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Abstract

A search was conducted for the 2+2 excitation of the 7.65 MeV, 0+2 , Hoyle state in 12C using

the 12C(12C,12C[3α])12C reaction. The analysis focussed primarily on the 9.7 MeV region in

the 12C excitation energy spectrum and no evidence of a resonance was found. Monte Carlo

simulations were used to investigate the minimum strength at which a resonance would need

to exist in order to be resolved by the experimental setup used. The possibility was also

investigated that the 2+2 resonance may be observed in the 12C(12C,12C[8Be∗+α])12C reaction

channel, though the methods contained within this thesis allowed only limited analysis of

reaction channels involving non-zero spin states in the intermediate 8Be nucleus; no evidence

of a resonance was found. Further analysis of the 9.6 MeV and 10 MeV regions of the 12C

excitation energy spectrum also revealed no clear sign of a 2+2 resonance.
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Chapter 1

Introduction

The data presented in this thesis reflect a measurement of the sequential breakup of 12C into

3α-particles through the 12C(12C,12C[3α])12C reaction and was carried out by the Charissa

collaboration at the Australian National University (ANU) in 2005. It concerns the structure

of 12C above the 3α decay threshold and the belief that this is dominated by states with

a 3α cluster structure. Chapter 1 of this thesis gives an overview of the history of studies

into cluster structure in nuclei, and in particular cluster structure in so-called “α-conjugate”

nuclei. A discussion is also included on the experimental motivation behind the analysis

contained within this thesis, and the aims at the outset of the analysis.

1.1 Clustering in nuclei

The concept of the existence cluster structures within the nucleus was conceived in the

earliest days of nuclear physics. The observation of spontaneous α-decay in the early 1900’s

led to the idea that the α-particle could pre-exist in the nucleus prior to decay [1]. The

high binding energy of the 4He nucleus, alongside the fact that the first excited state lies at

20.21 MeV, lent further weight to the suggestion that it could survive, relatively unperturbed,

within the nucleus [2]. It was also noticed that light even-even ‘N = Z’ nuclei (8Be, 12C, etc.)

have higher binding energies than ‘non even-even’ isotopes, which may reflect an internal

α-particle structure.
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Figure 1.1: Crystalline structures in α-conjugate nuclei, as predicted by Brink [8].

Chadwick’s discovery of the neutron [3], in 1932, resulted in α-clustering ideas becoming

superceded as the single-particle nature of the nucleus became the focus, however a small

part of the physics community continued to investigate the phenomenon and this work led to

the development of the α-cluster model in the late 1930’s [4, 5, 6]. In 1938, Hafstad and Teller

developed an α-cluster model which particularly focused on A = 4n nuclei (known as ‘alpha

conjugate nuclei’) [7] and investigated the link between the binding energy and number of

interactions between α-particles. They concluded that the binding energy is proportional

to the number of ‘bonds’ (α − α pairs that can be formed) and predicted the geometric

arrangements for various light α-conjugate nuclei (a dumbbell shape for 8Be, an equilateral

triangle for 12C etc.). This paved the way for the geometrical model developed by Brink [8]

(Figure 1.1), which replicates many of the structures suggested by Hafstad and Teller, and

also Morinaga’s 1956 postulate that α-particles within the nucleus should be able to arrange

themselves into a linear configuration [9].

Early cluster models predicted ground states of nuclei would exist as geometric arrange-

ments of α-particles. However, it was actually found that most nuclei have a more compact

ground state in which any cluster structure is suppressed. In the late 1960’s, Ikeda et al. [10]

proposed that, for A = 4N nuclei (where N is the number of α-clusters), cluster structures

would not be manifest in the ground state, but would become dominant in the energy region

2



Figure 1.2: The ‘Ikeda diagram’ (from [11]), showing the development of cluster structure
within α-conjugate nuclei as excitation energy is increased.

close to (and probably slightly below) the corresponding cluster decay threshold. The justifi-

cation was based on the idea that as the excitation energy of a nucleus increases, the internal

structure will be rearranged into structures that increase the binding energy of constituent

clusters. The high binding energy of the 4He nucleus means that as the excitation energy

increases, an α-cluster will form outside of a core made up of the remaining nucleons. Since

the core is also an A = 4N nucleus this process can be repeated until the initial nucleus is

separated entirely into α-particles and has formed an Nα structure. The α-particle break-up

threshold lies at a point which requires minimal internal rearrangement to form the ejectile

α-particle, i.e. close to the energy at which the nucleus has adopted a clustered structure.

Figure 1.2 illustrates the cluster structures of A = 4N nuclei up to and including A = 28.

In the following decade developments in theoretical methods allowed more sophisticated

calculations, which predicted that as nuclear density falls to below one third of that at the
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Figure 1.3: Excitation function for the 12C + 12C total reaction cross section as determined
by Erb et al. [14]. The dashed line shows the theoretical prediction (which fails to reproduce
the resonances seen in the experimental data).

centre of the nucleus, a phase change occurs causing the protons and neutrons to condense

into α-particles [12]. This led to the suggestion that α-particles may be formed on the surface

of nuclei, leading to the idea that a nucleus might be described as an α-particle orbiting a

nuclear core (e.g. a 20Ne nucleus could be described as an 16O nucleus plus orbiting α-

particle). Calculations performed on nuclei such as 16O (12C + α) were able to accurately

reproduce experimental measurements such as α-decay widths and r.m.s. radii [13].

At about the same time, an increase in experimental efforts into the area of nuclear

clustering began to confirm Ikeda’s ideas. This evidence came, for example, from scattering

experiments; the measurement of the total cross-section from the collision of two 12C nuclei,

as a function of beam energy, resulted in the appearance of a series of narrow resonances [14],

as shown in Figure 1.3. This result was unexpected, as processes involving the collision of

two nuclei typically result in a smooth variation in cross-section with changing energy. In

addition, the narrow widths (typically ∼ 100 keV) indicated an interaction time of ∼ 10−21 s,

which is significantly longer than that associated with a direct collision. It was therefore

postulated that the two 12C nuclei were trapped in a state described as amolecular resonance,
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a 24Mg nucleus existing as two interacting 12C nuclei, orbiting one another. Further studies

revealed a sequence of previously unknown resonances extending to an excitation energy of

60 MeV [14]. Perhaps the strongest evidence to support the idea of a nuclear molecule arose

from considering that non-spherical structures gain energy from rotation. The rotational

energy of a rigid body is given by

E =
~2

2I
j (j + 1) + E0 , (1.1)

where I is the moment of inertia, j is the angular momentum and E0 is the minimum energy

of the rotating body for a given set of (rotational and vibrational) quantum numbers. In the

nuclear case an increase in j corresponds to increasing the rotational energy of the nucleus,

resulting in a rotational band. If the excitation energy of the states is plotted against j (j + 1)

the gradient can be used to find the moment of inertia of the nucleus. When the spins of the

resonances in the 12C + 12C scattering experiments were measured [15] they were found to

increase with energy as would be expected for a pair of touching 12C nuclei (figure 1.4). The

multiplicity of states observed for a given spin, j, has been attributed to vibrational states

superimposed upon the rotational modes [16].

1.2 Specific examples within light nuclei

1.2.1 Clustering in 8Be

The 8Be nucleus is perhaps the simplest example of α-clustering within nuclei, and is impor-

tant as an example for cluster structure appearing from mean-field calculations. Ab initio

approaches such as ab initio Greens function Monte Carlo (GFMC) calculations have been

performed for the 8Be nucleus [17], and predict a 2α clustered structure for the ground state

(figure 1.5). This result is important as the calculations use all possible two-body and three-

body nucleon-nucleon interactions, meaning that the interaction is not an effective one. The

GFMC results show that a cluster structure in 8Be arises directly from mean-field and does

not require an underlying assumption of clustering to be included within a model. Models
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Figure 1.4: The energy-spin systematics of a 12C + 12C scattering measurement. The reso-
nances increase with energy as would be expected for a rotational band with a moment of
inertia consistent with a pair of touching 12C nuclei (from [15]).

such as antisymmetrized molecular dynamics (AMD) (section 2.1.4) and fermionic molecular

dynamics (section 2.1.5) are further examples of ab initio calculations which predict cluster

structure within α-conjugate nuclei. Both are particularly relevant to the work contained

within this thesis, as they have been extensively applied to investigating cluster structure

within the 12C nucleus [18, 19, 20].

1.2.2 The Hoyle state in 12C

Beyond 8Be, there remain many unanswered questions regarding the cluster structure of

light nuclei, and in particular the 12C nucleus. It is known that the ground state possesses

a triangular triple-α symmetry, but lies far enough below the α-decay threshold so as its

explicit cluster structure is reduced. The ground state thus possesses an oblate deformation

and the first excited state at 4.44 MeV (2+1 ) and also the state at 14.08 MeV (4+1 ) are the

corresponding rotational excitations. However, the second excited state at 7.65 MeV (0+2 )

is that of greatest interest, and also significance. Lying just above the α-decay threshold
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Figure 1.5: GFMC calculations of the density of 8Be. The left- and right-hand images are
the densities calculated in the laboratory and intrinsic frames, respectively [17].
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Figure 1.6: No core shell model calculations for 12C. The left hand part shows experimental
results; the state marked in red is the 0+2 “Hoyle” state at 7.65 MeV. Calculations using the
CD Bonn N - N interaction with increasing numbers of oscillator orbits are shown on the
right (from [21]).

(∼ 7.3 MeV) this resonance is not predicted by, e.g., the no-core shell model [21] (see

Figure 1.6). The almost complete failure for shell models to predict the existence of this

state suggests it has a distinctly different structure to the surrounding resonances, and it is

indeed now known to have a strong clustered structure.

Perhaps one of the most well known resonances in nuclear physics, this state is referred

to as the “Hoyle Resonance” and was first proposed by Fred Hoyle [22] in 1954 as a way

to explain elements of stellar nucleosynthesis. 12C plays a key role in the CNO cycle in

stars, using hydrogen burning to produce helium through a series of (p,γ) reactions and β+

emissions, as well as being important for the production of heavier elements. Neutron, proton

and 4He capture by 4He all lead to the production of unstable nuclei which immediately decay

and thus it was assumed that 12C was formed by the coincident fusion of three α-particles.

However, when the abundance of 12C in the universe was measured, the observed amount

could not be accommodated by such a three-body process. Hoyle proposed a process by

which 8Be (which has a lifetime of ∼ 10−16 s) could undergo an (α,γ) reaction and produce
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12C, and that a (0+) resonance would exist at an energy of 7.65 MeV through which the

capture should proceed. In line with Hoyle’s prediction, within a few years, a 0+ resonance

was indeed found at 7.65 MeV [23].

The exact nature of the Hoyle state remains a topic for debate. It has been shown

experimentally that this state has a large charge radius [24, 25], and for several years was

thus believed to correspond to a linear chain of 3α-particles. However, problems arise with

this interpretation. If the state is indeed a linear α-chain then a 2+ rotational excitation of

the state should exist in the region of ∼ 8.4 MeV [26], though the nearest 2+ candidate lies

several MeV higher in energy (at 11.16 MeV). This has led to the modification of the 3α-chain

idea and suggestions that the actual configuration could instead be a bent chain or another

similar configuration which possesses a suitably reduced moment of inertia [27, 28, 29]. The

Hoyle state’s large volume (∼ 3-4 times larger than the ground state) has given rise to an

alternative theoretical proposition. It is predicted that the increased volume will reduce

the overlap of the α-particles and allow them to obtain their quasi-free characteristics in

something approaching an α-particle gas, or bosonic condensate (BEC) [30]. It should be

noted that although various models do indeed predict a system composed of weakly bound

α-particles, the structure is found to be more complicated than that described by the strict

definition of a BEC − further underlying structures are also predicted to exist and care must

be taken not to take the BEC description too literally1.

1.2.3 Clustering in 16O and 20Ne

Cluster structure in 16O was a topic of interest from the earliest models. Hafstad and Teller

modelled the nucleus as a tetrahedral arrangement of α-particles [7] (similar to that shown

in figure 1.1), which would in turn be associated with a compact ground state in the Ikeda

picture. From figure 1.2, the α +12 C cluster structure should appear at 7.16 MeV, and the

4α-structure at 14.44 MeV. Of these, the 6.05 MeV, 0+, state lies close to the α+12C break-

up threshold (7.16 MeV) and the rotational characteristics of the state are well-represented

1Models such as Fermionic Molecular Dynamics (FMD), which predict such a structure, are discussed
further in section 2.1.
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Figure 1.7: A comparison of the (positive and negative parity) experimental rotational bands
in 20Ne, and the α + core model predictions. The zero energy on the vertical axis is the α-
decay threshold, 4.73 MeV. Adapted from [35].

by models such as, e.g., the α-cluster model2 (ACM). Unlike the first excited state however,

model predictions about the 4α configuration at 14.44 MeV remain a challenge to verify

due to the challenge of studying the state experimentally. It might be expected that the

break-up of a linear chain state in 16O would result in two 8Be nuclei, and this is the final

state of the 12C(α,8Be) reaction – from which the final state experimental evidence for the

linear structure comes [31, 32]. Unfortunately, measurements of other reactions which decay

into two 8Be nuclei in this region found there exists a broad spectrum of states [11], leaving

the situation regarding definitive identification of chain-states in 16O unclear.

Beyond 16O, the 20Ne nucleus has been cited as a good example of cluster structure in

light nuclei [33, 34] and, in the case of the α + core model, 20Ne can be represented by an

α-particle+16O nucleus. Given that both the α-particle and 16O nucleus are closed shell-

nuclei, it is perhaps unsurprising that the core + α model of Buck et al. [35] accurately

predicts the energy levels of low-lying positive and negative parity bands seen in figure 1.7.

Note that it is the mass asymmetry of an α+16O ground state that results in an octupole

2The principles of which are discussed further in section 2.1.3.
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parity doublet of Kπ = 0± bands [36, 37], which occurs from the intrinsic structure not

possessing good parity. It is also noteworthy that an alternative approach, in the form of

anti-symmetrized molecular dynamics (AMD – discussed in more detail in chapter 2.1.4), is

also capable of reproducing the cluster structure within 20Ne [38]. The importance of the

AMD approach lies in its freedom from any intrinsic clustering being assumed (i.e. there

are no constraints on the arrangement of the individual nucleons). This level structure of

16O+ α states in 20Ne has been confirmed experimentally in terms of bands [34, 39]; it has

also been experimentally proven that these states possess large α-reduced widths, confirming

their clustered nature [40].

1.3 Experimental motivation

Theoretical calculations for the 3α-chain of Ikeda’s diagram would place a 2+2 excitation at

0.8 MeV above the Hoyle state [26], whereas FMD [20], BEC [41] and generator-coordinate

method (GCM) [42] calculations put the energy at 1.3-2.8 MeV above the 0+2 state. It is

predicted that the state should be broad [43], is thought to exist in a region dominated by

other states, and has thus proven to be extremely difficult to observe experimentally. In 2004,

Itoh et al. [44] published work describing an (α,α’) scattering measurement which suggested

tentative evidence of a state in the region E x ≃ 10 MeV, though the poor energy resolution

(150 keV) associated with the measurements mean this has not been widely accepted. More

recently, a (p,p’) scattering measurement performed at iThemba LABS by Freer et al. [45],

with a much improved energy resolution (24 keV), also found evidence of a 2+ resonance,

this time at 9.6 MeV.

Whilst evidence exists to support the existence of a 2+ resonance in the region E x = 9-

10 MeV, other measurements have been performed which suggest the state may lie outside

of this region. In 2005, in an attempt to verify the accuracy of the NACRE (Nuclear

Astrophysics Compilation of Reaction Rates) compilation of astrophysical reaction rates,

Fynbo et al. used β-decay measurements from 12N and 12B to access various resonances

in 12C. In addition to dismissing the existence of a 2+ resonance which had been thought
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to exist at 9.1 MeV, they were unable to find any evidence of a 2+ state anywhere below

∼ 14 MeV.

Though this latter experiment may initially suggest that a 2+ resonance does not lie in the

region of 9 - 10 MeV, it could also reveal the importance of selecting the ‘correct’ reaction

channel in order to observe such a resonance. It is expected that the state will be only

weakly populated in most reactions [45], and when this is combined with the large number

of states lying at or near to 10 MeV, it may be the case that selection of the reaction channel

is a key factor in finding evidence for a resonance. The predictions of various theoretical

models, combined with previous experimental work, suggest that further investigation of

the energy region around E x = 10 MeV is required, and that attempting to populate the

region through a number of different reaction channels is important. Previous work using

the 12C(12C,12C[3α])12C reaction [46] strongly populates the Hoyle state and suggests it may

be a suitable candidate reaction for finding an associated excitation.

1.4 Experimental aims

As discussed previously, several theoretical models predict the existence of the 2+2 excitation

of the Hoyle state in 12C, but its existence has yet to be substantively proven experimentally.

The work presented in this thesis is a study of the 12C(12C,12C[3α])12C reaction (the inverse

of the process by which 12C is formed in stellar nucleosynthesis). Motivated by previous

results, the aim of this work was to investigate whether evidence could be found for a 2+

resonance in 12C in the region of 9.7 MeV. The analysis was carried out using data gathered

during an experiment previously performed at the Australian National University in April

2005.

Chapter 2 of this thesis discusses the theoretical aspects of some of the relevant nuclear

models and also the techniques employed for the data analysis; Chapter 3 describes the

experimental method and also the detection system used; in Chapter 4 the experimental

analysis/results are presented; in Chapter 5 analysis of further decay channels, and a higher

region in the 12C excitation energy spectrum, is presented, and Chapter 6 provides a summary
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of the work as well as an outline of future work in the field.
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Chapter 2

Theoretical and Kinematic Details

Chapter 1 gave a brief overview of the history of the field of studies into nuclear clustering, as

well as details of the Hoyle-state within 12C and its significant role within stellar nucleosyn-

thesis. Chapter 2 presents an overview of some of the theoretical models developed during

the studies of nuclear clustering, and also the specific models especially relevant to the work

contained within this thesis. It also describes the kinematics associated with the break-up

technique and details about the angular correlations method used in the analysis.

2.1 Models of Nuclear Structure

2.1.1 The Nuclear Shell Model (and the Harmonic Oscillator)

The nuclear shell model, developed in the late 1940’s, is perhaps one of the best known of all

nuclear models, and although it may fail to predict states known to be heavily clustered in

nature (section 1.2.2), is nonetheless a good starting point to describe cluster models. The

nuclear shell model is in many ways analogous to the atomic shell model used to describe the

way in which electrons are arranged in an atom. Both are based on the Pauli exclusion prin-

ciple, requiring the filling of shells in order of increasing energy, and it was the experimental

observation of these shells in nuclei that was the origin of the model. Figure 2.1 highlights

experimental evidence of the same ‘magic numbers’ as those seen in atomic physics, revealing

a sharp increase in both the 2n and 2p separation energies at the numbers associated with
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shell closures.

Although similar to the atomic model, a major difference in the nuclear shell model is in

the source of the potential in which the constituent particles move. While the potential for

atomic electrons arises from the Coulomb field of the nucleus, and can hence be considered

an external agent, the potential in which nucleons move is one which they themselves create.

Another difference is the large size of nucleons, relative to the nucleus, and requires the need

to consider issues such as nucleon-nucleon collisions being frequent compared to electron-

electron collisions in the atomic model. The first of these considerations results in the main

assumption of the shell model: that each nucleon moves in a potential created by all the other

nucleons. By treating each individual nucleon in this manner, the nucleons can be ordered

to occupy a series of energy levels, governed by the Pauli exclusion principle. If a collision

were then to occur between two nucleons in a low lying energy level, it can be considered

unlikely that either would receive sufficient energy to be transferred to the next-lowest empty

position.

The selection of a suitable potential is a crucial parameter when constructing energy lev-

els using the nuclear shell model, and one of the simplest available is the harmonic oscillator

(i.e. a linear restoring force). Whilst known not to be accurate compared to more compli-

cated potentials (e.g. the Wood-Saxon potential) when modeling higher energy levels, it is

nonetheless a good choice for low-lying levels. The use of a potential term alone, however,

fails to correctly replicate the observed magic numbers. To complete the model, a final term

must be included in the form of a spin-orbit interaction. This results in a splitting of the

energy levels, and in turn the well-known magic numbers to appear.

2.1.2 The Deformed Harmonic Oscillator (DHO) Model

Solving the three-dimensional Schrödinger equation for the harmonic oscillator potential

results in the well-known energy levels

E = ~ω
(
n +

3

2

)
. (2.1)
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Figure 2.1: Top: two-proton separation energies of sequences of isotones (constant N );
the lowest Z member of each band is noted. Bottom: Two-neutron separation energies of
sequences of isotopes. The values plotted are the differences between the measured values
and the values predicted by the semi-empirical mass formula. Figure from [47]; original data
from [48].
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If the nucleus/potential is stretched in one direction, e.g. the z-axis, in order to conserve

the nuclear volume then it is necessary for the potential in the x- and y- directions to

shrink accordingly. This increases the oscillation frequency perpendicular to the extension.

