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ABSTRACT 

 

This thesis examined whether patients with early stage chronic kidney disease (CKD) have 

abnormalities of arterial stiffness and cardiac function. Aldosterone is known to promote 

inflammation and fibrosis in the arteries, heart and kidney. Treatment with spironolactone, which 

blocks aldosterone at the mineralocorticoid receptor might be effective at reducing such injury. 

To address these hypotheses, I performed an observational study in patients with early stage CKD 

without known cardiovascular disease and healthy volunteers. Aortic stiffness and myocardial 

structure and function were assessed using cardiac MRI and echocardiography. I demonstrated 

reductions in aortic distensibility, increased ventricular and arterial stiffness and impairment of 

markers of left ventricular systolic and diastolic function in CKD. I complemented this work by 

performing a randomised double blind controlled trial examining the effect of spironolactone on 

intermediate prognostic markers of cardiovascular function. Spironolactone reduced arterial 

stiffness and left ventricular mass and improved markers of systolic and diastolic function 

independent of changes in blood pressure. Spironolactone was well tolerated with low rates of 

hyperkalaemia and renal dysfunction. These findings support a role for spironolactone in 

reducing aldosterone mediated cardiovascular injury in early stage CKD. A clinical outcome 

study evaluating spironolactone in CKD is now required.  
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CHAPTER 1 

 

 

INTRODUCTION – CARDIOVASCULAR DISEASE IN EARLY STAGE CHRONIC 

KIDNEY DISEASE- THE ROLE OF ALDOSTERONE 
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1.1 OVERVIEW 

 

Chronic kidney disease (CKD) is a global public health problem affecting over 1 in 10 adults 

in developed countries. The early stages of CKD are the most prevalent and continue to 

increase exponentially, exceeding rates of end-stage kidney disease (ESKD) by 100-200 

times. Cardiovascular disease is a major cause of mortality and morbidity in these patients and 

poses a far greater risk than progression to ESKD.  

 The nature of cardiovascular disease in CKD is characterised by unique differences 

from the general population with a preponderance of non-atheromatous pathogenic processes 

such as arterial stiffening and abnormalities of cardiac structure such as left ventricular 

hypertrophy and fibrosis. These observations might explain why traditional cardiovascular 

risk factors which account for the “atheroma burden” fail to account for the high rates of 

cardiovascular mortality in CKD.  

The mechanisms promoting adverse changes within the cardiovascular system appear 

complex and are incompletely understood. Experimental data have implicated activation of 

the renin-angiotensin-aldosterone system (RAAS) and specifically aldosterone as one 

potential cause. Despite routine use of ACE inhibitors and angiotensin receptor blockers, 

aldosterone levels frequently rise in CKD, a phenomenon known as “aldosterone 

breakthrough”. Aldosterone is a powerful mediator of vascular inflammation and 

subsequently promotes the development of fibrosis in the arteries, heart and kidney. 

Treatment strategies which block the action of aldosterone are effective at preventing these 

adverse effects.   

Research is clearly warranted to provide insight into the natural history of 

cardiovascular disease in early stage CKD and the mechanisms which might be responsible 
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for these pathological changes. Such knowledge might allow the opportunity to develop 

preventative treatment strategies and eventually reduce the high clinical and economic cost of 

cardiovascular disease in CKD.   
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1.2 THE KIDNEYS 

 

1.2.1 Anatomy  

The kidneys are a pair of organs located in a retroperitoneal position on the posterior 

abdominal wall around the 12
th

 thoracic vertebra (Snell, 1992).  

 

1.2.2 Structure and function 

The kidneys are surrounded by a fibrous capsule which is closely applied to the outer cortex. 

The inner medulla is composed of approximately 12 renal pyramids, the apices of which 

project medially as the renal papillae. These are indented by 2-3 minor calyces which 

combine together as the major calyces and subsequently form the funnel shaped renal pelvis 

which serves as the upper end of the ureter (Snell, 1992).  

Each kidney is composed of approximately 1 million functional units known as nephrons. 

All nephrons originate in the cortex and consist of vascular and tubular components which are 

related structurally and functionally and are pivotal in the regulation of fluid and electrolyte 

homeostasis. The glomerulus is a highly specialised capillary system situated within 

Bowman‟s capsule. The glomerular membrane serves as a fine molecular sieve made up of 

three layers; a single layer of flattened capillary endothelial cells perforated by fenestrae, an 

acellular gelatinous layer of basement membrane and an inner epithelial layer of the 

Bowmans capsule consisting of podocytes which interdigitate to form slits along the capillary 

wall. This arrangement permits passive filtration of water and solute up to 4 nm in diameter 

but excludes those with diameter greater than 8 nm such as plasma proteins and blood cells.  
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Filtered fluid passes into the renal tubule which is divided into several parts i) the proximal 

tubule within the cortex ii) the U-shaped loop of Henle extending into the medulla and 

traversing back into the cortex to form iii) the distal tubule. The latter coalesce to form the 

collecting ducts which pass through the cortex and medulla and empty into the renal pelvis 

(Ganong WF, 2005). 

 In health, the kidneys control sodium and volume homeostasis primarily through 

alterations in the activity of the renin-angiotensin-aldosterone system (RAAS). Other 

important functions include; i) biochemical homeostasis; selective resorption of glucose and 

amino acids in the glomerular filtrate, selective resorption of water under control of anti-

diuretic hormome (ADH), selective resorption or secretion of sodium, potassium, calcium, 

phosphate and hydrogen ions, ii) secretion of erythropoietin, iii) conversion of vitamin D into 

its active form 1,25-dihydroxycholecalciferol (Ganong WF, 2005). 

 

1.3 DEFINITION AND MEASUREMENT OF CHRONIC KIDNEY DISEASE 

1.3.1 Definition of chronic kidney disease 

Chronic kidney disease (CKD) describes abnormal kidney function or structure. In 2002, the 

National Kidney Foundation (NKF) published the Kidney Disease Outcome Quality Initiative 

(K/DOQI™) providing guidelines for the evaluation, classification and stratification of CKD 

(National Kidney Foundation, 2002). This has led to a standardised classification of CKD into 

5 stages based upon i) evidence of kidney damage for ≥ 3 months; defined by structural or 

functional abnormalities of the kidney with or without decrease in glomerular filtration rate 

(GFR) or ii) a reduction in GFR below 60 ml/min/1.73m
2
 for ≥ 3 months with or without 

kidney damage (Table 1.1). 
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Table 1.1 Stages of chronic kidney disease (Adapted from National Kidney Foundation  

  K/DOQI clinical practice guidelines for chronic kidney disease)  

  (National Kidney Foundation, 2002) 

 

Stage Description GFR ml/min/1.73m
2
 

1 Kidney damage with normal / increased GFR Normal / increased GFR ≥ 90 

2 Kidney damage with mildly decreased GFR 60 to 89 

3 Moderately decreased GFR 30 to59 

4 Severely decreased GFR 15 to 29 

5 Kidney failure ≥ 15 

 

Kidney damage include; abnormal renal biopsy, markers of renal damage (persistent 

proteinuria, albuminuria, haematuria) or structural renal abnormality on imaging studies. 

Kidney failure: requirement for renal replacement therapy. 
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1.3.2 Measurement of glomerular filtration rate 

The level of glomerular filtration rate (GFR) is widely accepted as the best overall index of 

renal function. However, an appreciation that the normal level of GFR will vary according to 

age, gender, body size and haemodynamic factors is important in its interpretation. Among 

healthy adults the inter-individual coefficient of variation is approximately 15-20%. It is 

conventional therefore to adjust GFR where possible to account for such variation: body size 

is adjusted to “standard body size” (1.73m
2
), normal values in women are assumed to be 8% 

lower than in males and appreciation of an age-related mean decrease 1 ml/min/1.73m
2
 

reduction per year in GFR after the age of 20-30 years. Not all individuals with a “decreased” 

GFR between 60-89 ml/min/1.73m
2
 will have evidence of kidney damage. Causes include; 

age, vegetarian diets, unilateral nephrectomy, extracellular fluid volume depletion, and 

systemic illnesses associated with reduced kidney perfusion (National Kidney Foundation, 

2002). 

 

Glomerular filtration can be measured directly by radioisotope filtration markers such 

as 
125

Iothalamate, 99mTc-diethylenetriamine-pentaacetic acid (DTPA), and 
51

Cr-EDTA 

(iGFR) or estimated (eGFR) using prediction equations such as Modification of Diet in Renal 

Disease (MDRD) equation which rely on serum creatinine, demographic and clinical 

variables. The Cockcroft-Gault (CG) equation was the most widely used equation following 

its introduction in 1976. It provided an estimate of urinary creatinine clearance and was 

subsequently re-expressed to estimate GFR with acceptable performance (Cockcroft and 

Gault, 1976). Its use has been largely superseded after the NKF K/DOQI guidelines advocated 

the use of the Modification of Diet in Renal Disease (MDRD) equation which has been shown 
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to be more accurate than CG when compared to iGFR in patients with diabetic and non-

diabetic moderate to advanced CKD (GFRs ≤ 60 ml/min/1.73m
2
) (Poggio et al., 2005). 

The original 6-variable MDRD equation was derived in a study of 1,628 CKD patients 

using multiple regression analysis to determine a set of variables that estimated GFR (Levey 

et al., 1999). The level of measured GFR was related to the serum concentration of the 

endogenous filtration marker creatinine and to observed clinical and demographic variables 

(age, sex, ethnicity, urea and albumin), that serve as surrogates for creatinine generation and 

which affect serum creatinine concentration independent of GFR. This equation was later 

simplified to the 4-variable formula (4-variable MDRD) with the exclusion of albumin and 

urea and re-expressed for a standardised serum creatinine assay to improve and normalise 

serum creatinine results used in the equation (Levey et al., 2006). It has since been validated 

in multiple populations with and without CKD (Lewis et al., 2001;Stevens et al., 2007a).  

The CG and MDRD equations offer a rapid method for assessing renal function but 

are limited by a lack of validation in the full range of GFRs to which they are frequently 

applied. This is most evident in healthy individuals where both equations calculate lower 

eGFRs than their iGFR value. The underestimation of eGFR can increase the number of 

healthy individuals labelled with CKD (false positive) and might reflect higher levels of 

creatinine generation, as well as the fact that both equations were derived in populations 

which did not include people without CKD (Poggio et al., 2005). 

In serum creatinine based equations small numerical differences between laboratories 

have a significant effect on the calculation of eGFR. These inaccuracies have been improved 

by implementation of standardised calibration of serum creatinine assays to an isotope 

dilution mass spectroscopy (IDMS) method which on average leads to lower values for serum 

creatinine and hence higher values for eGFR (Levey et al., 2006).The precision of eGFR is 
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likely to be further improved by the introduction of new estimation equations such as Chronic 

Kidney Disease Epidemiology (CKD-EPI) equation (Levey and Stevens, 2010) or by the use 

of novel filtration markers such as cystatin C (Shlipak et al., 2005) and biomarkers of renal 

tubular damage such as kidney injury molecule-1 and clusterin (Vaidya et al., 2010). 

 

 

1.4 EPIDEMIOLOGY AND HEALTH BURDEN OF CHRONIC KIDNEY  

DISEASE 

 

1.4.1  Prevalence 

Chronic kidney disease is a common worldwide condition with increasing epidemiological 

importance. It affects 10-16% of the adult population in Europe, Australia, Asia and the USA 

(Chadban et al., 2003;National Collaborating Centre for Chronic Conditions, 2008;Wen et al., 

2008). Over the past two decades data from the National Health and Nutrition Examination 

Surveys (NHANES) in the USA have demonstrated that the prevalence of CKD is high and 

increasing. These data have provided the bench-mark for the subsequent development of 

clinical practice guidelines and health care planning. 

The NHANES studies are a large nationally representative programme of surveys 

which have provided extensive data on kidney disease in the USA. In early surveys the 

prevalence of CKD was determined from data collected on albuminuria and serum creatinine. 

Subsequent re-calibration of serum creatinine to standardised creatinine measurements has 

enabled estimation of eGFR by the MDRD formula and hence greater precision in prevalence 

estimates. In NHANES 1988-1994, the prevalence for stages 1-4 was 10.0%. This increased 

to 13.1% in NHANES 1999-2004, with the greatest increases observed in stage 2 (2.2% to 
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3.2%) and 3 (5.4% to 7.7%) and female preponderance in both studies (Coresh et al., 2007). 

Within age categories, individuals aged ≥ 70 years had the highest prevalence of CKD at 

every stage of disease and nearly two-thirds had evidence of stage 3 or 4 disease in NHANES 

1999-2004.  

Prevalence data from the UK is less extensive but a retrospective analysis involving 

over 160,000 patients in primary care between 1990 and 2003, reported an overall prevalence 

of CKD stage 3-5 of 8.5% with preponderance in females as observed in NHANES (Stevens 

et al., 2007b). 

 

1.4.2  Health care and economic burden 

Over the past three decades, improvements in detection of CKD and advances in therapies to 

reduce or prevent complications have improved renal outcomes. These include 

pharmacological treatment of cardiovascular risk factors, proteinuria, bone metabolism and 

anaemia as well as the wider availability of renal replacement therapies (RRT) with dialysis 

and transplantation (USRDS). A paradox of this success has been the increased prevalence of 

CKD and particularly the early stages 2 and 3, which exceed rates of end-stage kidney disease 

(ESKD) by 100-200 times (Sarnak et al., 2003). This is in part explained and in part biased by 

improved awareness and detection following publication of national clinical guidelines 

(National Collaborating Centre for Chronic Conditions, 2008;National Institute for Health and 

Clinical Excellence, 2008;National Kidney Foundation, 2002). The increasing incidence of 

CKD risk factors specifically an ageing population, obesity, diabetes and hypertension are 

also likely to be important factors in the exponential rise in observed prevalence. Hence, these 

patients represent the “true economic health burden” of CKD which is set to increase 

exponentially in the future. 
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1.5 THE NATURAL HISTORY OF CHRONIC KIDNEY DISEASE  

 

Chronic kidney disease is a progressive condition usually characterised by an asymptomatic 

period in the earliest stages of disease. Renal function may deteriorate over months to years 

depending on the aetiology although the mechanisms which determine the rate of progression 

of CKD remain incompletely understood. The NHANES surveys have demonstrated 

increased rates of CKD risk factors including hypertension, diabetes mellitus and 

cardiovascular disease as well as age and obesity with the progression of CKD (United States 

Renal Data System, 2010). This has led to recent UK clinical guidelines focussing on 

identification and aggressive treatment of such risk factors as well as avoiding nephrotoxic 

agents such as NSAIDS and treatment of obvious precipitants such as reflux or bladder 

outflow obstruction (National Collaborating Centre for Chronic Conditions, 2008).  

Data on the association of proteinuria and progression of CKD are more robust. Over 

the past decade several clinical studies have shown proteinuria to be both a marker and a 

mechanism for CKD progression (Matsushita et al., 2010). In most proteinuric kidney 

diseases (exceptions being glomerulopathies with highly selective protein loss without 

evidence of kidney damage), GFR loss occurs at between 4 to 10 ml/min per year (Peterson et 

al., 1995). Treatments which reduce proteinuria will slow GFR decline by about 1-2 

ml/min/year and thus delay progression to ESKD (Matsushita et al., 2010). Ultimately only a 

very small proportion of patients progress to CKD stage 5 with approximately 50% of these 

requiring treatment with RRT, estimated at 0.05% of the UK population. These treatments 

represent a huge cost in terms of finance and healthcare resources estimated at between 4-6% 

of the total NHS budget. In 2005 approximately 694 adult patients per million population in 
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the UK were treated with RRT and it is anticipated that this will increase by a further 5% per 

annum (National Institute for Health and Clinical Excellence, 2008). 

 

 

1.6 CARDIOVASCULAR RISK AND CHRONIC KIDNEY DISEASE 

 

Over the past 20 years several observational studies have increased awareness that CKD 

might confer an elevated risk of cardiovascular disease (Culleton et al., 1999). These data led 

to the publication of a report in 1988 by the National Kidney Foundation (NKF) Task Force 

on Cardiovascular Disease in Chronic Renal Disease emphasising the high prevalence of 

cardiovascular disease in CKD and the extreme mortality associated with ESKD. The Task 

Force recommended that patients with CKD be considered in the “highest risk group” for 

cardiovascular events and be treated accordingly for their high risk status (Levey et al., 1998).  

 Table 1.2 provides some published estimates of the increased risk of cardiovascular 

disease at different stages of CKD. These rates are approximates and must be interpreted in 

the context of the patient‟s age and presence of risk factors (particularly proteinuria) which 

significantly influence the relative cardiovascular risk. 
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Table 1.2 Cardiovascular risk according to stage of chronic kidney disease compared to  

normal renal function (Schiffrin et al., 2007) 

 

Stage of CKD Odds ratio 

1 Dependent upon degree of proteinuria 

2 1.5 

3 2-4 

4 4-10 

5 10-1000 

 

The younger the age group the greater the disparity  
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1.6.1  Cardiovascular risk in end-stage kidney disease 

In the 1990‟s, seminal epidemiological studies firmly established the extreme mortality rates 

associated with ESKD (Foley and Parfrey, 1998). The annual risk of mortality for patients on 

dialysis is approximately 20%; about half of these deaths due to cardiovascular disease 

(Figure 1.1). Age adjusted mortality is 10-100 times higher than in the general population. 

This risk is present throughout all age ranges but is most marked in the younger dialysis 

patients where cardiovascular mortality is up to 500 times that observed in age-matched 

normal population (Figure 1.2) (Levey et al., 1998). Symptomatic cardiovascular disease and 

structural cardiac abnormalities associated with an adverse prognosis, principally left 

ventricular hypertrophy (LVH), are prevalent in over two thirds of patients before the onset of 

RRT (and are discussed in more detail in section 1.7), and indicate that the mechanisms 

promoting accelerated cardiovascular disease are operating at much earlier stages of CKD 

(Foley et al., 1995a).  
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Figure 1.1 Causes of death in end-stage kidney disease in USA between 2003-2006. 
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Figure 1.2 Cardiovascular mortality in end-stage kidney disease on dialysis compared 

with the general population in the United States  
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1.6.2  Cardiovascular risk in early stage chronic kidney disease 

Recent observational data have confirmed that CKD confers an elevated risk of 

cardiovascular disease. A major study to demonstrate CKD (based on staging as defined by 

eGFR) as an independent predictor of cardiovascular mortality was a population based cohort 

study from the USA involving over 1 million low-risk adults (not treated by dialysis or 

transplantation) (Go et al., 2004). Go et al. estimated longitudinal GFR using the MDRD 

equation in patients who had serum creatinine measured between 1996 and 2000. Over a 

median 3 year follow-up, increased rates of death from any cause, cardiovascular events, and 

adverse hospitalisation outcomes exhibited an inverse graded relationship with eGFR below 

60 ml/min/1.73m
2
 (Figure1.3) independent of other risk factors. This data is in keeping with 

the findings from the NHANES study demonstrating that patients with early stage CKD are at 

far higher risk of dying from cardiovascular disease than of ever progressing to ESKD 

(Coresh et al., 2007). Five year cardiovascular mortality rates for CKD stages 2, 3 and 4 were 

19.4%, 24.5% and 19.9% respectively compared to the rate of progression to ESKD which 

only increased at more advanced stages of CKD; 1.1%, 1.3% and 45.7% respectively (Coresh 

et al., 2007). 
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Figure 1.3 Adjusted hazard ratio for cardiovascular events among 1,120 295 adults 

  according to estimated glomerular filtration rate (eGFR) 

 

 

(Adapted from Go et al. 2004) 

 

Data adjusted for demographics and co-morbidities. eGFR estimated from serum creatinine 

by abbreviated Modification of Diet in Renal Disease equation (MDRD).  

*This group serves as a reference group. 
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1.6.3 Glomerular filtration rates and cardiovascular risk in early stage chronic kidney 

disease 

At present, consensus from international organisations (NKF K/DOQI and Kidney Disease: 

Improving Global Outcomes) state that individuals with a GFR of ≤ 60 ml/min/1.73m
2
 are at 

increased risk of cardiovascular morbidity and mortality, and that the risk increases with 

decreasing GFR below this level. The use of this “threshold value” is controversial as it may 

simply reflect the consistent use of a cut-off value ≥ 60 ml/min/1.73m
2
 as the reference 

population in studies considering cardiovascular risk. Indeed two recent studies with long-

term follow-up (median follow-up 7.9 and 10 years respectively) have suggested that 

cardiovascular mortality might be increased at even higher levels of eGFR (Matsushita et al., 

2010;Van et al., 2007).  

A collaborative meta-analysis derived from 21 multi-national studies and involving 

1,234,182 participants from the general population assessed the independent relationship 

between eGFR, proteinuria and mortality (Matsushita et al., 2010). Using splines of eGFR; at 

45 ml/min/1·73 m², 60 ml/min/1·73 m², 75 ml/min/1·73 m², 90 ml/min/1·73 m², and 105 

ml/min/1·73 m², rates of cardiovascular mortality increased progressively at levels of eGFR 

below 75 ml/min/1·73 m² independent of traditional cardiovascular risk factors and 

proteinuria. Mortality rates were disproportionately higher in participants with associated 

proteinuria and in younger participants (≤ 65 years) at low eGFR. This study emphasises the 

additional important prognostic information associated proteinuria. An ACR higher than 3·4 

mg/mmol was associated with a two-fold increase in mortality in all categories of eGFR 

except ≥ 105 mL/min/1·73 m² and an ACR ≥ 1.1 mg/mmol was a predictor of mortality 

independent of eGFR and risk factors (Matsushita et al., 2010). 
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 The Belgian Inter-University Research on Nutrition and Health Population Study 

followed 8,913 apparently healthy participants for a total of 10 years (Van et al., 2007). 

Interestingly, the results suggested excess cardiovascular mortality began even earlier at an 

eGFR ≤ 90 ml/min/1.73m
2
, a level commonly regarded as indicating near normal renal 

function. The cardiovascular mortality risk increased linearly by 8% for every 10 

mL/min/1.73 m
2
 reduction in eGFR. This is a potentially very important finding given the 

high prevalence of eGFR values in this range, particularly in the elderly in whom the loss of 

renal function has hitherto been regarded as benign (Van et al., 2007). 

 

Critics of the threshold value ≤ 60 ml/min/1.73m
2 
emphasise the impact of the 

following observations:  

i) Age- GFR is known to decline with age at an average rate of 1 ml/min/year between 

40-80 years of age. As age and serum creatinine are the principle factors in determining eGFR 

calculated by the MDRD formula, it is possible to underestimate true renal function. Thus in 

studies with older cohorts such as that of Van Biesen et al. the association of cardiovascular 

mortality may be related to age rather than true GFR itself.  

ii) The imprecision and under-estimation of eGFR by MDRD equation at levels ≥ 60 

ml/min/1.73m
2
 and over-estimation of eGFR ≤ 30 ml/min/1.73m

2
 is well established (Poggio 

et al., 2005). These limitations of eGFR calculated by the MDRD equation may explain some 

of the heterogeneity between GFR and cardiovascular mortality at extremes of eGFR in the 

cohort studied by Matsushita et al.  

iii) The rate of change in eGFR may be more important than a single threshold value 

in predicting cardiovascular mortality. In a prospective population based study involving over 

13,000 participants without a history of heart disease, participants in the quartile with the 
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steepest annual decline in eGFR (average reduction > 5% / yr) had a higher risk for all-cause 

mortality. This relationship was present in patients with mild-moderate CKD as defined by 

eGFR 30-89 ml/min/1.73m
2
 and was 

 
independent of eGFR and other known risk factors at 

baseline or follow-up (Matsushita et al., 2009). 

These criticisms and publication of recent data have prompted proposals for lower 

eGFR thresholds or age / gender-specific thresholds values, and use of biomarkers such as 

cystatin C which might provide better estimates for clinical risk at eGFR ≥ 60 ml/min/1·73 m² 

(Shlipak et al., 2005).  

 

 

1.7 THE CAUSES OF CARDIOVASCULAR DEATH IN CHRONIC KIDNEY 

DISEASE  

Cardiovascular disease is the commonest cause of death in the general population and in 

ESKD. In the UK, coronary heart disease is the most prevalent form of cardiovascular disease 

in the general population. It accounts for 46% of all cardiovascular deaths, equating to over 

94,000 deaths per annum; 1 in 5 deaths in men and 1 in 7 deaths in women (British Heart 

Foundation, 2011). In contrast, the most prevalent cause of cardiovascular death in ESKD is 

sudden arrhythmic cardiac death (Figure 1.1). This is defined as “unexpected natural death 

from a cardiac cause within a short time period, generally less than an hour from the onset of 

symptoms”. In ESKD this accounts for approximately 60% of cardiovascular deaths (and 

26% of total mortality) (Hage et al., 2009).  

These observations suggest mechanistic differences in the nature of cardiovascular 

death in CKD. In the general population atheromatous coronary heart disease is the driving 
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pathology and standard cardiovascular risk factor assessments such as the Framingham risk 

score have proved accurate in predicting cardiovascular mortality rates. Furthermore, 

pharmacological treatments such as statins (which reduce total cholesterol and low-density 

lipoprotein levels) and anti-hypertensives agents, both of which reduce the “atheroma burden” 

have proved highly efficacious in reducing cardiovascular mortality.  

In CKD, non-atheromatous pathogenic processes such as arterial stiffening and 

abnormalities of cardiac structure appear to predominate and might explain why standard 

cardiovascular risk scores which assess “atheroma risk” have been shown to be inaccurate. 

Indeed, risk factors such as blood pressure, obesity and cholesterol have a negative 

association with mortality in ESKD (Baigent et al., 2000). This is thought to reflect the 

phenomenon of reverse causality whereby patients with the worst outcomes have chronic 

disease states characterised by low blood pressure and cholesterol. More recently, prospective 

cardiovascular screening of ESKD patients as part of a renal transplant assessment have 

provided further insight into the high prevalence and deleterious effects of non-atheromatous 

disease such as LVH and fibrosis (Mark et al., 2006). 

Despite these observations and recognition from the NKF Task Force that patients 

with CKD are the “highest risk group for subsequent development of cardiovascular disease” 

(Levey et al., 1998), data regarding the pathogenesis of cardiovascular mortality in early stage 

CKD remain sparse. 
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1.8 THE NATURE OF CARDIOVASCULAR DISEASE IN CHRONIC KIDNEY 

DISEASE 

 

The nature of cardiovascular disease in CKD is characterised by pathological and clinical 

differences from that observed in the general population (Figure 1.4). These characteristic 

differences and their impact on cardiac mortality are outlined in the following three sections.  
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Figure 1.4 Structural and functional changes within the cardiovascular system associated  

  with chronic kidney disease. 

 

AtherosclerosisArterial stiffness

Myocardial 

ischaemia

↑ Ventricular 

afterload

↑ Systolic 

& pulse  

pressure 

Systolic 

dysfunction

Diastolic 

dysfunction

Cardiovascular 
disease

Left ventricular 

hypertrophy

Cerebrovascular
disease

Progressive 

kidney disease

Cardiovascular 

disease

Cerebrovascular

disease

 

 

 

  



25 

 

1.8.1 Changes in cardiac structure and function - ureamic cardiomyopathy  

Abnormalities of cardiac structure – left ventricular hypertrophy (LVH), left ventricular (LV) 

dilatation and changes in cardiac function – left ventricular systolic dysfunction are common 

in ESKD. These changes were originally described in echocardiographic studies on patients 

starting dialysis. Foley et al. reported a prevalence of 74% for LVH, 32% for LV dilatation 

and 15% for LV systolic dysfunction and collectively termed these characteristic changes 

“ureamic cardiomyopathy” (UC). Only 16% of patients had normal echocardiograms (Foley 

et al., 1995a).  

 

1.8.2  Left ventricular hypertrophy  

Left ventricular hypertrophy is the most prevalent sub-type of UC in ESKD (Foley et al., 

1995a). It is present in all age groups including children treated with dialysis and is an 

independent predictor of cardiac death (Foley et al., 1995b;Mitsnefes et al., 2000).  

The pathogenesis in ESKD is postulated to reflect an adaptive response that follows an 

increase in cardiac work from chronic pressure (hypertension, arterial stiffness) and volume 

overload (fluid status). The original descriptions of “early phase” LVH in response to 

increased systolic blood pressure, viewed the increase in ventricular wall thickening as a 

beneficial compensatory response to maintain wall tension.  According to the Law of Laplace, 

wall tension is directly proportional to wall radius and inversely wall thickness; thus 

distributing tension amongst more sacromeres, reduces the individual fibre load and 

maintaining wall stress and oxygen consumption (Sasayama et al., 1976). However, these 

“early beneficial changes” have now been challenged. Epidemiological studies have 

consistently demonstrated a continuous relationship between increased LV mass and adverse 

cardiovascular outcomes (Schillaci et al., 2000). Furthermore therapeutic strategies designed 
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to inhibit the development of LVH in response to pressure overload in animal models, 

prevented subsequent maladaptive changes such as LV dilatation and systolic dysfunction 

(Drazner, 2011;Hill et al., 2000). Thus, it is now evident that LVH at any stage is a highly 

adverse structural change and that arbitrary thresholds used to define the presence of 

hypertrophy based on levels of LV mass are an inappropriate method to define cardiac risk 

(Drazner, 2011).  

Pathological changes of LVH include; i) an increase in the size of cardiomyocytes, ii) 

alterations in the extracellular matrix and subsequent development of fibrosis, iii) reductions 

in the intramyocardial microvasculature and myocardial capillary density leading to 

cardiomyocyte/capillary mismatch and development of chronic ischaemia (Amann et al., 

1998). These changes promote a state of chronic small vessel myocardial ischaemia, myocyte 

death, progressive myocardial fibrosis, ventricular remodelling and systolic dysfunction, all of 

which act as substrates for ventricular dysfunction and increased risk of arrhythmias (London, 

2003).  

 Histological abnormalities on myocardial biopsies from patients with ESKD but 

without coronary artery disease have provided further support for these pathophysiological 

mechanisms. These demonstrated severe myocyte hypertrophy, myocyte disarray and 

extensive interstitial fibrosis which were strong predictors of cardiac death (Aoki et al., 2005). 

In a further study of post-mortem myocardial biopsies from patients with ESKD, renal 

transplantation and CKD not requiring dialysis, diffuse non-coronary intermyocardiocytic 

fibrosis was demonstrated in over 90% of patients (Mall et al., 1990).  
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1.8.3  Re-defining ureamic cardiomyopathy 

Over the past decade, the use of cardiac MRI in ESKD has brought about an improved 

understanding of UC. Early studies used echo to calculate LV mass. However, this method 

relies on mathematical formulae incorporating LV internal cavity dimensions (such as end-

diastolic diameter) and assumes a normal prolate ellipsoid shape of the LV. Both can be 

highly variable depending on the fluid status of the patient. Indeed, LV mass calculated before 

dialysis can lead to an over-estimation of LV mass by as much as 10g due to volume 

dependent errors (Hunold et al., 2003). Cardiac MRI allows direct measurement of LV mass 

and LV volumes and therefore avoids such geometric assumptions and mathematical errors. 

Furthermore, when combined with an intravenous gadolinium contrast agents, it is possible to 

detect areas of myocardial tissue damage such as infarction and fibrosis within the 

myocardium.  

In a pivotal paper, Mark et al. used cardiac MRI and intravenous gadolinium contrast 

in 134 patients with ESKD undergoing renal transplant assessment (Mark et al., 2006). In 

keeping with previous echo studies, the investigators confirmed a high prevalence of UC with 

LVH as the predominant subtype; 72% of patients had LVH, 11% LV dilatation and 8% LV 

dysfunction. In addition, nearly one third of patients had evidence of myocardial scarring 

detected by late gadolinium enhancement. Two patterns were described; discrete 

subendocardial enhancement indicative of myocardial infarction was observed in 14.2% of 

patients. This appearance was associated with a history of ischaemic heart disease and 

conventional cardiovascular risk factors including cholesterol and diabetes but not blood 

pressure. Furthermore, these patients had greater LV mass, LV dilatation, LV systolic 

dysfunction and coronary artery disease on angiography than patients without this pattern of 

scarring. The second pattern of gadolinium enhancement was within the mid wall of the 
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myocardium. It was more diffuse in appearance and postulated to reflect areas of regional 

diffuse fibrosis. This pattern was associated with an increased LV mass but not with risk 

factors of atheromatous coronary artery disease, LV systolic dysfunction or angiographic 

coronary artery disease.  

This study helped better define UC in ESKD. Firstly, abnormalities of cardiac 

structure and function are present in nearly 90% of patients with ESKD. The prevalence 

remained unchanged from the early studies in the 1990s using echo, despite modern 

pharmacological therapies for heart disease and anaemia. Secondly, LVH is the predominate 

sub-type of UC and is associated with the development of myocardial fibrosis but does not 

appear to be “driven” by atheromatous cardiovascular risk factors or coronary artery disease. 

Finally, LV dilatation and systolic dysfunction occur more often in patients with (often silent) 

myocardial infarction and ischaemia heart disease. 

 

1.8.4  The significance of increased left ventricular mass and prognosis 

The importance of defining the presence and degree of LVH has been known for over 30 

years (Ghali et al., 1992;Levy et al., 1990). The Framingham Heart Study established 

increased LV mass as a predictor of cardiovascular morbidity and mortality independent of 

age, hypertension and other cardiovascular risk factors in the general population (Levy et al., 

1990). Subsequent studies have confirmed increased LVH as a predictor of mortality in other 

disease states including myocardial infarction, congestive cardiac failure, stroke and 

hypertension (Ghali et al., 1992;Koren et al., 1991). Furthermore, pharmacological treatments 

which cause regression of LVH such as ACE inhibitors (Dahlof et al., 1992) and ARBs 

(Devereux et al., 2004), have been shown to improve cardiovascular outcomes independent of 

blood pressure lowering effects. 
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 The classic paradigm of LVH is as an intermediate phenotype in the progression of 

heart disease. The subsequent cardiac structural and functional changes however, show 

considerable inter-individual variation. Pressure overload (hypertension) has been widely 

viewed as the major stimulus for the development of LVH but recent data have challenged 

this view showing that blood pressure only contributes about 25% to the variability in LV 

mass observed in the population (Fraser, 2003). Furthermore, LVH associated with a normal 

blood pressure confers the same cardiovascular risk as that with hypertension (Brown et al., 

2000). These data support the view that LVH from any cause is a highly adverse structural 

change and might develop in response to mechanisms other than blood pressure. 

 Left ventricular hypertrophy in ESKD is also strongly linked to poor cardiovascular 

prognosis and is thought to reflect pathological changes within the myocardium, specifically 

the development of fibrosis (Aoki et al., 2005;Foley et al., 1995b). In an observational study 

of 432 patients commencing dialysis, median survival with LVH was 45 months compared 

with ≥ 66 months in patients with a normal echocardiogram (Parfrey et al., 1996). On dialysis 

LVH progresses over time and is associated with increased cardiac mortality independent of 

baseline LV mass and cardiac risk factors (Zoccali et al., 2004a). The degree of LVH is more 

strongly associated with hypertension and age and contrasts with the degree of LV dilatation 

and systolic dysfunction in which co-existing ischaemic heart disease is the primary predictor 

(Parfrey et al., 1996). Intensive treatment of risk factors known to promote LVH such as 

hypertension, have been shown to significantly reduce LV mass and cardiovascular mortality 

(London et al., 2001). To date, there is no comparable prognostic data for LVH in early stage 

CKD. 
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1.8.5 Detection of early changes in cardiac structure and function in end-stage  

 kidney disease 

The echocardiographic and MRI studies described above have demonstrated that advanced 

changes in cardiac structure and function in ESKD are present in nearly 90% of patients and 

predict worse cardiac prognosis. In a recent 5 year prospective analysis of patients with 

ESKD, LV systolic dysfunction was the most powerful predictor of SCD with an ejection 

fraction ≤ 48% being the best cut-off threshold for predicting increased risk (Wang et al., 

2010). These observations have prompted an increasing focus on identifying early structural 

and functional changes in the myocardium which might precede more advanced changes in 

ventricular function detectable using conventional measures such as ejection fraction.  

 

 The ventricular myocardium has a complex anatomical arrangement of myocardial 

fibres with longitudinal but slightly oblique orientated fibres in the subendocardium, 

circumferentially orientated in the mid-wall and an oblique orientation in the subepicardium. 

This arrangement is responsible for the twisting rotational motion of the ventricle in systole 

and untwisting in diastole (described in detail in chapter 2) (Sengupta et al., 2008).  

The subendocardial longitudinal fibres which move the base of the heart toward a 

relatively fixed apex in systole (long-axis function), contribute approximately 60 % of left 

ventricular systolic ejection and the speed of relaxation is important for diastolic filling. 

However, the subendocardial longitudinal fibres are particularly vulnerable to changes in 

perfusion from coronary ischaemia, hypertrophy and fibrosis. Initially, mid-wall and 

epicardial function are often preserved or even increased to compensate for the reduction in 

longitudinal contraction and less sensitive “conventional” markers of systolic function such as 

ejection fraction are maintained. However, systolic and diastolic function are already 
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abnormal with compromised longitudinal contraction and relaxation of the LV and increased 

LV filling pressures (Mor-Avi et al., 2011).  

These early abnormalities are detectable using newer echo techniques such as tissue 

Doppler imaging (TDI) and myocardial deformation imaging (analysis of ventricular 

mechanics or shape during the cardiac cycle using strain and strain rate) as well as MRI 

myocardial tagging sequences. Both imaging modalities provide a more comprehensive 

assessment of ventricular systolic and diastolic function and have been used to detect 

reductions in LV systolic function before the onset of symptoms in a number of disease states 

including systolic heart failure, heart failure with preserved ejection fraction, hypertension, 

hypertrophic cardiomyopathy  and diabetes (Yu et al., 2007).  

 

In CKD, studies using such techniques are limited. Rahkit et al. studied 129 patients 

with stage 4 and 5 CKD (62% on dialysis) with a normal LV mass and without evidence of 

myocardial ischaemia (on dobutamine stress echo) or LV dysfunction (mean ejection fractions 

59%) (Rakhit et al., 2007). Using advanced echocardiographic techniques they demonstrated 

the presence of at least one “sub-clinical” abnormal change in left ventricular systolic function 

(strain and strain rate) or myocardial relaxation (tissue Doppler) in every patient. These 

changes independently predicted an increase in all-cause mortality and cardiac mortality over 

2.4 years follow-up. Furthermore, patients who remained on dialysis over follow-up had 

further deterioration of these early changes before the onset of more characteristic features of 

UC. In contrast, 45 patients who underwent renal transplantation had a reduction in 

ventricular wall thickness, ventricular volume and an improvement in systolic and diastolic 

function suggesting that transplantation might reverse early features of UC associated with 

advanced CKD.  
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This study has further improved our understanding of the natural history of UC by 

identifying prognostically significant markers of reduced LV function before the onset of 

overt changes characteristic of UC. A strikingly similar pattern of “subclinical” changes have 

been demonstrated in other population groups including; the elderly, hypertension and heart 

failure with a normal ejection fraction suggesting that there might be a common aetiology. A 

characteristic feature in all these conditions is increased large artery stiffness (Blacher et al., 

1999a;Lam et al., 2007;Mitchell et al., 2004). This has focused attention on the interaction 

between the LV and arterial system, termed arterial-ventricular interaction as a possible cause 

of cardiac dysfunction (Kass, 2002). Arterial-ventricular interaction is a key determinant of 

cardiovascular performance. In health, the properties of both systems are matched or coupled 

(as a ratio) to achieve optimal cardiac metabolic efficiency; an optimal transfer of blood from 

the left ventricle to the periphery without excessive changes in pressure and optimal stroke 

work. As the vascular tree becomes stiffer, the load on the heart increases such that the left 

ventricle must generate greater systolic pressures to maintain the coupling ratio. These 

compensatory adaptations initially maintain cardiac performance (and ejection fraction) 

through enhanced contractility at rest. However with chronic increases in ventricular stress 

(either with or without chamber hypertrophy), both systolic and diastolic ventricular stiffness 

increase and have detrimental effects on myocardial oxygen consumption, haemodynamic 

stability and cardiac reserve (Kass, 2002). To date, arterial-ventricular interaction has not 

been assessed in ESKD or earlier stages of CKD.  
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1.9 Coronary heart disease 

Coronary heart disease (CHD) is the second most common cause of cardiovascular death in 

ESKD after sudden cardiac death (Figure 1.1) (United States Renal Data System, 2010). 

Acute myocardial infarction (AMI) is the primary mode of CHD death in ESKD. It accounts 

for approximately 9% of CHD deaths, less than in the general population where the rate is 

estimated at approximately 15-20% (British Heart Foundation, 2011). However, mortality 

rates after index AMI in ESKD are approximately double those in the general population over 

the subsequent two years (Herzog et al., 1998). Furthermore, revascularisation strategies such 

as percutaneous intervention and coronary artery bypass surgery do not significantly improve 

cardiac mortality rates in ESKD (Herzog et al., 2008). This data implies that while coronary 

artery disease is a significant burden in ESKD it is not the primary cause of cardiac death.  

There are distinct morphological differences in the pathology of atherosclerotic 

coronary artery disease in ESKD compared to the typical fibroatheromatous plaques seen in 

the general population. Post-mortem quantitative and histopathological analysis of coronary 

arteries from patients with ESKD have demonstrated significantly increased intimal 

hyperplasia and increased numbers of densely calcified plaques (Schwarz et al., 2000). The 

plaques are seen to extend circumferentially as arcs as well extending into the medial arterial 

layer (often referred to by the unifying term Monckeberg‟s sclerosis). As a result the overall 

luminal area is significantly reduced promoting a chronic reduction in blood flow and hence 

ischaemia (McCullough et al., 2008). Histological evaluation of plaque composition has also 

shown lower levels of lipid and inflammation in contrast to fibroatheromatous plaques seen in 

the general population, postulated to account for lower rates of plaque rupture (Schwarz et al., 

2000).  
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High levels of low density lipoprotein cholesterol (LDL-C) are a major cause of 

atherosclerosis in the general population but ESKD is characterised by very different lipid 

profiles with frequently low or normal total cholesterol and LDL levels. This in part may be 

explained by a “reverse causality” whereby the high burden of co-existing chronic illness 

including chronic inflammation and malnutrition can cause artefactual negative associations 

between standard risk factors and mortality. By correcting for non-specific markers of chronic 

ill-health such as albumin, a direct relationship with outcome may be re-established. In 

addition, ESKD is characterised by low levels of high density lipoprotein cholesterol (HDL-

C) and increased triglycerides rich low density lipoprotein cholesterol which reflect preceding 

alterations in the apolipoproteins (Apo) metabolism and composition (Quaschning et al., 

2001). 

These difference might explain why mortality reductions observed using LDL-C 

lowering statin therapy in the general population in patients with or at risk of cardiovascular 

disease (MRC/BHF, 2002) have not been replicated in ESKD (Tonelli et al., 2004). The 

AURORA (Fellstrom et al., 2009)and 4D (Wanner et al., 2005)studies have prospectively 

randomised over 4,000 patients receiving dialysis (a third with diabetic ESKD) to receive 

rosuvatatin or atorvatstatin respectively or placebo. Both studies demonstrated significant and 

sustained reductions in LDL-C without reductions in cardiovascular mortality. These data 

have highlighted two important points. Firstly, the pattern of pathogenic mechanisms driving 

cardiovascular death in ESKD is different from the general population. Secondly, these 

findings in ESKD contrast to data from retrospective sub-group analyses of trials using statins 

in patients with earlier stages of CKD where the cardiovascular benefits of statins are 

comparable to those observed in the general population (Tonelli et al., 2004). This raises the 

question of whether statin therapy become less effective with advancing kidney disease.  
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Recent data from the Study of Heart and Renal Protection (SHARP) study has helped 

address this latter point by prospectively recruiting over 9,000 patients over a spectrum of 

renal dysfunction; dialysis-dependent ESKD and with moderate-severe CKD defined as a 

serum creatinine ≥150 µmol in men and  130 µmol in women (Baigent C, 2010). The 

combination of simvastatin and ezetimibe significantly reduced the primary outcome measure 

of major atherosclerotic events (a composite of coronary death, myocardial infarction, stroke 

and revascularisation) in all patients although the greatest reduction was observed in the non-

dialysis patients over 5 years of follow-up compared to placebo. Thus the different pathogenic 

mechanisms which predominate at earlier stages of CKD may alter with advancing disease 

such that atheromatous disease makes a lesser contribution. Secondly, statins may improve 

outcomes by effects on non-atheromatous pathogenic mechanisms such as endothelial 

function and arterial stiffness (Baigent C, 2010).  

