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ABSTRACT 

Virus entry into target cells is mediated by the attachment of viral glycoproteins to cell 

surface receptors. Entry of the hepatitis C virus (HCV) into hepatocytes has been shown to 

require viral glycoprotein dimer E1E2 and the target cell receptor CD81, scavenger receptor-

BI (SR-BI) and the tight junction proteins claudin-1 and occludin in an undefined mechanism. 

In this study, we aim to define the dynamic movements of these proteins in the membrane 

of the polarising hepatocarcinoma cell line HepG2. We further examine the extent to which 

these kinetics are perturbed following addition of the soluble viral glycoproteins sE2 and 

sE1E2, and the small molecule inhibitor of SR-BI ITX5061.  

The results of this study show that the amount of mobile receptor and the speed at which it 

diffuses varies according to its location within the cell. CD81 and claudin-1 are expressed 

equally in the filopodia and plasma membrane, whereas SR-BI is expressed at lower levels in 

the filopodia compared to the plasma membrane. We show that addition of both sE2 and 

sE1E2 has varying affects on both the speed and mobility of CD81 and claudin-1 and that the 

majority of significant effects observed for claudin-1 are observed at areas of potential cell 

contact. Finally, we demonstrate that addition of ITX5061 affects the diffusion coefficient of 

CD81 and CLDN-1 and the amount of mobile SR-BI. Furthermore, the effects on SR-BI are 

limited to areas of cell contact or exploratory regions. In summary, we present data which 

we hope will further current knowledge of the activity of these receptors in relation to their 

role in HCV infection. 
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1.  INTRODUCTION 

 

1.1 Hepatitis C Virus tropism 

The hepatitis C virus (HCV) is an enveloped positive sense single stranded RNA virus of the 

Flaviviridae family, and is a major worldwide cause of liver disease. HCV currently infects 

around 170 million people worldwide, with 60%-80% of new infections becoming persistent 

(Rehermann and Nascimbeni 2005; Dustin and Rice 2007). As a result, unresolved infection is 

a leading cause of repeated liver transplantation and creates a large healthcare burden. 

Currently, the common course of treatment is a period of pegylated interferon-α and 

ribavirin administration which has a relatively low success rate and unpleasant side effects.  

The 9600bp genome of HCV varies across 6 genotypes and transcribes a polyprotein of 

around 3000 amino acids. This polyprotein is cleaved by cellular and viral proteases to form 

the structural proteins core, E1 and E2; and the non-structural proteins NS2-5 and p7 (Figure 

1). HCV virus entry into a target cell involves the interaction of the glycoproteins E1 and E2 

with four receptors on the target cell surface: scavenger receptor BI (SR-BI), CD81, claudin-1 

(CLDN-1) and occludin (section 1.4).                          
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The primary target of HCV is the hepatocytes of the liver, an epithelial cell type with complex 

polarity (Decaens et al. 2008) (Figure 2). Hepatocyte apical membranes form the continuous 

network of bile canaliculi (BC) with the basal pole contacting the sinusoids.  Seperating the 

two poles is the tight junction (TJ) which regulates paracellular diffusion (Farquhar and 

Palade 1963; Claude and Goodenough 1973).  

The polarity of hepatocytes is critical for both liver function and HCV tropism. This study uses 

the HepG2 hepatocarcinoma line, which exhibits many markers of structural and functional 

polarity, including TJ-like structures (reviewed in Decaens et al. 2008).  Recent studies on the 

role of cell polarity on HCV entry demonstrate that agents which reduce the hepatocellular 

polarity of CD81-HepG2 cells increase the efficiency of infection (Mee et al. 2008; Mee et al. 

2009; Mee et al. 2010). 

Figure 1:  The hepatitis C virus genome. The HCV genome encodes both structural and 

non-structural proteins. Adapted from (Anzola and Burgos 2003).  
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1.2 HCV treatment 

All stages of the viral lifecycle may be considered as potential targets for anti-viral agents. 

New direct acting antivirals (DAAs) are protease and polymerase inhibitors, inhibiting the 

actions of the non-structural proteins NS3/4A and NS5B respectively. Promising results have 

been obtained from such drugs; the DAAs telaprevir and boceprevir are currently in phase II 

clinical trials (Asselah and Marcellin). In contrast, the majority of drugs targeting viral entry 

are still in preclinical trials but are an attractive target (Zeisel et al. 2009; Vermehren and 

Sarrazin, 2011). A small number of such drugs including Silibinin (Wagoner et al. 2010) and 

the small molecule inhibitor of SR-BI ITX5061 (Syder et al., 2011) have been reported, and 

the latter is now in clinical trials.  

(a) (b)

BC

Figure 2: Simple epithelial and hepatic polarity. Apical membranes (red), 

basolateral membranes (black), tight junctions (green) .  Simple epithelial 

polarity involves a single apical and basolateral membrane, seperated by a 

tight junction (a). Hepatic polarity is more complex, with several basolateral 

and apical membranes seperated by tight jucntions. Apical membranes on 

adjacent cells form the continuous network of bile canaliculi (b).  Adapted from 

(Decaens et al. 2008).  
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1.3 Mechanisms of HCV entry  

Viral glycoproteins confer attachment via high affinity particle interactions with cell surface 

receptors or molecules. Following this, viruses generally utilise endogenous receptor 

trafficking pathways to internalise. The HCV viral glycoproteins  E1 and E2 are dependent on 

each other for proper folding of the non-covalent heterodimer E1E2   (Patel et al. 2000; 

Cocquerel et al. 2000; Brazzoli et al. 2005). Studies have shown residues in E1 to be involved 

in both fusion with the target cell membrane and virus entry (Lavillette et al. 2007; Li et al. 

2009), whereas the hypervariable region (HVR) 1 of E2 is rapidly mutated during immune 

escape but retains a basic charge (Farci et al. 2000; Callens et al. 2005; von Hahn et al. 2007). 

This suggests a role for HVR1 a role in binding negatively charged glycosaminoglycans (GAGs) 

at the target cell surface (Callens et al. 2005). 

 

1.4 Receptors 

Following low affinity binding of the virus to heparin sulphate proteoglycans (Barth et al. 

2006; Koutsoudakis et al. 2006), GAGs, lectins, and low density lipoprotein (LDL) receptors, 

four receptors have been shown to be essential for HCV entry: SR-BI, CD81, CLDN-1 and 

occludin (Figure 3). 
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1.4.1 CD81 

CD81 (Figure 3a) is expressed in most tissues and was first identified as an HCV receptor due 

to its interaction with E2 (Pileri et al. 1998). Its role was later confirmed by the discovery that 

its expression in the CD81-deficient HepG2 cell line confers infectivity (Zhang et al. 2004; 

Lavillette et al. 2005; Lindenbach et al. 2005).   

CD81 is a tetraspanin and thus contains 4-6 cysteine residues which form critical disulphide 

bonds with the second large extra cellular loop, and these are essential in the CD81-HCV-E2 

interaction (Petracca et al. 2000). Tetraspanins associate with other tetraspanin and non-

Figure 3: The four  essential HCV receptors. The  CD81 (a), SR-BI (b), CLDN-1 (c) and 

occludin (d). The tetraspanin CD81 and tight junction proteins CLDN-1 an occludin 

each contain four transmembrane domains, whereas SR-BI contains only two. The 

extracellular loops (EC) EC1 and EC2 of CD81 are termed small extracellular loops 

(SEL) and large extracellular loop (LEL) respectively (a). CLDN-1 also contains two EC 

loops (b). (Davis, In press).  
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tetraspanin proteins at cholesterol enriched domains to form cell type-specific tetraspanin 

enriched microdomains (TEMs). These exert a wide array of biological functions, including 

signal transduction, cell migration, and membrane remodelling (reviewed in (Boucheix and 

Rubinstein 2001).  

In non-polarised HepG2 cells, CD81 is present uniformly at the plasma membrane and does 

not relocate upon polarisation (Mee, Harris et al. 2009). This expression pattern is similar in 

healthy liver tissue, where it has been reported as mainly basolateral with some canalicular 

localisation (Reynolds et al. 2008; Mee et al. 2009).  

 

1.4.2 SR-BI 

 SR-BI (Figure 3b) is a scavenger protein and is expressed mainly on steroidogenic tissue, 

macrophages, and in the liver (Krieger et al. 2001).  It is involved in the selective uptake of 

cholesterol from ligands such as high density lipoproteins (HDLs) and their particle 

endocytosis or selective transfer to the membrane (reviewed in Fidge 1999).  

SR-BI was identified as an HCV receptor by virtue of its specific interaction with the HVR of 

E2 (Scarselli et al. 2002; Barth et al. 2005), likely facilitated by the HVR-1 domain (Scarselli et 

al. 2002; Bartosch et al. 2003a; Bartosch et al. 2003b; Callens et al. 2005; Voisset et al. 2005).  

Its importance has since been verified using gene silencing and addition of neutralising 

antibodies (Lavillette et al. 2005; von Hahn et al. 2006; Grove et al. 2007;  Dreux and Cosset 

2009). Furthermore, HDLs have been shown to promote HCV infection in an SR-BI dependent 

manner (Bartosch et al., 2005; Meunier et al. 2005; Voisset et al., 2005).   
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In non-polarised HepG2 cells SR-BI is expressed uniformly around the plasma membrane and 

does not relocate upon polarisation (Mee et al. 2009). Again, this reflects the localisation of 

the protein in healthy liver tissue, with presence of the protein at the basolateral membrane 

with minimal staining at canaliculi (Reynolds et al. 2008).  

 

1.4.3 CLDN-1  

In 2007, a study of a permissive hepatocarcinoma cell line highlighted CLDN-1 (Figure 3c) as 

a potential HCV receptor (Evans et al. 2007), with CLDN- 6 and -9 able to compensate if 

CLDN-1 is absent. CLDN-1 is expressed at highest concentrations in the liver, but is also 

present in many other tissues (Furuse et al. 1998).  

Claudins are able to form homo- and heterodimers with each other (Piontek et al. 2008), 

occludin and CD81, (Harris et al. 2010) and the formation of the CD81-CLDN-1 interaction is 

essential for HCV entry (Yang, Qiu et al. 2008; Cukierman et al. 2009; Harris et al. 2010; 

Krieger et al. 2010). These dimers can be formed between proteins on adjacent cells, and 

although no direct interaction between CLDN-1 and the HCV glycoproteins has so far been 

identified, it is thought that cis-interactions between claudins on adjoining cells are involved 

(Liu et al. 2009).  Recent evidence also suggests that CLDN-1 may potentiate the interaction 

between CD81 and E2 (Krieger et al. 2010).  

CLDN-1 has been shown to localise to the PM in non-polarised HepG2 cells and to 

redistribute to TJs on polarisation, with localisation retained but reduced at the basal 



 

8 
 

membrane (Mee et al. 2009). This pattern is similar to that seen in healthy liver tissue 

(Reynolds et al. 2008).  

In healthy liver tissue, SR-BI colocalises with CLDN-1 at the basolateral surface, with minimal 

coexpression at the apical region (Reynolds et al. 2008). In polarised HepG2 cells, CLDN-

colocalises with CD81 at the basolateral membrane, with minimal coexpression at the TJ 

(Harris et al. 2010).  In healthy liver tissue, colocalisation between Cd81 and CLDN-1 is 

strongest at the apical canalicular region (Reynolds et al. 2008). 

 

1.4.4. Occludin  

 Occludin is a tight junction protein, and internalises with CLDN-1 in caveolae and clathrin-

dependent processes (Matsuda et al. 2004; Shen 2008; Stamatovic et al. 2009).  cDNA 

screening identified the tight junction protein occludin (Figure 3d) as necessary to confer 

entry into non-permissive cell lines, and silencing of occludin to reduce infection of 

permissive Huh-7.5 hepatoma cells (Ploss et al. 2009).  Occludin was independently 

identified as an HCV receptor by siRNA silencing of proteins known to associate with CLDN-1 

(Liu et al. 2009).  

In polarised HepG2 cells, occludin localises exclusively to the TJs surrounding the BC, 

replicating the pattern seen in healthy liver tissue (Reynolds et al., 2008; Mee, et al., 2010).  
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1.5 Models of HCV entry  

 

Following initial binding of HCV to the target cell surface, the mechanism of entry is 

controversial, and two mechanisms have been proposed. 

1.5.1 Coxsackie virus B (CVB) entry model 

A large number of viruses have been shown to utilise the TJ as a point of entry (Guttman and 

Finlay 2009), including CVB.  Both CD81 (Brazzoli et al. 2008) and the CVB-receptor complex 

(Coyne et al., 2007) have been observed to move away from the basolateral membrane to 

areas of cell-cell contact during infection.  CVB enters a target cell via the following 

mechanism. The virus interacts with the decay accelerating factor (DAF) on the apical surface 

of the cell and this activates Abl kinase and Fyn kinase. Activation of Abl kinase induces Rac-

dependent actin rearrangements which permit virus movement to the tight junction. Here, it 

interacts with the Coxsackievirus-adenovirus receptor (CAR) (Coyne and Bergelson 2006; 

Coyne et al., 2007). As a result of which conformational changes in the virus capsid are 

induced which are essential for virus entry and RNA release. In contrast, activation of Fyn 

kinase, leads to phosphorylation of caveolin and transport of the virus into the cell inside 

caveolar vesicles (Coyne and Bergelson 2006).   

However, there are a number of differences between CVB and HCV entry:  firstly interaction 

with the TJ  protein CAR is essential for CVB internalization, whereas there is limited 

evidence for direct association of HCV with the TJ proteins claudin-1 or occludin; secondly 

CVB enters via macropinocytosis whereas HCV internalizes by clathrin-dependent endo-

cytosis (Blanchard et al., 2006); and finally, CVB enters via the apical surface whereas it is 
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believed that HCV enters via the basolateral surface of their target cell types (Drummer et 

al., 2011).  

1.5.2 Basolateral entry model  

 

The basolateral entry model is based on the observation that the HCV pseudoparticle system 

(HCVpp) infects the polarised colorectal adenocarcinoma cell line Caco-2 in a polarisation-

dependent but TJ-independent manner (Mee et al. 2008). The lack of dependence on the TJ 

for entry has been further supported by the observation that the CD81-CLDN-1 complex 

which shown to be essential in virus entry is entirely absent from the TJ (Harris et al. 2010). 

