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Abstract

This thesis applies knowledge of the physical dynamics of objects to estimating object

motion from vision when estimation from vision alone fails. It differentiates itself from

existing physics-based vision by building in robustness to situations where existing visual

estimation tends to fail: fast motion, blur, glare, distractors, and partial or full occlusion.

A real-time physics simulator is incorporated into a stochastic framework by adding

several different models of how noise is injected into the dynamics. Several different

algorithms are proposed and experimentally validated on two problems: motion estimation

and object tracking.

The performance of visual motion estimation from colour histograms of a ball moving

in two dimensions is improved considerably when a physics simulator is integrated into a

MAP procedure involving non-linear optimisation and RANSAC-like methods. Process

noise or initial condition noise in conjunction with a physics-based dynamics results in

improved robustness on hard visual problems.

A particle filter applied to the task of full 6D visual tracking of the pose an object being

pushed by a robot in a table-top environment is improved on difficult visual problems by

incorporating a simulator as a dynamics model and injecting noise as forces into the

simulator.
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CHAPTER 1

INTRODUCTION

“I’m just saying I saw it bounce out.”

The Pebble and the Mustard Jar,

Joshua Malbin

The aim of computer vision is to make computers see. It is, though, not always obvious

what it means to see.

Clearly, it is possible to see colours, shapes, and light. But then it gets, figuratively

speaking, murky. A layperson would be happy stating that it is possible to watch a pebble

bounce; it is possible to look at the joy on a child’s face; it is possible to see an affair come

to an end. These are somewhat more controversial if they are to be considered within the

remit of computer vision research.

It is not obvious what divides seeing from other kinds of understanding of a surround-

ing physical world. These kinds of understanding might commonly be thought to be based

on inference from prior knowledge and other modalities as well as vision, but perhaps not

vision in and of itself. But, there is prior knowledge involved in the seeing of edges and

contours too. And although a non-researcher would admit to seeing edges or contours,

they would probably not be the same edges or contours that preoccupy research in com-

puter vision. Although emotion can be inferred from sound, it can be inferred from solely

visual information.

So, it might seem that object impact, emotions, the status of relationships and many

other topics would properly be in the domain of computer vision. But now the burden on
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the computer vision researcher is great. So a computer vision researcher probes a small

part of this grand problem; chooses to push the boundaries of the discipline or push its

capabilities ever so slightly with each new finding: deformable shapes, inference based on

function, more robust vision, and so forth.

In this fashion, this thesis considers the inference of the parameters of rigid body

motion as part of the vision problem and uses the rigid body models underlying this

inference to improve existing vision techniques on marginal vision problems.

To reiterate, because these are the main ideas that this thesis is concerned with, the

practical tasks of:

• Inferring the dynamic behaviour of rigid bodies from vision.

• Using rigid body dynamics knowledge to improve motion estimation and tracking

performance.

1.1 Problems addressed

In this thesis these practical tasks are addressed by solving concrete problems in com-

puter vision. Motion estimation is addressed both in simulation and within a set of

real-world scenarios involving inference of fast moving objects from colour, and object

tracking is addressed in the context of an object being pushed by a robot and its full

6D pose reconstructed over time from object texture. Motion estimation is the problem

of reconstructing trajectories, that is sequence of poses, from visual information. Object

tracking is the problem of maintaining an estimate of the current state of an object.

The specific problems addressed and where they are found in this thesis, a summary

of the techniques employed, and their main findings, are listed in Table 1.1.

A version of the standard continuous-state analog to the Hidden Markov Model is used

to incorporate a standard off-the-shelf physics simulator into the estimation problem as

a dynamics model.
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Chap. Problem Features Framework Main finding

5 6D motion estima-
tion

Robust es-
timation &
Levenberg-
Marquadt

Noisy computer-
generated 6D poses

Robust estimation shown nec-
essary to obtain performance in
presence of rotation, collisions,
outliers.

5 2D motion estima-
tion

Robust estima-
tion & adaptive
line-search

Colour histogram
template matching

Physics-based dynamics model
improves performance when
used in a robust framework.

6&7 6D object tracking Texture edge
matching

Particle filtering
from texture edges

Physics-based dynamics model
improves performance with
realistic impulse-based noise
model.

Table 1.1: The main problems addressed in this thesis

Despite the extra complexities its introduction creates, the physics knowledge improves

performance on the problems analysed here.

To solve the motion estimation problem, a combination of robust estimation algo-

rithm and standard non-linear optimisation algorithms are employed with an off-the-shelf

physics simulator employed to reconstruct trajectories from subsets of data, and to add

hard and soft constraints to trajectories on the basis of expected physical behaviour.

To solve the visual tracking problem, a particle filter is employed, where the process

of sampling candidate solutions forward in time is mediated by an off-the-shelf physics

simulator.

1.2 Main ideas & terminology

1.2.1 Simulation & motion estimation

The aim in this thesis is to incorporate physical cognition into visual estimation prob-

lems; that is, a mastery of real-world scenarios involving object interaction and motion.

The kind of physical cognition employed in this thesis is a very specific kind of physical

cognition: physical simulation. Within the domain of control and motion planning, this

is also known as a forward model since it infers state forward in time. In general, physical

cognition is a broad term encompassing a number of different abilities - not only forward
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models (simulators), but inverse models at different levels of abstraction (that is, models

of the actions necessary to obtain a given goal in a given state), the ability to estimate

physical systems, including estimation from vision, manipulation of objects, describing

objects, and more. This thesis is an attempt to find synergies between two of these kinds

of physical cognition: estimation of object movement and physical simulation.

In particular, there is a lot of physical knowledge tied up in contemporary physical

simulators. While the ability to simulate a physical system is a small subset of the kinds

of processes needed for a human-like understanding of physical systems, it still has not

been shown that this information can be exploited in any serious way to improve the

estimation of the motion of physical systems.

Existing approaches to motion estimation and physical simulation share a lot with

each other in terms of the representation of objects and their motion. However, despite

this strong commonality, an investigation of the insights at the core of this thesis throws

into relief some subtle differences in the form of the physical knowledge used in each task.

While a physical simulator contains knowledge about how object state will change from

one time-point to the next, motion estimation must make use of knowledge about how

object appearance at one time-point relates to possible object state or how uncertain

observations of partial object state relate to sets of possible object trajectories.

It is easy to conceive of visual motion estimation or physical simulation of things

that are not easily called objects, such as fluids. Even so, the discussion in this thesis

is restricted to the more amenable estimation and simulation of objects. Moreover, a

specific class of objects is considered - rigid bodies - that is, objects that don’t change their

shape when they move. Furthermore, this thesis restricts its use of physical simulation to

pre-existing off-the-shelf rigid body physical simulators - because doing so is the quickest

route to an improved estimation system using physics, and will benefit from contemporary

advances in simulation technology.

A short summary of the terms used so far is appropriate:

• Visual motion estimation is the task of using visual information to accurately re-

4



construct the movement of objects. Typically this movement is represented as the

sequence of poses of each object.

• Visual tracking is the task of using visual information to maintain an estimate of the

current location and state of target objects. This estimate can include information

about uncertainty as well as the dynamic state of the object.

• Physical simulation is the task of calculating the evolving state of a set of objects

as they move through space and interact with each other. Usually this state is

represented as poses as well as dynamical information.

The bulk of the remainder of this document is focused on the elaboration of approaches

for doing motion estimation using physical simulation and the results of experiments

evaluating them.

1.2.2 Models used

In this thesis, the physical simulator is a strong model of the behaviour of objects in

the world. When instantiated with a particular scenario (objects and their instantaneous

states), itmodels their movement. The physical simulator therefore can model the dynam-

ics of the object; any such model (one that models the movements of objects) is called a

dynamics model, or a motion model1. If the dynamics model can represent uncertainty in

how the state will change, it can be called stochastic. This thesis is particularly concerned

with using such a stochastic dynamics model.

In addition to a dynamics model, in computer vision, other kinds of model occur. One

is an object model. Such a model typically consists of analogs to an object’s real-world

physical properties - its shape, for example, appearance, such as a texture model, and so

1In this thesis, the phrase “dynamics model” is preferred as it implies a range of models considering
the dynamic behaviour of objects, including collisions, though motion model is more common in some
parts of the literature where issues of dynamics are not a strong consideration.

5



forth. An object model also might include physical properties like mass1.

Another kind of model that occurs in computer vision is a model of image formation.

Such a model can be considered a physical model of the journey of light through different

media, and its inversion is particularly important in computer vision. In 3D computer

vision one example of such a model is the projective model of image formation. Beyond

the projection of points in space onto the 2D image plane, it is also possible to model the

medium through which light moves, and so forth. In this thesis the focus is on physics

in the scene itself, not on the physics of image formation. In probabilistic frameworks, a

model of how world state is transformed into observations (images, for example) is called

a probabilistic observation model.

This thesis does not attempt to build models of human cognition. It is purely grounded

in the practical problem of estimation. Human physical cognition seems to depend a lot

on context, and the use of explicit universal Newtonian-style models as employed here are

almost certainly not applicable to an analysis of physical cognition in humans2.

It will be useful to build physical cognition into synthetic systems, however. The ad-

vantages of doing this are several, particularly in the area of cognitive robotics. Cognitive

robotics is of great potential and practical use to the community, with applications to

human assistance, retroactive waste management, search and rescue, automated exper-

imentation, environmental monitoring, dynamic industry and more. Vision is arguably

the most important and difficult part of the problem; novel and integrative solutions are

valuable.

As noted by Hogg (1984) in one of the first works in computer vision based on strong

dynamics models, familiarity with an object, including the way it moves, is helpful when

the object is far away, fast responses are needed, and so forth. This thesis is a humble

contribution to this effort. In this thesis, visual estimation is achieved in the presence of

1It is useful to hold a distinction in mind between a dynamics model and an object model, not because
they are necessarily mutually exclusive (they are not: an object model can be essential to an accurate
dynamics model), but because the term “model” is common to them both but they are very different
concepts.

2While possible implications for human understanding of physical and visual phenomena will be re-
turned to in the discussion, they are not the core motivation for the work herein.
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blur, glare, distractors, occlusion and occlusion-obscured passive physical interaction by

using an improved dynamics model.

1.3 The rest of this thesis

The first chapter after the introduction (2) introduces the general stochastic model of the

evolution and observation of systems used to frame the remainder of the work. Physical

simulation is treated as a parametrised deterministic black-box function and it is shown

how such a function can be used in general in motion estimation and object tracking.

Chapter 3 then deals with existing approaches to visual estimation, including motion

estimation and recursive estimation, as viewed from the stochastic framework previously

introduced. Robust estimation is also discussed for those cases where conventional as-

sumptions break down. This chapter also details the concerns of visual geometry and

feature extraction of contemporary approaches to computer vision, visual tracking, visual

estimation, motion estimation and structure from motion and motivates algorithms based

on the criterion of maximising posterior probability and recursive estimation formulation

developed in the previous chapter.

Subsequently, the background basics of modern real-time physical simulation are given

and related approaches that incorporate physics information are considered in the areas

of object tracking, motion estimation, scene interpretation, control, motion planning and

motion synthesis, as well as naive physics (Chapter 4).

Having established a framework for the use of physical dynamics in motion estimation

and examined existing approaches, the following chapters present work focusing on specific

scenarios in estimation from vision. Some of this experimental work has been published

as conference papers (Duff, Mörwald, Stolkin, & Wyatt, 2011; Duff, Wyatt, & Stolkin,

2010).

First, work in simulation is described that validates the basic approach, and moti-

vates the use of the RANSAC algorithm beyond conventional non-linear optimisation
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approaches that tend to only be capable of refining an estimated trajectory (Chapter 5).

Refinement approaches use local cost gradient information to find new solutions but such

approaches give rise to problems with local minima. RANSAC makes use of an inverse

observation model employing a physics simulator to jump rapidly to approximately cor-

rect solutions. Next, a real-world scenario is investigated (again, Chapter 5). The motion

of a bouncing ball is estimated from colour histogram features in a handful of image se-

quences in the presence of blur, glare, fast motion, as well as occlusion and distractors.

The motion of the ball is restricted to two dimensions. It is shown how the use of a strong

dynamics model based on physical simulation can put enough of a prior expectation on

ball motion to estimate trajectories much more accurately than with simple dynamics

models, and that simpler dynamics models must be applied only weakly to get adequate

results. This improvement is seen when observations are noisy, as is the case with blur,

occlusion, and distractors. Simple refinement is again insufficient for adequate estimation

and RANSAC is used to get adequate results. Two refinement algorithms are presented,

based on two different models of uncertainty (uncertainty in the observations and initial

state as well as uncertainty in the process) and two different consequent parametrisations

of a trajectory.

Chapter 6 then describes an approach to model-based tracking of the full 6D pose

of a textured object from edge features, mainly texture edges, using a particle filtering

approach that exploits graphics hardware to do quick testing of generated hypothetical

poses. It is shown how a physics-based dynamics model can be used to improve the

hypothesis generation part of the algorithm (and consequently the performance of the

algorithm) in robot manipulation scenarios involving occlusion, distractors and fast mo-

tion, by adding a process noise model to a physical simulator that models force noise

through the application of impulses rather than state perturbations. Chapter 7 applies

this framework to scenarios involving a robot manipulator pushing an object in a tabletop

environment. Prior information about the known trajectory of a robotic manipulator does

little to improve this approach on the scenarios examined.
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Finally, a summary (Chapter 8) is made of these results, their implications sum-

marised, possible future work speculated on, and the discussion widened slightly.
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CHAPTER 2

FOUNDATIONS: STATE ESTIMATION UNDER
PARTIALLY OBSERVABLE STOCHASTIC

DYNAMICS

“The market is still moving around in a $90-to-$100 range and I can’t see it
moving much past $100 given the present news.”

Crude Oil Rises After U.S. Supplies Decline More Than Expected,

San Francisco Chronicle, 13 July 2011

The problem that this thesis sets about addressing is a problem of estimation of object

state (pose and velocity) from a series of images. The problem of state estimation presup-

poses a model of known structure in which there are some hidden variables whose values

are to be found. This chapter introduces the basic structure of this model, which will be

refined in later chapters as new methods are introduced. The basic model introduced here

is largely the standard model in probabilistic robotics with some additional detail to allow

for transforming deterministic dynamics models into probabilistic ones in ways different

to those usually employed; by adding noise to the inputs of the model. The probabilistic

machinery for doing this is well-known and basic, but the resulting framework comes in

very useful as will be seen in the experimental Chapters 5, 6 and 7.

Since the basic premise of this thesis is that knowledge of the physical dynamics of ob-

jects should help with this state estimation problem, the model that is introduced should

incorporate dynamics in a useful way. Moreover, it should have a place for deterministic

simulation, since the knowledge of physical dynamics mentioned is encapsulated in state
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of the art real-time simulation technology.

Indeed, the model introduced here is apt not just for estimation, but also for stochastic

simulation, control and decision making, and other kinds of probabilistic inference. This

is a positive development, since estimation, simulation and control are but three kinds

of physical cognition and obtaining a model that can encompass them all and allow for

different kinds of inference is desirable for engineering reasons as well as for the potential

to lead to insights into the nature of physical cognition.

In this thesis, the conceptual model of the partially observable dynamic world is a

Hidden Markov Model (HMM) generalised to apply over continuous variables. To get an

intuition for what an HMM is, an unfamiliar reader should look at Figure 2.1; the diagram

represents the probabilistic dependences between variables; this can be interpreted as

encapsulating knowledge about the causal dependence of variables in the model; however,

the form in which they are stated, as joint or conditional probabilities, does not itself imply

causation. Slightly more rigorously, an HMM consists of a Markovian dynamics, meaning

that the state of the world is probabilistically independent of all states of the world at

previous time-steps given the most recent previous state, and a generative observation

model1, meaning that observations at a given time have their only direct probabilistic

dependence on the state of the world only at that time.

Although the this is a very general model, in the applications in this thesis, it is refined

so that object state expresses linear and angular pose and velocity. The nature of the

observations differ with the different computer vision approaches used.

There are some aspects of the model introduced here that are specific to this thesis.

These are:

• The model is refined so that the probabilistic dynamics model contains a determin-

istic component analogous to a deterministic simulator. This allows for the easy

integration of an off-the-shelf physics simulator into the estimation framework.

1A generative model is a model of how observations are produced from state, often probabilistic. The
main alternative is a discriminative model which would model the direct probabilistic dependence of state
on observations.
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• This deterministic component is converted into a probabilistic model by the intro-

duction of noise to the inputs as well as additive noise to the outputs. This allows

for the addition of a novel kind of noise in the particle filter framework of Chapter 6.

Converting a deterministic dynamics model to a probabilistic one for use in infer-

ence by placing noise over the parameters of the dynamics model is a contribution

of this thesis.

• Time elapsed is parametrised in the dynamics model. This has been done many

times before (e.g. by Ng, Pfeffer, and Dearden (2005)).

The rest of this chapter fleshes out the details of this model in terms of probability

distributions and then moves on to a general discussion of estimation within such a model.

The deterministic dynamics (simulator function) are introduced first and then aug-

mented with stochasticity, the more general form given, and then the observation model is

introduced. Finally, the Bayes filter derivation is given, which is essential to the estimation

approach used in this thesis.

2.1 State

The development of the model of system dynamics begins most naturally with the defi-

nition of system state. The state of a physical system at a given time ti
1 is denoted xti

2.

If ti = ti−1 then it is required that xti = xti−1
.

The state of a rigid object, for instance, might consist of its pose as well as the rate

of change of the pose. The state of multiple objects might consist of the pose and rate of

change of pose of all of the objects being estimated. For example, in full tracking in 3D

space might track translational T and rotational q displacement, and translational v and

1The time t is indexed by i since a discrete time-step is generally used and i is used to index over these
discrete time-steps, though the time between two consecutive time-steps can can vary (and a varying
time-step length is a characteristic of physics simulators since time-steps can coincide with events at
arbitrary times, such as collisions)

2Although the state can theoretically be any structured representation of a part of the world over
which a probability distribution can be placed, in practice it is usually a numeric vector
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rotational ω velocity:

x =


T
q
v
ω


A sequence of states xti · · ·xtf in this thesis is termed a trajectory. This is intuitive

in the case of a single object. When it comes to multiple objects or non-rigid objects, the

term trajectory is also used, which is slightly less intuitive, but reflects the simple concept

that the dynamical behaviour of any physical system can be viewed as a sequence of states.

For example, if two balls bouncing through a scene are modelled as 2D point particles,

then the instantaneous location and velocity of both balls together may be considered the

state, and the sequence of such states a trajectory.

xti−1
pdyn(x|x) xti pdyn(x|x) xti+1

pobs(z|x) pobs(z|x) pobs(z|x)

zti−1
zti zti+1

Figure 2.1: Schematic of a generalised HMM (Hidden Markov Model). Big circles repre-
sent conditional probability distributions and little circles represent random variables over
which a probability distribution can be put. Edges reflect dependence relations between
distributions; a sequence of edges from random variable A to random variable B means
that random variable B is independent of all the random variables with edges to distribu-
tion A, given that the distribution over A is known. The diagram shows the conditional
independence of a state xti−1

from earlier states such as xti−1
, given the immediately

preceding state xti . It also shows the conditional independence of the observations zti of
all other variables at time ti given the state xti at the same time point.
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θ

uti

xti−1
fdyn xti

Figure 2.2: The deterministic simulation function, fdyn(), transforming state xti−1
at time

ti−1 to state xti at time ti. Parameters: simulation parameters θ and input parameters
u. Time elapsed, ∆ti is not depicted.

2.2 Deterministic dynamics

The model described in this chapter is a dynamic one. Consequently, having defined state,

it becomes important to define how state changes over time. As mentioned previously, the

model of state and state evolution defined in this chapter is a probabilistic one. However,

first, a deterministic model of state evolution is developed, and then that deterministic

model is extended into a probabilistic one.

The deterministic model of state evolution is a function over state with its output a

state. i.e. a function mapping from the state of a physical system at one time to the state

at a future time. This is a discrete time dynamical system. This function is termed the

simulation function or the deterministic dynamics function.

In addition, the function is augmented with a time elapsed ∆ti
1; a time-independent

set of parameters θ (typically a vector); and control or nuisance parameters uti (also

typically a vector). The function is depicted visually in Figure 2.2 and written as:

xti+∆ti = fdyn(xti ,θ,uti ,∆ti)

The motivation behind ∆ti is to allow variable length time-steps or 0-length time-

1The time elapsed is here subscripted with an i since the simulation function must be applied to one
of the varying-length intervals between time-steps.
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steps. In general lim
∆ti→0 fdyn(xti ,θ,uti ,∆ti) = xti (as the time elapsed approaches zero,

the new state approaches the old). The vector-valued function fdyn() is not one to one

and it is not guaranteed to be onto1.

The parameter θ allows for the efficient specification of variables that do not change

through time in the system under question, like rigid object shape, mass, restitution and

friction coefficients2. The time-based input parameters uti are useful for inference in the

context of control since they can stand for control inputs, but in this thesis it is used as an

alternative way of turning the deterministic dynamics described here into a probabilistic

one. Rather than add noise to the output of fdyn() to turn it into a probabilistic dynamics,

a probability distribution can be placed over uti . An additional benefit of uti is that it can

stand for inputs into the system, such as forces on objects at each time-step 3. Relatedly,

it can be used to compensate for failures in the simulation function.

Clearly the simulation function is an abstraction of any conventional discrete-time

physical simulator, including the off-the-shelf real-time physics simulator used in this

thesis. Although analysis of the internals of this function would be a profitable line

of research, in the context of this thesis, the simulator is a black box, with inputs and

outputs as described above. The internals of the simulation function are described further

in Chapter 4.

As a simple example of this simulator in action, imagine that xt1 is the displace-

ment and velocity of a simulated bouncing ball 33ms before it hits a vertical wall, with

Tt1 = [1m1m] and vt1 =

−1ms−1

0ms−1


. If xt2 represents the the displacement and velocity of

1Each state at time-step ti can have more than one corresponding state at time-step ti−1 and not
every state at time-step ti has a corresponding state at time-step ti−1.

2It is a somewhat arbitrary decision as to what information belongs in θ and what belongs in the
structure of the function fdyn(); the difference being that fdyn() is a black-box in this formulation but θ
can be analysed. The less information that is represented in θ, the more information must be represented
in the function. On the other hand, a simple numeric θ is more amenable to analysis if the function
fdyn() remains black-box. The main motivation for the inclusion of θ is to provide the framework for a
search over the physical parameters of the simulation in order to better fit a sequence of data and as such
in this work it is generally a vector of numeric values and object arity and shape consequently encoded
in the function fdyn().

3Injecting theoretical noise into the system is one method of many for partially overcoming the closed
world assumption by encapsulating unknown external influences in the injected noise; an approach that
should be effective if the parameters and the distribution over them reflect the kind of influence that may
affect the system.
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the simulated ball 66ms later (i.e. ∆ti = t2 − t1 = 0.066s), then that new state can be

written in terms of fdyn as fdyn(xt1 ,θ,ut1 , 0.066) = xt2 and would be Tt1 = [ 1m
0.98m] and

vt1 = [1ms−1 − 0.65ms−1]. The global simulation parameter θ might encode the mass of

the ball, its coefficient of restitution, a gravity vector, the shape of the ball and so forth.

The input parameter ut1 in this case is absent but might be an estimated external force,

like the force of an unseen actor or unmodelled surface interactions.

2.3 Stochasticity

The task that this thesis has set out to solve is estimation of object motion. The idea is

that physical dynamics as embodied in a physical simulator and available as a function

fdyn() can be helpful in solving that task. Unfortunately, such a simulator is seldom

particularly accurate. Further, simulators have a trade-off with between accuracy and

specificity - a very accurate simulator is generally specific to a small range of situations.

With any estimation task, there is the problem that the model of the world dynamics

used often is not a good model in that it does not well reflect the behaviour of the world

(particularly in task-sensitive ways).

The most common way of dealing with model mismatch like this is to make the

simplifying assumption that the model is correct but that the world generates additional

random noise that creates the mismatch. For an example of such an approach, see

Figure 2.3. The advantage of the assumption of model correctness with random added

noise is that it is possible to continue to use a deterministic model as-is but still reason with

it, taking into account deviation from expected behaviour. Noise consists of perturbation

of a value from that which it would have taken were it realised deterministically. These

perturbations are drawn from a probability distribution1.

1For an introduction to probability distributions, see DeGroot’s Probability & Statistics (DeGroot,
1986). Rather than derive it here, a probability distribution is described intuitively as a the shape of the
probability of occurrence across all possible values of a random variable (where that variable is generally
continuous in nature). In Bayesian probability theory, the probability distribution is the first-order object
of analysis, as it is in this thesis. The assumption that a probability distribution can be picked to stand
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∆xti

xti−1
fdyn + xti

Figure 2.3: How a deterministic dynamics is typically made stochastic, by including
additive noise. The stochasticity is introduced by making the variable ∆xti here into a
random variable.

xti−1
pdyn(x|x) xti

Figure 2.4: The general probabilistic dynamics model.

Other ways of creating probabilistic motion models exist, and abstractly, such ap-

proaches can be viewed as a conditional probability distribution over the state of an

object conditional on the state at a previous time step pdyn(xti|xti−1
). This general model

is illustrated in Figure 2.4.

Where no noise is added at all, for a fixed xti−1
the domain of the conditional distri-

bution would contain only one point (it would be the Dirac delta) and would be for all

practical purposes equivalent to a deterministic dynamics.

In this thesis, there are three sources of noise considered (these can be seen in Fig-

ure 2.4):

• Noise ∆xti added to the output of the simulator fdyn
1.

in for unknown aspects of the world is a strong one and presupposes some knowledge of the mechanics of
the unknown part of the world. In the simplest case, picking a probability distribution over the likelihood
of heads and tails during a coin toss should require some knowledge of the mechanics behind coin tosses,
or some experience of them. The beauty of the use of probabilities is that even the barest knowledge is
often enough to to get started.

1This approach is very common in standard models, since additive noise is conducive to analysis -
for example, if a variable is described by a Gaussian, and the noise added to it is Gaussian, the random
variable that is the sum of the two is also a Gaussian - this is used by the Kalman filter.
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θ

uti ∆xti

xti−1
fdyn + xti

Figure 2.5: The model used in this thesis for obtaining stochasticity.

• Noise in the simulator parameters θ1.

• Noise in the nuisance input parameters uti
2.

The probabilistic dynamics model resulting from including all of these sources of noise

can be found in Figure 2.5.

2.4 Observations

The previous section described a set of probabilistic “dynamics models”, some built on

deterministic dynamics models.

Similarly in this thesis, the concept of an “observation model” is used. A generative

observation model is a model of how “observations” are formed from events and/or states

in the world. An observation is an event in a space of possible observations. So, for

instance, if a ball is bouncing in front of a camera, an observation made by that camera

might consist of a pixel of the colour of the ball in one place in a captured image. Clearly,

if this model is viewed as a mapping from the space of states to the space of possible

observations, it is not a one to one mapping (and so not invertible). Also important is

1Allowing background parameters to be a random variable is a common practice - for example, in
map-building for autonomous robots.

2Noise in input parameters to a dynamcis model is a contribution of this thesis, at least in the context
of estimation with dynamics models.
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that such observations are often called “partial” because they do not reveal the full state

of the world (in the case of object tracking or motion estimation, the world mostly consists

of the object being tracked) - they generally provide some information about it, however,

if interpreted well.

In this thesis, the phrase observation model is applies to probabilistic observation mod-

els, which define the probability of each observation given a particular state pobs(zti|xti).

If the observation is known but the state allowed to vary, this probability density is

called an observation likelihood. If the prior probability of any observation is known, the

probability of the state in terms of the observation may be derived from Baye’s theorem1.

It is important to note that often in the estimation task, the generative probabilistic

model is not well defined. This is the case for example when heuristic methods are

employed and a match score is used, this match score might be assumed to reflect an

underlying unnormalised probability.

In this thesis, there are three different observation models used, and each will be

discussed in their respective chapters. Not all are well defined. In probabilistic terms,

examples include:

• State as a 6D pose and velocity of a rigid object. Pose is considered to be fully

observed, perturbed by noise and with outlier noise added (Chapter 5).

• State as a 2D pose and velocity of one or more simple rigid objects. The object

induces a colour histogram close to its own colour histogram and close to the true

position of the object. Outliers are also described by the model (Chapter 5).

• State as a 6D pose of a rigid object. The object texture and geometry induces edges

which are measured in the image. Observed edges are modelled as being likely to

have a similar location, orientation and strength as actual edges, but are perturbed

by noise (Chapters 6 and 7).

1In practice in this thesis there is not much difference between the two approaches since the prior
probability of the observation is often superfluous in the final formulation of the estimation approaches
used here anyway.
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2.5 Partially observable stochastic processes from de-

terministic dynamics

In order to make more rigorous the probabilistic model above (the generalised HMM),

this section gives some more details of the probabilistic framework behind it.

To begin with, two core assumptions are made to justify such a model, but have not

so far been spelled out in this chapter. These conditional dependence assumptions are:

• Observation independence. The principle of the direct probabilistic dependence of

observation on current state. If the current state is known, then no more informa-

tion can be found about the current observation by looking at other past states or

observations.

• Temporal independence. The “Markov assumption” of the direct probabilistic de-

pendence of state on previous state: the assumption that all information about

previous states and observations is not informative about the current state if the

immediately preceding state is known.

These can be written more succinctly in terms of probability distributions:

p(zti|zt0:ti−1
,xt0:ti) = pobs(zti|xti) (2.1)

p(xti|zt0:i−1
,xt0:i−1

) = pdyn(xti|xti−1
) (2.2)

This relationship is required for the HMM diagram in Figure 2.1 to make sense. In

particular, the right hand side in the two equations above, the conditional probabilities,

are visible in the diagram. The notation xt0:i−1
refers to the full set of states up to time

ti−1, and zt0:i−1
the set of observations up to time ti−1. These assumptions are important

in the derivation of the motion estimation and recursive estimation (filtering) frameworks

used in later chapters.

Note again that the right hand side in Equation 2.2 above is in this thesis described in

more detail through the use of a deterministic dynamics at its core, so that the following
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distributions induce1 a conditional probability distribution pdyn(xti|xti−1
,θ,uti ,∆ti) over

xti :

xti = fdyn(xti−1
,θ,uti ,∆ti) + ∆xti (2.3)

x∆ ∼ p∆x

uti ∼ pu

θ ∼ pθ

(2.4)

This refined dynamics as inserted into the HMM can be seen in the diagram in Fig-

ure 2.6 and as a probability distribution, would be written with the extra parameters2:

pdyn(xti|xti−1
,θ,uti ,∆ti)

This refined dynamics conditional probability distribution is additionally used in parts

of this thesis as a part of a multi-distribution combination, such as a mixture, so that, in

the case of a mixture:

pM(xti|xti−1
) =


k

πkpk(xti|xti−1
)

Where pk is a probability distribution in the form of that given in Equation 2.3 above,

and πk is a component weight. Combinations of probability distributions are not restricted

1∆xti and uti are governed by a constant probability distribution making this a stationary process.
2Note that in this thesis in diagrams it is sometimes convenient for brevity to drop the θ, uti and ∆ti

parameters on which the dynamics distribution pdyn is conditioned.
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to mixtures only, however. The mixture distribution is not illustrated here graphically 12.

Finally, the problem of estimation in the model outlined here is introduced.

2.6 Estimation with partially observable stochastic

dynamics

The above-described general probabilistic model of a partially observable stochastic pro-

cess is applicable to a variety of computational problems, of which stochastic simulation,

control and estimation are three. In this thesis the problem of estimation in such a model

is tackled. In particular, motion estimation, the task of estimating the state of an object

across time given that all the observations are collected in advance, and recursive esti-

mation, the task of maintaining an estimate of the current state of an object iteratively

as new observations arrive. Approaches to both of these estimation problems gener-

ally exploit the Markov and observational independence assumptions described above in

Equations 2.2 and 2.1.

The estimation problem can be approached according to several different probabilistic

criteria, depending on the application. In the first approach, a complete probability

distribution over the variables to be estimated might be desired. However, the issue of

representation of the distribution often arises, and in some applications a single best-value

is desired. Alternatively, in a second approach, an expectation of the variables might be

desired, where the expectation is the average of the variable’s possible values, weighted

1Although this model provides several means by which theoretical noise can be introduced into a
deterministic system, the assumption still remains that the real structure of the noise is not known, since
it originates in physical aspects of the world unknown to the human that designs the distributions of the
noise. More generally, it is impossible to put a prior over anything in the system in a disciplined way
without knowing everything about every mechanism in the system. It may be possible to make suggestive
arguments about what shape the noise should have (for instance using the Central Limit Theorem to
suggest that they should be Gaussian, and through appeals to postulated mechanisms). However, the
noise model represents that which is not known but makes the assumption that we know the structure of
that which we don’t know; an assumption that is, in general incorrect, strictly speaking - but nevertheless
useful.

2To “put a prior” over something is short-hand for completely specifying a “prior” probability distri-
bution over that the values that thing might take, before any further evidence is incorporated - essentially
it contains what is known so far and can be expressed as a probability distribution.
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θ

uti ∆xti uti+1
∆xti+1

xti−1
fdyn + xti fdyn + xti+1

pobs(z|x) pobs(z|x) pobs(z|x)

zti−1
zti zti+1

Figure 2.6: Generalised HMM with the dynamics being a combination of a deterministic
simulation function fdyn(); stochastic state dispersion ∆x; simulation parameters θ; and
input parameters u.
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by its probability distribution. Since an expectation generally is only useful for unimodal

distributions, more commonly a maximum a posteriori (MAP) or maximum likelihood

(ML) criterion is applied, and makes up a third approach. The MAP approach involves

finding the values of the variables to be estimated that have the maximum probability

according to evidence seen so far and any priors placed on unobserved variables in the

system. The ML approach involves finding the values of the variables to be estimated

that result in the highest probability of the observed variables. MAP and ML are closely

related and one can be formulated in terms of the other1.

In Chapter 5, a MAP or ML approach is detailed to the motion estimation problem,

and in Chapters 6 and 7 the recursive estimation problem is tackled, which generally

requires some estimate of the full probability distribution to be maintained, since this

estimate is re-used in future stages of the estimation. In the remainder of this chapter, it

will be shown how the Markov assumption and the assumption of observational indepen-

dence assumption can be used to simplify the problem of estimation. This is standard

and introduced here for the purpose of setting the thesis work in an easily understood

probabilistic framework.

2.6.1 MAP trajectory estimation

In the case of MAP trajectory estimation, the quantity of interest is generally:

argmax
xt0:i

p(xt0:i|zt0:i)

i.e. the maximum a posteriori estimate of the full trajectory of states given all obser-

vations made to date. Or, taking account of the extra simulation parameters introduced

1It should be noted that MAP and expectation are only stand-in measures for a quality of an estimate
and generally speaking the relevant criteria is the utility of an estimate in supporting decision making
(planning, control, communication and so forth).

25



in this chapter:

argmax
xt0:i

p(xt0:i|zt0:i ,θ,ut0:i)

Using the two (observation and temporal independence) assumptions given above, the

quantity p(xt0:i|zt0:i) can be refined to be a product of the conditionals in the generalised

HMM - i.e.:

p(xt0:i|zt0:i) =
p(zti|xt0:i , zt0:i−1

)p(xti|xt0:i−1
, zt0:i−1

)p(xt0:i−1
|zt0:i−1

)

p(zt0:i)

=
pobs(zti|xti)pdyn(xti|xti−1

)p(xt0:i−1
|zt0:i−1

)

p(zt0:i)

=
pobs(zt0 |xt0)p0(xt0)

i
j=1[pobs(ztj |xtj)pdyn(xtj |xtj−1

)]

p(zt0:i)
(2.5)

=
p0(xt0)

i
j=0[pobs(ztj |xtj)]

i
j=1[pdyn(xtj |xtj−1

)]

p(zt0:i)

Note that rather than include the base case (time t0) as a special case, a small trick

could be played by not including the time t0 base case. However, later approaches to

MAP estimation rely rather a lot on boundary conditions.

In this form, the MAP problem is relatively amenable. If all the conditional distribu-

tions in the right hand side are defined, and a set of observations acquired, then for any

selected trajectory, xt0:i the probability of that trajectory can be calculated from Equa-

tion 2.5. Often, the log of the function can be taken, yielding sums where before were

multiplications, and simplifying some distributions (in particular, Gaussians). Note that

in this formulation, a trajectory is scored on the basis of its match to the observations

and its local conformance to the dynamics model. The formulation provides a direct way

of deciding the probability score of a hypothesised trajectory - but it does not provide

a simple way to find the hypothesis in the first place, which is from this perspective an

algorithmic question.

However, depending on the shape of the probability distributions, it may be possible
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to calculate the MAP or the ML value of xt0:i directly, without search. This is often the

case in the motion estimation literature - when Gaussians are used, a procedure much

like weighted averaging can be applied - this is least-squares estimation (DeGroot, 1986).

In this thesis, even though noise is usually modelled as Gaussian, the highly non-linear

and bifurcating nature of the dynamics render such approaches difficult to apply and

search-based methods and sampling methods are generally used.

Note that if the control parameter uti and background parameters θ are included

in the formulation, then the distribution over which the trajectory is to be optimised is

written:

p(xt0:i|zt0:i ,θ,ut0:i) =
p0(xt0)

i
j=0[pobs(ztj |xtj)]

i
j=1[pdyn(xtj |xtj−1

,θ,uti ,∆ti)]

p(zt0:i)
(2.6)

2.6.2 Recursive estimation

In the case of recursive estimation, the distribution that the estimator is interested in

maintaining is:

p(xti|zt0:i) (2.7)

i.e. the current state given all observations made to date.

Or, if the extra simulation parameters are added:

p(xti|zt0:i ,θ,ut0:i) (2.8)

Rather than try to calculate this in terms of all the observations made so far, the

Markov assumption allows for all previous observations to be incorporated in the estimate
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of previous state, p(xti−1
|zt0:i−1

), so that:

p(xti|zt0:i) =
pobs(zti|xti)

p(zti)
p(xti|zt0:i−1

)

=
pobs(zti|xti)

p(zti)


xti−1

pdyn(xti|xti−1
)p(xti−1

|zt0:i−1
)dxti−1

(2.9)

This reduces the problem to one of taking the previous estimate p(xti−1
|zt0:i−1

), incor-

porating the dynamics model pdyn(xti|xti−1
), observation zti and the observation model

pobs(zti|xti) and obtaining an updated distribution p(xti|zt0:i−1
).

This idealisation assumes of course that p(xti−1
|zt0:i−1

) is maintained perfectly, and

that all probability distributions can be combined perfectly, assumptions that are only

approached if easily analysed models can be found or as the available computational

facilities increase.

An example of an easily analysed model is the Kalman filter family of recursive esti-

mators. Here, representing the conditional distributions as Gaussians allows for a quick

and accurate update. However, the Kalman filter applies directly only to systems with

linear dynamics and Gaussian noise, conditions not fulfilled in this thesis. Extensions

exist (see Chapter 3 Section 3.6.2) but the approach taken in this thesis is a Monte Carlo

approach, where the distribution is approximated by samples - such a recursive estimator

is called a particle filter.

Again, if θ and u and ∆ti are included in the recursive formulation, the following

recursive distribution is obtained:

p(xti|xti−1
, zt0:i ,θ,ut0:i ,∆ti) =

pobs(zti|xti)

p(zti)


xti−1

pdyn(xti|xti−1
,θ,uti ,∆ti)p(xti−1

|zt0:i−1
,θ,ut0:i−1

)dxti−1
(2.10)

(2.11)
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2.7 Final chapter notes

Estimation can and should exploit the particular structure of the problem beyond the

general probabilistic framework given here. The fact that any two arbitrary objects are

usually not interacting can be exploited, for instance, by solving for each object individ-

ually most of the time, reducing the dimensionality of the problem. Such considerations

are in this thesis dealt with in the context of particular methods.

In the next chapter, the background literature on visual motion estimation as well

as on physical simulation is examined, as well as work related to the approach described

in this thesis. Then a series of chapters detail approaches to motion estimation and

recursive estimation developed for particular scenarios, based on the ideas introduced in

this chapter, in particular the incorporation of physical simulation into the estimation

problem.
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CHAPTER 3

BACKGROUND: VISUAL ESTIMATION IN
STOCHASTIC SYSTEMS

“My task which I am trying to achieve is, by the power of the written word,
to make you hear, to make you feel — it is, before all, to make you see.”

The Nigger of the ‘Narcissus’

Joseph Conrad

In this thesis, the core problem addressed is that of visual estimation1 - in other words,

attempting to determine some relevant properties of the world from visual information.

This thesis takes the particular step of investigating how an advance knowledge of object

dynamics (in the form of a physical simulator) can be used to improve the estimation of

object state over time.

As discussed in the previous chapter, in order to account for the inaccuracy of existing

models of visual data, and for a changing world, stochastic models are used as the basis of

visual estimation. The present chapter discusses how visual estimation generally is done

within such a framework.

More rigorously, the problem that this chapter focuses on is that of estimating object

state, xti over time from observations zti received over time in the form of visual informa-

tion. A variety of methods will be discussed for doing this, many of them applying only

1Estimation involves finding parameters of a system from observations of that system, possibly over
time. This contrasts with regression that aims to find a relationship between an independent and a
dependent variable, though regression is itself an estimation problem as it is the parameters of this
relationship that are estimated.
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to estimation of state at a single point in time rather than over multiple time-steps (i.e.

generally from images taken at one point in time). Note that in the visual estimation

literature the main focus of study is estimation of objects as tackled in this thesis and

estimation of a scene1.

The main distinction maintained in this chapter is between visual motion estimation

and visual tracking or visual recursive estimation2. The reason that this distinction is

maintained here is because the empirical work in this thesis is on two problems - the

visual motion estimation problem and the visual tracking problem. The distinction is

between taking a sequence of images and batch processing them to produce an output

trajectory and taking images in real-time and producing a current estimate of object state

(and uncertainty in object state).

What constitutes an object state differs from application to application. At the most

extreme, it is possible to consider the state of the whole world as the thing to be estimated

(if in a closed-world). But then, since only a small number of things are typically of

interest for a particular problem, or can be estimated from information available to the

visual apparatus, in practice the state to be estimated is well delineated around one or a

small number of objects3. The state to be tracked in model-based tracking is generally the

pose of the known tracked object (or objects), since this information can be useful in other

model-based tasks, such as manipulation or scene understanding4. Dynamic properties of

objects such as their velocities are sometimes of interest too, when acting5.

This chapter first deals with the problem of acquiring features and using them to

1The tasks of rigid object estimation and scene estimation are, for the most part the same problem. A
scene is just an object that usually fills the camera’s viewing area, though in the case of multiple objects
the problem is a little more complex.

2The distinction between visual motion estimation and visual tracking matches the distinction between
trajectory estimation and recursive estimation introduced in Chapter 2.

3It may sometimes only be necessary to track the pixel location of an object, for instance, if developing
a human computer interface, or to track a pixel location and a rotation in the image plane. It may be
necessary only to segment the object in the image plane if feeding into an object recogniser. It may be
necessary to get the image location as well as depth if doing simple servoing - for face tracking, rotation
away from the image plane may be important.

4For non-rigid objects, pose is insufficient to describe their state and the estimation problem typically
harder; for unknown rigid objects the shape of the object is important to estimate also.

5Though in most applications dynamic quantities like velocity are only estimated in order to better
estimate pose-related object state.
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disambiguate the contents of a static image, followed by a brief discussion of algorithmic

methods for making use of those features, and finally a generalisation of this approach to

estimation over time.

3.1 The visual apparatus

Exposition of computer vision problems usually begins with a description of the theoretical

visual apparatus; a model of how light interacts with objects in the world and reaches the

lens and light sensitive surface, ultimately producing pixels. If the reader wishes some

background on this, a gentle introduction is given in Appendix A. To summarise this, a

model is provided of the projection of light from world-points to pixel coordinates, in terms

of a rigid transform from object-centred coordinates to world-centred coordinates, from

world-centred coordinates to camera-centred coordinates, projected to the pixel-space and

lastly corrected for any non-linear lens distortions due to that linear projection.

The problem of reconstructing a configuration of the world, even given a model of how

a world configuration produces an image, is the problem addressed in this thesis. The

naive approach from a model-based perspective is of course generate and test (instantiate a

possible configuration and test it against retrieved images); indeed the approaches detailed

in this thesis follow some variations on the generate and test approach (local search and

Monte Carlo). The most common way of reducing the complexity of the problem is by first

extracting “features” from the images received. These features are generally extractable

from the image without the use of any top-down knowledge, and should be informative

about the world state. These features can then be used to solve a simpler or more tractable

problem and are the subject of the next section.

In this thesis, colour histograms and texture and geometric edge features are used in

different chapters, though the techniques described in this thesis are applicable across

a wide range of features. The following section therefore reviews colour histograms and

edges.
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3.2 Visual features

Visual features are data structures embodying information extracted from images, used

to guide processing. The extraction of a feature generally involves some image analysis,

after which the extracted feature can be used in further processing1. This section describes

those visual features employed in this thesis. For a discussion of other kinds of features

available, see Appendix B.

3.2.1 Edges

The idea of edges comes from the insight that sharp discontinuities in light in an image,

arrayed in a straight line, often signifies a discontinuity in the real-world. Edges in

computer vision are just these - long discontinuities in the image - and as such can signify

many other things in the world as well - shadows and textures being two such things.

There are numerous efficient (and parallelisable) algorithms for detecting and using edges

(Canny, 1987; Jain, Kasturi, & Schunck, 1995; Sonka, Hlavac, & Boyle, 1998; Trucco &

Verri, 1998).

The first task in finding such edges is calculating the rate of change in brightness

or colour across the image in which edges are to be detected (i.e. the image intensity

gradient). More generally, this means finding the match in each part of the image to an

edge-like quality 2. This generally involves sampling the discrete neighbourhood around

each potential edge point and approximating the degree of match (or the rate of change).

After this, some post-processing is often done; for instance, thresholding away low edge

response pixels, non-maxima suppression so as not to find extra edges from one real edge,

or hysteresis to link edge pixels into plausible sequences. Matching of edges between

two images is often done by calculating the degree of overlap in edge pixels, sometimes

1A feature is not equivalent to a model of the object being tracked; an object is something in the
world being estimated while a feature is a property of an image. However, in some applications simply
describing an object in terms of its associated feature or features is sufficient - for example, contour
models of objects.

2The intensity profile along an edge can differ depending on the kind of edge (for example, a step
change, a brightness peak or ridge, etc) (Canny, 1987). The classic edge is the step change.
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accounting for the direction and strength of the edge. Edges are used in Chapters 6 and 7

to track object texture (or, in the absence of texture, geometric features).

Calculating the intensity gradient is generally done by applying a discrete filter to

the image, so that the pixels in the neighbourhood of each point are summarised into an

estimate of the gradient. A large number of such filters exist, with differing theoretical

and practical properties. One of the more popular is the first order derivative of a 2D

Gaussian. Since this derivative exists in two directions, two such filters might be applied,

producing edge responses in two directions (usually vertical and horizontal), which can

then be combined into a magnitude that represents the edge-ness of a point (Canny, 1987).

The camera model introduced in Appendix A can be used to transform lines in space as

well as points (Hartley & Zisserman, 2000) if edges are processed into lines, though often

they are maintained as a pixel map with each pixel representing response or responses of

an edge detector at that pixel1.

One way of further processing edges to provide more information about an object is

by attempting to match them into contours, which are parametric descriptions of the

flexible visible outline of an object or of parts of an object (Baumberg & Hogg, 1994a;

Blake, Curwen, & Zisserman, 1993; Heap & Hogg, 1998; Isard & Blake, 1998a, 1998b;

Kakadiaris, Metaxas, & Bajcsy, 1994; MacCormick & Blake, 2000), or with texture edges

or edges induced by the known shape of a rigid 3D object (Drummond & Cipolla, 2002;

Harris & Stennett, 1990), a task made easier if an approximate location of the contour

in the image is known (for example, if the contour is being tracked over time). This

locality requirement that has only with recent computational gains been relaxed with

multi-hypothesis methods like the particle filter (Klein & D. W. Murray, 2006; Pupilli &

Calway, 2006).

The algorithmic expense of tracking of arbitrary 3D models with edges is hidden edge

removal and the mapping of edges to model contours and textures. Recently, this task has

been made more efficient by recruiting parallel processing on low-cost graphics hardware

1In Chapters 6 and 7, for example, the framework used there is one of texture projection, and at one
part of the algorithm the texture that is projected is just a pixel edge map.
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(Klein & D. W. Murray, 2006; Mörwald, Zillich, & Vincze, 2009).

As compared to feature points1, edges have the disadvantage that they are not as

distinct locally in an image, but they are likely to exist even in plain objects and are quite

invariant to a lot of changing conditions (such as illumination) and are more resistant to

blur and image noise. Moreover, edges’ lack of distinction locally is partially discounted

by the distinctiveness of their configurations globally. Of course, it is possible to combine

both edge and point features to get a more robust tracker (Vacchetti, Lepetit, & Fua,

2004a; Vacchetti, Lepetit, & Fua, 2004b).

3.2.2 Colour

Most visual features are initially defined on grey-scale video and can be adapted to ex-

ploit colour with small extensions. However, there are a class of methods designed to work

with colour as the primary source of information. While colour is not by itself strongly

indicative of the fine spatial and geometric properties of an object, it is often good at

discriminating between classes of objects (Swain & Ballard, 1990). Moreover, when used

in combination with other properties, it can be very discriminatory - for example, Wren,

Azarbayejani, Darrell, and Pentland (1997) use contours and colour distributions to track

human figures, with colour dominating in dynamic situations, but contours more discrim-

inative in more stable situations2.

Use of colour tends to involve profiling the colour distribution of a target region (since

a typical object has a discriminative mixture of colours) as well as the background (Wren,

Azarbayejani, et al., 1997). Colour-based methods should not be sensitive to illumination,

and as such the representation should be able to capture properties of colour that are not

dependent on illumination.

The most popular way of capturing a colour distribution is by putting it into a his-

togram, where each bin in the histogram is delineated by a particular range of intensities

1Feature points are described in more detail in Appendix B.
2Region segmentation algorithms (discussed in Appendix B which goes into a wider variety of feature

types) can also use colour to produce region features.
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of colour from different channels and the value in the bin corresponds to the relative

observed number of pixels seen in that range. This method is used in Chapter 5.

In order to overcome the illumination invariance issue, the colour space used is often

one that has relatively invariant channels, such as the HSV colour space. The colour

histogram method is relatively invariant to object view as the histogram can embody a

summary of the colour distribution over a set of views. The more representative the views,

and the more the histogram partition is able to conform to colour invariants, the better

the representation. As far as this last issue is concerned, it has been noted that a 2D

colour space is more difficult to get right, and depends much more on the quantisation of

the space (Ennesser & Medioni, 1995). Another possibility for dealing with illumination

invariance during object tracking is to adapt the colour histogram over time (Nummiaro,

Koller-Meier, & Van Gool, 2002).

Once the colour distribution is captured for an object, it can be matched to regions

in a target image. Regions in which colour distributions are measured might be circles or

elipses or in the shape of the target object if known; they might also be based on kernels

if a gradual, or fuzzy region is desired (Comaniciu, Ramesh, & Meer, 2003; Naeem, Mills,

& Pridmore, 2006).

If the scale of the region is not known in advance1 then searching over all possible

scales can be a computationally forbidding task; in which case growing methods could be

used, that look for local evidence of a possible match and grow the match region oppor-

tunistically (Ennesser & Medioni, 1995). In tracking methods, where images are received

one after another, the task of scale-finding is made easier in that the scale needs only to

be adapted over time, for instance by looking the area of match within the current region,

or a proxy for it (Bradski, 1998). Ennesser and Medioni (1995) also propose including lo-

cal spatial information to make the histogram method more discriminating, and Bradski

(1998) uses the spatial distribution of colour to determine the rotation of a target object in

1For the case where the opportunity exists to look for an object at all scales, the reader may find it
interesting to consider the relationship between region size and the likelihood of a match with a matching
or arbitrary colour histogram, dependent on the quantisation and distribution of background colours.
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a scene; Perez, Hue, Vermaak, and Gangnet (2002) use multiple linked object parts each

with different colour distributions. Indeed, delineating the boundaries of colour objects

is one area where multiple features can be very useful, for example by combining colour

cues with edges (Stenger, Thayananthan, Torr, & Cipolla, 2006).

For each possible region to be matched it is possible to calculate a match score (or

a match distance1) based on the overlap between the histogram of a target object and

the histogram of the target region2). This matching method can be used to find a known

object in an image or to identify an object from a set of objects; when these two tasks

are tackled together the complexity does increase (Swain & Ballard, 1990).

There are a number of ways of calculating the match score between histograms. His-

togram intersection (Swain & Ballard, 1990) is the most basic method, where the source

and target histograms are normalised and the differences in colour intensity in each bin

summed over the whole histogram. This technique is fast and simple: dHI(H
tar, Hreg) =

j H
tar(j)−Hreg(j), where H tar and Hreg are the target and region histograms respec-

tively and j is the bucket number. The target object histogram could be used directly for

indexing colours in the image, but more often the values in the target object histogram

are first divided by the values in the histogram of some background set, such as the whole

image (e.g. Hnor(j) = Htar(j)
Himg(j)

) to make the histogram more discriminating of the object

(Comaniciu et al., 2003; Swain & Ballard, 1990)3.

