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Abstract 

This thesis describes the diastereoselective synthesis of 2,4,5-trisubstituted piperidines using 

carbonyl-ene and Prins cyclisations and their application in natural product synthesis. 

Following on from previous work in the group, we investigated how a preinstalled substituent 

in the 2-position can help to control the sense of induction at the two newly forming 

stereocentres.  

 

We utilised the Prins reaction in the formal synthesis of pseudodistomin F, a marine alkaloid 

that posses a 2,4,5-tribsubstituted piperidine core.  An initial first generation synthesis 

focused on the construction of a cyclisation precursor containing a crotyl-ene component, 

however, cyclisation with anhydrous hydrogen chloride at -78 °C resulted in side product 

formation, presumably resulting from the relative instability of the secondary carbocation. 

Changing the ene component to a prenyl group resulted in successful cyclisation to yield the 

trans, cis-2,4,5-trisubstituted piperidine, with diastereomeric ratios of up to 200:1. An 

improved second generation synthesis completed the formal synthesis of pseudodistomin F on 

a multi-gram scale. Progress towards the total synthesis of pseudodistomin F by a third 

generation synthesis was undertaken.  

  

An investigation into how varying the electronics of the Prins reaction would alter the 

diastereoselectivity was conducted with a range of para-substituted cinnamyl substrates. The 

results indicated that selectivity in favour of the trans diastereomer was favoured as the 

electron withdrawing power of the substituent increased. 
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“Total synthesis has been hailed as a highly demanding and exacting science, but it is also 

recognized in its finest form as an art” 

 

- K. C. Nicolaou 
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1. Introduction 

1.1 Piperidines 

The piperidine structural motif 1 appears frequently in natural products and synthetic 

compounds that possess potent biological activity. For example, the powerful analgesic 

morphine 2 extracted from the poppy, Papaver somniferum, has been used by mankind since 

antiquity.1 The antidepressant Seroxat 3, a synthetic drug, marketed by the pharmaceutical 

company GlaxoSmithKline has been listed in the top 100 best selling drugs with sales of over 

$1 billion.2,3 Quinine 4 extracted from the bark of the cinchona tree, Cinchona officinalis, has 

been used for many centuries in the treatment of malaria.4 Pseudodistomin A 5 isolated from 

the tunicate, Pseudodistoma kanoko, exhibits potent anti-tumour activity and is part of a wider 

family of marine alkaloids5 (Figure 1).  

 

Figure 1: The piperidine structural motif  
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The importance of biologically active molecules such as these drives research towards novel 

routes for the stereocontrolled synthesis of piperidines that display diverse substitution 

patterns. Molecules 4 and 5 both display a 2,4,5-trisubstituted piperidine ring pattern and 

methods in the literature for the synthesis of such systems are considerably underdeveloped.6-9 

 

1.2 Pseudodistomins 

At present there are six members of the pseudodistomin family, pseudodistomins A-F; they 

consist of a core containing a 2,4,5-trisubstituted piperidine ring and differ from one another 

in configuration at their stereogenic centres and nature of the alkyl side chain (Figure 2). 

 
H
N

H
N

H
NR R R

OH
NH2

OH
NH2 NH2

OH

A : R = R1 (5)
B : R = R2 (6)
F : R = R3 (10)

C : R = R1 (7)
E : R = R3 (9)

D : R = R2 (8)

R1 =

R2 =

R3 =

2
4 5

 

 
Figure 2: Pseudodistomins A-F 5-10 

 

Pseudodistomins A 5 and B 6 were isolated from the Okinawan tunicate Pseudodistoma 

kanoko (Image 1) by Kobayashi et al in 1987, making them the first piperidine alkaloids to be 

discovered from a marine source.5 Their proposed side chains were later revised,10,11 and 
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absolute configurations were subsequently determined.12 Pseudodistomin C 7 was later 

isolated from the same tunicate.13 It is considered unusual that pseudodistomins A 5 and B 6 

possess the opposite absolute configurations at (4)-hydroxyl and (5)-amino compared to 

pseudodistomin C 7 isolated from the same tunicate because the proposed biosynthetic 

pathway for pseudoditomins A 5 and B 6 incorporates L-serine while pseudodistomin C 7 

incorporates the much rarer D-serine.14 Three new pseudodistomins D-F 8-10 were isolated 

along with known pseudodistomins B 6 and C 7 from the ascidian Pseudodistoma megalarva 

(Image 1) by Freyer et al in 1997 off the coast of Palau.15  

 
 
 

 

Image 1: From left to right: Pseudodistoma kanoko16 and Pseudodistoma megalarva17 
 
 
Their biological activities were investigated and the pseudodistomin alkaloids were shown to 

exhibit calmodulin antagonistic activity, potent in vitro activity against murine leukemia and 

human epidermoid carcinoma KB cells and were also found to be active in a cell-based assay 

for DNA damage induction.5,13,15 In view of their interesting pharmacological activity and 

unusual structural features, they have become popular synthetic targets. However, a number 

of routes have been limited to the racemic syntheses or the synthesis of simpler analogues 

such as tetrahydropseudodistomin 11 (Figure 3). 
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a Synthesis of incorrectly proposed structure. b Formal synthesis. c Ongoing research. 

H
NR

OH
NH2

R =

11

 

Figure 3: Tetrahydropseudodistomin 11 
 
 
 A summary of the efforts made by the synthetic community towards the construction of the 

pseudodistomin alkaloids is listed below (Table 1). 

 
 

 

 

 

 

 

  

 

 

 

 

 

 
 
 

Table 1: Summary of pseudodistomin syntheses 
 

Year Author Achievement 

1992 Naito, T. (±)-tetrahydropseudodistomin18 

1992 Natsume, M. (±)-tetrahydropseudodistomin19 

1992 Naito, T. and Kobayashi, J. (±)-pseudodistomin B10 

1993 Knapp, S. (+)-tetrahydorpseudodistomin12 

1996 Kobayashi, J. (-)-pseudodistomin C14 

1996 Naito, T. (±)-pseudodistomin Aa, 20 

1996 Naito, T. (±)-tetrahydropseudodistomin21 

1997 Naito, T. (±)-pseudodistomins A and B22 

1998 Naito, T. (+)-tetrahydorpseudodistomin23 

2000 Ma, D. and Sun, H. (-)-pseudodistomins B and F24 

2002 Langlois, N. (-)-pseudodistomin Cb, 25 

2005 Davis, F.A. (-)-pseudodistomin Bb, 26 

2005 Trost, B.M. (+)-pseudodistomin D27 

2005 Haddad, M. studies towards (+)-pseudodistomin D28 

2006 Tanaka, K. (-)-pseudodistomin Cb, 29 

2007 Chandrasekhar, S. (+)-tetrahydorpseudodistomin30 

2009 Woerpel, K.A. studies towards (+)-pseudodistomin B31 

2010 Davies, S.G. (+)-pseudodistomin Dc, 32 
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The literature examples presented below focus on the synthesis of these small but densely 

functionalised natural products in an attempt to show the development from initial attempts 

through to the state of the art in this area. Focus is on the key steps and examples are chosen 

based on diversity and stereocontrol. 

 
The first total synthesis of pseudodistomin C 7 by Kobayashi (Scheme 1),14 utilised D-serine 

derived Garner’s aldehyde33 12 as a starting point. Grignard addition into 12 followed by an 

oxidation-reduction sequence gave the erythro-alcohol 13 with good diastereoselectivity of 

96% de but disappointingly resulted in erosion of enantiopurity with a 60% ee. The erythro-

alcohol 13 was converted to carbamate 14 in seven steps, which set up the key ring forming 

step, a intramolecular amidomercuration, to afford the piperidine products 15 and 16, 

unfortunately with poor diastereocontrol of 1:1.5 in favour of the desired diastereomer 16. A 

further six steps were required to complete the synthesis of pseudodistomin C 7, which 

included a Julia olefination34 to install the side chain. The overall yield was 0.4%, with 

seventeen steps in the longest linear sequence. 
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Scheme 1: Kobayashi’s synthesis of pseudodistomin C 7 
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Naito’s synthesis of (+)-tetrahydorpseudodistomin 11 (Scheme 2)23 is notable for its brevity 

rather than its stereocontrol, requiring only eight synthetic steps to complete. The route 

involves two key reactions: first, an intermolecular [3+2] cycloaddition of nitrone 17 with 

vinyl glycinol 18, derived from D-methionine tert-butylester, gave all four possible 

isoxazolidine stereoisomers 19-22 in a 2:3:3:5 mixture, respectively, with the desired isomer 

19 as the minor component; secondly, bicycle formation with mesyl chloride gave the bridged 

piperidine 20. Subsequent reduction by hydrogen in the presence of Pearlman’s catalyst gave 

the corresponding 2,4,5-trisubstituted piperidine 21; removal of the protecting group gave the 

product 11 in an overall yield of 3%. 
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Scheme 2: Key transformations in Naito’s synthesis of (+)-tetrahydropseudodistomin 11 
 
 
Ma and Sun have developed a general method for the synthesis of pseudodistomins 

containing the (2R, 4R, 5S)-piperidine core and have showcased the method through the 

synthesis pseudodistomins B & F.24 The shorter synthesis of pseudodistomin F (Scheme 3) 

employed a Dieckmann condensation of diester 22 and silylation of the intermediate enolate 



 7 

to afford a mixture of the two regioisomeric silyl enol ethers 23 and 24 with a poor selectivity 

of 1.6:1 in favour of the desired product. Serendipitously, Raney Nickel hydrogenation of the 

crude reaction mixture selectively reduced 23 over 24, and this was followed by treatment 

with tosic acid in methanol to gave piperidine 25 and piperidinone 26. Four steps were 

required convert the ester into a protected amine 27 and a further eight steps to complete the 

synthesis of the natural product in a total of twenty three steps and an overall yield of 4%. 
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Scheme 3: Key transformations in Ma and Sun’s synthesis of pseudodistomin F 10 
 
 
The Trost synthesis of Pseudodistomin D (Scheme 4)27 employed a regio- and 

diastereoselective reductive intramolecular hydroamination step to construct the core. The 

cyclisation precursor 28 was obtained through a convergent synthesis, in a total of seventeen 

steps, which included: an epoxidation of alkene 29 that proceeded with modest 

diastereoselectivity of 4:1 in favour of the desired epoxide 30; addition into the terminal end 

of the epoxide with alkyne 31 gave 32, treatment with TBSOTf removed the Boc protecting 
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groups and simultaneously protected the hydroxyl. Treatment of diamino alkyne 28 with 

silver tosylate and sodium cyanoborohydride afforded piperidine 33. They report that this step 

afforded a single detectable diastereomer and gave exclusively the piperidine without any 

pyrrolidine by-products, although the yield was a somewhat modest 55%.  

 

i) 10% AgOTs, MeCN, 40 °C, 2 h

ii) NaBH4CN, MeOH, AcOH, H2O, THF
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Scheme 4: Trost’s synthesis of pseudodistomin D 8 
 

The authors put forward several explanations in order to rationalise the selective formation of 

the piperidine product 33.  One explanation is that the hydroamination of alkyne 28 proceeds 

through a kinetic 5-exo-dig cyclisation to afford imine 34, which is in rapid equilibrium with 

imine 36 (Scheme 5). They reasoned that the reduction of imine 36 was favoured due to a 

faster rate of reduction of an sp2 to an sp3 carbon in a six-membered ring compared to five-

membered ring. An alternative explanation offered relates to the equilibrium strongly 

favouring imine 36, with the observed selectivity simply the result of the reduction of the 

dominant species.  
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Scheme 5: Trost’s proposed mechanism for piperidine formation 
 
 
The total synthesis was achieved in a 13% yield for the longest linear sequence. Installation of 

the side chain early on limits this approach for the synthesis of the whole family of 

pseudodistomin alkaloids. 

 

Tanaka’s formal synthesis of pseudodistomin C (Scheme 6)29 resulted in the formation of an 

advanced intermediate 37 from Kobayashi’s total synthesis.14 Starting from known �,�-

epoxylactam35 38, derived from L-pyroglutamic acid, they constructed the azido pyrrolidinone 

derivative 39 in six steps. Intramolecular transamidation of azido γ-lactam 39 was performed 

in the presence of 10% Pd-C under three atmospheres of hydrogen to afford the δ-lactam 40. 

Another six steps were required to complete the formal synthesis, which included a Tebbe 

olefination and hydroboration to install the final stereocenter with complete diastereocontrol. 

Although one synthetic step longer than Kobayashi’s original synthesis, eighteen steps 

compared to seventeen, it is a marked improvement over the original due to the higher levels 

of stereocontrol and overall yield of 10% compared to the original yield of 6% at the same 

stage. However, the real limitation of this synthesis is that relies on Kobayashi’s endgame 

strategy, which gave very poor yields of 13% and 34% for the penultimate and final steps 

respectively.  
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Scheme 6: Tanka’s formal synthesis of pseudodistomin C 7 
 

Recently, Woerpel has developed an annulation/ring expansion strategy that enabled access to 

the core structure of pseudodistomin B (Scheme 7).31 A [3+2] annulation of �-silyloxy allylic 

silane 41 with chlorosulfonyl isocyanate (CSI) followed by reduction of the resulting N-

chlorosulfonyl lactam and nitrile substitution of the silyl ether with Et2AlCN provided the γ-

lactam 42. A similar intramolecular transamidation approach to that used by Tanaka afforded 

the ring expanded δ-lactam 43. This was reduced to an N,O-acetal and subsequent 

nucleophilic substitution with 44 gave piperidine 45 as a single diastereomer. Oxidation of the 

silyl group to the corresponding hydroxyl 46 completed the synthesis, which in 15 synthetic 

steps and an overall yield of 16% constructed the core structure and installed a precursor to 

the side chain of pseudodistomin B. Unfortunately the [3+2] annulation step early on in the 

synthesis was not amenable to a multi-gram scale because of the use of toxic and corrosive 

CSI. This may limit further attempts to complete the total synthesis in the future. 
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Scheme 7: Woerpel’s study towards the synthesis of pseudodistomin B 5 
 
 
A number of different approaches have been presented for the synthesis of piperidines 

forming the core of the pseudodistomin alkaloids ranging from: amido mercuration, nitrone 

cycloaddition, Dieckmann condensation, reductive hydroamination and intramolecular 

transamidation. These reactions proceed through either C-C or C-N bond formation with 

concomitant creation of new stereogenic centres. Another class of reactions that have proved 

to be valuable in the synthesis of piperidines are the carbonyl-ene and Prins cyclisations.  

 

1.3 Carbonyl-ene and Prins reactions 

The reaction between an aldehyde or ketone and an alkene allows the formation of two 

contiguous stereocentres and under the correct conditions can proceed with a high degree of 

regio- and stereocontrol.36,37 When the reaction occurs under thermal or Lewis acidic 

conditions it is usually known as the carbonyl-ene reaction,38 whereas the same reaction in the 

presence of a Brønsted acid is usually known as the Prins reaction.39 Mechanistically, both the 

carbonyl-ene and Prins reaction occur through the interaction of an alkene possessing an 
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allylic hydrogen 47, the ene component, and an electron deficient multiple bond, behaving as 

the enophile component, an aldehyde or ketone 48. The process involves a [1,5]-shift of the 

allylic hydrogen from the ene 47 to the enophile 48 and migration of the ene π-bond to form a 

new �-bond between the ene 47 and enophile 48, leading to a homoallylic alcohol product 49 

(Scheme 8).40  

O
H O

∗

R2

R3H

∗

49

R1

R2

R3

R1

4748  

Scheme 8: General mechanism for a carbonyl-ene/Prins reaction 
 

The carbonyl-ene reaction is mechanistically related to the Diels-Alder reaction as both 

proceed through a cyclic six electron transition state and it can be considered as a pericyclic 

reaction, although the ene and carbonyl-ene reactions are not necessarily concerted processes.  

In ene and carbonyl-ene reactions the two electrons of the allylic C-H bond replace two π-

electrons in the diene of the Diels-Alder reaction. This has the consequence of raising the 

activation energy compared to an analogous Diels-Alder reaction and so higher reaction 

temperatures are required.41 In the past, this limited its mechanistic study and synthetic use 

causing it to be overlooked in favour of the more renowned Diels-Alder reaction. This was 

until Snider et al. discovered that the carbonyl-ene reaction could be catalysed efficiently 

through the use of Lewis acids.42-44 Complexation of a Lewis acid to the carbonyl has the 

effect of lowering the LUMO of the enophile, allowing facile attack by the ene. Fuki et al. has 

studied the more general case of the ene reaction, where the enophile is also an alkene, using a 

frontier molecular orbital approach.45 They considered that a single orbital for the ene 

component has too small a coefficient at the C-H site for an effective cyclic interaction to 

occur. So a three orbital interaction was proposed with a suprafacial-suprafacial interaction 
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between: the HOMO of the π-bond and the LUMO of the C-H �-bond in the ene; and the 

LUMO of the π-bond in the enophile (Scheme 9). 

H H

Eneophile Dienophile

Ene Diene

π−bond LUMO
π−bond LUMO

π−bond HOMO

π−bond HOMO

σ−bond LUMO

Ene Reaction Diels-Alder Reaction  

Scheme 9: FMO interactions in ene and Diels-Alder reactions 
 

Such an interaction implies that once the HOMO of the π-bond donates electrons to LUMO of 

the enophile, back donation occurs to the LUMO of the C-H �-bond of the ene. This would 

lead to an asynchronous concerted mechanism where C-C bond formation is more advanced 

than C-H bond formation in the transition state (Figure 4).46  

H

Eneophile

Ene

 

Figure 4: Ene reaction envisaged as an asynchronous concerted process 
 

The mechanism of the carbonyl-ene reaction is not so clear-cut and different mechanisms 

have been suggested for different carbonyl-ene reactions. However, Lewis acid promoted ene 

reactions are usually considered in terms of the continuum from a concerted mechanism 51, 

with a polar transition state, through to a stepwise mechanism proceeding through a 
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zwitterionic intermediate 50 (Scheme 10).47,48 The energetics of the two reaction pathways 

have been shown to be very similar and the course of the reaction varies as a function of ene, 

enophile and catalyst.49,50  
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Scheme 10: Carbonyl-ene reactions proceed through either a concerted or stepwise process 
 

The Prins reaction is considered to proceed through a stepwise process via a cationic 

intermediate 52. This carbocation can react with an external nucleophile, such as water or 

chloride, to give 53, add to a second molecule of aldehyde to give 54 or lose a proton to give a 

homoallylic alcohol 55 (Scheme 11).51 
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Scheme 11: Mechanism of the Prins reaction 
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Recently, the application of organocatalytic chiral Brønsted acids has been reported that can 

deliver high levels of asymmetric induction.52,53 

Intramolecular ene reactions are more facile than their intermolecular counterparts due to a 

lower loss of entropy in the transition state as the intermolecular reaction requires pre-

organisation of two separate moieties. Intramolecular reactions have been shown to be an 

efficient method for ring closure, since they can proceed with high degrees of regio- and 

stereoselectivity through postulated six-membered chair-like transition states. Oppolzer 

classified intramolecular ene reactions into three distinct variants, types I, II and III, 

depending on the attachment position of the connecting ene and enophile.54 Another variant is 

the Conia-ene reaction of unsaturated ketones, where the enol tautomer of the carbonyl serves 

as the ene component (Scheme 12).55  
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Scheme 12: Carbonyl-ene reaction variants 
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In type I reactions, the enophile is linked to the olefinic terminal, with C-C bond formation 

occurring between the carbonyl and internal carbon of the olefin. This type of reaction is most 

commonly encountered in the formation of five and six-membered rings.56 The type II 

carbonyl-ene reaction, involves C-C bond formation to the terminal carbon of the olefin and 

has been employed in the construction of six and seven-membered rings. The type III reaction 

has the olefin side chain attached to the carbonyl oxygen with the oxocarbenium ion 

generated in situ, usually derived from acetals or hemiacetals, giving rise to cyclic ethers. The 

Conia-ene reaction between an activated carbonyl and an alkene or alkyne usually requires 

very high temperatures. The use of transition metals has been shown to catalyse the reaction 

effectively at ambient temperatures, though the reaction is not thought to proceed through a 

classical ene-type pericyclic mechanism in those cases.57 

1.4 Piperidine synthesis via carbonyl-ene and Prins reactions  

There are relatively few literature examples of piperidine synthesis and nitrogen heterocycles 

in general via carbonyl-ene reactions. Laschat reported the diastereoselective synthesis of 

indolizidine 56 and quinolizidine 57 derivatives.58 Aldehydes 58 and 59 were treated with the 

Lewis acid FeCl3 to afford the cis products 56b and 57b in very high diastereoselectivities 

(Scheme 13).  

NN
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58 n = 1
59 n = 1

OH OH
HH

(  )n (  )n

CHO

N

(  )n

56a n = 1               1.6:98.4            56b n = 1, 65%
57a n = 2               0.2:99.8            57b n = 2. 59%

 

Scheme 13: Laschat’s carbonyl-ene cyclisations 
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More recently, they have reported the synthesis of a non-peptidic substance P antagonist 60.58 

Aldehyde 61, prepared from phenylglycine, underwent a carbonyl-ene reaction to give two 

diastereomeric piperidines 62 and 63 in a modest diastereoselectivity of ~1:4 (Scheme 14).  

2.2 eq, FeCl3

CH2Cl2, rt

61

Bn
N

O

Ph
Bn
N

OH

Ph
Bn
N Ph

OH

Bn
N Ph

N
H

OMe

6062, 16% 63, 71%  

Scheme 14: Laschat’s synthesis of a substance P antagonist 60 
 

Initial work in our group focused on the synthesis of 3,4-disubstituted piperidines through the  

use of carbonyl-ene and Prins reactions employing aldehyde 64 as the cyclisation precursor 

(Scheme 15).59,60 
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Scheme 15: Initial carbonyl-ene and Prins reactions studied in the Snaith group 
 
Extensive screening of catalysts, catalyst loadings, reaction temperatures and reaction times 

were conducted to assess their effects on altering the diastereoselectivity of the reaction. It 

was shown that the diastereoselectivity could be switched between trans 65 and cis 66 

diastereomers using either Lewis or Brønsted acids (Table 2). The use of the Lewis acid 

MeAlCl2 was found to favour the trans diastereomer 65 with ratios of up to 92:8 (Table 2, 

entry 3). The temperature effect on the carbonyl-ene reaction suggested that under these 

conditions the reaction is reversible and that the cis diastereomer 66 is the kinetic product, 

equilibrating to the thermodynamic trans product 65 upon warming. The use of concentrated 
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hydrochloric acid (Table 2, entry 4) was found be a very effective catalyst in the Prins 

reaction, favouring the cis piperidines of 66 and 67 with ratios up to 97:3 (66+67:65). 

 
 

 

 

 

 

 
 
 

Table 2: Initial carbonyl-ene and Prins reaction results 
 

As mentioned before the carbonyl-ene reaction is highly dependent on the ene, enophile and 

Lewis acid used. Therefore, slight modifications of the ene component were studied. It was 

thought that Z- 68 and E- crotyl 69 substrates would serve as useful probes into the reaction 

mechanism. If, as believed, the reaction proceeded through a chair-like transition state via a 

concerted mechanism then the cyclisation of Z-crotyl aldehyde 68 would only proceed when 

the aldehyde is in a pseudo-axial conformation due to the more sterically demanding ene 

adopting a pseudo-equatorial conformation. This orientation would lead to the formation of 

the cis piperidine 70. Adopting the same idea for the E-crotyl aldehyde 69 would lead to the 

aldehyde component adopting the pseudo-equatorial conformation in the transition state 

leading to the formation of the trans product 71 (Scheme 16).  

 

Entry Catalyst 
Temp / 

°C 
Solvent 

Time / 
h 

Ratio 
65:66:67a 

Yield / %b 

1 MeAlCl2, 1eq -78 CH2Cl2 8 33:67:0 58 (14) 

2 MeAlCl2, 1eq 25 CH2Cl2 16 67:33:0 55 (15) 

3 MeAlCl2, 1eq 61 CHCl3 16 92:8:0 74 

4 HCl(aq),  3eq -78 CH2Cl2 16 5:90:5 86 

a Ratio determined by 1H NMR of crude reaction mixtures. b Isolated yields of major (minor in 

parentheses). 
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Scheme 16: Transition states for a concerted mechanism 
 
 
When both substrates 68 and 69 were subjected to a cyclisation reaction under Lewis acid 

conditions, both led to the cis piperidine 70 with none of trans diastereomer 71 observed. This 

result suggested that a concerted mechanism was unlikely and a reaction mechanism that 

proceeds with significant stepwise character was postulated.  

 

However, under Prins reaction conditions both substrates 68 and 69 failed to cyclise. As the 

Prins reaction is generally thought to proceed through a stepwise mechanism via a 

carbocationic intermediate 72, it would require substrates 68 and 69 to react through a less 

favourable secondary carbocation  (Scheme 17). 
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Scheme 17: Prins reactions through a relatively unstable secondary carbocation 
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In the carbonyl-ene cyclisation it was proposed that aldehydes 68 and 69 would proceed 

through a common low energy pathway leading to the formation of the cis product 70 

(Scheme 18). 
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Scheme 18: Proposed reaction mechanism 
 
 
The pathway leading to the cis piperidines 65 and 70 was thought to be lowest in energy due 

to a stabilising interaction coming from a good overlap between the filled oxygen sp3 orbital 

containing the lone pair and the vacant p-orbital of the carbocation in an intermediate or 

carbocationic character in a transition state. This overlap only exists when the hydroxyl group 

and cation occupy pseudoaxial and pseudoequatorial positions i.e. cis stereochemistry. This 

stereoelectronic stabilisation does not occur in the trans isomer due to poorer overlap of the 

orbitals.  Clark has implied such a stabilizing interaction when he studied the cyclisation of 

citronellal.61 

 

DFT calculations (B3LYP/6-31G(d)) were performed and indicated that the cis carbocation 

resulting from a stepwise cyclisation mechanism was more stable by 0.82 kcal compared to 

the trans carbocation. Calculations for the transition states resulting from a concerted 
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cyclisation mechanism were also performed and indicated that the cis transition state was 

more stable by 0.79 kcal (Figure 5).62 

OH

TsN
R

TsN OH

R

R = H, Me

stabilised carbocation
leading to the cis isomer

non-stabilised carbocation
leading to the trans isomer

 

Figure 5: Stabilising interaction favouring the cis diastereomer  
 
 
Mohan has studied the carbonyl-ene reaction between aldehyde 64 and bismuth triflate as a 

catalyst.63 Impressively, the catalyst could be employed in loadings as low as 0.1 mol%. 

Unfortunately, they could only achieve a modest diastereoselectivity of 70:30 for piperidines 

60 and 59 (Scheme 19). 
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OH
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N

OH
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CH2Cl2, rt, 10 min

64 66 65  

Scheme 19: Carbonyl-ene reaction of aldehyde 64 with Bi(OTf)3 studied by Mohan 
 

More recent work in the group has made use of an existing stereogenic centre at the 

2-position. The cyclisation of aldehyde precursors 73 could have led to four possible 

diastereoisomers 74-77. It was anticipated that the existing stereogenic centre R would help to 

control the sense of induction at the two newly forming stereogenic centres, working in 

concert with the diastereocontrol model outlined above to afford 2,4,5-trisubstituted 

piperidines (Scheme 20).64 
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a Ratio determined by 1H NMR of crude reaction mixtures. b Isolated yields 
of major (minor in parentheses) isomers following purification. c Reaction 
carried out with a saturated solution of HCl(g). 

d No trans isomer was detected 
due to intramolecular lactone formation .  
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Scheme 20: Synthesis of 2,4,5-trisubstituted piperidines 

The Prins cyclisation of aldehydes 73a-f were studied using the optimised conditions of three 

equivalents of concentrated hydrochloric acid in CH2Cl2 at -78 °C. Only two out of the 

possible four diastereomers were observed, the major isomer was the cis, cis diastereoisomer 

74 while the minor isomer was the trans-trans diastereoisomer 76, summarised in (Table 3).65 

 

 

 

 

 
 
 

Table 3: Prins cyclisation results 
 

The selectivity decreases as the R group increased in size. For smaller R groups (Table 3, 

entries 1-3 and 6) the diastereoselectivity ranged from excellent to moderate. The reaction 

with the Me substituent (Table 3, entry 1) was slow to cyclise and it was believed that some 

Entry Aldehyde R 74 : 76a Yield (%)b 

1 73a Me 78 : 22 70 (22) 

2 73b Bn 94 : 6 70 (3) 

3 73c iPr 80 : 20 75 (19) 

4 73d tBu 47 : 53 42 (37) 

5 73e Ph 54 : 46 53 (40) 

6 73fc CO2Me 100 : 0d 74 
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equilibration to the thermodynamic isomer occurred during the reaction. Reaction with 

CO2Me substituent (Table 3, entry 6) led only to the cis diastereomer because of 

intramolecular lactone formation between the hydroxyl and ester groups preventing 

equilibration to the trans diastereomer. For the bulkiest substituents, (Table 3, entries 4-5), 

there was almost no selectivity. The selectivity could be rationalised by considering two 

factors. Firstly, there is a preference for the R group to adopt a pseudo-axial conformation in 

the chair-like transition state to avoid pseudo A1,3 strain with the nitrogen protecting 

group.66,67 Secondly, there is a kinetic preference for the ene group and aldehyde to adopt a 

cis relationship in order to benefit from a interaction of an oxygen lone pair stabilising any 

carbocationic character in the transition state (or a carbocationic intermediate, formed during 

a fully stepwise mechanism). The cis relationship is achieved by the aldehyde lying in a 

pseudo-axial orientation and the more sterically demanding ene component occupying the 

pseudo-equatorial orientation (Scheme 21).  As the steric bulk of the 2-substituent increased 

the diastereoselectivity decreased, this was rationalised by an increased pseudo 1,3-diaxial 

interaction between the carbonyl and 2-substituent, which forced the aldehyde into an 

equatorial position.  

N

OH

R

N

R

Ts

Ts N

R OH

Ts

OH

N

R

Ts

OH  

Scheme 21: Rationale for the preferential formation of the cis diastereomer 
 

In the carbonyl ene cyclisations of aldehydes 73, utilising the optimal Lewis acid of MeAlCl2 

under equilibrating conditions, the thermodynamic trans, trans products 76a-e could be 

favoured (Table 4) 
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Table 4: Carbonyl-ene cyclisation results 
 

The diastereoselectivities ranged from good to excellent, with the bulkier substituents giving 

the highest diastereoselectivities of up to 99:1 for tBu (Table 4, entry 4). The rationale for the 

observed diastereoselectivity was a large 1,3-diaxial interaction between the axial 2-

substituent and the Lewis acid-coordinated aldehyde oxygen, compared to the Brønsted acid 

where the steric clash between the protonated oxygen of the carbonyl and the R group is less 

pronounced, leading to the aldehyde adopting the equatorial conformation. Such an 

interaction would account for the increased trans, trans diastereoselectivity as the 2-

substituent increases in size (Scheme 22). 
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Scheme 22: Rationale for the preferential formation of the trans, trans diastereomer 

 

 

 

Entry Aldehyde R Temp / °Ca 74 : 76b Yield (%)c 

1 73a Me 60 4 : 96 71 (4) 

2 73b Bn 40 5 : 95 64 (5) 

3 73c iPr 40 2 : 98 82 (2) 

4 73d tBu 60 1 : 99 88 (1) 

5 73e Ph 60 2 : 98 80 (2) 
a Reactions were carried out in CH2Cl2 (40 °C) or CHCl3 (60 °C)  b Ratio determined by 
1H NMR of crude reaction mixtures. c Isolated yields of major (minor in parentheses) 
isomers following purification 
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1.5 Project Aims 

The real test of any methodology and its establishment as a valuable chemical tool is its 

application in natural product synthesis. We plan to apply the carbonyl-ene/Prins 

methodology developed in our group to the synthesis of the pseudodistomin alkaloids. We 

believe the methodology is powerful enough to synthesise all the possible diastereomers of 

the 2,4,5-trisubstiuted piperidine core and would furnish cores with sufficient flexibility for 

the attachment of all possible side chains, which would make it very adept to the synthesis of 

new analogues in the hope of testing for improved biological activity.  

 

Following on from previous work in the group we want to further the development of 

2,4,5-trisubstituted piperidine synthesis. It has been shown that access to 2,4,5-trisubstituted 

piperidines possessing the cis, cis stereochemistry 74 is possible, matching the 

stereochemistry of pseudodistomins C 7 and E 9. To access the previously unobtainable trans, 

cis 79 and cis, trans 80 diastereomers, which would lead to pseudodistomins A 5, B 6, F 10 

and D 8 respectively, we envisaged a cyclisation precursor 78 having its 2-substituent 

constrained within a oxazolidinone ring linked to the nitrogen. In doing would confer several 

advantages. Firstly, we believed it would hold the 2-substituent in an equatorial 

disposition,68,69 giving rise to a minimal interaction between the 2-substituent and either the 

axial or equatorial 4-substituent. Working in concert with our previously outlined 

stereochemical model, Prins cyclisation would lead to the trans, cis diastereomer 79, while 

with a carbonyl-ene reaction under equilibrating condition would lead to the cis, trans 

diastereomer 80 (Scheme 23). Furthermore, the cyclic carbamate would be an attractive 

alternative to the tosyl protecting group employed in previous work as it can be cleaved under 

milder conditions but still provide the robustness required in the cyclisation reaction. 
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Scheme 23: Potential synthetic routes to the pseudodistomin alkaloids 
 
 
To assess the viability of the proposal we wish to carry out a formal synthesis of 

pseudodistomin F, by synthesising an advanced intermediate 27 used in Ma and Sun’s total 

synthesis. This intermediate was chosen as it contains the correct functionality and 

stereochemical arrangement of the core and with simple chemical manipulation allows 

appendage of the side chain. Incorporating the desired flexibility of being able to synthesise 

multiple pseudodistomin alkaloids or simpler side chain analogues from a common core.  

 

A retrosynthetic analysis of Ma and Sun’s advanced intermediate 27 was undertaken. The 

cyclic carbamate 27 could be derived from a rearrangement of a carboxylic acid, which in 

turn could be obtained from an oxidative cleavage of an alkene. This would lead to homo 
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allylic alcohol 80 derived from a Prins cyclisation of 78. The cyclisation precursor 78 could 

be obtained from the amino acid L-aspartic acid in four transformations (Scheme 24). 

 

Boc
N

Boc
N

O
NH

O

OH

OOH

Boc
N

OH

N

OH

O
O

N
O

O

O

HOHO HO

N

OH

NH

OH

H2N CO2H

CO2H

H2N
O O

O O

OH

OH

27 80

78  

Scheme 24: Retrosynthetic analysis of the target molecule 
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2. Results and Discussion 

 

2.1 Model System 

 
Before embarking on the synthesis of the 2,4,5-trisubstituted cyclisation precursor 75, initial 

work focused on the construction of a model system to evaluate Brønsted acids with weakly 

nucleophilic counter ions. The Brønsted acids chosen to study were perchloric acid (HClO4) 

and chlorosulfonic acid (HSO3Cl), which in comparison to the chloride ion of hydrochloric 

acid, were envisaged to reduce HX addition products that have been observed in very electron 

deficient ene components.  

 
The model system chosen was the cyclisation of aldehyde 58 into the corresponding 

2,4-trisubstituted piperidine 60 because the Prins reaction on this substrate has been well 

established allowing thorough evaluation of new reaction conditions and the synthesis is 

relatively simple from the N-tosyl amino alcohol 81 (Scheme 25). 
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Scheme 25: Retrosynthetic analysis of the model system 
 

Starting from the N-tosyl amino alcohol 81 a regioselective N-alkylation with prenyl bromide 

gave the desired product 82 in an excellent yield. Oxidation of the alcohol 82 to the 

corresponding aldehyde 58 was first explored with PCC. Unfortunately, the yields of the 

aldehyde were only modest ~60 % and were accompanied by small amounts ~10% of ester 
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83, presumably formed from the dimerisation of alcohol starting material 82 with the 

aldehyde product 58 giving the hemiacetal 84 that was oxidised with PCC to the 

corresponding ester 83 (Scheme 26).70  
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Scheme 26: Dimerisation occurring during oxidation 
 
 
This by-product had previously been observed in the group and was known to be inseparable 

from the aldehyde product by chromatographic means.60 The oxidation was completed 

successfully through the employment of a Swern oxidation. This gave the desired product 58 

in an excellent yield with no dimerisation occurring (Scheme 27). 
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Scheme 27: Synthesis of the cyclisation precursor 
 
 
With the cyclisation precursor in hand, Prins reactions were carried out using the Brønsted 

acids HClO4 and HSO3Cl, with concentrated HCl used for comparison purposes (Scheme 28). 
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The results from the reaction are summarised below (Table 5). Although no counter ion 

adducts were observed for the Brønsted acids HClO4 and HSO3Cl the diastereoselectivities 

were low c.f. 4:1 and 3:1 respectively and the yields were only poor to modest, with complete 

decomposition of materials when HClO4 was used in excess (entry 1). The use of 

concentrated hydrochloric acid proved to be an effective catalyst giving the cis product 60 in a 

good yield and diastereoselectivity, however a small amount of the HCl adduct 61 was 

detected  (entry 8). As we failed to find a new Brønsted acid to catalyse the reaction, we 

decided to stick with the previously optimised conditions of concentrated hydrochloric acid to 

carry out the Prins reaction. 

 

 

 

 

 
 

 

 

 
 

Table 5: Prins cyclisation results 
 

 
 
 

 

2.2 First Generation Synthesis 

Entry BAa Eq Temp / °C 59 : 60 : 61b Yield (%)c 

1 HClO4 3 rt -d - 

2 HClO4 1 rt 35 : 65 : 0 19 (7) 

3 HClO4 1 -78 20 : 80 : 0 47 (14) 

4 HClO4 0.1 -78 25 : 75 : 0    39 (13)e 

5 HSO3Cl 1 rt 40 : 60 : 0 46 (27) 

6 HSO3Cl 1 -78 25 : 75 : 0   67 (22) 

7 HCl 3 rt 10 : 80 : 10 76f (8) 

8 HCl 3 -78 5 : 85 : 10 84f (5) 
a Reactions were carried out in CH2Cl2 for 16 h b Ratio determined by 1H NMR of crude 
reaction mixtures. c Isolated yields of major (minor in parentheses) isomers following 
purification. d No product formation, only a complex mixture of unidentified by-products 
determined by 1H NMR of crude reaction mixture. e 16% unreacted starting material 
recovered. f Combined yield of 60 and 61 as they were inseparable by chromatographic 
methods. 
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2.2.1 Synthesis of Crotyl Substrate 

  
As proposed from our retrosynthetic analysis of Ma and Sun’s advanced intermediate 27, we 

started our synthesis from the naturally occurring amino acid, L-aspartic acid 78. We intended 

to reduce the carboxylic acid functionalities to afford the corresponding diol 85. Although 

there was no literature precedent for this one step reduction of L-aspartic acid we were 

encouraged by the work of Meyers et al who have shown the facile reduction of a variety of �-

amino acids to the corresponding amino alcohols using NaBH4 and I2.
71 Unfortunately, this 

protocol failed to give any of the desired product 85. A by-product was isolated in a 40% 

yield, which we believed to be the boron complex 86 based on its 1H NMR, 13C NMR, IR and 

mass spectra (Scheme 29).  
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Scheme 29: Unsuccessful reduction with NaBH4/I2  
 

Instead we employed a two-step procedure to accomplish the reduction: Firstly, esterification 

of aspartic acid 78 with acetyl chloride in MeOH followed by a mild basic work-up gave the 

corresponding methyl ester 87 in good yield of 76%.72 Secondly, treatment of the amino ester 

with LiAlH4 in THF and subsequent Soxhlet extraction of the aluminium salts gave the amino 

diol 85 in a quantitative yield (Scheme 30).73 
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Scheme 30: Esterification followed by reduction 
 

Following a modified one-pot literature procedure73 the amino diol 85 was regioselectively 

cyclised to form the 5-membered cyclic carbamate with carbonyldiimidazole (CDI) followed 

by in situ protection of the β-oxygen using TBDPSCl with the imidazole by-product 

generated in the first step functioning both as a base and nucleophilic catalyst. This gave the 

silylated oxazolidinone 88 in a good yield of 82%, an improvement over the 57% yield 

presented in the literature. The cyclisation precursor 78 was then straightforwardly prepared 

in three steps. N-Alkylation of oxazolidinone 88 with crotyl bromide and n-BuLi gave 89, 

which when treated with TBAF removed the silyl ether protecting group to give alcohol 90. 

Finally, oxidation of the alcohol to the corresponding aldehyde using Swern conditions gave 

the cyclisation precursor 78 (Scheme 31).  
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Scheme 31: Synthesis of crotyl cyclisation precursor 
 
The cyclisation precursor 78 was first subjected to the Prins reaction using the previously 

optimised Brønsted acid conditions60 of three equivalents of concentrated HCl in CH2Cl2 at -

76 
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78 °C. Unfortunately this failed to catalyse the reaction and only unreacted starting material 

was recovered, and raising the temperature to room temperature had no effect on the outcome 

of the reaction. We then turned to the Brønsted acid conditions of a saturated solution of HCl 

gas in CH2Cl2 at -78 °C. This caused extensive decomposition of the starting material into 

multiple unidentifiable by-products with no observable product formation. The Prins reaction 

is usually thought of as reacting through a carbocationic intermediate. This requires the 

substrate to react through an unfavourable secondary carbocation, giving a possible 

explanation for its reluctance to form any products (Scheme 32). 
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Scheme 32: Attempted Prins reaction with HCl 
 
 
The previously optimised Lewis acid-catalysed carbonyl-ene reaction conditions of two 

equivalents of MeAlCl2 in CH2Cl2 at -78 °C60 (Table 6, entry 1) failed to promote the reaction 

and only unreacted starting material was recovered. Raising the temperature to room 

temperature allowed reaction to occur, leading to a mixture of four products: the trans, cis-

piperidine 79 and cis, trans-piperidine 80 as predicted, a new diastereomeric product 

cis,-cis-piperidine 91 and a dimerisation by-product 92 (Scheme 33).   
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Scheme 33: Carbonyl-ene cyclisation of aldehyde 78 

 
The products were obtained in a ratio of 24:30:10:36 for 79, 80, 91 and 92 respectively (Table 

6, entry 2), determined by analytical HPLC. A combination of flash column chromatography 

and semi-preparative HPLC afforded partial separation of the products. The dimer 92 

comprises of four stereocenters allowing for a possibility of sixteen stereoisomers. Analysis 

of the 1H NMR spectrum of 92 revealed a mixture of at least three diastereomers, from the 

presence of three doublets between 1.2-1.6 ppm corresponding to the methyl protons. None of 

the stereochemistries from the diastereomeric mixture of dimers 92 could be determined. The 

stereochemistry of the three piperidines 79, 80 and 91 was tentatively assigned through 

analysis of coupling constants in their 1H NMR spectra. The relative stereochemistry of 

piperidine 79 was determined to be trans, cis. In the 1H NMR spectrum of 79 the axial proton 

of 3”H lies at 1.54 ppm and is split into a doublet of double doublets with coupling of 2.3, 11.7 

and 13.7 Hz corresponding to a axial-equatorial, axial-axial and gem couplings. The axial 

proton of 6”H lies at 3.19 ppm and is split into a triplet with a large coupling constant of 12.5 

Hz indicative of a axial-axial and gem couplings. The corresponding equatorial proton 6’H lies 

at 3.74 ppm and is split into a double doublet with couplings of 5.1 and 12.5 Hz, indicating 

axial-equatorial and gem couplings. The relative stereochemistry of piperidine 80 was 

determined to be cis, trans.  The axial proton 3”H at 1.38 ppm is split into a quartet with a 
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coupling constant of 11.8 Hz coming form two diaxial and a gem coupling. The axial proton 

6”H lying at 2.65 ppm is split into a double doublet with two large couplings of 11.4 and 13.4  

Hz corresponding to a diaxial and a gem coupling. The relative stereochemistry of  91 was 

determined to be cis, cis. The proton assigned to the axial 3”H lies at 1.46 ppm and is split into 

a quartet with a coupling constant of 11.9 Hz corresponding to two diaxial a gem coupling. A 

doublet at 3.13 ppm corresponds to axial 6”H with coupling constants of 3.4 and 13.6 Hz 

equating to an axial-equatorial and gem coupling (Figure 6). 
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Figure 6: Selected coupling constants  
 

Carrying out the reaction with just one equivalent of MeAlCl2 for sixteen hours (Table 6, 

entry 3) led to significant amounts of unreacted starting material and with no noticeable 

decrease in dimerisation. Next, we investigated how the role of reaction concentration would 

affect the ratio of products. Having started with a reaction concentration of 0.1 M in CH2Cl2 

we carried out reactions at 50 mM and 10 mM (Table 6, entries 4 & 5). Pleasingly the higher 

dilutions led to lower amounts of the dimerisation product 92 but also led to lower amounts of 

the desired trans, cis piperidine 79. We then looked into the role that temperature played in 

the reaction. Noting that at very low temperatures no reaction occurred, we hoped that a 
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change in temperature would favour one reaction pathway over another. Carrying out the 

reaction at 0 °C (Table 6, entry 6) gave very similar results to the reaction at room 

temperature (Table 6, entry 2). Performing the reaction at an elevated temperature of 42 °C 

(Table 6, entry 7) resulted in less dimerisation and gave the cis, trans piperidine 80 as the 

major product. We investigated the Lewis acid TMSOTf (Table 6, entry 8) in the hope that 

silylation of the oxygen would occur and so preventing it from attacking another molecule of 

starting material 78. Unfortunately, no reaction occurred under these conditions and only 

unreacted stating material was recovered.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Table 6: Carbonyl-ene cyclisation conditions 
 

From previous studies,60,64 we believed that the Lewis acid-promoted carbonyl-ene reaction 

proceeds through an asynchronous concerted mechanism with a polar transition state (or a 

fleeting zwitterionic intermediate). The transition state leading to the formation of cis, trans 

piperidine 80 has both the hydroxyl and ene component in equatorial positions; although 

thermodynamically favourable on steric grounds, the configuration does not allow for 

stabilisation of the carbocationic character in the transition state by the lone pair of the 

Entry LAa Eq Temp / °C Conc / mM 78 : 79 : 80 : 91 : 92 

1 MeAlCl2 2 -78 100 100 : 0 : 0 : 0 : 0b 

2 MeAlCl2 2 rt 100 0 : 24 : 30 :10: 36c 

3 MeAlCl2 1 rt 100 15 : 19 : 26 : 8 : 32c 

4 MeAlCl2 2 rt 50 0 : 18 : 32 : 31 : 19c 

5 MeAlCl2 2 rt 10 0 : 14 : 36 : 34 : 16c 

6 MeAlCl2 2 0 100 0 : 25 : 27 :10: 38c 

7 MeAlCl2 2 40 100 0 : 16 : 56 : 22 : 18c    

8 TMSOTf 1 rt 100 100 : 0 : 0 : 0 : 0b 

a Reactions were carried out in CH2Cl2 for 16 h. b Ratio determined by analysis of  the 1H 
NMR of the crude reaction mixture c Ratio determined by HPLC analysis of crude reaction 
mixtures.  
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oxygen. Regarding the piperidines that have the 4- and 5- substituents cis to one another 79 

and 91, we believe them to react through lower energy transition states due to the stabilising 

interaction of any cationic character the transition state (or carbocation in the intermediate)  

by the lone pair on the oxygen. Formation of either 79 or 91 would depend on the preference 

for either the ene component or the Lewis acid-coordinated oxygen to adopt an equatorial 

position. The failure to promote the reaction at cold temperatures highlights the relatively 

high energy transitions (or high energy secondary carbocations) involved in the reaction and 

the need to conduct the reaction at ambient temperatures. This has the consequence of eroding 

the kinetic preference to form cis configuration 79 and 91 in favour of the thermodynamic 

trans product 80. However, the diastereoselectivity cannot be completely turned over 

completely in favour of the thermodynamic product 80 due to the significant contribution 

from the stabilising interactions arising in the cis configuration (Scheme 34).  
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Scheme 34: Postulated transition states leading to products 
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Regarding the mechanism for the formation of the dimerisation product 92, we believe that 

there is a competition between the intramolecular cyclisation of aldehyde 75 and the 

intermolecular reaction between the aldehyde 75 and the piperidine product. After cyclisation 

to the piperidine product, nucleophilic attack of the hydroxyl onto another aldehyde would 

occur. Following breakdown of the Lewis acid-coordinated hemiacetal to reveal an 

oxocarbenium ion, a second cyclisation is proposed to occur, reminiscent of a type III 

carbonyl-ene cyclisation, followed by trapping of the resulting carbocation with a chloride ion 

(Scheme 35). 
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Scheme 35: Proposed mechanism for dimerisation formation 
 

Discouraged by the lack of promising results, we decided to focus our attention on making 

modifications to the ene component in an attempt to improve the cyclisation reaction. The 

most logical modification is replacement of the distal hydrogen in the ene component by a 



 39 

methyl group, which upon successful cyclisation should lead to more stable tertiary 

carbocation. 

 

2.2.2 Synthesis of Prenyl Substrate 
 

The oxazolidinone 88 was alkylated using prenyl bromide and n-BuLi to give the prenyl 

oxazolidinone 93, deprotection of the silyl ether with TBAF gave the free alcohol 94 and 

finally a Swern oxidation gave the modified cyclisation precursor 95, proceeding with 

excellent yields of 98, 94 and 95% respectively (Scheme 36). 
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Scheme 36: Synthesis of prenyl cyclisation precursor 
  

The prenyl cyclisation precursor was first subjected to a Prins reaction using three equivalents 

of concentrated HCl in CH2Cl2 at -78 °C. The cyclisation proved successful, although the 

reaction did not go to completion with 12% of aldehyde starting material still remaining. The 

reaction gave a mixture of three piperidines, 96, 97 and 98 in ratio of 15:7:1 respectively ( 

 

Table 7, entry 1). This gave a combined cis to trans ratio of 96:4. The cis and cis-chloride 

were inseparable by flash column chromatography and gave a combined yield of 78% 

(Scheme 37).  
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Scheme 37: Concentrated HCl cyclisation 
 
 
In an attempt to improve the efficacy of the cyclisation we performed the reaction with a 

saturated solution of anhydrous HCl  in CH2Cl2 at -78 °C for 2 hours (Scheme 38).  
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Scheme 38: Anhydrous HCl cyclisation 
 

This resulted in complete conversion of the aldehyde starting material into products and gave 

an excellent diastereomeric ratio of 99.0 : 0.50 : 0.50 for 97, 96 and 99 respectively (Table 7, 

entry 2) determined by HPLC analysis,  giving a combined cis to trans ratio of 99.5:0.5 and 

isolated in an excellent yield of 98% for cis-chloride.  