Furthermore, reduction in polarity mediated by addition of VEGF promotes HCV entry (Mee 

et al. 2010). Interestingly, it was shown that HCV infection actually modulated   VEGF 

expression, suggesting that HCV infection causes a reduction in polarity (Mee et al. 2010). 

In addition, it has been shown that hepatocyte filopodia extend through the sinusoidal 

membrane and into the sinusoids, where they contact T-cells (Warren et al. 2006) (Figure 4). 

Therefore, filopodia may make initial contacts with the virus here. To support this, DiD-HCV 

has been shown to associate with filopodia and travel along them towards the PM in Huh-

7.5 cells (Coller et al. 2009). In the spread of HIV, long-lived interactions between filopodia-

like structures on a target cell and an HIV-infected cell known as nanotubes have been 

shown to be important in virus transmission (Sowinski et al. 2008).  

Therefore, the basolateral model of entry suggests that HCV enters the liver through the 

sinusoidal blood, encounters the basolateral-sinusoidal forms of the receptors first and 

enters the hepatocytes at this pole.  
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Figure 4: Hepatocyte filopodia extend through the sinusoidal membrane. From (Warren et 

al. 2006). 

 

 

1.6 Project objectives:  

We hypothesise that receptor diffusion will define HCV entry, and aim to cover the following 

points: 

1. To characterise the mobility and diffusion of host cell molecules CD81, SR-BI, CLDN-1 

and occludin in HepG2 cells and to ascertain whether cellular location alters receptor 

trafficking.  

2. To ascertain whether HCV glycoproteins alter receptor mobility.  

3. To define the effect of SR-BI antagonist ITX5601 on protein diffusion. 
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2 MATERIALS AND METHODS  

 

2.1. Cell lines and reagents 

HepG2 cells (ATCC) were propagated in Dulbecco’s modified Eagle’s medium (DMEM, 12491-

023, Invitrogen) supplemented with 10% fetal bovine serum (10500-064, Invitrogen), 1% 

non-essential amino acids (11140-035, Invitrogen), 1% -glutamine (25030, Invitrogen) and 

1% penicllin-streptocmycin (15070063, Invitrogen) at 37°C. 

Soluble (s) E2 and E1E2 (a kind gift from Chiron) were added to fluorescently tagged cells at a 

concentration of   0.7mM, which gave a 90% neutralisation of the HCV cell culture (HCVcc) 

system (data supplied by Chiron, not shown). The cells were then incubated for an hour at 

37°C. Fluorescence recovery after photobleaching (FRAP) of proteins of interest was then 

carried out and analysed as described below (Section 2.4).  

The small molecule inhibitor of SR-BI ITX5061 and the control compound ITX7094 (iTherX,) 

were added to fluorescently tagged cells at a concentration of 5μM (representing 90% 

neutralisation) and incubated for an hour at 37°C. FRAP on proteins of interest was then 

carried out and analysed as described below (Section 2.4). 

 

2.2 Generation of fluorescently-tagged CD81, SR-BI, CDLN-1, occludin and 

glycophosphatidylinositol (GPI) proteins 
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SR-BI, CD81, CLDN-1, occludin and GPI proteins were tagged with the monochorionic 

Aequorea coerulescens green fluorescent protein (AcGFP) tag or a  Discosoma sp. Red 

monomer (DsRED)  as previously described (Harris et al. 2008). These were transfected into 

HepG2 cells using Lipfectamine 200 (Invitrogen) according to manufacturer’s instructions.  

 

2.3 Laser Scanning Confocal Microscopy 

HepG2 cells expressing AcGFP- tagged CD81, CLDN-1, OCLN-1, SR-BI, GPI, or DsRED-tagged 

CD81 were grown on 13-mm glass coverslips.  The cells were imaged live in phenol red-free 

DMEM (11054001, Invitrogen) with 20 mM HEPES (15630049, Invitrogen) on a Zeiss Meta 

head laser scanning 780 confocal microscope with settings optimized for each fluorescent 

protein, and a 100 x1.4 NA oil immersion objective was used. The temperature was 

maintained at 37°C. 

16 bit images were captured at 0.150s/frame, at 1024 pixels2. Using the Zeiss laser scanning 

confocal microscope software, regions of interest were selected were photobleached at 

100% laser strength over 25 iterations to reduce the fluorescence of the fluorescently tagged 

proteins to around 50% of the original. Their recovery was monitored over time (see section 

2.4) using the overlay, profiling and intensity frequency tools of the Zeiss laser scanning 

confocal microscope software. Fluorescence recovery was measured as average signal 

intensity, and the curves generated from background-subtracted and bleaching corrected 

images. Fluorescence signal was normalised to prebleach signals in the same region of 

interest.  
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Out of focus light was reduced by imaging a 0.5μm Z-section at the glass-cell interface using 

pseudo-total internal reflectance fluorescence (TIRF) microscopy. 

2.4 Fluorescence recovery after photobleaching (FRAP) 

The diffusion of proteins within a membrane is altered by a number of factors, including 

membrane composition, fluidity and associations with partner proteins and the 

cytoskeleton. 

FRAP is widely used to find the speed of diffusion (diffusion coefficient), mobile fraction, 

and time to 50% recovery of original intensity (T1/2) of a protein within a membrane. In 

this technique, regions of membrane are bleached to 50% of the original fluorescence 

intensity and the recovery is monitored over time. Bleaching to this level prevents 

phototoxicity of the cell. In this study, the Zeiss Metahead laser scanning confocal 

microscope 780 was used to photobleach a Intensity recovery was then monitored over 

one minute using the Zeiss laser scanning confocal microscope software (Section 2.3). 

It is necessary to take into account the possibility that the protein of interest may also be 

diffusing from within the cell in a process known as intracellular ‘exchange’ (Figure 5). If 

a protein is moving by lateral diffusion, then a small and large bleached area will each 

have a different T1/2. However if the bleached patches are recovering by intracellular 

exchange then the two regions will have the same T1/2.  

By plotting the fluorescence of these bleached areas over time, it is possible to create a 

curve (Figure 6, Equation 1), and providing that the protein is only diffusing by one 

means it is possible to derive the T1/2 (equation 2) and mobile fraction of specific proteins 
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in selected areas (Figure 2). Furthermore, manipulation of the equation of the curve can 

give the diffusion coefficient of the protein (Equation 3).  

 If a protein is diffusing by both exchange and diffusion a more complex double 

exponential formulae will fit the curve more precisely. 

 

  

 

 

 

In this study, the mode of diffusion was established by bleaching a range of sizes of 

regions of interest (ROI, Figure 7a) and observing that the T1/2 was not consistent i.e. the 

Figure 5: Two possible modes of protein diffusion. Lateral diffusion occurs from only 

within the plane of the membrane, where the T1/2 differs between small and large 

bleach spots (a). In exchange, the protein diffuses from intracellular compartments 

and the T1/2 is the same for small and large bleached regions.  
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time taken for half of fluorescence to recover was not consistent between bleached 

regions of difference sizes in the time observed. Any regions of interest that did not fit 

these parameters were excluded.  The only exception to this was occludin, which is 

trafficked to the tight junction from the cytoplasm. However, the fluorescence recovery 

of occludin fitted a single exponential curve and throughout the experiment the 

opportunity for diffusion by exchange was kept to a minimum by imaging a 0.5μm Z-

section at the glass-cell interface using pseudo-TIRF microscopy. 

  

 

 

 

 

(a) 

(b) 

(c) 

(d) 

Figure 6: Plot of diffusion intensity over time.  Initially, a prebleach value for 

the region of interest is recorded (a). Following bleaching (b), intensity recovers 

(c) before reaching a plateau of recovery (d). Plotting the recovery of 

fluorescence and establishing the equation of the resulting curve gives the 

mobile and immobile fractions, T1/2, and diffusion coefficient.  
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2.5 Regions of interest 

The structures examined in this report are detailed below (Figure. 7b). In all cases, 

filopodia are defined as small motile protrusions on the plasma membrane which are 

adhered to the glass surface and attached to the cell at one end only. As they are visible 

using confocal microscopy they are distinct from microvilli, but are smaller in length than 

nanotubes. The structures examined are as follows (Figure 7b): filopodia and plasma 

membrane (PM) in situations where there are no nearby cells (‘free’), PM and filopodia 

in close proximity to another cell (‘exploratory’) and PM at cell junctions (cell contact).  It 

should be noted that in order to qualify as ‘exploratory’ structures, there need not be 

contact between cells at other points. 

Hepatocytes in the liver form intercellular contacts and extend filopodia through the 

sinusoidal membrane into the sinusoidal blood (Figure 4). These two regions are 

represented by ‘contact’ and ‘exploratory’ regions respectively in this study.  

 

Regions of interest selected for bleaching were of various sizes, and more than 10 

regions were bleached per cell (Figure 7a).  

Equation 1: Simple exponential 

Equation 2 

Equation 3: Diffusion Coefficient 
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2.6 Statistical analysis 

Statistical analyses and data representation were carried out using GraphPad Prism software 

(GraphPad software), with significance calculated using one-way ANOVA with a Tukey’s post 

test. Where variances were unequal, the Student’s T test with a Mann-Whitney post test was 

use. The significances are represented as follows: p < 0.05 (*), p< 0.01(**), and p < 0.001 

(***). Unless otherwise stated, the values quoted are medians in order to take into account 

the non-Gaussian distribution of the data.  

  

Figure 7: Representative image of regions of interest and structures examined on a 

HepG2 cell expressing CD81-GFP. Multiple bleach points were used for each structure. 

Image displayed is a HepG2 cell transfected to express AcGFP-CLDN-1 (a). Structures 

examined are as follows: ‘free’ filopodia and plasma membrane (PM), ‘exploratory’ PM 

and filopodia and ‘cell contact’ PM. Regions are displayed on HepG2 cells transfected 

with AcGFP .CLDN-1 and DsRED.CD81 (b) . The cells were imaged on a Zeiss Meta head 

laser scanning 780 confocal microscope. Scale bars are 10 μm. 
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3. DRESULTS  

2.1 Receptor localisation 

HepG2 cells were transfected to express GFP-SR-BI, GFP-CD81, GFP-CLDN-1, GFP-occludin, 

and GFP-GPI. GFP-SR-BI was visible throughout the PM, although there were some areas of 

high PM staining (Figure 8a). However, there was very low expression in the filopodia, which 

were only just visible using confocal microscopy. In contrast, CD81 was visible uniformly 

around the PM with expression in the filopodia similar to that seen in the membrane. Again, 

there were areas of high PM staining (Figure 8b). In polarised cells, CLDN-1 had very high 

expression at the BC-like structure with lower basolateral PM staining (Figure 8c). Occludin 

had a distinctive expression pattern, with expression only visible at the tight junction around 

the BC-like structure (Figure 8d). The control protein GPI was visible uniformly throughout 

the membrane, with expression on all membranes (Figure 8e).  

 

 

 

 

 

Figure 8 : Representative images of receptor localisation. Representative images of 

HepG2 cells transfected to express AcGFP-SRB-1(a), DsRed-CD81(b), AcGFP-CLDN-1(c), 

AcGFP-occludin (d), and AcGFP-GPI (e). The cells were imaged on a Zeiss Meta head laser 

scanning 780 confocal microscope. Scale bars are 10 μm.  
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3.2 Variance between individual cells within a sample 

In order to examine the variance between cells within a sample, the diffusion coefficients 

and mobile fractions of CD81 were compared at both the plasma membrane and filopodia in 

10 CD81-HepG2 cells (Figure 9). At both locations the diffusion coefficient appeared to vary 

widely between the samples, with a range of 0.02 μm2/s to 1.5 μm2/s in the filopodia and 

0.02 μm2/s to 1.7 μm2/s in the PM (Figure 9 a, c).  The mobile fraction also varied between 

cells within the sample (Figure 9 b, d) with mobile fractions ranging between 7.5% and 97% 

in the PM and 2.7% and 95.9% in the filopodia. These data show considerable variation in 

receptor kinetics between cells within a sample, and may represent multiple populations of 

protein as defined by different kinetics.  

 



 

21 
 

 

 

 

 

Filopodia

PM

(a) (b)

(c) (d)

0

25

50

75

100

M
o

b
il

e
 f

ra
c
ti

o
n

 (
%

)

0.0

0.5

1.0

1.5

D
if

fu
s
io

n
 C

o
e
ff

ic
ie

n
t 

( 
m

2
/s

)

0

25

50

75

100

M
o

b
il

e
 F

ra
c
ti

o
n

 (
%

)

0.0

0.5

1.0

1.5

D
if

fu
s
io

n
 C

o
e
ff

ic
ie

n
t

( 
m

2
/s

)

Figure 9:  Variance in diffusion coefficient and diffusion coefficient between cells in 

a sample. Diffusion coefficient (a, c) and mobile fraction (c,d) at the PM ( a, b) and 

filopodia (c, d)between 10  HepG2 cells transfected to express GFP-CD81. Diffusion 

coefficient and mobile fraction were calculated using Zeiss software. Each bar 

represents the values for one cell, with more than 1 bleached spot per cell.  Error bars 

represent SEM.  
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3.3 Differences in receptor dynamics between the PM and filopodia 

As it is possible that protein dynamics vary at different locations within in the cell, the 

diffusion coefficient and mobile fraction of the AcGFP-tagged proteins SRB1, CD81, CLDN-1 

and occludin were measured in the plasma membrane and filopodia in HepG2 cells using 

FRAP. In addition, the lipid raft marker GPI was used as a non-HCV control (Figure 10).  

Neither the diffusion coefficient nor mobile fraction of SR-BI varied significantly between the 

PM and filopodia. The median diffusion coefficients at the PM and filopodia were 0.25 μm2/s 

and 0.22 μm2/s respectively, and the mobile fractions 50.48% and 44.83% respectively. 

However, the diffusion coefficient appeared to display less variability than the mobile 

fraction between samples in both the PM and filopodia (Figure 10, Table 1).    

The diffusion coefficient of CD81 at the filopodia was significantly higher than that in PM 

(Figure 10), with medians of 0.23 μm2/s and 0.36 μm2/s respectively, although the mobile 

fraction appeared lower at the latter with 55.6% of CD81 mobile at the PM compared to 

41.14% at the filopodia (Table 1). Therefore, whilst the speed of diffusion of CD81 is greater 

in the filopodia, the mobility of the protein is reduced.  

