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Abstract

Helical devices are employed in the area of microwave technology. Applications such as filters

and travelling-wave tubes are some of these in which helical devices are used. Ferrite loaded helical

devices have been of interest to scientists and engineers throughout the last half century.

The structure that is considered in this thesis is of a helix surrounded by a ferrite tube, both

of which are enclosed in a cylindrical waveguide. Maxwell’s equations for electromagnetism are

employed in order to derive the expressions for the electric and magnetic fields. The parameters of

the structure are varied in order to observe how certain factors will affect the dispersiveness, loss and

phase shift of the structure. The investigation considers the effect of varying the applied magnetic

field. The investigation also incorporates an air gap between the ferrite and helix and between the

ferrite and metal waveguide. For the first time, the affects of these air gaps are analysed.
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Chapter 1

Introduction

1.1 Chapter Overview

This investigation deals with the modelling of ferrite loaded helical devices. This chapter provides

an introduction to ferrites. It looks at their magnetic properties and their applications in microwave

devices. Concepts of magnetisaion that are used in explaining the ferrite behavior are also introduced

and explained. The previous work that has been done in closely related areas of study is also analysed.

Helical structures have been modelled differently by various authors, each model having different

assumptions. These procedures and assumptions are studied and the validity of these are examined.

The chapter concludes with a discussion concerning what the thesis intends to investigate and how

the previous work will be extended.

1.2 Introduction to Magnetism

A magnetic field is a force field that is produced by moving electric charges and by time varying

electric fields. It is represented by two vector fields: the B-field and the H-field. The B-field will be

referred to as the magnetic flux density and the H-field by the magnetic field intensity. Maxwell’s
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equations describe the relationship between the electric and magnetic fields together with the charges

and currents that create them.

A magnetic field can be visualised by the use of field lines. This method can be used to show

that the magnetic B-field lines neither start nor end. Therefore, a B-field entering a region must

leave it - it can not have an end point. This leads to the conclusion that magnetic poles always comes

in N and S pairs, and cutting a magnet in half will produce two separate magnets each having N and

S poles. Mathematically, this can be expressed as,

∮

S

B · dA = 0. (1.1)

Applying the divergence theorem to this relation gives rise to one of Maxwell’s equation,

∇ ·B = 0. (1.2)

This property of the B-field gives rise to it being a solenoidal vector field1.

In a vacuum, the B-field and H-field are related to each other by the relation

B = µ0H, (1.3)

where µ0 is the permeability of free space and is given by 4π × 10−7 H/m. A genealised expression

of (1.3) is given by,

B = µrµ0H, (1.4)

where µr is denoted as the relative permeability of a material. Inside a material, B and H are related

by,

B = µ0 (M + H) , (1.5)

where M is the magnerisation of the material.

When a material is subjected to an applied B-field, it produces its own magnetisation (M-

field), and thus its own B-field. This only exists in the presence of an applied magnetic field and

1A solenoidal vector field is one which has a divergence of 0.
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is very weak. Depending on a material’s magnetic behaviour, materials can be classified into the

following categories: Diamagnetic materials, Paramagnetic materials and Ferromagnetic materials.

A diamagnetic material produces a magnetisation that is in the opposite direction to the applied

magnetic field, whilst a paramagnetic material produces a magnetisation that is in the same direction

to the applied magnetic field.

The magnetisation M of a material is defined by the following equation,

M =
N

V
m = nm, (1.6)

where m is the magnetic moment, N represents the number of magnetic moments in the material

and V is the volume. N/V is replaced by n and is referred to as the number density of magnetic

moments. The M field is measured in Amperes per metre (A/m). The magnetic moment m is equal

to the sum of two different moments: one due to electron spin, and the other due to its electrical

charge. Many materials (those which have a filled electron shell), the total moment is zero due to the

electron spins occurring in up/down pairs. The net magnetic moment due to electron spin depends

on the number of spins in each direction. If all the spins are up (or down), the net moment is equal

to the sum of moments due to each spin. If some of the spins are up whilst others are down, the

difference in the number of spins in each direction will determine the net magnetic moment. Hund’s

rule states that electrons entering a subshell will spread out over all available orbitals with their spin

in the same direction. These unpaired magnetic moments align parallel to an applied magnetic field.

This is called paramagnetism. In ferromagnetism, the unpaired magnetic moments tend to align

spontaneously without an applied field. Antiferromagnetism is the complete cancellation of all the

unpaired magnetic moments. Ferrimagnetism is a hybrid of ferromagnetism and antiferromagnetism

- there is an incomplete cancellation of all the magnetic moments.

In many materials, M and H are related by the equation,

M = χH (1.7)



1.3 Introduction to Ferrites 4

where χ called the magnetic susceptibility. In ferrites, χ is a tensor matrix. Substituting (1.7) into

(1.5) gives,

B = µ0 (1 + χ)H = µH, (1.8)

where

µ = µ0 (1 + χ) , (1.9)

where µ is called the tensor permeability matrix and was introduced by Polder in 1949 [5].

A permanent magnet is an object that produces its own magnetic field. If an external field is

applied to it, the magnetic moments will align themselves in the direction of the applied magnetic

field. When the applied field is removed, part of this alignment is retained and the material is said

to be magnetised. If the relationship between the magnetic field strength H and flux density B is

plotted, figure 1.1 is obtained. By increasing the applied field, the flux density will reach a maximum

value, (referred to as the saturation magnetisation, Ms). Removing the applied magnetic field the

flux density will decrease to a value called the remanence magnetisation. After the saturation mag-

netisation is obtained, the intensity of the magnetic field that is required to reduce the magnetisation

of the material to zero is called the coercivity. This is an example of hysteresis and is shown in figure

1.1.

1.3 Introduction to Ferrites

Whilst ferrite materials were known approximately three thousand years ago, it was World War II

that saw the development of usable ferrites by Snoek at the Gloeilampenfabriken research laboratories

in The Netherlands [1]. Although the original intention was to use these ferrites at low frequencies,

it was soon discovered that the materials had many possibilities for use at microwave frequencies.

In the 1950s, a new class of ferrites, the garnets, were produced by Néel and by workers at Bell

Laboratories [1].
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Figure 1.1: A typical hysteresis curve. BR is the remanence magnetisation [1].

Ferrites are classified into three main groups, the spinels, the garnets, and the hexagonal ferrites.

The names of these classes describe the crystal structure of the materials [1]. The ferrites used in

the applications that will be discussed in the thesis are mainly from the garnets and spinels.

1.4 Transmission Lines and Slow-Wave Structures

A transmission line is the material medium that forms all or part of a path from one place to

another for the purpose of directing the transmission of energy, such as electromagnetic waves [10].

If the transmission line is uniform along its length, then its behaviour is largely described by a

parameter called the characteristic impedance, denoted by Z0 [10]. When sending power down a

transmission line, it is desirable that as much power as possible will be absorbed by the load and

as little to be reflected back to the source. This can be ensured by making the source and load

impedances ZL equal to Z0, in which case the transmission line is said to be matched [10].
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The reflection coefficient Γ is related to ZL and Z0 in the following way,

Γ =
Z0 − ZL

Z0 + ZL

. (1.10)

Therefore, by calculating the characteristic impedance Z0, and using a load of suitable impedance,

ZL, the reflection coefficient, Γ can be minimised.

The phase velocity vp is given by,

vp =
λ

T
, (1.11)

where λ and T denote the wavelength and time period of the wave respectively. In some devices, it

is possible for the phase velocity to exceed the velocity of light in a vacuum, c. An example of this

are X-rays through most glasses. However, such waves do not convey any information. A slow wave

structure is one where the velocity of a wave passing through it is much less than that of the velocity

of light. The propagation constant β of a signal is given by,

β =
ω

v
, (1.12)

where ω is the angular frequency and v is the velocity of the wave. Letting β0 be the propagation

constant of an EM wave in air with speed c, a slow wave structure fulfils the condition

v < c, (1.13)

therefore

1

v
>

1

c
, ⇒ ω

v
>

ω

c
, ⇒ β > β0. (1.14)

This condition β > β0 is a condition that is used extensively in the analysis of slow-wave structures.

1.5 Gyromagnetic Resonance and the Nonreciprocal Effect

This section introduces concepts in electromagnetism that will be used throughout this investiga-

tion. As stated above, the B and H fields in a ferrite are related by a matrix equation involving
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the tensor permeability matrix. The tensor permeability matrix will depend on how the ferrite is

biased. Theoretically, a ferrite can be biased in any direction. However, three directions are generally

employed. Firstly, longitudinal biasing, where the biasing field is in the direction of the propagation

wave and is shown in figure 1.2. The B and H fields are related by equation (1.15). Longitudinal

biasing is where the direction of biasing is parallel to the direction of wave propagation. If the di-

rection of biasing is antiparallel to the the direction of wave propagation (i.e. parallel, but in the

opposite direction), the B and H fields are related by equation (1.16), (κ is replaced by -κ). Secondly,

transverse biasing, where the biasing field is perpendicular to the direction of the propagation wave

and is shown in figure 1.3. The B and H fields are related by equation (1.17). Thirdly, azimuthal

biasing, where the biasing field is circumferential. The B and H fields are related by equation (1.18)

and is shown in figure 1.4. The orientation of the magnetic field is shown by the crosses and dots.

The crosses show the field entering the page (at the top of the ferrite) and the dots show the field

coming out of the page (at the bottom of the ferrite).




Bx

By

Bz




=




µ −iκ 0

iκ µ 0

0 0 µ0







Hx

Hy

Hz




. (1.15)




Bx

By

Bz




=




µ iκ 0

−iκ µ 0

0 0 µ0







Hx

Hy

Hz




. (1.16)




Bx

By

Bz




=




µ 0 −iκ

0 µ0 0

iκ 0 µ







Hx

Hy

Hz




. (1.17)
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Figure 1.2: Longitudinal Biasing

Figure 1.3: Transverse Biasing




Br

Bθ

Bz




=




µ 0 −iκ

0 µ0 0

iκ 0 µ







Hr

Hθ

Hz




. (1.18)
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Figure 1.4: Azimuthal Biasing
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In order to introduce some important ideas, it is assumed that the direction of propagation

and applied magnetic field are both in the z direction and the microwave field is in the x-y plane,

(transverse plane). The propagation is governed by Maxwell’s equations:

∇∧ E = −iω[µ]H, (1.19)

∇∧H = iωε0εrE, (1.20)

∇ · E = 0, (1.21)

∇ ·H = 0, (1.22)

where [µ] is the tensor permeability matrix and is given by,

[µ] =




µ −iκ 0

iκ µ 0

0 0 µ0




. (1.23)

By taking the curl of (1.20) gives,

∇∧∇ ∧H = iωε0εr (∇∧ E) , (1.24)

and replacing (∇∧ E) by (1.19) gives,

∇∧∇ ∧H− ω2ε0εr[µ]H = 0. (1.25)

The alternating magnetic field in the transverse plane is given by,

h =




Hx

Hy

0




. (1.26)

By assuming the wave has propagation of the form e−iβz and has no variation of the fields in the xy

plane. Applying this situation in (1.25) in the xy plane leads to the following equation,

β2




Hx

Hy


 = ω2εrε0




µ −iκ

iκ µ







Hx

Hy


 . (1.27)
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The roots of the eigenvalues of (1.27) give

∣∣∣∣∣∣∣

µ− β2

ω2ε0εr
−iκ

iκ µ− β2

ω2ε0εr

∣∣∣∣∣∣∣
= 0. (1.28)

Solving (1.28) gives,

β2
± = ω2ε0εr (µ± κ) . (1.29)

The magnetic fields that correspond to β± can be obtained by substituting β± into (1.27) to give,

H±
y = ± i H±

x . (1.30)

The solutions (in the transverse plane) are two plane circularly polarised magnetic waves rotating

in opposite directions. These waves have propagation constants β± [6]. The ± indicates the sense

of circular polarisation, the plus sign refers to clockwise rotation (when observed in the direction

of the propagating wave), and the minus sign indicates anticlockwise rotation [6]. If the direction

of the applied magnetic field is reversed, the propagation constants of the two normal modes are

interchanged [6]. Figure 1.5 shows the different situations. This is an example of Faraday Rotation.

When plane wave travels through a magnetised ferrite, it separates into a circularly clockwise and

anticlockwise sense of rotation, and travels through the medium with different propagation constants.

They recombine at the emergence of the medium with a phase shift offset to the phase angle of the

wave at the entry of the medium.

The phase shift can be thought of in different ways. If an electromagnetic wave propagates

through a ferrite medium of length L, a phase shift will occur. The angle of this phase shift can be

denoted φF . If an electromagnetic wave travels through a transmission line of the same length L, a

phase shift will also occur. This angle can be denoted by an angle φT . The phase shift that will be

calculated in this investigation, denoted by ψ can be considered by,

ψ = φF − φT . (1.31)
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Figure 1.5: Normal modes of propagation in longitudinally magnetised ferrite medium. H0 is the

applied magnetic field [6].
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This angle ψ can be thought of as the increase in phase angle that an EM wave is rotated in a ferrite

medium than a corresponding transmission line of the same length.

Another way of thinking of the phase shift is by relating it to Faraday rotation. When a wave

travels down a biased ferrite medium, the wave decomposes into two circularly polarized components

which propagate at different speeds through the material. The clockwise rotation has a propagation

constant of β+ and the anticlockwise rotation has a propagation constant of β−. The components

re-combine upon emergence from the medium. As there is a difference in propagation speed they do

so with a net phase offset, resulting in a rotation of the angle of linear polarization. Therefore, as

the wave travels in the forward wave direction.

The difference in propagation constants is given by,

∆β =
∣∣β+ − β−

∣∣ . (1.32)

The phase shift is given by,

4Φ = 4β P L
√

εf , (1.33)

where Φ is given in radians per length. P is the polarising function and is calculated by,

P (ω) = sin
(ω

c

√
εf l0

)
with l0 ≈ 2πr0, (1.34)

where c is the velocity of light in free space, εf is the effective relative dielectric constant for the

ferrite. L is the length over which the phase shift is measured and r0 is the radius of the innermost

region of the structure [27].

If a wave travels down a non-reciprocal medium and is rotated by θ in the positive z direction,

it is rotated by a further θ degrees in the negative z direction. Therefore, the total phase shift of

a wave travelling in the forward direction, and then reflected in the reverse direction, (so the wave

returns to the initial position), it does so with a phase difference of 2θ. In a reciprocal medium,

if a wave is rotated through θ degrees in the forward direction, it is rotated by −θ degrees in the
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reverse direction, (or θ in the reverse rotational direction). Therefore, if a wave travels in the forward

direction, and then reflected in the reverse direction, (so the wave returns to its initial position), there

is no phase difference [6].

The differential phase shift in a magnetised ferrite is given by,

Φ = 4βPL
√

ε (1.35)

where P is the polarising function, L is the lengthover which the phase shift is measured, and 4β is

given by,

4β =
∣∣β+ − β−

∣∣ . (1.36)

As stated earlier, β+ and β− can refer to the clockwise and anticlockwise rotation respectively, or β+

and β− can refer to the propagation constant in the forward and backward direction respectively.

Section (1.6) describes the two models that are chosen to model helices. Although the sheath

helix model assumes a helix to be of infinite length, authors such as Suhl and Walker [17] (amongst

many others) have considered both a forward and backward wave. Therefore, although the sheath

helix model will be used extensively, forward and backward waves can be modelled, for two reasons

(amongst others),

• The assumption of a helix being of infinite length simplifies the modelling of the helical structure.

However, this does not detract from the fact that a helix will always have a finite length.

• Authors (such as Suhl and Walker [8]) have used the sheath helix model and considered both the

forward and the backward wave.

• Many authors have used the sheath helix model to model real-life situations which have helical

structures of finite length. Quantities such as insertion loss are dependent on length (i.e. dB/m) and

have been calculated using the sheath helix model.

• The tape helix model does not assume an infinitely long helix. However, (as will be shown in

chapter 3), the results generated from the the present research (which used this sheath helix model
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assumption) agree well with those of the tape helix model as presented in published papers.

The tensor permeability matrices have µ and κ in their entries. µ and κ depend on the applied

magnetic field H0 and the saturation magnetisation Ms. The equations are given below:

µ

µ0

= 1− γ2H0M0

γ2H2
0 − ω2

and
κ

µ0

=
γωM0

γ2H2
0 − ω2

, (1.37)

where

µ0 = 4π × 10−7 H/m and γ = 2.21× 105 m/C.

These equations give the values of κ and µ is S.I. units, (Ms in Teslas and H0 in Amps per metre).

Some textbooks use the Gaussian representations.

µ

µ0

=
1− pσ − σ2

1− σ2
,

κ

µ0

=
p

1− σ2
, (1.38)

where σ is the ratio of the precession frequency to the signal frequency [7],

σ =
|γ|H0

2π

f
. (1.39)

p is the ratio of the frequency associated with the saturation magnetization to the signal frequency

p =

|γ|M0

2πµ0

f
. (1.40)

Substituting (1.40) and (1.39) into (1.38) give,

µ = µ0 +
γ2H0M0

γ2H2
0 − ω2

and κ =
|γ|ωM0

ω2 − γ2H2
0

. (1.41)

In Gaussian units, µ0 = 1, H0 is measured in Oesteds and Ms is in Gauss.

The equations for µ and κ (in both cases whether SI units or Gaussian units are considered), the

denominator will become 0 if

ω = γH0. (1.42)

At the frequency corresponding to ω = γH0, the values of µ and κ become infinite. The particular

frequency at which this arises and where µ and κ become infinite, Gyro-Magnetic Resonance (GMR)

occurs.
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Due to angular momentum each electron of a ferrite behaves as if it were a magnetic spinning top

with its magnetic moment lying along the axis of rotation. When an electron is in equilibrium and a

magnetic field is applied to the ferrite, the electron spin aligns itself with the magnetic field to create

minimum potential energy. If a disturbance occurs and the electron is moved from its equilibrium

point, instead of immediately moving back to equilibrium the electron begins to rotate about the

magnetic field. This is known as procession [3].

The above description can be employed when considering the behaviour of electrons in a ferrite.

If a magnetic field H is applied that saturates the ferrite - thus all the electrons align themselves. If

an alternating magnetic field acts in a perpendicular plane to H is superimposed onto the field H, this

produces a resultant field. This field will alternate between A and B. If the direction of H is suddenly

altered to A, the electrons precess about the axis A along the path a-b. When the electron reaches

b, if H changes to B, the electrons will precess about b-c. When the electron reaches c, if H returns

to A, the electrons will precess about c-d. By H moving between A and B, the precessional angle

will continue increasing. Theoretically, this may occur indefinitely. Physically, an equilibrium will

occur between the losses in the ferrite and the effect of alternating H. Thus a maximum precessional

angle will occur. When this is attained, power is transferred from the alternating magnetic field to

the electrons in the ferrite which are processing. Energy is dissipated from these electrons which

increases the temperature in the material. This energy transfer only occurs if the frequency of the

alternative magnetic field is the same as that of the procession frequency of the electrons inside the

ferrite, this phenomenon is known as resonance absorption or Gyro-Magnetic Resonance (GMR) [4].

The H field in figure 1.6 is in the ẑ direction, (with reference to figure 1.7). The above explanation

of procession assumes that a wave with HRF is perpendicular to H. Therefore, HRF must be in the

x-y plane. Therefore, letting

HRF = Xx̂ + Y ŷ (1.43)
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Figure 1.6: Processional motion of a spinning electron in a magnetic field which oscillates between

the directions A and B [3].

where X and Y are constant, and

H = Zẑ (1.44)

where Z is a constant. Taking the dot product (scaler product) of H and HRF gives

HRF ·H = (Xx̂ + Y ŷ) · (Zẑ) = 0. (1.45)

When the scaler product of two vectors are 0, then they are perpendicular to each other. Therefore,

HRF can be solely in the ŷ direction, or in the x̂direction, or any vector in the x-y plane. Any of

these are perpendicular to H and are possible for the above explanation of procession.
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Figure 1.7: Cartesian x-y-z axis.
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1.6 Application of Ferrites

1.6.1 Circulators and Isolators

Circulators are the most widely used ferrite device today. An ideal circulator usually has three or

four ports, and a signal entering port 1 is transmitted to port 2 without loss and nothing comes out

of the other ports. Figure 1.8 shows a stripline Y-junction circulator.

Figure 1.8: Stripline Y-junction circulator [3].

Another common application of the nonreciprocal properties of ferrites is in providing isolation.

An isolator can be constructed from a circulator by adding a matched termination absorber to the

third port of a three-port circulator. In an ideal isolator, the forward wave is transmitted without

loss whereas any reverse wave is absorbed in the load. Such devices are commonly used in circuits

where devices such as amplifiers require protection.

1.6.2 Phase Shifters

An important application of the use of ferrites came when ferrite phase shifters came into use.

Ferrite phase shifters are able to control the permeability throughout the waveguide. This modifies

the phase velocity of a microwave signal moving through the medium [12].
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Types of Phase Shifters

Ferrite phase shifters can be classified into different types as follows,

• Reciprocal/ Nonreciprocal

The phase shift in a reciprocal phase shifter is the same for signals propagating in either direction.

It is different in the two directions in nonreciprocal types [12].

• Driven/Latching

Driven phase shifters require continuous control current. Latched types have a closed magnetic path

and require only a momentary pulse of current [12].

• Analogue/Digital

Analogue types allow the insertion phase to be continuously varied by an external control current.

Digital types generally comprise discrete phase shift sections [12].

Applications

Ferrite phase shifters are most commonly used in electrically steered antenna systems, known as

phased-array antenna systems. Ideally, a phase shifter is required to have the full range of 360◦. It is

important to chose the correct type of phase shifter. The choice of phase shifter can be determined

by the following:

• Frequency

At lower frequencies, Transverse Electromagnetic Wave (TEM) devices are more common. A waveg-

uide containing a simpler geometrical structure is easier to create for small sizes needed at high

frequencies [12].

• Phase accuracy

The insertion phase varies significantly with frequency in some designs. In many types the phase

shift is a function of the remnant magnetisation, which varies with temperature [12].

• Switching time and energy
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If a nonreciprocal device is used in a radar application, the phase shifter has to be switched between

two different states, referred to as transmit and receive. Continuously driven phasers are generally

very slow compared to latching types [12]. The power from a continuously driven phase shifter may

be adequate if a few phase shifters are needed. However, a latched device is adopted in a phased

array antenna which may consist of hundreds or thousands of phase shifters [12].

• Power handling

In general, ferrite phase shifters can usually deal with higher power than other technological devices.

Designs in which the ferrite is in direct contact with the waveguide wall will conduct heat dissipated

in the ferrite away more readily, permitting higher power handling [12].

1.6.3 Travelling Wave Tubes

A travelling wave tube (TWT) is a device that is used in the amplification of radio frequency

signals to a higher power. The main components of this device are a vacuum tube, a helical wire and

a focusing magnetic field. An electron gun is placed at one end of the vacuum tube - the electrons

that are emitted are focused into a beam by the magnetic field that is around the tube. A helical

wire is placed between the input and output down which the electron beam travels before striking

the output. The signal which will be amplified is fed into a coupler which is near the emitter, thus

inducing a current into the helix. The purpose of the helix is to act as a delay line so that the

signal travels at approximately the same speed as the electron beam. The interaction between the

EM field due to the signal and the electron beam cause the electrons to bunch (also referred to as

velocity modulation). The EM field due to the beam current induces more current into the helix

thus amplifying the current. Near the collector, a coupler receives the amplified signal. The reflected

wave needs to be suppressed (or attenuated) to prevent it returning to the electron gun and thus an

attenuator is positioned between the input and output [14].

The property of a ferrite having low loss in the forward direction and substantial loss
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in the reverse, lends itself to this application. The necessity of an attenuator for the

reflected wave can be achieved with the use of ferrite. However, due to the magnetic

focusing field, substantial future work will have to be undertaken to ensure that the

magnetic focusing field for the electron beam will not be affected by the presence of

the ferrite material. This could distort the applied field and hence cause defocusing of

the electron beam. Two possible ways of overcoming this are, either to have a separate

biasing field for the ferrite, or to use the focusing field of the electron beam to bias the

ferrite.

Figure 1.9: A Travelling-Wave Tube (TWT) [15].

Of all the periodic slow wave structures, the helix stands out in both importance and geometrical

simplicity. It is employed in all low and medium-power travelling wave tubes and in low-power

backward wave oscillators [16]. The next section deals with different ways that a helix can be

modelled.
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1.7 Helical Models

Different helical models have been employed in the analysis of electromagnetic waves propagating

through helical structures. Two standard helical models have been used, the sheath helix model and

the tape helix model [17].

1.7.1 The Sheath Helix Model

Figure 1.10 shows a perfect conducting wire which is wound into a helix. The axis of the helix is

along the z -direction of the circular cylindrical co-ordinate system. A developed view is shown in

figure 1.11, where the unit vectors ~a|| and ~a⊥ are drawn. Letting the radius of the helix be denoted

by r, the pitch of the helix by p, the pitch angle by ψ, the following expression is obtained:

tan(ψ) =
p

2πr
. (1.46)

The model assumes the wave to be of harmonic dependence. The sheath helix model assumes the

following,

• the helix is infinitely long,

• the helical wire is infinitely thin,

• the helical wire conducts only in the direction of the windings,

• the conductivity normal to the helical path is taken to be zero,

• the conductivity in the direction of the helical path is taken to be infinite,

• the helical pitch is significantly less than the wavelength of the wave (p << λ).

This model is idealized as an anisotropically conducting cylindrical surface that conducts only in the

helical direction. The conductivity normal to the helical path is taken to be zero.
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Boundary Conditions

At the surface of the sheath helix, there are three boundary conditions that are established. At the

surface, the tangential electric field must vanish (since the conductivity in this direction is assumed

to be infinite). This can be expressed as

Ei
‖(a) = Eo

‖(a) = 0. (1.47)

The conductivity perpendicular to the windings is assumed to be zero. Thus, the electric field on

the cylindrical surface in this direction is continuous across this boundary. This is expressed as

Ei
⊥(a) = Eo

⊥(a). (1.48)

Finally, the magnetic field on the cylindrical surface are continuous along the wire. This is expressed

as

Hi
‖(a) = Ho

‖(a). (1.49)

Here, the superscripts i and o represent the interior and exterior of the helix, respectively [18]. Also,

parallel and perpendicular in this context are with reference to the helical windings as shown in figure

1.11.

Figure 1.10: The sheath helix [17].

1.7.2 The Tape Helix Model

Due to the assumptions of the sheath helix model, the helix is modelled as a cylinder. Thus the air

gaps between the windings are not taken into consideration. The sheath helix also does not model



1.7 Helical Models 25

Figure 1.11: Developed sheath helix [17].

the periodic character of the helix. The tape helix does incorporate these into the model and was

analysed by Sensiper [17]. The tape helix consists of a thin ribbon of metal wound into a helical

structure [13]. The tape is of width δ and gap width δ′ [17] as shown in figure 1.12. It is considered

to be perfectly conducting in all directions [16]. The helical radius is a and

tan(ψ) =
p

2πa
, (1.50)

where p is the pitch.

If a helix is situated as shown in figure 1.11, and the helix is displaced by a distance p along

the z axis, the helix will coincide with itself. Also, if the helix is rotated through an angle θ

and then translated by a distance pθ/2π, the helix will again coincide with itself. These periodic

properties of the helix create some restrictions as to the nature of the solutions. Cylindrical polar

coordinates are taken in the usual context. If E1(r, φ, z) is a solution for the electric field, then

e−iβ(pθ/2π) E1(r, φ + θ, z + pθ/2π) is also a solution. This is can be shown as the points (r, φ, z) and

(r, φ+θ, z+pθ/2π) cannot be distinguished from each other (due to the periodic nature of the wave).

