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ABSTRACT 

Regulatory T cells (Treg) are critical for the maintenance of tolerance to self and 

control of inflammation. Defects in Treg have been reported for a number of 

autoimmune and inflammatory diseases. In this thesis I wished to determine whether 

there are quantitative and/ or qualitative defects of Treg in patients with idiopathic 

non infectious uveitis. 

Using stringent gating procedures, an increased frequency of 

CD4+CD25highCD127low Treg was observed in the peripheral blood of acute 

anterior uveitis (AAU) patients but not those with chronic disease. Treg from both 

acute and chronic anterior uveitis patients expressed defective suppressive capacity in 

vitro. 

I also observed an accumulation of memory Treg in the aqueous humor from AAU 

patients, expressing high levels of FoxP3 and CTLA-4. In vitro activated Treg up-

regulated their FoxP3 expression to levels as seen in the eye, suggesting that the 

aqueous humor Treg might be recently activated. Using an in vitro model for 

analysing Treg function, I observed that exposure to uveitis aqueous humor did not 

affect the suppressive ability of Treg. 

In summary, Treg with a potent regulatory phenotype accumulate in the aqueous 

humor of acute anterior uveitis patients, whereas the peripheral Treg population from 

both chronic and acute patients express a defective function. 
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1 GENERAL INTRODUCTION 

 
 

1.1 Inflammation 

The human body is under constant threat by environmental pathogens that could 

potentially cause harm. Most of the time, epidermal and mucosal barriers prevent the 

entry of these pathogens into the body. However in some instances some potential 

pathogens may gain entry into the system, following which it must be recognized as 

“foreign”, contained and then eliminated from the body. Inflammation is the body’s 

defence mechanism to tissue damage caused by injury, infection or irritation. Acute 

inflammation lasts for a short period where leukocytes accumulate at the site and 

remove the pathogen and repair the tissue. Chronic inflammation, on the other hand is 

a prolonged and  dysregulated response with active inflammation causing tissue 

destruction (reviewed by R. Medzhitov (Medzhitov, 2008). Chronic infection with 

bacteria, fungi, virus or parasites is one of the major causes of chronic inflammation. 

 Bacterial products and toxins such as endotoxin, or LPS of Gram-negative bacteria 

can act as exogenous mediators of inflammation (Martich et al., 1993). Persistent 

inflammation is also associated with many chronic human conditions and diseases 

such as autoimmune diseases, cancer, etc. The primary objective of inflammation is to 

localize and remove the cause of damage and repair the surrounding tissue. 

Specialized immune cells in the bloodstream carry out these necessary responses to 

invading pathogen. 

 

The pathogen and/or its secreted antigens are ingested by immature dendritic cells in 

the infected tissue. Dendritic cells function as phagocytic cells and transport the 
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antigens to the draining lymph node via the lymphatics. Similar to dendritic cells, 

macrophages and B cells can also act as Antigen presenting cells (APC). In the 

draining lymph node, these antigens are presented to the naive recirculating 

lymphocytes. Upon recognizing its specific antigen on an activated APC, the 

lymphocytes stop immigrating and start to proliferate and generate effector cells. The 

antigen specific effector cells then return to the circulation via the lymphatics and 

migrate to the infected site.  

 

The inflammatory response involves three major stages: (1) Dilation of capillaries to 

increase blood flow- small blood vessels in the damaged area dilate (vasodilation), 

increasing blood flow into the area. (2) Increased vascular permeability - the walls of 

the blood vessels become more permeable allowing plasma proteins to escape the 

blood stream. (3) Leukocyte transmigration through endothelium and accumulation at 

the site of injury- this is the main cellular event in inflammation and it takes place in 4 

steps.  

 

(i) Capture/ Tethering- This is the first contact of a leukocyte with an activated 

endothelium. Capture occurs after margination, which allows leukocytes to move out 

of the centre of blood vessel and interact with the vascular endothelium. P-selectin 

and E-selectin on the endothelial surface and L-selectin on the leukocytes are the 

major adhesion molecules that initiate the capture of leukocytes and their rolling 

along the endothelial surface (Ley and Tedder, 1995).  

 

(ii) Rolling- The reversible binding of leukocytes to the endothelium is mediated by 

the interaction of selectins with their glycosylated ligand P-selectin glycoprotein 
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ligand 1 (PSGL1) which is expressed on the leukocytes (Janeway et al (2005) 

Immunobiology: the immune system in health and disease. 6th ed). The selectin- ligand 

interaction cannot anchor the cells against the shear force of blood flow and hence 

they roll along the endothelium continuously making and breaking contact.  

 

(iii) Activation and firm adhesion- During inflammation, activated endothelial cells 

produce chemokines and other chemo attractants which mediate the interaction of 

integrins (LFA-1, Mac-1 etc) on the leukocytes to adhesion molecules like ICAM-1 

induced on the endothelium. Tight binding between these molecules arrests the rolling 

of leukocytes and cause adhesion of leukocytes to the endothelium (Ley et al., 2007). 

 

(iv) Transmigration- Transmigration through venular walls is the final step in the 

process of leukocyte emigration into inflamed tissues. This takes place under the 

influence of chemokines. The leukocyte integrins, LFA-1 and Mac-1 are required for 

the migration of leukocytes towards chemoattractants. Leukocytes penetrate the 

basement membrane with the help of a matrix metalloproteinase enzyme which is 

expressed at the cell surface. The leukocytes then migrate along a concentration 

gradient of chemokines, secreted by the cells at the site of inflammation (Janeway et 

al (2005) Immunobiology: the immune system in health and disease. 6th ed) 
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Fig: 1.1 Leukocyte migration to the target tissue 

 

Leukocytes are captured by the endothelium followed by their rolling, adhesion and 
transmigration towards a chemokine gradient. Selectins, integrins and adhesion 
molecules mediate this process. 
 

1.1.1   Inflammatory cytokine release 

Extravasation of leukocytes into the tissue is regulated by the background cytokine 

environment produced by the inflammatory response. Cytokines are intercellular 

signalling peptides, which are major determinants of the cellular infiltrate, the state of 

cellular activation, and the systemic responses to inflammation. Most of them are 

multifunctional and can elicit their effects locally or systemically in an  autocrine or  

paracrine manner (Feghali and Wright, 1997). 

 

Cytokines released in the initial immune response induce vasodilation and facilitate 

intermolecular binding. Once the leukocytes enter the tissue, they release additional 

pro or anti inflammatory cytokines which then mediate or regulate inflammation. The 

main inflammatory cytokines and their functions are detailed in Table: 1.1. 
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Cytokine Source Effect 

IL-1β 
T cells, B cells, 

macrophage, fibroblast 

T cell proliferation, activates vascular 

endothelium, IL-6 and TNF production by 

macrophages 

IFN-γ T cells, NK cells 

Increases antigen presentation and activates 

macrophage, promotes adhesion and leukocyte 

migration 

TNF-α 

Macrophages, 

lymphocytes, endothelial 

cells, fibroblasts 

Induces apoptotic cell death, chemoattractant 

for neutrophils, stimulates macrophage 

phagocytosis 

IL-6 
Macrophages, T cells, 

endothelial cells 

Activates B cells and plasma cells, T cell 

activation and proliferation, haematopoietic 

stem cell differentiation 

IL-2 T cells 
T and B cell proliferation and differentiation, 

augments neutrophil and macrophage function 

IL-4 
T cells, macrophages, 

mast cells 

T and B cell proliferation, differentiation of 

Th2 cells, B cell class switching to IgE, 

upregulate MHC class II expression 

IL-8 

Macrophages, 

endothelial cells, 

lymphocytes, 

neutrophils 

Neutrophil activation and chemotaxis  

IL-10 
T cells, B cells, 

macrophages 

Inhibits pro-inflammatory cytokines, 

downregulates MHC class II, induces 

regulatory cytokines,  

TGF-β 
Platelets, fibroblasts, 

monocytes 

Suppress B and T cell proliferation, inhibits 

NK activity, chemotactic for macrophages, 

induction and/or development of regulatory T 

cells 

 

Table: 1.1 Inflammatory cytokines and their functions 

 
The main cytokines produced by immune cells during inflammation along with their 
source and major functions detailed in this table (Feghali and Wright, 1997)   
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1.2 T lymphocytes 

T cells are one of the main cellular mediators of inflammation (and one of the main 

focuses of this thesis). Lymphoid progenitor cells arise in the bone marrow and 

migrate to the thymus. These cells lack expression of CD4 and CD8, and are termed 

double-negative (DN). Within the thymus they receive a (Notch) signal that instructs 

them to commit to T cell lineage. These cells give rise to a either αβ or γδ TCR 

expressing cells (Robey and Fowlkes, 1994). The αβ T cells develop through different 

stages in which both CD4 and CD8 are expressed (double positive thymocytes).  

 

Most double positive (DP) thymocytes express T cell receptors which interact poorly 

with the available self-antigen, complexed with MHC molecules on cortical epithelial 

cells, so that the intracellular signals that are required to sustain viability are not 

generated. These cells undergo rapid apoptosis (reviewed by Germain R.N (Germain, 

2002). Double positive cells that can bind with antigen-MHC complex with adequate 

affinity and produce only a weak signal undergo positive selection and go on to 

mature. Thymocytes also undergo negative selection where those cells capable of 

responding to self antigens and generate a strong signal undergo rapid apoptosis. 

About 2% of Thymocytes escape this dual screening and mature as single positive T 

cells (CD4+CD8- or CD4-CD8+) and are exported from thymus to form the 

peripheral T cell repertoire. It has been suggested that a TCR affinity/signal strength 

that is between those required for the positive and negative selection for conventional 

T cells give rise to natural regulatory T cells (nTreg) (Workman et al., 2009) 

 

Following activation by APC, naive CD4+ T cells differentiate into effector T cells. 

Different subsets of effector T cells have been identified over the years mainly based 
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on their cytokine production and their functional differentiation is mediated by 

lineage-specific transcription factors. The features of main T cell subsets are 

described below. 

 

1.2.1   T helper 1 (Th1) cells 

Th1 cells play an important role in the defence against intracellular pathogens 

including bacteria, parasites, yeasts and viruses and mediate delayed type 

hypersensitivity (DTH) responses. The hallmark cytokines of Th1 cells include IFN-γ 

and lymphotoxin, which can activate microbicidal activity as well as cytokine 

production in macrophages (Mosmann and Coffman, 1989). Th1 cells also produce 

TNF-α and IL-2. The principle TH1 cytokine, IFN-γ, could activate macrophage 

enhancing their microbicidal activity. They express transcription factor T bet which 

determine the lineage commitment of Th1 cells and control IFN-γ expression (Abbas 

et al., 1996; Szabo et al., 2000). During Th1 differentiation, the engagement of IFN-γ 

with its receptor activates STAT1 and T-bet. T-bet in turn, increases the production of 

IFN-γ which leads to the activation of  IL-12 receptor signalling subunit, IL-12Rβ2, 

through STAT4, is then essential for the maintenance of Th1 responses (Afkarian et 

al., 2002). 

 

1.2.2   T helper 2 (Th2) cells 

The main cytokines produced by Th2 cells are IL-4, IL-5 and IL-13. They can 

activate mast cells and eosinophils, and are involved in the defence against 

helminths and other extracellular parasites. These cells also mediate allergic and 

atopic manifestations (O'Garra and Arai, 2000). One of the signature cytokines of 
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Th2, IL-4 induces the production of IgE by B cells and IL-5 activates eosinophills. 

Transcription factor GATA-3 has been shown to be required for the Th2 cytokine 

gene expression in CD4+ T cells (Zheng and Flavell, 1997). For Th2 cells, signalling 

through  IL-4 receptor activates STAT6, which together with GATA-3 increases IL-4 

production and Th2 commitment  (Kaplan et al., 1996). 

 

1.2.3   T helper 17 (Th17) cells 

Th17 cells produce cytokines such as IL-17A, IL-17F, and IL-22. TGF-β along with 

IL-6 could mediate the differentiation of Th17 cells from naïve T cells (Veldhoen et 

al., 2006). Analogous to STAT4 and STAT1 in Th1 and STAT6 in Th2 

differentiation, Th17 differentiation is mediated by STAT3 (Harris et al., 2007). The 

orphan nuclear receptor RORγt act as the key transcription factor that specifies Th17 

lineage (Ivanov et al., 2006).  Th17 cells also express another related nuclear receptor, 

RORα, which could also dictate lineage specificity in Th17 cells (Yang et al., 2008b). 

IL-17 has been shown to induce the production of pro-inflammatory cytokines such as 

IL-6, TNF-α and IL-8 and has been implicated in various autoimmune diseases. 

 

1.2.4   T follicular helper (Tfh) cells 

Tfh cells are a distinct subset of CD4+ helper T cells that produce IL-21 and regulate 

the development of antigen-specific B cell immunity. They express CXCR5 and 

localize to B cell follicle where they support immunoglobulin production by B cells 

(Breitfeld et al., 2000).  The transcriptional factor Bcl-6 has been associated with Tfh 

cell lineage commitment and the expression of Bcl-6 is controlled by IL-6 and IL-21 

(Nurieva et al., 2009). 
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1.2.5   T regulatory (Treg) cells 

Treg cells are a distinct subset of T cells that can either be produced from thymus as 

mature differentiated cells or can be induced in the periphery following activation of 

naïve T cells by APC. The main cytokines involved in the peripheral induction of 

Treg include TGF-β and IL-10. The phenotypic characteristics and functions of 

different Treg subsets are described in the next section.  

 

The development and differentiation of different T cells subsets are summarised in 

Fig: 1.2. 

 

APC

Naive 

T cell
Primed

T cell

Tbet

GATA3

RORγT

FoxP3

Bcl-6

Th1

Th2

Th17

Treg

Tfh

IFN

TNF

IL-2

IL-4

IL-5

IL-13

IL-17

IL-22

TGF-β

IL-10

IL-21

+
TGF-β, IL-6

 

Fig: 1.2   T cell differentiation  
 
Naïve T cells primed by APC are differentiated into Th1, Th2, TH17, Treg and Tfh 
subsets in the presence of particular cytokines. The lineage commitment for each 
subset is also determined by the transcription factor specifically expressed by them.  
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1.3 Regulatory T cells 

Adaptive immunity requires a tightly controlled equilibrium between maintaining 

peripheral immune self-tolerance while at the same time preserving the potential to 

generate protective life-long immunity to a variety of pathogens. In order to control 

these two drastically different immunological outcomes, several mechanisms exist, 

such as apoptosis of immature self-reactive lymphocytes upon exposure to self-

antigen or activation-induced cell death of mature effector cells. Also there is 

evidence that a subpopulation of T cells, called regulatory T cells (Treg), actively 

suppresses pathological and physiological immune responses, thereby contributing to 

the maintenance of immunological self-tolerance and immune homeostasis (Miyara 

and Sakaguchi, 2007) 

 

Naturally occurring regulatory T cells were first reported by Sakaguchi et al in 1995  

as  a small group of T cells with a particular cell surface phenotype (CD4+ with co 

expression of IL-2 Receptor alpha chain) that help to maintain self tolerance 

(Sakaguchi et al., 1995). When T cells depleted of CD25+ cells were adoptively 

transferred, the recipient animal developed multi-organ autoimmunity. Reconstitution 

of CD4+CD25+ cells within a limited period after transfer of CD4+CD25- cells 

prevented these autoimmune developments in a dose-dependent fashion. These 

regulatory CD25+ cells represent about 1-5% of total CD4+ T cells in humans and 

mice (Sakaguchi et al., 1995). 
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1.3.1   Development of regulatory T cells 

Developmentally regulatory T cells can be classified into two groups: natural and 

induced Treg. Natural regulatory T cells (nTreg) constitutively express high levels of 

IL-2 receptor α chain (CD25). They are produced during the normal process of T cell 

maturation in the thymus, resulting in an endogenous population of antigen specific 

Treg cells which survive as a long-lived population in the periphery poised to prevent 

pathological autoimmune reactions. They are anergic in cultures and this anergy can 

be broken by exogenous IL-2. Adaptive/induced Treg develop as a consequence of 

activation of mature T cells under particular conditions of sub-optimal antigen 

exposure and/or co-stimulation. They include the IL10 secreting Tr1 cells, TGF-β 

secreting TH3 cells and FoxP3+ induced Treg. 

 

1.3.1.1    Natural regulatory T cells (nTreg) 

Similar to all other T cells, nTreg originate from progenitor cells in bone marrow and 

undergo lineage commitment in the thymus. nTreg represent about 5-10% of 

peripheral CD4+ T cell population (Sakaguchi, 2004). Thymectomy in mice on day 3 

after birth, but not adult thymectomy, resulted in autoimmunity (Sakaguchi et al., 

1995). This suggests that Treg cells are produced relatively late during neonatal 

development. However, subsequent examination of mice thymectomized at day 3 has 

shown reduced but considerable numbers of CD25+CD4+ thymocytes and peripheral 

T cells that were fully functional (Dujardin et al., 2004). Expression of transcription 

factor FoxP3 has been shown to be crucial for the development of nTreg. The role of 

FoxP3 in the development and function of Treg is discussed later in this chapter. Most 

of the Foxp3+ thymocytes are found in the thymic medulla, indicating that the 
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differentiation of developing T cells to express Foxp3 occurs in the thymic medulla 

(Ohkura and Sakaguchi, 2010). 

 

Conventional T cells (Tconv) undergo selection in the thymus based on the strength of 

signal they receive from thymic APC which present self-peptides. High 

affinity/avidity interactions between the TCR and MHC: peptide complexes cause 

“strong” signals and results in negative selection. No or very low signal causes 

thymocyte death by neglect. Positive selection of thymocytes that will survive and 

populate the periphery occurs when intermediate to weak signals are delivered via 

engagement of TCR (Workman et al., 2009). In transgenic mice expressing TCR from 

thymic-derived Treg in a RAG1-/- background, almost all the CD4+T (both FoxP3+ 

and FoxP3-) cells were deleted indicating that this TCR was specific for an 

endogenous self-peptide in the thymus (DiPaolo and Shevach, 2009). However, it has 

been suggested that nTreg are positively selected on a TCR affinity/signal strength 

that is between those required for the positive and negative selection for conventional 

T cells (Kronenberg and Rudensky, 2005).  

 

Many co-stimulatory signals have been implicated in the development and lineage 

commitment of nTreg including: CD28 ligation by CD80/CD86 (Salomon et al., 

2000; Tai et al., 2005), IL-2R (Burchill et al., 2007), TGF-β and thymic stromal-

derived lymphopoietin receptor (TSLPR) (Watanabe et al., 2005). The role of CD28–

B7 interactions in Treg development was suggested by the observation of decreased 

numbers of peripheral CD25+ Treg cells in CD28- or B7.1/B7.2-deficient non-obese 

diabetic (NOD) mice, with spontaneous exacerbation of diabetes (Salomon et al., 

2000). Studies by Tai et al showed that a lack of CD28 led to reduced production of 
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IL-2 by Foxp3− thymocytes and peripheral T cells which was insufficient to induce 

upregulation of CD25 and to support Treg development. They also demonstrated that 

co-stimulatory signals transduced into developing thymocytes through the Lck 

binding motif in the CD28 cytosolic tail initiated Foxp3 expression and initiated the 

Treg cell differentiation program (Tai et al., 2005). 

 

As mentioned earlier, nTreg constitutively express IL-2R chain CD25, but are unable 

to secrete IL-2 themselves. The significant role of IL-2 in Treg development is 

evident from the work of Malek et al where they showed that IL-2Rβ deficient mice 

lacked functional Treg and developed lethal autoimmunity. This was prevented by 

thymic transgenic expression of wild type IL-2Rβ or adoptive transfer of 

CD4+CD25+ regulatory T cells (Malek et al., 2002). IL-2 was also shown to be 

important for the peripheral maintenance and homeostasis of Treg cells. Later it was 

shown by Burchill et al that IL-2Rβ dependent activation of STAT-5 which binds 

specifically to the FoxP3 promoter was required for the development of natural 

regulatory T cells (Burchill et al., 2007). 

 

In addition to IL-2, signalling via TGF-β also plays a critical role in the development 

and maintenance of Treg. Conditional deletion of transforming growth factor-β 

receptor 1 (TβR1) in T cells greatly reduced the numbers of CD4+CD25+FoxP3+ 

thymocytes in young mice between days 3-5. But this reduction was temporary as the 

numbers of thymic FoxP3+ Treg recovered within a few days due to the increased 

production of IL-2. However genetic ablation of IL-2 in TβR1 mutant mice  resulted 

in complete absence of FoxP3+ Treg from thymus and periphery suggesting that 

TGF-β is a key upstream mediator of FoxP3 expression and Treg development(Liu et 
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al., 2008b). Also TGF-β signalling protected thymocytes from negative selection and 

inhibited nTreg cell apoptosis (Ouyang et al., 2010). 

 

A group of epithelial cells expressed in the thymic medulla called the Hassall’s 

corpuscles were suggested to play a role in the differentiation and development of 

human nTreg. Thymic stromal lymphopoietin (TSLP) expressed by human Hassal’s 

corpuscles activates a subpopulation of dendritic cells in the thymic medulla to 

express CD80 and CD86. It has been suggested that ligation of MHC II and CD80/86 

by CD4+ thymocytes induces differentiation of CD4+ thymocytes into Foxp3+ nTreg 

(Watanabe et al., 2005). 

 

1.3.1.2    Induced/adaptive Treg (iTreg) 

The peripheral pool of Treg cells not only include those differentiated in the thymus 

but also include Treg cells generated extra-thymically through the ‘conversion’ of 

naïve T cells, also known as induced Treg (iTreg).  

 

Two main subsets of iTreg  have been described, based upon the cytokines they 

produce and that cause their induction: type 1 regulatory T cells (Tr1), which are 

induced by IL-10 (Vieira et al., 2004), and T helper 3 (Th3) cells, which are induced 

by TGF-β (Weiner, 2001). Both subsets exert their suppressive activity through 

secretion of the same cytokines that are responsible for their induction, IL-10 and/or 

TGF-β, respectively. While TGF-β and IL-10 are the primary cytokines involved in 

iTreg formation, it has also been demonstrated that IL-4 and IL-13 can also induce the 

development of Foxp3+ Treg from Foxp3- naïve T cells independently of TGF-β and 

IL-10 (Skapenko et al., 2005). IL-4-induced CD25+ Treg, phenotypically and 
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functionally resemble naturally occurring Treg in that they are anergic to mitogenic 

stimulation, inhibit the proliferation of autologous responder T cells, express high 

levels of the FoxP3 and the surface receptors glucocorticoid-induced TNFR family-

related protein (GITR) and CTLA-4, and inhibit effector T cells in a contact-

dependent, but cytokine-independent, manner (Skapenko et al., 2005). The main 

features of the subsets of iTreg cells are described below. 

 

1.3.1.2.1    Type 1 regulatory cells (Tr1 cells) 

Activating both human and murine CD4+T cells in the presence of interleukin (IL)-10 

has been shown to produce CD4+ T-cell clones with low proliferative capacity, 

producing high levels of IL-10, low levels of IL-2 and no IL-4. These antigen-specific 

T-cell clones, termed Tr1 cells could suppress the proliferation of CD4+T cells in 

response to antigen, and prevent colitis induced in SCID mice by pathogenic 

CD4+CD45RBhigh splenic T cells (Groux et al., 1997). Colitis could be induced in 

C.B-17 SCID mice by transfer of CD45RBhiCD4+ T cells from normal BALBc mice 

even at very low numbers. However the transfer of CD45RBlowCD4+  population  

did  not  cause  disease and more importantly when  injected  together  with  the  

CD45RBhi  population, prevented  disease  induction (Powrie et al., 1993). Systemic 

administration of rIL-10 also prevented the development of colitis in this model 

(Powrie et al., 1994). Groux et al later showed that transfer of OVA-specific Tr1 cells 

into SCID mice prevented IBD induced by theCD45RBhi splenic T cells. Not 

surprisingly, the Tr1 cells had to be activated in vivo to be effective by feeding the 

mice with OVA (Groux et al., 1997). 
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Following TCR mediated activation, Tr1 cells produce high levels of IL-10, TGF-β 

and IL-5, low amounts of IL-2 and IFN-γ and no IL-4 (Bacchetta et al., 2002). The 

autocrine production of IL-10 accounts for their low proliferative capacity, as the 

addition of anti 1L-10 monoclonal antibody partially restores this response (Bacchetta 

et al., 1994). However exogenous IL-15 and to a lesser extend IL-2 induce and 

support the  proliferation of Tr1 cells even in the absence of TCR stimulation 

(Bacchetta et al., 2002). Human Tr1 cells in the resting phase express a vast repertoire 

of chemokine receptors including Th1 associated CXCR3 and CCR5 and Th2 

associated CCR3, CCR4 and CCR8 (Sebastiani et al., 2001). FoxP3, which is 

constitutively expressed by natural Treg cells, is not expressed by Tr1 cells. But upon 

activation, it can be activated to levels as seen in activated CD4+CD25- T cells. 

Despite the absence of FoxP3 expression, Tr1 cells suppress the in vitro proliferation 

of conventional T cells with similar efficiency to that of natural Treg (Vieira et al., 

2004).  

 

Tr1 cells regulate immune responses through secretion of the immunosuppressive 

cytokines IL-10 and TGF-β, and they suppress both naïve and memory T cell 

responses in vivo and in vitro (Bacchetta et al., 1994; Bacchetta et al., 2002). Antigen 

specific Tr1 cells require TCR mediated activation to exert their suppressive function. 

However, once activated they can mediate bystander suppressive activity against other 

antigens and this bystander suppression is likely to be mediated by local secretion of 

IL-10 and TGF-β (Groux, 2003) which act on both APC and T cells. IL-10 

downregulates the expression of co-stimulatory molecules and pro-inflammatory 

cytokine production by APC and inhibits TNF-α and IL-2 production by T cells. TGF-

β also plays a role in downregulating the function of APC and T cells.  
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1.3.1.2.2    Th3 cells 

Th3 cells were first identified by Chen et al as a group of T cell clones which secreted 

TGF-β and IL-10 in culture after following a protocol of feeding SJL mice with large 

doses of myelin basic protein (MBP). Cytokine secretion was dependent on antigen 

specific stimulation in vitro with the fed antigen and the cells preferentially secreted 

TGF-β as well as other Th2 cytokines and suppressed EAE induced by either MBP or 

proteolipid protein (PLP) (Chen et al., 1994). Zheng et al later reported that TGF-β 

could induce activated CD4+CD25- T cells to become Th3 suppressor cells (Zheng et 

al., 2002). Although the precursors of these TGF-β producing CD4+ cells were CD25 

negative, they upregulated CD25 expression following stimulation with TGF-β. 

Moreover, these cells displayed suppressive characteristics, preventing IgG 

production in cultures conatining fresh CD4+ cells and B cells in a TGF-β dependant 

manner (Zheng et al., 2002). 

 

In humans, it has been shown that activated self reactive T cells have a Th3/Tr1 like 

cytokine profile (Kitani et al., 2000). TGF-β secreting Th3 cells have been observed 

in multiple sclerosis patients following oral administration of myelin proteins 

(Fukaura et al., 1996). Andersson et al reported that TGF-β mediated bystander 

immune suppression could be associated with remission of chronic idiopathic 

thrombocytopenic purpura (Andersson et al., 2000).   

 

1.3.1.2.3    FoxP3+ induced Treg 

The peripheral pool of regulatory T cells comprises of FoxP3- Tr1 and Th3 cells as 

well as FoxP3+ induced Treg. It has become evident in recent years that FoxP3+ Treg 

could be generated outside the thymus under a variety of conditions. Peripheral 
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conversion of naïve CD4+ T cells into FoxP3+ T cells was identified when polyclonal 

CD4+CD25- naïve T cells adoptively transferred to lymphopenic mice gave rise to 

CD25+FoxP3+ T cells with regulatory function (Curotto de Lafaille et al., 2004). The 

production and function of these iTreg was IL-2 dependent (Furtado et al., 2002; 

Curotto de Lafaille et al., 2004). Chen et al in 2003 reported that addition of TGF-β to 

TCR stimulated naïve CD4+ T cells induced transcription of FoxP3, converting them 

into anergic regulatory T cells which could suppress CD4+ T cells activation and 

Th1/Th2 cytokine production in vitro (Chen et al., 2003). These FoxP3+ iTreg also 

suppressed immune responses in vivo in an experimental asthma model (Chen et al., 

2003). In TGF-β mediated in vitro induction of iTreg, IL-6 hampered the 

differentiation of naïve T cells to FoxP3+ T cells (Bettelli et al., 2006). Interestingly, 

TGF-β stimulation in the presence of IL-6 facilitates Th17 differentiation in mice 

(Bettelli et al., 2006). 

 

IL-2 also plays an important role in the generation and/or homeostasis of iTreg cells. 

Studies using antibody neutralization and experiments with IL-2-deficient mice have 

revealed that IL-2 is required for TGF-β to induce naive CD4+ T cells to become 

CD25+FoxP3+, and develop into regulatory T cells (Zheng et al., 2007a). Another 

important factor required for the development of iTreg cells is CTLA-4 costimulation. 

Zheng et al in 2007 reported that TGF-β could not induce naïve CD4+ T cells from 

CTLA-4(-/-) mice to express normal levels of FoxP3 or develop suppressor activity 

(Zheng et al., 2006). It was shown using time course studies that CTLA-4 ligation of 

CD80 shortly after T cell activation was required for TGF-β to induce naïve 

CD4+CD25- cells to express FoxP3 and develop suppressor activity (Zheng et al., 
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2006). In humans, activated CD4+CD25- T cells expressed FoxP3 and acquired 

regulatory functions (Walker et al., 2003b). 

   

 

 

 

 

 

 

 

 

 

 

 

Fig: 1.3 Regulatory T cell development 

 
In the thymus, immature thymocyte that express high avidity TCR against self 
peptides/MHC class II presented by thymic epithelium differentiates into nTreg cells. 
Cells that express low avidity TCRs are positively selected as FoxP3- conventional T-
helper (Th) cells. Thymus derived Treg cells enter peripheral circulation and express a 
distinct nTreg TCR repertoire. Th cells with a naïve TCR repertoire differentiate in 
the periphery into T-helper cell subsets such as Th1, Th2 and Th17. Extrathymically 
generated Treg cells, eg: FoxP3- Tr1 and Th3 cells as well as FoxP3+ iTreg cells can 
be generated under various tolerogenic and/or inflammatory conditions. 

 

1.3.2   Phenotypic characteristics of regulatory T cells 

Over the years various surface and intracellular markers have been reported to be 

associated with Treg. Regulatory T cells come in many forms, including those that 

express the CD4 or CD8 membrane glycoprotein. Later research suggests that Treg 

are defined by expression of the forkhead family transcription factor FoxP3. The large 

Immature 

thymocyte

FoxP3+

nTreg

FoxP3-

CD4+

(nTreg TCR 

repertoire)

(naive TCR 

repertoire)

FoxP3+

nTreg

(nTreg TCR 

repertoire)

Naive Th

cell

(naive TCR 

repertoire) Effector T cell

(Th1, Th2, Th17, Tfh etc)

FoxP3+ iTreg

FoxP3- iTreg

(Tr1, Th3)

Thymus (CD4+) Periphery



20 
 

majority of FoxP3-expressing Treg are found within the major histocompatibility 

complex (MHC) class II restricted CD4+ helper T cell population and express high 

levels of the interleukin-2 receptor alpha chain (CD25). This population constitutes to 

5-10% of total CD4+ T cells in humans. 

 

CD25 was first identified as a Treg marker when CD25 depleted CD4+ T cell 

suspensions prepared from BALB/c nu/+ mice lymph nodes and spleens inoculated 

into BALB/c athymic nude (nu/nu) mice led to spontaneous development of 

autoimmune diseases  with some mice also developing graft-vs.-host-like wasting 

disease. Reconstitution of CD4+CD25+ cells within a limited period after transfer of 

CD4+CD25- cells prevented these autoimmune developments in a dose-dependent 

fashion (Sakaguchi et al., 1995). However, human CD4+ T cells exhibit a continuous 

and primarily low expression of CD25 in which 2-4% express high levels of CD25, 

while up to 30% express low levels of CD25. Although the entire population of 

CD4+CD25+ T cells expressing both low and high CD25 levels exhibit regulatory 

function in the mouse, only the CD4+CD25high population exhibit a similarly strong 

regulatory function in humans (Baecher-Allan et al., 2001).   

 

It was later observed that nTreg expressed very low levels of IL-7 receptor alpha 

(CD127) whereas other T cells expressed higher levels of this marker (Banham, 

2006). Liu et al combined gene expression microarray, flow cytometry, and functional 

assays in their study and observed that IL-7Rα (CD127) was down-regulated on all 

human T cells after activation. In contrast with the reported re-expression of CD127 

on the majority of effector and memory T cells, FoxP3+ T cells remained CD127low. 

They also demonstrated that FoxP3 interacted with the CD127 promoter and that 
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CD127 biomarker could be used to selectively enrich human Treg cells for in vitro 

functional studies (Liu et al., 2006). 

 

1.3.2.1    FoxP3 (Forkhead/winged helix transcription factor) 

FoxP3 (47 kDa) is a member of the forkhead/winged helix family of transcriptional 

regulators. Members of the Fox family are both transcriptional activators and 

transcriptional repressors. The forkhead (FKH) domain at the C terminus is critical for 

nuclear localisation and DNA binding. FoxP3 has also got an N terminus 

transcriptional repressor domain, followed by a C2H2 zinc finger domain and a 

leucine zipper domain both of which may mediate DNA binding and dimerization (Li 

et al., 2006a). 
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Fig: 1.4  Structure of FoxP3 

 
Schematic representation of FoxP3 showing the locations of the various domains 
within the molecule 
. 

Mutations in FoxP3 gene cause both  the human X-linked fatal autoimmune disease, 

‘immune dysregulation polyendocrinopathy, enteropathy X-linked syndrome’ (IPEX) 

(Bacchetta et al., 2006; Bennett et al., 2001) and an analogous X-linked pathology in 

scurfy(sf) mutant mice (Brunkow et al., 2001). Both human IPEX and the sf mouse 

were characterised by defective Treg function, due to FoxP3 malfunction. The striking 

similarities between FoxP3 mutations and depletion of CD4+CD25+ Treg led several 

groups to investigate the relationship of this gene to Treg development and function.  
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Using RT-PCR, Hori et al showed that FoxP3 was predominantly expressed in 

CD4+CD25+ Treg cells and that transduction of FoxP3 could convert naive T cells to 

a regulatory T cell phenotype functionally similar to nTreg (Hori et al., 2003). In 

humans, FoxP3 is also highly expressed in CD4+CD25high T cells with suppressor 

function (Ziegler, 2006). However it is also expressed transiently by activated 

conventional T cells and confer regulatory capacity on them transiently (Pillai et al., 

2007; Wang et al., 2007). Similar to as seen in mice, FoxP3 gene transfer confers 

suppressor function upon naïve human CD4+ T cells (Yagi et al., 2004).  

 

Using genome wide analysis and chromatin immunoprecipitation, Zheng et al 

identified FoxP3 binding regions of ~700 genes and observed that these genes were 

involved in TCR signalling, cell communication and transcriptional regulation (Zheng 

et al., 2007b). FoxP3 mediates distinct transcriptional programmes in thymus and in 

periphery, acting as both transcriptional activator and repressor. Wu et al proposed 

that FoxP3 controlled Treg gene expression by interacting with the transcription factor 

NFAT1 (Nuclear factor of activated T cells) resulting in antagonism or synergism of 

NFAT mediated transcription, depending on the promoter (Wu et al., 2006). FoxP3 

was also shown to regulate transcription through direct chromatin remodelling (Chen 

et al., 2006). In this study Chen et al showed that FoxP3 induced histone 

deacetylation at the IL-2 and IFN-γ loci in Tcells, inhibiting chromatin remodelling 

and opposing gene transcription. Conversely, FoxP3 increased histone acetylation at 

the GITR, CD25 and CTLA-4 loci (Chen et al., 2006). In addition to transcriptional 

regulation of protein coding regions, FoxP3 regulates the expression of non-coding 

RNA as well. FoxP3 binds to and upregulates regulatory MiR-155 microRNA, which 

can alter gene expression (Zheng et al., 2007b). In humans, TCR activation has been 
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shown to lead to the binding of NFAT and Activator protein 1 (AP1) to the FoxP3 

promoter (Mantel et al., 2006). A FoxP3 enhancer containing CpG island motif has 

been identified and transcription factors Smad3 and NFAT were shown to be required 

for the activity of this enhancer and essential for histone deacetylation in the enhancer 

region to induce FoxP3 expression (Tone et al., 2008). Tone et al proposed that 

during thymic Treg development, TCR signalling through self antigen activates 

NFAT and Smad3 may be induced by signalling through TGF-β receptor in some of 

these cells to induce FoxP3, indicating a role TGF-β in the development of nTreg 

(Tone et al., 2008). 

 

Recently several groups have observed that epigenetic mechanisms play a crucial role 

in controlling the expression of FoxP3 locus. The FoxP3 promoter, which is located 6 

kb upstream of the translational start site can be activated following TCR stimulation 

through binding of NFAT and AP1 (Mantel et al., 2006). An evolutionarily conserved 

CpG domain termed Treg cell specific demethylated region (TSDR) has been 

identified in both humans and mice which is fully demethylated in Treg cells and 

methylated in Tconv cells (Baron et al., 2007; Floess et al., 2007). Importantly, 

activated Tconv cells and TGF-β treated cells that expressed FoxP3, displayed no 

FoxP3 demethylation, whereas ex vivo expanded Treg, remained demethylated even 

after extensive in vitro stimulation and expansion (Baron et al., 2007; Floess et al., 

2007). Furthermore, the TSDR in CD4+CD25+ Treg showed stronger association 

with acetylated histones compared to CD4+CD25- conventional T cells, indicating 

that FoxP3 promoter is more accessible in Treg cells (Baron et al., 2007; Floess et al., 

2007). 
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The other important markers for Treg which are required for their suppressive 

function include CTLA-4, CD39 and LAG-1 which will be discussed later in the 

chapter. In addition to the markers mentioned above, other surface markers reported 

to be associated with Treg include GITR (glucocorticoid induced TNFR related 

protein) (Shimizu et al., 2002), CD62L (Lange et al., 2011), CD103 (Allakhverdi et 

al., 2006) etc. However, all these molecules are also expressed by naïve CD4+CD25- 

T cells upon activation, thereby hampering the discrimination between regulatory and 

activated conventional T cells. 

 

1.3.3   Regulatory T cells and immune suppression 

Treg have been shown to suppress the proliferation and cytokine production by a wide 

variety of immune cells. Treg require activation through their TCR to exert 

suppression, but once activated they can inhibit T cells irrespective of their antigen 

specificity. Several mechanisms have been proposed for Treg mediated suppression 

which includes (i) cell contact mediated mechanism (ii) cytokine mediated 

mechanism and (iii) cytotoxicity. 

