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Abstract: 

Mesenchymal stem cells (MSCs) are a population of adult stem cells located in the bone 

marrow. They are able to differentiate into cartilage, muscle, bone and fat. MSCs are an 

attractive therapeutic treatment option as they have been shown to be immunosuppressive 

and can be isolated and then expanded in culture. However delivering the MSCs to a site of 

damage or disease is not ideal as currently the best method is direct injection into the site 

which is highly invasive. Delivering the MSCs by injection into the circulation and then 

recruited to the damaged or diseased site would be a much safer and less invasive option. 

The aim of this study was to gain an insight into the ability of MSCs to be recruited to sites 

of damage or inflammation from the circulation by using an in vitro whole blood flow 

system. This study showed that MSCs were not able to become recruited from whole blood 

flow in this system when using shear rates equivalent to human circulation.   
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1. INTRODUCTION 

1.1 Mesenchymal stem cells 

Mesenchymal stem cells (MSC) are a population of adult multipotent cells located in the 

bone marrow. MSCs have the ability to self renew in vitro and in vivo, and they can also 

differentiate into a number of different cell types including cartilage, muscle, bone and fat  

(Caplan, 1991, Prockop, 1997, Pittenger et al., 1999). Characterization of MSCs is difficult as 

there are no known specific markers. MSCs are defined by their adherence to plastic, 

expression of surface markers CD90, CD73 and CD105, whilst being negative in expression of 

surface markers CD34, CD45, CD11b or CD14, CD19 or CD79α and HLA-DR; they must also 

possess the ability to differentiate into chondroblasts, adipocytes and osteoblasts (Dominici 

et al., 2006). MSCs have a great therapeutic potential as they can be isolated and expanded 

in culture allowing autologous transplantation (Pittenger et al., 1999). MSCs have also been 

shown to have an immunosuppressive effect (Di Nicola et al., 2002) and are considered to 

be non-immunogenic (Klyushnenkova et al., 1998, Bartholomew et al., 2002). This opens up 

the potential to use allogenic transplantation if the immunosuppressive effect is enough to 

block the host immune system.   

1.2 Animal models and clinical trials 

Some research has been done to assess the utility of MSC transplantation. It has been 

shown that MSCs transplanted directly into a heart were able to differentiate into 

cardiomyocytes and improve myocardial function in animal models (Tomita et al., 1999, 

Toma et al., 2002). Tomita et al. (1999) showed that rat MSCs injected into a three week old 

cryoinjury-derived scar in the rat heart were able to differentiate into cardiac cells, improve 
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local angiogenesis and improve heart function. Toma et al. (2002) injected human MSCs into 

a healthy mouse heart and observed that a small population of the cells differentiated into 

cardiomyocytes. The success in mice has led to trials in human patients, which showed 

significantly improved left ventricular function in patients who had suffered acute 

myocardial infarction were treated with intracoronary injection of autologous MSCs (Chen 

et al., 2004). Many other trials have been conducted using bone marrow mononuclear cells 

(BMMNC) with a range of results observed (Janssens et al., 2006, Lunde et al., 2006, 

Penicka, 2007). These animal studies and human clinical trials all used intraventricular 

injections of the MSCs/BMMNCs, which is a highly invasive technique that could potentially 

increase the risk of complications. A much safer method of administration would be 

intravenous injection but this would only be viable if the MSCs/BMMNCs had the ability to 

recognise damaged areas and adhere to them in sufficient quantities. Systemic intravenous 

injection of MSCs has been tested in in vivo rat models of myocardial infarction. The results 

showed that most of the transplanted cells became trapped in the lungs due to the large 

size of the MSCs compared to the relatively small size of the alveolar capillaries. However 

some were also located in the heart, spleen and liver (Barbash et al., 2003). Other groups 

have had some success with intravenous injections of MSCs to treat cerebral ischemia (Chen 

et al., 2001) and transplant rejection (Wu et al., 2003)in rats. Another group has shown that 

bone marrow derived MSC transplant was able to improve bone mineral levels and dense 

bone formation in patients with osteogenesis imperfecta (Horwitz et al., 1999). These 

results all show that MSCs have some potential to home to damaged tissues; the 

mechanisms for this homing are currently poorly understood but have been suggested to be 

analogous to leukocyte extravasation. 
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Fig 1.1 Schematic of leukocyte extravasation (Sackstein, 2009) 