The term e−iβ(pθ/2π) represent the propagation factor of the wave. The solution E1(r, φ, z) must be

periodic in φ. It must also be periodic in the z direction with period p (apart from the propagation

factor e−iβz). Therefore, E1 can be expressed as a double Fourier series,

E1(r, φ, z) =
∞∑

m=−∞

∞∑
n=−∞

E1,mn(r)e−imφ−i2nπz/pe−iβz, (1.51)

where E1,mn(r) are vector functions of r. It is required that eiβzE1(r, φ, z) does not change when φ
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and z are replaced by φ + θ and z + pθ/2π. Therefore, in equation (1.7.2), it is required that

e−imφ−i2nπz/p = e−im(φ+θ)−i2nπ(z+pθ/2π)/p. (1.52)

The condition is fulfilled if m = −n. Therefore, the Fourier series can be reduced to a single

summation,

E1(r, φ, z) =
∞∑

n=−∞
E1,n(r)e−in(2πz/p−φ)e−iβz. (1.53)

The solutions for the electric and magnetic field components for a helix can be obtained by

expanding the fields in the regions r < a and r > a into an infinite series of E and H modes expressed

in cylindrical coordinates [13]. For a helix that is immersed in free-space, the region r > a will be

represented by the modified Bessel function of nth order Kn (vnr), where

v2
n =

[
β +

2nπ

p

]2

− ω2ε0µ0. (1.54)

For real values of vn, Kn will decay exponentially as r tends to infinity 2

The tape helix ensures that it excludes solutions that are nonexistant. Therefore, any particular

frequency value will only generate such propagation constants, say βM , that are physically possible.

The field corresponding to each value of βM is expressed by the Fourier series

EM (r, φ, z) =
∞∑

n=−∞
EM,n (r) e−in(2nz/p−φ)−iβMz. (1.55)

In this summation, each term is called a spatial harmonic and has a propagation constant of

βM + 2nπ/p. The radially propagation constant vn in the z direction must always remain real, as an

imaginary vn will correspond to a phase velocity in the z-direction greater than the velocity of light

[16]. Also, the n = 0 spatial harmonic will not decay for imaginary valued vn. For these reasons,

certain regions are called forbidden regions. On a graph where kp is plotted against βp, the regions

above k = ±β represent the forbidden region. In these regions, the propagation constant is complex

2It can be shown that the function Kn asymptotes to
√

π/2vnr e−vnr [13].
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rather than purely real. Figure 1.13 shows an example of a usual diagram corresponding to the

behaviour of the wave in a tape helix [17]. ψ denotes the pitch angle, a denotes the helical radius

and β0 = ω/c. By considering the cases of when r < a and r > a (corresponding to the interior and

exterior of the helix), and applying the relevant boundary conditions, a solution can be sought.

Figure 1.12: Tape Helix [17].
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Figure 1.13: Forbidden-region diagram fora single tape helix. Values of β in the shaded regions are

not allowed because such a solution would correspond to one of the space harmonics having a velocity

greater than the velocity of light. k = ω/c. [17].
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1.8 Literature Review

Previous authors have investigated different helical structures and different authors have made

various assumptions in an attempt to make an accurate analysis of the structure. This section

introduces some of the work that has previously been done on helical structures surrounded by

ferrite or dielectric. These papers will be made use of when the reliability and accuracy of the model

is to be investigated (section 2.9).

Gilmour et al [19] considered the case of a helix supported by dielectric rods inside a waveguide.

These rods were modelled as a single dielectric tube with an effective permittivity, see figure 1.14.

The dielectric layer was assumed to be in contact with the metal helix and the barrel. No angular

dependance was assumed (i.e. the axisymmetric case was considered). The sheath helix model was

employed and a method for calculating the loss from the metal helix and the barrel was described

in detail, relying on some equations that were obtained from Bryant and White [20]. The paper

plotted the loss against frequency for variation in helical radius, barrel radius, helical pitch and

helical resistivity. The barrel-helix ratio is given by,

barrel-helix ratio =
radius of barrel

radius of helix
.

The paper attempted to measure the losses in the structure experimentally. These experimental

results were compared to the theoretical ones. The paper concluded by stating that in order to

minimise the loss in the structure, it is necessary to:

1. maximise helix pitch

2. minimise helix radius

3. maximise barrel - helix ratio

4. minimise helix resistivity
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5. minimise support rod cross-sectional area and dielectric constant.

Figure 1.14: Model of helix used in analysis, (dielectric).

Lopes and Motta [21] calculated the losses in a similar structure, but use of the tape helix model was

made. Loss against frequency was plotted for variation in helical radius, barrel-helix ratio, helical

pitch, helical resistivity and dielectric permittivity. The paper concluded by stating that in order

to reduce loss in the tape-helix structure, at least in the frequency range under investigation, it is

necessary to,

1. maximise helix pitch;

2. minimise helix radius;

3. maximise guide-to-helix diameter ratio;

4. minimise helix resistivity;

5. minimise support rod cross-sectional area; and

6. minimise dielectric constant of the support rods, [21].

These are in agreement with [19].

Duan et al [22] considered the case of a helix supported by dielectric rods surrounded by a metal

waveguide, see figure 1.15. These rods are modelled as a single dielectric tube with an effective
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permittivity, εeff , see figure 1.16. If εr is the relative permittivity of each rod, then the effective

permittivity of the dielectric layer is given by,

εeff = 1 + m (εr − 1)
As

A
, (1.56)

where As is the cross-sectional area of a single dielectric rod, A is the cross-sectional area of the

region b1 < r < b and m is the number of dielectric support rods.

Figure 1.15: Cross - section of structure [22].

Figure 1.16: Equivalent cross - section of structure [22]

The paper compares the sheath helix model, the tape helix model and experimental results from

[23] and computes the propagation constant β. The sheath helix model is used with the assumptions

given in [24]. Duan et al [25] extended this further by considering the support rods not as a single

layer, but multiple layered dielectric tubes, in the region between the helix and the waveguide. The
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dielectric loss was considered by assuming the permittivity was a complex-valued constant, of the

form

ε′r = εr (1− tan(δ) i) , (1.57)

where tan(δ) is referred to as the loss tangent. The loss tangent was in the range of

−4 ≤ log10 (tan(δ)) ≤ −1. (1.58)

The value of β was also a complex value.3

An electromagnetic wave passing down a structure comprising of a metal helix surrounded by

a ferrite tube was considered by Cook, Kompfner and Suhl [26]. When a wave passes through any

device, some of this wave is reflected. It is always desirable to minimise the extent of this reflected

wave. This reflected wave can oscillate backwards and forwards in a TWT. A standard method

of reducing these oscillations is to place lossy dielectric materials on the dielectric supports. A

backward wave will therefore undergo twice the loss of the forward wave. However, this has some

disadvantages, as it can lead to a reduction in tube efficiency. If the dielectric tube is replaced with a

ferrite one, the backward wave will be severely reduced, if not completely eliminated. However, this

has a problem, an electron beam in travelling wave tubes is usually focused by an axial B field. A

ferrite tube surrounding the helix would severely reduce the field inside. By dividing the ferrite into

a succession of relatively narrow rings spaced apart, it is found the the axial field is substantially the

same as would exist in the absence of the ferrite rings [26]. The idea of using a ferrite helix as an

alternative to a tube was first considered by Cook, Kompfner and Suhl [26]. Figure 1.17 shows the

experimental results of this structure. At about 4500 megacycles, the loss in the backward direction

is substantially more than in the forward direction.

Swifthook et al [24] analysed a helix surrounded by a dielectric tube. They modelled an air gap

between the helix and the dielectric. The equations in each region and the boundary conditions were

3Section 2.7 gives further details of the loss calculations.
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Figure 1.17: Loss in a metal helix surrounded by ferrite helix [26]

formed. The equations were written in matrix form and a zero determinant was sought. This will

be explained in detail in the chapter 2. The paper considered different variations of the structure;

the cases where, the permittivity of the dielectric was taken to be 1 (i.e. the dielectric is modelled as

an air region), the structure is considered as a free-space helix (a helix in air), the structure replaces

the air gap with dielectric, the structure considers the glass tube to have infinite thickness.

Suhl and Walker [8] considered the case of a metal helix surrounded by a ferrite toroid of infinite

thickness, see figure 1.18. The following assumptions were made:

1. The helix and the ferrite toroid were infinitely long;

2. The helix was infinitely thin, directly on the ferrite surface and could be treated as a sheath

helix;

3. Helix and ferrite and the whole device in general were lossless;

4. The propagation constant β for axial direction, the quantity to be found, was very large compare

with all other propagation constants;

5. All fields are independent of the circumferential angle, i.e. only the zero-order mode of propa-

gation on a helix is present;
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6. The ferrite was azimuthally magnetised;

7. The ferrite wall was infinitely thick [27].

Figure 1.18: Cylindrical helix surrounded by a ferrite [8].

The paper derives the dispersion relation, but due to the inability of programs to solve such an

equation (having been written in the 1950s), many mathematical simplifications were made. A

determinental equation was derived and various functional analysis was carried out on the equation

to ascertain its behaviour. Dispersions curves were produced.

The structure of a helix surrounded by a finite ferrite tube which has azimuthal biasing has been

considered by certain authors. Ivanov and Koster [28] and [29] analysed a shielded thin wire helix

which was inhomogeneously loaded with a latching ferrite and magnetised azimuthally to resonance.

The ferrite was assumed to be lossless and the electromagnetic wave had no angular dependance.

Orlando [30] considered the case of angular dependance. Both used the sheath helix model and

dispersion curves were produced.

Kai and Chakraboti [31] considered the case of a helix surrounded by a ferrite tube (which the

paper referred to as an ”inverted helix”), and the case of a helix wound around a ferrite tube (which

the paper referred to as an ”normal helix”), see figure 1.19. The ferrite was biased azimuthally

and the structure was analysed using the finite-element method (FEM). The differential phase shift

was calculated and dispersion curves were plotted for variations in the pitch angle (ψ). The results

showed that the phase shift was larger in the case of a normal helix compared to that of an inverted
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helix. Despite this, the ferrite loaded helical structure, or ”inverted helix”, will be investigated in

this thesis due to the structure lending itself more easily for modification and adaptation in TWT

applications.

Figure 1.19: Helical Structures: (a) normal helix, (b) inverted helix [27].

Secklemann [27] considered the case of a metal helix surrounded by a ferrite toroid, enclosed in

a metal waveguide, see figure 1.20. The ferrite was assumed to be lossless and biased azimuthally.

Both the ’normal helix’ and ’inverted helix’ were analysed. Dispersion curves and graphs showing

the variation of phase shift with frequency were produced. In addition to the assumptions that have

been mentioned earlier, additional ones that were assumed were:

• The device works at remnant magnetisation.

• The remnant magnetisation is equal to the saturation magnetisation.

If a ferrite material is magnetised to saturation and the magnetising field is then removed, the ferrite

will remain in a state of remnant magnetisation which is close to the saturation magnetisation

[4]. The two assumptions above imply that the latched device works at saturation magnetisation.
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However, as mentioned earlier, a more accurate assumption would have been to model the magnetic

field as 80% or 90% of the saturation magnetisation. The paper concluded by stating that the normal

helix type phase shifter was superior to inverted helix type ones as they have a higher differential

phase shift per unit length. Some experimental results were conducted which had a good agreement

with the theoretical model.

Figure 1.20: Model of helix used in analysis, (ferrite).

1.9 An Overview of the Thesis

This thesis aims at extending the analysis of the work that has been done on ferrite loaded helical

structures. The previous section gave an insight into what has been considered in past and present

papers. Whilst the loss (α) of a helix surrounded by dielectric and the propagation constant (β) of a

helix surrounded by ferrite or dielectric have been considered by previous authors, the loss of ferrite

loaded helical structures have yet to be investigated. This thesis uses the sheath helix to model the

structure, to calculate the loss and to consider how this is affected by varying certain parameters

within the structure (e.g. helical radius, ferrite thickness, pitch angle). The model is not restricted

to the examination of the saturated case, but also considers the case of an unsaturated ferrite. The

dielectric and magnetic loss of the ferrite are also calculated. The model considers the effects of

air gaps in the structure in an attempt to improve the accuracy and reliability of the model. The

propagation constants of the forward and backward wave are calculated and dispersion curves are

produced. The model also calculates the differential phase shift of the structure.
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Chapter 2 takes a detailed look at the model that will be employed. The problem is formulated

and the governing equations, boundary conditions and field solutions are presented. The modelling

assumptions are discussed in detail. A quantitive analysis of the loss in the structure is also formu-

lated. Chapter 3 assesses the accuracy and reliability of the model. This is achieved by a comparison

with results that have been published in the previous papers4. Chapter 4 examines certain situations

that have not been considered before. For example, calculating the attenuation coefficient of a wave

travelling through a structure consisting of a helix surrounded by a ferrite tube enclosed inside a

metal a waveguide. Dispersion curves are produced, the phase shift and attenuation coefficient are

plotted. Chapter 5 concludes the investigation and considers how the current study can be extended.

4Section 1.5 introduced the previously published results that will be used for comparisons in chapter 3.



Chapter 2

The Model

This chapter contains a description of the problem that was investigated. The modelling assump-

tions are taken into consideration together with the governing equations, boundary conditions and

the field solutions. The procedure for calculating the loss in the structure is illustrated.

2.1 Problem Formulation

A uniform helix is described by its radius (r = a), its pitch (p), and its pitch angle (ψ), which is

the angle that the tangent to the helix makes with a plane perpendicular to the axis of the structure

(z). Figure 2.1 shows a view of the helical structure and figure 2.2 shows the the pitch angle (ψ) and

the vectors parallel and perpendicular to the helical windings. Geometrically, cot(ψ) = 2πa
p

. The

helical structure supports propagation along the longitudinal (z) axis with travelling wave variations

of the form ei(ωt−βz), where β is to be determined.

Figure 2.3 shows the structure that is analysed in the current study - a metal helix surrounded a

ferrite tube. This is further enclosed within a waveguide wall. The structure is modelled with an air

gap between the helix and the ferrite tube and also between the ferrite tube and the metal waveguide.

The metal helix is of radius a, the ferrite tube has inner and outer radii b and c respectively. The
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Figure 2.1: Helix [17].

Figure 2.2: Developed helix [17].

metal waveguide is at a length d from the centreline, where a < b < c < d are with reference to figure

2.3.

Region 1 refers to the air inside the metal helix, region 2 refers to the air gap between the helix

and the ferrite, region 3 refers to the region inside the ferrite and region 4 refers to the air gap

between the ferrite and the metal waveguide.

Figure 2.3: Helical structure.
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2.2 The Wave Equation

The governing equations for the electromagnetic wave in the structure are given by Maxwell’s equa-

tions:

∇ · E = 0, ∇ ·B = 0, ∇∧ E = −∂B

∂t
, ∇∧H = ε

∂E

∂t
.

In materials other then ferrites, B and H are related by the equation

B = µH,

where µ is the permeability. Maxwell’s equations become

∇ · E = 0, ∇ ·H = 0, ∇∧ E = −µ
∂H

∂t
, ∇∧H = ε

∂E

∂t
.

By using vector identities, these equations can be rearranged to give the wave equation1

∇2




E

H


 =

1

c2

∂2

∂t2




E

H


 , where c =

1√
µε

. (2.1)

2.3 Modelling Assumptions

The structure is modelled using the following assumptions.

1. The RF fields vary with time as eiωt: This time variation is indicative of harmonic oscillation

[17]. It can be derived by considering the time dependance in the wave equation, as will be

shown in the next section.

2. The helix and the ferrite tube are of infinite length: This is a standard assumption used in the

sheath helix model. Previous authors who have analysed helical structures using the sheath

helix model have made this assumption [17]. Although this assumption would imply that

the reflected wave can be ignored in the calculations and analysis, this is not unrealistic. By

1The equation is derived in Appendix A
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calculating the characteristic impedance of the structure, it is possible to put a load of equal

impedance and thus match the impedances so that the structure would behave as an infinitely

long device without any reflected wave [32].

3. The helix is infinitely thin: This is another standard assumption in the sheath helix model,

which has also been used by many authors when analysing helical structures [17].

4. The conductivity is infinite in the direction parallel to the windings, but zero perpendicular

to the direction of windings: This is another standard assumption in the sheath helix model,

which has also been used by many authors when analysing helical structures [17].

5. The magnetic field inside the structure is known. This assumption has been used by several

authors; some of whom are Orlando [30], Suhl [8], and Ivanov [28].

2.4 The Electric and Magnetic Fields

The electric field E and magnetic flux density B are vector fields that have amplitude and direction

that vary with spatial co-ordinates and time. Therefore, the electric field and magnetic flux density

can be written as E(x,t) and B(x,t), respectively, where x is a position vector. As a cylindrical struc-

ture is considered, the spatial coordinates are represented in cylindrical polar coordinates. Therefore,

letting X represent both fields E and H, such that X=X(r, θ, z, t), substituting into equation (2.1)

gives

1

r

∂

∂r

(
r

∂X

∂r

)
+

1

r2

∂2X

∂θ2
+

∂2X

∂z2
=

1

c2

∂2X

∂t2
. (2.2)

Equation (2.2) can be solved using the method of separation of variables. Initially, an axisymmetric

solution is sought, with X = R(r)Z(z)T (t) [33]. Therefore,

R′′

R
+

1

r

R′

R
+

Z ′′

Z
=

1

c2

T ′′

T
= −ω2

c2
. (2.3)
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The choice of separation constant becomes apparent, when the equation T ′′ + ω2T = 0 leads to

T = exp(±iωt),

which represents harmonic oscillation. Rearranging (2.3) gives

R′′

R
+

1

r

R′

R
= −ω2

c2
− Z ′′

Z
= −ω2

c2
+ β2, (2.4)

where the choice of separation constant leads to Z ′′ + β2Z = 0 and thus

Z = exp(±iβz),

where the propagation constant β indicates that the wave is travelling in the z-direction. Equation

(2.4) becomes

R′′ +
R′

r
− (

β2 − ω2µε
)
R = 0, (2.5)

which can be solved to give

R = āI0(kr) + b̄K0(kr), (2.6)

where k2 = β2 − ω2µε, ā and b̄ are constants and I0 and K0 are modified Bessel functions of zero

order. Now, if the electric and magnetic fields are assumed to have angular dependance (i.e, the

non-axisymmetric case), then letting X = R(r)Θ(θ) exp (i (ωt− βz)) and substituting this into (2.4)

gives

R′′

R
+

1

r

R′

R
= − 1

r2

Θ′′

Θ
= k2. (2.7)

The equation simplifies to

r2R′′

R
+ r

R′

R
− rk2 = −Θ′′

Θ
= n2. (2.8)

The solutions of these equations are

R(r) = āIn(kr) + b̄Kn(kr), (2.9)

Θ(θ) = c̄ cos(nθ) + d̄ sin(nθ), (2.10)
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where ā, b̄, c̄ and d̄ are constants. Therefore,

X =
(
ā In(kr) + b̄ Kn(kr)

) (
c̄ cos(nθ) + d̄ sin(nθ)

)
exp (i (ωt− βz)) . (2.11)

A change in 2pπ where p is an integer would generate the same value, as θ is 2π periodic. Therefore,

n must be an integer. The θ dependance of the wave is of the form exp(±inθ). Therefore, the

expressions for E and B take the form

B =
[
Br(r)r̂ + Bθ(r)θ̂ + Bz(r)ẑ

]
ei(ωt+nθ−βz), E =

[
Er(r)r̂ + Eθ(r)θ̂ + Ez(r)ẑ

]
ei(ωt+nθ−βz).

(2.12)

The term ei(ωt+nθ−βz) shows that the wave has an angular frequency ω, the wave propagates in the

z - direction with the respect to the phase constant β and the complex number i signifies that there

is a phase shift π
2
. The following relations can also be derived:

∂

∂t




E

H


 = iω




E

H


 ,

∂

∂θ




E

H


 = in




E

H


 ,

∂

∂z




E

H


 = −iβ




E

H


 .

(2.13)

These expressions will be used when deriving the governing equations in each of the different regions.

2.5 The Equations in Air

The structure consists of three regions of air and one of ferrite. This section derives the governing

equations in air and gives solutions to these equations.

2.5.1 The Governing Equations

In air B = µ0H, and substituting this into Maxwell’s equations gives

∇ ·H = 0, ∇ · E = 0, (2.14)

∇∧H = iωε0E, ∇∧ E = −iωµ0H. (2.15)
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By using vector identities, these equations can be rearranged to give the wave equation

∇2




E

H


 =

1

c2

∂2

∂t2




E

H


 . (2.16)

In cylindrical polar co-ordinates (2.16) becomes

d2

dr2




E

H


 +

1

r

d

dr




E

H


−

(
n2

r2
+ β2 − ω2ε0µ0

)



E

H


 = 0. (2.17)

As shown in the previous subsection, this can be solved to give

Ez = ā In

(
k̄0r

)
+ b̄ Kn

(
k̄0r

)
, and Hz = c̄ In

(
k̄0r

)
+ d̄ Kn

(
k̄0r

)
, (2.18)

where k̄2
0 = β2−ω2µ0ε0, and ā, b̄, c̄, and d̄ are constants. I and K refer to modified Bessel functions.

Expressing (2.15) in cylindrical polar co-ordinates give

(∇∧H)r = 1
r

∂Hz

∂θ
− ∂Hθ

∂z
= iωε0Er,

(∇∧H)θ = ∂Hr

∂z
− ∂Hz

∂r
= iωε0Eθ,

(∇∧H)z = ∂Hθ

∂r
+ Hθ

r
− 1

r
∂Hr

∂θ
= iωε0Ez,

(∇∧ E)r = 1
r

∂Ez

∂θ
− ∂Eθ

∂z
= −iωµ0Hr,

(∇∧ E)θ = ∂Er

∂z
− ∂Ez

∂r
= −iωµ0Hθ,

(∇∧ E)z = ∂Eθ

∂r
+ Eθ

r
− 1

r
∂Er

∂θ
= −iωµ0Hz.

(2.19)

Rearranging (2.19) give

k̄2
0 Er = iβ

∂Ez

∂r
+

iωµ0

r

∂Hz

∂θ
, k̄2

0 Eθ = −iωµ0
∂Hz

∂r
+

iβ

r

∂Ez

∂θ
, (2.20)

k̄2
0 Hr = iβ

∂Hz

∂r
− iωε0

r

∂Ez

∂θ
, k̄2

0 Hθ = iωε0
∂Ez

∂r
+

iβ

r

∂Hz

∂θ
. (2.21)

By substituting (2.18) into equations (2.20) - (2.21), expressions for Er, Eθ, Hr and Hθ can be written

in terms of modified Bessel functions. This will be done in the next subsection.
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2.5.2 Solutions

The case when n = 0

For n = 0, ∂
∂θ

= 0 corresponding to the axisymmetric case. Substituting n = 0 into the expressions

above gives:

Ez = ā I0

(
k̄0r

)
+ b̄ K0

(
k̄0r

)
, Hz = c̄ I0

(
k̄0r

)
+ d̄ K0

(
k̄0r

)
, (2.22)

Eθ = −iωµ0

k̄0

[
c̄ I1

(
k̄0r

)− d̄ K1

(
k̄0r

)]
, Hθ =

iωε0

k̄0

[
ā I1

(
k̄0r

)− b̄ K1

(
k̄0r

)]
, (2.23)

Er =
iβ

k̄0

[
ā I0

(
k̄0r

)
+ b̄ K0

(
k̄0r

)]
, Hr =

iβ

k̄0

[
c̄ I0

(
k̄0r

)
+ d̄ K0

(
k̄0r

)]
. (2.24)

These terms will be substituted into the boundary conditions in order to arrive at the full system of

equations to be solved.

The case when n = 1

For n = 1, the following solutions are obtained:

Ez = ā I1

(
k̄0r

)
+ b̄ K1

(
k̄0r

)
, Hz = c̄ I1

(
k̄0r

)
+ d̄ K1

(
k̄0r

)
, (2.25)

Eθ = −iωµ0

[
c̄ I0

(
k̄0r

)− d̄ K0

(
k̄0r

)]

k̄0

− β
[
ā I1

(
k̄0r

)
+ b̄ K1

(
k̄0r

)]− iωµ0

[
c̄ I1 (k0r) + d̄ K1

(
k̄0r

)]

k̄2
0r

,

(2.26)

Hθ =
iωε0

[
ā I0

(
k̄0r

)− b̄ K0

(
k̄0r

)]

k̄0

− β
[
c̄ I1

(
k̄0r

)
+ d̄ K1

(
k̄0r

)]
+ iωε0

[
ā I1

(
k̄0r

)
+ b̄ K1

(
k̄0r

)]

k̄2
0r

,

(2.27)

Er =
iβ

[
ā I0

(
k̄0r

)− b̄ K0

(
k̄0r

)]

k̄0

− iβ
[
ā I1

(
k̄0r

)
+ b̄ K1

(
k̄0r

)]
+ ωµ0

[
c̄ I1

(
k̄0r

)
+ d̄ K1

(
k̄0r

)]

k̄2
0r

,

(2.28)

Hr =
iβ

[
c̄ I0

(
k̄0r

)− d̄ K0

(
k̄0r

)]

k̄0

− iβ
[
c̄ I1

(
k̄0r

)
+ d̄ K1

(
k̄0r

)]− ωε0

[
ā I1

(
k̄0r

)
+ b̄ K1

(
k̄0r

)]

k̄2
0r

.

(2.29)

The expression have been written using the Bessel function relations in Appendix C.
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2.6 System of Equations

This section deals with how the system of equations is arrived at. Although, the case of n = 0 is

described here, the method is applicable to the other cases, for n > 0.

2.6.1 Region 1

Region 1 refers to region of air inside the metal helix. This has the following solutions,

Ez1 = a1 I0 (k0r) + b1 K0 (k0r) , Hz1 = c1 I0 (k0r) + d1 K0 (k0r) , (2.30)

where a1, b1, c1 and d1 are constants. Physically the fields must be finite at r = 0, therefore b1 and

d1 must vanish. Therefore, in region 1,

Ez1 = a1 I0 (k0r) , Eθ1 = −iωµ0

k0

c1 I1 (k0r) , Er1 =
iβ

k0

a1 I0 (k0r) , (2.31)

Hz1 = c1 I0 (k0r) , Hθ1 =
iωε0

k0

a1 I1 (k0r) , Hr1 =
iβ

k0

c1 I0 (k0r) , (2.32)

where the subscript 1 indicates region 1.

2.6.2 Region 2

Region 2 refers to the air gap between the metal helix and the ferrite. This has the following solutions,

Ez2 = a2 I0 (k0r) + b2 K0 (k0r) , Hz2 = c2 I0 (k0r) + d2 K0 (k0r) , (2.33)

Eθ2 = −iωµ0

k0

[c2 I1 (k0r)− d2 K1 (k0r)] , Hθ2 =
iωε0

k0

[a2 I1 (k0r)− b2 K1 (k0r)] , (2.34)

Er2 =
iβ

k0

[a2 I0 (k0r) + b2 K0 (k0r)] , Hr2 =
iβ

k0

[c2 I0 (k0r) + d2 K0 (k0r)] , (2.35)

where a2, b2, c2 and d2 are constants and the subscript 2 indicates region 2.
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2.6.3 Region 3

Region 3 refers to the region of the ferrite. Due to the complexity of the equations in region 3, full

details of the governing equations and solutions can be found in Appendix B.1. It can be noticed

that each region has four constants associated with it, (region 1 has a1...d1 associated with it, region

2 has a2...d2 associated with it and region 4 have a4...d4 associated with it). Thus, region 3 has also

four constants associated with it a3...d3. Therefore, each expression (Er, Eθ, Ez, Hr, Hθ, Hz) can be

expressed as a sum of four linearly independent radial expressions with constants a3...d3. Therefore,

the expressions below are assumed.

