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ABSTRACT 

The ability of bacteria to thrive in a variety of host environments depends on their capacity to 

sense and respond to a wide array of stressors. E. coli encounters many stresses during transit 

through the gastro-intestinal tract, including acid stress. Acid stress response in E. coli is 

regulated by a complex network called AR2. The AR2 network comprises several local 

regulators that collate signals from multiple two-component systems (TCS) including RcsBD, 

EvgAS and PhoPQ.  

 

We combined lab-based evolution and whole genome re-sequencing to generate and identify 

mutations that confer increased acid resistance in E. coli K-12. All of these mutations map in 

the gene encoding EvgS, the sensor kinase of the EvgAS TCS. Using a luciferase reporter 

system and phenotypic assays we characterised the nature of these evgS mutations and their 

contribution to acid resistance. We also used high-temporal resolution luciferase reporter 

assays to uncover novel aspects of this network and implicate PhoP in the repression of acid 

resistance. Finally, we used our evgS mutants to characterise novel interactions within the 

AR2 network between the two component systems RcsBD and EvgAS. These results are 

discussed in relation to the role of regulatory networks in bacteria. 
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1.1 Introduction 

Escherichia coli proliferates optimally in the mammalian gut. However, in order to reach its 

preferred niche E. coli must deal with a wide array of stresses. To cope with these stresses E. 

coli has many sophisticated stress response mechanisms. The diversion of resources to stress 

response mechanisms must be accurate in order for E. coli to remain competitive. 

Consequently, complex regulatory networks control these responses, which function to sense 

a particular stress and orchestrate an appropriate and measured response. We investigated the 

response of E. coli to acid stress. Our understanding of the regulatory networks that control 

acid stress response genes is discussed below.  

 

1.2. E. coli acid resistance 

E. coli is a member of the Enterobacteriaceae family that can colonise the gut of warm 

blooded mammals. Many E. coli strains are commensal and cause no harm to the host, in fact, 

E. coli supplies its host with vitamin K2 (Bentley et al., 1982). However, E. coli strains that 

contain virulence factors can become dangerous pathogens capable of causing severe illness. 

Micro-organisms that inhabit the pH neutral environment of the mammalian gut must first 

pass through the acidic environment of the stomach. The stomach can have a pH as low as 1.5 

during starvation (Smith, 2003). Despite the lack of any clear correlation between acid 

resistance and pathogenicity (Foster, 2004), acid resistance is a clinically important 

phenotype. This is because the greater an organism’s acid resistance, the lower the infective 

dose of that organism. For example, Shigella species can cause dysentery in healthy adults 

with a dose of 10 to 500 cells (Dupont et al., 1971), and between 25 and 100% of Shigella 

cells survive after 2 hours at pH 2.5 (Gorden and Small, 1993). In contrast, Salmonella 

species have an infective dose between 10
5
 and 10

8
 cells (Blaser and Newman, 1982), and less 
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than 0.001% of Salmonella cells survive after 2 hours at pH 2.5 (Gorden and Small, 1993). E. 

coli is also remarkably resistant to strong acid challenges and can survive pH 2.5 conditions 

for more than 2 hours (Foster, 2004). This level of acid resistance confers an infective dose 

ranging between 10 and 500 cells depending on the strain (Benjamin and Datta, 1995; Gorden 

and Small, 1993; Lin et al., 1995). Once in the gut, E. coli must also cope with acid shock 

from volatile fatty acids produced by fermentation. E. coli is considered to be a neutrophile 

and yet can withstand acid shock levels equivalent to acidophiles. These attributes are 

unusual, therefore E. coli resistance mechanisms are an interesting subject to research. 

 

1.2.1. Acid resistance mechanisms of E. coli 

In 1995, Lin et al. were the first to show evidence that E. coli could utilise amino acids to 

survive extreme acid stress (< pH 2.5). Bacteria grown to stationary phase, in pH 5 medium 

containing glucose, were very sensitive to acid shock in pH 2.5 minimal medium (Lin et al., 

1995). However, Lin et al. also observed that E. coli could survive significantly better when 

the acid shock medium was supplemented with the amino acids glutamate or arginine. 

Additionally, work by Lin et al. also showed that E. coli survived better when challenged in 

minimal medium without amino acids. This resistance was observed when cultures were 

grown in rich medium that was mildly acidic and lacking glucose. From these observations 

three acid resistance (AR) systems were defined: AR1 or oxidative acid resistance, the 

glutamate dependent (GAD) and arginine dependent (ADI) respectively (Lin et al., 1995). A 

fourth amino acid dependent system has also been characterised, which is dependent on lysine 

(CAD). However, CAD was found to be quite ineffective in enabling E. coli to survive 

extended periods of acid stress (Iyer et al., 2003). More recent work on CAD has indicated 
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that it has a more essential role helping the cell survive endogenous stress caused by 

phosphate starvation (Moreau, 2007).  

 

In extremely acidic conditions, the protection conferred by GAD was significantly higher than 

the protection conferred by other AR mechanisms (Lin et al., 1996). As a consequence of this 

superior protective capability, GAD is the most studied of the acid resistance systems (Lin et 

al., 1996). In addition to the amino acid dependent systems, which have been characterised in 

detail, genes located on an Acid fitness island (AFI) have also been implicated in acid 

resistance (Masuda and Church, 2003; Mates et al., 2007). Transcriptomic analysis of cells 

over-expressing local acid resistance regulators GadE and GadX implicated 13 genes coding 

12 proteins in an acid fitness island (Hommais et al., 2004). Included in this island were the 

GAD genes gadE/A/X/W/Y and hdeA/B/D known to be involved in acid resistance (Gajiwala 

and Burley, 2000; Ma et al., 2003a; Masuda and Church, 2003). Later, mutagenesis of other 

genes found in the AFI would confirm their role in acid resistance (Mates et al., 2007). As 

some of the core GAD genes are located on the AFI, the terminology for these systems is at 

times confusing. For the purpose of this review, GAD will refer to the core GAD genes only 

(gadA, gadB and gadC). All other genes that contribute to acid resistance and are located on 

the AFI will be termed AFI genes. 

 

All of the aforementioned mechanisms and genes are important for acid resistance in different 

conditions. Understanding how these mechanisms work, and in what conditions they are 

effective, is important for the understanding of the acid resistance phenotype as a whole. 
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1.2.2.  Components of amino acid dependent acid resistance mechanisms  

The most robust and best characterised mechanisms that E. coli uses for acid resistance are 

those dependent on amino acids. In 1942 Epps and Gale were the first to suggest the 

relationship between biodegradative amino acid decarboxylase activity and survival at low 

pH. As the reaction resulted in the net consumption of a proton, and had an acidic optimum 

pH, they hypothesised that these enzymes were involved in pH homeostasis. However, it 

would be nearly half a century before a definitive mechanism for this process was outlined. 

The discussion below summarises the characterisation of the components of amino acid 

dependent acid resistance mechanisms. 

 

1.2.2.1. Characterisation of the acid dependent amino acid decarboxylases 

The decarboxylase components of amino acid resistance mechanisms have been extensively 

characterised. The main role of these decarboxylase enzymes is to catalyse the reaction of 

their cognate amino acid into a reduced molecule. Without decarboxylases, the amino acid 

dependent systems are ineffective (Castanie-Cornet et al., 1999). The GAD system utilises 

two decarboxylases, GadA and GadB, ADI has one decarboxylase, AdiA and CAD has two 

decarboxylases, CadA and Ldc. This section will discuss the characterisation of these 

proteins. 

 

Following its discovery by Epps and Gale in 1942, the biochemical characterisation of the 

Adi decarboxylase (later to be known as AdiA) was done by Blethen et al. in 1968. The 

optimum working pH, characterised using purified, acid induced, arginine decarboxylase, was 

5.2. The main substrate of AdiA was determined to be L-arginine (Blethen et al., 1968). 

Meanwhile, the lysine decaboxylase gene, named cadA, was characterised by Tabor et al. in 
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1980. The cadA locus was mapped and mutated to show that a cadA strain was deficient in the 

production of cadaverine (Tabor et al., 1980). 

 

The arginine and lysine decarboxylases are both regulated by acid at a transcriptional level. 

When the promoters of cadA and adiA were fused to a lac reporter system, β-galactosidase 

activity was increased in acidic conditions (Auger et al., 1989). Detailed analysis of the cadA 

locus revealed that cadA was transcribed in a dicistronic operon with an upstream gene cadB. 

The cadBA promoter was found to be controlled by a third component, cadC. In addition, the 

C-terminus of cadC was found to have a domain similar to other characterised environmental 

sensing domains (Watson et al., 1992).  

 

Despite extensive functional characterisation of the glutamate decarbxylase from E. coli by 

Gale et al. in 1946, the genes that code for these proteins were not characterised until 1992. 

Two glutamate decarboxylase genes, named gadA and gadB, were characterised at two 

different loci in the E. coli genome. The sequences of these genes were found to be 98% 

identical. Later, functional studies revealed that both decarboxylases had identical reaction 

rates and optimum pH (De Biase et al., 1996; Small and Waterman, 1998).  

 

1.2.2.2. Activation of decarboxylase enzymes by low pH 

The structures of both arginine and glutamate decarboxylase enzymes have been solved by X-

ray crystallography. Both enzymes were found to be inactive in neutral pH conditions and 

activated by acidic pH conditions (Andrell et al., 2009; Capitani et al., 2003). However, 

mechanisms of activation for both proteins are quite different. 
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Glutamate decarboxylase forms a hexamer made from three dimers that join to form a 

hexamer (Capitani et al., 2003). Comparison of the pH neutral structure to the structure found 

in acidic conditions revealed that although a hexamer was formed, the protein was in an 

inactive conformation. Transformation to an active state involves minor changes in the protein 

conformation (Capitani et al., 2003). 

 

The arginine decarboxylase forms a similar structure to that of the glutamate decarboxylase, 

except with five dimers constituting an active decamer (Andrell et al., 2009). However, unlike 

the glutamate decarboxylase, it’s the assembly of the decamer that is subject to pH. During 

neutral pH conditions, only the dimer form of AdiA is found. Upon activation by low pH a 

decamer/active form is more abundant (Andrell et al., 2009). 

 

The involvement of these decarboxylases in acid resistance is supported at a structural level. 

Both enzymes show altered conformations from inactive to active forms in response to low 

pH and they are both involved in a reducing reaction. How the action of these enzymes 

actually aids de-acidification of the cytoplasm is not fully understood. However, it is 

understood that their role in acid resistance is completely dependent on the membrane bound 

antiporters. These antiporters, and the proposed amino acid dependant 

decarboxylase/antiporter mechanism, are described below. 

 

1.2.2.3. Characterisation of the membrane bound antiporters and the amino acid 

dependant acid resistance mechanism 

In 1992 Meng and Bennet characterised cadB as a gene that coded for a putative membrane 

bound transport protein. This was based on the homology of cadB with ArcD, which is an 
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arginine/ornithine antiporter found in P. aeruginosa. The expression of cadBA had already 

been linked to low pH (Meng and Bennett, 1992b; Watson et al., 1992). Thus, the coupling of 

cadAB transcription and response to pH, suggested a joint role of CadA and CadB in pH 

homeostasis. Based on this logic, Meng and Bennett were the first to describe a mechanism 

for neutralising low extracellular pH using the combined functions of a lysine decarboxylase 

(CadA) and lysine/cadaverine antiporter (CadB) (Meng and Bennett, 1992b; Meng and 

Bennett, 1992a). In 1995, research by Lin et al., which linked survival in extreme acid 

conditions with the presence of amino acids, suggested that E. coli had acid resistance 

mechanisms that relied on amino acids. This concept was similar to that of Meng and 

Bennet’s CadA/CadB mechanism. However, it appears that the findings and suggested 

mechanism by Meng and Bennet 3 years earlier went unnoticed; perhaps because lysine 

dependent acid protection was low compared to the protection provided by both arginine and 

glutamate dependent systems (Iyer et al., 2003; Lin et al., 1995). 

 

The first mechanism where a link was demonstrated between an amino acid dependent acid 

resistance phenotype and an acid resistance system was the GAD mechanism. Characterised 

by Castanie-Cornet in 1999, the role of two glutamate decarboxylases (GadA and GadB) in 

glutamate dependent acid resistance was elucidated using mutagenesis. Strains containing 

gadA and gadB deletions were extremely sensitive to acid shock at pH 2.5 (Castanie-Cornet et 

al., 1999). The work by Castanie-Cornet et al., on gadA, gadB and the GAD mechanism, built 

on work by Hersh et al. in 1996 that characterised the glutamate/GABA anti-porter. The 

membrane bound antiporter was discovered by transposon mutagenesis. Clones that exhibited 

acid sensitivity had a transposon insertion into a region between ompC and gadB (Hersh et 

al., 1996). Further analysis of this locus revealed an open reading frame, which was named 
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xasA (extreme acid sensitive A). Comparative genomics indicated that the predicted transcript 

encoded a homologue of gadC. The gadC gene was previously characterised as an acid 

inducible gene in Shigella, which functioned as a glutamate and GABA anti-porter 

(Waterman and Small, 1996). Thus, the xasA gene was renamed gadC. A role in glutamate 

mediumted acid resistance was suggested due to the decreased resistance of a gadC mutant to 

acid shock in minimal medium specifically containing glutamate (Hersh et al., 1996). The 

gadA, gadB and gadC genes (each encoding a protein of the same name), form the core set of 

genes required for the function of GAD. 

 

Despite the early hypothesis by Meng and Bennett in 1992, regarding the action of the cadBA 

genes and numerous studies linking cadBA to acid resistance (Neely et al., 1994; Park et al., 

1996; Watson et al., 1992), it would be 11 years before phenotypic evidence for the role of 

the lysine dependent system in E. coli was obtained. The role of the CAD system in acid 

resistance was finally confirmed by Iyer et al. in 2003. Acid resistance assays isolated a lysine 

dependent AR phenotype. The level of protection conferred by the lysine dependent system 

was significantly lower than that of the arginine and glutamate systems (Iyer et al., 2003). 

Mutagenesis of the cadBA operon proved beyond doubt that the protection observed was due 

to the action of these genes (Iyer et al., 2003). 

 

The ADI mechanism was the last to be fully characterised. The adiA gene was characterised 

in 1993 by Stim and Bennett, who noted that the organisation at the adiA locus was different 

from that of the cad locus as there was no antiporter located with adiA. This meant that 

despite adiA being induced by low pH its transcriptional unit was not coupled with a cadB 

homologue (antiporter component) (Stim and Bennett, 1993). The antiporter component of 
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the arginine dependent acid resistance mechanism, suggested by Lin et al. in 1995, was not 

characterised until 2003 by Gong et al. The gene adiC was characterised by its identity with 

gadC. Previously known as yjdE, adiC had 22% identity with gadC. Additionally, AdiC 

mutants were found to be deficient in arginine dependant acid resistance (Gong et al., 2003). 

 

The components of three amino acid dependent mechanisms, AR2, AR3 and AR4 were all 

characterised by 2003. The AR4 mechanism consisted of two genes, cadB and cadA, 

transcribed from a single promoter. The AR2 mechanism comprises three genes gadA, gadB 

and gadC coded in two separate operons, and the AR3 mechanism comprises two genes, adiA 

and adiC, found at two separate loci, controlled by different promoters. How these 

mechanisms actually operate to reduce the effect of acid shock is not well understood. Details 

of the mechanisms of these systems are discussed below. 

 

1.2.3.   Mechanism of amino acid dependent acid resistance systems 

The actions of components of the amino acid dependent AR mechanisms are seemingly quite 

simple. Figure 1.1 shows a diagrammatic representation of these mechanisms and their 

predicted function. Briefly, extreme acidic conditions (< pH 2.5) cause the acidification of the 

cytoplasm, stimulating the expression of lysine, arginine and glutamate decarboxylases.  
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Figure 1.1. The amino acid-dependent acid resistance mechanisms. (A) The

deacidification mechanism by the combined action of decarboxylase and antiporter

enzymes pumping reduced products out to the cytoplasm. The antiporters, shown in the

inner membrane, import their respective amino acids. Once in the cytoplasm the cognate

decarboxylase catalyses the reaction to produce a reduced product, which is then exported

from the cytoplasm.(B) Mechanism of protection by a membrane potential flip. The

reduced products of the decarboxylase reaction accumulate causing positive charge to

build in the cytoplasm. As a result the membrane potential would repel the extermal

protons (adapted from Foster 2004).
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The respective antiporters import glutamate, lysine and arginine from the extracellular 

environment. Cytoplasmic arginine, glutamate and lysine are converted into agmatine, GABA 

(gamma-amino butyric acid) and cadaverine by their respective decarboxylases. Protons are 

consumed as part of this process. The products of the decarboxylation reactions are then 

exported across the inner membrane by the antiporters in exchange for more amino acids (see 

figure 1.1 A) (Richard and Foster, 2004). This mechanism described poses two main 

quandaries. Firstly, it is not clear how effectively the AR systems can function in this way. In 

the case of GAD, glutamate has a functional side chain with a pKa of 4.1. Thus, during acid 

challenge at pH 2.5, this side chain will be greater than 50% protonated. When it enters the 

less acidic environment of the cytoplasm, through the GadC antiporter, a substantial portion 

of these protons will dissociate causing a reduction in cytoplasmic pH. Thus, before GadA/B 

activity incorporates protons into the GABA product, the glutamate has already acidified the 

cytoplasm. Secondly, during extreme acid challenge at pH 2.5 the pH in the cytoplasm drops 

to 3.6 (measured without any induced acid resistance mechanisms) (Richard and Foster, 

2004), the acidification of the cytoplasm lowers the pH within the optimum range of the 

glutamate decarboxylase (3.6 to 4.6) (Capitani et al., 2003). However, the optimum pH for the 

arginine and lysine decarboxylases is 5.25 and 5.5 respectively (Andrell et al., 2009; Blethen 

et al., 1968). Therefore, this environment could render the arginine and lysine decarboxylases 

ineffective. Additionally, the effectiveness of the glutamate and arginine dependent systems, 

when exposed to pH 2.5, is unexpectedly low. When the arginine and glutamate systems are 

active, they raise the cytoplasmic pH from pH 3.6 to only 4.7 and 4.6 respectively (Richard 

and Foster, 2004). As a potential resolution of this paradox, it has been suggested that E. coli 

is attempting to repel extracellular protons by reversing the membrane potential from a 

negative inside, relative to outside, to a positive inside relative to outside (see figure 1.1 B) 
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(Richard and Foster, 2004). The positive polarity could repel or slow the flow of protons into 

the cell. The positive charge inside the cell could be created by an increase in the pool of 

protonated products of decarboxylation reactions. This is a tactic is employed by acidophiles 

and could explain why the pH of the cytoplasm remains below 5 even when glutamate and/or 

arginine are present in the medium (Richard and Foster, 2004). 

 

1.2.4.  Amino acid independent acid resistance mechanisms – AR1 

Three acid resistance mechanisms were originally characterised, two amino acid dependent 

systems (GAD and ADI) and an amino acid independent system (AR1) (Lin et al., 1995). 

AR1, or the oxidative acid resistance system, is induced by growth in minimal medium 

without glucose at pH 5.5. After growth in these conditions E. coli is capable of surviving 

extreme acid shock (< 2.5) without exogenous amino acids (Lin et al., 1995). The mechanism 

of AR1 is poorly understood. Only a Fo/F1 proton-translocating ATPase has been shown to 

be essential to its function (Richard and Foster, 2003). However, it has not been confirmed 

whether the aforementioned ATPase is in fact part of the mechanism or simply supplying the 

components of AR1 with ATP (Foster, 2004). The components of the AR1 system are 

regulated by CRP and RpoS. However, details of the relationship between CRP, RpoS and 

AR1 are currently unknown (Lin et al., 1995; Richard and Foster, 2004). 

 

1.2.5. Amino acid independent acid resistance mechanisms – The AFI 

Transcriptomic analysis of strains over-expressing the regulator protein GadE (YhiE) 

implicated an additional locus of genes in acid resistance (Hommais et al., 2004). Functional 

analysis of the genes found at this locus revealed that they were involved in acid resistance. 

The locus became known as the acid fitness island or AFI. This section discusses the 



Chapter 1: Introduction 

14 

 

characterisation of the AFI, and the proposed roles of genes found at this locus in acid 

resistance. 

 

The AFI is found in all sequenced strains of E. coli and Shigella, but is not found in 

Salmonella spp. shown in figure 1.2. The locus contains 13 ORFs coding for 12 proteins and 

1 sRNA. Genes located in the AFI include: slp, dctE, mtdE, mtdF, hdeA, hdeB, hdeD and 

yhiD. These genes are organised into the operons shown in figure 1.2. Operon 1 contains slp 

and dctR (Tucker et al., 2003). Slp, or starvation lipoprotein, is located in the outer 

membrane. Slp was first reported to be up-regulated in stationary phase, independently from 

rpoS, when cells were deprived of carbon (Alexander and St John, 1994). Additionally, 

analysis of the slp promoter suggests that it is bound by sigma-70 (Alexander and St John, 

1994). Subsequent work showed that the slp promoter could be bound by RpoS, as expression 

of the slp gene in different conditions was reduced in an rpoS knockout (Shimada et al., 

2004). Currently, slp has a proposed role in acid resistance as its expression is induced by 

growth at pH 5.5. Mutagenesis of slp reduced the survival of cells shocked in spent medium at 

pH 2.5 compared to the parental strain. After 2 hours at pH 2.5 in spent medium slp mutants 

survived 10,000 fold less than the parental strain. However, the role of slp in acid resistance is 

not fully understood (Mates et al., 2007). 

 

AFI genes, hdeA/B and yhiD, are coded on operon 2, shown in figure 1.2. The product of yhiD 

is not characterised, but based on sequence homology it is classed as an ATP dependent 

transporter. Knock-out mutagenesis of yhiD resulted in reduced resistance to extreme acid 

stress at pH 2.1 (Mates et al., 2007). 
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Figure 1.2. Comparison of the AFI locus from E. coli K-12 with Sakai, Shigella and Salmonella. Characterised by

Hommais et al in 2004, the AFI contains many genes responsible for acid resistance. Figure A represents the AFI and the 7

main promoters/operons found in the AFI (not to scale). Alignments, based on nucleotide homology, of the AFI from K-12

MG1655 (Top) with O157:H7 Sakai (Bottom) (B), Shigella flexinera (Bottom) (C) and Salmonella (Bottom) (D), show that

the AFI is present in all sequenced strains of E. coli and Shigella but not in any strains of Salmonella. xbase.ac.uk.

1                             2                 3                                  4                                 5      6 7

slp dctR yhiD gadE mdtE mdtF gadW gadY gadX gadAhdeB hdeA hdeD
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HdeA and HdeB were predicted to have a similar structure to each other and function as 

periplasmic chaperones, possibly acting as heterodimers (Gajiwala and Burley, 2000). HdeA 

monomers were found to dissociate in vitro in response to acid. HdeA monomers have been 

shown to protect periplasmic proteins from acid stress by binding proteins and stopping 

denaturation and aggregation at low pH. As the pH rises back to neutral, HdeA dissociates 

from its substrates in a gradual manner ensuring that the proteins do not aggregate (Gajiwala 

and Burley, 2000; Tapley et al., 2010; Tapley et al., 2009). The role of HdeB is very similar 

to that of HdeA, except HdeB has a pH optimum of 3 and is therefore ineffective in more 

acidic conditions (Kern et al., 2007).  

 

The hdeD gene product is an inner membrane protein, which is important for acid resistance 

in cells over-expressing ydeO (Daley et al., 2005; Masuda and Church, 2003). The hdeD gene 

is indicated in figure 1.2 in operon 3, no other ORFs are controlled by this promoter. 

 

Operon 4 contains genes gadE, mdtE and mdtF. The role of GadE as a central regulator of the 

GAD system will be discussed in more detail in section 1.5. The gene products of mdtE/F 

form trimeric inner membrane transport proteins, which form a complex with TolC to create a 

multidrug efflux pump (Nishino and Yamaguchi, 2002). So far, the mdtEF-tolC pump has not 

been shown to be required for acid resistance. In fact, the action of such a pump during acid 

shock would only acidify the cytoplasm, as antimicrobials are pumped out in exchange for 

protons.  

 

Transcriptional units 5, 6, and 7 make up a complex regulatory sub-network that includes 

gadW, gadY and gadX. The roles of each of these regulators in the control of the GAD system 
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will be discussed in more detail later in the review. Briefly, GadX and GadW are AraC/XylS-

like transcriptional regulators that regulate the AFI promoters including their own (Gallegos 

et al., 1993; Ma et al., 2002). Regulation of the AFI promoters by gadWXY occurs by 

relieving repression of this region by H-NS (Tucker et al., 2002). The product of gadY is a 

small regulatory RNA which interacts with the gadXW transcripts (Opdyke et al., 2004; 

Sayed et al., 2007; Tramonti et al., 2006).  

 

The genes of the AFI have been shown to be important for acid resistance. However, the exact 

mechanisms by which these genes contribute to acid resistance are not fully understood. As 

these genes have been shown to partake in a similar process (i.e. regulated in kind by gadE), 

have a similar G+C content, and are repressed by global regulator H-NS, they were called an 

acid fitness island. 

 

1.2.6. Amino acid independent acid resistance mechanisms – YdeP 

EvgAS is a TCS that has been shown to activate acid resistance in response to a mild acid 

shock. Details of EvgAS and its role in acid resistance will be explained in section 1.4.3. The 

regulon of EvgAS includes two operons that are important for acid resistance. These are the 

safA-ydeO, which will be described in detail in section 1.4.3, and ydeP. The role of YdeP in 

acid resistance was first demonstrated when resistance conferred by over-expression of EvgA 

was shown to be YdeP-dependent (Masuda and Church, 2002). In fact, survival of the EvgA 

overexpressing strain was more dependent on YdeP than GadE (known as YhiE in this study) 

(Masuda and Church, 2002). The ability of YdeP to confer acid resistance has also been 

shown by over-expression (Masuda and Church, 2003). In summary, these results show that 

YdeP has the ability to confer high levels of acid resistance. However, the function of YdeP is 
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currently unknown. Based on sequence similarity the putative function is as an 

oxidoreductase. YdeP is the only known structural acid resistance gene to be directly 

activated by EvgA. The role of YdeP in acid resistance is not understood. 

 

1.3. Control and induction of acid resistance mechanisms 

1.3.1. Induction of acid resistance mechanisms 

Acid resistance in E. coli is induced by two main conditions, entry into stationary phase and 

mild acid shock (pH 4.8 – 5.8) (Castanie-Cornet et al., 1999; Lin et al., 1995). Regulating the 

acid resistance genes in accordance to these conditions is a complex regulatory network that 

will be discussed below. The main acid resistance network, which for the purpose of this 

review will be called the AR2 network, was initially characterised as a network that controlled 

GAD (Ma et al., 2004). However, it is now understood that the AR2 network controls other 

acid resistance mechanisms, such as AR4 and the AFI. In addition to the AR2 network, acid 

resistance is also regulated by global transcription factors such as H-NS and CRP. Due to the 

complexity of acid resistance regulation, this review will focus on the local regulation of 

individual AR mechanisms before relating these systems with the AR2 network components, 

the alternative sigma factor RpoS, and the global regulators. 

 

1.3.2. Promoter organisation of the GAD genes 

The promoters of GAD structural genes are well characterised, figure 1.3 shows the 

organisation of the GAD genes and their transcriptional units. The AR2 genes are split into 

two operons, one coding for gadB and gadC, the other coding gadA and gadX. 

 



Chapter 1: Introduction 

19 

 

 

pqqL Stop
ccggtaaatacttataccggagtattattgccaaaataataacagccccgtcaacacatc

gttggcggggattttagcaatattcgctatttttatgtaataattttataaatgcgttca

-269 gadXW binding -226
aaataataatcaagtactaatagtgatattttaaggtctgatttttacgtgataattcag

gagacacagaatgcgcataaaaataacagcataaaacaccttaccaccacccaagaattt

catattgtattgtttttcaatgaaaaaatattattcgcgtaatatctcacgataaataac

-99 GAD box -22 RcsB box
attaggattttgttatttaaacacgagtcctttgcacttgcttactttatcgataaatcc

ttgaca
-35

+1 gadB Start
tacttttttaatgcgatccaatcattttaaggagtttaaaatggataagaagcaagtaac

tataat
-10

dos          yddV yddW gadC gadB pqqL yddA

yhjA Stop
taaacaataattaatttgatcgcccgaacagcaatgtttgggcgatttttattacgataa

-159   GadXW binding -116
taaagtctgtttttaatattatcatgttaaatgtttatattataaaaagtcgtttttctg

-99 GAD box -22 RcsB box
cttaggattttgttatttaaattaagcctgtaatgccttgcttccattgcggataaatcc

ttgaca t

-35
+1(-27) gadA start

acttttttattgccttcaaataaatttaaggagttcgaaatggaccagaagctgttaac
ataat
-10

gadE mdtE mdtF gadW gadY gadX gadA yhjA treFA

B



Chapter 1: Introduction 

20 

 

 

  

Figure 1.3. Promoter regions of the gadA and gadB genes. The locus

surrounding the gadA (A) and gadB (B) genes is shown above each promoter

sequence, fat arrows, which are not to scale, indicate coding regions. In the

sequence part of the figures, the intergenic region upstream of the gadA and

gadB genes is shown in black font. Numbers above sequences refer to distances

to translational start site. The mark, +1, indicates the site of the transcript start

and is located in the same relative position for each promoter. The core

promoter motifs are underlined, consensus sequences are written below. The

conserved GAD box site is marked as well as the different positions of the 42bp

GadXW binsing region and the RcsB box. The data presented in this figure is

based on work by: Giangrossi et al., 2005, Typas et al., 2007, De Biase et al.,

1999, Castanie-Cornet et al 2010.
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Studies monitoring the expression of the GAD promoters indicated that regulation occurred at 

the level of transcription initiation in the following conditions: un-buffered pH 5.5 minimal 

medium, buffered pH 5.5 complex medium, and during stationary phase growth. (Castanie-

Cornet and Foster, 2001; Giangrossi et al., 2005; Tramonti et al., 2006). Analysis of the 

gadAX and gadBC promoters by primer extension detected one transcription start site for each 

gene (De Biase et al., 1999). The gadAX and gadBC -35 and -10 hexamers (TTGCTT- 17n - 

TACTTT) are show only 50% identity to the vegetative sigma factor RpoD binding consensus 

sequence. Additionally, the core promoter has the structure of one which could be bound by 

the alternative sigma factor RpoS (Castanie-Cornet and Foster, 2001; De Biase et al., 1999). 

The promoters of gadAX and gadBC both have a conserved 20bp AT rich sequence known as 

the GAD box. The location of the GAD box, shown in figure 1.3, is between -52 and -72 base 

pairs upstream of the transcriptional start site in both promoters (Castanie-Cornet and Foster, 

2001). The GAD box is a binding site for GadE, the local regulator of the GAD genes (Ma et 

al., 2003a). Recently the binding of GadE to the GAD box has been shown to be dependent 

on RcsB (for a detailed analysis of RcsB in the AR2 network see 1.4.3.4) (Castanie-Cornet et 

al., 2010; Krin et al., 2010a). RcsB also makes an additional interaction with the gadA 

promoter. When activated, RcsB binds an RcsB box centred at -18.5, and inhibits gadA 

promoter activity (Castanie-Cornet et al., 2010). In addition to the degenerate core promoter, 

RcsB box and GAD box, each promoter has a -42bp consensus site that is bound by the GadX 

GadW activator/repressor proteins (Ma et al., 2002; Tramonti et al., 2008; Tramonti et al., 

2006). 

 

The GAD genes are under the control of many local regulators that bind well-characterised 

operator sequences. Due to extensive analysis of these operons, a complex network of 
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interactions has been uncovered. The regulation of other AR mechanisms is not so well 

understood. 

 

1.3.3.  Promoter organisation and local regulation of ADI 

The ADI mechanism does not share the same genomic organisation as GAD described above. 

Figure 1.4 (A) shows the adi locus which consists of three genes adiC, adiA and adiY. Unlike 

the GAD system, where the gadB and gadC genes are organised into one operon, the ADI 

genes are organised into three separate transcriptional units. The regulation at these promoters 

is poorly understood. However, it is known that the whole locus is repressed by H-NS and 

activated by IHF but no binding sites have been mapped to the promoters (Hommais et al., 

2004; Shi et al., 1993). 

 

The central regulator of the ADI system is AdiY, which is an AraC-like regulator coded by 

adiY. AdiY is thought to regulate the expression of both the adiA and adiC genes. This is 

based on mutational studies, which show that an AdiY knock out has similar levels of survival 

as an adiA or adiC knock out (Kieboom and Abee, 2006). The actual binding sites for the 

AdiY regulator have not been mapped to these promoters. Expression of adiY has been shown 

to be increased in buffered LB medium shifted from pH 7.6 to pH 5.5 by the addition of 1 M 

HCl (Kannan et al., 2008). The regulation of the Adi genes is poorly understood; however, it 

is likely that the adiY gene is activated by low pH (either directly or indirectly) and codes for 

a regulator which controls the decarboxylase and antiporter genes. 
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eptA adiC adiY adiA melR melA melB yjdF

melR Stop
taccgcaaacttagccaacagcgccgccagacgtttcccggctaaagacgatatcagtat

-127  H-NS -117 -91
cagccaaaaaaatagtttagccgtcgataataagcagtgaaaataatttaaaataatcac

IHF -75 -59 IHF -43
ataacgtattgtttataaaactaaatatttcaaaaatgtttgtttttcacgcgctttaca

ttgaca

gcccgaaaaggccggaagatacttgcccgcaacgaagattccttcataaccgggtaagca

tataat
Start adiA
atgatgaaagtattaattgttgaaagcgagtttctccatcaagacacctgggtcggtaac

A

cadC Stop
gtaccttatctcgacaaatttcttgcttcagaataagtaactccgggttgatttatgctc

ggaaatatttgttgttgagtttttgtatgttcctgttggtataatatgttgcggcaattt

atttgccgcataatttttattacataaatttaaccagagaatgtcacgcaatccattgta

-144 CadC1 -112 -89
aacattaaatgtttatcttttcatgatatcaacttgcgatcctgatgtgttaataaaaaa

CadC2 - 59
actcaagttctcacttacagaaacttttgtgttatttcacctaatctttaggattaatcc

ttgaca
-35

ttttttcgtgagtaatcttatcgccagtttggtctggtcaggaaatagttatacatcatg
tataat +1
-10 cadB Start

acccggactccaaattcaaaaatgaaattaggagaagagcatgagttctgccaagaagat

lysU yjdL cadA cadB cadC pheU yjdC dipZB
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Figure 1.4. The promoter regions of the adiA and cadBA operons. The diagrams

above each sequence represent the locus of genes which contain either adiA (A) or

cadBA (B), arrows represent coding regions. The annotated sequences consist of the

upstream intergenic regions. The translation starts are indicated in bold font. On each

sequence the -10 and -35 elements are underlined and labelled. The consensus

sequence is displayed below each sequence for comparison. Predicted H-NS and IHF

binding sites are indicated by underlined bases (A) as are confirmed CadC binding sites

(B). Numbers represent the amount of residues from the respective translation start site.

These diagrams are based on work by: Kruper et al., 2005; Hommais et al., 2004; Stim-

Herndo et al., 1996 and Shi et al., 1993.
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1.3.4.  Promoter organisation and local regulation of CAD 

The main genes of CAD are located at a single locus. Figure 1.4 (B) shows cadA, cadB and 

cadC in close proximity to each other (Watson et al., 1992). The CAD genes are transcribed 

from three promoters, one for each gene. The lack of a transcriptional terminator between the 

cadA and cadB genes results in a cadBA transcription unit (Watson et al., 1992). The local 

regulator CadC binds to the cadB promoter in vitro and has been shown to regulate the 

expression of the cadB promoter in vivo. Direct binding of CadC at the cadA promoter, using 

in vitro assays, has not been shown (Kuper and Jung, 2005). CadC binds to two sites at the 

cadBA promoter Cad1 [-144 to -112, see figure 1.4 (B)] and Cad2 [-89 to -59, see figure 1.4 

(B)] and it thought to de-repress the promoter by binding to Cad1 and displacing H-NS. 

RNAP is recruited to the cadBA promoter when CadC has bound both sites (Kuper and Jung, 

2005). The cadBA operon is induced by low pH only in the presence of exogenous lysine. 

Repression of cadBA expression is due to a second regulator LysP (CadR). Strains that 

contained mutations in LysP are inducible by low pH without the requirement of exogenous 

lysine (Neely et al., 1994). The affect of LysP on cadBA expression was found to be indirect, 

as strains over-expressing lysP did not affect cadBA expression in a cadC KO background. 

This result indicated that LysP represses cadC (Neely et al., 1994). 

 

In summary, the CAD genes are regulated at a local level by CadC and LysP, which ensure 

that the genes are only expressed during growth at low pH in medium supplemented lysine. 

The CAD genes are also regulated, either directly or indirectly, by the AR2 network, which 

will be discussed in section 1.6.3. 
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1.4. Control of Acid Resistance mechanisms by the AR2 network  

The AR2 network is made up of many components including; two-component systems, global 

and local regulators, proteases and sRNAs. The key players in the AR2 network are the two-

component system EvgAS, the local regulators GadE and YdeO, alternative sigma factor 

RpoS, and the regulatory sub-circuit of GadX-GadW-GadY. These regulators increase the 

reach of the AR2 network beyond the regulation of the GAD genes and the AFI to other acid 

resistance systems and other cellular processes. The AR2 network is activated either by 

growth in mildly acidic medium pH (4.8 – 5.9, maximally at pH 5.7) during exponential 

phase, or by entry into stationary phase. Induction by mild acid shock and entry into 

stationary phase is activated by two separate induction circuits, the EvgAS-YdeO-PhoPQ 

(figure 1.5 A) and RpoS-GadX-GadY-GadW (figure 1.5 C) circuits respectively. In response 

to low pH, or stationary phase growth, a cascade of activation occurs converging on the 

central regulators GadE and YdeO. This results in the activation of acid resistance genes at 

many different loci. This section will discuss the contributions of these AR2 network 

components in acid resistance regulation. 

 

1.4.1. Repression of the AR2 network by CRP and H-NS 

During exponential phase of cells grown at neutral pH the expression levels of genes involved 

in acid resistance is low. This is due to, among other things, repression by H-NS and CRP. H-

NS (histone-like nucleoid structuring) is a nucleoid associated protein which has the 

propensity to bind and bridge DNA to cause compaction of the bacterial chromosome. H-NS 

primarily binds AT rich sequences such as those found at E. coli promoters.  
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Figure 1.5. Induction of the AFI and GAD genes by the AR2 network . The induction of the AFI and GAD by mild acid shock during 

exponential phase A, by  a constitutive on EvgSc mutation B (modified from Eguchi et al., 2010) and  by growth in to stationary phase C. 

Solid arrows indicate confirmed direct interactions between the regulator proteins (coloured circles) and  the promoters of a cid resistance 

genes (large green arrows). Dotted arrows represent interactions that are not confirmed as direct and lines with circled ends indicate 

repression.
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When H-NS binds DNA, it induces bending that causes reduced expression of proximal genes 

(Dame et al., 2000; Grainger et al., 2006). CRP, or cyclic adenosine mono-phosphate receptor 

protein, is a global TF. When allosterically activated by cAMP, CRP may bind DNA to 

repress transcription initiation (Busby and Ebright, 1999). Both of these regulators have been 

implicated in the control of acid resistance. The contributions of each regulator will be 

discussed below. 

 

1.4.1.1. Control of the AR2 network by cAMP receptor protein 

The levels of AR2 network activators, RpoS and GadE, are increased during growth in 

minimal medium supplemented with glucose compared to growth in rich medium. Under 

these same conditions, levels of cAMP-CRP complex are also lower than in rich medium 

(Heuveling et al., 2008). These results suggested that the AR2 network is under the control of 

CRP. Knock-out mutagenesis of the crp gene in E. coli resulted in an increase in expression 

of AR2 (Castanie-Cornet and Foster, 2001). The interactions that cause AR2 genes to become 

repressed are not clear. However, it is known that the increase in expression is dependent on 

RpoS. One possible explanation is that CRP mutants grow much slower than wild type cells, 

which would also increase RpoS levels (Hengge-Aronis, 2002). Although the effect of CRP 

seems to be dependent on RpoS, recent work has characterised a CRP binding site at the 

promoter of central regulator gadE. This finding suggests that at least on some level the 

repression of AR2 network by CRP is direct (Hirakawa et al., 2006). There is no doubt that 

CRP is involved in the regulation of acid resistance, or that it represses the AR2 network. 

However, the physiological importance of CRP’s role in acid resistance is yet to be 

discovered. 
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1.4.1.2. Control of the AR2 network by H-NS 

H-NS is a global regulator that is normally associated with promoter repression. The level of 

activity at AR2 promoters in pH neutral medium increased in an hns knockout background 

(De Biase et al., 1996; Hommais et al., 2001; Waterman and Small, 2003b). Hommais et al 

compared the hns knock out transcriptome to the wild type and found that many genes in the 

AR2 network were up-regulated in this background. These genes, which will be discussed 

below include: gadX, gadW, gadE, evgA, and ydeO.  

 

Recent in vitro work by Giangrossi et al. in 2005 has characterised H-NS binding to two 

regions of the AFI. The binding of H-NS to these elements resulted in the repression of gadA 

and gadX (GadX is an activator of AFI transcription, see section 1.4.4. below) (Giangrossi et 

al., 2005). The AFI is an AT-rich region which is predicted to be transcribed when not 

actively repressed. A plausible model for repression, of the AFI by the H-NS, would be the 

binding of H-NS to the two sites characterised by Giangrossi et al, which would cause a 

hairpin loop in the DNA and a repression effect on the whole AFI (Giangrossi et al., 2005). 