Sometimes, rather than convolving a target with a whole image to get a histogram

match at each location, what is desired is to find a target close to a position where it is

known to be (as is the case with object tracking where each new image typically comes

1From a probabilistic perspective, a match score can be considered a proxy for an unnormalised
likelihood.

2A full overlap between histograms would constitute a maximum match score and a zero match
distance.

3In order to make the matching process a lot faster, a multi-channel image can be replaced by an
image where each pixel contains an index into a colour histogram rather than containing the original
intensity values. This can then be used for building another new image where the value at each pixel is
the (possibly normalised) number of entries in the corresponding target histogram bin (Swain & Ballard,
1990). From that new image, any arbitrary region template can be cross correlated with the image to
smooth it and produce a match score at each pixel. The pixel with the best match score is considered
most likely to be the location of the object.
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with some knowledge about the object in the previous time step). In that case, it will be

possible to use match scores that take longer to calculate. A very widely used match score

in tracking is the Bhattacharyya Coefficient (CBhatt(H
tar, Hreg) =


j


H tar(j) ·Hreg(j))

and its counterpart, the Bhattacharyya Distance (dBhatt = −log(CBhatt)) (Comaniciu et

al., 2003; Mihaylova, Brasnett, Canagarajah, & Bull, 2007).

Finally, rather than using a histogram to model colour distributions, much success

has being observed using parametric distributions - Gaussians (Wren, Azarbayejani, et

al., 1997) and mixtures of Gaussians (Magee, 2001).

3.3 General vision solution methods

Having acquired image features, the problem still remains of using them to reconstruct

the location and pose of an object1, particularly as a part of the motion estimation and

object tracking problems. As well as techniques designed for these particular problems,

there is a large set of techniques designed for general problems of photogrammetry and

computer vision, such as reconstruction of a scene from multiple viewpoints, that are

directly applicable to the problems.

This chapter will deal with these general techniques at a broad level, though empha-

sising the MAP problem and related solutions, and will discuss specific work on long

sequence motion estimation with simple dynamics models. Finally the work on visual

tracking will be addressed. First, the problem of camera calibration is discussed briefly,

then photogrammetry introduced.

3.3.1 Calibration

Each camera is different, and each situation that it is used in is different. As discussed

in Appendix A regarding the camera apparatus, there are numerous parameters govern-

1The problems of recognition and segmentation are not concerns of this thesis. This thesis focuses on
two kinds of problem: motion estimation and tracking.
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ing the working of a model camera. These parameters might be ignored, they might be

estimated at the same time as other parameters (see bundle adjustment and direct linear

transform, below), or they can be estimated in advance. The last option is calibration,

and is most useful if the parameters are unlikely to change significantly during operation,

or if these parameters can be updated asynchronously. By estimating these parameters in

advance (or in parallel), the estimation problem can be significantly simplified, and com-

putational complexity reduced. Good calibration is required for model-based techniques

that require an accurate metric and do not include estimation of calibration parameters.

The determination of the pose of a fixed camera is sometimes called the calibration of

“external parameters” and the determination of focal length, aspect, distortion parame-

ters and so forth called the calibration of “internal parameters”1 (Hartley & Zisserman,

2000; Karara, 1989). In the work discussed in this thesis, fixed cameras are used, so any

calibration done is both internal and external.

In Chapter 5, calibration is entirely manual, and in Chapters 6 and 7, calibration of

parameters is done according to the widely employed method of Open Source Computer

Vision Library: Reference Manual (2001), Zhang (2000), Zhang (1998). This method uses

images of a plane from multiple views where points on the plane are of known coordi-

nates in the plane frame; the mapping between such views, without taking into account

distortion parameters, is a planar homography. From the homography, camera intrinsic

parameters can be calculated algebraically. In order to include distortion parameters and

to refine the solution to minimise geometric error, a refinement stage is subsequently car-

ried out using Levenberg Marquadt minimisation. This two-step procedure is common in

computer vision and calibration in particular (Karara, 1989; Tsai, 1987). To calculate the

extrinsic parameters, only one view of the calibration plane is provided - given a calibrated

camera, a small number of known points imaged is sufficient to recover pose.

1Internal and external parameters should not be confused with “interior orientation” and “exterior
orientation” which deal with the registration of scene objects to a camera centred coordinate system or
a world centred coordinate system.
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3.3.2 Reconstruction

Reconstruction is the process of turning 2D measurements (such as of images and pro-

jections onto plates) into 3D objects. The usual set of techniques involve finding points

(or sometimes lines) in multiple 2D images, and from the locations of those features,

and constraining equations derived from the model the projection of light1, solutions are

found for camera parameters as well as the 3D location of points (or one or the other).

Although closed-forms exist for many of the sub-problems2, often iterative methods are

required to solve such problems, either in order to incorporate a geometric notion of er-

ror or to deal with non-linearities in the more sophisticated formulations. Such iterative

methods are known as adjustments3 in photogrammetry4 for the purposes of efficiency

when solving these non-linear systems with large number of parameters, such adjustments

typically make use of the sparseness and block structure of matrices describing the lin-

earised systems5 (Hartley & Zisserman, 2000; Karara, 1989; Triggs, McLauchlan, Hartley,

& Fitzgibbon, 2000).

The techniques of traditional reconstruction are relatively susceptible to noisy data

as they were developed originally for manual labelled 2D data, and often assume all or

most points have reasonable information about their 2D locations and precise details of

the camera are known. However, the advent of computer vision problems has brought

with it the necessity to use more robust techniques, such as robust estimators6, and

1The basic example of such a constraining equation is the co-linearity equation, which expresses the
fact that the projection centre, image point, and originating object point all lie on the same ray; for
multiple images of the same point, for example, the resulting system of equations can be solved.

2Perhaps the most well-known direct calculation is the original Direct Linear Transform (DLT), where
the projection equations are solved for either the entries in the projection matrix (finding the external
parameters) or the 3D points of image features - but newer versions of the DLT exist that involve
iteratively solving non-linear equations, for finding e.g. radial distortion (Tsai, 1987).

3When adjustment of camera parameters and point locations are done simultaneously, this is called
bundle adjustment.

4Photogrammetry is the science, by decades preceding the relatively young discipline of computer
vision. Photogrammetry has its own terminology though shares a lot of methods with computer vision.
Photogrammetry is often divided into topographic and non-topographic forms, the former mostly related
to remote sensing and the latter devoted to close-range methods - the latter of course most closely related
to modern 3D computer vision.

5 Iterative methods are used in this thesis for solving the motion estimation problem in Chapter 5,
though they there employ a simplified model of image formation.

6RANSAC (RANdomised SAmple Consensus) is an example of a widely used robust estimation tech-
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probabilistically motivated techniques.

If point features are considered, if the 3D location of the feature points (“control

points”) with respect to an object are known, then four points in general position in one

image are sufficient to recover the pose of the object with respect to the camera (Fischler

& Bolles, 1981; Hartley & Zisserman, 2000; Karara, 1989). Three points is almost always

sufficient, and the task of finding pose from 3 points is called the P3P (pose from 3 points)

problem: more generally, this is called the PNP problem. If the 3D position of points is

not known in advance, then additional constraints, such as known vanishing points, may

be exploited, but with only 2D point matches, one image is not sufficient to obtain their

3D locations - since feature points rarely are complemented with distance information,

one image is generally enough only to describe rays from the camera centre along which

the points must be. The problem of obtaining both the pose of a scene as well as the

location of points or surfaces in it is called structure from motion and is discussed in

Appendix C.

There are generalised tools for solving such problems as are posed in this section, and

these are discussed next, because such approaches are also valid in the case of motion

estimation in long sequences.

3.3.3 Least squares formulation

In this section, the estimation problem is formulated from the preliminaries given in

Chapter 2. This formulation is common to many basic methods in 3D computer vision,

as well as motion estimation, and is adapted in this thesis in Chapter 5 for use with

motion estimation with a physics model. This analysis applies to the structure from

motion problem as well as the motion estimation problem and many other estimation

problems. Indeed, its application to estimation from one image will be described in this

section1.

nique in computer vision.
1The least-squares framework is feature-agnostic given that it measures a distance in observation

space but observation space can consist of points, edges, templates, etc., though it does assume an
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Recall the MAP formulation for trajectory reconstruction given in Section 2.6.1, ig-

noring the extra nuisance parameters for now:

p(xt0:i|zt0:i) =
p0(xt0)

i
j=0[pobs(ztj |xtj)]

i
j=1[pdyn(xtj |xtj−1

)]

p(zt0:i)
(3.1)

Estimating the whole sequence will be discussed in section 3.5. If the task is to

estimate the state at a single time-point, then the probability of observations made at a

particular time-point can be written in terms of a set of (independent) observations at

that time-point1.

p(xtj |ztj) = p(ztj |xtj)p(ztj |xtj) =
p(xtj)

p(ztj)

Kj
k=0

p(zktj |xtj) (3.2)

If it is assumed that the priors p(xtj) and p(ztj) are constant, in log form this gets:

log

p(xtj |ztj)


∼ log


p(ztj |xtj)


=

K
k=0

log

p(zktj |xtj)


(3.3)

If every p(zktj |xtj) is a normal distribution and all noise independent and identically

distributed, and letting fk
obs(x) be a deterministic function picking out the mean of that

normal distribution for a given x, this log probability can be written as a sum of squares:

log[p(ztj |xtj)] = Clike

K
k=0

(zktj − fk
obs(xtj ,θ))

2 (3.4)

Here, Clike is a constant. The state xtj and calibration parameters θ together combine

to produce observations zktj which are then perturbed by Gaussian (normal) noise2.

If the assumption of identical distribution is relaxed then each term in Equation 3.4

underlying space on which a Gaussian distribution makes sense - unit quaternions, for example, do not
admit Gaussians in a natural way since quaternion space wraps around.

1Usually observations at a time-point are assumed to be generated by a rigid body transform from
the object pose to camera view, but the feature type determines how the transform is implemented, and
almost always adds extra details to the transformation model - for example, in modelling the projection
of texture edges an important consideration is how the viewpoint dilates or thins the edges.

2Equation 3.4 uses subtraction, which not all spaces on which z lives can admit, in which case a
general distance dz might sometimes be definable between observations.
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is weighted according to its relative variance: wk(z
k
tj
− fk

obs(xtj ,θ))
2. Further, if the

assumption of independent noise is relaxed, then more terms are introduced with mixed

terms: wk(z
k
tj
− fk

obs(xtj ,θ))(z
l
tj
− f l

obs(xtj ,θ)) where k is not always the same as l1. This

is called generalised linear least squares. Since this sum of terms is just a sum of 2nd

order terms, it is possible to write:

log[p(ztj |xtj)] = Clike


ztj − fobs(xtj ,θ)

T
Sobs


ztj − fobs(xtj ,θ)


(3.5)

Here, Sobs is a matrix of weights. Where the problem is only weighted least squares

rather than generalised least squares the matrix Sobs is diagonal. Indeed, since this deriva-

tion is based on a Gaussian assumption; Sobs is the inverse of a covariance matrix.

If the dynamic constraints are ignored momentarily2, then the log value in function

3.4 or 3.5 represents the sole criterion for the goodness of a selection for parameters in

terms of an observed image. A minimum in the log of the probability is a maximum

in the probability. The problem to be solved then would be an optimisation problem in

the parameters of the function fk
obs; when considered as a function of these parameters

it would be called an “objective function”. Over multiple frames, the objective function

would be the value of this function summed over all frames.

As a typical example of this approach, each zktj might be the image location of a known

object point. The function fk
obs

3. would then be a projection via camera pose xtj
4. If

1This is all a simple consequence of taking the log of the normal distribution, where the quadratic
matrix term to which e is exponentiated is pulled out.

2When dynamics constraints are not being ignored, the most common constraint is that states between
time-points should be rigid body transforms.

3In Chapter 5, the function fkobs is the projection of the location of a ball in a plane parallel to the
image plane, to a point in the image plane. Confidence information is also obtained for each match,
weighting the components of the observation likelihood mixture in Equation 3.3 and 3.4 according to
the strength of histogram match. Chapter 5 further extends this model so that the dynamics consider
realistic physics by incorporating a simulator, either by introducing the physics as a constraint on the
parameters in the above optimisation problem or by adding a probabilistic dynamics that creates new
terms in the above formula. In Chapters 6 and 7, the problem is one of object tracking, so the approach
described in Section 2.6.2 where rather than estimating the whole sequence of xtj , only the latest one is
estimated, is more applicable. This approach will be discussed late in this chapter in Section 3.6.

4If the object point location is not known, fkobs might be a projection via camera pose xtj of 3D point
locations θk.
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fk
obs is linear in the parameters to be estimated (and the noise is independent with fixed

variance) then the problem is a linear least-squares problem which can be solved easily in

a procedure similar to averaging (DeGroot, 1986)1.

Next, this thesis looks at solution methods for motion estimation or single-frame es-

timation, and then goes on to describe techniques for dealing with non-normality in the

noise models as well as excessive multi-modality of the objective function described.

3.3.4 Non-linear optimisation

While many techniques, such as the original Direct Linear Transform (DLT), exploit

important properties of the particular problem, in particular the linearity of equations to

be solved, in this thesis the problem posed is far from linear (this is because the dynamics

modelled are not linear). As such, rather than dwelling further on those methods that

exploit linearity, the discourse here quickly shifts to standard techniques for solving non-

linear problems.

The prototypical approach for finding the maxima or minima of such general non-

linear functions2 is Newton’s Method, though a plethora of iterative local approaches

exist, loosely classified as either trust-region based or line-search based (Fletcher, 2000;

Nocedal & S. J. Wright, 1999). With respect to global optimisation, all these methods are

in the limit local methods in that they are methods for refining a given solution iteratively

towards the optimal solution, though if underlying approximations are met they can jump

straight to a solution3.

Most non-linear optimisation methods rely on the ability to calculate the gradient

1The Kalman Filter that will be briefly discussed in the section on recursive estimation below is an
elaboration of linear least squares to estimate over time.

2Note that discrete optimisation is not considered here, because the problems here, although sometimes
having discontinuities in the objective function, are largely continuous in nature. Discrete optimisation
problems do come in to computer vision, for instance in graph-cut.) and model selection (deciding which
of a set of discrete models fit the data best).

3Of course, tailored and closed-form solutions exist for many of the problems discussed here; for
example the ability to derive an object or scene pose in almost closed form from four control points, and
where such solutions exist they can be used to initialise refinement using such local methods.
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or gradient and Hessian1 of the objective function at a given point. If the gradient is

calculated at a particular point, a linear approximation of the objective function can be

made at that point. If the Hessian is also calculated, a quadratic approximation can

be made, which has the nice property of having well-defined minima or maxima that can

allow the method to make steps straight to these approximating minima. Approximations

to the Hessian can also be made.

Line search methods start at a previous solution and choose a direction in param-

eter space to search in; then they attempt to find an optimal or good solution in that

direction. In this category is gradient descent, which makes a step in the direction of

strongest descent of the gradient. If the Hessian is known, the direction of descent can be

chosen as the direction necessary to obtain the minima of the corresponding approximat-

ing quadratic function, as with Newton’s method. Other common methods include the

alternating variables method where each parameter is optimised consecutively, and the

conjugate gradient descent which can be thought of as the alternating variables method

with the dimensions linearly remapped so as to be independent (Fletcher, 2000; Nocedal

& S. J. Wright, 1999).

In contrast to line search methods, trust region methods attempt to define a region

within which the polynomial or other approximation holds to within a certain tolerance,

and then solve the approximating problem within that region (Fletcher, 2000; Nocedal

& S. J. Wright, 1999). Thus, they are a kind of counterpoint to the line search methods

in that the problem is reduced to one over a restricted region rather than one over a

restricted dimension (the line).

The Levenberg-Marquadt method interpolates between the direction of strongest gra-

dient and the direction specified by the second derivatives of the cost function and, along

with the Gauss-Newton approach, is able to approximate the second derivatives by ex-

ploiting the structure of least-squares problems; it is generally considered a trust-region

1The gradient of an objective function is a vector describing the rate of change of the value of the
objective function for each of the parameters of the objective function, while the Hessian is the matrix
of the mixed and unmixed second derivatives of the objective function with respect to these parameters.
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method (indeed, one of the first), in that the step size is controlled by an adaptive param-

eter that damps the step size by damping the Gauss-Newton equations that are solved at

each step (Fletcher, 2000; Nocedal & S. J. Wright, 1999)1.

Solving the local sub-problems in both line search and trust region methods generally

involve solving quadratic or linear systems (possibly constrained). Therefore, efficiency

in solving these sub-problems is all-important. Methods which exploit the sparsity of the

corresponding matrices or their block structure can increase efficiency so much as to solve

problems with very large numbers of variables (Karara, 1989; Nocedal & S. J. Wright,

1999; Triggs et al., 2000). Such sparsity often occurs in computer vision2.

Also worthy of mention are the many heuristic methods, many of which are guar-

anteed to converge to the globally correct answer eventually34 (Glover & Kochenberger,

2003; Michalewicz & Fogel, 2004). A feature that many of these methods share is the

maintenance of multiple hypotheses (or other information about the problem beyond a

single hypothesis) and non-local search.

3.3.5 Multiple optima, sensitivity and non-normality

As noted above, the objective function may have numerous optima. It may be particularly

sensitive in some regions to changes in parameters, and completely insensitive in other

regions. The errors may be badly modelled and the possibility of extreme errors may

make the underlying distribution of observation error non-normal and so the least-squares

likelihood inapplicable. All of these are problems for the standard techniques, and all of

these are found in the scenarios investigated in this thesis.

One of the advantages conferred by the heuristic methods discussed briefly above is

1In Chapter 5, a simple line search as well as the Levenberg-Marquadt algorithm are used to solve the
non-linear optimisation problems posed there, with similar results in this application. This algorithm is
described in more detail in Appendix D.

2Sparsity can be found, for instance, where structure parameters are mostly independent of each other,
as exploited in the bundle adjustment literature.

3In practice, the guarantee of global convergence is not as relevant as the practical rate of convergence
and rate of success.

4There are a host of heuristic approaches, including evolutionary and genetic algorithms, simulated
annealing, tabu search, and swarm methods.
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their ability to do non-local search for the case where non local optima exist. However,

random restart can also confer this advantage to the polynomial-approximation based

non-linear optimisation methods described above giving a similar benefit. Moreover, the

non-linear optimisation methods are often in practice initialised with a very good guess

based on closed-form calculations12. This is not always possible, particularly without an

in-depth analysis of the problem, and some problems are simply resistant to this kind of

solution.

Even if the multiple optima problem is addressed successfully, sensitivity and non-

normality remain problems. Moreover, randomisation can still miss many good optima in

a high dimensional space where many optima can exist and sampling is unlikely to find

them3.

Sensitivity is a problem for all methods, however, unless there is a good way to guide

search, as there is usually no way of knowing beforehand what parts of the parameter

space need to be searched more carefully. Approaches aiming to overcome the problem of

non-normal errors (in particular the existence of extreme errors in the data), as well as

often helping to overcome the multiple optima and sensitivity problems (together, these

problems constitute the most common kinds of deviation from the typical statement of

the estimation problem given above), are called robust estimation techniques and they

are described next.

1Heuristic methods can sometimes outperform local methods with random restart but if a good initial
solution is known (as is the case where, for example, search for object pose is initialised based on a closed
form PNP - pose from N points - solution, and subsequently refined), the non-linear optimisation methods
are generally more desirable as they converge to a good solution very quickly by exploiting the known
local structure of the problem - at least, as observed by practitioners in practical non-linear optimisation
(Fletcher, 2000; Triggs et al., 2000).

2In computer vision, local optima can often be combatted by better posing the problems so as to make
them convex so that backtracking is not necessary (Hartley & Kahl, 2009).

3In cases with many local optima in high-dimensional search space (the case with model-based human
tracking in 3D for example), solutions involving explicitly searching from mode to mode in the objective
function have found some success (Sminchisescu & Triggs, 2003, 2005).
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3.4 Approaches to robust estimation

Robust estimation is a set of algorithms and techniques that build on conventional esti-

mation techniques in order to address situations where they tend to fail, most importantly

non-normality, but also multiple optima and sensitivity1. All of these characteristics apply

to the data used in this thesis. In particular, this thesis addresses situations where typ-

ical approaches fail, and also uses observation and dynamics models that are not always

correct, so robustness is a key consideration.

The problem of non-normality in the larger context could be considered as the prob-

lem of a mismatch between the model of the probabilistic distribution of data and its

empirical distribution, though in practice this match is usually one between short-tailed

distributions and long-tailed ones. In the case of long-tailed distributions outliers are more

common than are modelled by the normal distribution, for example, which can have the

effect of pushing an estimate far away from the actual value. A good practical example

of this is the tendency of one or more outliers2 to disproportionately affect the mean. A

simple and well-known example of a robust alternative is the median3. Robust estimation

applies to a broad set of areas beyond computer vision, including manual interpretation

of data where it prescribes methods for outlier removal and dataset cleansing.

Robust estimation can grow out of parametric probabilistic methods, that assume

that distributional information is available4. As long as enough observations are gener-

ated in the expected way, robust methods should continue to work efficiently. In contrast,

distribution-free (non-parametric) methods generally do not assume that the probabilis-

tic model is known in advance, or at least do not model the way data is generated us-

ing a distribution (Gibbons & Chakraborti, 2010; Hettmansperger & McKean, 2010).

1According to Huber (1981), whose work forms the foundation of modern robust estimation, the term
“robust” is multifaceted, but takes his domain of consideration to be estimators that are robust to small
deviations in assumptions, in particular distributional robustness.

2Outliers are observations or data-points that are so radically incorrect as to badly mislead existing
estimation techniques.

3The median is more robust than the mean because it is not affected by values far from the median
as the mean is.

4Knowledge of the distributions involved reflects advance meta-knowledge about the system, which
can sometimes be violated with decent results still obtained, particularly with robust methods.
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In Chapter 5, the focus the least-squares framework used is based on distributional as-

sumptions. RANSAC, the main approach used there for making estimation robust, is a

non-parametric approach, needing only the specification of outlier probability and desired

probability of success1. In Chapters 6 and 7, the non-parametric particle filter is used for

recursive estimation, discussed below in Section 3.6.3.

What follows is a quick list of approaches to robust estimation, starting with a dis-

cussion of a brief discussion of how robust estimators are analysed.

3.4.1 Analysis of data

A key part of many approaches to robust estimation is estimating the likelihood of any

estimate provided by the estimator in use being a bad estimate (being an Outlier). For this

purpose, there are several ways of re-sampling the data and recalculating the estimate

based on subsampling and comparing the estimates acquired, including bootstrapping,

jackknifing and cross validation2.

3.4.2 Robust cost functions

Huber (1981) divides robust estimators up into 3 types, of which M-estimators are consid-

ered here3. These are based on a distributional maximum likelihood, or indeed maximum

1To clarify, in RANSAC, probability distributions over the continuous reconstruction parameters are
not needed or employed. However, reinterpretations and extensions of RANSAC do make use of proba-
bility distributions over model parameters.

2A commonly used concept in robust estimation is that of “breakdown point” - usually defined as
the number of outliers at which normal methods break down. After this point, robust estimators can be
used, but they also have a breakdown point. The analysis of any robust technique typically includes a
breakdown analysis.

3The other two categories of robust estimators described by Huber are:

• R-estimators: Estimators based on selecting data-points from a ranking of some function of the
data (called R-estimators because they are based on rankings), which tend to create median-like
estimates.

• L-estimators: Estimators based on weighting of sample data based on their ordering in a sample
(called L-estimators because they are linear combinations of estimates based on individual sam-
ples), such as the Windsorized Mean approach or trimmed mean, where the mean is calculated
based on a central subset of the data.
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a-posteriori as is used in this thesis1, such as least squares estimation or robustified least-

squares as discussed next.

The M-estimator approach is essentially the least-squares MAP estimator discussed

above, though with the observation likelihood differing from a normal distribution, usually

with longer tails. Just as with the least-squares approach, which is a simple transform

of a MAP distribution, the MAP of a robust probability distribution can usually be

transformed into a cost function. Unlike the least squares approach, this will not be a

sum of squares cost function, but is usually a sum of increasing functions of squares. M-

estimators are essentially MAP estimators maximising formula 2.5; in general in robust

estimation these estimators correspond to probability distributions that deviate from the

normal, however. In order to deal with non-normality the usual approach is to use the

least-squares solution that corresponds to the normal distribution but alter each term by

passing it through a monotonic function that climbs slower at higher values (or indeed,

redescends at higher values, tending to reject outliers altogether), reflecting the long-

tailed nature of the underlying distribution by decreasing the weight of outliers in the

cost function2.

For non-linear functions, the common approach is again analogous to the case where

a normal distribution is assumed. At a candidate solution, the gradient and/or Hessian is

calculated and the polynomial approximation to the problem solved, and then this step

is iterated; except that the gradient and/or Hessian are calculated off the robust cost

function rather than the basic least-squares one3 (Triggs et al., 2000).

Studentized MAP. An example of a long-tailed probability distribution is Student’s

1M-estimators are thus called because they are based on a Maximum likelihood.
2One way of calculating the MAP estimate is to find the points where the MAP distribution is flat

(has gradient zero), which are candidate optima. For a linear problem with a normal distribution, such
a point is generally unique and can be acquired by setting the derivative of the least squares function
to zero and solving (which is solving a linear system). This approach of finding zero-gradient points
applies more generally to M-estimators, but only when they are tractable (that is, differentiable and the
derivative solvable). If the M-estimator is based on this approach then it is called a ψ-type M-estimator.
Otherwise, it is ρ-type.

3Interestingly, a quadratic approximation of the cost surface is equivalent to assuming that the under-
lying probability distribution is unimodally normal, so each step of the search for an optimum is acting
as if it is solving the problem non-robustly, but over a number of steps the effect is to alter the direction
of search so as to favour outliers less.
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T distribution, which assumes that underlying data distribution is normal but compen-

sates for the different distribution of residuals1. The transformation of the normal to the

T distribution is a process called studentizing and is a first step in applying robustness,

but only compensates for the properties of the residual under a normal underlying distri-

bution - if the underlying distribution itself is not normal then studentizing is generally

not sufficient2 (Maronna, Martin, & Yohai, 2006).

Absolute deviation error. Another common approach is to forget the sum of

squared error associated with the normal distribution, and use the “least absolute devia-

tions” - that is the sum of absolute deviations between data points and data points pre-

dicted from the estimate. This approach is equivalent to the double exponential (Laplace)

distribution in the same way that the sum squared error is equivalent to the normal dis-

tribution, and equivalent to the l1 norm on the difference between data and prediction in

the same way that the sum squared error is equivalent to the l2 norm. The double expo-

nential distribution has long tails and the absolute error estimate is generally considered

robust because it does not weight the residuals of outliers higher as the sum of squared

error approach does. It’s main issue is in the that it does not, unlike the sum of squared

errors, always induce a single optima in linear problems, and can be numerically difficult

as a result.

A similar approach is the generalised spatial median, which minimises the least abso-

lute deviations in one dimension, but in the multivariate case corresponds to an eliptically

symmetrical distribution in exchange for the marginal distributions not being double ex-

ponential distributions; the corresponding probability distribution has been described and

is analogous to the multivariate normal distribution, and a single cost term is the root

squared error (Blackhall & Rotkowitz, 2008; Plungpongpun & Naik, 2008). This does have

1Since the sample mean follows data points and residuals are calculated from the sample mean, the
residuals tend to have inflated variance in the area of the sample mean due to the effect of data points
far from the sample mean.

2One way of forcing the T distribution to be long-tailed is forcing the degrees of freedom on which the
distribution is parametrised to a low number: if the degrees of freedom are 1 this results in the Cauchy
distribution.
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the advantage of making the measure independent of the choice of basis for the data1. In

applications this means that the one generally would choose to minimise the sum of root

sum of squares.

Smooth M-estimators and mixture distributions. It would be useful for the

estimator to behave like a least-squares estimator for inliers. As such, smooth cost func-

tions are proposed, two of the most common being Huber’s and Tukey’s. Huber’s behaves

like the least squares cost within a defined range and smoothly transitions to the absolute

deviations cost outside the defined range. Tukey’s, similarly, transitions to a constant

function outside of a certain range (Huber, 1981; Maronna et al., 2006).

From these cost functions can be derived corresponding theoretical distributions. A

slightly more well motivated cost function is that obtained by assuming that data is

derived from a mixture of normal and one other distribution, potentially a normal distri-

bution with much larger variance, or a uniform distribution (Torr, 2002; Torr & Zisserman,

2000). This is called the contaminated normal model. This does not collapse to a sim-

ple norm when the log is taken, since a mixture of distributions results in a probability

distribution that is the sum of the component distributions, which does not pass easily

through a log. However, this distribution is interesting because it models local noise and

outlier noise as being completely separate processes and so can be used to analyse their

differing impact.

3.4.3 Algorithmic approaches

The above section assumes an algorithmic basis much the same as the standard iterated

least-squares approach and alters the cost function to ensure that the cost function is suf-

ficiently robust. However, many algorithmic improvements are possible and can address,

not just robustness to data distribution, but also the problems of multiple optima and

system sensitivity to parameters.

1Though the way that the l1 norm is tied to the basis is sometimes highly useful in application,
particularly if the aim is to minimise the number of non-exact matches (Blackhall & Rotkowitz, 2008;
Candes & Tao, 2005).
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The simplest approach is to use the basic iterated least squares approach, but at

each step calculate which terms are likely to be outliers and re-weights terms in the

cost function according to a formula that downweights outliers. This is called “Iterated

Weighted Least Squares”. The effect is very similar to using a robust cost function with

the standard approach, and like that approach in many non-linear problems with multiple

optima is sensitive to initial choice of hypothesis. Another approach (“case deletion”) is

to delete points considered outliers to reduce their effect on the final estimate (Hartley &

Zisserman, 2000).

RANdomised SAmple Consensus (RANSAC). RANSAC (Fischler & Bolles,

1981) is the prototypical algorithmic approach to robust estimation. It not only succeeds

in the presence of a large number of outliers, but also deals well with cases where cost

functions have multiple optima, and handles local parameter sensitivity.

The power of RANSAC lies in its exploitation of a required sub-algorithm for quickly

calculating an estimate from a small subsample of the data. So, for example, where

the P3P problem can be solved, different subsamples of 3 points can be selected, a pose

reconstructed and that pose tested against all of the other data-points. Each subsample

of data leads to an estimate and an estimate is chosen that maximises the number of

inliers according to some inlier threshold.

Of course, RANSAC needs an algorithm to solve the subproblem based on subsamples

of the data so is not applicable to all problems, but this subproblem is often significantly

easier to solve than the problem involving all the data. This sub-algorithm can be thought

of as a deterministic function from a subset ofM observations

zk0ti , . . . , z

kM
ti


to a solution.

So the nth solution is:

xn
ti
= fINST (


zk0ti , . . . , z

kM
ti


) (3.6)

As hinted above, the RANSAC paradigm was first introduced to deal with recovering

object pose from point matches, taking advantage of the geometric solution to P3P or

P4P (Fischler & Bolles, 1981), but the paradigm is general, and any feature can be used,
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such as edges (Armstrong & Zisserman, 1995).

RANSAC also requires the calculation of some parameters: the inlier threshold is very

important, and there are also stopping threshold and max iterations. These parameters

can be calculated based on a desired rate of success and outlier probability though these

values are also sometimes difficult to come by.

As with the technique discussed above of restarting the refinement algorithm with

a closed form solution, so does the RANSAC procedure help to defeat the problem of

multiple optima, since the algorithm selectively samples across the space of solutions in

a way that is likely to find a global optima if one exists and if even a relatively small

proportion of data agree with it. After the RANSAC step, a refinement procedure can be

applied using the inliers to fit the estimate to the data better.

The breakdown point of RANSAC is very low, since if the algorithm is forced to provide

a hypothesis there is no lower limit to the number of inliers required; the hypothesis with

the highest number of inliers is chosen and this number can be a small proportion of the

full dataset.

Least median squares (LMS). RANSAC instantiates estimates based on subsam-

ples of the data and evaluates them according to number of inliers. The inlier count can

be thought of as a cost function, but it contributes only one bit of information for each

data point.

A potential alternative approach is to score candidate hypotheses according to the

residual of a data-point. This is what Least Median Squares (LMS) does (Hartley &

Zisserman, 2000), by scoring a hypothesis by the median residual. It has a breakdown

point of 50% since 50% of the data must be closer to the estimate than the median. As

with the inlier count score, this approach has large discontinuities on the cost surface.

MLESAC and MAPSAC. Not only do RANSAC and LMS have nonsmooth cost

functions, but they also throw away a lot of information about the relative benefit of

different estimates. Because the cost functions are not derived explicitly from probability

distributions over data, it is also difficult to include other sources of information when
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evaluating estimates generated during RANSAC.

A more flexible approach would be to score each estimate according to one of the

robust cost functions previously discussed, so that outliers continue to score very low but

the score discriminates between different inliers. Torr (2002), Torr and Zisserman (2000)

follow this approach for estimating scene geometry with MLESAC and MAPSAC, whose

motivation is Maximum Likelihood Estimation and Maximum A Posteriori estimation

(hence the new acronyms). They use the contaminated normal distribution with a uniform

outlier distribution. In this case the relative proportion of outliers and inliers can be set

in advance or it too can be estimated. Generally the quickest way to do this is to find the

estimate for which the mixing coefficient is maximised, though Expectation Maximisation

can be used to marginalise it - which is to say find the solution that is good for the largest

majority of probable values of the mixing coefficient.

Any robust function could be used in this context as is done by Fontanelli, Ricciato,

and Soatto (2007), though the mixture of inliers and outliers distribution is well-motivated

in view of the RANSAC algorithm’s key motivation, which is to exclude outliers from the

estimation calculation.

Efficiencies & improvements. RANSAC like algorithms are very efficient but for

large datasets or large subproblems sampling the dataset cleverly for subsamples can be

an important part of the process. Such approaches include checking candidate hypotheses

against bigger subsamples rather than the whole dataset (Chum & Matas, 2002). Sub-

samples that are used to generate hypotheses can be generated in a smart fashion, so

that once a first data-point is chosen, the subsequent data-points are chosen to be more

likely to come up with a good solution - for instance, by selecting points nearby the first

point, and therefore more likely to be in the category of inlier if the original point is one

(Myatt, Torr, Nasuto, Bishop, & Craddock, 2002), or, conversely, by sampling points from

separate buckets so that hypotheses are more likely to be well located.

Sometimes the MAPSAC and MLESAC approaches continue to throw away infor-

mation; that is information about the reliability of data-points. If an image point, for

56



example, is strongly matched to another image point, and that information is made avail-

able by the matching algorithm, the information about the match, at least about the

strength of the match, should be used. The way that Tordoff and D. W. Murray (2005)

use this information is in estimating the probability that each data-point is an inlier

(rather than estimating it as discussed above in the context of MLESAC). This alters the

impact that each data-point has on the cost function and incorporates this information

from the pre-processing, which can be quite predictive of the quality of a match. See

Chapter 5 for an implementation of a similar approach.

Having discussed a number of typical approaches to estimation and robust estimation

in vision, the application of these approaches to sequence estimation is discussed, before

the different problem of recursive estimation, or tracking, is tackled.

3.5 Sequence estimation from vision

This chapter dealt first with kinds of visual information in the form of visual features and

then discussed a number of typical techniques for estimating objects and parameters in

computer vision from those features. This section refines that exposition by considering

the problem of sequence estimation in particular.

The problem of sequence estimation from vision was defined in Chapter 2 and is

essentially the problem of deriving a sequence of states from a sequence of observations

or sets of observations. The way in which this problem is tackled depends on the features

chosen to be extracted from the data, the constraints placed on the motion, and the

algorithmic techniques chosen for reconciling this information into a hypothesis or a set

of hypotheses.

Further developing the formalism given in Chapter 2, and the least-squares approach

discussed in Section 3.3.3, if an uninformative dynamics is again assumed (and maintaining

the assumptions of conditional independence of observations and Markovian dynamics)

then the posterior distribution over the trajectory becomes the product of the normalised
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distributions over each frame.

p(xt0:i|zt0:i) =
p0(xt0)

i
j=0[pobs(ztj |xtj)]

i
j=1[pdyn(xtj |xtj−1

)]

p(zt0:i)
(3.7)

=

i
j=0[p(ztj |xtj)]

p(zt0:i)
(3.8)

Taking the log of that and assuming Gaussian observations, K independent and iden-

tically distributed observations per frame, and an uninformative observation prior1, the

following least squares formulation is obtained for trajectories:

log[p(xt0:i|zt0:i)] =
i

j=0

log[p(ztj |xtj)] (3.9)

=
i

j=0

Clike

K
k=0

(zktj − fk
obs(xtj ,θ))

2 (3.10)

= Ctraj

i
j=0

K
k=0

(zktj − fk
obs(xtj ,θ))

2 (3.11)

(3.12)

Again, it is possible to generalise this to have weighted and cross-weighted observa-

tion terms by relaxing the independent and identically distributed assumptions of the

observation distributions.

This least squares form is the form of most approaches to sequence estimation from

vision; another set of approaches solve equations in the parameters of interest; such ap-

proaches tend to minimise a slightly different implicit error based on the closest algebraic

solution but can be faster and simpler, though some extra work generally needs to be

done to ensure that constraints are satisfied (Hartley, 1998).

1Note that even were the observation prior informative, it would not change the least squares for-
mulation since the term is constant in terms of the state; it is just extracted early here to simplify the
derivation.
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3.5.1 Motion models

Constraints may be simply a co-linearity constraint or a rigid body constraint, through

to strong motion models1. Indeed, rigidity may only be a soft constraint (Ullman, 1983).

As an example of a strong motion model, consider a constant translational velocity, no

acceleration model (Young, Chellappa, & Wu, 1991). This approach works on rolling

objects in particular, and objects in free flight if the mass distribution of the object is

balanced so as not to precess.

This dynamics model can be generalised to consider constant acceleration in the trans-

lation (Hu & Ahuja, 1992a; Young & Chellappa, 1990), which can account for gravity in

flight, or even a Taylor expansion of the motion to an arbitrary degree (Broida & Chel-

lappa, 1991; Hu & Ahuja, 1992b; Iu & Wohn, 1990) which, though arbitrarily general,

does not match the kinds of motion generally found in nature, such as bouncing, so in

order to accommodate a significantly larger category of motions, a much larger set of

parameters would need to be estimated.

The rotation can similarly be modelled as a constant rate of rotation with a fixed axis

(Broida & Chellappa, 1991; Young, Chellappa, & Wu, 1991) as might be seen in free-

flight or rolling of a balanced object. Or it could be further generalised so that rotation

has a constant acceleration with a fixed axis of rotation (Hu & Ahuja, 1992a; Young &

Chellappa, 1990) - there are a handful of cases where this might apply, such as the use of

a motor. Rotation can also be generalised according to a Taylor expansion with a fixed

axis of rotation (Hu & Ahuja, 1992b) or a varying axis of rotation to capture precession,

usually obtained by considering the rate of change of all the rotation parameters (Iu &

Wohn, 1990; Weng, Huang, & Ahuja, 1987), though the same issues regarding the range

of motions that this naturally parametrises apply as with Taylor series translations.

When it comes to motion estimation for long image sequences with strong motion

models the particular challenges are choosing motion models that best reflect the kind of

1In this thesis, the phrase “dynamics model” is preferred as it implies a range of models considering
the dynamic behaviour of objects, including collisions, though motion model is more common in some
parts of the literature where issues of dynamics are not a strong consideration.
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motion found in the real world, while remaining as general as possible. Motion estimation

with weak motion models on the other hand can use motion models that use no rigid

constraints at all (e.g. just co-linearity of points). Such approaches can find the motion

of individual points only in relation to each other, unless a fixed or known set of camera

poses is used or known camera pose is used. The addition of rigid constraints simplifies

the problem considerably and enables the camera motion to be estimated too with respect

to the object or scene. Estimation of multiple object motions can be done with respect

to the camera frame of reference or a world frame of reference if that too is known or can

be estimated. Even if the structure parameters (e.g. 3D point locations) are unknown,

the motion can be solved for (Hu & Ahuja, 1992a; Hu & Ahuja, 1992b).

3.5.2 Estimation of motion

Once a motion model is selected, the motion must be fit to the data. The simple rigid

body and general motion models were discussed briefly in the section above on structure

and motion. The following discussion applies to the strong motion models just men-

tioned. Note that some of the following approaches fit just motion parameters (Broida &

Chellappa, 1991), while others also estimate structure (Hu & Ahuja, 1992a; Hu & Ahuja,

1992b; Iu & Wohn, 1990; Weng et al., 1987; Young & Chellappa, 1990; Young, Chellappa,

& Wu, 1991).

One approach is to treat the problem as recursive estimation - that is, given an estimate

of the start state, incorporate subsequent measurements in the sequence one at a time1.

Basic techniques for this are the Kalman filter or Extended Kalman Filter (Iu & Wohn,

1990; Young & Chellappa, 1990). Filtering can be extended to “smoothing”, which, rather

than simply propagating an estimate forward in time, propagates it first forward and then

backward in time to adjust the earlier estimates retrospectively (Triggs et al., 2000; Young

& Chellappa, 1990). For sequence estimation, this technique has the weakness that the

1For more information about recursive estimation, see the section on tracking and recursive estimation
below.
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initial estimate must be a good one otherwise the state may not converge to the correct

solution, particularly if the motion and observation models are non-linear.

If the model is a polynomial type model, only the initial parameters are needed to

recover the full motion solution (Hu & Ahuja, 1992a). The simpler the model is (i.e. the

less expansions in the Taylor series), the less parameters are needed. If these polynomial

type motion models are used with a fixed rotation axis then the resulting equations can

generally be solved for the initial parameters algebraically (Hu & Ahuja, 1992a; Hu &

Ahuja, 1992b), though rotation tends to bring out non-linear equations that are solvable

using e.g. the non-linear least squares discussed above (Hu & Ahuja, 1992a; Hu & Ahuja,

1992b). Indeed, rotation, translation and structure parameters can often be solved inde-

pendently or consecutively (Hu & Ahuja, 1992a; Hu & Ahuja, 1992b). It is possible to

estimate all the parameters simultaneously, typically resulting in a batch optimisation

problem as discussed above with with conjugate gradient descent being a popular solu-

tion procedure (Broida & Chellappa, 1991; Young, Chellappa, & Wu, 1991). Also, if the

sequence of two-view problems can be solved first, the non-linear parameter estimation

problem can be significantly simplified (Hu & Ahuja, 1992a; Hu & Ahuja, 1992b; Weng

et al., 1987). This is analogous to a two-step process where the first step is segmented

regression to local motion models and the second step is an attempt to fit the global

motion model. The second step in such a case must be robust to problems arising in the

first; the presence of bad fits in some of the subproblems.

Most of these approaches have been tested on simulated data (Iu & Wohn, 1990;

Weng et al., 1987; Young & Chellappa, 1990; Young, Chellappa, & Wu, 1991) or hand

labelled images with hand labelled motion or in very controlled conditions (Broida &

Chellappa, 1991; Hu & Ahuja, 1992a; Hu & Ahuja, 1992b; Weng et al., 1987). For this

reason, the above solutions are unfortunately not designed with robustness to real data

in mind (whereas the current thesis uses a pre-collected data-set consisting of videos of

real objects moving under real dynamics).

These approaches do not consider the problem of multiple objects explicitly, though
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this has been tackled with weaker motion models in the structure and motion litera-

ture (Hartley & Zisserman, 2000). In the tracking literature, the problem of associating

measurements with objects is called data association and is discussed below.

All of the approaches discussed so far have made use of point features, probably

because the geometrical analysis is simplified compared to denser methods. However, optic

flow is also possible. In the absence of a strong motion model, optic flow methods typically

proceed by taking the 2D optic flow constraints and applying additional constraints to

the corresponding flat patches in an object; the resulting problem is generally solved in

the same general way as the point match approaches (Aggarwal & Nandhakumar, 1988).

3.5.3 Model selection

If there are multiple motion models to choose between, the fit residual of each model is

not sufficient to decide on which model to use, since the most general model (e.g. the

polynomial expansion with the most terms) will always have the lowest residual, and so

the data will always be overfit.

Hu and Ahuja (1992b), for instance, need to require the improvement in fit of the

model from using a more detailed motion model to be over a predefined threshold before

accepting a more detailed motion model. There is room to use modern model selection

techniques on this problem. Moreover, since the benefit of polynomial models is not

proven, a wider range of motion models can be possible; for example, the models used in

this thesis.

As far as model selection is concerned, the literature on this continues to evolve.

Traditionally, a statistical test can be used to test whether the ratio in the residual is large

enough to allow the more refined model to be used, though for this to work the width

of the confidence interval needs to be selected appropriately - this can be estimated from

data or chosen as a “magic number” but generally it would be better to be more sensitive

to context. It would be useful to prefer less parameters but again magic numbers or prior
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evidence are required to come up with a good answer. The Bayesian approach takes the

likelihood of each model and marginalises the parameters of each model - this has the effect

of producing different answers depending on the number of parameters of the model as

would be desired. To calculate this naively involves integrating over these parameters for

each model, which is for the most part prohibitive, so different methods exist depending

on what approximations they make to produce this marginalised probability (Torr, 2002).

Within the area of motion estimation, the number of objects in the scene can be con-

sidered a model selection problem, however, associating different salient data in the scene

with different objects is a difficult problem. This problem is well-studied in the context

of object tracking, as discussed below, and is traditionally called data association. In mo-

tion estimation, it is most well studied in analysing surveillance footage and sports. One

approach is to utilise an object classifier and use spatial constraints to reduce the space of

possible object matches (Bennett, Magee, Cohn, & Hogg, 2004). Another approach is to

discretise the space into an occupancy map and optimise with respect to the number of

moves objects can make between locations in the map between frames (Berclaz, Fleuret,

& Fua, 2009). These approaches usually explicitly assume a dynamics model involving

little motion.

3.6 Recursive estimation from vision

So far this chapter has discussed the details of models used in computer vision, the visual

features that can be used in reconstruction from vision, algorithmic approaches to this

reconstruction, including robust approaches, and has focused in particular on estimation

of long sequences of motion1. The last piece in the literature review in vision is to discuss

the literature around recursive estimation and object tracking of objects from vision, the

subject of this section.

1The previous section is background for the contents of Chapter 5 which deals with motion estimation,
corresponding to the framework MAP sequence estimation model introduced in Chapter 2. This thesis
also solves the problem of object tracking via recursive estimation, a framework for which was also
introduced in the framework chapter, and which underlies the novel work described in Chapter 6.
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Recall from Equation 2.9 in Chapter 2 that the task for recursive estimation is the task

of finding a distribution over the current state in terms of a distribution over the previous

state and new observations. A likelihood relating state to observation is generally known,

along with a probabilistic dynamics relating state to successor state (again, the nuisance

and simulation parameters u and θ are ignored):

p(xti|xti−1
, zt0:i) =

pobs(zti|xti)

p(zti)


xti−1

pdyn(xti|xti−1
)p(xti−1

|zt0:i−1
)dxti−1

(3.13)

When choosing between different recursive estimation mechanisms, the choice is typi-

cally one of how the posterior p(xti|xti−1
, zt0:i) is represented and updated from dynamics

and observation information.

In tracking applications, the pose, motion, general state of one or more objects is

the subject of the recursion. However, in the problem of Simultaneous Localisation and

Mapping (SLAM), it is both a maintenance of the pose of the observer and the structure

of the environment (usually in terms of the location of landmarks) that are posed as

problems. This can be considered equivalent to a single-object tracking problem with

the necessity to simultaneously recover structure. Recursive estimation is generally the

framework of choice for generating and analysing solutions to this problem. Note that,

like tracking, SLAM is not restricted to just vision; any sensor can and usually is used, but

very good vision based solutions to SLAM exist (Davison, 2003; Davison, Reid, Molton,

& Stasse, 2007; Pupilli & Calway, 2005).

Recursive estimators differ depending on the nature of the observation likelihood,

which is related to the features used, the model used of dynamics, how these various

probability distributions are represented or approximated, and how they are updated. The

structure of the current chapter will focus on the representation of probability distributions

and their updating rules.
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3.6.1 Propagating the best estimate

Before getting into probabilistic models of recursive estimation, it should be noted that

there is a large literature of methods that do not involve propagating full probability

distributions, rather taking a single estimate from a previous frame and updating that

estimate in the new frame. Such methods can be powerful and take less computational

power; are effectively a single frame estimation problem (that can be solved with the

standard methods above or with ad-hoc methods1), with information about the previous

estimate guiding estimation (Masson, Dhome, & Jurie, 2004; Sminchisescu & Triggs, 2003,

2005). The implicit dynamics assumption for such methods is a constant pose model with

a posterior approximated by one sample.

Mean shift is a common technique in colour trackers. Given a likelihood distribution

generated by the observations, mean shift is an efficient algorithm for finding the nearest

mode in that distribution from a seed point (Bradski, 1998; Comaniciu et al., 2003; Naeem

et al., 2006). The search for the mode typically begins close to the previously found object

location or predicted one2.

Of course, in the best of possible worlds, it should be possible to track most of the

time on the basis of information extracted from individual images, only subsequently

solving for continuity; only in extreme situations would more sophisticated reasoning

over multiple time-steps be necessary. It turns out that this approach is successful in

the presence of features that don’t need to be matched locally, such as feature points

(Lepetit & Fua, 2005; Özuysal, Lepetit, Fleuret, & Fua, 2006), and can be made more to

exploit continuity information by updating the representation of the object to be matched

depending on recent views of it (Vacchetti et al., 2004a; Vacchetti et al., 2004b). In such

approaches, the dynamics is not used to guide sampling, but could in theory be used to

1The challenges with such methods are the same as single-frame tracking, with the additional require-
ment to incorporate knowledge about the position of the object at the last time point. In the latter
case, the basic approach is to use the previous position as a starting point for the search for new features
(Harris & Stennett, 1990).

2Mean shift in tracking works in the observation space, so the distribution being analysed typically
does not include any information about dynamics.
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later select between different possible sequences of pose estimates based on pose estimates

at each frame.

Below are described methods that use the probabilistic formulation given in Chapter 2,

the Gaussian based and sequential Monte Carlo approaches1.

3.6.2 Gaussian models

The prototypical recursive filter is the Kalman filter (Baumberg & Hogg, 1994a; Kalman,

1960; Sorenson, 1970). The Kalman filter is an extension of the solution to the the linear

least squares problem to an evolving probability distribution. The probability distribution

over the state at time t, p(xti|zt0:i) is assumed to be a Gaussian with mean x̂ti and

covariance Σti . A Gaussian probability distribution can be represented in terms of a

state mean and the covariance of the state variables. The dynamics, pdyn(xti|xti−1
), is

a Gaussian probability distribution with known covariance of a linear function Fdyn over

state, and observations are assumed to similarly be constituted by a Gaussian distribution

with known covariance of a linear function Fobs over state, pobs(zti|xti). These three

distributions are represented in terms of normal (Gaussian) distributions below:

p(xti|zt0:i) =
1

(2π)N/2

Σ1/2
ti

e(xti−x̂ti)Σ
−1
ti
(xti−x̂ti)

T

(3.14)

pdyn(xti|xti−1
) =

1

(2π)N/2

Σ1/2
dyn

e(xti−Fdynxti−1)
T
Σ−1

dyn(xti−Fdynxti−1) (3.15)

pobs(zti|xti) =
1

(2π)N/2

Σ1/2
obs

e(zti−Fobsxti)
T
Σ−1

obs(zti−Fobsxti) (3.16)

Given a distribution over the current state, the observations can be incorporated in

a method analogous to the weighted linear least squares problem to produce an updated

estimate of state2.

1In addition to the Kalman and particle filters, rather than sampling from Gaussians or using Monte
Carlo sampling, grid-based representations of probability distributions have proved useful - indeed, these
can be made efficient by approximating them with trees (Stenger et al., 2006).

2One difference with the least-squares approach is that the covariance is maintained and when new
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Before update there is a simpler prediction step which predicts the distribution over

current state in terms of the distribution over the previous state given the known dy-

namics1. Since everything is linear, Gaussians passed through these functions remain

Gaussians. The effect of the dynamics is to propagate previous estimates forward in

time2. The Kalman filter procedure is not described here.

The traditional Kalman filter of course only works for discrete time systems with linear

observations and linear dynamics, and only with the normal (Gaussian) distribution. Non-

linear functions distort the probability distribution passed through them so as to make

them no longer Gaussian3.

The basic approach to dealing with non-linearity is to use an extended Kalman filter

(EKF), which is to say that the gradients of all non-linear functions are calculated and

the normal linear filter applied; this is in many applications the default approach in

visual tracking where the model is non-linear but the tracking wants to be smoother and

temporary distractors have less effect (Davison, 2003; Davison et al., 2007; Magee, 2001;

Wren & Pentland, 1998). In many cases this approach works well, but this depends on the

dynamics and observation models used. Also, since the size of the matrix representing the

covariance of the distribution increases in the square of variables maintained, either the

number of variables needs to be kept low by judicious use of features and parametrisation

(Davison et al., 2007), or by appropriate factoring of independent parts of the problem

(Montemerlo, Thrun, Koller, & Wegbreit, 2002; Sim, Elinas, & Little, 2007).

Theoretically and experimentally, depending on the problem, there are many reasons

to seek an improvement over the EKF for propagating Gaussians non-linearly: not only

observations are incorporated the covariance is decreased by an amount calculated according to the known
covariance of observations. The way that observations are incorporated is analogous to averaging, with
the addition of a linear function that allows the averaging process to be easily propagated from observed
variables to state, even if the dimensionality of these spaces differ.

