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ABSTRACT 

Multiple receptor tyrosine kinases (RTK) have been shown to be over-expressed in the 

malignant Hodgkin Reed-Sternberg (HRS) cells of Hodgkin lymphoma (HL). However, the 

activation status of many of these RTKs has not been studied. Furthermore, the contribution 

of aberrant RTK activation to the pathogenesis of HL is currently unknown.  

In chapter three, I have shown using a human phospho-receptor tyrosine kinase array that 

HL cells are characterised by the activation of multiple RTK. I have confirmed the over-

expression and activation in HRS cells of two of these RTK, MET and RON and provided 

preliminary evidence that MET is negatively regulated by LRIG1 in these cells.   

In chapter four, I have shown for the first time that DDR1 is over-expressed in primary HRS 

cells. Furthermore, I have shown that in many cases, DDR1-expressing HRS cells are 

intimately associated with collagen, the ligand for DDR1. However, knockdown of DDR1 in a 

HL cell line in which DDR1 appeared to be constitutively phosphorylated revealed no 

detectable change in phenotype and few transcriptional changes. While exploring possible 

reasons for this, I identified that HL cells express multiple DDR1 isoforms including several 

novel transcripts. 

Finally, in chapter five, I have shown that HL cells are sensitive to the RTK inhibitor, 

dasatinib. Furthermore, consistent with the aberrant activation of multiple RTKs in HL cells, I 

observed that these cells were also sensitive to lestaurtinib and dovitinib, two next 

generation multiple-target RTK inhibitors.  
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1.1 Hodgkin’s lymphoma 

1.1.1  Introduction 

Hodgkin’s disease was first recognised as a clinical entity by Thomas Hodgkin in 1832. His 

report was based on the post-mortem description of several cases presenting with cervical 

lymphadenopathy, night sweats and cachexia(1). It was over 60 years later that Dorothy Reed 

and Carl Sternberg identified the large malignant mononuclear and binucleated cells, now 

referred to as the Hodgkin and Reed-Sternberg cells (HRS)(2). The disease was renamed 

Hodgkin’s lymphoma (HL) when the neoplastic and lymphoid origin of HRS cells became 

apparent(3). HL is unlike any other malignancy as, in most cases, the pathognomonic HRS 

cells and its variants only constitute approximately 1% of the cell population and are 

surrounded by a non-neoplastic infiltrate of T and B cells, eosinophils, neutrophils, plasma 

cells, histiocytes, fibroblasts and extracellular matrix(ECM)(4). 

1.1.2 Classification 

The diverse histological expression of HL has led to difficulties in its diagnosis and 

classification. HL is sub-classified according to the World Health Organisation (WHO) scheme 

which is based on biology, clinical features, morphology, immunophenotype and 

composition of the infiltrate(3). HL exists as two distinct disease entities: classical HL (cHL) 

and nodular lymphocyte predominant HL (NLPHL). Within cHL there are four subtypes: 

nodular sclerosis (NS), mixed cellularity (MC), lymphocyte depleted (LD) and lymphocyte rich 

(LR) HL. These subtypes differ according to their clinical features, growth pattern, presence 

of fibrosis and composition of the cellular background but not in their immunophenotype or 

genetic features(5-8).  
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The HRS cells of cHL are large with abundant cytoplasm and can have two or more oval 

lobulated nuclei containing prominent "owl-eye" eosinophilic nucleoli with perinuclear 

clearing observed on haematoxylin and eosin (H&E) stain. Variants include the mononuclear 

Hodgkin cells and ‘lacunar cells’ characteristic of the NSHL form where the cytoplasm shrinks 

during fixation and tissue processing, leaving an empty space around the nucleus. Some HRS 

cells contain dense cytoplasm and pyknotic nuclei and are referred to as ‘mummified cells’ 

(Figure 1.1)(3).  

NSHL is the commonest form of cHL in the western world accounting for approximately 70% 

of all cases(9). It is characterised by nodules containing HRS cells separated by dense collagen 

bands. These collagen bands are largely absent in MCHL, instead the lymph node 

architecture is obliterated by a diffuse infiltrate, which can vary greatly in composition(3). 

LRHL is similar to NLPHL but is distinguished by a morphology and immunophenotype 

consistent with cHL(5;10). LDHL is the rarest cHL subtype, accounting for less than 1% of cases 

worldwide. It is the least well understood of all subtypes and consequently has undergone 

several re-classifications but a unifying feature is the presence of numerous HRS cells and 

fewer background lymphocytes in the inflammatory infiltrate (10;11).  

NLPHL represents only 5% of all HL. Unlike classical HRS cells, the malignant cells of NLPHL 

referred to as lymphocyte predominant (LP) cells, are smaller and express CD20, a B cell 

marker but often lack the cell surface markers CD30 and CD15 characteristic of cHL (3;12).   
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Figure 1.1 H&E stain of classical Hodgkin’s lymphoma. Multinucleated HRS cells (black arrows) are 

seen in a cellular background rich in lymphocytes and containing some histiocytes and eosinophils(13).   
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1.1.3 Epidemiology of paediatric HL 

The complex epidemiology of HL suggests several different factors are involved in the 

development of HL. In North America and European countries, HL accounts for 

approximately 6% of all childhood cancers with an incidence of 4.5-6.0 per million. By 

comparison, the incidence of paediatric HL in developing countries exceeds 7 per million(14). 

In 1966, MacMahon identified a bimodal pattern of HL incidence in the USA  characterised 

by an increasing incidence in childhood which peaks in young adults and a second peak in 

adults between 45-55 years(15). Geographical variation was further analysed by Correa and 

O’Connor, who described three patterns of HL incidence that were related to economic 

development and urbanization. Pattern I, prevailing in developing countries, has incidence 

peaks in early childhood with 70% of paediatric HL occurring in children under 10 years. This 

pattern also has a second peak of HL incidence in adults over 60 years.  MC and LD subtypes 

are most common in these populations. Pattern III, found in urban areas of developed 

nations, has a low incidence in childhood but shows a peak in young adults (15-30 years) and 

is usually of the NS subtype. Pattern II is an intermediate pattern between type I and III and 

is found in the rural regions of developed countries(16).  

MacMahon initially hypothesised that an infectious agent was responsible for the early peak 

in HL incidence observed in young adults. This possibility is supported by several pieces of 

evidence. First, there is a peak in HL incidence in young adults and of the NS subtype from 

February to March(17-19). Second, HL incidence shows a space-time clustering in young adults 

with small groups of patients presenting within one year who live within 1 km of each 

other(20;21). Third, the epidemiology of HL was proposed to follow the poliovirus model which 

predicts the same infectious agent causes childhood HL and HL of young adults who develop 
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disease as a consequence of delayed infection. Consistent with this, children from low 

socioeconomic households with large sibships have an increased incidence of childhood HL 

while households with higher parental income and education level show an increased risk of 

developing HL during early adulthood(22).  The infectious agent suggested to be involved in 

HL pathogenesis was the Epstein Barr virus (EBV). The association of EBV with HL will be 

discussed in detail in section 1.3.  

Familial studies show a 3 to 9 fold increased risk of developing cHL in first degree 

relatives(23). Although this maybe a result of environmental influences, a genetic component 

is supported by a high concordance in monozygotic twins who have a 99-fold increased risk 

of HL compared to dizygotic twins(24). In view of these genetic and viral links, the human 

leukocyte antigen (HLA) gene loci have been considered to be a possible site for a 

susceptibility gene for HL. The HLA class I region in particular, B5, B8, B18 and A1, has been 

reported to be associated with 60-70% of familial HL(25). Furthermore, individuals carrying 

the class I alleles HLA-A *0101 and HLA-A*0201 appear to have a modified response to viral 

infection which may be an important determinant of EBV-related HL(26). 

Class II antigens have been implicated in both the predisposition to HL and disease 

resistance. An association with the DPB1*0301 allele was proposed but an extended analysis 

of multiple HLA class II loci (e.g. DRB1, DQA1, DQB1, and DPB1) discounted an independent 

role of DPB1. Klitz et al., conducted an unmatched case control study and reported that in 

the NS subtype (but not other subtypes) the DRB1*1501, DQB1*0602, and DRB1*1104 

alleles confer risk, while DRB1*1601, DRB1*0404, and DQB1*0303 alleles are protective(27-

30).  
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A recent genome-wide association study of HL not only confirmed a strong HLA association 

and also identified three new susceptibility loci at 2p16.1 (REL), 8q24.21 (PVT1) and 10p14 

(GATA3)(31). Both the REL and GATA3 genes encode proteins that are important in the 

pathogenesis of HL. PVT1 expression is as yet unreported in HL, however 20% of Burkitt’s 

lymphoma (BL) harbour t(2;8) or t(8;22) translocations which involve the PVT1 locus. Little is 

known about the function of PVT1 but it has been reported to encode several microRNAs as 

well as induce T cell lymphomas in mice(32).  

1.1.4 Clinical Presentation and Staging of HL 

In 75% of patients with HL, the presenting feature is a painless peripheral lymphadenopathy 

typically involving the lymph nodes in the cervical chain. Patients with mediastinal 

lymphadenopathy may present with shortness of breath, cough, or rarely (if the mediastinal 

mass is bulky) with superior vena cava syndrome or tracheal compression(33). More advanced 

disease may present as unexplained fever, weight loss or night sweats, termed ‘B symptoms’ 

and are recognised as poor prognostic factors in the Ann Arbor staging system(34). The Ann 

Arbor staging was modified in 1989 to the so-called ‘Cotswold revision’, to account for the 

grade of disease (Table 1.1)(35). 
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Table 1.1 The Cotswold revision of Ann Arbor staging system(36). 

 
STAGE 

 

 
DEFINITION 

 
I Involvement of a single lymph node region or lymphoid structure (e.g. spleen, 

thymus, Waldeyer’s ring) 
 

II Involvement of two  or more lymph node regions on the same side of the 
diaphragm (the mediastinum is a single site, hilar lymph nodes are lateralised); the 
number of anatomic sites should be indicated by suffix (e.g. II3) 
 

III Involvement of lymph node regions or structures on both sides of the diaphragm 
 

III1 With  or without splenic, hilar, celiac or portal nodes 
 

III2 With para-aortic, iliac or mesenteric nodes 
 

IV Diffuse or disseminated involvement of one or more extranodal organs with or 
without associated lymph node involvement 
 

 

 
 

DESIGNATION APPLICABLE TO ANY STAGE 
 

A No symptoms 
 

B Fever (Temperature >38oC), drenching night sweats, unexplained weight loss >10% 
in preceding 6 months 
 

X Bulky disease; widening of mediastinum by more than 1/3 or the presence of a 
nodal mass with maximum dimension >10cm 
 

E Involvement of a single extranodal site that is contiguous or proximal to the known 
nodal site 
 

CS Clinical stage 
 

PS Pathological stage 
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1.1.5 Risk stratification and current treatment of paediatric HL 

Conventional treatment of paediatric HL with combination chemotherapy, radiotherapy or 

both can achieve high cure rates. Early regimes were based on adult treatment schedules, 

but despite good survival outcomes it was apparent that children were more vulnerable to 

the sequelae of therapy(37-41). Current regimes are tailored using risk stratification where the 

major poor prognostic factors are stage, B symptoms and bulky disease. An elevated 

erythrocyte sedimentation rate (ESR) also indicates a poor prognosis but is not included in 

risk adaptation(42;43).    

The radio-sensitivity of HL was recognised as early as 1957 when Kaplan suggested that 

approximately 40 Gy of irradiation was an optimal curative dose. His pioneering work is still 

the basis of modern radiotherapy(44). Radiotherapy, although highly effective in early stage 

disease, had significant acute complications as well as late effects in long-term survivors(41;45-

47). The treatment strategy for HL changed in 1964 with the introduction of MOPP 

combination therapy, which consists of mustargen (mustine), oncovin (vincristine), 

procarbazine and prednisone. MOPP therapy achieved dramatic results in advanced HL. 

Following the success of MOPP in adults, in 1967, Carbone and colleagues trialled this 

regime in children and reported similar effects in paediatric HL(48). Subsequent studies used 

different combinations but none were superior until the introduction in 1974 of ABVD, a 

new four drug combination of adriamycin (doxorubicin), bleomycin, vinblastine and 

dacarbazine(42;49;50).   

Although these regimes enabled treatment to be less radiotherapy dependent, the intensive 

chemotherapy was also associated with significant acute and late toxicity. Consequently, 

combined therapies have evolved to reduce toxicity while maintaining the excellent cure 
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rates. Over the last 20 years, risk adapted strategies utilizing prognostic factors, response to 

treatment and improved imaging techniques have guided clinical trials(51-53).  

At present, in the UK paediatric patients with cHL are enrolled in a clinical trial, Euronet-PHL-

C1. In this trial all patients receive two cycles of OEPA (vincristine, etoposide, prednisolone 

and doxorubicin) followed by a positron emission tomography (PET) scan to assess response. 

Group one: patients may either have no further treatment or, if disease persists, 

radiotherapy. Group two and three: patients are randomised to receive either COPP 

(prednisolone, procarbazine, vincristine and cyclophosphamide) or COPDAC (prednisolone, 

dacarbazine, vincristine and cyclophosphamide) +/- radiotherapy. There are three main aims 

of Euronet-PHL-C1: to establish in selected patients if chemotherapy alone is as good as 

chemotherapy and radiotherapy, to determine if dacarbazine and procarbazine are equally 

effective and to assess the long-term effects of these drugs on fertility. This trial also 

includes salvage strategies for relapsed and refractory HL to evaluate the role of further 

radiotherapy versus allogeneic stem cell transplant (ASCT)(54;55). 

 1.1.6 Prognosis and late effects  

Overall, childhood HL is a curable disease with a five-year survival of 95% and 80% for early 

and advanced disease, respectively (reviewed in reference 33). However, primary 

progressive HL which remains refractory has a very poor outcome. Approximately 10% of 

early stage and up to 25% of advanced stage cHL relapse after first line therapy(56). Yet, cure 

can still be achieved with salvage therapy with all relapsed and refractory patients receiving 

salvage chemotherapy plus potentially further treatment. The best curative options are still 

being evaluated and current choices include an ASCT +/- involved field radiotherapy. Any 

additional treatment entails significant risk to the patient, for example an ASCT has a non-
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relapse mortality of over 20% (57-59). In order to improve outcomes in this subset of HL 

patients, new therapies must be sought.  

In long-term survivors of HL the complications of chemotherapy and radiotherapy have 

become more apparent. The most serious complications are chemotherapy-associated and 

radiation-associated secondary malignancy(45;46;60), infertility(61) and cardio-toxicity(62;63). 

Second cancers are a leading cause of death, such that 15 years after the end of treatment, 

mortality related to late effects exceeds that of the original disease. Patients who received 

radiotherapy to the chest wall have a 7-18 fold increased risk of breast cancer(45). Children 

are particularly vulnerable because receiving treatment at a young age strongly influences 

the risk and type of second malignancy.  

All current data on the long-term sequelae of HL treatment is based on past regimes and 

contemporary schedules may have a different toxicity profile. It is imperative that novel 

treatment schedules are developed to increase overall survival in poor responders and to 

decrease morbidity and improve quality of life in long-term survivors. 

1.2 The molecular biology of Hodgkin’s lymphoma 

1.2.1 Normal B cell development 

The B cell is an essential part of the adaptive immune response generating antibodies and 

providing immune memory. Immature B cells are produced in the bone marrow and undergo 

several stages of development and differentiation.  

An antibody molecule is composed of two identical light (L) and two identical heavy (H) 

chains, and the genes encoding them are found in the 'V' (Variable) and 'C' (Constant) 

regions. In the heavy-chain 'V' region there are three segments; V, D and J, which recombine 
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randomly, in a process called VDJ recombination. Similar rearrangements occur in the light-

chain 'V' region except that there are only two segments involved; V and J. Immunoglobulin 

gene rearrangement introduces diversification to producing a unique variable domain in the 

immunoglobulin genes which encodes the B cell receptor of each individual B cell(64). 

B cells bearing these immunoglobulins or antibodies are then released into the periphery 

where they encounter antigens. Upon binding of antigen to the B cell receptor (BCR), the B 

cell becomes activated. In T cell-dependent B cell development, activated B cells migrate to 

the B cell follicles of secondary lymphoid organs such as lymph nodes, spleen and Peyer’s 

patches. Within these specialized structures the B cells receive a second co-stimulatory 

signal from antigen-specific T cells. The B cells then enter the next stage of differentiation 

and start to vigorously proliferate leading to the development of germinal centres (GC). GC 

are histological structures that in addition to B cells contain T cells and follicular dendritic 

cells (FDC), which are essential for subsequent B cell selection (Figure 1.2)(65).     

Alongside B cell clonal expansion, the process of somatic hyper-mutation (SHM) begins in 

the GC. During SHM, random point mutations, deletions and duplications are introduced into 

the B cell receptor to increase antigen affinity. These variants are tested and those with high 

affinity for antigen are selected while those with poor affinity or disadvantageous mutations 

undergo apoptosis(66). The proliferation of GC B cells takes place in the dark zone where they 

are referred to as centroblasts. In the light zone the GC B cells undergo selection and are 

referred to as centrocytes. GC B cells migrate between the light zone and dark zone 

undergoing several rounds of proliferation and selection(67).  

B cells may also undergo class switch recombination (CSR), whereby parts of the antibody 

heavy chain locus are removed from the chromosome, and the gene segments surrounding 
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the deleted section are re-joined to retain a functional antibody gene that produces 

antibody of a different isotype. B cells produce IgM and IgD but require CSR for the 

production of IgA, IgE and IgG. CSR does not alter antigen affinity but does enable B cells to 

interact with different molecules(64). Cells that successfully emerge from the GC can 

differentiate into either memory B cells, which provide for a rapid strong response to the 

next antigen encounter, or plasma cells which secrete antibody (Figure 1.2). 

1.2.2 B cell transcription factors 

The process of B cell development is regulated by transcription factors which determine cell 

fate. The first stage of B cell development in the bone marrow has two main checkpoints. 

The first, regulated by PU.1 in association with other factors, occurs at the bifurcation of the 

myeloid and B lymphoid cell lineages. Low expression of PU.1 favours B cell differentiation 

while high expression promotes differentiation to the myeloid line(68). The second 

checkpoint is prior to VDJ rearrangement during the transition from the pro-B cell to the pre-

B cell stage and is influenced by E2A and its isoforms, E12 and E47 as well as early B cell 

factor 1 (EBF1), and paired box gene 5(PAX5/BSAP) (69-72).  
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Figure 1.2 B cell development in the germinal centre. A naïve B cell encounters antigen and migrates 

to lymphoid follicles. Upon T cell stimulation, the B cell undergoes clonal expansion and SHM within 

the dark zone of the germinal centre. Selected B cells migrate to the light zone and are affinity 

tested. High affinity B cells are selected for further differentiation while poor affinity B cells are 

elininated by apoptosis. (Reproduced from Kuppers(73)) 
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E2A contributes to the maintenance of the haemopoietic stem cell pool and is required for 

the expression of EBF1, Pax5 and initiation of the B cell programme. Both E12 and E47 are 

present in lymphoid progenitors but E47 alone is required for specification of the B cell 

lineage(74). The role of EBF1 is less clear but its loss results in early arrest of B cell 

differentiation prior to immunoglobulin recombination. Furthermore, ectopic expression of 

EBF1 can overcome blocks in B cell differentiation in mice deficient in E2A and PU.1(70). PAX5 

is a key commitment factor that maintains B cell identity through the activation of B cell 

specific genes while repressing genes associated with other lineages(71). The importance of 

PAX5 is demonstrated in mouse models where conditional ablation of PAX5 in mature B cells 

resulted in reversal of differentiation to progenitors which subsequently gave rise to 

functional T cells(75). 