 

In summary, under conditions where the growth rate is high, and pH is neutral, H-NS 

represses the AFI, the GAD genes, and the AR2 network. When the growth rate of the cells 

slow, or when the pH drops, these genes become de-repressed by the dissociation of H-NS 

from the locus. This allows other factors to bind the locus and activate transcription. The 

regulatory circuits that cause this de-repression and activate the acid resistance genes are 

discussed below. 

 



Chapter 1: Introduction 

 

32 

 

1.4.2 Two-component systems involved in the AR2 network 

The ability of bacteria to sense the environment and respond accordingly requires sensors and 

response regulators. The gap between environmental stimulus and gene regulation is often 

bridged by two-component systems (TCSs). There are at least three TCSs involved in the 

AR2 network, which are EvgAS, PhoPQ and RcsB. Details of the regulation by these TCSs 

are described below. This section will briefly describe the general characteristics of TCSs and 

their roles in bacteria. 

 

1.4.2.1. The mechanism of TCSs 

TCSs are composed of a histidine kinase (HK) and a response regulator (RR). A 

diagrammatic representation of a TCS is shown in figure 1.6. The role of the HK is to sense a 

signal or bind a ligand. This causes phosphorylation of the C-terminal transmitter domain. 

Either the phosphorylation event occurs via additional kinases or the HK can 

autophosphorylate (Mascher et al., 2006). Next, the RR is activated by phosphorylation of the 

aspartate residue in the receiver domain. The RR is often phosphorylated by the HK, 

alternatively the RR can autophosphorylate or the RR is phosphorylated by a cytoplasmic 

kinase (Mascher et al., 2006). The C-terminal domain of the RR then either interacts with 

DNA to regulate genes, or with other proteins. Finally, the system is reset by the 

dephosphorylation of the RR (Stock and Mowbray, 1995). In some cases the RR is capable of 

phosphorylating the HK. However, this process is often poorly understood. Recently, 

additional auxiliary proteins have been characterised in many TCSs, which interact with TCSs 

and increase the complexity of their regulation (Buelow and Raivio, 2010). 
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1.4.2.2.  Activation of TCSs 

There are four main methods of activation of HKs. Figure 1.6 A shows a diagrammatic 

representation of these methods. A HK can sense periplasmic signals using a periplasmic 

domain, which is normally flanked by two transmembrane domains. This architecture is found 

in the HK BvgS from B. pertussis (Figure 1.6 A I) (Bock and Gross, 2002). HK can also have 

sensing domains within the transmembrane regions of the protein. Sensing of a signal can 

occur within the transmembrane components themselves (figure 1.6 A II) or within the 

extracellular loops, as in the LuxN system (figure 1.6 A III) (Freeman et al., 2000). 

Alternatively, the HK can receive signals from the cytoplasm, as found in the ArcB and FixL 

systems (Figure 1.6 A IV) (Malpica et al., 2004; Miyatake et al., 2000). The methods of 

activation described above are often found in combination. As a consequence, the ability of 

TCSs to integrate multiple signals is increased, which in turn increases the complexity of the 

response. 

 

1.4.3.  The EvgAS-YdeO-PhoPQ-GadE control network 

1.4.3.1. Characterisation of the EvgAS two-component system as an AR regulator  

The two-component system, EvgAS, was originally characterised as a homologue of the B. 

pertussis virulence regulator BvgAS. Extensive studies implicated EvgAS as a regulator of 

multidrug efflux pump EmrKY. EvgAS was implicated in acid resistance in 2002 by Masuda 

and Church. Increased acid resistance was shown by strains over-expressing the response 

regulator EvgA compared to the parental strain (Masuda and Church, 2002). EvgA over-

expression was found to up-regulate many genes known to be involved in acid resistance. 

This included the AR2 and AFI genes (Masuda and Church, 2002; Nishino and Yamaguchi, 

2001). The up-regulated genes were similar to those found when the transcriptome of a 
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constitutively active EvgS mutant strain was compared to that of a parental strain (Eguchi and 

Utsumi, 2005; Kato et al., 2000). Subsequent mutagenesis of up-regulated genes revealed that 

only mutations in ydeO, ydeP and yhiE (now gadE) reduced the survival of the artificially 

induced acid resistance phenotype. These results implicated ydeO, ydeP and gadE in acid 

resistance (Masuda and Church, 2002). The regulators GadE and YdeO will be discussed in 

more detail later in this review. Briefly, YdeO is a member of the AraC/XylS super-family of 

transcriptional regulators, GadE is a member of the LysR family of transcriptional regulator 

and YdeP is a putative oxidoreductase that has homology to the alpha subunit of E. coli 

formate dehydrogenase H (Masuda and Church, 2003; Schell, 1993; Senda and Ogawa, 

2005). When over-expressed, these genes can independently induce an acid resistant 

phenotype. YdeP and its role in acid resistance has been discussed in 1.2.6. Over-expression 

of gadE had the lowest impact. The role of YdeP in acid resistance has not been researched 

any further (Masuda and Church, 2003). In contrast, the role of transcriptional activators, 

EvgA, GadE and YdeO, has been extensively characterised.  

 

1.4.3.2. Characterisation of the EvgA-YdeO-GadE activation cascade  

The regulons of EvgA and YdeO were analysed by transcriptomic studies in which each of 

the regulators were over-expressed (Masuda and Church, 2002; Nishino and Yamaguchi, 

2001). Among the genes found to be controlled by EvgA and EvgS were the GAD genes. As 

previously mentioned, YdeO and GadE were up-regulated by over-expression of EvgA 

(Masuda and Church, 2002). However, it was not clear from this data whether the activation 

of YdeO or GadE was directly by EvgA. In addition, over-expression of YdeO also increased 

GadE expression (Masuda and Church, 2003). It was suggested that these three genes were 

part of an induction cascade with EvgA activating YdeO and YdeO in turn activating GadE 
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and all of the AR2 genes and the AFI. Further study of the expression of gadE using a gadE-

lacZ operon fusion in ydeO, evgA and gadE backgrounds revealed the nature of this circuit 

(Ma et al., 2004). The expression of gadE in an evgA KO background was more than 3-fold 

less than the parent strain. This result was complementary to the transcriptomic studies (Ma et 

al., 2004). A 2-fold reduction of gadE expression was observed in a ydeO KO background. 

The remaining expression at the gadE promoter was hypothesised to be due to direct EvgA 

activation. The expression of gadE was reduced over 3-fold in a gadE KO background, which 

suggested that GadE autoregulated its own expression (Ma et al., 2004). Finally, the 

expression of gadE was measured in a ydeO/evgA double knockout. The activity of the gadE 

promoter was reduced nearly 6-fold, which was the largest reduction. This result indicated 

that both EvgA and YdeO activate gadE in an additive manner (Ma et al., 2004). All three 

regulators were found to bind the gadE promoter, GadE itself bound specifically to three 

putative GAD box sequences.   

 

Ma et al., in 2004 provided conclusive evidence that ydeO, under transcriptional control of 

EvgA, is subject to acid induction. By contrast, transcription of the evgAS operon was shown 

not to be acid induced despite previous reports that it was subject to auto-regulation (Masuda 

and Church, 2003). In addition, a constitutively active evgS mutant was used to show that 

EvgA binds strongly to specific sites on the following promoters: ydeP, safA, yfdX, frc, yegR 

and gadE (Itou et al., 2009). The role of safA in this pathway will be discussed later in this 

review; the functions of ydeP, yfdX, and yegR are not known. Phenotypic analysis of the acid 

resistance of the constitutive-on mutant confirmed that activation of the EvgAS pathway, 

induced acid resistance independently from acid or stationary phase growth (Itou et al., 2009).  
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Work by Burton et al., using a lux reporter system to measure promoter activity at high 

temporal resolution, confirmed the induction cascade from EvgAS to the AR2 genes. 

Additionally, the high temporal resolution data produced by Burton et al. captured the relative 

timings of induction and proved that the activity of the ydeO, gadE and gadB occurred in 

succession (Burton et al., 2010). 

 

1.4.3.3. Role of PhoPQ in the GAD Network 

The signal transduction cascade of the EvgAS TCS has been shown to cross-talk to the 

PhoPQ TCS (Eguchi et al., 2007; Eguchi et al., 2004; Eguchi and Utsumi, 2005). This 

interaction was found to be dependent on a small protein SafA (sensor-associating factor A). 

Previously known as SMP (small membrane protein), SafA has been shown to interact with 

the PhoQ histidine kinase. As a result of this interaction the response regulator PhoP is 

activated. This activation has been observed by monitoring the expression of PhoP dependant 

genes such as mgtA (Eguchi et al., 2007). SafA is encoded by the b1500 gene (now referred to 

as safA) which forms an operon with ydeO. The safA-ydeO promoter is under the direct 

control of EvgA (Masuda and Church, 2003). Initially the activation of the PhoPQ TCS by 

EvgAS and SafA had only been shown by artificially over-expressing the aforementioned 

genes (Eguchi et al., 2004; Kato et al., 2000). More recently the activation of PhoP regulated 

genes has been shown by acid induction and without any artificial over-expression (Burton et 

al., 2010). In conditions of low Mg
2+

, which activates the PhoPQ TCS, gadE and gadW were 

found to be up-regulated. This suggests that PhoP also regulates AR2 genes in addition to its 

originally proposed role as a Mg
2+

 starvation regulator (Groisman, 2001; Zwir et al., 2005).  

 



Chapter 1: Introduction 

 

38 

 

PhoPQ has recently been implicated in a completely new activation arm of the AR2 network. 

Survival of a EvgSc (constitutively-on EvgS) strain was shown to be completely dependent 

on phoP (see figure 1.5 B) (Eguchi et al., 2011). The iraM gene, which is activated by PhoP, 

was required for EvgSc conferred acid resistance (Eguchi et al., 2011). In addition, the 

activation of the gadE promoter by an EvgSc mutant was shown to be completely dependent 

on RpoS. IraM (inhibitor of RssB activity) controls the levels of RpoS in the cells by 

interacting with RssB. When activated RssB binds to RpoS, near amino acid L173, and the 

amino-terminus of ClpX (Studemann et al., 2003). This interaction connects substrate (RpoS) 

and protease (ClpX) and allows degradation (Eguchi et al., 2011). The model of activation by 

an EvgSc mutant, depicted in figure 1.5 B, is as follows. EvgA activates the safA-ydeO 

promoter, SafA expression is increased leading to the activation of PhoPQ. PhoP activates 

iraM transcription and IraM interacts with RssB. As a result RssB cannot interact with RpoS 

and RpoS levels rise. The increase in RpoS levels causes RNAP to be recruited to RpoS 

regulated promoters, including the gadE promoter (Eguchi et al., 2011).  

 

The resulting network involves EvgAS TCS cross-talking to PhoPQ via SafA. The PhoP 

activation results in PhoP dependent activation of gadE via IraM and RpoS (See Figure1.5 B). 

The cross talk from EvgAS to PhoPQ therefore also connects EvgAS to RpoS and the RpoS-

GadW-GadX-GadY circuit of activation. It should be noted that the investigation of the PhoP-

IraM-RpoS cascade was done during late exponential phase (OD600 0.6) (Eguchi et al., 2011). 

During this phase of growth, the levels of RpoS are increasing, as growth slows into 

stationary phase. The importance of RpoS in the activation of GadE is therefore increased in 

these conditions compared to exponential phase conditions. This variation makes comparison 

of this circuitry with the exponential phase AR2 network problematic. 
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1.4.3.4. Role of RcsB in the GAD Network: An essential inactive activator 

RcsB is a response regulator that is activated by phosphorylation by the RcsCDF histidine-

aspartate phosphorelay. Recently, RcsB has been reported to be essential for gadB and gadA 

promoter activity during stationary phase (Castanie-Cornet et al., 2007).  Interestingly, an 

rcsB mutation had no affect on gadE transcription and over-expression of GadE could not 

compensate for loss of RcsB (Castanie-Cornet et al., 2007). Furthermore, activation of the 

Rcs phosphorelay by over-expression of either RcsB, RcsA or DjlA (a factor which activates 

RcsC kinase activity), resulted in a reduction of survival in extreme acid conditions. 

Therefore, RcsB was hypothesised to co-operate with GadE in the activation of AR2 

(Castanie-Cornet et al., 2010). It was shown that basal levels of un-phosphorylated RcsB are 

an essential requirement for gadA/B promoter activity. Recently, the role of RcsB as a 

regulator of AR2 structural genes was confirmed. A GadE-RcsB heterodimer was purified and 

used to show that activation of the gadA promoter requires GadE and RcsB binding (Castanie-

Cornet et al., 2010; Krin et al., 2010b). Additionally, an RcsB box was identified just 

upstream of the -10 element of the gadA promoter (Castanie-Cornet et al., 2010). Mutational 

analysis of the gadA promoter revealed two binding sites for RcsB. It was shown that the 

binding of RcsB to the second low affinity site caused repression of gadA promoter activity. 

However, results reported by another group indicated that the heterodimer formation required 

phosphorylated RcsB (Krin et al., 2010b). An RcsB mutant that contained a histidine to 

glutamate mutation that mimicked phosphorylated RcsB was required for heterodimer 

formation. These results showed that RcsB was required to be active. In support of this model, 

RcsB can be phosphorylated by acetyl-P, and the Rcs histidine kinases form a dynamic 

equilibrium, which under inactive conditions actually function to reduce the levels of 

phosphorylated RcsB (Clarke, 2010). It is therefore possible that the deletion of RcsC/D/F 
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could increase the levels of phosphorylated RcsB. It should be noted that the group did not 

publish a control to confirm the mimic, and the phosphorylation state of RcsB was not 

measured. The effect of RcsB on other GadE regulated promoters has also been analysed 

(Krin et al., 2010a). Currently all acid resistance promoters that are activated by GadE are 

also dependent on RcsB.  

 

To summarise, the response regulator RcsB has been confirmed to play a key role in the AR2 

network, both as an essential activator and a repressor. However, there is still some confusion 

as to whether RcsB is required in an active form. In addition all of the investigations into the 

role of RcsB have only been done during stationary phase. The role of RcsB in exponential 

phase and acid induction of resistance has not been investigated. Overall, the full extent to 

which RcsB interacts with the AR2 network is still unclear. 

 

1.4.4. The RpoS-GadX-GadW-GadY regulatory circuit 

1.4.4.1. Characterisation of the components of the RpoS-GadY-GadX-GadW regulatory 

circuit 

The second major circuit controlling the expression of AR is the RpoS-GadX-GadW-GadY 

regulatory circuit. This circuit is activated during stationary phase by the alternative sigma 

factor RpoS. The main constituents of this pathway are the GadX and GadW regulators. The 

roles of GadX and GadW are hard to pin down due to the variation of function observed 

between different strains of E. coli and during different growth conditions (See figure 1.5 C).  

 

RpoS is an alternative sigma factor, which becomes more abundant in stationary phase cells. 

The regulation of RpoS is very complex, and beyond the scope of this review. Many 
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comprehensive reviews have been written on this subject (Hengge-Aronis, 2002; Typas et al., 

2007). There is no question that RpoS is involved in acid resistance. Analysis of rpoS KO 

strains showed that survival was reduced during stationary phase (Castanie-Cornet et al., 

1999; De Biase et al., 1999). During exponential phase growth the most prominent sigma 

factor, RpoD, is competent to recruit RNA polymerase to the promoters of acid resistance 

genes (Giangrossi et al., 2005; Waterman and Small, 2003a). However, during exponential 

phase growth, or in an rpoS KO background, no transcript from the GadX promoter can be 

detected. This is due to the affect of RpoS levels on the expression of the gadY. The small 

regulatory RNA, gadY, up-regulates the amount of GadX in two ways. Firstly, gadY base 

pairs to the 3’ end of the gadXW transcript, stabilising the RNA. Secondly, gadY aids the 

processing of the dicistronic gadXW transcript (Opdyke et al., 2004; Tramonti et al., 2008; 

Tramonti et al., 2002). GadX is an AraC-like regulator that has been shown to function as an 

important activator of acid resistance genes (Ma et al., 2002; Tramonti et al., 2002). GadW is 

also an AraC-like regulator. The role of GadW is more diverse and the precise conditions and 

strain seem to dictate its role (Ma et al., 2002; Tucker et al., 2003). Recent evidence, from 

work on E. coli K-12 MC4100 and MG1655, has suggested that GadW acts as an activator of 

the AR2 genes (Sayed et al., 2007; Tramonti et al., 2006). The GadX and GadW proteins then 

regulate the transcription of many genes involved in acid resistance. Recently, the role of 

GadX and GadW in exponential phase induction of acid resistance was investigated. The 

induction of acid resistance by mild acid shock was shown to be completely independent from 

GadX and GadW (Burton et al., 2010). 
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1.4.4.2. Characterisation of GadX and GadW regulation 

The mechanisms by which GadX and GadW are thought to activate the expression of genes 

are difficult to interpret because their interactions differ between promoters. Much of what is 

known about GadX/W regulation was characterised while investigating the gadBC and gadAX 

promoters. At the gadBC and gadAX promoters, GadX and GadW can bind to a 42-bp 

GadX/W consensus site found in both promoter regions (Richard and Foster, 2007; Tramonti 

et al., 2008; Tramonti et al., 2006). However, the proposed mechanism of activation at the 

gadA promoter is different from that of the gadBC promoter. When GadX binds the gadAX 

promoter, in vitro, GadX antagonises H-NS mediumted repression (Giangrossi et al., 2005). 

In contrast, at the gadBC promoter, where the GadX/W binding site is in the distal upstream 

promoter region, the proposed mechanism of activation by these factors invokes a DNA 

looping mechanism (Tramonti et al., 2006). In addition to the gadAX and gadBC promoters, it 

is now apparent that each of these factors can also bind to, and activate, the gadE promoter 

region (Sayed and Foster, 2009; Sayed et al., 2007; Tramonti et al., 2008). Although there is 

no doubt that GadX and GadW activate the AR2 genes, the fact that GadX binds the gadE 

promoter and activates expression of GadE casts doubt as to which interactions take 

precedence over the others. 

 

1.4.4.3. Characterisation of the RpoS-GadY-GadX-GadW regulatory circuit 

The components of the RpoS-GadY-GadX-GadW circuit combine to regulate acid resistance 

in response to stationary phase growth. Regulation by this network is as follows. During 

exponential growth the levels of local acid resistance regulators, GadX and GadW, are very 

low in the cell. This is due to inhibition by global regulator H-NS (see section 1.4.1.2.) 

(Tramonti et al., 2008; Tramonti et al., 2002). Entry into stationary phase causes the levels of 
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RpoS to increase in the cell. RpoS recruits RNA polymerase to a subset of promoters, one of 

which is the gadY promoter. Up-regulation of gadY causes the gadX and gadXW transcripts to 

be stabilised and more effectively processed, thus increasing the abundance of activators 

GadX and GadW in the cell. A 42 bp GadX/GadW binding sequence has been characterised 

at five of the eight main promoters of the AFI that GadX and GadW bind and remove H-NS. 

Thus, the main action of the circuit, when induced, is to relieve the repression of AFI and 

GAD promoters from H-NS. 

 

1.4.5. Role of TrmE in the AR2 network 

TrmE, or MnmE, is a molecular switch that undergoes a conformational change when bound 

by GTP (Cabedo et al., 1999).  TrmE was found to be involved in GAD regulation by Gong et 

al., in 2004. However, how TrmE interacts with the GAD promoters or the AR2 network is 

currently unknown. The bulk of evidence that supports the role of TrmE in the AR2 network 

was revealed by a trmE mutation in the EK227 K-12 strain of E. coli. This strain had 

dramatically reduced survival in rich medium supplemented with glucose and glutamate 

(Gong et al., 2004). The mutation had no effect on survival in un-buffered LB grown cultures. 

The trmE deletion strain was acid sensitive compared to the parent strain when glucose was 

added to the medium (Gong et al., 2004). 

 

Transcription of key acid resistance genes was examined in the trmE mutant background. 

Mutants lacking trmE had reduced gadE transcription, during stationary phase growth, in 

complex medium containing glucose. However, there was no difference in expression 

between a trmE deletion strain and the parent in medium without glucose.  
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1.5. Role of GadE in the AR2 network 

1.5.1. Characterisation of GadE 

GadE is a member of the LysR family of transcriptional regulators and is the central regulator 

of the AR2 network. GadE was first implicated in acid resistance when it was shown to be 

essential to acid resistance conferred by EvgA over-expression (Masuda and Church, 2002). 

Later, it was found that acid resistance levels, similar to that shown by evgA over-expression, 

could be achieved by over-expression of gadE (Masuda and Church, 2003).  

 

GadE was originally characterised as a regulator of the GAD genes because acid resistance 

conferred by GadE was observed in conditions favourable to GAD (Tucker et al., 2002). 

However, a gadE deletion mutant also had significant effects on survival conferred by the 

AR1 and AR3 systems (Ma et al., 2003a). The regulation of GAD by GadE has been 

extensively characterised. EMSAs of purified GadE with DNA from the promoters of gadBC 

and gadA revealed a 20 bp GadE binding site now known as the GAD box (Ma et al., 2003a). 

The GAD box is a conserved sequence found at all promoters that GadE binds. GadE also has 

a GAD box at its own promoter, which GadE binds to activate its own expression.  

 

1.5.2. Post-transcriptional control of GadE 

The sections above have described the transcriptional control of GadE. In addition to 

transcriptional regulation, GadE is also regulated post-transcription. There are two main 

factors that regulate GadE post-transcription. RNA stability is regulated by a small RNA, and 

protein stability is regulated by Lon protease. This section will discuss the interaction of each 

of these post-transcriptional regulators with gadE RNA and protein.  
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The transcript of gadE is regulated by a small RNA named acid resistance-related sRNA. This 

sRNA is transcribed in the opposite direction from gadE (Aiso et al., 2011). Acid resistance-

related sRNA is an antisense RNA to the gadE transcript. This sRNA was shown to bind and 

stabilise the GadE transcript (Aiso et al., 2011). The acid resistance-related sRNA is 

transcribed from the 6H57 gene during conditions of mild acid shock (pH 5.5) and growth 

into stationary phase (Aiso et al., 2011).  

 

GadE protein is also actively degraded by Lon protease. The degradation rate of GadE is 3 

minutes in a K-12 MG1655 strain. However, in a lon KO mutant background, GadE half life 

is increased to 50 minutes (Heuveling et al., 2008). The biological significance of this is not 

fully understood. However, it has been suggested that Lon protease is important for resetting 

the GAD system once a cell moves from acidic to pH neutral conditions (Heuveling et al., 

2008). 

 

1.5.3. GadE is a central regulator of acid resistance in E. coli 

The role of GadE in acid resistance is important for the induction of the AR2 network. As 

previously explained, two main stimuli cause the up-regulation of acid resistance genes and 

therefore greater survival at extreme pH. The first is entry into stationary phase, which 

activates the RpoS-GadY-GadX-GadW circuit described in 1.4.4. Briefly, RpoS levels 

increase in the cell which activates the GadE promoter. Additionally, RpoS activates the 

GadX-GadY-GadW mini circuit which results in high levels of GadX. GadX can activate 

genes involved in acid resistance and GadE. This activation is independent from the EvgAS-

YdeO regulatory circuit described in 1.4.3.1. The second stimulus which activates the AR2 

network is a mild acid shock (pH 4.8 to pH 5.8). This causes response regulator EvgA to 
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become active and bind the safA-ydeO and gadE promoters, resulting in the activation of 

these promoters. YdeO activates GadE, further increasing GadE levels and therefore 

activation of acid resistance genes. Regardless of the stimuli each circuit results in the 

activation of GadE and the AR2 genes. 

 

1.6. Regulatory reach of the AR2 network 

The current range of regulators implicated in the AR2 network is extensive; as a result, AR2 

forms a wide array of interactions with systems that are not all involved in acid resistance. 

The AR2 network comprises of the activators EvgAS, RcsB, YdeO, GadE, PhoPQ, GadW 

and GadX. Although many of these regulators were characterised by their regulation of the 

AR2 mechanism their reach also affects other acid resistance mechanisms. The action of these 

regulators increases acid resistance in E. coli. This section will discuss the interactions of 

these regulators with acid resistance genes. 

 

1.6.1. AR2 network control of AR2 

The AR2 genes, GadA, GadB and GadC, are regulated directly by the central AR2 network 

regulator GadE. During conditions of acid shock or during stationary phase growth GadE is 

up regulated. GadE in turn binds to GAD boxes located in the promoters of GadBC and GadA 

and activates their transcription. Currently it is understood that GadE binds to the GadA 

promoter only in a heterodimer with RcsB. In addition to up regulation by GadE, the gadAX 

promoter is also activated by GadX in stationary phase conditions (see figure 1.5 B). The 

activation of the gadA promoter occurs by removal of H-NS. The activation of gadAX 

promoter by GadX could be direct or via GadE.  
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1.6.2. AR2 network control of AFI 

The AFI includes the promoters of central regulators GadE and GadX. During exponential 

phase growth induction occurs via mild pH shock (4.8 to 5.8). In response to low pH the 

EvgA-RcsB-YdeO circuit is activated. Both EvgA and YdeO activate the gadE promoter 

additively. GadE then up regulates the expression of hdeAB and hdeD promoters the products 

of which reduce protein aggregation in the periplasm. In addition to activating the gadE 

promoter, YdeO also activates slp, found to be important in acid resistance (see figure 1.5 A) 

 

During stationary phase growth the RpoS-GadX-GadW-GadY circuit is induced. As a result 

the local regulators GadX and GadW activate the AFI. The GadX and GadW regulators 

directly control components of the AFI including hdeA-hdeB-yhiD, hdeD, and slp-dctR. 

However, the aforementioned promoters contain binding sites for both GadW/X and GadE 

(Tramonti et al., 2008). The fact that binding sites for both activators are present suggests that 

both can probably influence promoter activity directly at these sites. One explanation for this 

regulatory redundancy is that as the AFI is predicted to be a horizontally acquired region of 

DNA, it has been proposed that GadX and GadW evolved to function as an H-NS anti-

repression element in the AFI. The role of GadX and GadW is to prevent the silencing of this 

region by H-NS as it is acquired by an organism (Dorman, 2007; Tramonti et al., 2008). Once 

GadE is freed from H-NS repression it can assist in generating a higher level of transcriptional 

activation across the AFI (Tramonti et al., 2008).  

 

1.6.3. Regulation of AR4 by the AR2 network 

The AR4 genes, cadA and cadB, are controlled by local regulators CadC and LysP. LysP 

regulates AR4 in response to the abundance of exogenous lysine; cadC activates AR4 genes 
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in response to low pH stress. The mechanism by which CadC senses low pH is unknown; it is 

known however, that cadC and cadB are regulated by both GadE and GadX (Hommais et al., 

2004). The regulation of the cadC and cadB promoters by GadE or GadX is not well 

understood, no binding sites have been characterised at these promoters nor have the GadE or 

GadX proteins been shown to activate cadC and cadB directly.  

 

1.7. Experimental evolution experiments 

Bacteria are ideal for studying evolution, due to their short generation times and size. In 

addition, studying evolution using bacteria in a laboratory environment allows the control of 

many variables during an evolution experiment (Elena and Lenski, 2003). This section will 

outline the current methods for lab-based evolution experiments using microbes, and explain 

the rationale for the evolution experiment used in this study. 

 

1.7.1 Evolving microbes 

The basic form of an evolution experiment is to propagate a culture from a single colony over 

a series of generations while applying some selective pressure. The culture is often sampled at 

regular intervals and stored at -80°C. After a period of time the fitness of the “evolved” 

strains can be compared to their “lineal ancestor”. The ancestor strain is normally compared to 

the evolved strains using a competition assay. Competitions enable the direct comparison of 

the ancestor strain with the evolved strains, as opposed to measuring growth rate, where 

neither strain competes for resources. In many cases, the conditions of the competition assay 

will emulate the conditions in which the evolution experiment was done. In some cases the 

competition assay is done in other conditions to test for trade-offs. In order to do a 

competition assay, the ancestor and evolved strains must be marked to distinguish between 
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them. Markers can take many forms including; differing PCR products using universal 

primers, the ability to bind a dye, fluorescent markers or antibiotic resistance (Elena and 

Lenski, 2003). 

 

1.7.2 Applications of lab based evolution 

Evolution experiments have been done using microbes over long periods of time, in some 

cases over 40,000 generations (Barrick et al., 2009; Pelosi et al., 2006; Woods et al., 2006), 

These experiments can be used to test fundamental concepts in evolution. For example, a 

study by Barrick et al. in 2009 monitored the mutation rate of cultures growing in a constant 

laboratory environment. The study looked at cultures that had been growing for 40,000 

generations. The genomes of cultures from throughout the 40,000 generations were 

sequenced. This study showed that genomic evolution was almost constant, but the proportion 

of adaptive mutations was high (Barrick et al., 2009). The work by Barrick et al. showed that 

there was a clear difference in genomic and adaptive evolution of these strains during the 

course of the experiment. The Barrick et al. study is one of many that use lab-based evolution 

to understand evolution and not the organism. For a comprehensive review on such studies 

see Elena and Lenski 2003.  

 

Research using short-term evolution experiments is also important, especially when trying to 

understand the relatively fast emergence and transfer of antibiotic resistance and pathogenic 

phenotypes. Short-term evolution experiments can also be used to select mutations that are 

important for a particular phenotype. This differs from other evolution experiments as the 

emphasis is on understanding the mutants or the phenotype and not the process. Using 

evolution to select for mutations has many advantages over traditional mutagenesis strategies. 
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Firstly, the evolution experiment is discovery-based and not biased by any particular 

hypothesis. Consequently, there is a possibility of serendipitous results. The evolution 

experiment will also select mutations that are important to the phenotype. The main caveat of 

lab-based evolution is that the mutations can be hard to identify. Due to these difficulties, lab-

based evolution experiments traditionally focused on acquired or lost phenotypes (Pelosi et 

al., 2006; Woods et al., 2006). In most cases very little was understood about the underlying 

genetic changes that were responsible for the evolved phenotype. However, the application of 

whole genome techniques such as re-sequencing has largely solved this issue. To date several 

studies have used experimental evolution and high throughput techniques to understand both 

evolution in general, and specific pathways and phenotypes (Barrick et al., 2010; Crozat et 

al., 2011; Stanek et al., 2009). However, to date, no studies have used lab-based evolution and 

high-throughput sequencing, to select for mutant strains under extreme stress conditions and 

to identify all mutations acquired during the process. 

 

We have utilised lab-based evolution to select for mutations that are advantageous to survival 

in extreme acid conditions. This method has been combined with whole genome re-

sequencing to investigate the mutations. Finally the results from these experiments have been 

used to understand the regulation of acid resistance.  

 

1.7.2 Evolution of acid resistant E. coli K-12 

Prior to the start of this project, used lab based evolution to evolve 8 separate E. coli K-12 

cultures by selection with extreme acid shock (Russell and Lund, unpublished data). The cell 

lines were labelled A-H and a single acid resistant clone was isolated from each culture. 

These clonal isolates were named Aa-Ha. The evolution experiment is described in detail in 
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Chapter 3. The acid resistant phenotype of these strains and the mutations that have been 

selected for during the evolution experiment were the subject of this study (Russell and Lund, 

unpublished data).  

 

1.8.  Aims 

This review has described the various mechanisms that E. coli uses to survive acid stress. 

There are many regulatory factors that control these genes and as a consequence the number 

of possible mutations that could cause an acid resistance phenotype is large. In this study we 

have investigated the regulation of acid resistance by analysing strains of E. coli that have 

evolved high levels of acid resistance in the lab. The primary goal of this work was to 

understand the genetic changes that caused previously acid sensitive strains to become acid 

resistant. In order to achieve this, the following sub objectives were completed. 

 Full characterisation of the acid resistance phenotype of the evolved strains using 

standardised assays and molecular techniques. 

 Whole genome analysis of the evolved strains to find the mutation(s) responsible for 

the evolved resistance. 

 Characterisation of mutations found in evolved strains and their role in acid resistance. 

Characterisation of the evolved strains could increase our understanding of acid resistance in 

E. coli. Acid resistance is regulated by a complex network; mutations in this network could 

give rise to an acid resistant phenotype. Studying the accumulation and tolerance of such 

mutations in regulatory networks could provide insights into the robustness and evolvability 

of bacterial networks. 
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2.1. Bacterial strains and plasmids 

The bacterial strains used in this study are listed in Table 2.1. Gene deletion mutant 

strains were constructed as described in 2.6.2 and single base chromosomal mutants 

were made as described in 2.6.3. The plasmids used in this study for mutagenesis, 

transcriptional analysis and complementation, are listed in Tables 2.2, 2.3 and 2.4 

respectively. Plasmid maps of the reporter vector, pLUX; gene doctoring vector, pDOC-

C; and the low copy vector, pZC320, are indicated in figure 2.1. A, B and C. 
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Table 2.1. Bacterial strains used in this study. 

Strain Relevant genotype Source / reference 

DH5α E. coli DH5α (F-, φ80dlacZΔM15, Δ(lacZYA-

argF)U169, deoR, recA1, endA1, hsdR17(rk-, 

mk+), phoA, supE44, λ-, thi-1, gyrA96, relA1) 

Invitrogen, Paisley, UK 

MG1655 E. coli K-12 MG1655 (F-, lambda-, ilvG-, rfb-

50, rph-1) 

Blattner et al., 1997 

EvoAa Evolved MG1655  P. B. Russell  

EvoBa Evolved MG1655  P. B. Russell 

EvoEa Evolved MG1655  P. B. Russell 

EvoGa Evolved MG1655  P. B. Russell 

EvoHa Evolved MG1655  P. B. Russell 

EvoAa ΔrpoS Evolved MG1655 rpoS::Km
R
  This study 

EvoBa ΔrpoS Evolved MG1655 rpoS::Km
R
  This study 

EvoEa ΔrpoS Evolved MG1655 rpoS::Km
R
  This study 

EvoGa ΔrpoS Evolved MG1655 rpoS::Km
R
  This study 

EvoHa ΔrpoS Evolved MG1655 rpoS::Km
R
  This study 

EvoAa ΔgadC Evolved MG1655 gadC::Cm
R
 This study 

EvoBa ΔgadC Evolved MG1655 gadC::Cm
R
  This study 

EvoEa ΔgadC Evolved MG1655 gadC::Cm
R
  This study 

EvoGa ΔgadC Evolved MG1655 gadC::Cm
R
  This study 

EvoHa ΔgadC Evolved MG1655 gadC::Cm
R
  This study 

evgScG658A MG1655 evgS::G658A
1
 This study 

evgScG658A ΔevgA MG1655 evgS::G658A
1
 evgA::Km

R 
This study 

evgScS600I MG1655 evgS::S600I
1
 This study 

evgScS600I ΔevgA MG1655 evgS::S600I
1
 This study 

evgScS600I ΔrcsB MG1655 evgS::S600I
1
 This study 

ΔrpoS MG1655 rpoS::FRT This study 

ΔgadE MG1655 gadE::FRT P1 x MC4100 gadE::Km
R
 

(Heuveling et al., 2008) x MG1655 

(done by Lesley Griffiths); x pCP20 

ΔB1500 MG1655 b1500::Cm
R 

This study 

ΔydeO MG1655 ydeO::FRT P1 BW25113evgA::Km
R
 (Baba et 

al., 2006)xMG1655 xpCP20 

ΔydeO rpoS MG1655 ydeO::FRT rpoS::Cm
R
 N. Burton (Burton et al., 2010) 
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Table 2.1. Bacterial strains used in this study (continued.) 

Strain Relevant genotype Source/ reference 

ΔphoP MG1655 phoP::Cm
R
 N. Burton (Burton et al., 2010) 

ΔevgSsnv MG1655 evgS (SNV region)::Km
R
 This study 

ΔydeO ΔphoP MG1655 ydeO::FRT phoP::Cm
R
 N. Burton (Burton et al., 2010) 

ΔrpoS ΔphoP MG1655 rpoS::FRT phoP::Cm
R
 N. Burton (Burton et al., 2010) 

ΔrcsB MG1655 rcsB::Cm
R
 This study 

ΔgadC MG1655 gadC::Cm
R
 This study 

ΔgadE ΔydeO MG1655 gadE::Km
R
 ydeO::FRT This study 

ΔgadE ΔydeO ΔphoP MG1655 gadE::Km
R
 ydeO::FRT 

phoP::Cm
R
 

This study 

ΔydeP MG1655 ydeP::Cm
R
 This study 

1
  Resulting amino acid substitution  

Km
R
 – kanamycin resistant 

Cm
R
 – chloramphenicol resistant 

FRT – scar sequence left after cassette removal 
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Table 2.2. Plasmids used in this study for mutagenesis. 

Plasmid Description Source / reference 

pKD3 Gene mutagenesis plasmid; Cm
R
; carries cat gene 

between two flanking FLP recognition target sites 

(FRT) 

Datsenko and Wanner, 

2000 

pKD46 Gene mutagenesis plasmid; Ap6R; repA101ts operon 

curable at 37°C; carries Red recombinase genes under 

the control of ParaB  

Datsenko and Wanner, 

2000 

pCP20 Gene mutagenesis plasmid; Ap
R
 and Cm

R
; ts replicon 

curable at 43°C; encodes FLP recombinase for FLP 

mediumted excision of DNA between FRT sites 

Cherepanov and 

Wackernagel, 1995 

pDOC-C Gene mutagenesis plasmid; Ap
R
; carries multi-cloning 

site in between I-SceI digest sites, parent vector to 

gorging plasmids
1
 

Dave Lee (Lee et al., 

2009) 

pDOCevgASG658A pDEX; EvgAS operon -607 to 3600 containing EvgS 

mutation G658A 

This study 

pDOCevgASS600I pDEX; EvgAS operon -607 to 3600 containing EvgS 

mutation S600I 

This study 

pABCSR Gene mutagenesis plasmid; Cm
R
; carries I-sceI gene 

and Red recombinase genes under the control of ParaB 

Herring et al., 2003 
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Table 2.3 Promoter probe plasmids used in this study. 

Plasmid Description
1
 Source / reference 

pLUX pCS26 derivative; STOP codons, ribosome 

binding site, and NcoI restriction site switch; 

Parent plasmid for pLUX series2 

N. Burton (Burton et al 2010) 

pLUXacpp pLUX; acp -340 to 108 N. Burton (Burton et al 2010) 

pLUXb1500p pLUX; b1500 -335 to 119 N. Burton (Burton et al 2010) 

pLUXcsrAp pLUX; csrA -390 to 136 N. Burton (Burton et al 2010) 

pLUXevgAp pLUX evgA -600 to 125 N. Burton (Burton et al 2010) 

pLUXgadAp pLUX; gadA -288 to 273 N. Burton (Burton et al 2010) 

pLUXgadBp pLUX; gadB -553 to 273 N. Burton (Burton et al 2010) 

pLUXgadEp pLUX; gadE -868 to 94 N. Burton (Burton et al 2010) 

pLUXgadWp pLUX; gadW -446 to 141 N. Burton (Burton et al 2010) 

pLUXgadXp pLUX; gadX -514 to 114 N. Burton (Burton et al 2010) 

pLUXgadYp pLUX; gadY -326 to 69 N. Burton (Burton et al 2010) 

pLUXhdeAp pLUX; hdeA -323 to 69 N. Burton (Burton et al 2010) 

pLUXhdeDp pLUX; hdeD -363 to 237 N. Burton (Burton et al 2010) 

pLUXmgtAp pLUX; mgtA -446 to 98 N. Burton (Burton et al 2010) 

pLUXslpp pLUX; slp -314 to 70 N. Burton (Burton et al 2010) 

pLUXydePp pLUX; ydeP-405 to 63 N. Burton (Burton et al 2010) 

1
bp from the translation start site of the respective gene 
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Table 2.4 Vectors used for complementation in this study 

Plasmid Description 
Source 

reference 

pZC320
1
 Single copy F replicon cloning vector; Ap

R
, parent vector to all 

complementation plasmid
1
 

Shi and Biek, 

1995 

pevgAScS584F pZC320 complementation plasmid containing the evgAS operon 

and promoter -607 to 3679
1
 from evolved strain Aa. Contains 

S584F EvgS mutation 

This study 

pevgAScN573L pZC320 complementation plasmid containing the evgAS operon 

and promoter -607 to 3679
1
 from evolved strain Ba. Contains 

N573L EvgS mutation 

This study 

pevgAS pZC320 complementation plasmid containing the evgAS operon 

and promoter -607 to 3679
1
 from MGA. 

This study 

pevgA pZC320 complementation plasmid containing the evgA gene and 

promoter region from -607 to 615
1
 

This study 

prcsB pZC320 complementation plasmid containing the rcsB gene and 

promoter region from -1144
2
 to 3350

3
 

This study 

1
 bp relative to the translation start of evgA 

2
 bp relative to the translation start of rcsB 

3
 bp relative to the translation strat of rcsD 
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Figure 2.1 Plasmid maps for pLUX, pDOC-C and pZC320. The name and size of each plasmid is shown in 

the centre of each map. A) Plasmid pLUX, numbers within the multiple cloning site indicate the distance in bp to 

from the 3’ end of each sequence element relative to the start of the luxC translation (labelled +1). B) the pDOC-

C plasmid, red blocks shown in the multiple cloning site indicate the presence of unique SceI restriction sites. C) 

Plasmid pZC320.Open reading frames are shown by large coloured arrows, which are labelled with their 

respective gene names. Restriction sites used for cloning are enlarged and marked with a small black arrow.  
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2.2 Growth conditions 

Unless otherwise stated, E. coli was grown in Luria-Bertani broth (LB; 1% w/v tryptone, 

0.5% w/v yeast extract, 1% w/v salt; pH 7), at 37°C and with aeration using a shaking 

incubator at 180 rpm. Luria-Bertani agar (LBA; 1% w/v tryptone, 0.5% w/v yeast extract, 1% 

w/v salt, 1.5% w/v agar; pH 7) was used as solid medium and where plating of bacteria was 

required. Both LB and LB agar were made up in distilled water and sterilised by autoclaving 

by an in house medium and glassware service. M9supp (a rich semi–defined medium based 

on M9 salts; Table 2.5; pH 7 with KOH; or pH < 5.8 with HCl; cold filtered, Table 2.3) was 

used for acid resistance assays, high temporal resolution promoter probe assays and single 

time point promoter probe assays described in sections 2.7, 2.8 and 2.9 respectively. Where 

required, the amino acid complement of M9supp was altered for assays in the presence of 

only glutamate (M9E; M9supp containing 0.5 mM glutamic acid in place of cas-amino acids), 

only lysine (M9K; M9supp containing 0.6 mM lysine in place of cas-amino acids) and only 

arginine (M9R; M9supp containing 0.6 mM lysine in place of cas-amino acids). For the 

purpose of selection of strains by resistance to antibiotics, antibiotics were added to growth 

medium at the following concentrations: ampicillin (Ap), 100 μg/ml; carbenicillin (Cb), 100 

μg/ml; kanamycin (Km), 50 μg/ml; chloramphenicol (Cm), 25 μg/ml. Other agents that were 

added to medium for more specific applications are indicted in the appropriate methods 

section.  