 

1.3.3.1    Cell contact mediated mechanism 

Cell contact dependent mechanisms of suppression are best illustrated by the finding 

that Treg suppression was abolished when the Treg and responder cells were 

separated by a semi permeable membrane (Takahashi et al., 1998).  Several accessory 

molecules expressed on Treg including membrane bound TGF-β, CTLA-4, LAG-3 

etc. and co-stimulatory molecules like CD80 and CD86 on APC contribute to this 

mechanism. Stimulated Treg express high and persistent levels of TGF-β on their cell 
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surface. Membrane bound TGF-β has been shown to mediate the cell contact 

dependant suppression mechanism of Treg (Fig:1.6) and this suppression was 

abolished by anti TGF-β antibody (Nakamura et al., 2001).  

 

1.3.3.1.1    Role of CTLA-4 

CTLA-4 (CD152) is a CD28 homologue which is constitutively expressed by 

regulatory T cells (Takahashi et al., 2000; Sansom and Walker, 2006) and play a 

crucial role in Treg mediated suppression. CTLA-4 is not generally expressed by 

resting conventional T cells but is induced upon T cell stimulation and the cell surface 

levels of CTLA-4 remain limited due to the rapid endocytosis. The CTLA-4 gene 

consists of 4 exons and is located on chromosome 2 in humans and on chromosome 1 

in mice. Exon 1 contains the leader peptide sequence and exon 2 the ligand binding 

site, both of which are extracellular. Exon 3 encodes the transmembrane region and 

exon 4, the cytoplasmic tail (Valk et al., 2008).  

 

Leader

Peptide

Ligand binding

domain

Trans-membrane

domain

Cytoplasmic

domain

Exon 1 Exon 2 Exon 3 Exon 4
 

 

Fig: 1.5 Structure of CTLA-4 

 
Schematic representation of CTLA-4 structure representing each exon and their 
cellular locations. 
 

CTLA-4 transfection into resting human T cells made the T cells suppressive in 

function, even in the absence of FoxP3 expression, whereas transfection of FoxP3 

alone did not confer suppressive function, indicating that the acquisition of 
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suppressive function by activated conventional T cells requires the expression of 

CTLA-4 (Zheng et al., 2008).  

 

There are various mechanisms by which CTLA-4 exerts its role in Treg mediated 

suppression. CTLA-4 binds to CD80 and CD86 on APC and down modulates the 

expression of these B7 molecules (Oderup et al., 2006), hampering the activation and 

antigen presentation function of APC (Misra et al., 2004). This may also transduce a 

co-stimulatory signal to Treg to exert suppression (Fig: 1.6A). CTLA-4 on Treg could 

also bind directly to B7 molecules on conventional T cells and exert suppression 

(Paust et al., 2004) (Fig:1.6C). Ligation of CTLA-4 on Treg with CD80 and/or CD86 

on DCs could also induce the production of the enzyme indolamine 2, 3 dioxygenase 

(IDO) in DCs (Fig: 1.6A). IDO catalyzes the conversion of tryptophan to kynurenine 

and other metabolites which has immunosuppressive effect on the local DC 

environment (Fallarino et al., 2003). It has also been shown that engagement of 

CTLA-4 induces the production of immunosuppressive cytokine, TGF-β by T cells 

(Chen et al., 1998). CTLA-4 also up regulates the expression of Lymphocyte function 

associated antigen 1 (LFA-1) thereby augmenting the physical interaction between 

Treg and APCs (Schneider et al., 2005). It was also shown in vitro cultures, that Treg 

preferentially aggregate around DCs and actively inhibit their maturation in a CTLA-4 

and LFA-1 dependant manner (Onishi et al., 2008).  

 

Using both human and mouse Tcells, Qureshi et al recently showed that following 

TCR engagement, CTLA-4 can capture its ligands (CD80 and CD86) from APCs by a 

process called trans-endocytosis. These costimulatory ligands are then degraded 
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inside CTLA-4–expressing cells, resulting in impaired costimulation via CD28 

(Qureshi et al., 2011).  

 

1.3.3.1.2    Role of CD39 and CD73 

In the immune system, extracellular ATP acts as an indicator of tissue destruction. 

CD39 is the cell surface-located prototypic member of the ectonucleoside 

tripohosphate diphosphorylase (E-NTDPase) family, which controls the pool of extra 

cellular nucleoside triphosphates (NTP) (Borsellino et al., 2007). Biological activity 

of CD39 is a consequence (at least partly) of the regulated phosphohydrolytic activity 

on extra cellular nucleotides (Dwyer et al., 2007). However in humans, CD39 is 

expressed only by a subset of Treg with a memory phenotype (Borsellino et al., 

2007).  

 

Bopp et al showed that cyclic adenosine monophosphate (cAMP) is a key component 

in Treg mediated suppression (Bopp et al., 2007). They showed that Treg harboured 

high levels of cAMP and could transfer the cAMP into activated target cells via gap 

junctions. Increased levels of cAMP in the target cells inhibited their proliferation and 

IL-2 synthesis (Bopp et al., 2007). In parallel, Treg cells also induce local generation 

of adenosine through ectonucleotidases CD39 and CD73 expressed on their surface 

(Borsellino et al., 2007; Kobie et al., 2006). CD39, an ectoenzyme converts ATP to 

AMP, which is in turn rapidly degraded to adenosine by soluble or membrane bound 

CD73 (Deaglio et al., 2007). Binding of adenosine to the adenosine  A2A receptor on 

target cells increases their cAMP levels (Huang et al., 1997) and suppress them 

(Fig:1.6E). 
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1.3.3.1.3    Role of LAG-3 

Lymphocyte activation gene 3 (LAG-3/CD223), a CD4 associated adhesion molecule 

is highly expressed on activated Treg and plays an important role in Treg-APC 

interaction (Huang et al., 2004). Huang et al observed that LAG-3 was differentially 

expressed on murine Treg cells and was required for the maximal regulatory function 

(Huang et al., 2004). Ectopic expression of LAG-3 was shown to confer regulatory 

activity in CD4+ T cells (Huang et al., 2004). LAG-3 binds MHC class II molecules 

on dendritic cells with very high affinity and induces an inhibitory signal that 

suppresses DC maturation and immunostimulatory capacity (Fig: 1.6B). 

 

1.3.3.2    Cytokine mediated mechanism 

Although cell contact is required for in vitro Treg mediated suppression, several 

studies indicate that inhibitory cytokines like IL-10 and TGF-β are required for 

suppression in vivo or for conditioning a suppressive milieu (Fig:1.7). Treg isolated 

from IL-10 knockout mice failed to prevent colitis and homeostatic proliferation of 

CD4+ T cells from Rag deficient mice (Annacker et al., 2001). Blockade of IL-10 

receptor and neutralization of TGF-β also abolished Treg mediated inhibition of the 

disease (Annacker et al., 2001; Asseman et al., 1999). It has also been shown that 

tumor microenvironment promotes the generation of Tr1 cells which mediate IL-10 

dependant immune suppression in a cell contact independent manner (Bergmann et 

al., 2007). TGF-β is required for the function and homeostasis of Treg. T cells that 

expressed a dominant negative TGF-β receptor type II and therefore could not 

respond to TGF-β, escaped control by Treg cells in vivo in a mouse IBD model 

(Fahlen et al., 2005).  Co-stimulation with TCR and TGF-β has also been shown to 

induce FoxP3 expression in naïve T cells and convert them into regulatory T cells 
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(Chen et al., 2003). Also, TGF-β produced by Treg has been implicated in anti tumour 

immunity in head and neck carcinoma (Vignali et al., 2008).  

 

Recently, a new inhibitory cytokine IL-35, a new member of the heterodimeric IL-12 

cytokine family has been shown to be preferentially expressed on Treg and required 

for their maximal suppressive capacity (Collison et al., 2007). The constitutive 

expression of CD25 by Treg gives them competitive advantage for the consumption 

of IL-2 over naïve T cells, which express CD25 only after TCR stimulation and 

therefore starve actively dividing conventional T cells (de la Rosa et al., 2004) 

(Fig:1.7). In trans-well system where Treg and conventional T cells are separated, 

TGF-β induces suppression in IL-2 depriving conditions (Wang et al., 2010).  

 

1.3.3.3    Cytotoxicity 

Cytolytic activity has been invoked as another possible mechanism of suppression by 

regulatory T cells. Activated human Treg cells have been shown to express granzyme 

A and granzyme B and kill target cells in a perforin dependant manner and this 

cytotoxicity was dependant on CD18 adhesive interaction and independent of 

Fas/FasL (Grossman et al., 2004a; Grossman et al., 2004b). Also, granzyme B 

deficient mouse Treg cells had reduced suppressive activity in vitro and this granzyme 

B dependant suppressive activity was perforin independent (Gondek et al., 2005) 

(Fig:1.8A). Human Treg have been shown to express Fas and FasL in cocultures 

containing Treg and responder T cells and activated Treg induced Fas mediated 

apoptosis in autologous CD8+ cells (Strauss et al., 2009) (Fig:1.8B). Activated Treg 

cells could also induce apoptosis of conventional T cells through a tumour necrosis 

factor related apoptosis inducing ligand- death receptor 5 (TRAIL-DR5) pathway 
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(Ren et al., 2007) (Fig:1.8C). Also galectin-1, which can induce cell cycle arrest 

and/or apoptosis in T cells has been shown to be up regulated by Treg upon activation 

and galectin-1 deficient Treg have reduced regulatory function in vitro (Garin et al., 

2007) (Fig:1.8D). 

 

Thus, various in vivo and in vitro studies suggest that several molecules and multiple 

mechanisms may operate in Treg mediated suppression. One question that arises is 

how such multiple modes of suppression interact with each other in maintaining 

immune homeostasis.  It is possible that a particular mechanism may play a dominant 

role under a particular condition, with different mechanisms operating in various 

situations, depending on the environment in which Treg act. It is possible that in 

lymphoid tissue, Treg may act mainly on DCs, forming stable contacts with them, 

inhibiting stable interactions between DCs and naive T cells (Onishi et al., 2008) and 

thereby preventing effective priming. Here, they may act via cell contact mediated 

mechanisms involving CTLA-4 and/or membrane bound TGF-β. Under inflammatory 

conditions, primed Treg cells could migrate to non lymphoid tissues. Within the 

inflamed tissues, Treg may exert their suppressive function mainly by the release of 

anti-inflammatory cytokines such as TGF- β and IL-10, which could inhibit effector T 

cells as well as limit the recruitment of other inflammatory cells types such as 

neutrophils, monocytes and eosinophils. Treg may also exert their cytotoxic effect on 

inflammatory cells under inflammatory conditions. However, the most likely scenario 

is that multiple mechanisms of suppression may operate simultaneously and 

synergistically in vivo and that dysfunction of any one of them may not be sufficient 

to seriously impair Treg function. 
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 Fig: 1.6 Cell contact mediated suppression 

 
(A) CTLA-4 down modulates the expression of CD80 and CD86 on APC and 
hampers the activation and antigen presentation of APCs. Ligation of CTLA-4 also 
induces production of indolamine 2, 3 dioxygenase (IDO) in DCs, and converts 
tryptophan to kynurenine which has immunosuppressive effect on the local DC 
environment. (B) LAG-3 on Treg binds to MHC class II on APC and inhibits stable 
contact between APC and Tconv. (C) CTLA-4 can bind directly to B7 molecules on 
Tconv and exert suppression. (D) Membrane bound TGF-β on Treg acts on Tconv 
cells and inhibits their proliferation and cytokine production. (E) Treg harbour high 
levels of cAMP and can transfer cAMP into activated target cells via gap junctions. 
CD39 and CD73 expressed on Treg can also induce local generation of adenosine 
which can bind to A2A receptor on target cells and increase the intracellular cAMP 
level, which in turn is inhibitory in function. 

APC TconvTregAPC TconvTreg
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Fig: 1. 7 Cytokine mediated suppression 

 
(A) Treg can mediate suppression via membrane bound and/or soluble TGF-β and 
other soluble cytokines like IL-10 and IL-35. (B) Due to the constitutive expression of 
CD25 by Treg, they can compete with naïve T cells, which express CD25 only after 
TCR stimulation, for the consumption of IL-2, and therefore starve actively dividing 
Tconv cells. 
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Fig: 1.8 Cytotoxic mechanism of suppression 

 
(A) Activated Treg express granzyme A and granzyme B which can kill target cells in 
a perforin dependant manner. (B) Treg also express Fas/FasL and can mediate Fas 
induced apoptosis of target cells. (C) Treg can also induce apoptosis of target cells via 
TNF related apoptosis inducing ligand- death receptor 5 (TRAIL-DR5) and (D) 
galectin. 
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1.4 Immune privilege 

Immune privilege is an evolutionary adaptation that provides vulnerable tissues 

incapable of regeneration with immune protection while avoiding loss of vital 

functions such as vision, reproduction etc (Niederkorn, 2006). Immune privileged 

sites (eg: anterior chamber of the eye, brain, testis, pregnant uterus)  are sites where 

foreign tissue grafts enjoy extended, often indefinite, survival, whereas similar grafts 

placed at conventional body sites (skin, beneath kidney capsule) are rapidly rejected. 

Similarly, grafts prepared from these immune privileged tissues (testis, cornea, brain) 

experience extended survival when implanted at conventional body sites, whereas 

grafts prepared from conventional tissues (skin, heart, kidney) are rapidly rejected.  

 

Immune privilege was first identified by Medawar who recognized that tissue grafts 

placed in the anterior chamber of the eye survived for an extended period of time 

(MEDAWAR, 1948). He attributed this to the absence of lymphatic drainage from the 

brain and the eye resulting in sequestration of antigen. Later works revealed that it is 

the product of various anatomical, physiological and immunoregulatory mechanisms 

that prevent destructive inflammation taking place in the immune privileged sites.  

 

The main immune privileged sites in human body are central nervous system (CNS), 

testis, maternal-fetal interface and eye. The best characterised immune privileged sites 

are located in the eye. Integrity of the precise and delicate microanatomy of the eye is 

essential for the maintenance of physiological function. The visual axis of the eye that 

focuses light images on the retina is extremely delicate and intolerant to distortion that 

follows inflammation. Moreover, certain cellular components of the eye are incapable 

of regeneration. . Even a minor deviation in the anatomic integrity of the visual axis or 
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the loss of vital ocular cells can result in impaired vision. Inflammation, if it occurs 

within the eye, is a profound threat to vision. Many mechanisms have been suggested 

to contribute to the maintenance of immune privilege in the eye as well as in other 

immune privileged sites, both anatomical and immunological.  

 

1.4.1   Anatomical mechanisms 

The blood-brain barrier (BBB) provides both anatomical and physiological protection 

for the central nervous system (CNS) and regulates the entry of many substances and 

blood borne cells into the nervous tissue (Pachter et al., 2003). The initial site of 

antigen encounter for most unactivated, naive, antigen-inexperienced T cells is in the 

secondary lymphoid tissues. However, the CNS lacks a traditional lymphatic system 

which is thought to play a part in maintaining immune privilege (Carson et al., 2006). 

 

The blood testis barrier consists of highly specialized tight junctions (zonula 

occludens) between neighbouring sertoli cells capable of restricting the passage of 

larger hydrophilic molecules, particularly proteins through the intercellular spaces. In 

the maternal-fetal interface, fetal trophoblast cells are the specific cell layer that 

protects the embryo from those components of the maternal immune system dedicated 

to destroying foreign tissues (Niederkorn and Wang, 2005). 

 

The posterior chamber of the eye is separated from the immune system by blood-

retinal barrier composed of the retinal pigment epithelium (RPE) and the retinal 

vascular endothelial cells. Vascular endothelial barriers also limit diffusion of 

molecules from the blood into the anterior chamber. The blood-ocular barrier is very 

selective and excludes molecules even as small as 376 Da, which is the size of sodium 
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fluorescein used routinely in the clinic to assess the integrity of the blood-retinal 

barrier (http://www.mrcophth.com/ffainterpretation/ffaprinciples.html). Although the 

external surface of the eye and the sub-conjunctival space is drained to the regional 

(preauricular) lymph nodes, the interior of the non-inflamed eye is believed to have no 

direct lymphatic drainage. 

 

1.4.2   Expression of FasL 

FasL is a type II membrane protein belonging to tumour necrosis factor (TNF) family 

and is expressed primarily on activated T cells, some tumour cells and immune 

privileged sites. The residential brain cells (neurons, astrocytes, oligodendrocytes, 

microglia and the vascular endothelium) express FasL constitutively and endow the 

CNS with the immune suppression to limit potentially adverse inflammatory 

responses (Choi and Benveniste, 2004). . The sertoli cells of testis have also been 

shown to express FasL constitutively (Bellgrau et al., 1995). Fetal cytotrophoblasts 

and maternal decidual cells of the placenta express FasL which is involved in 

protecting the fetus from lysis by activated immune cells that express Fas receptor. 

Another pro apoptotic molecule, TRAIL (TNF related apoptosis inducing ligand) 

which is expressed on many fetal tissues that express FasL is also involved in 

maintaining the immune privilege status of the maternal fetal interface (Niederkorn 

and Wang, 2005).  

 

FasL is expressed abundantly in a number of strategic locations throughout the eye 

and is placed at or near areas that comprise the blood-ocular barrier, as well as 

locations where ocular tissues can interact with inflammatory cells (Ferguson and 

Griffith, 2007). FasL system induces apoptosis of any activated cells that may enter 
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the eye thereby contributing to immune privilege. FasL induced cell death in the eye 

can also lead to tolerance and blocks the growth of blood vessels that can damage the 

eye and impair vision (Ferguson and Griffith, 2007). TRAIL, another pro-apoptotic 

molecule is also expressed on many ocular tissues and is believed to play a part in 

ocular immune privilege (Ferguson and Griffith, 2007). 

 

1.4.3   Expression of non-classical MHC molecules 

Although all nucleated cells in the body express MHC class Ia molecules, they are 

absent from or weakly expressed by cells at the immune privilege sites which helps 

them evade lysis by cytotoxic T lymphocytes (CTL). The absence of MHC class Ia 

molecules on the trophoblast cells renders the embryo invisible to allospecific CTL 

and thus contributes to immune privilege at the maternal fetal interface (Niederkorn 

and Wang, 2005). However, failure to express MHC class I molecules can arouse the 

attention of natural killer (NK) cells which can lyse MHC class I negative cells. This 

is compensated by the expression of non classical MHC class Ib molecules such as 

HLA-G and HLA-E which has the capacity to engage NK cell inhibitory receptor 

(Rouas-Freiss et al., 1997; Lee et al., 1998). Trophoblast cells also produce a soluble 

form of HLA-G that triggers apoptosis of activated CD8+ T cells (Fournel et al., 

2000).  In CNS, the expression of MHC class I has been shown to be low or absent 

(Joly et al., 1991). However, non classical MHC class Ib molecules are expressed in 

the CNS (Lidman et al., 1999). 

 

Similar to maternal fetal interface and CNS, corneal endothelial cells and many of the 

cellular elements of the retina have absent or weak expression of MHC class Ia  (Abi-

Hanna et al., 1988) and often express non classical MHC class Ib molecules such as 
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HLA-G (Le Discorde et al., 2003). Furthermore, HLA-G also inhibits the trans-

endothelial migration of NK cells, shifts the cytokine balance towards Th2 dominance 

and suppresses CD4+ T cell proliferation (Carosella et al., 2001). 

 

1.4.4   Immunosuppressive microenvironment 

Immunosuppressive factors like transforming growth factor-β (TGF-β), vasoactive 

intestinal peptide (VIP), alpha-melanocyte stimulating hormone (α-MSH) and  

macrophage migration inhibitory factor (MIF) have been shown to be produced by the 

cells in immune privileged sites such as CNS, testis, maternal fetal interface and the 

eye (Reinke and Fabry, 2006; Niederkorn, 2006; Fijak and Meinhardt, 2006). 

Astrocytes which are the most abundant glial cells in the brain have the capacity to 

directly inhibit T helper cell activity in situ by upregulating the expression of 

cytotoxic T lymphocyte antigen 4 (CTLA-4) (Gimsa et al., 2004). Complement 

regulatory proteins (CRPs) are essential for the protection of mammalian cells from 

damage caused by complement activation and CRPs like decay-accelerating factor 

(CD55) and membrane cofactor protein (CD46) on the mouse trophoblast are crucial 

for sustaining pregnancy (Niederkorn, 2006). 

 

The immunomodulatory microenvironment in the eye has been extensively studied. 

Aqueous humour (AqH) is a clear colourless plasma-like fluid produced by the ciliary 

body at around 2.5µl/min (in human). Its functions include providing support to the 

anterior segment of the eye, nutrition to the avascular lens and cornea, light 

transmission and immunoregulation. AqH has been most extensively analyzed and 

contains biologically relevant concentrations of various immunomodulatory 

neuropeptides, cytokines, growth factors and soluble cell-surface receptors (Streilein, 
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1999; Chowdhury et al., 2010). AqH inhibits T-cell activation and differentiation in 

vitro and the activity was shown to be neither species specific nor directly cytotoxic to 

cells (Kaiser et al., 1989). Moreover, normal AqH also inhibits innate immune 

effector cells (Streilein and Stein-Streilein, 2000). Some of the immunomodulatory 

molecules in the AqH are explained below. 

 

1.4.4.1    Transforming growth factor- β (TGF-β) 

TGF-β was the first significant immunomodulatory molecule to be identified in AqH 

(Cousins et al., 1991). TGF-β exists in three isoforms, TGF-β1-3. Although mRNA 

for all three isoforms may be found in ocular cells, TGF-β2 is the only isoform that is 

expressed at sufficient levels to be recovered from healthy aqueous humour (Cousins 

et al., 1991; Pasquale et al., 1993). In healthy aqueous humour, the concentration of 

TGF-β2 is between 1 and 10ng/ml, the vast majority being in its latent form (Jampel 

et al., 1990).  

 

APC treated with TGF-β2 lose their ability to activate Th1 cells and induce delayed 

type hypersensitivity (DTH). These APC are impaired in their IL-12 production and 

have lower expression of various accessory molecules (Takeuchi et al., 1997; 

Tsunawaki et al., 1988). TGF-β2 treatment of macrophages also reduces their 

production of inflammatory cytokines and their ability to generate reactive oxygen 

species (Tsunawaki et al., 1988). 

 

TGF-β present in AqH has also been shown to be capable of modulating T cell 

proliferation directly. In an IL-2 dependent lymphocyte proliferation assay, Cousins et 

al showed that TGF-β can inhibit lymphocyte proliferation in a dose dependant 
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manner and also that the AqH inhibition of proliferation was completely reversed by 

the addition of anti-TGF-β antisera (Cousins et al., 1991).  

 

TGF-β has been shown to inhibit proliferation of naive T cells by inhibiting IL-2 

production via Smad3 (McKarns et al., 2004) and inhibit the differentiation of Th1 

and Th2 subtypes via T-bet/Stat-4 and GATA-3/NF-AT respectively (reviewed by Li 

et al) (Li et al., 2006b). Significantly, TGF-β also induces a regulatory phenotype in 

CD4+CD25- T cells through FoxP3 induction and down-regulation of Smad-7 

(Fantini et al., 2004). TGF-β2 in the AqH acts in synergy with α-MSH to induce the 

activation of regulatory T cells (Treg) which can suppress delayed type 

hypersensitivity (DTH) (Namba et al., 2002; Nishida and Taylor, 1999).  

 

1.4.4.2    α- Melanocyte stimulating hormone (α-MSH) 

The neuropeptide alpha-melanocyte stimulating hormone (α-MSH) is a 13 amino acid 

long (1.6 kDa) cytokine which is a proteolytic cleavage product of pro-

opiomelanocortin hormone (POMC). It is produced by a number of cell types 

including pituitary cells, neurons, macrophages and keratinocytes. α-MSH is 

constitutively expressed in the healthy eye with aqueous humour levels of around 

20pM (Taylor et al., 1992).  

 

AqH as well as α-MSH (at its ocular physiological concentration) can suppress the 

IFN-γ production by antigen stimulated primed T cells (Taylor et al., 1992). In a 

mouse model of experimental autoimmune uveitis (EAU), when alpha-MSH was 

injected i.v. into mice at the time of peak retinal inflammation, the severity of EAU 

was significantly suppressed (Taylor et al., 2000). Taylor et al showed that treatment 
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of primed T cells with α-MSH converted them into TGF-β1 producing CD4+ CD25+ 

regulatory T cells (Treg) with no IFN-γ or IL-10 production.  When transferred into 

cultures of activated T cells, these Treg cells suppressed the production of IFN-γ by 

activated T cells (Taylor and Namba, 2001). The ability of α-MSH to induce Treg 

cells is enhanced by TGF-β2 in AqH (Namba et al., 2002). In  a model of local 

adoptive transfer of delayed type hypersensitivity (DTH) in which lymph node cells 

from immunized C57BL/6 mouse were reintroduced after incubation with 

mycobacterium tuberculosis antigen, the suppressive effects of AqH were found to be 

partially reversed by removal of the α-MSH fraction (Taylor et al., 1994a). 

 

α-MSH has also been shown to suppress activated macrophages, reducing their 

expression of pro-inflammatory cytokines, reactive oxygen intermediate and nitric 

oxide, whilst increasing their production of IL-10 (Star et al., 1995).  

 

1.4.4.3    Vasoactive intestinal peptide (VIP)  

VIP is a 3.3 kDa, neuropeptide which is 28 amino acid long and is produced by 

neurons. Various peptide forms of VIP are also being produced by polymorponuclear 

leukocytes and mast cells (Taylor et al., 1994b). It is present in the normal AqH at 12 

+ 1 nM. VIP, at equivalent ocular immunoreactive concentration, inhibits both antigen 

stimulated lymph node cell proliferation and IFN-γ production (Taylor et al., 1994b). 

Absorption of VIP from the low molecular weight fraction of AqH reversed the 

suppressive activity of AqH on IFN-γ production, but did not affect the suppressive 

activity of AqH on the proliferation of antigen stimulated lymph node cells (Taylor et 

al., 1994b). VIP has been shown to inhibit mitogen-driven lymphocyte proliferation, 

IL-2 production and function (Ottaway, 1987).  
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Delgado et al showed that VIP, along with pituitary adenylate cyclase-activating 

polypeptide (PACAP), contributed to the development of bone marrow-derived 

tolerogenic DCs in vitro and in vivo. The VIP/PACAP-generated DCs induced 

functional Treg in vitro and in vivo which could suppress primarily Th1 responses 

including delayed-type hypersensitivity, and transferred suppression to naive hosts 

(Delgado et al., 2005).  

 

In addition to the above mentioned factors, there are various other factors in the AqH 

that help maintain the immune privilege status of the eye. Some of these other factors 

and their effects are summarised in Table: 1.2. 

Factor Effect 

Somatostatin (SOM) 

Induces production of α-MSH by primed T cells (Taylor 

and Yee, 2003); Inhibits IFN-γ production by activated T 

cells 

Calcitonin gene-related 

peptide (CGRP) 

Inhibits production of nitric oxide by activated 

macrophages (Taylor et al., 1998) 

Macrophage migration 

inhibitory factor (MIF) 
Inhibits NK cell activity (Apte et al., 1998) 

Complement regulatory 

protein (CRP) 

Inhibits complement cascade and protect against damage 

mediated by complement activation (Bora et al., 1993; 

Chowdhury et al., 2010). 

 

Table: 1.2 Soluble factors in AqH that promote ocular immune privilege 

 
Other immunosuppressive factors in AqH under non inflammatory conditions which 
help to maintain the immune privilege status of the eye. 
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1.4.5   Anterior chamber associated Immune deviation    

(ACAID) 

ACAID is an animal model of tolerance induced experimentally by injection of 

antigen into the anterior chamber of the eye. Antigens arising from or placed in the 

anterior chamber of the eye elicits a deviant systemic immune response that includes 

primed CD8+ cytotoxic T cells and the generation of non complement fixing 

antibodies, but excludes CD4+ Th1 and Th2 cells, and B cells that secrete 

complement fixing antibodies (Streilein, 2003). Antigens, within the eye are captured 

by F4/80+ APCs, which under the influence of ocular cytokines like TGF-β, express a 

unique cytokine profile in which IL-12 is downregulated and IL-10 is upregulated 

(Wilbanks and Streilein, 1991). The antigen bearing F4/80+ APCs migrate to spleen 

and come to rest selectively in the marginal zone of the spleen. Here they secrete 

macrophage inflammatory protein-2 (MIP-2) which in turn recruits NKT cells to the 

site (Faunce et al., 2001). Together these APCs and NKT cells recruit other F4/80+ 

APCs, marginal zone B cells and γδ T cells to form a multicellular cluster and induce 

a microenvironment rich in TGF-β, thrombospondin and IL-10 (Faunce and Stein-

Streilein, 2002; Streilein, 2003). Eventually CD4+ and CD8+ αβ T cells specific for 

the ocular antigen accumulate at the cluster (Faunce and Stein-Streilein, 2002). Later 

antigen specific regulatory T cells (Treg) that mediate ACAID emerge from these 

clusters (Wilbanks and Streilein, 1990). CD4+ Treg cells suppress the initial activation 

and differentiation of naive T cells into Th1 effector cells whereas the CD8+ Treg 

cells inhibit delayed type hypersensitivity (DTH) (Wilbanks and Streilein, 1990).  

The eye derived antigen bearing F4/80+ APCs can also migrate to thymus where they 

induce the generation of CD4- CD8- NK1.1+ thymocytes that can migrate to spleen 

and induce the generation of splenic regulatory T cells (Wang et al., 1997).  
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The postulate in the ACAID paradigm that antigen injected into the anterior chamber 

of the eye is transported to the spleen by ocular APC via the blood, is mainly based on 

the observation that ACAID can be induced in a naive animal by the transfer of 

F4/80+ ocular APCs originating from an animal that had previously received an 

intracameral injection of antigen (Wilbanks and Streilein, 1991). However, Camelo et 

al. later showed that fluorescent-labelled Ag (dextran, BSA) injected into the anterior 

chamber of Lewis rats was detected in the lymph nodes (LN) and spleen. The 

extensive distribution of Ag in lymph nodes together with the phenotype of Ag-

bearing cells (mostly resembling resident macrophages which can internalize 

antigens)  in the lymphoid organs, suggests that Ag leaves the eye predominantly in a 

soluble form and implies that other mechanisms of tolerance may contribute to ocular-

specific immune responses (Camelo et al., 2006; Camelo et al., 2004). Using 

intravital microscopy to monitor the migration of ocular APCs, Dullforce et al. 

demonstrated that phagocytic APCs from anterior uveal tissue did not migrate from 

the eye to the draining lymph node and that the acquired immune responses are 

initiated in the lymph node by soluble antigen escaping the eye (Dullforce et al., 

2004).  

 

1.4.6   Regulatory T cells in the eye 

One of the important mechanisms by which immune system controls unwanted and 

hazardous inflammation is via regulatory T cells (Treg). Ocular inflammation can also 

be inhibited by Treg induced within the eye that can limit the expression of antigen 

specific T cell mediated inflammation. There are several pathways by which Treg can 

be induced in the eye: 
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1.4.6.1    Induced by ACAID:   

Two categories of Treg are generated during ACAID- CD4+ afferent Treg and CD8+ 

efferent Treg. Later studies by Keino et al showed that some of the CD4+ Treg of 

ACAID arise from CD25- precursors, and that the induction of ACAID is not 

dependent on the presence of natural CD4+CD25+ Treg as ACAID could be induced 

in mouse depleted of CD25+ T cells (Keino et al., 2006). Using an in vitro ACAID 

culture system, Skelsey et al showed that CD4+ T cells were required for the 

generation of ACAID suppressor cells and that these suppressor cells did not require 

direct cell-cell contact to produce their regulatory effect (Skelsey et al., 2003). The 

efferent CD8+ Treg cells generated in ACAID has been shown to be antigen specific 

with increased FoxP3 expression and inhibited DTH (Stein-Streilein, 2008).  

 

1.4.6.2    Induced by AqH 

The immunosuppressive effect of AqH and its components were first reported by 

Kaiser et al who showed that normal AqH from rabbits and mice inhibited 

antigen/growth factor driven lymphocyte proliferation (Kaiser et al., 1989). Later it 

was demonstrated by Taylor et al that primed T cells activated in the presence of AqH 

were converted to TGF-β producing regulatory T cells (Treg) that could inhibit IFN-γ 

secretion by inflammatory cells (Taylor et al., 1997). Two major component of AqH, 

namely α-MSH and TGF-β were found to be responsible for the induction of these 

antigen specific Treg (Namba et al., 2002; Nishida and Taylor, 1999). T cells 

stimulated in the presence of  α-MSH and cultured in the presence of TGF-β 

developed a regulatory phenotype and when transferred to EAU susceptible mice, 

these Treg reduced the severity and incidence of the disease (Namba et al., 2002). As 

the anterior chamber of the eye is an immune privileged site, it is possible that the T 
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cells entering the anterior chamber are immediately converted to regulatory T cells, 

thereby retaining the immune privileged status of the tissue. 

 

1.4.6.3    Induced by pigment epithelial cells 

The pigment epithelial (PE) cells of iris and ciliary body (I/CB) contribute to the 

integrity of blood-ocular barrier. Yoshida et al demonstrated that I/CB PE cells 

suppressed the proliferation and cytokine production by stimulated T cells through a 

direct cell-cell contact dependant mechanism (Yoshida et al., 2000b). In addition I/CB 

PE cells also induced the generation of TGF-β producing regulatory T cells that could 

suppress T cell proliferation and antigen specific DTH (Yoshida et al., 2000a). Later 

Sugita et al demonstrated that iris pigment epithelial (PE) cells constitutively 

expressed B7 co-stimulatory molecule which could engage CTLA-4 expressed on T 

cells and inhibited their proliferation. CD8+ Treg induced by the PE cells were able to 

engage CTLA-4+ bystander T cells and inhibited their proliferation through a TGF-β 

dependant manner (Sugita et al., 2006a; Sugita et al., 2006b).  

 

1.4.6.4    Induced by endogenous antigens 

Most of the ocular immune deviation studies relied on intraocular injection of antigen, 

a process in itself could cause trauma and induction of tolerance. Therefore Gregerson 

et al developed transgenic mice strains that expressed β-galactosidase (β-gal) on 

retinal pigment cell and observed that endogenous β-gal expression in the retina lead 

to depressed DTH response and reduced antigen specific proliferation of spleen cells 

to β-gal, a phenotype similar to ACAID (Gregerson and Dou, 2002). However the 

cytokine profile of splenic lymphocytes were different from that seen in ACAID 

(Gregerson and Dou, 2002). The same group also showed that the endogenous retinal 
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expression of β-gal induced the development of Treg cells, which when adoptively 

transferred to a non transgenic mice immunised with β-gal, suppressed DTH 

responses to β-gal (Gregerson et al., 2009). Thus the endogenous expression of 

antigen in the normal quiescent retina can lead to peripheral generation of Treg that 

can be attributed to retinal derived antigen. However, it is not clear from this study 

whether central tolerance play any role in this Treg generation.  

 

Thymic expression of retina specific antigens (IRBP and retinal S antigen) was 

reported in both mouse and humans.  It has been suggested that even a seemingly 

miniscule amount of tissue specific self antigen in the thymus can lead to central 

tolerance with the generation of antigen specific Treg (Takase et al., 2005; Avichezer 

et al., 2003). 

Immune privilege of the eye is neither absolute nor permanent. Immune privilege can 

be lost by particular tissue grafts or by experimental manoeuvres or by pathological 

processes. Various autoimmune and inflammatory diseases affecting the eye may 

suggest that the many mechanisms of tolerance and immune privilege might have 

failed or circumvented in these situations. 

 

1.5 Uveitis 

Uveitis comprises of a group of diseases characterised by intraocular inflammation, 

which by its very existence challenges the paradigm of ocular immune privilege. In 

most of the patients, the disease resolves rapidly, but a significant number of patients 

develop persistent disease. This can cause damage to ocular tissues and cause visual 

impairment. It is not clear whether the development of uveitis reflects an inadequate 
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or failed immune privilege mechanisms or conversely whether the resolution of 

disease is due to a re-establishment of the normal immune privilege mechanisms.  

 

Uvea is the “vascular tunic” of the eye comprising the iris, choroid coat and the ciliary 

body. Uveitis is an autoimmune disorder targeting the uvea (but in reality comprises a 

large group of diverse diseases affecting not only the uvea but also the retina, optic 

nerve and vitreous) (Bora and Kaplan, 2007; Forrester, 2007) 

 

Uveitis predominantly affects people of working age, peaking  in the 20 – 50 year age 

group (Durrani et al., 2004a).  Although there are some variations in the prevalence of 

uveitis across the globe, it is the 5th commonest cause of visual loss  accounting for 

about 10 – 15% of total blindness in the developed world (Durrani et al., 2004a; 

Durrani et al., 2004b). The annual incidences of  uveitis is between 17 and 52.4 per 

100,000 person-years and prevalence of between 38 and 370 per 100,000 population 

(Chang et al., 2005). 

 

 

 

Fig: 1.9  Anatomy of ocular surface 

 
Diagrammatic representation of eye in cross section: Uvea consists of iris, ciliary 
body and choroid layer (Smith et al., 1998). 
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Uveitis is etiologically classified either as infectious or non infectious. The 

predominant form of uveitis is thought to be non infectious. Many cases are often 

labelled as idiopathic, but in some it may be part of systemic disease process, such as 

sarcoidosis, multiple sclerosis, Behçhet’s disease, Vogt-Koyanagi-Harada (VKH) 

disease or associated with the HLA-B27 positive group of diseases. Autoimmunity 

has been invoked in some of the cases, especially in idiopathic uveitis. Infectious 

agents, such as the herpes group of viruses, toxoplasma gondii, mycobacterium 

tuberculosis, and treponema pallidum are well-recognized causes for infectious uveitis 

(Bora and Kaplan, 2007; Forrester, 2007).  

 

The International Workshop on Standardization of Uveitis Nomenclature (SUN) 

separated uveitis anatomically by location of observed disease according to visible 

signs- anterior, posterior, intermediate and pan uveitis (Jabs et al., 2005) (Table 1.3). 

It can also be classified based on the disease course as acute, recurrent and chronic 

(Jabs et al., 2005) (Table 1.4). 

 

The most common form of uveitis that accounts for about 75% of cases is anterior 

uveitis. Inflammation occurs in either iris or ciliary body with spillover of vitreous 

inflammatory cells into the space behind the lens. Sight threatening intra ocular 

inflammation that affects the posterior part of the eye involves peripheral retina and 

vitreous (intermediate uveitis) or  the inflammation of the retina, retinal vessels and/or 

optic nerve with cellular infiltrates in the choroid and retina and edema at the macula 

(posterior uveitis) (Forrester, 2007). 
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The AqH in acute anterior uveitis contains many cells and severe flare (turbidity of 

AqH caused by increased protein levels and cells). In chronic cases, the number of 

cells is considerably smaller, but flare may be conspicuous. This is because the long-

term inflammation may have caused structural alteration in the blood vessels leading 

to leakage of proteinaceous fluid and persistent flare.  

 

The activity of anterior chamber inflammation is measured on the basis of the cells in 

the anterior chamber. The SUN working group standardized the grading of anterior 

chamber cells and flare to achieve better compatibility between data from different 

groups and different studies. 