 
As the Prins reaction is believed to proceed through a carbocationic intermediate, the prenyl 

substrate would react through a stable tertiary carbocation leading to a facile route into 

product formation, compared to the relatively unstable secondary carbocation of the crotyl 

substrate. The 2-substituent and nitrogen are constrained within an oxazolidinone ring, forcing 

the 2-substituent to adopt an equatorial disposition leading to a minimal steric clash between 

itself and the hydroxyl group lying in the axial position. The isopropyl cation of the prenyl 

substrate is sterically more demanding than the ethyl carbocation of the crotyl substrate 
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Leading to the isopopyl cation having a preference to adopt an equatorial disposition to avoid 

A1,3 diaxial strain. In combination with the stabilising interaction outlined before, the oxygen 

and carbocation to lie cis to one another, this gives rise to the excellent diastereoselectivity if 

favour of the cis product (Scheme 39).  

N

OH

O

O

N

HO

O

O

N

O

O

O

Cl

HCl

95 97  

Scheme 39: Stabilised intermediate leading to product 
 

Regarding the fate of the carbocationic intermediate, there are two possible pathways leading 

to the cis chloride 97 product; direct trapping of the carbocation intermediate with a chloride 

ion or loss of a hydrogen to form cis alkene 96 followed by HCl addition across the double 

bond (Scheme 40). As the reaction could never be stopped purely at the cis alkene 96 it 

suggests that either both reaction pathways are occurring or HCl addition across the alkene is 

a rapid process.  
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Scheme 40: Postulated reaction intermediates leading to products  
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As the quantity of trans-chloride 99 isolated from HPLC analysis was not sufficient for 

conclusive characterisation (only a mass spectrum) we decided to synthesise a sample of 

trans-chloride 99 from the HCl addition across the alkene of trans piperidine 98.  The trans 

piperidine isolated from the carbonyl-ene reaction (vide infra) was treated with a saturated 

solution of anhydrous HCl in CH2Cl2 at -78 °C for 4 hours before being warmed to room 

temperature and the reaction continued for a further 4 hours. The reaction time to add HCl 

across the trans-alkene of 98 was significantly longer than the analogous addition across the 

cis-alkene 96 and the trans-chloride 99 was only observed when using the forcing conditions 

of a saturated solution of anhydrous HCl in CH2Cl2. The long reaction times required for the 

trans-alkene 98 can be rationalised by the reaction proceeding through a higher energy trans 

carbocation leading to a slower Markovnikov addition of HCl across the alkene. Pleasingly 

HPLC analysis of the trans-chloride 99 obtained from the HCl addition of 98 reaction gave 

identical retention time and mass spectrum to the postulated trans-chloride 99 isolated from 

the Prins reaction of 95.  
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Scheme 41: HCl addition into trans-alkene 98 
 

We turned our attention to the Lewis acid-promoted carbonyl-ene reaction, in the hope of 

favouring the thermodynamic trans product 98. To compare the difference in selectivity 

between the Lewis acid and Brønsted acid reactions, the initial carbonyl-ene reaction was 

carried out with one equivalent of MeAlCl2 in CH2Cl2 at -78 °C (Table 7, entry 3).  

Unsurprisingly, at low temperature, the reaction predominately favoured the kinetic cis 
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diastereomer 96 with cis-chloride 97 and the trans diastereomer 98 formed in lesser amounts 

in a ratio of 6:1:1.5 respectively. Surprisingly for a Lewis acid-promoted reaction there was a 

significant amount of the cis-chloride 97. This result is not without precedent as Snider has 

observed that in carbonyl-ene reactions using one equivalent of an alkylaluminum chloride 

Lewis acid there were significant amounts of the β-hydroxy chloro product. It was proposed 

that the reaction proceeds through a zwitterionic intermediate and a chloride from the alcohol-

Lewis acid complex adds intramolecularly to the carbocation through a [1,5] shift occurring 

across the same face of the molecule, i.e. 95 to 97 in Scheme 42. However, Snider observed 

that performing the reaction with two equivalents of a Lewis acid rendered the chloro-

alkoxide intermediate unstable, even at -78 °C, leading to elimination of HCl to afford the 

homoallylic alcohol product,49 i.e. 95 to 96 in Scheme 42.  We repeated the reaction with two 

equivalents of MeAlCl2 at -78 °C (Table 7, entry 4), which pleasingly gave the cis 96 and 

trans 98 piperidines in a ratio of 6:1, with only a trace amount of the cis-chloride 97 present 

(The observation of chloro alcohol product 97 leads us to believe that the carbonyl-ene 

reaction of aldehyde 95 also proceeds through a transient zwitterionic intermediate.  
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Scheme 42: Mechanism for the formation of chloro alcohol 97 and its breakdown to form alkene 96 
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a Reactions were carried out in CH2Cl2 unless otherwise stated. b Ratio determined by 1H NMR analysis of 
crude reaction mixtures unless stated otherwise. c Isolated yields of major (minor in parentheses) isomers 
following purification. d Combined yield of 96 and 97. e Reaction performed with a saturated solution of 
anhydrous HCl. e 16% unreacted starting material recovered. f Ratio determined by HPLC analysis of crude 
reaction mixture. g Reaction carried out in CHCl3 

In an attempt to favour the thermodynamic product we began by raising the temperature of the 

reaction. Performing the reaction at room temperature with two equivalents of MeAlCl2 in 

CH2Cl2 (Table 7, entry 5) gave the cis 96 and trans 98 diastereomers in a ratio of 2:1, with 

none of the cis-chloride 97 observed. Raising the temperature further to 40 °C (Table 7, entry 

6) surprisingly still gave rise to the cis 96 diastereomer as the major component over the trans 

98 diastereomer, in a ratio of 1.5:1. In a final attempt to favour the thermodynamic trans 

product 97 we changed the solvent to CHCl3 and carried out the reaction at 61 °C (Table 7, 

entry 7), unfortunately the ratio was hardly improved with 1.4:1 in favour of the cis 96 over 

the trans 98 (Scheme 43).  
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Scheme 43: Cyclisation under Lewis acid conditions 
 
The results from both the Prins and carbonyl-ene cyclisations are summarised in the table 

below (Table 7). 

 

 
 

Table 7: Prins and carbonyl-ene reaction conditions and outcomes 

Entry Catalysta Eq Temp / °C Time / h 96 : 97 : 98 : 99b Yield (%)c 

1 HCl(aq) 3 -78 16 15 : 7 : 1 : 0 76d 

2 HCl(g) -e -78 2 0.5 : 99.0 : 0 : 0.5f 98 

3 MeAlCl2 1 -78 16 6 : 1 : 1.5 : 0 82d (17) 

4 MeAlCl2 2 -78 16 6 : trace : 1 : 0    85 (14) 

5 MeAlCl2 2 rt 16 2 : 0 : 1 : 0 63 (30) 

6 MeAlCl2 2 40 16 1.5 : 0 : 1 : 0   58 (37) 

7 MeAlCl2 2 61g 16 1.4 : 0 : 1 : 0 55 (39) 
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Surprisingly for a Lewis acid cyclisation there was a continued preference for the formation 

of the kinetic cis diastereomer 96, even at elevated temperatures. To rationalise this 

observation we believed that the oxazolidinone ring exerted a strong electron-withdrawing 

effect on the system. Resulting in destabilisation of the carbocationic charge in the 

intermediate, making the stabilising interaction from an oxygen lone more significant.  This 

stabilising interaction is only possible when both hydroxyl and ene groups are cis to one 

another and offers an explanation for the preferential formation of the cis diastereomer 96 

under both Prins and carbonyl-ene conditions (Scheme 44). 
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Scheme 44: Carbonyl-ene reaction intermediates leading to products 
 

The structures of cis-alkene 96, cis-chloride 97 and trans-alkene 98 piperidines were 

determined by X-ray crystallography (Figures 7, 8 & 9). 
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Figure 7: Crystal structure of piperidine 96 

 
 
 

 
Figure 8: Crystal structure of piperidine 97 

 
 

 

Figure 9: Crystal structure of piperidine 98 
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The Prins reaction using anhydrous HCl (entry 2) gave the highest cis to trans ratio. 

Unfortunately, the product from this reaction was the HCl adduct 97. In order to make 

progress towards the target 27 we needed to eliminate HCl to access the more synthetically 

useful cis-alkene 96. The initial reaction was carried out with aqueous KOH in MeOH in the 

hope of facilitating two steps in one: first, elimination of HCl to give cis-alkene 97 and 

secondly, hydrolysis of the oxazolidinone ring to give the amino diol 100. Sadly, the reaction 

failed to afford any of the desired product and instead gave a complex mixture of 

unidentifiable products (Scheme 45).   
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Scheme 45: Failed elimination with KOH 
 
We then turned our attention to the strong non-nucleophilic base KHMDS. Employing one 

equivalent in THF at 0 °C resulted in successful elimination but the results were not 

reproducible, with yields ranging from 50-95% (Scheme 46), and decreasing appreciably 

above the 100 mg scale. Using a crown ether, 18-crown-6, in the hope of increasing the 

basicity of the anion failed to furnish any improvement in yield.  
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Scheme 46: Elimination with KHMDS 
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Employing two equivalents of KHMDS still did not afford complete elimination and led to 

significant amounts ~20% of aldehyde 95 resulting from an E1cB elimination (Scheme 47).   
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Scheme 47: Retro-ene reaction with 2eq KHMDS 
 
 
The elimination was successfully accomplished in a reproducible manner by using 1 

equivalent of NaOAc in refluxing AcOH74,75 for 10 minutes to give the alkene 96 in a good 

yield of 85% after chromatography with none of the cis-chloride 97 starting material 

remaining (Scheme 48).  
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Scheme 48: Elimination with NaOAc in AcOH 
 
 
Short reaction times were key to the success of this reaction, as extended reaction times led to 

the formation of two by-products increasing in amount as time progressed; acylation of the 

hydroxyl to give 101 and an AcOH adduct 102, both of which were tentatively identified from 

analysis of their 1H NMR and m/z spectra (Figure 10). 
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 Figure 10: By-products from NaOAc/AcOH elimination 
 
 
Although the synthetic route enabled access to the cis piperidine 97 in excellent yields and 

diastereoselectivities, it suffered from a few shortcomings. Firstly, the use of a TBDPS 

protecting group incorporated two redundant steps into the synthesis. A more expedient route 

would utilise functional group reactivity rather than mask it. Secondly, and most importantly, 

it was not amenable to a multigram scale required to complete the formal synthesis, due to the 

poor scalability of the LiAlH4 reduction of ester 87 to diol 85.  

 

2.3 Second Generation Synthesis 

2.3.1 Introduction 
 

Our new retrosynthetic approach to the cyclisation precursor 95 utilised the alcohol 94 which 

could be obtained from a regioselective cyclisation of diol 103, derived from ester 104. The 

tertiary aminoester 104 could be formed from monoalkylation and carbamation of aspartic 

ester 87, which can be obtained from aspartic ester 87 as shown in the previous synthesis 

(Scheme 49). 
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Scheme 49: New retrosynthetic approach to cyclisation precursor 95 
 
 
Two potential routes for the synthesis of 104 were devised. Firstly, monoalkylation of aspartic 

ester 87 to give the secondary amine 105 followed by carbamation giving 104 (Route [A]). 

Alternatively, the tertiary carbamate 104 could be prepared from carbamation of 87 to afford 

the secondary carbamate 106 followed by alkylation (Route [B]), shown in Scheme 50. 
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Scheme 50: Two potential routes for the synthesis of tertiary carbamate 104 
 

2.3.2 Primary Amine Alkylation  
 

Initial research focused on the synthesis of 104 via route [A], as it was reasoned that 

carbamate alkylation would require harsher conditions. The synthesis of secondary amines by 
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direct N-alkylation of primary amines is known as the Hoffmann alkylation;76 it is usually an 

inefficient procedure due to over-alkylation, leading to mixtures of primary, secondary and 

tertiary amines, as well as quaternary ammonium salts.77
 The problem arises because upon 

each successive alkylation the products are more reactive than their starting materials. To 

circumvent this problem it is common to employ the amine in large excess relative to the 

alkylating agent.78 This is an expensive and wasteful process, especially when the amine is 

not commercially available. However, owing to the straightforward nature of this 

transformation a number of researchers have studied it in the hope of imparting selectivity to 

the reaction.79 Jung et al. have reported the chemoselective mono-N-alkylation of primary 

amines using cesium bases in DMF in the presence activated 4 Å molecular sieves.80,81 They 

attribute the chemoselectivity to the formation of a strong coordinate bond between the 

alkylated secondary amine and a cesium ion. This has the affect of reducing the 

nucleophilicity of the secondary amine and inhibiting proton abstraction because of the 

increased sterics, which in combination helps to suppress further alkylation (Scheme 53).  
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Scheme 51: Jung’s rationale for the observed chemoselectivity  
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In parallel, Srivstava et al. have reported the selective N-alkylation of primary amines using 

K2CO3 as the base in polar aprotic solvents.82 The selectivity could be switched between 

mono- and di-N-alkylation by varying the nature of the electrophile used in the reactions. 

More recently, Cho and Kim studying the selective mono-N-alkylation of α-amino esters 

observed poor selectivity when using Jung’s conditions. They observed that the reaction could 

proceed effectively by employing LiOH and DMF in the presence of 4 Å molecular sieves, 

and in one example they alkylated aspartic acid tert-butyl methylester 107 with benzyl 

bromide and achieved a ratio of 15:1 of mono- 108 over dialkylated product 109 (Scheme 

52).83  
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Scheme 52: Alkylation presented by Cho and Kim 
 
In an attempt to afford a similar transformation the aspartic ester hydrochloride salt 110 was 

allowed to react with two equivalents of LiOH, one equivalent of prenyl bromide in DMF in 

the presence of 4 Å molecular sieves. Unfortunately, the reaction favoured the formation of 

the di-alkylated amine 111 over the mono-alkylated amine 105 in a ratio of 2:1 respectively 

(Scheme 53). 
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Scheme 53: Alkylation of 1° amine 
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In an attempt to improve the selectivity in favour of the mono-alkylated product 105, we 

screened a variety of bases such as CsOH, Cs2CO3 and K2CO3 but to no avail as they offered 

no improvement over the original attempt with LiOH  (Table 8). 

 

 

 
 
 
 

Table 8: Alkylation of 1° amine with a variety of bases 

 
 

2.3.3 Reductive Amination 
 
 
As the alkylation gave poor yields of the secondary amine, we decided to investigate a 

reductive amination approach. We began by attempting a one-pot procedure of preformation 

of the imine followed by subsequent reduction (shown as a general method in Scheme 54), 

using aspartic ester 87, prenal 112 and NaBH(OAc)3
84 dissolved in DCE at a concentration of 

300 mM (Table 9, entry 1). 
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Scheme 54: General method A for a one-pot reductive amination 

Entry Basea 105 : 111b Yield (%)c 

 

1 LiOH.H2O 1 : 2 34 (16) 

2 CsOH.H2O 1 : 3 30 (9) 

3 Cs2CO3 1 : 3 32 (10) 

4 K2CO3
d 1 : 10 48 (3)    

a All reactions were conducted with 1.2 eq of base and 1 eq of prenyl bromide dissolved DMF in the 
presence of 4 Å MS at rt for 16 h. b Ratio of products determined by 1H NMR analysis of the crude 
reaction mixture. c Isolated yields of major (minor in parentheses) isomers following purification. d 
An extra 0.5 eq of prenyl bromide added after 8 h. 
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Surprisingly there was a mixture of mono-alkylated 105 and di-alkylated 111 products in a 

1.2:1 ratio respectively. The significant amount of di-alkylated product can be rationalised by 

a molecule of the mono-alkylated product 105 attacking a molecule of the intermediate imine 

113 to give aminal 114. Breakdown of the aminal to generate a reactive iminium species 115, 

followed by its reduction would yield the di-alkylated product 111 (Scheme 55).  
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Scheme 55: Mechanism for the formation of 111 during reductive amination 
 

To prevent over-alkylation, we employed the more reactive reducing agent NaBH4 (Table 9 , 

entry 2) in the hope of reducing the intermediate imine 113 faster than the rate of attack by the 

secondary amine 105. Although this method gave lower amounts of the over alkylated 

product, the overall yield of 105 was significantly lower due to a complex mixture of 

unidentifiable by-products, most likely formed from the reduction of the ester functionality 

and subsequent side reactions. 

 

In the one-pot reductive amination procedure it was ambiguous whether preformation of the 

imine was complete before addition of the reducing agent, if not side reactions are possible 
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i.e. the reduced product 105 reacting with the aldehyde. A two-step method of imine 

formation followed by reduction was undertaken (shown as a general method in Scheme 56) 

to avoid such a problem. The reaction of aspartic ester 87 and prenal 112 dissolved in MeOH 

gave the crude imine 113 in a 98% yield, which was sufficiently pure to be used in the next 

step without purification. Confident that we had complete imine formation we could 

concentrate our efforts on the reduction, although whether imine formation is reversible in the 

reduction step remained unknown. 
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Scheme 56: General method B for a two step reductive amination 
 
 
The reaction of imine 113 with NaBH(OAc)3 in DCE at a concentration of 300 mM for 16 

hours (Table 9, entry 3) led to significant over alkylation. We believed the over alkylation was 

an issue of concentration. Carrying out the reaction in a higher dilution of 0.1 M (Table 9, 

entry 4) pleasingly led to smaller amounts of over alkylation <10% and the gave secondary 

amine in a good yield of 70% but led to an increased reaction time of 72 hours. Diluting the 

reaction further to 50 mM (Table 9, entry 5) gave <5% over alkylation but the reaction time 

increased dramatically to 120 hours, with trace amounts of starting material still present. It 

was deemed impractical to carry out reactions on a multigram scale at concentrations of 50 

mM because it would require ~100 mL of solvent per gram of reactant. Further efforts 

concentrated on improving the efficiency of the reaction at a concentration of 0.1 M. 

Additives were investigated; 4 Å molecular sieves and 2,6-lutidine had no effect on outcome 
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of the reaction (Table 9, entries 6 & 7); however, AcOH led to large amounts of over 

alkylation (Table 9, entry 8). One explanation to account for the over alkylation is the facile 

reaction between protonated imine 116 and secondary amine 105 leading to the formation of 

111 (Scheme 57). 
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Scheme 57: Over alkylation resulting from protonation of the imine 
 

Another possible explanation is the acid-catalysed hydrolysis of the imine with trace amounts 

of water leading to amine 87 and aldehyde 112.  Capture of the protonated aldehyde 117 with 

105 would also lead to tertiary amine 111 (Scheme 58). 
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Scheme 58: Over alkylation resulting from acid catalysed hydrolysis of the imine 
 
 
Changing the reducing agent to NaBH4 in solvent mixture of DCE:MeOH (Table 9, entry 9) 

led to no observable over but instead gave significant amounts of diol 118 resulting from 

reduction of the esters (Figure 11).  
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Figure 11: Diol resulting from ester reduction 
 

Changing the reaction solvent to a mixture of DCE:MeOH (Table 9, entry 10) and just MeOH 

(Table 9, entry 11) gave a complex mixtures of unidentifiable by products in both cases. From 

the experiments carried out the optimal conditions to carry out the reaction was via a two step 

procedure of imine formation followed by reduction with NaBH(OAc)3 in DCE at a 

concentration of 0.1 M (Table 9, entry 4). 
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Table 9: Reductive amination results

Entry Method Reducing Agenta Solvent Conc. / mM Time / h Additiveb 105 :111c Yield (%)d 

1 A NaBH(OAc)3 DCE 300 16 none 1.2 : 1 31 (24) 

2 A NaBH4
e MeOH 300 16 none -f 15 

3 B NaBH(OAc)3 DCE 300 16 none 1.5 : 1 39 (13) 

4 B NaBH(OAc)3 DCE 100 72 none 20 : 1  70 

5 B NaBH(OAc)3 DCE 50 120 none >20 : 1 73 

6 B NaBH(OAc)3 DCE 100 72 4 Å MS 20 : 1 68 

7 B NaBH(OAc)3 DCE 100 72 2,6 -lutidine 20 : 1 69 

8 B NaBH(OAc)3 DCE 100 72 AcOH 1 : 1 26 (23) 

9 B NaBH4
g DCE:MeOH 100 16 none >20 :1 22h 

10 B NaBH(OAc)3 DCE:MeOH 100 16 none -i - 

11 B NaBH(OAc)3 MeOH 100 16 none - - 

a Reactions were carried out at rt with 1.5-2 eq of reducing agent unless stated otherwise. b 1 eq of additive used. c Ratio determined by 1H NMR 
analysis of crude reaction mixtures unless stated otherwise. d Isolated yields of major (minor in parentheses) products following purification. e 
NaBH4 added after 3 h to allow preformation of the imine f Many overlapping signals in the 1H NMR of the crude reaction mixture made accurate 
integration impossible. g  Reaction carried out at rt with 1 eq of reducing agent. h Purification gave diol 118 in a 31% yield. i Reaction gave a 
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Reaction of amine 105 with ethyl chloroformate and Cs2CO3 afforded the carbamate 104 in a 

quantitative yield (Scheme 59). 
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Scheme 59: Imine reduction and carbamate formation 
 
 
Reduction of the esters with NaBH4 in THF:EtOH at 0 °C gave the diol 103 and treatment 

with NaH in THF resulted in cyclisation to furnish the oxazolidinone 94 (Scheme 60). 
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Scheme 60: NaBH4 reduction and NaH cyclisation 
 
 
Alternatively, raising the temperature of the NaBH4 reduction reaction to reflux smoothly 

transformed ester 104 into oxazolidinone 94 in an excellent yield of 90%, with none of the 

6-membered oxazinanone regioisomer observed (Scheme 61). 
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Scheme 61: One-pot reduction and cyclisation 
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The characterisation for compound 94 synthesised by this route was consistent with the data 

for the compound synthesised in the first generation synthesis except for the optical rotation. 

The recorded optical rotation from the first generation synthesis was -14.0 while the 

compound obtained from the second generation synthesis recorded a null value. Suspicious of 

the null values obtained for the optical rotations of compounds 103-105 we suspected 

racemisation had occurred. Chiral HPLC analysis of compounds 94, 103, 104 and 105 was 

conducted. Only in compound 104 could the enantiomers be successfully resolved into two 

separate peaks with retention times of 3.8 min and 8.0 min in hexane:isopropanol, 95:5. 

Integration of the peak areas revealed a 50/50 mixture of enantiomers, confirming complete 

racemisation had occurred (Figure 12).  

Figure 12: Chiral HPLC trace of racemic 104 
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To elucidate in which step racemisation occurred compound 105 obtained from the alkylation 

of aspartic ester 87 with prenyl bromide (Scheme 53) was allowed to react with ethyl 

chloroformate and Cs2CO3 to give carbamate 104. Chiral HPLC indicated no observable 

racemisation in this substrate. Subjecting (S)-104 to the reduction and cyclisation reaction 

with NaBH4 to afford oxazolidinone 94, which gave an identical optical rotation to compound 

94 made in the first generation synthesis. These observations pinpointed that racemisation 

occurred during the reductive amination step. Ganesan et al. observed a similar result when 

studying the reductive amination of L-tryptophan methylester 118 with a variety of aldehydes 

and NaBH(OAc)3.
85 They discovered that partial racemisation only occurred when they 

employed prenal 112 as the aldehyde (Scheme 62). They attributed this racemisation to the 

lower reactivity of the α,β-unsaturated imine 119 in the reduction to secondary amine 120; 

although no mechanism is specified, they observed a similar result with D-tryptophan 

methylester. 
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Scheme 62: Racemisation of L-tryptophan methylester observed by Ganesan 
 
 
Ellman et al. have purposely sought to induce racemisation during the reductive amination of 

a variety of amino esters 121 with a resin bound aldehyde 122 in order to access the unnatural 

D-enantiomer.86 They postulate that complete racemisation can be achieved through imine 

tautomerisation, by pre-equilibrating the amino ester hydrochloride salt, 0.3 equivalents of 
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Hünig’s base and the resin bound aldehyde 122 for six hours before addition of the reducing 

agent to afford the secondary amine 123 (Scheme 63).   
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Scheme 63: Racemisation of amino esters studied by Ellman 
 

We believe that a similar process occurs during the imine reduction of 113. Facile 

equilibration between chiral imine 113 and the achiral imine tautomer 124 leads to the 

complete erosion of stereochemistry before the slow reduction of the imine can occur leading 

to (rac)-105 (Scheme 64). Although imine 113 recorded an optical rotation of -8.8 the 

possibility of potential racemization occurring during its formation cannot be ruled out. 
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Scheme 64: Mechanism leading to racemisation   
 

2.3.4 Conjugate Addition 
    

The synthetic route of the second generation synthesis allowed efficient access to the 

cyclisation precursor 95 from the secondary amine 105 (Scheme 65). The major drawback, 

though, is the synthesis of amine 105 as previous attempts have suffered from poor yields 
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(2.3.2, alkylation) or racemisation accompanied with high dilutions and long reaction times 

(2.3.3, reductive amination).  
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Scheme 65: Facile synthesis of 95 from 105 
 
 
We envisaged that the conjugate addition between prenyl amine 125 and dimethylmaleate 126 

would give (rac)-105 (Scheme 66) and hopefully fulfil the premise of the second generation 

synthesis of allowing rapid access to the cyclisation precursor 95 on a multi-gram scale. This 

would provide the required synthetic material to enable the exploration of many possible 

synthetic pathways leading to a successful route to the target molecule 27. Upon discovery of 

a successful racemic pathway we planned to follow up with an enantiomerically synthesis of 

27 using the first generation synthesis, which was conducted on a smaller scale. 
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Scheme 66: Potential conjugate addition between amine 125 and α,β-unsaturated ester 126 
 

Surprisingly for a seemingly simple reaction there are only a few literature examples of the 

conjugate addition between a primary allyl amine and a α,β-unsaturated dicarbonyl.87,88 As 

prenyl amine 125 is not commerically available we decided to study a model system using 

allyl amine 127 instead. Using one equivalent of allyamine and dimethylmaleate and heating 

them together neat at 40 °C for ten minutes ( 
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Table 10, entry 1) led to 1:0.7:0.3 mixture of secondary amine 128, dimethylfumarate 129 and 

dimethylmaleate 126 respectively (Scheme 67).  
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Scheme 67: Conjugate addition between allyl amine 127 and dimethylmaleate 126 
 
 
Isomerisation of maleate 126 to the more thermodynamically favourable fumerate 129 

presumably arises from conjugate addition followed by retro-conjugate addition (Scheme 68). 

CO2Me
H2
N CO2Me
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MeO2C
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129127130 131  

Scheme 68: Formation of fumerate 129 
 

In the hope of favouring an intermolecular proton transfer we carried out the reaction with one 

equivalent of dimethylmaleate and two equivalents of allyl amine (Table 10, entry 2), which 

pleasingly gave the product 128 in a quantitative yield. Wishing to employ the allyl amine as 

a limiting reagent, we explored the use of another external base. Reaction with one equivalent 

of dimethylmaleate, allylamine and triethylamine (Table 10, entry3) gave the secondary 

amine 128 in a quantitative yield (Scheme 69). 

NH2
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CO2Me

CO2Me

CO2Me
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127 126

 Et3N, 40 °C

128, quant.  

Scheme 69: Conjugate addition employing Et3N as an external base 
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The table below summarises the results from the conjugate addition reactions with allyl amine 

and dimethylmaleate.  

 

 

 

 
 

Table 10: Results of conjugate addition with allyl amine 
 

Off the back of the success of the model system, we embarked on the synthesis of prenyl 

amine. A number of different methods have been described in the literature for the preparation 

of primary amines. Direct alkylation of ammonia usually results in poor yields of the primary 

amine due to the competing over alkylation, therefore a number of ammonia synthons have 

been developed that reduce or prevent over alkylation. One such method is the alkylation of 

trityl amine, the steric bulk of the trityl group affords only monoalkylation and it can be 

subsequently removed under mild conditions.89 We first prepared prenyl bromide ourselves, 

due to the variable quality of commercial product, according to a literature procedure from 

prenol and PBr3 to give prenyl bromide in a good yield of 83% (Scheme 70).90  

 

BrOH
PBr3, Et2O, 0 °C

132 133, 83%  

Scheme 70: Bromination of prenol 132 
 
 
Amination of trityl chloride 134 with aqueous ammonia afforded the trityl amine 135 in a 

good yield of 74%. Alkylation of trityl amine 135 with prenyl bromide and K2CO3 gave the 

Entry Conditionsa 126 : 128 : 129b 
Yield 
(%) 

1 1 eq allyl amine  15 : 50 : 35 -c 

2 2 eq allyl amine 0 : 100 : 0 quant. 

3 1 eq allyl amine, 1 eq Et3N 0 : 100 : 0 quant. 
a Reactions were carried out with 1 eq of dimethylmaleate, neat at 40 °C for 
10 min. b Ratios determined by 1H NMR analysis of the crude reaction 
mixture. c Products not isolated 
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secondary amine 136 in a good yield of 86%. Removal of the trityl group with TFA, trapping 

of the trityl cation with MeOH and displacement of the TFA salt with aqueous HCl gave the 

prenyl amine hydrochloride salt 137 in an excellent yield of 94%. The trityl cleavage step 

could only be preformed successfully on the milligram scale; scaling to the gram scale led to 

poor yields due to HCl addition across the alkene. An alternative was approach was a Gabriel 

synthesis, alkylation of potassium phthalimide 138 with prenyl bromide 133 according to a 

modified literature procedure91 to give the alkylated product 139 in an excellent yield of 98%. 

Hydrolysis of phthalimide 139 with Ba(OH)2 in water afforded the primary amine which was 

extracted via steam distillation and acidified with HCl(aq) to give the prenyl amine 

hydrochloride salt 137 in a excellent yield of 98%.92 This approach could be successfully 

carried out on the multi-gram scale (Scheme 71).   

 

i) Ba(OH)2, H2O, Δ, 16 h 

ii) HCl(aq)

NHTr
TrNH2

Br
N

O

O

K+ N

O

O

DMF, rt,
NH2.HCl

TrCl NH3(aq)+
Br+

i) TFA, CH2Cl2

ii) MeOH
iii) HCl(aq)

3 days K2CO3, DMF, 0 °C

133134 135, 74% 136, 86%

137, 98%133 138 139, 98%  

Scheme 71: Synthesis of prenyl amine 
 
 
Conjugate addition between prenyl amine hydrochloride salt 137 and dimethylmaleate 126 

gave the secondary amine (rac)-105 in an excellent yield of 90% (Scheme 72) and could be 

carried out on a 30 g scale. One equivalent of Et3N was required to form the free base and 

because the prenyl amine suffered from greater steric hindrance than allyl amine the reaction 

required extra equivalents of external base as well as higher temperatures and longer reactions 

times to effect the reaction. 
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Scheme 72: Conjugate addition between prenyl amine and dimethylmaleate 
 

From the secondary amine (rac)-105 the synthesis of the cyclisation precursor was carried out 

on a 20 g scale. This gave enough material to test out a variety of synthetic routes that 

eventually led to a successful racemic synthesis of the target molecule 27, outlined vide infra 

as an asymmetric synthesis. 

  

 

2.3.5 Carbamate Alkylation 
 

In order to synthesise the tertiary carbamate 104 in an asymmetric fashion we explored two 

methods via route A, alkylation followed by acylation. In our initial attempt, we attempted the 

chemoselective mono-alkylation of 87 with prenyl bromide and variety of bases to afford the 

secondary amine 105. Unfortunately, attempts to favour mono-alkylation failed, LiOH 

employed as the base gave the highest selectivity but still gave a poor yield of 16% for 105. 

Exploring a reductive amination approach, by performing an imine from amine 87 and prenal 

112 and subsequent reduction with NaBH(OAc)3 afforded the secondary amine in a good 

yield of 70% but unfortunately led to complete racemisation to give (rac)-105 (Scheme 73).  
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Scheme 73: Summary of tertiary carbamate synthesis via route A 
 

In light of these failures, we turned our attention to the synthesis of 104 via route B. This 

entailed the carbamation of amino ester 87 followed by carbamate alkylation (Scheme 74). 

 

CO2Me

CO2Me

H2N

87

CO2Me

CO2Me

H
N

EtO2C
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Route [B]

CO2Me

CO2MeN
CO2Et

104  
 
 

Scheme 74: Proposed synthesis of tertiary carbamate via route B 
 

Carbamation of the crude amino ester hydrochloride salt 110 was carried out with an excess 

of NaHCO3 and ethyl chloroformate in water to give the carbamate 106 in a good yield of 

75% over two synthetic steps from L-aspartic acid. (Scheme 75). 
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Scheme 75: Carbamation of aspartic ester 
 
 
Alkylation of carbamate 106 with prenyl bromide was attempted with a variety of bases 

(Scheme 76). 

CO2Me

CO2MeN
CO2Et

104

CO2Me

CO2Me

H
N

EtO2C

106

prenyl bromide, BX

 

Scheme 76: General scheme for carbamate alkylation 
 

Initial reactions employing Cs2CO3 (Table 11, entry1) as the base in MeCN, conducting the 

reaction at room temperature and with the addition of TBAI (Table 11, entry 2) failed to 

facilitate the reaction, with only unreacted starting material being recovered. Raising the 

temperature of the reaction to reflux resulted in a complex mixture of unidentified by-

products. Changing the solvent to DMF and carrying out the reaction at room temperature and 

60 °C (Table 11, entries 4 & 5) gave only unreacted starting material. Performing the reaction 

with TBAI and 4 Å molecular sieves as additives and sonicating for extended periods of time 

(Table 11, entry 6) also failed to convert starting material into product. However, carrying out 

the reaction without the inclusion of molecular sieves (Table 11, entry 7) resulted in O-

alkylation. A di-O-alkylated product 140 was isolated in a 33% yield and two regioisomeric 

mono-O-alkylated products, 141a and 141b, were isolated as an inseparable 1:1 mixture in a 

combined yield of 59% (Scheme 77). Presumably an ingress of moisture led to basic 

hydrolysis of the esters followed by carboxylate alkylation. 
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Scheme 77: Alkylation resulting in O-alkylation  
 
 
The use of stronger bases such as LiOH and KHMDS (Table 11, entries 8 & 9) failed to 

promote the reaction. Employing BuLi (Table 11, entry 10) gave extensive decomposition 

resulting in a complex mixture of unidentified by-products. The use of NaH (Table 11, entry 

11) resulted in the formation of the tertiary carbamate 104 product, albeit in a low yield of 

30%, along with the secondary carbamate 142 in a 45% yield, identified by its 1H NMR, 13C 

NMR and infrared spectra, resulting from the elimination of 104 (Scheme 78).  

CO2Me

CO2MeN
CO2Et

H

104

H
N

EtO2C

142

" H+ "

B-
 

Scheme 78: NaH promoted elimination 
 
 
In all of the previous reactions deprotonation of the carbamate hydrogen was performed prior 

to the addition of the alkylating agent, making the alkylated product 104 vulnerable to 

elimination. We envisaged that slow addition of NaH to a solution of carbamate 106 and 

prenyl bromide would hinder elimination because generation of the sodium carbamate would 

be followed by rapid trapping by the alkylating agent before elimination can take place. NaH 

was slowly added over two hours via a solid addition funnel to a solution of secondary 

carbamate 106 and prenyl bromide in THF cooled to 0 °C (Table 11, entry 12) to give the 
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tertiary carbamate 104 in a good yield of 81% and was successfully conducted on a 50 g scale 

(Scheme 79). 

CO2Me

CO2MeN
CO2Et

104

CO2Me

CO2Me
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i) 1.2 eq prenyl bromide, THF, 0 °C
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Scheme 79: Carbamate alkylation with NaH 

 
 

Table 11: Carbamate alkylation conditions 

 

The tertiary carbamate 104 was prepared with no observable erosion of enantiopurity as 

determined by chiral HPLC (Figure 13). 

 

Entry Conditionsa Solvent Temp. / °C Time / h Additiveb 
Product         

(% Yield)b 

1 Cs2CO3 MeCN rt 16 none no reaction 

2 Cs2CO3
 MeCN rt 16 TBAI no reaction 

3 Cs2CO3 MeCN 85 16 TBAI decomposition 

4 Cs2CO3 DMF rt 8 none no reaction 

5 Cs2CO3 DMF 60 16 none no reaction 

6 Cs2CO3, )))
c DMF rt 72 TBAI, 4 Å MS no reaction 

7 Cs2CO3, )))
c DMF rt 72 TBAI 

 140 (33%) : 
141a+b (59%) 

8 LiOH DMF rt 16 TBAI no reaction 

9 KHMDS THF 0 8 none no reaction 

10 BuLi THF 0 8 none decomposition 

11 NaH THF 0 8 none 
105 (30%) : 142 

(45%) 

12 NaHd THF 0 4 none 104 (81%) 
a Reactions were carried out by the addition of 1-1.5 eq of base followed by the addition of 1-1.2 eq of prenyl 
bromide unless stated otherwise and. b Isolated yields of major products following purification. c Reactions 
were carried out with 3 eq of prenyl bromide. d Reaction was carried out by the addition of 1.2 eq of prenyl 
bromide followed by the slow addition of 1 eq of NaH. 
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Figure 13: Chiral HPLC trace of 104 
 

 

2.3.6 Oxidative Cleavage of  the Methylene Bond 
  

Two routes have been presented that gave access to the cyclisation product 96 on a multigram 

scale: a racemic route from the conjugate addition between prenyl amine 125 and 

dimethylmaleate 126 and an asymmetric route from L-aspartic acid 78 that utilised a NaH 

promoted alkylation of carbamate 106. In the following sections, we will discuss the 

transformation of the cyclisation product 96 into the target molecule 27 (Scheme 80).  
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Scheme 80: Two routes to the cyclisation product 96 
 

Hydrolysis of the oxazolidone ring and Boc protection of the amine was attempted in one-pot 

with a large excess of NaOH in MeOH and water heated to reflux followed by the addition of 

(Boc)2O. Two products were isolated from the reaction (Scheme 81). The piperidine 143 

resulted from successful hydrolysis of the cyclic carbamate followed by Boc protection of the 

nitrogen and Boc protection the primary hydroxyl. The piperidine 144 formed from the Boc 

protection of the secondary hydroxyl in 96; however, as TLC analysis indicated complete 

consumption of the starting material upon hydrolysis, Boc protection of the nitrogen must 

have occurred followed by reformation of the oxazolidone ring by attack from the primary 

hydroxyl under the strong basic conditions. 



 74 

Boc
N

BocO

OH

N

OBoc

O
O

N
O

O

OH

    96

i) NaOH, MeOH:H2O, Δ

ii) (Boc)2O
+

143, 16% 144, 15%  

Scheme 81: Hydrolysis and protection in one-pot 
 
 
A two step procedure was employed instead: cleavage of the oxazolidinone ring with NaOH 

in MeOH and water gave the amino diol 145, which was isolated from the reaction mixture, 

and allowed to react with (Boc)2O in THF to give the Boc protected piperidine 146 in a very 

good yield of 86% over the two synthetic steps (Scheme 82). 
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Scheme 82: Hydrolysis and protection in two separate steps 
 
 
An X-ray crystal structure of amino diol 145 was obtained (Figure 14). 

Figure 14: X-ray crystal structure of amino diol 145 
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A chemoselective one-pot procedure was developed that involved basic hydrolysis followed 

by neutralisation with HCl(aq) and then addition of the mild base NaHCO3 and (Boc)2O to give 

the protected piperidine 146 in an excellent yield of 90% (Scheme 83). 

N
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OH

    96

i) NaOH, MeOH:H2O, Δ
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iii) NaHCO3, (Boc)2O
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Scheme 83: Successful hydrolysis and protection in one-pot 
 

 
Protection of the primary hydroxyl as a TBDPS ether gave 147a in a good yield of 77%. 

Oxidative cleavage of alkene 147a with ozone failed to yield any of the desired ketone 148a 

and instead led to complex mixture of uncharacterised by-products (Scheme 84).  
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147a R1 = TBDPS, 77%
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148a R1 = TBDPS
148b R1 = TBS  

Scheme 84: Silyl ether protection of primary hydroxyl followed by failed ozonolysis 
 

Unsure whether oxidation of the aromatic ring93 in the TBDPS was the problem, alcohol 146 

was instead protected as its TBS  ether 147b in a very good yield of 81%. Ozonolysis of 147b 

also failed to result in product formation 148b and again led to a complex mixture of 

products. It has been reported that ozonolysis of sterically hindered substrates have led to 

unexpected side product formation,94,95, 96  therefore ozonolysis of the unprotected alkene 146 

was attempted but no unfortunately none of the ketone 149 was detected.  

Uncertain whether there is interference from the β-hydroxyl or how susceptible the α,β-

hydroxy ketone product would be to a retro-aldol reaction, we masked the reactivity of the 
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secondary hydroxyl using an orthogonal protecting group strategy. The secondary hydroxyl of 

the TBDPS 147a and TBS 147b silyl ethers were protected as their acetyl and benzoyl esters 

150a-150d in very good to excellent yields (Scheme 85). 
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147b R1 = TBS, 81%

Boc
N
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150b R1 = TBDPS, R2 = Bz, quant.
150c R1 = TBS, R2 = Ac, 86%
150d R1 = TBS, R2 = Bz, 83%

ClCOR, py

 

Scheme 85: Orthogonal protection of the two hydroxyl groups 
 

Ozonolysis of 150a, where R1 = TBDPS and R2 = Ac, gave the desired ketone 151a but in 

quite a poor yield of 42%. Changing R2 from Ac to Bz in the case 150b gave the ketone 151b 

in a very poor yield of 10% and the enone 152b in a yield of 61%, resulting from the 

elimination of benzoate. Presumably the greater steric bulk of the benzoyl group gives greater 

driving force for elimination under the ozonolysis reaction conditions. Changing R1 from 

TBDPS to TBS the expected ketone 151ci in a very poor yield of 5% and ketone 151cii where 

TBS removal has occurred in a good yield of 73%. To our knowledge, this is first example of 

TBS removal under ozonolysis conditions. Finally ozonolysis of 150d, where R1 = TBS and 

R2 = Bz, resulted in both TBS deprotection and benzoate elimination to give enone 152d in a 

poor yield of 29% (Scheme 86). 
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Scheme 86: Oxidative cleavage of isoprenyl group by ozonolysis  
 

Due to the lack of promising results from the oxidative cleavage using ozone we decided to 

try an alternative method using OsO4 and NaIO4. Subjecting 150a to the dihydroxylation and 

oxidative cleavage reaction gave the desired ketone 151a in a moderate yield of 65% as well 

as the intermediate diol 153, where oxidative cleavage has yet to take place, in a 19% yield 

(Scheme 87). 
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Scheme 87: Oxidative cleavage of 150a using OsO4/NaIO4 
 

The structure of diol 153 was determined by X-ray crystallography (Scheme 88).  
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Scheme 88: X-ray crystal structure of diol 153 
 

The oxidative cleavage of the unprotected alkene 146 was preformed with OsO4 and NaIO4 in 

dioxane and water to give the ketone 149 in a poor yield of 33% (Table 12, entry 1). A 

two-step procedure of dihydroxylation with OsO4 and NMO (Table 12, entry 2) followed by 

oxidative cleavage with NaIO4 was attempted in the hope of avoiding side reactions, however 

no product could be isolated from the dihydroxylation step presumably due to the appreciable 

aqueous solubility of the tetraol 154 (Scheme 89). 
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Scheme 89: Attempted two step dihydroxylation/oxidative cleavage 
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A high-yielding one-pot dihydroxylation/oxidative cleavage procedure was performed using 

OsO4 and NaIO4 with 2,6-lutidine as an additive (entry 3),97 giving the ketone 149 in an 

excellent yield of 97% (Scheme 90).  
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149, 97%  

Scheme 90: OsO4/NaIO4 oxidative cleavage with 2,6-luidine as an additive 
 
 
The vast improvement in yield by the addition of 2,6-lutidine is a likely a confirmation of the 

known ligand acceleration of OsO4-mediated dihydroxylations of alkenes by tertiary amines98 

or more simply a buffering effect of the amine suppressing the acid-induced formation of side 

products. 

 

 

 

Table 12: Dihydroxylation/oxidative cleavage results of ketone 146 
 

 

2.3.7 Methyl Ketone Cleavage  
 

In our initial retrosynthetic analysis, we envisaged a cyclisation product that would have led 

to compound 155 containing a vinyl group. Oxidative cleavage of the alkene would have 

given aldehyde 156 followed by a relatively simple conversion to carboxylic acid 157, which 

could undergo a rearrangement reaction to afford the target molecule 27. Unfortunately, an 

Entry Reagentsa Solvents Yield (%) 

1 OsO4, NaIO4 dioxane:H2O 33 

2 OsO4, NMO t-BuOH:H2O -b 

3 OsO4, NaIO4, 2,6-lutidinec dioxane:H2O 97 
a Reactions were carried out with 0.1 mol% of OsO4 and 2-2.5 eq of 
reoxidant. b Product not isolated from aqueous phase. c 2.5 eq or 2,6-lutidine.  
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extra methyl group had to be incorporated to deliver high yields in the Prins cyclisation. 

Subsequent synthetic steps gave the compound 146 containing an isoprenyl group, and 

oxidative cleavage of the isoprenyl group gave the methyl ketone 149. Conversion of the 

methyl ketone 149 to the carboxylic acid 157 and/or amine of 27 is now not such a 

straightforward process (Scheme 91). The following section details how we achieved this 

transformation.  
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Scheme 91: Proposed alkene to amine functional group interconversions  
 

An attractive method for the direct conversion of a ketone to an amine is the Beckmann 

rearrangement. Formation of an oxime followed by suitable activation results in alkyl 

migration anti to the leaving group. Ketone 149 was allowed to react with hydroxylamine 

hydrochloride and Et3N in refluxing EtOH to give oxime 158 in a quantitative yield. Reaction 

of ketone 151a led to a complex mixture of products (Scheme 92). 

 



 81 

Boc
N

OR2 O

R1O HCl.NH2OH, Et3N

EtOH, Δ

Boc
N

OR2 N

R1O

OH

158 R1 = H, R2 =H, quant.
159 R1 = TBDPS, R2 = Ac, -

149 R1 = H, R2 =H
151a R1 = TBDPS, R2 = Ac  

Scheme 92: Oxime formation 
 
 
Beckmann rearrangement of oxime 158 was attempted by tosylation of the oxime using TsCl, 

Et3N and DMAP in refluxing CH2Cl2. The reaction failed to afford the expected product 160 

and instead led to decomposition of starting materials (Scheme 93). 
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Scheme 93: Beckmann rearrangement with TsCl 
 

The failure to effect the Beckmann rearrangement might be due to the unsuccessful 

attachment of a leaving group to the oxime, and so we decided to synthesise a hydroxylamine 

with a preinstalled leaving group. The activated hydroxylamine was prepared in three 

synthetic steps from hydroxylamine hydrochloride 161 according to a literature procedure to 

give O-mesitylenesulfonylhydroxylamine 162 in a moderate yield of 64% over three synthetic 

steps (Scheme 94).99 
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ii) MesCl, Et3N, MeCN
iii) TFA

162, 64% over 3 steps161  

Scheme 94: Synthesis of activated hydroxylamine 
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The one-pot oxime formation and Beckmann rearrangement of ketone 149 was carried out 

with the activated hydroxylamine 162. Performing the reaction in CH2Cl2 with Et3N and in 

EtOH heated in sealed tubes to 80 °C and 120 °C respectively resulted in the recovery of 

unreacted starting materials with no product formation observed (Scheme 95). 
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Scheme 95: Attempted Beckmann rearrangement with an activated hydroxylamine 
 

One method for the direct conversion of a methyl ketone to its corresponding carboxylic acid 

is the Lieben haloform reaction. The reaction involves exhaustive halogenation of a methyl 

ketone, followed by nucleophilic substitution of hydroxide for the haloform anion. The 

reaction of 149 and 151a with Br2 and NaOH in dioxane and water at 0 °C failed to convert 

the methyl ketones into carboxylic acids and instead, under the strong basic conditions, led to 

elimination to afford enones 152d and 152b in yields of 53% and 52% respectively (Scheme 

96). 
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Scheme 96: Haloform reaction 
 

Another method to convert the methyl ketone to a carboxylic acid is formation of the kinetic 

silyl enol ether followed by its oxidative cleavage. A rearrangement reaction of the carboxylic 

acid was envisaged to proceed through an isocyanate intermediate; trapping by the secondary 
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hydroxyl would form the corresponding oxazolidinone. To avoid any regioselectivity issues 

during the rearrangement step the primary hydroxyl of ketodiol 149 was protected as its 

TBDPS ether in an excellent yield of 91%. 
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Scheme 97: TBDPS protection of ketone 149 
 

Treatment of ketone 148a with two equivalents of TMSOTf and Et3N in CH2Cl2 cooled to -78 

°C did not furnish the expected silyl enol ether but gave silyl ether 163 instead in a good yield 

of 82%. However, utilising the stronger base KHMDS and TMSCl in CH2Cl2 cooled to -78 

°C pleasingly gave the silyl enol ether 164 in a good yield of 79% (Scheme 98). A TMS 

group was employed because of the extremely mild conditions needed for its deprotection and 

low propensity to act as a good leaving group, thereby minimising elimination. 
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Scheme 98: Silyl enol ether formation of 148a 
 
 
Unsurprising in the light of earlier results the reaction between ketone 151a, KHMDS and 

TMSCl failed to yield the silyl enol ether 165 and instead led to the enone 157b in a 83% 

yield. Further reactions utilising compounds with acyl protection of the secondary hydroxyl 

were abandoned due to their susceptibility to undergo elimination. 
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Scheme 99: Attempted silyl enol ether formation of 156a 

 

Attempted oxidative cleavage of silyl enol ether 164 using OsO4, NaIO4 and 2,6-lutidine in 

dioxane and water resulted in the formation of enone 152b, where under the mildly acidic 

reactions conditions hydrolysis and elimination of the silyl enol ether occurred at a faster rate 

than the desired dihydroxylation/oxidative cleavage (Scheme 100). 
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Scheme 100: Silyl enol ether oxidative cleavage using OsO4/NaIO4 

 

Ozonolysis of 164 was then attempted in CH2Cl2 (Table 13, entry 1) and in combination with 

the participating solvent MeOH (Table 13, entry 2) followed by reduction of the intermediate 

peroxides with dimethylsulfide. No carboxylic acid product was detected and instead both 

reactions resulted in conversion of starting materials to ketone 148a. We believed that latent 

acidity associated with the ozonolysis conditions was causing breakdown of the silyl enol 

ether and cleavage of the TMS ether and so we planned to perform the reaction in the 

presence of a variety of bases.  