1.3 Leukocyte extravastaion 

Leukocyte extravasation (fig 1.1) is a well documented process (Springer, 1995, Sackstein, 

2009).  Briefly; Leukocytes are able to respond to signals of local infection mediated by 

endothelial cells. The traffic signals involved work in a sequential manner beginning with the 

endothelial cell surface expression of selectins and ligands for leukocyte integrins, 

dependant on the type of endothelial cell and the cellular stimulus.  The selectins will bind 

to molecules on the leukocyte surface weakly, slowing them down and bringing the 

leukocyte into closer contact with the endothelium. Next chemokines being released or 

presented by the endothelium will be able to have a direct effect on the leukocyte through 

specific receptors, promoting the activation of integrins on the surface of the leukocytes. 
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The activation of integrins allows the leukocytes to firmly adhere to the endothelium via 

interaction with immunoglobulin super-family members. The leukocyte can then migrate 

and penetrate the endothelium and move into the tissue. 

1.4 Adhesion molecules on MSCs 

MSCs have been shown to express several adhesion molecules which may be involved in 

their ability to bind to endothelium in order to pass through into tissue and aid in repair  (De 

Ugarte et al., 2003). Elucidation of mechanisms of adhesion may lead to the ability to 

manipulate MSCs to increase homing towards a specific site. MSCs have been observed to 

be able to adhere to endothelium in a flow model in vitro in a similar way to leukocytes, 

through binding to VCAM-1 and P-selectin (Ruester et al., 2006). Manipulation of the CD44 

on the surface of human MSCs through glycosyltransferase programmed stereo substitution 

to create a ligand for E-selectin was shown to increase binding of MSCs to endothelium 

(Thankamony & Sackstein, 2011). This kind of engineering could be used to increase site 

specific homing of MSCs. These groups studied the adherence and rolling of MSCs in 

suspension on their own, but the effects of the rest of the blood constituents which would 

be present if the MSCs were injected have not yet been studied. Furthermore the MSCs 

were flown into the assay at a very slow shear rate and allowed to adhere to the surface 

before the shear rate was increased to roughly levels found in the circulation of a human. It 

is therefore difficult to compare this model to the physiological system.  

1.4 Chemokines and MSCs 

MSCs have also been shown to express some chemokine receptors (Chamberlain et al., 

2007). Chemokines are an important subset of chemotactic cytokines with an important role 

in leukocyte trafficking and could possibly have an effect on the ability of MSCs to migrate 
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through endothelium. Circulating MSCs would need to be in close contact with endothelium 

in order for chemokines to be effective. Chemokine receptors on the MSCs could be used to 

induce controlled changes of expression in the MSCs potentially aiding the recruitment of 

the cells into the endothelium therapeutically. Segers et al. (2006) observed that pre-

treating MSCs with TNF-α or IL-1β increased adherence to cardiac micro vascular 

endothelium (Segers et al., 2006). 

1.5 MSCs recruitment 

The ability of MSCs to be recruited from the circulation in the body is not known. Leukocytes 

in whole blood are marginated to the walls of vessels due to the aggregation of red blood 

cells (Pearson & Lipowsky, 2000). The formation of red cell aggregates produces larger 

particles which flow at the centre of the vessel. The smaller leukocytes are then pushed 

outward towards the edge of the vessel; this mechanism allows the leukocytes to be in 

contact with the walls of the vessel and aid in leukocyte extravasation. In general, 

margination is more effective the slower the blood flow. It is possible that MSCs injected 

into the blood stream may also be marginated. However, MSCs are considerably larger than 

leukocytes and therefore may not be marginated as efficiently. There have been no studies 

of MSC margination to date. 

Here, a previously established in vitro model of a glass capillary coated with adhesion 

molecules and using whole blood will be used to study the ability for MSCs to become 

captured by receptors which in vivo assist in the capture phase of leukocytes and platelets. 

Margination will also be assessed. 
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1.6 Hypothesis and aims 

The Hypothesis of this project is that through margination and platelet bridges MSCs exhibit 

behaviour comparable to leukocytes at the attachment stage during extravasation. 