 

For anterior chamber cells, in a field size of 1x1-mm slit beam, the following grades 

were described: 0 (<1 cell), 0.5+ (1-5 cells), 1+ (6-15 cells), 2+ (16-25 cells), 3+ (26-

50 cells), and 4+ (>50 cells). The presence of hypopyon (leukocyte exudate in the 

anterior chamber) was recorded separately (Jabs et al., 2005).  

 

The grading for anterior chamber flare was standardized as follows: 0 (none), 1+ 

(faint), 2+ (moderate; iris and lens details clear), 3+ (marked; iris and lens details 

hazy), and 4+ (intense; fibrin or plastic aqueous) (Jabs et al., 2005). 

 

Type 
Primary site of 

inflammation 
Includes 

Anterior 
uveitis 

Anterior chamber Iritis, Iridocyclitis, Anterior cyclitis 

Intermediate 
uveitis 

Vitreous Pars plantis, Posterior cyclitis, Hyalitis 
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Posterior 
uveitis 

Retina or choroid 
choroiditis, Chorioretinitis, 
Retinochoroiditis, retinitis, 

neuroretinitis 

Pan uveitis 
Anterior chamber, Vitreous 

and retina, or choroid 
 

 

Table: 1.3 Anatomical classification of uveitis (SUN 2005) 

 
Classification of uveitis based on the location of the observed disease as anterior, pan, 
intermediate and posterior uveitis 
 

Acute Sudden onset + limited duration 

Recurrent Repeated episodes; inactive periods≥3 months without treatment 

Chronic Persistent; relapse in < 3 months after discontinuing treatment 

 

Table: 1.4 Classification of uveitis based on disease course (SUN 2005) 

 
Classification of uveitis based on the onset, duration and course of the disease 
 

1.5.1   Causes of uveitis 

In many cases the causes of uveitis is unknown (idiopathic). However sometimes it 

can be caused by one or more of the following reasons 

1. Trauma. 

2. Infection: common infectious causes include herpes simplex, varicella-zoster, 

cytomegalovirus and toxoplasmosis. Less common causes include 

histoplasmosis, lyme disease, syphilis, toxocariasis and tuberculosis. 

3. Systemic autoimmune diseases such as ankylosing spondilosis, reiter’s 

syndrome, rheumatoid arthritis, sarcoidosis, multiple sclerosis and 

inflammatory bowel disease (Gupta and Murray, 2006). 
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Uveitis can be a devastating sight-threatening condition. The main causes of visual 

loss are cystoid macular oedema and cataract. Other complications include secondary 

glaucoma, band keratopathy, vitreous opacities, optic neuropathy and retinal scars. 

 

1.5.2   Uveitis prognosis 

Usually uveitis resolves rapidly with treatment; but a significant number of patients 

may develop persistent disease, which may lead to visual impairment (Gupta and 

Murray, 2006). Some patients then go on to develop chronic disease, whose 

proportion is not currently known. Persistent inflammation may lead to permanent 

damage to the trabecular meshwork, glaucoma, cataracts, and macular oedema  

 

Patients with acute anterior uveitis have the best visual outcome; whereas people with 

chronic anterior uveitis, posterior uveitis, and pan uveitis have a worse visual 

prognosis (Gutteridge and Hall, 2007). Permanent loss of vision may occur due to late 

detection, delayed treatment, poor control of inflammation and damage from recurrent 

attacks (Gutteridge and Hall, 2007). 

 

1.5.3   Initiation of uveitis and HLA-B27 

The process that leads to the initiation of uveitis is not yet known. In the case of acute 

anterior uveitis, the most common form is the one associated with HLA-B27 antigen. 

It accounts for about 32% of all anterior uveitis cases in western countries and 

between 6–13% of anterior uveitis cases in Asia. HLA-B27 uveitis has a male 

preponderance and it affects people between the ages of 20 and 40. The clinical 
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features of HLA-B27 associated uveitis include pain, photophobia, redness and 

blurred vision. Anterior segment inflammation may be severe with keratic 

precipitates, anterior chamber flares/cells/fibrin with or without hypopyon formation, 

posterior synechiae and vitreous cells. There is high tendency for recurrences and 

significant association with other HLA-B27 associated diseases (Chang et al., 2005; 

Linssen and Meenken, 1995). The ocular complications associated with HLA-B27 

positive uveitis include cataract, hypertension, secondary glaucoma and the 

development of chronic anterior uveitis.   

 

Several hypotheses have been proposed to explain the pathogenic link between the 

HLA-B27 and its associated diseases including molecular mimicry between the HLA-

B27 and pathogen (Scofield et al., 1995), misfolding of HLA-B27 heavy chains (Mear 

et al., 1999), or neighbouring genes (such as MICA)  existing in linkage 

disequilibrium with HLA-B27 (Goto et al., 1998). The association of recent infection 

with gram negative bacteria with the initiation of anterior uveitis has also been 

proposed (Saari et al., 1980).  

 

1.5.4   Treatment of uveitis 

Similar to most other inflammatory diseases, uveitis responds well to treatment with 

glucocorticoids (OKSALA, 1960; Dick et al., 1997). Topical treatment with synthetic 

glucocorticoids is usually sufficient in anterior uveitis. These typically include 

dexamethasone 0.1% or prednisolone 1%. In more severe forms of uveitis, systemic 

glucocorticoids are usually given (Dick et al., 1997; OKSALA, 1960). When systemic 

glucocorticoids at an acceptable dose are insufficient to control disease, alternative 

agents are used in addition or instead of glucocorticoids. These include anti-
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metabolites such as azothiorpine or methotrexate, calcineurin inhibitors such as 

tacrolimus and ciclosporin, and TNF-α inhibitors such as infliximab, adalimumab and 

etanercept. 

 

Experimental therapies that have shown promising results in animal models of uveitis 

are currently under investigation for use in human uveitis. These include tolerogenic 

DC vaccination as well as targeting IL-17 (Ke et al., 2009), LFA-1 (Ke et al., 2007) 

and ICAM-1 (Uchio et al., 1994).  

 

1.5.5   Animal models of uveitis 

Several animal models of uveitis that represent various aspects of ocular inflammation 

have been reported in the literature. Use of animal models has allowed for the 

identification of uveitic antigens and their epitopes and development of therapeutic 

strategies. 

 

1.5.5.1    Experimental autoimmune uveitis (EAU) 

EAU targets retinal antigens and serves as a model of autoimmune uveitis in humans. 

It is inducible with synthetic peptides derived from retinal auto-antigens in commonly 

available strains of rats and mice. EAU is traditionally induced by immunization with 

retinal antigens such as retinal soluble antigen (s-Ag) or interphotoreceptor retinoid-

binding protein (IRBP) in complete Freund’s adjuvant (CFA), but the disease can also 

be induced in unimmunised recipients by infusion of activated lymphocytes, cultured 

from immunized donors (Caspi et al., 2008). Traditionally regarded as a Th1 disease, 
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it has become increasingly apparent that Th17 cells may also play a critical role in 

uveitis immunopathology (Peng et al., 2007).  

 

A humanised model of EAU has been developed in recent years where EAU is 

induced in mice that were deleted for the mouse class II molecules and made 

transgenic for the human HLA class II molecule (Pennesi et al., 2003). They showed 

that HLA-DR3 transgenic mice developed severe uveitis with S-Ag, to which wild 

type mice were resistant. In vitro proliferation of draining lymph node cells from 

HLA-DR3, -DQ6, and -DQ8 TG mice immunised with S-Ag, was blocked by specific 

monoclonal antibodies to human, but not to mouse MHC class II molecules (Pennesi 

et al., 2003). 

 

1.5.5.2    Endotoxin induced uveitis 

EIU is an animal model of acute anterior uveitis (AAU). It can be induced by local or 

systemic injection of endotoxin or LPS and is characterised by increased protein and 

cell content in the AqH and the inflammation reaches the peak after 24 hr post 

injection (Rosenbaum et al., 1980; Okumura and Mochizuki, 1988). Most cells 

entering the anterior chamber are polymorphonuclear leucocytes, but in addition there 

is a significant mononuclear cell component to the infiltrate as well. EIU is generally 

considered to be an inflammation of the anterior uvea. In humans, AAU occurs most 

commonly in young and middle-aged adults and the HLA B27-linked cases occur 

more commonly in males. Similarly EIU is more severe in male Lewis rats and its 

susceptibility is age dependent (Smith et al., 1998). However, posterior segment 

findings have also been reported in EIU which include choroiditis, vitritis, vitreous 

and retinal haemorrhage and inflammatory cell infiltration of the retina with 
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destruction of photoreceptor cells (Smith et al., 1998). Several factors expressed on 

the vascular endothelium, including E-selectin and P-selectin have also been shown to 

play an important role in the pathology of EIU (Whitcup et al., 1997).  

 

1.5.5.3    Experimental melanin induced uveitis (EMIU) 

EMIU is induced by immunisation of rats with ocular melanin. EMIU is another 

model of acute anterior uveitis which mimics AAU in clinical appearance, duration 

and the occurrence of spontaneous relapse (Broekhuyse et al., 1996). Leukocyte 

infiltration is first observed in the anterior uvea, but in severe cases, vitritis and 

choroiditis are also observed (Bora and Kaplan, 2007; Smith et al., 2008). Treatment 

with anti-CD4 antibody has been shown to abrogate the disease in fischer 334  rats 

(Smith et al., 1999). 

 

1.6 Treg in uveitis 

Regulatory T cells play an important role in the immune privileged status of eye. AqH 

treated T cells suppressed DTH response. It was shown that various AqH factors such 

as TGF-β and α-MSH could induce and promote regulatory T cell activity (Nishida 

and Taylor, 1999; Namba et al., 2002). Uveitis, characterized by intraocular 

inflammation represents a breach of immune privilege. Using a rat model of EAU, Ke 

et al. showed that ocular Treg could distinguish monophasic uveitis from recurrent 

autoimmune uveitis and that Treg cells derived from the eye during the recovery from 

monophasic EAU had stronger suppressor activity and were involved in the remission 

of intra-ocular inflammation whereas the suppressor function of these cells were weak 

in recurrent EAU (Ke et al., 2008) . Similarly, in a mouse model of EAU, Sun et al 
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observed that functionally active Treg cells were induced in EAU and may be 

involved in regression phase of the disease (Sun et al., 2010a). Yeh et al. evaluated 

FoxP3+ Treg from uveitis patients and observed that Treg were reduced in patients 

with active uveitis compared to inactive uveitis (Yeh et al., 2009).  

 

Vogt-Koyanagi-Harada (VKH) syndrome is an organ specific autoimmune disease 

characterized by chronic bilateral granulomatous pan uveitis and involvement of the 

central nervous, auditory, and integumentory systems. It was demonstrated by Chen et 

al. that there was a significantly decreased frequency and diminished function of 

CD4+CD25high Treg cells from peripheral blood of VKH patients and this correlated 

with active uveitis in these patients (Chen et al., 2008). 

 

1.7 Treg in other autoimmune and inflammatory 

diseases 

Defects of Treg in autoimmune and inflammatory diseases have been studied 

extensively. Depletion of CD4+CD25+ Treg resulted in wide range of organ-specific 

and systemic autoimmune diseases in otherwise normal animals (Sakaguchi et al., 

1995).  In humans, imbalance in the number, phenotype and function of Treg have 

been implicated in various autoimmune diseases. 

 

1.7.1 Rheumatoid arthritis (RA) 

RA is a chronic inflammatory disorder that ultimately leads to the destruction of joint 

architecture affecting about 0.8% of the UK adult population. An increased frequency 

of Treg have been shown in inflamed joints of chronic rheumatoid patients (Cao et al., 
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2004). These synovial Treg have regulatory function in vitro (Cao et al., 2004; 

Mottonen et al., 2005). However it has been shown that pro inflammatory cytokines 

like IL-17 and TNF-α which are present in large amounts in the rheumatoid synovium 

could abrogate Treg mediated suppression, which may well be the case in vivo (van 

Amelsfort et al., 2007). Treg from the inflamed synovium express higher levels of 

CTLA-4 and GITR and have an activated phenotype, which is characterized by the 

expression of CD69 and class II MHC molecule (Cao et al., 2003; Mottonen et al., 

2005). However, conventional T cells in joint fluid of RA patients showed reduced 

susceptibility to Treg mediated suppression, compared to T cells in  peripheral blood 

(van Amelsfort et al., 2004).  

 

Controversy exists with regard to the frequency of CD4+CD25+ Treg in the 

peripheral circulation of patients with RA in comparison with healthy individuals. 

This discrepancy could be due to the fact that some researchers defined Treg as 

CD4+CD25+ cells (van Amelsfort et al., 2004) whereas others focused on 

CD4+CD25bright Treg cells (Cao et al., 2004; Ehrenstein et al., 2004). Ehrenstein et 

al. isolated  CD4+CD25+ Treg from the peripheral blood of patients with active RA 

using MACS beads and showed that these Treg were anergic upon stimulation with 

anti CD3 and anti CD28 antibodies and suppressed the proliferation of effector T cells 

in vitro (Ehrenstein et al., 2004). However, they were unable to suppress the secretion 

of pro-inflammatory cytokines by activated T cells and monocytes or to convey 

suppressive activity to conventional effector T cells (Ehrenstein et al., 2004).  

 

Treatment with anti tumour necrosis factor alpha (anti-TNF-α) restored the capacity 

of RA Treg to inhibit cytokine production and to convey suppressive activity to 
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conventional effector T cells. Furthermore, the frequency of Treg cells were higher in 

anti TNF-α (infliximab) responding patients compared with the same patients before 

treatment (Ehrenstein et al., 2004). The expanded population of Treg cells from 

infliximab treated patients were FoxP3+ but lacked CD62L expression, thereby 

distinguishing this Treg subset from natural Treg cells present in healthy individuals 

and patients with active RA (Nadkarni et al., 2007). These FoxP3+CD62L- Treg cells 

from infliximab treated RA patients mediated their suppressive function through 

TGF-β and to a lesser extent IL-10 (Nadkarni et al., 2007). In vitro infliximab 

stimulation of CD4+CD25- T cells from RA patients induced a CD62L- Treg 

population (Nadkarni et al., 2007). However, the natural CD62L+ Treg from 

infliximab treated RA patients remained defective (Nadkarni et al., 2007). It was later 

reported that peripheral blood Treg from RA patients expressed reduced CTLA-4 and 

regulation of TCR signalling by CTLA-4 was impaired in these patients indicating 

that the defective Treg function in RA patients could be associated with CTLA-4 

defects (Flores-Borja et al., 2008). 

 

1.7.2 Systemic lupus erythematosus (SLE) 

Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease 

characterized by the presence of high titre of IgG auto-antibodies directed towards 

nuclear localised auto-antigens. Initial studies in human SLE reported decreased 

frequency of CD4+CD25+ Treg cells from peripheral blood of SLE patients (Crispin 

et al., 2003). Studies using CD4+CD25high regulatory cells confirmed this result, 

showing that Treg frequency was reduced in the peripheral blood of patients with 

active disease compared to healthy controls (Habibagahi et al., 2010; Crispin et al., 

2003; Bonelli et al., 2008a). Treg from SLE patients displayed an activated phenotype 
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as determined by the expression of CD69, CD71 and HLA-DR (Bonelli et al., 2008a). 

Lee et al. showed that SLE Treg also expressed reduced CCR4 and that they had 

decreased CCR4 ligand mediated migration (Lee et al., 2008). However Miyara et al 

reported that Treg from active SLE were reduced in number during disease flares and 

that SLE Treg were more susceptible to Fas mediated apoptosis (Miyara et al., 2005). 

Treg from active SLE patients also expressed significantly less FoxP3 whereas Treg 

from inactive SLE expressed increased FoxP3, which was not significantly different 

than normal (Valencia et al., 2007).  

 

CD4+CD25high Treg isolated from active SLE patients (by FACS sorting), were 

defective in suppressing the proliferation and cytokine production by conventional  T 

cells while Treg from inactive SLE exhibited normal suppressive function (Valencia 

et al., 2007). However all these results were based on Treg isolated based on the 

expression of CD4 and CD25 only. By sorting Treg cells using CD127low expression 

to eliminate activated T cells, Venigalla et al reported that Treg derived from SLE 

patients were quantitatively and qualitatively normal and that the defect in T-cell 

suppression observed in active SLE was due to the resistance of effector cells to Treg 

mediated suppression and not to abnormal regulatory T cells (Venigalla et al., 2008). 

 

1.7.3 Multiple Sclerosis (MS) 

Multiple sclerosis (MS) is a chronic inflammatory disease characterized by the 

infiltration of the lymphocytes and inflammation of the central nervous system (CNS) 

white matter. The frequency of Treg in the cerebrospinal fluid (CSF) from MS 

patients is significantly increased (Feger et al., 2007; Venken et al., 2008b; Venken et 

al., 2008b). However the frequency of Treg in the peripheral blood do not differ 
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between patients with MS and healthy controls (Venken et al., 2008b; Feger et al., 

2007).  

 

It has been also been shown that Treg from relapsing remitting MS (RR-MS) patients 

are functionally impaired, which restored their suppressive function during remission, 

while Treg from secondary progressive MS (SP-MS) patients remained normal 

(Venken et al., 2008b; Viglietta et al., 2004). Patients with MS have reduced levels of 

FoxP3 at the mRNA and protein levels suggesting an involvement of diminished 

FoxP3 expression in impaired Treg cell immunoregulation in MS (Venken et al., 

2008b; Huan et al., 2005). Studies by Venken et al. and Haas et al. revealed that the 

frequency of recent thymic emigrating Treg defined by the expression of CD31 and 

CD45RA was reduced in the peripheral blood of RR-MS patients (Venken et al., 

2008a; Haas et al., 2007).  

 

However all the above studies were based on Treg cells isolated on the basis of CD4 

and high CD25 expression. Michel et al., later applied stringent CD25 gates and 

introduced CD127low expression to define Treg cells and observed that  RR-MS 

patients have normal Treg function when cells expressing CD127 (IL7R-α) were 

excluded from the analysis (Michel et al., 2008). Fletcher et al. later observed that 

although both CD39+ and CD39- Treg suppressed the proliferation and IFN-γ 

production by effector T cells, only the CD4+CD25high CD39+ Treg suppressed IL-

17 production, whereas CD4+CD25highCD39- Treg produced IL-17 (Fletcher et al., 

2009). They also reported that there was reduction in the frequency and suppressive 

function of CD39+ Treg cells from MS patients which could play an important role in 

pathology of MS (Fletcher et al., 2009). 
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1.7.4 Type 1 Diabetes (T1D)  

Type 1 diabetes is a T-cell mediated disease in which insulin producing pancreatic 

islet beta cells are destroyed selectively, resulting in a loss of insulin production and a 

subsequent inability to control glucose metabolism, leading to a life long dependency 

on insulin (Lawson et al., 2008). Many studies investigated the role of Treg in T1D, 

and found no difference in the absolute number or frequency of Treg between T1D 

patients and healthy controls (Lindley et al., 2005; Brusko et al., 2007) and there was 

no difference in the frequency of Treg between recent onset T1D patients and those 

with established disease (Brusko et al., 2005). Some groups suggested functional 

defects of Treg (MACS purified) in patients with T1D and this defect was shown to 

be associated with reduced production of IL-2 and TGF-β (Brusko et al., 2005; 

Lindley et al., 2005). But contrasting results were obtained when Putnam et al. used 

sorted Treg cells from T1D patients and found no defect in the functional capacity of 

Treg cells from these patients (Putnam et al., 2005). 

 

However later studies involving crossover co-culture assays demonstrated a relative 

resistance of CD4+CD25- effector T cells to CD4+CD25high Treg mediated 

suppression while there appeared to be heterogeneity in the functional ability of Treg 

from these patients (Lawson et al., 2008; Schneider et al., 2008). Increased levels of 

apoptosis have also been reported in the Treg cells in recent onset T1D subjects and in 

subjects at high risk of this disease which could also contribute to defective regulation 

observed in T1D (Glisic-Milosavljevic et al., 2007). Kavvoura et al. performed a meta 

analysis of 33 studies examining polymorphisms associated with T1D and found that 

CTLA-4 polymorphism is associated with T1D (Kavvoura and Ioannidis, 2005). 
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Green et al. reported that highly potent Treg accumulate in the pancreatic lymph 

nodes during T1D (Green et al., 2002).  

 

1.7.5 Inflammatory bowel disease (IBD) 

IBD is a chronic relapsing and remitting inflammatory condition of the 

gastrointestinal tract that manifests as 2 distinct, but overlapping clinical entities- 

Crohns disease (CD) and ulcerative colitis (UC) (Maul et al., 2005). Earlier studies 

reported decreased frequency of Treg in the peripheral blood of patients with CD and 

UC during active disease suggesting an inverse correlation between disease severity 

and peripheral Treg frequency (Saruta et al., 2007; Maul et al., 2005; Takahashi et al., 

2006). However lamina propria, mesenteric lymph nodes, and intestinal inflamed 

mucosa of patients with CD or UC have increased frequency of Treg which increase 

with disease activity (Maul et al., 2005; Saruta et al., 2007; Makita et al., 2004; Yu et 

al., 2007; Holmen et al., 2006). Treg from the peripheral blood as well as the 

inflamed mucosa maintain normal cell-contact dependant cytokine independent 

suppressive capacity (Holmen et al., 2006; Saruta et al., 2007; Yu et al., 2007; Makita 

et al., 2004; Maul et al., 2005). Recently Eastaff-Leung et al. observed a decrease in 

the Treg population and increase in Th17 population and a reduced ratio of Treg to 

Th17 cells in the peripheral blood of IBD patients (Eastaff-Leung et al., 2010). 

Infliximab treatment enhanced the number and function of FoxP3+ Treg in IBD 

(Boschetti et al., 2010). 

 

Our understanding of the phenotypic and functional characteristics of Treg from the 

peripheral blood and the site of inflammation in various diseases are summarised in 

Table: 1.5. 
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Disease Peripheral blood Treg Treg at site of inflammation 

RA 

Decreased/ increased frequency, 

Decreased CTLA-4, Defective 

suppressive function (on cytokine 

production by Tconv) 

Increased frequency, Increased CTLA-

4 and GITR, Normal functional activity 

in vitro, decreased susceptibility of 

synovial Tconv cells to Treg 

suppression. 

SLE 

Decreased/increased frequency, 

Decreased expression of FoxP3 and 

CCR4, Tconv cells resistant to Treg 

mediated suppression 

 

MS 

No difference in frequency, normal 

function, Decreased frequency and 

impaired function of Cd39+ Treg. 

Increased frequency of Treg, 

T1D 

No difference in frequency, Tconv 

cells resistant to Treg suppression, 

increased level of apoptosis in Treg 

from recent onset diabetes 

Increased frequency of Treg 

IBD 

Decreased frequency of Treg, normal 

suppressive capacity, Reduced 

Treg:Th17 ratio 

Increased frequency of Treg 

 

Table: 1.5 Phenotypic and functional characteristics of Treg in human 

diseases 

 
Functional and phenotypic characteristics of Treg from peripheral blood as well as 
target site in human rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), 
multiple sclerosis (MS), type 1 diabetes (T1D) and inflammatory bowel disease 
(IBD). Conflicting reports exist about the frequency of Treg in the peripheral blood of 
RA patients as some papers report a decreased frequency of Treg (Cao,2004) whereas 
some studies report an increased frequency of Treg in peripheral blood of RA patients 
(Amelsfort, 2004). Similarly in SLE, some studies report a decreased frequency of 
Treg in the peripheral blood ((Habibagahi et al., 2010; Crispin et al., 2003; Bonelli et 

al., 2008a) and some reports show an increased proportions of Treg in patients with 
SLE (Suarez, 2006). 
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1.8 Hypothesis 

As explained in the previous section, defects in Treg are associated with various 

systemic and autoimmune diseases including ocular inflammatory diseases. Either a 

decreased number and/or defective function of Treg have been shown in active uveitis 

patients. In this context, I hypothesised that there may be a deficiency in the number, 

phenotype and/or function of Treg from uveitis patients. Accumulation of Treg cells 

at other inflammatory sites prompted me to hypothesise that there may also be 

accumulation of Treg in the eye of uveitis patients. 

 

1.9 Objectives 

In this thesis I set out to identify and analyse Treg from different groups of uveitis 

patients such as chronic anterior (AU), chronic pan (pan), acute anterior (AAU) and 

acute pan (APU) uveitis and compare them with age and sex matched healthy controls 

(HC). The specific aims included: 

 

1. Identify Treg cells as defined as CD4+CD25highCD127low T cells using flow 

cytometry from human subjects. 

2. Characterise the phenotype of Treg from peripheral blood based on their 

expression of Treg markers such as FoxP3, CTLA-4 and CD39. 

3. Isolate pure and functional Treg from peripheral blood and analyse their 

functional capacity 

4. Analyse if there were any difference in the frequency, phenotype and/or 

function of Treg from uveitis patients compared to healthy controls. 
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5. Further analyse whether there were any difference in the frequency, phenotype 

and/or function of Treg between different uveitis entities (anterior and pan) as 

well as between acute and chronic patients.  

6. Identify ocular Treg cells. As uvea samples from human patients are 

inaccessible, aqueous humor (AqH) samples from patients have to be analysed 

to identify ocular Treg. 

7. Analyse whether there were any difference in the phenotype and/or function of 

ocular Treg from acute anterior uveitis patients compared to peripheral blood 

Treg  
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2 MATERIALS AND METHODS 

 

2.1 List of reagents 

 

2.1.1   Media and solutions 

All Sigma-Aldrich, Irvine, UK unless otherwise specified. 

RPMI medium  RPMI (Roswell Park Memorial Institute) 1640  

L-glutamine (1.64mM), benzyl penicillin (40U/ml), 

streptomycin (0.4mg/ml) and HEPES buffer (10mM) 

RPMI/ITS+3/NEAA/Na pyruvate (Serum Free Medium)     

RPMI medium with 1% ITS+3 liquid media 

supplement, 1% Nonessential amino acids, 1% Sodium 

pyruvate , Non-essential amino acid solution (100x) 

stock solution contains 0.89g/l L-alanine, 1.5g/l L-

asparagine, 1.33g/l L-aspartic acid, 1.47 g/l glutamic 

acid, 0.75 g/l glycine, 1.15 g/l L-proline and 1.05 g/l L-

serine. 

Sodium pyruvate stock solution contains 100mM 

sodium pyruvate solution. 

RPMI/0.5% BSA  RPMI medium with 0.5% bovine serum albumin (BSA) 

 

RPMI/10% HIFCS RPMI medium with 10% heat inactivated fetal calf 

serum (Biosera, Ringmer, UK) 
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PBS Phosphate buffered saline contains 8g/l NaCl, 0.2g/l 

KCl, 1.15 g/l Na2HPO4, 0.2g/l KH2PO4 in distilled 

H2O; prepared as 1 PBS tablet per 100ml  distilled H2O 

(tablets supplied by Oxoid, Basingstoke, UK) 

MACS buffer  Phosphate buffered saline (PBS) with 0.5%BSA, 2mM 

ethylenediamine tetra-acetic acid (EDTA) 

Dynal isolation buffer Phosphate buffered saline (PBS) with 0.1%BSA, 2mM 

ethylenediamine tetra-acetic acid (EDTA) 

 

2.1.2   Cytokines  

Recombinant Human IL-2 (Immunotools) 

Recombinant human IL-1β (Peprotech, London, UK) 

Recombinant human IL-6 (Immunotools) 

Recombinant human TNF-α (Peprotech)  

Recombinant human TGFβ2 (Peprotech) 
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2.1.3   Antibodies 

 
Target Conjugate Species Isotype Clone Company Cat No Dilution 

CD4 Pe-Cy7 Mouse IgG1 SK3 BD Pharmingen 557852 1 in 10 

CD127 FITC Mouse  IgG1 eBioRDR5 Ebioscience 11‐1278 1 in 5 

FoxP3 PE Rat IgG2a PCH101 Ebioscience 12-4776 1 in 5 

CD127 None Mouse  IgG1 eBioRDR5 Ebioscience 16-1278 1 in 5 

CD39 FITC Mouse  IgG1 eBioA1(A1) Ebioscience 11-0399 1 in 10 

CTLA-4 PE Mouse IgG2a BNI3 BD Pharmingen 555853 1 in 5 

CD127 PE Mouse IgG1 R34.34 Beckman Coulter IM1980U 1 in 5 

CD4 PE Mouse  IgG1 MEM-241 Immunotools 21270044 1 in 20 

CD25 PE-Cy5 Mouse IgG2a B1.49.9 Beckman Coulter IM2646 1 in 5 

CD8 Pacific Blue Mouse IgG2a 3B5 Invitrogen MHCD0828 1 in 50 

CD25 None Mouse  IgG1 M-A251 BD Pharmingen 555429 1 in 5 

CD45RO PETR Mouse IgG2a UCHL1 Beckman Coulter IM2712U 1 in 20 

CD69 APC/Cy7 Mouse  IgG1 FN50 Biolegend 310913 1 in 10 

 

Table 2.1    List of primary antibodies used for flow cytometry.  

 
Abbreviation used Allophycocyanin (APC), Cyanine 5 (Cy5), Cyanine 7 (Cy7) 
Fluorescein isothiocyanate (FITC), Pacific blue (PB), Phycoerythrin (PE), 
Phycoerythrin Texas Red (PETR) 
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2.1.4   Other reagents 

Ficoll-Paque plus (GE Healthcare Biosciences, Amersham, UK) 

Heparin (CP pharmaceuticals, 25000 IU/ml) 

MACS CD4+CD25+Regulatory T cell isolation kit (Miltenyi Biotec) 

MACS Treg Suppression Inspector beads (Miltenyi Biotec) 

Dynabeads® Human T-Activator anti CD3/CD28 beads (Invitrogen) 

Carboxyfluorescein diacetate, sucinnimidyl ester (CFSE) (Invitrogen) 

Dynabeads® Regulatory CD4+CD25+ T cell Kit (Invitrogen) 

Click-iT™ EdU Flow Cytometry Assay Kit (Invitrogen) 

Ethylenediaminetetraacetic acid (EDTA) disodium salt solution 0.5M (Sigma Aldrich) 

Counting beads (CALTAG/Invitrogen, Paisley, UK) 

Propidium iodide (Sigma-Aldrich) 

PHA (Sigma Aldrich) 

Anti-Mouse Igk/Negative Control (FBS) Compensation Particles Set (BD 

biosciences) 

 

2.1.5   Other consumables 

Neubauer haemocytometer (Weber Scientific, UK) 

96-well suspension culture plates sterile U bottom with lid (Greiner Bio-one Ltd, 

Stonehouse, UK) 

48-well adherent culture plates sterile flat bottom with lid  

72-Well Mini Trays (VWR International Ltd) 
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2.2 Aqueous humour samples 

Ethical approval for the collection of AqH and matched peripheral blood from 

patients with uveitis (acute and chronic patients) or cataract (controls) had previously 

been obtained in 1996 from Dudley Local Research Ethics Committee and, at the 

Trust level, from Sandwell and West Birmingham NHS Trust Research and 

Development Committee.  

 

Patients attending routine cataract surgery provided the group of non-inflammatory 

control AqH samples. AqH sampling from the control group was performed in theatre 

at the start of their cataract surgery. AqH sampling (40-100µl) from patients with 

active uveitis was performed at the slit lamp following a previously published 

protocol (Cheung et al., 2004).  

 

A team of ophthalmologists at the Birmingham and Midland Eye Centre led by 

Professor P.I. Murray regularly undertake AqH sampling both from patients with 

uveitis (for clinical and research purposes) and from patients attending for cataract 

surgery (for research purposes).  

 

Detailed demographic data including classification of uveitis (Table: 1.3 & Table: 

1.4), aetiology (where known), duration of current episode, duration of disease, 

whether unilateral or bilateral, current medical treatment (if any) and anterior chamber 

cellular activity (as per Standardization of Uveitis nomenclature 2005 classification 

(Jabs et al., 2005) were recorded at the time of sample collection.  
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Each sample was centrifuged (300g, 5mins, 20˚C), and the supernatant collected and 

frozen at -80ºC in aliquots. The cells were resuspended in 100µl of RPMI/10% heat 

inactivated fetal calf serum (HIFCS) for phenotypical or functional assays.  

 

Peripheral blood samples (30ml) were also taken from patients attending regular 

uveitis clinic as well as healthy volunteers recruited from among colleagues. The 

peripheral blood mononuclear cells (PBMC) were then isolated as explained below 

which are then either frozen or used for phenotypic and functional assays. 

 

2.3 Isolation of cells 

 

2.3.1   Isolation of Peripheral Blood Mononuclear Cells 

(PBMC)  

Human PBMC were isolated using well established protocols. Heparinised blood 

samples were taken from donors (uveitis patients, cataract patients and healthy 

volunteers recruited from amongst colleagues). Informed consent was taken in 

accordance with the Human tissue Act 2004. Peripheral blood was diluted 1:1 with 

RPMI medium comprising of RPMI 1640 supplemented with L-glutamine (1.64mM), 

benzyl penicillin (40 U/ml), streptomycin (0.4 mg/ml) and HEPES buffer (10mM)(all 

sigma Aldrige). Diluted blood was layered on top of 8ml of ficol- Paque plus in 25ml 

universal tubes and centrifuged at 1200 rpm for 30 minutes at 20oC without brake.  
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The buffy coat containing the PBMC was transferred to fresh universals containing 

using a serological pipette and washed three times in RPMI medium with 

centrifugation of 300g at 20°C for 8 mins each time. 

 

The yield of PBMC were then calculated using a Neubauer haemocytometer (Weber 

Scientific, UK), as described by the manufacturer. The range of yield was about 5x105 

– 1.5x106 per ml of peripheral blood. 

 

2.3.2   Isolation of regulatory T cells (Treg) 

Different techniques have been used for the isolation of regulatory T cells from 

PBMCs.  

 

2.3.2.1    Isolation using Magnetic activated cell sorting (MACS)  

MACS microbeads are super-paramagnetic particles, pre-coated with a specific 

antibody to enable positive or negative selection of cell populations when passed over 

a MACS column placed within a strong magnetic field. Regulatory T cells were 

isolated using MACS CD4+CD25+ Treg cells isolation kit (Miltenyi Biotec) as 

described by the manufacturer. The kit contains a cocktail of biotinylated antibodies 

and anti-biotin microbeads for depletion of non-CD4+ T cells, and CD25 microbeads 

for subsequent positive selection of the CD4+CD25+ regulatory T cells.   

 

PBMC were incubated with 90µl MACS buffer and 10µl of biotin-antibody cocktail 

per 107 cells for 10 minutes followed by 15 minutes incubation with anti biotin micro 

beads at 4°C. MACS buffer was filter-sterilized and consisted of phosphate buffered 

saline (PBS; Oxoid limited), 0.5% bovine serum albumin of 98% purity (BSA; 
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Sigma-Aldrich) and 2mM ethylenediamine tetra-acetic acid, (EDTA; Sigma-Aldrich). 

(The biotin- antibody cocktails contained a cocktail of biotin-conjugated monoclonal 

anti-human antibodies against CD8, CD14, CD16, CD19, CD36, CD56, CD123, 

TCRγ/δ and CD235a (glycophorin A)). The cells were then washed once with MACS 

buffer (centrifugation of 300g, 4°C, and 8 mins), the supernatant pipetted off to a dry 

pellet, and cells resuspended in 500µl MACS buffer/108 cells. An LD MACS 

separation column was prepared by a single rinse with 2ml MACS buffer and placed 

on a QuadroMACS separator magnet. The resuspended cells were passed over the 

column, and the negative fraction (unbound CD4+ cells) eluted with a series of two x 

1ml MACS buffer washes.  

 

The eluted cells were then centrifuged and resuspended in 90µl of MACS buffer and 

10µl of CD25+ micro beads per 107 cells and incubated in dark at 4°C for 15 minutes. 

The cells were then washed once with MACS buffer (centrifugation of 300g, 4°C, 8 

mins), and resuspended in 500µl MACS buffer/108 cells. The cells were then passed 

through an MS column (prepared by single rinse with 500µl MACS buffer) and the 

negative fraction (CD4+CD25- conventional T cells/ Tconv) eluted with a series of 

three x 500µl MACS buffer washes. The column was then removed from the magnet 

and the CD25-microbead positive fraction (CD4+CD25+ Treg cells) eluted with 1ml 

MACS buffer and firm column pressure from the plunger. To increase the purity of 

the CD4+CD25+ Treg cells, the eluted fraction was enriched over a second MS 

column.  

 

The yield of CD25+ Treg was calculated by use of the haemocytometer. The range of 

yield was 0.1- 0.5 x 105 Treg per ml of peripheral blood. The purities of Treg (Fig: 
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2.1a) and Tconv (Fig: 2.2a) populations were analysed by flow cytometry following 

staining with CD4, CD25 and CD127.  

 

2.3.2.2    Isolation of Treg using Dynabeads 

Dynabeads are superparamagnetic, monosized polymer particles, providing a solid-

phase with liquid-phase kinetics. This is a gentle and tube-based magnetic separation 

where the cells are not exposed to the stress of going through a dense column, and 

hence yields more viable and functional cells.  

 

PBMC were isolated and separated into two portions- one for CD4+CD25+CD127- 

Treg isolation and the other for CD4+CD25-CD127+ conventional T cell isolation. The 

cells were then incubated for 20mins at 2-8°C with 500µl dynal isolation buffer, 200µl 

HIFCS (heat inactivated foetal calf serum – Sigma Aldrich) and 200µl of antibody 

mix human CD4 per 108 cells. 5ul of purified anti human CD127 antibody was added 

to the Treg fraction and 5ul anti CD25 antibody was added to the conventional T cell 

fraction. The antibody mix human CD4 contained mouse IgG antibodies to CD14, 

CD16 (specific for CD16a and CD16b), CD56, CD123, CD36, CD8, CD19 and 

Glycophorin A- supplied in PBS and 0.02% sodium azide. Dynal isolation buffer was 

filter-sterilized and consisted of phosphate buffered saline (PBS; Oxoid limited) 

supplemented with  0.1% bovine serum albumin of 98% purity (BSA; Sigma-Aldrich) 

and 2mM ethylenediamine tetra-acetic acid, (EDTA; Sigma-Aldrich). After the 

incubation, cells were centrifuged and resuspended in 1ml cold isolation buffer and 

2ml depletion My One Dynabeads (uniform, super paramagnetic polystyrene beads of 

1µm diameter) per 108 cells at room temperature under rolling and tilting for 15 

minutes. The bead-bound cells were vigorously resuspended by vortexing and placed 
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on a DynaMag™ magnet. The supernatant containing the bead-free CD4+CD25- 

conventional T cell (from conventional T cell fraction) or CD4+CD127- T cells (from 

Treg fraction) were transferred to new tubes and any residual depletion beads were 

separated again on the magnet. The Tconv cells were counted and resuspended in 

RPMI with 10% HIFCS.  

