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Abstract

We prove that the odd nilpotent injectors (a certain type of maximal nilpotent subgroup)

of a minimal simple group are all conjugate, extending the result from soluble groups.

We also prove conjugacy in GU3(q) and SU3(q). In a minimal counterexample to the

conjecture that the odd nilpotent injectors of an arbitrary finite group are all conjugate

we show that there must be a component, which cannot be of type An except possibly

3 ·A6 or 3 ·A7. Finally, we produce a partial result on minimal simple groups for a more

general type of nilpotent injector.
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Chapter 1

Introduction

Nilpotent injectors are a type of maximal nilpotent subgroup which were first defined in

[15]. It is proved by Mann in [16] that they form a single conjugacy class in groups G

which satisfy CG(F (G)) 6 F (G). The first step in proving this theorem is to prove that

they exist in those groups, as the definition does not guarantee it. In [13] Bialostocki gives

an alternative definition which does guarantee their existence, and, at least in the groups

considered by Mann, is equivalent to the original. Bialostocki’s definition is as follows:

Let G be a finite group. Then

d2(G) = max {|A| | A 6 G is nilpotent of class at most 2};
A2(G) = {A 6 G | A is nilpotent of class at most 2 and |A| = d2(G)};
MaxN (G) = {I 6 G | I is maximal nilpotent};
NI(G) = {I ∈ MaxN (G) | I contains an element of A2(G)}.

A nilpotent injector is defined to be an element of NI(G). In [13] Bialostocki makes the

conjecture that NI(G) forms a single conjugacy class in any finite group G. He verifies it

for the Symmetric groups in the same paper and for the Alternating groups in [14]. Other

groups for which the conjecture holds are the General Linear Groups (Sheu [17]) and

groups in which every local subgroup L satisfies CL(F (L)) 6 F (L) (Flavell [4]). However,

1



the conjecture turns out to be false, and a counterexample is provided in [18, p47].

It is clear that there are very many examples of groups in which arbitrary maximal nilpo-

tent subgroups are not conjugate (any non-nilpotent group in fact). Nilpotent injectors

differ from such subgroups because they contain elements of A2(G). One effect of having

such a subgroup is that nilpotent injectors contain every nilpotent subgroup that they

normalize. The following theorem of Glauberman is fundamental in establishing that fact:

Theorem 1.1 (Glauberman)[7, Theorem B, p470] Let G be a finite group and let A ∈
A2(G). Suppose B 6 G is nilpotent and normalized by A. Then AB is nilpotent.

In a different paper from the same journal, Arad and Glauberman prove a similar result:

Theorem 1.2 (Arad, Glauberman)[6, Proposition 1, p313] Let G be a finite group and

let A 6 G have maximum possible order subject to being abelian of odd order. Suppose

B 6 G is nilpotent of odd order normalized by A. Then AB is nilpotent.

The proof can be found in Chapter 3 (Theorem 3.5). We are led into making the following

definition:

Let G be a finite group. Then

dO(G) = max {|A| | A 6 G is abelian of odd order};
AO(G) = {A 6 G | A is abelian and |A| = dO(G)};
MaxNO(G) = {I 6 G | I is maximal subject to being nilpotent of odd order};
NIO(G) = {I ∈ MaxNO(G) | I contains an element of AO(G)}.

Arad and Glauberman’s Theorem, together with the results proved on nilpotent injectors,

suggest that elements of NIO(G), which we call odd nilpotent injectors, may be

conjugate in various classes of groups. Further motivation to study NIO(G) is given by

Bender in [11] where he observes that if G is soluble and A ∈ AO(G) then any 2-subgroup
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normalized by A is contained in O2(G) (see Theorem 3.19), and says, “I have a feeling

that abelian 2′-subgroups of maximal order could be interesting objects in arbitrary finite

groups”.

The majority of this thesis is devoted to the study of odd nilpotent injectors. In Chapter

4 we prove that they form a single conjugacy class inside minimal simple groups, a special

case of the groups considered by Flavell in [4]. In Chapter 6 we calculate the elements of

AO(GU3(q)) and AO(SU3(q)) explicitly and prove that NIO(GU3(q)) and NIO(SU3(q))

form single conjugacy classes. In Chapter 7 we consider a minimal counterexample to the

conjecture that the odd nilpotent injectors of an arbitrary finite group are all conjugate

and show that such a group must have a component which cannot be of alternating type,

except possibly 3 · A6 or 3 · A7.

Chapter 5 does not concern odd nilpotent injectors. When Bialostocki conjectured in

[13] that nilpotent injectors always formed a single conjugacy class, he also made a more

general conjecture. First we need a generalization of NI(G).

Let G be a finite group and let π be a set of primes. Then

d2,π(G) = max {|A| | A 6 G is a nilpotent π-subgroup of class at most 2};
A2,π(G) = {A 6 G | A is nilpotent of class at most 2 and |A| = d2,π(G)};
MaxNπ(G) = {I 6 G | I is maximal subject to being a nilpotent π-subgroup};
NIπ(G) = {I ∈ MaxNπ(G) | I contains an element of A2,π(G)}.

Elements of NIπ(G) are called π-nilpotent injectors. Bialostocki’s conjecture was that

NIπ(G) always formed a single conjugacy class. Of course, the fact that this is not true of

NI(G) makes the conjecture false. In Chapter 5 we make some progress towards proving

the conjecture for minimal simple groups.
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Chapter 2

Preliminaries

All groups and vector spaces considered in this thesis are finite.

We often use the letters G and p without explicitly defining them. Whenever this happens

G is to be taken as an arbitrary group and p as an arbitrary prime.

A result which is either already known or assumed to be so will be called a lemma or

a theorem. A result which is thought to be original will be called a proposition or a

theorem, and the two types of theorem will be distinguished by a reference being given

in the former case.

2.1 Notation and Assumed Results

Let H be a subgroup of G and let σ and τ each be a set of primes. We use the following

notation, most of which is standard:

π(G) = the set of prime divisors of |G|;
Max(G) = the set of maximal subgroups of G;

Oσ(G) = the largest normal σ-subgroup of G;

O(G) = O2′(G);

Oσ,τ (G) = the inverse image of Oτ (G/Oσ(G)) in G;

F (G) = the Fitting subgroup of G;
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Fσ(G) = Oσ(F (G));

Fσ,τ (G) = the inverse image of Fτ (G/Oσ(G)) in G;

Φ(G) = the Frattini subgroup of G;

Ω(G) = the group generated by the elements of order p for a p-group G;

IG(H, σ) = the set of all σ-subgroups of G which are normalized by H;

I∗G(H, σ) = the set of maximal elements of IG(H, σ) with respect to inclusion.

We remark that if σ (or τ) consists of a single prime then we write that prime in place of

σ (or τ).

Given N E G we use the bar notation for the quotient group G/N . That is, we set

G = G/N , meaning that for any H 6 G or any g ∈ G we let H be the group HN/N

and g be the coset Ng. When we make a statement of the form “let H 6 G”, we are not

defining a subgroup H of G, just a subgroup H of G. By the Correspondence Theorem

there is a unique subgroup H of G containing N which maps onto H. This will be called

the inverse image of H in G. More generally, if K 6 G and H 6 K then the group

H ∩K is called the inverse image of H in K, where H is the inverse image of H in

G. Corollary 2.3 shows that both inverse images map onto H, justifying the definition.

Lemma 2.1 [2, 1.14, p6] Let A,B and C be subgroups of a group G. Suppose A 6 C.

Then AB ∩ C = A(B ∩ C).

Lemma 2.2 Let N E G and set G = G/N . Let H,K 6 G and suppose N is contained

in H or K. Then H ∩K = H ∩K.

Proof. Without loss of generality assume N 6 H. We have H ∩K 6 H∩K. Furthermore,

Lemma 2.1 allows us to make the following calculation: |H ∩K| = |(H ∩ K)N |/|N | =

|H ∩ KN |/|N | = |H||KN |/|N ||HKN | = |H/N ||KN/N |/|HK/N | = |H||K|/|HK| =

|H ∩K|. ¤
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Corollary 2.3 Let N E G and set G = G/N . Let H 6 G and let K 6 G such that

H 6 K. Let H be the inverse image of H in G and let H1 be the inverse image of H in

K. Then H = H1.

Proof. Immediate from the lemma because H contains N and H 6 K. ¤

Lemma 2.4 (Frattini Argument) [3, 3.1.4, p58] Let G act on a set X and suppose H 6 G

acts transitively on X. Then G = StabG(x)H for any x ∈ X.

Lemma 2.5 [1, 3.2.2, p64] An abelian group with a faithful irreducible representation is

cyclic.

Theorem 2.6 [1, 5.1.1, p173] G = 〈Φ(G), x1, ..., xn〉 if and only if G = 〈x1, ..., xn〉.

Lemma 2.7 [1, 5.1.3, p174] Let P be a p-group. Then P/Φ(P ) is elementary abelian.

Theorem 2.8 (Burnside) [1, 5.1.4, p174] Let P be a p-group and ψ a p′-automorphism

of P . If [ψ, P/Φ(P )] = 1 then [ψ, P ] = 1.

Theorem 2.9 [1, 5.2.3, p177] Let G act coprimely on the abelian group A. Then A =

CA(G)× [A,G]. In particular, if G acts coprimely on a vector space V then V = CV (G)⊕
[V, G].

Theorem 2.10 [3, 8.2.7, p187] Let G act coprimely on a group H and suppose at least

one of G and H is soluble. Then H = [H, G]CH(G).

Lemma 2.11 (Thompson P ×Q Lemma) [1, 5.3.4, p179] Let P be a p-group and let Q

be a p′-group such that P ×Q acts on the p-group G. If [CG(P ), Q] = 1 then [G, Q] = 1.
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Lemma 2.12 [1, 5.4.10, p199] [4, 2.11, p411] Let p be an odd prime and let P be a

p-group.

(i) If P does not contain a noncyclic abelian normal subgroup then P is cyclic;

(ii) If Q E P contains noncyclic abelian normal subgroups then one of them is

normal in P.

Theorem 2.13 [1, 6.1.3, p218] Let G be soluble. Then CG(F (G)) 6 F (G).

Theorem 2.14 (Schur-Zassenhaus Theorem) [1, 6.2.1, p221] Let N E G such that |N |
and |G/N | are coprime. Then there exists a complement to N in G. Moreover, if N or

G/N is soluble then all such complements are conjugate.

Theorem 2.15 [1, 6.2.2(i), p224] Let the group H act coprimely on G, and suppose at

least one of G and H is soluble. Then for any prime p there exists a Sylow p-subgroup of

G that is left invariant by H.

Definition 2.16 Let G and H be as in the above theorem. Then we denote the set of

H-invariant Sylow p-subgroups of G by Sylp(G; H).

Theorem 2.17 [1, 6.2.4, p225] Let the noncyclic abelian π-group A act on the π′-group

G. Then G = 〈CG(a)|a ∈ A#〉.

Theorem 2.18 [3, 8.3.4(c), p193] Let V ∼= Zp × Zp act coprimely on G. Then [G, V ] =

〈[CG(v), V ]|v ∈ V #〉.

Theorem 2.19 [3, 8.2.7, p187] Let H be a group acting coprimely on G and suppose at

least one of H and G is soluble. Then [G,H, H] = [G,H].

Lemma 2.20 [3, 8.2.2(a), p184] Let H be a group acting on G and let N be a normal

H-invariant subgroup of G. Suppose that |H| and |N | are coprime and that at least one

of H and N is soluble. Set G = G/N . Then CG(H) = CG(H).
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Definition 2.21 Let n ∈ N and let π be a set of primes. Then (n)π denotes the largest

π-factor of n. We drop the brackets when considering the order of a group, i.e., we write

|G|π instead of (|G|)π.

Definition 2.22 Let π be a set of primes. A subgroup H of G is a Hall π-subgroup if

|H| = |G|π. We denote the set of Hall π-subgroups by Hallπ(G).

Theorem 2.23 (Hall’s Theorem) [1, 6.4.1, p231] Let G be soluble and let π be a set of

primes. Then

(i) G contains a Hall π-subgroup;

(ii) the Hall π-subgroups of G are all conjugate;

(iii) every π-subgroup of G is contained in a Hall π-subgroup of G.

Lemma 2.24 (Goldschmidt) [2, 31.15, p159] Let G be soluble and let P be a p-subgroup

of G. Then Op′(NG(P )) 6 Op′(G).

2.2 General Results

Lemma 2.25 Let D ∼= Z3
p act on the nontrivial p′-groups X and Y . Then there exists

d ∈ D# such that CX(d) 6= 1 6= CY (d).

Proof. Choose a counterexample with |X| + |Y | as small as possible. Then D acts

irreducibly on X. By Theorem 2.15 we see that X is a q-group for some prime q,

and it follows that X is elementary abelian because Ω(Z(X)) 6= 1 is D-invariant. So

D = D/CD(X) has a faithful irreducible representation, which implies that D is cyclic

by Lemma 2.5. Thus D ∼= Zp and CD(X) ∼= Z2
p. Similarly, CD(Y ) ∼= Z2

p, so we must have

|CD(X) ∩ CD(Y )| > p. ¤

Lemma 2.26 Let P be a p-group which contains a noncyclic abelian normal subgroup.

Then P has a normal subgroup isomorphic to Zp × Zp.
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Proof. Let A E P be noncyclic abelian. Then Ω(A) E P is also noncyclic abelian. Let

B 6 Ω(A) ∩ Z(P ) have order p and set P = P/B. Then 1 6= Ω(A) E P , so we can take

C 6 Ω(A) ∩ Z(P ) of order p. Let C be the inverse image of C in P . Then C E P and

|C| = p2. Since C 6 Ω(A) it must be the case that C ∼= Zp × Zp. ¤

Lemma 2.27 Let P be a p-group acting on the cyclic p′-group G. Assume p is larger

than any prime divisor of |G|. Then P acts trivially on G.

Proof. Suppose not, so that [P, G] 6= 1. Pick q such that [P,Oq(G)] 6= 1. Then Theorem

2.8 implies that

[P,Oq(G)/Φ(Oq(G))] 6= 1.

Since G is cyclic we have Oq(G)/Φ(Oq(G)) ∼= Zq by Lemma 2.7. But then p divides

|Aut(Zq)| = q − 1, a contradiction since p > q. ¤

Lemma 2.28 Let H be a group acting coprimely on the soluble group K. If [H,F (K)] = 1

then [H, K] = 1.

Proof. Let G = H nK. Then since H 6 CG(F (K)) and CG(F (K)) E G we get [K, H] 6

K∩CG(F (K)) = CK(F (K)) 6 F (K). Hence [K, H,H] 6 [F (K), H] = 1, giving [K,H] =

1 by Lemma 2.19. ¤

Lemma 2.29 (Bender) Let M and H be maximal subgroups of the simple group G. Sup-

pose that M and H are soluble and that F (M) 6 H and F (H) 6 M . Then M = H or

there exists a prime p such that F (M) = Op(M) and F (H) = Op(H).

Proof. Let p and q be distinct primes. Then [Op(M),Oq(H)] 6 Op(M) ∩ Oq(H) = 1.

Therefore π(F (M)) ⊆ π(F (H)), since if p is in π(F (M)) but not in π(F (H)) then 1 6=
Op(M) 6 CH(F (H)) 6 F (H), a contradiction. Similarly π(F (H)) ⊆ π(F (M)), so

π(F (M)) = π(F (H)).
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Let p ∈ π(F (M)). Then F (Op′(H)) 6 F (H) because Op′(H) E H, and it follows

that F (Op′(H)) = Fp′(H). Since [Op(M), Fp′(H)] 6 Op(M) ∩ Fp′(H) = 1 we get

[Op(M), F (Op′(H))] = 1. Lemma 2.28 then yields

[Op(M),Op′(H)] = 1,

and so Op′(H) 6 NG(Op(M)) = M . Hence Op′(H) 6 NM(Op(H)). Moreover, Op′(H)

is normal in NM(Op(H)) since NM(Op(H)) 6 NG(Op(H)) = H, therefore Op′(H) 6

Op′(NM(Op(H))). By Goldschmidt’s Lemma (2.24) we have Op′(NM(Op(H))) 6 Op′(M),

and we conclude that

Op′(H) 6 Op′(M).

We now repeat the argument with the roles of M and H switched to deduce that Op′(H) =

Op′(M). The result follows, because either Op′(M) 6= 1, in which case H = NG(Op′(H)) =

NG(Op′(M)) = M or Op′(M) = 1 and p was the only prime in π(F (M)) = π(F (H)) ¤

Lemma 2.30 (Bender) Assume the hypothesis of Lemma 2.29, except replace the condi-

tion F (H) 6 M with π(F (H)) ⊆ π(F (M)). Then the conclusion still holds.

Proof. Let q ∈ π(F (H)) and let p be a prime distinct from q. Then Oq(M) 6= 1, so

COq(H)(Oq(M)) 6 NG(Oq(M)) = M . This implies that

[COq(H)(Oq(M)),Op(M)] 6 Op(M) ∩ Oq(H) = 1,

and Thompson’s P ×Q Lemma gives

[Oq(H),Op(M)] = 1. (†)

It follows that π(F (H)) = π(F (M)), because if p ∈ π(F (M))\π(F (H)) then 1 6=
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Op(M) 6 CH(F (H)) 6 F (H).

If |π(F (H))| = 1 then we are done, so we may assume |π(F (H))| > 2. Then by (†) we

have Oq(H) 6 NG(Fq′(M)) = M and Fq′(H) 6 NG(Oq(M)) = M . Hence F (H) 6 M

and Lemma 2.29 provides the result. ¤

Theorem 2.31 (Bender) Let G be a simple group and let M and H be maximal subgroups

of G. Suppose M and H are soluble and let π = π(F (M)). Assume π(F (H)) ⊆ π and

X 6 F (M) ∩H such that CF (M)(X) 6 X. Then M = H or there exists a prime p such

that F (H) = Op(H) and F (M) = Op(M).

Proof. If |π| = 1 then we are done because |π(F (H))| > 1, so we may take distinct primes

p ∈ π and q ∈ π(F (H)). Since

Z(F (M)) 6 CF (M)(X) 6 X 6 H,

we see that Z(Op(M)) × Z(Oq(M)) acts on Oq(H). We have COq(H)(Z(Oq(M))) 6

NG(Z(Oq(M))) = M , so

[COq(H)(Z(Oq(M))), Z(Op(M))] 6 [M,Op(M)] ∩ [Oq(H), Z(F (M))]

6 Op(M) ∩ Oq(H) = 1.

Thompson’s P ×Q Lemma then gives

[Oq(H), Z(Op(M))] = 1. (†)

We deduce that π(F (H)) = π, because (†) holds for every prime q ∈ π(F (H)) distinct

from p, so if p /∈ π(F (H)) then Z(Op(M)) 6 CH(F (H)) 6 F (H), a contradiction.

It now follows from (†) and the fact that |π| > 2 that Op(H) 6 NG(Z(Fp′(M))) = M

and Fp′(H) 6 NG(Z(Op(M))) = M . Hence F (H) 6 M , and because π = π(F (H)) the
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previous lemma applies (with the roles of H and M switched). ¤

Lemma 2.32 Let H,K 6 G have odd order and suppose the images of H and K inside

G/O2(G) are conjugate. Then H and K are conjugate in G.

Proof. By hypothesis there exists g ∈ G such that HgO2(G) = KO2(G). It follows

from the theorem of Schur-Zassenhaus that Hg is conjugate to K since they are both

complements to O2(G) in KO2(G), and O2(G) is soluble. ¤

A standard application of the next two results is where G is soluble and F = F (G). We

use a more general hypothesis in order to apply Proposition 2.34 to prove Theorem 3.11.

Lemma 2.33 Let H, K 6 G be nilpotent and suppose F 6 H ∩K such that CG(F ) 6 F

and F E G. Then for any distinct primes p and q we have [Op(H),Oq(K)] = 1.

Proof. Let p and q be distinct primes. Then

Op(H) 6 CG(Op′(F )) E G

and

Oq(K) 6 CG(Oq′(F )) E G,

so we get

[Op(H),Oq(K)] 6 CG(Op′(F )) ∩ CG(Oq′(F )) = CG(F ) = Z(F ).

So Oq(K) normalizes Z(F )Op(H). Since Z(F )Op(H) is nilpotent it follows that

Oq(K) normalizes Op(Z(F ))Op(H),
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as this is the unique Sylow p-subgroup of Z(F )Op(H). By symmetry Op(H) normalizes

Oq(Z(F ))Oq(K). Hence

[Op(H),Oq(K)] 6 [Op(H),Oq(Z(F ))Oq(K)] ∩ [Op(Z(F ))Op(H),Oq(K)]

6 Oq(Z(F ))Oq(K) ∩ Op(Z(F ))Op(H) = 1.

and we are done. ¤

Proposition 2.34 Let I, J ∈ MaxNO(G) and suppose F 6 I ∩ J such that CG(F ) 6 F

and F E G. Then I and J are conjugate.

Proof. First note that π(F ) = π(I), since if p is in π(I) but not in π(F ) then 1 6= Op(I) 6

CG(F ) 6 F , contradicting the choice of p. Set π = π(I) = π(F ) = π(J) and choose p ∈ π.

Then [Op(I),Op′(J)] = 1 by Lemma 2.33.

We now let

C(σ) = CG(Oσ(I)) ∩ CG(Oσ(J))

for any set of primes σ, and observe that, by what we have just argued, Op(I) 6 C(p′).

By symmetry we also have Op(J) 6 C(p′). The maximality of I implies

Op(I) ∈ Sylp(C(p′))

as C(p′) 6 CG(Op′(I)). Also Op(J) ∈ Sylp(C(p′)).