These three transcription factors interact with each other and are regulated by feedback 

mechanisms involving inhibitor of DNA binding/differentiation (Id) proteins which are 

negative regulators of B cell transcription factors. Under physiological conditions, a negative 

feedback loop is maintained whereby E2A activates Id2 expression while EBF1 down-

regulates Id2 to maintain E2A activity(76). Similarly a feedback loop exists between EBF1 and 

PAX5. EBF1 gene expression is regulated via two distinct promoter regions, the distal 

promoter by EBF1 and E2A and the proximal one by PAX5 and PU.1. In vitro studies 

demonstrated that the binding of EBF1 to a region in PAX5 promoter results in the activation 

of PAX5. Furthermore, the forced expression of PAX5 in thymocytes results in activation of 

the B cell differentiation programme including EBF1 transcription. Id2 has also been shown 

to interact with PAX5 antagonizing its function. These interactions are summarised in Figure 

1.3(77).  
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Progression to the next stage of B cell differentiation occurs after antigen encounter. Early 

studies have identified that octamer binding sites on the V gene promoter regions are 

essential for immunoglobulin transcription. There are two proteins that can bind to these 

octamer sites; Oct1 which is ubiquitously expressed in various cell types and Oct2 which has 

a more limited expression. Oct2 confers B cell specificity in the presence of its co-activator 

BOB-1. Mice lacking Oct2 have normal B cell precursors but fewer IgM+ B cells(78). While mice 

lacking BOB-1 have no GCs, poor B cell maturation and reduced circulating B cells(79). 

The GC reaction is driven by B cell lymphoma 6 (BCL6) which is highly expressed in GC B cells 

and is required for GC formation(80). A crucial function of BCL6 is to repress B lymphocyte 

induced maturation protein 1 (BLIMP1). BLIMP1 initiates a cascade required for the terminal 

differentiation of B cells into plasma cells (PC). By repressing BLIMP1 expression, Bcl6 

ensures that PC differentiation does not occur prematurely in GC B cells. Following the GC 

reaction BLIMP1 then induces repression of PAX5 and BCL6 such that B cells are unable to 

return to an earlier stage of differentiation(80;81).  

Many of these transcription factors have crucial roles at multiple stages of differentiation. 

For example, although PU.1 is generally recognised as an early transcriptional regulator, it is 

also up-regulated in centroblasts, recruits Bcl6 to repress gene expression in GC B cells and is 

important for SHM(82). Figure 1.4 illustrates the expression of some of the important 

molecules involved in B cell development.  
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Figure 1.3 Schematic of the interaction between three key B cell transcription factors and Id2. The 

expression of E2A, EBF1 and Pax5 is regulated by feedback loops and the inhibitor ID2 which interact 

to promote the B cell transcription programme. 

 

 

 

Figure 1.4 Schematic of important molecules in B cell differentiation. A number of different 

molecules become activated and others down-regulated as the B cell becomes differentiated. 

(Reproduced from Henderson and Calame(83)) 
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 1.2.3 The cellular origin of HRS cells 

While the LP cells of NLPHL express several B cell markers including markers of a GC 

phenotype, HRS cells of cHL lack many B cell markers and express markers typical of other 

haematopoietic lineages(3). This has made the identification of the normal cellular 

counterpart of the HRS cell of cHL elusive until recently.  Analysis of single HRS cells micro-

dissected from tissue section has shown that nearly all HRS cells carry clonally rearranged 

and somatically mutated immunoglobulin V gene indicating their origin as B cells that have 

undergone a GC reaction(84-87).  

Furthermore, it has been shown that HRS cells do not express functional surface 

immunoglobulin and a quarter of cHL cases harbour crippling mutations(88). A separate study 

found that although 75% of micro-dissected HRS cells retain coding sequence for an intact 

immunoglobulin, transcription ability is silenced(87). Under physiological conditions B cells 

with non-functional immunoglobulins are removed by apoptosis, implying that the 

presumed progenitors of HRS cells are GC B cells that have escaped apoptosis(88). In contrast, 

L&H cells contain functional immunoglobulins and a proportion of L&H cells show evidence 

of ongoing SHM and antigen selection suggesting they are derived from a stage intermediate 

between GC and memory B cells(89).   

In a small proportion of HL cases, HRS cells express multiple T cell markers, CD3, granzyme B, 

perforin and T-cell intracellular antigen(90). This could reflect a T cell lymphoma co-expressing 

CD30 and CD15 thereby mimicking HL or a B cell aberrantly expressing T cell markers or 

indeed be HL of truly T cell origin(91;92). The latter possibility is supported by the following 

evidence. First, detection of clonal T cell receptor gene rearrangements but not 

immunoglobulin rearrangements in a small minority of HL cases(93). Second, gene expression 
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analysis of HDLM-2, a HL cell line with T cell receptor rearrangements, shows HDLM-2 

displays a gene expression profile akin to other B cell derived HL cell lines rather than cell 

lines derived from T cell lymphomas(94).           

1.2.4 B cell reprogramming in cHL 

Experimental models have demonstrated plasticity in lymphoid cells whereby alterations in 

transcription factors can profoundly affect the differentiated state. For example, PAX5 -/- pro-

B cells are able to differentiate into functional macrophages, dendritic cells, osteoclasts and 

natural killer cells(95). HRS cells show an extraordinary loss of B cell identity(96), the 

mechanisms of which are only beginning to be appreciated.  

Of the key transcription factors, PU.1 expression is usually high in GC B cells but is 

consistently absent in HRS cells but interestingly PU.1 expression is a feature of L&H cells(97). 

Although E2A, EBF1 and PAX5 are expressed to different degrees in primary HRS cells in 

most cases, their function is compromised. For example, a study by Mathas et al., found the 

level of E2A expression in HRS cells to be similar to GC B cell derived cell lines. Despite 

normal expression, E2A function is impaired in HL cell lines by an up-regulation of two 

inhibitors of E2A activity; Id2 and activated B cell factor 1 (ABF-1). Id2 interacts with E2A to 

prevent DNA binding while ABF-1 specifically suppresses the E2A isoform, E47, by forming 

non-functional hetero-dimeric complexes. In vitro over-expression of both ABF-1 and Id2 

decreases E2A activity compared with ABF-1 over-expression alone(98;99). This study also 

demonstrated that inhibition of E2A results in the down-regulation of E2A-dependent B cell 

specific genes and may account for some of the transcriptional silencing seen in HRS cells. In 

contrast to E2A, EBF1 is expressed only at a low level and although PAX5 is expressed there 

is a down regulation of many of its target genes(98).  
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Not only is the B cell transcriptional programme repressed in HRS cells but transcription 

factors of other lineages are highly activated, for example the T cell transcription factors 

Notch 1 and GATA3. The oncogenic role of aberrant Notch expression is well defined in T cell 

malignancies but is less clear in B cell malignancies(100-102). In HL, HRS cells not only express 

the Notch 1 receptor and its ligand jagged 1 (jg1) but also down-regulate the Notch 1 

inhibitor, deltex1. The non-neoplastic cells of the microenvironment express only jg1. Raising 

the possibility that the activation of Notch 1 in HRS cells results from both autocrine and 

paracrine pathways(101). It has been reported that in normal lymphoid tissue Notch receptors 

are expressed by GC B cells and Notch ligands by FDC. Moreover, it has been demonstrated 

in vitro that jg1 can rescue GC B cells from apoptosis and conversely blockade of Notch 

signalling reduced GC B survival in the presence of FDC(103). Contrary to work showing 

tumour promoting properties of Notch signalling, another study noted that constitutive 

activation of all Notch receptors in a range of B cell derived cell lines actually leads to growth 

arrest and apoptosis (104).  A study of Notch1 expression in HRS cells observed that Notch 1 

antagonises E2A and EBF1 contributing to suppression of the B cell phenotype(101). In the 

same study, both PAX5 and Notch 1 were noted to be expressed but where there was a low 

expression of PAX5, Notch 1 was highly expressed. The converse was also noted but PAX5 

did not appear to directly repress Notch 1 transcriptional activity (101).  

In a proportion of cHL, the lack of BCR expression may be accounted for by the presence of 

crippling immunoglobulin mutations. Yet, in some instances the HRS cell contains an intact 

and functional immunoglobulin gene but still there is no BCR expression. One explanation 

comes from studies which show that in the majority of cases, HRS cells are deficient in both 

Oct2 and co-activator BOB-1 expression. However, expression of these transcription factors 
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cannot restore loss of immunoglobulin gene expression in HL cell lines (105-107). Suggesting 

further inactivation of BCR signalling components may occur for example through epigenetic 

mechanisms such as methylation of the immunoglobulin heavy chain promoter(108). Other 

markers of B cell identity such CD19 and CD79b are also down-regulated by epigenetic 

mechanisms. The treatment of HL cell lines with a demethylating agent has been shown to 

restore gene expression of these markers as well as PU.1 and BOB-1 (108;109).   

1.2.5 Deregulated signalling pathways 

Deregulated signalling is a feature of HRS cells which in some cases arise secondary to 

genetic alterations (Table 1.2). There now follows a description of several of these signalling 

pathways and their involvement in the pathogenesis of HL.  

1.2.5.1 Nuclear factor kappa -light chain- enhancer of activated B cells (NF-κB)  

The NF-κB/Rel family consists of five members (p50, p52, p65 [RelA], c-Rel, and RelB), which 

can form various homo-dimeric or hetero-dimeric complexes. In normal B cells, the inactive 

NF-κB complex resides in the cytoplasm bound to inhibitor of NF-κB (IκB) proteins. Activation 

of the NF-κB subunit causes phosphorylation of IκB proteins resulting in the degradation of 

IκB proteins. This phosphorylation is orchestrated by the IκB kinase (IκK) complex which 

contains two protein kinases, IκKα and IκKβ. Release of the NF-κB subunits permits 

translocation to the nucleus where the complex exerts its effect on downstream targets. The 

blocking of NF-κB activity in vitro leads to the apoptosis of HRS cells indicating a critical role 

for NF-κB in HRS cell survival. The constitutive activation of NF-κB activity in HL is mediated 

by the deregulation of different REL/NF-κB transcription factors(110-113). Mutations of genes in 

the classical (canonical) NF-κB pathway can result in gain-of-function through the up-
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regulation of REL and inactivation of IκB(114-116). Other genetic abnormalities affecting the NF-

κB pathway include TNFα-induced protein 3 (TNFAIP3) which encodes A20, a negative 

regulator of NF-κB. Loss-of-function mutations in TNFAIP3 are found in 60% of EBV-negative 

HL. In the same study not only was the frequency of mutation lower in EBV-positive HL 

(12.5%) but also destructive mutations were confined to EBV-negative cases(117).  

NF-κB can also be activated through the alternative (non-canonical) pathway via members of 

the tumour necrosis factor (TNF) family, CD40, CD30 and receptor activator of NF-κB (RANK). 

The over-expression of CD30 and CD40 are the hallmark of HRS cells. Whereas, the non-

neoplastic cells expressing CD40 ligand (CD40L) surround the HRS cells and are thought to 

contribute to the activation of NF-κB(118;119). The role of CD30 ligand (CD30L) is less clear as 

the activation of NF-κB appears to be largely CD30L independent(120;121). However, in vitro a 

CD30-CD30L interaction between eosinophils and HDLM-2, a HL cell line, has been shown to 

promote the proliferation of these cells (122). Activation of CD30, CD40 and RANK also 

mediates the phosphorylation of other signalling pathways, for example the mitogen-

activated kinase (MEK/ERK) pathway (123) . 
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Table 1.2 Genetic mutations associated with HL. (Reproduced from Kuppers(89)) 

GENE MUTATION PATHWAY FREQUENCY (%) 

REL Gains, amplification NF-κB 50 

NFKBIA Point mutations, deletions NF-κB 20 

NFKBIE Point mutations, deletions NF-κB 15 

TNFAIP3 Point mutations, deletions NF-κB 40 (60% EBV-neg) 

BCL3 Gains, translocations NF-κB 10 

JAK2 Gains, amplifications JAK-STAT 40 

SOCS1 Point mutations, deletions JAK-STAT 45 

TP53 Point mutations, deletions P53 10 

MDM2 Gains P53 60 

CD95 Point mutations FAS 10 
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1.2.5.2 Janus kinase (JAK)-signal transducer and activator of transcription (STAT)  

The JAK-STAT pathway also plays a critical role in the pathogenesis of HL. A variety of 

cytokines and growth factors can bind to their corresponding receptors on the HRS cell 

surface and can activate JAK, which in turn phosphorylates STAT proteins on specific tyrosine 

residues. The STAT proteins then dimerize and translocate to the nucleus initiating the 

transcription of target genes. The JAK-STAT pathway is negatively regulated by the 

suppressor of cytokine signalling 1 (SOCS1) which can bind to and inactivate JAK. Inactivation 

of SOCS1 through genomic gain and mutations of JAK2 are frequently seen in HRS cells 

contributing to the constitutive activation of JAK-STAT pathway(124-126).  Even in the absence 

of these mutations, STAT3, STAT5a, STAT5b and STAT6 have all been shown to be 

constitutively active in HRS cells(112;127;128). An alternative mechanism appears to involve 

interleukins (IL) secreted by HRS cells which engage receptors on the same cell; for example 

IL13-IL13R for STAT6 and IL21-IL21R for STAT5a, STAT5b and STAT3(129-131). STATs can also be 

activated by receptor tyrosine kinases (RTKs) and although the aberrant activation of RTKs 

has been described in HL (discussed later in section 1.5) they have not been demonstrated to 

activate STATs in HRS cells. 

1.2.5.3 Phospho-inositide 3 kinase (PI3K) 

PI3K is constitutively activated in HRS cells and its inhibition results in reduced cell 

viability(132). Under normal conditions PI3K becomes activated by RTKs or other cell-surface 

receptors, resulting in increased production of the membrane lipid phospho-inositol 

(3,4,5)P3 (PIP3) from phospho-inositol(4,5)P2 (PIP2). The level of PIP3 is negatively controlled 

by the phosphatase and tensin homolog (PTEN), which converts PIP3 back to PIP2. Akt, which 

is the main effector of PI3K, binds PIP3 at the plasma membrane. The binding of PIP3 leads to 
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the phosphorylation of Akt at Ser-473 in its regulatory domain and subsequent 

activation(133). The HRS cells of primary tumour samples not only expressed high levels of 

activated Akt but also display phosphorylation of downstream targets of Akt activation. 

These targets include a number of molecules important in apoptosis e.g. GSK-3, 4E-BP1, and 

p70 S6 kinase(132). In HL cell lines, PTEN is expressed but its function is abrogated as a result 

of phosphorylation of the C-terminal tail(133).  

1.2.6 The role of the cellular microenvironment in tumour survival  

The microenvironment is considered essential for the growth and survival of HRS cells as 

demonstrated by the difficulty in establishing cell lines and the scarcity of HRS cells in the 

peripheral blood of patients. Moreover, when HRS cells metastasize to non-lymphoid organs 

they embed themselves in their typical microenvironment(134). The microenvironment of HL 

is formed by the production of cytokines and chemokines which attract a reactive infiltrate 

which promotes and maintains tumour growth (Figure 1.5). In addition to the infiltrate of 

non-neoplastic T and B cells, eosinophils, macrophages, mast cells and fibroblasts, HL is 

often characterised by an ECM dominated by collagen(3). 

The network of cytokines and chemokines produced by HRS cells is reinforced by the non-

neoplastic cells of the microenvironment. For example, HRS cells can directly attract CD4+ T 

helper cells, eosinophils and mast cells through the production of chemokine ligand 5 

(CCL5/RANTES). HRS cells can also induce fibroblasts to secrete CCL5 and eotaxin which 

together can further recruit CD4+ T helper cells and eosinophils. HRS cells do not produce 

eotaxin but can stimulate fibroblasts to do so through IL13 and TNFα signalling. CCL5 also 

has a direct effect on HRS cell survival and proliferation (135-137). 



Introduction 

 

 | 26  
 

The microenvironment also has an important role in modulating the immune response to 

HRS cells. The infiltrate contains a large fraction of Regulatory T cells (Tregs) and T helper 

cells which are thought to suppress cytotoxic T cells (CTL) (138). Tregs are recruited not only 

by HRS cells but also by surrounding non-neoplastic cells secreting IL-7(139). The exact role of 

T cells in the microenvironment of HL still needs clarification as there is some suggestion that 

high numbers of Tregs are associated with a better prognosis. This observation might be a 

consequence of HRS cell suppression cells by Tregs(140). HRS cells also produce 

immunosuppressive cytokines such as IL10, transforming growth factor (TGFβ) and galectin 1 

which inhibit T effector function(141).  

CTLs can become ‘exhausted’ which is a phenomenon that involves both a reduction in the 

numbers of CTLs and their responsiveness. Programmed death 1 ligand (PD-1L) has been 

shown to be necessary for the maintenance of T-cell exhaustion in a chronic-infection mouse 

model of lymphocytic choriomeningitis virus (LCMV). PD-1 was greatly up-regulated on CTLs 

in response to LCMV, and its expression was maintained during chronic infection Moreover, 

this study demonstrated the function of ‘exhausted T cells’ could be restored by blockade of 

PD-1-PD-1L interaction (142). HRS cells have been shown to express PD-1 L and CTLs in the 

infiltrate to express PD-1. In HL, the expression of PD-1L has been identified as a negative 

prognostic factor(143). 
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Figure 1.5 Cross-talk of HRS with the surrounding cells. The production of chemokines and cytokines 

recruit cells to the tumour microenvironment. HRS cells are able to interact with these cells via 

soluble mediators which in addition to autocrine growth factors promotes HRS proliferation and 

survival (Reproduced from Aldinucci et al.,(141)) 
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1.2.7 The non-cellular component of the HL microenvironment 

Various components within the stroma are altered in carcinogenesis. For example, in mice, 

PTEN ablation in stromal fibroblasts results in remodelling of the ECM, changes to the 

vasculature and conversion to a tumour promoting phenotype(144). In the past, HL has been 

confused with inflammatory disorders and indeed changes seen in the microenvironment of 

HL mimic those seen during the process of wound healing. The exact nature of this response 

is different between HL subtypes. Gene expression profiling showed that MCHL resembled 

the inflammatory phase of wound healing. In contrast, NSHL shared similarities to the 

remodelling phase with the fibrosis seen in HL resembling scar tissue and is characterized by 

the overproduction and deposition of type I and III collagen by fibroblasts(145).  A previous 

study showed that blood vessels strongly expressing type IV collagen were numerous in 

NSHL and localised within the cellular nodules but were relatively scanty in LPHL, MCHL, and 

LDHL(146).  

Collagens provide more than mere mechanical scaffold and are able to communicate using 

cell surface receptors. There are two main types of receptors which can bind to collagen, 

integrins and discoidin domain receptors(147). Both can independently trigger numerous 

cellular responses including cell adhesion, migration and proliferation. Several cancers 

including breast and prostate have an elevated and altered collagen expression which is 

associated with metastases and poor outcome(148).  

 



Introduction 

 

 | 29  
 

1.3 Hodgkin’s Lymphoma and Epstein-Barr virus 

1.3.1  Introduction 

The Epstein-Barr virus (EBV) is a highly prevalent herpes virus that persists life-long in normal 

humans by colonising memory B cells. EBV infection usually occurs in childhood and is either 

asymptomatic or presents as a mild viral illness. The acquisition of EBV in late adolescence 

and adulthood can cause infectious mononucleosis which manifests as fever, malaise and 

lymphadenopathy(149). EBV is ubiquitous and in a recent study, antibodies to EBV were 

detectable in over 95% of healthy young women(150). In some individuals EBV can contribute 

to the development of lymphomas such as Burkitt’s lymphoma (BL), Hodgkin’s lymphoma 

(HL), or post-transplant lymphomas (PTLD) as well as epithelial cancers which include 

nasopharyngeal carcinoma (NPC) (149).  