Ez3 = a3Ez31(r) + b3Ez32(r) + c3Ez33(r) + d3Ez34(r), (2.36)

Hz3 = a3Hz31(r) + b3Hz32(r) + c3Hz33(r) + d3Hz34(r), (2.37)

Eθ3 = a3Eθ31(r) + b3Eθ32(r) + c3Eθ33(r) + d3Eθ34(r), (2.38)

Hθ3 = a3Hθ31(r) + b3Hθ32(r) + c3Hθ33(r) + d3Hθ34(r), (2.39)

Er3 = a3Er31(r) + b3Er32(r) + c3Er33(r) + d3Er34(r), (2.40)

Hr3 = a3Hr31(r) + b3Hr32(r) + c3Hr33(r) + d3Hr34(r). (2.41)

where a3, b3, c3 and d3 are constants and the subscript 3 indicates region 3. Appendix B.1 give the

expressions for all of the above terms.

2.6.4 Region 4

Region 4 refers to the air gap between the metal helix and the ferrite. This has the following solutions,

Ez4 = a4 I0 (k0r) + b4 K0 (k0r) , Hz4 = c4 I0 (k0r) + d4 K0 (k0r) , (2.42)

Eθ4 = −iωµ0

k0

[c4 I1 (k0r)− d4 K1 (k0r)] , Hθ4 =
iωε0

k0

[a4 I1 (k0r)− b4 K1 (k0r)] , (2.43)

Er4 =
iβ

k0

[a4 I0 (k0r) + b4 K0 (k0r)] , Hr4 =
iβ

k0

[c4 I0 (k0r) + d4 K0 (k0r)] , (2.44)

where a4, b4, c4 and d4 are constants and the subscript 4 indicates region 4.
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2.6.5 Boundary Conditions

Boundary Conditions between the air and metal helix

The boundary conditions between the air and metal helix at r = a are given by

Ei
⊥(a) = Eo

⊥(a), Ei
‖(a) = Eo

‖(a) = 0, Hi
‖(a) = Ho

‖(a). (2.45)

In these equations, parallel and perpendicular are in reference to the windings, and i and o indicate

the inside and outside of the helix, respectively. As these equations are in reference to the windings,

and not with respect to the surface, it is necessary to resolve Eθ, Ez, Hθ and Hz in these directions.

Therefore, equations (2.45) can be written as

Eθ1(a) + Ez1(a) tan(ψ) = 0, Eθ2(a) + Ez2(a) tan(ψ) = 0,

Ez1(a)−Eθ1(a) tan(ψ) = Ez2(a)−Eθ2(a) tan(ψ), Hθ1(a)+Hz1(a) tan(ψ) = Hθ2(a)+Hz2(a) tan(ψ).

Boundary Conditions between the Air and Ferrite Tube

The boundary conditions between the air and ferrite tube at r = b and r = c are given by

Ei
‖(b) = Eo

‖(b), Hi
‖(b) = Ho

‖(b), (2.46)

Ei
‖(c) = Eo

‖(c), Hi
‖(c) = Ho

‖(c). (2.47)

In these equations, parallel and perpendicular are in reference to the ferrite tube, and i and o indicate

the different sides of the boundary. These equations can also be written in terms of Eθ, Ez, Hθ and

Hz. Thus, the following expressions are obtained.

Ez2(b) = Ez3(b), Eθ2(b) = Eθ3(b), Hz2(b) = Hz3(b), Hθ2(b) = Hθ3(b),

Ez3(c) = Ez4(c), Eθ3(c) = Eθ4(c), Hz3(c) = Hz4(c), Hθ3(c) = Hθ4(c),
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Boundary Conditions between the Air and Metal Waveguide

The boundary conditions between the air and metal waveguide at r = d are given by:

E‖(d) = 0. (2.48)

In this equation, parallel and perpendicular are in reference to the metal container. Writing this in

terms of Eθ and Ez gives

Ez4(d) = 0. Eθ4(d) = 0

The table below shows all the boundaries with the corresponding equations that were used.

Boundary regions Boundary condition Equation

E‖1 = 0 Eθ1(a) + Ez1(a) tan(ψ) = 0

1 and 2 E‖2 = 0 Eθ2(a) + Ez2(a) tan(ψ) = 0

air and metal helix E⊥1 = E⊥2 Ez1(a) - Eθ1(a) tan(ψ) =

Ez2(a) - Eθ2(a) tan(ψ)

r = a H‖1 = H‖2 Hθ1(a) + Hz1(a) tan(ψ) =

Hθ2(a) + Hz2(a) tan(ψ)

(‖ and ⊥ to the windings)

2 and 3 E‖2 = E‖3 Ez2(b) = Ez3(b) Eθ2(b) = Eθ3(b)

air and ferrite H‖2 = H‖3 Hz2(b) = Hz3(b) Hθ2(b) = Hθ3(b)

r = b (‖ and ⊥ to the surface)

3 and 4 E‖3 = E‖4 Ez3(c) = Ez4(c) Eθ3(c) = Eθ4(c)

ferrite and air H‖3 = H‖4 Hz3(c) = Hz4(c) Hθ3(c) = Hθ4(c)

r = c (‖ and ⊥ to the surface)

air and metal container E‖4 = 0 Ez4(d) = 0

r = d (‖ and ⊥ to the surface) Eθ4(d) = 0
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By substituting the expressions for each region into the boundary conditions, the system of

simultaneous linear equations can be written as:

a1 I0 (k0a) tan(ψ)− iωµ0

k0

c1 I1 (k0a) = 0, (2.49)

(a2 I0 (k0a) + b2 K0 (k0a)) tan(ψ)− iωµ0

k0

[c2 I1 (k0a)− d2 K1 (k0a)] = 0, (2.50)

a1 I0 (k0a) +
iωµ0

k0

c1 I1 (k0r) tan(ψ)− (a2 I0 (k0a) + b2 K0 (k0a))

−iωµ0

k0

[c2 I1 (k0a)− d2 K1 (k0a)] tan(ψ) = 0, (2.51)

iωε0

k0

a1 I1 (k0a) + c1 I0 (k0a) tan(ψ)− iωε0

k0

[a2 I1 (k0a)− b2 K1 (k0a)]

− (c2 I0 (k0r) + d2 K0 (k0r)) tan(ψ) = 0, (2.52)

a2 I0 (k0b) + b2 K0 (k0b)− (a3Ez31(b) + b3Ez32(b) + c3Ez33(b) + d3Ez34(b)) = 0, (2.53)

−iωµ0

k0

[c2 I1 (k0b)− d2 K1 (k0b)]− (a3Eθ31(b) + b3Eθ32(b) + c3Eθ33(b) + d3Eθ34(b)) = 0, (2.54)

c2 I0 (k0b) + d2 K0 (k0b)− (a3Hz31(b) + b3Hz32(b) + c3Hz33(b) + d3Hz34(b)) = 0, (2.55)

iωε0

k0

[a2 I1 (k0b)− b2 K1 (k0b)]− (a3Hθ31(b) + b3Hθ32(b) + c3Hθ33(b) + d3Hθ34(b)) = 0, (2.56)

a3Ez31(c) + b3Ez32(c) + c3Ez33(c) + d3Ez34(c)− (a4 I0 (k0c) + b4 K0 (k0c)) = 0, (2.57)

a3Eθ31(c) + b3Eθ32(c) + c3Eθ33(c) + d3Eθ34(c) +
iωµ0

k0

[c4 I1 (k0c)− d4 K1 (k0c)] = 0, (2.58)

a3Hz31(c) + b3Hz32(c) + c3Hz33(c) + d3Hz34(c)− (c4 I0 (k0c) + d4 K0 (k0c)) = 0, (2.59)

a3Hθ31(c) + b3Hθ32(c) + c3Hθ33(c) + d3Hθ34(c)− iωε0

k0

[a4 I1 (k0c)− b4 K1 (k0c)] = 0, (2.60)

a4 I0 (k0d) + b4 K0 (k0d) = 0, (2.61)

c4 I1 (k0d)− d4 K1 (k0d) = 0. (2.62)

These equations can be rewritten in the form

A. (a1, a2, a3, a4, b2, b3, b4, c1, c2, c3, c4, d2, d3, d4)
T = 0, where A =




A11 · · · A114

...
. . .

...

A141 · · · A1414




.

(2.63)
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There are two possible solutions:

(a1, a2, a3, a4, b2, b3, b4, c1, c2, c3, c4, d2, d3, d4)
T = 0,

or ∣∣∣∣∣∣∣∣∣∣∣

A11 · · · A114

...
. . .

...

A141 · · · A1414

∣∣∣∣∣∣∣∣∣∣∣

= 0.

Ignoring the trivial solution, it is necessary to determine a value of β such that
∣∣∣∣∣∣∣∣∣∣∣

A11 · · · A114

...
. . .

...

A141 · · · A1414

∣∣∣∣∣∣∣∣∣∣∣

= 0.

The numerical method that was employed to find a β value is described in section 2.8.

2.7 Losses

The losses in the helical structure arise from two parts.

1. The conductor loss. This is due to the conductivity of the metal helix and tube.

2. The dielectric or ferrite loss. This is due to the loss of the dielectric or ferrite.

However, a calculation of the power flow through the structure is required - for which the Poynting

vector needs to be introduced.

Electromagnetic waves carry energy through space. At any point in space, the flow of energy

can be described by a power density vector P. The vector P is called the Poynting vector, and is a

cross product of electric and magnetic field vectors. The total power passing through a surface S,

denoted by W, is obtained by integration over S, i.e

W =

∫

S

P · dS. (2.64)
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The Poynting vector for complex phasor representation is defined as

P =
1

2
R (E ∧H?) , (2.65)

where H? refers to the conjugate of H [13]. The total power flow ΠT is obtained by the sum of the

power flow in each region. Therefore,

ΠT = Π1 + Π2 + Π3 + Π4.

Letting

T1 = Er1H
?
θ1 − Eθ1H

?
r1, T2 = Er2H

?
θ2 − Eθ2H

?
r2, T3 = Er3H

?
θ3 − Eθ3H

?
r3, T4 = Er4H

?
θ4 − Eθ4H

?
r4,

then

ΠT =
1

2
R

∫

S1

T1 · dA +
1

2
R

∫

S2

T2 · dA +
1

2
R

∫

S3

T3 · dA +
1

2
R

∫

S4

T4 · dA. (2.66)

In cylindrical polar coordinates, the area of a region R is given by,

∫

R

dA =

∫
rdr

∫
dθ. (2.67)

Substituting (2.67) into (2.66) leads to

Π1 =
1

2

∫ 2π

0

dθ

∫ a

0

T1r dr, Π2 =
1

2

∫ 2π

0

dθ

∫ b

a

T2r dr, Π3 =
1

2

∫ 2π

0

dθ

∫ c

b

T3r dr, Π4 =
1

2

∫ 2π

0

dθ

∫ d

c

T4r dr.

Equations (2.49) - (2.62) represent the system of equations. Letting a1 = A, the other coefficients

can be written in terms of A. Therefore, equation (2.66) can be calculated in terms of a single

constant, A.

2.7.1 The Conductor Loss

A general expression for a wave propagating in the direction of the positive z-axis is

e−iβz.
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Due to attenuation, the amplitude of the wave will decay exponentially. Therefore, letting α represent

the attenuation coefficient, the wave will have the expression

e−iβze−αz,

where the minus sign indicates a decay. If a wave is represented by the term Π0, the modelling of

attenuation can be included to give

ΠT = Π0 e−αz,

where ΠT is the expression of the wave with attenuation. Then

α = − 1

ΠT

d

dz
ΠT .

Letting

d

dz
ΠT =

d

dz
Π1 +

d

dz
Π2,

such that

d

dz
Π1 = 2πaPL1 and

d

dz
Π2 = 2πbPL2,

where PL1 and PL2 are the power loss per unit area in the structure and are determined by the

Poynting vectors S1 and S2. The expression 2πa is the circumference of the metal helix, and 2πd is

the circumference of the metal waveguide. The expressions 2πaPL1 and 2πdPL2 correspond to the

loss that is contributed by the metal helix and waveguide, respectively. Letting n be a unit vector

normal to the direction of propagation, and Rs be the surface resistance, then

E = Rs(n ∧H).

Hence,

Ez = RsHθ and Eθ = −RsHz.

Therefore2,

PL =
1

2
Rs

(|Hθ|2 + |Hz|2
)
.

2[20], equation (4)
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Rs is given by

Rs =
√

πµρf.

PL1 is the loss due to the helix. This is comprised of the loss from the inside and outside of the helix.

This gives

PL(inside helix) =
1

2
Rs

(|Hθ1(a)|2 + |Hz1(a)|2) , PL(outside helix) =
1

2
Rs

(|Hθ2(a)|2 + |Hz2(a)|2) .

Therefore,

PL1 =
1

2
Rs

(|Hθ1(a)|2 + |Hz1(a)|2) +
1

2
Rs

(|Hθ2(a)|2 + |Hz2(a)|2) .

Letting ρ1 be the resistivity of the helix and Rs1 be the surface resistance of the helix. Thus

Rs1 =
√

πµ0ρ1f.

Therefore,

PL1 =
1

2
Rs1

(|Hθ1(a)|2 + |Hz1(a)|2) +
1

2
Rs1

(|Hθ2(a)|2 + |Hz2(a)|2) .

PL2 is the loss due to the metal wall. This has the expression

PL2 =
1

2
Rs

(|Hθ4(d)|2 + |Hz4(d)|2) .

Letting ρ2 be the resistivity of the metal wall and Rs2 be the surface resistance of the metal wall.

Thus,

Rs2 =
√

πµ0ρ2f.

Therefore,

PL2 =
1

2
Rs2

(|Hθ4(d)|2 + |Hz4(d)|2) .

Therefore,

α = − 1

ΠT

d

dz
ΠT = −2πaPL1 + 2πdPL2

ΠT

= − 2π (aPL1 + dPL2)

Π1 + Π2 + Π3 + Π4

.
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Expanding the denominator gives,

α = − 2aPL1 + 2dPL2∫ a

0
rS1dr +

∫ b

a
rS2dr +

∫ c

b
rS3dr +

∫ d

c
rS4dr

.

Expanding the numerator gives,

α = −
√

πµ0f

Υ

[
a
√

ρ1

(|Hθ1(a)|2 + |Hz1(a)|2 + |Hθ2(a)|2 + |Hz2(a)|2) + d
√

ρ2

(|Hθ4(d)|2 + |Hz4(d)|2)] ,

(2.68)

where

Υ =

∫ a

0

rS1dr +

∫ b

a

rS2dr +

∫ c

b

rS3dr +

∫ d

c

rS4dr.

Equation (2.68) is important will be discussed further in chapter 4.

2.7.2 The Ferrite Loss

The loss from the ferrite (i.e. from region 3) can be obtained by assuming a complex valued

propagation constant. Letting

β = R− I i

gives the expression e−iβz as

e−iβz = e−i(R−I i i)z = e−Riz−Iz = e−Ize−Riz.

The imaginary part of the propagation constant gives the loss in the ferrite.

The loss from the ferrite can be either the dielectric loss or the magnetic loss. The dielectric

loss can be obtained by assuming a complex-valued permittivity constant.

ε = ε (1− tan(δ)i) ,

where tan(δ) is referred to as the dielectric loss tangent. The magnetic loss can be obtained by

assuming a complex-valued permeability constant.

µ = µ (1− tan(δ)i) ,
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where tan(δ) is referred to as the magnetic loss tangent. From the above, the total axial propagation

constant

α0 + i β

can be obtained, where α0 and β represent the attenuation constant resulting from the dielectric loss

and the phase propagation constant, respectively [34]. If α1 denotes the attenuation coefficient result-

ing from the metal helix, α2 denotes the attenuation coefficient resulting from the metal waveguide,

a total attenuation coefficient α can be obtained [34]. This is given by

α = α0 + α1 + α2.

2.8 Numerical Methods

This section deals with the numerical methods that were employed in the numerical program to

arrive at a value of β. The methods outlined below were particularly useful in showing certain

properties of the helical structure.

2.8.1 Phase Propagation Constant

The derivation of equation (2.63) shows how establishing the governing equations in matrix form

gives,

Ax = 0,

where x represents the column vector of constants and 0 represents the zero column vector. To

obtain a non-trivial solution,

det(A) = 0.

However, the determinant of the matrix A, is a function of β. Therefore, letting

det(A) = f(β),
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a solution for the equation

f(β) = 0

is sought.

2.8.2 Real-Valued Constants

When ε and µ of the dielectric are real-valued, or κ, ε and µ of the ferrite are real-valued, this

resulted in a real-valued propagation constant, i.e.

if ε ε R, µ ε R and κ ε R ⇒ β ε R.

When ε, µ and κ are all real quantities, f(β) was purely imaginary. Therefore,

if β ε R, f(β) = x i, where x ε R.

This shows that if ε, µ and κ are all real, the structure does not model the ferrite loss. In order to

seek a zero determinant, β can be assumed to be real and an iterative technique was employed. The

iterative technique that was used was the bisection method.

Bisection Method

A method of finding an approximation to a root of the equation f(x) = 0 is to find an interval

[a, b] in which the root lies and then to take the mid-point a+b
2

of the interval as a first approximation

to the root [35]. When this is done, the root will either lie in the left-hand interval
[
a, a+b

2

]
or in the

right-hand interval
[

a+b
2

, b
]
. By selecting the mid-point in the correct interval, the interval containing

the root will decrease. By repeating this iterative method, the accuracy of the root can be improved.
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2.8.3 Complex-Valued Constants

Until this point, ε, µ, κ and β were assumed to be real. In order to calculate the losses in the

dielectric or ferrite, the permittivity will take the form,

ε′r = εr (1− tan(δ) i) ,

thus ε ε C. This changes the determinant to a complex-valued number. Thus

f(β) = F (β) + G(β) i, where F(β) ε R, and G(β) ε R.

In order for f(β) = 0, it is necessary for both F (β) = 0 and G(β) = 0. Letting β be a complex

number of the form,

β = x + y i, where x,yεR,

and seeking a solution to the equations,

F (x, y) = 0 and G(x, y) = 0.

A method of solving these equations, Newton’s method can be employed. The method is shown here.

Using the Taylor Series,

0 = F (x + δx, y + δy) ≈ F (x, y) + δx
∂F

∂x
+ δy

∂F

∂y
,

0 = G(x + δx, y + δy) ≈ G(x, y) + δx
∂G

∂x
+ δy

∂G

∂y
,

and calculating the partial derivatives as follows,

Fx =
F (x + X, y)− F (x−X, y)

2X
, Fy =

F (x, y + Y )− F (x, y − Y )

2Y
,

Gx =
G(x + X, y)−G(x−X, y)

2X
, Gy =

G(x, y + Y )−G(x, y − Y )

2Y
.

These expressions can be used to calculate the Jacobian matrix J.

J =




Fx Fy

Gx Gy



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Therefore, 


X

Y


 = −J−1




F (x, y)

G(x, y)


 .

Therefore, the following iterative formula is arrived at,




xn+1

yn+1


 =




xn

yn


 +




Xn

Yn


 .

The above method is referred to as Newton’s method [36]. The resultant x and y are used to obtain

the propagation constant given below.

β = x + y i.

x is always positive and y is always negative. Therefore, the propagation can be expressed as

β = β − α i,

where β and α are positive numbers. The E and H fields can be written as,

E =
[
Er(r)r̂ + Eθ(r)θ̂ + Ez(r)ẑ

]
ei(ωt−βz) =

[
Er(r)r̂ + Eθ(r)θ̂ + Ez(r)ẑ

]
eiωte−iβze−αz.

H =
[
Hr(r)r̂ + Hθ(r)θ̂ + Hz(r)ẑ

]
ei(ωt−βz) =

[
Hr(r)r̂ + Hθ(r)θ̂ + Hz(r)ẑ

]
eiωte−iβze−αz.

The additional term e−αz represents exponential decay along the z-axis in the positive direction.

2.9 Computational Methods

The programs that are written in this investigation can be divided into two parts: the program

that generates the propagation coefficient, β, which is done in MATLAB, and the program that

generates the attenuation coefficient, α, which is done in MAPLE. Both of these programs are given

in Appendix D. A brief outline of the programs is given below.
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2.9.1 MATLAB

The program begins by defining the constants, (e.g. µ0, µ, κ, ε etc). The 14 × 14 matrix, denoted

by A, is then entered. Finally, the determinant is calculated. The bisection method is then used to

improve the accuracy of the answer.

2.9.2 MAPLE

As in the previous case, this program begins by defining the constants. The program then formu-

lates expressions to all of the constants in terms of a1. This is achieved by using equations (2.49)

- (2.62). After this, the Poynting vector is calculated and is expressed in terms of a1. Equation

(2.68) is calculated and the value of α is arrived at. Since both the numerator and denominator are

expressed as a multiple of a1, α is independent of a1.

2.10 Summary

This chapter took a detailed look at the model considered in this study. The geometrical structure

and modelling assumptions were examined closely. The governing equations, boundary conditions

and field solutions were derived, and expressions formulating the methods for calculating the losses

in the structure were calculated. Other expressions and ideas were introduced such as dielectric and

magnetic loss tangents. Due to the complexity of the system of equations, some time was spent in

obtaining a model that produced accurate and reliable results. However, as will be shown in the next

chapter, the results that were produced from the current study compare very well with those that

are present in the published literature.



Chapter 3

Verification of the Model

3.1 Introduction

Chapter 2 formulated the model used in this thesis.. This chapter compares the results from the

model with those in the literature. Parameters that are used for comparison are the propagation

constant and the attenuation coefficient. Although the attenuation coefficient has never before been

calculated for a ferrite loaded helical device, a helix surrounded by a dielectric has been considered

previously. When comparing the values of the attenuation coefficient against other results in the

literature, it is necessary to model the ferrite as a dielectric. This is achieved by letting (i) κ = 0,

and (ii) µ = µ0. Condition (i) ensures that the non-reciprocal behaviour is removed, and condition

(ii) models the ferrite as an isotropic substance of permeability µ0, (i.e. a dielectric).

Many authors have considered the case of a helix supported by dielectric rods surrounded by

a metal waveguide. This was principally done in order to develop models to calculate propagation

constants and losses in TWT’s. In figure 3.1, a0 is the inner radius of the metal helix, a is the mean

radius of the helix, b1 is the outer radius of the helix, and b is the radius of the waveguide. The three

dielectric support rods are modelled as an equivalent dielectric-tube region of an effective relative

permittivity, εeff , into which the discrete dielectric-supports are smoothed out, see figure 3.2. This
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is divided into three regions: 1) the free space region inside the helix, 0 < r ≤ a; 2) the free space

gap between the mean and outer helix radii, a < r ≤ b; 3) the region between the outside of the

helix and the metal waveguide, b < r ≤ b1. If the permittivity of a single dielectric rod is denoted

by εr, the effective permittivity of the assumed dielectric tube is given by

εeff = 1 + m (εr − 1)
As

A
, (3.1)

where As is the cross-sectional area of a single dielectric rod, A is the cross-sectional area of the

region b1 < r < b and m is the number of dielectric support rods. Figure 3.3 shows the structure

that is modelled with the dielectric tube having a permittivity of εeff . This assumption has been

used by many authors; Duan et al [22] and [25], Gilmour et al [19] and Lopes and Motta [21] are a

few examples. In the following sections, the results generated from our model will be compared to

results in previously published papers.

Figure 3.1: Cross-section of structure [22].

3.2 Comparison to a Dielectric

This section deals with comparison of results that are generated from the numerical program to

previously published ones, where the model is of a helix surrounded by a dielectric tube. In most

cases, the model is considered lossless by setting the permittivity to be a real number. Where the
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Figure 3.2: Equivalent cross-section of structure [22].

Figure 3.3: Model of helix used in analysis (dielectric).

dielectric loss is modelled, the permittivity is a complex value.

Firstly, the propagation constant is compared to previously published results. Duan et al [22]

considered the case of a metal helix supported by three dielectric rods. These rods were modelled

as a lossless dielectric tube between the helix and the waveguide. An effective permittivity for the

tube was calculated by using equation (3.1). Duan’s [22] model also included an air gap between

the metal helix and the dielectric. The analysis in the paper used the tape and sheath helix models

and considered experimental results. Table 3.1 gives the results that were presented in the paper

together with results that are generated from the numerical program.

Although this model uses the sheath helix assumptions, the results agreed very well with those

of the tape helix [22]. The final column shows that the difference between the tape helix and the

current model is very small; the largest difference being less than 0.5%. This is an extremely good
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Table 3.1: Comparison of results from Duan et al [22] with results generated from numerical program.

f β β β β % difference

(Tape Helix) (Experimental Results) (Sheath Helix) (Current Model) between

(GHz) (Radian/m) (Radian/m) (Radian/m) (Radian/m) Current Model

[22] [22] [22] and Tape Helix

4 479.57 480.2 577.86 481.76 0.457

6 746.52 753.9 903.43 749.20 0.359

8 1029.4 1051.2 1251.4 1030.48 0.105

10 1316.7 1343.2 1608.6 1314.94 0.134

agreement. Although the tape helix model is more sophisticated than the sheath helix, which yields

a greater level of accuracy, the propagation constants in the case that is considered here agree very

well. Table 3.1 shows that the tape helix, experimental results and results from the current model

all give similar results to each other. However, the column based on the sheath helix model differs

substantially from the others. This difference can be explained if the assumptions that are used in the

sheath helix model are carefully examined. The sheath helix model in [37] was based on Swifthook’s

model [24]. Figure 3.4 shows the model that was used by Swifthook et al [24]. Region 1 refers to

the region of air inside the metal helix, region 2 refers to the free space between metal helix and

the dielectric, region 3 refers to the dielectric region and region 4 refers to the region outside the

structure. One important assumption that was used in the sheath helix model used by Swifthook

[24], is that the radial propagation constant was approximately the same in each region. The radial

propagation constant in air is given by

k2
0 = β2 − ω2

c2
,

and a general expression for the radial propagation constant in each region is given by

k2
n = β2 − εn

ω2

c2
.
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Figure 3.4: Cross-section of Swifthook’s model [24] .

This assumption assumed that kn ≈ k0. However, the current model assumes that every region has

a different propagation constant. This could account for the large discrepancy between the results

from the sheath helix [22] model and the other sets of results.

Secondly, the attenuation coefficient is considered. Gilmour et al [19] investigated the case of a

metal helix supported by dielectric rods. The structure was enclosed inside a metal barrel. The rods

were modelled as a lossless dielectric tube, see figure 3.3. The dimensions that were used in [19] are

given in Table 3.2.