The margination and adhesive behaviour of MSCs in blood is currently unknown; the aim of 

this project is to assess the ability of MSCs to bind to chosen adhesion molecules using an in 

vitro flow system to represent inflamed and damaged endothelium. Furthermore the 

interactions between MSCs and platelets will be assessed using flow cytometric analysis to 

identify potential MSC-platelet aggregates which may be involved in the recruitment 

process.  
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2. MATERIALS AND METHODS 

2.1 Blood collection 

Blood was taken from consenting healthy adult volunteers. Blood was mixed 9:1 with citrate 

phosphate dextrose adenine (CPDA; Sigma) anticoagulant.  

2.2 Cell culture and growth conditions 

Human mesenchymal stem cells (hMSC) were purchased from Lonza and grown in 

Mesenchymal Stem Cell Basal Medium (MSCBM) (Lonza) supplemented with Mesenchymal 

Cell Growth Supplement (MCGS), L-glutamine, and GA-1000 (Lonza). Cells were grown at a 

density of 2.5-3.5 x 105 cells per ml at 37°C in a humidified 5% CO2-atmosphere. Medium 

was changed every 3-4 days. Cells were passaged at ~90% confluence. To remove the cells 

from the flask cells were washed with calcium and magnesium free phosphate buffered 

saline (PBS) solution. The PBS was removed from the flasks and 1 or 2ml EDTA was added to 

a 25cm3 or a 75cm3 flask respectively. Flasks were incubated at room temperature for 1 

minute before adding 1 or 2ml Trypsin. Flasks were then incubated at 37°C for up to 5 

minutes. Cells were observed under the microscope to confirm detachment from the 

plastic. Once detached 1 or 2ml of supplemented MSCBM was added to the flasks and the 

cell mixture was collected and centrifuged at 1100rpm for 5 minutes. The supernatant was 

discarded and the cell pellet was resuspended in 1ml MSCBM. 20μl was added to 20ml 

ISOTON® II Diluent (Beckman Coulter). The number and diameter of cells was determined 

using a Coulter Counter (Beckman Coulter). 1.5 x 106 cells per flow assay were removed 

from the cell suspension and the remaining cells were diluted to 2.5 x 105 cells per ml and 

added back into 75cm3 culture flasks. 
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2.3 Flow system and adhesion assay 

Glass capillaries with 50mm length, 3mm width and 0.3mm height were used in the flow 

system. The glass capillaries will be referred to as microslides. 

3-aminopropyltriethoxysilane (APES) (Sigma) was used to coat the microslides to provide a 

surface for the proteins to bind. The microslides were washed overnight in 50% nitric acid, 

and then washed with running tap water for 4 hours. Excess water was removed using a 

suction pump and the microslides were allowed to dry. Microslides were then immersed in 

anhydrous acetone for 30 seconds whilst being repeatedly inverted. This process was 

repeated once and the microslides were dried by blotting on a paper towel. The microslides 

were then immersed in 4% APES in anhydrous acetone for 60 seconds whilst being 

repeatedly inverted and then dried by blotting. This process was repeated once and then 

the microslides were washed in anhydrous acetone. The microslides were washed three 

times with sterile distilled water using a pump. After the microslides had dried they were 

autoclaved at 121°C for 11 minutes. 

Microslides were then coated with a variety of substrates which had been previously 

titrated for optimum concentration for leukocyte capture. Purified recombinant human P-

selectin (R&D Systems) at 10μg/ml dissolved in PBS, Horm collagen (Axis-Sheild) at 

500μg/ml, purified recombinant human VCAM-1 (R&D Systems) at 10μg/ml or a 

combination of 50% fibronectin (Sigma) at 10μg/ml and 50% p-selectin 10μg/ml. 50μl of 

each substrate or 50μl PBS as a negative control was pipetted into an individual microslide, 

and then the microslide was incubated at 37°C for one hour. After the 1 hour incubation, 

150μl of 2% bovine serum albumin (BSA) in PBS was pipetted through each microslide to 

block non-specific protein-binding sites. The microslides were incubated at 4°C overnight. 
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Fig 2.1 Schematic representing the flow system 

 

The flow system was set up as in fig 2.1. The coated microslide was glued to the centre of a 

microscope slide and double-sided sticky tape adhesive was wrapped around the ends of 

the microslide. Each end of the microslide was then inserted into the rubber tubing and 

then placed under the microscope. With the electronic valve in the off position PBS without 

calcium and magnesium was flown through the system from the reservoir to the extraction 

syringe. 1ml of PBS without calcium and magnesium was added to the sample reservoir and 

the electronic valve was switched to the on position. The PBS in the sample reservoir was 

flown until a small amount remained in the neck of the syringe.  