Let π = {p1, ..., pr} so that I = Op1(I)× ...×Opr(I) and J = Op1(J)× ...×Opr(J). Then

there exists an element of C(p′1) conjugating Op1(I) to Op1(J) whilst fixing Op′1(I) and

Op′1(J). So

Op1(I)×Op2(I)× ...×Opr(I)

is conjugate to

Op1(J)×Op2(I)× ...×Opr(I).
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Similarly, there exists an element of C(p′2) which conjugates Op2(I) to Op2(J) whilst fixing

Op′2(I) and Op′2(J), so

Op1(J)×Op2(I)× ...×Opr(I)

is conjugate to

Op1(J)×Op2(J)× ...×Opr(I).

Continue the argument to conclude that I is conjugate to J . ¤
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Chapter 3

Odd Nilpotent Injectors

Throughout this chapter and the next whenever we have a group G we use π to denote

the set of prime divisors of dO(G).

3.1 Arbitrary Groups

The first two propositions are obvious.

Proposition 3.1 Let A ∈ AO(G) and let B 6 G be of odd order. Then CB(A) 6 A.

Proposition 3.2 Let A ∈ AO(G) and I ∈ NIO(G). If A 6 H 6 G then A ∈ AO(H)

and if I 6 H 6 G then I ∈ NIO(H).

Proposition 3.3 Let A ∈ AO(G). Then π = π(A) = π(I) for any I ∈ NIO(G).

Proof. Since elements of AO(G) all have the same order it suffices to assume A 6 I. The

result then follows from Proposition 3.1 since I is nilpotent of odd order. ¤

Proposition 3.4 Let H be a group. Then

(i) AO(G×H) = {AG × AH | AG ∈ AO(G), AH ∈ AO(H)};
(ii) NIO(G×H) = {IG × IH | IG ∈ NIO(G), IH ∈ NIO(H)}.
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Proof. Let φG : G × H −→ G and φH : G × H −→ H be the projection maps and let

A ∈ AO(G × H). Then AφG × AφH is abelian of odd order and A 6 AφG × AφH . So

A = AφG×AφH and (i) follows because clearly dO(G)dO(H) 6 dO(G×H). The proof of

(ii) is similar. ¤

Theorem 3.5 (Arad, Glauberman) [6, Proposition 1, p313] Let A ∈ AO(G) and let

B 6 G be nilpotent of odd order normalized by A. Then AB is nilpotent.

Theorem 3.6 Let I ∈ NIO(G). Then I contains every nilpotent subgroup of G of odd

order that it normalizes.

Proof. Suppose false and let B 6 G be nilpotent of odd order normalized by I but with

B 
 I. Choose B to be minimal with this property. If B is not a p-group then for

some prime p we have B = Op(B) × Op′(B) with 1 < Op(B),Op′(B) < B. Since both

direct factors are normalized by I, the minimality of B implies Op(B),Op′(B) 6 I, giving

B 6 I. Since B 
 I we deduce that B is a p-group for some prime p.

Let A ∈ AO(G) with A 6 I. By Theorem 3.5 we see that AB is nilpotent, so CB(Op′(A)) =

B. This observation, together with Proposition 3.1 and the fact that Op(A) 6 Op(I),

yields

CB(Op(I)) 6 CB(Op(A)) = CB(A) 6 A.

Thus CB(Op(I)) 6 I, so [CB(Op(I)),Op′(I)] = 1. The P ×Q Lemma implies that

[B,Op′(I)] = 1.

Hence IB is nilpotent, and the maximality of I gives B 6 I. This contradiction completes

the proof. ¤

16



Proposition 3.7 Let A ∈ AO(G) and let I ∈ MaxNO(G). Set G = G/O2(G). Then

(i) A ∈ AO(G);

(ii) I ∈ MaxNO(G).

In particular, if I ∈ NIO(G) then I ∈ NIO(G).

Proof. (i) Since A has odd order we see that A ∼= A, so A is abelian of odd order. Suppose

A /∈ AO(G). Then there exists A1 ∈ AO(G) such that

|A1| > |A|.

Let A1 be the inverse image of A1 in G. Then since O2(G) is a normal Sylow 2-subgroup

of A1, the Schur-Zassenhaus theorem implies the existence of a complement C to O2(G)

in A1. We have C ∼= C = A1, so C is abelian of odd order, and

|C| = |A1| > |A| = |A|,

contradicting the maximality of |A|.
(ii) Suppose I /∈ MaxNO(G). Then I < I1 ∈ MaxNO(G). Let I1 be the inverse image of

I1 in G. The Schur-Zassenhaus theorem again gives us a complement K to O2(G) in I1,

and by Hall’s Theorem we may assume I 6 K. Again we have K ∼= K = I1. So K is

nilpotent of odd order with I < K. This contradicts the maximality of I. ¤

We define the set NO(G) to be the set of subgroups of G which are nilpotent of odd order

and contain every nilpotent subgroup of odd order that they normalize. So NIO(G) ⊆
NO(G).

The next two results are applied only in the last chapter on components. Observe that

Theorem 3.9 is a statement about NO(G) rather than NIO(G). The reason for this is
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that if I ∈ NO(G) then I/O(Z(G)) ∈ NO(G/O(Z(G))), whereas the same cannot be said

of NIO(G). Following this theorem we make no further mention of NO(G).

Lemma 3.8 Let Z 6 Z(G) and set G = G/Z.

(i) If I ∈ MaxNO(G) then I ∈ MaxNO(G);

(ii) If I ∈ MaxNO(G) then I ∈ MaxNO(G) where I is a Hall 2′-subgroup of the

inverse image of I in G;

(iii) If I ∈ NO(G) then I ∈ NO(G);

(iv) If I ∈ NO(G) then I ∈ NO(G) where I is a Hall 2′-subgroup of the inverse

image of I in G.

Proof. A central extension of a nilpotent group is nilpotent. ¤

Theorem 3.9 [5, I.4.3, p20] Let I ∈ NO(G) and let H E G. Then I ∩H ∈ MaxNO(H).

Proof. Let G be a counterexample in which |G|+ |H| is minimized. So G = HI.

Suppose Z = O(Z(G)) 6= 1 and set G = G/Z. Then I ∈ NO(G) by Lemma 3.8(iii), and

the minimality of |G| implies

I ∩H ∈ MaxNO(H).

Now, since Z 6 I Lemma 2.2 implies I ∩H = I ∩H, so I ∩H ∈ MaxNO(H). The inverse

image of I ∩H in G is (I ∩H)Z, which is nilpotent of odd order. So

(I ∩H)Z ∈ MaxNO(HZ) (†)

by Lemma 3.8(ii). Let I ∩H < K ∈ MaxNO(H). Then (I ∩H)Z 6 KZ and KZ 6 HZ

is nilpotent of odd order, so (I ∩H)Z = KZ by (†). This implies |I ∩H||Z|/|I ∩H ∩Z| =
|K||Z|/|K ∩Z|, which gives |I ∩H|/|H ∩Z| = |K|/|K ∩Z|. Since I ∩H < K it must be
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the case that |H ∩ Z| < |K ∩ Z|. But K ∩ Z 6 H ∩ Z, a contradiction. Hence

O(Z(G)) = 1.

If O(Z(H)) 6= 1 then since O(Z(H)) E I we get 1 6= O(Z(H)) ∩ Z(I) 6 O(Z(G)) = 1.

Thus O(Z(H)) = 1.

Suppose |I| and |H| are coprime. Then for each prime p ∈ π(H) there exists an I-

invariant Sylow p-subgroup P of H by Theorem 2.15. If p 6= 2 then by definition of I we

have P 6 I, so we deduce that π(H) = {2}. It is clear that I ∩H ∈ MaxNO(H) in this

case. Therefore we can pick a prime

q ∈ π(I) ∩ π(H).

Now, Oq(I) permutes the Sylow q-subgroups of H, and since |Sylq(H)| ≡ 1 mod q there

exists an Oq(I)-invariant Sylow q-subgroup Q of H. Then CQ(Oq(I)) 6= 1, in particular

C = CH(Z(Oq(I))) 6= 1.

We see that I normalizes C, and because O(Z(G)) = 1 it must be the case that IC < G.

The minimality of G now gives I ∩C ∈ MaxNO(C). As C contains elements of odd order

we get I ∩ C 6= 1, giving I ∩H 6= 1.

Suppose I ∩H is not normal in H and consider INH(I ∩H). By the minimality of |H|
we see that I ∩ NH(I ∩ H) ∈ MaxNO(NH(I ∩ H)). However, I ∩ NH(I ∩ H) = I ∩ H,

giving I ∩H ∈ MaxNO(NH(I ∩H)) and I ∩H ∈ MaxNO(H), a contradiction. Thus

I ∩H E H.
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By definition of I we have F = O(F (H)) 6 I, therefore I ∩H = F .

Let F < J ∈ MaxNO(H) and let p be such that Op(F ) < Op(J). Then

CF (Op′(F )) = Op(F )Z(Op′(F )) < Op(J)Z(Op′(F )). (†)

Suppose Op′(F ) 6= 1. We see that I normalizes CH(Op′(F )), and since O(Z(H)) =

1 it must be the case that CH(Op′(F )) < H. So by the minimality of |H| we have

I ∩ CH(Op′(F )) ∈ MaxNO(CH(Op′(F ))). Since I ∩ CH(Op′(F )) = CF (Op′(F )) we get

CF (Op′(F )) ∈ MaxNO(CH(Op′(F ))), contradicting (†). Thus Op′(F ) = 1 and

F = Op(H).

By the same argument as before, the minimality of H gives us I∩CH(F ) ∈ MaxNO(CH(F )),

and clearly I ∩ CH(F ) = Z(F ). This implies that

Z(F ) = CH(F ),

for if h ∈ CH(F )\Z(F ) then Z(F ) < 〈Z(F ), h〉 6 CH(F ), and 〈Z(F ), h〉 is nilpotent of

odd order.

Now,

[Op′(I)Z(F ), H] 6 [CG(F ), H] 6 H ∩ CG(F ) = CH(F ) = Z(F ), (∗)

so H normalizes Op′(I)Z(F ). Moreover, H normalizes Op′(Op′(I)Z(F )) = Op′(I). To-

gether with (∗) this yields

[Op′(I), H] 6 Z(F ) ∩ Op′(I) = 1.

Since G = HI we conclude that Z(Op′(I)) 6 O(Z(G)) = 1 and I is a p-group. Therefore
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I ∈ Sylp(G), and I ∩ H = F ∈ Sylp(H) because H E G. This contradicts the fact that

F < Op(J) 6 H. ¤

Proposition 3.10 Let H 6 G have odd order and let C = CG(H). Then C = Z(H)O2(C)

if and only if H contains every element of odd order that it centralizes.

Proof. The left to right implication follows from the fact that Z(H)O2(C) is a direct

product. For the other implication, by hypothesis we see that Z(H) ∈ Hall2′(C), so

for any S ∈ Syl2(C) we have C = Z(H)S. Finally observe that S = O2(C) because

[S, Z(H)] = 1. ¤

The following result is based upon a theorem of Lausch [10].

Theorem 3.11 Let I, J ∈ MaxNO(G), let C = CG(I ∩ J) and suppose C = Z(I ∩
J)O2(C). Then I and J are conjugate.

Proof. Let G be a counterexample of minimal order and pick I and J to contradict

the theorem whilst maximizing |I ∩ J |. Since I 6= J we have I ∩ J < NI(I ∩ J) and

I ∩ J < NJ(I ∩ J). Suppose N = NG(I ∩ J) < G. Choose I1, J1 ∈ MaxNO(N) with

NI(I ∩ J) 6 I1 and NJ(I ∩ J) 6 J1. If x ∈ CN(I1 ∩ J1) has odd order then x ∈ CG(I ∩ J)

giving

x ∈ I ∩ J 6 I1 ∩ J1,

and Proposition 3.10 implies that I1, J1 and N satisfy the hypothesis of the theorem. So

by the minimality of |G|, there exists n ∈ N such that In
1 = J1. Let I2, J2 ∈ MaxNO(G)

with I1 6 I2 and J1 6 J2. Then

I ∩ J < NI(I ∩ J) 6 I ∩ I2

and

I ∩ J < NJ(I ∩ J) 6 J ∩ J2.
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The choice of I and J implies that I is conjugate to I2 and J is conjugate to J2. (†)
Now, NI(I ∩ J) 6 I1 6 I2, so

NI(I ∩ J)n 6 In
1 6 In

2 .

Since In
1 = J1 we also have NI(I ∩ J)n 6 J1 6 J2. This gives

NI(I ∩ J)n 6 In
2 ∩ J2,

and again by choice of I and J we deduce that In
2 is conjugate to J2. Together with (†),

this implies that I is conjugate to J , a contradiction. Hence I ∩ J E G.

Now assume O2(G) 6= 1 and set G = G/O2(G). Then I, J ∈ MaxNO(G) by Proposition

3.7. Let x ∈ CG(I∩J). We have I ∩ J 6 I∩J , so CG(I∩J) 6 CG(I ∩ J), and by Lemma

2.20 also CG(I ∩ J) = CG(I ∩ J). So

x ∈ CG(I ∩ J) = Z(I ∩ J)O2(C) = Z(I ∩ J),

the last equality because O2(C) = O2(G) as I ∩ J E G . Therefore I ∩ J contains its own

centralizer inside G, and the minimality of |G| implies that I is conjugate to J . Lemma

2.32 then provides a contradiction. So O2(G) = 1 and the hypothesis of Proposition 2.34

is satisfied with F = I ∩ J . This final contradiction completes the proof. ¤

Corollary 3.12 If A ∈ AO(G) and A 6 I, J ∈ NIO(G) then I and J are conjugate.

Proof. Let x ∈ CG(I ∩ J) have odd order. Then x ∈ CG(A) implies x ∈ A 6 I ∩ J .

So I ∩ J contains every element of odd order that it centralizes, and Proposition 3.10

completes the hypothesis of the previous theorem. ¤

We only ever apply the next corollary for I1, J1 ∈ NIO(〈A,B〉)
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Corollary 3.13 Let A,B ∈ AO(G) and let I, J ∈ NIO(G) such that A 6 I and B 6 J .

Let I1, J1 6 〈A,B〉 be nilpotent of odd order containing A and B respectively and assume

I1 and J1 are conjugate. Then I and J are conjugate.

Proof. Let g ∈ G such that I1 = Jg
1 . Let I1 6 I2 ∈ NIO(G). Then Bg 6 I1 6 I2.

Corollary 3.12 implies that I2 is conjugate to both I and Jg. ¤

Lemma 3.14 Let I ∈ NIO(G) and suppose Zp × Zp
∼= V E I. Let A ∈ AO(I). Then

CA(V )V ∈ AO(I). In particular, V is contained in an element of AO(I).

Proof. If V 6 A then CA(V )V = A and the lemma holds, so suppose V 
 A. Since

A contains every element of odd order that it centralizes we see that [V, A] 6= 1, so

[V,Op(A)] 6= 1. Hence Op(A)/COp(A)(V ) acts faithfully and nontrivially on V , giving

Op(A)/COp(A)(V ) ∼= Zp

because a Sylow p-subgroup of Aut(Zp×Zp) has order p. Then V 
 A implies |COp(A)(V )|
< |COp(A)(V )V |, forcing COp(A)(V )VOp′(A) ∈ AO(I). We finally note that

COp(A)(V )Op′(A) = CA(V ). ¤

3.2 Soluble Groups

Theorem 3.15 Suppose one of the following holds:

(i) G is soluble;

(ii) CG(F (G)) 6 F (G) and O2(G) = 1.

Then NIO(G) is a single conjugacy class of subgroups.
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Proof. We may assume O2(G) = 1 in both cases by Lemma 2.32 and Proposition 3.7.

Let I, J ∈ NIO(G). Then F (G) 6 I ∩ J by Theorem 3.6, and the result follows from

Proposition 2.34, taking F = F (G). ¤

Lemma 3.16 (Mann) [16] Let G be soluble and suppose O2(G) = 1. For each p ∈ π(G)

pick Sp ∈ Sylp(CG(Fp′(G))). Then 〈Sp|p ∈ π(G)〉 is the direct product of the groups Sp

and 〈Sp|p ∈ π(G)〉 ∈ NIO(G). Moreover, every element of NIO(G) is of this form.

Proof. If |π(G)| = 1 then the result is clear, so assume |π(G)| > 2 and take distinct primes

p, q ∈ π(G). Let P ∈ Sylp(CG(Fp′(G))) and Q ∈ Sylq(CG(Fq′(G))). We have

F (G) 6 PFp′(G) ∩QFq′(G)

with both PFp′(G) and QFq′(G) nilpotent. Then [P, Q] = 1 by Lemma 2.33, taking F =

F (G). This proves that 〈Sp|p ∈ π(G)〉 is the direct product of the groups Sp as claimed.

Now, let I ∈ NIO(G). By Theorem 3.6 we have F (G) 6 I, so Op(I) 6 CG(Fp′(G)). Let

Op(I) 6 P ∈ Sylp(CG(Fp′(G))). Then PFp′(G) is nilpotent of odd order, so we may take

PFp′(G) 6 J ∈ MaxNO(G).

Proposition 2.34 implies that I is conjugate to J , so Op(I) is isomorphic to Op(J). Since

Op(I) 6 P 6 Op(J) it follows that Op(I) = P . Thus the elements of NIO(G) have the

required form, and the statement that 〈Sp|p ∈ π(G)〉 ∈ NIO(G) follows. ¤

Corollary 3.17 (Mann) [16] Let G be soluble. If I ∈ NIO(G) and Op(I) 6 P ∈ Sylp(G)

then Op(I) E P .

Proof. Since P is isomorphic to its image inside G/O2(G), it suffices to prove the result

in the case O2(G) = 1. In this case Op(I) ∈ Sylp(CG(Fp′(G))) by Lemma 3.16, then

CG(Fp′(G)) E G implies Op(I) = P ∩ CG(Fp′(G)), giving Op(I) E P . ¤
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Theorem 3.18 (Thompson-Bender) [9, 1.12, p9] Let G be soluble and suppose A 6 G

is an abelian p-subgroup for some odd prime p. Suppose further that A contains every

p-element of its centralizer. If Q 6 G is a p′-subgroup normalized by A then Q 6 Op′(G).

Theorem 3.19 (Bender) Let G be soluble and let A ∈ AO(G). Then I∗G(A, 2) =

{O2(G)}.

Proof. By Proposition 3.7(i) we may assume O2(G) = 1. Let R ∈ IG(A, 2) and let

p ∈ π. We see that Op(A) normalizes R and Op(A)R normalizes Op(G), so we can define

a subgroup

K = Op(A)ROp(G).

Let P ∈ Sylp(CK(Op(A))). Then Op(A) 6 P and since P 6 K we get the factorization

P = Op(A)(P ∩ROp(G))

by Lemma 2.1. It follows from the fact that Op(G) is the unique Sylow p-subgroup of

ROp(G) that P ∩ROp(G) = P ∩ Op(G), hence

P = Op(A)(P ∩ Op(G)) = Op(A)COp(G)(Op(A)).

Theorem 3.5 implies that AF (G) is nilpotent, so

COp(G)(Op(A)) = COp(G)(A) 6 A.

We conclude that P = Op(A) and Op(A) contains every p-element of its centralizer inside

K. This enables us to apply Theorem 3.18, which gives R 6 Op′(K) and [R,Op(G)] 6

Op′(K) ∩ Op(G) = 1. Since p was arbitrary, R 6 CG(F (G)) 6 F (G) giving R = 1. ¤
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Lemma 3.20 If G is soluble then G = NG(I0)O2(G) for any Hall 2′-subgroup I0 of the

inverse image of F (G/O2(G)) in G. Moreover, if I ∈ NIO(G) then I contains such a

subgroup I0 which is normal in I and π(I0) = π.

Proof. Set G = G/O2(G). The inverse image of F (G) in G contains O2(G) as a normal

Sylow 2-subgroup, so it has a complement I0 to O2(G) by the Schur-Zassenhaus Theorem.

Since F (G) E G we get

I0O2(G) E G,

and a Frattini argument yields G = NG(I0)O2(G). Now, by Proposition 3.7 and Theorem

3.6 we have F (G) 6 I, so I0 6 IO2(G) and by Hall’s Theorem I contains a conjugate of

I0. This conjugate is again a Hall 2′-subgroup of the inverse image of F (G) in G so the

required factorization of G still holds. The last statement follows from the fact that

π(I0) = π(F (G)) = π(I) = π,

with the second equality holding because I is nilpotent containing F (G) and G is soluble.

Finally, I0 is normal in I because [I0, I] 6 I0O2(G) ∩ I = I0(O2(G) ∩ I) = I0. ¤
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Chapter 4

Minimal Simple Groups

4.1 Odd Nilpotent Injectors

Definition 4.1 A minimal simple group is a nonabelian simple group all of whose proper

subgroups are soluble

Definition 4.2 Let E be an elementary abelian p-group. The rank of E, denoted m(E),

is the number of direct factors Zp of E. More formally, m(E) = logp |E|. The rank m(G)

of an arbitrary group G is defined to be the largest rank amongst all the elementary abelian

subgroups of G.

For the rest of this chapter we assume that G is a minimal simple group. An outline of

Flavell’s proof that NI(G) is a single conjugacy class ([4]) is as follows: Let I ∈ NI(G).

Then I is contained in a unique maximal subgroup L. Suppose I defies the Theorem.

Then

• there exists a subgroup Zp × Zp
∼= V E I;

• if CG(v) 6 L for every v ∈ V # then a contradiction follows;

• if there exists v ∈ V # such that CG(v) 
 L then a contradiction follows.
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The last step is by far the hardest. Fortunately in our situation the problem does not arise

because if A ∈ AO(G) and Zp×Zp
∼= V EA then A 6 CA(v) for every v ∈ V #. The same

cannot be said of A2(G) because elements of A2(G) need not be abelian. On the other

hand, an element of NIO(G) is not easily shown to be contained in a unique maximal

subgroup, whereas it follows easily from Theorem 2.31 that an element of NI(G) is.

