. The impact 

of reducing the experiment’s size becomes clearer when considering the pooling methods’ 

effect. As the MSE is estimated by pooling the effects that are intended to be inert in the 

simulated full factorial data, the UC method should theoretically be associated with the 

highest Power. However, as can be seen from Figure ‎6-2, both the HNP plot and the PU 

method outperformed it. This is due to the fact that as a result of reducing the size of the 

simulated experiments, some of the full factorial inert effects became large and inflicted a bias 

on the error estimate that was formed by pooling them using the UC method. Consequently, 

the inflated MSE reduced the test statistics associated with the active effects and led to 

declaring some of them as inert. This problem was avoided in the cases where the HNP plot 

was employed. The reason being that all the effects including those associated with the 
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unassigned columns were plotted and the error estimate was arrived at by pooling the small 

contrasts. Thus any overestimated effect, as a result of using fractional designs, was not 

pooled with the error. Similarly, the PU method determined the effects to be pooled based on 

their observed sizes irrespective of whether their columns were assigned an effect. Although, 

this may result in increasing the Type I error, this was considered to be far less serious than 

decreasing the Power.  

As can be seen from Figure ‎6-2, the HNP plot and PU method attained the highest Power 

with the latter being marginally more powerful than the former. This should not be surprising 

since a high α value of 0.1 was used with the PU method. Apparently, the use of a value 

greater than 0.05 with this method (Hines et al, 2003) relates to its first step where the 

smallest effect is used to estimate the error rendering a dfe of 1. As already explained, the t-

statistic is not robust in this case, so if the first tested effect happens to be active but its size is 

not large enough to portray this problem, it would be pooled with the inert effects yielding a 

biased estimate of the error. The impact of this problem can be reduced by increasing the α 

level. For example, while the value of t0.025,1 is 12.701 when α =0.05, this is reduced to 6.314 

approximately half the size for α =0.1. In practice,  however, it is very unlikely that all the 

effects except the smallest would be active. Thus, adopting such a strategy could result in an 

increased Type I error.   

The UC method exhibited a better performance than that of the PD which in turn attained 

higher Power than the two versions of Lenth’s method (see Figure ‎6-2). The main problem 

associated with the use of the PD method relates to its initial steps. As discussed in Appendix 

2, this method starts with pooling all the studied effects, except the largest, to yield the initial 

MSE. Clearly, if there are, say, 4 active effects, three will be pooled with the MSE rendering 

an overestimated error variance. The degree of bias associated with the obtained MSE 
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increases as both the number and size of the active effects increase. For the largest effect to be 

declared significant in the first step of the PD method, it needs to be large enough so that it is 

not camouflaged by the experimental error and the combined impact of the pooled active 

effects. An aspect that should be borne in mind here is that in this phase the PD method is 

equivalent to both the FS procedure and the SWR method. With regard to the latter, the 

absence of aliasing among the simulated effects in this phase prevents the selected effect at 

each step from being eliminated from the model in the subsequent ones. Consequently both 

the FS and SWR would be expected to exhibit the same performance in this phase as that of 

the PD method.  

As shown in Figure ‎6-2, the lowest Power was observed with the two versions of Lenth’s 

method. Perhaps the prime reason for this relates to the way in which the effects’ “pseudo” 

standard error (PSE) is estimated. As explained in Appendix 2, the first step in implementing 

this method is to find the median of the estimated effects. This is then multiplied by 1.5 to 

yield So which should in turn be multiplied by 2.5. Those effects smaller than the resultant 

number are determined and their median is computed and multiplied by 1.5 to render an 

estimate of the effects’ PSE. Unless the number of inert effects is more than half the studied 

ones, a large PSE is likely to be observed rendering small non-significant effects’ t-statistics. 

This is best illustrated by analysing the extracted L8 Response 1 data displayed in Table 6-2 

(a). These were taken from a full factorial simulated experiment where the parameters A, B, 

C, D and E were all significant and of equal size. Arranged in ascending order, the L8 

estimated main effects of the parameters  F, G, E, C, B, D and A are respectively 0.59, 0.75, 

1.085, 5.664, 6.412, 7.724, 8.85. Clearly their median and S0 are 5.664 and 8.496 (1.5x5.664) 

respectively. All the estimated effects are smaller than 2.5xS0. Consequently, the PSE = S0 = 

8.496 is marginally smaller than the largest estimated effect. The t-statistic for each effect is  
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Table ‎6-2: Sample Simulated Data for  the (a) L8 and (b) L12  

No. A B C D E F G Resp. 1 Resp. 2 

1 -1 -1 -1 1 1 1 -1 -6.097 -4.59 

2 1 -1 -1 -1 -1 1 1 -5.313 -0.813 

3 -1 1 -1 -1 1 -1 1 -7.252 0.248 

4 1 1 -1 1 -1 -1 -1 7.489 5.989 

5 -1 -1 1 1 -1 -1 1 -1.361 -5.861 

6 1 -1 1 -1 1 -1 -1 0.102 -1.398 

7 -1 1 1 -1 -1 1 -1 -2.830 -1.33 

8 1 1 1 1 1 1 1 15.571 13.1 

(a) 

No. A B C D E F G Resp. 1 Resp. 2 

1 1 -1 1 -1 -1 -1 1 1.129 -5.076 

2 1 1 -1 1 -1 -1 -1 -0.726 -0.900 

3 -1 1 1 -1 1 -1 -1 4.800 -1.100 

4 1 -1 1 1 -1 1 -1 2.966 6.076 

5 1 1 -1 1 1 -1 1 6.008 -0.900 

6 1 1 1 -1 1 1 -1 5.855 4.864 

7 -1 1 1 1 -1 1 1 1.870 10.273 

8 -1 -1 1 1 1 -1 1 4.976 0.100 

9 -1 -1 -1 1 1 1 -1 -1.323 -4.918 

10 1 -1 -1 -1 1 1 1 -2.622 1.900 

11 -1 1 -1 -1 -1 1 1 -3.655 -6.111 

12 -1 -1 -1 -1 -1 -1 -1 -11.162 -4.072 

(b) 

obtained by dividing its estimate by the PSE. Thus the largest possible t-statistic is 1.04 

(8.85/8.498). The smallest tabulated t value for α/2 = 0.025 is 1.96 rendering all the examined 

effects non-significant. Nothing was gained by adopting the t-Lenth critical values proposed 

by Ye and Hamada (2000) in the modified version of LM (see page 245). In fact, for α =0.05 

and 7 contrasts, the proposed t-Lenth is 2.297 which is larger than 1.04 implying that all the 

studied effects are inert. In fact the only reason why the modified version of Lenth method 

outperformed the standard one is that for any given value of α and a number of contrasts, the 

critical t-values associated with the former are smaller than those associated with the latter. 

The implementation of LM showed that its success in detecting the active effects depends a 

great deal on the value of the median effect. If this is large, then both the S0 and PSE are 
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likely to be large. Of course the larger the PSE the smaller the chance of declaring any effect 

as active. As the median value separates the upper half of the estimated effects from the lower 

one, it follows that to observe a small median the percentage of inert effects needs to exceed 

50% of the examined effects. In practice, it is difficult to have prior knowledge regarding the 

proportion of inert effects. More importantly, such a percentage can result in a remarkably 

different number of inert effects depending on the size of the OA that is used. For example, 

assuming that the percentage of inert effects is 50%, if an L8 is used, then 3 or 4 effects are 

expected to be inactive. However, this implies that 7 to 8 effects are inert in the case of using 

the L16.  

In their simulation study, Hamada and Balakrishnan (1998) reported a better performance 

than that observed in this investigation. One reason for this is that the L16 was the only OA 

investigated in their study. More importantly, the numbers of simulated inert effects were 14, 

13, 11 and 9. Consequently, their percentages of the available 15 degrees of freedom were 

respectively 93.33, 86.7, 73.33 and 60%. As already discussed, under such circumstances 

Lenth’s method is likely to show an acceptable performance. However, in practice it is better 

to use a method that is robust to the unknown and uncontrollable percentage of inert effects. 

Therefore, unless used in conjunction with other pooling techniques, the use of LM is not 

recommended. In this context, it is noteworthy to recall that as revealed from the results of the 

review discussed in Chapter 3, practitioners apply LM unintentionally. This is because of the 

use of the Minitab statistical package in which the Normal Probability (NP) plot is used as a 

graphical means for conveying the results of employing LM. In fact, the users of this package 

have no control over which of the NP plot points to pick as potentially large or pool as 

possibly inert, these being decided upon automatically using LM. Therefore, it is likely that 

the poor performance of this method will mistakenly be attributed to such a powerful tool as 
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the NP plot. On the other hand, users of the Design-Expert package are not only able to pick 

the points representing the potentially active effects in both the NP and HNP plots but also to 

test their significance using the ANOVA. For illustration, consider the HNP plot for the L8 

data of Table 6-2 portrayed in Figure ‎6-5 (a). Clearly, the main effects of the parameters A, D,                                     

 
(a) 

 
(b) 

 

Figure ‎6-5: HNP Plots for the (a) L8 and (b) L12 Data 
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 B and C are too large to be explained by noise. Thus, they were picked as potentially active 

and using the ANOVA, they were all found to be significant at  the 0.05 level. The same 

effects were declared significant when both the PU and UC methods were employed. 

However, as was the case with LM, the PD procedure failed to detect any of the active effects. 

This is due to its first step’s inflated MSE, formed by pooling the active effects D, B, and C 

with the inert ones. This should not be misread as suggesting that the performance of LM and 

PD are equivalent. In fact, the PD method attained a better performance than did the LM as 

can be seen from the analysis of the L12 response 1 data shown in Table 6-2 (b). Using the 

HNP plot (Figure ‎6-5 (b)), the main effects C, E, B, D and A were flagged as important. The 

ANOVA showed that they were all significant at α =0.05. As the pooled effects were 

associated with the unassigned columns the same results were yielded using the UC method. 

Moreover, the PU and PD methods declared the same effects significant despite the MSE bias 

associated with the initial steps of the latter. Although 54.5% of the studied effects were inert, 

none of the active ones were detected using both versions of LM, the reason being that the 

median effect was not small enough to render a reliable PSE estimate.   

A final noteworthy point in the context of the pooling methods’ performance pertains to a 

distinct feature of the HNP plot. Despite the fact that the simulated full factorial data did not 

need transformation, this was required to validate the data analysis of some of the extracted 

fractional OAs. In contrast to all other pooling methods, the HNP plot allows any potential 

violation of the ANOVA assumption to be visually detected. In fact, when the inert effects do 

not line up with the origin or when there are gaps between them, data transformation is likely 

to be needed. For example, in the HNP plot (see Appendix 6) of the L8 Response 2 data 

displayed in Table 6-2 (a) the inert effects do not fall along the line emanating from the 

origin. An examination of the residuals’ plot revealed the existence of an outlier. Using the 



119 

 

Box-Cox plot (Box and Cox, 1964), a square root transformation was suggested. Having 

performed this, the inert effects were found to fall approximately along a line stemming from 

the origin of the HNP plot. Moreover, the plot of the residual outliers showed no point falling 

beyond its limits. The aforementioned plots are all presented in Appendix 6. Evidently, the 

HNP plot is more informative than all the other pooling methods investigated in this phase, 

yet, it has rarely been employed in practice. This might be attributed to the fact that the 

Taguchi approach which permeates the DOE applications in Manufacturing does not 

emphasise the use of graphical tools (Antony, 2006). Consequently, despite its simplicity and 

powerfulness, the HNP plot is not presented in any of the popular Taguchi DOE books such 

as Peace (1993), Ross (1996) and Roy (2001). It is difficult to understand why analysing 

unreplicated two-level Taguchi type experiments should not be undertaken using the HNP. 

The importance of using it may become clearer by calling attention to some of the limitations 

of what appears to be the most commonly used pooling strategy in practice. As the review in 

Chapter 3 review showed, most practitioners  when analysing unreplicated experiments 

adopted a rule of thumb approach whereby the effects are pooled until the error combined 

degrees of freedom is nearly half the available ones (Logothetis and Wynn, 1989; Roy, 2001). 

Apparently, this is being practiced on the basis that “when a number of factors are included in 

an experiment, the laws of nature make it probable that half of them would be more influential 

than the rest” (Roy, 2001). In this regard, it is not clear whether the “laws of nature” would 

account for the impact of the employed OA in implementing such a rule. As already 

discussed, the assumption that half of the effects are inert can be translated in a considerably 

different number of pooled effects depending on the employed OA. It is not clear why prior 

knowledge regarding the percentage of active or inert effects is needed at all. Surely such 

knowledge is not necessary when the HNP plot is used. What is needed is to visually inspect 
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the relative magnitudes of the plotted effects and locate a logical breaking point distancing the 

strong effects from those that are marginal or small. Although this may invoke an element of 

subjectivity in deciding which effects “fall off” the line, it can be circumvented by 

accompanying the use of the HNP plot with the ANOVA. The latter can be used to formally 

test the significance of the selected effects. If the experimenter is not sure whether certain 

points should be pooled or not, it is advisable to assess the impact of their inclusion and 

preclusion on the ANOVA result. In parallel, the subject knowledge should be utilised to 

examine the practical plausibility of pronouncing such effects as significant. 

6.3.1 Sub-Phase-1  

The ANOVA for the average and the ln S
2
 of the Power are shown in Table 6-3. With 

regard to the average, both the fractional OA and the pooling method factors were significant 

at the 5% level. As was the case in Phase-1, the latter was more influential than the former, its 

PC being 64.15%. The error PC was only 3.26%. The main effects plot shown in Figure 

‎6-6(a) exhibits similar patterns (relative values) of Power to those that were observed and 

discussed in phase-1 albeit with different magnitudes.   

With respect to Power robustness, the ANOVA of its ln S
2
 (Table 6-3 (b)) identified the 

fractional OA as significant at α = 0.05. The p-value of the pooling method factor was very 

close to 0.05 indicating a potential significance. Collectively, the two factors explained 

65.13% of the Power’s ln S
2
 variability rendering an error PC of 34.87 %. This implies that 

while controlling the fractional OAs and pooling methods can reduce the average Power 

variability by 96.74%, it can only reduce the individual Power values variation around their 

average by 65.13%. One possible reason for this is that when using certain OAs and pooling 

methods, the variation of the individual values of Power around their average is inherently 



121 

 

high. Another plausible reason is the existence of other, perhaps unknown or uncontrollable, 

sources of variation that were not systematically examined in this experiment. 

Table ‎6-3: Sub-Phase-1 ANOVA for Power’s (a) Average and (b) ln S
2
 

 

 

 

 

 

 

 

 

  
(a) (b) 

Figure ‎6-6: Sub-Phase-1 Main Effects Plots for Power’s (a) Average and (b) ln S
2 

As is evident from Figure ‎6-6 (b), the highest variability in Power was associated with the 

L8 followed by the L12. This confirms the results of Phase-1 regarding the necessity of 

avoiding the use of the L8 to attain Power robustness (see Figure ‎6-1). Among the examined 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value PC (%) 

A 0.200761 2 0.100381 86.02669 < 0.0001 32.59 

B 0.396368 5 0.079274 67.93773 < 0.0001 64.15 

Residual 0.011669 10 0.001167 
   

Total 0.608798 17 
    

   
(a) 

   

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value PC (%) 

A 7.758595 2 3.879297 11.28774 0.0027 42.21 

B 5.557597 5 1.111519 3.23423 0.0539 22.92 

Residual 3.436736 10 0.343674 
   

Total 16.75293 17 
    

   
(b) 
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pooling methods, the PU procedure was associated with the highest variance whereas the UC 

method was the most robust. The agreement between the results of Phase-1 and its sub-phase 

can be explained by reverting to the L8 and L12 HNP plots presented in Figure ‎6-5. Although 

extracted from full factorial designs with equal active effect sizes, the plots show that the 

fractional designs’ active effects were of different sizes. It was to alleviate the impracticality 

issue pertaining to the use of active effects of equal sizes in phase-1 that the sub-phase-1 

experiment was conducted. The extraction process in phase-1 circumvented this problem, to a 

large extent, by yielding active effects of different sizes. Consequently, the results of the sub-

phase-1 experiments were in line with the phase-1 findings. 

6.4 Phase-2 

The factors declared significant at the 5% level using the ANOVA are shown in Table 6-4. 

The number of studied two-factor interactions (C) was the most influential factor as it 

accounted for 55% of the Power variability. The joint effect of the fractional OAs and the 

pooling methods (A) had a PC of 20.43% whereas the PCs of the number of active effects (B) 

and their sizes (D) were 2.79% and 4.5% respectively. The controllable-noise factors’ 

interaction (AC) explained 9.76% of the Power variability. As shown in Figure ‎6-7, there was  

Table ‎6-4: Phase-2 ANOVA for Power 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value PC (%) 

A 2.10699 6 0.351165 116.7914 < 0.0001 20.43 

B 0.291654 2 0.145827 48.49958 < 0.0001 2.79 

C 5.642464 2 2.821232 938.293 < 0.0001 55.13 

D 0.469542 3 0.156514 52.05381 < 0.0001 4.50 

AC 1.03355 12 0.086129 28.64507 < 0.0001 9.76 

Residual 0.67953 226 0.003007 
   

Total 10.22373 251 
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an opportunity to attain Power robustness against the variability transmitted from the number 

of active two-factor interactions noise factor by avoiding the use of the L8 OA. In fact, the top 

three lines of the plot, associated with the uses of the L12 and L16, exhibit less fluctuation than 

the remaining lines that represent different applications of the L8. Thus, the use of the latter 

increases the variability that emanates from the changes in the number of active two-factor 

interactions.  

The Power response was well represented by the significant effects as they collectively 

explained 92.62% of its variability. The main effects plot of the significant factors is depicted 

in Figure ‎6-8. Again increasing the number of active effects decreases the Power while 

increasing their sizes increases it. Moreover, the larger the number of active two-factor 

interactions the lower the Power. In fact, increasing the number of active two-factor 

interactions from 2 to 3 was accompanied by a substantial decrease in the Power. In no small 

 

Figure ‎6-7: Phase-2 AC interaction Plot for Power 

part, this is due to the influence of the partial aliasing associated with most of the cases 

examined in this phase. In fact, except for the case where the L16 was used in conjunction with 

the HNP plot, all the investigated levels of factor A involved partial aliasing. The larger the 

number of active two-factor interactions, the larger the influence of partial aliasing. As 
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illustrated in Chapter 4, partial aliasing can seriously impact both the estimated parameter 

effects and their variances. Consequently, while the effects of the true active parameters may 

be camouflaged, many spurious effects may be pronounced significant.   

In terms of the joint effect of the fractional OAs and the pooling methods, the use of the 

L16 analysed using the HNP plot attained the highest Power. Bearing in mind the results of 

phase-1, one can infer that the L16 always outperforms both the L12 and the L8 especially when 

analysed using the HNP plot. This is not only valid in the cases where only main effects are 

active but also when some two-factor interactions are significant. Thus, the results of this and 

the previous phase provide empirical evidence to support Snee’s (1985) claim that the L16 is 

the most useful fractional design for studying 5, 6, 7 and 8 factors. With regard to the use of  

 

Figure ‎6-8: Phase-2 Main Effects Plot for Power 

the L12 in the presence of active two-factor interactions, there has been some controversy in 

the DOE literature. For example, Daniel (1976) suggested that it should only be used when no 

interaction is expected to be active. Montgomery et al (1997) criticised the design as having a 

complex aliasing structure while Snee (1985) offered an opposing view. Based on his 

practical applications of the L12 and other Placket and Burman (1946) designs, he stated that 
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“these designs do a good job of identifying those variables that have important effects.” 

(Snee, 1985). Considering the studied experimental circumstances, the results of this phase 

are in agreement with Snee’s (1985) view. In fact, when analysed using the BSS procedure, 

the L12 attained a Power level close to that achieved with the L16 when analysed using the 

HNP plot. Its performance is, by and large, dependent upon the number of active two-factor 

interactions, their sizes and the employed pooling method. The results of the review carried 

out in Chapter 5 revealed that in 77% of the reviewed experiments with active interactions, 

the number of two-factor interactions was 2 or less. Moreover, their sizes were rarely larger 

than the main effects. Under these conditions, the L12 showed a satisfactory performance 

especially when analysed using the BSS method. In fact, the latter outperformed the SWR 

method not only when analysing the L12 data but also the L8. One reason for this, is the 

inflated MSE associated with the first step in SWR. The other reason relates to the impact of 

aliasing discussed in Chapter 4. To illustrate this, consider the L12 Response 2 data presented 

in Table 6-2 (b). These were extracted from a full factorial design where the effects A, B, C, 

D, BC and CD were active. Using the BSS procedure the true effects were detected and the 

fitted model was   

Y = 0.011+2.99A+2.02B+2.51C+2.62D+3.02BC+3.02CD (6.2)  

Note that although the effects were intended to be of equal sizes, their L12 estimates differ. 

Analysing the data using SWR, the inert interaction DE was the only detected effect. This was 

due to the aliasing impact on the estimated effect sizes. Consider the first step of the SWR 

method where the variable that has the largest effect (coefficient) is selected for a model with 

one independent variable. As candidates for selection, Table 6-5 shows the coefficient of each 

of the true active effects (equation 6.2) along with the DE interaction when selected for such a 

model. Clearly, the effects were seriously distorted by the impact of aliasing. For example, as 

shown in the L12 aliasing array presented in Table 4-9, variable A is aliased with the BC and 
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Table ‎6-5: SWR First Step Estimates of the L12 Data True Active Effects and the DE interaction 

Variable   A   B   C   D   BC   CD   DE 

Coefficient 0.98 1.01 2.51 1.61 1.15 1.35 -3.51 

CD interactions with an aliasing coefficient of -0.333. Thus, as discussed in Chapter 4, 

excluding these from any model that contains A, should reduce the latter’s coefficient by an 

amount equivalent to the result of multiplying the aliasing coefficient by their true coefficients 

i.e. ((-0.333x3.02)+(-0.333x3.02))= -2.01. Consequently, the coefficient of A was reduced to 

0.98 (2.99-2.01). The same argument can be used to justify the distorted coefficients of the 

remaining variables. As C was not aliased with any of the true active effects (see Table 4-9), 

its coefficient was not changed. However, as a consequence of its aliasing with the active 

effects A, B, C and BC, the coefficient of the inert interaction DE was overestimated. Being 

the largest effect in the first step of SWR, it was mistakenly selected as significant. This 

prevented the selection of the true active effects in the subsequent steps. The above problem is 

also applicable to the FS procedure which was proposed by Hamada and Wu (1992) for 

analysing the L12 when parameter interactions are suspected of being active. The BSS method 

dealt with the problem of aliasing by collectively selecting the six true active effects to 

constitute the best fitted model of size 6 with an R
2
adj of 0.99. As illustrated in Chapter 4, 

unless excluded from the fitted model, the active aliased effects impart no bias on the 

variables included in the model. By examining all the possible models of various sizes, the 

BSS is likely to find a model comprising all the true active effects. Despite the impact of 

aliasing, such a model would not only render reliable estimates of the effects but also a high 

R
2

adj. Of course, models of smaller sizes than the true one are expected to be impacted by 

aliasing. For instance, in the above example, the models of size 1 will suffer from the same 

problem encountered in the SWR first step. However, instead of yielding one model as was 

the case in SWR, BSS provides the experimenter with a large number of candidate models. 
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Consequently, the challenge is to pick the right one from those fitted. This was dealt with, in 

this study, by utilizing the knowledge of the size of the “true” model simulated in the full 

factorial data. However, in practice, subject knowledge can be utilised to assess the 

plausibility of the fitted models. Moreover, a model should not be simply preferred over 

another for merely having a larger R
2

adj. To be selected, the model must make practical sense 

and its increase in the R
2

adj value is bound to be appreciable. A further noteworthy aspect of 

the BSS is that it is computationally intensive. This should not be a problem as many software 

packages are capable of handling 30 or more independent variables which is enough to cover 

a wide range of engineering applications. 

The L8 performance exhibited a substantial reliance on the employed augmenting 

methods. In fact, when the design was augmented using the BM, it attained a higher Power 

than the level achieved with the DO method. In the latter, the augmenting runs were selected 

so as to maximise the determinant IXT
XI, 

where X is the model array. Thus, the technique 

aimed to minimise the effects’ standard deviation ((MSE*Cjj)
1/2

) by reducing the size of its 

design related component Cjj. No account was taken of the extent, or even the existence of 

dependence between the response (Y) and the parameters that resemble X. On the other hand, 

the BM relied on the relationship between the studied response and the independent variables 

in deciding the augmenting runs. As discussed in Chapter 5, when used with the L8 the BM 

firstly fitted all the possible models of size 7 or less. Then, all the possible augmenting runs 

were identified. The entries of each were then substituted into each of the developed models 

and the standard deviation of the resultant predicted responses was obtained. Consequently, a 

standard deviation value was recorded for each of the candidate runs. The larger this value, 

the more influential the run in discriminating between the potential models. Therefore, the 

candidate runs with the highest standard deviations were selected for augmentation. Since the 
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impact of aliasing was manifested in estimating the coefficients of the fitted models, the BM 

accounted for both the studied parameters’ aliasing and their relationship with the response in 

identifying the augmenting runs. By so doing it outperformed the DO method. This should not 

be misread as suggesting that the BM handled aliasing as efficiently as the DO method. 

Instead, the intention is to highlight that dealing with the two aspects less perfectly is better 

than confining the emphases to the optimising of a single aspect.  As the results of this phase 

showed, the disadvantage associated with the BM augmentation rendering a smaller IXT
XI 

value than that observed with the DO method was not only offset but also outweighed by the 

benefits gained from the utilisation of the relationship between the response and the studied 

parameters in selecting the augmenting runs. The BM has a further advantage over the DO 

method. Unless the true model is known, which is seldom the case in practice, the latter is 

likely to demand a large number of augmenting runs. For example, if 7 factors were studied 

using an L8 and all the possible two factor interactions were needed to be estimable, then 
7
C2 

or 21 additional runs would be necessary. On the other hand, using the BM, any affordable 

number of augmenting runs may be selected by choosing from the candidate runs associated 

with the largest standard deviations. 

6.4.1 Sub-Phase-2 

In this sub-phase the settings of three factors of phase-2, namely, the number of active 

main effects (B)  and two-factor interactions (C) and their sizes (D), were specified based on 

six published experiments. Hence only one factor was examined in this sub-phase. This was 

the joint effect of the OAs and pooling method for which the ANOVA is shown in Table 6-6. 

Clearly, the factor is significant at α = 0.05 explaining 47.41% of the Power variability. 

Consequently, the error PC was 52.59% which is rather high. This should not be surprising in 
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Table ‎6-6: Sub-Phase-2 ANOVA for Power 

 

 

 

 light of the phase-2 results, which demonstrated that Power cannot be well represented by 

solely considering factor A as it accounted for no more than 20.42% of its variability. In fact, 

the factors that exhibited a remarkable effect on the Power such as the number of active two-

factor interactions were treated as noise sources of variation. Accordingly, their impact was 

predominantly reflected in the variation of the individual values of Power around their 

averages, which contributed largely to the error variance estimate in such a single factor 

experiment. This does not only explain why the error PC was high but also indicates the 

absence of degrees of freedoms to study the ln S
2
. In fact, the latter is confounded with the 

average Power error variance. Viewed differently, for each level of factor A, ln S
2 

consolidates the six replications into one value rendering an unreplicated response that cannot 

be examined using ANOVA in a single factor experiment. However, as was the case with the 

average Power, the impact of Factor A on ln S
2
 can be investigated graphically. The plots of 

factor A main effects on the average Power and its ln S
2
 are shown in Figure ‎6-9 (a) and (b) 

respectively. Clearly factor A exhibited a similar pattern of average Power to the one 

observed and discussed in phase-2. Regarding the Power ln S
2
, the plot demonstrates that the 

highest level of Power variability was associated with the use of the L8. In fact, less variability 

was observed when the latter was augmented using the BM. Moreover, the highest level of 

robustness was attained when the L16 and L12 were respectively used in conjunction with the  

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value PC (%) 

A 1.213865 6 0.202311 7.159139 < 0.0001 47.41 

Pure Error 0.989069 35 0.028259 
   

Total 2.202934 41 
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(a) (b) 

Figure ‎6-9: Sub-Phase-2 Main Effect Plots for Power’s (a) Average and (b) ln S
2
 

HNP plot and the BSS method. To a large extent, this is in line with the implications of the 

controllable-noise interaction plot displayed in Figure 6-7, which shows that the variability 

transmitted from the changes in the number of active two-factor interactions can be minimised 

by using the L16 and the L12. The results of this sub-phase are in agreement with the findings 

of phase-2. Again, this is largely due to the fact that after reducing the size of the simulated 

experiments, the effects that were intended to be of equal sizes differed, rendering similar 

circumstances to those simulated in this sub-phase.  

6.5 Phase-3 

 Using ANOVA to analyse the results of this phase, the significant effects at an α level of 

0.05 are shown in Table 6-7. The fractional OAs (A) and the pooling methods (C) were the 

two most influential factors. The number of active main effects (D) and their sizes (E) 

respectively accounted for 18.08% and 17.74% of the Power variability. Collectively, the 

effects explained 97.76% of the variability implying a strong representation of the response. 

Although, associated with the smallest PC (2.72%), the controllable-noise factors’ interaction 

AE provided an insight with regard to attaining Power robustness. As shown in Figure ‎6-10,  
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Table ‎6-7: Phase-3 ANOVA for Power 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value PC (%) 

A 0.267936 1 0.267936 736.6949 < 0.0001 26.11 

B 0.082872 1 0.082872 227.8584 < 0.0001 8.05 

C 0.257176 1 0.257176 707.1104 < 0.0001 25.06 

D 0.185653 1 0.185653 510.4577 < 0.0001 18.08 

E 0.182867 3 0.060956 167.5986 < 0.0001 17.74 

AE 0.028937 3 0.009646 26.52136 < 0.0001 2.72 

Residual 0.019276 53 0.000364 
   

Total 1.024717 63 
    

the response curve associated with the L18 was flatter than that representing the L9; hence the 

variance transmitted to the Power as a result of the changes in the sizes of the active effects 

can be minimised by using the L18.   

The main effects plot of the factors studied in this phase is shown in Figure ‎6-11. Clearly, 

the best level of Power was attained when the L18 was analysed using the PU method with 

regression ANOVA in the cases where the number of active main effects was 2 and the size of 

each was 3σ. Regarding factors A, D and E, the same argument presented in phase-1 

regarding the relationship between the Power and the size of the used OA, the number of 

active factors and their size is applicable here. Moreover, the reasons why the PU method 

outperformed the PD procedure have already been addressed.   

 

Figure ‎6-10: Phase-3 AD interaction Plot for Power 
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Figure ‎6-11: Phase-3 Main Effects Plot for Power 

When the columns of the L18 and the L9 were decomposed into single degree of freedom 

components using the L-Q system and analysed using the regression ANOVA, the attained 

Power was larger than that associated with the use of the standard ANOVA. To explain this, 

consider the L9 data presented in Table 6-8. These were simulated so that the 3 main effects 

A, B and D were active. More specifically, the linear components of the three main effects 

along with the quadratic components of the parameters B and D were simulated to be 

significant. The conventional L9 data (Table 6-8 (a)) were firstly analysed using the PU 

method in conjunction with the standard ANOVA. The results of the first and second steps of 

this analysis are shown in Table 6-9. These were performed by firstly pooling the smallest 

effect C, and testing the significance of D, the next larger parameter (Table 6-9 (a)). As the 

latter was not detected at the 1% significance level, it was pooled with parameter C to form 

the error estimate in the second step (Table 6-9 (b)). Clearly, both A and B were identified as 

significant at α =0.1. However, factor D was missed. Using α =0.05, none of the parameters 

was found significant in the second step of the PU method. This was also the case in its last 

step where the next larger effect B was pooled with D and C to estimate the error. 

Consequently, using this approach, there were two possible outcomes depending on the α  
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Table ‎6-8: Simulated Data for the L9 (a) in Its Conventional Form and (b) After Decomposition 

  
A B C D Resp. 

  

  

1 1 1 1 4.514673 

  

  

2 1 2 2 5.643341 

  

  

3 1 3 3 7.900677 

  

  

1 2 2 3 6.772009 

  

  

2 2 3 1 10.15801 

  

  

3 2 1 2 9.029345 

  

  

1 3 3 2 6.772009 

  

  

2 3 1 3 7.900677 

  

  

3 3 2 1 11.28668 

  

    

(a) 

    Al Aq Bl Bq Cl Cq Dl Dq Resp. 

-1 1 -1 1 -1 1 -1 1 4.514673 

0 -2 -1 1 0 -2 0 -2 5.643341 

1 1 -1 1 1 1 1 1 7.900677 

-1 1 0 -2 0 -2 1 1 6.772009 

0 -2 0 -2 1 1 -1 1 10.15801 

1 1 0 -2 -1 1 0 -2 9.029345 

-1 1 1 1 1 1 0 -2 6.772009 

0 -2 1 1 -1 1 1 1 7.900677 

1 1 1 1 0 -2 -1 1 11.28668 

    

(b) 

    
 

level used in the PU method. The first was to overlook one of the active parameters which 

was the case when α =0.1 was used whereas the second was to declare none of the true 

parameters as active which was associated with using α =0.05. On the other hand, the true 

active parameters were all declared significant at α =0.05 in the second step of the PU 

procedure when the regression ANOVA was used with the decomposed L9 data (Table 6-8 

(b)) as shown in Table 6-10. Clearly, this came at the expense of falsely identifying the linear 

component of parameter C as important. However, this is, by far, less serious than 

overlooking all or even one of the true active parameters as was the case when the standard 
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Table ‎6-9: The ANOVA of the Two First Steps of PU Method Applied to the Conventional L9 Data 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value 

p-

Value 

A 17.26831 2 8.634156 8.714286 0.1029 

B 13.87127 2 6.935633 7 0.1250 

D 3.680132 2 1.840066 1.857143 0.3500 

Residual 1.98161 2 0.990805 
  

Total 36.80132 8 
   

  
(a) 

  

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value 

p-

Value 

A 17.26831 2 8.634156 6.1 0.0610 

B 13.87127 2 6.935633 4.9 0.0840 

Residual 5.661742 4 1.415435 
  

Total 36.80132 8 
   

  
(b) 

  

ANOVA was employed. One reason why the regression ANOVA outperformed the latter 

relates to its ability to deal with the components of each of the studied effects separately. In 

fact, the standard ANOVA is not flexible in the sense that the two degrees of freedom 

associated with each three-level parameter are treated as one unit. They are either collectively 

pooled with the error or included with the tested effects. When the linear component is, say, 

the only active element of a three-level parameter, it is not wise to include the quadratic 

component with the tested effects. One reason for this is that by doing so the dfe will be 

reduced thereby increasing the MSE. In fact, it is clear that the MSE obtained using the 

regression ANOVA in Table 6-10 was smaller than its two corresponding values that were 

rendered in the standard ANOVA (Table 6-9). Of course, the larger the MSE the smaller the 

effects’ calculated F-statistics and the smaller the Power. A further negative consequence of 

failing to incorporate the inert component of a three-level parameter with the error is that it 

increases the parameter degrees of freedom. Consequently, the numerator degrees of freedom 

(υ1)  associated with the F-statistic is increased. Generally, given the value of α and the dfe 

(υ2), the larger the υ1 the larger the tabulated F value and the smaller the Power.  
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Table ‎6-10: The ANOVA of the Second Step of PU Method Applied to the Decomposed L9 Data 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value 

p-

Value 

Al 17.19754 1 17.19754 243 0.0041 

Bl 10.40345 1 10.40345 147 0.0067 

Bq 3.467817 1 3.467817 49 0.0198 

Cl 1.910838 1 1.910838 27 0.0351 

Dl 1.910838 1 1.910838 27 0.0351 

Dq 1.769294 1 1.769294 25 0.0377 

Residual 0.141544 2 0.070772 

  Total 36.80132 8 

   
The review in Chapter 5 revealed that the linear element was the only significant 

component in 52% of the cases that investigated three-level factors. If the standard ANOVA 

is used in their analysis, then for a linear effect to be detected it must be sufficiently large to 

not be masked by the combined impact of the inflated MSE and the increased υ1. Otherwise, 

misleading conclusions regarding it are likely to be arrived at. One implication of this is that 

when analysing three-level experiments, sole reliance on the standard ANOVA should be 

avoided. In fact, the analysis can always be enhanced by accompanying the standard ANOVA 

with a regression one so that each component of the studied parameters can be addressed 

separately. Unfortunately, such an aspect is rarely, if ever, mentioned in the DOE literature. In 

fact, while most of the texts emphasise the use of the response surface method, Wu and 

Hamada’s (2000) DOE book seems to be the only one, in which the use of regression 

ANOVA along with the L-Q decomposition system is mentioned as an alternative or at least a 

complement to the standard ANOVA in the context of analysing three-level experiments. 

However, no discussion or empirical evidence regarding which approach outperforms the 

other, especially in the absence of active parameters’ interactions, was provided. One 

plausible reason for this is that, compared with two-level experiments, the analysis of three-

level trials is accorded considerably less attention in the DOE literature.   
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6.5.1 Sub-phase-3 

The average Power ANOVA (Table 6-11 (a)) shows that all the studied factors were 

significant at α = 0.05. As was the case in phase-3, the fractional OAs (A) were more 

influential than the pooling methods factor (C) which, in turn, was more influential than the 

type of ANOVA used (B). Taken together these factors explained 95.08% of the average 

Power. Their main effects plot is depicted in Figure 6-12 (a). The factors exhibited the same 

pattern of effects to that observed in phase-3, however, the fractional OAs was the only factor 

that significantly impacted the Power’s ln S
2
 (Table 6-11 (b)). The error, comprising all the  

Table ‎6-11: Sub-Phase-3 ANOVA for Power’s (a) Average and (b) ln S
2
 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value 

p-

Value 
PC (%) 

A 0.047586 1 0.047586 80.94599 0.0008 56.21 

B 0.012561 1 0.012561 21.367 0.0099 14.32 

C 0.021115 1 0.021115 35.91771 0.0039 24.55 

Residual 0.002352 4 0.000588 
   

Total 0.083614 7 
    

   
(a) 

   

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value 

p-

Value 
PC (%) 

A 7.800855 1 7.800855 44.67154 0.0005 86.19 

Residual 1.047762 6 0.174627 
   

Total 8.848617 7 
    

   
(b) 

   

excluded factors, accounted for only 13.81% of the ln S
2
 variability.  As portrayed in Figure 

6-12 (b), the use of the L9 was associated with the highest variability of the individual values 

of the Power around their averages. To a certain extent, this is in line with the outcome of the 

controllable-noise interaction (Figure ‎6-10) which indicates that the Power variability can be 

reduced by using the L18 design. As was the case with the previous sub-phases, the results of 

this one are in agreement with those arrived at in phase-3. 