MSCs were added at a concentration of 1.5 x 105 per ml of whole blood in CPDA 

anticoagulant. MSCs were previously stained with CFSE (5μM, Molecular probes) fluorescent 

dye in order to allow visualisation on the fluorescence microscope.  5mM MgCl2 or 1mM 

MnCl was added to the samples when desired, to enable integrin binding or induce integrin 
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activation respectively.  In absence of added MgCl2, CPDA anticoagulant  (which chelates 

Ca++ and Mg++) leaves enough residual Ca++ and Mg++ for selectin-mediated adhesion and 

platelet adhesion to collagen to be effective (Abbitt & Nash, 2001).  However, leukocyte 

integrins at least require additional Mg++ to be effective. Mn++ directly induces the adhesive 

conformation of integrins without requirement for cell-activating stimuli. The syringe pump 

was set to deliver flow rates which delivered wall shear rates of 28 or 70s-1; the electronic 

valve was switched to the on position to allow the sample to flow through the microslide. 

The sample was perfused over the microslide for 2 minutes before events at the surfaces 

were recorded for 1 minute using a CCTV camera linked to a time-lapse video recorder. 

During the 1 minute recording the field of view was changed every 10 seconds. For flow 

cytometry experiments the perfused blood sample was collected from the three way valve 

at the end of the assay when using a BSA-coated microslide only.  

The video was recorded at 50 frames per second and the width of the visible area was 

0.75mm. This means that the speed of the passing MSCs can be determined by multiplying 

the frames it took to cross the screen by the frames per second and then dividing this by the 

size of the visible area. This calculation gives the speed of the passing MSCs in μm/second. 

The percentage of all perfused MSC that were visible near the wall was calculated by 

counting the number of cells crossing the midpoint of the visible area in one second. This 

was then used to calculate the average number of cells crossing that point for the whole 

width of the microslide. The length of the midpoint of the screen was 0.59mm and the 

width of the microslide was 3mm. The syringe pump set at gear 8 withdraws 0.191ml 

volume per minute; therefore the 1ml blood sample containing 1.5x105 MSCs will be flown 

through the flow assay in 314 seconds. This means that an average of 479 MSCs flow 
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through midpoint of the assay every second. With the pump set to gear 9 the withdrawal 

volume per minute was 0.0764ml. Therefore at this speed the average MSCs flowing 

through the midpoint of the assay every second was 191. The percentage of visible cells was 

then calculated at each wall shear rate to represent the amount of cells near the wall. 

Wall shear rate = 
   

    
 where w = width of the microslide and h =height of the microslide 

and Q = volumetric flow rate. 

Q = Pressure gradient x
   

   
  where w = width of the microslide and h =height of the 

microslide and η = blood viscosity. 

 

2.4 Measurement of Haematocrit 

Haematocrit was measured using a micro-haematocrit centrifuge. Whole blood in CPDA 

anticoagulant was drawn into a capillary tube through capillary action, the end of the tube 

was then blocked using Crystaseal and the tube was inserted into the micro-haematocrit 

centrifuge. The sample was centrifuged at 10,000rpm for 5 minutes. The haematocrit was 

calculated by measuring the height of the red cells in comparison to the whole sample. This 

was then converted into a percentage. 

2.5 Flow cytometry 

Samples collected from the flow assay plus a sample of blood without MSCs was diluted 

1:10 with cold PBS plus 2% bovine serum albumin (PBSA). A sample of pure MSCs and the 

1:10 dilutions were added to FACS tubes and centrifuged at 1500rpm, 4°C for 5 minutes. 
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Each pellet was resuspended in 100μl of directly conjugated antibody or 2% PBSA, (see table 

2.1). The samples were incubated in the dark on ice for 30 minutes. 3ml cold 2% PBSA was 

added to each sample and then centrifuged at 1500rpm, 4°C for 5 minutes. The supernatant 

was discarded and the pellet was resuspended in 2ml 1:10 FACS lysing solution (BD 

Biosciences) and incubated for 10 minutes at room temperature. The samples were 

centrifuged at 1500rpm, 4°C for 5 minutes. The supernatant was discarded and the pellet 

was resuspended in 3ml 0.5% PBSA. The samples were centrifuged at 1500rpm, 4°C for 5 

minutes. The supernatant was removed and the pellet was resuspended in 300μl 0.5% 

PBSA. The samples were analysed on DakoCytomation CyAn flow cytometer (Beckman 

Coulter).  