 

 

 

1.10  Arterial stiffness and arteriosclerosis 

Increased arterial stiffness is the third distinct feature of cardiovascular disease in CKD. In 

ESKD, arterial stiffness and specifically aortic stiffness is significantly increased compared to 

healthy controls matched for age and blood pressure (Ibels et al., 1979) and is a powerful 

independent prognostic marker of all-cause and cardiovascular mortality (Blacher et al., 

1999b).  
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1.10.1  Arterial functions  

The major functions of the aorta and large arteries are: 

i) Conduit function – to deliver an adequate supply of blood to peripheral organs and 

tissues to meet metabolic demands. In health, changes in the width of the arterial lumen and 

a low peripheral arterial resistance allow rapid changes in arterial flow to ensure supply 

meets metabolic demand (McEniery et al., 2007).  

ii) “Buffer” or dampen oscillatory changes in blood pressure that result from intermittent 

ventricular ejection (known as the Windkessel effect). In health, the highly distensible arterial 

system ensures that most peripheral tissues receive near steady flow with no exposure to peak 

systolic pressures and almost no reduction in diastolic pressure from ascending aorta to 

peripheral arteries. This is achieved by approximately 50% of stroke volume reaching the 

peripheral tissues in systole while the remaining stroke volume distends the large capacitance 

arteries such as the aorta. In diastole, energy transferred to the arterial walls makes the aorta 

recoil and “squeezes” blood into the peripheral tissue ensuring continuous perfusion. Changes 

in the visco-elastic properties of the arterial wall which occur with age and disease states 

make the artery stiffer and alter the dampening function (McEniery et al., 2007). The 

pathology of these changes and patho-physiological consequences are discussed in sections 

1.7.3.2 – 3. 

 

Normal arterial function is dependent on the ability of the arteries and more specifically the 

visco-elastic properties of the wall, to accommodate ventricular ejection. These properties can 

be assessed using different indices including: i) compliance; a measure of the local vessel 

capacity to respond to changes in blood volume, ii) distensibility; a measure of the elastic 

properties of an artery and iii) Young‟s elastic incremental modulus (Einc); direct information 
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on the intrinsic elastic properties of the materials that make up the arterial wall independently 

of vessel geometry. These are differentiated in Table 1.3.  
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Table 1.3  Indices of arterial stiffness calculated from geometric measurements of large arteries 

Term Definition Formula 

Distensibility A measure of the elastic properties of an artery: relative change 

in diameter (or area) for a given pressure change 

∆A/A x ∆P 

Compliance A measure of the local vessel capacity to respond to changes in 

blood volume: Absolute diameter (or area) change for a given 

pressure step 

∆A / ∆P 

 

Pulse wave velocity A measure of the speed of a forward pressure wave propagated 

along the arterial tree determined by the geometric and elastic 

properties of the arterial wall 

D / ∆t 

Elastic modulus 

(elasticity) 

The pressure change driving an increase in relative lumen 

diameter (or area)  

A x ∆P / ∆A 

 

Young’s incremental 

modulus (Einc) 

Evaluates the elastic properties of
 
the material of the arterial 

wall. Elastic modulus per unit area 

(∆P x A)/ ∆A x h 

Moens-Korteweg equation Intrinsic elastic properties of arterial wall material (stiffness / 

thickness) 

√(V x ∆dP / ρ x ∆dV) 

Adapted from Laurent S et al. 2006 

∆P = pulse pressure, ∆A = change in area, ∆t = time, D = distance, v; volume, ∆dP; change in pressure driving the change in volume, ∆dV; 

change in arterial volume, ρ denisity of fluid, h; wall thickness 
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1.10.2  Pathology of arterial stiffness in chronic kidney disease 

The elastic properties of the arterial system are heterogeneous with more elastic central 

arteries and stiffer peripheral arteries reflecting differences in cellular and histological 

structure of arterial wall at different levels. In health, the central arteries such as the aorta 

have a high elastin-collagen ratio and a decreased influence of smooth muscle tone compared 

to the peripheral arteries. However, with ageing (particularly after the 5
th

 decade) stiffness of 

the central arteries increases reflecting characteristic changes of; progressive physiological 

arterial dilatation (arterial remodelling), diffuse hypertrophy and degeneration of the elastic 

properties of the medial arterial layer (Avolio et al., 1983). These changes are commonly 

termed arteriosclerosis and result in a two-fold increase in stiffness between the ages of 20 

and 80 years when assessed using pulse wave velocity (PWV). Furthermore, increased 

stiffening reduces the dampening function and results in various adverse haemodynamic 

consequences including; increased pulse pressure and systolic hypertension. In contrast, the 

peripheral arteries change little with ageing, which reflects the lower elastin to smooth muscle 

ratio and lower pulsatile pressure stress.   

In ESKD, the physiological processes seen with ageing are accelerated compared to 

healthy age and blood pressure matched controls. Remodelling in the capacitance arteries is 

characterised by a predominance of arterial dilatation (secondary to the inability of elastic 

fibres to sustain pulsatile stress) and to a lesser extent by intimal-medial hypertrophy (Ibels et 

al., 1979). Furthermore, quantitative and qualitative alterations in the intrinsic properties of 

arterial wall materials have been observed in CKD. These changes include; diffuse fibro-

elastic intimal thickening, hyperplasia and hypertrophy of vascular smooth muscle cells 

(VSMC), increased medial collagen content, fragmentation of elastic lamellae secondary to 

mechanical failure and fatigue, fibrosis and calcification of the internal elastic lamellae and 
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non-enzymatic cross-links between microfibrils (London, 2000;Schwarz et al., 2000). These 

changes increase arterial stiffness and contribute to creating and amplifying a pressure load. 

They contrast with increased stiffness in essential hypertension which is driven by the 

distending pressure rather than changes in wall composition and architecture (Laurent et al., 

1994).  

According to Laplace‟s Law, the arterial wall and lumen ratio should increase in 

proportion to an increase in blood pressure in order to maintain wall stress. However, in 

ESKD the dilatation predominates and circumferential wall stress remains chronically 

elevated reflecting abnormalities of smooth muscle cell growth and migration, and production 

of extracellular matrix in response to diameter enlargement (Blacher et al., 1998). It is 

important to emphasise that these changes are apparent in the early stages of CKD (Briet et 

al., 2006) and in muscular brachial and radial arteries which are not typically affected by 

atherosclerosis or ageing processes. Furthermore no consistent associations have been 

established between arterial stiffness and common atherogenic risk factors including lipids 

suggesting that arterial wall properties in CKD are affected by other factors related to 

uraemia. These will be discussed in more detail in section 1.8. 

 

1.10.3  The pathophysiological consequences of arterial stiffness 

Arterial dampening function is impaired with increasing aortic / arterial stiffness such that the 

more rigid aorta that is less able to accommodate the volume of blood ejected by the left 

ventricle. The pathophysiological consequences include: (London et al., 2000;O'Rourke and 

Safar, 2005): 

i) An increase in left ventricular afterload which promotes the development of LVH 

and increased myocardial oxygen demand. 
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ii) Increased systolic pressure and pulse pressure, both powerful predictors of 

cardiovascular mortality. A wide pulse pressure is transmitted to more peripheral 

arteries, reducing shear stress and promoting remodelling with an increase in 

intimal-medial thickness.  

iii) Reduced coronary perfusion secondary to lower diastolic pressure. Reduced sub-

endocardial perfusion promotes chronic ischaemia and fibrosis. 

iv) Microvascular damage to smooth muscle and endothelial cells in the renal and 

cerebral arteries. This reflects continuous perfusion throughout systole and diastole 

and low peripheral resistance which exposes these arterial beds to increased 

pulsatile pressures. 

v) Increased arterial stiffening augments cyclical stresses within the wall, 

accelerating elastic fibre fatigue–fracture and further stiffening the vessel.  

 

An improved understanding of the pathophysiology of large artery stiffness and its risk 

factors may help in the prevention and progression. The increasing use of different indices of 

arterial stiffness such as central pressure, aortic augmentation index and aortic pulse wave 

velocity have identified differences in function and therapeutic responses between arterial 

beds which are not evident using brachial cuff sphygmomanometry. In the Conduit Artery 

Function Evaluation (CAFE) study of patients with hypertension, treatment with amlodipine 

and perindopril significantly reduced central aortic pressure compared to atenolol and 

thiazide-based therapy despite similar differences in brachial blood pressure (Williams et al., 

2006). In ESKD, use of ACE inhibitors have been shown to attenuate aortic stiffness and 

improve cardiovascular outcomes (Guerin et al., 2001) while peripheral conduit stiffness has 

no prognostic value (Pannier et al., 2005). 
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1.10.4  Explanatory models of the physiological mechanisms underlying arterial  

  stiffness  

Two main models / theories exist to explain the physiological mechanisms underlying arterial 

stiffness and the accompanying increase in systolic pressure (Laurent et al., 2006). The 

European Network for Non-invasive Investigation of Large Arteries consensus document 

published in 2006 supported the use of the wave propagation model. This provides an 

assessment of regional arterial stiffness at various sites along the arterial tree. It is based on 

the concept of a simple distensible tube which terminates at a point where peripheral 

resistance exceeds forward pressure wave. The elastic properties of the tube permit the 

generation of a pressure wave along the tube which is inversely related to the distensibility of 

the tube.  

At a physiological level, a forward wave of ejected blood from the left ventricle is 

propagated through the arterial tree. A reflected wave is generated in peripheral muscular 

arteries or sites of arterial bifurcation where pressure exceeds that of the forward wave. In 

healthy elastic arteries, the reflected wave returns in the aortic root in diastole thereby 

increasing central diastolic pressure and augmenting coronary artery perfusion. In stiff 

arteries, the reflected wave returns earlier in systole with more overlap between forward and 

reflected waves thereby augmenting systolic pressure, pulse pressure and ventricular 

afterload. 

 An alternative model of the arterial tree is the Windkessel model which provides a 

global assessment of systemic arterial stiffness. The model combines two functional 

properties of the arterial tree - a reservoir function (aorta) which cushions the pressure 

fluctuations of ventricular ejection and a wide bore pipe acting as a conduit which tapers to 

the smaller muscular peripheral arterioles which act as resistance vessels to ensure constant 



43 

 

peripheral flow with little reduction in diastolic pressure throughout the arterial tree. When 

conduit resistance increases, both systolic and diastolic pressures increase but with an 

additional reduction in compliance of the reservoir, there is a disproportionate increase in 

systolic pressure.  

Both models have theoretical limitations which continue to be debated in the 

literature(O'Rourke et al., 2010). A recent meta-analysis examining the change in blood 

pressure with ageing has contentiously challenged the mechanistic importance of the reflected 

wave theory. The authors evaluated 64 studies involving over 13,000 patients with various 

diseases and showed that the reflected waves always returned in systole regardless of age and 

could not solely explain the augmentation of systolic pressure which occurs with ageing and 

disease (Baksi et al., 2009). The authors proposed a more direct mechanism (based on the 

Windkessel model) relating to the reduction in aortic compliance with age and hence the 

reduced buffering capacity to absorb pulsatile LV ejection. However, supporters of the wave 

propagation model have questioned these data, specifically the interpretation of timing of the 

returning wave and the confounding nature of different diseases states included in the meta-

analysis (O'Rourke et al., 2010). 

 

1.10.5  Assessment of arterial stiffness 

Indices of arterial stiffening can be assessed by a variety of invasive and non-invasive 

techniques. Cardiac MRI and ultrasound derived distensibility and compliance are used to 

assess discrete arterial locations at a point in time. Pulse wave velocity techniques which 

follow the propagative model provide an assessment of regional function. The modified 

Windkessel model and wave reflection techniques allow a systemic compliance to be 

assessed.  
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Recommendations from the European Network for Non-invasive Investigation of 

Large Arteries Consensus document in 2006 suggest combined measurement of aortic PWV 

(a direct measure) coupled with central pressures and arterial wave reflection indices as the 

most comprehensive approach to arterial function. These data are complementary; a low PWV 

from an elastic artery generally results in the later arrival of the reflected wave in the aorta 

while a stiff artery increases the transmission velocity of both forward (PWV) and reflected 

waves which return earlier in systole and augment aortic pressure in systole. Both techniques 

are independent predictors of cardiovascular mortality in longitudinal studies of patients with 

ESKD (Blacher et al., 1999b;Safar et al., 2002b)  

 

1.10.5.1 Pulse wave velocity 

The measurement of PWV is generally accepted as the “gold standard” measurement of 

arterial stiffness being simple, non-invasive, robust and reproducible. It is based on the 

principle that the forward pressure wave generated by ventricular ejection is propagated along 

the arterial tree at a speed determined by the geometric (diameter) and elastic properties 

(elastic modulus and/or wall thickness) of the arterial wall. In simple terms, the stiffer the 

vessel the faster the wave travels and the higher PWV. This can be calculated by the Moens-

Korteweg equation or by the simpler Bramwell-Hill equation in which PWV is inversely 

related to the distensibility of the arterial tube, expressed as: 

 

PWV = √V.dP / ρ.dV  

 

where dV is the change in arterial volume, dP is the change in arterial pressure and ρ density 

of fluid.  
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 The technique relies on the detection of two pressure waveforms measured at a known 

distance apart, with PWV calculated as distance (metres) / time (seconds) and expressed as 

m/s (Figure 1.5). Several devices, techniques and locations have been described including the 

use of pressure transducers, Doppler ultrasound, applanation tonometry, magnetic resonance 

imaging and oscillometric pressure cuffs. However, measurement between the carotid and 

femoral pulses (Ca-Fem PWV) is recognised as the most reliable and reproducible measure of 

regional arterial stiffness and is highly predictive of cardiac mortality (Laurent et al., 2006). 
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Figure 1.5 Schematic of diagram of the measurement of carotid-femoral pulse wave velocity using the foot-foot method  

∆L

∆t

Common carotid artery

Common femoral artery

 

Adapted from Laurent et al. 2006  

PWV (m/s) = ∆L / ∆t where; ∆L = distance between the carotid artery site and femoral artery site, minus the distance between the sternal 

notch and carotid artery site. ∆t = time between the foot of the carotid arterial up-stroke and foot of the femoral artery up-stroke 
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1.10.5.2 Pulse wave analysis 

Measurement of central aortic pressures by pulse wave analysis (PWA) provides an indirect 

surrogate measure of aortic stiffness and represents the true load “seen” by the ventricle and 

proximal aorta. The central arterial pressure waveform is a composite of the forward pressure 

wave derived from ventricular ejection and a reflected wave generated from the periphery 

either at a branch point or at a site where impedance exceeds forward pressure (Figure 2.3). In 

addition to derived central aortic pressures, the generated central waveform provides 

information on; the amplification or augmentation of central systolic pressure (augmentation 

pressure) and the augmentation index which is the ratio of augmented pressure to pulse 

pressure (Agabiti-Rosei et al., 2007).  

Several non-invasive techniques have been developed which derive central pressures 

and arterial waveforms from analysis of applanated peripheral arteries (usually radial or 

carotid artery) using pencil-like micromanometers which incorporate a strain gauge 

transducer. Each device applies a “transfer function” which describes the mathematical model 

used to non-invasively derive a central aortic pressure wave form from peripheral tonometry 

pressure data. This defines the relationship between the peripheral and central pressures using 

the properties of the connecting arterial system (Chen et al., 1997). The characteristics of the 

transfer function are determined by the physical properties of the connecting arterial system 

including diameter, elasticity, wall thickness and branching pattern. Despite individual 

differences in such properties, studies validating the transfer function found that the main 

components did not change markedly in adults allowing a generalised transfer function to be 

applied rather than a requirement of an individual transfer function (individualised to a 

particular subset of patient characteristics). 
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There are limitations to the technique; radial tonometry is most accurate when 

calibrated against intra-arterial pressure. Practically however, it is necessary to use cuff-

derived brachial artery pressures as surrogates of radial artery pressures which might 

introduce some error for calibration of central pressures. This is particularly true in young 

subjects in whom the amplitude of the pressure wave is higher in the peripheral arteries than 

the central arteries - the so-called amplification phenomenon. Differences in heart rate must 

be corrected. An inverse linear relationship exists between heart rate and augmentation index 

with an approximate 4% reduction for each 10 beat increase. This reflects a reduction in the 

duration of systole such that the reflected wave is effectively shifted into diastole and reduces 

the augmentation index. Other sources of variability include; interpretation of the first systolic 

shoulder (dependent upon the amplitude of the forward wave), gender and height differences 

(females are generally shorter and have earlier reflection bifurcation points).  
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1.11 POTENTIAL MECHANISMS PROMOTING ARTERIAL STIFFNESS IN 

CHRONIC KIDNEY DISEASE 

 

There are many potential inter-related mechanisms proposed to explain the relationship 

between increased arterial stiffness and CKD. A summary of the mechanisms known to affect 

arterial functional and structural / mechanical properties based on the existing evidence base 

is presented in the following section (Figure 1.6). The role of the renin-angiotensin-

aldosterone system will be discussed in more detail in section 1.9. 

 

1.11.1  Hypertension  

Hypertension is one of the major risk factors for the development and progression of arterial 

stiffness. It is both a cause of arterial stiffness and a consequence of its development. 

Identifying the primary stimuli is challenging with many contributory factors including 

aberrant activation of the renin-angiotensin system promoting sodium retention and plasma 

volume expansion and over-activity sympathetic nervous causing vasoconstriction. These 

haemodynamic alterations provide the signals (cyclic tensile stress and shear stress) for 

arterial remodelling (London et al., 2004). According to Laplace‟s Law (ό = Pr/h) tensile 

stress (ό) is directly proportional to arterial transmural pressure (P) and radius (r) of the vessel 

and inversely proportional to arterial wall thickness (h). Thus to maintain stable tensile stress 

following an increase in systolic blood and arterial dilatation, the arterial wall must 

hypertrophy and shear stress which is directly proportional to blood flow and blood viscosity 

must also increase. As a result, characteristic changes in the intrinsic properties of the arterial 

wall and geometry of the vessel are observed (as described in section 1.7) which increase 

arterial stiffness.   
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Figure 1.6 Potential mechanisms linking chronic kidney disease and the development of arterial stiffness  
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There are distinct differences between arterial stiffness in essential hypertension and 

arterial stiffness in CKD: i) Aortic stiffness in CKD is significantly higher than in 

hypertensive patients matched for age and blood pressure ii) CKD is characterised by a 

predominant increase in arterial dilatation and to a lesser degree intimal-medial hypertrophy, 

whereas in hypertension arterial wall thickening predominates. This reflects intrinsic changes 

in the elastic properties of the wall in CKD including calcification of elastin fibres which 

results in an inability of elastic fibres to sustain physiological pulsatile stress. These data 

suggest that mechanisms other than the haemodynamic stimulus of increased systolic pressure 

are involved in promoting stiffness in CKD (Briet et al., 2006). 

 

1.11.2  Diabetes mellitus 

Diabetes is the leading cause of CKD worldwide and accounts for 40% of patients requiring 

dialysis (United States Renal Data System, 2010). It is well established that diabetic patients 

have increased arterial stiffness (Aoun et al., 2001) which increases with advancing stages of 

CKD (Kimoto et al., 2006) and predicts cardiac mortality (Shoji et al., 2001). Diabetes 

promotes accelerated arterial stiffness by several mechanisms including: i) hyperglycemia-

induced endothelial dysfunction: results from decreased production of nitric oxide (NO), 

inactivation of NO by oxygen-derived free radicals, and/or increased production of 

endothelium-derived contracting factors, which oppose the protective activity of NO 

(Cosentino and Luscher, 1998), ii) inflammation (discussed in section 1.8.4), iii) 

accumulation of advanced glycation end products (AGE). In brief, AGE are a heterogeneous 

group of compounds, formed by non-enzymatic oxidative and non-oxidative reactions 

between proteins and sugar residues (known as the Maillard reaction). The final step is 

catalysed by oxidative stress which cause increases in AGE. Accumulation of AGEs causes 
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excessive irreversible covalent cross-linking in connective tissue, extracellular matrix and 

between collagen and elastin which alter the mechanical properties of the vasculature 

(Airaksinen et al., 1993). Furthermore, AGE activate the AGE receptors which promote 

increased fibrosis via the up-regulation of transforming growth factor-ß (TGF- ß). AGE-

accumulation in CKD is postulated to occur by two different pathways; decreased renal 

excretion of AGE degradation products and increased oxidative stress. In turn, an increase in 

AGEs causes acceleration of oxidation and further increasing AGEs. Accumulation of 

circulating AGE in ESKD has been independently associated with increased aortic PWV and 

mortality (Ueno et al., 2008). 

 

1.11.3  Endothelial dysfunction 

The endothelium is an important regulator of arterial stiffness (Wilkinson et al., 2004) and 

arterial stiffening affects endothelial mechano-signalling and
 
cytoprotection to oxidant stress 

through reduced expression of nitric oxide synthase (Endemann and Schiffrin, 2004). These 

effects create a self-perpetuating vicious circle of structural and functional vascular injury.  

 The endothelium releases a number of mediators including NO and endothelin-1(ET-

1) which influence the smooth muscle cells and thereby affect the elastic and collagenous 

fibres of the arterial wall. An extensive evidence base have confirmed endothelium-derived 

NO to have a pivotal effect in controlling resting tone in resistance vessels and regulating 

large artery stiffness (Wilkinson et al., 2002b). In animal models in which the NO synthase 

(NOS) gene was “knocked out” pulse pressure was seen to be disproportionately increased 

compared to 24 hour blood pressure, suggesting a greater effect on large arterial stiffness than 

peripheral resistance (Van Vliet et al., 2003). In vivo studies using NO donors such as 

glyceryl trinitrate have been shown to reduce augmentation index in healthy volunteers and 
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disease states such as hypertension (Wilkinson et al., 2002a), while exogenous inhibitors of 

endothelial NOS (eNOS) such as L-NG-monomethyl-L-arginine (L-NMMA) increased aortic 

and systemic arterial stiffness to a similar extent as has been reported with noradrenaline and 

angiotensin II (Wilkinson et al., 2002b).  

Early stage CKD is characterised by impaired endothelium dependent vasodilator 

activity and enhanced endothelium dependent vasoconstriction (Endemann & Schiffrin, 

2004). Although endothelial dysfunction might reflect relatively high levels of oxidative 

stress from conventional cardiovascular risk factors such as hypertension, newer risk factors 

such as asymmetrical dimethylarginine (ADMA), ET-1 and isoprostanes have been shown to 

independently predict arterial stiffness and endothelial dysfunction respectively in early CKD 

(Lilitkarntakul et al., 2011).  

Reductions in the clearance of endogenous inhibitors of nitric oxide synthase such as 

asymmetrical dimethylarginine (ADMA) have received considerable attention in CKD. It is 

synthesised in the heart, endothelium and smooth muscle cells and levels are inversely related 

to GFR reaching 7.5 times above normal limits in ESKD (Vallance et al., 1992). Furthermore, 

ADMA has been shown to independently predict total mortality, arterial stiffness 

cardiovascular complications and progression of renal disease (Zoccali et al., 2002).  

Endothelin peptides such as ET-1 which act on VSMC to cause vasoconstriction have 

also been implicated in the progression of CKD. In a recent study of patients with early stage 

CKD and minimal co-morbidity, ET-1 was inversely associated with creatinine clearance and 

independently predicted endothelial dysfunction assessed by brachial artery flow-mediated 

dilatation (Lilitkarntakul et al., 2011). Furthermore, short-term endothelin-A receptor 

antagonism in non-diabetic CKD reduced proteinuria and arterial stiffness independently of a 

change in blood pressure (Dhaun et al., 2009). 
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Inflammation also impairs endothelial function although the exact mechanisms remain 

uncertain. In vitro studies have postulated a role for inducible nitric oxide synthase which 

might promote endothelial dysfunction by depleting the bioavailability of eNOS (Gunnett et 

al., 2005). C-reactive protein (CRP) has also been shown to independently predict endothelial 

function in inflammatory conditions such as rheumatoid arthritis and might reflect a direct 

effect on NO bioavailability possibly by decreasing eNOS expression (Venugopal et al., 

2002). 

 

1.11.4  Inflammation 

Chronic kidney disease is associated with a chronic state of low-grade inflammation 

(Stenvinkel et al., 2005). Serological levels of circulating inflammatory biomarkers such acute 

phase reactants including CRP and other pro-inflammatory biomarkers such as cytokines 

(interleukins, tumour necrosis factor-α) are increased in up to 50% of patients with ESKD 

(Jofre et al., 2006). C-reactive protein provides an overall measure of systemic inflammatory 

activity with levels reported as high as 10-times above the general population. It has been 

shown to independently predict an increase in cardiovascular mortality in both ESKD 

(Wanner and Metzger, 2002) and at earlier stages of CKD (Menon et al., 2005), although a 

direct cause-and-effect relationship for such biomarkers is yet to be established.  

Inflammation is a recognised risk factor for arterial stiffness in CKD (Cachofeiro et 

al., 2008) but identification of specific mechanisms of injury in renal disease are complicated 

by the presence of co-existing diseases such as diabetes and hypertension which are also 

associated with low-grade chronic inflammation. Postulated inflammatory mechanisms which 

might increase arterial stiffness in CKD include; reduced circulating levels of potent 

inhibitors of vascular calcification, such as fetuin-A, matrix Gla protein (MGP) and 
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osteoprotegrin, (Cachofeiro et al., 2008) accumulation of AGE which are normally renally 

excreted (discussed in section 1.8.2) and increased oxidative stress leading to increase 

production of reactive oxygen species and endothelial dysfunction (described in section 

1.8.3).  

 

1.11.5  Alterations in the extracellular matrix 

As discussed in section 1.7.3.2, arteriosclerosis is prominent in CKD and has an important 

role in the pathogenesis of arterial stiffness. It is characterised by increases in the extracellular 

matrix volume, vascular smooth muscle and collagen in the medial arterial layer. The 

mechanisms responsible are yet to be fully elucidated but appear to be independent of 

increases in blood pressure (Amann et al., 1995). Matrix metalloproteinases (MMPs) are up-

regulated in CKD and have been implicated as a potential mechanism of this adverse vascular 

remodelling (Chung et al., 2009). Matrix metalloproteinases are endopeptidase enzymes 

which are abundantly expressed in the adventitia and media of arterial wall following 

oxidative stress, reduced NO bioavailability and secretion from inflammatory and smooth 

muscle cells. They adversely affect vascular remodelling by degradation of elastic laminae 

(essential for arterial distensibility) which promotes reduced elasticity, structural weakening 

and induction of calcium deposition (Chung et al., 2009). In-vitro work is supported by 

clinical studies demonstrating that increased levels of MMP-9 and MMP-2 independently 

predict aortic stiffness in normotensive and hypersensitive individuals (Yasmin et al., 2005). 

 

1.11.6  Vascular calcification and bone-mineral disorder 

Vascular calcification refers to deposition of calcium phosphate mineral (hydroxyapatite) in 

cardiovascular tissues. Medial calcification is prominent in CKD and has an important role in 
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the pathogenesis of arterial stiffness. The extent of arterial calcification correlates with 

severity of arterial stiffness independently of age and blood pressure in ESKD and CKD. 

Furthermore it is a strong predictor of all cause and cardiovascular mortality in ESKD 

(Toussaint et al., 2008).  

Traditionally, vascular calcification was thought to reflect passive precipitation of 

calcium and phosphate in the presence of high extracellular concentrations secondary to 

hyperparathyroidism of renal disease. More recent in-vitro data, have suggested that vascular 

calcification is an actively regulated process (Ketteler and Giachelli, 2006). Up-regulation of 

transcription factors secondary to hyperphosphataemia and oxidative stress in CKD, induce 

osteogenic gene activation in vascular smooth muscle cells, hydroxyapatite formation and 

suppression of calcification inhibitors which promote matrix mineralisation and calcium 

deposition. Furthermore, low levels of inhibitors of mineralisation such as fetuin A, 

osteoprotegerin and matrix G1a protein in CKD are also associated with progressive arterial 

and ectopic soft tissue calcification with phosphate levels within the normal reference range 

(Adeney et al., 2009) and an increased cardiovascular mortality (Ketteler et al., 2003). 

 

 

  



57 

 

1.12 THE ROLE OF THE RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM IN 

PROMOTING CARDIOVASCULAR DISEASE IN CHRONIC KIDNEY 

 DISEASE 

 

Activation of the renin-angiotensin-aldosterone system is a feature of several disease states 

including heart failure (Struthers, 2004) and CKD (Bomback and Klemmer, 2007;Hene et al., 

1982). Historically, angiotensin II has been viewed as a primary factor causing tissue damage, 

and ACE inhibitors and ARBs have been used to protect against its detrimental effects on 

target organs, including the cardiovascular system. There is now substantial evidence to show 

that aldosterone plays an independent and perhaps equally significant role in the development 

of cardiovascular tissue damage (Rocha et al., 2002a).  

The following sections summarise the current literature regarding the physiology of 

aldosterone and angiotensin II, proposed mechanisms of end-organ damage and the 

implications for treatment specifically in CKD. 

 

1.12.1  Angiotensin II 

Angiotensin II (Ang II) is an important mediator of injury in many conditions including heart 

failure, hypertension and CKD. It exerts deleterious effects via angiotensin II type 1 (AT-1) 

receptors found extensively in vascular smooth muscle cells of the cardiac, vascular and renal 

tissues but also via complex signalling cascades and cross-talk with aldosterone (Lemarie et 

al., 2008). It is a powerful vasoconstrictor but also promotes end-organ fibrosis through 

cellular proliferation, activation of inflammatory cytokines and vascular remodelling, vascular 

smooth muscle hypertrophy and proliferation, increased production of MMPs and collagen 

synthesis (Touyz and Schiffrin, 2000). 
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The efficacy of ACE inhibitors and ARBs in landmark randomised clinical trials 

provides strong support for the deleterious pathophysiological consequences of angiotensin II 

in the cardiovascular system. In high-risk patients with heart failure and with heart failure 

complicating myocardial infarction, use of ACE inhibitors and ARBs reduced mortality and 

rates of subsequent cardiovascular events (Pfeffer et al., 1992;Pfeffer et al., 2003;The Acute 

Infarction Ramipril Efficacy (AIRE) Study Investigators, 1993;The SOLVD Investigators, 

1991). Improved mortality was postulated to reflect reductions in neurohumoral activation 

which promote direct (myocardial fibrosis) and indirect effects (catecholamine activation) on 

adverse LV remodelling. In high-risk patients with heart failure, ACE inhibitors and ARBs 

exert beneficial effects via reductions in angiotensin II and / or blockade of the AT-1 receptor 

which also inhibits the action of angiotensin II generated by non-ACE pathways (this is 

discussed further in section 1.9.3.1). These effects are mediated independent of a reduction in 

blood pressure. In all but the SOLVD study, blood pressure was seen to increase with 

treatment indicative of improved cardiac function. Indeed, a reduction in blood pressure using 

combination treatment with an ACE inhibitor and ARB occurred in the VALLIANT study of 

patients with heart failure after MI. This treatment had no effect on mortality but increased 

rates of intolerance (Pfeffer et al., 2003).  

In studies of stable patients with high-risk vascular disease (Fox, 2003;Yusuf et al., 

2000) but without evidence of heart failure, the contribution of the small blood pressure 

reduction (-3mmHg systolic in HOPE study and -5 mmHg systolic in EUROPA study) 

remains much debated. Detailed post-hoc analyses have suggested that the observed benefits 

of treatment with an ACE inhibitor were about three times greater than expected from blood-

pressure-related risk calculations generated from blood-pressure reduction in earlier studies or 



59 

 

from the placebo-group patients. Furthermore, similar benefits were also observed in 

normotensive patients (Sleight et al., 2001). 

Data advocating for the use of ACE inhibitor and ARBs are limited to retrospective 

sub-group analyses of patients with mild and moderate CKD due to the systematic exclusion 

of patients with severe renal dysfunction from landmark studies. However, these data confirm 

cardiovascular efficacy and safety with ACE inhibitors and ARBs in CKD which appears 

comparable to patients with normal renal function (Mann et al., 2001). The renoprotective 

effects of ACE inhibitor and ARBs were postulated from experimental studies showing 

reductions in intra-glomerular capillary and systemic hypertension as well as prevention of 

direct proliferative effects on mesangial and tubular cells which might lead to matrix 

production and tubulointerstitial fibrosis (Del et al., 2007). Data from clinical studies 

reporting the superiority of ACE inhibitors and ARBs at slowing progression of renal disease 

is more contentious. A number of placebo controlled trials have demonstrated significant 

reductions in proteinuria in diabetic CKD with these agents (Brenner et al., 2001;REIN Study, 

1997). However, a large meta-analysis which assessed the renoprotective effects of ACE 

inhibitors or ARBs, reported that the observed reductions in proteinuria in such studies were 

in the range expected by their blood pressure lowering effect. Furthermore, when compared 

with other antihypertensives, there was no additional benefit using ACE inhibitors or ARBs to 

suggest a class specific effect (Casas et al., 2005). 

 

1.12.2.  Aldosterone  

Aldosterone was originally isolated in 1953 from the adrenal glands of cows. It was initially 

termed electrocortin reflecting its effects on trans-epithelial transport of urinary electrolytes 
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(Simpson SA, 1953) but was renamed aldosterone after its molecular structure was 

established (Figure 1.7). It is a mineralocorticoid class of steroid, derived from cholesterol 

and synthesised in the glomerulosa layer from corticosterone (with 18-hydroxycorticosterone 

as an intermediate). Its molecular structure consists of a cyclopentanoperhydrophenanthrene 

nucleus (ABCD rings) with an aldehyde (CHO) group rather than a methyl (CH3) group on 

carbon 18 of the steroid skeleton.  

 

1.12.2.1 Epithelial actions of aldosterone 

The “classical” description of aldosterone action involves unidirectional electrolyte transport 

via mineralocorticoid receptors (MR) located in the cytosol epithelial cells of the collecting 

duct in the kidney in response to stimuli from angiotensin II, adrenocorticotrophic hormone 

(ACTH) and reduced sodium and increased potassium plasma concentrations. Binding to the 

MR induces conformational activation of the receptor and translocation into the nucleus. The 

increase in the transcription of MR-responsive genes, results in an increased expression and 

activity of the basolateral sodium / potassium-ATPase which drives entry of sodium (and 

water) and excretion of potassium from the cell to the lumen via the potassium channel. The 

net effect is increased sodium and water reabsorption, potassium excretion and an increase in 

blood pressure by expanding the extracellular volume (Rogerson and Fuller, 2000). Other 

mediators of aldosterone action in epithelial cells include the parotid gland, apical membrane 

(sodium / hydrogen exchanger) in the colon and luminal sodium / chloride co-transporter in 

the distal renal tubule which both mediate sodium reabsorption in response to volume 

depletion (Connell and Davies, 2005).  
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Figure 1.7 Biochemical structure of aldosterone 
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1.12.2.2 Non-epithelial actions of aldosterone  

In recent years synthesis of aldosterone and expression of MRs have been localised in non-

epithelial tissues. These include the heart (cardiomyocytes, macrophages, endothelial cells, 

fibroblasts), brain (hippocampus and hypothalamus) adipocytes, kidney (pre-glomerular 

vasculature, mesangial cells and fibroblasts) and systemic vasculature (endothelium, smooth 

muscle cells of the media and adventitia). The properties of MRs and the actions mediated by 

aldosterone in these tissues continue to be debated (see sections 1.9.2.4 and 1.9.2.5). Data 

from experimental studies have suggested that aldosterone synthesis at these extra-renal sites 

is not sufficient for systemic needs but that local paracrine activity might have functional and 

pathological consequences (Lemarie et al., 2008). In contrast to the effects on fluid and 

electrolyte balance in epithelial tissue, aldosterone appears to exert adverse effects on the 

cardiovascular system in non-epithelial tissue particularly in the presence of high salt. These 

include:  

1. Vasculature – abnormal endothelial function, perivascular and interstitial 

inflammation, increased collagen deposition, increased vasomotor tone (Brown, 

2008;Rocha and Stier, Jr., 2001;Schiffrin et al., 1985) 

2. Heart – ventricular hypertrophy and fibrosis (Brilla and Weber, 1992) 

3. Central nervous system – increased sympathetic tone, hypertension (Schiffrin et al., 

2007) 

4. Kidney – intra-glomerular capillary hypertension, proteinuria and tubulointerstitial 

fibrosis (Greene et al., 1996) 

Salt status appears to be of particular importance for non-epithelial MR-mediated effects 

of aldosterone. Seminal work by Brilla et al. (1992) in which rats received chronic infusion of 
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exogenous aldosterone in combination with a high salt diet induced interstitial / perivascular 

fibrosis, ventricular hypertrophy and myocardial scarring. However, exogenous aldosterone 

combined with a low-salt diet induced neither blood pressure elevation, ventricular 

hypertrophy or cardiac fibrosis (Brilla & Weber, 1992). This early work has been extended to 

studies of the vascular injury where inflammatory cells and genes of pro-inflammatory 

molecules cannot be activated / expressed without concomitant infusion of salt (Rocha et al., 

2002b). Thus the presence of high salt, is postulated to sensitise the cardiovascular system to 

the deleterious inflammatory effects of aldosterone. 

 Clinical studies examining the role of salt in aldosterone mediated cardiovascular 

injury are limited. Schlaich et al. (2000) examined plasma levels and urinary excretion of 

aldosterone after progressive salt loading in young normotensive controls and patients with 

mild hypertension (mean 24 hour blood pressure 132 / 78 mmHg). Suppression of serum 

aldosterone was less in hypertension than in controls. Furthermore, patients with least 

suppression of aldosterone had increased LV mass and impaired markers of LV systolic 

function (compared to baseline) independent of baseline 24 hour blood pressure (Schlaich et 

al., 2000). A recent small study of patients with ESKD examined changes in plasma 

aldosterone levels in response to changes in extracellular fluid status at various stages of 

dialysis. Aldosterone levels remained inappropriately elevated for the degree of extracellular 

volume expansion leading the authors to postulate that the hyperaldosteronaemic 

hypervolumaemic state in ESKD might result from loss of the negative feedback mechanism 

and thus could continue to promote the adverse non-epithelial effects of aldosterone. A role 

for dietary sodium advice and pharmacological treatment with aldosterone blockade was 

suggested (Bomback et al., 2009a). 
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1.12.2.3 Specificity of the mineralocorticoid receptor 

Until 1988, the specificity of aldosterone action was believed to be conferred by the presence 

of high-affinity type 1 MRs which are present in the renal cytosol, colon and salivary glands 

and are distinguishable from the type 2 glucocorticoid receptors (GR) (Arriza et al., 1987). 

However, further studies of the MR in cultured pituitary cells demonstrated that it had an 

equally high affinity for glucocorticoids. The lack of specificity of the MR and the high 

physiological levels of circulating glucocorticoids which are 1000 times greater than 

aldosterone would suggest that MRs in epithelial tissue should be occupied by 

glucocorticoids. This has not shown to be the case however (Connell & Davies, 2005).  

 

Mechanisms proposed to explain how aldosterone maintains its specificity for the MR in 

epithelial tissue include:  

i) Co-expression of the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-

HSD2) at the MR in target epithelial tissues. This enzyme catalyses the conversion 

of active glucocorticoids (cortisol in humans, corticosterone in rats) capable of 

binding with high affinity to MRs, into inactive metabolites (cortisone and 11-

dehydrocorticosterone) which have negligible affinity for the MR. Thus, 11β-

HSD2 effectively protects the MR from illicit occupation by glucocorticoids 

(Edwards et al., 1988). 

ii) High local concentrations of NADH are produced by 11β-HSD2 during the 

conversion of cortisol to cortisone might inactivate the MR-glucocorticoid 

complexes (Funder, 2004).  

iii) Molecular studies of the cloned MR showed that despite mineralocorticoids and 

glucocorticoids binding the MR with equivalent affinity, aldosterone achieves 
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greater transactivation suggesting that ligands can have differential effects on gene 

transcription at the same receptor (Connell & Davies, 2005). 

iv) The majority of glucocorticoids are bound to proteins in plasma (Connell & 

Davies, 2005).  

 

The mechanism of MR specificity for aldosterone in non-epithelial tissue is less clear. 

These tissues appear to express little or no 11β-HSD2 enzyme despite often abundant MRs 

and under normal conditions total plasma glucocorticoid levels are ≥1000-fold higher than 

aldosterone and plasma free levels are ≥100-fold higher. Given these high circulating 

concentrations of glucocorticoids and “unprotected” nature of MRs, over 90% are occupied 

by glucocorticoids (cortisol / corticosterone) in-vivo. The effect of glucocorticoid-MR 

complexes remains controversial. Some experimental studies have reported that 

glucocorticoid occupation of the MR in non-epithelial tissue is potentially protective as they 

antagonise the adverse MR effects mediated by mineralocorticoids. Chronic exogenous 

infusion of low-dose aldosterone in rats elevated blood pressure over days / weeks but 

infusion of corticosterone had no effect. When co-administered with aldosterone, 

corticosterone blocked the hypertensive and fibrotic response seen with aldosterone alone, 

suggesting that it might act as an MR antagonist (Young and Funder, 2000). Furthermore, 

transgenic mice over-expressing 11β-HSD2 (preventing glucocorticoid effects) develop 

cardiac hypertrophy, fibrosis and heart failure on a normal salt diet (Qin et al., 2003). 

Subsequent studies have failed to replicate such findings and have instead 

hypothesised that the glucocorticoid–MR complex is activated, allowing it to mimic the 

adverse effects of mineralocorticoid / salt imbalance on blood vessels and the heart. 

Endogenous corticosterone plus salt, in the presence of the 11β-HSD2 inhibitor 
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carbenoxolone produced similar vascular inflammatory responses and tissue remodelling via 

activation of MR (Young et al., 2003). Mechanisms postulated to mediate these actions centre 

around reduced intracellular levels of NADH. When 11β-HSD2 is inhibited and NADH levels 

decrease (NADH is produced when cortisol is converted to cortisone), cortisol acts in the 

same manner as aldosterone (Mihailidou and Funder, 2005). Tissue damage and ROS 

generation also reduce cellular levels of NADH by the induction of NADPH oxidases, even 

though 11β-HSD2 may still be operational. Both mechanisms might serve to activate the 

glucocorticoids-MR complexes (Wilson et al., 2009). In patients with CKD, 11β-HSD2 

activity (N'Gankam et al., 2002) and expression (Quinkler et al., 2005) decline with 

progressively impaired renal function suggesting that in these patients blood pressure and 

cardiovascular injury might be partly driven by glucocorticoid-induced MR activation.  

 

1.12.2.4 Genomic and non-genomic actions of aldosterone  

The classic genomic model of aldosterone action on epithelial cells is well established (ref). 

However, the changes in gene expression and protein production result in a 1-2 hour lag 

period before changes in target cell activity. More recently it has been demonstrated that 

aldosterone activation also induces rapid (10-15 minutes) non-genomic cellular responses 

(independent of gene transcription and translation) by modulating intracellular secondary 

messenger systems including calcium and cyclic adenosine monophosphate (cAMP), Na / H 

exchange activity and phosphorylation of signalling molecules (Wehling, 1997).  

