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ABSTRACT 

This thesis aimed to examine whether observation of force based actions could moderate 

subsequent executed force and behavioural performance, and also brain activity during and 

following the action observation. There are six chapters, four that present empirical 

investigations, a general introduction (Chapter 1) and a general discussion (Chapter 6). 

Chapter 2 presents behavioural data that examined the effects of observing exerted force on 

an executed force response. The data revealed that the executed force was moderated by the 

condition observed so that observation of a 100% force caused increased force response 

compared to observation of a 50% and 0% force. Chapter 3 further examined whether bouts 

of observation could also moderate subsequent force and dexterity execution. Three 

experiments were conducted. In Experiments 1 and 2, observation of hand force based actions 

significantly moderated the executed hand dexterity. In Experiment 3, observation of leg force 

actions significantly moderated the executed leg force response. Overall, the data revealed 

that bouts of action force observation moderated the executed force and dexterity responses. 

Chapter 4 used fMRI to examine the brain activity during action force observation. The data 

revealed significant activity in the Superior Frontal Gyrus (SMA), part of the mirror neuron 

system. The finding was consistent with other findings in the literature, supporting the notion 

that observation of action force activates the same areas of the brain as those used for 

execution. To examine the relationship between action priming and brain activity, Chapter 5 

again used fMRI, but to investigate resting brain activity. The data revealed significant mirror 

neurone system activity following action force observation compared to pre-observation and 

control conditions. The thesis is discussed (Chapter 6) in terms of how action observation 

could be used clinically for rehabilitation, and moreover, how further experimental directions 

could be added to these findings. 
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Figure 5.8: Component 4: Significant activations for the contrast between pre- 

and post-observation of the experimental strength based actions F [2, 27] = 5.38, 

p < 0.05. The images show increased activation for post-observation compared to 

pre-observation rest state in the following brain areas: bilateral Callosal Body, 
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1.1 Introduction 

 

The aim of this thesis was to first of all investigate how the observation of strength and force 

based actions primes subsequent execution of action force and dexterity, and secondly, what 

aspects of motor system brain activity can explain the priming effects. The underlying 

purpose and original intention of the study was to develop knowledge that could be used for 

the development of clinical training paradigms following injuries that lead to strength loss. In 

this introduction chapter, I will start by introducing literature that has already measured the 

effects of action observation on execution (e.g., action priming). In the second part of the 

introduction, I will introduce the neural processes that are thought to underlie the priming 

effects. This latter part will focus on the „mirror neuron system‟; a network of neurons that 

are active both when the individual performs a motor action and when they observe 

somebody else performing a similar action. Evidence for the mirror neuron system will be 

presented from behavioural (e.g. using a reaction time paradigm), neurophysiological (e.g. 

TMS, EEG, and MEG) and brain imaging (e.g. fMRI) studies. In the final part of the thesis, a 

summary of the thesis chapters will be presented. 

 

1.2 Action Priming 

In the following section, I will introduce the literature that has reported that action execution 

can be primed following particular aspects of perception. I will start the review by briefly 

defining priming (section 1.2.1). Then, in sections 1.2.2 and 1.2.3, I will report the literature 

that has shown that action observation can prime subsequent execution.  
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1.2.1 The Priming Effect 

In experimental psychology, priming paradigms are used to infer cognitive processes. It is 

considered that if a first behaviour primes a second subsequent behaviour, then the 

underlying cognitive processes for the two behaviours must be shared. In the simplest form, 

repetition priming shows that if a behaviour is carried out and then repeated, the first 

behaviour primes the second, presumably because the same cognitive processes also need to 

be repeated. This effect is also known as the practice effect.  

 

There are many examples of priming effects in the literature. One of the more famous is that 

in the „Stroop Effect‟ (Stroop 1935). In this effect, if participants are asked to say the colour 

of the ink that a word is presented in and the speed and accuracy of participants responses 

measured, the effect shows that compared to a control condition, participants are slow and 

show increased errors if the word names a colour and it is incongruent to the ink colour (for 

example, the word „blue‟ written in green ink; the participant‟s required respond is „green‟). 

This is in contrast to congruency between the colour ink and colour name (for example, the 

word „blue‟ written in blue ink; the participant‟s required respond is „blue‟) or to the 

presentation of a control condition word (for example, the word „tree‟ written in green ink; 

the participant‟s required respond is „green‟). In this effect, the participants are thought to 

automatically read the word and this behaviour primes the subsequent cognitive task of 

deciding upon and naming the ink colour. That is to say that the written word primes the 

naming of the ink colour showing that reading and saying a colour name must activate the 

same cognitive representations. 

 

In the thesis here, I will focus on prime effects that have reported the behaviour of perception 

to prime the subsequent behaviour of action. In this sense, priming can be modulated by 
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several factors such as those related to the perceived object (e.g. size, weight or shape etc.), 

the perceived space (e.g., left vs. right side) or a perceived action performed by another 

person. In the next section that reviews the literature, factors in perception that influence 

subsequent action execution will be presented.      

   

1.2.2 Action Priming and The Simon Effect 

In the perception and action literature, the popular priming effect (that matches the popularity 

of the Stroop Effect) is that of the „Simon Effect‟ (first reported by Simon & Rudell, 1967). 

The effect results from shared processes between space and effector (e.g., left or right hand) 

selection. For example, if a participant is required to respond using a right hand response, 

they are then faster and show less error to respond to a right target stimulus than a left target 

stimulus. Likewise, if the participant is required to select a left hand response, they are then 

quicker to respond to a left side stimulus than right. Interestingly, this spatial stimulus-

response (S-R) matching also exists for non-spatial stimuli. For example, if the participant is 

asked to respond with their left or right hand to a verbal command of „left‟ vs. „right‟, 

participants respond faster with the congruent stimulus-effector conditions than non-

congruent stimulus-effector conditions. This stimulus-response compatibility is proposed to 

be a consequence of congruency between the perceptual stimuli and the selection of effector 

for the executed action (Hasbroucq & Guiard, 1991).  

 

1.2.3 Action Priming from Observation 

In recent years, there has been a growth in evidence that viewing an action performed by 

another individual moderates the later execution of a similar action (see, for example, Brass, 

Bekkering, Wohlschlager, & Prinz, 2000; Castiello, 2003; Castiello, Lusher, Mari, Edwards, 

& Humphreys, 2002; Craighero, Fadiga, Umilta, & Rizzolatti, 1996; Dijkerman & Smit, 
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2007; Edwards, Humphreys, & Castiello, 2003; Gianelli, Dalla Volta, Barbieri, & Gentilucci, 

2008; Griffiths & Tipper, 2009; Hardwick  & Edwards,  2011; Jackson & Decety, 2004; 

Kilner, Hamilton, & Blakemore, 2007; Kilner, Paulignan, & Blakemore, 2003; Salama, 

Turner, & Edwards, 2011; Stanley, Gowen, & Miall, 2007 etc.).  Like in the two previous 

examples (the Stroop and Simon Effects), the prime effect from action observation is thought 

to arise from a coupling effect between the perceived action (in observation) and action 

execution. The degree of congruency between the perceived and executed action conditions 

has also been termed ideomotor-compatibility, with data showing increases in ideomotor-

compatibility have shown increased prime effects (Brass, Bekkering, & Prinz, et al., 2001).    

 

An example of the research showing action observation to prime subsequent execution is that 

from Edwards et al. (2003). They were the first to have used motion-tracking analyses to 

examine the executed actions of sixteen subjects following the observation of either 

congruent or incongruent action stimuli. In the study, participants were asked to observe the 

experimenter performing reach and grasp actions and after observing the task, they were 

requested to perform a similar movement. The congruency between the observed and 

executed action involved changing the object that was acted upon. That is to say that the 

participants observed a grasping action to an object that was either small or large, and then 

had to execute a grasping action to either the small of large object themselves. The congruent 

condition involved observation and execution to the same size object (e.g., observe action to 

a small object, then execute action to a small object), and the incongruent condition involved 

observation and execution to different sized objects (e.g., observe action to a small object, 

then execute action to the large object). The findings of the experiment showed that 

observation congruency had a significant influence on the speed of response, especially in the 

initiation kinematics. In congruent condition, the participants reached the object significantly 
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earlier in the time to peak velocity compared to the incongruent condition. Edwards et al. 

(2003) suggested that the effect may have been caused by the observation condition priming 

the motor planning processes, the consequence of which lead to a faster initial execution of 

the planned action response.  

 

In the above example, the action priming occurred for the observation of grasping objects. 

While there has been a tendency for the literature to focus on grasping or hand manipulative 

actions (e.g., Brass et al., 2000; Castiello et al., 2002; Dijkerman & Smit, 2007; Griffiths & 

Tipper, 2009), there is also evidence that spatial components of actions can be influenced. 

For example, recently Hardwick et al. (2011) used motion tracking analyses in an experiment 

that tested whether the observation of actions taking one of two spatial paths would prime 

execution. They tested eight participants that were asked to observe and execute similar reach 

and grasp actions. The congruency between the observed and executed action were 

manipulated by moderating the kinematic spatial path so that it followed a natural path, or 

followed an abnormally high path. The participant was then instructed to make a normal 

action execution response. Therefore, the experimenter reached and grasped the object, either 

with a normal reach (congruent to the participant response) or a high reach (incongruent to 

the participant response) action. Various objects were grasped, but differences between these 

were not analysed. One other manipulation also carried out involved manipulating the 

position of the observed action. That is to say that participants either observed the 

experimenter reaching and grasping an object from an opposite (180 degrees) or one side (90 

degrees) position to the participant. The results from the experiment showed no effect of 

observed position, but did show a consistent significant effect of reach congruency. 

Participants reached the object with a „normal‟ trajectory following observed normal reaching 

actions (congruent condition), but made higher reach trajectory action executions following 
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observation of the high reaching actions (incongruent condition). These findings are 

compatible with the previous studies that have shown that the congruency between the 

observed and the executed actions modulated action execution (Castiello, 2003; Castiello et 

al., 2002; Craighero, Fadiga, Rizzolatti, & Umilta, 1999; Dijkerman & Smit, 2007; Edwards 

et al., 2003; Ellis & Tucker, 2000; Griffiths & Tipper, 2009; Klatzky, Fikes, & Pellegrino, 

1995; Riddoch, Edwards, Humphreys, West, & Heafield, 1998; Tucker & Ellis, 1998, 2001).  

 

Apart from a paper published by Salama et al. (2011) (presented in Chapter 2 of this thesis), 

no other research in the published literature has so far considered whether action priming can 

influence executed force responses. In the study, I analysed force execution responses using a 

hand grip force measuring tool (a hand grip dynamometer) in order to examine the effect of 

action force observation on the subsequent executed force responses. The principle point of 

the study was to investigate whether the participants force execution response (trained to be 

50% of the participant‟s maximum grip force) was moderated following the observation of 

baseline (no grip/no action; 0% force), congruent grip (50% force) or incongruent grip force 

(100% force) action force conditions. In particular, I was interested in whether the force 

observed could bring about different hand grip force responses as a function of increasing the 

force exerted in the observed action. Eighteen participants were tested and they were 

presented with video clips of various degrees of hand grip force (0%, 50% or 100% of a 

model‟s own maximum force). Prior to the experimentation, all of the participants were first 

trained to consistently respond at their own 50% maximum force level. The results of the 

study revealed that when participants observed an incongruent (100%) force, their own 

response was significantly increased in comparison to the baseline (0%) and congruent (50%) 

conditions. In the paper, I wrote that I assumed that observation of the incongruent (100%) 

force, relative to the baseline (0%) and congruent (50%) conditions yielded to greater primary 
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motor cortex excitability and consequently induced an increase in the participant‟s intended 

force response (by a small, but significant amount). One impressive aspect of these findings 

was that the observation condition moderated the response that the participants were trained 

to respond at, and the only response that they had to make throughout the experiment. Even 

so, observing another person‟s actions overrode the training to influence reproduction of 

force response, suggesting that prime effect may have been automatic (or non-conscious). 

 

1.3 Mirror Neuron System 

In the next section of this introduction chapter, the mirror neuron system brain areas thought 

to be involved in the priming between observed action and executed action are reviewed. In 

section 1.3.1, the non-human primate neurophysiology evidence for the mirror neuron system 

is presented. Then, in sections 1.3.2, 1.3.3 and 1.3.4, evidence from the human neurosciences 

literature is presented. 

 

1.3.1 Mirror Neuron System: Evidence from non-human primates 

Evidence for the mirror neuron system stems from original non-human primate research that 

discovered (siren dipity) particular activation profiles of neurons based in the ventral 

premotor cortex (area F5) of the macaque monkey (di Pellegrino, Fadiga, Fogassi, Gallese, & 

Rizzolatti, 1992; Gallese, Fadiga, Fogassi, & Rizzolatti, 1996; Rizzolatti & Craighero, 2004; 

Rizzolatti, Fadiga, Gallese, & Fogassi, 1996). The original aim of these studies was to 

investigate the activity of ventral premotor cortex (area F5) while participant monkeys 

performed grasping actions to different geometric shapes. In these studies, interestingly, they 

discovered evidence for neurons that were activated both when the animal performed a goal-

directed hand actions and also when they observed another monkey or the human 

experimenter executing a similar action (Gallese et al., 1996; Rizzolatti et al., 1996). This for 
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the first time showed evidence of neurons in the motor areas of the brain that responded to 

perception of action, as well as execution, and further, showed evidence of neurons with two 

complimentary activation profiles (one for observed and one for executed actions).  Rizzolatti 

et al. (1996) named these neurons „mirror neurons‟. 

 

Since the discovery of mirror neurons, a number of investigations have been carried out with 

non-human primate participants in order to better understand the properties and functions of 

the mirror neurons. This research is still very much in progress. However, a key finding is 

evidence for two different types of mirror neuron, one based in the original premotor F5 area 

and generally active for the observation and execution of action, and another type typically in 

the parietal brain area and active during the observation or execution of an object object-

directed action (Rizzolatti & Craighero, 2004; Rizzolatti & Luppino, 2001). These latter 

neurons have been named Canonical Neurons. On the basis of these findings, it has been 

argued that the mirror neuron system particularly represents the perception of and 

programmes the execution of goal directed actions. Thus, activation of the mirror neuron 

systems requires the existence of both an object (or goal) and an effector action (which has to 

be biological). Observation of the object alone with the absence of the effector, or 

observation of gestures (mimicking the action) with the absence of an object in the scene, 

does not cause mirror neurones activation.  

 

Another functional aspect of the mirror neuron activation is that they appear to show degrees 

of matching (or congruency) specificity between the observed action and the executed action 

that they code. According to this, mirror neurones have been classified into two populations. 

One is “strictly congruent” and represents approximately one third of brain area F5 and the 

other is “broadly congruent” and represents the remaining two thirds of area F5. The “strictly 
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congruent” neurons are active for observation and execution of identical action (for example 

the clock-wise rotation of the wrist). The “broadly congruent” neurons show less specificity, 

with for example a mirror neuron being active for the observation of a pinch grip reach and 

grasp action and also active to the execution of a whole hand grip reach and grasp action 

(Gallese et al., 1996).     

 

While these experiments continue, the relative difficulties associated with testing non-human 

primates cause the research to be slow. Much more research has been carried out using 

human neuroscience experiments. However, while these are able to further define the 

activations of the mirror neuron system, they are unable to measure the responses of the 

specific mirror neurons themselves (due to ethical constraints). In the next sections, this 

human mirror neuron system evidence is reviewed. 

 

 

1.3.2 Mirror Neurons: Evidence from human fMRI research 

Several brain imaging studies have been conducted in humans to explore the brain 

components that could be equivalent to the F5 mirror and premotor canonical neurons 

reported in experiments with non-human primates. One of the first papers to investigate these 

links was that by Grezes, Armony, Rowe, & Passingham (2003). Using fMRI, they aimed to 

investigate the existence and localization of the neural circuits similar to those discovered in 

macaque and also to examine the different neural circuits also invoked during action 

observation and execution. They presented participants with an observational condition that 

required the participants to passively observe only an object (OO), a hand grasp (OG) or an 

object being grasped (OGO). In an execution condition, the participants were requested to 

execute similar actions to those used in the observation condition (EO, EG and EGO). Two 

different conditions were used as baseline; either to observe a stationary background (OB) or 
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to execute a hand grasp while observing the same background (EB). The results showed that 

the observation of the object compared to observation of a stationary background (OO vs. 

OB) was associated with significant increased activation in the left ventral precentral sulcus 

and left intraparietal sulcus. The contrasts between observation of a hand grasp compared to 

observation of a stationary background (OG vs. OB) and execution of a hand grasp compared 

to executing a hand grasp while observing the same background (EG vs. EB) produced the 

same results, with both contrasts being associated with bilateral activations in the dorsal 

premotor cortex, intraparietal sulcus, superior temporal sulcus, the right parietal operculum 

(SII) and the left ventral precentral sulcus. Finally, contrasts between observation of object 

grasping compared to observation of a stationary background (OGO vs. OB) and execution of 

object grasping compared to executing a hand grasp while observing the same background 

(EGO vs. EB) also caused the same activations as those in the previous contrasts, except for 

the left ventral precentral sulcus. Therefore, the interesting finding of this research was that 

observation and execution of similar actions activated the same areas of the brain, supporting 

the mirror neuron concept that observation and execution activates shared areas of the human 

brain. 

 

Since these initial findings, there have been a number of further experiments that have 

measure brain activity during action observation and execution. From these many research 

papers, a common network of activity has resulted. This consists of the brain areas; inferior 

frontal gyrus (IFG), superior and inferior parietal regions, the supplementary motor area and 

the lateral premotor cortex (Buccino, Binkofski, Fink, Fadiga, Fogassi, Gallese, Seitz, Zilles, 

Rizzolatti, & Freund, 2001; Buccino, Lui, Canessa, Patteri, Lagravinese, Benuzzi, Porro, & 

Rizzolatti, 2004b; Cochin, Barthelemy, Lejeune, Roux, & Martineau, 1998; Decety, Grezes, 

Costes, Perani, Jeannerod, Procyk, Grassi, & Fazio, 1997; Grafton, Arbib, Fadiga, & 
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Rizzolatti, 1996; Grezes et al., 2003; Johnson-Frey, Maloof, Newman-Norlund, Farrer, Inati, 

& Grafton, 2003; Lui, Buccino, Duzzi, Benuzzi, Crisi, Baraldi, Nichelli, Porro, & Rizzolatti, 

2008; Manthey, Schubotz, & Cramon, 2003; Saygin, Wilson, Jr Hagler, Bates, & Sereno, 

2004; Schubotz & Cramon, 2004). These areas have been reported to be the human 

homologue of monkey premotor area F5 (Rizzolatti & Craighero, 2004) and as the brain 

areas extend beyond the human premotor cortex, they have become known as the human 

mirror neuron system.  