 

Antibody target Conjugate Rationale Supplier Dilution 

CD105 FITC Surface MSC marker Ancell 1:50 

CD42b PE-Cy5 Surface Platelet marker BD biosciences 1:5 

 

2.6 Statistical analysis 

Results were tested for statistical significance using a two factor analysis of variance 

(ANOVA) test. 

Table 2.1 of antibodies used in flow cytometry 
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3. RESULTS 

3.1 Analysis of adhesion and margination of MSC in CPDA blood 

The anticoagulant of choice, CPDA was used because it chelates calcium ions but leaves 

enough free to allow selectin mediated binding of leukocytes (Geng et al., 1992). EDTA 

would chelate all of the calcium and therefore completely block any selectin or integrin 

binding. As it was hypothesised that MSC use a recruitment mechanism analogous to 

leukocyte extravasation; initially the same anticoagulant was used as in leukocyte adhesion 

studies with whole blood (Abbitt & Nash, 2001).  

P-selectin was selected as the first microslide coating because P-selectin is known to be an 

important ligand which aids in the tethering and rolling of leukocytes. P-selectin is up 

regulated on endothelial cell surface during inflammation. It is possible that MSCs may 

express a receptor which recognises p-selectin and may also roll in a similar mechanism to 

leukocytes. Ruester et al. (2006) showed that blocking p-selectin on HUVEC cells lowered 

the number of MSCs which firmly adhered after being perfused (Ruester et al., 2006). This 

suggests that MSCs may be able to bind to p-selectin. 

Collagen was used as a model ligand for an area of vessel damage as collagen is exposed 

when tissue is damaged with exposure of the basement membrane. Collagen also activates 

platelets and platelets readily bind to it (Moroi et al., 1996). The rationale behind using 

collagen was that the platelets may bind to the MSCs and facilitate MSC binding onto the 

collagen or that the platelets which bind to the collagen may provide a region for an MSC to 

adhere to (as is the case for leukocytes) or that a combination of both might occur. There 

was also a possibility that the MSCs might bind directly to the collagen. 
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1% PBSA was used to block non-specific binding after the collagen and p-selectin were 

allowed to bind to the microslide. The same 1% PBSA was used to coat a microslide which 

had not been coated with collagen or p-selectin. This was used as the negative control slide 

in this set of experiments. 

 

Initially a flow assay with rhodamine 6g labelled CPDA anticoagulated whole blood was 

observed, using P-selectin and Horm collagen coated microslides, to compare to any 

adhesion by the MSCs. Leukocytes were observed to roll on the p-selectin and platelets 

were observed to firmly adhere on the collagen (data not shown). 

The flow assay with MSCs was carried out using the same microslide coatings, however the 

MSCs were not observed to stably adhere to either surface coating. Therefore to assess if 

the surfaces were having any effect on the MSCs the average velocity of the MSCs was 

calculated. Minor changes in the velocity of the MSCs could be attributed to the MSCs 

attaching to the surfaces but not beginning to roll. 

Fig3.1 shows the average velocities of the MSC flowing across albumin, P-selectin or 

collagen at two different wall shear rates. The coating of the microslide did not have a 

statistically significant effect on the average velocity of the MSCs however as expected the 

change in wall shear rate did statistically significantly affect the velocity shown by ANOVA. 

Fig3.2 shows the percentage of perfused MSC that were visible near the wall. While there 

tended to be a greater percentage of cells near the wall at the lower shear rate, ANOVA 

showed that the coating of the microslide and the shear rate had no significant effects on 

the percentage visible.  
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3.2 Analysis of adhesion and margination of MSC in CPDA blood with MgCl2 

added 

In order to test whether there is a requirement for magnesium or calcium ions to be present 

to allow for integrins binding, 5mM MgCl2 was added to each of the samples before it was 

put into the flow assay. The addition of MgCl2 will also liberate calcium ions from the citrate 

of the anticoagulant which could enable other adhesion molecules to function more 

effectively.  