1Since the dynamics introduces noise, the calculated covariance will increase as the state estimate is
passed through the dynamics.

2Note that the covariance over the state is never calculated from the data in the traditional Kalman
filter since this is calculated from the covariances over motion and observations that are assumed known.

3The system described in the framework chapter of this thesis can in theory incorporate both non-linear
dynamics and observations; indeed the observation models in Chapters 5 and 6 incorporate non-linear
dynamics.
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the shape but the variance and location of distributions can be badly estimated when

the propagating function is significantly curved, and these effects can compound in the

absence of continual good measurements. As such, many alternative approaches to prop-

agating Gaussians non-linearly exist. An alternative approach is to propagate the Gaus-

sian through non-linear dynamics and measurements by passing a small set of well-chosen

“sigma” points around the Gaussian mean through these equations (Julier & Uhlmann,

1997). It turns out that to accurately model the covariance of a Gaussian, the number of

points required is linear in the number of dimensions. The sigma point approach (also

called an “unscented” Kalman filter - UKF - to contrast it with the less lauded EKF) may

be the best trade-off for dealing with non-linearity if the distribution remains unimodal

and if the short-tailed Gaussian distribution is assumed. Using judicious sampling rather

than representing the covariance matrix directly can also be of help in reducing the size

of the problem (Evensen, 2003). More generally, the problem of propagating a Gaussian

through a non-linear function can be considered as one of integrating the gaussian with

the function, an approach that can be solved with other integral approximations (Ito &

Xiong, 2000).

Despite the effectiveness of the above methods, non-linear functions do tend to cause

bifurcations and the single Gaussian approach does not allow for the multiple modes that

would be necessary to express multiple hypotheses. An alternative is to express the state

itself as a mixture of Gaussians, which both solves the problem of non-linearity and of

multiple modality (Alspach & Sorenson, 1972; Ito & Xiong, 2000; Sorenson & Alspach,

1971). A mixture of Gaussians can in theory approximate any distribution arbitrarily well.

More robust distributions can be dealt with by using contaminated normal models made

from multiple Gaussians, or mixtures approximating more robust distributions (Blackhall

& Rotkowitz, 2008), and non-linearity can be dealt with by passing each Gaussian in the

mixture in the mixture through an EKF.

Another common extension is to add an iterative component to the Kalman filter

in order to further refine the estimate at each time point. When the basic filter is an
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Extended Kalman filter, this is called the Iterated Extended Kalman Filter. Since the

update phase of a Kalman filter is a linear least squares problem, this iteration phase is

essentially non-linear minimisation in the same vein as Newton’s method described above

in the section on non-linear estimation (Geeter, Brussel, Schutter, & Decreton, 1997;

Koller, Daniilidis, & Nagel, 1993), though can be done in conjunction, for example, with an

sigma point update (Cao, Ohnishi, Takeuchi, Matsumoto, & Kudo, 2007). This iterative

procedure is not theoretically optimal but can further help overcome non-linearities in

the EKF. Another use of iteration is successive relaxation of hard constraints (Decarlo &

Metaxas, 2000).

Although any distribution can in theory be approximated by mixtures of Gaussians,

the shape of a finite mixture is typically characterised by the smooth local shape of

each Gaussian. However, there may be some rigid constraints on the state space of the

propagation. In order to comply with constraints, the mean of each Gaussian can be

moved into the part of the state space1 where the constraint is satisfied. This is easy for

linear constraints. Non-linear constraints can be linearised but it is better to apply them

weakly and repeatedly in order to reduce the buildup of error (Geeter et al., 1997). If a

sigma point filter is used, each sigma point can be constrained, which is better because this

forces more of the Gaussian inside the constrained area (Kandepu, Foss, & Imsland, 2008).

An alternative approach is to use truncated Gaussians, which are Gaussians with parts

of state space set to zero probability arbitrarily (Brankart, 2006). In this way, constraints

can be dealt with by truncating the probability distribution off from the forbidden part of

the state space. Unfortunately, only linear or very well defined constraints are easily dealt

with by this method since propagation of non-linear constraints through a non-linear state

evolution function quickly can make them intractable. As will be seen in the background

chapter on physical simulation 4 below, physical models to tend to employ constraints;

for example interpenetration and energy conservation constraints, so dealing with these

1“State space” being the theoretical continuous and discrete space containing all possible states; the
state space is the same across all time-steps but at any given time the system only inhabits one of
these states - note that this is the dynamical systems definition of a state space rather than the pure
non-stochastic probability definition
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is important.

Rather than assuming a discrete stochastic system, the continuous time Kalman filter

is based on differential equations governing the state evolution, thereby requiring the state

and observations to be expressible as functions with a continuous domain of time (Blake

et al., 1993; Metaxas & Terzopoulos, 1993). The methods used to solve the resulting

differential equations are very similar to those used in simulation as will be discussed

in Chapter 4; indeed, this overlap has been exploited previously in physical estimation

problems (Metaxas & Terzopoulos, 1993). The additional element to normal integration

of differential equations is the inclusion of noise and measurement terms in the differential

equations and a higher order matrix differential equation governing the state covariance.

The basic continuous time Kalman filter is based on a linear differential equation in the

state but non-linear approximations are generally handled as with the extended Kalman

filter, and simplifications such as state decoupling generally made for efficient integration

(Metaxas, 1997; Metaxas & Terzopoulos, 1993).

Because of its relative simplicity in application, its computational efficiency, and age,

the Kalman filter is traditionally the first method applied to any tracking problem, and a

Kalman filter exists for all of the visual features discussed above and their many combi-

nations; for example, contours (Baumberg & Hogg, 1994a; Kakadiaris et al., 1994), blobs

(Magee, 2001; Wren & Pentland, 1998), edge segments (Chan, Metaxas, & Dickinson,

1994; Koller et al., 1993), optical flow (Decarlo & Metaxas, 2000), and point features and

template matching guided by the filter predictions (Davison et al., 2007). Because of its

ubiquity, a Kalman filter is often applied as a last step to smooth a solution.

3.6.3 Particle filter

The use of Gaussians is powerful because the parametric Gaussian distribution allows for

a compact representation of a probability distribution, and the Gaussian is more tractable

to analysis than many of its peers. Chapter 6 describes a specific implementation of the
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particle filter in more detail.

However, because it is a parametric distribution, not all dynamics and observation

functions can easily be dealt with; in particular, non-linearity is something that is dealt

with through extensions to mixtures and deterministic sampling of the Gaussians as dis-

cussed above. An infinite number of hypotheses can be dealt with with parametric ap-

proaches, but, particularly in high dimensions, there is a trade-off between accuracy of

the estimate and the coverage of the space of hypotheses1. Mixtures can help solve this

but the hypothesis structure is typically dependent on the design of the mixture model2.

Another approach to dealing with non-linearity, and also for a natural way of han-

dling multiple hypotheses, is to approximate probability distributions by sets of random

samples. This is the approach taken by Monte Carlo methods. In Monte Carlo methods

of estimation, a set of discrete samples is evaluated on known probability distributions.

Sequential Monte Carlo is the set of methods where a sequence of such sample sets is gen-

erated, as is the case in the tracking or motion estimation problems where the probability

distribution changes with time.

Such approaches are also known by the term “particle filter”, since they are recursive

estimators like the Kalman filter, though here the probability distributions are approx-

imated by samples rather than parametric distributions, and those samples are called

particles. Particles can be simply hypotheses, but they can carry other information - in

particular, weights corresponding to the point mass of the probability distribution. Al-

though the term “sequential Monte Carlo” describes more precisely the concept behind

the method, particle filter is the more common term.

As with all recursive filters, a particle filter takes a distribution over the current state,

approximated by a set of, possibly weighted, particles (hypotheses), and processes it along

with any new observations and the dynamics model to create a posterior distribution over

the subsequent state, again approximated by a set of particles. Usually this follows the

1Multiple object tracking in particular can benefit a lot from proper handling of multiple hypotheses.
See below for a more extensive discussion of multiple hypothesis tracking.

2Though methods exist for fitting mixtures automatically.
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predict-update cycle, as does the Kalman filter, where the dynamics model is used to

propagate hypothesis particles individually to create a prior distribution (approximated

by an intermediate set of hypothesis particles), which is used as a proposal distribution

and then this processed by using the observations and likelihood model to re-weight or re-

sample the hypothesis particles, usually one by one. However, this proposal distribution

does not need to be the result of dynamics model prediction; in fact the best proposal

distribution would be the same as the posterior, taking into account both dynamics and

observations; however, this distribution usually cannot be sampled from directly; however,

it is still very useful to use proposal distributions closer to the posterior so that parts of

the state space with low prior probability but high likelihood are sampled from (Pitt &

Shephard, 1999; van der Merwe, Doucet, Freitas, & Wan, 2001).

In order to convert the proposal distribution to the posterior, one approach is to

weight the particles according to observation likelihood. This set of weighted particles

together can represent the posterior, but they are typically re-sampled so that the discrete

approximating domain of the posterior more evenly covers the mass of the distribution.

Alternative approaches are to accept or reject generated particles with probability related

to the likelihood (Pitt & Shephard, 1999).

Because of its generate-and-test approach, the only problem-specific information re-

quired by the basic particle filter is generally an arbitrary dynamics model and likelihood.

This generality means that basic particle filters are pairable with any of the features

discussed above, such as contours (Heap & Hogg, 1998; Isard & Blake, 1998a, 1998b;

MacCormick & Blake, 2000), edges, textures and junctions (Klein & D. W. Murray, 2006;

Mörwald, Zillich, et al., 2009; Pupilli & Calway, 2006), point features (Pupilli & Calway,

2005), colour (Nummiaro et al., 2002), combinations of texture and colour (Mihaylova

et al., 2007), and so forth. As such, particle filters are quickly coming to rival Kalman

filters in popularity in the areas of robotics and computer vision.

As with many approaches, the particle filter does not scale well with dimensionality.

As such, the most common set of extensions to the particle filter revolve around analysis
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of tractable parts of the problem to reduce the dimensionality of the particle filter part of

the solution, by exploiting independence between different parts of the state (MacCormick

& Blake, 2000; Tweed & Calway, 2002), or factoring out Kalman-type processes for part

of the problem (Montemerlo et al., 2002; Sim, Elinas, Griffin, & Little, 2005; Sim, Elinas,

& Little, 2007).

The particle filter also has a problem that if the dynamics or observations are not

modelled as noisy enough, the finite number of particles will converge on a single hy-

pothesis, which is a situation that is difficult to recover from. A common approach is to

add artificial process noise, but that has its own problems1. A variety of methods exist

for keeping the particle filter multimodal, again generally by using the particle filter in

conjunction with other methods, for example using a mixture model to ensure that there

are multiple modes in the distribution and re-sampling within each component (Vermaak,

Doucet, & Perez, 2003), or by using mode-finding2 to find modes in the posterior or like-

lihood distributions and so concentrate the particles where they are the most beneficial

(Chang, Ansari, & Khokhar, 2005).

Indeed, this last approach, which involves using a kernel to approximate the distribu-

tion so that mode-finding methods can work, involves dispensing, at least during part of

the process, with the theoretical finite domain particle filter and treating the distribution

as parametric. Such approaches can also serve to keep the proposal distribution as close

to the posterior as possible, or at least to reflect the likelihood, so that the sampling

process will place samples in areas where the posterior has mass. A common approach

is to use parametric methods to incorporate observations efficiently into the proposal,

by approximating the particle distribution at the previous time-point by a parametric

Gaussian distribution, incorporating both dynamics and observations into that distri-

bution and using it as a proposal distribution for the particle filter (Cao et al., 2007;

van der Merwe, Doucet, et al., 2001). This can be extended to mixture distributions to

1Apart from the theoretical difficulties, artificial process noise might be an issue, for example, when
trying to exploit a good dynamics model as is done in Chapter 6.

2Mean-shift is the the typical algorithm for mode-finding, though to use it the discrete particle distri-
bution must be approximated with a continuous one.
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deal better with non-linearity and non-Gaussian distributions (van der Merwe & Wan,

2003). Another advantage of augmenting particles with distributions is that parts of the

state space outside of the finite distribution are covered (van der Merwe, Doucet, et al.,

2001). Conversely, rather than using a Gaussian update to help with the propagation of

the particles, it has been proposed that a Gaussian filter use the sequential Monte Carlo

method to propagate the parametric distribution by sampling from the distribution at the

previous time step and propagating the samples through the dynamics and observations

and then reconstructing the Gaussian from this data (Djuric & Kotecha, 2003; Kotecha

& Djurić, 2003).

Just as Kalman filters have iterative extensions to deal with non-linearity in the ob-

servation model, so too do particle filters have iterative extensions to deal with the likely

possibility that the first set of particles projected at a given time step do not optimally fit

the likelihood (or posterior) modes. It has been proposed to re-iterate the re-weighting/re-

sampling step (Deutscher, Blake, & Reid, 2000; Mörwald, Zillich, et al., 2009), do an addi-

tional local optimisation step on some particles (Heap & Hogg, 1998), or to use a Markov

transition kernel1 to better approximate the posterior after re-sampling2 (van der Merwe,

Doucet, et al., 2001).

As with Kalman filtering, there is a continuous time version of the particle filter,

mostly to deal with the problem of asynchronous measurements (Ng et al., 2005); because

the form of the covariance need not be analysed this becomes a lot simpler. Since arbitrary

functions and distributions are by default available to the particle filter, the problem of

continuous time is not so pronounced since the functions and distributions themselves can

model the time element.

An important observation is that constraints are dealt with quite naturally by particle

filters; states outside of the constrained areas will simply not receive samples3. As well as

1A Markov transition kernel is a kind of probabilistic search guaranteed to maintain the existing the
distribution by virtue of appropriate selection of the transition probabilities.

2If parametric approximations are made then the parametric process can be repeated too, as with the
Iterated Kalman filter and relatives (Cao et al., 2007).

3The observation that constrained areas are not sampled in a particle filter does not apply when
parametric approximations are employed.
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their natural application to non-linearity, multiple objects, and non-Gaussian processes,

this makes the particle well-suited to complex physical-simulation as is used in this thesis,

with the added advantage that little analysis of the dynamics is required. In the long term,

however, the plain particle filter suffers from problems with dimensionality - as the number

of dimensions in the state to be tracked increase, the number of samples required to cover

it as well increases non-linearly.

3.6.4 Moving horizon estimation

The recursive estimation and motion estimation problems can be considered sub-types of

the moving horizon estimation problem; as is guessable from the title, moving horizon

estimation tries to solve the motion estimation problem for the last n frames, with the

help of additional information carried over from the previous limited horizon problem,

analogous to the distribution carried forward by recursive estimation. A moving horizon

estimation (MHE) framework is a good framework for adapting solutions of the problem

of motion estimation to recursive estimation.

3.6.5 Simpler motion models

Although this thesis focuses on the integration of a sophisticated physics predictive dy-

namics model into the tracking task, various dynamics or motion models are indeed im-

plicit in existing tracking work. Mean-shift tracking, for example, is based on the as-

sumption that the mode of the observation likelihood does not move too far from frame

to frame (Bradski, 1998; Comaniciu et al., 2003; Naeem et al., 2006); an assumption ef-

fectively of zero displacement with noise. In the Kalman filter, a linear motion model

must be specified. This is typically specified as the identity function, again assuming zero

displacement with noise (Baumberg & Hogg, 1994a; Davison et al., 2007). This can be

averaged with a constant velocity predictor if velocity is maintained or if two frames are
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used to predict velocity1. Although particle filters can in theory embody any arbitrary

motion model, in practice they tend to also assume constant displacement, with a normal

uniform or long-tailed distribution around it (Isard & Blake, 1998a, 1998b; MacCormick

& Blake, 2000; Pupilli & Calway, 2005). In the motion estimation literature (see Sec-

tion 3.5) constant velocity or acceleration type motion models are sometimes employed,

as well as low-velocity (constant displacement) motion models. Learned motion models

are also common (Baumberg & Hogg, 1994b; Heap & Hogg, 1998; Magee, 2001; Mörwald,

Kopicki, et al., 2011; Tweed & Calway, 2002) and more sophisticated models, including

those based on physics understanding, will be discussed in Section 4.2.

3.6.6 Multiple objects

Tracking multiple objects brings with it an additional set of problems not seen with single-

object tracking. At the simplest level, objects generate observations but it if observations

are ambiguous it is not always clear which object (or background noise) is generating them

- for example, an edge may belong to any of the target objects or the background. This is

the problem of data assocation. Data association is less of a problem in vision than other

tracking mobilities since in vision objects often have distinct signatures - however, it is

not always simple to process these signatures adequately, and many real-world situations

do exist where objects are ambiguous. For example, when using colour cues, multiple

objects might have the same colour.

Multiple objects also occlude each other. Occlusion is a problem for single object

tracking too, where it is other scene objects that occlude the target object. In visual

tracking, partial occlusion can occur, and objects can overlap. Using models of objects

almost always helps in these cases, giving the ability to reason in terms of occluding

contours and so forth.

Also, the dynamics of each object can be affected by other objects.

1In general a combination of velocity and displacement motion models might best be modelled as a
mixture of these two models rather than an average, since dynamics would generally be one or the other
rather than both simultaneously, in which case the basic Kalman filter is not easily applicable.
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The classic approaches1. to dealing with multiple objects include probabilistic data

association and multiple hypothesis tracking (Blackman, 2004).

Multiple hypothesis tracking involves forming a hypothesis for every possible combina-

tion of matches between observations and objects and maintaining these new hypotheses

over time (with appropriate pruning to reduce the set of hypotheses to the most likely).

For objects that produce a very few number of observations this can be tractable, though

in computer vision often a large amount of data needs to be dealt with; some features can

be reduced to such a small set but not all (Blackman, 2004).

Probabilistic data association divides the effect of multiple observations between tar-

gets depending on the closeness of the observation to each target. However, it does deal

with each target separately and this has the effect of bringing all objects closer to am-

biguous and false observations. Joint probabilistic data association tries to remedy this

by considering the space of joint associations (so that the filter takes account of the fact

that an observation is not generally generated by two targets). Properties of visual fea-

tures can be exploited directly in the observation space, for example by reasoning over

the kinds of occlusions expected, and known physical properties of objects, for example,

their jointed nature, can be exploited to reduce the space of possibilities (Rasmussen &

Hager, 1998).

Sometimes it is possible to say that part of the problem can be handled jointly but

part of the problem can not. In computer vision, models of image formation typically

show a lot of interdependence - for example, even if only two objects are in a scene, in

real situations they are often very likely to overlap. On the other hand, because object

dynamics are relatively decoupled, or at least not well known, it can be much more

efficient to reason about the movement of objects independently, though reason about

their appearance jointly (Lanz, 2006). The desire to move beyond this and start to reason

about joint physical constraints of objects is one of the motivations behind the current

1Of course, the most straightforward and computationally simple approach to data association is
to greedily select associations between observations and objects, for example with a nearest-neighbour
search. Clearly this can quickly lead to degenerative behaviour.
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thesis1.

Both of these approaches are mostly applicable to Kalman filter style methods, though

can be altered to deal with sampling methods and multiple modalities (Rasmussen &

Hager, 1998). Particle filters have two natural ways of dealing with multiple objects:

either extending the state space to make a joint tracker, or assuming each object in-

dependent except where necessary. The latter approach tends to reduce computational

complexity but the former approach is much simpler analytically speaking (Chang et al.,

2005; MacCormick & Blake, 2000; Tweed & Calway, 2002; Vermaak et al., 2003).

3.7 Evaluating motion estimation and tracking

When evaluating estimation algorithms it is always useful to know the ground truth.

For experiments in simulation this is not a problem as the true trajectory is well known

(Iu & Wohn, 1990; Weng et al., 1987; Young & Chellappa, 1990; Young, Chellappa, &

Wu, 1991). Experiments can be done in real situations where the scenario is manipulated

by hand (Broida & Chellappa, 1991; Hu & Ahuja, 1992a), or automatically (Stolkin,

Greig, & Gilby, 2005). Perhaps the most flexible approach to obtaining ground truth

is to instrument the scene, for example with motion sensors, highly calibrated multiple

cameras, gyros, and so forth (Balan, Sigal, & Black, 2005).

However, this information is not always available in real-world scenarios, or where the

equipment is not available. This is particularly relevant in the work described in this

thesis where the aim is to evaluate the performance of motion estimation and tracking

algorithms on real object motion.

A commonly used alternative approach is simply to run the algorithm and check by

eye for major tracking failures. For a quantitative comparison it may be possible to count

the frame at which the tracker fails or count the number of failed videos. For the most

1Efficiently reasoning about joint physical constraints is not done in a general way in this thesis; it is
further work. The point being made is that the work in this thesis is an foray in that direction.
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part this approach works well, though when trying to deal with numerical differences in

performance other methods are necessary (Needham & Boyle, 2003).

To get numerical results in sampling trackers, one approach is to run the tracker a lot

and assert that the resulting estimate is close enough to the real estimate to make for a

good comparison1 (Mörwald, Kopicki, et al., 2011); this is a problem for monocular vision

though as some parts of the estimate (e.g. depth) are inherently very variable. To solve

this, a rig can be set up with multiple cameras and hand-assisted bundle adjustments

run to find the best parameters; such an approach is probably the best that can be done

in such a case. Where time or space do not allow for this setup, the author has found

it mostly sufficient to compare the image projections of estimated object location to the

hand-labelled image projection, thus doing the comparison in image space (Duff, Mörwald,

et al., 2011). This approach does tend not to assign a large weight to errors in naturally

ambiguous dimensions (such as depth); this is both a benefit (since monocular algorithms

are not expected to do so well there) and a problem (since it does not challenge them to do

better). Indeed, it is also common to cross-check results from one approach or modality

with results from other modalities, sometimes human-assisted (Erdem, Tekalp, & Sankur,

2001; Erdem, Sankur, & Tekalp, 2004).

How distance-from-match should be evaluated numerically is also a cause of some

discussion, with considerations focusing on which elements of tracking failure should be

emphasised and what happens when part of an object is occluded (Erdem, Tekalp, et al.,

2001; Erdem, Sankur, et al., 2004). In this thesis, when ground truth is known, for 3D

poses, the continuous space of point mismatches within an object is integrated over; for

a set of 2D points, a simple sum of squares error is sufficient (Duff, Wyatt, et al., 2010),

and for image projections of 3D objects, squared distance in image space is added over

a set of distinctive points (Duff, Mörwald, et al., 2011). A plethora of other methods

exist that deal with the situation where an object is not in the scene and many different

1The idea behind running a sampling-based tracker a lot is that it is possible to be reasonably certain
that most of the state-space has been explored; as a consequences, such approaches are really tests of the
sampling strategy more than anything else.
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statistics should be collected to characterise performance in different ways - including

frames properly tracked, false track, track failure, track fragmentation, latency, total

overlap, target swapping, track closeness and match (Yin, Makris, & Velastin, 2007); a

lot of the counting methods use thresholds for example to determine whether a frame is

tracking or not; it is not always clear what this threshold should be so either an ROC style

analysis needs to be done or pure continuous measurement approaches used (not always

possible if a target really does disappear, though even invisible targets could be tracked

to a degree). Since point trajectories can be similar but displaced in time or space, it may

be possible to match the absolute time and distance displacement between trajectories, or

even to ignore the time element altogether, though how rotating objects might be dealt

with is further work (Needham & Boyle, 2003).
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CHAPTER 4

BACKGROUND: PHYSICAL SIMULATION AND
ESTIMATION

“What happens if a big asteroid hits Earth? Judging from realistic
simulations involving a sledge hammer and a common laboratory frog, we can

assume it will be pretty bad.”

Ascribed to Dave Barry

The previous chapter dealt with the background of techniques for motion estimation

and computer vision. This thesis is about addressing the same problems with the added

help of physical cognition in the form of off-the-shelf physical simulation.

This chapter will proceed in two parts. It will first deal with the theory and practice of

modern real-time rigid body physical simulation focus on that used in games and demos,

as well as a brief discussion of alternatives. Then it will go on to discuss other approaches

to visual estimation using physics.

4.1 Physical simulation

Physical simulation is the task of modelling the change of physical systems over time; given

a full description of the system at a certain time and a model of its dynamics, predicting

its evolution over time. Actually, many simulations do not use prediction as a criterion

for success since the aim is to appear realistic to humans, in which case plausibility is the
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more often used criterion. This is true of the simulator exploited in this thesis, PhysX1

(“PhysX Features,” 2010), based on the presumption that if a physical simulator embodies

some information about a system, it should be possible to exploit that information to do

better tracking.

Recall that in Chapter 2, the deterministic simulation function fdyn() was defined as:

xti+1
= xti+∆ti (4.1)

= fdyn(xti ,θ,uti ,∆ti) (4.2)

For simple systems, such as point masses moving in the presence of gravity, it is often

sufficient to specify the equations of motion fdyn() and initial state xti and solve them

analytically for xti+1
. For more general simulators, however, including collisions and

motions specified as difficult differential equations, possibly with constraints, generally

what is required is a mixture of collision detection and numerical integration.

In summary what happens is this: The equations of motion are integrated forward in

time, with constraints applied if objects are touching or for joints and so forth, and at

each time-step the system is checked for discrete changes in configuration - in particular,

collisions. If a change is detected then the integrator is updated, for example, with the

introduction of new constraints, forces, and impulses based on object contact and run

again (Witkin, Baraff, & Kass, 1997).

Since collision detection is performed at discrete intervals, clearly this is a kind of

approximation, but it works if objects are not moving too fast2. If objects are moving too

fast then collision detection must be solved across the time as well as spatial domain and

1If the reader is wondering why PhysX (previously NovodeX) was chosen as the simulator of choice in
this work, particularly in light of its closed sourced nature where many open source alternatives exist, both
used in games and in research and education (“Bullet Physics Library,” 2011; “CRISIS Physics Library,”
2011; “Newton Game Dynamics,” 2011; “Open Dynamics Engine Manual,” 2011; “PhysBAM,” 2011),
that reader can be assured that the choice is arbitrary. PhysX is indeed fast, robust and easy to learn,
though other simulators share these characteristics; it is because it was already in use by colleagues of the
author. The use of another physics engine is not anticipated to result in significantly better performance.

2Too fast in this context is a velocity that would make an object cross over several different collision
configurations in one time-step.
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so becomes more complex, to implement and computationally. This is called continuous

collision detection (or CCD). In most typical applications this is not required.

Once collision detection finds a contact, it may be that objects are already penetrating.

At this point it could be possible to wind back time to close to the point of collision but

again that is a hard problem to get exactly right, and deferred recovery over time can

lead to visible jitter, so objects are often allowed to interpenetrate to various degrees.

There is a lot of variety in the way that these steps are carried out and the different

approaches will be discussed below. But first, a word about representation of the state

that is being propagated forward in time here, then a discussion of the mechanics behind

the integration of physical systems, and collisions. Ample tutorials exist already about the

basics of real-time physical simulation (Baraff, 1993; Catto, 2005; Eberly, 2010; Lengyel,

2003; McShaffry, 2009; Witkin, Baraff, & Kass, 1997) and robotic mechanics (R. M.

Murray, Li, & Sastry, 1994), so it will only be covered in as much detail here as is

required to elucidate the peculiarities of the PhysX physical simulation engine.

4.1.1 Representation

Because the scenarios addressed in this thesis generally fit the assumptions of rigid body

motion, the focus in this section is on rigid body motion. A rigid transform translates

and rotates a body (for a tutorial in the context of the visual apparatus see appendix

A). A rigid body is a body whose component displacements are only ever in terms of

the rigid transform governing the whole body - that is, parts of the body do not move

independently1. These constraints allow the pose of the whole object to be represented

by a small number of variables. A rigid transform is typically defined in terms of the

transform of the object reference frame; the pose of an object is the transform of this

frame with respect to the world reference frame. The centre of the coordinate system in

1The rigid constraint can be defined in a number of ways, for example, by requiring that the distances
between particles in the body remain fixed (R. M. Murray et al., 1994). This constraint is sufficient if it
is assumed that the particles making up the body can only move continuously in 3D space; alternatively,
a handedness preserving criterion could be used, such as conservation of cross product relationships.
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the object reference frame is arbitrary as long as it is treated consistently, though the

centre of mass is a good choice because in free-flight motion it is about the centre of mass

that the object will rotate (R. M. Murray et al., 1994; Witkin & Baraff, 1997).

The pose of a rigid object can be approximated by 6 numbers (3 for 3D location, and

3 for rotation in Euler angle or axis-angle format), though the easiest representation to

apply to points contains a full rotation matrix representing rotation RO/W together with

a linear translation TO/W as these can be directly applied to coordinates as transforms.

Axis-angle is possibly the most intuitive representation as it defines the axis through

which the rotation occurs and the amount of the rotation and can be represented as one

3D vector with the length encoding the angle of rotation (called exponential coordinates)1.

To obtain a rotation matrix from these representations involves sine and cosine functions,

which is not always optimal; and for this reason quaternions are often used instead; unit

quaternions are like angle-axis representation with the sines and cosines already taken, and

can for this reason be applied directly to coordinates to transform them2. Quaternions are

common to use in the internals of physical simulation and also estimation (Catto, 2005;

Metaxas, 1997; Popovic, 2001; Witkin & Baraff, 1997); though full rotation matrices can

often be used just as efficiently, they can easily drift from pure rotations3 (normalising

quaternions is less costly computationally). If an object’s translation is T and quaternion

q, its pose x can therefore be written as a 7 dimensional quantity x =

T
q


.

Clearly the pose of an object is alone not sufficient to represent its dynamic state,

which should include its instantaneous velocity too4. The translational velocity, that is

the rate of change of the object’s local coordinate system, can be represented as the set

of rates of change of each of the basis vectors in the global coordinate system. However,

angular velocity is not so straightforward. At each time point it is possible to define the

1To obtain three number rotations, Euler numbers (3 subsequent rotations along separate axes) are
possible but these have problems with singularities and are not always straightforward to understand.

2Quaternions are used as a representation for rotation in the estimation part of Chapter 6.
3Moreover, in the context of estimation, there are too many degrees of freedom in a rotation matrix;

this parameter drift can dominate the process and stop all progress.
4An alternative representation involves using linear and angular momentum instead of linear and

angular velocity (Witkin & Baraff, 1997); each approach has consequences.
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location of any point on the object in terms of the current rotation of the object frame

with respect to the world frame and its linear displacement (YWld = TO/W +RO/WYObj).

If the rate of change due to the translation in the object coordinate frame with respect

to the world frame is subtracted, the movement that remains to a particle is to orbit at

a fixed distance around the centre of the object coordinate system (since distances are

fixed in rigid bodies). Therefore, the points’ motion must be perpendicular to the vector

reaching it from the origin of the coordinate frame. So for all particles in the object there

is a unique vector perpendicular to both of these vectors (and parallel to the rotation axis)

that can be used to define the movement of all of the particles1 (R. M. Murray et al.,

1994; Witkin & Baraff, 1997).

Defining this angular velocity vector as ω and the translation rate of change (velocity)

as v, the instantaneous state of a fully dynamic object might be written as x =


T
q
v
ω


, 13

numbers2.

Just as the rigid constraint allows the motion of all the particles to be written in a

very compressed way, so too does it allow the mass distribution and momentum of all

the particles to be written compactly. The translational momentum ρ of an object is the

sum of the translational momentum of the particles aligned with the movement of the

object centre, and the angular momentum L is what is left over (and subsequently each

quantity is conserved in the absence of external forces). The translational momentum

carries the relationship with mass and velocity as individual particles: ρ = mv. Since the

angular momentum is therefore related only to the angular velocity and mass of all of the

particles, a relationship can be found between angular momentum and velocity in terms

of the mass distribution over the object. It turns out that this relationship can be found

by integrating the mass distribution over the object and obtaining an inertia tensor, here

1Note that the rate of change of the rotation matrix can be easily calculated by calculating what
happens to the basis vectors making up the rotation matrix (R. M. Murray et al., 1994; Witkin & Baraff,
1997).

2If a more compact representation were chosen, with the rotation in angle-axis (exponential) coordi-

nates the full state might be x =


T
θ
v
ω


12 numbers, or if the full rotation matrix were used, it might be

x =


T
R̂
v
ω


18 numbers.
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called I, such that L = Iω (R. M. Murray et al., 1994; Witkin & Baraff, 1997). With

respect to the object’s own frame of reference this remains constant, but to be useful it

is typically calculated in the world frame of reference and hence can change as the object

rotates. The relationship between angular velocity and angular momentum (also typically

calculated in world coordinate frame) therefore can change; since the momentum of all

the individual particles must be conserved, the angular momentum of the whole object is

conserved, and the angular velocity can oscillate - this is called precession. Of course, this

effect is small and so it is possible to ignore this precession and get reasonable looking

results in terrestrial situations - indeed, experiments show that the physics engine used

in this thesis - PhysX - does make the assumption that translational velocity rather than

momentum is conserved. Considering that simulation typically involves linearisation of

velocity while solving for motion (rather than momentum) parameters, clearly having a

constant velocity can lead to more accuracy and stability in the simulation (Catto, 2005;

Duff, 2011a).

The shape of the body can be approximated by a set of parametric surfaces, a com-

position of polygonal primitives, a polyhedral mesh, or, as is done in this thesis, by an

arbitrary trimesh1. Convexity of the trimesh or shape is often invoked to reduce the

complexity of collision detection and resolution2. Since conducting intersection searches

for planes or surfaces from two objects can be quite expensive computationally, often the

object is associated with an approximating shape, typically a box. This box can be axis

aligned (AABB) or it can be oriented with the body (OBB). The axis aligned bound-

ing box box can be used for such computations as an initial check for the possibility of

intersection of two objects (see the collision detection section below).

The characteristics of the surfaces of the body are also important in simulation. This

is typically boiled down to a few properties of the material from which each facet of

the body is made; friction (static and dynamic) as per the Coulomb model of friction,

1Such a trimesh is represented as a set of vertex coordinates and a list of triangles each with three
indexes into the list of vertices.

2Concave objects are typically represented as composed of multiple convex objects.
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coefficient of restitution and skin width are the most common.

Friction refers to the force on objects coming from the interaction of surfaces - static

friction the force that helps maintain objects in static contact and dynamic friction that

slows objects moving over each other. The friction forces in the Coloumb model are

calculated as proportional to friction coefficients that are properties of the material and the

force pushing the objects together (generally that force aligned with the contact normal).

The Coulomb model is very well supported experimentally, and its discontinuous nature

difficult to do away with, without getting implausible physical behaviour (Stewart, 2000).

For real-time simulation the Coloumb model is not the most robust model to implement

and so approximations are typical; for example, this can be as extreme as eliminating the

effect of the size of perpendicular forces (Catto, 2005); PhysX is more realistic than that

but there are similar efficiencies built in (Duff, 2011b).

The coefficient of restitution describes the proportion of momentum left in two bodies

after colliding impact (as opposed to resting contact, where the coefficient can be con-

sidered zero). This is generally considered a body-level property, but when two objects

collide it is not always clear how the coefficients of the two bodies should be combined;

indeed, physics engines typically allow for a number of different approaches depending

on the application. Again, this parameter is an approximation and it turns out that

factors such as the shape of the object influence the restitution coefficient through multi-

ple microcollisions, vibrations set up within the object and other factors (Stewart, 2000;

Stoianovici & Hurmuzlu, 1996).

Skin width is not really a property of the material; it is a parameter that is used

to determine what degree of interpenetration is allowable between resting objects, and

as such less related to the physical model than an indication of how it is dealt with

procedurally by the simulator (and not every simulator will use it). To understand why

interpenetration might be useful in a physics engine, consider first that the problem of

exactly determining the state of resting contact so that all contact points align and are

not moving is a difficult one (Witkin & Baraff, 1997); rather than solve it completely,
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it is frequently easier to apply an additional soft constraint that pushes objects together

again. A small restoring force can be used to reduce penetration over multiple solver

iterations, but that can have the visual artifact of objects settling slowly into place or

jitter. Indeed, if penetration is too deep then it can become unstable and bounce. So

rather than applying restoring forces, sometimes it is better just to leave the object where

it is. This is not always possible and for deep penetrations, one trick (used by PhysX)

is to forget the restoring velocity after each time step (D. Black, 2011). The effect of a

small amount of interpenetration is typically not visible, so it is plausible after all for

applications in which it is the human eye that is important or where exact conformance

to a physical model is not necessary.

4.1.2 Time integration and imposition of constraints

As mentioned above, the core task of physical simulation is integrating the equations of

motion over time. It is the consideration of the rate of change of the system, its dependence

on system state and effect on the time evolution of the system that makes this a dynamic

approach - as opposed to kinematics, where the task is one of determining paths through

state space without these considerations. In order to integrate the equations of motion

over time, the rate of change of the system is required. In the following example, the rate

of change of translation, rotation (in quaternion coordinates), linear and angular velocity

is the vector that represents the rate of change of the system with time:

d

dt
xt =

d

dt


T
q
v
ω


=

 v
dq
dt
dv
dt
dω
dt


(4.3)

The calculation of these components depends on the current state of the system in a

number of ways: inertia, but also impulses applied to objects from collisions with each

other, constraints on the object motion from for example joints or resting contact between

surfaces, and also external forces such as gravity or forcefields.

One approach to dealing with contacts is to take each contact or constraint in isolation
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and calculate an impulse based on the current state (Mirtich & Canny, 1995), though in

order to create an efficient and more stable simulator it is typically better to deal with

all the constraints simultaneously (Catto, 2005; Witkin, Baraff, & Kass, 1997) since for

multiple contacts an impulse based method resolves multiple contacts over time which

can lead to jitter or instability as different local restoring impulses compete; this could

alternatively be resolved by computing those impulses iteratively before advancing the

simulation (Bender & Schmitt, 2006). A typical constraint based approach would solve

for internal forces in terms of current state and external forces and resolve those forces

into d
dt
xt. From this rate-of-change the aim is to integrate forward in time to produce the

next state:

xti+1
= fdyn(xti ,θ,uti ,∆ti) (4.4)

= xti +

 ti

ti−1

d

dt
xtdt (4.5)

The most basic way of integrating Equation 4.5 is by using Euler’s method. Euler’s

method simply uses the velocity at each time step to calculate what the state would be

at the subsequent time step, assuming that the state only changes linearly. If these steps

are made small enough, then the result converges to the true result:

xti+1
≈ xti +∆ti

d

dt
xt (4.6)

However, the system has a tendency to drift because of the inbuilt approximation,

particularly in the presence of “stiff” problems (so called because of such a systems analog

to a stiff spring) - that is, problems with d
dt
xt very sensitive to state parameters. Such

problems defeat the linearisation of the problem. Actually, the term “drift” can be an

understatement. If the step size is too large for the problem, error can propagate so

quickly that the system becomes unstable and rather than drifting, “explodes”.

For very realistic or at least sophisticated offline models of the world, in theory these
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numerical steps could be run at very high temporal resolutions, but even for some very

stiff offline systems this is impractical and the way the problem is posed is important. As

such, in real-time physics, many extra approximations are usually done to the model to

ensure that the numerical results not diverge too drastically from the estimated; some of

these have already been mentioned above: maintaining a constant angular velocity when

solving for velocity, for example. An additional such approximation done in PhysX is to

scale down the constraint forces acting on a body by the number of constraints on the

body - this helps stability in resting stacks, for example (D. Black, 2011).

Apart from reposing the problem, the Euler method can be updated to use different

ways of solving the integration problem. Rather than using the velocity calculated at

time-point ti, the Runge-Kutta method works by running a full Euler step but then

taking from that and from successive calculations different pieces of information about

the expected state change at different time points during the time step and calculating

the new derivative from that; ultimately an estimate of the average change over the whole

time-step is acquired (Shabana, 2001).

Constraints can be dealt with in a number of ways, including introducing theoretical

new force variables into the problem that serve to maintain the constraints, or indeed re-

ducing the number of variables by taking into account the reduction in degrees of freedom

and mapping system variables to a smaller space (R. B. Gillespie, Patoğlu, Hussein, &

Westervelt, 2005). The former approach is in generally easier to apply and so dominates

real-time physical simulation (Catto, 2005).

An orthogonal improvement to the Runge-Kutta method is to pose the problem of

time-stepping as an “implicit” time integration problem. The aim here is, rather than

calculating the state at time ti+1 based on information of the state of the system at time

ti, a sub-problem is solved where the constraints at time ti+1 are taken into account

and the rate of change at ti+1 calculated. Such an approach has the effect of better

accounting for constraints because constraints must hold at the resultant time point. The

resulting system of equations that make up the sub-problem can be difficult to solve
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(Witkin & Baraff, 1997); however, in order to solve the resulting sub-problem the motion

of the system can be linearised and most benefits still obtained; also, an iterative solver

can be used to approximate the solution to a chosen degree (Catto, 2005; Moravánszky

& Terdiman, 2004); iterative solutions can be effective when exploiting solutions from

previous time steps - the tendency of solutions to problems to be similar over time is

called “coherence”. Such systems can also be quite sparse1 because constraints can be

mostly local - such sparseness in the sub-problem can be exploited when solving2.

4.1.3 Collision detection and resolution

The previous section discusses the process of integrating constraints and forces over time;

however, dealing with object surface interaction in such a framework would be compu-

tationally and practically difficult3. Rather than attempt to represent such issues in the

equations of time evolution, modern real-time physics engines use collision detection rou-

tines to detect when objects are in contact and then resolve them by introducing new

forces or constraints into the equations of time evolution.

According to Witkin and Baraff (1997), there are two main kinds of contact:

• Colliding contact where objects are unlikely to spend much time in contact, where

the collision is resolved by adding impulses (momentum or velocity changes) to the

colliding parties.

• Resting contact where objects may be moving slightly with respect to each other

but are maintaining a contact, resolved by introducing new constraints.

Before “near phase” contacts are considered, for the sake of efficiency a “broad phase”

collision test is typically carried out where the (usually axis aligned) bounding boxes are

1A sparse linear system is one where many of the terms in the system have coefficient zero; such a
system is computationally cheaper to solve with sparse methods that exploit the sparse system matrix
layout in memory and the ability to effectively ignore much of the matrix

2Rather than using sparse matrices, the representation may ignore matrices altogether - and this is
what PhysX does in its iterative solver (D. Black, 2011).

3The fact that the nature of surface interaction produces largely discontinuous state evolution would
mean that any continuous approximation would be exceedingly stiff, and very difficult to solve.
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checked for overlaps to efficiently exclude most potential contacts from going through

the more complex near phase routine. Such broad phase sweeps are typically done by

sorting the boxes and sweeping over them or by partitioning the space efficiently. This

broad phase is particularly important when there are a lot of objects in a scene1 (Lin &

Gottschalk, 1998; Witkin & Baraff, 1997). In PhysX the broad phase is done using sweep

and prune which is the same as sort and sweep, though re-using the sorted list and list of

overlaps between time points (D. Black, 2011; Lin & Gottschalk, 1998; Witkin & Baraff,

1997); PhysX also has a mid-phase pruning algorithm that uses object aligned bounding

boxes in the case of triangular meshes (D. Black, 2011; Gottschalk, Lin, & Manocha, 1996;

Lin & Gottschalk, 1998; Terdiman, 2001).

For near phase contact routines, the aim is first to determine if there is a contact (the

collision detection part) and if so to find some key information about the contact - an

estimate of the location of the contact point, the relative velocity of the objects at the

contact point, and face normals or vectors perpendicular to touching edges. This last

part is called contact generation. Contact generation is a key place where efficiencies

can be made in physics engines since eliminating contacts early reduces processing time

later and reduces the likelihood of overconstrained systems later when too many contact

points introduce too many constraints; approaches to reducing the number of contacts

generated like this include ignoring contacts between impossible edges vertices or planes

and clustering related contacts; the distribution of the contact points generated is impor-

tant in stability and realism, however, so general desiderata include widely spaced points2

(Moravánszky & Terdiman, 2004). In general such approaches make use of the separating

axis theorem which states that a plane can be found between non-intersecting convex

objects3 (Lin & Gottschalk, 1998; Witkin & Baraff, 1997).

1An additional efficiency improvement is that unmoving objects that are in stable configurations get
put to sleep.

2As with caching of solutions to constrained systems described above, caching contact points across
time-steps can allow the physics engine to analyse the contacts for drift as well as to speed up the search
for contact points (Moravánszky & Terdiman, 2004).

3The nature of the routine for determining contact and finding contact points depends on the colliding
shapes, and since a lot of different kinds of component shapes exist in PhysX, there are a lot of such
routines (D. Black, 2011). In this thesis, however, only tri-meshes are employed.
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Once the contact point information is extracted, if the relative velocity of the objects

at the contact point is high enough, a colliding contact is assumed. Based on the location

of the contact point with respect to each of the centres of mass, the linear and angular

momentums of the bodies, a force is applied at the contact point, which affects both the

linear and angular momentum and velocity of each object. The amount by which energy

is conserved in the collision is determined by the coefficient of restitution of the materials

making up the individual bodies1.

If the relative velocity of the objects towards each other is low enough at the point of

collision (this threshold can depend on the coefficient of static friction), then a sliding or

resting contact is assumed. In this case the resulting constraint typically forces the relative

velocity of the objects to zero, and the sliding velocity can depend on the coefficient of

dynamic friction. Imposing a velocity constraint rather than a constraint on the state

is more likely to create linear constraints, with less likely the need for later physically

implausible imposition of constraints and less likelihood that constraint based solvers be

inaccurate, though as noted above, drift may need to be addressed under such a scheme

(R. B. Gillespie et al., 2005). This is the idealised case and, again, efficiency improvements

often trump devotion to any model of physics. For the purposes of visual tracking this

forces the visual tracker to use the physics model in a robust way; this is essential at any

rate because the model can always be wrong.

4.1.4 Stochastic simulators

In this thesis, the deterministic simulator is used as the backbone of a stochastic simulator

by sampling from noise that is added to the simulator. However, a field of simulation

already exists called stochastic simulation which deals with the numerical simulation

of stochastic processes. The basic approach to simulation of such a process typically

involves approximating the time evolution by sampling from the variance and adding

1Kinematic-only actors are treated as having infinite mass, which means that all of the resultant force
is applied to the other object.
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the rate of change multiplied by a very small ∆ti (D. T. Gillespie, 1992). This is clearly

essentially a stochastic version of the Euler method described above. Indeed, the discrete

and continuous extended Kalman filter can be considered a kind of stochastic simulation

when carried out in the absence of observations, the same linearisation process occuring

locally in the discrete version; the particle filter too does Monte Carlo simulation of a

process.

4.1.5 Learned simulators

The numerical problems posed above are complex, and their efficient real-time calculation

the subject of a large literature. Rather than attempt to solve them directly, the problem

can be bypassed by re-representing it in a less explicit but algorithmically simpler way.

In the Neuroanimator system, Grzeszczuk, Terzopoulos, and Hinton (1998) use a phys-

ical simulator to train neural networks to do the same job that the physical simulator does.

The neural network has the advantage of being compact and easy to evaluate online. The

technique is used to get realistic animations and its smoothness allows controllers to be

trained on the learned simulator. On the other hand, it requires transformation into

an object based frame, normalisation, regularisation with some Euler steps, and other

tweaks; it doesn’t handle collisions, and stiff systems can be a problem. However, for

some graphics applications, it proved useful1.

Indeed, in robotics learning, predictive models (forward models), sometimes predictive

of state, sometimes of sensor input, are a common precursor to learning or deriving

controllers (inverse models), though these predictive models are themselves often learnt

from data (Jakobi, 1997; Jordan & Rumelhart, 1992; Kopicki, Wyatt, & Stolkin, 2009;

Todorov, 2011; Wolpert & Kawato, 1998; Zagal, Delpiano, & Ruiz-del-Solar, 2009; Ziemke,

Jirenhed, & Hesslow, 2005). These predictive models are a form of simulator; the difficulty

1Reissell and Pai (2001) also present an approach to learning simulations from data, in the form of
autoregressive dynamical systems or different exemplar-based motions with Markov Chain switching to
handle discontinuities, though the dimensionalities of the systems simulated do not yet approach that of
Neuroanimator. Reissell and Pai (2001) add stochasticity to their simulation through the Markov Chain
or by adding noise based on the standard deviations of the learned residual.
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is in learning them and applying them to the control problem. In the present thesis, the

simulator is applied to the estimation problem, but many of the same concerns remain

in the application phase; that is, dealing with inaccuracies in the prediction. Whether

the simulators are learnt from data or are designed, this problem applies: all models are

simplifications and only approximate reality according to some broad criteria. Jakobi

(1997) notes that there are aspects of the simulation implementation that are important

for learning a controller (or in our case, for employing it in an estimator), and there

are aspects that are irrelevant or misleading. His solution is to add a lot of noise to

the simulator, particularly in areas that are noisy in reality or that would mislead the

controller, whilst learning the controller so that the controller only exploits aspects of the

simulation that are robust to change under noise, and as a result under model failure. In

the context of estimation, this addition of noise to the model is essentially what is done

in the particle filtering case in practice, where process noise is added to account both

for model failure and loss of track. There are many ways that noise can be added to a

simulator, as discussed in this thesis, including adding noise to the simulator parameters,

adding dispersion noise, and impulse noise. Wolpert and Kawato (1998) suggest that

context-dependent predictive models and controllers should account for a large range of

human motor learning and adaptation capabilities, the presence of the predictive model

assisting in context-switching and driving learning of the controller.

4.1.6 Qualitative simulation

Rather than simulate the exact estimated state of the system or its numerical uncer-

tainty, the qualitative approach to simulation propagates symbolic descriptions or inter-

vals1(Davis, 2008; De Kleer & J. S. Brown, 1984; Kuipers, 2001). For example, Nielsen

(1988) simulate a clock qualitatively by working in a configuration space made up of in-

1Qualitative descriptions might include intervals and directions of change, or in the “semi-qualitative”
case, exact numeric propagation of intervals according to “qualitative calculus”: constraints and descrip-
tions of the evolution of a system which may be as broad as the direction of change of a variable or as
specific as a differential equation on the upper or lower bound of an interval (De Kleer & J. S. Brown,
1984; Kuipers, 2001).
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teracting components1, but the simulations include a range of behaviours from perfectly

working clocks to clocks broken in a number of interesting ways2.

The main potential benefit of qualitative approaches would seem to be the application

of known reasoning methods to new problems3. Another insight is that a good discrete

abstraction is more amenable to computation than the original continuous problem one,

and that mechanisms for reasoning over qualitative representations should generalise easily

to different situations. However, the imprecise nature of the qualitative approach forces

it to consider a large set of possible system behaviours and so suffer from a problem of

combinatorial explosion; moreover, the promise of generalisability has not been met in

practice and each new system needs to be studied in terms of representation and algorithm

(Cellier & Roddier, 1991).

It has been formally shown that a qualitative simulation can be guaranteed to simulate

the true behaviour of the system (providing the model supplied is correct), but not that the

qualitative simulation can be guaranteed to find only the true behaviour of the system (Say

& Akın, 2003). The upshot is that in order to be able to perform as well as quantitative

simulation in terms of accuracy, qualitative simulation may have to become much more

quantitative.

However, useful hybrids exist. A hybrid qualitative-quantitative approach is described

by (R. B. Gillespie et al., 2005) where constraints are embedded into systems of equations,

and their degrees of freedom reduced, using algebraic reasoning online 4. Moreover, auto-

matically abstracting qualitative models from quantitative ones and from data is an active

1One group of qualitative abstractions of physical systems involves dividing the world up into inter-
acting components and describing the interactions, others include discrete processes, constraints, actions
and events (Davis, 2008; De Kleer & J. S. Brown, 1984; Kuipers, 2001).

2For an example within the domain of this thesis, the idea might be to produce a system that reasons
“the object is falling”, “the object has bounced (or might still be falling”, “the object has bounced twice
(or might have bounced only once)”, and so forth.

3To be more specific, dependent on finding the right abstraction, tools exist so that in each domain
simulation, estimation, planning, counterfactual reasoning, initial value problem, and other tasks are
possible with minimal set-up. For example, in the domain of manipulation planning, dividing the kinetic
configuration space up into connected components corresponding to grasps and placements can speed up
the search for a good manipulation plan (Jiménez, 2008; LaValle, 2011a, 2011b).

4Obvious links exists between stochastic approaches to simulation and discrete qualitative reasoning;
qualitative reasoning being a form of stochastic reasoning with interval-based probability distributions.
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line of research (Alur, Henzinger, Lafferriere, & Pappas, 2000; Hau, Coiera, & Muggleton,

1997; Liu, 2008; Loscalzo & R. Wright, 2010; Sachenbacher & Struss, 2005; Struss, 2002;

Wang & Cellier, 1990; Zabkar, Mozina, Bratko, & Demsar, 2011).

Qualitative simulation is part of a broader approach to tackling computer understand-

ing of physical phenomena via reasoning, called qualitative physics (Davis, 2008; De Kleer

& J. S. Brown, 1984). Qualitative physics itself has its roots in naive physics - attempts to

create computer models of theories for how humans reason about physics(Hayes, 1979 as

cited by De Kleer and J. S. Brown, 1984; B. Smith and Casati, 1994). The main critique

levelled against these approaches by psychologists is that although explicitly focusing on

human-level or human-like descriptions of the world, the are generally too tangled in

the preoccupations of computer science and formal ontology (B. Smith & Casati, 1994)1.

Of course, more broadly, it is necessary to be skeptical of any approach that attempts

to reconstruct a system for reasoning motivated primarily by introspection. Indeed, hu-

mans are generally wrong about the mechanisms of their reasoning in physical systems

(Schwartz, 1999).