 

The CD4+CD127- T cells for the Treg isolation were then centrifuged (300g, 4°C, 8 

mins) and incubated for 25 minutes at 2-8o C with rolling and tilting with 1ml 

isolation buffer and 200µl Dynabeads CD25 (uniform, super paramagnetic 

polystyrene beads of 4.5µm diameter) per 1.5 x 107 cells. The tube was then placed on 

the magnet and the supernatant was removed carefully and discarded. The bead bound 

CD25+ cells were then washed twice on the magnet and incubated for 45 minutes at 

room temperature with tilting and rotation with 500µl RPMI with 1% HIFCS and 

80µl DETACHaBEAD per 1.5 x 107 cells. DETACHaBEAD are polyclonal sheep 

anti-Mouse anti-Fab antibodies that bind to the antigen-binding region of the target 

antibodies (here anti CD25 antibody on the dynabeads) with high affinity, thereby out 

competing their binding to the cell. The tube was then placed on the magnet and the 

supernatant containing CD4+CD25+ cells were removed into a new tube. The 

Dynabeads CD25 were washed twice in 1 ml RPMI with 1% HIFCS to obtain the 

residual cells and the supernatant collected after separation on a magnet. The Treg 

cells were then centrifuged and resuspended in RPMI with 10% HIFCS. 

 

The yield of CD4+CD25+CD127- Treg was calculated using a haemocytometer. The 

range of yield was usually 0.1- 0.4 x 105 Treg per ml of peripheral blood. The purities 
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of the isolated populations of Treg (Fig: 2.1b) and Tconv cells (Fig: 2.2b) were 

determined using flow cytometry. 

 

2.3.2.3    Isolation of Treg by High speed cell sorting 

The isolated PBMC were labelled with the antibodies to CD127 (FITC), CD4 (PE) 

and CD25 (PE-Cy5). The cells were sorted on the Mo-Flow cell sorter into two 

populations: CD4+CD127lowCD25high (regulatory T cells) and CD4+ CD127high 

CD25low (conventional T cells). 

 

The yield of CD25high Treg was calculated using a haemocytometer. The yield was 

usually lower and the range of yield was usually 0.4 x 104 – 0.2 x 105 Treg per ml of 

peripheral blood. The purities of the isolated populations of Treg (Fig: 2.1c) and 

Tconv (Fig: 2.2c) were determined using flow cytometry. 
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Fig: 2.1 Purity of Treg isolated using different techniques 

 
Treg cells isolated using Macs beads, dynabeads and high speed cell sorting. Purified 
cells were labelled and gated on CD4+ cells to identify CD4+CD25highCD127low 
Treg. Purity of the cells depicted as percentage of CD4+ cells. 
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Fig: 2.2 Purity of conventional T cells isolated using different techniques 

 
Tconv cells isolated using Macs beads, dynabeads and high speed cell sorting. 
Purified cells were labelled and gated on CD4+ cells to identify 
CD4+CD25lowCD127high Tconv cells. Purity of the cells depicted as percentage of 
CD4+ cells. 
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2.4  Cryopreservation of cells 

A small portion of PBMCs were frozen as soon as they were isolated for the purpose 

of surface and intra cellular staining later on. (Functional analyses on the other hand 

were carried out always using freshly isolated cells). The cells were centrifuged at 

1200 rpm for 8 minutes and the supernatant aspirated off. The pellet was then 

resuspended in freezing solution (10% DMSO in RPMI/10% HIFCS) at room 

temperature at a concentration of 1x106 cells/ml. The cells were then aliquoted into 

cryovials. The cryovials were then placed into a room temperature Nalgene freezing 

container filled with isopropanol. The freezing container was then transferred to a -

80ºC freezer for a minimum of 12 hours. After a minimum of 12 hours and maximum 

of 48 hours, the cryovials were transferred into liquid nitrogen tanks for indefinite 

storage. 

To thaw the cells, the temperature in the cryovial was raised rapidly to between 25°C 

and 37°C using a water bath, while taking care to avoid contamination of the cells. 

The cells were then transferred slowly from the cryovials into a universal containing 

RPMI/10%HIFCS. The cells were then washed twice with RPMI/10% HIFCS and 

resuspended in appropriate buffer for staining.  

 

2.5 Analysis of regulatory T cell surface phenotype by 

flow cytometry 

The PBMC or the aqueous humour cells were aliquoted into marked wells at 2 x 105 – 

1 x 106 cells/well and centrifuged. The cells were incubated with antibodies specific 

for CD4 (PE-Cy7), CD25 (PE-Cy5), CD127 (FITC), CD45RO (PE-Texas Red), CD8 

(Pacific blue), CD69 (APC Cy7) and the appropriate isotype controls. Following 20 
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minutes incubation on ice, the cells were washed with PBS/ 0.5% BSA and the 

expression of the various molecules measured by flow cytometry. Treg were 

identified as CD4+CD25highCD127low T cells.  

As shown in Fig: 2.3A, the overlap of each single surface marker used to define Treg 

(CD4, CD25) does not allow for accurate gating due to the inclusion of significant 

numbers of FoxP3 negative cells. However, when combining both CD25 and CD127 

along with CD4, a clear visual distinction of a population of cells can be made 

containing >90% FoxP3 positive cells (Fig: 2.3B)  

 

3.0%

CD4

C
D

2
5

55.4%

FoxP3

94.1%
6.0%

CD127

C
D

2
5

FoxP3

(A)

(B)

 
Fig: 2.3 Foxp3 expression of CD4+CD25high and CD4+CD25highCD127low 

Treg cells gated by the use of eye 

(A) Lymphocytes were gated on CD4 and CD25 positive cells and the FoxP3 
expression of CD4+CD25high Treg (3% of total lymphocytes) were analysed by flow 
cytometry. (B) CD4+ lymphocytes were gated on CD25highCD127low Treg cells 
(6% of CD4+lymphocytes and about 1% of total lymphocytes) and the FoxP3 
expression was analysed by flow cytometry. Use of CD25 and CD127 to identify Treg 
cells (gated by the use of eye) helped to identify Treg population that contained the 
majority of FoxP3+ cells. Grey peaks represent isotype control and black peaks 
represent FoxP3 staining. 



81 
 

2.6 Analysis of FoxP3 and CTLA-4 expression of 

regulatory T cells 

The PBMC or the aqueous humour cells were aliquoted into marked wells at 2 x 105 – 

1 x 106 cells/well and centrifuged. The cells were incubated with antibodies to CD4 

(PE-Cy7), CD127 (FITC), CD25 (PE-Cy5), CD45RO (PE-Texas Red), CD69 (Apc-

Cy7) and CD8 (Pacific Blue) along with the appropriate isotype controls. Following 

20 minutes incubation on ice the cells were washed with PBS/0.5% BSA. The fixation 

and permeabilisation buffers were made up according to manufacturer’s instruction 

(e-bioscience FoxP3 staining kit). The cells were then incubated with fixation buffer 

for 30 minutes on ice followed by washing with PBS/0.5% BSA. The cells were then 

washed twice with permeabilisation buffer. 1µl of rat serum was added to the wells 

receiving FoxP3 antibody or its isotype control and incubated on ice for 15 minutes 

along with 30µl permeabilisation buffer in all the wells. After the incubation, the 

FoxP3 (PE) or the CTLA-4 (PE) antibodies and their isotype controls were added to 

the respective wells and incubated for 30 minutes followed by washing with 

permeabilisation buffer. The cells were resuspended in PBS/0.5% BSA and the 

expression of FoxP3 and CTLA-4 measured using flow cytometry. 

 

2.7 Carboxyfluorescein Diacetate Succinimidyl Ester 

(CFSE) labelling of PBMC or Tconv cells. 

The population of interest (either PBMC or CD4+CD25- conventional T cells) was 

labelled with carboxyfluorescein diacetate sucinnimidyl ester (CFSE; Invitrogen) as 

follows. The cells were kept in a universal tube and were washed twice with 10ml 
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sterile PBS, before being resuspended in PBS at 50ul/106 cells. 1µl of 10M CFSE was 

added to 5ml of sterile PBS to give a 2µM solution. This was added at a 1:1 ratio to 

the cell suspension to give a final CFSE concentration of 1µM, and incubated for 

10min at room temperature with periodic shaking. After 10mins, an equal volume of 

RPMI/10%HIFCS was added and left for further one minute. The cells were then 

washed once with PBS and twice with RPMI/10%HIFCS. The cells were then 

counted and resuspended in RPMI/10%HIFCS at the required concentration.  

 

2.8 Functional assay for Treg 

Regulatory T cells are capable of suppressing the proliferation and cytokine 

production by other immune cell types. The functional capacities of regulatory T cells 

were assayed by their ability to suppress the proliferation of Tconv cells. The isolated 

Treg were cultured with Tconv cells either in the presence or absence of antigen 

presenting cells (APC). For the assay in the presence of APCs, cells were stimulated 

with phytoheamaglutinin (PHA) which stimulates T cells in the culture. For functional 

assay in the absence of APCs, the cells were stimulated either with anti CD3 and anti 

CD28 antibodies or with anti CD3/CD2/CD28 coated Treg suppression inspector 

beads.  

 

2.8.1   Suppression Assay in the presence of APC  

The PBMC were labelled with CFSE as described earlier and cultured in 96 well 

round bottom plates at 2.5 x 104 cells per well along with either unlabelled 

CD4+CD25- Tconv cells or CD4+CD25+ regulatory T cells at 1:1 CFSE labelled 

PBMC: unlabelled cells ratio (for sorted cells). The cells were stimulated with PHA 
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(4.5 ng/well) and cultured for 4 days. Different concentrations of PHA were tested to 

get the optimal proliferation of T cells and suppression by Treg (Fig: 2.4). The culture 

medium used was RPMI/10% HIFCS. After 4 days of culture the 96 well plate was 

centrifuged (300g, 4mins, 21°C) and 50-70µl supernatant harvested and kept (frozen 

down at -80°C). The cells were then spun down again, any remaining supernatant 

discarded and the cells were resuspended in 200µl PBS/0.5%BSA before being 

transferred to flow cytometry tubes containing 190µl PBS/0.5%BSA and 10µl 

(10000) counting beads. Flow cytometry was performed on the Dako Cyan ADP High 

Performance flow cytometer (Dako Colorado).  When only a part of the sample is run, 

the absolute numbers of cells in the original sample can be calculated from the 

number of counting beads counted using the following equation: 

 

Absolute number of total live cells = Number of proliferating cells counted x (total 

number of beads added/ total number of beads counted). 

 

Undivided cells have the highest concentration of CFSE (and therefore highest signal) 

which halves with successive generations of proliferated cells. The number of 

proliferated cells can therefore be calculated from the percentage of live cells to the 

left of the first peak (i.e, of the highest signal). 

 

2.8.2   Suppression Assay in the absence of APC 

In this assay, instead of PBMC, the isolated CD4+CD25- Tconv cells were labelled 

with CFSE and cultured in 96 well round bottom plates at 2.5 x 104 cells per well 

along with either unlabelled CD4+CD25- Tconv cells or CD4+CD25+ regulatory T 

cells at 1:1 CFSE labelled Tconv: unlabelled cells ratio (for sorted cells) or a series of 
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doubling dilutions ranging from 1: 1 to 64:1 (for cells isolated by dynabeads). The 

cells were stimulated with equal number of anti CD3/CD2/CD28 coated Treg 

inspector beads (miltenyi biotech). After 4 days of culture the 96 well plate was 

centrifuged (300g, 4mins, 21°C) and 50-70µl supernatant harvested and kept (frozen 

down at -80°C). The cells were then spun down again, any remaining supernatant 

discarded and the cells were resuspended in 200µl PBS/0.5%BSA before being 

transferred to flow cytometry tubes containing 190µl PBS/0.5%BSA and 10µl 

counting beads. Flow cytometry was performed on the Dako Cyan ADP High 

Performance flow cytometer (Dako Colorado). The actual numbers of proliferated 

cells were calculated as described earlier 
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Fig: 2.4 Optimisation of PHA concentration for PBMC proliferation 

 

PBMCs were labelled with CFSE and cultured with different concentrations of PHA 
such as (a) 18ng/well, (b) 9ng/well, (c) 4.5ng/well and (d) 2.25ng/well in a final 
volume of 200µl to find out the minimum concentration at which optimum 
proliferation of PBMC occur. Number of dividing CFSE labelled cells noted on the 
histogram. Optimum proliferation of cells with clear distinct CFSE peaks was 
observed at 4.5ng/well concentration of PHA.  
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2.8.3   Suppression assay in the presence of Aqueous humour 

(AqH) 

Since the volume of individual samples of AqH is a limiting factor, these experiments 

were carried out in 72 well mini trays (from VWR International ltd) in a final volume 

of 20µl. Tconv cells were labelled with CFSE and cultured in 72 well mini trays at 1.0 

x 104 cells per well with or without 10µl of individual uveitis or control AqH samples. 

The cells were stimulated with equal number of anti CD3/CD2/CD28 Treg 

suppression inspector beads (miltenyi biotech). The CFSE labelled Tconv cells were 

cultured with either unlabelled CD25- Tconv cells or CD25+ regulatory T cells at 1:1 

concentration. The cells were cultured in RPMI/ 10% HIFCS. At day 4, the cells were 

harvested and stained for 5 minutes with propidium iodide (PI - 4µg/ml final 

concentration) which acts as dead cell exclusion dye and washed twice with 

PBS/0.5% BSA. The cells were then resuspended in 200µl PBS/0.5%BSA before 

being transferred to flow cytometry tubes containing 199µl PBS/0.5%BSA and 1µl 

counting beads. Flow cytometry was performed on the Dako Cyan ADP High 

Performance flow cytometer (Dako Colorado). When only part of the sample is run 

the actual numbers of cells in the original sample can be calculated from the number 

of counting beads counted using the following equation:  

 

Total live cells = total PI negative cells counted x (total number of beads added/ total 

number of beads counted). 
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2.9 Studies on the effect of ocular microenvironment 

on FoxP3 expression 

 

2.9.1   Effect of dexamethasone and inflammatory cytokines 

CD25+ Treg were isolated using dynabeads from a healthy control and cultured with 

recombinant serum cytokines (present in the uveitis AqH) at different concentrations. 

Cells were cultured with TNF-α (10ng/ml and 100ng/ml), IL-6 (20 ng/ml and 200 

ng/ml), TGF-β2 (10ng/ml and 100ng/ml) and IL-1β (10ng/ml and 100ng/ml) and also 

with dexamethasone (topical glucocorticoid used to treat uveitis). The cells were 

cultured for 24 hours in serum free medium and the FoxP3 expression was analysed 

using flow cytometry. 

 

2.9.2   Effect of uveitis AqH 

CD25+ Treg isolated using dynabeads were cultured in 72 well micro well plates in 

20µl volume with or without 10µl uveitis AqH or varying activity. The cells were 

cultured for 24 hours in serum free medium and the FoxP3 expression was analysed 

using flow cytometry. 
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2.10 Preparation of regulatory T cell line 

CD25high Treg and CD25low Tconv cells were isolated from patient and control 

peripheral blood by sorting. The suppressive functions of Treg were determined on 

the day in the absence of APC as described in subsection 2.7.2. Treg cells were 

individually cultured in 48 well flat bottom plates with the addition of anti CD3/CD28 

coated beads (Dynal T cell expander beads) at 3 beads: 1 cell ratio in culture medium 

containing RPMI/10%HIFCS/100 U/ml IL-2. The cells were cultured for 14 days. The 

medium was replaced every two days with fresh medium and the cells split between 

wells whenever necessary. On day 15, the suppressive capacity of these Treg cell lines 

were tested on the T cells isolated from a healthy control on the day in an APC free 

setting. 

 

2.11 Treg depletion from very small number of cells 

Regulatory T cells from the AqH of uveitis patients could not be isolated by 

traditional methods due to the very small sample volume and cell number.  One 

possible way to analyse AqH Treg function is to deplete Treg from AqH using anti 

CD25 antibody coated beads and analyse the proliferative capacity of the residual 

Tconv cells.  

 

Dynal sheep anti mouse IgG beads-M450 were first coated with mouse anti human 

CD25 antibody or its isotype control. For this, the beads were transferred to an 

eppendorf and mixed with equal volume of dynal isolation buffer and placed on 

DynaMag™ magnet for 3 minutes and supernatant discarded. 1µg of purified mouse 

anti human CD25 or isotype control was added to 25µl of the washed dynabeads and 
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incubated for ≥ 30 minutes at 2-8°C with gentle tilting and rotation after which the 

beads were washed on DynaMag™ magnet. After 2 similar washes, the dynabeads 

were resuspended in the same volume of buffer as the initial volume of dynabeads. 

 

For optimal depletion of Treg, 5x103 cells were incubated with different amounts of 

anti CD25 antibody coated beads for 30 minutes at 2-5 degrees under rolling and 

tilting. The beads bound cells were removed on  a magnet and the remaining cells 

were cultured in 72 well mini trays for a different periods of time (24hr, 36 hr, and 

48hr) along with click-iT EdU reagent and  analysed using click-iT EdU assay 

(explained later).  

 

To get maximum proliferation in the conical bottom mini tray, the plate was inverted 

and cells cultured as a hanging drop suspension in a moist chamber. 

 

2.12 Click-iT™ EdU assay  

Click-it EdU assay is an alternative to BrdU (Bromodeoxyuridine) for measuring cell 

proliferation or S-phase cells as it eliminates DNA denaturation and harsh 

permeabilisation steps required by BrdU assays, steps that damage sample 

morphology and integrity. EdU (5-ethynyl-2’-deoxyuridine) is a nucleoside analog to 

thymidine and is incorporated in DNA during active DNA synthesis. Detection is 

based on a click reaction, a copper catalyzed covalent reaction between an azide and 

an alkyne. In this application, the EdU contains the alkyne, while the Pacific Blue™ 

dye contains the azide. Standard flow cytometry methods are used for determining the 

percentage of cells in the population that are in S-phase. 

 



90 
 

The AqH cells were harvested after 48 hours and transferred to 96 well flexi plates 

and washed once with PBS/1% BSA. The cells were then incubated with 50µl of 

Click-iT™ fixative (which contains 4% para-formaldehyde in PBS) for 15 minutes at 

room temperature, protected from light followed by washing once with PBS/ 1% 

BSA. This was followed by incubation with 50µl of the 1X saponin-based 

permeabilisation and wash buffer for 30 minutes at room temperature, protected from 

light. The cells were then washed with 100µl of the 1X saponin-based 

permeabilisation and wash buffer, centrifuged (300g, 20°C, 8 minutes) and incubated 

for 30 minutes with 43.5µl of 1X Click-iT™ Reaction Buffer, 1 µl of copper sulphate 

(CuSO4), 0.5µl of fluorescent dye azide (here pacific blue azide) and 5µl of reaction 

buffer addictive at room temperature protected from light. After washing once with 

100µl of the 1X saponin-based permeabilisation and wash buffer, the cells were 

incubated with 48.5µl of 1X saponin-based permeabilisation buffer, 1µl of 

ribonuclease- A and 0.5µl of Cell Cycle 488-red (7-AAD) antibody for 30 minutes at 

room temperature protected from light for detection of the DNA content and cell cycle 

phase. The cells were washed twice in 1X saponin-based permeabilisation buffer and 

resuspended in 200µl PBS/ 1%BSA before being transferred to flow cytometry tubes 

containing 199µl PBS/ 1%BSA and 1µl counting beads. Flow cytometry was 

performed on the Dako Cyan ADP High Performance flow cytometer (Dako 

Colorado). The fluorescent signal generated by the Pacific Blue™ azide was best 

detected with logarithmic amplification and that generated by the Cell Cycle stain 

(7AAD) with linear amplification.  
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2.13 AqH depletion/ mock depletion 

Dynal sheep anti mouse IgG beads-M450 were first coated with mouse anti human 

CD25 antibody or its isotype control as described earlier (2.8). AqH from uveitis 

patients were spun down and the supernatant frozen. The cells were resuspended in 

100ul dynal isolation buffer (PBS/ 0.1% BSA/ 2mM EDTA) and divided into two. 3µl 

of dynabeads coated with either anti CD25 antibody (depletion) or isotype control 

antibody (mock depletion)  were added to each tube containing 50µl AqH cells and 

incubated for 30 minutes under rolling and tilting at 2-8°C. The tube was then placed 

in a magnet and the supernatant containing the unbound cells collected. The depleted 

and the mock depleted cells were spun down and resuspended in RPMI/10% HIFCS 

and cultured  with 5x 103 anti CD3/CD2/CD28 coated Treg inspector beads and 2µM 

EdU at a final volume of 20µl in 72 well mini-tray. The mini- tray was then inverted 

to form a hanging drop suspension of cells and cultured in a moist chamber for 48 

hours. After 48 hours the cells were harvested and the percentage of cells that has 

gone into S-phase of cell cycle is determined by Click-iT EdU detection assay. 

 

   

 



 

92 
 

3 REGULATORY T CELLS IN THE 

PERIPHERAL BLOOD OF CHRONIC 

NON INFECTIOUS UVEITIS PATIENTS 

 

3.1 Introduction 

Chronic uveitis can be differentiated from acute uveitis by its rate of progression and 

can be defined as active uveitis that persists longer than three months (Jabs et al., 

2005; McCluskey et al., 2000). Chronic uveitis can be associated with other systemic 

conditions like Behcet’s disease, sarcoidosis, juvenile chronic arthritis etc 

(McCluskey et al., 2000). It is also associated with high incidence of sight threatening 

complications like cataract, macular oedema, and glaucoma which may cause 

irreversible visual loss (McCluskey et al., 2000).  

 

Phenotypic and/or functional impairment of Treg has been indicated in acute and 

chronic autoimmune diseases. The role of Treg in the control of inflammatory disease 

has generated considerable interest recently in uveitis studies, as well as in reports 

describing their role in systemic autoimmune conditions. Association of Treg with 

uveitis has been studied mostly in animal models of uveitis. Takeuchi et al. reported 

that thymectomised B6A mice, treated with anti CD25 antibody to deplete CD25+ 

Treg cells, developed spontaneous autoimmune uveitis (Takeuchi et al., 2004). In 

addition, supplementation of regulatory T cells has been shown to suppress EAU  

(Keino et al., 2007). Adoptive transfer of Treg to IRBP immunized mice ameliorated 

EAU even in the efferent phase (Keino et al., 2007). Grajewski et al. showed later that 
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even Treg of a different specificity could inhibit development of IRBP specific 

uveitogenic conventional T cells in a bystander fashion (Grajewski et al., 2006). In 

particular, it is intriguing that in a biphasic rat experimental uveitis model, Treg 

control the recurrence of the disease (Ke et al., 2008).  

 

To date there has been very few reports on the role of Treg in human uveitis and 

almost none on the role of Treg in the chronic phase of the disease. Vogt-Koyanagi-

Harada (VKH) syndrome is a multisystem inflammatory disorder with associated 

bilateral pan uveitis and shows a chronic intraocular inflammation with recurrent 

episodes. Decreased frequency and function of Treg has been reported to be 

associated with active uveitis in VKH syndrome (Chen et al., 2008).  Recent studies 

in human uveitis have reported a decreased frequency of Treg in the peripheral blood 

of active uveitis patients compared to inactive patients (Yeh et al., 2009). However, 

none of these studies have made a clear division of uveitis as acute and chronic based 

on SUN classification criteria (Jabs et al., 2005) and haven’t excluded the effect of 

associated systemic diseases on the frequency, phenotype and function of Treg. 

 

One of the hypotheses of this thesis was that there could be quantitative and/or 

qualitative defect in the Treg from chronic uveitis patients. The aims of the series of 

experiments described in this chapter were (1) to identify and characterise Treg cells 

from peripheral blood of chronic uveitis patients, (2) to isolate and analyse their 

functional activity in vitro and (3) to determine whether these Treg maintain their 

phenotypic and functional characteristics in long term culture. 
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3.2 Identification of regulatory T cells 

Regulatory T cells in the peripheral blood were identified by isolating PBMC and 

staining them with Treg specific surface and intracellular markers as described in 

chapter 2. Treg were defined as CD4+CD25highCD127low T cells whereas the 

conventional T cells (Tconv) were identified as CD4+CD25lowCD127high T cells 

(Fig: 3.1A). The vast majority of Treg were FoxP3+ and CD45RO+ (memory), as 

previously reported (Liu et al., 2006), compared to the conventional T cell population 

that was largely FoxP3- and consisted of both CD45RO+ and CD45RO- cells.  

 

Consistent with the published literature (Fontenot et al., 2003; Wing et al., 2008), 

Treg cells expressed increased levels of intracellular FoxP3 as well as CTLA-4 

compared to Tconv cells (Fig: 3.1B). Unlike FoxP3 and CTLA-4, CD39 was 

expressed by only a subset of Treg (Fig: 3.1B). Other Treg markers such as surface 

CTLA-4, CD73 and GITR were not expressed exclusively by Treg and were not much 

different from conventional T cells (Fig: 3.1B) by flow cytometric analysis. Hence 

these markers were not analysed as Treg markers further in this thesis.  
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Fig: 3.1 Phenotypic analysis of Treg from normal peripheral blood 

 

(A) Staining of PBMC with Treg markers. Lymphocytes gated on CD4+ cells to 
determine CD25highCD127low Treg and CD25lowCD127high Tconv. Frequency of 
Treg marked on the histogram. (B) Flow cytometric analysis of FoxP3, intracellular 
(IC) CTLA-4 and surface (S) CTLA-4 and surface CD39, CD73 and GITR from Treg 
and Tconv (black curves). Gray curves represent isotype control. MFI (median 
fluorescent intensity) or percentage of positive cells marked on histograms. 
Representative of n=2 assays. 
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3.3 Phenotypic analysis of Treg from chronic uveitis 

patients 

Quantitative and qualitative defects in Treg have been attributed to the pathology of 

various autoimmune and inflammatory diseases. To analyze whether similar defects 

occur in uveitis patients, PBMC were isolated from the peripheral blood of chronic 

anterior and pan uveitis patients (see Table: 3.1 and Table: 3.2) as well as healthy 

controls (Table 3.3) and stained for Treg specific markers. Several patients in our 

initial cohort demonstrated evidence of systemic autoimmune diseases including 

sarcoidosis, multiple sclerosis, ankylosing spondylosis, psoriasis and Vogt-Koyanagi-

Harada syndrome. Each of these conditions has been associated with abnormal 

populations of T-regulatory cells (Chen et al., 2008; Huan et al., 2005; Feger et al., 

2007; Sugiyama et al., 2005). Hence to avoid the effect of any associated systemic 

inflammation on Treg phenotype, only idiopathic chronic uveitis patients with no 

known associated systemic diseases were analysed in this study. As systemic 

glucocorticoid treatment has been shown to affect the phenotype and function of Treg 

(Karagiannidis et al., 2004), those patients taking any kind of systemic 

immunosuppressants including corticosteroids were also excluded from the study. 

 

Of the 16 idiopathic pan uveitis patients, 10 patients were undergoing topical 

glucocorticoid treatment whereas the other 6 were not on any kind of steroid 

treatments. In the idiopathic anterior uveitis group, 14 patients were on topical 

steroids and 4 not on treatment. The clinical details of these patients are summarized 

in Table: 3.1 and Table: 3.2. 15 age and sex matched healthy controls were recruited 

for this study, the details of whom are summarized in Table: 3.3.  
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Patient 

no: / 

Sex 

Later

ality 

AqH 

cells 

First/ 

recurrent 

episode 

Age Treatment 

1/M U 0 Recurrent 40.7 Dex 0.1%, Cyclo 

2/F B 2 first episode 41.8 Dex 0.1% 

3/M U 2 first episode 45.9 None 

4/F B 0 first episode 76.4 None 

5/F B 0 Recurrent 86.8 Dex 0.1% 

6/M B 1 Recurrent 22.8 Predforte 

7/F B 0 Recurrent 39.3 Predforte 

8/F B 0 Recurrent 55.6 Dipyramadole 

9/M B 0 Recurrent 26.1 Cosopt ,  Predforte 

10/M B 0 Recurrent 64.9 Prednisolone 

11/M B 0 Recurrent 67.8 Dex 0.1% 

12/F B 0 Recurrent 46.3 None 

13/F B 0 Recurrent 46.9 Dex 0.1% 

14/F B 1 Recurrent 51.2 Maxidex,  Cyclo 

15/F B 1 Recurrent 59.9 Dex 0.1% 

16/F U 2 Recurrent 51.2 Vexol 

17/F B 1 Recurrent 59.9 None 

18/M B 0 Recurrent 25.7 Lotemax,  Timolol 

 

Table: 3.1   Baseline characteristics and Clinical features of chronic idiopathic 

anterior uveitis samples analyzed by flow cytometry for phenotypic analysis of 

Treg 

 

Clinical details of the patients were recorded at the time of sampling. Anterior 
chamber cellular activity was graded as per Standardization of Uveitis Nomenclature 
2005 classification criteria (Jabs et al., 2005) (B- bilateral, U- unilateral, Dex- 
dexamethasone, Cyclo- cyclopentolate) 
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Patient 

no: / Sex 

Later

ality 

AqH 

cells 

First/ 

recurrent 

episode 

Age Treatment 

1/F B 0 Recurrent 79.5 Pred 1%  

2/F B 0 Recurrent 60.8 maxidex, cosopt, cyclo 

3/M B 0 Recurrent 60.7 Azopt 

4/F B 0 Recurrent 68.2 Dex 0.1%  

5/F B 1 Recurrent 52.7 Dex 0.1%, cyclo 1%  

6/F B 2 Recurrent 42.7 None 

7/F B 0 Recurrent 67.7 Maxidex  

8/F B 1 Recurrent 59.7 Dex 0.1% 

9/M B 0 Recurrent 30.1 None 

10/F B 0 Recurrent 72.3 None 

11/M B 0.5 Recurrent 39.3  Vexol  

12/F B 1 Recurrent 53.2 Maxidex 

13/M B 0 Recurrent 32.0 None 

14/F B 0 Recurrent 29.8 None 

15/F B 3 Recurrent 37.9 Predforte 

16/F B 1 Recurrent 60.0 Cosopt  

 

Table: 3.2   Baseline characteristics and Clinical features of chronic idiopathic 

pan uveitis samples analyzed by flow cytometry for phenotypic analysis of Treg 

 

Clinical details of the patients were recorded at the time of sampling. Anterior 
chamber cellular activity was graded as per Standardization of Uveitis Nomenclature 
2005 classification criteria (Jabs et al., 2005) (B- bilateral, U- unilateral, Pred- 
prednisolone, Dex- dexamethasone, Cyclo- cyclopentolate) 
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Control no: Sex Age 

1 F 22.0 

2 M 24.0 

3 F 24.0 

4 M 25.0 

5 M 25.0 

6 M 26.4 

7 M 26.9 

8 F 45.0 

9 M 51.0 

10 F 53.0 

11 M 55.0 

12 F 64.9 

13 F 75.2 

14 M 87.8 

15 F 90.2 

 

Table: 3.3 Baseline characteristics of healthy control (HC) samples analyzed by 

flow cytometry for phenotypic analysis of Treg  
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3.3.1   No difference in the frequency of Treg in chronic non 

infectious uveitis patients 

CD4+ Treg from chronic idiopathic uveitis patients were identified and their 

frequencies determined to analyze whether there were any quantitative defects in the 

Treg cells from these subjects (Fig: 3.2A). Using a strict gating procedure to identify 

Treg, no difference was found in the frequency of CD4+CD25highCD127low cells 

between healthy control individuals (median±SD: 6.3±1.0) and patients with chronic 

anterior (median±SD: 6.7±1.7) or Pan uveitis (median±SD: 7.3±2.6) (Fig: 3.2B). An 

increase in the frequency of Treg with ageing has been reported (Gregg et al., 2005), 

but in this study there was no correlation between Treg frequency and age (Fig: 3.2C). 

An increased number of CD4+ Treg has been reported in patients with SLE and 

asthma following systemic treatment with corticosteroid (Karagiannidis et al., 2004; 

Suarez et al., 2006). The frequencies of Treg were also not different between patients 

undergoing topical glucocorticoid therapy and those who were not on treatment (Fig: 

3.2D). The frequency of Treg was not affected by the differences in the sex or disease 

activity of the patients. 
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Fig: 3.2 Similar frequencies of Treg from chronic uveitis patients 

 

(A) Staining of PBMC from healthy controls (HC), anterior uveitis (AU) and pan 
uveitis patients. PBMC gated on lymphocytes and then on CD4+ cells to determine 
CD25highCD127low Treg (B) Similar frequency of Treg from AU and pan patients 
compared to HC. (C) Frequency of Treg did not correlate with age. (D) Topical 
glucocorticoid treatment had no effect on the frequency of Treg in chronic uveitis 
patients. Horizontal bars represent median value. (Statistical tests used- Kruskal 
Wallis test and correlation, NS-not significant, UT-untreated, T-treated) 
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3.3.2   No difference in the FoxP3 expression of Treg from 

chronic uveitis patients 

FoxP3 has been shown to be required for the differentiation, maintenance and 

function of CD4+ Treg. Alterations in the expression of FoxP3 have been associated 

with functional alterations in Treg cells. FoxP3 expressions of Treg (Fig: 3.3A) as 

well as Tconv cells (Fig: 3.3B) from the peripheral blood of chronic uveitis patients 

and healthy controls were analyzed. The population of naïve (CD45RO-) Treg cells 

was too small to allow precise analysis. No difference in the FoxP3 expression of 

memory (CD45RO+) Treg (Fig: 3.3C) from chronic idiopathic anterior uveitis 

(median±SD: 117.6±39.8) and pan uveitis patients (median±SD: 126.5±58.8) was 

observed compared to healthy controls (median±SD: 113.5±28.5). Interestingly some 

pan uveitis patients expressed increased levels of FoxP3. However this did not relate 

to their age, sex or disease activity. 

 

In asthma patients, systemic as well as inhaled glucocorticoids have been shown to 

increase the FoxP3 expression of  Treg (Karagiannidis et al., 2004).  Interestingly in 

our patient group, chronic anterior uveitis patients who were receiving topical 

glucocorticoid treatment expressed significantly increased levels of FoxP3 as 

compared to untreated patients (Fig: 3.3E). The FoxP3 expression did not differ with 

the age, sex, or disease activity of the patients. 

 

As expected the Tconv cell population showed no significant expression of FoxP3 and 

was not different between the patient groups (Fig: 3.3E). No significant differences 

were found in the FoxP3 expression of naive conventional T cell population. 
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Fig: 3.3 No difference in the FoxP3 expression of Treg from chronic uveitis  

    

FoxP3 expression of CD45RO+ (A) Treg and (B) Tconv from healthy controls (HC), 
anterior uveitis (AU) and pan uveitis patients. MFI (median fluorescence intensity) of 
FoxP3 for representative samples noted on histograms. (C) No significant difference 
in the FoxP3 expression of Treg between AU, pan and HC. (D) Higher levels of 
FoxP3 expression in Treg from AU patients undergoing topical glucocorticoid therapy 
(T) compared to untreated patients (UT). (E) Tconv from chronic uveitis patients 
showed no difference in FoxP3 expression as compared to healthy controls. 
Horizontal bars represent median value. (Statistical tests used- Kruskal Wallis test, 
NS- not significant, *-p<0.05). 
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3.3.3   No difference in the expression of CTLA-4 of Treg  

Expression of intracellular CTLA-4 by Treg (Fig: 3.4A) as well as Tconv cells (Fig: 

3.4B) were analyzed in chronic uveitis patients and healthy controls. Neither pan 

(median±SD: 39.8±21.3) nor anterior (median±SD: 42.0±10.3) uveitis patients 

showed significant differences in CTLA-4 expression of Treg population compared to 

healthy controls (median±SD: 39.8±11.5) (Fig: 3.4C). Similar to FoxP3, some pan 

uveitis patients expressed increased levels of CTLA-4. However this was not related 

to any difference in their age, sex, disease activity or treatment status. Topical 

glucocorticoid therapy did not have any effect on the CTLA-4 expression of Treg 

from either anterior or pan uveitis patients (Fig: 3.4D).  

 

Interestingly the conventional T cells from pan uveitis patients (median±SD: 

24.0±5.7), not anterior uveitis (median±SD: 18.9±5.9) expressed significantly higher 

CTLA-4 compared to healthy controls (median±SD: 16.7±5.0) (Fig: 3.4E).  

 

3.3.4   No difference in the CD39 expression of Treg cells  

Unlike CTLA-4 and FoxP3 which are expressed by all Treg, CD39 shows a biphasic 

expression within the Treg population and varies considerably between individuals 

(Fig: 3.5A). Conventional T cells showed no significant expression of CD39 (Fig: 

3.5B). Although changes in CD39 expression have been indicated in other 

inflammatory diseases (Fletcher et al., 2009), there was no difference in the frequency 

of CD39+ cells in the Treg (Fig:3.5C) and was not affected by glucocorticoid 

treatment (Fig: 3.5D). There was no difference in the frequency of CD39+ Tconv 

cells (Fig: 3.5E) from chronic anterior or pan uveitis patients.  
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Fig: 3.4 No difference in CTLA-4 expression of Treg from chronic uveitis  

 

CTLA-4 expression of CD45RO+ (A) Treg and (B) Tconv cells from healthy control 
(HC), anterior uveitis (AU) and pan uveitis patients.  MFI for representative samples 
marked on histograms (C) No difference in CTLA-4 expression of Treg between AU, 
pan and HC. (D) Topical GC therapy did not affect the CTLA-4 expression of Treg in 
any patient groups. (E) Tconv cells from chronic pan uveitis patients showed 
increased CTLA-4 expression as compared to healthy controls. Horizontal bars 
represent median value. (Statistical tests used- Kruskal Wallis test, NS- not 
significant, **-p<0.01) 
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Fig: 3.5 No difference in CD39 expression of Treg from chronic uveitis patients 

 

CD39 expression of CD45RO+ (A) Treg and (B) Tconv cells from healthy control 
(HC), anterior uveitis (AU) and pan uveitis patients.  Percentage of CD39+ Treg for 
the representative samples marked on the histograms. (C) No difference in the 
frequency of CD39+Treg between AU, pan and HC (D) No difference in the 
frequency of CD39+Treg between patients undergoing topical GC therapy (T) and 
untreated patients (UT). (E) No difference CD39 expression of Tconv cells between 
AU, pan and HC. Horizontal bars represent median value. (Statistical tests used- 
Kruskal Wallis test, NS- not significant) 
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3.4 Functional analysis of Treg from chronic patients 

Defects in the function of regulatory T cells have been implicated in various 

autoimmune and inflammatory diseases. The functional capacity of Treg from chronic 

uveitis patients were determined based on their ability to suppress the proliferation of 

CFSE labeled Tconv cells either in the presence or in the absence of antigen 

presenting cells (APC). The proliferation of stimulated CFSE-labelled Tconv cells 

(responding cells) was determined in the presence of highly purified unlabelled 

CD4+CD25highCD127low Treg or CD4+CD25lowCD127high Tconv cells. The 

addition of Treg, but not Tconv cells, suppressed the proliferation of responding 

Tconv cells.  