 

1.3.3 Mirror Neurons: Evidence from human TMS research 

Evidence for human mirror neurons also comes from Transcranial Magnetic Stimulation 

(TMS) experimentation. As with fMRI, the method is non-invasive,  and moreover it has the 

ability to provide a time accurate measure of primary motor cortex excitability. The method 

works by using electromagnetic induction to induce an electric current, and when applied to 

the scalp, the induced electric current causes neurons underneath the scalp (and at the focus 

of the electromagnetic coil) to become active. The method was first introduced and developed 

by Barker, Jalinous and Freeston (1985) and used to demonstrate correspondence between the 

primary motor cortex stimulation and recorded muscle action potentials reflecting the human 

homunculus. This research has since been extended, and been used to show how motor 

learning (or homunculus adaption) moderates primary motor cortex excitability 

(Wassermann, Pascual-Leone, & Hallett, 1994). Related to this, TMS has been used in the 

clinical setting as a valuable diagnostic evaluation of brain damage to the motor areas 

following stroke, dissiminated sclerosis and motor neurone diseases (see for example Currà, 

Modugno, Inghilleri, Manfredi, Hallett, & Berardelli, 2002).  
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For the assessment of mirror neurons, TMS was first used by Fadiga, Fogassi, Pavesi, & 

Rizzolatti, (1995) to investigate primary motor cortex activity during action observation. In 

the study, TMS was applied to the primary motor cortex of twelve participants while they 

observed the experimenter making object grasping actions, using their arm to trace a 

geometric shape in the air, or observing a flashing light. As in the example provided above, 

primary motor cortex excitability was measured using motor evoked potentials (MEPs) from 

the participant‟s hand muscles. Stimulation was made to the left hemisphere hand area of the 

homunculus and right hand muscles were recorded while the participants observed the actions 

or flashing light. The data showed that the recorded MEPs significantly increased during 

observation of the actions compared to the flashing light baseline. In addition, the data 

showed that MEPs for specific hand muscles were only modulated if the observed action 

involved use of the muscle. That is to say that the primary motor cortex that codes specific 

group of muscles was facilitated during the observation of movements that involved using 

those same muscles for execution. In the discussion, Fadiga et al. (1995) suggested that 

activity from the human premotor mirror neurons caused the increased primary motor cortex 

excitability and measured MEP relative to the comparison baseline condition (see also 

Strafella & Paus, 2000 for similar findings).  

 

1.3.4 Mirror Neurons: Evidence from human EEG research 

The final neuroscience method reviewed here that has been used to evaluate the human 

mirror neuron system is that of EEG. The method works by recording brain electrical activity 

through electrodes placed on the scalp. The electrodes measure the voltage fluctuations that 

are created as a function of neural activity causing current flows. Originally, EEG was used 

to record mirror neuron activity in primates (see Dum & Strick, 2002; Nishitani & Hari, 

2000; Shimazu Maier, Cerri, Kirkwood, & Lemon, 2004; Tokuno & Nambu, 2000), but more 
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recent research has used EEG to examine the activity of the human mirror neurone system 

(see, for example, Muthukumaraswamy & Johnson, 2004; Muthukumaraswamy, Johnson, & 

McNair, 2004; Oberman, Pineda, & Ramachandran, 2007). Like TMS, EEG provides better 

temporal activity that fMRI. However, the advantage of EEG compared to TMS is that more 

areas of the brain can be measured at the same time (albeit with less spatial accuracy than 

fMRI).  

 

Despite the value of EEG research methods for evaluating the effects of action observation on 

brain activity, very little research has investigated this area. Instead, researchers have 

focussed on a related question that considers how the mirror neuron system might be 

involved in observing social actions (or interactions). In this context, Oberman et al. (2007) 

examined the modulation of motor area mu rhythm as a function of changing the nature of 

various social stimuli. Twenty participants were asked to observe one of four video clip 

stimuli. These were: (i) a static non-action baseline, (ii) a non social interaction that involved 

three persons tossing a ball up and down, (iii) a social action that involved three persons 

tossing a ball to each other, and (iv) a social interaction that was similar to the third stimulus 

actions, except that the ball was occasionally and randomly thrown towards the participant to 

test the degree of their involvement in the social action presented. The data showed that the 

mu wave recorded from the mirror neuron system was modulated as a function of changing 

the degree of social interaction, with the highest mu suppression for the fourth social 

interaction condition and the lowest degree of suppression for the first non-social condition. 

Confounded with these data, the results showed that action observation and social interaction 

appeared to activate mirror neuron activity (Iacoboni et al., 2004).   
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1.3.5 Action Priming and the Mirror Neuron System 

In this chapter, I have presented research showing that the observation of action primes 

subsequent executed action. I have also shown evidence from different neuroscience methods 

that the behaviours of action observation and execution activate the same areas of the brain
1
. 

It is believed that the mechanism explaining action priming is that the shared activity between 

observation and execution causes observation to prime execution, in the same way that action 

repetition priming would function (e.g., execution followed by the same execution; the latter 

execution showing improvements in performance compared to the former execution 

condition; the so called practice effect) (see Edwards et al., 2003).  

 

1.4 Summary of the PhD Thesis 

In this thesis, I for the first time in the literature, investigated whether the observation and 

execution of action force was represented by shared neural processes. I first addressed this 

question using action priming paradigms (Chapters 2 and 3), and then used fMRI brain 

imaging methods (Chapters 4 and 5) in order to measure specifically which brain areas were 

involved. In the rest of this section, a summary of each thesis chapter is provided. 

 

In the first empirical chapter (Chapter 2; also Salama et al., 2011) I used a research method 

similar to that reported by Edwards et al. (2003). Participants were instructed to observe force 

based actions, and following observation had to execute a force response. The observed and 

executed actions used a hand grip dynamometer so that the force of the action could be 

accurately recorded. I tested eighteen participants and first trained them to respond at 50% of 

their own maximum force ability. Following training, I presented random stimuli trials that 

consisted of a model making different hand grip force responses of 100%, 50% and 0 % of 

                                                 
1
 Though not necessarily the same exact neurons.  
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the model‟s own force ability. As in the previous research, the data showed a significant 

increase in the participant‟s executed force when they observed incongruent (100%) 

compared to congruent (50%) and base line (0%) stimuli. Therefore, these data replicate 

other research presented in the literature and show that observation of action force primes 

execution suggesting that observed action force must be represented in the same areas of the 

brain as those used to execute force actions. 

 

In the second empirical chapter (Chapter 3; also Salama et al., submitted), I wanted to extend 

the findings of Chapter 2 by using a new research method design (so far not reported in the 

literature). The rationale for the new research method design was based on the practicalities 

of using action priming for clinical rehabilitation. I suggested that using the conventional 

observation-execution priming paradigms in a trial-by-trial order would be practically very 

difficult to run in a clinical setting. Therefore, in Chapter 3, I investigated whether bouts of 

observation could prime subsequent executed force based actions. I ran three experiments in 

which I used two different strength measuring tools (a hand and a leg dynamometer) and in 

addition, I measured dexterity using Polhemus motion tracking. The aim was to examine 

whether observed action force would prime executed force as in Chapter 2, and in addition 

whether there would be any further priming of dexterity performance. The method measured 

force and dexterity responses before and after the bouts of observation condition. The 

observation conditions consisted of force-based actions and were compared to a control 

condition that presented non-action stimuli. Each bout of observation lasted for 

approximately 12 minutes. The results for Experiment 1 and 2 showed that the bouts of force 

observation in comparison to the control condition significantly primed the executed 

dexterity performance. Further, in Experiment 3, the results showed that the observation of 

leg force action significantly primed the subsequent executed leg force response. These 
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findings replicate previous literature and suggest that bouts of observation rather than trial-

by-trial observation may potentially provide a better method for clinical use of action 

observation for patient rehabilitation. This will be discussed in greater detail in Chapter 6.  

On the basis of the research findings from Chapters 2 and 3, Chapter 4 aimed to assess which 

brain areas were active during observation of action force. Using fMRI, I examined the 

heamodynamic changes (in BOLD signals) of the brain, and in particular, the mirror neuron 

system during observation of force-based hand and arm actions compared to control 

condition. Fifteen participants were scanned while they observed force-based hand and arm 

movements (experimental condition) or moving objects (control condition) that included 

heavy and light objects. The data analyses contrasted brain activity between the heavy and 

light objects for the experimental and control conditions. The results showed that observation 

of the heavy objects compared to the light objects in the experimental condition showed 

significant activations in the left superior frontal gyrus (the SMA of the mirror neuron 

system), left frontal pole and bilateral activation of the occipital lobe. Observation of the 

heavy objects compared to the light objects in the control condition only showed significant 

bilateral activation -of the occipital lobe. Therefore, these data support the findings of 

Chapters 2 and 3, showing that observation of action force appears to be represented in the 

mirror neuron system.  

 

 In the final empirical chapter (Chapter 5), I again used fMRI to examine whether observation 

of actions compared to control stimuli modulated mirror neuron system activity. However, I 

for the first time in the literature used a new method of brain resting state activity in order to 

quantify how action observation moderates brain activity once the observation of action has 

finished (i.e., measuring activity following the stimulus presentation). The rationale for this 

investigation was based on understanding how mirror neuron system brain activity, reported 
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and shown in Chapter 4 to be active during action observation, leads to the prime effects 

reported in the literature, and in Chapters 2 and3. To gain a better understanding of how 

action observation primes subsequent action execution, I scanned the same participants as 

those tested in Chapter 4, and using the same stimuli. However, I examined brain activity 

during rest-states that were measured immediately prior to and following the observation 

conditions. Using PICA (Probabilistic Independent Component Analysis) I identified brain 

areas of significant activation in the contrasts between post-observation and pre-observation 

of strength based action. These were in the fronto-parietal areas and included areas typically 

associated with the mirror neuron system. Contrasts between post-observation and pre-

observation of the non-action control stimuli showed no moderation of the mirror neuron 

system. I discuss these data in terms of them providing insight into how action observation 

may prime subsequent execution. 

In the final chapter of this thesis (Chapter 6), a summary of the thesis is first presented and 

discussed in relation to the literature. Following this, the thesis strengths and limitations are 

discussed, and suggestions made that could improve the specific methods used in the thesis 

investigation. In the final section of the chapter, future experimentation is presented, 

primarily that considers how the findings of this thesis could be adapted and used for patient 

rehabilitation. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2:  

AUTOMATIC PRIMING OF GRIP FORCE FOLLOWING ACTION 

OBSERVATION 

The text and detail presented here exactly matches that of the published manuscript:  

Salama, I. M., Turner, S., & Edwards, M. G. (2011). Automatic priming of grip force 

following action observation. The Quarterly Journal of Experimental Psychology, 64, 

833-838. 
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2.1 Abstract 

 

Research shows that action observation can prime execution. Evidence for this comes from 

experiments that show action observation influenced temporal (e.g., speed) or spatial (e.g., 

peak grasp aperture or trajectory) aspects of executed movement. In the paper presented here, 

I for the first time show that observation can also prime executed action force. Following 

observation of force actions, participants executed grip-force responses using a dynamometer, 

and the data showed that their force was modulated by the condition observed. The findings 

of the study are discussed in terms of a likely cause of the force modulation effect and 

potential uses that the effect may have for strength rehabilitation. 
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2.2 Introduction 

 

Recent research has shown that the observation of an action can prime subsequent execution 

(see for example Brass et al., 2000; Castiello et al., 2002; Dijkerman & Smit, 2007; Edwards 

et al., 2003; Gianelli et al., 2008; Griffiths & Tipper, 2009 etc.). These studies have tended to 

focus on the effects that observation has on temporal or spatial aspects of executed 

movement. For example, Brass et al. (2000) showed that observation of a congruent 

compared to incongruent simple finger movement facilitated the speed taken to make a 

simple finger response. Similarly, Castiello et al. (2002) and Edwards et al. (2003) reported 

that observation primed the speed of subsequent initiated movement. Spatial modulation has 

been reported whereby observation priming influenced executed grasp size and reach 

trajectory (Castiello et al. 2002; Dijkerman & Smit, 2007; Gianelli et al., 2008; Griffiths & 

Tipper, 2009). However, to date, no paper has tested whether observation can prime muscle 

force used in execution. 

 

The rationale used to explain the prime effect between observation and execution comes from 

literature showing that both behaviours activate common neural areas in the brain. For 

example, in primate neurophysiology, „mirror neurons‟ were activated during action 

observation and execution (see Gallese et al., 1996; Rizzolatti et al., 1996). In human brain 

imaging, action observation has been shown to activate the parietal and premotor areas; the 

same areas known to be activated during action execution (e.g., Buccino et al., 2001; Turella, 

Erb, Grodd, & Castiello, 2009). Also, Fadiga et al. (1995) showed modulation of Transcranial 

Magnetic Stimulation (TMS) Motor Evoked Potentials (MEP) while participant‟s observed 

actions (indicative of primary motor cortex excitability). In these data, specificity between the 

observed and executed conditions was demonstrated in that the MEP recorded corresponded 
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to observation of the same muscle being used. This suggests that observation of action had a 

direct influence on primary motor cortex and muscle activity, and supports the idea that 

observation can prime physical aspects of execution through common neural processes.  

 

In the present paper, participant grip force execution on a handgrip dynamometer was 

recorded immediately after they observed video stimuli of a model making grip force 

response. Irrespective of the observed stimuli, participants were instructed to make handgrip 

force responses that were 50% of their own maximum immediately after watching each clip. I 

used observation stimuli of baseline (0%), congruent (50%) and incongruent (100%) 

conditions. Based on previous findings in the literature, I hypothesised that action observation 

would modulate the participant‟s execution force. 

 

 

2.3 Methods 

 

2.3.1 Participants 

Eighteen undergraduate female
2
 students aged 18-24 years (mean = 20.7) took part in the 

study. All participants were right-handed, had normal or corrected-to-normal vision, had no 

experience of strength training, and were naïve to the purpose of the study. The School of 

Sport and Exercise Sciences, University of Birmingham Ethics Committee approved the 

study. 

 

                                                 
2
 Females were tested, as the handgrip dynamometer was only able to record a maximum 

response of 50kg. In previous research carried out in the laboratory, no female ever exceeded 

this amount, whereas some male participants did. 
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2.3.2 Apparatus and stimuli 

The stimuli used for the action observation conditions were handgrip movements made using 

a handgrip dynamometer (“Li” Lafayette Instrument Co. Lafayette Indiana 47903) and 

displayed using video clips presented on a computer screen. The video clips were filmed 

using a high definition digital camcorder positioned approximately 2m away from a blank 

wall and 1m from the floor. Four right-handed volunteers (two female and two male) that 

were not associated with the study acted as models. They were seated holding the 

dynamometer in their right hand, with their elbow at a right angle perpendicular to their side. 

They held the dynamometer with a whole hand grasp and they were positioned to the right of 

the camera so that their fingers and handgrip were in the captured view. The dynamometer 

was positioned so that the back of the dynamometer was viewed (i.e., the dial face was not 

visible in the clip).  

 

Each model performed five maximal grip force responses and an average was calculated 

which was then used to calculate their average 50% maximum grip. Each model was filmed 

making dynamometer responses in conditions of baseline - no grip / no action (0%), 

congruent grip (50%) and incongruent grip (100%) (see Figure 2a).  Each model produced 

five clips for each condition, making a total of sixty clips.  The stimuli were edited to five 

seconds and displayed the specific force of grip held throughout. That is to say that the 

beginning application and end removal of force was edited and deleted from the stimuli so 

that the participants only saw the execution of force and not the application and removal 

action phases of the force.  

 

The experimental instructions and stimuli were presented using DMDX software (Forster and 

Forster, 2004) on a standard computer with 17” monitor. In the experiment, the software 
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presented each clip followed by a short time break. In this time, participants were instructed 

to make a response using the same dynamometer as that used to make the stimuli.  

 

2.3.3 Procedure 

At the beginning of the study, participants read an information sheet and completed a consent 

form. Participants were then seated 80cm centrally in front of the computer screen and 

instructed to hold the dynamometer in their right hand with their elbow at a right angle 

perpendicular to their side. The participant then made five maximum grip force responses and 

an average was calculated. From this, the participant‟s mean 50% maximum grip force was 

calculated. The participants were informed of this value and instructed to familiarise 

themselves with the necessary force needed to consistently achieve their 50% maximum grip 

force using the dynamometer dial for feedback. Once practiced (i.e., where they could 

achieve between 40% and 60% of their maximum force for three consecutive trials), the 

dynamometer was turned around so that the participants were not able to see the dial and 

hence could not use the dial for feedback during the experimental session. They were then 

instructed that in the experimental session, they had to respond at the 50% practiced maximal 

grip force after viewing each video stimulus. Each participant observed the sixty video 

stimulus clips in a random order, and made a response after each stimulus presentation. The 

experimenter recorded the participant‟s grip response and controlled the initiation of the 

stimuli by pressing the space bar after each response.  

 

2.3.4 Data Analyses 

The data were analysed using two repeated measures ANOVAs. In both, the independent 

variable was observed condition (baseline 0% vs. congruent 50% vs. incongruent 100%). In 
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the first ANOVA, the dependent variable was the mean absolute force difference between the 

actual grip response recorded and the participant‟s own initial mean 50% maximal force 

value (i.e., if the dependent measure was „zero‟, it would indicate that the participant 

responded exactly with their own 50% maximal force value) (kg). In the second ANOVA, the 

dependent variable was the mean relative force response of the participant (%). Bonferroni 

Pairwise Comparisons were performed for any significant effects of condition.  

 

 

2.4 Results 

 

A simple regression between trial order (for the 60 trials) and mean relative handgrip 

response for the 18 participants showed no significant relationship (F[1, 59] = 0.6, p=.46)  (r
2
 

= .009). This demonstrates that the responses were stable across the study and there were no 

effects of fatigue. 

 

Analysis of both dependent measures, mean absolute and relative force were significant (F[2, 

34] = 10.7, p<.001) and (F[2, 34] = 10.4, p<.001). Bonferroni Pairwise analyses showed 

significant differences between 50% and 100%, and 0% and 100% (p<0.05), and no 

difference between 0 and 50% for both dependent variables (see Figure 2b).  
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Figure 2: (a) Participants observed stimuli of a model making hand grip dynamometer 

responses that were 0%, 50%, or 100% of the model’s own maximum force. The stimuli were 

depicted in a random order on a computer screen, and, after each, the participant 

immediately performed a hand grip response that was 50% of their own maximum (stimulus–

response conditions of baseline 0%, congruent 50%, and incongruent 100%). (b) The graph 

with the black solid line shows the mean absolute force (kg), and the grey dashed line shows 

the mean relative force (percentage of participant’s own maximum force; %). The mean 

standard errors were 1.9 kg, 1.8 kg, 1.9 kg, and 9.3%, 8.9%, 9.1%, for baseline 0%, 

congruent 50%, and incongruent 100% mean absolute force and mean relative force, 

respectively.  
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2.5 Discussion 

 

In the present paper, I hypothesised that action observation would modulate participant‟s 

execution force responses. The data showed that when participants observed an incongruent 

(100%) force, their own response was significantly increased in comparison to the baseline 

(0%) and congruent (50%) conditions. These findings support Fadiga et al. (1995; see also 

Alaerts, Senot, Swinnen, Craighero, Wenderoth, & Fadiga, 2010a) where Transcranial 

Magnetic Stimulation (TMS) was applied to participant‟s primary motor cortex and Motor 

Evoked Potentials (MEP) measured in muscles that corresponded to the observed 

experimental movement condition. Their data showed that MEP activity was increased for 

action observation relative to non-action control conditions, suggesting that primary motor 

cortex excitability (increased through neural connections between the mirror neuron system 

and primary motor cortex; Fadiga et al., 1995) had a direct influence on specific muscle 

activity. In the data presented here, I show that muscle force responses were also influenced 

by the observation condition.  I assume that greater primary motor cortex excitability arose 

from observation of the incongruent (100%) force, relative to the baseline (0%) and 

congruent (50%) conditions and that resultant increases in muscle activity increased the 

participant‟s intended force response (by a small, but significant amount).  