Our proof that NIO(G) is a single conjugacy class goes as follows: Suppose I ∈ NIO(G)

contradicts the Theorem. Then

• I contains a normal subgroup isomorphic to Zp × Zp;

• some element of AO(I) has rank at least 2;

• if no element of AO(I) has rank at least 3 then some A ∈ AO(I) satisfies

|I∗G(A, 2)| = 1;

• if A ∈ AO(I) has rank at least 3 then |I∗G(A, 2)| = 1;

• I is contained in a unique maximal subgroup and a contradiction follows.

Points 3 and 4 require Thompson-transitivity arguments and Point 5 uses results of Bender

on maximal subgroups.

Proposition 4.3 Let A,B ∈ AO(G) with A 6 I ∈ NIO(G) and B 6 J ∈ NIO(G).

Suppose A,B 6 H < G. Then I and J are conjugate.

Proof. This follows from Corollary 3.13 because H is soluble. ¤

Proposition 4.4 Let I ∈ NIO(G). Suppose I is contained in a maximal subgroup L of

G with O2(L) = 1 and F (L) cyclic. Then I is conjugate to every element of NIO(G).

Proof. Let p = max π and let Op(I) 6 P ∈ Sylp(L). As F (L) is cyclic, L/CL(F (L)) =

L/Z(F (L)) is abelian and L′ 6 Z(F (L)). Since P ′ 6 L′ 6 Z(F (L)) and subgroups of
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cyclic groups are characteristic we get P ′ char Z(F (L)). Hence

P ′ char L.

Suppose P ′ = 1. Then P is abelian, so [P,Op(L)] = 1. We also have [P, Fp′(L)] = 1 by

Lemma 2.27, whence P 6 CL(F (L)) 6 F (L) and P = Op(L). Therefore NG(P ) = L and

P ∈ Sylp(G).

If P ′ 6= 1 then NG(P ) 6 NG(P ′) = L, so in all cases

P ∈ Sylp(G).

Let J ∈ NIO(G). By Sylow’s Theorem we may assume Op(J) 6 P . Then Op(J)

centralizes Fp′(L) by Lemma 2.27. Now, since O2(L) = 1 Lemma 3.16 implies that

Op(I) ∈ Sylp(CL(Fp′(L))),

and we again apply Sylow’s Theorem to assume that Op(J) 6 Op(I). It follows that for

any A ∈ AO(I) and B ∈ AO(J) we have

[Op(B),Op′(A)] = 1.

Therefore A∗ = Op(B)Op′(A) is in AO(G) with A∗ 6 I. Now observe that A∗, B 6

NG(Op(B)) < G and apply Proposition 4.3. ¤

Corollary 4.5 Let I ∈ NIO(G). Suppose I is contained in a maximal subgroup L with

O2(L) = 1. If there does not exist a subgroup Zp × Zp
∼= V E Op(L) for some prime p

then I is conjugate to every element of NIO(G).

Proof. Lemma 2.12(i) implies that F (L) is cyclic. Now apply the previous result. ¤
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Lemma 4.6 Let A ∈ AO(G) and suppose 1 6= R ∈ I∗G(A, 2). Then R = O2(M) for some

M ∈ Max(G) containing A.

Proof. Since G is simple, AR 6= G. Let AR 6 M ∈ Max(G). Then R 6 O2(M) by

Theorem 3.19, and since R is maximal in IG(A, 2) we get R = O2(M). ¤

Lemma 4.7 Let A ∈ AO(G) and let R, S ∈ I∗G(A, 2). Suppose R ∩ S 6= 1. Then R = S.

Proof. Suppose false and pick R and S to contradict the lemma whilst maximizing |R∩S|.
Since R and S are 2-groups we must have R ∩ S < NR(R ∩ S) and R ∩ S < NS(R ∩ S).

Let N = NG(R ∩ S) and note that A 6 N < G. Theorem 3.19 then implies that

I∗N(A, 2) = {O2(N)}, so

NR(R ∩ S), NS(R ∩ S) 6 O2(N).

Let O2(N) 6 R1 ∈ I∗G(A, 2). Then R1 ∩ R > NR(R ∩ S), so |R1 ∩ R| > |NR(R ∩ S)| >

|R ∩ S|, and the choice of R and S implies

R1 = R.

Similarly, |R1 ∩ S| > |NS(R ∩ S)| > |R ∩ S|, hence S = R1 = R. ¤

Lemma 4.8 Let A ∈ AO(G) and let R, S ∈ I∗G(A, 2). Suppose a ∈ A# such that CR(a) 6=
1 6= CS(a). Then R = S.

Proof. Let C = CG(a) and note that A 6 C < G. Theorem 3.19 implies that I∗C(A, 2) =

{O2(C)}, so CR(a), CS(a) 6 O2(C). Let O2(C) 6 R1 ∈ I∗G(A, 2). Then

R ∩R1 > CR(a) 6= 1 and S ∩R1 > CS(a) 6= 1,

and Lemma 4.7 yields R = R1 = S. ¤
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4.2 The Rank 1 Case

Proposition 4.9 Suppose I ∈ NIO(G) is cyclic. Then I is conjugate to every element

of NIO(G).

Proof. First we argue that for any H < G containing I we have

H = NH(I)O2(H). (†)

Set H = H/O2(H). Then F (H) 6 I, and as I is abelian and H is soluble, F (H) = I. So

I E H and IO2(H) E H. A Frattini argument now yields (†).

Let p = max π and let Op(I) 6 P ∈ Sylp(NG(I)). We have [P,Op′(I)] = 1 by Lemma

2.27 since I is cyclic. Then as Op(I) ∈ Sylp(CG(Op′(I))) we get

P = Op(I).

Let N = NG(Op(I)). Then N = NN(I)O2(N) by (†). In fact

N = NG(I)O2(N)

because NG(I) 6 NG(Op(I)) = N . So a Sylow p-subgroup of NG(I) is a Sylow p-subgroup

of N , and we deduce that Op(I) ∈ Sylp(N). Hence Op(I) ∈ Sylp(G), and we may now

take any J ∈ NIO(G) and assume that Op(J) 6 Op(I) by Sylow’s Theorem. In fact

we must have Op(J) = Op(I) because |Op(J)| is at least |Op(I)| as I ∈ AO(G). Thus

I, J 6 NG(Op(I)) < G and Theorem 3.15 provides the result. ¤

Corollary 4.10 Let I ∈ NIO(G) and suppose every element of AO(I) is cyclic. Then I

is conjugate to every element of NIO(G).
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Proof. Apply Lemmas 3.14 and 2.12(i) to deduce that I is cyclic. Then Proposition 4.9

completes the proof. ¤

4.3 The Rank 2 Case

Throughout this section we assume that no element of AO(I) has rank greater than 2 and

that at least one has rank 2. So there exists Zp × Zp
∼= V E I by Lemmas 2.12(i) and

2.26. The aim of this section is to show that one of the following holds:

• I is conjugate to every element of NIO(G);

• there exists such a V for which CG(V ) has even order;

• V does not normalize a nontrivial 2-subgroup of G.

Note that we can find some A ∈ AO(I) containing V by Lemma 3.14.

Proposition 4.11 V 6 O2,p(CG(v)) for every v ∈ V #.

Proof. Let V 6 A ∈ AO(I). We first show that V char CI(V ). Clearly

V 6 Ω = Ω(Z(Op(CI(V )))),

and by Proposition 3.1 we have Z(CI(V )) 6 A as A 6 CI(V ). So Ω 6 A. Thus m(Ω) 6 2

and since V and Ω are both elementary abelian we get

V = Ω char CI(V )

as claimed.

Let v ∈ V # and let C = CG(v). Since A 6 CI(V ) 6 C we may take K ∈ NIO(C)

containing CI(V ). We must have |I : CI(V )| = 1 or p as Aut(V ) ∼= GL2(p), and it then

follows from Corollary 3.12 that |K : CI(V )| = 1 or p as K is conjugate to a subgroup of
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I. Hence CI(V ) E K, so

V E K

by the first paragraph.

Our aim now is to show that in the quotient group C̃ = C/O2(C) we have Ṽ 6 Op(C̃).

If we were to do this we would begin by defining another quotient group C̃ of C̃. Rather

than use this confusing notation we will simply assume that O2(C) = 1.

Set C = C/〈v〉. Since O2(C) = 1 we have F (C) 6 K, so F (C) normalizes V . Therefore

F (C) normalizes V . Now, F (C) = F (C) because 〈v〉 6 Z(C), so F (C) normalizes V and

we deduce that

[F (C), V ] 6 F (C) ∩ V .

As |V | = p we have either F (C) ∩ V = V or F (C) ∩ V = 1. Both cases lead to the

conclusion that V 6 F (C), this being the case if the latter statement holds because

CC(F (C)) 6 F (C). Hence V 6 Op(C) = Op(C), and we conclude that V 6 Op(C) since

〈v〉 6 Op(C). ¤

Proposition 4.12 Let V 6 H < G and let Q ∈ IH(V, 2). Then [Q, V ] 6 O2(H).

Proof. Instead of working in H/O2(H) we assume that O2(H) = 1 and show [Q, V ] = 1.

Theorem 2.18 implies

[Q, V ] = 〈[CQ(v), V ]|v ∈ V #〉

and for any v ∈ V # we have [CQ(v), V ] 6 Q ∩ O2,p(CG(v)) 6 O2(CG(v)) by Proposition

4.11. So [CQ(v), V ] 6 O2(CG(v)) ∩H 6 O2(CH(v)). Goldschmidt’s Lemma (2.24) allows

us to deduce that O2(CH(v)) 6 Op′(H) because O2(CH(v)) 6 Op′(CH(v)), therefore

[CQ(v), V ] 6 Op′(H), giving

[Q, V ] 6 Op′(H).

Now, [CFp′ (H)(v), V ] 6 Fp′(H) ∩ O2,p(CG(v)) = 1, so by another application of Theorem
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2.18, as above, [Fp′(H), V ] = 1. Then since Fp′(H) = F (Op′(H)) we get [F (Op′(H)), V ] =

1, and Lemma 2.28 yields

[Op′(H), V ] = 1.

Hence [Q, V, V ] 6 [Op′(H), V ] = 1 and Theorem 2.19 implies [Q, V ] = 1. This concludes

the proof. ¤

Lemma 4.13 Let Q1, Q2 ∈ I∗G(V, 2). Suppose Q1∩Q2 6= 1. Then there exists c ∈ CG(V )

such that Qc
1 = Q2.

Proof. Suppose false and pick Q1 and Q2 to maximize |Q1 ∩ Q2|. Let R = Q1 ∩ Q2 and

let N = NG(R) < G. We have R < Q1, so

R < NQ1(R).

Similarly R < NQ2(R). Let R1, R2 ∈ I∗N(V, 2) and S1, S2 ∈ I∗G(V, 2) such that NQ1(R) 6

R1 6 S1 and NQ2(R) 6 R2 6 S2. Since R < NQ1(R) 6 Q1 ∩ S1, the choice of Q1 and Q2

implies that there exists c1 ∈ CG(V ) such that

Qc1
1 = S1.

Similarly, there exists c2 ∈ CG(V ) such that Qc2
2 = S2. Now, Theorem 2.10 gives us the

factorization R1 = CR1(V )[R1, V ], so by the previous proposition R1 6 CR1(V )O2(N). In

fact

R1 = CR1(V )O2(N)

because CR1(V )O2(N) is a 2-subgroup of N normalized by V . Again, we also have

R2 = CR2(V )O2(N). Next we show that CR1(V ) ∈ Syl2(CN(V )). Let CR1(V ) 6 T ∈
Syl2(CN(V )). Then R1 6 TO2(N), and again since TO2(N) is a 2-group normalized by
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V we must have R1 = TO2(N). Thus T 6 CR1(V ) giving CR1(V ) = T . So

CR1(V ), CR2(V ) ∈ Syl2(CN(V )).

Let n ∈ CN(V ) such that CR1(V )n = CR2(V ). Then

Rn
1 = CR1(V )nO2(N) = CR2(V )O2(N) = R2.

Now,

Rn < NQ1(R)n 6 Rn
1 = R2 6 S2,

and also

Rn < NQ1(R)n 6 Rn
1 6 Sn

1 .

The choice of Q1 and Q2 implies that there exists c3 ∈ CG(V ) such that Snc3
1 = S2. Hence

Q
c1nc3c−1

2
1 = S

nc3c−1
2

1 = S
c−1
2

2 = Q2,

and c1nc3c
−1
2 ∈ CG(V ). ¤

Proposition 4.14 Let Q ∈ I∗G(V, 2) and suppose v ∈ V # such that [CQ(v), V ] 6= 1. Then

[CQ(v), V ] = [O2(CG(v)), V ].

Proof. By Proposition 4.11 we have [CQ(v), V ] 6 O2,p(CG(v)) ∩Q 6 O2(CG(v)), so

[CQ(v), V ] = [CQ(v), V, V ] 6 [O2(CG(v)), V ].

Let O2(CG(v)) 6 Q1 ∈ I∗G(V, 2). Then since 1 6= [CQ(v), V ] 6 Q ∩ Q1, Lemma 4.13

applies and we can find c ∈ CG(V ) such that Qc
1 = Q. Now, CG(V ) 6 CG(v), so CG(V )
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normalizes O2(CG(v)) and

O2(CG(v)) = O2(CG(v))c 6 Qc
1 = Q.

From this we deduce that O2(CG(v)) 6 Q ∩ CG(v) = CQ(v), giving

[O2(CG(v)), V ] 6 [CQ(v), V ]

and completing the proof. ¤

Corollary 4.15 Let Q ∈ I∗G(V, 2). Then CG(V ) normalizes [Q, V ]. In particular, A

normalizes [Q, V ] for any A ∈ AO(I) containing V .

Proof. Theorem 2.18 gives

[Q, V ] = 〈[CQ(v), V ]|v ∈ V #〉
= 〈[CQ(v), V ]|v ∈ V # and [CQ(v), V ] 6= 1〉
= 〈[O2(CG(v)), V ]|v ∈ V # and [CQ(v), V ] 6= 1〉.

This is clearly normalized by CG(V ). ¤

Proposition 4.16 If CG(V ) has even order then CG(V ) is transitive on I∗G(V, 2) and for

every A ∈ AO(I) containing V we have |I∗G(A, 2)| = 1.

Proof. Let 1 6= S ∈ Syl2(CG(V )) and let S 6 Q ∈ I∗G(V, 2). We show that any other

element of I∗G(V, 2) is conjugate to Q under CG(V ).

Let Q1 ∈ I∗G(V, 2). If Q1 6 CG(V ) then Q1 is conjugate to S under CG(V ) and it must

be the case that S = Q since otherwise Q1 would not be maximal inside IG(V, 2). So Q1

is conjugate to Q in this case. Now assume [Q1, V ] 6= 1. Then there exists v ∈ V # such

that

[CQ1(v), V ] 6= 1.

36



Now, S 6 CG(V ) 6 CG(v), so we may take

SO2(CG(v)) 6 Q2 ∈ I∗G(V, 2).

Then 1 6= S 6 Q ∩ Q2, and Q is conjugate to Q2 under CG(V ) by Lemma 4.13. On the

other hand, Proposition 4.11 implies [CQ1(v), V ] 6 O2,p(CG(v)) ∩Q1 6 O2(CG(v)) 6 Q2,

so 1 6= [CQ1(v), V ] 6 Q1 ∩ Q2 and Q1 is conjugate to Q2 under CG(V ). This proves the

first statement.

Let V 6 A ∈ AO(I) and let R1, R2 ∈ I∗G(A, 2). Then we can choose Q1, Q2 ∈ I∗G(V, 2)

such that R1 6 Q1 and R2 6 Q2. By Lemma 4.8 and Theorem 2.17 we may assume

[R1, V ] 6= 1 6= [R2, V ]. Now, A normalizes [Q1, V ] by Corollary 4.15, so we can take

[Q1, V ] 6 S1 ∈ I∗G(A, 2). Then

1 6= [R1, V ] 6 [Q1, V ] ∩R1 6 S1 ∩R1

and Lemma 4.7 yields R1 = S1. So [Q1, V ] 6 R1, and similarly [Q2, V ] 6 R2. We now

pick c ∈ CG(V ) conjugating Q1 into Q2 and apply Corollary 4.15 to deduce that

[Q1, V ] = [Q1, V ]c = [Qc
1, V ] = [Q2, V ].

This implies that 1 6= [Q1, V ] 6 R1 ∩R2, and therefore R1 = R2. ¤

Proposition 4.17 Let V 6 A ∈ AO(I) and suppose CG(V ) has odd order. Then

I∗G(V, 2) = I∗G(A, 2) and CG(V ) normalizes each element of I∗G(V, 2). Furthermore, if

Zq × Zq
∼= W E I where q is a prime different from p and CG(W ) has odd order then

I∗G(V, 2) = I∗G(W, 2).

Proof. Let Q ∈ I∗G(V, 2). The factorization Q = [Q, V ]CQ(V ) implies Q = [Q, V ] since

CG(V ) has odd order, so A normalizes Q by Corollary 4.15. This allows us to deduce that
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I∗G(V, 2) = I∗G(A, 2) because V 6 A. To show that CG(V ) normalizes Q, let g ∈ CG(V ).

Then Q,Qg ∈ I∗G(V, 2). We may assume Q 6= 1, so there exists v ∈ V # such that CQ(v) 6=
1. Then also CQg(v) 6= 1. Hence Q = Qg by Lemma 4.8 since I∗G(V, 2) = I∗G(A, 2).

The final statement now follows because we can choose A to contain W as well as V by

Lemma 3.14. ¤

For the next two results we introduce the following hypothesis:

(H) The centralizer of every subgroup of the form Zq × Zq
∼= W E I has odd order

and I∗G(V, 2) 6= {1}.

We will show that if (H) holds then I is conjugate to every element of NIO(G). By

Proposition 4.16 this will achieve the goal for this section as set out at the beginning.

Let I denote I∗G(V, 2).

Proposition 4.18 Assume (H). Let q be a prime distinct from p. Suppose Zq × Zq
∼=

W E I. Then there exists a maximal subgroup M of G such that I 6 M and Sylp(M) ∩
Sylp(G) 6= ∅ or Sylq(M) ∩ Sylq(G) 6= ∅.

Proof. Suppose no such maximal subgroup exists. Amongst all maximal subgroups con-

taining I pick one which maximizes the sum of the orders of a Sylow p-subgroup and a

Sylow q-subgroup. Call this maximal subgroup M . Without loss of generality we can

assume V E P ∈ Sylp(M) and W E Q ∈ Sylq(M) by Lemma 2.12(ii) and Corollary 3.17.

So P permutes the elements of I. Since I = I∗G(A, 2), we know that I has at most p + 1

elements by Lemma 4.8 and the fact that V contains exactly p + 1 subgroups of order p.

So there are three possibilities for the lengths of the orbits of I under the action of P .

The possibilities are:
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(i) all 1;

(ii) p and 1;

(iii) p.

Now, by the previous proposition, I = I∗G(W, 2), so Q acts on I as well. Thus we also

know that I has at most q + 1 elements, as we can find B ∈ AO(I) containing W , and

I∗G(W, 2) = I∗G(B, 2). Again, there are three possibilities for the lengths of the orbits of

I under Q:

(I) all 1;

(II) q and 1;

(III) q.

So there are nine cases here, but we need only consider six of them as we can freely

interchange p and q.

Case (i):

In this case I = I∗G(P, 2) since each element of I is normalized by P and V 6 P . Therefore

NG(P ) permutes the elements of I. Both NG(V ) and NG(W ) permute the elements of I

for the same reason, and we cannot have 〈NG(P ), NG(V ), NG(W )〉 = G because V is in

the kernel of the action. So

〈NG(P ), NG(V ), NG(W )〉 6 N ∈ Max(G).

We see that P /∈ Sylp(N) as P /∈ Sylp(G), and this gives us a contradiction to the choice

of M after observing that I, Q 6 NG(W ) 6 N .

Case (ii), (II):
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This gives an immediate contradiction as p + 1 = |I| = q + 1 and p 6= q.

Case (ii), (III):

The contradiction in this case is because p + 1 = |I| = q and p and q are distinct odd

primes.

Case (iii), (III):

As before, p = |I| = q and p 6= q. ¤

Proposition 4.19 Assume (H). Then there exists A ∈ AO(I) containing V and M ∈
Max(G) such that A 6 M and P ∈ Sylp(M) ∩ Sylp(G). Moreover, V E P .

Proof. Suppose that for some prime q 6= p there exists Zq × Zq
∼= W E I. Then the

result holds by the previous proposition, after potentially replacing V with W . So we

may suppose no such q exists, in which case

Op′(I) is cyclic.

Assume no such pair A,M exists. Amongst all elements of AO(I) which contain such

a subgroup V and amongst all maximal subgroups of G choose A ∈ AO(I) and M ∈
Max(G) so that A 6 M and so that the order of a Sylow p-subgroup of M is maximized.

We show that without loss of generality V is normal in a Sylow p-subgroup of M . Let

A 6 I1 ∈ NIO(M) and let Op(I1) 6 P ∈ Sylp(M). Then Op(I1) E P by Corollary 3.17.

Since V 6 Op(I1) we see that Op(I1) is noncyclic, then Lemma 2.12(ii) implies that we

can find Zp×Zp
∼= V1 EOp(I1) such that V1 EP , and there exists A1 ∈ AO(I1) containing

V1. Let I1 6 I2 ∈ NIO(G). Then I2 is conjugate to I because A 6 I ∩ I2. Moreover, A1

and M (with respect to I2) satisfy the conditions that we originally imposed on A and M
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(with respect to I). Therefore we can replace I by I2, in which case we may assume that

V E P .

As before, P acts on I and the same three cases arise for the lengths of the orbits.

Case(i):

A simplified version of the argument from Case(i) of the previous proposition deals with

this.