This disappearance of the symmetry results in the oscillator frequencies for oscillations both

perpendicular (⊥) and parallel (z) to the deformations being required to calculate the energy

levels:

E = ~ω⊥n⊥ + ~ωznz +
3

2
~ω0 . (2.2)

These are constrained by axial symmetry so that ω0 = (2ω⊥ + ωz)
1, and the level of defor-

mation can be identified by

ε = ε2 =
ω⊥ − ωz

ω0

. (2.3)

The energy levels of the deformed harmonic oscillator are shown in figure 2.2, the im-

portant feature being the shell structure which occurs at deformations of (ω⊥ : ωz) 2 : 1

(super-deformed) and 3 : 1 (hyper-deformed)2. When the sequence of spherical degeneracies

(2, 6, 12, ...) is inspected then it is apparent that it is repeated twice at a deformation of

2 : 1 (2, 2, 6, 6, 12, 12, ...) and three times at 3 : 1. The idea of interacting potentials

suggests that clustering may be an important feature, and the first Nα-cluster nucleus, 8Be,

can be used to investigate this. 8Be is associated with the magic number 4 and, under the

assumption that it has a 2α structure, this corresponds to a combination of spherical magic

numbers 2 + 2 at a deformation of 2 : 1. Indeed, a super-deformed ground state is in good

agreement with the experimental evidence for the structure of 8Be [49, 50]. Many of the

cluster configurations which are predicted by the DHO were previously predicted by the

Ikeda diagram (figure 1.2). For example, the Ikeda diagram predicted a 3α state in 12C lying

close to the 8Be + α break-up threshold (7.367 MeV), which can also be described by the

DHO model as a hyper deformed 3α chain configuration. Combining the ideas of Ikeda with

1Note that a normalisation constant is required in order that equation 2.2 reduces to equation 2.1 in the
limit of a very small deformation.

2Such degeneracies actually occur whenever the ratios ωx : ωy : ωz = a : b : c where a, b and c are
integers. For the axially symmetric case of α-chain nuclei, such as the 3α state of 12C in the the Ikeda
diagram (figure 1.2), the ratio of ωx : ωy is 1 : 1.
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Figure 2.2: The energy level shifts of the deformed harmonic oscillator. At 2 : 1 the nucleus
is considered to be ‘super-deformed’, whilst at 3 : 1 it is ‘hyper-deformed’.
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those of the DHO, one would expect to find clusters appearing not only at specific energies,

but also specific deformations.

2.1.3 The Bloch-Brink Alpha Cluster Model

Brink’s alpha cluster model was developed from earlier cluster models and was heavily in-

fluenced by the ideas of Bloch [11]. The principle idea is that pairs of protons and neutrons,

coupled to a total angular momentum of zero, form ‘quartets’. These quartets can then by

modelled within the harmonic oscillator framework using

ϕi (r) =

√
1

b3π3/2
exp

[
− (r−Ri)

2

2b2

]
, (2.4)

in which ϕi (r) is a Gaussian wavefunction defining the α-particle, and where Ri is the

vector describing the position of the ith α-particle and b = (~/mω)1/2 is a scale parameter

determining the size of the α-particles. The Nα wave function is created using a Slater

determinant:

Φα (R1,R2, ...,RN) = KA
N∏
i=1

ϕi (Ri) , (2.5)

where A
∏N

i=1 ϕi (Ri) is the Slater determinant wave function (A is an antisymmetrization

operator) and K is a normalisation constant. The α – α interactions are determined by an

effective nucleon-nucleon interaction and Coulomb interaction and the optimal arrangement

of the α-particles is arrived at variationally by optimising the locations and size of the α-

particles. This model (sometimes modified to include additional ‘cranking’ terms) has been

applied extensively to light cluster systems [26, 51], some interpretations of which are shown

in figure 1.1.

2.1.4 The Antisymmetrized Molecular Dynamics (AMD) Model

Many light nuclei are known to have well-developed cluster structures and thus many the-

oretical models applied to them assume they possess potentials related to a specific cluster

configuration. However, one must take care when doing this as assuming an underlying
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cluster structure will undoubtedly give rise to results in which clustering is evident. One of

the most significant advantages of the AMD approach is that there are no such assumptions

made about cluster structure, consequently it is able to handle both shell-model-like states

and also cluster states [18].

The AMD wave function of a nucleus explicitly includes the nucleon wave functions,

which are antisymmetrized via a Slater determinant, and can be written

ΦAMD (Z) =
1√
A!

A{ϕ1, ϕ2, ..., ϕA} , (2.6)

where the ϕi are Gaussian wave packets which possess spatial (ΦXi
), spin (χi) and isospin

(τi) information:

ϕi = ΦXi
χiτi . (2.7)

The wave function is parameterised by a complex set of variables Z which describe the spin

and geometry of the wave function. The energy is calculated variationally using an effective

nucleon-nucleon interaction and the structure then arises from the details of the interaction

under the guidance of the Pauli exclusion principle.

An illustration of the emergence of clusters from the nucleon-nucleon within the frame-

work of AMD is given by figure 2.3 for the beryllium isotopes from 6Be to 14Be. It is

noticeable that when the neutron number is equal to the proton number (8Be) then the

separation of the proton cores is maximal (the clustering is at its maximum). This model

has been applied to several nuclei (see [19]) and in general the model gives good agreement

with experimental binding energies, transition rates, radii and moments [11].

2.1.5 The Fermionic Molecular Dynamics (FMD) Model

The FMD model shares many similarities with the AMD approach but includes an additional

degree of freedom: a parameter allowing variation in the width of each individual wave

packet (with each single-particle state being constructed from the superposition of two wave

packets). The parameters of a single-particle FMD state are then arrived at in much the same
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Figure 2.3: The density distributions of 6−14Be as calculated by the AMD model. From left
to right the columns show the total nucleon density (ρ), proton density (ρp), and neutron
density (ρn) (from [11]).

way as with AMD, i.e. by minimizing the intrinsic energy of the system using an effective

potential. Unlike AMD, FMD however also includes a tensor force in the interaction used.

FMD calculations are of particular interest as they have been used extensively to model

cluster states, and in particular the Hoyle state in 12C. FMD cluster calculations are per-

formed by constructing an α-cluster from the product of four Gaussian single-particle states

which combine to a total spin and isospin of zero. Figure 2.4 show the results of FMD

calculations performed by Chernykh et al. [20] for the Hoyle state in which a 3α structure

is predicted to manifest in a 8Be + α arrangement. This suggests care should be taken

when considering that the 0+2 (and 2+2 ) may exist in a form analogous to a Bose-Einstein

condensate (as discussed earlier) and the naive interpretation of a BEC must not be taken

too literally (though the overlap of the wavefunctions in the 0+2 is nonetheless significant –

as described in figure 2.4).
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Figure 2.4: The density distributions of the four FMD states which most strongly contribute
to the Hoyle state in 12C. The text below indicates the respective amplitudes for the ground
state (0+1 ) and the Hoyle state (0+2 ) (note that the FMD states are not orthogonal). (Adapted
from [20].)

2.1.6 Summary of Nuclear Models

Cluster structure is a feature of nuclei which is problematic for many nuclear models, and

heavily clustered states (such as the Hoyle state in 12C) are often poorly represented, or

completely missed by their predictions. Some models developed to represent these states,

such as the DHO, are extensions of other well known models (in the case of the DHO, the

SHO), extending them to effectively represent states known to have a clustered structure,

though when a cluster structure is ‘forced’ into the model it is perhaps unsurprising that

clustered states are an outcome. As interest in cluster structure has grown, so too have

efforts in the associated models. Both AMD and FMD are approaches that make no specific

allowances for nuclear clustering, yet are able to effectively predict both the existence and

characteristics of states such as the Hoyle state.

Nonetheless, although models are becoming more more sophisticated in their approach

to clustered states, there is much still to be discovered. Empirical confirmation of the energy

of states such as the 2+2 resonance in 12C will not only help in the understanding of the

structure of the Hoyle state, but also in the development of the various models used to

predict clustered states.
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2.2 Kinematics and Break-up Reactions

2.2.1 Reconstructing the 12C break-up nucleus

The experiment described within this thesis involves the study of a sequential break-up

reaction: a beam particle, ‘A’, is incident on a target nucleus, ‘B’. The two particles react

in some manner and then produce two reaction products, A∗ and B∗.

B (A,A∗) B∗ . (2.8)

If either of the reaction products is produced in a state with an excitation energy greater than

the particle decay threshold for break-up (Eth), then these will decay into further fragments

in preference to γ-decay [52]. The threshold for the decay of 12C into 8Be and an α-particle

lies slightly below the 0+2 (7.654 MeV) Hoyle state at 7.367 MeV. In the case of inelastic

break-up reactions, A∗ has energy above the decay threshold and will thus decay into two

daughter nuclei C1 and C2:

B (A,A∗ → C1 + C2) B
∗ . (2.9)

In the 12C(12C,12C∗)12C(g.s.) reaction, the 12C∗ will decay into a 8Be and an α-particle.

The 8Be can be formed in a number of excited states, but even the ground state is unbound

by 92 keV against decay into 2α-particles. Any 12C∗ which has an energy greater than Eth

will therefore be detected as a 3α-particle jet.

Such a reaction is subject to a number of conservation laws and an important one involved

in the current analysis is the Q-value of the reaction. This is defined as the difference of the

initial rest mass energy minus the final rest mass energy:

Q = (minitial −mfinal) c
2 . (2.10)

However, in the case of the 12C(12C,12C∗)12C(g.s.) reaction only the final state particles can

be detected. Typically for the analysis used within this thesis a 12C nucleus and 3α-particles
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are the final-state particles and it is necessary to reconstruct the 12C∗ nucleus by kinematic

considerations.

The energy of the 12C∗ nucleus can be calculated by first considering its momentum, P,

which can be calculated from the 3 detected α-particles using:

P2 =

(
3∑
i=1

Pαix

)2

+

(
3∑
i=1

Pαiy

)2

+

(
3∑
i=1

Pαiz

)2

, (2.11)

where Pαi
in the x-, y- and z-directions are the α-particle momentum components. The

excitation energy of the parent 12C∗ nucleus is calculated using:

Eex =
3∑
i=1

Eαi
− P2

2MC

+ Eth , (2.12)

where Eex is the excitation energy of the 12C∗ nucleus, Eth is the break-up threshold energy,

Eαi
are the energies of the 3α-particles, and MC is the mass of the 12C.

The above properties result in a detection system that was required to be able to detect

the position, energy, and momentum of each hit. For the analysis contained within this

thesis, this was achieved by using a system which could detect both the energy and position

of a hit, and was also capable of separating events depending on the mass of the particle

detected (see section 4.1.1); the momentum of each detected particle was then calculated

using the measured energy, mass and emission angle.

2.2.2 Reconstructing the 12C recoil nucleus

Upon detecting the three final-state α-particles, it is also possible to reconstruct the proper-

ties of the undetected 12C nucleus by considering conservation of momentum. In directions

perpendicular to the beam (x- and y- directions) the total momentum of the system must

be zero both before and after the reaction:

Px,y =
3∑
i=1

(Pαi
)x,y + (Precoil)x,y = 0 , (2.13)
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and thus

(Precoil)x,y = −
3∑
i=1

(Pαi
)x,y . (2.14)

The beam energy, and hence its momentum, is known (and is entirely in the z-direction) and

so the missing z-momentum can also be calculated:

Pz =
3∑
i=1

(Pαi
)z + (Precoil)z = Pbeam , (2.15)

and thus

(Precoil)z = Pbeam −
3∑
i=1

(Pαi
)z . (2.16)

Knowledge of the recoil momentum allows the kinetic energy of the recoil particle to be

calculated:

Erecoil =
(Precoil)

2

2MC

, (2.17)

where Precoil
2 is the sum of the squares of the x, y and z momentum components from

equations 2.14 and 2.16.

2.3 Angular Correlations

Angular correlation calculations are a powerful tool for determining information on the spin

of systems which decay into two fragments. The technique is based on the determination of

the angles from two different stages of the reaction process (see figure 2.5). It is a requirement

of the technique that all particles except for the 12C∗ (B∗) are formed in a spin zero state. The

angle θ∗ describes the centre-of-mass emission angle of the excited 12C nucleus, measured

with respect to the beam axis. The second angle, ψ, corresponds to the emission angle

of the first α-particle in the centre-of-mass frame of the 12C nucleus, again measured with

respect to the beam axis. As all of the initial and final-state particles are spin zero, then

for a scattering angle θ∗ = 0 the 12C excited state is constrained to be populated in the

m = 0 magnetic substate. The subsequent α-particle emission thus follows that of a squared
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Figure 2.5: The definition of the correlation angles θ∗ and ψ used in the present analysis
(from [53]).

Legendre polynomial of order J (the spin of the state in 12C):

W (ψ)
∣∣∣
θ∗≈0

∝ |PJB (cosψ)|
2 . (2.18)

Away from θ∗ = 0 other m-substates may contribute which gives rise to a phase shift in the

Legendre polynomial,

W (ψ)
∣∣∣
θ∗

∝ |PJB (cos (ψ +∆ψ))|2 , (2.19)

where

∆ψ = ∆θ∗
li − J

J
. (2.20)

Here l i is the entrance channel grazing angular momentum [54]. This results in a ridge

structure in the θ∗ − ψ plane. Thus, the angular correlation spectrum is characterized by

the spin of the state both in terms of the frequency of the oscillations as a function of ψ and

also the gradient of the loci in the θ∗ − ψ plane [53].

A brief discussion of the derivation of the angular correlations measurement technique is

given in appendix A; a more detailed discussion of the technique can be found in [53].
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2.3.1 Initial calculations of θ∗ and ψ

As discussed previously, the analysis contained within this thesis involves that of 12C via

a break-up reaction in which the three final-state α-particles are detected. However, the

angular correlation technique described in section 2.3 requires calculations involving the

break-up of the 12C∗ nucleus into 8Be + α. For this reason, prior to calculating θ∗ and ψ

it is necessary to reconstruct the 8Be nucleus; the technique used to do this is discussed in

section 4.1.4. It is also necessary to determine the momenta of the 8Be and α-particle, and

the technique used to do this is discussed in section 3.1.5. Initial calculations of θ∗ and ψ

were performed under the assumption that they occurred in the x−z plane. The calculations

of θ∗ and ψ are detailed in figure 2.6.

The angle θ∗ can be calculated from

θ∗ = tan−1

(
p

Cx

p
Czcm

)
, (2.21)

where p
Cx

is the x-momentum of the 12C, and p
Czcm

is the z-momentum of the 12C in the

centre-of-mass frame; p
Czcm

is calculated from p
Cz

using:

p
Czcm

=
m

C

√
2m

C
Ebeam

2m
C

− p
Cz
,

=

√
2m

C
Ebeam

2
− p

Cz
, (2.22)

where m
C
is the mass of 12C, and Ebeam is beam energy (101.5 MeV).

To calculate ψ, it is first necessary to find the relative x- and z-components of the velocities

of the 8Be and α-particle:

vrelx =
pαx

mα

−
p

Bex

m
Be

, (2.23)

vrelz =
pαz

mα

−
p

Bez

m
Be

. (2.24)
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(a) Quantities required to calculate θ∗.
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(b) Quantities required to calculate ψ.

Figure 2.6: Details of θ∗ and ψ when calculated in the x− z plane.
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The angle ψ is then given by

ψ = tan−1

(
vrelx
vrelz

)
. (2.25)

It is worth noting that the choice of whether ψ is calculated with respect to the α-particle

or the 8Be nucleus is an arbitrary one as this will only affect the direction of the ridges.

2.3.2 Calculating θ∗ and ψ in the (12C∗) breakup plane

A significant improvement in the angular correlations calculations can be achieved by rotat-

ing the plane in which θ∗ and ψ are calculated. The calculations discussed in section 2.3.1

are based on the assumption that the reaction occurs in the x− z plane, and while this is a

good approximation, performing the calculations in the breakup plane of the 12C∗ will result

in enhanced clarity of the spin-dependent ridge structure of the θ∗ − ψ plane.

To calculate θ∗ in the breakup plane the x-momentum, p
Cx
, used in equation 2.21 must

be substituted for the correct x − y momentum dependant on the breakup plane. This is

done by considering both the x- and y-momenta of the 12C nucleus and then scaling and

rotating p
Cx

(the intermediate angles used for the rotations are shown in figure 2.7). The

magnitude of p
Cxy

is given by:

p
Cxy

=
p

Cx

|p
Cx
|

√
p

Cx
2 + p

Cy
2 , (2.26)

where p
Cy

is calculated in the same way as p
Cx

and p
Cz

in equations 2.23 and 2.24. At this

stage p
Cxy

is in the same direction as p
Cx
, and so the angle of rotation into the breakup plane

must still be calculated. This is done via two intermediary angles, τr1 and τr2 :

τr1 = sin−1

(
p

Cy

p
Cxy

)
, (2.27)

and

τr2 = tan−1

(
vrely
vrelx

)
. (2.28)
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(a) Quantities required to calculate θ∗ after rotating into the 12C∗ breakup plane.
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(b) Quantities required to calculate ψ after rotating into the 12C∗ breakup plane.

Figure 2.7: Details of the intermediate angles used to calculate θ∗ and ψ after rotating into
the 12C∗ breakup plane.
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x- and y-momenta
Offset to ξα/ξBe

(◦)
pαx / p

Bex
pαy/pBey

> 0 > 0 0
≤ 0 > 0 + 90
≤ 0 ≤ 0 + 90
> 0 ≤ 0 + 180

Table 2.1: Offset parameters used in calculating angular correlations in the breakup plane.

The angle θ∗ can then be calculated:

θ∗ = tan−1

(
p

Cxy

p
Czcm

)
cos
(
τr2 − τr1

)
, (2.29)

where τr1 is the scattering angle of the 12C∗ in the x− y plane and τr2 is the relative angle

between α-particle and 8Be (again in the x− y plane); τr2 − τr1 is the difference between

these angles and the cosine of τr2 − τr1 is its projection into the 12C∗−12C scattering plane.

The angle ψ must also be rotated and scaled via a series of intermediary angles. The x- and

y-angles associated with the momenta of the 8Be and α-particle are combined using

ηα = cos−1 (cos (ϕy)cos (ϕx)) , (2.30)

and

η
Be

= cos−1

(
p

Bez

p
Be

)
. (2.31)

The angle ξ, the x− y angle, is also used:

ξα = tan−1

(
pαy

pαx

)
, (2.32)

ξ
Be

= tan−1

(
p

Bey

p
Bex

)
, (2.33)

which are corrected by a phase offset depending on the signs of pαx , pαy , pBex
and p

Bey
. The

offsets are shown in table 2.1. It is also necessary to correct by the relative angle between
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the 8Be and α-particle:

ξ′
α

= ξα − τr2 , (2.34)

ξ′
Be

= ξ
Be

− τr2 . (2.35)

This allows ξ′
α
and ξ′

Be
to be used to calculate rotation angles for pα and p

Be
, and in turn

these are used to calculate corrected values of vrelx and vrelz . The corrected momenta are

pαx = pα sin (ωαx) cos
(
ωαy

)
, (2.36)

pαy = pα sin
(
ωαy

)
, (2.37)

where pα is the total momentum of the α-particle, and ωαx and ωαy are

ωαx = sin−1 (sin (ξ′α) sin (ηα)) , (2.38)

ωαy = tan−1

(
cos (ξ′α) sin (ηα)

cos (ηα)

)
; (2.39)

p
Bex

and p
Bey

(and ω
Bex

and ω
Bey

) are calculated in the same way. Using these new values

for the x- and z-momenta of the α-particle and 8Be, the relative velocities can once again be

calculated using equations 2.23 and 2.24, and in turn ψ using equation 2.25.

It is worth noting that, after completing the rotation into the breakup plane, the relative

angle between the α-particle and 8Be, ϕ, is 180◦.
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Chapter 3

Experimental Techniques

This chapter is divided into three main sections. The first of these describes the experimental

details, such as information on the accelerator, detectors and triggering system. The second

section is a short presentation of the calibration procedures for both energy and position

calibrations. The final section gives a brief overview of some of the analysis tools used

during the present analysis.

3.1 Experimental Details

The experiment was conducted using the 14UD tandem Van der Graaff Pelletron accelerator

facility at the Australian National University (ANU), Canberra, in April 2005. A schematic

of the facility is shown in figure 3.1. The experiment was run over 5 days of beamtime using

a 50 µgcm−2 12C foil target. The beam energy was 101.5 MeV and the beam current was

typically 10 enA; the charge state of the beam was 6+.