This set of experiments used the same coatings as in the previous set, however in addition 

VCAM-1 and a combination of p-selectin and fibronectin were used. VCAM-1 has been 

suggested to be important in MSC adherence and MSCs have been shown to express VLA-4 

which is the receptor for VCAM-1 (Ruester et al., 2006).  

Fig 3.3 shows the average velocities of the MSC flowing across albumin, P-selectin, collagen, 

VCAM-1, P-selectin and fibronectin, or BSA alone at two different wall shear rates with 

addition of MgCl2. The coating of the microslide did not have a statistically significant effect 

on the average velocity of the MSCs however as expected the change in wall shear rate did 

statistically significantly affect the velocity shown by ANOVA. 

Fig 3.4 shows the percentage of perfused MSC that were visible near the wall. While there 

appears to be a higher percentage of cells near the wall at the lower shear rate, ANOVA 

showed that the coating of the microslide and the shear rate had no significant effects on 

the percentage visible. 
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In some of the collagen coated microslide experiments small numbers MSCs were observed 

to be firmly adhered during the recording phase of the bolus. This result was not 

reproducible but was not observed with any of the other microslide coatings and was not 

observed in the absence of MgCl2. 
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3.3 Analysis of adhesion and margination of MSC in CPDA blood with MnCl 

added 

Collagen was selected to be followed up in the following experiments because of the 

previously mentioned occurrence of MSCs firmly adhered to the surface of some collagen 

coated microslides.  

Manganese ions have previously been shown to non-specifically activate integrins at 

relatively low concentrations (Smith et al., 1994). A previously established concentration of 

1mM MnCl was added to each sample before it was perfused through the flow system.  

Fig 3.5 shows the average velocities of the MSC flowing across collagen or VCAM-1 at two 

different wall shear rates with or without the addition of MnCl. The coating of the 

microslide, the addition of MnCl and the change in wall shear rate did not have a statistically 

significant effect on the average velocity of the MSCs shown by ANOVA. 

Fig 3.6 shows the percentage of perfused MSC that were visible near the wall. While there 

tended to be a greater percentage of cells near the wall at the lower shear rate, ANOVA 

showed that the coating of the microslide, the addition of MnCl and the shear rate had no 

significant effects on the percentage visible. 

Similarly to the MgCl2 experiments, some MSCs were observed to firmly adhere on the 

collagen coated microslides in over 50% of the MnCl positive experiments. In contrast there 

were none observed in any of the MnCl negative experiments.  
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3.4 The effect of TNFα on MSC flowing velocity and margination 

Stimulating MSCs with the cytokine TNFα for 24 hours may increase the surface expression 

of ligands which bind to VCAM-1, collagen and/or platelets. Although this stimulation is not 

likely in vivo it would be possible to stimulate autologous culture expanded human MSCs 

before transplantation. The stimulation could potentially improve the homing of the 

transplanted cells.  

Fig 3.7 shows the average velocities of the MSC flowing across collagen or VCAM-1 at two 

different wall shear rates with or without 24 hour MSC TNFα treatment. Due to time 

constraints only one TNFα stimulation flow experiment was carried out. The TNFα 

stimulated MSCs perfused through VCAM-1 microslides were slower at both wall shear rates 

when compared to un-stimulated MSCs. This observation was also true for the MSCs 

perfused through the collagen microslide at 70s-1, however there was no effect observed in 

the collagen microslide at 28s-1. The statistical significance of these observations cannot be 

tested as there are too few replicates. 

Fig 3.8 shows the shows the percentage of perfused MSC that were visible near the wall. 

Due to time constraints only one TNFα stimulation flow experiment was carried out.  
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3.5 Analysis of platelet binding to MSCs in whole blood 

The flow system described in section 2.3 was used but the MSCs were not stained with 

CFSE. MgCl2 or MnCl were added to the two of the samples before they were perfused 

through a 1% PBSA coated microslide. The sample was collected from the valve near the 

withdrawal syringe. A sample of blood without MSCs and a sample of pure MSCs was also 

retained.  