 

Tertiary amines are often used as additives to improve yields in ozonolysis reactions. The use 

of triethylamine has been reported to directly reduce the secondary ozonide100 or by its N-

165

164 

152b, 83% 151a 
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oxide, generated in situ, to reduce intermediate carbonyl oxide via a Grob fragmentation.101 

The role pyridine in the reduction of the intermediate carbonyl oxides via its N-oxide has been 

reported and later refuted.102,103 Performing the reactions with pyridine and triethylamine 

(Table 13, entries 3 & 4) present resulted in only ketone 148a being isolated from the 

reaction. However, using the inorganic base NaHCO3
104 (Table 13, entry 5) gave the desired 

carboxylic acid 166 in a quantitative yield, following acidification of the carboxylate salt 

(Scheme 101). The synthesis of 166 constituted a formal synthesis of pseudodistomin-F, 

however as Ma and Sun report no characterisation for this compound we needed to synthesise 

the next intermediate with characterisation i.e. 27. 
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iii) 1 M HCl(aq), 0 °C

171, quant.  

Scheme 101: Ozonolysis of the silyl enol ether 
 

 

 

 

 

 

 

 
 

Table 13: Conditions tested for the ozonolysis of silyl enol ether 164 
 

A Curtius rearrangement of the carboxylic acid 166 followed by trapping of the intermediate 

isocyanate by the secondary hydroxyl gave the oxazolidinone 167 in a very good yield of 

Entry Solventa Additive Yield of 171 (%) 

1 CH2Cl2 none -b 

2 CH2Cl2:MeOH none -b 

3 CH2Cl2:MeOH 1 eq py -b 

4 CH2Cl2:MeOH 1 eq Et3N -b 

5 CH2Cl2:MeOH 10 eq NaHCO3 quant. 

a Reactions were carried out by bubbling O2/O3 into the solution cooled to -78 
°C before being  quenched with  DMS 2-10 eq and being allowed to warm to 0 
°C. b Product isolated from reaction was ketone 148a in a 90%-quant. yield. 

164 166, quant. 
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83%. The structure of oxazolidinone 167 was confirmed by X-ray crystallography (Figure 

15).  

 

Figure 15: X-ray crystal structure of 167 
 

 
Removal of the TBDPS protecting group with TBAF gave the unprotected oxazolidinone 27 

in a quantitative yield and completed the formal synthesis of pseudodistomin F (Scheme 102).  
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Scheme 102: Curtius rearrangement followed by deprotection  
 

The structure of oxazolidinone 27 was confirmed by X-ray crystallography, showing that it 

adopted a twist boat conformation in the crystal phase (Figure 16).  

166 167 

166 167, 83%
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Figure 16: X-ray crystal structure of 27 
 

The IH NMR spectrum of the oxazolidinone 27 synthesised by Ma and Sun is in good 

agreement with IH NMR spectrum of 27 synthesised by ourselves. The IH NMR spectra are 

complicated by the presence of rotamers in a ~2:1 ratio, presumably from restricted rotation 

of the Boc group. This has the effect of causing line broadening and splitting of the peaks into 

separate signals, most obvious in the splitting of the oxazolidinone NH proton into 2 separate 

singlets at ~5.6-6.0 ppm. The peaks in the 1H NMR spectrum can be sharpened by employing 

MeOD as the solvent (Figure 17). Unfortunately, Ma and Sun did not report the 13C NMR, 

melting point, elemental analysis and X-ray crystal structure and so comparisons could not be 

made with our own results. The recorded optical rotation of [α]21
D -107.4 (c 1, MeOH) was in 

good agreement with the literature value of [α]21
D -111.4 (c 0.92, MeOH),24 and chiral HPLC 

confirmed the existence of only one enantiomer (Figure 18). 
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Figure 17: Comparisons of the 1H NMR spectra of 27 

1H NMR spectrum 27 synthesised by Ma and Sun in CDCl3 

1H NMR spectrum 27 synthesised by ourselves in CDCl3 

1H NMR spectrum of 27 synthesised by ourselves in MeOD  

NH signal 

NH signal 
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• Chiral HPLC trace of racemic target molecule 27  

 

 

 

 

 

 

 

 

 

 

 

• Chiral HPLC trace of enantiopure target molecule 27 

 

 

 

 

 

 

 

 

 

 

 Figure 18: Racemic and enantiopure chiral HPLC traces of 27 
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Having completed the formal synthesis of pseudodistomin F we looked to improve the 

efficiency of the synthetic route. Protection of the primary alcohol as a TBDPS ether 

introduced two additional steps into the synthesis (protection & deprotection). We speculated 

whether it was possible to carry out the Curtius rearrangement without protection of the 

primary hydroxyl, as there is a potential regioselectivity issue of the primary alcohol reacting 

with the isocyanate intermediate in an intermolecular fashion. Therefore, ketone 149 was 

allowed to react with three equivalents of TMSOTf at -78 °C in the hope of forming the 

corresponding silyl ether enol but instead gave the bis-protected TMS silyl ether 168 (Scheme 

103). 

Boc
N

OH O

HO

149

   3 eq TMSOTf, Et3N, 

4 Å MS, CH2Cl2, -78 °C

Boc
N

TMSO O

TMSO

 

Scheme 103: Silyl enol formation with TMSOTf at -78 °C 
 

Raising the temperature of the reaction to 0 °C resulted in successful silyl ether formation but 

unfortunately removed the Boc protecting group,105 as confirmed by analysis of the 1H NMR 

of the crude reaction. Unfortunately, attempts to purify 169 led to decomposition (Scheme 

104). 
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Scheme 104: Silyl enol formation with TMSOTf at 0 °C 
 

In the hope of preserving the Boc protecting group we employed the bulkier silyl triflate, 

TBSOTf, but regrettably the Boc group was not retained under these conditions which gave 

168, 75% 

169 
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silyl enol ether 170 and ketone 171 that were sufficiently stable to be purified by flash column 

chromatography (Scheme 105). 
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Scheme 105: Silyl enol ether formation with TBSOTf 
 

Performing the reaction at an intermediate temperature of -42 °C with 3 equivalents of 

TMSOTf preserved the Boc and gave the silyl enol ether 172 in an excellent yield of 92% . 

Attempts to purify the crude silyl enol ether on neutralised silica by flash column 

chromatography resulted in poor yields ~30% due to breakdown of the silyl enol ether to the 

corresponding ketone. The key to high reaction yields of the pure silyl enol was to flood the 

crude reaction mixture with diethylether, rendering the triethylammonium triflate by-product 

insoluble and allowing for simple separation of the diethylether layer containing the silyl enol 

ether product 173. Ozonolysis of the silyl enol ether gave the carboxylic acid in an 

quantitative yield (Scheme 106). 
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Scheme 106: Silyl enol formation and ozonolysis 
 

The structure of carboxylic acid 173 was determined by X-ray crystallography (Figure 19).  

170, 64% 171, 23%

172, 92% 173, quant. 
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Figure 19: X-ray crystal structure of carboxylic acid 173 
 

Curtius rearrangement of the carboxylic acid 173 gave the desired oxazolidinone 27 in a good 

yield of 75%, and completed the formal synthesis (Scheme 107).  
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Scheme 107: Curtius rearrangement of carboxylic acid 173 
 

High reaction yields were dependent on prior heating of the carboxylic acid and Et3N together 

before the addition of DPPA, due to formation of a phosphate ester by-product 174, 

tentatively assigned from its 1H NMR and mass spectra.  Its formation presumably occurs due 

to the poor solubility of the carboxylic acid in toluene at room temperature compared to the 

corresponding oxazolidinone, which further reacted with reacted with DPPA. 

 

173 

173
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Scheme 108: Mechanism for the formation of the phosphate ester by-product 174 
 

2.3.8 Ketone Epimerisation  
 

While investigating the oxidative cleavage of alkene 146 using OsO4/NaIO4 (Table 12, entry 

3) it was observed that after quenching of the reaction with Na2SO3 and heating to remove the 

solvents in vacuo epimerisation occurred at the ketone stereocentre to afford a mixture of cis-

ketone 149 and trans-ketone 175 (Scheme 109). 
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Scheme 109: Epimerisation during oxidative cleavage 
 

In an attempt to isolate the species responsible for the epimerisation of 149, we looked at each 

reagent in turn. The reactions between cis-ketone 149 and 2,6-lutidine (Table 14, entry 1), 

NaIO4 (Table 14, entry 2) and a saturated aqueous solution of Na2SO3 (Table 14, entry 3) in 

dioxane and water heated to 40 °C for twenty-four hours resulted in no epimerisation. 

However, treating cis-ketone 149 with NaIO4 and a saturated aqueous solution of Na2SO3 

together in dioxane led to complete epimerisation in one hour (Table 14, entry 4) (Scheme 

110).  

 

174 
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Scheme 110: Epimerisation with a combination of NaIO4 and Na2SO3 

 

We rationalised that the likely products generated from the reaction between NaIO4 and 

Na2SO3 were NaIO3 and Na2SO4. Performing the reaction individually with NaIO3 and 

Na2SO4 (Table 14, entries 5 & 6) and in combination of the two reagents (Table 14, entry 7) 

failed to furnish the epimerisation. 

 
 
 
 
 
 

Table 14: Results from the epimerisation of ketone 149 
 

To gain an insight into the reaction mechanism we performed the reaction using conditions 

normally employed to affect the epimerisation of carbonyls with α-stereogenic centres. The 

strong organic base DBU in CH2Cl2 in 4 hours at room temperature (Table 14, entry 8) 

Entry Reagenta Solventb Temp. / °C Time / h 149 : 175c Yield of 175 
(%)d 

1 2,6-lutidine H2O:dioxane 40 24 100 : 0 -e 

2 NaIO4 H2O:dioxane 40 24 100 : 0 -e 

3 Na2SO3 (aq)
f dioxane 40 24 100 : 0 -e 

4 NaIO4/Na2SO3 (aq)
f dioxane 40 1 0 :100 99 

5 NaIO3 H2O:dioxane 40 24 100 : 0 -e 

6 NazSO4 H2O:dioxane 40 24 100 : 0 -e 

7 NaIO3/Na2SO4 H2O:dioxane 40 24 100 : 0 -e 

8 DBU CH2Cl2 rt 4 0 : 100 98 

9 Et3N
g CH2Cl2 rt 168 100 : 0 -e 

10 Et3N
 CH2Cl2 40 8 75 : 25 -h 

a Two equivalents of reagent used unless stated otherwise. b Reactions carried out at a total c of 0.1 M, in the 
case of mixed solvents a 1:1 ratio was used. c Ratio of products determined by analysis of the 1H NMR of the 
crude reaction mixture. d Isolated yield following purification. e No reaction had taken place. f An equivalent 
volume of a saturated aqueous solution of Na2SO3 to reaction solvent was added. g Ten equivalents of reagent 
used. h Products not isolated from crude reaction mixture. 
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afforded complete epimerisation. Using the weaker base triethylamine in CH2Cl2 for 1 week at 

room temperature (Table 14, entry 9) failed to effect epimerisation, however heating the to 40 

°C over eight hours resulted in partial epimerisation (Table 14, entry 10). Unfortunately, we 

were not able to determine the active species responsible for the epimerisation, generated 

from the reaction between NaIO4 and Na2SO3, although it would appear not to occur from a 

simple oxidation/reduction reaction. 

 

The stereochemistry of trans-ketone 175 was determined by a NOESY experiment and was 

compared to the NOESY spectrum of the cis-ketone 149. The important interactions of H5 are 

shown below (Figure 20). In the NOESY spectrum of trans-ketone 175 there are nOes 

between H5 the axial H3’ and a single H6 proton. In addition, the doublet of double doublets 

(ddd) corresponding to H5 has coupling constants of 4.1, 10.1, and 12.2 Hz indicative of two 

diaxial couplings. The nOe interactions supported by the coupling constants are consistent 

with H5 being axial within the chair conformation. In comparison, H5 of cis-ketone 149 

exhibits nOes between the two H6 protons and H4 but crucially there is no nOe between H5 

and any of the H3 protons. The quartet corresponding to H5 has a relatively small coupling 

constant of 3.4 Hz indicating no diaxial couplings. The nOe interactions and coupling 

constants imply that H5 lies equatorial within the chair conformation.  
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Figure 20: Comparison of H5 nOe interactions between trans-ketone 175 and cis-ketone 149  
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We decided to utilise this transformation for the synthesis of an unnatural core structure of the 

pseudodistomin family. Assuming the chemistry to transform 27 into 10 would work for 

(epi)-27 this would allow access to the unnatural diastereomer epi-pseudodistomin F (epi)-10 

(Scheme 111). 

Boc
N

HO

O
NH

O

H
N

OH
NH2

(epi)-10 epi-pesudositomin F(epi)-27  

Scheme 111: Potential synthesis of epi-pseudodistomin F 
 

The formation of a strained trans oxazolidinone in the Curtius rearrangement might present a 

greater regioselectivity issue than before. Capture of the isocyanate intermediate by the trans-

secondary hydroxyl was predicted to be slower than the in cis compound, therefore capture by 

the primary hydroxyl was of greater concern. Protection of the primary hydroxyl in 175 was 

accomplished with TBDPSCl to give the protected ketone 176 in an excellent yield of 96%. 

The hydrogens in the methyl group of the trans-ketone are predicted to be more accessible 

than the corresponding hydrogens in the cis-ketone, therefore silyl enol ether formation was 

attempted with two equivalents of TMSOTf at -78 °C but as in the previous case only the 

formation of a silyl ether 177 was observed (Scheme 112). 
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Scheme 112: Primary and secondary hydroxyl protection 
 

Silyl enol ether was successfully accomplished by raising the temperature to -42 °C, giving 

178 in a very good yield of 80%. Ozonolysis of the silyl enol ether gave the carboxylic acid 
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179 in an excellent yield of 92% and a Curtius rearrangement of the carboxylic acid with 

DPPA gave the trans-oxazolidinone 180 in a good yield of 74%. Deprotection of the TBDPS 

silyl ether with TBAF was successful but also resulted in cleavage of the oxazolidinone, 

giving amino diol 181 in a good yield of 74%. The commercial TBAF sold in a solution of 

THF is wet and basic, resulting in hydrolysis of the strained trans-oxazolidinone, which is 

susceptible to ring opening under these mild conditions. Deprotection of the silyl ether and 

retainment of the oxazolidinone ring was accomplished by employing HF in pyridine gave the 

oxazolidinone 182/(epi)-27 in a very good yield of 81% (Scheme 113).  
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Scheme 113: Silyl enol ether formation, ozonolysis, Curtius rearrangement and deprotection 
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2.4 Third Generation Synthesis 

In parallel with our studies towards the formal synthesis of pseudodistomin F 10 we 

envisaged a more expedient route to the total synthesis of this natural product. Our synthetic 

route to the synthesis of pseudodistomin F via the ‘formal synthesis’ pathway requires the 

construction of two oxazolidinone rings and their cleavage in two separate steps (Scheme 

114).  

N

OH

O
O

H
N

HO

OH O

Boc
N

HO

O
NH

O

H
N

R

OH
NH2

96 145 27 10

R =  

Scheme 114: Current synthetic route for the total synthesis of pseudodistomin F 
 

A more logical approach to the total synthesis of pseudodistomin F 10 would be the cleavage 

of both oxazolidinones in one step, therefore an alternative retrosynthetic approach to 10 was 

proposed. Installation of the alkyl side-chain in 10 occur from an olefination reaction of 

diamino diol 183, which in turn can be formed the hydrolysis of bis-oxazolidinone 184 

(Scheme 115).  
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Scheme 115: Alternative retrosynthetic approach 
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Oxidative cleavage of alkene 96, initially performed with ozone in CH2Cl2 at -78 °C with 

PPh3 as the reducing agent (Table 15, entry 1), gave a poor yield of 26% for the ketone 185. 

Changing the solvent to a mixture of CH2Cl2 and MeOH (Table 15, entry 2) resulted in 

smooth conversion into products, but problematic purification of the product and 

triphenylphosphine oxide by-product decreased the yield to 60% yield. Changing the reducing 

agent to DMS (Table 15, entry 3) yielded DMSO as the by-product, which cold be removed in 

vacuo gave the ketone 185 in a quantitative yield. 

 

 

 

 

Table 15: Ozonolysis conditions 
 

The oxidative cleavage was also carried out successfully using OsO4 and NaIO4, giving the 

ketone 189 in a 90% yield (Scheme 116). 
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Scheme 116: Oxidative cleavage of alkene 96 with either ozone or OsO4/NaIO4  
 

Ketone 185 could be transformed to oxime 186 in a good yield of 78%. The structure of the 

oxime was determined by X-ray crystallography (Figure 21).  

Entry Solvent Reducing agent Time / min Yield of 185 (%) 

1 CH2Cl2 PPh3 30 26 

2 CH2Cl2 : MeOH PPh3 15 60 

3 CH2Cl2 : MeOH DMS 15 quant. 
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Figure 21: X-ray crystal structure of oxime 186 

 
The Beckmann rearrangement of oxime 186 was attempted with TsCl, but unfortunately the 

oxazoline derivative 187 was not formed and only unreacted starting materials were recovered 

from the reaction (Scheme 117). 
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Scheme 117: Oxime formation and attempted Beckmann rearrangement 
 

The one-pot oxime formation and Beckmann rearrangement between ketone 185 and the 

activated hydroxylamine 162 was attempted. Reaction with Et3N in CH2Cl2 heated to 80 °C in 

sealed tube only gave unreacted starting materials. The same result was obtained when 

heating 185 and 162 together in EtOH at reflux. Performing the reaction in a sealed tube 

heated to 120 °C resulted in elimination to give enone 188 (Scheme 118). 
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Scheme 118: Attempted Beckmann rearrangement with activated hydroxylamine 
 

The TMS enol ethers synthesised previously have been relatively unstable; we believed the 

stability could be increased by the formation of a tethered silyl ether/silyl enol ether 189. 

Ketone 185 was allowed to react with DTBS(OTf)2 and Et3N at -78 °C before warming to 0 

°C. The formation of the tethered silyl enol ether 189 was not observed and only silyl ether 

190 and the elimination product 188 were recovered in yields of 38% and 41% respectively 

(Scheme 119).  
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Scheme 119: Attempted tethered silyl ether/silyl enol ether formation 
 

The reaction between ketone 185 and two equivalents of TMSOTf at -78 °C failed to afford 

the desired silyl enol ether and instead gave silyl ether 191 in a yield of 75% (Scheme 120). 
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Scheme 120: Attempted silyl enol ether formation at -78 °C 
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The reaction between ketone 185 and two equivalents of TMSOTf in CH2Cl2 at 0 °C gave the 

silyl enol ether 192 in a very good yield of 84%. Ozonolysis of the silyl enol ether 192 gave 

the carboxylic acid 193 in an excellent yield of 95% followed by a Curtius rearrangement to 

give the bis-oxazolidinone 184 in a good yield of 75%. 
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Scheme 121: Synthesis of bis-oxazolidinone 184 
 

Unfortunately, time constraints prevented further attempts towards the total synthesis of 

pseudodistomin F 10, via this synthetic route. 

 

 

2.5 Modifying the Stereoelectronics of the Prins Reaction 

Due to our ongoing interest in the Prins cyclisation methodology, we wanted to probe the 

mechanistic details of the reaction by studying whether varying the electronics of the ene 

component could alter the diastereoselectivity. The cyclisation precursor 194 bearing various 

substituents on the phenyl ring was chosen for study. This substrate was chosen because 

substituents could be installed relatively easily, enabling the electronics of the system to be  

finely tuned (Figure 22).  
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Figure 22: Substituted phenyl cyclisation precursor 194 
 

We reasoned that as the electron withdrawing ability of the substituent X increases the 

carbocation becomes destabilised, leading to a greater preference for the proposed 

electrostatic interaction of the oxygen lone and carbocation to occur which in turn would lead 

to higher cis diastereoselectivities (Figure 23).  
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Figure 23: Stabilising interaction of an oxygen lone pair 
 

Previous work in the group has looked at the Prins cyclisation between the Brønsted acid 

HCl(g) and the  cyclisation precursor 194 with substituents  NO2, CF3, Br, H, tBu and OMe 

(Scheme 122).64 
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Scheme 122: Previously studied Brønsted acid cyclisations 
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The results from the reaction are summarised below in Table 16. The stereoselectivities for all 

substrates are poor, with cis:trans ratios ranging from 1:2.20 to 1:1.14 for CF3 and OMe 

substrates respectively (entries 2 & 6). Substituting the phenyl ring with a very electron 

withdrawing group (entries 1 & 2) led to significant amounts of the elimination by-product 

199.  

 

Table 16: Previously studied Brønsted acid cyclisations62 

 

The relative stereochemistries of the reaction products were determined by X-ray 

crystallography of the piperidines with phenyl substrate X = H. The stereoselectivities 

countered the proposed stereochemical outcome of the reaction, as the trans diastereomer was 

isolated as the major component. It would appear that the postulated stabilising interaction is 

not as significant in this system compared to previous systems studied. 

 

We wished to study the Lewis acid-promoted Prins cyclisation in the hope of improving the 

diastereoselectivity. We chose to study a similar substrate range of electron-withdrawing to 

electron-donating groups NO2, CF3, Br, H, Me and OMe to allow us to make comparisons 

Entry 194 Reaction 
time / h 

195(R) 196(S) 197(R) 198(S) 199 cis:trans ratio 

1 NO2 16a 0 0 traces 42% - 

2 CF3 120b 24 7 5 64 18% 1:2.20c 

3 Br 16 33 14 24 29 0 1:1.13c 

4 H 16 26 11 29 34 0 1:1.70c 

5 tBu 16 28 15 37 20 0 1:1.33c 

6 OMe 16 - - - - 0 1:1.14d 

a 10% of aldehyde remained. b Traces of aldehyde remained. c Ratio determined by integration of 1H 
NMR of crude reaction mixtures. d Ratio determined by the relative areas from the HPLC of the crude 
reaction mixture. 
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with the previously studied Brønsted acid cyclisations.62 The cyclisation precursors 194 were 

synthesised in five steps from commerically available para-substituted benzaldehydes 200a-e. 

The aldehydes 200a-e were subjected to a Wittig reaction with phosphorous ylide 201 to 

afford the methyl cinnamates 202a-e, with stereoselectivities in favour of the E-isomer with 

ratios ranging from 7:1 to >40:1. Reduction of the esters 202a-e to the corresponding alcohols 

203a-e was achieved with DIBAL-H, before bromination of alcohols, 203a-d with PBr3 gave 

the desired bromides 204a-d (Scheme 123).  

O

X
X

CO2Me

tol., Δ

X

OH

DIBAL-H, 

THF, 0 °C

PBr3, CH2Cl2, 
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X
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+
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         b X = CF3

         c X = Br
       d X = Me
       e X = OMe

201 202a, 80%
      b, 90%
      c, 90%
      d, 90%
      e, 81%

203a, 63%
      b, 96%
      c, 97%
      d, 94%
      e, 94%

204a, 84%
      b, 99%
      c, 99%
      d, 83%

Ph3P
CO2Me

 

Scheme 123: Synthesis of allylic bromides 
 

Attempted bromination of the para-methoxy alcohol 203e led to decomposition, so the less 

reactive chloride 205 was synthesised from SOCl2. Alkylation of the amino alcohol 206 with 

the synthesised alkylating agents 204a-d, 205 and the commercially available cinnamyl 

bromide 204f gave the alkylated amino alcohols 207a-f. Oxidation of the alcohols 207a-f with 

PCC, DMP and TPAP led to significant amounts ~20-50% of ester 208 (Figure 24) resulting 

from hemiacetal formation/oxidation.  
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Figure 24: Ester by-product from oxidation reactions 
 

However, oxidation using Swern conditions gave the aldehydes 194a-f in very good to 

excellent yields with no ester by-product occurring (Scheme 124). 
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Scheme 124: Synthesis of the cyclisation precursor 
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With the cyclisation precursors 194a-f in hand we subjected them to a Prins reaction using the 

Lewis acid MeAlCl2 (Scheme 125). The results of the cyclisations are summarised below 

(Table 17). 
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Scheme 125: Prins cyclisation with the Lewis acid MeAlCl2 

Table 17: MeAlCl2 promoted cyclisations of aldehydes 194 

 

The stereochemical assignments were made by comparison 1H NMR spectra of the crude 

reaction mixtures to the known phenyl piperidines determined by X-ray crystallography, in 

particular the shifts of the CH-Cl hydrogen between 4.7-5.5 ppm were diagnostic of the 

Entry 194a Temp / 
°C 

195(R) 196(S) 197(R) 198(S) 199 
tans : cis 

ratiob 
Yield / 

%c 

1 NO2 -78 5 5 69 11 10 8 : 1 45 

2 CF3 -78 5 5 25 15 50 4 : 1 -d 

3 Br -78 tracee 86 14 0 >25 : 1 77 

4 H -78 5 5 78 12 0 9 : 1 71 

5 Me -78 23e 50 27 0 3.3 : 1 32 

6 OMe -78 - - - - - - -f 

a All reactions carried out with 2 eq of MeAlCl2 in CH2Cl2 unless stated otherwise. b Ratios determined by 
integration of the 1H NMR of the crude reaction mixture. c Yield of isolated major component following 
purification. d Purification of the crude reaction mixture was unsuccessful. e Combined ratio of products 
determined by the 1H NMR of the crude reaction mixture. f Reaction led to a complex mixture of 
unidentified by products unidentified by-products. 
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stereochemistry. The Lewis acid-promoted Prins reaction favoured the trans diastereomer as 

seen previously with the Brønsted acid but generally with higher diastereoselectivities ranging 

from to >25:1 to 3.3:1 for trans:cis. Interpretation of the diastereoselectivities for the most 

electron withdrawing substituents, (Table 17, entries 1 & 2), are complicated by significant 

amounts of the elimination product 199. However, for the substrates where no elimination 

occurs the trend is for an increase in trans selectivity as the X substituent becomes more 

electron withdrawing (Table 17, entries 3-5). Cyclisation of the most electron rich substrate, 

OMe, led to complex mixture of unidentified by-products, with none of the desired products 

detected in the 1H NMR of the crude reaction mixture (Table 17, entry 6). Tentatively we can 

account for the observed selectivities favouring the trans products it was envisaged that the 

initial benzyl carbocation 200 becomes delocalised over the phenyl ring. A stabilising 

electrostatic interaction of the delocalised carbocation resulting from the negative charge on 

the oxygen-Lewis acid complex could only occur in intermediates 201 and 204. A 1,3 diaxial 

interaction between the phenyl ring and an axial hydrogen, might favour 202 over 201. The 

coordination of a bulkier Lewis acid to the oxygen, in comparison to a proton for the Brønsted 

acid, would lead to greater 1,3 diaxial interactions helping to reinforce the selectivity for the 

trans diastereomer (Scheme 126).  
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Scheme 126: Postulated intermediates to account for the observed diastereoselectivities 
 

Alternatively, the observed diastereoselectivity can be rationalised by the steric preference for 

the bulky Lewis acid-coordinated oxygen to adopt an equatorial conformation. The reaction 

can be envisaged to proceed through either: an asynchronous concerted process 205, or 

through a zwitterionic intermediate with intramolecular chloride transfer 206 (Figure 25). 
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Figure 25: Alternative explanation for the observed diastereoselectivity 
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3. Conclusions and Future Work 

 
This work describes the successful application of the carbonyl-ene/Prins reaction in total 

synthesis. The aim was to synthesise an advanced intermediate 27 used in Ma and Sun’s total 

synthesis of pseudodistomin F 10. Our initial retrosynthetic approach to the target molecule 

27 was a carbonyl-ene/Prins reaction of the crotyl-ene cyclisation precursor 78 to form 

piperidine 80 (Scheme 127). 
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Scheme 127: Initial retrosynthetic approach to the target molecule  
 

Subjecting the cyclisation precursor 78 to a carbonyl-ene reaction gave the desired piperidine 

80 in a very poor yield of 25% due to the formation of three out of the possible four 

diastereomers and a dimerisation by-product. The poor selectivity in the reaction was thought 

to be a consequence of the reaction proceeding through an unfavourable secondary 

carbocation. Changing the cyclisation precursor to a prenyl-ene substrate 95, resulted in 

successful Prins cyclisation giving excellent diastereoselectivities of up to 200:1 in favour of 

cis over trans.  Two successive generations were developed that gave access to the cyclisation 

precursor 95. Although both generations gave similar yields 53% to 55% for the first and 

second generations respectively, only the second generation synthesis gave access to the 

cyclisation precursor on a multigram scale and required fewer synthetic transformations to 

complete. Using the second generation synthesis we were able to complete the formal 
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synthesis 27 of pseudodistomin F in a total of thirteen synthetic steps and in an overall yield 

of 28% from aspartic acid 76, a noticeable improvement over the original synthesis of 27 

presented by Ma & Sun, which required fifteen steps and with a overall yield of 12% from 

commerically available starting materials.  
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Scheme 128: 1st and 2nd generation syntheses 
 

We serendipitously discovered a facile method to epimerise the ketone stereocentre of 149 to 

give its epimer 175 using a combination of NaIO4 and Na2SO3, although the active species 

that causes epimerisation remains unresolved. We utilised this reaction and synthesised 

(epi)-27, which possess an unnatural core stereochemistry of the pseudodistomin alkaloids. 
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Scheme 129: Epimerisation and synthesis of (epi)-27 
 
 
Having completed the formal synthesis of pseudodistomin F we turned our attention towards 

its total synthesis. From ketone 185 the bis-oxazolidinone 184 was prepared in three steps, 

this would potentially allow the cleavage of both oxazolidinone groups in one step instead of 

two steps as in the second generation synthesis.  Future work could involve the formation of 
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sulfone 207 from amino diol 183. The sulfone 207 would allow efficient installation of the 

side chain through a Kocienski-modified Julia olefination with aldehyde 208 to give 

pseudodistomin F (Scheme 130). 
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Scheme 130: Towards the total synthesis of pseudodistomin F 10 
 

It would be interesting to conduct an SAR study to test for improved biological activities in 

vitro. In particular olefination reactions with aldehydes of varying chain lengths would 

quickly and easily build up diversity. 

 

We also conducted a study into how changing the electronics of the ene component would 

alter the diastereoselectivity of the reaction. The results indicated that the diastereoselectivity 

favoured the trans products 197 and 198 as the electron withdrawing power of the substituent 

X increased in the cyclisation precursor 194 (Scheme 131).  
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Scheme 131: Prins cyclisation of the substituted cinnamyl substrate 194 
 

Considering the cinnamyl substrates 194 (Figure 26), it would be interesting to expand the 

substituent range and screen a variety of Lewis acids in order to gain a greater understanding 

of the reaction mechanism. 
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Figure 26: Various substituted cyclisation precursors
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4. Experimental 

 

1H and 13C spectra were recorded on either a Bruker AC 300 (300 and 75 MHz), a Bruker AV 

300 (300 and 75 MHz), a Bruker AVIII300 (300 MHz), a Bruker AVIII400 (400 and 101 

MHz), a Bruker AMX 400 (400 and 100 MHz) or a Bruker DRX500 (500 and 125 MHz 

respectively). Chemical shifts (�) are expressed in parts per million (ppm) Coupling constants 

(J) are reported in Hz. Multiplicity of signals of 1H NMR are expressed as follows: s = 

singlet, d = doublet, t = triplet q = quartet, the term “stack” is used to describe a region where 

resonance arising from non-equivalent nuclei are coincident, and multiplet, m, is used to 

describe a region where resonance arising from a single nucleus (or equivalent nuclei) are 

coincident, but coupling constants cannot be readily assigned. 13C NMR spectra were 

measured using the pendant technique. Multiplicity of signals and coupling constants are 

reported as observed after off-line processing (WinNMR or MestRe Nova). 

 

Mass spectra were recorded on a Micromass ZABspec spectrometer utilizing electrospray 

ionisation (and a methanol mobile phase), and a Micromass Zabspec spectrometer utilising m-

nitrobenzoylalcohol (3-NOBA) as the matrix, EI mass spectra were recorded on either a VG 

ProSpec or VG Zabspec instrument at 70 eV, and are reported as (m/z (%)). 

 

Elemental analyses were recorded on a CARLO ERBA EA110 CHNS elemental analyser. 
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Infrared spectra were recorded as thin films (neat) or with nujol between sodium chloride 

plates on a Perkin Elmer 1600 FTIR spectrometer. The intensity of each band is described as s 

(strong), m (medium) or w (weak). 

 

Optical rotations were measured using an Optical Activity PolAAr 2001 automatic 

polarimeter in 0.25 dm length cells. Concentrations used are expressed in grams of solute per 

100 mL. [�]D values are reported in units of 10-1 deg cm2 g-1. 

 

Melting points were determined in open-ended glass capillaries using a Stuart Scientific 

SMP1 apparatus. 

 

X-ray crystallography: Suitable crystals were selected and datasets were measured on a 

Bruker SMART 6000 diffractometer (λCu-Kα = 1.54178 Å) at 120 K.  The data collections 

were driven by SMART and processed by SAINT. Or, suitable crystals were selected and 

datasets were measured by the EPSRC National Crystallography Service on a Bruker 

KappaCCD diffractometer at the window of a Bruker FR591 rotating anode (λMo-Kα = 

0.71073 Å) at 120 K. The data collections were driven by COLLECT and processed by 

DENZO. Absorption corrections for all four datasets were applied using SADABS. The 

structures were solved in SHELXS-97 and were refined by a full-matrix least-squares 

procedure on F in SHELXL-97. All non-hydrogen atoms were refined with anisotropic 

displacement parameters. All hydrogen atoms were added at calculated positions and refined 

by use of a riding model with isotropic displacement parameters based on the equivalent 

isotropic displacement parameter (Ueq) of the parent atom. Figures were produced using 

ORTEP3 for Windows.  
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All reactions were carried out under a nitrogen or argon atmosphere in flame-dried glassware. 

Molecular sieves (3 and 4 Å) were activated by flame-heating under high vacuum during 15 

min and used immediately. Tetrahydrofuran (THF) and diethyl ether (Et2O) were distilled 

from sodium and benzophenone ketyl. Dichloromethane (CH2Cl2), acetonitrile (MeCN) and 

dimethylformamide (DMF) were distilled from CaH2. Toluene was distilled from sodium and 

used immediately. Triethylamine was distilled from KOH and stored over 4 Å M.S. Other 

chemicals were used as purchased, unless otherwise stated. Aqueous solutions are saturated 

unless otherwise stated.  

 

Flash column chromatography was carried out using Fluka 60 (40-60 �m mesh) silica gel. 

Analytical thin layer chromatography (TLC) was performed on Machery-Nagel SIL G-25 

UV254 pre coated glass-backed plates and visualised by UV (254 nm) and potassium 

manganate(VII) solution. Evaporation and concentration under reduced pressure was done at 

(50-500mBar). Residual solvent was removed under high vacuum (1 mBar). 

 

HPLC was performed on Dionex Summit HPLC systems using helium degassed HPLC grade 

solvents.  Data were collected, recorded and processed using the Dionex Chromeleon 6.11 

software package.  

 

Analytical HPLC: 

Pump: Summit P580 Quaternary Low Pressure Gradient Pump with built in vaccum degasser. 

Detector: Summit UVD 170s UV/Vis Multi-Channel Detector with analytical flow cell. 
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Column: Phenomenex Luna 10μ C18 (250 mm x 4.6 mm). 

Chiral analytical HPLC: 

Pump: Summit P580 Quaternary Low Pressure Gradient Pump with built in vaccum degasser. 

Detector: Summit UVD 170s UV/Vis Multi-Channel Detector with analytical flow cell. 

Column: Daicel Chiral Pak AD (250 mm x 4.6 mm). 

 

Semi-preparative HPLC: 

Pump: Summit P580 Quaternary Low Pressure Gradient Pump with built in vaccum degasser. 

Detector: Summit UVD 170s UV/Vis Multi-Channel Detector with Prep flow cell. 

Column: Phenomenex Luna 10μ C18 (250 mm x 10 mm). 
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N-(3-Hydroxypropyl)-4-methyl-N-(3-methylbut-2-enyl)benzenesulfonamide (82) 

 
Cesium carbonate (1.85 g, 5.67 mmol) was added to a solution of N-(3-

hydroxypropyl)-4-methylbenzenesulfonamide (1.00 g, 4.36 mmol) in MeCN (25 

mL) at 0 °C. The resulting mixture was stirred for 15 min before 1-bromo-3-

methylbut-2-ene (0.50 mL, 4.36 mmol) was added dropwise over 30 s. The resulting solution 

was allowed to warm to room temperature and stirred for a further 2 h. The solvent was 

removed in vacuo and the resulting white solid was dissolved in water (50 mL). The aqueous 

phase was extracted with EtOAc (4 x 50 mL). The combined organic phases were washed 

with brine (100 mL), dried over MgSO4 and evaporated in vacuo to leave a yellow crystalline 

solid, which was purified by flash column chromatography (Rf = 0.28, hexane:EtOAc, 2:1) to 

afford the N-alkylated sulfonamide 82 as a white crystalline solid (1.25 g, 96%).  

mp: 41-42 °C (from hexane:EtOAc) 

�max: (film)/cm-1 3429 (OH), 2936 (CH), 1333 (SO2), 1156 (SO2) 

�H: (300 MHz, CDCl3) 1.60 (3H, s, CH3), 1.63 (3H, s, CH3), 1.70-1.78 (2H, m, CH2CH2OH), 

2.41 (3H, s, CH3), 2.47 (1H, br s, OH), 3.20 (2H, t, J 6.5, CH2CH2N), 3.72 (2H, t, J 5.7, 

CH2OH), 3.79 (2H, d, J 7.0, CHCH2N), 4.95 (1H, t, J 7.0,  =CH), 7.29 (2H, d, J 8.0 Ar CH), 

7.67 (2H, d, J 8.0, Ar CH) 

�C: (125 MHz), 18.8 (CH3), 22.6 (CH3), 26.8 (CH3), 32.1 (CH2CH2OH), 44.8 (CH2CH2N), 

46.9 (CHCH2N), 59.9 (CH2OH), 119.9 (CH=), 128.2 (Ar CH), 130.7 (Ar CH), 137. 3 (Cq), 

138.1 (Cq), 144.3 (Cq) 

m/z: (ES+) 320.0 (100 %, [M+Na]+)  

HRMS: [Found: (M+Na)+ 320.1289. C15H23NO3S requires M, 320.1296] 

 

Ts
N

OH
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4-Methyl-N-(3-methyl-but-2-enyl)-N-(3-oxopropyl)benzenesulfonamide (58) 

 
PCC Oxidation 

Celite (1.0 g) was added to a suspension of PCC (0.56 g, 2.56 mmol) in CH2Cl2 

(15 mL). The resultant slurry was stirred vigorously for 5 min before being 

cooled to 0 °C. A solution of N-alkylated sulfonamide 82 (0.52 g, 1.72 mmol) in CH2Cl2 (5 

mL) was then added in one portion. The resulting solution was allowed to warm to room 

temperature and stirred for a further 4 h. NaHSO4 (1.0 g) and Et2O (20 mL) were added and 

the mixture was stirred vigorously for 15 min before being filtered through a silica plug, 

washed with diethyl ether (100 mL) and dried over MgSO4. The solvent was removed in 

vacuo to yield the crude product as a yellow oil, which was purified by flash column 

chromatography (Rf = 0.27, hexane:EtOAc, 3:1) to afford the aldehyde 58 as a colourless oil 

(0.31 g, 61%). 

Swern Oxidation 

Anhydrous DMSO (0.32 mL, 4.56 mmol) was added at a rapid rate to a solution of oxalyl 

chloride (0.24 mL, 2.28 mmol) in CH2Cl2 (25 mL) at -78 °C. The resulting mixture was 

stirred for 5 min before a solution of the alcohol 82 (0.57 g, 1.90 mmol) in CH2Cl2 (20 mL) 

was added dropwise over 10 min. After 30 min Et3N (1.32 mL, 9.50 mmol) was added 

dropwise over 30 s and the resulting solution was stirred for a further 3 h at -78 °C before 

being allowed to warm to room temperature. Water (50 mL) was added and the aqueous phase 

was further extracted with CH2Cl2 (3 x 50 mL). The combined organic phases were washed 

with 1 M HCl (100 mL), water (100 mL) and finally with brine (100 mL) before being dried 

over MgSO4 and concentrated in vacuo to give the crude aldehyde as a pale yellow oil, which 

Ts
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was purified by flash column chromatography (Rf = 0.27, hexane:EtOAc, 3:1) to give the 

aldehyde 58 as a colourless oil (0.54 g, 97%). 

�max: (film)/cm-1 2973 (CH), 2926 (CH), 1724 (C=O), 1339 (SO2), 1159 (SO2)  

�H: (300 MHz, CDCl3) 1.60 (3H, s, CH3), 1.64 (3H, s, CH3), 2.42 (3H, s, CH3), 2.79 (2H, t, J 

6.9  CH2CHO) 3.35 (2H, t, J 6.9, CH2CH2N),  3.75 (2H, d, J 7.0, CHCH2N), 4.96 (1H, t, J 

7.0,  =CH), 7.29 (2H, d, J 8.0 Ar CH), 7.67 (2H, d, J 8.0, Ar CH) 9.74 (1H, s, CHO) 

�C: (125 MHz), 16.1 (CH3), 19.8 (CH3), 24.0 (CH3), 39.3 (CH2CHO), 42.2 (CH2CH2N), 44.8 

(CHCH2N), 117.0 (CH=), 125.7 (Ar CH), 128.0 (Ar CH), 134.7 (Cq), 135.9 (Cq), 141.7 (Cq), 

198.8 (CHO) 

m/z: (ES+) 318.1 (100 %, [M+Na]+), 350.2 (20, [M+Na+MeOH]+)  

HRMS: [Found: (M+Na)+ 318.1145. C15H21NO3S requires M, 318.1140] 

 

(3R*, 4S*)-3-Isopropenyl-1-(toluene-4-sulfonyl)piperidin-4-ol (59) and (3S*, 4S*)-3-

isopropenyl-1-(toluene-4-sulfonyl)piperidin-4-ol (59) 

 
Prins Cyclisation 

Concentrated HCl (37 %, 0.10 mL, 1.02 mmol) was added 

to a solution of aldehyde 58 (100 mg, 0.34 mmol) in 

CH2Cl2 (10 mL) at -78 °C. The resulting solution was stirred at -78 °C for 16 h, before being 

quenched by the addition of water (10 mL). The aqueous phase was extracted with CH2Cl2 (3 

x 10 mL). The combined organic phases were washed with brine (10 mL), dried over MgSO4 

and concentrated in vacuo to give a white solid, which was purified by flash column 

chromatography (Rf = 0.23, hexane:EtOAc, 2:1) to give or piperidine 59 as a white crystalline 

solid (79 mg, 79%).  
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mp: 91-92 °C (from hexane:EtOAc) 

�max: (film)/cm-1 3366 (OH), 2925 (CH) 2867 (CH), 1341 (SO2), 1164 (SO2) 

�H: (300 MHz, CDCl3) 1.48 (1 H, br s, OH), 1.77 (3 H, s, CH3), 1.83-1.93 (2H, m, CH2CH2N), 

2.36-2.40 (1H, m, CHCH2N), 2.42 (3 H, s, CH3), 2.52-2.63  (2 H, stack, CHCHHN and 

CH2CHHN), 3.54-3.59 (2 H, stack, CHCHHN and CH2CHHN), 3.96 (1H, d, J 2.6, CHOH), 

4.58 (1H, s, C=CHH), 4.97 (1H, s, C=CHH), 7.31 (2H, d, J 8.1 Ar CH), 7.64 (2H, d, J 8.1, Ar 

CH) 

�C: (125 MHz), 21.4 (CH3), 22.7 (CH3), 32.1 (CH2CH2NH), 40.5 (CH2CH2N), 43.4 

(CHCH2N), 46.6 (CHCH2NH), 62.9 (CHOH), 112.2 (=CH2), 127.5 (Ar CH),  129.6 (Ar CH), 

133.2 (Cq), 143.4 (Cq), 143.7 (Cq) 

m/z: (ES+) 318.1 (100 %, [M+Na]+) 

HRMS: [Found: (M+Na)+ 318.1128. C15H23NO3S requires M, 318.1140] 

 
Further elution (Rf = 0.15) afforded piperidine 60 as a white crystalline solid (4 mg, 4 %). 

Data vide infra.  

 

Carbonyl-Ene Cyclisation 

MeAlCl2 (1 M soln. in hexanes, 0.34 mL, 0.34 mmol) was added to a solution of aldehyde 58 

(100 mg, 0.34 mmol) in CHCl3 (10 mL). The resulting mixture has heated to reflux for 16 h, 

before being quenched by the addition of water (10 mL). The aqueous phase was extracted 

with CHCl3 (3 x 10 mL). The combined organic phases were washed with brine (10 mL), 

dried over MgSO4 and concentrated in vacuo to give a white solid, which was purified by 

flash column chromatography (Rf = 0.23, hexane:EtOAc, 2:1) to give piperidine 60 as a white 
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crystalline solid (6 mg, 6%), data vide supra. Further elution (Rf = 0.15) afforded piperidine 

59 as a white crystalline solid (74 mg, 74%). 

mp: 149-150 °C (from hexane:EtOAc) 

�max: (film)/cm-1 3364 (OH), 2928 (CH) 2855 (CH), 1341 (SO2), 1165 (SO2) 

�H: (300 MHz, CDCl3) 1.58-1.68 (1H, m, CHHCH2N), 1.71 (3 H, s, CH3), 1.85 (1 H, br s, 

OH), 2.01-2.07 (1H, m, CHCH2N), 2.17-2.27 (2 H, stack, CHC2N and CHCHHN), 2.35 (1 H, 

dt, J 12.5 and 2.8, CH2CHHN), 2.44 (3H, s, CH3), 3.44 (1H, dt, J 10.3 and 4.5, CHOH), 3.73-

3.77 (1 H, m, CHCHHN), 3.81-3.86 (1H, m, CH2CHHN), 4.89 (1H, s, C=CHH), 5.01 (1H, s,  

C=CHH), 7.32 (2 H, d, J 8.1 Ar CH), 7.64 (2 H, d, J 8.1, Ar CH) 

�C: (125 MHz), 20.5 (CH3), 21.5 (CH3), 32.4 (CH2CH2NH), 45.0 (CH2CH2N), 48.7 

(CHCH2N), 51.5 (CHCH2NH), 69.2 (CHOH), 114.6 (=CH2), 127.5 (Ar CH),  129.7 (Ar CH), 

133.2 (Cq), 143.3 (Cq), 143.6 (Cq)  

m/z: (ES+) 318.1 (100 %, [M+Na]+) 

 

L-Aspartic acid dimethyl ester hydrochloride (110) 

 
Acetyl chloride (85.9 mL, 1.20 mol) was added dropwise over 20 min 

via a dropping funnel to a stirred solution of MeOH (93 mL) cooled to 0 

°C. L-aspartic acid (50.0 g, 0.376 mol) was added to the solution and the resulting mixture 

was warmed to rt and stirred overnight. The solvent was removed in vacuo to afford 76.5 g of 

the crude aspartic ester hydrochloride salt 110 as a colourless viscous oil, which was used 

without further purification.  

[α]D
20: +11.4 (c 1.0 in H2O) (lit.106 [α]D

20: +10.2 (c 0.65 in H2O)) 

�max: (film)/cm-1 3384 (NH), 3020 (CH), 2955 (CH), 1736 (C=O) 

CO2Me

CO2Me

HCl.H2N
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�H: (300 MHz, D2O) 3.14 (2H, t, J 5.9, CH2), 3.71 (3H, s, CH3), 3.81 (3H, s, CH3), 4.47 (1H, 

t, J 5.9 CH) 

�C: (75 MHz, D2O) 32.1 (CH2), 47.7 (CH), 51.6 (CH3), 52.5 (CH3), 167.8 (C=O), 170.0 (C=O)  

m/z: (ES+) 162.0 (100%, [M+H-Cl]+) 

 

L-Aspartic acid dimethyl ester (87) 

 
Acetyl chloride (17.1 mL 240 mmol) was added dropwise over 10 min to a 

solution of MeOH (93 mL) cooled to 0 °C. L-aspartic acid (10.0 g, 75.1 mmol) 

was added to the solution and the resulting mixture was slowly warmed to reflux for 3 h. The 

solvent was removed in vacuo to afford the hydrochloride salt as a colourless viscous oil, 

which was dissolved in water (50 mL) and cooled to 0 oC before a saturated aqueous solution 

of NaHCO3 (50 mL) was added slowly to the stirred solution. The aqueous solution was 

extracted with EtOAc (5 x 100 ml) and the combined organic phases were washed with brine 

(100 mL), dried over MgSO4 and concentrated in vacuo to afford the desired product 87 as a 

colourless oil (9.16 g, 76 %).  

[α]D
20 : +17.4 (c 1.0 in MeOH) (lit.107 [α]D

14: +16.8) 

 �max: (film)/cm-1 3384 (NH), 3020 (CH), 2955 (CH), 1736 (C=O) 

�H: (300 MHz, CDCl3) 1.72 (2H, s, NH2), 2.66 (1H, dd J 16.5 and 7.3, CHH), 2.77 (1H, dd J  

16.5 and 4.7, CHH), 3.65 (3H, s, CH3), 3.69 (3H, s, CH3), 3.78 (1H, dd, J 4.7 and 7.3, CH) 

�C: (75 MHz, CDCl3) 38.6 (CH2), 51.0 (CH), 51.9 (CH3), 52.2 (CH3), 171.4 (C=O), 174.5 

(C=O); m/z (ES+) 159.0 (5%), 102.0 (100), 88.0 (32), 70.0 (45), 60.0 (28), 43.0 (40.0) 

 

 

H2N CO2Me

CO2Me
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(2S)-Aminobutan-1,4-diol (85) 

 
A solution of L-aspartic acid dimethyl ester 87 (4.77 g, 29.58 mmol) in THF (20 

mL) was added dropwise over 20 min to a stirred slurry of LiAlH4 (3.37 g, 88.75 

mmol) in THF (25 mL) cooled to 0 °C. The solution was heated to reflux for 30 

min before being cooled to room temperature and then to 0 °C. Propan-2-ol (35 mL) was then 

added as fast as effervescence would allow, followed by water (10 mL). The resulting mixture 

was stirred vigorously for 15 min before the solvents were removed in vacuo to give a white 

salt. The salt was added into a cellulose thimble and continuously extracted with a Soxhlet 

extractor using propan-2-ol overnight. The propan-2-ol filtrate was evaporated in vacuo to 

give the product 85 as a pale yellow oil (3.10 g, quant). 