CTLs are particularly important in the recognition and elimination of EBV-infected cells. CTLs 

recognise virus-derived peptides that are presented by the infected cell in association with 

MHC class I. Individuals whose virus-specific immunity is compromised are at a higher risk 

for the development of virus-associated cancers. This is exemplified by an increase in post-

transplant lymphoproliferative disease caused by EBV infection in transplant patients, often 

treated by decreasing the level of immunosuppression(151;152). In paediatric HL, there is an 

association between HL and acquired immunodeficiency with studies reporting up to 90% of 

HL patients positive for HIV also have EBV positive HRS cells(153). Yet virus-associated cancers 

also arise in immunocompetent individuals suggesting that the virus-infected tumour cell or 

its progenitor can escape the normal virus-specific immune responses.  
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1.3.2 Defining a virus-associated cancer 

A tumour is referred to as ‘virus-associated’ when the virus genome or its products (i.e. RNA, 

protein) are detectable within the tumour cells(154). The most widely used method to detect 

EBV is in situ hybridisation for the highly abundant Epstein-Barr encoded RNAs (EBERs); non-

coding RNAs which are expressed in all forms of latent EBV infection. In the majority of EBV-

associated tumours it is possible to show that the EBV genome is monoclonal. When EBV 

infects a cell the linear genome circularizes by fusion of the terminal repeats giving rise to a 

fusion sequence unique to each infected cell. The detection of only one fusion sequence in a 

tissue sample demonstrates monoclonality; in other words all the EBV-infected cells 

originated from a single EBV-infected cell(155;156). 

1.3.3 EBV and the origin of B cell lymphomas 

EBV is orally transmitted, and infectious virus can be detected at low levels in oropharyngeal 

secretions from healthy EBV-seropositive individuals. Early in the course of primary 

infection, EBV infects B-lymphocytes, possibly within the epithelium of the naso- and oro-

pharyngeal mucosa. It is not clear whether naïve, memory or GC B cells, or all of these cell 

types, are the target of initial infection. In asymptomatic carriers, EBV resides in memory B 

cells which provide the long-term reservoir for EBV as a latent infection. Infected memory B 

cells lack expression of most viral genes (referred to as latency 0, see Figure 1.6) and are 

therefore not recognised by EBV-specific T cells. An exception is the EBV viral protein LMP2A 

which can be detected during latency 0. Activation of EBV-infected memory B cells can lead 

to their differentiation to plasma cells, a process that might switch on the lytic cycle of EBV 

and produce new viral particles which are shed into the saliva(157;158).  
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Our understanding of the role of EBV in B cell transformation comes mainly from the study 

of lymphoblastoid cell lines (LCL); immortalised cell lines which are generated by EBV 

infection of normal B cells in vitro. In LCLs, six nuclear proteins, referred to as the Epstein-

Barr nuclear antigens (EBNAs 1, 2, 3A, 3B, 3C and EBNA-leader protein), two proteins found 

in the cell membrane of infected cells known as the latent membrane proteins (LMPs), two 

non-translated RNA molecules known as the Epstein-Barr virus encoded RNAs (EBERs) as 

well as the BamHi-A rightward transcripts (BARTs) are expressed(154). Although originally 

thought to be protein-coding, several EBV miRNA are now known to be expressed from the 

BART region of the viral genome(159). The use of recombinant EBV lacking individual latent 

genes has confirmed the absolute requirement for EBNA2 and LMP1 in the in vitro 

transformation of B cells, and has highlighted an important role for EBNA-LP, EBNA3A and 

EBNA3C in this process(160). EBNA1 is consistently expressed in virus-associated tumours and 

although infection of primary B cells with EBNA1-negative EBV can generate LCLs the 

transforming efficiency is 10,000 fold less than in the presence of EBNA1(161).  
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Figure 1.6 A schematic for latency and persistent EBV infection. Memory B cells lacking expression 

of most viral genes provide a long term reservoir of EBV. Activation of infected memory B cells can 

switch to the lytic cycle producing new viral particles (Reproduced from Cader et al.,(149)).  

 

Table 1.3 The major forms of viral latency associated with EBV-positive malignancies.  

 
LATENCY 

 

 
VIRAL GENES EXPRESSED 

I 
EBNA1  
EBERs, BARTs 
 

II 

EBNA1 
EBERs, BARTs 
LMP1, LMP2A, & LMP2B 
 

III 

EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C & EBNA-LP  
EBERs, BARTs 
LMP1, LMP2A, & LMP2B 
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B cells at the GC stage of differentiation are especially prone to neoplastic transformation. 

This is mainly because B cells undergoing SHM and CSR are particularly susceptible to 

oncogenic mutations, including chromosome translocations. As mentioned previously, GC B 

cells bearing disadvantageous mutations would be expected to undergo apoptosis but in HL 

such cells must have escaped that fate. Crippling immunoglobulin gene mutations (found in 

25% of cases) appear to be exclusive to EBV-positive HL, suggesting that EBV is necessary to 

override apoptotic signals in GC B cells harboring deleterious immunoglobulin gene 

mutations(162). In support of this, two additional groups have shown that EBV is capable of 

immortalising BCR-negative B cells(162-164). More recently it has been shown that LMP2A is 

required for the in vitro transformation of BCR-negative GC B cells(165). 

There is in vivo evidence, that expression of both LMP1 and LMP2A in B cells induces 

lymphomas with a B cell phenotype. This could represent an important mechanism for the 

transformation of B cells because LMP1 and LMP2A have been shown to substitute in part 

for the function of two molecules that are critical for GC B cell survival; LMP1 shares many 

features in common with a constitutively active CD40 receptor, while LMP2A mimics a 

BCR(166;167). Most of the phenotypic changes seen in EBV-infected B cells are orchestrated 

through LMP1, a dominant oncogene through its activation of the NF-κB pathway. LMP1 can 

also deregulate PI3K, JAK-STAT and p38 signalling(154;168). LMP2A competes with the BCR to 

bind the syk and lyn tyrosine kinases, thereby modulating the activity of these tyrosine 

kinases(169;170). Transgenic mice models have confirmed that both LMP1 and LMP2A can 

contribute to B cell lymphomagenesis, but to-date none of these mouse models have been 

able to recapitulate the phenotype of any of the EBV-associated lymphomas that occur in 

humans(166;168).   
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In B cells from LMP2A transgenic mice it was observed that there was a decreased 

expression of many genes associated with normal B cell development as well as reduced 

levels of the transcription factors that regulate their expression(171). Recently, Vockerodt et 

al., showed that LMP1 expression in normal human GC B cells could induce a similar loss of B 

cell identity including the down-regulation of BCR components (172). 

1.3.4 EBV and immune modulation in HL 

EBV seems capable of contributing to the immune escape of HRS cells. For example, the 

production of IL10 which suppresses CTL function has been observed in 66% of EBV-positive 

cases compared to only 16% of EBV-negative cases (173). EBV infection has also been shown 

to induce CCL5 and CCL3 which recruit T-helper cells (141). The EBV encoded EBNA1 has been 

shown to up-regulate of CCL20 in HRS cells which can recruit Tregs to the tumour 

microenvironment(174).  

1.4 Receptor Tyrosine kinases 

1.4.1  Introduction 

The human genome contains 58 receptor tyrosine kinases (RTKs), sub-classified into 20 

families according to the nature of structural domains located within the extracellular region 

(Figure 1.7). All RTKs have an extracellular portion, to which the cognate ligand binds, a 

single pass transmembrane helix and a cytoplasmic portion that contains a protein tyrosine 

kinase domain, a regulatory carboxy-tail and juxtamembrane region. RTKs are highly 

conserved through evolution underpinning their importance to eukaryotic cells. The 

aberrant expression and activation of RTKs has been linked to pathogenesis of many 

diseases and inherited genetic syndromes(175). 
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1.4.2 Activation 

Early work on RTKs proposed a straightforward mechanism of activation in which the 

receptor exists as monomers on the cell surface and ligand binding induces dimerization 

resulting in autophosphorylation and activation of the receptor. Subsequent studies suggest 

this model is too simplistic with different RTKs employing different strategies for 

activation(175).  

Activation principally involves one of four mechanisms (Figure 1.8). The first mechanism 

‘ligand mediated’ is exemplified by TrkA where the bivalent ligand simultaneously interacts 

with 2 receptor molecules cross linking them resulting in receptor dimerization without 

direct contact of extracellular domains(176).  

In the second mechanism the ligand also binds and cross links two receptors but without 

altering the binding surface. Instead, a different region of the receptor undergoes a 

conformational change. For example, the extracellular domain of KIT consists of 5 

immunoglobulin domains (D1-D5). The ligand, stem cell factor (SCF) binds to D1-D3 which 

causes a structural change in D4 and D5 resulting in receptor activation. Oncogenic gain-of- 

function mutations are often found in D5 leading to persistence of active conformation 

hence constitutive activation(177;178). 
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Figure 1.7 A diagrammatic representation of the different extracellular domains used to sub-

classify RTKs. (Reproduced from Lennon and Schlessinger(175)) 
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 The third mechanism involves bivalent ligand binding, direct receptor-receptor contacts and 

an accessory molecule. The fibroblast growth factor receptor (FGFR) family uses this 

mechanism where heparin is an essential accessory molecule simultaneously contacting 

both ligand and receptor dimers. Interactions between FGF, FGFR and heparin stabilises the 

FGFR dimer activating the receptor(179).   

Receptors of epidermal growth factor receptor family EGFR family use a fourth mechanism 

which is entirely ‘receptor mediated’ where the activating ligands make no direct 

contribution to the dimerization interface. Simultaneous ligand binding to two sites on the 

same receptor, Di and Diii drives conformational change by exposing a previously occluded 

dimerization site on the Dii domain (180).  

1.4.3 Regulation 

The intracellular kinase domain of RTKs consists of an N-lobe, a C-lobe and an ‘activation 

loop’. The activation loop is a key structural element in the regulation of catalytic activity 

which is not positioned optimally in the unphosphorylated state. In the active state all RTKs 

adopt a similar configuration allowing phosphoryl transfer. In contrast, at rest there is wide 

variation in receptor structure between inactive RTKs reflecting their diverse regulatory 

mechanisms(175).  

There are three main autoinhibitory mechanisms, inhibition of activation loop, C-terminal 

inhibition and juxtamembrane autoinhibition(181), examples of each are given below. 
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Figure 1.8 The four basic mechanisms of ligand interaction with the extracellular domain of the 

tyrosine kinase receptors (Modified from Lennon and Schlessinger(175)). A) TRK A is activated when 

ligand binds two receptors without the receptor contacting each other directly B) Binding of Stem 

cell factor induces KIT activation by inducing a conformational change in two domains not involved in 

the ligand binding C) Activation of FGFR requires FGF ligand and the co-activator heparin D) ligand 

binding to EGFR exposes a previously occluded site and activation of receptor without direct contact 

of the receptor with ligand. 
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i. The activation loop inhibition 

In the activation loop of the insulin receptor a tyrosine residue projects into and blocks the 

active site. Binding of insulin causes phosphorylation of this residue and removes this 

blockade permitting the receptor to adopt an active configuration(182).  

ii. C-terminal tail inhibition 

In the case of the TIE-2 receptor the activation loop already exists in an active conformation 

in the absence of phosphorylation. Instead the autoinhibition of the receptor is co-ordinated 

by the unphosphorylated C-terminal tail which binds to the kinase domain, blocking 

substrate access. Tyrosine phosphorylation disrupts this interaction enabling activation and 

substrate binding(183). Indeed, it has been shown that deletion of the C-terminal tail in TIE-2 

increases kinase activity of the receptor(184). 

iii. Juxtamembrane inhibition 

Several RTKs are autoinhibited by the juxtamembrane region which contains several tyrosine 

phosphorylation sites which can negatively regulate catalytic activity. Sequences within the 

juxtamembrane are in contact with the kinase domain imposing biochemical and structural 

constraints. These autoinhibitory interactions differ amongst RTKs(185). For example, in the 

juxtamembrane of the ephrin (Eph) receptors there is a highly conserved motif, containing 

two tyrosine residues, which functions as a clamp across the kinase domain in the inactive 

state. Following ligand stimulation the inhibitory conformation of the juxtamembrane is 

destabilised permitting trans-phosphorylation and receptor activation. 

Similarly a tyrosine residue (Tyr553) is contained within the juxtamembrane of muscle-

specific kinase (MUSK) which is essential for the activity of the receptor. Mutation of this 
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tyrosine residue results in loss of ligand induced phosphorylation of MUSK. However, unlike 

Eph receptors, crystal structure studies show that in the inactive state the juxtamembrane of 

MUSK is disordered and that Tyr553 does not directly interact with the kinase domain. 

Consistent with this, the soluble cytoplasmic domain harbouring a Phe substitution of Tyr553 

can still undergo kinase activation in vitro, implying that additional constraints must be 

present in vivo(186;187).  

1.4.4 RTK signalling networks 

RTKs have multiple tyrosine phosphorylation sites, some of which regulate catalytic activity 

as explained above and others which are required for the recruitment of downstream 

signalling proteins. Upon activation, RTKs engage adaptor proteins, such as Grb2-associated 

binding protein 1 (GAB1) which can bind to multiple RTKs. For example, in neural cells both 

EGF and TRK receptors can recruit identical adaptor proteins producing different effects; 

proliferation and differentiation respectively (188). Equally, different isoforms of the same RTK 

can recruit different adaptor proteins and produce different phenotypes(175). The versatility 

of docking proteins enables RTKs to influence a large number of signalling pathways. 

The expression of multiple isoforms of different RTKs have been described in cancer cells 

and is thought to contribute to tumour development. Since experimental work presented in 

this thesis explores the expression of the RTK discoidin domain receptor 1 (DDR1) and its 

different isoforms there now follows section outlining the basic principles of splicing.   

1.4.5 Splicing 

Alternative splicing is a major mechanism for the modulation of gene expression enabling a 

single gene to increase its coding capacity to synthesize structurally and functionally distinct 
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protein isoforms. An extreme example is the Drosophila Dscam gene, which can potentially 

generate 38016 different protein isoforms(189). Genes are transcribed into pre-mRNAs which 

contain intronic and exonic sequences. Post-translational modifications include removal of 

intronic sequences and joining of exons. This process is highly regulated and executed by the 

spliceosome, a multi-component complex consisting of five small nuclear 

ribonucleoproteins; U1, U2, U4, U5 and U6 and over 100 other proteins. The splicesome 

recognises exon-intron boundries known as splice sites and catalyses the ‘cut and paste’ 

reaction. Identification of borders is facilitated by regulatory cis-sequences found at exon-

intron boundaries. Splicing regulation also involves trans-elements, cellular proteins and 

RNAs, that respond to changes in cell status and environment to produce both constitutive 

splicing and alternative splice variants (ASV)(190). ASV can be generated in five main ways 

(Figure 1.9)(191). 

• Exon skipping An exon is spliced out of the primary transcript. This is the mechanism 

most often used to generate ASV.  

• Mutually exclusive exons One of two exons but not both is retained in mRNAs after 

splicing.   

• Alternative donor site An alternative 5' splice junction (donor site) is used, changing 

the 3' boundary of the upstream exon.  

• Alternative acceptor site An alternative 3' splice junction (acceptor site) which 

changes the 5' boundary of the downstream exon. 
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Figure 1.9 A schematic representation of the five mechanisms of alternative splicing.  A) An exon is 

spliced out of the transcript B) One of two exons but not both are retained C) An alternative 5’donor 

site D) An alternative 3’ acceptor site E) Intron retention (Reproduced from Black(191)) 
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• Intron retention If the retained intron is in the coding region, the intron must encode 

amino acids in frame with the neighbouring exons. If not, a stop codon or a shift in 

the reading frame will cause the protein to be non-functional. This is the least 

common mechanism of ASV generation in normal cells but is found frequently in 

cancerous cells.  

Most RTKs genes can express different isoforms which are generated by alternative splicing. 

For example alternative splicing of the FGFR genes results in the production of over 48 

different isoforms of FGFR which vary in their ligand binding and kinase activity(192). Although 

the function of many of these ASV is not fully understood, it is emerging that certain 

isoforms are expressed according to the cellular context. For instance, in chondrocytes, an 

alternative splice form of FGFR3 lacking the ‘acid-box’ (Figure 1.7) in the extracellular 

domain is expressed in the undifferentiated chondrocyte cell line ATDC5, while the full-

length FGFR3 is not. Moreover, BaF3, a mouse pro-B cell line that expresses this splice 

variant has been shown to have a higher mitogenic response than cells expressing full-length 

FGFR3(193).  

Soluble isoforms of RTKs lacking transmembrane and intracellular domain are also generated 

by normal cells and can interact with the ligand. They can be produced by one of two 

mechanisms, ectodomain shedding or ASV. Ectodomain shedding is a process in which 

expressed RTKs are cleaved by cell surface proteases, predominantly members of the matrix 

metalloproteinase (MMP) family (194).  Recently, Jin et al., using a pool of cancerous and 

normal tissue identified 60 novel soluble ASV derived from 21 RTKs(195). 
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1.4.6 ASV RTKs and cancer 

Abnormally spliced mRNAs are found in many different malignancies. Until recently, it was 

unclear whether such aberrant patterns of splicing were primary oncogenic mechanisms, or 

merely secondary to the process of tumour formation. Support for the former hypothesis 

comes from the observation that specific ASVs can contribute to tumour progression(196;197).  

In a proportion of cancerous cells the aberrant ASV production has been attributed to 

genomic mutations affecting the cis-regulatory sequences. For instance, aberrant splicing of 

the KIT oncogene occur following 3’ deletion of 1-14 base pairs in intron 10 resulting in loss 

of the splice site at the exon 11 boundary. The resulting protein remains in-frame but lacks 

exon 11 which is necessary for autoinhibition thus rendering the receptor constitutively 

active(198).  

Changes in splicing pattern can also result from alterations of the trans-regulatory elements. 

For example, an ASV of recepteur d'origine nantais (RON), ΔRON lacking exon 11 has been 

identified in gastric carcinoma cell line and is capable of inducing an invasive phenotype(199). 

ΔRON transcripts do not contain mutations. Instead, ΔRON production is controlled by a 

‘silencer and an enhancer of splicing’ located in exon 12. The splicing factor SF2/ASF binds to 

this region in exon 12, regulating the inclusion or skipping of exon 11, controlling the 

production of ΔRON. The overexpression SF2/ASF was shown to increase ΔRON (200). 

Furthermore, SF2/ASF has been shown to be an oncogene with the capacity to transform 

mouse fibroblasts(201).       
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1.4.7 Deregulation of RTKs in cancer  

As RTKs are involved in regulating cell growth and survival their expression and activation 

must be tightly regulated in normal cells. Deregulation of these control mechanism can 

contribute to carcinogenesis. Indeed more than 30 RTKS have been implicated in cancer 

development. The constitutive activation of RTKs occurs through three possible mechanisms 

(202): 

• Ligand-receptor autocrine circuits freeing the cell from the need for paracrine growth 

factors.  

• Receptor over-expression favouring local receptor oligomerization and reciprocal 

activation even in the absence of interacting ligand.  

• Structural alterations that enable constitutive activation. 

These mechanisms are not mutually exclusive, I will now describe three RTKs; erythroblastic 

leukemia viral oncogene homolog 2 (Erbb2/Her2), KIT and fms-related tyrosine kinase 3 

(FLT3) to illustrate the basic principles of aberrant RTK activation in tumours.  