 

2.3. Custom oligonucleotides 

All oligonucleotides used in this study are listed in Tables 2.6, 2.7 and 2.8 and were 

synthesised by Alta Biosciences (Birmingham, UK) or Eurogentec (Southampton, UK). 
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Table 2.5. Constituents of M9-supp growth medium.  

Compound Chemical formula Final working concentration 

di-Sodium hydrogen orthophosphate 

(anhydrous) 
Na2HPO4 42.3 mM 

Potassium dihydrogen orthophosphate KH2PO4 22.1 mM 

Sodium chloride NaCl 8.56 mM 

Ammonium chloride NH4Cl  18.7 mM 

D-Glucose (anhydrous) C6H12O6 0.4% w/v; 22.2 mM 

BactoTM cas-amino acids 

(Acid-Hydrolysed casein, low sodium 

chloride and iron concentrations) 

Undefined 0.2% w/v 

MOPS C7H15NO4S 100 mM 

MES Hydrate C6H13NO4S xH2O 100 mM (anhydrous basis) 

Magnesium sulphate 7-Hydrate
1
 MgSO4-7H2O 2 mM 

Calcium chloride
1
  CaCl2 0.1 mM 

Thiamine (Vitamin B1) Hydrochloride
1
 C12H17CiH4O5HCl 0.001% w/v (0.03 mM) 

1 
Made up as solutions prior to addition: MgSO4-7H2O 1M; CaCl2 1 M; thiamine 1% w/v 
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Table 2.6. Primers used in the construction of plasmids made in this study. 

Primer name
1
 Sequence (5’ to 3’) 

Restriction 

site 

evgAS-607 CCGATGGATCCACTACCTGAGACTTGTGCAG BamHI 

evgAS_R+3679+RS3 CCGATGCTAGCCCACATTTGAACATTGTGGG SalI 

rcsBF-1144 GGTCCGGATCCGCGGATGATAGCTGGAAAAGT XhoI 

rcsBD+3350R GGTCCCTCGAGTGCGTCTTATCTGGCCTAC BhamHI 

evgA+615R GGTTAGCTAGCTTAGCCGATTTTGTTACG NheI 

 
1
 Number in the primer name corresponds to the location of the 5’end of the primer relative to the translation 

start site of that gene.  

Restriction sites are indicated in bold. 
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Table 2.7. PCR screening and/or sequencing primers. 

Name Sequence pos
1
. 

pCS26_F GCAATTCCGACGTCTAAG -118 

pCS26_R GGAAAGATTTCAACCTGG +59 

pKD3_674_R (mut_644_R) TAACCAGACCGTTCAGCTG +674 

Km_R_+535 CGGAGAACCTGCGTGCAAT +535 

MJrpoS1F GATTACCTGAGTGCCTAC -243 

MJrpoS1R ACGACCTACATCTTCCAG +879 

MJrpoS2F GAGGAACTGTTATCGCAG -127 

MJrpoS2R TCAGGGTTCTGGATTGTG  +1218 

gadC_+1616_R CGTTAAGTCAATACGACAGC  +1616 

evgAp_-607_F ACTACTCGAGACTTGTGCAG -607 

evgAp_+140_R TCAGGCTTAAGTGGATCCAC  +140 

evgA_+697_R CTACTGATGCCACGATATTC  +697 

b1500p_-347_F TCCAGACTCGAGTCACATGC  -347 

ydeO_+106_R CGTTATCTACCATCAGGATC  +106 

ydeO_+813_R CCCATTTAATTCTTACGCAGC  +813 

evgS_F-44 GGATCTTTACACATTCGC -44 

evgS_F+1081 GAGGATGGGATATAATAC +1080 

evgS_F+2278  CACTCCTCGGCTTAATTG +2278 

evgS_R+1330  CCTTGTGAAATGCAGCGC +1330 

evgS_R+2461  GGTAATGTTCAGGAAACG +2461 

evgS_R+3679 GAACAAATTCGCCAGGAG +855 

rcsB-122_F  CAAGCAGTTATGTGAAACGC +122 

rcsB+84_R  CCACTCAATTTGCTCAAGTG +84 

rcsB+699_R  GCAAATGCCAGATAAGACAC +699 

evgS-110_F  CAGCAACAAAACTGTCAGC +110 

evgS+79_R  CGATGTAATCTTCGTCTGC +79 

evgS_R+2821 GCTGGCTAATTTCTACCG +2821 

F_A0500-113 GGTGGCCAGCGAGAAAGC O42
2
 

R_A0500-944 CAACTCCACATCCTTGCC O42
2
 

EvgS.R.Ha.Ha GTTCAAAAGCACTATTATGAA +1139 

Ea.evgS.Ea.R GCATCTTTTCTCGATGG +1991 

1
 5’ primer annealing relative to the start of the gene within the primer name  

2 Used in O42 screen, no homology to MG1655 
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Table 2.8. Chromosomal gene deletion mutagenesis primers. 

Gene Primer Name Sequence (5' - 3')
1
 Position

3
 

rpoS 

rpoSKOF 
TGAATGTTCCGTCAATTTATCACGGGTAGG

AGCCACCTTGTGTAGGCTGGAGCTGCTTC  

-39 

rpoSKOR 
CAGCCTCGCTTGAGACTGGCCTTTCTGACA

GATGCTTACCATATGAATATCCTCCTTA 

+789 

gadC 

gadCKOF 
GAACAAAACAGGTGCGGTTCCGACAGGAAT

ACCTGTGTAGGCTGGAGCTGCTTC  

-49 

gadCKOR 
ATCGCTCCCTTGTCTTATAACCATTCAGACA

TGCATATGAATATCCTCCTTA 

+1570 

b1500 

b1500_KO_F-53 
TTTTTAACGTTATCCGCTAAATAAACATATT

TGAATAGGCTGGAGCTGCTTCG 

-35 

b1500_KO_R+237 
CTTTTTTAACATTTCATATTTATAATTTGCTG

TTTGATGAATATCTCTCTTAG  

+544 

evgS
2
 

evgSsnpKOF 
CAGTTCGTCGTCGTAAAGTCATTCAGGGTG

ATTTAGGTGTAGGCTGGAGCTGCTTC 

+1678 

evgSsnpKOR 
CTACCTCGAGTGCATTAATTAGATCACGCG

TTTCAGATGAATATCCTCCTTAGTTC 

+2100 

evgA
4
 

evgAMUTF 
GATATCGTCATCATTGAGGTCGATATCCCC

GGAGT 

+138 

evgAMUTR 
ACTCCGGGGATATCGACCTCAATGATGACG

ATATC 

+172 

ydeP 

ydeP-0KOF 
CGCTATTACAAATCCTAATAATTCATTTCCA

CACAGGTGTAGGCTGGAGCTGCTTC 

-45 

ydeP+2280.KOR 
CTGTGCGGATGACAGCAGAAGAAATGAGA

AGAGGCAATATGAATATCCTCCTTA 

+2315 

1 
Underlined bases anneal to pKD3 or pKD4, non-underlined bases anneal to E. coli K-12 MG1655 

DNA 
2
Knockout region is a region of DNA central to the evgS gene containing evgS mutations, flanking 

evgS regions remain 
3
 bp from the 5’ end of the primer to the translational start site of stated gene. 

4
 Mutation was made by moving a mutation created by Baba et al., 2006. 

 

 

 

 

 

 

 



Chapter 2: Materials and Methods 

66 

 

 

2.4. Molecular biology techniques 

2.4.1. Preparation of genomic DNA 

To prepare genomic DNA from bacterial cells, an overnight culture was grown from a single 

well isolated colony; 1.5 ml of overnight culture was harvested for lysis and purification using 

invitrogen PureLinkTM Genomic DNA Mini Kit (Carlsbad, CA, USA) according to the 

manufacturer’s instructions. Briefly, this kit used a proteinase K induced lysis followed by 

treatment by RNase to digest RNA then purification by selective binding to a silica based 

membrane. 

 

2.4.2. Preparation of plasmid DNA 

In all circumstances a mini preparation was used to isolate plasmid DNA. To prepare plasmid 

DNA from bacterial cells an overnight culture was grown from a single well-isolated colony 

and 1.5 – 10 ml of overnight culture (depending on the copy number of the plasmid) was 

harvested for lysis and purification using QIAprep Spin Miniprep Kit (Qiagen, Crawley, UK) 

was used to prepare plasmid DNA according to the manufacturer’s recommendations. Briefly, 

this kit works by permeabilising the cells by SDS induced lysis followed by digestion of RNA 

using RNase and treatment with a chaotropic agent (guanidine thiocyanate) and then 

purification of plasmid DNA by selective binding to silica gel membranes. DNA was 

typically eluted into a 35 μl volume for maximal concentration of plasmid product. 

 

2.4.3. Amplification of DNA by Polymerase Chain Reaction (PCR) 

PCR used for all purposes other than sequencing and cloning was done using the following 

protocol. An over-night culture was grown up from a single colony, 200 μl of overnight 
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culture was harvested by centrifugation and resuspended in 50 μl sterile H2O. The re-

suspension was boiled at 100°C for 10 minutes to lyse the cells. Large cell debris was 

removed by centrifugation in a micro-centrifuge at 13500 rpm (15000 x g) for 5 minutes and 

5 μl of the supernatant was added to a PCR master mix (1x ReddyMixTM PCR Master Mix 

(Abgene, Epsom, UK; 0.5 units Thermoprime Plus DNA Polymerase; 75 mM Tris-HCl (pH 8 

at 25°C); 20 mM (NH4)2SO4; 1.5 mM MgCl2; 0.01% (v/v) Tween® 20; 0.2 mM each of 

dNTPs; precipitant and red dye); 0.25 μM Forward primer; 0. 25 μM reverse primer; SDW) to 

a final volume of 50 μl. Reactions were loaded into a thermal cycler set to the following 

programme:  

 

Step 1 Initial 

denaturation 
98°C 5 min 1 cycle 

Step 2 Denaturation 98°C 20 sec 

18 cycle Step 3 Annealing 45-60°C
1
 30 sec 

Step 4 Extension 72°C 1 min/ kb 

Step 5 Final 

extension 
72°C 10 min 1 cycle 

1
annealing temperature 5°C less than the lower of the two primer melting temperatures, as 

recommended by the manufacturer.  

 

2.4.4. PCR for cloning and sequencing procedures 

Template DNA was prepared using one of the DNA isolation methods outlined above. To 

prepare the PCR reaction, 5 μl of template DNA was used per 50 μl PCR reaction, primers 

were added to reactions at a final concentration of 0.25 μM. PhusionTM High-Fidelity DNA 

polymerase master mix (Finnzymes, Espoo, Finland) was used to amplify DNA as it has 

exonuclease activity (proof reading), due to this activity Phusion polymerase was added to the 

reaction immediumtely before the start of the thermal cycler program. Reaction tubes were 

then loaded into a thermal cycler set to the following program:  
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Step 1 Initial 

denaturation 
98°C 1 min 1 cycle 

Step 2 Denaturation 98°C 20 sec 

18 cycle Step 3 Annealing 45-62°C
1
 30 sec 

Step 4 Extension 72°C 20 sec/ kb 

Step 5 Final extension 72°C 10 min 1 cycle 
1
 annealing temperature 3°C greater than highest of the two primer melting 

temperatures, as recommended by manufacturer 

 

2.4.5. PCR purification  

To remove unused PCR reagents, small olionucleotides (< 30 bp) and protein, a QIAquick 

PCR Purification Kit (Qiagen, Crawley, UK) was used according to the manufacturer’s 

recommendations. This kit purifies DNA by adhesion to a silica membrane, similar in 

principle to the QIAprep Spin Miniprep Kit (section 2.4.2 above), the main exception, apart 

from the absence of a lysis step, is that the silica gel membranes have been optimised for the 

binding of small DNA fragments. DNA was eluted in 35 μl elution buffer for maximal 

concentration of PCR product. Where more concentrated samples of DNA were required a 

Zymo Research DNA Clean & ConcentratorTM kit was used. This kit utilises the same 

methods as the QIAquick kit and was used per the manufacturer’s instructions. This kit differs 

from the QIAquick PCR Purification Kit as it has a smaller column and elution volume of 6 

μl. 

 

2.4.6. DNA analysis by agarose gel electrophoresis 

Different percentage agarose gels were used depending on the size of the product to be 

visualised (typically 1.5% w/v for fragments <1 kb, 1% w/v for fragments >1 kb). Gels were 

made up in and electrophoresed in TAE buffer for between 25 minutes and 1 hour 20 minutes 
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at a constant voltage of between 90 and 120 V depending on the size of the gel. A standard 

marker (Bioline, HyperladderTM I, UK) containing DNA of known sizes and concentrations, 

was loaded into the gel to allow size measurement and quantification.  

 

2.4.7. Quantifying DNA 

The NanoDropTM ND-1000 Spectrophotometer (Labtech Int., Ringmer, UK) was used 

according to the manufacturer’s recommendations to quantify DNA. 

 

2.4.8. Digestion of DNA by restriction enzymes 

All enzymes were purchased from NEB (Hitchin, UK) or Fermentas (York, UK). Digests of 

plasmid DNA were carried out at a final volume of between 30 μl and 50 μl (typically 50 

ng/μl – 200 ng/μl, depending on plasmid prep) using manufacturer’s recommended buffers at 

the recommended temperature for typically 3 hours. For fast digest enzymes (Fermentas, 

York, UK) reactions were incubated as described by the manufacturer for 5 minutes. Where 

necessary, enzymes were heat inactivated by incubation at 65°C for 20 minutes after 

digestion. DNA was analysed by gel electrophoresis to verify the correct digest pattern and to 

check for star activity or degradation. 

 

2.4.9. Ligation of DNA 

All ligations including blunt ended and sticky ended DNA fragments were done using a 

Quick-Stick (QS) Ligase kit (Bioline, London, UK). Ligations were done in 20 μl volumes 

containing 1x quick stick ligase buffer (stored at 4x concentration in 20 µl aliquots), 1 μl 

quick stick ligase and 14 μl of vector and insert DNA mixture. The molarity of vector DNA 

used in ligation varied depending on the size of the vector and the efficiency of transformation 
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of uncut vector in a control reaction. Insert DNA was added to the range of 3x to 10x molar 

excess over vector when sub-cloned from another vector, for inserts synthesised by PCR and 

digested as linear fragments the molarity was in excess of 100x that of the vector. Ligations 

were left for 15 minutes (cohesive end ligation) or 30 minutes (blunt end ligation) at room 

temperature. Ligations were checked by agarose gel electrophoresis after heat inactivation at 

65°C for 20 minutes and 5 μl was transformed into chemically competent DH5α cells. 

 

2.4.10. Preparation of chemically competent cells 

A 5 ml overnight culture was set up by inoculating 5 ml of LB broth containing any 

appropriate antibiotic selection with a single well isolated colony. A 100 ml day culture was 

started by inoculating 100 ml of antibiotic free LB broth, pre-warmed to 37°C in a 500 ml 

flask, with 1 ml of the overnight culture. The day culture was incubated at 37°C, 200 rpm 

until the culture reached an optical density (absorbance at λ 600 nm) of 0.45. The culture was 

incubated on ice for 5 minutes, before being aliquoted into four 50 ml falcon tubes (50 ml per 

tube). The cells were harvested by centrifugation (5,000 x g, 4°C, 10 minutes, swing out rotor, 

eppendorf centrifuge) and the supernatant was removed. Each cell precipitate was then re-

suspended in 40 ml, ice cold 0.1 M CaCl2 before repeating the precipitation by centrifugation. 

After removing the supernatant each cell precipitate was then re-suspended in 25 ml ice cold 

0.1 M CaCl2 and incubated on ice for 30 minutes. After this period the cells were re-

precipitated by centrifugation (5,000 x g, 4°C, 10 minutes, swing out rotor, eppendorf 

centrifuge), the supernatant removed and then the precipitated was re-suspended in 0.5 ml of 

ice cold 0.1 M CaCl2 15% v/v glycerol and aliquoted into sterile eppendorf tubes (0.5 ml per 

tube). Aliquots were and either used directly for transformation (see below), or transferred to 

the -80°C for long term storage. 
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2.4.11. Transformation of chemically competent cells by heat shock 

To transform chemically competent cells with plasmid DNA, DNA was mixed with 

competent cells, with a maximum ratio of 1:10 (DNA:competent cells), on ice by light 

pipetting. The DNA-cell mixture was incubated on ice for 30 minutes before being transferred 

to a 42°C water bath for 120 seconds. The DNA-cell mixture was then immediumtely 

returned to room temperature and 1 ml of LB broth was added. The cells were mixed well by 

inverting the polypropylelene tube 4-5 times and then incubated for 1-2 hours at 37°C (unless 

otherwise stated). This gave the cells time to express any relevant antibiotic resistance genes. 

Depending on the expected frequency of transformation different quantities of cells were then 

plated out onto selective solid medium. 

 

2.4.12. Preparation of electrocompetent cells 

An overnight culture containing 5 ml LB broth in a 20 ml universal tube, inoculated with a 

single well isolated colony of choice was incubated overnight at 37°C (unless otherwise 

specified for temperature sensitive plasmids), 180 rpm. A day culture was prepared using a 

500 ml conical flask containing 100 ml of LB both, pre-warmed to 37°C, inoculated with 1 ml 

of the overnight culture. This was grown at 37°C (unless otherwise specified for temperature 

sensitive plasmids), 180 rpm until the culture reached an OD600 of 0.6. At this point the flask 

was incubated on ice for 5 minutes, then the culture was aliquoted into two pre-cooled 50 ml 

polypropylene tubes. The cells were precipitated by centrifugation (6,000 x g, 4°C, for 10 

minutes), then the clear supernatant was removed and the cells were re-suspended in 40 ml of 

ice cold, sterile, 10% glycerol. The cells were immediumtely re-precipitated by centrifugation 

(6,000 x g, 4°C, for 10 minutes) and the supernatant was removed. The cells were then re-

suspended in 20 ml of ice cold, sterile, 10% glycerol and immediumtely re-precipitated by 
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centrifugation (6000 x g, 4°C, for 10 minutes). The previous re-suspension and precipitation 

steps were repeated with a re-suspension volume of 2 ml and then 0.2 ml. Finally, when the 

cells were in a final concentration of 2 x 10
10

 cells/ml, they were transferred into 4 sterile 1.5 

ml polypropylene tubes (50 μl per tube) for storage at -80°C or immediumte use. 

 

2.4.13. Electroporation 

To transform cells by electroporation with plasmid or linear DNA, the DNA was mixed with 

competent cells, with a maximum ratio of 1:10 µl (DNA:competent cells), on ice by light 

pipetting. Electroporation cuvettes (Geneflow, Fradley, UK; 1mm gap) were pre-chilled by 

incubation at -20°C for at least 20 minutes prior to use. The cell/DNA mix was pipetted into 

the electroporation cuvette and the samples were then electroporated at 1800V (Geneflow 

electroporator). To allow for adequate expression of antibiotic resistance genes 1 ml of LB 

broth was added to the cells immediumtely after electroporation, the cells were then incubated 

at 37°C for 1-2 hours. Depending on the expected frequency of transformation different 

quantities of cells were then plated out onto selective solid medium. 

 

2.4.14. Dideoxy terminator based DNA sequencing 

Plasmid DNA was sequenced in the University of Birmingham Functional Genomics 

Laboratory, Plasmid to Profile sequencing (Birmingham, UK). In most cases the DNA to be 

sequenced was amplified using PCR with a proof reading DNA polymerase at 50°C (in line 

with the conditions used by the sequencing facility). This provided cleaner templates 

especially for low copy number plasmids. 
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2.5. High-throughput sequencing 

2.5.1 Sequencing 

High-throughput sequencing was done by The Genome Institute, Washington University, 

School of Medicine (St. Louis, USA). Genomic DNA was isolated as previously described 

and analysed using IlluminaTM high throughput sequencing methods as per the 

manufacture’s guidelines. Genomic DNA isolated from the E. coli K12 MG1655 ancestor 

strain was pooled in equal amounts with each Evolved strain (Ea, Aa and Ba) before 

sequencing analysis. Sequencing of evolved stain Ga was done separately by the University of 

Nottingham. The read length was set at 35 bp and paired end runs were used. 

 

2.5.2 Data analysis 

Raw sequence reads were analysed by The Genome Institute, Washington University, School 

of Medicine (St. Louis, USA). FASTA files containing each 35 bp read were then analysed 

using the my.xbase web font end facility, each read was automatically aligned to the E. coli 

K12 MG1655 reference genome (www.my.xbase.ac.uk). When analysing strains that had 

been pooled (MG1655, Aa, Ba and Ea) the aligned sequences were used to provide a table of 

single nucleotide variants that were either present in both the MG1655 and evolved strains (all 

reads at that position had the same base change) or present in only one strain (half the reads at 

that position had the same base change). Analysis used the mapping tools incorporated in to 

the my.xbase.ac.uk facility. When analysing non-pooled samples (Ga) the sequence reads 

were aligned to the same reference genome as described above, the presence of a single 

nucleotide variant was present in all reads. The presence of mutations in particular strains was 

later confirmed by dideoxy terminator sequencing methods. 
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2.6. Mutagenesis 

2.6.1. Site directed mutagenesis 

Site directed mutagenesis on plasmid DNA template was done using the QuikChangeTM 

Site-directed Mutagenesis Kit (Stratagene, Cambridge, UK) according to the manufacturer’s 

instructions. Mutagenic primers were designed according to Stratagene’s guidelines. 

Reactions were set up as follows: 5 µl of 10 x reaction buffer, 60 ng of dsDNA template, 125 

ng of each oligonucleotide primer, 1 µl of dNTP mix, 1 µl of PfuTurbo DNA polymerase (2.5 

U/µl) and SDW to a final volume of 50 µl. The reactions were then run in a thermal cycler set 

to the following programme: 

Step 1 Initial 

denaturation 
95°C 30 sec 1 cycle 

Step 2 Denaturation 95°C 30 sec 

18 cycle Step 3 Annealing 55°C 1 min 

Step 4 Extension 68°C x min* 

  * One minute per 1kb of plasmid length. 

The PCR product was treated with a DpnI restriction enzyme for 1 hour at 37°C, and heat 

inactivated for 20 minutes at 65°C, which removed any methylated DNA (DNA not produced 

by the PCR reaction). The DpnI treated PCR product was then cleaned using a Qiagen 

QiaquickTM clean-up kit (see above) and 5 μl of PCR product was then transformed into 

chemically competent DH5α cells by heat shock (see above). Plasmids were isolated from 

single colony transformants and the presence of site directed mutations confirmed by 

sequencing. 

2.6.2. Gene replacement mutagenesis  

Gene replacement mutagenesis was done as described by Datsenko and Wanner (Datsenko 

and Wanner, 2000). The full process is described below and any modifications from the 

original protocol are included. 
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2.6.2.1. Preparation of a mutagenic PCR product 

A mutagenic linear fragment was amplified by PCR from one of three templates, either the 

plasmid pKD3 (containing a chloramphenicol resistance cassette) or the plasmid pKD4 

(containing a Kanamycin resistance cassette) or a chromosomal template of a representative 

mutant from the KEIO library. The primers used are included in Table 2.5. The resulting 

fragment contained either a Cm cassette (pKD3 template) or a Km cassette (KEIO library 

template or pKD4 template) flanked by 36 bp homology regions (up to 200 bp when the 

KEIO library strain was used as a template), which are homologous to regions either side of 

the gene to be replaced. To obtain a final concentration of mutagenic PCR product, four 50 μl 

PCR reactions were typically purified using the PCR protocol outlined above and eluted in a 

35 μl volume. To remove template pKD3 plasmid the reactions were digested with 1 μl DpnI 

(20 units) and incubated for 3-4 hours at 37°C. Following this digestion fragments were re-

purified. 

 

2.6.2.2. Single gene knock-out mutagenesis protocol 

The strain to be mutated was transformed with pKD46 by heat shock (see above), 

transformants were selected for at 30°C on ampicillin plates. An over-night culture was made 

with a 20 ml universal containing 5 ml LB + ampicillin was inoculated with a single 

transformant colony and incubated overnight at 30°C, 180 rpm. A day culture, made with a 

100 ml conical flask containing 20 ml of LB, was inoculated with 1 ml of overnight culture 

and incubated at 30°C, 180 rpm until the optical density of the culture reached 0.3 (A600 nm). 

The culture was then split into four 1.4 ml aliquots in 1.5 ml polypropylene tubes. Tubes 1 to 

3 contained 25 µl of 20% w/v L-arabinose, an equivalent volume of SDW added to the fourth 

aliquot. These cultures were then incubated at 37°C, 180 rpm, for 80 minutes. This allowed 
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the expression of the λ red genes from pKD46 in aliquots 1, 2 and 3 the cells for 

recombination of an incoming linear DNA fragment, whereas aliquot 4, a negative control, 

does not express λ red genes. Cells were prepared for electroporation as described above. The 

electrocompetent cells in tubes 1, 2 and 4 were electroporated with 200 ng of purified PCR 

product (prepared as described above). Tube 3 served as a negative control, containing no 

DNA. Transformants were selected over-night by growth at 37°C on LB plates with the 

relative antibiotic to select for the resistance marker. Colonies from plates 1 and 2 were 

screened for the correct replacement of the gene by PCR using the relevant primer set in table 

2.6. An example of the PCR screening procedure is given in Fig. 2.2.  

 

2.6.2.3 Removing antibiotic resistance cassettes 

Antibiotic resistance cassettes flanked by FRT sites were removed as described (Datsenko and 

Wanner, 2000). The plasmid pCP20 was transformed by heat shock into the strain and 

transformants selected at 37°C on LB + ampicillin agar plates. Ten single colony 

transformants were grown over-night at 43°C, 180 rpm to induce FLP recombinase synthesis 

and the curing of pCP20. Loss of the resistance cassette and pCP20 was confirmed by replica 

plating; loss of resistance to ampicillin confirmed the curing of pCP20 and sensitivity to the 

antibiotic that was contained on the excised cassette indicated successful removal. Finally, 

candidates were screened and confirmed by colony PCR using the procedure outlined in Fig. 

2.2, using the relevant primer set in Table 2.6.  
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Fig. 2.2. PCR screening for mutations in the MG1655 rpoS gene. A chloramphenicol (Cm) cassette was 

interted into the rpoS gene of MG1655. A common forward primer, MJrpoS1F, which annealed -243 bp from the 

rpoS translation start site, was used with two different reverse primers, the first, MJRpoS2R, annealed +879 bp 

from the rpoS translational start site and the second, cat+544 annealed +544 bp from the cat translational start 

site (600 bp from the start of the mutation cassette). The presence of a 1122 bp fragment, when the wild type 

MG1655 strain was used as the template, and when using the MJRpoS2R reverse primer, confirmed a wild type 

rpoS gene (lane 3). The absence of this fragment, when the mutant candidate was used as the template, indicated 

the loss of the rpoS gene (lane 5). The presence of a 843 bp fragment, when the candidate was used as a template 

and when the cat+544 reverse primer was used, confirmed the presence and location of the cat cassette (lane 4). 
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2.6.3  Single nucleotide chromosomal mutations 

2.6.3.1 Strategy 

To make single nucleotide a mutation on the chromosome of strains, without the use of 

markers, a strategy was devised that incorporated methods of mutagenesis from Datsenko and 

Wanner 2000, and Lee et al., 2009. Each stage of this process is described in detail below. 

Briefly, the method involved the generation of a gene knock out, at the locus where the SNV 

was to be inserted, using Datsenko and Wanner mutagenesis (Datsenko and Wanner, 2000). 

The cassette introduced was then replaced with DNA homologous to that locus, which 

contained the single nucleotide mutation. Successful mutations were screened by the loss of 

antibiotic resistance and sequencing. 

 

2.6.3.2 Gorging plasmid contruction 

Template plasmid pDOC-C was used to introduce a linear fragment into the chromosome of 

the recipient strain. The linear fragments, which contained the evgAS locus from either 

evolved stain Ea or evolved strain Ha, were generated using PCR with the Phusion 

polymerase and primers evgAS-607 and evgAS_R+3679+RS3 (2.4.4; Table 2.4). These 

fragments were cloned into the multiple cloning site on the pDOC-C plasmid using the 

BamHI and SalI restriction sites. This created plasmids pDOCevgASG658A and 

pDOCevgASS600I, which contain copies of the Ea and Ha evgAS loci respectively. Cloning 

methods are described in section 2.4.9. Selection was by growth on LB +ampicillin. 

 

2.6.3.3 Mutagenesis of the SNV region 

The parental strain, E. coli K-12 MG1655 was mutated using Datsenko and Wanner 

mutagenesis as described in 2.6.2. The primers evgSsnpKOF and evgSsnpKOR were used to 
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make the mutagenic fragment. The region of evgS from +1099 to +2821 (bp relative to the 

evgS translation start site) was replaced with a kanamycin resistance cassette. Colonies were 

identified by the methods described in 2.6.2.2. The strain generated by this mutagenesis 

contained a Km cassette in place of the SNV region and was named evgSsnv-. 

 

2.6.3.4 Gene Doctoring protocol 

Prior to gene doctoring the evgSsnv- strain was transformed with either the 

pDOCevgAScG658A or the pDOCevgAScS600I gorging plasmids and with pABCSR. An 

overnight culture was made by inoculating 5 ml of LB +Km, Cm and Cb with a single well 

isolated colony of an evgSsnv- strain containing a gorging plasmid and the pACBSR helper 

plasmid. A 20 ml LB day culture was inoculated with 1 ml of overnight culture and grown to 

an OD600 of 0.3 with shaking at 180 rpm and 37°C. At this point 200 µl of 20% (w/v) L-

arabinose was added to the culture. This induced the expression of the λ-RED genes and the 

SceI from the pABCSR plasmid. The gorging plasmids were cut by SceI either side of the 

multiple cloning site creating a linear fragment. The λ-RED enzymes increased the 

homologous recombination events in the cell. As a result the Km cassette was replaced by a 

copy of evgS containing the single nucleotide mutation. The culture was grown overnight at 

37°C, 180 rpm and plated onto LB+Sucrose (0.01 % w/v) agar plates. Any cells containing 

the pDOC plasmid will also contain the SacB gene rendering the cells Suc
S
. Colonies found to 

be Suc
R
 were then screened for Km

S
. Colonies found to be Suc

R
 Km

S
 had successfully 

replaced the Km cassette with the evgS gene. The presence of the evgS gene and the single 

nucleotide mutation were confirmed by PCR and standard Sanger sequencing. 

 

 



Chapter 2: Materials and Methods 

80 

 

2.7. Acid resistance assay 

2.7.1 Plate setup 

A clear polypropylene 96-well microtitre plate was used to dilute cultures into pH 7 and pH 

2.5 medium. The plate was set up by adding 180 µl of M9supp pH 7 into 6 wells in a row. 

This was repeated for the M9supp pH 2.5 medium and each strain tested required 1 pH 7 row 

and 1 pH 2.5 row. The plate and its contents were warmed to 37°C for 30 minutes prior to the 

start of the assay.  

 

2.7.2 Assay protocol 

Stains to be assayed were used to inoculate 5 ml M9supp (with appropriate antibiotic). 

Cultures were incubated overnight at 37°C, 180 rpm. The overnight cultures were diluted into 

5 ml M9supp (with appropriate antibiotics) to a starting OD600 of 0.005. Cultures were 

incubated at 37°C, 180 rpm to an OD600 of 0.2. At this point the cultures were diluted 10-fold 

7 times in pH 7 M9supp and in pH 2.5 M9supp (no antibiotics) using the 96-well plate set up 

in section 2.6.1. Each dilution required to transfer of 20 µl of culture into 180 µl of M9supp 

medium. The 10
-2

 to 10
-6

 pH 7 dilutions were immediumtely spotted onto square LB plates. 

Once spotted, the plates were tilted to spread the spot into a line down the plate (Figure 2.3). 

This represented the time zero pH 7 reading. The 96-well plate was incubated at 37°C for 2 

hours. After incubation the spotting procedure was repeated with the pH 2.5 wells. The square 

LB plates were incubated overnight at 30°C (to prevent colonies from growing too large to 

count). The survival of each strain was expressed as a percentage, which was calculated by 

dividing the number of colonies scored from the pH 2.5 dilutions by the number of colonies 

scored from the pH 7 dilutions and multiplying by 100. The most concentrated dilution that 

could be counted was used in each case. 
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10-3  10-4  10-5   10-6   10-3   10-4    10-5   10-6

Dilution

pH 7, t=0 hrs pH 2.5, t=2 hrs

Figure 2.3 Example of an acid resistance assay . The figure shows the 

colonies from an acid resistance assay. The dilution factors are shown in 

to top of the figure and the conditions at the bottom.  The lines are created 

by tilting the plate once the cultures have been spotted. Colonies are 

counted by eye. 
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2.7.3. Acid-induction acid resistance assay 

The protocol described in section 2.7.2 was modified to assay the survival of strain that had 

been induced by a mild acid shock. A second 96-well microtitre plate was used to acidify the 

cultures before acid shock. An acidification well and a pH 7 well was set up for each culture 

to be assayed. The acidification well contained 15 µl of 2 M HCl and 25 µl of sterilised H2O. 

The pH 7 well contained 40 µl of H2O. When the cultures to be tested reached an OD600 of 

0.2, 240 µl of each culture was transferred to both the acidification well and the pH 7 well. 

The plate was incubated at 37°C for 70 minutes. After incubation both the pH 7 and the 

acidified cultures were assayed for survival by dilution into pH 7 and pH 2.5 M9supp as 

described in 2.7.2. 

 

2.7.4. Alterations made to assay cultures in stationary phase 

To measure the acid resistance of strains during stationary phase, the following alterations 

were made. Overnight cultures were not sub-cultured into day culture, instead the overnight 

cultures were immediumtely diluted into M9supp at pH 2.5 and pH 7. The cultures were 

diluted to 10
-8

 and the dilutions 10
-4

 to 10
-8

 were plated as previously described. 

 

2.8. High temporal resolution promoter probe assays 

2.8.1. Overview 

In preparation for this assay the strains to be tested were transformed with the reporter pLUX 

plasmids as required. The assay to measure the promoter activity of using the pLUX plasmids 

can be simplified in to the following steps, outgrowth into exponential phase, measurement of 

exponential phase promoter activity, acidification by dilution into HCl, measurement of 

promoter activity during induction by acidification and finally data analysis. The protocol 
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requires two 96-well polypropylene plates with white walls and clear bottoms, Fisher 

Scientific, Loughborough, UK. The sections below will cover the preparation of these plates, 

the assay itself and the data analysis. 

 

2.8.2. Outgrowth 

A single colony of a strain that has been transformed with a reporter plasmid, which was less 

than one week old, was used to inoculate 5 ml M9supp medium in a 20 ml Sterilin tube. This 

culture was incubated at 37°C, 180 rpm overnight. The overnight culture was used to 

inoculate a 25 ml conical flask containing 5 ml M9cas, which had been pre-warmed to 37°C.  

The overnight was diluted in this flask to a starting OD600 of 0.005. The culture was incubated 

in a shaking water bath at 37°C, 180 rpm. The incubation was stopped when the cultures 

reached an OD600 nm of 0.18. 

 

2.8.3. 96-well polypropylene plate set up 

During the outgrowth of cultures to be tested, two 96-well plates were set up. Plate 1 was 

prepared by adding 280 µl of H2O to all wells not used by the assay. Each culture to be tested 

required 6 wells in a column, other samples could not be measured in adjacent wells and the 

outside wells were not used to avoid edge effects. As a result only 6 individual cultures could 

be assayed at one time (5 strains and 1 control). This plate was pre-warmed at 37°C, 30 

minutes prior to use. Plate 2 was prepared the same as plate 1 except for the following 

additions. The top three wells (B-D) of each column are to contain acidification solution, 

which consists of 15 µl of HCl and 25 µl of H2O that will shift the pH of the culture to 5.7. 

The bottom three wells (E-G) of each column were prepared by adding 40 µl of H2O. Cultures 

added to these wells were diluted, as in the acidification wells, but not acidified. The bottom 
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three wells therefore act as a non-acidified comparison. Plate 2 was incubated at 37°C, 30 

minutes prior to use. 

 

2.8.4. Measuring promoter activity 

Once the cultures had grown to OD600 0.18 the cultures were transferred to plate 1. A 

multichannel pipette was used to transfer 240 µl of culture into wells B-G of each empty 

column. This was repeated for each culture to be assayed. Plate 1 was put into the Fluoroskan 

Ascent, Thermo Scientific, Basingstoke. The plate reader incubated the cultures at 37°C with 

shaking and measured the lux values from each well every 40 seconds. After every 12 

readings the plate was removed from the Fluoroskan and placed in the Multiscan Plate reader 

to measure the OD600. After 24 readings in the Fluoroskan, the cultures were acidified to pH 

5.7 by transferring 280 µl from each well of plate 1 into plate 2. Each strain was transferred at 

a set time point in order to account for the delay in acidification between strains. Due to the 

preparation of plate 2, the wells B to D of each column contained acidified cultures and wells 

E to G of each column are non-acidified. The plate 2 was then returned to the Fluoroskan for 

continued measurements. A further 9 cycles of 12 lux measurements and 1 OD600 

measurement were completed before the assay was stopped. The assay measures the lux of 

each well 108 times and the OD600 of each well 9 times over the course of 2.75 hours. Details 

of how the lux values are corrected for OD600 and time discrepancies will be explained below. 

 

2.8.5. Data analysis 

Luciferase values from the at each time point pre- and post-induction were exported from the 

Fluoroskan Ascent to Microsoft Excel for analysis. The Fluoroskan recorded both the lux 

measurement and the timings, which aids in the analysis. The 9 OD600 measurements were 
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exported from the Multiskan MS. The values were corrected for the blank, which was 

determined as the average OD600 measurement from wells containing fresh M9supp. The 9 

corrected OD600 readings were used as a standard by the R statistical software to generate 

predicted OD600 readings for all time points based on best fit parameters of a logistical growth 

curve equation. The lux reads were divided by the respective OD600 reads to give lux per cell, 

per well. Each strain is measured in triplicate so the mean and standard deviation of the 3 

technical replicates of each culture in both acidified and non-acidified conditions were 

calculated. The technical repeats were used as an indication of the variance between wells on 

the plate and technical reproducibility. All assays were repeated 3 times and the values and 

error bars in this thesis represent the mean and standard deviation of 3 biological repeats. 

 

2.9. Single time point promoter probe assays 

The preparation and outgrowth of these assays was done as described in section 2.8.2 except 

for the following. The outgrowth was done in a clear 96-well polypropylene plate which was 

prepared by adding 280 µl of H2O to all outside wells and 270 µl of M9supp to all other 

wells. The plate was pre-warmed at 37°C for 30 minutes prior to use. The overnight cultures 

were used to inoculate the each well of the plate. This allowed up to 60 strains to be compared 

on one plate. The cultures were diluted to a starting OD600 of 0.005 and covered with a gas-

permeable adhesive seal. The cultures were incubated at 200 rpm, 37 °C until the OD600 of all 

cultures was between 0.15 and 0.20. 

 

The OD600 reading was measured in the clear plate before 200 µl of each well was transferred 

into a second plate for the lux reading. Plate 2 was prepared in advance by adding sterile H2O 

to all outside wells and pre-warmed at 37°C 30 minutes prior to use. Plate 2 was a white 
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walled, white bottomed 96-well polypropylene plate that was used to reduce carry-over of 

signal from adjacent wells. The use of these plates also amplified the signal, resulting in much 

higher values compared to the high temporal resolution promoter probe assays, which use a 

clear bottomed white walled plate. The lux values were corrected for both OD600 and volume 

by dividing the lux value first by the OD600 and then each value by 0.2 ml. Each assay was 

repeated a minimum of 3 times and the values and error bars presented in this thesis represent 

the mean and standard deviation of these repeats respectively.  