 

3.4.1   No Defect in the suppressive activity of Treg from 

uveitis patients in the presence of APC 

In this assay, the proliferation of PHA-stimulated CFSE-labelled PBMC was  

determined in the presence of CD4+ Treg or Tconv cells, isolated from the peripheral 

blood of healthy controls, and anterior or pan uveitis patients, by high-speed cell 

sorting. The purity of the sorted Treg populations was always >95% as shown in Fig: 

3.6. The proliferation of CFSE labeled cells were analyzed by flow cytometry 

following a 4-day culture. (Fig: 3.7A). The use of counting beads during the flow 

cytometric analysis allowed us to determine the exact number of proliferated cells 

(Fig: 3.7B). The anergic state of the Treg appeared to be maintained in patients with 

uveitis, as shown by the relatively small unlabelled (CFSE-negative) peak when 

CD25high Treg were added, as compared to that of the large peak of CD25low Tconv 

cells (Fig:3.7A). This is also evident from the low percentage of Treg survived 
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following 4 days in culture from anterior uveitis patients (median % survival ±SD: 

25.7±15.4), pan uveitis patients (median % survival ±SD: 13.9±18.9) and healthy 

controls (median % survival ±SD: 47.0±39.6).  

 

HC Ant Pan

CD4

C
D

2
5

CD4

96.3%

95.0%

99.1%

97.6% 96.2%

99.4%

 

 

Fig: 3.6 Purities of Treg isolated using cell sorting for suppression assay in the 

presence of APC 

 

Sorted Treg cells from healthy controls (HC), anterior uveitis (Ant) and pan uveitis 
(pan) patients, were stained with anti CD4, CD25 and CD127 antibodies to analyse 
the purity of CD4+CD25highCD127low Treg cells. Purity of isolated cells 
represented as percentage of CD4+ T cells. 
 

Of the 7 chronic anterior uveitis patients, 5 were on topical glucocorticoid treatment 

and 2 patients were not on any kind of treatment. Of the 6 pan uveitis patients, 3 were 

on topical treatment and 3 were not on treatment. Patients taking any kind of systemic 

immunosuppressants including corticosteroids were excluded from this study as 

systemic glucocorticoid therapy has been shown to affect Treg functions and restored 

the impaired suppressive capacity of Treg in MS patients (Xu et al., 2009). The 
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clinical features of patients used in this functional assay are summarized in Table: 3.4 

and the healthy controls used in this assay are summarised in Table: 3.5.  

 

Patient 

no: / Sex

Uvei

tis 
Laterality 

AqH 

cells 

First/ 

recurrent 

episode 

Age Treatment 

1/F A U 0 Recurrent 32.3 maxidex 

2/M A U 0 Recurrent 40.7 Dex 0.1%, cyclo 1% 

3/F A B 2 First episode 41.8 Dex 0.1% 

4/M A B 0 Recurrent 45.9 None 

5/M A B 0 Recurrent 22.5 None 

6/M A B 1 Recurrent 22.8 Predforte 

7/F A B 0 Recurrent 39.3 Predforte 

8/F P B 0 Recurrent 53.6 Dex 0.1% 

9/F P B 0 Recurrent 60.8 maxidex, cosopt, cyclo 

10/M P B 0 Recurrent 60.7 Azopt 

11/F P B 0 Recurrent 68.2 Dex 0.1% 

12/F P B 1 Recurrent 52.7 Dex 0.1%, carteolol 

13/F P B 2 Recurrent 42.7 None 

 

Table: 3.4 Clinical features of patients samples used in Treg functional assay 

in the presence of APC (using sorted cells) 

 

Clinical details of the patients were recorded at the time of sampling. (A-anterior 
uveitis, P-pan uveitis, B- bilateral, U- unilateral, Pred- prednisolone, Dex- 
dexamethasone, Cyclo- cyclopentolate). 
 

 

Control No: Sex Age 

1 M 34.0 

2 F 28.9 

3 M 32.9 
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4 M 34.8 

5 F 53.0 

6 M 51.0 

7 F 45.0 

 

 

Table: 3.5 Features of healthy control samples used in Treg functional assay in 

the presence of APC (using sorted cells) 

 

As shown in Fig: 3.7, the suppressive capacities of Treg isolated from anterior 

(median±SD: 39.5±15.9) and pan (median±SD: 12.8±27.0) uveitis patient were not 

significantly different from that of healthy controls (median±SD: 50.0±26.3). As 

majority of the patients were on topical steroid treatment, it was not possible to 

analyze the effect of topical glucocorticoid treatment on the suppressive function of 

peripheral Treg. Interestingly some of the pan uveitis patients showed a clearly 

diminished suppressive capacity, but failed to reach statistical significance. As Treg 

from pan uveitis patients expressed the least survival rate in this assay (median % 

survival ±SD: 13.9±18.9), it is not clear whether the reduced suppressive function 

seen in cultures of pan uveitis Treg were a reflection of their reduced survival. Even 

the percentage proliferation rate of CFSE labeled Tconv cells from pan uveitis 

patients (median % proliferation± SD: 22.6±25.6) were lower compared to healthy 

controls (median % proliferation± SD: 83.9±45.2) and anterior uveitis patients 

(median % proliferation± SD: 32.8±29.6). 
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Fig: 3.7 Functional assay for Treg in the presence of APC 

 

(A) FACS plot showing the proliferation of CFSE labeled PBMC with/without PHA 
in the presence of Tconv cells or Treg from healthy controls (HC), anterior uveitis 
(AU) and pan uveitis (pan) patients. Number of proliferating cells for the 
representative individuals marked on the histogram. (B) Graphical representation of 
proliferation of autologous Tconv cells from HC, AU and pan uveitis patients in the 
presence or absence of Treg/ Tconv cells. Results are expressed as mean ± SD. (C) No 
significant difference in the suppressive capacity of Treg from chronic anterior or pan 
uveitis patients compared to healthy controls. Horizontal bars represent median 
values. (Statistical test used- Kruskal Wallis test, NS- not significant) 
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T cell proliferation has traditionally been measured by their uptake of [3H]-thymidine 

following antigenic or polyclonal stimulation in vitro. The CFSE based assay used 

here is also similar to this traditional method but also enables accurate determination 

of percentage and actual number of proliferating cells with the added advantage of not 

having to use radioactive materials. In thymidine incorporation assays, cells are 

stimulated over a period of 3 days with [3H]-thymidine pulse being added for the final 

few hours. In CFSE assays however, the cells are labelled initially and the cell 

division is represented by the progressive halving of CFSE intensity which can be 

measured directly by flow cytometry after 4 days in culture.  

 

Just before running the cells through the cytometer, 10,000 counting beads were 

added to each tube. Since the concentration of beads is known, the absolute count of 

positive cells could be obtained by relating the number of cells counted to the total 

number of fluorescent bead events. This allowed us to calculate the absolute number 

of cells in the sample only after running a part of the samples (approximately 25,000 

cells). The absolute number of proliferating CFSE labelled cells (CFSE positive cells 

excluding the highest CFSE peak which represents the initially added CFSE labelled 

cells) is marked in Fig: 3.7A. The percentage inhibition was calculated based in the 

absolute number of cells using the following equation: 

 

% inhibition= [(No: of proliferating cells in CFSE PBMC+PHA – No: of proliferating 

cells in CFSE PBMC+Treg) / No: of proliferating cells in CFSE PBMC+PHA] X 100 

 

In a classic suppression assay however, the percentage inhibition is calculated based 

on the percentage of dividing cells rather than the absolute number of cells. Similar 
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analysis carried out with CFSE based assay also gave the same final results and 

validated the above results. Here the percentage of CFSE labelled cells that are 

proliferating were analysed for each sample and the percentage inhibition was 

calculated using the following equation. 

 

% inhibition= [(% of proliferating cells in CFSE PBMC+PHA – % of proliferating 

cells in CFSE PBMC+Treg) / % of proliferating cells in CFSE PBMC+PHA] X 100 

 

 No significant difference was observed in the percentage inhibition between Treg 

from anterior and pan uveitis patients compared to healthy controls (Fig: 3.8). Thus 

calculating percentage inhibition using classic method also gave similar results 

validating my results based on absolute number fo cells. 
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Fig: 3.8 Classic method of CFSE analysis using percentage of dividing cells 

 

(A) FACS plot showing the proliferation of CFSE labeled PBMC with/without PHA 
in the presence of Tconv cells or Treg from healthy controls (HC), anterior uveitis 
(AU) and pan uveitis (pan) patients. Percentages of proliferating cells for the 
representative individuals are marked on the histogram. (B) Graphical representation 
of % proliferation of autologous Tconv cells from HC, AU and pan uveitis patients in 
the presence or absence of Treg/ Tconv cells. Results are expressed as mean ± SD. (C) 
No significant difference in the suppressive capacity of Treg from chronic anterior or 
pan uveitis patients compared to healthy controls. Horizontal bars represent median 
values. (Statistical test used- Kruskal Wallis test, NS- not significant) 
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3.4.2   No resistance of conventional T cells to Treg mediated        

suppression 

Although the above data suggests that Treg from some of the chronic pan uveitis 

patients tend to have diminished suppressive capacities, it is also possible that the 

responding Tconv cells from these patients are more resistant to regulation, as has 

been recently shown for Type 1 diabetes (Lawson et al., 2008) and SLE (Vargas-

Rojas et al., 2008). To assess these distinct possibilities, Treg functional assays were 

performed where the Treg and Tconv cells could be isolated from different donors. 

 

Unlike the suppression assay described above, where antigen presenting cells were 

present in the culture system, this assay used only purified T cells stimulated with anti 

CD2/CD3/CD28 coated suppression inspector beads, to avoid any effect of other cells 

in the system as well as any adverse effect by the use of PHA for stimulation (Duarte 

et al., 2002; Li et al., 1994).   

 

Treg and Tconv cells were isolated by cell sorting. The purities of isolated cells were 

always >95% as shown in Fig: 3.9. Tconv cells were then CFSE labeled and cultured 

with or without unlabelled Treg or Tconv cells in the presence of polyclonal 

stimulation using Treg suppression inspector beads for 4 days (Fig:3.10A) and the 

number of proliferated CFSE labeled cells were determined by flow cytometry (Fig: 

3.10B). 
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Fig: 3.9   Purities of Treg isolated using cell sorting for polyclonal suppression 

assay in the absence of APC 

 

Sorted Treg cells from healthy controls (HC), anterior uveitis (Ant) and pan uveitis 
(pan) uveitis patients, were stained with anti CD4, CD25 and CD127 antibodies to 
analyse the purity of CD4+CD25highCD127low Treg cells. Purity of isolated cells 
represented as percentage of CD4+ T cells. 
 

4/6 anterior uveitis patients were on topical glucocorticoid treatment and 2 were not 

on any treatment whereas 5/6 pan uveitis patients were on topical treatment and 1 

patient not on treatment. The clinical features of healthy controls and patients used in 

this functional assay are summarized in Table: 3.6 and Table: 3.7 respectively. 

 

Control No: Sex Age 

1 F 30.1 

2 M 24.5 

3 F 45.0 

4 M 26.9 

5 M 34.0 

6 M 34.0 

CD4

CD127

C
D

2
5
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97.3% 97.0% 98.6%

95.0% 96.4% 97.8%
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7 M 26.4 

 

Table: 3.6 Features of healthy control samples used in cross over co-culture 

assay (using sorted cells) 

 

Patie

nt 

no: / 

Sex 

Uv

eiti

s 

La

ter

alit

y 

AqH 

cells 

First/ 

recurrent 

episode 

Age Treatment 

1/M A B 0 Recurrent 22.5 None 

2/M A B 1 Recurrent 22.8 Predforte 

3/F A B 0 Recurrent 39.3 Predforte 

4/F A B 0 Recurrent 55.6 aspirin, dipyramadole 

5/M A B 0 Recurrent 64.9 G Pred 0.5%  

6/M A B 0 Recurrent 26.1 G Predforte, Cosopt 

7/F P B 0 Recurrent 67.7 maxidex  

8/F P B 1 Recurrent 59.7 Dex 0.1%  

9/F P B 0 Recurrent 68.2 Dex 0.1%  

10/F P B 1 Recurrent 52.7 Dex 0.1%, cyclo 1% 

11/F P B 2 Recurrent 42.7 None 

12/M P U 0 Recurrent 45.2 G. Cyclo 1%, G Predforte 

 

Table: 3.7 Clinical features of patients samples used in cross over co-culture 

assay (using sorted cells) 

 

Clinical details of the patients were recorded at the time of sampling. (A-anterior 
uveitis, P-pan uveitis, B- bilateral, U- unilateral, Pred- prednisolone, Dex- 
dexamethasone, Cyclo- cyclopentolate). 
 

As was seen in the suppression assay in the presence of APC, there was no significant 

defect in the suppressive function of Treg from pan or anterior uveitis patients (Fig: 

3.10C) in this assay. Although some of the pan and anterior uveitis patients showed a 
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diminished suppressive capacity, this did not reach significant levels. The suppressive 

capacity was not affected by the age, sex, treatment or disease activity of the subjects. 

Here also the percentage proliferation of CFSE labeled Tconv cells from cultures of 

pan uveitis T cells were also low ((median % proliferation±SD: 42.0±241.1) as 

compared to healthy controls (median % proliferation±SD: 135.8±54.4) and anterior 

uveitis patients (median % proliferation±SD: 231.6±97.0). The percentage 

proliferation was calculated by the following equation: 

 

% proliferation= No: of proliferating CFSE positive cells/ No: of cells added x 100 

 

The percentage survival of Treg (median % survival±SD: 28.5±31.0) from pan uveitis 

patients was very low compared to healthy controls (median % survival±SD: 

69.4±35.7) as well as anterior uveitis patients (median % survival±SD: 52.3±29.6). 

The percentage survival was calculated by the following equation: 

 

% survival= (absolute no: of CFSE negative (Treg) cells/ Total no: of Treg added) x 

100 

 

To address any potential resistance of the uveitis T cells to be suppressed, a cross over 

co-culture assay was performed at the same time where Tconv from chronic pan 

uveitis patients were cultured with either autologous Treg cells or those from healthy 

controls (Fig: 3.11A) and vice versa (Fig: 3.11B). There was no significant difference 

in the suppressive capacity of Treg on autologous conventional T cells from pan 

uveitis patients compared to healthy controls (Fig: 3.11C). However conventional T 

cells from pan uveitis patients could be suppressed more effectively by Treg from 
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healthy controls (Fig: 3.11D).There was no difference in the suppressive capacity of 

Treg from these patients on conventional T cells from healthy controls (Fig: 3.11E). 

Similar assays were conducted on Treg from anterior uveitis patients, where patients 

T cells were co-cultured with autologous Treg or Treg from healthy controls (Fig: 

3.12A) and vice versa (Fig: 3.12B). No significant difference could be found in the 

suppressive function of Treg from anterior uveitis patients on autologous T cells 

compared to healthy controls (Fig: 3.12C). There was no difference in the suppressive 

capacity of Treg from healthy controls on T cells from anterior uveitis patients (Fig: 

3.12D) as well as the suppressive capacity of Treg from anterior uveitis patients on 

conventional T cells from healthy controls (Fig: 3.12E).  

 

It has to be noted that almost every time a patient sample was analyzed, a healthy 

control sample was also analyzed in parallel as an experimental control. Healthy 

controls in these assays were age and sex matched with anterior uveitis patients. Pan 

uveitis patients on the other hand were older than the healthy controls. (For example, 

the median age ±SD of healthy controls, anterior uveitis and pan uveitis patients in 

PBMC assays were 35.8±9.7, 34.4±10.9 and 57.2±8.7 respectively.) Suppressive 

function of Treg has been shown to diminish with age (Tsaknaridis et al., 2003). This 

may account for the lower suppressive function seen in some of the pan uveitis 

patients although no significant correlation could be found between age and 

suppressive function in these patients. 
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  (HC)        (Ant)  (Pan) 

Fig: 3.10 Polyclonal suppression assay for Treg in the absence of APC 

 

(A) Representative data of functional assay for Treg from healthy controls (HC), 
anterior uveitis (AU) and pan uveitis (pan) patients. CFSE labeled Tconv cells 
cultured with or without unlabeled Treg or Tconv cells. Number of proliferating cells 
for the representative data shown in the histogram. (B) Graphs representing 
proliferation of autologous Tconv cells from healthy controls, anterior and pan uveitis 
patients in the presence or absence of Treg/ Tconv cells. Results are expressed as 
mean ± SD. (C) No significant difference in the suppressive capacity of Treg from 
chronic anterior or pan uveitis patients compared to HC. Horizontal bars represent 
median values. (Statistical test used- Kruskal Wallis test, NS- not significant). 
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Fig: 3.11 Cross over co-culture assay with pan uveitis 

 

(A) Proliferation of CFSE-Tconv cells from pan uveitis patient co-cultured with 
autologous Treg or Treg from a healthy control. (B) Proliferation of CFSE-Tconv 
cells from healthy control co-cultured with autologous Treg or pan uveitis Treg. (C) 
No difference in the suppressive activity of Treg from pan uveitis patients compared 
to healthy control (HC). (Horizontal bars represent median values). (D) Treg from HC 
suppressed Tconv cells from patients more effectively. (E). No significant difference 
in the suppressive activity of Treg from patients on Tconv cells from HC. (Statistical 
tests used- Mann Whitney test and two way ANOVA, NS- not significant, *-p≤0.05). 
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Fig: 3.12 Cross over co-culture assay with anterior uveitis 

 

(A) Proliferation of CFSE-Tconv cells from AU patient co-cultured with autologous 
Treg or Treg from a healthy control. (B) Proliferation of CFSE-Tconv cells from 
healthy control co-cultured with autologous Treg or Treg from AU patient. (C) No 
difference in the suppressive activity of Treg from AU patients compared to healthy 
control (HC) (Horizontal bars represent median values). (D) Treg from HC did not 
suppress the Tconv cells more effectively. (E) No significant difference in the 
suppressive activity of Treg from AU patients on Tconv cells from HC (Statistical 
tests used- Mann Whitney test and two way ANOVA, NS- not significant) 
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3.5 Treg up regulated FoxP3 and maintained/restored 

their suppressive activity in long term culture 

In order to determine if the suppressive capacity of  regulatory T cells in patients with 

chronic uveitis was maintained following in vitro culture in the presence of IL-2, Treg 

cell lines were established from highly purified CD4+CD25highCD127low Treg cells 

of healthy controls and patients with chronic uveitis. Following in vitro culture, the 

cell lines up regulated their CD25 and FoxP3 expression (Fig: 3.13A). The 

suppressive capacity of the cell lines were tested on purified CFSE labelled Tconv 

cells from a different donor. For all individuals where there was a normal level of 

suppression using ex vivo freshly isolated Treg, the cell lines also maintained their 

suppressive capacity, and invariably showed increased regulatory activity. In patients 

where there was diminished Treg activity from freshly isolated cells, the suppressive 

activity was completely restored following long term culture (Fig: 3.13B).  
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Fig: 3.13 Treg up regulated FoxP3 expression and suppressive capacity in long 

term culture  

 

(A) Flow cytometric analysis of CD4, CD25 and FoxP3 expression of (A) ex vivo 
Treg and Treg cell line. Treg up regulated their FoxP3 and CD25 expression 
following long term culture (B) Graph representing suppressive function of ex vivo 
Treg (grey bars) and Treg cell line (black bars) from healthy controls (HC), anterior 
uveitis (AU) and pan uveitis (pan) patients. Treg with normal suppressive activity 
maintained their function whereas those with diminished activity restored normal 
suppressive activity in long term culture. 
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The yield of Treg following high speed cell sorting was very low which makes it 

difficult to study the suppressive effect of Treg at various Tconv: Treg ratios. Besides, 

high speed sorting can also affect viability of cells undergoing this ordeal. In many 

assays using sorted cells, the recovery of cells after 4 days in culture were very low. 

This could be because the conventional T cells and especially Treg isolated by high 

speed cell sorting were less healthy and more prone to cell death in culture. This may 

also account for the overall low suppressive function observed in these assays. Assays 

with very low survival rates were excluded from the final analysis. Hence dynabeads 

were used next to isolate pure CD4+CD25highCD127low Treg cells using a tube 

based isolation protocol and the capacity of these Treg to suppress the proliferation of 

conventional T cells in culture at different Tconv to Treg ratio were analyzed.  

 

3.6 Bead separated Treg cells from chronic anterior 

uveitis patients are defective in function 

Here cells with ≥95% purity were isolated using dynabeads (see Fig: 3.14). As before, 

Tconv cells from healthy controls, chronic anterior and chronic pan uveitis patients 

were CFSE labeled and cultured along with unlabelled Tconv cells or Treg in the 

presence of anti CD2/CD3/CD28 coated suppression inspector bead for 4 days. The 

major advantages of this method was the less harsh method of Treg isolation as well 

as the higher yield of Treg cells following isolation which allowed us to analyze the 

suppressive function of Treg at different concentrations. The recovery of cells after 

the 4 days culture was much better compared to sorted cells. This was supported by 

the higher percentage proliferation of CFSE labeled Tconv cells in this assay from 

anterior uveitis (median % proliferation± SD: 86.6±71.2), pan uveitis (median % 
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proliferation± SD: 86.1±61.9) and healthy controls (median % proliferation± SD: 

88.2±72.0). 

  

 

 

 

 

 

 

 

 

 

 

 

Fig: 3.14  Purities of Treg isolated using dynabeads for polyclonal suppression 

assay 

Isolated Treg cells from healthy controls (HC), anterior uveitis (Ant) and pan (pan) 
uveitis patients were stained with anti CD4, CD25 and CD127 antibodies to analyse 
the purity of CD4+CD25highCD127low Treg cells. 
 

 

The chronic anterior uveitis group included 5 patients on topical glucocorticoids and 2 

patients not on any kind of treatment. All the 7 pan uveitis patients were on topical 

glucocorticoids. Clinical details of the patients in this assay are summarized in Table: 

3.8 and healthy controls in Table: 3.9. Patients who were on systemic 

immunosuppressants including corticosteroid treatment were excluded to avoid any 

effect of the treatment on Treg function. Suppressive activity of Treg at different 
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Tconv: Treg ratios (1:1/2, 1:1/4, 1:1/8, 1:1/16, 1:1/32 and 1:1/64) were analyzed. 

Interestingly, Treg from pan uveitis patients in this assay showed no defect in their 

suppressive function at any of the ratios compared to age and sex matched healthy 

controls. In fact the Treg from these patients suppressed autologous T cells more 

effectively than those from anterior uveitis patients. Treg from anterior uveitis 

patients on the other hand showed a diminished suppressive function at various ratios 

compared to age and sex matched healthy controls especially at lower Tconv:Treg 

ratios. The suppressive function of Treg was not affected by the age, sex or disease 

activity of the patients.  

 

 

Patien

t no: / 

Sex 

Uvei

tis 

Later

ality 

AqH 

cells 

First/ 

recurrent 

episode 

Age Treatment 

1/M A U 3 Recurrent 63.1 G Vexol  

2/F A B 0 Recurrent 46.9 G Dexa0.1%  

3/F A U 0 Recurrent 37.0 None 

4/F A B 0.5 Recurrent 51.2 G.Maxidex, G Cyclo 

5/F A B 1 Recurrent 59.9 G Dex 0.1% 

6/F A B 0 Recurrent 46.3 None 

7/M A B 0 Recurrent 25.7 G Lotemax, Timolol 

8/M P U 0 First episode 31.5 G Predforte 

9/F P B 1 Recurrent 53.2 G Maxidex 

10/F P B 1 Recurrent 48.3 G Predforte 

11/M P B 0 Recurrent 37.5 G Predforte  

12/M P B 0 Recurrent 37.4 G.Dex 0.1%  

13/F P B 3 Recurrent 38.0 G Predforte 

14/M P B 0.5 Recurrent 39.4 G Vexol 
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Table: 3.8 Clinical features of patients samples used in functional assay using 

Treg isolated using dynabeads  

Clinical details of the patients were recorded at the time of sampling. (A- anterior 
uveitis, P-pan uveitis patients, B- bilateral, U- unilateral, Pred- prednisolone, Dex- 
dexamethasone, Cyclo- cyclopentolate) 

 

Control No: Sex Age 

1 F 28.5 

2 M 32.9 

3 F 38.0 

4 F 90.2 

5 M 34.9 

6 M 36.6 

7 M 34.8 

 

Table: 3.9 Clinical features of healthy control samples used in functional assay 

using Treg isolated using dynabeads 
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Fig: 3.15 Polyclonal suppression assay for Treg isolated using dynabeads 

 

(A) Representative histograms showing proliferation of CFSE-Tconv cells from 
healthy controls (HC), anterior uveitis (AU) and pan uveitis (pan) patients at either 
unstimulated, stimulated or with Tconv: Treg ratio of 1:1/4. No: of proliferated CFSE 
Tconv cells for individual samples noted on histograms. (B) Graphs representing 
proliferation of autologous CFSE labelled Tconv cells from HC, AU and pan uveitis 
patients in the presence or absence of different ratios of Tconv cells: Treg. Results are 
expressed as mean ± SD. Each bar represents the mean of triplicate experiments. 
(Statistical test used –Kruskall wallis test, ***- p≤0.001, **- p≤0.01). 
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Fig: 3.16 Bead purified Treg from chronic anterior uveitis patients are defective 

in vitro 

 

(A) Graph representing the percentage inhibition of proliferation of Tconv cells by 
Treg isolated using dynabeads at Tconv: Treg ratios of 1:1/2. 1:1/4, 1:8, 1:1/16, 1:1/32 
and 1:1/64. The results are represented as interquartile range (B) Significantly 
defective Treg function in anterior uveitis (AU) patients at lower Tconv: Treg ratio 
compared to healthy controls. Treg from pan uveitis patients, showed no change in 
suppressive capacity compared to HC. Horizontal bars represent median values. 
(Statistical test used –Mann Whitney test, NS-not significant, *- p≤0.05, **- p≤0.01). 
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3.7 Discussion 

The involvement of Treg in the pathology of human autoimmune diseases has been 

reported. Either  a reduced frequency or impaired function of Treg has been reported 

in patients with a  number of autoimmune diseases including multiple sclerosis, 

rheumatoid arthritis, SLE etc (Viglietta et al., 2004; Ehrenstein et al., 2004; Venigalla 

et al., 2008; Lyssuk et al., 2007). 

 

In VKH disease a reduced frequency of regulatory T cells have been shown to be 

associated with active uveitis (Chen et al., 2008). Regulatory T cell frequency has 

been shown to be reduced during active uveitis in humans (Yeh et al., 2009). 

However, no studies have been conducted on the role of Treg in human chronic 

uveitis. In this study, no difference was found in the frequency of Treg from the 

chronic uveitis patient cohort compared to healthy controls. It has to be noted that the 

majority of the chronic uveitis patients in my chronic uveitis group had no or only 

relatively mild anterior chamber activity at the time of sampling, as compared to those 

that present with acute exacerbations of their disease or before initial treatment. I have 

also shown that Treg from anterior uveitis patients undergoing topical glucocorticoid 

therapy expressed increased levels of FoxP3 compared to the untreated patients (Fig: 

3.3 E). Systemic glucocorticoid treatment has been shown to enhance the regulatory 

capacity and increase the FoxP3 expression in asthma and MS patients (Karagiannidis 

et al., 2004; Xu et al., 2009). A considerable amount of systemic absorption of 

topically applied glucocorticoids has been reported in a number of body areas (Burch 

and Migeon, 1968; NURSALL, 1965). Hence one could speculate that the increased 

FoxP3 expression of Treg from anterior uveitis patients undergoing topical 

glucocorticoid treatment may be due to the systemic effect of the treatment. 
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I also observed an increased CTLA-4 expression on the conventional T cells from pan 

uveitis patients. Along with being a Treg marker, CTLA-4 is also an activation marker 

for Tconv cells. Hence the increased CTLA-4 on the Tconv cells from pan uveitis 

patients might be an indicator of the increased activation status of T cells, as pan 

uveitis patients have more severe and extensive inflammation compared to anterior 

uveitis patients. 

 

In this study, I have shown that the Treg isolated by high speed cell sorting from 

chronic uveitis patients did not show any significant defect in their suppressive 

function in vitro in the presence or absence of APC. One of the main disadvantages of 

the assay was that PHA, which was used to stimulate T cells in the system, may have 

adverse effect on the cells of the system which in effect could interfere with the final 

result. The expansion of T cells with PHA has been shown to skew the distribution of 

effector and memory subsets and impair their functions (Duarte et al., 2002). 

Apoptosis has been reported in human lymphocytes cultured in the presence of PHA 

(Li et al., 1994; O'Donovan et al., 1995). Along with this, human Treg have been 

shown to be more prone to apoptosis in culture (Ohara et al., 2002; Taams et al., 

2001) which could account for the low survival rates seen in these cultures. High 

speed cell sorting as well as CFSE labelling could also affect the viability of cells in 

culture. This may also be the reason for the low rate of proliferation of CFSE labeled 

Tconv cells after 4 days in culture in most of these assays.  

 

Cross over co culture assays with cells from healthy controls revealed that the 

diminished suppressive capacity seen in some of the pan uveitis patients was not due 

to a resistance of Tconv cells to Treg mediated suppression. Again, the main problem 
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with using sorted cells was the low rate of proliferation of cells in the culture. It is 

interesting that Tconv and Treg from pan uveitis patients showed the least rate of 

survival and proliferation respectively in both the above assays. It is not clear whether 

the decreased survival rates in pan uveitis is because the T cells from pan uveitis 

patients are more prone to apoptosis during high speed cell sorting. 50-70µl of 

supernatant were taken from some of these assays and frozen. Multiplex bead 

immunoassay for the detection of cytokines such as IFN-γ, TNF-α, IL-2, IL-4, IL-5, 

IL-13 and IL-17 were also carried out on these supernatants. However, very low 

levels of cytokines were detected in these supernatants (not shown). This may be 

because the stimuli used in these assays (PHA or suppression inspector beads) were 

insufficient to stimulate cytokine production by cells. 

 

Treg cell lines developed from the chronic uveitis patients expressed normal 

functional capacity following long term culture in vitro. Hoffmann and co workers 

have shown that although the Treg cell compartment in adult peripheral blood 

comprises of naive as well as memory cells, it is solely the naive CD45RA 

subpopulation that gives rise to homogeneous Treg-cell lines (Hoffmann et al., 2006). 

In this study, the possibility that there might be an outgrowth of naïve Treg cells that 

give rise to functional Treg lines could not be ruled out. 

 

Using a less harsh and more reliable method of isolation using Dynabeads, it was 

found that Treg from chronic anterior uveitis patients showed defective suppressive 

function in vitro especially at lower Tconv: Treg ratios. Even at higher Tconv: Treg 

ratios, Treg from most of the anterior uveitis patients expressed lower suppressive 

function compared to healthy controls, though not statistically significant. A 
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longitudinal analysis of those patients that express lower suppressive function at all 

ratios will be required to identify whether this reflects a true defect in their Treg 

population. Treg from pan uveitis patients on the other hand showed suppressive 

capacities similar to that of healthy controls.  

 

What causes the difference between Treg function from pan and anterior uveitis 

patients is not known. Even though pan uveitis patents have a more clinically severe 

disease, their Treg appeared to be functional in vitro. It has to be noted that I have 

only tested the cell contact dependent suppressive function of Treg from these patients 

in vitro. It is also possible that other mechanisms of Treg mediated suppression 

(cytokine mediated and cytotoxicity) may be defective in pan uveitis patients. 

Involvement of Th17 in uveitis progression has been reported recently (Amadi-Obi et 

al., 2007). In autoimmune dry eye disease, Treg cells were unable to suppress 

pathogenic Th17 cells (Chauhan et al., 2009a). Whether such resistance of Th17 cells 

to Treg mediated suppression exist in pan uveitis patients has not been analysed in 

this study. The ability of FoxP3+ Treg cells to produce IFNγ has also been reported 

(Dominguez-Villar et al., 2011; McClymont et al., 2011). Given the clinical severity 

of pan uveitis, it would be interesting to analyse whether such plasticity of Treg cells 

are more prominent in these patients. 

 

Cell isolation using dynabeads produced highly pure cells which tend to be more 

viable and healthy in the culture and hence could be used as a reliable method of Treg 

isolation for functional assays, allowing us to analyze the suppressive capacity of Treg 

at different concentrations. The contradictory results obtained in assays using cells 

isolated by cell sorting could be attributed to the decreased proliferation and survival 
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rate of cells in those assays. Also the heterogeneity of patients cohorts used in both 

sets of assays could not be ignored.  

 

Systemic glucocorticoid treatment have been shown to enhance the regulatory 

capacity of Treg and restore the impaired suppressive function in MS patients (Xu et 

al., 2009). However, whether topical glucocorticoid treatment has any systemic effect 

on Treg is not yet known. I was unable to ascertain if topical glucocorticoid treatment 

has any effect on the peripheral blood regulatory T cell activity, as the vast majority 

of patients were on topical GC therapy at the time of sampling.  

 

In many studies in uveitis where Treg cells have been shown to be defective including 

the one by Chen et al. where a defective Treg function was reported in VKH patients, 

Treg cells were isolated on the basis of their CD4 and CD25 expression only (Chen et 

al., 2008). Study by Yeh et al where frequency of Treg was shown to be decreased in 

active uveitis patients defined Treg by their CD4 and FoxP3 expression only (Yeh et 

al., 2009). Activated conventional T cells can also upregulate their CD25 and FoxP3 

expression transiently, and activated memory cells expressing IL7 receptor α (CD127) 

which are present in the CD4+CD25+ cell population could potentially interfere with 

classical suppression assays for measuring Treg suppressive properties. Michel et al 

in 2008, reported that in patients with relapsing remitting multiple sclerosis, where a 

defective function of Treg cells was associated with the pathogenesis of the disease 

(Viglietta et al., 2004; NURSALL, 1965), Treg cells expressed normal suppressive 

function when IL-7 receptor α expressing cells were excluded from the system 

(Michel et al., 2008). 
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In this study I have used stringent gating strategies and expression of CD127 to 

identify and isolate Treg and found that chronic uveitis patients have similar 

frequency and phenotype of peripheral blood Treg as compared to healthy controls. 

Treg from chronic anterior uveitis but not pan uveitis patients showed a diminished 

capacity in vitro to suppress the proliferation of autologous Tconv cells as compared 

to healthy controls.  
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4 REGULATORY T CELLS IN THE 

PERIPHERAL BLOOD OF IDIOPATHIC 

ACUTE UVEITIS PATIENTS 

 

4.1 Introduction 

Acute anterior uveitis (AAU) is the most common form of uveitis and is characterised 

by the breakdown of blood ocular barrier and acute inflammation of the anterior 

structures of the eye. Majority of patients have no underlying disorder and are termed 

as idiopathic. In EAU, Treg have been shown to have an enhanced frequency and 

function at the peak of the acute disease (Sun et al., 2010a; Sun et al., 2010b). The 

study of Treg in human uveitis is very limited due to the diversity of the disease and 

heterogeneity of the patient cohort. Yeh et al. investigated the role played by Treg in 

human active non infectious uveitis patients and observed a decrease in the frequency 

of Treg in active uveitis patients compared to the inactive ones (Yeh et al., 2009). In 

VKH patients, decreased frequency and impaired function of Treg has been shown to 

be associated with active uveitis (Chen et al., 2008). However, these studies included 

all uveitis entities- infectious and non infectious with other associated systemic 

diseases. Also these studies did not use the SUN classification while classifying the 

disease type. 

 

In the body of work described in the previous chapter, I presented evidence showing 

that Treg from chronic anterior uveitis patients have similar phenotype, but have 
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reduced suppressive function compared to healthy controls. However these were the 

patients with no or very low disease activity on the day of sampling. 

 

The aim of the experiments described in this chapter is to analyse the Treg from 

idiopathic non infectious acute uveitis patients, classified according to the SUN 

classification (Jabs et al., 2005) presenting themselves to the A&E with an acute 

inflammation in the eye, characterised by redness, pain and photophobia. As 

glucocorticoid treatment as well as other systemic autoimmune diseases have been 

shown to affect the phenotype and function of Treg (Karagiannidis et al., 2004; Xu et 

al., 2009; Bonelli et al., 2008a), those patients undergoing systemic therapy as well as 

those with other autoimmune diseases were excluded from the analysis. As most of 

the pan/posterior uveitis patients were on systemic glucocorticoid therapy, our cohort 

included mainly acute anterior uveitis (AAU) patients and only 4 pan uveitis patients. 

Patients with infectious uveitis as well as those who were suspected to be clinically 

associated to HLA-B27 were also excluded. Treg from acute idiopathic non infectious 

uveitis patients were analysed for their phenotype as well as function in vitro.  
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4.2 Increased frequency of Treg from the peripheral 

blood of acute uveitis patients 

 PBMC was isolated from peripheral blood of acute anterior uveitis (AAU) and acute 

pan uveitis (APU) patients as well as healthy controls and stained with Treg specific 

markers to identify CD4+ CD25high CD127low Treg and CD4+CD25lowCD127high 

Tconv cells (Fig: 4.1A). The frequencies of CD4+ Treg in the peripheral blood of 24 

idiopathic AAU patients, 4 pan uveitis patients and 23 healthy controls were analysed. 

The clinical features of patients recruited in this study are detailed in Table: 4.1 and 

the details of healthy controls in Table: 4.2. Increased frequency of Treg was observed 

in the peripheral blood of AAU patients (median±SD: 8.1 ± 2.0) and APU patients 

(median±SD: 11.1±2.3) compared to healthy controls (median±SD: 6.2 ± 0.9) (Fig: 

4.1B). The frequency of naïve Treg cells were very low, and was not different in 

AAU or APU compared to age and sex matched healthy controls (Fig: 4.1C). The 

increased frequency was seen only in the memory Treg compartment from AAU 

patients. Among the AAU patients analysed, 6 patients were undergoing topical 

glucocorticoid treatment and the remaining 18 were not on treatment. The increased 

frequencies of Treg in AAU patients were more prominent in untreated patients than 

in those undergoing topical glucocorticoid treatment compared to healthy controls 

(Fig: 4.1D). Of the 4 pan uveitis patients analysed, 3 of them were on topical 

glucocorticoid therapy and hence it was not possible to study the effect of topical 

treatment on the Treg frequency in this patient group. The increase in frequency was 

also more prominent in AAU patients with recurrent disease than those presenting 

with the first episode (Fig: 4.1E).  
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Patien

t no: / 

Sex 

Later

ality 

Ant/ 

Pan 

AqH 

cells 

First/ 

recurrent 

episode 

Age Treatment 

1/M U A 2 first episode 80.8 None 

2/M U A 3 Recurrent 51.8 None 

3/F U A 2 Recurrent 41.2 None 

4/M U A 3 Recurrent 52.0 None 

5/M U A 3 first episode 67.7 None 

6/F U A 3 first episode 24.7 None 

7/F U A 2 first episode 57.3 None 

8/M U A 2 first episode 40.1 
Predforte, 

Cyclo 

9/F U A 3 first episode 30.4 None 

10/F U A 3 first episode 57.1 Maxidex, Cyclo 

11/M B A 3 Recurrent 48.1 None 

12/M U A 1 Recurrent 49.1 Vexol 

13/M U A 2 Recurrent 29.0 Vexol 

14/F U A 2 Recurrent 48.5 None 

15/M U A 3 Recurrent 27.8 None 

16/M U A 2 Recurrent 57.8 None 

17/M U A 3 Recurrent 23.4 Dex1%,cyclo 

18/M U A 1 Recurrent 49.4 None 

19/M U A 2 Recurrent 45.1 None 

20/M U A 3 first episode 66.2 Ludosemide 

21/F U A 3 Recurrent 51.6 None 

22/M U A 3 Recurrent 61.0 None 

23/F U A 2 Recurrent 46.9 Predforte 

24/M B A 2 Recurrent 62.5 None 
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25/F U P 3 Recurrent 36.0 Predforte 

26/M U P 3 Recurrent 35.8 None 

27/M B P 3 Recurrent 56.1 Rimexolone 

28/F U P 3 Recurrent 36.3 
Predforte, 

Cyclo 

 

Table 4:1 Baseline characteristics and clinical features of idiopathic acute 

uveitis samples analyzed by flow cytometry.  