137 

 

 
           (a) 

 
         (b) 

Figure 6-12: Sub-Phase-3 Main Effects Plots for Power’s (a) Average and (b) ln S
2
 

6.6 Phase-4 

All the studied main effects along with two controllable-noise factor interactions were 

significant at the 5% level (see Table 6-12). Collectively, they explained 89.90% of the Power 

variability; so the error PC was only 10.10%. The most influential factor was the fractional 

OAs (A) followed by the size of the active effects (E). The number of active two-factor 

interactions (D) explained 14.47% of the Power variability. This was very close to the PC 

associated with the number of active main effects (C).  

The controllable-noise factor interactions AD and AE are plotted in Figure 6-13. Clearly, 

the variation transmitted to the Power as a result of the changes in the number of active two-

factor interactions as well as the size of active effects can be reduced by using the L18. This is 

because the line representing it in both interaction plots was flatter than that associated with 

the L9. The main effects plot of the factors studied in this phase is shown in Figure 6-14. For 

the same reasons presented in the previous phases, increasing the number of active main 
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effects and two-factor interactions decreases the Power. However, increasing the size of the 

active effects decreases it.  

Table ‎6-12: Phase-4 ANOVA for Power 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

PC 

(%) 

A 0.364212 1 0.364212 168.4479 < 0.0001 26.85 

B 0.08673 1 0.08673 40.11267 < 0.0001 6.27 

C 0.181476 1 0.181476 83.93251 < 0.0001 13.30 

D 0.197358 1 0.197358 91.27795 < 0.0001 14.47 

E 0.242435 3 0.080812 37.37533 < 0.0001 17.50 

AD 0.096877 1 0.096877 44.80533 < 0.0001 7.02 

AE 0.067005 3 0.022335 10.32992 < 0.0001 4.49 

Residual 0.112433 52 0.002162 
   

Total 1.348526 63 
    

 

 

Figure 6-13: Phase-4 AD and AE interactions Plots for Power 

 

Figure 6-14: Phase-4 Main Effects Plot for Power 
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The L18 was associated with a higher Power level than that of the L9. Moreover, for the 

same reasons as given in phase-2, the BSS method outperformed the SWR procedure. Despite 

being frequently used in practice, the L18 and L9 were rarely decomposed into single degree of 

freedom elements and analysed using either of these. This is not only due to the lack of 

coverage of these approaches in the DOE literature but also to the ill-treatment that the 

analysis of the three-level trials received. The inconsistency of dealing with the latter analysis 

in some of the Taguchi DOE books is a case in point. For example, whilst Roy (2001) used 

only the standard ANOVA for analysing three-level experiments, Peace (1993) ignored its use 

altogether. Ross (1996) barely considered three-level trials, two-level ones being 

predominantly discussed. With regard to conventional DOE, again Wu and Hamada’s (2000) 

book appears to be the only one that theoretically highlights the importance of using the L-Q 

system to decompose three-level OAs in the presence of active two-factor interactions. For 

example, conventionally it is not possible to examine interactions when four three-level 

parameters are studied using the L9. However, Wu and Hamada (2000) showed that by 

decomposing the array using the L-Q system, the degrees of freedom associated with the inert 

components of the studied parameters can be exploited to examine some two-factor 

interactions. They also mentioned that both SWR and BSS could be used to detect the active 

effects in such cases; however, they only employed the former. Moreover, there was no 

assessment of how well these pooling methods performed or which one was more powerful 

than the other. In fact, no research has been found that empirically investigated this data 

analysis approach. To this end, the results of this phase showed empirically that the success of 

this approach depends substantially on the fractional OA employed, the number of active 

main effects and two-factor interactions as well as their sizes. As per, the pooling methods, it 

was revealed that BSS is more powerful than SWR.  
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6.6.1 Sub-Phase-4 

None of the studied factors were found to be significant in the average Power ANOVA at 

the 5% level (see Table 6-13 (a)) even though the factors collectively explained 98.63% of the 

variability. The reason for not declaring them significant is that the dfe is only one. Since the 

tabulated value of F0.05,1,1 = t
2

0.025,1, it follows that the former suffers from the same robustness 

problem as the latter when there is only one degree of freedom associated with the error. 

Consequently, care should be exercised when using the ANOVA in such cases.  

The main effects plot of the fractional OAs and the pooling methods factors is presented in 

Figure 6-15 (a). As was the case in phase-4, the best performance was attained when the L18 

was analysed using the BSS method.  With regard to the variability of the individual values of 

the Power around their averages the ANOVA in Table 6-13 (b) implies that the employed 

fractional OA was the only significant factor at α=0.05. Moreover, as shown in Figure 6-

15(b), the highest level of ln S
2
 was observed with the L9. This confirms the inferences drawn 

from the controllable-noise interactions plots displayed in Figure 6-13. 

Table ‎6-13: Sub-Phase-4 ANOVA for Power’s (a) Average and (b) ln S
2
 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value 

p-

Value 
PC (%) 

A 0.061413 1 0.061413 160.6821 0.0501 72.82 

B 0.022018 1 0.022018 57.60719 0.0834 25.81 

Residual 0.000382 1 0.000382 
   

Total 0.083813 3 
    

   
(a) 

   

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value 

p-

Value 
PC (%) 

A 4.95911 1 4.95911 29.51829 0.0322 90.48 

Residual 0.336003 2 0.168001 
   

Total 5.295112 3 
    

   
(b) 
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          (a) 

 
           (b) 

Figure 6-15: Sub-Phase-3 Main Effects Plots for Power’s (a) Average and (b) ln S
2
 

6.7 Types I and II Errors and Their Consequences 

The importance of using the above recommended fractional OAs and pooling methods can 

be illustrated by examining the consequences of failing to detect significant effects and falsely 

identifying inert ones as significant. As these are dependent upon the objectives of the 

experiment and the approach adopted in its design and analysis, it is important to distinguish 

between the conventional and Taguchi’s approach to experimental design. As discussed in 

Chapter 2, the former is sequential in that the initial stage aims to identify the most influential 

factors so that their effects are studied in detail in the subsequent characterisation and 

optimisation experiments. On the other hand, Taguchi’s approach utilises a one-shot 

experiment followed by confirmation runs. Falsely detecting some effects as significant 

should be of little concern when the conventional approach is adopted as these are likely to be 

discovered and eliminated at subsequent experimentation stages. However, missing an active 

factor at the screening stage can have serious consequences. In fact, unless the 

experimentation team decides to augment the initial experiment with further runs so that the 
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missed effects are detected, the conclusions drawn from the subsequent experiments can be 

seriously distorted.  

On the other hand, falsely detecting effects as significant when using Taguchi’s approach 

has several consequences. Firstly, faulty conclusions relating to the cause and effect 

relationship between the process parameters and the response may be drawn. Consequently, 

the opportunity of gaining a better understanding of the process is lost. As previously pointed 

out, this is one of the main purposes of using DOE. Secondly, funds may be appropriated to 

control factors that have marginal effect on the response thereby unnecessarily incurring an 

additional cost. Moreover, as only some of the marginal effects would be pooled, the estimate 

of the error variance which represents the variation of the response around its average would 

be inaccurate. Since variance reduction is a main target in any process improvement 

endeavour, failure to obtain a reliable estimate of it can seriously compromise the attainment 

of the intended performance level. A further issue is that, unless the “best” prescribed 

combination of factor levels is identical to one of those performed in the experiment, its 

corresponding response value must be predicted. The prediction equation should only involve 

the detected significant effects. Incorporating falsely flagged ones would result in an 

overestimation of the predicted results which may lead to a disappointing confirmation run 

when actually the results would have been validated had the predicted results not been biased 

by the inclusion of marginal effects. The same problem may be encountered as a result of 

using an inaccurate estimate of the error variance in constructing the confidence interval 

around the predicted response at the “best” settings.  

 A more crucial problem than falsely detecting effects as significant, especially in one-shot 

experiments, is the failure to detect active factors or interactions. This again could lead to a 
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failure in confirming the experimental results thereby necessitating further experimentation. 

Otherwise the attainment of the intended process improvement will be impaired.  

To reduce the impact of committing Types I and II errors, the recommended fractional 

OAs and pooling methods should be used and whenever possible,  sequential experimentation 

should be adopted so that the conclusions drawn at one stage can gradually improve in the 

following stage as new data become available.  

6.8 Summary  

Unreplicated fractional factorial designs provide a formal cost effective way of improving 

products and processes. Their ability to identify the “real” active effects as would be obtained 

from performing full factorial trials depends on several variables. Some of these are 

controllable such as the fractional OAs that are used and the pooling methods applied. In 

contrast, however, others such as the number of active main effects and interactions and their 

sizes are uncontrollable (noise). The simulations performed here allowed the impact of these 

variables on the Power of the fractional designs to detect the true active effects to be 

examined using DOE techniques. This not only allowed the statistical significance testing of 

each variable but also the quantification of its explained variance. More importantly, it 

enabled the controllable-noise interactions to be exploited to desensitise the impact of the 

noise variable on the Power. To this end, it was found that the use of small designs such as the 

L8 and the L9 should, as far as possible, be avoided to attain Power robustness. It is well 

established in statistics that small designs are associated with higher variance than that of 

large ones. However, this relates to the size of the estimated MSE which affects the average 

Power. It should not be confused with the variation of the individual Power values around 

their averages, which can only be reduced by exploiting the interactions between the noise 
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and the controllable factors. In fact, to date, DOE research has tended to focus on the average 

Power not its variability. In this study, this gap was bridged by using the DOE technique. 

In comparing the performance of fractional OAs with full factorial ones, the classical view 

is only to emphasise the impact of aliasing. In fact, this merely represents one way in which 

the impact of the fractional OAs factor may be manifested. Of course the other way relates to 

the size of the OA. As the results of this study revealed, the success of certain fractional OAs 

in detecting the true active effects involves an element of complexity. This is due to the fact 

that reducing the size of an experiment may result not only in distorting the actual effects’ 

sizes but also in requiring data transformation. The consequences of the former can be very 

serious, especially in cases where the true active effects are underestimated whilst the inert 

ones stand out as potentially active. While the impact of this cannot be eliminated it can be 

reasonably reduced by appropriately choosing the fractional OAs as well as the pooling 

methods. For example, in the context of two-level experiments, the use of the L16 with the PU 

method and the HNP plot is recommended. In fact, the latter is more informative than all the 

other pooling methods as it enables the relative magnitude of the studied effects to be 

investigated visually. Moreover, it has the capability of revealing the possible need for data 

transformation. If the available time and resources limit the number of trials to less than 16, 

the use of the L12 is suggested. In this instance, the HNP plot and the PU method should only 

be used if no two-factor interaction is suspected. If this is not the case, BSS should be 

employed. When using the L8, it must be borne in mind that lower and inconsistent levels of 

Power are expected. Moreover, if augmenting is necessary, it is advisable to use BM as it 

outperformed the DO method. 

With regard to three-level designs, the L18 was associated with a high and robust level of 

Power and hence should, whenever possible, be used. Irrespective of which OA is chosen, the 
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decomposition of each parameter’s column into single degree of freedom components using 

the L-Q system is recommended. Of course, when qualitative factors are studied, it is 

necessary to examine the extent to which the interpretation of each component as a 

comparison between certain level-averages (see Appendix 2) makes practical sense. The 

decomposed designs should be analysed using the BSS procedure. It is instructive to 

accompany the use of the latter with the SWR analysis and examine the reasons behind any 

results’ disagreements. In fact, Tukey (1969) wisely advised “a body of data can and usually 

should be analyzed in more than one way”. Consequently, it is always advisable to analyse the 

experimental data using more than one pooling method. When several methods pronounce the 

same parameters as active, especially at α=0.05, the experimenter can have more confidence 

in the drawn conclusions. However, when certain effects are declared active only by some of 

the pooling methods, subject knowledge can be utilised to assess the practical plausibility of 

their significance. Otherwise, one-factor-at-a-time confirmation trials may be performed 

varying only the settings of the suspected parameters.   

In order to assess the validity of this Chapter’s findings, data from practical experiments 

were investigated as will be discussed in the next Chapter.  
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CHAPTER 7: VALIDATING THE RESULTS OF THE 

SIMULATION EXPERIMENTS 

 

7.1 Introduction 

The effort in this Chapter is concerned with validating the findings of the previous 

Chapter simulation experiments. In the context of simulation modeling, validation can be 

defined as “substantiation  that a computerized model within its domain of applicability  

possesses a satisfactory range of accuracy consistent  with the intended application of the 

model” (Schlesinger et  al. 1979). The exercise detailed in the previous Chapter evaluated 

certain DOE strategies. Judging its possession of “a satisfactory range of accuracy” that is in 

line with its purpose, is not straightforward. One reason for this relates to the concept of 

validating any simulation results. As Kleijnen (1995) noted there is “no standard theory” on 

validation, nor is there “a standard „box of tools‟ from which tools are taken in a natural 

order”. Moreover, Davis (1992) regarded the validation of simulation results as “a complex 

subject that has troubled model developers and users for many years”. Thus, there is generally 

an intrinsic complexity in the validation task.  

In addition there are also sources of difficulties that relate particularly to the simulation 

experiments performed in this study. One such example concerned obtaining actual 

experimental data conforming to that simulated. Large full factorial experiments are rarely 

conducted in practice, and even when they are, the observed data are seldom reported in the 

literature. Indeed, in cases when such experimental data are found, there is no guarantee that 

their analysis will render results that match the simulated conditions, especially with regard to 

the settings of the noise factors such as the number of active effects and their sizes. By the 

same token, no control can be exercised over the results of such observed data with regard to 
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pronouncing as significant only main effects or even some two-factor interactions. One 

alternative to relying on published experimental data is to generate them by conducting some 

“physical” experiments. However, no experimenter can exercise any control over either the 

rendered number of active effects or their sizes.  

Despite the infeasibility of finding actual experimental data sets that exactly match the 

simulated conditions, it was possible to locate certain case studies that bore some resemblance 

to them. Moreover, it was necessary to conduct a large three-level experiment similar to the 

simulated ones in an attempt to yield circumstances comparable with those modelled. Having 

obtained appropriate “real” full factorial experimental data sets for each of the simulation 

phases, the empirical evaluation approach (Davis, 1992) to validation was adopted. This 

entailed comparing the conclusions rendered from the simulation experiments with those 

drawn from the “real” experimental data. Rather than judging whether the simulation results 

were valid or not, the intention was to assess the “degree” of agreement between the 

compared inferences. In so doing, Sargent (2000) distinguished three approaches of 

comparison: graphical, confidence intervals and hypothesis testing. The first was adopted for 

two reasons. First, there is a considerable difference in the sample sizes between the results 

upon which the simulation experiment conclusions were drawn and the ones that underlie the 

validation experiments‟ inferences. Second, the cornerstone underpinning statistical methods 

is randomisation. For the conclusions drawn on the basis of hypothesis testing or confidence 

intervals to be valid, the compared samples should be randomly selected. The validation case 

studies were not selected randomly, so their calculated statistics were not random variables 

and therefore should not be analysed in this way.  Furthermore, as the simulated conditions 

and those associated with the validation case studies were not exactly the same, it is the 

pattern of the results and their relative rather than their absolute magnitudes that should be 
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compared. To this end, graphical techniques are very informative.  The validation of each of 

the simulation phases will now be discussed followed by a summary of the main conclusions.  

7.2 Phase-1 

In order to assess the credibility of the conclusions drawn from this phase, it was 

necessary to find published examples of large two-level full factorial experimental data where 

main effects were the only significant contrasts. Three data sets that met these requirements 

were found in Box et al (2005). These related to the manufacturing process of a certain 

dyestuff and incorporated three responses; its strength, hue, and brightness. Six parameters 

were identified as having a potential effect on the responses: polysulfide index (A), flux ratio 

(B), moles of polysulfide (C), reaction time (D), amount of solvent (E) and reaction 

temperature (F). Two levels were chosen for each parameter, and a full factorial (2
6
=64 runs) 

experiment conducted. The data for the three responses are shown in Appendix 7. For each 

response, the runs that corresponded to the L16, L12 and L8 were extracted. The results 

showing the ability of these fractional OAs to declare as active the same effects pronounced 

significant in the full factorial trials when analysed using the six pooling methods that were 

investigated in this phase, are given in Appendix 8. A detailed analysis of the dyestuff hue 

response is presented as an example in Appendix 9. The average Power associated with each 

of the fractional OAs and the pooling methods for the dyestuff data were computed and are 

plotted in Figure ‎7-1. Generally, the patterns of the “curves” are similar to those observed in 

Figure 6-2. As was the case in the simulation experiments, the L16 outperformed the L12 

which in turn attained a higher average Power than the L8. However, while the results related 

to the performance of the HNP plot, LM, MLM and the PU methods were in line with their 

corresponding simulation findings, this was not the case with the PD and the UC methods. 
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Figure ‎7-1: Average Power of each Fractional OA and Pooling Method in Phase-1 Validation  

In the case of the simulation results, the latter outperformed the former whereas in the 

dyestuff experiment the opposite was true. In fact the PD method attained the same average 

Power as that observed with the HNP plot and the PU method. Before explaining the reasons 

for this, it is important to remember that the average Power was calculated over 50 identical 

replications against each combined setting of the fractional OAs, pooling methods and 

number and sizes of active effects in the simulation experiments. Then the average of these 

Power values associated with each of the examined fractional OAs and pooling methods was 

computed and plotted in Figure 6-2. In the case of analysing the dyestuff experiment, 

however, each of the three responses was associated with different values of the number and 

sizes of active effects. Thus, for each response the Power (associated with each of the OAs 

and pooling methods) was estimated on the basis of a single replicate. Furthermore, the 

average Power shown in Figure ‎7-1 was computed over the three responses. Considering 

these differences between the simulation and dyestuff experiments, it should not be surprising 

that the observed results were not the same. In addition, it was due to the use of α= 0.1 in the 

PD technique (to overcome the impact of the inflation in the MSE associated with the initial 

steps) that it outperformed the UC method in the dyestuff experiment. In fact, had the same α 
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level been used with the UC method, it would have attained the same level of Power as that 

observed with the PD procedure.  

The results of the simulation experiments revealed that the superiority of the UC method 

over the PD technique was very marginal (Figure 6-2). The exceptional performance of the 

PD method attained in the analysis of the dyestuff experiment must be interpreted reflectively. 

This is because not only did it outperform the UC method but also it achieved an equivalent 

level of performance to both the HNP plot and the PU method. Ross (1996) argued that the 

latter is more powerful than the PD method. Moreover, if the problem of the MSE inflation in 

its initial steps is considered, there is no reason to believe that the PD is as powerful as the 

HNP plot which is free from such a pitfall. The chief point to be gleaned from the above 

discussion is that, in practice, pooling methods may exhibit an unexpected performance 

owing, in no small part, to the variability in the observed active effect sizes. As this is a noise 

factor over which there is no control, it is important to guard against its effect by adopting a 

robust DOE strategy. To this end, the importance of avoiding the use of small OAs such as 

the L8 cannot be overemphasised. With regard to the pooling methods, as suggested in the 

previous Chapter, it is better to use more than one technique to analyse the experimental data 

and investigate the reasons for any disagreement in their inferences. Adopting such an 

approach should not only increase the Power but also improve its robustness to the noise 

factors.    

7.3 Phase-2 

This phase of the simulation experiments entailed two-level full factorial designs where 

only main effects and two-factor interactions were active. Three experiments satisfying these 

conditions were found in the literature, two involving the study of 6 parameters (2
6
=64 runs) 

and the other 5 parameters (2
5
=32 runs). The first experiment was reported in Taguchi (1987) 
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and related to the wool washing and carding processes of wool spinning. Its main objective 

was to investigate the key parameters that influenced the number of defects (number of neps, 

pinholes and troubles) in the output. The studied parameters were the number of revolutions 

of worker (A), worker gauge (B), feed roller gauge (C), card feed quantity (D), water content 

(E) and residual fat rate (F). The second experiment related to a Metal Inert Gas (MIG) 

welding process and was presented in Ganjigatti et al (2007). The six two-level parameters 

were the welding speed (A), the arc voltage (B), the wire feed rate (C), the gas flow rate (D), 

the nozzle to plate distance (E) and the torch angle (F). Examining the impact of these on the 

bead width response was one of the main purposes of the experiment. The third experiment 

concerned the voice-coil actuated radial contour turning process and was discussed in Reddy 

et al (2001). The main objective was to understand the impact of the five two-level parameters 

on the turning process performance. The parameters were the contour‟s order of angular 

symmetry (A), the maximum acceleration requirements on the contour (B), the depth of cut 

(C), the feed rate (D) and the type of controller (E). The maximum tracking error (peak error 

within one revolution) was used as the performance measure of the process.    

The data for all these experiments are given in Appendix 7. For each data set, the L16, L12 

and L8 fractional factorial runs were extracted and analysed using the pooling methods 

investigated at this phase. The effects declared significant using these fractional factorial 

designs and analysis strategies along with those that were pronounced significant in the full 

factorial analysis are shown in Appendix 8. As an example of how these results were 

implemented, a detailed analysis of the MIG welding experiment is provided in Appendix 9. 

The average Power attained for each fractional OA/pooling method strategy was computed 

and is shown in Figure ‎7-2. The observed pattern is very similar to that generated from the 

simulation results and depicted in Figure 6-8. The maximum Power in both cases was 
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observed with the L16 when analysed using the HNP plot. The BSS method outperformed 

SWR when used to analyse both the L12 and the L8. When augmented using the BM method, 

the latter attained a higher Power level than that associated with its DO augmentation.   

 

Figure ‎7-2: Average Power of each Fractional OA-Pooling Method strategy in Phase-2 Validation 

Hence a high degree of credibility can be attached to the conclusions arrived at using this 

phase of simulation experiments as they were in line with the inferences drawn from the 

actual full factorial experiments.   

7.4 Phase-3 

In assessing the viability of the phase-3 simulation results, it was necessary to at least find 

a large published three-level full factorial experiment with the main effects being the only 

active contrasts. Unfortunately, no experiment that met these requirements was found so, it 

was necessary to conduct one. The performed experiment concerned an Electric Discharge 

Machining (EDM) process whereby the material removal takes place as a result of the 

discharge of energy between a tool and a workpiece, which are separated by a small gap filled 

with a dielectric fluid. The process involves discrete sparks initiated using a DC pulse 
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generator for a certain duration followed by a similar period during which deionisation of the 

dielectric occurs and the gap is flushed of debris (McGeough, 1988).    

7.4.1 Equipment, Workpiece and Tool Electrode Materials 

The experiment was carried out using an EDM machine built in the School of Mechanical 

Engineering at the University of Birmingham which was fitted with a miniature DC vertically 

mounted servo unit (330 mm long with an 80 mm stroke). The machine was connected to a 

Spark Tec international generator which employed an open circuit voltage of ~125 V with 

programmable peak current and on/off time selectable in steps of 1 amp and 1 µs respectively. 

A hydrocarbon oil dielectric BP 180 was used. This was supplied externally to the 

electrode/workpiece interface using two adjustable nozzles at a flow rate of 2 litres/min. and 

re-circulated through a Filtermist Superfine dielectric filtration unit (filtration down to 1 μm 

particle size). Figure ‎7-3 shows the generator, the EDM unit, the servo head and the 

machining setup. The workpiece material was Titanium (Ti-6Al-4V) supplied in bars which 

were cut into 15 mm long cylindrical discs each with a diameter of 20 mm. Copper electrodes 

of 50 mm length and 12 mm diameter were used.    

7.4.2 Experimental Parameters and Procedures 

Four parameters were chosen: peak current, pulse on-time, capacitance and pulse off-time, 

each at three levels (see Table ‎7-1).  Fixed parameters included the tool polarity which was 

positive and the machining time which was 10 minutes.  

A full factorial three-level experiment comprising 3
4
= 81 runs was conducted. The 

responses of interest were the Material Removal Rates (MRR) of both the workpiece and the 

tool. The weights of both were recorded before and after the EDM operation using a micro-

level balance, the volume of the material removed was then obtained by dividing the weight  
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(a) 

 
(b) 

Figure ‎7-3: (a) EDM Unit with the Power generator; (b) Servo Head and Machining Setup 
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Table ‎7-1: Parameters of the EDM Experiment and Their Levels 

Parameter Description 
 Levels  

1 2 3 

A 
Peak 

Current (A) 
10 15 20 

B 
Pulse  

On-Time (µs) 
50 100 200 

C 
Capacitance  

(µF) 
0 0.1 0.22 

D 
Pulse  

Off-Time (µs) 
15 20 25 

 

differences by the appropriate material density. The MRR (per minute) was then calculated by 

dividing the volume of the removed material by the machining time.   

7.4.3 Results and Validation Process 

The full factorial data of the EDM experiment are listed in Appendix 7. Their analyses 

(detailed in Appendix 9) revealed that only one of the responses namely the workpiece MRR 

was comparable to the simulation results with main effects only being active contrasts. 

Consequently, the full factorial workpiece MRR response values associated with the settings 

that corresponded to the L18 and L9 were extracted and analysed using the ANOVA types and 

pooling methods investigated at this phase (see Appendix 9). The effects detected as active 

using these strategies along with those that were declared significant in the full factorial 

analysis are shown in Appendix 8. The Power values associated with each fractional OA, 

ANOVA type and pooling method for the workpiece MRR are presented in Figure ‎7-4. 

Clearly, the patterns match their counterparts from the simulation results seen in Figure 6-11. 

The L18 attained a higher Power level than that of the L9, regression was associated with a 

higher Power level than that of the standard ANOVA and the PU outperformed the PD            

. 
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Figure ‎7-4: Power of each Fractional OA, ANOVA Type and Pooling Method in Phase-3 Validation 

method. Although the computations were based on analysing a single full factorial 

experiment, the results depicted in Figure ‎7-4 provide evidence supporting the conclusions 

drawn from the simulation experiments conducted in Phase-3.  

7.5 Phase-4 

Two three-level full factorial experiments of 81 (3
4
) runs were used to investigate the 

extent to which the findings of the phase-4 simulation experiments were valid. Main effects 

and two-factor interactions were the only active contrasts. The first involved the tool MRR 

data yielded in the EDM experiment and the second related to analysing the surface roughness 

data in a micro-end-milling experiment described by Tansel et al (2006). In the latter, four 

parameters, namely the cutting speed (A), feed rate (B), radial depth of cut (C) and the 

tolerance (D) were investigated. The objective was to assess their impact on the surface 

roughness of Aluminum 6061 blocks used to manufacture a critical part of a mould. The data 

resulting from this experiment are given in Appendix 7. After extracting the appropriate runs 

for the L18 and the L9 OA both the BSS and the SWR methods were used to analyse the data. 

The effects pronounced significant using these strategies in conjunction with those that were 

declared active in the full factorial analyses are provided in Appendix 8. The full analysis of 
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the EDM tool MRR data are presented in Appendix 9 . Using the results of the two 

experiments considered here, the average Power associated with each of the employed 

fractional OA and pooling method was computed and plotted in Figure ‎7-5. As was observed 

 

Figure ‎7-5: Average Power of each Fractional OA and Pooling Method in Phase-4 Validation 

in this phase of the simulation experiments, the L18 attained a higher Power than the L9 and 

the BSS procedure outperformed the SWR method. Consequently, the results from the 

experimental data in this phase are compliant with those that were obtained using the 

simulated data.    

7.6 Summary 

In this Chapter data from “real” large full factorial experiments were used to examine the 

credibility of the conclusions drawn from the simulation experiments conducted in this study. 

Published experimental data that reasonably matched the simulated circumstances were used 

togather with data generated from a large EDM experiment conducted in the laboratory . The 

conclusions of the “physical” experiments were graphically compared with those from the 

simulations. In general, the findings were found to be in reasonably good agreement. In fact, 

the Power patterns generated on the basis of the results of the “physical” experiments 

examined in phases 2, 3 and 4 conformed well to those produced using the simulation data. 

Some disagreements were experienced in the phase-1 analysis and their reasons discussed. As 



158 

 

indicated by Balci (1998) the outcomes of validating a simulation study should not be 

considered as a binary variable where they are regarded as either absolutely correct or 

incorrect. Instead, the degree of their credibility should be assessed. From this perspective, the 

results of the performed simulation experiments can be regarded as having a reasonable 

degree of credibility. An interesting view of the validation decision that is apppropriate here is 

the one expressed by Neelamkavil (1987) when he stated that “true validation is a 

philosophical impossibility and all we can do is either to invalidate or „fail to invalidate‟ ”.  

Drawing on the results of the analyses presented in this Chapter, there is not enough evidence 

to invalidate the simulation experiments‟ inferences.  

Several issues relating to the practice of DOE have been addressed so far in this thesis 

including aliasing, the use of unreplicated fractional designs and pooling methods.  The next 

Chapter will deal with two further issues namely the use of p-values and effect sizes. 
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CHAPTER 8: P-VALUES AND EFFECTS’ IMPORTANCE 

MEASURES 

 

8.1 Introduction 

Among the prime issues concerning the implementation of DOE in practice are those 

related to the use and interpretation of the p-value and the FE measures.  As was revealed in 

the review undertaken in Chapter 3, the former was more often than not misunderstood and 

consequently misinterpreted. Also brought to light was the problem related to the use of the 

variance-related measures of the effects’ importance. To this end, it was observed that two 

measures PC1 (equation 3.1) and PC2 (equation 3.2) were not only used interchangeably but 

also interpreted as if they were equivalent; the implication being that they perform equally 

well in estimating the FEs’ explained variance.  

These aspects cast some doubt on the extent to which the authors of the reviewed articles 

are acquainted with both the appropriate interpretation of the p-values and the variance-

related FE measures and the concepts underpinning their use. The objective of this Chapter is 

to argue the purpose and the appropriate application of statistical significance tests and 

effects’ importance measures. The p-value will be addressed first, then a discussion of the FE 

measures is presented. The main conclusions are discussed in the Chapter’s closing section.     

8.2 P-values Uses and Interpretation     

As highlighted in Chapter 3, the misconceptions regarding the use and interpretation of the 

p-value can be classified into three categories: (i) the belief that its complement (1-p) reflects 

the degree of confidence associated with H1 being true; (ii) its use as a measure of the 

likelihood that the results are due to random error or chance; and (iii) its use as a measure of 

the effect’s importance.  
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8.2.1 P-value complement as a Measure of Confidence Level 

As pointed out in Appendix 2, the p-value is the probability of rendering a Test Statistics’ 

(TS) value as extreme as or more extreme than the observed one given that Ho is true. 

Symbolically, this can be represented as P (TS/ Ho true). Its use is based on Fisher’s 

philosophy that “every experiment may be said to exist only in order to give the facts a chance 

of disproving the null hypothesis” (Fisher, 1971). He also stated that “the null hypothesis is 

never proved or established, but is possibly disproved in the course of experimentation” 

(Fisher, 1971). It must be borne in mind that “disproving” per se is not possible in Hypothesis 

Testing (HT). In fact, when the resultant p-value is smaller than the designated significance 

level, two conclusions are possible. One is that Ho is true and a rare event has occurred and 

the other is that it is false and a non-zero effect exists. It is due to the former that a certain 

level of Type I error is accepted when an HT is performed.  

One possible reason for using the complement of the p-value as an indicator of the degree 

of confidence that the alternative H1 is true in practice is the belief that “disproving” Ho 

entails “proving” the alternative, i.e. if Ho is highly unlikely then H1 is very likely. This 

follows from the fact that Ho and H1 are mutually exclusive and exhaustive. However, such an 

interpretation would only be valid if the probability of Ho was known which is not the case in 

HT the only rendered probability being the p-value i.e. P (TS/Ho true). The latter is frequently 

confused with the P (Ho true/TS) and consequently incorrect conclusions could be drawn. 

Another plausible explanation for misinterpreting the complement of the p-value stems 

from relating it to the confidence level that is conventionally used in the interval estimation of 

population parameters i.e. (1-α). This implies some confusion between the α-level and the p-

value. The former is a prior conditional probability, P (Reject Ho/Ho true) that is specified 

before experimentation. Unlike the p-value, it relates to a nominal event (reject or fail to 
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reject) rather than to a particular value of a TS. Thus, irrespective of the experimental results, 

its value remains fixed.  It is due to this characteristic that the level of confidence (1-α) makes 

sense. In fact, the probability statement attached to this level should be understood in the 

long-run sense. More specifically, if an experiment is repeated a large number of times, then it 

is expected that the Type I error will be committed in α of the performed trials. Consequently, 

the confidence with respect to replicating the appropriate decision regarding Ho is 1- α.  

However, if a single experiment is performed and the p-value associated with its results is 

obtained, the Type I error is either committed or not. Thus its probability is either 0 or 1. As 

the p-value is a posterior probability estimated based on the results of a single experiment, its 

complement cannot be used to estimate the confidence level. This is because repeating any 

experiment would result in a different p-value. The truth or otherwise of Ho and the level of 

confidence regarding the decision made about it cannot change with replication.     

8.2.2 P-value as a Probability that the Results are Due to Chance  

A common misinterpretation of the p-value concerns using it as a measure of the odds that 

the observed effect is due to chance or random sampling. This is a fallacy because the p-value 

is calculated under the assumption that the sampling error is what caused the test statistic to 

depart from zero. Consequently, the likelihood of sampling error is already assumed to be 1 

when the HT is performed. Put differently, when the MSE is used to compute, say, the t-

statistic, it is taken as an estimate of the variance due to common or chance causes. Thus, 

interpreting the p-value as the odds that this caused the observed TS, implies a violation of an 

essential assumption that underpins the calculation of the TS and consequently the p-value. 

8.2.3 P-value as a Measure of FE Importance  

Another fallacy with regard to the interpretation of the p-value relates to its use as a numerical 

index of the FE individual or relative importance. As already noted its value is determined on 
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the basis of the calculated TS. As an example of the latter, consider the t-statistic which is a 

function of both the SES and Cij (see equation 4.13) i.e. t = SES/(Cij)
0.5

. While its value gets 

larger as the SES increases, it is an inverse function of Cij which increases as the degree of 

aliasing increases but decreases as the experiment size (n) increases. Consequently, for a 

certain value of the SES, several p-values may be observed depending on the aliasing level 

and n. Put simply, the p-value is a confounded measure of the FE importance. In fact, the use 

of the p-value should be confined to assessing the statistical significance of the observed TS, 

since the experiment size can seriously impact its level. To shed light on this, consider the 

simulated L8 and L16 full factorial data given in Table ‎8-1. In both cases, the true significant 

effects were A, B, C, AB and BC. From the ANOVA shown in Table ‎8-2, it can be seen that 

the SESs of the true active effects in both analyses are identical. Their PCs are almost the 

same, however, while all the true active effects were declared significant at the 5% level in 

the L16 analysis, none were in the L8. It is interesting to note that although they were all 

identified as inert in the latter case, their collective effect accounted for 89.1% of the response 

variability. Since the SESs were identical in both analyses, the only reason for the difference 

in their rendered p-values relates to the value of Cij which reduces to 1/n in the absence of 

aliasing as was the case in the investigated  two-level experiments. Thus, it was due to the 

difference in the sizes of the experiments that unequal p-values were observed. In general, as 

n gets larger, the t-statistic increases thereby reducing the p-value. Consequently, the impact 

of the size of the experiment must be considered when interpreting the p-value.  

8.3 FE Importance Measures 

When the null hypothesis concerning a certain FE is rejected, the implication is that an 

effect value of zero is very unlikely. However, even if a non-zero effect occurs, its size may  
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Table ‎8-1: Simulated Full factorial (a) L8 and (b) L16 Data 

 No. A B C Res 
 

 

 1 -1 -1 -1 -5.03415 
 

 

 2 1 -1 -1 -17.1673 
 

 

 3 -1 1 -1 4.340672 
 

 

 4 1 1 -1 37.01398 
 

 

 5 -1 -1 1 17.66631 
 

 

 6 1 -1 1 22.81531 
 

 

 7 -1 1 1 -0.43875 
 

 

 8 1 1 1 29.74567 
 

 

(a) 

 No. A B C D Res  

 1 -1 -1 -1 -1 -12.0224  

 2 1 -1 -1 -1 -20.7173  

 3 -1 1 -1 -1 0.42144  

 4 1 1 -1 -1 34.16814  

 5 -1 -1 1 -1 17.24011  

 6 1 -1 1 -1 17.55249  

 7 -1 1 1 -1 -4.16578  

 8 1 1 1 -1 28.13705  

 9 -1 -1 -1 1 -9.95224  

 10 1 -1 -1 1 -11.4222  

 11 -1 1 -1 1 -1.36355  

 12 1 1 -1 1 22.27604  

 13 -1 -1 1 1 10.69849  

 14 1 -1 1 1 8.505269  

 15 -1 1 1 1 -3.98535  

 16 1 1 1 1 14.73723  

(b) 

 

be small enough to render it of no practical importance. Therefore, it is important to quantify 

the extent to which the effect diverges from zero.  In fact, mere reliance on the HT cannot 

help to attain any scientific progress. As Yates stated the HT “has caused scientific research 

workers to pay undue attention to the results of the test of significance that they perform on  
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Table ‎8-2: ANOVA for the Simulated (a) L8 and (b) L16 Data 

Source 
Sum of 

Squares 
DF 

Mean 

Square 

F-

Value 

p-

Value 
PC (%) SES 

A 390.2315 1 390.2315 10.24 0.0853 14.44 1.13 

B 342.9768 1 342.9768 9 0.0955 12.51 1.06 

C 320.4928 1 320.4928 8.41 0.1012 11.58 1.03 

AB 609.7365 1 609.7365 16 0.0572 23.45 1.41 

BC 698.0872 1 698.0872 18.3184 0.0505 27.07 1.51 

Residual 76.21706 2 38.10853 
    

Total 2437.742 7 
     

(a) 

Source 
Sum of 

Squares 
DF 

Mean 

Square 

F-

Value 

p-

Value 
PC (%) SES 

A 580.3999 1 580.3999 20.48 0.0011 14.54 1.13 

B 510.117 1 510.117 18 0.0017 12.69 1.06 

C 476.676 1 476.676 16.82 0.0021 11.81 1.03 

AB 906.8746 1 906.8746 32 0.0002 23.15 1.41 

BC 1038.281 1 1038.281 36.6368 0.0001 26.61 1.51 

Residual 283.3983 10 28.33983 
    

Total 3795.747 15 
     

(b) 

their data and too little attention to the estimate of the magnitude of the effects they are 

investigating” (Yates, 1951). He warned that sole emphasis on the HT has led to the 

“unfortunate consequences” of regarding the performance of the significance test as the 

“ultimate objective” (Yates, 1951). Consequently, the execution of a significance test should 

be accompanied with estimates of the studied FE importance measures. Broadly, this can be 

accomplished by means of two types of measures: mean-related and variance-related. 

Regarding the latter, the review discussed in Chapter 3 concluded that there was some 

confusion regarding the difference between the PC1 and PC2 measures.     