[α]D
20: -4.0 (c 1.0 in H2O) (lit.108 [α]D

22: -2.0 (c 2.0 in H2O)) 

�max: (film)/cm-1 3341 (OH, NH), 2940 (CH), 1054 (CO) 

 �H: (300 MHz, D2O) 1.38-1.49 (1H, m, CHCHHCH2), 1.57-1.68 (1H, m, CHCHHCH2), 2.82-

2.90 (1H, m, CH), 3.36 (1H, dd, J 11.2 and 6.9, CHHOH), 3.53 (1H, dd, J 11.2 and 4.6 and, 

CH2CHH), 3.63 (2H, t, J 6.6, CHCH2OH) 

�C: (75 MHz, D2O) 37.5 (CHCH2CH2), 51.6 (CH), 61.5 (CH2OH), 68.8 (CH2OH) m/z: (ES+) 

128.3 (60%, [M+Na]+), 106.4 (100, [M+H]+)  

m/z: (ES+) 128.2 (60%, [M+Na]+), 106.4 (100, [M+H]+) 

 

 

 

OH

OH

H2N



 125 

(4S)-[2-(tert-Butyldiphenylsilanyloxy)ethyl]-oxazolidin-2-one (88) 

CDI (1.64 g, 10.09 mmol) was added to a solution of amino diol 85 (1.06 g, 

10.09 mmol) in DMF (30 mL) at 0 °C. The resulting solution was stirred at 0 

°C for 3 h before warming to room temperature overnight. tert-

butyldiphenylsilyl chloride (3.15 mL, 12.12 mmol) was added dropwise over 5 

min to the solution at 0 °C. The resulting solution was stirred at room temperature 8 h. Water 

(30 mL) was added and the aqueous phase was extracted with Et2O (4 x 30 mL). The 

combined organic fractions were washed with brine (30 mL), dried over MgSO4 and 

concentrated in vacuo to afford the crude product as an orange oil. The oil was purified by 

flash column chromatography (Rf = 0.34, hexane:EtOAc, 1:1) to afford a white crystalline 

solid 88 (3.06 g, 82%). 

mp: 110-111 °C (from hexane:EtOAc) (lit.109 113-114.5 °C) 

[α]D
22: -11.2 (c 1 in CHCl3) 

�max: (film)/cm-1 3263 (NH), 3071 (Ar CH), 3050 (Ar CH), 2930 (CH), 2875 (CH), 1754 

(C=O) 

�H: (300 MHz, CDCl3) 1.06 (9H, s, C(CH3)3, 1.70-1.89 (2H, m, CHCH2CH2), 3.73-3.77 (2H, 

m, CH2OSi), 4.00-4.12 (2H, stack, CH  and CHHOCO), 4.46-4.53 (1H, m, CHHOCO), 5.51 

(1H, br s, NH), 7.39-7.46 (6H, m, Ar CH), 7.62-.7.65 (4H, m Ar CH) 

�C: (75 MHz, CDCl3) 19.0 (SiC(CH3)3, 26.8 (SiC(CH3)3, 37.4 (CHCH2CH2), 51.3 (CH), 61.2 

(OCH2), 70.5, (OCH2), 127.9 (Ar CH), 130.0 (Cq), 132.3 (Ar CH), 135.5 (Ar CH), 159.3 

(C=O) 

m/z: (ES)+ 392.0 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 392.1655. C21H27NNa O3Si requires M 392.1658] 

NH
O

OTBDPS

O
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(4S)-3-But-2-enyl-4-[2-(tert-butyl-diphenyl-silanyloxy)-ethyl]-oxazolidin-2-one (89)  

 
(5:1 mixture of E:Z, only E reported) 

 
n-BuLi (2.5 M soln. in hexanes, 4.29 mL, 10.72 mmol) was added dropwise 

over 5 min to a solution of oxazolidinone 88 (3.96 g, 10.72 mmol) in THF (50 

mL) at 0 °C. The resulting solution was stirred for 15 min before crotyl 

bromide (1.12 mL, 10.72 mmol) was added dropwise over 1 min. The 

resulting solution was allowed to warm to room temperature overnight before being quenched 

with water (50 mL). The solvent was removed in vacuo and the aqueous phase was extracted 

with Et2O (4 x 100 mL). The combined organic phases were washed with brine (50 mL), 

dried over MgSO4 and concentrated in vacuo to afford the crude product as a yellow oil, 

which was purified by flash column chromatography (Rf = 0.37, hexane:EtOAc, 4:1) to give 

the product 89 as a colourless oil (4.82 g, 94%).  

[α]D
23: -5.6 (c 1 in CHCl3) 

�max: (film)/cm-1 3070 (Ar CH), 3048 (Ar CH), 2930 (CH), 2857 (CH), 1756 (C=O)  

�H: (300 MHz, CDCl3) 1.05 (9H, s, C(CH3)3), 1.57-1.72 (4H, stack, =CHCH3 and 

CHCHHCH2) 1.97-2.07 (1H, m, CHCHHCH2), 3.47 (1 H, dd, 1H, J 15.0 and 7.9, NCHH),  

3.70 (2H, t, J 5.8, CH2OSi), 3.87-3.96 (1H, m, CHHOCO), 4.01-4.11 (2H, stack, CH and 

NCHH), 4.32 (1H, t, J 8.5, CHHOCO), 5.34-5.43 (1H, m, =CH), 5.59-5.70 (1H, m, =CH), 

7.38-7.46 (6H, m, Ar CH), 7.62-7.65 (4H, m Ar CH) 

�C: (75 MHz, CDCl3) 17.6 (=CCH3), 19.0 SiC(CH3)3, 26.8 (SiC(CH3)3, 34.5 (CHCH2CH2), 

44.0 (NCH2), 53.1 (NCH), 60.1 (OCH2Si), 67.9 (CH2OCO), 124.7  (=CH), 127.8 (Ar CH), 

129.9 (Ar CH), 130.1 (=CH), 132.9 (Cq) 135.4 (Ar CH), 137.0 (Cq), 158.0 (C=O) 

N
O

O

TBDPSO
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 m/z: (ES)+ 446.3 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+446.2124. C25H33NNaO3Si requires M 466.2127] 

 

(4S)-3-But-2-enyl-4-(2-hydroxyethyl)-oxazolidin-2-one (90) 

 
(5:1 mixture of E:Z, only E reported) 

 
TBAF (1 M soln. in THF, 8.47 mL, 8.47 mmol) was added dropwise over 5 min 

to a solution of 89 (3.58 g, 8.47 mmol) in THF (40 mL) cooled to 0 °C. The 

reaction was stirred at room temperature overnight before the solvent was 

removed in vacuo. Water (50 mL) was added and the aqueous phase was extracted with 

EtOAc (4 x 50 mL). The combined organic phases were washed with brine (50 mL), dried 

over MgSO4 and concentrated in vacuo to afford the crude product as a red oil, which was 

purified by flash column chromatography (Rf = 0.24, hexane:EtOAc, 1:4) to give the product 

90 as a colourless oil (1.61 g, 95%). 

[α]D
23: -14.0 (c 1 in CHCl3) 

�max: (film)/cm-1 3417 (OH), 2921 (CH), 1732 (C=O) 

�H: (300 MHz, CDCl3) 1.62-1.68 (4H, stack, =CHCH3 and CHCHHCH2) 1.92-2.01 (1H, m, 

CHCHHCH2), 2.41 (1H, br s, OH), 3.50 (1H, dd, J 15.3 and 7.8, NCHH),  3.65-3.74 (2H, m, 

CH2OH), 3.83-3.92 (1H, m, CHHOCO), 3.99-4.09 (2H, stack, CH and NCHH), 4.39 (1H, t, J 

8.5, CHHOCO), 5.30-5.38 (1H, m, =CH), 5.59-5.70 (1H, m, =CH)  

�C: (75 MHz, CDCl3) 17.6 (=CCH3), 34.2 (CHCH2CH2), 44.0 (NCH2), 53.3 (NCH), 60.1 

(CH2OH), 68.0 (CH2OCO), 127.8 (=CH), 130.1 (=CH), 158.3 (C=O)  

m/z: (ES)+ 208.1 (100%, [M+Na]+)  

N
O

O

HO
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HRMS: [Found: (M+Na)+ 208.0940. C9H15NNaO3 requires M 208.0950] 

 

(4S)-(3-But-2-enyl-2-oxo-oxazolidin-4-yl)-acetaldehyde (78) 

 
(5:1 mixture of E:Z, only E reported) 

 
DMSO (1.54 mL, 21.65 mmol) was added at a rapid rate to a solution of oxalyl 

chloride (0.93 mL, 10.39 mmol) in CH2Cl2 (50 mL) at -78 °C. The resulting 

mixture was stirred for 10 min before a solution of the alcohol 90 (1.60 g, 8.66 

mmol) in CH2Cl2 (40 mL) was added dropwise over 20 min. After 30 min Et3N (6.09 mL, 

43.30 mmol) was added dropwise over 2 min and the resulting solution was stirred for a 

further 3 h at -78 °C before being allowed to warm to room temperature. Water (50 mL) was 

added and the aqueous phase was further extracted with CH2Cl2 (3 x 50 mL). The combined 

organic phases were washed with HCl (1 M, 100 mL), water (100 mL) and finally with brine 

(100 mL) before being dried over MgSO4 and evaporated in vacuo to give the crude aldehyde 

as a pale yellow oil, which was purified by flash column chromatography (Rf = 0.28, 

hexane:EtOAc, 1:3) to give the aldehyde 78 as a colourless oil (1.57 g,  95%). 

[α]D
23: +24.8 (c 1 in CHCl3)  

�max: (film)/cm-1  3011 (=CH), 2918 (CH), 2856 (CH), 1748 ( 2 x C=O)  

�H: (400 MHz, CDCl3) 1.65 (3H, d, J 6.4, =CHCH3), 2.62 (1H, dd, J 18.6 and 9.1, 

CHCHHCHO) 3.02 (1H, dd, J 18.6 and 3.9, CHCHHCHO), 3.48 (1H, dd, J 15.4 and 7.6, 

NCHH), 3.84 (1H, dd J 8.8 and 6.3, CHHOCO), 3.94-3.99 (1H, m, NCHH), 4.10-4.19 (1H, 

m, NCH), 4.50 (1H, t, J 8.8, CHHOCO), 5.28-5.38 (1H, m, CH2CH=), 5.63-5.72 (1H, m, 

=CHCH3), 9.73 (1H, s, CHO) 

N
O

O

O
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�C: (75 MHz, CDCl3) 17.6 (=CCH3), 44.4 (NCH2), 46.8 (CHCH2CHO), 49.8 (NCH), 67.7 

(CH2OCO), 124.6 (CH2CH=), 130.5 (=CHCH3), 157.6 (NCOO), 198.6 (CHO);  

m/z: (ES)+ 238.0 (100%, [M+MeOH+Na]+)  

HRMS: [Found: (M+MeOH+Na)+ 238.1052. C10H17NNaO4 requires M 238.1055] 

 

(6S,7R,8aS)-7-hydroxy-6-vinyltetrahydro-1H-oxazolo[3,4-a]pyridin-3(5H)-one (79) 

 
 
MeAlCl2 (1 M soln. in hexanes, 1.14 mL, 1.14 mmol) was added to a solution of 

aldehyde 78 (106 mg, 0.57 mmol) in CH2Cl2 (5 mL). The resulting mixture was 

stirred at room temperature for 16 h, before being quenched by the addition of 

water (10 mL). The aqueous phase was extracted with CH2Cl2 (3 x 10 mL). The combined 

organic phases were washed with brine (10 mL), dried over MgSO4 and concentrated in vacuo 

to give the crude product as a yellow oil, which was purified by flash column chromatography 

(Rf = 0.30, EtOAc) to give piperidine 79 as a colourless oil (9 mg, 16%). 

�max: (film)/cm-1 3362 (OH), 2928 (CH) 2855 (CH), 1729 (C=O), 1341 (SO2), 1165 (SO2) 

�H: (400 MHz, CDCl3) 1.54 (1H, ddd, J 13.7, 11.7 and 2.3, NCHCHH), 2.05 (1H, dt, J 13.7 

and 3.6, NCHCHH), 2.34-2.38 (1H, m, NCH2CH), 3.19 (1H, t, J, 12.5, NCHH), 3.74 (1H, dd, 

J 5.1 and 2.5, NCHH), 3.88 (1H, dd, J 8.4 and 5.1, CHHO), 4.04-4.14 (2H, stack, CHOH and 

CHNH), 4.41 (1H, t, J 8.4, CHHO) 

m/z: (EI+) 183.1 (50 %, [M]+), 116.0 (100), 86.0 (95) 

HRMS: [Found: (M)+ 183.0893. C9H13NO3 requires M 183.0895] 

 

 

N

O

OH

O
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(4S)-[2-(tert-Butyldiphenylsilanyloxy)etyl]-3-(3-methylbut-2-enyl)oxazolidin-2-one (93) 

 
n-BuLi (1.37 M soln. in hexanes, 15.56 mL, 21.32 mmol) was added 

dropwise over 10 min to a solution of oxazolidinone 88 (7.16 g, 19.38 

mmol) in THF (50 mL) at 0 °C. The resulting solution was stirred for 15 

min before 1-bromo-3-methylbut-2-ene (1.32 mL, 11.38 mmol) was added 

dropwise over 1 min. The resulting solution was allowed to warm to room temperature 

overnight before being quenched with water (50 mL). The solvent was removed in vacuo and 

the aqueous phase was extracted with Et2O (4 x 100 mL). The combined organic phases were 

washed with brine (50 mL), dried over MgSO4 and concentrated in vacuo to afford the crude 

product as a yellow oil, which was purified by flash column chromatography (Rf = 0.33, 4:1, 

hexane:EtOAc) to give the product 93 as a colourless oil (8.46 g, 98%). 

 [α]D
22: +3.6 (c 1 in CHCl3)  

�max:  (film)/cm-1 3071 (Ar CH), 3049 (Ar CH), 2931 (CH), 2878 CH) 1756 (C=O); 

�H: (300 MHz, CDCl3) 1.05 (9H, s, C(CH3)3, 1.57-1.72 (7H, stack, =C(CH3)2 and 

CHCHHCH2) 1.97-2.07 (1H, m, CHCHHCH2), 3.61 (1H, dd, J 15.4 and 8.3, NCHH), 3.70 

(2H, t, J 5.8 CH2OSi), 3.85-3.93 (1H, m CHHOCO) 4.00-4.08 (2H, stack, CH and NCHH), 

4.31 (1H, t, J 8.5, CHHOCO), 5.51 (1H, m,  =CH), 7.37-7.46 (6H, m, Ar CH), 7.61-7.64 (4H, 

m Ar CH) 

�C: (75 MHz, CDCl3) 17.9 (=CCH3), 19.0 (SiC(CH3)3, 25.7 (=CCH3), 26.7 (SiC(CH3)3, 34.6 

(CHCH2CH2), 39.8 (NCH2), 51.2 (NCH), 60.2 (OCH2Si), 67.9 (CH2OCO), 118.3 (=CH), 

127.8 (Ar CH), 129.9 (Ar CH), 132.9 (Cq) 135.4 (Ar CH), 137.0 (Cq), 158.1 (C=O) 

m/z: (ES)+ 460.3 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 460.2297. C26H35NNaO3Si requires M 460.2284] 

N
O

O

TBDPSO



 131 

(4S)-(2-Hydroxy-ethyl)-3-(3-methylbut-2-enyl)oxazolidin-2-one (94) 

 
TBAF Deprotection 

TBAF (1 M soln. in THF, 5.81 mL, 5.81 mmol) was added dropwise over 2 

min to a solution of 93 (2.54 g, 5.81 mmol) in THF (60 mL) cooled to 0 °C. 

The reaction was allowed to warm to room temperature and stirred overnight 

before the solvent was removed in vacuo. Water (50 mL) was added and the aqueous phase 

was extracted with EtOAc (4 x 50 mL). The combined organic phases were washed with brine 

(50 mL), dried over MgSO4 and concentrated in vacuo to afford the crude product as a red oil, 

which was purified by flash column chromatography (Rf = 0.29, hexane:EtOAc, 1:4) to give 

the product 94 as a colourless oil (1.08 g, 94%). 

NaH Cyclisation 

NaH (60 % dispersed in mineral oil, 8 mg, 0.39 mmol) was added to a solution of diol 103 (48 

mg, 0.20 mmol) in THF (4 mL) cooled to 0 °C. The solution was slowly warmed to reflux and 

stirred for a further 2 h. The solution was allowed to cool to room temperature before being 

quenched by the addition of water (4 mL). The solvent was removed in vacuo and the aqueous 

phase extracted with EtOAc (4 x 5 mL). The combined organic phases were washed with 

brine (10 mL), dried over MgSO4 and concentrated in vacuo to afford the crude product as a 

yellow oil, which was purified by flash column chromatography (Rf = 0.29, hexane:EtOAc, 

1:4) to give the product as a colourless oil 94 (28 mg, 70%). 

N
O

O
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NaBH4 Reduction and Cyclisation 

Powdered NaBH4 (9.8 g, 0.318 mol) was added in portions over 30 min to a stirred solution of 

ester 104 (47.9 g, 0.159 mol) in THF:EtOH (3:1, 400 mL) cooled to 0 °C, which resulted in 

gas evolution. The resulting solution was allowed to warm to room temperature and stirred for 

2 h before being warmed to reflux for a further 4 h. The solution was allowed to cool to room 

temperature before being cooled to 0 °C and quenched by the addition of saturated aqueous 

solution of NH4Cl (200 mL), which generated a white precipitate. The reaction mixture was 

filtered and the filter cake washed with EtOH (3 x 50 mL). The combined filtrates were 

concentrated to 1/5 in volume in vacuo and then diluted with EtOAc (300 mL) and water (300 

mL). The organic phase was separated and the aqueous phase was further extracted with 

EtOAc (4 x 300 mL). The combined organic phases were washed with water (400 mL) and 

brine (400 mL) before being dried over MgSO4 and concentrated in vacuo to afford the 

product 94 as a colourless oil (28.4 g, 90%).  

[α]D
22: -23.2 (c 1 in CHCl3) 

�max: (film)/cm-1 3415 (OH), 2929 (CH), 1729 (C=O), 1026 (C-O) 

�H: (300 MHz, CDCl3) 1.60-1.73 (7H, stack, =C(CH3)2 and CHCHHCH2) 1.91-2.02 (1H, m, 

CHCHHCH2), 2.63 (1H, br s, OH), 3.60-3.76 (3H, stack, CHHOH, NCHH and NCH), 3.82-

3.91 (1H, m, CHCHHOH), 3.97-4.01 (1H, m, NCHH), 4.07 (1H, m, CHHOCO), 4.39 (1H, t, 

J 8.8 CHHOCO) 5.08-5.13 (1H, m, =CH) 

�C: (75 MHz, CDCl3) 17.9 (=CCH3), 25.6 =CCH3), 34.4 CHCH2CH2), 39.8 (NCH2), 53.4 

(NCH), 58.6 (CH2OH), 68.0 (CH2OCO), 118.1 (=CH), 137.2 (Cq), 158.5 (C=O) 

m/z: (ES)+ 222.1 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 222.1102. C10H17NNaO3 requires M 222.1106] 
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(4S)-(2-Oxoethyl)-N-(3-methylbut-2-enyl)-2-oxazolidinone (95) 

 
A solution of DMSO (30.5 mL, 0.429 mol) in CH2Cl2 (43 mL) was added 

dropwise over 20 min via a dropping funnel to a solution of oxalyl chloride 

(18.7 mL, 0.214 mol) in CH2Cl2 (240 mL) cooled to -78 °C resulting in 

considerable gas evolution. The resulting mixture was stirred for a further 5 

min before a solution of alcohol 94 (28.4 g, 0.143 mol) in CH2Cl2 (240 mL) was added 

dropwise over 30 min via a dropping funnel equipped with a cold jacket cooled to -78 °C. The 

dropping funnel was washed with extra portions of CH2Cl2 (3 x 5 mL) to complete the 

transfer. The solution was stirred for a further 15 min before Et3N (100 mL, 0.715 mol) was 

added dropwise over 15 min via a dropping funnel and the resulting solution was stirred for a 

further 20 min at -78 °C before being allowed to warm 0 °C, which resulted in gas evolution. 

The reaction was quenched by the addition of a saturated aqueous solution of NH4Cl (250 

mL). The organic phase was separated and the aqueous phase further extracted with CH2Cl2 

(3 x 250 mL). The combined organic phases were washed with water (250 mL) and brine (250 

mL) before being dried over MgSO4 and in concentrated in vacuo to give the aldehyde 95 as a 

colourless oil (26.8 g, 95%). 

Rf : 0.49 (hexane:EtOAc, 1:3) 

[α]D
22 :-25.2 (c 1 in CHCl3) 

�max: (film)/cm-1 3019 (=CH), 2972 (CH), 2927 (CH), 1742 (C=O) 

�H: (300 MHz, CDCl3) 1.61 (3H, s, CH3), 1.66 (3H, s, CH3), 2.65 (1H, dd, J 18.6 and 9.1, 

CHHCHO), 2.98 (1H, dd, J 18.6 and 3.8, CHHCHO), 3.58 (1H, dd, J 15.5 and 7.7, NCHH), 

3.82 (1H, dd, J 8.8 and 6.4, CHHO), 3.93 (1H, dd, J 15.5 and 6.3, NCHH), 4.06-4.16 (1H, m, 

NCH), 4.47 (1H, t, J 8.8, CHHO), 5.02-5.08 (1H, m, =CH), 9.71 (1H, s, CHO) 

N
O

O

O
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�C: (75 MHz, CDCl3) 17.7 (CH3), 25.5 (CH3), 40.0 (NCH2), 46.6 (CH2CHO), 49.7 (NCH), 

67.4 (CH2OCO), 117.9 (=CH), 137.2 (Cq), 157.5 (OC=O), 198.7 (HCO); 

m/z: (ES)+ 252.2 (100%, [M+MeOH+Na]+), 220.1 (40, [M+Na]+).  

HRMS: [Found: (M+Na)+ 220.0945. C10H15NNaO3 requires M 220.0950] 

 

(6S, 7R, 8aS)-7-Hydroxy-6-(prop-1-en-2-yl)tetrahydro-1H-oxazolo[3,4-a]pyridin-3(5H)-

one (96) and (6S, 7R, 8aS)-6-(2-Chloropropan-2-yl)-7-hydroxytetrahydro-1H-oxazolo 

[3,4-a] pyridin-3(5H)-one (97) 

 
Concentrated HCl cyclisation 
 
Concentrated HCl (37 %, 0.13 mL, 1.52 mmol) was 

added to a solution of aldehyde 95 (100 mg, 0.51 mmol) 

in CH2Cl2 (10 mL) at -78 oC. The resulting mixture was 

stirred at -78 oC for 16 h, before being quenched by the addition of water (10 mL). The 

organic layer was separated was the aqueous phase further extracted with CH2Cl2 (3 x 10 

mL). The combined organic phases were washed with brine (10 mL), dried over MgSO4 and 

concentrated in vacuo to afford the crude product as a white crystalline solid, which was 

purified by flash column chromatography (Rf = 0.28, 1:3, hexane:EtOAc) to afford piperidines 

cis-alkene 96 and cis-chloride 97 as an inseparable mixture in a 2:1 ratio as a white crystalline 

solid (70 mg, 76 %). 

�max: (film)/cm-1 3445 (OH), 3028 (=CH), 2972 (CH), 2913 (CH), 1735 (C=O), 760 (C-Cl) 

�H: (300 MHz, CDCl3) 1.41-1.51 (1H from cis-Cl, m, CHHCHOH), 1.56 (1H from cis, t, J 

12.5, CHHCHOH), 1.67 (3H from cis-Cl, s, CH3), 1.69 (3H from cis-Cl, s, CH3), 1.72-1.75 

(1H from cis-Cl, m, NCH2CH), 1.78 (3H from cis, s, CH3), 1.92 (1H from cis, s, OH), 2.00-

N

OH

O
O

N

OH

O
O
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2.05 (1H from cis-Cl, m, CHHCHOH), 2.11 (1H from cis, dt, J 12.5 and 3.7, CHHCHOH), 

2.18 (1H from cis, dd, 12.4 and 4.5, NCH2CH), 2.92 (1H from cis-Cl, br s, OH), 3.25 (1H 

from cis, t, J 12.6, NCHH), 3.40-3.42 (1H from cis-Cl, m, NCHH), 3.67 (1H from cis, dd, J 

12.6 and 4.7, NCHH), 3.85-3.95 (1H from cis and 2H from cis-Cl, stack, CHHO from cis, 

CHHO from cis-Cl and NCHH from cis-Cl), 4.03-4.20 (2H from cis and 1H from cis-Cl, 

stack, NCH and CHOH from cis, NCH cis-Cl), 4.37-4.43 (1H from cis and 1H from cis-Cl, 

stack, CHHO from both), 4.42 (1H from cis-Cl, t, J 8.2 CHHO), 4.45 (1H from cis-Cl, br s, 

CHOH), 4.75 (1H from cis, s, =CHH), 5.02 (1H from cis, s, =CHH) 

�C: (75 MHz, CDCl3) 22.8 (CH3 from cis), 31.6 (CH3 from cis-Cl), 31.9 (CH3 from cis-Cl), 

36.0 (CH2CHOH from cis), 37.6 (NCHCH2 from cis-Cl), 37.9 (NCH2 from cis-Cl), 38.6 

(NCH2 from cis), 45.8 (NCH2CH from cis), 48.7 (NCH from cis-Cl), 48.8 (NCH from cis), 

50.1 (NCH2CH from cis-Cl), 64.1 (CHOH from cis), 65.0 (CHOH from cis-Cl), 67.4 

(CH2OCO from cis), 67.5 (CH2OCO from cis-Cl), 71.3 (CCl), 112.5 (=CH2), 143.1 (C=CH2), 

157.1 (OCO) 

m/z: (ES)+ 258.1 (12%, [M(37Cl)+Na]+ for cis-Cl), 256.1 (100%, [M(35Cl)+Na]+ for cis-Cl), 

256.1 (50%, [M+Na]+ for cis)  

 

(6S, 7R, 8aS)-6-(2-Chloropropan-2-yl)-7-hydroxytetrahydro-1H-oxazolo[3,4-a] pyridin-

3(5H)-one (97) 

 
Anhydrous HCl cyclisation 

Anhydrous HCl gas was bubbled through a gas dispersion tube and into a 

solution of aldehyde 95 (26.8 g, 0.136 mol) in CH2Cl2 (500 mL) cooled to 

-78 °C, before passing through a gas scrubber containing water, for 10 min. The solution was 

N

OH

O
O

Cl
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stirred at -78 °C for 2 h before being allowed to warm slowly to 0 °C. The reaction was 

quenched by the addition of water (500 mL) and the organic layer was separated. The aqueous 

phase was further extracted with EtOAc (3 x 500 mL) and the combined organic phases were 

washed with brine (500 mL), dried over MgSO4 and concentrated in vacuo to afford the crude 

product that was recrystallised from hexane:EtOAc, filtered and the filter cake washed with 

portions of ice cold EtOAc (3 x 20 mL) to give the product  as a white crystalline solid (31.1 

g, 98%). 

Rf : 0.29 (hexane:EtOAc, 1:3) 

[�]D
20: -24.4 (c 1.0 in CHCl3) 

mp: 124-125 °C (from hexane:EtOAc)  

µ: (Found: C, 51.71; H, 7.09; N, 5.87. C10H16ClNO3 requires C, 51.40; H, 6.90; N, 5.99%) 

�max: (film)/cm-1 3431 (OH), 2974 (CH), 1748 (C=O), 1088 (C-O), 758 (C-Cl) 

�H: (300 MHz, CDCl3) 1.36-1.53 (1 H, m, NCHCHHCH), 1.63-1.74 (7 H, stack, (CH3)2 and 

NCH2CH), 2.03 (1 H, dt, J 13.4 and 3.9, NCHCHHCH), 2.72 (1 H, br s, OH), 3.40 (1 H, t, J 

12.5, NCHH), 3.80-3.99 (2 H, stack, CHHO and NCHH), 4.07-4.22 (1 H, m, NCH),), 4.40 (1 

H, t, J 8.2, CHHO), 4.56 (1H, br s, CHOH) 

�C: (75 MHz, CDCl3) 31.8 (CH3), 32.1 (CH3), 37.8 (NCH2), 38.1 (NCHCH2CH), 48.9 (NCH), 

50.3 (NCH2CH), 65.2 (CHOH), 67.72 (CH2O), 71.5 (CCl), 157.4 (C=O) 

m/z: (ES)+ 258.0 (10%, [M(37Cl)+Na]+), 256.0 (100, [M(35Cl)+Na]+), 220.1 (40) 

HRMS: [Found: (M+Na)+ 256.0719 C10H16ClNNaO3 requires M 256.0716] 

X-ray: See Appendix 
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(6S, 7R, 8aS)-7-Hydroxy-6-(prop-1-en-2-yl)tetrahydro-1H-oxazolo[3,4-a]pyridin-3(5H)-

one (96) and (6S, 7S, 8aS)-7-Hydroxy-6-(prop-1-en-2-yl)tetrahydro-1H-oxazolo[3,4-

a]pyridin-3(5H)-one (98) 

 
MeAlCl2 Cyclisation 

MeAlCl2 (1 M in hexanes, 1.12 mL, 1.12 mmol) was 

added dropwise over 30 s to a solution of aldehyde 95 

(110 mg, 0.56 mmol) in CH2Cl2 (20 mL) cooled to -78 °C. The reaction was stirred for a 

further 16 h at -78 °C before being quenched with water (20 mL). After warming to room 

temperature the organic phase was separated and the aqueous phase was further extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were washed with brine (10 mL), dried 

over MgSO4 and concentrated in vacuo to afford the crude product as a white crystalline 

solid, which was purified by flash column chromatography (Rf = 0.28, hexane:EtOAc, 1:3) to 

afford cis piperidine 96 as a white crystalline solid (94 mg, 85%), data vide infra. Further 

elution (Rf = 0.14) afforded trans piperidine 98 as a white crystalline solid (15 mg, 14%). 

[�]D
22: +4.8 (c 1.0 in CHCl3) 

mp: 112-113 °C (from hexane:EtOAc) 

µ: (Found: C, 60.96; H, 7.77; N, 7.33. C10H15NO3 requires C, 60.90; H, 7.67; N, 7.10%) 

�max: (film)/cm-1 3431 (OH), 3018 (=CH), 2974 (CH), 1748 (C=O), 1095 (C-O) 

�H: (300 MHz, CDCl3) 1.38 (1H, q, J 11.7, CHHCHOH), 1.73 (3H, s, CH3), 2.03-2.19 (2H, 

stack, CHHCHOH and NCH2CH), 2.74 (1H, dd, J 13.6 and 11.7, NCHH), 3.67 (1H, td, J 10.7 

and 4.2, CHOH), 3.73-3.80 (1H, m, NCH), 3.84 (1H, dd, J 13.6 and 4.9, NCHH), 3.93 (1H, 

N
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dd, J 8.6 and 5.1, CHHO), 4.37 (1H, t, J 8.6, CHHO), 4.91 (1H, s, =CHH), 5.01 (1H, s, 

=CHH) 

�C: (75 MHz, CDCl3) 20.3 (CH3), 37.8 (CH2COH), 43.4 (NCH2), 51.4 (NCH2CH), 53.0 

(NCH), 67.0 (CH2O), 68.2 (CHOH), 115.0 (=CH2), 141.9 (C=CH2), 156.8 (C=O) 

m/z: (ES)+ 220.1 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 220.0955 C10H15NNaO3 requires M 220.0950] 

X-ray: See Appendix 

 

(6S, 7R, 8aS)-7-Hydroxy-6-(prop-1-en-2-yl)tetrahydro-1H-oxazolo[3,4-a]pyridin-3(5H)-

one (96) 

 
HCl Elimination 

Chloride 97 (15.01 g, 64.3 mmol) was added to a stirred solution of NaOAc 

(5.28 g, 64.3 mmol) in AcOH (215 mL). The resulting solution was heated at 

reflux for 10 min, which resulted in a white precipitate. The reaction mixture 

was poured into water (200 mL) and the aqueous phase extracted with EtOAc (4 x 200 mL). 

The combined organic phases were washed with a saturated aqueous solution of NaHCO3 

(200 mL), water (200 mL) and brine (200 mL) before being dried over MgSO4 and 

concentrated in vacuo to afford the crude product as an orange solid. The crude product was 

purified by flash column chromatography (Rf = 0.28, hexane:EtOAc, 1:3) to afford cis 

piperidine 96 as a white crystalline solid (10.29 g, 85%).  

[�]D
22: -85.2 (c 1.0 in CHCl3) 

mp: 121-122 °C (from hexane:EtOAc) 

µ: (Found: C, 60.91; H, 7.64; N, 7.20. C10H15NO3 requires C, 60.90; H, 7.67; N, 7.10%) 

N

OH

O
O
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�max: (film)/cm-1 3445 (OH), 3082 (=CH), 2972 (CH), 1730 (C=O), 1098 (C-O) 

�H: (300 MHz, CDCl3) 1.52-1.68 (1H, m, NCHCHH), 1.79 (3H, s, CH3), 1.84 (1H, br s, OH), 

2.12 (1H, dt J 13.2 and 3.7, NCHCHH), 2.20 (1H, dd, J 12.5 and 4.8, NCH2CH), 3.26 (1H, t, 

J 12.5, NCHH), 3.68 (1H, dd, J 12.5 and 4.8, NCHH), 3.90 (1H, dd, J 8.5 and 5.5, CHHO), 

4.03-4.14 (2H, stack, NCH and CHOH), 4.41 (1H, t, J 8.5, CHHO), 4.75 (1H, s, =CHH), 5.02 

(1H, s, =CHH)  

�C: (75 MHz, CDCl3) 22.6 (CH3), 35.9 (CH2COH), 48.6 (NCH2), 45.8 (NCH2CH), 58.8 

(NCH), 64.3 (CHOH), 67.6 (CH2O), 112.9 (=CH2), 143.7 (C=CH2), 157.8 (C=O) 

m/z: (ES)+ 252.1 (10%, [M+MeOH+Na]+), 220.1 (100, [M+Na]+) 

HRMS: [Found: (M+Na)+ 220.0947. C10H15NNaO3 requires M 220.0950] 

X-ray: See Appendix 

 

(6S, 7S, 8aS)-6-(2-Chloropropan-2-yl)-7-hydroxytetrahydro-1H-oxazolo[3,4-a] pyridin-

3(5H)-one (99) 

 
Anhydrous HCl gas was bubbled through a solution of piperidine 98 (132 

mg, 0.67 mmol) in CH2Cl2 (7 mL) cooled to -78 °C for 15 min. The 

reaction was stirred at -78 °C for 4 h before being allowed to warm to 

room temperature and stirred for a further 4 h. The reaction was quenched 

by the addition of water (10 mL) and the organic layer was separated. The aqueous phase was 

further extracted with CH2Cl2 (3 x 10 mL) and the combined organic phases were washed 

with brine (10 mL), dried over MgSO4 and concentrated in vacuo to afford the product 99 as a 

white crystalline solid (156 mg, quant.). 

Rf : 0.26 (hexane:EtOAc, 3:1) 

N

OH

O
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[�]D
20: +22.4 (c 1.0 in CHCl3) 

mp: 91-92 °C (from hexane:EtOAc) 

�H: (300 MHz, CDCl3) 1.52 (1 H, q, J 12.0, NCHCHHCH), 1.70 (3H, s, CH3), 1.82-1.75 (4 H, 

stack, CH3 and NCH2CH), 2.13 (1 H, dt, J 12.0 and 3.8, NCHCHHCH) 2.65 (1 H, br s, OH), 

2.75 (1 H, dd, J 13.6 and 11.5, NCHH), 3.71-3.83 (1 H, m, NCH), 3.90-4.03 (2 H, stack, 

CHHO and CHOH), 4.10 (1 H, dd, J 13.6 and 5.0, NCHH), 4.39 (1 H, t, J 8.3, CHHO) 

�C: (75 MHz, CDCl3) 32.2 (CH3), 33.1 (CH3), 39.8 (NCH2), 41.5 (NCHCH2CH), 52.2  (NCH), 

52.8 (NCH2CH), 67.1 (CH2O), 70.2(CHOH), 71.9 (CCl), 157.1 (C=O) 

m/z: (ES)+ 256.1 (100, [M(35Cl)+Na]+), 220.1 (37) 

HRMS: [Found: (M+Na)+ 256.0721. C10H16ClNNaO3 requires M 256.0716] 

 

(S)-N-(3-methylbut-2-enyl)aspartic acid dimethyl ester (105) and (S)-bis(3-methylbut-2-

en-1-yl)aspartic acid dimethyl ester (111) 

LiOH (144 mg, 6.03 mmol) was added 

to a solution of dimethyl L-asparticester 

hydrochloride 110 (567 mg, 2.87 mmol) 

in DMF (15 mL) containing activated 4 

Å MS (1.6 g) at 0 °C. The resulting solution was allowed to warm to room temperature and 

stirred for a further 30 min. Prenyl bromide (0.33 mL, 2.87 mmol) was added and the 

resulting mixture was stirred for a further 5 h before being quenched with water (30 mL). The 

reaction was filtered and washed with Et2O (3 x 5 mL). The organic layer was separated and 

the aqueous phase was further extracted with Et2O (3 x 15 mL). The combined organic phases 

CO2Me

CO2Me
H
N

CO2Me

CO2MeN



 141 

were washed with brine (30 mL) and dried over MgSO4 and concentrated in vacuo to afford 

the crude product as a pale yellow oil, which was purified by flash column chromatography 

(Rf = 0.65, hexane:EtOAc, 4:1) to give the tertiary amine 111 as a colourless oil (295 mg, 

34%). 

[α]D
25: -74.4 (c 1 in CHCl3) 

�max: (film)/cm-1 2951 (C-H), 2915 (C-H), 2855 C-H), 1735 (C=O), 1436, 1164 (C-O) 

�H: (300 MHz, CDCl3) 1.36 (6H, s, =C(CH3)), 1.52 (6H, s, =C(CH3)), 2.54 (1H, dd, J 12.0 

and 6.8, CHHCO2), 2.83 (1H, dd, J 12.0 and 6.8, CHHCO2), 3.15 (4H, d, J 6.0, CH2N), 3.60 

(3H, s, OCH3), 3.65 (3H, s, OCH3), 3.98 (1H, t, J 6.8, NCH), 5.10-5.20 (2H, m, =CH) 

�C: (75 MHz, CDCl3) 20.3 (=C(CH3)), 28.2 (=C(CH3)), 36.7 (CH2CO2), 45.2 (=CCH2), 53.6 

(OCH3), 53.9 (OCH3), 60.6 (NHCH), 124.5 (=CH), 137.5 (=C(CH3)2), 171.4 (C=O), 174.6 

(C=O)  

m/z: (ES)+ 320.1 (100%, [M+Na]+)  

HRMS: [HRMS Found: (M+Na)+ 320.1844. C16H27NNaO4 requires M 320.1838] 

Further elution (Rf = 0.20) gave the secondary amine 105 as a colourless oil (105 mg, 16%). 

[α]D
24: +55.6 (c 1 in CHCl3)  

�max: (film)/cm-1 3560 (NH), 2983 (CH), 2956 (CH), 1740 (C=O) 

�H: (300 MHz, CDCl3) 1.56 (3H, s, =C(CH3)), 1.64 (3H, s, =C(CH3)),  2.01 (1H, br s, NH), 

2.63 (2H, t, J 6.5 CH2N), 3.07 (1H, dd, J 12.8 and 7.0, CHHCO2), 3.19 (1H, dd, J 12.8 and 

7.0, CHHCO2), 3.57 (1H, t, J 7.0, NHCH), 3.61 (3H, s, OCH3), 3.67 (3H, s, OCH3), 5.10-5.16 

(1H, m, =CH)  
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�C: (75 MHz, CDCl3) 17.6 (=C(CH3)), 25.5 (=C(CH3)), 37.6 (CH2COO), 45.2 (=CCH2), 

51.6 (OCH3), 51.9 (OCH3), 56.7 (NHCH), 121.9 (=CH), 135.1 (=C(CH3)2), 171.1 (C=O), 

174.0 (C=O)  

m/z: (ES)+ 252.1 (100%, [M+Na]+)  

HRMS: [HRMS Found: (M+Na)+ 252.1205. C11H19NNaO4 requires M 252.1212] 

 

(S)-N-3-Methyl-but-2-enylidene-aspartic acid dimethyl ester (113) 

 
3-methyl-but-2-enal (13.1 mL, 0.136 mol) was dropwise over 5 min to 

a solution of L-aspartic acid dimethyl ester 87 (20.0 g, 0.124 mol) in 

MeOH (400 mL). The resulting solution was stirred at room 

temperature overnight. The solvent was removed in vacuo to give the imine product 113 as a 

red oil (98% yield).  

[α]D
20: -8.8 (c 1 in CHCl3) 

�max: (film)/cm-1 2955 (CH), 1740 (C=O), 1676 (C=N), 1438 

�H: (300 MHz, CDCl3) 1.87 (3H, s, CCH3), 1.93 (3H, s, CCH3), 2.76 (1H, dd, J 16.7 and 7.7, 

CHCHH), 3.05 (1H, dd, J 16.7 and 5.9, CHCHH), 3.65 (3H, s, OCH3), 3.72 (3H, s, OCH3), 

4.27 (1H, dd, J  7.7 and 5.9, CHCH2), 6.00 (1H, d, J 9.5, (CH3)2C=CH), 8.25 (1H, d, J 9.5, 

N=CH) 

�C: (75 MHz, CDCl3) 18.8 (CCH3), 26.6 (CCH3), 37.5 (CHCH2), 51.7 (OCH3), 52.4 (OCH3), 

68.9 (CHCH2), 125.0 ((CH3)2C=CH), 149.7 ((CH3)2C=CH), 163.5 (N=CH), 171.2 (C=O), 

171.3 (C=O) 

m/z: (ES)+ 250.1 (100%, [M+Na]+), 228.1 (12, [M+H]+)  

HRMS: [Found: (M+Na)+ 250.1045. C11H17NNaO4 requires M 250.1055] 

CO2Me

CO2MeN



 143 

N-(3-methylbut-2-enyl)aspartic acid dimethyl ester (rac-105) 

 

Imine Reduction  

Imine 113 (23.6 g, 0.104 mol) in C2H4Cl2 (500 mL) was added via 

cannula to a solution NaBH(OAc)3 (44.1 g, 0.208 mol) in C2H4Cl2 (500 mL) cooled to 0 °C. 

The resulting solution was stirred for a further 1 h at 0 °C before being allowed to warm to 

room temperature and stirred for 3 days. The reaction was cooled to 0 °C before being 

quenched with a saturated aqueous solution of NaHCO3 (500 mL). The organic layer was 

separated and the aqueous phase was further extracted with CH2Cl2 (3 x 500 mL). The 

combined organic phases were washed with brine (500 mL) and dried over MgSO4 before 

being concentrated in vacuo to afford the crude product as a yellow oil, which was purified by 

flash column chromatography (Rf = 0.20, 4:1, hexane:EtOAc) to afford the product (rac)-105 

as a colourless oil (70%). 

Conjugate Addition 

Et3N (191 mL, 1.37 mol) was added over 10 min to a stirred solution prenyl amine 

hydrochloride 137 (33.2 g, 0.273 mol) cooled to 0 °C. The resulting solution allowed to warm 

to room temperature before dimethyl maleate (34.1 mL, 0.273 mol) was added and the 

reaction mixture was heated to 60 °C for 2 h. The reaction was allowed to cool to room 

temperature and quenched with water (500 mL). The aqueous phase was extracted with 

EtOAc (3 x 500 mL). The combined organic phases were washed with water (500 mL), brine 

(500 mL) and dried over MgSO4 before being concentrated in vacuo to afford the product 

(rac)-105 as a colourless oil (56.3 g, 90%). 

CO2Me

CO2Me
H
N
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�max: (film)/cm-1 3560 (NH), 2983 (CH), 2956 (CH), 1740 (C=O) 

�H: (300 MHz, CDCl3) 1.56 (3H, s, =C(CH3)), 1.64 (3H, s, =C(CH3)),  2.01 (1H, br s, NH), 

2.63 (2H, t, J 6.5 CH2N), 3.07 (1H, dd, J 12.8 and 7.0, CHHCO2), 3.19 (1H, dd, J 12.8 and 

7.0, CHHCO2), 3.57 (1H, t, J 7.0, NHCH), 3.61 (3H, s, OCH3), 3.67 (3H, s, OCH3), 5.10-5.16 

(1H, m, =CH)  

�C: (75 MHz, CDCl3) 17.6 (=C(CH3)), 25.5 (=C(CH3)), 37.6 (CH2COO), 45.2 (=CCH2), 

51.6 (OCH3), 51.9 (OCH3), 56.7 (NHCH), 121.9 (=CH), 135.1 (=C(CH3)2), 171.1 (C=O), 

174.0 (C=O)  

m/z: (ES)+ 252.1 (100%, [M+Na]+)  

HRMS: [HRMS Found: (M+Na)+ 252.1205. C11H19NNaO4 requires M 252.1212] 

 

(S)-N-Ethoxycarbonylaspartic acid dimethyl ester (106) 

 
 

NaHCO3 (158 g, 1.88 mol) was added in portions over 20 min to a 

stirred solution of the crude aspartic ester 110 (76.5 g) in water (700 

mL) cooled to 0 °C. Ethyl chloroformate (43 mL, 0.45 mol) was added 

over 20 min and the solution was allowed to warm to room temperature and stirred for a 

further 4 h, this produced a colourless oil that pooled at the bottom of the flask. The oil was 

separated and the aqueous phase was further extracted with EtOAc (4 x 500 mL). The 

combined organic phases were washed with brine (500 mL) and dried over MgSO4 before 

being concentrated in vacuo to afford the product 106 as a colourless oil (65.9 g, 75% over 2 

synthetic steps).  

Rf : 0.61 (hexane:EtOAc, 1:1) 

CO2Me

CO2Me
H
N

EtO2C
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[α]D
23:  +38.4 (c 1.0 in CHCl3) (Lit.72  [α]D

24 +41.5 (c 4.65 in CHCl3)) 

�max: (film)/cm-1 3358 (NH), 2983 (CH), 2956 (CH), 1736 (C=O) 

�H: (300 MHz, CDCl3) 1.20 (3H, t, J 7.1, CH2CH3), 2.80 (1H, dd, J 17.1 and 4.6, CHCHH), 

2.98 (1H, dd, J 17.1 and 4.6, CHCHH), 3.65 (3H, s, OCH3), 3.72 (3H, s, OCH3), 4.08 (2H, q, 

J 7.1, CH3CH2), 4.58 (1H, m, CH) 5.65 (1H, d, J 8.2, NH)  

�C: (75 MHz, CDCl3) 14.4 (CH3CH2), 36.7 (CHCH2), 50.1 (NCH), 51.9 (OCH3), 52.7 

(OCH3), 61.2 (OCH2), 156.0 (NCO2Et), 172.0 (CO2Me)  

m/z: (ES)+ 256.1 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 256.0799. C9H15NNaO6 requires M 256.0797]  

 

(S)-N-Ethoxycarbonyl-aspartic acid bis(3-methylbut-2-enyl) ester (140) and (S)-N-

Ethoxycarbonyl-aspartic  acid 1-methyl 4-(3-methylbut-2-enyl) ester (141a) and (S)-N-

Ethoxycarbonyl-aspartic  acid 1-(3-methylbut-2-enyl) 4-methyl ester (141b) 

 

H
N

EtO2C

O

O

O
O

CO2Me
H
N

EtO2C

O

O

 

 

Cs2CO3 (425 mg, 1.30 mmol) was added in one portion to a stirred solution of carbamate 106 

(101 mg, 0.43 mmol) and TBAI (483 mg, 1.30 mmol) in DMF (4 mL). The resulting mixture 

was stirred for 15 min before prenyl bromide (0.15 mL, 1.30 mmol) was added to the 

solution. The reaction mixture was sonicated for 2 h before being stirred at rt for 48 h. The 

reaction was quenched by the addition of water (20 mL) and diluted with Et2O (10 mL) the 

CO2Me

H
N

EtO2C

O

O
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organic phase was separated and the aqueous phase further extracted with Et2O (3 x 10 mL). 

The combined organic fractions were washed with water (20 mL), brine (20 mL) and dried 

over MgSO4 before the solvent was removed in vacuo. The crude residue was purified by 

flash column chromatography (Rf = 0.40, hexane:EtOAc, 4:1) to give the bis-O-alkylated 

product 140 as a colourless oil (48 mg, 33%). 

�max: (film)/cm-1 3366 (NH), 2980 (CH), 1734 (C=O), 1517, 1212 

�H: (300 MHz, CDCl3) 1.21 (3H, t, J 7.0, CH2CH3), 1.68 (6H, s, CH=CCH3) 1.79 (6H, s 

=CCH3) 2.74 (1H, dd, J 17.0 and 4.4, CHCHH), 2.90 (1H, dd, J 17.0 and 4.4, CHCHH), 4.18 

(2H, q, J 7.0, CH2CH3), 4.52-4.63 (5H, stack, OCH2 and NCH), 5.35 (2H, t, J 7.4, 

CH=CCH3), 5.60 (1H, m, NH)  

�C: (75 MHz, CDCl3) 13.8 (CH2CH3), 17.3 (CH=CCH3), 26.0 (CH=CCH3), 36.2 (CHCH2), 

59.7 (NCH), 60.5 (CH2CH3), 61.2 (OCH2), 61.9 (OCH2), 117.3 (CH=CCH3), 117.4 

(CH=CCH3), 139.2 (CH=CCH3), 139.3 (CH=CCH3), 156.2 (NCO2Et), 170.1 (CO2Me)  

m/z: (ES)+ 364.2 (100%, [M+Na]+) 

Further elution (Rf = 0.31) gave the mono-O-alkylated products 141a and 141b as a colourless 

oil (73 mg, 59%) in a 1:1 mixture. (NMR data reported on the mixture). 