Further regarding the input of psychology into this area, there is some work in mental

models of phenomena that is relevant. There is a school of thought that a lot of what

people do in the way of reasoning about physical situations can be considered mental

simulation of physical models. Hegarty (2004) collects evidence of characteristics of human

physical reasoning that seem to share some properties with simulation, but might not fit

so well with alternative explanations such as mental imagery and inference from setential

descriptions.

For example, the amount of time it takes to solve some tasks offline relates propor-

tionally to the amount of time it would take to solve the same task by simulating the

task in reality - mental rotation being the classic example, but also simulating interacting

1One way that this shows itself is that the reasoning mechanisms for inference of time course in a
qualitative simulation can often be quite a convoluted logical train and far from the kind of reasoning a
human might describe. One approach to dealing with this is to provide a post hoc causal explanation;
that is in terms of a train of events each of which has a local cause (De Kleer & J. S. Brown, 1984). In
order to do this a partial ordered “mythical time” is invoked; such a local-cause approach is reminiscent
of the impulse trains applied by Bender and Schmitt (2006) in order to maintain constraints.
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cogs (Schwartz & J. Black, 1996). On the other hand, time taken to simulate complex

physical systems goes up in the complexity of the component interactions as well, the pro-

cess carried out by participants seems to be a propagation of effects through components.

Other evidence found in individual differences in spatial reasoning ability and dual-task

studies which ties the theory to neuroscience suggests that language brain centres are not

exploited (though this is not true when the tasks can be solved using learned rules). Of

particular interest is that some experiments involving imagining the task of pouring of

liquids were difficult to do unless the body was oriented appropriately for the task. An

interesting list of such probes and more can be found in Hegarty (2004)1.

According to Gentner (2002), human mental models (a word that encompasses mental

simulation of physical models as well as more rarefied models such as economic models) are

frequently wrong in interesting ways - for example, the way a ball rolls off a table may be

thought to involve some continued horizontal movement before it drops, and missiles flung

in a circle may be thought to continue this curvature in their free flight. Moreover, people

hold conflicting mental models but only apply them in relatively restricted situations;

moreover, models are frequently re-used in analogy to earlier models.

One implication of this approach with respect to this thesis is the assumption that

simulation can underly physical inference; this may be so as illustrated in this thesis,

but the converse can still also apply; simulation is just one kind of physical cognition

among many, and while the ability to solve one kind of physical inference (for example,

control, planning, estimation) could easily share mechanisms, the inference tasks are still

very different and different representations required for each one; neither is it clear that

1Pylyshyn (2003) argues that it is the subject and nature of the task requested of participants in
investigations probing the use of internal models, rather than the nature of the underlying cognition
that leads to image-like behaviour of cognition under the circumstances reported in the visual imagery
literature - if a person is asked to perform a task in an image-like way then that is what they will do; the
same argument can be applied to simulation type tasks. In the experiments by Schwartz and J. Black
(1996) participants showed a variety of approaches to solving the problem of inferring the future state of a
set of two gears, depending on task setup such as level of detail provided, whether visualisation or analytic
approaches were requested, arguing that this casts light on the mechanism involved with each approach
and its primes. Schwartz (1999) notes that inferences based on explicit belief are often wrong compared
to when participants are required to visualise, implying that there are at least distinct mechanisms at
play.
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simulation is anyway the primordial such task; rather it would seem that possible that

control is the more primitive task (Clark & Grush, 1999)

4.2 Dynamics in vision

Physics simulators as discussed in the previous section embody one kind of physical cog-

nition. There are other kinds of physical cognition, some of which can be captured in the

framework given in Chapter 2. It is estimation in such a framework that is of interest in

this thesis, by exploiting knowledge of the dynamics pdyn. Others have proposed using a

physics model of dynamics to improve computer vision, or more broadly, have proposed

combining the two disciplines together in some way to some end. In this section, some

this work is reviewed - this work can be seen as working in parallel to this thesis in that

the tasks tackled are similar to the tasks tackled herein.

4.2.1 Deformable simulation and continuous Kalman filtering

Chan et al. (1994), Metaxas (1997), Metaxas and Terzopoulos (1993), Metaxas and Kaka-

diaris (2002) use parametric deformable shapes and finite element surface models as a

model of full 3D objects during motion estimation and tracking. Observations are col-

lected in the form of 3D points that induce forces in the object model, deforming and

pulling the corresponding object point towards the observation as the model is simulated

over time using Euler-style integration methods as discussed above in Section 4.1.2. The

simulation variables are generalised coordinates representing object deformation shape

and pose. Constraints similar to those discussed above are used for binding compound

objects.

So estimation and simulation are tackled within one approach. The authors used

continuous Kalman filter methods for dealing better with the noise in observations; in-

terestingly, it turns out that the covariance in the Kalman filter can be thought of as
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transformation of the forces. Metaxas and Terzopoulos (1993) apply the model to synthe-

sised and motion-captured 3D data points. Chan et al. (1994) apply a version of the model

to tracking rigid objects in stereo images by allowing an image potential derived from the

smoothed edge filtered image to be projected back into 3D space as forces. Metaxas and

Kakadiaris (2002) track deformable objects and estimate their elastic properties online in

the case of 2D contours from medical images, as well as 3D head models from 3D point

data.

Deformable models are highly useful because many objects in the real-world are de-

formable, not rigid. Moreover, even if the objects being tracked are rigid, the extra degrees

of freedom can make up for noise in the estimation system, particularly if the deforma-

tions are posed appropriately (Masson, Dhome, & Jurie, 2005; Metaxas, 1997). For rigid

objects on the other hand it is often better to regularise this problem using the known

patterns of projection of 3D objects (Chan et al., 1994; Marchand, Bouthemy, Chaumette,

& Moreau, 1999). Deformable models are also useful for finding new shapes in static or

moving scenes (Metaxas, 1997) or inferring dynamic properties of objects, such as the

existence of multiple parts (Kakadiaris et al., 1994).

For a truly general vision system, handling deformable models will be necessary; some-

times it can simplify the vision problem. A lot of success has been obtained with 2D con-

tour tracking (Isard & Blake, 1998b; Metaxas & Kakadiaris, 2002) and 3D problems with

controlled conditions such as medical imaging (Metaxas & Kakadiaris, 2002). Face track-

ing is particularly applicable for deformable model based methods because a lot of the

movements of faces can be captured as general deformations, rather than the specific kinds

of deformations found in joints for example (Decarlo & Metaxas, 2000). Deformable object

tracking is a very popular area and is becoming more robust over time to re-initialisation,

occlusion, and false positive data1.

1Although this thesis does not go so far as to consider explicitly deformable objects, it manages to
distinguish itself by focusing on the problem of robustness to very bad observations and also a degree of
model failure.
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4.2.2 Explanation mediated vision

Explanation mediated vision shares a history and many techniques with qualitative physics.

In addition to simulating or making inferences in systems, explanation mediated vision

intends to understand scenes described in images or sequences of images in qualitative

terms by operating on vision-extracted information.

Stark, Hoover, Goldgof, and Bowyer (1993) have an active sensing system in which the

potential function of static objects found with a range-finder is analysed in order to de-

termine the identity of the object and further prompt scans of the object. The approach

is an expert system with functional primitives like adjacent free-space and output like

“it must be a chair”. Brand (1997), Brand, Cooper, and Birnbaum (1995) analyse static

images of unknown gear trains by passing them through a domain-specific qualitative sim-

ulator and testing and propagating consistency of constraints around the network of joints

formed by the gears and checking that the network is in equilibrium, and consequently

inferring hidden structure; further visual operations (local region growing to find new

parts) are seeded by the reasoner to disambiguate the structure on the basis of violated

constraints, and related information. A similar system is presented by Birnbaum, Brand,

and Cooper (1993) in the context of checking stacks of blocks for stability. These systems

tend to drive the visual system around the scene looking for new blocks, particularly in

areas where apparent inconsistency exists. Note the relationship of this approach with

the mental simulation work by Hegarty (2004) discussed above in Section 4.1.6 where it

was noted that it has been found that people tend to reason around links in diagrams

when doing mental simulation1. Additionally, it seems that in humans, support relations

are processed even in infants, and that support and other physical relations are made

use of early in processing in adults (Baillargeon & Hanko-Summers, 1990; Biederman,

Mezzanotte, & Rabinowitz, 1982). Brand (1997), Brand et al. (1995) also implement a

1This qualitative propagation of constraints, related to the causal approach to qualitative physics
seems similar, not only to the tendency of people to propagate effects around a scene, but also to to
constraint propagation in quantitative simulation. There seems to be something about the nature of this
problem that encourages such an approach.
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robotic solution to a cup-lifting use-case to illustrate the benefits of being able to do causal

physical inference from vision. Here, the vision server is used to make camera motion and

do visual routines, while a separate reasoner sends queries and requests and receives 2D

scene geometry.

Siskind (2003) analyses images for support relationships and stability; polygons are

pre-segmented from images and each other on the basis of cues such as colour cues, and

assigned to layers, allocated joints with other objects, and considered grounded or free on

the basis of logical criteria looking for a quasi-static stable and non-interpenetrating scene,

with the fewest such assertions1. Finding the optimal cost of a particular interpretation

for a frame can be specified as a linear programming problem in the feasible gravity-

induced velocities of objects; friction is not only useful to model physical behaviour, but

to reduce numerical instability. Using the force-object relations extracted from a movie,

system behaviour specified at a high level can be inferred (that is, event recognition) -

for example a stack can be described in terms of pick ups and put downs wich involve

sequences of force-relations between an inferred hand, object and table.

Rather than use a kinematic and stability analysis, R. Mann and Jepson (1998) analyse

scenes in terms of their dynamic properties, but suffer from noise in inferred acceleration

and velocity so that inferences in attachment, propulsion, etc are often spurious. The use

of forces handles non-passive forcing by inferring hidden “motors” in the scene; different

objects have different kinds of force-effects. Collision inference is done by looking for

any discontinuity in motion. The kinematic approach has these problems too, but not

as clearcut. Studies in humans suggest that depending on situation, information about

forces, gravity, viscosity, etc can be very important in physical simulation inferences and

tend to supplant kinematic information (Schwartz, 1999).

Bennett et al. (2004) do motion estimation by reasoning logically about object entries

and exits, occlusions, and so forth, with the assumption that objects should not move far

1The use of such criteria as reducing the number of required assertions in ordering logical interpreta-
tions is called circumscription, and it is done as a later step over sequences of frames to obtain a most
consistent interpretation of a sequence by preferring less changes of state (particularly with respect to
grounding) in objects.
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from time-point to time-point. D. Brown (2008) combines physics simulation and video

for use in teaching. A part of this package is Autotracker that uses template matches to

find well defined objects in a video stream. This supplements a manual labeling process

for comparing physics models to real-world data 1.

All of these qualitative approaches tend to be done in 2D or 21/2D, based on simple

visual region cues, and tend not to be particularly robust, operating under controlled

conditions and making assumptions of little or well-defined data noise; this is perhaps

a consequence of the need to obtain compact high-level descriptions as soon as possible

in the processing pipeline, in order to conduct qualitative reasoning - there tends to be

a difficult trade-off there between the compactness and tractability of the representation

and representing uncertainty in it.

It should be apparent that simulation based approaches have the potential to be

explanatory as well, insofar as impulse trains, temporary constraints2, contact points,

and so forth can be transformed into meaningful explanations; this does not go as far

as explanation mediated approaches in not making direct use of the explanation, but it

is, at any rate, still not clear that qualitative explanations in logical or linguistic form

are workable intermediate representations in these operations3; progress is being made on

both fronts.

To compare qualitative approaches to quantitative briefly with respect to application

to computer vision, the main benefit of qualitative approaches is in providing constraints

on visual inference problems, potentially regularising them and hopefully reducing com-

putational complexity. Though computer vision techniques do require a strong coherence

between the estimated world state and the observed video stream; that is to say numerical

1Understanding events from video is a particularly large field but this review has concentrated on
those that use physical properties of objects to infer events.

2Recall that constraints in physical simulation can sometimes be interpreted as impulses and visa versa
just as with the cause/constraint dichotomy found in qualitative physics - compare Bender and Schmitt
(2006) to De Kleer and J. S. Brown (1984).

3For example, in order to produce satisfactory causal explanations in a qualitative framework, De Kleer
and J. S. Brown (1984) were forced to produce post-hoc explanations of the output of their reasoning
process. As noted earlier, this may not be a failure of the system, but rather of our expectation that such
explanations should play a deep role in reasoning.
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accuracy is important and numerical approaches have the advantage there in that they

provide exact predictions1. Davis (2008) notes that researchers in physical reasoning and

knowledge representation agree that vision is in principle within the scope of physical

reasoning, though the kind of computation used in computer vision has not in practice

turned out to be generalisable using qualitative methods and that attempts to use knowl-

edge representation and qualitative reasoning techniques to constrain visual processing

have been rare2.

4.2.3 Physics of the human body

Some of the most exciting work in the use of physical simulation in computer vision is

in the area of model-based tracking of the human body. This is an area where a large

number of parameters need to be inferred sometimes from very little data. Physics should

help to regularise the problem; it should reduce the space of hypotheses to help speed up

inference and make it more accurate.

Use of dynamic motion predictors in the human body goes back a long way; Hogg

(1984) does both detection and tracking of full jointed models of human bodies; in order

to do tracking a walking cycle is employed and hard constraints applied to the range

of velocities and limits of body joints and a local generate and test employed around

a predicted pose and potential poses scored on the basis of edge matches with model

contours not accounting for self occlusion. The search is factored for efficiency by treating

different limb parts separately conditioned on a torso position.

At present, the most common approach to regularising the human body tracking

problem is by learning models of human body motion from motion sensors. Indeed,

many computer vision approaches use learning to find and exploit related appearances,

for example tracking a hand on the basis of a factored set of basis appearances (Heap

1The need for numerical accuracy is particularly true for a peaky likelihood formulation like that used
in Chapter 6 and 7.

2In this thesis a more bottom-up approach is attempted in that the point of generalisation between
physical and visual processes is in the use of a stochastic model, rather than qualitative descriptions.
Qualitative approaches can be considered a subset of probabilistic approaches.
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& Hogg, 1998) or learning a probabilistic partitioning of the state and trajectory space

based on appearances (Stenger et al., 2006). Beyond this, learned priors are frequently

placed over articulation and limb movement since these movements are constrained and

tend to follow stereotyped trajectories (Stenger et al., 2006).

A recent approach and perhaps the most similar to the method attempted in this

thesis adds physics knowledge into human body tracking (Vondrak, Sigal, & Jenkins,

2008), where a full dynamic rag-doll model of human motion is used as the basis of an

object tracker. Additionally, the rag-doll is given a predictive motion planner trained on

3D human motion data and a custom plausible controller separate from the simulator.

The tracker uses a particle filter with pose noise in conjunction with silhouette and edge

features. The passive rag-doll model does not appear significantly better than a constant

velocity dynamics; this is thought to be because the constant velocity dynamics approxi-

mates the rag-doll model well most of the time. However, when given a motion planner

trained on data from motion sensors and a controller, the new method well outperforms

prediction free and constant velocity approaches as well as an annealed particle filter,

particularly in monocular tracking where constraints of penetration and joint angles so

forth (but also known motion patterns) help constrain search priors in each scene (and

the annealed particle filter, that normally does very well, tends to overfit). In order to

truly know whether the improvement was due to the framework within which the learned

data was expressed, rather than by fitting to a motion prior fit directly to learned data,

more experimentation would be required, however.

Similarly, Wren and Pentland (1998) use control patterns to create a potential field

that is added to a dynamic model of human motion, particularly enforcing joint limits.

They use a Kalman filter to propagate estimates based on blobs using this controller and

simulator; they choose the currently active controller from a set of them on the basis of

the residual of the Kalman filter on each controller.
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4.2.4 Learning & control

Álvarez, Luengo, and Lawrence (2009) use a dynamical model of a body and arm to infer

the hidden (latent) forces and hyper-parameters in the model based on a Gaussian process

model and an analytically integrated Lagrangian dynamics. They successfully train a

model on motion capture of two different movements and predict a third movement by

conditioning the prediction on one of the joints. Álvarez, Peters, Schölkopf, and Lawrence

(2011) extend this approach to a switching model to deal with discontinuities, making this

approach more applicable to impacts, for example. They use this model to learn a model

of robot movement from demonstration. In other recent work, again in the context of

a Gaussian process model, Nguyen-Tuong and Peters (2010) combine a rigid dynamics

model of a robot arm with machine learning to augment the rigid dynamics model for use

in tracing a provided trajectory. The combination of rigid body simulator and machine

learning proved more successful than either combined. Three kinds of learning were done

with the simulator: learning the inertial matrix, mass and centre of mass parameters of

the arm segments, learning a non-linear additive corrector to the simulator’s prediction,

and using the simulator to structure the learning space by providing a kernel. The latter

approach is not as easily brought into the model developed in Chapter 2 as the simulator

is not directly used as a model for time evolution of the state but is rather used to alter

the topology of the learning problem.

4.2.5 Motion synthesis

Motion synthesis is the task of synthesising realistic motions of any kind (deformable

body, rigid body, character) to match some desiderata; this differs from simulation in

that although the motion will ultimately be simulated, the parameters of the simulation

need to be generated to create a desired effect. For example, it may be desirous to have a

hat twist through the air and land on a coathook (Popovic, 2001; Popovic, Seitz, Erdmann,

Popovic, & Witkin, 2000).
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Although the task is different from that of motion estimation, some of the problem is

shared - in motion estimation using simulation, soft constraints exist on the simulation,

just as with motion synthesis. The main difference is on the need for robustness and

autonomy in computer vision as well as the overarching concern with how to translate

images into observations; motion synthesis is usually human-driven so does not have these

concerns.

However, some of the motivation for the concept in this thesis came from motion

synthesis approaches like that of Popovic (2001), Popovic et al. (2000), where a simulator

is used and a Jacobian1 calculated across collisions with respect to simulation parameters

such as friction of certain facets, collision normals and boundary conditions in order

to fit control points or control poses. Indeed, a similar approach is used by Bhat, Seitz,

Popovic, and Khosla (2002) in the absence of collisions to infer free flight trajectories from

silhouettes. Similarly, Chenney and Forsyth (2000) sample from possible motions online

using Markov Chain Monte Carlo methods based on a probabilistic model accounting

both for plausibility of collisions (noise in the collision normal) and maintenance of the

constraints of the desired animation2.

Clearly all of these problems are also related to control, where the task is to achieve a

certain trajectory, or at least a trajectory with certain properties, and so can be considered

related problems. This can be seen clearly in the problem of getting n pucks to target

positions by determining appropriate initial velocities, where some pucks are constrained

to have zero velocity (Tang & Ngo, 1995).

1The Jacobian is the matrix of partial derivatives of a multivalued and multivariate function. The
number of rows is the number of values output by the function and the number of columns is the number
of variables input.

2Note that by selecting parameters to vary that do not greatly affect the realism of the simulation,
in effect the simulator is being treated as stochastic with these parameters considered the most noisy;
compare this to the proposal discussed above of Jakobi (1997) that simulations be applied to real-world
tasks (in their case, the learning of controllers for use in the real-world) by adding noise to aspects of the
simulation. Additionally, as noted by Chenney and Forsyth (2000), the existence of some randomness in
simulations, e.g. resulting from collisions, is more realistic.
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4.2.6 Computer vision and control

This last section reviews a smattering of work that tends to cross the boundary between

vision and control or planning via physics.

As should be clear from this and the previous chapter, there are numerous overlaps

between the tasks of motion control, motion planning, motion synthesis, and motion

estimation, particularly in the model-based case. A small number of representations

and algorithms are common across all these disciplines. This enables the vision and

planning/control to easily swap data about objects and so gain synergies. It is very

common for vision and sensing to produce or match 3D models of objects; these estimates

of shape, category and pose can be input directly into robotic manipulation routines -

e.g. Klank, Pangercic, Rusu, and Beetz (2009), Kragic, Miller, and Allen (2001), Krainin,

Henry, Ren, and Fox (2010), and parameters of controlled systems such as robot joints

directly estimated from data (Nickels & Hutchinson, 1998). Such approaches can make

use of the same visualisation routines in both tasks, can call the visual routine online

from the grasper, plan a grasp on the basis of that data (planning grasps typically uses

sophisticated kinematic or dynamics-based simulators and motion planners) initiate or

integrate online visual servoing for placement and re-plan when necessary on the basis of

visual input. Motion planning and control make use of simulators to aid in this planning

(Ettlin, Buchler, & Bleuler, 2005).

As well as common object representations, the use of a probabilistic framework allows

synergies between disciplines too. Fu, Srinivasa, Pollard, and Nabbe (2007) tackle a 2D

pinball-like problem in simulation where the shape of the ball is unknown and the camera

is noisy. Noise is introduced by collisions including the planned action of hitting with the

bat under the agent’s control. They tackle both planning and estimation in a probabilistic

framework, estimating shape pose and velocity of the object with a particle filter, and

acting, first to gain information and second, to make a hit towards the goal.

Just as estimation is a process for inferring states, actions or other variables from

incomplete observations, simulation is a process for inferring states from actions and
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other variables. Furthermore, as was noted above, planning and motion synthesis can be

thought of as processes for inferring states, actions and other variables from goal states

or constraints. Particularly in the latter problem, the goals and constraints involved in

motion planning or synthesis could be thought of as observations, in which case the flow

of influence in the literature might soon be seen going from work on estimation back

into work on control and synthesis. The strong links between estimation, simulation and

planning, particularly within a probabilistic inference framework, are in the process of

filtering through into the cognitive psychology literature, where the common framework

is providing a vision for understanding human behaviour, cognition and neuronal makeup

(Clark, 2011; Todorov, 2009; Toussaint, 2009), in particular the idea that cognitive systems

are essentially predictive - of perceptual errors, or as forward models in control (Clark,

2011; Clark & Grush, 1999; Grush, 2004; Ziemke et al., 2005). According to Toussaint

(2009) the idea of using the same inference process for at least both estimation and control

is compelling, though it is admitted that in practice the problems are different enough

that contemporary approaches must be significantly differentiated, an observation that

has so far been borne out by this thesis. In particular, the need for robustness and the

incompleteness of observations tends to make the estimation problem harder. In the

future, robust estimation techniques (for example, as are used in this thesis), may find

applicability in motion planning, where trajectories goals and constraints may be only

loosely specified. Indeed, Todorov (2009) points out that the typical motion planning

problem is equivalent to a hard estimation problem, i.e. having a small amount of guiding

information. Similarly, a typical estimation problem is a hard motion planning problem

because of the large number of soft constraints involved.
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CHAPTER 5

APPROACH AND EXPERIMENTS: MOTION
ESTIMATION OF BOUNCING OBJECTS

“Then, in the 89th minute, Katiego Mphela muscled on to the end of a long
hopeful punt upfield from his goalkeeper Itumeleng Khune and trickled his left

foot shot goalbound, only to languish in agony as he saw it bounce
apologetically off the post.”

South Africa 1 Mexico 1: match report,

Ian Chadband, The Telegraph, 11 June 2010

This chapter tackles the motion estimation problem. This problem will be tackled by

building dynamics and physical simulation into the solution. This builds bridges with

the motion planning and motion synthesis problems which by their nature deal with the

kinematics and, sometimes, the dynamics of trajectories1, whereas the other experimental

chapters focus on recursive estimation of state.

However, the main scientific aim of this chapter, as with all of the experimental chap-

ters in this thesis, is to put to the test in a small way the following statement:

Inclusion of a physics simulator in the estimation process can be done in such a way

as to increase its performance across scenarios.

Thus, this chapter is both about the possibility of such an augmented estimation

1Motion synthesis approaches attack a similar problem to that of motion estimation, often opening
up the simulator and making it stochastic or using its Jacobian2 with respect to simulator parameters,
but do not deal with issues of robustness. Motion planning must be robust to possible plan failure, but
goals are well-defined, unlike the visual information available in visual motion estimation.
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process, and about the technology proposed to get there.

The scenarios considered in this chapter are ones where background physical knowledge

may be of some use in motion estimation; where objects are fast moving, with blur and

glare, where extreme noise like distractors and partial and complete occlusion exist, and

other solutions are expected to have trouble. The scenarios are drawn from cases where

such noise exists, and where objects are bouncing through a scene. There are two sets of

scenarios.

The first set is a large number of simulated bouncing trajectories with added Gaussian

and outlier noise, where the experiments described here determine the best algorithm to

use in trajectory reconstruction and it is shown how a refinement approach is employed

to reconstruct trajectories, as well as a RANSAC approach; these approaches are pitted

against each other.

The second set of scenarios is a small set of four actual bouncing trajectories of a

ball bouncing in the image plane with occlusion, blur, glare and severe distractors. Ex-

periments are presented determining the best dynamics model when reconstructing the

trajectory from colour histograms. Five different dynamics models are compared. This

includes two novel physics-based models, one where the whole trajectory is parametrised

by initial state, and one where state along the whole trajectory is parametrised, and

additive displacement and velocity noise assumed. These novel approaches show that a

physics-based dynamics can solve the motion estimation problem in the presence of bad

or absent visual data where more naive dynamics models are unable to.

Both sets of scenarios are summarised in Table 5.1. The first section in this chapter

deals with experiments carried out on around a simulated bouncing object and the second

section deals with the experiments around the bouncing ball estimated from colour. The

story told by the first section is that the estimation problem is non-linear and RANSAC

fixes that as well as excessive noise. The second section illustrates the benefits of the use

of a physics model across the scenarios described here, while more naive dynamics models

tend to fail. First, however, the background of this chapter is refreshed briefly, and the
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MAP formalism introduced in Chapter 2 developed further to incorporate the dynamics

into an optimisation framework1.

5.1 Background

Table 5.2 summarises where in this thesis to find background on the topics discussed in

this chapter.

To summarise; in visual tracking, sophisticated and robust methods do exist for track-

ing from colour, often with dynamic (blob) shapes (Comaniciu et al., 2003; Magee, 2001;

Wren, Azarbayejani, et al., 1997) but those methods do not make use of sophisticated

dynamics models. In human tracking, there is work on tracking using simulation (Hogg,

1984; Vondrak et al., 2008; Wren & Pentland, 1998); in the present chapter, the physical

simulation is by itself sufficient for improvement, rather than relying on being driven by

a controller learnt from motion capture data. The work on tracking deformable objects

from physics (Chan et al., 1994; Decarlo & Metaxas, 2000; Kakadiaris, Metaxas, & Bajcsy,

1997; Marchand et al., 1999; Masson et al., 2005; Metaxas, 1997; Metaxas & Terzopoulos,

1993) focus on the hard problem of tracking deforming objects but not of robustness to

very bad visual information as is investigated in this chapter.

Rather than modelling object physics, blur and glare can be dealt with by modelling

the blur and glare processes themselves. Occlusion can be dealt with by reasoning about

possible occluding objects. Distractors can be dealt with using data association or model

selection techniques. In the present chapter it is shown that the physical simulator com-

bined with RANSAC is enough in the current set of scenarios for dealing with all of these

problems.

1Many of the results described in this chapter have been published in the IEEE International Confer-
ence on Robotics and Automation (Duff, Wyatt, et al., 2010).
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Property Bouncing object in simulation Bouncing ball from colour

Source Simulation USB Camera

Output Dim 6D Pose × length 2D Pose × length

Input features Noise perturbed 6D pose Colour histogram match score map

# data-points 50 trajectories per noise condition 4 trajectories

Scenario Simulated object bouncing with preces-
sion, added Gaussian & uniform noise.

A ball bouncing in the presence of
severe distractors, occlusion, blur, &
glare.

Experiment
probes

Choice of fitting algorithm Choice of dynamics model

Conditions Refinement vs RANSAC No dynamics

Amount & quality of noise Constant displacement

Constant velocity

Globally parametrised physics

Locally parametrised physics

Table 5.1: Scenarios used in experiments in this chapter

Subject Found where Details

Probabilistic formulation Chapter 2 Puts forward a probabilistic formulation for estimation from
trajectories.

Trajectory estimation Section 2.6.1 Specialises in MAP trajectory estimation, as is done in the
present chapter.

Computer vision Chapter 3 Discusses the background of motion estimation and recursive
estimation in computer vision.

Colour histograms Section 3.2.2 Discusses the use of colour histograms..

Visual motion estimation Section 3.5 Discusses long sequence motion estimation, the problem ap-
proached in this chapter. That work incorporates physics
models beyond polynomial approximations, or robustness.

Physical simulation Chapter 4 Discusses the fundamentals of physical simulation.

Physics based estimation Section 4.2 Looks at previous applications of physical simulation to com-
puter vision, particularly human and deformable object track-
ing.

Table 5.2: Where to find background information for this chapter.
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5.2 Parametrisation of MAP trajectory estimation

Recall that in the framework Chapter 2, Section 2.6.1 the MAP trajectory estimation

problem was introduced. That is:

argmax
xt0:i

p(xt0:i|zt0:i ,θ,ut0:i)

= argmax
xt0:i

p0(xt0)
i

j=0[pobs(ztj |xtj)]
i

j=1[pdyn(xtj |xtj−1
,θ,uti ,∆ti)]

p(zt0:i)
(5.1)

The vector sequence xt0:i is the sequence of states making up the trajectory. The

problem is to find these states to maximise the above probability.

In the context of introducing typical methods to estimation in computer vision, in

Chapter 3 Section 3.3.3, the log of the observation probability distribution was taken,

allowing for a generalised least squares single frame estimation assuming that the obser-

vation distributions were Gaussian. In Section 3.5 the least squares approach was extended

to trajectory estimation based on the assumption of a non-informative dynamics.

Here, two formulations are introduced that incorporate a dynamics model: In the

first, it is assumed that the dynamics is always correct and the only noise exists in the

observations and an unknown initial state. This is called a “globally parametrised” tra-

jectory since in order to represent a trajectory only the boundary conditions (initial state)

are required and will be used in the experiments in simulation as well as the real-world

experiments. In the second formulation, the dynamics themselves can be noisy. Because

of this, each state in the trajectory is estimated, and so the trajectory is called “locally

parametrised”. This is used only in the real-world experiments.

5.2.1 Globally parametrised dynamics

The globally parametrised formulation of the trajectory uses a deterministic dynamics.

The simulator is assumed to correctly model the world in which the estimation is being

done. Simulation parameters θ and a nuisance/control signal uti are included in the
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model. Thus, each state xti is completely constrained by the previous state xti−1
. This

means that the trajectory estimation problem is then only to find the initial state x0

In order for the trajectory probability to be non-zero, the following constraint must

be realised1:

∀i > 0 : xti = fdyn(xti−1
,θ,uti ,∆ti) (5.2)

Here fdyn() is again the deterministic simulation function. That is, each state is

fully determined by the dynamics model and the previous state. Having established this

constraint, the probability of each dynamics distribution pdyn(xti|xti−1
,θ,uti ,∆ti) must

be 1. Therefore, the MAP problem becomes:

argmax
xt0:i

p(xt0:i|zt0:i ,θ,ut0:i) = argmax
xt0:i

p0(xt0)
i

j=0[pobs(ztj |xtj)]

p(zt0:i)
(5.3)

Equation 5.2 is recursive with a base case of xt0 . As such, xti can be expressed directly

in terms of xt0 :

xti = fdyn(xt0 ,θ,ut0:i ,∆t0:i) (5.4)

Note that this function is a composition of individual per-time-step fdyn() functions.

Given this constraint the MAP problem can be written:

argmax
xt0:i

p(xt0:i|zt0:i ,θ,ut0:i)

= argmax
xt0:i

p0(xt0)
i

j=0[pobs(ztj |fdyn(xt0 ,θ,ut0:j ,∆t0:j)]

p(zt0:i)
(5.5)

Taking the log of this, assuming a uniform distribution over xt0 over the region of

1For the globally parametrised dynamics, because there is only one possible successor to a given state,
pdyn() can be considered to be a delta function in the state xti .
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interest, the following cost function to be minimised is arrived at:

Cost(xt0) = log[p(xt0|zt0:i)]

=
i

j=0

log[p(ztj |xtj)]− log[p(zt0:i)]

=
i

j=0

ObsCost(ztj ,fdyn(xt0 ,θ,ut0:j ,∆t0:j)) + Const (5.6)

The problem then is one of finding an xt0 that minimises the global cost function in

Equation 5.6.

If the observations exist in a space that permits a Gaussian, the observation probability

can be considered a Gaussian and a generalised least squares problem is arrived at:

ObsCost(zti ,fdyn(xt0 ,θ,ut0:i ,∆t0:i))

= ObsCost(zti ,xti)

= (zti − fobs(xti))
TSobs(zti − fobs(xti)) (5.7)

= (zti − fobs(fdyn(xt0 ,θ,ut0:i ,∆t0:i)))
TSobs(zti − fobs(fdyn(xt0 ,θ,ut0:i ,∆t0:i)))

(5.8)

Even if the observations are linear normal in the state, this is not a linear least squares

problem, however, unless the dynamics fdyn() are linear (which they, in general, are not).

The weight matrix Sobs can be used for weighting different observations according to their

informativeness.

If the observations include rotations, it is straightforward to put a Gaussian over

the space of rotations, but not obvious how to do it well; representation becomes very

important in such a situation. This issue is dealt with in this chapter by putting a

theoretical Gaussian over the individual points in the object. This induces an easy and

natural distribution over rotations. This solution will be discussed in Section 5.3.4.
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5.2.2 Locally parametrised dynamics

In the second formulation of the trajectory estimation problem, the dynamics, while

considered informative, are not considered deterministic, so that a cost/objective function

is derived on the basis of both an observation and a dynamics cost. Again, the problem

is a cost minimisation problem, but with a larger parameter space xt0:i and dynamics

cost terms as well as observation1. Simulation parameters θ and a nuisance signal uti are

again included.

Cost(xt0:i) = log[p(xt0:i|zt0:i)]

= log


p0(xt0)

i
j=0[pobs(ztj |xtj)]

i
j=1[pdyn(xtj |xtj−1

,θ,utj ,∆tj)]

p(zt0:i)



=
i

j=0

log[p(ztj |xtj)] +
i

j=1


log[p(xtj |xtj−1

,θ,utj ,∆tj)]

− log[p(zt0:i)]

=
i

j=0

ObsCost(ztj ,xtj) +
i

j=1

DynCost(xtj ,xtj−1
, j) + Const (5.9)

If Gaussian assumptions are made about the distribution of observations with respect

to state pobs(zti|xti) and about the dynamics pdyn(xti−1
|xti−1

,θ,uti ,∆ti)) then the obser-

vation and dynamics cost terms are least squares terms. So they would be written:

ObsCost(zti ,xti) = (zti − fobs(xti))
TSobs(zti − fobs(xti)) (5.10)

DynCost(xti ,xti−1
, i) = (xti − fdyn(xti−1

,θ,uti ,∆ti))
TSdyn(xti − fdyn(xti−1

,θ,uti ,∆ti))

(5.11)

The observation weight matrix Sobs is again found here. Additionally, Sdyn is a cost

weight matrix for the dynamics terms. The relative size of the norms of these two matrices

determines the relative input of the dynamics and observation models in determining the

optimal solution. If Sdyn became zero, for instance, then the dynamics would be ignored

1To put it another way: In the locally parametrised dynamics, all of the states in the trajectory are
available to be varied to find a solution, whereas in the globally parametrised dynamics only the initial
state can be varied.
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and only observations considered in the trajectory optimisation problem. Conversely, if

Sobs were zero, any arbitrary trajectory would only be weighted by its compliance with

the laws of physics as specified by the dynamics model. Given the derivation of this

optimisation problem in MAP terms, then these weights reflect the assigned uncertainty

(variance) in these sources of information.

Velocity and translation term weighting. Sdyn needs discussing here because the

state vector xti usually contains a mixture of pose and velocity terms. The question of

how to reconcile those terms against each other in this approach is the question of how to

constitute the weight matrix Sdyn. One assumption involves making the matrix diagonal

- essentially assuming noise in each state variable is independent in the dynamics model.

Given such a weighting, other questions to consider are how to weight velocity against

displacement terms and how to weight rotational against translational terms.

In this thesis the relative weight between velocity and displacement terms is calcu-

lated by making the assumption that the expected translational error accumulated by a

given velocity error over ∆ti should be of the same order as the expected translational

error between the two time-steps (that is, velocity error is only considered as a kind of

translational error). For this argument to be made a little bit more clear it is assumed

here that the state contains just velocity v and translation T (though relative rotational

terms can be calculated using a similar argument):

∆xti =

Tti
vti


− fdyn(xti−1

,θ,uti ,∆ti) =

∆Tti
∆vti


(5.12)

Here, ∆xti is the difference between mean expected value of xti (given the state at

xti−1
) and the actual value of xti . Then the argument would be that ∆Tti ≈ ∆ti∆vti ; i.e.

that ∆Tti and ∆ti∆vti should be on the same order. Then the weights for the velocity

wv can be expressed in terms of the translational weight wT :

wv = ∆tiwT (5.13)
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Having discussed probabilistic formulations of the MAP problem tackled here, the

exposition moves on to a discussion of the individual experimental scenarios.

5.3 Experiment: Simulated bouncing object

In this section, a set of experiments are described in which an object is simulated in

tumbling motion, either in free-flight or bouncing. The primary aim of these experiments

is to determine a preferred algorithmic approach to trajectory estimation from noisy data

with a physics model included in the solution. The trajectory estimator is provided noise-

contaminated observations of the full object pose and is tasked with reconstructing the

full translational and rotational trajectory of the object1.

The simulation of the object is a simple simulation; enough to capture free-flight

in the presence of gravity, rotation with precession, and simple collisions with non-unity

restitution. The collision detection and resolution were implemented only for sphere-plane

collisions2. Translational motion between collisions is simply the solution of the laws of

kinetic motion, and the rotational motion is simulated by numerical integration using the

Runge-Kutta method.

The instantaneous state of an object is represented in terms of pose, with rotation a

quaternion, and linear and angular velocity:

xti =


Ti
qi
vi
ωi


(5.14)

The same simulator is used to generate test trajectories and for fitting trajectories to

them.

Once generated, noise is added to each pose in the trajectory to make an observation

1Such a scenario is analogous to the scenario that would be encountered if a pose recovery algorithm
were run independently on each frame of a video and the best guess returned for that frame.

2A ball bouncing on a clear flat surface can be modelled adequately with a sphere-plane simulator:
collision locations are always the same distance from the object centre and the collision normal always
points towards the object centre.
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of pose; that is, there is no model of process noise in this system; all the noise is in the

observations. Therefore, the natural solution for fitting them is the globally parametrised

cost function.

Two kinds of noise are introduced. The first kind of noise is Gaussian dispersion in

both rotation and translation space. The second kind of noise is a uniform background

noise over a domain of the observation space; outlier noise. An example of a simulated

trajectory without Gaussian and outlier noise can be seen at the top of Figure 5.1 (green).

An example of a simulated trajectory with noise added can be seen at the middle of

Figure 5.1 (red). These two trajectories are superimposed at the top of Figure 5.2 (green

and red).

5.3.1 Fitting algorithms

Two fitting algorithms were employed to fit trajectories to noisy sequences of pose ob-

servations. The first is the classic Levenberg-Marquadt non-linear optimisation technique

using finite differences in the cost function. Because of the strongly non-linear, multi-

optima nature of the problem, this algorithm only serves to find local solutions, so is

called the “refinement” algorithm in this chapter. In order to fit the data robustly and to

do global rather than local optimisation, the second fitting algoirthm is RANSAC, used

in conjunction with the refinement optimisation.

5.3.2 Refinement algorithm

In order to find the initial state that best explains the observations, a Levenberg-Marquadt

algorithm is used to refine the solution to a nearby optimum in the cost function. The

details of the Levenberg-Marquadt algorithm as applied to trajectories can be found in

Appendix D. The Levenberg-Marquadt algorithm iteratively calculates the value of the

function to be optimised as well as its derivative, locally approximates the function by a

polynomial model, and solves that polynomial. It does this until it reaches an optimum.
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Figure 5.1: Top (green): A simulated trajectory. Middle (red): A simulated trajectory
with added noise (Gaussian noise deviation σT = 50cm, outlier noise rate ρ = 0.1).
Bottom (blue): A trajectory fitted using RANSAC and refinement with parameters
reported in Table 5.4.
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Figure 5.2: Top: Simulated deterministic trajectory (green) vs simulated trajectory with
added noise (red). Middle: Simulated trajectory with added noise (red) vs fitted trajec-
tory (blue).Bottom: Original simulated deterministic trajectory (green) vs fitted trajec-
tory (blue). Where noise is added it includes Gaussian noise with a deviation of σT = 50cm
and outlier noise with a rate of ρ = 0.1.

123



In the work here, the simulator underlying the dynamics function fdyn() does not

easily admit having a derivative calculated. Indeed, it is non-smooth wherever there is

a transition in the number of bounces. Rather than analyse the function, the approach

in this chapter to estimation is to use finite differences to approximate the Jacobian

d
dxt0

fobs(f
i
dyn(x

j−1
t0 )). Finite difference simply approximates the derivative numerically by

calculating the function along the axes of the parameter xt0 and dividing into the step

size. In this work, a fixed step size is used 1.

To evaluate a potential xt0 , the simulator is run to generate the full set of states xt0:i
2.

The observations zti are simply the truncation of the state vectors xti to contain only the

pose.

Given the simple simulator used in this section, the rotational and translational pa-

rameters are divorceable so rotation and translation can be estimated separately; this is

the extreme case of exploiting the equation structure at each time point. This is in general

a rather problematic assumption but it does reflect the fact that a lot of the time these

variables are divorceable, as exploited in the long sequence motion estimation literature

(see Section 3.5 for details).

5.3.3 RANSAC algorithm

The previous section described a refinement approach based on a non-linear optimisation

algorithm that quickly finds an optimum; it is not guaranteed to find a global optima,

however, and the least-squares cost function associated with it is not robust to outliers;

that is, as estimated trajectories predict observations further from the observed location

of an observation, the cost of an observation goes up quadratically; so outliers have a pro-

portionally bigger effect on the solution in least-squares formulations - this is undesirable

1Practically speaking, using finite differences in this work means that for each parameter of the previous
best solution xj−1

t0 (of which there are 13; pose consisting of 7 and linear and angular velocity consisting

of 6), that parameter is varied twice around the value in xj−1
t0 . This means that, apart from evaluating

the original fobs(f
i
dyn(x

j−1
t0 )), 22 additional evaluations are done.

2Note that noise is not added to the simulator because noise is dealt with by attempting to minimise
the distance between the deterministically reconstructed trajectory and the observed noisy trajectory.
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and potential outliers should have a small contribution.

The RANSAC (RANdomised SAmple Consensus) algorithm works by instantiating

possible solutions from subsets of data and then checking these solutions for fit against

the rest of the data; with the aim being to find solutions that contain the maximum

possible number of inliers. An inlier is defined as being an observation that, given a

particular parameter estimate, is not further than a given threshold (inlier threshold)

from the predicted observation. In order to calculate the possible solution an algorithm is

required; here the algorithm is encapsulated by a function fINST () from data-point sets

to solutions. Here the solution is represented as a boundary condition and observations

can be from throughout the sequence (from any time index im and any observation at

that time with index km):

xn
t0
= fINST (


zk0
ti1
, . . . ,zkm

tim
, . . . ,zkM

tiM


) (5.15)

RANSAC instantiates a number of solutions using the supplied fINST () and chooses

the solution that induces the most number of inliers according to an inlier threshold Cinl
1.

The solution therefore satisfies:

xRAN
t0

= argmax
xn
t0


n

inl

zk0ti1 − fk

obs(f
i
dyn(x

n
t0
))


(5.16)

inl(A) =

 1 if A ≤ Cinl

0 if A > Cinl

Here, f i
dyn is

In this experiment, fINST () takes a sample of two poses and solves for velocity as-

suming free flight with gravity kinematic equations. Since this solution is almost always

wrong when a collision is involved, the second sample is taken from an exponential distri-

1In the typical RANSAC formulation, from the expected inlier rate of a correct solution and a desired
probability of finding a match, stopping conditions can be determined: the inlier threshold mentioned
above, a maximum number of iterations to try, and a minimum number of inliers considered sufficient
for termination. In the current experiment, the first and last parameter are not employed, so that a clear
comparison can be made between the iterations required of RANSAC and that of refinement.
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bution around the time-point of the first (rounded to the nearest time-point containing

an observation). The number of rotations that occur between observations is also not

derivable from the observations, so this integer is similarly sampled from an exponential

distribution around zero. Therefore, the RANSAC instantiation function fINST () is not

completely deterministic.

Once the velocities are obtained, because the simulation is simple, it can be reversed

(the coefficient of restitution and velocities are merely inverted; the gravity force remains

the same), and the initial parameters of the guess trajectory xt0 obtained as well as the

full trajectory of states xt0:i . These states can be truncated to obtain observations zt0:i

and the number of inliers counted using the function inl() described above.

Generally, the RANSAC result is followed by an extra refinement stage that only

considers the inliers; this refinement stage can add more inliers online if the changing fit

brings the trajectory closer to the observations.

5.3.4 Measuring error

A well-motivated way of reconciling translational and rotational components of pose error

is derived in Appendix E and is repeated here:

ET ,Rθ,Ω
= M |T |2 + 2(1− cos(θ))ΩTIΩ (5.17)

This error measure is motivated by the assumption that the pose error in an object

is the sum of the translational errors of the particles or points from which the object is

made.

In this section, this is the error measure that is used in fitting trajectories to initial

parameters; it is summed across the sequence of poses. It is also possible to use it to

obtain a measure of fit to ground truth, though in this section it is opted to present

translational and rotational results separately.
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Varying parameter Possible values

Fitting algorithm
Refinement Only
RANSAC + Refinement

Ground plane
No ground plane (free flight)
Ground plane (bounces)

Sequence length
From 2 frames
Step 15 frames
To 72 frames

Gaussian noise σT

From 0cm
Step 15cm
To 160cm

Outlier rate ρ
From 0.0
Step 0.1 frames
To 1.0

Table 5.3: This table reports the conditions that are compared in the first experiment
reported in this chapter, comparing algorithms on the problem of estimating motion of a
simulated bouncing object.

5.3.5 Experimental setup

In these experiments, each of the two algorithms (the refinement algorithm and RANSAC

and refinement combination algorithm discussed above) were used on two different con-

ditions - with and without the presence of a ground plane to induce bounces. For each

condition a range of different noise conditions (Gaussian noise and outlier noise) were

added to the simulator to examine how the different algorithms fared under increasing

noise. When the noise parameters are not being varied, a small amount of Gaussian and

outlier noise is added. Also a variety of different sequence lengths were examined. The

experimental conditions are summarised in Table 5.3.

Table 5.4 gives the values of the parameters of the simulator, as well as of the two

fitting algorithms used.

5.3.6 Results

Figure 5.3 contains the results of the experiment detailed here on the simulated problem;

of varying sequence length, Gaussian noise, outlier noise as well as the effect of adding
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Simulation parameters

Parameter How obtained Value

Object radius Arbitrary 50cm
Maximum sequence distance Arbitrary 1000cm

Refinement algorithm parameters

Parameter How obtained Value

Maximum iterations Set conservatively 100
Finite differences step Set conservatively 10−3

Stopping tolerance Set conservatively 10−7

RANSAC algorithm parameters

Parameter How obtained Value

Maximum iterations From experience 100
Inlier threshold Informal experiments 140

Minimum inlier count Informal experiments
(tf−ti)

5ts

Table 5.4: Parameters of simulation and motion estimation algorithms in MATLAB sim-
ulation scenario

bounces and the effect of algorithm choice.

Given the simple simulation used here, the performance of the rotational component

is independent of the presence of bounces.

Translation. With respect to translation, the refinement algorithm degrades in the

presence of bounces; conversely the RANSAC algorithm does not degrade in the presence

of bounces. In extremely high noise (outlier rate greater than ρ = 0.8 and Gaussian noise

greater than σT = 120cm), RANSAC degrades, but for lower levels of noise, RANSAC

outperforms refinement alone. Outliers affect both techniques worse than Gaussian noise,

though RANSAC degrades worse than refinement alone with very high levels of Gaussian

noise. There is an interaction between Gaussian noise and the presence of bounces that

affects the refinement algorithm negatively. Long sequences decrease the average error

across the sequence for both algorithms, probably due to the larger amount of information

allowing for improved discrimination. With these results, note that there is a background

outlier rate of ρ = 0.1; without outliers, the refinement algorithm is just as powerful as

RANSAC on the translational results.
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Rotations. The RANSAC algorithm also handles rotations better; in the presence

of Gaussian and outlier noise it eventually degrades to the performance of the refinement

algorithm, but this performance is already almost the worst possible performance (there

is an upper limit on the rotation error). Long sequences again assist in the accuracy

of the resulting estimate. Reducing the outlier rate to zero does not fix the refinement

algorithm.

5.3.7 Experiment discussion

The performance advantage of RANSAC is due to its robustness to outliers as well as its

effectiveness in finding the right (global) optimum. Since RANSAC will drop some points

from the refinement stage at high levels of Gaussian noise, it loses some information and

refinement can perform better in high levels of Gaussian noise, but only for free-flight

where there are not large local optima to cause even more trouble for the refinement

algorithm.

The negative influence on translation error of the interaction between Gaussian noise

and the existence of bounces for the refinement algorithm is interesting. Theoretically, as

the time-step between observations goes to zero there are no non-global local optima in

the cost function even with bounces; these local optima occur only when there are very few

observations. This can be seen in the results: with zero outliers, the refinement algorithm

is as good as RANSAC, even with bounces. This implies that RANSAC’s ability to beat

global optima is not by itself the cause of its success in tracking object translation; it is

its ability to reject outliers appropriately.

In rotation error the refinement algorithm fails to do well even without outliers added.

This can be attributed to local optima. Even with an infinity of observations, local

optima can exist in the cost function. To see this, imagine that the rotation axis is

fixed and the original rotation amount is known to be zero so that the rotation error is

1−cos(tθguess0 −tθ0). Integrating that with respect to t gives a function with many optima
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Figure 5.3: Effect of fitting algorithm and effect of bounces against varying noise levels and sequence
length. Two fitting algorithms (refinement and RANSAC) are tested on two different kinds of trajectory
(free flight and with-bounce). Each of the above charts contains a line for each combination of algorithm
and trajectory kind - they key is found at the top. Left: Charts on the left report the rotation error.
Right: Charts on the right report the translation error. Top: The top charts report algorithm per-
formance as sequence length is increased. Middle: The middle charts report algorithm performance as
Gaussian noise is added. Bottom: The bottom charts report algorithm performance as outlier noise is
added. When not being varied, the sequence length is 30 frames, the isotropic Gaussian noise deviation
σT = 10cm, and the outlier rate ρ = 0.1. As the sequence length increases, additional bounces occur
sporadically. Each data-point contains 50 algorithmic runs. RMS error is the average fitting error per
time-step. The translation and rotation error are as given in the second term of Equation E.16, with a
constant density assumed, making the error in units of distance.
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E(t, θguess0 , θ0) = 1− cos(tθguess0 − tθ0)

E(tl, θ
guess
0 , θ0) =

 tl

t

[1− cos(tθguess0 − tθ0)] dt

= tl −
sin(tl(θ

guess
0 − θ0))

tl(θ
guess
0 − θ0)

(5.18)

Figure 5.4: An illustration of local optima in fit to a rotation, assuming a fixed rotation
axis and translational error, as well as known initial rotation. Top: The error measure per
observation at time t (given a true rotation speed θ0 and a guess rotation speed θguess0 , and
the error measure assuming infinite observations are known across the sequence length tl.
The derivative of this with respect to θguess0 can be examined for zeroes to get optima;
it is not shown here. Bottom: An illustration by chart of how the cost function with
respect to θguess0 (top) and its derivative with respect to θguess0 given a tl of 1 and an θ0 of
0 (bottom).

as can be seen by differentiating it again with respect to θguess0 . Figure 5.4 illustrates that

this cost function has minima, at least when restricted to this dimension.

Finally, before moving on to the next experiment: Although it is feasible that a

real-world problem could involve obtaining noisy poses (for example, using a tracking-

by-detection algorithm to obtain these poses) as is done in this experiment, the physics

model involved in this experiment is only really applicable to smooth spheres moving in

a vacuum1. The remaining experiments in this thesis use the more fully-featured PhysX

physics engine (“PhysX Features,” 2010).

1It is an open question as to whether better modelling of the physics is necessary in the real-world.
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5.4 Experiment: Bouncing ball from colour

The previous section described the results of experiments with a simulated bouncing

object. This section takes that paradigm and applies it to objects bouncing in the real-

world and compares its performance using different dynamics models.

The constant displacement and constant velocity dynamics models, as well as a no-

dynamics condition, are compared to physics based dynamics models - with global parametri-

sation and local parametrisation.

In this section, the motion of objects is estimated by exploiting knowledge of their dy-

namics, as well as observations of object location from colour. Object motion is restricted

to a plane parallel to the image plane, thereby significantly simplifying the problem; the

problem is again made complex due to the complex physical motion of real-physical ob-

jects being inferred. Motion estimation with and without physics is applied to the four

target videos illustrated in Figure 5.5.

Since the trajectories being recovered in this experiment occur in a plane parallel to the

image plane, and object rotation is ignored, only four parameters are required to describe

the state xti of the target object at any point in time: the two-dimensional location Ti

and the two-dimensional velocity vi:

xti =

T 1
i

T 2
i

v1i
v2i

 (5.19)

The locally parametrised dynamics derived in Section 5.2.2 are incorporated into the

refinement solution in order to deal better with model mismatch. RANSAC is always

used, but there is no corresponding RANSAC solution utilising theoretical process noise

(i.e. the locally parametrised approach).