Figures 3.5 - 3.10 show how the loss in the structure is affected by varying certain parameters

such as; helix radius, helix pitch, barrel to helix diameter ratio, helix resistivity, barrel resistivity and

effective dielectric constant of support rods. All of these are compared with the results generated

from the current model. The results show a good agreement with the maximum difference between

the results of [19] and the current model being always less than 10%.
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Table 3.2: Parameters for the model in [19]

Helix pitch 0.141 cm

Helix radius 0.12 cm

Barrel to helix diameter ratio 2.0

Helix resistivity 2.5 × 10−6 Ω cm

Barrel resistivity 2.5 × 10−6 Ω cm

Effective relative dielectric

constants of support rods (εeff ) 1.5
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Figure 3.5: Loss against frequency for different values of pitch from model. A comparison of [19]

(dashed line) with the model (solid line).
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Figure 3.6: Loss against frequency for different values of barrel to helical diameter ratio from model.

A comparison of [19] (dashed line) with the Model (solid line).
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Figure 3.7: Loss against frequency for different values of helix radius from model. A comparison of

[19] (dashed line) with the Model (solid line).
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Figure 3.8: Loss against frequency for different values of effective relative dielectric constant of

support rods from model, A comparison of [19] (dashed line) with the Model (solid line).
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Figure 3.9: Loss against frequency for different values of helix resistivity from model. A comparison

of [19] (dashed line) with the model (solid line).
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Figure 3.10: Loss against frequency for different values of waveguide resistivity from model. A

comparison of [21] (dashed line) with the model (solid line).
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Table 3.3: Parameters used in experimental results in [19]

Helix pitch 0.141 cm

Helix radius 0.111 cm

Barrel-to-helix diameter ratio 2.02

Effective relative dielectric

constant of support rods 1.9

Gilmour et al [19] also produced experimental results for the losses in the structure. The helical

structure that was used had the characteristics given in table 3.3. Gilmour commented that accurate

experimental results were very difficult for two main reasons:

• The loss was relatively low (∼ 0.5 dB): Therefore, it was necessary to take precautions in order

to eliminate even small losses in transmission lines, connectors and other equipment that were

used to obtain measurements.

• The impedance of the helical structure was a function of frequency: Figure 3.11 shows how the

impedance varies with frequency for this system, (where the effective dielectric constant of the

structure was 1.9). The measurement apparatus had an impedance of 50 Ω. This was matched

at approximately 8 GHz, (see figure 3.11).

Gilmour et al [19] plotted the simulated and intrinsic loss. The simulated loss represented the loss

that was measured experimentally. However, above and below 8 GHz, the impedance mismatched

at the connections to the helix caused multiple reflections of signals in the structure and in some

of the components in the measurement apparatus. This resulted in the simulated loss to be higher

than expected. The loss that would have occurred in the absence of these reflections is referred to

as the intrinsic loss. The simulated loss was compared with the intrinsic loss for a helical structure

with a copper plated helix and barrel of resistivity 4 × 10−6 Ω cm. In figure 3.12, the two curves
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are tangential at 8 GHz because the impedances were matched. The graph also shows shows how

these results compare with the results produced from the current model. The difference between the

intrinsic results and current model is always less than 10%.

Figure 3.11: Impedance as a function of frequency [19].
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Figure 3.12: Loss as a function of frequency. A comparison of intrinsic loss (dashed line), simulated

loss (crossed line) and loss from current model (solid line).



3.2 Comparison to a Dielectric 75

Lopes and Motta [21] used the tape helix to analyse the same structure and produced graphs

showing how the loss in the structure varied with frequency when certain parameters within the

model were varied. These parameters were: helical radius, helical pitch, guide-to-helix diameter

ratio, helix resistivity, guide resistivity and effective relative dielectric constants of support rods.

The dimensions that were used in [21] are given in table 3.4.

Table 3.4: Parameters for model in [21]

Parameter Symbol Numeric Value

Helix pitch p 1.25 mm

Helix radius a 1.09 mm

Guide to helix diameter ratio r = b/a 1.63

Helix resistivity ρ1 2.5 × 10−5 Ω mm

Guide resistivity ρ2 2.5 × 10−5 Ω mm

Effective relative dielectric

constants of support rods εr 1.78

When the same structure is analysed using the current model, the following results are produced,

figure 3.13 - 3.18. Although there is a good agreement between the two sets of results, the current

model generates results which are approximately 12% higher than [21]. Even though this is not a

large difference, even this discrepancy can be explained. The current model uses the sheath helix

assumptions, of which one is that the metal helix is modelled as a cylinder. The gaps between

the winding are not taken into consideration, thus the helix is treated as a cylinder. A cylinder

has a greater quantity of metal in comparison to a corresponding helix of the same radius and

length. This results in the sheath helix giving a larger value for the conductor loss of the helix at a

particular frequency then the actual metal helix. As the tape helix incorporates these gaps between

the windings, a more accurate value for the conductor loss from the helix is generated. Therefore,
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the sheath helix will give a larger value for the overall loss from the structure than the tape helix.

As the frequency increased, the agreement decreases. This can be explained in the following way:

Whilst the sheath helix agrees well at low frequencies, the accuracy of the model decreases as the

frequency increases. This can be understood by considering the assumption that the helical pitch is

significantly less than the wavelength (p << λ).

As,

λ =
c

f
,

the inequality becomes

p <<
c

f
.

As f increases, the term on the right-hand side of the inequality will decrease, the strength of the

inequality will also decrease. Therefore, an increase in frequency will lead to a decrease in the

accuracy of the sheath helix model. If the graphs for both the sheath and tape helix were to be

extended over a larger frequency range, it is expected that the two lines will diverge.

Figure 3.14, which considered the variation in helical pitch, also illustrates an example of this

assumption. When the helical pitch increases from 1.25 mm to 1.454 mm, the agreement between

the current results and the tape helix [21] slightly decreases. For example, at a frequency of 5 GHz,

a helical pitch of 1.25 mm gives an error in agreement of 5.6%, whilst a helical pitch of 1.454 mm

gives an error in agreement of 11%. This can also be explained by the the assumption that (p << λ).

As the pitch increases, the left-hand side of the inequality will increase, thus the strength of the

inequality will also decrease. Therefore, an increase in pitch will lead to a decrease in the accuracy

of the sheath helix model.
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Figure 3.13: Loss against frequency for different values of helical radii from current model. A

comparison of [21] (dashed line) with the current model (solid line).
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Figure 3.14: Loss against frequency for different values of helical pitches from current model. A

comparison of [21] (dashed line) with the current model (solid line).



3.2 Comparison to a Dielectric 78

5 6 7 8 9 10 11 12 13
0.1

0.15

0.2

0.25

0.3

0.35

Frequency (GHz)

α 
(d

B
/in

)

r = 1.63 

5 6 7 8 9 10 11 12 13
0.1

0.15

0.2

0.25

0.3

0.35

Frequency (GHz)

α 
(d

B
/in

)

r = 1.8 

Figure 3.15: Loss against frequency for different values of guide to helical diameter ratio from current

model. A comparison of [21] (dashed line) with the current model (solid line).
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Figure 3.16: Loss against frequency for different values of barrel resistivity from current model. A

comparison of [21] (dashed line) with the current model (solid line).
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Figure 3.17: Loss against frequency for different values of helix resistivity from current model. A

comparison of [21] (dashed line) with the current model (solid line).
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Figure 3.18: Loss against frequency for different values of effective relative dielectric constant of

support rods from current model. A comparison of [21] (dashed line) with the current model (solid

line).
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Duan et al [25] considered the case of a metallic helix supported by dielectric support rods. In

this paper, the dielectric support rods were modelled by continuous dielectric tubes into which the

discrete supports were smoothed out, figure 3.19. The effective complex relative permittivity of the

k-th layer can be expressed as

ε
(k)
r,eff = 1 + (ε

′(k)
r − 1) m

A
(k)
s

A(k)
,

where A
(k)
s and A(k) denote cross-sectional area of the k-th layer of a single dielectric rod and the

cross-sectional area of the k-th layer respectively. The complex relative permittivity of the discrete

dielectric rods is given by

ε
′(k)
r = ε

′(k)
r (1− i tan δ),

where εr is the relative permittivity, tan δ is the loss tangent and m is the number of the dielectric

rods, [25]. As the permittivity was complex, the propagation constant that was calculated by the

model was also a complex-valued number.

Duan et al [25] calculated the attenuation coefficient for the same structure, see figure 3.19. In

the case of tan(δ) → 0, the results from Duan et al [25] compare well with Chernin et al [38]. The

parameters of this structure are taken from Dayton et al [39]. Figure 3.20 shows a good agreement

between the current model and [25]. At lower values of the loss tangent, the error in the agreement

is less than 10%. At log10 (tan(δ)) = −1, the difference is 18.6%. However, a tan(δ) value of -1 would

indicate a very lossy material. The results from the model were consistently higher than those in

[25]. This can be understood by considering two assumptions in the model.

• The current model assumes a sheath helix structure: As mentioned earlier, this models the helix

as a cylinder - thus modelling a greater quantity of metal. The conductor loss that is contributed

from the metal helix will be less than that from a corresponding cylinder. Therefore, the attenuation

coefficient from the current model is higher than that of the tape helix, [25].

• The model assumes the dielectric rods as a single layer, whereas [25] assumed many continuous

layers: An increased number of layer will increase the accuracy of the model. However, increased
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accuracy by the addition of a layer will decrease until subsequent layers will produce so small a

difference, they can be dispensed with. Despite the presence of these two factors, the results from

the model agree well with [25].

Figure 3.19: Cross-section of Helical Structure with regions of dielectric.
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Figure 3.20: Attenuation constant versus loss tangent at f = 70 GHz. A comparison of [25] (dashed

line) and current model (solid line).
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3.3 Comparison to a Ferrite

A helix surrounded by a ferrite has not been considered by many authors. From the few authors

that have, various assumptions were made that do not lend themselves for comparison with the

current model. Suhl and Walker [8] modelled a helix surrounded by a ferrite of infinite thickness.

The paper also made simplifying assumptions with reference to the mathematical expressions and

equations. Ivanov and Koster [28] and [29] considered the case where µ = µ0. This assumption is

only valid for frequencies very far from that of GMR. However, for frequencies that far from that of

GMR, the value of κ is very small - thus the phase shift is minimal and the ferrite behaves like a

dielectric. Therefore, only the work by Secklemann [27] is used to compare with the current model.

This section considers how the current model compares with a helix surrounded by ferrite. Seckle-

mann [27] considered the case of a metal helix surrounded by a ferrite tube. The ferrite was assumed

to be lossless and azimuthally biased. The comparison is displayed on a dispersion curve, see figure

??. The results agree well. However, as the the values on the x-axis increase, the agreement becomes

less strong. This relates to the sheath helix assumption p << λ. As tan(ψ) = p/2πr0, the assumption

can be expressed as

r0

cot(ψ)
<< λ.

As r0/ cot(ψ) increases, the the inequality becomes less strong. Therefore, as the value on the x-axis

increases, the accuracy of the sheath helix model decreases, thus the graphical agreement becomes

less strong.

Secklemann [27] also provided some experimental results to verify the theoretical calculations. The

graph containing experimental data has been reproduced in figure 3.22. The experimental data, which

are shown as point on the graph, lie on the curve plotted using the theoretical calculations. As figure

3.21 shows a good agreement between the current study and Secklemann’s model, and figure 3.22

shows a very good correlation between the theoretical and experimental results of Secklemann [27],
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it can be concluded that the results of the current study compare well to the practical measurement

plotted by Secklemann [27].
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Figure 3.21: Dispersion curve. A comparison of [27] (solid line) with current model (dashed line).

3.4 Summary

This chapter investigated the accuracy and reliability of the model. This was achieved by com-

paring the model with results from previously published work. The propagation constant and atten-

uation coefficient for a helix surrounded by dielectric have been calculated before, and this served

as comparative material with the model. The propagation constant for a helix surrounded by an

azimuthally biased lossless ferrite have been calculated previously, and this was compared with the

results from the model. Generally, the results agreed very well with those of the model, but any

slight discrepancies between the model and previously published results have all been accounted for.

Thus, having ascertained the accuracy and reliability of the model, the investigation can be extended

to consider situations that have not been analysed previously. The next chapter does this and a full

analysis of these new situations are investigated.
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Figure 3.22: Dispersion curve [27].



Chapter 4

Results

4.1 Introduction

The previous chapter examined the accuracy and reliability of the current model. This chapter

discusses how the the model can be used to calculate certain properties of the helical structure,

such as; the attenuation coefficient (α), the propagation constant (β) and other quantities. This

chapter then investigates how these quantities are affected by changing certain parameters within

the structure.

A quantity of particular interest in the structure is the phase shift1. The differential phase shift

is given by

4Φ = 4β P L
√

εf , (4.1)

where Φ is given in radians per length. P is the polarising function and is calculated by,

P (ω) = sin
(ω

c

√
εf l0

)
with l0 ≈ 2πr0,

where c is the velocity of light in free space, εf is the effective relative dielectric constant for the

ferrite and r0 is the radius of the helix. L is the length over which the phase shift is measured. There

1Section ?? introduces the differential phase shift.
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are different ways of considering this longitudinal quantity, one of which is the quarter wavelength.

The wavelength can be expressed as either the free space wavelength; denoted by λ, or the electrical

wavelength; denoted by λg. The free space wavelength λ is defined by

λ =
c

f
,

where c is the velocity in free space. The electrical wavelength is given by

λg =
c′

f
,

where c′ is the velocity of the wave in the structure. λg can be obtained by the expression

β =
2π

λg

.

Another way of considering the longitudinal quantity L is the length over which the wave is attenuated

by 1 dB. Initially, this loss will be purely from the metal helix and the waveguide2. When the the

loss in the ferrite is taken into consideration, the overall loss quantity will include both the metallic

loss and the ferrite loss.

4.2 Application of Numerical and Computational Methods

This section illustrates how the model can be used to investigate certain properties of the struc-

ture. In this particular example, a commercially available ferrite is selected. This has a saturation

magneisation of 680 Gauss and a relative permittivity of 14.5. The particular ferrite is available

from Transtech3 and the dimensions of the structure are those that have been adopted by Duan et

2The chapter progresses in the complexity of the model. Therefore, initially, only the metallic loss is considered.

Here, the quantities µ and εf are real quantities. Then the ferrite loss will be taken into consideration. Here, µ and

ε can take complex values. Although, as will be shown, the contribution made to the loss from the ferrite is very

minimal.
3Transtech: Ceramics and Advanced Material
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al [22]. A side view of the helical structure is shown in figure 4.1 and a cross-sectional view is shown

in figure 4.2, where the innermost circle represents the helix. The parameters of the helical structure

are given in table 4.1.

The selection of material with a suitable saturation magnetisation is dependent upon the mi-

crowave frequency, and three operational modes can be considered: below resonance, resonance and

above resonance [1]. The terms below resonance and above resonance refer to the magnetic operating

point relative to GMR [1]. The magnetic operating points are opposite in reference to the operating

points in the frequency domain [1]. The region below resonance corresponds to frequencies higher

than GMR, whilst the region above resonance corresponds to frequencies lower than GMR [1].

To avoid low field losses, the saturation frequency should be chosen such that the ferrite is fully

biased. To meet this condition, the following inequality is required,

4πMs <
ω

γ
−Hα, (4.2)

where, Hα is the anisotrophy field associated with the particularly material that is selected [40].

Typically, Hα is on the order of 100 Oe [1]. The maximum usable value of 4πMs varies linearly

with frequency [1]. Equation (4.2) can be used to determine the power handling and bandwidth of

a device. For a given impedance-matching circuit, a lower 4πMs will lead to a narrower bandwidth.

For a below resonance device, a lower 4πMs value will increase the peak power handling capability

[1].
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Parameter Symbol Numerical Value

Helical radius a 1.465 mm

Ferrite (inner radius) b 1.59 mm

Ferrite (outer radius) c 2.92 mm

Waveguide radius d 2.921 mm

Pitch angle ψ 9.5◦

Relative permittivity of ferrite εr 14.5

Helical resistivity ρ1 2.5 × 10−8 Ω m

Waveguide resistivity ρ2 2.5 × 10−8 Ω m

Saturation Magnetisation 4πMs 0.068 T

Applied Magnetic Field H0 55 kA m−1

Table 4.1: Parameters of helical structure

Figure 4.1: Helical structure
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Figure 4.2: Cross-section of Helical Structure
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The quantity referred to as saturation magnetisation can be used to determine the particular

frequency at which GMR occurs in the ferrite. This value of GMR is dependant on saturation

magnetisation and the degree of saturation of the ferrite, the latter is related to the applied magnetic

field. Initially, the ferrite is assumed to be completely saturated. When the relative values of µ and

κ are plotted against frequency, the following graphs are obtained: figure 4.3 and 4.4. These graphs

show that the GMR occurs at 1.9 GHz. These graphs are obtained using the expressions of µ and κ

given in chapter 1. Considering these expressions further,

µ = 1− γ2H0M0

γ2H2
0 − ω2

and κ =
|γ|ωM0

γ2H2
0 − ω2

,

both µ and κ approach a singularity at

ω = γH0.

For the values given above, this frequency occurs at 1.9 GHz, (coinciding with the graphical represen-

tations of µ and κ). Letting fg denote the frequency at which GMR occurs, f ′ represent a frequency

below fg and f ′′ represent a frequency above fg, then as

f ′ → fg, µ →∞ and κ → −∞, (4.3)

and as

f ′′ → fg, µ → −∞ and κ →∞. (4.4)

Figures 4.3 and 4.4 show how µ and κ behave as the frequency approaches that of GMR. The graphs

correspond to equations (4.3) - (4.4). Practically, the values of µ and κ will not approach ±∞ but

will approach a very large or very small value due to the losses that are present in the ferrite. As the

frequency increases, the value of κ also increases.
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When a wave travels through a particular device, it is desirable to calculate how

dispersive it is. The values of the dispersion of both the forward and backward directions

are given in figure 4.6. The dispersion D for both of these waves can be calculated by

using the dispersion formula,

D =
2πc

λ2

d2β

dω2
. (4.5)

The second derivative of β with respect to ω can be obtained numerically using the

approximation.

d2β

dω2

∣∣∣∣
ω=ωn

≈ βn+1 + βn−1 − 2βn

∆ω2
. (4.6)

The dispersion is measured in nanosecond per radian square metre, (ns m−2/rad).

The attenuation coefficient α of the structure is shown in figure 4.7. The graph shows that as

the frequency increases, the value of α increases4. From figure 4.7, it appears that α ∝
√

f . The

graph shows that at 0.5 GHz, α ≈ 2.35 db/m and that at 1.5 GHz, α ≈ 4.13 db/m. The increase

in frequency from 0.5 GHz to 1.5 GHz is by a factor of 3; the square root of which is 1.732. The

numerical results show that α increased by a factor of 1.757 over the same frequency range.

The phase shift in the structure is shown in figures 4.8 - 4.10. Figure 4.8 shows the phase shift in

degrees per quarter wavelength - where the wavelength is free space is λ. Figure 4.9 shows the phase

shift in degrees per quarter wavelength - where the wavelength is the electrical wavelength, λg. The

values of α in figure 4.9 are consistently less than the corresponding values in figure 4.8. The length

over which the phase shift is measured is different in each figure. Figure 4.11 shows the magnitude

of the free space wavelength is approximately 11 times greater than that of the electrical wavelength.

This coincides with the fact that the phase shift measured in (deg/(λg/4)) is approximately 11 times

less than the phase shift that is measured in (deg/(λ/4)). This is shown in figures 4.8 and 4.9. Figure

4.10 express the phase shift in degrees per dB loss. This loss is the metallic loss from the helix and

4Initially, α is only metallic loss. It will be shown later that when α comprises of metallic and ferrite loss, the

ferrite loss is very small compared to the metallic loss.



4.2 Application of Numerical and Computational Methods 94

waveguide. All of these graphs show that an increase in frequency leads to an increase in phase shift.

The phase shift in a structure is related to the magnitude of κ. Figure ?? shows that this increases

as the frequency approaches that of GMR. Equation (4.1) shows that the phase shift depends on

4β. Figure 4.12 show that this increases with frequency. Both of these quantities contribute to the

phase shift in the structure.
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Figure 4.5: Dispersion Curves for a saturated ferrite. The propagation constant in the forward

direction (solid line) and backward direction (dashed line) are shown.
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Figure 4.6: The dispersion of the forward (crossed) and backward wave (circled).
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Figure 4.7: Attenuation coefficient of the structure. The attenuation, α (dB/m), consists solely of

conductor loss.
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Figure 4.8: Phase Shift (degrees per quarter free space wavelength) for a saturated ferrite.
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Figure 4.9: Phase Shift (degrees per quarter electrical space wavelength) for a saturated ferrite.
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Figure 4.10: Phase Shift (degrees per dB of attenuation) for a saturated ferrite. The attenuation,

α (dB/m), consists solely of metallic contribution.
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The resistivity of the metal helix and waveguide are both 2.5 × 10−6 Ω cm. Figure 4.13 shows

how the phase shift varies for different values of helical resistivities. The graph indicates that an

increase in helical resistivity leads to a decrease in phase shift. These values are shown in table

4.2. Figure 4.14 shows how the phase shift varies for different values of the waveguide resistivity.

These values are shown in table 4.3. Therefore, in both cases, an increase in helical or waveguide

resistivity leads to a decrease in phase shift. However, the change is much greater in the variation of

helical resistivity than in the variation of waveguide resistivity. The explanation for these requires

consideration of equation (2.68). This is reproduced here.

α = −
√

πµ0f

Υ

[
a
√

ρ1

(|Hθ1(a)|2 + |Hz1(a)|2 + |Hθ2(a)|2 + |Hz2(a)|2) + d
√

ρ2

(|Hθ4(d)|2 + |Hz4(d)|2)] ,

(4.7)

where

Υ =

∫ a

0

rS1dr +

∫ b

a

rS2dr +

∫ c

b

rS3dr +

∫ d

c

rS4dr.

Firstly, an increase in helical or waveguide resistivity, (ρ1 or ρ2), leads to an increase in α. An

increase in α implies that over a length of 1 metre, the wave is attenuated to a greater extent.

Therefore, there is a decrease in the length over which the wave is attenuated by 1 dB. As this length

decreases, the phase shift also decreases. Secondly, the change in α is much greater in the variation

of helical resistivity than in the variation of waveguide resistivity. In equation (4.7), the magnetic

field components that are calculated are all expressed as Bessel functions. These field components

are greater in quantity nearer the origin. Therefore,

|Hθ1(a)|2 + |Hz1(a)|2 + |Hθ2(a)|2 + |Hz2(a)|2 > |Hθ4(d)|2 + |Hz4(d)|2 .

A variation in the helical resistivity, ρ1, leads to a greater variation in α than a corresponding

variation in the waveguide resistivity, ρ2.

So far, the discussion of the attenuation coefficient has been restricted to the case where εf and

µf have been real quantities - µf and εf being the permeability and permittivity of the ferrite. The
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losses have consisted solely from metallic ones: the waveguide and the helix. The values of µf and

εf can be extended to be complex quantities. Firstly, µf is kept as a real quantity and εf takes the

form

εf = εf (1− tan(δ)i) , (4.8)

where tan(δ) is the dielectric loss tangent. A large value of tan(δ) represents a lossy material. At a

frequency value of 1.5 GHz, a variation in tan(δ) is shown in figure 4.15. The graph also shows that

increasing the value of tan(δ) increases the value of α.

The analysis can be extended to include the effect of damping in the structure. This is achieved by

replacing the expressions of µ and κ to include the damping constant x. Previously, the expressions

of µ and κ were

κ = − ωγM0

γ2H2
0 − ω2

and

µ = µ0 + χ,

where

χ =
γ2H0M0

γ2H2
0 − ω2

.

κ and µ can be written in complex quantities to give a representation of the damping,

χ = χ′ − i χ′′,

κ = κ′ − i κ′′,

where

χ′ =
γ2M0H0 [γ2H2

0 − ω2 (1− x2)]

[γ2H2
0 − ω2 (1 + x2)]

2
+ 4γ2H2

0ω
2x2

,

χ′′ =
γM0ωx [γ2H2

0 + ω2 (1 + x2)]

[γ2H2
0 − ω2 (1 + x2)]

2
+ 4γ2H2

0ω
2x2

,

κ′ =
−ωγM0 [γ2H2

0 − ω2 (1 + x2)]

[γ2H2
0 − ω2 (1 + x2)]

2
+ 4γ2H2

0ω
2x2

,
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κ′′ =
−2γ2M0H0ω

2x [γ2H2
0 + ω2 (1 + x2)]

[γ2H2
0 − ω2 (1 + x2)]

2
+ 4γ2H2

0ω
2x2

.

By allowing x to take different values, an insight into how damping will affect the loss in the

structure can be obtained. Letting

t = log10(x) ⇒ x = 10t,

then as t → −∞, x → 0, the effect of damping is decreased until an undamped system is achieved.

Figure 4.16 shows how the attenuation coefficient α varies for different values of t. As the value of t

decreases, the graph approaches the undamped system, as expected.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

100

200

300

400

500

600

700

Frequency (GHz)

Ψ
 (

de
g/

dB
)

Figure 4.13: Phase Shift against frequency for variation in helical resistivity. ρ1 = 2× 10−6 Ω cm

(squared line), 2.5× 10−6 Ω cm (circled line), 3× 10−6 Ω cm (crossed line), 3.5× 10−6 Ω cm (dashed

line), 4× 10−6 Ω cm (straight line). The attenuation, α (dB/m), consists solely of metallic loss.
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Figure 4.14: Phase Shift against frequency for variation in waveguide resistivity. ρ1 = 2× 10−6 Ω cm

(squared line), 2.5× 10−6 Ω cm (circled line), 3× 10−6 Ω cm (crossed line), 3.5× 10−6 Ω cm (dashed

line), 4× 10−6 Ω cm (straight line). The attenuation, α (dB/m), consists solely of metallic loss.
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Figure 4.15: Attenuation coefficient against dielectric loss tangent at a frequency of 1.5 GHz, (µ and

κ are real, ε is constant).
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Figure 4.16: Attenuation coefficient against frequency for different values of t. The undamped system

(solid line), t = −4 (dashed line), t = −3 (crossed line) and t = −2 (squared line).
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Freq Φ (deg/dB) Φ (deg/dB) Φ (deg/dB) Φ (deg/dB) Φ (deg/dB)

(GHz) (2× 10−6 Ω cm) (2.5× 10−6 Ω cm) (3× 10−6 Ω cm) (3.5× 10−6 Ω cm) (4× 10−6 Ω cm)

0.5 13.9252 12.5529 11.5259 10.7195 10.0641

0.6 26.2876 23.6938 21.7533 20.2298 18.9917

0.7 44.8939 40.4581 37.1405 34.5362 32.4202

0.8 70.9978 63.9717 58.7183 54.5954 51.2462

0.9 106.3851 95.8385 87.9554 81.7703 76.7469

1 153.2462 138.0242 126.6507 117.7296 110.4859

1.1 212.5083 191.3546 175.5557 163.1672 153.1106

1.2 286.3518 257.7817 236.4533 219.7346 206.1665

1.3 376.4707 338.8163 310.7196 288.7036 270.8415

1.4 484.9534 436.3211 400.0515 371.6424 348.6006

1.5 613.9407 552.2024 506.1833 457.7877 440.9385

Table 4.2: Phase shift against frequency for variation in helix resistivity.
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Freq Φ (deg/dB) Φ (deg/dB) Φ (deg/dB) Φ (deg/dB) Φ (deg/dB)

(GHz) (2× 10−6 Ω cm) (2.5× 10−6 Ω cm) (3× 10−6 Ω cm) (3.5× 10−6 Ω cm) (4× 10−6 Ω cm)

0.5 12.6416 12.5529 12.4737 12.4018 12.3356

0.6 23.8585 23.6938 23.5468 23.4133 23.2903

0.7 40.7338 40.4581 40.2121 39.9884 39.7825

0.8 64.3975 63.9717 63.5916 63.246 62.9277

0.9 96.4594 95.8385 95.2841 94.7798 94.3153

1 138.8912 138.0242 137.2496 136.545 135.8956

1.1 192.5155 191.3546 190.3171 189.3729 188.5024

1.2 259.2856 257.7817 256.437 255.2128 254.0838

1.3 340.7083 338.8163 337.1237 335.5821 334.1599

1.4 438.6416 436.3211 434.2442 432.3516 430.6048

1.5 554.984 552.2024 549.7115 547.4407 545.3438

Table 4.3: Phase shift against frequency for variation in waveguide resistivity.
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4.3 Variation of Parameters

This section deals with the affect of varying certain parameters of the helical structure. One of

the assumptions of the sheath helix model is that p << λ. The pitch angle is related to the pitch

by the relation: tan(ψ) = p
2πa

. Therefore,

2πa tan(ψ) << λ ⇒ 2πa tan(ψ) <<
c

f
.