�max: (film)/cm-1 3364 (NH), 2977 (CH), 2934 (CH) 1734 (C=O), 1511, 1209 

�H: (300 MHz, CDCl3) 1.20 (6H, stack, CH2CH3), 1.67 (6H, stack, CH=CCH3) 1.78 (6H, 

stack, CH=CCH3) 2.75-2.92 (4H, stack, CHCHH), 3.62 (3H, s, OCH3), 3.74 (3H, s, OCH3), 

4.20 (4H, stack, CH2CH3), 4.85-4.72 (6H, stack OCH2 and NCH), 5.35 (2H, stack, 

CH=CCH3), 5.60 (2H, stack, NH)  

m/z: (ES)+ 310.1 (100%, [M+Na]+), 242.1(48, [M+Na-C5H8]
+ 
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(S)-N-Ethoxycarbonyl-3-methylbut-2-enyl aspartic acid dimethyl ester (104) 

Carbamation of 2o amino-ester 

Cs2CO3 (523 mg, 1.60 mmol) was added to a solution of secondary 

amine 105 (184 mg, 0.80 mmol) in MeCN (8 mL) cooled to 0 °C. The 

solution was stirred for 30 min before ethyl chloroformate (750 �L, 0.80 mmol) was added to 

the solution at 0 °C. The resulting solution was allowed to warm to room temperature and 

stirred for a further 4 h. The solvent was removed in vacuo and the resulting white solid was 

dissolved in water (10 mL). The aqueous phase was extracted with EtOAc (4 x 10 mL). The 

combined organic phases were washed with brine (10 mL), dried over MgSO4 and 

concentrated in vacuo to leave the product 104 as a colourless oil  (242 mg, quant.). 

Carbamate Alkylation 

Prenyl bromide 133 (36.0 mL, 0.310 mol) was added to a solution of carbamate 106 (60.1 g, 

0.258 mol) in DMF (650 mL) cooled to 0 °C. NaH (60% dispersion in mineral oil, 8.67 g, 

0.258 mol) was added in small portions over 2 h via a solid addition funnel to the stirred 

solution, gas evolution followed and a white precipitate fell out of solution as the reaction 

progressed. The reaction was stirred at 0 °C for a further 2 h before being quenched by the 

addition of water (600 mL). The solution was diluted with Et2O (300 mL) and the organic 

phase separated. The aqueous phase was further extracted with Et2O (3 x 300 mL) and the 

combined organic phases were washed with water (2 x 500 mL), brine (500 mL) and dried 

over MgSO4 before being concentrated in vacuo to give the crude product as a yellow oil. The 

crude product was split in half and purified in two portions by flash column chromatography 

(Rf = 0.35, hexane:EtOAc, 4:1) to give  as a colourless oil (62.9 g, 81%).  

CO2Me

CO2MeN
CO2Et
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 [α]D
21 : -76.8  (c 1 in CHCl3) 

�max: (film)/cm-1 2980 (CH), 2953 (CH), 1740 (C=O), 1704 (C=O) 

�H: (400 MHz, C2H2Cl4 at 100 °C) 1.20 (3H, t, J 7.1, CH3CH2), 1.65 (3H, s, =C(CH3)), 1.70 

(3H, s, =C(CH3)), 2.69 (1H, dd, J 16.4 and 6.8, CHCHHCO), 3.11 (1H, dd, J 16.4 and 6.8, 

CHCHHCO), 3.66 (3H, s, OCH3), 3.67 (3H, s, OCH3), 3.86 (1H, dd, J 15.4 and 6.7, NCHH), 

3.95 (1H, dd, J 15.4 and 6.7, NCHH), 4.10 (2H, q,  J 7.1, CH3CH2), 4.52 (1H, t, J 6.8, NCH), 

5.17 (1H, t,  J 6.7, =CH)  

�C: (100 MHz, C2H2Cl4 at 100 °C); 14.2 (CH3CH2), 17.4 (=CCH3), 25.2 (=CCH3), 35.4 

(NCH2), 45.6 (CHCH2CO), 51.3 (OCH3), 51.9 (OCH3), 56.3 (NCH), 61.3 (CH3CH2), 120.2 

(=CH), 135.3 (=C(CH3)2), 155.5 (OCON), 170.6 (CO2CH3), 170.9 (CO2CH3) 

m/z: (ES)+ 324.2 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 324.1430. C14H23NNaO6 requires M 324.1423] 

 

(S)-2-(Ethoxycarbonyl-3-methylbut-2-enylamino)-butan-1,4-diol (103) 

 
NaBH4 (59 mg, 1.56 mmol) was added in small portions over 5 min to a 

solution of carbamate ester 104 (100 mg, 0.31 mmol) in EtOH:THF 

(3:1, 4 mL)  cooled to 0 °C. The reaction was allowed to warm to room 

temperature and stirred for a further 5 h, before being quenched with water (5 mL). The 

solvent was removed in vacuo and the aqueous phase was extracted with EtOAc (4 x 5 mL). 

The combined organic phases were washed with brine (5 mL), dried over MgSO4 and 

evaporated in vacuo to afford a yellow oil, which was purified by flash column 

chromatography (Rf = 0.29, hexane:EtOAc, 1:4), to give the product 103 as a colourless oil 

(32 mg, 88%).  

N
CO2Et

OH
OH
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[α]D
23:  +8.0 (c 1 in CHCl3) 

�max: (film)/cm-1 3418 (OH), 2965 (CH), 2927 (CH), 1742 (C=O), 1736 (C=O) 

�H: (300 MHz, CHCl3) 1.23 (3H, t, J 7.0, CH3CH2), 1.64 (3H, s, =CCH3), 1.71 (3H, s, 

=CCH3), 1.71-1.86 (1H, m, CHCHHCO), 2.84-2.91 (1H, m, CHCHHCO), 3.45-3.75 (6H, 

stack, CHCH2OH, CH2CH2OH and NCH2), 4.01-4.07  (1H, m, NCH), 4.12 (2H, q, J 7.0, 

CH3CH2), 5.17 (1H, br s, =CH) 

�C: (75 MHz, CHCl3); 14.6 (CH3CH2), 17.8 (=CCH3), 25.7 (=CCH3), 29.7 (NCH2), 31.5 

(NCH2), 42.4 (CHCH2CH2), 55.9 (NCH), 58.9 (CH2OH), 61.8 (CH2OH), 64.0 (CH3CH2), 

121.2 (=CH), 134.9 (=C(CH3)2), 158.1 (C=O) 

m/z: (ES)+ 268.1 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 268.1522. C12H23NNaO4 requires M 268.1525] 

 

N-(Allyl)aspartic acid dimethyl ester (128) 

Allyl amine (40 µL, 1.00 mmol) was added to a solution of dimethyl 

maleate (125 µL, 1.00 mmol) in Et3N (139 µL, 1.00 mmol). The 

resulting mixture was heated to 40 °C for 10 min before being 

concentrated in vacuo to give the product 128 as a colourless oil (201 mg, quant.). 

�max: (film)/cm-1 3340 (N-H), 3079 (=C-H)), 2954 (C-H), 1738 (C=O), 1438, 1169 (C-O) 

�H: (300 MHz, CDCl3) 1.84 (1H, br s, NH), 2.64 (2H, t, J 6.3, CH2NH), 3.12 (1H, dd, J 13.9 

and 6.0 , CH2CO), 3.26 (1H, dd, J 13.9 and 6.0, CH2CO), 3.55-3.66 (4H, stack, CH3 and 

CHCH2), 3.68 (3H, s, CH3), 5.04 (1H, d, J 10.2, HHC=), 5.12 (1H, d, J 15.2, HHC=), 5.58-

6.06 (1H, m, =CH) 

CO2Me

CO2Me
H
N
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�C: (75 MHz, CDCl3) 37.9 (CH2CH), 50.6 (CH2NH), 51.8 (CH3), 52.1 (CH3), 56.7 (CHNH), 

116.5 (=CH2), 136.1 (=CH), 171.2 (C=O), 174.1 (C=O) 

m/z: (ES)+ 224.1 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+224.0891. C9H15NNaO4 requires M 224.0899] 

 

Prenyl bromide (133) 

 
PBr3 (43 mL, 0.24 mol) was added to a stirred solution of prenol (60 mL, 0.59 

mol) in Et2O (200 mL) cooled to 0 °C. The resulting solution was stirred for a 

further 30 min before being quenched with a saturated aqueous solution containing NaHCO3 

(200 mL) and diluted with Et2O (100 mL). The organic layer was separated and the aqueous 

layer extracted with Et2O (3 x 100 mL). The combined organic layers were washed with brine 

and dried over MgSO4 before the solvent was removed in vacuo at 20 °C to give prenyl 

bromide 133 as a colourless oil (72 g, 83%). This was used straight away or stored in the dark 

over silver wire under Ar at -25 °C for up to week before being used in the next step. 

�max: (film)/cm-1 2970, 2910, 2855, 1664, 1443, 1150, 980, 845, 760 

�H: (300 MHz, CDCl3) 1.73 (3H, s, CH3), 1.78 (3H, s, CH3), 4.02 (2H, d, J 8.2, CH2), 5.58 

(1H, t, J 8.2, CH) 

�C: (75 MHz, CDCl3) 17.0 (CH3), 25.2 (CH3), 29.1 (CH2), 120.2 (=CH), 139.4 (=Cq) 

 

 
 
 
Trityl amine (135) 
 
 

Br
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Aqueous ammonia (35% soln., 350 mL, 5.25 mol) was added in 4 portions 

over 10 min to a mechanically stirred solution of trityl chloride (97.5 g, 

0.35 mol) in CH2Cl2 (350 mL) cooled to 0 °C. The solution was allowed to 

warm to room temperature and stirred for a further 3 days. The organic 

layer was separated and the aqueous phase further extracted with CH2Cl2 (2x 200 mL). The 

combined organic layers were washed with water (300 mL) and brine (300 mL) before being 

dried over MgSO4. The solvent was removed in vacuo to give the crude product as a pale 

yellow solid. The crude product was recrystallised from EtOH to give the pure product 135 as 

a white crystalline solid (67.2 g, 74%). 

mp: 98-100 °C (from ethanol) (Lit.110 100-102 °C (from H2O)) 

�max: (film)/cm-1 2970, 2910, 2855, 1664, 1443, 1150, 980, 845, 760 

�H: (300 MHz, CDCl3) 2.48 (2H, br s, NH2), 7.25- 7.43 (15H, m, ArCH) 

�C: (75 MHz, CDCl3) 62.8 (CNH2), 125.5 (ArCH), 126.9 (ArCH), 127.1 (ArCH), 147.5 

(ArCq) 

m/z: (EI)+ 259 (20%, [M]+), 243 (40, [M-NH2]
+), 182 (100, [M-C6H5]

+)  

 
 
 
3-methyl-N-tritylbut-2-en-1-amine (136) 
 
 

K2CO3 (110 g, 0.798 mol) was added in 4 portions over 10 min to a stirred 

solution of trityl amine 136 (69 g, 0.266 mol) in DMF (670 mL) cooled to 

0 °C. Prenyl bromide (46 mL, 0.399 mol) was added over 10 min to the stirred suspension. 

The resulting solution was stirred at 0 °C for 1 h before being allowed to warm to room 

temperature and stirred for a further 6 h. The reaction was quenched with H2O (1 L) and the 

H2N

NHTr
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aqueous layer was extracted with Et2O (3 x 600 mL). The combined organic layers were 

washed with H2O (2 x 500 mL) and brine (500 mL) before being dried over MgSO4. The 

solvent was removed in vacuo to give the crude product 136 as a pale yellow oil (87 g), which 

was used in the next step without further purification. 

�max: (film)/cm-1 3365 (NH), 3047, 3018, 2855, 1596, 1575, 1448, 1444, 1212, 844, 766, 696 

�H: (300 MHz, CDCl3) 1.53 (3H, s, CH3), 1.75 (3H, s, CH3), 2.78 (2H, d, J 8.0, CH2), 5.42 

(1H, t, J 8.0, CH), 7.15-7.23 (3H, ArCH), 7.24-7.31 (6H, m, ArCH), 7.48-7.55 (6H, m, 

ArCH) 

�C: (75 MHz, CDCl3) 22.4 (CH3), 30.2 (CH3), 48.1 (CH2), 119.4 (CH=), 135.2 (ArCH), 135.3 

(ArCH), 144.3 (Cq), 148.5 (Cq) 

m/z: (ES)+ 350.2 (81%, [M+Na]+), 243.1 (100) 

HRMS: [Found: (M+Na)+ 350.1879. C24H25NNa requires M 350.1885] 

 

2-(3-methylbut-2-enyl)isoindoline-1,3-dione (138) 

 
Prenyl bromide 133 (50.0 g, 0.335 mol) was added over 2 min to a 

stirred solution of potassium phthalimide (68.4 g, 0.369 mol) in DMF 

(250 mL) cooled to 0 °C, this resulted in the generation of a white 

precipitate. The solution was allowed to warm to room temperature and stirred for a further 30 

min. The reaction was diluted with water (500 mL) and the aqueous phase extracted with 

Et2O (4 x 250 mL). The combined organic phases were washed with 1 M NaOH (250 mL), 

water (250 mL) and brine (250 mL) before being dried over MgSO4 and the solvent removed 

in vacuo to give the product 138 as a white crystalline solid (70.7 g, 98%). 

Rf : 0.44 (hexane:EtOAc, 3:1) 

N

O

O
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mp: 96-98 °C (from CHCl3) (Lit.111 100 °C (from MeOH)) 

�max: (film)/cm-1 2978 (CH), 2941 (CH), 2923 (CH), 1767 (C=O), 1699, 1425, 1096, 943, 718 

�H: (300 MHz, CDCl3) 1.61 (3H, s, CH3), 1.73 (3H, s, CH3), 4.25 (2H, d, J 7.9, CH2), 5.22 

(1H, t, J 7.9, CH), 7.58-7.67 (2H, ArCH), 7.71-7.79 (2H, m, ArCH) 

�C: (75 MHz, CDCl3) 18.2 (CH3), 25.9 (CH3), 36.1 (CH2), 118.6 (CH=), 123.4 (ArCH), 132.8 

(Cq), 134.1 (ArCH), 137.5 (Cq), 166.9 (C=O) 

m/z: (ES)+ 238.0 (100%, [M+Na]+), 182.2 (27) 

 
 
Prenyl amine hydrochloride (137) 
 
 

Phthalimide Cleavage 

Ba(OH)2.8H2O (234 g, 0.743 mol) was added in portions over 15 min to a 

stirred suspension of alkylated phthalimide 139 (64.0 g, 0.297 mol) in water (600 mL). The 

resulting solution was heated to reflux and the free amine extracted via steam distillation for 

16 h until the pH of the distillate was no longer alkaline, while the still pot is topped up with 

water equal to the volume of distillate removed. The alkaline distillate is then neutralised to 

pH 7 with 1M HCl and the distillate is then concentrated in vacuo to 1/10 th volume before 

MeOH (100 mL) is added and the solvent removed in vacuo to give the product 137 as a 

white amorphous solid upon standing (35.4 g, 98%). 

Trityl Cleavage 

Trifluoroacetic acid (3 mL) was added over 2 min to a stirred solution of alkylated trityl 

amine 136 (240 mg, 0.73 mmol) in CH2Cl2 (2 mL) cooled to 0 °C, resulting in a colour 

change from colourless to bright yellow. The solution was stirred for 10 min at 0 °C before 

NH2.HCl
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MeOH (10 mL) was added to the resulting solution over 10 min, resulting in a colour change 

from bright yellow to colourless. The solvent was removed in vacuo to give a yellow solid 

that was treated with concentrated HCl (2 mL, 2.19 mmol) in MeOH (8 mL) before the 

solvent removed in vacuo. The resulting residue was washed Et2O to precipitate a white solid, 

which was filtered from the mother liquid and washed with further portions of Et2O to give 

the product as a white amorphous solid 137 (83 mg, 94%). 

mp: 196-197 °C (from MeOH) (lit.112 200 °C (from EtOH))  

�max: (film)/cm-1 3424 (NH), 2977 (CH), 1671, 1596, 1449, 756, 706 

�H: (300 MHz, CD3OD) 1.71 (3H, s, CH3), 1.78 (3H, s, CH3), 3.53 (2H, d, J 8.2, CH2), 5.31 

(1H, t, J 8.2, CH) 

�C: (75 MHz, CD3OD) 17.4 (CH3), 25.2 (CH3), 37.5 (CH2), 116.1 (CH=), 141.4 (=Cq) 

 

(6S, 7S, 9S)-4-tert-Butoxycarbonyloxy-2-hydroxymethyl-5-isopropenylpiperidine-1-

carboxylic acid tert-butyl ester (143) and (6S, 7S, 9S)-7-Carbonic acid tert-butyl ester-6-

isopropenyl-hexahydro-oxazolo[3,4-a]pyridine-3-one (144)  

A solution of aqueous NaOH (6 M, 3 mL) was 

added to a solution of piperidine 96 (58 mg, 0.29 

mmol) in MeOH (6 mL). The reaction was heated 

to 95 °C for 16 h before the solvent was removed 

in vacuo. The resulting solid was dissolved in THF (6 mL) and cooled to 0 °C. (Boc)2O (128 

mg, 0.59 mmol) was added in one portion. The reaction was allowed to warm to room 

temperature and stirred for a further 4 h before the solvent was removed in vacuo. The 

Boc
N

BocO

OH

N

OBoc

O
O
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aqueous phase was extracted with EtOAc (4 x 5 mL) and the combined organic phases were 

washed with brine (5 mL), dried over MgSO4 and concentrated in vacuo to afford the crude 

product, which was purified by flash column chromatography (Rf = 0.38, hexane:EtOAc, 2:1) 

to afford piperidine 143 as colourless oil (17 mg, 16%). 

�max: (film)/cm-1 3447 (OH), 2979 (CH), 2931 (CH), 1743 (C=O), 1670 (C=O), 1424, 1366, 

1287, 1255, 1161, 1066 (C-O) 

�H: (400 MHz, CDCl3) 1.43 (9H, s, C(CH3)3), 1.46 (9H, s, C(CH3)3), 1.62 (1H, dt, J 14.1 and 

6.3, CHHCHOH), 1.75 (3H, s, =CCH3), 2.04 (1H, ddd, J 14.1, 6.3 and 3.8, CHHCHOH), 

2.16-2.19 (1H, m, CHOHCH), 3.50 (1H, dd, J 14.1 and 5.0, NCHH), 3.70 (1H, dd, J 14.1 and 

3.8, NCHH), 3.95 (1H, td, J 6.3 and 3.8, CHOH), 4.12 (1H, quin., J 6.3, NCH), 4.30 (2H, d, J 

6.3, OCH2), 4.85 (1H, s, =CHH), 4.88 (1H, s, =CHH) 

�C: (75 MHz, CDCl3) 20.0 (=CCH3), 27.8 (C(CH3)3), 28.4 (C(CH3)3), 30.4 (CH2CHOH), 40.7 

(NCH2) 49.2 (NCH2CH), 50.1 (NCH), 67.1 (CH2O), 67.2 (CHOH), 80.0 (C(CH3)3), 82.2 

(C(CH3)3), 112.9 (=CH2), 143.9 (C=CH2), 153.6 (C=O), 154.8 (C=O) 

m/z: (ES)+ 394.2 (100%, [M+Na]+).  

HRMS: [Found: (M+Na)+ 394.2215. C19H33NNaO6 requires M 394.2206] 

 

Further elution, Rf = 0.29, afforded piperidine 144 as a white crystalline solid (13 mg, 15%).   

mp: 171-173 °C (from hexane:EtOAc) 

�max: (film)/cm-1 2954 (CH), 2923 (CH), 2853 (CH), 1743 (C=O) 

�H: (400 MHz, CDCl3) 1.45 (9H, s, C(CH3)3),  1.53 (1H, q, J 11.8, NCHCHH), 1.74 (3H, s, 

=CCH3), 2.25 (1H, dt, J 11.8 and 3.8, NCHCHH), 2.35 (1H, dt, J 11.8 and 5.1, NCH2CH), 

2.83 (1H, dd, J 13.6 and 11.8, NCHH), 3.80-3.87 (1H, m, NCH), 3.92 (1H, dd, J 13.6 and 5.1, 
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NCHH), 3.96 (1H, dd, J 8.7 and 4.9, CHHO), 4.40 (1H, t, J 8.7, CHHHO), 4.77 (1H, dt, J 

11.8 and 3.8, CHO), 4.88 (1H, s, =CHH), 4.94 (1H, s, =CHH) 

�C: (75 MHz, CDCl3) 20.5 (=CCH3), 27.7 (C(CH3)3, 35.7 (NCHCH2),  43.9  (NCH2), 58.3 

(NCH2CH), 52.8 (NCH), 66.8 (CH2O), 63.6 (CHO), 82.6 (C(CH3)3, 114.6 (=CH2), 141.0 

(C=CH2), 152.8 (C=O), 156.6 (C=O) 

m/z: (ES)+ 320 (100%, [M+Na]+), 264.1 (40, [M+Na-C4H8]) 

HRMS: [Found: (M+Na)+ 320.1479. C15H23NNaO5 requires M 320.1474] 

 

(2S, 4R, 5S)-2-(hydroxymethyl)-5-isopropenylpiperidin-4-ol (145) 

 
NaOH (4.79 g, 0.120 mol) in water (15 mL) was added dropwise over 30 

s to a solution of piperidine 96 (2.36 g, 11.98 mmol) in MeOH (45 mL) 

cooled to 0 °C. The solution was allowed to warm to room temperature 

and then heated to 95 °C for 5 h. After cooling to room temperature the solvent was removed 

in vacuo and the resulting white solid was extracted with CH2Cl2 (20 mL), filtered and 

washed with further portions of CH2Cl2 (3 x 10 mL) before the solvent was removed in vacuo 

to afford the product 145 as hygroscopic white crystalline solid (2.05 g) which was used in 

the next step without any further purification.  

Rf : 0.20 (8:2, CHCl3:MeOH + 1% NH3(aq)) 

[α]D
20:  -20.0 (c 1 in CHCl3) 

mp: 106-107 °C (from EtOAc) 

�max: (film)/cm-1 3386 (OH), 3309 (NH), 2925 (CH), 1645 (C=C), 1446, 1216, 754 

�H: (300 MHz, CDCl3) 1.44-1.54 (1H, m, NCHCHHCH), 1.78 (3H, s, CH3) 1.85 (1H, dt, J 

14.0 and 2.9, NCHCHHCH), 2.23 (1H, br d, J 11.8, NCH2CH), 2.90 (1H, dd, J 12.1 and 4.0, 

H
N

HO

OH
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NCHH), 3.07 (1H, dd, J 12.1 and 11.8, NCHH), 3.12-3.18 (1H, m, NCH), 3.31 (3H, br s, 2 x 

OH and NH), 3.43 (1H, dd, J 11.0 and 7.4, CHHOH), 3.65 (1H, dd, J 11.0 and 3.3, CHHOH) 

4.10 (1H, br s, CHOH), 4.68 (1H, s, =CHH), 4.97 (1H, s, =CHH) 

�C: (75 MHz, CDCl3) 22.9 (=CCH3), 34.2 (NCHCH2CH), 43.2 (NCH2), 47.8 (NCH2CH), 51.8 

(NCH), 64.3 (CHOH), 65.6 (CH2O), 112.6 (C=CH2), 144.8 (C=CH2) 

m/z: (ES)+  194.4 (20%, [M+Na]+), 172.4 (90, [M+H]+), 154.4 (100) 

X-ray: See Appendix 

 

(2S, 4R, 5S)-4-hydroxy-2-(hydroxymethyl)-5-isopropenylpiperidine-1-carboxylic acid 

tertbutyl ester (146) 

 
Boc Protection  

(Boc)2O (2.62 g, 11.98 mmol) was added in one portion to a stirred 

solution of piperidine 145 (2.05 g) in THF (60 mL) cooled to 0 °C. The 

solution was allowed to warm to room temperature and stirred for a further 5 h before the 

solvent was removed in vacuo. The resulting residue was diluted with water and the aqueous 

phase was extracted with EtOAc (4 x 40 mL) and the combined organic phases were washed 

with brine (50 mL), dried over MgSO4 and concentrated in vacuo to afford the crude product, 

which was purified by flash column chromatography (Rf = 0.25, hexane:EtOAc, 1:3) to afford 

piperidine 146 as colourless oil (2.77 g, 86% over 2 synthetic steps). 

NaOH ring opening and BOC protection in situ 

NaOH (12.5 g, 312 mmol) in water (60 mL) was added over 2 min to a solution of piperidine 

96 (10.1 g, 52.0 mmol) in MeOH (120 mL) cooled to 0 °C. The solution was allowed to warm 

Boc
N

HO

OH
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to room temperature and then heated to 95 °C for 5 h. The solution was allowed to cool to 

room temperature before being cooled to 0 °C. The solution was neutralised to pH 7 with 

concentrated HCl. NaHCO3 (8.74 g, 104 mmol) was added to the stirred solution followed by 

(Boc)2O (13.6 g, 62.4 mmol) and the reaction allowed to warm to room temperature before 

being stirred overnight. The solvent was removed in vacuo and the aqueous phase was 

extracted with EtOAc (4 x  80 mL). The combined organic phases were washed with brine 

(100 mL), dried over MgSO4 and concentrated in vacuo to afford the crude product, which 

was purified by flash column chromatography (Rf = 0.25, hexane:EtOAc, 1:3) to afford 

piperidine 146 as colourless oil (12.7 g, 90%). 

[α]D
20:  -78.8 (c 1 in CHCl3) 

�max: (film)/cm-1 3420 (OH), 2974 (CH), 2930 (CH), 1668 (C=O), 1424, 1366, 1170 

�H: (300 MHz, CDCl3) 1.40 (9 H, s, C(CH3)3), 1.73-1.82 (5 H, stack, =CCH3 and 

NCHCH2CH), 2.06-2.26 (2H, stack, NCH2CH and OH), 3.32 (1H, dd, J 13.4 and 9.7, 

NCHH), 3.60-3.74 (3H, stack, CH2OH and NCHH), 3.75-3.87 (1H, m, CHOH), 4.04-4.13 

(1H, m, CHN), 4.24 (1H, br s, OH), 4.69 (1H, s, =CHH), 4.96 (1H, s, =CHH) 

�C: (75 MHz, CDCl3) 23.2 (=CCH3), 28.4 (C(CH3)3), 33.3 (NCHCH2CH), 44.8 (NCH2), 46.8 

(NCH2CH), 54.9 (NCH), 63.5 (CH2O), 64.8 (CHOH), 80.4 (C(CH3)3) 112.9 (C=CH2), 144.0 

(C=CH2) 155.4 (C=O) 

m/z: (ES)+  294.0 (100%, [M+Na]+), 238.0 (8, [M+Na-tBu]+) 

HRMS: [Found: (M+Na)+ 294.1677. C14H25NNaO4 requires M 294.1681] 

General Procedure 1: TBDPS/TBS Protection of 1° Hydroxyl  
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Et3N (l.2-2.5 eq) followed by DMAP (0.2 eq) were added to a stirred solution of the alcohol 

(1 eq) in CH2Cl2 (0.3-0.5 M). TBDPSCl/TBSCl (1-1.5 eq) was added dropwise over 1 min to 

the solution and stirred for a further 2 h before the reaction was quenched by the addition of 

water (10 mL). The organic layer was separated and the aqueous layer was further extracted 

with 3 x CH2Cl2. The combined organic layers were washed with brine and dried over MgSO4 

before the solvent was removed in vacuo to give the crude silyl ether product.   

 

(2S, 4R, 5S)-tert-Butyl 2-(((tert-butyldiphenylsilyl)oxy)methyl)-4-hydroxy-5(prop-1-en-2-

yl)piperidine-1-carboxylate (147a) 

 
Silyl ether 147a was prepared from: alcohol 146 (140 mg, 0.52 

mmol), Et3N (86 µL, 0.62 mmol), DMAP (13 mg, 0.10 mmol), 

TBDPSCl (161 µL, 0.62 mmol); in CH2Cl2 (2 mL) according to 

general procedure 1. Purification by flash column chromatography (Rf  = 0.34, hexane:EtOAc, 

5:1) gave the product as a colourless oil (202 mg, 77%). 

[α]D
19:  -45.6 (c 1 in CHCl3) 

�max: (film)/cm-1 3454 (OH), 3072 (=CH), 2961 (CH), 2932 (CH), 2858 (CH), 2363 (ArCH), 

1676 (C=O), 1590 (Ar C=C), 1428 (CH2-C=C), 1113 (C-O) 

�H: (500 MHz, CDCl3) 1.06 (9H, s, SiC(CH3)3), 1.40 (9H, s, OC(CH3)3), 1.75 (1H,  br s, OH), 

1.83 (3H, s, =CCH3), 1.86-2.08 (2H, m, CHCH2CH), 2.46 (1H, q, J 4.4, NCH2CH), 3.23 (1H, 

dd, J 14.0 and 4.4, NCHH), 3.66-3.82 (2H, m, CH2O), 4.00 (1H, dd, J 14.0 and 4.4, NCHH), 

4.04-4.10 (1H, m, CHOH), 4.27-4.38 (1H, m, NCH), 4.93 (1H, s, =CHH), 5.04 (1H, s, 

=CHH), 7.31-7.47 (6H, m, ArCH), 7.67 (4H, dd, J 1.7 and 7.4, ArCH) 

Boc
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�C: (125 MHz, CDCl3) 19.3 (SiC(CH3)3), 24.1 (=CCH3), 27.0 (SiC(CH3)3), 28.5 (OC(CH3)3), 

30.8 (NCHCH2CH), 42.7 (NCH2), 46.0 (NCH2CH), 52.1 (NCH), 64.1 (CH2O), 65.5 (CHOH), 

79.8 (OC(CH3)3) 114.7 (C=CH2), 127.8 (ArCH), 129.82 (ArCH), 133.4 (ArCq), 133.5 (ArCq), 

143.8 (C=CH2) 155.0 (C=O) 

m/z: (ES)+ 532.1 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 532.2867. C30H43NNaO4 Si requires M 532.2859] 

 

(2S, 4R, 5S)-tert-Butyl 2-(((tert-butyldimethylsilyl)oxy)methyl)-4-hydroxy-5-(prop-1-en-

2-yl)piperidine-1-carboxylate (147b) 

 
Silyl ether 147b was prepared from: alcohol 146 (130 mg, 0.48 mmol), 

Et3N (80 µL, 0.58 mmol), DMAP (12 mg, 0.10 mmol) and TBSCl (87 

mg, 0.58 mmol); in CH2Cl2 (2 mL) according to general procedure 1. 

Purification by flash column chromatography (Rf  = 0.36, hexane:EtOAc, 5:1) gave the 

product as a colourless oil (150 mg, 81%). 

�max: (film)/cm-1 2955 (CH), 2930 (CH), 2858 (CH), 1678 (C=O), 1419 (CH2-C=C), 1366, 

1253, 1120, 838 

�H: (300 MHz, CDCl3) 0.03 (6H, s, Si(CH3)2), 0.87 (9H, s, SiC(CH3)3), 1.41 (9H H, s, 

OC(CH3)3), 1.65 (1H,  br s, OH), 1.83 (3H, s, =CCH3), 1.86-2.01 (2H, m, CH2CHOH), 2.49 

(1H, q, J 4.4, NCH2CH), 3.28 (1H, dd, J 14.0 and 4.4, NCHH), 3.62-3.80 (2 H, m, CH2O), 

3.95 (1H, dd, J 14.0 and 4.4, NCHH), 4.07-4.22 (2H, stack, CHOH and NCH), 4.90 (1H, s, 

=CHH), 5.02 (1H, s, =CHH) 

Boc
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�C: (125 MHz, CDCl3) -5.4 (Si(CH3)2), 18.2 (SiC(CH3)3), 24.0 (=CCH3), 25.9 (SiC(CH3)3), 

28.4 (OC(CH3)3), 30.8 (CH2CHOH), 42.9 (NCH2), 45.8 (NCH2CH), 52.1 (NCH), 63.5 

(CH2O), 65.4 (CHOH), 79.6 (OC(CH3)3) 114.5 (C=CH2), 143.8 (C=CH2) 154.9 (C=O) 

m/z: (ES)+ 408.3 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 408.2549. C20H39NNaO4 Si requires M 408.2546] 

 

General procedure 2: Acylation of 2° hydroxyl 

 
An acyl chloride (1 eq) was added dropwise over 10 s to a solution of an alcohol (1 eq) in 

pyridine (0.2 M) cooled to 0 °C. The solution was allowed to warm to room temperature and 

stirred for a further 2 h before being quenched with a saturated aqueous solution of NaHCO3. 

The solution was extracted with 4 x CH2Cl2 before the combined organic fractions were 

washed with a solution of 0.1 M HCl, water, brine and dried over MgSO4. 

 

(2S, 4R, 5S)-tert-Butyl 4-acetoxy-2-(((tert-butyldiphenylsilyl)oxy)methyl)-5-(prop-1-en-2-

yl)piperidine-1-carboxylate (150a) 

 

Acetyl ester 150a was prepared from: alcohol 147a (90 mg, 0.18 

mmol), and acetyl chloride (13 µL, 0.18 mmol); in pyridine (1 mL) 

according to general procedure 2. Purification by flash column 

chromatography (Rf  = 0.34, hexane:EtOAc, 6:1) gave the product as a white crystalline solid 

(98 mg, quant). 

[α]D
20: -4.4 (c 1 in CHCl3) 
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mp: 73-75 °C (from hexane:EtOAc)  

µ: (Found: C, 69.66; H, 8.32; N, 2.83 C32H45NO5Si requires C, 69.65; H, 8.22; N, 2.54%) 

�max: (film)/cm-1 3075 (=CH), 2972 (CH), 2932 (CH), 2862 (CH), 1737 (C=O), 1695, (C=O), 

1423 (CH2-C=C), 1113 (C-O), 1040, 700 

�H: (300 MHz, CDCl3) 1.01 (9H, s, SiC(CH3)3), 1.38 (9H, s, OC(CH3)3), 1.75 (3H, s, =CCH3), 

1.83-1.91 (1H, dt, J 14.0 and 2.9, CHHCHO), 2.01 (3H, s, OC(O)CH3) 2.02-2.13 (1H, m, 

CHHCHO), 2.56 (1H, q, J 4.0, NCH2CH), 3.37 (1H, dd, J 14.0 and 4.0, NCHH), 3.61-3.75 

(2H, m, CH2O), 4.02 (1H, dd, J 14.0 and 4.0, NCHH), 4.36-4.45 (1H, m, NCH), 4.82 (1H, s, 

=CHH), 4.90 (1H, s, =CHH), 5.15-5.24 (1H, m, CHO), 7.30-7.46 (6H, m, ArCH), 7.48-7.52 

(4H, m, ArCH) 

�C: (75 MHz, CDCl3) 19.8 (SiC(CH3)3), 21.5 (=CCH3), 24.5 (OC(O)CH3) 27.3 (SiC(CH3)3), 

27.9 (NCHCH2CH), 39.8 (OC(CH3)3), 43.4 (NCH2CH), 43.7 (NCH2), 52.0 (NCH), 64.7 

(CH2O), 70.4 (CHO), 80.1 (OC(CH3)3) 112.3 (C=CH2), 128.4 (ArCH), 129.5 (ArCH), 133.0 

(ArCq), 135.1 (ArCH), 142.2 (C=CH2), 155.0 (NC=O), 169.9 (CH3C=O) 

m/z: (ES)+ 574.2 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 574.2971. C32H45NNaO5 Si requires M 547.2965] 

 

(2S, 4R, 5S)-tert-Butyl 4-(benzoyloxy)-2-(((tert-butyldiphenylsilyl)oxy)methyl)-5-(prop-1-

en-2-yl)piperidine-1-carboxylate (150b) 

 
Benzoyl ester 150b was prepared from: alcohol 147a (84 mg, 0.17 

mmol), and benzoyl chloride (19 µL, 0.17 mmol); in pyridine (1 

mL) according to general procedure 2. Purification by flash column 
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chromatography (Rf  = 0.33, hexane:EtOAc, 9:1) gave the product as a colourless oil (101 mg, 

quant). 

�max: (film)/cm-1 3072 (=CH), 2961 (CH), 2932 (CH), 2858 (CH), 2363 (ArCH), 1678 (C=O), 

1590 (Ar C=C), 1428 (CH2-C=C), 1113 (C-O) 

�H: (300 MHz, CDCl3) 1.08 (9H, s, SiC(CH3)3), 1.41 (9H H, s, OC(CH3)3), 1.80 (3H, s, 

=CCH3), 2.02-2.10 (1H, m, CHCHHCH), 2.20-2.33 (1H, m, CHCHHCH), 2.72 (1H, q, J 4.0, 

NCH2CH), 3.35 (1H, dd, J 14.0 and 4.0, NCHH), 3.60-3.88 (2H, m, CH2O), 4.13 (1H, dd, J 

14.0 and 4.0, NCHH), 4.31-4.42 (1H, m, NCH), 4.93 (1H, s, =CHH), 4.97 (1H, s, =CHH), 

5.48-5.59 (1H, m, CHO), 7.31-7.47 (8H, m, ArCH), 7.49-7.53 (3H, m, ArCH), 7.62-7.70 (4H, 

m, ArCH) 

�C: (75 MHz, CDCl3) 21.8 (SiC(CH3)3), 26.7 (=CCH3), 29.5 (SiC(CH3)3), 30.3 

(NCHCH2CH), 31.0 (OC(CH3)3), 45.7 (NCH2), 46.1 (NCH2CH), 54.6 (NCH), 66.7 (CH2O), 

72.5 (CHO), 82.4 (OC(CH3)3) 116.5 (C=CH2), 130.4 (ArCH), 131.0 (ArCH), 131.6 (ArCH), 

132.3 (ArCH), 133.0 (ArCq), 133.3 (ArCH), 135.9 (ArCq), 138.2 (ArCH), 145.7 (C=CH2), 

155.0 (C=O), 167.0 (C=O) 

m/z: (ES)+ 636.3 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 636.3138. C37H47NNaO5 Si requires M 636.3121] 

 

(2S, 4R, 5S)-tert-Butyl 4-acetoxy-2-(((tert-butyldimethylsilyl)oxy)methyl)-5-(prop-1-en-2-

yl)piperidine-1-carboxylate (150c) 

 
Acetyl ester 150c was prepared from: alcohol 147b (115 mg, 0.30 

mmol), and acetyl chloride (17 µL, 0.30 mmol); in pyridine (1.5 mL) 
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according to general procedure 2. Purification by flash column chromatography (Rf  = 0.49, 

hexane:EtOAc, 6:1) gave the product as a colourless oil (106 mg, 83%). 

[α]D
20: -18.8 (c 1 in CHCl3) 

�max: (neat)/cm-1 2955 (CH), 2930 (CH), 2897 (CH), 2857 (CH), 1741 (C=), 1697, (C=O), 

1417, 1367, 1242, 1045, 837, 777 

�H: (300 MHz, CDCl3) 0.03 (6H, s, SiCH3), 0.86 (9H, s, SiC(CH3)3), 1.45 (9H, s, OC(CH3)3), 

1.73 (3H, s, =CCH3), 1.85 (1H, dt, J 13.5 and 4.5, CHHCHO), 2.00-2.12 (4H, stack, 

CHHCHO and C(O)CH3) 2.54-2.63 (1H, m, NCH2CH), 3.26 (1H, dd, J 14.0 and 4.2, NCHH), 

3.62 (1H, dd, J 10.5 and 4.8, CHHO), 3.80 (1H, dd, J 10.5 and 6.8, CHHO),  4.03 (1H, dd, J 

14.0 and 4.2, NCHH), 4.13-4.24 (1H, m, NCH), 4.81 (1H, s, =CHH), 4.90 (1H, s, =CHH), 

5.25-5.34 (1H, m, CHO) 

�C: (75 MHz, CDCl3) -5.4 (Si(CH3)2), 18.1 (SiC(CH3)3), 21.2 (=CCH3), 24.0 (C(O)CH3), 26.1 

(SiC(CH3)3), 28.5 (CH2CHO), 29.3 (OC(CH3)3), 43.2 (NCH2CH), 43.8 (NCH2), 51.4 (NCH), 

63.2 (CH2O), 69.1 (CHO), 79.0 (OC(CH3)3) 113.7 (C=CH2), 142.5 (C=CH2), 153.3 (NC=O), 

169.7 (C=O) 

m/z: (ES)+ 450.3 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 450.2657. C22H41NNaO5 Si requires M 450.2652] 

 

(2S, 4R, 5S)-tert-Butyl 4-(benzoyloxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-5-(prop-1-

en-2-yl)piperidine-1-carboxylate (150d) 

 
Benzoyl ester 150d was prepared from: alcohol 147b (439 mg, 1.14 

mmol), and benzoyl chloride (103 µL, 1.14 mmol); in pyridine (7 mL) 
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according to general procedure 2. Purification by flash column chromatography (Rf  = 0.54, 

hexane:EtOAc, 6:1) gave the product as a white crystalline solid (482 mg, 86%). 

[α]D
20: -25.2 (c 1 in CHCl3) 

mp: 70-71 °C (from hexane:EtOAc) 

�max: (neat)/cm-1 2955 (CH), 2930 (CH), 2857 (CH), 1720 (C=O), 1694 (C=O), 1273, 1112, 

838 

�H: (400 MHz, CDCl3) 0.03 (3H, s, SiCH3) 0.04 (3H, s, SiCH3), 0.86 (9H, s, SiC(CH3)3), 1.44 

(9H, s, OC(CH3)3), 1.76 (3H, s, =CCH3), 2.01 (1H, dt, J 13.5 and 4.2, CHHCHO), 2.19 (1H, 

ddd, J 13.5, 9.8 and 6.6, CHHCHO) 2.71 (1H, q, J 4.2, NCH2CH), 3.38 (1H, dd, J 14.0 and 

4.2, NCHH), 3.68 (1H, dd, J 10.1 and 4.8, CHHO), 3.80 (1H, dd, J 10.1 and 6.7, CHHO),  

4.12 (1H, dd, J 14.0 and 4.2, NCHH), 4.19-4.27 (1H, m, NCH), 4.90 (1H, s, =CHH), 4.94 

(1H, s, =CHH), 5.58 (1H, dt, J 9.8 and 4.2 , CHO), 7.36 (2H, t, J 7.4, ArCH), 7.48 (1H, t, J 

7.4, ArCH), 8.01 (2H, d, J 7.4, ArCH) 

�C: (75 MHz, CDCl3) -5.6 (Si(CH3)2), 18.0 (SiC(CH3)3), 24.0 (SiC(CH3)3), 25.7 (=CCH3), 

27.3 (CH2CHO), 28.2 (OC(CH3)3), 43.1 (NCH2), 43.2 (NCH2CH), 51.8 (NCH), 63.4 (CH2O), 

69.7 (CHOH), 79.5 (OC(CH3)3) 113.6 (C=CH2), 128.1 (ArCH), 129.4 (ArCH), 130.3 (ArCq), 

132.7 (ArCH), 143.0 (C=CH2), 154.6 (NC=O), 166.4 (C=O) 

m/z: (ES)+ 512.3 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 512.2828. C27H43NNaO5 Si requires M 512.2808] 

General Procedure 3: Ozonolysis of an alkene 

 
Ozone was bubbled through a solution of an alkene (1 eq) in CH2Cl2:MeOH (2:1,  0.1 M) at -

78 °C and out into an aqueous KI scrubber. After the solution changed in colour from 
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colourless to clear blue, usually 10 min, O2 was bubbled through the solution followed by 

argon each for 5 min, to remove excess ozone, changing the colour of from clear blue to 

colourless. DMS (1.2 eq) was added and the solution was allowed to warm to room 

temperature before the solvent was removed in vacuo to obtain the crude product. 

 

(2S, 4R, 5S)-tert-Butyl 4-acetoxy-5-acetyl-2-(((tert-butyldiphenylsilyl)oxy)methyl) 

piperidine-1-carboxylate (151a) 

 
Ozone was bubbled through a solution of alkene 150a (50 mg, 0.09 

mmol) in CH2Cl2:MeOH (1:1, 1 mL) and quenched with DMS (7 

µL, 0.10 mmol) according to general procedure3. Purification by 

flash column chromatography (Rf = 0.30, hexane:EtOAc, 2:1) gave ketone 151a as a 

colourless oil (21 mg, 42%). 

[α]D
20: +7.2 (c 1 in CHCl3) 

�max: (neat)/cm-1 3186 (ArCH), 3135 (ArCH), 2995 (CH), 2961 (CH), 2931 (CH), 2858 (CH), 

1736 (C=O), 1719 (C=O), 1690 (C=O), 1426, 1366, 1237, 1046, 823, 702 

�H: (300 MHz, CDCl3) 1.02 (9H, s, SiC(CH3)3), 1.43 (9H, s, OC(CH3)3), 1.82-1.91 (1H, m, 

CHHCHO), 2.01 (3H, s, OC(O)CH3), 2.15 (3H, s, CC(O)CH3) 2.26-2.39 (1H, m, CHHCHO), 

3.03 (1H, q, J 4.2, NCH2CH), 3.36 (1H, dd, J 4.2 and 14.0, NCHH), 3.63-3.72 (2H, m, 

CH2O), 4.24-4.35 (1H, m, NCHH), 4.39-4.48 (1H, m, NCH), 5.12-5.23 (1H, m, CHO), 7.32-

7.44 (6H, m, ArCH), 7.59-7.61 (4H, m, ArCH) 

�C: (75 MHz, CDCl3) 18.1 (SiC(CH3)3), 20.6 (OC(O)CH3), 26.2 (SiC(CH3)3), 26.4 

(CH2CHO), 27.7 (OC(CH3)3), 30.2 (CC(O)CH3), 39.2 (NCH2), 48.0 (NCH2CH), 51.3 (NCH), 
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63.3 (CH2O), 68.3 (CHO), 80.0 (OC(CH3)3), 127.2 (ArCH), 129.4 (ArCH), 132.2 (ArCq), 

135.0 (ArCH), 153.2 (NC=OO), 169.5 (OC=OCH3), 205.4 (CC=OCH3) 

m/z: (ES)+ 576.3 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 576.2764. C31H43NNaO6Si requires M 576.2757] 

 

(S)-tert-Butyl-3-acetyl-6-(((tert-butyldiphenylsilyl)oxy)methyl)-5,6-dihydropyridine-

1(2H) –carboxylate (152b) and (2S, 4R, 5S)-tert-Butyl 5-acetyl-4-(benzoyloxy)-2-(((tert-

butyldiphenyl silyl)oxy)methyl)piperidine-1-carboxylate (152a) 

 
Ozone was bubbled through a 

solution of alkene 150b (101 mg, 

0.17 mmol) in CH2Cl2:MeOH (2:1, 

3 mL) and quenched with DMS 

(15 µL, 0.20 mmol) according to general procedure 3. Purification by flash column 

chromatography (Rf = 0.47, hexane:EtOAc, 3:1) gave enone 152b as a colourless oil (50 mg, 

61%). 

�max: (film)/cm-1 2961 (CH), 2929 (CH), 2857 (CH), 1697 (C=O), 1680 (C=O), 1106, 701 

�H: (300 MHz, CDCl3) 1.07 (9H, s, SiC(CH3)3), 1.44 (9H, s, OC(CH3)3), 2.23 (3H, s, 

(C(O)CH3), 2.26-2.34 (1H, m, CHCHHCH), 2.42-2.58 (1H, m, CHCHHCH), 3.41-3.62 (4H, 

stack, NCH2 and CH2O), 4.32-4.52 (1H, m, NCH), 6.72-6.79 (1H, m, =CH), 7.31-7.47 (6H, 

m, ArCH), 7.56-7.64 (4H, m, ArCH) 

m/z: (ES)+ 516.3(100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 516.2550. C29H39NNaO4 Si requires M 516.2546] 
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Further elution (Rf = 0.32) gave ketone 151b as a colourless oil (10 mg, 10%). 

�max: (film)/cm-1 3072 (ArCH), 3012 (ArCH), 2960 (CH), 2932 (CH), 2858 (CH), 1720 

(C=O), 1694 (C=O), 1603, 1584, 1427, 1272, 1112, 756, 709 

�H: (300 MHz, CDCl3) 1.07 (9H, s, SiC(CH3)3), 1.44 (9H, s, OC(CH3)3), 1.94-2.02 (1H, m, 

CHCHHCH), 2.19 (3H, s, C(O)CH3), 2.42-2.55 (1H, m, CHCHHCH), 3.11-3.24 (2H, stack, 

NCHH and NCH2CH), 3.64-3.82 (2H, m, CH2O), 4.31-4.50 (2H, stack, NCH and NCHH), 

5.48-5.52 (1H, m, CHO), 7.31-7.47 (8H, m, ArCH), 7.49-7.53 (3H, m, ArCH), 7.62-7.70 (4H, 

m, ArCH) 

m/z: (ES)+ 638.3 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 638.2904. C36H45NNaO6 Si requires M 638.2914] 

 

(2S, 4R, 5S)-tert-Butyl 4-acetoxy-5-acetyl-2-(((tert-butyldimethylsilyl)oxy)methyl) 

piperidine-1-carboxylate (151ci) and (2S, 4R, 5S)-tert-Butyl 4-acetoxy-5-acetyl-2-

(hydroxymethyl)piperidine-1-carboxylate (151cii) 

 
Ozone was bubbled through a solution of 

alkene 150c (106 mg, 0.25 mmol) in 

CH2Cl2:MeOH (2:1, 3 mL) and quenched 

with DMS (23 µL, 0.30 mmol) according to general procedure 3. Purification by flash column 

chromatography (Rf = 0.30, hexane:EtOAc, 3:1) gave ketone 151ci as a colourless oil (6 mg, 

5%). 