In this section, first the observation model is described, then the algorithms and dy-

namics models, experimental setup and finally results.
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(a)
i = 4 i = 10 i = 17 i = 22 i = 29

(b)
i = 3 i = 7 i = 10 i = 14 i = 18

(c)
i = 4 i = 11 i = 15 i = 18 i = 22

(d)
i = 7 i = 10 i = 14 i = 22 i = 29

Figure 5.5: Sample frames from the 4 videos tested in this chapter. Each frame is labelled
by its frame number. First row: A ball bouncing through the frame; some blur and glare
in the frame and the ball spends some time off-frame. Second row: A ball bouncing
behind an occluder. Third row: A ball rolling behind an occluder. Fourth row: A ball
bouncing behind some occluders, with a distractor in the middle of the frame, and blur
and glare.
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i = 3 i = 7 i = 10 i = 14 i = 18

Figure 5.6: Sample frames from the bounce with occlusion (b) video tested in this chapter
before and after processing by the template matching routine to find a match score and
subsequent smoothing of the match image. Top: The original video frames. Bottom:
The match map. The intensity of each pixel matches the match score (darker is a better
match). Each frame is labelled by its frame number.

5.4.1 Observations

Each pixel location in each image in the image sequence has a match score associated

with it according to how well the local colour histogram matches the colour histogram of

the object template, normalised by the background histogram. This forms a match score

map of each image. Figure 5.6 illustrates the match score map on one of the videos.

Observations consist of possible object locations, extracted by finding match optima.

There can be multiple possible locations in each frame, but each observation has an

associated weight according to the score of the match with the object.

5.4.2 Calculating the match score

The match score between a pixel in the image being processed and the target object is

based on the colour histogram in the target object template and a fixed-radius circu-

lar region around the pixel to be matched. The histograms are collected in normalised

red/green space, and the target histogram bins divided by the corresponding bins in the

background histogram to create a histogram weighted away from background distractors

in the image. Histograms are subsequently normalised.
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The brightness normalised image is calculated as follows, where y is the pixel location,

Ir is the normalised red channel, Ig is the normalised green channel and IR,IG and IB are

the original RGB channels1:

Ir(y) =
IR(y)

IR(y) + IG(y) + IB(y)
(5.20)

Ig(y) =
IG(y)

IR(y) + IG(y) + IB(y)

For a given pixel y in a given image I, the histogram bin indices (bR, bG) of the colour

in that pixel can be found by applying the following indicator function (BG and BY are

the number of bins for the red and green components of the colour space, so that the total

number of bins is BG ·BR):

InBin(bR, bG,y, I) =


1 if

Ig(y)≥
bG
BG

,Ig(y)<
bG+1

BG
,

Ir(y)≥
bR
BR

,Ir(y)<
bR+1

BR

0 otherwise

(5.21)

Since the colour channels are normalised, Ir(y) and Ig(y) range between 0 and 1. It

is simple after this to represent a histogram Hr,y,I() of the colour in a radius r around a

point y in an image I in terms of these values and the bin address (bR, bG). YI is the set

of pixel centres in the image.

Hr,y,I(bR, bG) =


yj s.t.
yj∈YI and
|yj−y|<r

InBin(bR, bG,yj, I) (5.22)

This histogram is normalised so that the sum of bin values is 1:

H∗
r,y,I(bR, bG) =

Hr,y,I(bR, bG)
βr,βg

Hr,y,I(βr, βg)
(5.23)

1In other applications luminance is often calculated as a weighted sum of the RGB components in
order to reconstruct subjective brightness for humans, though for this application there is no expected
gain from weighting the components differently.
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In order to acquire a histogram template of an object Hobj, this histogram is accumu-

lated over a small number of frames Ij where the object location yj is known (rob is the

object’s radius).

H∗
obj(bR, bG) =


j H

∗
rob,yj ,Ij

(bR, bG)
j 1

(5.24)

In order to obtain a match score for each pixel in an image that might contain the

object, the standard measure of histogram similarity, the Bhattacharyya distance is used

between the histogram calculated from the neighbourhood of that pixel and the histogram

of the target object template. The Bhattacharyya distance is based on the sum of root

products of the magnitude of the paired bins in the histograms:

dBhatt(H
∗
1 , H

∗
2 ) = −log

 
(bR,bG)


(H∗

1 (bR, bG)H
∗
2 ((bR, bG))) (5.25)

The pixel match score at each point y for image I (with object radius r implicit) is

therefore:

Imatch(y, I) = dBhatt(H
∗
obj, H

∗
r,y,I) (5.26)

5.4.3 Creating an observation sequence

After calculating a match map, it is smoothed and then the best points can be chosen

greedily, suppressing points within r distance from the best points already chosen from a

frame.

In the present experiment, only one point is obtained from each frame. Once the best

point for each frame is chosen according to the Bhattacharyya distance, as discussed in

the previous section, a weight is assigned based on the match distance.

So the output of the image processing is a sequence of sets of potential image locations

and associated weights. In this experiment there is only one image location zti and
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associated weight wti returned per time-point ti, so:

zti = argmax
y

Imatch(y, Ii) (5.27)

wti = Imatch(zti , Ii) (5.28)

When compared to a formulation that uses the match map directly as a cost function

(so that rather than there being a discrete number of observations, the likelihood of each

possible state is derived directly from the histogram match), this formulation based on

image distance to discrete observations offers a significantly smoother and less peaky

likelihood function, appropriate for optimisation methods based on exploiting the local

shape of the function, as are used here. Multiple objects and data association can easily

be obtained by considering multiple observations and weights per frame and considering

observation/object associations.

The observation associated with a state xti is the projection of the 2D object coordi-

nates

T 1

T 2


according to focal length and unit transform scaling factor f and optical centre

yC1
yC1


that make up the observation function fobs:

fobs(xti) = fobs(

T 1
i

T 2
i

v1i
v2i

)
=

fT 1

i +yC1
fT 2

i +yC2


(5.29)

5.4.4 Fitting algorithms

In this experiment, RANSAC and a subsequent refinement algorithm are employed to fit

a trajectory to observations. There are two variants of this procedure according to the

parametrisation of the trajectory, and different dynamics models are compared; physics-

based models and models more commonly used (the assumption of constant pose with

dispersion noise, and constant velocity with dispersion noise).
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Dynamics Parametrisation

No dynamics (observations assumed correct) Local parametrisation
Constant displacement dynamics Local parametrisation
Constant velocity dynamics Local parametrisation
Physics-based collision dynamics Global parametrisation
Physics-based collision dynamics Local parametrisation

Table 5.5: This table reports the conditions that are compared in the first experiment
reported in this chapter, comparing algorithms on the problem of estimating motion of a
simulated bouncing object.

The parametrisation of the trajectory is either “global” or “local” as explained in

Sections 5.2.1 and 5.2.21.

Since the naive dynamics models are seldom sufficient to model the full trajectory of

an object through a scene, this experiment only attempts to pair the simple dynamics

models (used for comparison with the physics-based dynamics model introduced here)

with a local parametrisation of the trajectory. These experimental conditions are listed

in Table 5.5.

The physics simulator encapsulated in the dynamics fdyn is PhysX (“PhysX Features,”

2010). The simulator includes a model of the balls in the scene constrained to be in the

plain parallel to the image plane2, as well as a ground plane. The coefficients of restitution

and friction and linear damping were chosen from a small number of manual fits on a

different video using a graphical tool. They are given in Table 5.5.

5.4.5 RANSAC

RANSAC on this problem proceeds much as described for the previous experiment in Sec-

tion 5.3, except that because the physical simulator used here is not completely reversible,

1In the global case the whole trajectory is parametrised in terms of the initial conditions (the state at
time ti = 0) and the full trajectory can subsequently be reconstructed using the deterministic dynamics;
that is, it is assumed that there is no dynamics noise at all. In the local case, the trajectory is parametrised
in terms of the state of the object at each time-point. Therefore, the estimation can admit trajectories
that are a certain distance from valid according to the dynamics model.

2In the case of multiple balls, multiple layers can exist, with each layer having a different depth
coordinate.
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reconstruction of reverse-time trajectories from samples is a bit more complicated. Fur-

ther, observation weights are made use of here.

In brief, RANSAC works by reconstructing trajectories on the basis of subsamples

of the data and then checking those trajectories against the rest of the data.The most

important thing to do in order to use RANSAC, therefore, is to define the function fINST

that instantiates a trajectory from a subset of data. In the case of constant velocity

dynamics, this is clearly to fit a linear trajectory to observations of the ball, zti . In the

case of constant displacement dynamics, the result turns out to be the same between the

two observations, but before the first observation and after the last observation the target

object is assumed to remain stationary (and velocities are not instantiated). The number

of observations used is itself sampled so that it it is sometimes more than 2, and multiple

segments are fit.

For physics dynamics involving collisions, the assumption is made that the two obser-

vations are part of the same free-flight period, so no collision occurs (and so that only two

observations are necessary to reconstruct the instantaneous parameters of the object).

This does mean that observations far apart in time are less likely to result in accurate

trajectory reconstructions, so observations are sampled in such a way that they are likely

to be close to each other in time. This is similar to the observation made by Myatt et al.

(2002) that in general, sampling sets of data-points close to each other in the dimension of

interest is more likely to come up with sets of inliers. From the assumption of free-flight,

it is easy to find the 2D pose and velocity of the object at one of the time points.

From this instantaneous estimate xta , it is possible using the simulation function fdyn

to reconstruct the full trajectory from that time-point onward. States ahead in time of ta

need to be obtained by simulating with fdyn and states previous in time with respect to

ta need to be obtained by simulating with a time-reversed simulation function f−dyn.

For states before the instantaneous estimate xta the problem is not so simple as fdyn is

not easily invertible in its previous-state parameter xti−1
. The theoretical reason for this

is that damping and friction can lead to a loss of information, particularly static friction -
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for example, a stationary object could have come to rest from any direction. In the work

here, an approximate solution is used, where the simulator is run with reversed velocity

and restitution coefficient, no linear damping and no friction.

With this approach, the resulting trajectory can be parametrised by the state at a

single time point, but that state is not necessarily the state xt0 at time t0. As such, if

the trajectory is to be globally parameterised, the time point xta is used to parametrise

it. This point of parametrisation can be moved during the refinement phase if the move

does not negatively affect the cost of the trajectory and/or the number of inliers.

Having defined fINST it is a matter of testing each instansation for inlier fit; that is

the number of observations that fit the trajectory. In this procedure, the inlier threshold

is used to determine whether an observation is an inlier with respect to a trajectory, and

each inlier observation counted once to determine the number of inliers. Using the weights

wti , this procedure is modified slightly in two ways:

• The inlier threshold distance is scaled by the weight, so that trajectories close to

more highly weighted observations are more likely to contain them as inliers.

• The number of observations that each inlier observation counts for is scaled by the

weight, so that more highly weighted observations contribute more to the inlier

count.

Each modification has a slightly different effect. The scaling of the inlier threshold

decreases the necessary accuracy of observations if there is good evidence of the target

object nearby. This is a somewhat unconventional approach but it does allow the trajec-

tory estimate to be more inexact under controlled conditions. The scaling of the inlier

count is more conventional and its motivation is to give higher weight to trajectories that

contain good observations.
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5.4.6 Refinement

Once RANSAC has initialised a trajectory, it can be improved by attempting to fur-

ther optimise the trajectory to minimise a cost function based on observation error and

deviation from dynamics.

Trajectory parametrisation. Two different cost functions are used depending on

how the trajectory is parametrised. The general form of these cost functions are described

in Sections 5.2.1 and 5.2.2.

If the trajectory is globally parametrised, there is no dynamics cost since the trajectory

is constrained to fit the dynamics:

Cost(xta) =
i

j=0

ObsCost(ztj ,xtj) (5.30)

xtj =


fdyn(xta ,θ,uta:j ,∆ta:j) if j > a

f−dyn(xta ,θ,utj:a ,∆tj:a) if j < a

xta otherwise

(5.31)

The observation cost of each frame is the match-score weighted distance between the

orthographic projection of the object location and the best object match:

ObsCost(zti ,xti) = (zti − fobs(xti))
T

 wti 0

0 wti

 (zti − fobs(xti)) (5.32)

Thus the match-score derived weight of the observation reflects the supposed variance

in its distribution and consequently alters its impact on the overall cost score1.

If the trajectory is locally parametrised then the cost consists of a weighted sum of

1The assumption that the theoretical variance in object location matches its match score is more than
tenuous, but it works in practice to tie together the weighting of observations with the MAP formalism.
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observation and dynamics costs with no constraints:

Cost(xt0:i) =
i

j=0

ObsCost(ztj ,xtj) +
i

j=1

DynCost(xtj ,xtj−1
, j) (5.33)

The dynamics cost at time ti is the distance between the expected state at time ti

given the estimated state at time ti−i, fdyn(xti−1
,θ,uti ,∆ti)), and the estimated state at

time ti−1:

DynCost(xti ,xti−1
, i)

= (xti − fdyn(xti−1
,θ,uti ,∆ti))

TSdyn(xti − fdyn(xti−1
,θ,uti ,∆ti)) (5.34)

The weight Sdyn needs to mediate between the weight of location

T 1
i

T 2
i


and velocity


v1i
v2i


and also to mediate between the weight given to observations and that given to dynam-

ics. In the latter case, since the translational residual in dynamics and the translational

residual in observations exist in the same unit space, the natural approach is to weight

them equally. However, they do need to be transferred into the same units1.

Regarding velocity, the approach taken is to weight a velocity residual according to

the number of time-steps of translational information that would be required to calculate

the velocity; since 2 time-steps are generally sufficient, the weight is 2. In this experiment,

the velocity weight is multiplied by the inverse of the frame-rate 1
∆ti

, that would by itself

obtain a velocity cost equivalent to the expected accumulation of translation cost over

one second, which in this experiment equates to a multiplier of 15× since the videos in

this experiment were taken with a USB camera at 15 frames per second. This choice is

relatively ad-hoc and was done because the velocity part of the estimation problem was

deemed to be less constrained by observations and so ought to be more constrained by

the dynamics2. The multipliers used in experiments are described in Table 5.6.

1In this experiment dynamics is multiplied into image coordinates by multiplying by the square of the
pixels per unit metre (square because the weight is multiplied into a squared error).

2The practical effect of different velocity multipliers should rather be experimentally determined.
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So, in general in this experiment:

Sdyn =



Dyn
Obs

0 0 0

0 Dyn
Obs

0 0

0 0 Dyn
Obs
× V el

Disp
0

0 0 0 Dyn
Obs
× V el

Disp


(5.35)

Although rotation of the object around an axis parallel to the camera axis in the

simulation fdyn is allowed in order to better account for the behaviour of a freely rotating

object undergoing contact, the rotational state of the object is not considered in the

estimation problem and its rotational velocity effectively set to zero before any simulation.

Having defined the cost function, the problem of minimising it is faced. As with

the previous experiment, the form of the cost function is a sum of squared differences.

Thus, the Levenberg Marquadt and similar algorithms are applicable as a refinement

approach (see Section 5.3.2 and Appendix D for details of this approach). To reiterate,

these algorithms iteratively find local optima by locally linearising the observation and

dynamics models and then either jumping to the corresponding optima, or moving in the

direction of the gradient of the square (or some mixture of the two). In this experiment, no

difference in performance was noticed between the use of a line-search algorithm performed

in the direction of the gradient and the Levenberg Marquadt algorithm.

Both algorithms are applicable for both cost functions described above (the one based

on the global parametrisation and the one based on the local parametrisation); in the

case of the local parametrisation, the dynamics terms are also sums of squared differences

so fit into the same solution framework. In the case of the global parametrisation, the

number of variables to be optimised is significantly decreased, though no constraint needs

to be applied since all expected states and observations are calculated directly from the

parametrised state. If during refinement, observations become close enough to the tra-

jectory to be considered inliers, they are dynamically included in the cost function (or

dropped if they fall out of range).

143



Simulation parameters

Parameter How obtained Value

Coefficient of restitution Guess 0.8
Coefficient of static friction Guess 2.0
Coefficient of dynamic friction Guess 0.1
Linear damping Guess 0.2
Ball mass1 Measured with kitchen scales 110g
Ball radius Approximated with flat ruler 10.5cm

Cost parameters

Parameter How obtained Value

Dynamics/observation weight ratio Calculated 350× 350pixels2/m2

Velocity/displacement weight ratio Calculated 15× 15s−2

Refinement algorithm parameters

Parameter How obtained Value

Maximum iterations Set conservatively 400
Finite differences step Informal experiments 10−5

Stopping tolerance Set conservatively 3× 10−6

RANSAC algorithm parameters

Parameter How obtained Value

Maximum iterations Calculated 400
Inlier threshold Guessed 40pixels
Minimum inlier count Guessed 5

Video capture information

Parameter How obtained Value

Camera Commonly available Logitech QuickCam Pro 4000

Resolution Maximum capability 640× 480
Frame rate Maximum at resolution 15s−1

Table 5.6: Parameters of physics simulator, of motion estimation algorithms and visual
apparatus in the 2D ball bouncing scenario.
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As in the simulation case, finite-differencing is done to calculate the gradient of the

cost function with respect to the parameters, or of the squared terms with respect to the

parameters.

5.4.7 Results

Figure 5.7 shows the error achieved per video per algorithmic condition. The error is

measured in root mean squared error in object location averaged across all frames in the

video in which a human was able to determine object location. While the velocity is

reconstructed by some algorithms, it is the translational state that is of interest since it

is more easily measured, and is the target of most motion estimation algorithms.

Because the RANSAC step using the naive dynamics models (constant displacement

and constant velocity dynamics as well as no dynamics) almost always produces very bad

estimates on the difficult data-set used here, a second set of experiments is run in which

the RANSAC step is handled by the superior collision dynamics model, and performance

of different dynamics models compared on the refinement stage.

Figure 5.8 shows examples of failure and success conditions for each video and algo-

rithmic condition.

When considering their use in RANSAC, the no dynamics, constant velocity dynamics,

and constant displacement dynamics fail quite badly, except in the rolling ball case (c)

where the constant velocity dynamics performs well as would be expected since the object

is moving with nearly constant velocity. The collision based dynamics, though relatively

successful, performs slightly worse here than constant velocity because the model of the

ground plane is not well calibrated to the ground-plane in the images.

In the bouncing ball with glare and blur video (a), constant displacement and constant

velocity dynamics fail to initialise a good trajectory, mostly fitting well only to a single

free-flight segment of the trajectory. In contrast, the collision based physics dynamics

is able to find a near enough bouncing trajectory. In the bouncing ball under occlusion
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video (b), the bouncing in the object is again missed by the naive dynamics models and

the occlusion mid-trajectory can means that the RANSAC-generated trajectory does not

even pass behind the occluding object. Again, the collision-based dynamics are able to

initialise an approximately correct trajectory. In the case of the video ball bouncing with

occlusion and distractors (d), the naive dynamics models again perform terribly in the

RANSAC phase, generally coming up with highly implausible trajectories missing most

of the trajectory of the object. Because the colour histograms are normalised, in video (d)

the black bag provides a distractor. Normalisation helps reduce the effect of luminance,

but cannot reason about illumination levels in the scene; naive dynamics models are more

likely to include the distractor in estimated trajectories, and omit the ball when it is

occluded.

When considering only their performance in refinement (by initialising the refinement

with a solution derived from RANSAC with a collision-based dynamics model), the naive

dynamics models are more often able to show some success, but the collision-based dy-

namics still mostly do better. The naive dynamics models are still not able to handle

the bouncing behind occlusion (b), mostly inferring trajectories that circumnavigate the

occluder, and cannot handle the distractor case well (d.i and d.ii), only able to fit to

one segment of the trajectory. In general, bouncing is inaccurately smoothed; the sharp

discontinuities in velocity and the sharp displacement profile at a collision do not match

the assumptions of the naive dynamics models.

When comparing the collision dynamics with global parametrisation to collision dy-

namics with local parametrisation, it is seen that the latter typically obtains a marginal

improvement over the former, mostly to do with integrating more visual information into

the more flexible dynamics model; however, it can do worse where the visual information

is particularly bad, as with video (d).
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RANSAC + Refinement error results per dynamics model
(The same dynamics model used with both algorithmic phases)

Globally Parametrised Collision Dynamics
Locally Parametrised Collision Dynamics
Constant Displacement Dynamics
Constant Velocity Dynamics
No Dynamics
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Refinement error results per dynamics model
(physics based dynamics used for initialisation)
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Figure 5.7: Numerical error results for each dynamics model on each of the four ball
scenarios. Performance measured in RMS error in pixel distance. Ground truth labelled
by hand. Ground truth exists even for occluded objects. The top chart contains a
clear comparison of dynamics models as used in the 2 phase algorithm (RANSAC +
refinement). The bottom chart contains a comparison of dynamics models against the
refinement algorithm; because it performs best in the RANSAC phase, the physics based
dynamics were used with RANSAC to initialise the refinement search.
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Constant Constant Collision
Displacement Velocity Dynamics
Dynamics Dynamics (Local)

(a)

i = 3

(b)

i = 5

(c)

i = 6

(d).i.

i = 7

(d).ii.

i = 15

Figure 5.8: Successes and failures on the 4 videos analysed in this chapter. First row: Frame 3 from
the video with a ball bouncing across the scene with some glare and blur. Second row: Frame 5 from the
video with a ball bouncing behind an occluder. Third row: Frame 6 from the video with a ball rolling
behind an occluder. Fourth row: Frame 7 from the video with a ball bouncing behind a distractor
and occluder in the presence of blur and glare. Fourth row: Frame 15 from the same video. Left:
Failure and success situations for the constant displacement dynamics based algorithm. Middle: Failure
and success situations for the constant velocity dynamics based algorithm. Left: Failure and success
situations for the physics based dynamics model based algorithm. The black circle is the observation-only
(without dynamics) estimate, the white circle is the estimate based on the current dynamics model, and
the red cross is the human-labelled ground truth estimate.
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5.4.8 Experiment discussion

The results do not contradict the hypothesis that the inclusion of a physics-based dy-

namics, accounting for collisions, can improve estimation performance on real-world data

- such performance is observed at any rate on the videos analysed with the normalised

colour histogram template visual feature used, motion parallel to the image plane, and a

single simple object. The physics-based dynamics is particularly useful when observations

are missing or distracting. Whereas naive dynamics models work some of the time and

each can be applicable to certain scenarios, when visual information is lacking they are

insufficient to cover a wide variety of object behaviour.

As discussed in Chapter 3, and noted in the previous experiment, robustification with

algorithms like RANSAC is particularly important where noise is not simple dispersion

noise, as is the case with many of the videos addressed here. Moreover, it can help

with the search for good trajectory candidates, helping to overcome the problems of non-

linearity and multiple optima. This is shown in the experiments in this chapter, with

robust initialisation an essential component in the performance of the algorithms used

here.

One important consideration when considering the robustness of physics-based esti-

mation is how robust the estimation algorithms are to model mismatch, which is fated

to occur. Additional experimentation suggests that the performance of RANSAC is more

sensitive to inlier threshold than to the simulation parameters like the coefficient of resti-

tution. This is good news as it suggests that this method can be robust to model inac-

curacies. However, when extended to multiple, possibly interacting, balls, the problem

becomes more sensitive to the physics model and more methods are necessary for dealing

with that. Possible approaches are discussed in the further work section.
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5.5 Contributions

There has been little work on incorporating anything other than polynomial models of

dynamics into motion estimation. On the other hand, in control, motion planning, and

motion synthesis, sophisticated physics models are employed, but, there, robustness to

noisy data is not a consideration. In human tracking, some good work exists but again

robustness is not the main consideration, and the benefits of the more sophisticated models

are not clear. The current chapter shows an improvement in motion estimation in the

presence of occlusion, fast object motion, glare, blur and distractors, incorporates physics

into the estimation process in a new way, and offers and experimental validation of the

use of off-the-shelf real-time physics in motion estimation.

The two physics-based approaches presented in particular showed a marked improve-

ment on the real-world motion estimation from colour problem, irrespective of whether

process noise was incorporated in the refinement step.

The remainder of the chapter will discuss the work that remains to this program of

research.

5.6 Further work

Further work mostly fits into two categories:

• Obtaining an improvement from a physics model while integrating better visual

features.

• Obtaining an improvement from a physics model while expanding the range of real-

world scenarios handled.

The former category revolves around showing that a dynamics model can improve

performance even when state of the art computer vision techniques are applied. The

latter revolves around showing its applicability in a wider range of situations including

progressively more complex and real-world situations.
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5.6.1 Improved visual features

Estimation performance on the real-world scenario considered here may be improved by

improving the use of features rather than the dynamics model. As noted by Ennesser

and Medioni (1995) and mentioned in the literature review, the use of a 2D colour space

can be difficult to get right. This might contribute to the difficulty of the vision problem,

thereby giving the physics an opportunity to do much better by compensating for the

weaknesses in the vision.

On the other hand, the visual problem here has been made artificially easy in the

scenarios experimented on in this chapter, by using a colour template of known image

radius and relatively controlled visual conditions. Occlusion and blur are common in

real-world vision problems, and they are a prominent feature of the scenarios here.

An empirical question that remains to be answered then is, with a better colour space

quantisation, as well as a model of object occlusion, perhaps using adaptive blob type

features as the primary feature rather than fixed-size templates, multiple feature types,

and possible blur correction techniques, whether the use of physics still an improvement.

The physics-based approach should still yield improvements with state of the art com-

puter vision techniques if it is to have long-term worth. At the very least there will always

be corner-cases where it is useful (that, in specific applications, can be very important).

As an example, visual features, particularly monocular ones, are poor at discriminating

the depth of even known objects. For example, the radius of a ball is a relatively weak

indicator of its distance. Object physics can be used for discriminating very well objects

relative distances based on their interactions. Objects interacting under occlusion, and

the use of containers to transport objects are also scenarios where this approach should

work well even when visual cues are indirect (the trajectory of objects emerging from

occlusion, or the trajectory of the container).
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5.6.2 More scenario variety

In order to investigate the applicability of this kind of method it is necessary to expand

the number and type of real-world scenarios handled. These new scenarios will induce

the necessity of the application of new methods.

The obvious next step is to address scenarios with multiple, possible interacting balls.

The most improvement would be expected where the balls have ambiguous visual appear-

ance. Beyond that, further steps involve moving to full unconstrained movement in 6D

pose, different kinds of object, and less advance specification of scene properties.

5.6.3 Robustness to model inaccuracy

Although the approach given is robust to model inaccuracy on the scenarios described

here, there are easily describable scenarios where the approach given would fail in the

presence of even slight model inaccuracy. This is because dynamical systems can be par-

ticularly sensitive to initial conditions and as such reconstructing one part of a trajectory

on the basis of another part can depend on small changes in the first: an example is

given in Figure 5.9(a). This is something that naive RANSAC and related methods will

not always be able to handle as they would rely on the dynamics model to reconstruct

parts of the trajectory from other parts and small noise in one part may lead to incorrect

inferences about the other.

Moreover, a bad or inaccurate model of the world can lead to similar problems, as

illustrated in Figure 5.9(b). Again, RANSAC relies on the correctness of the dynamics

model to infer parts of the trajectory from distant parts so problems like this may lead

to RANSAC producing trajectories that cannot be corrected in the refinement stage.

The proposed solution is to introduce process noise in the RANSAC stage, equivalent

to the implicit noise model that underlies the cost function used in the refinement algo-

rithm. Thus, during RANSAC, not only are observations sampled from, but also process

noise is added. This leads to a much greater sample space but it remains to empirical in-
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Figure 5.9: Illustration (a) illustrates how nonlinearity combined with some permuting
noise can lead to large changes in reconstructed trajectory due to the nonlinearity of
the dynamics model. If observations at time points 1 and 2 are used to calculate the
trajectory of a ball and some permuting noise added to the observation at time 2 different
resulting positions at time point 3 and later can be found. Illustration (b) shows one
of many scenarios where a bad model fit can lead to incorrect reconstructed trajectory.
If a trajectory is reconstructed incident on a stationary ball, that ball may roll different
distances, or indeed may roll back the way it came, depending on restitution, friction,
exact ball shape, surface properties, and other unmodelled or incorrectly modelled physical
phenomena.

vestigation whether it can lead to an improvement. To reduce the sample space, it would

be possible to detect collisions and only add process noise in the event of a collision, as is

common in motion synthesis to produce realistic looking behaviour, and would focus the

noise sampling on particularly sensitive parts of the dynamics.

A likely improvement to computational complexity can be obtained by reconstructing

sub-trajectories and then combine them. This is currently how the naive dynamics models

in the experiment in Section 5.4 are handled during the RANSAC stage.

In order to handle the case in Figure 5.9(b), it is also possible to sample from the

simulation parameters θ such as restitution, linear damping and coefficients of friction.

In general, increasing the number of parameters open to inference can move this work to

overlap more with structure from motion where traditional shape parameters, for instance,

can be inferred as well the physical object and surface parameters.

The MAP problem addressed in this chapter involves the function p(xt0:i|zt0:i ,θ,ut0:i)

but this can be rearranged to find p(xt0:i ,θ|zt0:i ,ut0:i) instead, which would introduce a

prior pθ(θ) into the cost, which can be used to constrain the search close to plausible
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physical setups. An alternative approach would be to marginalise θ out of this distribu-

tion altogether in order to find p(xt0:i|zt0:i ,ut0:i) =

θ
p(xt0:i ,θ|zt0:i ,ut0:i)dθ, but this is

analytically more difficult to achieve and it is unclear what gain it would obtain in this

context.

The parameters uti can also be descended on using the same cost function and re-

finement algorithms. In this way, rather than sampling from dispersion in state space,

other more physically appropriate sampling methods can be chosen such as sampling of

collision normals or object-incident forces. The latter approach is pursued in Chapter 6.

5.6.4 Multiple ambiguous objects

In order to handle multiple ambiguous objects, the data association problem must be

solved; that is, at each time step it must be decided which observation corresponds to

which object. For small numbers of objects this association can be randomised and each

randomised hypothesis checked against a criteria, though the complexity of this approach

grows quickly and more sophisticated data association approaches may become necessary.

Any approach must handle weak dynamics models; that is, dynamics models that

are not expected to predict the trajectory well and so must have lots of implicit noise,

such as constant displacement dynamics and constant velocity dynamics. RANSAC can

instantiate trajectories based on such weak models by, for example, randomising elements

of the reconstruction, or reconstructing multiple segments.

When assigning observations to objects, it is necessary to check the level of feasibil-

ity of the trajectory with respect to the dynamics model. The present approach is to

use inlier count as the criteria for checking possible RANSAC solutions. However, with

this approach, it is too easy for RANSAC to accept trajectories that involve implausible

jumping around the scene as data association is randomly reversed between objects, par-

ticularly as the scheme introduced in the previous section whereby sub-trajectories are

sampled and combined produces a wider variety of behaviours.
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Rather than try to combine a dynamics feasibility check with an inlier count, the

obvious approach is to use a cost function that combines the inlier-seeking criteria of inlier

count and the dynamics-constraining DynCost cost function, and score any potential

trajectory on that basis.

The use of a cost-function as used here for refinement and the use of RANSAC are

combined in the protocol of MLESAC, MAPSAC and related approaches (Torr, 2002; Torr

& Zisserman, 2000), where a cost function is defined based on long-tailed probabilities

that contribute very small amounts to the cost for elements that might be outliers. The

RANSAC algorithm in its core is preserved, but rather than using inlier count to rank

hypotheses, this robust cost function is used. The robust cost function serves the function

of inlier count as well as offering more refined discerning based on the gradations of cost.

By adding dynamics terms to this cost function, it is proposed that a MLESAC/MAPSAC

approach is particularly applicable to the problem presented here, particularly in ranking

reconstructed hypotheses according to dynamics function fit while simultaneously reject-

ing outliers and considering observation cost. It may be possible to evaluate inliers and

dynamics cost separately but at a broader level of analysis, a single cost-function is a way

of incorporating different sources of information in a disciplined way1.

In this paradigm there is also some work deriving weights from visual information and

using them in a more disciplined way. In Guided-MLESAC Tordoff and D. W. Murray

(2005) a more rigorous approach is taken to making a prior (which would in the case of

this chapter be a cost weighting) from a match score.

5.6.5 Evolving algorithm paradigm

As more parameters are sampled from as discussed in the other further work sections

(θ,u), there is an explosion in the size of the space that needs to be sampled from.

1Multiple source of evidence as multiple terms in the cost function, some of them having robust long
tails, can be combined sensibly. MAPSAC and MLESAC also do not need an inlier threshold to be
specified as it is inferred online. Indeed, there is no clear motivation for using inlier count in RANSAC
over a suitable robust cost function with trajectory instantiation from random subsamples, as is done in
MLESAC and MAPSAC. This is also argued by Torr (2002), Torr and Zisserman (2000).
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The use of the same cost function for refinement and MLESAC/MAPSAC also provides

a synthesis with the refinement search in that in both cases the problem is posed as a

search across a cost-surface. In the MLESAC/MAPSAC case, this is a heuristic led

sampling search, and in the refinement search it is a local approximation and descent

search. These approaches may need to be generalised further in the search across the

space of efficient algorithms for dealing with this problem.

For example, it would be very easy to design hybrid MAPSAC/EA algorithms. In

particular, an initial vision is one where the crossover operation is exploited to splice can-

didate sub-trajectories, in conjunction with a dispersion mutation operation to explore the

general space of nearby trajectories. Alternatively, segments of the trajectory indepen-

dently, saving good segments for possible inclusion in the final solution. Indeed, in such an

algorithm, both dynamics-based and observation-based heuristics can be used to mutate

candidate trajectories. Initialisation RANSAC-style is easily incorporated into this kind

of approach, as well as non-linear optimisation style operations as used in the refinement

approach in this chapter. Efficient methods for traversing complicated cost functions,

such as those described by Sminchisescu and Triggs (2005) could come in useful in such

problems. Beyond this, a Markov Chain Monte Carlo approach could yield similar ben-

efits, while creating opportunities to again generalise the RANSAC paradigms, and an

Expectation-Maximization approach may help to make the algorithm more efficient1.

5.6.6 Alternative simulation approaches

The use of a black-box simulator here is both a boon, since it simplifies the problem, but

also removes some of the flexibility that can be obtained from being able to alter the form

of the simulation or to integrate the simulation more closely with the estimation problem

as well as other kinds of understanding of the physical dynamics under question.

One of the preoccupations of researchers in robot control is the problem of inverse dy-

1The Expectation-Maximization (EM) algorithm is analogous to coordinate-descent except that rather
than descending on individual coordinates alternately, the algorithm solves for two different groups of
variables alternatively: hidden variables, and optimising variables.
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namics; that is, efficiently finding a model of the simulation that also embodies the inverse

dynamics allowing the force or impulse train necessary to obtain a trajectory calculated;

such simulations are “invertible” (Todorov, 2011). Such an approach is potentially ap-

plicable to the problem presented in this chapter in that for an observed trajectory, a

dynamical model fit to the trajectory by the calculation of the forces necessary to make

the necessary motion. Such an approach needs to be developed to be robust, however,

since the existing approaches fit a trajectory directly to a sequence of states. Some ap-

proaches already exist in combining the two in clever ways, for example the work discussed

in the literature review of Metaxas (1997), Metaxas and Terzopoulos (1993).

Rather than inverting the simulator (“forward dynamics”) with respect to the con-

trol parameters (“inverse dynamics”) as done for example by Todorov (2011), it is found

here that more correct ways of inverting the simulator with respect to the previous state

parameter xti−1
, that is, reversing the simulation in time, would come in useful for recon-

structing trajectories when information is known about the trajectory at time ti but the

trajectory needs to be constructed at time tj, j < i. It is possible to define a reversible

simulation by allowing information that is normally lost in the simulation (such as veloc-

ity direction and size when an object rolls to a stop and is caught by static friction) by

keeping oscillations in the system forever (the ball never really stops); such an approach

would for the most part induce a continuous simulation function also. However, even if

such oscillations were preserved, they are unlikely to match any small-scale oscillations

observed unless an immense amount of effort were expended in making the simulation

correct; moreover, they are unlikely to be discernible by any visual apparatus and so

cannot be used in estimation anyway. Such an approach would be orthogonal to existing

work in reversible simulation, which focuses on numerical invertibility (Hairer & Söder-

lind, 2005), or how probability distributions change in reverse-time (Peters, Janzing, &

Schölkopf, 2010).

An alternative approach to solving this problem is defining the simulation from the

ground-up stochastic, so that simulating backwards in time involves sampling from the
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set of possible previous states.

5.6.7 Multiple models

One possible alternative to the use of physics is the use of multiple simple dynamics

models. Since one model might apply part of the time and another model part of the

time, it may be possible to partially overcome the need for sophisticated physics (though

such an approach will sometimes miss cases where the physics approach can shine, for

example multiple bounces behind an object). This can also be useful when combining

multiple physics-based models when none of them model the world perfectly.

Factored, mixture and boosting approaches are common in the literature and so many

techniques exist for making this happen. A variation on this idea is attempted with little

success in the next chapter in the context of full 6D object tracking, but that approach

is relatively naive and needs some improvement.
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CHAPTER 6

APPROACH: RECURSIVE TEXTURE TRACKING
OF 6D OBJECT POSE

“Thousands of Egyptian civilians, including protesters who helped topple the
authoritarian regime of president Hosni Mubarak, have been tried in military

courts without due process.”

Egypt: After Mubarak, the military fist,

Inter Press Service, 6 May 2011

This chapter describes the improvement of an existing real-time 3D texture-based

object tracker using a particle filter to propagate hypotheses over time (Mörwald, Zillich,

et al., 2009)1 to take advantage of a physical simulator as part of a dynamics model acting

as a proposal distribution for the particle filter. In order to achieve this improvement a

novel way of adding noise to the simulator is required.

The scenarios and experiments previously described in this thesis addressed the prob-

lem of motion estimation. In the scenario described in this chapter, the emphasis is rather

on object tracking, viewed through the lens of recursive estimation of object state. The

focus of object tracking is on efficient techniques that enable real-time or near-real-time

estimation of object behaviour, while recursive estimation is about maintaining estimates

of state across time. It is a probabilistic framework through which object tracking can be

understood.

1The tracker used here is part of a recent trend to 3D model-based particle-filters, described in Chap-
ter 3, Section 3.2.1 and 3.6.3, including edge-based approaches(Klein & D. W. Murray, 2006; Mörwald,
Zillich, et al., 2009; Pupilli & Calway, 2005).
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Real-time object tracking is an important goal in cognitive robotics, including robot

manipulation, object learning and human-robot interaction. The ability to track objects

in space and time opens up a world of possibility; allowing a robot to plan its movements

according to the current state of the world, allowing it to learn about and check its

understanding of the behaviour of objects and the world by observing their state directly,

allowing it to reason jointly with other physically present agents, and more.

In this chapter the target object has a full 6 dimensions of freedom to move in 3D

space. The practical limitation in experiments in this chapter is the assumption that

the pose of stationary surfaces are known with respect to the camera 1. In addition the

tracking algorithm has a surface and texture model for the tracked object 2.

The main hypothesis with respect to this work is that it should be possible to leverage

physical simulation to improve the quality of object tracking, particularly in the presence

of occlusions and fast motion, such as when a human hand passes in front of an object, or

the robot’s own effector, in the presence of clutter, or when objects tumble. It is shown

here that this is the case in the videos used here to test this prediction; the improvement

is obtained with a particular way of incorporating dynamics noise that inserts the noise

as perturbing forces in the simulation.

Table 6.1 lists the background information earlier in this thesis related to this chapter3.

6.1 Problem formulation

In the scenario described in this chapter, a camera captures a sequence of images of a

textured object moving on a tabletop. All of the test videos involve the object being

1In principle the pose of a ground plane with respect to the camera can be estimated online, and the
algorithms for doing this should be relatively robust (if such a ground plane exists).

2The texture estimation has already been incorporated into this tracker (Mörwald, Zillich, et al., 2009),
but scene and target structure can also in principle be estimated (Ozden, Schindler, & Van Gool, 2010;
Richtsfeld, Mörwald, Zillich, & Vincze, 2010), a task itself potentially made easier with knowledge of how
objects are constrained to move.

3Many of the ideas described in this chapter have been published in the IEEE International Conference
on Robotics and Automation (Duff, Mörwald, et al., 2011).
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Subject Where to find Details
Probabilistic formulation Chapter 2 Puts forward a probabilistic formulation for

estimation from trajectories.
Recursive estimation Section 2.6.2 Specialises in recursive estimation, as is done

in the present chapter.
Computer vision Chapter 3 Discusses the background of motion estima-

tion and recursive estimation in computer vi-
sion.

Visual tracking Section 3.6 Focuses on recursive estimation/tracking
from vision, the background for the algorith-
mic techniques described in this chapter.

Physical simulation Chapter 4 Discusses the fundamentals of physical sim-
ulation.

Physics based estimation Section 4.2 Looks at previous applications of physical
simulation to computer vision.

Table 6.1: Chapter background - where to find background information for this
chapter.

pushed by a robot finger mounted on a five degree-of-freedom (5-DOF) robot arm.

The aim is to take a textured model of the object, illustrated in the top left of Figure 6.1

and find a pose for that object in each of a sequence of images, illustrated in the bottom

right of the same figure. The same figure also illustrates the use of texture edge matching

in tracking the object (read Section 6.4 below for more details on the texture matching).

The problem is to track the 6-DOF pose of that object. The tracking problem is made

more difficult by introducing occlusion and distractors. Also, when the object tips under

the force of gravity, it can rotate too fast for a normal object tracker to maintain track.

Example image sequences can be seen in Figures 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7 in Chapter 7

where the approach detailed here is applied to real videos.

A 3D shape model of the target object is already provided in the form of a textured

polygon mesh. The polygon mesh is designed by hand and the texture acquired during

previous tracking1 (Mörwald, Zillich, et al., 2009). Physical information about world ob-

jects is also provided, consisting of the ground plane pose and the physical parameters of

the target object, such as mass and friction coefficients.

1In order to acquire the polygon mesh, geometric edges alone are used to track the object well enough
until the texture can be acquired.
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Figure 6.1: Top left: A view of the textured model tracked in experiments. Top right:
A view of the edge image extracted from a candidate image. Bottom left: A projection
of the edges of the textured model onto the image (obtained by first projecting the texture
from a key pose, extracting edges, projecting the result onto the model surface and then
re-projecting the edges onto the image). Bottom right: A reconstruction of the pose of
the object with respect to the camera.

In the rest of this chapter a description of the particle filtering framework and likeli-

hood calculation used is given, followed by a description of various dynamics noise models

employed as a part of the particle filter.

In Chapter 7, results are presented that bear on the original prediction that physical

simulation should improve the accuracy of tracking. The results also clarify the relation-

ship between simulation and estimation, as well as shedding light on the properties of the

probabilistic models and algorithms used in this research.

6.2 Particle Filtering

The approach used here is a direct extension of an existing model-based tracker that uses

a particle filter to propagate hypotheses about the pose of an object forward in time and

uses graphics card accelerated texture calculations to evaluate the image likelihood of a

given pose (Mörwald, Zillich, et al., 2009). The particle filtering framework used there is
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described first. Particle filtering is an approximate approach to recursive estimation1.

Representation. In particle filtering a probability distribution pJ is approximated

by a set of weighted state hypotheses or particles J = {...⟨x[j], w[j]⟩...} such that:

pJ(x) ≈


⟨x[j],w[j]⟩∈J

w[j] ·K(x− x[j]) (6.1)

Here K is a kernel function2, usually (and in the case of the approach considered here)

taken to be the Dirac delta K(a) = δ(a)3. This means that the approximated probability

distribution has finite support4.

Figure 6.2 contains a pictorial representation of such a set of particles.

Thus, the probability distribution over the current state given all observations to

date p(xti|zt0:i ,θ,ut0:i ,∆t1:i) can be approximated by a set of particles J i
post such that

pipost(xti|zt0:i ,θ,ut0:i ,∆t1:i) ≈ pJi
post

(xti). These particles are propagated from one time

1Recall that recursive estimation is the problem of maintaining a probability distribution,
p(xti |zt0:i ,θ,ut0:i ,∆t1:i), over an observed system’s state, xti (in the present chapter, the state of the
tracked object), given all observations seen so far, zt0:i , by incorporating previous estimates of the object
state, p(xti−1

|zt0:i−1
,θ), and any new observations zti and control inputs uti . ∆t1:i is the set of time

differences between time-steps. Theta, θ, represents background parameters that do not change from one
time-step to the next.

2This representation using kernels is on a continuum with the Mixture of Gaussians representation
introduced by Sorenson and Alspach (1971) and Alspach and Sorenson (1972) except in the representation
given here there is no allowance for maintaining the covariance of a hypothesis; the range of possibilities
for representing sampling filters are broader yet - see Chapter 3.

3The use of the Dirac delta allows one to conveniently write down the marginalisation of p(xti ,xti−1
)

from p(xti−1
) defined in terms of these particles if p(xti) is expressed as an integral over the joint

probability’s continuous domain. While not rigorously defined here, in practice the following property of
the Dirac Delta when used in the place of a function are important:


f(a+ b)δ(a)da = f(b) - i.e. the

delta function puts all of the probability at discrete points in the domain making the probability density
act like probability mass. The Dirac delta can be used in place of a function much of the time but is
better described as the limit of a sequence of functions (so that the function in which it is used as a term
might itself be considered the limit of a sequence of functions), with properties of a discrete probability
described in the language of continuous probability density functions.

4The consequences of the assumption that the kernel function used while interpreting particles as
a probability distribution is a Dirac delta function is, first, that many things become more tractable,
since only those parts of the state-space in which there are samples need be considered (the probability
distribution has finite support - in these circumstances the continuous domain may be treated in many
ways as if it were discrete). On the other hand, this assumption is effectively the assumption that those
parts of the state space where there are no samples are actually impossible for the object to be in (they
have probability of 0). This leads generally in practice to the need to compensate by having a dynamics
model whose noise is not just dynamics noise, but also noise added for the practical purpose of better
exploring the state space around existing samples. This is certainly the case in the particle filtering
tracker upon which this work is built.
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Figure 6.2: A pictorial representation of 20 particles representing 20 hypothesis poses.

step to the next in an attempt to track the probability distribution over current state by

a process of sampling, re-sampling and re-weighting of particles.

Having described the representation approximating the distribution over state, in order

to define the recursive estimator, it must also be shown how to update this from time-point

to time-point.

Propagation. The most efficient way of propagating particles from the posterior at

time ti−1 (that is, p(xti−1
|zt0:i−1

,θ,ut0:i−1
,∆t1:i) ≈ pJi−1

post
(xti−1

) ), to the posterior at the

later time ti (that is, p(xti|zt0:i ,θ,ut0:i ,∆t1:i) ≈ pJi
post

(xti) ), would be to sample new

particles directly from this new posterior probability distribution using the previous set

of particles J i−1
post. This probability distribution is at least theoretically known, given a

dynamics model and observation model, up to scale1.

If this distribution could be sampled from directly, then the set of new particles pro-

duced by sampling from it would represent the distribution over the new state, incorporat-

ing the previous estimate as well as all knowledge about state evolution and observation

generation. Generally, however, this distribution cannot be sampled from directly. Rather

it is sampled from indirectly by first sampling directly from a different distribution (the

“proposal distribution”) to generate new particles, and those particles weighted so that

their weights (“importance weights”) reflect the relative probability of each particle. To

1If the prior probability over the observations is also known, there will be no scale factor.
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keep the set of particles from becoming dominated by zero-weight particles1, these parti-

cles can be re-sampled so that highly-weighted particles spawn more children.

In many cases, and in the case of the particle filter employed here, the proposal dis-

tribution is chosen to reflect the distribution over the new state before observations are

incorporated (the dynamics model), pdyn(xti|xti−1
,θ,uti ,∆ti) and the particles weighted

according to the probability of the observed output of the hypothesised states (the obser-

vation model), pobs(zti|xti)
2.

The way that the recursive relationship between a probability distribution over state

xti−1
at time-step ti−1, a new observation zti , and an updated probability distribution

over the state xti at new time-step ti can be factored into the dynamics model and the

observation likelihood is well-known, and easily derivable from the Markov property and

direct dependence of observations on current state. It was given in Chapter 23.

In particular, the probability distribution over current state is factored into a part

involving the current image probability given a state hypothesis pobs(zti|xti) and an esti-

mate of the current state in terms of previous observations, p(xti|zt0:i−1
,θ,ut0:i−1

,∆t1:i−1),

expressed in terms of the previous state estimate p(xti−1
|zt0:i−1

,θ,ut0:i−1
,∆t1:i−1) and the

probabilistic dynamics model pdyn(xti|xti−1
,θ,uti ,∆ti). In most particle filters, the rep-

resentation of probability distribution is frequently re-normalised, so the term pcon(zti),

upon which the relative probability of any given state hypothesis pipost(xti|zt0:i ,θ,ut0:i ,∆t1:i)

does not depend, may be ignored.

1Particles close to zero weight generally become zero weight particles due to the practical issue of
number representation.

2The former distribution pdyn(xti |xti−1
,θ,uti ,∆ti) is dubbed the probabilistic “dynamics model”

because if any knowledge of observations is left out, the probability distribution can only depend on
knowledge about the state at the previous time-step and the probability distribution over the evolution
of the true state - the state dynamics. The latter distribution pobs(zti |xti) is dubbed the observation
likelihood because it describes the dependence of observations on the state, is recalculated for each state
hypothesis, and is only required up to scale because it can be re-normalised.

3The recursive estimation relationship is given again here:

p(xti |zt0:i,θ,ut0:i ,∆t1:i) =
pobs(zti |xti)

p(zti)
p(xti |zt0:i−1

,θ,ut0:i ,∆t1:i)

=
p(zti |xti)

p(zti)


xti−1

pdyn(xti |xti−1 ,θ,uti ,∆ti)p(xti−1 |zt0:i−1 ,θ,ut0:i−1 ,∆t1:i−1)dxti−1
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This offers a simple and common way of developing a particle filter for use in object

tracking. Given a set of particles J i−1
post whose distribution represents a probability density

over the previous object pose p(xti−1
|zt0:i−1

,ut0:i ,∆t1:i) ≈ pJi−1
post

(xti−1
), the dynamics prob-

ability model pdyn(xti|xti−1
,θ,uti ,∆ti) is used to sample a distribution over the current

pose p(xti|zt0:i ,θ,ut0:i−1
,∆t1:i−1) ≈ pJi

pri
(xti) which is then used as a proposal distribution

for an importance re-sampling step where particle weight is derived from the likelihood

pobs(zti|xti).

The particle filtering algorithm described here is Algorithm 1. It works by propagat-

ing particles through the dynamics distribution (described in Algorithm 2) to obtain a

prior probability over the current state. Particles are then re-weighted according to the

observation likelihood (described in Algorithm 3) and finally they are re-sampled accord-

ing to this calculated weight (described in Algorithm 4). Note that the particle filtering

algorithm described in Algorithm 1 is a simplified annealed particle filter, as will now be

described.

Annealed particle filter. In particle filtering, in the presence of outliers, the likeli-

hood distribution is very uneven, leading to the necessity of a large amount of sampling,

a phenomenon that also occurs when the likelihood distribution is particularly peaky

with respect to the state prior (Pitt & Shephard, 1999). In an annealed particle filter,

the idea is that the state of an object can continue to be processed by the estimator as

long as there is time remaining, so the particle filter noising, re-weighting and importance

sampling recursion is repeated multiple times at one time-point.

This paradigm was introduced by Deutscher et al. (2000), and has also been used by

Pupilli and Calway (2005). A similar approach was used by Mörwald, Zillich, et al. (2009),

where it was called a “recursive particle filter”. There, the whole particle population

was re-processed, whereas in the annealed particle filter a smaller subset of particles is

generally re-processed. Also, in the annealed particle filter the likelihood function was

gradually made more peaky (hence the annealing label) over further recursions, while

with the approach of Mörwald, Zillich, et al. (2009), the small number of extra recursions
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only serve to carry out more search of the likelihood. It is the scheme of Mörwald, Zillich,

et al. (2009) that is employed in this chapter.

Both filters can be worse than a normal particle filter if the likelihood functions do not

contain any information about object location, as when the objects is occluded1. Another

approach that has the same intent is the addition of a Monte Carlo search after applying

the likelihood model (van der Merwe, Doucet, et al., 2001).

In the annealed particle filter of Mörwald, Zillich, et al. (2009), because the particle

filter tracker there was developed without the emphasis that knowledge of an object’s

dynamics could be useful in restricting the probability distribution over the state of the

object, rerunning the dynamics propagation state was not a problem at all since the

dynamics model in that work served only to disperse the poses of particles. However, to

allow this method to generalise to the case where the dynamics model is sensitive to time-

elapsed, the dynamics model in the present chapter is parametrised by the time elapsed

since the last run of the particle filter ∆ti. This altered formalism allows for specifying

an annealed particle filter that can deal with dynamics models that are sensitive to the

amount of time that passes.

6.3 Object state representation

When representing the state of an object, only the attributes of the object that are subject

to change generally need to be explicitly represented as a part of the state. The rest of the

information about the object can be considered background information - which exists

in the observation pobs(zti|xti) and dynamics pdyn(xti|xti−1
,θ,uti ,∆ti) models, as well as

background parameters, θ2.

The object model used here and in most model based vision applications is based

1Complete occlusion does not often happen when it is a complete scene being tracked, but for tracking
individual objects, it is a very common problem.