 

Laterality of the disease (unilateral/U or bilateral/B), type of uveitis (anterior/A or 
pan/P), anterior chamber activity recorded at the time of sampling, first/recurrent 
episode, age of the patient and treatment shown above. (Cyclo-cyclopentolate, Dex- 
dexamethasone). 

 

 

Control 

no: 

Sex Age 

1 M 34.0 

2 F 28.9 

3 M 32.9 

4 M 24.2 

5 F 22.0 

6 M 34.8 

7 F 53.0 

8 M 51.0 

9 M 23.0 

10 F 45.0 

11 M 26.9 

12 F 24.3 
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13 M 34.0 

14 M 26.4 

15 F 75.2 

16 F 90.2 

17 M 87.8 

18 F 28.5 

19 F 64.9 

20 M 32.9 

21 M 24.0 

22 F 21.0 

23 M 55.0 

 

Table 4:2 Baseline characteristics of healthy controls analyzed by flow 

cytometry.  

 

Features of healthy controls analysed by flow cytometry. The sex and age of the 
controls is shown above. 
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Fig: 4.1 Increased frequency of Treg from acute uveitis patients 

 

(A) PBMCs were gated on lymphocytes and then on CD4+ cells to determine 
CD25highCD127low Treg from healthy controls (HC), acute anterior uveitis (AAU) 
and acute pan uveitis (APU) patients. (B) Increased frequency of primed Treg from 
AAU as well as APU patients compared to HC. (C) No difference in the frequency of 
naïve Treg from AAU and APU patients compared to HC. (C) Increased frequency of 
Treg evident in untreated (UT) AAU patients but not in topically treated (T) patients. 
(E) AAU patients with recurrent episode of disease had significantly higher Treg 
frequency compared to healthy controls and those with first episode of the disease. 
Horizontal bars represent median values. (Statistical tests used- Kruskal Wallis test, 
NS-not significant, **- p ≤0.01) 
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4.3 No difference in the FoxP3 expression of Treg 

from acute uveitis patients 

Chen et al. observed decreased FoxP3 expression of Treg from VKH patients with 

active uveitis (Chen et al., 2008). As the regulatory activity of Treg has been shown to 

reside in the CD45RO+ (memory) population (Jonuleit et al., 2001), only memory 

Treg and Tconv cells were analysed for phenotype in this study. Also the population 

of naive Treg cells was too small to allow precise analysis as most Treg had a 

memory phenotype. Hence the FoxP3 expression of only memory Treg and Tconv 

cells from the peripheral blood of AAU and APU patients were analysed. Almost all 

the CD127lowCD25high Treg were positive for FoxP3. Of the 19 AAU patients 

analysed for FoxP3 expression, 5 were on topical glucocorticoid treatments and the 

remaining 14 were not on treatment (Table: 4.1). 23 age and sex matched healthy 

controls were analysed for FoxP3 expression. There was no difference in the FoxP3 

expression of memory Treg from the peripheral blood of AAU patients (median 

MFI±SD: 113.5 ± 35.5) compared to healthy controls (median MFI±SD: 113.5 ± 

34.5) (Fig: 4.2A&C). Only 2 APU samples were analysed for FoxP3 expression 

where one was on topical treatment and the other one not on any treatment.  FoxP3 

expression of Treg from AAU did not differ between patients presenting with first or 

recurrent episodes of the disease (Fig: 4.2D).  

 

As expected the Tconv cells showed no significant expression of FoxP3 and were not 

different between patients and healthy controls (Fig: 4.2B&E). No significant 

differences were found in the FoxP3 expression of naive Tconv cell population. 
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Fig: 4.2 No difference in the FoxP3 expression of Treg from acute uveitis  

 

FoxP3 expression of CD45RO+ (A) Treg and (B) Tconv from healthy control (HC), 
acute anterior uveitis (AAU) and acute pan uveitis (APU) patients. FoxP3 MFI 
(median fluorescence intensity) for individual samples noted on histograms. (C) No 
difference in FoxP3 expression of Treg between AAU, APU and HC. (D) Treg from 
AAU presenting with first episode and recurrent episode of disease showed similar 
FoxP3 expression compared to HC. (E) No difference in FoxP3 expression of Tconv 
cells between AAU, APU and HC. Horizontal bars represent median values. 
(Statistical test used- Kruskal Wallis test, NS- not significant) 
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4.4 No difference in the CTLA-4 expression of Treg 

from acute uveitis patients  

Intracellular CTLA-4 expression of memory Treg and Tconv cells from 16 AAU 

patients, and 22 healthy controls were also analysed. Similar to FoxP3, expression of 

intracellular CTLA-4 was also not different between Treg from AAU (median 

MFI±SD: 37.04 ± 9.7) and age and sex matched healthy controls (median MFI±SD: 

42.03 ± 10.3) (Fig: 4.3A&C). CTLA-4 expression was also not different between 

patients with first and recurrent episodes of disease (Fig: 4.3D). Tconv cells showed 

no significant expression of CTLA-4 and was not different between patients and 

healthy controls (Fig: 4.3B&E). Only 1 pan uveitis patient was analysed for CTLA-4 

and hence could not give any conclusive results (not shown).  

 

4.5 No difference in the CD39 expression of Treg 

from acute uveitis patient 

Expressions of surface CD39, which showed a biphasic expression on Treg were 

analysed from 17 AAU patients and 14 healthy controls. No difference in the 

frequency of Treg expressing CD39 was observed between AAU patients (median 

%±SD: 55.4 ± 19.4) and age and sex matched healthy controls (median %±SD: 49.8 ± 

17.4) (Fig: 4.4A&C). CD39 expression did not differ between patients with first or 

recurrent episodes of the disease (Fig: 4.4D). There was also no difference in the 

CD39 expression of Tconv cells from AAU patients compared to healthy controls 

(Fig: 4.4B&E). Only 1 pan uveitis patient was analysed for CD39 and hence could not 

give any conclusive results (not shown).  
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Fig: 4.3 No difference in the CTLA4 expression of Treg from AAU patients 

 

CTLA-4 expression of CD45RO+ (A) Treg and (B) Tconv from healthy control (HC) 
and acute anterior uveitis (AAU) patients: CTLA-4 MFI (median fluorescence 
intensity) for individual samples noted on histograms. (C) No difference in CTLA-4 
expression of Treg from AAU patients compared to HC (D) Treg from AAU patients 
with first episode and recurrent episodes of disease showed similar CTLA-4 
expression compared to HC. (E) Tconv from AAU showed no difference in CTLA-4 
expression compared to HC. Horizontal bars represent median values. (Kruskal Wallis 
test, Mann Whitney test, NS- not significant) 
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Fig: 4.4 No difference in the CD39 expression of Treg from AAU patients 

 

CD39 expression of CD45RO+ (A) Treg and (B) Tconv from healthy control (HC) 
and acute anterior uveitis (AAU) patients: (C) No difference in the frequency of 
CD39+ Treg from AAU compared to HC. (D) Treg from AAU patients with first 
episode and recurrent episode of disease showed similar frequencies of CD39+ Treg 
compared to HC. (E) Tconv from AAU showed no difference in the CD39 expression 
as compared to HC. Horizontal bars represent median values. (Statistical test used- 
Kruskal Wallis test, Mann Whitney test, NS- not significant) 



 

149 
 

4.6 Comparison of phenotypes between acute and 

chronic uveitis patients 

The phenotype and function of Treg from chronic uveitis patients were analysed in 

chapter 3. The clinical features and phenotype of chronic anterior uveitis (AU) 

patients are detailed in chapter 3, Table: 3.1. When comparing the phenotypes of Treg 

between patients with acute and chronic uveitis, it was observed that AAU patients 

expressed increased frequencies of Treg compared to those with chronic disease 

(Fig:4.5Ai) whereas acute pan uveitis (APU) patients showed no significant difference 

in the frequency of Treg compared to chronic pan uveitis (Pan) patients (Fig:4.5Aii). 

This may be due to the very small number in the APU cohort. However, no difference 

in the FoxP3, CTLA-4 or CD39 expression was observed in the Treg or Tconv cells 

between AAU and AU patients (Fig 4.5 B&C). 
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Fig: 4.5 Comparison of Treg from acute and chronic uveitis 

 

(A) Increased frequency of Treg from (i) acute anterior uveitis (AAU) compared to 
chronic anterior uveitis (AU), but (ii) similar frequency of Treg from acute pan uveitis 
(APU) as compared to chronic pan uveitis (pan) patients.  No difference in the 
expression of (i) FoxP3, (ii) CTLA-4 and (iii) CD39 of  (B) Treg or (C) Tconv 
between AAU and AU. Horizontal bars represent median values. (Mann Whitney test, 
NS- not significant, *- p≤0.05) 
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4.7 Defective suppressive effect of Treg from AAU 

Defective Treg mediated suppression of polyclonal proliferation has been shown to be 

associated with various autoimmune inflammatory diseases including active uveitis is 

VKH patients (Chen et al., 2008). Here, Treg from AAU patients as well as healthy 

controls were isolated using dynabeads and their suppressive effect on the 

proliferation of CFSE labelled conventional T cells were analysed. The dynabeads 

selected Treg were of ≥95% purity as shown in Fig: 4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig: 4.6 Purities of Treg isolated using dynabeads for polyclonal suppression 

assay 

 

Isolated Treg cells from healthy controls (HC) and acute anterior uveitis (AAU) 
patients were stained with anti CD4, CD25 and CD127 antibodies to analyse the 
purity of CD4+CD25highCD127low Treg cells. The purity of the isolated cells 
represented as percentage of CD4+ T cells. 
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As explained in chapter 3, Tconv cells were CFSE labeled and cultured along with 

unlabeled T cells or Treg with anti CD2/CD3/CD28 coated suppression inspector 

beads for 4 days. The proliferation of CFSE labeled cells were analyzed by flow 

cytometry (Fig: 4.7A). 

 

Treg isolated from 9 AAU patients and 7 healthy controls were analyzed for their 

suppressive function at different Tconv: Treg ratios such as 1:1/2, 1:1/4, 1:1/8, 1:1/16, 

1:1/32 and 1:1/64 (Fig:4.7B). All of the patients had idiopathic AAU and none were 

on systemic glucocorticoid therapy. It was observed that Treg from AAU showed 

diminished suppressive capacity compared to age and sex matched healthy controls 

(Fig: 4.8A) which became statistically significant at a ratio of 1 Tconv: 1/4 Treg (Fig: 

4.8B). Of the 9 AAU patients, 5 were on topical glucocorticoid treatment and 6 were 

presented with a first episode of the disease. The suppressive capacity was not 

affected by the treatment status (Fig: 4.9A) or disease activity (Fig: 4.9B) of the 

patient. However the defective suppressive capacity was more prominent in patients 

with recurrent disease (Fig: 4.9C). The suppressive activity did not correlate with age 

of the patient or frequency, FoxP3, CTLA-4 and CD39 expression of Treg (Fig: 4.9D-

F).  
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Patien

t no: / 

Sex 

Later

ality 

AqH 

cells 

First/ 

recurrent 

episode 

Age Treatment 

1/M U 2 first episode 40.1 Predforte, Cyclo 

2/F U 3 first episode 57.1 Maxidex, Cyclo 

3/M U 2 Recurrent 45.1 None 

4/M U 3 Recurrent 52.0 None 

5/F U 2 Recurrent 41.2 None 

6/M B 3 Recurrent 48.1 None 

7/M U 1 Recurrent 49.1 Vexol 

8/M U 2 Recurrent 29.0 Vexol 

9/M U 3 first episode 67.7 Chloramphenicol 

 

Table 4:3 Baseline characteristics and clinical features of non infectious 

idiopathic AAU samples analyzed for the suppressive function of Treg.  

 

Laterality of the disease (unilateral/U or bilateral/B), anterior chamber activity 
recorded at the time of sampling, first/recurrent episode, treatment and mean age 
shown above. (Cyclo-cyclopentolate) 
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Fig: 4.7 Polyclonal suppression assay for Treg from AAU and HC 

 

 (A) Representative histograms showing proliferation of CFSE-Tconv cells from 
healthy controls (HC) and anterior uveitis (AU) patients either unstimulated, 
stimulated, or with Tconv cells or Treg at 1:1/4 ratio. No: of proliferated cells for 
individual samples noted on histograms. (B) Graphs representing proliferation of 
autologous Tconv cells from healthy controls and AAU patients in the presence or 
absence of polyclonal stimulation at different Tconv: Treg ratios. Results are 
expressed as mean ± SD.  
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Fig: 4.8 Defective suppressive function of Treg from AAU 

 

(A) Graph representing the percentage inhibition of proliferation of Tconv cells by 
Treg isolated using dynabeads at Tconv: Treg ratios of 1:1/2, 1:1/4, 1:1/8, 1:1/16, 
1:1/32 and 1:1/64. The results are represented as median with interquartile range. (B) 
Significantly reduced suppressive capacity of Treg from AAU compared to HC at 
Tconv: Treg ratio of 4:1. Many AAU patients showed diminished suppressive 
capacity at other T cell: Treg ratios even though it did not reach statistical 
significance. Horizontal bars represent median values. (Statistical tests used –Two 
way ANOVA, Mann Whitney test, NS-not significant, *- p≤0.05).   
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Fig: 4.9 Functional analysis of Treg from different groups of AAU patients and 

correlation with phenotype 

 

The suppressive activity of Treg from AAU at T cells: Treg ratio of 4:1 was not 
affected by (A) treatment (untreated-UT and topically treated-T) or (B) disease 
activity (based on AqH cells). (C) The defective suppressive function of Treg was 
more prominent in patients presenting with recurrent episodes of disease. Horizontal  
bars represent median values. The suppressive activity did not correlate with (D) age 
of the sample, (E) frequency of peripheral blood Treg and (F) FoxP3, (G) CTLA-4 
and (H) CD39 expression of Treg. (Statistical test used- Kruskal Wallis test, 
correlation, NS- not significant, *- p≤0.05) 
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4.8 Comparison of Treg function from chronic and 

acute anterior uveitis 

Treg have been shown to control the transition from acute to chronic disease in a 

murine model of arthritis (Frey et al., 2010). AU patients were shown to have a 

defective suppressive function compared to healthy controls in the previous chapter 

(Fig 3.15). When comparing the suppressive activity of Treg from AAU and AU 

patients, it was observed that Treg from chronic patients showed significantly 

diminished suppressive function compared to those from AAU especially at lower 

Tconv: Treg ratios (2:1 and 4:1) (Fig:4.10 A&B). 

 

Patien

t no: / 

Sex 

Later

ality 

AqH 

cells 

First/ 

recurrent 

episode 

Age Treatment 

1/M U 3 Recurrent 28.5 Predforte, Cyclo 

2/F B 0 Recurrent 32.9 Maxidex, Cyclo 

3/F U 0 Recurrent 54.1 None 

4/F B 1 Recurrent 75.2 None 

5/F B 1 Recurrent 55.0 None 

6/F B 1 Recurrent 34.9 None 

7/M B 0 Recurrent 36.6 Vexol  

 

Table 4:4 Baseline characteristics and clinical features of chronic anterior 

uveitis samples analyzed for the suppressive function of Treg.  

 

Laterality of the disease (unilateral/U or bilateral/B), anterior chamber activity 
recorded at the time of sampling, first/recurrent episode, treatment and mean age 
shown above. (Cyclo-cyclopentolate) 
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Fig: 4.10 Comparison of suppressive function between Treg from AAU and AU 

 

(A) Graph representing the percentage inhibition of proliferation of Tconv by Treg 
isolated using dynabeads at Tconv: Treg ratios of 1:1/2, 1:1/4, 1:1/8, 1:1/16, 1:1/32 
and 1:1/64 from AAU and AU. The results are represented as median with 
interquartile range (B) Treg from AU patients showed significantly reduced 
suppressive capacity compared to those from AAU especially at low Tconv: Treg 
(1:1/2 and 1:1/4) ratios  Horizontal bars represent median values. (Statistical tests 
used –Two way ANOVA, Mann Whitney test, NS-not significant, *- p≤0.05).   
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4.9 Discussion 

The body of work presented in this chapter showed an increased frequency of Treg in 

the peripheral blood of idiopathic non infectious AAU and APU patients (Fig: 4.1).  

This was similar to the findings in EAU where they showed an increased frequency of 

Treg during the peak of inflammation (Sun et al., 2010a; Sun et al., 2010b). Also in 

Behcet’s disease an increased frequency of Treg was observed in patients with active 

disease compared to those in remission stage and healthy controls (Hamzaoui et al., 

2006). Similar results were found in SLE where an increased frequency Treg cells in 

the peripheral blood of active patients were observed (Yan et al., 2008; Bonelli et al., 

2008b). 

 

Interestingly, the increased frequency of Treg observed in idiopathic acute uveitis is in 

contrast to what was already published in human uveitis by Yeh et al. where a 

decreased frequency of Treg in the active uveitis patients (Yeh et al., 2009) was 

shown. Several factors account for this difference. While Yeh et al. analysed mainly 

Treg from pan and intermediate uveitis patients, my study involved mainly non-

infectious idiopathic AAU patients and some APU patients. Also the patients in the 

Yeh et al. study demonstrated evidences of associated autoimmune diseases  such as 

sarcoidosis, multiple sclerosis, VKH, Behcet’s disease and mixed connective tissue 

disease, each of which has been associated with abnormal Treg cell populations (Idali 

et al., 2008; Venken et al., 2008b; Chen et al., 2008; Hamzaoui et al., 2006; Barath et 

al., 2006). These factors may account for the different results in mine and Yeh et al’s 

study. A decreased frequency of Treg has also been observed in VKH patients by 

Chen et al. (Chen et al., 2008). This study also included patients with other systemic 

autoimmune diseases and analysed Treg only on the basis of CD4 and CD25 
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expression. In the body of work described in this chapter, I have introduced more 

stringent gating strategy including CD4, CD25 and CD127 to define Treg and the 

patients included in the study described in this chapter were  all idiopathic in nature to 

avoid the effect of the associated systemic autoimmune disease on Treg phenotype 

and function. 

 

It was also shown in SLE patients as well as asthma patients that glucocorticoid 

therapy could increase the frequency of Treg in the peripheral blood (Karagiannidis et 

al., 2004; Suarez et al., 2006). In this study however, patients undergoing systemic 

immunosuppressive treatment including corticosteroids were excluded. It is not yet 

clear whether topically applied glucocorticoid could have any systemic effect on Treg 

frequency, phenotype and/or function. Glucocorticoid induced TNF receptor (GITR) 

is generally considered to be a Treg specific marker. However, my preliminary 

analysis revealed that GITR expression was not exclusive to the Treg population (Fig: 

3.1) and hence this marker was not further analysed. In this study, the increased 

frequency of Treg was more prominent in patients who were not on any form of 

treatment, showing that it was not an artefact of topical glucocorticoid therapy. 

Interestingly, the increased frequency of Treg was more prominent in patients with 

recurrent diseases (Fig: 4.1E).  In chronic myeloid leukaemia patients, increased 

frequency of Treg has been shown to correlate with disease relapse following 

allogenic stem cell transplant (Nadal et al., 2007). It would be interesting to see if the 

increased frequency of Treg in the peripheral blood could be used as a marker for 

recurrence in AAU. However this would require longitudinal analysis of a series of 

patients over a longer period of time.  
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The frequency of peripheral blood Treg in acute anterior uveitis patients were also 

higher compared to those with chronic disease (Fig: 4.5A). Similar to that was seen in 

chronic uveitis patients, there was no difference in the phenotype of Treg in AAU 

patients as compared to healthy controls. In Behcet’s disease, the frequency of Treg 

has been shown to be decreased just before ocular attack and has been postulated as a 

possible marker for ocular attack (Nanke et al., 2008). In this study, only Treg from 

patients in the post-attack phase were analysed. It would be interesting to follow up 

some idiopathic AAU patients and analyse and compare the frequency and phenotype 

of their Treg cells in the pre and post ocular attack phase. In an EAU model, increased 

frequency and immuno-regulatory activity of Treg has been shown to be associated 

with the development and regression of the disease (Sun et al., 2010a). This is the first 

study in human uveitis to report an increased frequency of Treg in patients with acute, 

but not chronic idiopathic non infectious anterior uveitis. It has to be noted that there 

appeared to be a difference in the frequency of Treg between acute (APU) and chronic 

(pan) pan uveitis patients, but the small number of samples in the APU cohort might 

be the reason that it did not reach statistical significance. 

 

The defective function of Treg cells have been associated with the active stages of 

various autoimmune inflammatory diseases (Valencia et al., 2007; Chen et al., 1994; 

Chen et al., 2008). In VKH disease, diminished suppressive function of Treg has been 

observed in patients with active uveitis (Chen et al., 2008). However, as stated earlier 

most of these studies isolated Treg solely on the basis of CD4 and CD25 expression 

only.  In this study, I have employed stringent gating conditions including CD127 

expression and investigated the functional capacity of CD4+CD25highCD127low 

Treg from idiopathic AAU patients as well as healthy controls to suppress the 
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proliferation of Tconv cells in response to polyclonal stimulation over a range of 

Tconv: Treg ratios. Treg from AAU patient showed a diminished suppressive capacity 

at a T cell: Treg ratio of 1:1/4. Even at other ratios, some of the patients showed a 

relatively lower suppressive capacity (Fig: 4.8). It is not clear whether these are the 

patients who have a higher chance of relapsing. Interestingly the defective Treg 

suppression evident at 4:1 ratio was more prominent in patients with recurrent disease.  

 

This is the first study in human uveitis to show a diminished suppressive function of 

Treg in idiopathic acute anterior uveitis. In a recent report, Frey et al. showed that 

Treg controlled the transition from acute self—limiting to non- remitting destructive 

disease in a glucose-6-phosphate induced (G6PI) arthritis model (Frey et al., 2010). In 

this model they showed that transient depletion of Treg before immunisation 

prevented spontaneous resolution of disease which then developed into a chronic 

immune effector phase characterized by destructive joint disease which could no 

longer be controlled by Treg cells (Frey et al., 2010). This data suggested that Treg 

could not interfere in the acute phase but instead control the resolution of initial phase. 

It is interesting to note that in my study, the diminished capacity of patient Treg to 

suppress the proliferation of autologous T cells was more prominent in chronic uveitis 

patients as compared to acute uveitis patients. In this context, it would be interesting 

to follow up AAU patients and see if the Treg frequency and function could be an 

indicator of their tendency to develop into chronic disease. 

 

 



 

163 
 

5 REGULATORY T CELLS IN THE 

AQUEOUS HUMOR OF  ACUTE UVEITIS 

PATIENTS 

 

5.1 Introduction 

Inflammatory activity in the anterior chamber is one of the main features of most 

forms of uveitis. Under resting non inflammatory conditions, the blood ocular barrier 

ensures that aqueous humor (AqH), the clear watery fluid that fills the space between 

cornea and iris (anterior chamber) is transparent and devoid of any cells. However 

under inflammatory conditions, the blood-ocular barrier breaks down (observed as 

cloudiness of AqH, known as flare) and leukocytes are recruited into the anterior 

chamber (Deschenes et al., 1988). Recruitment of lymphocytes with an activated 

phenotype into an otherwise immune privilege site is one of the fundamental 

paradoxes of ocular immunology. It has been shown that there was a predominance of 

T cells compared to B cells in the AqH of uveitis patients (Muhaya et al., 1998). An 

increased CD25 expression which was thought to be an activation marker was also 

observed in AqH T cells from uveitis patients (Deschenes et al., 1988; Dick et al., 

1999). However CD25 is also a marker for Treg cells. Accumulation of Treg cells at 

the site of inflammation have been observed in various autoimmune and inflammatory 

diseases. In EAE, Treg isolated from target organ at the peak of the disease has been 

shown to be poor suppressors, possibly because of the inflammatory 

microenvironment (Kerr et al., 2008a). In rheumatoid arthritis and multiple sclerosis, 

increased frequency of activated Treg has been reported in the synovium and CSF 
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respectively (van Amelsfort et al., 2004; Cao et al., 2004; Feger et al., 2007; Korn et 

al., 2007).  

 

In the case of uveitis, presence of regulatory T cells among the ocular infiltrating T 

cells has been observed in animal models. CD4+ T cells that express FoxP3 have been 

shown to be present among retinal infiltrates relatively early in the course of EAU. 

However it was not clear whether they become functional in limiting inflammation 

(Kerr et al., 2008b). In addition, several AqH factors such as TGF-β and α-MSH have 

been shown to induce the generation of Treg cells (Nishida and Taylor, 1999; Taylor 

et al., 1997). In Lewis rats immunised with retina specific antigens, accumulation of 

Treg within the eye was observed with the resolution of first attack. Moreover, the 

Treg from monophasic EAU were more potent in vitro in their suppressive function 

compared to those from recurrent EAU (Ke et al., 2008).  

 

In human uveitis, studies on regulatory T cells have only been conducted in peripheral 

blood, but not in AqH due to the difficulty in obtaining the sample and to the very 

small sample size. The aim of the experiments detailed in this chapter is to analyse 

whether Treg cells are present in AqH from uveitis patients and if present, to 

characterise their phenotype. I also aim to analyse the effect of inflammatory 

microenvironment on the phenotype and function of Treg and see if the AqH Treg are 

functionally active. 
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5.2 Identification and phenotypic analysis of AqH 

Treg 

AqH and peripheral blood were collected from patients presenting themselves to the 

A&E with an acute inflammation in the eye characterised by redness, pain and 

photophobia. The AqH as well as PBMC isolated from peripheral blood were stained 

with Treg specific markers to identify CD4+CD25highCD127low Treg cells (Fig: 

5.1A). In the previous chapter, I have shown an increased frequency of Treg cells in 

the peripheral blood from acute patients compared to healthy controls. However it is 

not possible to compare AqH from acute uveitis patients and healthy controls, as AqH 

from a healthy eye is generally acellular. Of the 20 AqH samples collected, 3 were 

acute pan uveitis samples and the rest were acute anterior uveitis (AAU) samples. 

None of the acute anterior uveitis patients were on systemic glucocorticoid treatment 

and 2 out of 3 pan uveitis patients were on systemic glucocorticoid treatment. The 

clinical details of these patients are explained in Table: 5.1.  

 

Similar to published literature (Deschenes et al., 1988; Calder et al., 1999), the AqH 

infiltrates from the uveitis eye contained large number of CD4+ lymphocytes (Fig: 

5.1B). CD4+CD25highCD127low Treg cells were also observed in the ocular 

infiltrates. Interestingly, the frequencies (of CD4+ T cells) of Treg in the AqH from 

acute anterior uveitis patients (median±SD: 14.57±3.2) were significantly higher 

compared to their peripheral blood counterpart (median±SD: 8.5±2.9) (Fig: 5.1B). 

There appeared to be no difference in the frequency of Treg in the AqH of pan uveitis 

patients. However, due to the small sample size and also due to the fact that 2 out of 3 

patients in this group were on systemic glucocorticoid therapy (which could affect the 
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Treg frequency in peripheral blood), it was impossible to determine if there were any 

significant difference in frequency of Treg from the AqH of these patients (Fig: 5.1B). 

Interestingly AAU patients undergoing topical glucocorticoid treatment showed 

increased frequencies of Treg in their AqH compared to untreated patients (Fig: 

5.1C). 

 

5.3 AqH Treg have memory phenotype 

T lymphocytes infiltrating the AqH have been shown to be primed (Curnow et al., 

2004b). AqH cells were stained with CD45RO, a memory T cell marker (Fig: 5.2A). 

It was observed that the CD4+ Treg as well as Tconv population from AqH were 

composed almost entirely of antigen experienced cells expressing CD45RO 

(memory/primed), as compared to the peripheral blood T cells that contained both 

primed and naive (CD45RO-) cells (Fig:5.2B&C). T cells from AqH of acute uveitis 

patients have been reported to have increased CD69 (Dick et al., 1999) expression 

indicating their activated phenotype. However, Treg from peripheral blood and AqH 

of patients analysed in this study expressed very little CD69 and there was no 

significant difference in the CD69 expression between Treg from AqH and peripheral 

blood (Fig: 5.2D&E)). There was also no difference in the CD69 expression between 

Tconv cells from peripheral blood and AqH of the patients (Fig: 5.2D&F). 
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Patient 

no:/ 

uveitis/ 

sex 

 No: 

AqH 

cells 

Laterality AqH 

Cells 

Fist/  Recurrent Treatment 

   Episode  

1/a/M 6300 U 3 Recurrent None 

2/a/M 5100 U 3 first episode None 

3/a/M 8800 U 3 Recurrent dex1%, cyclo 1 % 

4/a/M 2660 U 1 Recurrent None 

5/a/M 5370 U 3 Recurrent Pred 1%, cyclo 1% 

6/a/M 1440 U 2 Recurrent None 

7/a/M 840 U 3 first episode None 

8/a/F 1580 U 3 Recurrent 
G Predforte, G Cyclo 

1%  

9/a/F 3630 U 3 Recurrent None 

10/a/F 1940 U 3 Recurrent None 

11/a/F 3630 U 3 Recurrent None 

12/a/F 660 U 2 Recurrent None 

13/a/F 2300 U 2 Recurrent Predforte 

14/a/M 2450 U 2 Recurrent Predforte 

15/a/M 1940 B 2 Recurrent None 

16/a/M 2300 U 3 Recurrent None 

17/a/M 1130 U 3 Recurrent None 

18/p/M 8250 U 3 Recurrent None 

19/p/M 14300 B 3 Recurrent 
IV methylpred, 
rimexolone  

20/p/F 670 U 3 Recurrent prednisolone 10mg 

 

Table: 5.1 Clinical features and phenotype of Treg from peripheral blood and 

AqH of acute uveitis samples analyzed by flow cytometry.  

 

Anterior (a) or pan (p) uveitis samples, no: of AqH cells per sample, laterality of the 
disease (unilateral/U or bilateral/B), anterior chamber activity recorded at the time of 
sampling, first/recurrent episode, treatment etc shown above. 
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Fig: 5.1 Increased Frequency of regulatory T cells in AqH of AAU patients 

 

(A) Staining of PBMCs from peripheral blood (PB) and aqueous humour (AqH) cells 
from acute uveitis patients with Treg markers to identify CD4+CD25high CD127low 
Treg. (B) Majority of the AqH cells were lymphocytic in nature. (C) Frequency of 
Treg in the AqH of AAU patients was significantly higher compared to their own 
peripheral blood. No difference in the frequency of Treg between PB and AqH of 
APU patients was observed. (D) Increased frequency of Treg in the AqH of AAU 
patients undergoing topical glucocorticoid treatment (T) compared to untreated 
patients (U). Horizontal bars represent median values. (Statistical tests used- Mann-
Whitney test, Kruskall Wallis test, NS-not significant, *- p<0.05, ***- p<0.001). 
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Fig: 5.2 AqH Treg have memory phenotype 

 

(A) CD4+CD25highCD127low Treg cells from peripheral blood (PB) and aqueous 
humour (AqH) of AAU patients were analysed for CD45RO expression. Almost all 
the (B) Treg and (C) Tconv cells in the AqH had a memory phenotype (CD45RO+). 
(D) Treg from peripheral blood and AqH of acute uveitis patients did not express 
significant amount of CD69 (black curve-CD69 antibody and grey curve-isotype 
control). (E) No significant difference in the frequency of CD69+ Treg or (F) Tconv 
from peripheral blood and AqH of acute patients. Horizontal bars represent median 
values. (Statistical test used- Mann-Whitney test, ns-not significant, ***- p<0.001). 
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5.4 Increased FoxP3 expression of AqH Treg 

Expression of intracellular FoxP3, the most important Treg marker was analysed on 

AqH Treg. Almost all the cells classified here as Treg expressed FoxP3. As almost all 

the AqH T cells had a memory phenotype (CD45RO+), only the memory Treg and 

Tconv cells from AqH were analysed for FoxP3 (Fig: 5.3A). It was observed that the 

CD45RO+ AqH Treg expressed significantly higher FoxP3 (4-5 fold increase) 

compared to peripheral blood Treg in acute patients (Fig: 5.3B). Of the 8 patients 

where the AqH was analysed for FoxP3 expression, there were 6 anterior uveitis and 2 

pan uveitis samples (of which one was on systemic glucocorticoid treatment). Of the 

AAU AqH samples, 3 of them showed a clearly higher FoxP3 expression compared to 

others. However this was not due to the difference in their treatment status or sex of 

the patients, or laterality (unilateral/bilateral) of the disease. On the other hand, the 

conventional T cells from AqH did not express any significant increase in FoxP3 as 

compared to those from peripheral blood (Fig: 5.3C&D). 

 

5.5 Increased CTLA-4 expression of AqH Treg 

Similar to FoxP3, intracellular CTLA-4 expression was also analysed by flow 

cytometry. Even though the peripheral blood Treg from AAU patients showed no 

difference in the CTLA-4 expression compared to healthy controls, primed Treg from 

AqH expressed significantly higher levels of CTLA-4 compared to their peripheral 

blood counterparts (Fig:5.4A&B). Interestingly, Tconv cells from AqH also expressed 

increased levels of CTLA-4 compared to peripheral blood Treg (Fig: 5.4C&D). Of the 

6 patients analysed here, only one patient was on topical glucocorticoid therapy and 
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the other 5 were not on any treatment and hence any effect of glucocorticoid therapy 

on CTLA-4 expression could not be analysed.  

 

5.6 Increased frequency of CD39+ Tconv from AqH  

Decreased frequency of CD39+ Treg and their defective function in controlling IL-17 

production has been implicated in MS patients (Fletcher et al., 2009). However, CD39 

expression of Treg was not different between Treg from AqH and peripheral blood of 

AAU patient (Fig: 5.5A&B).  Interestingly, conventional T cells from AqH expressed 

increased levels of CD39 compared to their peripheral blood counterparts (Fig: 

5.5C&D). There was only one pan uveitis sample available for this analysis and was 

undergoing systemic glucocorticoid treatment at the time of sampling. Of the anterior 

uveitis patients, only 2 were on topical glucocorticoid treatment and hence any effect 

of glucocorticoid therapy on the CD39 expression could not be analysed.  
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Fig: 5.3 Increased FoxP3 expression on Treg from uveitis AqH 

 
(A) Representative histogram showing FoxP3 expression of CD45RO+ Treg from 
peripheral blood and AqH of AAU patients. (Median fluorescent intensity-MFI of 
FoxP3 for individual samples shown on the histograms). (B) Increased FoxP3 
expression of Treg from AqH of AAU patients. Only 2 pan uveitis patients were 
available for FoxP3 analysis and hence any significant difference could not be 
observed. (C) Representative histogram showing FoxP3 expression of memory Tconv 
from peripheral blood and AqH of AAU patients. (D) No significant difference 
between the FoxP3 expressions of Tconv cells from PB and AqH of acute uveitis 
patients. Horizontal bars represent median values. (Statistical test used- Mann 
Whitney test, NS-not significant, ** - p<0.01).  
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Fig: 5.4 Increased CTLA-4 expression on T cells from uveitis AqH 

 
(A) Representative histogram showing CTLA-4 expression of CD45RO+ Treg from 
peripheral blood (PB) and aqueous humor (AqH) of AAU patients. (Median 
fluorescent intensity (MFI) of CTLA-4 for individual sample shown on the 
histograms). (B) Increased CTLA-4 expression of Treg from AqH of AAU patients. 
(C) Representative histogram showing CTLA-4 expression of CD45RO+ Tconv cells 
from peripheral blood and AqH of AAU patients. (D) Increased CTLA-4 expression 
of Tconv cells from AqH of AAU patients. Horizontal bars represent median values. 
(Statistical test used- Mann Whitney test, NS-not significant, *- p<0.05, ** - p<0.01).  
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Fig: 5.5 Increased frequency of CD39+ Tconv cells from uveitis AqH 

 
(A) Representative histogram showing CD39 expression of CD45RO+ Treg from 
peripheral blood and AqH of acute uveitis patients. (Percentage of CD39+ cells for 
individual samples shown in the histograms). (B) No difference in the frequencies of 
CD39+ Treg from AqH and PB of AAU patients. (C) Representative histogram 
showing CD39 expression of CD45RO+ Tconv cells from peripheral blood and AqH 
of AAU patients. (D) Increased frequencies of CD39+ Tconv cells from AqH of AAU 
patients. Only one pan uveitis patients was available for CD39 analysis and hence any 
significant difference could not be observed. Horizontal bars represent median values. 
(Statistical test used- Mann Whitney test, NS-not significant, ** - p<0.01).  
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5.7 Activation up regulated FoxP3 expression 

Activated Tconv cells could express FoxP3 transiently, and also activated Treg cells 

could up regulate their FoxP3 expression (Wang et al., 2007). It is possible that the 

increased FoxP3 expression observed in AqH Treg could be due to their activated 

state. To test this hypothesis, Treg and Tconv cells from healthy controls were 

isolated and activated in vitro in the presence of anti-CD3/CD28 coated beads for 

different time periods (Fig:5.6A&B).  