 

2.9.1 Alterations of the single time point promoter probe assay to measure stationary 

phase activity 

To measure the promoter activity during stationary phase, the following alterations were 

made. Overnight cultures were not diluted into day cultures, instead the overnight cultures 

were diluted 10 fold into pre-warmed medium in a 96-well polypropylene plate. The cultures 

were aerated by incubation with shaking for 30 seconds. This process ensured that the cultures 

were aerated enough to allow the luciferase reaction to occur. The cultures were then read 

using the Fluoroskan Ascent. Data analysis was as described in 2.9. 
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3.1  E. coli acid resistance and the evolution of an acid resistant phenotype 

E. coli K-12 MG1655 is resistant to extreme acid challenge (pH 2.5) during stationary phase, 

in rich and in minimal medium (De Biase et al., 1999; Lin et al., 1995). However, during 

exponential phase E. coli K-12 MG1655 is sensitive to extreme acid shock. This sensitivity 

can be overcome with pre-induction with a mild acid shock (pH 5.7) (Burton et al., 2010; 

Tucker et al., 2002). Underpinning these phenotypic phenomena is a complex regulatory 

network that controls many of the genes responsible for acid resistance. Acid resistance is 

regulated by local regulators GadE, YdeO, GadX, AdiY, CadC and GadW (De Biase et al., 

1999; Tramonti et al., 2006), global regulators H-NS and CRP (Giangrossi et al., 2005; Ma et 

al., 2003b), two-component systems such as EvgAS, PhoPQ and RcsBD (Burton et al., 2010; 

Castanie-Cornet et al., 2010; Eguchi et al., 2011; Eguchi et al., 2004; Johnson et al., 2011; 

Krin et al., 2010b; Masuda and Church, 2003), alternative sigma factor RpoS, and Lon 

protease (Heuveling et al., 2008; Ling et al., 2008). The acid resistance (AR) phenotype of E. 

coli varies greatly between strains (Gorden and Small, 1993). Structural genes implicated in 

acid resistance are conserved amongst all E. coli, which suggests that the variation between 

the levels of E. coli acid resistance is due to the regulatory factors controlling the acid 

resistance genes. The regulation of acid resistance genes by this network is not fully 

understood.  

 

Recently, several studies have used short term lab-based evolution experiments to evolve new 

phenotypes using micro-organisms, for a recent review see Conrad et al., 2011. The mutations 

generated by evolution experiments can reveal the function of novel genes, implicate genes of 

known function in new processes and perturb regulatory networks. Such approaches require 

high throughput technologies such as whole genome re-sequencing, transcriptomics and 
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phenomics to find and understand the relevance of the acquired mutations. In this study we 

aimed to understand the regulation of E. coli acid resistance using lab-based evolution and 

whole genome techniques. In this first chapter, data is presented that confirms the acid 

resistant phenotype of five cell lines that were generated by repeated selection by extreme 

acid shock. The evolved phenotype of all five cells lines was dissected using phenotypic 

assays. The general aim was to define the limits and conditions of the evolved acid resistant 

phenotype(s), and to understand what causative genetic changes have occurred. Particular 

attention was paid to the differences, if any, between the evolved cell lines. In addition, while 

characterising the evolved strains, the resistance of the ancestor strain will also be analysed. 

 

3.1.1. Lab-based evolution experiment 

E. coli K-12 is sensitive to acid shock during exponential phase growth without acid 

induction. A lab-based evolution experiment was used to evolve acid resistant strains in these 

conditions. Eight cell lines were evolved by iterative exposure to extreme acid challenge. This 

resulted in more survival after extreme acid challenge (unpublished work by P.B Russell). 

This section will discuss the method used to generate the evolved strains. All results described 

in 3.1.1 were done by P.B. Russell (unpublished work) prior to the start of this study. To 

evolve strains in the lab, an artificial selection was applied, the method for selecting acid 

resistance was as follows. The medium used in the evolution experiment was rich LB. Eight 

different cell lines were grown in shake flasks at 180 rpm, 37°C until they reached an OD600 

of 0.3 (predetermined to be exponential phase in LB). Once at OD600 0.3, the cells were 

serially diluted 10-fold, seven times, into pH 2.5 LB (called shock cultures). After the cultures 

were shocked at pH 2.5 for 20 minutes, they were recovered overnight in pH 7 medium. The 

next day, each dilution was analysed for growth. The most dilute overnight was used to seed a 
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day culture. This process was then repeated until a significant increase in acid resistance was 

observed. To track the acid resistance during the evolution experiment, the cells were tested at 

set intervals. The strains were tested for acid resistance by the standard acid resistance assay 

described in Chapter 2. The evolution experiment was stopped once a significant (greater than 

10-fold increase in acid resistance) acid resistant phenotype was observed. A single clonies 

were isolated from each cell line and tested for acid resistance. Finally, an acid resistant clone 

from each cell line was stored at -80°C.  

 

Figure 3.1 shows a graph of the progress of acid resistance during the evolution experiment. 

The resistance of the eight cell lines is higher compared to the ancestor (un-evolved E. coli K-

12 MG1655). It was also noted that the acid resistant phenotype increased rapidly. As a result, 

the evolution experiment was halted after 17 days. Finding and understanding the mutations 

that confer this increased resistance could enhance our understanding of acid resistance 

regulation in E. coli. This chapter will continue by characterising the acid resistance 

phenotype of the ancestor and evolved strains.  

 

3.2.  Comparison of ancestor and evolved strains by growth 

The acid resistance phenotype depends on the phase of growth that the cells are in. In E. coli 

K-12 MG1655, cells are more sensitive to acid shock at extreme pH during exponential phase. 

This sensitivity is not found in stationary phase cells (De Biase et al., 1999). As the evolved 

strains may have mutations that affect growth, it is important to assay the growth 

characteristics of each strain for two reasons. Firstly, to gain insights into the mutations which 

may be causing the acid resistant phenotype; do the evolved strains grow slower during 

exponential phase? 
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Figure 3.1. The evolution experiment. Survival of five individual cell lines evolving over 20 days of iterative 

exposure to extreme acid (pH 2.5). Each cell line was exposed to pH 2.5 LB for 20 minutes during exponential 

growth in LB media; survivors were rescued in pH 7 LB medium and grown overnight, this process was repeated 

using the overnight cultures to seed new day cultures. The five individually evolving cultures are shown as 

follows: A (squares), B (diamonds), E (inverted triangles), G (forward triangles), H (upright triangles). 

Resistance levels for each culture were measured every day for twenty days, and averaged over a four day 

sliding window to remove small fluctuations.  (Thus the level shown for day 1 is the average for days 1 to 4). 

Survival was calculated by dividing the colony count of cultures subjected to 2 hours of pH 2.5 acid shock by the 

colony count of the same culture after 0 hours at pH 7 (Russell, unpublished data) 
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Do the evolved strains enter stationary phase earlier or later than the ancestor? Secondly, as 

different strains maybe at exponential phase at different optical densities, the OD600 that acid 

resistance is measured must be standardised so that all strains are measured during 

exponential phase. 

 

Figure 3.2 shows the growth curve analysis of the ancestor (A) and the evolved strains Aa to 

Ha (B-F) in M9supp (minimal medium supplemented with casamino acids, MOPS and MES; 

see Chapter 2 for details). The exponential phase doubling time varies between the ancestor, 

which was 35 minutes, and evolved strains, between 40 and 43 minutes. The reduced 

doubling time of the ancestor strain in M9supp medium, compared to doubling rates in rich 

LB medium, suggests that despite containing glucose and casamino acids, the M9supp 

medium is sub-optimal for E. coli growth. The difference in optimum growth rate between 

ancestor and evolved strains is suggestive of a reduction of fitness at pH 7. No significant 

difference is seen in final absorbance after 8 hours of growth, although entry into stationary 

phase does vary between strains. The ancestor enters late exponential phase at 0.2 OD600 and 

stationary phase at 1.28 OD600. The evolved strains are all in exponential phase growth 

between OD600 0.15 and 0.2.  

 

In summary, all the evolved strains grow slower than the ancestor during exponential phase. 

In addition, they appear to enter stationary phase growth earlier. The mutations have affected 

growth in all cases.  
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As previously stated, the growth phase of E. coli is intertwined with the acid resistance 

phenotype. Therefore, it is important to ensure that all of the acid resistance assays are done 

during exponential phase and with enough out-growth from overnight culture. This is needed 

to ensure that no stationary phase factors affect acid resistance. At least 4 generations are 

required to ensure that the cells have enough out-growth from a stationary phase overnight 

culture (Burton et al., 2010). The standard acid resistance assay starts at 0.005 OD600 (see 

Acid resistance assay Chapter 2) and the ancestor and evolved strains are all in exponential 

phase of growth between 0.150 and 0.2 OD600, indicated in figure 3.2. This is 4.5 generations 

of out-growth, thus the optimum absorbance for all assays will be 0.15 OD600.  

 

3.3. Resistance of the ancestor and evolved strains to extreme acid challenge in LB 

and M9supp medium 

In order to assay the acid resistance of the evolved strains, and compare their phenotype with 

the ancestor, the % survival of each strain was measured using an acid resistance assay. As 

the lab based evolution experiment was done using rich, undefined, LB medium the strains 

were originally compared in this medium. However, to reduce technical variation, acid 

resistance assays were done using M9supp, which is a defined medium. The full constitution 

of M9supp is shown in Chapter 2. This section will compare the acid resistance of the evolved 

strains and the ancestor in both medium types. 

 

Acid resistance was tested using a standard acid resistance assay, as described in Chapter 2. In 

order to assess the resistance of the evolved strains, cells were initially tested in pH conditions 

that emulated the selection pressure used in the evolution experiment (pH 2.5). The acid 

shock time period was chosen as 2 hours as this is comparable with published acid resistance 
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assays (Castanie-Cornet et al., 1999). Briefly, strains to be assayed were grown from OD600 

0.005 to OD600 0.15 (OD600 0.15 was predetermined to be exponential phase for all of the 

strains, see section 3.2). At this point each culture was serially diluted 10-fold 7 times into pH 

7 and pH 2.5 M9supp. A time zero sample was taken immediumtely after dilution by spotting 

each dilution onto LB agar. After 2 hours the cells incubated in pH 2.5 medium were also 

plated on LB agar. The plates were incubated at 30°C overnight after which % survival was 

calculated by dividing the scored colonies after two hours at pH 2.5 by the scored colonies at 

pH 7, time zero.  

 

Figure 3.3 shows the survival of the ancestor and evolved strains after 2 hours in M9supp at 

pH 2.5. The evolved strains Aa, Ba, Ea, Ga and Ha show 63, 53, 21, 42 and 44% survival 

respectively compared to the ancestor that has 1% survival in the same conditions. Values 

represent the average of three biological repeats. The survival of the evolved strains was 

compared to the ancestor strain by t-test, which indicated that the difference was significant. 

When the evolved strains are compared to each other no differences in survival levels are 

observed in these conditions. These values are averages of three biological repeats and are 

expressed on a graph with a log base 10 scale on the vertical axis to enable comparison on the 

same graph. The results show that survival levels of the ancestor strain are elevated by growth 

in M9supp compared to published levels of acid resistance of E. coli K-12 MG1655 

(Castanie-Cornet et al., 1999; Lin et al., 1995; Lin et al., 1996). Increased survival in nutrient 

poor medium has been shown previously (Lin et al., 1995).  

 

The results in figure 3.3 also show the survival of the Ancestor and evolved strains in LB. The 

survival level of the Ancestor in LB was below the limit of detection for this assay. 
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Figure 3.3. Survival of the ancestor and evolved strains in LB and M9supp media after 2 hours at pH 2.5. 

Survival represents the scored cells after 2 hours at pH 2.5 in LB (solid red bars) and M9supp (stripped red bars) 

expressed as a % of total cells at time zero. Dotted line represents the limit of detection predetermined as 0.04%. 

Values and error bars represent the average and standard deviation respectively. Calculated from three 

independent biological repeats. Comparison of the survival of the evolved strains to the ancestor in M9supp 

media was made by T-test, numbers in red represent the p values from these comparisons. 
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This level of survival is comparable to published levels for E. coli K-12 MG1655 (Castanie-

Cornet et al., 1999). The survival of the evolved strains is also affected by the growth medium 

and is significantly lower in rich medium (Figure 3.3).  

 

Analysis of the acid resistance of five clonal isolates from the lab based evolution experiment, 

in conditions similar to the selection pressure applied during the evolution of acid resistance, 

shows that the five isolates, Aa-Ha, are significantly more resistant to extreme acid stress 

compared to the ancestor. The resistance of the ancestor and the evolved strains is elevated by 

growth in M9supp medium. It should be noted that the use of a defined medium increases the 

reproducibility of the acid resistance assay and allows more quantifiable comparisons between 

strains (based on the comparison of standard deviations). As the ancestor and evolved acid 

resistance have been quantified, a more comprehensive analysis of acid resistance was 

possible. Specific details about the range of acidities that the evolved strains can resist, and 

dependence on particular components of the medium or specific acid resistance mechanism, 

could reveal differences between evolved resistance phenotypes and give insights as to which 

mechanisms underlie the evolved phenotype(s). 

 

3.4.  Analysis of evolved resistance 

3.4.1. Resistance to other levels of acidity 

The lab-based evolution experiment exposed the cells to medium at pH 2.5 as a selective 

pressure. This selective pressure increased the prevalence of mutations that conferred 

resistance to these conditions. To investigate the specificity of the evolved resistance to a 

particular pH range, the survival of the five evolved strains and the ancestor were compared 

over a range of acidities. The mechanisms involved in acid resistance provide protection at 
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different acidities (Castanie-Cornet et al., 1999; Foster, 2004; Lin et al., 1996). Thus, 

comparing the strains over a range of acidities may reveal which acid resistance mechanisms 

have been affected by the evolution process. Considering, that the evolution experiment 

selected for mutations that aid survival at pH 2.5 we hypothesise that the evolved resistance is 

specific to this pH. The cells were assayed using the acid resistance assay as described above. 

 

Figure 3.4 shows the survival of the evolved and ancestor strains after two hours of exposure 

to medium ranging in pH from 5 to 1. The ancestor strain showed a reduction in survival as 

the pH of the challenge medium is lowered from 5 to 2.5 (present as a dotted line on each 

graph A to E). In addition, the ancestor showed no detectable survival at pH 2 or below. In 

contrast, the evolved strains showed no significant reduction in survival between pH levels 5 

to 2. At pH 1.5 the survival of the evolved strains decreased rapidly to levels more than 20-

fold less than at pH 2 and above. There was no detectable survival of strains at pH 1. These 

results have indicated that the evolved resistance is not limited to pH 2.5 and that the 

resistance mechanism can protect the cells at higher pH levels. However, the survival levels 

are significantly reduced at acidities lower than pH 1.5 indicating that the evolved resistance 

is limited to pH 2.0 and above. It is also important to note that there is no difference between 

the evolved strains when comparing their resistance phenotypes over a range of pH levels. 

Previous work on the resistance mechanisms of E. coli has shown that the GAD system is the 

most effective at low pH (Lin et al., 1995). However, the level of survival is also high during 

less acidic conditions, which could indicate a role for other AR systems. 
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Figure 3.4. Evolved resistance over a range of acidities during exponential phase growth. Graphs A to E 

show the survival of evolved strains Aa to Ha respectively after 2 hours at a range of acidities in M9supp media 

during exponential phase growth. The dotted line on each graph indicates the % survival of the ancestor strain 

(MG1655). Survival was determined by scoring the cells after 2 hours at the indicated pH expressed as a % of 

total cells scored at time zero. Each point represents the average of three independent biological repeats and 

error bars represent the standard deviation between repeats. The dotted line represents the limit of detection of 

this assay predetermined to be 0.04%. 
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3.4.2 Resistance to extreme acid challenge during different phases of growth. 

The ability of E. coli to survive extreme acid stress is completely dependent on its phase of 

growth (De Biase et al., 1999). During stationary phase acid resistance is greatly increased in 

E. coli K-12. The increase of stationary phase factors in exponential phase cells could raise 

the level of survival. One hypothesis to explain the evolved phenotype, is that the evolved 

strains could have high levels of one or more stationary phase factors present during 

exponential phase growth. RpoS, the stationary phase sigma factor, is up regulated during 

slow growth and is also responsible for the activation of stationary phase acid resistance (De 

Biase et al., 1999; Hengge-Aronis, 2002; Small et al., 1994). Mutations that slow growth or 

increase the concentration of stationary phase proteins such as RpoS could be contributing to 

the exponential phase resistance. To test the impact of different growth phases in the survival 

of the ancestor and evolved strains, the acid resistance assay was adjusted to measure survival 

during lag phase, exponential phase, extended growth at exponential phase and stationary 

phase. This was done by testing extreme acid resistance at an OD600 of 0.01 (shortly after sub-

culturing the cells into a day culture), 0.15 (4.5 generations of outgrowth), 0.15 (9 generations 

of outgrowth), early stationary phase (0.6) and after overnight growth (stationary phase) for 

two hours at pH 2.5 (Figure 3.5 B).  

 

The results shown in figure 3.5A indicate that growth phase does not significantly affect the 

resistance of the evolved strains to extreme acid shock. In addition, the repeated outgrowth of 

the evolved strains into exponential phase growth (Exponential 2) did not affect survival. 

These results demonstrate that the evolved resistance is not due to a carryover of RpoS, or 

other stationary phase factors, into exponential phase cultures. 
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Figure 3.5. Survival of the ancestor and evolved strains during different phases of growth at pH 2.5. (A) 

survival of the ancestor strain (blue) and evolved strains Aa, Ba, Ea, Ga and Ha (red, green, purple, light blue 

and orange respectively). Survival is determined as the scored cells after 2 hours at pH 2.5 in M9supp expressed 

as a percentage of cells at time zero. Values and error bars represent the average and standard deviation of three 

biological repeats respectively. The dotted line represents the limit of detection predetermined to 0.04% for this 

assay. (B) A diagrammatic representation of the growth of the cultures during the experiment. Optical densities 

are indicated on the y axis. 
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In contrast, the ancestor is significantly more resistant to extreme acid challenge during lag 

and stationary phase growth, compared to survival during log phase. The survival observed 

during stationary phase is due to the induction of the acid resistance genes by increased RpoS 

levels. Presumably, lag phase resistance is due to factors remaining in the cells from 

stationary phase. The survival of the evolved strains was higher than the ancestor strain in all 

phases of growth. This suggests that the induction of acid resistance isn't simply an early 

switch to stationary phase growth. Instead, it is clear that the evolved resistance is 

independent from growth phase, and that the all of the evolved strains showed similar levels 

of resistance over all growth phases. However, these results do not conclusively show that the 

evolved resistance is not due to an increased level of RpoS. 

 

3.4.3. Dependence of evolved acid resistance on RpoS 

Promoters of genes found in the AFI and the GAD system are under the control of alternative 

sigma factor RpoS, which recruits RNA polymerase to a subset of promoters during entry into 

stationary phase. RpoS levels are regulated in the cell by many factors acting at different 

levels of regulation that act in response to a variety of signals (Hengge-Aronis, 2002). The 

affect of increased RpoS levels on the GAD and AFI systems is dependent on the regulators 

GadE, GadW and GadX (De Biase et al., 1999; Giangrossi et al., 2005; Tramonti et al., 

2006). As a result the acid resistance phenotype would be affected by RpoS levels. Stationary 

phase cells are more resistant to extreme acid challenge compared to exponential phase cells. 

This is due to the induction of the AFI and GAD systems in an RpoS dependant manner 

(Figure 3.5A) (Coldewey et al., 2007; De Biase et al., 1999). One hypothesis, which would 

explain the increased resistance in the evolved strains, is that mutations in RpoS, or indeed 

factors which regulate RpoS levels, could increase RpoS during exponential phase, and cause 
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acid resistance. This hypothesis is consistent with the fact that all of the evolved strains have a 

longer doubling time during optimal growth in exponential phase.  

 

To see if any mutations could be found in the rpoS gene and upstream promoter region, the 

rpoS genes of each of the evolved strains were sequenced using low-throughput Sanger based 

sequencing methods. No mutations were found in the rpoS gene or intergenic regions located 

upstream and downstream of the coding sequence. The lack of mutations in the rpoS locus 

only shows that there is no promoter based alterations to transcription. The absence of 

mutations in the rpoS gene and downstream region suggest that RNA stability is not affected.  

 

As previously stated, RpoS protein levels are regulated at many stages and by many factors. 

To test the dependence of the evolved acid resistance on RpoS, the rpoS gene was knocked 

out using standard Datsenko and Wanner mutagenesis (see Chapter 2). If RpoS is required, 

either in part or in full, the survival of the evolved strains will be affected. ΔrpoS KO strains 

were assayed using the standard acid resistance assay (see chapter 2, during exponential phase 

growth, after 2 hours at pH 2.5). Figure 3.6 shows the survival of the ancestor and evolved 

strains during exponential phase growth, at pH 2.5 for 2 hours in rpoS
+
 and ΔrpoS 

backgrounds. The survival of an ΔrpoS mutant of the ancestor strain was below the level of 

detection for this assay (predetermined to 0.04%, Burton et al., 2010). The reduction in 

survival was consistent with previously published levels and indicates that RpoS does provide 

some protection during exponential phase (Castanie-Cornet et al., 1999). It is possible that 

RpoS is activating the AFI and GAD systems in response to stress, or basal levels of RpoS are 

sufficient to activate acid resistance which provides a low level of protection. 
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0.437 0.633 0.153 0.832 0.203

ΔrpoS

Figure 3.6. Survival of the Ancestor and evolved strains after 2 hours at pH

2.5 during exponential phase growth in rpoS+ (blue) and ΔrpoS (red)

backgrounds. Surv ival is determined as the scored cells after 2 hours at pH 2.5 in

M9supp expressed as a percentage of cells at time zero. Values and error bars

represent the average and standard deviation of three biological repeats

respectively. The dotted line represents the limit of detection predetermined to

0.04% for this assay. P-values from comparisons of the rpoS+ and ΔrpoS strains

by T-test are shown by red numbers.
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The evolved strains showed no significant difference in survival between rpoS
+
 and ΔrpoS 

backgrounds. Any affect that rpoS may have had on survival is clearly being masked by the 

evolved resistance. It is important to note that all of the strains showed the same independence 

from RpoS.  

 

3.4.4. Dependence of evolved resistance on specific amino acids 

E. coli has 3 main acid resistance mechanisms and each mechanism requires a different amino 

acid to function. GAD, AR3 and AR4 utilise glutamate, arginine and lysine respectively 

(Castanie-Cornet et al., 1999; Lin et al., 1995; Lin et al., 1996). Previous studies have shown 

that it is possible to isolate the contribution of each of these systems to acid resistance by 

providing each amino acid in the medium individually (De Biase et al., 1999).  

 

The resistance of the evolved strains was tested in M9 medium, M9 supplemented with 

arginine, M9 supplemented with glutamate and M9 supplemented with lysine. The acid 

resistance assay was otherwise unaltered and survival after 2 hours at pH 2.5 was calculated. 

The ancestor strain showed no significant difference in survival in M9 supplemented with any 

of the amino acids compared to M9 medium alone (Figure 3.7A). The survival of the evolved 

strains was significantly lower in all types of medium compared to the levels recorded in 

M9supp. However, no significant difference in survival was seen between the different types 

of medium. It is important to note that all of the evolved strains are showing the same level of 

survival in all of the medium. Once again, this is suggestive of a similar mechanism which is 

conferring the evolved acid resistance. However, it was not possible to distinguish the acid 

resistance phenotype into distinct amino acid dependent systems. 
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Figure 3.7. Dependence of evolved acid resistance on specific amino acid dependent systems. (A) Survival 

of the Ancestor and evolved strains after 2 hours at pH 2.5 during exponential phase in M9 (blue), M9+Arginine 

(red), M9+Glutamate (green) and M9+Lysine (orange). Concentrations of amino acids are described in chapter 

2. (B) Survival of the gadC+ (blue bars) and ΔgadC (green bars) Ancestor and evolved strains after 2 hours in 

M9supp. Survival is determined as the scored cells after 2 hours at pH 2.5 (solid bars) or 2 hours at pH 2 

(hatched bars) expressed as a percentage of cells at time zero. Values and error bars represent the average and 

standard deviation of three biological repeats respectively. The dotted line represents the limit of detection 

predetermined to 0.04% for this assay. 
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Figure 3.7. Dependence of evolved acid resistance on specific amino acid dependent systems. (A) Survival 

of the Ancestor and evolved strains after 2 hours at pH 2.5 during exponential phase in M9 (blue), M9+Arginine 

(red), M9+Glutamate (green) and M9+Lysine (orange). Concentrations of amino acids are described in chapter 

2. (B) Survival of the gadC+ (blue bars) and ΔgadC (green bars) Ancestor and evolved strains after 2 hours in 

M9supp. Survival is determined as the scored cells after 2 hours at pH 2.5 (solid bars) or 2 hours at pH 2 

(hatched bars) expressed as a percentage of cells at time zero. Values and error bars represent the average and 

standard deviation of three biological repeats respectively. The dotted line represents the limit of detection 

predetermined to 0.04% for this assay. 
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3.4.5. Dependence of evolved resistance on the GAD system. 

The best characterised and most robust acid resistance mechanism found in E. coli is the GAD 

system. For a full description of the action of GAD see Chapter 1. Briefly, the GAD system 

comprises three components; the decarboxylases GadB and GadA, which converts 

cytoplasmic glutamate into GABA, and the GABA/glutamate antiporter GadC which exports 

GABA from the cytoplasm to the periplasm in exchange for glutamate (Bearson et al., 2009; 

Diez-Gonzalez and Karaibrahimoglu, 2004; Hersh et al., 1996). The pH at which the GAD 

system is most effective is between 2 and 2.5 (Capitani et al., 2003; De Biase et al., 1996). 

The minimum requirement for a functioning GAD system is a single decarboxylase (GadA or 

GadB) and the GABA/glutamate antiporter (GadC). Removing gadC makes E. coli K-12 

more sensitive to pH 2.5 acid shock during stationary phase (Hersh et al., 1996). 

 

The evolution experiment selected cells that had increased survival at pH 2.5, and the evolved 

resistance is capable of extending to pH 2. This is consistent with the hypothesis that 

mutations that increased the expression of the GAD genes could have been selected for during 

the evolution experiment. To test this hypothesis we analysed the acid resistance of the 

evolved strains in a gadC- background. 

 

To assay the dependency of the evolved strains on GAD, ancestor and evolved strains with 

the gadC gene knocked out were constructed using standard Datsenko and Wanner 

mutagenesis (see Chapter 2). The survival of the ancestor and evolved strains after two hours 

at pH 2.5 was assayed. The results are shown in figure 3.7B (solid bars are pH 2.5, hatch bars 

will be discussed below). Residual survival of the ancestor is below the limit of detection of 

this assay in a ΔgadC background. This confirms the reliance of E. coli on the GAD system to 
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survive acid challenge at pH 2.5. None of the evolved strains showed a significant difference 

in survival at pH 2.5 in ΔgadC and gadC
+
 backgrounds. This indicates that GAD independent 

acid resistance mechanisms are involved in the evolved acid resistance. 

 

The apparent lack of the dependence of the evolved strains on the GAD system was surprising 

as this is the most robust acid resistance mechanism at pH 2.5-2.0. The evolved strains have 

been shown to survive at pH 2. Do the GAD independent mechanisms, which confer 

resistance at pH 2.5, confer resistance at pH 2? To investigate the dependence of the evolved 

acid resistance on the GAD system at pH 2 the evolved strains in ΔgadC and gadC
+
 

backgrounds were shocked at pH 2.0. The level of survival of the gadC
+
 strains had already 

been assayed in the gradient assay shown in figure 3.4 above. There was no significant 

decrease in survival at pH 2 compared to pH 2.5 in a gadC
+
 background. However, in a 

ΔgadC background (figure 3.7B) survival levels were significantly lower after two hours at 

pH 2.0. This indicates that the GAD system is required for acid resistance at pH 2 and that 

any other mechanisms affected by the mutation(s) accumulated in the evolution experiment 

are not sufficient to protect the cells to a pH 2 acid shock. These results show that the GAD 

system has been affected by the evolution experiment and is providing protection in 

conditions under which normally it is not active (in exponential phase without induction). 

 

3.4.6 Summary of mutagenesis and low throughput sequencing approaches 

Mutagenesis and phenotypic assays have been useful for understanding the limitations and 

characteristics of the acid resistance phenotypes. The results have shown that certain systems, 

like the GAD system, are not crucial for the evolved phenotype. However, these assays have 

given no real insight into the genetic components that confer the evolved resistance. Several 



Chapter 3: Results (1): Characterisation of evolved acid resistance in Escherichia coli 

112 

 

attempts were made to find mutations in the evolved strains using low-throughput sequencing 

and current knowledge of acid resistance regulation. 

 

Many acid resistance genes of E. coli are activated by GadE (Hommais et al., 2004). 

Mutations that increase the expression of gadE would give an acid resistance phenotype. 

Mutations in the promoter of the gadE gene could cause increased expression. Mutations 

found in the coding region could affect the function of the regulator (e.g. increase of binding 

affinity to promoters). Mutations in the coding region could also affect the RNA stability. The 

gadE gene and the intergenic regions upstream and downstream of the evolved strains were 

sequenced using low throughput methods. No mutations were found in any of the evolved 

strains. A similar approach was used on the safA-ydeO and hns genes. Products of the safA-

ydeO genes are involved in activation of the AR2 network, which activates the acid GAD 

mechanism and the AFI (Eguchi et al., 2011; Ma et al., 2004; Masuda and Church, 2003). H-

NS is a nucleoid associated protein that represses the acid fitness island (Giangrossi et al., 

2005). No mutations were found in all cases stated above. Low throughput sequencing guided 

by the current understanding of acid resistance has been unfruitful. To find the genetic 

elements responsible for the evolved acid resistance a genome-wide method is required. 

 

3.5. Whole genome re-sequencing of the evolved strains 

3.5.1. Rationale for sequencing methodology 

There are many ways of identifying the genetic elements responsible for a phenotype. The 

sections above describe attempts to use phenotypic assays, current knowledge and the 

understanding of E. coli acid resistance to identify the mechanisms involved in the evolved 

acid resistance. More traditional molecular techniques for finding genetic components of 
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phenotypes include genomic libraries and genomic hybridisation arrays. However, both of 

these methods have their caveats.  

 

Genomic libraries are a method of screening genetic elements for a particular property. 

Briefly, the method involves fragmenting the genome of the organism of interest and cloning 

these fragments into a vector by ligation. The ligations are transformed into recipient bacteria 

and colonies are screened for the particular phenotype. The main problems with this method 

are centred on the requirement for a cloning step. Cloning often results in an under 

representation of large genes. The method is also very labour intensive and may not actually 

yield a result, especially if a particular phenotype requires a mix of mutations that are at 

distant loci and are therefore will not be found in the same clone. Additionally, the 

information about other genetic changes, which may not be essential for the evolved 

phenotype but maybe interesting for other investigations, will not be obtained with this 

method. 

 

Genomic hybridisation arrays are a method for mutation screening. The genome from a strain 

of particular interest is fragmented, labelled with a fluorescent dye, and then hybridised to an 

array. If large areas of chromosome are missing due to deletion mutations then there will be 

no presence of a signal on the array. Strong signals can be attributed to duplication events. 

This method does remove the requirement for cloning and therefore all of the inherent 

problems with this step but genomic hybridisation arrays have a very low resolution. This 

problem has been reduced with the latest arrays which are capable of identifying single base 

substitutions and deletions but this also this comes at a high price. Possibly the biggest 
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problem with this technique is that arrays, especially high resolution arrays, are very 

expensive to print and use.  

 

In order to make the concept of doing discovery based evolution experiments a reality, a 

method for finding mutations which is not biased, time consuming or expensive needs to be 

used. Fortunately, cheap whole genome re-sequencing is now a reality. The development of 

non-Sanger based sequencing technologies has exploded in the last 5 to 10 years. Currently, 

the most widely available technologies are the Illumina sequence by synthesis system and the 

Roche 454 pyrosequencing system. These technologies are complicated and varied, for the 

purposes of these experiments this section will only be concerned with the general advantages 

and disadvantages of these methods. 

 

Roche 454 pyrosequencing is a method that uses the DNA synthesis reaction to sequence 

DNA fragments of up to 1 kb (Hert et al., 2008). The main advantage of this method is that 

the read lengths are between 400 and 1000 bps. The main disadvantage is the low level of 

genome coverage compared to the Illumina method. Illumina sequencing uses a molecular 

colony created by PCR which can complicate the process. However, it is capable of producing 

high levels of genome coverage but with very short read lengths (20 – 100 bps) (Hert et al., 

2008). As a result these technologies are well suited to two separate tasks. 454 sequencing, 

which is capable of long read lengths, is best suited to pioneer sequencing of previously un-

sequenced organisms. 454 would also be preferred when sequencing strains with long repeat 

sequences. However, Illumina sequencing is well suited to the re-sequencing of genomes due 

to its high coverage and the lower cost per base read.  
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The ancestor strain for this study is E. coli K-12 MG1655, which has a published sequence. 

This makes de novo assembly and alignments straightforward with small read lengths. The 

main aim is to compare the genome sequences of the ancestor and evolved strains for 

mutations, which could be resulting in an acid resistant phenotype. This does not require 

complete de novo assembly but does require high levels of coverage. Considering all of these 

factors, the best technology to use for this study was Illumina high-thoughput sequencing. 

The results from re-sequencing the ancestor and evolved strains are discussed below. 

 

3.5.2. General results of whole genome re-sequencing analysis of the ancestor and 

evolved strains Aa, Ba, Ea and Ga 

The strains sequenced by whole genome re-sequencing were the ancestor strain and evolved 

strains Aa, Ba, Ea and Ga. The sequencing of Aa, Ba, Ea and the ancestor was done by 

George Wienstock’s group at Washington university St Louis. The Ga strain was sequenced 

by Mark Pallen’s group. All sequences were analysed by Nick Loman from the University of 

Birmingham. Evolved strains Aa, Ba and Ea were sequenced with the ancestor in the same 

sample. This essentially allowed two strains to be sequenced in one sample and effectively 

halved the cost of the sequencing. Evolved strain Ga was sequenced individually. The 

analysis of all strains was done using the online software supplied by xbase.ac.uk. The 

sequence reads were uploaded in fasta format and aligned to the reference genome E. coli K-

12 MG1655 (Blattner et al., 1997). A summary of the sequencing vital statistics is shown in 

table 3.1. The results shown in table 3.1 indicate that an average coverage for all strains was 

17 fold or above and that the majority of reads were aligned to the reference sequence.  
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Table 3.1. General results of high-throughput sequencing analysis 

 

a
 Ancestor and evolved strain  fold coverage 

b 
Evolved strain fold coverage 

 

  

Strain 
Total 

Reads 

Read 

Length 

Total 

Mb 

Ref 

Genome 

Size Mb 

Mapped 

Reads 

% 

Mapped 

Depth of 

coverage
a
 

Depth of 

coverage
b
 

Aa 4332550 35 151 4.6 4021048 92.8 35.215 17.607 

Ba 8636870 35 302 4.6 8378338 97.0 67.163 33.581 

Ea 12668168 35 443 4.6 12296182 97.0 98.455 49.227 

Ga 13872659 35 485 4.6 13627292 98.2 N/A 162.626 
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In addition, the level of coverage for the evolved strain is near 50% in each case, indicating 

that the concentrations of the ancestor and evolved genomes were relatively equal when they 

were sequenced. The proportions of the sample are very important when analysing the results, 

if a particular genome is under-represented in the sample, the reliability of the mutation calls 

made by the sequence analysis software will be reduced. The output clearly shows that it is 

possible to include more than one strain in the sample and that coverage can be maintained. 

The result of the Ga alignment indicated the high level of coverage that can be achieved when 

only one strain is present in the sample. 

 

3.5.3. Detection of single nucleotide variants 

Once the sequence reads had been aligned to the reference genome, a list of single nucleotide 

variants was generated. As the evolved strains Aa, Ba and Ea were sequenced with the 

ancestor in each case, a mutation present in approximately 50% of the reads must be present 

in the evolved strain but not in the ancestor. Equally, a mutation present in 100% of the reads 

is present in both the ancestor and the evolved strains but is not in the reference strain. In the 

sequence analysis of Ga, which was sequenced individually and then aligned to the E. coli K-

12 MG1655 reference strain, all mutations found would be present in all of the reads. The 

results of this analysis are shown in table 3.2. The locations of the mutations are shown along 

with any annotation and the nature of the mutation, which was manually assigned. The 

number of mutations varies between the strains but it is interesting to note that in each case 

the mutations are few. In the analysis of the Aa, Ba and Ea SNV tables, two mutations were 

shown in each strain that were present in all reads. This indicated that these mutations were in 

the ancestor strain. One mutation was in an intergenic region non-proximal to any gene. The 

second, was found in the ylbE operon. 
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Table 3.2. Single nucleotide variants found by high throughput sequencing 

 

Strain Gene Annotation Mutation Base change; AA change Position 

Aa 

yeeV 
CP4-44 prophage; toxin of the YeeV-YeeU 

toxin-antitoxin system 
missense CCC > TCC; Pro > Ser 2075614 

evgS 
hybrid sensory histidine kinase in two-

component regulatory system with EvgA 
missense TCC > TTC; Ser > Phe 2484146 

arcB 
hybrid sensory histidine kinase in two-

component regulatory system with ArcA 
missense CGT > CTT; Arg > Leu 3348730 

yhcE None silent AGT >AGC; Ser > Ser 3364777 

eptB predicted metal dependent hydrolase missense TAC > TCC; Tyr > Ser 3708410 

Ba 

hofB 
conserved protein with nucleoside triphosphate 

hydrolase domain 
silent GTG > GTA; Val > Val 116446 

crl DNA-binding transcriptional regulator missense AAG > AGG; Lys > Arg 257908 

ybfQ None missense GAA > TAA; Glu > stop 735860 

poxB 
pyruvate dehydrogenase (pyruvate oxidase), 

thiamin-dependent, FAD-binding 
missense ACC > CCC; Thr > Pro 901034 

narZ nitrate reductase 2 (NRZ), alpha subunit missense GTG > GGG; Val > Gly 1537952 

yeeV 
CP4-44 prophage; toxin of the YeeV-YeeU 

toxin-antitoxin system 
missense CCC > TCC; Pro > Ser 2075614 

yfcU None missense AGT > AGG; Arg > Ser 2451224 

evgS 
hybrid sensory histidine kinase in two-

component regulatory system with EvgA 
missense AAC > AAA; Asn > Lys 2484114 

gltX glutamyl-tRNA synthetase missense CAC > CCC; His > Pro 2518315 

ypjC None missense TGC > GGC; Cys > Gly 2781995 

yhcE None silent AGT >AGC; Ser > Ser 3364777 

ggt Gamma- glutamyltranspeptidase missense ACT > CCT; Thr > Pro 3584678 

priA Primosome factor n' (replication factor Y) missense AAC > ACC; Asn > Thr 4123557 

rpoC RNA polymerase, beta prime subunit missense CCG > TCG; Pro > Ser 4184630 

Ea 

dcp dipeptidyl carboxypeptidase II missense GAG > GGG; Glu > Gly 1624365 

yeeV 
CP4-44 prophage; toxin of the YeeV-YeeU 

toxin-antitoxin system 
missense CCC > TCC; Pro > Ser 2075614 

evgS 
hybrid sensory histidine kinase in two-

component regulatory system with EvgA 
missense GGC > GCC; Gly > Ala 2484368 

iscR DNA-binding transcriptional repressor missense TAT > CAT; Tyr > His 2660033 

priA Primosome factor n' (replication factor Y) missense AAC > ACC; Asn > Thr 4123557 

yjjA Conserved protein missense GTA > ATA; Val > Ile 4597945 

Ga 

crl DNA-binding transcriptional regulator missense AAG > AGG; Lys > Arg 257908 

ylbE 
Predicted protein, C terminal fragment 

(Pseudogene) 
silent GAA > GAG; Glu > Glu 547694 

evgS 
hybrid sensory histidine kinase in two-

component regulatory system with EvgA 
missense AGT >ATT; Ser > Ilu 2484194 

fimD 
outer membrane usher protein, type 1 fimbrial 

synthesis 
silent GCC >GCT; Ala > Ala 4543253 
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This is a predicted protein with an unknown function. Due to the subtle differences between 

the ancestor strain and the published reference strain, the ancestor was renamed MGA. As 

these SNVs are present in the ancestor strain they are not included in table 3.2. The evolved 

strains Aa, Ba, Ea and Ga have 5, 15, 6 and 4 SNVs respectively. It is also important to note 

that most SNVs are missense mutations. Unfortunately, it is impossible to calculate whether 

the mutation rate is similar to those that have been previously reported due to the nature of the 

evolution experiment, as this experiment didn’t account for the amount of generations the cell 

lines have gone through.  

 

3.5.4. Analysis of single nucleotide variants 

There are many interesting mutations in each evolved strain including: arcB, in evolved strain 

Aa; rpoC, in evolved strain Ba; iscR, in evolved strain Ea and fimD, in evolved strain Ga. 

These mutations are discussed in detail below. However, the most interesting observation is 

that all of the evolved strains have a mutation in the same gene, EvgS, which is a histidine 

kinase involved in the induction of acid resistance (Masuda and Church, 2002). Further 

analysis confirmed that these mutations are all different and that they are missense mutations. 

In addition, the mutations in EvgS are located in the PAS domain of the cytoplasmic region of 

the protein. For detailed analysis of these mutations see Chapter 4. 

 

The identification of mutations in evgS in four of the evolved strains by whole genome re-

sequencing justified the Sanger method based sequencing (low throughput sequencing) of the 

EvgAS locus (upstream promoter region and the evgA and evgS coding regions) in the fifth 

evolved strain Ha. The evolved strain Ha also had a mutation in evgS gene. However, this 

mutation was the same as the evgS mutation found in evolved strain Ga. To confirm that, in 
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fact, two separate evolved cell lines had acquired the exact same mutation, and that they 

weren’t the same strain, the fimD locus, which contains a mutation in the evolved strain Ga, 

was also sequenced in the Ha strain. No mutation was found in the fimD locus in evolved 

strain Ha. This confirmed that Ha is a separate strain and that the same mutation has been 

acquired in parallel. 

 

3.5.5 Other mutations found by whole genome re-sequencing 

In addition to the mutations found in evgS, the strains also have also acquired some other 

interesting mutations, which could be involved in the acid resistance phenotype, e.g. arcB, or 

they could be involved in suppressing the effects of other mutations e.g. rpoC. This section 

will briefly discuss these mutations and the roles of the genes which they are in. 

 

3.5.5.1 arcB 

ArcB is the histidine kinase of the ArcAB TCS, named after its role in the regulation of 

anoxic redox control (Gunsalus and Park, 1994; Iuchi and Lin, 1988; Iuchi and Lin, 1993).  