The non-genomic mechanisms have been demonstrated predominantly within non-

epithelial tissue but also epithelial cells of the colon. Whether they are mediated through the 

classical MR remains uncertain. Early studies using human mononuclear leucocytes and 

vascular smooth muscle cells identified aldosterone-selective responses that were not 
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mimicked by cortisol (Mihailidou & Funder, 2005). In rat arterial smooth muscle cells, rapid 

sodium efflux mediated by aldosterone was insensitive to actinomyocin (implying it is 

independent of gene transcription) but sensitive to inhibition by spironolactone and the 

selective MR antagonist RU-28318, implying the involvement of the classical MR (Connell & 

Davies, 2005). Rapid MR-mediated responses have now been described for an increasing 

number of vascular and cardiac targets raising the possibility that they are mediated via a 

closely related protein receptor different from the MR but associated with the cell membrane 

and which has a high affinity for aldosterone and not glucocorticoids (Connell & Davies, 

2005). 
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1.12.2.5 Potential mechanisms of aldosterone induced injury in the cardiovascular 

system 

In a number of experimental studies Rocha et al. eloquently demonstrated the adverse effects 

of aldosterone independent to those of angiotensin II. For example, infusing 

uninephrectomised rats drinking 0.9% saline solution with angiotensin II for 3 weeks 

progressively increased blood pressure and induced widespread perivascular and interstitial 

inflammatory cell infiltration and coronary wall thickening. In the same model but with 

adrenalectomised rats, blood pressure remained elevated (indicating an angiotensin II effect) 

but vessel walls were normal and the intense inflammatory response absent. Furthermore, 

infusion of aldosterone to adrenalectomised rats produced comparable vascular and interstitial 

changes to those observed with angiotensin II (Rocha et al., 2002a).  

 

The detailed mechanisms by which aldosterone induces cellular injury in the 

cardiovascular system (Figure 1.8) were not specifically addressed by this thesis. In the 

following section, an overview of the experimental evidence to date is provided but reader is 

referred to two excellent detailed reviews which address the mechanisms in further detail 

(Briet and Schiffrin, 2010;Brown et al., 2000). 
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Figure 1.8  Potential mechanisms by which aldosterone mediates cardiovascular injury 
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1.12.2.6 Aldosterone and vascular injury – aldosterone induced vasculopathy 

 

Aldosterone mediates vascular damage by: 

1. Inflammation and oxidative stress – Aldosterone increases the activity of 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and the production of ROS 

leading to increased oxidative stress in vascular smooth cells (VSMC), monocytes, 

macrophages and endothelium. Subsequent activation of inflammatory transcription factors 

induce a cascade of inflammatory mediators including the recruitment of monocytes and 

macrophages which promote proliferation of fibroblasts in the perivascular space and 

cytokines such as interleukin (IL)-6 which stimulate the expression of pro-fibrotic factors 

such as transforming growth factor (TGF) and plasminogen activator inhibitor (PAI-1). The 

net effect is cellular transformation of fibrobalsts, synthesis of matrix proteins and increased 

MMPs which increase collagen production and promote fibrosis within the arterial wall 

(Brown, 2008).  

Rocha et al (2002) demonstrated that the initial pathogenic event in an animal model 

of mineralocorticoid hypertension (uninephrectomised rats treated with exogenous 

aldosterone and high salt diet) was inflammatory cell infiltration and expression of pro-

inflammatory molecules after about 1 week of treatment. Focal changes within the arterial 

wall characterised by thickening and disorganisation of smooth muscle cells within the medial 

arterial layer and perivascular and coronary inflammatory lesions with focal necrotic and 

ischaemic changes were evident after two weeks of treatment. Furthermore, concomitant 

treatment with the selective aldosterone blocker eplerenone reduced expression of pro-

inflammatory molecules, attenuated vascular and cardiac histopathological changes with only 

a partial reduction in blood pressure. These data suggested that a vascular inflammatory 
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phenotype is the prerequisite step for the subsequent development of aldosterone / salt-

induced vascular and myocardial injury (Rocha et al., 2002b). 

 

2. Effects on the vascular smooth muscle cells (VSMC) – Early studies with the 

mineralocorticoid deoxycorticosterone acetate (DOCA - a precursor of aldosterone with 

mineralocorticoid properties) in-vivo and later using aldosterone in-vitro and in-vivo have 

demonstrated an up-regulation of components of the RAAS in VSMC (Briet & Schiffrin, 

2010). Increases in the angiotensin receptor, angiotensin converting enzyme and a resultant 

increase in the local generation of angiotensin II activate a series of signalling cascades which 

promote the growth and proliferation of the VSMC and subsequently promote vascular 

remodelling and inflammation (Schiffrin, 2006). Recent studies have also shown synergistic 

cross-talk between angiotensin II and aldosterone. Infusion of low doses of angiotensin II and 

aldosterone (at doses inefficacious individually) increased VSMC proliferation in adult rats. 

These effects were blocked by an angiotensin I receptor antagonist and spironolactone leading 

the authors to postulate that the synergistic interaction is mediated through both genomic and 

non-genomic signalling of the MR and AT 1 receptor. Thus blockade of both receptors might 

provide enhanced protection from vascular remodelling (Min et al., 2005). 

 

3. Effects on the endothelium – Aldosterone has been shown to cause endothelial 

dysfunction (Farquharson and Struthers, 2000). Tissue culture studies showed that aldosterone 

inhibited inducible nitric oxide release in response to cytokine stimulation (Ikeda et al., 1995). 

These data were extended in-vivo by examining the effect of acute short-term systemic 

administration of aldosterone on flow-mediated dilatation of the brachial artery in healthy 

volunteers. Aldosterone adversely attenuated endothelial dependent vasodilatation function 
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induced by cholinergic agents but had no effect on endothelial independent vasodilatation 

with sodium nitroprusside. These acute changes were postulated to reflect non-genomic 

effects of aldosterone on NO bioavailability (Farquharson and Struthers, 2002).  

As described in section 1.8.3, endothelial dysfunction promotes arterial stiffness 

(Wilkinson et al., 2004) and stiff arteries perpetuate a vicious circle by reducing endothelial 

expression of NO synthase (Peng et al., 2003). Chronic exposure to aldosterone has been 

shown to reduce endothelial relaxation in aortic segments of spontaneously hypertensive rats 

(the best animal analogue of human hypertension) (Blanco-Rivero et al., 2005). Furthermore, 

infusion of DOCA to salt loaded hypertensive rats increased levels of the vasoconstrictor 

peptide endothelin I (ET-1) in the aorta and large and small mesenteric arteries (Lariviere et 

al., 1993). Endothelin dependent relaxation was down-regulated through reduced 

bioavailability of NO and resultant oxidative stress in the wall (Pu et al., 2003). In-vitro, 

aldosterone induced endothelial cell growth and stiffening with concentrations in the low 

pathophysiological range (Hillebrand et al., 2007).  

Mineralocorticoid receptor blockers used in experimental and human studies have 

consistently been shown to improve endothelial function through a reduction in the generation 

of ROS and oxidative stress (Farquharson & Struthers, 2000;Farquharson & Struthers, 2002). 

The key mediators of this response are increased NO bioavailability and reduced NADPH. 

One of the first studies to demonstrate this effect was in chronic heart failure where infusion 

of NO synthase inhibitor (L-NMMA) to patients treated with spironolactone increased 

vasoconstriction, indicative of an increase in basal NO following aldosterone blockade 

(Farquharson & Struthers, 2000). Other possible mechanisms by which MRBs improve 

endothelial function include; up-regulation of other endothelial dependent vasodilators such 

as vascular prostacyclin or endothelium-derived hyperpolarising factor (EDHF), attenuation 
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of angiotensin I-mediated vasoconstriction and improved endothelial signalling pathways 

leading to NO synthase synthesis (Struthers, 2004). 

  

1.12.2.7 Aldosterone and cardiac injury 

Chronic treatment (8 weeks) of exogenous aldosterone with a high salt diet induces structural 

remodelling within the heart. Seminal animal work by Brilla et al. (1992) demonstrated 

characteristic changes of LVH, accumulation of collagen within the interstitial space and 

adventitia of intramyocardial coronary arteries in the absence of myocyte necrosis (known as 

interstitial and perivascular fibrosis) and myocardial scarring irrespective of the presence of 

myocardial hypertrophy. These pathological changes were prevented with concurrent 

treatment with low dose spironolactone without reducing hypertension (Brilla & Weber, 

1992). These data were postulated to reflect a direct humoral response to aldosterone rather 

than systolic hypertension as fibrillar collagen was increased in both right and left ventricles 

irrespective of the presence of hypertrophy and was subsequently confirmed by the finding of 

equivalent cardiac fibrosis in animals infused with aldosterone but made normotensive 

(Young et al., 1995).  

These studies identified aldosterone as a key modulator of cardiac fibrosis and have 

led to the hypothesis that aldosterone changes the mechanical and electrical properties of the 

ventricle by increasing fibrillar collagen content thereby affecting subsequent structural 

remodelling and reparative scar formation of the ventricle.  

Although cardiac fibroblasts are the principal source of collagen in the heart they are 

devoid of high affinity MR binding sites and most in vitro studies have failed to show direct 

effects of aldosterone on collagen synthesis. This suggests that aldosterone exerts its effects 

primarily on cardiomyocytes which in turn induce collagen synthesis of adjacent fibroblasts in 
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a paracrine fashion (Fullerton and Funder, 1994).The MR has a central role in mediating 

cardiac fibrosis via mineralocorticoids and possibly glucocorticoids, independent of 

hypertension. In a recent study, infusion of DOCA and salt treatment for 8 weeks to 

macrophage-specific MR knockout mice increased the numbers of infiltrating macrophages 

without inducing cardiac fibrosis or hypertension (Rickard et al., 2009). 

 

Histologically, cardiac fibrosis is characterised by proliferation of cardiac myocytes 

and fibroblasts with intense perivascular inflammation and fibrosis. It remains to be 

determined whether or not aldosterone acts directly on cardiac fibroblasts. Some studies have 

shown aldosterone to increase collagen I synthesis in cardiac fibroblasts (Robert et al., 1994) 

and in-vivo data of cultured cardiac fibroblasts showed a direct cellular anabolic effect 

comparable to those of angiotensin II (Brilla et al., 1994). However, not all studies have been 

able to replicate such findings. Other mechanisms by which the aldosterone / salt model might 

increase cardiac fibrosis include cross-talk signalling pathways with angiotensin II, up-

regulation of angiotensin II type 1 receptor mRNA expression and angiotensin II type 1 

receptor binding in the heart, endothelin-1 receptor density and ACE in the heart and vascular 

walls (Briet & Schiffrin, 2010).  

The evidence for cardiac biosynthesis of aldosterone remains controversial. Early 

studies reported human genes encoding aldosterone synthase (CYP11β2) were present in 

adrenal and cardiac tissue (Silvestre et al., 1998). Levels were shown to be raised in heart 

failure and after myocardial infarction and also correlated with collagen volume (Satoh et al., 

2002). Subsequent studies have failed to replicate such findings. Levels of genes in cardiac 

tissue are several magnitudes lower than in the adrenal cortex and adrenalectomy in 

angiotensin II / salt animal models abolished cardiac fibrosis suggesting that systemic effects 
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might still be mediated from aldosterone derived from the adrenal cortex (Rocha et al., 

2002a).  

 

1.12.2.8 Aldosterone and renal injury 

Kidney injury following exogenous infusion of aldosterone in normotensive animal models is 

characterised by mesangial cell proliferation, glomerular tuft expansion, sclerotic changes, 

podocyte injury, arteriolar hyalinosis, interstitial inflammation and fibrosis. The pathological 

mechanisms of injury mediated by aldosterone mirror those observed in the vasculature with 

increased expression of inflammatory mediators and ROS. Stimulation of pro-fibrotic factors 

including TGF-β and PAI1 within mesangial cells increase collagen synthesis, decrease 

extracellular matrix degradation and promote fibroblast proliferation (Briet & Schiffrin, 2010) 

 Initial studies in stroke-prone spontaneously hypertensive rats (SHRSP) identified 

angiotensin II as the major mediator of renal injury (Stier, Jr. et al., 1989). Treatment with 

ACE inhibitors, ARBs and the mineralocorticoid receptor blocker spironolactone were all 

shown to be effective at reducing proteinuria and preventing development of renal vascular 

and glomerular injury (Camargo et al., 1993;Rocha et al., 1998;Stier, Jr. et al., 1992). These 

benefits were initially attributed to reductions in the vascular actions of angiotensin II and 

endogenous inhibition of aldosterone synthesis. Subsequent studies extended this work and 

confirmed a central role for endogenous aldosterone as a humoral mediator of renal injury. 

Concurrent administration of aldosterone with an ACE inhibitor to SHRSP rats abolished the 

renoprotective effects provided by ACE inhibition despite the persistence of hypertension. 

These data support a major role of aldosterone in the kidney possibly independent of other 

components of the RAAS (Rocha et al., 1999). 
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1.13 The role of mineralocorticoid receptor blockers in preventing aldosterone 

mediated end-organ damage in clinical studies 

As described in section 1.9.2, there are extensive data from animal models of 

hyperaldosteronism demonstrating on the adverse actions of aldosterone within the 

cardiovascular and renal systems. Further indirect evidence has been provided by the use of 

mineralocorticoid receptor blockers (MRBs) such as spironolactone and eplerenone. Both 

agents inhibit aldosterone by binding to the MR rendering it transcriptionally inactive and are 

effective at reducing end-organ damage in the heart, brain and kidneys without significant 

reductions in blood pressure (Stier, Jr. et al., 2002). There are some limitations of such 

experimental models including: the dependence on a high salt diet, use of un-physiological 

dosages of exogenous infusions of mineralocorticoids and profound hypertensive responses, 

which might limit their applicability to clinical studies.  

In the following section, the phenomenon of aldosterone escape and aldosterone 

breakthrough in man is discussed and the current literature regarding the role and efficacy of 

MRBs in human studies of heart failure and CKD are summarised.   

 

1.13.1  Aldosterone breakthrough and aldosterone escape 

Plasma aldosterone levels are primarily regulated by potassium and angiotensin II in response 

to salt balance and plasma volume. In diseases such as heart failure, primary 

hyperaldosteronism and CKD circulating aldosterone levels can be inappropriately raised 

independently of these traditional feedback mechanisms. The terms aldosterone breakthrough 

and aldosterone escape are often used interchangeably to describe this phenomenon but 

actually refer to two different patho-physiological mechanisms as outlined below: 
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1. Aldosterone breakthrough – describes increased plasma aldosterone levels despite 

chronic inhibition of the RAAS with ACE inhibitors and ARBs. One proposed definition is; 

“a serum aldosterone level that exceeds a baseline (pre-ACE inhibitor and / or ARB therapy) 

value 6 – 12 months after initiation of RAAS-blocking therapy” (Bomback & Klemmer, 

2007). This phenomenon has been reported in up to 50% of patients with heart failure and 

CKD (Bomback & Klemmer, 2007).  

 

Mechanisms proposed to contribute to aldosterone breakthrough include: 

i) Non-angiotensin converting enzyme (ACE) dependent generation of 

angiotensin II – Non-ACE enzymes capable of cleaving angiotensin I to angiotensin II are 

present in coronary arteries and medium small resistance arteries of healthy volunteers, 

patients with coronary heart disease and patients with heart failure treated with ACE 

inhibitors (Petrie et al., 2001). This pathway converts angiotensin I to angiotensin II using 

serine proteases such as chymase and can be blocked in coronary arteries in-vitro by chymase 

inhibitors such as chymostatin. It was postulated that dual blockade of ACE and non-ACE 

enzymes might produce more complete suppression of angiotensin II and aldosterone. 

However, this is unlikely to be the primary mechanism of aldosterone breakthrough as it 

would be expected to occur less often in patients treated with ARBs which has not been 

demonstrated to date. 

ii) Serum potassium levels – Increased serum potassium levels directly stimulates 

aldosterone secretion, independent of any effect on the circulating RAAS (Williams, 2005). 

An acute increase in serum potassium of 0.1 mmol/L produces as much as a 25% increase in 

serum aldosterone levels (Himathongkam et al., 1975). This raises the possibility that an 

increase in plasma potassium levels during ACE inhibitor and / or ARB therapy could 
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promote aldosterone breakthrough. However, available evidence to date does not support 

this hypothesis. There was no significant change in pre and post treatment levels of 

potassium following chronic AT-1 receptor blockade or healthy volunteers receiving ACE 

inhibitors and ARBs (Bakris et al., 2000). In CKD mean potassium levels are not 

significantly changed with ARBs (Schjoedt et al., 2004) but Bakris et al. (2000) did 

demonstrate an increase in mean potassium levels (0.3 mmol/L) in a sub-group of patients 

with an eGFR ≤ 60 ml/min/1.73m
2
 treated with ACE inhibitors.  

iii) Loss of the normal feedback mechanism between aldosterone and salt / fluid 

balance- In a recent small study of patient with ESKD, progressive expansion of extracellular 

volume during dialysis failed to suppress aldosterone levels (Bomback et al., 2009a). Thus in 

disease states characterised by RAAS activation such as heart failure and CKD, the normal 

negative feedback response appears to be lost.  

iv) Unopposed activation of angiotensin II type 2 receptor (AT-2) - The AT-2 

receptors account for about 20% of all AT receptors but are not blocked by ARBs. In SHRSP 

rats treated with 24 weeks of AT-1 receptor blockade (candestartan) levels of angiotensin II 

were elevated throughout (secondary to negative feedback) while aldosterone levels decreased 

over the first 4 weeks but subsequently increased above pre-treatment levels. Concurrent 

administration of an AT-2 receptor blocker decreased aldosterone suggesting that aldosterone 

breakthrough in the presence of chronic treatment with ARBs might reflect unopposed 

stimulation of AT-2 receptor (Naruse et al., 2002). 

 

2. Aldosterone escape - occurs in disease states characterised by sodium retention and 

fluid overload such as heart failure, liver failure and ESKD. The reduction in intravascular 

volume and expanded extracellular volume impairs the normal feedback mechanisms for 
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aldosterone homeostasis. As a result aldosterone levels are inappropriately increased relative 

to sodium and fluid balance (Schrier, 2010). Contributory mechanisms include; i) reduced 

renal perfusion pressure and filtration rate, ii) chronic inappropriate stimulation of the RAAS 

and iii) sympathetic nervous system, iv) increased sodium resorption in the proximal tubule, 

distal tubule by aldosterone and collecting duct by naturetic hormones.  

Aldosterone breakthrough and escape can co-exist in heart failure and are associated 

with increased aortic and arterial stiffness (Duprez et al., 1998). Observational studies of 

patients after myocardial infarction have demonstrated a graded relationship between plasma 

aldosterone levels and cardiovascular mortality which is particularly strong with sudden 

cardiac death (Palmer et al., 2008;Tomaschitz et al., 2010). This relationship is present even 

when plasma aldosterone levels are within the normal physiological range suggesting that 

local production of aldosterone or glucocorticoid within the myocardium might mediate 

cardiac injury via the MR. This paracrine action may not be reflected by plasma aldosterone 

levels. It is perhaps not surprising therefore, that the therapeutic strategy of adding MRBs to 

ACE inhibitors and ARBs has proved highly efficacious in reducing cardiac mortality in the 

populations in which it has been studied to date. Chronic kidney disease is also characterised 

by aldosterone breakthrough and escape, with an inverse graded relationship between plasma 

aldosterone levels and eGFR (Tomaschitz et al., 2011). This raises the question as to whether 

similar efficacy and clinical benefits might be achievable with MRBs in this high-risk 

population. 
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1.13.2  The use of mineralocorticoid receptor antagonist in heart failure 

There has been a major increase in the use of MRBs over the past decade following the 

demonstration of their efficacy in the treatment of heart failure, left ventricular dysfunction 

following myocardial infarction and primary hyperaldosteronism (Catena et al., 2007;Pitt et 

al., 1999;Pitt et al., 2003b;Zannad et al., 2011). In the Randomized Aldactone Evaluation 

Study (RALES) of patients with severe heart failure (New York Heart Association [NYHA] 

class III and IV) and an LV ejection fraction (EF) ≤ 35% treated with an ACE inhibitor and 

loop diuretic, randomisation to 25mg daily of spironolactone reduced the risk of cardiac death 

by 31% and rates of hospitalisation for a cardiac cause by 30% compared to standard 

treatment and placebo (Pitt et al., 1999). In the Eplerenone Post-Acute Myocardial Infarction 

Heart Failure Efficacy and Survival Study (EPHESUS) treatment with 25-50mg of the 

selective MR blocker eplerenone in patients 3-14 days after acute myocardial infarction 

complicated by LV dysfunction (EF ≤ 40%), reduced the relative risk of death from a 

cardiovascular cause by 17% and hospitalisation from heart failure by 15% compared to 

placebo (Pitt et al., 2003b). The mortality benefits in both studies were independent of 

reductions in blood pressure and were driven by significant reductions in rates of progressive 

heart failure and sudden cardiac death. More recently, the benefits of MRBs were shown to 

extend to patients with mild heart failure (LV EF ≤ 35% and NYHA class II symptoms). The 

Eplerenone in Mild Patients Hospitalisation and Survival Study in Heart Failure 

(EMPHASIS-HF) demonstrated that treatment with eplerenone 50mg daily in addition to 

standard therapies such as ACE inhibitor or ARB reduced cardiac mortality by 24% and 

hospitalisation from heart failure by 42% compared to placebo (Zannad et al., 2011).  

Improvements in mortality in these studies were postulated to reflect reductions in 

aldosterone mediated LV remodelling secondary to reduced pro-inflammatory and pro-
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fibrotic processes within the injured myocardium (Hayashi et al., 2003). This view was 

subsequently supported by a sub-analysis of serological markers of cardiac collagen turnover 

and fibrosis from patients in RALES. Treatment with spironolactone reduced levels of 

collagen turnover biomarkers compared to increased levels over the 6 month follow-up in 

patients on placebo. Furthermore, the mortality benefits with spironolactone were most 

apparent in patients with the highest baseline levels of biomarkers indicating that aldosterone 

mediated cardiac fibrosis is an “active” process in patients with heart failure and after 

myocardial infarction which can be reduced with aldosterone blockade (Zannad et al., 2000).  

The immediate introduction of MRBs following revascularisation for myocardial 

infarction, reduced echo features (LV EF and dilatation) of adverse LV remodelling and was 

associated with a reduction in cardiac tissue levels of aldosterone. These data suggest that 

high aldosterone levels within myocardium after acute injury stimulate acute adverse LV 

remodelling (Hayashi et al., 2003). Increased levels of aldosterone synthase (which catalyses 

the final step of aldosterone production) were also present in endomyocardial biopsies of 

patients with chronic heart failure but are barely detectable in healthy volunteers. Levels were 

associated with increased myocardial collagen volume, increased LV volumes and decreased 

LV systolic function and were decreased by treatment with spironolactone and ACE inhibitors 

(Satoh et al., 2002). 

Evaluation of plasma aldosterone early after myocardial infarction is also predictive of 

an adverse prognosis in both the short and long-term (Palmer et al., 2008;Tomaschitz et al., 

2010). However, it is important to note that in these studies, the plasma level of aldosterone is 

rarely (≤ 1%) above the upper limit of the normal range, reflecting a poor correlation with 

potentially higher aldosterone levels within tissue. An alternative hypothesis for the efficacy 

of MRBs in heart failure when aldosterone plasma levels and salt-status are normal, might 
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relate to blockade of glucocorticoids within cardiomyocytes and vascular smooth muscle 

cells. Inactivation of 11β-HSD2 or generation of reactive oxygen species in damaged tissue 

(secondary to inflammation and oxidative stress) are postulated to activate MR-glucocorticoid 

complexes, allowing physiological levels of glucocorticoids to mimic the activity of 

aldosterone at the MR. Thus, the MRBs might provide dual protection of the MR in many 

clinical conditions rather than just states of aldosterone / salt excess (Funder, 2005).  

 

 

1.13.3  The use of mineralocorticoid receptor blockers in chronic kidney disease 

Aldosterone breakthrough is present in about 50% of patients with CKD after a year of 

treatment with ACE inhibitors, ARBs or combination therapy, with no differences between 

groups (Horita et al., 2006). Thus, augmentation of RAAS blockade with MRBs might 

provide an important therapeutic strategy in patients with CKD.  

 Prior to the work described in this thesis, there were no published prospective clinical 

studies investigating the effect of MRBs in combination with an ACE inhibitor or ARB in 

CKD on markers of cardiovascular function. Data were limited to animal models and a few 

small clinical studies investigating the role of MRBs in reducing proteinuria (Bomback et al., 

2008a). These data supported a beneficial action of MRBs in reducing the progression of renal 

disease (Bianchi et al., 2010;Chrysostomou and Becker, 2001). A systematic review of 15 

clinical studies involving 436 patients confirmed reductions in baseline proteinuria of between 

15% and 54%, with most estimates in the 30% to 40% range. Half of these studies reported a 

reduction in blood pressure with additive MRB treatment (Bomback et al., 2008a).   

 Despite these apparent clinical benefits, MRBs are rarely used in CKD because of the 

potential risks of hyperkalaemia and further deteriorations in renal function (Bomback et al., 
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2008a). These side-effects are well reported in the heart failure population although reported 

hyperkalaemic complication rates remain variable. In RALES there was a mean increase in 

serum potassium levels of 0.3-0.4 mmol/L with spironolactone and rates of serious 

hyperkalaemia of 2%. However, following the publication of RALES a number of groups 

reported higher rates of hyperkalaemia with some fatal events (Juurlink et al., 2004). Analyses 

identified poor patient selection as a major contributory factor for the adverse events observed 

in the “real world”; over a third of patients prescribed spironolactone after RALES did not 

meet the study inclusion criteria at the time of discharge from hospital. Specifically, 17% of 

patients had severe renal impairment (eGFR < 30 ml/min/1.73m
2
), 23% had discharge 

potassium of > 5 mmol/L and 17% were still receiving potassium supplements (Juurlink et al., 

2004). 

Data from a meta-analysis of MRB use in proteinuric CKD reported a serum 

potassium ≥ 5.5 mmol/L in 5.5% of patients (Bomback et al., 2008a). Further analyses have 

suggested that patient-related factors including baseline potassium ≥ 4.5 mmol/L and eGFR ≤ 

45 ml/min/1.73m
2
 might help predict an increased risk of hyperkalaemia in CKD (Khosla et 

al., 2009). Overall, the true rates of hyperkalaemia and associated morbidity with MRBs in 

CKD remain uncertain. Mild hyperkalaemia (defined as serum potassium between 5.5-5.9 

mmol/L) is common with in all patient groups using MRBs. A recent prospective 

observational study involving over 800 patients with CKD stage 3-5, reported a mild 

hyperkalaemia rate of 8% but with no associated increase in mortality or progression to end-

stage CKD (Korgaonkar et al., 2010). This data serves to emphasise the need for large-scale, 

prospective, randomised studies to evaluate the many unanswered questions when using 

MRBs in CKD. 
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1.14 Summary 

End-stage kidney disease is associated with high rates of cardiovascular mortality particularly 

sudden cardiac death. Characteristic structural and functional changes in the vasculature 

(arterial stiffness) and heart (left ventricular hypertrophy and fibrosis) might be central to 

these adverse outcomes. However, the natural history of cardiovascular abnormalities in CKD 

remains poorly understood and reflects a paucity of data in early stage CKD. 

Aldosterone levels are increased in CKD and might be an important cause of vascular 

and cardiac damage. To date, there have been no studies examining the effects of 

mineralocorticoid receptor blockers on cardiovascular function in CKD. Whether these agents 

are effective or safely tolerated in CKD is yet to be fully elucidated. 
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1.15 AIMS AND HYPOTHESES 

The three principle aims of this thesis were: 

1. Determine whether early stage CKD is associated with abnormalities of arterial 

and ventricular function.   

2. Determine whether blocking the action of aldosterone with a mineralocorticoid 

receptor blocker – spironolactone, is effective at improving markers of cardiovascular 

disease. 

3. Examine the safety and tolerability of spironolactone in early stage. 

 

The following hypotheses were addressed: 

1. Patients with early stage CKD without known cardiovascular disease have 

evidence of large artery stiffness and adverse changes in systolic and diastolic 

ventricular function compared to healthy volunteers. (Chapter 3). 

2. Abnormalities of myocardial deformation precede overt abnormalities detected 

with standard parameters of ventricular function in early stage CKD (Chapter 4). 

3. In patients with early stage CKD, the addition of spironolactone to concomitant 

treatment with ACE inhibitors and angiotensin receptor blockers will improve 

prognostically significant markers of arterial stiffness and left ventricular mass 

(Chapter 5). 

4. In patients with early stage CKD, spironolactone will improve markers of LV 

systolic and diastolic function and reduce serological markers of inflammation, 

ventricular stress, and collagen turnover (Chapter 6). 

5. Spironolactone is well tolerated and can be used safely in patients with early stage 

CKD (Chapter 7).  
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CHAPTER 2 

 

 

 

METHODS – ASSESSMENT OF HAEMODYNAMIC, BIOCHEMICAL AND 

CARDIOVASCULAR STRUCTURE AND FUNCTION  

 



87 

 

2.1 GENERAL 

 

2.1.1  Subjects 

Supported by a study research nurse, I screened all renal out-patient clinics at University 

Hospital Birmingham for potential subjects between March 2005 and March 2007. Using a 

database of all renal out-patients, we identified patients with a stable estimated GFR (eGFR) 

in the range specified in the inclusion criteria. Electronic letters were then screened for these 

patients to identify the aetiology of renal disease, associated co-morbidities and drug history.  

Inclusion criteria were; 

1. Aged 18-80 years 

2. Stage 2 (eGFR 60-89 ml/min/1.73m
2
 and evidence of kidney damage for ≥3 months) 

or stage 3 CKD (GFR 30-59 ml/min1.73m
2
). GFR was estimated (eGFR) using the 4-

variable Modification of Diet in Renal Disease formula (Levey et al., 1999) 

3. Treatment with an ACE inhibitor and / or angiotensin II receptor blocker for ≥6 

months at maximally tolerated dosage 

4. Controlled blood pressure (defined as a mean daytime 24 hour ambulatory blood 

pressure monitoring ≥ 130/85 mmHg) 

Exclusion criteria were; 

1. History of angina, myocardial infarction, heart failure, valvular heart disease 

2. History of cerebral vascular disease 

3. History of peripheral vascular disease 

4. Permanent atrial fibrillation 

5. A history of uncontrolled hypertension  
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6. Diabetes mellitus  

7. History of anaemia (defined as a haemoglobin ≤ 12 g/dL) 

8. Previous hyperkalaemia (defined as a serum potassium ≥ 5.5 mmol/L)  

Patients identified from screening who fulfilled the study inclusion criteria were spoken to by 

me or a study research nurse during their out-patient clinic appointment. If the patient 

expressed an interest about possible participation, a detailed patient information sheet was 

provided. All patients were advised to discuss with appropriate family members and asked to 

return a reply slip with contact details if they were agreeable to participation. Contact details 

of a consultant nephrologist, independent from the study were provided for further unbiased 

advice. Details of the study and contact details of the research team were formally provided 

for each patient‟s general practitioner after written consent was obtained. 

 

Healthy Volunteers 

Forty healthy volunteers (aged 18-80 years) were recruited from staff at our institution by way 

of an advertisement. Detailed information about the study was provided. Volunteers were 

unable to participate if they had evidence of CKD (using eGFR and urine analysis) or met any 

of the study exclusion criteria.  

 

2.1.2  Ethical Considerations 

The study protocol was approved by the South Birmingham Research and Ethics committee 

(04/Q2707/294), University Hospital Birmingham Research and Development committee 

(RRK2749) and was undertaken in accordance with the Declaration of Helsinki of the World 

Medical Association. All patients and volunteers gave written informed consent before entry 

into the study.   
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2.2 METHODS OF CLINICAL ASSESSMENT 

 

2.2.1  Estimated glomerular filtration rate 

Glomerular filtration rate was estimated using the 4-variable Modification of Diet in Renal 

Disease Equation (4-v MDRD) Study equation (Levey et al., 1999):  

 

eGFR (ml/min/1.73m
2
) 

 

= 175 x [serum creatinine (mg/dl)]
-
 
1.154

 x [age]
 -203

 

 

[x 0.742 for women] [x 1.210 for blacks] 

 

This formula is recommended by the K/DOQI guidelines and has been validated against the 

urinary clearance of 
125

IIothalamate in multiple populations.  

 

 

2.2.2 Blood pressure measurement 

Resting “office” brachial blood pressure was assessed using the Dinamap Procare 

oscillometric sphygmomanometer (GE Healthcare, Hatfield, United Kingdom) which has 

been independently validated by the British Hypertension Society (Reinders et al., 2006). 

Three readings were taken in the non-dominant arm after 10, 20 and 30 minutes of supine 

rest, with the last two reading averaged and used for assessment of arterial stiffness.  

Patients underwent 24 hour ambulatory blood pressure monitoring (ABPM) using a 

Meditech ABPM-04 monitor (PMS Instruments, Maidenhead, United Kingdom). This model 

was validated by the British Hypertension Society (Barna et al., 1998). An appropriate sized 

cuff was fitted to the non-dominant arm; adult cuff 24-32cm circumference or large adult cuff 

32-42cm circumference. Patients were told to engage in normal activities during the recording 

period and educated about the procedure specifically; keeping the arm straight and steady 
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during measurements, the frequency of inflations, methods to deflate the cuff if required and 

how to remove the device after 24 hours. Monitors were programmed to record blood pressure 

every 30 minutes in “daytime hours” 06.00 and 22.00 and hourly over “night” between 23.00 

and 05.00. Data from the recordings was analysed by Cardio Visions dedicated software 

(PMS Instruments, Maidenhead, United Kingdom) according to the British Hypertension 

Society guidelines (O'Brien et al., 2000). Valid data was considered ≥14 systolic and diastolic 

recordings in “daytime” and 7 over “night”. Nocturnal dipping was defined as ≥10% 

reduction in mean nocturnal blood pressure compared to mean daytime blood pressure. An 

example of ABPM-04 software is provided in Figure 2.1.
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Figure 2.1  Example of 24 hour ambulatory blood pressure recording using Cardio Visions  

dedicated software (PMS Instruments, Maidenhead, UK)
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2.2.3  Non-invasive assessment of large artery stiffness 

Patients were asked to refrain from caffeine containing products and smoking for 4 hours 

prior to assessment. Measurements of pulse wave velocity (PWV) and pulse wave analysis 

(PWA) were performed using the SphygmoCor® system (AtCor, Sydney, Australia) after 30 

minutes of quiet supine rest with brachial blood pressure recorded at 10 minute intervals. I 

performed all studies to minimize operator variability and was blinded to treatment group and 

preceding measurements. Measurements made using the SphygmoCor® system are highly 

reproducible in adults and well validated in patients with CKD (Laurent et al., 2006). 

 

2.2.3.1  Pulse wave velocity 

The SphygmoCor® system (AtCor, Sydney, Australia) was used to measure carotid-femoral 

pulse wave velocity (Ca-Fem PWV). This device consists of a Millar piezo-resistive pressure 

tonometer (SPC-301; Millar Instruments, TX, USA) coupled to a SphygmoCor® electronic 

console (AtCor, Sydney, Australia), attached to a computer with specialised SphygmoCor® 

software (SCOR 2000, Version 7.0). The micromanometer recorded sequential pressure 

waveforms from the carotid and femoral pulses which were then averaged over an 11 second 

recording window. The transit time between the two arterial sites was determined by an 

“anchor point” on the foot of the pressure waveform (end-diastole) and the peak of the R-

wave on the simultaneously measured ECG (Figure 2.2). The time between the R-wave and 

the proximal pulse is subtracted from the time between R-wave and distal pulse to obtain the 

pulse transit time. The distance between the arterial sites is measured in a direct line from the 

sternal notch to the femoral pulse and the distance from the sternal notch to the carotid pulse 

subtracted from the total path length. This method takes account of parallel transmission in 

the aortic arch branch vessels, providing a more accurate calculation of PWV.  
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PWV is calculated as: 

PWV = D (meters) / Δt (seconds). 

 

Where; D was the distance between the carotid and femoral pulse sites and Δt is the transit 

time between the foot of arterial wave between the two arterial sites. The average of three 

stable readings was calculated for analysis. At typical carotid and femoral applanation 

tonometer recording is shown in Figure 2.2.  
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Figure 2.2  Carotid-femoral pulse wave velocity using applanation tonometry 

 

Typical tonometry recording at the carotid and femoral arteries measured using the SphygmoCor® system.   

 

Pulse Transit time = [Time between peak R-wave to foot of femoral pulse (b)] – [Time from peak R-wave to foot of carotid pulse (a)] 

Arterial distance is measured from sternal notch-to-femoral pulse minus the distance from the sternal notch-to-carotid pulse in order to take 

account of flow into the aortic arch branches. 

a 

b 
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2.2.3.2  Pulse wave analysis 

Applanation tonometry using the SphygmoCor® system (AtCor, Sydney, Australia) was used 

to assess pulse wave analysis (PWA). The radial artery was gently compressed against 

underlying bone using a micromanometer pressure transducer (SPC-301; Millar Instruments, 

TX, USA) thereby equalizing circumferential pressures and allowing a high-fidelity pressure 

waveform to be recorded (Figure 2.3). The radial waveform was calibrated using the brachial 

systolic and diastolic pressures measured using a validated blood pressure cuff. This data was 

transmitted to the SphygmoCor® electronic console and a validated transfer function 

algorithm (between the aorta and radial artery) applied to calculate an average central aortic 

waveform from sequential contiguous pulses (Chen et al., 1997). The data displayed were; 

radial and reconstructed aortic arterial wave forms and peripheral and calculated central aortic 

systolic and diastolic pressures (Figure 2.4). Using the reconstructed central aortic wave form 

further parameters were extracted relating to the pressure load in the aorta: 

1.  Augmented pressure (AP) - the difference between the forward pressure wave 

(usually the shoulder / inflection on the ascending limb of the ascending wave, P1) 

and resultant peak from the composite of forward and reflected waves, P2. Thus 

AP = ΔP, where ΔP is the difference between the later systolic shoulder / peak 

pressure P2 and early systolic shoulder P1) (Figure 2.4). 

2. Augmentation index (AIx) - represents the difference between the second and first 

peaks of the central pressure waveform in systole, expressed as a percentage of the 

pulse pressure. Thus the AP is quantified in terms of the relative change over the 

whole pulse; AIx = [ΔP / pulse pressure] x 100, where ΔP is the difference 

between the early systolic shoulder and later systolic shoulder). 
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3. Augmentation Index standardised for a heart rate of 75 beats per minute (AIx 75) - 

the known effects of heart rate on wave reflection were adjusted for by calculating 

AIx for at a reference heart rate of 75bpm using the SphygmoCor® electronic 

console.  
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Figure 2.3  An example of radial artery applanation tonometry (SphygmoCor® system, AtCor, Sydney, Australia) 

 

      

The radial artery pressure wave form was sampled over 10 seconds using the micromanometer (SPC-301; Millar Instruments) and 

calibrated with the average blood pressure measured non-invasively at the brachial artery. Waveforms were processed with dedicated 

software (SphygmoCor® version 7, AtCor) to calculate an averaged radial artery waveform and to derive a corresponding central aortic 

pressure waveform using a validated generalised transfer function. 
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Figure 2.4  Pulse wave analysis using applanation tonometry in: a) patient with end-stage  

  kidney disease and b) age and gender matched healthy volunteer 

 

 

Haemodynamic parameters derived by pulse wave analysis of the central aortic waveform; 

P1; first peak / shoulder from out-going pressure wave, P2; late peak from the reflected wave, 

SP; central systolic pressure, DP; central diastolic pressure, PP; pulse pressure, AP; 

augmentation pressure (P2-P1). In ESKD (example a), P2 occurs earlier in systole with 

significant augmentation of central pressure. The height of the late P2 above the inflection 

(P1) defines the augmentation pressure. In the healthy volunteer (example b), P2 occurs late 

in systole with little augmentation of central pressure. 

AP 

P1 

P2 

PP 

P1 

P2 
AP 

SP 

DP 

a. 

b. 
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2.2.4   Transthoracic echocardiography 

Transthoracic echocardiography uses ultrasound waves to provide detailed imaging of the 

heart. It is non-invasive, portable and rapidly available making it the primary imaging 

modality for the assessment of cardiac anatomy and function. 

 

2.2.4.1  Basic principles  

Ultrasound waves are inaudible mechanical vibrations with a frequency greater than 20,000 

cycles per second (20 KHz) that induce alternate refractions and compressions of the physical 

medium through which they pass. They are generated from the piezoelectric crystals within 

the transducer of the echo machine. An alternating current expands and compresses polarized 

particles within the crystal generating a burst or pulse of ultrasound wave which is transmitted 

(propagates) through tissue (medium) as a straight beam. The acoustic properties of the media 

determine how much of the beam is reflected, refracted (changes the direction of the wave) 

and attenuated (absorption of ultrasound energy) and are the basis of ultrasound imaging. The 

reflected ultrasound energy is received by the piezoelectric crystal in the transducer and 

converted to low amplitude voltage signals. The signal undergoes complex manipulation to 

form an image (Armstron WF, 2010). 

 

2.2.4.2  Imaging modalities  

Advances in echo technology now allow multiple image displays. I have provided a brief 

description of the techniques employed in my research programme.  

1. Motion (m) mode - allows a single dimension of anatomy to be graphically presented 

against time. It allows a high repetition frequency of the pulse transmission and 

receive phase of the transducer. The high sampling rate is valuable for evaluation of 
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rapid intra-cardiac motion of continuously moving structures but is disadvantaged by a 

single 1D “line of sight”. 

2. Two-dimensional imaging (2D) – generated by sweeping of the ultrasound beam made 

up of multiple scan lines across the tomographic plane. Reflected ultrasound signals 

from each scan line are received by the transducer to generate a cross-sectional image 

depicting structure and function in real time. Tissue harmonic imaging was employed 

in all studies. Harmonic frequency energy is generated as the signal penetrates through 

tissue and differs from fundamental frequency which attenuates constantly during 

propagation. The advantages include; increased depth of propagation, reduced artefact 

and better endocardial definition. 

3. Doppler imaging- based on the change in frequency of the backscattered signal from 

small moving structures. It is frequently used to assess the velocity, direction and 

pattern of intra-cardiac blood flow.  

 

2.2.4.3  Imaging Protocol 

All echocardiograms were performed at University Hospital Birmingham using second 

harmonic imaging on a Vivid 7 (GE Vingmed Ultrasound, Horten, Norway) machine with a 

M3S multi-frequency phased-array transducer (1.5 MHz). Patients were positioned in a left 

decubitus positioning with ECG and brachial blood pressure monitoring. Standard parameters 

for chamber quantification, left ventricular mass and left ventricular systolic and diastolic 

function are outlined in Table 2.1. All measurements were made in triplicate and averaged 

according to the recommendations of the American Society of Echocardiography (Lang et al., 

2005;Nagueh et al., 2009) 
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Table 2.1 Standard echo parameters measured using American Society of  

 Echocardiography guidelines (Lang et al., 2005) 

 

Chamber dimensions & Mass  

Left ventricular dimensions & volumes M-mode, 2D measurements  

LV mass M-mode , 2D area-length method 

Ventricular systolic function  

Ejection fraction Biplane method of discs 

Tissue Doppler myocardial systolic velocities Pulse wave Doppler 

Myocardial deformation 1D strain & 2D strain imaging 

Ventricular diastolic function  

Trans-mitral inflow  

Pulmonary venous velocities 

Pulse wave Doppler 

Pulse wave Doppler 

Colour m-mode propagation velocity M-mode 

LA volume 2D imaging 

Isovolumic relaxation time Pulse wave Doppler 

Tissue Doppler early myocardial velocities Pulse wave Doppler 

Ventricular systolic & diastolic function  

Tei Index Pulse wave Doppler 

 

Examples of echo images demonstrating these measurement are shown in Figure 2.6 
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2.2.4.4  Conventional measurements of left ventricular mass, systolic and diastolic 

function 

 

LV mass – I used the American Society of Echocardiography (ASE) guidelines to calculate 

LV mass. Recommended methods include: 

i) Two-dimensional (2D)-targeted m-mode LV measurements (Figure 2.5a). Mass is 

estimated using the recommended cube formula proposed by Devereux et al. for 

leading edge to leading edge measurements (Devereux et al., 1986): 

 

LV mass (m-mode) =  0.8 x (1.04 (LVIDd + PWTd + SWTd)
3
 – (LVIDd)

3
 + 0.6g 

Where; LVIDd; left ventricular internal diameter at end-diastole, PWTd; posterior wall 

thickness at end diastole and SWTd; septal wall thickness at end diastole. 