The mobile fraction of CLDN-1 showed a significantly larger variation in the filopodia than in 

the PM, whose values were more closely grouped at both regions than that of the mobile 

fraction. Again, the variance in diffusion coefficient was lower (Figure 10). Both diffusion 

coefficient and mobile fraction were significantly lower in the filopodia than the PM (Figure 

10), with a median of 74.67% mobile at the PM and 53.27% at the filopodia, and median 

diffusion speeds of 0.35 μm2/s at the PM and 0.24 μm2/s at the filopodia (Table 1). This 

shows that both the speed and percentage of mobile CLDN-1 is reduced at the filopodia.  



 

23 
 

Data for GPI and occludin are presented in the appendix (Supplementary Figure 1, 

supplementary Table 1). Few data points were recorded for occludin as very few bleached 

areas recovered in the observation time. There was no significant difference in either 

diffusion coefficient or mobile fraction between the two structures at which occludin was 

visible – the plasma membrane and tight junction (Supplementary Figure 1). The data for the 

control protein GPI was very variable but displayed significant difference in both parameters 

(Supplementary Figure 1), with the mobile fraction appearing to be lower in the filopodia yet 

having a greater diffusion speed.  The median mobile fraction of GPI at the PM was 64.94% 

with a median diffusion coefficient of 0.06 μm2/s, and the median mobile fraction at the 

filopodia was 50.47% with a median diffusion coefficient of 0.02 μm2/s (supplementary Table 

1). 

Therefore, receptor mobility and diffusion speed differ between intracellular sites, although 

the way in which these differ depends on the receptor. CLDN-1 and CD81 are particularly 

variable, whilst SR-BI is less so. 
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Figure 10: Variance in diffusion coefficient and mobile fraction between PM and 

filopodia. HepG2 cells were transfected to express GFP-SR-BI, GFP-CD81, DsRed-CD81, 

and GFP-CLDN-1 and bleached using a Zeiss Meta head laser scanning 780 confocal 

microscope.  Diffusion coefficient and mobile fraction using data from Zeiss software. 

Each symbol represents one cell, n>21, with more than 1 bleached region per cell.  
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Receptor/ 
paremeter

Structure
Median

(IQ range)
Mean S.D

SR-B1  
Diffusion 

coefficient 
(μm2/s)

PM 0.25 (0.28) 0.29 0.22

FIlopodia 0.22 (0.22) 0.26 0.18

SR-B1 mobile
fraction (%)

PM 50.48 (28.7) 51.5 21

Filopodia 44.83 (23.76) 46 20.92

CD81 diffusion 
coefficient 

(μm2/s)

PM 0.23 (0.30) 0.34 0.32

Filopodia 0.36 (0.83) 0.53 0.47

CD81 mobile
fraction (%)

PM 55.6 (26.92) 53.77 20.29

FIlopodia 41.12 (33.55) 46.48 23.95

CLDN-1 
diffusion

coefficient 
(μm2/s)

PM 0.35 (0.23) 0.35 0.18

Filopodia 0.24 (0.09) 0.22 0.09

CLDN-1 mobile 
fraction (%)

PM 74.67 (11.67) 74.5 10.54

Filopodia 53.27 (31.52) 50.19 19.86

Table 1: Median, interquartile range (IQ range), mean, and standard deviation (S.D) 

of data presented in Figure 10. HepG2 cells were transfected to express GFP-SR-BI, 

GFP-CD81, DsRed-CD81, and GFP-CLDN-1 and bleached using a Zeiss Meta head laser 

scanning 780 confocal microscope. Statistics were calculated using data from Zeiss 

software. n>21.Values calculated using GraphPad Prism Software.  
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3.4 Differences in receptor dynamics between specific cellular locations 

The large variances in receptor dynamics within the samples led us to examine the diffusion 

coefficient and mobility of the proteins in the PM and filopodia at areas of cell contact and 

exploratory regions as these may represent distinct ‘pools’ of receptors.   

Again, there were no significant differences in the dynamics of SR-BI at more defined cellular 

locations. Also, the variability in results appeared to be greater in the mobile fraction, 

particularly at the exploratory PM edge (Figure 11, Table 2).  

The variability in the diffusion coefficient of CD81 described in Figure 10 at the plasma 

membrane may be explained by the presence of two apparently separate pools of CD81– 

that at the exploratory membrane and that at the cell contact membrane. The latter was 

significantly higher than that at the exploratory membrane with a median diffusion 

coefficient of 0.45 μm2/s in comparison to 0.19 μm2/s at the exploratory PM (Table 2). This is 

matched by a non-significant increase in the mobile fraction of CD81 at the same region. 

However, mobile fraction data displayed large variability. 

The data presented in Figure 10 show the variance of diffusion speed and mobile fraction of 

CLDN-1 between cells to be relatively low, suggesting that unlike CD81 there is only one pool 

of CLDN-1 as defined by receptor dynamics. Analysis of CLDN-1 mobility and diffusion speed 

at cell contact and exploratory filopodia and PM supported this hypothesis, and show that 

there are not multiple populations of CLDN-1 at the regions investigated. 



 

27 
 

As occludin was only visible at the TJs and at low levels in areas of cell contact its kinetics at 

more defined regions could not be examined (Supplementary Table 2). Again, the data for 

GPI is displayed in the appendix (Supplementary Figure 2, supplementary Table 2). Both the 

diffusion coefficient and mobile fraction of GPI were observed to be higher at the cell 

contact PM (median diffusion speed 0.04 μm2/s and mobile fraction 79.33%) than the 

filopodia (median diffusion speed 0.003 μm2/s and mobile fraction 50.4%) (Supplementary 

figure 2, Supplementary Table 2).  

These data show that the speed of diffusion of CD81 is significantly higher in areas of cell 

contact, whereas other HCV receptors show no such significant diversity in dynamics 

between cellular sites. 



 

28 
 

 

 

 

 

0

25

50

75

100

Exploratory PM

Exploratory Filopodia

Cell Contact PM

M
o

b
il

e
 F

ra
c

ti
o

n
 (

%
)

0.0

0.5

1.0

1.5

2.0

D
if

fu
s

io
n

 C
o

e
ff

ic
ie

n
t 

(
m

2
s

-1
)

SR-B1

0.0

0.5

1.0

1.5

2.0 ***

D
if

fu
s

io
n

 c
o

e
ff

ic
ie

n
t(


m
2
s

-1
)

0

25

50

75

100

M
o

b
il

e
 F

ra
c

ti
o

n
 (

%
)

CD81

0.0

0.5

1.0

1.5

2.0

D
if

fu
s

io
n

 C
o

e
ff

ic
ie

n
t 

(
m

2
s

-1
)

0

25

50

75

100

M
o

b
il

e
 F

ra
c

ti
o

n
 (

%
)

CLDN-1

0

25

50

75

100

Exploratory PM

Exploratory Filopodia

Cell Contact PM

M
o

b
il

e
 F

ra
c

ti
o

n
 (

%
)

0

25

50

75

100

Exploratory PM

Exploratory Filopodia

Cell Contact PM

M
o

b
il

e
 F

ra
c

ti
o

n
 (

%
)

0

25

50

75

100

Exploratory PM

Exploratory Filopodia

Cell Contact PM

M
o

b
il

e
 F

ra
c

ti
o

n
 (

%
) Figure 11: Diffusion coefficient and mobile fraction of receptors at specific cellular 

structures. Diffusion coefficient and mobile fraction measured in HepG2 cells 

transfected to express GFP-SR-BI, GFP-CD81, DsRed-CD81, and GFP-CLDN-1 at specific 

locations. Cells were bleached using a Zeiss Meta head laser scanning 780 confocal 

microscope and diffusion coefficient and mobile fraction were calculated using data 

from Zeiss software. n>21, with more than 1 bleached region per cell.  White bars 

represent exploratory filopodia, light grey exploratory PM, and dark grey cell contact 

PM.  
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Structure Median (I.Q range) Mean S.D.

SR-B1 
Diffusion 

Coefficient 
(μm2/s

Exploratory PM 0.13 (0.31) 0.16 0.15
Exploratory 

filopodia
0.04 (0.19) 0.11 0.16

Cell contact PM 0.21 (0.33) 0.26 0.26

SR-B1 Mobile 
Fraction (%)

Exploratory PM 63.29 (27.67) 67.49 18.64

Exploratory 
Filopodia

37.73 (9.11) 40.07 6.97

Cell Contact PM 74.67 (13.52) 70.84 13.28

CD81 
Diffusion 

Coefficient 
(μm2/s)

Exploratory PM 0.19 (0.34) 0.25 0.21

Exploratory 
filopodia

0.10 (0.34) 0.21 0.22

Cell contact PM 0.45 (0.69) 0.57 0.45

CD81 Mobile 
fraction (%)

Exploratory PM 56.13 (32.84) 57.1 21.72

Exploratory 
filopodia

49.74 (31.55) 51.18 22.3

Cell contact PM 62.09 (22.17) 62.51 17.25

CLDN-1 
Diffusion 

Coefficient 
(μm2/s)

Exploratory PM 0.36 (0) 0.42 0.13
Exploratory 

filopodia
0.33 (0) 0.24 0.17

Cell Contact PM 
Edge

0.44 (0.36) 0.51 0.22

CLDN-1 
Mobile 

Fraction (%)

Exploratory PM 77.64 (19.45) 75.69 10.66

Exploratory 
filopodia

29.96 (0) 35.96 30.64

Cell contact PM 73.86 (18.72) 74.5 13.63

Table 2: Median, interquartile range (IQ range), mean, and standard deviation (S.D) 

of data presented in Figure 11. HepG2 cells were transfected to express GFP-SR-BI, 

GFP-CD81, DsRed-CD81, and GFP-CLDN-1 and bleached using a Zeiss  Meta head laser 

scanning 780 confocal microscope, n>21.  Diffusion coefficient and mobile fraction were 

calculated using data from Zeiss software.Values calculated using GraphPad Prism 

Software.  
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3.5 Addition of viral glycoproteins 

We were interested in whether addition of viral glycoproteins would alter the diffusion 

speed or mobility of HCV receptors. Therefore, we added the soluble viral glycoproteins sE2 

(0.7mM) and sE1E2 (0.7mM) to cells expressing GFP-CLDN-1 or GFP/DsRed-CD81. 

When looking at the effect of addition of sE2 and sE1E2 on filopodia and PM only, addition 

of sE2 caused a decrease in mobile fraction of both CD81 and CLDN-1, whereas addition of 

sE1E2 caused an increase in the diffusion coefficient of the filopodia (Figure 12). 

However, when the regions of interest were expanded to include areas of exploratory 

regions and areas of cell contact, it became evident that the majority of the effects 

conferred by addition of the viral glycoproteins was on CLDN-1, particularly at areas of 

exploratory and cell contact rather than at ‘free’ regions (Table 3b).   

Following addition of sE1E2, the mobile fraction of CLDN-1 was increased at the exploratory 

filopodia and exploratory PM from 48.08% to 72.72% and 48% to 62.37% respectively. In 

contrast, addition of sE1E2 decreased the diffusion coefficient of exploratory filopodia from 

0.91 μm2/s to 0.06 μm2/s (Table 3b).  

 Addition of sE2 also caused a decrease in the mobile fraction of CLDN-1 at the exploratory 

PM and exploratory filopodia, with values decreasing from 0.91 μm2/s to 0.09 μm2/s and 

0.30 to 0.05 μm2/s respectively. However, addition of sE2 did not exclusively cause 

decreases in diffusion coefficient, as addition of sE2 increased the diffusion coefficient of 

CLDN-1 from 0.09 μm2/s to 0.54 μm2/s at filopodia (Table 3b). 
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In contrast, the affects of addition of glycoproteins to cells expressing CD81 were not so 

varied, and were limited to the mobile fraction (Table 3a). Here, addition of sE1E2 caused a 

small but significant decrease in the mobile fraction at the filopodia from 61.74% to 60.20%. 

Addition of sE2 alone caused a decrease in mobile fraction of the protein from 68.23% to 

56.84% (Table 3a).   

During analysis it became evident that HepG2 cells expressing CD81 displayed small regions 

of high protein expression. As CD81 forms part of TEMs, we examined the diffusion 

parameters of CD81 at these regions, although they have not been identified as TEMs. When 

looking at these areas of high CD81 expression, addition of E2 significantly increased the 

mobile fraction at areas of high protein expression from 46.03% to 55.33% (Table 3a).  

These data show that addition of the viral glycoproteins does cause a change in receptor 

movement, particularly CLDN-1 at exploratory regions.  
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Figure 12 : Diffusion coefficient and mobile fraction of CD81 and CLDN-1 

following addition of viral glycoproteins. Diffusion coefficient and mobile 

fraction measured in HepG2 cells transfected to express GFP-CD81, DsRed-CD81, 

and GFP-CLDN-1 at specific locations after the addition of the glycoproteins sE2 

and sE1E2 at 0.7 mM. Cells were bleached using a Zeiss  Meta head laser 

scanning 780 confocal microscope. Diffusion coefficient and mobile fraction were 

calculated using data from Zeiss software. n>15, with more than one bleached 

region per cell. White bars correspond to untreated samples, light grey to 

addition of sE2 and dark grey to addition of sE1E2.  
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Median (IQ range) Mean S.D Significance
C

D
81

 D
if

fu
si

o
n

 C
o

e
ff

ic
ie

n
t μ

m
/s

 
High PM

Control 0.16 (0.19) 0.21 0.23

sE2 0.35 (0.21) 0.36 0.12

sE1E2 0.20 (0.40) 0.28 0.23

PM

Control 0.11 (0.11) 0.16 0.13

sE2 0.10 (0.13) 0.15 0.17

sE1E2 0.17 (0.12) 0.19 0.06

Filopodia

Control 0.16 (0.37) 0.55 1.16

sE2 0.07 (0.03) 0.09 0.05

sE1E2 0.35 (0.27) 0.34 0.21

Exploratory filopodia

Control 0.54 (0.00) 0.54 0.29

sE2 0.05 (0.07) 0.06 0.04

sE1E2 0.10 (0.00) 0.18 0.20

Exploratory PM

Control 0.07 (0.86) 0.39 0.53

sE2 0.15 (0.29) 0.21 0.16

sE1E2 0.13 (0.11) 0.13 0.08

Cell contact PM

Control 0.16 (0.19) 0.21 0.15

sE2 0.19 (0.28) 0.24 0.19

sE1E2 0.33 (0.49) 0.41 0.37

C
D

81
 M

o
b

ile
 F

ra
ct

io
n

 (
%

) 