[α]D
21: -21.6 (c 0.5 in CHCl3) 

�max: (neat)/cm-1 2955 (CH), 2930 (CH), 2857 (CH), 1739, (C=O), 1720 (C=O), 1694 (C=O), 

1472, 1419, 1248, 1047, 838, 777 
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�H: (300 MHz, CDCl3) 0.04 (6H, s, SiCH3), 0.85 (9H, s, SiC(CH3)3), 1.43 (9H, s, OC(CH3)3), 

1.82-1.91 (1H, m, CHHCHO), 2.02 (3H, s, OC(O)CH3), 2.16 (3H, s, CC(O)CH3), 2.25-2.69 

(1H, m, CHHCHO), 3.06 (1H, q, J 4.2, NCH2CH), 3.26 (1H, dd, J 14.0 and 4.2, NCHH), 3.63 

(1H, dd, J 10.5 and  4.5, CHHO), 3.69 (1H, dd, J 10.5 and 6.3, CHHO), 4.23-4.36  (2H, stack, 

NCHH and NCH), 5.27-5.33 (1H, m, CHO) 

�C: (75 MHz, CDCl3) -4.6 (Si(CH3)2), 19.1 (SiC(CH3)3), 22.1 (OC(O)CH3), 26.8 (SiC(CH3)3), 

28.0 (CH2CHO), 29.3 (OC(CH3)3), 31.5 (CC(O)CH3), 41.5 (NCH2), 49.7 (NCH2CH), 52.7 

(NCH), 65.0 (CH2O), 69.9 (CHO), 81.0 (OC(CH3)3) 155.6 (NC=O), 171.4 (OC=OCH3), 

206.5 (CC=OCH3) 

m/z: (ES)+ 452.3 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 452.2436. C21H39NNaO6Si requires M 452.2444] 

 
Further elution (Rf = 0.36, hexane:EtOAc, 1:3) gave ketone 151cii as a colourless oil (57 mg, 

73%). 

�max: (neat)/cm-1 3384 (OH), 2954 (CH), 2932 (CH), 2858 (CH), 1722 (C=O), 1693 (C=O), 

1472, 1248, 1046 

�H: (300 MHz, CDCl3) 1.44 (9H, s, OC(CH3)3), 1.81-1.90 (1H, m, CHHCHO), 2.01 (3H, s, 

OC(O)CH3), 2.10-2.18 (4H, stack, CC(O)CH3 and CHHCHO), 2.75-2.82 (1H, m, NCH2CH), 

3.34-3.45 (1H, m, NCHH), 3.63-3.70 (2H, m, CH2O), 3.82-3.89 (1H, m, NCHH), 3.94-4.02 

(1H, m, NCH), 5.28-5.31 (1H, m, CHO) 

m/z: (ES)+ 338.1 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 338.1585. C15H25NNaO6 requires M 338.1580] 
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(S)-tert-Butyl 3-acetyl-6-(hydroxymethyl)-5,6-dihydropyridine-1(2H)-carboxylate (152d) 

 
Ozonolysis  

Ozone was bubbled through a solution of alkene 150d (96 mg, 0.20 

mmol) in CH2Cl2:MeOH (1:1, 2 mL) and quenched with DMS (17 µL, 

0.23 mmol) according to general procedure 3. Purification by flash column chromatography 

(Rf = 0.45, hexane:EtOAc, 1:3) gave enone 152d as a colourless oil (15 mg, 29%). 

 

Haloform Reaction  

Bromine (27 µL, 0.53 mmol) was added to a solution of NaOH (63 mg, 1.58 mmol) in water 

(1 mL) cooled to 0 °C, after 5 min the dark brown colour of the solution dissipated and the 

solution was transferred to a solution of ketone 149 (48 mg, 0.18 mmol) in dioxane (0.5 mL) 

cooled to 0 °C. The solution was allowed to warm to rt and stirred overnight. The solution 

was acidified to a pH of 4 with an aqueous solution 1 M HCl. The reaction was concentrated 

in vacuo before the crude residue was taken up in acetone, filtered and concentrated in vacuo 

to give the crude product that was purified by semi-preparative HPLC (water/MeOH gradient 

+ 0.01% TFA) to give the product 152d as a colourless oil (22 mg, 53%). 

�max: (film)/cm-1 3389 (OH), 2978 (CH), 2930 (CH), 2857 (CH), 1671 (C=O), 1366, 1161 

�H: (300 MHz, CDCl3) 1.45 (9H, s, OC(CH3)3), 2.22-2.29 (4H, stack, C(O)CH3 and 

NCHCHHCH), 2.45-2.51 (1H, m, NCHCHHCH), 2.65 (1H, br s, OH), 3.41-3.50 (2H, m, 

CH2O), 3.68 (1H, d, J 13.9, NCHH), 4.33-4.52 (2H, stack, NCHH and NCH), 6.83-6.89 (1H, 

m, CH=) 

m/z: (ES)+ 278.1(100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 278.1359. C13H21NNaO4  requires M 278.1368] 

Boc
N

HO
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(2S, 4R, 5S)-tert-Butyl 4-acetoxy-5-acetyl-2-(((tert-butyldiphenylsilyl)oxy)methyl) 

piperidine-1-carboxylate (151a) and (2S, 4R, 5R)-tert-Butyl 4-acetoxy-2-(((tert-butyl 

diphenylsilyl)oxy)methyl)-5-((R)-1,2-dihydroxyethyl)piperidine-1-carboxylate (153) 

 

NaIO4 (135 mg, 0.63 mmol) 

was added to a stirred solution 

of alkene 150a (166 mg, 0.30 

mmol) and 2,6-lutidine (66 µL, 0.60 mmol) in dioxane:water (2:1, 3 mL) cooled to 0 °C. A 

small crystal of OsO4 was added to the solution and the resulting mixture was stirred at 0 °C 

for 2h before the reaction was quenched by the addition of a saturated aqueous solution of 

Na2SO3 (3 mL). The reaction mixture was diluted with EtOAc (5 mL) and the organic phase 

was separated. The aqueous phase was extracted with EtOAc (3 x 5 mL) and the combined 

organic fractions were washed with brine (10 mL) and dried over MgSO4 before the solvent 

was removed in vacuo to give the crude product which was purified by flash column 

chromatography (Rf = 0.33, hexane:EtOAc, 3:1) to give ketone 151a as a colourless oil (107 

mg, 65%). Data vide supra. 

Further elution (Rf  = 0.10) gave diol 153 as a white crystalline solid  (34 mg, 19%). 

mp: 87-88 °C (from hexane:EtOAc) 

�max: (neat)/cm-1 3470 (OH), 2930 (CH), 2858 (CH), 1734 (C=O), 1677 (C=O), 1427, 1244, 

1113, 756 

�H: (300 MHz, CDCl3) 1.03 (9H, s, SiC(CH3)3), 1.15 (1H, br s, OH), 1.21 (1H, br s, OH), 1.37 

(9H, s, OC(CH3)3), 1.39 (3H, s, CCH3), 1.72-1.87 (1H, m, CHHCHO), 2.03-2.12 (4H, stack, 

CCH3 and CHHCHO), 2.14-2.27 (1H, m, NCH2CH), 3.35-3.41 (2H, m, NCH2), 3.62-3.83 
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(2H, m, CH2O), 3.89-4.07 (1H, m, NCH), 5.31-4.41 (1H, m, CHO), 7.32-7.43 (6H, m, ArCH), 

7.51-7.62 (4H, m, ArCH) 

�C: (75 MHz, CDCl3) 18.0 (SiC(CH3)3), 19.7 (COHCH3), 21.5 (NCH2CH), 22.0 (OC(O)CH3), 

25.2 (SiC(CH3)3), 27.6 (OC(CH3)3), 28.3 (CH2CHO), 30.2 (CC(O)CH3), 37.7 (NCH2), 49.9 

(NCH2CH), 51.3 (NCH), 63.2 (CH2OH), 66.1 (CH2OSi), 67.8 (CHO), 71.2 (CqOH) 78.6 

(OC(CH3)3), 126.1 (ArCH), 128.1 (ArCH), 131.2 (ArCq), 133.8 (ArCH), 153.0 (NC=OO), 

166.7 (OC=OCH3) 

m/z: (ES)+ 608.3 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 608.3018. C32H47NNaO7Si requires M 608.3020] 

X-ray: See Appendix  

 

(2S, 4R, 5S)-5-Acetyl-4-hydroxy-2-(hydroxymethyl)piperidine-1-carboxylic acid tert-

butyl ester (149) 

 
2,6-Lutidine (10.2 mL, 93.4 mmol) was added to a solution of alkene 

146 (11.5 g, 42.4 mmol) in dioxane:water (2:1, 210 mL) cooled to 0 °C. 

NaIO4 (22.7 g, 106 mmol) followed by OsO4 (10 mg, 0.1 mol%) were 

added to the stirred solution. After 5 min a white precipitate began to fall out of solution. The 

reaction was stirred at 0 °C for 30 min before being allowed to warm to room temperature and 

stirred for a further 5 h. The reaction was cooled to 0 °C and quenched with a saturated 

aqueous solution of Na2SO3 (100 mL). The aqueous phase was extracted with EtOAc (5 x 200 

mL) before the combined organic phases were washed with brine (200 mL), dried over 

MgSO4 and concentrated in vacuo to afford the product 149 as a colourless oil (11.2 g, 97%). 

Rf :  0.24 (EtOAc) 
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[α]D
20:  -104.2 (c 1 in CHCl3) 

�max: (film)/cm-1 3391 (OH), 2976 (CH), 2932 (CH), 1693 (C=O), 1662 (C=O), 1159, (C-O), 

1051 (C-O) 

�H: (400 MHz, CDCl3) 1.40 (9H, s, C(CH3)3), 1.76 (1H, dt, J 13.5 and 4.3, NCHCHHCH), 

1.80-1.90 (1H, m, NCHCHHCH), 2.13 (3H, s, CHC(O)CH3), 2.66 (1H, q, J 3.4, NCH2CH), 

3.24 (1H, dd, J 14.2 and 3.4, NCHH), 3.55 (2H, d, J 6.4, CH2OH) 3.64-3.82 (2H, m, 2 x OH), 

3.92-4.21 (3H, stack, NCHH, CHOH and CHN) 

�C: (100 MHz, CDCl3) 28.2 (C(CH3)3), 29.5 (C(O)CH3), 31.3 (NCHCH2CH), 41.2 (NCH2), 

51.8 (NCH2CH), 53.2 (NCH), 61.8 (CH2O), 66.3 (CHOH), 80.5 (C(CH3)3), 155.1 (OC=O), 

210.9 (CH3C=O) 

m/z: (ES)+  296.2 (100%, [M+Na]+), 240.1 (11, [M+Na-tBu]+) 

HRMS: [Found: (M+Na)+ 296.1469. C13H23NNaO5 requires M 296.1474] 

 

(2S, 4R, 5R)-tert-Butyl 4-hydroxy-5-((E)-1-(hydroxyimino)ethyl)-2-(hydroxy methyl) 

piperidine-1-carboxylate (158) 

 
Et3N (23 µL, 0.17 mmol) was added to a stirred solution of ketone 149 

(15 mg, 0.06 mmol) in EtOH (0.5 mL) followed by the addition of 

hydroxylamine hydrochloride (6 mg, 0.08 mmol). The reaction was 

heated to reflux for 2 h before being allowed to cool to room temperature and quenched by the 

addition of water (5 mL). The solvent was removed in vacuo and the aqueous phase was 

extracted with EtOAc (4 x 5 mL). The combined organic fractions were washed with brine (5 

mL) and dried over MgSO4 before being concentrated in vacuo to give the oxime product 158 

as a colourless oil (16 mg, quant.) 
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Rf : 0.53 (CHCl3:MeOH, 9:1) 

�max: (film)/cm-1 3506 (OH), 3295 (OH), 2976 (CH), 2932 (CH), 1668 (C=O, C=N), 1159, 

1051, 950 (N-O)  

�H: (300 MHz, CDCl3) 1.42 (9H, s, C(CH3)3), 1.62-1.70 (1H, m, NCHCHHCH) 1.90-2.04 

(4H, stack, NCHCHHCH and CCH3), 2.39-2.44 (1H, m, NCH2CH), 3.51-3.68 (2H, m, 

NCHH), 3.60-3.71 (2H, m, CH2OH) 3.92-4.01 (1H, m, CHOH), 4.14-4.25 (1H, m, CHN) 

�C: (75 MHz, CDCl3) 17.4 (CCH3), 28.5 (C(CH3)3), 31.8 (NCHCH2CH), 40.5 (NCH2CH), 

45.2 (NCH2), 53.9 (NCH), 61.8 (CH2O), 68.3 (CHOH), 80.2 (C(CH3)3), 155.0 (C=O), 159.4 

(C=N-OH) 

m/z: (ES)+  311.2 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 311.1590. C13H24N2NaO5 requires M 311.1583] 

 

O-(Mesitylsulfonyl)hydroxylamine (162) 

 
NaHCO3 (2.2 g, 25.9 mmol) was added in small portions over 5 min to 

a stirred solution of hydroxylamine hydrochloride (1.0 g, 14.3 mmol) in 

CH2Cl2:water (1:1 20 mL) cooled to 0 °C. After 10 min (Boc)2O (2.5 g, 11.5 mmol) was 

added in one portion. The reaction mixture was allowed to warm to room temperature and 

stirred overnight. The reaction was diluted with a saturated aqueous solution of NaHCO3 (25 

mL) and the organic phase separated. The aqueous phases was further extracted with CH2Cl2 

(3 x 25 mL) and dried over MgSO4 before the solvent was removed in vacuo to give N-Boc 

hydroxylamine as a colourless oil that solidified on standing (1.4 g).113 Et3N (1.8 mL, 12.7 

mmol) was added to a solution of N-Boc hydroxylamine (1.4 g, 10.6 mmol) in MeCN (10 

mL) cooled to 0 °C. MesCl (2.3 g, 10.6 mmol) in MeCN (5 mL) was added dropwise over 10 

SO
H2N

O

O
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min to the solution resulting in a white precipitate. The solution was allowed to warm to room 

temperature and stirred for a further 4 h. The reaction mixture was filtered and washed with 

Et2O (3 x 5 mL). The combined filtrates were concentrated in vacuo to give the crude N-Boc 

mesitylhydroxylamine as a yellow oil (3.6 g). TFA (20 mL) was added to N-Boc 

mesitylhydroxylamine (3.6 g) cooled to 0 °C. The solution was allowed to warm to room 

temperature and stirred for a further 30 min before being poured into ice cold water (20 mL). 

The solution was extracted with Et2O (4 x 20 mL) and the combined organic phases were 

washed with a saturated aqueous solution of NaHCO3 (20 mL) and dried over MgSO4 before 

the solvent was removed in vacuo to give the product 162 as a pale yellow solid. (2.0 g, 64% 

over 3 steps). 

mp: 90-92 °C (from Et2O) (Lit.114 90-91 °C) 

�max: (neat)/cm-1 3371 (NH), 3262 (NH), 2975 (CH), 2988 (CH), 1603, 1330, 1149 

�H: (300 MHz, CDCl3) 2.23 (3H, s, CH3), 2.64 (6H, s, CH3), 4.70 (2H, br s, NH2), 6.93 (2H, 

CH) 

�C: (101 MHz, CDCl3) 20.9 (CH3), 23.1 (CH3), 131.7 (ArCH), 138.2 (ArCq), 139.5 (ArCq), 

143.0 (ArCq) 

 

(S)-tert-Butyl 3-acetyl-6-(((tert-butyldiphenylsilyl)oxy)methyl)5,6-dihydropyridine  -

1(2H)-carboxylate (152b) 

 
Haloform Reaction  

Bromine (6 µL, 0.13 mmol) was added to a solution of NaOH (10 

mg, 0.25 mmol) in water (0.5 mL) cooled to 0 °C, after 2 min the 

dark brown colour of the solution dissipated and the solution was then transferred to a 
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solution of ketone 151a (23 mg, 0.04 mmol) in dioxane (0.5 mL) cooled to 0 °C. The solution 

was stirred at 0 °C for 4 h before being quenched with a saturated aqueous solution of NH4Cl 

(5 mL). The mixture was extracted was with EtOAc (4 x 5 mL) and the combined organic 

fractions were washed with a saturated aqueous solution of Na2SO3 (10 mL), water (10 mL) 

and brine (10 mL) before being concentrated in vacuo to give the crude product that was 

purified by flash column chromatography (Rf = 0.46, hexane:EtOAc, 3:1) to give the product 

152b as a colourless oil (10 mg, 52%). 

Silyl Enol Ether Formation 

KHMDS (0.5 M solution in toluene, 108 µL, 0.05 mmol) was added dropwise over 10 s to a 

stirred solution of ketone 151a (30 mg, 0.05 mmol) in CH2Cl2 (0.5 mL) containing 4 Å MS 

cooled to -78 °C. TMSOTf (10 μL, 0.05 mmol) was added immediately afterwards and the 

resulting solution was stirred at -78 °C for a further 1 h before being quenched by the addition 

of water (2 mL). The solvent was removed in vacuo and the aqueous phase was extracted with 

EtOAc (4 x 4 mL). The combined organic fractions were washed with brine (4 mL) before 

being dried over MgSO4 and concentrated in vacuo to give the crude product, which was 

purified by flash column chromatography (Rf  = 0.46, hexane:EtOAc, 3:1) to give the product 

152b  as a colourless oil (20 mg, 83%).   

Oxidative Cleavage of Silyl Enol Ether  

NaIO4 (33 mg, 0.15 mmol) was added to a stirred solution of 2,6-lutidine (13 µL, 0.12 mmol) 

in dioxane:water (1:1, 1 mL) cooled to 0 °C. A small crystal of OsO4 was added to the 

mixture before a solution of silyl enol ether 164 (30 mg, 0.06 mmol) in dioxane (0.5 mL) was 

added dropwise over 2 min. The solution was allowed to warm to rt before being stirred for a 



 177 

further 20 min. The reaction was quenched by the addition of a saturated aqueous solution of 

NaSO3 (5 mL) and diluted with EtOAc (5 mL). The organic phase was separated and the 

aqueous phase further extracted with EtOAc (3 x 5 mL). The combined organic fractions were 

washed with water (5 mL), brine (5 mL) and dried over MgSO4 before being concentrated in 

vacuo to give the crude product. The crude product was purified by flash column 

chromatography  (Rf = 0.45, hexane:EtOAc, 1:3) to give the enone 152b as a colourless oil 

(13 mg, 82%). 

�max: (film)/cm-1 3389 (OH), 2978 (CH), 2930 (CH), 1670 (C=O), 1366, 1161, 1064 

�H: (400 MHz, CDCl3) 1.43 (9 H, s, C(CH3)3), 2.25 (3H, s, C(O)CH3), 2.30-2.35 (1H, m, 

NCHCHHCN) 2.51-2.59 (1H, m, NCHCHHCH) 2.67 (1H, br, s, OH), 3.42-3.51 (2H, m, 

CH2OH), 3.62-3.71 (1H, m, NCHH), 4.35-3.53 (2H, stack, NCHH and NCH), 6.84-6.89 (1H, 

m, =CH) 

�C: (75 MHz, CDCl3) 25.1 (C(O)CH3), 26.1 (NCHCH2CH), 28.4 (C(CH3)3),  39.2 (NCH2), 

49.8 (NCH), 63.2 (CH2O), 80.5 (C(CH3)3), 136.1 (=Cq), 136.3 (=CH), 155.1 (OC=O), 196.9 

(CH3C=O) 

m/z: (ES)+  278.1 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 278.1479. C13H21NNaO4 requires M 278.1471] 

 

(2S*, 4R*, 5S*)-tert-butyl 5-acetyl-2-(((tert-butyldiphenylsilyl)oxy)methyl)-4-

hydroxypiperidine-1-carboxylate (148a) 

 
 
Silyl ether 148a was prepared from: piperidine 149 (0.98 g, 3.60 

mmol), Et3N (1.00 mL, 7.19 mmol), DMAP (88 mg, 0.72 mmol) 
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and TBDPSCl (0.94 mL, 3.60 mmol); in a solution of CH2Cl2 (7 mL) according to general 

procedure 1. The crude material was purified by flash column chromatography (Rf  = 0.32, 

hexane:EtOAc, 2:1) to give the product 148a as a colourless oil (1.68 g, 91%). 

�max: (film)/cm-1 3427 (OH), 3078 (ArCH), 3056 (ArCH), 2970 (CH), 2932 (CH), 2859 (CH), 

1690 (C=O), 1671  (C=O), 1426, 1106, 1079, 701 

�H: (300 MHz, CDCl3) 1.05 (9H, s, SiC(CH3)3), 1.40 (9H, s, OC(CH3)3), 1.51-1.70 (1H, m, 

NCHCHH), 1.88-2.09 (1H, m, NCHCHH), 2.26 (3H, s, C(O)CH3), 2.68-2.82 (1H, m, 

NCH2CH), 3.08 (1H, dd, J 14.6 and 3.7, NCHH), 3.67 (2H, dd, J 6.4 and 3.0, CH2O), 3.84-

4.01 (1H, m, CHOH), 4.26-4.48 (1H, m, NCH), 4.51-4.71 (1H, m, NCHH), 7.32-7.49 (6H, m, 

ArCH), 7.65 (4H, dd, J 7.4 and 1.7, ArCH) 

�C: (101 MHz, CDCl3) 19.1 (SiC(CH3)3), 26.9 (SiC(CH3)3), 28.3 (OC(CH3)3), 29.6 

(C(O)CH3), 31.1 (NCHCH2), 41.1 (NCH2), 51.7 (NCH2CH), 52.3 (NCH), 63.3 (CH2O), 67.3 

(CHOH),80.2 (OC(CH3)3), 127.8 (ArCH), 129.8 (ArCH), 133.1 (ArCq), 135.5 (ArCH), 135.6 

(ArCH), 154.8 OC=O), 212.2 (CH3C=O) 

m/z: (ES)+  534.3 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 534.2662. C29H41NNaO5Si requires M 534.2652] 

 

General Procedure 4: TMS Ether Formation 

A solution containing the ketone (1 eq) in CH2Cl2 (0.1-0.2 M) was transferred via cannula to a 

r.b. flask containing 4 Å MS and stirred for 5 min at room temperature. Et3N (2-6 eq) was 

added to the mixture and the resulting solution was stirred for a further 5 min before being 

cooled to -78 °C. TMSOTf (2-3 eq) was added dropwise over 5 min and the resulting solution 

was stirred at -78 °C for a further 5 h. The solution was diluted with CH2Cl2 (0.1 M) and then 
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poured into a saturated aqueous solution of NaHCO3. The organic phase was separated and 

the aqueous phase was further extracted with CH2Cl2 x 3. The combined organic fractions 

were washed with brine and dried over MgSO4 before the solvent was removed in vacuo to 

give the crude product. 

 

(2S*, 4R*, 5S*)-tert-butyl 5-acetyl-2-(((tert-butyldiphenylsilyl)oxy)methyl)-4-hydroxy 

piperidine-1-carboxylate (163) 

 
Silyl ether 163 was prepared from: alcohol 148a (80 mg, 0.16 

mmol), Et3N (66 µL, 0.46 mmol) and TMSOTf (60 µL, 0.32 mmol); 

in CH2Cl2 (1.6 mL) according to general procedure 4. The crude 

product as a light brown oil which was purified by flash column chromatography 

(hexane:EtOAc, 6:1, Rf = 0.49) to give the pure product 163 as a colourless oil (76mg, 82%).  

�max: (film)/cm-1 3076 (ArCH), 3052 (ArCH), 2959 (CH), 2935 (CH), 2858 (CH), 1713 

(C=O), 1693 (C=O), 1427, 1251, 1161, 1099, 840, 701 

�H: (300 MHz, CDCl3) 0.11 (9H, s, Si(CH3)3), 1.05 (9H, s, SiC(CH3)3), 1.41 (9H, s, 

OC(CH3)3), 1.85-1.95 (1H, m, NCHCHH), 2.02-2.15 (1H, m, NCHCHH), 2.17 (3H, s, 

C(O)CH3), 2.76 (1H, q, J 3.7, NCH2CH), 3.08 (1H, dd, J 14.2 and 3.7, NCHH), 3.65 (1H, dd, 

J 10.1 and 5.4, CHHO), 3.73 (1H, dd, J 10.1 and 6.8, CHHO), 4.20 (1H, dd, J 14.2 and 3.7, 

NCHH), 4.26-4.42 (2H, stack, NCH and CHO), 7.32-7.55 (6H, m, ArCH), 7.65 (4H, dd, J 7.5 

and 1.6, ArCH) 

�C: (101 MHz, CDCl3) 0.29 (Si(CH3)3), 19.3 (SiC(CH3)3), 27.0 (SiC(CH3)3), 28.5 

(OC(CH3)3), 31.3 (C(O)CH3), 32.0 (NCHCH2), 40.4 (NCH2), 52.0 (CH), 52.1 (CH), 64.5 
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(CH2O), 67.1 (CHO), 79.8 (OC(CH3)3), 127.9 (ArCH), 129.9 (ArCH), 133.3 (ArCq), 133.4 

(ArCq), 135.6 (ArCH), 135.7 (ArCH), 155.0 OC=O), 208.1 (CH3C=O) 

m/z: (ES)+  606.3 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 606.3054. C32H49NNaO5Si2 requires M 606.3047] 

 

General Procedure 5: Silyl Enol Ether Formation 

A solution containing the  ketone (l eq) in CH2Cl2 (0.1 M) was transferred via cannula to a 

r.b. flask containing 4 Å MS. The solution was stirred for 5 min at room temperature before 

Et3N (5 eq) was added and the resulting mixture was cooled to -40 °C. TMSOTf (2 eq) was 

added dropwise and the resulting solution was stirred at -40 °C for a further 3 h. The solution 

was diluted with CH2Cl2 and then poured into a saturated aqueous solution of NaHCO3. The 

organic phase was separated and the aqueous phase was further extracted with 3 x CH2Cl2. 

The combined organic layers were washed with brine and dried over Na2SO4 before the 

solvent was removed in vacuo to afford the crude silyl enol ether product. The crude product 

was diluted with Et2O and the colourless Et2O layer was removed while the denser light 

brown layer, containing triethylammonium triflate, was further extracted with 3 x Et2O. The 

Et2O layers were combined and the solvent removed in vacuo to give the silyl enol ether 

product.  
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(2S*, 4R*, 5S*)-tert-butyl 2-(((tert-butyldiphenylsilyl)oxy)methyl)-4-((trimethylsilyl) oxy)-

5-(1-((trimethylsilyl)oxy)vinyl)piperidine-1-carboxylate (164) 

 
Silyl enol ether 164 was prepared from: ketone 163 (1.43 g, 2.80 

mmol), Et3N (1.95 mL, 14.0 mmol) and TMSOTf (1.01 mL, 5.60 

mmol); in CH2Cl2 (30 mL) according to general procedure 5 gave 

the product 164 as a colourless oil (1.60 g, 97%). 

Rf : 0.34 (hexane:EtOAc, 10:1 + 1% Et3N) 

�max: (film)/cm-1 3076 (ArCH), 3052 (ArCH), 2959 (CH), 2933 (CH), 2858 (CH), 1693 

(C=O), 1249, 1104, 838, 701 

�H: (300 MHz, C6D6) 0.17 (9H, s, Si(CH3)3), 0.26 (9H, s, Si(CH3)3), 1.18 (9H, s, SiC(CH3)3), 

1.42 (9H, s, OC(CH3)3), 1.93 (1H, dt, J 13.1 and 4.0, NCHCHH), 2.29 (1H, dd, J 8.7 and 4.0, 

NCH2CH), 2.34-2.46 (1H, m, NCHCHH), 3.21 (1H, dd, J 14.2 and 4.0, NCHH), 3.82-3.97 

(2H, m, CH2O), 4.22-4.32 (4H, stack NCHH, CHO and =CH2), 4.44-4.72 (1H, m, NCH), 

7.21-7.27 (6H, m, ArCH), 7.76-7.83 (4H, m, ArCH) 

�C: (101 MHz, C6D6) 0.34 (Si(CH3)3), 0.44 (Si(CH3)3), 19.5 (SiC(CH3)3), 27.2 (SiC(CH3)3), 

28.6 (OC(CH3)3), 32.0 (NCHCH2), 44.0 (NCH2), 46.9 (NCH2CH), 53.1 (NCH), 65.0 (CH2O), 

67.3 (CHO), 79.0 (OC(CH3)3), 91.8 (C=CH2), 128.2 (ArCH), 130.1 (ArCH), 133.9 (ArCq), 

134.0 (ArCq), 136.0 (ArCH), 155.0 (OC=O), 158.9 (C=CH2) 

m/z: (ES)+  678.4 (97%, [M+Na]+), 466.3 (100) 

HRMS: [Found: (M+Na)+ 678.3445. C35H57NNaO5Si3 requires M 678.3442] 
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General procedure 6: Ozonolysis of Silyl Enol Ether 

 NaHCO3 (10 eq) was added to a stirred solution of silyl enol ether X (1 eq) in CH2Cl2 (0.2 

M). The resulting solution was cooled to -78 °C before MeOH (0.2 M) was added dropwise 

over 5 min. A stream of gas containing O3/O2 was passed through a glass pipette and bubbled 

into the solution before passing out through a gas scrubber containing an aqueous solution of 

10% KI to remove any excess O3. The stream of O3/O2 was continued until the solution turned 

in colour from colourless to blue, usually 5 min. O2 Was then bubbled through the solution for 

2 min before Ar was bubbled through the solution for a further 2 min resulting in a colour 

change of blue to colourless. DMS (10 eq) was added to the solution and stirred at -78 °C for 

5 min before being allowed to warm to room temperature and stirred at room temperature 

until a negative test for peroxides was detected using starch/I2 paper (positive test equates to a 

dark purple spot after exposure to water whereas as negative test equates to a colourless spot 

under the same conditions), usually 2 h. The reaction mixture was cooled to 0 °C and 

acidified to pH 4 with 1 M HCl before the solvent was removed in vacuo and the residue 

taken up in acetone, filtered and the residue washed with 3 x further portions of acetone. The 

solvent was removed in vacuo to give the carboxylic acid. 

 

(3S*, 4R*, 6S*)-1-(tert-butoxycarbonyl)-6-(((tert-butyldiphenylsilyl)oxy)methyl)-4-

hydroxy piperidine-3-carboxylic acid (166) 

 
TBDPS Ozonolysis 

Carboxylic acid 166 was prepared from: Silyl enol ether 164 

(0.53 g, 0.81 mmol), NaHCO3 (0.68g, 8.10 mmol), DMS (0.59 
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mL, 8.10 mmol): in CH2Cl2:MeOH (1:1,  8 mL) according to general procedure 6 to give the 

product 166 as a white foam (430 mg, quant.).   

Rf : 0.54 (hexane:EtOAc, 1:3 + 1% AcOH) 

�max: (film)/cm-1 3396 (OH) 3072 (ArCH), 3051 (ArCH), 2959 (CH), 2929 (CH), 2856 (CH), 

1693 (C=O), 1669 (C=O), 1427, 1110, 701 

�H: (400 MHz, CD3OD) 0.97 (9H, s, SiC(CH3)3), 1.36 (9H, s, OC(CH3)3), 1.80 (1H, dd, J 12.9 

and 4.3, NCHCHH), 2.09 (1H, dt, J 12.9 and 6.7, NCHCHH), 2.59-2.67 (1H, m, NCH2CH), 

2.87 (1H, dd, J 14.2 and 3.5, NCHH), 3.60-3.71 (2H, m, CH2O), 3.83-3.98 (1H, m, CHOH), 

4.27 (1H, d, J 14.2, NCHH),  4.46 (1H, dd, J 12.6 and 6.2, NCH), 7.26-7.41 (6H, m, ArCH), 

7.56-7.66 (4H, m, ArCH) 

�C: (101 MHz, CD3OD) 20.0 (SiC(CH3)3), 27.4 (SiC(CH3)3), 28.7 (OC(CH3)3), 30.7 

(NCHCH2), 41.6 (NCH2), 46.3 (NCH2CH), 53.5 (NCH), 64.2 (CH2O), 66.3 (CHOH), 81.1 

(OC(CH3)3), 128.9 (ArCH), 131.0 (ArCH), 134.3 (ArCq), 134.4(ArCq), 136.6 (ArCH), 136.7 

(ArCH), 156.7 (NC=O), 175.2 (HOC=O) 

m/z: (ES)- 512.3 (100%, [M-H]-) 

HRMS: [Found: (M-H)- 512.2474. C28H38NNaO6Si requires M 512.2468] 

General Procedure 7: Curtis Rearrangement 

Et3N (2.4 eq) was added to a stirred solution of the carboxylic acid  (1 eq) in toluene (0.1 M) 

at room temperature. The resulting mixture was heated to 80 °C for 2 h before being allowed 

to cool to room temperature. After cooling the reaction was quenched by the addition of a 

saturated solution of NaHCO3. The solution was diluted with EtOAc and the organic phase 

was separated. The aqueous phase was further extracted with 3 x EtOAc and the combined 
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organic phases were washed water and brine before being dried over MgSO4 and concentrated 

in vacuo to give the crude oxazolidinone product. 

 

(3aS*, 6S*, 7aR*)-tert-butyl 6-(((tert-butyldiphenylsilyl)oxy)methyl)-2-oxohexahydro 

oxazolo[4,5-c]pyridine-5(6H)-carboxylate (167) 

 
 

Oxazolidinone 167 was prepared from: carboxylic acid 166 (381 mg, 

0.74 mmol), Et3N (0.25 mL, 1.78 mmol) and DPPA (0.17 mL, 0.74 

mmol); in toluene (7 mL) according to general procedure 7 to give 

the crude product as an orange oil, which was purified by flash 

column chromatography (Rf  = 0.53, hexane:EtOAc, 1:3) to give the product 167 as a white 

crystalline product (256 mg, 83%). 

mp: 174-175 °C (from hexane:EtOAc) 

�max: (film)/cm-1 3293 (NH) 3081 (ArCH), 3063 (ArCH), 2966 (CH), 2931 (CH), 2858 (CH), 

1749 (C=O), 1683 (C=O), 1410, 1108, 700 

�H: (400 MHz, CDCl3) 1.05 (9H, s, SiC(CH3)3), 1.35 (9H, s, OC(CH3)3), 2.10-2.28 (2H, m, 

CH2CHO), 3.14 (1H, br d, J 14.2, NCHH), 3.60 (1H, dd, J 10.2 and 1.7 , CHNH), 3.87 (1H, 

dd, J 10.2 and 4.3, CHHO), 4.00 (1H, br d, J 9.2, CHNH), 4.03-4.25 (2H, stack, NCHH and 

CHNCH2), 5.02 (1H,  br d, J 9.1, CHO), 5.36 (1H, br s, NH), 7.32-7.50 (6H, m, ArCH), 7.62 

(4H, t,  J 7.7, ArCH) 

�C: (101 MHz, CDCl3) 19.3 (SiC(CH3)3), 26.5 (CH2CHNCH2 ), 27.0 (SiC(CH3)3), 28.7 

(OC(CH3)3), 41.9 (NCH2), 49.6 (CHNCH2), 51.4 (NCH2CH), 65.5 (CH2O), 73.2 (CHO), 80.8 
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(OC(CH3)3), 128.0 (ArCH), 129.9( ArCH),  130.0 (ArCH), 133.1 (ArCq), 133.2 ArCq), 135.5 

(ArCH) 135.6 (ArCH), 156.0 (C=O), 158.6 (C=O) 

m/z: (ES)+ 533.2 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 533.2450. C28H38N2NaO5Si requires M 533.2448] 

X-ray: See Appendix 

 

(2S, 4R, 5S)-5-Acetyl-4-(trimethylsilyloxy)-2-((trimethylsilyloxy)methyl) piperidine-1-

tertbutyl carboxylic acid (168) 

 
Silyl ether 168 was prepared from: alcohol 149 (45 mg, 0.17 mmol), 

Et3N (80 µL, 0.59 mmol) and TMSOTf (108 µL, 0.51 mmol); in 

CH2Cl2 (2 mL) according to general procedure 4. The crude product 

was purified by flash column chromatography (Rf = 0.45, hexane:EtOAc, 6:1 + 1% Et3N) to 

give the product 168 as a colourless oil (52 mg, 75%). 

�max: (film)/cm-1 2958 (CH), 2936 (CH), 1693 (C=O), 1662 (C=O), 1250, (C-O), 1095 (C-O) 

�H: (300 MHz, CDCl3) 0.05 (9H, s, Si(CH3)3), 0.08 (9H, s, Si(CH3)3), 1.50 (9H, s, C(CH3)3), 

1.76-1.84 (1H, m, NCHCHHCH), 1.93 (3H, s, CHC(O)CH3), 2.13-2.27 (1H, m, 

NCHCHHCH) 2.41 (1H, q, J 3.4, NCH2CH), 3.09 (1H, dd, J 14.2 and 3.4, NCHH), 3.58 (1H, 

dd, J 10.1 and 4.9, CHHOH), 3.68 (1H, dd, J 10.1 and 4.9, CHHOH), 4.21 (1H, q, J, 4.9, 

CHN), 4.32 (1H, dd, J 14.2 and 3.4, NCHH) 4.39-4.59 (1H, m, CHOH) 

�C: (75 MHz, CDCl3) -0.6 (Si(CH3)3), 0.2 (Si(CH3)3), 28.5 (C(CH3)3), 31.4 (NCHCH2CH), 

31.6 (C(O)CH3), 41.2 (NCH2), 52.1 (NCH2CH), 52.3 (NCH), 63.7 (CH2O), 67.6 (CHOH), 

79.4 (C(CH3)3), 155.0 (OC=O), 206.2 (CH3C=O) 

m/z: (ES)+ 440.2 (95%, [M+Na]+), 368.2 (100, [M+Na+H-Si(CH3)3]
+) 
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HRMS: [Found: (M+Na)+ 440.2267. C19H39NNaO5Si2 requires M 440.2265] 

 

(2S, 4R, 5S)-4-((tert-Butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy) methyl)-5-

(1-((tert-butyldimethylsilyl)oxy)vinyl)piperidine (170) and 1-((3S, 4R, 6S)-4-((tert-butyldi 

methylsilyl)oxy)-6-(((tert-butyldimethylsilyl)oxy)methyl)piperidin-3-yl)ethanone (171) 

 
A solution containing ketone 149 

(117 mg, 0.43 mmol) in CH2Cl2 (4 

mL) was transferred via cannula to 

a r.b. flask containing 4 Å MS and stirred for 5 min at room temperature. 2,6-Lutidine (187 

µL, 1.71 mmol) was added to the mixture and the resulting solution was stirred for a further 5 

min before being cooled to 0 °C. TBSOTf (344 µL, 1.50 mmol) was added dropwise over 3 

min and the resulting solution was stirred at 0 °C for a further 2 h. The solution was diluted 

with CH2Cl2 (4 mL) and then poured into a saturated aqueous solution of NaHCO3 (10 mL). 

The organic phase was separated and the aqueous phase was further extracted with CH2Cl2  (3 

x 10 mL). The combined organic fractions were washed with brine (15 mL) and dried over 

Na2SO4 before the solvent was removed in vacuo to give the crude product as a colourless oil. 

The crude product was purified by flash column chromatography (Rf = 0.46, hexane:EtOAc, 

6:1 + 1% Et3N) to give 170 as a colourless oil (115 mg, 61%).  

�max: (film)/cm-1 3125 (NH), 2985 (CH), 2857 (CH), 1253, 1086, 832, 778 

�H: (300 MHz, CDCl3) 0.04 (12H, s, SiCH3), 0.17 (6H, s, SiCH3), 0.87 (18H, s, C(CH3)3), 

0.93 (9H, s, C(CH3)3), 1.31-1.44 (1H, m, NCHCHHCH), 1.54-1.77 (1H, m, NCHCHHCH), 

1.83 (1H br s, NH), 2.06 (1H, q, J 3.8, NCH2CH), 2.91-3.23 (3H, stack, NCH2 and CHNH), 

2.66-3.33 (2H, m, CH2O), 3.99-4.29 (3H, stack, =CH2 and CHO) 
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m/z: (ES)+ 538.4 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 538.3640. C26H57NNaO3Si3 requires M 538.3646] 

Further elution gave 171 (Rf = 0.11) as a colourless oil (33 mg, 23%). 

�max: (film)/cm-1 3124 (NH), 2952 (CH), 2929 (CH) 2857 (CH),  1712 (C=O), 1252, 1085, 

830, 774 

�H: (300 MHz, CDCl3) 0.01-0.09 (12H, s, SiCH3), 0.88 (18H, s, C(CH3)3), 1.27 (1H, br s, 

NH), 1.42 (1H, dt, J 13.4 and 4.1, NCHCHH), 1.59-1.47 (1H, m, NCHCHH), 2.21 (3H, s, 

C(O)CH3), 2.35-2.48 (1H, m, NCH2CH), 3.03 (1H, m, CHNH), 3.21 (2H, d, J 3.5, CH2O), 

3.40  (1H, dd, J 9.8 and 7.0, NCHH), 3.50 (1H, dd,  J 9.8 and 4.1, NCHH), 4.37 (1H, dd, J 7.0 

and 4.1, CHO),  

�C: (101 MHz, CDCl3) -5.2 (SiCH3), 18.4 (C(CH3)3), 25.8 (C(CH3)3), 26.0 (C(CH3)3), 28.3 

(C(O)CH3), 36.4 (NCHCH2), 42.5 (CH2N), 51.6 (NCH2CH), 55.3(CHN), 66.3 (CH2O), 67.5 

(CHO), 208.3 (C=O), 

m/z: (ES)+  402.2 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 402.2852. C20H44NNaO3Si2 requires M 402.2860 

 

(2S, 4R, 5S)-4-(Trimethylsilyloxy)-2-((trimethylsilyloxy)methyl)-5-(1-(trimethyl 

silyloxy)vinyl) piperidine-1-carboxylic acid tertbutyl ester (172) 

 
A solution containing ketone 149 (8.98 g, 32.9 mmol) in CH2Cl2 

(150 mL) was transferred via cannula to a r.b. flask containing 4 Å 

MS with further portions of CH2Cl2 (3 x 5 mL) to complete the 

transfer. The solution was stirred for 5 min at room temperature before Et3N (36.5 mL, 263 

mmol) was added and the resulting mixture was cooled to -40 °C. TMSOTf (19.0 mL, 105 
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mmol) was added dropwise over 20 min to the stirred solution at -40 °C and the resulting 

solution was stirred for a further 3 h. The solution was diluted with CH2Cl2  (100 mL) and 

then poured into a saturated aqueous solution of NaHCO3 (200 mL). The organic phase was 

separated and the aqueous phase was further extracted with CH2Cl2 (3 x 100 mL). The 

combined organic layers were washed with brine (100 mL) and dried over Na2SO4 before the 

solvent was removed in vacuo to afford the crude product as a light brown oil. The crude 

product was diluted with Et2O (100 mL) and the colourless Et2O layer was removed while the 

denser light brown layer containing triethylammonium triflate was further extracted with Et2O 

(4 x 20 mL). The Et2O layers were combined and the solvent removed in vacuo to give the 

product 173 as a colourless oil (15.6 g, 92%).  

Rf : 0.65 (6:1, hexane:EtOAc + 1% Et3N) 

[α]D
20: -13.2 (c 1 in CH2Cl2) 

�max: (film)/cm-1 2958 (CH), 2932 (CH), 2905 (CH), 1693 (C=O), 1249, 1084, 835, 747 

�H: (400 MHz, CD2Cl2) 0.10 (9H, s, Si(CH3)3), 0.11 (9H, s, Si(CH3)3),  0.21 (9H, s, Si(CH3)3), 

1.43 (9H, s, OC(CH3)3), 1.70 (1H, dt, J 13.2 and 3.7, NCHCHHC), 2.08 (1H, ddd, J 13.2, 

10.4 and 6.3, NCHCHHC), 2.26 (1H, q, J 4.2, NCH2CH), 3.18 (1H, dd, J 13.7 and 4.2, 

NCHH), 3.60-3.71 (2H, m, CH2O), 4.01 (1H, dd, J 13.7 and 4.2,  NCHH), 4.11 (2H, s, =CH2), 

4.13-4.22 (2H, stack, NCH and CHO) 

�C: (101 MHz, CD2Cl2) -0.22 (Si(CH3)3), 0.53 (Si(CH3)3), 28.9 (OC(CH3)3), 31.5 (NCHCH2), 

44.1 (NCH2), 46.9 (NCH2CH), 53.2 (NCH), 63.4 (CH2O), 67.3 (CHO), 79.6 (OC(CH3)3), 

92.0 (C=CH2, 155.5 (OC=O), 158.9 (C=CH2) 

m/z: (ES)+  512.2 (20%, [M+Na]+), 440.2 (100, [M+Na-C3H9Si]+), 368.2 (60 [M+Na-

C6H18Si2]
+) 
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HRMS: [Found: (M+Na)+ 512.2657. C22H47NNaO5Si3 requires M 512.2660] 

 

(3S, 4R, 6S)-1-(tert-Butoxycarbonyl)-4-hydroxy-6-(hydroxymethyl)piperidine-3-

carboxylic acid (173) 

 
 

NaHCO3 (25.2 g, 299 mmol) was added to a stirred solution of silyl 

enol ether 172 (14.7 g, 30.0 mmol) in CH2Cl2 (75 mL). The resulting 

suspension was cooled to -78 °C before MeOH (75 mL) was added 

dropwise over 20 min. A stream of gas containing O3/O2 was passed through a gas dispersion 

tube and bubbled into the solution before passing out through a gas scrubber containing an 

aqueous solution of 10% KI to remove any excess O3. The stream of O3/O2 was continued for 

10 min, resulting in the solution turning in colour from colourless to blue. O2 was then 

bubbled through the solution for 5 min before Ar was bubbled through the solution for a 

further 5 min resulting in the solution turning in colour from blue to colourless. DMS (22.0 

mL, 300 mmol) was added over 5 min to the stirred solution at -78 °C. The resulting solution 

was stirred at -78 °C for 15 min before being allowed to warm to room temperature and 

stirred at room temperature until a negative test for peroxides was detected using starch/I2 

paper, usually 2 h. The reaction mixture was cooled to 0 °C and acidified to pH 4 with 

concentrated HCl. The solution was concentrated in vacuo to give a white solid that was taken 

up in acetone (50 mL), filtered and washed with further portions of acetone (4 x 20 mL). The 

solvent was removed in vacuo to give the product 173 as white amorphous solid (8.26 g, 

quant.). 

Rf : 0.21 (9:1, CHCl3:MeOH + 1% AcOH) 

[α]D
21:  -80.2 (c 1 in MeOH) 
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mp: 141-143 °C (from CHCl3:MeOH) 

�max: (film)/cm-1 3384 (OH), 2920 (CH), 2851 (CH), 1695 (C=O), 1664 (C=O), 1417, 1161, 

1049 

�H: (400 MHz, CD3OD) 1.29 (9H, s, OC(CH3)3), 1.71 (1H, ddd, J 13.2, 4.6 and 1.4, 

NCHCHH), 1.88-2.03 (1H, m, NCHCHH), 2.58-2.62 (1H, m, NCH2CH), 3.01 (1H, dd, J 14.4 

and 3.7, NCHH), 3.44 (1H, dd, J 11.3 and 7.0, CH2O), 3.49 (1H, dd, J 11.3 and 7.4, CH2O), 

3.93 (1H, dt,  J 10.5 and 4.6, CHOH), 4.15-4.26 (2H, stack, NCH and NCHH) 

�C: (101 MHz, CD3OD) 28.8 (OC(CH3)3), 30.8 (NCHCH2), 41.8 (NCH2), 46.6 (NCH2CH), 

54.0 (NCH), 62.0 (CH2O), 66.3 (CHOH), 81.4 (OC(CH3)3), 157.2 (NC=O), 175.7 (HOC=O) 

m/z: (ES)– 274.1 (100%, [M-H]–) 

HRMS: [Found: (M-H)- 274.1294. C12H20NNaO6 requires M 274.1291] 

 

 

(3aS, 6S, 7aR)-tert-Butyl 6-(hydroxymethyl)-2-oxohexahydrooxazolo[4,5-c]pyridine-

5(6H)-carboxylate (27) 

 
TBAF Deprotection 

TBAF (1 M soln. in THF, 0.59 mL, 0.59 mmol) was added dropwise over 

30 s to a solution of silyl ether 167 (209 mg, 0.39 mmol) in THF (2 mL). 

The solution was stirred at room temperature for 5 h before the solvent was removed in vacuo. 

The crude material was purified by flash column chromatography (Rf = 0.20, EtOAc) to give 

the product 27 as a white crystalline (111 mg, quant.). 
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Curtius Rearrangement  

Et3N (11.5 mL, 83.1 mmol) was added to a solution of acid 173 (9.15 g, 33.2 mmol) in 

toluene (330 mL) and the resulting mixture was heated to 80 °C. DPPA (7.46 mL, 33.2 mmol) 

was added dropwise over 5 min to the solution and heating was continued for a further 2 h, 

with gas evolution noticed for 30 min. The solution was allowed to cool to room temperature 

and the reaction quenched by the addition of saturated aqueous solution of NaHCO3 (150 

mL). The solution was diluted with EtOAc (300 mL) and the organic phase was separated. 

The aqueous phase was further extracted with EtOAc (3 x 300 mL) and the combined organic 

layers were washed with brine (300 mL) and dried over MgSO4 before the solvent was 

removed in vacuo to afford the crude product as a light brown solid. The crude product was 

purified by flash column chromatography (Rf = 0.20, EtOAc) to give the product 27 as a white 

crystalline solid (6.79 g, 75%).  