 

One interesting aspect of these data was that the priming effects occurred for a particular 

response. Participants were trained to respond with a force that was 50% of their own 

maximum capability (i.e., until they were able to make consistent responses between 40% 

and 60% of their maximum force). Even with training to achieve the correct amplitude of the 

response parameter, observing another person‟s actions over-rode the training to influence 

production of force. In fact, the responses made were within the original accepted range of 



Chapter 2 

42 

 

response. That is, observed force influenced the participant‟s mean relative force by 5.1% 

over conditions. This suggests that participants continued to respond within the margins of 

the trained level, but within this level of response, were modulated by the observed force. I 

suggest that the data likely reflects force observation having an automatic effect on action 

execution, whereby the priming mechanism seems adaptable within the practiced and 

experienced responses measured (see Ocampo & Kritikos, 2010; Press, Bird, Flach & Heyes 

2005 for similar findings).   

 

These data are the first to show that action observation of force can prime subsequent 

executed force. This could be very interesting for applied research that uses action 

observation for rehabilitation. For example, Ertelt, Small, Solodkin, Dettmers, McNamara, 

Binkofski, & Buccino (2007) used observation rehabilitation therapy in eight patients and 

showed increased brain motor area activity for eight weeks following the intervention. Using 

similar methods, it could be that patients with strength loss through a broken a bone or lost 

limb function following brain injury (e.g., see Karlsson, Nilsson, Sernbo, Redlund-Johnell, & 

Obrant, 1996; Bohannon & Andrews, 1998 respectively) might be able to regain muscle 

strength through observation. These data here suggest that observation of action force would 

increase the excitability of the brain motor areas and in doing so, would stimulate the 

(strength loss) muscles through brain to muscle connections. Therefore, observation may 

provide a useful tool to support physical exercise in strength gain rehabilitation. 

 



 

 

 

 

 

 

 

 

 

 

CHAPTER 3: 

EFFECT OF ACTION OBSERVATION BOUTS ON ACTION FORCE AND 

TAPPING DEXTERITY BEHAVIOURS 

The text and detail presented here exactly matches that of the submitted manuscript:  

Salama, I. M., Springgay, S., Woska, B., Edwards, M. G. (2011). Effect of Action 

Observation Bouts on Action Force and Tapping Dexterity Behaviours. Submitted to 

Brain and Cognition. 
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3.1 Abstract 

 

In a recent paper (Salama et al., 2011), I reported that the observation of grip force primed 

subsequent grip force responses and suggested that the positive effects could be used for 

neuropsychological strength rehabilitation of hemiparesis. In the present paper, I suggest that 

the typical observation-execution priming paradigm reported in the literature might be 

impractical for clinical use. Therefore, here I tested whether bouts of observation could also 

be used to prime subsequent force and tapping dexterity execution. The paper presents three 

experiments run on healthy control participants that measured force and tapping dexterity 

performance before and after action or control observation bouts. Overall, the data replicated 

our previous findings. In Experiment 3, observation of leg force significantly primed leg 

force execution, and in Experiments 1 and 2, observation of grip force compared to a control 

condition significantly primed dexterity. These data suggest that action bouts can be used to 

prime execution, a potentially better method for clinical applications. In the general 

discussion, I suggest how action observation could be used for rehabilitation in the clinical 

setting, and furthermore, suggest further experimental studies that could be investigated. 



Chapter 3 

45 

 

3.2 Introduction 

 

In a recent paper, I reported that the observation of action force could prime subsequent 

action force execution (Salama et al., 2011). In the study, eighteen participants were required 

to make grip force responses that were 50% of their own maximum ability immediately after 

watching a video clip of a grip force action. The observed stimuli consisted of grip force 

corresponding to 0%, 50% and 100% of the model‟s maximum force ability. The aim of the 

study was to determine whether the observation condition influenced the action response. The 

results showed evidence that the observation condition influenced both absolute (kg) and 

relative (%) force differences (i.e., the participant‟s response relative to their own 50% 

maximum force ability). These findings were consistent with other action priming data 

showing that the observation of action can moderate subsequent execution (see for example 

Brass et al., 2000; Castiello et al., 2002; Dijkerman & Smit, 2007; Edwards et al., 2003; 

Gianelli et al., 2008; Griffiths & Tipper, 2009; Hardwick & Edwards, 2011). 

 

In the literature, it is suggested that the likely mechanism thought to allow for the prime 

effects is that of the Mirror Neuron System (MNS; including the premotor, motor and parietal 

brain areas; Buccino et al., 2001). That is to say that action observation causes automatic 

activation of the MNS (Gallese et al., 1996; Rizzolatti et al., 1996) and that this activation 

moderates subsequent activation during action execution planning processes (Edwards et al., 

2003). The two interesting points about Salama et al. (2011) was that firstly, it was the first 

paper to report that action observation priming could moderate force execution, suggesting 

that force of action must be represented during observation. Secondly, the data were 

consistent with neurosciences research showing that hand muscle Motor Evoked Potential 

(MEP) was increased from the combined presentation of action observation and primary 
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motor cortex Transcranial Magnetic Stimulation (TMS) (Alaerts et al., 2010a). MEP activity 

was increased for action observation relative to non-action control conditions, and 

furthermore, in correspondence with the force of the action observed (with greater force 

observation causing greater MEP activation). These data suggest that primary motor cortex 

excitability (increased through neural connections between the MNS and primary motor 

cortex; Fadiga et al., 1995) was moderated by observed action force, and thus supports the 

idea that the priming data reported by Salama et al. (2011) was likely caused by the same 

underlying neural activity. 

 

In the action priming literature, there has been a tendency to suggest that the findings could 

be applied and used for rehabilitation. For example, in Salama et al. (2011), I suggested that 

the findings could be used to increase strength (or action force) in patients with limb strength 

(or action force) loss (e.g., with hemiparesis; reduced limb function as a consequence of 

contra-lateral brain damage). However, there have been relatively few papers that have 

investigated the use of action observation in the clinical rehabilitation sciences (see Celnik, 

Webster, Glasser, & Cohen, 2008; Ertelt et al., 2007; Iacoboni & Mazziotta, 2007; Pomeroy, 

Clark, Miller, Baron, Markus, & Tallis, 2005 for examples). I considered that one reason for 

a lack of investigation might have been a consequence of the perceived impracticability of 

using the prime effects. That is to say that the action prime effects reported in the 

experimental psychological sciences literature have been conducted over short time periods, 

with for example the observation prime condition presented for approximately five seconds 

before the measured execution response. In the clinical setting, it may be that presenting an 

observation condition immediately before having the participant perform a rehabilitation 

exercise might be difficult and costly if video stimuli were to be used requiring a computer 

for their presentation.   



Chapter 3 

47 

 

In the present study, I measured the effects of observation bouts (lasting approximately 12 

minutes) on subsequent execution responses. The principle of the experiment was the same as 

that in Salama et al. (2011) in that I tested whether the observation of action brought about 

changes in action execution force. A pre-observation assessment was followed by an 

observation bout (observation of force actions vs. observation of a control condition) and then 

a post-observation assessment was conducted. The hypothesis was that observation of force 

actions would moderate performance after observation relative to before, and also relative to 

the observation of the control stimuli. The rationale for carrying out the study was to test 

whether bouts of observation also lead to priming effects. If I could show this, I considered 

that the findings might be more useful or practical to the clinical rehabilitation sciences. In 

addition to testing grip force (as in Salama et al., 2011), I extend the present paper by testing 

single-button tapping (Experiment 1) and two-button reach tapping hand dexterity 

(Experiment 2), and also leg force (Experiment 3) dependent measures.  

 

 

3.3 Experiment 1: Handgrip force and single-button tapping dexterity 

 

 

3.3.1 Methods 

 

3.3.1.1 Participants 

Ten undergraduate students (5 male) aged 20-32 (mean: 26) years of age took part in the 

study. All participants were right-handed, had normal or corrected-to-normal vision, had no 

experience of strength (action force) training, and were naïve to the purpose of the study. The 

School of Sport and Exercise Sciences, University of Birmingham Ethics Committee 

approved the methods used in the study. 
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3.3.1.2 Apparatus 

In Experiment 1, there were experimental and control observation stimuli. The experimental 

stimuli consisted of ball squeeze, wrist curl and shoulder fly force-based actions and the 

control stimuli consisted of a moving tennis ball, mug and dumbbell object (with no body 

part or action presented). The experimental stimuli were filmed using a high definition digital 

camcorder positioned on a tripod approx 1.5m away from the model and 1.5m high. Two 

right-handed postgraduate volunteers from the University of Birmingham (one female and 

one male) that were not associated with the study acted as models. Each model performed the 

three different movement actions. For the ball squeeze and wrist curl actions, they were 

seated with their elbow against the lower part of the thigh to squeeze the tennis ball and to 

perform the wrist curl action, and when performing the shoulder fly, they were standing. 

Customising different animations to the control objects in PowerPoint made the control 

stimuli (13 slides were created with 13 different animations for each object).  See Figure 3.1b 

for example pictures of the stimuli.   

 

The experimental stimuli video clips were edited to only display the best thirty seconds of 

each action and each of the moving object presentations were created to last for thirty 

seconds. Stimuli were presented in blocks (i.e., experimental block consisted of ball squeeze, 

wrist curl and shoulder fly actions; and the control block consisted of an animated moving 

tennis ball, mug and dumbbell object). Within each block, each type of stimuli was repeated 

eight times, making twenty-four. These were presented in a random order and each block had 

an overall duration of twelve minutes. The experimental instructions and stimuli were 

presented using Windows Vista software on HP laptop with 15” monitor. They were 

presented using Media Player and PowerPoint presentation software.  
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The dependent measures used in Experiment 1 consisted of handgrip force and tapping speed 

dexterity. The participant‟s mean maximum handgrip force was recorded using a handgrip 

dynamometer (“Li” Lafayette Instrument Co. Lafayette Indiana 47903). To measure this, 

participants responded to the handgrip dynamometer for ten trials and the mean was 

calculated. Mean tapping dexterity was measured using Polhemus motion tracking equipment 

(200hz) and a tapping device constructed by the School of Sport and Exercise Sciences, 

University of Birmingham technical support services. The tapping device consisted of a 

square board (80cm x 80cm) made out of wood with 5 buttons (one central and four 

peripheral, 20cm apart; see Figure 3.1c). Tapping responses were measured by attaching one 

of the Polhemus motion tracking sensors to the back of the responding hand. Participants 

performed three trials where they tapped a single button (the closest button to the participant) 

for a period of 15 seconds. In this time, the number of taps was recorded by measuring the z-

plane movements of the motion tracked hand movements. The mean tapping response was 

calculated from the total number of taps in the three trials. 

 

3.3.1.3 Procedure 

At the beginning of the study, participants read an information sheet and completed a consent 

form. They were then asked to perform the pre-observation measures of grip force and 

tapping dexterity.  Following the pre-observation measures, participants were then seated 

60cm centrally in front of the computer screen and instructed to watch either the experimental 

or control video clips (counterbalanced) for twelve minutes. Following observation, they 

were then tested for force and tapping dexterity using the same dependent measures as those 

used in the pre-observation condition. A week later, the same measures were taken, but this 

time for the observation of the control or experimental stimuli (i.e., the counterbalanced 

condition) (see Figure 3.1a).   
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Figure 3.1: (a) Experimental design: Each participant carried out the experimental and 

control observation conditions, one week apart and with the order counterbalanced. (b) 

Independent measures were force versus control observation bouts presented for 12 minutes. 

The experimental condition consisted of repetitive force based actions involving a ball 

squeeze, wrist curl and shoulder fly, and in the control condition consisted of a non-action 

moving tennis ball, mug and dumbbell object. (c) Dependent measures were handgrip force 

and single button tapping dexterity. The button used was that which the hand is placed on. 

For each participant, the pre-observation dependent measure was subtracted from the post-

observation in order to quantify the change in individual performance. 
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3.3.1.4 Data Analyses 

The data were analysed using a repeated measures ANOVA. The independent variable was 

observation condition (Experimental vs. Control) and the dependent variables were the mean 

differences between pre- and post-observation for mean grip force and mean tapping 

dexterity. Therefore, a positive number would indicate an increase in force or tapping 

dexterity after observing the stimuli compared to that measured before observation. A three 

standard deviation from the mean confidence interval was used to remove any outlier data. 

This caused eight trials from 400 to be removed from maximum grip force and no trials from 

120 to be removed from the tapping dexterity measure. 

 

 

3.3.2 Results 

 

The participant on average made 73 tap responses in the 15s recorded period and produced an 

average handgrip force response of 29.2 kg. The analysis of variance for handgrip force 

responses showed no significant difference between conditions (F[1, 9] = 0.10, p=0.76). 

However, analysis of tapping dexterity showed that the experimental compared to control 

observation significantly influenced subsequent tapping dexterity (F[1,9] = 9.4, p < 0.05). 

Participants on average tapped more following observation of the experimental compared to 

control stimuli (see Figure 3.2).   
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(a) 

 

 (b) 

 

Figure 3.2: Effects of experimental force-based versus control observation conditions on (a) 

handgrip force (kg) and (b) tapping dexterity (number) difference between post and pre 

measures. Error bars show standard deviation between participant responses. 
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3.3.3 Discussion 

 

In Experiment 1, I showed that the observation of experimental stimuli consisting of ball 

squeeze, wrist curl and shoulder fly actions caused participants show faster tapping dexterity 

responses in a single button tapping task compared to observation of non action control 

stimuli. These findings support the hypothesis that observation of the actions primed the 

motor system and lead to increased tapping dexterity. However, the data showed no effect of 

observation on the grip force response.  

 

In Experiment 2, I aimed to replicate these effects, but by measuring more participants and 

also by measuring tapping dexterity using a more complex (though still simple) dexterity 

measure involving reach tapping movements between two buttons involving rotation of the 

shoulder. 

 

 

3.4 Experiment 2: Handgrip force and two-button reach tapping hand dexterity 

 

 

3.4.1 Methods 

 

3.4.1.1 Participants 

Sixteen undergraduate students (8 male) aged 20-32 (mean: 26) year of age took part in the 

study. All participants were right-handed, had normal or corrected-to-normal vision, and had 

no experience of strength (action force) training. Some of the participants tested also took 

part in Experiment 1. The School of Sport and Exercise Sciences, University of Birmingham 

Ethics Committee approved the methods used in the study. 
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3.4.1.2 Apparatus, Procedure and Analysis 

The experimental instructions and stimuli used for the action observation conditions were the 

same as those used in Experiment 1 (experimental stimuli: ball squeeze, wrist curl and 

shoulder fly actions and control stimuli: moving tennis ball, mug and dumbbell object). The 

grip force response task was also the same as that in Experiment 1, and the tapping dexterity 

task was similar, except that the tapping responses were made between two buttons, 

positioned on the near versus far or left versus right buttons on the tapping apparatus 

presented in Figure 3.1c. 

 

As in Experiment 1, participants first read an information sheet and completed a consent 

form. Following this, they completed pre-observation measures of grip force and tapping 

dexterity responses using the same apparatus as that in Experiment 1. Grip force was 

recorded in the same way, but to test their tapping dexterity, participants performed six trials 

where they tapped between two buttons on two tasks (right and left / near and far) for 15 

seconds. The two buttons were 40cm apart from each other. As before, the tapping 

movements were recorded using Polhemus motion tracking equipment.  Following the pre-

observation measures, participants were then seated 60cm centrally in front of the computer 

screen and instructed to watch either the experimental or control video clips (counterbalanced 

with a week apart; each lasted twelve minutes). Following observation, they were then tested 

for force and tapping dexterity using the same dependent measures as those used in the pre-

observation condition. One week later, the same measures were taken, but this time for the 

observation of the control (or experimental; counterbalanced) stimuli.   

 

Data were analysed using a repeated measures ANOVA. The dependent variables were the 

mean differences between pre- and post-observation for grip force and tapping dexterity. For 
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both dependent measures, the independent variable was observation condition (experimental 

vs. control), and in addition, for tapping dexterity, there was an independent variable of task 

(right and left / near and far). Data that were outside of a three standard deviations from the 

mean were deleted. This caused one trial from 384 trials to be removed from the tapping 

dexterity measure and one trial from 640 trials to be removed from maximum grip force. 

 

 

3.4.2 Results 

 

The data showed similar findings to Experiment 1. Observation of force compared to control 

stimuli significantly influenced subsequent tapping dexterity measures (F[1,15] = 5.7, p < 

0.05). However, there was no effect of task (F[1,15] = 1.7, p = 0.22) (near-far vs. left-right) 

and no significant interaction on tapping dexterity (see Figure 3.3). For the analysis of hand 

grip response, there was again no significant effect of condition (F[1, 15] = 0.0, p = 0.95) 

(experimental observation = -0.51kg vs. control observation = -0.56kg). 
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Figure 3.3:  Effects of experimental force-based versus control observation conditions on 

reach tapping dexterity. The dependant measure was the difference between post and pre 

measures. There was no significant difference between task or any interaction between 

observation condition and task. Error bars show standard deviation between participant 

responses. 

 

 

3.4.3 Discussion 

 

These data in Experiment 2 replicated the findings presented in Experiment 1. Observation of 

the force-based stimuli compared to that of control stimuli caused an increase in tapping 

dexterity. The data from Experiment 2 were interesting as the findings extended to 

movements that required spatial positioning of the hand between two buttons and involving 

rotation of the shoulder. However, as in Experiment 1, the data showed no effect of 

observation on grip force, despite more participants tested.  
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The null finding showing that observation of the experimental compared to control stimuli 

had no effect on grip force responses was in contrast to the findings reported by Salama et al. 

(2011). To explain the null effects, I suggest that there were some issues that could have 

caused the inconsistent results between the study conducted in Chapter 1 and Experiments 1 

& 2 of Chapter 3. One suggestion is that increased variance resulted from the use of force 

dynamometer between the pre- and post-observation measures. That is to say that in Salama 

et al. (2011), participants never removed their hand from the dynamometer during the 

experiment. In the experiments here, participants removed their hand from the dynamometer 

in between the two conditions. When considering this factor, I found that variance in peak 

grip force could be achieved by very slightly changing the hand posture distance between the 

fingers and palm of the hand on the tool (though still following the instructions to place the 

dynamometer in the palm of the hand, and the central sections of the digits on the bar of the 

dynamometer). Testing ourselves, I found that placing the bar in different positions of the 

central digit section resulted in different peak force responses. In the paper by Salama et al. 