High PM

Control 46.03 (10.28) 45.81 10.96

sE2 64.77 (20.87) 61.10 11.33

sE1E2 55.22 (32.53) 55.73 19.11 * 

PM

Control 56.11 (23.62) 50.92 11.93

sE2 49.26 (20.09) 42.67 15.02

sE1E2 65.14 (9.00) 64.16 10.17

Filopodia

Control 61.74 (36.36) 71.86 19.80

sE2 51.44 (12.33) 50.14 9.93

sE1E2 60.20 (15.48) 58.20 11.57 ** 

Exploratory filopodia

Control 57.16 (0.00) 59.99 17.11

sE2 18.27 (21.67) 23.40 12.31

sE1E2 75.94 (0.00) 72.33 16.41

Exploratory PM

Control 53.70 (33.26) 47.29 17.35

sE2 37.51 (10.03) 38.56 5.22

sE1E2 57.68 (9.58) 58.19 6.21

Cell contact PM

Control 68.23 (11.44) 70.04 10.97

sE2 56.84 (37.85) 66.91 20.42 ** 

sE1E2 68.74 (22.89) 65.37 14.06
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Table 3a: Median, interquartile range (IQ range), mean, and standard deviation (S.D) of 

CD81 following addition of sE2 and sE1E2. Diffusion coefficient and mobile fraction of CD81 

at various cellular locations following addition of viral glycoproteins to HepG2 cells 

transfected to express AcGFP-CD81 and Ds-RED CD81.  
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Structure.compound Median (IQ Range) Mean S.D. Significance
C

LD
N

-1
 D

if
fu

si
o

n
 C

o
e

ff
ic

ie
n

t (
μ

m
2
/s

)
PM

Control 0.13 (0.24) 0.1596 0.1289

sE2 0.10 (0.16) 0.1356 0.1144

sE1E2 0.15 (0.16) 0.1678 0.1167

Filopodia

Control 0.09 (0.09) 0.07363 0.04763

sE2 0.54 (1.18) 0.6957 0.5723 **

sE1E2 0.23 (0.33) 0.2435 0.2086

Exploratory filopodia

Control 0.30 (0) 0.5455 0.4993

sE2 0.05 (0.20) 0.1036 0.09757 *

sE1E2 0.37 (0) 0.4071 0.1276

Exploratory PM

Control 0.91 (1.28) 0.9595 0.751

sE2 0.09 (0.11) 0.09265 0.07248 *

sE1E2 0.06 (0.05) 0.07648 0.03999 *

Cell contact PM

Control 0.13 (0.29) 0.1761 0.1448

sE2 0.06 (0.07) 0.05474 0.03282

sE1E2 0.07 (0.16) 0.09134 0.08051

C
LD

N
-1

 M
o

b
ile

 F
ra

ct
io

n
 (

%
)

PM

Control 55.72 (25.65) 53.27 16.11

sE2 45.41 (25.64) 45.55 14.39

sE1E2 56.51 (17.67) 52.69 16.18

Filopodia

Control 59.33 (14.92) 61.77 11.24

sE2 42.41 (13.8) 43.24 9.168

sE1E2 41.95 (20.63) 37.45 13.57

Exploratory filopodia

Control 46.08 (0) 46.41 5.19

sE2 11.06 (9.12) 15.91 11.01

sE1E2 72.72 (0) 69.24 20.38 ***

Exploratory PM

Control 48 (17.79) 50.29 9.255

sE2 31.12 (17.06) 33.65 9.198

sE1E2 62.37 (11.21) 61.42 7.454 *

Cell contact PM

Control 70.66 (8.53) 71.09 6.072

sE2 57.66 (40.82) 48.45 25.42

sE1E2 43.16 (20.76) 41.82 16.48

Table 3b: Median, interquartile range (IQ range), mean, and standard deviation 

(S.D) CLDN-1 following addition of sE2 and sE1E2. Diffusion coefficient and mobile 

fraction of CLDN-1 at various cellular locations following addition of viral 

glycoproteins in HepG2 cells transfected to express AcGFP-CLDN-1.  
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3.6   Addition of ITX5061 and ITX7094 

The small molecule inhibitor ITX5061 has been shown to reduce infection in an SR-BI 

dependent manner (Syder et al. 2011). This compound and the corresponding control 

compound ITX7094 were added to cells expressing GFP-SR-BI, GFP-CLDN-1, GFP and DsRed-

CD81. The mobile fraction and diffusion coefficients of these proteins were examined after 

an hour of incubation with the compound.  

When looking at the PM and filopodia alone, addition of ITX5061 appeared only to affect the 

kinetics protein at the PM of SR-BI, CD81, and CLDN-1(Figure 13), with addition decreasing 

the mobile fraction of SR-BI at this region but increasing the diffusion coefficient of both 

CD81 and CLDN-1 at the PM (Figure 13). However when the regions were expanded to 

include exploratory and cell contact regions, many additional effects were observed.  

Addition of ITX5061 caused a decrease in mobile fraction of SR-BI in three regions; at the 

exploratory PM from 45.68% to 34.13%; exploratory filopodia from 41.71% to 32.34%; and 

at the cell contact PM from 57.72 % to 33.18% (Table 4a). In contrast, the effects on CD81 

and CLDN-1 were only on the diffusion coefficients of the protein, which in all cases resulted 

in an increase. Addition of ITX5061 increased the diffusion coefficients of both CD81 and 

CLDN-1 at the exploratory filopodia (Table 4b, c), but CD81 only at filopodia and areas of low 

expression and CLDN-1 only at the plasma membrane and exploratory PM Figure 4 (Table 

4b, c). 

Addition of sE1E2 or sE2 alone had no effect on CD81 at areas of high CD81 expression, the 

putative TEMs (Table 4b).  
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Therefore, we show that the effects of addition of the small molecule SR-BI inhibitor ITX5061 

are not restricted to SR-BI, but the effects on this protein is distinct the effects of the drug on 

CD81 and CLDN-1. 
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Figure 13: Diffusion coefficient and mobile fraction of CD81 and CLDN-1 following 

addition of ITX5061 and ITX7904. Variance in diffusion coefficient and mobile fraction 

between HepG2 cells transfected to express GFP-SR-BI, GFP-CD81, DsRed-CD81, and  

GFP-CLDN-1 at  specific locations after the addition of ITX5061 and ITX7904. Cells were 

bleached using a Zeiss  Meta head laser scanning 780 confocal microscope n>15, with 

more than 1 bleached spot per cell. Diffusion coefficient and mobile fraction were 

calculated as  previously described using data from Zeiss software. White bars 

represent addition of ITX7904, and light grey bars addition of ITX5061.  
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Structure/compound Median (IQ range) Mean S.D Significance

SR
-B

I D
if

fu
si

o
n

 C
o

e
ff

ic
ie

n
t (
μ
m

2
/s

)
PM

ITX7904 0.17 (0.22) 0.22 0.16

ITX5061 0.27 (0.21) 0.34 0.24

Filopodia

ITX7904 0.21 (0.17) 0.27 0.22

ITX5061 0.18 (0.17) 0.22 0.11

Exploratory filopodia

ITX7904 0.04 (0.00) 0.04 0.00

ITX5061 0.07 (0.13) 0.09 0.07

Exploratory PM

ITX7904 0.44 (0.52) 0.45 0.25

ITX5061 0.22 (0.40) 0.32 0.29

Cell contact PM

ITX7904 0.25 (0.40) 0.27 0.20

ITX5061 0.24 (0.30) 0.27 0.30

SR
-B

I M
o

b
ile

 F
ra

ct
io

n
 (%

)

PM

ITX7904 48.86 (16.01) 44.01 11.98

ITX5061 48.85 (18.19) 50.86 11.14

Filopodia

ITX7904 43.59 (9.91) 47.98 11.04

ITX5061 51.14 (10.86) 49.82 6.153

Exploratory filopodia

ITX7904 41.71 (12.68) 44.14 21.59

ITX5061 32.34 (11.19) 32.18 7.488 *

Exploratory PM

ITX7904 45.68 (17.39) 46.6 13.23

ITX5061 34.13 (14.77) 33.92 12.27 *

Cell contact PM

ITX7904 57.72 (18.33) 63.23 17.09

ITX5061 33.18 (13.69) 36.25 10.75 ***

Table 4a: Median, interquartile range (IQ range), mean, and standard deviation 

(S.D) of SR-BI following addition of ITX5061 and ITX7904. Diffuison coefficient and 

mobile fraction of SR-BI at various cellular locations following addition of ITX5061 

and ITX 7904 HepG2 cells transfected to express GFP-SR-BI.  
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Median (IQ range) Mean S.D. Significance

C
d

81
 D

if
fu

si
o

n
 C

o
e

ff
ic

ie
n

t (
μ

m
2 /s

)
High PM

ITX7904 0.24 (0.19) 0.286 0.1436

ITX5061 0.41 (0.17) 0.401 0.1015

PM

ITX7904 0.13 (0.19) 0.168 0.1291

ITX5061 0.21 (0.24) 0.293 0.3743 *

Filopodia

ITX7904 0.15 (0.12) 0.188 0.1748

ITX5061 0.30 (0.30) 0.286 0.1826

Exploratory filoopodia

ITX7904 0.10 (0.19) 0.253 0.3974

ITX5061 0.41 (0.64) 0.557 0.4761 *

Exploratory PM

ITX7904 0.20 (0.27) 0.333 0.3202

ITX5061 0.37 (0.77) 0.567 0.5426 *

Cell contact PM

ITX7904 0.35 (0.17) 0.365 0.1516

ITX5061 0.42 (0.40) 0.547 0.4818

C
D

81
 M

o
b

ile
 F

ra
ct

io
n

 (
%

)

High  PM

ITX7904 60.40 (4.54) 59.54 3.616

ITX7904 55.95 (14.51) 55.22 8.77

PM

ITX7904 55.36 (13.78) 52.93 9.308

ITX5061 54.94 (18.52) 58.13 12.15

Filopodia

ITX7904 50.91 (16.14) 49.72 11.94

ITX5061 55.35 (10.88) 56.44 11.95

Exploratory PM

ITX7904 43.54 (15.9) 43.25 13.23

ITX5061 47.2 (17.62) 46.71 12.69

Exploratory Filopodia

ITX7904 38.14 (20.38) 43.51 21.48

ITX5061 33.92 (23.87) 37.93 14.97

Cell contact PM

ITX7904 36.23 (15.11) 36.54 12.75

ITX5061 39.84 (10.22) 41.48 11.47

Table 4b: Median, interquartile range (IQ range), mean, and standard deviation (S.D) 

of CD81 following addition of ITX5061 and ITX7904. Diffusion coefficient and mobile 

fraction of CD81 at various cellular locations following addition of ITX5061 and ITX7904 

HepG2 cells transfected to express GFP-CD81.  
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Median (IG range) Mean S.D> Significance

C
LD

N
-1

 D
if

fu
si

o
n

 C
o

e
ff

ic
ie

n
t (

μ
m

2
/s

)

PM

ITX7904 0.19 (0.13) 0.2369 0.1449

ITX5061 0.34 (0.28) 0.3541 0.2194 *

Filopodia

ITX7904 0.33 (0.39) 0.385 0.2705

ITX5061 0.34 (0.39) 0.4641 0.3049
Exploratory filopodia

ITX7904 0.15 (0.20) 0.1703 0.1433

ITX5061 0.45 (0.24) 0.521 0.1837 *

Exploratory PM

ITX7904 0.04 (0.16) 0.1111 0.1436

ITX5061 0.39 (0.31) 0.4227 0.2203 **

Cell Contact PM

ITX7904 0.28 (0.20) 0.2782 0.1501

ITX5061 0.39 (0.82) 0.5355 0.5069

C
LD

N
-1

 M
o

b
ile

 F
ra

ct
io

n
 (

%
)

PM

ITX7904 57.96 (13.83) 56.24 10.89

ITX5061 50.72 (17.28) 49.21 10.3

Filopodia

ITX7904 53.42 (18.63) 53.52 12.59

ITX5061 53.75 (20.23) 55.5 11.85

Exploratory filopodia

ITX7904 44.95 (0) 43.15 3.95

ITX5061 47.59 (24.24) 45.8 14.62

Exploratory PM

ITX7904 55.76 (29.42) 53.68 15.28

ITX5061 58.96 (34) 56.08 17.85

Cell Contact PM

ITX7904 38.21 (12.06) 39.57 12.06

ITX5061 42.29 (9.85) 42.04 5.746

Table 4c: Median, interquartile range (IQ range), mean, and standard deviation (S.D) 

CLDN-1 following addition of ITX5061 and ITX7904. Diffusion coefficient and mobile 

fraction of CLDN-1 at various cellular locations following addition of ITX5061 and 

ITX7904 HepG2 cells transfected to express GFP-CLDN-1.  
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4 DISCUSSION 

This study aimed to define the kinetics of the essential HCV receptors SR-BI, CD81, CLDN-1 

and occludin in HepG2 cells. Furthermore, we aimed to discern the effects of addition of the 

viral glycoproteins sE2 and sE1E2 and the small molecule inhibitor ITX5061. 

4.1 Protein localisation 

The results of this report show all SR-BI, CD81, CLDN-1 and occludin to be localised in HepG2 

cells as previously reported (Mee et al. 2009). Both SR-BI and CD81 were visible throughout 

the cell membrane, whereas CLDN-1 was shown to be localised at high levels at the TJ/ BC-

like region and at lower levels in the basolateral membrane. Additionally, occludin was 

localised exclusively to TJs. 

SR-BI showed poor expression in filopodia in HepG2 cells in comparison to that the plasma 

membrane (Figure 8). In non-polarised Huh-7.5 cells DiD-HCV particles have been reported 

to initially bind to filopodia and travel along them to the plasma membrane, as has been 

reported for other viruses and cell types (Duus et al., 2004; Smith and Helenius, 2004; 

Lehmann et al., 2005,  Schelhaas et al.,  2008; Coller et al., 2009). It is possible that SR-BI is 

necessary at an early stage in the infection process for delipidating the virus particle and 

allowing cell surface receptors access to the viral glycoprotein complex E1E2. Therefore, the 

low level of SR-BI observed suggests one of three possibilities: binding of glycoproteins to 

HepG2 cells does not require transport along filopodia (1); in in vitro assays using HepG2 

cells, glycoproteins bind to another receptor first in the filopodia, before binding to SR-BI (2); 

in HepG2 cells, transport of HCV glycoproteins along filopodia does not occur (3). 

Continuation of this study could quantitatively assess the effect of glycoprotein addition on 
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SR-BI protein levels at the filopodia in HepG2 cells, and look for binding of fluorescently 

tagged virus particles to filopodia.  