[�]D
19: -107 (c 1.0 in MeOH) (Lit.24 [α]21

D: -111.4 (c 0.92 in MeOH)) 

mp: 147-148 °C (from hexane:EtOAc) 

µ: (Found: C, 52.99; H, 7.47; N, 7.47 C12H20N2O5 requires C, 52.93; H, 7.40; N, 7.40%) 

�max: (neat)/cm-1 3295 (OH, NH), 2978 (CH), 2934 (CH), 2881 (CH), 1733 (C=O), 1666 

(C=O), 1412, 1365, 1246, 1135, 1054 (C-O) 

�H: (300 MHz, CDCl3) 1.45 (9H, s, OC(CH3)3), 1.69-2.05 (1H, m, CH2CHO), 2.06-2.35 (1H, 

m, CH2CHO), 2.42 (1H, br s, OH), 2.95-3.08 (1H, m, NCHH), 3.43-3.67 (1H, m, CHHO), 

3.68-3.90 (1H, m, CHHO), 3.96 (1H, br d, J 8.6, CHNH), 4.01-4.29 (2H, stack, NCHH and 

CHNCH2), 4.97 (1H, br d, J 8.5, CHO), 5.73-5.98 (1H, m, NH) 

�H: (400 MHz, CD3OD) 1.51 (9H, s, OC(CH3)3), 1.98-2.14 (1H, m, CH2CHO), 2.16-2.33 (1H, 

m, CH2CHO), 3.05-3.30 (1H, m, NCHH), 3.50-3.67 (1H, m, CHHO), 3.71-3.86 (1H, dd, J 
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10.2 and 4.3, CHHO), 3.92 (1H, br d, J 14.9, CHNH), 3.97-4.11 (2H, stack, NCHH and 

CHNCH2), 5.06 (1H,  br dd, J 2.4 and 6.3, CHO) 

�C: (101 MHz, CD3OD) 26.9 (CH2CHNCH2 ), 28.7 (C(CH3)3), 42.6 (NCH2), 51.0 (CHNCH2), 

52.7 (NCH2CH), 64.5 (CH2O), 75.1 (CHO), 81.6 (C(CH3)3), 157.5 (C=O), 161.4 (C=O) 

m/z: (ES)+ 295.1 (100%, [M+Na]) 

HRMS: [Found: (M+Na)+ 295.1277. C12H20N2NaO5 requires M 295.1270] 

X-ray: See Appendix 

 

(2S, 4R, 5R)-tert-Butyl 5-acetyl-4-hydroxy-2-(hydroxymethyl)piperidine-1-carboxylate 

(175) 

 
 
NaIO4/Na2SO3 Epimerisation 

NaIO4 (4.27 g, 20.0 mmol) was added in one portion to a stirred solution 

of ketone 149 (2.18 g, 7.99 mmol) in dioxane (40 mL). A saturated 

aqueous solution of Na2SO3 (40 mL) was added and the resulting mixture was heated to 40 °C 

for 1 h. The solvent was removed in vacuo and the reaction mixture was diluted with water 

(100 mL) and EtOAc (100 mL). The organic phase was separated and the aqueous phase was 

further extracted with EtOAc (4 x 100 mL). The combined organic fractions were washed 

with brine and dried over MgSO4 before the solvent was removed in vacuo to give the product 

175 as a colourless oil (2.16 g, 99%). 

DBU Epimerisation 

DBU (54 µL, 0.36 mmol) was added to solution of ketone 149 (49 mg, 0.18 mmol) in CH2Cl2 

(1.8 mL). The resulting solution was stirred at room temperature for 4 h before being 
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quenched by the addition of water (5 mL). The solution was diluted with CH2Cl2 (5 mL) and 

the organic phase was separated. The aqueous phase was further extracted with CH2Cl2 (3 x 5 

mL) and the combined organic phases were washed with water (10 mL), brine (10 mL) and 

dried over MgSO4 before the solvent was removed in vacuo to give the product 175 as a 

colourless oil (48 mg, 98%). 

Rf : 0.34 (EtOAc) 

[�]D
20: +10.4 (c 1.0 in CHCl3)  

�max: (film)/cm-1 3394 (OH), 2975 (CH), 2932 (CH), 1692 (C=O), 1662 (C=O), 1159, (C-O), 

1052 (C-O) 

�H: (400 MHz, CDCl3) 1.44 (9 H, s, C(CH3)3), 1.49-1.63 (1H, m, CHHCHOH) 2.01 (1H, dd, J 

13.1 and 4.1, CHHCHOH), 2.24 (3H, s, CHC(O)CH3), 2.54 (1H, ddd, J 12.2, 10.1 and 4.1, 

NCH2CH), 2.65-2.93 (2H, stack, OH and NCHH), 3.16 (1H, br s, OH), 3.51-3.74 (2H, m, 

CH2OH), 3.95-4.16 (1H, m, CHOH), 4.20-4.52 (2H, stack, CHN and NCHH) 

�C: (101 MHz, CDCl3) 28.5 (C(CH3)3), 31.0 (C(O)CH3), 33.1 (NCHCH2CH), 39.6 (NCH2), 

53.0 (NCH), 57.0 (NCH2CH), 61.7 (CH2O), 66.4 (CHOH), 80.9 (C(CH3)3), 155.4 (OC=O), 

210.6 (CH3C=O) 

m/z: (ES)+  296.2 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 296.1470. C13H23NNaO5 requires M 296.1474] 
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(2S, 4R, 5R)-tert-Butyl 5-acetyl-2-(((tert-butyldiphenylsilyl)oxy)methyl)-4-    

hydroxypiperidine-1-carboxylate (176) 

 
Silyl ether 176 was prepared from: Alcohol 175 (1.38 g, 5.05 

mmol), Et3N (0.85 mL, 6.06 mmol), DMAP (124 mg, 1.02 mmol) 

and TBDPSCl (1.3 mL, 5.05 mmol) in CH2Cl2 (17 mL) according to 

general procedure 1. The crude product was purified by flash column chromatography (Rf = 

0.30, hexane:EtOAc, 2:1) to give the product 176 as a colourless oil (2.47 g, 96%). 

[�]D
21: +4.8 (c 1.0 in MeOH)  

�max: (film)/cm-1 3428 (OH), 3079 (ArCH), 3056 (ArCH), 2970 (CH), 2932 (CH), 2859 (CH), 

1690 (C=O), 1671  (C=O), 1425, 1105, 1077, 700 

�H: (300 MHz, CDCl3) 1.07 (9H, s, SiC(CH3)3), 1.42 (9H, s, OC(CH3)3), 1.51-1.70 (1H, m, 

NCHCHH), 1.86-2.08 (1H, m, NCHCHH), 2.24 (3H, s, C(O)CH3), 2.40-2.61 (1H, m, 

NCH2CH), 2.65-2.79 (1H, m, NCHH), 3.05 (1H, br s, OH), 3.65 (2H, m,  CH2O), 4.02-4.15 

(1H, m, CHOH), 4.35-4.60 (2H, stack, NCH and NCHH), 7.35-7.49 (6H, m, ArCH), 7.64 

(4H, dd, J 1.7 and 7.5, ArCH) 

�C: (101 MHz, CDCl3) 19.1 (SiC(CH3)3), 26.8 (SiC(CH3)3), 28.3 (OC(CH3)3), 30.3 

(C(O)CH3), 29.9 (NCHCH2), 39.7 (NCH2), 52.6 (NCH), 56.9 (NCH2CH), 62.9 (CH2O), 66.1 

(CHOH), 80.2 (OC(CH3)3), 127.7 (ArCH), 129.7 (ArCH), 133.0 (ArCq), 135.4 (ArCH), 154.5 

(OC=O), 209.1 (CH3C=O) 

m/z: (ES)+  534.3 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 534.2660. C29H41NNaO5Si requires M 534.2652] 
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(2S, 4R, 5R)-tert-Butyl 5-acetyl-2-(((tert-butyldiphenylsilyl)oxy)methyl)-4-

((trimethylsilyl)oxy)piperidine-1-carboxylate (177) 

 
Silyl ether 177 was prepared from: alcohol 176 (221 mg, 0.43 

mmol), TMSOTf (0.19 mL, 0.86 mmol), Et3N (0.12 mL, 0.86 

mmol); in CH2Cl2 (4 mL) according to general procedure 4. 

Purification by flash column chromatography (Rf = 0.20, hexane:EtOAc, 6:1) gave the 

product 177 as a colourless oil (276 mg, 78%). 

�max: (film)/cm-1 3077 (ArCH), 3056 (ArCH), 2958 (CH), 2935 (CH), 2859 (CH), 1714 

(C=O), 1693 (C=O), 1411, 1161, 1097, 840, 701 

�H: (400 MHz, CDCl3) 0.08 (9H, s, Si(CH3)3), 1.05 (9H, s, SiC(CH3)3), 1.35 (9H, s, 

OC(CH3)3), 1.45-1.58 (1H, m, NCHCHH), 1.97-2.09 (1H, m, NCHCHH), 2.16 (3H, s, 

C(O)CH3), 2.51-2.62 (1H, m, NCH2CH) 2.63-2.74 (1H, m, NCHH), 3.48-3.69 (2H, m, 

CH2O), 3.95-4.06 (2H, stack, NCHH and CHO), 4.20-4.34 (1H, m, NCH), 7.29-7.50 (6H, m, 

ArCH), 7.66 (4H, dd, J 7.4 and 1.6 , ArCH) 

�C: (101 MHz, CDCl3) 0.04 (Si(CH3)3), 19.0 (SiC(CH3)3), 26.6 (SiC(CH3)3), 28.1 

(OC(CH3)3), 32.6 (C(O)CH3), 34.1 (NCHCH2), 40.1 (NCH2), 52.4 (NCH), 56.6 (NCH2CH), 

62.3.5 (CH2O), 68.5 (CHO), 79.8 (OC(CH3)3), 127.6 (ArCH), 129.6 (ArCH), 133.9 (ArCq), 

135.3  (ArCH), 154.5 (OC=O), 209.8 (CH3C=O) 

m/z: (ES)+  606.3 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 606.3050. C32H49NNaO5Si2 requires M 606.3047] 
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(2S, 4R, 5R)-tert-Butyl 2-(((tert-butyldiphenylsilyl)oxy)methyl)-4-((trimethylsilyl) oxy)-5- 

(1-((trimethylsilyl)oxy)vinyl)piperidine-1-carboxylate (178) 

 
Silyl enol ether 178 was prepared from: ketone 176 (2.09 g, 4.08 

mmol), Et3N (2.74 mL, 16.3 mmol) and TMSOTf (1.84 mL, 10.2 

mmol); in CH2Cl2 (40 mL) according to general procedure 5 to 

give the product 178as a colourless oil (2.14 g, 80%).  

Rf : 0.20 (hexane:EtOAc, 10:1 + 1% Et3N) 

[�]D
20: +7.6 (c 1.0 in CH2Cl2)  

�max: (film)/cm-1 2958 (CH), 2934 (CH), 2859 (CH), 2903 (CH), 1695 (C=O), 1250, 1099, 

839, 740, 701 

�H: (300 MHz, C6D6) 0.11 (9H, s, Si(CH3)3), 0.22 (9H, s, Si(CH3)3), 1.21 (9H, s, SiC(CH3)3), 

1.45 (9H, s, OC(CH3)3), 1.63-1.74 (1H, m, NCHCHH), 2.25-2.41 (1H, m, NCHCHH), 2.43-

2.59 (1H, m, NCH2CH)), 3.01-3.19 (1H, m, NCHH), 3.82-3.96 (2H, m, CH2O), 4.10-4.48 

(4H, stack NCHH, CHO and =CH2), 4.47-4.59 (1H, m, NCH), 7.21-7.27 (6H, m, ArCH), 7.80 

(4H, d, J 7.1, ArCH) 

�C: (101 MHz, C6D6) 0.1 (Si(CH3)3), 0.6 (Si(CH3)3), 19.4 (SiC(CH3)3), 27.1 (SiC(CH3)3), 28.4 

(OC(CH3)3), 34.6878 (NCH2), 51.1 (NCHCH2), 46.9 (NCH2CH), 53.0 (NCH), 62.7 (CH2O), 

66.6 (CHO), 79.1 (OC(CH3)3), 91.6 (C=CH2), 128.1 (ArCH), 130.0 (ArCH), 133.6 (ArCq), 

135.8 (ArCH), 154.5 (OC=O), 157.4 (C=CH2) 

m/z: (ES)+  678.4 (100%, [M+Na]+), 556.4 (22) 

HRMS: [Found: (M+Na)+ 678.3452. C35H57NNaO5Si3 requires M 678.3442] 
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(3R, 4R, 6S)-1-(tert-Butoxycarbonyl)-6-(((tert-butyldiphenylsilyl)oxy)methyl)-4-hydroxy 

piperidine-3-carboxylic acid (179) 

 
Carboxylic acid 179 was prepared from: Silyl enol ether  178 

(0.69 g, 1.05 mmol), NaHCO3 (0.89 g, 10.5 mmol) and DMS 

(0.77 mL, 10.5 mmol); in CH2Cl2:MeOH (1:1, 10 mL) according 

to general procedure 6 to give the product 179 as a white foam (533 mg, 92%). 

Rf : 0.45 (hexane:EtOAc, 1:3 + 1% AcOH) 

[�]D
20: +5.6 (c 1.0 in MeOH)  

�max: (film)/cm-1 3426 (OH), 3074 (ArCH), 3051 (ArCH), 2960 (CH), 2932 (CH), 2859 (CH), 

1694 (C=O), 1667 (C=O), 1427, 1164, 1106, 823, 700 

�H: (400 MHz, CD3OD) 0.97 (9H, s, SiC(CH3)3), 1.27-1.55 (10H, stack, OC(CH3)3 and 

NCHCHH), 1.88-2.08 (1H, m, NCHCHH), 2.12-2.33 (1H, m, NCH2CH), 2.80 (1H, t, J 12.4, 

NCHH), 3.65 (2H, d, J 6.2, CH2O), 3.77-4.23 (2H, stack, CHOH and NCHH),  4.30-4.57 (1H, 

m, NCH), 7.24-7.47 (6H, m, ArCH), 7.53-7.66 (4H, m, ArCH) 

�C: (101 MHz, CD3OD) 19.7 (SiC(CH3)3), 27.4 (SiC(CH3)3), 28.7 (OC(CH3)3), 34.7 

(NCHCH2), 40.4 (NCH2), 52.0 (NCH2CH), 54.2 (NCH), 64.4 (CH2O), 67.3 (CHOH), 81.6 

(OC(CH3)3), 128.9 (ArCH), 131.0 (ArCH), 134.0 (ArCq), 136.6 (ArCH), 156.2 (NC=O), 

175.6 (HOC=O) 

m/z: (ES)– 512.3 (100%, [M-H]–) 

HRMS: [Found: (M-H)– 512.2471. C28H38NNaO6Si  requires M 512.2468] 
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(3aR, 6S, 7aR)-tert-Butyl 6-(((tert-butyldiphenylsilyl)oxy)methyl)-2-oxohexa 

hydrooxazolo[4,5-c]pyridine-5(6H)-carboxylate (180) 

 
Oxazolidinone 180 was prepared from: carboxylic acid 179 (313 mg, 

0.61 mmol), Et3N (187 µL, 1.34 mmol) and DPPA (137 µL, 0.61 

mmol); in toluene (6 mL) according to general procedure 7. 

Purification by flash column chromatography (Rf = 0.31, 

hexane:EtOAc, 2:1) gave the product 180 as a white foam (230 mg, 74%). 

[�]D
20: +3.5 (c 1.0 in CHCl3)  

�max: (film)/cm-1 3305 (NH) 3077 (ArCH), 3062 (ArCH), 2934 (CH), 2931 (CH), 2890 (CH), 

1762 (C=O), 1691 (C=O), 1390, 1231, 1106, 701 

�H: (400 MHz, CDCl3) 1.06 (9H, s, SiC(CH3)3), 1.39 (9H, s, OC(CH3)3), 1.85-2.07 (1H, m, 

CHHCHO), 2.52 (1H, dd, J 3.2 and 11.9, CHHCHO), 2.80 (1H, t, J 12.1, NCHH), 3.20-3.38 

(1H, m, CHNH), 3.54-3.79 (2H, m, CHHO), 4.19-4.33 (1H, m, CHO), 4.55 (1H, dd, J 4.3 and 

12.1, NCHH),  4.70-4.78 (1H, m, CHNCH2), 5.89 (1H, br s, NH), 7.32-7.52 (6H, m, ArCH), 

7.56-7.75 (4H,  m, ArCH) 

�C: (101 MHz, CDCl3) 19.1 (SiC(CH3)3), 26.9 (SiC(CH3)3, 28.4 (OC(CH3)3), 28.5 

(CH2CHNCH2), 43.9 (NCH2), 52.7 (CHNCH2), 58.4 (CHNH), 63.5 (CH2O), 79.0 (CHO), 

80.9 (OC(CH3)3), 127.9 (ArCH), 129.9( ArCH),  130.0 (ArCH), 132.6 (ArCq), 132.7 (ArCq), 

135.5 (ArCH), 154.7 (C=O), 160.7 (C=O) 

m/z: (ES)+ 533.3 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 533.2456. C28H38N2NaO5Si requires M 533.2448] 
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(2S, 4R, 5R)-tert-Butyl 5-amino-4-hydroxy-2-(hydroxymethyl)piperidine-1-carboxylate 

(181) 

 
TBAF (1 M soln. in THF, 0.10 mL, 0.10 mmol) was added to a solution 

of silyl ether 180 (53 mg, 0.10 mmol) in THF (1 mL). The reaction 

mixture was stirred at room temperature overnight before the solvent was 

removed in vacuo and the residue purified by flash column chromatography (Rf = 0.17, 

CHCl3:MeOH, 8:2 + 1% NH3(aq)) to give the product 181 as a colourless oil (21 mg, 74%). 

[�]D
21: +15.3 (c 1.5 in MeOH)  

�max: (film)/cm-1 3353 (NH, OH), 2966 (CH), 2924 (CH), 2931 (CH), 2855 (CH), 1668 

(C=O), 1416, 1365, 1248, 1164, 1053 

�H: (400 MHz, CD3OD) 1.35 (9H, s, OC(CH3)3), 1.36-1.45 (1H, m, CHHCHO), 2.91-2.10 

(1H, m, CHHCHO), 2.34-2.42 (1H, m, CHNH2), 2.47-2.65 (1H, m, NCHH), 3.34-3.41 (1H, 

m, CHOH), 3.43-3.58 (2H, m, CHHO), 3.96-4.07 (1H, m, NCHH), 4.15-4.26 (1H, m, 

CHNCH2) 

�C: (101 MHz, CD3OD) 28.7 (OC(CH3)3), 33.9 (CH2CHNCH2), 43.8 (NCH2), 52.9 

(CHNCH2), 55.9 (CHNH2), 61.5 (CH2O), 71.2 (CHOH), 81.4 (OC(CH3)3), 156.7 (C=O) 

m/z: (ES)+ 269.2 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 269.1479. C11H22N2NaO4 requires M 269.1477] 
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(3aR, 6S, 7aR)-tert-Butyl 6-(hydroxymethyl)-2-oxohexahydrooxazolo[4,5-c]pyridine-

5(6H)-carboxylate (182) 

 
A solution of HF.pyridine  (70% HF in pyridine, 62 µL, 2.78 mmol) was 

added to a solution of silyl ether 180 (71 mg, 0.14 mmol) in THF:pyridine 

(1:1, 1 mL). The resulting mixture was stirred at rt for 3 h before being 

cooled to 0 °C and quenched with a saturated aqueous solution of NaHCO3 (2 mL). The 

mixture was extracted with EtOAc (4 x 5 mL) and the combined organic fractions washed 

with brine and dried over MgSO4 before the solvent was removed in vacuo. The crude 

product was purified by flash column chromatography (Rf = 0.22, hexane:EtOAc, 1:3) to give 

the product 182 as a white amorphous solid (31 mg, 81%). 

[�]D
20: +19.2 (c 1.0 in MeOH)  

mp: 135-136 °C (from hexane:EtOAc) 

�max: (film)/cm-1 3328 (NH, OH), 2934 (CH), 2922 (CH), 2853 (CH), 1746 (C=O), 1670 

(C=O), 1237, 1161, 1085, 1030 

�H: (400 MHz, CDCl3) 1.39 (9H, s, OC(CH3)3), 1.49-1.60 (1H, br s, OH), 1.77-2.01 (1H, m, 

CHHCHO), 2.22-2.31 (1H, m, CHHCHO), 2.78-3.01 (1H, m, NCHH), 3.21-3.34 (1H, m, 

CHNH), 3.62-3.74 (2H, m, CHHO), 4.15-4.27 (1H, m, CHO), 4.42-4.73 (2H, stack, NCHH 

and CHNCH2), 4.46 (1H, br s, NH) 

m/z: (ES)+ 295.2 (100%, [M+Na]+), 327.2 (29, [M+MeOH+Na]+) 

HRMS: [Found: (M+Na)+ 295.1274. C12H20N2NaO5 requires M 295.1270] 
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(6S, 7R, 8aS)-6-Acetyl-7-hydroxytetrahydro-1H-oxazolo[3,4-a]pyridin-3(5H)-one (185) 

 
Dihydroxylation/oxidative cleavage 

2,6-Lutidine (700 µL, 0.60 mmol) was added to a solution of piperidine 96 

(60 mg, 0.30 mmol) in dioxane:water (3:1, 4 mL). OsO4 (one small crystal) 

followed by NaIO4 (0.26 g, 1.20 mmol) was added to the solution. After 15 

min a white precipitate began to fall out of solution. The reaction was stirred for a further 2 h 

before being quenched with saturated aqueous solution of Na2SO3 (5 mL). The solvent was 

removed in vacuo and the aqueous phase was extracted with EtOAc (4 x 10 mL). The 

combined organic phases were washed with brine (10 mL), dried over MgSO4 and 

concentrated in vacuo to afford the crude product as a yellow solid, which was purified by 

flash column chromatography (Rf = 0.21, EtOAc) to give the product 185 as a white 

crystalline solid  (54 mg, 90%). 

Ozonolysis 

Ozone was bubbled through a solution of piperidine 96 (105 mg, 0.53 mmol) in 

CH2Cl2:MeOH (3:1, 4 mL) at -78 °C and out into an aqueous KI scrubber. After 15 min the 

solution turned in colour from colourless to clear blue. O2 was bubbled through the solution 

followed by Ar, each for 10 min, resulting in a colour change from blue to colourless. DMS 

(470 µL, 0.64 mmol) was added and after warming to room temperature the solvent was 

removed in vacuo   obtain the crude product as an off white crystalline solid, which was 

purified by flash column chromatography (Rf = 0.21, EtOAc) to give the product 185 as a 

white crystalline solid (106 mg, quant.). 

[α]D
20 : -173 (c 1.0 in CHCl3) 

N

OH O
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mp: 160-162 °C (from hexane:EtOAc)  

�max: (film)/cm-1 3514 (OH), 2925 (CH), 1747 (C=O), 1704 (C=O) 

�H: (300 MHz, CDCl3): 1.41-1.50 (1H, m, CHHCHOH), 1.99 (1H, dt, J 13.3 and 3.7, 

CHHCHOH), 2.20 (3H, s, CH3), 2.65-2.69 (1H, m, CHCOCH3), 3.29 (1H, t, J 12.5, NCHH), 

3.85-3.96 (2H, stack, NCHH and CHHO), 4.04-4.13 (1H, m, NCH), 4.38 (1H, t, J 8.2 

CHHO), 4.44 (1H, br s, CHOH)  

�C: (75 MHz, CDCl3) 29.2 (CH3), 35.7 (CH2CHO), 37.4 (NCH2), 48.7 (NCH2CH), 51.5 

(NCH), 64.0 (CHOH), 67.5 (CH2OCO), 157.1 (OCO), 209.8 (COCH3)  

m/z: (ES)+ 222.1 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 222.0748. C9H13NNaO4 requires M 222.0742] 

 

 
(6R, 7R, 8aS)-7-Hydroxy-6-((E)-1-(hydroxyimino)ethyl)tetrahydro-1H-oxazolo [3,4-

a]pyridin-3(5H)-one (186) 

 
Et3N (0.23 mL, 1.67 mmol) was added to a stirred solution of ketone 185 

(111 mg, 0.56 mmol) dissolved in EtOH (6 mL) followed by the addition 

of hydroxylamine hydrochloride (58 mg, 0.84 mmol). The reaction was 

heated to reflux for 5 h before being allowed to cool to room temperature 

and quenched by the addition of water (10 mL). The solvent was removed in vacuo and the 

aqueous phase was extracted with EtOAc (4 x 10 mL). The combined organic fractions were 

washed with brine (10 mL) and dried over MgSO4 before being concentrated in vacuo to give 

the oxime product 186 as a white crystalline solid (92 mg, 78%). 

Rf : 0.24 (EtOAc) 

N

OH N
OH
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mp: 153-155 °C (from EtOAc) 

�max: (neat)/cm-1 3404 (OH), 3243 (OH), 2923 (CH), 2877 (CH), 1710 (C=O), 1433, 1244, 

1006, 960 

�H: (300 MHz, CD3OD): 1.61-1.74 (1H, m, CHHCHOH), 1.94 (3H, s, CH3), 2.05 (1H, dt, J 

12.5 and 3.5, CHHCHOH), 2.40-2.49 (1H, m, CHCOCH3), 3.41 (1H, t, J 12.5, NCHH), 3.66 

(1H, dd, J 12.5 and 4.5, NCHH) 3.95-4.04 (1H, m, CHHO), 4.12-4.20 (1H, m, NCH), 4.38 

(1H, br s, CHOH) 4.49 (1H, t, J 8.2 CHHO), 

�C: (75 MHz, CD3OD) 11.6 (CH3), 36.5 (CH2CHO), 38.2 (NCH2), 55.7 (NCH2CH), 49.4 

(NCH), 64.6 (CHOH), 68.1 (CH2OCO), 155.4 (C=O), 158.1 (C=N-OH)  

m/z: (ES)+ 237.1 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 237.0839. C9H14N2NaO4 requires M 237.0851] 

X-ray: See Appendix 

 

(S)-6-Acetyl-8,8a-dihydro-1H-oxazolo[3,4-a]pyridin-3(5H)-one (188) 

 
O-(mesitylsulfonyl)hydroxylamine 162 (37 mg, 0.17 mmol) was added to a 

stirred solution of ketone 185 (32mg, 0.16 mmol) dissolved in EtOH (1.5 

mL). The resulting mixture was heated to 120 °C in a sealed tube for 3 h 

before being allowed to cool to room temperature and concentrated in vacuo 

to give the crude product that was purified by flash column chromatography (Rf = 0.22, 

hexane:EtOAc, 1:3) to give the enone 188 as a white crystalline solid (27 mg, 93%). 

mp: 112-114 °C (from hexane:EtOAc) 

�max: (neat)/cm-1 2964 (CH), 2908 (CH), 1749 (C=O), 1658 (C=O), 1641, 1417, 1248, 1069, 

750 

N
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�H: (300 MHz, CDCl3) 2.24 (3H, s, CH3), 2.30-2.39 (1H, m, CHHCH=), 2.42-2.55 (1H, m, 

CHHCH=), 3.67-3.81 (2H, stack, and NCHH and NCH), 4.01 (1H, dd, J 8.2 and 4.0, CHHO,) 

4.35 (1H, d, J 14.0 NCHH), 4.46 (1H, t, J 8.2 CHHO), 6.82-6.91 (1H, m, CH=) 

�C: (75 MHz, CDCl3) 25.2 (CH3), 29.9 (CH2CH=), 39.9 (NCH2), 49.4 (NCH), 68.2 (CH2O), 

135.6 (CH=), 137.7 (Cq=) 155.6 (NC=O), 196.2 (C=O)  

m/z: (ES)+ 204.0 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 204.0629. C9H11NNaO3 requires M 204.0637] 

 

(6S, 7R, 8aS)-6-Acetyl-7-((di-tert-butyl(hydroxy)silyl)oxy)tetrahydro-1H-oxazolo [3,4-

a]pyridin-3(5H)-one (190) and (S)-6-Acetyl-8,8a-dihydro-1H-oxazolo[3,4-a]pyridin-

3(5H)-one (188) 

 
Et3N (105 μL, 0.75 mmol) was added to a solution 

of ketone 185 (50 mg, 0.25 mmol) in CH2Cl2 (2.5 

mL) cooled to -78 °C. di(tert-

butyl)silylbis(trifluoromethanesulfonate) (92 µL, 

0.25 mmol) was added dropwise over 1 min and the resulting solution stirred at -78 °C for 1 h 

before being allowed to warm to 0 °C and stirred for a further 3 h. The reaction was 

concentrated in vacuo and the crude product was purified by flash column chromatography 

(Rf  = 0.50, hexane:EtOAc, 1:3) to give the silyl ether 190 as a colourless oil (34 mg, 38%). 

�max: (film)/cm-1 3514 (OH), 2925 (CH), 2809 (CH), 1747 (C=O), 1704 (C=O), 1050 

�H: (300 MHz, CDCl3): 0.97 (9H, s, C(CH3)3), 1.03 (9H, s, C(CH3)3), 1.57 (1H, ddd, J 13.4, 

11.7 and 1.9, CHHCHO), 2.18 (1H, dt, J 13.4 and 3.7, CHHCHO), 2.23 (3H, s, CH3), 2.50 

(1H, ddd, J 11.9, 4.7 and 1.7, NCH2CH),  2.65 (1H, br s, OH), 3.52 (1H, dd, J 13.2 and 11.9, 

N

O

O
O
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NCHH), 3.89-4.04 (2H, stack, NCHH and CHHO), 4.08-4.20 (1H, m, NCH), 4.46 (1H, t, J 

8.2 CHHO), 4.89-5.02 (1H, br s, CHO)  

�C: (75 MHz, CDCl3) 20.9 (C(CH3)3), 27.2 (C(CH3)3),  28.7 (C(O)CH3), 37.3 (CH2), 37.4 

(CH2), 49.0 (NCH2CH), 53.7(NCH), 65.8 (CHO), 67.4 (CH2O), 15731 (OCO), 206.2 

(COCH3)  

m/z: (ES)+ 380.1 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 380.1872. C17H31NNaO5Si requires M 380.1869] 

Further elution (Rf = 0.22) gave the enone 188 as a white crystalline solid (19 mg, 41%). Data 

vide supra. 

 

(6S, 7R, 8aS)-6-acetyl-7-(trimethylsilyloxy)tetrahydro-1H-oxazolo[3,4-a]pyridin-3(5H)-

one (191) 

 
A solution of ketone 185 (100 mg, 0.50 mmol) in CH2Cl2 (5 mL) was 

transferred via cannula to a r.b. flask containing 4 Å MS and stirred for 5 min 

at room temperature. Et3N (140 µL, 1.00 mmol) was added to the solution and 

the resulting mixture was stirred for a further 5 min before being cooled to -78 °C. TMSOTf 

(182 µL, 0.50 mmol) was added dropwise over 5 min and the resulting solution was stirred at 

-78 °C for a further 5h. The solution was diluted with CH2Cl2 (5 mL) and then poured into a 

saturated aqueous solution of NaHCO3 (10 mL). The organic phase was separated and the 

aqueous phase was further extracted with CH2Cl2 (3 x 10 mL). The combined organic layers 

were dried over Na2SO4 and the solvent removed in vacuo to afford the crude product as a 

light brown oil. The crude product was purified by flash column chromatography (Rf = 0.57, 

N

TMSO O
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hexane:EtOAc, 3:1 + 1% Et3N) to give the product 191 as a white crystalline solid (102 mg, 

75%). 

mp: 64-65 °C (from hexane:EtOAc)  

�max: (neat)/cm-1 2957 (CH), 1736 (C=O), 1709 (C=O), 1433, 1250, 1026, 849, 756 

�H: (300 MHz, CDCl3): 0.04 (9H, s, Si(CH3)3), 1.56 (1H, ddd, J 13.4, 11.6 and 1.9, 

CHHCHO), 1.85 (1H, dt, J 13.4 and 3.8, CHHCHO), 2.10 (3H, s, CH3), 2.43 (1H, ddd, J 

11.9, 4.9 and 2.1, NCH2CH), 3.45 (1H, dd, J 13.4 and 11.9, NCHH), 3.79 (1H, dd, J 13.4 and 

4.9, NCHH), 3.86 (1H, dd, J 8.2 and 5.1, CHHO), 3.91-4.04 (1H, m, NCH), 4.37 (1H, t, J 8.2 

CHHO), 4.53-4.68 (1H, m, CHO)  

�C: (75 MHz, CDCl3) 0.02 (Si(CH3)3), 28.1 (C(O)CH3), 36.9 (CH2CHO), 37.5 (NCH2), 48.7 

(NCH2CH), 52.8 (NCH),  66.3 (CHO), 67.2 (CH2O), 157.2 (OC=O), 205.9 (C=OCH3)  

m/z: (ES)+ 294.1 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 294.1134. C12H21NNaO4Si requires M 294.1138] 

 
 
(6S, 7R, 8aS)-7-(Trimethylsilyloxy)-6-(1-(trimethylsilyloxy)vinyl)tetrahydro-1H-oxazolo 

[3,4-a]pyridin-3(5H)-one (192) 

 
A solution containing ketone 185 (516 mg, 2.59 mmol) in CH2Cl2 (26 

mL) was transferred via cannula to a r.b. flask containing 4 Å MS and 

stirred for 5 min at room temperature. Et3N (1.44 mL, 10.36 mmol) was 

added to the mixture and the resulting solution was stirred for a further 5 

min before being cooled to 0 °C. TMSOTf (1.17 mL, 6.48 mmol) was added dropwise over 5 

min and the resulting solution was stirred at 0 °C for a further 1 h. The solution was diluted 

with CH2Cl2 (20 mL) and then poured into a saturated aqueous solution of NaHCO3 (25 mL). 

N
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The organic phase was separated and the aqueous phase was further extracted with CH2Cl2 

(50 x 3 mL). The combined organic layers were dried over Na2SO4 and the solvent removed 

in vacuo to afford the crude product as a light brown oil, which was purified by flash column 

chromatography (Rf = 0.84, hexane:EtOAc, 1:3 + 1% Et3N) to give the product 192 as a white 

crystalline (757 mg, 84%). 

mp: 77-79 °C (from benzene) 

[α]D
20 : -32.1 (c 1 in CH2Cl2) 

�max: (neat)/cm-1 2959 (CH), 2909 (CH), 1760 (C=O), 1633, 1427, 1250, 1230, 1042, 829, 756 

�H: (400 MHz, C6D6): 0.07 (9H, s, Si(CH3)3), 0.14 (9H, s, Si(CH3)3), 0.83 (1H, ddd, J 13.2, 

11.7 and 1.9, CHHCHO), 1.18 (1H, dt, J 13.2 and 3.8, CHHCHO), 1.94 (1H, dd, J 12.2 and 

4.5, NCH2CH), 3.12 (1H, t, J 12.2, NCHH), 3.18 (1H, dd, J 8.1 and 5.0, CHHO), 3.39-3.52 

(1H, m, NCH), 3.65 (1H, t, J 8.1, CHHO), 3.86 (1H, s, =CHH), 3.91 (1H, dd, J 12.2 and 4.5, 

NCHH), 4.10 (1H, s, =CHH), 4.13-4.17 (1H, m, CHO) 

�C: (101 MHz, CDCl3) 0.14 (Si(CH3)3), 0.22 (Si(CH3)3), 37.7 (CH2CHO), 38.7 (NCH2), 46.3 

(NCH2CH), 48.9 (NCH),  66.2 (CHO), 66.9 (CH2O), 90.7 (=CH2), 156.8 (Cq=CH2) 156.9 

(C=O) 

m/z: (ES)+ 366.3 (100%, [M+Na]+)  

HRMS: [Found: (M+Na)+ 366.1519. C15H29NNaO4Si2 requires M 366.1533] 
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(6S, 7R, 8aS)-7-Hydroxy-3-oxohexahydro-1H-oxazolo[3,4-a]pyridine-6-carboxylic acid 

(193) 

 
Carboxylic acid 193 prepared from: silyl enol ether 192 (543 mg, 1.58 

mmol), NaHCO3 (1.34 g, 15.8 mmol) and DMS (1.18 mL, 15.8 mmol); in 

CH2Cl2:MeOH (1:1, 16 mL) according to general procedure 6. The crude 

product was purified by flash column chromatography (Rf = 0.21, 

CHCl3:MeOH, 8:2 + 1% AcOH) to give the product 193 as a white amorphous solid (299 mg, 

95%).  

mp: decomposition at 130 °C (from MeOH) 

[α]D
20 : -62.5 (c 1 in MeOH) 

�max: (neat)/cm-1 3476 (OH), 2919 (CH), 1718 (C=O), 1682 (C=O), 1464, 1276, 1190, 1030, 

1042, 754 

�H: (400 MHz, d6-DMSO): 1.39-1.55 (1H, m, CHHCHO), 1.79 (1H, dt, J 13.2 and 3.7, 

CHHCHO), 2.36-2.48 (1H, m, NCH2CH), 3.13-3.20 (1H, m, NCHH), 3.52 (1H, dd, J 13.1 

and 5.2, NCHH), 3.81 (1H, dd, J 8.4 and 5.7, CHHO), 3.86-3.98 (1H, m, NCH), 4.27-4.39 

(2H, stack, CHHO and CHO) 

�C: (101 MHz, d6-DMSO) 36.3 (CH2CHO), 36.5 (NCH2), 44.2 (NCH2CH), 48.0 (NCH),  63.8 

(CHO), 67.0 (CH2O), 156.2 (NC=O), 172.4 (C=OOH) 

m/z: (ES)– 200.0 (100%, [M+Na]–)  

HRMS: [Found: (M+Na)– 200.0562. C8H10NO5 requires M 200.0559] 

 

 

 

N
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(3aS, 8aS, 9aR)-Hexahydro-2H-dioxazolo[3,4-a:5',4'-d]pyridine-2,6(3H)-dione (184) 

 
Et3N (333 µL, 2.39 mmol) was added to a solution of acid 193 (192 mg, 0.96 

mmol) in toluene (10 mL) at room temperature. The resulting mixture was 

heated to 80 °C and DPPA (236 µL, 1.05 mmol) was added dropwise over 1 

min to the solution and heating was continued for a further 4 h. The solution 

was allowed to cool to room temperature and the reaction was quenched by the addition of a 

saturated aqueous solution of NaHCO3 (10 mL). The solution was diluted with EtOAc (10 

mL) and the organic phase was separated. The aqueous phase was further extracted with 

EtOAc (3 x 20 mL) and the combined organic layers were washed with brine and dried over 

MgSO4. The solvent was removed in vacuo to afford the crude product as a light brown solid. 

The crude product was purified by flash column chromatography (Rf = 0.24, CHCl3:MeOH, 

9:1) to give the product 184 as a white amorphous solid (142 mg, 75%). 

mp: 134-135 °C (from MeOH) 

[α]D
20 : -80.4 (c 1 in CHCl3) 

�max: (neat)/cm-1 3245 (NH), 2994 (CH), 2992 (CH), 1780 (C=O), 1719 (C=O), 1430, 1220, 

759 

�H: (300 MHz, d6-DMSO): 1.73-1.90 (1H, m, CHHCHO), 2.10-2.26 (1H, m, CHHCHO), 2.93 

(1H, dd, J 13.3 and 7.1, NCHH), 3.62 (1H, dd, J 13.3 and 6.0, NCHH), 3.82-3.96 (3H, stack, 

NCH, NCH2CH and CHHO), 4.31-4.51 (1H, m, CHHO), 4.66-4.78 (1H, m, CHO), 7.81 (1H, 

br s, NH) 

�C: (101 MHz, d6-DMSO) 30.5 (CH2CHO), 42.1 (NCH2), 47.4 (NCH2CH), 47.6 (NCH), 67.8 

(CH2O), 791 (CHO), 156.7 (C=O) 158.3 (C=O) 

m/z: (ES)+ 221.1 (100%, [M+Na]+)  

N
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HRMS: [Found: (M+Na)+ 221.0529. C8H10N2NaO4 requires M 221.0538] 

 

General Procedure 8: Wittig Reaction 

Methyl(triphenylphosphoranylidene)acetate (1.5 eq) was added in one portion to a stirred 

solution of aldehyde (1 eq) dissolved in toluene (0.2 M) at room temperature. The resulting 

solution has heated to reflux until the reaction was judged to be complete by TLC analysis. 

After cooling to room temperature the solvent was removed in vacuo and the resulting residue 

was taken up in Et2O (0.2 M) and cooled to 0 °C for 30 min. The precipitates were filtered off 

and filter cake washed with further portions of ice cold 3 x Et2O. The combined filtrates were 

concentrated in vacuo to afford the crude allylic ester.  

 

Methyl 4-nitrocinnamate (202a) 

 
Ester 202a was prepared from aldehyde 200a (1.28 g, 8.50 mmol) and 

methyl(triphenylphosphoranylidene)acetate (4.26 g, 12.75 mmol) according to 

General Procedure 8. After 2 h and purification by flash column 

chromatography (Rf = 0.35, hexane:EtOAc, 3:1) afforded the product 202a as a 

yellow solid (1.41 g, 80%). Ester 202a was obtained as a 7:1 mixture of E:Z stereoisomers. In 

the case of the NMR spectra, only data for the major E stereoisomer is reported. 

mp: 136-137 °C (from toluene) (lit. E-isomer115 159-160 °C, Z-isomer116 86-88 °C) 

�max: (film)/cm-1 3030 (ArCH), 1718 (C=O), 1642 (C=C), 1598 (ArC=C), 1523 (�as NO2), 

1348 (�s NO2,), 1216, 759 

CO2Me

NO2
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�H: (300 MHz, CDCl3) 3.84 (3H, s, CH3), 6.56 (1H, d, J 16.0, =CH), 7.64-7.75 (3H, stack, 

=CH and ArCH), 8.25 (2H, d, J 8.8, ArCH) 

�C: (75 MHz, CDCl3) 52.5 (CH3), 122.2 (=CH), 124.3 (ArCH), 128.8 (ArCH), 140.6 (Cq), 

142.0 (=CH), 148.6 (Cq), 166.6 (C=O) 

m/z: (EI)+ 207 (42%, [M]+), 176 (100, [M-OMe]+) 

 

Methyl 4-trifluoromethylcinnamate (202b) 

 
Ester 202b was prepared from aldehyde 200b (1.37 mL, 10.0 mmol) and 

methyl(triphenylphosphoranylidene)acetate (5.02 g, 15.0 mmol) according to 

General Procedure 8. After 5 h and purification by flash column 

chromatography (Rf = 0.68, hexane:EtOAc, 3:1) afforded the 202b product as a 

white powder (2.08 g, 90%). Ester 202b was obtained as a 42:1 mixture of E:Z stereoisomers. 

In the case of the NMR spectra, only data for the major E stereoisomer is reported. 

mp: 75-76 °C (from hexane:EtOAc) (lit.117 E-isomer 77-79 °C) 

�max: (film)/cm-1 3021 (ArCH), 1718 (C=O), 1642 (C=C), 1512 (ArC=C), 1324 (CF3), 1215, 

1068, 755 

�H: (300 MHz, CDCl3) 3.67 (3H, s, CH3), 6.35 (1H, d, J 16.2, =CH), 7.35-7.47 (4H, stack, 

ArCH), 7.52 (1H, d, J 16.2, =CH) 

�C: (75 MHz, CDCl3) 51.5 (CH3), 120.2 (=CH), 123.8 (q, J 272, CF3), 125.6 (ArCH), 128.0 

(ArCH), 131.5 (q, J 32, CqCF3), 137.7 (Cq), 142.7 (=CH), 166.5 (C=O) 

m/z: (EI)+ 230 (48%, [M]+), 199 (100, [M-OMe]+)  

 
 
 

CO2Me

CF3
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Methyl 4-bromocinnamate (202c) 
  
 

Ester 202c was prepared from aldehyde 200c (1.83 mL, 10.0 mmol) and 

methyl(triphenylphosphoranylidene)acetate (5.02 g, 15.0 mmol) according to 

General Procedure 8. After 3 h and purification by flash column 

chromatography (Rf = 0.66, hexane:EtOAc, 3:1) afforded the product 202c as a 

white powder (2.19 g, 90%). Ester 202c was obtained as a 37:1 mixture of E:Z stereoisomers. 

In the case of the NMR spectra, only data for the major E stereoisomer is reported. 

mp: 81-83 °C (from toluene) (lit.118 E-isomer 82-84 °C (from ethanol)) 

�max: (film)/cm-1 3032 (ArCH), 1712 (C=O), 1636 (C=C), 1586 (ArC=C), 1486 (ArC=C), 

1170 (C-O) 

�H: (300 MHz, CDCl3) 3.72 (3H, s, CH3), 6.33 (1H, d, J 16.1, =CH), 7.26 (2H, d, J 8.5, 

ArCH), 7.46 (2H, d, J 8.5, ArCH), 7.52 (1H, d, J 16.1, =CH) 

�C: (75 MHz, CDCl3) 51.7 (CH3), 118.4 (=CH), 124.4 (Cq), 129.4 (ArCH), 132.0 (ArCH), 

133.2 (Cq), 143.3 (=CH), 166.9 (C=O) 

m/z: (EI)+ 238 (62%, [M(81Br)]+), 240 (64, [M(79Br)]+), 207 (97, [M(81Br)-OMe]+), 209 (100, 

[M(79Br)]-OMe+) 

   

Methyl 4-methylcinnamate (202d) 

 
Ester 202d was prepared from aldehyde 200d (0.98 mL, 8.17 mmol) and 

methyl(triphenylphosphoranylidene)acetate (4.09 g, 12.24 mmol) according to 

General Procedure 8. After 2 h and purification by flash column 

chromatography (Rf = 0.82, hexane:EtOAc, 3:1) afforded the product 202d as a 

CO2Me

Br

CO2Me
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white powder (1.30 g, 90%). Ester 202d was obtained as a 12:1 mixture of E:Z stereoisomers. 

In the case of the NMR spectra, only data for the major E stereoisomer is reported. 

mp: 51-54 °C (from Et2O) (lit.119 E-isomer 52-54 °C) 

�max: (film)/cm-1 3021 (ArCH), 2951 (CH), 1715 (C=O), 1636 (C=C), 1436, 1315, 1214, 1172, 

755 

�H: (300 MHz, CDCl3) 2.35 (3H, s, CCH3), 3.81 (3H, s, OCH3), 6.48 (1H, d, J 16.0, =CH), 

7.16 (2H, d, J 8.7, ArCH), 7.40 (2H, d, J 8.7, ArCH), 7.66 (1H, d, J 16.0, =CH) 

�C: (75 MHz, CDCl3) 19.6 (CCH3), 49.7 (OCH3), 114.9 (=CH), 126.3 (ArCH), 127.8 (ArCH), 

129.4 (Cq), 138.8 (Cq), 143.0 (=CH), 165.6 (C=O) 

m/z: (EI)+ 176 (25%, [M]+), 145 (100, [M-OMe]+) 

HRMS: [Found: (M)+ 176.0845. C11H12O2 requires M 176.0837] 

 

(Z)-Methyl 4-methoxycinnamate (202ei ) and (E)-Methyl 4-methoxycinnamate (202eii) 
 
 

Esters  (202ei) and (202eii) were prepared from aldehyde 

(200e) (1.22 g, 10.0 mmol) and 

methyl(triphenylphosphoranylidene)acetate (5.02 g, 15.0 

mmol) according to General Procedure 8. After 2 h and 

purification by flash column chromatography (Rf = 0.43, hexane:EtOAc, 3:1) afforded the Z-

isomer 202ei  as a colourless oil (60 mg, 3%). 

�max: (film)/cm-1 2951 (CH), 2838 (CH), 1721 (C=O), 1624, 1604, 1512, 1444, 1260, 1165, 

1031 

�H: (300 MHz, CDCl3) 3.71 (3H, s, CH3), 3.82 (3H, s, CH3), 5.72 (1H, d, J 16.0, =CH), 6.85 

(3H, stack, ArCH and =CH), 7.60 (2H, d, J 8.7, ArCH) 

CO2Me

OMeOMe

CO2Me
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�C: (75 MHz, CDCl3) 54.2 (CH3), 57.7 (CH3), 115.9 (ArCH), 119.1 (=CH), 127.1 (Cq), 134.6 

(ArCH), 145.9 (=CH), 162.0 (Cq), 167.8 (C=O) 

 
Further elution (Rf = 0.41) gave the E-isomer 202eii as a white powder (1.59 g, 81%)  

mp: 82-83 °C (from EtOAc) (Lit.120 84-86 °C) 

�max: (film)/cm-1 2964 (CH), 2844 (CH), 1719 (C=O), 1639, 1604, 1515, 1289, 1177, 1026 

�H: (300 MHz, CDCl3) 3.72 (3H, s, CH3), 3.75 (3H, s, CH3), 6.25 (1H, d, J 16.7, =CH), 6.85 

(2H, d, J 8.5 ArCH), 7.39 (2H, d, J 8.5, ArCH), 7.12 (1H, d, J 16.7, =CH) 

�C: (75 MHz, CDCl3) 52.3 (CH3), 55.9 (CH3), 57.7 (CH3), 115.0 (ArCH), 115.9 (=CH), 127.7 

(Cq), 130.3 (ArCH), 145.1 (=CH), 162.0 (Cq), 167.5 (C=O) 

m/z: (EI)+ 192 (77%, [M]+), 161 (100, [M-OMe]+) 

 

General Procedure 9: DIBAL Reduction 

A solution of DIBAL-H 1.0 M in toluene (2.2 eq) was added dropwise over 5 min to a stirred 

solution of cinnamate ester (1 eq) dissolved in THF (0.2 M) cooled to 0 °C. The reaction was 

stirred at 0 °C until the reaction was judged to be complete by TLC analysis. The reaction was 

quenched by the addition of a saturated aqueous solution of Rochelle’s salt. The aqueous 

phase was extracted with Et2O x 4. The combined organic phases were washed with brine and 

dried over MgSO4 before being concentrated in vacuo to afford the crude allylic alcohol.  
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Hydroxymethyl 4-nitrocinnamol (203a) 

 
Alcohol 203a was prepared from ester 202a (309 mg, 1.49 mmol) and DIBAL-H 

(1 M soln. in hexanes, 3.7 mL, 3.73 mmol) according to General Procedure 9. 