Unstained MSCs were analysed for their side scatter, front scatter (fig 3.9 (A)), FITC and PE-

Cy5 fluorescence (fig 3.9 (B, C & D)). The population of MSCs was observed to be quite 

diverse in size and granularity. The size variation was also observed when the size of the 

MSCs was analysed on the coulter counter. The levels of the FITC and PE-Cy5 were taken to 

determine the levels of auto-fluorescence of the MSCs.  

MSCs stained with the CD105 FITC conjugated antibody were analysed in order to assess the 

quality of the staining process and to make sure that the FITC fluorophore is not giving an 

emission in the PE-Cy5 channel. Fig 3.10 shows that the FITC fluorescence was increased by 

a factor of 10 compared with the unstained MSCs. The PE-Cy5 fluorescence intensity 

remained the same as the unstained MSCs showing that the FITC labelling is not having an 

effect on the PE-Cy5 emission levels. 

The sample without MgCl2 or MnCl (fig 3.11) was labelled with the CD105 and CD42b 

antibodies. The first stage of the analysis was to gate for the MSC population (R1). The FITC 

fluorescence intensity increased by a factor of 10 compared to the unstained MSCs. The 

area of FITC intensity was then gated (R6) to identify changes in the PE-Cy5 fluorescence. 

The PE-Cy5 fluorescence intensity remained at the level of the unstained MSCs.  
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The sample with MgCl2 was labelled with the CD105 and CD42b antibodies (fig 3.12). The 

same gating strategy as previously used was applied to this sample. This sample contained a 

number of cells which stained positive for both CD105 and CD42b antibodies, indicating 

some interaction between MSCs and platelets in the presence of MgCl2. 

The sample with MnCl was labelled with the CD105 and CD42b antibodies (fig 3.13). The 

same gating strategy as previously used was applied to this sample. As with the MgCl2 

sample a population of cells was observed to be stained with both antibodies, showing an 

interaction between platelets and MSCs. 
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4. DISCUSSION 

The results presented in section3 suggest that un-stimulated MSCs are unable to be 

captured from flow in the whole blood flow assay even at very low wall shear rates. There 

are a number of factors which could contribute to the lack of adherence. Firstly there may 

not be enough surface receptors on the MSCs to bind to the P-selectin, collagen, VCAM-1 or 

fibronectin proteins. With too few receptors the MSCs will not be sufficiently slowed down 

to observe any change in their behaviour. The data in section 3 show that there was no 

significant variation in the speed of MSC when using the different protein coatings. After 

perfusion of blood, the coatings were tested by observing the washout using phase contrast 

optics. The P-selectin and fibronectin coatings were observed to have leukocytes rolling on 

the surface. Rolling and stationary leukocytes were observed on the VCAM-1 coated 

microslides and platelets were seen to aggregate and adhere to the collagen slides. These 

observations show that the coatings were adequate as the blood constituents behaved as 

expected. 

For successful capture the bonds between the cell and the capture proteins must be strong 

enough to overcome the force of the prevailing blood, or at least enough to allow for a 

series of small interactions which would slow the cell down. The force on the cell is greater 

on a cell with a greater radius (Chang & Hammer, 1996). The median radius of the MSCs was 

observed to be 19-21μm which is considerably larger than circulating leukocytes (6-8μm 

(Downey et al., 1990)) and platelets (1.5-3μm (Bain, 2006)). This size difference means that 

the MSC are under a much greater force than the leukocytes and platelets and therefore 

less likely to become captured by the adhesion proteins. Coupled with this is the fact that 

the due to their size, MSCs have a larger surface area which will mean that the density of 
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any receptors for the capture proteins is lower and the efficiency of capture will therefore 

be lower.  

In normal blood flow red cells form aggregates which flow in the centre of the vessel, and 

these aggregates force the smaller platelets and leukocytes out of the centre of the vessel, 

increasing contact of platelets and leukocytes with the vessel wall. The size of the MSCs is so 

much larger than the leukocytes that the margination might be less effective. The results in 

section 3 for the numbers of MSC fllowing near the wall, show that the margination of the 

MSCs remained unchanged across the variety of microslide coatings (as would be expected) 

and was only significantly affected by changing the wall shear rate in one experiment. It has 

been shown that the aggregation of red blood cells increases as the wall shear rate drops  

(Goldsmith & Turitto, 1986), so that the MSCs should become more marginated at the 28s-1 

shear rate. The results do show a slight increase in the margination at the lower wall shear 

rate, but this increase was not significant. If the MSCs are travelling down the centre of the 

vessel due to their large size their contact with the wall will be limited severely, and without 

contact the MSCs will not be able to adhere.  