8.3.1 PC1 and PC2 Importance Measures 

Originally, PC1 (equation 3.1) was proposed by Fisher (1925) to supplement the 

significance test in the ANOVA under the label of the correlation ratio (η). On the other hand, 
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Ross (1996) appeared to have coined the term Percentage Contribution when referring to the 

PC2 (equation 4.2) measure. In practice, Ross’s term is used to refer to both measures as they 

have been used interchangeably for the purpose of estimating the variance explained by each 

of the studied FEs. 

To understand the major difference between PC1 and PC2, it is essential to distinguish 

between the population variability explained by the FEs and its corresponding sample 

estimator. Assuming that there are k FEs that relate to the response variable (Y) according to 

the following linear model  

 eXβ...XβXββY kk22110   (8.1)  

the objective is to estimate the extent to which their consideration in the fitted model reduces 

uncertainty about Y; a prime measure of which is its variance σ
2
. When the FEs are not 

considered, the variance of Y is σ
2

Y. Fitting a model relating the k FEs to the response Y, the 

conditional variance of Y is σ
2

e
 
(assuming the response variance is homogeneous across the 

values of the FEs). The reduction in uncertainty resulting from relating FEs to the response Y 

can be represented by σ
2

Y - σ
2

e i.e. the difference between the overall and the conditional 

variance of Y. This can be expressed as a relative reduction by dividing it by σ
2

Y : 

 
Y

2

e
2

Y
2

σ

σ-σ
 ρ   (8.2)  

Thus ρ represents a population measure of the Y explained variability due to the k FEs in 

equation 8.1. Clearly if the consideration of the k FEs eliminates the uncertainty in Y, σ
2

e will 

be zero and ρ will be 1.  

One possible way of estimating ρ from a sample is to replace the population parameters in 

equation 8.2 with their corresponding sample statistics. For PC1, this was performed using the 
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general unbiased estimator of the population variance of a variable which can be obtained by 

dividing the Sum of Squares (SS) by (n-1).  Substituting this for the σ
2

Y and σ
2

e in equation 

8.2 yields 

 
SST

SSESST

1)-SST/(n

1)-SSE/(n- 1)-SST/(n
  PC1


  (8.3)  

where SST and SSE are the total and error sums of squares respectively and n is the size of 

the experiment. Since SST-SSE = 
k

i

FEiSS = SSModel, PC1 can be obtained collectively for all 

the FEs under study i.e. for the fitted model. In the context of regression analysis, this is 

equivalent to the Coefficient of Determination, R
2
. Being independently estimated in regular 

orthogonal designs, a separate PC1 can be obtained for each FE by dividing its sum of squares 

by the SST so that 

 PC1 Model = PC1 FE1 + PC1 FE2+ .... PC1 FEk (8.4)  

Consequently, each PC1FEi measures the FEi independent contribution to the response 

variance and the amount by which the latter can be reduced by controlling that factorial effect. 

Whereas PC1FEi is conventionally employed as a measure of the partial explained variance due 

to each FE tested in the ANOVA, R
2
 is often used as an overall measure of the explained 

variance of the FEs that comprise the fitted regression model. Generally, PC1 is a biased 

estimator of ρ. Barten (1962) showed that its bias is   

  (8.5)  

which is a function of the true size of ρ, the number (k) of FEs included in the model and the 

size of the experiment (n). The impact of ρ on the bias can simply be explained by 

 ρ)2ρ)(1(11)(k
n

ρ1








 
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considering the case where its value is 1. In such a situation, irrespective of k and n, all the 

sampled overall PC1s (R
2
)
 
will be 1 (this can be verified by substituting 1 in equation 8.5).  

With regard to k and n, it follows from equation 8.5 that increasing the former increases 

the bias while increasing the latter decreases it. Except when the relationship is perfect, PC1 

tends systematically to overestimate ρ. This can be illustrated by examining the case when ρ 

=0 which renders a bias of k/n; hence the bias is always positive since for any fitted model, k 

is greater than or at least equal to one.  

Kelley (1935) proposed an alternative estimate of ρ which he believed to be unbiased. He 

suggested that unbiased estimators should be substituted for σ
2

Y and σ
2

e in equation 8.2. 

Although SST/(n-1) is an unbiased estimator of σ
2
Y, this is not the case for SSE/(n-1) which is 

a biased estimator of σ
2

e . The unbiased estimator of the latter is the MSE which, when 

substituted for σ
2

e in equation 8.2, yields what Kelley called epsilon squared (ε2): 

 
1)-SST/(n

1)-ν-SSE/(n- 1)-SST/(n
  ε2   (8.6)  

where ν is the model degrees of freedom i.e. ν =


k

1i

FEidf .This measure and Ross’s PC2 are 

numerically equivalent (see Appendix 10 for details). Moreover, Kelley’s ε2 is numerically 

equivalent to the Adjusted- R
2
 that was proposed by Wherry (1931) to reduce the bias 

associated with using R
2
 in regression analysis. Thus, both Kelley (1935) and Wherry (1931) 

independently proposed ε2 and Adjusted- R
2
 respectively as unbiased estimators of ρ. 

Although, these two estimators are the same, the former is conventionally used in the 

ANOVA to estimate the partial explained variance due to each FE under study whereas the 

latter is normally employed in the context of regression analysis to estimate the overall 

explained variance by all the FEs encompassed in the fitted regression model. 
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The equivalence between ε2 and the PC2 was not addressed in Ross (1996). In fact, he 

provided no reference to the discussion of the PC2 derivation. Hence, it is not clear whether 

Ross (1996) independently arrived at PC2. Indeed, he should be given the credit for 

popularising the use of this measure within the engineering community. He also seems to be 

the first author to suggest the use of a rule of thumb in interpreting it whereby the adequacy of 

the experimental endeavour can be judged. According to Ross (1996), if the value of PC2 due 

to error (1-ΣPCFEi) is “low” (15% or less) then the experiment is assumed adequate. However, 

if it is “High” (50% or more) then some important factors were omitted, the measurement 

error was excessive or the control of the experimental conditions was not sufficiently precise. 

No guidelines are provided to interpret the PC2 when the error contribution lies between 15 

and 50%. It is not clear why an error PC2 of, say, 40% would be different from one of 50%; 

thus it must be borne in mind that these guidelines have no theoretical basis and hence should 

not be strictly adhered to.  

Despite the use of unbiased estimators for the terms of equation 8.2, PC2 is also a biased 

estimator of ρ under the standard least square assumptions. Barten (1962) estimated this bias 

to be 

 
n

)21()1( 
 (8.7)  

Clearly it is independent of the number of FEs under study and is an inverse function of 

the size of the experiment (n). It is also dependent upon the true value of ρ in that when it is 

equal to 0, 0.5 or 1 the bias is zero. In addition, the bias is positive when ρ> 0.5 and negative 

when ρ < 0.5. Its maximum is approximately (0.1/n) which occurs when ρ is approximately 

0.2 and 0.8.  
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Although ρ cannot be negative, PC2 can assume negative values; when this is the case the 

estimate of ρ is taken to be zero. As its value is quite small, the bias associated with PC2 

should be of little concern. In fact, Olkin and Pratt (1958) argued that any unbiased estimator 

of ρ has characteristics that make it inferior to certain biased estimators. For an estimator to be 

unbiased, its mean over an infinite number of estimates from independent random samples 

must be equal to the parameter estimated. Thus when ρ =0, its unbiased estimator must be one 

which can be negative in some samples. This means that in order for the estimator to be 

unbiased it must assume values which the parameter cannot assume as ρ must always be 

greater than or equal to zero. When negative estimates are observed and taken to mean that ρ 

is zero, the estimation procedure no longer provides an unbiased estimate of ρ. Thus, in this 

case the unbiased estimator of ρ is not the best one.   

Although, negative values of PC2 are taken to be zero, the review conducted in Chapter 3 

showed that they were dealt with in two different ways. In some studies, they were replaced 

with zeros whereas in others their associated FEs were pooled with the error estimate. The 

latter approach is more appropriate than the former because by pooling, the MSE is decreased 

thereby reducing the error percentage contribution. In fact, keeping the FE with a negative 

PCFE(i) in the developed model and replacing its estimate with zero leads to inflating the MSE. 

It is because of this that the value of the PCFE(i) should be used to aid in selecting the FEs that 

should be pooled to estimate the error. Its use for this purpose has two advantages. The first is 

that it alleviates the problem of reporting a negative PC FE(i), and the second is that it increases 

the degrees of freedom associated with the residuals and consequently increases the Power of 

the  performed statistical test. 

The chief point to be gleaned from the discussion presented in this section is that due to 

the smaller bias associated with it, PC2 is more effective than PC1 in estimating the FE 
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explained variance. Consequently, PC1 should be avoided. The use of PC2 however is not 

without limitations. One common problem of variance-related measures is the fact that no 

information is provided regarding the amount by which the average response has changed. 

Another issue concerns the question of how large is a large effect. For example, if a FE 

explained 10% or 20% of the variability would it be regarded as a large, medium or small 

effect?. A related problem is the one concerning the absence of any theoretical or empirical 

justifications for such guidelines as those provided by Ross (1996) for judging the adequacy 

of the experimental inferences. Such problems may be alleviated by using a measure that 

incorporates elements of both the mean- and the variance-related importance measures such 

as the SES.  

8.3.2 SES as a Measure of FE Importance 

Before discussing the SES as a measure of the FE importance, the mean-related measures 

and their use in practice will be recalled. As highlighted in Chapter 3, these were used both 

numerically and graphically. An example of the former was the least squares estimate of a FE 

regression coefficient i.e. FE(i)β̂  (see Appendix 2). Its main advantage is that it is unbiased and 

has the smallest variance among the class of unbiased estimators. Besides allowing an 

examination of the FEs relative importance, it enables an evaluation to be made of both the 

plausibility of the experimental results and whether they make engineering sense. This can be 

done by assessing the consistency of the average response change per unit change of each FE 

with that expected using (whenever available) the theoretical subject knowledge. 

Furthermore, the signs of the estimated βFEi allow the comparison of the direction of the 

average change resulting from each FE with its prior expectation to judge its validity.   



171 

 

The conducted review (Chapter 3) highlighted the fact that the numerical mean-related 

measures were rarely if ever interpreted in the studies that reported them. Typically, they were 

presented in a regression equation or in a summary table without commenting on their 

individual values or signs. One possible reason for this is the difficulty associated with 

justifying or interpreting the magnitude of the numerical mean-related measures in terms of 

the units of the response. In fact, it is rarely the case that there is a prior theoretical 

background regarding the extent to which the average response is expected to vary as a result 

of changing a FE by one unit. For example in an EDM experiment, it is possible to predict 

that increasing the current increases, say, the removal rate of a certain material and hence the 

sign of its coefficient (in the fitted model) should be positive.  However, it is very difficult to 

have a prior knowledge regarding the average level by which it will change with an ampere 

change in the current. It is due to this that most practitioners prefer the use of the mean-related 

measures in their graphical form particularly in two-level experiments. By doing so, it is 

possible to efficiently obtain information regarding the FEs’ relative importance and, to an 

extent, the feasibility of the experimental results judged respectively by the gradient and the 

direction of the lines in the main effects plot. However, when factors with more than two 

levels are studied this becomes more difficult and hence a great deal of subjectivity is needed. 

As with the PC2 limitations, the problem concerning the interpretation of the numerical 

mean-related importance measure can be overcome by using the SES (βFEi /(MSE)
0.5

). In fact, 

this measure is unique in the sense that it represents the ratio of a mean-related measure to an 

estimate that quantifies the common causes’ variability i.e. the standard deviation of the 

experimental error. Consequently, the SES conveys information about both the average 

change and the variability of the response.  Generally, assuming that the response variable is 

Normally distributed, it may be easier to express the average change in response per unit 
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change of each FE in terms of numbers of standard errors. This enables one to relate the 

relative importance of a FE to the shift it can cause in the process average (upward or 

downward) and its consequent out-of-control state.  

The SES has the advantage of being metric free so it does not depend on the response 

variable unit of measurement. Furthermore, its interpretation can be facilitated by relating it to 

the use of statistical quality control techniques such as control charts and process capability. 

For example in a variables mean-monitoring control chart the control limits are set at xσ3  

from target where 
n

σ
σx  and n is the sample size. Assuming that an experiment is 

conducted to study the impact of changing the settings of certain parameters (FEs) on the 

average of a specific performance measure (response), the MSE can be used as an estimate 

of the process standard deviation. Consequently, assuming that a control chart is being used to 

monitor the behaviour of the process under study using a subgroup size of, say, 5, and since

nσσ *x , a SESFE(i) of, say, 2 gives a value of approximately xσ5.4  which would lie 

beyond the control limit. Consequently the investigated FE may be regarded as having a large 

effect if its corresponding control chart value is larger than xσ3 . This helps to answer the 

question of how large is a large effect. However, it results in classifying the observed SES 

into two categories: large or not large. Thus, all SES values that are translated to a control 

chart value greater (smaller) than xσ3  ( xσ3 ) are deemed equivalent. 

Rather than relying on such a nominal conclusion, it is better to use a continuous scale in 

assessing the importance of the FEs. This can be accomplished by interpreting the SES in 

terms of a process capability index such as Cpk, the proportion of the response values expected 

to fall beyond the process’s specification limits or the Taguchi loss function. In fact, given a 

target performance value and a specification/tolerance interval for a response variable, 
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defined by the customers’ needs and expectations, it is straightforward to assess the impact of 

a SESFE(i) of a certain value on these measures. As an illustration consider the following 

example. In a process for drilling steel plates, suppose that the hole diameter was the response 

under study with a target of 6.35 mm and a tolerance of ± 0.20 mm and that its measurements 

are Normally distributed. Assume further that  

(i) the process can be modelled using equation 8.1 and that an experiment was 

conducted to identify the most influential FEs on the hole diameter size.  In this 

case the MSE of the conducted experiment can be used as an estimate of the 

process standard deviation.   

(ii) the FEs of feed rate, cutting speed, tool material and tool geometry were the 

important main effects and that the estimated MSE  was 0.05.  

(iii)  the process under study was centred on its target as shown in Figure ‎8-1(a).  

Cpk can be used to assess the process performance in terms of the deviation of its average 

from its target value and is given by 

 





3

)]LSLX(or)XUSL[(Min
Cpk  (8.8)  

 

 

 

 

 

 

 

6.35 6.55 6.15 

USL LSL Cpk= 1.33 

(a) (b) 

 

6.35 6.45 6.55 6.15 

LSL USL Cpk= 0.67 

Figure ‎8-1: Capability Index for the Hole Drilling Process 
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where USL and LSL are the process upper and the lower specification limits respectively.  

For the process in its initial state (Figure ‎8-1 (a)) Cpk is 1.33 i.e. (0.2/(3*0.05)) which is 

conventionally deemed satisfactory. Suppose that the SESFE(i) of the cutting speed was 2. This 

means that this FE has the potential to shift the process average by 2σ towards the USL 

yielding a Cpk value of 0.67. Consequently, increasing the cutting speed by one m/min. has 

the impact of changing the process Cpk from 1.33 to 0.67 as illustrated in Figure ‎8-1 (b).  

The new Cpk associated with a specific absolute value of SESFE(i) (see Appendix 10) can be 

computed from the conventional one using the following equation: 

 New Cpk = Cpk – (SESFE(i)/3) (8.9) 

Alternatively the cutting speed SESFE(i) can be interpreted in terms of the potential 

percentage of holes that will be drilled with a diameter larger than the USL (6.55 mm) i.e. the 

percentage of nonconforming holes. This can be illustrated by considering the process at its 

initial state, where its average is centred at its target value and is 4σ away from each of the 

specification limits. In this case the percentage of nonconforming holes is approximately 

0.006% (P(z > 4 & z < 4) where z is the score of a Standard Normal distribution). As its 

SESFE(i) is 2, increasing the cutting speed by one m/min increases the percentage of 

nonconforming holes to 2.275% (P (z > 2)). Of course, this can be translated into monetary 

terms by multiplying the total number of produced units by the percentage of nonconforming 

holes to yield the expected number of defects and then multiplying this by the unit cost, 

rendering the total loss associated with the estimated SESFE(i). This loss can also be arrived at 

using Taguchi’s loss function (equation 2.3). In fact, assuming that the process average is 

centred at its target value the loss function associated with certain SESFE(i) can be rewritten as 

follows: 
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 L(Y) = K[MSE + ((SESFE(i))
2
*MSE) ] (8.10) 

The expression of the FE importance in monetary terms enables ones to precisely evaluate the 

value and the possible gain associated with controlling and changing the concerned FE. It 

facilitates the interpretation of the FE in the sense of making the process of attaching such 

attributes as “large” or “small” to a FE more objective and presentable. In short, the use of 

SES as a measure of a FE’s importance has the advantage of making its relative importance 

easier to understand and communicate. 

A noteworthy aspect regarding the use of the SESFE(i)  relates to the bias associated with 

estimating the process standard deviation. Assuming that the process can be modelled using 

equation 8.1, the experiment MSE is an unbiased estimator of its variance. However, its 

square root is a biased estimator of the process standard deviation. Therefore, despite the fact 

that the numerator of the SESFE(i) is an unbiased estimator of the mean-related effect, its 

denominator is biased rendering it a biased estimator of its population parameter. However, as 

presented in Montgomery (2009), a bias correction factor, conventionally referred to as c4, 

can be used to obtain an unbiased estimator of the population standard deviation i.e. E(S/c4)= 

σ where σ is the population standard deviation and S is its sample estimator.  

The correction factor c4 is tabulated against various values of n (Montgomery, 2009). 

Before being able to use it to correct for the bias associated with the MSE, its formula needs 

to be rearranged so that it is of   the same form as the conventional standard deviation i.e. 

(SS/n-1)
0.5

. Generally 

   MSE  = 
1νn

SSE


 (8.11) 

 The number of degrees of freedom associated with the MSE is smaller than that associated 

with the general sample variance as the estimation of both the average and the FEs render less 
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degrees of freedom for estimating the former. Substituting nc for n - ν in equation 8.11 yields 

a MSE that is equivalent in form to (SS/n-1)
0.5

. nc should now be used to determine the 

appropriate value of c4. Substituting the corrected estimate of the process standard deviation 

in the SESFE(i)  equation yields an adjusted version of it i.e. 

 
Adj-SESFE(i) =

 

4

FE(i)

c

MSE

β̂
. 

(8.12) 

In fact, even when both the numerator and the denominator of the SESFE(i)  are unbiased, 

their ratio is biased i.e. E(X÷Y) ≠ E(X) ÷ E(Y). According to Chiang (1966), E(X÷Y) = 

E(X)*E(
Y

1
) > E(X) ÷ E(Y). Consequently, the estimated SESFE(i)  (both the original and the 

adjusted) tends to overestimate the true value. This is not only due to the aforementioned 

mathematical relationship but also to the fact that the expected value of the experimental MSE 

may well be smaller than the process variance. This is due to the difficulty of rigidly 

controlling all the process’s sources of variation in practice as can be the case in a laboratory 

experiment. Although this should not affect the relative importance of the FEs under study as 

each FE(i)β̂  is divided by the MSE , it is important to bear in mind that the true SESFE(i)s are 

likely to be smaller than the observed ones when interpreting them in terms of falling beyond 

the limits of a control chart, Cpk or Taguchi loss function.  

8.4 Summary 

This Chapter aimed at presenting the concepts underlying the use and interpretation of the 

p-values and the FE importance measures. The major misconception concerning the 

interpretation of the p-values in practice has been pinpointed and the fact that it has been 

given more meaning than is warranted revealed. In this context, the appropriate interpretation 
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of the p-value was emphasized and the necessity of using the FE importance measures as 

instructive adjuncts to the HT procedures was ascertained.     

The examination of the use of the effect’s measures in practice draws attention to a lack of 

familiarity regarding the difference between the PC1 and PC2 estimates. This is evident from 

their interchangeable use and interpretation. Though both are biased estimators of the 

explained variance, the PC2 bias is far less serious than that of the PC1. Consequently, the 

latter use should be avoided.   

Although popularised by Ross (1996) PC2 was originally derived by Wherry (1931) under 

the title of Adjusted- R
2
 and Kelley (1935) who called it ε2. Apparently, many practitioners 

attribute this measure to Ross (1996) as is evident from the frequent use of his guidelines in 

judging the adequacy of the manufacturing experimental results. In fact, Ross seems to be 

unique in emphasising the importance of this variance-related measure and providing 

guidelines relating to its use in the assessment of the performed experiment adequacy in the 

engineering arena. Other well known engineering experimental design books such as Wu and 

Hamada (2000), Box et al (2005) and Montgomery (2010) pay little attention to such a 

measure but prefer the absolute mean-related important measure, especially in the context of 

two-level experiments. R
2
 and Adjusted- R

2
 are only discussed as an overall measure of all 

the FEs in the context of regression analysis. This may be one of the main reasons for the 

inconsistent use of the FEs’ importance measures in the Manufacturing Engineering literature 

as different references emphasise different importance measures. 

In using the variance-related importance measure, it is difficult to answer the question how 

large is a large effect. Put differently, the translation of a certain value of explained variance 

in monetary terms or a language understandable by practitioners is not straightforward. To 

this end, the use of the SES measure is recommended. Though common in simulation studies, 
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the SES is rarely, if ever, employed in practice. This should not be surprising in light of the 

absence of its use and discussion in both conventional and Taguchi’s DOE textbooks. The 

chief advantage of the SES stems from the ability to link its interpretation to such quality 

engineering techniques as control charts, process capability and Taguchi’s loss function. This 

facilitates the expression of the FE importance in shop floor terminology thereby improving 

the communication between Engineers, Managers and Statisticians.  

Of note regarding the use of the SES and the variance-related importance measures is the 

fact that each is a biased estimate. Generally, the problems relating to bias present no 

difficulty as long as its presence is recognised and an appropriate correction factor is known. 

The bias associated with the variance related measures is not only recognised but also 

quantified in the statistics literature. The dependence of the bias on the true population value 

of these measures renders the estimation of their correction factor infeasible. On the other 

hand, despite the recognition of the bias associated with the SES, there is still a need for more 

studies to quantify its bias and investigate the possibility of reducing or even eliminating its 

impact using an appropriate correction factor. 

Being point estimates, there may be no knowledge of the sampling error of PC1, PC2, or 

the SES. Thus, in contrast to the mean-related measure FE(i)β̂ for which the sampling 

distribution is known, no confidence interval can be constructed to gain an idea about the 

sampling variability associated with such measures. Consequently, when interpreting them it 

must be borne in mind that their sampling error may be high, especially when the number of 

experimental runs is small, rendering their reliability dubious. Thus it is recommended, 

whenever possible, to replicate the experiment and compare the FEs importance measures 

estimated from each replicate with each other to gain some idea about these measures’ 
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sampling variability. It is also recommended that further research be undertaken to investigate 

and establish the sampling distribution of PC1, PC2, and the SES.  
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK 

 

9.1 Conclusions 

The industrial world has been experiencing unprecedented social and technological 

changes, and it seems that more profound changes lie ahead. Recently, it has been established 

that to have an edge over competitors, more effective decision making processes must be 

adopted. Davenport (2006) argued that owing to advances in information technology, 

communication and reverse engineering, companies’ vulnerability to product imitations has 

considerably increased. He observed that, in many industries, companies are providing similar 

products and employ comparable technologies. Moreover, what used to be regarded as a 

distinct competitive advantage can now be easily learned and copied. Drawing on this, 

Davenport and Harris (2007) argued that, in this era, to effectively differentiate itself, a 

company needs to compete on analytics, i.e. “extensive use of data, statistical and quantitative 

analysis, explanatory and predictive models and fact-based management to drive decisions 

and actions”. To this end, DOE is among the most effective statistical techniques for 

understanding the cause-and-effect relationships between process and product parameters and 

their performance measures thereby generating the required knowledge to inform any 

performance improvement decision in a timely and cost effective manner.  

Owing to the vital role of Manufacturing Engineering in any industry, the aim of this 

research was to improve the practice of DOE in this field. While the literature on how DOE 

should be applied abound, the manner in which it is actually being employed in practice is 

rarely, if ever, addressed. Though alluded to in research by Antony et al (1998) and 

Makrymichalos et al (2005) for example, no study that explicitly discusses the topic using 

empirical evidence was found. In this work, an attempt was made to fill this void by 
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reviewing its practice in a sample of three manufacturing journals. The intention was to 

examine the extent to which the methods suggested in the published DOE literature are being 

applied by practitioners.  

One problem that was encountered in the conducted review was the fact that the use of 

DOE was limited, thereby highlighting the need for improving the extent of awareness of the 

importance and capabilities of this powerful technique. The bulk of the second Chapter in this 

thesis was therefore devoted to this end. Several aspects of the DOE power were explored 

including  

 its effectiveness in characterising and optimising product and process parameters,  

 its ability to deal with the main two dimensions of complexity i.e. interdependence 

and variability,  

 the ease with which it can be integrated with other process improvement 

techniques,  

 its potential for improving the formal decision making process as well as the 

scientific investigation endeavour.  

Merely being aware of the importance of DOE is not enough; it takes desire and ability to 

successfully employ any improvement technique. Consequently, it is essential to understand 

the appropriate way of implementing DOE and mitigating the impediments to its effective 

use. The main problems associated with DOE practice identified in the review were as 

follows: 

(i) a lack of familiarity with the concept of aliasing, the method of generating its pattern 

and the consequences of overlooking its impact; 
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(ii) the use of fractional factorial designs and pooling methods to analyse unreplicated 

experiments; 

(iii)  the misconceptions and misunderstanding of the fundamental foundations that 

underpin the use and interpretation of the p-value and the FE importance measures. 

Regarding aliasing, the ramifications of failing to recognise its impact were discussed, 

including its influence on the estimated factorial effects and their standard error in addition to 

the effect it exerts on the employed test statistic and the statistical significance outcome. Also 

addressed were the main criteria for measuring the degree of aliasing, including maximum 

resolution, minimum aberration and generalised minimum aberration. It was highlighted that 

these were seldom used in practice due, in no small part, to the complexity associated with 

their presentation in the DOE literature. To deal with this, a simple method for generating the 

aliasing pattern was proposed. Its main advantage lies in the ease with which it can be 

implemented. In fact, it requires nothing more than applying the basic matrix operations using 

Microsoft Excel functions. Another advantage of the suggested method stems from the fact 

that it can be linked to the aforementioned criteria for measuring aliasing in a manner devoid 

of mathematical complications. Moreover, in addition to its suitability for two- and three-level 

designs, the proposed method can be used to handle both regular and non-regular OAs. By 

drawing attention to the concepts of aliasing and the implications of ignoring its consequences 

and providing a simple method for dealing with it, it is hoped that the aliasing related issues in 

the practice of DOE will be alleviated.   

With respect to the strategies of experimentation, the main question that was posed in this 

research related to the extent to which the conclusions arrived at using a certain fractional 

factorial OA and a pooling method in an unreplicated trial match those that would have been 

drawn had a full factorial experiment been performed. The question was addressed by 
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designing and analysing a set of simulation experiments using DOE techniques. The 

percentage of effects that were correctly detected by the employed fractional OA and pooling 

method as identified in the full factorial trial i.e. the Power, was used as the response variable. 

The employed OAs and the applied pooling methods were treated as controllable factors 

whereas the number of active effects and their sizes were dealt with as noise factors. This 

allowed not only the average Power to be examined but also its variability around its average. 

In other words, the objective was not only to maximise the average Power but also to seek the 

settings of the controllable factors that desensitised the impact of the noise factors on it.  

The scope of the conducted experiments incorporated both two- and three-level OAs. In 

the DOE literature, the latter receive nothing like the attention given to the former. Moreover, 

whenever the topic of Power is discussed, its average was the main concern. In fact, the 

Power variability has been accorded scant attention. Thus, one of the purposes of this study 

was to redress the balance by considering both types of OAs and examining the Power 

variability (robustness) as well as its average. 

The results of the conducted simulation experiments revealed that in the context of two-

level trials, the highest Power was attained when the L16 was used in conjunction with the PU 

method and the HNP plot. In terms of pooling methods, the latter is more informative than all 

the others for it allows the relative magnitude of the studied effects to be investigated visually. 

Moreover, it has the advantage of highlighting the need for data transformation. When the 

time and resource limitations entail performing less than 16 trials, the use of the L12 is 

suggested. In this case the appropriate pooling method should be specified on the basis of 

process knowledge. If two-factor interactions are suspected, then BSS should be employed, 

otherwise the use of the HNP plot and the PU method is recommended. Whenever possible, 

the use of the L8 should be avoided. This is due to its low and inconsistent level of Power. 
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Moreover, if augmenting is necessary, it is advisable to use BM as it outperformed the DO 

method. 

In the case of three-level experiments, irrespective of which OA is used, it is 

recommended that each of the OA’s columns is decomposed into single degree of freedom 

components using the L-Q system and the data analysed using regression. This allows for 

better utilisation of the available degrees of freedom thereby increasing the Power to detect 

the true active effects. In terms of the OAs, the L18 attained a high level of Power especially 

when analysed using BSS which outperformed SWR. Not surprisingly, the L9 suffered from 

the same pitfalls as the L8. 

To attain Power robustness, different approaches should be adopted with the two 

investigated controllable factors. For the OAs, the use of the L8 and the L9 should, as far as 

possible, be avoided. With regard to the pooling methods, it is always recommended that 

more than one technique is used to analyse the experimental data and the reasons for any 

disagreements investigated. In fact, if several methods detect the same effects as active, the 

confidence regarding their significance is increased. On the other hand, when certain effects 

are pronounced active only by some of the pooling methods, the subject knowledge should be 

used to examine the practical plausibility of their significance. Otherwise, one-factor-at-a-

time confirmation trials may be performed varying only the settings of the suspected 

parameters. Adopting these approaches should not only increase the average Power but also 

reduce its variability.  

   Among the prime issues that were revealed in the conducted review were those related 

to the misconception and the misuse of p-values and the FE importance measures. Regarding 

the former, it was observed that it was used to convey more meaning than warranted; this 

included the treatment of its complement (1-p) as a quantity reflecting the degree of 
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confidence that H1 was true, its use as a measure of the likelihood that the result was due to 

chance, and regarding its value as reflective of the effect importance. The pitfalls associated 

with each of these interpretations were discussed and the appropriate use of the p-value as a 

probability of obtaining a statistic value as extreme as or more extreme than the observed one 

was emphasised.   

With respect to FE importance measures, it was noted that the two variance related 

measures PC1 and PC2 were not only used interchangeably in the manufacturing literature but 

also were interpreted as equivalent. After examining their roots and the rationale behind their 

derivation, it was noted that both are biased estimators of the FE explained variance. 

Moreover, the bias associated with PC2 was demonstrably smaller than that with PC1. 

Consequently, the use of the former is suggested. Being reflective of the change caused by the 

FE in both the response average and its variability, it was recommended that the SES be used 

to measure the effect’s importance. The main advantage of this measure lies in the possibility 

of relating its interpretation to such quality engineering techniques as control charts, process 

capability and the Taguchi loss function. By so doing, communication between Engineers, 

Managers and Statisticians can be greatly improved.   

Promoting the proficient practice of DOE requires a multifaceted approach incorporating 

textbook authors, software packages’ developers and journal editors. Drawing on the results 

of this study, one is entitled to infer that the DOE literature has lacked a comprehensive 

textbook on understanding the impediments of the proper application of this technique and 

developing practices for successfully mitigating them. In fact, one of the major reasons for the 

inappropriate practices of the DOE is the textbooks’ unbalanced coverage of topics such as 

graphical and formal data analysis techniques, pooling methods, two-and three-level OAs and 

their data analysis, FE importance measures and the proper interpretation of significance 
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testing inferences. To gain a rigorous understanding of these, it is necessary to refer to more 

than one textbook. The reason being that while some of them are emphasised in certain texts, 

others may be completely ignored. Moreover, some textbooks adopt Taguchi’s approach to 

DOE and overlook all the powerful techniques presented in the conventional literature on the 

subject.  To deal with these issues, there is a need for a comprehensive text that integrates the 

strengths of the conventional approach with those of Taguchi’s without losing sight of the 

problematic issues highlighted in this study and their mitigation.  

The developers of software packages have a responsibility to assist practitioners in 

implementing best practices in DOE. Most of the widely used packages do not provide, in 

menu-driven interfaces, many of the powerful DOE statistical analysis techniques such as the 

BSS method and the OAs’ L-Q and other coding procedures. Moreover, the FE importance 

measures such as PC2 and SES are not provided as a part of the data analysis options in such 

packages as Minitab, Design-Expert or SPSS which were found to be widely used in practice. 

The inclusions of the above mentioned procedures and options will not only improve the 

practice of DOE but also encourage its adoption.  

As the gatekeepers for what appears in publications, journal editors have an essential role 

to play in improving the practice of DOE. They should be aware of its importance in 

nourishing scientific research, and be knowledgeable about its appropriate practices and 

ensure that the authors adhere to them. A pertinent aspect worth mentioning here is what was 

brought to light in the conducted review regarding the limited citation of DOE references in 

the examined articles. This is reflective of the fact that in learning how to apply DOE, 

practitioners appear to rely on articles that deal with similar case studies to the one under 

consideration. As these are normally published in the Manufacturing Engineering journals, 

they are preferred over the theoretical statistically-centered papers presented in the DOE 
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literature. To a large extent, this can be attributed to the practitioners prevailing tendency to 

adopt cookbook approaches in which the statistical and philosophical framework out of which 

the implemented methodology emerge is ignored. However, it also calls attention to a lack of 

communication between practitioners and researchers in the field of DOE. In fact, it seems 

that most of the DOE publications are addressed to other researchers in this field, not to 

practitioners. This is evident from the excessive use of jargon and mathematical complication 

in the DOE literature. It should be conceivable that Manufacturing Engineers may not fully 

understand the DOE concepts that they rarely read about in their literature.  To attain an 

effective communication, DOE researchers should publish their findings in applied journals 

such as Manufacturing Engineering ones. The manner in which their material is presented 

should be readily understandable.  As DOE is not a static field, this can help increase the 

awareness of the new DOE developments thereby enhancing the way in which this technique 

is applied.   

9.2   Limitations and Future Work 

As being the case in any research, the results of this work should be considered without 

losing sight of its limitations. The topics of DOE that warranted further illustration and 

assimilation were pinpointed in this study based on reviewing  one year’s publications in three 

journals listed under the category of Manufacturing Engineering in the citation reports issued 

by Thompson Reuters. This was due to a time constraint that rendered reviewing all the 

journals listed under the appropriate category a prohibitive task. This issue however, should 

not have a tremendous bearing on the main objectives of this research, the principal reason 

being that no attempt has been made to generalise the findings of the conducted review to all 

Manufacturing Engineering journals. Rather, the intention was to use it to represent an 

important segment of the Manufacturing Engineering literature as a platform for issues that 
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are crucial to enhance the understanding and practice of DOE in this field. Moreover, 

although based on reviewing only three journals, it did highlight several gaps in the DOE 

literature. These included (i) the need for a simple and unified method for generating the 

aliasing pattern for both the two- and three-level OAs and (ii) the absence of empirical 

performance evaluation studies that, besides aiming to identify the fractional DOE strategy 

that maximises Power, address the problem of robustness against such noise factors as the 

number of active effects and their sizes.  Further research on the practice of DOE in all 

Manufacturing Engineering journals is needed over a longer period. Such investigations are 

likely to highlight other gaps in the DOE literature.  

With respect to the simulation experiments, it must be borne in mind that they were fixed-

effect trials and consequently their conclusions cannot be generalised. This points to the 

possibility of expanding this study in the future by exploring further two- and three-level 

OAs, pooling methods and number and sizes of active effects. The response variable of 

interest in the performed trials was Power but it would be interesting to undertake similar 

simulation experiments to study the impact of the investigated factors on the Type I error.   

In the context of the FE importance measures, there is a need for a thorough study of the 

bias associated with the SES measure and the possibility of eliminating or even reducing its 

impact using an appropriate correction factor. Equally important is the need for studying the 

sampling distribution of not only the SES but also the PC2. In this regard, it must be noted that 

in estimating the sampling error and constructing the confidence interval of any statistic, the 

bulk of the statistics literature focuses on the central sampling distributions which assume a 

zero effect. The distributions of the SES and the PC2 are, however, non-central in the sense 

that besides specifying the degrees of freedom, their construction entails identifying the value 

of the effect. Therefore, for each effect value there is a specific distribution. Research on 



189 

 

developing algorithms for constructing such distributions and examining the possibility of 

incorporating them into the standard DOE software packages is called for. By casting light on 

the sampling variability of the SES and the PC2 and reducing the sole reliance on their point 

estimates, the outcome of such studies is likely to contribute significantly to the enhancement 

of DOE practice. 

Finally, it is hoped that this research will help practitioners gain a better insight into how 

to employ this powerful technique and pave the way for further research aimed at improving 

its practice.  
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1. DOE Basic Principles  

A major aspect of DOE is the concept of analysing the sources of variation. In fact every 

response in an experiment demonstrates variation, of which there are three sources: those due 

to changing the controllable variables, those associated with the noise variables and those due 

to chance and the measurement process (inherent). A good experimental design will enable 

the variability associated with each source to be estimated. The conventional purpose of an 

experiment is to study and estimate the variation due to controllable factors (or the variability 

of the average response around its target).  The noise variables’ variation includes the 

variability that results from using a different batch of materials or carrying out the experiment 

under different environmental conditions (e.g. ambient temperature, humidity etc.) or by 

different operators etc. This is the variability of the individual response values around their 

average but also includes errors in the measurement process.  

In any experiment, if two measurements are taken under the same conditions the results 

will almost never be identical. Although this variation is inherent and unavoidable it has two 

properties (Cobb, 1997). Firstly, some chance errors will be positive, while others will be 

negative, but on balance they will tend to cancel each other out, at least partially, when an 

average is computed. The more measurements that go into an average, the smaller the chance 

variation will tend to be, and the more accurate the average itself will be. Secondly, if the 

experiment is well-planned, it will be possible to estimate the size of the chance variation, 

and this will make it possible to determine the precision of the obtained average. 

In order to account for the above mentioned sources of variation, the experiment should 

be planned and designed very carefully. According to Montgomery (2010) there are three 

basic principles for experimental design which should be considered, replication, 

randomisation, and blocking. 
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Replication means repeating the experiment under the same conditions not performing the 

experiment once and taking several measurements. This allows the experimenter to obtain an 

estimate of the experimental error, which becomes a basic unit of measurement for 

determining whether observed differences in the data are really statistically different. Also, if 

the sample mean is used to estimate the effect of a factor in the experiment, replication allows 

the experimenter to obtain a more precise estimate of this effect because the variance of the 

sample mean is less than that of the individual observations. On the other hand the variability 

that results from repeated measurements is a direct reflection of the inherent variability in the 

measurement system or gauge. 