 

This formula is limited to patients with normal LV geometry as cubing used in the formula, 

magnifies small errors in the measurements and increases the variability in serial assessments.  

 

ii) Two-dimensional imaging (Figure 2.5b). Myocardial area was assessed at a mid-

papillary level in the parasternal short axis view and LV length in the apical 4 

chamber (4C) view (Lang et al., 2005). Measurements were applied to the area-

length (A/L) formula: 

 

LV mass (A/L method) =  1.05 [{5/6 x A1 x (a+d+t)}] – [5/6 x A2 x (a+d)] 
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Where; A1 = total LV area (epicardial contour), A2 = LV cavity area (endocardial contour), a 

= LV long axis length, d = widest short-axis diameter at mitral annular plane, LV, t = mean 

wall thickness derived from epicardial and endocardial areas.  
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Figure 2.5 Estimation of left ventricular mass on echo using American Society of Echocardiography guidelines 

a. 2D-target m-mode method       b. 2D area-length method 

             

1. Septal wall thickness at end-diastole    1. Epicardial contour 

2. LV internal diameter at end-diastole    2. Endocardial contour 

3. Posterior wall thickness at end-diastole   3. LV long-axis length 

4. Widest short-axis diameter at the mitral annular plane 

1 

2 

3 

1 
2 

3 

4 

3 
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Mitral inflow velocities – measured using pulse wave Doppler with the sample volume at the 

tips of the mitral valve during diastole (Figure 2.6b). Measurements include the peak early 

filling (E-wave) and late diastolic filling (A-wave) velocities, the E/A ratio and deceleration 

time (DT) of early filling velocity. Traditionally E/A has been used to assess diastolic 

function as a marker of the LA-LV pressure gradient, however both are effected by increasing 

age ( E velocity and E/A ratio decrease and DT and A velocity increase), heart rate and 

rhythm disturbance.  

 

Colour m-mode propagation velocity (Vp) – measured in an A4C view using a colour m-

mode Doppler through the centre of the LV with measurement of the slope of the first aliasing 

velocity during early filling (Figure 2.6c). It is a marker of LV diastolic function which 

measures the mitral-apical flow rate.  In the normal ventricle there is rapid early filling of the 

LV (LV suction) driven by the LA-LV pressure gradient. A Vp ≤ 50 cm/s is considered 

abnormal. 

 

Isovolumic relaxation time – measured by continuous wave Doppler positioned in the 

LVOT outflow, simultaneously showing the onset of mitral inflow and end of aortic ejection 

(Figure 2.6d). Impairment of myocardial relaxation reduces the LA-LV pressure gradient. The 

isovolumic relaxation period is therefore increased until LV pressure is < LA pressure and the 

mitral valve opens.  

 

Myocardial performance Index (MPI) / Tei index – A Doppler-derived index of combined 

systolic and diastolic myocardial performance. It compares the total systolic time from mitral 

valve closure to mitral valve opening with systolic time involved in actual aortic flow (Figure 
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2.6d). MPI = (isovolumic contraction time + isovolumic relaxation time) / aortic ejection 

time. The normal LV MPI is ≤ 0.4 and progressively higher values imply worsening 

ventricular function and correlates with adverse cardiac outcome in ischaemic and non-

ischaemic heart disease.  
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Figure 2.6 Conventional measures of left ventricular systolic and diastolic function  

 

 

 

 

                    

LVEDd –end-diastolic diameter     E; peak early filling velocity (m/s), A; late diastolic filling  

         velocity (m/s), DT; deceleration time of early filling velocity (ms)  

b. Trans-mitral inflow velocities (m/s) and deceleration time (ms) 

measured by pulse wave Doppler at the tips of the mitral valve in 

an apical 4 chamber view 

a. Left ventricular dimensions in diastole using by 2D imaging in  

the parasternal long axis view  
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DT 

LVEDd 
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c. Colour flow propagation velocity (cm/s) using colour m-mode 

Doppler in an apical 4 chamber view 

 

                        

CFP; colour flow propagation velocity     IVRT    ; isovolumic relaxation time = time between aortic valve  

          closure (AVC) and mitral valve opening (MVO)  

IVCT      ; isovolumic contraction time = time between MV 

closure (MVC) and AV opening (AVO) 

 

d. Isovolumic relaxation and contraction times (ms) measured 

using continuous wave Doppler in an apical 4 chamber view 

IVRT 

CFP velocity 

AVC MVO 

IVCT 

AVO MVC 
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2.2.4.5  Assessment of longitudinal ventricular function 

The LV myocardial wall has a complex arrangement of myofibres which are responsible for 

the twisting motion of the ventricles. As I described in chapter 1, subendocardial fibres are 

longitudinally orientated. Following electromechanical activation the fibres shorten, moving 

LV base towards the apex (Mor-Avi et al., 2011). Assessment of this motion is known as 

longitudinal or long-axis systolic function. The subendocardial fibres also move inward 

toward the LV cavity and contribute approximately 40% of LV thickening along with the 

circumferential mid-wall fibres. This is known as radial systolic function. The subepicardial 

fibres have an oblique orientation and are responsible for the rotational motion of the heart 

(Figure 2.7). A comprehensive assessment of longitudinal systolic and diastolic function was 

made in work described in this thesis using a number of complimentary echo techniques 

outlined in sections 2.2.4.4.1 and 2.2.4.4.2.  

 

2.2.4.5.1  Tissue Doppler myocardial velocities 

Tissue Doppler imaging (TDI) is a variation of conventional Doppler flow techniques, 

allowing quantification of the Doppler shift of myocardial tissue motion rather than blood. 

Assessment of longitudinal function using TDI provides quantitative data for the assessment 

of ventricular systolic and diastolic function and ventricular haemodynamics (Yu et al., 2007) 

and is prognostic indicator in ESKD (Rakhit et al., 2007).  

 Tissue Doppler imaging was used to assess the long-axis function of the LV in 

the basal and mid myocardial segments of the septal, lateral, anterior, inferior, antero-septal 

posterior walls using standard apical 4 chamber (4C), 2 chamber (2C) and 3 chamber (3C) 

views. A schematic representation of the method used to acquire TDI is presented in Figure 

2.8.  
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Figure 2.7 Schematic representation of left ventricular myofibre orientation 

 

 

Adapted from Armstrong WF & Ryan T (2010) 

 

Longitudinal movement of the base toward the apex (long-axis systolic function) is directed 

by shortening of the subendocardial fibres 

Left ventricular myocardial thickening (radial systolic function) is directed by the 

subendocardial and circumferential fibres 

The twisting motion (torsion) of the left ventricle is directed by the subepicardial fibres 

  

Circumferential motion 

Longitudinal motion Radial motion 
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Figure 2.8 A schematic representation of the method for obtaining myocardial velocities  

  using tissue Doppler imaging 

 

 

 
Adapted from Armstrong WF & Ryan T (2010) 

The longitudinal velocity of the myocardium is assessed by placing a sample volume within 

the myocardium at a region of interest. One dimensional tissue Doppler imaging only 

measures the velocity along the scan lines aligned with the direction of motion. The 

myocardium moves toward the transducer in systole and away in diastole.  

Two-dimensional speckle tracking derived tissue Doppler is (Doppler) angle independent and 

measures the vector velocities in the any direction within the imaging plane relative to the 

direction of muscle contraction (VL – longitudinal, VR – radial). 

 

Data are presented graphically as velocity of the myocardium relative to time. Examples are 

presented in Figure 2.9a and 2.12a. 

  

VL

VT

1D-tissue Doppler 

imaging 

2D speckle tracking  

tissue Doppler imaging 
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Parameters were measured using two techniques; spectral pulse wave TDI (PW-TDI) 

with a sample volume placed within the myocardium at the level of the mitral and tricuspid 

annulae. The low Doppler shift frequencies are recorded as the myocardium moves through 

the sample volume in a single cardiac cycle (Figure 2.9a). The major strengths of this 

technique include; measurement of an instantaneous peak velocity in the region of interest 

(ROI), high temporal resolution and reproducible for serial evaluations. The disadvantages 

include; the inability to simultaneously perform measurements in different walls within the 

same cardiac cycle and need for parallel align of the ultrasound beam with the ROI (angle 

dependency) as with any Doppler technique which excludes some myocardial segments. In 

later studies I used 2D colour TDI. A colour velocity map was fitted over the wall of interest 

or completely over the apical 4-chamber image. Each pixel encoded a mean myocardial 

velocity relative to the transducer. Data was anlaysed off-line generating a graphical 

representation of myocardial velocities against time in multiple segments within the same 

cardiac cycle (Figure 2.9b). The advantages of this method were; post-processing adjustment 

of the sample volumes to track myocardial motion, thus staying in the same ROI throughout 

the cardiac cycle and sampling of multiple myocardial regions in the same cardiac cycle.  

 

The following parameters were measured:  

1. Systolic velocity (Sm)- the velocity of myocardium contraction. On spectral 

TDI this was measured at the level of the valve annulae and on colour TDI in the basal and 

mid segments. It is a sensitive marker of mildly impaired systolic even with a normal EF. A 

reduction in Sm (usually ≤ 8 cm/s) signifies impaired contraction.  

2. Early myocardial diastolic velocity (Em)- a marker of LA-LV pressure 

gradient and hence myocardial relaxation. Values decrease with age but in general lateral Em 
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≥ 10 and septal Em ≥ 8 are usually observed in the normal subject and are reduced with 

impaired LV relaxation and increase LV filling pressure. A reduction in Em (usually ≤ 8 

cm/s) is one of the earliest markers of diastolic dysfunction. Unlike mitral inflow velocities, 

Em is less influenced by changes in pre-load and remains low with more advanced left 

ventricular impairment.  

3. Ratio of mitral inflow velocity to Em (E/Em) - an estimation of LV filling 

pressure which correlates well with invasive assessment at cardiac catheterization (Ommen et 

al., 2000). An E/Em lateral ratio >12 and septal ≥15 are correlated with elevated LV early 

diastolic pressure. E/Em lateral and septal < 8 is correlated with normal LV early diastolic 

pressure (Figure 2.10). 

 

Normal values for TDI measurements decrease with age, differ between different 

walls and across the wall, being higher in the subendocardium than epicardium. There is also 

a base to apex gradient with velocities in the base greater than at the apex. Colour TDI 

measurements are typically 20-30% lower than spectral TDI reflecting measurement of the 

mean velocity of the region of interest and positioning in the basal segment rather than the 

higher velocity annular region.  
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Figure 2.9a  An example of spectral pulse wave tissue Doppler Imaging 

 

 

Figure 2.9b  An example of colour tissue Doppler Imaging 

 

Analysis of basal and mid segments of the LV septum performed off line (EchoPac software 

PC version 7.0.1; GE Vingmed Ultrasound AS). Sm; systolic velocity, Em; early myocardial 

diastolic velocity.  

Sm 

Em 

Em 

Sm 
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Figure 2.10  Calculation of early filling velocity / early myocardial velocity ratio (E/Em) using pulse wave and tissue Doppler imaging   

 

       

Early trans-mitral inflow velocity = 70 cm/s      

Early myocardial diastolic relaxation velocity 8cm/s 

Basal septal annular E/Em = 9 

Trans-mitral E velocity = 70 cm/s 

Early myocardial diastolic velocity = 8 cm/s 
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2.2.4.5.2  Myocardial deformation 

The echocardiographic measurement of myocardial deformation provides a series of regional 

and global quantitative measures of myocardial function and contractility. Deformation 

indices include strain, strain rate and torsion which provide a more direct assessment of 

intrinsic myocardial contractility than EF or wall motion analysis (Mor-Avi et al., 2011).  

Strain (S) is a measure of deformation (%) and refers to the change in myocardial 

length from an applied force. Strain rate (SR) is the time course of the deformation (s
-1

) and is 

derived from the difference of two velocities normalized to the distance between them. By 

convention, ventricular contraction shortens longitudinal and circumferential fibres giving a 

negative strain and radial fibres lengthen and thicken giving positive strain. As such, normal 

longitudinal contraction is defined by negative systolic strain followed by biphasic positive 

diastolic strain corresponding to early and late diastolic filling (Figure 2.11).  

 

Indices can be calculated using 1D-TDI or from 2D (Doppler independent) speckle 

tracking techniques. In my early studies, I used the first reported methodology known as 1D-

strain which is derived from TDI. The selected wall of interest was positioned in-line with the 

ultrasound beam and a narrow colour velocity map is placed over it to achieve frame rates of 

180-220 frames per second. A 12 x 8 mm sample volume was positioned in each of the basal, 

mid and apical segments. Three cardiac cycle loops triggered to the electrocardiogram were 

acquired for each image in end-expiration and stored digitally for off-line analysis. Using 

commercially available software (EchoPac, GE Health Care. Norway) an instantaneous 

gradient of velocity along a sample length is quantified by performing a regression calculation 

between the velocity data from adjacent sites along the scan line. These instantaneous data 

may then be combined to generate a SR curve and subsequent integration of SR curves 



117 

 

provides data on strain (Figure 2.11). These data therefore reflect the movement of one tissue 

site relative to another within the sample volume, in contrast to TDI velocity data which 

reflect movements of one site relative to the transducer and can be influenced by contraction 

of adjacent segments. This method is technically challenging (signal noise, angle dependence) 

and time consuming (analysis of individual walls) but has been well validated using 

microcrystals and later cardiac MRI (Edvardsen et al., 2002;Urheim et al., 2000). 

 

Newer 2D speckle tracking (Doppler independent) semi-automated techniques for 

assessing deformation are accurate, well validated and not effected by 1D methodology 

limitations (Amundsen et al., 2006). This technique analyzes motion by tracking speckles 

(natural acoustic markers) generated from structures smaller than the ultrasound wavelength. 

Blocks of speckles in a discrete location are tracked from frame to frame (simultaneously in 

multiple regions) and tissue displacement data is derived from which strain and strain rates 

can be calculated. Two dimensional grey scale images from the apical four and two chamber 

views with sector depth and width optimised, were acquired at end-expiration at a frame rate 

≥80 / second. The endocardial border was manually tracked at end-systole using 

commercially available software (2D-strain EchoPac PC v.7.0.1, GE Healthcare, Horten, 

Norway). The software automatically defined the epicardial and mid myocardial line within 

the region of interest and calculates the frame-to-frame displacements of the speckle-pattern 

throughout the cardiac cycle (Figure 2.12). The advantage of speckle tracking include: 

quantification of deformation indices in any direction within the imaging plane and in 

simultaneous ROIs, less angle dependence and less time consuming semi-automated off-line 

analysis packages. 

. 
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Figure 2.11  A schematic representation of the methodology for obtaining and calculation of myocardial deformation for the septal  

wall of the left ventricle 

 
As the ventricle contracts, muscle shortens in the longitudinal dimension. The change in distance between two discrete points within the 

region of interest is used to calculate strain and change in velocity to calculate strain rate.  

A; late myocardial strain, d; displacement, E; early myocardial strain, ∆L; change in length in segment studied, Lo; baseline length, peak 

SR; peak systolic strain rate, peak S; peak systolic strain, ∆V; change in velocity gradient in segment studied  
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Figure 2.12  Examples of 2D speckle tracking using (EchoPac PC v.7.0.1 software (GE Healthcare, Horten, Norway) for calculation of : 

  a) myocardial tissue velocities (Sm, Em, Am), b) strain rate (SR), c) strain (S)  

                             

               

a) 
b) 

c) 

b) 

SR 

Sm 

Em Am 

S 

See text for further explanation of the parameters measured. 



120 

 

2.2.4.5.3.  Assessment of arterial-ventricular interaction 

The interaction of the left ventricle with the arterial system, termed arterial-ventricular 

interaction or coupling, was assessed on echo. The parameters of “elastance” provide a non-

invasive estimate of stiffness of the aorta (arterial elastance), left ventricle in systole (end-

systolic elastance) and left ventricle in diastole (diastolic elastance). Each parameter of 

elastance was mathematically derived using echo methodologies previously validated against 

“gold standard” invasively measured using conductance catheters (Table 2.2).   

 

 Effective arterial elastance represents the net arterial load that is imposed on the left 

ventricle. It is not a measure of a specific arterial property; rather it is an integrative index that 

incorporates the principal elements of arterial load, including peripheral vascular resistance, 

total arterial compliance, pulsatile load, and systolic and diastolic time intervals (Kelly et al., 

1992a). 

 Left ventricular end-systolic elastance represents an index that integrates intrinsic LV 

contractility as well as the modulating effects of the geometric, structural and functional 

properties of the left ventricle. It is considered a load independent integrated measure of LV 

chamber performance that can be related to an integrated measure of arterial load (Ea) (Chen 

et al., 2001).  

 Diastolic elastance is an index of diastolic stiffness. The ratio of E/Em is well 

validated as a measure of LV end-diastolic pressure. The use of stroke volume (a substitute 

for the volume of filling in diastole assuming no aortic regurgitation) provides a means of 

adjustment for changes related to increasing age and gender (Redfield et al., 2005). 

The arterial-ventricular coupling ratio is measure of interaction between the left 

ventricle and arterial system and thereby provides an index of cardiac performance. A normal 
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coupling ratio of 0.3-1.3 matches properties so that an optimal transfer of blood from the left 

ventricle to the periphery without excessive changes in pressure; an optimal or near-optimal 

stroke work and energetic efficiency are all achieved, while maintaining blood pressures and 

cardiac outputs within in a physiological range (Kass, 2002). 
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Table 2.2 Data acquired during echo to calculate the parameters of elastance 

Parameter of elastance Required echo measurements Formula to calculate parameter of elastance 

Arterial Elastance (Ea) SBP, LVOT diameter, LVOT TVI Ea = Pes / SV  

Arterial Elastance (Ea) indexed to BSA (EaI) BSA EaI = Ea / BSA  

End-systolic elastance (Ees) SBP, DBP, LVOT diameter, LVOT TVI, 

CW Doppler LVOT, LV EF 

Ees = DBP – (ENd x Pes) / (SV x ENd)  

Diastolic elastance (Ed) E-wave, Em, LVOT diameter, LVOT TVI (E/Em) / SV 

Arterial-ventricular coupling ratio (Ea/Ees)  Ea / EeS 

End-systolic pressure (Pes) = SBP x 0.9 

Stroke volume (SV); LVOT area x LVOT time velocity integral 

Pre-ejection period measured from onset of R-wave on ECG to start of aortic ejection on continuous wave Doppler 

Total ejection period measure from onset of R-wave on ECG to end of aortic ejection on continuous wave Doppler 

Left ventricular ejection fraction measured by Biplane method of disc (modified Simpsons) 

Estimated ENd is the normalized elastance value at the onset of ejection 

It is calculated by; = ((DBP/ (LV volume at end-diastole) – SBP)) / (Pes / (LV volume at end-systole - SBP) 

 

BSA; body surface area, DBP; brachial diastolic blood pressure, E; early transmitral inflow velocity, Em; Lateral annular early myocardial 

velocity, LVOT; left ventricular outflow tract, SBP; brachial systolic blood pressure measured at time of echo, TVI; time velocity integral 

measured from pulse wave Doppler.  
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2.2.5  Cardiac magnetic resonance imaging 

 

Cardiac magnetic resonance (cardiac MRI) has become an important imaging modality 

capable of comprehensive non-invasive assessment of cardiac structure, function and tissue 

characterisation without a need for ionizing radiation. At present most cardiac MRIs are 

performed using magnetic field strengths of 1.5 Tesla (T) and 3T which are 30,000 and 

60,000 times greater than the 0.05mT field strength on the earth‟s surface. The high magnetic 

field strengths are generated by electromagnets built using coils of superconducting wire. 

These allow electrical current with no resistance to circulate indefinitely but must be cooled to 

cryogenic temperatures (-273.16 °C) most frequently using liquid helium (McRobbie DW, 

2007).  

 

2.2.5.1  Basic principles  

MRI is based on the phenomenon of nuclear magnetic resonance (NMR). This is the principle 

by which an energy signal is emitted by atomic nuclei of molecules in response to the 

application radiofrequency (RF) energy. Current clinical MRI techniques are based on the 

detection of additive signal from the atomic nuclei (single proton) of hydrogen atoms which 

are in abundance in water and fat within the human body.  

Application of a magnetic field aligns the protons in either a low energy state parallel 

to the main magnetic field (longitudinal magntization, Bο). To create a signal for image 

derivation, a transient RF energy pulse is applied perpendicular to the main magnetic field 

(transverse magnetization, B1) which excites protons from the lower energy state to the higher 

energy “unstable” state and tilts the longitudinal magnetization into the transverse plane. The 

degree of proton excitation is proportional to the amplitude and duration (milliseconds) of the 
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pulse while higher magnetic field strengths increase the proton spins in the low energy state. 

After discontinuation of the RF pulse, protons relax and fall back to equilibrium in the low 

energy state. Rapid dissipation of RF energy occurs which is detected as current by antennae 

(receiver coils) embedded within the bore of the MRI machine. The raw data signals (K-

space) are converted to 2D or 3D image by the process of Fast Fourier transformation which 

separates out the individual spatial frequency components in the detected signal allowing 

localisation to discrete anatomical locations (McRobbie DW, 2007).  

 

 

2.2.5.2  Imaging protocol 

All cardiac MRI studies were performed at University Hospital Birmingham using a 1.5 Tesla 

Symphony MRI scanner (Siemens, Erlangen, Germany) (Figure 2.13). All pulse sequences 

were run in accordance with standard methodologies (Finn et al., 2006). The research protocol 

took approximately 45 minutes per patient.  

 

2.2.5.2.1  Patient preparation 

Meticulous standard safety procedures were performed before subjects entered the scan room 

to exclude any contraindication to MRI. An emergency buzzer was provided in case of patient 

discomfort or possible side-effects during the scan. Four ECG electrodes were applied to the 

chest wall and a flexible surface radiofrequency coil was placed over the top for signal 

reception. To minimize cardiac motion artefact, scans were timed with respect to the R-R 

interval of an ECG (ECG-gating) and to minimize respiratory drift, breath held images were 

acquired on end-expiration. 
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Figure 2.13 Siemens Symphony 1.5T MRI machine at University Hospital Birmingham 

 

 

 



 126 

2.2.5.2.2 Multi-plane localisers and transaxial “stack” of the thorax 

Standard pilot images in the three orthogonal planes (axial, coronal and sagittal) were acquired 

with a short breath hold (approximately 10 seconds). In addition, low resolution anatomical 

imaging of the thorax was performed using an axial black blood T2 Half Fourier Acquisition 

Single Shot Turbo Spin Echo (HASTE) non-breath-hold sequence with prospective ECG-gating. 

These initial scans optimize subject placement within the magnetic field, provide a useful 

reference for planning subsequent scans and provides an opportunity to examine cardiac 

connections and extra-cardiac pathology. 

 

2.2.5.2.3 Left ventricular volume, mass and function 

The scout and axial images were used to plan more accurate breath-held vertical long axis (VLA / 

2 chamber), horizontal long axis (HLA / 4 chamber) and short axis (SAX) views to ensure the 

true long axis of the heart identified. A series of 7mm thick short axis images (Figure 2.14, 2.15a) 

separated by a 3mm gap were piloted from long-axis views, starting at the atrio-ventricular 

groove and continuing the entire length of the ventricle (approximately 8-10 images commonly 

referred to as the short axis stack) These images are acquired using steady state free precession 

(SSFP) sequence which is characterised by high intrinsic contrast between blood pool and 

surrounding structures and excellent signal to noise ratio. The image is optimized by breath 

holding (approximately 8-10 seconds) and ECG gating over several cardiac cycles (retrospective) 

which provides a temporal resolution of approximately 30ms and an in-plane spatial resolution of 

approximately 1-2mm. When the images are displayed in rapid succession, a 2D movie-like cine 

image made up of 20-40 frames (phases) at progressively advancing points of the cardiac cycle. 
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 Data was analyzed off-line using Argus software (Siemens, Erlangen, Germany). The 

short-axis stack was used to calculate left ventricular volumes, ejection fraction and mass (Table 

2.3). The epicardial and endocardial borders were manually traced in end-diastole (defines as the 

first slice or phase) and end-systole (visually defined as the smallest LV volume). The basal slice 

was considered to be within the left ventricle if the blood volume was surrounded by 50% or 

more of ventricular myocardium (Maceira et al., 2006). Papillary muscles were excluded from 

ventricular volume calculations. LV mass was calculated using the end-diastolic myocardial 

volume (including papillary muscle) multiplied by the specific density of myocardium (taken as 

1.05g/cm
3
).   



 128 

Figure 2.14 End-diastolic short axis images of the left and right ventricles 

 
A series of 7mm thick short axis images from the atrio-ventricular groove to the apex of the 

heart. Each “slice” is separated by a 3mm gap. The LV epicardial and endocardial borders were 

manually traced in end-diastole and end-systole to calculate LV volumes, ejection fraction and 

mass.   

Left ventricle 

Right ventricle 

 

Apical slice 

Mid ventricular 

slice at the level of 

papillary muscle 

Basal slice 
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Table 2.3 Left ventricular indices calculated using cardiac MRI 

 

Parameter Methods 

LV end-diastolic volume (LVEDV) Largest LV cavity volume at first phase 

LV end-systolic volume (LVESV) Smallest cavity volume 

LV stroke volume(SV) LVEDV - LVESV 

LV ejection fraction (LVEF) SV / LVEDV x100 

LV mass Multiplication of ED tissue volume multiplied 

by specific density of myocardium (1.05 g/cm
3)

 

ED; end-diastole, ES; end-systole, SV; stroke volume 
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2.2.6.2.4 Aortic distensibility in the ascending aorta 

A steady state free precession cine image was acquired through the mid ascending aorta at the 

level of the right pulmonary artery (Figure 2.15b) with simultaneous measurement of brachial 

blood pressure. Aortic areas were analysed off-line and aortic distensibility (x10
-
³ mmHg) 

calculated using standard formulae (Groenink et al., 1998). 

 

∆ Ao area 

Ao area min x pulse pressure. 

 

∆ Ao area = maximum (systolic) aortic area (mm
2
) – minimum (diastolic) aortic area (mm

2
), Ao 

area min = aortic area in diastole (mm
2
). 

 

 

 

 

 

 

 

 

 

 

 

 



 131 

Figure 2.15 Standard cardiac MRI images using steady state free precession (a & b), tagging  

  (c), and inversion recovery (d) sequences 

 

Steady State Free Precession image of  

the basal left and right ventricles in 

short axis used in assessment of 

ventricular volumes, systolic function 

and mass (LV; left ventricle, RV; right 

ventricle).

Myocardial tagging image of the left 

ventricle at the basal short-axis.

Steady State Free Precession image of the 

mid ascending aorta for measurement of 

distensibility (Asc Ao; ascending aorta, 

Desc Ao; descending aorta, RPA; right 

pulmonary artery).

Inversion recovery image of the left 

ventricle in short axis showing late 

gadolinium enhancement (LGE) 

indicative of full thickness myocardial 

infarction in the lateral and inferior walls 

at a basal-mid level.

a b

c d

  

Asc Ao 

Desc Ao RPA 

LV 

RV 

LGE 
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2.2.5.2.5 Myocardial tagging 

Myocardial tagging using MRI allows accurate quantification of left ventricular regional systolic 

myocardial function (strain, strain rate, torsion) and diastolic function. In contrast to echo, MRI 

tagging involves the layout of a saturation grid which moves with the myocardium during the 

cardiac cycle (Finn et al., 2006). Deformation of these lines due to myocardial contraction can be 

quantitatively assessed with commercially available software.  

 Prior to image acquisition, the myocardium was magnetically labelled or “tagged” with 

non-invasive markers by spatially modulating the degree of magnetization (SPAMM) in two 

orthogonal directions yielding a grid pattern (Axel and Dougherty, 1989). Short-axis cine images 

at the LV base (mitral valve), mid (papillary muscle) and apex and a horizontal long axis image 

(4C) were then acquired using prospective ECG gating. Reduced signal was obtained from the 

saturated tissue which appeared as a hypodense (black) gridline on the images (Figure 2.15c). 

The tag lines move with the tissue to which they are magnetized and hence deform with the 

myocardium during systole and diastole allowing intramural myocardial deformation to be 

assessed.  

Quantitative analysis was performed by the Auckland MRI Research Group, New 

Zealand using in-house 2D-Tagg software (Young, 1999). This software is well validated with 

good inter-operator variability. Left ventricular longitudinal shortening (%), apical and basal 

rotation and LV torsion (difference in apical and basal rotation multiplied by the average radius 

and divided by the distance between apical and basal slices) were calculated. 

 MRI tagging offers some methodological advantages over measurements derived using 

echo. To quantify lengthening and shortening an initial measurement of length is required. MRI 

uses “Lagrangian strain” where the reference unstressed initial length is derived using the end-
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diastolic dimension. In echo “Eulerian or natural strain” is measured. This reflects an 

instantaneous length at a moment in time and is less reproducible. Other advantages include 

measurement of deformation and torsion in all three planes (longitudinal, circumferential and 

radial) which is important given the complex myocardial fibre architecture. Furthermore, superior 

spatial resolution and image quality allow greater reproducibility for serial studies. 

 

2.2.5.2.6 Delayed enhancement inversion recovery imaging 

Delayed enhancement MRI (DE-MRI) is a well validated technique for the detection of 

irreversibly damaged myocardium after acute or chronic myocardial infarction (Kim et al., 2000). 

In addition, it characterizes interstitial fibrosis associated with infiltrative disorders such as 

hypertrophic cardiomyopathy, sarcoid and chronic myocarditis (Finn et al., 2006). 

An inversion recovery sequence was used to image the left ventricle at the base, mid and 

apical short axis and horizontal long axis. This sequence is run 10-15 minutes after administration 

of the intravenous paramagnetic contrast agent gadolinium diethylenetriamine pentaacetic acid 

(Gd-DPTA) commercially known as Magnevist® (Bayer Schering Pharma) at a dose of 0.2 

ml/Kg. Patterns of late gadolinium enhancement were qualitatively assessed. 

These highly diffusible small molecules, readily distribute in the interstitial space 

(extracellular, extravascular) where they are limited by the bound chelate. An expansion of the 

interstitial space following infarction, fibrosis or from other infiltrative processes allows 

gadolinium to accumulate in high relative concentrations and is increased further through the 

slower distribution kinetics of the abnormal myocardium. Signal is increased where gadolinium 

accumulates appearing as bright white areas (hyper-enhancement) compared to unaffected 

myocardium which appears dark (nulled) (Figure 2.15d). The pattern of infarcted myocardium 
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may involve the subendocardium or extend to variable degrees of transmurality depending on the 

degree of ischaemia. Infiltrative processes typically promote inflammatory and eventually fibrotic 

change within the myocardium, producing a diffuse patchy mid-wall appearance of hyper-

enhancement. 
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2.2.6  VENOUS SAMPLING AND LABORATORY ASSAYS 

 

2.2.6.1  Venous blood sampling 

Following 30 minutes of supine rest, 40 ml of venous blood was collected using a Vacutainer 

system® (Becton Dickinson Company) from the subcutaneous veins of the antecubital fossa. 

Blood was collected into Vacutainer® (Becton Dickinson Company, Oxford, UK) blood tubes 

with the following additives;  

1. Liquid potassium ethylene diamine tetra-acetic acid (EDTA) – full blood count, renin, 

parathyroid hormone, stored plasma for N-terminal pro-B-type natriuretic peptide (NT-

BNP). 

2. Clot activator and gel for serum separation – renal function, liver function, calcium, 

phosphate, total cholesterol, high density lipoprotein, 

3. Potassium oxalate / sodium fluoride –glucose 

4. Silicone coated – stored serum for High Sensitivity C-Reactive Protein (hsCRP), Intact 

amino-terminal propeptide of type III procollagen (PIIINP), Carboxyterminal telopeptide 

of type I collagen (Ctx) 

5. Lithium heparin – Plasma aldosterone 

6. EDTA / phenanthroline – Angiotensin II 

 

2.2.6.2   Haematology and clinical biochemistry 

Routine haematological and biochemical assays were undertaken on fresh venous samples in the 

Departments of Haematology and Clinical Biochemistry, University Hospital Birmingham, UK.   
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2.2.6.3  Renin-angiotensin II, aldosterone 

Samples were immediately placed on ice for 15 minutes and then centrifuged at 3000 rpm for 15 

minutes at 4°C. Platelet free plasma was removed and stored at -80°C. Samples were transported 

on dry ice to Glasgow for analysis (Medical Research Council Cardiovascular Research Group, 

Glasgow, Scotland). Plasma renin concentration (PRC) was determined by an in-house antibody 

trapping technique in the presence of added excess renin substrate. The intra and inter assay 

coefficient of variation (CoV) were < 5 and < 10% respectively. Angiotensin II, was determined 

by an in-house radioimmunoassay (RIA) with Angiotensin II pre-extracted from plasma before 

assay (Cardiovascular Assays, Glasgow, UK). Intra and inter-assay CoV were 6.4% and 9%. 

Plasma aldosterone concentration (PAC) was determined by RIA measured with a solid-phase 

coated tube kit (Diagnostic Products Corporation, Siemens, UK). Intra and inter-assay CoV were 

6% and 16%, respectively. 

 

2.2.6.4  N-terminal pro-B-type natriuretic peptide 

Plasma NT-BNP: measured by an in-house non-competitive immunoluminometric assay on 

unextracted plasma in Leicester (University of Leicester, Leicester, UK). There was no 

significant cross-reactivity with other hormones (N-ANP (N-terminal ANP), BNP or CNP (C-

type natriuretic peptide). The lower limit of detection was 0.3 pmol/l. Intra and inter assay CoV 

were 2.3% and 4.8%, respectively. 

 

2.2.6.5  High sensitivity C-reactive protein 

High
 
sensitivity C reactive protein was measured using a Tina-quant® Cardiac C-reactive Protein 

Latex High Sensitive (CRPHS) immunoturbidimetric assay (Roche Diagnostics, Burgess Hill, 
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UK) on a Roche Modular P analyser by The Binding Site (The Binding Site Group Ltd, 

Birmingham, UK). Functional sensitivity of assay was 0.11mg/L (analytical sensitivity 

0.03mg/L). Intra and inter assay CoV were 0.28-1.34% and 2.51-5.70%, respectively. 

 

2.2.6.6  Markers of collagen turnover 

Intact amino-terminal propeptide of type III procollagen (PIIINP) concentration was measured by 

RIA (Orion Diagnostica, Finland). The lower limit of detection was 0.3µg/L. Intra and inter-

assay CoV were 7%. Carboxyterminal telopeptide of type I collagen (Ctx) was measured by 

electrochemiluminescence immunoassay (Roche E module, Roche Diagnostics, Burgess Hill, 

UK). The lower limit of detection (sensitivity) was 0.07ng/mL. Intra and inter-assay CoV were 

6% and 8% respectively. Both markers were analysed in the Department of Clinical 

Biochemistry, University Hospital Birmingham, UK.   

 

2.2.7.7  Urinary albumin-creatinine ratio 

A 20 ml early morning urine sample was collected for assessment of the albumin-creatinine ratio 

(ACR mg/mmol). Urinary creatinine and albumin were measured by the rate-blanked Jaffe 

method and immunoturbidimetry respectively (Roche Modular P analyser, Roche Diagnostics, 

Burgess Hill, UK) in the Department of Clinical Biochemistry, University Hospital Birmingham, 

UK.   
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2.2 DATA ANALYSIS AND STATISTICAL METHODS 

 

The following methods were employed to examine data and statistical analysis using SPSS 

version 16 software (SPSS Inc, Chicago, Illinois, USA). 

2.3.1  General data handling 

Continuous data are expressed as mean ± standard deviation (SD) or absolute change ± standard 

error of the mean (SEM) unless otherwise stated. Categorical data are expressed as frequency 

with percentage (%). Visual examination with histograms and the Kolmogorov–Smirnov test was 

used to test for normal distribution of data (≤ 0.1), where appropriate non-normally distributed 

data was log transformed and expressed as median as ± inter-quartile range (IQR). 

 

2.3.2  Statistical methods 

Categorical variables were compared by the Pearson Chi-square test. Continuous data were 

compared as appropriate using; two-tailed Student‟s t-test for independent samples and analysis 

of variance (ANOVA) with a Tukey post-hoc comparison test. Between weeks 0-40 groups were 

compared using repeated measure of variance (for changes over time). Pearson correlation 

coefficients (R) were used to measure associations between continuous variables. Trend was 

assessed by the use of the Jonckheere-Terpstra test. Statistical significance was taken as the p 

value of < 0.05 or <0.01 as stated in each study. 
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2.3.3  Regression models 

Regression models employed were used to predict relationships and do not infer causal 

mechanisms. Co-linearity between explanatory variables was assessed by examining the variable 

inflation factor. 

 

2.3.3.1  Multiple linear regression 

Multiple linear regression models were used to assess independent variables which predicted the 

dependent variable being investigated. Variables included in the model were limited to variables 

known to influence the dependent variable in previous studies and variables that were significant 

at the level of p < 0.1 based on simple linear regression. Data for the model fit are presented as 

coefficients of determination (r
2
). The associations found in the analyses are presented as 

unstandardised ß-coefficient (ß) + Standard Error (SE). Assumptions include; linearity between 

variables, the residuals (dependent variable values predicted from the regression model minus the 

observed values) are normally distributed, categorical variables had only two categories (yes/no).  

 

2.3.3.2  Logistic regression  

This model was used when the dependent variable was categorical variable (two categories yes / 

no) and the independent variables were continuous, categorical, or both. As per multiple linear 

regression, the relationship between independent variables and dependent variable is estimated, 

but in logistic regression the probability that the dependent variable assumes a certain value (yes 

or no) is estimated, rather than estimating the value itself. Data are presented as Odds Ratios 

(OR) associated with each independent (predictor) variable with 95% confidence intervals. The 

odds ratio for a variable is defined as the relative amount by which the odds of the outcome 
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increase (OR > 1) or decrease (OR < 1) when the value of the predictor variable is increased by 1 

units. 

 

2.3.4  Assessment of reproducibility 

Variability studies were performed on variables constituting the pre-specified primary and 

secondary end-points. Analysis was performed using; i) Intra-class correlation coefficients (ICC): 

an index of reliability for a single operator analysing the same data more than once and for two or 

more operators when analysing the same set of variables (Bland and Altman, 1986). Data are 

presented as ICC (r) and 95% confidence intervals (95% CI). ii) Bland-Altman Analysis; an 

assessment of the agreement between two methods of measurement. Data are presented as a 

scatter plot with the difference between each measurement (d) plotted against the mean for the 2 

measurements (Bland & Altman, 1986). The limit of agreement between both measurements was 

determined by 95% confidence limits, calculated as d – 2SD and d + 2SD. The limit of agreement 

for each variable was compared to previously published guidelines to ensure acceptable 

comparison. 
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CHAPTER 3 

 

 

 

AORTIC DISTENSIBILITY AND ARTERIAL-VENTRICULAR COUPLING IN EARLY 

CHRONIC KIDNEY DISEASE: A PATTERN RESEMBLING HEART FAILURE WITH 

PRESERVED EJECTION FRACTION 
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3.1  SUMMARY 

 

The high cardiovascular event rate in chronic kidney disease (CKD) is due in large part to sudden 

death and heart failure as a result of abnormalities of ventricular structure and function (ureamic 

cardiomyopathy). The hypothesis of this study was that arterial stiffness might be increased in 

early stage CKD and would be associated with abnormalities of both arterial and ventricular 

function compared to healthy controls with normal renal function.  

Arterial and ventricular function and ventricular-vascular interaction were examined in 

117 patients with stage 2 (60-89 ml/min/1.73m
2
) or stage 3 (30-59 ml/min/1.73m

2
) non-diabetic 

CKD without overt cardiovascular disease. These subjects were compared with 40 age and sex 

matched healthy controls. Aortic distensibility (x10
-
³ mmHg) was assessed using cardiac 

magnetic resonance imaging (cardiac MRI). Systolic and diastolic ventricular function and 

vascular-ventricular elastance (stiffness) were assessed by transthoracic echocardiography.  

Compared to controls, patients with CKD had reduced aortic distensibility (p < 0.01), 

increased arterial elastance and increased ventricular end systolic and diastolic elastance (p < 

0.01). Aortic distensibility was positively correlated with estimated GFR (p < 0.01) and indices 

of elastance were inversely correlated (p < 0.05). There was no difference in conventional 

markers of systolic function with early CKD compared to controls but markers of diastolic 

function were impaired including; a reduction in early myocardial diastolic filling velocities (Em) 

and an increase in left atrial pressure (E/Em) and end-diastolic elastance (Ed) (p < 0.01).  

Early stage CKD is characterised by reduced aortic distensibility and increases in arterial, 

ventricular systolic and diastolic stiffness; arterial-ventricular coupling is preserved. This pattern 

of patho-physiological abnormalities resembles that seen in heart failure with preserved ejection 
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fraction and might account for the high levels of cardiovascular morbidity and mortality in 

patients at all stages of CKD.
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3.2  INTRODUCTION 

 

End-stage kidney disease (ESKD) is characterised by major abnormalities of vascular and 

myocardial structure and function including increased arterial stiffness, left ventricular (LV) 

hypertrophy, dilatation, fibrosis and impaired systolic and diastolic function. There are few data 

on such abnormalities in early stage chronic kidney disease (CKD) when preventive treatment 

might be most effective. 

The hypothesis of this study was that arterial stiffness might be increased and detectable 

early in the natural history of CKD. Secondly, that increased stiffness of the large arteries would 

be associated with adverse changes in ventricular structure and systolic and diastolic function. 

Cardiac MRI and echocardiography were used to examine ventricular and arterial function in 

patients with early CKD and compared to age and sex-matched healthy controls. 
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3.3  METHODS 

 

3.3.1   Study design 

This was a cross-sectional observational study. The protocol was approved by South Birmingham 

Local Research Ethics Committee.  

 

3.3.2  Subjects 

Using the inclusion and exclusion criteria described in section 2.1.1, 117 patients were recruited 

from renal clinics at University Hospital Birmingham. ACE inhibitors were used in 67% patients, 

ARBs in 30% and dual therapy in 3%. Other treatments included beta blockers 22%, calcium 

channel blockers 27%, diuretics 34% and statins 40%. Patients were matched for age and sex 

with 40 healthy controls with no evidence of CKD as defined by K/DOQI guidelines (National 

Kidney Foundation, 2002). 

 

3.3.3  Data collection 

All subjects underwent: 

1. Twelve-lead electrocardiogram 

2. Resting brachial blood pressure as described in section 2.2.2.1 

3. Transthoracic echocardiogram for assessment of:  

i) LV systolic and LV diastolic function described in sections 2.2.4-5 

ii) Arterial-ventricular interaction described in sections 2.2.4.5.3 
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4. Cardiac MRI for assessment of: LV volumes, systolic function, mass, aortic distensibility 

and myocardial scarring as described in section 2.2.6 

5. Twenty four hour ambulatory blood pressure monitoring as described in section 2.2.2.2 

6. Venous blood sampling as described in section 2.2.7 

7. Urine analysis for albumin-creatinine ration as described in section 2.2.7.7 

 

 

3.3.4  Statistical analysis 

Statistical analyses were performed as described in Chapter 2. 