(2011), this variation would have been limited as the participant always kept hold of the 

dynamometer and the analysis involved comparing relative differences in the grip force 

measure following a particular observation stimulus. A possible second reason for the null 

effect could have been caused by fatigue. In this chapter, participants were required to 

squeeze the dynamometer to the maximum of their ability, whereas in Chapter 2 participants 

were required to squeeze the dynamometer to 50% of their maximum ability. Therefore, for 

the ten trials before the observational conditions the muscle may have exhausted, and this 

could have affected the response following the observation. A final suggestion is that the 

participant‟s gender may have influenced the results. In Chapter 2, only females were tested, 

whereas in Chapter 3 mixed genders were tested.     
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In Experiment 3, I wanted to use a different experimental device that was available at the 

time of testing. Using a leg force dynamometer, I wanted to test whether it would be possible 

to achieve the force prime effect from bouts of observation. One of the reasons that I 

proposed to explain the null effects in Experiments 1 and 2 was that the amount of variance 

in the use of the handgrip dynamometer was too high. With the leg force dynamometer, 

participants pushed against the dynamometer and adjustments in posture appeared to have no 

influence on the force measure. Therefore, with the reduced variance in response measure, I 

now expected that observation of force stimuli would prime the force response. In addition, I 

also wanted to include a different control condition. In Experiments 1 and 2, the control 

condition involved observation of moving objects (without the presentation of a body part or 

action). Therefore, it could be that the priming was driven by generic observation of (any) 

action rather than specifically from the observation of upper-limb force based actions. In 

Experiment 3, participants observed both leg- and arm-based force actions. If generic action 

observation caused the tapping dexterity priming in Experiments 1 and 2, then both 

observation conditions would lead to a prime effect between the pre- and post-observation 

measures. However, if priming was based on specificity between the observed and executed 

actions, then observation of leg force actions should cause a greater prime effect than 

observation of arm force actions. 
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3.5 Experiment 3: Leg force responses 

 

3.5.1 Methods 

 

3.5.1.1 Participants 

Fourteen undergraduate students (4 male) aged 20-33 (mean age of 21.8 years) participated in 

the study. All participants were right-handed and had normal or corrected-to-normal vision. 

The School of Sport and Exercise Sciences, University of Birmingham Ethics Committee 

approved the methods used in the study. 

 

3.5.1.2 Apparatus, Procedure and Analysis 

The experimental instructions matched those used in Experiments 1 and 2. The stimuli 

consisted of two separate sets of combined videos arm or leg force actions made by both a 

female and male model. The stimuli were filmed in a similar way to that in Experiments 1 

and 2. The actions presented were exercises used by physiotherapists to improve strength (or 

action force) and were taken from the website (http://www.physiotools.com). These included 

for example, triceps dips and bicep curls for the arm exercises, and ankle raises and hopping 

for the leg exercises. For each or the exercises, the stimuli presented a series of repetitions. 

For each set, a total of fourteen clips were created and each lasted between 30 and 60 

seconds. The stimuli bouts were matched in length and both lasted for 15 minutes.  

 

The leg force responses were measured using a similar procedure to Experiments 1 and 2, 

though with a leg (rather than grip) force dynamometer. The participant was seated with their 

knee and the lower part of the front of the thigh positioned against a metal plate fixed to the 

dynamometer. The participant was required to use their thigh and leg flexors and extensors in 
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order to produce an upward force and push against the plate for five seconds. The force 

exerted was recorded from the dynamometer transducer using a computer and the Spike 5 

software programme (Cambridge Electronic Design). The peak force exerted during the five 

seconds was recorded. 

 

The design of the experiment and procedure was similar to that in Experiments 1 and 2, 

except that both observation conditions were ran in a single session. All participants started 

with a pre-observation condition where the participant performed six maximum force 

responses. Between each contraction, the participants were given a 30 second rest in which 

they were told to relax. Once this was recorded, half of the participants observed the 

experimental leg force stimuli and the other half of participants observed the control arm 

force stimuli (with participants selected randomly). Following observation, the participants 

performed another session of leg force measures (as in the pre-observation condition). 

Following these measures, the half of the participants that first observed the experimental leg 

force stimuli next observed the control arm force stimuli, and the half of participants that first 

observed the control arm force stimuli next observed the experimental leg force stimuli (that 

is, the observation conditions were counterbalanced). Following the second observation 

conditions, the participants again performed a session of leg force measures (as in the pre-

observation condition). 

 

The dependent measure was average maximum leg force (for the six trials) and the 

independent variable was condition (pre-observation, post leg force observation and post arm 

force observation). I chose to use the absolute force (measured in newtons) as a dependent 

variable so that I could determine whether the prime effects were a consequence of general 

action observation, whereby both observation conditions would show equal increases in force 



Chapter 3 

61 

 

responses compared to pre-observation, of whether the observation prime was specific, 

whereby only observation of leg force should prime the leg force dependent measure. The 

data were analysed using a single factorial repeated measures ANOVA. 

 

3.5.2 Results 

 

The analysis of the results now showed a significant effect of condition (F[2,26] = 5.3, p < 

0.05). Bonferroni Pairwise analyses showed that there were only significant differences 

between the observation of leg force condition and pre-observation baseline, and between the 

observation of leg force and observation of arm force. There was no difference between trials 

following observation of arm force compared to pre-observation baseline measure (p>0.05) 

(see Figure 3.4).  

 

 

Figure 3.4:  Effects of observing experimental leg force versus control arm force conditions 

on leg force responses compared to pre-observation baseline. Error bars show mean 

standard deviation within participant responses. 
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3.6 General Discussion 

 

In this study, I set out to replicate Salama et al. (2011) and show that the observation of force 

could prime executed force. However, instead of measuring action execution immediately 

after the presentation of a single stimulus, I wanted to test whether bouts of observation 

lasting several minutes would prime an execution session. In Salama et al. (2011), I 

suggested that the effects of observation on execution for force might be useful for strength 

rehabilitation in patients with peripheral (bone or muscle etc.) or central (brain) injury that 

leads to strength loss. However, in the present paper I suggested that for clinical practice, a 

bout of observation might be easier to administer in the clinic. In Experiment 3 here, I 

replicated Salama et al. (2011) supporting the possible use of observation for rehabilitation. 

In addition to replicating Salama et al. (2011), I also showed that the observation bouts 

brought about positive increases in simple tapping (Experiment 1) and reach tapping 

(Experiment 2) dexterous actions. These additional findings further support the use of 

observation for rehabilitation improvements in function. 

 

Although the data reported in this paper overall showed positive effects, there was one 

limitation being that  I was unable to replicate the effects of force observation on grip force 

responses as reported in Salama et al. (2011). I suggest that the reason for the non-replication 

was because of increased variance in the measure caused by changes in the position by which 

the participant held the dynamometer in between the pre- and post-observation measures. In 

Experiment 3 however,  I was able to replicate the priming effect of force observation on 

execution. I suggested that the reason for the success of Experiment 3 was simply a 

consequence of the dynamometer being only able to be used in one way (thus no variance in 

positioning as with the handgrip dynamometer). Furthermore, the leg dynamometer measure 
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was recorded using computer software rather than requiring the participant to read an 

analogue dial as on the grip dynamometer. This provided a more accurate measure, as with a 

dial, when the needle arrived between two markings for a given response, the experimenter 

had to subjectively estimate or round the measure on the basis of the relative needle position 

between the two possible readings. On the basis of these two points, I suggest that in order to 

assess strength gain using similar methods to those used in the present paper, it would be 

advisable to use dynamometers that provide consistent, accurate, low variance measures.  

 

The primary aim of this research was to show that bouts of observation were able to prime 

subsequent execution in the same way that trial-by-trial stimulus-response methods can (e.g., 

Salama et al., 2011). I think that I have successfully demonstrated this as I showed that 

observation of upper limb force action relative to a control observation condition of moving 

objects primed simple and reach tapping dexterity (Experiments 1 and 2). I also showed that 

the effects were specific to the action observed. That is, in Experiment 3, priming of executed 

leg action only occurred following observation of leg force actions and not following 

observation of arm force actions, relative to a pre-observation measure. This latter result of 

specificity fits with the idea that the priming may come from mirror neuron system activity 

(Buccino et al., 2001; Gallese et al., 1996; Rizzolatti et al., 1996) and in turn moderates 

subsequent activation during action execution processes. This is consistent with evidence that 

MEP from TMS was moderated by the observation of force, and that there was specificity 

between the action observed and the MEP activity moderated (Alaerts et al., 2010a).  

 

On the basis of the data presented here, and that reported by Salama et al. (2011), I suggest 

that observation of action force could be applied to clinical rehabilitation. I suggest that the 

method might be particularly effective if embedded into current clinical practice. That is to 
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say that I suggest a bout of specific observation should be presented to injured participants 

prior to receiving exercise or physical therapy. Of course, I suggest that a logical next step of 

this research would be to evaluate multiple clinical cases whereby one group of participants 

receives standard clinical exercises used by for example the physiotherapy services, and the 

other group of participants receives a bout of observation prior to the same exercises. The 

evaluation will assess whether the participants that received the observation benefit more (or 

faster) from the exercises than the participants that did not receive the observation. 

 

In addition to the former suggestion, other research should consider how human mirror 

neuron system activity (assumed by measures of fMRI or TMS; e.g., Buccino et al., 2001 or 

Alaerts et al., 2010a), known to be active during observation of action, leads to priming after 

the observation conditions are complete. That is to say, how does the activity during 

observation lead to the prime effects reported here and in other published research (e.g., 

Brass et al., 2000; Castiello et al., 2002; Dijkerman & Smit, 2007; Edwards et al., 2003; 

Gianelli et al., 2008; Griffiths & Tipper, 2009; Hardwick & Edwards, 2011 etc). In order to 

assess this, measures need to be taken after observation, or at the time of execution. For 

example, does the mirror neuron system activity during observation remain active until 

execution? Or, is activity associated with action execution moderated by prior observation 

conditions? I suggest that future research should aim to answer these questions in order to 

better understand how action observation, or mirror neuron system processes can explain 

observation-execution priming. 
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4.1 Abstract 

In the literature, there is now overwhelming evidence that the observation of action can 

moderate or primes subsequent action execution. Evidence from the neurosciences has 

suggested that the observer‟s mirror neurone system, previously believed to be purely motor 

and involved in action planning, becomes active during action observation. It is suggested 

that representing observed action in the areas of the brain used for action planning might 

explain the priming effect, whereby the same areas of the brain represent the perception and 

action behaviours. From the findings already presented in this thesis (Chapters 2 and 3; see 

also Brass et al., 2000; Dijkerman & Smit, 2007; Edwards et al., 2003; Gianelli et al., 2008; 

Griffiths & Tipper, 2009; Salama et al., 2011; Salama et al., submitted), I might speculate 

that the observation of force-based actions compared to baseline and control actions also 

activates the mirror neuron system. In this Chapter 4, I fMRI scanned fifteen participants 

while they observed experimental stimuli involving arm and hand movements to heavy or 

light objects, or control stimuli involving non-action moving heavy or light objects. The 

results contrasted the brain activity between the observation of (experimental or control 

stimuli to) the heavy compared to light object. The results for observation of the experimental 

stimuli showed more significant activity in the Superior Frontal Gyrus (part of the mirror 

neurone system) and the Occipital Cortex when observing actions to the heavy than light 

objects. However, observation of the control stimuli only revealed significant differences in 

activity in the occipital cortex (and not in the mirror neurone system) for the observation of 

heavy compared to light moving objects. These data suggest that observation of force based 

actions specifically activated the mirror neurone system and supports the previous findings 

which suggest that mirror neurone activation during action observation might explain the 

mechanism behind the observation-execution priming effect reported in Chapters 2 and 3; 

(see also Salama et al., 2011; Salama et al., submitted).           
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4.2 Introduction 

 

In Chapters 2 and 3 of this thesis (see Salama et al., 2011; Salama et al., submitted), I showed 

that the observation of action force could prime subsequent execution force and tapping 

dexterity. As presented in these chapters, the effect replicates previous literature (see for 

example Edwards et al., 2003). The explanation typically provided to explain the mechanism 

for the priming comes from research on the human „mirror neurone system‟ (MNS). In these 

lines of research, the neuronal components of the MNS, previously assumed to be purely 

„motor‟ and involved in action planning processes, were described to also be active in 

perceiving and interpreting actions executed by other people. In the observation context, and 

more specifically, for the representation of force (when considering the current thesis), 

research has shown that the observer has a surprising degree of accuracy to perceive or 

interpret the observed action, with for example, them being able to accurately judge the 

weight of objects being lifted by others. Previous research has shown that this ability seems 

reliant on „mirror neuron system‟ activity, where for example, evaluation of the primary 

motor cortex excitability (part of the MNS) was shown to vary according to the observed 

force applied to an object in a grasping action (Alaerts et al., 2010a). That is to say that the 

motor cortex excitability was higher when observing actions made to heavy compared to light 

objects.  

 

 In Chapter 1 of the thesis, I have already provided a detailed review of the mirror neuron 

system. Therefore, here in Chapter 4, I only provide a review of the additional literature that 

have specifically explored the mirror neuron system for observation of strength or force 

actions. Currently, there are only several such papers that have explored how the observation 

of strength and force actions moderates perception and the mirror neuron system. In the first 
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papers, the focus was on how the observation of lifting actions moderated the perception of 

object mass (Runeson  & Frykholm, 1981; Shim & Carlton, 1997). Following and related to 

this, there has been two brain stimulation studies and one brain imaging study (Alaerts et al., 

2010a; Alaerts, Swinnen, & Wenderoth, 2010b; Hamilton, Wolpert, Frith, & Grafton, 2006 

respectively) that investigated how observed actions to objects of different masses influence 

perceptual judgements and brain activity. In the following section, I will provide more details 

about these studies. 

 

The paper by Shim and Carlton (1997) reported that observers could successfully perceive 

and identify the weight of an object being lifted by another person, simply from observing 

actions to a box object that contained a particular mass (5, 10, 15, 20 & 25 kg). The 

experiments used point light stimuli presentations. To make these stimuli, pieces of retro-

reflective tape were attached to the head and to the major joints of a model‟s body. A light 

source was then directed towards these markers and the reflected light recorded and filtered 

to show just the body movements. Using the point light display stimuli, the participants were 

required to estimate the weight of a box from observing actions made by a model. These 

actions included either just the observation of action velocity during the lifting phase, or the 

observation of action velocity during the lifting phase, and also the placement of the object on 

a table, and walking while carrying the object.  The data analyses showed that, although 

participants to some extent overestimated the weight inside the box, the estimated weight 

increased as a function of the increase in the actual lifted weight.  That is to say that there was 

a positive correlation between the perceived and the actual mass showing that participants 

were able to perceive the weight of the object inside the box from the observation of the 

lifting action. There were no interactions between the observed actions and the mass of the 

object. 
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To our knowledge, there has so far only been one published functional brain imaging study 

that has explored the brain components used during action observation and requiring a 

judgement of perceived object mass (Hamilton et al., 2006). The study measured the motor 

brain networks known to be involved in the perception of observed actions and tested their 

involvement specifically for weight perceptual judgements while the participant both 

observed and executed an action to no object, or light and heavy object weights. The study 

involved 19 participants and while in the brain scanner, they performed either an 

experimental perceptual weight judgment task or a control task. In the experimental judgment 

task, the participants viewed a hand lifting a small box containing either a light or heavy 

weight, and placing the box on a shelf. As in Shim and Carlton (1997), the participants were 

requested to judge the weight of the box. However, in addition and at the same time as 

observing the action, the participant also had to either do nothing, lift light box that weighed 

150g or lift a heavy box that weighed 750g. The boxes were plastic and compatible with the 

scanner (i.e., non-magnetic) and were placed on a platform above the subject‟s abdomen and 

chest. The control task involved two different conditions. These were, an animacy control 

where the participants were asked to judge the weight of a bouncing ball (with the absence of 

a biological effector) and a task control where the participants were asked to count the 

number of times a flickering square superimposed on a ball or a hand stimulus flickered. 

During the scans, the participants used their right hand to lift the object and their left hand to 

respond to the experimental or control task by pressing an appropriate key on a response box. 

As in standard brain imaging studies, the brain activity for the control tasks was subtracted 

from the brain activity of the experimental tasks. The main interest in the experimental task 

was to explore perception biases that resulted from the execution condition. A positive bias 

would indicate that participants judged the object to be heavier when lifting a light box or 

vice versa, whereas a negative bias would indicate that the participants judged the object to 
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be lighter when lifting a light box and vice versa. By contrasting brain activity for the bias 

effect, significant brain activity was found in the left extrastriate body area, inferior frontal 

gyrus and central Sulcus. Therefore, these data indicated that motor and perceptual processes 

for representation of weight appeared to be processed in similar brain networks, and were not 

as distinct or independent as was conventionally thought.   

 

The final papers that I review measured how primary motor cortex excitability was 

moderated by the observation of actions to objects of different weight (Alaerts et al., 2010a; 

Alaerts, Swinnen, & Wenderoth, 2010b). As presented in the introduction to this thesis 

(Chapter 1), Transcranial Magnetic Stimulation (TMS) provides a method to investigate 

moderations in mirror neuron system activity due to the close connectivity between the 

premotor and primary motor cortex (Fadiga et al., 2005; Hallett, 2007). Alaerts et al. (2010a, 

b) were the first to use this technique to explore whether primary motor cortex excitability 

could be moderated by observing actions to objects with different weights. As described in 

Chapter 1, both papers (Alaerts et al., 2010a, b) calibrated the TMS equipment for each 

participant so that a single pulse of TMS delivered to the participants scalp would result in 

stimulation of the primary motor cortex and short thumb muscle; measured using EMG (see 

Chapter 1 for a detailed description of the method). The short thumb muscle was selected as 

the muscle would normally be used in a pinch grip and the physical lifting of the object.  

 

In Alaerts et al. (2010a), two experiments were reported. In Experiment 1, eight participants 

observed an action made to an object that was either a light 10g piece of ribbon cable or a 

heavy 500g brass balance weight attached to the same ribbon. The actions always involved 

reaching to the object, grasping it, lifting it, holding it for a few seconds and returning it back 

to the initial location. Although the objects were of low frequency in everyday life, prior to 
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the experiment, each participant experienced grasping and lifting the objects. This reduced 

any potential effects that could have been related to unfamiliarity. During the experiment, 

TMS was applied during the observation of the lifting phase of action and EMG activity of 

the short thumb muscle recorded. The action to each object was presented 15 times, with the 

order of object presentation randomised. The results showed significantly higher MEP 

activity for observation of action to the heavy than light object, implying that primary motor 

cortex activation was greater during observation of the heavy than light objects. In the second 

experiment by Alaerts et al. (2010a), twelve participants were asked to observe actions made 

to objects that they had prior experience of interacting with and EMG activity was 

simultaneously recorded from the participant‟s opposition muscle of the right thumb and 

from the wrist flexors and extensor muscles (usually involved in power grip actions). The 

observed actions were presented in video clips lasting ten seconds each that depicted an actor 

lifting a bottle of three different weights (empty 0kg; half-full 1kg; and full 2kg). As in 

Experiment 1, a single pulse TMS paired to the recorded muscle activity was delivered 

during the observed lifting phase of action. EMG activity was contrasted for the independent 

variable of object weight in comparison to a baseline condition that recorded TMS-EMG 

activity during observation of a blank white screen without any action. The data showed 

significant MEP responses compared to baseline in the recorded muscles that would be 

actually involved in the action execution; the opposition and the extensor muscles, and not 

the flexor muscles. Moreover, the data showed increasing activity in correspondence to 

observing actions made to increased object weights (replicating their first experiment).  

 

These findings support the previous effects of action observation on TMS-EMG findings 

reported in the literature (Borroni, Montagna, Cerri, & Baldissera, 2005; Fadiga et al., 1995; 

Gangitano, Mottaghy, & Pascual-Leone, 2001; Shim & Carlton, 1997) and provide further 
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evidence that action observation leads to brain activity modulations that are highly specific 

and represent the muscles recruited in execution. In addition, and new in these data, the areas 

moderated by action observation were further moderated according to the force exerted in the 

observed actions, such that, the greater the force required to lift an object, the higher the 

primary motor cortex excitability.  