Randomisation means that both the allocation of the experimental material and the order 

in which the trials are conducted are determined randomly. This is important for the 

following three reasons: (i) statistical methods require observations (or errors) to be 

independently distributed random variables, randomisation usually validates this assumption; 

(ii) it assists in "averaging out" the effects of extraneous factors that may be present; and (iii) 

where the operation is repetitious the order in which the experiments are conducted may be 

important, either because a learning process is involved which tends to make later runs better 

than earlier ones, or because of fatigue which has the opposite effect. This systematic bias 

may be eradicated by randomisation. 

Although randomisation helps to "average out" the effects of extraneous factors, it does 

not eliminate their resultant variability. Blocking is another design technique that reduces or 

eliminates the variability arising from 'nuisance' factors i.e. those that may influence the 

experimental response but in which there is no direct interest such as different batches of raw 

material. Using this technique ensures that any variability that results from these factors, will 

be isolated from the experimental error, which in turn becomes smaller enabling more precise 

conclusions to be drawn from the experiment. Generally, a block is a set of relatively 
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homogeneous experimental conditions. Each level of the nuisance factor constitutes a block. 

The experimenter divides the observations from the statistical design into groups that are run 

in each block.  

Alongside the above three principles, there are another three concerning the relative 

importance and the relationships between the studied main effects and their interactions (Box 

et al 2005). These are particularly important for justifying the development and use of 

fractional factorial designs (addressed in section 2). The first is the hierarchical ordering 

principle which entails considering lower order effects as being more likely to be important 

than higher order effects and regarding  those of the same order as equally likely to be 

important. Thus it suggests that when resources are scarce, priority should be given to lower 

order effects. So the estimation of, say, main effects is more important than that of two-factor 

interactions. The second principle is effect sparsity (Box and Meyer, 1986) which states that 

the number of relatively important effects in an experiment is small. It parallels the Pareto 

principle (Juran, 1993) with respect to focusing on the “vital few” not the “trivial many”. 

Effect heredity, which is the third principle, demands that at least one of the parent factors of 

an interaction is significant in order for the interaction to be pronounced significant. It must 

be borne in mind that, as Wu and Hamada, (2000) highlighted, these three principles are 

empirical, their validity having been confirmed in many real experiments. However, it is not 

uncommon to encounter experimental situations where one or more of these principles is 

violated.  

2. Stages of Design of Experiment Study        

As Antony (2003) illustrated, the successful application of DOE to improve the 

performance of engineering processes requires planning, statistical, teamwork and 

engineering skills. Generally a DOE study is performed in three stages: planning, conducting 

and analysis and interpretation, of which the first is the most important by far.  
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2.1 The Planning Stage 

This consists of seven steps; namely recognising the problem or the improvement 

opportunity, stating the objectives, selecting the performance measure(s) and the 

measurement system(s), selecting the factors that may influence the chosen performance 

measure(s), selecting levels for the factors, selecting interactions that may be important, 

selecting the experimental design and assigning the factors and interactions to the selected 

design. 

1. Recognising the problem or the improvement opportunity: the need for conducting a 

DOE study to deal with an existing problem or to attain better performance should be 

understood. This can be achieved by developing a clear and succinct description of the 

issue or the difference between the current level of performance and the target value. 

Failure Mode and Effect Analysis (FMEA), Process Flow Diagram, Scrap and Pareto 

Analysis are among the tools that can be utilised in this step. It is important to involve 

all the parties concerned with the process;. in fact a team should be formed involving 

all those who may be able to contribute key information about it. Those whom the 

experiment and its ramifications may affect should also be involved. As Peace (1993) 

suggested the team may include a DOE specialist, a Process Engineer, a Management 

Representative, a Customer, and Operating Personnel. A detailed discussion of the 

importance of teamwork in designing and carrying out experiments can be found in 

Van Matre and Diamond (1996). 

2. Stating the objectives: the objectives should be clear, specific, measurable and of 

practical value. They should incorporate the target performance level as specified 

utilising customers’ input and competitive benchmark information (Ross, 1996). To be 

of practical value, there should be a novelty aspect to the experiment, such as proposing 

new operating conditions for the process or suggesting the use of a new material. All 
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interested parties should agree that the proper objectives have been set, such tools as 

Brainstorming, Quality Function Deployment (QFD), and Pareto Analysis are very 

useful here. In order to secure management approval of the objectives, it is better to 

express the expected outcomes in monetary terms utilising Taguchi’s loss function. 

This is also important for justifying that the benefits to be gained from the experiment 

will exceed the expenses incurred. A Gantt chart showing the steps to be followed to 

attain the objectives along with their associated dates is also advantageous. 

3. Selecting the performance measure(s) and the measurement system(s): This step 

includes determining the performance measure (response variable), the appropriate 

measurement system and the personnel who will perform the measurements. Process 

Flow Diagrams and reproducibility studies are useful aids for this step (Ross, 1996). 

Coleman and Montgomery (1993) suggested that response variables should 

i), whenever possible, be continuous. This is because binary and ordinal data carry 

much less information and continuous data measured on a well-defined numerical 

scale are typically easier to analyse.  

ii) capture a quantity or quality of interest for the experimental unit  

iii) be in appropriate units, for example absolute, such as kilograms, or relative, such as 

percentage of concentration by weight or by volume or proportional deviation from a 

standard. 

iv) be associated with a target or desirable condition (which motivates the experiment). 

Continuous and ordinal responses can be classified according to the experiment’s 

objectives into three categories: Nominal-the-Best (the objective being to achieve a 

target level of performance), Larger-the-Better (to maximise the value of the 

performance measure) and Smaller-the-Better (to minimise the value of the 

performance measure). 
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v) preferably be obtained by non-destructive and non-damaging methods so that 

repeated measures can be made and measurement error can be quantified 

A thorough understanding of the process is essential to obtain a response variable that 

satisfies most of these criteria. This can be accomplished utilising  

 information from previous experiments (if any),  

 observational data that may have been collected routinely by process operating 

personnel,  

 field quality or reliability data,  

 knowledge based on physical laws or theories, and expert opinion.  

This process understanding will be helpful not only for selecting an appropriate 

response variable but also for quantifying what new knowledge could be gained from 

the experiment and for motivating discussion by all team members.  In order to 

understand the variation due to the measurements that are to be taken, it is essential to 

define its system. This incorporates the identification of what to measure, the units, and 

where and how to measure (Antony and Preece, 2002). It is also important to have a 

well-established system of ensuring both accuracy and precision of the measurement 

methods so that the amount of error introduced by the equipment used, for example, 

can be appreciated. If this is large relative to a change that is important to detect in the 

response variable, then a measurement system’s capability study should be performed 

to improve the system. 

4. Selecting the factors that may influence the chosen performance measure(s): in this step 

a list of factors to be evaluated for their effect on the selected response variable(s) 

should be chosen. Brainstorming with product and process technical experts, Process 

Flow Diagrams, Statistical Process Control Charts, Product Design Specifications and 

Process Control Plans and Cause and Effect Diagrams are useful aids here. Various 
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characteristics of the studied factors need to be considered as they can impact the 

choice of the experimental design. For example, the factor may be hard to change, e.g. 

after changing its settings, it may take some time to stabilise at the new settings as is 

the case with furnace temperature. Furthermore, the factor may be hard to set accurately 

i.e. its actual levels used in the experiment may be different from the intended ones. 

The experiment’s objectives and the information regarding the characteristics of the 

factors are valuable inputs to enable informed decisions to be made, such as whether 

the factors should be treated as design or noise and which should be varied and which 

held constant. 

5. Selecting levels for the factors: in this step the number and values for all the levels of 

the selected factors are determined. A thorough knowledge of the product or process is 

vital to ensure that appropriate level values are selected. The process specification or 

operating limits are also useful aids (Ross, 1996). To evaluate the effect of each factor, 

a minimum of two levels is required. If the objective of the experiment is to screen a 

few factors out of the many possible that actually have a significant effect on the 

response variable then it is recommended that the experiments use only two levels 

where possible to minimise its size (Montgomery, 2010). For quantitative factors, the 

levels should be far enough apart to allow the effect to be detected. However, as 

Montgomery (2010) noted, it must be borne in mind that by choosing levels that are too 

far apart a factor can be made to look significant. Conversely, a factor can be made to 

look insignificant by choosing levels that are too close together. If curvature is 

expected, three or more levels are required to be examined. In such cases, it is 

recommended that equal intervals between levels should be used. The flexibility in 

choosing the levels of qualitative factors is limited. For example if one of the 

experiment’s objectives is to compare three types of machine tooling then the 
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experimenter has no choice but to include the factor at three levels. Otherwise, the 

experiment’s objective should be amended.  

6. Selecting interactions that may be important: Product and process expertise should be 

utilised to identify all the interactions that are suspected to affect the response. Failure 

to recognise the presence of a significant interaction can result in arriving at misleading 

conclusions.  

7. Selecting the experimental design: This step involves choosing an appropriate array to 

represent the design layout. The columns of the array accommodate the factors and 

interactions and the rows contain the combination levels. Arrays can be classified as 

either orthogonal or non-orthogonal the former being most common in practice. An 

Orthogonal Array (OA) is a matrix whose columns have the property that in every pair 

of columns, all the possible combinations of levels occur an equal number of times.  

Any array that does not possess this characteristic is called non-orthogonal. OAs were 

initially introduced by Jacques Hadamard in 1897 (Ross, 1996). Denoting the number 

of factors under study by k, the size of the experiments (number of rows) by n and the 

number of levels by S, a symmetrical OA has associated with it S
k
-1 degrees of 

freedom. These can be split into (S
k
 -1)/( S -1) mutually orthogonal sets of (S -1) 

degrees of freedom (Bose, 1947;  Bose and Bush, 1952). The term degrees of freedom 

refers to the number of independent units of information in a sample (in this case the 

experimental results) relevant to the estimation of a parameter or the calculation of a 

statistic (Everitt, 2006).  

In an asymmetrical (mixed level) OA(S
k1

P
k2

) each S-level column has associated with 

it S-1 degrees of freedom and each P-level column has associated with it P-1 degrees of 

freedom. The total number of degrees of freedom is K1x (S -1) + K2 x (P -1) where K1 

and K2 are the number of the S-level and P-level factors respectively. In conventional 
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DOE, OAs are denoted by S
k
 (e.g. 2

3
 and 3

2
) whereas the denotation Ln (e.g. L8 and L9) 

is used in Taguchi DOE. L18 (2
1
3

7
) is an example of a mixed level OA. Further details 

on OAs can be found in Addelman and Kempthorne (1961) and Addelman (1962a, 

1962b). In practice, it is commonplace to classify OAs into two categories, 

conventional and Taguchi, however they are equivalent. To shed light on this, consider 

the conventional 2
3
 design and Taguchi’s L8 OAs shown respectively in Tables 1 and 2. 

As is the case in all two-level experiments, the low and high levels of each factor in the 

conventional design are represented by the numbers -1 and +1 respectively. Its 

interaction columns are obtained by multiplying the corresponding columns of the main 

effects. In the Taguchi L8 design, 1 and 2 are used to respectively denote low and high 

levels of each factor. As can be seen the main factor columns of the conventional 

design are in the opposite order to that in the Taguchi one. In fact the Taguchi L8 can be 

obtained from the conventional one by reversing the signs of the 1s in the interaction 

columns; rearranging the columns as 4,2,6,1,5,7, and 3; and re-labelling -1 as 1 and +1 

as 2. In general, two orthogonal arrays are defined to be equivalent if one can be           

.. 

Table 1: Conventional L8 

Col. No. 1 2 3 4 5 6 7 

Runs A B AB C AC BC ABC 

1 -1 -1 1 -1 1 1 -1 

2 1 -1 -1 -1 -1 1 1 

3 -1 1 -1 -1 1 -1 1 

4 1 1 1 -1 -1 -1 -1 

5 -1 -1 1 1 -1 -1 1 

6 1 -1 -1 1 1 -1 -1 

7 -1 1 -1 1 -1 1 -1 

8 1 1 1 1 1 1 1 
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Table 2: Taguchi’s L8 

 

 

 

 

 

 

 

 

obtained from the other through permuting the rows, the columns, or the levels within a 

column (Bose and Bush, 1952). Kacker et al (1991) explained how Taguchi’s OAs 

were constructed and showed that they are equivalent to conventional ones. The 

selection of the appropriate OA is dependent upon the number of factors to be studied, 

the number of important interactions, the size of the factorial effect that needs to be 

detected, the available time and the resource limitations. One option is to conduct a full 

factorial trial where all the possible combinations of factor levels are tested. However, 

this can lead to a prohibitively large experiment as the number of factors increases. To 

alleviate this, fractional factorial designs in which only a subset of the full factorial runs 

is performed are commonly employed in practice.  Useful though these can be, their 

adoption gives rise to another type of problem regarding the estimability of the studied 

effects (see Chapter 4).  

8. Assigning the factors and interactions to the selected design: having selected the 

appropriate OA, the next step is to assign factors to it. With full factorial experiments, 

this is straightforward; however it is not as clear cut in the case of fractional factorial 

experiments. The reason is that each way of assigning factors to the columns of an OA 

generates a certain pattern of aliasing which can be defined as the failure to obtain an 

independent estimate of some or all the factors under study. The topics of aliasing and 

Col. No. 1 2 3 4 5 6 7 

Runs A B AB C AC BC ABC 
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1 

1 

1 

1 

2 

2 

2 

2 

1 

1 

2 

2 

1 

1 

2 

2 

1 

1 

2 

2 

2 

2 

1 

1 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

2 

1 

2 

1 

1 

2 

2 

1 

1 

2 

2 

1 

1 

2 

2 

1 

2 

1 

1 

2 



218 

 

of how to assign the factors to an OA so as to reduce its impact are dealt with in 

Chapter 4.  

A collection of graphical methods that can be utilised in the planning phase is presented in 

Barton (1997). A more detailed discussion of each step can be found in Coleman and 

Montgomery (1993) where a very useful set of guidance sheets is provided. 

2.2 Conducting Stage  

At this stage, the experiment is carried out as planned in the previous stage. Before 

embarking on performing the experiment, it is important to ensure that the necessary 

materials, machines, operators and other resources are available. It is also important to define 

the roles and responsibilities of those who are involved in performing the experiment. 

Coleman and Montgomery (1993) suggested conducting a few trial runs or pilot runs prior to 

starting the experiment. These provide information about the consistency of the experimental 

material, a check on the measurement system, a rough idea of experimental error, and a 

chance to practice the overall experimental technique. It may also lead to revisiting the 

decisions made in the previous steps.   

2.3 Analyses and Interpretation Stage 

The experimental results can be analysed using informal graphical methods, formal 

statistical techniques or a combination of both. Graphical methods involve plotting the main 

effects and the factors’ interactions. In the main effect plot, the averages of all the 

observations at each level of the factor are plotted and connected by a line. In the case of two-

level factors, the vertical height of the line is the difference between the two averages which 

is the main effect. For the interaction plot, the levels of one factor are displayed on the 

horizontal axis of the graph. For each of these, the average associated with each level of the 

second factor is plotted as a point and the points that represent each level of this are 

connected by a line. The main objective of plotting the main effects and interactions is to 
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identify the strongest effects and determine the combination of factor levels that can produce 

the most desirable results. Therefore, it provides a valuable input to the process of analysing 

and interpreting the experimental results. The formal statistical techniques involve the t-test, 

ANOVA and regression modelling. Their main purposes are to test the statistical significance 

of each effect and derive an empirical model from the experimental data expressing the 

relationship between the response variable and the important factors and interactions. A 

detailed discussion of these techniques is presented in Appendix 2. Once the experimental 

data have been analysed, a practical interpretation should be provided utilising the process 

technical expertise on the basis of which conclusions about the results can be drawn leading 

to recommending a certain course of action. Confirmation runs should then be performed to 

validate the conclusions.  
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1. Introduction  

Broadly, the statistical analysis of experimental data comprises two stages: estimation and 

hypothesis testing. In the context of DOE, the former relates to estimating the effect size of 

the studied factors and interactions and the latter pertains to testing their statistical 

significance. The procedure for performing both is dependent upon the number of factor 

levels, whether the trial is replicated and whether regression modelling is performed. The aim 

of this Appendix is to present an overview of the statistical analysis of two- and three-level 

experimental data. A brief discussion of the estimation and hypothesis testing concepts is 

firstly presented. Then, the most commonly used statistical significance tests i.e. t-test and 

ANOVA are explained together with the way in which regression technique can be 

employed. Some limitations are highlighted regarding the literature treatment of analysing 

three-level experiments and their level coding systems. The way in which the regression 

coefficients should be interpreted under each coding system is discussed. Attention then 

centres on the analysis of unreplicated experiments including the most commonly used 

pooling strategies since in such cases no degrees of freedom are available to estimate the 

error variance. Finally the main conclusions are summarised.  

2. Estimation and Hypothesis Testing  

Estimation is the process of providing a numerical value for a population parameter on the 

basis of information collected from a sample (Walpole et al, 2006). Point estimation is the 

process whereby a single figure (a statistic) is calculated for the unknown parameter, while 

interval estimation is a procedure for setting bounds within which the parameter is likely to 

lie. Assessing whether sample data is consistent or otherwise with assumptions made about 

the population is known as hypothesis testing. It involves stating a null hypothesis (H0) 

regarding the studied population along with an alternative (H1). H0 is a supposition or a 

statement expressing a certain expectation regarding the population. It usually concerns a 
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parameter and is represented in such forms as “no effect”, “no difference” or “no association” 

(Kanji, 2006). To test the null hypothesis on the basis of sample data, it is necessary to 

establish an inferential linkage between the sample and the population. This is accomplished 

by means of a sampling distribution which is the probability distribution of a statistic 

calculated from repeated random samples of a particular size collected from a population 

about which the null hypothesis is true. The procedure of testing a hypothesis consists of 

firstly stating the null hypothesis. Then, on the basis of its relevant parameter, the appropriate 

statistic should be specified and its probability distribution under the null hypothesis should 

be defined. The next step is to collect a random sample and calculate the concerned statistic. 

Utilising its sampling distribution, the probability of obtaining a statistic as extreme as or 

more extreme than the observed one is then calculated (Devore, 2008). This is referred to as 

the p-value and is used as a quantitative measure of the plausibility of the null hypothesis. 

Whenever the p-value is less than a particular threshold the result is said to be significant 

meaning that the null hypothesis should be rejected. This threshold relates to one of the two 

errors that are possible whenever hypothesis testing is performed i.e. Type I and Type II 

errors. The former occurs when a true null hypothesis is rejected while the latter arises in the 

case of failing to reject a false null hypothesis (Black, 2009).  

Before testing a certain hypothesis, the experimenter should specify the probability of a 

Type I error which is conventionally called the significance level and represented by α. It is 

against this probability that the p-value is examined and the decision regarding the rejection 

of the null hypothesis or otherwise is made.  The value of α is determined by subjective 

judgment about the acceptable level of such error given the context of the study. A common 

rule of thumb is to use α = 0.05. Given the value of α, the standardised effect size, the sample 

size and the error degrees of freedom, the probability of a Type II error commonly denoted 

by β can be determined. In general it is an inverse function of the three aforementioned 
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parameters. The complement of the Type II error is a measure of the extent to which the 

hypothesis testing process is successful i.e. the Power. It can be defined as the probability of 

correctly rejecting the false null hypothesis which is equivalent to 1- β (Downing and Clark, 

2003).  

In the fixed effect DOE analysis, which is the theme of this Appendix, the null hypothesis 

may take two general forms. The first is associated with single factor experiments where the 

hypothesis of no difference between the factor levels is the main concern. The second 

involves two or more factors where the null hypothesis of no individual or collective effect of 

the studied factors and interactions is commonly tested. Figure 1 summarises the 

conventional procedures of testing the latter form of null hypothesis. Clearly the student (t) 

and Fisher (F) statistical tests along with regression analysis, pooling and variable selection 

methods are key techniques in hypothesis testing.  

3. t-Statistical Test    

Before discussing the t-test, it is instructive to present a theory upon which most of the 

statistical methods rely. This is the Central Limit (CL) theory which, in one of its forms, 

states that if a large enough sample is drawn from a population with  mean µ and variance σ
2
 

then the distribution of the sample average X  is approximately Normal with mean µ but with 

variance σ
2
/n no matter from what population it was drawn (Ross, 2004). As any linear 

combination of Normally distributed variables is itself Normally distributed, the Central 

Limit theory is applicable to any linear combination of X  such as X 1 − X 2. The necessary 

sample size to satisfy these conditions is dependent on the distribution shape of the 

underlying population. A symmetrical distribution such as the Normal requires a fairly small 

sample size whereas a large one may be required for a heavily skewed population (Cramer, 

1999; Stuart and Ord, 2009). Box et al (2005) however, noted that irrespective of the            

... 
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Figure 1: Conventional Approaches for Testing H0: Factorial Effect =0  

distribution of the individual observations, the statistical methods that depend on the 

distribution of their averages tend to be insensitive to non-Normality. They also observed that 

in practice, σ
2 

is almost always unknown. Consequently, its estimate S
2
 is used. If this is 

calculated from a fairly large sample size (30 or more as a general rule of thumb) its value 

will be very close to σ
2
 and the distribution of X   will be approximately Normal. However, for 

small sample sizes, S
2
 may not be close to σ

2
 and X  conforms to the Student-t distribution 
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with mean µ and variance S
2
/n. Since it depends on how “reliable” the value of S

2
 is, its 

shape is dependent upon the number of degrees of freedom (υ) used to calculate S
2
. In DOE, 

the t-test is important for assessing the significance of the studied effects when expressed as 

differences between the sample averages of the response at each of the factor levels. 

3.1 Two-Level Experiments 

In the case of single factor experiments at two levels, the t-test can be used to test whether 

the difference between the averages associated with the two levels is statistically significant. 

For replicated factorial experiments at two levels, there are two forms in which the t-test may 

be used to test the following hypothesis: 

H0: Factorial Effect = 0 

H1: Factorial Effect ≠ 0 

The first is associated with replicated experiments that are analysed using regression ( see 

section 5.2.1) and the second to cases where the experiment is replicated and no regression 

analysis is employed. The procedure for using the t-test in such cases is as follows 

(Barrentine, 1999) : 

 Estimate the effect of each factor and interaction under study. This is performed 

by subtracting the average of the experimental results associated with the low 

level from those that are associated with the high level for each effect. 

 Calculate the sample variance Si
2 for each of the replicated runs using the 

following equation: 

 Si
2 =

 (yi − y i)

r − 1
 

(1)  

where r is the number of replications and y i  is the average of the replicated 

responses at the i
th

 run 
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 Calculate an estimate of the experimental error variance Se
2 by averaging the 

sample variances 

 Calculate the variance of the effects: 

 Seff
2 = Se

2
4

nxr
 (2)  

 Calculate the degrees of freedom associated with the error variance: 

 df= n x (r-1) (3)  

 Select a value of α and obtain the tα/2,df from tables of the “t” distribution 

 Using the null hypothesis value (0) and the tα/2,df along with the Seff
2 ,, calculate the 

decision limits also called the Confidence Limits (CL): 

 
CL = 0 ± tα/2,df x Seff

2  (4)  

The calculated effects that fall within the above computed limits are deemed inert 

whereas those that fall outside it are pronounced significant. The interval in 

equation 4 is called the Confidence Interval (CI) and its level is obtained by 

subtracting the α from 1 and multiplying the result by 100. If α = 0.05, then the 

confidence level is (1-0.05)x100 =95% and the CI is interpreted as follows: if the 

same experiment is repeated 100 times, it is expected that the truly inert effects 

will fall within the interval 95 times.  

In the case of unreplicated two-level experiments, specific versions of the t-test can be 

employed as part of the Lenth pooling method (see Section 6.2).  

3.2 Three-Level Experiments 

For single factor three-level experiments, all possible pairs of the level-means can be 

compared using the t-test. However, such multiple test procedures can lead to inflating the 

Type I error as discussed in Section 5.2.2. Thus the ANOVA technique should be used 

instead. With regard to replicated and unreplicated factorial three-level experiments, the use 
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of the t-test requires each factor and interaction to be decomposed into single degree of 

freedom elements using an appropriate coding system. As this step is performed as a part of 

regression analysis, its discussion is presented in Section 5.1.2. 

4. ANOVA 

ANOVA is a method of decomposing the observed total variance into components due to 

different sources of variation. It utilises the statistical theory that if two random samples of 

size n1 and n2 are taken from two different populations then the ratio of their sample 

variances (S
2

1/S
2
2) follows an F distribution with n1-1 and n2-1 degrees of freedom. In DOE, 

the use of ANOVA depends on whether the experiment is a fixed or random effect. As the 

scope of this study precludes random effect experiments, this Section is concerned with fixed 

effect ANOVA.  

In replicated single factor experiments, ANOVA is referred to as one-way and is applied 

when the number of levels is three or more. In such cases, two variances are estimated: one 

for the variance in the means of the levels and the other for the variance within them 

combined for all the levels. Under the null hypothesis of no difference between the levels, 

these two estimates should be very similar rendering an F ratio close to 1. However, if the 

level means differ substantially, then their variance should be greater than the combined 

within sample variances yielding a large F ratio.  

Table 1 shows the ANOVA table for a two-factor replicated factorial experiments, 

(Montgomery 2010). The first column shows how the total variation is broken down into its 

constituent elements. The second column shows the Sums of Squares (SS) for each factor and 

interaction. Regarding the factors, this can be obtained by subtracting the average of the 

experimental results associated with each of its levels from the overall average of the 

experimental results and computing the sum of the squares of the resultant difference values.   
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Table 1: ANOVA Table the Fixed Effect Two-Factor Experiment (Montgomery, 2010) 

Sources of 

Variation 

Sum of 

Squares 

Degree of 

Freedom 

Mean 

Squares 
F-value 

Factor A SSA a-1 MSA=SSA/a-1 MSA /MSE 

Factor B SSB b-1 MSB=SSB/b-1 MSA /MSE 

Interaction AB SSAB (a-1)(b-1) MSAB=SSAB/(a-1)(b-1) MSA /MSE 

Error SSE ab (r-1) MSE =SSE/ab (r-1) 
 

Total SST abr-1 
  

a: no of factor A levels;                            b: no of factor B levels;                            r: no of replications 

 

The interaction sum of squares can be calculated in two stages. Firstly the average of the runs 

associated with each of the level combinations of the interacting factors should be subtracted 

from the overall average and the squares of the resultant differences summed.  Secondly, the 

SS of the factors that comprise the interaction should be subtracted from the value arrived at 

in the first stage yielding the interaction SS. The error SS can also be calculated in two 

stages. In the first the average of the replicated runs at each level combination should be 

computed and then subtracted from the values of the individual runs at its level combination. 

The resultant differences should then be squared and summed up over all the level 

combinations to arrive at the error SS. The total SS can be obtained by adding together the 

SSs due to the factors and interactions under study and the error SS. 

Each is divided by its degrees of freedom to yield the variance or mean square (MS) as 

shown in the fourth column of Table 1. For fixed effect models and under the null hypotheses 

of no factorial effect, each of the mean squares in Table 1 is an estimate of the true 

experimental error σ
2
. Thus when any of them is divided by the MSE as illustrated in the fifth 

column of Table 1 the resultant F ratio should be close to one. However, if the effect of, say, 

factor A is large then a larger F ratio will result. This should conventionally be compared 

with the tabulated Fα,a-1, ab (r-1) value and if it exceeds it, factor A is deemed statistically 

significant. Alternatively, the p-value corresponding to the calculated F can be estimated and 

if it is found to be smaller than α then the same result applies. 
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 Although there are simpler formulae for computing the SS in two-level experiments, the 

aforementioned procedure is applicable to both two- and three-level trials. In the case of 

unreplicted experiments, there are no degrees of freedom available for estimating the error 

variance. To deal with this, one approach is to assume that the high order interactions are 

inert and use their degrees of freedom to estimate it. This can result in misleading conclusions 

as the effect of some high order interactions may be large. Alternatively, pooling methods 

discussed in Section 6 may be used.  

4.1 Assumptions of ANOVA 

For the conclusions drawn from the ANOVA to be valid, certain assumptions must be 

satisfied. These are related to the residuals which are estimates of the experimental error 

obtained by subtracting the observed responses from the predicted ones. The latter are 

calculated from the derived model (as discussed in Section 5) after all the coefficients have 

been estimated from the experimental data. For the conclusions of an experiment to be valid, 

the residuals must be (approximately) Normally and independently distributed with a zero 

mean and constant variance. In general the error is the failure to obtain exactly the same 

response value when replicating the experiment at exactly the same settings of its conditions. 

It is a function of a number of component errors such as those due to measurement, 

environmental conditions and other factors not explicitly included in the experiment. As the 

overall error can be viewed as the summation of these components, it should, according to the 

CL theory, be Normally distributed. In fact, the CL theory states that for a large enough 

random sample the sum of the sample observations is Normally distributed irrespective of the 

individual distribution of the observations. The reason for the zero mean is to ensure that the 

positive error component values cancel out the negative ones thereby eliminating any 

systematic effect on the average response value. The constant variance requirement ensures 

that all the response values corresponding to each of the factor settings are equally reliable - 
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reliability being judged by how variable the response values are around their predicted 

values. The assumption of Normality can be assessed using histograms or more formally 

using Normal probability plots. Plotting the residuals in time order of data collection is 

helpful in detecting any correlation between the residuals and thereby verifying the 

independence assumption. The plot should not demonstrate any pattern or trend. The constant 

variance assumption can be assessed by plotting the residuals against their predicted values.  

The presence of any unusual pattern violates this assumption. Transformation techniques 

can then be used to overcome the problem. Their need can be recognised using a Cox-Box 

plot (Box and Cox, 1964), which is constructed using the power family of transformations y* 

= y
λ
, where λ is the power to be detected. The procedure consists of performing ANOVA on 

y
λ
 for various values of λ to obtain its maximum likelihood estimate for which the error sum 

of squares (SSE) is minimised. Its outcome can be presented graphically by plotting the SSE 

values against those of λ and locating the minimum. A confidence interval around the 

identified λ value should then be constructed. If this contains 1 then no transformation is 

needed. Otherwise the appropriate transformation can be determined on the basis of the value 

of λ as shown in Table 2.  

Table 2: Transformations Based on λ Values 

 

 

 

 

 

 

5. Regression Analysis 

In fixed effect DOE, Regression analysis is a powerful tool for studying the dependence 

of the response variable on one or more factors and interactions the objective being to 

estimate their effect size, test their statistical significance and predict the average response 

λ Transformation 

0.5 Square Root 

0 Log 

-0.5 Reciprocal square root 

-1 Reciprocal 
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(Kutner et al 2004). In general the relationship between the response variable (y) and the 

factors (Xi) and interactions (XiXj) under study may be represented by the following model: 

 Y=β0+ βiXi

k

i

+  βiiXi
2

k

i

+ βijXiXj

k

ij

+e  (5)  

 

The term e represents the residuals which, for reasons already explained, are Normally 

and independently distributed with a zero mean and constant variance. The above equation 

describes a plane, the dimension of which is equal to the number of factors included in the 

equation (Rawlings et al 1998). Although non-linear in terms of the variable, it is a linear 

model in the parameters which are conventionally estimated using least squares procedures. 

The objective is to find estimate values for the βis so that the error e is minimised. The 

resultant estimated model is as follows  

 Y = β 0 +  β iXi

k

i

+   β ii Xi
2

k

i

+  β ij XiXj

k

ij

  (6)  

 

where β 0 defines the estimated intercept of the modelled plane. The coefficients 

(β is, β ii s, β ij s)  provide estimates for the studied factorial effects. 

5.1 Estimating the Regression Coefficients 

Before discussing the estimation of the coefficients of a regression model, it is insightful 

to distinguish between: the design and the model arrays. For an experiment with m factors, 

the design array consists of at least m columns corresponding to the m factors irrespective of 

the model to be fitted and its number of parameters. Furthermore, it conventionally lists the 

factor level combinations in terms of their actual values or numbers or symbols representing 

them.  The model array, on the other hand, is a coded matrix for the design that has a column 

for each parameter in the intended model. Thus if an m x n design array is used to fit a model 
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with r parameters then its model array will be an r x n array whose columns represent the 

effects of the model parameters.  

The least squares estimators of the βi in equation 6 can be obtained using the following 

formula (Montgomery et al 2006): 

 𝛃  =(X
T
X)

-1
X

T
Y (7)  

where 𝛃   is the coefficient vector, X is the model array, X
T
 is its transpose and Y is the 

responses vector. Clearly the values of β i are reliant upon the model array and its coded 

entries. Depending on whether the (X
T
X)

-1
 matrix is diagonal, the model arrays may be 

classified into orthogonally and non-orthogonally coded arrays. The former have a diagonal 

(X
T
X)

-1
matrix whereas the latter have a non-diagonal one. The departure from diagonallity 

leads to β i estimates that are aliased and associated with high variance. Consequently, it is 

recommended that the model matrix should be coded orthogonally so that the estimated β is 

are orthogonal. 

5.1.1 Two-Level Arrays Coding 

There are several ways in which two-level arrays may be coded. Examples include using 

0 and 1 or 1 and 2 to represent the two levels of the studied factors - the latter being the case 

in Taguchi two-level arrays. One problem with these coding methods is that although the 

design arrays are orthogonal they render non-orthogonally coded model arrays thereby 

generating non-orthogonal high variance estimates of the β is. An alternative coding scheme is 

to use -1 and +1 for the two levels of each factor. The principal advantage of this scheme is 

the orthogonality of its resultant model array and the minimum variance associated with its 

estimated β is. A further advantage relates to the interpretation of the β is as the amount by 

which the average response variable changes per unit change in Xi. The common method of 

estimating the effects of a two-level factorial effect is to subtract the average of the response 
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values associated with the -1 level from that of those associated with +1 i.e. over two units (-

1 to 0 and 0 to 1). Therefore, each of the β is estimated using the (-1,+1) coding system is one-

half the conventionally estimated factorial effect. This gives the (-1,+1) coding system the 

advantage of being simple in terms of its estimated coefficients’ interpretation.  

5.1.2 Three-Level Arrays Coding 

 The two-degrees of freedom associated with a three-level factor can be split up into two 

components, each carrying one degree of freedom, in various coding ways. As was the case 

in two-level coding, each scheme renders a different interpretation of the estimated β is. The 

choice of an appropriate coding system depends on such factors as the effect to be estimated, 

the comparison to be made and whether the studied factor is qualitative or quantitative. Table 

3 lists the four most common coding alternatives for the rendition of the two degrees of 

freedom associated with a three-level factor. For the purpose of referencing, they are called 

Table 3: Four Systems for Coding Three-Level factors 

 
Coding 

ID 

Dummy 

Variable  

Level-

Square  

ANOVA-

Model  

Linear- 

Quadratic 

 
Column 

No 
1 2 

 
3 4 

 
5 6 

 
7 8 

  
X1 X2  

X1 X2  
X1 X2  

X1 X2 

L
ev

el
s 1 1 0 

 
-1 1 

 
1 0 

 
-1 1 

2 0 1 
 

0 0 
 

0 1 
 

0 -2 

3 0 0 
 

1 1 
 

-1 -1 
 

1 1 

 

the Dummy Variable (DV), Level-Square (LSQ), ANOVA-Model (ANOVA-M) and Linear-

Quadratic (L-Q) systems. There are several limitations associated with the presentation of 

these coding systems in the DOE literature. Firstly, they are rarely if ever discussed; in fact, 

different references use different coding systems depending on the circumstances. For 

example, Montgomery (2010) used the ANOVA-M system to handle analyses incorporating 

three-level qualitative factors whereas those involving quantitative ones were dealt with using 

the LSQ system. No explanation was provided regarding why a particular coding system was 
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used nor the possible alternatives. Furthermore, Ross (1996) implicitly utilised ANOVA-M in 

deriving the mean response models. His discussion regarding the L-Q system was limited to 

how the data could be analysed using ANOVA. He limited the use of such a system to cases 

where the studied factors were quantitative with evenly spaced levels. No discussion about 

either the estimation of the mean response model using such a system was provided or the 

interpretation of the coefficient of such a model. The L-Q system was also discussed in Wu 

and Hamada (2000) as being an apposite system for coding quantitative factors while Draper 

and Smith (1998) showed how it could be used to analyse qualitative factors. Such treatment 

results in practitioners being confused about which coding system should be used and when. 

A further problem is that different statistical packages employ different coding systems in 

their analyses; hence for a certain model derived from particular experimental data, different 

coefficients may be estimated.  One of the main reasons for this state of affairs is that the 

implications of using different coding systems have more profound consequences in 

experiments that encompass factors at three or more levels, the analyses of which have been 

accorded substantially lesser emphasis than that placed on two-level experiments. To deal 

with this an explanation of the four coding systems presented in Table 3 follows in 

conjunction with the interpretation of the regression coefficients estimated using each.  

1. The DV system  

 This system, also called the indicator variable system, involves a successive 

dichotomising in three-level designs so that each of the coded two levels is distinguished 

from the remainder as representing one aspect of the studied factor. For example column 

1 of Table 3, shows that the results associated with level 1 of the appropriate three-level 

factor are assigned 1 in the model array whereas the rest are assigned 0. Consequently 

this column carries only some of the information (one degree of freedom) of the studied 

factors. Level 2 is coded in the same manner. Hence, columns 1 and 2 of Table 3 exhaust 
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the information associated with the coded three-level factor. In fact the third level is 

represented by zero in columns 1 and 2. This combination can be interpreted as not level 

1 and not level 2 leading to level 3. Although predominantly used with qualitative 

factors, there is no reason why the DV system could not be used with quantitative factors 

as long as the implications of its use are understood. The interaction column of any two 

or more three-level factors can be obtained by multiplying the individual elements of the 

columns corresponding to the interacting factors. If a model array is constructed using 

this system and equation 7 used to estimate the coefficients of a fitted regression model, 

each should be interpreted as follows. For main effects, each β i represents the net 

contribution or consequence of level 1 or 2 relative to the excluded level i.e. 3. For 

example, if β 1 is, say, 2, this means that using level 1 results in increasing the average 

response by 2 units over its value corresponding to level 3. With single factor 

experiments and when the main effects are the principal concern in multi-factors 

experiments, this coding system has the advantage of simplicity. It lends itself to 

experiments involving a control setting as this can be represented by the levels excluded 

from the model. In this way, the impact of the other level combinations relative to the 

control one can simply be assessed. As the interpretation of factor interactions is not 

straightforward, this system might not be the best for studying three-level factors, be they 

qualitative or quantitative, in factorial experiments when interactions are important and 

expected.  