The variation of the length parameters will alter the nature of the structure. For example, if the

helical radius a is decreased, then the proportion of ferrite in the structure will be increased.

This section considers the same helical structure but with two different geometrical properties.

The first is a structure where the thickness of the ferrite is greater than that of helical radius. Figure

4.17 shows a cross section of the structure with this property.

Figure 4.17: Cross-section of helical structure.

Table 4.4 shows the dimension that are initially used in the structure. Dispersion curves rep-

resenting the forward and backward waves are given in figure 4.19. The phase shift in degrees per

quarter wavelength is shown in figure 4.20. The difference in the forward and backward propagation
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Parameter Symbol Numerical Value

Helical radius a 1 mm

Ferrite (inner radius) b a + 0.001 mm

Ferrite (outer radius) c b + 10 mm

Waveguide radius d c + 0.001 mm

Pitch angle ψ 9.5◦

Saturation Magnetisation 4πMs 0.068 T

Applied Magnetic Field H0 55 kA m−1

Table 4.4: Dimensions of helical structure,

constant increases as the frequency increases. This is due to the increase in κ as the frequency

approaches the GMR frequency, 1.9 GHz. The increase in κ also corresponds to an increase in phase

shift. The tensor permeability matrix is given by

M =




µ 0 iκ

0 µ0 0

−iκ 0 µ




.
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Figure 4.18: Phase shift against κ

The increased off-diagonal components of the tensor permeability matrix M lead to

an increase in non-reciprocal behaviour and thus an increased phase shift. This point

can be illustrated if the example in the previous section is considered, with parameters

given in table 4.1. If the phase shift is plotted against κ, figure 4.18 is obtained. As the

frequency increases and approaches GMR, the value ok κ increases (figure 4.4), ∆β also

increases (figure 4.12). Thus increasing κ increases the non-reciprocal behavior of the

device.

The first variation considered was that of the thickness of the air gap between the metal helix

and the ferrite. When this air gap is altered, the other regions maintain their original thickness. For

example, the thickness of the ferrite is kept constant at 10 mm. Altering the air gap does not affect

the thickness of the ferrite. This results in the following; as the thickness of the air gap increases or

decreases the cross-sectional area of the helical structure increases or decreases, respectively. Figure

4.21 shows how the size of the air gap is altered without affecting the thickness of other regions.



4.3 Variation of Parameters 110

12 14 16 18 20 22 24 26 28 30 32
11.5

12

12.5

13

13.5

14

14.5

15

β/
β 0

β
0

β+

β
−

Figure 4.19: Dispersion curves for forward (β+) and backward (β−) waves.
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Figure 4.20: Phase shift against frequency



Figure 4.21: Cross-section of Helical Structure

When the air gap between the helix and the ferrite is altered, the resulting dispersion curves are

shown in figure 4.22. The phase shifts per (λ/4) are shown in figure 4.23. An increase in the air

gap leads to a decrease in the propagation constants; (both β+ and β−), as well as a decrease in the

phase shift. Also, as the air gap increased, the dispersion decreases.

The effect of varying ferrite thickness is shown in figure 4.24. Figure 4.25 shows the phase shift

per (λ/4). The graphs show minimal changes for ferrite thicknesses of 1 cm, 2 cm, 3 cm, 4 cm and

5 cm . The graphs appear to be on top of one another as the phase shift is so minute. However,

by setting the ferrite thickness at 2 mm, the phase shift was less than that of the other values.

Therefore, an increased quantity of ferrite in the structure leads to an increase in phase shift. This

behaviour continues until such a quantity of ferrite is used beyond which additional ferrite shows
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Figure 4.22: Dispersion curves for forward (β+) and backward (β−) waves for variation in the air

gap between helix and ferrite.

minimal changes to the ferrite. Thus, increasing the ferrite thickness from 2 mm to 1 cm causes the

phase shift to increase. The difference in phase shift is minimal if the thickness of the ferrite exceeds

1 cm.

When the air gap between the ferrite and the waveguide is varied, the phase shift per (λ/4) is

not affected, (see figure 4.26). Again, the phase shift is not affected by the thickness of this air gap.

Therefore, a structure corresponding to the parameters of table 4.4 gives the following results:

1. Altering the thickness of the air gap between the helix and ferrite causes a change in the

propagation constants, and phase shift.

2. Altering the thickness of the ferrite causes a minimal change in the propagation constants, and

phase shift.
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Figure 4.23: Phase shift for variation in the air gap between helix and ferrite.

3. Altering the thickness of the air gap between the ferrite and waveguide causes no change in the

propagation constants, and phase shift.

A possible reason for this is that all the quantities that are being calculated (propagation con-

stants, phase shifts and others) are affected by the magnitude of the electric and magnetic field

components in each region. The expressions for these are Bessel functions in the air regions, and

Confluent Hypergeometric functions in the ferrite. The Bessel functions are such that a slight in-

crease or decrease close to the origin has a greater effect on the function than one further away from

the origin. Therefore, in this geometry, changes in the air gap close to the helix produces a greater

effect than ones which are further away from the centre (such as in the ferrite or the air gap between

the ferrite and the waveguide).

Figure 4.27 shows the propagation constants for different values of ferrite permittivity. Figure

4.29 shows how the phase shift of a wave travelling through this helical structure varies with the
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Figure 4.24: Dispersion curves for forward (β+) and backward (β−) waves for variation in ferrite

thickness. The solid line represents forward wave and the dashed line represents the backward wave.

permittivity of the ferrite, εf . The graphs show that an increase in εf results in an increase in

phase shift. This can be understood by considering the expression for phase shift. The phase shift

is obtained by equation (4.1) - showing that the term
√

εf affects the phase shift. Increasing the

ferrite permittivity leads to an increase in phase shift. Figure 4.28 shows how the dispersion varies

with frequency. The graph indicates that a larger value of ferrite permittivity results in a greater

dispersion.
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Figure 4.25: Phase shift for variation in ferrite thickness. The solid lines are for a ferrite of thickness:

1 cm, 2 cm, 3 cm, 4 cm and 5 cm. The dashed line represents a ferrite of thickness 2 mm.
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Figure 4.26: Phase shift for variation in the air gap between ferrite and metal waveguide. The air

gaps are 1 micron, 10 microns and 100 microns.
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Figure 4.27: Dispersion curves against frequency for variation in ferrite permittivity. The propagation

constant in the forward direction (solid line) and backward direction (dashed line).
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Figure 4.28: Dispersion against frequency for variation in ferrite permittivity. The solid line repre-

sents εf = 12, the crossed line represents εf = 14 and the circled line represents εf = 16.
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Figure 4.29: Phase shift against frequency for variation in relative permittivity of ferrite. The graphs

increase in ferrite permittivity from 12 to 16 in increments of 0.5.



4.3 Variation of Parameters 120

Gilmor [19] and Lopez [21] both showed that as the permittivity of the dielectric supports in-

creases, the conductor loss increases. This is also true when the dielectric rods are replaced with a

ferrite tube. In order to explain this, it is necessary to consider the equation for conductor loss

α = −
√

πµ0f

Υ

[
a
√

ρ1

(|Hθ1(a)|2 + |Hz1(a)|2 + |Hθ2(a)|2 + |Hz2(a)|2) + d
√

ρ2

(|Hθ4(d)|2 + |Hz4(d)|2)]

(4.9)

where

Υ =

∫ a

0

rS1dr +

∫ b

a

rS2dr +

∫ c

b

rS3dr +

∫ d

c

rS4dr. (4.10)

As the permittivity increases, the magnetic field on the helix will also increase. As the magnetic

field on the helix increases the conductor loss also increases. Figure 4.30 shows that as the permittivity

of the ferrite (εf ) increases, the conductor loss on the helix increases. The conductor loss consists of

the metallic loss on the helix and the waveguide. As the permittivity increases, a greater proportion

of the metallic loss arises from the helix, as shown in figure 4.31.

An increase in permittivity leads to the energy being concentrated around the helix. This can be

shown by considering the integrals

I1 =

∫ a

0

rS1dr and I2 =

∫ b

a

rS2dr. (4.11)

I1 calculates the energy that is in the inside of the helix and I2 calculates the energy that is in

the air gap between the helix and ferrite. Graphs of how I1 and I2 against the variation in ferrite

permittivity are given in figures 4.32 and 4.33. These graphs show that increasing the permittivity

of the ferrite increases the values of I1 and I2, (thus the energy on the helix increases).
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Figure 4.30: Conductor Loss on Helix
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Figure 4.31: Percentage of Conductor Loss on Helix
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Another variable that can be altered is the pitch angle, ψ. Figure 4.34 shows the dispersion curves

for varying pitch angles. As the pitch angle is increased, the propagation constant decreases and the

dispersion decreases. Figure 4.35 shows the graphs corresponding to phase shift for different values

of helical pitch angles. As the pitch angle is increased, the phase shift per (λ/4) decreases. This can

be explained in the following way; as the pitch angle increases, the helical pitch increases, (as tan(ψ)

= p/2π a). Therefore, the distance between each helical winding increases. As the distance between

each helical winding increase, then for a given length L, there will be less helical windings. The helix

plays an important part in slowing down the wave and producing a desired propagation constant β,

both in the forward and reverse directions. Due to this, an increased in pitch angle decreases the

phase shift for a given length, as shown in figure 4.35.
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Figure 4.34: Dispersion curves for forward (β+) and backward (β−) waves for variation in helix pitch

angle.
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Figure 4.35: Phase shift for variation in pitch angle.
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The section continues by considering a structure where the thickness of the ferrite is smaller than

that of the helical radius. Figure 4.36 shows a cross section of the structure with this property. The

dimensions of this structure are given in table 4.5

Figure 4.36: Cross-section of helical structure

Parameter Symbol Numerical Value

Helical radius a 10 mm

Ferrite (inner radius) b a + 0.001 mm

Ferrite (outer radius) c b + 5 mm

Waveguide radius d c + 0.001 mm

Pitch angle ψ 10◦

Saturation Magnetisation 4πMs 0.068 T

Applied Magnetic Field H0 55 kA m−1

Table 4.5: Dimensions of helical structure

Figure 4.37 shows how the phase shift varies with frequency for different thicknesses of ferrite.

As the thickness of the ferrite increases, the shape of the graph is maintained (a sine curve); the
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increase in the maxima decreases and the the decrease in the minima also decreases. Secklemann

[27] plotted the graph of frequency against phase shift for a similar helical structure. The graph

has the same shape as figure 4.38. A positive phase shift indicates a change in the phase angle in

a counter-clockwise direction and a negative phase shift indicates a change in the phase angle in a

clockwise direction.

Figures 4.8 and 4.37 both consider the phase shift of similar helical structures against frequency.

The difference in the shapes of these graphs can be explained if the expression for calculating the

phase shift is considered, equation (4.1). The shape of the graph is governed by the polarising

function, P , which is given by,

P (ω) = sin
(ω

c

√
εf l0

)
with l0 ≈ 2πr0,

where c is the velocity of light in free space, εf is the effective relative dielectric constant for the ferrite

and r0 is the radius of of the helix. The frequency range that has been considered was 0.5 GHz - 1.85

GHz and the relative permittivity of the ferrite was 14.5. Figure 4.8 considered a structure of helix

radius 1.465 mm and figure 4.37 considered a helix radius of 1 cm. The polarising function against

frequency for different helical radii is shown in figure 4.39. Therefore, the behaviour of the phase

shift against frequency is determined largely by the polarising function. For a specific permittivity

and frequency range, the shape of the polarising function, and thus the phase shift, is governed by

the radius of the helix. The maximum and minimum phase shift is obtained when

sin
(ω

c

√
εf 2πr0

)
= ±1.

A maxima is reached when the following equation is satisfied:

ω

c

√
εf 2πr0 = (4N − 3)

π

2
, where NεN.

This is obtained at radii values of

r = (4N − 3)
c

4ω
√

εr

.
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The minima is reached when the following equation is satisfied:

ω

c

√
εf 2πr0 = (4N − 1)

π

2
, where NεN.

This is obtained at radii values of

r = (4N − 1)
c

4ω
√

εr

.

Therefore, depending on the frequency range, the ferrite permittivity and the helical radius, the

range of the polarising function may not be the full sine curve.
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Figure 4.37: Phase shift against frequency for variations in ferrite thickness. A ferrite of thickness 1

mm (crossed line), 3 mm (straight line) and 5 mm (dashed line) are shown.



4.3 Variation of Parameters 128

−600 −400 −200 0 200 400 600 800 1000 1200
0.5

1

1.5

2

F
re

qu
en

cy
 (

G
H

z)

Ψ (deg / (λ/4))

Figure 4.38: Frequency against phase shift for variations in ferrite thickness. A ferrite of thickness 1

mm (crossed line), 3 mm (straight line) and 5 mm (dashed line) are shown.
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Figure 4.39: Polarising against frequency for variations in helical radii. A helix of radius 1 mm

(crossed line), 5 mm (dashed line) and 10 mm (solid line) are all shown.
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4.4 Variation of Applied Magnetic Field

This section considers the case where the applied field H0 is varied. The equations for µ and κ

show that changing H0 changes the value of µ and κ. The equations for µ and κ are given below.

µ = 1− γ2H0M0

γ2H2
0 − ω2

and κ =
|γ|ωM0

γ2H2
0 − ω2

. (4.12)

Both µ and κ approach a singularity at

ω = γH0, (4.13)

where the frequency at the value of ω is the frequency of GMR. Equation (4.13) shows that the

frequency at which GMR occurs is proportional to the applied magnetic field. Figure 4.40 shows

50 100 150 200
1

2

3

4

5

6

7

8

F
re

qu
en

cy
 o

f G
M

R
 (

G
H

z)

Applied Magnetic Field, H (kA/m)

Figure 4.40: Frequency of GMR against Applied Magnetic Field.

how the frequency of GMR varies with the applied magnetic field.

The previous section considered the case where the applied field H0 was 55 kA m−1. This section

considers cases where the applied field is changed to H1=100 kA m−1 and H2=150 kA m−1. The
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frequencies of GMR associated with these applied fields are 3.52 GHz and 5.28 GHz. The phase

shifts at these applied fields are give in figures 4.41 - 4.43. The shapes of the graphs are determined
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Figure 4.41: Phase shift per quarter wavelength against frequency for an applied magnetic field of

55 kA m−1.

by the shape of the Polarisation function P .

P = sin
(ω

c

√
εf2πr0

)
. (4.14)

Figure 4.44 shows how the polarisation function varies with frequency. Equation (4.14) can be used

to determine at which frequencies (for a given radius and permittivity) the phase shift changes sign.

The sin function changes sign at π. Therefore,

ω

c

√
εf 2πr0 = π. (4.15)

The frequency associated with this is 4.28 GHz. Figure 4.44 shows that at 4.28 GHz the phase shift

changes sign.
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Figure 4.42: Phase shift per quarter wavelength against frequency for an applied magnetic field of

100 kA m−1.

If a particular frequency range is chose 0.5 GHz - 1.8 GHz, a comparison of the phase shifts can

be made for different applied magnetic fields.
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Figure 4.43: Phase shift per quarter wavelength against frequency for an applied magnetic field of

150 kA m−1.
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Figure 4.44: Polarisation function against frequency.
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Figure 4.45: Phase shift per quarter wavelength against frequency for varying applied magnetic fields,

H0=55 kAm−1 (solid line), H1=100 kAm−1 (circled line), and H2=150 kAm−1 (crossed line).
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Figure 4.46: ∆β against frequency, H0=55 kAm−1 (solid line), H1=100 kAm−1 (circled line), and

H2=150 kAm−1 (crossed line).
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4.5 Comparison to a Dielectric

The above discussion considered the case of a helical structure where a ferrite was modelled between

the helix and waveguide. The analysis of section 4.1 considered a structure which had the same

dimensions as Duan et al [22]. If the same structure was analysed with dielectric tubes in the region

between the helix and waveguide (using the same method as Duan et al) a comparison of attenuation

coefficients can be done.

The permittivity of a dielectric single rod was 6.5. Three such rods were placed between the helix

and the waveguide. These rods are modelled as an assumed distributed layer of dielectric between

the helix and the waveguide.
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Figure 4.47: Attenuation coefficient against frequency. A comparison of structure containing dielec-

tric (solid line) with ferrite (dashed line).

Figure 4.47 shows that the loss in the structure comprising a ferrite is higher than the one with

a dielectric. The increased conductor loss in the structure containing a ferrite is due primarily to
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difference in value of permittivity (the ferrite being 14.5 and the effective permittivity of a dielectric

layer 1.79). Figure 4.47 suggests that ferrite could be employed as an alternative in a TWT, without

incurring excessive loss. Presently, 10-20 dB of attenuation is typically employed in a TWT to

prevent oscillation.

4.6 Summary

This chapter used the current model to investigate certain properties of the helical structure shown

in figure 4.1. An important aspect in helical devices lies in minimising dispersion and maximising

the phase shift. The variations in different parameters show the extent to which these quantities

are affected. An analysis of the size of the air gaps within the structure has not been considered

by previous authors. The attenuation coefficient for a ferrite loaded helical structure is also absent

from previous work. This present study calculates the phase shift and attenuation coefficients of the

model. The chapter discusses the behaviour of the phase shift in relation to the other variables.

The investigation extended the area of study to include cases where the ferrite was partially

magnetised. In latched devices where a ferrite is not completely magnetised, this additional mod-

ification of the model improves the accuracy and reliability of it. Greene and Sandy [42] and [43]

derived equations for losses in partially magnetised ferrites. The inclusion of these equations within

the current model had not been considered previously. The chapter also discusses the possibility of

using a ferrite or dielectric in phase shifter and TWTs.



Chapter 5

Conclusion

In this concluding chapter, the work that been done will be reviewed and analysed in greater

detail. The main results from the previous chapter will be expanded upon and explained further.

This chapter also discusses various ways of how the investigation can be extended.

5.1 Review

Figure 5.1: Helical structure
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Figure 5.1 shows the helical structure that was analysed when a wave travels through it. A

metal helix was surrounded by a ferrite tube. This was further enclosed within a waveguide wall.

The structure was modelled with an air gap between the helix and the ferrite tube and also between

the ferrite tube and the metal waveguide. The metal helix was of radius of a, the ferrite tube had an

inner radius of b and outer radius of c. The metal waveguide had radius d, where a < b < c < d < e.

When a wave travels through a structure, quantities such as phase shift and attenuation coefficient

are useful to determine the applicability of the device. The effect on these quantities by varying

many different parameters was analysed. Therefore, by setting the parameters at certain values, the

efficiency of the device can be greatly enhanced. The way in which the variation of certain parameters

affected the behaviour of the wave is presented here.

In every situation, an increase in frequency led to an increase in the phase shift and attenuation

coefficient. As the frequency is increased, the frequency approaches that of GMR and thus the value

of κ increases. The amount of phase shift depends on the value of κ, as κ represents the degree of

non-reciprocal behaviour of the ferrite. Thus an increase in frequency led to an increase in phase shift.

Equation (4.7) shows the expression of α. In this equation, only the conductor loss is considered.

The equation shows that as the frequency increases, the value of α also increases.

Previous authors who have investigated helical structures, have not analysed the effect of air gaps

surrounding the ferrite. The variation in the thickness of the air gap between the helix and the ferrite

produced more significant changes in the propagation constants and the phase shifts than variation

in other parameters. Figures 4.22 showed that as the thickness of the air gap between the helix and

ferrite increases, both the dispersion and propagation constant decrease. However, figure 4.23 shows

that increasing the air thickness leads to a decrease in phase shift. Whist it is always desirable to

decrease the quantity of dispersion and increase the amount of phase shift within a structure, it is

not always possible to achieve both of these things. The variation in the air gap thickness between

the helix and ferrite shows this.
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The purpose of the helix is to act as a delay line; it decreases the value of the propagation constant

in the structure. It also allows the structure to be more compact, (as a helix is wound and not a

straight transmission line). Figure 4.34 showed that as the pitch angle increases, the propagation

constant and dispersion both decrease. However, an increase in phase shift is achieved by decreasing

the pitch angle. As with the previously mentioned parameter, it was not possible to reduce the

dispersion and increase the phase shift simultaneously.

Tables 4.2 and 4.3 showed how altering the resistivity of the helix and waveguide affected the

phase shift. In both cases, an increase in the resistivity led to a decrease in the phase shift. In

these cases, the phase shift was measured in deg/dB, where this quantity represents the number

of degrees that the wave will be rotated over a length when the wave is attenuated by 1 dB. This

length is determined by considering the losses in the metal helix and waveguide, and thus altering

the resistivities of the helix or waveguide will alter the phase shift. As the propagation constant is

not affected by the resistivity of the helix or waveguide, altering these did not affect the propagation

constants and dispersion. If the phase shift is expressed as deg/(λ/4) or deg/(λg/4), where λ and λg

denote the free space wavelength and electrical wavelength respectively, altering the resistivities of

either the waveguide or helix will not affect the phase shifts.

In many applications, it is desirable to increase the amount of phase shift. The phase shift is

given by

4Φ = 4β P L
√

εf , (5.1)

where Φ is given in radians per length. P is the polarising function and is calculated by,

P (ω) = sin
(ω

c

√
εf l0

)
with l0 ≈ 2πr0,

where c is the velocity of light in free space, εf is the effective relative dielectric constant for the ferrite

and r0 is the radius of of the helix. L is the length over which the phase shift is measured. Figure

4.28 shows that an increase in ferrite permittivity leads to a slight increase in dispersion. Figure
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4.29 shows that an increase in ferrite permittivity corresponds to an increase in phase shift. Again,

an increase in phase shift is accompanied with an increase in dispersion. However, as the ferrite

permittivity increases, the increase in phase shift is greater than the slight increase in dispersion.

As mentioned in section 4.3, the range of possible phase shift values is determined by the behavior

of the polarising function; which is a sine function. Depending on the frequency range, the ferrite

permittivity and the helical radius, the range of the polarising function may not be the full sine

curve. The helical structure in figure 4.1 achieved the maximum phase shift at a frequency of,

f =
c/r

8π
√

εf

.

The minimum phase shift was achieved at a frequency of,

f =
3c/r

8π
√

εf

.

However, these expressions are true if the full range of frequency values correspond to only one

maximum and minimum value.

The investigation considered cases where the applied field was varied. As the applied field in-

creases, the frequency corresponding to GMR increases. Equation (5.2) shows that the frequency

corresponding to GMR is proportional to the applied magnetic field H0. Figure 4.40 shows this

relationship.

ω = γH0, (5.2)

Let the frequency that corresponds to GMR fGMR. As the increase in the applied field H0 leads

to the increase fGMR, a particular frequency f0 which is initially below fGMR, will be further and

further away from the fGMR as the applied field is increased. The phase shift corresponding to f0

will decrease as applied filed is increased. An explanation of this can be found in section 4.4.

The attenuation coefficient for a helical structure similar to the one considered in Duan et al

[22] was compared to the one in figure 4.1. The structure in [22] replaced the ferrite in figure 4.1
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with three dielectric rods. These rods were modelled as an assumed distributed layer of dielectric

between the helix and the waveguide. Figure 4.47 showed that the loss in the structure comprising a

ferrite was higher than the one with the dielectric rods. The increased conductor loss in the structure

containing a ferrite is due primarily to the difference in the value of permittivity (the ferrite being

14.5 and the effective permittivity of a dielectric layer being 1.79). Figure 4.47 suggests that ferrite

could be employed as an attenuator in a TWT without incurring excessive loss. Presently, 10-20 dB

of attenuation is typically employed in a TWT to prevent oscillation. Therefore, with 10-20 dB of

attenuation being present in a helical device, the forward wave is attenuated by 10-20 dB whilst the

backward wave is attenuated by 20-40 dB. A ferrite lends itself to these devices as they allow a wave

to pass with little absorption in the forward direction, but with much more absorption in the reverse

direction.

The present investigation has extended the previously published work in many ways. These are:

1. The present model incorporates the air gaps within the helical structure. When a helix is placed

inside the ferrite tube, a gap (even a very minute one) is present. The same is true when the

ferrite is placed inside the metal waveguide.

2. The attenuation coefficient of this helical structure is calculated.

3. Both the loss contributed to by the metal and ferrite can be modelled.

The above extensions are particularly important in the construction of the helical device. When

the helix is placed inside the ferrite, a very small gap will be present between the helix and the

ferrite. The present study shows that a variation in the size of this air gap affects the propagation

constant, attenuation constant and phase shift of the structure. For the first time, the attenuation

coefficient has been calculated for this device. This was used to produce the phase shift for this

structure. Although the phase shift can be represented in different ways, the phase shift in degrees

per dB of attenuation is the figure of merit for this quantity.
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The next section considers how the present investigation can be extended and further work that

can be undertaken.
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5.2 Further Work

This section discusses how the thesis can be extended. One way of furthering the investigation

is by changing the modelling assumptions that were used. Another way is by improving various

methods that were used in the current study.

The investigation considered the case of an axisymmetric wave - i.e. where ∂/∂θ = 0 or n = 0. As

yet, the case of n = 1 has not been investigated. Appendix B.1 derives full expressions for all the E

and H field components. The system of equations are transferred into a matrix equation. Although

the investigation did not produce results for the case of n = 1, further work can produce a working

program of this case.

One assumption that was used throughout the investigation, was to model the helical structure

using the sheath helix. As mentioned in section 1.7, a helix can be modelled using the sheath helix

or the tape helix. The tape helix model yields a greater level of accuracy than the sheath helix

one. Section 1.7.2 describes the tape helix model. The tape helix models a more realistic helix as it

incorporates a gap between each helical winding into the model, whereas the sheath helix models the

helix as an anisotropic cylinder. The sheath helix assumes each winding as infinitely thin, whereas

the tape helix takes the thickness of each winding into consideration. Some of the assumptions that

are used in the tape helix model are:

• A reasonable current distribution is assumed [16].

• E||, the total electric field in the direction of the tape as a function of φ and z at r = a, is calculated

in terms of the assumed current distribution [16].

• E|| is set to equal zero along the centreline of the tape [16].

The last assumption satisfies the the boundary conditions on E approximately [16]. The approxima-

tion is good for narrow tapes.

One assumption that was made use of throughout the research was that the magnetic field in
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the structure was known. Although this assumption has been used by many authors, the model’s

accuracy will be improved if the exact value for the magnetic field inside the structure is known.