Case(ii):

It may be the case that O2(M) = 1, so we begin by showing we may suppose O2(M) 6= 1

and I∗G(P, 2) = {O2(M)}. First, recall that by Lemma 4.6 the element of I normalized

by P is of the form O2(N) for some N ∈ Max(G) containing A . We have 〈A,P 〉 6

NG(O2(N)) = N , and so we can replace M by N if necessary to get O2(M) ∈ I. We

remark that this does not invalidate our assumption that V E P . Next, as V 6 P we see

that

O2(M) ∈ I∗G(P, 2).

Now let R be any element of I∗G(P, 2) and let R 6 S ∈ I. Then for any x ∈ P we have

Sx ∈ I because P 6 NG(V ), and since P normalizes R we get 1 6= R 6 S ∩ Sx, giving

S = Sx by Lemma 4.7. Thus P normalizes S, and we deduce that R = S and R ∈ I. As

O2(M) is the unique element of I normalized by P we conclude that R = O2(M) and

I∗G(P, 2) = {O2(M)}.

Now, let P < P1 ∈ Sylp(G). Then P < NP1(P ), and NP1(P ) permutes the elements

of I∗G(P, 2). But I∗G(P, 2) has a unique element, O2(M), which implies that NP1(P ) 6

NG(O2(M)) = M , a contradiction to the choice of M .
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Case(iii):

In this case P does not normalize any element of I, so

O2(M) = 1

and Fp′(M) 6 Op′(I1). Since I1 6 I we see that Op′(I1) is cyclic by the first paragraph,

so also Fp′(M) is cyclic. Therefore P/CP (Fp′(M)) is abelian and

P ′ 6 CP (Fp′(M)).

Lemma 3.16 then implies that [P ′,Op′(I1)] = 1, and in particular, Op′(A) normalizes P ′.

As Op(A) 6 P , we deduce that A 6 NG(P ′). Let P < P1 ∈ Sylp(G). Then P < NP1(P )

and P ′ E NP1(P ). So

〈A,NP1(P )〉 6 NG(P ′).

If P ′ 6= 1 this contradicts the choice of M , and if P ′ = 1 then P commutes with V , so

P cannot induce an orbit of length p on I. This is because for any Q ∈ I there exists

v ∈ V # such that CQ(v) 6= 1, and if [P, V ] = 1 then for any x ∈ P we have CQx(v) 6= 1,

giving Q = Qx by Lemma 4.8. This eliminates the final case.

The assumption that V E P can now be made without loss of generality by a familiar

argument. ¤

The following theorem completes the goals of this section. The hypothesis is satisfied

by assuming (H) and applying Proposition 4.19. We avoid assuming (H) explicitly in the

hypothesis because we use the result to prove Proposition 4.21, in which we do not assume

(H).
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Theorem 4.20 Suppose V 6 A ∈ AO(I) and A 6 M ∈ Max(G) such that V E P ∈
Sylp(M) ∩ Sylp(G). Then every element of NIO(G) is conjugate to I.

Proof. Let J ∈ NIO(G) and let B ∈ AO(J). By Sylow’s Theorem we may assume

Op(J) 6 P , so Op(J) normalizes V . Now, |Op(J)| > |Op(B)| = |Op(A)| > |V | = p2, and

since a Sylow p-subgroup of Aut(V ) has order p we get COp(J)(V ) 6= 1 and

〈J, V 〉 6 NG(COp(J)(V )) < G.

Let X = 〈J, V 〉. Then [F2,p′(X), V ] = 〈[CF2,p′ (X)(v), V ]|v ∈ V #〉 by Theorem 2.18, and

Proposition 4.11 implies

[CF2,p′ (X)(v), V ] 6 F2,p′(X) ∩ O2,p(CG(v)) 6 O2(X)

for every v ∈ V #. Thus

[F2,p′(X), V ] 6 O2(X)

and in the quotient group X = X/O2(X) we get [Fp′(X), V ] = 1. On the other hand,

J ∈ NIO(X) implies J ∈ NIO(X), yielding [Op′(J), V ] = 1 by Lemma 3.16. Therefore

we can define a subgroup

Y = Op′(J)VO2(X)

of X. By Hall’s Theorem we can take J 6 H ∈ Hall2′(X) and find x ∈ X such that V x 6

H. Since Op(J) normalizes Y we have Y EX, which implies H∩Y ∈ Hall2′(Y ). Therefore

H ∩ Y maps isomorphically onto H ∩ Y = Y , which is nilpotent because [Op′(J), V ] = 1.

Hence H ∩ Y is nilpotent. We have V x 6 H ∩ Y with V x ∼= V ∈ Sylp(Y ), so we deduce

that V x ∈ Sylp(H ∩ Y ), i.e, V x = Op(H ∩ Y ). The fact that H ∩ Y E H then implies

that V x E H, in particular J normalizes V x. Remembering that V E I, we conclude that

〈I, Jx−1〉 6 NG(V ) < G and Theorem 3.15 completes the proof. ¤
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The final result of this section is used to deal with a scenario that arises in the next

section.

Proposition 4.21 Suppose CG(V ) has even order and I is contained in precisely two

maximal subgroups L and M of G satisfying O2(L) = 1 6= O2(M). Assume some element

of NIO(G) is not conjugate to I. Then there exists Zq×Zq
∼= W EI such that W 6 F (L)

and |I∗G(B, 2)| = 1 for some B ∈ AO(I) containing W .

Proof. Suppose false. Proposition 4.4 implies that F (L) is noncyclic, so there exists

Zq ×Zq
∼= W E I such that W 6 F (L). Let Oq(I) 6 Q ∈ Sylq(L). Then since Oq(L) E Q

we can choose W so that W E Q. Let W 6 B ∈ AO(I). We have |I∗G(B, 2)| > 1,

in particular CG(W ) has odd order by Proposition 4.16. Then Proposition 4.17 gives

I∗G(W, 2) = I∗G(B, 2), so

O2(M) ∈ I∗G(W, 2)

by Theorem 3.19.

Let A = CB(V )V . Then A ∈ AO(I) by Lemma 3.14. If q 6= p then we have W 6

CB(V ), giving W 6 A, and another application of Proposition 4.16 yields |I∗G(A, 2)| = 1

because V 6 A. Since we have assumed the result is false we deduce that q = p, and for

convenience of notation we will change the name of Q to P . Now, A normalizes W , so

A permutes the elements of I∗G(W, 2). We have seen that O2(M) ∈ I∗G(W, 2) and since

|I∗G(A, 2)| = 1 and A 6 M , it must be the case that I∗G(A, 2) = {O2(M)}. Therefore

A does not normalize any of the other elements of I∗G(W, 2). Since A = CB(V )V and B

normalizes each element of I∗G(W, 2), the action of A on I∗G(W, 2) is completely determined

by V . In particular, any orbit of length greater than 1 has length a power of p, so

|I∗G(W, 2)| = np + 1

for some n ∈ N. Now, we picked W so that W EP , so P permutes the elements of I∗G(W, 2)
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as well. Since V 6 P , we deduce that P normalizes a unique element of I∗G(W, 2) because

the same is true of A and V controls the action of A on I∗G(W, 2). The element must be

O2(M). So by an argument that can be found in case(ii) of Proposition 4.19,

I∗G(P, 2) = {O2(M)}.

We now let P 6 P1 ∈ Sylp(G) and take successive normalizers to conclude that I∗G(P1, 2) =

{O2(M)}. Hence P1 6 M . Since Op(I) E P1, we can pick Zp × Zp
∼= V1 E I such that

V1 E P1. Now apply Theorem 4.20 to obtain a contradiction. ¤

4.4 The Remaining Cases

From what we have proved so far, we may assume that every element of NIO(G) contains

a normal subgroup isomorphic to Zp×Zp. Let I ∈ NIO(G) and let Zp×Zp
∼= V EI. Due

to the results of the previous two sections there are three cases that we must consider.

We define three hypotheses:

(H1) No element of AO(I) has rank greater than 2 and CG(V ) has even order;

(H2) V does not normalize a nontrivial 2-subgroup of G;

(H3) Some element of AO(I) has rank at least 3.

Lemma 4.22 Let A ∈ AO(G) and suppose m(A) > 3. Then |I∗G(A, 2)| = 1.

Proof. Let R, S ∈ I∗G(A, 2). We may assume both R and S are nontrivial, so by Lemma

2.25 there exists a ∈ A# such that CR(a) 6= 1 6= CS(a). Hence R = S by Lemma 4.8. ¤

Proposition 4.23 If there exist elements of AO(I) of rank at least 3 then V is contained

in one of them.
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Proof. Let A ∈ AO(I) have rank at least 3 and let Z3
q
∼= D 6 A. If q 6= p then

D 6 CA(V ) and CA(V )V ∈ AO(I) by Lemma 3.14. If q = p then |CD(V )| > p2 because

Aut(V ) ∼= GL2(p), implying that CD(V )V is elementary abelian of order at least p3. As

before, CA(V )V ∈ AO(G), and CD(V )V 6 CA(V )V . ¤

From now on we let A be an element of AO(I) which satisfies |I∗G(A, 2)| = 1. Under (H1)

every element of AO(I) containing V satisfies this property (see Proposition 4.16), and

under (H3) we apply Lemma 4.22. We also make the assumption that |π| > 2. This will

do us no harm since we wish to prove that NIO(G) forms a single conjugacy class. If it

were the case that |π| = 1 then the elements of NIO(G) would be Sylow p-subgroups for

some prime p and would be conjugate by Sylow’s Theorem.

Lemma 4.24 If A 6 M ∈ Max(G) with O2(M) 6= 1 then I∗G(A, 2) = {O2(M)}.

Proof. Let O2(M) 6 R ∈ I∗G(A, 2) and suppose O2(M) 6= R. Then

O2(M) < NR(O2(M)) 6 NG(O2(M)) = M.

This contradicts the fact that I∗M(A, 2) = {O2(M)}. So O2(M) ∈ I∗G(A, 2) and the result

follows because |I∗G(A, 2)| = 1. ¤

Proposition 4.25 Let A 6 L,M ∈ Max(G). Then L = M if one of the following

conditions holds:

(i) O2(L) = 1 = O2(M) and I 6 L ∩M ;

(ii) O2(L) 6= 1 6= O2(M).

Proof. In case (ii) the previous lemma implies I∗G(A, 2) = {O2(L)} = {O2(M)}, so

O2(L) = O2(M) and L = NG(O2(L)) = NG(O2(M)) = M . In case (i) Theorem 3.6

implies that F (L) 6 I 6 M and F (M) 6 I 6 L and Lemma 2.29 provides the conclusion

because |π| > 2. ¤
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Proposition 4.26 Suppose I is contained in a maximal subgroup L of G with O2(L) = 1.

Assume there exists Zq × Zq
∼= W E I such that W EOq(L) and |I∗G(B, 2)| = 1 for some

B ∈ AO(I) containing W . Then L is the unique maximal subgroup of G containing I.

Proof. Suppose false and let I 6 M ∈ Max(G) with M 6= L. Then O2(M) 6= 1 by

Proposition 4.25. Let w ∈ W# and let CG(w) 6 H ∈ Max(G). Then CF (L)(w) 6 F (L)∩
H and CF (L)(CF (L)(w)) 6 CF (L)(w). Thus Theorem 2.31 applies with X = CF (L)(w) and

we deduce that one of the following holds:

(i) L = H;

(ii) π(F (H)) * π(F (L));

(iii) F (L) = Or(L) and F (H) = Or(H) for some prime r.

Case (iii) cannot hold because |π(F (L))| = |π| > 2. Suppose (ii) holds. Observe B 6

CG(w), so we can let B 6 IH ∈ NIO(H). If O2(H) = 1 then F (H) 6 IH and

π(F (H)) = π(IH) = π(B) = π = π(F (L)).

This contradicts our assumption that (ii) holds, so O2(H) 6= 1. Then Proposition 4.25

implies H = M . We conclude that for every w ∈ W# we have

CG(w) 6 L or CG(w) 6 M. (†)

Now, take any l ∈ L. Since F (L) 6 I 6 M we see that F (L) normalizes O2(M), so also

F (L) normalizes O2(M)l. Then

O2(M)l = 〈CO2(M)l(w)|w ∈ W#〉.

By Theorem 3.19 we have O2(M) ∩ L = 1 because O2(M) ∩ L ∈ IL(A, 2) = {1}, and it
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follows from (†) that whenever CO2(M)l(w) 6= 1 we must have CO2(M)l(w) 6 M , because

otherwise 1 6= CO2(M)l(w) 6 O2(M)l ∩ L = (O2(M) ∩ L)l = 1. Hence

O2(M)l 6 M for every l ∈ L.

In particular, if we take k, l ∈ L then O2(M)kl−1
normalizes O2(M), so O2(M)k normalizes

O2(M)l. Thus 〈O2(M)L〉 is a 2-group, which is contained in M and is normalized by I,

implying that 〈O2(M)L〉 6 O2(M) and L 6 NG(O2(M)) = M . This is a contradiction

because L and M are distinct maximal subgroups. ¤

Proposition 4.27 Let A 6 L ∈ Max(G) and let A 6 I1 ∈ NIO(L). Then I1 ∈
NIO(G).

Proof. It suffices to show that NG(I1) 6 L. Let g ∈ NG(I1). Then I1 6 L, Lg and

I1 ∈ NIO(Lg). If O2(L) = 1 then F (L) 6 I1 6 Lg and F (Lg) 6 I1 6 L which implies

L = Lg by Lemma 2.29 since |π(F (L))| = |π| > 2. If O2(L) 6= 1 then I∗G(A, 2) =

{O2(L)} = {O2(L
g)} by Proposition 4.25 and L = Lg. ¤

Proposition 4.28 Suppose I is contained in a unique maximal subgroup L of G. Then

L is the unique maximal subgroup containing A.

Proof. Let A 6 M ∈ Max(G). We split into four cases.

Case 1: O2(L) = 1 = O2(M).

The argument comes from [4, 3.3, p412]. Let Z = Z(I) and observe that Z 6 A 6 M , so

Z = Op(Z)×Op′(Z) normalizes Op(M) for any p ∈ π. Since I 6 CG(Op(Z)), CG(Op′(Z))

we have

CG(Op(Z)), CG(Op′(Z)) 6 L,
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and as L is soluble Z 6 F (L), giving Op′(Z) 6 Op′(L). These observations enable the

following calculation:

[COp(M)(Op(Z)),Op′(Z)] 6 [L,Op′(L)] ∩ [Op(M),M ]

6 Op′(L) ∩ Op(M)

= 1.

Hence [Op(M),Op′(Z)] = 1 by the P ×Q Lemma. So

Op(M) 6 CG(Op′(Z)) 6 L,

and as p was arbitrary we get F (M) 6 L. This implies M = L by Lemma 2.30.

Case 2: O2(L) 6= 1 6= O2(M).

Follows from 4.25 since A 6 L,M .

Case 3: O2(L) 6= 1 = O2(M).

Let A 6 I1 ∈ NIO(M). Then I1 ∈ NIO(G) by Proposition 4.27, so there exists g ∈ G

such that

I1 = Ig

by Corollary 3.12. We note that M is the unique maximal subgroup containing I1, because

if N ∈ Max(G) with I1 6 N then I = Ig−1

1 6 M g−1 ∩ N g−1
, giving M g−1

= N g−1
and

M = N . Now, Ig−1

1 = I normalizes O2(L) 6= 1, so I1 normalizes O2(L)g 6= 1. Since G is

simple we get I1O2(L)g < G, and it follows that

O2(L)g 6 M.
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Thus 1 6= O2(L)g ∈ IM(A, 2) = {1}, a contradiction.

Case 4: O2(L) = 1 6= O2(M).

Similar to case 3. ¤

Proposition 4.29 If some element of NIO(G) is not conjugate to I then A is contained

in a unique maximal subgroup of G.

Proof. Proposition 4.25 implies that I is contained in at most two maximal subgroups

L and M of G satisfying O2(L) = 1 6= O2(M). Suppose both exist. Then we need not

consider (H2). We wish to apply Proposition 4.26, so we need a subgroup W satisfying

the hypothesis. Under (H3), by 4.22 and 4.23 we can assume V = W if we can find

Zq×Zq
∼= W E I such that W EF (L). It is clear that we can find such a W by Corollary

4.5 and Lemma 2.12(ii). Under (H1) we see that W exists by Proposition 4.21. Thus we

apply Proposition 4.26 to conclude that I is contained in a unique maximal subgroup of

G. Proposition 4.28 then provides the result. ¤

Proposition 4.30 Suppose A is contained in a unique maximal subgroup L of G. If

Op(A) 6 P ∈ Sylp(L) then P ∈ Sylp(G).

Proof. It is enough to show that NG(P ) 6 L. Suppose not and let n ∈ NG(P )\L. Then

Op(A) 6 P 6 Ln, so Op(A) normalizes Op′(L
n), and we have

Op′(L
n) = 〈COp′ (Ln)(a)|a ∈ A#〉.

It follows that Op′(L
n) 6 〈CG(a)|a ∈ A#〉 6 L since A 6 CG(a) for every a ∈ A#.

Set L = L/Op′(L). Note that Op(L) normalizes Op′(Ln) since P normalizes Op′(L
n) and

P ∈ Sylp(L). So

[Op(L),Op′(Ln)] 6 Op(L) ∩ Op′(Ln) = 1.

50



We now observe that F (L) = Op(L) and deduce that

Op′(Ln) 6 CL(F (L)) 6 F (L) = Op(L),

giving Op′(Ln) = 1 and Op′(L
n) 6 Op′(L). Since L and Ln are isomorphic we get

Op′(L
n) = Op′(L). It remains to check that Op′(L) 6= 1 to obtain a contradiction. This

holds because if O2(L) = 1 then π(F (L)) = π and |π| > 2. ¤

Theorem 4.31 NIO(G) forms a single conjugacy class.

Proof. Suppose false and pick J ∈ NIO(G) not conjugate to I. Then I and J both

satisfy the properties stated at the beginning of this section. In particular, there exists

Zq × Zq
∼= W E J , and for some B ∈ AO(J) containing W we have |I∗G(B, 2)| = 1.

The previous result implies that A and B are each contained in a unique maximal subgroup

of G. Call these subgroups L and M respectively and let Oq(J) 6 Q ∈ Sylq(M). Then

Oq(J) E Q by Corollary 3.17. We wish to assume that W E Q. We can certainly find

Zq × Zq
∼= W1 E J such that W1 E Q by Lemma 2.12(ii). We may assume W = W1 if

there exists B1 ∈ AO(J) containing W1 such that |I∗G(B1, 2)| = 1. If AO(J) contains an

element of rank at least 3 then this condition is satisfied by 4.22 and 4.23. If not then no

element of AO(J) has rank greater than 2 and Theorem 4.20 contradicts the fact that we

are working in a counterexample. So we assume W E Q. Next we apply Proposition 4.30

and Sylow’s Theorem to get Q ∈ Sylq(G) and then Oq(I) 6 Q without loss of generality.

So Oq(I) normalizes W . Since a Sylow q-subgroup of Aut(W ) has order q we deduce that

COq(I)(W ) 6= 1.

Thus 〈A, W 〉 6 NG(COq(I)(W )) < G and we conclude that

W 6 L.
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Now, for every w ∈ W# we have B 6 CG(w), so CG(w) 6 M , and it follows that

Fq′(L) = 〈CFq′ (L)(w)|w ∈ W#〉 6 M.

We finally observe that Oq(L) 6 Oq(I) 6 M , giving

F (L) 6 M.

Now, as in Lemma 3.20 we have the factorization

L = NL(I0)O2(L)

where I0 is a Hall 2′-subgroup of the inverse image of F (L/O2(L)) in L and I0 E I.

We see that NL(I0) contains a Sylow q-subgroup of L, so there exists l ∈ L such that

W l 6 NL(I0). In fact we can choose l ∈ O2(L). Then

Oq′(I0) = 〈COq′ (I0)(w
l)|w ∈ W#〉 6 M l

since M l is the unique maximal subgroup containing Bl and Bl 6 CG(wl) for every

w ∈ W#. Our choice of l implies that M l = M , so Oq′(I0) 6 M . We also have

Oq(I0) 6 Oq(I) 6 M , giving

I0 6 M.

Another application of Lemma 3.20 yields M = NM(J0)O2(M), again where J0 is a Hall

2′-subgroup of the inverse image of F (M/O2(M)) in M and J0 E J . Without loss of

generality we can assume

I0 6 NM(J0)

by Hall’s Theorem. Let r, t ∈ π be distinct, and consider the action of Or(I0) × Ot(I0)
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on Or(J0). Since I is contained in NG(Or(I0)), we must have NG(Or(I0)) 6 L, therefore

COr(J0)(Or(I0)) 6 L. Hence

[COr(J0)(Or(I0)),Ot(I0)] 6 [L,Ot(I0)O2(L)] ∩ Or(J0)

6 Ot(I0)O2(L) ∩ Or(J0)

= 1.

Thompson’s P ×Q Lemma then implies

[Or(J0),Ot(I0)] = 1. (†)

So Or(J0) 6 NG(Ot(I0)) 6 L, and in fact since r was chosen arbitrarily,

J0 6 L.

Set L = L/O2(L). Then by (†) we have [Or(J0),Ot(I0)] = 1. Since this holds for any

distinct primes r and t and since Ot(I0) = Ot(L) we get

[Or(J0), Fr′(L)] = 1.

Thus J0F (L) is nilpotent. By Theorem 3.6 we see that I = IF (L) is also nilpotent, and

Lemma 2.33 implies that

[Or(I),Ot(J0)] = 1. (∗)

Consider the subgroup K = Or(I)Ot(J0)O2(L) of L. Let Or(I) 6 H ∈ Hall{r,t}(K).

From (∗) we have Ot(J0)O2(L) E K, so

Or(I) normalizes H ∩ Ot(J0)O2(L).
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Therefore we can apply Theorem 2.15 to deduce that Or(I) normalizes a Sylow t-subgroup

of H ∩ Ot(J0)O2(L). Since Ot(J0) ∈ Sylt(H ∩ Ot(J0)O2(L)), there exists l ∈ O2(L) such

that Or(I)l normalizes Ot(J0). Hence Or(I)l 6 NG(Ot(J0)) 6 M , and as l ∈ O2(L) 6 M

we deduce that

Or(I) 6 M.