An intra-operator variability study was performed. This assessed the variability of a single 

observer (blinded to all clinical data) in performing measurements on 10 patients, on two separate 

occasions (at least 6 weeks apart) for echo and cardiac MRI. The method of coefficient of 

variation was used in this study in keeping with previous published data (Grothues et al., 2002). It 

is calculated as follows:  

 

Coefficient of variation = 

(CoV %)  

Mean standard deviation of the two 

measurements 

x100 

 

Mean of the two measurements 

 

Coefficient of variation expresses the standard deviation as a percentage of the sample mean and 

is useful when interest is in the size of variation relative to the size of the observation. For 
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example, a CoV of 3% means the standard deviation is equal to 3% of the average. It is useful 

when comparing between data sets with different units or widely different means. 
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3.4  RESULTS  

 

3.4.1  Patient characteristics 

We identified 2,196 patients attending renal clinics who had non-diabetic stage 2 or 3 CKD. In 

total, 1,911 were not eligible for recruitment for the following reasons: 46% not on treatment 

with an ACE inhibitor or ARB, 29% had evidence of renovascular disease or a history of 

uncontrolled blood pressure, 15% had previous cardiovascular events, 2% had atrial fibrillation 

and 8% other contraindications including anaemia or a past history of hyperkalaemia. Thus 287 

patients met the inclusion / exclusion criteria; 170 patients declined to participate; therefore 117 

patients were formally consented. Data from two patients was excluded from analysis; one 

patient had evidence of uncontrolled blood pressure on 24 hour ambulatory assessment and one 

patient had a baseline serum potassium level of 5.6 mmol/L. Therefore 115 patients were 

included in the observational study. 

 

There were no significant differences in demographic data between patients with CKD 

and controls (Table 3.1). The most common causes of CKD were; glomerulonephritis 55%, 

vasculitis 13%, polycystic kidney disease 8% and systemic lupus erythematosus 7%. Seventy 

percent of patients had a history of hypertension controlled on an average of 2.1 antihypertensive 

agents. There was no difference in blood pressure between the groups. 

 

3.4.2  Cardiac magnetic resonance imaging 

There was no difference between patients and controls in mean LV volumes or ventricular 

ejection fraction measured using cardiac MRI (Table 3.2). Mean LV mass was greater in CKD 
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than in controls. A third of patients with CKD had LV hypertrophy (LVH) as defined by an LV 

mass greater than age, gender and body surface area corrected limits (male ≥ 89-93 g/m
2
 

depending, female ≥ 77-78 g/m
2
 depending on decade) (Maceira et al., 2006). The mean LV mass 

and proportion of patients with LVH did not differ significantly between stage 2 and 3 CKD.  

 Aortic distensibility (Figure 3.1) was reduced in both stage 2 and stage 3 CKD compared 

to controls (p < 0.001). There was a significant positive correlation between aortic distensibility 

and eGFR (r = 0.349, p < 0.01) (Figure 3.2a). LV mass was inversely correlated with aortic 

distensibility (r = -0.284, p < 0.01) (Figure 3.2b). In a multivariate regression model including 

age, systolic blood pressure, aortic distensibility, eGFR, and concomitant medications, LV mass 

index (LVMI) was predicted by systolic blood pressure, aortic distensibility and eGFR (r
2
 = 0.18, 

p < 0.05). Aortic distensibility contributed 6%, eGFR 2% and systolic blood pressure 10% of the 

variance in LVMI. 

 Myocardial scarring was present in 8 patients (7%) and no controls. Six patients had late 

gadolinium enhancement (LGE) in the mid-wall with a diffuse distribution not specific to a 

coronary artery territory. This pattern is indicative of myocardial fibrosis. One patient had an area 

of confluent LGE in the subepicardium consistent with previous myocarditis and one patient had 

subendocardial LGE in a distribution typical of previous myocardial infarction. In all patients LV 

volumes, function and mass were within normal limits for gender and age. The non-ischaemic 

patterns of scarring were present in six patients with an inflammatory autoimmune or vasculitic 

aetiology (typically systemic lupus erythematosus (SLE) and Wegener‟s granulomatosis (WG)), 

proven on biopsy as a cause of CKD. This represents a prevalence of over 50% in patients 

recruited with these diagnoses.  
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Table 3.1  Population characteristics 

 

 

Controls 

(n=40) 

CKD Stage 2  

(n=28) 

CKD Stage 3  

(n=87) 

Male sex (%) 15 (50) 11 (38) 60 (68) † 

Age 50.3 ±9.2 55.9 ±11.6 53.8 ±11.8 

BSA (g/m
2
) 1.84 ±0.17 1.80 ±0.22 1.93 ±0.19 

Office systolic BP (mmHg) 126 ±17 128 ±19 132 ±17 

Office diastolic BP (mmHg) 80 ±8 75 ±10 78 ±10 

Pulse pressure (mmHg) 46 ±12 52 ±14 54 ±12* 

24 hour SBP (mmHg)  126 ±12 124 ±11 

24 hour DBP (mmHg)  77 ±8 77 ±9 

Heart rate (bpm) 64 ±12 69 ±12 65 ±12 

Mean eGFR (ml/min/1.73m
2
) 70.1 ±5.2 68.7 ±6.3 45.4 ±9.1**†† 

Serum creatinine (µmol/L) 95±10 98 ± 23 149 ±39**†† 

Albumin-creatinine ratio (mg/mmol) 0.11 ±0.2 47.9 ±87.5** 55.4 ±132.3** 

Haemaglobin (g/dL) 14.2 ±1.6 13.3 ±1.8* 13.6 ±1.4 

Number of patients on treatment    

ACE inhibitor (ACE I) 0 18 61 

Angiotensin receptor blockers (ARB) 0 9 26 

ACE I + ARB 0 0 3 

Beta blockers 0 6 20 

Calcium blockers 0 6 26 

Diuretics 0 8 32 

Statins 0 14 33 

Values are mean ± standard deviation P-values derive from one-way analysis of variance for 

continuous variables. * p < 0.05 ** p < 0.01 vs. controls. † < 0.05 †† < 0.01 CKD 2 vs. CKD 3 

BSA; body surface area, DBP; diastolic blood pressure, SBP; systolic blood pressure  
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Table 3.2  Vascular and cardiac structure and function measured on cardiac MRI 

 

 Controls 

(n=40) 

CKD Stage 2 

(n=25) 

CKD Stage 3 

(n=82) 

Aortic Distensibility (×10
- 3

 mmHg) 4.12 ±1.3  2.94 ±1.8* 2.18 ±1.8**† 

LV Ejection Fraction (%) 71.6 ±5.9 69.9 ±6.2 69.1 ±8.4 

LV Mass/BSA (g/m
2
) 55.1 ±9.4 64.2 ±15.2* 63.7 ±12.7* 

LVH (%) 0 9 (36) 23 (28) 

LVEDV/BSA (ml/m
2
) 60.1 ±17.6 63.9 ±13.0 57.9 ±11.5 

LV stroke volume /BSA (ml/m
2
) 45.6 ±8.7 44.5 ±7.8 39.7 ±7.3**† 

RV Ejection Fraction (%) 60.8 ±6.3 58.4 ±9.5 58.1 ±7.1 

RVEDV/BSA (ml/m
2
) 74.3 ±13.9 75.4 ±18.6 68.6 ±12.0 

Values are mean ± standard deviation 

P-values derive from one-way analysis of variance for continuous variables. 

* p < 0.05 ** p < 0.01 vs. controls. † < 0.05 †† < 0.01 CKD 2 vs. CKD 3 

 

BSA; body surface area, EDV; end-diastolic volume, LV; left ventricle, LVH; left ventricular 

hypertrophy, RV, right ventricle 



 152 

Figure 3.1  Aortic distensibility measured on cardiac MRI in the ascending aorta in  

  healthy controls and patients with chronic kidney disease  
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Values are median (horizontal bar), upper and lower quartiles (box) and range (error bars) 

* p < 0.05 ** p < 0.01 vs. controls. † < 0.05 †† < 0.01 CKD 2 vs. CKD 3.   
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Figure 3.2a The association between estimated glomerular filtration rate and aortic 

distensibility in patients with early stage chronic kidney disease and healthy 

volunteers 

 

 

 

Pearson correlation coefficient r = 0.349, p < 0.01 
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Figure 3.2b The association between aortic distensibility and left ventricular mass index in 

patients with early stage chronic kidney disease and healthy volunteers 

 

 

Pearson correlation coefficient r = -0.284, p < 0.01 
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3.4.3  Echocardiography 

 

3.4.3.1  Conventional measurement of left ventricular systolic and diastolic function 

There was no difference in conventional measures of systolic function between patients with 

CKD and controls. Ejection fraction and longitudinal systolic tissue Doppler velocities in CKD 

patients were within normal limits (Table 3.3 & Figure 3.3a). Diastolic parameters including 

early myocardial relaxation velocities (basal Em, Figure 3.3b), E/Em ratio, M-mode colour flow 

propagation, and pulmonary venous a-wave duration were abnormal in CKD compared with 

controls (Table 3.3). Left atrial volumes were greater in patients with CKD than controls. Right 

and left ventricular Tei indices were greater in CKD than in controls (Table 3.3). 

 

3.4.3.2  Arterial-ventricular interaction 

Arterial elastance (Ea), arterial elastance index (EaI), LV end-systolic elastance (Ees), LV end-

diastolic elastance (Eed) were all greater in patients with CKD than in controls (Table 3.4). In 

patients with CKD stage 3, systemic vascular resistance index (SVRI) and pulse pressure were 

increased compared to controls indicating that both mean resistive and pulsatile load were 

increased. There were no differences between SVRI, PP and heart rate between patients with 

stage 2 CKD and controls indicating that differences in EaI between these subjects principally 

reflected altered pulsatile load and hence the oscillatory arterial properties (stiffness). Combining 

values for both patients and controls, EaI and Ees were significantly correlated (Pearson‟s r = 

0.692, p < 0.01) (Figure 3.4). The arterial-ventricular coupling ratio (Ees/Ea) was maintained in 

both patients and controls although the absolute values for both of Ea and Ees were increased. 
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Arterial elastance (r = -0.282, p < 0.05), Ees (r = -0.137, p < 0.05) and Eed (r = -0.347, p < 0.01) 

were all inversely correlated with eGFR. 
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Table 3.3 Two dimensional echocardiography and pulse wave Doppler parameters in  

  controls and patients with chronic kidney disease 

 

 Controls 

(n=40) 

CKD Stage 2 

(n=28) 

CKD Stage 3 

(n=87) 

Ejection Fraction (%) 65.4 ±5.6 63.3 ±4.7 62.7 ±6.8 

Lateral annular TDI Sm (cm/s) 8.8 ±1.5 8.4 ±2.4 7.9 ±1.9 

E/Em 5.6 ±1.1 7.4 ±1.8** 8.0 ±2.4** 

E (cm/s) 67.2 ±10.3 74.3 ±9.9 67.4 ±13.1 

A (cm/s) 56.0 ±11.6 61.1 ±12.7 67.0 ±15.4** 

E/A 1.3 ±0.4 1.2 ±0.3 1.1 ±0.3** 

DT (msec) 207 ±22.3 212 ±39.3 225 ±55.7 

CFP (cm/s) 63.8 ±11.1 54.4 ±15.0* 49.0 ±14.2** 

IVRT (ms) 89.4 ±12.8 93.0 ±13.0 95.4 ±15.7 

Pulmonary vein A duration (ms) 70.5 ±13.7 80.9 ±19.3 91.6 ±19.5** 

LA volumes (ml/BSA) 19.7 ±4.9 25.7 ±5.4* 27.4 ±6.3** 

EDP (mmHg) 15.4 ±0.70 16.5 ±1.09** 16.7 ±1.48** 

RV Tei 0.27 ±0.10 0.37 ±0.14* 0.49 ±0.15** 

LV Tei 0.39 ±0.04 0.49 ±0.10** 0.51 ±0.12** 

Values are mean ± standard deviation, p-values derive from one-way analysis of variance  

* p < 0.05 ** p < 0.01 vs. controls, † p < 0.05 †† p < 0.01 CKD 2 vs. CKD 3† 

CFP; colour flow propagation velocity, DT; deceleration time, EDP; end-diastolic pressure, 

IVRT; isovolumic relaxation time 
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Figure 3.3a Bar graph of pulsed tissue Doppler a) systolic (Sm) velocities and b) early mitral 

filling (Em) myocardial velocities from each of the six basal segments of the left 

ventricle 

 
Values are mean ± standard error of the mean* p < 0.05 ** p < 0.01 vs. controls 

Sm, myocardial systolic velocity, Em, early myocardial diastolic filling velocity  
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Table 3.4  Measures of vascular and ventricular structure and function and  

  haemodynamics in controls and patients with chronic kidney disease  

 

 Controls 

(n=40) 

CKD Stage 2 

(n=28) 

CKD Stage 3 

(n=87) 

Arterial Elastance (Ea) (mmHg) 1.40 ±0.22 1.65 ±0.40* 1.74 ±0.48** 

Arterial Elastance Index (EaI) 

(mmHg ml/m
2
) 

0.77 ±0.17 0.94 ±0.30* 0.93 ±0.29** 

End-systolic elastance (Ees) 

(mmHg/ml) 

1.88 ±0.48 2.43 ±0.83* 2.42 ±0.78** 

End-diastolic elastance (Eed) 0.07 ±0.04 0.11 ±0.04** 0.12 ±0.04** 

Ea/Ees 0.73 ±0.16 0.71 ±0.16 0.75 ±0.19 

SV/BSA (ml/m
2
) 43.9 ±6.1 39.7 ±7.9 37.5 ±7.8** 

SVRI (dynes/s/cm
-5

/m
2 
) 2763 ±635 2826 ±692 3316 ±804**†† 

Heart rate (bpm) 64 ±11 69 ±12 65 ±12 

Systolic BP (mmHg) 125 ±13 127 ±21 130 ±18 

 

Values are mean ± standard error of the mean for continuous variables  

P-values derive from one-way analysis of variance * p < 0.05 ** p < 0.01 vs. controls † < 0.05  

†† < 0.01 CKD 2 vs. CKD 3 

BP; blood pressure, BSA; body surface area, SV; stroke volume 
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Figure 3.4  The association of arterial elastance index with end-systolic elastance  

  in controls and patients with chronic kidney disease, measured by   

  echocardiography. 

 

 

 

Data not normally distributed and was therefore log transformed for analysis 

Ees is increased with EaI (Pearson correlation coefficient r = 0.685). Ea is a significant predictor 

of Ees in a regression model (r
2
 = 0.47, p < 0.001)  

EaI; arterial elastance indexed to body surface area, Ees; end-systolic elastance  
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3.4.4  Effect of drugs and biochemical parameters 

Haemoglobin, calcium, phosphate and parathyroid hormone were within normal range in all 

subjects. There was no detectable association between cardiac and vascular stiffness measures on 

cardiac MRI and echocardiography or with biochemical parameters by univariate analysis. There 

was also no correlation between any marker of vascular function with any anti-hypertensive agent 

or with statin therapy. 

 

3.4.5  Intra-operator variability 

The repeated analysis of major parameters of arterial and cardiac structure function showed good 

reproducibility; cardiac MRI LV mass index 3.2%, cardiac MRI aortic distensibility 5.0 %, 

cardiac MRI ejection fraction 2%, echo ejection fraction 9%. 
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3.5  DISCUSSION 

 

Data presented in this study demonstrated i) increased aortic stiffness and LV stiffness, ii) major 

abnormalities of left diastolic ventricular function and an abnormal interaction with the arterial 

tree in patients with early stage CKD compared to healthy controls.  

 

3.5.1  Assessment of arterial and ventricular function in chronic kidney disease 

Most similar studies to date have examined patients with ESKD and used other measures of 

arterial stiffness such pulse wave analysis (PWA) and velocity (PWV) (Blacher et al., 

1999b;Safar et al., 2002a). These provide valuable information on wave reflection and vascular 

stiffness in the aorta and iliac vessels (carotid-femoral PWV) but are an indirect measure of 

central aortic stiffness and are dependent upon the assumptions of a circulatory model (Blacher et 

al., 1999b). By using cardiac MRI, the change in ascending aortic dimensions in response to 

pressure fluctuation was assessed providing a direct measure of distensibility. The measurement 

of arterial and ventricular systolic elastance by echocardiography is an indirect but validated 

technique which provides information on both arterial and ventricular stiffness allowing the 

assessment of vascular ventricular coupling, a major determinant of cardiovascular performance 

(Chen et al., 1998). 

 

Although we cannot exclude the influence of longstanding treated hypertension on the 

results, this was not a study of patients with hypertension and incidental renal dysfunction. All 

patients were recruited from a specialist renal clinic and had established renal disease, proven on 



 163 

biopsy in 60% of cases. Blood pressure was optimally controlled prior to recruitment. 

Cardiovascular abnormalities, including reduced aortic compliance on cardiac MRI, have been 

demonstrated in patients with end stage CKD (Mark et al., 2006;Patrianakos et al., 

2006;Zimmerli et al., 2007) but our study suggests that significant damage is already present in 

stage 2 disease often before a rise in serum creatinine has occurred. Perhaps most importantly, 

aortic distensibility was reduced and arterial elastance index, a measure of net ventricular 

afterload, increased in our patients compared to controls. Thus, it appears that an increased 

oscillatory load occurs early in the course of CKD at least in part as a result of changes in the 

aortic wall.  

 

3.5.2 Arterial stiffness in chronic kidney disease 

It is established that arterial stiffness is a strong predictor of cardiovascular morbidity and 

mortality in end stage CKD and appears to be independent of other prognostic factors including 

age, LVH and blood pressure (Guerin et al., 2001). Our findings of increased arterial stiffness and 

reduced aortic distensibility in patients with early CKD are consistent with previous studies 

which have demonstrated a graded increase in arterial stiffness with advancing stage of CKD 

independent of the contribution of blood pressure and ageing (Briet et al., 2006;Mourad et al., 

2001;Schillaci et al., 2006;Wang et al., 2005b). 

A study of 1290 patients with mild CKD (serum creatinine ≤ 130 µmol/L) assessed 

carotid artery compliance using an echotracking ultrasound device and carotid-femoral PWV 

(Complior
®
). Patients in the lowest tertile of renal function (creatinine clearance ≤ 68.5 

ml/min/1.73m
2
) 

 
had an inverse association of creatinine clearance with carotid-femoral PWV 

and postive correlation with carotid artery compliance independent of blood pressure, age and 
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standard cardiovascualr risk factors. These relationships were strongest in patients ≤ 55 years 

where renal function accounted for 20% of variance in carotid compliance indicating that 

increased arterial stiffness in CKD is driven by mechanisms other than ageing (Mourad et al., 

2001).  

In a study of 305 newly diagnosed and untreated hypertensive patients, the strong 

independent association of blood pressure with both central and peripheral arterial stiffness was 

confirmed using carotid-femoral PWV and carotid-radial PWV. However, an inverse relationship 

between aortic augmentation index and eGFR was also observed which was independent of 

cofounding factors including office and 24 hour ambulatory blood pressure. These findings 

emphasised that alterations in the elastic properties of the arertial wall are present with mild 

reductions in renal function (Schillaci et al., 2006).  

The infuences of age and blood pressure were both addressed in a cross-sectional study 

which examined the structural and functional properties of the carotid artery and carotid femoral 

PWV in 95 patients with moderate CKD (mean GFR 36 ml/min/1.73m
2
), 121 hypertensive 

patients (mean brachial blood pressure 134/77 mmHg) and 57 normotensive healthy controls. 

Chronic kideny disease was associated with increased PWV and carotid artery diameter resulting 

in increased circumferential wall stress compared to both hypertension and controls. These 

findings are consistent with changes in ESKD and indicate outward remodelling of the artery 

probably due to quantitative and qualitative chnages in the elastic fibres of the wall rather than a 

direct response to pulsatile stresses associated with hypertension and mechanical failure and 

fatigue associated with ageing (Briet et al., 2006). Alternative causes of aortic stiffness in early 

CKD include an increase in aortic wall calcium, endothelial dysfunction, elastin fragmentation 

and vascular inflammation (Zoccali et al., 2004b).  
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3.5.3 Left ventricular structure and function in early chronic kidney disease 

The results also show abnormalities of cardiac structure and function in early CKD. An increase 

in mean left ventricular mass and the prevalence of LVH in approximately a third of patients with 

stage 2 and stage 3 CKD suggests that a hypertrophic response occurs early although not 

invariably in the course of renal disease. Aortic distensibility was an independent predictor of LV 

mass index suggesting that it has an important role as a driver of increased LV mass in early renal 

disease.  

 Systolic ventricular function assessed using echocardiography and cardiac MRI, was 

preserved in early CKD while abnormalities of diastolic function were evident. Left ventricular 

relaxation was delayed and maximal ventricular end diastolic stiffness increased. Consistent with 

impaired diastolic function, left atrial volumes and left ventricular end-diastolic pressure were 

increased. The increase in Ees suggests that resting left ventricular contractility is enhanced in 

early CKD. This maintains the arterial-ventricular coupling ratio and cardiac performance. There 

is however good evidence that the “price” of this early compensatory response is a chronic 

increase in left ventricular stiffness and haemodynamic instability (Chen et al., 1998). Cardiac 

reserve is reduced and during exercise the increase in both Ees and Ea causes an excessive rise in 

systolic pressure increasing cardiac work and metabolic demand (Kelly et al., 1992b). 

 

3.5.4  Left ventricular myocardial fibrosis 

Mid-wall diffuse myocardial scarring on cardiac MRI indicative of LV fibrosis was present in 7% 

of patients. No patients had LV hypertrophy or abnormal systolic function on conventional 

parameters such as ejection fraction. This pattern was present in 55% patients with inflammatory 

autoimmune and vasculitic disease and raises the possibility that myocardial damage might be a 
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combination of subclinical inflammatory and immunological processes rather than conventional 

coronary artery disease alone. The distribution of scarring supports post-mortem studies, which 

have shown patchy myocarditis and myocardial fibrosis in both SLE and WG (Doherty and 

Siegel, 1985;Goodfield et al., 1995). Acute presentation with myocarditis is rare and is thought to 

occur only in those with active disease, usually in association with pericardial change. These 

findings suggest that subclinical myocarditis with subsequent development of fibrosis in SLE and 

WG might be much more common than previously thought and may contribute to the high 

incidence of clinical cardiovascular events. 

 

3.5.5 Heart Failure with preserved ejection fraction 

The abnormalities of both arterial and ventricular function are strikingly similar to those reported 

in patients with diabetes and heart failure with normal ejection fraction (HFnIEF) (Kawaguchi et 

al., 2003;Lam et al., 2007;Mottram et al., 2005;Redfield et al., 2005;van der Meer et al., 2007). 

Type II diabetics (mean age 55 years) with well controlled blood pressure (mean 133 / 79 mmHg) 

have been shown to have similar reductions in aortic distensibility and markers of diastolic 

function on cardiac MRI to those in early CKD (van der Meer et al., 2007). These finding were 

often present in the absence of LVH and reductions in conventional systolic markers function and 

support our hypothesis that increased arterial stiffness mediates subsequent changes in cardiac 

function. Kawaguchi et al. showed higher Ea and Ees in subjects with HFnIEF than controls and 

similar markers of impaired diastolic function (Kawaguchi et al., 2003). Patients with HFnIEF 

often have impaired renal function and it will be of great importance to determine whether this is 

a cause or effect of the HFnIEF disease process (Lam et al., 2007).  
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The ultrastructural changes responsible for these abnormalities of ventricular function in 

CKD have not been studied but we speculate that, as in HFnIEF, there may be abnormalities of 

myocardial collagen and perhaps changes in Titin isoform expression (Zile and Brutsaert, 2002). 

Further research in this area and on the impact of the increased left ventricular stiffness on effort 

tolerance and haemodynamic stability in CKD patients is required. Patients with HFnIEF have a 

poor prognosis and the implications for patients with early CKD are profound. It will also be of 

importance to determine the abnormalities we have described can be reversed by renal 

transplantation (Meier-Kriesche et al., 2004). 

 

3.5.5  Limitations 

These are observational data and the relationships between eGFR and abnormalities of vascular 

and cardiac function cannot prove causality. The lack of a treated hypertensive control group 

means that we cannot exclude a major influence of hypertension on the functional abnormalities 

we have found in early CKD. The measurements of elastance were derived by non-invasive 

methodology rather than from invasive ventricular pressure-volume relations, although these 

methods are well validated against invasive conductance catheter techniques. Brachial artery 

pressure was used in the calculation of aortic distensibility and elastance as this is in accord with 

validated methods (Chen et al., 2001). It is accepted however, that central aortic pressure is the 

pressure „seen‟ by the aorta and left ventricle. The use of derived central aortic pressure 

(applanation tonometry) in the calculation of aortic distensibility and in elastance values did not 

affect the significance of the results.  
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3.5.6  Conclusion 

Early stage CKD is characterised by increased arterial stiffness, left ventricular systolic stiffness, 

impaired early relaxation, and increased end diastolic stiffness. Arterial-ventricular coupling is 

preserved. These changes resemble closely those described in HFnIEF and may have implications 

for myocardial performance and prognosis. Measures to prevent or reverse these changes should 

be considered in patients with early stage CKD.  
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CHAPTER 4 

 

 

 

SUBCLINICAL ABNORMALITIES OF LEFT VENTRICULAR MYOCARDIAL 

DEFORMATION IN EARLY STAGE CHRONIC KIDNEY DISEASE-  

THE PRECURSOR OF UREAMIC CARDIOMYOPATHY 
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4.1 SUMMARY 

 

Abnormal left ventricular deformation is an independent predictor of poor cardiovascular 

outcome in end-stage renal disease. Studies in early stage chronic kidney disease (CKD) have not 

been performed despite the known graded inverse relationship between glomerular filtration rate 

and adverse cardiovascular events.  

Forty patients with CKD stage 2 or 3, no history of cardiovascular disease or diabetes and 

30 healthy controls underwent echocardiographic Doppler myocardial imaging for assessment of 

longitudinal deformation (strain/strain rate).  

There were no differences in left ventricular (LV) ejection fraction or systolic tissue 

Doppler velocities between patients with CKD and controls. In CKD, mean global S (-15 ± 4 % 

vs. -17 ± 3 %, p < 0.01) and mean global SR were reduced compared to controls (-0.88 ± 0.16 s
-1

 

vs. -1.06 ± 0.31 s
-1

, p < 0.05). Peak systolic strain was reduced in the basal lateral (-13.9 ± 0.9 

%vs. -17.9  ± 1.02 %, p < 0.01), basal septal (-17.1 ± 0.8 %vs. -19.4  ± 0.77 %, p < 0.05) and mid 

septal (-16.4 ± 0.78 %vs. -18.9 ± 0.88 %, p < 0.05) walls with more basal post-systolic shortening 

(p < 0.01). Peak systolic strain rate was reduced in the basal lateral, mid lateral and mid septal 

segments (p < 0.05). 

Conventional measures of LV systolic function are preserved in early stage CKD but LV 

systolic deformation is abnormal, consistent with an adverse cardiovascular prognosis. 
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4.2 INTRODUCTION 

 

In chapter 3, I reported that sub-clinical abnormalities of large artery function and left ventricular 

(LV) diastolic function are present in early chronic kidney disease (CKD) but found no evidence 

of reduced systolic function using conventional echocardiographic techniques. 

Newer echo imaging techniques including the measurement of tissue Doppler velocities 

(TDI) and myocardial deformation (strain and strain rate) have identified that subclinical 

abnormalities in LV systolic function in end-stage kidney disease (ESKD) which precede 

changes in conventional indices of myocardial function such as ejection fraction (Rakhit et al., 

2007). Strain and strain rate are of prognostic significance in patients with late and end stage 

CKD (Rakhit et al., 2007) but no data are available in early stage CKD.  

The aim of this study was to determine whether changes in myocardial deformation in 

asymptomatic patients with stage 2 and 3 CKD are present using TDI and myocardial 

deformation imaging. It is hypothesised that such changes precede the overt abnormalities in 

ventricular volumes, mass and standard parameters of systolic function which are highly 

prevalent in patients with ESKD.  
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4.3 METHODS 

 

4.3.1   Study design 

A cross-sectional observational study.  

 

4.3.2. Subjects 

The first fifty patients prospectively recruited for the cross-sectional observational study 

described in chapter 3, were studied in this pre-specified echocardiographic sub-study. Patients 

were compared with 30 healthy volunteers (recruited as outlined in chapter 2) matched for age 

and sex from University Hospital Birmingham. 

Compared to the total cohort of CKD patients described in chapter 2, patients in the sub-

study were younger (48 ± 11 years vs. 57 years ± 12, p < 0.01) but did not significantly differ in 

other demographic or clinical characteristics (male 63% vs. 61%, systolic blood pressure 130 ± 

13 mmHg vs. 131 ± 16 mmHg, p = 0.89, serum creatinine 126 ± 34 µmol/L vs. 136 ± 38 µmol/L 

p = 0.15).  

 

4.3.3  Data collection 

All subjects underwent: 

1. Twelve lead electrocardiogram 

2. Resting brachial blood pressure as described in section 2.2.2.1 

3. Transthoracic echocardiogram for assessment of:  

i) LV systolic and diastolic function described in sections 2.2.4-5  
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ii) LV mass was calculated according to Devereux‟s formula (Devereux et al., 1986) 

described in section 2.2.4.4  

iii) Relative wall thickness (RWT); calculated as the ratio of 2x posterior wall 

thickness to internal diastolic dimension. Calculation of RWT permits categorization of: 

normal LV mass with normal geometry (RWT ≤ 0.42), normal LV mass with concentric 

remodelling (normal LV mass + RWT ≥ 0.42), increased LV mass with concentric 

hypertrophy (RWT ≥ 0.42) and increased LV mass with eccentric hypertrophy (RWT ≤ 

0.42) (Ganau et al., 1992).   

iv) Myocardial deformation using a 1D-TDI technique is described in section 

2.2.4.5.2 (Figures 4.1-3).  

 

The measurement of post-systolic shortening can be observed in strain analysis (Figure 4.2). It 

refers to a delay in active contraction of longitudinal LV after the aortic valve closure causing 

impairment of subsequent LV filling. The exact cause remains uncertain but is postulated to 

reflect delayed active contraction after reduction of regional wall stress and relaxation of other 

adjacent LV segments or delayed passive inward movement caused by adjacent normal 

contracting LV segments. Post-systolic shortening can be present in normal myocardium but is 

less than the shortening in systole. In abnormal myocardium such as ischaemic tissue, it exceeds 

contraction in systole (Figure 4.2). The timing of events within the cardiac cycle such as aortic 

and mitral valve opening and closure was obtained from pulse wave Doppler traces of the LV 

outflow tract and mitral inflow.  
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4.3.4  Image analysis 

All analysis was performed off-line by two independent observers blinded to the clinical data 

(NE, AH) using an Echo-Pac (EchoPac, GE Health Care. Norway) work station and averaged 

over three consecutive measurements. Reproducibility between the two independent observers 

was checked by complete image analysis with position of the region of interest by each. The 

following parameters of LV long-axis function were recorded in both patients with CKD and 

healthy controls: peak systolic velocity (Sm), early diastolic velocity (Em), peak systolic strain 

(S) (Figure 4.1), post-systolic shortening (PSS) (Figure 4.2) and peak systolic strain rate (SRs) 

(Figure 4.3).  

 

4.3.5  Statistical analysis 

Statistical analyses were performed as described in Chapter 2. Intra and inter-observer variability 

were assessed in 10 randomly selected subjects using intra-class correlation coefficients and 

Bland-Altman limits of agreement (Bland & Altman, 1986) as described in section 2.3.4. The 

measurements assessed were: peak systolic tissue velocities, peak systolic basal strain and peak 

basal systolic strain rate.
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Figure 4.1 Longitudinal systolic strain (S) curve over one heart cycle from the basal septal  

  (yellow) and mid (blue) septal segments in a) patient with chronic kidney disease 

 and b) healthy control 

 
 

 
 

Peak systolic S is measured at AVC for timing of end systole.  

Peak S at AVC is significantly reduced in the basal segment in CKD compared to a control 

subject.  

a. 

b. 

Peak S at AVC = 16 % 

Peak S at AVC = 19 % 

AVC 
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Figure 4.2  Longitudinal systolic strain (S) curve over one heart cycle in the basal septal  

(yellow) and mid septal (blue) segments in a patient with chronic kidney disease 

demonstrating post-systolic shortening  

 

 
 

 

Basal peak systolic S at AVC is reduced (14.1%). Abnormal basal post-systolic 

shortening (PSS 20.7%) is present after AVC signifying further shortening of the LV 

against a closed aortic valve 

AVC 

Peak S at AVC = 14.1 % 

PSS after AVC = 20.7 % 
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Figure 4.3 Longitudinal strain rate (SR) curve over one heart cycle from the basal septal  

  (yellow) and mid septal (blue) segments in a) patient with chronic kidney disease  

  and b) healthy control 

 

 

Peak SR is significantly reduced in the basal segment in a patient with CKD compared with a 

control subject

a. 

b. 

AVC 

Peak SR at AVC = -0.63 s
-1

 

Peak SR at AVC = -1.21 s
-1
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4.4  RESULTS 

 

4.4.1  Demographic data  

There were no significant differences in demographic data between subjects and controls (Table 

4.1). The aetiology of CKD was; glomerulonephritis 40%, quiescent vasculitis / SLE 30%, adult 

polycystic kidney disease 8%, reflux 8%, other 14%). Fifty one percent of patients had a history 

of hypertension as a complication of their renal pathology but all were well controlled on an 

average of 2.1 antihypertensive agents per patient. Concomitant treatments in the CKD group 

included ACE inhibitors 75%, ARBs 18%, ACE inhibitor + ARB 5%, statins 29%, beta blockers 

20% and calcium channel blockers 32%. There was no difference in systolic or diastolic blood 

pressure between patients and controls.  

 

4.4.2  Standard echocardiography 

Data from 10 patients were excluded due to inadequate image quality. Standard 

echocardiographic parameters are summarised in Table 4.2. The septal wall was thicker in early 

CKD than in controls but the LV cavity size and posterior wall thickness did not differ. Mean LV 

mass index was increased with CKD compared to controls but there was no difference in 

eccentric/concentric remodelling as assessed by relative wall thickness. 
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Table 4.1  Population characteristics 

 

 Controls CKD Significance 

 n = 30 n = 40  

Male (%) 16 (53) 24 (60) NS 

Age (years) 48 ± 9 48 ± 11 NS 

BSA (g/m
2
) 1.83 ± 0.17 1.86 ± 0.18 NS 

Office systolic BP (mmHg) 125 ± 13 130 ± 13 NS 

Office diastolic BP (mmHg) 78 ± 11 79 ± 8 NS 

Heart rate (bpm) 65 ± 11 66 ± 10 NS 

Serum creatinine (µmol/L) 97 ± 11 126 ± 34†† p < 0.01 

eGFR (ml/min/1.73m
2
) 70 ± 5 56 ±12 †† p < 0.01 

Haemoglobin (g/dL) 14.4 ± 1.5 13.5 ± 1.8 NS 

Number of patients on treatment:    

ACE Inhibitors  0 30  

ARB  0 7  

ACE inhibitor + ARB 0 2  

Beta Blockers  0 8  

Calcium Channel Blockers  0 13  

Diuretics 0 10  

Statins 0 10  

Values are mean ± standard deviation 

†† p < 0.01 CKD versus controls
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Table 4.2 Standard echocardiographic indices 

 

 Controls (n=30) CKD (n=40) 

LV end-diastolic dimension (cm) 4.8 ± 0.4 5.0 ± 0.4 

LV septal wall thickness (cm) 0.9 ± 0.1 1.0 ± 0.2†† 

LV posterior wall thickness (cm) 0.8 ± 0.1 0.8 ± 0.2 

Regional wall thickness 32 ± 0.08 34 ± 0.06 

LV mass index (g/m
2
) 74 ± 13 87 ± 23†† 

LV hypertrophy (%) 0 18%†† 

LV Ejection fraction (%) 65 ± 5 64 ± 6 

Mean basal Sm (cm/s) 6.2 ± 1.5 6.1 ± 1.4 

Mitral E velocity (m/s) 0.69 ± 1.1 0.72 ± 1.2 

Mitral A velocity (m/s) 0.54 ± 1.1 0.61 ± 1.8† 

Deceleration time (ms) 208 ± 23 212 ± 36 

Left atrial volume (cm
3
) 20.2 ± 4.8 28.0 ± 6.2†† 

Lateral annular TDI Em 9.8 ± 3.2 8.4 ± 3.3†† 

E/Em 7.6 ± 2.2 9.8 ± 4.2† 

RV Tei Index 0.27 ±0.09 0.36 ± 0.16†† 

LV Tei Index 0.37 ± 0.05 0.47 ± 0.08†† 

Values are mean ± standard deviation 

† p < 0.05 †† p < 0.01 CKD vs. controls 

A; late mitral inflow velocity, E; early mitral inflow velocity, Em early diastolic tissue Doppler 

velocity, E/Em; ratio of mitral inflow velocity (E) to early diastolic tissue Doppler velocity (Em), 

Sm; systolic tissue Doppler velocity 
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4.4.3 Doppler myocardial imaging 

Regional and global longitudinal myocardial deformation for all LV segments are shown in 

Figures 4.4 and 4.5. In early CKD, peak S was reduced in the basal lateral, basal septal and mid 

septal segments with a trend towards reduction in the mid lateral LV. Mean global S over the LV 

was significantly reduced in CKD (-15 ± 4 % vs. -17 ± 3%, p < 0.01) (Figure 4.4). Post-systolic 

shortening was increased in CKD compared to controls in the basal lateral (25 ± 5.7 % vs. 9 ± 3.0 

%, p < 0.05) and basal septal segments (11 ± 2.2 % vs. 5 ±1.7 %, p < 0.05). Peak SRs was 

reduced in the basal lateral, mid lateral, and mid septal segments with a trend towards reduction 

in the basal septal LV. Mean global SR was reduced in CKD (-0.88 ± 0.16 s
-1

 vs. -1.06 ± 0.31 s
-1

, 

p < 0.05) (Figure 4.5). 

In view of the higher LV mass index and septal thickness observed in early CKD, a sub-

group analysis of regional deformation was performed in i) patients with (n=7) and without LV 

hypertrophy (n=33) and ii) patients with a history of treated hypertension (n=21) compared to 

patients without a history of hypertension (n=19). There was no significant difference in either 

analysis in any echocardiographic parameter of regional deformation or tissue velocity measured. 

There was no correlation between parameters of deformation and LV mass or systolic and 

diastolic blood pressure. These numbers are small however, and a type II error cannot be 

excluded. 

Haemoglobin, calcium, phosphate and parathyroid hormone were within normal range in 

all subjects. There was no detectable association between measures of myocardial function and 

any haematological or biochemical parameter by univariate analysis. There was no association 

between measures of myocardial function and any cardiac medication by univariate analysis. 
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4.4.4 Reproducibility 

There was good intra and inter-observer agreement; peak systolic tissue velocities (Sm) (r = 0.96; 

p < 0.01) longitudinal peak SR (r = 0.95, p < 0.01) as well as longitudinal peak S (r = 0.98; p < 

0.01). Bland-Altman limits of agreements revealed no systematic bias in differences between 

measurements with respect to their means for intra and inter-observers respectively: peak systolic 

tissue velocities 10.4 to -6.9% and 11.8 to -12.4%, longitudinal peak SR 13.3 to -12.7% and 19.9 

to -21.6, longitudinal peak S 15.1 to -13.5% and 8.5 to -11.9%. 
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Figure 4.4  Mean longitudinal peak systolic strain (S) and post-systolic shortening (PSS)  

  in the left ventricular lateral and septal walls and global left ventricle in  

  patients with chronic kidney disease and healthy controls 

 

 
 

Values are mean ± standard error of the mean. 

† p < 0.05 †† p < 0.01 CKD vs. controls.  

S, strain; PSS, post-systolic shortening 
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Figure 4.5   Peak systolic strain rate (SR) in the left ventricular lateral and septal walls and  

  global left ventricle in patients with chronic kidney disease and healthy controls  

 

 

 

Values are mean ± standard error of the mean. 

† p < 0.05 †† p < 0.01 CKD vs. controls.  

SR, peak systolic strain rate 
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4.5.  DISCUSSION 

 

This was the first study to demonstrate that patients with early CKD have abnormal LV systolic 

function detected by impaired longitudinal myocardial deformation imaging. These abnormalities 

occurred in the absence of abnormalities in conventional markers of LV dysfunction such as 

ejection fraction and tissue Doppler systolic velocities.  

 

4.5.1 Echocardiographic changes in chronic kidney disease 

Left ventricular systolic function is abnormal at a stage when subjects have normal or near 

normal serum creatinine (mean serum creatinine 126 µmol/L) and are consistent with the 

epidemiological evidence that early stage CKD is associated with adverse cardiovascular 

outcomes with eGFRs as high as 60-90 ml/min/1.73m
2
 (Van et al., 2007). Reductions in peak 

strain and peak strain rate have been reported before in late and end stage CKD (Rakhit et al., 

2007). Rakhit et al. (2007) showed that these abnormalities were highly prevalent in late and end 

stage CKD and that a reduction in strain rate predicted adverse cardiac events despite otherwise 

near normal conventional echocardiographic findings.  

Approximately 14% of the general population have the same degree of mild renal 

impairment as the subjects in our study (Coresh et al., 2007). These data therefore raise important 

questions regarding the prognostic significance of reduced strain rate in early stage CKD and the 

importance of identifying effective therapeutic treatment strategies. 
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4.5.2 Changes in regional left ventricular function in early chronic kidney disease 

In this study, regional systolic function was abnormal but standard echocardiographic assessment 

of LV radial systolic function such as ejection fraction and regional myocardial systolic tissue 

velocities did not differ between early CKD and controls. This pattern is postulated to reflect an 

increase in contraction of the mid-wall circumferential fibres to compensate for the reduction in 

longitudinal contraction due to subendocardial dysfunction (Yip et al., 2002). From observational 

data however, it is not possible to determine if regional dysfunction is the precursor of major 

alterations in LV geometry and function characteristic of ESKD. In other cardiomyopathies 

abnormal longitudinal deformation has been demonstrated to precede clinical evidence of systolic 

dysfunction using conventional indices. Furthermore, abnormal longitudinal S / SR are useful in 

the pre-clinical diagnosis of a number of other cardiomyopathies, including diabetes, 

hypertrophic cardiomyopathy, Fabrys disease and amyloid (Kato et al., 2004;Koyama et al., 

2003;Weidemann et al., 2005) 

Abnormal longitudinal myocardial deformation in early CKD may reflect interstitial 

fibrosis with myocyte hypertrophy and disarray, which has been documented on endomyocardial 

biopsy (Aoki et al., 2005). Both human and animal work has shown ureamia to be associated with 

myocardial fibrosis independent of traditional cardiovascular risk factors (Amann et al., 

1998;Mall et al., 1990). Alongside the reduction in peak strain and strain rate, early CKD was 

associated with an increase in the frequency of post-systolic shortening / thickening. This may be 

due to microvascular ischaemia caused by the reduction in the density of myocardial capillaries 

which occurs in patients with CKD compared both to controls and to patients with essential 

hypertension (Amann et al., 1998).  
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There are few other echocardiographic data available in patients with early CKD for 

comparison with our results. In a small study of 29 patients with mild/moderate renal dysfunction 

(creatinine clearance ≥ 29 ml/min) and 19 patients with severe CKD (creatinine clearance ≥ 29 

ml/min), early diastolic tissue velocities were found to be reduced in both groups compared to 

controls with no change in standard echocardiographic parameters of systolic or diastolic 

function (Hayashi et al., 2006). The reductions in early diastolic tissue velocities were present in 

patients with and without LVH, although were more pronounced in the sub-group with LVH, 

leading to the suggestion that factors other than hypertrophy could be responsible. This 

hypothesis is supported by a recent sub-group analysis of patients with early CKD from the 

Multi-Ethnic Study of Atherosclerosis (Nasir et al., 2007). The investigators used Harmonic 

Phase (HARP) tagged MRI studies (which has the advantage of high spatial resolution but at a 

cost of poor temporal resolution compared to echocardiography) to determine regional systolic 

and diastolic function. Significant reductions in systolic S / SR in patients with a creatinine 

clearance below 60 ml/min were observed, independent of age and coronary heart disease risk 

factors. These data however, only provide information on changes in regional circumferential 

strain and not regional longitudinal deformation as in our study but are consistent with the 

hypothesis of an early diffuse cardiomyopathy associated with early CKD.  