Adding 1mM MnCl is enough to non-specifically activate any integrins on the surface of the 

MSCs. However there was no observed decrease in the velocity of the MSCs in the samples 

with MnCl indicating that there was no increased adherence of the MSCs to the capture 

proteins tested. If there are too few integrins on the surface, even when activated the MSCs 

will not become captured due to the force on the cells as they try to bind to the capture 

proteins. The combination of a low number of integrins and the large force on the cells due 

to their size means the chances of capture are very low.  
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Ruester et al. (2006) and Thankamony et al. (2011) observed MSCs adhering and rolling in 

flow assays using MSCs in isolated suspension. In the whole blood assay tested in this 

project the binding and rolling of leukocytes and platelets could be hampering the ability of 

the larger MSCs to become captured. The leukocytes and platelets have a higher affinity for 

their respective capture proteins and therefore are likely to obstruct the MSCs.  

The small number of MSCs observed to be firmly adhered to the collagen coated microslides 

could be due to platelets binding to the MSCs and then aiding in the capture to the collagen 

through the platelets von Willebrand factor (vWF). The results in section 3.5 show that there 

is platelet MSC interaction in the experimental flow assay. This result does not confirm 

whether the platelets bound to the MSCs aided in capture, or if the platelets bound to the 

collagen and then the MSCs were able to bind to the platelet aggregates. There is also a 

third option; the MSC could be binding directly to the collagen. Due to the low number of 

cells observed to adhere and the consequent variaility, this is difficult to test. However 

activating the platelets in the blood before they enter the flow assay might increase the 

number of MSCs firmly adhered. If the number of bound MSCs did not increase then this 

would be evidence that the MSCs were binding directly to the collagen. If the number of 

bound MSCs increased then the other two mechanisms are more likely. It is likely that both 

these mechanisms are at work, and it may be possible to elucidate which mechanism is 

more influential in the binding of the MSCs by blocking vWF, p-selectin or other adhesion 

molecules found on the platelets. By using the flow assay and then also analysing the 

perfusate by flow cytometry, it may be possible to identify the ligands involved in platelet-

MSC adhesion. Platelets bind to exposed collagen in vivo to form a thrombus, and circulating 

MSCs could potentially adhere to thrombus in order to aid in repair of damaged tissue.  
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The results in section 3.4 represent only one experiment in which the MSCs were stimulated 

with the chemokine TNFα due to time constraints. This experiment should be repeated to 

determine if the effect of TNFα is significant. Other chemokines such as IL-1β could also be 

tested. With 24 hour stimulation it might be possible for the MSCs to change their 

transcription of adhesion molecules on their surfaces, and this might lead to increased 

rolling and potentially stable adherence. This level of cytokine stimulation is not likely in vivo 

but could be usefully exploited in an ex vivo transplant situation.  

The anticoagulant could be changed as the chelating of the calcium ions may be too 

effective. An anticoagulant which does not alter the calcium ion concentration could be 

used as the MSCs may require more calcium ions to be present before they are able to begin 

to adhere. 

Another consideration is the possible effect of using Trypsin to disassociate the MSCs from 

the culture flasks. The Trypsin could be cleaving adhesion molecules from the cell surface.  If 

this was the case MSC might not have been able to re-express them before the flow assay 

was done. An enzyme free disassociation buffer could be used, EDTA or mechanical scraping 

of the cells. If time had allowed these would have all been tested in the flow assay to 

determine which method was the least damaging to the MSCs adhesion molecules. 

In addition even though there was no observed rolling or adherence on P-selectin in these 

assays, there is a possibility that the other two members of the selectin family, E and L 

selectin, may be involved in recruitment of MSCs from the circulation. These two selectins 

could be assayed in the same experimental procedure.  

In conclusion these data show that un-stimulated MSCs do not readily adhere or roll in 

whole blood at shear rates much lower than the majority of in vivo human circulation. There 
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is some interaction between MSCs and platelets but their relationship needs to be 

investigated further before any further conclusions can be drawn.  
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