3.1.1 The tandem Van der Graaff accelerator (and LINAC)

The 12C beam was produced using the 14UD Pelletron accelerator at the ANU, the basic

operation of which is as follows. A negative beam of carbon was produced at the sputtering

ion source and accelerated to an energy of ∼150 keV, before being deflected by 90◦ and

injected into a beamline at the top of the accelerator. From there it was attracted by

potential created by the large positive voltage of the 14UD terminal, which causes the beam
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Figure 3.1: Schematic of the 14UD tandem Van der Graaff accelerator setup at ANU. The
dashed line indicates the beam path for the current measurement. Adapted from [55].
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Figure 3.2: Photograph of the (open) MEGHA chamber. The beam enters the chamber from
the bottom right of the picture.

to be accelerated. Upon reaching the terminal, it passed through a thin carbon foil which

stripped electrons from the ions and hence reversed the beam’s polarity. The beam was then

repelled from the terminal and underwent a second stage of acceleration as it continued down

the accelerator. At the bottom of the accelerator the beam was once again deflected through

an angle of 90◦ before being steered, using a number of magnets and steering apparatus, into

either the target chamber or into a super-conducting linear accelerator (LINAC).

The 14UD operates at up to 15.5 MV, which for 12C using a (fully-stripped) 6+ charge

state defines a maximum beam energy of ∼108.5 MeV. Should a further boost in energy be

required the ANU facility also includes a LINAC within the beamline. This is constructed of

a series of nine split loop resonators, each allowing approximately a 2 MeV boost. Since the

required beam energy of 101.5 MeV was within the capabilities of the 14UD accelerator then

use of the LINAC was not necessary and the beam was steered directly into the MEGHA

(Multi-Element Gas Hybrid Array) chamber (figure 3.2).

The pressure of the vacuum in the MEGHA chamber was typically ∼10−5 Torr and the
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beam spot size of the system was ∼�2 mm.

3.1.2 Detector setup

In the study of the 12C(12C,12C[3α])12C reaction three α-particles were detected in coin-

cidence. This was done in an array of four detector telescopes (two primary and two sec-

ondary), arranged to provide an angular coverage in the range θ∗ ≈ 5◦−30◦ in the laboratory

frame; this suitably covered the range of excitation energies being investigated and allowed

for complete coverage of the azimuthal range. A schematic of the array is shown in figure 3.3.

The primary detector telescopes consisted of three elements (from front to back):

• a (50 × 50) mm2, 70 µm thick, double-sided strip detector (DSSD);

• a (50 × 50) mm2, 500 µm thick, resistive strip detector (RS);

• a (50 × 50) mm2, 10 mm thick, caesium-iodide (CsI) scintillator.

The DSSDs were divided into two sets of 16 independent 3 mm wide strips wide strips, the

16 strips on the front face having a horizontal orientation and the the 16 strips on the back

face a vertical orientation. This results in a total of 256 (3 × 3) mm2 ‘pixels’ which can be

used for determining positions of incident particles. The RS detectors were separated into 16

position-sensitive strips, which provided position information with a (FWHM) resolution of

∼0.3 mm in-plane (discussed further in section 3.1.4) and ±1.5 mm out-of-plane. Due to the

superior resolution, for the analysis contained within this thesis all position measurements

were determined using the RS detectors. The energy resolution was ∼150 keV (FWHM)

for the silicon detectors and ∼1.5% (FWHM) for the CsI scintillators1. The two secondary

telescopes consisted of:

• a (50 × 50) mm2, 70 µm thick, Si quad detector (Quad);

• a (50 × 50) mm2, 500 µm thick, resistive strip detector (RS);

1The CsI detectors were not used at any stage to measure energy, but rather as a gate to separate events
in which a particle has ‘punched through’ both of the Si detectors from those in which all the energy of all
detected particles is fully deposited in the Si detectors.

36



Figure 3.3: Schematic description of the detector setup. In (a), telescopes 3 and 4 are the
primary telescopes and consist (from front to back) of a (50×50) mm2, 70 µm thick, double-
sided Si strip detector, a (50 × 50) mm2, 500 µm thick, position sensitive Si resistive strip
detector and a 10 mm thick CsI scintillator. Telescopes 1 and 2 consisted were identical to
telescopes 3 and 4, except that a (50× 50) mm2, 70 µm thick, Si quad detector replaced the
double sided strip detectors at the front of the telescopes. In (b), the distances shown are
from the front of the array base plate to the front side of the detector faces when in place
on the mounts.
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Figure 3.4: Schematic diagram of a resistive strip (RS) silicon detector. By collecting a
signal at both ends of a strip an accurate measurement (∆x ≃ ±0.3 mm) of the position of
a hit can be deduced, as well as its energy.

• a (50 × 50) mm2, 10 mm thick, caesium-iodide (CsI) scintillator.

The Quad detectors were separated into four (25 × 25) mm2 segments (quadrants).

The resistive strip (RS) silicon detectors

Figure 3.4 shows the schematic layout of an RS detector, the primary detector type of all four

telescopes. The RS detector is a semiconductor detector constructed from a p-n junction.

This is created by using ion-implantation to convert a thin layer of n-type silicon into p-type

material, by using an accelerator to implant acceptor ions (boron), and then evaporating

thin electrical contacts onto the front and rear of the detector. The RS detectors make use

of a contact at each end of the front face of a strip, allowing an accurate measurement of

the position of a hit to be determined (see section 3.1.4). The use of a (1 kΩ) termination

resistor at each end ensures that, for events at or near the end of a strip, some charge will
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be collected at both contacts.

By applying a reverse bias2 (i.e. a positive voltage to the n side of the junction), the

detector is enhanced in two important ways. Firstly, the depletion region is extended to

almost the entire thickness of the detector, which increases the volume in which a charged

particle can be detected. The second purpose of the reverse bias is to reduce the time taken

for the holes/electrons to travel through the detector and be collected at the corresponding

contact. With the reverse bias applied, the detector effectively behaves like a diode, allowing

the free-flow of current in one direction, while presenting a large resistance in the other. If

the reverse bias is made too large then a breakdown in the diode will occur, causing the

reverse current to abruptly increase. This is often destructive in nature and so care must

be taken to select a bias voltage which is as large as possible within the safe limits of the

detector.

The double-sided silicon strip detectors (DSSD)

The DSSD detectors (used in two of the four telescopes) work in a manner almost identical

to the RS detectors. Instead of the strips running in only a single direction however, the

detectors are manufactured such that 16 strips run across both the front and rear of the

detector, in perpendicular directions on each face. A charged particle incident on the detector

will then trigger a single strip on each face, allowing its position to be determined by the

strips’ overlap. Care must be take in the case of multiple hits in a detector. If, for example,

two particles are incident on a DSSD, this will result in four crossing points of front/back

strips (as shown in figure 3.5). In order to select the correct position, the events on both

faces are ordered in terms of energy. This allows the signals to be correctly matched and

prevents incorrect positional measurements.

As the energy of a particle can be determined from the signal on either the front face or

the back face of a detector then an average of the two signals was used; this should improve

the resolution by a factor of
√
2.

2For the analysis contained within this thesis, a typical reverse bias voltage is ∼100 V.
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Figure 3.5: Schematic diagram showing how hit position is determined using a double-sided
silicon strip detector (DSSD). Two particles are shown incident on a DSSD; the position of
a hit is determined by the overlap of the triggered strips on the front and back face. In the
case of more than one particle being deposited this results in the possibility of incorrectly
pairing the front and back strips for each particle. This is overcome by ordering the hits on
each face by the energy they deposit.
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The silicon quad detectors (Quad)

The Quad detectors (used in two of the four telescopes) work in a similar manner to both

the RS and DSSD detectors. Unlike the previous silicon detector types however, the faces

of the Quads are divided into four smaller squares, each capable of generating a signal upon

detecting a charged particle. Although this results in a poor positional resolution (relative

to the RS detectors also present in a telescope), the primary disadvantage was the detectors’

inability to resolve the energies of two particles incident on the same quadrant. The Quads

were thus replaced in the analysis code at an early stage by an algorithm that used the

energy detected in the RS detectors to calculate the energy loss of a particle as it travelled

through the Quad detectors3.

3.1.3 Electronics and the Data Acquisition System (DAQ)

Across the four telescopes the data acquisition (DAQ) system consisted of 204 channels: 32

for each of 4 RS and 2 DSSD detectors, 4 for each of the 2 Quad detectors, and 1 further

channel for each of the CsI scintillators. The process of data acquisition can be separated

into 4 phases:

• Preamplification

• Signal amplification and analogue processing

• Digital conversion and processing

• Data broadcast and storage

As discussed previously, the RS and DSSD detectors differ in the number of signals generated

per strip, but each signal generated by all types of detector is handled in the same way by

the DAQ. Signals generated by a hit on a strip are initially pre-amplified, and then passed

to the main amplifiers. From the amplifiers two signals are generated, a fast output (which,

depending on the detector, can be passed to the trigger system) and a slow output (which

is broadcast for digital processing). A schematic description is shown in figure 3.6.

3At a later stage in the analysis, the DSSDs were also replaced with the same algorithm.
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Figure 3.6: Schematic description of the electronics setup. The four majority amplified
logic (MALU) units are daisy-chained together such that the signals generated are summed
together. The individual triggers in each can then be separately used to trigger on events in
which either 1, 2, 3 or 4 particles are detected.
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The Event Trigger

The trigger system within the experimental setup described is based on the four RS detec-

tors. For each strip-end “fired”, a signal is passed to a leading-edge discriminator. The

discriminator (one is used for each channel) is adjusted to trigger when a suitably large sig-

nal is received from the detector, allowing a balance between reducing noise and acquiring

suitable statistics to be achieved. From the amplifier a ‘fast’ signal is sent to one of four

Majority amplified logic units (MALUs), each having 32 inputs, one for each strip-end of an

associated RS detector. For each input it receives, a MALU generates a standard 150 mV

output (e.g. if three strip ends in an RS detector fire, its associated MALU will receive

3 inputs and generate a 450 mV pulse). By ‘daisy-chaining’ the four MALUs and summing

the output of all four together the total number of strip-ends fired per event can be counted.

Within each MALU is a discriminator and each can be independently set to require a total

pulse of a different size for an event to be considered as an interesting event. If an event is

considered to be interesting, the DAQ will instruct the ‘slow’ outputs from the amplifiers

to be digitally processed. In the experimental setup described within this thesis, the four

different triggers were set at levels to trigger for multiplicities of m ≥ 1, m ≥ 3, m ≥ 5 and

m ≥ 7 (corresponding to single, double triple and quadruple hits respectively).

In addition to the described electronics, a pre-scaler was used to scale down the number

of events recorded for certain multiplicities. For singles (n = 1) the number of recorded :

triggered events was 1 : 100, for doubles and triples (n = 2 and n = 3) it was 1 : 20 4, and

for quadruples (n = 4) it was 1 : 1.

The digital processing involved broadcast of the data to a remote terminal, where it was

written in 32 kB blocks to DLT tape for sorting and analysis. The data was recorded in

‘run’ files ∼2 GB in size; a single run typically contains ∼100,000 events of interest (triples)

for the analysis contained herein. At a later stage this was processed into 16 kB blocks for

compatibility reasons.

4For the current analysis it would be preferable for a scale-down factor of 1 : 1 for n = 3 but, as the
primary channel of interest when the experiment was performed was n = 4, a scale down factor of 1 : 20 was
implemented for triples.

43



3.1.4 Determining hit position on a detector

As discussed previously, all positional information of a hit was calculated using the RS-

detectors contained within the telescopes; this involved two different approaches for the x-

and y-coordinates of a hit depending on whether the coordinate is parallel or perpendicular

to the strip direction. The hit position perpendicular to the strip direction was determined

simply by which strip was triggered, and has a resolution of ±1.5 mm (the strip width). The

hit position parallel to the strip direction can be calculated using resistive charge division

methods: if both ends of a strip are triggered two energy-signals are recorded, E1 and E2,

and the position of the hit (away from the halfway point), pos′, is given by

pos′ =
E1 − E2

E1 + E2

. (3.1)

However, due to the presence of the offset resistors in the RS-detectors, pos′ must be corrected

to give the actual position of a hit, pos:

pos =
pos′ − pos1
pos2 − pos1

× strip length , (3.2)

where the strip length is 50 mm, and pos1 and pos2 are the ends of the initial position

spectra; the resolution is ∼0.3 mm. The method is discussed further in [56].

3.1.5 Converting to an angular hit position and momentum

Upon determining the position at which a particle hits a detector telescope, it is necessary to

convert this into a hit position on the complete detector array. This was done by converting

the x- and y-coordinates of a hit on a detector to angular measurements relative to the beam

axis, ϕx and ϕy (the beam axis being along the z-axis).

By converting the energy of a hit into momentum:

ptot =
√
2mE , (3.3)
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(where m is the mass of the detected particle) the two angular measurements can be used

to calculate the separate x-, y- and z-components:

px = ptot sinϕx cosϕy , (3.4)

py = ptot sinϕy , (3.5)

pz = ptot cosϕx cosϕy . (3.6)

The x-direction is taken as to be along the RS strips of telescopes 3 and 4, and the y-direction

is along the RS strips in 1 and 2. A more complete discussion of the calculations involved

to obtain ϕx and ϕy is given in appendix B.

3.2 Calibrations

3.2.1 Energy calibrations

Measurement of a sequential break-up reaction, such as that discussed within this thesis,

requires extensive calibrations both during and after the experiment. Variations in the

detector response, detector linearity and gain all have to be accounted for in terms of the

calibrations of detector position and energy. The calibration was conducted in three phases:

• checking the apparatus was operational;

• preamplifier gain and offset calibrations - online calibration;

• offline calibration.

Offline calibration of the detectors and amplifiers was performed using a combination of

three techniques: a 3-line α-source (239Pu, 239Am and 239Cm), linear regression performed

on a series of ‘matchsticks’ pulses generated by a pulser unit, and 45 MeV 12C ions elastically

scattered from a 197Au target5.

5An more extensive discussion of the ‘flash gold’ and ‘matchsticks’ calibration techniques can be found
in [56].
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Alpha calibrations

A triple-peak α-particle source was used to generate three peaks in each detector of known

energies and spacings6 (figure 3.7 shows some examples of α-calibration data). These were

used to check amplifier gains and offsets before the experiment was run. The α-peak cali-

brations were used to convert energy from channels to MeV.

Matchsticks calibrations

The ‘matchsticks’ calibrations were carried out at a number of times throughout the exper-

iment and were used to check the linearity and variation in the gains of the amplifiers. The

calibrations involve triggering the system with a precision pulser unit, which sends a series of

increasing incremented voltages in the form of pulses, starting at zero amplitude. A record

of the matchsticks was taken for each preamplifier and a check for regular spacing of the

resulting peaks performed. Examples of matchsticks calibrations are shown in figure 3.8.

Flash gold calibrations

The flash gold calibrations involve the elastic scattering of 12C nuclei7 from a much heavier

target (197Au), and offer a second method of calibrating a gain correction to the energy of

detected particles. They were used in addition to the gain corrections obtained from the

α-calibrations discussed earlier, as well as for positional calibrations. It is necessary to apply

the offsets from the α-calibrations prior to calculating correctional terms using the technique

discussed below.

Two separate events of known energy are incident on the extreme ends of a strip (shown

in figure 3.9). The charges liberated by each ion are amplified and then recorded as particular

ADC values. As each hit causes a different charge pulse at each strip-end then, since the

signals from the two sources are summed, the following equations are obtained:

ch1 = QHg1 +QLg2 (3.7)

6The source contained three α-emitters: 239Pu (5.157 MeV), 241Am (5.486 MeV) and 244Cm (5.805 MeV).
7The calibrations carried out for the experiment discussed in this thesis used 25.5 MeV 12C nuclei.
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Figure 3.7: Three peak α-particle calibration data for three randomly selected detector
strips. The red and black data sets are pre- and post-calibration respectively.
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Figure 3.8: Matchsticks calibration data used to check linearity of the electronics for two
randomly selected channels.
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ch2 = Q
′

Hg1 +Q
′

Lg2 (3.8)

where QH , QL, Q
′
H , and Q

′
L are the charges liberated from the each strip-end, g1 and g2 are

the electronic gains which convert from charge into channel number and ch1 and ch2 are the

channel numbers recorded for the particular event. The energy of the events is related to

the charge liberated by:

E1 = (QH +QL)Nw (3.9)

E2 = (Q
′

H +Q
′

L)Nw (3.10)

where N is the number of electron-hole pairs produced by the incident ion and w is the

average energy required to produce one electron-hole pair.

The ratios QH/QL and Q
′
H/Q

′
L can also be obtained by considering that

QH = Q

(
Rs +R

Rs + 2R

)
(3.11)

QL = Q

(
R

Rs + 2R

)
(3.12)

Q
′

H = Q
′
(

R

Rs + 2R

)
(3.13)

Q
′

L = Q
′
(
Rs +R

Rs + 2R

)
(3.14)

which gives

QH

QL

=
Rs +R

R
(3.15)

Q
′
H

Q
′
L

=
R

Rs +R
(3.16)

where Rs is the resistance of a strip (4.2kΩ) and R is the resistance of the termination resistor

(1kΩ).

Rearranging 3.7 and 3.8 gives

ch1
QL

=

(
QH

QL

)
g1 + g2 (3.17)
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(a) Events incident at each strip-end and the charges.

(b) Where the events lie on a plot of energy against position prior
to the gains being applied to correct the energy offset.

Figure 3.9: A schematic of the parameters necessary for the calibration of the resistive strip
detectors. Over the angular coverage of the detector, when calibrated the data will appear
(approximately) as a horizontal bar in (b).
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ch2
Q

′
L

=

(
Q

′
H

Q
′
L

)
g1 + g2 (3.18)

and substituting 3.15 and 3.16 into 3.17 and 3.18 produces

ch1
QL

=

(
Rs +R

R

)
g1 + g2 (3.19)

ch2
Q

′
L

=

(
R

Rs +R

)
g1 + g2 (3.20)

From 3.9 to 3.16 it can then be shown that

QL =

(
R

Rs +R

)
QH =

(
R

Rs +R

)(
E1

Nw
−QL

)

QL =
RE1

Nw(Rs +R)
− QLR

Rs +R
=

RE1

Nw(Rs +R)
− R2E1

Nw(Rs +R)(Rs + 2R)

therefore

QL =
RE1

Nw(Rs + 2R)
(3.21)

and similarly

Q
′

L =
(Rs +R)E2

Nw(Rs + 2R)
(3.22)

Subtracting 3.18 from 3.17 gives

ch1
QL

− ch2
Q

′
L

=
QHg1
QL

− Q
′
Hg1
Q

′
L

(3.23)

and substituting from 3.12, 3.14, 3.15 and 3.16 gives

ch1Nw(Rs + 2R)

RE1

− ch2Nw(Rs + 2R)

(Rs +R)E2

=
QHg1(Rs +R)

RQH

− Q
′
Hg1R

Q
′
H(Rs +R)

which simplifies to

ch1Nw

RE1

− ch2Nw

(Rs +R)E2

=
g1Rs

R(Rs +R)
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Rearranging for g1 gives

g1 =
Nw

Rs

(
ch1(Rs +R)

E1

− ch2R

E2

)
(3.24)

and following a similar procedure

g2 =
Nw

Rs

(
ch2(Rs +R)

E2

− ch1R

E1

)
(3.25)

Referring back to 3.7 and 3.8 it is apparent that g1 and g2 convert to channel number; to

convert from channel number it is necessary to divide by g1 or g2.

Examples of a typical strip both before and after calibration are shown in figure 3.10.

3.2.2 Position calibration

Positional calibrations of both the RS and DSSD detectors were performed using the flash

gold data. Using the charge division method described in section 3.1.4, it is possible to

determine how far along the strip a hit occurs. All strips were then normalized to be the

same length and adjusted so as they were correctly lined up (i.e. the zero point distance of

all strips were aligned). As all strips are 50 mm long (see figure 3.10), the relative position

of a hit along a strip was then converted into a distance along the strip, and in turn to an

angle relative to the entire detector array.

3.3 Analysis tools

3.3.1 SunSort

Having passed through the data acquisition system, data was packed into 32 kB blocks and

written to tape. SunSort is the main analysing tool used by the Charissa collaboration and

is used for both online and offline analysis. It is based around a user defined sort code, which

for the analysis contained within this thesis was written in the Fortran77 language (though

SunSort allows a choice between Fortran77 and C++). SunSort reads information about

each event such as number of detector hits (determined by the discriminators), which strips
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(a) Energy against position (pre-calibration).
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(b) Energy against position (post-calibration).

Figure 3.10: Energy versus position plots for a typical strip, both before and after energy gain
calibration, shown for elastic scattering of (∼45 MeV) 12C nuclei from a 197Au target. Note
that the length of the strip has already been calibrated in both (a) and (b) (see section 3.2.2).
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have been triggered, particle energy, etc., and as such allows the events to be sorted. The

user defined sort code then allows particle identification, reconstruction, etc., to take place

for analysis. SunSort has been further documented in [57, 58].

3.3.2 Data Event Manipulation

SunSort allows the user to manipulate the experimental parameters on an event-by-event

basis. For the analysis carried out within this thesis, four final-state particles were required,

the recoil 12C nucleus and 3α-particles. However, though four final-state particles were

required for analysis, only three were required to be detected, as the fourth was reconstructed

from momentum considerations. Monte Carlo simulations performed using the Resolution8

code (see section 3.3.3) suggest an increase in statistics of ∼70% if events in which three

final-state particles are detected and thus the analysis performed within this thesis is based

upon events in which only the 3α-particles are detected.