1.4.7.1 Erbb2 (Her2) 

The aberrant activation of EGFR family of receptors has been linked to the pathogenesis of 

many cancers which include breast cancer and lung cancer. The Erbb2/Her2 receptor 

belongs to this sub-family but does not contain an ectodomain to which ligand bind, instead 

forming homo- and hetero-dimers with other members of the EGFR family. Mutations of 

Erbb2/Her2 can cause the receptor to adopt an active conformation and favours homo-

dimerization leading to uncontrolled growth. Receptor over-expression due to gene 
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amplification, seen in  approximately 25% of breast cancers, also promotes spontaneous 

receptor dimerization and activation(203). Although Her2 cannot directly bind ligand, ligand-

induced activation of other EGFR results in hetero-dimerization between ligand-activated 

receptor and Her2.  The EGFR/Her2 hetero-dimer produces an aggressive phenotype with 

poor prognosis(204).  

1.4.7.2 KIT 

Gain-of-function mutations of the KIT receptor are associated with several highly malignant 

tumours. These mutations cluster in either the sequence coding for the juxtamembrane 

region or the kinase domain. Mutations in exon 11 which codes for the juxtamembrane of 

KIT are found predominantly in gastrointestinal stromal tumours (GIST). These mutations 

relieve autoinhibition in turn permitting autophosphorylation of the kinase domain. The 

majority of GISTs are heterozygous for mutant KIT and cells from these tumours harbour 

heterodimers formed between mutant and wild-type KIT resulting in receptor activation in 

the absence of ligand(205).  

Mutations of exon 17, affecting part of the coding region for the kinase domain, are more 

commonly seen in germ cell tumours. These mutations allow the receptor to adopt an active 

conformation and lead to constitutive activation. Exon 17 mutations in KIT often occur at 

Asp816 which is a highly conserved residue. Interestingly, mutations of the corresponding 

residue in MET and RET and are associated with renal and thyroid carcinomas, 

respectively(202;206;207).  
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1.4.7.3  FLT3 

Mutations in the FLT3 gene occur in approximately 5-15% of children and 25-35% of adults 

with acute myeloid leukaemia (AML)(208). Internal Tandem Duplications (ITDs) and activation 

loop mutations are two common types of mutations which cause ligand-independent 

activation of FLT3. ITDs are insertions of repeated base pairs between 3-400 base pairs in 

length occurring in exon 14. Activating loop mutations mainly occur in exon 20 and are most 

commonly missense point mutations or insertions. Usually one or other type of mutation is 

found but occasionally both ITDs and activation loop mutations can be detected in the same 

malignancy (209;210).      

1.4.8 Negative regulators of RTKs 

The internalization and subsequent down-regulation of RTKs is controlled by two types 

inducible modifications, dephosphorylation and ubiquitination. 

1.4.8.1 Deregulation of protein tyrosine phosphatases 

Protein tyrosine phosphatases (PTP) can dephosphorylate RTKs and as such function as 

negative or positive mediators of signalling triggered by RTKs. Impaired tyrosine 

phosphatase activity due to loss-of-function mutations have been described and highlights 

their tumour suppressive role(211). Other PTP such as, protein tyrosine phosphatase receptor 

kappa (PTPRk) has been shown to dephosphorylate EGFR and block EGFR-dependent 

signalling and inhibit the proliferation of human keratinocytes. In the same study the 

expression of PTPRk was shown to also decrease basal and EGF-stimulated EGFR tyrosine 

phosphorylation(212). Flavell et al., showed that over-expression of PTPRK in EBV-positive HL 

cell lines decreased their viability and proliferation while knockdown of PTPRk expression in 
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EBV-negative cell lines promoted proliferation, although they did not identify the cellular 

target of PTPRk (213). 

1.4.8.2 Receptor ubiquitination 

The c-Cbl proteins have a unique domain that binds phosphorylated tyrosine residues 

‘tagging’ the RTK for receptor degradation and negatively regulates RTK function. c-Cbl 

achieves this by conjugating several ubiquitin molecules to the active RTK which serve as 

tags for lysosomal degradation. Alterations that uncouple c-Cbl from the RTK have been 

shown to contribute to carcinogenesis. For example, mutation of a C-terminal tyrosine in 

colony stimulating factor 1 receptor (CSF1R), which is the direct binding site for c-Cbl, 

enhances the transforming abilities of CSF1R in fibroblasts(214).   

The leucine-rich repeats and immunoglobulin like (LRIG) proteins are a recently discovered 

family of negative regulators of RTKs. LRIG1 is located at chromosome 3p14.3 and was first 

identified as a negative regulator of EGFR(215). In vitro studies demonstrated a direct 

interaction between LRIG1 and EGFR which inhibited signalling by enhancing receptor 

ubiquitination and accelerating intracellular degradation. It has been proposed that in 

resting cells LRIG1 is only weakly expressed but upon RTK stimulation the LRIG1 gene is 

transcriptionally activated and binds to all available receptors. Upon ligand induced 

activation of receptor, c-Cbl is activated and binds to the LRIG1-EGFR complex which then 

undergoes ubiquitination. The proposed function of LRIG1 is to mark EGFR for degradation 

(215;216).  

The observation that LRIG1 is frequently deleted in lung and breast cancers lead to the 

hypothesis that LRIG1 functions as a tumour suppressor.(217) However, there is some 
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conflicting evidence with gene expression datasets suggesting in some tumours LRIG1 is 

over-expressed. Thomasson et al validated this finding in prostate tissue, showing that not 

only is LRIG1 over-expressed but is also associated with a poorer prognosis(218). A second 

study found not only amplification of EGFR but also an increased copy number of 3p14.3 in a 

subset of breast cancers (219).   

1.5 RTKs and HL 

1.5.1 Protein tyrosine kinase expression in normal B cell development 

Several protein tyrosine kinases (PTKs) such as syk, Bruton's tyrosine kinase (Btk) and src 

family kinases including lyn have been shown to be essential for normal B cell 

development(220) . Together these PTK are important transducers of signals originating from 

the pre-B cell receptor (pre-BCR) and the BCR. Syk participates in B cell fate decisions and 

antigen processing and is a critical component of the PI3K-Akt pathway. Btk is involved in 

pre-B cell maturation by regulating IL-7 responsiveness, cell surface phenotype changes, and 

the activation of lambda chain gene rearrangements(221). In mature B cells, Btk is essential 

for BCR-mediated proliferation and survival. The importance of Btk is demonstrated in the 

primary immunodeficiency disease, X-linked agammaglobulinaemia (Bruton's 

agammaglobulinaemia), where patients with Btk mutations have normal pre-B cell 

populations in their bone marrow but these cells fail to mature and enter the circulation(222). 

Mouse models have also demonstrated the contribution of several members of src family 

kinases to B cell development. For example, lyn-/- mice fail to produce mature B cells while 

mice lacking lyn, fyn and blk produce B cells arrested at an even earlier stage(223).   
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1.5.2 Receptor tyrosine kinase expression in normal B cell development 

In contrast to PTKs, there is little information on the expression and activation of RTKs in 

normal B cells. Both KIT and FLT3 have been reported to be expressed during early B cell 

development (224). However, KIT-/- mice produce normal B cells while FLT3-/- mice show only a 

mild decrease in B cell populations(225). Interestingly, a chimeric mouse model in which bone 

marrow harbours both wild type and FLT3-/- does demonstrate that B cells preferentially 

employs FLT3 dependent pathways to prime B cell progenitors(226). These mouse models 

suggest that neither is essential for B cell development and that in their absence an 

alternative pathway is utilised. 

The ablation of TRKA is lethal in the postnatal period. However, a mouse model has been 

developed in which TRKA can be restored to neuronal cells only which in turn produce a non-

lethal phenotype. In this model, the immune system develops normally but there is 

deregulation of immunoglobulin production and the accumulation of B1 B cells; a subset of 

mature B cells which cannot differentiate into memory cells(227). Although nerve growth 

factor (NGF), the ligand for TRKA, has been reported to be important in preventing memory 

B cell apoptosis, mice deficient in TRKA can still mount a humoral immune response.  

B cell homing to the GC and interaction with FDC is critically dependent on integrin-

mediated adhesion. The RTK, MET and its ligand hepatocyte growth factor (HGF) has been 

shown to have an important role in the regulation of this process. Van der Voort et al., 

demonstrated that MET was up-regulated in centroblasts and can be induced in normal GC B 

cells by CD40 stimulation(228). A subsequent study by Weimar et al., found that MET is not 

expressed in B cells isolated from peripheral blood mononuclear cells (PBMCs) but can be 

induced by HGF or phorbol 12-myristate 13-acetate (PMA). They also found that GC B cells 
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stained positive for MET expression and that HGF induced adhesion of these cells to ECM, an 

effect that is mediated by integrins(229). A more recent study found that in mature B cells, 

macrophage inhibitory factor (MIF) recruits MET to the CD74/CD44 complex which 

stimulates HGF secretion in turn promoting cell survival(230).  

1.5.3 Contribution of RTKs to the pathogenesis of HL  

To-date, a limited number of studies have examined the expression of RTKs in HL but from 

these it is clear that a number of RTKs are aberrantly expressed in this disease. For example 

it has been reported that primary HRS cells express both FGF ligands (FGF1 and 2) and 3 of 4 

receptors (FGFR2, FGFR3 and FGFR4) and HL cell lines express FGFR3 but neither ligand(231). 

The expression of multiple members of the FGFR family in HL is in contrast to other 

haematological malignancies such as multiple myeloma (MM) which only express FGFR3. In 

MM, FGFR3 is up-regulated as a consequence of the t(4;14) translocation. In the HL study, 

neither the t(4;14) translocation nor the FGFR3 gene amplification could be detected in the 5 

cases examined(231). 

A global gene expression analysis of HL cell lines and subsequent analysis of biopsy samples 

revealed the over-expression in HRS cells of 6 RTKs: DDR2, RON, platelet derived growth 

factor α (PDGRFα), EPHB1, TRKA and TRKB(232). Three of these RTKs; PDGFRa, TRKA and TRKB 

were also shown to be activated in primary HRS cells(232). Although this study reported no 

significant association between subtype and RTK expression they did note that a greater 

number of RTKs are co-expressed in NSHL. When using a pan-tyrosine antibody, NSHL also 

showed a higher phosphorylated content suggesting activation. They further reported that a 

proportion of HRS cells express PDGF and EPH, the ligands for PDGFRa and EPHB1, 

respectively. Collagen and NGF (on granulocytes), which are the ligands for DDR2 and TRKA, 
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respectively were also observed to be present in the microenvironment in many cases of HL. 

These data suggest that these receptors are likely to be activated by ligand through both 

autocrine and paracrine mechanisms(232). However, not all of the cases examined showed co-

expression of both the receptor and its respective ligand. Sequence analysis of all six 

receptors showed no mutations which might account for constitutive activation. 

Interestingly, their study also identified several ASV, including the previously reported 

splicing of exon17 in TRKB and a splice variant of RON but also two novel ASVs of EPHB1(232).  

A subsequent study by the same group also showed that another RTK, TIE-1 is overexpressed 

in primary HRS cells. This group also showed that the co-expression of 3 or more RTKs was 

associated with an EBV-negative status, suggesting that RTK signalling might functionally 

replace the virus in EBV-negative cases (233).  

Another study by Renne et al., found that the overexpression of TRKA observed in HRS cells 

was not due to gene amplification. Furthermore, in a proportion of cases they found co-

expression of its ligand, NGFβ, suggesting the constitutive activation of TRKA in HRS cells 

maybe a consequence of autocrine stimulation. In the same study, using an RTK inhibitor at 

concentrations known to be specific for TRKA, decreased HRS cell survival (234). 

The expression of KIT in HL is controversial. It was first reported to be expressed in HRS cells 

in 11/21 HL cases(235). This was supported by a subsequent study by the same group who 

found KIT but not its ligand, stem cell factor (SCF), to be expressed in HL cell lines. It was also 

shown that fibroblasts present in HL secrete SCF and that co-culture of HL cell lines with 

these fibroblasts increases HL cell survival(236). This work has been disputed by three further 

studies that have not found KIT expression in primary HRS cells. In two of these studies mast 
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cells in HL biopsies were strongly positive for KIT(237;238). The third study observed KIT 

expression in HL cell lines to be restricted to L1236 cells(239). 

A recent study found HRS cells express both colony stimulating factor 1 (CSF-1) and its 

receptor CSF1R, neither of which are usually expressed in cells of B cell origin. They observed 

the constitutive expression and activation of CSF1R in both HL cell lines and primary  HL 

tissue(240). This study also identified a potential mechanism for the up-regulation of CSF1R. 

CSF1R transcripts found in HRS cells originate within a long terminal repeat (LTR) element. 

Transcriptional activation of the CSF1R LTR promoter was caused by a combination of 

epigenetic mechanisms and transcription factors such as NF-κB and AP-1(240). 

The following sections are focused on two RTKs, MET and DDR1, in greater detail as these 

are the subject of the experimental work presented later in this thesis. 

1.5.4 MET 

HGF is the cognate ligand for MET and both ligand and receptor are distributed widely. HGF 

is produced by cells of mesenchymal origin and act on MET, expressed by epithelial cells in a 

paracrine manner(241). Stimulation of MET by HGF causes autophosphorylation of two 

tyrosine residues 1234 and 1235 in the activation loop activating intrinsic kinase activity and 

in turn phosphorylating two further tyrosine residues 1349 and 1356 in the catalytic domain 

which enables binding of docking proteins(242-244). In the absence of ligand the kinase activity 

of the receptor is inhibited by peptides in the C-terminal tail. The same peptides have been 

shown to be capable of inhibiting RON but no other RTKs(245). The MET receptor triggers 

activation of a number of key signalling pathways (Figure 1.10) (246).  
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Figure 1.10 A diagrammatic representation of four key signalling pathways regulated by MET. 

Shown here is A) ERK, JNK and p38, B) Akt C) Stat3 D) NF-κB all of which can be activated by MET 

(Reproduced from Trusolino 2010 (246)) 
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Under physiological conditions, several protein phosphatases such as PTPRJ, PTPRF, PTPN1 

and PTPN2 have been shown to negatively regulate MET(246). Receptor inactivation can also 

occur by c-Cbl mediated ubiquitination. Tyrosine phosphorylation of a residue at 1003 in the 

MET juxtamembrane results in the recruitment of ubiquitin ligase c-Cbl to MET, leading to 

receptor internalisation and lysosomal degradation(247). 

Recently, LRIG1 has also been shown to bind to and negatively regulate MET. The 

mechanism of the negative regulation of MET by LRIG1 is unknown but Shattuck et al., found 

that unlike EGFR, MET degradation occurred in an c-Cbl-independent manner(248-250).  

The deregulation of MET has been linked to the invasive behaviour of several different 

malignancies including breast cancer, osteosarcomas, hepatocellular carcinoma and renal 

cell carcinoma(251). The oncogenic capacity of MET has been validated in several animal 

models. For example, NIH 3T3 cells express HGF/SF and become tumourigenic in nude mice 

following the ectopic expression of MET(252).  

The constitutive activation of MET occurs through several mechanisms, MET protein over-

expression, MET gene amplification, germ-line and somatic mutations of MET and HGF over-

expression. Mutations of MET broadly fall into two groups. The first group increases kinase 

activity of the MET receptor and promotes Ras-mediated signalling(253). These mutations of 

MET have been shown to transform NIH3T3 fibroblasts but only in the presence of HGF (254). 

The second group does not confer transforming capabilities but offers protection from 

apoptosis through activation of PI3K(253). Other alterations of MET include splice mutations 

which delete the juxtamembrane domain essential for binding the c-Cbl E3-ligase. This 

uncoupling of c-Cbl mediated ubiquitination has been shown to be responsible for a 

proportion of lung adenocarcinomas(255). 
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The expression of MET in HL cell lines was first reported in 1990 and subsequently confirmed 

in two further studies(256-259). A third study detected MET expression on activated 

centroblasts from lymph nodes of non-HL patients and in HL (positive cell type not 

specified). This study also reported the correlation between MET expression and EBV status 

in primary HL tissue and that MET can be induced by EBV in B cells isolated from PBMC. In 

contrast, Teofili et al., found that MET is expressed in all primary HRS cells (45 lymph node 

and 12 bone marrow samples) but there was no association with EBV status. In addition, 

HGF was elevated in serum of patients with HL compared to normal controls (229;259). Two 

further studies reported MET expression can be induced, in GC B cells, either by CD40 

stimulation or by the co-operation of AP1 and NF-κB(228;260). 

RON, the second member of the HGFR family, has been reported to be expressed by HRS 

cells (section 1.5.3). Expression of its ligand, macrophage stimulating protein (MSP), has not 

been investigated in HL (261).  Although RON is normally engaged by its ligand, MET and RON 

can form hetero-complexes leading to trans-phosphorylation of either receptor in the 

absence of respective ligand(262). Reports from ovarian and bladder cancer suggest that the 

co-expression of MET and RON is associated with a more aggressive phenotype(263;264). 

1.5.4 DDR1 

The discoidin domain receptor (DDR) subfamily consists of two members, DDR1 and DDR2. 

They are unusual amongst RTKs for several reasons. First, their cognate ligands are triple 

helical activated collagens rather than soluble growth factors. Binding to collagen occurs 

through their discoidin domain and is integrin independent(147;265). Second, while most RTKs 

exist as inactive monomers until ligand binding induces dimerization, this is not the case with 

DDR1 which exists in a pre-dimerized state(266). Third, in contrast to all other RTKs, the 



Introduction 

 

 | 57  
 

activation of DDR1 and DDR2 is slow with DDR1 taking up to 18 hours to reach maximal 

phosphorylation(267). 

The structure of DDR1 is also not typical as it has an unusually long juxtamembrane region. 

Like other RTKs, alternative splicing around the juxtamembrane generates multiple isoforms. 

The DDR1c isoform is the longest, while DDR1b lacks 6 amino acids in the kinase region and 

exon 11 is absent in DDR1a. First described in colorectal carcinoma cell lines, DDR1d and 

DDR1e are truncated receptors missing the entire kinase domain, or parts of it, respectively. 

In Figure 1.11 these isoforms are depicted in diagrammatic form(268). More recently, a 

further two soluble variants have been identified(195).  

The relative expression of the isoforms differs between cell types. For example, DDR1b is the 

predominant form found during embryogenesis, whereas DDR1a is found in breast cancer 

cell lines and uniquely triggers leukocyte migration(269-272). Phospho-peptide mapping has 

identified isoform-specific binding motifs which appears to be critical for differential 

downstream signalling(273). For instance, a binding motif not found in DDR1a but present in 

DDR1b allows direct association with the adaptor protein ShcA. The functions of the kinase 

deficient isoforms are less clear. Recent the DDR1e isoform has been shown to be up-

regulated in T cells upon stimulation with anti-CD3 monoclonal antibody and in vitro induce 

T cell migration through a 3D-collagen matrix(274).   

The interaction between DDR1 and collagen is complex and maybe cell context dependent. 

One study showed that leukocytes express DDR1a which in response to collagen mediates 

cell migration(270). In contrast, it has also been shown that over-expression of either DDR1a 

or DDR1b, in Madin-Darby Canine Kidney cells (MDCK) grown in 3D collagen matrix 

decreased collagen induced migration(275). In addition to the phosphorylation and activation 
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of DDR1 in response to collagen, the shed kinase deficient isoforms interact with collagen to 

inhibit collagen fibrillogenesis and increase matrix mineralization(276).  