A clinical outcome trial is required to investigate whether reductions in strain and strain 

rate are a marker of adverse prognosis in early stage CKD as in ESKD. They also raise the 

question as to whether patients with early CKD should be treated routinely with drugs such as 

ACE inhibitors, ARBs and mineralocorticoid receptor blocking agents such as spironolactone and 

eplerenone, which have been shown to be effective in improving the cardiac outcomes of other 
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groups of patients with symptomatic and asymptomatic LV systolic dysfunction (Mak et al., 

2009;Mottram et al., 2004;Pitt et al., 1999;Zannad et al., 2011). 

 

4.5.3 Limitations 

As described in chapter 3, the lack of a control group with treated hypertension and normal renal 

function means that it is not possible to exclude the impact of hypertension on the functional 

abnormalities documented in this study. A 5 mmHg difference in office systolic blood pressure 

was present between patients with CKD and controls, although this was not statistically 

significant. This was not a study however, of patients with hypertension and incidental renal 

dysfunction. All patients were recruited from a specialist renal clinic and had established renal 

disease, proven by biopsy in 70% of cases. None of the controls had CKD by definition. The 

surprisingly low mean eGFR in this group reflects the inherent inaccuracy of eGFR ≥ 60 

ml/min/1.73m
2
 using the 4-v MDRD formula (Poggio et al., 2005). We were not able to examine 

in detail the association between LV hypertrophy and the presence of subnormal myocardial 

deformation because of the small number of patients fulfilling the criteria for LVH; there were 

however, no significant differences in any parameter of global or regional deformation between 

the patients with LVH and those with a normal LV mass index, nor between patients with a 

history of hypertension and those with no history of hypertension. In addition, the regional 

reductions in deformation observed in this study differ from those found in hypertension, where a 

decrease in septal deformation appears to be accompanied by a concomitant increase in this 

parameter in the lateral wall, rather than the global reduction found in our study (Baltabaeva et 

al., 2008). 
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4.5.4 Conclusion 

Abnormal longitudinal systolic deformation is present in asymptomatic individuals with early 

CKD without clinical evidence of heart disease. These changes represent the first detectable 

echocardiographic manifestations of systolic dysfunction in CKD and along with abnormalities of 

diastolic function, may be the precursors of the major alterations in LV geometry and function 

that are characteristic of ESKD.   
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CHAPTER 5 

 

 

EFFECT OF SPIRONOLACTONE ON LEFT VENTRICULAR MASS AND AORTIC 

STIFFNESS IN EARLY STAGE CHRONIC KIDNEY DISEASE:  

A RANDOMISED CONTROLLED TRIAL 

 

 

 

 

 

 

 

 

 

 

Contributory publications: 

NC Edwards, RP Steeds, PM Stewart, CJ Ferro, JN Townend. Effect of Spironolactone on Left 

Ventricular Mass and Aortic Stiffness in Early Stage Chronic Kidney Disease: A Randomized 

Controlled Trial. J Am Coll Cardiol. 2009 Aug 4;54(6):505-12. 
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5.1  SUMMARY 

 

Early stage chronic kidney disease (CKD) is associated with a high risk of cardiovascular disease 

and a high prevalence of left ventricular hypertrophy and arterial stiffness which confer an 

adverse prognosis. It is believed that these abnormalities are in part a result of activation of the 

renin-angiotensin-aldosterone system. It was hypothesised that the addition of spironolactone to 

ACE inhibitors and Angiotensin Receptor Blockers (ARBs) would improve left ventricular mass 

and arterial stiffness in CKD. 

Following an active run in phase with spironolactone 25 mg once daily, 112 patients with 

stage 2 and 3 CKD with good blood pressure control (mean daytime ambulatory BP ≤ 130/85 

mmHg) on established treatment with ACE inhibitors or ARBs were randomised to continue 

spironolactone or receive a matching placebo. Left ventricular mass (cardiac magnetic resonance) 

and arterial stiffness (pulse wave velocity / analysis, aortic distensibility) were measured before 

run in and after 40 weeks of treatment.   

Compared to placebo, spironolactone resulted in significant improvements in LV mass (-14 

± 13 g vs. +3 ± 11 g, p < 0.01), pulse wave velocity (-0.8 m/s ± 1.0 vs. -0.1 m/s ± 0.9, p < 0.01), 

augmentation index (-5.2 % ± 6.1 vs. -1.4 % ± 5.9, p < 0.05) and aortic distensibility (0.69 x10
-3 

mmHg  ± 0.86 vs. 0.04 x10
-3

mmHg  ± 1.04, p < 0.01).   

Spironolactone reduces left ventricular mass and improves arterial stiffness in early stage 

CKD. These effects suggest that aldosterone exerts adverse cardiovascular effects in CKD and 

that spironolactone is worthy of further study as a treatment that could reduce adverse 

cardiovascular events. 
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5.2  INTRODUCTION 

 

In chapters 3 and 4, it was shown that early stage chronic kidney disease (CKD) is characterised 

by major abnormalities of cardiovascular structure and function. There are many possible causes 

which might promote these abnormalities but high on the list is activation of the renin-

angiotensin-aldosterone system (RAAS). 

 The importance of the RAAS as a driver of progressive renal and cardiovascular disease 

in patients with CKD is increasingly apparent (Parfrey, 2008;Remuzzi et al., 2008). Both 

angiotensin II and aldosterone exert numerous adverse cardiovascular effects including the 

development of left ventricular hypertrophy (LVH) (Brilla & Weber, 1992) and increased arterial 

stiffness (Weber and Brilla, 1991a). Angiotensin-converting enzyme (ACE) inhibitors and 

angiotensin receptor blockers (ARBs) are effective in reducing the progression of both renal and 

vascular damage in CKD but they do not result in complete suppression of aldosterone 

production (Bomback & Klemmer, 2007;Schrier, 2010), a powerful potential stimulus to arterial 

stiffness, ventricular hypertrophy and fibrosis (chapter 1).  

It is therefore possible that in patients with early stage CKD, continuing aldosterone 

production might be an important cause of both LVH and increased arterial stiffness. These are 

powerful risk factors for cardiovascular disease in the general population (Dahlof et al., 

2005;Levy et al., 1990) and are both highly prevalent and prognostically important in CKD 

(Blacher et al., 1999b;Foley & Parfrey, 1998). The Chronic Renal Impairment in Birmingham II 

(CRIB-II) trial therefore examined the effect of the addition of the aldosterone antagonist 

spironolactone to ACE inhibitors or ARBs on these prognostic markers in a group of patients 

with early (stage 2 and 3) CKD.
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5.3  METHODS 

 

5.3.1  Study design  

The Chronic Renal Impairment in Birmingham (CRIB-II) study II was a single centre, 

prospective, double-blind, placebo controlled, randomised interventional trial over 40 weeks. It 

was registered on www.clinicaltrials.gov (Identifier: NCT00291720) and the European Clinical 

trials Database (EudraCT) (2007-003408-36). Medicines and Healthcare products Regulatory 

Agency (MHRA) approval was obtained for the use of spironolactone 25mg daily 

(MF8000/13148). 

 

5.3.2  Study outline and treatment regimen 

Screening protocols and inclusion / exclusion criteria have been outlined in chapter 2. Reasons 

for ineligibility are described in chapter 3. Thus 287 patients were suitable for inclusion; 170 

declined to participate and 117 patients provided written consent to participate. An outline of the 

study is presented in Figure 5.1 

The study comprised 4-week open-label run-in phase of 25 mg of spironolactone once 

daily, after which patients were randomised to continue a further 36 weeks of treatment with 25 

mg of spironolactone or to matching placebo.  

Patients were withdrawn at any stage for the following reasons; 

1. Hyperkalaemia – protocol for management outlined in Table 5.1 

2. Reduction in eGFR ≥ 30% compared to a previous sample  

3. Intolerant of the study medication 

http://www.clinicaltrials.gov/
http://www.mhra.gov.uk/
http://www.mhra.gov.uk/
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4. Patient withdrew consent 

Patients unwell with vomiting or diarrheal illnesses had study medication temporarily 

suspended.  
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Figure 5.1  Study Outline 

Patients eligible for inclusion n = 287

Refused to participate n = 170  

Consented to participate n = 117

Baseline assessment

4 week open-labelled treatment: spironolactone 25 mg daily 

Did not meet inclusion criteria;

Potassium ≥5.5 mmol/L n =1

24 ABPM ≥ 130/85 mmHg n= 1

-

Randomisation n =112

Not randomised:

Serious hyperkalaemia n=1

≥ 30% ↓ in renal function n =1

Withdrew consent n= 1
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5.3.2.1  Open labelled “run-in” phase (week 0 to week 4) 

After baseline clinical assessment, renal function, serum potassium and 24 hour ambulatory 

blood pressure results were reviewed to ensure the inclusion criteria were satisfied. All patients 

were dispensed 30 spironolactone (generic) tablets at a dose of 25mg daily from the pharmacy 

department in University Hospital Birmingham. Patients were requested to continue all regular 

medications at normal dosing times adding spironolactone to morning medications. Patients were 

advised to phone the Wellcome Research Clinical Facility (WRCF) study nurse or research 

fellow if they experienced any side effects or had any questions regarding treatment. Renal 

function and serum potassium levels were checked after weeks 1 and 2 of treatment at the WRCF 

or the patient‟s local hospital phlebotomy unit. Patients GP‟s were sent a letter detailing the study 

aims and protocol. They were requested not to change regular medications without prior 

discussion with the study research fellow and principle investigator.  

 

5.3.2.2  Randomisation (week 4 to week 40) 

At week 4, patients re-attended the WRCF for further clinical assessment including; history, 

examination, 12 lead electrocardiogram, resting “office” and 24 hour ambulatory blood pressure 

monitoring, assessment of arterial stiffness (pulse wave analysis, carotid femoral pulse wave 

velocity), venous blood tests and urine analysis.  

The unused spironolactone tablets were counted and returned to pharmacy to ensure 

compliance. Patients were randomised by the pharmacy department in University Hospital 

Birmingham to a capsule of spironolactone or placebo (manufactured by MHRA approved 

supplier; DHP Pharma, Powys, Wales). The shelf life of the spironolactone / placebo capsule was 

6 months, hence up to a maximum of six containers were supplied to each patient at 
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randomisation. When a new supply was received, all patients were contacted and the appropriate 

remaining containers dispensed. Each container contained 32 tablets, enough for each calendar 

month after which they were advised to change to a new container. If commencing part way 

through a calendar month, patients were still advised to start a new container at the start of the 

next month. Renal function and potassium were checked at weeks 8, 16 and 32 at a nurse-led 

appointment at the WRCF or patients local hospital. At each review time point, patients were 

actively questioned as to possible side effects including disturbed menstrual cycle, breast 

tenderness, erectile dysfunction and gynecomastia. At week 40, all patients attended the WRCF 

for clinical review and investigations as per week 0. A tablet count was performed at each review 

to ensure compliance. 

 

 

5.3.2.3  Biochemical monitoring protocol 

Serious hyperkalaemia was defined as a serum potassium ≥ 6.5 mmol/L or serum potassium ≥ 6.0 

mmol/L on consecutive samples. Mild hyperkalaemia was defined as a serum potassium 5.5- 5.9 

mmol/L. The protocol for management of hyperkalaemia is detailed in Table 5.1.  
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Table 5.1  Management of hyperkalaemia 

 

Serum potassium (mmol/L) Action 

≥ 6.5 mmol/L Appropriate treatment and withdrawal from study 

6-6.4 mmol/L Abstain for 1 week, recommence at 25mg on alternate days 

≥ 6.0 mmol/L on repeat testing Withdrawal from study 

≥ 5.5-5.9 mmol/L  Change to 25mg on alternate days 

<5.4 mmol/L No action 

 

An independent data monitoring committee was established to review all biochemical data at 4 

weekly intervals. The committee had the power to: i) un-blind the study if any significant trends 

were noted, ii) suspend the study if, for any reason, they feel patient safety is being compromised. 
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5.3.3  Clinical assessments 

Detailed methodology of the assessment techniques used are described in chapter 2. All patients 

underwent clinical assessments as described in chapter 3 at baseline / week 0 and at week 40 

prior to stopping treatment. In this study the following additional assessments were performed: 

1. Non-invasive assessment of arterial stiffness using applanation tonometry (pulse wave 

analysis (PWA), carotid-femoral pulse wave velocity (PWV)). 

 

An outline of clinical assessments performed in this study is presented in Figure 5.2. 
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Figure 5.2 An outline of clinical assessments performed in the Chronic Renal Impairment in Birmingham (CRIB)-II study 

 

Spironolactone

25 mg od

Spironolactone 25 mg once daily

Placebo once daily

4 weeks open label

36 weeks blinded therapy

Investigations

1. Potassium and renal function: weeks 0, 1, 2, 4, 8, 16, 28 and 40 

2. Cardiac MRI: weeks 0 & 40

3. Arterial stiffness: weeks 0 & 40

4. Echocardiography: weeks 0 & 40

5. 24 hour ambulatory BP: weeks 0 & 40

6. ACR: weeks 0 & 40 

Week 0 assessment Week 4 assessment Week 40 assessment
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5.3.4  Outcomes and follow-up 

The study co- primary end-points were change in LV mass and arterial stiffness measured by 

PWV. Secondary end-points were aortic distensibility, augmentation index, blood pressure, and 

albuminuria. 

 

5.3.5  Statistical analysis and power calculation 

Based on previous studies of LV mass determined by cardiac MRI and PWV by applanation 

tonometry, we assumed a standard deviation of change in these parameters of 12g and 1.0 m/s 

respectively. Thus we calculated a sample size of 90 patients assigned equally to the two 

treatment groups would provide 95% power to detect a change in LV mass of 10 g and 80% 

power to detect a change in PWV of 0.6m/s with an α-value (type I error) of 5%. A 10% drop-out 

rate was assumed.  

Statistical analyses were performed as described in Chapter 2. Adjustments for changes in 

mean arterial pressure from week 0 to week 40 for parameters of arterial stiffness were based on 

coefficients obtained from linear regressions using baseline data for both groups combined. These 

values are presented as PWV adj, aortic distensibility adj, augmentation adj, Aug Ix adj, Aix 75 adj. 

Independent predictors of changes in LV mass and arterial stiffness were determined 

using multivariate regression models as outlined in chapter 2.  
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5.4 RESULTS 

 

5.4.1 Patient characteristics and follow-up 

Baseline demographic and clinical characteristics are presented in Table 5.2. As expected, 

baseline levels of angiotensin II were significantly lower in patients on an ACE I than an ARB 

(data not shown, p < 0.01) with no difference in but levels of aldosterone or renin.   

 Over 40 weeks of follow-up, no patients died, two patients did not complete the follow up 

period; 1 patient withdrew consent for further participation and 1 patient had a relapse of 

Wegener‟s granulomatosis causing acute renal failure. Two patients were hospitalised during 

their participation for unrelated medical conditions. 

 

5.4.2.1 Change in blood pressure  

Spironolactone reduced office, central, daytime ambulatory and night-time ambulatory systolic 

blood pressure compared to placebo (Table 5.3). There were no changes in the equivalent 

diastolic pressures. Only 44% of patients at baseline were nocturnal dippers. There was no 

significant change at week 40 (47%) in either treatment group.  

 

5.4.2.2  Renal and endocrine effects  

After 40 weeks of treatment there was no difference in eGFR; spironolactone -3 ± 7 

ml/min/1.73m
2
 vs. placebo -1 ± 5 ml/min/1.73m

2
, NS. Treatment with spironolactone reduced 

median ACR by -3.2 (25) mg/mmol compared to-0.6 ± (6.2) mg/mmol with placebo, p < 0.05 



 203 

(Table 5.4). Levels of plasma aldosterone, plasma renin, plasma angiotensin II were increased 

with spironolactone. There was no change in high sensitivity CRP concentrations are shown in 

Table 5.4.  

 

5.4.2.3  Changes in left ventricular mass, volumes and function  

Compared to placebo, treatment with spironolactone resulted in significant reductions in LV mass 

and LV mass index (Table 5.4, Figure 5.3). The prevalence of LVH declined by 50% with 

spironolactone but was unchanged with placebo (Table 5.4). Baseline LV mass was not a 

predictor of LV mass regression on multivariable analysis. The reduction in LV mass index on 

spironolactone for subjects with LVH at baseline was -8 ± 8g compared to -6 ± 5g for  

subjects with a normal baseline LV mass (p = NS). Treatment with spironolactone did not affect 

LV volumes or ejection fraction. 
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Table 5.2  Patient characteristics at baseline  

 Placebo  

(n=56) 

Spironolactone  

(n=56) 

Age (years) 53 ± 12 54 ± 12 

Male (%) 33 (59) 32 (57) 

Body surface area 1.86 ± 0.2 1.95 ± 0.2† 

24 hour ambulatory SBP (mmHg) 125 ± 10 124 ± 11 

24 hour ambulatory DBP (mmHg) 77 ± 8 76 ± 8 

Serum creatinine (µmol/L) 124 ± 34 133 ± 35 

eGFR (ml/min/1.73m
2
) 53 ± 11 49 ± 12 

Heart rate (beats per minute) 65 ± 11 66 ± 12 

Haemoglobin (g/dL) 13.5 ± 1.6 13.5 ±1.3 

Cholesterol (mmol/L)  4.7 ± 1.1 4.9 ± 1.1 

Serum potassium (mmol/L) 4.3 ± 0.3 4.4 ± 0.8 

Number of patients on treatment    

ACE Inhibitors  37 37 

ARB 17 18 

ACE Inhibitor + ARB 2 1 

Beta Blockers  8 15 

Calcium Channel Blockers  17 13 

Diuretics 13 18 

Statins  17 27 

Values are mean ± standard deviation. † p < 0.05.  

ARB; angiotensin receptor blocker, DBP; diastolic blood pressure, SBP; systolic blood pressure 

24 hour ambulatory; blood pressure every 30 minutes between 6am-10pm, 1 hourly 11pm-5am  
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Table 5.3  Change in blood pressure after 40 weeks of treatment with spironolactone or  

  placebo 

 

 Placebo Spironolactone 

 Week 0 Week 40 Week 0 Week 40 

Office SBP (mmHg) 130 ± 19 125 ± 17 130 ± 16 119 ± 13 † 

Office DBP (mmHg) 77 ± 10 73 ± 9 77 ± 10 71 ± 10 

Central SBP (mmHg) 120 ± 18 116 ± 16 121 ± 15 110 ± 13 †† 

Central DBP (mmHg) 78 ± 10 74 ± 9 78 ± 10 72 ± 10 

24 hr daytime SBP (mmHg) 125 ± 11 124 ± 11 125 ± 11 119 ± 11†† 

24 hr daytime DBP (mmHg) 77 ± 9 76 ± 7 76 ± 8 73 ± 8 

24 hr night SBP (mmHg) 113 ± 14 112 ± 11 115 ± 15 108 ± 14† 

24 hr night DBP (mmHg) 66 ± 10 66 ± 9 67 ± 9 63 ± 9 

Values are mean ± standard deviation 

To compare changes in the two groups we used repeated measures analysis of variance with the 

time point (week 0, week 40) as the „within subjects‟ factor and the group (spironolactone and 

placebo) as the „between subjects‟ factor and tested the significance of the interaction between 

the two. † p < 0.05, †† p < 0.01 

DBP; diastolic blood pressure, SBP; systolic blood pressure, daytime; between 6am-10pm, night; 

11pm-5am 
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Table 5.4  Changes in biochemical and cardiac MRI parameters 

 Placebo Spironolactone 

 Week 0 Week 40 Week 0 Week 40 

ACR (mg/mmol)# 5.0 ± 46 5.0 ± 33 9.8 ± 41 3.3 ± 20† 

Renin (uU/ml)# 1.94 ± 0.59 1.87 ± 0.60 1.85 ± 0.57 2.11 ± 0.56†† 

Angiotensin II (pg/ml)# 0.90 ± 0.65 0.89 ± 0.59 0.90 ± 0.67 1.12 ± 0.89 †† 

PAC (pg/ml)# 1.84 ± 0.27 1.68 ± 0.44 1.78 ± 0.28 2.11 ± 0.38†† 

hsCRP (mg/dL)# 0.04 ± 1.00 0.14 ± 0.75 0.35 ± 0.83 0.37 ± 0.69 

LVEF (%) 72 ± 8 72 ± 7 69 ± 8 72 ± 9 

LV mass (g) 110 ± 26 113 ± 28 119 ± 34 105 ± 30†† 

LV mass Index (g/m
2
) 59.2 ± 11.3 58.9 ± 12.0 60.7 ± 13.5 53.8 ±12.5†† 

LV hypertrophy 8 8 11 5 

LVEDV/BSA (ml/m
2
) 54 ± 11 55 ± 12 56 ± 13 53 ± 11 

LVSV/BSA (ml/m
2
) 39 ± 8 39 ± 8 38 ± 7 38 ± 8 

RVEDV/BSA (ml/m
2
) 64 ± 12 66 ± 14 66 ± 12 64 ± 12 

RV EF (%) 61 ± 6 59 ± 6 59 ± 7 59 ± 6 

Normally distributed values are presented as values are mean ± standard deviation; the remainder 

(#) were log transformed before comparison and are presented as median and inter quartile range. 

To compare changes in the two groups we used repeated measures analysis of variance with the 

time point (week 0, week 40) as the „within subjects‟ factor and the group (spironolactone and 

placebo) as the „between subjects‟ factor and tested the significance of the interaction between 

the two. † p < 0.05, †† p < 0.01. 

ACR; urinary albumin-creatinine ratio, BSA; body surface area, EF; ejection fraction, PAC; 

plasma aldosterone concentration   
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Figure 5.3  Change in left ventricular mass (g) and left ventricular mass index (g/m
2
) in  

  patients treated with spironolactone and placebo 

 

 

Values are mean ± standard error of the mean 

†† p < 0.01 treatment by time interaction, repeated measures ANOVA 

LV mass index; LV mass / body surface area 
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5.4.2.4  Changes in pulse wave velocity, aortic distensibility and augmentation  

Compared to placebo, spironolactone resulted in a significant fall in PWV (Table 5.5, Figure 

5.4a), central aortic pressure augmentation, Aug Ix and AIx 75 (Table 5.5, Figure 5.4b). 

Consistent with these changes, aortic distensibility increased with spironolactone compared to 

placebo (Table 5.5, Figure 5.4c). All of the changes in arterial stiffness remained significant after 

adjustment for the reduction in mean blood pressure that occurred with treatment (Table 5.5). 

 

5.4.2.5  Effect of changes in blood pressure on left ventricular mass and pulse wave  

  velocity 

The possible effects of the reduction in blood pressure caused by spironolactone on the changes 

in LV mass and PWV were examined by determining the association of these changes with the 

changes in systolic pressure using multivariate regression models (Table 5.6). Independent 

variables known to influence LV mass and arterial stiffness were entered into the models. Only 

the change in central aortic systolic BP was a significant independent predictor of change in LV 

mass. The difference in the strength of the association between the reduction in central aortic and 

ambulatory 24 hour systolic pressures and change in LV mass is illustrated in Figure 5.5. When 

we added treatment with spironolactone to the model, the changes in systolic BP (including 

central systolic BP) were rendered insignificant.  

In a model with PWV as the dependent variable, the change in central systolic BP (r
2
 = 

0.28, p < 0.01) and office systolic BP (r
2
 = 0.28, p < 0.01) were independent predictors and 

remained significant after the addition of treatment with spironolactone to the models (r
2 

=
 
0.33 p 

< 0.01, r
2 

= 0.36, p < 0.01).   
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Table 5.5.  Arterial stiffness values (absolute and adjusted for changes in mean arterial  

  pressure over 40 weeks of treatment)  

 

 Placebo Spironolactone 

 Week 0 Week 40 Week 0 Week 40 

PWV (m/s) 8.3 ± 1.7 8.1 ± 1.9 8.3 ± 1.6 7.5 ± 1.4†† 

PWV adj  8.3 ± 1.9  7.9 ± 1.5†† 

Aortic Distensibility (x10
-3

 mmHg) 2.3 ± 1.6 2.4 ± 1.6 2.6 ± 1.6 3.4 ± 1.9†† 

Aortic Distensibility adj  2.4 ± 1.6  3.4 ± 1.8†† 

Augmentation (mmHg) 12.9 ± 8.8 12.4 ± 8.4 13.5 ± 5.9 10.2 ±5.2 †† 

Augmentation adj  13.2 ± 8.1  11.7 ± 5.3 †† 

Augmentation Index (%) 28.3 ±10.8 27.9 ± 10.1 30.8±10.8 26.2 ± 9.5† 

Augmentation Index adj  28.2 ± 10.2  26.7 ± 9.7 † 

Augmentation Index 75 (%) 25.1 ±10.9 23.4 ± 10.1 25.6 ± 9.6 20.6 ± 9.2† 

Augmentation Index 75 adj  22.4 ± 10.5  19.3 ± 9.3†† 

 

Values are mean ± standard deviation. † p <0.05; †† p <0.01 treatment by time interaction, 

repeated measures ANOVA. Adjusted results (adj) are corrected for change in mean arterial 

pressure from week 0 to week 40. Adjustments were based on coefficients obtained from linear 

regressions using baseline data for both groups combined. 

 

AIx 75; augmentation index standardised for a heart rate of 75 beats per minute 
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Figure 5.4  Changes in (a) pulse wave velocity, (b) augmentation Index at 75 beats per  

  minute (c) aortic distensibility on cardiac MRI in patients treated with  

spironolactone and placebo 

   

 

Values are mean ± standard error of the mean. † p < 0.05; †† p < 0.01 treatment by time 

interaction, repeated measures ANOVA. 
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Table 5.6  Multivariate regression models for the prediction of change in left ventricular mass 

 

  Treatment not 

included in model 

Significance Treatment effect 

included in model 

Significance 

Model 1 r
2
 0.16  0.38  

Change in BP Beta + SE 0.109 + 0.05 <0.05 0.065 + 0.044 0.15 

Spironolactone Beta + SE   -6.717 + 1.203 <0.01 

Model 2 r
2
 0.15  0.38  

Change in BP Beta + SE 0.1 + 0.051 0.08 0.059 + 0.045 0.19 

Spironolactone Beta + SE   -6.778 + 1.202 <0.01 

Model 3 r
2
 0.13  0.37  

Change in BP Beta + SE 0.109 + 0.086 0.21 0.027 + 0.076 0.72 

Spironolactone Beta + SE   -6.973 + 1.212 <0.01 

Model 1; age, sex, GFR, ACE Inhibitor, Angiotensin Receptor Blockers, Calcium Channel Blocker Beta Blocker, Statins, change in 

central aortic SBP ± treatment group 

Model 2; age, sex, GFR, ACE Inhibitor, Angiotensin Receptor Blockers, Calcium Channel Blocker Beta Blocker, Statins, change in 

office peripheral SBP ± treatment group 

Model 3; age, sex, GFR, ACE Inhibitor, Angiotensin Receptor Blockers, Calcium Channel Blocker Beta Blocker, Statins, change in 

24 hour ambulatory SBP ± treatment group 
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Figure 5.5 Changes in left ventricular mass index associated with a) quartiles of central 

systolic blood pressure reduction, b) quartiles of ambulatory brachial systolic 

blood pressure reduction in patients randomised to spironolactone 

 

 

  

 

Values are mean ± standard deviation. †† p < 0.01 trend between quartiles.
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5.4.2.6  Adverse effects  

During the 4 week open-label run in phase, one patient was withdrawn with serious 

hyperkalaemia (potassium 6.5 mmol/L), one patient was withdrawn with hypotension and 

acute deterioration in renal function (eGFR declined from 31 to 24 ml/min/1.73m
2
) and one 

patient withdrew consent. Six patients (5%) had potassium levels between 5.5 and 5.9 

mmol/L and were changed to spironolactone on alternate days as per protocol.  

On blinded treatment between weeks 4 and 40, four patients had potassium levels 

between 5.5 and 5.9 mmol/L requiring a dose reduction to alternate day treatment. Two of 

these four patients were found to have been on placebo after un-blinding. Following 

randomisation, no patients were withdrawn because of serious hyperkalaemia and there were 

no reported side effects including gynaecomastia. At week 40, serum potassium was slightly 

higher in the spironolactone group than in the placebo group (4.6 ± 0.6 mmol/L vs. 4.4 ± 0.4 

mmol/L, p < 0.05). 

 

5.4.2.7  Reproducibility of measurements 

There was good intra-observer agreement for the primary end points: LV mass: r = 0.97 (112 

± 22g vs. 115 ± 22g, p< 0. 01), PWV: r = 0.92 (7.2 ± 1.6 m/s vs. 7.2 ± 1.3 m/s, p < 0.01).
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5.5  DISCUSSION 

 

This randomised trial has demonstrated that important structural and functional cardiovascular 

abnormalities present in early stage CKD (described in chapter 3) can be improved by 

mineralocorticoid receptor blockade. The addition of spironolactone to established treatment 

with ACE inhibitors or ARBs resulted in reduction in LV mass and improved arterial stiffness 

along with reduced blood pressure and albuminuria. These effects occurred despite excellent 

blood pressure control and a low prevalence of LVH at baseline. These findings provide 

support to published experimental data using remnant models of kidney disease (described in 

chapter 1) regarding the importance of aldosterone as a major cause of the development of 

ventricular hypertrophy and vascular and ventricular stiffness in patients with early stage 

CKD. They also suggest that aldosterone antagonism should be further evaluated in larger 

trials as a possible powerful therapeutic option in the treatment of this high risk group of 

patients. Such trials would of course have to examine carefully the safety of such treatment, 

most importantly the frequency of hyperkalaemia. This study was not large enough or of 

sufficient duration to provide reliable data on this adverse outcome but the incidence was 

surprisingly low. This may have been due to the active run in phase and the exclusion of 

patients with diabetic and renovascular CKD. 

 

5.5.1 Cardiovascular disease in chronic kidney disease 

Although CKD is a major risk factor for atheromatous coronary artery disease, it is now 

evident from epidemiological studies that heart failure and arrhythmias, arising due to left 

ventricular hypertrophy and fibrosis, are the most common causes of cardiovascular morbidity 

and mortality (Herzog et al., 2008;Tonelli et al., 2006). Increased arterial stiffness is a major 
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factor in the development of left ventricular hypertrophy, fibrosis and ventricular dysfunction 

in CKD, diabetes and systolic hypertension (Kimoto et al., 2006;London et al., 2004;Mottram 

et al., 2005).Thus, the finding that spironolactone can improve these fundamental 

pathophysiological abnormalities is of importance and suggests that treatment commenced 

early in CKD may reduce the later burden of adverse cardiovascular events. Furthermore, 

there is increasing evidence that aldosterone causes progressive renal injury in CKD, thus the 

use of aldosterone anatagonists might also retard the progression of renal disease (Bomback et 

al., 2008a;Remuzzi et al., 2008). The prevention of further decline in renal function may have 

secondary benefits in the development of cardiovascular disease in CKD as the magnitude of 

risk is related to GFR.  

To date, beneficial effects of aldosterone antagonists on cardiovascular events and 

mortality have been observed in patient with heart failure, hypertension and 

hyperaldosteronism but not in patients with CKD (Catena et al., 2007;Mottram et al., 

2005;Pitt et al., 1999;Pitt et al., 2003b). The use of aldosterone antagonists in CKD has been 

restricted due to concerns about adverse effects on serum potassium and renal function. 

Reported studies have been small without cardiovascular end points but have consistently 

shown reductions in proteinuria and slowing of progression to ESKD (Bomback et al., 

2008a). 

 

Reductions in LVH are associated with prognostic benefit in hypertension and CKD 

(Devereux et al., 2004;London et al., 2001). In the LIFE study which examined hypertensive 

patients with LV hypertrophy, a reduction in LV mass index of 11% over 12 months was 

associated with a 15% reduction in relative risk of cardiovascular events (Devereux et al., 

2004). In patients with end stage CKD, a 10% reduction in left ventricular mass achieved by 
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multiple interventions was associated with a hazard ratio of 0.72 for cardiovascular death 

(London et al., 2001). Patients in this study had an approximate 10% reduction in left 

ventricular mass using spironolactone in combination with an ACE inhibitor or an ARB 

despite low rates of LVH (17%) and well controlled blood pressure on entry. These data are 

consistent with published reports demonstrating additive reductions in LV mass and blood 

pressure using combination treatment with MRBs and ACE inhibitor in subjects with LVH 

due to hypertension (Pitt et al., 2003a).  

In the CRIB-II study, patients had systolic blood pressure within the normal range and 

a low prevalence of LVH, yet spironolactone produced additional reductions in LV mass. 

These findings are consistent with data in patients with treated hypertension considered within 

the normal range and LVH, where an additional -9 mmHg reduction in systolic pressure 

produced a 5g/m
2
 reduction in LV mass index on cardiac MRI (Simpson et al., 2010). These 

data suggest that potentially important additional reductions in LV mass can be achieved 

through extra blood pressure lowering in individuals with end-organ damage. The mechanism 

of LV mass regression in uncertain but might be contributed to by mechanisms other than 

blood pressure as the relationship between the two variables becomes flatter at non-

hypertensive blood pressures (Fraser, 2003). One potential contributory factor is arterial 

stiffness, a strong prognostic marker in end-stage CKD, hypertension and the general 

population (Blacher et al., 1999a;Blacher et al., 1999b;Willum-Hansen et al., 2006). In our 

study indices of arterial stiffness including PWV, aortic distensibility and augmentation index 

were all improved with spironolactone. These changes appear independent of the change in 

blood pressure and might have contributed to the reduction in LV mass.  
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5.5.2  The effect of blood pressure on cardiovascular structure and function 

An important question raised by this study is the degree to which the reductions in LV mass 

and arterial stiffness (which remained significant after mathematical correction for the mean 

arterial pressure at which they were measured) were due to the effect of lowering systolic 

blood pressure relative to the direct effects
 
of mineralocorticoid receptor blockade. The use of 

an inactive placebo rather than a control anti-hypertensive agent means that it is not possible 

to provide a definitive answer to this question. The significant relationships between change 

in LV mass and PWV and the reduction in central aortic systolic blood pressure suggest that 

this might be at least part of the mechanism of action of spironolactone. The blood pressure 

effects were much weaker than the treatment effect so it is plausible that blockade of cardiac 

and vascular mineralocorticoid receptors reduced adverse effects of aldosterone such as 

inflammation, fibrosis and hypertrophy (Rocha & Stier, Jr., 2001). It is also possible that 

ACE-2 activity may have increased under the influence of spironolactone leading to an 

increase in Ang (1-7) which has vasodilatory, anti-fibrotic and hypertrophic effects (Mercure 

et al., 2008). Indeed, it is possible that the reduction in systolic pressure that occurred with 

spironolactone was a result rather than a cause of reduced arterial stiffness. In support of this 

theory is the finding that eplerenone treatment in hypertension resulted in a reduction in the 

collagen/elastin ratio and in vitro arterial stiffness of resistance arteries in hypertensive 

patients (Savoia et al., 2008). The lack of effect of spironolactone on CRP provides no 

support for an anti-inflammatory effect but does not exclude local effects on vascular 

inflammation. The significant associations between central aortic but not ambulatory blood 

pressure changes and the improvements in LV mass and PWV are consistent with recent work 

showing that central but not peripheral pressures are determinants of clinical outcome 

(Williams et al., 2006).  
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5.5.3  Limitations 

This study does not address whether maximizing doses of ACE inhibitors or ARBs would be 

as effective as adding 25mg daily of spironolactone to standard therapy but all the patients 

were on doses of ACE Inhibitors and ARBs that achieved blood pressure control for at least 6 

months prior to recruitment. The dose of 25mg of spironolactone was chosen because this low 

dose is efficacious and safe in heart failure (when GFR is often reduced) (Pitt et al., 1999) and 

because tolerability was demonstrated in several small studies in CKD (Bomback et al., 

2008a;Bomback et al., 2008b). Peripheral blood pressure was used for the calculation of 

aortic distensibility. It might have been more appropriate to use central aortic blood pressure 

(measured by applanation tonometry) as this is the pressure „seen‟ by the left ventricle and 

aorta but due to the constraints of magnetic resonance technology it was not possible to 

acquire this data at the time of imaging.  

 

5.5.4  Conclusion 

In patients with early stage CKD spironolactone resulted in improvements in important 

prognostic markers of cardiovascular disease; most of these effects were statistically 

independent of the change in blood pressure. These data provide strong support for the further 

evaluation of spironolactone in patients with CKD in trials with clinical outcomes. 
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CHAPTER 6 

 

 

THE EFFECT OF SPIRONOLACTONE ON LEFT VENTRICULAR SYSTOLIC AND 

DIASTOLIC FUNCTION IN PATIENTS WITH EARLY STAGE  
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6.1  SUMMARY 

 

Aldosterone levels are elevated in chronic kidney disease (CKD) and might impair ventricular 

function through adverse myocardial and vascular pro-inflammatory and fibrotic effects. In 

the Chronic Renal Impairment in Birmingham II study (CRIB-II) it was hypothesised that 

mineralocorticoid receptor blockade with spironolactone in addition to ACE Inhibitors or 

Angiotensin Receptor Blockers, would improve left ventricular (LV) function and markers of 

inflammation, ventricular stretch and collagen turnover in early CKD.  

A total of 112 patients with early CKD were randomised to spironolactone 25mg once 

a day or placebo for 40 weeks. Left ventricular function was assessed by echocardiography 

and cardiac MRI tagging. High sensitivity C reactive protein, N-terminal pro-B-type 

natriuretic peptide (NT-proBNP) and aminoterminal propeptide of type III procollagen 

(PIIINP) were measured.  

Spironolactone improved LV long axis systolic function (Sm 8.2 ± 1.4 cm/s vs. 7.7 ± 

1.3 cm/s, p < 0.05), torsion (7.77 ±1.61  vs. 6.77 ± 1.48 , p < 0.05) and myocardial 

deformation (strain rate -1.14 ± 0.24 s
-1

 vs. -1.09 ± 0.20 s
-1

, p<0.05) compared with placebo, 

without a change in ejection fraction. Markers of LV filling (E/e‟ 7.2 ± 2.3 vs. 8.5 ± 2.3, 

p<0.05) and suction (M-mode propagation velocities 56 ± 12 cm/s vs. 50 ± 12 cm/s, p < 0.05) 

were also improved. Spironolactone reduced NT-proBNP (24.8 (0.4-122.4 (pmol/L)) vs. 39.4 

(10.8-102.4 (pmol/L)), p < 0.01) and attenuated an increase in PIIINP observed with placebo.  

In conclusion, spironolactone improved markers of regional LV systolic and diastolic 

function in early CKD.  
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6.2  INTRODUCTION 

 

In chapter 5 it was demonstrated that the addition of spironolactone to established treatment 

with ACE inhibitor or Angiotensin Receptor Blockers (ARBs) in patients with early stage 

chronic kidney disease (CKD) resulted in a reduction in left ventricular (LV) mass and 

improved arterial stiffness and aortic distensibility. In a further analysis of prospectively 

defined secondary end-points from the Chronic Renal Impairment in Birmingham II (CRIB-

II) study, the effect of spironolactone on LV function and on serological markers of 

inflammation, ventricular stress and collagen turnover were examined. 
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6.3  METHODS 

 

6.3.1 Study design, participants and treatment regimen 

The study design, clinical characteristics of patients and treatment regimen used in CRIB-II 

have been described in chapter 5. 

 

6.3.2 Clinical assessments  

All patients underwent clinical assessments as described in chapter 3 at baseline / week 0 and 

at week 40 prior to stopping treatment. Detailed methodology is described in chapter 2. 

 

In this pre-defined sub study of secondary end-points, the following specific parameters 

are reported; 

1. Transthoracic echocardiography for assessment of:  

i) LV volumes 

ii) LV mass determined by 2D area length formula and indexed to body surface 

area (LVMI g/m
2
) 

iii) LV systolic function  

iv) LV diastolic function 

v) Myocardial deformation using 2D speckle tracking 

vi) Arterial-ventricular interaction 

2. Cardiac MRI: 

i) Myocardial tagging 

3. Plasma / serum biomarkers: 

i) N-terminal pro-B-type natriuretic peptide (NT-proBNP) 
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ii) High-sensitivity C-reactive protein (hsCRP) 

iii) Intact aminoterminal propeptide of type III procollagen (PIIINP)  

iv) Carboxyterminal telopeptide of type I collagen (CTx) 

 

 

6.3.3  Statistical analysis 

Statistical analyses were performed as described in Chapter 2. Multivariate regression was 

used to identify the independent predictors of the change in LV function. The model included; 

treatment group, change in systolic blood pressure, age, medication usage and eGFR. Intra-

observer variability for the major parameters of ventricular function was assessed using 

interclass correlation coefficient (ICC) with a 95% confidence interval as described in section 

2.3.4.  
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6.4  RESULTS 

 

6.4.1  Patient demographics 

Baseline demographic and clinical characteristics are presented in Table 5.2.  

 

6.4.2  Echo data 

Twenty one patients (9 in the spironolactone group) were excluded due to poor image quality. 

Treatment groups were matched for LV geometry (regional wall thickness (RWT) 0.35 ± 0.06 

vs. 0.32 ± 0.06, p = 0.07), volumes (LVED volume index 46 ± 12 ml/m
2 

vs.
 
46 ± 9 ml/m

2
 , p = 

0.23) and mass index (88 ± 20 g/m
2 

vs. 91 ± 22 g/m
2
, p = 0.15). After treatment with 

spironolactone, there was a fall in LV mass index (-8.9 g/m
2
 ± 1.6 vs. 2.2 g/m

2
 ± 1.7, p < 

0.01) but no change in LVEDV or RWT. These data are consistent with the results using 

cardiac MRI (data presented in chapter 5). 

Measures of LV filling pressure were within normal limits (E/Vp < 1.9, Ar-A < 30 ms, 

LA volume index < 34 ml/m
2
, E/Em < 8) in both groups at baseline (Table 6.1). Following 

treatment with spironolactone, markers of LV filling pressure were improved; reduced 

pulmonary atrial velocity duration – transmitral atrial duration (Ar-A), reduced left atrial 

volume index (LAVI) and reduced ratio of mitral inflow velocity to early diastolic myocardial 

velocities (E/Em). Markers of LV relaxation were also improved; attenuation of isovolumic 

relaxation time (IVRT), increased early myocardial velocities (Em) and increased m-mode 

propagation velocity (an approximation of the intraventricular pressure gradient and hence LV 

suction) (Table 6.1 and Figure 6.1).  

Treatment with spironolactone increased systolic (Sm) tissue velocities but did not 

change ejection fraction. Longitudinal systolic strain (S) in each wall was significantly 
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increased resulting in a global improvement in LV deformation. Global longitudinal systolic 

strain rate (SR) was also improved with spironolactone (Table 6.1).  

Arterial elastance, end-systolic and diastolic elastance were all reduced with 

spironolactone. The arterial–ventricular coupling ratio was maintained in both groups (Table 

6.1). 