3.3.3 Monte Carlo Simulations - Resolution8

To aid with predictions of behaviour of the detection system a number of Monte Carlo

simulations were performed. These were done using the Resolution8 (Res8) code developed

by the Charissa collaboration. The code allowed the reaction to be simulated and the

position/orientation of the detectors to be varied, as well as a number of further variables (e.g.

detector efficiencies, detection energy thresholds, beam divergence etc.). The simulations

were performed in a way such that they can be loaded into and analysed using the SunSort

data analysis code in a similar way to the experimental data.

Details of simulations carried out to aid the analysis process are discussed, along with

their relevance to the the experimental results, in chapter 4.

Modifications to Resolution8

During the analysis, two changes were made to to the Res8 code in order to better match

the Monte Carlo simulations to the experimental data. These modifications are both briefly

discussed here.
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Including a Lorentzian line-shape

The Res8 code includes no intrinsic information about the line-shape of a simulated state,

but allows detector resolution, beam straggling etc. to determine experimental widths and

shapes. As a major part of the analysis process involved looking for minor variations in

state line-shapes it was important to model the shape of the experimental results as accu-

rately as possible. To better model a realistic line-shape, the Monte Carlo simulations were

constrained to follow a Lorentzian distribution:

f (Ex) =
1
4
Γ2

(Ex − E0)
2 + 1

4
Γ2

, (3.26)

where Γ is the width of the state being simulated and E0 is the centroid of the state be-

ing simulated; both are constant for a given simulation but are varied over the different

simulations performed (discussed further in chapter 4).

Including spin information

One of the main purposes of the Monte Carlo simulations involved simulating the angular

correlation measurements described in chapter 2.3. In order to do this it was necessary to

modify the Res8 code to include spin information.

As discussed in section 2.3, θ∗, ψ, J and li are linked by

dθ∗

dψ
=

J

li − J
,

which dictates that the θ∗ dependence of the ridges generated by the angular correlations

will follow

PJ = PJ

[
cos

(
ψ +

J − li
J

θ∗
)]2

. (3.27)

The spin of a state can be suitably simulated for angular correlations by generating the

relevant Legendre polynomial and then constraining the simulations to follow this structure

in the θ∗ − ψ plane. For a Jπ = 3− state, for example, this would involve constraining the
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simulations to follow the dependence

P3 (θ
∗, ψ) =

1

2

[
5 cos3

(
ψ +

3− li
3

θ∗
)
− 3 cos

(
ψ +

3− li
3

θ∗
)]

(3.28)

in the θ∗ − ψ plane. While θ∗ and ψ vary for each event, the grazing-angular-momentum, li

is determined by the experimental parameters (beam and target species, beam energy etc.)

and must be calculated from these. For the experiment described within this thesis

li = r× p

= r
√

2µEbeam
CM

(3.29)

= r0

(
Ab

1/3 +At
1/3
)√

2
AbAt

Ab +At

Ebeam
At

Ab +At

= r0

(
Ab

1/3 +At
1/3
) At

Ab +At

√
2AbEbeam , (3.30)

where in equation 3.29, µ is the reduced mass and Ebeam
CM

is the centre-of-mass energy. In

equation 3.30, Ab and At are the beam and target atomic numbers respectively (both 12),

and Ebeam is the beam energy (101.5 MeV). Using a value of 1.3 fm for r0, li ≃ 22.5~.

There exists an exception when simulating a J = 0 state as the ridges lie only in the

θ∗-direction, and will follow a Legendre polynomial of order li. For the analysis contained

herein, a 22nd-order Legendre polynomial was used in simulating the θ∗ dependence of the

angular distribution of a J = 0 state, whilst the ψ dependence was assumed to be isotropic.
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Chapter 4

Results and Analysis

In this chapter, results are presented for the 12C(12C,12C[3α])12C experiment described previ-

ously. The analysis discusses methods used to identify and reconstruct the reaction particles,

as well as techniques used to suppress background data. Results of Monte Carlo simulations

performed to support the understanding of the experimental data are also presented. Fi-

nally, limits regarding the possible strength of a Jπ = 2+ resonance in the 9.7 MeV region

are presented, along with details of the associated calculations.

4.1 Preliminary analysis

4.1.1 Particle identification and reconstruction

As discussed previously, the analysis contained within this thesis consists of events in which

three final-state particles are detected, and more specifically those in which 3α-particles were

detected. The initial stage in the analysis therefore involves filtering out events in which

three particles were detected and in turn events in which all of these were α-particles. In

order to achieve this for each detector telescope, the energy loss in the thin DSSD/Quad

detector was plotted against the energy deposited in the thicker RS detector. This two-

dimensional plot is known as a ∆E− E, or PI (particle identification), plot. An example is

shown in figure 4.1a.

The different types of detected particles separate into different loci which are dependent
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(a) ∆E− E at an early stage of the analysis code.

(b) ∆E− E with α-particles detected in the
CsI removed.

(c) ∆E− E with α-particle energies corrected
for those that are detected in the CsI.

Figure 4.1: Typical ∆E − E plots for particle identification (a) at an early stage in the
analysis code, (b) with punch-through events detected in the CsI removed, and (c) with
the energies of ‘punch-through’ α-particles corrected; different loci correspond to particles
of different mass. The loci labelled (i)-(iv) in (a) are associated with (i) α-particles, and
isotopes of (ii) lithium, (iii) beryllium, and (iv) boron nuclei. Note that while not all of the
punch-through events are corrected/removed in (b) and (c), those which are not are later
removed using a software gate placed on the ∆E − E spectra. The energy required for an
α-particle to punch-through a 500 µm silicon detector is ∼32.1 MeV.
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on their mass and charge. The loci can be understood by Bethe’s equation which describes

the rate of energy loss as a charged particle travels through an ionisable medium [59, 60]. In

the case of non-relativistic charged particles it can be approximated to

dE

dx
∝ mZ2

E
, (4.1)

where dE/dx is the energy loss per unit distance, and m, Z, and E are the mass, charge and

energy of the detected particle respectively. For a given thickness of absorber

dE ∝ mZ2

E
, (4.2)

and for a given energy

dE ∝ mZ2 . (4.3)

Thus each individual locus corresponds to ions with both a common mass and a common

charge. This allowed events in which only 3α-particles were detected to be separated by

placing a software window around the locus corresponding to α-particles.

4.1.2 Reconstructing energy loss in secondary detectors

Due to the nature of the reaction channel investigated it is known that more than one

α-particle will be incident on a given detector-telescope for each event (discussed in sec-

tion 4.2). For a telescope in which this is the case, it is important to be able to resolve the

separate particles. Though this is not normally problematic, for two types of event additional

calculations must be performed before proceeding with the analysis.

‘Punch-through’ events

For a particle to be identified it is required that a particle passes through the telescope at

least as far as the RS-detector in the middle of the telescope. If all detected particles are

stopped by the RS-detectors then all the kinetic energy is measured and the event can be

processed, but if one or more particles pass through to the CsI scintillator then, due to the
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Figure 4.2: Energy losses for an α-particle traveling through a 500 µm silicon detector. By
considering the energy deposited in an RS detector by a α-particle that punches through
into the CsI crystal, it is possible to calculate the energy of the α-particle as it entered the
RS detector. Polynomial regression fits of orders 2-10 were performed (three examples are
shown); a sixth-order fit was used for the algorithm in the analysis code.

CsI scintillator not being energy calibrated, the energy deposited in the CsI crystal must be

calculated and added back. Using the method described in section 4.1.1 then by considering

the energy loss of a particle within a particular ionisable medium (of a known thickness), it is

possible to calculate the energy that the particle possessed upon entering the medium. The

‘dedx’ code (previously written within the Charissa collaboration) was used to calculate the

missing energy for a range of possible ‘entrance energies’. A polynomial regression was used

to create a short algorithm for which the detected RS energy can then be used to correct for

the missing energy deposited in the CsI detector (shown in figure 4.2).

For events in which two particles are detected within an RS-detector and for which the

CsI is also triggered it is often difficult to ascertain whether one or both particles have

punched-through the silicon into the CsI. For this reason the technique was only used when

a single particle was detected in a telescope and punches through. In the case that two
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particles are detected in a telescope, and a signal was registered in the CsI detector in the

same telescope, the event was discarded.

A ∆E−E plot after punch-through α-particles detected in the CsI have been removed is

shown in figure 4.1b; figure 4.1c shows the same plot but includes the α-particles detected

in the CsI with their energy corrected. Although the method does not remedy all punch-

through events, any remaining (uncorrected) events are removed by the software gate placed

over the α-particle locus.

Dual Quad hit events

For events in which two particles are detected within an RS-detector, but only one in a

Quad detector, it is likely that both particles hit the same quadrant of the front detector.

In order to use these events it is necessary to reconstruct the energy which each particle

deposited in the front detector. This can be done using a method analogous to that used to

calculate the energy deposited in a CsI above, though this time by considering the energy of

a particle as it leaves an ionisable medium (of a known thickness) and calculating its energy

upon entering the medium. Similarly to the energy deposited in the CsI crystals, the dedx

code was used to calculate the energy loss of an α-particle through a silicon detector, and

a polynomial regression fit applied to create a function to correct the energy of a particle

detected in the RS detectors.

4.1.3 The Etot spectrum

Following the reconstruction of the (undetected) 12C recoil nucleus (section 2.2.2), the total

energy of all the particles from an event, Etot, can be calculated. An Etot spectrum is shown

in figure 4.3 and shows a series of peaks, each corresponding to a particular reaction channel.

The highest energy peak occurs at ∼ −7.5 MeV lower than the beam energy (101.5 MeV),

which is consistent with the Q-value of α-break-up of 12C (−7.272 MeV). The remaining

peaks correspond to the 12C recoil nucleus being formed in an excited state and losing

energy (e.g. via γ-decay). The peak at ∼90 MeV is consistent with the recoil nucleus being

emitted in its first excited state at 4.4 MeV, which is the second member of a rotational
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Figure 4.3: Total energy spectrum. The marked peak corresponds to events in which the
recoil nucleus was formed in its ground state. The strong peaks at lower energy correspond
to the 4.4 and 9.6 MeV excitations of the recoil nucleus.

band built on the ground state configuration. The peak at ∼84 MeV corresponds to the

recoil nucleus being emitted in the 9.64 MeV 3− state.

By gating on the highest energy peak only events in which the recoil nucleus is formed

in its (0+) ground state are selected; this is a requirement of the angular correlation method

used later in the analysis. Background events that extend to Etot values greater than the

beam energy are believed to most likely arise from pile-up events in which the detected

particles are produced from different beam−target interactions. The continuum at lower

energies corresponds to events where one of the the detected α-particles came from the

break-up of the the 12C recoil.
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4.1.4 8Be break-up Q-value

As discussed previously, the break-up of 12C into 3α-particles occurs sequentially in two

steps:

12C −→ 8Be + α , 8Be −→ α + α ,

where the lifetime of the 8Be nucleus is sufficiently short so as not to affect the overall

kinematics i.e. it decays whilst still within the target. The present analysis selected events

in which the decay occurs through the 8Be ground state. To select events in which this

was the case, the 8Be nucleus was reconstructed and the decay energy calculated in an

analogous way to that discussed for the break-up of 12C in section 2.2. The momentum of

the 8Be nucleus was calculated by summing the individual momenta of two of the detected

α-particles, and repeated for all 2α-particle pairs. In turn, the decay energy of each 2α-pair

was calculated using

Edecay =
2∑
i=1

Eαi
− PBe

2

2MBe

, (4.4)

where Eαi
are the energies of two of the two α-particles, PBe is the momentum of the 8Be

nucleus, and MBe is the mass of the 8Be nucleus. Using cyclic permutations, it is possible

to check the Q-value for the break-up of all possible 2α-pairs (see figure 4.4), and filter the

events to include only those which match the known value for decay via the 8Be ground state

(0.092 MeV above the break-up threshold).

4.2 Main analysis

Initial 12C excitation energy spectrum

Having determined that 3α-particles and 12C have been detected and also that 2α-particles

derive from an 8Beg.s. decay, it is possible to construct an excitation energy (Eex) spectrum
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Figure 4.4: Decay energy spectrum for the break-up of 8Be into 2α-particles. The region
marked by the dashed lines corresponds to the gate used to select a reaction channel for
decays through the 8Beg.s.. The ground state peak does not appear at zero due to the fact
that the decay threshold for 8Be into 2α-particles is 92 keV below the ground state energy.
The width of the ground state peak is 39 keV FWHM (notably larger than the the state’s
known width of 5.5 eV). The double-peak structure is an artifact, arising from incorrect
α− α pairing in the construction of the 8Be.

64



7.0 8.0 9.0 10.0 11.0 12.0
Excitation Energy (MeV)

0

2000

4000

6000

8000

10000

12000

14000
C

ou
nt

s

1
-

3
-

0
+

Figure 4.5: Excitation energy spectrum for the break-up of 12C into 3α-particles. The dashed
line corresponds to the energy at which the 2+ excitation was found in [44]. The spins and
parities of the known states are labelled.

for the 12C nucleus that decayed, whereby Eex is calculated as discussed in section 2.2:

Eex =
3∑
i=1

Eαi
− P2

2MC

+ Eth , (4.5)

where Eth = 7.272 MeV. Figure 4.5 shows the energy spectrum of the break-up of 12C;

a number of known energy levels are labelled (0+ Hoyle state at 7.654 MeV, 3− state at

9.641 MeV, 1− state at 10.84 MeV), along with the location at which Itoh et al. claim to

have previously found evidence of a 2+ resonance. The widths of the peaks are dominated by

the experimental resolution, which is 90 keV (FWHM) for the 7.65 MeV peak and 175 keV

(FWHM) for the 9.64 MeV peak1. As can be seen from the figure, in order to investigate

the possible existence of a 2+ resonance in the region of the dashed line it is necessary to

1In addition to the detector resolutions, the resolution of the peaks is dependant on the relative angle
between the initial scattering particles. This effect is centered around the breakup threshold such that the
width of a peak close to the threshold (a small relative scattering angle) will have a considerably improved
resolution compared to a state far from the threshold. This effect is discussed in greater detail in [61], which
also includes a more rigorous mathematical analysis.
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Figure 4.6: Example of the squares of 2nd, 3rd and 4th order legendre polynomials. It can be
seen that the minima of P2

2 are out of phase with those of P3
2. It is using this principle that

the angular correlations technique can be used to suppress a Jπ = 3− state whilst leaving a
2+ state unaffected.

suppress the 3− peak dominant in this part of the spectrum.

4.2.1 Angular correlations

One of the primary analysis techniques employed within this thesis is the use of angular

correlation measurements. By plotting θ∗ and ψ (angles from two different stages of the

break-up process and discussed in section 2.3), against one another it is possible to develop

a 2-dimensional plot which reveals information regarding the spin of a state. Due to the

‘ridge’ structure of these plots, and more specifically the requirement that (when projected

at the correct angle – calculated using equation 2.20, and discussed in section 2.3), the

ridges follow associated Legendre polynomials, there will be locations at which Jπ = 2+

and 3− states’ minima and maxima will coincide, and also where they will be out of phase

(figure 4.6). The figure also highlights that the technique would be effective for resolving

e.g. a Jπ = 4+ state from a dominant 3− state, but would not be able to separate a 2+ state
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from a 4+.

Figure 4.7 shows the initial angular correlation calculations as described in section 2.3.1,

in which θ∗ and ψ are calculated in the x−z plane. Though it is possible to see some evidence

of a ridge structure in the ‘eye’ of figures 4.7a and 4.7b, it is not a clear structure; there is no

structure visible in 4.7c. Another aspect shown by figure 4.7 is the result separating events

with different ‘hit configurations’ from one another. Figures 4.7b and 4.7c show the different

angular correlations obtained for ‘2 : 1’ and ‘3 : 0’ patterns (i.e. figure 4.7b shows events

with 2 hits in one telescope and 1 in another, figure 4.7c shows events in which 3α particles

are all detected in the same telescope)2. The excitation energy spectra of the 12C nucleus

associated with each part of figure 4.7 were re-plotted (figure 4.8), the effect of separating

the 2 : 1 and 3 : 0 coincidences becomming immediately apparent: the 3 : 0 events being

associated with the lower region of the 12C excitation energy spectrum, and the 2 : 1 events

with the higher region. From this it is also apparent that majority of the data from the region

of interest (∼9.7 MeV) is made of 2 : 1 events. However, at this stage it is not possible to

discard the 3 : 0 events as there are, nonetheless, still a significant number of points within

the 9.64 MeV, 3−, peak (figure 4.8c).

The angular correlations were re-calculated after performing a rotation into the reaction

plane (discussed in section 2.3.2, shown in figure 4.9) and, once again, there is a clear

difference in the correlations associated with 3 : 0 and 2 : 1 events. The ridge structure

discussed in chapter 2.3 become much clearer in figure 4.9a, and following the separation

into different hit configurations it is apparent that while this structure is present in the 2 : 1

events (figure 4.9b), it does not appear in the 3 : 0 events (figure 4.9c). The lack of ridge

structure in the 3 : 0 angular correlations suggests that the method is unsuitable to try

and suppress the 3− structure for these events3. At this stage it is also possible to re-plot

the excitation energy spectrum for 8Be for 2 : 1 events only. This is shown in figure 4.10.

2The final possible hit configuration (each α-particle being deposited into a separate telescope) is not
included due to the statistics being considerably lower than both 2 : 1 & 3 : 0. This is believed to be due
to the low probability of the 2α-particles resulting from the break-up of 8Be having sufficient positional
separation to be deposited in different telescopes.

3At this stage the 3 : 0 coincidences were removed from the analysis process, significantly speeding up
the time required to sort the remaining data.
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(a) Angular correlations for the complete data set.
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(b) 2 : 1 coincidences only.
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(c) 3 : 0 coincidences only.

Figure 4.7: Angular correlations for (a) all events, (b) 2 : 1 coincidences, (c) 3 : 0 coinci-
dences. Separating the different hit configurations reveals that the ridge structure seen in (a)
is as a result of the 2 : 1 coincidences. The lack of structure in (c) is due to the dominance
of the 0+ state in this spectrum (this is highlighted by the excitation energy spectrum for
this data shown in figure 4.8c).
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(a) Excitation energy spectrum for the complete data set.
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(b) 2 : 1 coincidences only.
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(c) 3 : 0 coincidences only.

Figure 4.8: Excitation energy spectra for the break-up of 12C for (a) all events, (b) 2 : 1
coincidences, (c) 3 : 0 coincidences. The separation of different hit configurations shows a
clear link between hit configuration and possible excitation energy.
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(a) Angular correlations for the complete data set (as calculated in
the reaction plane).
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(b) 2 : 1 coincidences only.
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Figure 4.9: Angular correlations for (a) all events, (b) 2 : 1 coincidences, (c) 3 : 0 coincidences
(as calculated in the reaction plane). The ridge structure seen in figure 4.7 is now more clearly
seen, and is once again a result of the 2 : 1 coincidences.
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Figure 4.10: Excitation energy spectrum for the break-up of 8Be into 2α-particles following
the removal of 3 : 0 coincidences. The high energy shoulder seen on the g.s. peak in figure 4.4
has disappeared, suggesting that incorrect pairings in 3 : 0 events were responsible for this
artifact.

From the disappearance of the high energy shoulder seen on the ground state peak in the

earlier 8Be excitation energy spectrum, it is possible to determine that this artifact arises

from incorrect α− α pairings in the 3 : 0 events.

After determining that the 2 : 1 events were those of most interest the angular correlations

were recalculated, this time gating on the 3− peak in the 12C excitation energy spectrum;

the results are shown in figure 4.11. Removing data other than that in the 3− region further

clarifies the ridge structure seen previously. As a check of the spin of the state, the ridges

in figure 4.11b can be projected at an angle determined by

dθ∗

dψ
=

J

lg − J
. (4.6)

For a grazing angular momentum (lg) of 22.5~ (see section 3.3.3), this corresponds to a

projection angle of ∼171◦; the projected data, along with a 3rd-order Legendre polynomial,

are shown in figure 4.12.
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(a) Angular correlations plot for the 3− region using 2 : 1
coincidences only.

(b) Angular correlations plot for the 3− region using 2 : 1
coincidences only, magnifying the region of interest. The
dashed windows indicate software gates used to select re-
gions over which a 3− state will be minimal.

Figure 4.11: Angular correlations plots for the 3− region using 2 : 1 coincidences only
(calculated in the reaction plane). The Legendre ‘ridge structure’ is clearly visible.
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Figure 4.12: Angular correlations projection for the 3− peak matched against a 3rd-order
Legendre polynomial (2 : 1 coincidences only). The data shows a good match to the Legendre
polynomial, though an insufficient number of ridges means it is not possible to match to
several maxima. (Channel number is an arbitrary unit.)
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Figure 4.13: 12C excitation energy spectra associated with the software gates as shown in
figure 4.11b; also shown is the excitation energy spectrum for all 2 : 1 events. All the spectra
have been normalised to the area of the peak in the 3− region.