2. The LSQ system  

 This system is suitable for coding quantitative factors. It decomposes the three-level 

factor into linear and quadratic components (columns 3 and 4 in Table 3-3). The former 

is obtained by associating the highest and lowest levels of all factors under study with 1 

and -1 respectively. Any value in between can be computed so that its difference from 1 
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and -1 is proportional to the difference between the corresponding actual value and the 

actual highest and lowest values. The quadratic main effect can be obtained by squaring 

the linear main effect levels. The interactions are each obtained from the entry-wise 

multiplication of the columns corresponding to the interacting factors. Using this system, 

the least squares regression coefficient corresponding to each main effect is interpreted 

as the average change in the response variable per unit change in the linear main effect. 

As Box et al (2005) noted the coefficient of a two factor interaction, say, XAXB is a 

quantity that measures how the effect of factor A changes as factor B is changed and vice 

versa. By the same token, the quadratic effect, say, A
2
 can be viewed as an XAXA 

interaction. Thus its coefficient is a measure of how factor A changes as its values are 

changed (Box et al, 2005). This system is the best option for coding quantitative three-

level factors involving non-equally spaced numerical levels.   

3. The ANOVA-M system  

Again two columns are used for each three-level factor in this system. The first is formed 

by associating 1, 0 and -1 with the levels 1, 2 and 3 respectively while the second assigns 

0, 1 and -1 respectively to the levels 1, 2 and 3. The interaction columns are generated 

using the inner product of their comprising factor columns. To interpret the least squares 

estimate of the coefficients of a model derived on the basis of this coding system, let Y A1, 

Y A2,and  Y A3 be the average responses associated with levels 1, 2 and 3 of factor A and 

let Y 00  be the overall average. For each three-level factor, two main effect coefficients 

β A1 and β A2 are estimated. The former is equal to Y A1- Y 00  whereas the latter is equal to 

Y A2- Y 00 . Although not included in the model the effect associated with the third level 

(β A3) can be obtained using the following equation: 
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 β A3= -( β A1 + β A2) (8)  

For interactions, a coefficient is estimated for each of the possible level combinations of 

the interacting factors. The interaction coefficient of, say, level x of factor A with level z 

of factor B obtained using equation 7 is equivalent to the following: 

 β xz=  Y xz  - Y Ax  - Y Bz +Y 00  (9)  

where Y xz  is the average of the response variable at the level combination xz. This 

system has the advantage of being simple in terms of its coefficients’ interpretation as 

each represents the specific difference between the average responses at a certain level or 

a level combination and the overall average. It is called ANOVA model because it yields 

a regression model equivalent to the average response model that is conventionally 

obtained when ANOVA is conducted. While it is commonly used with qualitative 

factors, it can also be used with quantitative factors when the objective is limited to 

assessing their effect at the discrete values considered in the experiment. 

4. The L-Q system  

A common limitation of all the coding systems discussed is that they render a non-

orthogonally coded model array. The primary advantage of the L-Q system lies in its 

ability to yield an orthogonally coded one. Therefore, when used with quantitative 

factors, it is referred to as the orthogonal polynomial coding system.  It splits each three-

level factor into linear and quadratic components. The former is generated in the same 

manner as its correspondent component discussed in the LSQ system. The quadratic 

column is obtained by associating 1 with levels 1 and 3 and assigning -2  with level 2. 

One-half the difference between the response averages associated with levels 1 and 3 is 

estimated by the linear effect regression coefficient. When used to code qualitative 

factors, the term “linear” has no practical meaning. Therefore, its coefficient should be 

interpreted as a measure of the difference between levels 1 and 3.   
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Before interpreting the  β  associated with the quadratic effects, it is important to 

demonstrate that in the absence of a quadratic effect of, say, factor A the differences 

(Y A1 − Y A2) and (Y A2 − Y A3) are approximately the same i.e. 

 (Y A1 − Y A2) - (Y A2 − Y A3) = 0 (10)  

so 

 (Y A1 − 2Y A2 + Y A3) = 0 (11)  

 

In this case, the quantity in equation 11 is equivalent to the difference between the 

overall average and the average of the response values associated with A2 level i.e. Y 00 −

Y A2 . The quadratic regression coefficient estimated using the L-Q system is one-half the 

latter contrast. Again in the case of qualitative factors, the term “quadratic” should not be 

used and its effect should be interpreted as a measure of the extent to which the average 

response at level 2 (the middle level) is different from the average of the responses 

associated with the other two levels.  The interaction columns are formed by multiplying 

the entries of their comprising factors. Their coefficients can be interpreted in two ways 

depending on whether the interacting factors are qualitative or quantitative. In the latter 

case the regression coefficient of, say,  XAXB
2
 interaction is interpreted as the rate by 

which factor A varies linearly as factor B changes quadratically or equivalently the rate 

by which factor B varies quadratically as factor A changes linearly. For qualitative 

factors, the interpretation of the interaction coefficient entails the use of the conditional 

main effect concept (Bohrer et al, 1981; Winer and Brown, 1991; Bonett and Woodward, 

1993) This demands that the interaction between two factors be expressed in terms of the 

main effects of one of the interacting factors at each of the levels of the other factor. For 

example assume that the fitted model is: 
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 Y= 2+2XA1+3XB2+4 XA1XB2 (12)  

where XA1 and XB2 are the first and second coded columns (columns 7 and 8 in Table 3)  

of the qualitative factors A and B respectively. One way of interpreting the XA1XB2 

interaction is to substitute the three possible values of XA1 (-1, 0, 1) into equation 12 to 

yield three main effect only equations in XB2. The main effect terms of each of these is 

then interpreted conditionally on the value of XA1 which was used to obtain it. In so 

doing, the above discussed way of interpreting the qualitative main effects when the L-Q 

coding system is used is adopted. Alternatively, the possible values of XB2 (1,-2) can be 

used to obtain three main effect only equations in XA1 (two of which are identical). 

Similarly their terms can be interpreted as already described. This method should also be 

applied in the case of interpreting the qualitative-quantitative factors’ interactions. While 

the L-Q system can be used to study qualitative and quantitative factors, it must be borne 

in mind that in the latter case the numerical levels must be equally spaced. Otherwise 

they should either be treated as qualitative factors or coded using the LSQ system.   

5.2 Regression Hypothesis Testing 

In testing the statistical significance of the regression model coefficients there are 

generally two approaches; the t-test and the ANOVA. 

5.2.1 Regression t-test 

The t-statistic can be used to test the hypothesis of zero effect where each effect size is 

represented by a regression coefficient β i. From equation 5, it is clear that, when the X values 

are assumed to be fixed (fixed model), the only random element is the error (e). The response 

Y along with the βis are linear functions of e. Consequently, as the latter is assumed to be 

Normally distributed, the response Y and the βis are also Normally distributed. Since the 
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error variance is almost always unknown, its estimate MSE (S
2
) can be used. Thus, if the null 

hypothesis of no effect (H0: β i =0 ) is true then the t-statistic 

 t0 =
β i − 0

 MSE ∗ Cii

 (13)  

where Cii is the diagonal element of (X
T
X)

-1
matrix, is appropriate for testing its statistical 

significance. The denominator of equation 13 is called the standard error. Whenever  t0  > 

tα/2,dfe or equivalently if the p-value is less than α the null hypothesis is rejected. 

5.2.2 Regression ANOVA 

When regression analysis is employed in DOE, the ANOVA can be used to perform two 

types of significance tests; namely, that of the individual factorial effects and that of the 

overall effect. Before describing the former, recall the following statistical relationship 

between the F and t test statistics (Allen, 2004): 

 Fα,1, dfe= t
2

α/2,dfe (14)  

This equality is applicable in regression analysis due to the fact that all the effects that are 

associated with more than one degree of freedom are decomposed into single degree of 

freedom components and consequently their F statistic’s first degree of freedom is one. 

Another way of viewing the equality in equation 14 is to express the F value in terms of a 

ratio between the SS of each component (SSc) and the MSE and substitute the t value in 

equation 13 for that in 14. This gives:  

 
SSc

MSE
=

β c
2

MSE ∗ Cii
 (15)  

Multiplying both sides of equation 15 by MSE gives 

 

 SSc =
β c

2

Cii
 (16)  
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Therefore, the SS of the coded components can be obtained using equation 16.  

Given the SS due to each term in the regression model and their degrees of freedom, the 

same procedure of performing the ANOVA presented in Section 4 can be implemented to 

estimate the MSE and the statistical significance of the individual factorial effects under 

study.  

Alternatively, ANOVA can be used to test the joint significance of all the studied factorial 

effects i.e. 

H0: β 1 = β 2 =........=  β k = 0 

  H1: β i ≠ 0  for at least one i 

To perform this, the SS due to all the factorial effects are aggregated to form the 

regression SS. By dividing this by the total degrees of freedom associated with the 

amalgamated effects, the regression MS can be obtained. This should then be divided by the 

MSE and F-tested as discussed in Section 4.  

Of particular importance when choosing between individual and simultaneous 

significance testing is the distinction between the individual error rate and the experiment 

wise one. The latter is the α level when one statistical test is performed to test the overall 

significance of all the studied effects. In such a case the probability of not rejecting a true H0 

is (1-α). However, this is not the case when multiple individual tests are performed. If for 

example, there are U individual tests to be conducted then the probability of not rejecting a 

true H0 is (1-α) for each of the conducted tests. For all the individual tests taken together, the 

probability of not rejecting a true H0 for any one of the tests is (1-α)
U
 (Lee and Comrey, 

2009). Consequently the true α level is 1-(1-α)
U
 which exceeds α

 
for U > 1 and increases as U 

increases. 



 

243 

 

6. Analysis of Unreplicated Experiments  

The discussion so far has centred around replicated experiments so that an independent 

estimate of the experimental error variance can be obtained, however  due to economical, 

technical or time related reasons, it might not be possible to replicate the conducted 

experiment. Consequently, it becomes necessary to pool the degrees of freedom associated 

with the smallest studied effects to form an estimate of the experimental error variance. The 

need for pooling might also arise in replicated experiments where summary statistics such as 

signal-to-noise ratio or a sample variance are used. These statistics consolidate the replicated 

runs at each experimental setting into one value that measures their variability yielding a 

single replicate response.  In the subsequent Sections, the most widely used methods for 

identifying which effects should be pooled are discussed.  

6.1 Normal and Half Normal Probability Plots 

Daniel (1959) proposed a simple and effective graphical tool for identifying the effects 

that can be pooled together to provide an estimate of the error variance in unreplicated 

experiments. The idea being that in most of the experiments especially two-level ones the 

effects are calculated by subtracting the averages of the responses associated with certain 

levels. When these are uncorrelated and have the same variance, they tend, according to the 

CL theory, to be approximately Normally distributed. Utilising this, Daniel (1959) proposed 

the Normal Probability (NP) plot as a tool for distinguishing active effects from those that are 

inert. To construct it, the calculated effects should be ranked in ascending order and then 

plotted against their observed cumulative Normal probabilities:  

 
100*[i-0.5]/I (17)  

where i is the effect rank and I is the number of effects under study. The next step is to plot a 

straight line that passes through the middle group of points. Any effect whose corresponding 

points fall far off this line is declared significant. A primary limitation of this plot is its 
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sensitivity to the effect signs. In fact, there can be many different Normal plots of the 

estimated effects for the same experimental results when different model arrays are used; the 

reason being the possibility of using model arrays with opposite sign columns. Furthermore, 

the arbitrariness in specifying the “high” and “low” factor level label especially in qualitative 

factors makes clear the need for a method that is insensitive to the effect signs.  

 To alleviate this problem Daniel (1959) proposed the use of a Half Normal Probability 

(HNP) plot which can be constructed by ranking the estimated effects in ascending order of 

absolute magnitude and plotting them on the upper half of a Normal probability scaled sheet.  

The inert effects are expected to be Normally distributed with a zero mean so they will tend 

to fall approximately along a straight line passing through the origin whereas the significant 

effects will have nonzero means and hence will constitute the outliers in the plot.  

6.2 Lenth Method 

Lenth Method (LM) (Lenth, 1989) is a formal means for estimating the effects’ standard 

error when they are uncorrelated and of common variance.  If C1, C2,C3....Cm represent the 

calculated effects, Lenth (1989)  suggested that a robust estimator of the effects’ standard 

error which he termed pseudo standard error when there are few significant effects could be 

obtained as follows: 

 
PSE = 1.5*median ( jj C:C  < 2.5S0 ) (18)  

where the median is computed over the jC  < 2.5S0 and 

 

 
S0 = 1.5*median ( jC ) (19)  

A t-like statistic can then be derived by dividing the effects Ci by the PSE 

 
t-Lenth = Ci /PSE (20)  
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Lenth (1989) proposed that this statistic could be approximated by a t-distribution with m/3 

degrees of freedom. Thus an individual effect Ci is declared significant at an α level if it 

exceeds the Margin of Error (ME): 

 
ME = t α/2, (m/3)*PSE (21)  

As already discussed, using equation 20 to individually test the significance of each of the 

effects under study results in inflating α. To account for this, Lenth suggested using the 

Simultaneous Margin of Error (SME): 

 
SME = t γ, (m/3)*PSE (22)  

where γ = 1-(1+0.95
1/m

)/2. However, despite the use of equation 22, the problem of 

controlling α was not alleviated as described in the following Section. 

6.3 Modified Lenth Method 

Haaland and O'Connell, 1995 and Hamada and Balakrishnan, 1998 studied the 

performance of Lenth’s method and found that it performed acceptably in terms of power and 

that it was one of the simplest methods to implement. However they also highlighted that it 

failed to control the significance level α at its nominal value. Loughin and Noble (1997) and 

Loughin (1998) ascribed this to the use of the t-distribution as they found that it was not a 

good approximation for the reference distribution of the t-Lenth statistic. Thus even multiple 

comparison methods cannot account for the failure to control α as they need a good 

approximation of the t-Lenth distribution. Ye and Hamada (2000) proposed a Modified 

version of Lenth’s Method (MLM) where simulation was used to generate samples of the null 

distribution of t-Lenth. Consequently, extensive calibrated individual and simultaneous 

critical values for the Lenth method (for many values of m that arise with two-level 

experiments) so that α is maintained at its nominal value were presented. On the basis of 

these an effect is declared significant when its t-Lenth statistic exceeds any of them.  
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6.4 Pooling Up Method 

For analysing unreplicated experiments, Taguchi suggested the pooling up (PU) method 

(Ross, 1996). This entails using the smallest effect as an estimate of the experimental error 

and utilising the ANOVA to test the significance of the next larger one at a specified 

significance level. If the test yields an insignificant result, the two effects are pooled to test 

the next larger effect and the procedure continues in the same manner until a significant value 

is observed. 

6.5 Pooling Down Method 

In the pooling down (PD) method (Ross, 1996) all the effects but the largest are pooled to 

form an initial estimate of the experimental error which is then used in the ANOVA to test 

the significance of the largest effect. If this is found to be insignificant the procedure 

terminates and no effect is pronounced significant. Otherwise, the next largest effect is 

excluded from the error and the remaining effects form a new pooled estimate of the error. 

This is then used to test the significance of the two largest effects. If either of these is found 

to be insignificant it will be pooled with the error terms and the selection procedure 

terminates. Otherwise the process continues in the same manner by excluding the next largest 

effect from those pooled. 

6.6 Unassigned Columns Method 

When columns are not assigned factors or used to estimate particular interactions, they are 

deemed inactive thereby freeing up degrees of freedom so that the error variance can be 

estimated. In this method, therefore, the effects associated with the Unassigned Columns 

(UC) are pooled together to provide an error estimate. 

6.7 Variable Selection Methods 

When regression is used to analyse unreplicated experiments, variable selection 

techniques (Miller, 2002) can be used to determine the factorial effects that should be 
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included in the fitted model. Consequently, the remaining effects should be pooled to form an 

estimate of the experimental error variance. The most commonly employed variable selection 

are discussed in the subsequent Sections.  

6.7.1 Stepwise Regression  

In Stepwise Regression (SWR) several regression models are iteratively constructed by 

adding or removing factorial effects at each step (Bajpai, 2009), the idea being to compare 

the current model with a new one obtained by adding or deleting a factorial effect from it. 

Using equation 23, partial F statistics should be calculated to decide whether an effect should 

be added or deleted: 

Fpartial =[(SSE(Model I)- SSE(Model II))/(k-q)]/ [SSE(Model II)/(N-k-1)] (23)  

where k is the number of effects in Model II (the one with the larger number of effects), q 

is the number of effects in Model I and N is the number of experimental runs. For each 

model, the SSE is obtained by pooling the SS associated with the effects not included in that 

model. The p-value of the calculated partial F should be compared as appropriate with one of 

the two preselected threshold α-values for adding (αin) or deleting (αout) variables. The effect 

is added (or deleted) if the p-value of its partial F is smaller (or larger) than the corresponding 

threshold α-value. The stepwise procedure starts with two forward selections where in the 

first the factorial effect with the smallest p-value (or largest effect) is selected provided that it 

is smaller than αin. In the second, the remaining effects are examined one at a time as 

candidates for the second effect in the model. The one with the smallest p-value is added 

provided again that its p-value is less than αin. In order to examine whether the addition of the 

second effect has increased the p-value of the first one a backward elimination step is 

performed where the first effect is dropped if its new p-value exceeds αout. The procedure 

continues by alternating between one step of forward selection and one step of backward 

elimination. It terminates when no effect meets the criteria for being added or eliminated 
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from the model. The non-added effects are then used to form an estimate of the experimental 

error. 

6.7.2 Backward Elimination 

Backward Elimination (BE) parallels that of the pooling up strategy. It starts with all the 

studied effects included in the model. Then the smallest effect associated with which the 

smallest partial F is observed is dropped from the model and used as an estimate of the error 

given that its p-value is larger than that of αout. Then the next effect for potential elimination 

is examined and pooled if its p-value is larger than αout. The procedure terminates when no 

further effects can be pooled. The effects that the final model precludes are pooled to estimate 

the error variance. 

6.7.3 Forward Selection 

Again Forward Selection (FS) is equivalent to the pooling down method given that the 

same αin is used. The first effect to enter the model is the one that has the smallest p-value 

associated with its partial F statistic given that this is smaller than the predetermined αin i.e. 

the largest effect. In the next step, all the non-selected effects are examined and the largest 

one is selected given that its p-value is smaller than the αin. The procedure continues in the 

same manner until no more effects can be selected. The effects not included in the last model 

are the one to be used to estimate the experimental error. 

6.7.4 Best Subset Selection 

In Best Subset Selection (BSS) all the possible models that can be fitted to the 

experimental results are constructed and the subset of variables that attain the best value of a 

certain criterion is selected. The selection criterion should reward good model fitting and 

penalise model complexity. R
2
 obtained by dividing the amalgamated SS due to all the effects 

selected in the constructed model by the SST is not a suitable criterion as it increases as the 
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number of variables in the model increases. An alternative criterion that can circumvent this 

problem is 

 
Adj. R

2
 =1- MSE/(SST/n-1) (24)  

 

Its main advantage is that it accounts for the model degrees of freedom and increases only 

when the added variable(s) results in reducing the error variance. 

7. Summary 

Statistical analyses of experimental data comprise the factorial effects estimation and their 

significance testing. The latter, is a procedure by which sample results are used to verify the 

plausibility of a null hypotheses.  Whenever a true null hypothesis is rejected a Type I error is 

committed whereas a Type II error is committed when failing to reject a false null hypothesis. 

The probability of correctly rejecting a false hypothesis is called the Power. A common null 

hypothesis in DOE is that of no effect. This can be tested in many ways depending on 

whether the experiment is replicated; whether regression analysis is employed; and the 

number of studied factors’ levels. In the case of replicated experiments, the experimental 

error variance can be estimated and the effects’ significance can be tested using a t-test or 

ANOVA either independently or as part of regression analysis. This is true in the case of two-

level experiments. However, for three-level ones, a t-test can only be used after decomposing 

each of the studied effects into single degree of freedom components. One way to accomplish 

this is to use one of the four coding systems: DV, LSQ, ANOVA-M or L-Q system. In 

response to the confusing treatment of these in the DOE literature, the conditions under 

which each system should be applied along with the implications of its adoption have been 

detailed in this Appendix. In the case of unreplicated experiments, no degrees of freedom are 

available to estimate the error variance. Consequently, certain effects should be pooled 

together to form an estimate of the latter. These are specified using one of the pooling 



 

250 

 

techniques presented in this Appendix i.e. the NP and HNP plots, Lenth, its modified version, 

the PU, PD and UC methods. Alternatively, if regression modelling is employed variable 

selection methods including stepwise regression, backward elimination, forward selection 

and best subset methods should be used. 
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1. Abbreviations 
 

 

NR: Not Reported 

NA: Not Applicable 

ML: Mixed Level 

CCD: Central Composite Design  

CP: Central Points 

NPP: Normal Probability Plot 

ROT: Role of Thumb 

UC: Unassigned Columns 

SWR: Stepwise Regression 

BE: Backward Elimination  
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2-Design Related and Conducting Aspects 
No Author(s) No. No. Design Study Study Replication Aliasing Interactions  Randomisation 

    Factors Levels   Avg. Variation   Examined Examined   

1 Karayel  3 4 L64 Yes No Yes NA No No 

2 Gunasegaram  5 2 L16 Yes No CP Yes Yes Yes 

  et al                   

3 Shanmugam & 4 4 L64 Yes No No No No No 

  Masood                   

4 Cakir et al  3 3 L27 Yes No No NA No No 

5 Fang et al 4 3 L9 Yes No No No No No 

                      

6 Yang et al 3 2 L8 Yes No No NA Yes No 

                      

7 Venkatachalam 5 3 L243 Yes No No NA No No 

  et al                   

8 Lin et al 6 ML L18 Yes Yes Yes No No No 

                      

9 Jeang & Lin 5 3 L243 Yes No No NA No No 

                      

10 Lauderbaugh  10 2 L64 Yes No No No Yes No 

    6 2 L12 Yes No No No Yes No 

                      

11 Xavior &  4 3 L27 Yes No No No No No 

  Adithan                   

12 Boronat et al 4 2 L16 Yes No No NA Yes Yes 

                      

13 Wang et al  5 ML L18 No Yes Yes No No No 
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No Author(s) No. No. Design Study Study Replication Aliasing Interactions  Randomisation 

    Factors Levels   Avg. Variation   Examined Examined   

14 Majewski et al 2 ML NR Yes No No No Yes No 

15 Bi & Jiang 2 3 L9 No Yes Yes No No No 

16 Senthilkumar  3 3 L18 No Yes Yes No Yes No 

  et al                   

17 Mi & Lackey 3 5 CCD Yes No CP No Yes No 

                      

18 Mata et al  2 ML L12 Yes No No NA Yes Yes 

19 Chattopadhyay  3 3 L27 Yes Yes Yes NA No No 

  et al                   

20 Huang et al 7 3 L18 Yes Yes Yes No No No 

21 Palanikumar & 4 2 L16 Yes No Yes NA Yes Yes 

  Davim                   

22 Azmir & 6 ML L18 Yes No No No No No 

  Ahsan                   

23 Lin & Ho 4 3 L9 Yes No Yes No No No 

24 Ajaal & 4 3 L9 Yes Yes Yes No No No 

  Smith 7 2 L8 Yes Yes Yes No No No 

                      

25 Dey et al 3 3 CCD Yes No CP No Yes No 

                      

26 Sahin 3 3 L9 Yes Yes Yes No No No 

                      

27 Dabade &  5 3 L27 Yes No No No No No 

   Joshi                   
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No Author(s) No. No. Design Study Study Replication Aliasing Interactions  Randomisation 

    Factors Levels   Avg. Variation   Examined Examined   

28 Oudjene  8 ML L18 Yes No No No No No 

  et al                   

29 Tsai et al  8 3 L18 No Yes Yes No No No 

    4 3 L81 Yes No No NA Yes No 

30 Chang & 6 ML L18 Yes Yes Yes No No No 

  Choi                   

31 Rakwal & 3 ML L36 Yes No No No Yes No 

  Bamberg                   

32 Xueping et al 3 3 L9 Yes No No No No No 

33 Sharma & 4 3 L9 Yes No No No No No 

  Rout                   

34 Lu et al  5 ML L18 Yes Yes Yes No No No 

35 Jeang et al 8 3 L18 Yes Yes Yes No No No 

                      

36 Luo & Chen 4 3 L9 Yes Yes Yes No No No 

37 Sorrentino &  1 6 L6 Yes No Yes NA No Yes 

  Carrino                   

38 Muthukrishnan  3 3 L27 Yes Yes Yes NA No No 

  & Davim                   

39 Rosa et al 6 2 L16 Yes Yes Yes Yes Yes Yes 

40 Tzeng et al 4 3 L9 Yes No No No No No 

                      

41 Zhang et al 4 3 L9 Yes No No No No No 
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No Author(s) No. No. Design Study Study Replication Aliasing Interactions  Randomisation 

    Factors Levels   Avg. Variation   Examined Examined   

42 Tsai et al  8 ML L18 No Yes Yes No No No 

43 Phatak et al 4 2 L12 Yes No No No Yes No 

44 Prihandana  4 ML L18 Yes Yes Yes No No No 

  et al                   

45 Sadasivam  4 3 L9 Yes No No No No No 

  et al                   

46 Saha &  6 5 CCD Yes No CP NA Yes Yes 

  Choudhury                   

47 Courbon et al 5 3 L27 Yes No No No Yes No 

48 Shyha et al 6 2 L12 Yes No No No No No 

49 Marafona  8 3 L18 Yes No No No No No 

  & Araujo                   

50 Zhang & Guo 4 4 L16 Yes No No No No No 

51 Arai et al  6 2 L16 Yes No No No Yes No 

52 Nandy et al 4 2 L8 Yes No CP No No Yes 

53 Kwak  4 3 L9 Yes No No No No No 

54 Totis 3 ML NR Yes No Yes No Yes No 

55 Galantucci 3 2 L8 Yes No Yes NA No No 

   et al                   
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No Author(s) No. No. Design Study Study Replication Aliasing Interactions  Randomisation 

    Factors Levels   Avg. Variation   Examined Examined   

56 Martins et al 3 2 L8 Yes No No No No No 

                      

57 Ali et al 6 2 L8 Yes No No No No No 

    4 2 L16 Yes No No NA Yes No 

                      

58 Mori et al 7 ML L18 Yes Yes Yes No No No 
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3- Data Analysis Aspects 

                FE's Importance Measures 

No Author(s) Pooling Standard Regression Hypothesis Reporting Examining Mean-Related Variance-Related 

    Method ANOVA ANOVA Stated P-value Assumptions Graphical Absolute PC1 PC2 R2 R2-Adj 

1 Karayel  No No No NA NA NA Yes No No No No No 

2 Gunasegaram  NPP No No No No No Yes No No No No No 

  et al                         

3 Shanmugam & No No No NA NA NA Yes No No No No No 

  Masood                         

4 Cakir et al  No No No NA NA NA No Yes No No Yes Yes 

5 Fang et al No No No NA NA NA Yes No No No No No 

6 Yang et al ROT Yes No No Yes Yes Yes No Yes No No No 

7 Venkatachalam No No No NA NA NA Yes No No No No No 

  et al                         

8 Lin et al UC Yes No No No No Yes No No No No No 

9 Jeang & Lin UC Yes No No Yes No Yes Yes No No No No 

10 Lauderbaugh  NPP No Yes No Yes Yes No Yes No No No No 

    NPP No Yes No Yes No No Yes No No No No 

11 Xavior & Adithan UC Yes No No No No Yes Yes Yes No No No 

12 Boronat et al Pareto No No No No No No No No No No No 

                            

13 Wang et al  UC Yes No No No No Yes No No No Yes Yes 
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                FE's Importance Measures 

No Author(s) Pooling Standard Regression Hypothesis Reporting Examining Mean-Related Variance-Related 

    Method ANOVA ANOVA Stated P-value Assumptions Graphical Absolute PC1 PC2 R2 R2-Adj 

14 Majewski et al No Yes No No No No No No No No No No 

15 Bi & Jiang No No No NA NA NA No Yes No No No No 

16 Senthilkumar et al ROT Yes No No No No No No No Yes No No 

17 Mi & Lackey Pareto No No No No No Yes No No No No No 

18 Mata et al  ROT No Yes No No Yes Yes Yes No No Yes No 

19 Chattopadhyay  UC Yes No No No No Yes Yes No No Yes No 

  et al                         

20 Huang et al UC Yes No No Yes Yes Yes No No Yes No No 

21 Palanikumar & ROT Yes No No Yes No Yes No No No No No 

  Davim                         

22 Azmir & UC Yes No No No No Yes No No Yes No No 

  Ahsan                         

23 Lin & Ho No Yes No No No No No No No No No No 

24 Ajaal & No No No No NA NA Yes Yes No No No No 

  Smith No No No No NA NA Yes Yes No No No No 

                            

25 Dey et al No No No NA NA NA No Yes No No No No 

                            

26 Sahin UC Yes No No No No Yes Yes Yes No No No 
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                FE's Importance Measures 

No Author(s) Pooling Standard Regression Hypothesis Reporting Examining Mean-Related Variance-Related 

    Method ANOVA ANOVA Stated P-value Assumptions Graphical Absolute PC1 PC2 R2 R2-Adj 

27 Dabade &   ROT Yes No No Yes No Yes No No No No No 

  Joshi                         

28 Oudjene et al No No No NA NA NA No No No No No No 

29 Tsai et al  UC Yes No No Yes No Yes No No No No No 

    No No No No Yes Yes No Yes No No Yes No 

30 Chang & No No No NA NA NA Yes Yes No No No No 

  Choi                         

31 Rakwal & ROT No Yes No Yes No No Yes No No Yes No 

  Bamberg                         

32 Xueping et al No No No NA NA NA Yes Yes No No No No 

33 Sharma & ROT Yes No No No No Yes Yes No Yes No No 

  Rout                         

34 Lu et al  UC Yes No No No No No Yes Yes No No No 

35 Jeang et al ROT Yes No No No No Yes Yes No Yes No No 

36 Luo & Chen No Yes No No Yes No Yes Yes No Yes No No 

37 Sorrentino No Yes No No Yes Yes Yes No No No No No 

   & Carrino                         

38 Muthukrishnan & UC Yes No No No No Yes Yes Yes No No No 

  Davim                         

39 Rosa et al ROT Yes No No Yes No Yes No No No No No 
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                FE's Importance Measures 

No Author(s) Pooling Standard Regression Hypothesis Reporting Examining Mean-Related Variance-Related 

    Method ANOVA ANOVA Stated P-value Assumptions Graphical Absolute PC1 PC2 R2 R2-Adj 

40 Tzeng et al No Yes No No No No No Yes Yes No No No 

41 Xiaoyun et al No No No NA NA NA Yes No No No No No 

42 Tsai et al  UC Yes No NA NA NA No Yes Yes No No No 

43 Phatak et al ROT No Yes No Yes Yes No No No No Yes Yes 

44 Prihandana et al No No No NA NA NA Yes No Yes No No No 

45 Sadasivam et al No No No NA NA NA No Yes Yes No No No 

46 Saha & Choudhury BE No Yes No Yes No Yes Yes No No Yes Yes 

47 Courbon et al SWR No Yes No Yes Yes Yes Yes No No Yes Yes 

48 Shyha et al UC Yes No No Yes No Yes No No Yes No No 

49 Marafona &  ROT Yes Yes No Yes No No Yes Yes No Yes Yes 

  Araujo                         

50 Zhang & Guo No No No NA NA NA No No No No No No 

51 Arai et al  ROT Yes No NA NA NA No No No Yes No No 

52 Nandy et al ROT No Yes No No No Yes Yes No No No No 

53 Kwak  ROT Yes No No No No Yes No No No No No 
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                FE's Importance Measures 

No Author(s) Pooling Standard Regression Hypothesis Reporting Examining Mean-Related Variance-Related 

    Method ANOVA ANOVA Stated P-value Assumptions Graphical Absolute PC1 PC2 R2 R2-Adj 

54 Totis SWR No No No No No No Yes No No Yes No 

                            

55 Galantucci et al No No No NA NA NA Yes No No No No No 

                            

56 Martins et al No No No NA NA NA Yes No No No No No 

                            

57 Ali et al No No No NA NA NA No Yes No No No No 

    No No No NA NA NA Yes Yes No No No No 

                            

58 Mori et al No No No NA NA NA Yes No No No No No 
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4-Results Interpretation and Other Aspects 
No. Author(s) Confirmation  DOE Software 

    runs References   

1 Karayel  No No No 

          

2 Gunasegaram et al No Yes Minitab 

          

3 Shanmugam & No No No 

  Masood       

4 Cakir et al  No No No 

          

5 Fang et al No No No 

          

6 Yang et al Yes Yes Minitab 

          

7 Venkatachalam No No No 

  et al       

8 Lin et al Yes No No 

          

9 Jeang & Lin No Yes SAS 

          

10 Lauderbaugh  No No Minitab 

    No     

          

11 Xavior & Adithan No No Minitab 

          

12 Boronat et al No Yes Design-Expert 

          

13 Wang et al  Yes Yes No 

          

14 Majewski et al No No No 

          

15 Bi & Jiang No No No 

          

16 Senthilkumar et al Yes Yes No 

          

17 Mi & Lackey No No No 

          

18 Mata et al  No Yes No 

          

19 Chattopadhyay et al No Yes SPSS 

          

20 Huang et al Yes Yes No 
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No. Author(s) Confirmation  DOE Software 

    runs References   

21 Palanikumar & Yes Yes Minitab 

  Davim       

22 Azmir & No Yes No 

  Ahsan       

23 Lin & Ho No Yes No 

          

24 Ajaal & Yes Yes No 

  Smith Yes     

          

25 Dey et al No Yes Minitab 

          

26 Sahin Yes Yes Minitab 

          

27 Dabade &  Joshi No Yes No 

          

28 Oudjene et al No No No 

          

29 Tsai et al  Yes Yes SPSS 

    Yes     

          

30 Chang & No Yes No 

  Choi       

31 Rakwal & Yes Yes No 

  Bamberg       

32 Xueping et al No No No 

          

33 Sharma & Yes Yes No 

  Rout       

34 Lu et al  Yes Yes No 

          

35 Jeang et al Yes Yes No 

          

36 Luo & Chen No Yes No 

          

37 Sorrentino & Carrino No No Minitab 

          

38 Muthukrishnan & Yes No No 

  Davim       

39 Rosa et al Yes Yes STATISTICA 

          

40 Tzeng et al Yes No No 
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No. Author(s) Confirmation  DOE Software 

    runs References   

41 Xiaoyun et al No No Minitab 

          

42 Tsai et al  No Yes No 

          

43 Phatak et al No Yes No 

          

44 Prihandana et al No No No 

          

45 Sadasivam et al No Yes SAS 

          

46 Saha & Choudhury residual Yes Design-Expert 

          

47 Courbon et al No Yes Design-Expert 

          

48 Shyha et al No Yes Minitab 

          

49 Marafona & Arau jo Yes No No 

          

50 Zhang & Guo No No No 

          

51 Arai et al  No No No 

          

52 Nandy et al No No No 

          

53 Kwak  No No No 

          

54 Totis No Yes No 

          

55 Galantucci et al No No Minitab 

          

56 Martins et al No No No 

          

57 Ali et al No No No 

    No     

          

58 Mori et al No Yes No 
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No Author(s) Process No. No of OA No. of Sig. Effects Standardised Effects  

      Factors Levels   Main 2fi* Main  2fi 

1 Ganjigatti et al Welding 6 2 L64 5 3 -2.94 1.00 

  2007             -2.27 -0.42 

                0.64 0.48 

                0.38   

                -1.17   

      6 2 L64 3 1 -1.67 -0.98 

                1.95   

                0.50   

      6 2 L64 4 3 0.87 -0.54 

                -1.11 0.48 

                -0.66 0.38 

                1.11   

2 Gunaraj & Murugan Welding 4 2 L16 3   1.70   

  1999             2.37   

                -3.10   

                    

      4 2 L16 4 2 2.72 -1.16 

                3.40 1.48 

                -1.26   

                -1.12   

      4 2 L16 3 1 1.28 -0.63 

                1.53   

                -0.69   

3 Darwish Turning 4 2 L16 2   4.13   

  2000             1.08   

                    

      4 2 L16 3   5.40   

                0.87   

                -1.23   

4  Aggarwal et al  Turning 4 2 L16 4 2 5.68 0.82 

  2008             1.92 0.75 

                4.50   

                0.89   

      4 2 L16 4 2 5.95 0.72 

                1.08 2.35 

                3.79   

                -0.72   

      4 2 L16 4 1 3.41 1.91 

                3.15   

                7.36   

                2.48   

          

* Two-Factor Interactions 
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No Author(s) Process No. No of OA 

No. of Sig. 