One way of obtaining this is to use a numerical package that gives the values of the magnetic field

inside structures. However, if an analytical approach is to be maintained, use can be made of

demagnetisation factors. Demagnetisation factors can be used to calculate the magnetic field inside

of a ferrite if the applied external field is known. Demagnetisation factors can only be calculated

exactly for ellipsoidal shapes; shapes such as disks and rods are approximated by a suitable ellipsoidal

shape [4]. The use of demagnetisation factors concerning a ferrite tube will have to be derived before

employing it into this particular investigation. Zheng et al [45] attempted to experimentally determine

demagnetisation factors for nonellipsoidal geometries. This can be used with other resources in an

attempt to derive expressions for demagnetisation factors for a ferrite tube.

The ferrite was assumed to be biased azimuthally. The ferrite can also be biased longitudinally

or transversely. Waldron [46] - [50] investigated a longitudinally biased structure. These different

directions of ferrite biasings can also be considered. In reality, a ferrite can be biased in any direction.

A permeability matrix corresponding to a ferrite being biased in any direction was first formulated

by Tyras [51]. Below is a partial derivation of a method that can be used in an attempt to solve

this problem. The method is similar to the one derived in chapter 2.

B = MH, where M =




µ1 µ2 µ3

µ4 µ5 µ6

µ7 µ8 µ9




, ⇒




Br

Bθ

Bz




=




µ1 µ2 µ3

µ4 µ5 µ6

µ7 µ8 µ9







Hr

Hθ

Hz




.

(5.3)
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The matrix M can be expressed as,

µ1 = µ + (µ0 − µ) sin2(φ) cos2(θ),

µ2 = µ0−µ
2

sin2(φ) sin(2θ) + iκ cos(φ),

µ3 = µ0−µ
2

sin(2φ) cos(θ)− iκ sin(φ) sin(θ),

µ4 = µ0−µ
2

sin2(φ) sin(2θ)− iκ cos(φ),

µ5 = µ + (µ0 − µ) sin2(θ) sin2(φ),

µ6 = µ0−µ
2

sin(2φ) sin(θ) + iκ sin(φ) cos(θ),

µ7 = µ0−µ
2

sin(2φ) cos(θ) + iκ sin(φ) sin(θ),

µ8 = µ0−µ
2

sin(2φ) sin(θ)− iκ sin(φ) cos(θ),

µ9 = µ0 − (µ0 − µ) sin2(φ).

with respect to the following co-ordinate system where

P represents the direction of magnetisation.

Tyras considered the case where the direction of magnetisation was in the x-z plane, (θ = 0).

However, the method can be extended to consider the case where P can vary in the 3 dimensional

plane. In order to facilitate calculations, it is necessary to diagonalise matrix M. The eigenvalues of

M with their corresponding eigenvectors are given by,

λ1 = µ + κ (cos(θ) cos(φ) + i sin(θ), cos(φ) sin(θ)− i cos(θ), − sin(φ))T ,

λ2 = µ− κ (cos(θ) cos(φ)− i sin(θ), cos(φ) sin(θ) + i cos(θ), − sin(φ))T ,

λ3 = µ0 (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ))T .

Normalising the eigenvectors gives a matrix

P =
1√
2




cos(φ) cos(θ)− i sin(θ) cos(φ) sin(θ) + i cos(θ) − sin(φ)

cos(φ) cos(θ) + i sin(θ) cos(φ) sin(θ)− i cos(θ) − sin(φ)

√
2 cos(θ) sin(φ)

√
2 sin(θ) sin(φ)

√
2 cos(φ)




,
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such that,

PMP−1 =




λ1 0 0

0 λ2 0

0 0 λ3




.

Transforming the B and H fields into the new co-ordinate system gives,

B′ = PB, H′ = PH,

where B′ and H′ represent the fields and ∇′ represents the ∇ in the new co-ordinate system. There-

fore,




B′
x

B′
y

B′
z




=




λ1 0 0

0 λ2 0

0 0 λ3







H ′
x

H ′
y

H ′
z




⇒ B′
x = λ1H

′
x, B′

y = λ2H
′
y, and B′

z = λ3H
′
z.

The aim is to obtain the equation,

(∇2
t + p2

) (∇2
t + q2

)
Ez = 0, and

(∇2
t + r2

) (∇2
t + s2

)
Hz = 0, (5.4)

where p, q, r and s are constants. Then ∇2
t can be replaced by its cylindrical polar co-ordinate rep-

resentation,

∇2
t =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂

∂θ2
.

This will give solutions in the ′ co-ordinate system. The solutions can be transformed into the original

co-ordinate system.

The same helical structure can be investigated using a computer simulated package. However,

the analytical method has some advantages over a computer simulated approach. These are:

1. Analytical expressions can be used to predict behavioural patterns. Computer simulations do

not allow this.
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2. Computer simulations usually take longer time than calculating solutions to analytical expres-

sions for the corresponding problem.

An analytical method can be used to obtain an insight into how to optimise the structure - minimising

dispersion and loss and maximising phase shift. This was used extensively in chapter 4 where the

results from the program were explained using the expressions obtained in chapter 2. Analytical and

numerical methods are generally obtained faster than those generated from a simulation package.

The results from a computer simulation can be useful in verifying the theoretical results.

The results in this investigation can be compared with practical measurements. An outline of

how practical measurements can be obtained is given here. Yang et al [52] obtained experimental

results for a copper helix surrounded by a ferrite helix. Although the present research modelled a

metal helix surrounded by a ferrite tube enclosed in a metal waveguide, some factors are common

experimentally to both investigations and so can be used.

A copper helix surrounded by a ferrite tube enclosed in a metal waveguide can be held in place by

PTFE supports. Different sizes of PTFE (polytetrofluroethylene) supports can maintain the metal

helix, ferrite tube and metal waveguide coaxially within a central cavity and also keep them in the

centre of the cavity.

The azimuthal biasing can be achieved by wrapping a wire around the ferrite and applying a

current to it, (as shown in figure 5.2). If there are N turns of wire, then Ampere’s Law gives a

relationship between the magnetic field and current.

H =
NI

2πr
, (5.5)

where r is the radius of the ferrite tube. The RF signal signal can be applied to the system along

the power cables. The network analyser (Agilent) can be used to obtain S21 readings.

Initially, it is necessary to calibrate the system. Therefore, if the two cables are connected

together, and no current is flowing in the metal turns, then a value for the loss of the apparatus can
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be obtained. As the current is then applied to the turns, a biasing field HDC is produced. Equation

(5.5) shows that H is proportional to I. If a large current is required to be produced, the the relation

I =
dQ

dt
, (5.6)

that current is the rate of change of charge can be used. If a large charge is sent over a very small

time, then a large current can be produced (and thus a large biasing field can be generated). This

idea is used extensively by authors (such as Gibson et al [53]).

The phase and magnitude of S21 can be used to obtain the insertion loss and propagation constant.

The insertion loss (IL) (in dB) is given by,

IL = −20 log10 |S21| . (5.7)

In order to obtain the propagation constant β, it is necessary to make two identical structures of

different lengths L1 and L2. Letting the phase of S21 of the structure which of length L1 to be denoted

by S1
21, and the phase of S21 of the structure of length L2 to be denoted by S2

21, the propagation

constant β is given by,

β =
S2

21 − S1
21

L2 − L1

. (5.8)

To obtain the propagation constant β in the reverse direction, a signal can be sent in the opposite

directions. By obtaining the value of β and the insertion loss, practical measurements can be obtained

to compare with the theoretical results obtained.

The above are some ways of extending the investigation on the helical structure in figure 5.1. A

metal helix surrounded by a ferrite helix would be a very useful structure for investigation. Kompfner

[26] showed the advantage of using a ferrite helix over a ferrite cylinder. By investigating this double

helical structure, this can be used to enhance TWTs and non reciprocal absorbers. When a magnetic

field is applied to a ferrite helix, each individual part of the ferrite will be biased at different directions.

The results from equation (5.4) can be used to derive expressions for each part of the ferrite helix.
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Figure 5.2: Experimental Setup
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The present investigation can be considered as an intermediate step on the way to analysing a metal

helix surrounded by a ferrite helix.



Appendix A

The Wave Equation

This chapter derives the wave equation. Substituting B = µHinto Maxwell’s equations give

∇ · E = 0, ∇ ·H = 0, ∇∧ E = −µ
∂H

∂t
, ∇∧H = ε

∂E

∂t
. (A.1)

Taking the curl of

∇∧ E = −µ
∂H

∂t
and ∇∧H = ε

∂E

∂t

gives,

∇∧ (∇∧ E) = −µ
∂

∂t
∇∧H = −µε

∂2E

∂t2
and ∇∧ (∇∧H) = ε

∂

∂t
∇∧ E = −µε

∂2H

∂t2

Using the vector identity,

∇∧∇ ∧A = ∇ (∇ ·A)−∇2A,

gives

∇


∇ ·




E

H





−∇2




E

H


 = −µε

∂2

∂t2




E

H


 .

Using the relations ∇ · E = 0 and ∇ ·H = 0 give,

∇2




E

H


 = µε

∂2

∂t2




E

H


 .
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Letting c = 1√
µε

, the wave equation is arrived at:

∇2




E

H


 =

1

c2

∂2

∂t2




E

H


 .



Appendix B

The Governing Equations for

Electromagnetic Waves in the Ferrite

B.1 Azimuthal Biasing

B.1.1 The Governing Equation

If the ferrite is biased circumferentially, the following equation can be set up.

B = MH, M =




µ 0 −iκ

0 µ0 0

iκ 0 µ




. (B.1)

Equations (B.1) can be rewritten as,



Br

Bθ

Bz




=




µ 0 −iκ

0 µ0 0

iκ 0 µ







Hr

Hθ

Hz




. (B.2)

Therefore, (B.2) can be expanded,

Br = µHr − iκHz, Bθ = µ0Hθ, Bz = iκHr + µHz. (B.3)
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The governing equations are Mazwell’s equations,

∇ ·H = 0, ∇ · E = 0, ∇∧H = iωεfE, ∇∧ E = −iωµH. (B.4)

Expressing (B.4) in cylindrical polar coordinates give;

(∇∧H)r = 1
r

∂Hz

∂θ
− ∂Hθ

∂z
= iωεf Er,

(∇∧H)θ = ∂Hr

∂z
− ∂Hz

∂r
= iωεf Eθ,

(∇∧H)z = ∂Hθ

∂r
+ Hθ

r
− 1

r
∂Hr

∂θ
= iωεf Ez,

(∇∧ E)r = 1
r

∂Ez

∂θ
− ∂Eθ

∂z
= −iωBr = −iω (µHr − iκHz) ,

(∇∧ E)θ = ∂Er

∂z
− ∂Ez

∂r
= −iωBθ = −iω (µ0Hθ) ,

(∇∧ E)z = ∂Eθ

∂r
+ Eθ

r
− 1

r
∂Er

∂θ
= −iωBz = −iω (iκHr + µHz) .

(B.5)

Writing Eθ, Hθ, Er and Hr in terms of Ez and Hz,

k2
0fEr = −iωµ0

r

∂Hz

∂θ
− iβ

∂Ez

∂r
, (B.6)

k2
cHr =

iωεf

r

∂Ez

∂θ
− iβ

∂Hz

∂r
+ iω2εf κHz, (B.7)

k2
cEθ = −iβ

r

∂Ez

∂θ
+ iωµ

∂Hz

∂r
− iβωκHz, (B.8)

k2
0fHθ = −iβ

r

∂Hz

∂θ
− iωεf

∂Ez

∂r
, (B.9)

where k2
0f = ω2µ0εf − β2 and k2

c = ω2µεf − β2. These equations can be rearranged to give the

following equations,

E ′′
z +

1

r
E ′

z + k2
0f

(
1− n2

r2k2
c

)
Ez =

iβn

ωεr

(
k2

0f

k2
c

− 1

)
H ′

z −
iωκn

r

k2
0f

k2
c

Hz, (B.10)

H ′′
z +

1

r
H ′

z +

(
k2

c −
ω2κ2ε

µ
− βκ

µr
− n2µ0k

2
c

r2µk2
0f

)
Hz =

iβn

ωµr

(
1− k2

c

k2
0f

)
E ′

z +
iωεκn

µr
Ez. (B.11)

where ′ and ′′ are the first and second derivatives respectively with respect to r.
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B.1.2 Solutions to the Governing Equations

The case when n = 0

If n = 0, equations (B.10) and (B.11) can be rearranged to give the following equations,

E ′′
z +

E ′
z

r
− k2

fEz = 0, where k2
f = β2 − ω2µ0εf (B.12)

H ′′
z +

H ′
z

r
−

(
k2

1 +
ω2κ2ε

µ
+

βκ

µr

)
Hz = 0 where k2

1 = β2 − ω2µεf . (B.13)

Equation (B.12) can be solved to give,

Ez = AI0(kfr) + BK0(kfr) (B.14)

where A and B are constants. Equation (B.13) can be solved to give,

Hz = C e
−

√
k2
1µ+ω2εf κ2

µ
r
M




√
k2

1µ + ω2εfκ2
√

µ + βκ

2
√

k2
1µ + ω2εfκ2

√
µ

, 1, 2

√
k2

1µ + ω2εfκ2

µ
r


 +

D e
−

√
k2
1µ+ω2εf κ2

µ
r
U




√
k2

1µ + ω2εfκ2
√

µ + βκ

2
√

k2
1µ + ω2εfκ2

√
µ

, 1, 2

√
k2

1µ + ω2εfκ2

µ
r




where C and D are constants and M(x, y, z) and U(x, y, z) are Kummer functions1. Substituting

these into (B.6) - (B.9) give expressions for Er, Eθ, Hr and Hθ. Chapter 2 gave expressions for the

electric and magnetic field components in air at n = 0. Using the same notation as section 2.6.3, the

field components in region 3 (ferrite) can be written below:

1Refer to Appendix (C.2) for further details of these functions.
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Ez31 = I0 (kfr) , Ez32 = K0 (kfr) ,

Ez33 = 0, Ez34 = 0,

Hz31 = 0, Hz32 = 0,

Hz33 = e−
√

η
µ

r M
(√

η
√

µ+βκ

2
√

η
√

µ
, 1, 2

√
η
µ
r
)

, Hz34 = e−
√

η
µ

r U
(√

η
√

µ+βκ

2
√

η
√

µ
, 1, 2

√
η
µ
r
)

,

Hθ31 =
iωεf

kf
I1 (kfr) , Hθ32 = − iωεf

kf
K1 (kfr) ,

Hθ33 = 0, Hθ34 = 0,

Er31 = iβ
kf

I1 (kfr) , Er32 = − iβ
kf

K1 (kfr) ,

Er33 = 0, Er34 = 0,

Eθ31 = 0, Eθ32 = 0,

Hr31 = 0, Hr32 = 0,
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Eθ33 = −iωµ

k2
1

(
−

√
η

µ
e−
√

η
µ

r M

(√
η
√

µ + βκ

2
√

η
√

µ
, 1, 2

√
η

µ
r

))

−iωµ

k2
1

√
ηµ + βκ

2
√

ηµ r
e−
√

η
µ

[
M

(√
η
√

µ + βκ

2
√

η
√

µ
+ 1, 1, 2

√
η

µ
r

)
−M

(√
η
√

µ + βκ

2
√

η
√

µ
, 1, 2

√
η

µ
r

)]

+
iωβκ

k2
1

(
e−
√

η
µ

r M

(√
η
√

µ + βκ

2
√

η
√

µ
, 1, 2

√
η

µ
r

))
,

Eθ34 = −iωµ

k2
1

(
−

√
η

µ
e−
√

η
µ

r U

(√
η
√

µ + βκ

2
√

η
√

µ
, 1, 2

√
η

µ
r

))

−iωµ

k2
1

(√
ηµ + βκ

2
√

ηµ r
e−
√

η
µ

[√
ηµ + βκ

2
√

ηµ
U

(√
η
√

µ + βκ

2
√

η
√

µ
+ 1, 1, 2

√
η

µ
r

)
− U

(√
η
√

µ + βκ

2
√

η
√

µ
, 1, 2

√
η

µ
r

)])

+
iωβκ

k2
1

(
e−
√

η
µ

r U

(√
η
√

µ + βκ

2
√

η
√

µ
, 1, 2

√
η

µ
r

))
,

Hr33 =
iβ

k2
1

(
−

√
η

µ
e−
√

η
µ

r M

(√
η
√

µ + βκ

2
√

η
√

µ
, 1, 2

√
η

µ
r

))
+

iβ

k2
1

(√
ηµ + βκ

2
√

ηµ r
e−
√

η
µ

[
M

(√
η
√

µ + βκ

2
√

η
√

µ
+ 1, 1, 2

√
η

µ
r

)
−M

(√
η
√

µ + βκ

2
√

η
√

µ
, 1, 2

√
η

µ
r

)])

−iω2κεf

k2
1

(
e−
√

η
µ

r M

(√
η
√

µ + βκ

2
√

η
√

µ
, 1, 2

√
η

µ
r

))
,

Hr34 =
iβ

k2
1

(
−

√
η

µ
e−
√

η
µ

r U

(√
η
√

µ + βκ

2
√

η
√

µ
, 1, 2

√
η

µ
r

))
+

iβ

k2
1

(√
ηµ + βκ

2
√

ηµ r
e−
√

η
µ

[√
ηµ + βκ

2
√

ηµ
U

(√
η
√

µ + βκ

2
√

η
√

µ
+ 1, 1, 2

√
η

µ
r

)
− U

(√
η
√

µ + βκ

2
√

η
√

µ
, 1, 2

√
η

µ
r

)])

−iω2κεf

k2
1

(
e−
√

η
µ

r U

(√
η
√

µ + βκ

2
√

η
√

µ
, 1, 2

√
η

µ
r

))
,

where η = k2
1µ + ω2εfκ

2.

The above expressions were used in the MATLAB programs, which were used to find the prop-

agation constant, β, and also in the MAPLE programs, which were used to find the attenuation

coefficient, α.
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The case when n = 1

This section deals with the case where n = 1. Although Veselov et al [54] considered this case

before, his expressions and method were very ambiguous and the majority of his method was om-

mitted. A full derivation is given here, beginning from the governing equation and ending at full

and clear expressions for each component of the electric and magnetic fields in the ferrite. These

expressions can be used to write a program (similar to the one written for n = 0) that can be used

to obtain values of the propagation constant, β.

In the ferrite, at n = 1, the governing equations are,

E ′′
z +

1

r
E ′

z + k2
0

(
1− 1

r2k2
c

)
Ez =

iβ

ωεr

(
k2

0

k2
c

− 1

)
H ′

z −
iωκ

r

k2
0

k2
c

Hz, (B.15)

H ′′
z +

1

r
H ′

z +

(
k2

c −
ω2κ2ε

µ
− βκ

µr
− µ0k

2
c

r2µk2
0

)
Hz =

iβ

ωµr

(
1− k2

c

k2
0

)
E ′

z +
iωεκ

µr
Ez. (B.16)

where ′ and ′′ are the first and second derivative respectively with respect to r. For convenience, the

equations will be transformed in terms of x = kcr. This gives,

E ′′
z +

E ′
z

x
+

k2
0

k2
c

(
1− 1

x2

)
Ez =

iβ

ωεx

(
k2

0

k2
c

− 1

)
H ′

z −
iωκ

x

k2
0

k3
c

Hz, (B.17)

H ′′
z +

H ′
z

x
+

(
1− ω2κ2ε

k2
cµ

− βκ

µkcx
− µ0k

2
c

x2µk2
0

)
Hz =

iβ

ωµx

(
1− k2

c

k2
0

)
E ′

z +
iωεκ

µkcx
Ez. (B.18)

where ′ and ′′ are the first and second derivative respectively with respect to x. Equations (B.17)

and (B.18) can be rewritten as,

E ′′
z +

E ′
z

x
+ A

(
1− 1

x2

)
Ez +

B

x
H ′

z +
C

x
Hz = 0, (B.19)

H ′′
z +

H ′
z

x
+

(
P +

Q

x
+

R

x2

)
Hz +

S

x
E ′

z +
T

x
Ez = 0, (B.20)

where

A =
k2

0

k2
c

, B =
iβ

ωε
(1− A) , C = iωκ

A

kc

,

P = 1− ω2κ2ε

k2
cµ

, Q = − βκ

µkc

, R = − µ0

µA
, S =

iβ

ωµ

(
1

A
− 1

)
, T = −iωεκ

µkc

.
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Using the method of Frobenius [55], and let

Ez =
∞∑

m=0

emxm+r, Hz =
∞∑

m=0

hmxm+r. (B.21)

The first and second derivatives of (B.21) with respect to x give,

E ′
z =

∞∑
m=0

(m + r)emxm+r−1, H ′
z =

∞∑
m=0

(m + r)hmxm+r−1, (B.22)

E ′′
z =

∞∑
m=0

(m + r)(m + r − 1)emxm+r−2, H ′′
z =

∞∑
m=0

(m + r)(m + r − 1)hmxm+r−2. (B.23)

Substituting (B.21), (B.22) and (B.23) into (B.19) gives,

∞∑
m=0

{[
(m + r)2em − Aem + B(m + r)hm

]
xm+r−2 + Aemxm+r + Chmxm+r−1

}
= 0, (B.24)

∞∑
m=0

{[
(m + r)2hm + Rhm + S(m + r)em

]
xm+r−2 + [Qhm + Tem] xm+r−1 + Phmxm+r = 0

}
,(B.25)

Rearranging (B.24) gives,

∞∑
m=0

[
(m + r)2em − Aem + B(m + r)hm

]
xm+r−2 + C

∞∑
m=0

hmxm+r−1 + A

∞∑
m=0

emxm+r = 0. (B.26)

Expanding (B.26)

[
r2e0 − Ae0 + Brh0

]
xr−2 +

[
(r + 1)2e1 − Ae1 + B(r + 1)h1 + Ch0

]
xr−1+

∞∑
m=2

[
(m + r)2em − Aem + B(m + r)hm + Chm−1 + Aem−2

]
xm+r−2 = 0. (B.27)

Rearranging (B.25) gives,

∞∑
m=0

{[
(m + r)2hm + Rhm + S(m + r)em

]
xm+r−2 + [Qhm + Tem] xm+r−1 + Phmxm+r

}
= 0. (B.28)

Expanding (B.28)

[
r2h0 + Rh0 + Sre0

]
xr−2 +

[
(r + 1)2h1 + Rh1 + S(r + 1)e1 + Qh0 + Te0

]
xr−1+

∞∑
m=2

[
(m + r)2hm + Rhm + S(m + r)em + Qhm−1 + Tem−1 + Phm−2

]
xm+r−2 = 0. (B.29)
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The lowest degree of x in the equations is xr−2 and is satisfied by the equations,

r2e0 − Ae0 + Brh0 = 0 and r2h0 + Rh0 + Sre0 = 0, (B.30)

which can be re-written as,




r2 − A Br

Sr r2 + R







e0

h0


 =




0

0


 . (B.31)

In order to obtain a non-trivial solution, the determinant

∣∣∣∣∣∣∣

r2 − A Br

Sr r2 + R

∣∣∣∣∣∣∣
= 0, ⇒ (r2−A)(r2 +R)−BSr2 = 0, ⇒ r4 +(R−A−BS)r2 +BR = 0,

(B.32)

which solves to give r1,2 = ±
√

µ0

µ
and r3,4 = ±1. As n = 1, |r1−r2| is not an integer, and |r3−r4|εZ.

This gives

h0 = −r2 − A

Br
e0.

The next degree of x in the equations is xr−1 and is satisfied by the equations,

(r + 1)2e1 − Ae1 + B(r + 1)h1 + Ch0 = 0, (B.33)

(r + 1)2h1 + Rh1 + S(r + 1)e1 + Qh0 + Te0 = 0. (B.34)

By using the expression for h0 gives, e1 and h1 as

e1 =
[BQ(r + 1)− C(r + 1)2 −RC] (A− r2) + TB2r(r + 1)

Br [(r + 1)4 − (r + 1)2(A + SB −R)−RA]
e0, (B.35)

h1 =
Q(r(r + 1)− A)2 − Cr2S(r + 1)− TBr(r + 1)2 + A(TBr −Q) + CAS(r + 1)

Br [(r + 1)4 − (r + 1)2(A + SB −R)−RA]
e0. (B.36)

The problem is now split into two cases, case 1, r1,2,3 and case 2, r4.

Case 1: r1,2 = ±
√

µ0

µ
and r3 = 1.

Both summations in equations (B.27) and (B.29) must equal zero and so without loss of generality
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the following equations are obtained, (form ≥ 2)

em =
[(m + r)2 + R][Chm−1 + Aem−2]−B(m + r)[Qhm−1 + Tem−1 + Phm−2]

BS(m + r)2 − [(m + r)2 − A][(m + r)2 + R]
, (B.37)

hm =
[(m + r)2 − A][Qhm−1 + Tem−1 + Phm−2]− S(m + r)[Chm−1 + Aem−2]

BS(m + r)2 − [(m + r)2 − A][(m + r)2 + R]
. (B.38)

By using the expressions for e0, e1, h0 and h1 with the above recurrence relations, it is possible to

generate an expression for Ez and Hz in the ferrite.

Case 2: r4 = −1.

As r3 and r4 differ by and integer, the series solutions corresponding to r4 = −1 will take the form,

Ez = E1ln(x) + D1 and Hz = H1ln(x) + B1. (B.39)

where

E1 =
∞∑

m=0

emxm+1, D1 =
∞∑

m=0

dmxm−1, H1 =
∞∑

m=0

hmxm+1, and B1 =
∞∑

m=0

bmxm−1, (B.40)

The first and second derivatives of (B.39) are given by,

E ′
z = E ′

1ln(x) +
E1

x
+ D′

1, H ′
z = H ′

1ln(x) +
H1

x
+ B′

1, (B.41)

E ′′
z = E ′′

1 ln(x) + 2
E ′

1

x
− E ′

1

x2
+ D′′

1 , H ′′
z = H ′′

1 ln(x) + 2
H ′

1

x
− H ′

1

x2
+ B′′

1 . (B.42)

Substituting (B.39) in (B.19),

[
E ′′

1 +
E ′

1

x
+ A

(
1− 1

x2

)
E1 +

B

x
H ′

1 +
C

x
H1

]
ln(x)+

2

x
E ′

1 + D′′
1 +

D′
1

x
+ A

(
1− 1

x2

)
D1 +

B

x2
H1 +

B

x
B′

1 +
C

x
B1 = 0,

E1 and H1 are solutions to (B.19) so the coefficient of ln(x) is zero. Therefore,

2

x
E ′

1 +
B

x2
H1 + D′′

1 +
D′

1

x
+ A

(
1− 1

x2

)
D1 +

B

x
B′

1 +
C

x
B1 = 0. (B.43)

Substituting (B.39) in (B.20),

[
H ′′

1 +
H ′

1

x
+

(
P +

Q

x
+

R

x2

)
H1 +

S

x
E ′

1 +
T

x
E1

]
ln(x)+
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2

x
H ′

1 +
S

x2
E1 + B′′

1 +
B′

1

x
+ P

(
P +

Q

x
+

R

x2

)
B1 +

S

x
D′

1 +
T

x
D1 = 0,

E1 and H1 are solutions to (B.20) so the coefficient of ln(x) is zero. Therefore,

2

x
H ′

1 +
S

x2
E1 + B′′

1 +
B′

1

x
+

(
P +

Q

x
+

R

x2

)
B1 +

S

x
D′

1 +
T

x
D1 = 0. (B.44)

The first and second derivatives of (B.40) are given by,

E ′
1 =

∑∞
m=0(m + 1)emxm, E ′′

1 =
∑∞

m=0 m(m + 1)emxm−1,

D′
1 =

∑∞
m=0(m− 1)dmxm−2, D′′

1 =
∑∞

m=0(m− 1)(m− 2)dmxm−3,

H ′
1 =

∑∞
m=0(m + 1)hmxm, H ′′

1 =
∑∞

m=0 m(m + 1)hmxm−1,

B′
1 =

∑∞
m=0(m− 1)bmxm−2 and B′′

1 =
∑∞

m=0(m− 1)(m− 2)bmxm−3.