Following the construction of the angular correlations for the 3− peak, it is possible to

place software gates in the regions at which a 3− state will be minimal. Figure 4.11b shows

three regions for which 12C excitation energy spectra were constructed (shown in figure 4.13)

and compared to the spectrum for all 2 : 1 events. If there were immediate evidence of a 2+

state in the region of ∼9.7 MeV, it would be expected that the 3− peak would be suppressed,

and to a greater extent on the left-side than the right-side. Instead, it is apparent that over

the three software windows, the entire 3− peak shifts, increasing in energy as θ∗ increases. In

order to try and understand the origin of this shift, several more windows were constructed

at various other locations on the θ∗ −ψ spectrum, and excitation energy spectra created for

each of these. It was discovered that these peak-shift effects were seen whenever windows

were placed at the limits of the angular coverage of the detectors, indicating a non physical

origin of the effect.
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Physical parameter Value

Reaction 12C(12C,12C∗)12C
Reaction Q-value 0 MeV
Break-up1 reaction 12C∗ −→ 8Beg.s. + α
Break-up1 Q-value -7.3666 MeV
Break-up2 reaction 8Beg.s. −→ α + α
Break-up2 Q-value 0.092 MeV
Excitation energy 9.64− 9.70 MeV
State width 0.034− 0.6 MeV
Beam energy 101.5 MeV
Target thickness 50 µg/cm2

Target density 2.25 g/cc
Beam energy spread from detector 0.0004
In-plane beam divergence 0.4◦

Out-of-plane beam divergence 0.4◦

Table 4.1: Parameters used in the Monte-Carlo simulations of 12C(12C,12C[3α])12C.

4.3 Introducing Res8 Monte Carlo simulations

To better understand the effects seen in figure 4.13, the Res8 code was used to perform

Monte Carlo simulations to investigate whether simulations of a J = 3 and also a J = 2

state could recreate the spectra seen in the experimental data. The parameters used for the

simulations are shown in table 4.1. An angular correlation analysis was performed on both

simulations (figure 4.14) in exactly the same manner as for the experimental data and, as

seen in figure 4.14a, the J = 3 simulation reproduces rather well the angular correlations seen

for the experimental data, although additional features are also present in the experimental

data. It is also apparent that the minima/maxima of the J = 2 and J = 3 simulations are

out of phase as would be expected. The same software windows were placed on the J = 3

simulations (figure 4.14a) as previously used with the experimental data (figure 4.11b) and

a similar spectrum generated to figure 4.13, in which the 12C excitation energy spectra for

each window are compared to that for the complete data set; this is shown in figure 4.15.

Unlike for the experimental data, spectra produced from the simulations (from windows

placed near the extremities of the telescopes’ angular coverage) did not result in peak shifts

in the 12C excitation energy spectrum. It is thought that the cause of the peak-shift seen in
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(a) Angular correlations for a Monte Carlo generated 3−

state using 2 : 1 coincidences.
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(b) Angular correlations for a Monte Carlo generated 2+

state using 2 : 1 coincidences.

Figure 4.14: Angular correlations plots for the Monte Carlo simulations of (a) a J = 3 state,
and (b) a J = 2 state, using 2 : 1 coincidences only (calculated in the reaction plane). The
simulations in (a) show a good match to figure 4.11b, though there appears to be further
structure in the experimental data compared to the J = 3 simulation. It is unclear whether
this is possible to explain by combining the J = 3 simulation with the J = 2 simulation or
whether this additional structure arises from elsewhere.
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Figure 4.15: 12C excitation energy spectra associated with Monte Carlo simulations of a
J = 3 state using the same windows as in figure 4.11b; also shown is the excitation energy
spectrum for all 2 : 1 events simulated. All the spectra have been normalised to their area.

the experimental data is therefore not due to the underlying physics of the reaction process,

but rather is an artifact of the detector alignment. Though attempts to investigate the

exact nature, and also the cause, of this shift effect did not result in a good understanding,

it is nonetheless an important result, as it is known that further investigation into the 2+

excitation should not include data collected at the limits of the detectors’ angular coverage.

4.3.1 Using Res8 simulations to develop experimental analysis

techniques

Although the simulations discussed previously reveal an effect in the experimental analysis,

the cause of which is unknown, the Res8 simulations can further be used to try and predict

where in the θ∗ − ψ plane is a good location to effectively minimise the contribution of the

9.64 MeV, 3−, state. In order to ascertain the best way to identify the possible existence

of a 2+ state in the experimental data, the simulations were used to try and predict where
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Figure 4.16: Relative strengths of J = 2 and J = 3 Monte Carlo simulation angular corre-
lations when projected at ∼174.5◦. Both the strength and channel numbers are in arbitrary
units.

(in the angular correlations spectrum) a 2+ state would be strongest when compared to a

3− state. The angular correlations of both simulations were projected at the angle at which

the ridges associated with a 2+ state would be expected to lie (calculated to be ∼174.5◦).

The projections were then divided by one another, resulting in a prediction of the relative

strength of a 2+/3− across the range of the angular correlations (figure 4.16). As may be

expected from the previous plots, (relative to a J = 3 state) a J = 2 state would be expected

to be most noticeable in the minima of the ridges of a 3− state’s angular correlations. Three

such minima exist in the coverage of the detector telescopes, but two of these (windows (i)

and (iii) of figure 4.11b) lie at, or near to, the limit of the angular coverage. In addition to

the ‘peak-shift’ problem discussed previously, this also results in both these regions suffering

from poor statistics – as indicated by the large errors in figure 4.16.

Following the predictions of where a 2+ state would be most readily identifiable using

angular correlations, a similar process was applied to the experimental data. As it is not

possible to simply divide a 2+ contribution by a 3− contribution an analogous method was
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used: the angular correlations spectrum was divided into 20 windows like those shown in

figure 4.11b. Each window was of equal width and each was drawn at the angle at which a

2+ state would be expected to lie. A 12C excitation energy spectrum was then constructed

for each of these windows and the strength of a possible 2+ contribution extracted for each,

with a plot of 2+ strength against window number plot being analogous to the 2+/3− against

channel number plot constructed for the simulations.

In order to arbitrarily ascertain the strength of 2+ contribution for each window, a fitting

routine was developed using the MathCad software package. The excitation spectrum of each

window was normalised to, and then subtracted from, an excitation spectrum constructed

for the complete (2 : 1) data set4. A fitting routine was then applied to the remainder which

was optimised using a variable in the form of a 2+ contribution in the window’s spectrum.

The fitting routine was constructed from the difference of two Gaussians:

f(Ex) =

exp

[
−
(
Ex−c1√

2σ1

)2]
+ α exp

[
−
(
Ex−c2√

2σ2

)2]
√
2π (σ1 + ασ2)

−
exp

[
−
(
Ex−c1√

2σ1

)2]
+ β exp

[
−
(
Ex−c2√

2σ2

)2]
√
2π (σ1 + βσ2)

, (4.7)

where Ex is the excitation energy, c1 and c2 are the centroids of the 3− and 2+ states

(9.64 MeV and 9.7 MeV5 respectively), σ1 and σ2 are the widths of the 3− and 2+ states

(150 keV6 (FWHM) and 600 keV7 (FWHM)), and α and β are the strengths of the 2+ state

across the spectrum as a whole and for an individual window, respectively. It should be

noted that the width parameters σ1 and σ2 described within the Gaussians are related to

state width (Γ) by the relationship

Γ = 2.35× σ . (4.8)

4The normalisation was carried out using the area of the 3− peak. The area was calculated using the
Birmingham University Fast Fit (BUFFIT) routine included in the SunSort package.

5The centroid position of the 2+ is taken from [44].
6Limited by the experimental resolution.
7Based on results from iThemba [45].
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Figure 4.17: Relative strength of J = 2 state (centroid position 9.7 MeV) across the angular
correlations spectrum (window number increases with θ∗). Inclusion of errors in the spectrum
is not trivial, being dependent on both the statistics associated with each window and also the
manner in which the fitting routine deals with its variable/input parameters. A variation
to the input parameters results in the overall magnitude of every point on the spectrum
changing by a constant amount in β, and thus a consistent variation to each window does
not affect the characteristic two-minima ‘W’ shape. Windows 1, 19 and 20 have been omitted
from the plot as poor statistics result in values of β several orders of magnitude larger than
those from windows 2− 18. The 2+ strength is in arbitrary units.

The value of α is unknown and was estimated to be a few percent (relative to the contribution

of the 3− state); β was varied by the fitting routine for each window to optimise the fit to the

data. The strengths calculated by the routine for each window were then plotted against the

window number in order to replicate figure 4.16 for the experimental data (figure 4.17). The

general trend shown in the experimental is the same as that seen in the Res8 simulations,

though with a more pronounced 2+ contribution at high/low θ∗ relative to in the central θ∗

region.

Examples of the excitation energy spectra for various windows are shown in figure 4.18.

While it is clear, even without employing a fitting routine, that there is a ‘remainder’ struc-

ture in the spectrum for window 18, it is not certain whether this structure is due to an
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unknown state underlying the 3− peak or an artificial effect similar to the peak shifts seen

previously, and this must be further investigated before any further analysis can be per-

formed.

4.3.2 Further checks into peak shifts in the experimental data

The peak shift seen in the experimental data is absent from the analysis of the Monte Carlo

calculations. This suggests that it does not occur as a result of the underlying physics

of the reaction process and it is important to investigate the effect further. If the peak

shift is an effect that occurs only at the limits of the angular coverage of the detectors, it

can be remedied by discarding outlying points. However, if the peak shift is continuous

throughout the data and occurs at all values of θ∗ then this must be investigated, and if

possible remedied, before further analysis can continue.

A check was performed which again compared the difference between a region at which the

3− is thought to be dominant, but this time against a data set comprising all the data except

that at the extremities of the θ∗ − ψ plot8. This analysis was performed twice, separately

comparing the 12C excitation energy spectrum for the complete data set to that for each of the

3− maxima ridges (again normalising both spectra by the integrated number of counts in the

3− peak); the software windows used are shown in figure 4.19. By subtracting a spectrum

expected to be dominated by the 3− peak from the complete data set, any underlying

structure will be revealed. If the peak-shift is θ∗-dependent, the results of comparing windows

(i) & (iii) and (ii) & (iii) should result in differing structures, whereas if it is an effect

occurrent only at the angular limits then the spectra should have a consistent structure; the

results of the comparisons are shown in figure 4.20. The similar structure of both figure 4.20a

and 4.20b suggests that the peak shift seen previously is not consistent across the spectrum

and may indeed be an effect seen only at the limits of the angular coverage.

A second check is for any discrepancy in azimuthal symmetry in the experimental data.

Using only two telescopes (3 and 4) the events were filtered further, and the previous analysis

8Due to the effect of peak shifts seen at the limit of angular coverage then the outermost data points
were discarded. Any peak shift seen in the remaining data cannot therefore be explained as effects arising
from data points at the detector limits.
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Figure 4.18: Excitation energy spectra for three different windows associated with figure 4.17.
Window 8 is from a region in which the 3− state is expected to be dominant, window 10
is from the central ‘valley’ between the two 3− ridges, and window 18 is from a region at
the edge of the detectors’ angular coverage (again at which the contribution of a 3− state
is expected to be minimal). The black and red vertical dashed lines correspond to the
centroid positions of the 3− state and Itoh’s reported 2+ state [44] (9.64 MeV and 9.7 MeV
respectively). All spectra are normalised by dividing each channel by the integrated number
of counts in the 3− peak.
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Figure 4.19: Positions of software windows used to check for consistency in the difference
between 12C excitation energy spectra for two different dominant 3− regions and the en-
tire dataset. Windows (i) & (ii) are placed over regions expected to be dominated by the
9.64 MeV 3− state; window (iii) selects the entire data set (discarding potentially problematic
points at the angular limits of the detectors) for comparison with windows (i) & (ii).
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Figure 4.20: Differences in 12C excitation energy spectra for complete data set compared to
(a) high and (b) low 3− maxima ridges. Though the apex of the peaks shifts slightly (by
1 channel), there is no immediate suggestion of a peak shift. The black and red dotted lines
mark 9.64 MeV and 9.70 MeV respectively.
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(a) 1 : 2 coincidences.
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Figure 4.21: Differences in 12C excitation energy spectra after separating (a) 1 : 2 from (b)
2 : 1 events. The spectra show the difference between the complete data set and (i) high
and (ii) low 3− maxima ridges.

repeated separately for events in which two α-particles were deposited in telescope 3, to those

when two α-particles were deposited in telescope 4 (i.e. 1 : 2 and 2 : 1 hit pattern events).

The results are shown in figure 4.21. The appearance of ‘negative’ peaks in two spectra,

as well as a lack of azimuthal symmetry (that the negative peak appears when compared

to the lower ridge for 1 : 2 coincidences, but when compared to the higher ridge for 2 : 1

coincidences) suggest that there are indeed effects occurring in the central θ∗−ψ region that

are related to some property of the detector or beam alignment.

Following the inconsistencies found in figure 4.21, the previous analysis of comparing

the difference in the excitation energy spectra for a region of 3− minimum compared to the

whole data set for the 3− peak (comparing the spectrum of window (ii) in figure 4.11b to

that of window (iii) in figure 4.19) was repeated, this time separating 1 : 2 and 2 : 1 events.

The result of these comparisons can be seen in figure 4.22. The lack of symmetry between

the two spectra reinforces the suspicion that there is a problem in the analysis process and
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Figure 4.22: Differences in 12C excitation energy spectra between regions of minimum and
maximum 3− contribution for (a) 1 : 2 events, and (b) 2 : 1 events. The vertical dashed lines
correspond to excitation energies of 9.64 MeV (black) and 9.7 MeV (red). The remainder
seen in (a), which is absent in (b), suggests an azimuthal asymmetry in the results.
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the discrepancy is not a ‘real’ signature of a 2+ state.

4.4 Investigations into positional offsets using Monte

Carlo simulations

Observations made during the set-up of the experiment indicated of a possible offset in the

position of a detector telescope9. To investigate the consequences of an offset in the position

of a detector, and whether it may explain any of the effects seen in the above analysis, further

Res8 Monte Carlo simulations were performed.

4.4.1 Linear shift offsets

The first offsets to be investigated were the possible effects of a positional offset in the

detector telescopes. Initial simulations involved simple investigations involving shifting a

detector telescope by a small amount in a direction parallel to the (RS) detector strips10.

In order to investigate the plausibility of such an offset explaining the differences in

figures 4.22a and 4.22b it is important that any effects seen in the simulations do not display

an azimuthal symmetry. The method used to perform the Monte Carlo simulations resulted

in the hits always being 2 : 1 coincidences; to test the azimuthal symmetry, simulations

were performed in which the shift was introduced into the telescope in which only a single

α-particle was detected (singles telescope), and separately simulations were also performed

in which the shift was introduced to the telescope in which the two 8Be α-particles were

detected (doubles telescope). Figure 4.23 shows the 3− and 2+ Monte Carlo simulated

ridges once again, but with the software window overlaid; the results of the shifts on the

excitation energy spectra are shown in figure 4.24. Though the introduction of a parallel

shift clearly affects the shape and position of the 3− peak, and there is a difference in the

effect on 1 : 2 to 2 : 1 events, it is similar in both windows11.

9Telescope no. 4, a DSSD, RS, CsI telescope
10Although the offsets could be applied to the simulations directly, due to the time taken to run the Res8

code, they were instead introduced into the analysis sort code. This was done by introducing an error into
the momentum of a ‘detected’ simulation hits for a given telescope equivalent to the telescope’s position
being shifted.

11Though the amplitude of the window peak increases with the shift, while it decreases for the ‘all’ data,
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(a) Angular correlations for a Monte Carlo generated 3−

state using 2 : 1 coincidences.

(b) Angular correlations for a Monte Carlo generated 2+

state using 2 : 1 coincidences.

Figure 4.23: Angular correlations plots for the Monte Carlo simulations of (a) a Jπ = 3−

state, and (b) a Jπ = 2+ state, using 2 : 1 coincidences only (calculated in the reaction
plane). The software window (window (ii)) used to to gate on the 3− minimum is overlaid
on both spectra, and is shown to also coincide with a maximum region of the 2+ simulation.

88



0

1000

2000

3000

4000

5000

No shift
1mm shift
2mm shift
5mm shift

9 9.5 10 10.5 11

Excitation Energy (MeV)

0

100

200

300N
or

m
al

is
ed

 c
ou

nt

(i) all data

(ii) window data

(a) Shift applied to the singles telescope.

0

1000

2000

3000

4000

5000

No shift
1mm shift
2mm shift
5mm shift

9 9.5 10 10.5 11

Excitation Energy (MeV)

0

50

100

150

200

250

N
or

m
al

is
ed

 c
ou

nt

(i) all data

(ii) window data

(b) Shift applied to the doubles telescope.

Figure 4.24: Effect of introducing a linear shift to the position of a detector telescope in
a direction parallel to the (RS detector) strips. All shifts involve moving the telescopes
outwards from the beam-spot. The effect of introducing a shift is shown separately for
moving (a) the singles telescope, and (b) the doubles telescope. The simulations suggest
that the introduction of a detector shift will affect the shape and position of the 3− peak,
though the result is the same for both windows.
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Figure 4.25: A more detailed analysis of the Monte Carlo simulations with a 1 mm shift
introduced in a direction parallel to the detector strips. The black and red dashed lines
correspond lie at 9.64 MeV and 9.70 MeV respectively. Comparing the normalised spectra
from both the windowed and complete data sets shows that there is no significant remainder
in any of the spectra. It is also possible to see that there is a noticeable shift in the centroid
position of the 3− peak for even a 1 mm offset. This contradicts what was seen in the
experimental data.
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Figure 4.26: Effect of introducing a linear shift to the position of a detector telescope in
a direction perpendicular to the (RS detector) strips. The effect of introducing a shift is
shown separately for moving (a) the singles telescope, and (b) the doubles telescope. The
simulations suggest that the introduction of a rotational shift about the origin will affect
the shape and position of the 3− peak, and though the result is similar for both windows, it
appears that it is accentuated in (ii) for both shifts, compared to (i).

In addition to shifts parallel to the (RS) strips, simulations were also performed to inves-

tigate the effect of an offset in a perpendicular direction. The results are shown in figure 4.26.

Unlike for the ‘parallel shifts’, the result of a shift in a direction perpendicular to the RS

strips appears to affect the ‘window’ spectra differently to the spectra for ‘all the data’.

It also appears that the effect is different for 2 : 1 compared to 1 : 2 coincidences. The

simulations also imply that one effect of a perpendicular shift is a splitting of the 3− peak,

especially in the window data, which when employing the analysis techniques discussed ear-

lier, could possibly be mistaken for an underlying energy level after normalising to the local

peak area. This is perhaps more likely to mimic an erroneous 2+ resonance at 9.7 MeV when

there is only a slight offset in position, as the splitting would not be too severe.

normalising to the peak area will negate this.
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Figure 4.27: A more detailed analysis of the Monte Carlo simulations with a 2 mm shift
introduced in a direction perpendicular to the detector strips. The black and red dashed
lines correspond lie at 9.64 MeV and 9.70 MeV respectively. While there is some evidence of
remainder in the difference between the ‘window data’ and ‘all data’ spectra when the shift is
introduced in the singles telescope, there is a more noticeable splitting in the windowed-data
peak when the shift is introduced in the doubles telescope (and far greater than any effects
seen in the experimental data). Furthermore, there is no suggestion of a shift to the centroid
position of the peaks in any cases.
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When considering the case of a shift in the detector telescope position giving rise to

the effects seen in the experimental data then it appears that a shift perpendicular to the

direction of the detector strips is most likely. While a shift in a parallel direction does affect

a simulated state (figures 4.24 and 4.25) by widening the peak and shifting the centroid

position, these effects do not match those seen in the experimental data in which, most

notably, there is no evidence of a shift in the centroid positions. Furthermore, the effects are

very similar when the shift is introduced to both the singles and the doubles telescope; this

suggests it unlikely to be responsible for the asymmetrical results seen in the experimental

data. However, the effects seen in introducing a perpendicular shift (figures 4.26 and 4.27)

suggest it is a good candidate to explain what is seen in the experimental data. There is clear

evidence of a splitting in the 3− peak when the shift is introduced into either telescope but

with the strength of the effect exaggerated in the case of a shift in the doubles telescope; this

would allow for the asymmetry seen in the experimental data. There is also importantly no

evidence of a shift in the centroid positions which is again consistent with the experimental

data. Although the extent of the perpendicular shift shown in figure 4.27 (2 mm) shows a

peak splitting far in excess of that seen in the experimental data, the results do suggest a

smaller shift (e.g. ∼1 mm), along with the background present in the experimental data, is

a candidate to explain the effects seen.