 

In a further paper reported by Alaerts et al. (2010b), they investigated the effects of the 

different effectors‟ and object related features that might contribute to an observer‟s ability to 

represent force in the observed actions. Three experiments were carried out. In the first 

experiment, the aim was to examine whether or not the kinematic motion pattern cues alone 

were sufficient to encode the exerted force related activity in the observer‟s motor system. 

The experiment presented participants with a video showing grasping and lifting movement 

kinematics to either a light or a heavy object, but the pressure and tension cues of the muscles 

contraction to the object were concealed. In the second experiment, the opposite video stimuli 

were presented. The stimuli instead presented pressure and tension cues to the object in the 

absence of the grasping and lifting kinematic pattern. In the final experiment, only the object 

(and any related weight cues) was presented to the participants (i.e., excluding kinematic and 

muscle state cues). Participants were asked to simply observe the presented stimuli. During 

the observation condition, single pulse TMS was delivered either during the lifting phase or 

during the holding phase (depending upon the experiment) and MEPs were recorded from the 

observer‟s muscles that match the actor‟s muscles being used in the observed actions.  The 

results showed that all of the presented cues caused a moderation in the recorded TMS 

provoked MEP measure, with lift kinematics, muscle contraction and the object presentation, 

and that higher response occurred for the cues associated to the heavier than lighter objects.  
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In the present thesis chapter, I wanted to use fMRI methods to investigate how observation of 

force based actions to light or heavy object weight moderated mirror neuron system activity. 

From the research reported by Alaerts et al. (2010 a, b), I hypothesised that moderation of the 

primary motor or premotor cortex would occur; the areas thought to be measured by the 

TMS-MEP method (see Chapter 1). In addition, with fMRI, I wanted to explore whether 

objects of light and heavy mass moderated other parts of the mirror neuron system. That is to 

say that it might be that the moderation in mass results in a change in BOLD activity in the 

parietal part of the mirror neuron system. This is because previous fMRI studies have 

suggested that the parietal lobe represents objects used in actions (e.g., Buccino et al., 2001). 

By using fMRI methods,  I was for the first time able to investigate whether manipulations in 

actions made to light and heavy object mass caused moderated BOLD activity across the 

mirror neuron system.  

 

 

4.3 Methods 

 

4.3.1 Participants 

The experiment tested fifteen postgraduate student participants and consisted of seven 

females and eight males, aged 20-30 (mean: 25) years of age. All of the participants were 

right-handed and had normal or corrected-to-normal vision. As part of the pre-testing 

protocol, participants were screened and excluded for any potential problems associated with 

MRI experimentation (e.g., whether the participants had any metal implants, tattoos, history 

of brain injury). Participants gave written informed consent prior to participation. The 

Birmingham University Imaging Centre Ethics Committee approved the methods used in the 

study. 
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4.3.2 FMRI data acquisition and pre-processing  

The fMRI data was obtained using a 3T Phillips Achieva scanner with an 8-channel SENSE 

parallel head coil. Images were acquired using a full-brain ascending gradient echo-planar 

T3* sequence (TR = 3000 ms; TE = 35 ms; FA = 85.3°; FOV = 240 x 240 mm
2
; Matrix = 80 

x 80; SENSE Factor = 2) and consisted of 156 slices of 3 mm thickness with no inter-slice 

gap. A block design was used and a total of 465 volumes (dynamics) in each session were 

collected. Two dummy scans were incorporated in each run to allow for steady state 

magnetization. High-resolution T1-weighted anatomical 3D images were also acquired to 

allow anatomical localization (TR = 8.4 ms; TE 3.8 ms; FOV = 288 x 232 mm
2
; Matrix = 288 

x 232; Voxel Dimension = 1.0 x 1.0 x 1.0) and consisted of 175 slices. Participants were 

instructed to keep their head still and head motion was minimized using the standard Philips 

head coil with ear pads. The data exported from the scanner were converted from PAR/REC 

(PAR= the text header file, REC= the binary file) or DICOM (Digital Imaging and 

Communications in Medicine) format to HDR (High Dynamic Range) format by use of 

MRICRO software and then to „Nifti‟ format (standard MRI analysis format) by use of FSL 

software. These „Nifti‟ files are usually compressed with gzip and stored as.nii.gz files.    

 

4.3.3 Data Processing 

The fMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 

5.98 that was part of the software package FSL (FMRIB's Software Library: 

www.fmrib.ox.ac.uk/fsl). The following pre-statistics processing were applied to the data: (i) 

motion correction using MCFLIRT (Motion Correction FMRIB's Linear Image Registration 

Tool) (Jenkinson, Bannister, Brady, & Smith, 2002); (ii) slice-timing correction using 

Fourier-space time-series phase-shifting; (iii) non-brain removal using BET (Brain Extraction 

Tool) (Smith, 2002); (iv) spatial smoothing by using a Gaussian kernel of 5 mm FWHM (Full 
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Width Half Maximum); (v) grand-mean intensity normalisation of all volumes by a single 

multiplicative factor; highpass temporal filtering (Gaussian-weighted least-squares straight 

line fitting, with sigma = 50.0s). Time-series statistical analysis was carried out using FILM 

(FMRIB's Improved Linear Model) with local autocorrelation correction (Woolrich, Ripley, 

Brady, & Smith, 2001).  

 

After preprocessing, the functional scans were registered to the MNI152 standard space 

(average T1 brain image constructed from 152 normal participants at the Montreal 

Neurological Institute, Montreal, QC, Canada) with FLIRT (Jenkinson et al., 2002). 

 

4.3.4 Experiment Design 

The experiment presented two types of observation stimuli, one that was experimental and 

one that was control. The experimental stimuli were strength-based actions that consisted of 

an arm curl, wrist curl or shoulder fly action. These actions were either made to a light or 

heavy object weight.  The control stimuli consisted of two moving objects, either a light chair 

or a heavy door. The experimental stimuli were filmed using a high definition digital 

camcorder positioned on a tripod approximately 1.5m away from a model and 1.5m high. A 

female right-handed postgraduate volunteer from the University of Birmingham that was not 

associated with the study acted as model. She performed the three different types of 

movement actions (arm curl, wrist curl and shoulder fly) using both her left and right hands. 

For each type of movement, she either lifted a bar with no weights on it (light object) or the 

bar with a 2.5 kg weight (heavy object). A total of twelve different video clips were recorded. 

For the wrist curl actions, the model was seated facing the camera and with her elbow against 

the lower part of the thigh. For the arm curl actions, the model was seated laterally with her 
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elbow apart from the thigh. Finally, for the shoulder fly, the model was standing laterally. See 

Figure 4.1 for example pictures from the video stimuli.  

 

The control stimuli consisting of chair and door movements were made by using different 

animation features available in the software Microsoft Power Point and saving the sequences 

as video clips. The chair and door were presented in two different orientations (left and right) 

making four different movements (see Figure 4.2). In addition to the experimental and 

control stimuli, a baseline condition of a fixation cross was also presented. All of the stimuli 

were produced to display for a total of thirty seconds. Stimuli were presented using E-prime 

software and were projected onto a screen within the scanner via a mirror fixed to the head 

coil. 
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Figure 4.1: Experimental stimuli.  Three panels of four pictures illustrate the wrist curl, arm 

curl and shoulder fly types of experimental observation stimuli. The left six pictures are 

examples of actions made with the light weight version of the object and the right six pictures 

are examples of actions made with the heavy weight version of the object. Within each pair of 

pictures (e.g., top left pair; wrist curl and light weight), a left and right hand version was 

created and the manner in which the movement was performed is illustrated by the extents in 

the range of motion with the left hand showing the beginning and the right hand showing the 

end of the movement. The top right pair shows the wrist curl and heavy weight using left and 

right hands. The middle left pair shows the arm curl and light weight and the middle right 

pair shows the arm curl and heavy weight. The bottom left pair shows the shoulder fly and 

the light weight and the bottom right pair shows the shoulder fly and the heavy weight. 
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Figure 4.2: Control stimuli. From left to right: chair with left orientation, chair with right 

orientation, door with left orientation and door with right orientation. The control stimuli 

were made by using different animation features available in the software Microsoft Power 

Point and saving the sequences as video clips. The dashed shapes with red and green arrows 

show some samples of different motion paths used (e.g. from left to right: spiral left, vertical 

figure of 8, heart and curvy right). 

 

The experimental and control sessions were run on different days and the order 

counterbalanced across participants. For each experimental or control session, the stimuli 

were presented in three trial blocks (also called runs in the brain imaging literature), and each 

block (or run) lasted for approximately 7.5 minutes (making an approximate total of 22.5 

minutes). For the experimental blocks (or runs), separate trials were presented that contained 

wrist curl, arm curl and shoulder fly actions (left vs. right and light vs. heavy), and in 

addition, three separate fixation cross video clips (each 30s long) were presented and used as 

base-line comparators. For the control blocks (or runs), the trials consisted of the moving 

door and chair (left vs. right orientation), and as in the experimental session, three separate 

fixation cross video clips (each 30s long). In both the experimental and control blocks (runs), 

the trial order was randomised. See Figure 4.3 and 4.4 for a schematic presentation of the 

experimental design used.  
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Figure 4.3: The figure provides an example of how the experimental stimuli were presented. 

They were three runs and each run consisted of wrist curl (W), arm curl (A), shoulder fly (S) 

action types [Left (L), Right (R), Light Mass (LM) and Heavy Mass (HM)] and three fixation 

cross video clips (Fix 1, Fix2 and Fix 3). Each video clip stimulus lasted for a duration of 

30s, and each total run lasted 7.5 min (with a total of 22.5 min for the three runs). Video clips 

were randomised in each run. 
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Figure 4.4: The figure provides an example of how the control stimuli were presented. They 

were three runs and each run consisted of chair (C) and door (D) action types [Left (L), 

Right (R)]. Within each run, each stimulus was repeated three times (1, 2 and 3). As in the 

experimental session, three fixation cross video clips (Fix 1, Fix2 and Fix 3) were included. 

Each video clip stimulus lasted for duration of 30s, and each total run lasted 7.5 min (with a 

total of 22.5 min for the three runs). Video clips were randomised in each run. 
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4.3.5 Data analyses 

 

A first level analysis was carried out individually on each run for each participant using 

FEAT (FMRI Expert Analysis Tool) Version 5.98, which was part of FSL (FMRIB's 

Software Library, www.fmrib.ox.ac.uk/fsl) and used to investigate the activity during the 

different experimental conditions. In this analysis, Z (Gaussianised T/F) statistic images were 

created using threshold clusters determined by a Z value greater than 2.3 for the significance 

p = 0.05 (Worsley, Liao, Aston, Petre, Duncan, Morales, & Evans, 2002). A second level 

analysis was then carried out using the same FEAT software and contrasts were combined for 

each participant in the first-level analyses. A final higher level analysis was carried out using 

FLAME stage 1 (FMRIB's local analysis of mixed effects) and used to compare the second 

level analysis across all participants for the different independent variables (Beckmann, 

Jenkinson, & Smith, 2003; Woolrich, 2008; Woolrich, Behrens, Smith, Jenkinson, & 

Beckmann, 2004). 

 

 

4.4 Results 

 

The experimental and control sessions of the experiment were analysed separately. For each, 

statistical mapping was first conducted for single subject analyses and then a random effect 

group analysis was run (one sample t-test). For the experimental stimuli, contrasts were made 

between the activations related to the experimental light object action stimuli relative to the 

experimental heavy object action stimuli (heavy – light activity). The data showed significant 

activations in the left hemiphere Superior Frontal Gyrus (SMA; part of mirror neuron 

system), Lingual Gyrus and the Frontal Pole. The data also showed significant bilateral 



Chapter 4 

82 

 

activations in the Lateral Occipital Gyrus, Occipital Fusiform Gyrus and Occipital Pole (see 

Figure 4.5). Peak maxima activity for MNI (Monterial Neurological Institute) coordinates 

and each of the Z scores for these areas are presented in Table 4.2.   

 

 

Figure 4.5: Brain areas that showed significantly increased activity for the contrast between 

observations of actions to heavy compared to light objects within the experimental condition. 

The left image illustrates the significant activation in the Superior Frontal Gyrus (SMA; part 

of MNS) and Frontal Pole. The right image shows the activation in the Occipital Lobe that 

included the lateral occipital gyrus, occipital pole, occipital fusiform gyrus and lingual 

gyrus. Each image shows from left to right: coronal, sagittal, and axial section of the brain 

(the appropriate planes and directions shown below the images). Functional images are 

overlaid on the average high-resolution scan transformed into standard (MNI152) space. 

Coordinates for these areas are presented in Table 4.1. 
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Table 4.1: Brain areas active for the contrast between observation of actions to the heavy 

and light object in the experimental stimuli. The areas selected are presented according to 

Harvard-Oxford Cortical Structural Atlas. The mark ‘*’ denotes bilateral activity. 

 

Area for Local Maxima 

MNI Z Score 

X Y Z  

[Heavy > Light] Left Hemisphere      

Superior Frontal Gyrus  -13 53 39 2.44 

Frontal Pole -27 61 6 4.73 

Lateral Occipital Cortex* -23 -90 -10 3.07 

Occipital Pole* -24 -91 -10 3.06 

Occipital Fusiform Gyrus* -24 -83 -10 3.61 

Lingual Gyrus -24 -82 -10 3.02 

[Heavy > Light] Right Hemisphere     

Lateral Occipital Cortex* 39 -88 -10 4.19 

Occipital Pole* 36 -91 -10 3.03 

Occipital Fusiform Gyrus* 34 -82 -10 3.10 

MNI: Montreal Neurological Institute.  

For the control stimuli, contrasts were made between the activations related to the 

observation of control stimuli involving the heavy door object stimuli relative to the light 

chair object stimuli.  Interestingly, the data did not show any activation in brain areas related 

to motor coordination, but rather only showed bilateral significant activation in the occipital 

lobe region, including the Lateral Occipital Gyrus, Occipital Pole, Occipital Fusiform Gyrus, 

and Lingual Gyrus. The data also showed significant activation in the left Intra-Calcarine and 
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Supra-Calcarine Gyri (also part of the occipital cortex) (see Figure 4.6). MNI coordinates and 

Z scores are presented in Table 4.2. 

 

 

 Figure 4.6: Brain areas that showed significantly greater activity for the contrast between 

observation of heavy (door) compared to light (chair) objects within the control condition. 

Activation only involved the Occipital Lobe. This included bilateral lateral occipital gyrus, 

occipital pole, occipital fusiform gyrus and lingual gyrus, and left intra-calcarine and supra 

calcarine gyri (parts of the occipital lobe). The image shows from left to right: coronal, 

sagittal, and axial section of the brain (the appropriate planes and directions shown below 

the images). Functional images are overlaid on an average high-resolution scan transformed 

into standard (MNI152) space. Coordinates for these regions are presented in Table 4.2. 
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Table 4.2: Brain areas active for the contrast between observation of the moving door 

compared to chair in control stimuli. The areas selected are presented according to Harvard-

Oxford Cortical Structural Atlas. The mark ‘*’ denotes bilateral activity. 

 

Area for Local Maxima 

MNI Z Score 

X Y Z  

[Chair > Door] Left Hemisphere      

Lateral Occipital Cortex* -28 -90 -3 4.65 

Occipital Pole* -18 -95 -2 4.67 

Occipital Fusiform Gyrus* -15 -95 1 3.96 

Lingual Gyrus* -16 -92 1 3.97 

Intra-Calcarine Cortex -15 -91 1 3.26 

Supra-Calcarine Cortex -15 -89 1 2.56 

[Chair > Door] Right Hemisphere     

Lateral Occipital Cortex* 41 -85 1 4.62 

Occipital Pole* 24 -97 3 3.93 

Occipital Fusiform Gyrus* 26 -87 3 4.00 

Lingual Gyrus* 19 -87 -8 3.24 

MNI: Montreal Neurological Institute. 
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4.5 Discussion 

 

The aim of the experiment reported here was to investigate, using fMRI methods, whether 

observation of force based actions would moderate mirror neuron system activity in 

comparison to a control condition. On the basis of the papers by Alaerts et al. (2010 a, b), I 

predicted that the observation of action to heavy compared to light objects would result in 

greater activity in the mirror neuron system. To carry out the experiment, I presented 

participants with video clips of actions made to heavy and light objects (experimental 

condition) or heavy and light objects moving without an action (control condition). To 

understand how the brain represented object weight, I contrasted brain activity between the 

heavy and light object video clips. The data showed a significant activity in the Superior 

Frontal Gyrus, Frontal Pole, and Occipital Cortex for the experimental action observation 

conditions, and Occipital Cortex for the control moving object conditions. Therefore, as 

hypothesised, these data showed some evidence that action observation to the heavy than 

light objects specifically involved the Superior Frontal Gyrus, an area reported by others as 

part of the mirror neuron system (Buccino et al., 2001; Buccino et al., 2004b; Cochin et al., 

1998; Decety et al., 1997; Grafton et al., 1996; Grezes et al., 2003; Johnson-Frey et al., 2003; 

Lui et al., 2008; Saygin et al., 2004).  

 

From these data, I might assume that either the Superior Frontal Gyrus or the Frontal Poles 

must specifically represent object weight for action. This is in contrast to the activations 

shown in the Occipital regions that were approximately common across the two types of 

stimuli. I suggest that this activation likely represents vision motion differences between the 

heavy and light stimuli that were not completely excluded in the subtraction between 

conditions, perhaps because the heavier object was usually visually larger than the light 
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object. While the finding that action observation to heavy than light weight activated the 

Superior Frontal Gyrus (SMA) of the mirror neuron system, the finding of significant Frontal 

Pole activity was unexpected. There is currently little understanding of what main function 

the Frontal Pole involves, with a variety of different functions suggested. However, one 

recent paper may shed some light on the finding presented here. Tsujimoto, Genovesio and 

Wise (2011) presented a literature review about the possible role of the Frontal Poles in 

behaviour and made the suggestion that the role was to monitor goal behaviour. Given this 

suggestion, it might be that the observation of the actions that I presented here may have 

triggered a goal representation, perhaps with the actions made to the heavier than light 

weights having a more purposeful goal; that is to exercise.  

 

Based on this discussion, it is perhaps „safe‟ to assume that the Superior Frontal Gyrus 

(SMA) activity may have been specifically responsible for object weight representations in 

action. This somewhat supports the research reported by Alaerts et al. (2010 a, b). One small 

problem was that I originally hypothesised that moderation of the primary motor excitability, 

as reported by Alaerts et al. (2010 a, b), was assumed to be a consequence of object weight 

being represented in the premotor cortex of the mirror neuron system. This assumption comes 

from the TMS-MEP literature that assumes the moderation in primary motor cortex 

excitability comes from premotor cortex activity (see Fadiga et al., 1995; also Chapter 1). 

However, these assumptions are difficult to prove with the TMS-MEP method, as there is no 

concurrent measure of brain activity taken. From the data presented in the current thesis, I 

suggest that the Superior Frontal Gyrus (SMA) activity must be responsible for moderating 

primary motor cortex in the TMS-MEP method, presumably through similar neural links 

between the Superior Frontal Gyrus and primary motor cortex. Using these same arguments, I 

might also assume that Superior Frontal Gyrus activity and subsequent moderations of 
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primary motor cortex excitability might explain the mechanism that causes observation of 

action force to influence subsequent force and tapping dexterity execution (Salama et al., 

2011; Salama et al., submitted; Chapters 2 and 3). 