Effects Standardised Effects  

      Factors Levels   Main 2fi Main  2fi 

5 Mahadevan et al Hardening 3 2 L8 3 3 0.88 7.20 

  2008             5.95 2.95 

                1.55 1.76 

                    

6 

 Francis & El-

Midany Carbothemic 3 2 L8 1   4.75   

  2008 Reduction               

      3 2 L8 1   3.20   

                    

                    

7 Darwin et al Deep 4 2 L16 4 2 0.68 0.39 

  2008 Cryogenic           -3.23 -0.64 

    Treatment           -1.44   

                -0.48   

8 Senthilvelan et al Powder 3 2 L8 3 2 8.62 2.99 

  2003 Metallurgy           6.44 -2.39 

                3.28   

                    

      3 2 L8 3 3 -2.35 -1.69 

                1.25 -1.69 

                2.30 1.47 

                    

9 Puertas & Luis Electric  3 2 L8 1 1 -3.47 1.96 

  2003 Discharge                

     Machining               

                    

      3 2 L8 1 1 -3.51 1.98 

                    

                    

                    

                    

10 Onwubolu & Kumar Drilling 3 2 L8 2 0 1.21   

  2006             1.74   

                    

                    

      3 2 L8 0 0     

                    

                    

11 Chatterjee et al Powder 3 2 L8 2 1 -1.59 2.34 

  2007 Metallurgy           3.96   

                    

                    

12 Mahadevan et al Heat  3 2 L8 3 3 9.61 -9.28 

  2006 Treatment           1.31 -4.41 

                9.46 -2.02 
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No Author(s) Process No. No of OA No. of Sig. Effects Standardised Effects  

      Factors Levels   Main 2fi Main  2fi 

13 Raghukandan & Extrusion 3 3 L8 3 0 2.62   

   Senthilvelan             4.13   

  2004             0.67   

                    

                    

14 Yang et al Milling 3 2 L8 1 0 3.72   

  2009                 

      3 2 L8 1 0 1.32   

                    

15 Noordin et al Turning 3 2 L8 1 0 1.97   

  2004                 

      3 2 L8 1 0 1.22   

                    

16 Kannan & Arc 4 2 L16 2 0 2.47   

  Murugan Welding           -3.01   

  2006   4 2 L16 4 1 1.43 1.21 

                1.46   

                0.94   

                2.51   

      4 2 L16 1 0 -3.82   

                    

      4 2 L16 4 2 0.72 -0.62 

                2.13 1.22 

                -1.00   

                1.63   

                    

17 Dutta & Welding 5 2 L32 4 0 1.33   

  Pratihar             0.62   

  2007             -0.49   

                -1.88   

      5 2 L32 2 1 -2.32 -0.93 

                2.47   

      5 2 L32 3 0 -1.37   

                0.48   

                0.90   

      5 2 L32 3 0 -3.49   

                0.98   

                4.03   

18 Krajnik &Kopac Grinding 3 2 L8 1 0 4.73   

  2004                 

                    

19 Mohammadi et al Grit 3 2 L8 2 0 1.06   

  2007 Blasting           1.29   
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No Author(s) Process No. No of OA No. of Sig. Effects 

Standardised 

Effects  

      Factors Levels   Main 2fi Main  2fi 

20 Hung et al Ion Beam 4 2 L16 2 1 -2.48 -3.01 

  2002 Machining           2.77   

                    

      4 2 L16 1 0 1.64   

                    

                    

      4 2 L16 1 0 1.15   

                    

                    

      4 2 L16 2 1 -1.61 -1.07 

                1.25   

21 Huang & Lin Injection 3 2 L8 3 1 -8.66 0.96 

  2008 Molding           -3.98   

                2.20   

      3 2 L8 3 1 9.90 1.22 

                4.55   

                -2.51   

22 Pei & Strasbaugh Fine 3 2 L8 2 1 0.74 0.64 

  2002 Grinding           1.82   

      3 2 L8 2 1 -0.52 -0.66 

                -3.57   

      3 2 L8 1 2 2.07 0.55 

                  0.62 

                    

23 Pei at al  Grinding 4 2 L16 3 3 -2.51 -2.30 

  2003             4.87 -0.83 

                1.87 1.69 

                    

24 Pei Grinding 3 2 L8 3 2 3.65 0.86 

  2002             0.91 -2.78 

                2.70   

      3 2 L8 2 2 -9.21 0.59 

                7.46 -1.84 

      3 2 L8 2 1 1.78 -1.36 

                1.20   

      3 2 L8 0 0 0.00 0.00 

                    

      3 2 L8 3 2 -1.15 0.75 

                -0.65 -0.65 

                1.35   
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No Author(s) Process No. No of OA No. of Sig. Effects 

Standardised 

Effects  

      Factors Levels   Main 2fi Main  2fi 

25 Sun et al Grinding 4 2 L16 3 1 1.43 1.09 

  2004             -1.68   

                6.57   

      4 2 L16 3 0 -1.94   

                -0.92   

                0.60   

                    

26  Li et al Ultrasonic 3 2 L8 1 0 0.65   

  2005 Machining               

      3 2 L8 3 2 0.93 -1.75 

                -0.77 -0.75 

                1.55   

      3 2 L8 1 2 1.23 0.92 

                  0.98 

      3 2 L8 2 1 0.70 0.85 

                -0.78   

                    

27 Gorana et al Abrasive 3 2 L8 3 1 1.68 2.75 

  2004 Flow           2.17   

    Machining           4.25   

      3 2 L8 1 0 2.07   

                    

      3 2 L8 1 0 0.97   

                    

      3 2 L8 0 0 0.00 0.00 

                    

28 Pei et al  Grinding 3 2 L8 1 0 -0.51   

  1999                 

                    

29 Reddy et al Turning 5 2 L32 5 3 1.44 1.15 

  2001             0.81 0.93 

                -0.79 -1.04 

                0.94   

                -4.77   
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No Author(s) Process No. No of OA 

No. of Sig. 

Effects Standardised Effects  

      Factors Levels   Main 2fi Main  Type 2fi Type 

30 Correia & Ferraresi Welding 2 3 L9 3 1 -1.77 L 0.92 LxL 

  2007             3.75 L     

                1.63 Q     

      2 3 L9 1 0 -1.93 Q     

      2 3 L9 2   -3.40 L     

                -1.77 Q     

                        

31 Chattopadhyay et al Electric  3 3 L27 3 1 2.80 L -0.93 LxL 

  2009 Discharge            -1.98 L     

    

 

Machining           -2.44 L     

      3 3 L27 4 1 -3.20 L 0.63 LxL 

                0.56 L     

                2.30 L     

                1.95 Q     

      3 3 L27 3   0.98 L     

                -1.45 L     

                1.18 L     

32 Gaitonde et al  Drilling 3 3 L27 4   -0.84 L     

  2008             1.43 L     

                1.45 L     

                -0.74 Q     

33 Dhar et al  Electric  3 3 L27 4 1 -1.24 L -0.71 LxL 

  2007 Discharge            1.49 L     

    

 

Machining           0.74 L     

                -0.77 Q     

                0.97 Q     

      3 3 L27 3   4.30 L     

                0.84 L     

                -1.90 Q     

      3 3 L27 4   1.49 L     

                1.55 L     

                2.72 L     

                -1.40 Q     

34 Ghani et al  End 3 3 L27 4 3 0.80 L -1.51 LxL 

  2004 Milling           2.44 L 2.60 LxQ 

                -1.00 L -3.60 QxL 

                0.94 Q     

      3 3 L27 2 0 1.58 L     

                1.38 L     
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No Author(s) Process No. No of OA 

No. of Sig. 

Effects Standardised Effects  

      Factors Levels   Main 2fi Main  Type 2fi Type 

35 Davim et al Turning 3 3 L27 3 1 -2.89 L 2.61 LxQ 

  2008             -0.64 L     

                1.39 Q     

36 Davim Turning 3 3 L27 6 3 1.33 L 1.49 LxL 

  2003             -1.72 L -2.58 LxL 

                4.12 L -1.09 LxL 

                1.67 Q     

                0.89 Q     

                -1.46 Q     

      3 3 L27 5 5 1.20 L -2.17 LxL 

                5.63 L -1.08 LxL 

                1.43 L 1.38 QxL 

                0.86 Q -1.90 LxQ 

                -3.25 Q 1.62 QxL 

      3 3 L27 4 0 1.20 L     

                1.35 L     

                1.06 L     

                1.06 Q     

37 Davim Drilling 3 3 L27 1 3 1.02 L -0.89 LxL 

  2000                 -0.67 LxL 

                    0.62 LxL 

      3 3 L27 5 2 0.67 L 0.58 LxL 

                0.50 L 1.93 LxL 

                2.60 L     

                0.68 Q     

                2.60 Q     
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Phase-1 Results  

 

No. 
Fractional 

OA 

Pooling 

Methods 

No. of 

Active 

Factors 

Size of 

Active 

Factors 

Power 

 (A) (B) (C) (D) 
 1 L12 MLM 4 3 0.685 

2 L12 PU 4 3 0.921 

3 L12 PD 5 2 0.754 

4 L16 PD 4 1 0.527 

5 L12 HNP 5 1 0.547 

6 L16 PU 3 3 0.98 

7 L12 HNP 3 3 0.911 

8 L8 PD 5 2 0.537 

9 L16 UC 5 1.5 0.695 

10 L16 UC 5 1 0.517 

11 L12 UC 5 1.5 0.665 

12 L16 UC 4 3 0.862 

13 L16 LM 5 1.5 0.429 

14 L12 LM 5 1.5 0.389 

15 L12 PU 5 1 0.596 

16 L16 MLM 5 2 0.655 

17 L12 MLM 3 3 0.685 

18 L16 PU 4 3 0.99 

19 L8 MLM 3 1.5 0.488 

20 L8 UC 3 2 0.685 

21 L8 MLM 4 1 0.202 

22 L12 HNP 4 1 0.566 

23 L12 PD 5 3 0.773 

24 L16 HNP 4 3 0.911 

25 L8 UC 5 1 0.291 

26 L16 PU 3 1 0.645 

27 L12 UC 3 1 0.527 

28 L8 PU 4 1.5 0.645 

29 L12 LM 3 1 0.261 

30 L12 MLM 4 1.5 0.566 

31 L16 LM 3 1.5 0.468 

32 L12 UC 3 3 0.832 

33 L16 LM 4 1 0.261 

34 L8 PU 3 1 0.547 

35 L8 HNP 3 1.5 0.665 

36 L8 LM 5 3 0.33 
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37 L8 HNP 5 3 0.645 

38 L16 MLM 3 2 0.685 

39 L8 PU 3 2 0.813 

40 L12 PD 5 1 0.468 

41 L12 PU 5 2 0.852 

42 L12 PD 4 1.5 0.665 

43 L8 PD 4 3 0.635 

44 L8 MLM 5 1 0.143 

45 L8 UC 3 1.5 0.606 

46 L16 LM 3 2 0.557 

47 L16 PD 4 1.5 0.724 

48 L16 UC 3 1.5 0.744 

49 L8 LM 3 1.5 0.35 

50 L12 LM 4 1.5 0.419 

51 L12 PU 5 1.5 0.793 

52 L12 MLM 5 3 0.665 

53 L12 PU 3 3 0.951 

54 L8 UC 4 1.5 0.527 

55 L8 PD 3 3 0.724 

56 L16 PU 4 1.5 0.852 

57 L8 UC 3 3 0.734 

58 L16 LM 5 1 0.261 

59 L8 UC 5 2 0.557 

60 L16 PU 5 1 0.645 

61 L8 PU 4 3 0.763 

62 L8 HNP 3 3 0.793 

63 L8 MLM 5 2 0.409 

64 L16 HNP 5 2 0.852 

65 L16 HNP 5 1.5 0.783 

66 L12 LM 3 3 0.557 

67 L8 UC 4 2 0.635 

68 L8 LM 4 1.5 0.232 

69 L8 HNP 4 1.5 0.606 

70 L16 PD 5 2 0.783 

71 L8 UC 5 1.5 0.468 

72 L16 HNP 4 1.5 0.793 

73 L12 UC 3 2 0.803 

74 L8 HNP 3 1 0.488 

75 L16 HNP 3 1 0.645 

76 L8 MLM 5 3 0.448 

77 L8 HNP 3 2 0.734 

78 L8 LM 5 1 0.005 
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79 L12 LM 4 2 0.498 

80 L12 HNP 3 2 0.832 

81 L16 UC 3 2 0.842 

82 L8 MLM 4 3 0.517 

83 L12 LM 5 3 0.527 

84 L16 PD 5 3 0.832 

85 L12 HNP 4 1.5 0.763 

86 L8 PD 4 1 0.33 

87 L8 HNP 4 1 0.419 

88 L8 MLM 5 1.5 0.35 

89 L12 HNP 5 2 0.842 

90 L8 LM 3 3 0.468 

91 L16 PD 3 1.5 0.744 

92 L16 MLM 4 1.5 0.596 

93 L12 PU 4 2 0.882 

94 L16 MLM 3 1 0.429 

95 L16 LM 4 2 0.547 

96 L16 PD 5 1 0.517 

97 L12 HNP 4 3 0.892 

98 L8 PU 5 1 0.389 

99 L12 PU 4 1.5 0.813 

100 L16 LM 5 2 0.527 

101 L12 LM 4 3 0.566 

102 L8 PD 4 1.5 0.527 

103 L16 MLM 4 2 0.675 

104 L12 HNP 5 1.5 0.754 

105 L8 PU 4 1 0.438 

106 L16 UC 4 1.5 0.724 

107 L8 LM 4 3 0.379 

108 L12 MLM 5 1.5 0.537 

109 L12 UC 5 3 0.813 

110 L8 PU 5 1.5 0.586 

111 L16 UC 4 1 0.547 

112 L12 PD 3 2 0.754 

113 L16 PU 4 2 0.911 

114 L12 PD 4 1 0.488 

115 L12 LM 5 1 0.232 

116 L16 PU 5 2 0.911 

117 L12 MLM 3 2 0.655 

118 L8 MLM 3 2 0.547 

119 L12 MLM 5 2 0.616 

120 L12 LM 3 1.5 0.448 
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121 L16 HNP 3 2 0.882 

122 L16 PU 5 3 0.941 

123 L16 HNP 4 1 0.596 

124 L8 LM 3 2 0.409 

125 L12 UC 4 3 0.832 

126 L16 LM 3 3 0.616 

127 L16 MLM 5 1.5 0.586 

128 L16 PD 3 1 0.537 

129 L8 HNP 4 2 0.665 

130 L8 LM 4 2 0.35 

131 L8 PD 3 1 0.409 

132 L16 PU 4 1 0.655 

133 L12 MLM 3 1.5 0.557 

134 L8 UC 4 3 0.665 

135 L12 PU 3 2 0.911 

136 L16 PD 5 1.5 0.714 

137 L8 LM 3 1 0.153 

138 L16 PD 3 2 0.803 

139 L12 PU 3 1 0.635 

140 L12 PU 5 3 0.921 

141 L16 MLM 5 1 0.389 

142 L16 PD 4 2 0.803 

143 L8 MLM 3 3 0.596 

144 L8 PU 4 2 0.734 

145 L12 PD 3 3 0.813 

146 L8 PD 3 1.5 0.596 

147 L8 MLM 4 2 0.488 

148 L16 LM 3 1 0.281 

149 L16 UC 3 1 0.566 

150 L8 PD 4 2 0.606 

151 L12 MLM 3 1 0.389 

152 L16 UC 5 2 0.793 

153 L8 PU 5 3 0.704 

154 L8 HNP 5 1 0.35 

155 L12 HNP 3 1.5 0.773 

156 L16 HNP 5 3 0.892 

157 L12 UC 4 1 0.517 

158 L8 PD 5 3 0.586 

159 L12 PU 3 1.5 0.823 

160 L16 PU 3 1.5 0.852 

161 L12 PD 3 1 0.517 

162 L8 PD 3 2 0.685 
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163 L8 HNP 4 3 0.714 

164 L12 UC 4 2 0.783 

165 L12 LM 5 2 0.488 

166 L12 PU 4 1 0.616 

167 L12 PD 3 1.5 0.695 

168 L8 PD 5 1 0.241 

169 L12 PD 5 1.5 0.665 

170 L16 HNP 3 3 0.931 

171 L16 HNP 5 1 0.606 

172 L16 MLM 5 3 0.704 

173 L8 PU 3 3 0.823 

174 L16 PD 4 3 0.842 

175 L12 PD 4 3 0.813 

176 L8 MLM 3 1 0.301 

177 L16 PU 3 2 0.941 

178 L12 HNP 4 2 0.842 

179 L16 MLM 3 3 0.724 

180 L12 UC 5 2 0.754 

181 L12 PD 4 2 0.793 

182 L8 PU 3 1.5 0.724 

183 L8 LM 4 1 0.064 

184 L8 LM 5 1.5 0.202 

185 L12 HNP 3 1 0.576 

186 L12 MLM 4 1 0.369 

187 L12 LM 4 1 0.222 

188 L16 LM 4 1.5 0.468 

189 L16 MLM 3 1.5 0.606 

190 L16 PD 3 3 0.872 

191 L16 LM 4 3 0.586 

192 L12 LM 3 2 0.507 

193 L8 LM 5 2 0.281 

194 L16 UC 5 3 0.832 

195 L16 MLM 4 3 0.724 

196 L16 HNP 4 2 0.872 

197 L16 PU 5 1.5 0.832 

198 L16 UC 4 2 0.823 

199 L16 HNP 3 1.5 0.813 

200 L16 LM 5 3 0.557 

201 L12 HNP 5 3 0.862 

202 L12 UC 3 1.5 0.704 

203 L16 MLM 4 1 0.409 

204 L8 UC 5 3 0.596 
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205 L16 UC 3 3 0.872 

206 L8 MLM 4 1.5 0.389 

207 L8 UC 3 1 0.409 

208 L8 HNP 5 1.5 0.507 

209 L12 UC 5 1 0.498 

210 L8 UC 4 1 0.35 

211 L12 MLM 5 1 0.35 

212 L12 MLM 4 2 0.645 

213 L8 HNP 5 2 0.616 

214 L8 PD 5 1.5 0.448 

215 L12 UC 4 1.5 0.714 

216 L8 PU 5 2 0.655 
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Sub-Phase-1 Results  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

 

No. 

Fractional 

OA 

(A) 

Pooling 

Methods 

(B) 

Replicates Power 

1 2 3 4 5 6 Avg. S
2
 ln  S

2
 

1 L16 PU 1 1 0.64 1 0.928 1 0.928 0.021 -3.86323 

2 L12 PU 1 0.96 0.752 1 1 0.73 0.907 0.017 -4.07454 

3 L8 PU 0.918 0.897 0.778 0.835 0.536 0.536 0.75 0.03 -3.50656 

4 L16 HN 0.956 1 1 1 0.872 0.872 0.95 0.004 -5.52146 

5 L12 HN 1 1 0.67 0.954 0.899 0.997 0.92 0.017 -4.07454 

6 L8 HN 0.878 0.743 0.449 0.601 0.449 0.601 0.62 0.028 -3.57555 

7 L16 EC 0.836 0.938 0.924 0.93 0.826 0.826 0.88 0.003 -5.80914 

8 L12 EC 0.782 0.896 0.878 0.887 0.768 0.768 0.83 0.004 -5.52146 

9 L8 EC 0.598 0.7 0.682 0.69 0.585 0.585 0.64 0.003 -5.80914 

10 L16 PD 0.756 0.856 0.841 0.848 0.75 0.75 0.8 0.003 -5.80914 

11 L12 PD 0.898 0.916 0.867 0.89 0.645 0.645 0.81 0.017 -4.07454 

12 L8 PD 0.769 0.732 0.573 0.653 0.377 0.377 0.58 0.029 -3.54046 

13 L16 LM2 0.644 0.768 0.755 0.762 0.666 0.666 0.71 0.003 -5.80914 

14 L12 LM2 0.656 0.794 0.677 0.737 0.488 0.488 0.64 0.016 -4.13517 

15 L8 LM2 0.583 0.687 0.419 0.552 0.268 0.268 0.463 0.03 -3.50656 

16 L16 LM1 0.504 0.594 0.579 0.587 0.488 0.488 0.54 0.003 -5.80914 

17 L12 LM1 0.455 0.632 0.46 0.546 0.304 0.304 0.45 0.017 -4.07454 

18 L8 LM1 0.401 0.56 0.177 0.401 0.139 0.139 0.303 0.031 -3.47377 
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Phase-2 Results 

 

No 
OAs & Pooling  

Methods 

No. of 

Active 

Factors 

No. of 

Active 

Two-Factor 

Interactions 

Size of 

Active 

Effects 

Power 

 (A) (B) (C) (D)  
1 L8-DO-SWR 3 3 1 0.222 

2 L8-BM-SWR 4 2 3 0.765 

3 L12-BSS 4 1 1.5 0.783 

4 L8-BM-SWR 4 2 1.5 0.67 

5 L16-HNP 5 2 3 0.827 

6 L12-SWR 3 3 2 0.579 

7 L8-BM-BSS 3 2 1 0.745 

8 L8-DO-BSS 4 3 2 0.34 

9 L12-SWR 3 2 2 0.958 

10 L8-DO-BSS 3 3 3 0.25 

11 L12-BSS 3 1 1 0.731 

12 L8-DO-SWR 5 3 1.5 0.093 

13 L12-SWR 3 3 1.5 0.709 

14 L8-BM-BSS 4 3 1.5 0.388 

15 L8-DO-BSS 3 3 1 0.287 

16 L12-SWR 5 3 1 0.392 

17 L8-DO-SWR 5 1 3 0.76 

18 L8-DO-SWR 5 2 1 0.519 

19 L8-DO-BSS 4 2 2 0.625 

20 L12-BSS 4 3 1 0.626 

21 L16-HNP 5 2 1.5 0.776 

22 L8-BM-SWR 5 2 1 0.56 

23 L16-HNP 5 3 2 0.717 

24 L8-DO-SWR 3 2 2 0.735 

25 L8-DO-BSS 5 2 1 0.554 

26 L12-SWR 3 3 3 0.625 

27 L8-BM-BSS 4 1 1.5 0.889 

28 L8-BM-SWR 3 1 1 0.778 

29 L8-DO-BSS 3 1 3 0.73 

30 L12-BSS 5 2 3 0.81 

31 L12-SWR 5 2 1 0.678 

32 L8-BM-SWR 5 3 2 0.418 

33 L8-DO-SWR 4 3 1.5 0.068 

34 L8-DO-BSS 4 3 1.5 0.298 

35 L8-BM-BSS 4 1 1 0.597 
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36 L12-SWR 4 3 1.5 0.417 

37 L8-DO-SWR 3 2 1 0.675 

38 L8-BM-BSS 4 3 1 0.45 

39 L12-BSS 3 1 2 0.917 

40 L8-BM-BSS 5 1 1 0.684 

41 L8-DO-BSS 3 1 1.5 0.789 

42 L8-BM-SWR 3 3 1.5 0.374 

43 L16-HNP 5 3 3 0.725 

44 L8-DO-BSS 3 3 2 0.393 

45 L8-DO-SWR 5 3 2 0.02 

46 L8-DO-BSS 3 2 1.5 0.655 

47 L8-BM-BSS 4 2 2 0.805 

48 L12-BSS 3 2 3 0.85 

49 L12-SWR 5 3 2 0.485 

50 L12-BSS 3 3 2 0.642 

51 L12-BSS 3 3 1 0.519 

52 L8-DO-BSS 3 2 2 0.734 

53 L8-BM-BSS 5 2 2 0.684 

54 L16-HNP 4 3 1 0.511 

55 L8-BM-BSS 5 1 1.5 0.725 

56 L16-HNP 4 2 2 0.761 

57 L8-BM-SWR 4 1 3 0.776 

58 L16-HNP 3 1 1.5 0.953 

59 L8-BM-SWR 4 1 2 0.791 

60 L12-BSS 4 1 3 0.888 

61 L8-BM-BSS 3 2 1.5 0.804 

62 L12-SWR 4 2 1 0.773 

63 L12-BSS 3 2 2 0.889 

64 L12-BSS 5 1 2 0.8 

65 L16-HNP 5 3 1 0.492 

66 L8-DO-BSS 3 1 2 0.845 

67 L8-DO-BSS 5 2 3 0.728 

68 L8-DO-BSS 4 2 1 0.635 

69 L8-BM-SWR 4 3 2 0.417 

70 L12-SWR 5 1 1.5 0.765 

71 L16-HNP 4 1 3 0.871 

72 L8-BM-SWR 5 2 3 0.786 

73 L12-SWR 4 1 1.5 0.821 

74 L8-BM-SWR 5 1 2 0.654 

75 L8-BM-SWR 3 1 2 0.768 

76 L16-HNP 4 1 2 0.891 

77 L12-SWR 3 1 1 0.792 
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78 L8-DO-SWR 4 1 1 0.648 

79 L8-DO-BSS 5 1 1 0.664 

80 L16-HNP 3 1 1 0.788 

81 L16-HNP 3 3 1.5 0.721 

82 L8-DO-BSS 5 1 2 0.672 

83 L16-HNP 4 1 1.5 0.864 

84 L12-SWR 4 2 3 0.841 

85 L8-BM-BSS 3 2 3 0.811 

86 L12-BSS 4 2 2 0.75 

87 L12-BSS 5 1 1 0.824 

88 L12-SWR 5 2 3 0.769 

89 L12-BSS 3 1 1.5 0.956 

90 L16-HNP 5 1 3 0.906 

91 L12-BSS 4 1 2 0.856 

92 L8-DO-SWR 5 1 2 0.687 

93 L16-HNP 3 2 2 0.851 

94 L12-BSS 3 1 3 0.907 

95 L8-BM-BSS 5 3 1.5 0.292 

96 L12-SWR 3 2 1 0.673 

97 L8-DO-BSS 3 1 1 0.714 

98 L8-BM-SWR 3 2 2 0.647 

99 L8-DO-BSS 4 1 2 0.851 

100 L16-HNP 5 2 2 0.83 

101 L8-BM-SWR 5 1 3 0.821 

102 L8-DO-SWR 3 1 1 0.704 

103 L12-BSS 5 2 2 0.817 

104 L8-DO-SWR 4 1 3 0.798 

105 L8-DO-SWR 5 3 3 0.069 

106 L16-HNP 3 1 3 0.858 

107 L12-BSS 4 3 2 0.621 

108 L8-DO-BSS 4 1 1.5 0.688 

109 L8-DO-SWR 3 3 3 0.261 

110 L12-BSS 3 2 1.5 0.772 

111 L8-DO-SWR 3 3 2 0.115 

112 L8-DO-SWR 5 1 1 0.695 

113 L8-BM-SWR 3 3 1 0.415 

114 L8-DO-SWR 4 1 1.5 0.662 

115 L12-BSS 4 2 1 0.705 

116 L8-BM-BSS 4 2 1.5 0.744 

117 L12-SWR 5 2 2 0.768 

118 L12-BSS 3 3 1.5 0.635 

119 L12-SWR 3 1 3 0.833 
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120 L8-DO-SWR 4 1 2 0.746 

121 L8-BM-SWR 4 2 1 0.682 

122 L16-HNP 4 3 1.5 0.679 

123 L8-DO-SWR 4 3 2 0.124 

124 L8-DO-SWR 3 2 3 0.861 

125 L8-DO-BSS 5 3 1.5 0.3 

126 L8-BM-SWR 4 1 1.5 0.71 

127 L8-BM-SWR 3 2 1 0.659 

128 L16-HNP 4 2 1.5 0.783 

129 L8-BM-SWR 4 3 1 0.33 

130 L12-BSS 4 3 3 0.781 

131 L8-DO-BSS 3 3 1.5 0.34 

132 L16-HNP 5 1 1 0.813 

133 L8-BM-BSS 4 2 1 0.64 

134 L16-HNP 3 3 2 0.836 

135 L12-SWR 5 1 3 0.881 

136 L12-SWR 4 3 1 0.422 

137 L12-BSS 4 1 1 0.666 

138 L12-SWR 4 2 2 0.8 

139 L8-DO-BSS 5 2 1.5 0.687 

140 L8-BM-BSS 5 2 3 0.662 

141 L8-DO-SWR 5 2 1.5 0.568 

142 L8-BM-SWR 5 3 1 0.251 

143 L12-BSS 5 1 1.5 0.736 

144 L8-DO-SWR 5 2 3 0.7 

145 L8-BM-SWR 3 3 3 0.528 

146 L8-DO-BSS 5 2 2 0.684 

147 L12-BSS 3 3 3 0.776 

148 L16-HNP 4 3 2 0.724 

149 L8-DO-BSS 5 3 3 0.239 

150 L8-BM-BSS 3 3 3 0.565 

151 L8-DO-BSS 4 3 3 0.371 

152 L8-BM-BSS 4 3 3 0.498 

153 L8-BM-BSS 3 2 2 0.791 

154 L12-BSS 3 2 1 0.751 

155 L8-DO-SWR 3 1 2 0.787 

156 L8-BM-BSS 3 3 2 0.526 

157 L8-DO-SWR 4 2 3 0.667 

158 L8-DO-BSS 3 2 1 0.782 

159 L8-BM-SWR 3 1 1.5 0.723 

160 L12-SWR 5 3 1.5 0.482 

161 L12-SWR 5 2 1.5 0.797 
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162 L16-HNP 3 2 3 0.88 

163 L8-DO-BSS 4 2 3 0.816 

164 L12-SWR 4 3 2 0.461 

165 L16-HNP 5 1 1.5 0.745 

166 L8-DO-BSS 3 2 3 0.861 

167 L16-HNP 3 1 2 0.9 

168 L8-BM-BSS 5 1 3 0.828 

169 L16-HNP 4 1 1 0.737 

170 L16-HNP 5 2 1 0.798 

171 L8-BM-SWR 3 1 3 0.899 

172 L12-SWR 5 1 2 0.877 

173 L12-SWR 3 1 2 0.871 

174 L8-BM-SWR 3 3 2 0.485 

175 L8-BM-BSS 3 1 1.5 0.96 

176 L8-DO-BSS 5 1 3 0.729 

177 L16-HNP 3 2 1.5 0.841 

178 L16-HNP 4 2 3 0.863 

179 L8-BM-SWR 5 2 1.5 0.623 

180 L8-BM-SWR 5 2 2 0.726 

181 L8-DO-SWR 4 2 1.5 0.624 

182 L16-HNP 3 3 1 0.643 

183 L8-DO-SWR 4 3 1 0 

184 L8-BM-BSS 3 1 2 0.792 

185 L8-BM-BSS 4 1 3 0.857 

186 L8-BM-BSS 5 3 1 0.417 

187 L8-DO-SWR 3 1 1.5 0.68 

188 L8-BM-BSS 5 2 1.5 0.746 

189 L8-BM-BSS 3 3 1 0.488 

190 L8-BM-SWR 5 3 1.5 0.394 

191 L8-BM-BSS 5 1 2 0.726 

192 L8-BM-BSS 4 1 2 0.773 

193 L12-BSS 5 3 2 0.57 

194 L8-DO-SWR 5 1 1.5 0.625 

195 L12-SWR 3 2 1.5 0.833 

196 L8-BM-SWR 5 1 1 0.635 

197 L8-DO-BSS 5 1 1.5 0.687 

198 L12-SWR 4 1 3 0.881 

199 L12-BSS 5 3 3 0.659 

200 L8-BM-SWR 3 2 1.5 0.794 

201 L8-DO-BSS 5 3 1 0.285 

202 L8-DO-SWR 4 3 3 0.147 

203 L16-HNP 3 2 1 0.738 
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204 L16-HNP 4 2 1 0.75 

205 L12-SWR 3 3 1 0.551 

206 L12-SWR 3 2 3 0.943 

207 L8-DO-SWR 3 1 3 0.744 

208 L8-BM-BSS 5 3 2 0.417 

209 L8-BM-BSS 5 3 3 0.564 

210 L12-BSS 5 2 1 0.657 

211 L8-BM-BSS 3 1 3 0.86 

212 L8-BM-SWR 4 2 2 0.684 

213 L12-BSS 5 2 1.5 0.66 

214 L8-DO-SWR 5 2 2 0.61 

215 L16-HNP 5 1 2 0.863 

216 L8-DO-SWR 4 2 1 0.664 

217 L12-SWR 4 1 1 0.719 

218 L12-BSS 5 3 1.5 0.547 

219 L8-BM-BSS 3 3 1.5 0.524 

220 L8-DO-SWR 3 3 1.5 0.143 

221 L12-BSS 4 2 1.5 0.842 

222 L12-SWR 4 1 2 0.793 

223 L8-DO-BSS 4 1 1 0.559 

224 L8-DO-SWR 4 2 2 0.687 

225 L16-HNP 4 3 3 0.696 

226 L12-BSS 5 1 3 0.766 

227 L12-SWR 5 1 1 0.686 

228 L8-BM-BSS 4 2 3 0.784 

229 L8-DO-SWR 5 3 1 0.017 

230 L12-SWR 5 3 3 0.58 

231 L8-BM-SWR 4 1 1 0.715 

232 L8-DO-SWR 3 2 1.5 0.676 

233 L12-SWR 4 2 1.5 0.762 

234 L8-DO-BSS 4 2 1.5 0.75 

235 L12-SWR 4 3 3 0.593 

236 L8-BM-SWR 5 1 1.5 0.636 

237 L12-BSS 4 3 1.5 0.627 

238 L8-BM-BSS 5 2 1 0.617 

239 L8-DO-BSS 5 3 2 0.315 

240 L8-DO-BSS 4 1 3 0.72 

241 L8-BM-SWR 3 2 3 0.729 

242 L8-BM-BSS 3 1 1 0.789 

243 L16-HNP 5 3 1.5 0.511 

244 L8-BM-SWR 4 3 1.5 0.42 

245 L12-BSS 5 3 1 0.539 
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246 L16-HNP 3 3 3 0.744 

247 L8-DO-BSS 4 3 1 0.169 

248 L8-BM-SWR 4 3 3 0.464 

249 L8-BM-SWR 5 3 3 0.427 

250 L12-BSS 4 2 3 0.82 

251 L12-SWR 3 1 1.5 0.778 

252 L8-BM-BSS 4 3 2 0.488 
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Sub-Phase-2 Results  

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. 

OAs & Pooling  

Methods 

(A) 

Replications Power 

1 2 3 4 5 6 Avg. S
2
 ln  S

2
 

1 L16-HNP 1 1 0.874 0.984 0.73 0.951 0.923 0.011201 -4.49175 

2 L12-BSS 1 0.765 0.734 0.819 0.674 0.869 0.810 0.0132 -4.3275 

3 L12-SWR 0.997 0.554 0.689 0.862 0.675 0.724 0.750 0.024405 -3.71297 

4 L8-BM-BSS 0.3 0.736 0.587 0.702 0.724 0.612 0.610 0.026805 -3.61916 

5 L8-BM-SWR 0.241 0.602 0.684 0.631 0.667 0.596 0.570 0.027203 -3.60443 

6 L8-DO-BSS 0.349 0.154 0.576 0.471 0.675 0.714 0.490 0.045004 -3.101 

7 L8-DO-SWR 0.041 0.362 0.429 0.69 0.58 0.347 0.408 0.049995 -2.99583 
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Phase-3 Results 

 

 

No. 

Fractional 

OAs 

ANOVA 

Type 

Pooling 

Methods 

No. of Active 

Main Effects 

Size of 

Active 

Effects Power 

(A) (B) (C) (D) (E) 

1 L18 ANOVA PU 2 3 0.881 

2 L18 ANOVA PD 3 1.5 0.601 

3 L18 ANOVA PU 2 2 0.832 

4 L18 Reg. PD 2 1 0.762 

5 L18 ANOVA PD 3 2 0.622 

6 L9 Reg. PU 3 1 0.562 

7 L18 Reg. PD 3 3 0.712 

8 L18 Reg. PD 2 3 0.862 

9 L18 Reg. PD 3 2 0.712 

10 L18 ANOVA PU 3 3 0.791 

11 L9 ANOVA PD 2 1 0.511 

12 L18 Reg. PD 3 1.5 0.681 

13 L18 Reg. PU 3 1 0.791 

14 L9 ANOVA PU 3 3 0.711 

15 L9 ANOVA PU 2 3 0.791 

16 L9 Reg. PU 3 1.5 0.641 

17 L9 ANOVA PD 3 2 0.521 

18 L18 Reg. PD 2 2 0.801 

19 L18 Reg. PU 2 1 0.871 

20 L9 Reg. PU 3 2 0.731 

21 L18 Reg. PU 3 3 0.851 

22 L9 ANOVA PU 2 1.5 0.682 

23 L18 ANOVA PU 3 1.5 0.732 

24 L18 Reg. PU 2 3 1.002 

25 L9 ANOVA PU 2 1 0.612 

26 L9 Reg. PU 2 2 0.812 

27 L9 Reg. PD 3 3 0.642 

28 L18 ANOVA PU 2 1.5 0.842 

29 L18 Reg. PD 2 1.5 0.792 

30 L18 ANOVA PD 2 1 0.682 

31 L9 Reg. PD 2 1 0.562 

32 L18 ANOVA PD 2 3 0.782 

33 L9 Reg. PD 2 2 0.702 

34 L9 ANOVA PU 3 1.5 0.572 

35 L18 Reg. PU 3 2 0.791 
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36 L9 Reg. PD 2 3 0.771 

37 L18 ANOVA PU 3 2 0.761 

38 L9 ANOVA PU 3 1 0.551 

39 L9 ANOVA PD 2 2 0.641 

40 L18 ANOVA PD 2 2 0.701 

41 L9 ANOVA PU 2 2 0.781 

42 L9 ANOVA PD 3 3 0.571 

43 L9 Reg. PU 3 3 0.801 

44 L9 Reg. PD 3 1.5 0.501 

45 L18 ANOVA PU 2 1 0.771 

46 L18 Reg. PD 3 1 0.631 

47 L9 ANOVA PD 3 1.5 0.401 

48 L9 ANOVA PU 3 2 0.672 

49 L9 ANOVA PD 2 1.5 0.502 

50 L18 Reg. PU 3 1.5 0.792 

51 L9 ANOVA PD 2 3 0.712 

52 L18 ANOVA PU 3 1 0.702 

53 L18 ANOVA PD 3 3 0.662 

54 L9 Reg. PD 3 2 0.572 

55 L9 Reg. PD 3 1 0.462 

56 L9 Reg. PU 2 1 0.702 

57 L18 ANOVA PD 3 1 0.562 

58 L9 Reg. PD 2 1.5 0.642 

59 L18 Reg. PU 2 2 0.922 

60 L18 Reg. PU 2 1.5 0.882 

61 L18 ANOVA PD 2 1.5 0.722 

62 L9 Reg. PU 2 1.5 0.762 

63 L9 ANOVA PD 3 1 0.402 

64 L9 Reg. PU 2 3 0.862 
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Sub-Phase-3 Results  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. 

Fractional 

OAs 

ANOVA 

Type 

Pooling 

Methods 
Replications Power 

(A) (B) (C) 1 2 3 4 5 6 Avg. S
2
 Ln S

2
 

1 L9 ANOVA PD 0.440 0.513 0.466 0.669 0.687 0.440 0.571 0.0122 -4.4056 

2 L18 ANOVA PD 0.742 0.740 0.705 0.774 0.726 0.742 0.757 0.0029 -5.8283 

3 L9 Reg. PD 0.552 0.508 0.586 0.769 0.771 0.552 0.668 0.0179 -4.0207 

4 L18 Reg. PD 0.807 0.851 0.826 0.909 0.876 0.807 0.849 0.0014 -6.5588 

5 L9 ANOVA PU 0.533 0.557 0.644 0.892 0.877 0.533 0.726 0.0278 -3.5829 

6 L18 ANOVA PU 0.866 0.750 0.850 0.854 0.910 0.866 0.838 0.0031 -5.7808 

7 L9 Reg. PU 0.704 0.621 0.770 0.839 0.835 0.704 0.777 0.01 -4.6002 

8 L18 Reg. PU 0.953 0.876 0.853 0.918 0.937 0.953 0.915 0.0018 -6.3413 
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Phase-4 Results 

 

 

No. 