 

6.4.3  Cardiac MRI tagging data 

Patients randomised to CMR tagging were younger (48 ± 10 yrs vs. 58 ± 11 yrs, p < 0.01) but 

did not differ in any other characteristic from the other patients recruited to the study. 

Treatment groups in the tagging study were well matched for age (48yrs ± 12 vs. 46yrs ± 8, p 

= 0.34), males (30% vs. 33%), eGFR (54 ± 13 ml/min/1.73m
2
 vs. 53 ± 14 ml/min/1.73m

2
, p = 

0.86) and blood pressure (123 ± 13 mmHg vs. 125 ± 9 mmHg, p = 0.68). Two data sets were 

excluded due to poor image quality. Systolic S and SR were significantly improved with 

spironolactone, consistent with the changes documented on 2D echocardiography (Table 6.3; 

Figure 6.2). In addition, diastolic SR was improved consistent with a reduction in diastolic 

ventricular stiffness. Left ventricular peak apical rotation and left ventricular peak torsion 

were both increased after treatment with spironolactone while basal rotation remained 

unchanged (Table 6.3). 
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Table 6.1         Measurements of left ventricular function  

 Placebo (n=55) Spironolactone (n=55) 

 Week 0 Week 40 Week 0 Week 40 

Systolic Function     

Left ventricular ejection fraction (%) 63 ± 7 66 ± 7 63 ± 6 66 ± 7 

Tissue Doppler systolic velocity (cm/s) 7.6 ± 1.4 7.7 ± 1.3 7.5 ± 1.5 8.2 ± 1.4† 

Global peak strain (%) -17.8 ± 3.0 -17.9 ± 2.4 -17.3 ± 3.2 -19.7 ± 2.7†† 

Global peak strain rate (s-
1
) -1.01 ± 0.18 -1.09 ± 0.20 -1.02 ± 0.23 -1.14 ± 0.24† 

Diastolic Function; LV Filling Pressures 

Transmitral early velocity / m-mode flow propagation velocity  1.54 ± 0.6 1.49 ± 0.5 1.40 ± 0.4 1.27 ± 0.4 

Pulmonary atrial velocity duration – trans mitral atrial duration (ms) -21 ± 23 -25 ± 25 -24 ± 18 -17 ± 23† 

Left atrial volume index (ml/m
2)

 27 ± 6 26 ± 6 28 ± 5 24 ± 6†† 

Transmitral E / average annular early myocardial TDI ratio  8.9 ± 2.6 8.5 ± 2.3 8.7 ± 2.0 7.2 ± 2.3†† 

Diastolic Function ;LV Relaxation 

Ratio of early to late mitral inflow velocities (E/A) 1.17 ± 0.29 1.07 ± 0.32 1.08 ± 0.3 1.09 ± 0.29 

Deceleration time (ms) 223 ± 50 235 ± 42 216 ± 50 227 ± 38 

Isovolumic relaxation time (ms) 93 ± 14 102 ± 15 97 ± 14 95 ± 15† 
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Mean septal / lateral annular early myocardial TDI velocities(cm/s) 8.4 ± 2.4 8.8 ± 2.5 8.1 ± 2.0 9.7 ± 2.3†† 

M-mode flow propagation velocity (cm/s) 50 ± 13 50 ± 12 50 ± 15 56 ± 12† 

Ventricular -Vascular Interaction 

Arterial elastance (mm Hg/ml) 1.76 ± 0.45 1.69 ± 0.38 1.79 ± 0.56 1.43 ± 0.37†† 

End systolic elastance (mm Hg/ml) 2.42 ± 0.79 2.45 ± 0.71 2.37 ± 0.76 1.98 ± 0.59†† 

End diastolic elastance 0.12 ± 0.04 0.12 ± 0.46 0.11 ± 0.04 0.09 ± 0.39† 

Ratio of Arterial elastance / End systolic elastance 0.76 ± 0.20 0.73 ± 0.21 0.79 ± 0.22 0.74 ± 0.17 

Values are mean ± standard deviation 

 

† p < 0.05, †† p < 0.01 (treatment group* time interaction in the repeated measures analysis of variance after adjustment for baseline 

differences in age, sex, eGFR, blood pressure, heart rate, medications, NT-proBNP)  

 

Abbreviations; 

Transmitral early velocity (E) 

Transmitral early velocity / m-mode flow propagation velocity (E/Vp) 

Pulmonary atrial velocity duration – transmitral atrial duration (Ar-A) 

Left atrial volume index (LAVI) 

Mean septal and lateral annular early myocardial TDI velocities (E/Em)  

Transmitral E / average annular myocardial TDI ratio (E/Em)
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Figure 6.1  Changes in markers of left ventricular function: a) left atrial volume, b) ratio of 

 transmitral early filling velocity and early myocardial diastolic velocity, c) m- 

mode flow propagation velocity 

 

 

 

Values are mean ± standard error of the mean. † p < 0.05, †† p < 0.01 

LAVI; left atrial; volume index, E/Em; ratio of transmitral early filling velocity and early 

myocardial diastolic velocity (lateral annulus), Vp; m-mode flow propagation velocity.

-5 

-4 

-3 

-2 

-1 

0 

Placebo Spiro 

C
h

a
n

g
e 

in
 L

A
V

I 
(m

l/
m

2
) 

-1.4 

-1.2 

-1 

-0.8 

-0.6 

-0.4 

-0.2 

0 

Placebo Spiro 

C
h

a
n

g
e 

in
 E

/E
m

 

0 

1 

2 

3 

4 

5 

6 

7 

Placebo Spiro 

C
h

a
n

g
e 

in
 V

p
 (

cm
/s

) 

†† 

† 

† 



 229 

Table 6.2 Cardiac MRI tagging parameters 

 

Variable Placebo (n=18) Spironolactone (n=20) 

 Week 0 Week 40 Week 0 Week 40 

Peak Strain (%) 

Systolic Strain Rate (s
-1) 

Diastolic SR % s
-1

 

Apical Rotation (º)  

Basal Rotation (º) 

Peak Torsion (º) 

-14.8 ± 2.2 

-85 ± 18 

60 ± 24 

10.87 ± 5.75 

-5.05 ± 2.99 

7.28 ± 1.40 

-15.4 ± 2.0 

-82 ± 11 

54 ± 30 

9.98 ± 5.02 

-5.06 ± 1.92 

6.77 ± 1.48 

-13.7 ± 1.8 

-78 ± 13 

57 ± 17 

11.13 ± 5.12 

-5.38 ± 2.72 

7.34 ± 1.85 

-15.7 ± 1.9† 

-88 ± 11 

66 ± 25† 

14.21 ± 5.95† 

-4.91 ± 2.44 

7.77 ± 1.61† 

 

Values are mean ± standard deviation 

† p < 0.05, †† p < 0.01 (treatment group* time interaction in the repeated measures analysis of 

variance after adjustment for baseline differences) 
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Figure 6.2  Change in peak systolic strain measured by echo and cardiac MRI over 40  

  weeks of treatment 
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Values are mean ± standard error of the mean 

† p<0.05; †† p<0.01 treatment by time interaction, repeated measures ANOVA 
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6.4.4  Biomarker analysis 

There were no differences in plasma renin activity (PRA), circulating angiotensin II (AngII) 

or plasma aldosterone concentration (PAC) (Table 6.3) or biomarkers at baseline (Table 6.3). 

Estimated GFR was inversely correlated with PAC (r = -0.33, p < 0.01), PIIINP (r = -0.52 p < 

0.01), hsCRP (r = -0.191 p= 0.04) and NT-proBNP (r = -0.220 p = 0.03) but not with CTx. At 

week 40, NT-pro-BNP was significantly reduced after treatment with spironolactone (-24.8 

±13.5 vs. +12.5 ± 13.4, p < 0.01) (Figure 6.3). PIIINP increased significantly in the placebo 

group but was attenuated with spironolactone (+0.2 ± 0.1 vs. -0.01 ± 0.01, p = 0.01). There 

was no difference in post treatment levels of CTx or hsCRP. As expected, PRA, AngII and 

PAC all increased with spironolactone (Table 6.3). 

 

6.4.5  Haemodynamic effects 

Twenty four hour daytime systolic blood pressure (-6 ± 1 mmHg vs. -1 ± 1 mmHg, p = 0.01) 

was decreased with spironolactone but there was no difference in diastolic pressures. In 

multivariate regression examining the independent predictors of changes in markers of LV 

systolic and diastolic function, only treatment with spironolactone was predictive of all 

changes except m-mode propagation velocity, after adjusting for other variables in the model 

(Table 6.4). The change in systolic blood pressure was not predictive of any changes in LV 

function (Table 6.4). 

 

6.4.6  Intra-operator variability 

The repeated analysis of major parameters of ventricular function showed good intra-observer 

reproducibility (Intra-class correlation coefficient (ICC) with a 95% confidence interval; 

global LV strain ICC = 0.96 (95% CI 0.86-0.99), global LV strain rate ICC = 0.93 (0.75-
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0.98), long-axis Sm at the lateral annulus ICC = 0.99 (0.97-0.99), LA volume index ICC 0.94 

(0.79-0.99) and m-mode propagation velocity ICC 0.96 (0.87-0.99). 
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Figure 6.3 Change in N-terminal pro-B-type natriuretic peptide over 40 weeks of  

  treatment 

 

 

Values are mean ± standard error of the mean 

†† p<0.01  

 

NT-proBNP; N-terminal pro-B-type natriuretic peptide 
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Table 6.3 Changes in biomarkers of collagen, inflammation and left ventricular stress over 40 weeks of treatment with  

spironolactone or placebo 

 

 Placebo Spironolactone  

 Week 0 Week 40 Week 0 Week 40 

Aminoterminal propeptide type III procollagen (µg/L) 3.73 ± 0.98 4.16 ± 1.19 4.01 ± 0.77 4.00 ± 0.79†† 

Carboxyterminal telopeptide type I collagen (ng/mL) 0.20 (0.13-0.34) 0.22 (0.13-0.34) 0.22 (0.15-0.36) 0.26 (0.13-0.48) 

High sensitivity C-reactive protein (mg/L) 1.1 (0.4-4.3) 1.4 (0.5-2.5) 2.2 (0.6-4.1) 2.3 (0.9-4.6) 

N-terminal pro-B-type natriuretic peptide (pmol/L) 25.7 (2.7-72.9) 39 (2.8-72.0) 62.1 (10.8-130.8) 25 (0.6-132)†† 

 

Values are mean ± standard deviation. Log transformed data are median (IQR)  

† p < 0.05, †† p < 0.01. 
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Table 6.4 Predictive effects of treatment with spironolactone and changes in systolic blood pressure on markers of  

left ventricular function in multivariate regression 

 Spironolactone Change 24 hour systolic 

blood pressure 

 p value β-Coefficient (SE) p value β-Coefficient (SE) 

Global strain 0.01 -2.7 (0.77) 0.62 0.02 (0.05) 

Global strain rate 0.04 -1.44 (0.070) 0.19 0.006 (0.004) 

Change in E/Em ratio 0.04 -0.87 (0.42) 0.33 0.02 (0.02) 

Change left atrial volume index 0.001 -3.60 (1.02) 0.85 -0.12 (0.06) 

Change M-mode propagation velocity  0.65 1.61 (3.56) 0.90 -0.26 (0.21) 

Change in average TDI Sm myocardial velocities 0.02 -2.02 (0.84) 0.56 0.03(0.05) 

Included in the model; treatment group, change systolic blood pressure, age, baseline eGFR, use of medications; ACE inhibitor,  

ARB, beta blocker, calcium channel blocker, diuretic, statin. 

Spironolactone was the only parameter in the model which was an independent predictor of the echo markers.  

ß-coefficient; unstandardised ß-coefficient, E/Em; ratio of early transmitral inflow velocity to early diastolic myocardial velocity, TDI Sm; lateral 

annular systolic tissue Doppler velocity, SE; Standard Error. 
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6.5 DISCUSSION 

 

Using the complimentary imaging techniques of echo and cardiac MRI tagging, this study has 

shown that abnormalities of myocardial systolic and diastolic LV function present in patients 

with early stage CKD were improved by the addition of spironolactone to standard therapy 

including ACE inhibitors and ARBs. These data were prospectively defined secondary end-

points from the CRIB-II double blind randomised placebo controlled trial (described in 

chapter 5) which showed benefits of spironolactone in reducing LV mass and improving 

markers of arterial stiffness. The improvements in LV function were accompanied by a fall in 

NT-proBNP, a peptide hormone released from ventricular myocytes in response to stretch, 

further confirming the beneficial effects of spironolactone on cardiac performance in CKD. 

 

6.5.1 Changes in cardiac function in chronic kidney disease 

Left ventricular dilatation, hypertrophy and impaired systolic function, a combination 

frequently termed ureamic cardiomyopathy, are strong predictors of an adverse cardiovascular 

prognosis (Foley et al., 1995b). In chapter 3 and 4 it was shown that in patients with early 

stage CKD diastolic relaxation was impaired, arterial and ventricular elastance were increased 

and systolic deformation decreased compared to healthy controls. These changes might reflect 

an increase in myocardial fibrosis and collagen content and were present before detectable 

change in LV geometry, mass and systolic function using conventional measurements. This 

hypothesis is supported by data from Salvetti et al (2007) using acoustic densitometry 

(integrated backscatter), an ultrasound derived technique which detects increasing backscatter 

reflectivity as myocardial collagen content and fibrosis increase (Salvetti et al., 2007). 

Compared to patients with hypertension with normal renal function, backscatter was increased 
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even in patients with mild CKD and increased progressively with advancing stages, being 

greatest in the dialysis patients. Furthermore cyclic variation of backscatter, a marker of LV 

contractile performance was reduced at all stages of CKD and was inversely correlated with 

fibrosis. 

Many of the parameters of LV filling, LV relaxation and myocardial deformation 

which were improved after treatment with spironolactone have been shown to be of 

prognostic value. For example, LA volume index is independently predictive of mortality in 

patients with CKD (Chan et al., 2008) and predictive of the onset of cardiac failure in patients 

with apparently normal systolic function (Takemoto et al., 2005). Similarly, early myocardial 

diastolic velocities provide significant incremental value for predicting cardiovascular 

mortality and heart failure onset, compared to both ejection fraction and systolic velocities 

(Wang et al., 2005a). Abnormalities in strain rate are detectable early in heart disease due to 

both hypertension (Mottram et al., 2004) and CKD and this sensitive index of systolic 

function is of prognostic value in dialysis dependent patients (Rakhit et al., 2007).  

 

6.5.2 Changes in cardiac biomarkers with spironolactone  

Brain-type natriuretic peptide (BNP) is a hormone secreted in the ventricular myocardium due 

to increased ventricular stretch and wall-tension. After secretion it is split into the biologically 

active peptide and the more stable amino terminal prohormone fragment (N-BNP or NT-

proBNP) and plays an important role in the regulation of blood pressure, blood volume, and 

sodium balance. The observed reduction in NT-proBNP with spironolactone in this study 

provides powerful evidence of a significant improvement in central hemodynamics and is also 

suggestive of a prognostically important effect. The use of BNP as a marker of outcome in 

heart failure due to left ventricular systolic dysfunction is well described (Berger et al., 2002) 
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but it has also been shown to predict mortality independent of LV mass in end stage CKD 

(Zoccali et al., 2001) patients on peritoneal dialysis (Wang et al., 2007) and in pre-dialysis 

CKD (Vickery et al., 2008). 

 

6.5.3 A role for mineralocorticoid receptor blockers in chronic kidney disease? 

There are no other published data on the effect of MRB therapy on cardiovascular function in 

patients with early CKD. Mineralocorticoid receptor blockade with eplerenone has however 

recently been shown to exert beneficial effects on markers of diastolic function in patients 

with heart failure with preserved ejection fraction (HFpEF) (Mak et al., 2009). These data are 

highly relevant to patients with CKD who have abnormalities of myocardial and arterial 

stiffness which closely resemble those of HFpEF (Lam et al., 2007). Furthermore, in patients 

with hypertension, treatment with spironolactone improves both diastolic function and 

systolic function assessed by strain and strain rate, possibly independently of blood pressure 

(Mottram et al., 2004). Thus, there is consistent evidence that MR blockade may be an 

effective method of improving LV function in patients with increased ventricular and arterial 

stiffness. 

There is a wide body of experimental evidence showing that the pro-inflammatory and 

pro-fibrotic effects of aldosterone on the heart, vasculature and kidneys can be prevented by 

MR blockade (Rocha & Stier, Jr., 2001). In this study, the increase in the collagen synthesis 

marker PIIINP observed in the placebo group after 40 weeks of treatment did not occur in the 

spironolactone treatment group. This finding was in keeping with reports showing that 

eplerenone reduced markers of collagen turnover after myocardial infarction (Hayashi et al., 

2003) and prevented a progressive increase in PIIINP over a 12 month treatment period in 
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patients with HFpEF (Mak et al., 2009). Indeed, effects on collagen metabolism may be used 

to identify patients who respond to treatment with aldosterone blockade (Zannad et al., 2000). 

 

6.5 4 Limitations 

Changes in afterload caused by spironolactone were evident from the reductions in blood 

pressure and arterial elastance but did not predict the major echo changes in regression 

analysis. However, the relative contribution of load-related effects and sustained myocardial 

and vascular effects from the tissue action of MRBs cannot be determined from the results of 

this study. Furthermore, it is recognised that sustained preload reduction due to increased 

sodium and water excretion as a result of MR blockade may also have exerted significant 

effects on myocardial performance. Studies performed early after discontinuation of 

spironolactone might have helped to elucidate these effects.  

Measurement of other markers of collagen turnover (such as aminoterminal propeptide 

of type I procollagen (PINP)) or inflammation (such as TNF-α) might have provided further 

information on the effect of spironolactone on cardiac and vascular inflammation. The higher 

use of statins and beta blockers in patients randomised to spironolactone could have had a 

positive effect on cardiac performance. These differences were adjusted for using multivariate 

regression analyses. No changes in medications were allowed during follow up. Finally, 

multiple analyses will have increased the chance of type 1 errors. However, the findings were 

consistent on two different imaging techniques and biochemical analyses of circulating 

markers, supporting the concept that the majority of the significant results represented real 

effects. 

  



 240 

6.5.5 Conclusion 

Mineralocorticoid receptor blockade with spironolactone improved ventricular systolic and 

diastolic function in early stage CKD. Early treatment of patients with asymptomatic 

reductions in left ventricular function might be an important step in reducing the mortality and 

morbidity related to myocardial disease seen in later stages of CKD. Given the likely role of 

aldosterone and the promise such a strategy has demonstrated, further exploration appears 

warranted in longer-term clinical outcome trials. 
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CHAPTER 7 

 

 

THE SAFETY AND TOLERABILITY OF SPIRONOLACTONE IN PATIENTS WITH 

MILD-MODERATE CHRONIC KIDNEY DISEASE 
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7.1 SUMMARY 

 

Mineralocorticoid receptor blockers (MRBs) in combination with ACE inhibitors and 

angiotensin receptor blockers (ARBs) improve prognostic markers of cardiovascular and renal 

disease in early stage chronic kidney disease (CKD). Concerns relating to the safety and 

tolerability of MRBs in CKD might limit their use in a non clinical trial setting. 

In the Chronic Renal Impairment in Birmingham II study (CRIB-II), 115 patients with 

non-diabetic early stage CKD (eGFR 30-89 ml/min/1.73m
2
) received 25 mg daily of 

spironolactone for 4 weeks before randomisation to continuing treatment or placebo for a 

further 36 weeks. All patients were on ACE inhibitor and / or ARB therapy. Potassium and 

renal function were checked at weeks 1, 2, 4, 8, 16, 28 and 40. The incidence of 

hyperkalaemia, significant renal dysfunction (defined as a reduction eGFR ≥ 25%) and 

patient-related side effects were assessed.  

After 40 weeks of treatment serious hyperkalaemia (serum potassium ≥ 6.0 mmol/L) 

occurred in 1 patient, an incidence of < 1%. Mild hyperkalaemia (serum potassium 5.5-5.9 

mmol/L) occurred on one or more occasions over follow-up in 11 patients (9 on 

spironolactone) and was predicted by baseline potassium ≥ 5.0 mmol/L and eGFR ≤ 45 

ml/min/1.73m
2
. Over follow-up, 3 patients on spironolactone experienced significant renal 

dysfunction but no patients withdrew due to intolerance or side effects. Changes in potassium, 

eGFR and systolic blood pressure were most apparent in the first 4 weeks but remained stable 

after randomisation.  

Spironolactone is well tolerated in selected non-diabetic patients with early stage 

CKD. Strict monitoring over the first month of treatment followed by standard surveillance as 

for ACE inhibitors and ARBs is suggested. 
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7.2 INTRODUCTION 

 

In the Chronic Renal Impairment in Birmingham II (CRIB-II) study described in chapters 5 

and 6, treatment with spironolactone over 40 weeks produced beneficial effects on prognostic 

markers of arterial stiffness and cardiac function in patients with early stage chronic kidney 

disease (CKD). In addition, mineralocorticoids receptor blockers (MRBs) have been shown to 

slow the decline in renal function in patients with proteinuric CKD (Bomback et al., 2008a). 

These data provide support for the use of MRBs in patients with CKD. However, concerns 

regarding the risk of hyperkalaemia and deterioration of renal function with these drugs, 

particularly when used in combination with angiotensin converting enzyme (ACE) inhibitors 

or angiotensin receptor blockers (ARBs) necessitate the urgent need for prospective data on 

the safety and tolerability of MRBs in patients with CKD.   

This sub-analysis of the CRIB-II study reports in detail the effects on renal function, 

potassium, blood pressure and tolerability that occurred over 40 weeks of treatment with 

spironolactone. 
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7.3 METHODS 

 

7.3.1 Study design, participants and treatment regimen 

The study design, clinical characteristics of patients and treatment regimen used in CRIB II 

have been described in chapter 5. 

 

In this sub analysis, the effect of treatment with spironolactone for 40 weeks on the 

following parameters are reported and compared to placebo: 

1. Serum potassium  

2. Estimated GFR by the 4-v MDRD formula (eGFR) 

3. Twenty four hour ambulatory blood pressure (24 hour ABPM) 

4. Proteinuria assessed by albumin-creatinine ratio (ACR) 

5. Patient side-effects  

 

7.3.2 Statistical analysis 

Statistical analyses were performed as described in Chapter 2. Odds ratios (OR) and 95% CI 

for a reduction in eGFR (≥ 10%), serum potassium ≥ 5.5 mmol/L and systolic blood pressure 

(≥ 10%) were derived using logistic regression. Multiple linear regression models were used 

to assess the predictors of change in eGFR, potassium and blood pressure. Models included 

baseline demographic and clinical features known to increase the risk of occurrence (age, 

male gender, concurrent ACE inhibitor, ARB or spironolactone use, eGFR ≤ 45 

ml/min/1.73m
2
, and baseline potassium ≥ 5 mmol/L) (de Denus S. et al., 2006). Analysis was 

adjusted for baseline differences.  
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7.4 RESULTS 

 

7.4.1 Patient demographics 

Baseline demographic and clinical characteristics have been presented in Tables 5.2.  

 

7.4.2 Open-label treatment 

Open-label treatment 

Three patients were withdrawn during the 4 weeks of open-label spironolactone treatment; 

two patients for safety reasons: one with serious hyperkalaemia (potassium 6.8 mmol/L) at 

week 3, and one with symptomatic hypotension and significant deterioration of eGFR (≥ 

30%) at week 3. One patient withdrew consent. 

After 4 weeks of spironolactone the mean eGFR was reduced by 3%, an absolute 

change of -1.6 ml/min/1.73m
2
 (95% CI, -2.5 - -0.8), p < 0.01. Serum creatinine increased by 

+7 µmol/L (95% CI 5 - 9) p < 0.01. The change in mean eGFR was not different between 

quartiles of baseline GFR (p = 0.80) (Figure 7.1), quartiles of age (p = 0.07) or gender (p = 

0.9) or predicted by any variable in a multivariate regression model (Table 7.1). 

 

Mean serum potassium was increased by 0.22 mmol/L (95% CI, 0.14 - 0.30) p < 0.01 

over the first 4 weeks of treatment with spironolactone. In accordance with our protocol, 5 

patients with mild hyperkalaemia (5.5 - 5.9 mmol/L) were switched to alternate day 

spironolactone at week one and one further patient was switched to alternate day treatment at 

week two. Patients in the lowest quartile of baseline potassium had the greatest absolute 

change over the first 4 weeks (Figure 7.2 & Table 7.1). Predictors of the change in potassium 

in multivariate regression were; baseline potassium (each 0.1mmol/L increase predicted a -
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0.47 mmol/L decrease at week 4), baseline eGFR (each 10 ml/min/1.73m
2
 increase predicted 

a -0.11 mmol/L reduction) and age (each increase of 10 years predicted an increase 0.10 

mmol/L). However, the only predictor for the development of hyperkalaemia (potassium ≥ 5.5 

mmol/L) during weeks 0-4 in a logistic regression model was baseline potassium ≥ 5.0 

mmol/L (OR 5.0; 95% CI, 1.0 - 25, p = 0.04).  

 

Ambulatory systolic and diastolic blood pressures were reduced at week 4 compared 

to baseline: systolic -7mmHg (95% CI, -10 -5) p < 0.01, diastolic blood pressure -5mmHg 

(95% CI,-7 -4) p < 0.01. In multivariate regression, the change in ambulatory systolic blood 

pressure was predicted by baseline systolic blood pressure (each 10 mmHg increase in 

baseline systolic predicted -2.5mmHg reduction at week 4) and gender (Table 7.1).  

 

Urinary ACR was also significantly reduced after 4 weeks of spironolactone therapy 

from median 7.4 mg/mmol (95% CI, 0 - 603) to 4.1 mg/mmol (95% CI, 0 - 518), p < 0.01. 
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Figure 7.1 Change in eGFR over the first four weeks of open-labelled treatment with  

  spironolactone by quartiles of baseline eGFR 

 

 

 

Data are median (horizontal bold line), upper and lower quartiles (box) and range (error bars) 

using one way analysis of variance with post-hoc Tukey test.   

No significant differences between quartiles. 
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Table 7.1 Linear regression models for change in eGFR, potassium and systolic blood pressure after 4 weeks of spironolactone treatment 

Variables Change in eGFR Change in potassium Change in systolic BP 

 β coefficient + (SE) β coefficient + (SE) β coefficient + (SE) 

Age -0.003 (0.005) p = 0.96 0.01 (0.003) p < 0.01 -0.02 (0.10) p = 0.82 

Male gender 0.61 (1.27) p = 0.63 -0.07 (0.07) p = 0.35 -5.78 (2.61) p = 0.03 

Baseline eGFR -0.02 (0.05) p = 0.64 -0.01 (0.003) p<0.01 0.08 (0.08) p = 0.34 

Baseline 24 hour systolic BP 0.04 (0.06) p = 0.45 0.002 (0.003) p = 0.43 -0.25 (0.11) p = 0.03 

Baseline potassium N/A -0.50 (0.08) p < 0.01 N/A 

ACE inhibitor‡ -1.56 (1.34) p = 0.25 -0.02 (0.07) p = 0.75 2.05 (2.26) p = 0.37 

Three models are shown: the first the 4 weeks of open-labelled treatment with spironolactone. Estimates for all models are adjusted for the 

variables listed and also for use of beta blockers, statins, diuretics, calcium channel blockers. 

‡ ACE inhibitor and ARB were used in separate models in view of co-linearity. Substituting ARBs did not significantly alter the data (not 

shown). 

β coefficient; Unstandardised β-coefficient, SE; standard error, BP; blood pressure, eGFR; estimated glomerular filtration rate, N/A; variable not 

known to influence dependent variable
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Figure 7.2 Change in serum potassium levels over the first four weeks of open-labelled  

  treatment with spironolactone by quartiles of baseline potassium 

 

 

 

Data are median (horizontal bold line), upper and lower quartiles (box) and range (error bars) 

using one way analysis of variance with post-hoc Tukey test.   

Reference group Q1: † p < 0.05, †† p < 0.01 
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7.4.3 Randomised treatment with spironolactone or placebo  

Two patients were withdrawn during the double blind randomised phase of the study; one 

patient randomised to spironolactone withdrew consent in week 6 and 1 patient randomised to 

placebo had a symptomatic relapse of Wegener‟s granulomatosis in week 15. No patients 

were withdrawn for iatrogenic complications or side effects.  

 

Compared to baseline, eGFR was reduced in patients on spironolactone at week 40 (49 

ml/min/1.73m
2
 vs. 46 ml/min/1.73m

2
, p < 0.01) (Figure 7.3). On placebo, baseline eGFR did 

not change significantly over follow-up (53 ml/min/1.73m
2
 vs. 52 ml/min/1.73m

2
, p = 0.48). 

During the first 24 weeks of treatment eGFR was lower on spironolactone compared to 

placebo but there was no significant difference by week 40 (46.1 ml/min/1.73m
2 

vs. 52.3 

ml/min/1.73m
2
, p = 0.09). Four patients (3 on spironolactone) experienced a clinically 

significant reduction in eGFR (25-29%) but with such small numbers it was not possible to 

identify co-variates which were predictive in a logistic regression model. Minor reductions in 

eGFR (10-20%) were more common with spironolactone; 17 patients verses 9 patients on 

placebo. In a logistic regression model, a reduction in eGFR of ≥ 10% was predicted by 

baseline eGFR ≤ 45 ml/min/1.73m
2 
and treatment assignment to spironolactone (Table 7.2). 

Compared to patients with <10% reduction in eGFR, these patients had a greater reduction in 

office systolic blood pressure (-7 mmHg ± 8 vs. 2 mmHg ± 8) p = 0.01 and lower baseline 

eGFR (47 ml/min/1.73m
2 

± 13 vs. 53 ml/min/1.73m
2 

± 12) p < 0.01.  

 

After randomisation mean serum potassium levels were persistently higher (p < 0.05) with 

spironolactone than with placebo but remained stable over the 36 weeks of follow-up (Figure 

7.4). No patients experienced serum potassium ≥ 6 mmol/L and only 4 patients had a 
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potassium ≥ 5.5 mmol/L; 2 with spironolactone and 2 with placebo. Nine patients on 

spironolactone and 2 on placebo had a potassium ≥ 5.5 mmol/L on at least one occasion over 

40 weeks of treatment. The risk of developing a serum potassium ≥ 5.5 mmol/L during 40 

weeks of treatment was increased if baseline potassium was ≥ 5.0 mmol.L and baseline eGFR 

≤ 45 ml/min/1.73m
2
 (Table 7.2). 

 

Spironolactone significantly reduced ambulatory systolic blood pressure at week 40 compared 

to placebo: systolic -6 mmHg (95% CI, -8 -3) vs. -1 mmHg (95% CI -3 1) p< 0.01. Diastolic 

blood pressure was reduced but did not reach statistical significance: -3 mmHg (95% CI,-5 -1) 

vs. -1 (95% CI -3 0) p = 0.20. In multivariate regression, the change in ambulatory systolic 

blood pressure was predicted by baseline ambulatory systolic blood pressure (Table 7.2).  

 

Urinary ACR was significantly reduced with spironolactone (-3.2mg/mmol (-38-+11) vs. -0.6 

(-14-+5) compared to placebo (p < 0.05).  

 

7.4.4 Tolerability 

There were no reports of disturbed menstrual cycle, breast tenderness, erectile dysfunction or 

gynaecomastia. 
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Figure 7.3 Change in eGFR over 40 weeks in patients treated with spironolactone or 

 placebo 

 

 

Data are mean ± standard deviation.  

†p < 0.05, †† p < 0.01, repeated measures analysis of variance with the time point (week 0, 

week 40) as the within-subjects factor and the group (spironolactone and placebo) as the 

between-subjects factor. 
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Table 7.2 Logistic regression models for change in eGFR, potassium and systolic blood pressure over 40 weeks of treatment 

Variables eGFR 

reduction >10% 

Potassium 

> 5.5 mmol/L anytime 

Systolic BP 

reduction >10% 

 OR (95% CI) OR (95% CI) OR (95% CI) 

Age 1.0 (0.1-1.1) p = 0.70 1.0 (0.9-1.0) p = 0.10 0.96 (0.9-1.0) p = 0.19 

Male gender 0.7 (0.3-1.7) p = 0.30 0.4 (0.1-2.4) p = 0.33 3.3 (0.8-13) p = 0.10 

eGFR ≤45 ml/min/1.73 3.4 (0.12-0.84) p = 0.02 5.8 (1.1-29.0) p = 0.04 1.0 (0.2-4.6) p = 0.96 

Baseline 24 hr SBP 1.0 (1.0-1.1) p = 0.56 1.0 (0.9-1.0) p = 0.40 1.1 (1.0-1.3) p < 0.01 

Baseline K ≥ 5 mmol/L NA 16.5 (4.4-61.0) p < 0.01 NA 

ACE inhibitor‡ 2.2 (0.7-6.6) p = 0.18 0.7 (0.1-4.1) p = 0.69 0.8 (0.2-3.3) p = 0.80 

Spironolactone 3.5 (1.3-9.4) p = 0.01 0.7 (0.1-3.5) p = 0.63 1.2 (0.2-6.3) p  = 0.3 

Three models are shown: 40 weeks of treatment with spironolactone and placebo. Estimates for all models are adjusted for the variables listed 

and also for use of beta blockers, statins, diuretics, calcium channel blockers. Baseline potassium was not thought to contribute to reduction in 

eGFR or BP and is not examined in the model. 

‡ ACE inhibitor and ARB were used in separate models in view of co-linearity. Substituting ARBs did not significantly alter the data (not 

shown). OR; Odds ratio (95% CI) 
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Figure 7.4 Change in serum potassium over 40 weeks in patients treated with  

  spironolactone or placebo. 

 

 

 

Data are mean ± standard deviation.  

† p < 0.05. †† p < 0.01, repeated measures analysis of variance with the time point (week 

0, week 40) as the within-subjects factor and the group (spironolactone and placebo) as the 

between-subjects factor. 
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7.5 DISCUSSION 

 

These results provide support for the safety and tolerability of low dose spironolactone 

with concurrent ACE inhibitor or ARB treatment in patients with non-diabetic early stage 

CKD. In a cohort of patients with well characterised renal disease treated with 

spironolactone, the incidence of serious hyperkalaemia (≥ 6 mmol/L) was < 1% and that of 

a clinically significant (≥ 25%) reduction in eGFR was ≤ 5% over the 40 weeks of 

treatment. Changes in potassium, eGFR and systolic blood pressure were most apparent in 

the first month of treatment but only 2% of patients required treatment discontinuation 

within 4 weeks. Of the 56 patients randomised to continuing therapy with spironolactone, 

all remained stable thereafter with no serious adverse events occurring during 36 weeks of 

follow-up. A pre-treatment serum potassium ≥ 5 mmol/L was predictive for the 

development of hyperkalaemia in our study and thus we would agree with the original 

RALES criterion and not recommend spironolactone in such patients.  

 

7.5.1 The safety of mineralocorticoid receptor blockers in heart failure 

Following publication of the RALES study, several studies raised safety concerns about 

MRBs in combination with ACE inhibitors and ARBs in patients with heart failure (Cruz 

et al., 2003;Juurlink et al., 2004;Masoudi et al., 2005). A large increase in the number of 

prescriptions for spironolactone in patients with heart failure over 65 years of age was 

mirrored by an increase in the number of hospital admissions with hyperkalaemia and an 

increase in associated mortality. It was estimated that for every 1000 additional 

prescriptions of spironolactone there were 50 additional admissions for hyperkalaemia 

(Juurlink et al., 2004). These analyses identified several factors which increased the risk of 

developing hyperkalaemia on spironolactone: i) inadequate monitoring of potassium 
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levels; ii) neglect of predisposing factors to hyperkalaemia including diabetes, newly 

developing conditions while on treatment such as renal dysfunction; iii) inappropriately 

high doses with concomitant mediations such as beta blockers which increase the risk of 

hyerpkalaemia; iv) inappropriate increases in dietary potassium due to concomitant 

diuretic therapy and prescriptions to patients not satisfying the RALES entry criteria.  

It is therefore reassuring that a recent publication reporting the use of 

spironolactone in Scotland between 1994-2007, reported a marked increase in 

prescriptions without an increase in hospital admissions for hyperkalaemia and low rates 

of serious hyperkalaemia (Wei et al., 2010). These data reflect appropriate patient selection 

and an increase in the rates of monitoring of serum potassium and creatinine. Indeed rates 

of mild hyerpkalaemia (5.0-6.0 mmol/L) were increased but without an increase in the 

incidence of serious hyperkalaemia (≥ 6.0 mmol/L) (Wei et al., 2010). 

 

7.5.2 The safety of mineralocorticoid receptor blockers in chronic kidney disease 

To date, safety data on the use of MRBs in patients with CKD has been limited to small 

studies investigating their role in reducing proteinuria and have been reassuring (Bianchi et 

al., 2006;Chrysostomou & Becker, 2001;Sato et al., 2003). Bomback et al. published a 

systematic review of the effect of adding a MRB to ACE inhibitor and ARBs for 

proteinuria (Bomback et al., 2008a). In the 15 studies and 436 patients reviewed, a serum 

potassium ≥ 5.5 mmol/L was identified in 5.5% of patients. Post treatment mean eGFR 

was reduced in three studies with study durations up to 12 months, although these 

reductions were considered clinically insignificant (74 to 67, 87 to 74, 57 to 54 

ml/min/1.73m
2
).  

A recent randomised control trial in patients with idiopathic glomerular disease and 

an eGFR of ≥ 30 ml/min/1.73m
2
, provided information on long term (3 years) treatment 
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with a MRB (Bianchi et al., 2010). Spironolactone was combined with an ACE inhibitor 

and an ARB plus a statin in the „intensive‟ treatment group. While mean serum potassium 

increased only slightly in comparison to the control group, the rate of hyperkalaemia 

(potassium ≥ 5.5 mmol/L after dose frequency reduction) was 9/64 in the intensive 

regimen compared to 3/64 in the conventional group. This high rate might have been due 

to the concomitant use of both ARBs and ACE inhibitors, a treatment strategy not 

commonly employed. In the spironolactone group, eGFR fell approximately 2% over the 

first three months before subsequently improving and was not significantly different to 

baseline value at the end of follow-up (Bianchi et al., 2010). This change is consistent with 

data in the CRIB-II study where a mean 3% reduction in eGFR over the first month of 

open-label treatment was observed before improving over further follow-up. This change 

is similar to that observed following initiation of ACE inhibitors (Bakris and Weir, 2000).  

 

7.5.3 An optimum level for serum potassium? 

Mild hyperkalaemia (5.5-5.9 mmol/L) during MRB therapy is common but is probably of 

no adverse clinical significance (Wei et al., 2010). In the CRIB-II study, 8% of patients on 

spironolactone and 2% on placebo had a potassium ≥ 5.5 mmol/L on one or more occasion 

over 40 weeks of treatment. In a recent prospective observational study of 820 patients 

with CKD stages 3-5, a potassium level between 5.5-5.9 mmol/L was not associated with 

an increased mortality rate or progression to end-stage CKD over an average follow-up of 

2.6 years (Korgaonkar et al., 2010). Indeed, there was an increased risk of end-stage CKD 

and death with serum potassium levels ≤ 4.0 mmol/L. Thus there may be a U-shaped 

relationship between potassium and mortality in CKD, with an optimum “eukalemic” 

range for serum potassium level of between 4.1-5.5 mmol/L. In CRIB-II, 16 patients 
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randomised to placebo had a serum potassium ≤ 4 mmol/L during follow-up compared to 8 

patients with spironolactone.   

 

7.5.4 The optimum dose and monitoring regimen in chronic kidney disease? 

An early reduction in eGFR can be anticipated with spironolactone just as it can following 

treatment with ACE inhibitors and ARBs, necessitating monitoring of renal function. The 

frequency of monitoring in CRIB-II was greater in the first month of treatment than is 

commonly employed following initiation of ACE inhibitors and ARBs but does not differ 

significantly to protocols used for anticoagulants such as warfarin where the importance of 

frequent monitoring is accepted. This decision reflected concurrent treatment with an ACE 

inhibitor and / or ARB and the significant range of renal function; 34% of patients in 

CRIB-II had an eGFR ≤ 45 ml/min/1.73m
2
. After randomisation, no increase in the risk of 

hyperkalaemia or reduction in eGFR was observed compared to placebo. Thus monitoring 

for adverse effects of spironolactone after 4 weeks of therapy is probably required no more 

frequently than is recommended for monitoring of patients on ACE inhibitor/ARB therapy. 

Attention to the risk factors for the development of hyperkalaemia (eGFR ≤ 45 

ml/min/1.73m
2
 and baseline potassium ≥ 5.0 mmol/L) and clear advice to temporarily 

suspend spironolactone with acute illness such as diarrhoea and vomiting should help 

reduce such risks along with careful patient selection. 

The optimum dose of spironolactone and monitoring strategy of spironolactone in 

CKD are still to be determined and data from large scale prospective studies will be 

required. Eminent figures in this area have suggested a role for very low dose 

spironolactone 12.5mg daily (Bomback et al., 2009b) or using a titration schedule of 25mg 

on alternate days for one month with an increase to daily treatment if potassium remains ≤ 
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5 mmol/L (Pitt, 2009). This study provides preliminary data to support the dose of 25 mg 

once daily provided adequate monitoring is employed.  

 

7.5.5 Limitations 

It is important to note that patients recruited in this study were selected to minimise the 

chances of serious iatrogenic hyperkalaemia. Patients with a history of hyperkalaemia, 

diabetes and CKD stage >3, considered to be at high risk of hyperkalaemia were excluded. 

Thus these data provide no support for use of MRBs in such population, in particular 

diabetics. All patients were recruited from specialist nephrology clinics limiting the 

applicability of these data to patients treated in primary care who represent the majority of 

patients with CKD. Doses of ACE inhibitors and ARBs were titrated to those maximally 

tolerated but were not the same in all patients. Finally, only 40 weeks of follow-up data is 

reported. No conclusions can be drawn as to the frequency of later adverse event rates. 

Such adverse events can be precipitated by acute illness or surgery occurring during 

treatment and these events are unlikely during short treatment periods.  

 

7.5.6 Conclusion 

Low-dose spironolactone is well tolerated in early stage CKD. The risk of serious 

hyperkalaemia and significant renal deterioration appear rare particularly after the first 

month of treatment. Careful patient selection and biochemical monitoring should ensure 

these adverse effects are minimised and may be an early and “acceptable price” in 

reducing cardiovascular events and preventing the progression of renal disease in these 

high risk patients. These data serve to heighten the need for a large scale clinical outcome 

trial from which much needed further safety data would be available.  
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CHAPTER 8 

 

 

ASSESSMENT OF REPRODUCIBILITY 
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8.1 SUMMARY 

 

The ability to perform repeated clinical measurements accurately and reproducibly is of 

pivotal importance for clinical practice and research. Identifying “real” differences in 

cardiovascular structure and function between patients with chronic kidney disease (CKD) 

and controls as well as monitoring patients response to treatment with spironolactone or 

placebo were the principal aims of this thesis. In this chapter, I sought to determine intra-

operator and inter-operator variability for measurements of left ventricular mass, systolic 

function and arterial stiffness performed using well validated techniques of cardiac MRI 

and echocardiography. 

 Ten patients with early stage CKD recruited for the Chronic Renal Impairment in 

Birmingham II study (CRIB-II) (presented in chapter 5) and 10 healthy volunteers 

recruited for the cross-sectional observational study (presented in chapter 3) were 

randomly chosen for intra-operator and inter-operator variability studies.   

There was good agreement of measurements. The overall (patients and volunteers) 

absolute differences (median (range)) for the single operator performing repeated 

measurements were: cardiac MRI LV mass index -1.4 (9.2 g/m
2
), aortic distensibility 0.21 

(0.27 mmHg
-3

), cardiac MRI LV ejection fraction (EF) 1.0 (6%), echo LV EF -3 (14%). 