 

In addition, SRB1 has been shown to be particularly important in cell-cell transmission, 

whereas CD81 and CLDN-1 have similar much the same levels of importance in both cell-cell 

and cell free transmission (Brimacombe et al. 2011). As filopodia would not be present at 

areas of cell contact, SR-BI may be preferentially localised to other sites. Again, further work 

could examine SRB-1 levels at specific sites and quantitatively observe the changes in these 

levels on addition of HCV glycoproteins or fluorescent virus.  

 

The actin cytoskeleton is central to the formation of filopodia, which are formed 

downstream of Cdc42 and Rif (Ridley et al., 2011). Little is known about the membrane of 

filopodia with regards to its composition and receptor expression, but it is possible that such 

a structure may express a different receptor profile to the rest of the cell.  

The results presented here show that although there is no significant change in SR-BI 

dynamics between the PM and filopodia, there is a small decrease at the filopodia which 

could be further examined.   

The diffusion coefficient of CD81 was shown to be higher in the filopodia than at the PM, 

whereas CLDN-1 was the opposite. However, two had a relatively similar diffusion speed in 

the PM, and therefore the receptor complexes formed by CD81 and CLDN-1 may be 

separated in the filopodia.  

To examine the possibility of the CD81-CLDN-1 complex being separated, fluorescence 

resonance energy transfer (FRET) could be used to investigate the relationship between the 
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two at PM and filopodia. Investigation of the role of actin dynamics would be interesting, 

and perturbation of actin polymerisation could be achieved by the addition of cytochalasin D 

or similar compound.  

 

4.2 Protein diffusion kinetics 

 

The diffusion coefficient and mobile fraction of CD81 and SR-BI have not previously been 

reported, although that of the close relative of CD81, CD9, has (Espenel et al. 2008). Using 

the protastic carcinoma cell line PC3, the diffusion coefficient of CD9 was shown to be 0.23 

+/-0.15 μm2/s.  This data corresponds with that seen in this study for CD81 diffusion at the 

PM (Table 5). This study also examined the diffusion coefficient of CD46, which is not 

present in TEMs or rafts, and therefore it may be used as a comparison for SR-BI. The 

diffusion coefficient of CD46 was 0.13 μm2/s +/- 0.08 μm2/s. This is lower than that seen in 

this study for SR-BI, likely due to significant differences in association with other components 

of the cell membrane along with cell type differences.  

Observation of occludin showed the protein to be very static within the tight junction (Table 

5), in direct contrast to recent paper (Shen et al., 2008) using MDCK cells. MDCK cells 

overexpressing EMK1 may be used as a model for looking at hepatic phenotype (Cohen et al. 

2004). However, the cells used in that study did not overexpress EMK1, and therefore may 

form a functionally different TJ structure.   

Again, the figures quoted for CLDN-1 show a more restricted diffusion pattern for the 

protein than observed in this study, and this may be due to cell-type specific differences. 

However, despite showing a higher diffusion coefficient in HepG2 cells (0.26 μm2/s) in 
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comparison to MDCK cells (0.01 μm2/s); the mobile fractions at the tight junction were 

similar between the two cell types. 33.14% of CLDN-1 was mobile at the tight junction in 

HepG2 cells, and 40% in MDCK cells (Shen 2008). 

 

GPI appeared to diffuse at a lower speed than previously described, with a median of 0.06 

μm2/s in comparison to 1.2+/- 0.2 μm2/s , (Barreiro et al. 2008).However, the quoted speeds 

were calculated in HUVECs, and therefore these differences may be due to differences 

between cell types. In contrast the mobile fraction was much higher in HepG2 cells, 64.94% 

in comparison to <10% in HUVECs. 

Receptor Diffusion 
coefficient 

(μm2/s) 

Reported 
diffusion 

coefficient 
(μm2/s) 

Mobile 
fraction 

(%) 

Reported 
mobile 

fraction (%) 

Cell type Reference 

SRB1 Filopodia: 
0.29  

PM:0.26  

 Filopodia: 
46 

PM: 51.50 

   

CD81 Filopodia: 
053  

PM: 0.23  

- Filopodia: 
46.48 

PM: 53.77 

- - - 

CLDN-1 Filopodia 
0.22  

PM:0.35  
Tight 

junction: 
0.26 

Tight 
Junction: 

0.01  

Filopodia: 
50.19 

PM: 74.50 
Tight 

junction: 
33.14% 

Tight 
Junction: 40 

PM: 0 

MDCK Shen et 
al., 2008  

Occludin Tight 
Junction: 

0.38  
PM: 0.58  

Tight 
Junction: 

0.01 

PM:0.1  

Tight 
junction: 

7.75 
PM: 11.17 

Tight 
Junction: 80 

PM: 20 

MDCK Shen et 
al., 2008  

 

 

 

Table5: Comparison of diffusion kinetics presented in this study and those from previously 

published data 
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4.3 Addition of viral glycoproteins 

 

The soluble viral glycoproteins sE2 and sE1E2 were added to assess their affect on receptor 

dynamics. If considering only the broad groupings seen in figure 12, the two treatments had 

similar effects on both CD81 and CLDN-1; addition of sE2 caused a significant decrease in 

mobile fraction at the filopodia, and addition of sE1E2 caused an increase in diffusion 

coefficient at both. However, for this latter point only the data for CD81 showed a significant 

change. 

 

When the regions of interest were expanded to include exploratory and cell contact regions, 

it became obvious that the majority of the effects mediated by addition of the glycoproteins 

occurred with CLDN-1. The mobile fraction of CLDN-1 was increased and the diffusion 

coefficient decreased by addition of sE1E2 at both exploratory regions; and addition of 

addition of sE2 also caused a decrease in the protein at the exploratory PM and an increase 

at filopodia. In contrast, there were few effects observed on addition of the glycoproteins to 

cells expressing CD81.  In these cells, addition of sE2 and sE1E2 caused a decrease in mobile 

fraction at the cell contact PM and filopodia respectively, and addition of sE1E2 increase the 

mobile fraction of CD81 at areas of high protein expression.  

 

Therefore, the majority of the effects of glycoprotein addition were in the areas of cell 

contact or exploratory regions of the cells, particularly at the filopodia. CLDN-1 and CD81 

were both visible in the filopodia (Figure 4), and engagement of CD81 has been shown to 

activate the Rho GTPase, Cdc42, which coordinates actin cytoskeletal rearrangements in a 
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manner which is complimentary to infection (Brazzoli et al., 2008). Engagement of CD81 has 

been shown to result in the movement of CD81 to areas of cell contact (Brazzoli et al. 2008) 

and therefore, the decrease in mobile fraction of CD81 at the cell contact plasma membrane 

may relate to this movement. Additionally, the changes in diffusion coefficient and mobile 

fraction of CDLN-1 at areas other than cell contact following addition of the viral 

glycoproteins may be caused by the relocation of CD81 causing a breakdown of CD81-CLDN-

1 receptor complexes as the protein moves.  However, Harris et al., (Harris et al., 2008) 

showed that in Huh-7.5 cells addition of sE1E2 did not increase or decrease the 

colocalisation of the proteins, but it did decrease the distance between the two. However, 

these interactions may differ in a more polarised cell line.   

 

Additionally, filopodia form downstream of Cdc42 (Ridley et al., 2011); and therefore 

engagement of CD81 leading to cytoskeletal rearrangements may lead to an increase in the 

number of filopodia per cell.  This may cause a change in receptors dynamics at the cell 

surface, as we have shown previously that receptor dynamics at the PM are different to 

those at the filopodia for these two proteins. 

 

Addition of ITX5061 and ITX7094 

 

Whether ITX5061 acts as a functional or structural inhibitor is unknown. As it reduces HCV 

binding to hepatoma cells, the drug certainly appears to impair structural interactions (Syder 

et al. 2011). Furthermore, evidence suggests that the structural interaction between sE2 and 

SRB1 is important (Scarselli et al., 2002; Syder et al., 2011).   
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However, there is a large amount of evidence supporting the importance of lipoproteins in 

HCV infection, with HDL addition enhancing infectivity and cholesterol depletion reducing it 

(Syder et al., 2011). ITX5061 promotes plasma HDL levels in human and animal models, 

apparently by preventing their catabolism without increasing LDL or very low density 

lipoproteins (vLDL) (Masson et al. 2009). Furthermore, in vitro data show addition of ITX5061 

to reduce SR-BI-mediated HDL lipid transfer (Masson et al., 2009) and ITX5061 will only 

inhibit forms of SR-BI which can bind HDL or LDL (Gu et al. 2000).  

Therefore, it has been suggested that ITX5061 may mimic oxidised lipid species, as oxLDL has 

been shown to inhibit HCV infection in an SR-B dependent manner (Bartosch et al., 2005; 

Voisset et al., 2005; von Hahn et al., 2006).  

This study shows addition of ITX5061 to decrease the mobile fraction of SR-BI at areas of cell 

contact and exploratory regions, whereas effects on CD81 and CLDN-1 are restricted to the 

diffusion coefficient, increasing it at areas of ‘free’ PM and exploratory regions.  

As addition of cholesterol to a membrane decreases its fluidity, a decrease in cholesterol 

transfer into the membrane relative to the control would have the effect of increasing the 

diffusion coefficient of proteins within the membrane, possibly across all structures. 

Although only those values at the exploratory region and free filopodia showed significant 

increases, all diffusion coefficients increased for CD81 and CLDN-1. This suggests a global 

change in membrane composition, possibly through the lipid metabolism function of SR-BI.  

However, the diffusion coefficients of SR-BI did not vary so uniformly, with all apart from the 

PM and exploratory filopodia decreasing in diffusion coefficient. This may suggest that 

although there is a global effect on membrane composition, a specific effect on SR-BI activity 
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is mediated by ITX5061 binding which causes its diffusion coefficient to be altered. This may 

reflect the possibility that SR-BI can create distinct microdomains within the membrane.  

The specific effects of ITX5061 on areas of cell contact or exploratory regions is interesting, 

as SR-BI is particularly important in cell-cell transmission (Brimacombe et al., 2011). The 

changes in mobile fraction may represent a structural change in SR-BI following binding to 

ITX5061, causing a change in the way in which SR-BI interacts with other proteins in the 

membrane or the cytoskeleton.  

 

 

 

 

 

 

 

 

 

 



 

50 
 

  

 

Figure 15: Trends observed from data presented in this report. Structures examined in this 

report (a). Trends observed (b). Colour coding is as follows: light blue. Non significant 

decrease; dark blue, significant decrease; light red, non-significant increase; dark red, 

significant decrease; grey, no change.  

Free

Cell contact PM
Exploratory PM 

and filopodia

SRB-1 Free PM 

vs.  other 
structures

UT vs. E2 UTvs. E1E2 ITX7904vs. 
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Figure 15 shows the trends in receptor dynamics highlighted by this study. Although there 

are changes in receptor dynamics at between different cellular locations in all proteins 

studied, the majority of these are non-significant. Addition of the viral glycoproteins sE2 and 

sE1E2 affect CLDN-1 predominantly, and particularly at areas of exploratory contact, where 

the diffusion coefficient is decreased and mobile fraction increase. In contrast addition of 

these glycoproteins had little effect on CD81.  

Addition of ITX5061 caused changes in the mobile fraction only of SR-BI, and in the diffusion 

coefficient only of CD81 and CLDN-1, although across a variety of structures.  

 

In this report we describe the kinetics of the four receptors essential for HCV entry - SRB1, 

CD81, CLDN-1, and occludin. We show that these differ between cellular structures and are 

altered by the addition of the viral glycoproteins sE1E2 and the SRB1 inhibitor SRB1. The 

activity of viral receptors is essential to understanding the mechanism of HCV and will be 

useful in the development of therapies.  
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ABSTRACT 

Life act is a 17aa yeast-derived actin binding protein which has been shown to effectively 

label F-actin both in vivo and in vitro (Reidl et al., 2008; 2010). The lifeact-GFP transgenic 

mouse has been shown to be phenotypically normal and to express the transgene in 

platelets, and thus offers a potentially viable model for the real-time observation of platelet 

actin dynamics. This has not previously been possible due to technical reasons.  

This study aimed to verify the use of the lifeact-GFP transgenic mouse as a model for 

studying platelet actin dynamics in real time. In addition, transgenic platelets were used to 

further characterise actin nodules – punctate areas of dense actin staining (Calaminus et al., 

2008) with an as yet undefined function. It is possible that they have a role in actin 

remodelling, adhesion, or endocytosis.  

The results of this study show that lifeact-GFP platelets are phenotypically similar to wild 

type platelets in terms of their aggregation and morphology during spreading. Therefore, 

they appear to constitute a valid model for further observations. In addition, using live 

imaging this study shows actin nodules to be relatively stationary structures with finite 

lifespans of 87 seconds. Their lifespan appears to be related to filopodia formation, and 

therefore they may mark the positions at which filopodia will form. Using 

immunofluoresence staining, this report shows actin nodules to colocalise with a number of 

focal adhesion proteins suggesting that actin nodules may have a role in adhesion. Finally, 

we show actin nodules do not to colocalise with the endocytosis protein clathrin, and their 

frequency is not affect by addition of the dynamin-mediated endocytosis inhibitor Dynasore. 

Taken together, these data suggest that actin nodules provide a site for the initiation of 



 

 
 

filopodia formation and may additionally play a role in adhesion of the developing filopodia 

to the extra cellular matrix. 
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INTRODUCTION 

 

1.1 Platelets  

Platelets are anucleate cell fragments which circulate in the bloodstream and become 

activated following contact with areas of damaged vessel wall. As a result of activation 

platelets spread, resulting in an increased surface which allows them to provide a physical 

barrier to blood loss from injured endothelial tissue. In addition, they form a surface area to 

which further platelets can adhere. A second result of activation is the secretion of 

prothrombotic factors, which allows activated platelets to initiate haemostasis by providing 

a surface on which thrombin is generated and fibrin can accumulate (Brass 2010). 

Additionally, platelets contribute to primary immunity by helping to trap bacteria in 

neutraphil-derived DNA nets, and stimulate angiogenesis and contribute inflammatory 

mediators (reviewed in (Leslie).   

 

1.2 Mechanisms of platelet activation 

Following injury and endothelial denudation, the subendothelial extracellular matrix is 

exposed to blood flow. Exposed collagen accumulates circulating von Willebrand Factor 

(vWF), which makes contacts with the platelet GPIb-IX-V complex (Ruggeri et al., 2007). 