Fractional 

OAs 

Pooling 

Methods 

No. of 

Active Main 

Effects 

No. of Active 

Two-Factor 

Interactions 

Size of 

Active 

Effects 
Power 

 

(A) (B) (C) (D) (E) 

1 L9 BSS 3 1 3 0.721 

2 L18 SWR 2 1 1 0.68 

3 L9 SWR 2 1 3 0.792 

4 L18 BSS 2 1 1 0.721 

5 L18 SWR 3 1 2 0.62 

6 L18 BSS 2 2 2 0.77 

7 L9 BSS 2 1 2 0.85 

8 L18 BSS 2 2 1 0.761 

9 L18 BSS 2 2 1.5 0.76 

10 L18 BSS 3 1 2 0.722 

11 L18 BSS 2 1 2 0.831 

12 L18 SWR 2 2 1 0.63 

13 L9 SWR 3 1 1.5 0.48 

14 L9 SWR 2 2 3 0.59 

15 L9 BSS 2 2 1 0.511 

16 L9 SWR 2 2 1 0.31 

17 L18 BSS 3 1 1 0.702 

18 L9 SWR 3 2 3 0.461 

19 L18 BSS 3 2 3 0.72 

20 L18 SWR 2 1 2 0.78 

21 L18 BSS 3 2 1.5 0.69 

22 L18 SWR 3 2 3 0.631 

23 L9 SWR 3 2 1.5 0.34 

24 L9 BSS 3 2 1 0.262 

25 L18 SWR 3 2 1.5 0.631 

26 L18 SWR 3 2 2 0.67 

27 L9 SWR 2 1 1 0.54 

28 L9 SWR 3 1 2 0.57 

29 L9 SWR 3 1 3 0.591 

30 L18 SWR 2 2 1.5 0.67 

31 L9 SWR 2 1 1.5 0.632 

32 L9 BSS 2 2 1.5 0.501 

33 L9 BSS 3 2 1.5 0.39 

34 L9 BSS 3 2 3 0.56 

35 L18 SWR 2 2 2 0.7 

36 L18 BSS 3 2 1 0.641 
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37 L9 BSS 2 1 1 0.64 

38 L9 BSS 3 1 1.5 0.612 

39 L9 BSS 3 1 1 0.451 

40 L18 BSS 3 1 1.5 0.64 

41 L9 BSS 2 2 2 0.48 

42 L9 BSS 3 1 2 0.68 

43 L18 BSS 3 1 3 0.701 

44 L9 BSS 3 2 2 0.58 

45 L18 SWR 2 1 3 0.782 

46 L9 SWR 3 2 1 0.231 

47 L18 BSS 2 2 3 0.77 

48 L18 SWR 3 1 3 0.77 

49 L9 BSS 2 1 3 0.95 

50 L18 SWR 3 2 1 0.521 

51 L9 SWR 2 2 1.5 0.44 

52 L9 BSS 2 1 1.5 0.632 

53 L18 SWR 2 1 1.5 0.681 

54 L18 BSS 2 1 3 0.79 

55 L9 SWR 2 2 2 0.52 

56 L18 SWR 3 1 1.5 0.59 

57 L18 BSS 3 2 2 0.611 

58 L9 SWR 3 1 1 0.42 

59 L18 SWR 2 2 3 0.742 

60 L9 SWR 3 2 2 0.411 

61 L18 BSS 2 1 1.5 0.81 

62 L18 SWR 3 1 1 0.63 

63 L9 SWR 2 1 2 0.72 

64 L9 BSS 2 2 3 0.672 
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Sub-Phase-4 Results  
 

 

No. 

Fractional 

OAs 

Pooling 

Methods 
Replications Power 

(A) (B) 1 2 3 4 5 6 Avg. S
2
 Ln S

2
 

1 L9 SW 0.476 0.678 0.658 0.430 0.449 0.697 0.565 0.0173 -4.0567 

2 L18 SW 0.793 0.890 0.782 0.781 0.743 0.769 0.793 0.0032 -5.7409 

3 L9 BS 0.600 0.859 0.858 0.529 0.573 0.744 0.694 0.0243 -3.7177 

4 L18 BS 0.936 0.952 1.000 0.987 0.987 0.904 0.961 0.0015 -6.4873 
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APPENDIX 6: 

ANALYSIS OF THE L8 RESPONSE 2 DATA USING HNP 

PLOT 
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1. The HNP plot of the original data: 

 

 
 

 

2. The residuals outliers plot of the original data 

 
 

 

 

 

  

 



307 

 

3. Box-Cox plot: 

 
 

 

 

4. The HNP plot of the transformed data: 
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5. The residuals outliers plot of the transformed data: 
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APPENDIX 7: 

FULL FACTORIAL DATA FOR THE PUBLISHED AND 

CONDUCTED EXPERIMENTS 
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Phase-1: Dyestuff Manufacturing Experiment 

No. A B C D E F Strength Hue Brightness 

1 -1 -1 -1 -1 -1 -1 3.4 15 36 

2 1 -1 -1 -1 -1 -1 9.7 5 35 

3 -1 1 -1 -1 -1 -1 7.4 23 37 

4 1 1 -1 -1 -1 -1 10.6 8 34 

5 -1 -1 1 -1 -1 -1 6.5 20 30 

6 1 -1 1 -1 -1 -1 7.9 9 32 

7 -1 1 1 -1 -1 -1 10.3 13 28 

8 1 1 1 -1 -1 -1 9.5 5 38 

9 -1 -1 -1 1 -1 -1 14.3 23 40 

10 1 -1 -1 1 -1 -1 10.5 1 32 

11 -1 1 -1 1 -1 -1 7.8 11 32 

12 1 1 -1 1 -1 -1 17.2 5 28 

13 -1 -1 1 1 -1 -1 9.4 15 34 

14 1 -1 1 1 -1 -1 12.1 8 26 

15 -1 1 1 1 -1 -1 9.5 15 30 

16 1 1 1 1 -1 -1 15.8 1 28 

17 -1 -1 -1 -1 1 -1 8.3 22 40 

18 1 -1 -1 -1 1 -1 8 8 30 

19 -1 1 -1 -1 1 -1 7.9 16 35 

20 1 1 -1 -1 1 -1 10.7 7 35 

21 -1 -1 1 -1 1 -1 7.2 25 32 

22 1 -1 1 -1 1 -1 7.2 5 35 

23 -1 1 1 -1 1 -1 7.9 17 36 

24 1 1 1 -1 1 -1 10.2 8 32 

25 -1 -1 -1 1 1 -1 10.3 10 20 

26 1 -1 -1 1 1 -1 9.9 3 35 

27 -1 1 -1 1 1 -1 7.4 22 35 

28 1 1 -1 1 1 -1 10.5 6 28 

29 -1 -1 1 1 1 -1 9.6 24 27 

30 1 -1 1 1 1 -1 15.1 4 36 

31 -1 1 1 1 1 -1 8.7 10 36 

32 1 1 1 1 1 -1 12.1 5 35 

33 -1 -1 -1 -1 -1 1 12.6 32 32 

34 1 -1 -1 -1 -1 1 10.5 10 34 

35 -1 1 -1 -1 -1 1 11.3 28 30 

36 1 1 -1 -1 -1 1 10.6 18 24 

37 -1 -1 1 -1 -1 1 8.1 22 30 

38 1 -1 1 -1 -1 1 12.5 31 20 
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39 -1 1 1 -1 -1 1 11.1 17 32 

40 1 1 1 -1 -1 1 12.9 16 25 

41 -1 -1 -1 1 -1 1 14.6 38 20 

42 1 -1 -1 1 -1 1 12.7 12 20 

43 -1 1 -1 1 -1 1 10.8 34 22 

44 1 1 -1 1 -1 1 17.1 19 35 

45 -1 -1 1 1 -1 1 13.6 12 26 

46 1 -1 1 1 -1 1 14.6 14 15 

47 -1 1 1 1 -1 1 13.3 25 19 

48 1 1 1 1 -1 1 14.4 16 24 

49 -1 -1 -1 -1 1 1 11 31 22 

50 1 -1 -1 -1 1 1 12.5 14 23 

51 -1 1 -1 -1 1 1 8.9 23 22 

52 1 1 -1 -1 1 1 13.1 23 18 

53 -1 -1 1 -1 1 1 7.6 28 20 

54 1 -1 1 -1 1 1 8.6 20 20 

55 -1 1 1 -1 1 1 11.8 18 20 

56 1 1 1 -1 1 1 12.4 11 36 

57 -1 -1 -1 1 1 1 13.4 39 20 

58 1 -1 -1 1 1 1 14.6 30 11 

59 -1 1 -1 1 1 1 14.9 31 20 

60 1 1 -1 1 1 1 11.8 6 35 

61 -1 -1 1 1 1 1 15.6 33 16 

62 1 -1 1 1 1 1 12.8 23 32 

63 -1 1 1 1 1 1 13.5 31 20 

64 1 1 1 1 1 1 15.8 11 20 
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Phase-2: Wool Washing and Carding Experiment 

 
No. A B C D E F No. of Defects 

1 -1 -1 -1 -1 -1 -1 18 

2 1 -1 -1 -1 -1 -1 19 

3 -1 1 -1 -1 -1 -1 33 

4 1 1 -1 -1 -1 -1 22 

5 -1 -1 1 -1 -1 -1 16 

6 1 -1 1 -1 -1 -1 17 

7 -1 1 1 -1 -1 -1 28 

8 1 1 1 -1 -1 -1 21 

9 -1 -1 -1 1 -1 -1 17 

10 1 -1 -1 1 -1 -1 21 

11 -1 1 -1 1 -1 -1 34 

12 1 1 -1 1 -1 -1 21 

13 -1 -1 1 1 -1 -1 16 

14 1 -1 1 1 -1 -1 25 

15 -1 1 1 1 -1 -1 26 

16 1 1 1 1 -1 -1 27 

17 -1 -1 -1 -1 1 -1 14 

18 1 -1 -1 -1 1 -1 16 

19 -1 1 -1 -1 1 -1 24 

20 1 1 -1 -1 1 -1 19 

21 -1 -1 1 -1 1 -1 13 

22 1 -1 1 -1 1 -1 14 

23 -1 1 1 -1 1 -1 28 

24 1 1 1 -1 1 -1 17 

25 -1 -1 -1 1 1 -1 14 

26 1 -1 -1 1 1 -1 18 

27 -1 1 -1 1 1 -1 28 

28 1 1 -1 1 1 -1 18 

29 -1 -1 1 1 1 -1 13 

30 1 -1 1 1 1 -1 21 

31 -1 1 1 1 1 -1 27 

32 1 1 1 1 1 -1 19 

33 -1 -1 -1 -1 -1 1 18 

34 1 -1 -1 -1 -1 1 18 

35 -1 1 -1 -1 -1 1 26 

36 1 1 -1 -1 -1 1 24 

37 -1 -1 1 -1 -1 1 17 

38 1 -1 1 -1 -1 1 17 

39 -1 1 1 -1 -1 1 25 

40 1 1 1 -1 -1 1 21 

41 -1 -1 -1 1 -1 1 16 

42 1 -1 -1 1 -1 1 21 

43 -1 1 -1 1 -1 1 25 
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44 1 1 -1 1 -1 1 19 

45 -1 -1 1 1 -1 1 18 

46 1 -1 1 1 -1 1 22 

47 -1 1 1 1 -1 1 29 

48 1 1 1 1 -1 1 26 

49 -1 -1 -1 -1 1 1 16 

50 1 -1 -1 -1 1 1 21 

51 -1 1 -1 -1 1 1 32 

52 1 1 -1 -1 1 1 21 

53 -1 -1 1 -1 1 1 17 

54 1 -1 1 -1 1 1 19 

55 -1 1 1 -1 1 1 26 

56 1 1 1 -1 1 1 20 

57 -1 -1 -1 1 1 1 17 

58 1 -1 -1 1 1 1 18 

59 -1 1 -1 1 1 1 35 

60 1 1 -1 1 1 1 21 

61 -1 -1 1 1 1 1 20 

62 1 -1 1 1 1 1 22 

63 -1 1 1 1 1 1 24 

64 1 1 1 1 1 1 26 
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Phase-2: Metal Inert Gas Welding Experiment 

 

No. A B C D E F 
Bead Width 

(mm) 

1 -1 -1 -1 -1 -1 -1 8.601 

2 1 -1 -1 -1 -1 -1 8.361 

3 -1 1 -1 -1 -1 -1 11.447 

8 1 1 -1 -1 -1 -1 7.946 

4 -1 -1 1 -1 -1 -1 8.935 

9 1 -1 1 -1 -1 -1 7.917 

13 -1 1 1 -1 -1 -1 11.828 

23 1 1 1 -1 -1 -1 9.873 

5 -1 -1 -1 1 -1 -1 8.551 

10 1 -1 -1 1 -1 -1 7.775 

14 -1 1 -1 1 -1 -1 11.759 

24 1 1 -1 1 -1 -1 7.518 

17 -1 -1 1 1 -1 -1 9.458 

27 1 -1 1 1 -1 -1 8.948 

33 -1 1 1 1 -1 -1 13.402 

43 1 1 1 1 -1 -1 10.059 

6 -1 -1 -1 -1 1 -1 9.057 

11 1 -1 -1 -1 1 -1 8.029 

15 -1 1 -1 -1 1 -1 13.136 

25 1 1 -1 -1 1 -1 8.002 

18 -1 -1 1 -1 1 -1 9.498 

28 1 -1 1 -1 1 -1 8.298 

34 -1 1 1 -1 1 -1 12.787 

44 1 1 1 -1 1 -1 9.561 

20 -1 -1 -1 1 1 -1 8.566 

30 1 -1 -1 1 1 -1 7.559 

36 -1 1 -1 1 1 -1 11.565 

46 1 1 -1 1 1 -1 7.41 

39 -1 -1 1 1 1 -1 8.885 

49 1 -1 1 1 1 -1 8.022 

53 -1 1 1 1 1 -1 12.457 

58 1 1 1 1 1 -1 9.34 

7 -1 -1 -1 -1 -1 1 9.268 

12 1 -1 -1 -1 -1 1 7.784 

16 -1 1 -1 -1 -1 1 12.024 

26 1 1 -1 -1 -1 1 10.297 
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19 -1 -1 1 -1 -1 1 9.287 

29 1 -1 1 -1 -1 1 8.727 

35 -1 1 1 -1 -1 1 12.582 

45 1 1 1 -1 -1 1 10.083 

21 -1 -1 -1 1 -1 1 8.798 

31 1 -1 -1 1 -1 1 8.235 

37 -1 1 -1 1 -1 1 12.276 

47 1 1 -1 1 -1 1 9.591 

40 -1 -1 1 1 -1 1 8.904 

50 1 -1 1 1 -1 1 8.238 

54 -1 1 1 1 -1 1 12.325 

59 1 1 1 1 -1 1 9.849 

22 -1 -1 -1 -1 1 1 7.821 

32 1 -1 -1 -1 1 1 7.678 

38 -1 1 -1 -1 1 1 11.512 

48 1 1 -1 -1 1 1 7.803 

41 -1 -1 1 -1 1 1 8.726 

51 1 -1 1 -1 1 1 7.435 

55 -1 1 1 -1 1 1 11.822 

60 1 1 1 -1 1 1 8.965 

42 -1 -1 -1 1 1 1 8.258 

52 1 -1 -1 1 1 1 8.216 

56 -1 1 -1 1 1 1 11.789 

61 1 1 -1 1 1 1 10.21 

57 -1 -1 1 1 1 1 8.885 

62 1 -1 1 1 1 1 7.67 

63 -1 1 1 1 1 1 12.216 

64 1 1 1 1 1 1 10.225 
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Phase-2: Radial Contour Turning Experiment 
 

No. A B C D E 
Tracking Error 

(Micron) 

1 -1 -1 -1 -1 -1 24.7721 

2 1 -1 -1 -1 -1 24.2379 

3 -1 1 -1 -1 -1 52.7276 

4 1 1 -1 -1 -1 60.8756 

5 -1 -1 1 -1 -1 22.253 

6 1 -1 1 -1 -1 20.2671 

7 -1 1 1 -1 -1 48.9596 

8 1 1 1 -1 -1 57.7356 

9 -1 -1 -1 1 -1 33.5641 

10 1 -1 -1 1 -1 33.0299 

11 -1 1 -1 1 -1 58.5898 

12 1 1 -1 1 -1 67.7836 

13 -1 -1 1 1 -1 26.649 

14 1 -1 1 1 -1 24.2379 

15 -1 1 1 1 -1 52.7276 

16 1 1 1 1 -1 62.1316 

17 -1 -1 -1 -1 1 11.1688 

18 1 -1 -1 -1 1 14.4899 

19 -1 1 -1 -1 1 39.1894 

20 1 1 -1 -1 1 45.8036 

21 -1 -1 1 -1 1 11.7123 

22 1 -1 1 -1 1 15.1179 

23 -1 1 1 -1 1 39.8174 

24 1 1 1 -1 1 46.4316 

25 -1 -1 -1 1 1 11.2389 

26 1 -1 -1 1 1 13.6651 

27 -1 1 -1 1 1 39.5396 

28 1 1 -1 1 1 45.8036 

29 -1 -1 1 1 1 11.2389 

30 1 -1 1 1 1 14.4899 

31 -1 1 1 1 1 39.5396 

32 1 1 1 1 1 45.8036 
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Phase-3: EDM Experiment 
 

No. A B C D 
Work Peace MRR 

(mm
3
/min) 

1 1 1 1 1 9.029 

2 2 1 1 1 13.544 

3 3 1 1 1 18.059 

4 1 2 1 1 13.544 

5 2 2 1 1 15.801 

6 3 2 1 1 22.573 

7 1 3 1 1 15.801 

8 2 3 1 1 18.059 

9 3 3 1 1 27.088 

10 1 1 2 1 11.287 

11 2 1 2 1 11.287 

12 3 1 2 1 15.801 

13 1 2 2 1 13.544 

14 2 2 2 1 20.316 

15 3 2 2 1 20.316 

16 1 3 2 1 15.801 

17 2 3 2 1 22.573 

18 3 3 2 1 22.573 

19 1 1 3 1 13.544 

20 2 1 3 1 11.287 

21 3 1 3 1 11.287 

22 1 2 3 1 13.544 

23 2 2 3 1 20.316 

24 3 2 3 1 18.059 

25 1 3 3 1 15.801 

26 2 3 3 1 15.801 

27 3 3 3 1 22.573 

28 1 1 1 2 13.544 

29 2 1 1 2 13.544 

30 3 1 1 2 15.801 

31 1 2 1 2 11.287 

32 2 2 1 2 13.544 

33 3 2 1 2 18.059 

34 1 3 1 2 13.544 

35 2 3 1 2 15.801 

36 3 3 1 2 22.573 
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37 1 1 2 2 11.287 

38 2 1 2 2 11.287 

39 3 1 2 2 15.801 

40 1 2 2 2 13.544 

41 2 2 2 2 15.801 

42 3 2 2 2 18.059 

43 1 3 2 2 13.544 

44 2 3 2 2 15.801 

45 3 3 2 2 22.573 

46 1 1 3 2 11.287 

47 2 1 3 2 11.287 

48 3 1 3 2 15.801 

49 1 2 3 2 11.287 

50 2 2 3 2 13.544 

51 3 2 3 2 18.059 

52 1 3 3 2 13.544 

53 2 3 3 2 15.801 

54 3 3 3 2 22.573 

55 1 1 1 3 11.287 

56 2 1 1 3 11.287 

57 3 1 1 3 15.801 

58 1 2 1 3 13.544 

59 2 2 1 3 15.801 

60 3 2 1 3 18.059 

61 1 3 1 3 13.544 

62 2 3 1 3 15.801 

63 3 3 1 3 22.573 

64 1 1 2 3 11.287 

65 2 1 2 3 11.287 

66 3 1 2 3 31.603 

67 1 2 2 3 13.544 

68 2 2 2 3 15.801 

69 3 2 2 3 15.801 

70 1 3 2 3 13.544 

71 2 3 2 3 15.801 

72 3 3 2 3 22.573 

73 1 1 3 3 11.287 

74 2 1 3 3 11.287 

75 3 1 3 3 15.801 

76 1 2 3 3 11.287 
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77 2 2 3 3 13.544 

78 3 2 3 3 20.316 

79 1 3 3 3 13.544 

80 2 3 3 3 20.316 

81 3 3 3 3 22.573 
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Phase-4: EDM Experiment 
 

No. A B C D 
Tool MRR 

(mm
3
/min) 

1 1 1 1 1 7.813 

2 2 1 1 1 7.813 

3 3 1 1 1 4.464 

4 1 2 1 1 5.580 

5 2 2 1 1 6.696 

6 3 2 1 1 7.813 

7 1 3 1 1 6.696 

8 2 3 1 1 8.929 

9 3 3 1 1 11.161 

10 1 1 2 1 7.813 

11 2 1 2 1 6.696 

12 3 1 2 1 6.696 

13 1 2 2 1 5.580 

14 2 2 2 1 6.696 

15 3 2 2 1 7.813 

16 1 3 2 1 6.696 

17 2 3 2 1 8.929 

18 3 3 2 1 12.277 

19 1 1 3 1 1.116 

20 2 1 3 1 6.696 

21 3 1 3 1 6.696 

22 1 2 3 1 5.580 

23 2 2 3 1 6.696 

24 3 2 3 1 7.813 

25 1 3 3 1 6.696 

26 2 3 3 1 10.045 

27 3 3 3 1 12.277 

28 1 1 1 2 4.464 

29 2 1 1 2 7.813 

30 3 1 1 2 5.580 

31 1 2 1 2 5.580 

32 2 2 1 2 6.696 

33 3 2 1 2 7.813 

34 1 3 1 2 5.580 

35 2 3 1 2 10.045 

36 3 3 1 2 12.277 
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37 1 1 2 2 7.813 

38 2 1 2 2 6.696 

39 3 1 2 2 6.696 

40 1 2 2 2 5.580 

41 2 2 2 2 6.696 

42 3 2 2 2 7.813 

43 1 3 2 2 6.696 

44 2 3 2 2 10.045 

45 3 3 2 2 12.277 

46 1 1 3 2 12.277 

47 2 1 3 2 6.696 

48 3 1 3 2 6.696 

49 1 2 3 2 4.464 

50 2 2 3 2 5.580 

51 3 2 3 2 7.813 

52 1 3 3 2 3.348 

53 2 3 3 2 8.929 

54 3 3 3 2 12.277 

55 1 1 1 3 7.813 

56 2 1 1 3 7.813 

57 3 1 1 3 7.813 

58 1 2 1 3 5.580 

59 2 2 1 3 6.696 

60 3 2 1 3 7.813 

61 1 3 1 3 3.348 

62 2 3 1 3 8.929 

63 3 3 1 3 11.161 

64 1 1 2 3 7.813 

65 2 1 2 3 6.696 

66 3 1 2 3 6.696 

67 1 2 2 3 5.580 

68 2 2 2 3 6.696 

69 3 2 2 3 7.813 

70 1 3 2 3 6.696 

71 2 3 2 3 8.929 

72 3 3 2 3 12.277 

73 1 1 3 3 12.277 

74 2 1 3 3 6.696 

75 3 1 3 3 6.696 

76 1 2 3 3 5.580 
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77 2 2 3 3 6.696 

78 3 2 3 3 7.813 

79 1 3 3 3 8.929 

80 2 3 3 3 10.045 

81 3 3 3 3 12.277 
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Phase-4: Micro-End-Milling Experiment 
 

No. A B C D 
Surface  

Roughness (µm) 

1 1 1 1 1 0.26 

2 2 1 1 1 0.31 

3 3 1 1 1 0.27 

4 1 2 1 1 0.32 

5 2 2 1 1 0.36 

6 3 2 1 1 0.85 

7 1 3 1 1 0.48 

8 2 3 1 1 0.37 

9 3 3 1 1 1.58 

10 1 1 2 1 0.36 

11 2 1 2 1 0.56 

12 3 1 2 1 0.52 

13 1 2 2 1 0.51 

14 2 2 2 1 0.53 

15 3 2 2 1 0.81 

16 1 3 2 1 0.53 

17 2 3 2 1 0.47 

18 3 3 2 1 0.93 

19 1 1 3 1 0.49 

20 2 1 3 1 0.5 

21 3 1 3 1 1.22 

22 1 2 3 1 0.42 

23 2 2 3 1 0.58 

24 3 2 3 1 1.31 

25 1 3 3 1 0.67 

26 2 3 3 1 0.47 

27 3 3 3 1 0.98 

28 1 1 1 2 0.37 

29 2 1 1 2 0.3 

30 3 1 1 2 0.37 

31 1 2 1 2 0.53 

32 2 2 1 2 0.47 

33 3 2 1 2 0.64 

34 1 3 1 2 0.65 

35 2 3 1 2 0.52 

36 3 3 1 2 1.15 
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37 1 1 2 2 0.49 

38 2 1 2 2 0.89 

39 3 1 2 2 0.71 

40 1 2 2 2 0.8 

41 2 2 2 2 0.66 

42 3 2 2 2 0.76 

43 1 3 2 2 0.58 

44 2 3 2 2 0.32 

45 3 3 2 2 0.77 

46 1 1 3 2 0.57 

47 2 1 3 2 1.22 

48 3 1 3 2 0.83 

49 1 2 3 2 0.69 

50 2 2 3 2 0.91 

51 3 2 3 2 0.9 

52 1 3 3 2 0.66 

53 2 3 3 2 0.73 

54 3 3 3 2 0.82 

55 1 1 1 3 0.42 

56 2 1 1 3 0.2 

57 3 1 1 3 0.57 

58 1 2 1 3 0.47 

59 2 2 1 3 0.4 

60 3 2 1 3 0.51 

61 1 3 1 3 0.48 

62 2 3 1 3 0.59 

63 3 3 1 3 0.47 

64 1 1 2 3 0.66 

65 2 1 2 3 0.78 

66 3 1 2 3 1.27 

67 1 2 2 3 0.5 

68 2 2 2 3 0.58 

69 3 2 2 3 0.66 

70 1 3 2 3 0.62 

71 2 3 2 3 0.6 

72 3 3 2 3 0.62 

73 1 1 3 3 0.58 

74 2 1 3 3 0.7 

75 3 1 3 3 0.71 

76 1 2 3 3 0.68 
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77 2 2 3 3 0.72 

78 3 2 3 3 1.05 

79 1 3 3 3 0.85 

80 2 3 3 3 0.61 

81 3 3 3 3 0.62 
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APPENDIX 8: 

RESULTS OF VALIDATION EXPERIMENTS ANALYSIS 
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Phase-1: Dyestuff Experiment – Strength Response Analysis Results 

 

  

  

Full 

Factorial 

 L16   L12    L8  

HNP LM MLM PU PD UC HNP LM MLM PU PD UC HNP LM MLM PU PD UC 

A * *     * *                           

B         * *                           

C         *                             

D * *   * * * * *     * * * *     * *   

E         *                             

F * *     * * * *   * * * *             

AB         *                             

AC         *                             

AD         *                             

AF         * *                           

BD         *                             

BF         *                             

ABD   *     * *                           

ABF         *                             

Power   1 0 0.33 1 1 0.67 0.67 0 0.33 0.67 0.67 0.67 0.33 0 0 0.33 0.33 0 
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Phase-1: Dyestuff Experiment – Hue Response Analysis Results 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

  

Full 

Factorial 

L16 L12 L8 

HNP LM MLM PU PD UC HNP LM MLM PU PD UC HNP LM MLM PU PD UC 

A * * * * * * * *     * * * *     * *   

B   *     * * *       * *               

C         *                             

D         *                             

E                                       

F * * * * * * * *     * * *             

AB         *                             

AC         *                             

AD   *     * *                           

AE         *                             

AF         *                             

BD         *                             

BF   *     * *                           

ABF         *                             

Power   1 1 1 1 1 1 1 0 0 1 1 1 0.5 0 0 0.5 0.5 0 
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Phase-1: Dyestuff Experiment – Brightness Response Analysis Results 
  

  

  

Full 

Factorial 

  L16   L12  L8 

HNP LM MLM PU PD UC HNP LM MLM PU PD UC HNP LM MLM PU PD UC 

A                                       

B               *     * *               

C               *     * * *             

D                     * *   *     * *   

E               *     * * * *     * *   

F * * * * * * * *     * * * *     * *   

Power   1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 
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Phase-2: Wool Washing and Carding Experiment – Number of Defects Analysis Results 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Full 

Factorial 

L16 L12 
L8 

DO BM 

HNP BSS SWR BSS SWR BSS SWR 

A * 
     

* * 

B * * * * * * * * 

C 
        

D 
        

E 
        

F 
     

* 
  

AB * * * * 
    

AC 
  

* * 
    

AD 
    

* 
   

BC 
  

* * * * 
  

BE 
     

* 
 

* 

CD 
    

* 
 

* 
 

CE 
   

* 
 

* 
 

* 

DE 
      

* * 

EF * 
       

Power 
 

0.5 0.5 0.5 0.25 0.25 0.5 0.5 
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Phase-2: Metal Inert Gas Welding Experiment – Bead Width Analysis Results 

 

 

 

 

Full 

Factorial 

 

L16 

 

 

L12 

 

L8 

DO BM 

HNP BSS SWR BSS SWR BSS SWR 

A * * * * 
 

* 
  

B * * * * 
  

* * 

C * * 
      

D 
 

* 
   

* 
  

E 
 

* 
   

* 
  

F 
     

* 
  

AB * * * * * 
 

* * 

AD 
 

* 
  

* 
   

AE 
 

* 
   

* 
  

AF 
 

* 
      

BE 
    

* * 
  

BD 
  

* 
 

* 
   

CE 
     

* * * 

CD 
      

* 
 

CF 
     

* 
  

ABD 
 

* 
      

ABF 
 

* 
      

Power 
 

1 0.75 0.75 0.25 0.25 0.5 0.5 
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Phase-2: Radial Contour Turning Experiment – Tracking Errors Analysis Results 

 

 

 

 

Full 

Factorial 

 

L16 

 

 

L12 

 

L8 

DO BM 

HNP BSS SWR BSS SWR BSS SWR 

A * * * * * * * * 

B * * * * * * * * 

C * * * * 
  

* 
 

D * * * 
   

* * 

E * * * * * * * * 

F 
        

AB * * * * * * * * 

AC 
   

* 
    

AD 
        

AE 
        

AF 
        

BC 
   

* * 
   

BD 
  

* 
     

BE 
   

* 
  

* 
 

CE * * 
 

* * 
   

DE * * * 
   

* * 

Power 
 

1 0.88 0.75 0.63 0.5 0.88 0.75 
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Phase-3: EDM Experiment – Workpiece MRR Analysis Results 

 

No. 
Full 

Factorial 

L18 L9 

Standard ANOVA Regression ANOVA Standard ANOVA Regression ANOVA 

PU PD PU PD PU PD PU PD 

Al * * * * * 
  

* * 

Bl * 
  

* * 
  

* * 

Cl 
       

* 
 

Dl 
       

* 
 

Aq * * * * 
     

Bq 
       

* 
 

Cq 
   

* * 
    

Dq 
   

* 
   

* 
 

Eq 
   

* * 
    

Fq 
   

* * 
    

Power 
 

0.667 0.667 1 0.667 0 0 0.667 0.667 
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Phase-4: EDM Experiment – Tool MRR Analysis Results 

 

 

 

 

  

 

 

 

 

 

 

No. 
Full 

Factorial 

L18 L9 

BSS SWR BSS SWR 

Al * * * 
  

Bl * * * 
  

Cl      

Dl      

Aq      

Bq * * * * * 

Cq      

Dq      

AlBl * * * * * 

BlCq     
* 

CqDl    
* * 

BlCl    
* * 

Power 
 

1 1 0.5 0.5 
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Phase-4: Micro-End-Milling Experiment – Surface Roughness Analysis Results 

 

 

 No. 
Full 

Factorial 

L18 L9 

BSS SWR BSS SWR 

Al * * * * 
 

Bl    
* 

 

Cl * * 
 

* 
 

Dl     
* 

Aq * 
  

* 
 

Bq   
* 

  

AqBl * 
    

AlDl * * * 
  

BlCq * * 
 

* * 

BlCl * 
  

* 
 

BlDl * * * 
 

* 

BlDq     
* 

AlDq   
* * * 

CqDl  
* * 

 
* 

AqCq     
* 

AlCq     
* 

AlBq   
* 

  

ClDl  
* * 

  

CqDq   
* 

  

Power 
 

0.63 0.38 0.63 0.25 
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APPENDIX 9: 

DETAILED ANALYSIS OF SELECTED VALIDATION 

EXPERIMENTS 
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1. Phase-1: Analysis of the Dyestuff Hue Data 

1-1 Analysing the Full Factorial Dyestuff Hue Data 

The ANOVA for the full factorial dyestuff hue data is shown in Table ‎1-1. Factors A and F 

were the only significant effects at α = 0.05 since their p-values were less than this.  

Table ‎1-1: ANOVA of the Full Factorial Dyestuff Hue Data 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 2036.266 1 2036.266 61.02323 < 0.0001 

B 118.2656 1 118.2656 3.544209 0.0649 

C 58.14063 1 58.14063 1.74237 0.1921 

D 1.890625 1 1.890625 0.056659 0.8127 

E 28.89062 1 28.89062 0.8658 0.3560 

F 1881.391 1 1881.391 56.38191 < 0.0001 

Residual 1902.016 57 33.3687 

   Total 6026.859 63 

   
 

1-2 Extracting the Fractional Factorial Dyestuff Hue Data 

The extracted dyestuff hue full factorial data that corresponded to the L16, L12 and L8 OAs are 

presented in Table 1-2. 

1-3 HNP Plot Analysis 

The HNP plots for the dyestuff hue L16, L12 and L8 data are shown in Figure ‎1-1. From the L16 

plot the active effects appeared to be F, A, B and the BF and AD interactions. In the case of 

the L12, only A, F and B were distinguishable from noise while for the L8 factors A and F 

were flagged as potentially active. The statistical significance of the selected effects was 

tested at the 5% level using the ANOVA as shown in Table ‎1-3. In the case of the L16 the 

ANOVA confirmed the significance of all the selected effects at the 5% level meaning that 

factor B and the BF and AD interactions were falsely identified as significant. The L12 

ANOVA correctly detected A and F as significant but not B as its p-value was larger than  
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Table ‎1-2: Extracted (a) L16, (b) L12 and (a) L8 Dyestuff Hue Data 

Runs A B C D E F Response 

1 -1 -1 -1 -1 -1 -1 15 

2 1 -1 -1 -1 1 -1 8 

3 -1 1 -1 -1 1 1 23 

4 1 1 -1 -1 -1 1 18 

5 -1 -1 1 -1 1 1 28 

6 1 -1 1 -1 -1 1 31 

7 -1 1 1 -1 -1 -1 13 

8 1 1 1 -1 1 -1 8 

9 -1 -1 -1 1 -1 1 38 

10 1 -1 -1 1 1 1 30 

11 -1 1 -1 1 1 -1 22 

12 1 1 -1 1 -1 -1 5 

13 -1 -1 1 1 1 -1 24 

14 1 -1 1 1 -1 -1 8 

15 -1 1 1 1 -1 1 25 

16 1 1 1 1 1 1 11 

   (a)    
        

Runs A B C D E F Response 

1 1 1 1 1 1 1 11 

2 1 1 -1 1 -1 1 19 

3 1 1 -1 -1 1 -1 7 

4 -1 1 1 -1 -1 1 17 

5 1 -1 -1 1 -1 -1 1 

6 -1 1 -1 -1 1 -1 16 

7 -1 -1 -1 -1 -1 1 32 

8 1 -1 1 -1 -1 -1 9 

9 -1 1 1 1 -1 -1 15 

10 -1 -1 1 1 1 -1 24 

11 -1 -1 -1 1 1 1 39 

12 1 -1 1 -1 1 1 20 

   (b)    
        

Runs A B C D E F Response 

1 -1 -1 -1 1 1 1 39 

2 1 -1 -1 -1 -1 1 10 

3 -1 1 -1 -1 1 -1 16 

4 1 1 -1 1 -1 -1 5 

5 -1 -1 1 1 -1 -1 15 

6 1 -1 1 -1 1 -1 5 

7 -1 1 1 -1 -1 1 17 

8 1 1 1 1 1 1 11 

   (c)    
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0.05. The ANOVA of the L8 only declared A as significant its p-value being smaller than 

0.05.     

 

 

 

 

 

 

 

 

Table ‎1-3: ANOVA for the HNP analysis of (a) L16, (b) L12 and (c) L8 Dyestuff Hue Data 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 297.6 1.0 297.6 27.1 0.0004 

B 203.1 1.0 203.1 18.5 0.0016 

F 637.6 1.0 637.6 58.2 < 0.0001 

AD 105.1 1.0 105.1 9.6 0.0113 

BF 115.6 1.0 115.6 10.5 0.0088 

Residual 109.6 10.0 11.0   

Total 1468.4 15.0    

  (a)   

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 481.3 1.0 481.3 15.3 0.0045 

B 133.3 1.0 133.3 4.2 0.0733 

F 363.0 1.0 363.0 11.6 0.0094 

Residual 251.3 8.0 31.4   

Total 1229.0 11.0    

  (b)   

      

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 392 1 392 7.33 0.0424 

F 162 1 162 3.03 0.1423 

Residual 267.5 5 53.5   

Total 821.5 7    

  (c)   

Figure ‎1-1: HNPs of the Dyestuff Hue (a) L16, (b) L12 and (c) L8 Data 
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1-4 LM and MLM Analysis 

The results of implementing LM and the MLM are presented by means of Pareto charts of the 

examined effects’ t-lenth statistics. For each of the extracted OA data, the absolute values of 

the effect t-lenths were ranked and displayed in descending order as shown in Figure ‎1-2.  In 

each chart, two reference lines were drawn representing the critical t-lenth of both LM and 

MLM at α =0.05. Any effect’s t-lenth that extended past any of the lines was declared 

significant by the appropriate method. Implementing this rule on the Pareto charts displayed 

in Figure ‎1-2, it is clear that while the main effect B was falsely pronounced significant by the 

MLM method in the L16 data analysis, A and F were correctly declared as active by both LM 

and MLM. As none of the effect t-lenth values extended beyond any of the critical t-lenths, no 

effects were found to be distinguishable from noise when the L12 and L8 data were analysed 

using both methods. 

1-5 PU Method Analysis 

The results of implementing the PU procedure in analysing the dyestuff hue L16 data are 

presented in Table ‎1-4. The upper part of the table shows the pooled effects in the sequence of 

their selection along with the p-values at which each effect was pooled. Since the main effect E 

was the smallest, it was the first to be pooled to estimate the error. The next smallest effect was 

the ABD interaction, its p-value when E was used as an error estimate was 0.5. As this was 

greater than α (=0.1), ABD was pooled with E to estimate the error variance. The next smallest 

effect was the AC interaction. When its significance was tested using this new error estimate, it 

was pronounced significant as its p-value (0.0377) was smaller than 0.1. Consequently, the AC 

interaction and all the remaining effects were declared significant at α =0.1 as shown in the 

lower part of Table ‎1-4. Clearly, while the main effects A and F were correctly judged to be 

significant, many spurious effects were falsely deemed important.  
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(a) 

 
(b) 

 
(c) 

Figure ‎1-2:  Pareto Chart of the Effect t-Lenths for the Dyestuff Hue (a) L16, (b) L12 and (c) L8 Data 
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Table ‎1-4: The PU Analysis of the Dyestuff Hue L16 Data 

 
Steps 

Pooled 

Effects 
p-value 

  

 
1 E 

   

 
2 ABD 0.5 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 

F-

Value 
p-Value 

A 297.5625 1 297.5625 4761 0.0002 

B 203.0625 1 203.0625 3249 0.0003 

C 7.5625 1 7.5625 121 0.0082 

D 22.5625 1 22.5625 361 0.0028 

F 637.5625 1 637.5625 10201 < 0.0001 

AB 10.5625 1 10.5625 169 0.0059 

AC 1.5625 1 1.5625 25 0.0377 

AD 105.0625 1 105.0625 1681 0.0006 

AE 7.5625 1 7.5625 121 0.0082 

AF 27.5625 1 27.5625 441 0.0023 

BD 18.0625 1 18.0625 289 0.0034 

BF 115.5625 1 115.5625 1849 0.0005 

ABF 14.0625 1 14.0625 225 0.0044 

Residual 0.125 2 0.0625 
  

Total 1468.438 15 
   

The results of implementing the PU method in analysing the L12 and L8 data are given in 

Tables 1-5 and 1-6. In the case of the L12 the true active effects A and F were declared 

significant at α = 0.1 along with the inert effect B. However, only A was identified as active at 

the designated level of significance when the L8 data were analysed using this method.  