DDR1 is induced by DNA damage and is a direct transcriptional target of the tumour 

suppressor gene p53(277). Moreover, DDR1 is known to contribute to the invasive phenotype 

in numerous malignancies. For example in non-small cell lung cancer it is strongly associated 

with a more aggressive phenotype and lymph node metastases(278). Similarly, in prostate 

cancer high expression of DDR1 was shown to contribute to invasive potential independent 

of hormonal status of the tumour(279).   

A gene expression profiling study in B cell lineage ALL reported a high expression of DDR1 in 

cells without molecular rearrangement and those harbouring BCR-ABL(280). A second study 

identified a somatic mutation of DDR1 (A803V) in AML corresponding to an amino acid in the 

kinase domain which potentially disrupts inhibition of the activation loop(281). DDR1 

expression has not been previously reported in HL but has already been described as an 

important inducer of several signalling pathways known to be associated with HL including 

JAK-STAT, NF-κB and PI3K(267;282). A very recent study identified that DDR1 interacts with 

Notch 1 to promote pro-survival pathways and that collagen increases activated Notch 1 

expression (283). 
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Figure 1.11 A) The domains of DDR1 in relation to exons B) A schematic representation of three 

kinase active isoforms and two ASV (numbering based on transcript variant 3 NM_013994.2) 



Introduction 

 

 | 60  
 

1.6 Therapeutic targeting of RTKs 

1.6.1  Oncogene addiction 

Although cancer is a complex disease arising from the acquisition of multiple abnormalities, 

inhibition of a single oncogene can be sufficient to impair tumour cell survival and 

progression; a phenomenon termed oncogene addiction(284). Evidence supporting this 

concept comes from cell lines, mouse models and clinical trials of targeted therapies. For 

example, in a transgenic mouse model, switching on the C-MYC oncogene in the 

hematopoietic cells led to the development of T-cell and myeloid leukaemia. However, when 

this gene was subsequently switched off, the leukaemic cells stopped dividing and displayed 

differentiation and apoptosis(285). The earliest clinical evidence of oncogene addiction comes 

from the use of trastuzumab, a monoclonal antibody targeting Her2 in breast cancer(286). The 

first targeted therapy in a haematological malignancy was imatinib used to treat chronic 

myeloid leukaemia (CML) (287). 

CML is characterised by a balanced chromosomal translocation between the long arms of 9 

and 22 (Philadelphia chromosome) giving rise to a novel constitutively activated kinase 

fusion protein formed between breakpoint cluster region and Abelson kinase (BCR-ABL).  

Imatinib was designed to target the kinase activity of BCR-ABL in CML. Clinical studies were 

impressive with >90% of patients with refractory CML achieving complete haematological 

remission with imatinib(288;289).  

imatinib is now first line in the treatment of CML but resistance is observed in a proportion 

of patients which arises either de novo or during relapse after initial response. There are two 

main mechanisms of resistance. The first, is a more efficient cellular efflux which removes 
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the drug and prevents access to the target while the second is acquisition of new mutations 

which reactivate the kinase activity of BCR-ABL(290). The re-activation of BCR-ABL highlights 

the dependence of CML on this specific oncogene. Cancer cells can also escape from 

oncogene addiction through the development of secondary mutations in a different 

oncogene. For instance, breast cancers induced in transgenic mice can acquire new 

mutations in p53 or Ras restoring proliferating properties to the tumour whilst inhibition of 

the primary pathway is still intact(284).    

Oncogene switching is an alternative means by which cancer cells can escape oncogene 

addiction without de novo mutations and achieve chemo-resistance. For example, in 

glioblastoma both EGFR and MET can activate the PI3K pathway through recruitment of the 

adaptor protein GAB1. Ordinarily, GAB1 associates with EGFR but pharmacological inhibition 

of EGFR promotes GAB1 association with MET which can maintain PI3K signalling(291). In vitro 

treatment of glioblastoma derived cell lines with EGFR inhibitor mono-therapy does not 

affect cell phenotype but a cocktail of EGFR, MET and PDGFR inhibitors did decrease cell 

viability(292). From this a hierarchy model has been proposed in which inhibition of a 

dominant RTK results in the increased activity of other RTKs. 

1.6.2 Secondary targets of small molecule inhibitors 

Although imatinib was primarily designed to specifically inhibit the catalytic domain of abl 

kinase, it is also effective against other tyrosine kinases with structural similarity notably c-

KIT and PDGF receptors(293). Approximately 80% of GIST express KIT and 35% display PDGF 

receptors. Clinical trials in which imatinib were used to treat GIST showed that 75-90% of 

patients achieved a clinical response(294). A study investigated the effect of imatinib in HRS 

cell survival, observed no effect on the only cell line shown to express KIT(239).  
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1.6.3 Second generation RTK inhibitors 

Due to increasing resistance and intolerance to imatinib, efforts were made to develop new 

drugs that could also inhibit the BCR-ABL tyrosine kinase. While drug screening was used to 

develop imatinib, second generation inhibitors were developed with rational drug design 

approach due to increased knowledge of the structure of the BCR-ABL tyrosine kinase. Two 

drugs that have emerged are dasatinib and nilotinib and are already in clinical use. Both are 

more potent than imatinib.  Furthermore, nilotinib has been shown to be effective against 

32/33 mutations that are associated with imatinib resistance. The use of these newer 

generation drugs has not been studied in HL but a recent study identified DDR1 as a target of 

all three of these agents(295). 
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1.7 Study aims 

Despite excellent overall cure rates, a proportion of HL patients will have disease which is 

either refractory to current treatments or which will recur. Moreover, in the paediatric age 

group, treatment is associated with significant long-term sequelae. In view of these 

limitations, new treatments are required which will not only improve cure rates but which 

will also reduce late-effects.  

The use of RTK inhibitors is of proven benefit in the treatment of some cancers but to-date 

has not been explored in HL. This thesis investigates the aberrant expression and activation 

of RTKs in HL and considers RTKs as potential therapeutic targets in this disease. The specific 

aims of this thesis are to: 

1. Provide a global analysis of the activation status of RTKs in HL cells. Following this, to 

explore the expression and activation in HL cell lines and primary HRS cells, of two 

RTKs, MET and RON. 

2. To study the expression and regulation of DDR1 in HL, and to examine its activation 

by collagen, and how this contributes to the pathogenesis of HL.  

3. Evaluate the effect of RTK inhibitors, including several next generation molecules, on 

the phenotype of HL cells. 
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2.1 Primary HL samples 

Paraffin embedded and frozen biopsy samples from primary paediatric HL were obtained 

through the Children’s Cancer and Leukaemia Group (CCLG), study number 2007_BS_07. 

These samples were taken from patients recruited to one of three UK-wide HL paediatric 

clinical trials, HD1, HD2 or HD3. Samples were centrally reviewed and the histological 

subtypes were provided by the CCLG (Appendix I). Frozen samples were collected on dry ice 

from different CCLG centres and stored in the vapour phase of a -180oC liquid nitrogen 

freezer.  

2.2 Cell culture 

2.2.1  Maintenance of cell lines 

Suspension cell lines (Table 2.1) were maintained in RPMI 1640 medium (Gibco®, Invitrogen) 

supplemented with 10% v/v selected foetal calf serum (FCS; PAA the cell culture company) 

and 1% v/v penicillin/streptomycin (Gibco®, Invitrogen). All cells were incubated at 37oC in a 

humidified atmosphere containing 5% CO2 (Galaxy R CO2 Incubator, RS Biotech). To replenish 

nutrients and remove waste, media was aspirated from flasks and cells pelleted by 

centrifugation (Eppendorf Centrifuge 5810R) at 150 rcf for 10 minutes. The supernatant was 

discarded and cell pellets were re-suspended in fresh pre-warmed media supplemented as 

above. Cells were counted and the appropriate number of cells transferred into sterile tissue 

culture vessels.  

 The adherent HCT116 cell line was maintained in (N-[2-Hydroxyethyl] piperazine-N’-[2-

ethanesulphonic acid]) (HEPES)-buffered Dulbecco’s Modified Eagle’s Medium (DME/HEPES, 

Sigma) with supplements as above. Once cells were approximately 80% confluent, as 
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estimated by visual inspection under a microscope, they were sub-cultured to reduce cell 

density and prevent growth inhibition. Prior to passaging, HCTII6 cells were washed twice in 

phosphate-buffered saline (PBS: 1 PBS tablet dissolved in 100 ml of water, sterilised by 

autoclaving at 121oC, 15 psi for 15 minutes). 1 ml of trypsin solution (Gibco®, Invitrogen) was 

then added to the cells and incubated at 37oC for 5 minutes to allow detachment. Following 

gentle tapping of the flask to help dislodge cells, 15 ml of media was pipetted on to cells to 

neutralize the trypsin. The trypsinized cells were pelleted by centrifugation at 150 rcf for 10 

minutes then re-suspended in fresh DME/HEPES media as above.   
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Table 2.1 Summary of cell lines and their origin. 

Cell line Growth 
Characteristics 

Origin Additional Information 

L591 Suspension Nodular Sclerosis HL EBV-positive cell line originated from the pleural effusion of a female 
patient (296). 

L1236 Suspension Mixed Cellularity HL EBV-negative cell line established from the peripheral blood of a 
male patient with advanced HL.   

The HRS cell origin of L1236 cells confirmed by identical 
immunoglobulin gene rearrangement sequences in L1236 cells and 
HRS cells of the same patient’s bone marrow(88;297). 

L540 Suspension T–cell derived 

Nodular Sclerosis HL 

EBV-negative HL cell line derived from bone marrow of a female 
patient with stage IV disease. 

Genomic analysis of the cell line revealed monoclonal 
rearrangements of T-cell receptor beta and gamma loci and germ 
line configuration of immunoglobulin genes(298;299). 

L428 Suspension Nodular Sclerosis HL EBV-negative cell line established from the pleural effusion of a 
female patient with refractory disease(300). 

KM-H2 Suspension Mixed Cellularity HL 
progressing to Lymphocyte 

Depleted HL 

EBV-negative cell line originally established from the pleural effusion 
of a male patient (301). 

HDLM-2 Suspension T-cell derived 

Nodular Sclerosis HL 

EBV-negative cell line originally established from the pleural effusion 
of an elderly male patient. 

Genomic analysis revealed monoclonal rearrangements of T cell 
receptor beta and gamma loci and germ line configuration of 
immunoglobulin genes(298).  

DG75 Suspension BL Established from the pleural effusion of a 10-year-old boy with 
BL(302). 

BL41 Suspension BL Established from the tumour tissue of an 8-year-old Caucasian boy 
with BL; cells were described to be EBV-negative(303). 

BL2 Suspension BL Established from the bone marrow of a relapsed 7-year-old 
Caucasian boy with non-endemic BL; cells are described to express to 
be EBV-negative and that somatic immunoglobulin gene 
hypermutation can be induced(304;305). 

BJAB Suspension BL EBV-negative, African-type BL (306) 

K-562 Suspension CML Established from the pleural effusion of a female patient with 
chronic CML in blast crisis.  Cells carry the Philadelphia chromosome 
with a BCR-ABL b3-a2 fusion gene(307). 

HCT116 Adherent Colon carcinoma Established from the primary colon carcinoma of an adult male; cells 
were described to carry a RAS mutation(308). 
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2.2.2  Cryopreservation of cells 

Aliquots of 5 x 106 cells were pelleted by centrifugation at 150 rcf for 10 minutes at 4oC and 

re-suspended in 1 ml of chilled freezing solution (50% v/v supplemented RPMI medium, 40% 

v/v FCS and 10% v/v dimethyl sulphoxide (DMSO; Sigma)).  Cells were transferred to 

cryopreservation tubes (Nunc®, Roskilde, Denmark) and cooled slowly overnight to -80oC in a 

freezing box surrounded by sponge soaked in isopropanol.  Cells were then transferred to 

either a -80oC storage box for the short-term or moved to the vapour phase of a -180oC 

liquid nitrogen freezer for long-term storage. 

2.2.3  Recovery of frozen cells  

Cells were thawed quickly at 37oC to minimize exposure to DMSO.  Pre-warmed RPMI with 

supplements was added gradually to the cells to dilute the DMSO and allow the cells to 

recover slowly. Cells were re-suspended in 5 ml of medium and grown in a 25 cm3 flask at 

37oC in a humidified incubator with 5% CO2. 

2.2.4  Cell counting   

Cell concentration was determined in non-adherent cell lines by removing a volume of cell 

suspension and mixing with an equal volume of trypan blue (typically 100 µl each). For 

adherent cell lines, cells were first harvested in the same manner as for sub-culture followed 

by the addition of 100 µl of trypan blue to 100 µl of cell suspension. 20 µl this solution was 

pipetted into disposable Glasstic® slide 10 (Hycor Biomedical Ltd., Edinburgh, UK).  Using an 

inverted light microscope, all live (bright spherical) cells contained within five grids of the 

Glasstic® grid were counted. This number was then averaged and multiplied by 104 to obtain 

the number of cells per ml.  
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2.2.5 Mycoplasma testing 

All cell lines were periodically tested using the MycoAlert® mycoplasma detection kit (Lonza) 

as per manufacturer’s guidelines and were found to be consistently negative for 

mycoplasma. 

2.3 RNA analysis 

All procedures related to RNA work were carried out on ice with gloved hands to minimise 

RNase actions. Other measures to protect the samples from RNase degradation included the 

use of filtered tips (Rainin; Starlab), RNase free reagents and plasticware and cleaning of 

equipment and work surfaces with RNaseZap (Ambion,Inc).  

2.3.1 RNA extraction from cultured cells 

24 hours prior to harvesting, cells were counted and re-suspended in fresh pre-warmed 

supplemented media at a concentration of 3x105cells/ml. Typically RNA was extracted from 

3x106 cells. The cell suspension was transferred to a 50 ml falcon tube and centrifuged at 150 

rcf for 10 minutes at 4oC to pellet the cells. The supernatant was aspirated and the cells were 

washed in cold 1xPBS to remove serum. The cells were then transferred to 1 ml 

microcentrifuge tubes (Eppendorf) and centrifuged at 800 rcf for 10 minutes at 4oC. The cell 

pellet was kept on ice at all times to prevent RNA degradation. Total RNA was isolated from 

cells using the QIAGEN RNeasy® mini kit according to the manufacturer's protocol (Qiagen). 

RNA was eluted from the columns provided in the RNeasy™ kit with 30 µl of DEPC-treated 

water pipetted directly onto the membrane. The concentration of RNA was determined 

using a spectrophotometer (NanoDrop ND-1000). 
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 2.3.2 Reverse transcription (RT) of RNA to cDNA  

RNA was reverse transcribed to cDNA using SuperScript® III first-strand synthesis system 

(Invitrogen).  Each reaction was performed in sterile 0.2 ml PCR tubes containing 1 µg RNA 

from each sample. First a mix consisting of 50 ng (500 µg/ml) random primers (Promega), 1 

µl of 10 mM deoxyribonucleotide triphosphates (dNTP; Roche) was added to each sample. 

The volume made up to 13 µl using DNase/RNase-free water (Promega). This mixture was 

then incubated at 65°C for 5 minutes and then cooled on ice for 1 minute to denature RNA 

and prohibit re-annealing. A second master mix consisting of the following components was 

made up in a sterile microcentrifuge tube for each of the RNA samples: 4 µl of 5 X first strand 

buffer, 1 µl of 0.1 M dithiothreitol (DTT), 1 µl RNaseOUT™, 1 µl SuperScript® III RT (all 

Invitrogen). 7 µl of this master mix was added to each cDNA sample. Using an Eppendorf 

Thermal Cycler, cDNA was synthesised by incubating samples at 25oC for 5 minutes followed 

by 50oC for 1 hour.  The reaction was terminated by heating the samples to 70oC for 15 

minutes and then held at 4oC.  The cDNA samples were stored at -20oC until required.  

2.3.3 Taqman® quantitative polymerase chain reaction (q-PCR) 

2.3.3.1 PCR amplification of cDNA 

A 20 µl reaction was set up in the wells of a 96-well optical reaction plate (Applied 

Biosystems). Each reaction contained 5 µl of diluted cDNA (typically 1:10 with RNAse/DNAse 

free water), 10 µl of 1x Taqman® Universal PCR MasterMix, 1 µl of 20x primers and probe 

(Table 2.2), 1 µl of endogenous control (typically GAPDH; all Taqman® Applied Biosystems) 

and 3 µl of RNAse/DNAse free PCR grade water. All samples were set up in triplicate and a 

negative control was included which contained water instead of cDNA. The plate was sealed 
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with an optically clear adhesive film (Applied Biosystems) and then placed in the ABI Prism 

7700 Sequence Detection System (Applied Biosystems). Samples were subjected to enzyme 

activation at 50oC for 2 minutes, a denaturation at 95°C for 10 minutes then by 40 cycles of 

denaturation at 95°C for 15 seconds and extension at 60°C for 1 minute. 

2.3.3.2 The comparative Ct method (ΔΔCt) for relative quantification of gene expression 

Livak and Schmittgen reported the delta-delta (ΔΔ) Ct method as an approach to quantify 

target genes transcripts normalised against the value of an endogenous control (e.g. 

GAPDH)(309). Through the ΔΔCt method, variations in starting quantity or quality can be 

compensated. First, the difference between the Ct values of the target gene and the 

endogenous gene was calculated for each sample studied i.e. target Ct - endogenous Ct. A 

reference sample is selected as the ‘baseline’ sample for expression of the target gene. Then 

the difference between each of the samples ΔCt and the reference samples ΔCt was 

calculated, generating the ΔΔCt value for each sample (ΔΔCt = reference ΔCt - target ΔCt).  

The ΔΔCt for each sample was then converted to an absolute value using the following 

equation: fold change in expression level = 2-ΔΔCt (309).  

Table 2.2 List of Taqman® primers and probe 

Target Gene Applied Biosystem Assay number Location 

DDR1 (set 1) Hs00233612_m1 Exon5-6 (NM_013994.2) 

DDR1 (set2) Hs01058424_g1 Exon16-17 (NM_013994.2) 

MET Hs01565584_m1 Exon 3 

RON Hs00899925_m1 Exon 20 

LRIG1 Hs00394257_m1 Exon 6-7 
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2.4 Protein analysis 

2.4.1 Protein extraction from cultured cells 

For suspension cell lines, 24 hours prior to harvesting, cells were counted and resuspended 

in fresh pre-warmed supplemented media at a concentration of 3x105cells/ml. To harvest 

cells, the cell suspension was transferred to a 50ml Falcon tube and centrifuged at 150 rcf 

for 10 minutes at 4oC. The supernatant was aspirated and the cell pellet was washed in cold 

1xPBS to remove serum. For samples which were subsequently analysed for phosphorylated 

proteins, 1 mM of activated sodium vanadate was added to 1xPBS. The cells were then 

transferred to 1 ml microcentrifuge tubes (Eppendorf) and centrifuged at 800 rcf for 10 

minutes at 4oC. The supernatant was aspirated and the cell pellet either kept on ice for 

immediate lysis or stored at -80oC for use later. 

Flasks of adherent cells were grown to 80% confluence and placed on ice. The medium was 

removed and 5 ml of chilled PBS was added directly to the flask and aspirated. 1 ml of chilled 

lysis buffer containing Radio-Immuno-Precipitation Assay (RIPA; 50 mM Tris-HCl  pH 8, 150 

mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS), 1 mM of activated sodium 

vanadate and 1X protease inhibitor cocktail (Roche) was pipetted directly onto the cells and 

the flask left on ice for 30 minutes. Cell scrapers (Corning Inc,) were used to displace any 

adhering cells. The cells were then transferred to 1ml microcentrifuge tubes and lysed as 

described below. 