(B.45)

Substituting (B.45) into (B.43)

2
∞∑

m=0

(m + 1)emxm−1 + B

∞∑
m=0

hmxm−3 +
∞∑

m=0

(m− 1)(m− 2)dmxm−3 +
∞∑

m=0

(m− 1)dmxm−3+

A

∞∑
m=0

dmxm−1 − A

∞∑
m=0

dmxm−3 + B

∞∑
m=0

(m− 1)bmxm−3 + C

∞∑
m=0

bmxm−2 = 0.

This can be written in ascending powers of x.

∞∑
m=0

[
B(hm + (m− 1)bm) +

(
(m− 1)2 − A

)
dm

]
xm−3+

∞∑
m=0

Cbmxm−2+
∞∑

m=0

[2(m + 1)em + Adm] xm−1 = 0.

(B.46)

Expanding (B.46) gives

[B(h0 − b0) + (1− A)d0] x
−3 + [Bb1 − Ad1 + Cb0] x

−2+

∞∑
m=2

[
B(hm + (m− 1)bm) +

(
(m− 1)2 − A

)
dm + Cbm−1 + 2(m− 1)em−2 + Adm−2

]
xm−3 = 0.

(B.47)

Substituting (B.45) into (B.44)

2
∞∑

m=0

(m + 1)hmxm−1 + S

∞∑
m=0

emxm−1 +
∞∑

m=0

(m− 1)(m− 2)bmxm−3 +
∞∑

m=0

(m− 1)bmxm−3+
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P

∞∑
m=0

bmxm−1 + Q

∞∑
m=0

bmxm−2 + R

∞∑
m=0

bmxm−3 + S

∞∑
m=0

(m− 1)dmxm−3 + T

∞∑
m=0

dmxm−2 = 0.

This can be written in ascending powers of x.

∞∑
m=0

[
((m− 1)2 + R)bm + S(m− 1)dm

]
xm−3 +

∞∑
m=0

[Qbm + Tdm] xm−2+

∞∑
m=0

[2(m + 1)hm + Sem + Pbm] xm−1 = 0. (B.48)

Expanding (B.48) gives

[(1 + R)b0 − Sd0] x
−3 + [Rb1 + Qb0 + Td0] x

−2+

∞∑
m=2

[
((m− 1)2 + R)bm + S(m− 1)dm + Qbm−1 + Tdm−1 + 2(m− 1)hm−2 + Sem−2 + Pbm−2

]
xm−3 = 0.

(B.49)

This gives the following equations,

B(h0− b0) + (1−A)d0 = 0, (1 + R)b0−Sd0 = 0, Bb1−Ad1 + Cb0 = 0 and Rb1 + Qb0 + Td0 = 0,

(B.50)

which gives

b0 =
BSh0

SB − 1−R + A + AR
, d0 =

(1 + R)Bh0

SB − 1−R + A + AR
, (B.51)

b1 = − B(SQ + T + TR)h0

(SB − 1−R + A + AR)R
, d1 = −B(SQB + TB + TRB − CSR)h0

(SB − 1−R + A + AR)AR
. (B.52)

The remaining terms can be calculated from equations (B.47) and (B.49), which can be expressed in

the following form,




bm

dm


 =




B(m− 1) (m− 1)2 − A

(m− 1)2 + R S(m− 1)




−1




− (Bhm + Cbm−1 + 2(m− 1)em−2 + Adm−2)

− (Qbm−1 + Tdm−1 + 2(m− 1)hm−2 + Sem−2 + Pbm−2)


 .

(B.53)
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From the expressions of Ez and Hz, it possible to calculate Eθ and Hθ from the expressions,

Eθ =

√
ω2µε− β2

[
β
x
Ez + iωµdHz

dx

]− iβωκHz

ω2µε− β2
and Hθ =

√
ω2µε− β2

ω2µ0ε− β2

[
β

x
Hz − iωε

dEz

dx

]
. (B.54)

Therefore, in the ferrite, the following expressions are obtained,

Ez = AE1 + BE2 + CE3 + D (E3ln(x) + D4) , (B.55)

Hz = AH1 + BH2 + CH3 + D (H3ln(x) + B4) , (B.56)

Eθ = β

x
√

ω2µε−β2
(AE1 + BE2 + CE3 + D (E3ln(x) + D4))

+ iωµ√
ω2µε−β2

(
AdH1

dx
+ B dH2

dx
+ C dH3

dx
+ D

(
dH3

dx
ln(x) + H3

x
+ dB4

dx

))

− iβωκ
ω2µε−β2 (AH1 + BH2 + CH3 + D (H3ln(x) + B4)) ,

(B.57)

Hθ =

√
ω2µε−β2

ω2µ0ε−β2

[
β
x

(AH1 + BH2 + CH3 + D (H3ln(x) + B4))
]

−
√

ω2µε−β2

ω2µ0ε−β2

[
iωε

(
AdE1

dx
+ B dE2

dx
+ C dE3

dx
+ D

(
dE3

dx
ln(x) + E3

x
+ dD4

dx

))]
,

(B.58)

where

E1 =
∞∑

k=0

ekx
k−

√
µ0
µ , E2 =

∞∑

k=0

ekx
k+

√
µ0
µ , E3 =

∞∑

k=0

ekx
k+1, D4 =

∞∑

k=0

dkx
k−1,

H1 =
∞∑

k=0

hkx
k−

√
µ0
µ , H2 =

∞∑

k=0

hkx
k+

√
µ0
µ , H3 =

∞∑

k=0

hkx
k+1, B4 =

∞∑

k=0

bkx
k−1,

where A, B, C and D are constants. Therefore, the following expressions in each region are obtained.

Region 1 - Air

Ez1(x) = a1J1

(
k0

kc

x

)
, Hz1(x) = c1J1

(
k0

kc

x

)
, (B.59)

Eθ1(x) = a1
βkc

xk2
0

J1

(
k0

kc

x

)
+ c1

iωµ0

k0

(
J0

(
k0

kc

x

)
− kc

k0x
J1

(
k0

kc

x

))
, (B.60)

Hθ1(x) = −a1
iωε

k0

(
J0

(
k0

kc

x

)
− kc

k0x
J1

(
k0

kc

x

))
+ c1

βkc

xk2
0

J1

(
k0

kc

x

)
, (B.61)

where a1 and c1 are constants.
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Region 2 - Air

Ez2(x) = a2J1

(
k0

kc

x

)
+ b2Y1

(
k0

kc

x

)
, Hz2(x) = c2J1

(
k0

kc

x

)
+ d2Y1

(
k0

kc

x

)
, (B.62)

Eθ2(x) = a2
βkc

xk2
0
J1

(
k0

kc
x
)

+ b2
βkc

xk2
0
Y1

(
k0

kc
x
)

+

c2
iωµ0

k0

(
J0

(
k0

kc
x
)
− kc

k0x
J1

(
k0

kc
x
))

+

d2
iωµ0

k0

(
Y0

(
k0

kc
x
)
− kc

k0x
Y1

(
k0

kc
x
))

,

(B.63)

Hθ2(x) = −a2
iωε
k0

(
J0

(
k0

kc
x
)
− kc

k0x
J1

(
k0

kc
x
))

−b2
iωε
k0

(
Y0

(
k0

kc
x
)
− kc

k0x
Y1

(
k0

kc
x
))

+

c2
βkc

xk2
0
J1

(
k0

kc
x
)

+ d2
βkc

xk2
0
Y1

(
k0

kc
x
)

,

(B.64)

where a2, b2, c2, and d2 are constants.

Region 3 - Ferrite

Ez(x) = a3E1 + b3E2 + c3E3 + d3 (E3ln(x) + D4) , (B.65)

Hz(x) = a3H1 + b3H2 + c3H3 + d3 (H3ln(x) + B4) , (B.66)

Eθ3(x) = a3

[
βE1

x
√

ω2εµ−β2
+ iωµ√

ω2εµ−β2

dH1

dx
− iωβκH1

ω2εµ−β2

]
+ b3

[
βE2

x
√

ω2εµ−β2
+ iωµ√

ω2εµ−β2

dH2

dx
− iωβκH2

ω2εµ−β2

]
+

c3

[
βE3

x
√

ω2εµ−β2
+ iωµ√

ω2εµ−β2

dH3

dx
− iωβκH3

ω2εµ−β2

]
+

d3

[[
βE3

x
√

ω2εµ−β2
+ iωµ√

ω2εµ−β2

dH3

dx
− iωβκH3

ω2εµ−β2

]
ln(x) +

[
βD4

x
√

ω2εµ−β2
+ iωµ√

ω2εµ−β2

dB4

dx
− iωβκB4

ω2εµ−β2

]
+ iωµH3

x
√

ω2εµ−β2

]
,

(B.67)

Hθ3(x) = a3

√
ω2εµ−β2

ω2εµ0−β2

[
β
x
H1 − iωεdE1

dx

]
+ b3

√
ω2εµ−β2

ω2εµ0−β2

[
β
x
H2 − iωεdE2

dx

]
+ c3

√
ω2εµ−β2

ω2εµ0−β2

[
β
x
H3 − iωεdE3

dx

]
+

d3

√
ω2εµ−β2

ω2εµ0−β2

[[
β
x
H3 − iωεdE3

dx

]
ln(x) +

[
β
x
B4 − iωε

(
E3

x
− dD4

dx

)]]
,

(B.68)

where

E1 =
∞∑

k=0

ekx
k−

√
µ0
µ , E2 =

∞∑

k=0

ekx
k+

√
µ0
µ , E3 =

∞∑

k=0

ekx
k+1, D4 =

∞∑

k=0

dkx
k−1,

H1 =
∞∑

k=0

hkx
k−

√
µ0
µ , H2 =

∞∑

k=0

hkx
k+

√
µ0
µ , H3 =

∞∑

k=0

hkx
k+1, B4 =

∞∑

k=0

bkx
k−1,

where a3, b3, c3 and d3 are constants.
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Region 4 - Air

Ez4(x) = a4J1

(
k0

kc

x

)
+ b4Y1

(
k0

kc

x

)
, Hz4(x) = c4J1

(
k0

kc

x

)
+ d4Y1

(
k0

kc

x

)
, (B.69)

Eθ2(x) = a4
βkc

xk2
0
J1

(
k0

kc
x
)

+ b4
βkc

xk2
0
Y1

(
k0

kc
x
)

+

c4
iωµ0

k0

(
J0

(
k0

kc
x
)
− kc

k0x
J1

(
k0

kc
x
))

+

d4
iωµ0

k0

(
Y0

(
k0

kc
x
)
− kc

k0x
Y1

(
k0

kc
x
))

,

(B.70)

Hθ2(x) = −a4
iωε
k0

(
J0

(
k0

kc
x
)
− kc

k0x
J1

(
k0

kc
x
))

−b4
iωε
k0

(
Y0

(
k0

kc
x
)
− kc

k0x
Y1

(
k0

kc
x
))

+

c4
βkc

xk2
0
J1

(
k0

kc
x
)

+ d4
βkc

xk2
0
Y1

(
k0

kc
x
)

,

(B.71)

where a4, b4, c4, and d4 are constants. The expressions for each region can be combined with the

boundary conditions leads to the system of equations which can be written in matrix form.

A. (a1, a2, a3, a4, b2, b3, b4, c1, c2, c3, c4, d2, d3, d4)
T = 0, where A =




A11 · · · A114

...
. . .

...

A141 · · · A1414




.

(B.72)

The same method, as shown in section 2.8, can be used to generate the vaslues of β.



Appendix C

Mathematical Functions

This section considers the mathematical functions that have been used in the derivation of the

governing equations. In air, the electric and magnetric fields can be expressed as Bessel functions,

whilst in the ferrite, the fields are expressed as Confluent Hypergeometric functions [56]. Important

properties of both of these sets of functions are given below.

C.1 Bessel Functions

C.1.1 Differential Equation

Bessel functions arise from solutions to differetntial equations. The most popular usage of Bessel

functions are in the solutions of the wave equation in cylindrical polar coordinates. Here, the differ-

ential equation from which the Bessel functions arise are discussed.

Let y be a function of x that satisfies the following equation,

d2y

dx2
+

1

x

dy

dx
+

[
k2 − n2

x2

]
y(x) = 0. (C.1)

The general solution can be written as,

y = A Jn(kx) + B Yn(kx), (C.2)
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where A and B are constants. Jn and Yn are referred to as Bessel functions of the first and second

kinds, respectively.

An alternative set of Bessel functions, referred to as modified Bessel fucntions, also exist. These

are solutions to a slighly varied form of the original differential requation. Letting y be a function of

x that satisfies the following equation,

d2y

dx2
+

1

x

dy

dx
−

[
k2 +

n2

x2

]
y(x) = 0. (C.3)

The general solution can be written as,

y = C In(kx) + D Kn(kx), (C.4)

where C and D are constants. In and Kn are the modified Bessel functions of the first and second

kinds, respectively

C.1.2 Derivatives

The Besssl functions that were used in this invesigation were of zero and first order. Their deriva-

tives are given below.

d

dx
I0(kx) = k I1(kx),

d

dx
K0(kx) = −k K1(kx), (C.5)

d

dx
I1(kx) = k I0(kx)− I1(kx)

x
,

d

dx
K1(kx) = −k K0(kx)− K1(kx)

x
, (C.6)

d

dx
J0(kx) = −k J1(kx),

d

dx
Y0(kx) = −k Y1(kx), (C.7)

d

dx
J1(kx) = k J0(kx)− J1(kx)

x
,

d

dx
Y1(kx) = k Y0(kx)− Y1(kx)

x
. (C.8)

C.1.3 The limit at 0 and ∞

The behaviour of these functions at 0 and ∞ have also been made use of. The centreline of the

structure requires a knowledge of how the functions behave at 0. The behaviour at ∞ is improtant

if a freely immersed helix (without a metal waveguide) is to be investigated.
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Let x ε R, as x → 0

I0(x) → 0, I1(x) → 0, K0(x) →∞, K1(x) →∞. (C.9)

Let x ε R, as x →∞

I0(x) →∞, I1(x) →∞, K0(x) → 0, K1(x) → 0. (C.10)

C.2 Confluent Hypergeometric Functions

The governing equations for the behaviour of the wave in the ferrite can be solved to give expres-

sions in terms of Confluent Hypergeometric Functions. Examples of these functions are Whittaker

functions and Kummer functions. Both of these functions can be used to express the electric and

magnetic field components in the ferrite.

C.2.1 Whittaker Functions

Let y be a function of x, and satisfy the following equation,

d2y

dx2
+

[
µ

x
− 1

4
+

1− 4ν2

4x2

]
y(x) = 0. (C.11)

The solution can be written as,

y = a M(µ, ν, x) + b W (µ, ν, x), (C.12)

where M and W are Whittaker functions and a and b are constants.

C.2.2 Kummer Functions

Let y be a function of x, and satisfy the following equation,

d2y

dx2
+

[ν

x
− 1

] dy

dx
− µy(x) = 0. (C.13)
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The solution can be written as,

y = cM(µ, ν, x) + d U(µ, ν, x), (C.14)

where M and U are Kummer functions and c and d are constants.

C.2.3 Relationship between Kummer and Whittaker Functions

The Kummer and Whittaker functions are related to each other by the following equations.

M(µ, ν, z) = ez/2z−ν/2M (ν/2− µ, (ν − 1)/2, z) , (C.15)

U(µ, ν, z) = ez/2z−ν/2W (ν/2− µ, (ν − 1)/2, z) , (C.16)

M (x, y, z) = e−z/2z(1+2y)/2M(1/2 + y − x, 1 + 2y, z), (C.17)

W (x, y, z) = e−z/2z(1+2y)/2U(1/2 + y − x, 1 + 2y, z). (C.18)



Appendix D

Computer Programs

D.1 MATLAB

This section gives the codes that were used in the MATLAB program. Otto et al [57] provided a

comprehensive understanding of the matlab commands that were used in these programs. The first

code is for finding a real-valued propagation constant, and the second is for finding a complex-valued

propagation constant.

D.1.1 Real-Valued Propagation Constant

Below is the MATLAB code which generated the propagation coefficient in the cases where µ and

ε are both real-valued constants. The program generates a value for the determinant of the matrix1.

1The matrix A was explained in chapter 2
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function complete = f(beta);

i=sqrt(-1);

a=1.465/1000;

b=1.59/1000;

c=2.92/1000; d=c+(10^(-6)); psi=9.5*pi/180;

T=tan(psi);

omega=2*pi*1*10^9;

mu0=4*pi*10^(-7); e0=8.854188*10^(-12); beta0=omega*sqrt(mu0*e0);

gamma=2.21*10^(5); Ms=0.068; H=55000;

kappa=gamma*omega*Ms/(omega^2-gamma^2*H^2);

mu=mu0+(gamma^2*H*Ms)/(gamma^2*H^2-omega^2); ef=14.5*e0; er=1;

epsilonf=ef;
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Hz31b=exp(-(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*b)*

M(1/2*((-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/

(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2),1,2*

(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*b);

Hz31c=exp(-(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*c)*

M(1/2*((-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/

(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2),1,2*

(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*c);

Hz32b=exp(-(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*b)*

U(1/2*((-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/

(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2),1,2*

(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*b);

Hz32c=exp(-(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*c)*

U(1/2*((-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/

(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2),1,2*

(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*c);
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Et31b=(-i*omega*mu*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))+1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*b)+1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*b)-1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*b)-1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*b)-i*omega*kappa*beta*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/
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(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)))/

(omega^2*mu*epsilonf-beta^2);
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Et31c=(-i*omega*mu*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))+1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*c)+1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*c)-1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*c)-1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*c)-i*omega*kappa*beta*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/
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(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)))/

(omega^2*mu*epsilonf-beta^2);
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Et32b=(-i*omega*mu*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))+1/4*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*b)+1/2*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*b)+1/4*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta^2*kappa^2/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)*b)-1/2*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*b)-1/2*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/
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(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*b)-i*omega*kappa*beta*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)))/

(omega^2*mu*epsilonf-beta^2);
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Et32c=(-i*omega*mu*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))+1/4*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*c)+1/2*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*c)+1/4*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta^2*kappa^2/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)*c)-1/2*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*c)-1/2*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/
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(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*c)-i*omega*kappa*beta*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)))/

(omega^2*mu*epsilonf-beta^2);
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A=zeros(14);

A(1,1)= I(0,sqrt(beta^2-beta0^2)*a)*T;

A(1,8)=-i*omega*mu0*I(1,sqrt(beta^2-omega^2*e0*mu0)*a)/sqrt(beta^2-omega^2*e0*mu0);;

A(2,2)=I(0,sqrt(beta^2-beta0^2)*a)*T;

A(2,5)=K(0,sqrt(beta^2-beta0^2)*a)*T;

A(2,9)=-i*omega*mu0/(beta^2-beta0^2)^(1/2)*I(1,(beta^2-beta0^2)^(1/2)*a);

A(2,12)=omega*mu0/(beta^2-beta0^2)^(1/2)*K(1,(beta^2-beta0^2)^(1/2)*a)*i;

A(3,1)=I(0,sqrt(beta^2-beta0^2)*a);

A(3,2)=-I(0,sqrt(beta^2-beta0^2)*a);

A(3,5)=-K(0,sqrt(beta^2-beta0^2)*a);

A(3,8)=i*omega*mu0*I(1,sqrt(beta^2-omega^2*e0*mu0)*a)/sqrt(beta^2-omega^2*e0*mu0)*T;

A(3,9)=-i*omega*mu0/(beta^2-beta0^2)^(1/2)*I(1,(beta^2-beta0^2)^(1/2)*a)*T;

A(3,12)=(omega*mu0/(beta^2-beta0^2)^(1/2)*K(1,(beta^2-beta0^2)^(1/2)*a)*i)*T;

A(4,1)=-i*omega*e0*I(1,(beta^2-omega^2*mu0*e0)^(1/2)*a)*(beta^2-omega^2*mu0*e0)^(1/2)/

(-beta^2+omega^2*mu0*e0);

A(4,2)=-(-i*omega*e0*sqrt(beta^2-beta0^2)*I(1,sqrt(beta^2-beta0^2)*a)/(-beta^2+beta0^2));

A(4,5)=-(i*omega*e0*sqrt(beta^2-beta0^2)*K(1,sqrt(beta^2-beta0^2)*a)/(-beta^2+beta0^2));

A(4,8)=I(0,sqrt(beta^2-beta0^2)*a)*T;

A(4,9)=-I(0,sqrt(beta^2-beta0^2)*a)*T;

A(4,12)=-K(0,sqrt(beta^2-beta0^2)*a)*T;
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% Ez2

A(5,2)=I(0,sqrt(beta^2-beta0^2)*b);

A(5,5)=K(0,sqrt(beta^2-beta0^2)*b);

% -Ez3

A(5,3)=-I(0,sqrt(beta^2-omega^2*ef*mu0)*b);

A(5,6)=-K(0,sqrt(beta^2-omega^2*ef*mu0)*b);

% Etheta 2

A(6,9)=-i*omega*mu0/(beta^2-beta0^2)^(1/2)*I(1,(beta^2-beta0^2)^(1/2)*b);

A(6,12)=i*omega*mu0/(beta^2-beta0^2)^(1/2)*K(1,(beta^2-beta0^2)^(1/2)*b);

% -Etheta 3

A(6,10)=-Et31b;

A(6,13)=-Et32b;

% Hz2

A(7,9)=I(0,sqrt(beta^2-beta0^2)*b);

A(7,12)=K(0,sqrt(beta^2-beta0^2)*b);

% -Hz3

A(7,10)=-Hz31b; A(7,13)=-Hz32b;
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% Htheta 2

A(8,2)=(-i*omega*e0*sqrt(beta^2-beta0^2)*I(1,sqrt(beta^2-beta0^2)*b)/

(beta0^2)-beta^2);

A(8,5)=(i*omega*e0*sqrt(beta^2-beta0^2)*K(1,sqrt(beta^2-beta0^2)*b)/

(beta0^2)-beta^2);

% -Htheta 3

A(8,3)=i*omega*ef*I(1,sqrt(beta^2-omega^2*ef*mu0)*b)*sqrt(beta^2-omega^2*ef*mu0)/

(omega^2*ef*mu0-beta^2);

A(8,6)=-i*omega*ef*K(1,sqrt(beta^2-omega^2*ef*mu0)*b)*sqrt(beta^2-omega^2*ef*mu0)/

(omega^2*ef*mu0-beta^2);

% Ez3

A(9,3)=I(0,sqrt(beta^2-omega^2*ef*mu0)*c);

A(9,6)=K(0,sqrt(beta^2-omega^2*ef*mu0)*c);

% -Ez4

A(9,4)=-I(0,sqrt(beta^2-beta0^2)*c);

A(9,7)=-K(0,sqrt(beta^2-beta0^2)*c);

% Etheta3

A(10,10)=Et31c; A(10,13)=Et32c;

% -Etheta4

A(10,11)=-(-i*omega*mu0/(beta^2-beta0^2)^(1/2)*I(1,(beta^2-beta0^2)^(1/2)*c));

A(10,14)=-(i*omega*mu0/(beta^2-beta0^2)^(1/2)*K(1,(beta^2-beta0^2)^(1/2)*c));
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% Hz3

A(11,10)=Hz31c; A(11,13)=Hz32c;

% -Hz4

A(11,11)=-I(0,sqrt(beta^2-beta0^2)*c);

A(11,14)=-K(0,sqrt(beta^2-beta0^2)*c);

% Htheta3

A(12,3)=-i*omega*ef*I(1,sqrt(beta^2-omega^2*ef*mu0)*c)*sqrt(beta^2-omega^2*ef*mu0)/

(omega^2*ef*mu0-beta^2);

A(12,6)=i*omega*ef*K(1,sqrt(beta^2-omega^2*ef*mu0)*c)*sqrt(beta^2-omega^2*ef*mu0)/

(omega^2*ef*mu0-beta^2);

% -Htheta4

A(12,4)=-(-i*omega*e0*sqrt(beta^2-beta0^2)*I(1,sqrt(beta^2-beta0^2)*c)/(beta0^2-beta^2));

A(12,7)=-(i*omega*e0*sqrt(beta^2-beta0^2)*K(1,sqrt(beta^2-beta0^2)*c)/(beta0^2-beta^2));

A(13,4)=I(0,sqrt(beta^2-beta0^2)*d);

A(13,7)=K(0,sqrt(beta^2-beta0^2)*d);

A(14,11)=I(1,sqrt(beta^2-beta0^2)*d);

A(14,14)=-K(1,sqrt(beta^2-beta0^2)*d);

complete=(det(A));

return;
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function I = I(x,y);

I = mfun(’BesselI’,x,y);

return;

function K = K(x,y);

K = mfun(’BesselK’,x,y);

return;

function M = M(x,y,z);

M = mfun(’KummerM’,x,y,z);

return;

function U = U(x,y,z);

U = mfun(’KummerU’,x,y,z);

return;



D.1 MATLAB 187

The determinant in the above case consisted of a purely imaginary number. By taking the

imaginary component of determinant, a β value satisfying the equation

f(β) = 0

is sought. An iterative method that was used to obtain an increased accuracy in β was the bisection

method2. A MATLAB code for the bisection method is given below.

% Let dp = number of decimal points of solution of f(x)=0

% Let a and b be the interval containing a root of f(x)=0

while round(a*10^dp)~=round(b*10^dp)

c=(a+b)/2;

if f(a)*f(c)<0, b=c; end;

if f(b)*f(c)<0, a=c; end;

end;

D.1.2 Complex-Valued Propagation Constant

The case dealing with complex-valued values of µ and ε has a separate MATLAB code. This code

gave a complex-valued propagation constant. The iterative method that was used to increase the

accuracy of the answers generated was Newton’s Method3.