4.4.2 Rotational shift offsets

An alternative possibility to an offset is that one of the telescopes may have been subject

to a slight rotation in its mount. Without close inspection, this may appear similar to a

shift in position and was hence also investigated as a possibility. Initial simulations were

performed, which introduced a rotation around the beam spot, and, as previously, were

performed for varying degrees of offset. The results of a rotation about the beam spot are

shown in figure 4.28. Similar to the perpendicular shift, a rotation about the beam spot

results in a splitting of the 3− peak, and also appears more strongly in the ‘window’ spectra

compared to the ‘all data’ spectra. However, unlike the simulations showing a perpendicular
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Figure 4.28: Effect of introducing a rotational shift to the position of a detector telescope
about the beam spot. The effect of introducing a rotation is shown separately for moving
(a) the singles telescope, and (b) the doubles telescope. The simulations suggest that the
introduction of a detector shift will affect the shape and position of the 3− peak, and though
the result is similar for both windows, it appears that it is accentuated in (ii) for both shifts,
compared to (i).
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shift, the difference in the the window/‘all data’ spectra seems more consistent, and hence

is perhaps less likely to result in the azimuthal discrepancy seen in the experimental data.

An alternative rotation which can be considered is one about a point which lies on the

detector (i.e. the individual detector’s mount is twisted). In an attempt to investigate

the possible repercussions of such a rotation, simulations were performed which rotated a

telescope about three possible points:

1. the mid-point of the near side of the detector;

2. the middle of the detector;

3. the mid-point of the far side of the detector.

By considering three points it is possible to use any trends from a rotation about a point

on the detector to understand the rotations about other points that were not simulated (the

results are shown in figure 4.29). Once again, it is apparent that a rotation can result in

a splitting of the 3− state, though in this case it only occurs in the window data when the

rotation is applied to the singles telescope; in all other cases it involves in a widening of the

peak. Much like the perpendicular shifts, and also a rotation about the beam axis, there is

no shift in the centroid position of the 3− peak. All the effects are more pronounced as the

point of rotation is moved further out from the beam spot.

4.4.3 Beam shift offsets

For completeness, Monte Carlo simulations were also performed to investigate the effect

of offsetting the entire detector mount, i.e. effectively shifting the beam itself (this may

be considered analogous to introducing a shift to both telescopes, in the same direction in

the x- or y-plane). Figure 4.30 shows the effect of shifting the beam, relative to the both

telescopes, in directions both parallel and perpendicular to the RS strips. As a shift to

the beam-spot/mount position will always result in a shift to both the singles and doubles

telescopes, figure 4.30 shows the result to the combined 2 : 1 and 1 : 2 12C spectra. Though

the figures show a clear peak-splitting, and with only a small offset, the fact that both 2 : 1
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Figure 4.29: Effect of introducing a rotational shift to the position of a detector telescope
about three points on the telescope. The effect of introducing a rotation is shown separately
for moving (a) the singles telescope, and (b) the doubles telescope. The simulations suggest
that the introduction of a rotation will affect the shape and position of the 3− peak. While
there is a clear peak splitting in the singles window data, this is the only spectrum in which
it occurs. The rotations affect all the spectra and, as might be expected, a larger rotation
results in a more pronounced effect. The further the point of rotation away from the beam
spot, the more pronounced the effect.
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Figure 4.30: The effect of the beam not passing through the central axis of the detector array:
(i) Monte Carlo simulation of a 3− peak with the central axis, (ii) the same simulation as
(i) but with the beam shifted 1 mm in a direction parallel to the RS strips, (iii) the same
simulation as (i) but with the beam shifted 1 mm in a direction perpendicular to the RS
strips.
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and 1 : 2 coincidences will be affected suggest that neither a parallel, nor perpendicular, shift

in the beam-spot position will explain the effects seen in the experimental data (figure 4.22).

4.4.4 Conclusions concerning offsets and rotations

From the various simulations performed it is believed that a perpendicular shift is the most

likely candidate to explain the azimuthal asymmetry seen in figure 4.22, as these simulations

were able to most closely recreate the features seen in the experimental data. Importantly,

a perpendicular offset of ∼1 mm was noted to be present in the position of one of the RS-

DSSD-CsI telescopes during the setting up of the experiment. The Monte Carlo simulations

also highlight however that the data is sensitive to a number of possible shifts and that it is

not possible to say with certainty which, if any, is responsible. It is indeed possible that the

system is subject to a number of very small offsets of various types.

4.5 Applying a correction to the experimental data

In the same way that the various types of offsets were introduced into the Res8 Monte Carlo

simulations via the analysis sort codes, a number of corrective terms were tested on the

experimental data in an attempt to remedy the azimuthal asymmetry. For each correction

applied, the 12C excitation spectra for 1 : 2 and 2 : 1 coincidences (as seen in figure 4.22) were

re-plotted. The values of the corrections were tuned so as to try and minimise the effects

seen in figure 4.22a, whilst not introducing an equivalent artificial effect in figure 4.22b. Care

was taken not to introduce shifts at levels which it was believed would have been noticed

during the experimental set-up had they been present (i.e. greater than a ∼3 mm offset

and/or a ∼3◦ rotation).

It was found that a good improvement in the asymmetry was possible by using a single

correction: shifting telescope 4 by 2 mm perpendicular to the direction of the RS strips. The

resulting 12C excitation spectra for both the window and ‘all data’ regions, as well as the

difference, are shown in figure 4.31.
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Figure 4.31: 12C excitation energy spectra for different windows after an offset correction
has been applied to telescope 4 (offset is 2 mm in a direction perpendicular to the RS strips).
There is no evidence of any remaining structure when the normalised ‘all data’ and ‘spin-3
min’ peaks have been subtracted from one another. The separated 1 : 2 and 2 : 1 spectra
are shown in figure 4.32.
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Figure 4.32: Differences in 12C excitation energy spectra between regions of minimum and
maximum 3− contribution for (a) 1 : 2 events, and (b) 2 : 1 events after a correction for a
linear offset in the detector position has been applied. The vertical dashed lines correspond
to excitation energies of 9.64 MeV (black) and 9.7 MeV (red). The remainder seen in (a)
in figure 4.22 has been somewhat corrected, whilst not introducing any significant artifacts
into (b). The combined spectra is shown in figure 4.31.
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4.5.1 Applying the fitting routine to the corrected spectrum

The fitting function previously used to create a 2+ strength against window number plot

(equation 4.7) can be re-written as12

f(Ex) =
α− β

(σ1 + ασ2) (σ1 + βσ2)

−σ2 exp
[
−
(
Ex−c1√

2σ1

)2]
√
2π

+ σ1

exp

[
−
(
Ex−c2√

2σ2

)2]
√
2π

 . (4.9)

In the limit that ασ2 ≪ σ1 and βσ2 ≪ σ1 then equation 4.9 can be approximated to be:

f(Ex) ≃ (α− β)
σ2
σ1

−e
−
(

Ex−c1√
2σ1

)2

√
2πσ1

+
e
−
(

Ex−c2√
2σ2

)2

√
2πσ2

 . (4.10)

This shows that the fitting function should have a bipolar form, with a negative-going com-

ponent described by a Gaussian whose width is represented by that of the 3− peak and

amplitude by (α− β) σ2
σ1
, whilst the positive component is associated with a second Gaus-

sian with a width determined by σ2 and an amplitude identical to the first Gaussian.

Having introduced the offset correction term, the function described by equation 4.9 was

fitted to the difference data shown in figure 4.31 to determine the strength of any possible

2+ resonance in the data. However, unlike the routine used previously (in section 4.3.1),

this time c2 and σ2 were also included, alongside β, as variables for the routine to use when

optimising the fit. By exploring a range of input parameters to the routine, this produced

values of c2 = 9.67−9.71 MeV, σ2 = 32−83 keV (FWHM = 75−195 keV) and β−α = −0.3%

to +0.2%. The quantity β − α indicates the change in relative 2+ and 3− contributions for

the selected regions; a value of zero indicates no additional contribution (and a negative

value in fact indicates a negative 2+ contribution).

It should be noted that the range of widths explored in the analysis contained within this

thesis exceed the experimental resolution, and so the Gaussian line shape used is only an

approximation to the resonance profile. This approximation is not believed to substantially

12Derivations of both equations 4.9 and 4.10 can be found in appendix C.
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affect the conclusions.

4.6 Using Monte Carlo simulations to estimate the max-

imum resolvable contribution of a 2+ resonance

Although the fitting routine used to distinguish a 2+ resonance suggests there is little evi-

dence for state at 9.7 MeV, further analysis can be performed to determine the maximum

strength that a resonance could have should it exist and lie undetected. To better under-

stand the previous result more precisely, Monte Carlo simulations were performed which

replicated the 3− resonance and background contributions as seen in the experimental data.

These simulations were then used to explore the sensitivity of the current technique and the

limits at which a 2+ resonance might be detected.

In addition to the previously described Jπ = 3− simulations, further simulations were

performed to replicate the 10.84 MeV, 1−, state; a smooth background was also generated.

The simulations and background were combined such that the number of counts replicated

those seen in the experimental data. A number of 2+ simulations were also then performed

that generated resonances of varying centroid positions (9.70 MeV, 9.85 MeV, and 10.0 MeV)

and widths (FWHM = 250 keV, 500 keV, and 750 keV). Each 2+ resonance was combined

with the 3−/background mix in a ratio of 15 : 85 (i.e. a 15% level). Similar calculations were

also performed with 10%, 5% and 2% contributions from a 2+ state. The parameters used

to simulate the resonances were generally the same as those used previously (see table 4.1);

those that were new/varied are shown in table 4.2.

The resulting angular correlations were processed in the same way as previously described

for the experimental data, i.e. gating on window (ii) in figure 4.11b and window (iii) in

figure 4.19), normalising the energy spectra and computing the difference. Using the same

fitting routine as described by equation 4.9, a number of initial ‘guess’ parameters were

passed to the fitting routine in order to probe the sensitivity of the fit, and by minimising

the χ2 value the optimal fit was obtained. For each combination of simulations it was

determined whether the fitting routine was able to accurately distinguish the 2+ resonance
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Simulation parameter Value

Jπ 3−

Excitation energy (Ex) 9.64 MeV
Width (Γ) 0.034 MeV
Jπ 1−

Excitation energy (Ex) 10.84 MeV
Width (Γ) 0.315 MeV
Jπ 2+

Excitation energy (Ex) 9.70, 9.85, 10.0 MeV
Width (Γ) 0.250, 0.500, 0.750 MeV

Table 4.2: Parameters used in the Monte-Carlo simulations of states in 12C for determining
the limits of the size of a possible undetected 2+ resonance as a function of both excitation
energy and width.

from the combined data − a successful fit was defined to be one in which the values returned

by the routine matched the characteristics of the peak entered into the simulation. Two

example MathCad sheets (used to apply the fitting routine to the simulations) are included

in appendix D, showing both cases in which the 2+ can and cannot be distinguished from

the 3−/1−/background mix.

At the 15% level the fitting routine was successfully able to distinguish the 2+ from the

background under all conditions. As the ratio was altered (to 10%, 5%, and 2%) to reduce

the size of the 2+ resonance, the fitting routine was eventually no longer able to verify its

existence. For each mix the process of supplying the fitting routine with a variety of input

parameters was repeated, using a χ2 calculation to select the optimum values. This allowed

a relationship to be found between the position/centroid and the strength of a resonance

in order that it might be detected by the techniques employed in this analysis (table 4.3).

Examples of some of the simulations and optimal fits are given in figure 4.33.

Table 4.3 indicates that for a 2+ state well separated from the 9.64 MeV, 3−, state (e.g.

at 10.0 MeV and 250 keV width) it is possible to unambiguously pick out this contribution

down to very low levels (2%). Larger contributions (15%) can be distinguished for all widths

at all peak separations down to 60 keV. Unambiguous identification of the peak parameters

becomes more difficult the smaller the separation from the 3− state and the larger the width

– as might be expected.
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Figure 4.33: Spectra showing the Monte Carlo simulations, and optimised fits, for a variety
of 2+ resonances/contributions. (i), (ii) The effect of varying the centroid position of a
250 keV wide 2+ resonance from 9.7 MeV to 10.0 MeV for a 10% 2+ contribution; (iii), (iv)
the effect of varying the width of a 2+ resonance at 9.85 MeV from 250 keV to 750 keV,
again for a 10% 2+ contribution; (v), (vi) the difference between a 15% and 2% contribution
of a 2+ resonance at 9.85 MeV and 250 keV wide.
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Resonance characteristics Resonance resolved at
Centroid (MeV) Width (keV) 15% 10% 5% 2%

250 X × × ×
9.70 500 X × × ×

750 X × × ×
250 X X × ×

9.85 500 X × × ×
750 X × × ×
250 X X X X

10.0 500 X X X ×
750 X X × ×

Table 4.3: Levels at which a resonance can be detected for various centroids and widths.

From this analysis it is possible to conclude that if an additional 2+ resonance does exist

in the present data and has a width of less than 250 keV, then it must have an excitation

energy of less than 9.85 MeV and a population strength that is less than ∼10% of the 3−

peak. If the width lies in the 500 to 750 keV range then to be clearly identified it requires

an excitation energy of ∼10 MeV and a population strength which is at least 5% of the 3−

peak. If it lies at a lower energy, much stronger strengths are required for unambiguous

identification.
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Chapter 5

Additional Analysis

In addition to the analysis described in the previous chapter, two further possibilities were

investigated in attempts to find evidence of the 2+2 resonance; this chapter discusses both of

these. Firstly, events not proceeding through the ground state in 8Be are discussed, along

with analysis of the reaction channels which proceed through these states. The findings

are discussed along with statistical and analytical limitations which hinder analysis in this

direction. The second part of this chapter discusses investigations into the possibility that

the 2+2 resonance may lie at an energy significantly higher than the primary (∼9.7 MeV)

region investigated in the previous chapter.

5.1 Reaction channels involving decays through excited

states in 8Be

As discussed previously, the analysis contained in chapter 4 is from the

12C∗ −→ 8Beg.s. + α
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decay channel. Another channel which may be fed by the decay of a 2+ resonance in 12C is

the

12C∗ −→ 8Be∗ + α

decay channel. The first excited state in 8Be is perhaps a good candidate for a state through

which the 2+ excitation of the Hoyle state will be populated, as it also has Jπ = 2+, allowing

the decay to proceed via an l = 0 emission, and hence with a reduced decay barrier.

5.1.1 Statistical considerations

In order to select this reaction channel it was necessary to re-examine the 8Be excitation

energy spectrum used in chapter 4 (figures 4.4 and 4.10). Following the analysis contained

in chapter 4, it was possible to remove almost all those counts which could be considered

artifacts of the analysis from the 8Be excitation energy spectrum. Figure 5.1 shows both the

initial spectrum and the same spectrum with all incorrect α−α pairings removed, as well as

some previous double counting of events occurring at the earlier stages of the analysis (the

latter of these spectra also confirms that the double peak feature seen at ∼ 1.5 − 2.0 MeV

in all earlier 8Be excitation energy spectra is indeed a result of incorrect α− α pairings and

is not a ‘real’ feature). The dotted line on the plot signifies the upper limit of the gate

previously used to select only events proceeding through the 8Beg.s.. By selecting events in

which no pair of α-particles had an excitation energy lying in (or below) the low-energy peak

(figure 5.1), it was possible to discard these events and select only events proceeding through

excited states in 8Be

Though statistically poor, a 12C excitation energy spectrum can be produced for 8Be∗

events; this is shown in figure 5.2. In addition to the 9.64 MeV 3− peak, the locations of

several other known states in 12C are marked and though there is some evidence that these

states are being populated, the background is considerable. In addition to the 2 : 1 and 3 : 0

hit configurations discussed in chapter 4, statistics can be significantly increased (and to a

greater extent at higher energy) by also including 1 : 1 : 1 events (i.e. events in which all
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Figure 5.1: 8Be excitation energy spectra for all 2 : 1 and 3 : 0 events, and also for events
filtered to remove any incorrect α−α pairings. The high energy shoulder on the ground state
peak, as well as the double-peak structure at 1.5 − 2.0 MeV, disappear when the incorrect
α− α pairings are removed, confirming that both are artifacts of an earlier sort-code.
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Figure 5.2: 12C excitation energy spectrum for decays not through the 8Be ground state.
The red and blue dotted lines show the separate contributions of 2 : 1 (and 1 : 2) and 3 : 0
(and 0 : 3) hit configurations respectively, and the dashed green line is the sum of the two
contributions. The solid black line also includes events in which each particle is incident on
a different telescope. Four known states in the energy region have also been marked: the 3−

at 9.65 MeV, the 2− at 11.83 MeV, the 1+ at 12.71 MeV, and the 4+ at 14.08 MeV.
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Figure 5.3: 12C excitation energy spectra for 2 : 1 and 3 : 0 decays through the 8Be ground
state, and also for all events through the excited states in 8Be. While the statistics for
decays through excited states in 8Be are notably poorer than those through the 8Beg.s. for
all energies, the relative strength of 8Be∗ decays to 8Beg.s. decays increases with excitation
energy.

three α-particles are deposited in separate telescopes); this can be seen from their inclusion

in the ‘All coincidences’ data shown in figure 5.2.

Figure 5.3 shows the 12C excitation energy spectrum for both 8Be∗ events, and also 2 : 1

and 3 : 0 events proceeding through the 8Beg.s., and reveals the statistical limitations of

investigating 12C using the 8Be∗ decay channel. The figure also confirms that at higher

energy, as seen in figure 5.2, the number of counts from 8Be∗ events increases relative to the

number of counts from 8Beg.s. events.
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5.1.2 Angular correlations for decay to non spin-zero states

In addition to the low statistics, there exists a further difficulty in investigating the 8Be∗ decay

channel. One of the primary analytical tools used in the analysis contained within chapter 4

of this thesis are angular correlation plots. As discussed in appendix A, since the reaction

proceeds through a definite intermediate state (the 12C∗), then it can be represented by

two transition amplitudes, TmamA
mbmB

and TmB∗
mcmC

, a formation transition amplitude and a decay

transition amplitude (both of the 12C∗) respectively. The angular correlations technique

requires that the decay amplitude can then be replaced by spherical harmonics:

TmB∗
mcmC

∝ YJB∗mB∗ (Ωψ) .

However, this substitution can only be made if the final decay products are formed in spin-

zero states, i.e. TmB∗
mcmC

−→ TmB∗
0 0 . This means that in order to investigate the 9.7 MeV

region through the 8Be∗ reaction channel, a different technique to the angular correlation

plots must be found in order to suppress the (still) dominant 3− state.

5.1.3 Conclusions regarding the 12C∗ −→ 8Be∗+α decay channel(s)

As discussed, tentative attempts were made to investigate the feasibility of using the 12C∗ −→
8Be∗ + α decay channel to look for the 2+ excitation of the Hoyle state. Whilst a possible

decay channel in which the 2+2 resonance may be observed, it is clear that there is low

experimental sensitivity. Given the statistics available, and following the analysis carried

out in chapter 4, it would be necessary for the strength of the 2+2 resonance (relative to

the 3−) to be at least an order of magnitude larger in this reaction channel for any trace

of a resonance to be present (even without considering the substantially larger background

present in this reaction channel). In addition to the poor statistics, problems arise with the

analytical tools available. By proceeding through a state with non-zero spin, the angular

correlations technique used in the present analysis is no longer applicable. In order to

suppress the still dominant 3− state (figure 5.2) it is clear a new approach must be found.
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5.2 Investigating the possibility of 2+
2 strength at higher

excitation energies

Recent R-matrix analysis of the β decays of 12N and 12B has led to the suggestion that the

2+2 resonance may lie at a significantly higher energy than 9.7 MeV [62]. Analysis of two

experiments, resulting in sequential α-decay through states in 8Be, suggested that the 2+2

may in fact lie at an energy in the region of 10.5 − 12 MeV. Though the data set analysed

within this thesis is statistically poor towards the upper limit of this range, further analysis

was performed to investigate the lower end of the energy range, specifically the area between

the 9.64 MeV, 3−, peak and the 10.84 MeV, 1−, peak. In the case that the 2+2 resonance

lies at the upper end of the 10.5− 12 range, it is hoped that evidence of its existence might

be found in the form a low-energy tail in the region between the 9.64 MeV and 10.84 MeV

peaks. Furthermore, it has been suggested that the 2+2 resonance may also exist as a broad

state at a lower energy (9.6 MeV) [45]. If this is case then the region between the 9.64 MeV,

3−, peak and the 10.84 MeV, 1−, peak is also a good candidate region to find evidence of a

high-energy tail. As this region of the 12C excitation energy spectrum is not dominated by

a single state, but likely by a combination of the aforementioned peaks, a different approach

was taken to that described in chapter 4.

The region of interest was divided into three smaller subsections, each covering an equal

energy range (see figure 5.4), and angular correlation plots were created for each. These

angular correlation plots were then projected, along with the 9.64 MeV (3−) and 10.84 MeV

(1−) peaks, onto the θ∗ = 0, ψ-axis, at a variety of projection angles. Figure 5.5 shows the

(normalised) effect of projecting an angular correlation spectrum (for window II, figure 5.4)

onto axes at a variety of angles, including those for the angles associated with ridges of 3−

and 1− states (171.1◦ and 177.3◦ respectively). As the projection angle increases, so too

does the number of channels which the projection spans, as well as the difference between

the central minimum and its neighbouring maxima.