2.4.2 Protein lysis 

Suspension cells harvested for protein analysis were lysed by the addition of RIPA lysis buffer 

supplemented as above. Typically, 80 µl of lysis buffer was added to a pellet of 1x106 cells. 
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Cells were thoroughly mixed with lysis buffer and left on ice for 30 minutes. Following this, 

the solution was centrifuged at 16000 rcf for 15 minutes at 4oC to collect cell debris. The 

supernatant was transferred to a clean 0.5 ml tube and either used immediately or frozen at 

-20oC.   

2.4.3 Quantification of protein 

Protein was quantified using the Bio-Rad Protein Assay (Bio-Rad Laboratories). 1 mg/ml 

stock bovine serum albumin (BSA; Sigma-Aldrich) was diluted to 0.1, 0.2, 0.3, 0.4 and 0.5 

mg/ml concentrations with distilled water for protein standards.  For each sample, 2 µl of 

whole cell protein lysate was diluted in 18 µl distilled water.  10 µl of diluted protein and 

standards was plated out in duplicate into each well of a 96 well plate (IWAKI).  Bio-Rad 

Protein Assay Reagent was diluted 1:5 in distilled water and 200 µl pipetted into each well.   

Absorbance was read on a Bio-Rad 680 microplate reader at 595 nm. The standards were 

used to plot a calibration curve from which the protein content of the samples was 

determined.  

2.4.4 Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels were made in 

two phases. An 8% resolving gel consisting of 30:1 acrylamide:bisacrylamide (Bio-rad), 390 

mM TRIS-HCL pH 8.8, 0.1% w/v SDS, 0.06% w/v N,N,N’,N’- tetramethylethylenediamine 

(TEMED, Sigma) and 0.1% w/v freshly prepared ammonium persulphate (APS; Sigma) was 

mixed and poured immediately into mini-Protean 3 Bio-rad apparatus. To give a uniform 

surface, 500 µl isopropanol was pipetted onto the surface of the gel. The gel was allowed to 

polymerise for 45 minutes before the isopropanol was rinsed off with water. A 5% stacking 
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gel consisting of 30:1 acrylamide:bisacrylamide, 125 mM TRIS-HCL pH 6.8, 0.1% w/v SDS 

0.1% w/v TEMED and 0.1% w/v APS was pipetted on top of the resolving gel, a comb was 

inserted in the stacking gel and allowed to polymerise for 30 minutes.  The gel combs were 

removed and wells washed out with 1x running buffer consisting of 30 g TRIS, 144 g glycine 

(Fisher Scientific), 10 g SDS in 10 litres distilled water. 

Typically, 30 µg of protein was diluted 1:1 v/v 2X laemilli buffer (125mM TRIS-HCl pH6.8, 20% 

glycerol, 4% SDS, 10% β-mercaptoethanol, 0.004% bromophenol blue; Sigma). The protein 

was denatured by boiling at 95oC for 10 minutes and sample contents were collected by brief 

centrifugation. Samples were loaded into each well alongside 10 µl of a protein marker 

(either Kaleidoscope marker; Bio-Rad or Spectra™ Multicolor Broad Range Protein ladder; 

Fermentas) Gels were run in 1X running buffer and the solubilised proteins were separated 

by electrophoresis at 125 V, (400 mA limit) for 2 hours. 

2.4.5 Protein transfer 

In a tank of transfer buffer (30 g TRIS, 144 g glycine, 2 litres methanol in 8 litres distilled 

water) six sponges, six pieces of Whatman® chromatography paper (Sigma-Aldrich) and one 

piece of nitrocellulose membrane (Amersham Hybond-C extra; GE Healthcare Life Science) 

were pre-soaked. These were then stacked in the following order: 3 sponges, 3 pieces of 

filter paper, gel, 1 nitrocellulose membrane, 3 pieces of filter paper, and 3 sponges, ensuring 

air bubbles were pushed out between each layer. The stack was set up, whilst submerged in 

transfer buffer, in an XCell II Blot Module (Invitrogen) which was then placed into the XCell 

Surelock Mini-Cell (Invitrogen). Transfer buffer was poured into the tank around the plates 

up to a depth of two thirds of the tank. Protein was allowed to transfer from the gel to the 

nitrocellulose membrane at 40 V, 400 mA for 2 hours while the tank was placed on ice.  
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2.4.6 Immunoblotting 

Non-specific protein binding was blocked by incubating the membrane for 1 hour at room 

temperature in 5% non-fat dried milk dissolved in TRIS buffered saline-tween (TBS-T), 

consisting of 1.21 g TRIS and 8.77 g NaCl in 1 litre distilled water (pH adjusted to 7.6 using 

concentrated HCl) with 0.5 ml Tween20 (Fisher Scientific). For phospho-specific antibodies, 

membranes were blocked with filtered 5% BSA and 0.05% Tween20 in TBS. The membrane 

was sealed in a bag incubated in diluted primary antibody (Table 2.3) overnight on an orbital 

shaker at 4oC.  

After rinsing three times for 10 minutes in TBS-T the membrane was incubated for 1 hour in 

the corresponding HRP-conjugated secondary IgG (DakoCytomation). The membrane was 

again rinsed by three 10 minute washes in TBS-T. 

Antibody-protein complexes were detected using the enhanced chemiluminescence (ECL) kit 

(Amersham Biosciences). 1 volume of each ECL reagent was mixed in a tube immediately 

prior to use. The membrane was incubated in the ECL mixture for 1 minute and then the 

excess liquid drained off. The membrane was transferred to an autoradiography cassette 

and in a dark room a sheet of Hyperfilm™ (Amersham Biosciences) was placed on top. The 

film was exposed to the membrane for between 30 seconds to 1 hour. The Hyperfilm™ was 

developed in a Kodak X-OMAT 1000 processor (Kodak Limited).   

Following the detection of the protein of interest, membranes were stripped by incubation 

in 1x mild stripping solution (Chemicon) for 20 minutes on a shaker. The membrane was 

then re-blocked and re-probed as described above but using only 1 hour incubation in 

primary antibody to either MCM-7 or β-actin. 
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Table 2.3 List of primary antibodies used for immunoblotting. 

Target protein Clone Company Species Dilution 

(Immunoblotting)  

DDR1 C-20 Santa- Cruz Rabbit 1:200 

MET C-12 Santa- Cruz Rabbit 1:200 

MET 25H2 Cell signalling Mouse 1:1000 

pMET Tyr1003 13D11 Cell signalling Rabbit 1:1000 

pMET Tyr1234/35 D26 XP™ Cell signalling Rabbit 1:1000 

pMET Tyr1349 130H2 Cell signalling Rabbit 1:1000 

pGab1 Tyr307 - Cell signalling Rabbit 1:1000 

RON C-20 Santa- Cruz Rabbit 1:200 

LRIG1 - Agrisera Rabbit 1:1000 

PARP - Cell Signalling Rabbit 1:1000 

Phospho-Tyrosine 4G10 Millipore Mouse 1:200 

STAT3 124H6 Cell Signalling Mouse 1:1000 

pSTAT3 Tyr705 D3A7 Cell Signalling Rabbit 1:1000 

STAT5 - Cell Signalling Rabbit 1:1000 

pSTAT5 Tyr694 C71E% Cell Signalling Rabbit 1:1000 

Nck2 8.8  Sigma Mouse 1:250 



Materials and Methods 

 

 | 77  
 

2.4.7 Immunoprecipitation 

Immunoprecipitation (IP) reactions were performed on cells split 24 hours prior to 

harvesting to ensure they were in the log phase of growth as described in section 2.2.1. For 

each IP reaction, 100 µl of Protein G agarose bead slurry (Millipore) were transferred to 1.5 

ml Eppendorf tubes and then washed with RIPA buffer. This was done three times by 

centrifugation at 2000 rcf for 1 min followed by aspiration of supernatant and re-suspension 

of beads in RIPA buffer. After the final spin, the beads were re-suspended in RIPA buffer as 

50% slurry. 

Typically for IP experiments, 500 µg of protein was harvested and sample volumes equalised 

with RIPA buffer to 500 µl. To reduce non-specific binding, lysates were pre-cleared by 

adding 50 µl of agarose bead-RIPA slurry and incubating on rotating wheel at 4oC for 1 hour. 

The samples were centrifuged for 1 min at 2000 rcf to pellet the beads. The supernatant was 

transferred to fresh eppendorf micro-centrifuge tubes and bead pellet discarded. To each 

sample, 2 µg of primary DDR1 antibody was added. A duplicate positive control lysate was 

incubated with an irrelevant rabbit immunoglobulin (instead of DDR1 antibody) to serve as a 

negative control. The samples were incubated with the antibody overnight on a rotating 

wheel at 4oC. 

The following day, 100 µl of the pre-prepared 50% agarose bead slurry was added to each 

sample and incubated for 2 hours on the rotating wheel at 4oC. This enabled the antibody-

protein complexes to bind to the beads which were then subjected to centrifugation to 

pellet the bound immune-complexes. The supernatant was discarded and the beads washed 

three times with RIPA buffer as described above. After the final spin the beads were re-

suspended in 100 µl of SDS buffer and boiled for 5 minutes at 95oC to elute the immune 
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complexes from the beads. The sample was centrifuged for 1 min at 2000 rcf to pellet the 

bead. The supernatant was collected and subjected to SDS-PAGE and immunoblotting, as 

described in sections 2.4.4 and 2.4.5.  

Protein detection was performed as described in section 2.4.6 but instead of a rabbit 

secondary, Cleanblot® was used to reduce non-specific binding to the immunoglobulin light 

and heavy chains. SuperSignal (Millipore) was used as an alternative chemi-luminescent 

agent to enhance signal intensity of the phosphorylated proteins.      

To confirm equal IP efficiency the membrane was stripped as detailed in section 2.4.7 and 

re-probed with DDR1 antibody. Cleanblot® was again used as the secondary antibody. 

2.4.8 The Human Phospho-Receptor tyrosine kinase array (phospho-array) 

2.4.8.1 Principle of the phospho-array 

The phosphorylation status of 42 RTKs was analysed using a commercially available array 

(Ary001, R&D system). The kit comprises nitrocellulose membranes containing capture and 

control antibodies which have been spotted in duplicate. Internal negative and positive 

controls are also included on the array. The respective RTK bind to these antibodies through 

their extracellular domain and unbound material is washed off. A pan phospho-tyrosine HRP-

conjugated antibody is then applied to the membrane which forms immune complex with 

the bound phosphorylated RTKs (Figure 2.1). These complexes were then visualised by 

chemiluminesence. 
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2.4.8.2 Protocol for the phospho-array 

To prepare cells for this array, the cell lines were maintained as described in section 2.2.1 

and 24 hours prior to harvest, cells were counted and re-suspended at 3x105/ml in either 

fresh media supplemented with 10% serum or fresh media without serum. Cells were lysed 

according to the method in section 2.4.2 using the following lysis buffer (1% Igepal, 20mM 

TRIS-HCL 137 mM sodium chloride, 10% glycerol, 2 mM EDTA, 2 mM sodium vanadate and 

1x protease inhibitor). Protein concentration was determined as set out in section 2.4.3 and 

the 50 µg of whole cell lysate was applied to membrane and the array was performed 

according to the manufacturer’s guidelines.   

The membranes were visualised with ECL reagent and the signal strength from each spot 

measured by pixel densitometry. To account for variations in exposure, a blank area of the 

developed film immediately outside the region of the array was also measured. The average 

of the duplicate spots was calculated and the relative phosphorylation of individual RTK then 

determined relative to the background. 
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Figure 2.1 A schematic of the immune-complexes formed in the RTK array. (Reproduced from R&D 

systems product information) 
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Figure 2.2 Template and location coordinates of the RTKs found on the human phospho-array.
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2.5 FACS detection of surface proteins  

2.5.1 Principle of flow cytometry 

In flow cytometry, a laser light source of single wavelength passes onto a fluorescent-

labelled sample. A number of detectors are aimed at the point where the sample passes 

through the light beam: one in line with the light beam (Forward Scatter or FSC) and several 

perpendicular to it (Side Scatter (SSC) and fluorescent detectors). Each individual cell passing 

through the beam scatters the ray, and the fluorescent labels emit a light at a longer 

wavelength than the light source. This combination of scattered and fluorescent light is 

picked up by the detectors. From this it is possible to derive various types of information 

about the physical and chemical structure of each individual particle. FSC correlates with the 

cell volume and SSC depends on the inner complexity of the particle (i.e., shape of the 

nucleus, the amount and type of cytoplasmic granules or the membrane roughness). Each 

fluorescent label has its own wavelength at which light is excited and emitted. However, 

compensation is required to account for the overlap between the spectra generated by 

different fluorescent labels(310).  

2.5.2 Detection of DDR1 protein expression (indirect method)      

Flow cytometry was used to detect DDR1 cell surface proteins on primary GC B cells, 

extracted, purified and transfected as outlined in section 2.15. Samples were washed in 1x 

PBS and re-suspended in 50 µl of AutoMACS® buffer (Miltenyi Biotec). Except for the 

unstained control cells, 20 µl of appropriate dilute antibody was added to the cells. This was 

left to incubate in the dark at 4oC for 15 minutes. 1 ml of AutoMACS® buffer was added to 

each of the samples and centrifuged at 800 rcf for 10 minutes. The supernatant was then 
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aspirated and the pellet re-suspended in 500 µl of AutoMACS®. The DDR1 antibody used in 

this experiment was unconjugated so the incubation process described above was repeated 

with a second fluorescein isothiocyanate (FITC)-conjugated rabbit antibody. Prior to analysis 

5 µl of propidium iodide (PI) was added to the samples on FACS calibur (Becton Dickinson).    

Live cells were gated by morphology and PI positive staining. This population was then used 

subsequent analysis and the following controls were used to set up compensation and 

quadrants: 

• Unstained cells  

• Cells positive for CD10+PE 

• Cells positive for NGFR-APC 

• Cells stained with Rabbit-FITC alone  

• Cells stained with DDR1 alone 

Data was analysed using Flowjo software (Treestar Inc). 

2.6  Quantification of HGF by enzyme linked immune-absorbant assay (ELISA) 

The production of HGF by HL cell lines was measured using a commercially available ELISA kit 

(Quantikine R&D systems). For this assay, cells were maintained in normal growth conditions 

and split 24 hours prior to the start of the experiment. For each cell line, 3x106 cells were 

counted and centrifuged at 800 rcf for 10 minutes to pellet the cells. The pellets were 

washed twice in serum free media and re-suspended in 10 ml of serum free media and 

transferred to 25 cm3 flasks. At 24 hours and 48 hours the cell suspension was centrifuged as 

above and the supernatant retained for immediate analysis.  The ELISA was performed in 

accordance with the manufacturer’s protocol and absorbance read at 450 nm. A calibration 
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curve was calculated from the standards included in the kit and from this HGF concentration 

was determined.  

2.7  Treatment of cells with collagen   

Soluble type I collagen (extracted from rat tails; Sigma) was added to media at a 

concentration of 10 µg/ml. 

2.8  Treatment of cell lines with RTK inhibitors 

All RTK inhibitors were dissolved in DMSO to produce 10mM stock solutions which were 

stored as aliquots at -20oC. Cells were split 24 hours before treatment with drugs and 

resuspended at a concentration of 3x105/ml in fresh media supplemented with 10% serum. 

Aliquots of the drug to be tested were thawed as required and serially diluted in media to 

produce the desired concentration and applied to the cells.  

2.9  Cytotoxity and cell proliferation assays 

2.9.1 Cell Proliferation 

2.9.1.1 Principle of Celltiter 96®AQueous One Solution cell proliferation   

The Celltiter 96®AQueous One Solution cell proliferation assay (Promega) is a colorimetric 

method for determining proliferation by metabolic activity. The reagent contains an electron 

coupling reagent (phenazine ethosulfate; PES) and a tetrazolium compound [3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; MTS].  

The MTS tetrazolium compound is bio-reduced by metabolically active cells producing 

formazan and the quantity of formazan, measured by absorbance at 490 nm, is used to as 

marker of proliferating cells. 



Materials and Methods 

 

 | 85  
 

2.9.1.2 Protocol of Celltiter 96®AQueous One Solution cell proliferation  

100 µl of cell suspension were seeded per well at a concentration of 2x105/ml, a 

concentration previously determined in optimisation experiments. This number of cells was 

sufficient to produce a signal on the linear range of the assay and ensured sufficient 

nutrients for the experimental period which was typically 3 days. For measurement of cell 

proliferation, cells were seeded in a 96 well plate at time zero. The plate containing cells 

were incubated at 37oC in a humidified atmosphere containing 5% CO2. 2 hours prior to 

reading the absorbance, 20µl of Celltiter 96®AQueous One Solution was added and the plate 

returned to the incubator. The absorbance was read on a microplate reader at 490 nm. To 

prevent contamination of cells a separate plate was used for each time point measured.  

2.9.1.3 Data Analysis 

Background absorbance at 490nm was corrected by subtracting the mean of a triplicate set 

of wells with media alone and no cells from the experimental wells. Cells were typically 

seeded in quadruplicate and for drug inhibition studies wells containing cells treated with 

vehicle alone (DMSO) were included. Vehicle-only cells were assigned a value of 100 and 

metabolic activity of treated cells was calculated as a proportion of this to give relative 

percentage cell proliferation. 

2.9.2 Measurement of apoptosis by FACS detection of Annexin V staining 

2.9.2.1 Principle of Annexin V staining 

Apoptosis is characterised by morphological changes including the loss of plasma 

membrane. In apoptotic cells, the membrane phospholipid phosphatidylserine (PS) is 

translocated from the inner to the outer leaflet of the plasma membrane, thereby exposing 
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PS to the external cellular environment. Annexin V is a 35kDa Ca2+-dependent phospholipid-

binding protein that has a high affinity for PS, and binds to cells with exposed PS(311). Annexin 

V conjugated to a fluorochrome, such as FITC, can be detected by flow cytometric analysis 

which, in conjunction with PI, can distinguish viability, apoptosis and necrosis. 

2.9.2.2 Protocol for Annexin V staining 

Typically, 5x105 cells were washed twice with cold PBS by centrifugation at 800 rcf for 10 

minutes at 4oC and then resuspended in 100 µl 1X Binding Buffer (0.1 M HEPES, pH 7.4; 1.4 

M NaCl; 25 mM CaCl 2; BD Pharmigen). This solution was transferred to a 5 ml FACS tube and 

5µl of Annexin V was added to each sample. The cells were gently mixed and incubated for 

15 min at room temperature in the dark. 400 µl of 1X Binding Buffer was pipetted into each 

tube and the samples analyzed by flow cytometry as soon as possible (within 1 hour). 

The following controls were used to set up compensation and quadrants: 

• Unstained cells  

• Cells stained with Annexin V-FITC alone (no PI)  

• Cells stained with PI alone (no Annexin V-FITC) 

2.10  Nucleofection 

2.10.1 Knockdown of gene by siRNA 

ON-TARGETplus SMARTpool siRNA from Dharmacon were used for the silencing of DDR1 

(Table 2.4). Scrambled siRNA served as the corresponding control for all knockdown 

experiments. 
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24 hours prior to nucleofection, cells were counted and re-suspended at a concentration of 

5x105/ml in fresh supplemented media containing 10% serum. For L428 cells the number 

required for each experiment was calculated based on 3x106 cells per reaction. On the day of 

nucleofection 3 ml of media per reaction was pre-warmed in an incubator at 37oC. The 

required number of cells were counted and centrifuged at 100 rcf for 7 minutes at room 

temperature. Supernatant was aspirated and the cell pellet was re-suspended in 100 µl of 

the pre-prepared nucleofection solution. 3 µg per reaction of either DDR1 siRNA or 

scrambled siRNA was added and 100 µl transferred to sterile cuvette (Amaxa; Lonza) 

ensuring there were no bubbles. The cuvette was placed in the nucleofector device (Amaxa; 

Lonza) and program X-001 selected. The cuvette was taken out of the device but the sample 

left in, for 10 minutes at room temperature. Following this, 500 µl of pre-warmed media was 

pipetted into the cuvette and transfected solution transferred into the prepared media. 4 

hours later a further 9 ml of warm media was added to each sample. Cells were incubated at 

37oC in a humidified atmosphere with 5% CO2 until required for analysis. 