These contacts are transient due to the fast on/off-rate of the interaction but are efficient at 

the high levels of shear present in blood vessels (Doggett et al. 2002).  
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The transient binding of vWF to GPIb-IX-V slows the speed of platelet movement sufficiently 

during rolling to allow binding of the low affinity immunoglobulin platelet surface receptor 

GPVI with exposed laminin and fibrillar collagen types I and III (Denis et al. 1998). This 

interaction clusters GPVI at the platelet surface (Inoue et al. 2006) and activates the 

platelets through inside-out signalling via integrins. The principal integrins involved in 

platelet activation are αIIbβ3 and α2β1, the former binds to VWF, fibronectin, and fibrinogen 

(Shattil et al., 2004) and the latter to collagen (Sarratt et al. 2005).  

Inside-out signalling leads to cytoskeletal remodelling, granule secretion, and thromboxane 

A2 formation (TxA2) (Nieswandt, et al 2003). In addition, during this process the weak 

interactions formed between the platelet and the matrix are converted to stable adhesions. 

This increases the net affinity of collagen for GPVI, thus initiating a positive feedback loop of 

activation signals through this receptor (Shattil and Newman 2004).  

Signalling through αIIbβ3 is central to the cytoskeletal rearrangements which occur during 

platelet spreading. Downstream signalling from αIIbβ3 through Src kinases and Syk activates 

second messenger proteins such as protein kinase c (PKC) and Ca2+ (Miranti et al. 

1998;Thornber et al. 2006) and these lead to the assembly of actin structure such as 

lamellipodia, stress fibres, and filopodia (McCarty et al. 2005). 

Following initial adhesion, platelets secrete dense granules and activate phospholipase A2, 

leading to the release of adenosine diphosphate (ADP) and the formation of TxA2 (Nieswandt 

and Watson 2003). These two act synergistically to mediate additional platelet aggregation 

through further platelet tethering, activation and aggregation. Activation and haemostasis is 

further promoted by the generation of thrombin through the coagulation cascade which 
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activates platelets through platelet activated receptors 1 and 4 (PAR1 and PAR4) (Adam et 

al. 2003; Weeterings et al. 2006), and strengthens the clot by cleaving fibrinogen to fibrin. In 

addition, under high rates of shear, platelets shed part of their membrane, leaving trials of 

procoagulant microparticles (Reininger et al. 2006).  

Therefore, there are two principal pathways through which platelets may become activated. 

The first is initiated by GPIV, and results in full platelet activation. The second is initiated by 

the stimulation of heterotrimeric G-protein coupled receptors by thrombin, ADP, and TxA2. 

The first and second pathways proceed through phospholipase C γ2 (PLCγ2) and 

phospholipase Cβ (PLCβ) respectively (Stegner and Nieswandt 2011), both of which lead to 

calcium mobilisation and PK activation. Both PLCγ2 and PLCβ activate the Rho/Rho-kinase 

pathway, which goes on to phosphorylate myosin light chain and contributes to platelet 

shape change (Stegner and Nieswandt 2011).  

 

1.3 Actin 

Actin is a highly conserved 42 kDa protein, and is the most abundant protein in most 

eukaryotic cells. It exists in globular (G) and filamentous (F) forms, with G-actin being a 

double helical polymer of G actin subunits, and F-actin a polymer of these. F-actin filaments 

are polar in nature with a fast-growing (+) end to which monomers are added and a (-) end 

from which monomers disassociate.  

The actin cytoskeleton is vast and extends throughout the cell, and can therefore alter cell 

morphology by assembling and disassembling polymers. In order to ensure a high level of 
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control of the actin cytoskeleton, actin dynamics are regulated by a large range of actin 

binding proteins (Siripala and Welch 2007a; 2007b), combinations of which produce cell 

type-specific organisation of the actin cytoskeleton.  

The best characterised actin structures are the filopodia, stress fibres and lamellipodia, all 

are of which are present at some point in the transition between resting and activated 

platelets (Hartwig et al., 1992). Also, punctuate areas of intense actin staining have been 

identified during early spreading and are termed actin nodules (see section 1.4.2) (Calaminus 

et al. 2008). 

 

1.4 The platelet cytoskeleton 

1.4.1 The resting platelet cytoskeleton  

The resting platelet is discoid in shape and is contains a cytoskeleton robust enough to 

enable it to withstand the high rates of shear stress present during blood flow. The resting 

platelet cytoskeleton is formed of three main components: a spectrin based skeleton which 

adheres to the inner surface of the plasma membrane (1), a multiple microtubule coils which 

line the axis of the cell (Patel-Hett et al. 2008) (2), and  an actin-based network which fills the 

cytoplasmic space (3).  Platelet stimulation activates nucleation and branching of actin 

filaments, thus remodelling the platelet. 

 

1.4.2 Cytoskeletal reorganisation during activation 
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During cell spreading, filopodia form the initial adhesion sites to the substratum and to 

which focal adhesion complex proteins are recruited (Mattila and Lappalainen 2008). 

Lamellipodia then extend between these as the platelet spreads. Additionally, under shear-

stress filopodia have been observed to form tethers between platelets and VWF in a 

developing aggregate (Maxwell et al. 2006); (Nesbitt et al. 2009).  

When fibrinogen and fibronectin engage with platelet surface receptors such as αIIbβ3, the 

tyrosine kinases Src, Syk and focal adhesion kinase (FAK) are recruited to the cytosolic cell 

surface and promote cytoskeletal reorganisation through activation of PKC and increases in 

intracellular Ca2+ (Mangin et al. 2003). These signals regulate actin polymerisation at the 

platelet membrane to allow the growth and extension of actin structures (McCarty et al. 

2005; Watson et al., 2009).  

 

1.5 Actin structures 

This study is concerned primarily with two actin structures present during platelet spreading 

– filopodia and actin nodules. 

 

         1.5.1 Filopodia  

Filopodia are F-actin-rich fast growing projections (Figure 1a, 1b) orientated such the F-actin 

polymers have the ‘+’ ends face towards the cell membrane (Small et al. 1978). Filopodia 

have roles in a wide range of cellular functions, including cell spreading wound healing, 
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adhesion, movement towards to chemoattractants, and embryonic development (Faix and 

Rottner 2006; Gupton and Gertler 2007). 

There are two independent pathways which potentially lead to the formation of biologically 

distinct filopodia in platelets: the Cdc42 and Rif pathways. The difference in filopodia formed 

by each process may represent specific biological functions (Pellegrin and Mellor 2005). 

 In the first pathway, Cdc42 binds and activates either Wiskott Aldrich Syndrome protein 

(WASP) (Aspenstrom et al. 1996; Symons et al. 1996; Rohatgi et al. 1999; Prehoda et al. 

2000) or insulin receptor tyrosine kinase substrate p53 (IRSp53)  (Yamagishi et al. 2004) 

which activates neural (N-) WASP and Arp2/3, and Mena (Krugmann et al. 2001; Yamagishi 

et al. 2004; Scita et al. 2008). These promote actin nucleation and protect elongating 

filaments from capping respectively. IRSp53 is an inverse Bin/Amphiphysin/Rvs (I-BAR) 

domain protein that resides at the cell membrane and is thought to be involved in 

membrane deformation (Suetsugu et al. 2006; Mattila et al. 2007;Lim et al. 2008). 

In contrast, RIF binds GTP and the formin mDia2, leading to the formation of unbranched 

actin filaments by directly nucleating actin assembly and preventing capping (Ellis and Mellor 

2000; Pruyne et al. 2002; Sagot et al. 2002; Higashi et al. 2008).  

Recent studies have shown that Rac1, Cdc42 and WASP are not essential for platelet 

filopodia formation and full platelet spreading (Snapper et al. 2001; Sukumvanich et al. 

2004; McCarty et al. 2005; Pleines et al. 2010) . Although the findings related to Cdc42 is 

controversial (Akbar 2011).  Therefore, the second pathway or another may be the major 

effector of filopodia formation in platelets, although this remains to be tested. Another 
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potential effector is lipid-phosphatase related protein-1 (LRP1), although again this has not 

been verified (Sigal et al. 2007).  

 

1.5.2 Actin nodules 

A novel actin structure has been described (Calaminus et al. 2008) which is observed during 

early spreading. It consists of punctuate areas of intense F-actin staining (Figure 1a) which 

extend throughout the platelet and are termed actin nodules. These are distinct from other 

actin-rich structures such as podosomes, focal adhesions, focal complexes, invadapodia, 

ruffles, and endocytic vesicles (Calaminus et al. 2008) and are observed on a number of 

different substrates. Their appearance has been shown to be dependent on Src kinase 

activity and actin polymerisation, but is independent of PI3K activity, and inversely 

correlated with Rho-kinase and myosin-II activity. They were also shown to contain Arp2/3, 

Fyn, Rac, and β1 and β3-integrins (Calaminus et al. 2008).  

Whilst actin nodules have been shown not to be involved in exocytosis (Calaminus et al. 

2008), it is possible that they are involved in endocytosis. Whilst platelets are adhered to the 

substratum, they endocytose fibrinogen from the plasma pool and traffic it to α-granules, in 

a process which is thought occur by clathrin-dependent receptor-mediated endocytosis and 

the integrin αIIbβ3. However, the mechanism is relatively undefined and needs further study 

(Handagama PJ 1987;  Harrison et al. 1989).  
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1.6 Lifeact 

Actin dynamics may be monitored by the expression of actin-green fluorescent protein (GFP) 

fusion proteins or by injection of fluorescently labelled actin. However, all reported actin 

fusion proteins are functionally impaired and rely on non-tagged actin to buffer the effects 

(Yamada et al. 2005). In addition, the technique is limited to cells which can be transfected 

and therefore it is unsuitable for use in platelets. Permeabilisation of fixed cells followed by 

staining with the fungal F-actin binding protein phalloidin has proved a viable method for 

investigating actin dynamics in platelets however the fixing processes removes the 

possibility of using phalloidin in live cell imaging, and results in the appearance of staining 

artefacts.  

 

Figure 1: Actin nodules and filopodia. Representative images of filopodia (white 

arrows) and actin nodules (white arrowheads) in lifeact-GFP mouse platelets using 

confocal micrscopy (a). Additionally, filopodia are displayed (black arrows) using 

differential interference contrast (DIC) microscopy (b). Confocal images were taken on a 

Leica DM IRE2 confocal microscope and DIC images were captured on a Zeiss Axiovert 

200 M microscope. 
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Lifeact was first described in 2008 (Riedl et al. 2008). It is an actin binding protein encoded 

by a 17 amino acid peptide from Saccharomyces cerevisiae with the sequence 

MGVADKLIKKFESISKEE. A C-terminal fusion transgene of this peptide to fluorescent proteins 

has been shown to act as an efficient label of F-actin in vivo due to the small size of the 

peptide and its absence from higher organisms (Riedl et al. 2008).  

Lifeact offers a considerable improvement upon previous systems for monitoring actin 

dynamics as its low F-actin binding affinity does not cause any major adverse biological 

effects on actin dynamics (Riedl et al. 2008). Furthermore, transgenic mice carrying a lifect-

fluorescent protein fusion have been shown to be phenotypically normal, viable, fertile, and 

to express the transgene in platelets (Riedl et al. 2010).  This makes it a promising candidate 

for studying actin dynamics in live platelets. 

 

 

1.7. Aims 

In this study, I aim to validate the use of the Lifeact-GFP transgenic mouse model as a system 

for studying platelet actin dynamics in real time, and to use this model to study the 

relationship between actin nodules and filopodia. I hypothesise that actin nodules play a key 

role in platelet spreading, possibly by acting as a precursor to the formation of other actin 

structures such as filopodia.  
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2. MATERIALS AND METHODS 

 

2.1 Use of animals 

All animal studies were conducted in accordance with Home Office protocols in compliance 

with project license 30/2721. All animal handling was done by a licensed individual. 

 

2.2 Terminal bleeding of mice 

Lifeact-GFP and C57Blk6 (wild type, WT) mice were culled by inducing unconsciousness with 

isofluorane anesthesia followed by CO2 asphyxiation. Whole blood was then collected into a 

1 ml syringe containing 100μl acid citrate dextrose (ACD) with a 25 ml gauge needle from the 

thoracic aorta.  

 

2.3 Preparation of mouse platelets 

Whole blood from terminally narcosed mice was centrifuged at 200g for 6 minutes and the 

platelet rich plasma (PRP) was collected. After addition of 200μl of Tyrodes buffer ( NaCl, 134 

mM; KCl, 2.9 mM; Na2HPO4.12H2O, 0.34 mM; NaHCO3, 12.0 mM; HEPES, 20.0mM; MgCl2, 

1.0mM) to the PRP, it was centrifuged 3 times at 200g for 6 minutes and each time the PRP 

removed until no more was visible. The final PRP was spun at 1000g for 5 minutes with 

1mg/μl prostaglandin added. The resulting pellet was resuspended in 200μl of Tyrodes 
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solution at pH 7.7. This was diluted to a concentration of 2x107/ml in Tyrodes buffer at pH 

7.3 for use in all experiments. 

2.4 Preparation of human platelets 

Human venous blood was drawn by venipuncture from healthy volunteers into sodium 

citrate and acid citrate dextrose. PRP was prepared by centrifugation of whole blood at 200g 

for 20 min. The platelets were then isolated from PRP by centrifugation at 1000g for 10 min 

in the presence of prostacyclin (0.1μg/ml). The pellet was resuspended in modified 

HEPES/Tyrodes buffer containing 0.1 μg/ml prostacyclin. The platelets were washed once via 

centrifugation (1000g for 10 min) and resuspended at 2x107 with HEPES/Tyrode buffer. 

2.5 Aggregation 

Platelet aggregation of wild type or lifeact-GFP platelets was monitored using 300 ml of 2 x 

108 /ml PRP stimulated with ADP (AltaBiosciences, 3mM), rhodocytin (AltaBiosciences, 

30nM), PAR4 peptide (AltaBiosciences, 250mM) or C-reactive protein (CRP) (AltaBiosciences, 

3mg/ml). Stimulation of platelets was performed in a Chrono-Log aggregometer (Chrono-

Log, PA, USA) with continuous stirring (1200 rpm) at 37 °C as previously described (McCarty 

et al. 2005). 