 

One limitation of these data, and indeed similar research reported in the literature, is that the 

neural areas reported active for action observation typically come from experiments that 

measured brain activity concurrent to the observation stimuli (as in the present thesis). While 

this provides knowledge of how action observation is processed by the brain, it does not 

provide clear evidence of how the brain areas go on to influence subsequent neural processes, 

such as primary motor cortex excitability, or influence action behaviours, such as in the case 

of action priming. In order to measure which parts of the brain are used in the subsequent 

processes after action observation, it is necessary to scan the brain after the observation of 

action stimuli is complete. In the next chapter of this thesis (Chapter 5), I used a new 

technique of brain imaging analysis in order to assess how action observation influenced 

subsequent brain activity. 

 



 

 

 

 

 

 

 

 

 

CHAPTER 5: 

DOES OBSERVATION OF ACTIONS COMPARED TO MOVING OBJECTS 

MODULATE BRAIN RESTING-STATE ACTIVITY? 
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5.1 Abstract 

 

There is substantial evidence reported in the literature showing that the observation of action 

activates areas of the brain associated with the mirror neuron system (the same brain areas 

used for execution) and also that action observation primes action execution. The two 

findings are hypothetically linked, with the suggestion that action priming occurs because of 

the shared neural processes for action observation and execution. However, so far, no study 

has investigated how brain activity during observation primes brain activity associated with 

execution. In the thesis chapter reported here, I investigated brain resting activity following 

an observational task in order to investigate how action observation influences brain activity 

after the observation condition ceases. Fifteen participants were scanned immediately before 

and after being exposed to observational stimuli that either included hand and arm strength 

based movements or control stimuli of moving objects. The data revealed that activity 

following action observational stimuli compared to baseline (pre-observation) and control 

(post-observation) stimuli successfully yielded significant widespread fronto-parietal and 

motor area brain activations. Interestingly, the brain regions shown to be significantly active 

following exposure to the experimental stimuli included the mirror neuron system. I suggest 

that the ongoing brain activity following observational stimuli might serve as the mechanism 

that explains how brain activity during observation, subsequently influences other brain 

activity or executed action performance. 
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5.2 Introduction 

 

In the previous chapter of this thesis (Chapter 4), I reported that observation of actions to 

heavy compared to light objects moderated the observer‟s mirror neuron system brain 

activity, whereas there was no mirror neuron system activity in a control condition that 

involved the same participants observing moving (but non action) heavy compared to light 

objects. In the present chapter (Chapter 5), I again used brain-imaging measures, but this time 

examined brain activity during rest-states that were recorded immediately prior to and 

following observation of the same stimuli as that used in Chapter 4. The value of this 

measure was that I could evaluate how action observation influenced brain activity after the 

observation condition was complete, rather than during observation as presented in Chapter 4 

and in the literature. I argue that measuring rest-state activity or activity after the observation 

condition might provide value for understanding how action observation can prime 

subsequent action execution; perhaps providing new knowledge for what brain areas cause 

the findings presented in Chapters 2 and 3 of this thesis. 

 

The examination of rest-state activity in cognitive neuroscience or neuropsychology is a 

relatively new type of method. The measure involves assessing brain (BOLD fMRI) activity 

while the participant rests (i.e., representing the brain‟s baseline activity) and considers how 

former experiences in the absence of any immediate stimuli or performance influences the 

(resting) brain activity. Therefore, the measure involves recording brain activity while the 

participant is free to think about anything: the study, what they are going to do after the 

study, or something completely different. The only instruction is that they should keep their 

eyes open and look at a fixation cross presented on a visual display. Because of this freedom 

in possible activities that will be present during the recording, typically, long sessions of rest-
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state are measured in order to average across all of the different thoughts that a participant 

may have (all of which will use different parts of the brain). The end result is that the 

recorded rest-state period will contain a variety of activity, usually referred to as noise. The 

main aim is to analyse the noise in order to determine whether there are any particular brain 

areas of activity that are active throughout the recording, perhaps indicating a non-conscious 

or automatic behaviour influenced by the prior to rest-state activity. To analyse rest-state, 

correlated brain populations have been defined and called the „resting state network‟ 

(Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, & Beckmann, 2006). Using 

Probabilistic Independent Component Analysis (PICA), evaluations of fluctuations in activity 

within these correlated networks are considered in relation to an independent variable, and 

compared to noise and error (i.e., the activity caused by the variety of participants cognitive 

thoughts, or by artefacts such those that result from head motion or physiological and 

autonomic changes; e.g., cardiac pulsations or respiratory cycle etc.) (Damoiseaux, et al. 

2006; Hutchison, Leung, Mirsattari, Gati, Menon, & Everling, 2011; De Luca, Beckmann, 

Stefano, Matthews, & Smith, 2006).   

 

In this chapter, I present the first research that has considered how action observation 

moderates rest-state activity. While there has been other papers that have used and examined 

the functional activity during the brain resting state (e.g., Albert, Robertson, & Miall, 2009; 

Biswal, Yetkin, Haughton, & Hyde, 1995; Damoiseaux et al., 2006; Krakauer & Shadmehr, 

2006; De Luca et al., 2006; Miall & Robertson, 2006; Shadmehr & Holcomb, 1997 etc.), only 

one paper by Albert et al. (2009) has considered how visuomotor learning processes might 

moderate rest-state activity. I therefore provide a detailed review of this specific paper. 
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In the study carried out by Albert et al. (2009), two groups of participants completed a 

sensory-motor tracking task where the participant adapted joystick movements to a novel 

cursor position presented on a computer screen. The two groups consisted of an experimental 

and a control group. The experimental group performed the sensory-motor task without any 

explicit feedback, whereas the control group did receive explicit feedback. The difference 

therefore between the two groups of participants was that the experimental group experienced 

visuomotor learning whereas the control group learned the movements through instructional 

feedback. Both task groups under-went a resting state measure before completing the tasks, 

and later, under-went a second resting state measure after completing the tasks. Using 

Probabilistic Independent Components Analysis (PICA) of the BOLD signal, the authors 

were able to explore the networks involved during rest, and to measure changes in these 

neural networks for the after compared to before rest-state activity, as well as comparing the 

differences between the experimental and control groups. The analyses of data demonstrated 

that the experimental group, but not the control group had moderations in particular resting 

state areas. These were the frontoparietal and cerebellar networks; areas commonly active 

during the execution of actions (Damoiseaux et al., 2006). These data were the first to show 

that motor learning could be measured after the physical practice event. In measuring the 

„resting brain‟, it was suggested that activity in the motor networks likely reflected neuronal 

connections of off-line automatic (or non-conscious) motor memory consolidation.  

 

The findings by Albert et al. (2009) are particularly interesting to the current thesis in that the 

same measures could be used to determine how activity during the observation of action 

influences brain activity after the observation, and furthermore, whether rest-state activity can 

appear to explain the priming effects of observation on subsequent execution (Edwards et al., 

2003; Salama et al., 2011; Salama et al., submitted; see Chapters 2 & 3). From existing 
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literature, I know that the observation of action activates the mirror neuron system (involving 

the Inferior Parietal Lobule, the premotor cortex and the Superior Frontal Gyrus; Buccino et 

al., 2001; Buccino et al., 2004b; Grezes et al., 2003; Lui et al., 2008; Rizzolatti & Craighero, 

2004). However, these data only measure (assumed
 3

) concurrent activity between 

observation and execution. For the prime effect, presumably, this activity must continue 

following the observation in order to influence motor planning processes for execution. Until 

now however, this hypothesis has not been explored.  

 

In the present study, I wanted to replicate and extend the research by Albert et al. (2009) by, 

for the first time, measuring the effects that action observation has on resting state motor 

networks.  I suggest that ongoing activity in the networks that overlap with the mirror neuron 

system, after compared to before the experimental observational task, the activity could be 

used to explain a possible mechanism behind the priming and motor planning for subsequent 

execution reported in Chapters 2 and 3. Based on Albert et al. (2009), I hypothesised that 

watching force based actions (experimental condition) would bring about more brain 

excitability in the motor area resting state networks compared to the pre-observation rest 

period (baseline condition) and also in comparison to changes between pre- and post-

observation of watching (non-action) moving objects (control condition).     

 

 

 

 

 

                                                 
3
 We say „assumed‟ because it can be difficult to accurately measure the concurrent activity 

between observation and execution as there is a delay in the BOLD (composite) measure that 

doesn‟t start simultaneously with the neuron activity.    
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5.3 Methods 

 

5.3.1 Participants 

The experiment tested the same fifteen postgraduate student participants as that reported in 

Chapter 4 (seven female and eight male participants, aged 20-30, mean 25 years of age). All 

of the participants were right-handed and had normal or corrected-to-normal vision. Prior to 

the experiment, the participants were screened and excluded for any contraindications (e.g., 

metal implants, tattoos, history of brain injury etc). Participants gave written informed 

consent prior to participation. The Birmingham University Imaging Centre Ethics Committee 

approved the methods used in the study. 

 

5.3.2 FMRI data acquisition and pre-processing  

The fMRI data was obtained using a 3T Phillips Achieva MRI scanner with an 8-channel 

SENSE parallel head coil. Images were acquired using a full-brain ascending gradient echo-

planar T3* sequence (TR = 3000 ms; TE = 35 ms; FA = 85.3°; FOV = 240 x 240 mm
2
; 

Matrix = 80 x 80; SENSE Factor = 2) and consisted of 260 slices of 3 mm thickness with no 

inter-slice gap. A block design was used and a total of 707 volumes (dynamics) in each 

session were collected. Two dummy scans were incorporated in each run to allow for steady 

state magnetization. High-resolution T1-weighted anatomical 3D images were also acquired 

to allow anatomical localization (TR = 8.4 ms; TE = 3.8 ms; FOV = 288 x 232 mm
2
; Matrix 

= 288 x 232; Voxel Dimension = 1.0 x 1.0 x 1.0) and consisted of 175 slices. Participants 

were instructed to keep their head still and head motion was minimized using the standard 

Philips head coil with ear pads. The data exported from the scanner were converted from 

PAR/REC (PAR =  the text header file, REC = the binary file) or DICOM (Digital Imaging 

and Communications in Medicine) format to HDR (High Dynamic Range) format by using 
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MRICRO software and then to „Niftii‟ format (standard MRI analysis format) by using FSL 

software. These „Nifti‟ files are usually compressed with gzip and stored as .nii.gz files.    

 

5.3.3 Data processing  

Analysis was carried out using Probabilistic Independent Component Analysis (PICA) 

(Beckmann & Smith, 2004; Beckmann, DeLuca, Devlin, & Smith, 2005) and implemented 

using the software MELODIC version 3.10 (Multivariate Exploratory Linear optimized 

Decomposition into Independent Components; part of FSL FMRIB's Software Library: 

www.fmrib.ox.ac.uk/fsl). The following pre-statistics processing was applied: (i) motion 

correction was carried out using MCFLIRT  (Motion Correction FMRIB's Linear Image 

Registration Tool) to remove any effects of participants moving their head during scanning 

(Jenkinson et al., 2002); (ii) slice-timing correction using Fourier-space time-series phase-

shifting; (iii) spatial smoothing by using a Gaussian kernel of 5 mm FWHM (Full Width Half 

Maximum); (iv) removal of the non brain structures by using BET (Brain Extraction Tool) 

(Smith, 2002); (v) Intensity normalisation of all volumes by using grand-mean scaling, high-

pass temporal filtering.  

 

After preprocessing, the functional scans were registered to the MNI152 standard space 

(average T1 brain image constructed from 152 normal participants at the Montreal 

Neurological Institute, Montreal, QC, Canada) by using FLIRT (Jenkinson et al., 2002). 

 

5.3.4 Experiment Design 

The experiment consisted of two types of observation stimuli; one that was experimental and 

one that was control. The experimental stimuli consisted of typical strength-based actions, 

including arm curl, wrist curl and shoulder fly actions, and were made to light and heavy 
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weighted objects.  The control stimuli consisted of two objects; a light chair and a heavy door 

that randomly moved around the screen (i.e., with no actions). The stimuli were the same 

stimuli as those reported in Chapter 4 (see Figure 5.2 and 5.3) and details of how the stimuli 

were created are presented in Chapter 4.  

 

The experimental and control stimuli were presented in separate sessions (as in Chapter 4). 

Within each type of stimuli presentation (i.e., experimental and control), there were three trial 

blocks whereby the specific type of stimuli was presented randomly in each trial block using 

E-prime software. The total time for the stimuli presentation of the three trial blocks was 

approximately 22.5 minutes (as described in Chapter 4). Immediately prior to and following 

the presentation of the stimuli (experimental or control), the participants participated in two 

rest phases. Each of the four rest periods (i.e., pre- vs. post-observation of the experimental or 

control stimuli) lasted for 360s. During these rest phases, participants were told to do nothing 

except for looking at a fixation cross that was projected onto a screen within the scanner via a 

mirror fixed to the head coil. The experimental and control sessions were run on different 

days, and the order of sessions was counterbalanced across the different participants tested 

(see Figure 5.1).  
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Figure 5.1: Experimental design. The experimental and control observation sessions were 

run on different days (A and B), and the order was counterbalanced across the different 

participants (AB vs. BA). Immediately before and after the observation stimuli were 

presented, the participants received two rest phases, a pre-observation and a post-

observation rest. 

 

5.3.5 Statistical analyses  

A modified version of the tensor-PICA approach was used for statistical analyses (Beckmann 

& Smith, 2005). This allowed for the definition of the resting state networks in order to 

measure changes in these networks between the pre-observation and post-observation rest 

phases, and to compare the differences between the experimental versus control observation 

conditions. A total of sixty individual data sets were acquired from fifteen participants and 

analysed. The four types of data sets were independently decomposed into groups of vectors 

that described signal variation in the spatial (maps), frequency (time-courses), and subject 

domain by optimising for non-Gaussian spatial source distributions using a fixed-point 

iteration technique (Beckmann & Smith, 2005; & Hyvärinen, 1999). Eighteen to twenty one 

dimensional subspaces (components) were determined and the number of these components 

was estimated using the Laplace approximation to the Bayesian evidence of the model order 

(Beckmann & Smith, 2004). Estimated Component maps were divided by the standard 
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deviation of the residual noise and thresholded by fitting a mixture model to the histogram of 

intensity values. Z (Gaussianised T/F) statistic images were thresholded at the alpha level of 

p = 0.05 (uncorrected). 

 

In the first part of the analyses, differences between the experimental and control sessions 

were contrasted for the pre-observation condition only. One problem with contrasting activity 

between the sessions was that any differences in activity might reflect different head 

positions in the scanner between the two different recorded sessions. Therefore, the purpose 

of this first analysis was simply to show that baseline pre-observation was roughly similar 

across the two separate sessions (for the same participants). In the main second part of the 

reported analyses, contrasts were made between the rest-state activations for post-observation 

compared to pre-observation of experimental and separately, the control stimuli (see Figure 

5.1). Differences between the experimental and control observation conditions was not 

analysed, but instead, subjectively compared. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

 

100 

 

 

Figure 5.2: Experimental stimuli.  Three panels of four pictures illustrate the wrist curl, arm 

curl and shoulder fly types of experimental observation stimuli. The left six pictures are 

examples of actions made with the light weight version of the object and the right six pictures 

are examples of actions made with the heavy weight version of the object. Within each pair of 

pictures (e.g., top left pair; wrist curl and light weight), a left and right hand version was 

created and the manner in which the movement was performed is illustrated by the extents in 

the range of motion with the left hand showing the beginning and the right hand showing the 

end of the movement. The top right pair shows the wrist curl and heavy weight using left and 

right hands. The middle left pair shows the arm curl and light weight and the middle right 

pair shows the arm curl and heavy weight. The bottom left pair shows the shoulder fly and 

the light weight and the bottom right pair shows the shoulder fly and the heavy weight. 
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Figure 5.3: Control stimuli. From left to right: chair with left orientation, chair with right 

orientation, door with left orientation and door with right orientation. The control stimuli 

were made by using different animation features available in the software Microsoft Power 

Point and saving the sequences as video clips. The dashed shapes with red and green arrows 

show some samples of different motion paths used (e.g. from left to right: spiral left, vertical 

figure of 8, curvy right and heart). 

 

 

5.4 Results 

 

In the first phase of the analyses, I compared the activity for the pre-observation rest states 

between the experimental and control observation conditions. A combined single PICA 

analysis was used with a between groups-contrast. The data showed that only one component 

from the 20 defined components had a significant variation between conditions F [2, 27] = 

3.67, p < 0.05. This involved brain stem and cerebellar activity (see Figure 5.4). As these 

contrasts considered activity for the same participants, pre-observation, but in different test 

sessions, it could be that the difference actually reflects noise or error due to differences in 

head position between scans or autonomic changes (e.g. cardiac cycle, respiration or 

cerebrospinal fluid fluctuation) on the different days tested. However, as a consequence of  
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this finding, any post-observation subjective differences between experimental and control 

activations for the brain stem and cerebellar activity may be considered with caution. None of 

the other nineteen defined components showed any significant differences between the 

experimental and control testing sessions (for pre-observation rest state).  

 

 

 

Figure 5.4: Significant activations for the contrast between pre-observation of the 

experimental and control stimuli. The image shows activation for brain stem and to certain 

extent bilateral cerebellar activity. Each image shows from left to right, the coronal, sagittal, 

and axial sections of the brain (the planes and directions shown below the images represent 

Anterior and Posterior, Superior and Inferior, and Left and Right). Functional images are 

overlaid on an average high-resolution scan transformed into standard (MNI152) space. The 

colour bar represents the z values of normal distribution significance (ranging from 4.0 to 

8.0). Note that the brain images are presented in the standard mirror format (i.e., the 

pictured left is the physical right side of the brain and vice versa). 
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In the second phase of analyses, I contrasted post-observation to pre-observation rest state 

activity for either the experimental or control conditions. For a combined single PICA 

analysis of the conditions, twenty-one components were identified. In the analysis of the 

experimental condition, four separate components showed a significant increase in activity 

between the post-observation compared to pre-observation (see Figures 5.5-5.8). However, 

analysis of the control condition showed no significant differences between the post-

observation compared to pre-observation phases. Interestingly, the significant components of 

the experimental condition showed increased BOLD signal activity post-observation 

compared to pre-observation in the motor and memory areas of the brain. 
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Figure 5.5: Component 1: Significant activations for the contrast between pre- and post-

observation of the experimental strength based actions (F [2, 27] = 16.64, p < 0.001). The 

images show increased activation for post-observation compared to pre-observation rest 

state in the following brain areas; right Frontal Pole (BA 46), right Supramarginal Gyrus, 

right Angular Gyrus, right Superior Parietal Lobule, right Lateral Occipital Cortex (BA 40), 

right Middle Frontal Gyrus, right Superior Frontal Gyrus (BA 6), right Inferior Frontal 

Gyrus, pars tringularis (Broca’s Area BA 44/45), right Paracingulate Gyrus (BA 46), right 

Cingulate Gyrus, posterior division, right Precuneous Cortex (BA 31) and the left Crus of the 

Cerebellum. Each image shows from left to right, the coronal, sagittal, and axial sections of 

the brain (the planes and directions shown below the images represent Anterior and 

Posterior, Superior and Inferior, and Left and Right). Functional images are overlaid on an 

average high-resolution scan transformed into standard (MNI152) space. The colour bar 

represents the Z values of normal distribution significance (ranging from 4.0 to 8.0). Note 

that the brain images are presented in the standard mirror format (i.e., the pictured left is the 

physical right side of the brain and vice versa).  
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Figure 5.6: Component 2: Significant activations for the contrast between pre- and post-

observation of the experimental strength based actions F [2, 27] = 7.42, p < 0.01. The 

images show increased activation for post-observation compared to pre-observation rest 

state in the following brain areas: bilateral Angular Gyrus, bilateral Supra Marginal Gyrus, 

posterior division, bilateral Lateral Occipital Cortex, superior division, bilateral Superior 

Temporal Gyrus, posterior division (BA 40), bilateral Inferior Frontal Gyrus, pars 

triangularis & pars opercularis, bilateral Frontal Orbital Cortex, bilateral Frontal 

Operculum Cortex (BA 44, 45, 47), left Premotor Cortex (BA6),left Primary Motor Cortex 

(BA4), left Corticospinal Tract & bilateral Cerebellar activity, posterior lobe, crus I & II. 