Inter-operator variability between two clinicians analysing the same data sets were: CMR 

LV mass index –2.9 (9.2 g/m
2
), aortic distensibility 0.23 (0.51 mmHg

-1
), CMR LV 

ejection fraction (EF) -0.4 (11%), echo LV EF 2.0 (12%). 

The reproducibility for measurements performed in this thesis were good. These 

data are comparable to previous published reports, suggesting that operators assessing data 

in this thesis were reliable for serial measurements. 
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8.2 INTRODUCTION 

 

The accuracy and reliability of repeated clinical measurements has important implications 

for clinical practice and research. Observed differences in measurements over time can 

reflect “real” changes in clinical status such as disease progression or an altered response 

to treatment. Alternatively they can reflect variation in quantitative analysis between 

individuals or limitations of the chosen imaging modality. Thus the ability to identify 

“real” changes over time necessitates analysis of variability factors which will affect the 

interpretation of data in serial studies and the calculation of study samples sizes in the 

research setting.   

Intra- and inter-observer variability factors are introduced during the quantitative 

analysis phase, when measurements are performed twice by one observer or by two or 

more different observers, respectively. To allow complete interpretation of data, 

investigators should quantify the expected variation relating to the operator (s) performing 

repeated measurements on individuals over time.  

The accuracy of quantitative analysis on repeated measurements can depend on a 

number of factors including; the quality of imaging, the observer‟s experience at analysing 

specific measurements / data sets, and presence or absence of pathology. Operator 

variability is higher with abnormal cardiac geometry such as asymmetric remodelling with 

ischaemic cardiomyopathies (Grothues et al., 2002).  

In this chapter, I have reported the intra-operator and inter-operator variability for 

prospectively defined end-points in studies described in studies included in this thesis. 

These include: left ventricular (LV) mass, LV function and aortic distensibility in patients 

and healthy volunteers. The measurements selected are all important intermediate markers 

of cardiovascular prognosis.  
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The hypothesis of this study was that experienced operators performing repeated 

measurements using gold standard imaging techniques would be reliable and reproducible, 

allowing complete interpretation of data presented in this thesis.  
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8.3  METHODS 

8.3.1 Participants  

Ten patients with early stage chronic kidney disease recruited for the Chronic Renal 

Impairment in Birmingham (CRIB-II) study (presented in chapter 5) and 10 healthy 

volunteers recruited for the cross-sectional observational study (presented in chapter 3) 

were randomly chosen for intra-operator and inter-operator variability studies.  

 

8.3.2 Measurements assessed 

The following measurements were assessed using gold standard techniques (described in 

chapter 2): 

1. LV mass: on cardiac MRI 

2. Aortic distensibility on cardiac MRI 

3. LV systolic function: ejection fraction (EF) on cardiac MRI and echo 

4. Longitudinal LV systolic function: tissue Doppler (TDI) myocardial systolic (Sm) 

velocities and myocardial deformation by 1D peak Strain 

5. LV diastolic function: early diastolic myocardial velocities (Em) at the lateral 

annulus 

8.3.3  Intra-observer variability study 

Intra-operator variability is a measure of the extent to which the same observer agrees 

when analysing the same set of data at different time points. In this study, a single 

experienced operator (NE) blinded to all treatment and clinical data, measured the 

variables off-line on all 20 patients / controls using commercially available cardiac MRI 
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and echo software. Blind re-analysis was repeated by the same operator on a second 

occasion at least six weeks later.  

 

8.3.4  Inter-observer variability study 

Inter-operator variability is a measure of the extent to which two or more observers agree 

when analysing the same set of data. In this study, two experienced operators (NE and RPS 

for cardiac MRI, NE and AH for echo) blinded to all clinical data and results from the 

other operator, performed measurements off-line on the same 20 individuals. 

 

8.3.5  Statistical analysis 

Data are presented as intra-class correlation coefficients (ICC) + 95% confidence intervals 

(95% CI). A 2-way mixed model with absolute agreement was used. This model assumes 

that the operators performing measurements were not selected from a larger population of 

operators, so their effect is included in the model. It also takes into account the systematic 

differences between the two measurements. An assessment of the agreement within and 

between two measurements made by operators was evaluated by Bland-Altman analysis 

(Bland & Altman, 1986). Spearman‟s correlation coefficients were also performed to 

discern if differences in measurements change with the magnitude of the measurements. 
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8.4 RESULTS 

 

8.4.1 Study population 

There were no differences in demographic or clinical data for patients and volunteers 

randomly selected for the variability studies (Table 8.1).  

 

8.4.2 Reproducibility 

The intra-observer and inter- observer reproducibility for measures of LV mass, function 

and aortic distensibility are presented in Tables 8.2 and 8.3. All of the variables gave 

highly significant results, suggesting strong agreement in their measurements. As 

expected, reproducibility with cardiac MRI was superior to echo, reproducibility for 

controls was superior to patients and intra-operator reproducibility was superior to inter-

operator variability.  

Bland-Altman analysis confirmed high reproducibility with acceptable bias (Figure 

8.1 and Table 8.4). There were no significant correlation for the difference between 

measurements and average measurement: LV mass; Spearman correlation r = 0.25, p = 

0.28, aortic distensibility r = 0.11, p = 0.64, cardiac MRI EF; r = 0.12, p = 0.60, echo EF; r 

= -0.08, p = 0.72. This suggests that differences in measurements change with the 

magnitude of the measurements.   

Taken over both groups (controls and patients); absolute differences between 

measurements were small. For the single operator; LV mass; 1.4 (9.2 g) [median 

difference (range)], aortic distensibility; 0.21 (0.27 mmHg
-1

), LV ejection fraction (EF) on 

cardiac MRI; 1.0 (6.0%), LVEF on echo; 3 % (6.0), LVEDVi on cardiac MRI; 4.0 (19 

ml//m
2
), TDI Sm; 0.3 (1.2 cm/s), TDI Em; 0.2 (1.7 cm/s), LV global strain; 0.3 (3.4%). 

Between operators; cardiac MRI LV mass index; 2.9 (9.2 g/m
2
), aortic distensibility; 0.23 
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(0.51 mmHg
-3

), LVEF on cardiac MRI; 0.4 (11%), LVEDVi on cardiac MRI; 2.6 (19 

ml//m
2
), echo EF; 2.0 (12%), TDI Sm; 2.0 (12 cm/s), TDI Em; 0.01 (0.84 cm/s), LV global 

strain; 0.6 (8%).  
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Table 8.1 Patient characteristics 

 Controls (n=10) CKD (n=10) Significance 

Age (years) 45 ± 11 44 ± 8 0.9 

Male (%) 50% 50% 1.0 

BSA (m
2
) 1.8 ± 0.2 189 ± 0.2 0.6 

Heart rate (bpm) 71 ± 8 66 ± 10 0.15 

Systolic BP (mmHg) 123 ± 12 126 ± 12 0.6 

Diastolic BP (mmHg) 78 ± 8 77 ± 7 0.8 

 

BSA; body surface area, BP; blood pressure, CKD; chronic kidney disease 
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Table 8.2 Intra-operator reproducibility of measurements 

 Controls (n = 10) Patients (n = 10) 

 ICC 95% CI P-value ICC 95% CI P-value 

LVMI on cardiac MRI (g) 0.96 0.85-0.99 <0.01 0.93 0.77-0.98 <0.01 

Aortic distensibility (×10
- 3

 mmHg) 0.99 0.96-0.99 <0.01 0.99 0.96-0.99 <0.01 

LV EF on cardiac MRI (%) 0.83 -0.03-0.97 <0.01 0.77 0.36-0.94 <0.01 

LV EDVI cardiac MRI (ml/m
2
) 0.97 0.88-0.99 <0.01 0.84 0.50-0.95 <0.01 

LV EF on echo (%) 0.76 0.07-0.94 <0.01 0.75 0.30-0.92 <0.01 

TDI Sm velocity (cm/s) 0.98 0.89-0.99 <0.01 0.96 0.87-0.99 <0.01 

TDI Em velocity (cm/s) 0.99 0.31-0.99 <0.01 0.80 0.43-0.94 <0.01 

LV global Strain (%) 0.96 0.79-0.99 <0.01 0.95 0.83-0.99 <0.01 

ICC; intra class correlation coefficient, 95% CI; 95% confidence intervals 

LV EF; left ventricular ejection fraction, LVMI; left ventricular mass index, LVEDVI; left ventricular end-diastolic volume index, PWV; 

pulse wave velocity, TDI Sm; tissue Doppler imaging myocardial  systolic velocity, TDI Em; tissue Doppler imaging myocardial early 

diastolic velocity 

All of the variables gave highly significant results, suggesting strong agreement in their measurements 
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Table 8.3 Inter-operator study reproducibility of measurements 

 

 Controls (n = 10) Patients (n = 10) 

 ICC 95% CI P-value ICC 95% CI P-value 

LVMI on cardiac MRI (g) 0.92 0.52-0.98 <0.01 0.91 0.72-0.98 <0.01 

Aortic distensibility (×10
- 3

 mmHg) 0.97 0.90-0.99 <0.01 0.97 0.87-0.99 <0.01 

LV EF on cardiac MRI (%) 0.80 0.42-0.95 <0.01 0.78 0.34-0.94 <0.01 

LV EDVI cardiac MRI (ml/m
2
) 0.86 0.60-0.97 <0.01 0.84 0.5-0.95 <0.01 

LV EF on echo (%) 0.75 0.28-0.93 <0.01 0.73 0.21-0.93 <0.01 

TDI Sm velocity (cm/s) 0.97 0.89-0.99 <0.01 0.81 0.40-0.95 <0.01 

TDI Em velocity (cm/s) 0.78 0.40-0.94 <0.01 0.92 0.66-0.98 <0.01 

LV global Strain (%) 0.84 0.50-0.95 <0.01 0.81 0.39-0.95 <0.01 

ICC; intra class correlation coefficient, 95% CI; 95% confidence intervals 

LV EF; left ventricular ejection fraction, LVMI; left ventricular mass index, LVEDVI; left ventricular end-diastolic volume index, TDI 

Sm; tissue Doppler imaging myocardial  systolic velocity,  TDI Em; tissue Doppler imaging myocardial early diastolic velocity 

All of the variables gave highly significant results, suggesting strong agreement in their measurements
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Figure 8.1 Intra-operator reproducibility for measurements of left ventricular mass and  

  function in the overall (patients and controls) cohort using Bland-Altman Plots 

 

8.1a)  Left ventricular mass on cardiac MRI 

 

8.1b)  Aortic distensibility on cardiac MRI 

 

 

Solid line represents the mean (bias) and dotted lines represent the limits of agreement 

(defined as the mean difference plus and minus 1.96 times the standard deviation of the 

differences) 
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8.1c)  Ejection fraction on cardiac MRI 

 

 

8.1d)  Ejection fraction on echo 

 

 

Solid line represents the mean (bias) and dotted lines represent the limits of agreement 

(defined as the mean difference plus and minus 1.96 times the standard deviation of the 

differences) 
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Table 8.4 Intra-observer and inter-operator reproducibility of measurements for total  

  cohort (patients and controls) 

 

 Intra-observer (n = 20) Inter-observer (n = 20) 

 Bias 

(95% limits of agreement) 

Bias 

(95% limits of agreement) 

LVMI on cardiac MRI (g) -1.1 (-7.5 - +5.3) -2.2 (-7.0 - +2.5) 

Aortic distensibility (x10mmHg
-3

) -0.02 (-0.38 - +0.34) -0.15 (-0.81- +0.50) 

LV EF on cardiac MRI (%) 2.3 (-1.9 - +6.4) -1.4 (-5.8 - +3.2) 

LV EDVI cardiac MRI (ml/m
2
) -2.2 (-10.0 - +5.8) 0.58 (-2.0 - +3.2) 

LV EF on echo (%) -0.5 (-9.0 - +7.8) 1.9 (-4.9 - +8.7) 

TDI Sm velocity (cm/s) 0.2 (-1.2 - +0.6) -0.04 (-1.1 - +1.0) 

TDI Em velocity (cm/s) -0.2 (-1.2 – +0.7) -0.2 (-0.7 - +0.3) 

LV global Strain (%) -0.3 (-2.3 - +1.7) -0.19 (-4.5 - +4.5) 

 

Analysis by the Bland-Altman method; absolute difference and limits of agreement. 

 

EDVI; end-diastolic volune index, EF; ejection fraction, Em; early myocardial velocity, LV; 

left ventricle, Sm systolic myocardial velocity, TDI; tissue Doppler imaging 
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8.5 DISCUSSION 

8.5.1 Reproducibility of measurements compared to previous works 

The results of this study have demonstrated high reproducibility for the measurements of LV 

mass, LV function and aortic stiffness selected for intra-operator and inter-operator variability 

studies. These data support the hypothesis that measured differences are due to “real” changes 

in the cardiovascular system. The variability between experienced operators in this study is 

consistent with previous reports using similar imaging protocols in patients with 

cardiovascular disease and healthy controls (Grothues et al., 2002;Hudsmith et al., 2005). 

 Assessment of intra-observer variability was important to ensure consistency of 

analysis over time. As a single operator was responsible for analysing all imaging data in this 

thesis, it was important to demonstrate that changes observed reflected the effects of disease 

or treatment and not inconsistencies in analysis. These data were further supported by high 

reproducibility in the inter-operator variability studies which confirmed consistent analysis 

techniques between observers and helped exclude potential bias introduced using a single 

operator. 

 Reproducibility was higher for a single operator than between two different operators 

reflecting the improved consistency of a single individual. Reproducibility was generally 

higher for healthy controls than patients with structurally abnormal hearts and is consistent 

with previous reports (Grothues et al., 2002). This is postulated to reflect better cardiac 

function (better endocardial / epicardial definition, smaller LV volumes) and image quality 

(breath-holding, slower heart rates, less arrhythmias). Also in keeping with previous reports, 

we demonstrated higher reproducibility with cardiac MRI than with echocardiography for 

assessment of LV mass dimensions and function (Bellenger et al., 2000;Myerson et al., 2002). 

Cardiac MRI has become established as the gold standard method for these prognostic 



 275 

markers as it provides a 3D assessment of the ventricle and is not limited by geometric 

assumptions or acoustic windows as in 2D echo (Myerson et al., 2002;Pennell et al., 2004). 

However, this was not a study examining the accuracy and precision of individual imaging 

techniques. It was designed to identify the disparity and error introduced by quantitative 

analysis. The combination of reliable operators and gold standard imaging modalities, allows 

the smallest level of change which can be reliably detected to be defined. This is important for 

repeated follow-up examinations, monitoring the response to the therapeutic intervention 

(such as in the CRIB-II study ) in the individual patient as well as helping to determine the 

sample sizes required for future clinical trials. 

 

8.5.1 Limitations 

In view of time and financial constraints we were unable to assess inter-study (test-retest) 

variation in which the same individual would undergo a second identical examination 

separated by a specified time interval. This determines the variability associated with 

physiological variation and operator related changes in patient positioning and scan re-

planning. These potential sources of error were minimised this using set protocols and with 

the same individual acquiring all echo (NE) and cardiac MRI (RPS) images. The study sample 

size was small but was based on feasibility and is similar to that used in previous studies. 

Finally, I acknowledge that reproducibility is limited not only by measurement error but by 

extrinsic variables such as altered haemodynamics, medications and disease status. 
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8.5.2 Conclusion 

Intra and inter-operator reproducibility in this study was high in keeping with previous reports 

using the same imaging modalities. It provides greater reliability of observed changes in the 

parameters under measure throughout this thesis.  
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CHAPTER 9 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

 

 

 



 278 

9.1  Summary of thesis findings 

 

In the work described in this thesis, I sought firstly to determine whether large artery stiffness 

and ventricular function are abnormal in patients with early stage chronic kidney disease 

(CKD) and secondly to determine the effect of treatment with the mineralocorticoid receptor 

blocker (MRB) spironolactone on these prognostically important parameters of cardiovascular 

function.   

 Work presented in chapter 3 demonstrated that compared to healthy controls, patients 

with early stage CKD had reduced aortic distensibility and that this displayed a graded 

positive relationship with eGFR. In addition, left ventricular (LV) systolic and diastolic 

stiffness were increased and LV diastolic function was impaired. In chapter 4, I demonstrated 

that regional LV systolic function was also abnormal in early stage CKD compared to healthy 

controls. In both chapters, abnormalities in regional LV systolic, diastolic and aortic stiffness 

were present in the absence of alterations in conventional markers of LV systolic function. 

These data provided evidence in support of the hypothesis that early stage CKD is 

characterised by abnormalities of arterial and LV function.  

 Chapters 5 and 6 examined the role of spironolactone in improving the abnormalities 

of arterial and LV function described in chapters 3 and 4. Patients with early stage CKD 

randomised to treatment with spironolactone for 40 weeks had marked reductions in LV mass 

and aortic stiffness. In addition, LV regional systolic and diastolic function were improved. 

There was also a significant fall in peripheral and central blood pressures. Spironolactone 

reduced serological markers of collagen turnover and cardiac peptides which are known to be 

increased with cardiac dysfunction. These were the first published data demonstrating 
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improvements in intermediate prognostic markers of cardiovascular function with 

spironolactone in early stage CKD.  

 Chapter 7 described detailed biochemical, safety and tolerability data for the use of 

spironolactone in early stage CKD from the CRIB-II study described in chapter 5. Rates of 

serious hyperkalaemia were < 1 % and there was no significant change in eGFR compared to 

placebo. Patients at higher risk of biochemical complications were identified by a baseline 

potassium ≥ 5.0 mmol/L and an eGFR ≤ 45 ml/min/1.73m
2
. These data add to the small but 

increasing number of publications reporting the safe use of spironolactone in early CKD, 

provided patients are carefully selected and receive close biochemical monitoring.  

Taken together, this work suggests that: i) arterial stiffness is increased at the very 

earliest stages of CKD and has a graded relationship with eGFR; ii) ventricular function is 

impaired in early stage CKD, iii) aldosterone might be the important stimulus at the 

mineralocorticoid receptor which mediates arterial and cardiac injury in early stage CKD and 

iv) mineralocorticoid receptor blockade is an effective method of preventing or reversing 

these adverse markers of cardiovascular function. These data complement animal work which 

has demonstrated that aldosterone can induce arterial injury and cardiac fibrosis (Rocha & 

Stier, Jr., 2001). It is therefore possible that increased arterial stiffness in early CKD 

subsequently promotes the development of adverse changes in cardiac function which are 

almost universally present at more advanced stages of CKD. 
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9.2 Future directions 

 

Data described in this thesis have proposed that aldosterone is a key factor mediating 

cardiovascular disease in early CKD. There is a potential need for a large multi-centre clinical 

outcome randomised controlled trial of MRB therapy in CKD. However, several clinical and 

experimental issues must first be addressed.  

 

9.2.1 Were the improvements in cardiovascular structure and function observed with 

spironolactone in chronic kidney disease due to sustained reductions in blood 

pressure?  

In the CRIB-II study described in this thesis, spironolactone used at a modest dose of 25mg 

daily was highly effective at lowering blood pressure in patients with blood pressure 

considered within the normal range. Mean 24 hour systolic blood pressure was reduced by -6 

mmHg with spironolactone compared to -1 mmHg with placebo. The effects of this sustained 

fall in blood pressure over 40 weeks of treatment with spironolactone may well have 

contributed to the observed changes in outcome measures. I was able to examine the possible 

influence of blood pressure changes on values such as LV mass and PWV using statistical 

models such as linear regression analyses. However, the use of an inactive placebo means it is 

not possible to completely exclude the possibility that the effects observed with 

spironolactone were mediated by sustained reductions in blood pressure.  

To address this question, it would be necessary to re-design and then repeat the CRIB-

II study with the same primary end-points but substituting in an active placebo for comparison 

with spironolactone. The question then arises as to which drug would be the most suitable 
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comparator. In theory, the most important property of the active control drug is that it should 

produce an equal fall in blood pressure to spironolactone. In the CRIB-II study, 

spironolactone produced an average reduction in office blood pressure of -11 / -6 mmHg over 

40 weeks. These reductions occurred despite baseline blood pressure within the normal range, 

a low incidence of LV hypertrophy and established use of an average of 2.1 other anti-

hypertensive agents at enrolment. These data are consistent with previous reports using 

spironolactone. In a sub-study of the Anglo-Scandinavian Cardiac Outcomes
 
Trial-Blood 

Pressure Lowering Arm (ASCOT-BPLA), patients with resistant hypertension (mean baseline 

office blood pressure 157 / 86 mmHg) treated with spironolactone in addition to ≥ 3 

established alternative antihypertensive agents, had an average reduction in office blood 

pressure of -22 / -10 mmHg over a median of 1.3 years treatment (Chapman et al., 2007). The 

efficacy of spironolactone suggests that identifying a suitable active control agent which is as 

effective might in practice be a difficult requirement.  

It is clear from these data that the response of any individual to specific blood pressure 

lowering drugs is difficult to predict and will vary according to the state of the numerous 

factors that control arterial blood pressure. This point is illustrated by the ASCOT study 

which recruited nearly 20,000 patients with hypertension to two different blood pressure 

lowering regimens. An amlodipine based regimen was compared to atenolol based regimen in 

a stepped design with perindopril and doxazosin or bendroflumethiazide and doxazosin added 

respectively to achieve the specified blood pressure goal (Dahlof et al., 2005). Despite the size 

of the study and 5.5 year follow-up period, patients randomised to the amlodipine based 

regimen had lower blood pressure values throughout the study with an average difference of 

2.7 / 1.9 mmHg which might have mediated the observed reductions in cardiovascular 

mortality.  
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It is clear that producing an equal reduction in systolic blood pressure with 

spironolactone and the chosen active placebo agent would be difficult to achieve. An 

alternative approach to prevent differential blood pressures between treatment groups would 

be to withdraw patients who do not achieve a pre-specified reduction in systolic blood 

pressure from baseline within a set time frame after enrolment. An additional “add-on” 

antihypertensive regimen, applicable to both treatment groups could also to be used to try and 

achieve a pre-specified blood pressure reduction.  

Active control agents which could be considered for such a study include: 

i) Calcium channel blockers (CCBs) - in a retrospective analysis from the 

Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT), 

1,516 high risk hypertensive patients with eGFR ≤ 60 ml/min/1.73m
2
 were randomised to 

amlodipine (Rahman et al., 2005). This agent was safely tolerated over 6 years of follow-up. 

Rates of ESKD did not differ compared to the ACE inhibitor lisinopril and the thiazide 

diuretic chlorthalidone. The antihypertensive effects were very similar to spironolactone in 

the CRIB-II study, with a mean reduction in office systolic blood pressure of -12 mmHg over 

6 years (Rahman et al., 2005). However, potential limitations if used as a comparator include 

the high number of patients already taking CCBs which might make recruitment difficult and 

the absence of an equivalent diuretic effect.  

ii) Alpha adrenergic blockers – a small pilot study of 15 patients showed the selective 

alpha 1-adrenoceptor antagonist doxazosin to significantly reduced blood pressure in ESKD 

(Mori et al., 2001). An average reduction of -30 mmHg in systolic pressure was reported with 

an associated reduction in proteinuria and improvement in eGFR. This agent was further 

assessed in the prospective ALLHAT study which compared doxazosin, lisinopril and 

amlodipine to chlorthalidone in high risk hypertensive patients (Davis et al., 1996). Over 
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9,000 patients were randomised to doxazosin with a mean reduction in systolic blood pressure 

of 8 mmHg from 145 mmHg to 137 mmHg after 4 years of treatment. However, systolic 

blood pressure was consistently greater than was observed with chlorthalidone by an average 

of 3 mmHg over follow-up. This arm of ALLHAT was prematurely terminated after an 

interim analysis demonstrated an increased risk of heart failure with doxazosin independent of 

higher systolic blood pressure (ALLHAT Collaborative, 2000). This data and other associated 

side effects such as urinary frequency in women make this agent an unsuitable comparator to 

spironolactone. 

iii) Thiazides - in the retrospective analysis of ALLHAT, patients with eGFR ≤ 60 

ml/min/1.73m
2 

randomised to the thiazide diuretic chlorthalidone had an equivalent safety 

profile, rates of progression to ESKD and blood pressure reduction as lisinopril and 

amlodipine. Over 6 years, office systolic blood pressure was reduced by a mean of 12 mmHg 

from 146 mmHg to 134 mmHg (Rahman et al., 2005). Other benefits when considered as a 

comparator agent include its ready availability and a similar diuretic / natriuretic action to that 

of spironolactone. Potential problems include reduced efficacy in reducing extracellular 

volume at eGFR ≤ 45 ml/min/1.73m
2
 (Wilcox, 2002) and hypokalaemia. The latter action 

reflects increased delivery of sodium to the distal tubule and increased potassium excretion, 

thereby making blinding of therapy difficult compared to spironolactone. 
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9.2.2 Could improvements in cardiovascular structure and function observed with 

spironolactone be replicated with more selective mineralocorticoid receptor 

antagonists with potentially better side effect profiles? 

 

In the CRIB-II study, we elected to study the effect of spironolactone, a non-selective blocker 

of mineralocorticoid, glucocorticoid, progesterone and androgen receptors. At the time this 

study was originally devised this low cost, generic preparation was readily available and had 

been shown to be highly efficacious in experimental and clinical studies of hypertension 

(Chapman et al., 2007), heart failure (Pitt et al., 1999) and proteinuria (Chrysostomou & 

Becker, 2001). In addition, a dosing study in patients with heart failure had established that 

12.5mg and 25mg daily were pharmacologically effective at blocking MRs, decreasing atrial 

natriuretic peptide levels without the risks of serious hyperkalaemia associated with doses of 

50mg daily or greater (The RALES Investigators, 1996).  

Despite the clinical efficacy of spironolactone, its use remains hindered by side-effects 

related to its lack of selectivity toward androgen, progesterone and glucocorticoid steroid 

receptors. These limitations warrant further study of alternative more selective MRBs and 

alternative new modes of MR blockade.  

The effects of improved MR selectivity could be assessed by repeating the CRIB-II 

study presented in chapter 5 with eplerenone (and an active placebo agent as discussed in 

section 9.3.1). This highly selective MRB offers some potential advantages over 

spironolactone (Ravis et al., 2005): i) it has reduced potential for androgen and progesterone 

receptor side effects such as gynaecomastia and breast pain observed with spironolactone 

(gynaecomastia 9% spironolactone vs. 0.5% eplerenone; breast pain 2% spironolactone vs. 

0.8% eplerenone); ii) It has a beneficial pharmacokinetic profile for CKD with a short 

elimination half life and extensive metabolism into an inactive form with < 5% of active 
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metabolite being renally excreted; iii) Despite having a lower binding affinity for the MR than 

spironolactone, it is efficacious in reducing end-organ damage in both the experimental (Blasi 

et al., 2003;Rocha et al., 2002a) and clinical research settings (Pitt et al., 2003a). However, 

rates of hyperkalaemia are similar to spironolactone (serious hyperkalaemia in RALES 2%, 

EPHESUS 5.5%, EMPHASIS 2.5%) when combined with an ACE inhibitor or ARB and 

would therefore necessitate close biochemical monitoring throughout a study.  

An alternative approach which holds promise for an improved safety profile would be 

to study new modes of MR blockade using non-steroidal MRBs. Biochemical studies have 

identified BR-4628, a dihydropyridine-based prototype MR antagonist with high in-vitro and 

in-vivo MR potency as well as selectivity with respect to the other steroid hormone receptors 

(Fagart et al., 2010). In DOCA-salt hypertensive rat models, BR-4628 significantly reduced 

pro-inflammatory genes and proteins (MCP-1), proteinuria and renal hypertrophy independent 

of an anti-hypertensive effect (Schupp et al., 2011). SM-368229 (N-4,4-dimethyl-2-thioxo-

1,4-dihydro-2H-3,1-benzoxazin-6-yl-thiophene-2-sulfonamide) is another potent oral non-

steroidal MR antagonist under development. In-vivo it was four and six times more selective 

for the MR than spironolactone or eplerenone respectively. In-vitro it was 18 times more 

selective for the MR than androgen, progesterone or glucocorticoid receptors, producing no 

anti-androgenic or progesterone related side effects (Nariai et al., 2011). Development of non-

steroidal MRBs remains at a very early stage but in the future might allow a direct “head to 

head” comparison with spironolactone and eplerenone as part of a “proof of concept” study. 
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9.2.3 Additional data is required to support the widespread use of mineralocorticoid 

receptor antagonists in early stage chronic kidney disease? 

Data published after RALES confirmed that use of spironolactone in a non-clinical trial 

setting where patient selection and biochemical monitoring are less rigorous, the incidence of 

hyperkalaemia and related complications are increased (Juurlink et al., 2004). Therefore 

before the use of MRBs can be contemplated in routine clinical practice for early CKD, it will 

be necessary to perform a long-term multi-centre trial with prospectively defined end-points 

for safety data and local monitoring of renal function and serum potassium.  

Any future study should be designed with advice from a Clinical Trials Unit to ensure it is 

adequately powered with long-term follow-up in order to address the drug safety and 

tolerability concerns which have limited MRB use to date. Additional information required 

would include:  

i) Optimum dosing strategy in CKD: Work contributing to this thesis used 

spironolactone at a dose of 25mg daily which was reduced to alternate day therapy if 

potassium levels were ≥ 5.5 mmol/L. This protocol was based on a dosing study from patients 

with heart failure in which 12.5mg and 25mg daily of spironolactone were shown to be 

effective at blocking aldosterone with acceptable levels of hyperkalaemia (5% and 13% 

respectively). Most studies examining the use of spironolactone in reducing proteinuria have 

also used 25mg daily (Chrysostomou & Becker, 2001;Sato et al., 2003). Eminent figures in 

this field have suggested regimens including low-dose spironolactone 12.5mg daily 

(Bomback et al., 2009b) or using a titration schedule of 25 mg on alternate days and 

increasing after 1 month if potassium remains ≤ 5.0 mmol/L (Pitt, 2009). However, objective 

evidence of an optimum dose in CKD would necessitate a randomised crossover trial in which 
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patients would be allocated in random order to different doses of spironolactone with 

monitoring of serum and urinary potassium as well as components of the RAAS and other 

steroid metabolites.   

ii) Optimum monitoring schedule in CKD: Studies using MRBs in CKD have not 

reported consistent monitoring regimens. Work in this thesis performed biochemical 

monitoring more frequently than in RALES in the first month of treatment, reflecting initial 

concerns about hyperkalaemia and worsening renal dysfunction in CKD. Data in chapter 7 

demonstrated an increase in potassium over the first four weeks of treatment which remained 

stable thereafter with no episodes of serious hyperkalaemia. This suggests a role for frequent 

monitoring in the immediate weeks after MRB treatment is initiated. In the longer term, a 

regimen in keeping with that used for ACE inhibitors and ARBs such as 3 monthly for the 

first year and 6 monthly thereafter might be appropriate. A dosing study should also help 

define this schedule. 

Work in this thesis and by other groups would suggest that pre-treatment factors 

(outlined in section 1.9.3.3 and in chapter 7) can be defined which predict an increased risk of 

developing hyperkalaemia with MRBs (Khosla et al., 2009). Future work could also test the 

role for new oral potassium binders. These agents might provide a new therapeutic strategy 

for the prevention of hyperkalaemia in high risk individuals including patients with diabetes 

and CKD. A recent study of patients with heart failure on an ACE inhibitor and /or ARB, 

randomised patients to treatment with spironolactone 25mg daily plus placebo or the oral 

polymeric potassium binder RLY5016 for 4 weeks (Pitt et al., 2011). This study is of 

particular relevance to data presented in this thesis as it included two groups at increased risk 

of hyperkalaemia; 50% of patients had an eGFR ≤ 60 ml/min/1.73m
2 

 and a third of patients 

had diabetes. Despite concomitant initiation of spironolactone, RLY5016 reduced mean 
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serum potassium within two days of treatment and levels remained consistently lower over 

follow-up with an overall mean reduction of 0.45 mmol/L compared to placebo. The 

incidence of hyperkalaemia (defined as ≥ 5.5 mmol/L) was also significantly reduced. In 

patients with CKD the mean reduction in serum potassium with RLY5016 was 0.52 mmol/L 

and the incidence of hyperkalaemia was 7% compared to 39% with placebo. Longer term 

studies and dosing regimens need to be examined for RLY5016. Furthermore the risks of 

associated hypokalaemia (potassium ≤ 4.0 mmol/L) need to be addressed. Nearly 50% of 

patients with CKD developed hypokalaemia in the potassium binder study which is highly 

significant in light of recent data demonstrating increased rates of mortality and progression to 

ESKD in patients with mild-moderate CKD who had a potassium ≤ 4.0 mmol/L (Korgaonkar 

et al., 2010).   

iii) Active post-marketing surveillance will be critical in any future studies examining use 

of MRBs in CKD. Participating centres would be required to maintain a system of adverse 

event reporting and risk assessment reporting to identify the incidence of known and new 

adverse events. These data would need to be assessed regularly by an independent monitoring 

committee and relayed to the Medicines and Healthcare products Regulatory Agency.  

 

9.2.4 What other mechanisms might reduce arterial stiffness and potentially improve 

cardiovascular structure and function in early stage chronic kidney disease? 

 

Work presented in this thesis specifically addresses the role of MR mediated effects on 

arterial stiffness and ventricular structure and function. Other mechanisms undoubtedly 

contribute to the complex biology of arterial stiffness. Thus treatment strategies which target 

http://www.mhra.gov.uk/
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alternative mechanisms might also improve arterial stiffness in early CKD. Examples might 

include: 

1. Disorders of mineral-bone metabolism: elevated serum phosphate levels 

mediate renal damage and accelerate renal decline. In rat models of uraemia, high dietary 

phosphate was associated with calcium and phosphate deposition in the renal tubules and 

interstitium with interstitial oedema and fibrosis evident on histology (Haut et al., 1980). 

More recently, serum phosphate levels (still within the normal reference range) have 

emerged as a powerful risk factor for cardiovascular mortality and arterial stiffness in the 

general population and in ESKD (Dhingra et al., 2007;Kestenbaum et al., 2005). Deposition 

of calcium-phosphate mineral in the vasculature promotes osteogenic transformation of 

vascular smooth muscle cells and the development of vascular medial calcification. The 

extent of calcification correlates with severity of arterial stiffness and is attenuated in the 

aorta and coronary arteries with treatment by non-calcium-based phosphate binders like 

sevelamer hydrochloride (Cozzolino et al., 2003). Phosphate might also exert direct fibrotic 

effects on myocardium and is an independent determinant of LV mass in ESKD. Indeed, 

treatment with a daily dialysis regimen and associated reductions in phosphate levels 

independently reduced LV mass over 12 months compared to conventional dialysis 

regimens (Achinger and Ayus, 2006).  

In this thesis it has been postulated that improvements in cardiac structure and function 

with spironolactone might reflect preceding reductions in arterial stiffness. Thus an alternative 

strategy using treatments which lower serum phosphate by either dietary or pharmacological 

means could be examined in a randomised controlled trial to test the hypothesis that they also 

improve arterial stiffness in early CKD.  
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2. There has also been interest in novel therapeutic strategies which specifically 

target structural components within the arterial wall known to adversely affect extracellular 

matrix remodelling and increase arterial stiffness. Increased levels of advanced glycation end 

(AGE) products in CKD are postulated to contribute to increased arterial stiffness by the 

formation of irreversible covalent cross-links between collagen and elastin in the arterial 

medial layer. Future studies could extend early data investigating the role of: i) inhibitors of 

advanced glycation end (AGE) products such as aminoguanidine, a nucleophilic
 
hydrazine 

which decreases the formation of aortic collagen cross-linkages
 
produced by the formation of 

AGEs (Brownlee et al., 1986). ii) Crosslink breakers such as alagebrium, phenyl-4,5-

dimethylthazolium chloride (ALT-711 a thiazolium derivative) which specifically inhibits the 

irreversible cross-links between glycation products . In vivo efficacy of ALT-711 has been 

confirmed by experiments performed in rats, showing that the increased arterial stiffness 

associated with diabetes can be reversed by a short term treatment with this cross-link breaker 

(Wolffenbuttel et al., 1998). 

3. Matrix metalloproteinases (MMP) inhibitors might offer an alternative strategy 

in reducing arterial remodelling in CKD. Matrix metalloproteinases are endopeptidase 

enzymes which increase arterial stiffness by degradation of elastic laminae and induction of 

calcium deposition. In CKD, MMP levels increase progressively with advancing stages of 

disease (Chung et al., 2009). Potential therapeutic strategies might include attempts to up-

regulate endogenous tissue inhibitors (TIMPS) or the use of exogenous agents to inhibit MMP 

expression or activity. Doxycycline, a non-specific inhibitor can modulate cellular 

proliferation, migration and matrix remodelling through its ability to inhibit MMPs. It has 

been used to improve elastic fibre integrity in the thoracic aorta in Marfan syndrome (Chung 
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et al., 2007) and in animal models of lung disease lymphangioleiomyomatosis (Moir et al., 

2011). 

 

  

9.3 Un-answered experimental considerations 

9.3.1 What is the mechanism of action of salt in aldosterone mediated 

cardiovascular injury? 

A significant contribution of work in this thesis was designed from background experimental 

studies examining the effects of exogenous aldosterone in animal models. When combined 

with a high salt diet, aldosterone consistently induced severe myocardial and renal vascular 

damage characterised by cardiac hypertrophy, fibrosis, proteinuria and vascular inflammatory 

injury independent of blood pressure elevation. Furthermore, end-organ damage was 

markedly reduced by the addition of MR antagonists (spironolactone, eplerenone) and / or 

adrenalectomy without significant changes in blood pressure. These data have led 

investigators to conclude that aldosterone mediates its adverse effects by a humoral response 

rather than as a result of haemodynamic changes secondary to hypertension (Lacolley et al., 

2001;Rocha & Stier, Jr., 2001).  

A consistent feature of these models was the need for concomitant high salt intake. 

Indeed hypertension and cardiac fibrosis were not observed with exogenous aldosterone and a 

low-salt diet despite increases in plasma aldosterone and severely reduced urinary sodium / 

potassium ratio (Brilla & Weber, 1992). The reverse is also true; adrenalectomy reversed 

fibrotic responses in angiotensin II / salt loaded rats, indicating a key role for MR signalling 

(Rocha et al., 2002a). Thus synergistic activity between activated MRs and co-factors such as 

salt appears to be important in mediating its pathophysiological effects. 
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Clinical conditions such as heart failure and liver disease which currently use MRBs 

are characterised by sodium overload. A small pilot study in ESKD examined changes in 

serum aldosterone in response to changes in extracellular fluid status at various stages of 

dialysis (Bomback et al., 2009a). Compared to healthy volunteers, patients on dialysis showed 

much less effective suppression of aldosterone levels during extracellular volume expansion. 

Thus inappropriately high aldosterone levels (aldosterone escape) relative to sodium and 

volume status might explain why MRBs proved efficacious in the CRIB-II study and in the 

small number of studies examining their effects on reducing proteinuria in CKD. 

An alternative hypothesis is that the high salt load associated with disordered 

aldosterone homeostasis might sensitise the MR and cardiovascular system to the effects of 

mineralocorticoids. Further studies examining salt manipulation and its effect on aldosterone 

levels and markers of cardiovascular injury in CKD are warranted. This might be examined in 

a double blind, randomised crossover trial in which euvolaemic patients with CKD stage 2-4 

are allocated to high, normal and low salt intakes (with appropriate wash out periods). 

Comparative fluid status could be assessed using established non-invasive techniques such as 

multiple frequency bioimpedance spectroscopy and 24 hour urinary sodium excretion (a 

surrogate marker for extracellular volume). Plasma and urinary components of the RAAS 

could be measured along with markers of vascular inflammation, endothelial dysfunction and 

arterial stiffness with different salt intakes.  
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9.3.2 What is the role of physiological glucocorticoids in mineralocorticoid 

receptor activation? 

 

The action of endogenous glucocorticoids at the MR in cardiomyocytes continues to be 

debated. Further studies are clearly justified to elucidate the underlying molecular 

mechanisms by which glucocorticoid-MR complexes mediate effects on the cardiovascular 

system. At present the working hypothesis is that over 90% of MRs in cardiomyocytes are 

occupied (but not activated) by endogenous glucocorticoids which act as MR antagonist. This 

reflects high intracellular levels of glucocorticoids (relative to mineralocorticoids) and low 

levels of 11β-HSD2. However with tissue damage, ROS generation, oxidative stress and low 

levels or inhibition of 11β-HSD2, the cellular redox state is altered (reduced intracellular 

NADH). This appears to modulate the action of the glucocorticoid so that it activates the MR 

and therefore mimics the action of aldosterone (Funder, 2005;Mihailidou et al., 2009). The 

molecular mechanisms responsible for these apparent opposing effects are unresolved.  

 Chronic kidney disease is characterised by increased oxidative stress and declining 

levels of 11β-HSD2 with advancing stages of renal disease (Quinkler et al., 2005). Hence, it is 

likely that MR-mediated cardiac injury in CKD is to some extent mediated by glucocorticoid-

induced MR activation. The adverse effects mediated by the glucocorticoid-MR complex 

might also explain why cardiac mortality is increased in patients with normal endogenous 

plasma aldosterone levels (Tomaschitz et al., 2010). In clinical studies of heart failure, the 

efficacy of MRBs might reflect blockade of the action of both aldosterone and 

glucocorticoids. Furthermore, it has been postulated that occupancy of the MR by 

spironolactone may also induce expression of protective factors over and above its role in 

excluding aldosterone and glucocorticoids (Chun et al., 2002).  
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 The role of the glucocorticoid receptor (GR) in mediating cardiovascular injury also 

warrants further examination. In a recent experimental study, the potent synthetic 

glucocorticoid
 
dexamethasone (which has a low affinity for the MR) produced similar 

myocardial injury and cardiomyocyte apoptosis to aldosterone and cortisol. Furthermore, 

spironolactone prevented the deleterious actions of all three hormones (Mihailidou et al., 

2009). At present it remains unclear if spironolactone acts at both the MR and GR (despite a 

lower affinity for this receptor) while little is known about the distribution of these receptors 

and their signalling ligands in cardiomyocytes and fibroblasts.  

Some of these questions could be addressed by experimental work using primary 

cultures of adult rat cardiomyocytes (Lewis et al., 2004). It would be interesting to examine 

the basal expression levels of the MR, GR and 11βHSD type 1 and 2 in rat cardiomyocytes. 

The presence of functional GRs and MRs in cardiomyocytes could be examined by 

competitive binding experiments using increasing concentrations of titrated dexamethasone 

and aldosterone in the presence and absence of unlabelled ligand or specific MR (eplerenone) 

and GR antagonists (/RU38486). Also of interest are the specific effects of glucocorticoids 

and mineralocorticoids on the regulation of established genes involved in the development 

and modulation of cardiac fibrosis including: Angiotensin II receptor 1, matrix 

metalloproteinase 2 and 9 and macrophage chemoattractant protein 1 in rat primary cultures. 

In the longer term, a proof of concept study could be performed using in vivo cardiac biopsies 

of patients with left ventricular hypertrophy. This might define the expression of MR / GR 

and marker genes of hypertrophy, inflammation and fibrosis. 
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9.4 Conclusion 

The initial results from the CRIB-II study, future planned studies and on-going development 

of newer selective therapeutic agents will allow for continued investigation of the role of a 

variety of MRBs in chronic kidney disease. There is potential for these agents to be an 

effective therapeutic strategy in CKD in much the same way as we have seen in heart failure 

and after myocardial infarction. In the words of the eminent Professor Bertram Pitt “we can 

be cautiously optimistic that use of mineralocorticoid receptor blockers in addition to an ACE 

inhibitor or angiotensin receptor blocker will reduce the mortality and morbidity associated 

with chronic kidney disease, as well as prevent its progression to end-stage renal disease with 

all of its health-care and health-cost consequences”. 
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