1-6 PD Method Analysis 

Table ‎1-7 shows the results of applying the PD method to analyse the dyestuff hue L16 data. 

The upper part of the table illustrates the picked-up effects in the order of their selection. In 

the first step, factor F was selected as the largest effect and its significance was tested using 

an error estimate obtained by pooling all the remaining effects including the active ones. As 

its p-value (0.0055) was smaller than 0.1, factor F was declared significant. Factor A was then 

picked-up as the next largest effect. An estimate of the error was then rendered by pooling all  
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Table ‎1-5: The PU Analysis of the Dyestuff Hue L12 Data 

 
Steps 

Pooled 

Effects 
p-value 

  

 
1 D 

   

 
2 K 0.3743 

  

 
3 L 0.2572 

  

 
4 C 0.2436 

  

 
5 J 0.2273 

  

 
6 E 0.1802 

  

 
7 H 0.2111 

  

 
8 G 0.198 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 481.3333 1 481.3333 15.32095 0.0045 

B 133.3333 1 133.3333 4.244032 0.0733 

F 363 1 363 11.55438 0.0094 

Residual 251.3333 8 31.41667 
  

Total 1229 11 
   

 

 

Table ‎1-6: The PU Analysis of the Dyestuff Hue L8 Data 

 
Steps 

Pooled 

Effects 
p-value 

  

 
1 AF 

   

 
2 B 0.3888 

  

 
3 C 0.3306 

  

 
4 D 0.3302 

  

 
5 E 0.2916 

  

 
6 F 0.1423 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value 

p-

Value 

A 392 1 392 5.476135 0.0578 

Residual 429.5 6 71.58333 
  

Total 821.5 7 
   

the studied effects except F and A. This was used to test the significance of A which was 

found to be active with a p-value (0.0184) smaller than 0.1. By the same token, the effects B, 

BF and AD were selected in the third, fourth and the fifth steps of the PD method. Among the 
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remaining effects, the largest was AF. In the sixth step, its significance was tested using an 

error estimate formed by pooling all the effects smaller than AF. As the resultant p-value was 

0.1161 which is greater than 0.1, AF was not selected and the PD procedure was terminated at 

the fifth step pronouncing the effects A, B, F, AD and BF as the only significant ones. 

Consequently, the PD method successfully detected the true active effects along with three 

spurious ones.  

 

Table ‎1-7: The PD Analysis of the Dyestuff Hue L16 Data 

 
Steps 

Selected 

Effects 
p-value 

  

 
1 F 0.0055 

  

 
2 A 0.0184 

  

 
3 B 0.0187 

  

 
4 BF 0.0332 

  

 
5 AD 0.0113 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 297.5625 1 297.5625 27.14367 0.0004 

B 203.0625 1 203.0625 18.52338 0.0016 

F 637.5625 1 637.5625 58.15849 < 0.0001 

AD 105.0625 1 105.0625 9.583808 0.0113 

BF 115.5625 1 115.5625 10.54162 0.0088 

Residual 109.625 10 10.9625 
  

Total 1468.438 15 
   

 

When applied to analyse the L12 data, the PD method correctly identified factors A and F as 

significant as shown in Table ‎1-8. Also detected as active was factor B its p-value being 

smaller than 0.1. With regard to the L8 data, only factor A was highlighted as active at α =0.1 

by the PD method (see Table 1-9). 
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Table ‎1-8: The PD Analysis of the Dyestuff Hue L12 Data 

 
Steps 

Selected 

Effects 
p-value 

  

 
1 A 0.0295 

  

 
2 F 0.0172 

  

 
3 B 0.0733 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 481.3333 1 481.3333 15.32095 0.0045 

B 133.3333 1 133.3333 4.244032 0.0733 

F 363 1 363 11.55438 0.0094 

Residual 251.3333 8 31.41667 
  

Total 1229 11 
   

 

Table ‎1-9: The PD Analysis of the Dyestuff Hue L8 Data 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value 

p-

Value 

A 392 1 392 5.476135 0.0578 

Residual 429.5 6 71.58333 

  Total 821.5 7 

   
 

1-7 UC method Analysis 

For implementing this method, all the columns that were not assigned to any of the six factors 

in the dyestuff experiments were pooled to estimate the error variance. The ANOVAs using 

this strategy to analyse the L16 L12 and the L8 are shown in Table ‎1-10. Factors A, F and B 

were found significant at the 5% level in the L16 case. Thus, despite the detection of the true 

active effects, one inert effect was falsely declared significant.  In the case of the L12, only the 

true active effects A and F were pronounced significant. No effect was found significant in 

the L8 analysis.  
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Table ‎1-10: ANOVA for the UC analysis of (a) L16, (b) L12 and (c) L8 Dyestuff Hue Data 

 

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 297.6 1 297.6 8.9 0.0153 

B 203.1 1 203.1 6.1 0.0357 

C 7.6 1 7.6 0.2 0.6452 

D 22.6 1 22.6 0.7 0.4320 

E 0.1 1 0.1 0.0 0.9664 

F 637.6 1 637.6 19.1 0.0018 

Residual 300.1 9 33.3   

Total 1468.4 15    

  (a)   

      

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 481.3 1 481.3 14.1 0.0133 

B 133.3 1 133.3 3.9 0.1053 

C 27.0 1 27.0 0.8 0.4150 

D 5.3 1 5.3 0.2 0.7092 

E 48.0 1 48.0 1.4 0.2894 

F 363.0 1 363.0 10.6 0.0225 

Residual 171.0 5 34.2   

Total 1229.0 11    

  (b)   

      

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 392 1 392 16 0.1560 

B 50 1 50 2.0 0.3888 

C 60.5 1 60.5 2.5 0.3608 

D 60.5 1 60.5 2.5 0.3608 

E 72 1 72 2.9 0.3362 

F 162 1 162 6.6 0.2361 

Residual 24.5 1 24.5   

Total 821.5 7    

  (c)   
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2. Phase-2: Analysis of the Metal Inert Gas Welding Experiment 

2-1 Analysing the Full Factorial Bead Width Data 

The full factorial bead width data was analysed using the ANOVA as shown in Table ‎2-1. At 

α = 0.05, the only active effects were A, B, C and AB.  

Table ‎2-1: ANOVA of the Full Factorial Bead Width Data 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 57.7619 1 57.7619 183.4729 < 0.0001 

B 79.3636 1 79.3636 252.0877 < 0.0001 

C 5.269894 1 5.269894 16.73911 0.0001 

D 0.054581 1 0.054581 0.173368 0.6788 

E 1.334891 1 1.334891 4.240102 0.0442 

F 0.135884 1 0.135884 0.431618 0.5139 

AB 19.79026 1 19.79026 62.8611 < 0.0001 

Residual 17.31539 55 0.314825 
  

Total 181.0264 62 
   

 

2-2 Extracting the Fractional Factorial Bead Width Data 

The extracted L16 and L12 data are displayed in Table ‎2-2. For the L8 design augmented using 

the DO method and the BM, the extracted bead width data are given in Table ‎2-3.  

 

2-3 Analysis of the L16 Data Using HNP Plot 

The HNP plot of the extracted L16 bead width data is depicted in Figure ‎2-1. Clearly the 

effects A, B, C, D, E, AB, AD, AE, AF, ABD and ABF are distinguishable from noise. Their 

statistical significance at α =0.05 was confirmed using the ANOVA as shown in Table ‎2-4. 

All the true active effects were therefore correctly detected as active. However, the reduction 

in the experiment’s size resulted in overestimating many of the inert effects. Some of these  
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Table ‎2-2: Extracted (a) L16, and (b) L12 Bead Width Data 

Runs A B C D E F Response 

1 -1 -1 -1 -1 -1 -1 8.601 

2 1 -1 -1 -1 1 -1 8.029 

3 -1 1 -1 -1 1 1 7.803 

4 1 1 -1 -1 -1 1 10.297 

5 -1 -1 1 -1 1 1 8.726 

6 1 -1 1 -1 -1 1 8.727 

7 -1 1 1 -1 -1 -1 11.828 

8 1 1 1 -1 1 -1 9.561 

9 -1 -1 -1 1 -1 1 8.798 

10 1 -1 -1 1 1 1 8.216 

11 -1 1 -1 1 1 -1 11.565 

12 1 1 -1 1 -1 -1 7.518 

13 -1 -1 1 1 1 -1 8.885 

14 1 -1 1 1 -1 -1 8.948 

15 -1 1 1 1 -1 1 12.325 

16 1 1 1 1 1 1 10.225 

   (a)    

Runs A B C D E F Response 

1 1 1 1 1 1 1 10.225 

2 1 1 -1 1 -1 1 9.591 

3 1 1 -1 -1 1 -1 8.002 

4 -1 1 1 -1 -1 1 12.582 

5 1 -1 -1 1 -1 -1 7.775 

6 -1 1 -1 -1 1 -1 13.136 

7 -1 -1 -1 -1 -1 1 9.268 

8 1 -1 1 -1 -1 -1 7.917 

9 -1 1 1 1 -1 -1 13.402 

10 -1 -1 1 1 1 -1 8.885 

11 -1 -1 -1 1 1 1 8.258 

12 1 -1 1 -1 1 1 7.435 

   (b)    

 

were found to be larger than the true active effects. For example, while the ABF, AF, ABD 

and AD interaction effects were smaller than the main effect A in the full factorial analysis, 

their sizes, as can be seen in Figure ‎2-1, surpassed the latter in the extracted L16 data. 

Moreover, contrary to what was observed in the full factorial analysis, these effects along 

with factor F and the AE interaction became larger than the AB interaction effect in the 
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extracted L16 analysis. Despite this, the use of the HNP plot enabled these biased effects to be 

isolated from the error estimate thereby allowing the true active effects to be detected. Of 

course this came at the expense of falsely declaring 7 effects as active. However, as explained 

in Chapter 6, this is far less serious than overlooking the true active effects. 

Table ‎2-3: Extracted (a) DO and (b) BM Augmented L8 Bead Width Data 

Runs A B C D E F Response 

1 -1 -1 -1 1 1 1 8.258 

2 1 -1 -1 -1 -1 1 7.784 

3 -1 1 -1 -1 1 -1 13.136 

4 1 1 -1 1 -1 -1 7.518 

5 -1 -1 1 1 -1 -1 9.458 

6 1 -1 1 -1 1 -1 8.298 

7 -1 1 1 -1 -1 1 12.582 

8 1 1 1 1 1 1 10.225 

9 1 1 -1 1 1 1 10.21 

10 -1 -1 1 1 1 1 8.885 

11 1 1 1 -1 1 -1 9.561 

12 -1 -1 -1 -1 -1 1 9.268 

   (a)    

Runs A B C D E F Response 

1 -1 -1 -1 1 1 1 8.258 

2 1 -1 -1 -1 -1 1 7.784 

3 -1 1 -1 -1 1 -1 13.136 

4 1 1 -1 1 -1 -1 7.518 

5 -1 -1 1 1 -1 -1 9.458 

6 1 -1 1 -1 1 -1 8.298 

7 -1 1 1 -1 -1 1 12.582 

8 1 1 1 1 1 1 10.225 

9 1 1 1 -1 1 1 8.965 

10 -1 -1 -1 1 1 1 8.258 

11 1 1 -1 1 1 1 10.21 

12 1 1 1 -1 -1 1 10.083 

   (b)    
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Figure ‎2-1: HNP of the Bead Width L16 Data 

 

Table ‎2-4: ANOVA for the HNP analysis of the L16 Bead Width Data 

Source 

Sum of 

DF 

Mean 

F-Value p-Value Squares Square 

A 0.00005 1 0.00005 264.8643 < 0.0001 

B 0.000144 1 0.000144 764.2592 < 0.0001 

C 0.00012 1 0.00012 638.1302 < 0.0001 

D 0.00000709 1 0.00000709 37.57729 0.0036 

E 0.0000157 1 0.0000157 83.2852 0.0008 

AB 0.0000122 1 0.0000122 64.63058 0.0013 

AD 0.0000645 1 0.0000645 341.7604 < 0.0001 

AE 0.0000335 1 0.0000335 177.5793 0.0002 

AF 0.0000791 1 0.0000791 419.2732 < 0.0001 

ABD 0.0000686 1 0.0000686 363.4727 < 0.0001 

ABF 0.0000808 1 0.0000808 428.2752 < 0.0001 

Residual 0.000000754 4 0.000000189     

Total 0.000677 15       
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2-4 Analysis the L12 Data Using SWR and BSS methods 

The results of performing the SWR analysis on the extracted L12 data are shown in Table ‎2-5. 

Displayed in the upper part of the table are the effects declared significant by the SWR 

method in the order of their selection. Also shown is the p-value at which each effect was 

picked-up. As evident from the ANOVA table all the selected effects were significant at α 

=0.1. Consequently, the true active effect C was falsely declared inert using SWR. On the 

other hand, the interaction BD was incorrectly identified as active.   

Table ‎2-5: SWR Analysis of the Bead Width L12 Data 

 
Steps 

Selected 

Effects 
p-value 

  

 
1 B 0.0118 

  

 
2 A 0.0022 

  

 
3 AB 0.0088 

  

 
4 BD 0.056 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 19.22281 1 19.22281 65.04549 < 0.0001 

B 25.23 1 25.23 85.37242 < 0.0001 

AB 5.35736 1 5.35736 18.12805 0.0038 

BD 1.54686 1 1.54686 5.234214 0.0560 

Residual 2.068701 7 0.295529 
  

Total 51.9322 11 
   

 

In applying the BSS method, all the possible models comprising the main effects and two 

factor interactions were fitted using the extracted L12 data. To save space, only the selected 

model is presented here. As explained in Chapter 5, the selection was made utilising the 

knowledge regarding the true number of active effects which was 4 in this case. All the fitted 

models comprising 4 terms were examined and the one associated with the highest R
2

adj was 

selected. This was 

Y = 9.71-1.34 A+1.45B-0.67AB+0.38BD 
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Its R
2

adj was 0.94. As they declared the same effects as significant, the ANOVA of the results 

of the BSS method is equivalent to the one associated with SWR which is given in Table ‎2-5. 

2-5 Analysis of the DO Augmented L8 Data Using SWR and BSS Methods 

The effects declared significant by SWR when applied to analyse the DO augmented L8 are 

displayed in Table ‎2-6. Again the upper part of the table shows the effects selected at each 

step of the SWR procedure. As can be seen in the ANOVA part of Table ‎2-6, all the selected 

effects were significant at α =0.1.  

Table ‎2-6: SWR Analysis of the Bead Width DO Augmented L8 Data 

 
Steps 

Selected 

Effects 
p-value 

  

 
1 CE 0.0651 

  

 
2 CF 0.0655 

  

 
3 D 0.0124 

  

 
4 BE 0.0513 

  

 
5 AE 0.0307 

  

 
6 E 0.0113 

  

 
7 A 0.0363 

  

 
8 F 0.0332 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

Block 0.082955 1 0.082955 
  

A 0.124677 1 0.124677 119.6454 0.0083 

D 6.141672 1 6.141672 5893.798 0.0002 

E 1.002329 1 1.002329 961.8752 0.0010 

F 0.029791 1 0.029791 28.58837 0.0332 

AE 2.063565 1 2.063565 1980.28 0.0005 

BE 2.150788 1 2.150788 2063.983 0.0005 

CE 6.895274 1 6.895274 6616.984 0.0002 

CF 13.28494 1 13.28494 12748.77 < 0.0001 

Residual 0.002084 2 0.001042 
  

Total 33.9302 11 
   

 

 



353 

 

As should be the case when analysing any augmented design, the extracted runs were 

analysed as comprising two blocks. One was associated with the original L8 data whereas, the 

other represented the augmenting runs. Consequently, the variation due to the block effect 

was isolated from the error variance as shown in Table ‎2-6. Given the effects that were 

pronounced significant by the SWR method, it is clear that only one of the true active effects 

(factor A) was detected. Moreover, 7 inert effects were falsely declared significant. 

With regard to the BSS method, the best model of size 4 was  

Y= 9.85-0.79AB+1.21AD-1.20BD+0.46BE 

Its R
2

adj was 0.842. Considering the block impact, the ANOVA of the BSS selected effects is 

given in Table ‎2-7. Clearly, the interactions AB, AD, BD and BE were significant at α =0.05 

whereas the BE interaction was significant at α =0.1. Consequently, of the true active effects 

only the AB interaction was correctly detected. 

Table ‎2-7: ANOVA of the BSS Selected Effects of the Bead Width DO Augmented L8 Data 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

Block 0.082955 1 0.082955 
  

AB 5.026035 1 5.026035 9.408506 0.0220 

AD 15.44073 1 15.44073 28.90434 0.0017 

BD 15.02789 1 15.02789 28.13152 0.0018 

BE 2.262696 1 2.262696 4.235663 0.0853 

Residual 3.205207 6 0.534201 
  

Total 33.9302 11 
   

 

2-6 Analysis of the BM Augmented L8 Data Using SWR and BSS Methods 

Performing the SWR analysis on the BM augmented L8 data rendered three selected effects as 

shown in Table ‎2-8. Also displayed in this table is the ANOVA of the selected effects which 

was performed taking the block impact into consideration. Clearly all the selected effects 
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were significant at α =0.1. As a result only factor B and the AB interaction were correctly 

detected using this strategy.  

Table ‎2-8: SWR Analysis of the Bead Width BM Augmented L8 Data 

 
Steps 

Selected 

Effects 
p-value 

  

 
1 B 0.0499 

  

 
2 CE 0.0159 

  

 
3 AB 0.0386 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value 

p-

Value 

Block 0.206647 1 0.206647 
  

B 15.14523 1 15.14523 19.4563 0.0031 

AB 5.026035 1 5.026035 6.45669 0.0386 

CE 12.16358 1 12.16358 15.62593 0.0055 

Residual 5.44896 7 0.778423 
  

Total 35.72968 11 
   

As with the BSS method the model with four terms that attained the highest R
2

adj (0.836) was 

Y =9.60+1.18B-0.79 AB+0.49CD-1.06CE 

Its associated ANOVA is presented in Table ‎2-9. Clearly only B, AB and CE effects were 

significant at α =0.05. Thus, besides its false selection of the interactions CD and CE, this 

strategy failed to identify two of the true active effects, namely factors A and C.  

Table ‎2-9: ANOVA of the BSS Selected Effects of the Bead Width BM Augmented L8 Data 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value 

p-

Value 

Block 0.206647 1 0.206647 
  

B 15.14523 1 15.14523 25.95132 0.0022 

AB 5.026035 1 5.026035 8.612102 0.0261 

CD 1.947351 1 1.947351 3.336782 0.1175 

CE 12.16358 1 12.16358 20.84228 0.0038 

Residual 3.501609 6 0.583601 
  

Total 35.72968 11 
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3. Phase-3: Analysis of the EDM Experiment 

3-1 Analysing the Full Factorial Workpiece MRR Data 

The standard ANOVA of the workpiece MRR full factorial data is presented in Table ‎3-1 (a). 

The only active effects with p-values smaller than α =0.05 were factors A and B. The same 

effects were declared significant using the regression ANOVA. However, only certain 

components of these were distinguishable from noise as displayed in Table ‎3-1 (b) which 

revealed that at α =0.05, Al, Bl and Aq were the only  significant components. 

Table ‎3-1: ANOVA of the Full Factorial Workpiece MRR Data in its (a) Standard and (b) Regression Forms 

 

 

 

 

 

 

 

 

 

3-2 Extracting the Fractional Factorial Workpiece MRR Data 

The appropriated runs for the L18 and L9 OAs were taken from the full factorial L81 workpiece 

MRR data as shown in Table ‎3-2. Since only four factors were studied, dummy factors were 

used to denote the unassigned three level columns of the L18 OA. As the scope of this phase 

was confined to three-level effects, the L18 two-level column was incorporated into the error 

estimate. 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 662.8012 2 331.4006 51.98684 < 0.0001 

B 295.9204 2 147.9602 23.21053 < 0.0001 

C 13.58818 2 6.79409 1.065789 0.3498 

D 30.5734 2 15.2867 2.398026 0.0981 

Residual 458.9785 72 6.374702 

  Total 1461.862 80 

   (a) 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

Al 634.4925 1 634.4925 95.84096 < 0.0001 

Bl 295.9204 1 295.9204 44.69917 < 0.0001 

Aq 28.30871 1 28.30871 4.276069 0.0421 

Bq 0 1 0 0 1.0000 

Residual 503.1401 76 6.620264 
  

Total 1461.862 80 
   

(b) 
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Table ‎3-2: Extracted (a) L18, and (b) L9 Workpiece MRR Data 

e A B C D E F G Response  

1 1 1 1 1 1 1 1 9.029  

1 2 2 2 2 1 2 2 15.801  

1 3 3 3 3 1 3 3 22.573  

1 1 1 2 2 2 3 3 11.287  

1 2 2 3 3 2 1 1 13.544  

1 3 3 1 1 2 2 2 27.088  

1 1 2 1 3 3 2 3 13.544  

1 2 3 2 1 3 3 1 22.573  

1 3 1 3 2 3 1 2 15.801  

2 1 3 3 2 1 2 1 13.544  

2 2 1 1 3 1 3 2 11.287  

2 3 2 2 1 1 1 3 20.316  

2 1 2 3 1 2 3 2 13.544  

2 2 3 1 2 2 1 3 15.801  

2 3 1 2 3 2 2 1 31.603  

2 1 3 2 3 3 1 2 13.544  

2 2 1 3 1 3 2 3 11.287  

2 3 2 1 2 3 3 1 18.059  

(a) 

 
   

A B C D Response  

 
   

1 1 1 1 9.029  

 
   

2 1 2 2 11.287  

 
   

3 1 3 3 15.801  

 
   

1 2 2 3 13.544  

 
   

2 2 3 1 20.316  

 
   

3 2 1 2 18.059  

 
   

1 3 3 2 13.544  

 
   

2 3 1 3 15.801  

 
   

3 3 2 1 22.573  

 (b) 

 

3-3 PU Analysis of the L18 Data 

The PU method was applied to analyse the L18 workpiece data in two forms. One was 

implemented with the standard ANOVA where each of the examined effects had two degrees 

of freedom whereas the other was associated with the regression ANOVA where each effect 

was decomposed into two single degree of freedom effects namely linear and quadratic. Table 
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‎3-3 shows the results of using the PU method with the standard ANOVA. The smallest three-

level effect G was pooled at the first step. Owing to the use of the two-level column degree of 

freedom to estimate the error, the significance of G was tested and found to be insignificant at 

α =0.1. Thus it was pooled with the error estimate. This was also the case with all the 

remaining effects except A which was flagged as significant at α =0.1 in the seventh step of 

the PU analysis. Consequently, using this analysis strategy factor B was falsely pronounced 

inert. 

Table ‎3-3: PU with the Standard ANOVA of the L18 Workpiece MRR Data 

 
Steps 

Pooled 

Effects 
p-value 

  

 
1 G 0.4822 

  

 
2 D 0.3430 

  

 
3 E 0.1968 

  

 
4 F 0.1804 

  

 
5 C 0.1856 

  

 
6 B 0.2184 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 3.334766 2 1.667383 8.951368 0.0028 

Residual 2.794069 15 0.186271 
  

Total 6.128835 17 
   

 

The results of applying the PU method with the regression ANOVA to analyse the L18 MRR 

data are shown in Table ‎3-4. The upper part of this table lists the seven pooled effects along 

with their p-values which were in every case larger than 0.1. The selected effects were 

analysed using ANOVA and found significant at α =0.1. Evidently, alongside four inert 

effects this procedure detected all the true active effects as identified in the full factorial 

analysis. 
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Table ‎3-4: PU with the Regression ANOVA of the L18 Workpiece MRR Data 

 
Steps 

Pooled 

Effects 
p-value 

  

 
1 Dl 0.845 

  

 
2 El 0.819 

  

 
3 Cl 0.611 

  

 
4 Gq 0.53 

  

 
5 Bq 0.263 

  

 
6 Fl 0.182 

  

 
7 Gl 0.133 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

Al 3.095557 1 3.095557 47.13362 < 0.0001 

Aq 0.239209 1 0.239209 3.642241 0.0854 

Bl 0.513803 1 0.513803 7.823276 0.0189 

Cq 0.566174 1 0.566174 8.62069 0.0149 

Dq 0.239209 1 0.239209 3.642241 0.0854 

Eq 0.409061 1 0.409061 6.228448 0.0317 

Fq 0.409061 1 0.409061 6.228448 0.0317 

Residual 0.656762 10 0.065676 
  

Total 6.128835 17 
   

 

3-4 PD Analysis of the L18 Data 

As was the case with the PU method the PD procedure was implemented with both the 

standard and the regression ANOVA. In the former case, the results were equivalent to those 

yielded using the PU method (Table ‎3-3). In fact, the first selected effect was factor A which 

was found significant at α =0.1 with a p-value of 0.0028. In the second step, factor B was 

selected and its significance test yielded a p-value of 0.2184 as shown in Table ‎3-3. As this 

value was larger than 0.1, factor B was falsely deemed inert. 

The regression ANOVA results of the PD analysis are presented in Table ‎3-5. All the selected 

effects were significant at α =0.1. As Aq was not among the selected effects, only two of the 

true active effects were detected by this analysis strategy.   
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Table ‎3-5: PD with the Regression ANOVA of the L18 Workpiece MRR Data 

 
Steps 

Selected 

Effects 
p-value 

  

 
1 Al 0.001 

  

 
2 Cq 0.083 

  

 
3 Bl 0.076 

  

 
4 Eq 0.086 

  

 
5 Fq 0.06 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

Al 3.095557 1 3.095557 32.72319 < 0.0001 

Bl 0.513803 1 0.513803 5.431421 0.0380 

Cq 0.566174 1 0.566174 5.985037 0.0308 

Eq 0.409061 1 0.409061 4.32419 0.0597 

Fq 0.409061 1 0.409061 4.32419 0.0597 

Residual 1.135179 12 0.094598 
  

Total 6.128835 17 
   

 

3-5 PU Analysis of the L9 Data 

The results of using the PU method in conjunction with the standard ANOVA to analyse the 

L9 MRR data are shown in Table ‎3-6. None of the four studied effects was found significant 

at α =0.1 as their p-values were larger than or equal to α. evidently, the use of this analysis 

strategy resulted in overlooking all the true active effects.    

Table ‎3-6: PU with the Standard ANOVA of the L9 Workpiece MRR Data 

 
Steps 

Pooled 

Effects 
p-value 

  

 
1 C 

   

 
2 D 0.3500 

  

 
3 B 0.1 

  

 
4 A 0.1495 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 0.690732 2 0.345366 2.652174 0.1495 

Residual 0.78132 6 0.13022 
  

Total 1.472053 8 
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As demonstrated in Table ‎3-7, when used with the regression ANOVA the PU method 

successfully detected two of the true active effects namely Al and Bl. The only missing effect 

was Aq which was the smallest and thus was the first to be used to estimate the error. 

Furthermore, four spurious effects were declared significant by this analysis strategy.  

Table ‎3-7: PU with the Regression ANOVA of the L9 Workpiece MRR Data 

 
Steps 

Pooled 

Effects 
p-value 

  

 
1 Aq 

   

 
2 Cq 0.5 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

Al 0.687902 1 0.687902 243 0.0041 

Bl 0.416138 1 0.416138 147 0.0067 

Bq 0.138713 1 0.138713 49 0.0198 

Cl 0.076434 1 0.076434 27 0.0351 

Dl 0.076434 1 0.076434 27 0.0351 

Dq 0.070772 1 0.070772 25 0.0377 

Residual 0.005662 2 0.002831 
  

Total 1.472053 8 
   

 

3-6 PD Analysis of the L9 Data 

Analysing the L9 MRR data using the PD along with the standard ANOVA yielded the same 

conclusions as those drawn using the PU - see Table ‎3-6. In fact, factor A was the first effect 

to be selected and tested using an error estimate that was formed by pooling the B, C and D 

effects. As shown in Table ‎3-6, the resultant p-value was 0.1495 which exceeded the value of 

α (0.1). Therefore, this strategy failed to detect any of the true active effects.    

The results of performing the PD method along with the regression ANOVA are displayed in 

Table ‎3-8. Attaining p-values smaller than 0.1, the two effects Al and Bl were correctly 

detected as identified in the full factorial analysis. Al was the only overlooked effect using this 

analysis strategy. 
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Table ‎3-8: PD with the Regression ANOVA of the L9 Workpiece MRR Data 

 
Steps 

Selected 

Effects 
p-value 

  

 
1 Al 0.0423 

  

 
2 Bl 0.0404 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

Al 0.687902 1 0.687902 11.21538 0.0154 

Bl 0.416138 1 0.416138 6.784615 0.0404 

Residual 0.368013 6 0.061336 
  

Total 1.472053 8 
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4. Phase-4: Analysis of the EDM Experiment 

4-1 Analysing the Full Factorial Tool MRR Data 

Table ‎4-1 (a) presents the standard ANOVA of the tool MRR data of the EDM experiment. 

The only effects with p-values smaller than 0.05 were factors A and B and their interaction. 

The regression ANOVA confirmed the significance of certain components of these effects at 

α = 0.05 as shown in Table ‎4-1 (b) since the only components with a p-value smaller than 

0.05 were Al, Bl, Bq and AlBl. 

Table ‎4-1: ANOVA of the Full Factorial Tool MRR Data in its (a) Standard and (b) Regression Forms 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

A 75.13675 2 37.56838 19.3708 < 0.0001 

B 100.9717 2 50.48587 26.03125 < 0.0001 

C 1.96838 2 0.98419 0.507463 0.6043 

D 3.444665 2 1.722332 0.88806 0.4162 

AB 117.0571 4 29.26427 15.08909 < 0.0001 

Residual 131.8815 68 1.939433 

   Total 430.4601 80 

   (a) 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

Al 74.94453 1 74.94453 39.30242 < 0.0001 

Bl 59.99714 1 59.99714 31.46371 < 0.0001 

Aq 0.192225 1 0.192225 0.100806 0.7518 

Bq 40.9746 1 40.9746 21.4879 < 0.0001 

AlBl 116.3958 1 116.3958 61.04032 < 0.0001 

AlBq 0.00001 1 0.00001 0.00000 1.0000 

AqBl 0.415205 1 0.415205 0.217742 0.6422 

AqBq 0.246047 1 0.246047 0.129032 0.7205 

Residual 137.2945 72 1.906868 
  

Total 430.4601 80 
   

(b) 

 

4-2 Extracting the Fractional Factorial Tool MRR Data 

The full factorial tool MRR data that corresponded to the rows of the L18 and the L9 fractional 

OAs were extracted as displayed in Table ‎4-2. 
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Table ‎4-2: Extracted (a) L18, and (b) L9 Tool MRR Data 

e A B C D E F G Response  

1 1 1 1 1 1 1 1 7.81  

1 2 2 2 2 1 2 2 6.7  

1 3 3 3 3 1 3 3 12.28  

1 1 1 2 2 2 3 3 7.81  

1 2 2 3 3 2 1 1 6.7  

1 3 3 1 1 2 2 2 11.16  

1 1 2 1 3 3 2 3 5.58  

1 2 3 2 1 3 3 1 8.93  

1 3 1 3 2 3 1 2 6.7  

2 1 3 3 2 1 2 1 3.35  

2 2 1 1 3 1 3 2 7.81  

2 3 2 2 1 1 1 3 7.81  

2 1 2 3 1 2 3 2 5.58  

2 2 3 1 2 2 1 3 10.04  

2 3 1 2 3 2 2 1 6.7  

2 1 3 2 3 3 1 2 6.7  

2 2 1 3 1 3 2 3 6.7  

2 3 2 1 2 3 3 1 7.81  

(a) 

 

   
A B C D Response  

 

   

1 1 1 1 7.81  

 

   

2 1 2 2 6.7  

 

   

3 1 3 3 6.7  

 

   

1 2 2 3 5.58  

 

   

2 2 3 1 6.7  

 

   

3 2 1 2 7.81  

 

   

1 3 3 2 3.35  

 

   

2 3 1 3 8.93  

 

   

3 3 2 1 12.28  

 (b) 

 

4-3 Analysis of the L18 Tool MRR Data Using SWR and BSS Methods 

The effects that were picked-up by the SWR procedure when applied to analyse the L18 MRR 

data are displayed in their selection order in the upper part of Table ‎4-3. The interaction AlBl 

was the first to be selected followed by the Al and the Bq. The component Bl was the last 
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Table ‎4-3: SWR Analysis of the L18 Tool MRR Data 

 
Steps 

Selected 

Effects 
p-value 

  

 
1 AlBl 0.0004 

  

 
2 Al 0.0023 

  

 
3 Bq 0.0287 

  

 
4 Bl 0.0094 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

Al 20.35808 1 20.35808 28.36076 0.0001 

Bl 6.645408 1 6.645408 9.257696 0.0094 

Bq 6.786025 1 6.786025 9.453588 0.0089 

AlBl 30.45901 1 30.45901 42.43235 < 0.0001 

Residual 9.331729 13 0.717825 
  

Total 73.58025 17 
   

 

selected effect. The ANOVA of the chosen effects is given in the lower part of Table ‎4-3. As 

their p-values were smaller than 0.1, they were all declared significant. Consequently, using 

this strategy all the true significant effects were correctly detected.  

As the true number of active effects was four, the BSS method was used to identify the best 

model of size four that could be fitted to the L18 MRR data. This comprised the same terms 

identified by the SWR method i.e. 

Y = 7.56 + 1.30 Al + 0.744 Bl + 0.434 Bq + 1.95 AlBl 

 

Thus its associated ANOVA was equivalent to the one presented in Table ‎4-3 for the SWR 

results. The R
2

adj for this model was 0.834.  

The main implication of the SWR and the BSS analyses of the L18 data is that the same 

conclusions drawn from the full factorial data would have been inferred had a smaller design 

such as the L18 been performed instead.   
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4-4 Analysis of the L9 Tool MRR Data Using SWR and BSS Methods 

The results of performing the SWR analysis on the L9 data are presented in Table ‎4-4.  As can 

be seen from the ANOVA results, the phenomenon of overfitting was experienced in this 

analysis, the MSE being equal to zero. The chief reason for this is the complexity of the 

aliasing pattern associated with the selected effects. Despite the perfect fit of the yielded 

model, only two of the four true active effects namely Bq and AlBl were detected.  

Table ‎4-4: SWR Analysis of the L9Tool MRR Data 

 
Steps 

Selected 

Effects 
p-value 

  

 
1 AlBl 0.0262 

  

 
2 CqDl 0.0035 

  

 
3 BlCl 0.0093 

  

 
4 Bq 0.0290 

  

 
5 BlCq < 0.0001 

  

 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

Bq 0.553607 1 0.553607 63660000 < 0.0001 

AlBl 20.34505 1 20.34505 63660000 < 0.0001 

BlCl 2.18529 1 2.18529 63660000 < 0.0001 

BlCq 0.293086 1 0.293086 63660000 < 0.0001 

CqDl 5.605269 1 5.605269 63660000 < 0.0001 

Residual 0 3 0 
  

Total 47.61019 8 
   

 

The best model of size four that the BSS analysis of the L9 data rendered was  

Y = 7.32 + 2.74 AlBl - 0.897 BlCl - 0.292 Bq + 1.20 CqDl 

its associate ANOVA is given in Table ‎4-5 and its R
2
adj was 0.988. Obviously, the selected 

terms were the same as the first four effects that were picked-up by the SWR procedure. As 

their p-values were smaller than 0.05, they were all declared significant. Again using this 

analysis strategy, only two of the true active effects were detected. 
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Table ‎4-5: ANOVA of the BSS Selected Effects of the L9Tool MRR Data 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value p-Value 

Bq 0.814128 1 0.814128 11.11111 0.0290 

AlBl 27.25874 1 27.25874 372.0238 < 0.0001 

BlCl 2.052823 1 2.052823 28.01667 0.0061 

CqDl 7.388209 1 7.388209 100.8333 0.0006 

Residual 0.293086 4 0.073271 
  

Total 47.61019 8 
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CHAPTER 8 DERIVATIONS 
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1. Relating the PC2 to the ε
2
 

To show that PC2 and ε
2 are numerically equivalent, both the numerator and denominator of 

equation 8.6 should be multiplied by (n-1) and the MSE should be substituted for SSE/(n-ν-1) 

so that   

SST

1)MSE-(n - SST
  ε 2   

Replacing the SST in the numerator with 
k

i

FEiSS +SSE yields 

  
SST

1)MSE-(n - SSESS

  ε

k

i

FEi
2






 

Substituting (n-ν-1)MSE for SSE  gives 

SST

MSE )ν(SS

  ε

k

i

FEi
2






 

This equals the model (encompassing k FEs) ε2 or Adjusted- R
2
. Although, it provides an 

overall measure of the FEs collective importance in terms of the overall explained variance, it 

does not identify the relative importance of each FE. In orthogonal designs, the model sum of 

squares can be decomposed into k independent sums of squares corresponding to the k FEs 

that comprise it. Moreover, ν =


k

1i

FEidf . Thus a partial measure of explained variance can be 

obtain for each FE as follows   

total

FEiFEi2

FEi
SS

)MSE(dfSS
ε


  

which is the PC2 formula presented in Ross (1996) i.e. equation 3.2. 
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2. Impact of SES on Cpk 

Considering the shift in the process average that results from a specific SESFE(i) , a new Cpk 

value can be obtained from the conventional one as follows: 

3σ

)]SESLSLX(or)SESX[(USLMin
CNew

FE(i)FE(i)

pk


  






















3σ

SES

3σ

LSLX
or

3σ

SES

3σ

XUSL
MinCNew

FE(i)FE(i)

pk  

 

 

3σ

SES

3σ

LSL)]X(or)X[(USLMin
CNew

FE(i)

pk 












 
  

 

As the SESFE(i) expresses the factorial effect in numbers of standard deviations the above 

equation can be rewritten as:   

3

SES

3σ

LSL)]X(or)X[(USLMin
CNew

FE(i)

pk 












 
  

 

Consequently 

New Cpk = Cpk – (SESFE(i)/3) 
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