Each image shows from left to right, the coronal, sagittal, and axial sections of the brain (the 

planes and directions shown below the images represent Anterior and Posterior, Superior 

and Inferior, and Left and Right). Functional images are overlaid on an average high-

resolution scan transformed into standard (MNI152) space. The colour bar represents the z 

values of normal distribution significance (ranging from 4.0 to 8.0). Note that the brain 

images are presented in the standard mirror format (i.e., the pictured left is the physical right 

side of the brain and vice versa).   
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Figure 5.7: Component 3: Significant activations for the contrast between pre- and post-

observation of the experimental strength based actions F [2, 27] = 9.91, p < 0.001. The 

images show increased activation for post-observation compared to pre-observation rest 

state in the following brain areas: bilateral Central Opercular Cortex, bilateral Heschl's 

Gyrus (includes H1 and H2), bilateral Planum Polare, bilateral Planum Temporale (BA 

13/22), bilateral Precentral Gyrus, bilateral Juxtapositional Lobule Cortex (formerly 

Supplementary Motor Cortex), bilateral Cingulate Gyrus, posterior division & anterior 

division. Each image shows from left to right, the coronal, sagittal, and axial sections of the 

brain (the planes and directions shown below the images represent Anterior and Posterior, 

Superior and Inferior, and Left and Right). Functional images are overlaid on an average 

high-resolution scan transformed into standard (MNI152) space. The colour bar represents 

the z values of normal distribution significance (ranging from 4.0 to 8.0). Note that the brain 

images are presented in the standard mirror format (i.e., the pictured left is the physical right 

side of the brain and vice versa).  
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Figure 5.8: Component 4: Significant activations for the contrast between pre- and post-

observation of the experimental strength based actions F [2, 27] = 5.38, p < 0.05. The 

images show increased activation for post-observation compared to pre-observation rest 

state in the following brain areas: bilateral Callosal Body, left Lt Corticospinal Tract, and 

bilateral Superior Occipito-Frontal Fascicle. Each image shows from left to right, the 

coronal, sagittal, and axial sections of the brain (the planes and directions shown below the 

images represent Anterior and Posterior, Superior and Inferior, and Left and Right). 

Functional images are overlaid on an average high-resolution scan transformed into 

standard (MNI152) space. The colour bar represents the z values of normal distribution 

significance (ranging from 4.0 to 8.0). Note that the brain images are presented in the 

standard mirror format (i.e., the pictured left is the physical right side of the brain and vice 

versa). 
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5.5 Discussion 

 

In this chapter, I for the first time present an experiment that investigated how action 

observation moderates brain rest-state activity. I hypothesised that measuring resting brain 

activity following an action observational task might show prolonged activity from the same 

areas active during action observation, and perhaps provide a further understanding of how 

action observation leads to the priming of subsequent action execution; as I reported in 

Chapters 2 and 3 of this thesis. Using PICA analysis to measure the fluctuations in the BOLD 

signals of the resting brain following an action observation compared to before observation, 

and in contrast to observation of a control condition,  I was able to test the plausibility of our 

assumption. Interestingly, the data showed that the pattern of activation following 

observation of strength based action compared to before observation included several regions 

that were originally predicted by our hypothesis; namely the fronto-parietal regions that 

include the mirror neuron system. This was in contrast to observation of the control condition 

of non-action moving objects that did not show any differences in activity between the post- 

and pre-observation conditions (relative to noise / error).  

 

An interesting aspect of the components shown to be significantly active post-observation 

compared to pre-observation of the experimental strength based actions was that they 

encompassed the same brain areas which have been reported to be active concurrent to 

observing action (the mirror neurone system). In the data presented here, these areas of brain 

activity included the Superior Frontal Gyrus, premotor cortex (BA 6), Inferior Frontal Gyrus, 

pars tringularis (Broca‟s area BA 44/45), Primary Motor Cortex (BA 4) and the 

Supplementary Motor Cortex. These are the same areas shown by other studies to be active 

during action observation (see for example Buccino et al., 2001, 2004b; Cochin et al., 1998; 
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Decety et al., 1997; Grafton et al., 1996; Grezes et al., 2003; Johnson-Frey et al., 2003; Lui et 

al., 2008; Saygin et al., 2004). This suggests, as I hypothesised, that there appears to be a 

persistence of the activity in the observer‟s brain regions stemming from activity during 

observation of specifically relevant actions, and also following observation when the stimuli 

were no longer present.  

 

From these data, I suggest that the prolonged activity in the motor areas of the brain may 

plausibly provide a clue of how observation can prime subsequent action execution. The 

findings in this chapter are compatible with the data presented in Chapters 2 and 3 of this 

thesis (see also Salama et al., 2011; Salama et al., Submitted). These chapters showed that 

observation of force based actions compared to control observation conditions moderated 

executed force and tapping dexterity responses. Moreover, the data is consistent with other 

previous studies showing that action observation primes action execution (see for example, 

Brass et al., 2000; Castiello et al., 2002; Dijkerman & Smit, 2007; Edwards et al., 2003; 

Gianelli et al., 2008; Griffiths & Tipper, 2009).  

 

One point worth mentioning is that the compatibility between these data presented here and 

those presented in Chapter 3 are the most compatible. In Chapter 3, I presented used a similar 

design to that used here. Participants observed bouts of either experimental strength based 

actions or control non-strength based actions. Strength and tapping dexterity responses were 

measured pre- and post-observation, and the observation conditions were run on different 

days. The data in Chapter 3 (Salama et al., submitted) were the first to show that bouts of 

action observation could prime subsequent execution compared to the both the control 

condition and pre-observation measures. Here, the same observation resulted in mirror 
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neuron system activity following the action observation conditions, also compared to pre-

observation, and in subjective comparison to the control condition.  

 

A critical examination of the findings here in comparison to Chapter 2 (Salama et al., 2011) 

or the literature (e.g., Brass et al., 2000; Castiello et al., 2002; Dijkerman & Smit, 2007; 

Edwards et al., 2003; Gianelli et al., 2008; Griffiths & Tipper, 2009) might suggest the 

findings are not as informative as I suggest. That is to say that the single trial stimuli 

presented immediately before an action execution response, shown to moderate priming in 

Chapter 2 and the literature, may necessarily result in rest-state moderations. In fact, it would 

be extremely difficult and expensive to measure rest-state brain activity moderations from the 

presentation or observation of single trial stimuli. Instead, I suggest that future studies may 

attempt to include a block of rest (or no stimulus) after the presentation of observation stimuli 

in an fMRI event related design. That way, brain activity during and after the observation 

stimulus could be measured and compared. An alternative would be to measure primary 

motor cortex excitability using TMS and measure how excitability is moderated following the 

observation stimulus. On the basis of the current findings, I expect that there would be 

activity in the mirror neuron system that occurs immediately after the observation condition, 

and it is this activity that moderates subsequent action execution performance in the action 

priming literature (and also explaining the effects reported in Chapter 2). 

   

In the data presented in this chapter, I used a linear decomposition of the data sets using 

PICA analysis. The method aims to tease apart activity caused by the manipulation of an 

independent variable relative to noise. One problem with the approach is that it lacks the 

ability to include functional connectivity between brain networks that may show a nonlinear 

correlation (Friston, Mechelli, Turner, & Price, 2000). This could result errors in the 
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identification of brain networks selected for the investigation. In order to improve the 

identification of brain areas, I suggest that combined use of Electroencephalograpy (EEG) 

with fMRI techniques could add more temporal and spatial connectivity information in order 

to better understand the brain resting state activity (see for example Britz, Van De Ville, & 

Michel, 2010; Goldman, Stern, Jerome, Engel, & Cohen, 2002; Laufs, 2010; Martínez-

Montes, Valdés-Sosa, Miwakeichi, Goldman, & Cohen, 2004; Musso, Brinkmeyer, 

Mobascher, Warbrick, & Winterer, 2010). Developments in these types of analysis will 

provide more specificity to the exact areas and networks of the brain implicated by the 

intervention condition (i.e., stimuli presented prior to the recorded rest-state). 

 

Another limitation that makes this approach clinically impractical is that it can only currently 

measure the functional rest-state activity at group level and presently cannot consider the 

individual participant level. One of the main aims of this thesis was to determine whether 

observation of strength based actions could be used for clinical application to improve 

strength and tapping dexterity in patients with strength and dexterity loss, for example 

following stroke. In the research following this thesis, I hope to apply the findings of the 

thesis to clinical investigations. To do this, it may be useful to use similar methods to those 

reported here in this chapter, and determine how the effects of observation (or other 

interventions) influence the damaged brain rest state activity. In order to carry this out, 

modifications in the data analyses used will be required.  

 

Despite these limitations, these data presented here indicate a promising new area of 

investigation that considers how the brain areas active during action observation cause 

priming of action execution. On the basis of the correspondence between the methods 

presented in Chapter 3 and the current chapter (Chapter 5) of this thesis, and the findings of 



Chapter 5 

 

112 

 

Chapter 4, I suggest that action observation activates the mirror neuron system, and that once 

the observation event is complete, the mirror neuron system remains active and this activity 

moderates activity usually associated with planning and executing action. The behavioural 

effect of this moderated brain activity likely explains why action execution kinematics are 

moderated or primed by observation (e.g., Edwards et al. 2003). 
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6.1 Introduction 

 

The global aim of this thesis was to investigate whether the observation of action force would 

prime subsequent execution, and furthermore, how force observation would modulate the 

observer‟s brain activity, specifically in the mirror neuron system area, both during and after 

the observation condition. The studies presented in the four empirical chapters of this thesis 

showed that combining human recording studies with data acquired using experimental 

psychology and brain imaging methods can provide a more comprehensive understanding of 

how action observation modulates the observer‟s brain activity and executed motor 

performance. In the final chapter of this thesis, I will first review the data presented in the 

empirical chapters of this thesis (Chapter 2, 3, 4, and 5) in relation to key literature. 

Following this, I will summarise the limitations of the thesis, and particularly suggest specific 

issues that could have improved the experiments. In the final section of this chapter, I present 

plausible directions for future research.  

 

 

 

6.2 Summary of the Thesis Results 

 

In the literature, several behavioural studies have reported that action observation can prime 

subsequent execution (e.g., Brass et al., 2000; Castiello et al., 2002; Dijkerman & Smit, 2007; 

Edwards et al., 2003; Gianelli et al., 2008; Griffiths & Tipper, 2009; Hardwick et al 2011 

etc.). These studies have mainly focussed on how temporal or spatial details in the observed 

action influence subsequent action execution. However, so far in the literature, no studies 

have investigated how the observation of action force influences execution.  
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In the first empirical chapter of this thesis (Chapter 2), I for the first time investigated 

whether the observation of action force would prime subsequent action force execution. 

Participants were required to make responses of 50% of their maximum force ability 

immediately after observing stimuli depicting a model making force responses that were 

labelled baseline (no grip/no action; 0%), congruent grip (50%) or incongruent grip force 

(100% of a model‟s own maximum response). Both the observed and executed responses 

were made to a hand gip dynamometer and the procedure used matched other experiments 

reported in the literature (e.g., Edwards et al. 2003). The results from the experiment showed 

the participant response was significantly increased after they observed an incongruent 

(100%) force in comparison to the baseline (0%) or congruent (50%) force observation 

conditions. I argued that the reason for the increase was perhaps caused by greater primary 

motor cortex excitability following observation of the incongruent 100% force, relative to the 

baseline (0%) and congruent (50%) conditions. The rationale for this argument was based on 

findings showing that primary motor cortex excitability was increased during action 

observation (Fadiga et al., 1995) and furthermore, that observation of actions to heavy objects 

caused more primary motor cortex excitability than observation of actions to light objects 

(Alaerts et al., 2010). The finding that observed action force could prime force execution was 

particularly interesting as the effect occurred even though the participants had to make the 

same (trained) response throughout the experiment. In fact, I defined that a participant was 

trained when they were able to make a consistent train of responses without feedback that 

were within a 10% range of their 50% maximum force ability. Interestingly, the results of the 

experiment showed that participants continued to make responses within this margin, but that 

the responses were influenced by the observation conditions. I suggested that the reason for 

the modulation might have therefore been automatic or driven by a non-conscious neural 

mechanism. These findings and interpretation replicate the current literature showing that 
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action observation primes execution responses (e.g., Brass et al., 2000; Castiello et al., 2002; 

Dijkerman & Smit, 2007; Edwards et al., 2003; Gianelli et al., 2008; Griffiths & Tipper, 

2009; Hardwick et al 2011 etc.), but in addition, they extended the literature by showing 

priming for action force (see Salama et al., 2011).  

 

After running the research for Chapter 2, I immediately considered that these findings could 

be very useful for clinical research that uses action observation for neural rehabilitation. For 

all of the reported evidence that action observation influences execution, there are very few 

examples that have applied the effects to practice. For example, Ertelt et al. (2007) reported 

that eight patients showed significant increased brain motor area activity following an action 

observation intervention therapy. There have been very few papers that have replicated or 

continued the research, and an unpublished examination with neuropsychology clinical 

practice showed little use or knowledge of the potential therapy.  

 

I considered that the findings of Chapter 2 (Salama et al., 2011) could be particularly useful 

to regain muscle strength following strength loss through for example a broken bone 

(Karlsson et al., 1996) or limb function loss following brain injury (Bohannon & Andrews, 

1998). However, I first considered that a change to the paradigm might facilitate use of the 

effects in clinical practice. That is to say that I assumed that the poor uptake of using action 

observation priming in the clinical setting was because the conventional observation-

execution priming paradigms were based on trial-by-trial methodology that might be 

impractical for clinical use. That is to say that clinicians might find it difficult or too time 

consuming to present an action for the participant to observe immediately before asking the 

participant to perform an action exercise. In Chapter 3 I decided to extend the literature by 

evaluating whether bouts of action observation could also prime execution. The rationale for 
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this change was that if I could show observation bouts to prime execution, I would be in a 

position to propose that clinical practice could more easily use action observation priming for 

clinical rehabilitation. 

 

Chapter 3 investigated three experiments and tested the effects of observation on arm 

(Experiments 1 & 2) and leg force (Experiment 3) responses, and on simple (Experiment 1) 

and complex tapping dexterity (Experiment 2). For the effects of action observation on 

execution force, I was unable to replicate the findings of Chapter 2 showing that observation 

primed grip force responses. Rather than suggesting that the effect cast doubt on the previous 

finding, I provided a number of reasons to explain the null effect. One of these reasons 

included the way in which I recorded the grip force response. In changing the dependent 

measure to a more precise leg force measure, I was then able to replicate the findings of 

Chapter 2. Observations of leg strength actions were able to prime leg force responses in 

comparison to observation of arm force and pre-observation measures. The effects of action 

observation on subsequent tapping dexterity were clearer. The data showed that observation 

of action force primed both simple and complex tapping dexterity, showing significant 

increases in tapping speed dexterity relative to baseline or control conditions.  

 

The findings of Chapter 3 added to the literature on two dimensions. First of all, they showed 

that action observation priming also worked when the observation condition consisted of a 

long bout of trials followed by the execution (replicating Salama et al., 2011). Secondly, the 

observation force prime effects extended beyond priming the specific action observed. Action 

observation also primed tapping dexterity. For this last finding, I suggest that the priming of 

tapping dexterity was simply caused by a priming of execution force, and that with a greater 

force capacity, the participants were able to perform faster tapping dexterity responses.  
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The third empirical chapter of this thesis (Chapter 4) explored whether observation of force 

based actions compared to control condition would moderate mirror neuron system activity. 

Based on the data reported by Alaerts et al., (2010 a, b), I expected that observation of actions 

to heavy in comparison to light objects would elicit greater activity in the mirror neuron 

system. I fMRI scanned participants while they observed video clips of either experimental or 

control conditions. The experimental condition included hand and arm actions made to heavy 

or light objects and the control condition included non-action moving heavy or light objects 

with the absence of the effector. Within each condition, contrasts were made between the 

brain activity as a function of observation of heavy compared to light objects. The results 

showed that for the experimental condition, there was significant activity in the Superior 

Frontal Gyrus (SMA), Frontal Pole, and Occipital Cortex for observation of actions to heavy 

compared to light objects.  However, for the control condition, there was only significant 

activity in the Occipital Cortex. Therefore, as originally hypothesised, these findings showed 

that action observation of heavy compared to light objects moderated activity in the Superior 

Frontal Gyrus; an area reported by other researchers as part of the mirror neuron system 

(Buccino, et al., 2001; Buccino, et al., 2004b; Cochin, et al., 1998; Decety, et al., 1997; 

Grafton, et al., 1996; Grezes et al., 2003; Johnson-Frey, et al., 2003; Lui et al., 2008; Saygin 

et al., 2004). In the discussion of these data, I suggested that both the Superior Frontal Gyrus 

and the Frontal Poles might represent object weight during action observation and that 

activation of the Occipital Cortex across both experimental and control conditions was likely 

responsible for processing visual information. The finding that the Superior Frontal Gyrus 

(SMA) of the mirror neuron system was active for observation of actions to heavy compared 

to light mass was expected, the finding of significant activation in the Frontal Pole was 

unexpected. Currently there is limited understanding of what behaviour the Frontal Pole 

contributes to. One recent study by Tsujimoto et al., (2011) is that the Frontal Poles may be 
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used for monitoring goal behaviour. On the basis of this, I suggested that the goal of exercise 

may have caused observation of the actions to the heavier than light weights facilitating the 

Frontal Pole activity; the goal representation for interacting with heavy objects having a 

greater goal representation than that for interacting with lighter objects.  

 

The findings of Chapter 4 therefore supported Alaerts et al., (2010 a, b), and showed that the 

mirror neuron system, specifically the Superior Frontal Gyrus (SMA), was moderated by 

observation of action to the heavy than light object. These findings provided a possible 

mechanism to explain the priming effects reported in Chapters 2 and 3 (Salama et al., 2011; 

submitted). It could be suggested that observation of action force (or interaction with a heavy 

compared to light object) brought about increased mirror neuron activity, and that this 

activity influenced subsequent activity when planning to execute a force or dexterous action 

(for example as in Brass et al., 2000; Castiello et al., 2002; Dijkerman & Smit, 2007; 

Edwards et al., 2003; Gianelli et al., 2008; Griffiths & Tipper, 2009; Hardwick et al 2011 

etc.).  