2The dynamics model must encapsulate any information supplied about the world in which the object
can move and the observation model encapsulates how the object will appear when in different states.
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Algorithm 1 Particle filter. c is the number of recursions at the one time-step; the filter
is iterated until the time remaining will not allow for another recursion. Time() gives
the current time which can be compared to the time at which the last observation was
acquired ti.

procedure ParticleFilter(J−1
post, t−1)

for i ∈ {0...} do
⟨ti, zti⟩ ← AcquireObservation(i)
∆ti ← ti − ti−1

c← 0
repeat

if c=1 then
J i
pre ← Dynamics(J i−1

post,θ,∆ti)
else

J i
pre ← Dynamics(J i−1

post,θ, 0)
end if
J i
res ← Resample(J i

pre)
J i
post ← Reweight(J i

res, zti)
c← c+ 1

until (c+1)·(T ime()−ti)
c

≤ ∆ti
end for

end procedure

Algorithm 2 Propagating a set of particles Jini through a dynamics model pdyn with
simulation parameters θ and an elapsed time ∆ti. The tilde ∼ represents sampling from
a probability distribution.

procedure Dynamics(Jini,θ,∆ti)
for j ∈ {1...|Jini|} do
⟨xini[j], w[j]⟩ ← Jini[j]
xfin[j] ∼ pdyn(xfin|xini[j],θ,uti ,∆ti)

end for
Return

|Jini|
j=0 {⟨xfin[j], w[j]⟩}

end procedure

Algorithm 3 Re-weight a set of particles Jold with an observation model pobs with ob-
servation z
procedure Reweight(z, Jold)

for j ∈ {1...|Jold|} do
⟨x[j], wold[j]⟩ ← Jold[j]
wnew[j] = wold[j] · pobs(z|x[j])

end for
Return

|Jold|
j=0 {⟨x[j], wnew[j]⟩}

end procedure
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Algorithm 4 Re-sampling an array of particles Jold
procedure Resample(Jold)

wSUM ←


⟨x,w⟩∈J w

for j ∈ {1...|Jold|} do
⟨x[j], w[j]⟩ ← Jold[j]

n[j]←


w[j]
wSUM

|Jold|


J j
new ←

n[j]
0 {⟨x[j], 1⟩}

end for
Return

|Jold|
j=0 J j

new

end procedure

on a simple textured polygon mesh. Here, this representation is extended to include

dynamical parameters such as mass, friction and restitution coefficients, and rotational

inertia parameters. The world that this object lives in contains only a simple ground plane,

but could in principle contain anything that can be modelled in a physics simulator. In

principle, any number of objects can be modelled though in practice extra objects would

require alterations to the basic particle filter to allow their joint estimation efficiently.

Pose. There are a large number of possible ways of representing the state of a physical

object, though the rigidity of a target object simplifies matters a lot. This is because the

rigidity constrains the state of all of the points of the object to lie on a single 6-DOF

manifold1.

In this chapter, the pose is described by a (3D) translation vector and a (4D) unit

quaternion. These specify the translation of the object coordinate frame from the origin

of the world coordinate frame and the rotation of the object coordinate frame from a base

world coordinate frame.

Rates. It turns out that the pose as well as linear and angular velocities are together

sufficient to describe the instantaneous state of an ideal rigid object. Taking the state of

the object to be its pose in addition to the rate of change of its pose, the instantaneous

time-evolution of an object in a completely modelled ideal 3D world can be calculated2.

1Though any number of dimensions is possible for describing the object state, the lowest number of
dimensions possible for any parametrisation is six (so it is said that the manifold on which these object
poses live has six degrees of freedom). Such a low dimensional specification of a rigid object constitutes
the pose. For more details, see the discussions of rigidity in Chapters 3 and 4.

2For more details of dynamical modelling see Chapter 4.
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Note, however, that the method that is built upon here (Mörwald, Zillich, et al., 2009)

has no notion of the rate of change of object pose as it evolves through time, though

the authors note the potential desirability of including and exploiting such information.

Rather, object state consists only of object pose x =

T
q


, where T is the translation vector,

and q the rotation unit quaternion. In that work, the state is evolved by passing candidate

poses through a dispersion noise model pdyn = pO explained below in Equation 6.2. That

dispersion noise model is used as the dynamics model of the particle filter.

In the approach described in this chapter, the object state is extended to include rate-

of-change parameters, x =


T
q
v
ω


where v is the 3-DOF linear velocity vector and ω the

3-DOF angular rotation in axis-angle form. However, in order to keep the particle filter

low dimensional, in the extension described in this thesis, the particle filter propagates

only the pose T and q, and the rate parameters v and ω are reset to zero when the object

state is passed through the particle filter dynamics model. So while the full 12-DOF state

is modelled, the state estimated and recursed upon is only the 6-DOF pose - rate of change

parameters are reset to zero every time the particle filter recurses. If the state stored by

the particle filter is xti−1
[j] =


Tti−1 [j]

qti−1 [j]


then that used by the simulator is


T
q
v
ω


=


Tti−1 [j]

qti−1 [j]
0
0


.

6.4 Observation Model

For the particle filtering algorithm described above to be effective, reasonable probabilistic

dynamics and observation models must be provided. The observation model, of the form

pobs(zti|xti), describes how observations are generated probabilistically from a given state

1. In the particle filter upon which this work is based, a routine is given for calculating an

un-normalised likelihood of a state given an observation, which provides the observation

model.

The full details of that process are given in Appendix F. The outline is given here.

1Thus, any state hypothesis is implicitly associated with a probability distribution over observations,
and any given observation is implicitly associated with a likelihood over different states.
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Given a state hypothesis xti , the task is to calculate a number which is indicative

of the probability pobs(zti|xti) (the likelihood) of the current observation zti given that

state1. The procedure in practice is not probabilistically derived but may be regarded as

a heuristic.

First, xµ
ti , a mean pose of the best hypothesis poses is calculated. This is used, along

with the camera calibration parameters, to project the object colour texture into the

image plane, where edge detection is performed. This “edge texture” is then re-projected

onto the object. The edge detection is not done directly on object texture as projecting

a texture to a different pose results in edge thinning and dilation. Once the edge texture

is obtained, for each pose

T
q


, the edge texture is projected again into image space. At

this point, the edge texture for the pose can be compared pixelwise to an edge map of

the observed image. In order to obtain a finer match, edge strength and direction are

considered in the comparison. From the comparison a number is obtained that reflects

the similarity of the texture projection related to the state and the observed image. This

number (once normalised) is taken to be the image likelihood. The processes of projection,

re-projection and pixelwise comparison are accelerated using graphics hardware.

One important consequence of this process is that the use of xµ
ti means that poses

far away from that mean pose are penalised with respect to their likelihood calculations.

This naturally discourages multi-modality in the tracker.

For more details of this process see Appendix F.

6.5 Dynamics Models

Having defined the observation model used to weight particles, it is important to define

the dynamics model used to generate them. This is the main business of the present

chapter, and its primary novelty, where several different dynamics models are presented.

1The number need only be provided up to scale since the particle distribution is frequently renor-
malised.
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They are compared in Chapter 7.

Most dynamics models used in practice tend to be relatively simple (see Chapter 3

and particularly Section 3.6.5 in Chapter 4 for examples). In theory, dynamics models

reflect the evolution of a system over a discrete time-step. In practice, they are often used

mostly to generate new hypotheses to deal with a changing world, as well as being used

as a heuristic search to overcome the limitations of sampling and to recover track after it

is lost1.

It is possible to alter the dynamics model to create a better effect in a non-heuristic

fashion (i.e. in a probabilistically more well-motivated way) by making the dynamics

model more closely reflect the evolution dynamics of the system being tracked. That is

what is being done here2.

The new dynamics model being used is similar to that used previous Chapters 2

and 5, in that it is a probability distribution over the state xti at a given time-step ti

conditional on the immediately preceding state xti−1
, along with various global parameters

θ, a control or nuisance vector uti and a time step size ∆ti. The general functional

form of the probability distribution is therefore pdyn(xti|xti−1
,θ,uti ,∆ti). The second

important continuity is that this dynamics model is further defined by including the same

deterministic simulator fdyn(xti−1
,θ,ui,∆ti) with noise added. One of this chapter’s

novelties is the unique way in which noise is added to the deterministic model, as force

noise.

Also, in order to capture multiple sources of knowledge about the movement of the

object, the main dynamics model pdyn can be considered to be a combination (via a

mixture distribution or heuristic rank selection) of different dynamics models p1,p2,...

1The kind of simple changes modelled by most dynamics models in use encompassed by the phrase
things don’t tend to move very fast, or, in more sophisticated implementations, things don’t often accel-
erate. It is also common to have dynamics models learnt from data - see Section 3.6.5 for more details
(Isard & Blake, 1998a, 1998b; MacCormick & Blake, 2000; Mihaylova et al., 2007; Mörwald, Zillich, et al.,
2009; Pupilli & Calway, 2005; Richtsfeld et al., 2010; Tweed & Calway, 2002; Vlassis, Terwijn, & Krose,
2002).

2There are many other ways it is possible to do better; many heuristics that can be employed to increase
the accuracy and efficiency of particle filters by altering the way dynamics are used, such as making the
dynamics noise dependent on likelihood peakiness, making the particle count adaptive, manipulating the
shape of the noise distribution, and doing multiple recursions at each time-step.
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In contrast to the case in Chapter 5, the dynamics model here is only required to

simulate forward in time 1. Also in contrast to the motion estimation Chapter 5, it is

difficult to use a noise-less dynamics model in a particle filter, since a particle filter relies

on process noise to produce variety in hypothesis states generated at each time-step2.

In the rest of the chapter, the various dynamics models are described, their rationale

given, before experiments exploring the effect of various parameters are described. They

are:

• Comparison case: Constant displacement with dispersion - Section 6.5.1.

• Multiple models I: Rank selection - Section 6.5.2.

• Simulation-based dynamics I: Simulation with dispersion noise - Section 6.5.3.

• Simulation-based dynamics II: Simulation with force noise - Section 6.5.4.

• Simulation-based dynamics III: Known finger location - Section 6.5.5.

• Multiple models II: Mixture selection - Section 6.5.6.

The diagram in Figure 6.3 summarises the comparison case and basic approaches to

incorporating simulation into the dynamics.

6.5.1 Comparison case: Constant displacement model

As with Chapter 5, the basic dynamics model used as a control for comparison of various

more fully featured dynamics model is a constant displacement dynamics model, where

1Backwards simulation is unnecessary in a recursive filter as it is assumed that the maintained rep-
resentation of the probability distribution at the current time is sufficient to encapsulate all previous
observations and states. This assumption is the main source of efficiency of recursive filtering, but can
be tested when sampling is insufficient to cover important parts of the sample-space (true hypotheses
are not generated. This will be seen in the experiments below in Chapter 7, where the introduction of
an occlusion can force a naive (non-physics-based) filter to focus all of the probability distribution on
incorrect poses.

2In order to do without process noise in the particle filter context, it might be possible to, with some
analysis, search the prior or likelihood distributions directly, but this would require significantly more
analysis because the generate (dynamics) and test (image) paradigm is not available in such a case.
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it is assumed that objects are stationary but merely undergo random permutation from

simple noise.

The (O)riginal constant displacement model, as used in Mörwald, Zillich, et al. (2009)

is:

pO(xti|xti−1
,θ,uti ,∆ti) = N (xti−1

,Σθ) (6.2)

Here, the probability distribution over the pose xti of the object at time ti is modelled as

a Gaussian distribution around the the previous pose of the object xti−1
, with covariance

given by the matrix Σθ. The translation component of pose is a simple vector in Euclidean

space so a Gaussian distribution over this part of the pose is well-established. However,

the Gaussian is also placed over the vector1 component of the quaternion that defines the

rotation part of the pose of the target object. This at least works in practice2.

The magnitude of the noise used has been tuned from previous experimentation, as

this tracker is in use in other applications (Mörwald, Prankl, Richtsfeld, Zillich, & Vincze,

2010). See Table 7.5 for more details of the parameters of this and the other models below.

6.5.2 Multiple dynamics models I: Rank selection

In day-to-day operation of the tracker, a heuristic was found to work in practice.This

heuristic ranks all the particles at time step ti−1 according to their likelihood scores and

ensures that one copy of each of the top ranked particles is added unchanged, without

added noise, to the set of particles at the following time-step ti.

The reason why this heuristic works in practice is that objects are frequently stable

or slow-moving and in such cases the heuristic will concentrate sampling very close to

previously found likelihood maxima, helping to retain and improve track with a minimal

number of samples in such cases. As such, this heuristic can be considered an algorithmic

1The vector of a unit quaternion can alone represent the rotation operation and can be parametrised
with the three non-scalar components of the quaternion (Ibáñez, 2001).

2In previous work, the noise level in the dynamics model, Σθ has depended also on the quality of the
match scores of the best particles, thus increasing the sampling range when a track cannot be obtained.
However, this heuristic has little influence on the results presented here.
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Figure 6.3: The process of three different approaches to incorporating simulation into a
sampling dynamics model as used in the particle filter described in this thesis. Each box
represents a particle pose hypothesis. Top: The basic method that is extended in this
thesis; no simulation occurs but particles are dispersed randomly around the previous
time pose according to a Gaussian distribution N with variance Σθ. Middle: The
basic method extended with a simulation step before the Gaussian dispersion. Bottom:
Simulation occurs with noise in the form of a force with incidence point sampled from a
uniform distribution over the surface of the object U(Msurf ) and direction and size from
a uniform distribution over a sphere U(AΣ). The diagram illustrates the progression of
the sampling procedure from left to right. Left: Drawing the pose from the particle
set for time ti−1. Left-centre: Applying the simulation (with or without force noise).
Right-centre: Applying the dispersion noise. Right: Adding the particle to the particle
set at time ti.
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improvement tailored to certain expected common dynamics.

The carrying of particles unchanged from time-step to time-step can be written prob-

abilistically in terms of the Dirac delta distribution:

pδ(xti|xti−1
,θ,uti ,∆ti) = δ(||xti − xti−1

||) (6.3)

This distribution can be combined with any other distribution, such as pO described in

Equation 6.2 above, by specifying the rank jR at which a particle is carried over unchanged.

Algorithmically, this heuristic requires a change in the Dynamics Algorithm 2. The

altered algorithm is given in Algorithm listing 5. There is now a sorting step to rank

the particles. The probability distribution actually applied to each particle is now also

parametrised by the rank j of the current particle, and which of several identical particles

it is nsame (since each unique particle needs only to be saved once).

Algorithm 5 A dynamics propagation routine altered to account for the particle ranking
multiple-dynamics approach. This dynamics, as with Algorithm 2, propagates a set of
particles Jini through a dynamics model pdyn with simulation parameters θ and an elapsed
time ∆ti. This version has the dynamics probability distribution parametrised by the
particle rank j

procedure Dynamics(Jini,θ,∆ti)
Jsor ← Sortw (Jini)
for j ∈ {1...|Jsor|} do
⟨xini[j], w[j]⟩ ← Jsor[j]
if xini[j] = xlast then

nsame ← nsame + 1
else

nsame ← 1
end if
xlast ← xini[j]
xfin[j] ∼ pdyn[j, nsame](xfin|xini[j],θ,uti ,∆ti)

end for
Return

|Jini|
j=0 {⟨xfin[j], w[j]⟩}

end procedure

The probability distribution used by this updated algorithm for ranking is written
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here1:

pR[pA, pB, jR][j](xti|xti−1
,θ,uti ,∆ti) =


pA(xti|xti−1

,θ,uti ,∆ti) if j < jR, nsame = 1

pB(xti|xti−1
,θ,uti ,∆ti) otherwise

(6.4)

This picks from two probability distributions pA and pB and returns a different probability

distribution for each particle in the ranked set of re-sampled particles if the rank of the

particle j is less than the threshold rank jR and the particle has not been duplicated

already (nsame = 1).

The distributions combined in practice are the delta distribution dδ and the origi-

nal dispersion dynamics pO. The state-of-the-art particle filter before the inclusion of

simulator-based dynamics therefore uses the following dynamics model2:

pO/R = pR[pδ, pO] (6.5)

6.5.3 Simulation-based dynamics I: Simulation with dispersion
noise

In the first extension to the basic dispersion dynamics described in Equation 6.2, a sim-

ulator is used to introduce a non-linear deterministic dynamics before the dispersion3.

The simulator is provided by the off-the-shelf PhysX physics API (“PhysX Features,”

2010), but could as easily be provided by any reasonably featured physics simulator(“Bul-

let Physics Library,” 2011; “Havok Physics,” 2011; “Open Dynamics Engine Manual,”

2011; “What is Newton Physics Engine?” 2011). The textured object model is augmented

with a mass value, coefficients of friction and restitution, an inertial matrix, and a ground

1The updated algorithm is strictly more general than Algorithm 2 and reduces to it.
2Incorporating something like the ranking heuristic in a more disciplined fashion so that the dynamics

model depends on previous observations would possibly involve maintaining a changing distribution over
currently effective dynamics models.

3The main motivation behind the use of particles in this object tracker is in dealing with the generative
and difficult-to-analyse observation model. However, the step of incorporating the non-linear dynamics
incorporated in the simulation based dynamics model is itself enough to render a typical Kalman filter
highly problematic (Alspach & Sorenson, 1972; Julier & Uhlmann, 1997; van der Merwe & Wan, 2003).
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plane. In order to map between the pose of the target object with respect to the camera

and with respect to the physical world (in particular, the ground plane), the pose of the

camera with respect to the ground plane is pre-calibrated(Open Source Computer Vision

Library: Reference Manual, 2001; Zhang, 2000; Zhang, 1998).

Whenever it is required that the dynamics pdyn(xti|xti−1
,θ,uti ,∆ti) be sampled from,

an object with the pose defined by the particle representing the object state at xti−1
at

time ti−1 is constructed and passed through the simulator fdyn
1. See Chapters 2 and 4

for more details about the simulation function fdyn().

After the simulator has deterministically simulated the object motion, the resultant

pose undergoes the same Gaussian noise dispersion described for the non-physics tracker

above. It makes more sense to conduct this dispersion after the dynamics have been

applied so that the likelihood function can be explored more thoroughly, since the effect of

simulation is generally to collapse the distribution of poses towards low-energy manifolds,

which are unlikely to coincide with observation likelihood peaks2.

So the probabilistic dynamics model for simulation with (D)ispersion noise pD can be

written:

pD(xti|xti−1
,θ,uti , t∆) = N (fdyn(xti−1

,θ,∆ti),Σθ) (6.6)

It would be predicted that using this dynamics should improve tracking as a result

of increasing sampling in physically plausible parts of the state-space. However, the

dispersion noise that needs to be subsequently added to enable the particle filter to sample

the space of observations causes particles to be placed in physically implausible states,

even if their earlier simulation is plausible. If a sample is drawn so that objects intersect

1As mentioned above, since the particle filter in its present state does not account for velocity parame-
ters, the object state is augmented by a zero linear and angular velocity. Adding the velocity parameters
is of course further work, but it is unclear what advantages it will bring with a normal 30fps camera,
particularly in the scenarios tested here, which can mostly be modelled quasi-statically. In a tabletop
environment, at least, most movements can be thus modelled; however, there are many cases where
this assumption does not hold e.g. when trying to track projectiles and objects with high energy - see
Chapter 5.

2For example, imagine shaking a box of dice (adding dispersion randomness). After the shaking is
finished and a small passage of time has passed, most of those dice will be in the bottom of the box.
What is wanted here, however, is to let the dice fall and then disperse them, because it is the dispersion
that is important in exploring the image likelihood fully.

178



(in particular, the target object and the ground plane), the behaviour of the object in the

next time-step is not well defined1. As a consequence of these facts, the main effect of

the simulation can be described as driving the particle set towards low-energy states and

states close to plausible ones. The action of this dynamics model is compared graphically

to the original method without simulation in Figure 6.3.

In experiments described in the next chapter, simulation parameters are chosen from

cursory tuning (see Table 7.5) but the tracking behaviour is insensitive to their value -

see Section 7.9.

6.5.4 Simulation-based dynamics II: Simulation with force noise

In order to address the difficulties just mentioned in the simulation-based dynamics with

Gaussian dispersion noise, and in order to introduce another approach to integrating

simulation into the dynamics model, a slightly different approach is proposed.

Rather than simulating the object and then adding dispersion noise to the pose, noise

is added into the simulation itself in the form of a random force applied to the object at

a random location on the object surface. These random forces are intended to model the

net force applied to the object at each time step, which is a hidden variable as this force

is unobserved.

Even if the object is picked up and carried by a human, if the hand of the carrier is

not modelled in the model-based system, the force of the hand on the object cannot be

directly observed. In the absence of a more specific model of hand and world, in order

to account for these hidden forces, they are sampled from directly. The same observation

is true of pushes by a robot finger; in the approach presented in this section, the robot

finger is not modelled and so any force applied by it must be estimated or treated as a

nuisance variable. So the net force acting on the object is sampled at each time point

from a distribution of plausible forces.

1One fix to the simulation with dispersion noise strategy is to run the collision detector separately for
each dispersed particle and sample with rejection. Such an approach has not been attempted here given
the success obtained in the next section, but is also a promising line of enquiry.
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As with most particle filters, it is unlikely that incorporating a noise model of a hidden

variable is useful only for accommodating the effect of that variable, but can be used for

overcoming other shortcomings in the model and algorithm; in particular the inability of

the filter to sample all plausible poses in the image.

The main motivation for this particular method of adding noise to the simulation

is that the resulting dynamics model is more likely to be true to the dynamics as it is

modelled by the simulator, restricting and guiding the sampling of new poses even further.

That is the motivation. Here is the formal definition of the probability distribution

equivalent to the use of this (F)orce noise method:

pF (xti|xti−1
,θ,∆ti) = fdyn(xti−1

,θ,ui,∆ti) (6.7)

ui = uhead
i utail

i (6.8)

utail
i ∼ U(Msurf ),u

head
i ∼ U(AΣ) (6.9)

Here, the force is applied at point uhead
i which is sampled from a uniform distribution

over the tri-mesh surface of the object1, U(Msurf ). The direction and magnitude of the

force utail
i is uniformly sampled from a uniform distribution U(AΣtra·ΣF

) over an ellipsoid

AΣtra·ΣF
whose dimensions are parametrised by the same covariance parameters as the

Gaussian translation dispersion noise, Σtra, adjusted by multiplier ΣF
2. The force noise

ui is therefore a point, the point of incidence of the force, and a vector whose magnitude

represents the magnitude of the force, and whose direction represents the direction of the

force.

As can be inferred from its units, what is actually applied to the object is not a simple

force, as the action of a force on an object occurs over time, but a set of impulses applied

over each iteration of the rigid body solver underlying the simulation3. So the force seems

1Sampling over the surface of the tri-mesh is done by first randomly choosing a triangular face on the
object, with the probability of choosing each face proportional to the area of the face, and then sampling
uniformly from that triangle.

2The force noise multiplier ΣF is required because the units of force noise, kgms−1 are different from
that of the dispersion translation noise, m.

3The parameter NX SMOOTH IMPULSE in the PhysX API is used to apply force noise to the target object.
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to act almost continuously on the object over the whole period ∆ti.

Although the simulation with Gaussian dispersion probability distribution pD is itself

far from being linear, for a fixed and known xti−1
, the distribution over xti is shaped like

a Gaussian. However, any distribution over xti−1
does not make it through the simulation

function without its shape being distorted, and neither does the noise added here to the

parameter uti . Some parts of the distribution over state xti are collapsed into a lower

dimensional manifold (such as when the object can slide over another object), parts that

bifurcate into multiple modes (such as between tipping over or tipping back), and parts

highly distorted (such as when an object bounces off something). In the particle filtering

framework this is not necessarily a problem as arbitrary probability distributions can be

sampled from, as long as enough samples are generated in the correct poses. Moreover,

it is a closer representation of the shape of probability distributions in the domain of

rigid body motion if arbitrary probability distributions are not added to the pose. The

addition of force noise does not alter this plausibility as the noise is in an expected input

to the simulator rather than second-guessing its output.

Experiments comparing the effect of adding the different approaches to noise are de-

scribed Chapter 7. The action of this dynamics model is compared pictorially to the

original method without simulation and to the simulation with Gaussian noise model in

Figure 6.3. In experiments, the parameters of the simulator are chosen the same as with

the simulation with dispersion noise condition, and the force noise multiplier ΣF chosen

through cursory tuning to produce similar behaviour to the original tracker.

6.5.5 Simulation-based dynamics III: Known finger location

The context in which the framework being developed in this chapter is applied is one

of tabletop interaction between cognitive robotics and humans. Where a robot is the

agent interacting with the tracked object, more information is known that should be

incorporated into the tracker’s estimate of object location; information about the motor
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commands sent to the effector.

The above simulator based dynamics models do not incorporate knowledge about the

robot’s own movements, which is a particularly striking absence given that the experi-

ments detailed below in Chapter 7 revolve around tracking an object pushed by a robot.

Therefore it is reasonable to attempt to incorporate efferent information in order to deal

with this class of situation better1. With this in mind, the previous simulator based

dynamics are augmented with knowledge about the location of the robot finger. This

knowledge is known since the robot controller is a kinematic controller that solves for

joint displacements on the basis of a target in operational space. In other words, the

robot is commanded to move its finger to a certain location; hence that location is known

to within an error.

This knowledge is incorporated into the simulator by introducing an object with in-

finite mass whose behaviour is determined prior to resolution of the dynamic behaviour

of objects in the scene2. This object is a sphere whose location is set according to the

control signal sent to the robot controller. As such, the location of the finger sphere is not

modelled as a random variable and is rather a predetermined variable in the simulator,

as with the ground plane3. This is recognizable as a control signal, and is incorporated

into uti as the location of the finger of known size ufinger
ti .

This extra information can be incorporated into the simulation with Gaussian noise

condition or simulation with force noise condition. In the former case, the resulting

probability distribution is denoted pD(K) since the finger location is (K)nown. In the

latter case, the resulting probability distribution is denoted pF (K).

1Indeed, it is likely that humans incorporate efferent information in some form into their estimation,
considering that much of the proximal world of a human is subject to the control of her body. The
approach here would be compatible with various motor concepts with their root in the concept of efference
copy, wherein a self-generated movement is modelled for the purpose of disambiguating sensory signals.
Of course, the way that the movement is modelled is particular to the system being studied here and its
algorithmic approach and has not, nor will be, validated against humans.

2Objects whose behaviour is defined prior to the resolution of the dynamics of a scene are known in
real-time simulation as “kinematic” objects.

3If force torque information were available, this could be incorporated into the estimation directly as
a bias on the forces experienced by objects in the region of the finger; in this scenario, however, only the
location of the finger given and forces with the target object are consequences of their interaction in the
physics simulator.
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6.5.6 Multiple dynamics models II: Mixture model

A number of new probabilistic dynamics models have been introduced now. It is likely

that some models will be more accurate in some situations and others will shine in other

situations. As such, a way of combining these models to get the best of each should be

considered.

While the rank-retention heuristic above does combine multiple dynamics models, it

is a heuristic targeted at certain situations and so not satisfactory as a general means to

include multiple sources of information1.

The simplest approach to combining multiple sampling distributions to produce a

new sampling distribution is the mixture model, wherein each component distribution

is assigned a discrete probability such that a sample is drawn from each component

probability distribution with some its probability; these probabilities are usually denoted

π and are called component weights2. The shape of the final probability distribution is a

weighted sum of the component distributions. This is what is done here:

pM [p1, π1, ..., pΠ, πΠ](xti|xti−1
,θ,uti ,∆ti) =

Π

k=1
πk · pπ(xti|xti−1

,θ,uti ,∆ti) (6.10)

Here, the mixture distribution pM is defined as the weighted sum of the component

distributions pk with weights πk.

In the worst case, this distribution will show worse behaviour than all its component

distributions and in the best case better behaviour than all its component distributions.

The advantage of this approach is that sampling should be guided to plausible parts of

the state space according to all dynamics models. The disadvantage is that parts of

the state space that should not receive samples at all (e.g. where distractors create a

higher likelihood of inadmissible poses) may receive them due to the activity of one of the

less accurate component dynamics models. Moreover, each particle can oscillate between

1Also, the reason why that model was introduced earlier is because it constitutes a part of the state-
of-the-art tracker against which all the subsequent dynamics approaches are compared.

2In this formulation the mixture weights πj need to be picked a priori.
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dynamics models arbitrarily over time.

The mixture model formulation can be also used as a retention scheme, to select some

particles to be kept as-is from time-step to time-step. Recall from above that a rank

retention scheme is used to retain particles. In a mixture retention scheme, particles

would be assigned to multiple dynamics models, one of which is the no-movement model

pδ. This differs practically from the rank retention scheme in that particles are selected

randomly to be retained, rather than on the basis of their likelihood rank. It has the

main advantage of being easily describable probabilistically, rather than according to a

heuristic algorithmic tweak as with the rank retention scheme.

Having described the new dynamics models tested as a part of this thesis, the following

chapter describes some experiments on those dynamics models.
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CHAPTER 7

EXPERIMENTS: RECURSIVE TEXTURE
TRACKING OF OBJECT 6D POSE

“The investment fund manager from New York who handed us the video
showing Tomlinson being pushed to the ground by a police officer, had been
reading various stories online, and felt compelled to share his information

with us.”

How the crowd changed everything, Sustainability Report 2011,

The Guardian, 25 July 2011

This chapter describes experiments done using the visual object tracker described in

Chapter 6, particularly examining the effect of different ways of introducing simulator-

based dynamics models1. The results suggest that physics-based approaches can show

a great improvement over non-physics approaches, but that improvement is dependant

on a realistic way of injecting noise; in particular the force-noise approach described in

Chapter 6 results in the greatest improvment, including tracking when an object is tipped

whilst almost fully occluded. Including information about finger location provides only

marginal improvement, and the mixture model approach to combining dynamics does not

work well.

The experiments detailed here revolve around tracking the pose of the target object

in the video sequences shown in Figures 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7, where the object is

pushed around by a robot finger.

1Some of the results described in this chapter have been published in the IEEE International Confer-
ence on Robotics and Automation (Duff, Mörwald, et al., 2011).
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The target object in all experiments is the same coloured and textured box that can

be seen in Figure 7.1. A 3D textured tri-mesh of the model had been previously acquired

according to the method described in Mörwald, Zillich, et al. (2009). A Point Grey Flea

2 camera (“Flea 2 Specifications,” 2009) is used to acquire 800 × 600 resolution images

at 30fps of the object.

The first results presented compare the success of all different approaches on each

scenario (Section 7.4); subsequently the effect of dynamics models on the success of the

algorithm is shown (Section 7.5), followed by the effect of adding a robot finger (Sec-

tion 7.6) and of using mixtures of dynamics (Section 7.7).

After the main body of results a small number of extra experiments are shown, eval-

uating the robustness of the proposed physics-based approach to badly modeled scenes

(Section 7.8), changes in simulation parameters, and in quantity of noise injection (Sec-

tion 7.9).

This object is pushed by a robot finger executing a pre-programmed random smooth

trajectory within a space of similar pushes. The finger is a fabricated 10cm diameter

sphere on the end of a solid rod, affixed to a 5-DOF Neuronics Katana 320 arm with

position control1. In practice in the experiments described here, the arm is generally

1The model of Katana arm used is no longer manufactured, but newer versions are similar (“Neuronics
- Katana,” 2011)

Figure 7.1: A view of the textured model tracked in experiments.
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controllable to a precision of 0.1mm1 (“Neuronics - Katana,” 2011).

The task of the tracker is to track the object while it is being pushed by the finger.

High-level results comparing all conditions can be found in Section 7.4. In addition to

the hypothesis that the use of physical simulation in the dynamics phase of the particle

filter should be able to improve object tracking performance (tested in Section 7.5), the

hypothesis is tested that including information about the location of the robot finger

should also be able to improve tracking performance2 (Section 7.6). The effect of using

mixture models is subsequently investigated (Section 7.7, and what happens when the

assumptions of the dynamics break down (Section 7.8).

The quantitative experiments examine sets of key frames of which representatives are

shown in Figures 7.2 to 7.7. The key frames sets are sets of frames where tracker behaviour

is compared numerically between different conditions, so that each important phase of a

video has a number like X.x3. All of the key frame sets are shown in Table 7.6. These

key frames were chosen in advance to reflect important points during tracking, such as

full occlusion and post-tip. Small sets of frames are sufficient to characterise behaviour

over an important phase.

7.1 Test videos

The first video in Figure 7.2 (simple push) is the easiest case. This video is not expected

to be a challenge for any existing method.

The second video in Figure 7.3 (push and rotate) is a test of the robustness in tracking

likelihood peaks. As noted above, it is not always straightforward to get the tracker stable

1No matter what its precision, the accuracy of an arm is only ever as good as its calibration, and in
the current application, the camera calibration is the more important variable in accuracy of mapping
finger position into visual space.

2As such, position commands sent to the Katana arm were recorded, and in some tracking conditions
those commands were used to define the location of the finger in the simulation.

3Not every frame shown is a key frame but the ones with numbers such as X.x in the figures are key
frames of interest belonging to the set designated by that number. Each set has multiple frames so that
the numerical results are averaged over the multiple frames that represent a certain phase of tracking.
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as object faces disappear and appear.

The third video in Figure 7.4 (tipping) tests the robustness of the tracker to fast

motion. As noted earlier, trackers have a tendency to fail when objects move too fast,

because of blur and because many trackers are local search methods that can fail if a

target object moves too fast away from the target search area.

The next video in Figure 7.5 (colour distractor occlusion) tests the robustness of the

tracker to occlusion by a coloured object with strong distracting edges.

The penultimate video in Figure 7.6 (occlusion, recovery and tipping) has an object

undergoing occlusion by a human hand; after the object is revealed it is ultimately pushed

over. So the case includes both occlusion and fast movement and allows for an analysis

of post-occlusion behaviour.

The last video in Figure 7.7 (tipping while occluded) is the hardest of all and combines

occlusion with strong distractors with tipping. A human can see what is going on in these

scenes so an object tracker should be tested on these scenarios also.
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Frame 010

1.1 Push - Frame 160

1.1 Push - Frame 222

Frame 310

Figure 7.2: Video 1 Simple Push: As with all these videos, the box starts off in profile
to the camera (frame 010, not a key frame). The robot finger pushes the right part of the
box (frame 160, video key frame set 1.1), so that the box is face on to the camera (frame
222, video key frame set 1.1). The robot finger finally advances past the box (frame 310).
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2.1 Begin Push - Frame 092

2.2 Rotate - Frame 181

Frame 290

Figure 7.3: Video 2 Push and rotate: In this video the box starts off again in profile
to the camera (frame 092, video key frame set 2.1), and is pushed from the left so that
it rotates past a pose with its end to the camera (frame 181, video key frame set 2.2),
coming to rest again in profile (frame 290, video key frame set 2.3). Here, video key frame
set 2.2 is the challenging one as it presents a small image area for matching.
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3.1 Start tip - Frame 100

3.1 Start tip - Frame 134

3.2 After tip - Frame 141

3.3 Resting - Frame 317

Figure 7.4: Video 3 Tipping: First, the object is pushed so that it is supported by the
finger in a partial tipping position (frames 100 and 134, video key frame set 3.1). In the
space of a few frames the object becomes unstable and leaves one energy configuration
and enters another low energy configuration (frame 141, video key frame set 3.2). If a
tracker fails at this point it may yet recover later on so a key frame set is examined about
6 seconds after this initial fall (frame 317, video key frame set 3.3).
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Frame 010

4.1 Before push - Frame 090

4.2 Colour occlusion - Frame 155

Frame 210

4.3 After occlusion - Frame 285

Figure 7.5: Video 4 Colour distractor occlusion: Again the object starts off in profile
to the camera (frame 010), and is again pushed by the robot finger, with the point of
contact slightly to the right of the centre of it (frame 090, video key frame set 4.1). In that
frame the reader can see a human hand preparing to drag the coloured occluder in front
of the object. The object is presently almost fully occluded (frame 155, video key frame
set 4.2). The object appears out from behind the occlusion (frame 210) and another key
frame set is gathered about 4 seconds after the occlusion (frame 285, key frame set 4.3).
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5.1 Initial push - Frame 090

Frame 160

5.2 Hand occlusion - Frame 190

Frame 200

5.3 After occlusion - Frame 230

5.4 Tipped - Frame 275

5.5 Resting Frame 328

Figure 7.6: Video 5 Occlusion, recovery and tipping: Initial track is checked (frame
090, key frame set 5.1), then a hand swept across the path of the object (frame 160) and
waved in front of the object almost completely occluding it (frame 190, key frame set 5.2
and frame 200). The hand is then removed (frame 230, key frame set 5.3) and then the
object is tipped over by the advancing robot finger (frame 275, key frame set 5.4). Two
seconds later, the object remains tipped (frame 328, key frame set 5.5).
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6.1 Begin push - Frame 110

6.2 Bottle occlusion - Frame 238

6.3 Occluded tip - Frame 306

Figure 7.7: Video 6 Tipping while occluded: The object is pushed past a second object
in the foreground of the scene (frame 110, video key frame set 6.1), and is pushed behind
that second object so that it is occluded while it is tipped (frame 238, video key frame
set 6.2) and is finally tipped over whilst mostly behind the occluding object (frame 306,
key frame 6.3).
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7.2 Quantitative criteria

Although only a handful of videos are examined here, and though each video generally

contributes a handful of bits of information about each condition applied to it (e.g. track

failure/success, time of onset of failure/recovery, degree of failure), the fact that the

algorithm used is in theory nondeterministic (using sampling) means that there is the

need to examine the behaviour of the algorithm across a number of trials. In this section,

40 trials are conducted for each condition on each video.

There are a number of different ways that the degree of success of an algorithm can be

examined quantitatively. They are discussed in Chapter 3 Section 3.7. In these experi-

ments, ground truth is not known so comparisons are done in image space with respect to

hand-labelled poses1. The root mean error in vertex location in image space is obtained

and statistics calculated over 40 trials.

Having established the target videos and time segments, and the method for measuring

success, the next section discusses the set of algorithms used for comparison.

7.3 Algorithm setup

The Cartesian product of all the algorithmic variations discussed in the chapter 6 is a

very large set. However, in these experiments as much of these combinations as is feasible

is examined. Therefore there are a large number of conditions applied to the video set.

These conditions are tabulated in Tables 7.1, 7.2, 7.3 and 7.4.

Table 7.1 shows all of the conditions that use the original basic dynamics model pO

coded according to condition2. All these conditions start with “O”. For those with reten-

tion schemes3, this initial character is followed by “/R” for rank retention and “/M” for

1Comparing the poses directly would be misleading as hand-labelled poses can be far from the ground
truth, particularly considering uncertainty in the depth dimension.

2See Section 6.5.1 for details of the original comparison dynamics model with constant displacement
and dispersion noise.

3See Section 6.5.2 for details of retention schemes.
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mixture model retention. The numerical model selection parameter (mixture coefficient or

rank proportion) is given in the table. Finally the number of recursions at each time-step

is given as “-1” or “-2” for one or two recursions respectively. For instance, O/R-2 is the

dynamics model pO with rank retention ( pR[pδ, pO, 0.25] ) and two recursions. Similarly

O-1 has no particle retention scheme ( pO ) and one recursion. The “O” can be thought

of as “(O)riginal dynamics model”.

Table 7.2 details all of the simulation with pose dispersion noise conditions using the

dynamics model pD
1. These are coded in a similar way except that these conditions start

with a “D”. The “D” can be thought of as “simulation with (D)ispersion noise”. Also,

where the simulator includes the robot end effector2, the condition is suffixed with “(K)”.

The mnemonic for this is that the finger position is “(K)nown”. Because each condition

can be tried with and without known finger location, there are twice the number of

conditions in this set as in the set of conditions using the original basic dynamics model.

Table 7.3 shows all of the simulation with force noise conditions, using the dynamics

model pF
3, all prepended with the letter “F”. Because only one recursion at each time-

step is relevant with these conditions (since the noise is only introduced with the passing

of time), there are half the number of conditions as there are in the simulation with

dispersion noise case.

Finally, Table 7.4 illustrates a set of conditions that use a mixture model of the

original, simulation with dispersion noise, and simulation with force noise dynamics

models (and may still have rank or mixture retention schemes)4. These all start with

“M” and are followed by the list of letters that refer to the component dynamics mod-

els. So for instance, “MDF(K)/R-1” is a mixture of the simulation with dispersion

noise dynamics model and the simulation with force noise model with rank retention

(pR[pM [pD(K), 0.5, pF (K), 0.5], pδ, 0.25]) and only one recursion. Weightings for the model

components as well as the retention parameter are given in the tables. Since these mix-

1See Section 6.5.3 for details of the simulation with dispersion noise dynamics.
2See Section 6.5.5 for details of the use of dynamics models with known finger location.
3See Section 6.5.4 for details of the simulation with force noise dynamics.
4See Section 6.5.6 for details of the mixture model dynamics.
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Table 7.1: 3D box pushing condition codes

Control conditions - no simulation.
Code Model selection parameter Dynamics models No. recursions

O/R-1 rj = 0.25 Straight copy 1
Remainder Pose dispersion (no simulation)

O/R-2 rj = 0.25 Straight copy 2
Remainder Pose dispersion (no simulation)

O/M-1 π = 0.10 Straight copy 1
π = 0.90 Pose dispersion (no simulation)

O/M-2 π = 0.10 Straight copy 2
π = 0.90 Pose dispersion (no simulation)

O-1 All Pose dispersion (no simulation) 1

O-2 All Pose dispersion (no simulation) 2

ture conditions include the force noise dynamics as a component, it makes little sense to

include conditions for multiple filter recursion at each time-step.

The various parameters of the algorithms used in this experiment, and how they were

determined, are given in Table 7.51. A fixed integration time-step size is used in the

simulation, for repeatability.

Having described the experimental framework in some detail, the exposition moves on

to the results.

1Colour intensity values are taken to be normalised to between 0 and 1.

197



Table 7.2: 3D box pushing condition codes

Simulation with pose dispersion noise conditions.
Code Selection Dynamics models Recursions

D/R-1 rj = 0.25 Straight copy 1
Remainder Simulation, pose dispersion

D(K)/R-1 rj = 0.25 Straight copy 1
remainder Simulation, pose dispersion (known robot location)

D/R-2 rj = 0.25 Straight copy 2
Remainder Simulation, pose dispersion

D(K)/R-2 rj = 0.25 Straight copy 2
Remainder Simulation, pose dispersion (known robot location)

D/M-1 π = 0.10 Straight copy 1
π = 0.90 Simulation, pose dispersion

D(K)/M-1 π = 0.10 Straight copy 1
π = 0.90 Simulation, pose dispersion (known robot location)

D/M-2 π = 0.10 Straight copy 2
π = 0.90 Simulation, pose dispersion

D(K)/M-2 π = 0.10 Straight copy 2
π = 0.90 Simulation, pose dispersion (known robot location)

D-1 All Simulation, pose dispersion 1

D(K)-1 All Simulation, pose dispersion (known robot location) 1

D-2 All Simulation with, dispersion 2

D(K)-2 All Simulation, pose dispersion (known robot location) 2

Table 7.3: 3D box pushing condition codes

Simulation with force noise conditions.
Code Selection Dynamics models Recursions

F/R-1 rj = 0.25 Straight copy 1
Remainder Simulation, force noise

F(K)/R-1 rj = 0.25 Straight copy 1
Remainder Simulation, force noise (known robot location)

F/M-1 π = 0.10 Straight copy 1
π = 0.90 Simulation, force noise

F(K)/M-1 π = 0.10 Straight copy 1
π = 0.90 Simulation, force noise (known robot location)

F-1 All Simulation, force noise 1

F(K)-1 All Simulation, force noise (known robot location) 1
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Table 7.4: 3D box pushing condition codes

Mixture of models conditions.
Code Selection Dynamics models Recursions

MOD/M-1 π = 0.10 Straight copy 1
π = 0.45 Pose dispersion (no simulation)
π = 0.45 Simulation, pose dispersion

MOD(K)/M-1 π = 0.10 Straight copy 1
π = 0.45 Pose dispersion (no simulation)
π = 0.45 Simulation, pose disp. (known robot location)

MODF/R-1 rj = 0.25 Straight copy 1
π = 0.34 Pose dispersion (no simulation)
π = 0.33 Simulation, pose dispersion
π = 0.33 Simulation, force noise

MODF(K)/R-1 rj = 0.25 Straight copy 1
π = 0.34 Pose dispersion (no simulation)
π = 0.33 Simulation, pose disp. (known robot location)
π = 0.33 Simulation, force noise (known robot location)

MDF/R-1 rj = 0.25 Straight copy 1
π = 0.50 Simulation, pose dispersion
π = 0.50 Simulation, force noise

MDF(K)/R-1 r = 0.25 Straight copy 1
π = 0.50 Simulation, pose disp. (known robot location)
π = 0.50 Simulation, force noise (known robot location)
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General tracker parameters

Parameter How obtained Value

Num. posterior particles |J | Original tracker 100

Observation model parameters

Parameter How obtained Value

Convergence parameter Cconv Original tracker tuned 7
Matching tolerance mthresh Original tracker tuned 0.2 (pixels)
Edge matching tolerance gthresh Original tracker tuned 0.03
Edge dilation iterations Original tracker tuned 3
Edge dilation distance scaling Original tracker tuned 0.75
Gaussian smoother size Original tracker tuned 5× 5

Dynamics model parameters

Parameter How obtained Value

Displacement noise Σθ Original tracker tuned


Σtra 0
0 Σrot


Σtra = .04(m)I3
Σrot = 40I3

Extra z-axis noise Σperp Original tracker tuned 0.06(m)
Force noise multiplier ΣF Cursory Tuning 0.003

Physics simulator parameters

Parameter How obtained Value

Object density Arbitrary 1(kgm−3)
Inertial matrix Default I3 (Identity)
Coefficient of restitution Cursory Tuning 0.1
Coefficient of static friction Cursory Tuning 0.4
Coefficient dynamic friction Cursory Tuning 0.2

Physical system

Parameter How obtained Value

Finger radius Engineered 1.5cm
Box dimensions As manufactured 10cm× 5cm× 12cm

Table 7.5: Tracker and physics simulator parameters. The desired number of particles
|J | determines the re-sampling process. The convergence parameter Cconv determines the
peakiness of the likelihood distribution. Matching tolerance mthresh determines how close
gradients must be (in chord length on the unit circle) to be counted as a matching pixel.
Edge matching tolerance gthresh determines how large the gradient magnitude must be to
be considered an edge. Edge dilation distance scaling is how much effect on neighbouring
pixels the edge information has during the edge dilation process. See Appendix F for
specific details of the texture matching approach used.
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Table 7.6: Key frame sets for numerical comparisons

Video Case Frame Nos Times
1: Simple Video 1.1 222 7.40s
2: End-on rotate Video 2.1 91 3.03s

92 3.07s
Video 2.2 181 6.03s

183 6.10s
3: Tipping Video 3.1 100 3.67s

118 3.93s
119 3.97s
134 4.47s

Video 3.2 141 4.70s
146 4.87s
150 5.00s

Video 3.3 308 10.27s
317 10.57s

Video Case Frame Nos Times
4: Colour occlusion Video 4.1 89 2.97s

90 3.00s
Video 4.2 153 5.10s

154 5.13s
155 5.17s
156 5.20s
162 5.40s

Video 4.3 279 9.30s
285 9.50s
286 9.53s
287 9.57s
288 9.60s

Video Case Frame Nos Times
5: Hand occlusion, tipping Video 5.1 86 2.87s

87 2.90s
90 3.00s

107 3.57s
109 3.63s

Video 5.2 182 6.07s
190 6.33s

Video 5.3 221 7.37s
222 7.40s
230 7.67s
231 7.70s
239 7.97s

Video 5.4 276 9.20s
278 9.27s
298 9.93s

Video 5.5 321 10.70s
328 10.93s

Video Case Frame Nos Times
6: Occlusion while tipping Video 6.1 101 3.37s

110 3.67s
122 4.07s
123 4.10s
124 4.13s

Video 6.2 203 6.77s
204 6.80s
213 7.10s
227 7.57s
237 7.90s
238 7.93s

Video 6.3 263 8.77s
264 8.80s
274 9.13s
302 10.07s
303 10.10s
304 10.13s
306 10.23s
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7.4 Full comparison

In this first section a full multi-way comparison is done between all of the approaches

considered here. The main approaches considered are:

• The original no-simulation with dispersion noise model (O).

• The simulation with dispersion noise model (D).

• The simulation with force noise model (F).

• A mixture condition combining the first two (MOD).

• Combining all the models (MODF).

• Combining just the novel models (MDF).

Within the above approaches, different retention schemes are also analysed:

• Rank-retention (../R).

• Mixture-retention (../M).

• No retention (..).

Where possible, conditions involving different numbers of recursions of the filter at each

time-step are added:

• One recursion (..-1)

• Two recursions (..-2).

In the simulation conditions, performance is also compared with performance obtained

by adding the known robot finger is added to the simulation:

• No finger (..).

• Known finger (..(K)).

202



All algorithm box-whisker plots per condition. First, box-whisker plots for each

condition are provided, ranging across all possible retention systems and recursion counts.

These charts are found in Figures 7.8 and 7.91.

From these plots can be read the performance of any of the algorithms tested on any

of the scenarios discussed here. It will be observed that the distributions of results here

often have multiple modes. This is because there is likely to be a distractor or alternative

behaviour, which causes relatively consistent penalties.

Partial ordering over algorithms. Next, in order to summarise the relative ability

of each of these approaches on the scenarios used here, an automatically generated partial

order over the algorithms is presented (Figure 7.10). For each pair of algorithms on each

scenario, if the mean difference in error over 40 trials is over a threshold (20 pixels) then

one of the algorithms is potentially better than the other2.

For each pair of algorithms on each scenario for which the above threshold is reached,

a Mann Whitney rank-sum test (H. B. Mann, 1947) is run by ranking the individual errors

of the trials from each of the two algorithms run on the scenario. If the Mann Whitney

test is significant (p = 0.01), domination of one algorithm by the other is accepted for this

scenario. The set of all such dominations is rendered as a graph over algorithms, where

each edge represents such a pairwise relationship. Clearly such a diagram contains a lot

of cycles, so each cycle in the graph is removed by deleting all edges in the cycle. The

resulting graph (Figure 7.10) only retains edges between two algorithms if one algorithm

dominates the other in all scenarios where there is a significant difference.

As can be seen from these summary graphs, the simulation with force-noise conditions

(F) are the clear winners on the scenarios in this set of experiments. There is no clear

1The box-whisker plots in Figures 7.8 and 7.9 show the numerical results across all scenarios and
algorithms. Each chart represents the behaviour of all algorithms on one scenario (recall that each scenario
is a small slice of time in one of the test videos). Box-whisker plots illustrate the median, maximum,
minimum, upper and lower quartile error, giving a good impression of the spread of performance of an
algorithm.

2The reason why a threshold on the mean error difference is required is that the ground truth is only
approximate and so the actual errors are within an interval containing the measured error. In order for
an error difference to be always attributable to something other than error in the ground truth estimate
the error differences must be thresholded.
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winner between the no-simulation (O) and simulation with dispersion noise (D) conditions,

though (D) does win in the tipping case. Some of the mixture conditions (M..) win on the

scenarios here, but are dominated by the force-noise conditions (F). Indeed, the mixture

condition without force-noise as a component (MOD) does not fare noticeably better than

the no-simulation and simulation with dispersion noise conditions.

In the next sections the three main dynamics models (O, D and F) will be compared

more closely, the effect of known finger location analysed, and finally the results of an

experiment analysing the behaviour of these simulation-based dynamics models presented.
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Video 1.1 Simple Push
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Video 5.1 Begin Push
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Video 2.1 Begin Push
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Video 5.2 Hand Occlusion
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Video 2.2 Rotated
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Video 5.3 After Occlusion
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Video 3.1 Tipping
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Video 5.4 Tipped
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Video 3.2 Tipped
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Video 5.5 Resting

Figure 7.8: Error Analysis by Scenario. Box-whisker plots illustrate median, maximum,
minimum, lower and upper quartiles of the error distribution. Each chart represents the
performance of all algorithms over a single scenario, and each box-whisker represents the
performance of one algorithm on that scenario.
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Video 3.3 Resting
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Video 6.1 Begin Push
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Video 4.1 Begin Push
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Video 6.2 Bottle Occlusion
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Video 4.2 Colour Occlusion
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Video 6.3 Occluded Tip
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Video 4.3 After Occlusion

Figure 7.9: Error Analysis by Scenario. Box-whisker plots illustrate median, maximum,
minimum, lower and upper quartiles of the error distribution. Each chart represents the
performance of all algorithms over a single scenario, and each box-whisker represents the
performance of one algorithm on that scenario.
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F/R-1

F-1

F(K)/R-1 F(K)/M-1 F(K)-1

F/M-1

MDF(K)/R-1

MDF/R-1

MODF(K)/R-1

MODF/R-1

O/R-1,O/R-2,O/M-1,O/M-2,O-1,O-2,D/R-1
D/R-2,D(K)/R-1,D(K)/R-2,D/M-1,D/M-2

D(K)/M-1,D(K)/M-2,D-1,D-2,D(K)-1,D(K)-2
MOD/M-1,MOD(K)/M-1

Figure 7.10: Partial ordering over all cases - each edge represents a mean difference in
error of greater than 20 and a significant Mann-Whitney test in the same direction for a
pair of conditions on one or more scenarios. Where cycles exist, all edges in the cycle are
removed. Nodes and edges are merged where they are connected by the same edges or
connect the same nodes.
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7.5 Dynamics models comparison

This section focuses only on comparing the three primary dynamics models (no simulation

- O, simulation with displacement noise - D, and simulation with force noise - F). Images

are presented (Figures 7.11 to 7.16) illustrating performance. Results here are restricted

to conditions using the rank retention scheme1.