Repeating the argument for every prime r ∈ π allows us to conclude that I 6 M , and

Theorem 3.15 completes the proof. ¤
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Chapter 5

π-Nilpotent Injectors

We verify that the rank 1 case of the previous chapter holds for π-nilpotent injectors. To

do this we first need analogues of many of the results from chapters 3 and 4. Most of the

results hold by making superficial changes such as replacing “odd” with “π” or “AO(G)”

with “A2,π(G)” etc. We present proofs for those results which have nontrivial differences.

A result which is an analogue from one of the chapters mentioned previously is labelled

by its own number plus the number of the result to which it is an analogue.

Throughout let π be a set of primes. If σ is the set of prime divisors of d2,π(G) then

clearly σ ⊆ π. We adopt the convention of removing any redundant primes from π, i.e, if

σ ⊂ π then we replace π with σ. Thus we can always assume σ = π.

5.1 Arbitrary Groups and Soluble Groups

Theorem 5.1 (3.5) (Glauberman) Let A ∈ A2,π(G). Suppose B 6 G is a nilpotent

π-subgroup normalized by A. Then AB is nilpotent.

Proof. Adapt the proof of [7, Theorem B, p470]. ¤

Theorem 5.2 (Thompson) [1, Theorem 3.11, p185] Let P be a p-group. Then P has a
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subgroup C such that

(i) C char P ;

(ii) C has nilpotence class at most 2;

(iii) a nontrivial p′-automorphism of P induces a nontrivial

automorphism of C.

Definition 5.3 Let P be a p-group. Then the subgroup C from Theorem 5.2 is called a

critical subgroup of P .

Theorem 5.4 (3.6) (Bender) [4, 1.5, p408] Let I ∈ NIπ(G). Then I contains every

nilpotent π-subgroup that it normalizes.

Proof. Suppose false and let B 6 G be nilpotent and normalized by I but with B 
 I.

Choose B to be minimal with this property. Then B is a p-group. Also

[B,Op′(I)] 6= 1

because IB is not nilpotent.

If CB(Op(I)) < B then by the minimality of B we have CB(Op(I)) 6 I. Therefore

[CB(Op(I)),Op′(I)] = 1 and the P ×Q-Lemma gives [B,Op′(I)] = 1, a contradiction. So

[B,Op(I)] = 1.

Let B0 be a critical subgroup of B. If B0 < B then again the minimality of B gives

B0 6 I and [B0,Op′(I)] = 1. This contradicts Theorem 5.2(iii) because [B,Op′(I)] 6= 1.

So B0 = B and B has class at most 2.

Let A ∈ A2,π(G) with A 6 I. By Lemma 5.1 we see that AB is nilpotent, so [B,Op′(A)] =

1. Hence [B,A] = 1 and AB is a nilpotent π group of class at most 2. By definition of A
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this implies B 6 A 6 I, a contradiction. ¤

Lemma 5.5 (3.14) [4, 2.7, p410] Let I ∈ NIπ(G) and suppose Zp × Zp
∼= V E I. Then

V 6 A for every A ∈ A2,π(I).

Proof. We show that AV has class at most 2. By using commutator relations it suffices

to show 〈A′, V ′, [A, V ]〉 6 Z(AV ). We have A/CA(V ) 6 Aut(V ) ∼= GL2(p), so

|A/CA(V )| = 1 or p

because [Op′(A), V ] = 1. Therefore A′ 6 CA(V ), giving A′ 6 CA(V ) ∩ Z(A) 6 Z(AV ).

Clearly V ′ = 1 so we are left with [A, V ]. Since I is nilpotent we have [A, V ] < V . If

[A, V ] = 1 then V 6 A and we are done, so we can assume [A, V ] ∼= Zp. Therefore

[A, V ] ∩ Z(AV ) 6= 1 because [A, V ] E AV , giving [A, V ] 6 Z(AV ). ¤

The next result to consider is Theorem 3.19. The analogue requires some extra work.

Lemma 5.6 Let M,N E G. Then |G/M ∩N | 6 |G/M ||G/N |.

Proof. Use the Second Isomorphism Theorem. ¤

Theorem 5.7 (Glauberman) [7, Proposition 1, p470] Let V 6= 1 be an elementary abelian

p-group. Suppose A is a nilpotent p′-group of class at most 2 acting faithfully on V . Then

|A| < |V |.

Corollary 5.8 Let A be a nilpotent group of class at most 2 acting faithfully and co-

primely on the nilpotent group G 6= 1. Then |A| < |G|.

Proof. Let G be a minimal counterexample. Suppose G does not have prime power order

and let p ∈ π(G). Then by the minimality of G we have |A/CA(Op(G))| < |Op(G)| and
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|A/CA(Op′(G))| < |Op′(G)|. We see that

CA(Op(G)) ∩ CA(Op′(G)) 6 CA(G) = 1,

therefore

|A| = |A/CA(Op(G)) ∩ CA(Op′(G))|
6 |A/CA(Op(G))||A/CA(Op′(G))|
< |Op(G)||Op′(G)| = |G|

by Lemma 5.6. This contradiction implies that G is a p-group for some prime p. By

Burnside’s Theorem (2.8) A acts faithfully on G/Φ(G), and since G/Φ(G) is elementary

abelian, Glauberman’s Theorem implies |A| < |G/Φ(G)| 6 |G|. ¤

The proof of the next theorem is influenced by [9, Theorem 1.11, p8].

Theorem 5.9 Let G be soluble and suppose A 6 G is a p-subgroup of nilpotence class

at most 2 which has maximal order amongst all such p-subgroups. Then for any R ∈
IG(A, p′) we have R 6 Op′(G).

Proof. Let G be a minimal counterexample. We first argue that Op′(G) = 1. Suppose

not and set G = G/Op′(G). If A does not satisfy the hypothesis of the lemma then we

can find a p-subgroup B 6 G of nilpotence class at most 2 such that |A| < |B|. But then

a Sylow p-subgroup of the inverse image of B in G is isomorphic to B, contradicting the

maximality of |A|. So by the minimality of G we have R 6 Op′(G) = 1. This contradicts

the fact that G is a counterexample. Hence

Op′(G) = 1.

Let T be a minimal A-invariant subgroup of R. Observe that because R is soluble, T

is elementary abelian. We show that G = Op(G)TA. Let H = Op(G)TA and suppose
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H < G. Then by the minimality of G we have T 6 Op′(H). However, this implies

[T,Op(G)] 6 Op′(H) ∩ Op(G) = 1, giving T 6 CG(Op(G)) 6 Op(G), a contradiction. So

G = Op(G)TA.

Let Q = COp(G)(CA(T )). Considering the action of CA(T ) × CT (Q) on Op(G), clearly

[COp(G)(CA(T )), CT (Q)] = 1, and the P ×Q Lemma gives

[Op(G), CT (Q)] = 1.

Thus CT (Q) 6 CG(Op(G)) 6 Op(G), whence

CT (Q) = 1.

Now let C be a critical subgroup of Q. Since the action of T on Q is faithful, the action

of T on C is also faithful. We observe that [C ∩ A, T ] 6 [C, T ] ∩ [A, T ] 6 C ∩ T = 1, so

C ∩ A = C ∩ CA(T ).

By the definition of Q we have [C, CA(T )] = 1, thus C ∩ A E C. Set

C = C/C ∩ A.

This quotient is T -invariant, and looking at the action of CT (C) on C we get [CT (C), C] 6

C ∩ A. Therefore

[C, CT (C), CT (C)] 6 [C ∩ A, CT (C)] 6 C ∩ T = 1,
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giving [C, CT (C)] = 1. So CT (C) 6 CT (C) = 1 and the action of T on C is faithful. If

C = 1 then clearly this implies T = 1 and |T | = |C/C ∩A|. If C 6= 1 then we may apply

Corollary 5.8 to the action of T on C to get |T | < |C/C ∩ A|. In both cases,

|T | 6 |C/C ∩ A|.

We also apply Corollary 5.8 to the action of A/CA(T ) on T , yielding

|A/CA(T )| < |T |.

Combining these inequalities gives

|A| < |CA(T )||C|/|C ∩ A| = |CA(T )C||CA(T ) ∩ C|/|C ∩ A|.

We have already seen that C ∩ A = C ∩ CA(T ), so we deduce that

|A| < |CA(T )C|.

However, both CA(T ) and C have class at most 2, and since [CA(T ), C] = 1 this contradicts

the maximality of |A|. ¤

Corollary 5.10 (3.19) Let G be soluble and let A ∈ A2,π(G). Then I∗G(A, π′) = {Oπ′(G)}.

Proof. We may assume Oπ′(G) = 1. Let R ∈ IG(A, π′) and let p ∈ π. Let

K = Op(A)ROp(G).

Theorem 5.1 tells us that AF (G) is nilpotent, in particular

[Op(G)Op(A),Op′(A)] = 1.
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Then sinceOp(A)Op(G) ∈ Sylp(K), the definition ofA2,π(G) and an application of Sylow’s

Theorem allows us to deduce that Op(A) has maximal order amongst all p-subgroups of

K of class at most 2. Hence the previous theorem applies and R 6 Op′(K). Therefore

[R,Op(G)] 6 Op′(K) ∩ Op(G) = 1.

As p was arbitrary, R 6 CG(F (G)) 6 F (G) yielding R = 1. ¤

5.2 Minimal Simple Groups and The Rank 1 Case

Definition 5.11 Let n ∈ N. The Dihedral group of order 2n is

D2n = 〈x, y|x2n−1

= y2 = 1, xy = x−1〉.

The Semidihedral group of order 2n is

Sd2n = 〈x, y|x2n−1

= y2 = 1, xy = x2n−2−1〉.

The Generalized Quaternion group of order 2n is

Q2n = 〈x, y|x2n−1

= y4 = 1, x2n−2

= y2, xy = x−1〉.

Lemma 5.12 [1, 5.4.10, p199] Let P be a 2-group. Suppose every abelian normal sub-

group of P is cyclic. Then P is cyclic, dihedral of order at least 24, semidihedral of order

at least 24, or generalized quaternion of order at least 23.

Definition 5.13 A quasicyclic group is a nilpotent group G in which O(G) is cyclic

and O2(G) is cyclic, dihedral, semidihedral or generalized quaternion.

We remark that by [1, 5.4.10(i), p199], which appears here as Lemmas 2.12(i) and 5.12,
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the quasicyclic groups are precisely the nilpotent groups G in which every abelian normal

subgroup of O(G) is cyclic and one of the following holds:

• every abelian normal subgroup of O2(G) is cyclic;

• O2(G) ∼= Z2 × Z2;

• O2(G) ∼= D8.

Lemma 5.14 [1, 5.4.3(ii), p.191] Let G be a quasicyclic 2-group. Then every subgroup

of G is quasicyclic and G/Φ(G) is isomorphic to a subgroup of Z2 × Z2.

In what follows φ denotes the Euler totient function.

Lemma 5.15 Let G be a noncyclic 2-group in which every abelian normal subgroup is

cyclic. Then Aut(G) is a 2-group or G = Q8 and Aut(G) has order 24.

Proof. The proof is similar for each of the three classes (dihedral, semidihedral and gener-

alized quaternion), so we will consider only one case: the generalized quaternion groups.

Let G = Q2n and assume n > 4. By using the relation xiy = yx−i, each element of

G can be written in the form xi or xiy for some i ∈ {1, ..., 2n−1}. The order of xi is

2n−1/hcf(i, 2n−1), and the order of xiy is 4 because

(xiy)2 = xiy(xiy) = xiy(yx−i) = xiy2x−i = y2,

using the fact that Z(G) = 〈y2〉. Now let θ ∈ Aut(G). The action of θ is completely

determined by its action on the generators x and y. Since x has order 2n−1 > 4, it must

be the case that

xθ = xk where hcf(k, 2n−1) = 1.

The number of choices for k is φ(2n−1) = 2n−2. We cannot have yθ ∈ 〈xθ〉 as θ is a
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bijection, so

yθ = xly for some l ∈ {1, ..., 2n−1}

and the number of choices for yθ is 2n−1. The choices for xθ and yθ mentioned so far

satisfy the first relation. We verify that they also satisfy the other two. First, we observe

that (xk)2n−2
has order 2, which implies (xk)2n−2

= y2 because y2 is the unique element of

G of order 2. Thus,

(xθ)2n−2

= (xk)2n−2

= y2 = (xly)2 = (yθ)2.

Finally,

(xθ)yθ = (xk)xly = (xk)y = (xy)k = (x−1)k = (xk)−1 = (xθ)−1.

We conclude that

|Aut(G)| = 2n−2 · 2n−1 = 22n−3.

It remains to assume n = 3 so that G = Q8. In this case x has order 4, so xθ can be any of

the six elements of order 4. The order of yθ is also 4, and since we cannot have yθ ∈ 〈xθ〉,
there are 4 choices for yθ. The second relation is automatically satisfied because (xθ)2

and (yθ)2 both have order 2. For the last relation, observe that 〈xθ〉 E G, so either

(xθ)yθ = (xθ)−1 or (xθ)yθ = (xθ). The latter cannot happen because G is nonabelian. ¤

Proposition 5.16 (4.4) Let I ∈ NIπ(G) and let I 6 L ∈ Max(G). Suppose Oπ′(L) = 1

and every abelian normal subgroup of F (L) is cyclic. Then I is conjugate to every element

of NIπ(G).

Proof. If F (L) is cyclic then the argument from Proposition 4.4 does the job. So we

may assume F (L) is noncyclic. By Sylow’s Theorem we may also assume |π| > 2. Let

p = max π and let Op(I) 6 P ∈ Sylp(L). Pick J ∈ NIπ(G) and A,B ∈ A2,π(G) such

that A 6 I and B 6 J .
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Suppose [P, Fp′(L)] = 1. Then Op(I) = P by Lemma 3.16. We have Z(Op(I)) 6

CL(F (L)) 6 F (L), so Z(Op(I)) 6 Op(L), which is cyclic since F (L) is quasicyclic and

p 6= 2. Subgroups of cyclic groups are characteristic, so

Z(Op(I)) E L.

This implies NG(Op(I)) 6 NG(Z(Op(I))) = L, giving Op(I) ∈ Sylp(G). Without loss of

generality, Op(J) 6 Op(I) by Sylow’s Theorem. Then

A∗ = Op(B)Op′(A) ∈ A2,π(G).

So 〈A,A∗〉 6 NG(Op′(A)) < G and 〈A∗, B〉 6 NG(Op(B)) < G, which implies that I is

conjugate to J by Proposition 4.3.

So we can suppose [P, Fp′(L)] 6= 1. Then we can find q ∈ π\{p} such that [P,Oq(L)] 6= 1,

and Lemma 2.27 gives q = 2. Since P acts nontrivially on O2(L), Lemma 5.15 yields

O2(L) ∼= Q8 and p = 3.

Let O2(I) 6 S ∈ Syl2(L). We wish to show that S ∈ Syl2(G). We have Z = Z(O2(I)) 6

CL(F (L)) 6 F (L), so Z 6 Z(O2(L)). Since Z 6= 1 and Z(Q8) has order 2 we deduce that

Z = Z(O2(L)) ∼= Z2.

After observing that F2′(L) = O3(L) we split into two cases as before. First suppose

[S,O3(L)] = 1. Then O2(I) = S. Therefore NG(O2(I)) 6 NG(Z) = L and O2(I) ∈
Syl2(G). Apply the same argument as before.

We may now suppose [S,O3(L)] 6= 1. Then [S,O3(L)/Φ(O3(L))] 6= 1, and since O3(L)
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is cyclic and [O2(I),O3(L)] = 1 we get |S : O2(I)| = 2, using the fact that O2(I) ∈
Syl2(CL(F2′(L))). So

S ′ 6 O2(I).

Now, Z E S implies 1 6= Z ∩ Z(S) 6 Z. So Z ∩ Z(S) = Z and

Z 6 Z(S).

If Z(S) 6 O2(I) then Z(S) = Z and Z char S, in which case NG(S) 6 NG(Z) = L and

S ∈ Syl2(G). So we may assume Z(S) 
 O2(I). Therefore

S = O2(I)Z(S).

We use the formula |S| = |O2(I)||Z(S)|/|O2(I) ∩ Z(S)| to deduce that

2 = |S/O2(I)| = |Z(S)/O2(I) ∩ Z(S)| = |Z(S)/Z|.

Since |Z| = 2 we get |Z(S)| = 4. We assumed that Z(S) 
 O2(I), so Z(S) 
 S ′. Hence

1 < S ′ ∩ Z(S) < Z(S), giving |S ′ ∩ Z(S)| = 2. It follows that S ′ ∩ Z(S) = Z because

S ′ ∩ Z(S) 6 Z. So Z char S, implying NG(S) 6 NG(Z) = L and

S ∈ Syl2(G)

as desired. By Sylow’s Theorem we may assume O2(J) 6 S.

Let x ∈ O2(I) and suppose conjugation by x induces an inner automorphism on O2(L).

Then conjugation by x on O2(L) is equivalent to conjugation by some l ∈ O2(L). So

xl−1 ∈ CL(O2(L)).
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Since xl−1 ∈ O2(I) we see that in fact xl−1 ∈ CL(F (L)) = Z(F (L)), implying

x ∈ Z(O2(L))O2(L) = O2(L).

Now, O2(I)/CO2(I)(O2(L)) acts as a group of automorphisms on O2(L) ∼= Q8, and since

the inner automorphism group of Q8 has index 2 inside a Sylow 2-subgroup of Aut(Q8)

we conclude that at least half the elements of O2(I) induce inner automorphisms. Since

all such elements are contained in O2(L) it follows that

|O2(I) : O2(L)| 6 2 and |S : O2(L)| 6 4.

Now, we have |O2(J)| > 8 because O2(L) 6 O2(I) and O2(L) has class 2. Therefore,

O2(L) ∩ O2(J) 6= 1.

We have Z char O2(L)∩O2(J) because Z is the unique subgroup of order 2 inside O2(L).

Since O2(L) ∩ O2(J) E O2(J) we deduce that 〈I, J〉 6 NG(Z) < G. This completes the

proof. ¤

It may not be the case that an analogue of Lemma 4.7 holds since the proof is dependent

upon elements of IG(A, π′) being nilpotent. The proof would work if one were to consider

the special case π = r′ for some prime r. Lemma 4.8 may also not hold because elements

of A2,π(G) need not be abelian.

We split the proof of the analogue of Proposition 4.9 into two parts for convenience of

exposition.

Proposition 5.17 (4.9) Let I ∈ NIπ(G). Suppose I is noncyclic, every abelian normal

subgroup of I is cyclic, and |π| > 2. Let p = max π. Assume I 6 L,M ∈ Max(G) with
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|L|p and |M |2 maximal subject to this constraint. Then one of the following holds:

(i) Op(I) ∈ Sylp(L) ∩ Sylp(G);

(ii) O2(I) ∈ Syl2(M) ∩ Syl2(G);

(iii) O2(I) 6 S ∈ Syl2(M) ∩ Syl2(G) and |S : O2(I)| = 2.

Proof. Set

L = L/Oπ′(L)

and let Op(I) 6 P ∈ Sylp(L). So Op(I) 6 P ∈ Sylp(L). Suppose [P, Fp′(L)] = 1. Then

Op(I) = P and Op(I) = P because both map isomorphically onto their images. Since

I 6 NG(Op(I)) we get Op(I) ∈ Sylp(G) by the maximality of |L|p. Therefore (i) holds.

Now suppose [P, Fp′(L)] 6= 1. Then we can find q ∈ π\{p} such that [P ,Oq(L)] 6= 1

and by Lemma 2.27 it must be the case that q = 2. Since O2(I) is quasicyclic we apply

Lemma 5.14 to deduce that O2(L)/Φ(O2(L)) is isomorphic to a subgroup of Z2×Z2. The

fact that [P,O2(L)/Φ(O2(L))] 6= 1 implies

p = 3.

because Aut(Z2 × Z2) ∼= S3. Set

M̃ = M/Oπ′(M)

and let O2(I) 6 S ∈ Syl2(M) so that O2(Ĩ) 6 S̃ ∈ Syl2(M̃). Since O2(I) is nonabelian,

S ′ 6= 1.

After observing that F2′(M̃) = O3(M̃) we split into two cases as before. First suppose
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[S̃,O3(M̃)] = 1. Then O2(Ĩ) = S̃ and O2(I) = S. We get O2(I) ∈ Syl2(G) by the

maximality of |M |2. Thus (ii) holds.

Now suppose [S̃,O3(M̃)] 6= 1. Then [S̃,O3(M̃)/Φ(O3(M̃))] 6= 1, and since O3(M̃) is

cyclic and [O2(Ĩ),O3(M̃)] = 1 we get |S̃ : O2(Ĩ)| = 2 because O2(Ĩ) ∈ Syl2(CM̃(F2′(M̃))).

So

|S : O2(I)| = 2 and S ′ 6 O2(I).

Thus 1 6= S ′ E I, giving 〈I, NG(S)〉 6 NG(S ′) < G. This implies S ∈ Syl2(G) by the

maximality of |M |2, and (iii) holds. ¤

Proposition 5.18 (4.9) Let I ∈ NIπ(G). Suppose every abelian normal subgroup of I

is cyclic. Then I is conjugate to every element of NIπ(G).

Proof. As in Proposition 5.16 we may assume I is noncyclic and |π| > 2. Let p = max π

and let I 6 L,M ∈ Max(G) such that |L|p and |M |2 are maximized. By the previous

proposition we have the following cases:

(i) Op(I) ∈ Sylp(L) ∩ Sylp(G);

(ii) O2(I) ∈ Syl2(M) ∩ Syl2(G);

(iii) O2(I) 6 S ∈ Syl2(M) ∩ Syl2(G) and |S : O2(I)| = 2.