2The bisection method was introduced in chapter 2
3Newton’s Method was explained in chapter 2
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function complete = fci;

x=;

y=;

for it=1:5

J=[dfx(x,y),dfy(x,y);dgx(x,y),dgy(x,y)];

H=-inv(J)*[f(x,y);g(x,y)];

x=x+H(1);

y=y+H(2);

disp([’At iteration’ num2str(it)])

x

y

end;

comp=1;

return;
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function out = dfx(x,y)

h=10^(-2); out=(f(x+h,y)-f(x,y))/(h);

return

function out = dfy(x,y)

k=10^(-2); out=(f(x,y+k)-f(x,y))/(k);

return

function out = dgx(x,y)

h=10^(-2); out=(g(x+h,y)-g(x,y))/(h);

return

function out = dgy(x,y)

k=10^(-2); out=(g(x,y+k)-g(x,y))/(k);

return

function f=f(x,y)

f=real(sk2(x+y*i));

return;

function g=g(x,y)

g=imag(sk2(x+y*i));

return;
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function complete = sk2(beta);

i=sqrt(-1);

a=1.465/1000;

b=1.59/1000;

c=2.92/1000;

d=c+(10^(-6));

psi=9.5*pi/180;

T=tan(psi);

omega=2*pi*freq*10^9;

mu0=4*pi*10^(-7);

e0=8.854188*10^(-12);

beta0=omega*sqrt(mu0*e0);

gamma=2.21*10^(5); Ms=0.068; H=55000;

kappa=gamma*omega*Ms/(omega^2-gamma^2*H^2);

mu=mu0+(gamma^2*H*Ms)/(gamma^2*H^2-omega^2); ef=14.5*e0;

mu=mu*(1+i/1000); ef=ef*(1+i/1000); er=1; epsilonf=ef;
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Hz31b=exp(-(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*b)*

M(1/2*((-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/

(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2),1,

2*(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*b);

Hz31c=exp(-(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*c)*

M(1/2*((-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/

(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2),1,

2*(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*c);

Hz32b=exp(-(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*b)*

U(1/2*((-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/

(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2),1,

2*(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*b);

Hz32c=exp(-(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*c)*

U(1/2*((-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/

(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2),1,

2*(-(omega^2*mu*epsilonf-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*c);
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Et31b=(-i*omega*mu*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))+1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*b)+1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*b)-1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*b)-1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*b)-i*omega*kappa*beta*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,
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2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)))/

(omega^2*mu*epsilonf-beta^2);
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Et31c=(-i*omega*mu*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))+1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*c)+1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*c)-1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*c)-1/2*i*omega*mu*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*c)-i*omega*kappa*beta*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,
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2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)))/

(omega^2*mu*epsilonf-beta^2);
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Et32b=(-i*omega*mu*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))+1/4*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*b)+

1/2*i*omega*mu*U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+

beta*kappa)/(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*(mu*omega^2*ef*kappa^2

-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*b)+1/4*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta^2*kappa^2/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)*b)-1/2*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*b)-1/2*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/
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(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*b)-i*omega*kappa*beta

*U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)))/

(omega^2*mu*epsilonf-beta^2);
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Et32c=(-i*omega*mu*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))

/exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))+1/4*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*c)+1/2*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*c)+1/4*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+1,1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta^2*kappa^2/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)*c)-1/2*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*c)-1/2*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,
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2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*c)-i*omega*kappa*beta*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu))^(1/2),1,

2*c*((omega^2*ef*kappa^2-(omega^2*mu*epsilonf-beta^2)*mu)/mu)^(1/2))/

exp(c*(omega^2*ef*kappa^2/mu-(omega^2*mu*epsilonf-beta^2))^(1/2)))/

(omega^2*mu*epsilonf-beta^2);
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A=zeros(14);

A(1,1)= I(0,sqrt(beta^2-beta0^2)*a)*T;

A(1,8)=-i*omega*mu0*I(1,sqrt(beta^2-omega^2*e0*mu0)*a)/sqrt(beta^2-omega^2*e0*mu0);

A(2,2)=I(0,sqrt(beta^2-beta0^2)*a)*T;

A(2,5)=K(0,sqrt(beta^2-beta0^2)*a)*T;

A(2,9)=-i*omega*mu0/(beta^2-beta0^2)^(1/2)*I(1,(beta^2-beta0^2)^(1/2)*a);

A(2,12)=omega*mu0/(beta^2-beta0^2)^(1/2)*K(1,(beta^2-beta0^2)^(1/2)*a)*i;

A(3,1)=I(0,sqrt(beta^2-beta0^2)*a);

A(3,2)=-I(0,sqrt(beta^2-beta0^2)*a);

A(3,5)=-K(0,sqrt(beta^2-beta0^2)*a);

A(3,8)=i*omega*mu0*I(1,sqrt(beta^2-omega^2*e0*mu0)*a)/sqrt(beta^2-omega^2*e0*mu0)*T;

A(3,9)=-i*omega*mu0/(beta^2-beta0^2)^(1/2)*I(1,(beta^2-beta0^2)^(1/2)*a)*T;

A(3,12)=(omega*mu0/(beta^2-beta0^2)^(1/2)*K(1,(beta^2-beta0^2)^(1/2)*a)*i)*T;

A(4,1)=-i*omega*e0*I(1,(beta^2-omega^2*mu0*e0)^(1/2)*a)*(beta^2-omega^2*mu0*e0)^(1/2)

/(omega^2*mu0*e0-beta^2);

A(4,2)=-(-i*omega*e0*sqrt(beta^2-beta0^2)*I(1,sqrt(beta^2-beta0^2)*a)/(beta0^2-beta^2));

A(4,5)=-(i*omega*e0*sqrt(beta^2-beta0^2)*K(1,sqrt(beta^2-beta0^2)*a)/(beta0^2-beta^2));

A(4,8)=I(0,sqrt(beta^2-beta0^2)*a)*T;

A(4,9)=-I(0,sqrt(beta^2-beta0^2)*a)*T;

A(4,12)=-K(0,sqrt(beta^2-beta0^2)*a)*T;
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A(5,2)=I(0,sqrt(beta^2-beta0^2)*b);

A(5,5)=K(0,sqrt(beta^2-beta0^2)*b);

A(5,3)=-I(0,sqrt(beta^2-omega^2*ef*mu0)*b);

A(5,6)=-K(0,sqrt(beta^2-omega^2*ef*mu0)*b);

A(6,9)=-i*omega*mu0/(beta^2-beta0^2)^(1/2)*I(1,(beta^2-beta0^2)^(1/2)*b);

A(6,12)=i*omega*mu0/(beta^2-beta0^2)^(1/2)*K(1,(beta^2-beta0^2)^(1/2)*b);

A(6,10)=-Et31b; A(6,13)=-Et32b;

A(7,9)=I(0,sqrt(beta^2-beta0^2)*b);

A(7,12)=K(0,sqrt(beta^2-beta0^2)*b);

A(7,10)=-Hz31b; A(7,13)=-Hz32b;

A(8,2)=(-i*omega*e0*sqrt(beta^2-beta0^2)*I(1,sqrt(beta^2-beta0^2)*b)/(beta0^2-beta^2));

A(8,5)=(i*omega*e0*sqrt(beta^2-beta0^2)*K(1,sqrt(beta^2-beta0^2)*b)/(beta0^2-beta^2));

A(8,3)=i*omega*ef*I(1,sqrt(beta^2-omega^2*ef*mu0)*b)*sqrt(beta^2-omega^2*ef*mu0)/

(omega^2*ef*mu0-beta^2);

A(8,6)=-i*omega*ef*K(1,sqrt(beta^2-omega^2*ef*mu0)*b)*sqrt(beta^2-omega^2*ef*mu0)/

(omega^2*ef*mu0-beta^2);
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A(9,3)=I(0,sqrt(beta^2-omega^2*ef*mu0)*c);

A(9,6)=K(0,sqrt(beta^2-omega^2*ef*mu0)*c);

A(9,4)=-I(0,sqrt(beta^2-beta0^2)*c);

A(9,7)=-K(0,sqrt(beta^2-beta0^2)*c);

A(10,10)=Et31c;

A(10,13)=Et32c;

A(10,11)=-(-i*omega*mu0/(beta^2-beta0^2)^(1/2)*I(1,(beta^2-beta0^2)^(1/2)*c));

A(10,14)=-(i*omega*mu0/(beta^2-beta0^2)^(1/2)*K(1,(beta^2-beta0^2)^(1/2)*c));

A(11,10)=Hz31c;

A(11,13)=Hz32c;

A(11,11)=-I(0,sqrt(beta^2-beta0^2)*c);

A(11,14)=-K(0,sqrt(beta^2-beta0^2)*c);

A(12,3)=-i*omega*ef*I(1,sqrt(beta^2-omega^2*ef*mu0)*c)*sqrt(beta^2-omega^2*ef*mu0)/

(omega^2*ef*mu0-beta^2);

A(12,6)=i*omega*ef*K(1,sqrt(beta^2-omega^2*ef*mu0)*c)*sqrt(beta^2-omega^2*ef*mu0)/

(omega^2*ef*mu0-beta^2);

A(12,4)=-(-i*omega*e0*sqrt(beta^2-beta0^2)*I(1,sqrt(beta^2-beta0^2)*c)/(beta0^2-beta^2));

A(12,7)=-(i*omega*e0*sqrt(beta^2-beta0^2)*K(1,sqrt(beta^2-beta0^2)*c)/(beta0^2-beta^2));
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A(13,4)=I(0,sqrt(beta^2-beta0^2)*d);

A(13,7)=K(0,sqrt(beta^2-beta0^2)*d);

A(14,11)=I(1,sqrt(beta^2-beta0^2)*d);

A(14,14)=-K(1,sqrt(beta^2-beta0^2)*d);

complete=(det(A));

return;

function I = I(x,y);

I = mfun(’BesselI’,x,y);

return;

function K = K(x,y);

K = mfun(’BesselK’,x,y);

return;

function M = M(x,y,z);

M = mfun(’KummerM’,x,y,z);

return;

function U = U(x,y,z);

U = mfun(’KummerU’,x,y,z);

return;
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D.2 MAPLE

MAPLE was used to obtain the value of the attenuation coefficient. Richards [58] provided a

comprehensive understanding of the commands that were used in this program. The code that was

used is written below.

Ez1:= r-> BesselI(0, k*r);

Hz1:= r-> c1*BesselI(0, k*r);

Er1:= r->I*beta*BesselI(1, k*r)/k;

Hr1:= r-> c1*I*beta*BesselI(1,k*r)/k;

Et1:=r-> -I*omega*mu0*c1*BesselI(1, k*r)/k;

Ht1:=r-> I*omega*e0*BesselI(1, k*r)/k;

Ez2:= r-> a2*BesselI(0, k*r)+b2* BesselK(0, k*r);

Hz2:= r->c2*BesselI(0, k*r)+d2* BesselK(0, k*r);

Er2:= r-> I*beta*(a2*BesselI(1, k*r)-b2* BesselK(1, k*r)) /k;

Hr2:= r-> I*beta*(c2*BesselI(1, k*r)-d2* BesselK(1, k*r)) /k;
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Et2:=r-> -I*omega*mu0*(c2*BesselI(1, k*r)-d2* BesselK(1, k*r))/k;

Ht2:=r-> I*omega*e0*(a2*BesselI(1, k*r)-b2* BesselK(1, k*r)) /k;

Ez4:= r-> a4*BesselI(0,k*r)+b4* BesselK(0,k*r);

Hz4:= r-> c4*BesselI(0,k*r)+d4* BesselK(0,k*r);

Er4:= r-> I*beta*(a4*BesselI(1,k*r)-b4* BesselK(1,k*r))/k;

Hr4:= r-> I*beta*(c4*BesselI(1,k*r)-d4* BesselK(1,k*r))/k;

Et4:=r-> -I*omega*mu0*(c4*BesselI(1,k*r)-d4* BesselK(1,k*r))/k;

Ht4:=r-> I*omega*e0*(a4*BesselI(1,k*r)-b4* BesselK(1,k*r))/k;
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a:=1.465/1000;

b:=1.59/1000;

c:=2.92/1000;

d:=c+10^(-6);

T:=tan(9.5*evalf(Pi)/180);

mu0:= 4*evalf(Pi)*10^(-7);

mud:=mu0;e0:= 8.85*10^(-12);

ef:= 14.5*e0;

f:= 10^9;

omega:=2*evalf(Pi)*f;

beta:=;

g:=2.21*10^(5); Ms:=0.068; H:=55000;

kappa:=g*omega*Ms/(omega^2-g^2*H^2);

mu:=mu0+(g^2*H*Ms)/(g^2*H^2-omega^2);

k:=sqrt(beta^2-omega^2*e0*mu0);

kf:=sqrt(beta^2-omega^2*ef*mu0);

kc:=sqrt(beta^2-omega^2*ef*mu);

M:=(x,y,z)->evalf(KummerM(x,y,z));

U:=(x,y,z)->evalf(KummerU(x,y,z)) ;
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Ez3:= r-> a3*BesselI(0,kf*r)+b3* BesselK(0,kf*r);

Er3:= r-> I*beta*(a3*BesselI(1,kf*r)-b3* BesselK(1,kf*r))/kf;

Ht3:=r-> I*omega*ef*(a3*BesselI(1,kf*r)-b3* BesselK(1,kf*r))/kf;

Hz31:=r->

exp(-(-(omega^2*mu*ef-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*r)*

M(1/2*((-(omega^2*mu*ef-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/

(-(omega^2*mu*ef-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2),1,2*

(-(omega^2*mu*ef-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*r);

Hz32:=r->

exp(-(-(omega^2*mu*ef-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*r)*

U(1/2*((-(omega^2*mu*ef-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/

(-(omega^2*mu*ef-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2),1,2*

(-(omega^2*mu*ef-beta^2)*mu+omega^2*ef*kappa^2)^(1/2)/mu^(1/2)*r);

Hz3:= r-> c3*Hz31(r)+ d3*Hz32(r) ;
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Et31:=b->

(-i*omega*mu*(omega^2*ef*kappa^2/mu-(omega^2*mu*ef-beta^2))^(1/2)*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2),1,2*b*((omega^2*ef*kappa^2

-(omega^2*mu*ef-beta^2)*mu)/mu)^(1/2))/exp(b*(omega^2*ef*kappa^2/mu-

(omega^2*mu*ef-beta^2))^(1/2))+1/2*i*omega*mu*M(1/2*((mu*(omega^2*ef*kappa^2-

(omega^2*mu*ef-beta^2)*mu))^(1/2)+beta*kappa)/(mu*(omega^2*ef*kappa^2-

(omega^2*mu*ef-beta^2)*mu))^(1/2)+1,1,2*b*((omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)

*mu)/mu)^(1/2))/(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*ef-beta^2))^(1/2))*b)+

1/2*i*omega*mu*M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2)+

beta*kappa)/(mu*(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2)+1,1,2*b*

((omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*ef-beta^2))^(1/2))*(mu*omega^2*ef*kappa^2

-(omega^2*mu*epsilonf-beta^2)*mu^2)^(1/2)*b)-1/2*i*omega*mu*M(1/2*

((mu*(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2)+beta*kappa)/(mu*

(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2),1,2*b*((omega^2*ef*kappa^2

-(omega^2*mu*ef-beta^2)*mu)/mu)^(1/2))/(exp(b*(omega^2*ef*kappa^2/mu

-(omega^2*mu*ef-beta^2))^(1/2))*b)-1/2*i*omega*mu*M(1/2*((mu*(omega^2*ef*kappa^2

-(omega^2*mu*ef-beta^2)*mu))^(1/2)+beta*kappa)/(mu*(omega^2*ef*kappa^2

-(omega^2*mu*ef-beta^2)*mu))^(1/2),1,2*b*((omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)

*mu)/mu)^(1/2))*beta*kappa/(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*ef-beta^2))^(1/2))

*(mu*omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu^2)^(1/2)*b)-i*omega*kappa*beta*

M(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2),1,2*b*
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((omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu)/mu)^(1/2))/exp(b*(omega^2*ef*kappa^2/mu-

(omega^2*mu*ef-beta^2))^(1/2)))/(omega^2*mu*ef-beta^2);



D.2 MAPLE 210

Et32:=b->

(-i*omega*mu*(omega^2*ef*kappa^2/mu-(omega^2*mu*ef-beta^2))^(1/2)*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2),1,

2*b*((omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu)/mu)^(1/2))/exp(b*(omega^2*ef*kappa^2

/mu-(omega^2*mu*ef-beta^2))^(1/2))+1/4*i*omega*mu*U(1/2*((mu*(omega^2*ef*kappa^2

-(omega^2*mu*ef-beta^2)*mu))^(1/2)+beta*kappa)/(mu*(omega^2*ef*kappa^2

-(omega^2*mu*ef-beta^2)*mu))^(1/2)+1,1,2*b*((omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)

*mu)/mu)^(1/2))/(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*ef-beta^2))^(1/2))*b)+

1/2*i*omega*mu*U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2)+

beta*kappa)/(mu*(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2)+1,1,2*b*

((omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu)/mu)^(1/2))*beta*kappa/

(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*ef-beta^2))^(1/2))*(mu*omega^2*ef*kappa^2

-(omega^2*mu*ef-beta^2)*mu^2)^(1/2)*b)+1/4*i*omega*mu*U(1/2*((mu*(omega^2*ef*kappa^2

-(omega^2*mu*ef-beta^2)*mu))^(1/2)+beta*kappa)/(mu*(omega^2*ef*kappa^2-(omega^2*mu*ef

-beta^2)*mu))^(1/2)+1,1,2*b*((omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu)/mu)^(1/2))

*beta^2*kappa^2/(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*ef-beta^2))^(1/2))*

(mu*omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu^2)*b)-1/2*i*omega*mu*

U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2),1,2*b*((omega^2*ef*kappa^2

-(omega^2*mu*ef-beta^2)*mu)/mu)^(1/2))/(exp(b*(omega^2*ef*kappa^2/mu-

(omega^2*mu*ef-beta^2))^(1/2))*b)-1/2*i*omega*mu*U(1/2*((mu*(omega^2*ef*kappa^2

-(omega^2*mu*ef-beta^2)*mu))^(1/2)+beta*kappa)/(mu*(omega^2*ef*kappa^2

-(omega^2*mu*ef-beta^2)*mu))^(1/2),1,2*b*((omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu)

/mu)^(1/2))*beta*kappa/(exp(b*(omega^2*ef*kappa^2/mu-(omega^2*mu*ef-beta^2))^(1/2))
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*(mu*omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu^2)^(1/2)*b)-i*omega*kappa*beta

*U(1/2*((mu*(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2)+beta*kappa)/

(mu*(omega^2*ef*kappa^2-(omega^2*mu*ef-beta^2)*mu))^(1/2),1,2*b*((omega^2*ef*kappa^2

-(omega^2*mu*ef-beta^2)*mu)/mu)^(1/2))/exp(b*(omega^2*ef*kappa^2/mu

-(omega^2*mu*ef-beta^2))^(1/2)))/(omega^2*mu*ef-beta^2);

Et3 := r-> c3*Et31(r)+d3*Et32(r) ;
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Hr3:=r->

1/2*I*beta^2*d3*KummerU(1/2*(3*(kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/

((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)),1,2*(kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/

mu^(1/2))*kappa/(exp((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*kc^2*mu^(1/2)*r*

(kc^2*mu+omega^2*ef*kappa^2)^(1/2))-1/2*I*beta*d3*

KummerU(1/2*((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/

((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)),1,2*(kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r

/mu^(1/2))*omega^2*ef*kappa^2/(exp((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*kc^2*r*

(kc^2*mu+omega^2*ef*kappa^2))+1/2*I*beta*c3*KummerM(1/2*(3*(kc^2*mu+omega^2*ef*kappa^2)

^(1/2)*mu^(1/2)+beta*kappa)/((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)),1,2*(kc^2*mu+

omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*omega^2*ef*kappa^2/(exp((kc^2*mu+omega^2*ef*

kappa^2)^(1/2)*r/mu^(1/2))*kc^2*r*(kc^2*mu+omega^2*ef*kappa^2))-1/2*I*beta^2*d3*

KummerU(1/2*((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/((kc^2*mu+omega^2*

ef*kappa^2)^(1/2)*mu^(1/2)),1,2*(kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*kappa/

(exp((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*kc^2*mu^(1/2)*r*(kc^2*mu+omega^2*ef

*kappa^2)^(1/2))-I*mu*omega^2*ef*kappa*d3*KummerU(1/2*((kc^2*mu+omega^2*ef*kappa^2)^(1/2)

*mu^(1/2)+beta*kappa)/((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)),1,2*(kc^2*mu+omega^2*

ef*kappa^2)^(1/2)*r/mu^(1/2))/(exp((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*

(kc^2*mu+omega^2*ef*kappa^2))-1/2*I*mu*beta*d3*KummerU(1/2*((kc^2*mu+omega^2*ef*kappa^2)

^(1/2)*mu^(1/2)+beta*kappa)/((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)),1,2*(kc^2*mu+

omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))/(exp((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))

*r*(kc^2*mu+omega^2*ef*kappa^2))+1/2*I*beta^2*c3*KummerM(1/2*(3*(kc^2*mu+omega^2*ef*

kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)),1,

2*(kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*kappa/(exp((kc^2*mu+omega^2*ef*kappa^2)

^(1/2)*r/mu^(1/2))*kc^2*mu^(1/2)*r*(kc^2*mu+omega^2*ef*kappa^2)^(1/2))-I*mu*omega^2*ef



D.2 MAPLE 213

*kappa*c3*KummerM(1/2*((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/

((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)),1,2*(kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/

mu^(1/2))/(exp((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*(kc^2*mu+omega^2*ef*

kappa^2))-I*(kc^2*mu+omega^2*ef*kappa^2)^(1/2)*beta*c3*KummerM(1/2*((kc^2*mu+omega^2*ef

*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)),1,

2*(kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))/(exp((kc^2*mu+omega^2*ef*kappa^2)^(1/2)

*r/mu^(1/2))*kc^2*mu^(1/2))-1/2*I*beta*c3*KummerM(1/2*((kc^2*mu+omega^2*ef*kappa^2)^(1/2)

*mu^(1/2)+beta*kappa)/((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)),1,2*(kc^2*mu+omega^2

*ef*kappa^2)^(1/2)*r/mu^(1/2))*omega^2*ef*kappa^2/(exp((kc^2*mu+omega^2*ef*kappa^2)^(1/2)

*r/mu^(1/2))*kc^2*r*(kc^2*mu+omega^2*ef*kappa^2))-I*omega^4*ef^2*kappa^3*c3*KummerM(1/2*

((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/((kc^2*mu+omega^2*ef*kappa^2)

^(1/2)*mu^(1/2)),1,2*(kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))/(exp((kc^2*mu+omega^2

*ef*kappa^2)^(1/2)*r/mu^(1/2))*kc^2*(kc^2*mu+omega^2*ef*kappa^2))-I*(kc^2*mu+omega^2*ef*

kappa^2)^(1/2)*beta*d3*KummerU(1/2*((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+

beta*kappa)/((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)),1,2*(kc^2*mu+omega^2*ef*

kappa^2)^(1/2)*r/mu^(1/2))/(exp((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*kc^2*mu

^(1/2))-1/2*I*beta^2*c3*KummerM(1/2*((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta

*kappa)/((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)),1,2*(kc^2*mu+omega^2*ef*kappa^2)

^(1/2)*r/mu^(1/2))*kappa/(exp((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*kc^2*mu

^(1/2)*r*(kc^2*mu+omega^2*ef*kappa^2)^(1/2))-I*omega^4*ef^2*kappa^3*d3*KummerU(1/2*

((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/((kc^2*mu+omega^2*ef*kappa^2)

^(1/2)*mu^(1/2)),1,2*(kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))/(exp((kc^2*mu+

omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*kc^2*(kc^2*mu+omega^2*ef*kappa^2))+1/4*I*beta*d3*

KummerU(1/2*(3*(kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)+beta*kappa)/((kc^2*mu+omega^2

*ef*kappa^2)^(1/2)*mu^(1/2)),1,2*(kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*omega^2
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*ef*kappa^2/(exp((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*kc^2*r*(kc^2*mu+omega^2

*ef*kappa^2))+1/4*I*mu*beta*d3*KummerU(1/2*(3*(kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)

+beta*kappa)/((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)),1,2*(kc^2*mu+omega^2*ef*

kappa^2)^(1/2)*r/mu^(1/2))/(exp((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*r*(kc^2*mu

+omega^2*ef*kappa^2))-1/2*I*mu*beta*c3*KummerM(1/2*((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu

^(1/2)+beta*kappa)/((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)),1,2*(kc^2*mu+omega^2*ef*

kappa^2)^(1/2)*r/mu^(1/2))/(exp((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*r*(kc^2*mu

+omega^2*ef*kappa^2))+1/2*I*mu*beta*c3*KummerM(1/2*(3*(kc^2*mu+omega^2*ef*kappa^2)^(1/2)*

mu^(1/2)+beta*kappa)/((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)),1,2*(kc^2*mu+omega^2*

ef*kappa^2)^(1/2)*r/mu^(1/2))/(exp((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*r*(kc^2

*mu+omega^2*ef*kappa^2))+1/4*I*beta^3*d3*KummerU(1/2*(3*(kc^2*mu+omega^2*ef*kappa^2)

^(1/2)*mu^(1/2)+beta*kappa)/((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*mu^(1/2)),1,2*(kc^2*mu+

omega^2*ef*kappa^2)^(1/2)*r/mu^(1/2))*kappa^2/(exp((kc^2*mu+omega^2*ef*kappa^2)^(1/2)*r/

mu^(1/2))*kc^2*mu*r*(kc^2*mu+omega^2*ef*kappa^2));
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Et1(a)+Ez1(a)*T=0; solve(%,c1); c1:= %;

Et2(a)+Ez2(a)*T=0; solve(%,b2); b2:= %;

Ez1(a)-Et1(a)*T=Ez2(a)-Et2(a)*T; solve(%,c2);c2:=%;

Ht1(a)+Hz1(a)*T= Ht2(a)+Hz2(a)*T; solve(%,d2);d2:=%;

Ez2(b)=Ez3(b);solve(%,a3);a3:=%; Ht2(b)=Ht3(b);solve(%,b3);b3:=%;

Et2(b)=Et3(b);solve(%,c3);c3:=%; Hz2(b)=Hz3(b);solve(%,d3);d3:=%;

Ez4(c)=Ez3(c);solve(%,a4);a4:=%; Ht4(c)=Ht3(c);solve(%,b4);b4:=%;

Et4(c)=Et3(c);solve(%,c4);c4:=%; Hz4(c)=Hz3(c);solve(%,d4);d4:=%;

Et4(d)=0;solve(%,a2);a2:=%;

Hr1c:=x-> subs(I=-I, Hr1(x)); Ht1c:=x-> subs(I=-I, Ht1(x));

Hr2c:=x-> subs(I=-I, Hr2(x)); Ht2c:=x-> subs(I=-I, Ht2(x));

Hr3c:=x-> subs(I=-I, Hr3(x)); Ht3c:=x-> subs(I=-I, Ht3(x));

Hr4c:=x-> subs(I=-I, Hr4(x)); Ht4c:=x-> subs(I=-I, Ht4(x));

S1:= Er1(r)*Ht1c(r)-Et1(r)*Ht1c(r);

S2:= Er2(r)*Ht2c(r)-Et2(r)*Ht2c(r);

S3:= Er3(r)*Ht3c(r)-Et3(r)*Ht3c(r);

S4:= Er4(r)*Ht4c(r)-Et4(r)*Ht4c(r);
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P1:= int(r*S1,r=0a);

P2:= int(r*S2,r=ab);

P3:= int(r*S3,r=bc);

P4:= int(r*S4,r=cd);

rho1:=2.5*10^(-8);

rho2:=rho1;

rho4:= rho1;

Rs1:=sqrt(evalf(Pi)*mu0*f*rho1);

Rs2:=sqrt(evalf(Pi)*mu0*f*rho2);

Rs4:=sqrt(evalf(Pi)*mu0*f*rho4);

PL1:= Rs1/2*( ( abs(Hz1(a)) )^2 + (abs(Ht1(a)))^2 )+

Rs2/2*((abs(Hz2(a)) )^2 + (abs(Ht2(a)))^2 );

PL2:= Rs4/2*( ( abs(Hz4(d)) )^2 + (abs(Ht4(d)))^2 );

alpha:= (a*PL1+d*PL2)/(P1+P2+P3+P4);
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