 

While above I argue that data of Chapter 4 can be used to explain the prime effects findings 

of Chapters 2 and 3 (using a similar rationale as that presented in Edwards et al., 2003), one 

might argue that the rationale is incomplete. That is to say that the finding that action 

observation causes increased activity in the same areas of the brain known to be involved in 

action execution does not necessarily support the idea that action execution activity is 

facilitated by the action observation activity. It is not understood whether the activity during 

observation remains active until the time of execution planning. It might be that the activity 

during action observation immediately ceases once the action observation stimulus is 

complete. In Chapter 5, I tested this by measuring rest-state activity before and after 
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observation.  I predicted that there would be persistent activity in the same areas active during 

action observation. The observational conditions used were similar to those used in Chapter 

4. These were either „experimental‟ which included force based hand and arm actions or 

„control‟ which included moving objects. The same participants as those tested in Chapter 4 

took part in the experiment, and they were fMRI scanned immediately before and after 

observation of either the experimental or control stimuli. The experimental or control stimuli 

lasted for 22.5 minutes and each of the resting phases lasted for six minutes.  For the contrast 

between pre-observation of the experimental and control, the data showed that only one 

component from the 20 defined components had a significant variation between conditions. 

This involved brain stem and cerebellar activity. Contrasted activations for the post-

observation compared to pre-observation of experimental stimuli showed significant 

widespread fronto-parietal activity (regions associated with the mirror neuron system). 

Interestingly, these brain regions shown to be significantly active following observation of 

the experimental stimuli involve the same brain regions that were active during action 

observation findings reported in Chapter 4. and reported by other studies (see for example 

Buccino et al., 2001, 2004b; Cochin et al., 1998; Decety et al., 1997; Grafton et al., 1996; 

Grezes et al., 2003; Johnson-Frey et al., 2003; Lui et al., 2008; Saygin et al., 2004).   

 

From these data in Chapter 5, I suggested that the persistence of activity following action 

observation might provide an explanation of the mechanism behind this priming effect. I 

suggested that the ongoing activity following action observation might underlie the action 

priming effects reported in Chapters 2 and 3 (Salama et al., 2011, submitted). These finding 

are also compatible with the findings demonstrating that action observation priming can be 

used for clinical rehabilitation (Ertelt et al., 2007).  
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The data reported in the four chapters of this thesis full-filled the main thesis aim. That was to 

test whether the observation of action force would prime subsequent execution, and 

furthermore, how force observation would modulate the observer‟s brain activity, specifically 

in the mirror neuron system area, both during and after the observation condition. The data 

presented here showed that the observation of force actions primed executed force, tapping 

dexterity performance, brain activity and resting brain activity through activation of the 

mirror neuron system. In meeting these aims, the data represent new findings that support 

existing literature. In addition to this, I also demonstrated two new methods, one showing that 

bouts of observation can prime execution and one measuring brain activity after the stimulus 

has ceased and measuring brain activity that can influence execution planning processes. 

However, there are a number of aspects in the experimentation that I suggest could have been 

improved, or could be addressed in future experimentation. There are presented in the next 

section. 

 

 

6.3 Strengths and Limitations 

 

This thesis used both human recording (Chapters 2 and 3) and brain imaging (Chapters 4 and 

5) methods. The human recording tools, used in Chapters 2 and 3, provided data regarding 

participant motor responses as a function of the observed visual stimuli. This allowed to cost 

effectively acquire data with high level of spatial accuracy using accurate dynamometer and 

motion analysis equipment. However, the use of human recording tools alone would be 

unable to provide an understanding of the brain structures active while observing a specific 

motor stimulus. The brain imaging tools, used in Chapters 4 and 5, allowed for the 
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examination of the brain structures active during and after observation of similar stimuli to 

those used in Chapters 2 and 3. Together, the use of these complementary tools provides a 

robust and complete approach to meet the aims of the thesis, allowing for a higher 

opportunity to contrast and compare data acquired from human recording experiments in 

context with the brain imaging evidence underlying their design. However, there are number 

of unique limitations specific to each approach used in the thesis, and these are addressed 

below. 

 

In Chapter 2, I tested how the observation of grip force influenced executed grip force. There 

was one potential problem with the study. This was that I chose to present action force 

observation stimuli that depicted model force responses of 0%, 50% and 100% (no force, 

congruent to execution force and incongruent to execution force). The results showed that 

observation of the 100% incongruent force caused a greater execution force response. I 

assumed that the observation condition primed the increased execution force. However, it 

could be that the greater executed force was actually a consequence of the incongruent 

compared to congruent prime. If the effect was a consequence of incongruence alone leading 

to increased force execution, I might expect that observation of an incongruent 25% force 

may have also cause an increased execution force. Because of this, I suggested that future 

experiments should consider presenting a range of observation conditions (e.g., 0% no action; 

25% incongruent low force action; 50% congruent force action, and; 75% incongruent high 

force action; in relation to the executed force response).  

 

In Chapter 3, the main limitation has already been discussed and involved the use of the 

dynamometer before and after observation conditions. The data overall in Chapter 3 revealed 

positive effects, but there was one limitation regarding the use of the hand grip dynamometer 
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measuring tool. The problem with the tool was that a variance in the results was created as a 

function of changing the posture of the hand on the hand dynamometer before and after the 

observation conditions. I believe that the increased variance was the main reason for the non-

significance of the action observation prime effect. On the basis of this null finding, and to 

avoid this variance, in Experiment 3 of Chapter 3, I used a non-adjustable leg dynamometer. 

This enabled us to acquire the same type of data, but without increased variance. With this 

modification to the measure, the data became significant and replicated the findings of 

Chapter 2. From this experience, I recommend that future research should carefully select the 

strength measuring methods used to measure strength responses, either by using non-

adjustable strength measuring tools as those used in Experiment 3, or by keeping the 

participants hand on the hand grip dynamotor (as in Chapter 2).   

 

In Chapters 4 and 5, the methods used matched other similar experiments reported in the 

literature and both chapters presented new and original data. Apart from the expense 

limitation, the main limitation in these chapters was the appropriateness of the experimental 

stimuli in contrast to the control stimuli. In the case here, I presented video clips of strength 

based action observation in the experimental condition and contrasted brain activity resulting 

from the experimental conditions compared to brain activity resulting from the observation of 

moving objects. There are potentially two limitations with regard to the choice of stimuli 

used. The first is for the control stimuli. In brain imaging, the purpose of the control 

comparison condition is to remove brain activity that is active in the experimental, but not 

relevant to the hypothesis. In the thesis, the control stimuli were heavy and light moving 

objects. Our original aim was to remove brain activity associated with moving objects, which 

were not moved by actions. However, in hindsight, it could have been that other activities 

could have also been removed. For example, in Chapter 4, occipital activity was greater for 

the experimental heavy than light objects, which I argued to be a consequence of the visual 
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size of the objects moved. Similarly, I argued that the Frontal Pole activity in the 

experimental condition might have been caused by the actions to the heavy objects having 

more goal representation than the actions to the light objects. To control and remove both of 

these activations from the experimental data, it may have been better to have control stimuli 

that matched object size between the light and heavy objects, and also that contained goal 

presentations. It may have also been the case that these additional factors also influence the 

data in Chapter 5.  

The second limitation in Chapters 4 and 5 was that the experimental action observation 

conditions consisted of a range of different strength based actions. While I can say that in 

general, observation of strength based actions compared to the control conditions brought 

about the reported findings, it may be that only some of the observed actions exerted an 

influence. That is to say that there may have been some particular types or presentations of 

the action stimuli that caused a greater effect than the others. However, because of the 

experimental design and analysis methods used, I was unable to investigate whether this was 

the case. Future studies may attempt to determine what types of experimental action 

observation stimuli bring about the greater brain activation (prime) effect.  In the following 

section, summaries of additional possible future directions are presented (that exclude the 

points raised in this section).      

 

6.4 Future Directions 

 

As presented in the previous section, one of the strengths of this thesis was in the use of 

motion tracking, force recording and brain imaging measures in order to understand the 

effects of force or strength based action observation on execution. Based upon these studies 

and the findings revealed, there are several directions the future research could consider. In 
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this section of the General Discussion, two proposed direction themes will be presented. In 

the first direction theme, the methods of motion tracking and force recording measures will 

be considered. In the second direction theme, brain imaging measures will be discussed. Both 

themes consider the potential use of these approaches to examine whether the effects could be 

used for rehabilitation. The last part of the section will discuss this point in greater detail. 

 

6.4.1 Motion tracking and human recording approaches  

The findings reported in the first two empirical chapters of this thesis (Chapters 2 and 3) are 

compatible with the hypothesis that action observation primes action execution through 

activation of the mirror neuron system, and for the first time, for force based actions. These 

findings are novel and promising for clinical application to improve performance and muscle 

strength in patients that have strength loss. The same hypothesis could be further examined, 

through testing patients with either central or peripheral motor system abnormalities that 

cause muscle function loss or weakness, for example following stroke, motor neuron diseases 

(MND) or bone injury. Based upon the findings reported in Chapters 2 and 3, the patients 

could be either presented with force based actions or daily life motor actions (e.g. grasping, 

using tissues, eating or walking movements etc.) and then tested for the executed responses 

following the observation conditions compared to a baseline or control condition (like those 

used in the present thesis). Testing patients would provide the opportunity to investigate 

whether the reduced functioning muscles could also benefit from observation. If so, it would 

be expected that when observing force based actions or daily life actions, patients would 

respond faster following observation. The future study could extend either Chapter 2 or 3, 

though I suggest that using bouts of force or daily life action observation that the patients 

watch in their own convenience or before they undertake the active physiotherapy may be 

easier to manage than presenting individual stimuli prior to a single response. In addition to 
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this, future studies could consider the relative benefits of action observation versus physical 

(physiotherapy) practice, and versus a combined approach. I expect that using a combined 

observational and active intervention might give the better results in comparison to physical 

(physiotherapy) practice alone (Ertelt et al., 2007).   

 

 

6.4.2 Brain imaging approaches 

The vast majority of paradigms reviewed in the chapters of this thesis (Chapters 1-5) have 

tended to focus on investigating the general effects of action observation on the human mirror 

system. In Chapters 4 and 5, I explored the effects of action observation force (or strength) on 

the activity of the mirror neuron system during (in Chapter 4) and after (Chapter 5) 

participants were exposed to the experimental action observation and compared to control 

conditions. The data in Chapter 4 supported our original hypothesis in that it revealed a 

significant activity in the Superior Frontal Gyrus (SMA), previously defined to be a part of 

the mirror neuron system. The data in Chapter 5 supported these findings and further was 

revealed a significant activity in the mirror neuron system as well in other brain areas with 

motor significance. I suggest that future studies could test the influence of action observation 

on the activity of the mirror neuron system by exploring functions of the mirror system in 

patients with a likely impaired function of the mirror neuron system (e.g. after stroke 

particularly with Fronto-Parietal lesions). It might be that instigating the effects of action 

observation in these patients using either brain imaging or action priming methods may yield 

new knowledge about how specifically the mirror neuron system is involved in these 

behaviours.   
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6.4.3 Mirror Neurons and stroke rehabilitation 

 

One of the most common neurological deficits results from a stroke. Stroke is caused by 

disturbance in the blood supply to the brain and usually leads to a permanent loss of brain 

function and behaviour. In the case of a unilateral parietal / motor area lesion, this can cause 

partial paresis (often called hemiparesis), that reduces mobility and leads to a deterioration in 

muscle function in one or more limbs on one side of the body. As previously discussed in this 

chapter, there is plenty of evidence that action observation activates the observer‟s motor or 

mirror neuron system. Facilitation of the motor system during mere observation of actions is 

an extremely appealing mechanism for rehabilitation of motor functions (see e.g. Buccino et 

al., 2006; Celnik et al., 2008; Eng et al., 2007; Ertelt et al., 2007; Pomeroy et al., 2005). 

Exploring the function of the mirror neurone system particularly in stroke patients would 

provide further evidence regarding the plausibility of our original assumptions that 

observation could be harnessed as a rehabilitative approach in clinical settings.  

 

An example of the possibility of using observation as a rehabilitative tool was presented in an 

empirical study by Ertelt et al. (2007). This study was the first to use observation as a 

rehabilitative tool combined with active exercise. The study tested two groups of patients 

with motor disability caused by stroke. One group was the experimental group and they 

received physical training combined with observational stimuli that included daily life arm 

and hand actions. The other group was the control group. They received the same physical 

training, but the combined condition involved observation of sequences of geometric figures 

and letters. The data showed that in the experimental group, patients demonstrated a 

significant improvement of motor performance compared with the pre-intervention baseline 

and also the control group. In the same study, the authors used fMRI to examine the brain 

activity before and after treatments. Interestingly, the data showed a significantly higher 
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activity after treatment in the mirror neuron system. On the basis of these findings, they 

proposed that action observation lead to improvements in the patients that were beyond that 

which would normally result from current physical exercise conditions (e.g., physiotherapy). 

 

In addition to exploring the activity of the mirror neuron system in patients using behavioural 

action priming and fMRI (as in Ertelt et al., 2007), I propose that future studies should aim to 

analyse the effects that action observation on activity after the observation condition, and in 

rest-state. One current problem with measuring rest-state activity is that the analyses that use 

PICA (the tool used to analyse the resting brain activity) are currently only able to analyse 

group (or multiple participant) data. For clinical use, it could be more useful to explore the 

brain at an individual subject level instead as individual differences between the location of 

the brain injury may be critical. Therefore, I suggest that the future research could find a way 

where I can examine the resting state activity of the brain at an individual level.  
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6.5 Conclusion 

 

The central aim of this thesis was to investigate the influence of force based action 

observation on the subsequent action execution and to investigate the underlying mechanism 

behind the priming effect by measuring brain activity in correspondence to the observation 

conditions. The data showed that force based action observation was able to prime force and 

tapping dexterity execution, replicating previous findings in the literature. The thesis also 

found that observation of action force activated the mirror neuron system, concurrent to 

action observation and also following action observation. Together, these data support 

existing literature and suggest that action observation, through representations in the mirror 

neuron system, prime action execution processes. In this discussion, I have suggested some 

points about how the experiments in the current thesis could be improved in future studies, 

and I also propose that the thesis findings support the development of action observation for 

strength gain in patients that have strength loss. 
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LIST OF ACRONYMS AND ABBREVIATIONS 

 

ANOVA Analysis Of Variance, a collection of  models, which statistically test 

whether or not the averages of several data sets are all equal 

 

BA Brodmann Area, an area of the cerebral cortex defined based on its 

cytoarchitectural (histological) organisation of its neurons. A map of 52 

distinct brain areas were described by the German Neurologist 

„Korbinian Brodmann‟ 

 

BET Brain Extraction Tool, part of FSL, used for extracting brain from non-

brain structures in structural and functional data analysis 

 

BOLD Blood Oxygen Level Dependent, in magnetic resonance imaging, the 

hemodynamic changes measured by FMRI tool 

 

DICOM Digital Imaging and Communications in Medicine, a format in which 

FMRI data is acquired  

 

ETC Et Cetera, Latin expression which means „and so forth'  

EEG Electroencephalography, an approach for recording the electrical activity 

of the brain via multiple electrodes placed on the scalp. It has a 

widespread research based and clinical applications  

 

EMG Electromyography, an approach for recording the electrical activity of 

Muscle cells via electrodes placed on the skin covering the muscle being 

examined. It is used clinically to detect medical abnormalities or in 

research to examine the kinematics of human or animal movement   

 

ET AL „et alii‟ or „et aliae‟ or „et alia‟ a Latin expression which means „and the 

rest‟ 

 

FA Flip Angle, in magnetic resonance imaging, the degree of perturbation of 

the average axis of the protons produced by radiofrequency signals 

relative to the direction of the main static magnetic field.  

 

 

FEAT FMRI Expert Analysis Tool, part of FSL, used for FMRI data 

preprocessing and statistical analysis  

 

FILM FMRIB's Improved Linear Model, part of FSL, used for FMRI data first  

http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Mean
http://www.mondofacto.com/facts/dictionary?average
http://www.mondofacto.com/facts/dictionary?axis
http://www.mondofacto.com/facts/dictionary?protons
http://www.mondofacto.com/facts/dictionary?radiofrequency
http://www.mondofacto.com/facts/dictionary?signals
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level (time series) analysis with prewhitening 

FLAME  FMRIB's Local Analysis of Mixed Effects, part of FSL, used for FMRI 

data higher level analyses of multiple subjects/sessions 

 

FLIRT FMRIB's Linear Image Registration Tool, part of FSL, used for FMRI 

data linear inter-model and intra-modal registration 

 

FMRI Functional Magnetic Resonance Imaging, a neuroimaging approach for 

measuring the hemodynamic changes produced as a function of neural 

activity in the brain or spinal cord 

 

FMRIB  Oxford Centre for Functional Magnetic Resonance Imaging of the Brain  

FOV Field Of View, the size of the 2 or 3 dimensional spatial encoding area of 

an image. It is defined in units of MM². Therefore, the smaller the FOV, 

the smaller the voxel size and consequently the better the resolution  

 

FSL FMRIB's Software Library, a collective software package used for 

functional and structural brain imaging analysis  

 

FWHM Full Width Half Maximum, full width between half maximum values of a 

function 

 

HDR High Dynamic Range, a format in which FMRI data is acquired  

HZ Hertz, a frequency measuring unit which is equivalent to the number of 

cycles per second 

 

IFG Inferior Frontal Gyrus  

MCFLIRT Motion Correction FMRIB's Linear Image Registration Tool, part of 

FSL, used for motion correction of FMRI data as well as for linear inter-

model and intra-modal registration 

 

MEP Motor Evoked Potentials, changes in a muscle activity following 

stimulation either directly or through TMS 

 

MNI Montreal Neurological Institute   

MNI152  MNI152 template is a standard-space average of 152 brains  

MNS Mirror Neuron System, as brain system which has been shown to fire 

both when an individual executes an action and when they observe 

another individual executing an identical action. 

 

NIFTI Neuroimaging Informatics Technology Initiative, a format in which  

http://www.mr-tip.com/serv1.php?type=db1&dbs=Voxel
http://www.mr-tip.com/serv1.php?type=db1&dbs=Resolution
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FMRI data is acquired 

PAR/REC  PAR = the text header file, REC = the binary file, a format in which 

FMRI data is acquired 

 

PICA Probabilistic Independent Component Analysis, Part of FSL, used for 

FMRI data analysis and in particular of the brain resting activity 

 

SMA Supplementary Motor Area, an area located on the medial surface of the 

cerebral cortex just in front of primary motor cortex 

 

TE Echo Time, in magnetic resonance imaging, the time between the 

application of the 90° pulse and the peak of the echo signal in spin echo 

and inversion recovery pulse sequences. Usually defined in milliseconds 

 

TMS Transcranial Magnetic Stimulation, a noninvasive approach which uses 

electromagnetic induction to induce electric current and consequently 

facilitates motor cortex excitability allowing the function of the brain to 

be studied  

 

TR Repetition Time, in magnetic resonance imaging, the time between 

scanning consecutive brain volumes. Usually defined in milliseconds 

 

 

http://en.wikipedia.org/wiki/Primary_motor_cortex
http://www.mr-tip.com/serv1.php?type=db1&dbs=Peak
http://www.mr-tip.com/serv1.php?type=db1&dbs=Echo
http://www.mr-tip.com/serv1.php?type=db1&dbs=Spin%20Echo
http://www.mr-tip.com/serv1.php?type=db1&dbs=Inversion%20Recovery
http://www.mr-tip.com/serv1.php?type=db1&dbs=Sequences
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