Let J ∈ NIπ(G), let B ∈ A2,π(J) and let A ∈ A2,π(I). If case (i) holds we may suppose

Op(J) 6 Op(I) without loss of generality. Then A∗ = Op(B)Op′(A) ∈ A2,π(G). So

〈A,A∗〉 6 NG(Op′(A)) < G and 〈A∗, B〉 6 NG(Op(B)) < G, which implies that I is

conjugate to J .

The same argument applies to case (ii) so we are left with case (iii). Again without loss

of generality

O2(J) 6 S.
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Now, O2(I) is quasicyclic so contains a cyclic subgroup at index 2. Therefore

|O2(I) : O2(A)| 6 2. (1)

Since

|O2(J)| > |O2(B)| = |O2(A)| (2)

we must have

|S : O2(J)| 6 4. (3)

If O2(J) 6 O2(I) then our argument for case (i) applies, so we can assume O2(J) 
 O2(I),

which implies S = O2(I)O2(J) and

|O2(J) : O2(I) ∩ O2(J)| = 2. (4)

Groups of orders 2 and 4 do not satisfy the hypothesis imposed on O2(I), so we have

|O2(I)| > 8. Therefore |O2(J)| > 4 by (1) and (2), giving

O2(I) ∩ O2(J) 6= 1

by (4). If O2(J) E S then 〈I, J〉 6 NG(O2(I) ∩ O2(J)) < G and I is conjugate to J . So

we may assume O2(J) is not normal in S. Hence

|S : O2(J)| = 4

by (3). We deduce from this that O2(I) > O2(A) by (2). So

|O2(I) : O2(A)| = 2.
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As we have already observed, O2(I) contains a cyclic subgroup at index 2, so we can

choose O2(A) to be cyclic. Since O2(I) > O2(A) and groups of order 8 have class at most

2 we must have |O2(I)| > 16, so |O2(J)| > 8 by (2). Then (4) implies |O2(I)∩O2(J)| > 4.

Therefore

O2(A) ∩ O2(J) 6= 1.

Now, O2(I) E S implies Z(S)∩O2(I) 6= 1. Let Z 6 Z(S)∩O2(I) have order 2. We have

Z 6 Z(O2(I)) 6 O2(A),

and since O2(A) is cyclic, Z is the unique subgroup of O2(A) of order 2. Hence Z 6

O2(A) ∩ O2(J), and 〈A, J〉 6 NG(Z) < G. Proposition 4.3 provides the result. ¤
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Chapter 6

GU3(q)

Throughout this chapter let q be a power of p and let F = GF(q2). We will always take

γ to be a generator of the multiplicative group F ∗, which is well known to be cyclic.

6.1 Some properties of GF(q2)

The map from F −→ F taking λ 7→ λq is the unique automorphism of F of order 2. We

denote λq by λ. Most of the results in this section concern this automorphism.

Definition 6.1 The map tr : GF(qk) −→ GF(q) taking x 7→ x + xq + ... + xqk−1
is the

trace map.

It is easily verified that tr is GF(q)-linear.

Definition 6.2 The subset {λ ∈ F | λ = λ} of F is the fixed subfield of the automor-

phism.

The fixed subfield of F is indeed a subfield and has order q. We will call this subfield

GF(q), which we may do so without ambiguity as F contains a unique subfield of order

q. We will not use GF(q) in any other sense from now on.

The following lemma provides a useful characterization of the fixed subfield.
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Lemma 6.3 GF(q) = {µµ | µ ∈ F}.

Proof. Let λ ∈ GF(q)∗. Then λq−1 = 1 gives

λ ∈ 〈γq+1〉 = 〈γγ〉

as this is the unique subgroup of F ∗ of order q − 1. We see that 〈γγ〉 = {µµ | µ ∈ F ∗}
since γ generates F ∗, so GF(q)∗ ⊆ {µµ | µ ∈ F ∗}. We clearly have inclusion in the other

direction, so we get

GF(q)∗ = {µµ | µ ∈ F ∗}.

This implies the result. ¤

Lemma 6.4 For any µ ∈ F ∗ there are precisely q + 1 elements α ∈ F ∗ such that µµ =

αα.

Proof. We have µµ = αα if and only if µα−1µα−1 = 1. Since multiplication by α−1

induces a bijection on F ∗ it suffices to count the number of solutions to the equation

xq+1 = 1. Clearly there are q + 1 solutions. ¤

Lemma 6.5 The kernel of the trace map from F into GF(q) has order q. In particular,

for any λ ∈ GF(q) there are precisely q elements µ ∈ F such that µ + µ = λ.

Proof. For µ ∈ F we have tr(µ) = 0 if and only if µ = −µ. If q is odd then the elements

of GF(q)∗ do not satisfy this condition and, for example, γ
1
2
(q+1) does. If q is even then

the elements of GF(q) satisfy the condition and the other elements do not. We conclude

that the kernel has order q as it is a GF(q)-subspace of F and we have shown that it is

not 0 or F . The final statement is because the elements of GF(q) are each mapped onto

by a coset of the kernel. ¤

This result can be generalized as follows:
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Proposition 6.6 For any β ∈ F ∗ let φβ : F −→ GF(q) be the map taking α to βα + αβ.

Then φβ is GF(q)-linear and Ker(φβ) has order q. In particular, for any λ ∈ GF(q) there

are precisely q elements α ∈ F such that βα + αβ = λ.

Proof. It is clear that φβ is GF(q)-linear. Let α ∈ F and let δ = αβ. Then βα + αβ = 0

if and only if δ + δ = 0. Since multiplication by α induces a bijection of F , the result

follows from the previous Lemma. ¤

Lemma 6.7 Let β ∈ F ∗. Then there are precisely q − 1 elements α ∈ F ∗ such that

αq−1 = βq−1.

Proof. Let β = γr and α = γs. Then αq−1 = βq−1 if and only if q + 1 divides r − s.

Modulo q2 − 1 there are q − 1 values of s which satisfy this condition. ¤

6.2 Unitary Spaces

Definition 6.8 Let V be a vector space over F . A hermitian form on V is a map

( , ) : V × V −→ F satisfying the following conditions:

(u + v, w) = (u,w) + (v, w);

(λu, v) = λ(u, v);

(u, v) = (v, u);

for all u, v, w ∈ V , λ ∈ F .

The form is degenerate if there exists 0 6= v ∈ V such that (u, v) = 0 for all u ∈ V . If

no such v exists then the form is nondegenerate.

Definition 6.9 A unitary form is a nondegenerate hermitian form. A unitary space

is a vector space endowed with a unitary form.
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Unless explicitly stated otherwise we will always denote a unitary form by ( , ).

Lemma 6.10 Let V be a unitary space over F . Then V has an orthonormal basis.

Proof. We first argue that there exists v ∈ V such that (v, v) 6= 0, and then that without

loss of generality (v, v) = 1.

Suppose (v, v) = 0 for all v ∈ V . Then for any v, w ∈ V we have 0 = (v + w, v + w) =

(v, v) + (v, w) + (w, v) + (w, w) = (v, w) + (w, v), so

(v, w) = −(w, v). (†)

Now pick µ ∈ F\GF(q) so that µ 6= µ. Then

0 = (v + µw, v + µw)

= (v, µw) + (µw, v)

= µ(v, w) + µ(w, v)

giving µ(v, w) = −µ(w, v). From (†) we have −µ(w, v) = µ(v, w), so we get µ(v, w) =

µ(v, w). The choice of µ implies that (v, w) = 0, and since v and w were arbitrary this

contradicts the nondegeneracy of V . Thus we may pick v ∈ V such that (v, v) = α 6= 0.

Since (v, v) = (v, v) we have α ∈ 〈γq+1〉. Let α = γr(q+1). Then

(γ−rqv, γ−rqv) = γ−rqγ−rq(v, v)

= γ−rq(γ−rq)qγrq+r

= γ−rq−rq2+rq+r

= γ−rq2+r

= γ−r(q2−1)

= (γq2−1)−r

= 1.
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So without loss of generality we can assume (v, v) = 1. Since V = 〈v〉 ⊕ v⊥ we see that

v⊥ is nondegenerate, so by induction on dim V we get an orthonormal basis for v⊥. This

basis together with v gives the required basis for V . ¤

Definition 6.11 Let V be an n-dimensional vector space with a form ( , ). If n = 2m

is even then a hyperbolic basis for V is a basis u1, u2, ..., um, v1, v2, ..., vm such that

(ui, uj) = (vi, vj) = 0 for all i, j;

(ui, vj) = 0 if i 6= j;

(ui, vj) = 1 if i = j.

If n = 2m + 1 is odd then the basis is required to contain an additional vector d such that

(d, ui) = (d, vi) = 0 for all i;

(d, d) = 1.

Lemma 6.12 Let V be a unitary space over F . Then V has a hyperbolic basis.

Proof. Let n = dim V and let v1, v2, ..., vn be an orthonormal basis for V . The case n = 1

is clear. Suppose n = 2. We first find a vector u such that (u, u) = 0. Pick α ∈ F such

that αα = −1. Then

(v1 + αv2, v1 + αv2) = (v1, v1) + (v1, αv2) + (αv2, v1) + (αv2, αv2)

= 1 + αα

= 0.

Now choose w ∈ V \u⊥. Then (u, (u,w)−1w) = 1, so without loss of generality (u,w) = 1.

Let β = (w,w) ∈ GF(q). By Lemma 6.5 we can find λ ∈ F such that λ + λ = −β. Set

v = λu + w. Then (u, v) = 1 and
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(v, v) = λ(u,w) + λ(w, u) + (w,w)

= λ + λ− λ− λ

= 0.

Thus u, v is a hyperbolic basis for V in this case.

Now suppose n > 2. Pair off the basis vectors v1, ..., vn, with one left over if n is odd. Each

two dimensional subspace formed in this way is a unitary space and so has a hyperbolic

basis. This proves the lemma. ¤

6.3 Unitary Groups

Let V be an n-dimensional unitary space over F . The subgroup of GLn(q2) consisting of

those transformations which preserve the unitary form is the General Unitary Group

of V . It is denoted GU(V ) or GUn(q). We remark that the underlying field has order q2

and not q. The Special Unitary Group of V is SUn(q) = GUn(q) ∩ SLn(q2).

Lemma 6.13 Let n > 2. Then

(i) GU1(q) ∼= Zq+1;

(ii) GUn(q) contains a subgroup isomorphic to GU1(q)
n;

(iii) SUn(q) contains a subgroup isomorphic to GU1(q)
n−1.

Proof. (i) Since elements of GU1(q) are scalars we have

GU1(q) = {λ ∈ F ∗ | (λu, λv) = (u, v) for all u, v ∈ V }
= {λ ∈ F ∗ | λλ = 1}
= 〈γq−1〉
∼= Zq+1.

(ii) Let v1, ..., vn be an orthogonal basis for V = Vn(q2). Then each 〈vi〉 is nondegenerate
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and GU1(q)
n acts on V as a subgroup of GUn(q).

(iii) The subgroup of GUn(q) from part (ii) can be represented by a diagonal matrix. All

but one of the entries can be freely chosen and the other must ensure that the determinant

is 1. ¤

Lemma 6.14 The order of GUn(q) is





qn(n−1)/2(q + 1)(q2 − 1)(q3 + 1)(q4 − 1) · · · (qn + 1) if q odd;

qn(n−1)/2(q + 1)(q2 − 1)(q3 + 1)(q4 − 1) · · · (qn − 1) if q even.

Proof. We follow the procedure described in [12]. Let zn and yn denote the number of

nonzero vectors in V = Vn(q2) of norm 0 and 1 respectively. Note that we could replace

1 here with any nonzero element of GF(q)∗, as each arises the same number of times.

We prove by induction on n that zn is given by

zn =





(qn + 1)(qn−1 − 1) if n is odd;

(qn − 1)(qn−1 + 1) if n is even.

First we provide an inductive formula for zn. Let v1, ..., vn be an orthonormal basis for V

and suppose α1v1 + ... + αnvn has norm 0, i.e, α1α1 + ... + αnαn = 0. If α1α1 = 0 then

there are zn−1 values that α2, ..., αn can take, and if α1α1 6= 0 then there are yn−1. In the

latter case, since there are q − 1 choices for α1α1 and q + 1 choices for α1 we get

zn = zn−1 + (q2 − 1)yn−1.

This gives

yn−1 = (zn − zn−1)/(q
2 − 1). (∗)
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We also have

|V ∗| = q2n − 1 = (q − 1)yn + zn. (∗∗)

Replacing yn with the expression given by (∗) yields

zn+1 = (q2n − 1)(q + 1)− znq. (†)

Now suppose n > 1 is even. We calculate zn+1 using (†) and assuming zn = (qn−1)(qn−1+

1) by induction.

zn+1 = (q2n − 1)(q + 1)− znq

= (q2n − 1)(q + 1)− (qn − 1)(qn−1 + 1)q

= (qn − 1)((qn + 1)(q + 1)− (qn−1 + 1)q)

= (qn − 1)(qn+1 + qn + q + 1− qn − q)

= (qn − 1)(qn+1 + 1).

The calculation is similar if n is odd and we conclude that the formula is correct. Substi-

tuting this formula into (∗∗) gives a formula for yn:

yn =





qn−1(qn + 1) if n is odd;

qn−1(qn − 1) if n is even.

The order of GUn(q) is equal to the number of ordered orthonormal bases for V , which

is ynyn−1 · · · y1. Evaluating this product yields the result. ¤

Lemma 6.15 Let m ∈ N be odd and let V be an n-dimensional unitary space over

GF(q2m) with unitary form ( , ). Let W be the set V regarded as an nm-dimensional

vector space over GF(q2). Define [ , ] : W ×W −→ GF(q2) by [u, v] := tr((u, v)). Then

[ , ] is a unitary form on W .
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Proof. Let u, v, w ∈ W , λ ∈ GF(q2). Then

[u + v, w] = tr((u + v, w))

= tr((u,w) + (v, w))

= tr((u,w)) + tr((v, w))

= [u,w] + [v, w]

and

[λu, v] = tr((λu, v))

= tr(λ(u, v))

= λtr((u, v))

= λ[u, v].

For the next calculation we emphasize the fact that ( , ) is a unitary form over GF(q2m),

and so the associated “bar” automorphism is x 7→ xqm
. We also note that the seventh

equality makes sense because m is odd.
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[u, v] = [u, v]q

= tr((u, v))q

= ((u, v) + (u, v)q2
+ ... + (u, v)q2(m−1)

)q

= (u, v)q + (u, v)q3
+ ... + (u, v)q2m−1

= ((v, u)qm
)q + ((v, u)qm

)q3
+ ... + ((v, u)qm

)q2m−1

= (v, u)qm+1
+ (v, u)qm+3

+ ... + (v, u)q3m−1

= (v, u)qm+1
+ ... + (v, u)q2m−2

+ (v, u)q2m
+ (v, u)q2m+2

+ ... + (v, u)q3m−1

= (v, u)qm+1
+ ... + (v, u)q2m−2

+ (v, u)q2m−1(v, u) + ((v, u)q2m−1)q2
(v, u)q2

+... + ((v, u)q2m−1)qm−1
(v, u)qm−1

= (v, u)qm+1
+ ... + (v, u)q2m−2

+ (v, u) + (v, u)q2
+ ... + (v, u)qm−1

= tr((v, u))

= [v, u].

It remains to show that [ , ] is nondegenerate. Let u ∈ W ∗. Since ( , ) is nondegenerate

we can pick w ∈ V such that (u,w) = 1. This implies that the map (u, ) : V −→ GF(q2m)

taking x 7→ (u, x) is onto. Indeed, if α ∈ GF(q2m) then

(u, αqm
w) = (αqm

)qm
(u,w)

= αq2m

= α.

Now, suppose [u, v] = 0 for all v ∈ W . Then tr((u, v)) = 0 for all v ∈ V . Together with

the fact that the map described above is onto this implies that tr is identically zero. In

other words, the polynomial

Xq2(m−1)

+ ... + Xq2

+ X
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has q2m roots in GF(q2m). But this polynomial can have at most q2(m−1) roots. Hence

[ , ] is nondegenerate and is a unitary form on W . ¤

Lemma 6.16 If m is odd then GUnm(q) contains a subgroup isomorphic to GUn(qm). In

particular, GUm(q) contains a cyclic subgroup of order qm + 1 which arises from multipli-

cation by elements of GF(q2m).

Proof. Let GUn(qm) act on its natural module V preserving the unitary form ( , ). Define

[ , ] on V as in the previous lemma so that GUnm(q) acts on V with respect to [ , ]. By

definition of [ , ], the inclusion map from GUn(qm) to GLnm(q2) is a monomorphism

which maps into GUnm(q). The final statement now follows from Lemma 6.13(i). ¤

For the next lemma we assume knowledge of the Galois Group of a field extension and of

minimal polynomials.

Lemma 6.17 Let V be an n-dimensional vector space over the field of order q and identify

V with GF(qn) as a 1-dimensional vector space over itself. Define φ : V −→ V by v 7→ av

where a is a generator for the multiplicative group GF(qn)∗. Then detGF(q) φ = aqn−1/q−1.

Proof. Let minV (φ) denote the minimal polynomial of φ as an element of EndGF(q)V . This

polynomial has coefficients in GF(q) ⊆ GF(qn) and has φ as a root. So writing a for the

scalar transformation aI, the polynomial X−a divides minV (φ), since this is the minimal

polynomial of φ as an element of EndGF(qn)GF(qn). Hence a is a root of minV (φ). We see

that the image of a under any element of Gal(GF(qn) : GF(q)) is also a root of minV (φ),

and so a, aq, aq2
, ..., aqn−1

are all distinct roots of minV (φ). Since minV (φ) has degree at

most n, we conclude that these are precisely the roots of minV (φ). The determinant of

φ is the absolute value of its characteristic polynomial evaluated at 0, and since we have

just seen that the characteristic polynomial is equal to the minimal polynomial we deduce

that detGF(q) φ = a · aq · · · aqn−1
= a1+q+...+qn−1

= aqn−1/q−1. ¤
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The following result is only needed in the last section on SU3(q).

Lemma 6.18 Let ω generate the multiplicative group GF(q6)∗. Identify 〈ωq3−1〉 with the

cyclic subgroup of GU3(q) of order q3 + 1 as in Lemma 6.16. Then 〈ωq3−1〉 ∩ SU3(q) ∼=
Zq2−q+1.

Proof. Let θ = ωq3−1. By the previous lemma, det θ = θq6−1/q2−1 = θq4+q2+1. So

det θr = θr(q4+q2+1).

Then det θr = 1 if and only if q3 + 1 divides r(q4 + q2 + 1). Both q3 + 1 and q4 + q2 + 1

have a factor of q2− q + 1 so after cancelling we get det θr = 1 if and only if q + 1 divides

r(q2 + q + 1). Since q2 + q + 1 = (q + 1)2− q we see that q2 + q + 1 and q + 1 are coprime,

and we deduce finally that

det θr = 1 if and only if q + 1 divides r.

Hence 〈θ〉 ∩ SU3(q) = 〈θq+1〉 ∼= Zq2−q+1. ¤

Lemma 6.19 GU2(q) has a cyclic subgroup of order q2 − 1.

Proof. Let u, v be a hyperbolic basis for V = V2(q
2). Define θ : V −→ V by

uθ = γu;

vθ = γq2−q−1v.

Clearly θ is an invertible linear transformation of V of order q2− 1, so it suffices to check

that θ is an isometry. We need only check it preserves the form on basis elements.
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(uθ, uθ) = (γu, γu) = 0;

(vθ, vθ) = (γq2−q−1v, γq2−q−1v) = 0;

(uθ, vθ) = (γu, γq2−q−1v)

= γγq2−q−1(u, v)

= γq3−q2−q+1

= (γq2−1)q−1

= 1.

This completes the proof. ¤

6.4 Numerical Results

The following results will be needed in the last section.

Lemma 6.20 If q ∈ N then

(i) (q2 − 1)2′ < (q3 + 1)2′ ;

(ii) q(q2 − 1)2′ < q2(q + 1)2′ ;

(iii) (q3 + 1)2′ < q2(q + 1)2′ if q > 2;

(iv) (q3 + 1) < (q + 1)3;

(v) ((q2 − 1)(q + 1)) < (q + 1)3.

Proof. (i) We have 0 < (q − 1)2 + 1, which implies

q − 1 < q2 − q + 1.

Since q2 − q + 1 is odd we get (q − 1)2′ < (q2 − q + 1)2′ , hence (q2 − 1)2′ < (q3 + 1)2′ .
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(ii) Cancel by q(q + 1)2′ .

(iii) Cancel by (q + 1)2′ .

(iv) Obvious.

(v) Obvious.

Lemma 6.21 If 3 6 q ∈ N is odd then

(i) (q + 1)3
2′ < (q3 + 1)2′ ;

(ii) ((q2 − 1)(q + 1))2′ < (q3 + 1)2′ ;

(iii) q(q + 1)2
2′ < q2(q + 1)2′ .

Proof. (i) We have 0 < 3(q − 1)2 which implies (q + 1)2 < 4(q2 − q + 1) and

1

4
(q + 1)2 < q2 − q + 1.

Now, q is odd, so (q + 1)2 is divisible by 4, and as q2 − q + 1 is odd we get (q + 1)2
2′ <

(q2 − q + 1)2′ . Hence (q + 1)3
2′ < (q3 + 1)2′ .

(ii) Similar to (i). First, 0 < 3(q− 1)2 + 2q + 2 implies q2− 1 < 4(q2− q + 1). Now divide

by 4, take the odd parts and multiply by (q + 1)2′ .

(iii) Cancel by q(q + 1)2′ then use the fact that q is odd. ¤

Lemma 6.22 Let 2 6 q ∈ N.