Table 2.4 DDR1 ON-TARGET SMARTpool siRNA target sequence and location (NM_013994.2). 

Target Sequence Target location (EXON) 

UGGUUACUCUUCAGCGAAA 3 

GGAGCUACCGGCUGCGUUA 7 

GCGUGUGUGUGCAGGACGA 14 

ACGAGCAGGUCAUCGAGAA 16 
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2.10.2 LRIG1 expression plasmid 

Cell lines were split 24 hours prior to nucleofection and resuspended in fresh supplemented 

media at a concentration of 3x105/ml. 4 µg of the LRIG1pcDNA3.1-myc tagged 

overexpression plasmid (Gift from Dr Colleen Sweeny, UC Davis Cancer Centre, California) or 

4 µg of pcDNA3.1 (empty vector; Invitrogen) were nucleofected using the Amaxa 

nucleofector and solutions as described above. The protocol was individualised based on the 

cell line to be transfected: 

• L428 L solution program X-001 

• L540 V solution program T-001 

• KMH2 T solution program T-001 

2.11  Immunohistochemistry  

2.11.1 Preparation of tissue sections 

Frozen sections of 5 µm thickness were cut using a standard cryostat and placed onto 

uncoated slides. Paraffin-embedded blocks were cut to 4 µm thickness and placed onto 

adhesive-coated slides (Vectabonded, Surgipath™). Where the tissue blocks were retained 

by the local CCLG centre, pre-cut 4 µm tissue sections were requested.   

For immunohistochemical staining, sections of paraffin-embedded tissue biopsies were de-

waxed and rehydrated. This was done by immersing the slides sequentially in each of the 

following solutions for 10 minutes: Histoclear (a xylene substitute), 100% ethanol and 70% 

ethanol.  
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Next, the endogenous peroxidase activity was blocked for 10 minutes in 3% hydrogen 

peroxide in methanol (Sigma-Aldrich). Slides were rinsed thoroughly in running tap water 

and subjected to different methods of antigen retrieval, optimised to individual antibodies 

(Table 2.5) 

 2.11.2 Antigen retrieval 

Microwave antigen retrieval 

Citrate buffer (1.26 g sodium citrate, 0.25 g citric acid, 800 ml distilled water; pH adjusted to 

pH 6.0 with 0.1 M sodium hydroxide) was made up to 1 litre and boiled in a glass beaker for 

10 minutes at full power before immersing the slides pre-loaded on a rack into the buffer. 

Ensuring that the slides were submerged completely the beaker was covered with cling film 

which was pierced. The beaker was returned to the microwave and heated for 10 minutes at 

moderate power then 10 minutes at low power. The buffer was allowed to cool 

(approximately 30 minutes) before the slides were removed and rinsed in running water.    

Agitated low temperature epitope retrieval (ALTER)  

Slides were loaded in a rack and placed in a 1.5 litre glass beaker containing 1 litre of EDTA 

buffer pH8 with Tween20 (Binding site, Birmingham). The beaker was covered in foil and 

placed on a hotplate stirrer (Jenway) set at 600 rpm and 65oC for 16 hours. The solution was 

then cooled by placing the beaker under running water for 5 minutes. 

Wax Capture Buffer (WCap Buffer) 

Slides were placed in plastic slide staining jar filled with 250mls of WCAP buffer pH8.0 (Bio-

Optica Milano s.p.a.). This jar was incubated in a water bath set at 98°C for 20 minutes. The 
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slides were then transferred to a rack submerged in warm distilled water and allowed to cool 

for 10 minutes.  

2.11.3 Detection of antigen 

After antigen retrieval, slides were placed on a slide tray and the tissue section encircled 

using a PAP-PEN (Dako). Slides were incubated in TBS pH 7.6 for 5 minutes and then blocked 

using 2X casein blocking solution (Vector laboratories) to reduce non-specific background 

staining. The sections were incubated with diluted primary antibody overnight at 4oC. 

Samples were washed in TBS for 5 minutes. Secondary detection was performed with 

DakoChemate envision secondary antibody (Dako) using 2 drops of biotinylated universal 

secondary antibody for each tissue section for 30 minutes. Sections were washed again in 

TBS for 5 minutes.  

2.11.4 Visualization and counterstaining 

Visualisation was carried out using diaminobenzidine (DAB) (Vector laboratories).  Substrate 

solution was applied to each tissue section ensuring complete coverage (usually 100 µl) for 

between 30 seconds to 2 minutes. During this process the substrate was converted to an 

insoluble brown product by the antigen-bound peroxidases. Slides were rinsed with TBS, 

counterstained with Mayer’s haematoxylin (Sigma) for 30 seconds, washed under running 

tap water for 5 minutes. The stained sections were then sequentially dehydrated through 

70% ethanol, 100% ethanol and Histoclear for 10 minutes each, before being mounted with 

a coverslip using DPX mounting (Invitrogen). 
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Table 2.5 Antibodies and retrieval methods used for immunohistochemistry. 

Target protein Retrieval method IHC Dilution 

DDR1 ALTER 1:80 

MET CITRATE BUFFER 1:200 

LRIG1 CITRATE BUFFER 1:800 

RON CITRATE BUFFER 1:400 

p-RON WCAP BUFFER 1:25 

LMP1 ALTER 1:25 

COLLAGEN I ALTER 1:200 

COLLAGEN II ALTER 1:500 
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2.12 Van Gieson method 

For Van Gieson’s stain, tissue sections were first dewaxed and rehydrated as described in 

section 2.11.1. Slides were then placed on a slide tray and tissue sections encircled using a 

PAP-PEN. 100 µl of 4% iron alum was pipetted onto the slides ensuring the section was 

completely covered. After 5 minutes slides were rinsed in tap water and the nuclei counter-

stained with Mayer’s haematoxylin for 5 minutes. The sections were again washed in warm 

tap water and placed on a slide tray and 100 µl of Van Gieson’s solution applied for 10 

minutes. The slides were blot dried with filter paper ensuring no contact with water after 

this point. Following the Van Gieson method, stained sections were dehydration by rinsing in 

100% ethanol for 30 seconds followed by Histoclear for 5 minutes.    

2.13  cDNA sequencing 

2.13.1 Primer design 

Polymerase chain reaction (PCR) primers were designed using primer 3 software 

(www.primer3.com). Human genomic sequence for DDR1 was obtained from the NCBI 

genome browser (www.ncbi.nlm.nih.gov). Desirable characteristics of the primer sequences 

were a length of 18-25 bp, G+C content of 40-60% with an annealing temperature of 58 -

62OC. For the amplification of cDNA, oligonucleotide primers were designed to bind 

specifically the gene of interest. Basic local alignment search tool (BLAST) searches 

(http://www.ncbi.nlm.nih.gov/BLAST/) were performed in all cases to ensure that primers 

were not complimentary to other regions of the genome and bound specifically to the target 

sequences.  Primers were synthesised by Alta-Biosciences (University of Birmingham) and 

supplied as lyophilized pellets (Table 2.6).  Primers were reconstituted in DEPC treated water 

(Applied Biosystems) to a concentration of 100 µM and stocks stored at -20oC in aliquots.   
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2.13.2 RT-PCR of cDNA 

A PCR-reaction master mix consisting of the following components was made up in a sterile 

eppendorf tube for each of the cDNA plus a water control:  12.5 µl 2X PCR MasterMix 

(Promega), 2.5 µl 3’ primer, 2.5 µl 5’ primer (2µM) 17.5 µl of this master mix was pipetted 

into sterile 0.2 ml PCR tubes, 2 µl of synthesized cDNA was added to the master mix and the 

total volume made up to 25 µl with RNase/DNase free water. PCR amplification in an 

Eppendorf Thermal Cycler included an initial 5 minute denaturation at 94°C, followed by 30 

cycles of denaturation for 30 seconds at 94°C, an annealing step for 1 minute at a 

temperature specific for primers, and an extension for 1 minute at 72°C.  A final extension 

step of 72°C for 10 minutes ensured all single stranded molecules have been replicated and 

was followed by storage at 4oC. 

2.13.3 Agarose gel electrophoresis of PCR products 

The amplification of PCR products was confirmed by electrophoresis using agarose gels. 5 µl 

of each sample, alongside the water control which had gone through the PCR cycles, was 

loaded. 5 µl of 100 bp Ready-Load™ DNA ladder (Invitrogen) was added to the first lane of 

the submerged gel in the gel electrophoresis tank.  The gel was run for 1 hour at 120 V, 95 

mA. Photographs were taken under UV light and documented using a GeneFlash Syngene 

Bio Imaging Analyzer. 
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Table 2.6 DDR1 primers for sequencing cDNA 

PRIMER FORWARD REVERSE 

Pair 1 5’ ccttaggcccgagggatc 3’ 5’ tgcctgagatcacctcctga 3’ 

Pair 2 5’ agctaccggctgcgttactc 3’ 5’ acgccggaagcgacattcca 3’ 

Pair 3 5’ ccaggctatgcaggtccact 3’ 5’ agcacctgggcggttgttga 3’ 

Pair 4 5’ acggagggtgttggaagagg 3’ 5’ gatcttgagggctgtcgacc 3’ 

Pair 5 5’ ctcgactccgcttcaaggag 3’ 5’ caactaggcagttccgcgtg 3’ 

Pair 6 5’ caatgctgctgcatgatgtggcag 3’ 5’ tggcttcccctggatcgctc 3’ 

Spanning exon10-15 5’ gagctgacggttcacctctc 3’ 5’ agcagcattgggtagctgat 3’ 
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2.13.4 Gel extraction and Purification 

Amplified PCR products were purified for sequencing using one of two methods. In the first 

method PCR samples were directly purified after confirmation of a single PCR product on gel 

electrophoresis. For this, the QIAquick PCR purification kit was used in accordance with the 

manufacturer’s guidelines. 

In the second method, PCR products were first separated by gel electrophoresis, stained 

with ethidium bromide and visualised by UV light on a transilluminator. Individual bands 

were excised from the gel using a sterile scalpel blade and transferred to sterile 1.5 

microcentrifuge tubes. Extraction of the PCR product from the gel slice was carried out using 

a Qiagen Gel extraction kit according to the manufacturer’s guidelines. cDNA was eluted 

from the column in 50µl deionised water and stored at -20oC until required. 

2.13.5 Sequencing PCR 

cDNA was sequenced using Big Dye sequencing kit (Applied Biosystems). 10 ng of either 

directly purified or gel extracted PCR was added to the sequencing mix which consisted of 1 

µl of Big Dye, 3.5 µl of 5X buffer, 1 µl of either forward or reverse sequencing primer (10 

pmol/µl). The final volume was made up to a 20 µl volume with DEPC-treated water. 

Samples and reagents were kept on ice at all times. An Eppendorf Thermocycler was used to 

denature the samples at 96oC for 1 min followed by 25 cycles of rapid thermal ramp to 96oC 

for 10 seconds, 50oC for 5 seconds and 60oC for 4 minutes.  

After PCR amplification, the cDNA was precipitated by the addition of 64 µl of 96% ethanol 

and 2 µl of EDTA (0.25M) and incubated at room temperature for 15 minutes. The cDNA was 

pelleted by centrifugation at 16000 rcf for 20 minutes then washed twice with 70% ethanol. 

Ensuring all ethanol was aspirated, the samples were air-dried for 15 minutes and re-
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suspended in 10 µl HiDi-formamide. The samples were then subjected to automated 

sequence analysis.  

2.14 Microarray 

The GeneChip® Human Genome U133 Plus 2.0 microarray (HG-U133 Plus 2.0; Affymetrix) 

allows the simultaneous analysis of expression levels of more than 47,000 transcripts and 

variants. Total RNA was extracted from L428 cells transfected with either DDR1 siRNA or 

scrambled siRNA according to methods in sections 2.3 and 2.10. Three independent 

biological replicates were prepared for microarray analysis which was performed by Dr John 

Arrand. Outputs from microarray chips were analysed Dr Wenbin Wei using GCOS software 

(Affymetrix).  

2.15  Purification and transfection of GC B cells  

All investigations using GC B cells referred to in this thesis were extracted from tonsils of 

paediatric patients under ethical approval (06/q2702/50). Subsequent purification and 

transfection of GC B cells were conducted by Dr Martina Vockerodt. Briefly, CD10+ GC B cells 

were isolated by magnetic separation using anti-CD10-phycoerthrin (PE) (Becton Dickinson, 

BD) and anti-PE microbeads with LS columns (Miltenyi Biotec). For transfections, purified 

CD10+ GC B cells were nucleofected with either pSG5-LMP1 or pSG5 in addition to the 

expression vector pMACSLNFGR.  

2.16 Purification of human tonsillar B cell subsets 

This experiment was performed by Dr Jennifer Anderton. In brief; CD77+ centroblasts were 

enriched by magnetic separation with anti-CD77 antibody (Becton Dickinson, BD) and anti-

IgM microbeads using LS columns (Miltenyi Biotec). The flow-through of the magnetic 
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separation, containing CD77- depleted mononuclear cells, was incubated with anti-CD10-PE 

(Becton Dickinson, BD) and anti-PE microbeads followed by magnetic enrichment on LS 

columns. The elute contained CD10+/CD77- centrocytes. Naïve B cells were isolated indirectly 

by depletion of all non-naïve cells using a cocktail of antibodies to CD10, CD2, CD16, CD27, 

CD36, CD43 and CD235a (Miltenyi Biotec). Memory B cells were purified by first negative 

depletion using antibodies against CD2, CD14, CD16, CD36, CD43 and CD235a, finally by 

positive selection with CD27 microbeads (Miltenyi Biotec). 

2.17 Statistical analysis 

The significance of RTK expression per case was evaluated with respect to EBV status and 

histological subtype using two sample t-test. A value of p < 0.05 was considered to be highly 

significant.  



 

 | 98  
 

 

 

 

 

CHAPTER 3 

The activation of 
receptor tyrosine 
kinases in HL cells with 
emphasis on MET and its 
potential regulation by 
LRIG1 



Results Part I 

 | 99  
 

3.1 Introduction 

RTKs are key regulators of important cellular processes and their deregulation is critical to 

the pathogenesis of many diseases, including cancer (175). However, our understanding of the 

contribution of RTKs to the pathogenesis of HL remains limited. Previous studies have shown 

that while RTK expression is restricted in normal B cells (226-228;230;312), multiple RTKs are over-

expressed in HRS cells. Moreover, the activation status of many of the RTKs previously 

shown to be over-expressed in HRS cells has not yet been established (Table 3.1). The 

objectives of this study are to: 

• Provide a global analysis of the activation status of RTKs in HL cells using a 

phosphorylation specific antibody array.  

• Explore the expression and activation in HL cell lines and primary HRS cells, of two 

RTKs, MET and RON, which were detected by this array analysis.   

• Investigate the expression of LRIG1 and its contribution to the activation of MET in HL 

cells. 
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Table 3.1 Summary of published work that have studied the expression and activation of RTKs, and 

expression of their ligands, in HL derived cell lines and primary HRS cells.  

RTK EXPRESSION ACTIVATION LIGAND REF 

CELL LINE PRIMARY CELL LINE PRIMARY CELL LINE PRIMARY 

PDGFRα - 
 

 
 

- 
- 

- 
 

- 
- 

- 
 

(232;313) 

DDR2   - - - stroma (232) 

EPHB1   - - -   

RON   - - - -  

TRKB   -  - -  

TYRO3  
Detected on 
gene array 

- - - - -  

MER  
Detected on 
gene array 

- - - - -  

TRKA   -  - granulocytes  

      - (234) 

TIE1 -  - - - - (233) 

MET - 
 
- 
 

 
- 
 

- 
- 
- 

- 
- 
- 

- 
weak 

- 

serum 

- 
- 

(259) 
(258) 
(229) 

(256;257) 

KIT  
 

(L1236) 
 

 
 

 
 

+ve mast cells 

- 
- 
- 
- 

- 
- 
- 
- 

(L1236) 
- 

(L1236) 
- 
 

fibroblasts 

- 
- 
- 

(122;235) 
(238) 
(239) 
(237) 

CSF1R  
- 

 
- 

 
- 

 
- 

 
- 

- 
 

(240) 
(314) 

FGFR1   - -   (231) 

FGFR2   - -    

FGFR3   - -    

FGFR4   - -    

VEGFR 
family 

- - - -  
(hypoxic) 

serum (315) 

  Detection of the RTK irrespective of the number of cases or lines which are positive. 
  RTK expression or activation was studied but not found 
- RTK expression or activation not studied or reported in the paper  
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3.2 Results 

3.2.1 Expression and activation of RTKs in HL cell lines 

I first studied the phosphorylation status of 42 known RTKs in three HL cell lines (L591, L428 

and L1236) and in purified CD10+ human GC B cells, using a commercially available antibody 

array. This array contains capture and control antibodies which have been spotted in 

duplicate on nitrocellulose membranes. The immobilised antibodies capture both 

phosphorylated and non-phosphorylated RTKs, but only the phosphorylated forms are 

detected following the binding of a pan-tyrosine antibody. (See methods section 2.4.8, page 

78). Figure 3.1a shows an example of such an array after visualisation with 

chemiluminescence.   

The array analysis was performed twice on each HL cell line; once in medium containing 10% 

serum and once in medium without serum. Figure 3.1b shows that all HL cell lines displayed 

a marked activation of multiple RTKs. Table 3.2 lists those RTKs which were activated in 2 or 

more HL cell lines (either in serum free medium or in serum containing medium, or both). 

From this analysis, it was apparent that RTKs from at least three major RTK subfamilies, 

HGFR, AXL and FGFR were consistently activated in the HL cell lines. I also observed that 

some RTKs were activated only in HL cell lines grown in serum-containing media (e.g. Insulin 

receptor family members). In contrast, I noted that the activation of other RTKs, for example 

VEGFR3, was more pronounced in serum free medium. A further group of RTK displayed 

activation in both serum-containing and in serum-free media; these included MET and RON 

which are discussed in detail below.  
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Figure 3.1A Multiple RTKs are activated in HL cell lines. Each array has antibodies to 42 RTKs spotted 

in duplicate and includes negative controls and positive controls (in each corner to aid alignment). 

RTKs were identified using a template supplied with the array (see methods section 2.4.8); spots for 

several RTKs are highlighted (numbered 1-8). L1236, L428 and L591 HL cell lines grown either in 

medium supplemented with 10% serum or in medium without serum were analysed and compared 

to CD10+ GC B cells freshly isolated from a human tonsil (one replicate; sample provided by Dr 

Vockerodt). 



 

  
 

 

Figure 3.1B Summary of results from antibody array. Signal strength of each dot was measured by densitometry. A background measurement taken of a 
blank area of the film immediately next to the array was set as a baseline to account for differences in exposure between blots. The phosphorylation of each 
RTK was calculated relative to this baseline. 
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Table 3.2 Activation of various RTK, in HL cell lines, grouped according to sub-family.  