 

As has been reported in the literature (Walker et al., 2003b; Wang et al., 2007), 

human CD4+CD25lowCD127high Tconv cells upregulated their FoxP3 expression 

upon activation (Fig:5.6C). Treg expressed higher FoxP3 levels before activation and 

similar to Tconv cells, upregulated their Foxp3 expression upon activation which 

reached its peak by day 2 and was similar to what was seen in AqH Treg population 

(median±SD: 1104.4+59.7) (Fig: 5.6C). However, by day 3 (72 hours), FoxP3 

expressions of both Treg and conventional T cells started coming back to resting 

levels (Fig: 5.6C). It has to be noted that during this transient upregulation of FoxP3 

expression, Treg maintained the higher levels of FoxP3 expression compared to 

Tconv cells. The Tconv cells did not at any time point express similar FoxP3 

expression to Treg, indicating that the AqH Treg might be recently activated Treg and 

not activated Tconv cells. 
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Fig: 5.6 Activation upregulated FoxP3 expressions of both Treg and Tconv 

 
FoxP3 expression of activated T cells in culture. (A) Treg and (B) Tconv cells from 
peripheral blood of healthy controls activated using anti CD3/CD28 coated dynabeads 
for 4 days and FoxP3 expression of both populations analysed at different time 
intervals. (C) Activation upregulated FoxP3 expression of both Treg (black bars) and 
Tconv (grey bars). FoxP3 expression reached its peak by day 2 for Treg following 
which it started coming down to resting levels. FoxP3 expression of Tconv was 
upregulated, but never as much as Treg. (Statistical test used- Kruskal Wallis test, 
***- p ≤0.001) 
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5.8 Inflammatory cytokines and dexamethasone did 

not increase the FoxP3 expression in vitro 

Cytokines in an inflammatory environment could affect the phenotype and function of 

Treg. Here, isolated peripheral blood Treg were cultured in serum free conditions 

(mimicking the AqH microenvironment) in 72 well micro well plates in the presence 

of cytokines including TNF-α, IL-6, IL-8, IL-1β and TGF-β2 which have been shown 

to be present in uveitis AqH (Fig:5.7A). The cytokines were added at concentrations 

similar to or greater than their biological concentrations found in the AqH. Treg were 

also cultured in the presence of dexamethasone, a topical glucocorticoid used in the 

treatment of uveitis (Fig: 5.7A.4). The aim of this experiment was to see if the 

increased FoxP3 expression observed in AqH Treg was in fact due to the effect of any 

of the above cytokines or topical glucocorticoid which comprise the AqH 

microenvironment. However, none of the cytokines or the glucocorticoid upregulated 

the FoxP3 expression of Treg in vitro (Fig: 5.7B). Any significant effect on FoxP3 

expression was observed by the addition of IL-1β and there too the FoxP3 expression 

was decreased, not increased (Fig: 5.7B). 
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Fig: 5.7 Inflammatory cytokines and dexamethasone did not increase the 

FoxP3 expression of Treg in vitro 

(A) Foxp3 expression of Treg cultured for 24 hours in serum free medium with or 
without Dexamethasone or with different concentrations of TNF-α, TGF-β2, IL-1β, 
IL-6, TNF-α or combinations of TNF-α and IL-6. (B) Pro-inflammatory cytokines at 
their physiological range did not increase the FoxP3 expression of Treg in vitro. Treg 
cultured with IL-1β showed decreased Foxp3 expression. (Statistical test used- 
Kruskal Wallis test, *- p ≤0.05, **- p ≤0.01, NS- not significant) 
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5.9 Uveitis AqH did not affect the FoxP3 expression 

of Treg 

To analyse the effect of uveitis AqH microenvironment on FoxP3 expression, Treg 

cells were cultured in the presence of 6 AqH samples separately for 24 hours in serum 

free medium and the FoxP3 expression was analysed by flow cytometry (Fig:5.8A). 

The AqH samples were of varying disease activity and consisted of two 1+ samples, 

two 2+ samples and two 3+ samples (classified based on anterior chamber activity). 

There was no significant difference in the FoxP3 expression of Treg (Fig: 5.8B) or in 

the frequency of FoxP3+ Treg after culture with uveitis AqH (Fig: 5.8C). As Treg 

cells are more prone to apoptosis in vitro, the culture of these cells in serum free 

conditions are more likely to induce their apoptosis. This may be the reason for the 

biphasic expression of FoxP3 by Treg in this assay with the apoptotic Treg expressing 

lower FoxP3 levels.   

 

5.10 Effect of non inflammatory AqH on T cells  

To determine whether Treg can function normally in the presence of AqH, 

suppressive function of normal Treg cells in the presence of pooled control (non 

inflammatory) AqH was analysed. For this, CFSE labelled conventional T cells were 

co-cultured  with unlabelled Treg with or without control AqH in 72 well micro plates 

for 4 days and the proliferation of CFSE labelled cells analysed by flow cytometry 

(Fig:5.9A). However, T cells could not survive in the presence of control AqH. In fact 

almost all the cells underwent cell death in the presence of control AqH with or 

without Treg cells as is evident from the very low number of live cells in the culture. 
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This is in concordance with the literature where non inflammatory AqH has been 

shown to have cytotoxic potential (D'Orazio et al., 1999).  

 

5.11 Treg cells maintained their suppressive function 

in the presence of uveitis AqH in vitro 

CFSE labelled conventional T cells were cultured in the presence or absence of AqH 

from 12 acute anterior uveitis patients (Fig: 5.10A). The AqH samples consisted of 6 

samples with disease activity of 2+ and 6 samples with disease activity of 3+. All the 

samples were from patients who were not on any kind of treatment. Treg cells 

expressed normal suppressive function in micro-well plates in a final volume of 20µl 

(Fig: 5.10B). However unlike in control AqH, T cells survived better in uveitis AqH 

and the Treg cells expressed normal suppressive function in the presence of uveitis 

AqH. 
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Fig: 5.8 Uveitis AqH did not affect the FoxP3 expression  

 
(A) FoxP3 expression of CD4+CD25highCD127low Treg cultured in 72 well mini-
tray for 24 hour in serum free medium in the presence of AqH with disease activities 
ranging from 1-3. (B) Uveitis AqH did not affect the FoxP3 expression of regulatory 
T cells. (C) Uveitis AqH did not affect the frequency of FoxP3 expressing Treg in the 
culture. Horizontal bars represent median values. (Statistical test used- Mann Whitney 
test, NS-not significant) 
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Fig: 5.9 Non-inflammatory AqH has cytotoxic activity on T cells  

 
Representative data showing suppression assay in the presence of non inflammatory 
AqH. CFSE labelled Tconv were cultured in 72 well mini-trays with / without 
unlabelled Tconv cells or Treg cells either in the (A) absence or (B) presence of 
pooled control AqH. Number of proliferated CFSE labelled cells (analysed using 
counting beads) marked on the histogram. Non inflammatory AqH killed off CFSE 
labelled Tconv cells. Representative of n=2 experiments. 
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Fig: 5.10 Uveitis AqH did not    affect 

Treg function  

 
Polyclonal suppression assay carried out in 
the presence or absence of uveitis AqH. 
(A) Histogram representing the 
proliferation of CFSE-Tconv cells co- 
cultured with Treg or Tconv cells in the 
presence or absence of uveitis AqH. (B) 
Treg from a healthy control suppressed the 
proliferation of autologous Tconv cells. 
Uveitis AqH did not affect either the 
proliferation of Tconv cells or the 
suppressive function of regulatory T cells 
in vitro. Representative of n=2 
experiments. (Statistical test used- Kruskal 
Wallis test, NS- not significant, *-p≤0.05. 
**-p≤0.01). 
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5.12 Analysis of suppressive function of AqH Treg 

 

5.12.1   Optimisation of Treg depletion/ mock depletion 

Due to the very small volume of AqH that can be obtained from each patient and the 

small number of cells present, it was not possible to isolate the Treg from AqH 

sample to analyse their suppressive function in a CFSE assay. Hence Treg cells were 

depleted from AqH samples and the proliferative response of the remaining cells were 

analysed. To optimise this assay, CD4+ T cells from healthy controls were isolated 

and depleted of CD25high Treg cells by incubating with anti CD25 antibody coated 

dynabeads (as explained in chapter 2). To optimise the number of beads that should be 

used to deplete Treg, different numbers (0, 1.6x104, 8x104, 16x104, 32x104 and 

80x104 ) of anti CD25 coated magnetic beads were added to 5x103 T cells in a total 

volume of 50µl (Fig:5.11A). The cells were incubated at 4ºC with rolling and tilting 

for 30 minutes. The bead bound CD25+ cells were then separated out on a magnet. 

The remaining cells were then stained with CD4, CD25 and CD127 antibodies to 

determine the percentage of undepleted Treg left (Fig: 5.11A). The optimum depletion 

(with the least number of leftover Treg) was obtained by the addition of 8x104 beads 

coated with anti CD25. As experiment control, similar number of cells were also 

subjected to a mock depletion process where cells were incubated with anti IgG 

coated beads at the same concentration as anti CD25 coated beads (Fig:5.11B). It was 

observed that mock depletion with anti IgG antibody did not deplete the Treg 

population.  
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Fig: 5.11 Optimisation of Treg depletion / mock depletion from small number of 

cells 

 
(A) Representative data showing Treg depletion using different number of anti CD25 
coated beads. Cells were gated on CD4+ cells and the percentage of leftover 
CD4+CD25highCD127low Treg marked on histograms. The optimum depletion was 
observed (least number of leftover Treg present) when 8x104 beads where used to 
deplete 5x103 T cells off Treg.  
 
Mock depletion was carried out as control using same number of sheep anti mouse 
IgG coated beads under similar conditions. (B) Histogram showing the percentage of 
leftover Treg cells following (i) Treg depletion and (ii) mock depletion.  
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5.12.2   Optimisation of time period for culturing depleted   

cells with Click-iT EdU  

A normal CFSE based suppression assay was not possible with AqH Treg cells due to 

the small number of cells obtained. The proliferation of Treg depleted cells were 

analysed by culturing with Click-iT EdU (a less harsh BrdU alternative) and analysing 

its incorporation by flow cytometry. Due to the fact that AqH cells were prone to 

apoptosis and that EdU could be harmful to cells in culture, it was important to 

optimise the minimum incubation time required for culturing small number of cells 

with EdU. For this, CD4+ T cells were cultured with 10µM (company recommended 

concentration) click-iT EdU for different time periods (24, 36, 48 and 72 hours) with 

or without CD3/CD28 coated bead stimulation. The cells were then harvested, fixed, 

permeabilised and stained with azide to detect EdU. The detection was based on a 

click reaction, a copper catalyzed covalent reaction between an azide and an alkyne 

(EdU). The cells were also stained with a cell cycle stain, 7-AAD. Proliferating cells 

incorporated EdU into their DNA and the double positive cells for EdU and 7-AAD 

provided the percentage of cells in S-phase of DNA synthesis (Fig: 5.12). In this 

experiment, the unstimulated cells did not proliferate and the minimum time in which 

a proliferative burst could be seen among the stimulated cells was observed as 48 

hours.  
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Fig: 5.12 Optimisation of time course to culture cells with click-iT EdU  

 
CD4+ T cells from healthy controls were cultured with click-iT EdU for the duration 
of 24 hours, 36 hours, 48 hours and 72 hours and stained with azide (that recognizes 
EdU using a click-iT reaction) either (A) without stimulation or (B) stimulated with 
anti CD3/CD28 coated beads.  Proliferating cells incorporated EdU during DNA 
synthesis and were positive for EdU. Cells entering S-phase of cell cycle were also 
identified using cell cycle staining dye, 7-AAD.  The minimum period required to 
identify proliferating cells was found to be 48 hours. No proliferation was observed 
without stimulation. 

 

7-AAD

E
d

U

7-AAD

E
d

U

0.3%

99.6%

0%

0%

2.4%

97.6%

0%

0%

0%

57.3% 42.5%

0.2% 0.2%

50.1% 49.5%

0.1%

0.2% 0.1%

95.3% 4.4%

40.7% 30.1%

27.5% 1.6%

0.5%

92.8% 6.1%

0.6%

58.1% 16.1%

23.6% 2.2%

24 hour

36 hour

48 hour

72 hour

(A) Unstimulated (B) Stimulated



 

188 
 

5.12.3   Optimisation of Click-iT EdU concentration 

As growth medium, cell density, cell type variations, and other factors could influence 

EdU labelling, it was also important to determine the optimum concentration of EdU 

required for in vitro culture with small number of cells under specific culture 

condition. Hence 5x103 CD4+ T cells were cultured with different concentrations of 

EdU (1µM, 2µM, 5µM and 10µM) for 48 hours and stained with azide and cell cycle 

stain (Fig:5.13). Clear separation of proliferating cells which have incorporated EdU 

and non proliferating cells was observed at a concentration as low as 2µM EdU (Fig: 

5.13). 

 

5.12.4   Optimisation of culture conditions for depleted cells 

from AqH 

Peripheral blood and AqH from acute anterior uveitis patients were collected. AqH 

cells were cultured with 2µM click-iT EdU with CD3/CD28 coated bead stimulation 

for 48 hours in micro well plates. EdU labelled CD4+ T cells from the peripheral 

blood of the same patients were also cultured alongside with CD3/CD28 stimulation 

as experiment control (Fig: 5.14). Since AqH cells were highly apoptotic in vitro and 

also due to the very small number of cells obtained from AqH, hanging drop method 

of culture was tested to ensure maximum contact between the cells in culture. Here 

the AqH cells were divided into two portions. One half was cultured in micro well 

plates up right and the other half was cultured in micro well plate which was then 

inverted to make a hanging drop culture. The plates were placed in a moist chamber to 

reduce evaporation of the medium. Peripheral blood T cells were also cultured under 

similar conditions.  The peripheral CD4+ T cells proliferated well in normal and 
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hanging drop culture (Fig: 5.14A). However it was observed that AqH cells survived 

better and proliferated more in hanging drop culture (Fig:5.14B).  

  

                                                                                              

   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig: 5.13 Optimisation of EdU concentration  

 
CD4+ T cells were cultured for 48 hours with different concentrations of click-iT 
EdU such as 1µm, 2µm, 5µm and 10µm either (A) without stimulation or (B) with 
stimulation with anti CD3/CD28 stimulation. The cells were then stained with pacific 
blue azide (that recognizes EdU using a click-iT reaction). Proliferating cells 
incorporated EdU during DNA synthesis and were positive for EdU. Cells entering S-
phase of cell cycle were also identified using cell cycle staining dye, 7-AAD.  Even at 
concentration as low as 2µM concentration of EdU, proliferating cells started 
becoming clearly visible following stimulation and subsequent staining. No 
proliferation was observed without stimulation.  
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Fig: 5.14 Normal vs. hanging drop culture of depleted cells from AqH  

 
CD4+ T cells from peripheral blood and AqH cells were cultured with stimulation in 
72 well mini-trays in normal suspension cultures or as inverted hanging drop cultures 
in a moist chamber for 48 hours and stained with EdU and 7-AAD. (A) Culture of 
CD4+ T cells from peripheral blood as (i) normal culture or as (ii) hanging drop 
culture (B) Cells from AqH of AAU patient cultured in 72 well mini-trays as (i) 
normal culture or as (ii) hanging drop culture. Peripheral blood CD4+ T cells 
proliferated well in both normal and hanging drop cultures. However, AqH cells 
proliferated well in hanging drop culture compared to normal culture.  
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5.13 Depletion of Treg from AqH of AAU patients 

Peripheral blood and AqH samples were collected from acute uveitis patients. As 

experiment control, CD4+ T cells from peripheral blood of the same patients were 

cultured in the presence of click-iT EdU with or without stimulation  (Fig:5.15A&B). 

AqH cells were divided into two portions. One portion of AqH was depleted of Treg 

using anti CD25 coated beads and the other portion was mock depleted with anti IgG 

coated beads under similar conditions. The cells were then cultured with click-iT EdU 

for 48 hours as hanging drop cultures in moist chamber and then stained with azide 

and 7-AAD (Fig:5.15C&D). 4 AAU patients were recruited for this study. These 

patients had disease activities in the range of 2+ to 4+ and none of them were on 

systemic glucocorticoid treatment. However, no significant difference in the 

proliferation of depleted cells could be observed (Fig: 5.15E). This could probably be 

due to the very small number of cells in each sample. It is interesting to note that there 

was a tendency towards increased proliferation of Treg depleted cells in 3 out of 4 

patient samples. However, it is also possible that this could be an experimental 

anomaly due to the small number of cells involved.  
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Fig: 5.15 Functional capacity of AqH regulatory T cells  

 
CD4+ peripheral blood T cells were cultured in 72 well mini-trays for 48 hours with 
EdU (A) without or (B) with stimulation in hanging drop cultures. Proliferating cells 
were identified by staining with EdU and 7-AAD staining. T cells proliferated well 
with stimulation. AqH from the same patients were subjected to either (C) Treg 
depletion or (D) mock depletion and cultured for 48 hours with EdU. Proliferating 
cells were identified by staining with EdU and 7-AAD. (E) Result of AqH depletion 
assay from 4 patients. In 3 out of 4 patients, Treg depleted cells from AqH showed a 
tendency toward increased proliferation, though not significant.  
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5.14 Discussion 

The ocular microenvironment, especially the aqueous humor (AqH), has the ability to 

suppress immune effector responses and inflammation which is believed to be 

important for the existence of ocular immune privilege (Mochizuki et al., 2000). AqH 

from non inflamed eye displays many immunosuppressive and anti–inflammatory 

properties in vitro. Various immunomodulatory factors in AqH like TGF-β and α-

MSH have been shown to induce Treg generation in vitro (Cousins et al., 1991; 

Taylor et al., 1997; Taylor et al., 1992). 

 

Here I have, for the first time observed an accumulation of Treg cells with a 

functional phenotype in the AqH of patients with non infectious acute anterior uveitis 

(Fig: 5.1). Studies in animal models of ocular inflammation had revealed similar 

accumulation of Treg in the inflamed eyes. In a rat model of uveitis, Ke et al. showed 

that following immunisation with retinal antigen, antigen specific Treg accumulated 

in the draining lymph nodes and the eye (Ke et al., 2008). Existence of a negative 

feedback system has been suggested in other autoimmune diseases where regulatory T 

cells are generated and triggered due to ongoing inflammation and accumulate at the 

site of inflammation (Korn et al., 2007; Cao et al., 2004).  

 

Another interesting finding was the increased frequency of Treg in AqH of patients 

undergoing topical glucocorticoid therapy. Glucocorticoid therapy has been shown to 

upregulate the frequency and FoxP3 expression of Treg (Karagiannidis et al., 2004). 

Topical glucocorticoid therapy has been reported to directly induce CXCR4 

upregulation of primed T cells in uveitis AqH (Curnow et al., 2004b). Zou et al. 

reported that CXCR4/CXCL12 signalling induced Treg trafficking to bone marrow 



 

194 
 

(Zou et al., 2004). CXCR4 has also been shown to be involved in the retention of 

leukocytes at the sites of chronic inflammation (Curnow et al., 2004b). Thus it is 

interesting to speculate that the increased CXCR4 induced by topical glucocorticoid 

therapy may be responsible for the increased retention of Treg within the inflamed eye 

and is one of the pathways by which glucocorticoid therapy resolves inflammation. In 

the rat model of EAU proposed by Ke et al., accumulation of Treg in the eye 

correlated with the resolution of acute attack of the disease (Ke et al., 2008). However 

a longitudinal study of the patients will be required to confirm any such results in 

human uveitis. 

  

Takase et al. established T cells clones (TCC) from ocular infiltrated T cells in non 

infectious uveitis patients and revealed that these TCCs were all memory activated 

Th1-like CD4+ cells (Takase et al., 2006b). In this study, I have shown similar results 

where AqH Treg cells from AAU patients were all found to be primed (CD45RO+) 

with a functional phenotype (Fig:5.2A&B).  

 

One of the reasons for the increased FoxP3 expression of AqH Treg may be the effect 

of pro inflammatory milieu within the inflamed eye. Increased levels of pro-

inflammatory cytokines like IFN-γ, IL-6, IL-8, TNF-α etc in the uveitis AqH have 

already been reported (Curnow et al., 2005; Lacomba et al., 2000; Takase et al., 

2006a). Most studies reported that the inflammatory milieu have an inhibitory effect 

on the phenotype and function of Treg. TNF-α has been shown to down modulate 

Treg cells in rheumatoid arthritis (Valencia et al., 2006). IL-6, another pro 

inflammatory cytokine present in uveitis AqH, has also been shown to suppress TGF-

β induced generation of Treg cells (Ohta et al., 2000). In contrast, Chen et al. and 
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Grinberg-Bleyer et al. reported that TNF, in concert with IL-2 could selectively 

activate Treg upregulating their FoxP3 expression (Chen and Oppenheim, 2010; 

Grinberg-Bleyer et al., 2010). In this study, I tested the effect of pro inflammatory 

cytokines (IL-6, IL-1β and TNF-α) on the FoxP3 expression of Treg in vitro in a 

serum free environment and found no such increase of FoxP3 in vitro.  TGF-β2, an 

immunomodulatory cytokine which has been shown to be present at a lower level in 

uveitis AqH (Fu et al., 2004)  also had no effect on the FoxP3 expression of Treg in 

vitro.  

 

Culture of Treg cells in the presence of uveitis AqH also did not increase their FoxP3 

expression. Interestingly, with the exception of one uveitis AqH sample, all other 

samples appeared to decrease the FoxP3 expression of Treg cells in vitro in serum 

free condition. However it has to be noted that this experiment was conducted using 3 

test medium controls and 6 individual AqH samples. This preliminary data could be 

used to perform power analysis to identify the number of samples to be tested to get 

potentially significant results. The power of a statistical test determines the sensitivity 

of the test and is defined as the probability that the test will reject a null 

hypothesis when the null hypothesis is false. Power analysis can be done before 

(priory) or after (post hoc) the research study. A post hoc analysis of the above 

experiments with the given sample size gave a power of only 2%. A priori power 

analysis carried out using Java applets for power and sample size revealed that, we 

need to analyse the effect of at least 27 medium controls and 50 AqH samples on the 

FoxP3 expression of Treg in order to get a statistical power of 80% (which by 

convention is an acceptable level of power). In any case, our preliminary data indicate 

a decrease of FoxP3 expression of Treg in the presence of uveitis AqH, suggesting 
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that the higher levels of FoxP3 expressed by ocular Treg cells are not due to the effect 

of AqH.   

 

Glucocorticoid treatment has also been shown to increase the frequency and FoxP3 

expression of peripheral blood Treg cells (Karagiannidis et al., 2004). In the in vitro 

assay, I found no effect of dexamethasone, a glucocorticoid used in the topical 

treatment of uveitis (even at concentration more than what is used for topical 

treatment) on the FoxP3 expression of Treg in vitro. However, it has to be noted that 

even though I used serum free conditions in my in vitro cultures, it was impossible to 

recreate the exact microenvironment as in uveitis AqH ex vivo. I also observed that 

uveitis AqH itself did not change the FoxP3 expression or the frequency of FoxP3+ 

Treg cells in vitro.  

 

Another possible reason for the increased FoxP3 on AqH Treg could be their recent 

activation status. Upon activation, even the conventional T cells could also transiently 

upregulate their FoxP3 expression. It has to be noted that the T cells in the AqH cells 

were all activated. In my in vitro activation assay I observed that both Treg and 

conventional T cells upregulated their FoxP3 expression, with Treg expressing FoxP3 

in the range as seen in AqH Treg cells by day 3. However the FoxP3 expressions of 

activated conventional T cells were much less than activated Treg cells (Fig: 5.6). 

This is similar to a recent report that suggests that T cells activated ex vivo express 

low levels of FOXP3, at levels a log lower than true Treg (Miyara et al., 2009). This 

points to the fact that the high FoxP3 expressing cells in uveitis AqH are not activated 

conventional T cells but recently activated Treg cells.  
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Another interesting finding was the increased frequency of CD39+ conventional T 

cells in the AqH of acute uveitis patients (Fig: 5.5C&D). Moncrieffe et al. recently 

reported the presence of increased numbers of CD39+ T cells at the inflammatory site 

in human JIA (Moncrieffe et al., 2010). These CD39+ T cells had ATPase activity, 

but no regulatory capacity. They proposed that the link between CD39 and regulatory 

activity might be less tightly coupled in inflammation than in healthy T cells 

(Moncrieffe et al., 2010). It would be interesting to analyse the ATPase activity of 

CD39+ T cells from uveitis AqH and see if they have any regulatory properties. 

 

 Despite the presence of Treg with a functional phenotype in the AqH, inflammation 

is ongoing. One possible explanation for this is that the local pro-inflammatory 

environment might not be favourable to Treg mediated suppression of inflammatory 

cells. The ability of non inflammatory AqH to induce apoptosis of inflammatory cells 

(one of the mechanisms of immune privilege within the eye) has already been 

reported (D'Orazio et al., 1999; Dick et al., 1999). Not surprisingly, conventional T 

cells and Treg co-cultured in the presence of control/ non inflammatory AqH 

underwent apoptosis as shown in Fig: 5.9. Uveitis AqH on the other hand, has been 

shown to inhibit the apoptosis of T cells through IL-6 trans signalling (Curnow et al., 

2004a). In this study, I have shown that CFSE labelled T cells survived well in uveitis 

AqH. The presence of uveitis AqH did not affect the suppressive function of normal 

Treg as shown in Fig: 5.10, suggesting that an inflammatory microenvironment may 

not prevent the accumulated Treg from functioning properly. However it has to be 

noted that this experiment had been carried out using resting peripheral blood T cells. 

As we know that the T cells entering the eye have a highly activated phenotype, it is 

also possible that the activation status of the T cells entering the eye might be too high 
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for the ocular Treg to control. As activated Treg are more prone to apoptosis (Ohara et 

al., 2002; Taams et al., 2001), the possibility that ocular Treg (with an activated 

phenotype) undergo apoptosis within the uveitic eye can also not be ignored.  

 

Why, despite this, chronic inflammation persists is unclear. Although suppression 

assays using cells isolated from AqH might be helpful to address this issue, it was not 

possible due to the difficulty to obtaining enough cells from AqH. Results from Treg 

depletion and subsequent analysis of the proliferation of AqH T cells using click-iT 

EdU were inconclusive because of the very low number of cells. Nevertheless, 

suppressive capacity of Treg on conventional T cells within inflamed tissues has been 

demonstrated in a variety of settings. In rheumatoid arthritis, Treg from synovial fluid 

has been shown to be functional in suppressing conventional T cells from peripheral 

blood (Mottonen et al., 2005; van Amelsfort et al., 2004). Korn et al. recently 

reported that during experimental autoimmune encephalomyelitis, antigen specific 

Treg accumulate in CNS and that these Treg could suppress peripheral conventional T 

cells in vitro (Korn et al., 2007). However, the same Treg were unable to suppress 

activated conventional T cells isolated from CNS at the peak of the disease which has 

been shown to produce higher amounts of IL-6 and TNF than cells from the spleen. 

Interestingly, the addition of IL-6 and TNF to the in vitro co-cultures prevented the 

suppression of spleen-derived T cells by Treg cells, indicating that the cytokine milieu 

at the site of inflammation determine the ability of Treg to control autoimmunity at 

the peak of disease (Korn et al., 2007). Pro-inflammatory cytokines such as IL-6, IL-1 

and TNF-α which are present in the inflamed tissue can also render conventional T 

cells less sensitive to Treg-mediated suppression (Korn et al., 2007; Pasare and 

Medzhitov, 2003).   
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Hence there are several possible reasons for the persisting inflammation in the AqH 

even in the presence of Treg cells. It is possible that the presence of Treg cells in the 

eye actually prevent the progression to an erosive inflammation there by maintaining 

ocular tissue damage to minimum and without them the inflammation might get 

worse. Another possibility is that the Treg suppress the immune system, thereby 

preventing the inflammation to naturally resolve. As Treg cells are more prone to 

apoptosis, it is possible that despite the enrichment, Treg may also be outnumbered to 

combat the ongoing inflammation. Similar to what was shown in CNS  (Korn et al., 

2007), increased resistance of AqH T cells to Treg mediated suppression could also 

not be ignored. 

 

A number of ocular antigens have been proposed to be uveitogenic. In animal models, 

immunization with retinal-S antigen and interphotoreceptor retinoid binding protein 

(IRBP), among others, has been shown to induce uveitis. In humans, idiopathic non 

infectious uveitis is considered to be an autoimmune disease, mediated by 

autoreactive T cells. However, the specific auto-antigen responsible for human AAU 

is still not known. Uveitis patients have been reported to show lymphoproliferative 

response to various retinal antigens, especially to retinal S antigen in vitro (Tripathi et 

al., 2004; de Smet et al., 2001). In addition, lymphocyte responses could be generated 

against few peptide determinants derived from both the bovine and human S-Ag 

sequences (de Smet et al., 2001). This is in contrast to animal models where cells 

respond only to the antigen against which they are immunized. In some of the uveitis 

patients analysed, with each disease recurrence, the immune response shifted to a new 

epitope (epitope spreading) (Tripathi et al., 2004). Also antigenic mimicry between a 

peptide from retinal S-Ag (PDSAg) and other environmental peptides (eg: cas protein 
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from bovine mils, surface protein vp4 of rotavirus etc) has been reported (Wildner and 

Diedrichs-Mohring, 2003). It has been postulated that autoreactive T cells (including 

Treg) are primed extraocularly through environmental peptides which could then 

transgress the blood ocular barrier and mediate inflammation following recognition of 

their cognate antigen (Wildner and Diedrichs-Mohring, 2004; Wildner and Diedrichs-

Mohring, 2003). Treg, once activated, can regulate immune response in an antigen 

specific or antigen non specific bystander fashion. The antigen specificity of T cells in 

the eye has not been analysed in the present study. It would be worthwhile to find out 

the antigen specificity of Treg and Tconv cells in the AqH of AAU patients for future 

therapeutic applications.  

 

Whether spontaneous idiopathic uveitis is an autoimmune disease or whether it is 

caused by non specific systemic immune response is still a matter of debate. It has 

been demonstrated that activated T cells of any specificity can pass through the blood 

ocular barrier (Xu et al., 2003; Thurau et al., 2004). A non-specific systemic 

inflammatory response, can lead to systemic release of pro inflammatory cytokines 

such as IL-1β, IL-6 and TNF-α, which in turn can result in generalised activation of 

endothelial barriers, and may affect the blood-ocular barrier as well. This in turn 

would lead to recruitment of non specific memory T cells into the eye. However these 

cells would not be reactivated within the eye, but could cause bystander damage to 

surrounding tissues. Hence it is interesting to speculate as to whether a rapidly 

resolving uveitis represents non-specific breakdown in the blood-ocular barrier as a 

result of systemic inflammation but without the extra-ocular priming of ocular antigen 

specific T cells or their reactivation within the eye, whereas persistent (and possibly 

recurrent) disease represents a true autoimmune phenomenon mediated by ocular or 
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extra ocular priming. In this context, the function of ocular Treg will be of more 

importance in the recurrent disease. It is intriguing that almost all the patients in this 

study had recurrent disease. It need to be analysed whether the increased recruitment 

of Treg to the AqH is a feature of recurrent uveitis and is required for the resolution of 

the disease. 
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6 FINAL DISCUSSION 

 

6.1 Introduction 

During the course of this thesis, I have observed an increased frequency of Treg in the 

peripheral blood of non infectious AAU patients. In contrast these Treg were 

defective in their suppressive capacity to inhibit the proliferation of Tconv cells in 

vitro. Treg expressed a more prominent defect in chronic anterior uveitis patients as 

compared to acute anterior uveitis patients. I have also shown that CD4+ Tconv cells 

and Treg cells accumulate in the AqH during non infectious uveitis and there was an 

increased frequency of Treg in the AqH of the patients compared to their peripheral 

blood.   

 

In the previous chapters, I have identified and analysed the phenotype and function of 

Treg from peripheral blood as well as AqH of uveitis patients. In this final discussion 

I wish to discuss the broader implications of Treg cells in uveitis, first with regard to 

the concept of central tolerance and peripheral tolerance and second with regard to the 

activation and migration of inflammatory as well as regulatory cells to the eye and the 

role of Treg in local immunosuppression at the site of inflammation. 

 

6.2 Central tolerance 

Central T cell tolerance is the mechanisms by which newly developing T cells in the 

thymus are made non reactive to self antigens. Thymocytes with high affinity to self 

antigens, which are presented by endogenous MHC molecules and activated 

thymocytes through interactions with T-cell receptors (TCRs), are eliminated via 
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apoptosis. Surviving thymocytes (with lower affinity to self antigens) undergo an 

additional process of positive selection and emerge from the thymus as mature T cells.   

 

Thymic expression of peripheral tissue antigens is required for central tolerance which 

has been reported in humans (Takase et al., 2005). Several retinal Ags, including 

IRBP, have been shown to be expressed in the thymus and are under the control of the 

AIRE transcription factor (Anderson et al., 2002). Thymic expression of IRBP in 

mice eliminated many T cells with high affinity to IRBP and reduced the autoreactive 

uveitogenic T cell repertoire (Avichezer et al., 2003).  Using highly sensitive 

detection methods and thymic transplantation, Avichezer et al. demonstrated that 

EAU-susceptible WT mice expressed IRBP in the thymus and displayed functionally 

significant levels of tolerance to this antigen (Avichezer et al., 2003). Mice lacking 

the transcriptional regulator AIRE had a limited autoreactive repertoire to eye 

antigens such as IRBP and arrestin and developed antibody and T cell responses 

directed at IRBP that resulted in uveitis (Anderson et al., 2002; DeVoss et al., 2006). 

Egwuagu et al. showed that the amount of IRBP expressed in the thymus correlated 

inversely with susceptibility to EAU as IRBP was expressed only by IRBP-resistant, 

but not by susceptible, mouse strains (Egwuagu et al., 1997). Thymic expression of 

retinal antigens among individual humans and mouse strains is variable (Takase et al., 

2005; Egwuagu et al., 1997). 

 

The thymus also generates natural T regulatory cells (nTreg), which arise from 

thymocytes  whose TCRs have an affinity that is relatively high, but not quite high 

enough to trigger deletion. nTreg also has been shown to control the threshold of 

susceptibility to EAU, and their depletion by use of monoclonal antibodies 
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exaggerated the disease (Avichezer et al., 2003; Grajewski et al., 2006). 

Immunocompetent WT mice, deprived of thymus-derived regulatory cells, developed 

enhanced EAU scores. It has been shown that thymic expression of IRBP negatively 

selects effector T cells  and positively selects natural Treg  (Avichezer et al., 2003; 

Grajewski et al., 2006). These findings support the notion that an individual whose T 

cell repertoire contains retinal antigen–specific T cells with higher affinity and/or 

higher frequency due to the reduced expression of retinal antigens and /or reduced 

selection of antigen specific nTreg in the thymus may have a greater likelihood of 

developing uveitis (Takase et al., 2005; Sugita et al., 2007; Egwuagu et al., 1997).   

 

Haas et al. has reported a decrease in the naive or recent thymic emigrant Treg in 

multiple sclerosis patients (Haas et al., 2007; Venken et al., 2008a). They defined 

naive CD4+CD25+FoxP3+ T cells that co express CD31 (PECAM-1) as recent thymic 

emigrants (RTEs), and found reduced numbers of RTEs in the blood of patients with 

MS. This was compensated for by increased amounts of memory Treg, resulting in a 

stable cell count of the total Treg population (Haas et al., 2007). Interestingly, 

increased frequency of Treg (with a memory phenotype) was shown in the peripheral 

blood of non infectious AAU patients in my study. It is not clear whether this 

represents an increase in the thymic output of nTreg cells.  The total peripheral Treg 

count in the chronic patients on the other hand remained similar to that in healthy 

controls. Even though there was no difference in the frequency of naïve (CD45RO-) 

Treg cells from the peripheral blood of both chronic and acute patients, it would be 

interesting to identify and analyse the recent thymic emigrant Treg in these patients 

(based on CD31 expression) and see if similar defects (as seen in MS) could be 

identified in these patients.   
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6.3 Peripheral tolerance 

Negative selection in the thymus does not eliminate all autoreactive T cells. Normally, 

autoreactive thymic emigrants that have escaped negative selection are subjected to 

peripheral tolerance which induces T cells to become non-responsive (tolerant) to 

their specific antigen when they encounter that antigen under non inflammatory 

conditions. Peripheral tolerance is designed both to control responses to foreign 

antigens encountered in the periphery and to maintain tolerance to self antigens.  

 

Treg can also be induced in the periphery (iTreg) by the activation of naive T cells 

under appropriate conditions (Wraith, 2004). Using IRBP knockout mice, Grajewski 

et al. demonstrated that although generation of IRBP specific Treg require 

endogenous expression of IRBP, Treg of other specificities that are activated by the 

mycobacterial component of CFA used for vaccination, may also participate in 

controlling EAU (Grajewski et al., 2006).  

 

The peripheral pool of Treg includes both nTreg and iTreg. It is not clear whether the 

increased frequency of peripheral blood Treg in AAU patient in my study is due to an 

increased thymic output of Treg (nTreg) in these patients or an increased production 

of induced Treg (iTreg) in the periphery. Methylation status of the FoxP3 locus in 

Treg has been shown as a marker to differentiate between nTreg and iTreg (Baron et 

al., 2007; Janson et al., 2008; Lal et al., 2009). It has been demonstrated that the 

FoxP3 proximal promoter region was fully demethylated in nTreg whereas it was 

fully or partially methylated in recently activated Tconv cells and iTreg (Baron et al., 

2007; Floess et al., 2007; Janson et al., 2008). Three conserved non-coding DNA 

sequence (CNS 1-3) elements at the FoxP3 locus have been identified recently in 



 

206 
 

mouse, which determine the size, composition and stability of Treg population (Zheng 

et al., 2010). CNS3 controls the de novo FoxP3 expression by thymic and peripheral 

Treg. CNS1 on the other hand plays an important role in the peripheral induction of 

Foxp3 and iTreg generation whereas CNS2 controls the heritable maintenance of 

Foxp3 expression in dividing mature Treg cells (Zheng et al., 2010). Hence a detailed 

methylation analysis and mapping of conserved sequences in the Foxp3 locus would 

be required to find out whether the peripheral blood Treg in AAU patients are thymic 

nTreg or in fact induced in the periphery.   

 

Interestingly, it was recently reported in type 1 diabetes that the frequency of IFN-γ+ 

Treg was significantly increased in patients with type 1 diabetes compared to healthy 

controls. These IFN-γ+ Treg were CD4+CD25highCD127lowFOXP3+ and were 

predominately methylated at the TSDR, characteristics of iTreg (McClymont et al., 

2011). Similar results were observed in relapsing remitting multiple sclerosis patients 

where an increased frequency of IFN-γ producing Foxp3+ Treg was found in 

untreated patients (Dominguez-Villar et al., 2011). It would be interesting to analyse 

the IFN-γ production by Treg from AAU patients and see if similar results could be 

obtained which may account for the defective function of Treg observed in these 

patients. 

 

The hormone Leptin, which can also act as a pro-inflammatory cytokine, plays a 

potent role in the control of autoimmune diseases. It has been shown by De Rosa et al 

that leptin had a negative impact on Treg proliferation and survival. They showed that 

leptin could bind to receptors on Treg and that in vitro neutralization with leptin 

monoclonal antibody combined with TCR signalling reversed anergy and 
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hyporesponsiveness of Treg. Increased leptin is associated with ulcerative colitis 

(Tuzun et al., 2004) and the onset of multiple sclerosis (Matarese et al., 2005). 

Interestingly, increased serum levels of leptins were also reported in patients with 

VKH (Liu et al., 2008a) and Behcet’s disease (Yalcindag et al., 2007). Moreover, 

increased expression of leptin has been observed in the retina, choroid, sclera and 

episclera of guinea pigs during experimental uveitis (Kukner et al., 2006). The levels 

of serum leptin in uveitis patients have not been analysed. Given the increased levels 

of serum leptins in other ocular diseases, it is interesting to speculate that the 

increased levels of serum leptins may account for the defective suppressive function 

of Treg in uveitis patients. As the normal suppression assays in this project were 

carried out in serum containing medium, it is possible that the overall lower 

suppressive function in our suppression assays may be due to the effect of leptins in 

the serum.  