The response regulator of this system acts as a transcriptional repressor of many processes 

involved in metabolism, such as glyoxylate shunt and fatty acid degradation (Gunsalus and 

Park, 1994; Lin and Iuchi, 1991). Interestingly, ArcAB is also involved in the repression of 

RpoS transcription (Mika and Hengge, 2005).  

 

The mutation is in the transmembrane domain of the ArcB protein. The amino acid change is 

from an arginine to a leucine. This would cause a long polar hydrocarbon side group to be 

changed with a non-polar hydrocarbon side chain. It is unclear what affect this alteration 

would have in the context of the inner membrane. If the function of ArcB was affected, this 
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mutation could be increasing the levels of RpoS in the cells and so conferring acid resistance. 

However, preliminary experiments on the evolved strains, which have been mentioned above, 

suggest that this is unlikely as RpoS is not required for the evolved acid resistance phenotype. 

 

3.5.5.2.  rpoC 

The product of rpoC is the β’ subunit of RNA polymerase, which is involved in the formation 

of the holoenzyme. β’ acts by binding to the sigma factor (Chenchik et al., 1982). The β’ 

subunit binds DNA non-specifically and is not thought to interact with the +1 (Naryshkina et 

al., 2001). However, it is required for the formation of the “jaw” with the sigma factor, which 

is required for open complex stabilisation (Young et al., 2004).  

 

The mutation, found in strain Ba, is not located in a domain known to be important for any 

interactions made by β’. The proline to serine mutation is at residue 420 in the protein. Proline 

is a cyclic amino acid with a large non polar R group. Serine has a polar hydroxyl R group 

that is small in comparison to a proline. Considering these factors, this amino acid change 

could confer a significant alteration in the protein structure. 

 

Obviously, the presence of mutations in such an important component of the cell’s machinery 

is interesting and the recent findings by Conrad et al. in 2010 demonstrate the impact of rpoC 

mutations on the global transcription of the cell. It has been shown that deletion mutations in 

rpoC dramatically reduced the open complex stability and the distribution of RNAP over the 

cell. Specifically, some of the mutations were found to increase the transcription of acid 

resistance genes (Conrad et al., 2010). In addition, the mutations found in rpoC were shown 
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to increase growth in minimal medium (Conrad et al., 2010); it is possible that the rpoC 

mutation in Ba is involved in the counteraction of the affects of other mutations in the strain.  

 

3.5.5.3 iscR 

The product of iscR is a transcriptional regulator IscR, which is a repressor of the iron sulphur 

cluster genes (Schwartz et al., 2001). The IscR regulon includes genes that are involved in 

metabolism and biofilm formation (Giel et al., 2006; Schwartz et al., 2001; Wu and Outten, 

2009).  

 

The mutation found in iscR is located in the DNA binding domain, which is a Helix-Turn-

Helix motif. The base change is a tyrosine to a histidine, which is an aromatic residue 

changed to a basic residue. The side chains of both these amino acids occupy similar space as 

they both contain ring structures. However, tyrosine has a hydroxyl group that could be 

making important secondary structure interactions. This could mean that the structure of the 

HTH motif and the ability of this regulator to repress transcription could be altered. However, 

there is no connection, based on bioinformatic analysis, to link this regulator with acid 

resistance genes. The meta analysis of 544 micro arrays does not suggest any interaction 

between IscR and any known acid resistance genes (http://genexpdb.ou.edu/main). It is 

possible that this mutation could be involved in aiding survival via other mechanisms.  

 

3.6 Transcriptional analysis of the GAD network in the evolved strains 

The presence of mutations in the evgS gene in each of the evolved strains suggests that the 

regulation of acid resistance genes by evgAS may be altered in the evolved strains compared 

to the MGA strain. This hypothesis is supported by studies that have confirmed a constitutive-
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on mutation in the same domain of EvgS. This EvgS mutation was linked between this 

mutation and an acid resistant phenotype (Eguchi et al., 2011; Itou et al., 2009). As discussed 

in Chapter 1, the induction of the AR2 network only occurs under conditions of mild acid 

shock (pH 5.7) (Burton et al., 2010; Itou et al., 2009). The result of this activation is the 

production of proteins required for AR2 acid resistance. Specifically, promoters of the ydeP, 

safA, ydeO and gadE genes are activated directly by phosphorylated EvgA (Itou et al., 2009). 

The product from ydeP is known to aid survival during extreme acid shock (Masuda and 

Church, 2003), while safA, ydeO and gadE products activate the phoPQ TCS, promoters of 

the acid fitness island (AFI) and the AR2 structural genes gadA, gadB and gadC, respectively 

(Eguchi et al., 2007; Ma et al., 2004; Masuda and Church, 2003). Considering that all of the 

evolved strains contain a mutation in evgS, that EvgAS activates acid resistance, and that a 

constitutive-on EvgS mutation (EvgSc) has been characterised, we hypothesise that the AR2 

network will be activated in the evolved strains. To test this hypothesis, we measured the 

promoter activity in both evolved and MGA strains. 

  

An in vivo luciferase based promoter probe approach was used to assay the promoter activity 

of the genes involved in the AR2 network. A detailed description of the luciferase based 

promoter constructs and assays can be found in Chapter 2. Briefly, the evolved strains were 

transformed with the lucifrease promoter probes and the promoter activity was measured in 

M9supp pH 7 during exponential phase growth. The results in figure 3.8.1 show the promoter 

activity at the evgAS promoter (A) in all of the evolved strains and MGA strain. There is no 

significant difference between the MGA strain and any of the evolved strains at the evgAS 

promoter. This result is important as it indicates that there is no affect on expression of the 

TCS. 
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Figure 3.8.1. Promoter activity of the evgA, ydeP and safA-ydeO promoters. Promoter activity was 

determined at pH 7 in M9supp medium during exponential phase growth. Activity of the evgA promoter (A), 

ydeP promoter (B), and safA-ydeO promoter (C) is shown in the Ancestor (MGA) and evolved strains Aa, Ba, 

Ga, Ea and Ha. Values and error bars represent the average and the standard deviation of three biological repeats 

respectively. The activation cascade of the EvgAS TCS (D). Coloured circles represent proteins, OM (outer 

membrane) IM (inner membrane), large coloured arrows represent coding regions, black arrows represent 

promoters and red arrows indicate activation. 

 

 

0

10

20

30

40

50

60

Anc Aa Ba Ea Ga Ha

lu
x

/O
D

/m
l

safA-ydeO

0

1

2

3

4

5

6

Anc Aa Ba Ea Ga Ha

lu
x
/O

D
/m

l

evgA

0

20

40

60

80

100

120

Anc Aa Ba Ea Ga Ha

lu
x
/O

D
/m

l

ydeP

EvgS

EvgA
EvgA

P

ydeP

safA ydeO

OM

IM

A

B

C

MGA

MGA

MGA

B 

A 



Chapter 3: Results (1): Characterisation of evolved acid resistance in Escherichia coli 

125 

 

Other studies have already shown that over-production of the response regulator EvgA can 

confer an acid resistant phenotype (Masuda and Church, 2002; Masuda and Church, 2003), 

but this explanation for the acid resistance of the evolved strains can be ruled out on the basis 

of these data. 

 

The promoters of the ydeP and safA-ydeO genes, which are directly activated by EvgA (figure 

3.8.1.D), shown in figure 3.8.1.B and C respectively are significantly active in the evolved 

strains compared to the MGA strain. This supports the hypothesis that an activated EvgAS 

could result in the activation of the rest of the pathway. The product of ydeP is itself a 

structural gene and can provide acid resistance at pH 2.5.  

 

The activities of the promoters of the slp and gadE genes, which are regulated directly by 

ydeO (figure 3.8.2 D), shown in the figures A and B respectively, are also elevated in the 

evolved strain compared to the MGA strain. The product of slp has been shown to be 

important for acid resistance, and could be contributing to the acid resistant phenotype of the 

evolved strains. 

 

The promoter activity of the mgtA gene is a direct indicator of the activity of the PhoPQ 

system (figure 3.8.2 D). PhoPQ, which is activated by low Mg
2+

 and low pH directly activates 

the mgtA promoter (Zwir et al., 2005). If EvgS is constitutively-on then the cross-talk 

between the EvgAS and PhoPQ systems should cause the activation of the mgtA promoter. 

We tested this hypothesis by measuring the promoter activity of the mgtA promoter in the 

MGA and evolved strains without induction.  
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Figure 3.8.2. Promoter activity of the slp, gadE and mgtA promoters. Promoter activity was 

determined at pH 7 in M9supp medium during exponential phase growth. Activity of the slp promoter (A), 

gadE promoter (B), and mgtA promoter (C) is shown in the Ancestor (MGA) and evolved strains Aa, Ba, 

Ga, Ea and Ha. Values and error bars represent the average and the standard deviation of three biological 

repeats respectively. The activation cascade of SafA and YdeO via PhoPQ (D). Coloured circles represent 

proteins, OM (outer membrane) IM (inner membrane), large coloured arrows represent coding regions, 

black arrows represent promoters and red arrows indicate activation. 
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The promoter activity of mgtA is presented in Figure 3.8.2 C, the mgtA promoter has 

significantly higher activity in the evolved strains compared to the MGA strain. This result 

suggests that the PhoPQ TCS and the phoP regulon are also active in the evolved strains. This 

result supports the hypothesis that the mutations in EvgS are causing the EvgS HK to be 

constitutively active. The promoter activities of the gadA, gadB, hdeA and hdeD genes, which 

are activated by the local regulator gadE (see figure 3.8.3 E), are shown in figures 3.8.3 A, B, 

C and D respectively. All of the genes, which code for products that are involved in acid 

resistance, are activated in the evolved strains compared to the MGA strain. These include 

gadA, gadB and gadC (gadC is transcribed from the gadB promoter), which code for the main 

constituents of the AR2 system for acid resistance. 

 

The final component of the AR2 network is the GadXYW circuit. This component is a 

regulatory component, which is normally only activated by RpoS in stationary phase (figure 

3.8.4. D). The role of this circuit in the activation of AR2 structural genes is not fully 

understood. The promoters of the gadXYW genes are activated by mild acid shock but this 

activation is completely independent of EvgA and completely dependent on RpoS (Burton et 

al., 2010). However, more recent studies by Eguchi et al. in 2010 have shown that the level of 

RpoS is increased in the cell in a constitutively on EvgS mutant. If the mutations in EvgS are 

constitutive-on then the promoter activity would be increased. The promoter activity of the 

gadX, gadY and gadW promoters is shown in figure 3.8.4 A, B and C respectively. The 

promoters of these genes are also active in the evolved strain compared to the MGA strain. 

This supports the hypothesis of a constitutive-on EvgS. Additionaly, if the EvgS mutants are 

constitutively-on then this result also supports the model of RpoS regulation by EvgAS 

proposed by Eguchi et al. in 2010.  
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Figure 3.8.3. Promoter activity of the gadA, gadB, hdeA and hdeD promoters. Promoter activity was 

determined at pH 7 in M9supp media during exponential phase growth. Activity of the gadA promoter 
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The general trend from the promoter probe assay is that all of the promoters that are involved 

in the activation of the AR2 network are activated under un-induced conditions. In all cases 

(except for evgA) the evolved strains show more activity but the amount of activity varies 

greatly between the strains. In particular, the evolved strains Ea and Aa and Ba show the most 

activity, with evolved strains Ga and Ha consistently showing less activity. 

 

The results obtained using the promoter probes suggest that the strains have a constitutively 

activated AR2 network. Considering that EvgAS is the TCS that activates much of this 

network and that all of the evolved strains contain mutations in this gene it is reasonable to 

suggest that the evgS mutations are the likely contributories to the acid resistance phenotype. 

In addition, this reasoning is strongly supported by the fact that Ga and Ha have the same 

mutation in evgS and that they show similar levels of activation. However, in order to show 

that these mutations confer an acid resistant phenotype they will need to be assayed in 

isolation from the other mutations in the strains. Experiments doing this will be described in 

the next chapter  

 

3.7. Discussion 

3.7.1 Phenotype of the evolved strains 

In this chapter the acid resistance phenotype of five evolved strains of E. coli K-12 MG1655 

and their ancestor strain have been characterised. To summarise the above results, the evolved 

strains grow slower than the MGA strain, which suggests that their increased level of survival 

at low pH comes at a cost during optimal growth conditions. The evolved strains showed 

superior protective capabilities during extreme acid shock at acidities as low as pH 2.0 and a 

complete independence from RpoS and GadC. These results suggest that the acid resistance 
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phenotype is not an up-regulation of RpoS in exponential phase cells or due to the GAD 

system.  

 

3.7.2 Coupling lab-based evolution with whole genome re-sequencing 

Although these attempts to identify the systems or regulatory components required for the 

evolved phenotype have given a comprehensive insight into the acid resistance phenotype, 

they were unrealistic as a tool for finding the genetic mutations that confer the evolved 

resistance. This chapter has shown how whole genome re-sequencing can be used to capture 

all of the genetic information about a particular strain. The re-sequencing identified various 

mutations in each strain. The most interesting observation made using this technique was that 

all the evolved strains have a mutation in the evgS gene. In fact, one mutation was found in 

two separately evolved strains. Considering the various mutations that could result in acid 

resistance, this result was pivotal to this study. EvgS had already been shown to be involved 

in acid resistance regulation (Itou et al., 2009; Ma et al., 2004; Masuda and Church, 2002). In 

addition, an EvgS mutation, in the same domain as those found by this study, had been shown 

to confer acid resistance (Itou et al., 2009; Kato et al., 2000). Thus, the use of whole genome 

re-sequencing has revealed a candidate mutation in each strain that could be responsible for 

the acid resistance phenotype. Finally, this work can be looked upon as a successful example 

of how these techniques can be used together to produce interesting results for further 

investigation. 

 

3.7.2 Transcriptional comparison of the evolved strains against the ancestor 

The results described above showed that all the promoters of the AR2 network are activated in 

the evolved strain compared to the MGA strain. These results suggested that a mutation high 
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in the regulatory cascade is causing the activation. The ydeP and safA-ydeO promoters are 

among those that are activated. These promoters are directly activated by EvgA, which is the 

response regulator of the EvgAS TCS. When the whole genome re-sequencing data is taken 

into consideration, it can be hypothesised that the mutations found in EvgS are causing this 

TCS to be active in conditions where it is normally inactive. To test this hypothesis, the 

mutations will have to be assayed in isolation. These experiments will form the basis of the 

next chapter. 

 

3.7.3 Summary 

The important results of work presented in the above results chapter are summarised as 

follows: 

1) The evolved strains have significantly decreased doubling times during conditions of 

optimal growth. However, at the OD600 of 0.150 all of the strains are in exponential 

phase growth. This is the OD600 which all strains were tested for all assays unless 

otherwise stated. 

2) There is additional survival of all strains including MGA in M9supp medium 

compared to rich LB medium. However, the relative survival of the evolved strains 

compared to the MGA strain is consistent between conditions. 

3) The evolved strains show between 20 and 50 fold more survival after 2 hours at pH 

2.5 compared to the MGA strain. This shows that it is possible to evolve an acid 

resistant phenotype that has a significant effect on the survival of the strains to 

extreme acid challenge. The acid resistance assay outlined in Chapter 2 is accurate 

enough to resolve this phenotype. 
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4) The evolved strains show greater resistance compared to the MGA strain over a range 

of acidities. The MGA strain had no significant survival below pH 2.5, while the 

evolved strains had survival levels greater than 10% in medium with pH values as low 

as 2. The evolved strains had no protection against medium with a pH lower than 1.5. 

5) The MGA strain is significantly more resistant to extreme acid challenge during 

exponential phase growth. Increased survival of the MGA strain was seen during lag 

phase, which is probably due to protection from stationary phase factors which have 

not been diluted out or degraded. There is no affect of growth phase on the evolved 

strains and the continual growth of cells in exponential phase didn’t reduce survival 

revealing that survival is not due to the presence of stable stationary phase resistance 

proteins.  

6) Despite the reduction of the MGA strain survival level below the level of detection in 

an ΔrpoS background, the evolved strains show no reduction in survival in ΔrpoS 

background. This indicates that the evolved acid resistant phenotype is independent 

from rpoS, and that any mutation(s) accumulated in the evolved strains are not 

affecting acid resistance via rpoS. 

7) The attempt to isolate the contribution of specific amino acid dependent acid 

resistance systems was unsuccessful. Survival was notably greater in medium 

supplemented with glutamate but the difference was not significant. 

8) When exposed to pH 2.5, which is the pH that the evolved cell lines were selected, all 

of the evolved strains in a showed gadC independent resistance. 

9) At pH 2, where the GAD system is still effective, all evolved strains show a 

significant reduction in survival in a gadC
-
 background. The evolution experiment has 
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affected the GAD system and other system that can protect the cells at pH 2.5 but not 

at pH 2. 

10) Whole genome re-sequencing of four of the evolved strains Aa, Ba, Ea and Ga 

revealed a variety of mutations. However, all strains have a mutation in the histidine 

kinase EvgS. EvgS has already been implicated in acid resistance and is the inducer of 

exponential phase resistance during mild acid shock (pH 5.7). 

11) Transcriptional analysis of the AR2 network, which is activated by EvgAS revealed 

that the pathway is activated in the evolved strains where in the MGA strain it is not. It 

appears that the evolved strains have an activated AR2 network during non-inducing 

conditions. 
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4.1 Characterisation of the evgS mutants: Location within EvgS 

The previous chapter characterised the phenotype of five evolved strains, Aa-Ha, which are 

significantly more resistant to extreme acid stress compared to the MGA strain. Whole 

genome re-sequencing identified several single nucleotide mutations in each strain. 

Interestingly, all five evolved strains contained a mutation in the evgS gene that codes for the 

histidine kinase EvgS. Two strains, Ga and Ha, have the exact same mutation. This finding 

prompted investigation into the activity of the AR2 network, which is activated by EvgAS 

TCS. The promoter activity of genes in the AR2 network was measured by promoter probe 

assays, and the finding was that all of the promoters were active in the evolved strains. 

However, in a wild type strain no promoter activity was observed. This data was indicative of 

a constitutive-on EvgS, which is activating the AR2 network in uninducing (pH 7) conditions, 

and causing the acid resistant phenotype. To confirm the role of the evgS mutations in both 

the acid resistance phenotype and the activity of the AR2 network, the mutations must be 

assayed in isolation from the other mutations in the evolved background. This will rule out the 

roles of other mutations in the evolved phenotype. 

 

The experiments discussed in this chapter characterise the evgS mutations. The location, 

nature, and biological significance of the mutations are analysed by bioinformatics methods. 

Finally, the evgS mutations are isolated and assayed for promoter activity and acid resistance. 

 

All of the mutations found in evgS are located in the PAS (Per Arnt Sim) domain (Bock and 

Gross, 2002; Huang et al., 1993). Figure 4.1 is a diagrammatic representation of the EvgS 

protein. Indicated on the diagram are the transmitter, receiver and Hpt (histidine 
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phosphotransfer) domains, which are required for activation by autophosphorylation and the 

phosphorylation of EvgA (Bock and Gross, 2002). 

 

In figure 4.1 the PAS domain of EvgS is expanded and has been aligned to BvgS. BvgS is the 

homologue of EvgS found in B. pertussis; much of what is known about EvgS function is 

derived from BvgS (Bock and Gross, 2002). Figure 4.1 also shows the 2D structure of the 

PAS domain, which is broken down into 4 motifs including the N-terminal cap, PAS core and 

beta-scaffold (Taylor and Zhulin, 1999). The evgS mutations from strains Aa, Ba, Ea and 

Ga/Ha confer the following amino acid changes; serine at position 584 to phenylalanine (Aa), 

asparagine at position 573 to leucine (Ba), glycine at position 658 to alanine and serine at 

position 600 to isoleucine. The evgS mutations from evolved strains Aa and Ba are found in 

the N-terminal cap of the PAS domain, the S1 constitutive-on mutant characterised by Kato et 

al 2000 is also located in this same domain. EvgS mutations from strains Ha/Ga and Ea are 

found in the PAS core and beta-scaffold respectively. 

 

The evgS mutation from evolved strain Aa, which has been named S584F, is a change of 

amino acid from a serine to a phenylalanine. The other mutation found in the N-terminal cap 

was found in the evolved strain Ba, which has been named N573L, is a change from an 

arsparagine to a leucine. Both of these mutations cause a polar hydrophilic residue to be 

replaced by a non-polar hydrophobic residue. Mutations Ea and Ha/Ga have been named 

G658A and S600I. Mutation S600I is located in the PAS core and results in a polar, 

hydrophilic mutation being replaced by a non-polar, hydrophobic residue, which is similar in 

nature to the S573F and N584L mutations. 
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Figure 4.1. Locations of the evgS mutations and 2D structure of the PAS domain. A diagrammatic 

representation of the EvgS protein in the inner membrane of the cell. The required for the function of EvgS are 

indicated on the diagram and the PAS domain has been enlarged to show the locations of the mutations. A large 

venous flytrap-like domain is shown looping into the periplasm (adapted from in silico data by Dr Peter Winn). 

The enlarged PAS domain (right) shows the 2D structure of the protein (adapted from Taylor and Zhulin 1999). 

The blue and red boxes indicate beta strands and alpha helices respectively. The 2D structure is divided into N-

terminal cap (located at the N-terminal end of the PAS domain) followed by the PAS core, helical connector and 

beta-scaffold. The PAS of EvgS is shown aligned to B. purtussis homologue BvgS, using ClustalW from EBI. 

Symbols . : and * indicate level of amino acid similarity. The location of each of the mutations found in the 

evolved strains is shown by a black box and the amino acid substitution is indicated along with the strain of 

origin.   
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The G658A mutation is not similar to the other mutations as the amino acid change replaces 

one aliphatic, non-polar residue with another. However, the impact of an alanine in a protein 

structure is dependent on its context. For example, the alanine side chain does have a methyl 

group, which in isolation is a soluble molecule. However, if the alanine is clustered in the 

structure with other methyl groups the alanine will contribute to the overall hydrophobicity. 

 

In summary, the evgS mutations are distributed between three domains and three of the evgS 

mutations are substantial amino acid changes that could cause alterations in EvgS protein 

structure.  

  

4.2.  EvgA, EvgS and the EvgS mutations in Escherichia species 

The level of acid resistance varies greatly between Escherichia species (Small et al., 1994). A 

multiple alignment was done to see if the mutations isolated in the evolution experiment were 

present in any of the other sequenced strains of E. coli. The multiple alignment is also a 

powerful tool to assess how conserved the mutated residues are. We wanted to investigate the 

evgS genes from other E. coli strains to see if these mutations occur naturally. The occurrence 

of these mutations in other strains in E. coli could explain the variation in acid resistance. 

 

The full evgS genes from 28 strains of E. coli and Shigella were aligned using ClustalW from 

EBI. As all of the mutations are located in the PAS domain this section of the alignment is 

shown in figure 4.2. The results of the alignment indicated that all of the mutations are in 

positions that are completely conserved (indicated by an asterisk). The location of the S1 

mutation (characterised by Kato et al 2000) is also conserved. The PAS domain itself is also 

highly conserved with only 24 positions not completely conserved across all 28 strains.  
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We noted during the course of this analysis that E. coli strain 042 didn’t have an evgAS locus. 

The region of the chromosome that normally contains the evgAS locus could provide insights 

as to how the locus was lost from E. coli 042. To investigate the lack of the evgAS locus, the 

E. coli K-12 evgAS locus was aligned to the 042 genome. The result of this alignment is 

shown in figure 4.3 A. (insert analysis of the loss of evgAS).The EvgAS system regulates the 

AR2 network, as E. coli 042 doesn’t contain an evgAS locus we wanted to see if the other 

components were coded in this strain. Sequences of components of the AR2 network from E. 

coli K-12 were aligned to the E. coli 042 genome. Despite not containing an evgAS locus, E. 

coli 042 does have other components of the AR2 network. Figure 4.3 B shows the genes that 

were checked for their presence in E. coli 042. 

 

In summary, the results of the alignment clearly show that there is high conservation of this 

domain between E. coli and Shigella species. None of the mutations are found naturally 

occurring in other strains of E. coli. Finally, the E. coli 042 strain has no EvgAS locus despite 

containing homologues for the other genes of the AR2 network. 

 

4.3. Acid resistance conferred by evgS mutations in isolation 

The evolved strains contain a variety of single nucleotide mutations that could be contributing 

to the acid resistant phenotype in full or in part. The data present in Chapter 3 suggests that 

the mutations found in EvgS are responsible for each strain’s resistance. The EvgAS TCS has 

already been implicated in the control of the AR2 network and constitutive-on mutants of 

EvgS have been previously characterised (Kato et al., 2000). In addition, all of the strains 

contain a mutation in this gene and two of the strains have the same mutation. 
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       (Ba)#    (S1)~ 

UTI89           GTTCGTCGTCGTAAAGTTATTCAGGGTGATTTAGAAAACCAAATATCATTCCGGAAAGCA 1740 

S88             GTTCGTCGTCGTAAAGTTATTCAGGGTGATTTAGAAAACCAAATATCATTCCGGAAAGCA 1740 

APEC            GTTCGTCGTCGTAAAGTTATTCAGGGTGATTTAGAAAACCAAATATCATTCCGGAAAGCA 1740 

0127_H6         GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGGAAAGCA 1740 

536             GTTCGTCGTCGTAAAGTTATTCAGGGTGATTTAGAAAACCAAATATCATTCCGGAAAGCG 1740 

CFT073          GTTCGTCGTCGTAAAGTTATTCAGGGTGATTTAGAAAACCAAATATCATTCCGGAAAGCG 1740 

SMS-3-5         GTTCGTCGTCGTAAAGTTATTCAGGGTGATTTAGAAAACCAAATATCATTCCGGAAAGCA 1530 

IAI39           GTTCGTCGTCGTAAAGTTATTCAGGGTGATTTAGAAAACCAAATATCATTCCGGAAAGCA 1740 

ED1a            GTTCGTCGTCGTAAAGTTATTCAGGGTGATTTAGAAAACCAAATATCATTCCGGAAAGCG 1740 

Sd197           GTTCGTCGTCGTGAAGTTATTCAGGGTGATTTAGAAAACCAAATATCATTCCGGAAAGCG 1740 

UMN026          GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGGAAAGCA 1740 

TW14359         GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGGAAAGCG 1740 

EC4115          GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGGAAAGCG 1530 

Sakai           GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGGAAAGCG 1740 

EDL933          GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGGAAAGCG 1740 

k12             GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGAAAAGCA 1740 

BL21_DE3_       GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGAAAAGCA 1740 

W3110           GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGAAAAGCA 1740 

HS              GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGAAAAGCA 1740 

Sf2a            GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGAAAAGCA 1740 

O26_H11         GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGAAAAGCA 1740 

O111_H-         GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGAAAAGCA 1740 

O103_H2         GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGAAAAGCA 1740 

55989           GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGAAAAGCA 1740 

E24377A         GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGAAAAGCA 1740 

Sb227           GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGAAAAGCA 1740 

CDC             GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGAAAAGCA 1740 

SS046           GTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGAAAAGCA 1740 

                ************.**** ***********************************.*****. 

 

   (Aa)  #             (Ha/Ga) # 

UTI89           CTCTCGGACTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

S88             CTCTCGGACTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

APEC            CTCTCGGACTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

0127_H6         CTCTCGGACTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

536             CTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

CFT073          CTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

SMS-3-5         CTCTCGGACTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1590 

IAI39           CTCTCGGACTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

ED1a            CTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

Sd197           CTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

UMN026          CTCTCGGACTCCTTACCGAATCCAACTTATGTCGTAAACTGGCAAGGTAATGTCATTAGT 1800 

TW14359         CTCTCGGACTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

EC4115          CTCTCGGACTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1590 

Sakai           CTCTCGGACTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

EDL933          CTCTCGGACTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

k12             CTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

BL21_DE3_       CTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

W3110           CTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

HS              CTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

Sf2a            CTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

O26_H11         CTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

O111_H-         CTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

O103_H2         CTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

55989           CTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

E24377A         CTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

Sb227           CTCTCGGATTCCTTACCAAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

CDC             CTCTCGGATTCCTTACCAAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

SS046           CTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGT 1800 

                ******** ********.************** *************************** 
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UTI89           CATAATAGTGCATTTGAACATTATTTCACTGATGATTACTACAAAAATGCAATGTTGCCA 1860 

S88             CATAATAGTGCATTTGAACATTATTTCACTGATGATTACTACAAAAATGCAATGTTGCCA 1860 

APEC            CATAATAGTGCATTTGAACATTATTTCACTGATGATTACTACAAAAATGCAATGTTGCCA 1860 

0127_H6         CATAATAGTGCATTTGAACATTATTTCACTGATGATTACTACAAAAATGCAATGTTGCCA 1860 

536             CACAATAGTGCATTTGAACATTATTTCACTGCTGATTACTATAAAAATGCAATGTTACCA 1860 

CFT073          CACAATAGTGCATTTGAACATTATTTCACTGCTGATTACTATAAAAATGCAATGTTACCA 1860 

SMS-3-5         CACAATAGTGCATTTGAACATTATTTCACTGCTGATTACTATAAAAGTGCAATGTTACCA 1650 

IAI39           CACAATAGTGCATTTGAACATTATTTCACTGCTGATTACTATAAAAGTGCAATGTTACCA 1860 

ED1a            CACAATAGTGCATTTGAACATTATTTCACTGCTGATTACTATAAAAATGCAATGTTACCA 1860 

Sd197           CACAATAGTGCATTTGAACATTATTTCACTGCTGATTACTATAAAAATGAAATGTTACCA 1860 

UMN026          CACAATAGTGCATTTGAACATTATTTCACTGCTGATTACTACAAAAATGCAATGTTGCCA 1860 

TW14359         CACAATAGTGCATTTGAACATTATTTCACTGCTGATTACTACAAAAATGCAATGTTGCCA 1860 

EC4115          CACAATAGTGCATTTGAACATTATTTCACTGCTGATTACTACAAAAATGCAATGTTGCCA 1650 

Sakai           CACAATAGTGCATTTGAACATTATTTCACTGCTGATTACTACAAAAATGCAATGTTGCCA 1860 

EDL933          CACAATAGTGCATTTGAACATTATTTCACTGCTGATTACTACAAAAATGCAATGTTGCCA 1860 

k12             CATAATAGTGCTTTTGAACATTATTTCACTGCGGATTACTACAAAAATGCAATGTTACCA 1860 

BL21_DE3_       CATAATAGTGCTTTTGAACATTATTTCACTGCGGATTACTACAAAAATGCAATGTTACCA 1860 

W3110           CATAATAGTGCTTTTGAACATTATTTCACTGCGGATTACTACAAAAATGCAATGTTACCA 1860 

HS              CATAATAGTGCTTTTGAACATTATTTCACTGTGGATTACTACAAAAATGCAATGTTACCA 1860 

Sf2a            CATAATAGTGCTTTTGAACATTATTTCACTGCGGATTACTACAAAAATGCAATGTTACCA 1860 

O26_H11         CATAATAGTGCTTTTGAACATTATTTCACTGCGGATTACTACAAAAATGCAATGTTACCA 1860 

O111_H-         CATAATAGTGCTTTTGAACATTATTTCACTGCGGATTACTACAAAAATGCAATGTTACCA 1860 

O103_H2         CATAATAGTGCTTTTGAACATTATTTCACTGCGGATTACTACAAAAATGCAATGTTACCA 1860 

55989           CATAATAGTGCTTTTGAACATTATTTCACTGCGGATTACTACAAAAATGCAATGTTACCA 1860 

E24377A         CATAATAGTGCTTTTGAACATTATTTCACTGCGGATTACTACAAAAATGCAATGTTACCA 1860 

Sb227           CATAATAGTGCTTTTGAACATTATTTCACTGCGGATTACTACAAAAATGCAATGTTACCA 1860 

CDC             CATAATAGTGCTTTTGAACATTATTTCACTGCGGATTACTACAAAAATGCAATATTACCA 1860 

SS046           CATAATAGTGCTTTTGAACATTATTTCACTGCGGATTACTACAAAAATGCAATGTTACCA 1860 

                ** ********:*******************  ******** ****.**.***.**.*** 

 

UTI89           TTAGAAAACAGTGAATCCCCCTTTAAAGATGTTTTTTCTAATACGCATGAAGTCACAGCA 1920 

S88             TTAGAAAACAGTGAATCCCCCTTTAAAGATGTTTTTTCTAATACGCATGAAGTCACAGCA 1920 

APEC            TTAGAAAACAGTGAATCCCCCTTTAAAGATGTTTTTTCTAATACGCATGAAGTCACAGCA 1920 

0127_H6         TTAGAAAACAGTGAATCCCCCTTTAAAGATGTTTTTTCTAATACGCATGAAGTCACAGCA 1920 

536             TTAGAAAACAGTGAATCCCCCTTTAAAGATGTTTTTTCTAATACGCATGAAGTCACAGCA 1920 

CFT073          TTAGAAAATAGTGAATCCCCCTTTAAAGATGTTTTTTCTAATACGCATGAAGTCACAGCA 1920 

SMS-3-5         TTAGAAAACAGTGAATCCCCCTTTAAAGATGTTTTTTCTAATACGCATGAAGTCACAGCA 1710 

IAI39           TTAGAAAACAGTGAATCCCCCTTTAAAGATGTTTTTTCTAATACGCATGAAGTCACAGCA 1920 

ED1a            TTAGAAAACAGTGAATCCCCCTTTAAAGATGTTTTTTCTAATACGCATGAAGTCACAGCA 1920 

Sd197           TTAGAAAATAGTGAATCCCCCTTTAAAGATGTTTTTTCTAATACACATGAAGTCACAGCA 1920 

UMN026          TTAGAAAACAGTGAATCACCCTTTAAAGATGTTTTTTCTAATACGCATGAAGTCACAGCA 1920 

TW14359         TTAGAAAACAGTGAATCACCCTTTAAAGATGTTTTTTCTAATACGCATGAAGTCACAGCA 1920 

EC4115          TTAGAAAACAGTGAATCACCCTTTAAAGATGTTTTTTCTAATACGCATGAAGTCACAGCA 1710 

Sakai           TTAGAAAACAGTGAATCACCCTTTAAAGATGTTTTTTCTAATACGCATGAAGTCACAGCA 1920 

EDL933          TTAGAAAACAGTGAATCACCCTTTAAAGATGTTTTTTCTAATACGCATGAAGTCACAGCA 1920 

k12             TTAGAAAACAGTGACTCACCCTTTAAAGATGTTTTTTCTAATGCGCATGAAGTCACAGCA 1920 

BL21_DE3_       TTAGAAAACAGTGACTCACCCTTTAAAGATGTTTTTTCTAATGCGCATGAAGTCACAGCA 1920 

W3110           TTAGAAAACAGTGACTCACCCTTTAAAGATGTTTTTTCTAATGCGCATGAAGTCACAGCA 1920 

HS              TTAGAAAACAGTGACTCACCCTTTAAAGATGTTTTTTCTAATGCGCATGAAGTCACAGCA 1920 

Sf2a            TTAGAAAACAGTGATTCACCCTTTAAAGATGTTTTTTCTAATGCGCATGAAGTCACAGCA 1920 

O26_H11         TTAGAAAACAGTGACTCACCCTTTAAAGATGTTTTTTCTAATGCGCATGAAGTCACAGCA 1920 

O111_H-         TTAGAAAACAGTGACTCACCCTTTAAAGATGTTTTTTCTAATGCGCATGAAGTCACAGCA 1920 

O103_H2         TTAGAAAACAGTGACTCACCCTTTAAAGATGTTTTTTCTAATGCGCATGAAGTCACAGCA 1920 

55989           TTAGAAAACAGTGACTCACCCTTTAAAGATGTTTTTTCTAATGCGCATGAAGTCACAGCA 1920 

E24377A         TTAGAAAACAGTGACTCACCCTTTAAAGATGTTTTTTCTAATGCGCATGAAGTCACAGCA 1920 

Sb227           TTAGAAAACAGTGACTCACCCTTTAAAGATGTTTTTTCTAATGCGCATGAAGTCACAGCA 1920 

CDC             TTAGAAAACAGTGACTCACCCTTTAAAGATGTTTTTTCTAATGCGCATGAAGTCACAGCA 1920 

SS046           TTAGAAAACAGTGACTCCCCCTTTAAAGATGTTTTTTCTAATGCGCATGAAGTCACAGCA 1920 

                ******** ***** **.************************.*.*************** 
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             (Ea)# 

UTI89           GAAACGAAAGAAAACCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

S88             GAAACGAAAGAAAACCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

APEC            GAAACGAAAGAAAACCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

0127_H6         GAAACGAAAGAAAACCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

536             GAAACGAAAGAAAACCGAACAATATACACACAGGTTTTTGAAATTGATAATGGCATCGAG 1980 

CFT073          GAAACGAAAGAAAACCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

SMS-3-5         GAAACGAAAGAAAACCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1770 

IAI39           GAAACGAAAGAAAACCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

ED1a            GAAACGAAAGAAAACCGAACAATATACACACAGGTTTTTGAAATTGATAATGGCATCGAG 1980 

Sd197           GAAACGAAAGAAAACCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

UMN026          GAGACGAAAGAAAATCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

TW14359         GAGACGAAAGAAAACCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

EC4115          GAGACGAAAGAAAACCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1770 

Sakai           GAGACGAAAGAAAACCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

EDL933          GAGACGAAAGAAAACCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

k12             GAAACGAAAGAAAATCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

BL21_DE3_       GAAACGAAAGAAAATCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

W3110           GAAACGAAAGAAAATCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

HS              GAAACGAAAGAAAATCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

Sf2a            GAAACGAAAGAAAATCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

O26_H11         GAAACGAAAGAAAATCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

O111_H-         GAAACGAAAGAAAATCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

O103_H2         GAGACGAAAGAAAATCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

55989           GAAACGAAAGAAAATCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

E24377A         GAAACGAAAGAAAATCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

Sb227           GAAACGAAAGAAAATCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

CDC             GAAACGAAAGAAAATCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAG 1980 

SS046           GAAACGAAAGAAAATCGAACAATATACACACAGGTTTTTGAAATTGATAATGGCATCGAG 1980 

                **.*********** ********************:************************ 

 

Figure 4.2. Multiple alignment of the PAS domain of the evgS gene from sequenced Escherichia and 

Shigella species. The alignment was made using ClustalW web resource from EBI. Symbols . : and * indicate 

levels of conservation, an  * marks complete conservation across all compared sequences. Symbols ~ and # 

indicate the S1 mutation characterised by Kato et al 2000 and the mutations characterised in this study 

respectively. 
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Figure 4.3. Presence of evgAS and the AR2 network in E. coli 042. The EvgAS locus of the E. coli K12 

MG1655 (top) compared to the E. coli 042 genome (bottom) by alignment using the xbase.ac.uk web program 

(A). Conserved regions are joined by red lines and G+C level is indicated by colour (Green = high G+C, Red = 

low) (xbase.ac.uk). (B) Table indicating the presence of components of the AR2 network that is controlled by 

EvgAS. Y indicates the presence of a homologue. 
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Finally, the activity of the AR2 network was shown to be elevated in the evolved strains in 

uninduced conditions. In order to assay the acid resistance conferred by each evgS mutation, 

each mutation was moved back into the MGA strain to be tested in isolation from the other 

mutations found in the evolved strains. 

 

In order to move the evgS mutations into the MGA strain a strategy was devised that 

combined Gene Doctoring and Datsenko and Wanner mutagenesis techniques (Datsenko and 

Wanner, 2000; Lee et al., 2009). This strategy introduced the G658A and S600I evgS 

mutations on to the MGA strain’s chromosome with no selective markers. Details of the 

method for “gorging” the mutations onto the chromosome of the MGA strain are included in 

Chapter 2. The evgS mutations G658A and S600I were introduced into the MGA strain 

chromosome creating strains evgScG658A and evgScS600I. In order to move the evgS 

mutations between strains with ease, the evgS genes conntaining the S584F and N573L 

mutations were cloned onto an expression vector pZC320. Vector pZC320 is ideal for this 

purpose as its replication is controlled by an F plasmid replicon. This gives the plasmid a low 

copy number of 2-3 copies per cell. Details of the constructs and the plasmid pZC320 can be 

found in Chapter 2. The expression plasmids contained the entire evgAS locus and are under 

the control of the natural evgAS promoter. The MGA evgAS locus was also cloned into the 

same plasmid to aid as a control. The plasmids containing wild type evgAS, S584F and 

N573L were named pevgAS, pevgAScS584F and pevgAScN573L respectively.  

 

The EvgS mutations could be conferring the acid resistant phenotype. To test this hypothesis 

the survival of the gorged strains and strains carrying the wild type or mutated evgAS loci 

were assayed using the standard acid resistance assay during exponential phase growth. 
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Cultures were shocked for 2 hours at pH 2.5 and the colony counts from before and after the 

incubation were scored. Figure 4.4 A shows the acid resistance of the evgScG658A mutant 

after 2 hours at pH 2.5. The resistance of evolved strain Ea and the MGA strain were also 

measured for comparison. The average survival of the evgScG658A strain over 3 biological 

repeats was 25%, which is elevated compared to the MGA strain. The average survival of the 

original evolved Ea strain over 3 biological repeats was 49%. Statistical comparison of Ea 

survival with the evgScG658A confirmed that the difference was insignificant (t-test, p value 

0.36). Figure 4.4 B shows the survival of the evgScS600I mutation after 2 hours at pH 2.5. 

The MGA and evolved strain Ga were also compared. The average survival of the evgScS600I 

mutation over 3 biological repeats was 31.8%, which is much higher than the MGA strain. 

The average survival of evolved strain Ga over 3 biological repeats was 60%. The difference 

between the survival of Ga and evgScS600I was determined to be insignificant (t-test, p value 

0.53).  

 

The presence of an additional plasmid encoded EvgAS may increase acid resistance as EvgA 

overexpression has previously been shown to confer resistance (Masuda and Church, 2002). 