Then the mean performance of the three main dynamics models (O, D and F) is

compared numerically across all key frame sets, for each of the rank retention scheme,

mixture retention scheme and for no retention. These comparisons can be found in the

line charts in Figures 7.17 7.18 and 7.19. As can be seen there, on many scenarios there

is no clear winner, but on the harder scenarios, simulation with force-noise is the usual

winner.

The results show that while the performance of simulation with dispersion noise is

often equivocal with respect to the original no-simulation model, with the exception of

the tipping scenario where it is a slight improvement, there is a clear improvement from

the simulation with force noise model across all conditions.

1The rank retention scheme was employed in these experiments as this scheme seems to produce
slightly better behaviour for the original (no simulation) dynamics and because it is was the scheme in
use in the tracker before these experiments. This provides a marginally more difficult test for the new
methods.
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Figure 7.11: Video 1, phase 1.1 from top to bottom. Left: Gaussian dispersion,
likelihood-rank retention, 2 recursions (condition O/R-2). Middle: Simulation with
Gaussian dispersion, likelihood-rank retention, 2 recursions (condition D/R-2). Right:
Simulation with force noise, likelihood-rank retention, 1 recursion (condition F/R-1). In
the easy video 1 (box-whisker plots Figure 7.8) there is little difference between all con-
ditions.

Figure 7.12: Video 2, phases 2.1 and 2.2 from top to bottom. Left: Gaussian disper-
sion, likelihood-rank retention, 2 recursions (condition O/R-2). Middle: Simulation with
Gaussian dispersion, likelihood-rank retention, 2 recursions (condition D/R-2). Right:
Simulation with force noise, likelihood-rank retention, 1 recursion (condition F/R-1). In
video 2 (box-whisker plots Figure 7.8), where the object is pushed end-on to the camera,
there is little difference in error rate - except that there is some lag in the force noise
condition. This is attributable to the fact that the force noise condition presented in
these images does not do multiple recursions, and consequently spends less time search-
ing for presumably narrow observation likelihood optima. This conclusion is supported
by the observation that with the single recursion non-simulation and simulation with dis-
persion noise conditions, similar lags occur - see the box-whisker plot 2.2 in Figure 7.8
for a summary of all conditions over this scenario. As can be seen in the line chart in
Figure 7.19, not using a retention system at all solves the problem of lag - presumably
because retention favours previously found observation likelihood optima which can have
a higher observation likelihood than newly found correct optima, since newly found op-
tima often need more refinement to obtain a better likelihood (particularly true with a
peaky likelihood).
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Figure 7.13: Video 3, phases 3.1, 3.2 and 3.3 from top to bottom. Left: Gaussian
dispersion, likelihood-rank retention, 2 recursions (condition O/R-2). Middle: Simula-
tion with Gaussian dispersion, likelihood-rank retention, 2 recursions (condition D/R-2).
Right: Simulation with force noise, likelihood-rank retention, 1 recursion (condition F/R-
1). Box-whisker plots are Figures 7.8 and 7.9. The existence of a simulation-based model
of any kind enables the tracker to better track the object through the tip, where the object
escapes from the search window of the basic tracker. An important aspect of this success
is that the algorithm also tracks the beginning of the tip - even though the difference in
pose from the original pose is small, for the simulation conditions, it puts the posterior
distribution much closer to the next basin of attraction, and so in dynamics terms much
closer to the tipped object. The improved dynamics model here guides sampling so that
the new object location is more easily found. In the case of simulation with dispersion
dynamics with one recursion, if the initial tip is not tracked, the algorithm finds it diffi-
cult to recover - this is because when the algorithm gets trapped in a bad pose, it finds a
low-energy pose from which transition is difficult. This effect can be seen most clearly in
the line chart in Figures 7.17 to 7.19.
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Figure 7.14: Video 4, phases 4.1, 4.2 and 4.3 from top to bottom. Left: Gaussian disper-
sion, likelihood-rank retention, 2 recursions (condition O/R-2). Middle: Simulation with
Gaussian dispersion, likelihood-rank retention, 2 recursions (condition D/R-2). Right:
Simulation with force noise, likelihood-rank retention, 1 recursion (condition F/R-1). In
video 4 (box-whisker plots in Figure 7.9), the benefit of the simulation with force noise
condition can be seen. When the target object is occluded by a plain coloured occluder
and the only edges for the tracker to lock onto are on the background or the edge of the
occluder, then the other methods fail by locking onto those distracting edges. However,
the movements required to obtain such a lock are improbable with a force noise dynamics,
so the stationary occluded object is tracked. It can also be seen that the simulation with
dispersion noise condition offers some improvement by concentrating search closer to the
ground plane, where the object is, thereby tending not to fail by as large a margin. Once
the occluder is removed, if track was lost during occlusion, it is often not recovered.
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Figure 7.15: Video 5, phases 5.1, 5.2, 5.3, 5.4 and 5.5 from top to bottom. Left:
Gaussian dispersion, likelihood-rank retention, 2 recursions (condition O/R-2). Middle:
Simulation with Gaussian dispersion, likelihood-rank retention, 2 recursions (condition
D/R-2). Right: Simulation with force noise, likelihood-rank retention, 2 recursions (con-
dition F/R-1). In video 5 (box-wisker plots in Figure 7.8, the scenario with the object
under occlusion (this time by a waving hand) is parallel with that in video 4: the simula-
tion with force noise condition tracks the object accurately, while other conditions fail to
varying degrees. Again, the simulation with dispersion noise does slightly better than the
non-simulation conditions on this scenario. Most conditions are able to recover after the
occluder in this case. This time the simulation with dispersion noise condition statistically
is less able to recover (though under the basic 2-recursion rank-retention condition fares as
well as other conditions). A failure to recover from the occlusion tends to persist through
the subsequent tipping of the object also. The force-noise condition tracks throughout
the whole video, and the simulation conditions track better through the tip if they have
retained track to that point in the video.
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Figure 7.16: Video 6, phases 6.1, 6.2 and 6.3 from top to bottom. Left: Gaussian disper-
sion, likelihood-rank retention, 2 recursions (condition O/R-2). Middle: Simulation with
Gaussian dispersion, likelihood-rank retention, 2 recursions (condition D/R-2). Right:
Simulation with force noise, likelihood-rank retention, 1 recursion (condition F/R-1). The
final video, video 6 (box-whisker plots of algorithm error distribution in Figure 7.9) is the
most difficult case for any tracker due to simultaneous occlusion and fast object move-
ment. Only the simulation with force-noise condition is able to succeed here, by tracking
only plausible object motion. The largely successful track of the tipped box succeeds by
locking onto contours of the occluding object.
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Scenario

Effect of adding simulation with dispersion or force noise, with rank retention

O/R-1 O/R-2 D/R-1 D/R-2 F/R-1

Figure 7.17: Mean error and standard deviation across all scenarios, comparing primary
conditions with rank retention: O/R-1: no simulation, rank retention, 1 recursion. O/R-
2: no simulation, rank retention, 2 recursions. D/R-1: simulation with dispersion noise,
rank retention, 1 recursion. D/R-2: simulation with dispersion noise, rank retention, 2
recursions. F/R-1: simulation with force noise, rank retention, 1 recursion.
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Scenario

Effect of adding simulation with dispersion or force noise. with mixture retention

O/M-1 O/M-2 D/M-1 D/M-2 F/M-1

Figure 7.18: Mean error and standard deviation across all scenarios, comparing primary
conditions with mixture retention: O/M-1: no simulation, mixture retention, 1 recursion.
O/M-2: no simulation, mixture retention, 2 recursions. D/M-1: simulation with dis-
persion noise, mixture retention, 1 recursion. D/M-2: simulation with dispersion noise,
mixture retention, 2 recursions. F/M-1: simulation with force noise, mixture retention,
1 recursion.
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Scenario

Effect of adding simulation with dispersion or force noise

O-1 O-2 D-1 D-2 F-1

Figure 7.19: Mean error and standard deviation across all scenarios, comparing primary
conditions with no retention: O-1: no simulation, no retention, 1 recursion. O-2: no
simulation, no retention, 2 recursions. D-1: simulation with dispersion noise, no retention,
1 recursion. D-2: simulation with dispersion noise, no retention, 2 recursions. F/M-1:
simulation with force noise, no retention, 1 recursion.
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7.6 Effect of known robot finger location

In this subsection, the results are analysed with respect to the effect of including infor-

mation about the known finger location.

For a numerical comparison of the mean performance of the simulation with dispersion

noise dynamics model between unknown and known finger location, over all scenarios, see

Figure 7.20 for the rank retention conditions, 7.21 for the mixture retention conditions

and 7.22 for the no retention conditions. Analogously, Figures 7.23, 7.21 and 7.22 deal

comparing the performance of the simulation with force noise conditions, with and without

known finger location. Then, a set of images are presented illustrating the effect of adding

known finger location to the simulation cases - Figures 7.26 to 7.31.

For simulation with dispersion noise, only in the tipping scenario (3.2, 3.3) is any

improvement obtained by including finger location information. In all other cases the

effect is very small compared to the choice of retention method. Improvement in the

tipping is most likely obtained because the new information helps drive search locally,

but the dispersion method of adding noise does not retain realistic dynamics.

Known finger location is helpful more often for the force noise condition. However,

the impact of including known finger location does not compare to the impact already

accrued by modelling the target object as a physical object subject to force noise.
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Scenario

Effect of Known robot finger location on Simulation with Dispersion Noise Dynamics with Rank Retention

D/R-1 D/R-2 D(K)/R-1 D(K)/R-2

Figure 7.20: Mean error and standard deviation across all scenarios, comparing simulation
with dispersion noise conditions with rank retention, with and without knowledge of finger
location: D/R-1: simulation with dispersion noise, rank retention, 1 recursion. D/R-2:
simulation with dispersion noise, rank retention, 2 recursions. D(K)/R-1: simulation
with known finger location, dispersion noise, rank retention, 1 recursion. D(K)/R-2:
simulation with known finger location, dispersion noise, rank retention, 2 recursions.
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Scenario

Effect of Known robot finger location on Simulation with Dispersion Noise Dynamics with Mixture Retention

D/M-1 D/M-2 D(K)/M-1 D(K)/M-2

Figure 7.21: Mean error and standard deviation across all scenarios, comparing simulation
with dispersion noise conditions with mixture retention, with and without knowledge of
finger location: D/M-1: simulation with dispersion noise, mixture retention, 1 recursion.
D/M-2: simulation with dispersion noise, mixture retention, 2 recursions. D(K)/M-1:
simulation with known finger location, dispersion noise, mixture retention, 1 recursion.
D(K)/M-2: simulation with known finger location, dispersion noise, mixture retention,
2 recursions.
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Scenario

Effect of Known robot finger location on Simulation with Dispersion Noise Dynamics

D-1 D-2 D(K)-1 D(K)-2

Figure 7.22: Mean error and standard deviation across all scenarios, comparing simula-
tion with dispersion noise conditions with no retention, with and without knowledge of
finger location: D-1: simulation with dispersion noise, no retention, 1 recursion. D-2:
simulation with dispersion noise, no retention, 2 recursions. D(K)-1: simulation with
known finger location, dispersion noise, no retention, 1 recursion. D(K)-2: simulation
with known finger location, dispersion noise, no retention, 2 recursions.
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Scenario

Effect of use of Known robot finger location on Force Noise Dynamics with Rank Retention

F/R-1 F(K)/R-1

Figure 7.23: Mean error and standard deviation across all scenarios, comparing simulation
with force noise conditions with rank retention, with and without knowledge of finger
location: F/R-1: simulation with force noise, rank retention, 1 recursion. F(K)/R-1:
simulation with force finger location, dispersion noise, rank retention, 1 recursion.
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Scenario

Effect of use of Known robot finger location on Force Noise Dynamics with Mixture Retention

F/M-1 F(K)/M-1

Figure 7.24: Mean error and standard deviation across all scenarios, comparing simulation
with force noise conditions with mixture retention, with and without knowledge of finger
location: F/M-1: simulation with force noise, mixture retention, 1 recursion. F(K)/M-
1: simulation with force finger location, dispersion noise, mixture retention, 1 recursion.
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Scenario

Effect of use of Known robot finger location on Force Noise Dynamics

F-1 F(K)-1

Figure 7.25: Mean error and standard deviation across all scenarios, comparing simula-
tion with force noise conditions with no retention, with and without knowledge of finger
location: F-1: simulation with force noise, no retention, 1 recursion. F(K)-1: simulation
with force finger location, dispersion noise, no retention, 1 recursion.
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Frame 222 (scenario 1.1): Simulation dynam-
ics with force noise, rank retention, known
finger location - F/R-1 and F(K)/R-1

Figure 7.26: Scenario 1.1 video slices. The slight negative effect on this scenario of
adding known finger location to the force-noise dynamics can be seen here. The finger’s
known location is rendered as a grey sphere on the image.

Frame 181 (scenario 2.2): Simulation dy-
namics with displacement noise, rank reten-
tion, one recursion at each time-step with
and without known finger location - D/R-1
(left) and D/R-1(K) (right)

Frame 181 (scenario 2.2): Simulation dynam-
ics with force noise , rank retention, one re-
cursion at each time-step, with and with-
out known finger location - F/R-1 (left) and
F(K)/R-1 (right)

Figure 7.27: Scenario 2.2 video slices. The potential positive effect of including known
finger location with force noise. Known finger conditions are shown on the right. The
finger location also helps with the lag experienced by the force noise with rank retention
condition in this video (see also Figure 7.8); this lag is only experienced under the rank
retention scheme.
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Frame 308 (scenario 3.3): Simulation dy-
namics with displacement noise, rank reten-
tion, one recursion at each time-step, with-
out known finger location - D/R-1 (left and
right)

Frame 308 (scenario 3.3): Simulation dynam-
ics with displacement noise, rank retention,
one recursion at each time-step, with known
finger location - D(K)/R-1 (left and right)

Figure 7.28: Scenario 3.3 video slices. Recovery from tip. Finger location noise
improves the tracking in this scenario for all retention schemes (See also Chart 3.2 in
Figure 7.8), particularly for simulation with displacement noise conditions, by reducing
the probability of some unrealistic poses in which the finger intersects with the target
object. Note that there are multiple outcomes for each condition because the tracker is
non-deterministic (hence the statistics that were collected on its behaviour).

Frame 155 (scenario 4.2): Simulation dynam-
ics with force noise , rank retention, one re-
cursion at each time-step, with and with-
out known finger location - F/R-1 (left) and
F(K)/R-1 (right)

Frame 285 (scenario 4.3): Simulation dynam-
ics with force noise , rank retention, one re-
cursion at each time-step, with and with-
out known finger location - F/R-1 (left) and
F(K)/R-1 (right)

Figure 7.29: Scenario 4.2 and 4.3 video slices. The effect of known finger location in
this video is equivocal (corresponding charts are in Figure 7.9).
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Frame 190 (scenario 5.2): Simulation dy-
namics with displacement noise, rank reten-
tion, one recursion at each time-step, with
unknown and known finger location - D/R-1
(left) and D(K)/R-1 (right)

Frame 190 (scenario 5.2): Simulation dynam-
ics with force noise, rank retention, one re-
cursion at each time-step, with and with-
out known finger location - F/R-1 (left) and
F(K)/R-1 (right)

Frame 239 (scenario 5.3): Simulation dynam-
ics with force noise, rank retention, one re-
cursion at each time-step, with and with-
out known finger location - F/R-1 (left) and
F(K)/R-1 (right)

Frame 278 (scenario 5.4): Simulation dynam-
ics with force noise, rank retention, one re-
cursion at each time-step, with and with-
out known finger location - F/R-1 (left) and
F(K)/R-1 (right)

Frame 321 (scenario 5.5): Simulation dynam-
ics with force noise, rank retention, one re-
cursion at each time-step, with and with-
out known finger location - F/R-1 (left) and
F(K)/R-1 (right)

Figure 7.30: Scenario 5.2, 5.3, 5.4 and 5.5 video slices. The effect of having a finger
in the force noise condition here is marginal. The effect of having a finger in simulation
with displacement noise depends on the retention style used, as can be seen in Figure 7.8
Chart 5.5. There is no improvement during occlusion, but after the occlusion, known finger
location improves slightly the simulation with force noise conditions; the improvement is
on the order of a minor refinement however, presumably due to the inclusion of extra
information constraining the exact location of the target object.
.
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Frame 237 (scenario 6.2): Simulation dynam-
ics with force noise, rank retention, one re-
cursion at each time-step, with and with-
out known finger location - F/R-1 (left) and
F(K)/R-1 (right)

Frame 237 (scenario 6.2): Simulation dynam-
ics with displacement noise, rank retention,
two recursions at each time-step, with un-
known and known finger location - D/R-2
(left) and D(K)/R-2 (right)

Frame 237 (scenario 6.2): Simulation dy-
namics with displacement noise, rank reten-
tion, one recursion at each time-step, with
unknown and known finger location - D/R-1
(left) and D(K)/R-1 (right)

Frame 264 (scenario 6.3): Simulation dynam-
ics with force noise , rank retention, one re-
cursion at each time-step, with and with-
out known finger location - F/R-1 (left) and
F(K)/R-1 (right)

Frame 264 (scenario 6.3): Simulation dynam-
ics with displacement noise, rank retention,
two recursions at each time-step, with un-
known and known finger location - D/R-2
(left) and D(K)/R-2 (right)

Frame 264 (scenario 6.3): Simulation dy-
namics with displacement noise, rank reten-
tion, one recursion at each time-step, with
unknown and known finger location - D/R-1
(left) and D(K)/R-1 (right)

Figure 7.31: Scenario 6.2 and 6.3 slices. In these scenarios the retention scheme
provides a small benefit to the simulation conditions (error plots in Figure 7.9) but this
benefit can be replicated with known finger location. The reason for this non-additive
combination is that in this scenario they produce the same intermediate benefit, the
guiding of sampling towards the correct edges as the object becomes more obscured. This
increased accuracy can be translated into an increase in accuracy after the occluded tip.
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7.7 Mixture models

As previously discussed, it is possible to deploy mixtures of the primary dynamics models.

Because the number of possible combinations is exceedingly large, only three alternative

mixture models were tried - MOD/M-1, a mixture of no simulation and simulation with

dispersion noise, a mixture retention scheme and 1 recursion at each time-step, MODF/R-

1, a mixture of no simulation and simulation with dispersion noise, as well as simulation

with force noise, a rank retention scheme and 1 recursion at each time-step, and MDF/M-

1, a mixture of simulation with dispersion noise and simulation with force noise, a rank

retention scheme and 1 recursion.

The use of mixtures could conceivably do better or worse than all of the existing

models. In practice, the performance is, in general, a kind of average of the performance

of the component models. Apart from the occasional interaction, this can be seen in

Figures 7.32 and 7.33.
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Scenario

Comparison of some mixtures of models - without finger

O/R-1 D/R-1 F/R-1 MOD/M-1 MODF/R-1 MDF/R-1

Figure 7.32: Mean error and standard deviation across all scenarios, comparing dynamics
models based on single dynamics with those based on mixtures. O/R-1: dispersion-
only dynamics, rank-retention. D/R-1: simulation with dispersion noise, rank retention.
F/R-1: simulation with force noise, rank retention. MOD/M-1: a mixture of dispersion-
only and simulation with dispersion dynamics, with mixture retention. MDF/R-1: a
mixture of simulation with dispersion dynamics and simulation with force noise, rank
retention. MODF/R-1: a mixture of all the main dynamics models, dispersion-only,
simulation with dispersion dynamics and simulation with force noise, rank retention. All
conditions use 1 recursion at each time-step.
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Scenario

Comparison of some mixtures of models - with finger

O/R-1 D(K)/R-1 F(K)/R-1 MOD(K)/M-1 MODF(K)/R-1 MDF(K)/R-1

Figure 7.33: Mean error and standard deviation across all scenarios, comparing dynam-
ics models based on single dynamics with those based on mixtures, with known finger
location employed where applicable. O/R-1: dispersion-only dynamics, rank-retention.
D(K)/R-1: simulation with dispersion noise, rank retention. F(K)/R-1: simulation
with force noise, rank retention. MOD(K)/M-1: a mixture of dispersion-only and sim-
ulation with dispersion dynamics, with mixture retention. MDF(K)/R-1: a mixture
of simulation with dispersion dynamics and simulation with force noise, rank retention.
MODF(K)/R-1: a mixture of all the main dynamics models, dispersion-only, simulation
with dispersion dynamics and simulation with force noise, rank retention. All conditions
use 1 recursion at each time-step, and all simulation-based dynamics incorporate the
known robot finger location.
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7.8 Manufactured videos

Though the simulator-based stochastic dynamics models are likely to guide samples to

plausible poses, they might not encompass movements that are not modelled by the

simulator1. The proposition that these methods would retain robustness under model

failure is put to the test directly by generating videos in which the assumptions of the

simulator explicitly violated.

In the first such video (the first row of Figure 7.34), the whole image is gradually

vertically rotated up in the field of view during the first half of the video and then down

in the second half of the video. Since the camera is calibrated with respect to the ground

plane before the film is taken, this has the effect that the object seems to float off the

ground plane and then settle at the end.

In the second such video, the whole image is gradually vertically rotated down in the

field of view in the first part of the video and back in the second half of the video. With

respect to the calibrated camera and the model in the simulator, this would give the effect

that the target object is sinking into the ground-plane and back. See the second row of

results in Figure 7.34.

Instead of simulating the object floating or sinking, the physics-augmented trackers

prefer hypotheses where the object stays close to the ground plane, thereby estimating

the object receding or advancing along the ground plane in order to accommodate the

object’s vertical movement in the image plane. Future work is needed to remedy this

fragility2. Proposals for increasing the robustness of the system are given below.

1In the case of simulation with added Gaussian noise, any movement is in theory possible due to the
effect of the Gaussian noise (though some may be exceedingly improbable), and in the case of simulation
with force noise, the only effect that is theoretically impossible is interpenetration of modelled objects,
though unrealistic movements may be possible by exploiting the approximate nature of discrete physical
simulation.

2Tests of tracker behaviour that account for real-world situations are necessary if the system is ever
to be evolved to a state where it is robust in the kind of situation that is likely to be experienced during
use and also where the dynamics models break down.

226



Original unaltered video, frame 160

Altered video:
Floating box

Altered video:
Sinking box

Figure 7.34: An illustration of the behaviour of the three basic dynamics models (left:
without simulation with pose dispersion noise (O), middle: with simulation with pose
dispersion noise (O), and right: simulation with force noise (F)) introduced in this thesis
on two manufactured videos (one where the image rolls up during the video at top,
effectively making the object float in the tracker’s calibrated frame of reference, and one
where the image rolls down at the bottom, conversely making the object in a sense appear
to sink).

227



7.9 Sensitivity to parameters

The new, force noise based, tracker performs better than the non-physics tracker on

the scenarios analysed here. However, robustness is important in this work, if the new

approach is to be used practically. To this end, the sensitivity of the simulation-based

approach to the extra simulation parameters should be analysed. This is done in this

section by varying the level of dynamic and static friction, and the coefficient of restitution,

while keeping other parameters fixed at the levels used for the above experiments.

Also, there are a large number of reasons why this improvement may be seen apart

from the use of the realistic physics model, and it pays to eliminate the most obvious ones.

One such possibility is that because the new approach incorporates noise in different units

and so the noise levels of the old and new approaches are set separately1, the effective

level of noise in the new approach is what is causing the improvement. This is tested

here by varying the noise level across both old (no physics) and new (force noise based

physics) approaches.

7.9.1 Sensitivity to physics simulation parameters

The charts in Figure 7.35 show the effect of varying the coefficient of restitution of the

condition with force noise and particle retention (F/R-1). The charts compare this with

the performance of the corresponding original tracker without physics (O/R-1). Similarly,

Figure 7.36 shows the effect of varying the coefficient of static friction. Figure 7.37

shows the effect of varying the coefficient of dynamic friction. In all experiments, other

parameters are maintained at the levels used in previous experiments.

It can be seen that, in all cases, changing the coefficient of restitution has very little

effect on the performance difference. Changing the coefficients of friction can have a

1The translation part of the dispersion noise is in units of metres, drawn from a a Gaussian distribution,
the rotation part is in degrees. The noise for the force noise condition is in units of Newton seconds from
a uniform distribution over an ellipse, incident at points drawn from a probability distribution over the
shape surface.
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Figure 7.35: The effect of altering the coefficient of restitution on the physics simulation
based tracker with force noise, and particle retention (F/R-1). Results for the non-physics
based tracker with retention are also presented for comparison (O/R-1). Numbers are
averaged over 40 trials. The default value of the coefficient in other experiments is 0.001.
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Figure 7.36: The effect of altering the coefficient of static friction on the physics simulation
based tracker with force noise, and particle retention (F/R-1). Results for the non-physics
based tracker with retention are also presented for comparison (O/R-1). Numbers are
averaged over 40 trials. The default value of this coefficient in other experiments is 0.4.
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Figure 7.37: The effect of altering the coefficient of dynamic friction on the physics
simulation based tracker with force noise, and particle retention (F/R-1). Results for
the non-physics based tracker with retention are also presented for comparison (O/R-
1). Numbers are averaged over 40 trials. The default value of this coefficient in other
experiments is 0.2.
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negative effect at a very high level of friction, but even then, improvement is generally

seen over the comparison method. Dynamic friction has a bigger effect generally.

As a result, at least in the scenarios examined here, the method seems to be robust

to simulation parameters. This robustness is attributed to the general noise model.

7.9.2 Sensitivity to noise

The charts in Figure 7.38 show the effect of varying noise parameters both on the condition

with force noise and particle retention (F/R-1) and on the corresponding physics-less

tracker (O/R-1).

It can be seen that the same improvement attributed to the use of a physics simulator

in the context of occlusion can be obtained by turning the noise down a lot on the non-

physics tracker. However, in order to be successful under fast movement (such as the

tipping cases) a lot of noise is required. In contrast, there is a level of noise that is

effective for both occlusion and tipping under the force noise condition.

It remains to be seen how well this noise level generalises to cases not examined in

these experiments.

Another alternative hypothesis that needs to be explored further is the hypothesis

that the benefit of the force noise is located only in the shape of the noise distribution or

the way it differentially emphasises rotation and translation of the object1. It is possible

to investigate the use of the simulator without gravity and without the ground plane to

test this hypothesis, or by reconstructing the distribution of translations and rotations in

the force noise condition and applying these directly as perturbations.

1While the simulation with displacement noise condition adds noise as a random translation and
a random rotation (drawn from a Gaussian over the vector parameters of the unit quaternion), the
translation and rotation of the object in the force noise condition is a consequence of a force acting at
some point on the object surface.
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Figure 7.38: The effect of altering the particle noise multiplier on the physics simulation
based tracker with force noise and particle retention (F/R-1), and on the non-physics
based tracker with retention (O/R-1). Numbers are averaged over 40 trials. In the case
of the non-physics tracker (O/R-1), the particle noise multiplier multiplies into the the
rotation by a factor of 1 degree and into the translation by a factor of 1cm. The default
value of the multiplier in other experiments is 40.
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7.10 Discussion

“In February, the World Bank estimated that 44 million people have been
pushed into poverty by food price spikes since June, 2010.”

It’s time to get tough with the food casino,

Andrew Hepburn, The Globe and Mail, 4 August 2011

7.10.1 Results summary

Simulation based dynamics. Coupling a simulator with visual tracking can lead to

substantial improvements in the visual tracking, particularly in the presence of hard visual

problems like occlusion and fast movement.

Incorporation of noise into the simulator. How the probabilistic dynamics model

incorporates the simulation is important, with a force noise based model yielding the most

improvement. Indeed, track is maintained with occlusion, distractors, fast movement, and

fast movement under occlusion.

Incorporating non-visual sources of object information. Including information

about the finger location marginally but significantly increases performance; but there are

interactions with other conditions.

Mixtures of dynamics models. Mixtures of different dynamics models do not

create the hoped super-additive effect on performance, rather tending to average the

performance of component models.

Additive process noise. In Chapter 5 it was seen that adding additive process noise

to the trajectory during refinement did little to improve the performance of the physics-

based algorithms over simply putting noise in the initial conditions. Analogously, additive

process noise in this particle filter (the simulation with dispersion noise condition) did

little to improve performance over the non-physics approach. Although this is suggestive

of a possible incompatibility of additive process noise with sophisticated physics-based

dynamics, further work is necessary to test this. In particular, in Chapter 5, process noise

was not incorporated into the RANSAC procedure; its lack of effect during refinement is
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not so important considering that refinement is less important than RANSAC.

7.10.2 Further work

Into the real world. The tracker is tested here in near-real-time (operating at about 10

frames a second) but it is expected that it would be capable of application in real-time with

small tweaks. The simulation with force noise method has been shown to do significantly

better on the videos tested on here but in order to move this line of investigation into

the real-world, a wider sample of test videos is needed1. The manufactured videos above

are a start, but what is needed are videos of typical human interaction in tabletop game

situations, as well as even more unconstrained interaction, such as mobile manipulation,

with and without the additional help of visible calibration patterns for unknown scene

objects.

Restricting search vs guiding search. The interpretation advanced here is that

the main consequence of using force noise is that the resulting sampler is only able to

sample from physical behaviours that are physically plausible according to the physical

simulator. This is in contrast to the simulation with dispersion noise condition, where the

simulator only acts to guide search.

Each approach has its benefits; the restriction approach, while powerful here, would

be expected to break down when the world model does not match the world (as it fre-

quently does not in practice). In order to make the method mature enough to be used in

applications (and hence receive the attention necessary to fully exploit it), it needs to be

robust to model failure.

1While the experiments here are presented in the confirmatory fashion, the reader will be aware that
the study here presented is more exploratory in nature. The videos tested here portray a subset in the
kinds of situation that will be encountered in practice, even in the context of tabletop robotics.
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7.10.3 Possible improvements

There are a number of different ways to improve this approach, and they will be discussed

in the remainder of this chapter.

Better simulation. There is a computational ceiling at present as to the quality

of the simulation, as well as a shortfall in present abilities to infer physical models from

data. Some physical systems (such as human intentionality) require completely different

technologies to predict.

Moreover, it is not clear that the techniques used here require good simulation for

the good results obtained1. As long as the probabilistic model creates a tighter envelope

encompassing plausible simulations, the method should be successful2.

Better modelling of noise. Some kinds of object movement (for instance, when

carried), require a different dynamics noise profile. Such force noise profiles may be

learnt3.

The current approach to sampling forces on the object is restricted to forces incident

on the object surface. On one hand, where multiple forces add up to produce one net

force, that net force may not be acting directly on the object surface. On the other

hand, for each force acting at one point in the object frame, a different force acting at a

different point on the object frame is typically equivalent. The question that needs to be

determined is if the distribution of forces sampled from in the system described here is

similar to the distribution of forces that would be applied to the object if, say, the object

were picked up and moved by a human intervener4.

Therefore, further work involves analysing the probability distribution5 of forces on

1The PhysX engine, being a physics engine with mostly graphics and games applications, has a model
of friction different to, and probably simpler than, the standard Coloumb model, does not simulate
precession in unbalanced masses, and more. Moreover, the parameters used in the simulations in the
experiments here (coefficients of restitution, for instance), were only estimated, not measured.

2Since games engines are tuned to the human eye, which is tuned to functionally relevant dynamics,
it may be that what is plausible according to such simplified physics engines is sufficient for this task.

3Indeed, the structure of the noise may be more important than the model itself.
4The experiments in Section 7.8 indeed suggest that the force distribution is not up to the task of

modelling the kind of stabilising forces that are required to lift the object slowly and put it down again.
5A simpler possible extension that is also applicable to the non-physics tracker involves modelling noise
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an object or objects during normal human interaction with the object and testing the

tracker with such a probability distribution1.

Learning. Beyond learning the noise profile, the probabilistic dynamics model itself

may be learnt (Khansari-Zadeh & Billard, 2010; Kim, Gribovskaya, & Billard, 2010; Kober

& Peters, 2009; Kopicki, Stolkin, Zurek, Mörwald, & Wyatt, 2010; Nguyen-Tuong &

Peters, 2010). However, such models, at least at present, are usually not as general as

hand-created simulators, and just as fragile when generalised, though they are excellent

for refining dynamics models within well-defined situations (Álvarez, Peters, et al., 2011;

Nguyen-Tuong & Peters, 2010). The problem of using them robustly remains. Indeed, use

of a model is used is an important motivator in the problem of learning the model.

In the long-term, if this approach is to be used more broadly, ways of acquiring models

and learning or inferring the dynamics of unknown objects is essential.

Better handling of multiple hypotheses. In order to better accommodate dif-

ferent possible object motions (for instance, model conforming, and non-conforming),

rather than collapsing the set of current hypotheses around a mode, maintaining dis-

tinct hypotheses may allow the tracker to entertain different dynamics models in a more

disciplined way2.

Trajectory-level estimation. The main problem with multiple hypotheses is the

tendency to more computational complexity. In order to deal with this problem, rather

than maintaining different hypotheses from time-step to time-step, hypotheses can be

generated by sampling from plausible trajectories rather than states3.

as a uniform rather than Gaussian distribution, which can help to deal with fast movements (Pupilli &
Calway, 2005). Such an improvement can be complementary or supplementary to the physics based
dynamics approach.

1Although the current tracker could be used to train the force distribution, for better results a more
reliable tracker might be used (such as wide baseline stereo). Similarly, in order to train a non-parametric
learner that was used to predict object movement in the limited context of a push, Mörwald, Kopicki,
et al. (2011) used the same object tracker with an earlier, untrained, dynamics model. However, in the
case proposed here, what would be learnt is a probabilistic model over forces rather than pose changes.
On the other hand, representing actions (and by analogy forces) as distributions over (future) state itself
does allow some nice parallels with conventional inference procedures (Todorov, 2009).

2The most related approach to multiple hypothesis maintenance is that of Vermaak et al. (2003) where
particles are clustered into a mixture model and re-sampled in each mixture independently.

3The method tested in this chapter uses the dynamics distribution for propagation and sampling
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So, a better way of combining multiple dynamics models is sought, that exploits both

strict and permissive dynamics models. Indeed, a set of ideas have already been given

here for doing this; more are possible.

Switching dynamics. The use of a slow-switching dynamics is proposed1, such that

each particle is augmented with an additional variable that captures its current dynam-

ics; the variable probabilistically transitions with a low probability since dynamics don’t

switch very frequently. This approach would capture the notion that multiple dynamics

models can exist, but not in quick succession as can happen with the current mixture

model dynamics2. The problem of model selection is apparent in this case since less re-

stricted models will garner more observation support in the short-term and quickly will

have no particles; however, inclusion of information about the current level of likelihood

support compared to a decaying maximum likelihood value should help to reduce the

effect of distractors.

This approach is a straightforward extension and the most likely to succeed in making

the system described in this thesis robust to model failure, and so applicable to general

tracking application, and so should be the next one attempted.

Multiple object tracking. Using the techniques advanced here, multiple object

tracking can be done if each object is treated in isolation. If the objects are to be tracked

jointly, however, this means maintaining physical constraints between the objects, and

so state estimates must be combined for simulation. Additionally, the states of multiple

objects must be maintained together, creating an explosion in the complexity of the

and the observation distribution for re-weighting and re-sampling. A trajectory-based approach would
need to remove this dependence by allowing trajectories to be generated by whatever means and tested
against both dynamics and observation models; the computational complexity introduced by using full
trajectories can be somewhat offset by a more bottom-up approach to their generation as is done, for
example, in RANSAC. Sampling of plausible trajectories was done with ball motion in Chapter 5 and
can provide a starting point for this work. An example of related work is RANSAC-PF that samples
state directly from consecutive image pairs rather than from previous state (Lu, Dai, & Hager, 2006).

1Similar “hybrid” models have been employed in fault detection, event detection and action recognition
(Dearden & Clancy, 2002; Hongeng & Wyatt, 2008; Williams, Quinn, & McIntosh, 2006), though not
known to have been applied to the case where more permissive versus more restricted models with the
same dimensionality are selected between.

2To see why the mixture model dynamics can lead to a particle switching too-fast between different
dynamics models, consider that each particle is passed randomly through a potentially different dynamics
at each time-step.
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filtering task, which needs to be managed. Parallelisation onto graphics hardware, joint-

separability (Lanz, 2005), broad-phase interaction tests, and maintenance of sparse inter-

particle relationships (Tweed & Calway, 2002) can help to reduce this complexity.

Efficiency improvements. With some assumptions it would be possible to adapt

this approach to a Kalman filter or one of its nonlinear extensions such as sigma-point

sampling (Julier & Uhlmann, 1997) or mixture models (Alspach & Sorenson, 1972; Soren-

son, 1970) or some combination of these with particle filters (Djuric & Kotecha, 2003;

Doucet, de Freitas, Murphy, & Russell, 2000; Kandepu et al., 2008; Kotecha & Djurić,

2003; van der Merwe & Wan, 2003). The idea in using such parametric representations

would be to increase efficiency to the point where many objects might be tracked. The

mixture models would be the minimal required extension to the basic Kalman filter as

the nonlinearity in the simulator can be shown to create highly bifurcated distributions.

It is an open question as to how successful Gaussian-based dynamics may be given that

sophisticated physics-based dynamics models also have a tendency to strongly distort

Gaussian distributions, to the extent of creating zero or infinitesimal probability regions.

Finally, an ongoing advantage of this method is that it can be parallelised very easily.

The observation model is currently implemented on a GPU, and the API being used in

the physics simulation is also parallelisable on PPUs and GPUs. Hardware is likely to

become more parallel in the future, so the decomposable structure of the particle filter

approach can benefit even further.

Observation model improvement. Apart from the improvements to the dynamics

models on which this work is focused, it may be thought that improvements in computer

vision techniques may force the methods described here into the boutique part of the

market. While this is unlikely to be true in the broad sense of synthesising physical

reasoning and vision, there is one obvious set of improvements to the observation model

component of this tracker that need to be considered.

At present the tracker does not reason about the presence of occluders or the quality

of visual evidence available. If the tracker were able to reason about occluders, it might
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be able to alter the likelihood model in such a way that distractors had little effect.

On the other hand, for that approach to succeed overall, there needs to be a good

source of information about object motion when it is occluded. For instance, in the

difficult video in Figure 7.7 above, when a box is tipped behind a box. So an improvement

to the observation model is likely to provide an independent improvement to the tracker,

but in the real world much of what goes on is unobservable or partially observable, so

any improvement is expected to behave even better together with a good simulator based

dynamics model.
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CHAPTER 8

DISCUSSION

“BP shares bounce back after Thursday’s falls.”

Daily Mail, 11 June 2010

8.1 Conclusions

Getting artificial cognitive systems to understand human-scale physical systems requires

the understanding of many different kinds of problems since there are many different kinds

of physical cognition. In this thesis, one kind, the ability to simulate physical systems, is

recruited to assist in another, the ability to estimate the behaviour of physical systems

from visual information.

This recruitment serves the practical purpose of augmenting the toolbox of approaches

to visual tracking and motion estimation. It also serves the more amorphous purpose of

looking afresh at simulation in the context of visual estimation and visa versa.

To investigate the requirements and consequences of this recruitment, experiments

were carried out using a physics simulator based dynamics to improve motion estimation,

in simulation and from colour, as well as model-based object tracking from colour texture

edges. With the goal of this work in mind, from these experiments and accompanying

analysis, the following high-level observations can be made:

−→ A deterministic simulator can be used as a part of a solution to a problem involving
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estimation over time by adding theoretical noise to the inputs and outputs of the

simulation. This theoretical noise accounts for failures of the dynamics embodied

by the simulator to model real-world behaviour, and also to account for problems in

the assumptions underlying the observation model as well as partial observability.

−→ The resulting partially observable stochastic process model serves as an adequate

formalism for conducting estimation, even using a deterministic simulator. For

future work, using that stochastic process model to define the simulator itself will

provide more opportunities for generality.

−→ The use of a physical simulator based dynamics model in motion and recursive

estimation is shown in this thesis to be able to compensate for missing or misleading

visual observations - including fast movement, blur, glare, occlusion, distractors, and

combinations of these.

−→ For motion estimation, trajectories to be estimated can be parametrised by bound-

ary conditions, a subset of states, or according to all states in the trajectory. The

choice of parametrisation depends on the theoretical process noise, which can be

somewhat alleviated by theoretical observation noise.

−→ Practically, traditional non-linear optimisation of a MAP-derived least-squares cost

function based on dynamics and observation costs is a straightforward way of merg-

ing data sources but is not by itself sufficient within this formalism, and needs to

be augmented by sampling methods involving heuristic and robust estimation.

−→ Reversibility of simulation comes in useful in initialising trajectories from a few

observations. Typical simulations are not fully reversible however, collapsing mul-

tiple pre-states into single post states. The only general solution to this problem is

stochastic simulation.

−→ For more complex scenarios, for instance involving multiple interacting objects,

an approach similar to MLESAC and MAPSAC is proposed based on sampling
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trajectories as well as simulator parameters, applying them to a generic cost func-

tion composed of robust observation terms as well as dynamics terms, and using a

building-block approach to building trajectories from sub-trajectories.

−→ In object tracking, a simulator with added noise fits well into a conventional particle

filter model since the common approach is to sample forward in time from a dynamics

model and re-weight from observations. Physics simulators are well-optimised so do

not add too much overhead to the particle filter.

−→ Sampling dispersion noise added to the output of the physics simulator does not

improve performance, but sampling an input of the simulator in the form of noisy

forces applied to the object provides a significant improvement.

−→ Force noise is thought to do well due to how it constrains the shape of the pro-

posal density and due to its maintenance of object behaviour largely within realistic

bounds, particularly with respect to its interaction with the ground plane.

−→ The addition of information about the robot finger movement in the robot push

scenario tends to help only in the force noise condition, and then only marginally.

This is thought to be because the force noise condition by itself enforces correctness

of the inferred state. The simulation with dispersion noise condition usually cannot

make use of the finger location information because it does not enforce a theoretically

correct dynamics.

−→ The most pressing concern in improving this object tracking method is to make it

more robust to bad model failure; the current mixture model approach failed to show

any merit, so the proposed first step is to introduce a switching model governing

the choice of dynamics model.

This thesis is distinguished from earlier and contemporaneous work based on the

principle of physics-in-vision in that it seeks improvement from the addition of a passive

simulator without a trained controller, it provides robust solutions, it models noise in the
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inputs to the non-linear simulation, it concentrates on rigid body motion, and of course

it focuses on new and untried scenarios and feature combinations. This thesis also bases

its approach on a widely applicable stochastic model.

The rest of this chapter attempts to re-place the issues addressed by this thesis in a

wider context.

8.2 Model correctness

This thesis fits into the category of model-based vision. A model is employed of the object

to be tracked and basic geometric models of image formation. Furthermore, an explicit

model exists of the dynamics of the physical system under observation1. Both estimation

and simulation imply the existence of a dynamical model2. In inverse dynamics too (as

used in control, and so forth), goals, states and actions at least are modelled. The first

important point to make is that although models underlying simulation, estimation and

planning relate to the same set of physical systems, they are constituted in very different

ways because of their very different cognitive roles.

In a purely reactive system it might be argued that there is no model; though models

may be developed to explain its behaviour - if such a system becomes stateful then the

state might be argued to naturally model world and body state. For evolved systems

there are arguments that models should emerge naturally (Clark & Grush, 1999; Grush,

2004). Not all approaches to physical cognition need strong models (for example, reactive

control), but as a way of combining and coordinating different kinds of physical abilities,

the use of models makes engineering sense.

One of the overriding concerns of the work described in this thesis has been model

1It is worth defining what is meant by model for clarity. A model is something that stands in for
something else and so allows that original thing to be reasoned about by reasoning with the stand-in.

2In the case of estimation, at the very least, the values to be estimated theoretically reflect some real-
world variable; the estimation procedure can depend on a model of how that variable interacts with other
variables ultimately to produce observations. In simulation, the knowledge embodied in the simulator
models how physical systems change over time, and a particular simulation can be made to model a real
or theoretical physical scene.
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fit. As mentioned in the literature review Chapter 3, Jakobi (1997) proposes a “radical

envelope of noise” hypothesis as a way of making controllers evolved in simulation more

applicable when applied in the real-world; otherwise there is a “reality gap”1. The idea

is that the evolved controller should be evolved to depend as much as possible, and as

robustly as possible, only on a base set of relevant behaviours modelled by the simulation.

Behaviours of the simulator outside the base set that do not match the real-world are dealt

with by adding noise both to non-base set and base set behaviours, to ensure robustness.

A broader principle is that introducing a theoretical noise model to a simulation (even

if not sampling noise directly into it) can overcome the simulator’s faults, a principle that

has been born out in this thesis2. As the shape of the noise distribution gets closer to

the actual motion of objects (due in this case to adding force noise to the inputs of the

dynamics distribution), the efficiency of sampling or search improves.

The reality-gap problem of a pregiven simulator might be solved by machine learning

(Kopicki, Stolkin, et al., 2010) though rigid body physics simulation is still usually more

generally applicable than state of the art learning techniques. Moreover, learning can

be combined with a pre-existing dynamics model (Álvarez, Peters, et al., 2011; Nguyen-

Tuong & Peters, 2010). Machine learning has proved to be useful in well-defined problems

and can be used to improve model fit. However, despite the best learning applied, there

is always going to be unmodelled behaviour.

The reality gap problem has its analog in the area of learning in the problems of over-

fitting, transfer and generalisation. As such, complementing the learning approach, work

on robustifying dynamics models in appropriate ways is necessary so that the extent to

which they are applied matches their applicability3. Productive further research involves

1The reality gap problem remains the main problem in the field of co-evolution of controllers and
simulators, with many alternative solutions proposed (Bongard, Zykov, & Lipson, 2006; Zagal, Delpiano,
et al., 2009; Zagal & Ruiz-del-Solar, 2007; Ziemke et al., 2005).

2In Chapter 5, the simulator was modelled with noise on boundary conditions, or on the location and
velocity of the ball along a trajectory. The noisy model of observations compensated for model failure
but ultimately the process noise is required. In the case of Chapters 6 and 7, noise was added to the
simulator in order to both deal with a potential reality gap of the simulation, as well as the unknown
shape of the observation likelihood induced by the chosen observation cost.

3In the visual estimation problem the slack of model fit is taken up by visual information and in control
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finding efficient ways of dealing with a noisy or incorrect simulation, and this search is

expected also to shed some light on the exact shape of this reality gap, and consequently

on the nature of the problems that must be solved by autonomous systems acting in the

physical world.

8.3 Human cognition

This thesis focuses on the practical problem of improving computer vision and the integra-

tion of computer vision with physical simulation. There is no model of human cognition in

it. However, since the problem being solved here is related to problems solved by people,

a short discussion of the relationship is warranted.

The literature review discussed work on humans that suggests that humans do mental

simulation when solving some problems, particularly mechanical ones (Hegarty, 2004)1.

One set of conclusions in that literature is that reasoning about physical systems should

be analog in nature since the amount of time spent in inferring the outcome of physical

systems often is proportional to the amount of time that the system itself would take to

run. Indeed, while closed-forms exist for some kinds of simulation, Euler-like methods

are typically used in practical computational simulations and the amount of processing

required by these general methods is proportional to the amount of time that needs to be

simulated. This could mean that, rather than being analog, what is going on in such cases

is that a general purpose incremental kind of physical simulation is being run internally.

Just as closed forms can be found or long-step simulations learned, so can humans train

themselves to use tricks2 to do these kinds of inferences in constant time. On the other

hand, some studies do show that the reasoning process in more complicated simulations

often involves a propagation of effects spatially around the system - for example, running

it is taken up by feedback. Approaches to robustness need to be able to rely on model information when
it is available and feedback when it is available, and to combine them intelligently.

1See Chapter 4 for a summary of the literature on mental simulation, particularly Section 4.1.6.
2Such tricks of cognition used to short-cut physical simulation would typically be linguistic, but may

also involve geometrical inference.
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one gear first and then examining the consequences on another (Schwartz & J. Black,

1996); in practical simulations this approach requires some assumptions; there should not

be many bidirectional constraints in the system for instance. As such, this finding has

an implication for how simulations for physical cognition might productively be written,

optimised for reasoning about small numbers of constraints.

In admitting these links, it must be assumed that the apparent similarity is not merely

a coincidence, and an important question to ask is whether the similarity is due to the

nature of the problem (simulation/mental simulation) or to a similarity in approaches

to solving the problem that might be solved in other ways, or indeed due to some other

factor. The former option is compelling because it allows one to reason that the link in

behaviour between the human case and digital simulation is related to the nature of the

problem of simulation itself rather than any implementation of a solution.

Finally a disclaimer: as mentioned numerous times in this thesis, there are many kinds

of physical cognition, of which simulation is only one type. Humans have and do many

kinds of physical cognition, and there is little evidence that capabilities for these different

kinds of physical cognition can be separated in humans. Indeed some proposals require

multiple kinds of physical cognition (such as forward and inverse in the work of Wolpert

and Kawato (1998)) to coexist. Therefore, a perspective considering simulation, indeed,

simulation and visual estimation, may help reveal some principles of human cognition,

but at the same time may be be misleading when considered in isolation. In particular,

starting with the assumption of a homomorphic relationship between simulator and world

may be a simplification and the structure of a simulator would best be considered in the

context of the particular problems it is being used for.

Finally, it needs to be mentioned that the use of physical cognition is ubiquitous

in human cognition, even outside of the physical realm. Casual investigation of human

language suggests that even the most abstract of concepts are couched linguistically in

physical terms (e.g. the preceding sentence). This use of physical concepts to describe

abstract ones has been observed time and again and many examples have been collected -
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mind as space, progress as locomotion, numbers as motion, and so forth (Barnden, 2001;

Lakoff & Johnson, 1984; Núñez, 2005). It is possible, by learning about physical cognition,

to shed light on how that physical cognition might be re-used in abstract cognition1.

Proof of concepts for this exist for specific simulated scenarios (Narayanan, 1999). If

work on physical cognition in robots is to shed light on these issues, however, it will be

by taking a system that does real physical reasoning and using it to do reasoning in other

domains with minimal adaptation or with a disciplined scheme for adaptation2.

Regarding the scenarios studied in this thesis as possible source domains for reasoning

- in the case of bouncing balls, shares can bounce, in the case of pushes, it is possible to

push to far, to topple a dictatorship, in the case of falling objects, share prices can fall,

it is possible to for ideas to come into contact, and so forth. In all of these problems,

there is an underlying state-based stochastic process and observation model that itself

generalises physical events; this is certainly applicable to other domains, but it remains

unclear whether a general mechanism might exist for applying it. In the end, it is most

probable that the re-use of physical cognition will be possible only when systems for

physical cognition are comprehensive enough that such abstract extensions are natural

requirements in extending the cognitive system.

8.4 Prospects

A wide range of prospects for further work have been proposed with respect to each of the

sets of experimental scenarios in Chapters 5, 6 and 7. This suggests that the research set

out in this thesis can be built upon. As mentioned before, the most important thrust in any

1Some caveats are in order of course: it is controversial that humans do re-use physical cognition in a
profound rather than shallow way: alternative explanations revolve around, for example, the argument
that generalised internal languages might be necessary to explain the generative capability of human
cognition (Hauser, Chomsky, & Fitch, 2002; Sloman, 2007). Furthermore, even if evolution produced a
system that re-uses physical abilities to do abstract reasoning, this says nothing about the requirements
of abstract reasoning with respect to all cognitive systems; it is quite possible that such a cognitive
architecture is a legacy of phylogeny.

2One of the major difficulties in this approach would be, as with other approaches to analogy and
metaphor in computation, recognising when the re-use is applicable.
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such research is extending the software to degrade gracefully when faced with unmodelled

situations. Specific proposals are given in Chapters 5, 6 and 7. The possible use of machine

learning techniques to address various issues faced in this work is also high on the agenda,

since this work exists in a context where machine learning is being applied successfully to

similar problems in control and motion planning and the additional concerns of robustness

that come out of the estimation problem should be valuable contributions to that field.

New kinds of process noise models, tied closer to the details of simulation (for example,

reversible stochastic simulation), are important to provide a greater flexibility in how the

estimation routines come by solutions, while creating an envelope of noise more closely

encompassing the behaviour of real processes.

Most important is a synthesis with other approaches to physical cognition such as

motion planning, control, imitation and grasping. Both simulation and estimation don’t

by themselves require the generation of action or interaction with the world and while

inclusion of such problems would coincide with new kinds of complexity, synergy would

be expected; beyond this, the consideration of full systems acting autonomously is crucial

in understanding the impact of approaches to subtasks, like simulation and estimation.
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APPENDIX A

THE VISUAL APPARATUS

In order to be able to estimate variables in the world, it is useful to have a model of how

these variables relate to the observations from which they are estimated1. To this end,

any exposition of visual estimation usually begins with the visual apparatus. Although

this thesis is about the application of physics ideas to computer vision, the physics in

question is the physics of the scene under observation, not of the formation of images, so

this exposition will not dwell deeply on the physical details of image formation.

At the broadest level, material in the world reflects light, which can be received by an

organism or device and used to gauge the properties of these things, particularly spatial

properties. The study of traditional “photogrammetry” is the study of reconstructing the

spatial configuration of objects from their visual appearance, usually by identifying points

from images or by measuring angles with a theodolite or sextant or other such apparatus

(Karara, 1989). Computer vision is more broad in remit in that it goes beyond just the

spatial configuration of objects and to their automated identification, real-time tracking,

and so forth; all of the desiderata of visual perception by autonomous systems (Hartley

& Zisserman, 2000; Jain et al., 1995).