 

Treg have been shown to control various manifestations of autoimmunity (Sakaguchi 

et al., 2006b). It could be assumed that in individuals who develop uveitis, the 

threshold of susceptibility set by the peripheral Treg has been passed. Reduced Treg 

function has been shown to be associated with active uveitis in VKH patients (Chen et 

al., 2008). Other autoimmune diseases where a defective function of Treg has been 

reported include rheumatoid arthritis, multiple sclerosis, SLE and type 1 diabetes 

(Ehrenstein et al., 2004; Viglietta et al., 2004; Valencia et al., 2007; Lindley et al., 

2005). However, identifying functional defects in Treg cells is made difficult both by 

the multiple mechanisms used by Treg cells to suppress inflammation (See chapter 1) 

and by the way in which they are isolated and the suppression is measured. Using 

stringent methods of isolation and selection of Treg cells, I have observed in my study 
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that Treg from the peripheral blood of both acute and chronic anterior uveitis patients 

express diminished suppressive function in vitro in suppressing the proliferation of 

autologous Tconv cells. Interestingly, Treg from chronic patients expressed a more 

prominent defect than acute patients, suggesting that there may be a progressive 

diminishing in the functional capacity of Treg as patients progress from acute to 

chronic stage. However, I was not able to confirm this, as it would require 

longitudinal study of patients as they progress from acute to chronic stage of the 

disease. It is particularly interesting in the context of the heterogeneity observed 

among AAU patients in my study, where some patients showed a clearer defect in 

their Treg suppressive capacity than others at almost all Tconv: Treg ratios. Such a 

longitudinal study would also help us to determine whether the AAU patients with a 

more prominent defect are more prone to develop a chronic disease. 

 

It has to be noted that the in vitro assays of human Treg function may fail to mimic 

the in vivo milieu and that this is only one of the pathways in which Treg exert their 

suppressive function in vivo. Even though the suppressive function of Treg on 

proliferation was diminished in vitro, it is possible that the other pathways of Treg 

mediated suppression of inflammation may be functionally active in vivo. 

 

6.4 Activation of antigen specific T cells in the 

periphery 

The triggers which are responsible for activating antigen specific T cells to retinal 

antigens in the periphery, so that they could escape the control of Treg, are largely 

unknown in humans. Although Tissue antigen specific T cells become tolerant when 
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they encounter their specific antigen in healthy tissues, it is not the case for retinal 

antigens as they are sequestered behind the blood-ocular barrier and are relatively 

inaccessible. Thus, it has been suggested that circulating retinal antigen–specific T 

cells are likely to be ignorant rather than tolerant of their cognate antigen. However, 

they can be activated by a chance encounter with a microbial component that is 

immunologically similar in structure to their cognate retinal antigen (antigenic 

mimicry) (Wildner and Diedrichs-Mohring, 2004; Wildner and Diedrichs-Mohring, 

2003).  

 

Wildner et al. described antigenic mimicry between a peptide from retinal S-Ag and 

‘Cas’ peptide from αs2casein, a major component of bovine milk, and a peptide from 

surface protein vp4 of rotavirus (‘Rota’), a common gastrointestinal pathogen. Retinal 

S-antigen has been shown to be immunogenic in man and uveitogenic in 

rats. Peptides Rota and Cas and even the complete αs2casein protein were shown to 

be uveitogenic in rats by subcutaneous immunization with complete Freund's adjuvant 

(Wildner and Diedrichs-Mohring, 2003). Uveitis patients expressed increased 

humoral and cellular immune responses to S-antigen as well as  casein/-peptide and 

rotavirus peptide both of which expressed antigenic mimicry with the retinal S-

antigen (Wildner and Diedrichs-Mohring, 2003). 

 

In idiopathic AAU, it is generally suggested that an antigen specific immune response 

to an ocular antigen arises through molecular mimicry to a pathogenic antigen. 

Autoreactive T cells may be generated via molecular mimicry or epitope/antigen 

spreading in which priming to self-antigens released during tissue damage may occur. 

This happens mostly in the context of persistent immune response to the original 
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antigen such as during chronic infection. One of the speculations is that autoreactive T 

cells to an ocular antigen can be generated by intra ocular inflammation thereby 

inducing an autoimmune uveitis which would continue after clearing of the pathogen. 

 

Cross reactivity with environmental antigens has been implicated in the physiological 

induction of autoantigen specific Treg cells (von Herrath and Harrison, 2003). Silver 

et al. showed that hydrodynamic injection of plasmid expressing the retinal antigen 

IRBP, induced tolerance in mice that acted at least in part through the induction of 

IRBP specific Treg cells (Silver et al., 2007). 

 

The antigen specificities of Treg from uveitis patients were not analysed in this study. 

De Smet et al showed that in patients with certain forms of uveitis, there were specific   

immunodominant determinants to human S-Ag. However, in individual patients, 

response was not limited to these determinants but spread over many determinants 

(epitope/determinant spreading) (de Smet et al., 2001). Deeg et al. examined long-

term immune response of uveitic horses to various epitopes of S-Ag and IRBP for a 

period of 22 months. They found inter and intramolecular epitope spreading in equine 

recurrent uveitis, a model of spontaneous uveitis (Deeg et al., 2006). Here the authors 

postulated that the remission and relapse of uveitic episodes could be explained by 

determinant spreading where the reaction to a new epitope could lead to a new uveitic 

episode. As Treg cells take control, the inflammation ceases. The next episode of 

uveitis would then be generated by a shift of response to another epitope of the same 

autoantigen (intramolecular spreading) or another autoantigen (intermolecular 

spreading) (Deeg et al., 2006).  
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Treg can act in an antigen specific or non specific manner. Once activated through 

their cognate TCR, the Treg can also act to suppress T cells of other specificities 

(bystander suppression), thereby broadening their effectiveness especially where 

multiple antigens in the same tissue may be  targeted (Sakaguchi et al., 2006a). 

Nevertheless, it would be very interesting to analyse the antigen specificity of Treg 

cells from uveitis patients, which would greatly help in designing future therapeutic 

targets. 

 

6.5 Migration of T cells to the inflamed tissue 

The blood ocular barrier was once thought to be a tight junction which does not allow 

the passage of any cells through it. However, using OVA-specific GFP+ T cells, 

Thurau et al.  showed that activated T cells of any antigen specificity can migrate into 

ocular tissue within 30 min after injection into the tail vein (Thurau et al., 2004). Xu 

et al. demonstrated using intravital scanning laser microscopy and retinal whole 

mounts that adoptive transfer of non-Ag-specific activated T cells (concanavalin-A 

stimulated) into normal B10.RIII mouse could cause a transient local breakdown in 

the blood ocular barrier with passage of activated T cells across the endothelium. This 

mechanism was associated with the up regulation of adhesion molecule ICAM-1 on 

the endothelium and its interaction with LFA-1 on the T cell (Xu et al., 2003). This 

was supported by the observation by Prendergast et al. that activated T cells of any 

specificity, crossed the blood-ocular barrier within 24h and that this preceded any 

visible signs of inflammation (Prendergast et al., 1998). 

 

In an adoptive transfer model of uveitis, Prendergast et al. showed that S antigen 

specific T cells enter the retina within hours following intravenous injection 
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(Prendergast et al., 1998). These cells exhibited a biphasic accumulation in the retina 

with the first peak at 24 hours post injection. The number of cells decreased until 72 

hours and then again peaked at 96 and 120 hours concurrent with the onset of 

destructive intraocular inflammation (Prendergast et al., 1998). They also reported 

that anterior segment inflammation preceded retinal inflammation and postulated that 

this could be due to a delay in antigen presentation at the retina (Prendergast et al., 

1998). Various factors such as infection, trauma and immunological response can 

cause anterior segment inflammation. By inducing anterior uveitis in rabbits, Bolliger 

et al. observed an increase in the vascular permeability of anterior uveal tract, causing 

the exudation of protein and migration of leukocytes into the anterior chamber 

(Bolliger et al., 1980). 

 

The secretion of multiple cytokines, chemokines and upregulation of adhesion 

molecules by the activated T cells in the eye, could then promote the invasion of other 

T cells (Treg, Th17 etc) and other inflammatory cells (Takase et al., 2006a; Takase et 

al., 2006b; Hill et al., 2005).  

 

Recruitment of regulatory T cells along with the inflammatory T cells has been 

reported at various inflammatory sites (Korn et al., 2007; Lange et al., 2011; Cao et 

al., 2004; Cao et al., 2003). The specific localization of human Treg is required for 

their ability to control ongoing inflammatory conditions (Siegmund et al., 2005; Wei 

et al., 2006; Cao et al., 2003; Cao et al., 2008). Similar to other leukocytes, the 

migration and infiltration of Treg into inflamed tissues is mainly governed by the 

expression of specific chemokine receptors (CCRs). Lee et al. studied the Treg 

homing program in primary and secondary lymphoid tissues, a process that is 
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important for migration of Treg to target tissue sites (Lee et al., 2007). They showed 

that Treg generated in the thymus emigrated primarily to secondary lymphoid tissues 

where they encountered the antigen and underwent a trafficking receptor switch. This 

involved down-regulation of CCR7 and CXCR4 and up-regulation of a number of 

memory/effector type homing receptors and enabled them to migrate to non lymphoid 

and inflamed tissues (Lee et al., 2007). This was supported by the data from Sather et 

al. that antigen-specific Treg cells up-regulated CCR4, CD103, and other skin-homing 

receptors when stimulated by their cognate antigen within subcutaneous lymph nodes 

under pro-inflammatory conditions (Sather et al., 2007).  

 

Human Treg have been shown to specifically express chemokine receptors CCR4 and 

CCR8 (Iellem et al., 2001). CCR5, another inflammatory chemokine receptor, has 

also been shown to be  to be expressed on Treg which preferentially infiltrate extra-

lymphoid sites and sites of inflammation (Yurchenko et al., 2006). Several groups 

have analysed the AqH from uveitis patients and identified elevated levels of 

chemokines, including ligands for CCR4 and CCR5 such as  CCL2 (MCP-1), CCL3 

(MIP1α), CCL4 (MIP1β) and CCL5 (RANTES) (Curnow et al., 2005; Wallace et al., 

2004; Sijssens et al., 2007; Verma et al., 1997). Ocular infiltrating T cells have also 

been shown to have the capacity to produce chemokines such as IL-8, MIP-1 and 

RANTES (Takase et al., 2006b). In this context, one could speculate that the elevated 

levels of the chemokines stated above in uveitis AqH could lead to enhanced 

migration of Treg that express CCR4 and CCR5 resulting in their accumulation in the 

eye. Similar results were shown in rheumatoid arthritis where Foxp3+ Treg 

expressing high levels of CCR4, CCR5, and CXCR4 has been shown to accumulate in 

synovial fluid in rheumatoid arthritis patients (Jiao et al., 2007). Once the activated 
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Treg reach the inflamed site (in this case, anterior chamber), they could control 

inflammation in an Ag specific or bystander fashion.  

 

CXCR4 is a chemokine receptor that has shown to be required for the recirculation of 

naïve lymphocytes to lymphoid tissue as well as to enhance the active retention of 

highly differentiated primed T cells at sites of chronic inflammation. Curnow et al. 

reported that topical glucocorticoid therapy could directly induce CXCR4 

upregulation on primed T lymphocytes in the AqH of uveitis patients (Curnow et al., 

2004b). In my study, I have shown that the ocular infiltrating T cells also include 

primed Treg cells. Intriguingly, elevated frequency of Treg was observed in the AqH 

from patients undergoing topical glucocorticoid treatment as compared to those from 

untreated patients. Hence it could be assumed that glucocorticoid induced up 

regulation of CXCR4 on ocular Treg and there subsequent retention in the eye could 

be a possible pathway in which glucocorticoid therapy resolves ocular inflammation.  

 

Schneider-Hohendorf et al. recently showed that human and murine Treg cells have 

increased migratory capacity as compared to conventional T cells both in vitro and in 

vivo (Schneider-Hohendorf et al., 2010). In contrast, Treg of patients with relapsing 

remitting multiple sclerosis (RR-MS) exhibited significantly impaired migratory 

capabilities under non-inflammatory conditions (Schneider-Hohendorf et al., 2010). 

They postulated that the presumed ‘regulatory deficiency/defect’ of Treg in MS 

patients could at least be partially due to impairment in Treg motility. Similar results 

were also reported in SLE patients where Treg from patients have been shown to have 

decreased migratory capacity to CCR4 ligands (Lee et al., 2008).  
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My study showed an increased frequency of Treg in the AqH of acute anterior uveitis 

patients. However, the role of ocular Treg cells in human chronic uveitis is not 

known. The AqH from chronic anterior uveitis was not analysed in this study. 

Whether there is an accumulation of Treg with a functional phenotype in AqH of 

chronic patients, is not known. However, it is possible that the more prominent 

defective function of Treg observed in chronic uveitis patients (with relapsing 

episodes of this disease), may be partially due to similar impairment in Treg 

migratory capacity and may be the reason for the persistent inflammation observed in 

these patients. Further analysis of Treg (peripheral and ocular) in patients with acute 

and chronic uveitis including the expression of chemokine receptor and chemokine 

receptor ligand-mediated chemotaxis capacity is required. 

 

6.6 AqH local immunosuppression and ocular Treg 

In their  model of adoptively transferred EAU using GFP+ autoreactive T cells, 

Thurau et al showed that uveitis was induced only by those T cells that encountered 

their specific antigen in the eye and were reactivated (Thurau et al., 2004). The 

immune privilege of the eye usually prevents destructive intraocular immune 

reactions. The AqH itself has been shown to induce Fas mediated cell death on 

infiltrating lymphocytes (Griffith et al., 1995). Immunosuppressive microenvironment 

within the AqH has been well documented. Various AqH factors such as TGF-β, α-

MSH, VIP and somatostatin contribute to this immunosuppressive microenvironment  

(Cousins et al., 1991; Taylor et al., 1997; Taylor et al., 1992; Taylor, 2007; Taylor et 

al., 1994b; Taylor and Yee, 2003). My own data, where T cells were cultured in the 

presence of AqH, showed that non inflammatory AqH prevented the proliferation of T 

cells by inducing cell death in vitro (chapter 5). Fas mediated apoptosis in AqH has 
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been shown to be functional even during idiopathic AAU (Dick et al., 1999). 

However under inflammatory conditions, AqH T cells were protected from survival 

factor deprivation induced apoptosis via IL-6/soluble IL-6 receptor trans signalling 

(Curnow et al., 2004a). 

 

Accumulation of Treg in the AqH was reported in AAU patients in this thesis. One 

important question arising from this study is whether the increased numbers of Treg 

present in the AqH during AAU are due to sequestration of polyclonal Treg from the 

blood, or in situ activation and proliferation of Treg specifically within the eye. Using 

passive transfer of preformed effector cells to induce EAE (so that Treg are not  

primed by a peripheral Ag-adjuvant depot), O’Connor et al. suggested that Treg 

entered the CNS in response to inflammation and initiated a dramatic proliferative 

burst (O'Connor et al., 2007). In this study, they found an increased rate of 

proliferation in FoxP3+ Treg specifically within the inflamed CNS which remained 

high during the resolution phase of the disease (O'Connor et al., 2007). Although Treg 

are usually anergic in vitro, they can proliferate in vivo while maintaining their 

suppressive function (Walker et al., 2003a). 

 

Various factors in the non inflammatory AqH including TGF-β and α-MSH have been 

shown to induce and promote Treg development and proliferation (Shevach et al., 

2008; Taylor et al., 1997; Nishida and Taylor, 1999). However a pro-inflammatory 

milieu could prevent the induction of FoxP3+ Treg and enhance the induction of Th17 

cells. Support for this hypothesis comes from data showing that whereas TGF-β can 

convert FoxP3- T cells into FoxP3+ Treg, addition of IL-6, an acute phase protein 

induced during inflammation, suppresses the TGF-β induced generation of Treg and 
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results in the induction of pathogenic Th17 cells (Veldhoen et al., 2006). Thus, it is 

more likely that the proinflammatory milieu present in the uveitis AqH with increased 

levels of TNF-α, IL-6 and IFN-γ and decreased levels of TGF-β2 (Curnow et al., 

2005; de Boer et al., 1994; Hill et al., 2005; Yoshimura et al., 2009) could be more 

conducive for the induction of Th17 cells (Yoshimura et al., 2009) and is less likely to 

induce the production of Treg.  

 

Accumulation of Treg with similar phenotypes to those seen in inflammatory AqH 

have been reported in other inflamed tissues (Cao et al., 2004; Feger et al., 2007; 

Grinberg-Bleyer et al., 2010) and in most cases the Treg from the target sites seem to 

be functional (de Kleer et al., 2004). Functionally active Treg have been shown to 

accumulate in rheumatoid synovium (van Amelsfort et al., 2004; Cao et al., 2003; de 

Kleer et al., 2004). In condylomata acuminata, a disease caused by infection with 

HPV virus, accumulation of functional Treg in large warts have been associated with 

an immune evasion mechanism (Cao et al., 2008).  Zhang et al. showed that Treg 

accumulated in islet allograft and increased their suppressive function and that this 

education was required for optimal control of inflammation (Zhang et al., 2009).  

 

The level of FoxP3 expression in Treg has been shown to reflect their potential to 

suppress T cell activation and prevent allograft rejection in transplantation (Chauhan 

et al., 2009b). Interestingly, the AqH Treg in AAU patients expressed significantly 

higher levels of FoxP3 compared to their peripheral blood counterparts. Hence it 

could be postulated that the AqH Treg could be functionally active and help control 

immunopathology and tissue destruction within the eye.  
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Korn et al. recently monitored Treg in vivo in an EAE model using a FoxP3/GFP.KI 

mice and showed that myelin specific Treg accumulated in CNS during the peak of 

the disease (Korn et al., 2007). They observed that even though CNS derived Treg at 

the peak of the disease could suppress the proliferation of spleen derived Tconv cells 

in vitro, they could not suppress the proliferation of CNS derived Tconv cells in vitro 

or in vivo. This was not due to the intrinsic defect of Treg but rather due to the 

increased resistance of CNS derived Tconv cells to Treg mediated suppression at the 

peak of the disease (Korn et al., 2007). This was largely attributed to the pro 

inflammatory cytokine milieu (especially IL-6 and TNF) present in the inflamed CNS. 

Reports show that even functionally competent Treg fail to control inflammation, if 

inflammatory mediators, such as IL-7, TNF or co-stimulatory molecules, are abundant 

(as it is the case in the inflamed synovium, inflamed CNS etc) (Korn et al., 2007; van 

Amelsfort et al., 2007) 

 

Extrapolating this data to uveitis AqH, a similar inflammatory milieu is present in the 

uveitis AqH (Curnow et al., 2005). It has been shown that IL-6 and TNF-α can inhibit 

Treg function and render Tconv cells resistant to suppression and enable the initiation 

of an immune response in the presence of Treg (Ohta et al., 2000; Valencia et al., 

2006). Thus, even if the AqH Treg in AAU patients are functionally active, it is 

possible that they could not exert their function on activated Tconv cells in the pro-

inflammatory cytokine rich microenvironment. I have, in this thesis, shown that 

uveitis AqH did not affect the suppressive capacity of normal Treg (from healthy 

control) in vitro. However, it has to be noted that the activation status and functional 

capacities of Treg as well as Tconv cells within an inflamed eye may be different 

from that in an in vitro assay and hence the possibility that uveitis AqH might prevent 
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ocular Treg function or render the ocular Tconv cells resistant to suppression in vivo 

could not be ignored. 

 

 It has also been shown that Treg can only function in the resolution of the acute phase 

and could not control the chronic phase of the disease (Frey et al., 2010). In Lewis 

rats immunised with R16 (immunodominant peptide of IRBP), accumulation of Treg 

within the eye correlated with the resolution of first acute attack in both monophasic 

and recurrent EAU (Ke et al., 2008). The eye derived Treg cells from monophasic 

EAU (m-EAU) rats were more potent than those from recurrent EAU (r-EAU) and the 

transfer of ocular Treg from m-EAU converted recurrent form of EAU to monophasic 

form (Ke et al., 2008).  

 

In the context of this thesis, it is interesting to speculate whether ocular Treg in AAU 

mediate the transition from acute to chronic phase of the disease, where functional 

ocular Treg mediate the rapidly resolving acute uveitis whilst persistent uveitis 

(usually recurrent) is caused by a defective function of the ocular Treg. However the 

main obstacle to analyse this is the absence of specific assays to isolate and analyse 

the function of the very small number of AqH Treg. One would also require 

longitudinal AqH and blood samples from a cohort of patients (ideally at onset and 

regularly throughout any acute episode (for first episodes and recurrences) or through 

any exacerbation of chronic disease), as is possible in animal models. But regular 

exposure to such an invasive technique would not be justified in humans. 
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6.7 Treg and Th17  in uveitis 

Involvement of Th17 cells in human uveitis and scleritis has also been reported 

(Amadi-Obi et al., 2007). In the study by Amadi-Obi et al., it was shown that in EAU 

model of uveitis, expression of IL-17 was correlated with the onset of EAU (Amadi-

Obi et al., 2007). They demonstrated that Th17 cells are present in the peripheral 

blood of healthy controls and their numbers increased in active uveitis and scleritis 

patients and in EAU. TH17 cells were abundant in the retina, especially at the peak of 

the disease which then subsequently declined with resolution of the disease. This 

study also proposed the induction of TNF-α in retinal cells by IL-17 as a mechanism 

by which these cells may contribute to uveitis pathogenesis (Amadi-Obi et al., 2007). 

In a study conducted by Yoshimura et al, IL-6 was found to be increased in the AqH 

of chronic uveitis patients. Using an animal model of EAU, they showed that IL-6 is 

responsible for ocular inflammation at least partially due to IL-6 dependant TH17 

differentiation (Yoshimura et al., 2009).  

 

Similar to that was shown in this thesis, increased frequency of Treg has been 

reported in EAU induced by IRBP in B10RIII mice (Sun et al., 2010a). These Treg 

cells were able to inhibit proliferation and IFN-γ production by CD4+CD25− target 

cells, and were associated with the regression phase of EAU (Sun et al., 2010a). 

Interestingly, these Treg could not inhibit IL-17 production by pathogenic T cells. In a 

mouse model for autoimmune dry eye disease, Chauhan et al. reported that 

CD4+CD25+FoxP3+ Treg were inefficient in suppressing pathogenic T cells which 

was attributed to the resistance of these T cells, especially Th17 cells to Treg 

mediated suppression (Chauhan et al., 2009a). In vivo blockade of IL-17 significantly 
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reduced the severity and progression of the disease as well as reversed Th17 

frequency and Treg function in these mice (Chauhan et al., 2009a). 

 

However, the role of Th17 cells in human acute or chronic uveitis was not analysed in 

this thesis. Increasing evidences show that chronically inflamed tissues are infiltrated 

with Th17 cells (Pene et al., 2008). Using an animal model of rheumatoid arthritis, 

Hirota et al. showed a preferential recruitment of CCR6-expressing Th17 cells to 

inflamed joints in rheumatoid arthritis (Hirota et al., 2007). The phenotype and 

function of Th17 cells in the peripheral blood and AqH of uveitis patients have to be 

analysed in order to understand the pathophysiology of human idiopathic uveitis. It 

would also be interesting to analyse whether the diminished suppressive capacity of 

Treg in uveitis patients was mainly confined to the Th17 compartment or not.  

 

Plasticity of Treg cells is a newly emerging area of Treg cell biology that will need to 

be incorporated into these studies (Yang et al., 2008a). Under inflammatory 

conditions, especially in the absence of TGF-β and in the presence of IL-6, Treg have 

been shown to induce Tconv cells or could be self induced to become Th17 cells (Xu 

et al., 2007). Hans et al. showed that highly purified human memory Treg when 

stimulated with allergenic PBMC in the presence of exogenous r-IL2/ rIL-15, gave 

rise to a subset of IL-17–producing cells (Koenen et al., 2008). Similarly Voo et al. 

 reported that human peripheral blood and lymphoid tissue contain a significant 

number of Treg cells that co-expressed FoxP3 and RORγt transcription factors and 

had the capacity to produce IL-17 upon activation (Voo et al., 2009). Hence it would 

be pertinent to analyse the peripheral blood and AqH Treg in uveitis patients for their 

capacity to be converted to Th17 cells. Further study of the relationship between Treg 
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cells and Th17 cells in these sites in human uveitis is important for possible Treg cell-

mediated therapeutic applications. 

 

As mentioned earlier, IFN-γ producing FoxP3+ Treg have been reported in 

autoimmune diseases (Dominguez-Villar et al., 2011; McClymont et al., 2011). In a 

recent study, Dominguez-Villar et al, showed that Treg cells cultured in the presence 

of IL-12, acquired the ability to produce IFN-γ and showed reduced suppressive 

capacity (Dominguez-Villar et al., 2011). Given the fact that IL-12 has been shown to 

be present in the AqH and vitreous of uveitis patients (el Shabrawi et al., 1998; 

Curnow et al., 2005), it would be very interesting to analyse whether ocular Treg have 

acquired the ability to produce IFN-γ and convert to a Th1 phenotype. 

 

6.8 Treg therapy 

Reports showing defective function of Treg in various autoimmune and inflammatory 

diseases (Ehrenstein et al., 2004; Korn et al., 2007; Venken et al., 2008b; Bonelli et 

al., 2008a) has generated the path for an attractive new therapy called regulatory T 

cell therapy for auto-immune diseases and transplantation. Here ex vivo activated Treg 

are re introduced into the system which could then potentially control inflammation in 

an Ag-specific or bystander fashion. However there are various issues challenging the 

successful use of Treg therapy in uveitis. Our knowledge of the Treg cell deficiency in 

uveitis as well as other autoimmune diseases is limited to analysis of cells isolated 

from peripheral blood and is mainly assessed by in vitro assays, which might or might 

not pertain to in vivo defects in suppression.  
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Several studies have shown that, Treg require antigenic stimulus to initiate 

suppressive activity, but the effector phase is mediated by an antigen non-specific 

mechanism. Polyclonally activated Treg have been shown to be efficient at blocking 

unwanted immunity in mouse models of graft-versus-host disease (GVHD) (Hanash 

and Levy, 2005). In vitro data show that suppressive functions of Treg require 

activation through their TCR (Tang et al., 2004), indicating that their in 

vivo activation and function  is controlled by their antigen specificity. On the basis of 

this assumption, several groups have attempted to expand autoantigen- and 

alloantigen-specific Treg cells from the natural Treg cell repertoire. Tarbell et 

al showed that islet-antigen-specific Treg  efficiently prevented diabetes caused by 

diabetogenic T cells in NOD mice (Tarbell et al., 2004). However, the antigenic 

determinant of human uveitis is not yet clear. This along with the heterogeneity 

among patient group will make it difficult to make an Ag specific Treg line for uveitis 

therapy.  

 

It has also to be analysed whether the ocular conventional T cells are resistant to Treg 

mediated suppression under inflammatory conditions as in CNS during EAE. It has to 

be tested if polyclonal Treg, pre-activated in vitro, exert bystander suppressive effects 

when injected directly in the eye.  In a graft-vs.-host disease model, in which IL-17 is 

the predominant cytokine, Treg have been shown to block the initial activation and 

expansion of T cells following recognition of the systemic antigen (Lohr et al., 2006). 

However, Treg were unable to ameliorate the disease when given late in the course 

indicating that the principal effect of these cells is to inhibit the initial T cell 

proliferation and generation of pathogenic effector cells (Lohr et al., 2006). Hence it 

is not yet clear whether Treg therapy may be successful in ameliorating established 
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immunological diseases. Thus Treg therapy in uveitis has a lot of hurdles to pass 

through before reaching successful a clinical trial. 
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7 APPENDIX 

Patient information sheet 

See pages: I to V 

Patient consent form 

See page: VI 

Study letter to GP 

See page: VII 



 

I 
 

 

  
Birmingham and Midland Eye Centre 

Dudley Road 
Birmingham 

B18 7QH 
Tel: 0121 554 3801 

www.cityhospital.org.uk 

 

Immune mechanisms in the ocular microenvironment 
 

You are being invited to take part in a research study. Before you decide it is 
important for you to understand why the research is being done and what it will 
involve.  Please take time to read the following information carefully. Talk to others 
about the study if you wish.  

• Part 1 tells you the purpose of this study and what will happen to you if you take 
part.   

• Part 2 gives you more detailed information about the conduct of the study.  
Ask us if there is anything that is not clear or if you would like more information.  
Take time to decide whether or not you wish to take part. 
 

PART 1. 

 

What is the purpose of the study? 
 

We are studying how the fluid inside the front of the eye (known as aqueous humour) 
is involved in a range of diseases that can cause the eye to become inflamed. We wish 
to look at a number of cells and molecules in the aqueous humour of people who have 
eye inflammation and compare these with people who do not have eye inflammation. 
By studying these differences we hope it will give us new information about how the 
inflammation is caused. In the longer term this information may lead to the 
development of better treatments for these conditions. 
 

Why have I been chosen? 
 

You have been invited to participate in this study because you have a condition that 
has caused your eye to become inflamed.  
  

Do I have to take part? 

 
No.  It is up to you to decide whether or not to take part.  If you do, you will be given 
this information sheet to keep and be asked to sign a consent form. You are still free 
to withdraw at any time and without giving a reason.  A decision to withdraw at any 
time, or a decision not to take part, will not affect the standard of care you receive.  
 

What will happen to me if I take part? 
 

If you decide to take part, we will take a very small sample of the fluid (aqueous 
humour) from the front of your eye. This is done in the Out-Patient Clinic or Casualty 
Department. First we use a few anaesthetic drops to numb your eye and then some 
antiseptic drops to clean the eye. With you sitting on our slit-lamp microscope (this is 
the machine we always use to look at your eyes) we introduce a very fine needle  



 

II 
 

through the outside edge of the window of the eye to take a tiny sample of fluid (about 
the size of a drop of water) from the front of the eye. As the procedure is undertaken 
under local anaesthesia there should be no pain but there might be a sensation of a 
slight pulling feeling for a few seconds as the sample is taken. 
We often perform this test in people who we think an infection has caused their eye 
inflammation. Only a doctor highly experienced in this technique and a member of 
Professor Murray’s team will take the sample. 
 

We also wish to take a blood sample (about six teaspoonfuls) so we can compare the 
cells and molecules in it with your aqueous humour sample. 
 

Overall, it should take about 30 minutes to have the aqueous humour and blood 
samples taken. 
 

In most people we will only take the aqueous humour and blood samples once. Some 
people can get more than one attack of eye inflammation and if it does comes back we 
may ask to take the samples again. We will not ask to take samples more than a total 
of three times.   
 

What do I have to do? 
 

During the procedure you should keep as still as possible and follow any instructions 
from the doctor, for example to look in a particular direction.  
 

After the procedure we ask you to use some antibiotic drops for a few days. You will 
also need to use the treatment prescribed for your eye inflammation, and attend your 
follow-up clinic appointment as directed by the doctor who has seen you. 
You do not have to make any extra visits because you have had a sample of aqueous 
humour taken from the eye. 
 

What is being tested? 
 

After the procedure we examine your fluid (aqueous humour) and blood sample in the 
laboratory to look at a number of cells and molecules that might be responsible for the 
eye becoming inflamed. 
 

What are the potential side effects of the procedure? 
 

Complications are unusual from taking aqueous humour samples. Theoretical risks 
include the fluid from the front of the eye leaking out of the wound, reduced eye 
pressure, infection getting into the eye, clouding of the focusing lens, and bleeding 
into the front of the eye. We have performed hundreds of these procedures and have 
never had any of these complications. 
 

Complications from having a blood sample taken are rare, other than the brief 
discomfort of the needle. Some people may get some bruising of the skin around 
where the sample was taken.  
 

What are the other possible disadvantages and risks of taking part? 
 

Your appointment may take a few minutes longer than usual, but all other treatment 
and follow-up arrangements are unchanged. 
 
 

What are the possible benefits of taking part? 
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We cannot promise that our research will help you directly but we hope that it will 
help us understand why some people get eye inflammation and that this may lead to 
improvements in treatment for these conditions. 
 

What happens when the research study stops? 
 
Your direct involvement in this study only lasts for the time taken to take the aqueous 
humour and blood samples. Sometimes the samples may be kept for several years 
before the research is completed. At this point the samples will be carefully disposed 
of.   

  

What if there is a problem? 

 
Any complaint about the way you have been dealt with during the study or any 
possible harm you might suffer will be addressed. The details are included in Part 2. 
 
If you have any complaints please contact the Chief Investigator, Prof Philip I. 
Murray on 0121 507 6851. If you wish to contact someone independent please contact 
the Patient Advice and Liaison Services on 0121 507 4396. 
 

Will my taking part in the study be kept confidential?  

 
Yes.  All the information about your participation in this study will be kept 

confidential.  The details are included in Part 2. 

 

Contact Details: 

 
For further information about the study or should you have any concerns about your 
involvement please contact either: 
 

Chief Investigator: Principal Investigator: 

Prof Philip I. Murray 
Academic Unit of Ophthalmology 
Birmingham & Midland Eye Centre 
Sandwell & West Birmingham NHS Trust 
Dudley Rd 
Birmingham  
B18 7QU 

Miss Saaeha Rauz 
Academic Unit of Ophthalmology 
Birmingham & Midland Eye Centre 
Sandwell & West Birmingham NHS Trust 
Dudley Rd 
Birmingham  
B18 7QU 

Tel: 0121 507 6851 Tel: 0121 507 6849 

Fax: 0121 507 6853 Fax: 0121 507 6853 

Email: P.I.Murray@bham.ac.uk Email: S.Rauz@bham.ac.uk 

 
 

This completes Part 1 of the Information Sheet. 

 

If the information in Part 1 has interested you and you are considering 

participation, please continue to read the additional information in Part 2 before 

making any decision. 
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Part 2  
 

What will happen if I don’t want to carry on with the study? 

 

You can withdraw from the study at any point, even after we have taken your 

samples. If you withdraw from the study, and you wish us to destroy your samples, 

we will do so but we would need to use the data collected up to your withdrawal.  

 

What if there is a problem? 

 

Complaints: If you have a concern about any aspect of this study, you should 
ask to speak with the researchers who will do their best to answer your 
questions (0121 507 6851).  If you remain unhappy and wish to complain 
formally, you can do this through the NHS Complaints Procedure.  Details can 
be obtained from the hospital. 

 
Harm:  In the event that something does go wrong and you are harmed during 
the research study there are no special compensation arrangements.  If you are 
harmed and this is due to someone’s negligence then you may have grounds 
for a legal action for compensation against Sandwell & West Birmingham 
Hospitals NHS Trust, but you may have to pay your legal costs. The normal 
National Health Service complaints mechanisms will still be available to you 
(if appropriate). 

 

Will my taking part in this study be kept confidential? 
 
All information which is collected about you during the course of the research will be 
kept strictly confidential.  This information will be gathered by one of the clinical 
members of staff either directly from you at the time you enrol in the study or from 
your clinical notes at a later date. This information is anonymised, and only clinical 
members of staff involved directly with this research will have access to any 
identifiable data. Any information about you which leaves the hospital will have your 
name and address removed so that you cannot be recognised from it 
 
Our procedures for handling, processing, storage and destruction of your data are 
compliant with the Data Protection Act 1998. You have the right to view the data we 
have on record about you and to correct any errors. 
 
With your permission we would like to inform your GP that you have participated in 
this study. We will inform the GP that you have had a sample of aqueous humour and 
blood taken today but that this does not affect your treatment or follow-up 
arrangements. 
 
What will happen to any samples I give? 

 

The samples are stored in a secure environment on the Birmingham & Midland Eye 
Centre Site and are only removed to the Academic Unit of Ophthalmology Laboratory 
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(University of Birmingham site) when they need to be analysed. Only members of 
Professor Murray’s research team will have access to the samples. The samples will 
eventually be destroyed in a safe manner following clinical waste protocol. All these 
conditions are compliant with the MRC guidance ‘Human Tissue and Biological 

Samples for Use in Research’ and the Human Tissue Act 2004 

Will any genetic tests be done?   

 

No 

 

What will happen to the results of the research study? 

 
It is intended that the results of the research will be presented at scientific meetings, 
and published in relevant clinical and academic journals. We also feed these results 
back to participants through patient support groups and information in clinic. You will 
not be identified in any report or publication. 
 

Who is organising and funding the research?   
 
The Academic Unit of Ophthalmology of the University of Birmingham is organising 
this study. Our funding is derived from several ocular charities including the 
Birmingham Eye Foundation. Your doctor will be not be paid for including you in 
this study, and you will not receive any payment for participating in the study. 

 

Who has reviewed the study?  
 
This study was given a favourable ethical opinion for conduct in the NHS by the 
Dudley Local Research Ethics Committee. 
 
Patient Information Leaflet: Immune Mechanisms in the Ocular Microenvironment 
31.08.06 version 1.1 
 

And finally … 

 

You will be given a copy of the information sheet and a signed consent form. 

Thank you for taking the time to read this sheet and considering involvement in 

this research study. 
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Birmingham and Midland Eye Centre 
Dudley Road 
Birmingham 

Centre Number: BMEC               B18 7QH 

Study Number: UKCRN 4654         Tel: 0121 554 3801 

Patient Identification Number for this trial:            

www.cityhospital.org.uk 

 

CONSENT FORM: Immune mechanisms in the ocular microenvironment 
 
Name of Chief Investigator: Professor Philip I. Murray 
Name of Principal Investigator: Miss Saaeha  

 

Please initial box 
 

1.   I confirm that I have read and understand the information sheet dated      
31.08.06 (version 1.1) for the above study. I have had the opportunity to 
consider the information, ask questions and have had these answered 
satisfactorily. 

 

2. I understand that my participation is voluntary and that I am free to withdraw 
at any time, without giving any reason, without my medical care or legal rights 
being affected. 

 
 
3.   I understand that relevant sections of any of my medical notes and data 

collected during the study, may be looked at by responsible individuals from 
regulatory authorities or from the NHS Trust, where it is relevant to my taking  
part in this research.  I give permission for these individuals to have access to 
my records.                             

                                                                                                             
4. I agree to my GP being informed of my participation in the study. 
 
 
5.   I agree to take part in the above study.    
 
 
 
Name of Patient Date Signature 
 
 
Name of Person taking consent Date Signature 
(if different from researcher) 
 
 
 
Researcher Date  Signature 
 
 
When completed,  1 for patient;  1 for researcher site file;  1 (original) to be kept in medical notes 
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Birmingham and Midland Eye Centre 
Dudley Road 
Birmingham 
B18 7QH 
Tel: 0121 554 3801 
www.cityhospital.org.uk 

 
 
Centre Number:BMEC  
Study Number: UKCRN4654 

 

 

Title of Project: Immune mechanisms in the ocular microenvironment 
 
Name of Chief Investigator: Professor Philip I. Murray 
Name of Principal Investigator: Miss Saaeha Rauz 

  

 

 

Dear Doctor, 

 
This is to inform you that your patient: 
 
 
 
 
 
 
 
 
 
 

    

  
has today participated in our study on “Immune Mechanisms in the Ocular 
Microenvironment”. Their involvement included having samples of aqueous humour and 
peripheral blood taken. Neither of these procedures should affect their clinical care in any 
way. A separate letter will be sent to you regarding their clinical condition. 
 
Yours faithfully, 
 
 
 
 
 
Philip I. Murray PhD FRCP FRCS FRCOphth 
Professor of Ophthalmology

 
 

Insert Addressograph here 



 

 
 

 