To test the affect of an additional copy of the EvgAS, the survival of MGA containing pevgAS 

assayed for acid resistance.  

 

The evolved strains, which contain a variety of mutations including EvgS mutations N573L 

and S584F, are acid resistant. One hypothesis that explains the acid resistance of the evolved 

strains is that the EvgS mutations are activating acid resistance genes. To test the affect of 

plasmid encoded EvgAS mutants N573L and S584F on acid resistance they were assayed 

using the standard acid resistnace assay. 
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Figure 4.4. Survival of strains containing chromosomal evgS mutations. The acid resistance of the 

evgScG658A (A) and evgScs600I (B) strains was assayed by incubation in pH 2.5 M9supp medium for 2 hours. 

The parent evolved strain and MGA strain survival is provided for comparison. Survival was calculated as the 

colonies scored after 2 hours at pH 2.5 expressed as a percentage of the colonies scored in pH 7 after 0 hours. T-

test p values are displayed in red, red dotted arrows indicate the values that have been compared. Each data point 

is an average of three independent biological replicates. Error bars represent the standard deviation of thee 

independent biological replicates. A dotted black line represents the limit of detection for the assay, 

predetermined to be 0.04%. 
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Figure 4.4. Survival of strains containing chromosomal evgS mutations. The acid resistance of the 

evgScG658A (A) and evgScs600I (B) strains was assayed by incubation in pH 2.5 M9supp media for 2 hours. 

The parent evolved strain and the ancestor survival is provided for comparison. Survival was calculated as the 

colonies scored after 2 hours at pH 2.5 expressed as a percentage of the colonies scored in pH 7 after 0 hours. T-

test p values are displayed in red, red dotted arrows indicate the values that have been compared. Each data point 

is an average of three independent biological replicates. Error bars represent the standard deviation of thee 

independent biological replicates. A dotted black line represents the limit of detection for the assay, 

predetermined to be 0.04%. 
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Survival was measured after 2 hours at pH 2.5 during exponential phase growth in M9supp 

medium. Figure 4.5 shows the levels of survival of the MGA +pevgAScS584K and the MGA 

+pevgAScN573L strains. The survival of MGA alone, MGA +pZC320 (empty vector) and 

MGA +pevgAS were also assayed as controls. The survival of the evolved strains Aa and Ba, 

which contained the evgS mutations N573L and S584F, are plotted for comparison. There is 

no difference in survival between the MGA and the MGA +pZC320 strains, and there is no 

difference in survival between MGA and the MGA strain +pevgAS. Thus, there is no effect on 

survival when the MGA strain contains the plasmid pZC320 or an extra copy of evgAS.  

 

The average survival of MGA +pevgAScS584F over 3 biological repeats was 93%. Statistical 

analysis of this strain versus MGA +pevgAS indicated that the difference in survival was 

significant (t test, p value <0.001). In addition, the introduction of pevgAScS584F into MGA 

increases MGA survival to that of the evolved strain Aa. No significant difference in survival 

was observed between the evolved strain Aa and MGA +pevgAScS584F (t test, p value 0.72). 

The average survival of MGA +pevgAScN573L over 3 biological repeats was 89%. The 

difference in survival between this strains and MGA +pevgAS is statistically significant (t test, 

p value <0.001). The introduction of the plasmid pevgAScN573L increased the survival of 

MGA to levels comparable to the evolved strain Ba, it was determined that there was no 

significant difference in survival (t test, p value 0.72). 

 

In summary, the survival conferred by all of the evgS mutations, when introduced in isolation 

into MGA, were equivalent to levels of survival of the evolved strains. These results 

irrefutably show that the evolved acid resistance phenotype is completely due to the evgS 

mutations.  
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Figure 4.5. Survival of the MGA strain containing evgASc expression plasmids. Survival of the strains 

containing isolated evgS mutations were assayed by acid shock in pH 2.5 M9supp medium for 2 hours. MGA 

strains are shown in blue. The strains containing S584F and N573L are shown in red and green bars respectively. 

The plasmid pevgAS, which contains a wild type copy of evgA and evgS under the control of the native evgA 

promoter, was used as a control. Survival represents the scored colonies after 2 hours at pH 2.5 expressed as a 

percentage of the scored colonies after 0 hours at pH 7.t-test p-values are displayed in red, red dotted arrows 

indicate the values that have been compared. Data points and errors bars are an average or standard deviation of 

three biological repeats respectively. A dotted black line represents the limit of detection of the assay 

predetermined at 0.04%. 
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4.4 Effect of the evgS mutations on the AR2 network 

The results described above indicate that the evgS mutations are conferring an acid resistant 

phenotype. Results from the Chapter 3 have shown that the AR2 network, which controls 

many acid resistance genes, is activated in the evolved strains in conditions where the MGA 

strain’s AR2 network is inactive. Based on this information and the fact that in isolation the 

evgS mutations are conferring the acid resistance phenotype it is reasonable to hypothesise 

that the evgS mutations are also activating the AR2 network. Do the evgS mutations confer 

constitutive activation of this pathway when they are isolated from the other mutations found 

in the evolved strains? 

 

In order to assay the affect of the evgS mutations on the activity of the AR2 network, the 

strains evgScG658A, evgScS600I and MGA containing either pevgAS, pevgAScS584F or 

pevgAScN573L were transformed with the promoter probe plasmids pLUXevgAp, 

pLUXydePp, pLUXsafA-ydeOp, pLUXslpp, pLUXgadEp, pLUXmgtAp, pLUXgadAp, 

pLUXgadBp, pLUXhdeAp, pLUXhdeDp, pLUXgadWp, pLUXgadXp and pLUXgadYp. The 

strains were assayed for luciferase activity in M9supp during log phase and at pH 7, using the 

standard single time point promoter probe assay. 

 

The results in figure 4.6.1 show the activity of the evgA, safA-ydeO and ydeP promoters in the 

evgS mutant strains. The activity of these promoters in the evolved and MGA strains is also 

shown for reference. As a control, the promoter activity in the MGA +pevgAS strain was also 

measured. The level of evgA promoter activity in the MGA +pevgAS strain confirmed that 

there is no activation of AR2 promoters as a consequence of including an additional plasmid 

encoded copy of the evgAS locus. As with the evolved strains, there was no affect of the evgS 
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mutations on the activity of the evgA promoter. The promoter activity of the ydeP and safA-

ydeO promoters in MGA strains containing the evgS mutations S584F, S600I and N573L was 

comparable to the activity found in the evolved strains. However, the ydeP and safA-ydeO 

promoter activity in evgScG658A was significantly lower than any of the evolved strain Ea (t 

test, p value <0.001). This cannot be an affect of the G658A mutation on the luciferase 

reporter system as the level of activity at the evgA promoter is unaffected. The evgA activated 

promoters are active in the evgS mutant strains, which is suggestive of a constitutive on EvgS. 

 

If the promoters of the ydeO-safA genes are active, then it is reasonable to hypothesise that the 

promoters activated by YdeO (slp  and gadE ) will also be active. In addition, the PhoPQ TCS 

will also be activated by SafA. The mgtA promoter can be used as an indirect assay of PhoPQ 

activation. To test this hypothesis the activity of the YdeO activtated promoters and the mgtA 

promoter were assayed. The results are presented in figure 4.6.2. The MGA and evolved 

strains have been plotted for comparison. As was found for the safA promoter an additional 

plasmid encoded copy of wild type evgAS does not affect slp, gadE or mgtA promoter activity. 

The slp, gadE and mgtA promoter activities in the N573L, S600I and S584F evgS mutations 

were equivalent to the promoter activity observed in the evolved strains. As with the evgA 

regulated promoters, the level of activity of the safA-ydeO activated promoters conferred by 

the G658A evgS mutation was lower than the evolved strain Ea. 
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Figure 4.6.1. Activity of the evgA (A), ydeP (B) and safA-ydeO (C) promoters in the MGA, evolved and 

evgS mutant strains. The promoter activity was measured during exponential phase in M9supp medium at pH 

7. Luciferase values were corrected for OD and culture volume. Lanes 1 and 2 represent the promoter activity in 

MGA and MGA containing the plasmid pevgAS (contains a wild type of evgA and evgS under the control of the 

evgA promoter) respectively. The promoter activity of the MGA strain containing the isolated evgS mutations are 

shown by red bars, the promoter activity of the evolved strains, which contained each evgS mutation are shown 

as blue striped bars. Each data point is the average of three independent biological repeats. The error bars 

represent the standard deviations between three biological repeats.  
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Figure 4.6.2. Activity of the slp (A), gadE (B) and mgtA (C) promoters in the MGA, evolved and evgS 

mutant strains. The promoter activity was measured during exponential phase in M9supp medium at pH 7. 

Luciferase values were corrected for OD and culture volume. Lanes 1 and 2 represent the promoter activity in 

MGA and in MGA containing the plasmid pevgAS (contains a wild type of evgA and evgS under the control of 

the evgA promoter) respectively. The promoter activity of the MGA strain containing the evgS mutations are 

shown by red bars, the promoter activity of the evolved strains. which contained each evgS mutation are shown 

as blue striped bars. Each data point is the average of three independent biological repeats. The error bars 

represent the standard deviations between three biological repeats. 
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The evgS mutations are all conferring activation for the ydeO regulated structural gene, slp, 

and the local AR2 regulator gadE. Finally, activity of the mgtA promoter suggests that the 

PhoPQ TCS is also activated by the evgS mutation. As shown by the activity of other 

promoters involved in the AR2 network, the mgtA promoter activity conferred by the G658A 

evgS mutation is much lower than the evolved strain Ea. 

 

The consequence of activating the AR2 network fully is the activation of many structural 

genes involved in acid resistance. The level of resistance conferred by the evgS mutations is 

high and would suggest that all of the acid resistance genes regulated by GadE would also be 

active. To test this hypothesis, the promoter activity of the remaining structural genes was 

tested. The results are shown in figures 4.6.3. A similar pattern of activation was observed for 

the evgS mutations at the gadA, gadB, hdeA and hdeD promoters (figure 4.6.3). As shown for 

all aforementioned promoters, the addition of a plasmid encoded evgAS had no affect on 

promoter activity. All of the AR2 structural genes are activated in the evgS mutant strains. 

However, the G658A mutation does activate these promoters to a lesser extent.  

 

Finally, work by Eguchi et al. in 2010 showed that their evgS constitutive on mutant 

conferred an increase in RpoS levels. Transcription of the GadXYW minicircuit has been 

shown to be RpoS dependent. If the evgS mutations are causing the EvgAS TCS to be 

constitutively on then these promoters should be active. To test this hypothesis, the promoter 

activities of the remaining regulatory components of the AR2 network (gadX, gadY and 

gadW) were assayed. The activity of the gadX, gadY and gadW promters was increased in all 

evgS mutant backgrounds relative to the MGA strain (figure 4.6.4). 
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Figure 4.6.3. Activity of the gadA (A), gadB (B), hdeA (C) and hdeD (D) promoters in the MGA, evolved 

and evgS mutant strains. The promoter activity was measured during exponential phase in M9supp medium at 

pH 7. Luciferase values were corrected for OD and culture volume. Lanes 1 and 2 represent the promoter 

activity in MGA and in MGA containing the plasmid pevgAS (contains a wild type of evgA and evgS under the 

control of the evgA promoter) respectively. The promoter activity of the ancestor strain containing the evgS 

mutations are shown by red bars, the promoter activity of the evolved strains that contained that mutation are 

shown as blue striped bars. Each data point is the average of three independent biological repeats. The error bars 

represent the standard deviations between three biological repeats. 

 

 

  

1  2       Aa       Ba       Ea       Ga 1  2       Aa       Ba       Ea       Ga 

1  2       Aa       Ba       Ea       Ga 1  2       Aa       Ba       Ea       Ga 



Chapter 4: Results (2): Characterisation of evgS single nucleotide variants and their contribution 

 to acid resistance in Escherichia coli 

156 

 

As with other promoters in the AR2 network, activation of each promoter was lower in the 

strain carrying the G658A evgS mutation compared to the evolved strain Ea  

 

These results confirm that the promoter activity of the whole AR2 network is elevated in 

strains containing an evgS mutation. This observation supports the hypothesis that the evgS 

mutations are causing the protein to become constitutively-on. It is likely that the activation of 

this network and the structural acid resistance genes is conferring acid resistance in the evgS 

mutant strains. The promoter activity of the AR2 network in the evgS mutant strains is 

comparable to that of the evolved strains. The only exception being the G658A evgS 

mutation, which when present alone has significantly lower levels of AR2 promoter activity 

compared in the background of the evolved strain Ea. However, this activity is significantly 

higher than that of the MGA strain. Finally, the promoter activity in the MGA strain 

containing the control plasmid pevgAS was the same as that of MGA alone at all promoters, 

confirming that the presence of a plasmid encoded wild type evgAS locus had no affect on 

promoter activity. This latter result is particularly important as it confirms the validity of the 

results obtained using the pevgAScN573L and pevgAScS584F plasmids. The advantage of 

using a plasmid base system is that the S584F and N573L mutations can now be moved easily 

between different strains without the need for chromosomal mutagenesis. 

 

4.5  Comparison of wild type and mutant evgS induction dynamics 

The EvgS mutations have been shown to confer acid resistance and activation of the AR2 

network, these results are indicative of a constitutive-on EvgS (Kato et al., 2000). The wild 

type EvgAS two-component system can be activated by exposure to pH 5.7 (Burton et al., 

2010). In addition, the EvgS mutations are in the PAS domain. 
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Figure 4.6.4. Activity of the gadX (A), gadW (B) and gadY (C) promoters in the ancestor, evolved and evgS 

mutant strains. The promoter activity was measured during exponential phase in M9supp medium at pH 7. 

Luciferase values were corrected for OD and culture volume. Lanes 1 and 2 represent the promoter activity in 

MGA and in MGA containing the plasmid pevgAS (contains a wild type of evgA and evgS under the control of 

the evgA promoter) respectively. The promoter activity of the MGA strain containing the evgS mutations are 

shown by red bars, the promoter activity of the evolved strains that contained that mutation are shown as blue 

striped bars. Each data point is the average of three independent biological repeats. The error bars represent the 

standard deviations between three biological repeats. 
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Mutations in the PAS domains of two-component systems can have an array of effects 

(Campbell et al., 2010; Etzkorn et al., 2008; Watts et al., 2006). By looking at the induction 

of the evgS mutant strains and comparing their induction with the wild type strain we can 

answer two questions. Firstly, what level of activation do the EvgS mutations confer 

compared to acid induced wild type EvgS? Secondly, what is the affect of induction on the 

wild type and mutant EvgS? 

 

The ydeP promoter activity was used to assay the activity of the wild type evgS and evgS 

mutants with and without induction by mild acid. The ydeP promoter is directly bound by 

evgA and is the promoter that is most strongly activated by the EvgAS two-component system 

(Itou et al., 2009). The promoter activity of ydeP can therefore be used as a representation of 

EvgS activity. The high-temporal resolution promoter probe assay was used to analyse the 

activation of the ydeP promoter by EvgAS with and without induction by acid (Burton et al., 

2010). This assay is described in full in Chapter 2. Briefly, cultures were grown to 

exponential phase and the promoter activity of the ydeP promoter was monitored before and 

after a pH shift from 7 to 5.7 in M9supp. The luciferase activity was corrected for the OD600 

and plotted against the time relative to the point of induction.  

 

The results are shown in figure 4.7, evgS mutants S584F, N573L, G658A and S600I are 

shown in figures A, B, C and D  respectively. The ydeP promoter activity in the wild type 

EvgAS strain is shown in each figure for reference. The induction of the ydeP promoter by 

wild type EvgS is consistent with published results (Burton et al., 2010). Wild type EvgS 

under uninduced conditions does not activate the ydeP promoter (figure 4.7 A-D). A shift to 

pH 5.7 causes the activation of the ydeP promoter by EvgAS. 
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Figure 4.7. Dynamics of ydeP activation by EvgS mutants. Activity of the ydeP promoter in the EvgSc 

background with and without induction by mild acid shock (pH 5.7). The ydeP promoter activity in EvgSc 

mutants S573F, N584L, G658A and S600I is shown in figures A-D respectively. Induced cultures (Blue lines) 

were acidified to pH 5.7 at t = 0. Uninduced cultures (Red lines) were kept at pH 7 for the entire assay. The 

ancestor (wild type) ydeP promoter activity is shown in each figure for comparison (dotted lines). Each data 

point is the average of three biological repeats. The error bars represent the standard deviation of three biological 

repeats. 
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All of the EvgS mutants activate the ydeP promoter more than the wild type uninduced and 

induced. Interestingly for three of the EvgS mutants (S584F, N584L and G658A) the affect of 

acid induction actually reduces the promoter activity of the ydeP promoter. Conversely, 

mutant S600I is induced by exposure to mild acid, figure 4.7 D. The promoter activity of in 

the evgScG658A strain is equivalent to the other evgS mutants; this result contradicts the 

previous observation regarding the low activity in this strain. However, the Ea strain was not 

assayed by this method for comparison. There are significant differences in the methods for 

single time point and high-temporal resolution promoter probe assays, which could explain 

this difference. The most significant difference is in the outgrowth of the cultures, in the 

single time point assays the cultures are grown in 96-well polypropylene plates, as opposed to 

the high-temporal resolution assays, which used conical flasks. Consequently the cultures are 

in a single time point assay are not aerated as well as those in a high-temporal resolution 

assay. 

 

In summary, monitoring the induction of EvgS using the ydeP promoter probe revealed key 

differences between the EvgS mutations. The activation of ydeP by the EvgS mutants is much 

greater than that of the EvgS wild type even under inducing conditions. Induction by mild 

acid shock reduces the ydeP promoter activity in three of the EvgS mutant strains (S584F, 

N584L and G658A). However, even under these conditions the induction of the ydeP 

promoter is much higher in the EvgS mutant strains than in the induced wild type. Induction 

by mild acid shock increased the level of ydeP promoter activity in the S600I evgS mutant.  
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4.6. Acid resistance phenotype of E. coli 042 

E. coli 042 is an EAEC (enteroaggregative E. coli) that causes dysentery (Chaudhuri et al., 

2010). Bioinformatic analysis of 28 strains of E. coli and Shigella revealed E. coli 042 was 

the only strain that did not contain an evgAS homologue. However, the other components of 

the AR2 network are present in this strain. As E. coli 042 has no evgAS homologue, and the 

EvgAS TCS is required for the induction of exponential phase acid resistance, it is reasonable 

to predict that this strain will have no inducible acid resistance. To test this hypothesis, we 

measured the acid resistance of the E. coli 042 over a time course at pH 2.5 during 

exponential phase and after 2 hours at pH 2.5 during stationary phase.  

 

E. coli strain 042 was assayed for acid resistance using the standard acid resistance assay. The 

survival of E. coli K-12 MG1655 (MGA), E. coli 042 and E. coli Sakai were assayed during 

exponential phase growth for 2 hours at pH 2.5 in M9supp. Survival was measured at time 

zero, and every thirty minutes for 2 hours. The results are shown in figure 4.8 A. The survival 

of the K-12 strain was 0.8%. E. coli Sakai has 17% survival after 2 hours at pH 2.5, which is 

significantly higher than the E. coli K-12 strain. The survival of the E. coli 042 strain was 

below the level of detection of this assay, even after only 30 minutes at pH 2.5. E. coli 042 

has significantly lower survival at extreme pH compared to the pathogenic strain E. coli sakai 

and the lab strain E. coli K-12 MG1655. 

 

Acid resistance during stationary phase is independent of EvgAS. To see if the E. coli 042 

strains are capable of surviving extreme acid stress the strains were tested during stationary 

phase. The results are shown in figure 4.8 B. The average survival of E. coli K-12 over 3 

biological repeats was 57%. The average survival of E. coli Sakai over 3 biological repeats 
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was 42%. Finally, the average survival of E. coli 042 over 3 biological replicates was 11%.  

These results show that E. coli 042 can survive extreme acid shock in stationary phase. 

However, the level of survival is significantly lower than both E. coli K-12 and Sakai (t test, p 

values 0.0046 and 0.0025 respectively). In summary, E. coli 042 is a particularly acid 

sensitive strain of E. coli. During exponential phase growth no detectable survival was 

recorded. In fact, no recordable resistance could be observed even after only 30 minutes at pH 

2.5. However, during stationary phase growth the 042 strain was capable of resisting extreme 

acid shock. It is therefore reasonable to predict that with a functional EvgAS the E. coli 042 

strain will be able to survive extreme acid stress.  

 

 4.7.  Acid resistance of E. coli 042 with evgAS 

E. coli 042 has been shown to be sensitive to extreme acid shock and has no evgAS 

homologue. However, the mechanisms required for acid resistance are present in the strain. 

These mechanisms can also confer acid resistance during stationary phase. It is therefore 

reasonable to predict that, with a functional EvgAS to induce the AR2 system, E. coli 042 will 

be able to survive extreme acid shock in stationary phase.  

 

To test this hypothesis, the acid resistance of E. coli 042 carrying the plasmid pevgAS was 

assayed using the standard acid resistance assay. The plasmid pevgAS expresses a copy of the 

evgAS locus from E. coli K-12 MG1655. The expression of evgAS is under the control of its 

native promoter, which makes the plasmid ideal for investigating the effect of evgAS in 042.  
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Figure 4.8. Acid resistance phenotype of E. coli K-12 MG1655, 042 and Sakai. Survival of E. coli K12 

MG1655, 042 and Sakai after 0, 30, 60, 90 and 120 minutes in pH 2.5 M9supp medium (A). Survival of E. coli 

K12 MG1655 (MGA), 042 and Sakai after 2 hours in pH 2.5 M9supp medium during stationary phase (B). 

Survival represents the scored colonies after 2 hours at pH 2.5 expressed as a percentage of scored colonies at 

pH 7 after 0 hours. T-test p values are displayed in red, black dotted arrows indicate the values that have been 

compared. Each data point is an average of three independent biological replicates. Error bars represent the 

standard deviation of thee independent biological replicates. A dotted black line represents the limit of detection 

for the assay, predetermined to be 0.04%. 
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The survival of E. coli 042, E. coli 042 +pZC320, E. coli 042 + pevgAS are presented in 

figure 4.9. The survival of the E. coli 042 strain is below the limit of detection (predetermined 

to be 0.04%). The survival of this strain with either the pZC320 plasmid or the pevgAS 

plasmid was also below the limit of detection. These results indicate that the pZC320 plasmid 

does not affect the level of survival; any survival detected by the inclusion of the pevgAS 

plasmid would therefore be due to the expression of evgAS. However, the inclusion of pevgAS 

into E. coli 042 had no affect on survival. This result suggests that either basal levels of evgAS 

have no affect on survival or that E. coli K-12 evgAS is incapable of activating the AR2 

network in E. coli 042. To test the latter hypothesis, the 042 +pevgAS strain was tested for 

acid resistance after 70 minutes of induction at pH 5.7. The survival of 042 +pevgAS after 

induction increased to 0.27%. This level of survival is not comparable to the acid resistance of 

E. coli K-12 after 70 minutes of induction, which was previously shown to be 15%. 

 

Providing a plasmid encoded evgAS didn’t confer any increase in acid resistance until the 

cells were induced at pH 5.7 for 70 minutes. This induction is known to activate the EvgAS 

two component system in E. coli K-12 and confers nearly 10-fold more resistance than E. coli 

042. Acid induction of the pathway through EvgAS conferred a small amount of resistance. 

How much resistance could an evgS constitutive-on mutant confer in E. coli 042? 

 

4.8.  Acid resistance in E. coli 042 with evgASc 

The results shown above demonstrate that the addition of a plasmid encoded evgAS into E. 

coli 042 enabled acid resistance to be induced during exponential phase by mild acid shock. 

This suggests that the AR2 network can function in the same way in E. coli 042 as it does in 

E. coli K-12. Earlier in this chapter the plasmid pevgAScS584F was characterised. 
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Figure 4.9. Acid resistance of E. coli 042. Acid resistance of 042 was measured with and without plasmids 

pevgAS or pevgAScS584F in inducing and non-inducing conditions. Survival was assayed in M9supp medium, 

after 2 hours at pH 2.5. Survival represents the scored colonies after 2 hours at pH 2.5 represented as a 

percentage of scored colonies after 0 hours pH 7. U and I indicate uninduced and induced cultures respectively. 

t-test p-values are displayed in red, red dotted arrows indicate the values that have been compared. Each data 

point is an average of three independent biological replicates. Error bars represent the standard deviation of thee 

independent biological replicates. A dotted black line represents the limit of detection for the assay, 

predetermined to be 0.04%. 
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This plasmid contains a mutant copy of evgS that has been shown to constitutively activate 

the AR2 network and confer high levels of acid resistance. As the addition of a wild type 

evgAS in to E. coli 042 conferred inducible acid resistance, it is reasonable to predict that an 

EvgS constitutive-on mutant will confer an acid resistant phenotype. To test this hypothesis, 

we measured the affect of the pevgScS584F plasmid on the acid resistance phenotype of E. 

coli 042. The plasmid was transformed into the strain and tested using the standard acid 

resistance assay. Cultures were shocked in pH 2.5 M9supp medium for 2 hours. The % 

survival is presented in figure 4.9. The survival of E. coli 042 +pevgAScS584F was 56.9%, 

which is within the range of survival that was measured in E. coli K-12 +pevgAScS584F. The 

survival conferred by the evgS constitutive mutant is also significantly higher than that of the 

E. coli 042 + pevgAS strain with induction. This experiment demonstrates the elevated level 

of induction conferred by the evgS constitutive mutants compared to the induced wild type 

evgS. 

 

4.9.  Discussion 

4.9.1 The PAS domain of EvgS 

Analysis of the EvgS mutations found in the evolved strains has shown that all of the mutated 

residues are conserved. Each EvgS mutation is located in the PAS domain. Isolation of each 

mutation indicates that the EvgS mutations are conferring activation of the AR2 network in 

uninducing conditions. The EvgS mutations can also confer acid resistance to the same level 

as the evolved strains.  

 

PAS domains are ubiquitous across all kingdoms of life, in bacteria, they are often found in 

the histidine kinase (HK) of two-component systems. PAS domains have a range of functions 
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and the number of PAS domains varies between HKs. For a complete review of presence and 

function of PAS domains across an array of life see Taylor and Zhulin 1999. PAS domains 

have low sequence conservation despite their similar structure as a result many PAS 

sequences fall into the “twilight zone” (Finn et al., 2010; Holm et al., 1992; Vogt et al., 

1995). The sequence differences enable PAS domains that are structurally similar to interact 

with a variety of co-factors and sense a variety of signals. PAS domains have been shown to 

bind heme groups, FAD, divalent cations, 4-HCA, FMN and Di/tricarboxylic acids (Gilles-

Gonzalez et al., 1994; Qi et al., 2009; Reinelt et al., 2003; Vescovi et al., 1997). PAS 

domains have also been shown to sense alterations in redox potential in the cell (Soderback et 

al., 1998). The role of the PAS domain in EvgS is not understood. Structural modelling of the 

PAS domain of EvgS using other solved PAS domains as a template has revealed a possible 

pH sensing domain. Three histidine molecules, which have a favourable pKa for sensing pH 

changes in the cell (pKa of the imidazole side chain is 6.0 and 6.5 for the whole amino acid), 

are found buried in close proximity. In addition, the histidines are surrounded by acidic 

residues (Dr Peter Winn, unpublished communication). The PAS domain of EvgS is located 

to the cytoplasm very near to the inner membrane. PAS domains have been shown to interact 

with many molecules including lipids so it is possible that the EvgS PAS domain could be 

interacting with the inner membrane.  

 

4.9.2  N-terminal cap mutations 

Two of the four mutations are located in the N-terminal cap (N573L, S584F). This location 

has been shown to be poorly conserved among PAS domains. The N-terminal cap has been 

shown to be involved in dimerisation in DcuS using solid state NMR (Etzkorn et al., 2008). 

The long alpha helix structure of the N-terminal cap forms a straight edge that facilitates 
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protein-protein interactions. The N-terminal cap is also the most highly disordered part of the 

PAS domain (Taylor and Zhulin, 1999; Watts et al., 2006). Mutations that change the stability 

of this domain have already been shown to affect the function of the HK (Watts et al., 2006). 

In addition, both N-terminal cap mutations are Polar to non polar residue exchanges; this 

could be a significant change in the structure or disorder of the protein. The N-terminal cap 

has also been found to be very important for signalling in Aer TCS (Watts et al., 2006). A full 

mutagenic study of the N-terminal cap found that certain N-terminal cap mutants caused 

constitutive-on phenotypes. Other mutations conferred constitutive off and even reverse 

phenotypes that respond to the stimulus in the opposite way from the wild type protein (Watts 

et al., 2006). Although the N573L and S584F confer constitutively on activity of the AR2 

network, mild acid induction of these mutants conferred a reduction of ydeP promoter 

activity. An explanation of this phenomenon is that the mutations have shifted the pH at 

which the EvgS protein becomes activated. Investigation into the induction of the AR2 

network by Burton et al., 2010 revealed that the network was induced specifically at pH 5.7. 

Other levels of acidity actually reduced the induction of the network. These results suggest 

that EvgS responds to a specific pH. It is therefore conceivable that the evgS mutations have 

shifted the optimum pH towards pH 7, causing activity in normally uninducing conditions and 

the reduction in activity in more acidic conditions.  

 

The EvgS mutation S1, characterised to be constitutively-on by Kato et al., 2000, is also 

located in the N-terminal cap of the PAS domain. The location of the N573L and S584F 

mutations is clearly crucial for EvgS signalling it is possible that these mutations are effecting 

the dimerisation of the EvgS. In addition, the affect of induction on the activity of these EvgS 

mutations suggests that the optimum pH of EvgS has been altered. However, this effect was 
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indicated by the activity of the ydeP promoter. It is therefore possible that many other factors 

could be affecting the activity of this promoter. Conclusive characterisation of these mutations 

can only be obtained by thorough structural analysis, as a result, the role of the PAS domains 

and the N-terminal cap in EvgS and other proteins could be better understood. 

 

4.9.3 PAS core mutation S600I 

The S600I mutation is located in the PAS core of the protein. The PAS core is the active site 

of the PAS domain that is often responsible for binding cofactors (Reinelt et al., 2003). The 

active site of the core is also mainly hydrophobic. The S600I mutation results in a hydrophilic 

to hydrophobic residue change. Such a mutation could alter the structure of the PAS core and 

effect cofactor binding. Interestingly, this evgS mutation is still inducible with a mild acid 

shock suggesting that the S600I mutation does not affect the optimum pH of the HK or the pH 

regulated component of the HK. Many two component systems respond to more than one 

stimulus, this could be the case for the EvgAS system. Comprehensive structural 

characterisation of the S600I mutation could uncover possible cofactors involved in EvgS 

sensing and other input signals. 

 

4.9.4 Beta-scaffold mutation of EvgS 

EvgS mutation G685A is located in the beta-scaffold of the PAS domain. The amino acid 

base change itself is conservative. However, the mutation is close enough to the putative pH 

sensing domain to significantly affect its function. The promoter activity of the ydeP promoter 

is reduced by mild acid induction in this mutant background, which is a similar affect of 

induction on promoter activity to the N-terminal cap mutations. Suggesting that the mutation 

could have altered the optimum pH at that EvgS activates.  
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4.9.5. Activation of the acid resistance genes in evolved strain Ea 

The level of activation conferred by EvgS mutation G658A in strain evgScG658A is much 

lower than that of the evolved strain Ea. This suggests that another mutation found in evolved 

strain Ea is affecting the activation of the AR2 network. However, despite the reduced 

activation of the network the level of survival of the evgScG658A strain was not significantly 

different from the evolved strain Ea. The activity of the all of the promoters was significantly 

lower in the evgScG658A strain compared to the Ea evolved except for the EvgA promoter. 

This suggested that another mutation or mutations, present in the evolved strain Ea, was 

affecting the activation of the network. The other mutations found in evolved strain Ea 

include; dcp, iscR, priA and yijA. None of these genes have been previously characterised to 

be involved in acid resistance. The mutation that is most likely to be involved in the 

regulation of AR2 would be iscR, as this is the only mutation found in a known regulator (Wu 

and Outten, 2009). In addition, the mutation in iscR is located in the DNA binding domain. 

However, results from the high-temporal resolution assays, shown in figure 4.7 D 

contradicted this finding. The conditions of the high-temporal resolution assays are different 

from that of the single time point assays. Specifically, the assays differ in the aeration of the 

cultures as the high-temporal resolution assays use flask culture, which provided better 

aeration. It is possible that the other mutations that are required for activation of the network 

in the Ea strain are required in micro-aerobic conditions.  

 

4.9.6.  EvgS in E. coli 042 

A multiple alignment of the evgS genes from 28 sequenced strains of E. coli and Shigella 

species revealed that E. coli 042 did not have an evgAS locus. This result prompted 
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investigation of the acid resistance phenotype of E. coli 042 and the role of evgAS in 042 acid 

resistance. 

 

Acid resistance assays on wild type E. coli 042 revealed that not only did this strain of E. coli 

have very low acid resistance but also the acid resistance could not be induced with a mild 

acid shock. Introduction of wild type evgAS into the E. coli 042 strain resulted in no 

additional resistance in non-inducing conditions. However, a small increase in resistance was 

observed when the E. coli 042 +pevgAS strain was induced with a mild acid shock. This 

indicated that when EvgAS are present, the rest of the pathway was capable of conferring acid 

resistance. Finally, when the constitutive-on evgS was introduced into the strain the survival 

increased significantly. 

 

The ability of a constitutive on EvgS to confer such high levels of resistance is interesting. 

However, considering the level of activity of the ydeP promoter conferred by the constitutive 

on mutation this difference is understandable. In addition, the lack of survival of the pevgAS 

strain with induction could be due to differences in the EvgS environment. E. coli 042 

expresses an LPS layer that could buffer pH changes and alter the internal pH of the cell. It is 

possible that the pH in the cytoplasm and periplasm does not drop as much in E. coli 042 as it 

does in E. coli K-12.  

 

Overall, this chapter has demonstrated that the EvgS mutations are causing the acid resistant 

phenotype displayed by the evolved strains. These mutations are activating the AR2 network 

and causing the over-expression of the regulators and structural genes involved in acid 

resistance. This activation is powerful enough to confer acid resistance in E. coli 042, which 
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has been characterised as a very acid sensitive strain. The actual acid resistance genes that are 

conferring acid resistance to the evgS constitutive-on strains are still unknown. From this 

point EvgSc will refer to any strain contains an evgS constitutive-on mutation excluding the 

evolved strains. What components of AR2 acid resistance are required for the EvgSc based 

acid resistance phenotype?  

 

4.9.7. Summary 

1) All of the EvgSc mutations are located in the PAS domain of EvgS. The residues 

which have been mutated are conserved amongst all E. coli evgS genes. However, E. 

coli 042 does not have an evgAS locus. 

2) When isolated the EvgSc mutations were all capable of conferring acid resistance to 

levels observed by the evolved strains. This indicates that the EvgS mutations alone 

can confer an acid resistant phenotype. 

3) Each EvgSc mutation was capable of activating the AR2 network. Revealing that the 

EvgSc mutations were in fact causing a constitutive-on EvgS. However, EvgSc 

mutation G658A was not capable of conferring equivalent levels of survival as the 

evolved strain Ea suggesting that other mutations in Ea are important for induction of 

the AR2 network. 

4) Comparison of the EvgSc mutants and the activity of the induced wild type EvgS 

revealed that the EvgSc mutations could all induce the ydeP promoter significantly 

more than the induced wild type. 

5) The affect of induction by mild acid shock on the activity of ydeP in the EvgSc 

mutants varied. Mutations S573F, N584L and G658A all showed reduced activity 

after induction; whereas S600I further activated the ydeP promoter when induced. 
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6) E. coli 042 is very sensitive to extreme acid challenge. Survival was low even during 

stationary phase growth. The addition of a plasmid encoded evgAS locus did not 

increase acid resistance. However, when the strain was induced the evgAS locus did 

confer low levels of acid resistance. 

7) Introduction of a plasmid encoded constitutive on evgAS locus into E. coli 042 

increased acid resistance dramatically. 



Chapter 5: Results (3): Contributions of AR2 components to EvgSc acid resistance 

175 

 

 

 

 

 

 

 

 

 

CHAPTER 5: RESULTS (3): Contributions of AR2 components 

to EvgSc acid resistance 

 

  



Chapter 5: Results (3): Contributions of AR2 components to EvgSc acid resistance 

176 

 

5.1.  Role of EvgA in EvgSc acid resistance 

The analysis of EvgSc mutations, which were selected by an evolution experiment, has shown 

that these mutations can confer increased acid resistance of E. coli K-12 during exponential 

phase. These mutations also cause the activation of the AR2 network, which regulates the AFI 

(acid fitness island) and GAD (glutamate dependent) acid resistance systems. This chapter 

describes the contributions that each AR2 regulated mechanism made to acid resistance in 

EvgSc (EvgS constitutively active) strain. Throughout this chapter the plasmid encoded 

EvgSc mutations were used. For details of the construction of these plasmids see Chapter 2. 

The affect of the plasmid encoded EvgSc mutations on acid resistance and AR2 activity was 

covered in Chapter 4. These plasmids allowed fast and straightforward transfer of the EvgSc 

mutations into an array of mutant backgrounds. 

 

5.1.1. Dependence of EvgSc phenotype on the response regulator EvgA 

EvgS is a histidine kinase that forms a TCS with the response regulator EvgA (Bantscheff et 

al., 2000). Much of what is known about the activation of the EvgAS TCS has been 

transferred from BvgAS. BvgS is an EvgS homologue from B. purtussis that regulates 

virulence genes (Bock and Gross, 2002). The current mechanism of activation of EvgAS TCS 

is as follows: the EvgS transmitter domain autophosphorylates upon receiving a signal (Bock 

and Gross, 2002). The transmitter domain then phosphorylates the receiver domain. Then 

either the receiver domain phosphorylates the Htp domain or after a second 

autophosphorylation, the transmitter domain phosphorylates the Htp domain (Bock and Gross, 

2002). Finally, the phosphorylated Htp domain phosphorylates EvgA and EvgA binds its 

consensus DNA binding sites (Bock and Gross, 2002; Masuda and Church, 2002). Currently 

there is no account of EvgS activating any other response regulator other than EvgA. The 
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activation of AR2 by EvgA has been well characterised by in vitro and in vivo studies (Burton 

et al., 2010; Itou et al., 2009). Direct binding of EvgA to the safA-ydeO and ydeP promoters 

has been demonstrated (Itou et al., 2009). In addition, the activation of the AR2 network by 

acid induction in exponential phase has been shown to be completely EvgA-dependent 

(Burton et al., 2010). However, the activation of AR2 promoters by EvgSc could be 

independent of EvgA. For example, the activating mutations in EvgS could have altered the 

specificity of EvgS causing it to activate proteins other than EvgA. Based on the current 

understanding of EvgAS activation of the AR2 network, we hypothesise that the acid 

resistance conferred by the EvgSc mutations is dependent on EvgA. To test this hypothesis, 

the acid resistance phenotypes of EvgSc strains containing an ΔevgA deletion were assayed. 

 

The evgA locus was mutated by Datsenko and Wanner mutagenesis in the MGA and 

evgScG658A strains. The standard acid resistance assay was used to assay survival. For 

details of the mutagenesis and the acid resistance assay see Chapter 2. Briefly, cultures were 

exposed to pH 2.5 in M9supp medium for 2 hours. Induced cultures were exposed to pH 5.7 

for 70 minutes prior to exposure to pH 2.5. The results are shown in figure 5.1. For 

comparison, the MGA and MGA ΔevgA strains were assayed in both uninduced (orange bars) 

and induced (blue bars) conditions. The average survival of MGA uninduced and MGA 

induced cultures over 3 biological repeats was 0.66% and 15.61% respectively. This is similar 

to previously reported survival levels for this strain. The average survival of the MGA ΔevgA 

strain in uninduced and induced conditions over 3 biological repeats was 0.11% and 0.69% 

respectively. The survival of the uninduced MGA ΔevgA strain shows that EvgA is required 

for survival even without induction. This could be due to the survival conferred by basal 

activation of EvgA regulated genes.  
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Figure 5.1. Survival of E. coli containing an EvgSc mutations in an evgA knockout background after 2 

hours at pH 2.5. The survival of an evgScG658A ΔevgA strain was compared to the survival of MGA and MGA 

ΔevgA, with and without induction, and evgScG658A. Induced strains were grown for 70 minutes in pH 5.7 prior 

to acidification at pH 2.5. The plasmid pevgAS, which contains a wild type copy of the evgAS operon was 

included as a control. The ΔevgA mutation was complemented by supplying wild type evgA on plasmid 

pevgA .The dotted line represents the limit of detection for this assay, which was predetermined to be 0.04%. All 

of the data points and error bars represent the average and standard deviation of at least 3 independent biological 

repeats respectively. Red arrows and numbers represents comparisons of data by T-test and T-test p values 

resperctively. 
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The survival of the MGA ΔevgA strain after induction is equivalent to the survival of the 

uninduced MGA strain. This is consistent with previous findings that all induced resistance is 

dependent on EvgA (Burton et al., 2010). The average survival of the evgScG658A strain 

over 3 biological repeats was 55%. This result is consistent with previous survival levels for 

this strain described in Chapter 4. The average survival of evgScG658A ΔevgA over 3 

biological repeats was 0.48%. This level of survival is equivalent to that of the MGA ΔevgA 

strain when induced (0.69%, shown above). Statistical comparison of the evgScG658A ΔevgA 

and MGA ΔevgA strains showed that they are not significantly different (t-test, p-value 

0.321). The contribution of the EvgSc mutation is therefore completely dependent on the 

response regulator EvgA. Furthermore, the structural acid resistance genes that are conferring 

the evolved resistance are regulated either directly or indirectly by EvgA. 