The most widely used artificial apparatus for receiving and analysing light is the digital

camera with lens, which, like the human eye, focuses light through an aperture onto a

1Even more specifically, a model of how observations are formed from world variables provides a view
on the problem that aids in its understanding, at least as a starting point for designers of the estimation
system.
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area containing an array of light-sensitive elements. For the purposes of most day-to-day

computer vision, the reflection, transmission and incidence of light can be assumed to be

instantaneous 1.

In order to capture this arrangement as simply as possible, the lens itself is not di-

rectly modelled; rather, a pin-hole camera model is used and corrections introduced for

distortions of the lens2. A pin-hole camera is a camera that captures light through a

small lenseless aperture - the smaller the hole the more the camera matches the pin-hole

camera model and the more accurate estimates of the direction of incident light; but of

course the smaller the hole the less light is admitted through the aperture (in the limit,

none, so the model is a true idealisation)3.

The pin-hole camera model is also known as a projective camera model. By defining

the focal length, this model can describe how light reflected off objects is projected as a

ray from a point on the object to its corresponding point of incidence on the sensory array.

After this projection, using the aspect ratio of the light-receiving elements in the sensory

array, these points can be converted into pixel coordinates. At this point, the model can

also account for skew in the sensory array. Finally, the correction for lens distortion can

be applied.

Mathematically, the model is a mapping from points in object space, in homogeneous

coordinates to pixel coordinates. The mapping can be broken into four parts. Typically,

the first part is a transformation from object coordinate space into a world coordinate

space (representing the rigid pose of the object with respect to some pre-defined world

frame of reference); this allows points on all objects to be mapped into the same frame

1Though the digital processing of light often leads to delays that must be modelled and compensated
for.

2Rather than modelling the lens, however, the experience of practitioners has shown that modelling
the camera as a pin-hole camera and correcting for (unknown but usually able to be estimated) distortions
introduced by a lens is simpler analytically (particularly since such distortions are often small and can,
at many stages of analysis, be ignored). Lenses without these distortions are called metric lenses but are
rarely used in the field of computer vision which typically makes use of more readily available components.

3In the camera with lens, the lens allows for the direction of light to be remembered after it passes
through the aperture just as is the case with a pin-hole camera (since, as long as it falls on a light-receptive
surface at the focal length, the location on the surface at which it falls will closely correspond to the
direction of its origin). Moreover, the lens-filled aperture admits more light than a pin-hole.
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of reference. This is followed by a transform into a coordinate system oriented with the

camera (representing the rigid pose of the camera). After this transformation (which can

be written as a composition of rotations and translations), the final transformations, as

discussed in the previous paragraph, involves projection of the point in the camera’s own

coordinate system into pixels and the correction for distortion.

This process is summarised as:

• Transformation from object coordinates to world coordinates. Y Obj
TO/W−−−→ Y Wld

• Transformation from world coordinates to camera coordinates. Y Wld
TW/C−−−→ Y Cam

• Projection of camera coordinates to pixel coordinates. Y Cam
TC/i−−→ Y img

• Correction of lens distortion Y img
Ti/c−−→ Y cor

The variables of interest are as follows. Y Obj is a vector containing the coordinates

of a point in the object’s frame of reference. Y Wld is a vector containing the coordinates

of the same point in the “world” frame of reference, that is with respect to some fixed

frame in the world. Y Cam is a vector containing the coordinates of the same point in the

frame of reference of the camera. Y img describes the same point in the image plane in

pixel units. Y cor is the same point corrected for lens distortion.

Y Obj, Y Wld and Y Cam are generally represented as points in projective space. Projec-

tive space can be thought of as the same as the more familiar Euclidean space except that

a point an infinite distance from the origin does exist in a projective space, and is the same

point no matter what the direction infinity is approached in. Projective space is more

amenable to certain kinds of analysis than the more well-known Euclidean space, since

more operations on it are well defined1. If a point in projective space is to be numerically

described, homogeneous coordinates are required, and contain one more coordinate than

would normally be necessary to describe a point in Euclidean space, though this extra

1In particular, every point in projective space corresponds to a point in Euclidean space, with the
exception of the point at infinity, which is defined in projective space but not Euclidean.
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coordinate does not introduce any extra degrees of freedom1. The vector could be written

Y Obj =

Y Obj
1

Y Obj
2

Y Obj
3

Y Obj
4

2.

The mappings TO/W , TW/C , TC/i and Ti/c are the main mappings of interest for con-

verting between these frames of reference. They will be described now. The mappings

TO/W and TW/C are both rigid body transforms - that is, compositions of rotations and

translations. They can be represented by matrices whose properties under composition

are the same as the composition of rigid body transforms:

TO/W =

 RO/W TO/W

0 1

 (A.1)

TW/C =

 RW/C TW/C

0 1

 (A.2)

Here, from the perspective of the original coordinate frame, RO/W and TO/W rotate

then translate a point, having the effect of changing its coordinate frame (alternatively,

the frame itself can be considered to be moved through the inverse of this rigid transform)

from an object centred frame to a frame centred on some arbitrary “world” frame. RO/W

is a 3× 3 orthonormal matrix representing a rotation, and TO/W a 3 dimensional vector

representing a translation.

Similarly, RW/C and TW/C transform a point into the frame of reference of the camera,

defined by the optical axis and imaging plane.

If the camera is known to be fixed, then the world to camera transformation TW/C is

often either ignored or set to the identity, since the camera coordinate frame can serve the

same function that the world coordinate frame would otherwise have served. This is the

1For more details of these models see Hartley and Zisserman (2000), Karara (1989), Lepetit and Fua
(2005), Triggs et al. (2000), Trucco and Verri (1998).

2To transform a point in homogeneous coordinates into Euclidean coordinates, as long as the point is
not the one at infinity (i.e. the fourth coordinate of the homogeneous coordinates is not zero), a simple

calculation only is needed: Y Euc =

Y1
Y4
Y2
Y4
Y3
Y4

.
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case with the work done in Chapter 5 where the camera is fixed. Similarly, in Chapter 7,

the camera does not move so the transformation TW/C is acquired in advance of tracking

through the use of a calibration pattern.

After these rigid body transforms, the following matrix encompasses the projection of

the resulting points onto the image. This projection encompasses the change of units to

pixels, the projection according to the focal length of the camera, and any effect due to

the aspect ratio or skew of the photosensitive elements on the image plane.

TC/i =


a1f s yC1 0

0 a2f yC2 0

0 0 1 0

 (A.3)

Here, f is the focal length, a1 and a2 together determine the change of unit and

the aspect ratio, s any skew in the imaging elements, and [yC1 , y
C
2 ]

T the location of the

optical centre with respect to the origin in pixel coordinates. Because depth information is

effectively forgotten by the projection, the right hand column of the matrix is all zero. The

mapping takes a vector in homogeneous coordinates representing a 3D point (4 numbers)

and produces a vector in homegeneous coordinates representing a 2D point (3 numbers).

A simplified model, called the orthogonal camera model, does not take into account the

depth of a point when determining its image coordinates; this simplification is sometimes

of use, though in general not correct because a point that recedes in depth also moves

across the image plane. Such a projection would be written1:

1In Chapter 7 the projective camera matrix in Equation A.3 is calibrated in advance for the camera
used since the parameters of this transformation are usually properties of the lens and camera system
used. In the work in Chapter 5, these parameters were mostly estimated in an ad-hoc way by eye;
moreover, because the objects tracked were expected to move parallel to the image plane (and hence with
a fixed depth), an orthogonal camera model was assumed as with Equation A.4.
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TC/i =


a1f s 0 yC1

0 a2f 0 yC2

0 0 0 1

 (A.4)

Note that in the orthogonal projection matrix, the third column is zero, because

the depth of a point (information recorded in the 3rd component of the homogeneous

coordinate vector) is not used when determining the image location of the projected

correspondence to that point1.

Finally, after rigid transformation and projection, the following mapping (the correc-

tion for lens distortion) can be applied, with Y img =


yimg
1

yimg
2
1


:

Ti/c(Y img) = D


(yimg

1 − yC1 )
2 + (yimg

2 − yC2 )
2


yimg
1

yimg
2


(A.5)

The functionD here takes the radius as an argument and produces a scaling. Typically

its inverse is modelled as a polynomial function of the radius; a truncated Taylor series:

r = 1 + d1 ·D(r) + d2 ·D(r)2 + d3 ·D(r)3 + d4 ·D(r)4 (A.6)

This mapping is expressed as its inverse because it is the inverse mapping that is

generally applied - as a correction mapping from light incident on the visual array to

where it would have been incident on the visual array, were the lens producing a perfect

projective mapping.

The same story applies to all of the above mappings; in model-based vision the inverse

mapping is of interest when it comes to the estimation problem; that is the task of finding

the corrected pixel location from the acquired image, the depth of the point from the

1In Chapter 5, s was assumed zero, a1 assumed to be 1 and a2 assumed to be −1, and because the
camera model is so simple, yC1 and yC2 serve only to shift the origin of the world coordinate frame to the
origin of the image coordinate frame.
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camera (e.g. the location from the camera frame), the rotation and translation of the

camera with respect to the world frame, and the rotation and translation of the object

with respect to the world frame1. Clearly, the forward model (from information about the

configuration and content of the world to the image produced) is in most cases easier to

achieve than the inverse. In some sense, the forward model is something like simulation

in that it simulates the projection of light onto the visual array, the creation of an image

from the world. However, simulation using a model tends to be easier than estimation

using the same model, at least because estimation must involve efficient ways of picking

between many possible hypotheses2.

1And then there is the problem of finding the structure of objects in the world, not approached in this
thesis, though discussed briefly in this background chapter.

2Furthermore, because the most easily designed and understood models of the world are ones that
directly reflect its mechanics as humans can describe them, such models tend to be simulators.

257



258



APPENDIX B

OTHER FEATURES

In Chapter 3 Section 3.2, a discussion of edge and colour features is made. This section

discusses features not discussed there; while these features are not directly used by this

thesis, it is important to consider how they might be employed in conjunction with physics

simulator based knowledge as well as in conjunction with each other.

B.1 Feature points

Given that the discussion of the visual apparatus in Appendix A is based on the intuition

of the transformation points, it would be useful to identify known points in an image so

that they can be used to disambiguate the pose of a target object (or to characterise a

target object). The information in a single pixel is not enough to do this, but it turns

out that information in an image in the pixel neighbourhood of a 2D point can often

be sufficient to identify which of a family of candidate object points is projecting to

the region of the image point. Such points are called feature points, or sometimes interest

points (Harris & Stephens, 1988; Lepetit, Pilet, & Fua, 2004; Lowe, 2004; Özuysal, Fua, &

Vincent Lepetit, 2007; S. M. Smith & Brady, 1995)1. If sufficient uncorrupted information

exists in its neighbourhood, a feature point can often be located to sub-pixel accuracy.

Once identified, feature points can be used for all the major computer vision tasks

1Occasionally feature points are called corner points because they can be thought of as an elaboration
on edges (which are discussed in Section 3.2.1).
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such as estimating the identity and pose of an object, calculating the movement of a

camera, and calibrating the camera. If the identification of feature points is correct and

the identified image location of them close to correct, many methods exist for calculating

the desired parameters (Fischler & Bolles, 1981; Gordon & Lowe, 2004; Hartley, 1997;

Hartley & Zisserman, 2000; Pupilli & Calway, 2005; Vacchetti et al., 2004b). Feature

points are useful in that they can be very distinctive, and where they exist they can be

used to determine the pose of an object to a very fine degree. The main areas of research

for feature points is in making their detection and identification invariant to illumination,

rotation, scale, and so forth. This research can be divided up into the task of first detecting

good feature points and then the task of matching them well (which may involve some

pre-processing, machine learning, etc).

When it comes to tracking moving objects using feature points, they are useful because

they do not require local image search and so can deal with large object displacements.

However, the problem of blur means that during motion the interest points may not be

recognisable (without accounting for the blur).

B.2 Templates & appearance

As noted above in the section on feature points, the appearance of an image in the

neighbourhood of a feature point can help locate and identify a point on an object in the

image. This idea of image appearance can be generalised so that rather than being used

to locate and identify a point, the appearance of an object can be used to locate and

identify an object, or part of an object, or multiple objects (Irani & Anandan, 1999; Jurie

& Dhome, 2002; Masson et al., 2004).

Template matching is simply the matching of an image area between two images.

Obviously the image appearance of an object and of object parts changes markedly in

the presence of rotation, illumination, scale, shear, background, partial occlusion, and

so forth, which is typically overcome with corrections such as transformations on the

260



template, compressing the template into a classifier, re-updating the template dynamically

over time, breaking the template up into multiple templates, etc. When tracking objects

in full 3D, the visible object surfaces corresponding to templates tracked are often called

patches.

Once a template has been matched, it can be refined at the pixel level to estimate

pose, for instance, or the template can be used as a feature point might be for producing

point matches between images (Masson et al., 2004).

With feature points the process is typically one of first extracting and matching the

feature points and then using these matches to reconstruct object shape, pose or motion.

With templates and like methods, the problem is instead often posed as one of simultane-

ously optimising template match while reconstructing the object shape, pose or motion.

The distinction between the 2-step process or the simultaneous treatment is sometimes

called the distinction between indirect and direct methods. While there may be a contin-

uum of methods between these two extremes, in general, methods fall close to one or the

other category (Irani & Anandan, 1999; Torr & Zisserman, 1999).

Appearance-based vision is similar to template-based approaches in that image regions

are analysed based on their appearance. However, appearance-based vision is about, first,

whole object matching rather than image patch matching, and, second, finding good ways

of compiling exemplars of objects into visual routines that can detect, segment, and find

the pose of objects. Appearance-based vision is particularly often applied to the task of

recognising objects, segmenting them from an image, and tracking in the two dimensions

of the image (Jepson, Fleet, & El-Maraghi, 2001; Leibe, Leonardis, & Schiele, 2008) but

have been used in determining pose also (Mittrapiyanuruk, DeSouza, & Kak, 2004)1.

1Appearance-based vision often works hand-in-hand with machine learning techniques; it is a case of
learning the appearance of an object by clustering, building a classifier, etc., and applying that learnt
data structure.
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B.3 Optical flow

Optical flow is the movement of small elements in the visual field across the retina/image.

Since optical flow is directly related to motion, it is clearly a very important technique in

motion estimation problems.

There are numerous ways of attempting to calculate optical flow but the basic assump-

tion underlying all methods is that as time progresses elements move across the image

in a straight line (an assumption which generally holds for small movements). If this

assumption holds, the optical flow is constrained linearly by the image gradients as well

as image rate of change at each point.

So optical flow involves approximating the within-image image intensity gradient and

calculating the rate of change of image pixels over time. As such, optical flow is a feature

that applies over multiple frames. After the calculation of flow, an optimisation problem is

generally solved (typically with additional constraints to make the problem well-formed)

to find the movement of objects in the scene that best matches the optical flow (Aggarwal

& Nandhakumar, 1988).

Unlike many of the features introduced here (but similar to other direct methods

discussed above), optical flow does not fit easily into the two-part feature extraction then

solution procedure. Optimisation of the calculation of the optical flow is typically done at

the same time as calculation of object motion, since the kind of motion that is observed

or expected has a strong relationship on the kinds of calculation needed to extract the

flow, and the image gradient and pixel rate of change don’t by themselves determine the

flow (Aggarwal & Nandhakumar, 1988). This can have the additional benefit that optical

flow can work to aid in the directed extraction of other features such as edges, since it is

naturally early in the processing pipeline but can be used to predict higher level features

such as the location of object contours (Decarlo & Metaxas, 2000).

Optical flow has the advantage over feature-point approaches to motion estimation

in that the latter suffer badly from blur - though optical flow is not exempt from this
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problem either. Although one of the important features used in the estimation of motion,

this thesis does not make use of optical flow, so it will not be considered further here.

B.4 Region and shapes

Another set of features are derived from the basic idea that objects produce distinctive

regions in an image that can be identified and segmented from their background1. In

very simple backlit images, silhouettes are available, where simple thresholding may be

sufficient (Bhat et al., 2002), though real images are usually much more complex. In

such cases, the local image intensity or texture can be used as cues, and then with that

information, regions found where the intensities do not change profoundly, or where auto-

convolution or correlation produce a good match score (the “affinity”).

Techniques for building such regions generally start with such affinity values between

pixels and build regions from these affinities. In single images, region growing techniques

are the basic technique, similar to the algorithms used in image manipulation programs

that require seed positions. These have the advantage of being directly geared to con-

nected regions (Wren, Azarbayejani, et al., 1997). Global methods include methods that

look at the affinity matrix built from the affinities, and graph-cut techniques that consider

the affinities as a graph (Felzenszwalb & Huttenlocher, 2004; Weiss, 1999), and these ap-

proaches can be made to prefer connected regions too by appropriate design of the affinity

matrix/graph.

Finally, segmentation using these region techniques is a good way to initialise opti-

cal flow techniques, since they generally specify the regions within which single-object

constraints can be applied to the optical flow calculation. Segmentation using frame-

differencing (analysing the differences between frames in terms of intensity changes or

local changes, typically with a background model) is powerful when motion occurs, and

provides good cues as to the motion of the object (Baumberg & Hogg, 1994b; Jain, 1981).

1Note that the problem of segmentation of an object in an image (determination of which pixels belong
to the object) can make use of almost all the features discussed in this section, not just regions and shape.
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Segmenting of objects can also be done using colour models (Wren, Azarbayejani, et al.,

1997), an approach which is described in more detail in the Section 3.2.2. There is a large

overlap between region-based and colour based models. Features that use information

about both colour distribution as well as region (and possibly motion) are called “blob”

based methods (Bradski, 1998; Comaniciu et al., 2003; Magee, 2001; Rasmussen & Hager,

2001; Wren, Azarbayejani, et al., 1997).

B.5 Stereo

Stereo vision involves exploiting a two-camera setup with the cameras generally at fixed

poses with respect to each other. It has the advantage that the depth of cues is generally

easier to discriminate. Stereo is generally applicable alongside all of the features men-

tioned here; for the most part it involves integrating features coming from both cameras.

Finding interest points in the two views is the easiest method and allows their depth to

be calculated; optical flow can be matched between two views, again revealing depth in-

formation; lines can be matched, again revealing depth information; region matching can

give a depth information to varying quality and templates can, like optical flow, provide

dense matching information (meaning that every pixel in an image has the potential to

be matched to every pixel in the other).

Stereo somewhat simplifies the structure from motion problem in that depth is al-

ready calculated after the stereo processing stage (Aggarwal & Nandhakumar, 1988); its

ability to discriminate depth makes it highly useful on problems where scene structure

is not known in advance. However, when scene objects are known, monocular depth

discrimination is still very bad, so stereo information can help there as well.

Stereo algorithms are often subsumed under general multiple view algorithms and a

very general approach to multiple view geometry is given in (Hartley & Zisserman, 2000).

Such approaches as used in structure from motion, for example, are also applicable to

stereo, but stereo has several special characteristics such as the ability to specify the
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known stereo rig configuration very finely, and the ability to use good stereo algorithms

to pre-process visual information into true 3D (depth) images, to simplify subsequent

calculations. RGB-D cameras that use lighting structured in time or space can also provide

depth information in addition to luminance; they have the disadvantage of needing to send

a signal into the scene to probe it (even if the signal is generally invisible to humans),

but have the advantage of working even when stereo cues are poor or difficult to extract,

since they provide their own cues.
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APPENDIX C

STRUCTURE AND MOTION

Although the problem addressed in this thesis is motion estimation of known objects,

many of the techniques of photogrammetry and computer vision were developed with

estimation of scene characteristics as well as camera or object movement (Hu & Ahuja,

1992a; Hu & Ahuja, 1992b; Iu & Wohn, 1990; Weng et al., 1987; Young, Chellappa, &

Wu, 1991). In photogrammetry, estimation of the location of points is often tackled at

the same time as camera transformations between images. More generally, structure and

motion can involve obtaining object points or surfaces while at the same time obtaining

camera and object motion.

Since a single view often does not contain enough information to determine both pose

and scene characteristics, multiple views of a scene or object are often relied upon to dis-

ambiguate this kind of information; hence structure and motion. So, if five points are seen

by two calibrated projective cameras then the resulting co-linearity equations are gener-

ally enough to estimate their locations with respect to both cameras (and hence also the

camera transformation between the two images), again assuming no limiting conditions

(Aggarwal & Nandhakumar, 1988; Hartley & Zisserman, 2000; Karara, 1989). If eight

points are seen by two un-calibrated projective camera views then the resulting system

of equations can be solved for most calibration parameters, pose and object point loca-

tions (Hartley, 1997; Hartley & Zisserman, 2000). These calculations proceed by finding

the Essential Matrix or Fundamental Matrix, the relation defined such that ztMzs = 0,
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where zs and zt are image locations at different time points and M the Fundamental Ma-

trix OR zs and zt image locations corrected according to the known camera calibration

information and M the Essential Matrix. The literature on this subject is large, and as

well as point-based methods, optical flow based methods are also a popular approach to

solving the structure from motion problem (Aggarwal & Nandhakumar, 1988).

If the size of no single object in the scene is known, then there will always remain an

unknown scale parameter, since large objects far away should generally produce the same

image as small objects up close. This problem can be overcome with more information

- from a computer vision perspective, using distance haze, for example, and from a pho-

togrammetric perspective, any known object in the scene can be used to disambiguate all

of the others as well as known relative camera locations.

A related problem is the problem of Simultaneous Localisation and Mapping, which

is not always only a vision problem (using any feature such as laser range-finding), but

involves creating and maintaining a map (equivalent to the structure described here) and

updating a pose recursively (Davison, 2003; Davison et al., 2007; Pupilli & Calway, 2005).

If the task is to obtain only motion (defined as a sequence of camera or object poses)

given that the structure of the scene is known, then multiple frames provide ways of

evaluating hypothesis poses, and more ways of generating hypotheses. Motion estimation,

particularly long sequence motion estimation, on the other hand, can make use of the

expected kind of movement of objects to constrain or bias estimates of object motion,

beyond the rigid body constraints. This is the approach taken in this thesis, and existing

such approaches are discussed in Section 3.5.
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APPENDIX D

LEVENBERG-MARQUADT FOR TRAJECTORIES

In Chapter 5, a non-linear optimisation algorithm is used to find solutions to the trajec-

tory optimisation problem, with the cost function a least-squares error over observations,

or over observations and dynamics costs. The algorithm used in that optimisation is

Levenberg-Marquadt. The algorithm is given here in the notation used in that chapter.

The problem here is posed as optimisation with respect to the initial parameters xt0 , but

is applicable with small changes to optimisation across a parameter space consisting of

the whole trajectory and a dynamics too.

The Levenberg-Marquadt algorithm attempts to minimise the sum of squared errors

in the observations by consecutively solving sets of linear equations based on a simplified

approximation of the shape of the local cost surface. The equations are solved for a step

through the parameter space. Because the algorithm uses the local shape of the cost

surface it tends to converge to local optima.

So, at each iteration of the algorithm a parameter update δxj
t0 is sought that, when

added to the the previous parameter estimate xj−1
t0 , such that as j →∞ a local optimum

is reached. The Levenberg-Marquadt algorithm, like the Gauss-Newton algorithm, uses

the structure of the cost function as a sum of squares to approximate its curvature without

needing to take the second derivative.

The usual assumption is made, that the local cost function can be approximated by a
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polynomial:

Cost(xj−1
t0 + δxj

t0) (D.1)

= Cost(xj−1
t0 ) +


δxj−1

t0

T d

dxt0

Cost(xj−1
t0 ) +

1

2


δxj−1

t0

T d2

dx2
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Cost(xj−1
t0 )


δxj−1

t0


An optimum will be found when the cost function gradient is zero, and so if the local

approximation is assumed correct, the first derivative of the Taylor expansion of the cost

in Equation D.1 can be set to zero and the following equation obtained which can be

solved to step directly to the solution δxj
t0 in the local Taylor approximation (this is the

Newton step):


δxj

t0

T d2

dx2
t0

Cost(xj−1
t0 ) = − d

dxt0

Cost(xj−1
t0 ) (D.2)

Since the present problem is a least-squares problem, it is possible to break the cost

function into a sum of errors. For brevity, the dynamics function for each time point has

been written as f i
dyn so that f i

dyn(xti) = fdyn(xt0 ,θ,ut0:j ,∆t0:j). The gradient of the cost

function can be calculated in terms of the Jacobian of the observations with respect to

the parameter vector1:
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The second derivative of the cost function with respect to the parameter vectors is

approximated by ignoring any terms that include the second derivatives of the observations

with respect to the parameter vectors. In the following approximation, these terms are

packed away into Hterms:
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(D.4)

1When the cost function includes sum of squares dynamics terms, a similar decomposition applies.
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The idea here is that if the function fobs(f
i
dyn()) is linear, this approximation is ex-

act. Therefore, for smooth cost functions there is always a neighbourhood in which the

approximation works to a given accuracy. Therefore, there is a neighbourhood in which

an algorithm based on this assumption should converge quickly.

This approximation can be applied to the Newton step in Equation D.2 to get the

following equation for a step to the solution - this is called a Gauss Newton step, and the

corresponding approximation the Gauss-Newton approximation:


δxj
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T  d

dxt0
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i
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Since the consequence of the linear approximation of the observation function breaking

down can be non-convergent oscillations, damping methods are useful. The addition that

the Levenberg-Marquadt approach makes to this formulation is by damping the step size

by altering the approximation of the second derivative term by adding in a damping factor

that inflates the second derivative, thereby increasing the curvature of the cost function

and bringing the solution closer to the current guess:

d2

dx2
t0

Cost(xj−1
t0 ) (D.6)

≈


d

dxt0

fobs(f
i
dyn(x

j−1
t0 ))

T

Sobs


d

dxt0

fobs(f
i
dyn(x

j−1
t0 ))


(D.7)
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The damping parameter λj is decreased until the step obtains an improvement and

increased where possible to obtain faster convergence.

For more details of the Newton, Gauss-Newton and Levenberg-Marquadt approaches

applied in this section, see Fletcher (2000), Nocedal and S. J. Wright (1999), Triggs et al.

(2000).
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APPENDIX E

A SIMPLE WELL-MOTIVATED TECHNIQUE FOR
MEASURING POSE ERROR

As noted in the body of this thesis, it is not always clear how to reconcile error in rotational

and translational error, though an error measure is necessary to calculate a residual in

the fit of a pose or a trajectory. This appendix discusses a method of reconciling error in

pose on the basis of the assumption that pose error is simply the sum of the translational

error of each point in an object.

Since there are an infinite number of points on an object, obtaining this error is a

case of integrating the error across the points in the object, something that can be done

analytically. The easiest way of doing this integration is by integrating according to mass

which produces a result containing known terms - mass and inertial matrix.

If the object coordinate centre is chosen to coincide with the rotation centre which

is assumed to be the centre of mass of the object, then rotation and mass error become

additive. Then, the integral produces a simple equation for the error in terms of rotation

and translational error, as well as the object volume and the tensor of rotational inertia

representing the object distribution in space. This approach is also a good approximation

in the absence of knowledge of the mass distribution of the object; indeed, assuming unit

density it is possible to use the same equations by integrating across volume rather than

mass.

Since the error under consideration is sum of squared error, then in the current ap-
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proach the error in each object point Y is the integral of squared error across the body.

Let Y tra be the point transformed according to the error translation T and rotation Rθ,Ω

where θ is the rotation angle and Ω the axis of rotation. Then the error EY in the point

Y is:

EY = (Y tra − Y )T (Y tra − Y )

= (Rθ,Ω(Y ) + T − Y )T (Rθ,Ω(Y ) + T − Y ) (E.1)

Let V be the set of points in the mass (or volume) of the body. Then the quantity

of interest is the average error ET ,Rθ,Ω
across the whole body, which is the integral of the

error over all of the points in the body, weighted by the object density ρ at that point:

ET ,Rθ,Ω
=

 V
[ρ(Y )EY ] dV (E.2)

=

 V 
ρ(Y )(Rθ,Ω(Y ) + T − Y )T (Rθ,Ω(Y ) + T − Y )


dV

=

 V
[ρ(Y )Rθ,Ω(Y )TRθ,Ω(Y ) + 2ρ(Y )Rθ,Ω(Y )TT

− 2ρ(Y )Rθ,Ω(Y )TY − 2ρ(Y )T TY + ρ(Y )T TT + ρ(Y )Y TY ]dV

The quantity Y TY is the norm of a point, which does not change under rotation, so:

Rθ,Ω(Y )TRθ,Ω(Y ) = Y TY (E.3)

Using the assumption that the object has rotation centre centre that coincides with

the coordinate system origin, one of the terms can be zeroed (this equation is recognisable

as the centre of mass):

 V 
ρ(Y )T TY


dV = T T

 V
[ρ(Y )Y ] dV (E.4)

= 0 (E.5)
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Recognising that the rotation is a linear transform of the point it operates on, that is,

it can be expressed as a matrix:

 V 
ρ(Y )Rθ,Ω(Y )TT


dV =

 V 
ρ(Y ) (Rθ,ΩY )T T


dV (E.6)

= T TRT
θ,Ω

 V
[ρ(Y )Y ] dV (E.7)

= 0 (E.8)

Eliminating these terms from the error integral, the following terms remain:

ET ,Rθ,Ω
=

 V
[−2ρ(Y )Rθ,Ω(Y )TY + ρ(Y )T TT + ρ(Y )Y TY ]dV

=

 V
[ρ(Y )T TT ]dV + 2

 V
[ρ(Y )Y TY − ρ(Y )Rθ,Ω(Y )TY ]dV (E.9)

These terms have now been separated into one term based purely on rotational error

and a term based purely on translational error. Indeed, the first term is clearly the mass

(
 V

[ρ(Y )]dV) multiplied by the squared norm of the translational error T TT .

The second term can be analysed so that it is a simple expression of the rotational

inertia according to the frame induced by the rotation axis Ω multiplied by a trignometric

function of the rotation angle θ. First, since the component of vector to each point parallel

to the rotation axis Ω does not contribute to the error, this component can be eliminated.

Let Y ⊥
Ω = Y ·Ω and Y

∥
Ω = Y − Y ⊥

Ω so that Y = Y ⊥
Ω + Y

∥
Ω and Y ⊥

Ω · Y
∥
Ω = 0.

Y TY =
Y ⊥

Ω

2 + Y ∥
Ω

2 (E.10)
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Ω

2 − cos θ
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So the second term in Equation E.9 becomes:

2

 V
[ρ(Y )Y TY − ρ(Y )Rθ,Ω(Y )TY ]dV (E.12)

= 2

 V 
ρ(Y )

Y ⊥
Ω

2 − cos θ
Y ⊥

Ω

2 dV (E.13)

= 2(1− cos(θ))

 V 
ρ(Y )

Y ⊥
Ω

2 dV (E.14)

= 2(1− cos(θ))IΩ (E.15)

The integral here is identifiable as the rotational inertia IΩ of the object around the

axis θ. This inertial value is derivable from the inertial matrix I according to the identity

IΩ = ΩTIΩ. Combining this information, the integrated error measure is:

ET ,Rθ,Ω
= M |T |2 + 2(1− cos(θ))ΩTIΩ (E.16)

This error is very easy to calculate, is simple, general, and correct given the assumption

that it is the sum of point errors that is desired.
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APPENDIX F

TEXTURE RE-PROJECTION OBSERVATION
MODEL

In chapter 6, a method is described for incorporating a simulation-based dynamics in a

particle filter. In the interests of space, in that chapter, a discussion of how the particle

weights are obtained from comparing pose hypotheses and images is only summarised.

Here, it is given in more detail.

Recall that the aim is to take a hypothesis pose xti and the current image Ixti
and

calculate a match score that can be used as a likelihood value p(xti|xti).

Texture edge projection. The observation likelihood calculation routine works, at

base, by projecting the texture edges of the textured object model into the camera image

plane given the hypothesis pose and comparing the projected texture edges with those

extracted from the image. The more edge pixels that match, the higher the likelihood.

The top right of Figure 6.1 shows the result of running an edge detector on a candidate

image, and the bottom right of that figure shows the result of re-projecting the texture of a

candidate pose of that object into the image plane. These two textures can be compared.

There are some complexities of this procedure, introduced by Mörwald, Zillich, et al.

(2009), that need to be discussed.

Firstly, the projection of edges is done using dedicated graphics hardware via OpenGL

(3D Graphics Library) and the nVidia implementation of GLSL (the GL Shading Lan-

guage) (Kessenich, Baldwin, & Rost, 2006; nVidia, 2006). This speeds up the calculation
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of the likelihood of any given hypothesis.

For each candidate pose, what is projected are pre-computed edge maps of the object

texture model rather than the texture itself. This is because the computational expense

of calculating an edge image for each candidate hypothesis is deemed prohibitive. In other

words, the object is decorated with a texture that consists of an edge map rather than

the original texture, and it is this “edge texture” that is projected.

This method of projection leads to another problem which is that the projection of

edge maps leads to thinning of projected edges. The solution is to build the texture edge

map by projecting a key pose that is an average of the best hypothesis poses, calculating

the edges, and re-projecting the resultant map onto the object surface. That way, edge

thinning is minimised when hypothesis poses are projected onto the image, since all

relevant poses are assumed to be close to this average pose.

This leads to a further problem, which is that the resulting formulation has a natural

proclivity to unimodality of the pose distribution. Since hypothesis poses away from the

key averaged pose will suffer from edge thinning, the tracker has a tendency to favour

poses close to the average.

This might be partially accounted for by making the particle filter adaptive (altering

parameters of the tracker, such as the number of particles, online), but such an approach

would no longer benefit from the ability to track multiple hypotheses, relying rather on

re-finding alternative hypotheses after track is lost1. The fact that the tracker is a particle

filter with extra recursions at each time-step also means that it has the ability to do extra

search to regain track, but again this may not be as necessary with true multi-modality.

The main problem with maintaining multi-modality is that its basic form presuppose a

lot more particles. The computational expense could again be dealt with using a set of

special techniques. Edge image matching. The way that edge likelihood when a fully

textured object is known is as follows. First, a a way of comparing two edge images to

1The filter described here does make noise rates dependent on particle weight, but with little effect
on the experiments here.
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||Ie
1(v1, v2)|| = 1.0

||I e
2 (v

1 , v
2 )|| =

0.5

φ(v1, v2) = 1.84

Figure F.1: Differencing two gradient vectors, from image I1 and image I2 at pixel u to
obtain a match score φ(I1, I2)(v1, v2) = ||Ie

1(v1, v2, ·)− Ie
2(v1, v2, ·)||. The resulting math

score is a scalar.

get a match image is defined:

Φ(Ie1 , I
e
2) =Ie3 s.t. : (F.1)

Ie3(v1, v2) = ||Ie
1(v1, v2, ·)− Ie

2(v1, v2, ·)|| (F.2)

Here, two (oriented) edge images Ie
1 and Ie

2 are transformed into a match image

Φ(Ie1 , I
e
2) such that each pixel of that match image (where pixels have two pixel indexes

v1 and v2) is the norm of the difference of the normalised gradient vectors at that pixel1.

The notation I(a, b, ·) refers to components from all channels (·) of the pixel at pixel

index (a, b) of the image (thus I(a, b, ·) is a vector). These channels are colour channels in

the original image I and the directional gradient magnitudes in the edge image Ie. The

match image, having only one channel, is indexed by only two indices. See Figure F.1 for

a graphical illustration of this calculation.

This match image can then be used to compare the edge image acquired from the

camera and an edge image based on a hypothesised pose, in order to obtain a match

score. First, however, the process for obtaining a candidate edge image is illustrated.

Edge texture re-projection. Before each particle is compared to the image, the edge

1This is equivalent to the length of the chord on the unit circle defining gradient direction - note that
gradient magnitude is not generally taken into account, except that the gradient vector length is either
zero or one
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map of the object must be calculated. Recalculating the edge map for each hypothesised

pose adds too much computational expense for a real-time tracker, so what is projected

to the image is an edge map. However, a single edge map does not suffice for all potential

poses as the edges are distorted on projection into the image plane; therefore it is necessary

to use an edge map that has been re-projected onto the object at a pose close to the one

being considered. This process is summarised in the upper part of the process flowchart

in Figure F.2.

First, xµ
ti , a mean pose of the best hypothesis particles is calculated1. This is used,

along with the camera calibration parameters, to project the object colour texture S into

the image plane.

In this work, the function I(x, S) takes a pose and a texture and creates an image

of its projection to the image plane (taking into account the pre-calibrated parameters

of the camera). This process is done in specialised graphics hardware and involves using

the pose to calculate coordinates in the raster texture image for each projected pixel and

interpolating the texture local to those coordinates. The process of projection of a texture

is not addressed here, and is enabled by the use of the OpenGL graphics library (Segal &

Akeley, 2006; Shreiner, Woo, Neider, & Tom Davis, 2005). The black-box calculation of

the projected texture is written as:

Iµti
= I(xµ

ti , S) (F.3)

Now will be described how the re-projected texture is obtained from the mean particle

xµ
ti .

Edge detection. Once the mean pose xµ
ti has been used to project the texture S into

the image plane, obtaining a projected image Iµti
, a Sobel edge detector is then passed

over this image (having first smoothed it with a Gaussian). The output of the Sobel

edge detector is thresholded and normalised so that all edges over a certain threshold are

1“Best” particles is the set of particles with the highest likelihood calculated at the previous time-step
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given the same magnitude (but the direction of the gradient vector varies around the unit

circle). The result of this also undergoes a small number nγ of recursive edge dilation

operations Spr()1, with the magnitude of dilated edge pixels being a fraction (γ) of the

magnitude of the gradient edges of neighbouring pixels. Multiple colour channels are

taken care of by calculating the gradient for each channel and using the gradient with the

highest magnitude.

To summarise this, the production of the edge image Ie from the original image I is

written:

Ieµti
=E(Iµti

) (F.4)

Where:

E(I) =Ie s.t. ∀v1, v2 : (F.5)

lmax = argmax
l

∂I(v1, v2, l)

∂[v1, v2]

Ig(v1, v2, ·) =
∂I(v1, v2, lmax)

∂[v1, v2]
,

Iγ(v1, v2, ·) =

 0 if ||Ig(v1, v2, ·)|| < gthresh

Ig(v1,v2,·)
||Ig([v1,v2,·])|| otherwise

Ie = Spr(Iγ, nγ, γ)

Here, Ig is the image of the result of the Sobel calculation of the most edge-responsive

colour channel lmax. This is subsequently thresholded to produce Iγ, which undergoes

edge dilation to produce Ie.

The original image is a multi-channel colour image and the resulting edge image is

also multi-channel (channel indexed by l), each channel corresponding to one component

of the gradient 2-vector at each pixel. The edge response is chosen as the maximum edge

1The dilation reduces the peakiness of the likelihood function
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response of each of the colour channels, and thresholded by the number gthresh
1.

The dilation algorithm is illustrated in Figure F.3. It is not a typical dilation algorithm

in that the dilation is done in image gradient space and there is a discount factor on the

gradient magnitude. However, the basic algorithm of repeated neighbourhood search is

typical. It is hypothesised that the use of this dilation creates a better-behaved image

likelihood function, by broadening the peaks in the likelihood function.

This edge image is then re-projected back onto the object surface, creating an edge

texture2:

Se
µti

= I−1(xµ
ti , I

e
µti

) (F.6)

This edge texture is taken, for the remainder of the calculations in this recursion of the

particle filter, to be the edge texture for all particles in the particle set. Thus, in order

to calculate the edge map of a projected particle the mean edge image is again projected

from the particle’s pose:

Iexti [j]
= I(xti [j], S

e
µti

) (F.7)

For each time step, a parallel process of edge detection is carried out for the observed

image, Izti , where E() is the function previously defined above:

Iezti = E(Izti ) (F.8)

For each particle, the projected edge image of the particle can be compared to the

edge image of the observed camera frame to obtain a match image:

Φti [j] = Φ(Iexti [j]
, Ieti) (F.9)

See Figure F.2 for a diagram of how the calculation of Φti [j] is carried out.

This match image is used as the basis of the particle weight calculation, the approxi-

1Colour intensity values are taken to be normalised to between 0 and 1
2In practice this new texture is maintained in the 2D image coordinate frame and indexed per pixel

as needed according to the saved projection I(xµ
ti , ·), so that I−1 need not be calculated explicitly.
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xµ
ti S

Model Edge Re-projection Onto Model

I(xµ
ti , S)

Iµti

E(Iµti
)

Ieµti

I−1(xµ
ti , I

e
µti

)

Se
µti

Match Image Calculation For Pose of Hypothesis Particle j

xti [j]

I(xti [j], S
e
µti

)

Iexti [j]

Izti

E(Izti )

Iezti

Φ(Iexti [j]
, Ieti)

Φti [j]

Figure F.2: Creation of the match image Φti [j] for the pose of a given particle j at time
ti, by, first, re-projecting the texture S based on a mean particle xµ

ti (which is done once
per recursion of the particle filter), and then the comparing the projected texture Iexti [j]

from particle j pose xti [j] with the edge image Iezti of observation zti . This is then used
directly to calculate the likelihood of the particle. Note that the images I∗ are multi-
channel images indexed by pixel address, containing different colour channels or different
channels corresponding to the components of the gradient vector. I(x, S∗), I

−1(x, I∗) are
the projection and re-projection between textures and images via pose. E() is the edge
detection / image gradient calculation function.
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Figure F.3: A graphical representation of the slightly generalised edge dilation algorithm
used in this work and that of Mörwald, Zillich, et al. (2009). The top grid is a represen-
tation of a simple binary gradient image, with gradient magnitude thresholded to 0 or
1. The bottom two grids represent successive runs of the edge dilation algorithm. The
discount factor in this illustration is γ = 0.75, and the 8-neighbourhood of each pixel is
searched for each dilation. Note that much of the time the choice of exactly which ori-
entation is used is arbitrary when many neighbourhood pixels have the same magnitude.
In practice this presently depends on pixel search order.
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mation of the likelihood of the particle given the observed image. The basic idea is that

the number of pixels where the match value is below a certain threshold are counted and

that count is used as the weight for the particle.

Calculating particle weights. The weight calculation is:

w−
ti
[j] =

(nti [j] + nmax
ti

)

2.nmax
ti

mti [j]

nti [j]
(F.10)

wti [j] =
1

W
(w−

ti
[j])Cconv (F.11)

W =

j

w−
ti
[j] (F.12)

The calculation expresses the number of matches of the particle mti [j] (as per the

current threshold mthresh) as a proportion of the number of potential matches of the

particle nti [j]. This is adjusted with respect to the highest number of potential matches

across all particles nmax
ti

so that poses with faces parallel to the imaging plane are not

overly preferred. For more details see Mörwald, Zillich, et al. (2009). The weights are

made more peaky by using a predetermined “convergence” parameter, Cconv. W is chosen

so that


j wti [j] = 1.

Writing the calculation of pixel match counts, potential match counts and maximum

potential match counts across across all particles:

mti [j] = |{[v1, v2] s.t. Φti [j](v1, v2) < mthresh}| (F.13)

nti [j] =
[v1, v2] s.t. ||Ie

xti [j]
(v1, v2)|| > 0

 (F.14)

nmax
ti

= max
j

nti [j] (F.15)

On the basis of these weights, the observation likelihood, with observation zti fixed,

for each particle j is approximated as:

pobs(zti|xti [j]) ≈ wti [j] (F.16)
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APPENDIX G

EFFECT OF MULTIPLE RECURSIONS AT EACH
TIME-STEP ON A SIMPLIFIED ANNEALED
PARTICLE FILTER WITH PHYSICS-BASED

DYNAMICS

In Chapter 6, a simplified annealed particle filter is described that is applicable to dy-

namics models that introduce only process noise during state-evolution. This algorithm

was described by Mörwald, Zillich, et al. (2009) and is an alteration to the particle filter

to re-run the particle filter multiple times on an image at one time-step to encourage

convergence.

Chapter 7 describe some experiments with that particle filter, focusing on the integra-

tion of new kinds of dynamics models based on physical simulation with different ways of

adding noise. See that chapter for background on the terminology used in this appendix.

The present appendix extends those results by presenting video slices illustrating the

costs and benefits that the extra recursions present, particularly in the context of strong

dynamics models. These slices are shown in Figures G.1 to G.8.

Multiple recursions at a time-step generally lead to improved track for visible objects

due to the increased amount of searching, but are more able to be distracted by false

likelihood optima in the presence of distractors. Further, they can interfere with the

beneficial effects of a good dynamics model.

Including multiple recursions of the particle filter at each time-step can enable a more
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extensive search of the likelihood space, where possible. This argument is relevant to

the core thesis in that there are motivations for comparing the novel conditions to the 2-

recursion non-simulation condition, because if multiple recursions are truly better on the

cases considered here then it constitutes the best alternative algorithm for comparison.

On the other hand, since the best novel condition (simulation with force noise) is only

feasible with 1 recursion, it also makes sense to only compare the 1 recursion conditions.

Moreover, this appendix can constitute an experimental analysis of a heuristic tech-

nique that was only recently introduced. It has been predicted that with narrow-peaked

likelihood distributions, the extra search should be advantageous, as with the annealed

particle filter (Deutscher et al., 2000), but that multiple recursions at one time-step should

lead to problems when the likelihood contains only distracting information (such as during

occlusion).

G.1 Results

Video 1 (Figure G.1), does not show any significant difference between any of the condi-

tions.

Frame 222 (scenario 1.1): No simulation,
rank retention, 1 recursion (left) and 2 re-
cursions (right) - O/R-1 and O/R-2

Figure G.1: Scenario 1.1 video slices. Number of recursions at each time-step makes
little difference on easy tasks.

Average performance on video 2 is improved by increasing the number of recursions at

each time-step, since the biggest problem in this video is tracking an object as it becomes

end-on to the camera (Figure G.2), which makes for a smaller target likelihood valley

in a scenario where it is postulated that the observation model makes likelihood optima
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already somewhat difficult to find, and may interact with the trade-off between likelihood

based on visible edges as a proportion of total edges in the scene and as a proportion of

total expected visible edges. Conversely, multiple recursions contributes to the finding of

the narrow likelihood valleys.

Also note that on video 2, performance is improved if a retention scheme is not used;

most likely because retention focuses the search around previously found observation

likelihood optima.

Frame 181 (scenario 2.2): Without (left)
and with (right) simulation, dispersion noise,
with rank-retention, one recursion of the par-
ticle filter between each frame - O/R-1 (left)
and D/R-1 (right)

Frame 181 (scenario 2.2): Without (left) and
with (right) simulation, dispersion noise, no
retention, one recursion - O-1 and D-1

Frame 181 (scenario 2.2): Without (left)
and with (right) simulation, dispersion noise,
with rank-retention, two recursions of the
particle filter between each frame - O/R-2
(left) and D/R-2 (right)

Figure G.2: Scenario 2.2 video slices. Here the positive effect of using multiple recur-
sions at each time-step can be seen, as well as the effect of the retention scheme.

Average performance on the tipping video 3 (example images in Figure G.3 and G.4)

is also increased. Since this involves fast object motion, more search is more likely to find

the object that has moved away from the primary search window. If the object is not

found soon after it tips, the tracker can become trapped in a different local optima.

As can be seen in videos 4 and 5, during occlusion (example images in Figure G.5

and G.6) multiple recursions can take the object lock further away from the target by
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Frame 150 (scenario 3.2): Simulation with disper-
sion noise, rank retention and only one recursion
of the particle filter - D/R-1

Frame 150 (scenario 3.2): Simulation with dis-
persion noise, rank retention and two recursions
of the particle filter - D/R-2

Figure G.3: Scenario 3.2 video slices. Here can be seen the positive effect of using
multiple recursions at each time-step to increase search during fast object movement.

Frame 308 (scenario 3.3): Simulation with
dispersion noise, rank retention and 1 recur-
sion - D/R-1

Frame 308 (scenario 3.3): Simulation with
dispersion noise, rank retention and 2 recur-
sions - D/R-2

Figure G.4: Scenario 3.3 video slices. Recovery from track is improved by increasing
the number of recursions at each time-step. This effect is robust across simulation and
non-simulation dispersion noise conditions.
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giving it more opportunities to lock onto distractors.

Frame 155 (scenario 4.2): No simulation with
dispersion noise, rank retention and 1 recur-
sion (left) and 2 recursions (right) - O/R-1
and O/R-2

Frame 155 (scenario 4.2): Simulation with
dispersion noise, rank retention and 1 recur-
sion (left) and 2 recursions (right) - D/R-1
and D/R-2 and

Figure G.5: Scenario 4.2 video slices. The tendency of multiple recursions to be
captured by distractors is illustrated, as well as the moderating effect of a simulation
model when added to dispersion noise.

However, as borne out in the remainder of video 5 (example images in Figure G.7),

multiple recursions at each time-step can aid in recovering track due to the improved

search for newly revealed edges. Additionally, there is a negative interaction in track

recovery between the use of multiple recursions and the simulation with dispersion noise

condition - possibly because the vertical movement in hypothesised position necessary to

return track to the target object is more likely to be associated with a rotation away from

the true object pose when simulation is involved.

There is no clear effect of multiple recursions in video 6 (example images in Figure G.8).

Though, as can be seen in the section on the introduction of finger location in Section 6.5.5,

in Figure 7.31 there is an interaction between multiple recursions and the modelling of

the finger, with the multiple recursions causing distractors to have a larger effect, while

existence of the finger pushes the already incorrect pose further from the correct one.
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Frame 190 (scenario 5.2): No simulation with
dispersion noise, rank retention and 1 recur-
sion (left) and 2 recursions (right) - O/R-1
and O/R-2

Frame 190 (scenario 5.2): Simulation with
dispersion noise, rank retention and 1 recur-
sion (left) and 2 recursions (right) - D/R-1
and D/R-2

Figure G.6: Scenario 5.2 video slices. The tendency of multiple recursions to be
captured by distractors is illustrated, as well as the moderating effect of a simulation
model when added to dispersion noise.
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Frame 239 (scenario 5.3): No simulation with
dispersion noise, rank retention and 1 recur-
sion (left) and 2 recursions (right) - O/R-1
and O/R-2

Frame 239 (scenario 5.3): Simulation with
dispersion noise, rank retention and 1 recur-
sion (left) and 2 recursions (right) - D/R-1
and D/R-2

Frame 278 (scenario 5.4): No simulation with
dispersion noise, rank retention and 1 recur-
sion (left) and 2 recursions (right) - O/R-1
and O/R-2

Frame 278 (scenario 5.4): Simulation with
dispersion noise, rank retention and 1 recur-
sion (left) and 2 recursions (right) - D/R-1
and D/R-2

Frame 321 (scenario 5.5): No simulation with
dispersion noise, rank retention and 1 recur-
sion (left) and 2 recursions (right) - O/R-1
and O/R-2

Frame 321 (scenario 5.5): Simulation with
dispersion noise, rank retention and 1 recur-
sion (left) and 2 recursions (right) - D/R-1
and D/R-2

Figure G.7: Scenario 5.3, 5.4 and 5.5 video slices. Multiple recursions at each
time-step can increase the probability of a successful recovery of track.
.

293



Frame 237 (scenario 6.2): No simulation with
dispersion noise, rank retention and 1 recur-
sion (left) and 2 recursions (right) - O/R-1
and O/R-2

Frame 264 (scenario 6.3): No simulation with
dispersion noise, rank retention and 1 recur-
sion (left) and 2 recursions (right) - O/R-1
and O/R-2

Figure G.8: Scenario 6.2 and 6.3 video slices. There is no clear effect of multiple
recursions at each time-step in this difficult case, though there are some interactions - see
for example Figure 7.31.
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For numerical results, see the box-whisker charts in Figures 7.8 and 7.9.

G.2 Discussion

The effect of the use of particle retention is equivocal in the results presented here, inter-

acting in complex ways with the other factors explored.

For the basic tracker (with the original pose dispersion dynamics model), multiple

recursions at each time-step leads to an improvement in those situations where there is no

occlusion. This is attributable to the extra search performed by generating more particles,

so that a high-likelihood area is more likely to be found. On the other hand, this search

leads to a deterioration of performance under occlusion, since high-likelihood areas are

likely to be distractors where there is occlusion. To clarify, since the actual object is not

visible under occlusion, the highest matching pose in the image is unlikely to be from the

object or in the same image location or pose as the object. On the other hand, this extra

search does assist in re-finding track after occlusion.

In general, the use of multiple recursions at each time-step has not been as well

motivated by this study as has the use of a simulator based dynamics model. Previous

studies have shown that similar methods can bear fruit, however (Deutscher et al., 2000;

Pupilli & Calway, 2005). The challenge is to obtain those benefits while at the same time

retaining the benefits obtained by using force noise with simulation.

295



296



APPENDIX

BIBLIOGRAPHY

Aggarwal, J., & Nandhakumar, N. (1988). On the computation of motion from sequences

of images - a review. Proceedings of the IEEE, 76(8), 917–935. doi:10.1109/5.5965

Alspach, D. L., & Sorenson, H. W. (1972). Nonlinear Bayesian estimation using Gaussian

sum approximations. IEEE Transactions on Automatic Control, 17(4), 439–448.

Alur, R., Henzinger, T. A., Lafferriere, G., & Pappas, G. J. (2000). Discrete abstractions

of hybrid systems. Proceedings of the IEEE, 88(7), 971–984.
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