After 4 h and purification by flash column chromatography (Rf = 0.27, 

hexane:EtOAc, 1:1) afforded the product 203a as a yellow powder (168 mg, 

63%). Alcohol 203a was obtained as a 7:1 mixture of E:Z stereoisomers. In the case of the 

NMR spectra, only data for the major E stereoisomer is reported. 

mp: 111-114 °C (from hexane:EtOAc) (Lit. E-isomer121 107 °C, Z-isomer122 127-129 °C 

(benzene) 

�max: (film)/cm-1 3445 (OH), 3020 (ArCH), 1598 (ArC=C), 1519 (�as NO2), 1345 (�s NO2,), 

1216, 756 

�H: (300 MHz, CDCl3) 1.94 (1H, br s, OH), 4.39 (2H, d, J 5.2, CH2), 6.53 (1H, dt, J 16.2 and 

5.2, =CHCH2), 6.70 (1H, d, J 16.2, CqCH=), 7.49 (2H, d, J 8.6  ArCH), 8.15 (2H, d, J 8.6, 

ArCH) 

�C: (75 MHz, CDCl3) 63.2 (CH2), 124.1 (ArCH), 127.0 (ArCH), 128.3 (=CH), 133.8 (=CH), 

143.4 (Cq), 147.0 (Cq) 

m/z: (EI)+ 179 (81%, [M]+), 137 (100) 
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Hydroxymethyl 4-trifluoromethylcinnamol (203b) 
 
 

Alcohol 203b was prepared from ester 202b  (2.06 g, 9.94 mmol) and DIBAL-

H (1 M soln. in hexanes, 19.7 mL, 19.7 mmol) according to General Procedure 

9. After 4 h and purification by flash column chromatography (Rf = 0.27, 

hexane:EtOAc, 3:1) afforded the product 203b  as a white powder (1.73 g, 

96%).  

mp: 61-60 °C (from hexane:EtOAc) (lit.123 62-64 °C) 

�max: (film)/cm-1 3333 (OH), 3052 (=CH), 2926 (CH), 2870 (CH), 1614 (C-O), 1414,  (CF3), 

1125 

�H: (300 MHz, CDCl3) 1.73 (1H, t, J 5.3, OH), 4.37 (2H, t, J 5.3, CH2), 6.45 (1H, dt, J 16.0 

and 5.3,  =CHCH2), 6.66 (1H, dd, J 16.0, CqCH=), 7.46 (2H, d, J 8.3, ArCH), 7.56 (2H, d, J 

8.3, ArCH) 

�C: (75 MHz, CDCl3) 62.8 (CH2), 124.2 (q, J 272, CF3), 125.4 (ArCH), 126.2 (ArCH), 128.9 

(=CH), 129.2 (q, J 32, CqCF3), 131.4 (=CH), 140.3 (Cq) 

m/z: (EI)+ 202 (71%, [M]+), 160 (100, [M]+) 

 

Hydroxymethyl 4-bromocinnamol (203c) 
 

 
Alcohol 203c was prepared from ester  202c  (2.19 g, 9.08 mmol) and DIBAL-H 

(1 M soln. in hexanes, 22.7 mL, 22.7 mmol)  according to General Procedure 9. 

After 1 h and purification by flash column chromatography (Rf = 0.33, 

hexane:EtOAc, 2:1) afforded the product  203c  as a white powder (1.88 g, 97%). 

CF3

OH

Br
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Alcohol 203c was obtained as a 47:1 mixture of E:Z stereoisomers. In the case of the NMR 

spectra, only data for the major E stereoisomer is reported. 

mp: 66-68 °C (from hexane:EtOAc) (Lit.124 E-isomer 68-69 °C) 

�max: (film)/cm-1 3400 (OH), 3052 (=CH), 2923 (CH), 2871 (CH), 1651 (C-O), 1487,  1400, 

1215 

�H: (300 MHz, CDCl3) 3.34 (1H, s, OH), 4.31 (2H, d, J 5.5, CH2), 6.34 (1H, dt, J 15.8 and 

5.5,  =CHCH2), 6.55 (1H, d, J 15.8, CqCH=), 7.23 (2H, d, J 8.5, ArCH), 7.43 (2H, d, J 8.5, 

ArCH) 

�C: (75 MHz, CDCl3) 63.4 (CH2), 121.5 (Cq), 128.0 (ArCH), 129.4 (=CH), 129.7 (=CH), 

131.7 (ArCH), 135.7 (Cq) 

m/z: (EI)+ 214 (35%, [M(81Br)]+), 212 (37, [M(79Br)]+), 171 (46), 160 (48), 133 (100), 115 

(65), 91 (85), 77 (78) 

 

Hydroxymethyl 4-methylcinnamol  (203d) 

 
Alcohol 203d was prepared from ester 202d  (1.28 g, 7.24 mmol) and DIBAL-H  

(1 M soln. in hexanes, 15.9 mL, 15.9 mmol) according to General Procedure 9. 

After 1 h and purification by flash column chromatography (Rf = 0.31, 

hexane:EtOAc, 3:1) afforded the product 203d as a white powder (1.01 g, 94%). 

Alcohol 203d was obtained as a 16:1 mixture of E:Z stereoisomers. In the case of the NMR 

spectra, only data for the major E stereoisomer is reported. 

mp: 43-45 °C (from hexane:EtOAc) (Lit.125 E-isomer 52-3 °C)  

�max: (film)/cm-1 3279 (OH), 3034 (ArCH), 2948 (CH), 2918 (CH), 2853 (CH), 1512, 1010, 

972, 759 

OH
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�H: (300 MHz, CDCl3) 1.93 (1H, br s, OH), 2.34 (3H, s, CH3), 4.35 (2H, d, J 5.0, CH2), 6.31 

(1H, dt, J 16.0 and 5.0, =CHCH2), 6.55 (1H, d, J 16.0, CqCH=), 7.19 (2H, d, J 8.5, ArCH), 

7.26 (2H, d, J 8.5, ArCH) 

�C: (75 MHz, CDCl3) 20.5 (CH3), 63.0 (CH2), 125.7 (ArCH), 126.7 (=CH), 128.6 (ArCH), 

130.4 (=CH), 133.4 (Cq), 136.5 (Cq) 

m/z: (EI)+ 148 (66%, [M]+), 105 (100), 92 (65) 

 

Hydroxymethyl 4-methoxycinnamol (203e) 

 
Alcohol 203e was prepared from ester 202e (1.06 g, 5.53 mmol) and DIBAL-H 

(1 M soln. in hexanes, 13.8 mL, 13.8 mmol) according to General Procedure 9. 

After 1 h and purification by flash column chromatography (Rf = 0.14, 

hexane:EtOAc, 3:1) afforded the product 203e as a white powder (870 mg, 94%). 

mp: 72-73 °C (from EtOAc) (Lit. 1264 72-74 °C (from hexane:Et2O)  

�max: (film)/cm-1 3410 (OH), 3028 (ArCH), 2933 (CH), 2839 (CH), 1606, 1511, 1335, 1157 

�H: (300 MHz, CDCl3) 1.86 (1H, br s, OH), 3.78 (3H, s, CH3), 4.25 (2H, d, J 5.0, CH2), 6.21 

(1H, dt, J 16.3 and 5.0, =CHCH2), 6.51 (1H, d, J 16.3, CqCH=), 6.82 (2H, d, J 8.7, ArCH), 

7.29 (2H, d, J 8.7, ArCH) 

�C: (75 MHz, CDCl3) 55.5 (CH3), 63.8 (CH2), 113.1 (ArCH), 126.5 (=CH), 128.4 (ArCH), 

129.5 (Cq), 131.5 (=CH), 158.2 (Cq) 

m/z: (EI)+ 164 (44%, [M]+), 121 (100), 108 (35) 
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General Procedure 10: PBr3 Bromination 

 
A solution of PBr3 (1 M soln. in CH2Cl2, 1.2 eq) was added dropwise over 1 min to a stirred 

solution of allylic alcohol (1eq) dissolved in CH2Cl2 (0.1 M) cooled to 0 °C. The reaction was 

stirred at 0 °C until the reaction was judged to be complete by TLC analysis. The reaction was 

quenched by the addition of water. The organic phase was separated and the aqueous phase 

further extracted with CH2Cl2 x 3. The combined organic phases were washed with brine and 

dried over MgSO4 before being concentrated in vacuo to afford the crude allylic bromide. 

 

Bromomethyl 4-nitrocinnamol (204a) 

 
Bromide 204a was prepared from alcohol 203a (1.88 g, 8.81 mmol) and PBr3 (1 

M soln. in CH2Cl2, 4.40 mL, 4.40 mmol) according to General Procedure 11. 

After 2 h and purification by flash column chromatography (Rf = 0.32, 

hexane:EtOAc, 5:1) afforded the product 204a  as a yellow powder (191 mg, 

84%). Bromide 204a was obtained as a 7:1 mixture of E:Z stereoisomers. In the case of the 

NMR spectra, only data for the major E stereoisomer is reported. 

mp: 66-68 °C (from hexane:EtOAc) (Lit.126 E-isomer 76 °C) 

�max: (film)/cm-1 3057 (ArCH), 1598 (ArC=C), 1519 (�as NO2), 1436, 1345 (�s NO2,),  

�H: (300 MHz, CDCl3) 4.15 (2H, d, J 7.4, CH2), 6.55 (1H, dt, J 15.8 and 7.4, =CHCH2), 6.70 

(1H, d, J 15.8, CqCH=), 7.50 (2H, d, J 8.8, ArCH), 8.16 (2H, d, J 8.8, ArCH) 

�C: (75 MHz, CDCl3) 32.0 (CH2), 124.1 (ArCH), 127.4 (ArCH), 130.0 (=CH), 132.2 (=CH), 

142.3 (Cq), 147.4 (Cq) 

m/z: (EI)+ 243 (7%, [M(81Br)]+), 241 (7, [M(79Br)]+), 162 (70), 115 (100 

NO2

Br
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Bromomethyl 4-trifluoromethylcinnamol (204b) 
 
 

Bromide 204b was prepared from alcohol 203b (1.48 g, 7.31 mmol) and PBr3 (1 

M soln. in CH2Cl2, 8.8 mL, 8.8 mmol) according to General Procedure 10. After 

1 h and purification by flash column chromatography (Rf = 0.75, hexane:EtOAc, 

6:1) afforded the product 204b as a white crystalline solid (1.91 g, 99%) 

mp: 35-36 °C (from hexane:EtOAc) (Lit.127 35.9-36.8 °C) 

�max: (film)/cm-1 3042 (=CH), 2968 (CH), 2929 (CH), 1614 (C-O), 1413, 1325 (CF3), 1123 

�H: (300 MHz, CDCl3) 4.15 (2H, d, J 7.5, CH2), 6.48 (1H, dt, J 15.6 and 7.5,  =CHCH2), 6.65 

(1H, d, J 15.6, CqCH=), 7.45 (2H, d, J 8.1, ArCH), 7.57 (2H, d, J 8.1, ArCH) 

�C: (75 MHz, CDCl3) 32.4 (CH2), 124.2 (q, J 272, CF3), 125.6 (ArCH), 126.9 (ArCH), 127.9 

(=CH), 129.9 (q, J 32, CqCF3), 132.8 (=CH), 139.3 (Cq) 

m/z: (EI)+ 266 (55%, [M(81Br)]+), 264 (55, [M(79Br)]+), 185 (100) 

 

Bromomethyl 4-bromocinnamol (204c) 
 

 
Bromide 204c was prepared from alcohol 203c (1.88 g, 8.81 mmol) and PBr3 (1 

M soln. in CH2Cl2, 4.4 mL, 4.4 mmol) according to General Procedure 10. After 2 

h and purification by flash column chromatography (Rf = 0.75, hexane:EtOAc, 

1:1) afforded the product 204c as a white powder (2.38 g, 99%). 

mp: 72-74 °C (from hexane:EtOAc) (Lit.128 72-76 °C) 

�max: (film)/cm-1 3014 (CH), 1643 (C=C), 1584 (ArC=C), 1487 (ArC=C), 1214, 1202, 973, 

756 

CF3

Br

Br
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�H: (300 MHz, CDCl3) 4.13 (2H, d, J 7.7, CH2), 6.37 (1H, dt, J 15.5 and 7.7,  =CHCH2), 6.55 

(1H, d, J 15.5, CqCH=), 7.23 (2H, d, J 8.5, ArCH), 7.44 (2H, d, J 8.5, ArCH) 

�C: (75 MHz, CDCl3) 33.1 (CH2), 122.1 (Cq), 125.9 (=CH), 128.2 (ArCH), 131.7 (ArCH), 

133.3 (=CH), 134.7 (Cq) 

m/z: (EI)+ 278 (5%, [M(81Br, 81Br]+), 276 (5%, [M(81Br, 79Br]+), 274 (2%, [M(79Br, 79Br]+),  

228 (30), 147 (100), 116 (85), 84 (90) 

 

Bromomethyl 4-methylcinnamol (204d) 

 
Bromide 204d was prepared from alcohol 203d (0.97 g, 6.57 mmol) and PBr3 (1 

M soln. in CH2Cl2, 7.9 mL, 7.9 mmol) according to General Procedure 10. After 

1 h and purification by flash column chromatography (Rf = 0.75, hexane:EtOAc, 

6:1) afforded the product 204d as a white powder (1.15 g, 83%). 

mp: 64-66 °C (from hexane:EtOAc) (Lit.129 64-65 °C) 

�max: (film)/cm-1 3023 (ArCH), 2962 (CH), 2921 (CH), 1641, 1511, 1199, 971, 801 

�H: (300 MHz, CDCl3) 2.31 (CH3), 4.15 (2H, d, J 7.4, CH2), 6.33 (1H, dt, J 7.4 and 15.8, 

=CHCH2), 6.61 (1H, d, J 15.8, CqCH=), 7.12 (2H, d, J 8.8, ArCH), 7.26 (2H, d, J 8.8, ArCH) 

�C: (75 MHz, CDCl3) 20.0 (CH3), 32.6 (CH2), 123.0 (=CH), 125.5 (ArCH), 128.1 (ArCH), 

131.0 (Cq), 133.3 (=CH), 136.8 (Cq) 

m/z: (EI)+ 212 (5%, [M(81Br)]+), 210 (5, [M(79Br)]+), 131 (100, [M-Br]+) 
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Chloromethyl 4-methoxycinnamol (205) 
 

 
Thionyl chloride (0.27 mL, 3.71 mmol) was added to a stirred solution of alcohol 

203e (580 mg, 3.53 mmol) in Et2O (7 mL) cooled to 0 °C. The reaction was 

stirred for 1 min at 0 °C before the solvent was removed in vacuo to give the 

crude product 203e as a pale yellow oil (603 mg) that was used straight away in 

the next reaction without further purification. 

�H: (300 MHz, CDCl3) 3.79 (3H, s, CH3), 4.23 (2H, d, J 5.0, CH2), 6.27 (1H, dt, J 16.3 and 

5.0, =CHCH2), 6.55 (1H, d, J 16.3, CqCH=), 6.83 (2H, d, J 8.7, ArCH), 7.31 (2H, d, J 8.7, 

ArCH) 

 

General Procedure 11: Alkylation of 3-(p-Toluenesulfonyl)aminopropanol) 

 
Cesium carbonate (1.3 eq) was added to a stirred solution of sulfonamide (1 eq) dissolved in 

MeCN (0.1 M). The resulting mixture was cooled to 0 °C and the alkylating agent (1 eq) was 

added in one portion. The reaction was allowed to warm to room temperature and stirred 

overnight. The reaction was quenched by the addition of water and the solvent removed in 

vacuo. The aqueous phase was extracted with CH2Cl2 x 4 and the combined organic phases 

were washed with brine and dried over MgSO4 before being concentrated in vacuo to afford 

the crude alkylated product. 
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(E)-N-(3-Hydroxypropyl)-4-methyl-N-(3-(4-nitrophenyl)allyl)benzenesulfonamide (207a) 

 
Alcohol 207a was prepared from sulfonamide 206 (0.58 g, 2.53 mmol), 

Cs2CO3 (0.91 g, 2.79 mmol) and bromide 204a (0.61 g, 2.53 mmol) according 

to General Procedure 11. Purification by flash column chromatography (Rf = 

0.30, hexane:EtOAc, 1:2) afforded the product 207a as a yellow oil (0.62 g, 

63%). 

�max: (film)/cm-1 3533 (OH), 2926 (CH), 2876 (CH), 2855(CH), 1597 (ArC=C), 1517 (�as 

NO2), 1343 (�as SO2, �s NO2), 1157 (�s SO2) 

�H: (300 MHz, CDCl3) 1.15 (1H, br s, OH), 1.69-1.78 (2H, m, CH2CH2CH2), 2.40 (3H, s, 

CH3), 3.20 (2H, t, J 6.6, NCH2CH2), 3.70 (2H, t, J 5.7, CH2OH), 3.97 (2H, d, J 6.3, 

CH2CH=), 6.16 (1H, dt, J 16.3 and 6.3, CH2CH=), 6.51 (1H, d, J 16.3, CqCH=), 7.29 (2H, d, J 

8.1, ArCH), 7.35 (2H, d, J 8.8, ArCH), 7.70 (2H, d, J 8.1, ArCH), 8.10 (2H, d, J 8.8, ArCH) 

�C: (75 MHz, CDCl3) 21.5 (CH3), 31.0 (CH2CH2CH2), 44.8 (NCH2), 50.3 (NCH2), 58.9 

(OCH2), 123.9 (ArCH), 127.0 (ArCH), 127.1 (ArCH), 129.5 (=CH), 129.8 (ArCH), 131.4 

(=CH), 136.4 (Cq), 142.5 (Cq), 143.7 (Cq), 147.0 (Cq) 

m/z: (ES)+ 413.1 (100%, [M+Na]+) 

HRMS: Found: (M+Na)+ 413.1153. C19H22N2NaO5S requires M, 413.1147 
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(E)-N-(3-Hydroxypropyl)-4-methyl-N-(3-(4-(trifluoromethyl)phenyl)allyl)benzene 

sulfonamide (207b) 

 
Alcohol 207b was prepared from sulfonamide 206 (1.01 g, 4.41 mmol), 

Cs2CO3 (1.87 g, 5.73 mmol) and bromide 204b (1.17 g, 4.41 mmol) according 

to General Procedure 11. Purification by flash column chromatography (Rf = 

0.33, hexane:EtOAc, 1:1) afforded the product 207b as a white crystalline 

powder (1.63 g, 90%). 

mp: 58-60 °C (from hexane:EtOAc)  

µ: Found: C, 58.45; H, 5.47; N, 3.87. C20H22F3NO3S requires C, 58.10; H, 5.36; N, 3.39% 

�max: (film)/cm-1 3520 (OH), 2930 (CH), 1615 (C=C), 1598 (ArC=C), 1494 Ar(C=C), 1326 

(CF3), 1158 (SO2), 1067 (C-O) 

�H: (300 MHz, CDCl3) 1.67-1.78 (2H, m, CH2CH2CH2), 2.37 (3H, s, CH3), 2.72 (1H, br s, 

OH), 3.28 (2H, t, J 6.6, NCH2CH2), 3.68 (2H, t, J 5.7, CH2OH), 3.95 (2H, d, J 6.6, CH2CH=), 

6.03 (1H, dt, J 15.8 and 6.6, CH2CH=), 6.45 (1H, d, J 15.8, CqCH=), 7.23-7.32 (4H, stack, 

ArCH), 7.48 (2H, d, J 8.1, ArCH), 7.69 (2H, d, J 8.1, ArCH) 

�C: (75 MHz, CDCl3) 21.1 (CH3), 30.8 (CH2CH2CH2), 44.4 (NCH2), 50.2 (NCH2), 58.8 

(OCH2), 124.4 (q, J 272, CF3), 125.8 (ArCH), 126.9 (ArCH), 127.4 (=CH), 127.5 (ArCH), 

129.9 (q, J 32, CqCF3), 130.2 (ArCH), 132. (=CH), 137.0 (Cq), 140.0 (Cq), 144.1 (Cq) 

m/z: (ES)+ 436.2 (100%, [M+Na]+) 

HRMS: Found: (M+Na)+ 436.1173. C20H22F3NNaO3S requires M, 436.1170 
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(E)-N-(3(4-Bromophenyl)allyl)N(3-hydroxypropyl)-4-methylbenzenesulfonamide (207c) 

 
Alcohol 207c was prepared from sulfonamide 204 (1.92 g, 8.36 mmol), Cs2CO3 

(3.54 g, 11.8 mmol) and bromide 204d  (2.30 g, 8.36 mmol) according to 

General Procedure 11. Purification by flash column chromatography (Rf = 0.36, 

hexane:EtOAc, 1:1) afforded the product 207c as a colourless oil (3.11 g, 88%). 

�max: (film)/cm-1 3526 (OH), 3030 (ArCH), 2928 (CH), 2877 (CH), 1652 

(C=C), 1598 (ArC=C), 1487 (ArC=C), 1334 (�as SO2), 1157 (�s SO2), 1071 (C-O) 

�H: (300 MHz, CDCl3) 1.66-1.67 (2H, m, CH2CH2CH2), 2.39 (3H, s, CH3), 2.60 (1H, br s, 

OH), 3.26 (2H, t, J 6.4, NCH2CH2), 3.68 (2H, t, J 5.9, CH2OH), 3.91 (2H, d, J 6.6, CH2CH=), 

5.91 (1H, dt, J 6.6 and 15.8, CH2CH=), 6.35 (1H, d, J 15.8, CqCH=), 7.06 (2H, d, J 8.5, 

ArCH), 7.27 (2H, d, J 8.1, ArCH), 7.36 (2H, d, J 8.5, ArCH), 7.68 (2H, d, J 8.1, ArCH) 

�C: (75 MHz, CDCl3) 21.4 (CH3), 31.0 (CH2CH2CH2), 44.4 (NCH2), 50.3 (NCH2), 58.8 

(OCH2), 121.7 (Cq), 124.9 (=CH), 127.1 (ArCH), 127.9 (ArCH), 129.7 (ArCH), 131.8 

(ArCH), 132.4 (=CH), 135.0 (Cq), 136.6 (Cq), 143.4 (Cq) 

m/z: (ES)+ 448.0 (89%, [M(81Br)+Na]+), 446.0 (100, [M(79Br)+Na]+) 

HRMS: [Found: (M(79Br)+Na)+ 446.0421. C19H22BrNNaO3S requires M, 446.0401] 
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(E)-N-(3-Hydroxypropyl)-4-methyl-N-(3-(p-tolyl)allyl)benzenesulfonamide (207d) 

 
Alcohol 207d was prepared from sulfonamide 206 (1.05 g, 4.56 mmol), 

Cs2CO3 (1.93 g, 5.93 mmol) and bromide 204d (0.97 g, 4.56 mmol) according 

to General Procedure 11. Purification by flash column chromatography (Rf = 

0.33, hexane:EtOAc, 1:1) afforded the product 207d as a colourless oil (1.46 g, 

89%). 

�max: (film)/cm-1 3533 (OH), 3027 (=CH), 2924 (CH), 2876 (CH), 1653, 1598 (ArC=C), 1513 

(C=C), 1494 (ArC=C), 1453, 1335 (�as SO2), 1157 (�s SO2), 1089 (C-O) 

�H: (300 MHz, CDCl3) 1.65-1.76 (2H, m, CH2CH2CH2), 2.30 (3H, s, CH3), 2.35-2.43 (4H, 

stack, CH3 and OH), 3.25 (2H, t, J 6.6, NCH2CH2), 3.71 (2H, q, J 5.7, CH2OH), 3.93 (2H, d, J 

7.0, CH2CH=), 5.84 (1H, dt, J 15.5 and 7.0, CH2CH=), 6.35 (1H, d, J 15.5, CqCH=), 7.05-

7.16 (5H, stack, ArCH), 7.25 (2H, d, J 8.0, ArCH), 7.73 (2H, d, J 8.0, ArCH) 

�C: (75 MHz, CDCl3) 20.9 (CH3), 30.6 (CH2CH2CH2), 43.6 (NCH2), 50.3 (NCH2), 58.4 

(CH2OH), 122.4 (=CH), 126.0 (ArCH), 127.0 (ArCH), 128.9 (ArCH), 130.5 (ArCH), 132.9 

(Cq), 133.5 (=CH), 136.0 (Cq), 137.6 (Cq), 143.1 (Cq) 

m/z: (ES)+ 382.2 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 382.1455. C20H25NNaO3S requires M, 382.1453] 
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(E)-N-(3-Hydroxypropyl)-N-(3-(4-methoxyphenyl)allyl)-4-methylbenzene sulfonamide 

(207e) 

 
Alcohol 207e was prepared from sulfonamide 204 (0.58 g, 3.53 mmol), 

Cs2CO3 (1.50 g, 4.59 mmol) and chloride 205 (603 mg) according to General 

Procedure 11. Purification by flash column chromatography (Rf = 0.38, 

hexane:EtOAc, 1:1) afforded the product 207e as a colourless oil (101 mg, 

44% over 2 synthetic steps). 

�max: (film)/cm-1 3525 (OH), 3032 (=CH), 2934 (CH), 2838 (CH), 1651, 1607, 1511 (C=C), 

1455, 1332 (�as SO2), 1250, 1156 (�s SO2), 1089 (C-O), 1032 

�H: (300 MHz, CDCl3) 1.65-1.79 (2H, m, CH2CH2CH2), 2.39 (3H, s, CH3), 2.49 (1H, br s, 

OH), 3.25 (2H, t, J 6.4, NCH2CH2), 3.72 (2H, br s, CH2OH), 3.76 (3H, s, CH3), 3.91 (2H, d, J 

7.2, CH2CH=), 5.85 (1H, dt, J 15.8 and 7.2, CH2CH=), 6.35 (1H, d, J 15.8, CqCH=), 6.78 

(2H, d, J 8.0, ArCH), 7.13 (2H, d, J 8.0, ArCH), 7.28 (2H, d, J 8.8, ArCH), 7.71 (2H, d, J 8.8, 

ArCH) 

�C: (75 MHz, CDCl3) 21.4 (CqCH3), 30.7 (CH2CH2CH2), 43.6 (NCH2), 50.6 (NCH2), 55.2 

(OCH3), 58.6 (CH2OH), 113.9 (ArCH), 121.4 (=CH), 127.1 (ArCH), 127.6 (ArCH), 128.7 

(Cq), 129.7 (ArCH), 133.4 (=CH), 136.6 (Cq), 143.4 (Cq), 159.4 (Cq) 

m/z: (ES)+ 398.3 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 398.1392. C20H25NNaO4S requires M, 398.1402] 
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N-Cinnamyl-N-(3-hydroxypropyl)-4-methylbenzenesulfonamide (207f) 

 
Alcohol 207f was prepared from sulfonamide 206 (1.02 g, 4.44 mmol), Cs2CO3 

(1.59 g, 4.88 mmol) and cinnamyl bromide (0.87 g, 4.43 mmol) according to 

General Procedure 11. Purification by flash column chromatography (Rf = 0.30, 

hexane:EtOAc, 1:1) afforded the product  207f as a white amorphous powder 

(1.24 g, 81%). 

mp: 69-70 °C (from hexane:EtOAc) 

µ: Found: C, 66.10; H, 6.87; N, 4.18. C19H23NO3S requires C, 66.06; H, 6.71; N, 4.05% 

�max: (film)/cm-1 3535 (OH), 3027 (=CH), 2927 (CH), 1598 (ArC=C), 1495 (ArC=C), 1335 

(�as SO2), 1157 (�s SO2), 1089 (C-O) 

�H: (300 MHz, CDCl3) 1.66-1.77 (2H, m, CH2CH2CH2), 2.36 (3H, s, CH3), 2.51 (1H, t J 5.7, 

OH), 3.27 (2H, t, J 6.6, NCH2CH2), 3.67 (2H, t, J 5.7, CH2OH), 3.93 (2H, d, J 7.0, CH2CH=), 

5.91 (1H, dt, J 15.8 and 7.0, CH2CH=), 6.42 (1H, d, J 15.8, CqCH=), 7.19-7.27 (7H, stack, 

ArCH), 7.70 (2H, d, J 8.1, ArCH) 

�C: (75 MHz, CDCl3) 21.3 (CH3), 30.9 (CH2CH2CH2), 44.1 (NCH2), 50.3 (NCH2), 58.8 

(CH2OH), 123.9 (=CH), 126.3 (ArCH), 127.0 (ArCH), 128.4 (ArCH), 129.7 (ArCH), 133.7 

(=CH), 136.0 (Cq), 136.6 (Cq), 143.3 (Cq) 

m/z: (ES)+ 368.0 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 368.1301. C19H23NNaO3S requires M, 368.1296] 

General Procedure 12: Swern oxidation 

Anhydrous DMSO (3 eq) was added at a rapid rate to a solution of oxalyl chloride (1.5 eq) 

dissovled in CH2Cl2 (0.2 M) at -78 °C. The resulting mixture was stirred for 5 min before a 
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solution of the alcohol (1 eq) dissolved in CH2Cl2 (0.2 M) was added dropwise over 10 min. 

After 30 min Et3N (5 eq) was added dropwise over 1 min and the resulting solution was 

stirred for a further 3 h at -78 °C before being allowed to warm to room temperature. Water 

was added and the organic phase was separated before the aqueous phase was further 

extracted with 3 x CH2Cl2. The combined organic phases were washed with water and brine 

before being dried over MgSO4 and evaporated in vacuo to give the crude aldehyde. 

 

(E)-4-Methyl-N-(3-(4-nitrophenyl)allyl)-N-(3-oxopropyl)benzenesulfonamide (194a) 

 
Aldehyde 194a was prepared from alcohol 207a (0.60 g, 1.55 mmol), oxalyl 

chloride (170 µL, 1.90 mmol), DMSO (260 µL, 3.66 mmol) and Et3N (1.10 mL, 

7.86 mmol) according to general procedure 12. Work-up afforded 194a as a 

yellow oil (0.60 g, quant.).  

Rf : 0.43 (hexane:EtOAc, 1:1)  

�max: (film)/cm-1 2924 (CH), 2857 (CH), 1721 (C=O), 1597, 1607, 1516 (�as NO2), 1338 (�s 

NO2, �as SO2), 1155 (�s SO2) 

�H: (300 MHz, CDCl3) 2.42 (3H, s, CH3), 2.83 (2H, t, J 6.8, CH2CHO), 3.46 (2H, t, J 6.8, 

NCH2CH2), 3.98 (2H, d, J 6.3, CH2CH=), 6.18 (1H, dt, J 15.8 and 6.3, CH2CH=), 6.53 (1H, d, 

J 15.8, CqCH=), 7.32 (2H, d, J 8.1, ArCH), 7.39 (2H, d, J 8.6, ArCH), 7.70 (2H, d, J 8.1, 

ArCH), 8.13 (2H, d, J 8.6, ArCH), 9.73 (1H, s, CHO) 

�C: (75 MHz, CDCl3) 21.5 (CH3), 41.6 (CH2), 43.7 (CH2), 50.9 (CH2CH=), 123.9 (ArCH), 

127.0 (ArCH), 127.2 (ArCH), 129.3 (=CH), 129.9 (ArCH) 131.5 (=CH), 136.1 (Cq), 142.5 

(Cq), 143.9 (Cq), 147.1 (Cq), 200.2 (C=O), 

m/z: (ES)+ 411.3 (100%, [M+Na]+) 

NO2
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HRMS: [Found: (M+Na)+ 411.0982. C19H20N2NaO5S requires M, 411.0991] 

 

(E)-4-Methyl-N-(3-oxopropyl)-N-(3-(4-

(trifluoromethyl)phenyl)allyl)benzenesulfonamide  (194b) 

 
Aldehyde 194b was prepared from alcohol 207b (1.07 g, 2.59 mmol), oxalyl 

chloride (280 µL, 3.14 mmol), DMSO (440 µL, 6.20 mmol) and Et3N (1.82 

mL, 13.00 mmol) according to general procedure 12. Work-up afforded 194b 

as a white crystalline powder (1.02 g, 96%). 

Rf : 0.54 (hexane:EtOAc, 1:1) 

mp: 60-62 °C (from CH2Cl2:EtOAc) 

�max: (film)/cm-1 2956 (CH), 2934 (CH), 1722 (C=O), 1613 (C=C), 1324 (CF3), 1154 (SO2), 

1107 

�H: (300 MHz, CDCl3) 2.41 (3H, s, CH3), 2.81 (2H, t, J 7.0, CH2CHO), 3.45 (2H, t, J 7.0, 

NCH2CH2), 3.95 (2H, d, J 6.3, CH2CH=), 6.06 (1H, dt, J 6.3 and 15.8, CH2CH=), 6.47 (1H, d, 

J 15.8, CqCH=), 7.29 (2H, d, J 8.1, ArCH), 7.33 (2H, d, J 8.5, ArCH), 7.51 (2H, d, J 8.1, 

ArCH), 7.69 (2H, d, J 8.15 ArCH), 9.71 (1H, s, CHO) 

�C: (75 MHz, CDCl3) 21.5 (CH3), 41.5 (CH2), 43.9 (CH2), 51.1 (CH2), 124.1 (q, J 272, CF3), 

125.7 (ArCH), 126.7 (ArCH), 126.9 (=CH), 127.3 (ArCH), 129.8 (q, J 32, CqCF3), 129.9 

(ArCH), 132.5 (=CH), 136.3 (Cq), 139.5 (Cq), 143.9 (Cq), 200.2 (C=O) 

m/z: (ES)+ 466.1 (100%, [M+Na+MeOH]+), 434.1 (50, [M+Na]+ 

HRMS: Found: (M+Na)+ 434.1029. C20H20F3NNaO3S requires M, 436.1170 
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(E)-N-(3-(4-Bromophenyl)allyl)-4-methyl-N-(3-oxopropyl)benzenesulfonamide (194c) 

 
Aldehyde 194c was prepared from alcohol 207c (1.14 g, 2.69 mmol), oxalyl 

chloride (290 µL, 3.25 mmol), DMSO (460 µL, 6.48 mmol) and Et3N (1.90 

mL, 13.58 mmol) according to general procedure 12. Work-up afforded 207c 

as a white crystalline powder (1.02 g, 96%). 

Rf : 0.29 (hexane:EtOAc, 2:1) 

mp: 61-63 °C (from hexane:EtOAc) 

�max: (film)/cm-1 2956 (CH), 2917 (CH), 1720 (C=O), 1333 (�as SO2), 1154 (�s SO2) 

�H: (300 MHz, CDCl3) 2.43 (3H, s, CH3), 2.82 (2H, t, J 7.0, CH2CHO), 3.44 (2H, t, J 7.0, 

NCH2CH2), 3.92 (2H, d, J 6.6, CH2CH=), 5.96 (1H, dt, J 15.8 and 6.6, CH2CH=), 6.39 (1H, d, 

J 15.8, CqCH=), 7.12 (2H, d, J 8.5, ArCH), 7.31 (2H, d, J 8.1, ArCH), 7.41 (2H, d, J 8.5, 

ArCH), 7.70 (2H, d, J 8.1, ArCH), 9.72 (1H, s, CHO) 

�C: (75 MHz, CDCl3) 21.5 (CH3), 41.3 (NCH2CH2), 43.8 (CH2CHO), 51.1 (NCH2CH=), 121.9 

(CqBr), 124.8 (CH2CH=), 127.1 (ArCH), 127.3 (ArCH), 128.0 (ArCH), 129.9 (ArCH), 131.7 

(ArCH) 132.8 (=CHCq), 135.0 (=CHCq), 136.2 (CqCH3), 143.7 (CqSO2), 200.1 (C=O) 

m/z: (ES)+ 477.9 (98%, [M(81Br)+MeOH+Na]+), 477.9 (100, [M(79Br)+MeOH+Na]+), 445.9 

(95, [M(81Br)+ Na]+), 443.8 (100, [M(79Br+Na]+),   

HRMS: [Found: (M(79Br)+Na)+ 444.0244. C19H20BrNNaO3S requires M, 444.0245] 
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(E)-4-Methyl-N-(3-oxopropyl)-N-(3-(p-tolyl)allyl)benzenesulfonamide (194d) 

 
Aldehyde 194d was prepared from alcohol 207d (690 mg, 1.92 mmol), oxalyl 

chloride (252 µL 2.88 mmol), DMSO (409 µL, 5.76 mmol) and Et3N (1.39 mL, 

9.60 mmol) according to general procedure 12. Work-up afforded 194d as a 

colourless oil (685 mg, 94%). 

Rf : 0.60 (hexane:EtOAc, 1:1) 

�max: (film)/cm-1 2922 (CH), 1722 (C=O), 1598 (ArC=C), 1494 (ArC=C), 1335 (�as SO2), 1155 

(�s SO2) 

�H: (400 MHz, CDCl3) 2.31 (3H, s, CH3), 2.44 (3H, s, CH3), 2.82 (2H, t, J 7.0, CH2CHO), 

3.47 (2H, t, J 7.0, NCH2CH2), 3.93 (2H, d, J 8.7, CH2CH=), 5.85 (1H, dt, J 16.0 and 8.7, 

CH2CH=), 6.40 (1H, d, J 16.0, CqCH=), 7.09 (2H, d, J 8.0, ArCH), 7.17 (2H, d, J 8.0, ArCH), 

7.31 (2H, d, J 9.0, ArCH), 7.73 (2H, d, J 9.0, ArCH), 9.72 (1H, s, CHO) 

�C: (101 MHz, CDCl3) 21.8 (CH3), 22.1 (CH3), 41.8 (CH2CHO), 44.5 (NCH2CH2), 51.9 

(NCH2CH=), 123.4 (=CH), 127.0 (ArCH), 128.0 (ArCH), 128.0 (ArCH), 130.0 (ArCH), 

130.5 (ArCH), 133.9 (Cq), 134.8 (=CH), 137.2 (Cq), 138.7 (Cq), 144.2 (Cq), 200.8 (CHO) 

m/z: (ES)+ 412 (45%, [M+MeOH+Na]+), 380.0 (100, [M+Na]+) 

HRMS: [Found: (M+Na)+ 380.1292. C20H23NNaO3S requires M, 380.1296] 
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(E)-N-(3-(4-Methoxyphenyl)allyl)-4-methyl-N-(3-oxopropyl)benzenesulfonamide (194e) 

 
Aldehyde 194e was prepared from alcohol 207e (350 mg, 0.93 mmol), oxalyl 

chloride (122 µL, 1.40 mmol), DMSO (199 µL, 2.80 mmol) and Et3N (0.65 

mL, 4.67 mmol) according to general procedure 12. Work-up afforded the 

product 194e as a colourless oil (319 mg, 92%). 

Rf : 0.48 (hexane:EtOAc, 1:1) 

�max: (film)/cm-1 2960 (CH), 2933 (CH), 1720 (C=O), 1606 (ArC=C), 1510 (ArC=C), 1334 

(�as SO2), 1155 (�s SO2) 

�H: (300 MHz, C6D6) 2.04 (3H, s, CqCH3), 2.48 (2H, t, J 7.0, CH2CHO), 3.34-3.49 (4H, stack, 

OCH3 and NCH2CH2), 3.75 (2H, d, J 7.7, CH2CH=), 5.84 (1H, dt, J 16.0 and 7.7, CH2CH=), 

6.30 (1H, d, J 16.0, CqCH=), 6.78 (2H, d, J 7.8, ArCH), 6.93 (2H, d, J 7.0, ArCH), 7.34 (2H, 

d, J 7.0, ArCH), 7.65 (2H, d, J 7.8, ArCH), 9.45 (1H, s, CHO) 

�C: (101 MHz, C6D6) 21.0 (CqCH3), 41.3 (CH2CHO), 43.9 (NCH2CH2), 51.4 (NCH2CH=), 

54.8 (OCH3), 114.3 (ArCH), 122.0 (=CH), 127.5 (ArCH), 128.0 (ArCH), 129.2 (Cq), 129.7 

(ArCH), 133.7 (=CH), 137.4 (Cq), 143.1 (Cq), 160.0 (Cq), 199.5 (CHO) 

m/z: (ES)+ 428.2 (30%, [M+MeOH+Na]+), 396.2 (100, [M+Na]+) 

HRMS: [Found: (M+Na)+ 396.1240. C20H23NNaO4S requires M, 396.1245] 
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N-Cinnamyl-4-methyl-N-(3-oxopropyl)benzenesulfonamide (194f) 

 
NMO (611 mg, 5.22 mmol) was added to a stirred solution of alcohol 207f (1.00 

g, 2.90 mmol) in CH2Cl2 (15 mL) containing 4 Å MS cooled to 0 °C. The 

reaction was stirred for 15 min before TPAP (91 mg, 0.29 mmol) was added in 

one portion and the reaction stirred for a further 10 min before being allowed to 

warm to room temperature. After 0.5 h the reaction was filtered through a plug of silica and 

washed with further portions of CH2Cl2 (3 x 10 mL). The combined filtrates were 

concentrated in vacuo and the crude product purified by flash column chromatography (Rf = 

0.55, hexane:EtOAc, 1:1) to give the product 194f as a colourless oil (848 mg, 85 % yield). 

�max: (film)/cm-1 3027 (=CH), 2924 (CH), 1721 (C=O), 1597 (ArC=C), 1494 (ArC=C), 1449, 

1334 (�as SO2), 1153 (�s SO2) 

�H: (300 MHz, CDCl3) 2.43 (3H, s, CH3), 2.83 (2H, t, J 7.0, CH2CHO), 3.45 (2H, t, J 7.0, 

NCH2CH2), 3.94 (2H, d, J 6.6, CH2CH=), 5.95 (1H, dt, J 15.8 and 6.6, CH2CH=), 6.45 (1H, d, 

J 15.8, CqCH=), 7.20-7.33 (7H, stack, ArCH), 7.72 (2H, d, J 8.5, ArCH), 9.73 (1H, s, CHO) 

�C: (75 MHz, CDCl3) 21.5 (CH3), 41.2 (CH2CHO), 43.8 (NCH2CH2), 51.1 (NCH2CH=), 123.8 

(=CH), 126.4 (ArCH), 127.2 (ArCH), 128.0 (ArCH), 128.6 (ArCH), 129.8 (ArCH), 134.1 

(=CH), 135.9 (Cq), 136.3 (Cq), 142.5 (Cq), 143.6 (Cq), 200.3 (CHO) 

m/z: (ES)+ 398.2 (20%, [M+MeOH+Na]+), 366.1 (100%, [M+Na]+) 

HRMS: [Found: (M+Na)+ 366.1146. C19H21NNaO3S requires M, 366.1140] 
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General Procedure 13: Prins Cyclisation 

MeAlCl2 (2 eq) was added dropwise over 1 min to a solution of the aldehyde (1 eq) dissolved 

in CH2Cl2 (0.1 M) at -78 °C. The resulting solution was stirred at -78 °C for 8 h before being 

allowed to warm to room temperature overnight. The solution was quenched by the addition 

of water. The organic phase was separated and the aqueous phase was further extracted with 3 

x CH2Cl2. The combined organic phases were washed with water and brine before being dried 

over MgSO4 and evaporated in vacuo to give the crude cyclisation product. 

 

(3S*,4S*)-3-((R*)-chloro(4-nitrophenyl)methyl)-1-tosylpiperidin-4-ol (197a) 

 
 
Piperidine 207a was prepared from aldehyde 194a (99 mg, 0.26 

mmol) and MeAlCl2 (1 M soln. in hexanes, 0.52 mL, 0.52 mmol) in 

CH2Cl2 (2.6 mL) according to General Procedure 13. Purification by 

flash column chromatography (Rf = 0.30, hexane:EtOAc, 1:1) afforded the products 197(R)a 

and 198(S)a in a 5:1 mixture as a colourless oil (49 mg, 77%). In he case of the NMR spectra, 

only data for the major piperidine 197(R)a are reported. 

�max: (film)/cm-1 3539 (OH), 2925 (CH), 2857 (CH), 1518 (�as NO2), 1341 (�as SO2, �s NO2), 

1156 (�s SO2) 

�H: (300 MHz, CDCl3) 1.48-1.55 (1H, m, CHHCHOH), 1.74-1.86 (2H, stack, CHHCHOH 

and OH), 1.94-1.98 (1H, m, CHCHOH), 2.34 (3H, s, CH3), 2.56-2.63 (1H, m, NCHHCH2), 

2.83 (1H, dd, J 11.9 and 8.9, NCHHCH), 3.31-3.45 (2H, stack, NCHHCH2 and NCHHCH), 

3.98-3.63 (1H, m, CHOH), 5.35 (1H, d, J 5.27, CHCl), 7.17-7.33 (6H, stack, ArCH ), 7.48 

(2H, d, J 8.2, ArCH) 

Ts
N

OH Cl

NO2

H



 236 

�C: (101 MHz, CDCl3) 21.6 (CH3), 31.2 (NCH2CH2), 43.9 (CH2), 44.0 (CH2), 49.8 

(CHCHOH),  62.1 (CHCl), 67.7 (CHOH), 123.9 (ArCH), 127.1 (ArCH), 129.1 (ArCH), 129.8 

(ArCH), 133.4 (Cq), 139.0 (Cq), 143.7 (Cq), 147.0 (Cq) 

m/z: (ES)+ 447.0 (100%, [M+Na]+) 

HRMS: Found: (M+Na)+ 447.0798. C19H22ClN2NaO5S requires M, 447.0757 

 

(3S*,4S*)-3-((R*)-(4-bromophenyl)chloromethyl)-1-tosylpiperidin-4-ol (197c) 

 
Piperidine 207c was prepared from aldehyde 194c (105 mg, 0.25 

mmol) and MeAlCl2 (1 M soln. in hexanes, 0.50 mL, 0.50 mmol) in 

CH2Cl2 (2.5 mL) according to General Procedure 13. Purification by 

flash column chromatography (Rf = 0.38, hexane:EtOAc, 1:1) afforded the products 197(R)c 

and 198(S)c in a 6:1 mixture as a white foam (88 mg, 77%). In the case of the NMR spectra, 

only data for the major piperidine 197(R)c are reported. 

�max: (film)/cm-1 3535 (OH), 2924 (CH), 2857 (CH), 1333 (�as SO2), 1154 (�s SO2) 

�H: (400 MHz, CDCl3) 1.53 (1H, dt, J 9.1 and 3.6, CHHCHOH), 1.73-1.83 (1H, m, 

CHHCHOH), 1.93-1.98 (2H, stack, CHCHOH and OH), 2.36 (3H, s, CH3), 2.59-2.65 (1H, m, 

NCHHCH2), 2.79 (1H, dd, J 11.4 and 8.9, NCHHCH), 3.28 (1H, dd, J 11.4 and 2.3, 

NCHHCH). 3.39-3.42 (1H, m, NCHHCH), 3.50-3.55 (1H, m, CHOH), 5.34 (1H, d, J 5.0, 

CHCl), 7.16 (2H, d, J 8.4, ArH), 7.24 (2H, d, J 8.2, ArH), 7.42 (2H, d, J 8.2, ArH), 7.50 (2H, 

d, J 8.4, ArH) 

�C: (101 MHz, CDCl3) 21.6 (CH3), 32.2 (NCH2CH2), 43.8 (CH2), 43.9 (CH2), 49.7 

(CHCHOH),  60.5 (CHCl), 67.5 (CHOH), 123.3 (ArCH), 127.6 (ArCH), 129.1 (ArCH), 131.9 

(ArCH), 133.4 (Cq), 133.2 (Cq), 138.1 (Cq), 143.9 (Cq) 
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m/z: (ES)+ 481.9 (100%, [M(81Br)+Na]+), 479.9 (72, [M(79Br)+Na]+), 445.9 (90, 

[M(81Br)+Na-Cl]+), 443.8 (86, [M(79Br+Na-Cl]+) 

HRMS: Found: (M+Na)+ 480.0010. C19H21BrClNNaO3S requires M, 447.0012 

 

(3S*,4S*)-3-((R*)-chloro(p-tolyl)methyl)-1-tosylpiperidin-4-ol (197d) 

 
Piperidine 197d was prepared from aldehyde 194d (74 mg, 0.21 

mmol) and MeAlCl2 (1 M soln. in hexanes, 0.42 mL, 0.42 mmol) in 

CH2Cl2 (2.0 mL) according to General Procedure 13. Purification by 

flash column chromatography (Rf = 0.47, hexane:EtOAc, 1:1) afforded the products 197(R)d 

and 198(S)d in a 3:1 mixture as a colourless oil (26 mg, 32%). In the case of the NMR 

spectra, only data for the major piperidine 197(R)d are reported. 

�max: (film)/cm-1 3537 (OH), 2924 (CH), 2855 (CH), 1333 (�as SO2), 1153 (�s SO2) 

�H: (400 MHz, CDCl3) 1.53-1.56 (2H, stack CHHCHOH and OH), 1.75-1.84 (1H, m, 

CHHCHOH), 1.98-1.09 (1H, m, CHCHOH), 2.25 (3H, s, CH3), 2.36 (3H, s, CH3), 2.60-2.68 

(1H, m, NCHHCH2), 2.83 (1H, dd, J 11.6 and 9.2, NCHHCH), 3.33-3.40 (2H, stack, 

NCHHCH2 and NCHHCH), 3.50-3.56 (1H, m, CHOH), 5.32 (1H, d, J 5.1, CHCl), 7.16-7.22 

(4H, stack, ArH), 7.42 (2H, d, J 8.3, ArH), 7.50 (2H, d, J 8.3 ArH) 

m/z: (ES)+ 416.1 (100%, [M+Na] 

HRMS: Found: (M+Na)+ 416.1032. C20H24ClNNaO3S requires M, 416.1063 
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(3S*,4S*)-3-((R*)-chloro(phenyl)methyl)-1-tosylpiperidin-4-ol (197f) 

 
Piperidine 197f was prepared from aldehyde 194f (100 mg, 0.29 mmol) and 

MeAlCl2 (1 M soln. in hexanes, 0.58 mL, 0.58 mmol) in CH2Cl2 (3.0 mL) 

according to General Procedure 13. Purification by flash column 

chromatography (Rf = 0.47, hexane:EtOAc, 1:1) afforded the products 197(R)f and 198(S)f in 

a 5:1 mixture as a colourless oil (78 mg, 71%). In the case of the NMR spectra, only data for 

the major piperidine 197(R)f are reported. 

�max: (film)/cm-1 3535 (OH), 2925 (CH), 2856 (CH), 1334 (�as SO2), 1154 (�s SO2) 

�H: (400 MHz, CDCl3) 1.48-1.504 (1H, stack CHHCHO), 1.74-1.90 (2H, stack, CHHCHOH 

and OH), 1.99-1.08 (1H, m, CHCHOH), 2.37 (3H, s, CH3), 2.58-2.67 (1H, m, NCHHCH2), 

2.87 (1H, dd, J 11.4 and 8.9, NCHHCH), 3.36-3.41 (2H, stack, NCHHCH2 and NCHHCH), 

3.46-3.55 (1H, m, CHOH), 5.35 (1H, d, J 5.0, CHCl), 7.12-7.22 (6H, stack, ArH), 7.48 (2H, 

d, J 8.3, ArH) 

�C: (101 MHz, CDCl3) 21.6 (CH3), 29.7 (NCH2CH2), 43.8 (CH2), 43.9 (CH2), 49.8 

(CHCHOH),  61.4 (CHCl), 67.5 (CHOH), 127.1 (ArCH), 127.6 (ArCH), 128.4 (ArCH), 128.8 

(ArCH), 129.8 (ArCH), 133.4 (Cq), 133.3 (Cq), 139.0 (Cq), 143.7 (Cq) 

m/z: (ES)+ 404.1 [22%, M37Cl], 402.1 (100, [M35Cl+Na] 

HRMS: Found: (M+Na)+ 402.08084. C19H22ClNNaO3S requires M, 402.0907 

Ts
N

OH Cl H
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6. Appendix 

HPLC trace of the crude reaction mixture from the Prins cyclisation 
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HPLC trace of trans piperidine 98 
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HPLC trace of cis piperidine 96 
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HPLC trace of trans chloride 99 
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HPLC trace of cis chloride 97 
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