 

5.1.2 Complementation of ΔevgA phenotype 

The results described in 5.1.1 show that the introduction of an evgA knockout mutation 

reduces both acid induced survival and EvgSc survival. In both cases, survival was lowered to 

levels equivalent to the uninduced wild type. This indicates that all of the EvgSc induced 

survival is dependent on EvgA. However, it is possible that other genes may have been 

affected when evgA was mutated. This is because the introduction of a resistance cassette into 

the chromosome requires a homologous recombination event. To increase the frequency of a 

homologous recombination lambda red genes are expressed in the strain. The frequency of 

other recombination events is also increased and this can lead to secondary mutations 

(Hobman et al., 2007). To ensure that the phenotypes described in 5.1.1 are due to the 

removal of evgA, the evgA gene was reintroduced into the strain on a plasmid. If the 
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evgScG658A ΔevgA phenotype is due to the deletion of evgA then the addition of a plasmid 

encoded evgA will complement the phenotype. 

 

The plasmid pevgA was used to complement the evgA deletion. Details of the construction of 

pevgA can be found in Chapter 2. Briefly, the evgA operon and upstream intergenic region 

was cloned into pZC320. This plamsid was used as it has an F’ plasmid replicon that confers a 

low copy number (Shi and Biek, 1995). It is essential to control the levels of EvgA as over-

expression can confer acid resistance (Masuda and Church, 2002). The average survival of the 

evgScG658A ΔevgA +pevgA and evgScG658A ΔevgA +pZC320 strains is shown in figure 5.1. 

The average survival of evgScG658A ΔevgA +pZC320 over 3 biological repeats was 0.56%. 

The survival of the evgScG685A ΔevgA was 0.48% and the difference between them was not 

significant (t test, p value 0.672). This result shows that the survival of the evgScG658A 

ΔevgA is not affected by the presence of the pZC320 plasmid. The average survival of the 

evgScG658A ΔevgA +pevgA over 3 biological repeats was 61%. This was significantly higher 

survival than the evgScG658A ΔevgA +pZC320 strain (t test, p value < 0.001). There was no 

significant difference between the survival of evgScG658A ΔevgA +pevgA compared to the 

evgScG658A strain (t test, p value 0.218). Therefore, addition of a plasmid encoded EvgA 

conferred comparable levels of survival to the evgScG658A strain. This shows conclusively 

that the mutation in evgA is responsible for the reduced survival shown by the evgScG658A 

ΔevgA strain.  

 

To summarise, all of the EvgSc conferred acid resistance is dependent on the response 

regulator EvgA. The introduction of a plasmid encoded evgA restored survival to levels 

comparable to an EvgSc strain. The EvgAS TCS activates many acid resistance genes, some 
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are activated directly such as ydeP, but most are activated indirectly by other regulators. The 

contributions of all EvgAS regulated components of the AR2 network to EvgSc acid 

resistance are described below. 

 

5.2. Role of RpoS-PhoPQ in the activation of EvgSc acid resistance 

The safA promoter is activated by EvgA (Masuda and Church, 2003). The product of safA is a 

small membrane protein, also called SafA, which activates PhoQ. PhoQ is the histidine kinase 

of the PhoQP TCS that responds to low Mg
2+ 

and low pH (Choi et al., 2009; Eguchi et al., 

2007). The regulon of PhoP includes iraM that codes for IraM. IraM inactivates RssB, which 

is a protein that targets RpoS for degradation. As a result, the activation of PhoPQ by SafA 

causes an increase in RpoS levels (Eguchi et al., 2011). RpoS is a sigma factor that recruits 

RNAP to a subset of promoters. Included in this subset are the gadE, gadY and gadX 

promoters (Ling et al., 2008). Activation of these promoters causes the activation of the GAD 

system and parts of the AFI (hdeA, hdeD and hdeB). Research by Eguchi et al. in 2011 

reported that survival of a constitutive on EvgS mutant (EvgS1) was reduced from 2.65% to 

0.022% by a phoP mutation (Eguchi et al., 2011). This effect of the phoP mutation was 

explained by induction cascade described above.  

 

This study has already addressed the role of RpoS in the survival of the evolved strains. The 

survival of the evolved strains, which was shown to be due to a constitutive-on EvgS, is RpoS 

independent (Chapter 3). However, the published data indicates that all survival conferred by 

a constitutive-on EvgS mutant is RpoS and PhoP dependent. Based on this data, we 

hypothesised that an ΔrpoS ΔphoP double mutant will eliminate all EvgSc resistance. To test 

this hypothesis an ΔrpoS ΔphoP double deletion strain was constructed. This strain was 
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transformed with plasmid pevgAScN573L, which encodes a wild type EvgA and a 

constitutive-on EvgS. The acid resistance of this strain was assayed and compared to the 

MGA strain with the same double deletion in both induced and uninduced conditions. 

 

The survival of the ΔrpoS ΔphoP double deletion strain is shown in figure 5.2. All strains 

were tested using the standard acid resistance assay described in Chapter 2. After shocking the 

cultures for 2 hours at pH 2.5 in M9supp survival was measured. The survival of the MGA, 

MGA induced and the MGA +pevgAScN573L strains are shown in the figure for comparison.  

 

The average survival of uninduced ΔrpoS ΔphoP over 3 biological repeats was below the 

limit of detection (predetermined as 0.04%, (Burton et al., 2010)). This was a significant 

reduction in survival that is consistent with ΔrpoS mutants as shown in Chapter 3. The 

average survival of induced ΔrpoS ΔphoP over 3 biological repeats was 5.34%. The 

difference in survival between this double mutant strain and the induced MGA strain was 

significant (t test, p-value <0.005). Induction by mild acid shock is mediumted though 

EvgAS. This result shows that at least some activation of acid resistance requires rpoS and 

phoP. The average survival of MGA ΔrpoS ΔphoP +pevgAS over 3 biological repeats was 

below the limit of detection. This result shows that there is no protection conferred by the 

addition of a plasmid encoded copy of evgAS in this background. Finally, the average survival 

of the ΔrpoS ΔphoP +pevgAScN573L strain over 3 biological repeats was 28.76%. This is a 

drop in survival of nearly 50% compared to MGA +pevgAScN573L, which had an average 

survival of 55.39% over 3 biological repeats. However, statistical comparison of these values 

indicated that the difference was not significant (t test, p-value 0.171).  
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Figure 5.2. Survival of E. coli containing an EvgSc mutation in an rpoS phoP double knockout 

background after 2 hours at pH 2.5. The survival of MGA ΔrpoS ΔphoP containing the plasmid 

pevgAScN573L that contains a constitutive copy of evgS, was compared to the survival of MGA and MGA 

ΔrpoS ΔphoP, with and without induction, and MGA +pevgAScN573L. Induced strains were grown for 70 

minutes in pH 5.7 prior to acidification at pH 2.5. The plasmid pevgAS, which contains a wild type copy of the 

evgAS operon was included as a control. The dotted line represents the limit of detection for this assay, which 

was predetermined to be 0.04%. All of the data points and error bars represent the average and standard 

deviation of at least 3 independent biological repeats respectively. Comparisons made by T-test are indicated by 

red arrows, p value from the test is indicated in red. 
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To summarise, the survival conferred by an EvgSc mutant is independent of PhoP and RpoS. 

This result is in contrast to published results that show that nearly all acid resistance of a 

different EvgSc mutant (EvgS1, Eguchi et al., 2010) was dependent on a PhoP-RpoS 

activation cascade. A similar reduction in survival was measured when the ΔrpoS ΔphoP 

double deletion strain was tested in inducing conditions (survival of the ΔrpoS ΔphoP 

dropped to 33% of the wild type). However, this difference in survival, caused by the deletion 

of rpoS and phoP, was not statistically significant. In addition, even with both of these genes 

deleted the EvgSc mutation was able to confer 28.76% survival. This level of survival is still 

higher than the survival of MGA when induced. 

 

5.3. Role of the GadE and YdeO in EvgSc acid resistance 

5.3.1. The role of GadE in EvgSc acid resistance 

GadE activates the acid resistance genes of the GAD system (gadA/B and gadC) and genes 

found in the AFI (Hommais et al., 2004; Ma et al., 2003a). The GadE promoter has been 

shown to be activated both directly and indirectly by EvgA (indirect via YdeO) (Ma et al., 

2004). The deletion of gadC, which codes the antiporter that is essential for GAD function, 

had little effect on survival at pH 2.5 (section 3.4.5.). This was a surprising result as the GAD 

system is the most robust acid resistance system at pH 2.5 (Lin et al., 1996). However, genes 

found in the AFI can also confer high levels of acid resistance, in particular, the hdeA, hdeB 

and hdeD genes that code for periplasmic chaperones and an inner membrane protein 

respectively (Gajiwala and Burley, 2000; Kern et al., 2007; Mates et al., 2007). The removal 

of gadE from an EvgSc strain will effectively abolish promoter activity of the GAD system 

and the hde genes found on the AFI (Burton et al., 2010). Considering that the main acid 

resistance structural genes regulated by EvgAS will be inactive, we hypothesise that the 
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survival of an EvgSc ΔgadE strain will be significantly reduced. To test this hypothesis, a 

ΔgadE deletion strain was constructed using Datsenko and Wanner mutagenesis (Datsenko 

and Wanner, 2000). The survival of the MGA ΔgadE strain with and without induction and 

the MGA ΔgadE +pevgAScN573L strain were tested using the standard acid resistance assay 

described in Chapter 2. 

 

The results of this assay are shown in figure 5.3.1. The average levels of survival of MGA 

with and without induction, and MGA +pevgAScN573L are shown on the figure for 

comparison. The average survival of the MGA ΔgadE strain over 3 biological repeats was 

below the limit of detection for the assay. These results showed that without induction basal 

levels of GadE can confer some acid resistance. The average survival of MGA ΔgadE under 

inducing conditions over 3 biological repeats was 0.075%. This is a significant reduction in 

survival compared to the induced MGA (t test, p value <0.001). This indicates that all of the 

survival conferred by normal acid induction is dependent on GadE. The average survival of 

MGA ΔgadE +pevgAScN573L over 3 biological repeats was 39.67%. This is lower than the 

survival of MGA +pevgAScN573L, which was 55.39%, but the difference was not significant 

(t test, p value 0.331). This result shows that in an EvgSc mutant, mechanisms independent of 

GadE activation are capable of conferring acid resistance. 

 

In summary, the ΔgadE deletion had significant effects on survival of the MGA strain with 

and without induction. This is consistent with previous work regarding the role of GadE in 

acid resistance (Burton et al., 2010; Hommais et al., 2004). However, the EvgSc mutation 

N574L was capable of conferring an acid resistant phenotype in the absence of gadE.  
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Figure 5.3.1. Survival of E. coli containing an EvgSc mutation in a gadE background after 2 hours at pH 

2.5. The survival of MGA ΔgadE containing the plasmid pevgAScN573L that contains a constitutive copy of 

evgS, was compared to the survival of MGA and MGA ΔgadE, with and without induction, and MGA 

containing plasmid pevgAScN573L. Induced strains were grown for 70 minutes in pH 5.7 prior to acidification at 

pH 2.5. The plasmid pevgAS, which contains a wild type copy of the evgAS operon was included as a control. 

The dotted line represents the limit of detection for this assay, which was predetermined to be 0.04%. All of the 

data points and error bars represent the average and standard deviation of at least 3 independent biological 

repeats respectively. Comparisons made by T-test are indicated by red arrows, p value from the test is indicated 

in red. 
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This could mean that other acid resistance genes, independent of GadE activation, are capable 

of conferring high levels of acid resistance at pH 2.5. However, considering the importance of 

the genes regulated by GadE in the response to acid resistance, an alternative hypothesis is 

that these genes are being activated by independently of GadE in the EvgSc mutant 

background.  

 

To test this hypothesis, the activities of a subset of AR2 promoters were assayed. The MGA, 

MGA +pevgAS, MGA +pevgAScN573L and MGA +evgAScN573L ΔgadE strains were 

transformed with the pLUXacpp, pLLUXgadBp, pLUXgadEp, pLUXhdeAp and pLUXslpp 

promoter probe plasmids. The promoter activity was measured using the single time point 

promoter probe assay, during exponential phase growth and without induction. The single 

time point promoter probe assays are explained in detail in Chapter 2 

 

Figure 5.3.2 shows the promoter activity of the acp, gadB, gadE, hdeA and slp genes in MGA, 

MGA +pevgAS, MGA +pevgAScN573L, MGA +pevgAScN573L ΔgadE and MGA 

+pevgAScN573L ΔydeO. The results from the MGA +pevgAScN573L ΔydeO strain will be 

discussed in section 5.3.2. The activity of the acp promoter, which is a control promoter not 

involved in AR2 or acid resistance, was the same for all of the genetic backgrounds. The 

activities of the remaining promoters in the MGA and MGA +pevgAS strains were very low 

(purple and blue bars respectively). All other promoters were more active in the MGA 

+pevgAScN573L strain compared to MGA +pevgAS. This is consistent with previous results 

regarding the activity of AR2 promoters in the MGA +pevgAScN573L strain, see Chapter 4. 

The activity of the gadB and hdeA genes is abolished in the MGA +pevgAScN573L ΔgadE 

strain.  



Chapter 5: Results (3): Contributions of AR2 components to EvgSc acid resistance 

188 

 

 

  

 

 

Figure 5.3.2. Affect of a gadE and ydeO deletion mutant on the activity of the acp, gadB, gadE, hdeA and 

slp promoters in an evgAScN573L constitutive mutant. The promoter activity was measured during 

exponential phase growth at pH 7. The luciferase values were corrected for the OD600 and volume of culture. The 

activity of each promoter in MGA (purple), MGA +pevgAScN573L (blue), MGA +pevgAScN573L ΔgadE (red) 

and MGA +pevgAScN573L ΔydeO strains is shown. Each data point and standard deviation represents the 

average and standard deviation of three biological repeats respectively. 
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The activity of the gadE promoter was significantly reduced in the MGA ΔgadE 

+pevgAScN573L strain. Finally, the ydeO activated promoter, slp, was not affected by the 

ΔgadE deletion. These results show that the GadE regulated genes are not being activated by 

another regulator in the EvgSc strain. Therefore, the resistance observed in MGA 

+evgAScN573L ΔgadE must be due to GadE independent mechanisms. 

 

In summary, the EvgSc conferred acid resistance is independent from GadE regulated 

mechanisms. The promoter activities in an EvgS constitutive ΔgadE background confirmed 

that the GadE regulated mechanisms were not active in a ΔgadE background. Other 

mechanisms activated by the EvgAS TCS include ydeP and the ydeO regulated acid resistance 

genes. This chapter will continue to assay the contributions of each of these components. 

 

5.3.2. Role of YdeO in EvgSc acid resistance 

The main contribution of YdeO to acid resistance is through the activation of GadE (Burton et 

al., 2010). In addition to GadE activation, YdeO activates the slp and dctR. Overexpression of 

ydeO has been shown to confer acid resistance (Masuda and Church, 2003). As the results 

above showed that EvgSc conferred acid resistance was unaffected by a gadE deletion, a 

second possible explanation of the acid resistance phenotype is that it results from induction 

of these YdeO-dependent genes. To test this hypothesis, a ΔydeO deletion strain was 

constructed using Datsenko and Wanner mutagenesis (Datsenko and Wanner, 2000). The 

effect of a ΔydeO mutation on the survival of an MGA ΔydeO +pevgAScN573L strain the 

acid resistance phenotype was measured. The standard acid resistance assay was used. The 

results of the acid resistance assays are shown in figure 5.3.3.  
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Figure 5.3.3. Survival of E. coli containing an EvgSc mutation in a ydeO background after 2 hours at pH 

2.5. The survival of MGA ΔydeO strain containing the plasmid pevgAScN573L that contains a constitutive copy 

of evgS, was compared to the survival of MGA and MGA ΔydeO, with and without induction, and the MGA 

containing plasmid pevgAScN573L. Induced strains were grown for 70 minutes in pH 5.7 prior to acidification at 

pH 2.5. The plasmid pevgAS, which contains a wild type copy of the evgAS operon was included as a control. 

The dotted line represents the limit of detection for this assay, which was predetermined to be 0.04%. All of the 

data points and error bars represent the average and standard deviation of at least 3 independent biological 

repeats respectively. Comparisons made by T-test are indicated by red arrows, the p values are indicated in red. 
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The average survival levels of MGA with and without induction, and MGA +pevgAScN573L 

are also presented on the graph.  

 

The average survival of the MGA ΔydeO strain with and without induction over 3 biological 

repeats was 0.15 and 0.76% respectively. The survival of the ΔydeO deletion strain is 

significantly lower than that of MGA, which was 0.88% (t test, p value <0.05). These results 

show that the YdeO has an important role in the induction of acid resistance in MGA. The 

average survival of the MGA ΔydeO +pevgAScN573L strain over 3 biological repeats was 

37.04%. This level of survival is not significantly different to that of the MGA 

+pevgAScN573L strain (t test, p value 0.632). 

 

To summarise, these results show that YdeO is important in the MGA strain for both 

uninduced and induced acid resistance. This is shown by the significant reduction in survival 

caused by a ΔydeO deletion. However, the presence of an EvgSc mutation confers an acid 

resistant phenotype even in a ΔydeO deletion mutant. This result confirms that EvgSc 

resistance is not due to the activation of YdeO regulated genes. Another explanation for this 

resistance is that the YdeO-dependent acid resistance genes are being activated independently 

from YdeO in an EvgSc mutant strain. The activity of slp, which is a YdeO-dependent 

promoter, is affected by a gadE mutant. To test this hypothesis, the promoter activity of the 

acp, gadB, gadE, hdeA and slp genes was tested using the single time point promoter probe 

assays. The promoter activity was assayed in the MGA, MGA +pevgAS, MGA 

+pevgAScN573L and MGA +pevgAScN573L ΔydeO strains using the standard single time 

point promoter probe assay. 
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The promoter activities are shown in figure 5.3.2. The activity of the acp promoter, which is a 

control promoter that is not involved in the AR2 network, is the same in all backgrounds. The 

activities of the gadB, gadE and hdeA promoters, which are regulated by GadE, are all 

reduced in the MGA +pevgAScN573L ΔydeO deletion mutant (green bars). This suggests that 

the activation of gadE and all of the promoters it regulates is dependent on YdeO. This result 

indicates, that in these conditions, ydeO independent gadE regulation cannot occur via a 

SafA-PhoPQ-IraM-RpoS cascade or through direct activation by EvgA. However, this is 

consistent with the observations made by Burton et al. in 2010, which showed that a ΔydeO 

knock out significantly reduced the activity of gadE promoter activity.  

 

5.3.3 Effect of a ΔydeO ΔgadE double deletion mutant on EvgSc acid resistance 

The results presented in this chapter have revealed that the deletion of either gadE or ydeO 

has no significant effect on the survival of an EvgSc mutant strain. One hypothesis to explain 

the acid resistance of the ΔgadE +pevgAScN573L and ΔydeO +pevgAScN573L strains is that, 

in a ΔgadE mutant, YdeO regulated genes are able to confer acid resistance, and in a ΔydeO 

mutant, GadE regulated genes are capable of conferring acid resistance. To test this 

hypothesis, a ΔydeO ΔgadE double deletion strain was made. The survival of this double 

deletion strain was tested with and without induction and containing plasmids pevgAS and 

pevgAScN573L. Survival was tested using the standard acid resistance assay described in 

Chapter 2.  

 

Figure 5.3.4 shows the results of the acid resistance assays. The survival of MGA in 

uninduced and induced conditions was also assayed for comparison. 
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Figure 5.3.4 Survival of E. coli containing an EvgSc mutation in a ydeO gadE double knockout 

background after 2 hours at pH 2.5. The survival of MGA ΔydeO ΔgadE containing the plasmid 

pevgAScN573L that contains a constitutive copy of evgS, was compared to the survival of MGA and MGA 

ΔydeO ΔgadE, with and without induction, and MGA containing plasmid pevgAScN573L. Induced strains were 

grown for 70 minutes in pH 5.7 prior to acidification at pH 2.5. The plasmid pevgAS, which contains a wild type 

copy of the evgAS operon was included as a control. The dotted line represents the limit of detection for this 

assay, which was predetermined to be 0.04%. All of the data points and error bars represent the average and 

standard deviation of at least 3 independent biological repeats respectively. 
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The survival of MGA +pevgAScN573L is also shown as a reference. The average survival of 

the MGA ΔydeO ΔgadE strain in uninduced and induced conditions over 3 biological repeats 

was below 0.04% and 0.057% respectively. Firstly, these results show that a double deletion 

of these genes causes the survival of MGA to drop to below the limit of detection in 

uninduced conditions. Secondly, these results show that in induced conditions the survival of 

the MGA ΔydeO ΔgadE strain was almost undetectable. The average survival of MGA 

ΔydeO ΔgadE +pevgAScN573L over 3 biological repeats was 26.11%. This is a significant 

reduction in survival compared to the survival of the MGA +pevgAScN573L strain (t test, p 

value <0.05). However, this level of survival is still significantly higher than the survival of 

an induced MGA strain, which had an average survival over 3 biological repeats of 14.82%.  

 

In summary, these results demonstrate that the resistance of the parent strain conferred by acid 

induction is completely dependent on GadE and YdeO. The ΔgadE ΔydeO double deletion 

significantly reduced the survival conferred by an EvgSc mutation. However, in an EvgSc 

strain there are acid resistance mechanisms, which are independent of ydeO and gadE that can 

confer more resistance than an induced MGA strain. 

 

5.4. Role of YdeP in EvgSc acid resistance 

The results described above have shown that the survival of EvgSc strains is not completely 

due to acid resistance genes regulated by ydeO and gadE. The only other known acid 

resistance gene that is regulated by EvgAS is ydeP (Itou et al., 2009; Masuda and Church, 

2002). Annotated as a putative oxidoreducatse, the role of YdeP in acid resistance is not 

understood. However, studies have shown that over-expression of ydeP can confer acid 

resistance (Masuda and Church, 2002). Considering these results, we hypothesise that ydeP is 
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conferring acid resistance in an EvgSc strain. To test this hypothesis, a ΔydeP deletion was 

made in the MGA strain. The MGA ΔydeP strain was tested using the standard acid resistance 

assay in both induced and uninduced conditions. The survival of MGA ΔydeP 

+evgAScN573L was also assayed to test the affect on EvgSc conferred acid resistance. The 

strains were tested using the standard acid resistance assay see Chapter 2.  

 

The average survival of the MGA ΔydeP strain with and without induction over 3 biological 

repeats was 0.43 and 6.77% respectively (figure 5.4). There was no significant difference in 

survival between the MGA and MGA ΔydeP strains in uninducing conditions (t test, p value 

0.257). There was a significant reduction in survival between the MGA ΔydeP and MGA 

strains under inducing conditions (t test, p value <0.05). This result shows that YdeP is 

involved in the inducible acid stress response. The average survival of the MGA ΔydeP 

+pevgAScN573L strain over 3 biological repeats was 59.47% (figure 5.4). This level of 

survival is not significantly different from the MGA +pevgAScN573L strain, which was 

determined as 55.39%. Thus, there is no effect of a ΔydeP mutation on the survival of a 

EvgSc strain. However, the affect of a YdeP mutation may be compensated by the acid 

resistance genes activated by the GadE and YdeO. 

 

5.5. Dependence of EvgSc acid resistance on ydeP, ydeO and gadE 

This study has demonstrated that the presence of an EvgSc mutation confers high levels of 

acid resistance. The results above show that a double deletion of ydeO and gadE in an EvgSc 

strain was shown to have reduced survival but only partly. The deletion of ydeP had no 

significant effect on survival.  
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Figure 5.4. Survival of E. coli containing an EvgSc mutation in a ydeP deletion background after 2 hours 

at pH 2.5. The survival of a ΔydeP strain containing the plasmid pevgAScN573L that contains a constitutive 

copy of evgS, was compared to the survival of MGA and MGA ΔydeP, with and without induction, and the 

MGA containing plasmid pevgAScN573L. Induced strains were grown for 70 minutes in pH 5.7 prior to 

acidification at pH 2.5. The plasmid pevgAS, which contains a wild type copy of the evgAS operon was included 

as a control. The dotted line represents the limit of detection for this assay, which was predetermined to be 

0.04%. All of the data points and error bars represent the average and standard deviation of at least 3 

independent biological repeats respectively. Comparisons made by T-test are indicated using red arrows, values 

in red represent the p values of these comparisons. 
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A possible interpretation of these results is that in the ydeO gadE double deletion the ydeP 

gene product is conferring acid resistance and when ydeP is deleted the ydeO gadE regulated 

genes are conferring resistance. To test this hypothesis, a ΔydeP ΔydeO ΔgadE triple mutant 

strain was constructed. Based on our current knowledge of AR2 regulation, this triple mutant 

will be sensitive. However, if other mechanisms are involved in the acid resistance of the 

EvgSc strain then this triple mutant will be resistant. The survival of the triple deletion strain 

was tested with and without induction and containing plasmids pevgAS and pevgAScN573L 

using the standard acid resistance assay (see Chapter 2). 

 

Figure 5.5 shows the results of the acid resistance assays. The average survival of the MGA 

ΔydeP ΔydeO ΔgadE strain in uninduced and induced conditions over 3 biological repeats 

was below the limit of detection. These results show that all detectable acid resistance at pH 

2.5 is dependent on these genes. The average survival of the MGA ΔydeP ΔydeO ΔgadE 

+pevgAScN573L strain that contains a constitutive on EvgS mutation was below the limit of 

detection (predetermined to be 0.04%, (Burton et al., 2010)). This result confirms that the acid 

resistance conferred by an EvgSc strain is dependent on the known EvgAS acid resistance 

genes and is consistent with the hypothesis that expression of either ydeP alone, or the ydeO 

regulated genes, is sufficient for acid resistance. 

 

To summarise, the deletion of all known acid resistance mechanisms regulated by EvgAS 

causes an acid sensitive phenotype. The presence of either GadE and YdeO or YdeP is 

enough to confer acid resistance levels higher than those achieved by acid induction. By 

combining the results of these deletions we can start to understand how each of these 

components of the AR2 network can confer acid resistance in an EvgSc mutant. 
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Figure 5.5. Survival of E. coli containing an EvgSc mutation in a ydeP ydeO gadE background after 2 

hours at pH 2.5. The survival of MGA ΔydeP ΔydeO ΔgadE containing the plasmid pevgAScN573L that 

contains a constitutive copy of evgS, was compared to the survival of the MGA and MGA ΔydeP ΔydeO ΔgadE, 

with and without induction, and the MGA containing plasmid pevgAScN573L. Induced strains were grown for 

70 minutes in pH 5.7 prior to acidification at pH 2.5. The plasmid pevgAS, which contains a wild type copy of 

the evgAS operon was included as a control. The dotted line represents the limit of detection for this assay, which 

was predetermined to be 0.04%. All of the data points and error bars represent the average and standard 

deviation of at least 3 independent biological repeats respectively.  
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5.6. The AR2 network and acid resistance in an EvgSc strain 

The AR2 network controls a subset of acid resistance genes that are crucial for acid resistance 

in E. coli K-12 (Burton et al., 2010; Itou et al., 2009; Masuda and Church, 2003). The AR2 

network responds to mild acid shock at pH 5.7 (Burton et al., 2010). This response is initiated 

by EvgAS and results in the activation of the AFI, YdeP and the GAD mechanism. In an 

EvgSc strain this essentially results in 3 separate routes to acid resistance during pH 2.5 acid 

shock. The diagram shown in figure 5.6 represents what can be deduced about the AR2 

network in an EvgSc mutant, and summarises the conclusions from the results outlined above. 

The results above show that the individual routes can confer high levels of acid resistance in 

isolation. Surprisingly, the activation of GadE by the recently characterised strain SafA-

PhoPQ-IraM-RssB-RpoS was not essential to EvgSc acid resistance. This was revealed by the 

high survival seen by a ΔphoP ΔrpoS double deletion mutant.  

 

5.7  Role of GadE in EvgSc resistance at pH 2.1 

We have used chromosomal mutations to dissect the contributions of all AR2 components in 

the acid resistance phenotype of EvgSc strains. These assays tested the strains at pH 2.5. This 

pH was used as it is the same pH that was used during the evolution experiment (described in 

chapter 3). In addition, pH 2.5 is the level of acidity that is most commonly used in the 

literature for testing acid resistance (Castanie-Cornet et al., 1999). Interestingly, the results 

presented in Chapter 3 show that strains containing the EvgSc mutations are capable of 

conferring acid resistance at pH 2. The experiments described above show that the EvgSc 

mutations can confer GadE independent acid resistance. This result is surprising as the GAD 

system is the most robust system for survival at pH 2- 2.5.  
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Figure 5.6. Activation of the AFI and GAD genes by the AR2 network. The main constituents of the AR2 

network that control acid resistance are shown in this figure. The regulator proteins are represented by open 

circles. Genes are shown by wide arrows, structural acid resistance genes are shown in dark green. Activation of 

these genes by regulators is shown by thin arrows.  A thick black line represents the inner membrane of the cell 

and space below that line represents the cytoplasm. A broken line of activation between PhoP and RpoS 

represents an indirect interaction. The IraM-RssB components of this activation were left out of the figure for 

simplification. 
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Based on the results at pH 2.5 in an EvgSc ΔgadE mutant strain, we hypothesise that the 

GadE independent acid resistance systems that confer acid resistance at pH 2.5 can also do so 

at pH 2.1. To test this hypothesis, the strains with deletions in rpoS-phoP, gadE, ydeO and 

ydeP were transformed with pevgAScN573L. The standard acid resistance assay was used to 

test each strain. The only adjustment was that each strain was shocked in M9supp at pH 2.1.  

 

The results of the acid resistance assays are shown in figure 5.7. The average survival of 

MGA and MGA +pevgAS over 3 biological repeats was 0.57 and 0.49% respectively. There 

was no statistical difference between the MGA and the MGA +pevgAS strains (t test, p value 

<0.005). The average survival of the MGA +pevgAScN573L over 3 biological repeats was 

82.82%. The average survival of the MGA ΔphoP ΔrpoS +pevgAScN573L and MGA ΔydeP 

+pevgAScN573L strains over 3 biological repeats was 56.12% and 75.43% respectively. 

These results show that there was no significant difference in survival between the ΔphoP 

ΔrpoS and ΔydeP deletion strains compared to the MGA +pevgAScN573L strain (t test, 

pvalues 0.342 and 0.699 respectively). The average survival of the MGA ΔydeO 

+pevgAScN573L strain over 3 biological repeats was 11.24%. This was a significant drop in 

resistance compared to MGA +pevgAScN573L (t test, p value <0.005). Finally, the average 

survival of the MGA ΔgadE +pevgAScN573L strain over 3 biological repeats was below the 

limit of detection. These results show that acid resistance at pH 2.1 requires the GadE 

regulated acid resistance mechanisms. Similar levels of acid resistance cannot be conferred by 

the other YdeO regulated genes or by YdeP. In fact, removal of YdeP has no effect on 

survival. In addition, these results support previous observations that the main activator of 

GadE expression is YdeO and not PhoP and RpoS as the survival of a ΔydeO mutant was 

lower than that of a ΔphoP ΔrpoS double mutant at pH 2.1.  



Chapter 5: Results (3): Contributions of AR2 components to EvgSc acid resistance 

202 

 

 

  

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8

%
 S

u
rv

iv
a
l

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Survival of MGA and the MGA +pevgAScN573L in various mutant backgrounds at pH 2.1. 

The survival of MGA, ΔrpoS ΔphoP, ΔgadE, ΔydeO and ΔydeP strains containing the plasmid pevgAScN573L 

that contains a constitutive copy of evgS, was compared to the survival of MGA and MGA +pevgAS. Strains 

were tested by acidification at pH 2.1 for 2 hours. The plasmid pevgAS, which contains a wild type copy of the 

evgAS operon was included as a control. The dotted line represents the limit of detection for this assay, which 

was predetermined to be 0.04%. All of the data points and error bars represent the average and standard 

deviation of at least 3 independent biological repeats respectively. 
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This is shown by the significantly reduced survival of the ΔydeO strain, which is presumably 

due to a reduction in GadE induction. No such reduction was observed with the ΔrpoS ΔphoP 

double deletion strain. 

 

5.8. Discussion 

5.8.1  EvgSc acid resistance and the AR2 network 

The presence of an EvgSc mutation has been shown by this study to have two consequences. 

The first is the acid resistant phenotype. The second is the activation of the AR2 network and 

the acid resistance genes that the AR2 network regulates. In this chapter we have analysed the 

link between the activation of AR2 components and the acid resistance phenotype of the 

EvgSc strains. The deletion of evgA, the response regulator of the EvgAS TCS, conferred an 

acid sensitive phenotype in acid induced and EvgSc strains. These results revealed that all 

inducible acid resistance is EvgA dependent, which is consistent with results from other 

groups (Burton et al., 2010; Itou et al., 2009; Masuda and Church, 2003). These results also 

showed that all EvgSc acid resistance was EvgA dependent. As a consequence, the role of all 

other acid resistance mechanisms of E. coli in the survival of an EvgSc mutant can be ruled 

out. Finally, the reduced survival of an EvgSc evgA mutant confirms that the action of the 

EvgSc mutation is dependent on EvgA. The evgA phenotype was also successfully 

complemented using pevgA.  

 

5.8.2 The individual components of AR2 and the EvgSc phenotype 

Based on the current understanding of the AR2 network, there are many routes to acid 

resistance from EvgAS activation. However, a study by Eguchi et al. in 2011 highlighted a 

new activation pathway that was crucial for the survival of an EvgSc mutant. The EvgSc 
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mutant, EvgS1, was shown to activate gadE via a SafA-PhoPQ-IraM-RssB-RpoS activation 

cascade. The PhoP and RpoS proteins are pivotal to this activation and to the EvgS1 acid 

resistance phenotype. However, this study has shown that the RpoS PhoP pathway is not 

essential, and that with both rpoS and phoP knocked out, an EvgSc strain can survive extreme 

acid shock at pH 2.1 using our acid resistance assay. In fact, subsequent analysis of the GadE, 

YdeO and YdeP components of the AR2 network showed that none of these components are 

essential to acid resistance at pH 2.5. However, it should be noted that acid resistance varies 

greatly between assay conditions. The studies by Eguchi et al use a different acid resistance 

assay to our own. Key differences include the medium, Eguchi et al. used LB; the phase of 

growth, acid resistance assays were started when cultures reached OD600 0.6 and the method 

of acidification, Eguchi et al. added a predetermined volume of HCl to the culture whereas 

our technique diluted cells into large volumes of pH 2.5 medium. A comparison of strains 

used by Eguchi et al. with the strains used in the study was made using the acid resistance 

assay described in Chapter 2. Published survival levels for EvgS1 were much lower than 

those measured by the acid resistance assay used in this assay. In addition, when 

pevgAScN573L was introduced into the ΔrpoS mutant strain used by Eguchi et al. the level of 

survival was unaffected. These results suggest that the main difference between the results 

observed by this study is due to the assay method (see Appendix 1). 

 

Surprisingly, YdeP alone was capable of conferring acid resistance as a gadE ydeO double 

mutant was still resistant. However, this resistance was only present in EvgSc strains. 

Induction of ydeP by mild acid shock didn’t confer resistance. This was shown by the acid 

sensitive phenotype of an MGA ydeO gadE double mutant strain after induction. When the 

acid resistance phenotypes are compared in various mutant backgrounds, it has become clear 
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that the main effect of the EvgSc mutations was to introduce redundancy into E. coli acid 

resistance that is not present in an acid induced strain. Survival of the MGA after induction is 

completely dependent on the ydeO gadE double mutant. Presumably the only difference 

between the EvgSc strains and an induced MGA strain is the level of expression of the AR2 

regulated genes. Specifically, the additional protection conferred by YdeP in the EvgSc 

strains must due to over-expression. Acid resistance due to YdeP has been shown by other 

groups (Masuda and Church, 2002). Considering the fact that increased expression can confer 

high levels of acid resistance, it is surprising that E. coli fails to achieve such high levels 

when induced. One possible explanation is that expression of YdeP to such high levels could 

confer a considerable fitness cost. Alternatively, the increased expression or translation of 

YdeP could also be dependent on other environmental factors that are not present in the 

inducing medium. It is noted that in order to confirm these phenotypes the following 

complementations must be done. The gadE, ydeO and ydeP loci must be put back into the 

ΔgadE ΔydeO ΔydeP triple mutant strain individually, to confirm that alone, at wild type 

expression levels, they can confer high levels of acid resistance. 

 

In summary, this chapter has linked the acid resistance phenotype with the activation of the 

AR2 network. Moreover, the roles of individual AR2 components in EvgSc and induced acid 

resistance have been characterised. The perturbation of the AR2 network by the EvgSc 

mutations has conferred a redundancy in the AR2 network. This redundancy is caused by the 

enhanced protection by YdeP caused by over-expression and is not present in the MGA strain 

under acid induced conditions. 
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5.8.3 Summary 

1) The acid resistance of EvgSc mutant strains is completely dependent on the response 

regulator EvgA. The EvgA deletion phenotype can be complemented by the addition 

of a plasmid encoded EvgA. 

2) The activation of the AR2 network is the cause of the acid resistance phenotype 

conferred by the EvgSc mutations. 

3) Activation of gadE by the SafA-PhoPQ-IraM-RssB-RpoS cascade is not essential to 

the EvgSc phenotype. This result contradicts the findings of Eguchi et al., 2010. The 

main activator of gadE was shown to be YdeO.  

4) A gadE ydeO double deletion caused all inducible resistance to be abolished. 

However, despite a significant reduction in survival, the MGA ydeO gadE 

+pevgAScN573L strain was still more acid resistant than the induced MGA strain. 

5) YdeP was shown to confer acid resistance in the absence of ydeO and gadE. This 

resistance was only present in an EvgSc strain. As a result the EvgSc mutations have 

conferred redundancy in the AR2 network that is not present in the MGA strain. 

6) Survival of the MGA +pevgAScN573L strain in pH 2.1 medium was completely 

dependent on GadE.  
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6.1. Additional interactions of the PhoPQ system in the AR2 network 

6.1.1. High-temporal resolution promoter probe assays and the AR2 network 

The role of the EvgSc mutations in acid resistance and the AR2 network has been described in 

previous chapters. The analysis of these mutations has built on work by Neil Burton. The 

study by Burton et al. in 2010 accurately assayed promoter induction in response to mild acid 

shock (pH 5.7). Novel dynamics of promoter induction were unveiled using a luciferase 

reporter system to measure promoter activity at high-temporal resolution. The study by 

Burton et al., among others, has shown that investigating the timing of interactions can reveal 

subtle differences required for adaption to stress conditions (Burton et al., 2010; Kalir et al., 

2001; Shin et al., 2006; Temme et al., 2008; Zaslaver et al., 2004). The work described in 

section 6.1 includes the contributions made to Burton et al. 2010. 

 

6.1.2.  The affect of ΔphoP on safA-ydeO promoter activity after induction by mild acid 

shock 

Previous research by Neil Burton used the luciferase promoter probe library to screen most of 

the AR2 promoters in a variety of backgrounds. This approach aimed to find novel 

interactions within this network by monitoring promoter activity, in different mutant 

backgrounds, after induction by mild acid shock. Various promoters of genes involved in the 

AR2 network were cloned into the luciferase reporter plasmid pLUX (Burton et al., 2010). 

These promoter probe plasmids were then transformed into different mutant backgrounds. 

The promoter activity was measured with and without induction using the high-temporal 

resolution promoter probe assays. For details of the mutants and pLUX plasmids constructed 

see Burton et al., 2010. The high-temporal resolution promoter probe assays are described in 

detail in Chapter 2. Briefly, cultures were grown into exponential phase before each was 
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separated into 6 individual wells of a microtitre plate. Measurements of luciferase activity 

were made every 70 seconds. After 24 measurements at pH 7, three of the wells were 

acidified to pH 5.7, thus inducing the cultures. Measurements were then taken for a further 84 

time points. Many novel aspects of the AR2 network were revealed during this analysis. In 

particular, the ΔphoP mutant, which is the response regulator of the PhoPQ TCS, was shown 

to negatively affect promoter activity of EvgA regulated promoters (Burton et al., 2010; 

Groisman et al., 1992). Of these promoters, the safA-ydeO is most important to this section. 

Figure 6.1 shows the promoter activity of the safA-ydeO promoter in both MGA and ΔphoP 

backgrounds, with and without induction. The induction dynamics indicated that the safA-

ydeO promoter was activated by induction. The use of high-temporal resolution assays has 

revealed the complexity of induction at the safA-ydeO promoter. The profile of activation 

over time shows two separate increases in activity (1
st
 at t = 10 to 30 minutes, 2

nd
 at t = 45 to 

120 minutes) broken by a reduction in activity (t = 30 to 45 minutes). This reduction in 

activity in the MGA strain was hypothesised to be due to a repressor binding as part of a 

negative feedback loop. The activation of the safA-ydeO promoter was increased in a ΔphoP 

background, and the repression, which was observed in the MGA background, was not 

present. These results show that the PhoPQ TCS is making additional interactions with the 

pathway other than those previously described (Eguchi et al., 2007; Eguchi et al., 2004; Zwir 

et al., 2005). This interpretation of the data led to further investigation into the interaction 

between the PhoPQ TCS and the safA-ydeO promoter. 
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Figure 6.1. Induction of the safA-ydeO promoter by mild acid shock in MGA and phoP deletion 

backgrounds. Black lines show the activity of the safA-ydeO promoter in an MGA background with (solid line) 

and without (dashed line) induction. Green lines show the activity of the safA-ydeO promoter in a ΔphoP 

background with (solid line) and without (dashed line) induction. Time zero indicates the point of acidification to 

pH 5.7. Values and error bars represent the average and standard deviation of three biological repeats 

respectively (adapted from Burton et al., 2010). 
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6.1.3. The affect of ΔsafA on safA-ydeO and mgtA promoter activities after induction 

by mild acid shock 

The results described in 6.1.2 show a difference in induction of the safA-ydeO promoter in a 

ΔphoP mutant compared to the MGA strain. One explanation of the observed difference is 

that activated PhoP is repressing the safA-ydeO promoter. SafA has already been shown to 

activate the PhoPQ TCS (Eguchi et al., 2007). Considering this we hypothesise that activated 

PhoP is repressing the safA-ydeO promoter, forming a simple negative feedback loop. 