(i) If q is even or q ≡ 1 mod 4 then (q2 − 1)2′ < (q + 1)2
2′ ;

(ii) If q ≡ 3 mod 4 then (q + 1)2
2′ < (q2 − 1)2′ unless q = 3 in which case they’re equal;

(iii) (q + 1)2 divides q3 + 1 if and only if q = 2.
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Proof. (i) Obvious if q is even. In the other case let q = 4n + 1 for some n ∈ N. Then

2n2 + n < 4n2 + 4n + 1, and since 4n2 + 4n + 1 is odd we get

(2n2 + n)2′ < (4n2 + 4n + 1)2′ .

As we have taken the odd parts of these numbers we are free to multiply by powers of 2.

Thus

(8(2n2 + n))2′ < (4(4n2 + 4n + 1))2′ .

Then ((4n + 1)2 − 1)2′ < ((4n + 1)2 + 2(4n + 1) + 1)2′ , i.e, (q2 − 1)2′ < (q + 1)2
2′ .

(ii) Let q = 4n + 3 for some n ∈ N. Then 2n + 1 is odd and greater than n + 1, so

(n + 1)2′ < (2n + 1)2′ . Now multiply the left side by (16(n + 1))2′ and the right side by

(8(n + 1))2′ to get the result.

(iii) After cancelling by q +1 the question is reduced to considering whether q +1 divides

q2− q + 1. Since q2− q + 1 = (q− 2)(q + 1) + 3 we see that q + 1 divides q2− q + 1 if and

only if q + 1 = 3. ¤

6.5 Sylow p-subgroups of GU3(q)

Throughout this section and the next we let G = GU3(q) acting on V = V3(q
2). Let u, d, v

be a hyperbolic basis for V as described in Definition 6.11. All matrices from now on are

with respect to such a basis, with the basis elements in the order given.

The following are necessary and sufficient conditions for a matrix A = (aij) to be a unitary

matrix:
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(I) a11a13 + a12a12 + a13a11 = 0;

(II) a11a23 + a12a22 + a13a21 = 0;

(III) a11a33 + a12a32 + a13a31 = 1;

(IV ) a21a23 + a22a22 + a23a21 = 1;

(V ) a21a33 + a22a32 + a23a31 = 0;

(V I) a31a33 + a32a32 + a33a31 = 0.

We fix this numbering as we will need to refer to these properties several times later.

Lemma 6.23 The upper triangular matrices in G form a Sylow p-subgroup of G.

Proof. Let A =




1 a b

1 c

1



∈ GU3(q). The conditions (I) - (VI) translate into

(I) aa = −(b + b);

(II) c = −a.

We count the number of choices for b and a. If b = 0 then a = 0. If b 6= 0 and b + b = 0

then a = 0, and since b ∈ F ∗ there are q − 1 choices for b by Lemma 6.5.

If b 6= 0 and b+ b 6= 0 then there are q2− q choices for b and q +1 choices for a by Lemma

6.4 since b + b ∈ GF(q).

Hence we calculate the number of such matrices A to be

1 + (q − 1) + (q2 − q)(q + 1) = q3.

This is the order of a Sylow p-subgroup of G. ¤

Lemma 6.24 Let P =








1 a b

1 −a

1



| aa + b + b = 0




∈ Sylp(G).
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Then Z(P ) =








1 b

1

1



| b + b = 0





and |Z(P )| = q.

Proof. Let X =




1 a b

1 −a

1




and Y =




1 c d

1 −c

1



∈ P .

Then XY = Y X if and only if

ac = ca. (†)

If a 6= 0 then there are q elements c which satisfy (†). This is because if c 6= 0 then (†)
becomes aq−1 = cq−1, and there are q − 1 choices for c by Lemma 6.7. In particular, c

may not be arbitrary. Since every element of F arises in the “c” position of some element

of P , we deduce that X /∈ Z(P ) whenever a 6= 0. Since we clearly have X ∈ Z(P ) when

a = 0, we conclude that

Z(P ) =








1 b

1

1



| b + b = 0





.

Lemma 6.5 implies |Z(P )| = q. ¤

Lemma 6.25 Z(G) = {λI | λλ = 1} and |Z(G)| = q + 1.

Proof. Let A ∈ Z(G) and let b ∈ F ∗ such that b + b = 0. Then A has to commute with
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both 


1 b

1

1




and




1

1

b 1




and it follows that A is a diagonal matrix. It is now easily verified that A must be a scalar

matrix, for example by multiplying with an arbitrary upper triangular matrix. The scalar

matrices in G are precisely those described in the hypothesis, and they are in the centre.

There are q + 1 of them by Lemma 6.4. ¤

Proposition 6.26 Let P ∈ Sylp(G) and let X ∈ P\Z(P ). Then CG(X) is abelian of

order q2(q + 1) and CG(X) = CP (X)Z(G).

Proof. It suffices to prove the first statement since the second will then follow from Lemma

6.25.

Without loss of generality P =








1 a b

1 −a

1



| aa + b + b = 0





.

Let X =




1 a b

1 −a

1




.

Then a 6= 0 since X /∈ Z(P ). Let

C =




c11 c12 c13

c21 c22 c23

c31 c32 c33



∈ CG(X).

We observe that X has precisely one eigenvalue (namely 1) with eigenspace 〈v〉. So

CG(X) must fix both 〈v〉 and v⊥ = 〈d, v〉. Therefore C is an upper triangular matrix, i.e,

c21 = c31 = c32 = 0. Recall that C satisfies the conditions (I) to (VI) from the beginning
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of this section. By explicitly calculating XC and CX and comparing matrix entries we

obtain a further three restrictions on C:

(V II) c11a = ac22;

(V III) c11b− c12a = ac23 + bc33;

(IX) −ac22 = −ac33.

By (VII) and (IX) we have c11 = c22 = c33 because a 6= 0. Then (VIII) becomes −c12a =

ac23. Substituting these values into the twelve equations eliminates eight of them. The

remaining four are:

(I) c11c13 + c12c12 + c13c11 = 0;

(II) c11c23 + c12c11 = 0;

(III) c11c11 = 1;

(V III) ac23 = −c12a.

We now have enough information to show that CG(X) is abelian. Let

D =




d11 d12 d13

d22 d23

d33



∈ CG(X).

Again we explicitly calculate CD and DC to see that CD = DC if and only if

c12d23 = d12c23. (†)

If c12 = 0 or d12 = 0 then (†) is satisfied by (VIII) remembering that the conditions hold

for D as well as C, so we can assume that both c12 and d12 are nonzero. In this case (†)
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becomes

d23d
−1
12 = c23c

−1
12 .

This holds because (VIII) implies that both are equal to −aa−1. Hence CG(X) is abelian.

To calculate the order of CG(X) we count the number of choices for the elements which

appear in the four equations. The elements in question are c11, c13, c12 and c23.

First suppose c12 = 0. Then c23 = 0 by (VIII), there are q + 1 choices for c11 by (III) and

Lemma 6.4, and there are q choices for c13 by (I) and Proposition 6.6.

Now assume c12 6= 0. Again there are q + 1 choices for c11. Rearranging (VIII) gives

c23 = −c12aa−1, and we substitute this into (II) to get

c11−c12aa−1 + c12c11 = 0.

Since both c11 and c12 are nonzero this may be rearranged to give

aq−1 = (c−1
11 c12)

q−1.

Lemma 6.7 then implies that there are q − 1 values that c−1
11 c12 can take. Therefore for

each choice of c11 there are q− 1 choices for c12. As before there are q choices for c13. We

finally deduce that

|CG(X)| = (q + 1)q + (q + 1)(q − 1)q = (q + 1)q2

and we are done. ¤

Corollary 6.27 If A ∈ AO(G) is a p-group then |A| = q2.
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6.6 Odd Nilpotent Injectors in GU3(q)

We prove that the odd nilpotent injectors in G are all conjugate. The proof goes as

follows: If q is even then

• elements of AO(G) are direct products of three copies of elements of AO(GU1(q));

• AO(G) forms a single conjugacy class;

• NIO(G) forms a single conjugacy class by Corollary 3.12.

If q is odd then for A ∈ AO(G) and A 6 I ∈ NIO(G)

• |A|p > q;

• A contains a p-element X not in the centre of a Sylow p-subgroup;

• A = O(CG(X));

• I = PO(Z(G)) for some P ∈ Sylp(G).

We begin with some preliminaries.

Lemma 6.28 Let G be a group acting coprimely on a vector space V and preserving a

form ( , ) on V . Then V = [V,G]⊕⊥ CV (G).

Proof. By Lemma 2.9 we have V = [V, G]⊕CV (G). Let −v+vg ∈ [V,G] and w ∈ CV (G).

Then

(−v + vg, w) = (−v, w) + (vg, w)

= −(v, w) + (vg, wg)

= −(v, w) + (v, w)

= 0

and the lemma is proved. ¤
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Lemma 6.29 (Huppert) [8, 4, p149] If n is odd then every cyclic irreducible subgroup of

GUn(q) has order dividing qn + 1. If n is even then GUn(q) contains no cyclic irreducible

subgroups.

Theorem 6.30 (Maschke’s Theorem) [1, 3.3.1, p66] If G acts coprimely on a vector

space V then V is a direct sum of G-invariant irreducible submodules.

Lemma 6.31 [2, 19.3(4), p77] Let V be a vector space with a form. If U 6 V is a totally

isotropic subspace then dim U 6 1
2
dim V .

Proposition 6.32 Let A 6 GU2(q) be an abelian p′-group acting on the natural module

W . Then one of the following holds:

(i) A acts faithfully on a 1-dimensional subspace and |A| divides q2 − 1;

(ii) W = W1 ⊕⊥ W2 where dim Wi = 1 and each Wi is A-invariant. In particular,

A 6 GU(W1)×GU(W2) and |A| divides (q + 1)2.

Proof. If A is irreducible then A is cyclic by Lemma 2.5. This contradicts Lemma 6.29.

So A acts reducibly on W . Let U be a 1-dimensional A-invariant subspace of W . If A

acts faithfully on U then A 6 GL1(q
2) and |A| divides q2 − 1.

Suppose now that A acts nonfaithfully on U . Then A1 = CA(U) 6= 1. Lemma 6.28 implies

that

W = CW (A1)⊕⊥ [W,A1],

and by definition of A1 we have U ⊆ CW (A1). It follows that both CW (A1) and [W,A1] are

1-dimensional since CW (A1) 6= W . They are also both A-invariant because A is abelian,

and they are nondegenerate. So A 6 GU1(q)×GU1(q) and |A| divides (q+1)2 by Lemma

6.13. ¤
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Corollary 6.33 Let A ∈ AO(GU2(q)). Suppose A is a p′-group. Then

|A| =





(q2 − 1)2′ if q ≡ 3 mod 4;

(q + 1)2
2′ otherwise.

Proof. We have |A| 6 max{(q2 − 1)2′ , (q + 1)2
2′}. Since abelian subgroups of both orders

exist (Lemmas 6.13 and 6.19) we need only check which is larger. See Lemma 6.22. ¤

Proposition 6.34 Let A 6 G be an abelian p′-group. Then one of the following holds:

(i) A is irreducible and |A| divides q3 + 1;

(ii) A acts faithfully on a 1-dimensional subspace and |A| divides q2 − 1;

(iii) V = V1 ⊕⊥ V2 where dim Vi = i and each Vi is A-invariant. In particular,

A 6 GU(V1)×GU(V2) and |A| divides (q2 − 1)(q + 1) or (q + 1)3.

Proof. As in Proposition 6.32, if A acts irreducibly on V then A is cyclic. Lemma 6.29

then implies that

|A| divides q3 + 1.

Suppose now that A acts reducibly on V . By Maschke’s Theorem (6.30) there exists a

1-dimensional A-invariant subspace U . If A acts faithfully on U then A 6 GL1(q
2) and

|A| divides q2 − 1.

Suppose A acts nonfaithfully on U . Then A1 = CA(U) 6= 1. Applying Lemma 6.28 we

have

V = CV (A1)⊕⊥ [V, A1],

and both direct summands are A-invariant because A is abelian. By definition of A1 we
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see that U ⊆ CV (A1), and since CV (A1) 6= V this implies that CV (A1) has dimension 1 or

2. So one of CV (A1) and [V, A1] has dimension 2 and the other has dimension 1. Hence

A 6 GU2(q)×GU1(q).

By Proposition 6.32 and Lemma 6.13 we see that |A| divides (q2− 1)(q + 1) or (q + 1)3.¤

Corollary 6.35 Let A ∈ AO(G). Suppose A is a p′-group. Then

|A| =





(q3 + 1)2′ if q is odd;

(q + 1)3 if q is even.

Proof. We have |A| 6 max{(q3 +1)2′ , ((q
2− 1)(q +1))2′ , (q +1)3

2′}. The largest of these is

(q3 +1)2′ when q is odd and (q +1)3
2′ when q is even (see Lemmas 6.20 and 6.21). Abelian

subgroups of both orders exist by Lemmas 6.16 and 6.13. ¤

We now prove the main theorem when q is even.

Proposition 6.36 If q is even then NIO(G) is a single conjugacy class of subgroups.

Proof. Let A,B ∈ AO(G) with A 6 I ∈ NIO(G) and B 6 J ∈ NIO(G). Then A is a

p′-group and |A| = (q +1)3. By Proposition 6.34 we have V = U1⊕⊥U2 and A = C1×C2

where dim Ui = i and Ci 6 GU(Ui). Now, |GU2(q)| = q(q − 1)(q + 1)2 and q + 1 is

coprime to q(q − 1) because q is even. Therefore |C2| = (q + 1)2 and |C1| = q + 1.

Applying Corollary 6.32 to the action of C2 on U2 then gives

A = A1 × A2 × A3 and V = V1 ⊕⊥ V2 ⊕⊥ V3

where dim Vi = 1 and each Ai acts as GU1(q) on Vi and centralizes Vj for j 6= i. Similarly,

B = B1 × B2 × B3 acting on W1 ⊕⊥ W2 ⊕⊥ W3 = V satisfying the same properties. For
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each Vi and Wi choose vectors vi and wi of norm 1 so that v1, v2, v3 and w1, w2, w3 form

orthonormal bases for V . There exists an element g ∈ G such that

vg
i = wi for each i.

Then Ag acts on W1 ⊕⊥ W2 ⊕⊥ W3 as a subgroup of GU1(q)
3, and since |A| = |B| =

|GU1(q)
3| we deduce that Ag = B. Now apply Corollary 3.12 to conclude that Ig is

conjugate to J . ¤

Proposition 6.37 Suppose q is odd and let A ∈ AO(G). Then A = O(CG(X)) for

some p-element X ∈ G which is not in the centre of a Sylow p-subgroup of G, and

|A| = q2(q + 1)2′.

Proof. We first assume A is neither a p-group nor a p′-group and show that it has the

required form in this case. Let

W = CV (Op(A)).

Since V has characteristic p we see that W 6= 1, and as we have assumed Op(A) 6= 1 we

deduce that 1 6= W 6= V . So W has dimension 1 or 2. Applying Thompson’s P × Q

Lemma to the action of Op(A)× COp′ (A)(W ) on V implies that

COp′ (A)(W ) = 1.

Thus Op′(A) acts faithfully on W . The next few paragraphs are similar to part of Propo-

sition 6.34. If dim W = 1 then

Op′(A) 6 GL1(q
2) ∼= Zq2−1. (1)

Suppose dim W = 2. Then dim W > 1
2
dim V , so W is not totally isotropic by Lemma
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6.31, i.e, W ∩W⊥ 6= W . If Op′(A) acts irreducibly on W then Op′(A) is cyclic and W

is nondegenerate since W ∩W⊥ is an Op′(A)-invariant proper subspace of W . However,

GU2(q) contains no cyclic irreducible subgroups by Lemma 6.29. Thus Op′(A) leaves a

1-dimensional subspace U of W invariant. If Op′(A) acts faithfully on U then

Op′(A) 6 GL1(q
2) ∼= Zq2−1. (2)

Suppose now that Op′(A) acts nonfaithfully on U . Let A1 = COp′ (A)(U) 6= 1. Then W =

[W,A1] ⊕⊥ CW (A1) and both subspaces are 1-dimensional, nondegenerate and Op′(A)-

invariant. So

Op′(A) 6 GU1(q)
2 ∼= Z2

q+1. (3)

We conclude that |Op′(A)| 6 max{(q2 − 1)2′ , (q + 1)2
2′}. Now, if |Op(A)| 6 q then

|A| 6 max{q(q2 − 1)2′ , q(q + 1)2
2′}.

Lemmas 6.20(ii) and 6.21(iii) compare these numbers with q2(q + 1)2′ . Both are smaller.

Since an abelian subgroup of order q2(q + 1)2′ exists (see Proposition 6.26) we must

therefore have

|Op(A)| > q.

We have seen that |Z(P )| = q for any P ∈ Sylp(G), so it follows that A contains a p-

element X which is not in the centre of a Sylow p-subgroup of G. Thus A 6 CG(X).

Proposition 6.26 then implies that A has the required form.

It remains to check that there is no p-group or p′-group which is abelian of odd order

larger than |A|. The orders of any such groups are bounded by Corollarys 6.35 and 6.27.

The bounds are (q3 +1)2′ and q2 respectively. A comparison of the former with q2(q +1)2′

is made in Lemma 6.20(iii), and the latter is clearly not bigger than q2(q + 1)2′ . In all
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cases, q2(q + 1)2′ is the largest. ¤

Theorem 6.38 NIO(G) is a single conjugacy class of subgroups.

Proof. By Proposition 6.36 we may assume q is odd. Let A ∈ AO(G) and A 6 I ∈
NIO(G). Then

A = O(CG(X)) = O(CP (X)Z(G))

for some X ∈ P ∈ Sylp(G) with X /∈ Z(P ). Since X ∈ A is a p-element we must have

Op′(I) 6 CG(X). We then use the fact that I has odd order and CG(X) is abelian to

deduce that Op′(I) 6 O(CG(X)) = A. Therefore

Op′(I) = Op′(A).

Now, Op′(A) = O(Z(G)), so [Op′(I), P ] = 1. This forces

I = O(Z(G))P.

Similarly, any J ∈ NIO(G) satisfies J = O(Z(G))Q for some Q ∈ Sylp(G), and I and J

are conjugate by Sylow’s Theorem. ¤

6.7 SU3(q)

We now consider the Special Unitary Group SU3(q). We still denote GU3(q) by G and

we let S = SU3(q).

Lemma 6.39 (Schur’s Lemma) [2, 12.4, p38] Let F be a field and V an irreducible FG-

module. Suppose G has order coprime to the characteristic of F . Then End(V ) is a

division ring.
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Proposition 6.40 Suppose q is odd and let B ∈ AO(S). Then B = A ∩ S for some

A ∈ AO(G).

Proof. Let A ∈ AO(G). Then A = CP (X)O(Z(G)) for some X ∈ P ∈ Sylp(G) such

that X /∈ Z(P ). Because P 6 S we have A = (A ∩ S)O(Z(G)). Now, |A ∩ S| 6 |B| by

definition of B. Together with the observations that S∩O(Z(G)) 6 B and O(Z(G)) 6 A

this allows us to calculate

|A| = |(A ∩ S)O(Z(G))|
= |A ∩ S||O(Z(G))|/|A ∩ S ∩ O(Z(G))|
= |A ∩ S||O(Z(G))|/|S ∩ O(Z(G))|
6 |B||O(Z(G))|/|S ∩ O(Z(G))|
= |B||O(Z(G))|/|B ∩ O(Z(G))|
= |BO(Z(G))|.

Therefore BO(Z(G)) ∈ AO(G) and BO(Z(G)) ∩ S = B(O(Z(G)) ∩ S) = B. ¤

Proposition 6.41 Suppose q 6= 2 is even and let B ∈ AO(S). Then B = A∩S for some

A ∈ AO(G).

Proof. By Proposition 6.34 one of the following holds:

(i) B is irreducible and |B| divides q3 + 1;

(ii) B acts faithfully on a 1-dimensional subspace of V and |B| divides q2 − 1;

(iii) V = V1 ⊕⊥ V2 where dim Vi = i and each Vi is B-invariant. In particular,

B 6 GU(V1)×GU(V2) and |B| divides (q2 − 1)(q + 1) or (q + 1)3.

Suppose (i) holds. Let K be the subring of End(V ) generated by B. Then K is a division

ring by Schur’s Lemma (6.39), and since B is abelian, K is a field. So we can view V as

a vector space over K. Any K-subspace of V is B-invariant because B ⊆ K, and so the
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irreducibility of B implies that V is 1-dimensional over K. Thus |K| = |V | = q6 and we

must have

K = GF(q6).

So B arises as a subgroup of GF(q6)∗. Hence |B| 6 q2 − q + 1 by Lemma 6.18.

Now suppose (iii) holds. Then elements of B look like




c

d11 d12

d21 d22




where c is a scalar from GU1(q) and D =




d11 d12

d21 d22


 ∈ GU2(q). To maximize the

order of B it is clear that the matrices D should form an element of AO(GU2(q)) and

each c should be defined by c = det D−1. So |B| = (q + 1)2 in this case. Thus

|B| 6 max{q2 − q + 1, q2 − 1, (q + 1)2}.

These are all odd and the largest of them is (q+1)2. An abelian subgroup of order (q+1)2

exists in S by Lemma 6.13. Therefore

|B| = (q + 1)2.

Now, (q + 1)2 does not divide q2 − 1, and (q + 1)2 divides q3 + 1 if and only if q = 2.

Hence we are in case (iii). By allowing the element c mentioned earlier to take the value

of any scalar from GU1(q) we get a subgroup A of G which is abelian of order (q + 1)3,

i.e, A ∈ AO(G). Moreover, A ∩ S = B. ¤

Theorem 6.42 NIO(S) is a single conjugacy class in S.
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Proof. Let A ∈ AO(S) and let A 6 I ∈ NIO(S). Suppose q is odd. Then A =

CP (X)(O(Z(G))∩ S) for some X ∈ P ∈ Sylp(G). By the arguments of Theorem 6.38 we

deduce that I = P (O(Z(G)) ∩ S) and the result follows by Sylow’s Theorem.