2.6 Inhibitor testing 

Platelets collected as above (section 2.3) were used at a concentration of 2x107/ml and 

incubated with inhibitors for 5 minutes before plating.  Cytochalasin D (250255, Calbiochem) 

was used at 10uM, Dynasore (D7693, Sigma-Aldrich) at 50μM, and the Arp2/3 inhibitor 
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compound CK666 and relevant control CK689 (Merck Biosciences 182515 and 182517 

respectively) were used at 20μM. DMSO (D8418, Sigma) at 0.1% and 0.3% was used as. 

2.7 Phalloidin-FITC/Rhodamine staining 

Coverslips were incubated with 100μg/ml fibrinogen overnight at 4°C or for 1 hr at room 

temperature (RT) before being incubated with 5mg/ml bovine serum albumin at room 

temperature (RT) for 30 minutes. Platelets were then added at 2x107/ml and fixed in 10% 

neutral buffered formalin solution (Sigma Aldrich, 7K189R5).  

Platelets were permeablilised using 100μl of 50mM NH4Cl for 10 minutes at RT, before being 

washed in PBS incubated at RT for 5 minutes in 0.1% Triton at RT. Following a further wash, 

Phalloidin-FITC/Rhodamine (A12379, Invitrogen and R415, Invitrogen) and  was added at a 

concentration of 4μg/ml and 2 μg/ml respectively for 30 minutes at RT, washed in PBS, and 

mounted in hydromount (National Diagnostics, HS-106) and being stored at 4°C in PBS. 

2.8 Immunofluorescence staining 

Platelets were collected (section 2.3 and 2.4) and fixed in 10% neutral buffered formalin 

solution (Sigma Aldrich, 7K189R5). These were then treated with NH4Cl for 10 minutes at 

room temperature and 0.1% Triton for 5 minutes at room temperature to prepare the 

platelets for staining. They were then incubated with primary antibodies to clathrin (BD 

Biosciences, 611784) at 0.125 μg/ml, pFAK (611722 10/200BD Biosciences) at 1.25 μg/ml, 

paxillin (610569, BD Transduction Lab, UK) at 1.25μg/ml, vinculin (abcam, ab11194) at 0.05 

μg/ml, p34 (7-227, Millipore) at 0.002μg/ml and talin (abcam, ab57758) at 0.002 μg/ml. 

Control antibodies for mouse (Santa Cruz, SC-2025) were used at 0.8 μg/ml, and for rabbit 
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(Santa Cruz, SC-2027) 0.8 μg/ml. Secondary antibodies to mouse (A10680, Invitrogen) and 

rabbit (A11008, Invitrogen) were both used at 4μg/ml and for 30 minutes at room 

temperature before washing and fixing with formalin before mounting. Both rabbit and 

mouse control IgGs were used at an appropriate concentration (1:500 for each). 

 

2.9 Platelet imaging 

For imaging, platelets were used at a concentration of 2x107/ml. Where real time 

microscopy was used, platelets were suspended in pH 7.3 Tyrodes buffer. 

2.9.1 Differential interference contrast (DIC) microscopy 

DIC images were captured with a Zeiss 63x oil immersion 1.40 NA plan-apochromat lens on a 

Zeiss Axiovert 200 M microscope. Digital images were captured by a Hamamatsu Orca 285 

cooled digital camera (Cairn Research, Kent, UK) using Slidebook 5.0 (Intelligent Imaging 

Innovations, Inc.,). 

 2.9.2 Confocal microscopy 

Confocal images were taken on a Leica DM IRE2 confocal microscope illuminated using the 

488 line of an argon laser and a 63x 1.4Na oil immersion objective. 

  2.9.3 Total internal reflectance fluorescence (TIRF) microscopy 

TIRF images were captured on a Nikon A1R confocal / TIRF microscope using with a 60x 1.49 

NA objective and an Andor iXion EM-CCD. 
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2.10 Image manipulation 

Where necessary, images were cropped and overlayed using ImageJ image processing 

software. Also, the cell counter (Kurt de Vos, University of Sheffield) and manual particle 

tracking (Fabrice Cordelieres, Institut Curie) add-ins were used.   

2.11 Statistics 

Statistical analyses and data representation were carried out using GraphPad Prism software 

(GraphPad software, San Diego), with significance calculated using the Student’s T test with 

a Mann-Whitney post test: p < 0.05 (*), p< 0.01(**), and p < 0.001 (***). All values quoted 

are means unless otherwise stated. 
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3.0 RESULTS 

 

3.1 Lifeact-GFP transgenic platelets display similar aggregation curves to WT platelets 

Lifeact-GFP mice were observed to have no obvious visual or behavioural defects in 

comparison to WT mice and were born at normal Mendelian ratio.  In order to investigate 

whether Lifeact-GFP platelets are defective, PRP was collected from a mouse expressing the 

Lifeact-GFP transgene and from a control WT mouse. Platelet aggregation was performed 

following addition to PRP of ADP (3μM, Figure 2a), CRP (3μg/ml, Figure 2b), rhodocytin (30 

μM, Figure 2c), and PAR4 peptide (250μM, Figure 2d). These showed aggregation to be 

similar in both backgrounds, indicating that expression of lifeact-GFP does not aberrantly 

affect the platelet function.  
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Figure 2: Aggregation of wildtype and lifeact-GFP platelets. Platelets 

from WT and lifeact-GFP mice were stimulated with ADP at 3μM (a) 

CRP at 3μg/ml (b) rhodocytin  at 30 μM (c) PAR4 peptide at 250μM (d). 

Aggregation traces were produced on Chrono-Log aggregometer. 

(Chrono-Log, PA).  
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3.2 Platelets undergo a series of distinct stages during platelet spreading, and these are 

replicated in lifeact-GFP transgenic mice 

That platelets undergo a series of distinct morphological changes upon a fibrinogen-coated 

surface has been well documented (Hartwig et al.,1992) (Figure 3a-e). In the present study, I 

compared the morphological changes occurring in control platelets (Figure 3a-e) to those 

from lifeact-GFP platelets upon adhesion to fibrinogen.  

On initial contact, platelets could be seen to have an occasional filopodia and usually no 

more than one actin nodule (Figure 3 a, f, k). With time, further filopodia and actin nodules 

appear (Figure 3 b, g, l,  and c, h, m) followed by the generation of lamellipodia (Figure 3 d, i, 

n) and stress fibres (Figure 4 e, j, o).  

Therefore, using epifluoresence microscopy platelets from WT and lifeact-GFP mice were 

observed to undergo a similar pattern of spreading on fibrinogen (Figure 4 f-j, k-o).  
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Figure 3: Distinct stages of platelets spreading. The distinct stages in platelet spreading 

(a-e)  begin with initial contact on contact with a substrate (a) followed by development 

of initial actin nodules and filopodia (b), development of further nodules and filopodia (c) 

formation of lamella (d), and formation of stress fibres (e) (DIC images were captured on 

a Zeiss Axiovert 200 M microscope) . These patterns are replicated by fixed phalloidin-

stained WT platelets (f-g) (Images taken using a Zeiss Axiovert 200 M microscope) and in 

lifeact-GFP transgenic platelets  (k-o) (TIRF images were imaged live on a Nikon A1R 

confocal / TIRF microscope).  
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3.3 Actin nodule size 

In order to establish the morphological similarities between actin nodules in WT and lifeact-

GFP transgenic platelets, the diameter of actin nodules in each background was measured 

(Figure 4a). This revealed no significant difference in sizes between the two, although those 

in lifeact-GFP platelets were slightly larger (Figure 4a) than those of WT. Actin nodules in WT 

platelets had a median diameter of 0.46 μm (SD 0.12 μm), whereas those from lifeact 

platelets had a diameter of 0.57 μm (SD 0.16 μm). 

 

 

3.4 Actin nodules appear to have a limited lifespan 

To examine the expression of actin nodules in more detail, the number of actin nodules per 

platelet was recorded each minute following initial contact with a fibrinogen substrate. The 

initial number of actin nodules is 2.5 per platelet at first contact, which increases to around 4 

per platelet after 2 minutes. This number remains constant and does not increase with time 

(Figure 4b) suggesting that actin nodules may have a finite lifespan. Therefore, the average 

lifetime of actin nodules was measured and found to be 87 seconds (SD 4.23 seconds) 

(Figure 4c); although the majority of nodules had a lifetime of 30-60 seconds with a range of 

17.5-180 seconds (Figure 4c). Therefore, actin nodules appear to have a finite lifespan.  
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3.5 Dependence on actin nucleation and polymerisation 

In order to establish the dependence of actin nodule formation on actin nucleation and 

polymerisation, the Arp2/3 inhibitor CK666 (20uM), control compound CK689 (20uM), and 

the actin polymerisation inhibitor cytochalasin D (10 μM) were added to lifeact-GFP 

transgenic platelets prior to spreading (Figure 5). 0.1% DMSO was used as a control. 

Quantification of the number of actin nodules (Figure 5a) and filopodia (Figure 5b) per cell 

showed that addition of compound CK666 decreased the number of filopodia and nodules 

per cell in comparison to both CK689 and the DMSO control.  
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Figure 4: Basic characteristics of actin nodules. Median diameter of actin nodules in 

WT and lifeact-GFP platelets  (n=39) (a).  Mean number of actin nodules present per 

platelet per minute in lifeact-GFP mouse platelets (n=16) (b). The average lifespan of 

actin nodules in lifeact-GFP mouse platelets (mean = 87 seconds, SD = 4.64, n=34) at 

half-minute intervals following initial attachment of platelets to substrate (c). All 

observations  made from images taken on a Nikon A1R confocal / TIRF microscope.  
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Addition of cytochalasin D inhibited entirely the formation of filopodia (Figure 5d), and also 

decreased the number of nodules to a similar level as those in platelets which had been 

treated with compound CK666 (Figure 5a). 

Actin nodules in platelets treated with either CK666 or cytochalasin D appeared to be larger 

and more diffuse than those treated using control compounds (Figure 5 d and e compared to 

f and g). Therefore, the diameter of actin nodules was measured in all four populations 

(Figure 5c). This showed actin nodules in platelets treated with CK666 to be significantly 

larger than those treated with DMSO. Similarly, actin nodules in platelets treated with 

cytochalasin D also had a significantly larger diameter to those treated with DMSO (Figure 

5c, d).   

These data show that the formation of actin nodules and filopodia requires both actin 

polymerisation and Arp2/3-dependent nucleation.  
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Figure 5: Dependence of actin nodules and filopodia on  Arp2/3-dependent 

nucleation and polymerisation in lifeact-GFP platelets. Number of actin nodules (a) 

and filopodia (b) per cell after addition of DMSO (0.1%), the Arp2/3 inhibitor CK666 

20μM , relevant control compound CK689 μM, and cytochalasin D (10μM). Diameter 

of actin nodules following addition of these compounds (c).  Appearance of platelets  

and actin nodules (white arrowheads) following addition of DMSO (d) the inhibitors 

CK689 (e) and CK666 (f) and cytochalasin D (g). N<15 for each compound.  
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3.6 Actin nodules appear to be associated with filopodia 

Following live imaging of Lifeact-GFP platelets it was noted that actin nodules appear to be 

localised to the base of filopodia (Figure 6a), therefore the relationship between actin 

nodules and filopodia was explored further. Initially, the region at the base of a filopodia was 

examined for 10 seconds before and after filopodia formation for the presence of an actin 

nodule (Figure 6b). This showed that in the majority of cases, an actin nodule was present 

prior to filopodia formation, and in around 50% of cases this nodule was present more than 

10 seconds prior to filopodia formation (Figure 6b). This led us to further examine the 

development of the two structures by looking at the relationship between the two from the 

initial contact of the platelet with fibrinogen. In particular, the time at which an actin nodule 

appeared before filopodia formation was observed (Figure 6c), and the time after filopodia 

formation for which the nodule persists (Figure 6d). This revealed a peak in actin nodule 

formation 10 seconds before filopodia formation (Figure 6c), and that the majority of actin 

nodules disappeared within 75 seconds of filopodia formation (Figure 6d).  Taken together, 

the data presented here allowed a schematic of the average lifespan of an actin nodule to be 

drawn (Figure 6e).  This showed that actin nodules appear on average 18 seconds (SD 1.94 

seconds) before a filopodia forms, and persist for an average of 69 seconds (SD 0.91 

seconds) after filopodia formation, giving a mean lifespan of 87 seconds (SD 4.23 seconds).  

These data show actin nodule lifespan to coordinate with filopodia formation. 
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Figure 6 - Relationship between actin nodules and filopodia in lifeact-GFP mouse 

platelets. Actin nodules appear to be located at the base of filopodia (a) Time of 

actin nodule appearance in relation to filopodia appearance (n=85) (b), frequency 

of actin nodules appearing per second before filopodia appearance (n=32) (c), and 

frequency of actin nodule persistence following filopodia appearance (n=32) (d). 

Schematic of actin nodule lifetime (e). 
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3.7 Dynamics of actin nodule movement 

To determine if actin nodules move towards the filopod with which they are associated or 

whether they remain static, the particle tracking plugin for ImageJ (Fabrice Cordelieres, 

Institut Curie) was used to follow their movement (Figure 7a) over time (Figure 7 b-j). The 

resulting plots showed that actin nodules appear to remain relatively static with only small 

random movements being observed (Figure 7 b-j), which are usually around half of their own 

length (<0.2μm). Therefore, it appears that actin nodules are relatively static and may 

represent adhesions or anchor points for filopodia.  

 

3.8 Colocalisation of focal adhesion proteins with actin nodules 

As actin nodules remain static at the base of filopodia, it is possible that they are equivalent 

to focal adhesions, albeit somewhat smaller in size.  To investigate this, fixed human 

platelets were counterstained with FITC-phalloidin, and stained with antibodies to a number 

of focal adhesion proteins; the actin binding proteins vinculin, paxillin, p34, and talin, the 

integrin subunit αIIb, and the focal adhesion protein pFAK (Figure 8 a-f).  The subunit of the 

Arp2/3 complex was used as a positive control for actin nodules, as they have been shown to 

contain it (Calaminus et al. 2008). The results showed actin nodule colocalisation with 

vinculin (Figure 8a), paxillin (Figure 8b), p34 (Figure 8d), talin (Figure 8e), and αIIb (Figure 8f), 

although they did not colocalise with pFAK (Figure 8c).  
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Therefore, actin nodules contain a number of proteins found at focal adhesions indicating 

that they may play a role in anchoring the platelet to the to the substrate and provide 

initiation points for filopodia formation.  
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Figure 7: The assocaition between actin nodules and filopodia in lifeact-GFP 

platelets. Particle tracking of an actin nodules using ImageJ. Each coloured line 

represents the trajectory of a single actin nodule (a).  The directionality of actin 

nodule movements. Blue arrows represent the direction of movement of actin 

nodules at the last measured point and black arrows represent the angle of 

filopodia emergence from the associated actin nodule (b-i).  
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3.9 Markers of endocytosis  

It has been shown that actin nodules do not have a role in exocytosis (Calaminus et al. 2008), 

but it is possible that actin nodules are involved in endocytosis. Therefore, their relationship 

with dynamin- and clathrin-mediated endocytosis was examined. Using fixed human 

platelets in which the actin had been costained with rhodamine. 