Assuming that there is no 2+ resonance in the windowed region, then it should be possible
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Figure 5.4: 12C excitation energy spectrum showing the windows used for analysing the
possibility that the 2+2 resonance may lie at a higher energy than the 9.7 MeV region. The
windows each span 180 keV, the red dashed lines bounding the regions lying at 9.922, 10.102,
10.282 and 10.462 MeV. The peaks at either side of the regions are the 9.64 MeV, 3−, and
10.84 MeV, 1−, states respectively.
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Figure 5.5: Ridge structure of the angular correlations (for window II, figure 5.4) projected
at a range of angles. The 171.1◦ and 177.3◦ projections are for the theoretical angles for
the ridges of a 3− and 1− state respectively (as calculated using equation 4.6). The most
important feature of increasing the projection angle is the increase in the difference between
the central minimum relative to its neighbouring maxima.
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Figure 5.6: An example of the optimised fit to the window (II) data for angular correlation
ridges projected at 175.0◦ using a combination of the projected spectra for the 3− and 1−

peaks. The 3− + 1− fit is 31% of the normalised 3− projection and 71% of the normalised
1− projection.

to recreate the projection from the intermediate spectrum using a combination of those

from the 3− and 1− peaks1). A simple fitting routine was used to optimise the fit of the

combined 3− + 1− spectrum to the projected spectrum of windows I, II and III. This was

done by varying the contributions of each of the (normalised) 3− and 1− and subtracting the

combined spectrum from that of the window being investigated. A wide range of 3− + 1−

values were tried and the optimal fit deemed to be that for which the square of the differences

between the two spectra was minimized. An example of an optimised fit, along with the

separate 3− and 1− components from which it is constructed, is shown in figure 5.6.

1The inclusion of a (approximately) constant background contribution could also be considered in the
calculations but has been omitted in the analysis contained within this thesis. In addition, there is a broad
(0+) state known to exist in the region of interest, though its contribution is believed to be minimal and is
also isotropic in ψ.
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Although the angle at which the projections are performed is in theory an arbitrary

selection2, careful selection allows significantly increased sensitivity3 in the region of interest

(as shown in figure 5.5). Figures 5.7 and 5.8 show the optimised fits for all windows for two

different projection angles, 177.3◦ and 171.1◦ respectively. These angles have been selected

as they are the angles at which the ridges of a 1− and 3− state are calculated to lie. As

might be expected from the results shown in figure 5.5, the sensitivity available to optimise

the fit is increased at a projection angle of 177.3◦ (compared to the 171.1◦, 3− angle). In both

figures 5.7 and 5.8 the 3−+1− fit is unable to accurately recreate the windows’ projections for

all three windows, with an remainder structure present at approximately the same location

in both sets of spectra (channel number ≃ 75 in figure 5.7 and ≃ −45 in figure 5.8). It is not

possible to confirm whether this is a signature of a 2+ resonance, and due to complications

arising at projection angles close to 0◦ (or equivalently 180◦) [53], the previous approach of

utilising Monte Carlo simulations to help predict the expected behaviour of a 2+ resonance

offers only limited assistance.

Though it only offers an approximate indication of the location of a 2+ state, the process

was nonetheless repeated for a series of Monte Carlo simulations. The angular correlation

projections for projection angle of 171.1◦ are shown in figure 5.9. Unlike for the experimental

data, due the absence of any distorting effects at projection angles close to 180◦, a good level

of sensitivity is achievable. This suggests that though Monte Carlo simulations may be used

to predict where the contribution of a Jπ = 2+ state would be strongest, the approach is,

as expected, limited in its capability to replicate features seen in the experimental data. In

order to use the simulations to more accurately replicate the results seen in the experimental

analysis, the inclusion, and the associated effects, of the spin of a state must be integrated

into the Monte Carlo simulations in a more sophisticated manner.

The work of Hyldegaard et al. [62] suggests that there may be evidence of the 2+2 resonance

in the 10.5−12 MeV region, it has not been possible to confirm nor refute the existence of such

2i.e. if the window projection is indeed a mixture of 3− and 1− then it should be possible to successfully
replicate the spectrum using the constructed 3− + 1− at any projection angle.

3The ‘sensitivity’ being the difference between the maxima and central minimum of the peaks.
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Figure 5.7: Angular correlation ridges projected at 177.3◦ for all intermediate windows,
the optimised 3− + 1− reconstructions, and the difference between the two. When the fit
is subtracted from the windowed projection a remainder is noticeable in all three spectra,
becoming progressively weaker from window I through to window III. A projection angle of
177.3◦ is the angle at which the ridges of a 1− state are calculated to lie.
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Figure 5.8: Angular correlation ridges projected at 171.1◦ for all intermediate windows, the
optimised 3− + 1− reconstructions, and the difference between the two. As in figure 5.7, a
remainder can be seen in the difference between the projections and optimal fits for all three
windows, again becoming progressively weaker from window I through to window III. It is
apparent however that the decreased sensitivity at 171.1◦ makes it harder to clearly identify.
A projection angle of 171.1◦ is the angle at which the ridges of a 3− state are calculated to
lie.
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Figure 5.9: Angular correlation ridges projected at 171.1◦ for Monte Carlo simulations of 1−,
2+ and 3− states. Though the relative positions of the 3− and 1− peaks appear similar to
those seen in the experimental data, the greatly increased sensitivity predicted by the simu-
lations at the given projection angle suggest that their ability to replicate the experimental
data is somewhat limited.
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a state in the given region. Though an unexplained structure has indeed been discovered,

further analysis is required in order to ascertain whether it is indeed a signature of a 2+

resonance or not. It is perhaps important to note that the work presented in [62] required

the inclusion of decays through excited states in 8Be in order to justify the inclusion of a

2+ resonance in the calculations. A previous R-matrix analysis also using β-decay from 12N

and 12B to populate states in 12C, and also studying sequential α-decay, but not including

decay channels through excited states in 8Be [63], failed to find any evidence of the 2+2 state.

However it should also be noted that, for the analysis contained in [62], the reaction being

studied involved the β-decay of 12N and 12B into states in 12C, which may result in states

being populated quite differently to the data set analysed in this thesis.

Though the work carried out by Hyldegaard et al. suggests that the 10.5−12 MeV region

is a good region to investigate in the search for the 2+2 excitation of the Hoyle state, the

analysis contained within this section cannot confirm nor deny that such a resonance exists.

A development of the Monte Carlo simulations used for the present analysis may allow the

behaviour of a 2+ resonance to be better predicted. That the analysis in [62] requires the

inclusion of reaction channels through excited states in 8Be, it would perhaps be preferable

to include such data (and also preferably with increased statistics) in using the methods con-

tained within this thesis to perform a more complete analysis of the aforementioned energy

region. However, problems associated with analysing such reaction channels (discussed in

chapter 5.1 of this thesis) may cause problems in any attempts to do so.
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Chapter 6

Summary

A search has been made for the 2+2 excitation of the 7.65 MeV, 0+2 , Hoyle state in
12C using

the 12C(12C,12C[3α])12C reaction. Previous work carried out by Itoh et al. [44] suggested the

signature of a 2+ resonance in the region 12C excitation energy spectrum slightly above the

9.64 MeV, 3−, state and directed the prime energy region of interest for the work contained

within this thesis.

An angular correlations technique was used in to suppress the dominant 9.64 MeV, 3−,

peak and enhance any signature of a 2+ resonance in the energy spectrum. Though the

measurements failed to find any evidence of a new resonance in the 9.7 MeV energy region

it is not possible to confirm that a state does not exist. In order to provide more stringent

limits to the conclusions drawn from the current work, increased experimental sensitivity

would be required. The large energy resolution of the experimental setup result in difficul-

ties in resolving a peak so close in energy to the dominant 9.64 MeV state. Increased angular

resolution would also allow improved resolution of the minima/maxima in the angular cor-

relation spectra, in turn allowing the contribution of a 2+ resonance to be increased relative

to the 3− peak.

Monte Carlo simulations were used in an attempt to understand these results more pre-

cisely. By simulating 2+ resonances with a variety of centroid positions, widths and strengths

(relative to the 3− peak), the sensitivity of the experimental setup was investigated. This

121



allowed limits to be put on the possible strength of an undetected resonance, depending on

its characteristics. This is discussed in detail in chapter 4.6. The Monte Carlo simulations

were also used to investigate an apparent aberration in the azimuthal symmetry of the ex-

perimental results, allowing various physical offsets in the detector setups to be simulated

and investigated as possible causes of the splitting of the 9.64 MeV, 3−, peak observed (dis-

cussed in chapter 4). It was found that the peak splitting seen is indeed consistent with that

expected for a physical offset in the position of a detector telescope within the experimental

setup.

A more recent R-matrix analysis of the decay of 12N and 12B, carried out by Hyldegaard

et al. [62], suggests that the 2+2 excitation may in fact lie at an energy in the 10.5− 12 MeV

region. Further analysis of this energy range specifically focussed on the region between the

aforementioned 9.64 MeV state and the 10.84 MeV, 1−, state. This was done by extending the

angular correlations technique employed in the previous analysis. Though the analysis did

find a structure within the data - indicating a further contribution to the spectrum, it was not

possible to confirm, nor dismiss, the possibility that this was a signature of a 2+ resonance.

Due to limitations at the required projection angles of the angular correlations, the Monte

Carlo technique used previously to investigate experimental sensitivity was severely limited

in this analysis. It is also important to note that the work of Hyldegaard et al. required

that decays through excited states in 8Be be included in order for a 2+ resonance to exist

in the 10.5− 12 MeV region. The inclusion of decays through states in 8Be for which J ̸= 0

renders the angular correlations technique, used extensively in earlier analysis, unusable

and hence requires a new approach in order to suppress the otherwise dominant 3− and 1−

contributions.

6.1 Significance of the results in relation to other work

Having been initially directed to the∼10 MeV region by the experimental analysis carried out

by Itoh et al. [44], no evidence has been found supporting the existence of a 2+ resonance in

this region. Following a 12C(p,p’)12C experiment carried out by Freer et al. [45], which found

122



evidence of a broad (∼600 keV) 2+ resonance in the 9.64 MeV region, similar parameters to

those found were tried in the fitting routine discussed in chapter 4. The result of forcing the

fitting routine to this predicted peak shape resulted in no evidence suggesting the existence

of a resonance in the experimental data. It is important to note however that with the

resolution of the analysis contained in this thesis (∼300 keV) it would be difficult to resolve

a broad state lying at 9.6 MeV from the 9,64 MeV, 3−, peak; this is confirmed by the Monte

Carlo analysis contained in section 4.6. Though the earlier work of Fynbo et al. [43] also

found no evidence of a 2+ resonance in the region being investigated, it is important to note

that this was done using a considerably different reaction channel, and hence the 12C nucleus

was populated in a different manner.

Theoretical models predict significantly varying locations for the likely energy of the 2+2

resonance [20, 26, 41, 42]. That no evidence for, or against, the existence of a resonance has

been found in the current work, no evidence has been found to support, nor contradict, any

of the models.

6.2 Future outlook

Though no evidence of the 2+2 resonance has been found, limitations in both energy and an-

gular resolution prevent the dismissal of its existence in either the 9.7 MeV or 10.5−12 MeV

regions. Inelastic scattering experiments using either the 12C(p,p’)12C or 12C(α,α’)12C re-

action are both candidate methods for further investigating the 3− region in particular. A

recent 12C(p,p’)12C experiment carried out at iThemba LABS by Freer et al. [45], as well

as further measurements carried out at Yale by Zimmerman et al. [64], has found evidence

suggesting a broad 2+ state lying slightly lower in energy than the 9.64 MeV, 3−, state.

Future measurements are also planned which would combine the α-particle measurements

with a magnetic spectrometer, allowing improved angular resolution and a more sensitive

angular correlation analysis.
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Appendix A

Angular Correlations Measurements

To remain consistent with [53] the reaction considered in this report:

12C[12C, 12C
∗ → 8Be + α]12C ,

will be replaced by the notation

a[A,B∗ → c + C]b .

Assuming that the break-up occurs through a definite intermediate state, B∗, the double

differential cross section can be written in a representation in which only magnetic quantum

numbers are shown explicitly:

d2σ

dΩ∗dΩψ

∝
∑

mamAmcmCmb

∣∣∣∣∣∑
mB∗

TmamA
mbmB∗ (Ω

∗) TmB∗
mcmC

(Ωψ)

∣∣∣∣∣
2

(A.1)

where TmamA
mbmB∗ (Ω

∗) is the formation transition amplitude between the states with quantum

numbers ma, mA and mb, mB∗ ; TmB∗
mcmC

(Ωψ) is the decay transition amplitude from the B∗

resonance with quantum number mB∗ to the break-up fragments with quantum numbers mc

and mC.

If the decay from the B∗ resonance into break-up fragments c and C produces two spin-
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zero ground state nuclei then the decay transition amplitude can be replaced in terms of

spherical harmonics:

TmB∗
0 0 ∝ YJB∗mB∗ (Ωψ) (A.2)

and hence equation A.1 simplifies to

d2σ

dΩ∗dΩψ

∝
∑

mamAmb

∣∣∣∣∣∑
mB∗

TmamA
mbmB∗ (Ω

∗)YmB∗
JB∗ (Ωψ)

∣∣∣∣∣
2

(A.3)

If the target and projectile are also spin-zero nuclei, and the recoil nucleus is also produced

in its ground state, then parity conservation laws dictate that the intermediate state of spin

JB∗ has a natural parity (-1)J. This reduction in possible combinations of m-substates results

in the truncation of the coherent sum an incoherent sum over the magnetic substates of B∗.

The cross section for the formation of the intermediate state becomes

dσ

dΩ∗ (0 → JB∗) =

JB∗∑
mB∗=−JB∗

|fJB∗mB∗ (Ω
∗)|2 (A.4)

where the transition amplitudes, T0 0
0mB∗ , have been replaced by the m-substate populations

fJB∗mB∗ (θ
∗, ϕ∗) (which also transform as spherical harmonics), and hence equation A.3 reduces

to

d2σ

dΩ∗dΩψ

=
∣∣∣fJB∗mB∗ (Ω

∗)YmB∗
JB∗ (Ωψ)

∣∣∣2 (A.5)

Expanding the spherical harmonics then allows the azimuthal dependence of the decay pro-

cess to be separated from the ψ dependence:

d2σ

dΩ∗dΩψ

=
2JB∗ + 1

4π

∣∣∣∣∣∑
mB∗

(−1)mB∗

√
(JB∗ − |mB∗|)!
(JB∗ + |mB∗ |)!

fJB∗mB∗ (Ω
∗) eimB∗χPmB∗

JB∗ (ψ)

∣∣∣∣∣
2

(A.6)

The exponential factor can be further expanded in terms of cos(mB∗χ) and sin(mB∗χ) com-

ponents. If the beam axis is taken as the quantization axis then fJm = (−1)mfJ−m and
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Pm
J = (−1)mP−m

J , all the sin(mB∗χ) terms cancel, and equation A.6 becomes

d2σ

dΩ∗dΩψ

=
2JB∗ + 1

4π

∣∣∣∣ fJB∗0(Ω
∗)PJB∗ (cosψ)

+

JB∗∑
mB∗=1

2 (−1)mB∗

√
(JB∗ − |mB∗|)!
(JB∗ + |mB∗ |)!

fJB∗mB∗ (Ω
∗) PmB∗

JB∗ (ψ) cos(mB∗χ)

∣∣∣∣∣
2

(A.7)

If the case is considered when the correlations are restricted to the area around θ∗ ≈ 0 then

the nucleus can only be formed in the m = 0 substate. Under this condition all the m-state

populations vanish except fJB∗0 and so

d2σ

dΩ∗dΩψ

=
2JB∗ + 1

4π
|PJB∗ (cosψ)|2 (A.8)

If θ∗ is restricted to the region θ∗ ≈ 0, the correlations will therefore follow a Legendre

polynomial in cosψ, of order JB∗ .

The case can also be considered when θ∗ is unrestricted, but ψ is constrained such that

ψ = 0 or 180. In this case then all the non-zero magnetic substates vanish once again and

equation A.7 becomes

d2σ

dΩ∗dΩψ

=
2JB∗ + 1

4π
|fJB∗0 (Ω

∗)|2 (A.9)

By considering the angular momenta involved in the reaction process, and also assuming

that the reaction is dominated by a single entrance channel partial wave, li, (i.e. the reaction

proceeds through a resonance in the intermediate system), then the transition amplitude for

the excitation process can be written as

TJB∗
mB∗ (θ

∗) =
∑
mimf

⟨JB∗ ,mB∗ , lf ,mf |li,mi⟩ × Y0
li
(0, 0)Ymf

lf
(θ∗, 0) (A.10)

where mi and mf are the magnetic substates associated with the initial and final state angular

momenta lf and lf . If for a reaction ψ = 0 (and hence mB∗) and mi = 0 then mf = 0 and the
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differential cross section becomes

d2σ

dΩ

2

= |Plf (cos θ
∗)|2 (A.11)

This means that if the reaction proceeds through a dominant single entrance channel partial

wave, it is possible to determine the final state orbital angular momentum:

lf = li − JB∗

In order to use equation A.7 to calculate the correlation patterns away from the region

around θ∗ = 0 and ψ = 0, 180◦ it is necessary to compute the transition amplitudes or

magnetic substate populations within the framework of a suitable reaction model1. As

discussed previously, in the θ∗ = 0 region the correlation follows a Legendre polynomial of

order JB∗ . Away from θ∗ = 0 the periodicity of the correlation structure remains constant,

however a shift in the phase occurs. This shift has been described semi-classically by da

Silviera [54], and can be related to the exit channel, and hence also the entrance channel,

angular momentum:

∆θ∗

∆ψ
=

JB∗

lf
=

JB∗

li − JB∗
(A.12)

The results is a ridge structure in the correlation pattern seen in the θ∗ − ψ plane, with a

gradient describable by the initial state angular momentum, li, and the spin of the excited

state, JB∗ .

1An example showing a case in which the transition amplitudes are calculated for the 12C(24Mg,24Mg∗)12C
reaction proceeding through a Jπ = 4+ resonance in 24Mg using a DWBA code is discussed in [53].
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Appendix B

Calculation of angular hit position

After determining the position of a hit on a detector (section 3.1.4), it is necessary to convert

this into a position measured relative to the complete detector setup. This was done by

converting an x- and y-coordinate measured on a detector, to a ϕx and ϕy angle relative to

the beam axis. Due to the orientation of the detector telescopes, this resulted in the method

used to calculate ϕy for telescopes 1 and 2 also being used calculate ϕx for telescopes 3 and

4, and vice-versa. The following discussion assumes that ϕx and ϕy are being calculated for

either telescope 1 or 2, and thus x and y must be swapped with one another if considering

telescope 3 or 4.

B.1 Angular hit position parallel to strip direction, ϕy

Figure B.1 shows a cross-sectional, schematic view of a detector, and its position relative to

the beam axis. The red arrow indicates the path of a particle, incident on the detector at a

distance ystrip along a strip. This distance can be converted to a distance y tot using

ytot =
l

cosψ
− (65− ystrip) , (B.1)

where

ψ = sin−1

(
h

70

)
. (B.2)
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Figure B.1: Schematic diagram showing how the angular position of a hit was calculated; the
red arrow indicates the path of the incident particle. The distances d, h, and l are constant
for a detector, but vary for each of the four telescopes. All measurements are in mm.
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The path length of the particle, r, can then be calculated using the cosine rule:

r2 = ytot
2 + d2 − 2ytotd cosχ , (B.3)

where

χ = 90− ψ . (B.4)

Finally, the sine rule can be used to calculate the desired angle, ϕy:

sinϕy = ytot
sinχ

r
. (B.5)

B.2 Angular hit position perpendicular to strip direc-

tion, ϕx

The angular hit position perpendicular to the strip direction, ϕx, was calculated by con-

sidering which of the 16 strips was hit. The angular position of a hit on strip j is given

by:

ϕx = tan−1

(
(8− j + ϵ)× xwidth

d

)
, (B.6)

where ϵ is a randomly generated number between 0 and 1 (included to spread hits across

the full width of each strip), xwidth is the width of a strip (3.125 mm), and d is as defined in

figure B.1.