Now suppose q 6= 2 is even. Let B ∈ AO(S). Then A = A1 ∩ S and B = B1 ∩ S for some

A1, B1 ∈ AO(G). In a similar fashion to Proposition 6.36, we can find orthonormal bases

v1, v2, v3 and w1, w2, w3 such that elements of A look like




a

b

(ab)−1




with respect to v1, v2, v3 and elements of B look like




c

d

(cd)−1




with respect to w1, w2, w3, where a, b, c and d are scalars from GU1(q). Consider the

subgroups of GU2(q) obtained by removing the third row and column from the matrices

which form A and B. There subgroups act as GU1(q) × GU1(q) with respect to the

appropriate orthonormal bases, so there exists g =




g11 g12

g21 g22


 ∈ GU2(q) conjugating

one into the other. Let




a

b


 be an element obtained from A in this manner and

let




c

d


 be its conjugate under g. Then both of these matrices have the same

100



determinant, i.e, ab = cd. It follows that the matrix g1 =




g11 g12

g21 g22

∗




conjugates

A into B, where ∗ can take any value from GU1(q). Choosing ∗ to be the inverse of the

determinant of g yields an element g1 of SU3(q) conjugating A into B. The result follows.

Finally, if q = 2 then NIO(SU3(2)) = Syl3(SU3(2)) because |GU3(2)| = 23 · 34. ¤
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Chapter 7

Groups With Components Of

Alternating Type

We investigate a minimal counterexample to the conjecture that the odd nilpotent injec-

tors of any group are all conjugate. We show that such a group necessarily has components

and we prove that if there is a component of alternating type then it must be a triple

cover of A6 or A7.

We begin with a review of some results on components.

Definition 7.1 A quasisimple group is a perfect group K such that K/Z(K) is simple.

A component of G is a subnormal quasisimple subgroup. The type of a component is

the simple group K/Z(K). We denote the set of components of G by Comp(G). The

group generated by the components of G is denoted E(G). The Generalized Fitting

Subgroup of G is F ∗(G) = F (G)E(G).

Lemma 7.2 [2, 31.7, p158] [2, 31.12, p159] Let Comp(G) = {K1, ..., Km}. Set E(G) =
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E(G)/Z(E(G)). Then

(i) [Ki, Kj] = 1 if i 6= j;

(ii) [F (G), E(G)] = 1;

(iii) E(G) = K1 × ...×Km.

Theorem 7.3 [2, 31.13, p159] CG(F ∗(G)) 6 F ∗(G).

Lemma 7.4 If G acts on the perfect group K then CG(K) = CG(K/Z(K)). In particular,

G acts faithfully on K if and only if G acts faithfully on K/Z(K).

Proof. Set K = K/Z(K). Then [CG(K), K] 6 Z(K), so [CG(K), K,K] = 1. The Three

Subgroups Lemma implies [K, K, CG(K)] = 1, and since K is perfect we get CG(K) 6

CG(K). The other inclusion is trivial. ¤

Definition 7.5 Let n ∈ N. If there exists a perfect group K satisfying K/Z(K) ∼= G and

Z(K) ∼= Zn then K is denoted by n ·G. If n = 2 or 3 then K is called a double cover or

a triple cover of G respectively.

Lemma 7.6 The quasisimple groups of type An are:

An for n > 5;

2 · An for n > 5;

3 · A6;

3 · A7.

Proof. See [12, 2.7, p27-30]. ¤

7.1 Sn and An

Lemma 7.7 Let X be a nonempty set and assume A ∈ AO(Sym(X)) has orbits X1, ..., Xk

on X. Then A ∼= A1 × ...× Ak where Ai ∈ AO(Sym(Xi)) for all i.
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Proof. For each i let φi : A −→ Sym(Xi) be the natural homomorphism. So A 6 Aφ1 ×
...×Aφk. By the maximality of |A| we get A = Aφ1× ...×Aφk and Aφi ∈ AO(Sym(Xi))

for all i. ¤

Proposition 7.8 Let n > 3 and let A ∈ AO(Sn). Write n = 3t + r where r = 0, 1 or 2.

Then A is a direct product of groups of prime order and

|A| =





3t if r = 0 or 1;

3t−1 · 5 if r = 2.

Proof. Let X = {1, ..., n} and let X1, ..., Xk be the orbits of X under A. Then

A = A1 × ...× Ak

where Ai ∈ AO(Sym(Xi)) for all i by Lemma 7.7. Since Ai is abelian and transitive on

Xi, we have |Ai| = |Xi| for each i. Now fix i and let |Xi| = ni. Write ni = 3ti + ri where

ri = 0, 1 or 2. We see that Sym(Xi) contains an abelian subgroup of order 3ti which is a

direct product of cyclic groups of order 3, so

|Ai| = ni > 3ti .

Therefore 3ti 6 3ti + ri 6 3ti + 3 = 3(ti + 1) and 3ti−1 6 ti + 1. This implies ti 6 2. If

ti = 2 then 8 > ni > 3ti = 9, a contradiction. So ti 6 1 and

|Ai| 6 5.

Now, by the Orbit Stabilizer Theorem each orbit has odd length, so the lengths are either

1,3 or 5. Suppose we have two orbits Xi and Xj.
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If |Xi| = |Xj| = 5 then |Ai × Aj| = 25. However, Sym(Xi ∪ Xj) contains an abelian

subgroup of order 33 = 27. So there is at most one orbit of length 5.

If |Xi| = 1 and |Xj| = 5 then |Ai × Aj| = 5. Again, Sym(Xi ∪ Xj) contains an abelian

subgroup of order 32 = 9. So there cannot be orbits of lengths 1 and 5 at the same time.

If |Xi| = |Xj| = 1 then there is no orbit of length 5, and since n > 3 there must be

another orbit Xl, of length 1 or 3. If |Xl| = 1 then |Ai × Aj × Al| = 1 and if |Xl| = 3

then |Ai ×Aj ×Al| = 3. Neither case is possible because Sym(Xi ∪Xj ∪Xl) contains an

abelian subgroup of order 3 in the first case and 5 in the second. Hence there is at most

one orbit of length not equal to 3, and that orbit has length 1 or 5.

If r = 0 then every orbit has length 3. If r = 1 then every orbit has length 3 except one

which has length 1. If r = 2 then every orbit has length 3 except one which has length 5.

The result follows. ¤

Theorem 7.9 NIO(Sn) is a single conjugacy class.

Proof. Let A ∈ AO(Sn) and let A 6 I ∈ NIO(Sn). Write n = 3t + r where r = 0, 1 or 2.

Suppose r = 0 or 1. Then

A ∼= 〈(1, 2, 3)〉 × ...× 〈(3t− 2, 3t− 1, 3t)〉.

Assume there exists p ∈ π(I)\{3} and let b ∈ Op(I). Then b commutes with A, so it fixes

each 3-cycle. Moreover, the action of b on each 3-cycle is either trivial or has order 3.

Since p 6= 3, we see that b = 1. So I ∈ Syl3(Sn) and the theorem holds.

If n = 5 then NIO(S5) = Syl5(S5) and we are done. So suppose r = 2 and n > 5. Then

A = A1 × A2

where A1 = 〈(1, 2, 3, 4, 5)〉 and A2 = 〈(6, 7, 8)〉 × ... × 〈(3t, 3t + 1, 3t + 2)〉. The above
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argument shows that π(I) = {3, 5}. Let x ∈ O5(I). Then x commutes with A2, so

x ∈ Sym({1, 2, 3, 4, 5}), again by the same argument as above. This implies O5(I) ∈
Syl5(Sym({1, 2, 3, 4, 5})). Similarly, O3(I) ∈ Syl3(Sym({6, 7, ..., 3t + 2})) and the result

follows by Sylow’s Theorem. ¤

Theorem 7.10 AO(An) = AO(Sn) and NIO(An) = NIO(Sn). Moreover, NIO(An) is

a single conjugacy class in An.

Proof. The first two statements are immediate because |Sn : An| = 2. For the last

statement, follow the proof of the previous theorem and change “Sym” to “Alt”. ¤

7.2 NIO(G) and Components

First we have a corollary of Theorem 3.9.

Corollary 7.11 Let I ∈ NIO(G). Then I ∩ E(G) = 〈I ∩ K|K ∈ Comp(G)〉 and for

every K ∈ Comp(G) we have I ∩K ∈ MaxNO(K).

Proof. Let E = E(G) and Z = Z(E). Set E = E/Z. Let Comp(G) = {K1, ..., Kn} and

for each i let πi : E −→ Ki be the projection map. Since I ∩ E ∈ MaxNO(E) it follows

that I ∩ E ∈ MaxNO(E) by Lemma 3.8. We have I ∩ E 6 (I ∩ E)π1 × ... × (I ∩ E)πn,

and since this direct product is nilpotent of odd order in E we get

I ∩ E = (I ∩ E)π1 × ...× (I ∩ E)πn.

For each i let Li be the inverse image of (I ∩ E)πi in Ki. Since [Li, Z] = 1 we see that Li

is nilpotent, so we can pick Ji ∈ Hall2′(Li). Moreover, as (I ∩ E)πi has odd order we get

Ji = Li. So

I ∩ E = J1 · · · Jn.
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Taking inverse images gives (I ∩ E)Z = J1 · · · JnZ. Now, O(Z) 6 I and O(Z) 6 Ji for

each i, so in fact

(I ∩ E)Z = (I ∩ E)O2(Z) = J1 · · · JnO2(Z).

Then clearly (I∩E)O2(Z) = (I∩E)×O2(Z) = (J1 ···Jn)×O2(Z), giving I∩E = J1 ···Jn.

The first statement follows because Ji 6 I ∩Ki for each i and I ∩ E ∈ MaxNO(E). The

second statement is now straightforward. ¤

The rest of this section is devoted to proving that elements of AO(G) normalize compo-

nents of type An, except possibly the triple covers of A6 and A7. However, only the last

result (Theorem 7.16) actually contains any mention of the type of a component.

Let G be a group in which the components K = K1, K2..., Km of G are all conjugate

under A ∈ AO(G). Assume m > 3. Let A 6 I ∈ NIO(G) and observe that

NI(K) = NI(Ki)

and

NG(K) = NG(Ki)

for all i. Let E = E(G) and set

G = G/CG(E).

Then we can identify G with a subgroup of

Aut(E) = Sm n (Aut(K1)× ...× Aut(Km)).

Under this identification NG(K) is a subgroup of Aut(K1) × ... × Aut(Km) because, as

before, NG(K) normalizes each Ki. Define πi to be the projection map from NG(K) into
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Aut(Ki).

We let (H) be the hypothesis that G is a group satisfying the conditions and with the

notation described above.

Results 7.12 to 7.15 are poached from [5, II.7].

Lemma 7.12 Assume (H). Then

(i) I ∩ E = I ∩ E = I ∩K1 × ...× I ∩Km;

(ii) I ∩Ki = I ∩Ki = (I ∩ E)πi ∈ MaxNO(Ki) for all i;

(iii) NI(K)πi ∩Ki = I ∩Ki for all i.

Proof. Theorem 3.9 implies I ∩ E ∈ MaxNO(E). Then since CG(E) ∩ E 6 Z(E) we get

I ∩ E ∈ MaxNO(E) by Lemma 3.8. It follows that I ∩ E = I ∩E because I ∩ E 6 I ∩E.

Similarly, I ∩Ki = I ∩ Ki because I ∩ Ki ∈ MaxNO(Ki) for all i, from Corollary 7.11.

The same lemma gives I ∩ E = I ∩K1 × ... × I ∩Km and (i) is proven. Moreover,

(I ∩ E)πi = I ∩Ki for all i, proving (ii).

For (iii) we have I ∩ E 6 NI(K), so (I ∩ E)πi 6 (NI(K))πi. Then (ii) gives I ∩ Ki 6

(NI(K))πi ∩Ki. Since I ∩Ki ∈ MaxNO(Ki) and (NI(K))πi is a homomorphic image of

NI(K), which is nilpotent of odd order, the result follows. ¤

Lemma 7.13 Assume (H). Then NA(K) ∩ ker πi = 1 for all i.

Proof. Let g ∈ NA(K)∩ker π1. For each i we can find a ∈ A such that Ka = Ki. Since A

is abelian we get g = ga ∈ (NA(K)∩ ker π1)
a = NA(K)∩ ker πi. So g ∈ ∩

i

ker πi = 1.¤

Lemma 7.14 Assume (H). Then |A| = m|NA(K)πi| for all i.
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Proof. We have

|A : NA(K)| = |ACG(E)/CG(E) : NA(K)CG(E)/CG(E)|
= |A/A ∩ CG(E) : NA(K)/NA(K) ∩ CG(E)|
= |A : NA(K)|

because A∩CG(E) = NA(K)∩CG(E). Now, A/NA(K) is an abelian group acting faithfully

and transitively on the set Comp(G), so |A : NA(K)| = |Comp(G)| = m. Finally,

|NA(K)| = |NA(K)πi||NA(K) ∩ ker πi|
= |NA(K)πi|.

by the previous lemma. Since |A| = |A : NA(K)||NA(K)| the result follows. ¤

Lemma 7.15 Assume (H). Suppose C1 6 K1 is such that its inverse image in K1 con-

tains an abelian subgroup D1 of odd order satisfying |C1 : D1| 6 k. Then |C1|m 6 km|A|.

Proof. Since A is transitive on K1, ..., Km, for each i we can find Ci 6 Ki such that

Ci
∼= C1 and the inverse image of Ci in Ki contains a subgroup Di isomorphic to D1

satisfying |Ci : Di| 6 k. Let

C = 〈C1, ..., Cm〉 = C1 × ...× Cm.

Then |C| = |C1|m. Let D = 〈D1, ..., Dm〉. The fact that |Ci : Di| 6 k for each i implies

|C : D| 6 km. Let A∗ = CA(E)D. Since each Di is abelian of odd order and E is a

central product of its components we see that D is abelian of odd order, hence A∗ is also.
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Therefore |A∗| 6 |A|. Now,

|A∗| = |CA(E)||D|/|CA(E) ∩D|
> |CA(E)||D|/|CG(E) ∩D|
= |CA(E)||D|
> |CA(E)||C|/km.

So |CA(E)||C| 6 km|A∗| 6 km|A| = km|A||A ∩ CG(E)| = km|A||CA(E)|. Hence |C1|m =

|C| 6 km|A|. ¤

Theorem 7.16 Suppose G has a component K of type An which is not a triple cover of

A6 or A7. Let A ∈ AO(G). Then A normalizes K.

Proof. Suppose false and let G be a minimal counterexample. Then G has at least 3

components and G = AE(G). Let Ω be the orbit of Comp(G) containing K under the

action of A. If Ω is smaller than Comp(G) then A〈Ω〉 < AE(G) and the minimality of

G gives us a contradiction. So A acts transitively on Comp(G) and hypothesis (H) is

satisfied.

Now, B = NA(K)π1 is a subgroup of Aut(K), and by Lemma 7.4 we can also regard it

as a subgroup of Aut(K). Since K ∼= An we have |Aut(K) : Inn(K)| = 2 or 4 by [12,

p18-19]. As B has odd order we deduce that B 6 Inn(K) = K.

We have Z(K) 4 Z2, so the inverse image of B in K, being nilpotent, contains a Hall

2′-subgroup which maps isomorphically onto B. Then applying Lemma 7.15 with k = 1

yields |B|m 6 |A|. On the other hand, |A| = m|B| by Lemma 7.14. So

|B|m−1 6 m.

Since B has odd order, this is a mockery unless B = 1. Therefore |A| = m. Now pick a

subgroup C 6 K of order 3. As before, Lemma 7.15 gives us |C|m = 3m 6 |A| = m, a
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contradiction. ¤

Proposition 7.17 Suppose G has a component K isomorphic to 3 · A6 or 3 · A7. Let

A ∈ AO(G). Then in the action of A on Comp(G) the orbit containing K has length at

most 3.

Proof. Suppose false and let G be a minimal counterexample. Then G has at least 5

components, G = AE(G) and A acts transitively on Comp(G). In particular, hypothesis

(H) is satisfied. As in the previous theorem, B = NA(K)π1 6 Inn(K) = K. Let B be the

inverse image of B in K. Since B is abelian of odd order we must have |B| ∈ {1, 3, 32, 5, 7}.
Therefore |B| ∈ {1, 3, 32, 33, 5, 3.5, 7, 3.7}. Groups with those orders each contain an

abelian subgroup of index at most 3. Hence Lemma 7.15 applies with k = 3 and we

conclude that |B|m 6 3m|A|. On the other hand, |A| = m|B| by Lemma 7.14. So

|B|m−1 6 m3m.

If |B| > 11 then this is a contradiction, so |B| 6 9. Therefore |A| 6 9m. Now pick a

subgroup C 6 K of order 9. Again Lemma 7.15 applies with k = 3, so |C|m 6 3m|A|, i.e,

9m 6 3m|A| 6 3m9m, implying 3m−2 6 m. This contradicts the fact that m > 5. ¤

7.3 A Minimal Counterexample

Let G be a minimal counterexample to the conjecture that the odd nilpotent injectors are

all conjugate in any group. Let I, J ∈ NIO(G) such that I is not conjugate to J and let

A,B ∈ AO(G) with A 6 I and B 6 J .

Lemma 7.18 G = 〈A,B〉 and O2(G) = 1. Moreover, G has a component.

Proof. G = 〈A,B〉 by the minimality of G and Corollary 3.13. If O2(G) 6= 1 then

the conjecture holds in G/O2(G) by the minimality of G, and Lemma 2.32 provides the
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conclusion. So O2(G) = 1. If G has no components then CG(F (G)) 6 F (G) and Theorem

3.15 applies. ¤

Lemma 7.19 Let K ∈ Comp(G). If K is of alternating type then K is simple or K is a

triple cover of A6 or A7. If K is simple then K E G.

Proof. For the first statement, see Lemma 7.6 and note that O2(Z(E(G))) 6 O2(G) = 1.

The second follows from Theorem 7.16 because G = 〈A,B〉. ¤

Lemma 7.20 Let K ∈ Comp(G) and suppose K is of type An but is not a triple cover

of A6 or A7. Set G = G/K. Then A ∈ AO(G) and I ∈ NIO(G).

Proof. Suppose A /∈ AO(G). Let D ∈ AO(G) and let D be the inverse image of D in G.

Observe that

CD(K) ∩K = Z(K) = 1.

Now, D/CD(K) is isomorphic to a subgroup of Aut(K), which is either Sn or contains Sn

at index 2. Therefore |D/CD(K)| divides 4|K|. On the other hand, |KCD(K)/CD(K)| =
|K/K ∩ CD(K)| = |K| divides |D/CD(K)| because KCD(K) 6 D. So

|D/CD(K)| = |K| or 2|K| or 4|K|.

If |D/CD(K)| = 2|K| then |D| = 2|K||CD(K)| = 2|KCD(K)|, implying |D : KCD(K)| =
2 and |D : CD(K)| = 2, a contradiction because D has odd order. Similarly we cannot

have |D/CD(K)| = 4|K| and we conclude that |D/CD(K)| = |K| and

D = CD(K)×K.

Thus CD(K) ∼= CD(K) = D, which is abelian of odd order, and |CD(K)| = |D| > |A| =
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|A|/|A ∩K|. Therefore |CD(K)||A ∩K| > |A|, giving

|CD(K)(A ∩K)||A ∩K ∩ CD(K)| = |CD(K)(A ∩K)| > |A|.

This contradiction implies A ∈ AO(G).

Suppose I /∈ NIO(G). Let I < H ∈ NIO(G) and let H be the inverse image of H in G.

An identical argument to that presented above allows us to deduce that

H = CH(K)×K.

Now, I 6 H and I is maximal subject to being nilpotent of odd order, which implies

that I = I1 × I2 where I1 and I2 are maximal subject to being nilpotent of odd order in

CH(K) and K respectively. However, CH(K) ∼= CH(K) = H, which is nilpotent of odd

order, implying that I1 = CH(K). Therefore I = I1 = CH(K) = H, a contradiction. ¤

Lemma 7.21 Let K ∈ Comp(G) and suppose K is of type An but is not a triple cover

of A6 or A7. Set G = G/K. If I and J are conjugate in G then I and J are conjugate in

G.

Proof. By hypothesis we have IK = JgK for some g ∈ G. Without loss of generality we

may assume Jg = J . If IK < G then I and J are conjugate by minimality of G. So

G = IK.

Now, A/CA(K) is isomorphic to a subgroup of Aut(K) of odd order, and since the inner

automorphism group of K is normal of index 2 or 4 in Aut(K) we see that A/CA(K)

induces inner automorphisms. So there is an abelian subgroup D 6 K of order |A/CA(K)|
which is centralized by A/CA(K), and hence by A. Thus D 6 A. Since |DCA(K)| =
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|D||CA(K)| = |A/CA(K)||CA(K)| = |A|, it follows that

A = DCA(K).

We also note that D ∈ AO(K), since if not then a subgroup D1 ∈ AO(K) would yield

a group D1CA(K) abelian of odd order and larger than A. Similarly, there exists E ∈
AO(K) such that

B = ECB(K).

So 〈A,B〉 6 KCG(K). Since G = 〈A,B〉 we get

G = KCG(K) = K × CG(K).

It follows that CA(K), CB(K) ∈ AO(CG(K)). Lemma 3.4 and the minimality of G now

provide the result, unless it is the case that G = K or G = CG(K). The latter cannot

happen because K is a component, and the former case is Theorem 7.10. ¤

Theorem 7.22 Let K ∈ Comp(G) and suppose K is of type An. Then K is a triple

cover of A6 or A7.

Proof. Suppose not. Set G = G/K. Then I, J ∈ NIO(G) by Lemma 7.20, and I is

conjugate to J by the minimality of G. Lemma 7.21 then implies that I is conjugate to

J . ¤
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