Human platelets containing actin costained with FITC were stained with an antibody to 

clathrin and the two did not appear to colocalise (Figure 9a). Furthermore, addition of the 

dynamin inhibitor Dynasore to lifeact-GFP appeared to have no effect on the number of 

actin nodules per cell (Figure 9b). In addition, quantification of the number of actin nodules 

per cell showed platelets treated with DMSO and Dynasore to have a similar frequency 

distribution of actin nodules per cell (Figure 9c). The peak number of actin nodules for both 

Dynasore and 0.3% DMSO treated platelets was 2 per cell, although the range of actin 

nodules per cell was greater in those treated with 0.3% DMSO (0-7 nodules/cell) than with 

Dynasore (0-12 nodules/cell). 

Therefore, actin nodules do not appear to be involved in dynamin- or clathrin- mediated 

endocytosis.  

Figure 8:  Focal adhesion staining. 488-linked staining of the focal adhesion proteins 

vinculin (a) paxillin (b), pFAK (c), p34 (d), talin (e), and αIIb (f) in human platelets. Actin 

in platelets was costained with rhodamine and intensity normalised to  relevant 

controls. Examples of cells expressing colocalisation are marked by white arrowheads. 

Images taken on a Leica DM IRE2 confocal microscope  and a 63x 1.4Na oil immersion 

objective  
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4. DISCUSSION 

This study aimed to verify the Lifeact-GFP transgenic mouse as a model for studying platelet 

actin dynamics in real time, and to further describe the role of actin nodules in spreading 

platelets. The results of this study show that platelets obtained from mice expressing the 

lifeact-GFP transgene perform similarly to those obtained from wild type platelets in terms 

of platelet spreading and aggregation, and thus they appear to constitute a valid model for 

the visualisation of platelet actin dynamics. Therefore, these platelets were used to 

characterise actin nodules in real time in terms of their lifetime, dynamics, association with 

filopodia and their role in platelet spreading. 

Lifeact platelets presented a considerable benefit to this study, as they allowed live imaging 

of platelet actin within minimal impact on actin dynamics and no artefacts of fixing or 

staining. In addition, live imaging allowed platelet spreading to be examined from the exact 

time of contact with substrate, and thus timing was more exact.  

The functionality of lifeact-GFP platelets was investigated. Platelets were stimulated through 

P2Y1 and P2Y12, GPVI, Clec2, and the thrombin receptor, and their aggregation compared to 

those of WT platelets.  Lifeact-GFP transgenic platelets appeared to aggregate in a normally 

when compared to WT platelets. In vivo experiments were not carried out in the study, but 

mice appeared phenotypically and behaviourally normal with no evidence of clotting 

dysfunction. However, future experiments could determine if bleeding times are affected by 

using a tail bleed assay. Therefore, lifeact platelets appear to constitute a valid model for 

visualising actin dynamics in platelets. 
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Having established that the platelets function normally, their spreading was examined. 

Platelets have been shown to undergo a series of distinct morphological changes during 

platelet spreading (Hartwig et al., 1992), beginning with the appearance of focal adhesions, 

followed by formation of filopodia and culminating in lamellipodia and stress fibre 

formation. The lifeact probe has been shown not to significantly perturb the actin 

cytoskeleton dynamics of a number of cell types including platelets in vitro  or in vivo (Riedl 

et al. 2008; 2010). By comparing the spreading of lifeact platelets with those of fixed 

phalloidin-labelled wild-type platelets, the results presented here show that actin in lifeact-

GFP platelets undergo the same series of changes.  

Actin structures are well characterised; particularly filopodia, lamellipodia and stress fibres. 

In 2008, actin nodules were described as punctuate areas of actin staining present in 

platelets during early spreading (Calaminus et al. 2008).  In order to gain further 

understanding of these structures, the lifetime of actin nodules was investigated and their 

characteristics studied in order to elucidate a possible function. In the original paper, actin 

nodules were shown to contain the actin nucleating complex Arp2/3, the small Tapes Rac, 

Fyn, and the integrins β1 and β3 (Calaminus et al. 2008). Therefore, the authors suggested 

that they may play a role in adhesion or actin remodelling and suggested two of potential 

roles for the structures: (1) reservoir of actin for platelet spreading (2) initial adhesion sites 

or focal adhesion-type structures. However, it is also possible that they have a role in 

endocytosis.  

The average width of an actin nodule does not vary significantly between WT and lifeact-GFP 

backgrounds, and in lifeact platelets the median diameter is 0.57μm. This is smaller than 
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that quoted in the original paper (Calaminus et al. 2008) although this is likely due to the use 

of human platelets in that study, which are considerably larger than mouse platelets. In 

order to confirm that there is no change in size; platelets from both backgrounds could be 

fixed and stained in the same way. 

By using real-time microscopy to synchronise platelet spreading, the results of this study 

show that the peak number of actin nodules form at 3 minutes following initiation of platelet 

spreading and then to remain fairly constant. This suggests that the structures have a finite 

lifetime, which was found to be 87 seconds, although the majority persisted for 30-60 

seconds. This supports previous preliminary data attained using these mice (Amy Davies – 

unpublished) which suggests that the majority of actin nodules persist for 30-60 seconds.  

During preliminary analysis, It was noted that actin nodules appeared to be associated with 

the base of developing filopodia, appearing around 18 seconds prior to the formation of 

filopodia and persisting for on average of 69 seconds following their appearance. The 

correlation of actin nodule lifespan with the formation of filopodia suggested a relationship 

between the two. Therefore, the spatial association of actin nodules and filopodia was 

investigated using particle tracking to determine if the nodules moved towards the 

extending filopodia or remained associated at the base. During the observation time, actin 

nodules appeared to remain relatively stable and moved less than half their own length with 

no apparent directionality. This finding suggests that while an actin nodule does appear to 

be associated with a filopod, it does not seem to actively move towards it. Instead, the small 

movements seen may represent movement of the actin nodule as the platelet spreads. 
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The possibility that actin nodules may be acting as a reservoir of actin for formation of actin 

structures during platelet spreading, specifically filopodia was further investigated. The actin 

polymerisation inhibitor cytochalasin D and the Arp2/3 inhibitor CK666 along with suitable 

DMSO controls were added to lifeact-GFP platelets. Addition of both inhibitors significantly 

decreased the number of actin nodules in platelets but did not ablate their presence 

entirely. This suggests either that a small number of actin nodules are present before 

spreading begins and that no more develop in the presence of these inhibitors, or that the 

effect of these inhibitors is not complete or a small number of nodules may still form in their 

presence.  Interestingly, the actin nodules in the inhibited platelets appeared to be more 

diffuse than those in control samples, and they resembled morphologically actin nodule-like 

structures observed in ‘resting’ platelets i.e. those which have not yet been activated (Dr. 

Steven Thomas, personal correspondence). Measurement of the actin nodules in treated 

platelets showed these to be significantly larger than those treated with control compounds. 

If ‘resting’ platelets do contain actin nodules, it may be that these mature during spreading 

and that inhibition of actin nucleation and polymerisation prevent this.  

These data confirm that both actin nucleation and polymerisation are necessary for the 

development of both structures, but does not confirm that actin nodule are necessary for 

the formation of filopodia. However, both processes appear to be important in the transition 

from ‘resting-type’ to ‘spreading-type’ structures, and suggests that they may be related to 

the function of these structures.  

The stability of actin nodules observed using real-time microscopy suggests that they may be 

related to focal adhesion-like structures. Costaining with focal adhesion proteins showed 
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talin, vinculin and paxillin to be localised with the structures, but not pFAK. Repetition of this 

staining or staining with total FAK may clarify this result. However, the colocalisation of the 

majority of these proteins suggests that actin nodules may be related to focal adhesions. 

These structures generally contain integrins and costaining with antibodies to the major 

platelet integrin αIIbβ3 showed the integrin to be present at these structures. This combined 

with the relatively static appearance of surface nodules indicates that at least some part of 

their role is in adhesion. 

The final possible role of actin nodules is related to endocytsosis. Staining of platelets with 

antibodies to clathrin showed that actin nodules and clathrin did not colocalise. 

Furthermore, treatment with the dynamin-mediated endocytosis inhibitor Dynasore did not 

significantly change the apparent distribution of platelets expressing certain numbers of 

actin nodules. These data suggest that actin nodules are not involved in clathrin or dynamin-

mediated endocytosis, but repetition of clathrin staining using lifeact-GFP platelets is 

needed.  

In conclusion, in this study, I show that lifeact-GFP mice are a suitable model for studying 

platelet actin dynamics, and that actin nodules may play a role in cytoskeletal remodelling or 

adhesion but are not likely to be involved in clathrin- or dynamin-mediated endocytosis. 

During cell spreading, filopodia form the initial attachments to the substrate, to which 

adhesion proteins are recruited (Mattila and Lappalainen, 2008). Therefore, adhesion in 

platelets may be initiated by structures which have the potential to form filopodia, and 

therefore the structures acquire adhesion proteins. Further work to verify this could follow 

the recruitment of these proteins to actin nodules. 
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Additional further work could cover a variety of points. It would be interesting to monitor 

cytoskeletal rearrangements under conditions of shear stress to see if the structures 

observed during thrombus formation are dependent on actin nodule formation. In addition, 

observing the relationship between actin nodules and filopodia using epifluorescence 

microscopy may add considerable amounts of information as to the location and movements 

of actin nodules. In this study, total internal fluorescence reflectance (TIRF) microscopy was 

used; a technique in which only 100-200 nm of the platelet in contact with the glass slides is 

illuminated. Whilst this produces a clear image which is easy to interpret, it omits any 

information from further within the cell. Therefore it is possible that actin nodules may not 

disappear but simply move out of the plane of vision.  

A working hypothesis of the role of filopodia based on the data presented here is as follows. 

If the actin nodule-like structures correspond to those observed in spreading platelets, they 

may represent an ‘immature’ actin nodule structure which matures during spreading. If this 

is correct, it may be that actin nodules are recruited to the cell membrane following contact 

of the platelet with a substrate. As the ‘mature’ structures colocalise with a number of 

proteins involved in focal adhesions including integrin αIIb, it could be that contact of the 

platelet with the substrate causes clustering of integrin leading to recruitment of some focal 

adhesion-like proteins to these regions. The result of clustering of integrins is inside-out 

signalling, which has been shown to lead to cytoskeletal rearrangements. These 

rearrangements could lead to morphological changes in the actin nodules and subsequent 

filopodia formation.  
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This hypothesis relies on the actin nodule-like structures within resting platelets being actin 

nodules., Therefore, further work to test this hypothesis would need to repeat the 

characterisations previously carried out in this report and previously (Calaminus et al., 2008) 

in terms of the processes on which these structures are dependent and the proteins with 

which they colocalise. 
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Supplementary Figure 1– Variance in diffusion coefficient and mobile fraction 

between PM and filopodia. Variance in diffusion coefficient and mobile fraction 

between HepG2 cells transfected to express GFP-occludin (n>5) and GFP –GPI 

(n>40) at the PM and filopodia.  Diffusion coefficient and mobile fraction were 

calculated as  previously described using data from Zeiss software. N>15.  
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Median (IQ range) Mean S.D.

Occludin 
diffusion 

coefficient 
(μm2s-1)

PM 0.47 (1.2) 0.58 0.55

Tight 
Junction

0.28 (0.42) 0.38 0.22

Occludin 
mobile 

fraction (%)

PM 10.54 (6.76) 11.17 4.49

Tight 
Junction

7.45 (4.84) 7.75 2.74

GPI diffusion 
coefficient 
(μm2s-1)

PM 0.06 (0.33) 0.26 0.42

Filopodia 0.02 (0.03) 0.09 0.22

GPI mobile 
fraction (%)

PM 64.94 (28.61) 63.96 20.38

Filopodia 50.47 (31.67) 48.62 16.23

Supplementary Table 1: Median, interquartile range (IQ range), mean, and standard 

deviation (S.D) of data presented in Figure 10. HepG2 cells were transfected to 

express GFP-occludin and GFP-GPI and bleached using a Zeiss  Meta head laser 

scanning 780 confocal microscope. Statistics were calculated as previously described 

using data from Zeiss software. n>21.Values calculated using GraphPad Prism 

Software.  
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Supplementary Figure 2: Variance in diffusion coefficient and mobile fraction 

at specific cellular structures. Variance in diffusion coefficient (a)and mobile 

fraction (b) between HepG2 cells transfected to express GFP-GPI at  specific 

locations N>15.  
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Median
(IQ range) Mean S.D

OCLDN 
Diffusion 

Coefficient 
(μm2/s)

Cell contact PM 0.07 (0) 0.23 0.29

Tight junction 0.28 (0.42) 0.38 0.22

OCLN 
Mobile 

Fraction (%)

Cell contact PM 11.52 (8.72) 12.49 5.63

Tight junction 7.45 (4.84) 7.75 2.74

GPI 
Diffusion 

Coefficient  
((μm2/s)

Cell contact PM 0.04 (0.31) 0.24 0.41

Exploratory 
filopodia 0.01 (0.23) 0.19 0.36

Exploratory PM 0.003 (0.02) 0.07 0.19

GPI Mobile 
Fraction (%)

Cell contact PM 79.33 (24.93) 73.84 21.25

Exploratory 
filopodia 53.39 (30.28) 46.57 18.74

Exploratory PM 50.4 (29.95) 51.17 19.03

Supplementary Table 2: Median, interquartile range (IQ range), mean, and 

standard deviation (S.D) of occludin and GPI at specific cellular locations. HepG2 

cells were transfected to express GFP-occludin and GFP-GPI and bleached using a 

Zeiss  Meta head laser scanning 780 confocal microscope.  Diffusion coefficient 

and mobile fraction were calculated as previously described using data from Zeiss 

software. Values calculated using GraphPad Prism Software.  
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