B.3 Parameters required for converting to angular po-

sitions

The distances d, h, and l, required to calculate the angular position of a hit, are different for

each telescope. The measurements for each telescope are shown in table B.1.
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Variable
Telescope number

1 2 3 4
d 164.4 161.4 145.4 145.3
h 33.5 32.0 20.5 20.0
l 98.0 98.0 76.5 76.5

Table B.1: Parameters associated with the different telescopes required to calculate the
angular position of a hit (all values in mm).
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Appendix C

Fitting Routine Derivations

f(Ex) =
e
−
(

Ex−c1√
2σ1

)2

+ αe
−
(

Ex−c2√
2σ2

)2

√
2π (σ1 + ασ2)

− e
−
(

Ex−c1√
2σ1

)2

+ βe
−
(

Ex−c2√
2σ2

)2

√
2π (σ1 + βσ2)

(C.1)

=
1√

2π (σ1 + ασ2) (σ1 + βσ2)

[(
e
−
(

Ex−c1√
2σ1

)2

+ αe
−
(

Ex−c2√
2σ2

)2)
(σ1 + βσ2)

−

(
e
−
(

Ex−c1√
2σ1

)2

+ βe
−
(

Ex−c2√
2σ2

)2)
(σ1 + ασ2)

]

=
1√

2π (σ1 + ασ2) (σ1 + βσ2)

[
σ1e

−
(

Ex−c1√
2σ1

)2

+ βσ2e
−
(

Ex−c1√
2σ1

)2

+ ασ1e
−
(

Ex−c2√
2σ2

)2

+ αβσ2e
−
(

Ex−c2√
2σ2

)2

− σ1e
−
(

Ex−c1√
2σ1

)2

− ασ2e
−
(

Ex−c1√
2σ1

)2

− βσ1e
−
(

Ex−c2√
2σ2

)2

− αβσ2e
−
(

Ex−c2√
2σ2

)2]

=
1√

2π (σ1 + ασ2) (σ1 + βσ2)

[
βσ2e

−
(

Ex−c1√
2σ1

)2

+ ασ1e
−
(

Ex−c2√
2σ2

)2

− ασ2e
−
(

Ex−c1√
2σ1

)2

− βσ1e
−
(

Ex−c2√
2σ2

)2]

=
1√

2π (σ1 + ασ2) (σ1 + βσ2)

[
(β − α)σ2e

−
(

Ex−c1√
2σ1

)2

+ (α− β)σ1e
−
(

Ex−c2√
2σ2

)2]

f(Ex) =
α− β

(σ1 + ασ2) (σ1 + βσ2)

−σ2 e−
(

Ex−c1√
2σ1

)2

√
2π

+ σ1
e
−
(

Ex−c2√
2σ2

)2

√
2π

 (C.2)
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In the limit that ασ2 ≪ σ1 and βσ2 ≪ σ1 then C.2 becomes

f(Ex) ≃ α− β

σ2
1

−σ2 e−
(

Ex−c1√
2σ1

)2

√
2π

+ σ1
e
−
(

Ex−c2√
2σ2

)2

√
2π



= (α− β)
σ2
σ1

−e
−
(

Ex−c1√
2σ1

)2

√
2πσ1

+
e
−
(

Ex−c2√
2σ2

)2

√
2πσ2

 (C.3)
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Appendix D

Example MathCad sheet

Contained within this appendix is an example of the MathCad sheets used to perform the
analysis from section 4.6. The simulation used is a 15%, 250keV wide 2+ resonance, with
a centroid position of 9.85 MeV. The example sheet shows parameters for a case in which
the routine is considered to have accurately matched the features of the underlying 2+

simulation, and therefore has a relatively low χ2 value. The later pages show plots of
χ2 values for a variety of guess parameters, from which the routine’s optimum values of
percentage/width/centroid position can be determined.
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Import Data

Data exported from SunSort and imported as lists.

on 1:=
0 1

0 0 0
1 1 0
2 2 0
3 3 0
4 4 0
5 5 0
6 6 0
7 7 0
8 8 0
9 9 ...

toton:=107294

off1:=
0 1

0 0 0
1 1 0
2 2 0
3 3 0
4 4 0
5 5 0
6 6 0
7 7 0
8 8 0
9 9 ...

toton:=6713

Data is compressed by a factor of three (i.e. 3 channels are combined into 1) and the spectra
are then normalised to the areas of the 3− peaks (toton1 and totoff1 respectively).

comp := 3 i := 0..
1023− comp

comp

on1i,0 :=

comp−1∑
k=0

on 1k+i·comp,0

comp

off1ci,0 :=

comp−1∑
k=0

off 1k+i·comp,0

comp

on1i,1 :=

comp−1∑
k=0

on 1k+i·comp,1

off1ci,1 :=

comp−1∑
k=0

off1 1k+i·comp,1

Apply the fitting routine

Calculate the number of the new compressed channels that make up the 3− peak, and also at
which compressed channel number the 3− peak begins. Redefine i to range from 0 to N.

N :=
321− 213

comp
i := 0..N

The compressed channel data is then converted into excitation energy (x) and the differ-
ence between the normalised data sets (y).
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xi := 7.272 +
10.2 ·

(
i + 213

comp

)
340

yi :=
off1ci+ 213

comp
,1

totoff1
−

on1i+ 213
comp

,1

toton1

Errors on the data are calculated. It is assumed that the error on the windowed data set
is dominant due to the significantly worse statistics. The total error is therefore approxi-
mated as the windowed error.

errori :=
(
off1ci+ 213

comp
,1

) 1
2

error hii :=
errori
totoff1

+
off1ci+ 213

comp
,1

totoff1
−

on1i+ 213
comp

,1

toton1

error loi :=
(−errori)

totoff1
+

off1ci+ 213
comp

,1

totoff1
−

on1i+ 213
comp

,1

toton1

Known parameters about the width and centroid position of the 3− peak are entered, as well
as an estimated percentage strength of the 2+ resonance (the value α in the equations dis-
cussed in chapter 4).

Gaussian width:

w1 :=
0.16

2.35

Gaussian centroid:

c1 := 9.64

Percentage contribution:

percent := 0.02

Next, the fitting routine is constructed and passed to MathCad as a matrix, of which the
elements consist of the fitting function itself, followed by the derivatives of the routine with
respect to each of the fitting variables.
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A vector is created to pass starting values to the routine, from which the fit is optimised:

guess :=


0.03 · 0.021

9.7
0.05
2.35

0.030



The genfit function is used to instruct MathCad to apply the fitting routine.

result := genfit(x, y, guess, f) result =


−0.037
9.818
0.138

8.139× 10−5



width := result2 × 2.35 width = 0.325

The fit is plotted against the original data.

8.5 9 9.5 10 10.5 11 11.5 12

x

-0.03

-0.02

-0.01

0

0.01

y
f(x,result)

0

A χ2 value is then calculated for the fit.

chi :=
N∑

x=0

(fitx − yx)
2(

errorx
totoff1

)2 chi = 33.23
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chi2 :=
chi

36− 5
chi2 = 1.067

For a given ‘percent’ value, a range of width values are tried in the guess factor, whilst
keeping the guess values for the centroid position and percentage contribution constant. The
value of chi2 for each width is then stored in a list. The value of the ‘percent’ variable is e.g.
0.02 for the res2 values and 0.05 for the res5 values.
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Guesses at 0.1% above the ‘percent’ level and with a centroid guess of 9.70 MeV:

res2 :=



0.05 1.067
0.1 1.073
0.15 1.072
0.2 1.073
0.25 9.808
0.3 1.069
0.35 1.073
0.4 1.073
0.45 1.068
0.5 5.087
0.55 1.068
0.6 1.068
0.65 1.073
0.7 1.068



res5 :=



0.05 1.067
0.1 1.067
0.15 1.068
0.2 1.068
0.25 1.068
0.3 1.068
0.35 1.067
0.4 1.068
0.45 1.068
0.5 1.068
0.55 1.068
0.6 1.068
0.65 1.067
0.7 1.068



res10 :=



0.05 1.075
0.1 1.075
0.15 1.066
0.2 1.075
0.25 1.066
0.3 1.076
0.35 1.075
0.4 1.075
0.45 1.075
0.5 1.075
0.55 1.075
0.6 1.066
0.65 1.075
0.7 1.076



res15 :=



0.05 1.077
0.1 1.079
0.15 1.077
0.2 1.076
0.25 1.077
0.3 1.077
0.35 1.077
0.4 1.077
0.45 1.077
0.5 1.076
0.55 1.066
0.6 1.078
0.65 1.076
0.7 1.072



The chi2 values are then plotted to identify the optimum guess parameters.
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Guesses at 0.1% above the ‘percent’ level and with a centroid guess of 9.85 MeV:

res2 :=



0.05 1.073
0.1 1.069
0.15 1.069
0.2 1.069
0.25 1.069
0.3 1.072
0.35 1.074
0.4 1.068
0.45 1.069
0.5 1.043
0.55 1.069
0.6 1.069
0.65 1.069
0.7 1.049



res5 :=



0.05 1.068
0.1 1.067
0.15 1.069
0.2 1.067
0.25 1.068
0.3 1.075
0.35 1.067
0.4 1.067
0.45 1.066
0.5 1.048
0.55 1.075
0.6 1.075
0.65 1.069
0.7 1.068



res10 :=



0.05 1.075
0.1 1.075
0.15 1.075
0.2 1.075
0.25 1.074
0.3 1.076
0.35 1.067
0.4 1.079
0.45 1.075
0.5 1.067
0.55 1.066
0.6 1.067
0.65 1.076
0.7 1.075



res15 :=



0.05 1.077
0.1 1.077
0.15 1.077
0.2 1.077
0.25 1.076
0.3 1.066
0.35 1.066
0.4 1.079
0.45 1.076
0.5 1.077
0.55 1.077
0.6 1.078
0.65 1.073
0.7 1.067



The chi2 values are then once again plotted to identify the optimum guess parameters.
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Guesses at 0.1% above the ‘percent’ level and with a centroid guess of 10.0 MeV:

res2 :=



0.05 1.073
0.1 1.073
0.15 1.073
0.2 1.073
0.25 1.069
0.3 1.069
0.35 1.073
0.4 1.073
0.45 1.069
0.5 1.073
0.55 1.049
0.6 1.073
0.65 1.073
0.7 1.073



res5 :=



0.05 1.075
0.1 1.067
0.15 1.067
0.2 1.048
0.25 1.048
0.3 1.075
0.35 1.075
0.4 1.068
0.45 1.068
0.5 1.068
0.55 1.068
0.6 1.068
0.65 1.069
0.7 1.067



res10 :=



0.05 1.067
0.1 1.075
0.15 1.046
0.2 1.075
0.25 1.067
0.3 1.075
0.35 1.047
0.4 1.075
0.45 1.078
0.5 1.075
0.55 1.046
0.6 1.046
0.65 1.048
0.7 1.075



res15 :=



0.05 1.067
0.1 1.077
0.15 1.277
0.2 1.076
0.25 1.077
0.3 1.077
0.35 1.077
0.4 1.077
0.45 1.077
0.5 1.077
0.55 1.077
0.6 1.077
0.65 1.077
0.7 1.077



The chi2 values are then once again plotted to identify the optimum guess parameters.
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Guesses at 5% above the ‘percent’ level and with a centroid guess of 9.70 MeV:

res2 :=



0.05 1.068
0.1 1.069
0.15 1.068
0.2 1.073
0.25 1.048
0.3 1.069
0.35 1.073
0.4 1.069
0.45 1.073
0.5 1.069
0.55 1.069
0.6 1.073
0.65 1.069
0.7 1.068



res5 :=



0.05 1.068
0.1 1.067
0.15 1.068
0.2 1.068
0.25 1.067
0.3 1.068
0.35 1.067
0.4 1.068
0.45 1.068
0.5 1.068
0.55 1.068
0.6 1.069
0.65 1.060
0.7 1.067



res10 :=



0.05 1.075
0.1 1.075
0.15 1.075
0.2 1.075
0.25 1.075
0.3 1.066
0.35 1.075
0.4 1.075
0.45 1.075
0.5 1.075
0.55 1.075
0.6 1.066
0.65 1.066
0.7 1.067



res15 :=



0.05 1.046
0.1 1.078
0.15 1.077
0.2 1.076
0.25 1.077
0.3 1.077
0.35 1.077
0.4 1.077
0.45 1.077
0.5 1.077
0.55 1.076
0.6 1.066
0.65 1.077
0.7 1.075



The chi2 values are then once again plotted to identify the optimum guess parameters.
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Guesses at 5% above the ‘percent’ level and with a centroid guess of 9.85 MeV:

res2 :=



0.05 1.074
0.1 1.069
0.15 1.069
0.2 1.069
0.25 1.069
0.3 1.069
0.35 1.069
0.4 1.069
0.45 1.068
0.5 1.069
0.55 1.073
0.6 1.073
0.65 1.069
0.7 1.069



res5 :=



0.05 1.046
0.1 1.068
0.15 1.068
0.2 1.067
0.25 1.068
0.3 1.075
0.35 1.067
0.4 1.067
0.45 1.073
0.5 1.048
0.55 1.075
0.6 1.075
0.65 1.069
0.7 1.068



res10 :=



0.05 1.046
0.1 1.075
0.15 1.075
0.2 1.075
0.25 1.074
0.3 1.076
0.35 1.067
0.4 1.077
0.45 1.075
0.5 1.067
0.55 1.066
0.6 1.067
0.65 1.067
0.7 1.075



res15 :=



0.05 1.077
0.1 1.077
0.15 1.077
0.2 1.077
0.25 1.076
0.3 1.076
0.35 1.066
0.4 1.079
0.45 1.076
0.5 1.077
0.55 1.077
0.6 1.079
0.65 1.063
0.7 1.068



The chi2 values are then once again plotted to identify the optimum guess parameters.
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Guesses at 5% above the ‘percent’ level and with a centroid guess of 10.0 MeV:

res2 :=



0.05 1.068
0.1 5.278
0.15 1.073
0.2 1.074
0.25 1.069
0.3 1.069
0.35 1.073
0.4 1.073
0.45 1.073
0.5 1.049
0.55 1.069
0.6 1.044
0.65 1.069
0.7 1.069



res5 :=



0.05 1.075
0.1 1.067
0.15 1.068
0.2 1.069
0.25 1.067
0.3 1.067
0.35 1.069
0.4 1.068
0.45 1.068
0.5 1.067
0.55 1.067
0.6 1.068
0.65 1.075
0.7 1.047



res10 :=



0.05 1.076
0.1 1.076
0.15 1.075
0.2 1.075
0.25 1.076
0.3 1.075
0.35 1.075
0.4 1.075
0.45 1.075
0.5 1.076
0.55 1.200
0.6 1.066
0.65 1.048
0.7 1.047



res15 :=



0.05 1.067
0.1 1.077
0.15 1.077
0.2 1.077
0.25 1.077
0.3 1.077
0.35 1.078
0.4 1.077
0.45 1.077
0.5 1.077
0.55 1.077
0.6 1.079
0.65 1.077
0.7 1.077



The chi2 values are then once again plotted to identify the optimum guess parameters.
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Guesses at 20% above the ‘percent’ level and with a centroid guess of 9.70 MeV:

res2 :=



0.05 1.069
0.1 1.073
0.15 1.068
0.2 1.046
0.25 1.073
0.3 1.073
0.35 1.073
0.4 1.069
0.45 1.073
0.5 1.073
0.55 1.073
0.6 1.068
0.65 1.073
0.7 1.069



res5 :=



0.05 1.068
0.1 1.068
0.15 1.075
0.2 1.073
0.25 1.067
0.3 1.068
0.35 1.068
0.4 1.069
0.45 1.068
0.5 1.068
0.55 1.623
0.6 1.068
0.65 1.067
0.7 1.075



res10 :=



0.05 1.075
0.1 1.075
0.15 1.075
0.2 1.075
0.25 1.076
0.3 1.077
0.35 1.075
0.4 1.075
0.45 1.075
0.5 1.076
0.55 1.075
0.6 1.067
0.65 1.076
0.7 1.076



res15 :=



0.05 1.077
0.1 1.071
0.15 1.077
0.2 1.077
0.25 1.077
0.3 1.076
0.35 1.077
0.4 1.077
0.45 1.077
0.5 1.077
0.55 1.077
0.6 1.077
0.65 1.076
0.7 1.075



The chi2 values are then once again plotted to identify the optimum guess parameters.
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Guesses at 20% above the ‘percent’ level and with a centroid guess of 9.85 MeV:

res2 :=



0.05 1.073
0.1 1.073
0.15 1.075
0.2 1.073
0.25 1.073
0.3 1.073
0.35 1.073
0.4 1.073
0.45 1.069
0.5 1.068
0.55 1.074
0.6 1.074
0.65 1.074
0.7 1.068



res5 :=



0.05 1.068
0.1 1.068
0.15 1.044
0.2 1.066
0.25 1.069
0.3 1.044
0.35 1.067
0.4 1.049
0.45 1.044
0.5 1.067
0.55 1.075
0.6 1.068
0.65 1.068
0.7 1.067



res10 :=



0.05 1.076
0.1 1.075
0.15 1.075
0.2 1.075
0.25 1.076
0.3 1.076
0.35 1.066
0.4 1.071
0.45 1.067
0.5 1.077
0.55 1.066
0.6 1.066
0.65 1.067
0.7 1.075



res15 :=



0.05 1.077
0.1 1.077
0.15 1.077
0.2 1.077
0.25 1.076
0.3 1.077
0.35 1.076
0.4 1.092
0.45 1.076
0.5 1.077
0.55 1.077
0.6 1.076
0.65 1.077
0.7 1.071



The chi2 values are then once again plotted to identify the optimum guess parameters.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

res2
〈0〉

1

1.02

1.04

1.06

1.08

1.1

res2
〈1〉

res5
〈1〉

res10
〈1〉

res15
〈1〉

147



Guesses at 30% above the ‘percent’ level and with a centroid guess of 10.0 MeV:

res2 :=



0.05 1.049
0.1 1.073
0.15 1.049
0.2 1.048
0.25 1.068
0.3 1.069
0.35 1.073
0.4 1.069
0.45 1.069
0.5 5.072
0.55 1.069
0.6 1.140
0.65 1.069
0.7 1.049



res5 :=



0.05 1.075
0.1 1.069
0.15 1.073
0.2 1.067
0.25 1.068
0.3 1.075
0.35 1.068
0.4 1.068
0.45 1.074
0.5 1.068
0.55 1.069
0.6 1.068
0.65 1.068
0.7 1.067



res10 :=



0.05 1.076
0.1 1.077
0.15 1.075
0.2 1.075
0.25 1.075
0.3 1.075
0.35 1.067
0.4 1.076
0.45 1.074
0.5 1.075
0.55 1.075
0.6 1.075
0.65 1.075
0.7 1.075



res15 :=



0.05 1.068
0.1 1.077
0.15 1.077
0.2 1.078
0.25 1.077
0.3 1.076
0.35 1.077
0.4 1.077
0.45 1.262
0.5 1.077
0.55 1.077
0.6 1.077
0.65 1.077
0.7 1.077



The chi2 values are then once again plotted to identify the optimum guess parameters.
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Appendix E

Publication: The search for the 2+

excitation of the Hoyle state in 12C
using the 12C(12C,3α)12C reaction
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Abstract
A search for the 2+ excitation of the Hoyle state in 12C has been performed
using the 12C(12C,3α)12C reaction at a beam energy of 101.5 MeV. An angular
correlation analysis was used to suppress known contributions to the excitation
energy spectrum, enhancing the experimental sensitivity. No strong evidence
was found for new states in 12C between 9 and 11 MeV; rather upper limits for
their excitation in the 12C+12C inelastic scattering reaction are determined.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The structure of the nucleus 12C is fascinating for a variety of reasons. For example, it lies
at the present limit of the range of ab initio calculations such as the quantum Monte Carlo
approach [1, 2], and provides an important test as it has a rather rich range of structural
possibilities. The ground state has an oblate structure which is well represented in the shell
model. However, the next 0+ state at 7.65 MeV is not well described within this framework.
Shell-model calculations, for example those of Karataglidis et al [3], reproduce, rather well,
the energy of the first 2+ excitation, but in the region of the second state, 0+

2 (7.65 MeV),
there is a void in the calculations; the energy of this state cannot be reproduced. This in itself
points to the rather unusual structure. A similar conclusion is reached in no-core shell-model
calculations [4]. Indeed, in Ikeda’s classification of the structure of light nuclei in 1968, it
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[21] P. Navrátil, J. P. Vary, and B. R. Barrett. Properties of 12C in the Ab Initio Nuclear
Shell Model. Phys. Rev. Lett., 84(25):5728–5731, Jun 2000.

[22] F. Hoyle. Resonances and nuclear molecular configurations in heavy-ion reactions.
Astrophys. J. (Suppl.), 1:12, 1954.

[23] E. Margaret Burbidge, G. R. Burbidge, William A. Fowler, and F. Hoyle. Synthesis of
the Elements in Stars. Rev. Mod. Phys., 29(4):547–650, Oct 1957.

[24] Brink, D. M. and Castro, J. J. Nucl. Phys., A 216(109), 1967.

[25] Crannell, H. and O’Brien, J. T. and Sober, D. I. Proc. Int. Conf. On Nuclear Physics
with Electromagnetic Interactions, Mainz, 1979.

[26] A. C. Merchant and W. D. M. Rae. Systematics of alpha-chain states in 4N-nuclei.
Nuclear Physics A, 549(3):431 – 438, 1992.

[27] N. De Takacsy and S. Das Gupta. Can the 7.65 MeV 0+ state in 12C belong to a linear
chain of α-clusters? Physics Letters B, 33(8):556 – 558, 1970.

[28] H. Friedrich, L. Satpathy, and A. Weiguny. Why is there no rotational band based on
the 7.65 MeV 0+ state in 12C? Physics Letters B, 36(3):189 – 192, 1971.

[29] N. De Takacsy. The structure of 12C in a cluster model with varying hinge angle. Nuclear
Physics A, 178(2):469 – 478, 1972.

[30] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke. Alpha Cluster Condensation in 12C
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