Alternatively, unphosphorylated PhoP could be repressing the promoter. To test this 

hypothesis, a ΔsafA deletion mutant was constructed using Datsenko and Wanner 

mutagenesis (Datsenko and Wanner, 2000). If phosphorylated PhoP caused the repression, the 

ΔsafA deletion will abolish the cross talk between the EvgAS and PhoPQ TCSs and therefore 

remove the repression at the safA-ydeO promoter. The ΔsafA mutant was transformed with 

the pLUXsafA-ydeO and pLUXmgtA plasmids. The safA-ydeO promoter activity in ΔsafA 

background will test the aforementioned hypothesis. The mgtA gene is directly activated by 

phosphorylated PhoP (Zwir et al., 2005). The activity of the mgtA promoter was used as a 

control to indicate whether PhoPQ were still active in a ΔsafA mutant. Promoter activity of 

the safA-ydeO and mgtA promoters was measured using the high-temporal resolution 

promoter probe assay with the LUX plasmids in both MGA and ΔsafA backgrounds.  

 

Figure 6.2 shows the affect of a ΔsafA deletion on safA-ydeO (red line) and mgtA (blue dotted 

line). The safA-ydeO and mgtA promoter activities were also assayed in MGA backgrounds, 

shown by black solid and green dotted lines respectively. The safA mutation caused increased 

induction of the safA-ydeO promoter. 
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Figure 6.2. Activity of the safA-ydeO and mgtA promoters in MGA and safA deletion backgrounds. Solid 

lines represent safA-ydeO promoter activity in MGA (black line) and safA mutant (red line) backgrounds. Dotted 

lines represent mgtA promoter activity in MGA (green) and safA mutant (blue) backgrounds. Time zero indicates 

the point of acidification to pH 5.7. Values and error bars represent the average and standard deviation of three 

biological repeats respectively. 
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This result suggests that when PhoP is not activated by SafA there is no repression of the 

safA-ydeO promoter. The activity of the mgtA promoter was completely abolished in a ΔsafA 

mutant. This result shows that the deletion of safA removes all crosstalk between the EvgAS 

and PhoPQ TCSs, which is consistent with previously published work (Eguchi et al., 2007; 

Eguchi et al., 2004).  

 

To summarise the results above, when activated, the PhoPQ system is involved in the 

repression of the safA-ydeO promoter. These results reveal a novel negative feedback loop 

between in the PhoPQ TCS and the safA-ydeO promoter. However, it is not know whether the 

interaction between PhoP and the safA-ydeO promoters is direct or indirect. Recent 

experiments by Ashley Robinson, which support a model for direct binding, are described in 

the discussion below. 

 

6.2. Novel interactions of RcsB in the AR2 network 

6.2.1.  The role of RcsB in the E. coli acid resistance phenotype 

Although originally characterised for its role in the regulation of capsule synthesis, the rcs 

phosphorelay has been implicated in the regulation of acid resistance genes in E. coli. RcsB 

was first implicated in acid resistance by Castanie-Cornet et al. in 2007, they showed that 

stationary phase acid resistance is dependent on RcsB. By assaying the acid resistance of 

rcsA, rcsB, rcsC and rcsD knockout strains, Castanie-Cornet et al. showed that the other 

components of the rcs phosphorelay system were not required. Finally, the over-expression of 

RcsB was shown to reduce the level of survival in extreme acid conditions (Castanie-Cornet 

et al., 2007). In summary, this work indicated that basal levels of unphosphorylated RcsB 

were required for acid resistance during stationary phase. Recently, the role of RcsB in the 
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regulation of acid resistance genes has been thoroughly characterised. The binding of GadE to 

all promoters of genes involved in acid resistance has been shown to be completely dependent 

on RcsB (Castanie-Cornet et al., 2010; Krin et al., 2010a). Anaylsis of promoter binding in 

vitro indicated that RcsB and GadE form a heterodimer (Castanie-Cornet et al., 2010). 

Throughout this chapter this will be termed the RcsB-GadE heterodimer model. The 

heterodimer model suggests that the role of RcsB would be limited to this interaction, and 

only GadE dependent promoters would be affected by an rcsB deletion. However, the authors 

did not test the promoter activity of GadE independent promoters. 

 

6.2.1.1. Role of RcsB in exponential phase acid resistance 

All previously published phenotypic analysis of rcsB mutants have been done during 

stationary phase (Castanie-Cornet et al., 2010; Castanie-Cornet et al., 2007; Krin et al., 

2010a). As previously described, the activation of acid resistance by entry in to stationary 

phase requires different regulatory interaction. However, the activation of acid resistance in 

both stationary phase and expeonential phase induction conditions results in the activation of 

GadE. Considering this, the interaction between GadE and RcsB is predicted to be 

independent from activation by either condition. We hypothesise that the role of RcsB is 

essential to both stationary phase resistance cultures and exponential phase cultures with and 

without induction. We wanted to assay the contribution of rcsB to E. coli acid resistance 

during exponential phase and under inducing conditions. To test the contribution of RcsB to 

acid resistance in an ΔrcsB deletion mutant was created. The survival of the ΔrcsB mutant 

was assayed using the standard acid resistance assay, during exponential phase growth, with 

and without induction.  
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The results of the acid resistance assays are shown in figure 6.3 A. This section is only be 

concerned with the MGA and ΔrcsB strains, the complementation data will be discussed in 

the next section. The average survival of the MGA strain, with and without induction, over 3 

biological repeats was 0.8% and 24.% respectively. These levels of survival are consistent 

with those previously reported by this study. The average survival of the ΔrcsB strain over 

three biological repeats, with and without induction, was below the level of detection 

(previously determined as 0.04%, Burton et al., 2010). This results shows that all exponential 

phase resistance, in both induced and uninduced conditions, is completely dependent on rcsB.  

 

To summarise, these results show that acid resistance during exponential phase, without 

induction, is completely dependent on rcsB. This level of uninduced survival is the same as 

that observed in a gadE mutant (see Chapter 5). However, the level of survival of the ΔgadE 

mutant is higher than that of an ΔrcsB mutant under inducing conditions (gadE survival is 

shown in figure 5.3.1.). Considering the current understanding of the AR2 network, the ΔrcsB 

mutant should show the same survival as a ΔgadE mutant. The reduced survival shown by an 

ΔrcsB strain could be due to additional interactions made by RcsB independently from GadE. 

 

6.2.1.2 Dependence of EvgSc acid resistance on RcsB 

The results described above show that when induced, the ΔrcsB mutant has a more severe 

affect on survival compared to the ΔgadE mutant. This suggests an additional role of RcsB in 

the regulation of acid resistance. In Chapter 5 we characterised the acid resistance of four 

EvgSc mutants (constitutively active EvgS histidine kinases). There was no affect of a gadE 

deletion mutant on the survival of an EvgSc mutant strain.  
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Figure 6.3. Acid inducible resistance is dependent on rcsB. Survival represents the scored cells after 

2 hours at pH 2.5 in M9supp expressed as a % of total cells at time zero. A Shows MGA and ΔrcsB 

mutant strains with and without complementation plasmid prcsB (pZC320 is a control), after induction 

by acid shift (striped bars), or uninduced (white bars). B Uninduced evgScS600I strain, which contains 

a constitutive EvgS (EvgSc) compared to uninduced ΔrcsB mutant of the same strain. Dotted line 

represents the limit of detectable survival determined as 0.04 %. Error bars represent the standard 

deviation of 3 repeats. 
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Considering the current RcsB-GadE heterodimer model, the survival of an EvgSc mutant 

should be unaffected by an ΔrcsB mutant. To test this hypothesis, an evgScS600I ΔrcsB strain 

was created using Datsenko and Wanner mutagenesis (Datsenko and Wanner, 2000). Details 

of the mutagenesis can be found in Chapter 2. The evgScS600I strain contains an evgS mutant 

that encodes a constitutive on EvgS (EvgSc). The acid resistance phenotype of this strain was 

tested using a standard acid resistance assay. 

 

The survival of the evgScS600I ΔrcsB strain is shown in figure 6.3 B. The average survival 

over 3 biological repeats was below the limit of detection. This results shows that RcsB is 

essential to all EvgSc conferred acid resistance. Also, this result indicates that the RcsB-GadE 

heterodimer model is, at the very least, incomplete as the impact of a gadE mutation is not as 

severe. 

 

6.2.1.3. Complementation of the RcsB phenotype using a plasmid encoded copy of rcsB 

The experiments described above show that the deletion of rcsB confers an acid sensitive 

phenotype in an acid induced strain and in an EvgSc strain. This is a surprising result as the 

role of RcsB in the regulation of acid resistance is thought to be limited to its interactions with 

GadE. However, it is also possible that other genes may have been affected when rcsB was 

mutated, and a secondary site mutation could be the cause of the observed sensitivity. The 

introduction of a resistance cassette into the chromosome requires a homologous 

recombination event. To increase the frequency of a homologous recombination lambda red 

genes are expressed in the strain. The frequency of other recombination events is also 

increased and this can lead to secondary mutations (Hobman et al., 2007). To confirm that the 

acid sensitive phenotype is due solely due to the loss of rcsB, and not any other genetic 
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mutations, the ΔrcsB mutant was complemented by the addition of a plasmid encoded rcsB. 

The construction of prcsB complementation plasmid is described in detail in Chapter 2. 

Briefly, the plasmid contains the rcsB gene under the control of its native promoter (-1144 to 

+674, relative to the RcsB translation start site). It is important that the rcsB gene is expressed 

at wild type levels, as the over-expression of rcsB has already been shown to confer an acid 

sensitive phenotype. The survival of the MGA +prcsB and the ΔrcsB +prcsB strains was 

assayed with and without induction. Strains were tested using the standard acid resistance 

assay, which is described in detail in Chapter 2.  

 

Figure 6.3 A, shows the results of these assays. The survival of the ΔrcsB +prcsB with and 

without induction was 21.5 and 0.9 % respectively. The survival of these strains was 

equivalent to the MGA strain with and without induction. These results show that the 

introduction of the plasmid encoded rcsB fully complemented the ΔrcsB phenotype. The 

survival of the evgScS600I ΔrcsB +prcsB strain was 97.8%, which is actually higher than the 

evgScS600I strain (31.8%, see 4.3). 

 

The results described above confirm that the deletion of the rcsB gene was the cause of the 

acid sensitive phenotype. These results verify that ΔrcsB phenotype is more sensitive to acid 

stress compared to the ΔgadE phenotype. If the current model is correct, a ΔgadE mutant 

phenotype should be the same as the ΔrcsB mutant phenotype. The affect of an ΔrcsB mutant 

on both the survival of MGA with induction, and the survival of an EvgSc strain was more 

severe than that of a ΔgadE mutant. The latter result showed that EvgSc strains could survive 

extreme acid without gadE. In fact, a triple mutant of ydeO ydeP and gadE needed to be made 

in an EvgSc strain to confer sensitivity equivalent to that of an EvgSc ΔrcsB mutant. In 
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addition, these results also validate the prcsB plasmid as a suitable complementation plasmid. 

In summary, RcsB must be making additional interactions with acid resistance genes other 

than those previously identified. 

 

6.2.2. Analysis of ΔrcsB and ΔgadE mutant strains using high-temporal resolution 

promoter probe assays 

Mutagenesis of the rcsB gene has revealed that the contribution of RcsB to the acid resistance 

phenotype is more than that of GadE. This is a surprising result as the current role of RcsB in 

the regulation of acid resistance genes is the formation of a heterodimer with GadE (Castanie-

Cornet et al., 2010; Krin et al., 2010a). In previous chapters the promoter probe plasmids 

have been used to assay the promoter activity of genes involved in the AR2 network. Here we 

aim to uncover additional interactions of RcsB in the AR2 network by comparing the 

induction dynamics of an ΔrcsB mutant and the MGA strain. The induction dynamics of each 

of these promoters was compared to the promoter activity in a ΔgadE strain (Burton et al., 

2010). To test the promoter activities of AR2 genes in each genetic background, the promoter 

probe plasmids were each transformed into each strain. The following plasmids were used: 

pLUXevgAp, pLUXsafA-ydeOp, pLUXydePp, pLUXgadEp, pLUXslpp, pLUXmgtAp, 

pLUXgadBp, pLUXhdeAp, pLUXgadAp, pLUXgadXp, pLUXgadYp and pLUXgadWp. The 

promoter activity was measured using the standard high-temporal resolution promoter probe 

assay, which is described in detail in Chapter 2. The cultures were induced by growth in pH 

5.7 M9supp medium. To compare the induction of each promoter in MGA and ΔrcsB 

backgrounds, and to measure the significance of the difference, a single time point was 

chosen and compared. The induction of each promoter was compared 40 minutes after 

induction as this was the highest point of initial induction. These comparisons are shown in 
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Table 6.1. This section is only be concerned with the exponential phase comparisons, 

stationary phase comparisons will be discussed later in this chapter.  

 

The induction of each promoter, in each background, by mild acid shock, is shown in figure 

6.4 A. The promoter activity in a ΔgadE strain is also shown on each graph for comparison. 

The ΔgadE data was generated and published by Neil Burton in Burton et al in 2010. All 

plotted lines on each graph are induced cultures. The evgA promoter in an ΔrcsB background 

shows no significant difference in promoter activity compared to either the ΔgadE or the 

MGA strain. This result demonstrates that any effect of a ΔrcsB mutation is not due to an 

affect the expression level of EvgAS. It is therefore likely to be due to an effect on the ability 

of the EvgAS TCS to signal to the AR2 network.  

 

The promoters in the AR2 network can be divided in to three groups: GadE independent 

promoters, GadE partially dependent promoters, and GadE dependent promoters. The GadE 

dependent promoters include: gadBp, hdeAp, and gadAp; the activities of each of these 

promoters were abolished in a ΔrcsB background. This result is consistent with the GadE-

RcsB heterodimer model. The GadE independent promoters include: safA-ydeOp, ydePp, 

mgtAp and gadXp; the activities of these promoters were not affected by a ΔgadE deletion. 

However, the activities of these promoters were completely removed by an ΔrcsB mutation. 

The safA-ydeO and ydeP promoters are directly regulated by EvgA. This result shows that the 

activation of all EvgA dependent AR2 promoters is completely dependent on rcsB. The mgtA 

promoter is activated indirectly by SafA, the loss of activation at this promoter, in an ΔrcsB 

mutant, is consistent with the loss of activity at the safA-ydeO promoter. Finally, the partially 

GadE dependent promoters include: gadEp, slpp, gadWp and gadYp.  
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Table 6.1 Relative activity of AR2 promoters 

 

 Promoter 

dependency
a 

Relative activity 

Promoter GadE EvgA 
Exp

b 
Stat

c 

gadA d d 
0.050

*** 
0.005

*** 

gadB d d 
0.014

*** - 

hdeA d d 
0.002

*** 
0.027

*** 

hdeD d d 
0.100

*** 
0.160

*** 

gadE pd d 
0.013

*** 
0.086

*** 

gadW i d 
0.208

*** 
0.534

ns* 

gadY i d 
0.034

*** 
0.950

ns* 

slp i d 
0.039

*** - 

safA i d 
0.030

*** nd 

mgtA i d 
0.166

*** 
0.915

ns* 

ydeP i d 
0.002

*** nd 

evgA i i 
0.900

ns* - 

gadX i i 
0.283

*** 
0.256

*** 

 

a d, dependent; i, independent; pd, partially dependent; as determined in (1) 

b Promoter activity in ΔrcsB strain relative to wild type after 40 minutes of induction at pH 5.7 

c Promoter activity in ΔrcsB strain relative to wild type in stationary phase 

nd: Not determined, as expression levels too low to measure accurately 

-: not done 

*, ** and *** indicate P values > 0.95, > 0.99 and > 0.999 respectively. 
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Figure 6.4. Induction dynamics of the AR2 promoters in MGA, rcsB deletion and gadE deletion 

backgrounds. A Induction of each promoter by pH 5.7 in MGA (Black lines), ΔrcsB (Red lines) and ΔgadE 

(Green lines), measured by the high temporal resolution promoter probe assay. Promoter name is included in 

each graph. Time zero represents the point of acidification, also indicated by a vertical dotted line. Luciferase 

values were corrected by division of OD
600

. Each value and error bar represents the average and standard 

deviations of either 3 biological repeats (MGA and ΔrcsB) or 3 technical replicates (ΔgadE). B 

Complementation of promoter activity due to induction in an ΔrcsB mutant (square data points) by prcsB 

(diamond data points) compared to MGA promoter activity (triangular data points).  All properties are the same 

as described in A except the following. The inclusion of prcsB to supply a plasmid encoded copy of rcsB under 

the control of its native promoter. Each value and error bar represents the average and standard deviation of 3 

biological repeats respectively. 
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There is a minor reduction in activation of these promoters in a ΔgadE background. There is 

no activity at any of these promoters in an ΔrcsB background. The slp and gadE promoters 

are activated by ydeO, which is also inactive in a ΔrcsB mutant. The gadY and gadW 

promoters are activated by gadX, the loss of activity at these promoters in an ΔrcsB mutant is 

consistent with the loss of activity at the gadX promoter. 

 

The loss of activity of the safA-ydeO, gadE, gadA and mgtA promoters was complemented by 

introducing a plasmid encoded copy of rcsB. Figure 6.4 B shows that activity of all promoters 

in the MGA (triangle data points), ΔrcsB (square data points) and ΔrcsB +prcsB strains 

(diamond data points). The activity of each promoter was restored to MGA levels in the 

presence of prcsB. 

 

In summary, the activation of the AR2 network by mild acid shock during exponential phase 

is completely dependent on rcsB. These results show that the RcsB-GadE heterodimer model 

is not in itself sufficient to explain the role of RcsB in acid resistance. Consequently, these 

results do show that RcsB is making other interactions in the AR2 network. The activation of 

the AR2 network in response to acid stress is completely dependent on the EvgAS TCS. 

 

6.2.3. Role of RcsB in acid resistance and the AR2 network during stationary phase 

The results described above demonstrate the affect of an ΔrcsB mutant on the induction of the 

AR2 network, by mild acid shock, during exponential phase growth. Acid resistance in E. coli 

can also be induced by entry into stationary phase (De Biase et al., 1999). To test the role of 

RcsB in stationary phase cells we assayed the acid resistance and the activity of the AR2 

network, during stationary phase, without induction. The standard acid resistance assay was 
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used to measure the survival of the MGA and ΔrcsB strains during stationary phase. The 

results of these assays are shown in figure 6.5 A. The average survival of the MGA strain was 

95.34 %. The high level of survival of E. coli K-12 in stationary phase is consistent with 

previously reported stationary phase levels of resistance (De Biase et al., 1999; Giangrossi et 

al., 2005; Ma et al., 2003b). The survival of the ΔrcsB strain was below the level of detection. 

This result shows that even stationary phase acid resistance is completely dependent on RcsB. 

Finally, the sensitive phenotype could be complemented by the addition of the prcsB plasmid 

figure 6.5 B. This result confirms the previous work of Castanie-Cornet et al.  

 

The single time point promoter probe assay was used to measure the activity of all promoters 

described in 6.2.2, in both MGA and ΔrcsB strains. This assay was adjusted from the standard 

single time point assay, which is described in Chapter 2, by growing the cells into stationary 

phase, diluting 10-fold and shaking the cultures for 10 minutes before assaying for promoter 

activity. 

 

The activity of each promoter in the ΔrcsB strain relative to the MGA strain is shown in table 

6.1. There is no significant reduction in expression at the gadW, gadY and mgtA promoters. 

Relative expression levels for EvgA regulated promoters could not be determined due to the 

low levels of expression. These results show that the EvgAS system is not activated by slow 

growth and requires exposure to mild acid shock. The gadA, hdeA, hdeD and gadE promoters 

all showed a significant decrease in expression in the rcsB mutant. These results are consistent 

with the RcsB-GadE heterodimer model and demonstrate that RcsB is required for induction 

of GadE regulated promoters during entry into stationary phase. The activity of the gadX 

promoter was also reduced in an ΔrcsB background during entry into stationary phase. 
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Figure 6.5. Impact of an rcsB deletion mutant on acid resistance and AR2 promoter activity during 

stationary phase. A The survival of MGA, ΔrcsB and ΔrcsB +prcsB strains after entry into stationary phase. 

Plasmid prscB is a complementation plasmid that encodes a copy of rcsB under the control of the rcsB native 

promoter. Survival was measured by exposing the strains to pH 2.5 for 2 hours, after which the % survival was 

calculated. B Promoter activity of the gadA (gadAp), gadE (gadEp) and gadX (gadXp) genes in MGA (Blue 

bars) and ΔrcsB (Green bars) backgrounds with (Purple bars) and without complementation plasmid prcsB 

during stationary phase. Promoter activity was measured during stationary phase growth using a single time 

point promoter probe assay. Luciferase values were corrected for cell number by division by the OD600. In A and 

B Each value and error bar represents the average and standard deviation of 3 biological repeats respectively. 
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This result is not consistent with the GadE-RcsB heterodimer model as the gadX promoter is 

activated independently from GadE in stationary phase cells.  

 

The loss of activity of the gadA, gadE and gadX promoters was complemented by introducing 

a plasmid encoded copy of rcsB, figure 6.5 B. The plasmid pZC320 (the empty plasmid 

backbone) was also introduced into the strains as a control. The activity of all promoters was 

restored to MGA levels by the addition of prcsB. Addition of the control promoter pZC320 

had no affect on promoter activity.  

 

In summary, the stationary phase results show that RcsB is essential to stationary phase acid 

resistance and the activation of promoters. These results while consistent with the RcsB-GadE 

heterodimer model, show that this model cannot fully explain the role of RcsB in acid 

resistance. RcsB is making other connections within the AR2 network in both stationary and 

exponential phases.  

 

6.3 Discussion 

6.3.1. Role of the PhoPQ TCS in the regulation of acid resistance 

The analysis of induction dynamics of a promoter can reveal subtle but important differences 

in regulation between different mutant backgrounds. The response regulator PhoP was 

implicated in the regulation of this promoter by assaying the level of activity of the safA-ydeO 

promoter in a ΔphoP mutant background. A ΔphoP mutant caused an increase in safA-ydeO 

promoter activity (Burton et al., 2010). As the SafA protein has already been shown to 

activate the PhoPQ TCS, it was suspected that activated PhoP was negatively regulating the 

safA-ydeO promoter. The results described above showed that a ΔsafA mutant stopped all 
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activation of PhoPQ in response to mild acid shock and relieved all repression of the safA-

ydeO promoter. These results do not confirm the direct interaction of PhoP with the safA-

ydeO promoter. However, work by Ashley Robinson which was published in Burton et al. in 

2010, revealed two putative PhoP binding sites at the safA-ydeO promoter. Single nucleotide 

mutations of conserved residues in these sites conferred similar levels of de-repression as a 

ΔphoP or safA deletion mutant, indicative of reduced binding of PhoP to these sites 

(Appendix 2) (Burton et al., 2010). This strongly suggests that PhoP does bind the promoter 

directly but in vitro assays such as DNase I footprint assays or EMSAs are required to 

conclusively prove direct binding. In the context of biological networks, this interaction 

would represent an indirect negative feedback loop. Negative feedback loops in biological 

systems enable a faster response to stimuli (Rosenfeld et al., 2002). The dynamics of 

induction observed at the safA-ydeO promoter is suggestive of an activation overshoot, which 

is then compensated by negative feedback loops. In the context of the safA-ydeO promoter 

this involves two negative feedback loops: direct autoregulation by YdeO, and indirectly by 

SafA via PhoP (Burton et al., 2010). Presumably, these interactions are temporally separated 

as the indirect feedback by SafA-PhoP requires additional steps. Unfortunately, the biological 

significance of these interactions is currently unknown. However, it should be noted that the 

discovery of such regulatory interactions can only be made using time course experiments. An 

accurate picture of a regulatory network requires understanding of the temporal component; 

this takes representations of biological networks beyond 2D pictures and herein lays the 

necessity for systems biology and mathematical models of biological networks.  
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6.3.2. RcsB, the AR2 network and acid resistance 

The response regulator RcsB was originally characterised as a regulator of capsule synthesis. 

However, recently RcsB has been implicated in acid resistance in E. coli and the AR2 

network (Castanie-Cornet et al., 2007). RcsB was found to form a heterodimer with GadE, 

this has been referred to as the RcsB-GadE heterodimer model (Castanie-Cornet et al., 2010; 

Krin et al., 2010a). These results showed that the activation of acid resistance by RpoS 

requires RcsB. They also show that this is because the binding of all GadE-dependent 

promoters requires RcsB. However, the results described in this study show that an ΔrcsB 

mutant has a more sensitive phenotype compared to a ΔgadE mutant in an EvgSc strain 

(MGA containing a constitutive on EvgS). The survival of an EvgSc mutant strain has been 

shown to be independent of GadE and high levels of survival have been observed in a ΔydeO 

ΔgadE double knock out. These results showed that RcsB is essential to all EvgSc conferred 

acid resistance.  

 

Comparison of AR2 promoter activity between ΔrcsB and MGA strains revealed that all 

induction by mild acid shock requires RcsB. This included promoters such as safA-ydeO and 

mgtA, which are not regulated by GadE. Comparison of both acid resistance and promoter 

activity between ΔrcsB and MGA strains in stationary phase confirmed that RcsB is essential 

for acid resistance and promoter activation. These results, while consistent with the original 

GadE-RcsB heterodimer model, show that it is not sufficient to explain all the actions of RcsB 

in acid resistance. Based on the results above it is likely that RcsB is interacting with the 

EvgAS TCS. There are three possible interactions that RcsB could be making with EvgAS. 

Each interaction is shown in figure 6.6. RcsB could be required either for EvgA binding to 

promoters, the phosphorylation of EvgA by EvgS or for the activation of EvgS.  
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Figure 6.6. Diagrammatic representation of possible interactions of RcsB with the EvgAS TCS. The safA 

(Purple), ydeO (Dark red) and gadE (Orange) genes are shown by thick arrows. Thin coloured arrows show 

interactions between proteins and promoters. Red arrows labelled 1, 2 and 3 represent the possible interactions 

between RcsB and the EvgAS TCS. 1 represents the interaction required for EvgS activation, 2 represents the 

interaction for activation of EvgA and 3 represents the interaction for EvgA binding to DNA. IM represents the 

inner membrane of the E. coli cell. 
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The data presented in this chapter can rule out the latter of these interactions as the ΔrcsB 

mutant phenotype was dominant over the EvgSc mutation. This results shows that RcsB 

cannot be required for EvgS activation. Considering that heterodimer formation is common 

for RcsB, which also makes such complexes with RcsA, TviA and BglJ to regulate colanic 

acid synthesis, antigen VI expression and sugar transport, respectively (Venkatesh et al., 

2010; Wehland and Bernhard, 2000; Winter et al., 2009). It is reasonable to suggest that RcsB 

is required for activation of promoters by EvgA. One hypothesis to explain this is that RcsB is 

forming a heterodimer with EvgA and that the formation of this heterodimer is essential for 

EvgA promoter binding.  

 

6.3.3. Summary 

1) Deletion of safA causes PhoPQ to be inactive under inducing conditions. The removal 

of PhoP or inactivation of PhoP caused increased activation of the SafA promoter. 

Mutation of conserved residues in a putative PhoP binding site caused a similar 

increase in activation, indicating that these sites may be bound by PhoP 

2) The survival of cells induced by entry into stationary phase, induction by mild acid 

shock during exponential phase or by an EvgSc mutation is completely dependent on 

RcsB. However, a ΔgadE mutant does not have the same level of sensitivity. 

3) Activation of all EvgA regulated promoters is completely dependent on RcsB. As a 

result the induced AR2 network is completely inactive in an ΔrcsB mutant strain.  

4) RcsB must be making additional interactions with the AR2 network. The AR2 profile 

in an RcsB background suggests that RcsB is interacting with the EvgAS system. 

5) The fact that the rcsB mutation is not suppressed by the EvgSc mutation shows that 

the role of RcsB is not likely to be activation of EvgS. 
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6) Stationary phase results are consistent with the RcsB-GadE heterodimer model. 

However, the ΔrcsB mutation also affected the gadX promoter. This suggests that 

RpoS activated promoters are also affected by an ΔrcsB knock out. 

7) RcsB has been shown to form heterodimers with other regulators.  On this basis, a 

reasonable hypothesis to explain the above results is that it can also form heterodimers 

with EvgA, and that these are necessary for EvgA-mediumted activation of AR2 

promoters. If this interaction occurred it would also be required for EvgA promoter 

binding. 
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7.1 Chapter discussions and future work 

The results presented in this thesis impact on many areas of prokaryotic gene regulation. Lab-

based evolution to select for mutations that conferred increased resistance to extreme acid 

challenge. High-throughput sequencing, which is a method still under development, was used 

to sequence the whole genome of 4 out of 5 evolved strains. The concept of combining these 

methods is still relatively new. The mutations characterised by whole genome re-sequencing 

included evgS mutations that were found in all 5 evolved strains. EvgS is the HK of the 

EvgAS TCS that has been shown to respond to mild acid shock and activate acid resistance 

genes. The evgS mutations were all missense mutations that were found to be located in the 

PAS domain of the EvgS protein. The evgS mutations were characterised in isolation; when 

tested, the evgS mutations conferred high levels of acid resistance and AR2 promoter activity. 

This suggested that the evgS mutations have altered the structure and function of the EvgS 

protein and had caused it to become constitutively-on. The AR2 network, which is activated 

by EvgS, was dissected by analysing promoter activity and acid resistance in an EvgSc strain 

in different mutant backgrounds. As a result of this analysis the EvgSc mutations were shown 

to confer redundancy in the AR2 network. In addition, these results reiterated the role of 

YdeP in acid resistance. Finally, the EvgSc mutations were used to investigate a novel role of 

RcsB in the regulation of acid resistance. This work is an ideal starting point for 

investigations into many areas of microbiology and genetics. In particular, this work impacts 

on lab-based evolution, the mechanisms of TCSs and the role of RcsB in AR2. This chapter 

will discuss the key findings of each results chapter relevant to these areas and outline future 

experiments. 
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7.2. Lab-based evolution 

The results in Chapter 3 show that the evolved strains have high levels of acid resistance and 

all five strains have a mutation in evgS. More specifically, three strains (Aa-Ea) had different 

evgS mutations and two strains (Ha and Ga) had evolved the same mutation separately. The 

evolution experiment, done by P.B. Russell, used extreme acid challenge to evolve an acid 

resistant phenotype. The cultures were non-clonal during the evolution experiment. Clonal 

isolates were only isolated at the end of the experiment. Cultures were stored at stages during 

the process. Consequently, the strains isolated at the end of the evolution experiment may not 

represent the population as a whole. Moreover, there may be strains carrying other evgS 

mutations or alternative acid resistance mutations altogether. Additional, experiments that 

could investigate this evolution experiment and the design of additional evolutionary 

experiments are discussed below. 

 

7.2.1. What is the frequency of the evgS mutations in the evolving population? 

As described above, this study concentrated on clonal isolates from a population. The 

population may contain cells with other mutations that contribute to acid resistance. High-

throughput sequencing has many applications. This study used high-throughput sequencing to 

re-sequence the whole genomes of four evolved strains and capture all of the genetic 

information. Another application of high-throughput sequencing is deep sequencing. Deep 

sequencing is the sequencing of a particular loci or set of loci using sensitive PCR based 

methods. The aim of such an approach is to quantify the proportions of different alleles in a 

mixed population. The data from this analysis would reveal the frequency of the evgS 

mutations in the final population. This analysis can also be applied to the intermediumte 
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populations, which would reveal the origin and progression of the evgS mutations through the 

populations during the course of the evolution experiment. 

 

7.2.2. What mutations would be selected if the evolution experiment was repeated 

without EvgAS? 

The evolution experiment selected mutations in evgS in five individually evolving cell lines. 

Subsequent analysis of other sequenced strains of E. coli revealed that the EAEC strain 042 

does not have an evgAS locus. Repeating the evolution experiment using E. coli 042 could 

reveal other interesting mutations that confer acid resistance in the absence of evgAS. 

Alternatively, the absence of an evgAS locus could reduce the evolvability of the strain 

preventing the development of acid resistance altogether. 

 

7.2.3. What is the relative fitness of the evolved strains and EvgSc strains compared 

to the MGA strain? 

In Chapter 3 the growth rate of the evolved strains and the MGA strain were analysed. The 

evolved strains were shown to grow slower in pH 7 M9supp medium. However, competition 

experiments are a more accurate assessment of the fitness of a strain. It would be particularly 

interesting to compete the evolved strains with the EvgSc strains. It is possible that the other 

mutations in the evolved strains could be compensating for the impact of the evgS mutation. 

Thus, explaining the presence of other mutations found in the evolved strains. 

 

7.3. EvgS constitutively active mutants 

The results in Chapter 4 confirmed that the EvgSc mutations found in the evolved strains are 

responsible for the acid resistance phenotype. In addition, results in Chapter 4 indicated that 
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the EvgSc mutations are causing the AR2 network to be active in conditions when it is 

normally inactive. The affect of acid induction on strains containing an EvgSc mutation was 

assayed using high temporal resolution promoter probe assay. The results indicated that three 

of the EvgSc mutants (G685A, N573L and S584F) were actually repressed by acid induction 

and one EvgSc mutant (S600I) was induced by acid induction. These results show that 

although the EvgSc mutations confer an acid resistant phenotype and activation of the AR2 

network, they are not affecting the EvgS protein in the same way. In addition, the promoter 

activity in the AR2 network varies between EvgSc mutants suggesting the some EvgSc 

mutations are on more than others. The mutations characterised by this study could provide 

insights into the function of the EvgS protein. In addition, the EvgSc mutations are found in 

the PAS domain of the protein. The functions of PAS domains vary and little is understood 

about the role of the PAS domain in EvgS. Experiments using these mutants are described 

below. 

 

7.3.1.  Is it possible to use SMALP to solubilise EvgS?  

The biggest obstacle to overcome when working with membrane proteins is their solubility. 

Until recently, the main methods used to study inner membrane bound proteins have required 

either detergent, or researchers have simply used the cytoplasmic component (Bock and 

Gross, 2002). Each method has its caveats. Detergents make the biophysical analysis of 

proteins difficult as they compromise many techniques, and HKs quite often require 

membrane binding to function properly. Recent advances in nanodisc technology have made 

the solubilising of whole membrane proteins possible without detergent. One such technology 

is being developed at the University of Birmingham called SMALP (styrene maleic acid lipid 

particle) (Knowles et al., 2009). SMALP can be used to provide a hydrophobic interaction 
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interface for transmembrane domains. The use of SMALP will enable the study of EvgS and 

EvgSc mutants by an array of biophysical techniques such as Isothemal calorimetry, surface 

Plasmon resonance, analytical ultracentifugation, phosphotransfer assays, and X-ray 

crystallography. The use of such techniques may answer some of the questions described 

below. 

 

7.3.2. What structural changes occur as a result of the EvgSc mutations? 

The use of x-ray crystallography and AUC could reveal the effects of the EvgSc mutations on 

structure. Solved structures would reveal the interactions and conformational changes that the 

protein goes through during activation. We would hypothesise that the EvgSc mutants are in 

an active confirmation as opposed to the wild type protein. The action of TCS often centres 

on a dimerisation or monomerisation event. AUC is an excellent technique for measuring 

dimerisation. AUC would also allow the comparison of monomer-dimer equilibriums 

between EvgSc mutants and the wild type. In addition to AUC, surface plasmon resonance 

has been used in the past to investigate the interactions between TCSs including EvgAS. 

 

7.3.3 What is the phosphotransfer rate of the EvgSc mutants in vitro? 

This study has used the promoter activity of the EvgA regulated genes in order to assay the 

activity of the EvgAS TCS. It is possible to assay the activity by monitoring phosphotransfer 

between purified EvgS and EvgA in vitro. These techniques require that these proteins are 

solubilised and that EvgS is tethered to the membrane. We hypothesise that the EvgSc 

mutants would transfer phosphate at a higher rate than that of the wild type. However, it is 

possible the EvgSc mutants require additional factors. Alternatively, the mutations could be 
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preventing EvgS from dephosphorylating EvgA. The only way to analyse these interactions 

in isolation is by using in vitro techniques. 

 

7.4. Interactions of RcsB in the AR2 network 

The results described in Chapter 6 show that the RR RcsB is forming novel interactions in the 

AR2 network. This work has shown that the activation of all EvgA regulated genes is 

completely dependent on RcsB. However, the molecular details of this interaction have not 

been identified. Future experiments regarding the role of RcsB in the AR2 network are 

described below. 

 

7.4.1. Does RcsB form a heterodimer with EvgA? 

The dependence of EvgA regulated promoters on RcsB suggests that RcsB is either required 

for the activation of EvgA or the binding of EvgA to promoters. RcsB has been shown to 

form interactions with other regulators. Considering this, we hypothesise that RcsB is 

forming a heterodimer with EvgA. To test this hypothesis, the purified EvgA and RcsB can 

be used in an EMSA with the ydeP or safA-ydeO promoters. This can be combined with a 

nested deletion of the ydeP promoter, point mutations and a DNaseI footprint to confirm the 

binding site. Using these techniques we should be able to determine the relationship between 

EvgA and RcsB. We also hypothesise that EvgA and RcsB form a heterodimer independently 

of DNA. In order to test this hypothesis EvgA could be co-purified with RcsB or used in a 

“protein pull down” experiment. Co-purification is often used as evidence of protein-protein 

interactions. It is also noted there are few occasions where regulators have been shown to 

form heterodimers and even fewer that form heterdimers with so many different regulators of 
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different processes. The molecular interactions that RcsB makes with other proteins would be 

a particularly interesting subject of research.  

 

7.5. General Discussion 

The investigations into the regulation of acid stress response in E. coli have uncovered a very 

complicated regulatory network, to which, this study has added. However, the process of 

sensing and responding to a stress is theoretically far simpler than the AR2 network. One of 

the main overriding questions, when investigating AR2 is; what is the reason for this 

complexity? One possible answer to this question is that the complexity of this network is 

there simply to provide robustness to the system, which in turn will increase the evolvability 

of the strain. This is a well established concept in evolutionary biology and several examples 

of redundancy have been shown in biological systems (Masel and Trotter, 2010; Raman and 

Wagner, 2011; Woods et al., 2011). A particularly striking example of robustness was 

published by Isalan et al. in 2008. This study rewired the some of the major transcription 

factors by using alternative promoters to control their expression. The major finding of this 

work was that the growth rates of strains containing new/rewired networks were indifferent 

from the wild type in optimum growth conditions. Moreover, a subset of strains containing 

rewired networks, were able to survive certain selection pressures better than the wild type 

(Isalan et al., 2008). Robustness would enable the network to incur alterations, such as 

mutations, gene duplications and horizontal transfer, without dramatically impacting on the 

fitness of the strain. This is similar to the evolutionary theory of survival of the flattest, which 

argues that biological systems, which are robust, can accumulate a larger proportion of 

neutral mutations (Wilke et al., 2001). This would allow the system greater freedom to move 

around the evolutionary space and increase the chance that the system will find a new fitness 
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peak. However, this concept does assume that the complexity of the system is not functional, 

and that the regulatory network is inefficient. 

 

An alternative explanation is that the interactions found within complex networks, such as 

AR2, are required by the organism in order to respond to stimuli appropriately. A notable 

example of this is combinatorial sensing. Combinatorial sensing is the temporal or spatial 

summation of signals from multiple sensors. Recently it has been suggested that TCSs in 

bacteria are using combinatorial sensing to respond accurately to a stimulus or stress (Clarke 

and Voigt, 2011). By cross-talking to each other TCSs, and the components they regulate, can 

increase the complexity of the response. There have been many examples of TCSs cross-

talking. These interactions could be enabling the cell to respond to a complex environment 

accurately and efficiently, as opposed to uneconomic features that enable robustness and 

evolvability. Recent advances in the understanding of signalling by PhoPQ have shown that 

although PhoPQ activates the transcription of mgtA in response to acid shock and low 

periplasmic Mg
2+

, the mgtA transcript is only processed in to protein in low Mg
2+

 conditions 

(Choi et al., 2009; Park et al., 2010). As a result a combination of signals is interpreted by the 

PhoPQ system at the post-transcriptional level and the MgtA protein is only made under the 

correct conditions. Furthermore, because of this post-transcriptional regulation, the cell can 

regulate MgtA production based on periplasmic and cytoplasmic conditions. 

 

In summary, the interactions identified by this study, and by preceeding studies, have shown 

that at a transcriptional level, the regulatory factors controlling acid stress response form a 

complex regulatory network. The biological significance of this network is not currently 
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appreciated. Similar levels of investigation of post-transcriptional regulation are required to 

understand the importance of these interactions, and to untangle these networks.
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APPENDIX 1 

 

Figure A1. Comparison of the Eguchi et al. strains using the acid resistance assay 

described in Chapter 2. The survival of the MGA strain was compared to the EvgS1 mutant, 

which is a constitutive-on EvgS mutant; the E. coli MG1655 strain used by Eguchi et al. 

(Eguchi MG1655) with pevgAScN573L and with the rpoS mutant strain used by Eguchi et al. 

with pevgAScN573L. Each data point represents 1 biological repeat. 
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APPENDIX 2 

 

Figure A2. Affect of point mutations in putative PhoP binding sites on safA-ydeO 

promoter activity. The safA-ydeO (known as B1500) promoter activity was measured using 

the same high-temporal resolution promoter probe assay as described in Chapter 2 (b). The 

promoter activity of three point mutants, shown in (a) was compared using the same assay. 

Values and error bars represent the average and standard deviation of three biological repeats 

respectively. (Adapted from Burton et al., 2010) 
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