RTK SUB-FAMILY 
 

10% SERUM SERUM FREE 

EGFR   
FGFR 

FGFR1 
FGFR2α 
FGFR3 
FGFR4 

 
 
 
 
 

 
 
 
 
 

INSULIN RECEPTORS 
Insulin R 
IGF-IR 

 
 
 

 
 
 

AXL 
AXL 
DTK (Tyro3) 
Mer 

 
 
 
 

 
 
 
 

HGFR 
MET 
RON 

 
 
 

 
 
 

PDGFR 
PDGFRα 
PDGFRβ 
KIT 
FLT3 
CSF1R 

 
 
 
 
 
 

 
 
 
 
 
 

RET   
ROR   
TIE   
TRK   
VEGFR 

VEGFR1 
VEGFR2 
VEGFR3 

 
 
 
 

 
 
 
 

EPHRINS 
EphA6 

 
 

 
  

 
 per activated cell line     not activated in any cell line 
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3.2.2 MET is over-expressed in HL cell lines and in primary tissue  

Having observed the robust phosphorylation of MET in all HL cell lines, I chose to focus on 

this RTK in more detail. I first compared the expression of MET mRNA in 6 HL derived cell 

lines and in 3 BL derived cell lines with that in CD10+ GC B cells isolated from three donors 

(provided by Dr Vockerodt). Figure 3.2a shows that compared to GC B cells, MET mRNA 

levels were higher only in L428, L540 and L1236 HL cell lines. I next used a polyclonal 

antibody to measure MET protein levels in these cell lines. This antibody detects both pro-

MET, the 170kDa glycosylated precursor and MET; the 145kDa functional protein. Consistent 

with the results of the q-PCR analysis, I observed that MET protein levels were highest in 

L428, L540 and L1236 HL cell lines (Figure 3.2b). The high levels of MET expression in L428 

and L1236 cells is consistent with the activation of this receptor in these cell lines shown by 

antibody array. 
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Figure 3.2 A) Expression of MET in HL and BL cell lines compared to that in CD10+ GC B cells. 

Relative expression of MET mRNA in cell lines was determined by q-PCR analysis. All samples were 

analysed in triplicate using the ΔΔ CT method. The unsorted CD10+ GC B cells included in the 

comparison were from three different donors.  The results show one representative example of 

three independent experiments. 

Figure 3.2 B) Expression of MET protein in a panel of HL and BL cell lines. 30µg of total protein from 

whole cell lysate was loaded. The results show one representative example of three independent 

experiments. 
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Having shown that MET is over-expressed in some HL-derived cell lines, I next studied the 

expression of this receptor in biopsies from children with HL. These samples were obtained 

from the Children’s Cancer and Leukaemia Group (CCLG) and are described in detail in 

appendix I. To detect MET protein, immunohistochemistry (IHC) was performed on 44 cases 

which were available for analysis using the same polyclonal antibody described above. 

However, I excluded 18 cases on the basis that no staining could be observed in blood 

vessels which was used as an internal positive control. Of the remaining 26 cases, I observed 

strong expression of MET in primary HRS cells in 17 cases, weak expression in 7 cases, and no 

staining in 2 cases (Figure 3.3). There was no association between MET expression and 

histological subtype (Table 3.3).  

Following the detection of MET expression by HRS cells in almost all HL cases, I next 

investigated if there was an association between EBV status and MET expression in primary 

HRS cells. I performed IHC on 54 cases and observed LMP1 expression in 27/54 (50%) of 

cases. Figure 3.4 shows three cases, the first is representative of the staining seen in an 

LMP1 negative sample and the others of LMP1 positive cases. There was no association 

between MET expression and EBV status (Table 3.4).  
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Figure 3.3 MET expression in primary HL. Representative photomicrographs of HRS cells showing 

immune-reactivity to MET (A and B; black arrows) and no staining of HRS cells for MET is seen (lower 

panels) but show a positively stained blood vessel (left; white arrow) and plasma cell (right, white 

arrow). 
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Figure 3.4 LMP1 expression by immunohistochemistry. A) Case 14-193, a nodular lymphocyte 

predominant HL case which was negative for LMP1 B) Case 14-172, a nodular sclerosis case of HL 

which was strongly positive for LMP1 C) Case 14-219, a mixed cellularity case of HL which was 

positive for LMP1. 

 

Table 3.3 MET expression in primary HL stratified by histological subtype. There was no significant 

association (p>0.05)  

  MET positive MET negative 

Nodular Sclerosis 18 1 

Mixed cellularity 3 0 

Lymphocyte predominant 2 1 

Hodgkin's disease (unspecified) 1 0 

 

 

Table 3.4 MET expression in primary HL stratified by EBV status. There is no significant association 

(p>0.05) 

 EBV positive EBV negative 

MET positive 13 11 

MET negative 1 1 
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3.2.3 Ectopic expression of LMP1 induces MET expression 

I also considered the possibility that MET expression might be induced by the EBV-encoded 

LMP1, when this viral oncogene is expressed in GC B cells, the presumed progenitors of HRS 

cells. This seemed a reasonable proposition given that this viral gene has been shown to 

induce MET expression in NPC cells (316). To do this, I examined the expression of MET 

following the transfection of purified CD10+ GC B cells with either LMP1-expressing or 

control vector. These transfections were performed previously and LMP1 status has been 

reported before(172). Figure 3.5 shows that relative to vector-only transfected GC B cells, the 

levels of MET mRNA were up-regulated in GC B cells expressing LMP1.  
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Figure 3.5 Expression of MET mRNA in CD10+ GC B cells transfected with LMP1 or empty vector. q-

PCR analysis for MET was performed on two separately isolated and transfected CD10+ populations. 

The expression of MET mRNA in vector control was set at a value of 1 and relative expression of GC B 

cells expressing-LMP1 was determined by q-PCR analysis Samples were analysed in triplicate and are 

presented as ΔΔ CT values in comparison to corresponding vector control. 
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3.2.4 Intrinsic kinase activity of MET is constitutive in HL cell lines 

Although the antibody array had suggested that MET was activated in at least two of the HL 

cell lines, it was unable to reveal which of the tyrosine residues present in MET were 

phosphorylated in these cells. This is important because the phosphorylation of Tyr1234 and 

Tyr1235, which are often used to measure MET activation, alone are not sufficient for MET-

induced transformation, which also requires ligand (HGF) binding (254).  Ligation of MET by 

HGF leads to the phosphorylation of Tyr1349 in the catalytic domain which is required for 

binding of adaptor proteins such as GAB1 (317). A third phosphorylation site, Tyr1003 is 

essential for the ubiquitination and degradation of MET(246). Therefore, I performed a more 

detailed study of the phosphorylation status of MET. For this experiment, the HL cell lines 

were grown in serum-free conditions overnight and immunoblotted using antibodies 

directed against these three phosphorylation sites. The results of these experiments are 

shown in Figure 3.6. Phosphorylation of Tyr1234/1235 and Tyr1003 was clearly observed in 

L428 cells and to a lesser extent in L540, L1236 and KMH2 cells. Phosphorylation of Tyr1349 

was detected only in KMH2 cells and consistent with this I observed the phosphorylation of 

GAB1 only in this cell line. These results show that while most HL cell lines display 

constitutive activation of the intrinsic kinase domain (Tyr1234/1235), only one cell line 

(KMH2) shows activation of the catalytic domain.  

I stained primary HL cases with these antibodies, but no immuno-reactivity was observed 

either on paraffin-embedded samples or on frozen sections. 

I next used ELISA to measure HGF in the supernatant of these cell lines. I observed that only 

KMH2 cells produced significant amounts of HGF (Figure 3.7). This is consistent with the 

observation that GAB1 and Tyr1349 are phosphorylated only in KMH2 cells.  
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Figure 3.6 MET and GAB1 phosphorylation in a panel of HL cell lines. Cells were maintained in 

normal growth conditions and 24hours prior to harvesting washed twice and re-suspended in serum-

free media. 30µg of whole cell lysate was loaded for immunoblotting. Each phospho-specific 

antibody was run on different membranes which were each stripped and then immunoblotted for 

total MET protein levels. Equal protein loading was also confirmed on each membrane using an 

antibody to MCM-7 (shown here are representative blots). 
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Figure 3.7 Production of HGF by HL cell lines. An ELISA was used to measure the levels of HGF in the 

supernatant of BL and HL cell lines cultured in serum free media for 24 and 48 hours. 
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3.2.5 RON is over-expressed in HL cell lines and in primary HRS cells 

The antibody array analysis had shown that another member of the HGF family, RON, was 

activated in the HL cell lines. I first used q-PCR to show that RON was highly expressed in 

L428, L591 and L1236 cells, but not in the other HL cell lines nor in the BL cell lines (Figure 

3.8a). Furthermore, immunoblotting revealed the presence of full length RON and pro-RON 

protein in these same three cell lines (Figure 3.8b). However, several other HL cell lines, 

including L540, appeared to express bands at approximately 100kDa, 80kDa and 75kDa. 

Although this could be consistent with the expression of previously described splice variants 

of RON, I did not investigate this further (318). 

IHC was then performed to study RON expression in primary HL. I initially used the same 

polyclonal antibody employed in the immunoblotting experiment described above to detect 

total RON. I observed the strong cytoplasmic and granular expression of RON in HRS cells in 

35/44 cases of primary HL, a further 5 cases were weakly positive and 4 showed no 

expression of RON (Figure 3.9). There was no association between RON expression and 

either histological subtype or MET status (Tables 3.5 and 3.6).  I then studied the activation 

of RON in selected HL cases using an antibody that detects the phosphorylation of RON (Tyr 

1238/1239) in the intrinsic kinase domain. I observed that in all cases (n=10) phosphorylated 

RON was detectable in HRS cells (Figure 3.10).  
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Figure 3.8 A) Expression of RON in HL and BL cell lines. A panel of HL and BL cell lines were 

maintained under normal growth conditions then re-suspended in fresh media at 3x105/ml 24hrs 

prior to RNA and protein extraction. Expression of RON mRNA was determined by q-PCR analysis. All 

samples were analysed in triplicate using the ΔΔ CT method. 

Figure 3.8 B) Expression of RON protein in a panel of HL and BL cell lines. 30µg of total protein from 

whole cell lysate was loaded. Equal loading was confirmed using an antibody against MCM-7 
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Figure 3.9 RON expression in primary HL. Representative photomicrographs of HRS cells positive for 

RON in four different cases of primary paediatric HL.  
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Figure 3.10 Phospho-RON expression in primary HL. Representative photomicrographs of primary 

tissue showing HRS cells positive for p-RON (A, B and C; black arrows), and low level p-RON in GC B 

cells (D; white arrows).  
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Table 3.5 RON expression in primary HL stratified by histological subtype. There was no significant 

association (p>0.05) 

  RON positive RON negative 

Nodular Sclerosis 28 1 

Mixed cellularity 7 0 

Lymphocyte predominant 3 3 

Hodgkin's disease (unspecified) 2 0 

 

 

Table 3.6 RON expression in primary HL stratified by MET status. There was no significant 

association (p>0.05) 

 RON positive RON negative 

MET positive 24 0 

MET negative 2 0 
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3.2.6 LRIG1 is down-regulated in HL cell lines and in primary HRS cells in some cases 

In the preceding experiments I showed that MET is expressed and activated in HL derived 

cell lines. Because the LRIG1 protein has recently been shown to bind to MET and induce its 

degradation, I next explored if the loss of LRIG1 might account for the high levels of 

expression and activation of MET observed in HL cells. I first compared the expression of 

LRIG1 mRNA in a panel of HL and BL cell lines with that in CD10+ GC B cells. Figure 3.11a 

shows that LRIG1 was down-regulated in all HL cell lines. In contrast, the three BL cell lines 

examined expressed levels of LRIG1 comparable to those found in GC B cells. 

Immunoblotting revealed that LRIG1 was also down-regulated at the protein level in all six 

HL cell lines (Figure 3.11b). 

I next analysed by IHC the expression of LRIG1 in primary HL. Of the 44 cases available for 

this analysis, 20 were excluded because no staining for LRIG1 was observed in blood vessels 

which were used as an internal positive control. Of the remaining 24 cases, LRIG1 expression 

was absent in HRS cells in 11 cases. Loss of LRIG1 expression in HRS cells was supported by 

the re-analysis of a dataset in which gene expression in micro-dissected HRS cells was 

compared to that in GC B cells (Figure 3.13)(319).  In positive cases, LRIG1 expression was 

particularly prominent in so called ‘mummified’ HRS cells. Furthermore, the staining of LRIG1 

in these ‘mummified’ cells appeared as dense granules within the cytoplasm while in the 

‘conventional’ HRS cells that expressed LRIG1 the stain appeared more diffuse smaller 

granules (Figure 3.12). In one case, HRS cells were negative for LRIG1 but surrounding 

macrophages were positive. Low level expression of LRIG1 was also detected in the germinal 

centres of normal tonsil tissue. There was no association between LRIG1 expression and 

either histological subtype or MET expression (Tables 3.7 and 3.8).  
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Figure 3.11 A) Expression of LRIG1 mRNA in HL cells, BL cells and GC B cells. The expression of LRIG1 

mRNA was determined by q-PCR analysis with all sample analysed in triplicate using the ΔΔCT 

method. B) Expression of LRIG1 protein in a panel of HL and BL cell lines. 30µg of total protein from 

whole cell lysate was loaded. Equal loading was confirmed using an antibody to MCM-7. Data for 

both q-PCR and immunoblots are representative of three independent experiments. 
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Figure 3.12 LRIG1 expression in primary HRS cases. Photomicrographs show LRIG1 immuno-

reactivity in primary HRS cells, seen as cytoplasmic granules (A and B; black arrows). LRIG1 immune-

reactivity seen in ‘mummified’ cells and occasional non-malignant cells (C; black arrows). Intense 

staining in a non-malignant cell (D; black arrow) and low level expression in residual GC (D; white 

arrow).  
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Figure 3.13 LRIG1 expression in a published gene expression dataset. GCOS outputs for LRIG1 

obtained from a study in which gene expression in micro-dissected HRS cells was compared to that in 

different B cell subsets. Compared to centrocytes and centroblasts (GC B cells), LRIG was down-

regulated in HL cells(319).  
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Table 3.7 LRIG1 expression in primary HL stratified by histological subtype. There was no significant 

association (p>0.05) 

  LRIG1 positive LRIG1 negative 

Nodular Sclerosis 12 6 

Mixed cellularity 1 1 

Lymphocyte predominant  0 3 

Hodgkin's disease (unspecified) 0 1 

 

 

Table 3.8 LRIG1 expression in primary HL stratified by MET status. There was no significant 

association (p>0.05) 

 LRIG1 positive LRIG1 negative 

MET positive 7 8 

MET negative 1 1 
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3.2.7 Effect of ectopic expression of LRIG1 on MET expression and activation in HL cell 

lines  

Based on my observations that LRIG1 is down regulated in the cell lines and in a proportion 

of primary HL cases, I next explored the influence of LRIG1 expression on the expression and 

phosphorylation of MET in HL cell lines. To do this, I transfected L428, L540 and KMH2 cell 

lines using either an LRIG1pcDNA3.1-myc tagged expression vector (a gift from Dr Colleen 

Sweeney, UC Davis Cancer Centre) or a corresponding control vector and harvested the cells 

after 48hrs. I first confirmed the expression of LRIG1 in transfected cells and subsequently 

showed that the ectopic expression of LRIG1 decreased the levels of MET and activated MET 

in L540 and KMH2 cells, but not in L428 cells (Figure 3.14).     
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Figure 3.14 Effect of LRIG1 over-expression on MET expression and activation in three HL derived 

cell lines, L428, L540 and KMH2. Cells were maintained under normal growth conditions then re-

suspended in fresh media at 5x105/ml 24hrs prior to transfection with LRIG1pcDNA3.1-myc plasmid 

or pcDNA3.1 vector. Pellets harvested at 48hrs and 30µg of total protein from whole cell lysate was 

loaded. LRIG1 over expression was confirmed and phospho-MET and total MET was analysed by 

immunoblotting. Equal loading control was confirmed by blotting for β-actin.  
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3.3 Discussion 

In this study I have used an array approach to show that HL cell lines display activation of 

multiple RTKs. Previous studies have reported that a number of RTKs are overexpressed 

either in HL cell lines, primary HRS cells, or both. However, many of these studies have not 

explored the activation status of these RTKs (Table 3.1). The work presented here provides 

the first unbiased survey of RTK activation in HL cells.  

The concurrent activation of numerous RTKs has been reported in other cancers such as 

glioblastoma(292). There is emerging evidence that RTKs co-operate to form signalling 

networks with one another as well as with other membrane bound signalling proteins under 

both physiological and pathological conditions(320). Within this network a single RTK may 

dominate and drive critical pathways. Additional activated RTKs which do not necessarily 

drive the malignant phenotype have the capacity to replace the dominant RTK and could 

account for the development of resistance to RTK inhibitors. Alternatively, multiple RTKs 

may feed into a single pathway to maintain robust signalling(175).  

An important observation made here was that HL cells are characterised by the consistent 

activation of members of three major RTK subfamilies: HGFR, AXL and FGFR. However, I 

showed that within individual HL cell lines, not all members of the same RTK family were 

activated. This observation is consistent with previous studies which show that members of 

the same RTK subfamily have overlapping functions. For example, the aberrant activation of 

different members of the Ephrin subfamily is observed in different tumours but all lead to 

the same invasive phenotype (321).  
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Comparison of the RTK shown to be activated in my study with those previously reported to 

be activated either in HL cell lines, primary HRS cells, or both, revealed only one RTK in 

common (CSF1R)(240). Furthermore, I did not detect the activation in HL cell lines, of 

PDGFRα, TRKA or TRKB which were previously reported to be activated in primary HRS cells 

(232;233). The failure to detect activation of these RTK in cell lines could be because either the 

cell lines are no longer dependent upon RTK activation for their growth, or that these RTK 

requires signals present in the microenvironment of HL for their activation. Notwithstanding 

the potential pitfalls associated with the analysis of cell lines, I was able to show for the first 

time the activation of several RTKs previously reported to be overexpressed in HL (FGFR2, 

FGFR3, MET and RON) (231-233;259), two of which (RON and MET) were studied in more detail 

and whose activation status was confirmed in primary HRS cells. Furthermore, I showed the 

activation in HL cells, of a number of RTKs not previously reported in these cells (Insulin R, 

IGF-IR, AXL, MER, RET and VEGFR3).  However, it is important to be wary of drawing too 

many conclusions from cell lines that have been grown in culture for many years and 

generated from patients with advanced, refractory or relapsed disease. Therefore, further 

studies will be required to determine if these additional RTK are also activated in primary 

HRS cells. 

I observed that some RTK were only activated in HL cells grown in serum-containing medium 

(e.g. Insulin receptor family members), suggesting that this group of RTK are activated by 

ligands present in serum. In contrast, I observed that the activation of other RTKs, for 

example VEGFR3, was more pronounced in serum-free medium suggesting that these RTK 

might be part of a response to serum withdrawal. A further group of RTK displayed 
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activation in both serum-containing and in serum-free medium; these included MET and 

RON.  

Previous studies have shown that MET is highly expressed by HRS cells, a result which I 

confirmed in my cases series(229;259). Furthermore, I showed using q-PCR analysis that MET 

mRNA levels were higher in HL cell lines compared to GC B cells, a finding that corroborates 

the results of a previous study in which germinal centres displayed only weak positivity for 

MET by immunohistochemistry(228). The over-expression of MET could alone be sufficient to 

promote HRS cells growth as it can induce receptor dimerization in the absence of ligand. 

The possibility that MET is not only over-expressed in HRS cells, but also aberrantly 

activated in these cells is supported by the observation, made in my study, that activated 

MET is detectable in HL cell lines.  

Mutation studies suggest that the constitutive phosphorylation of Tyr 1234 and Tyr 1235 

alone is not sufficient for transformation but also requires ligand (HGF) binding which 

activates the receptor leading to phosphorylation of Tyr1349 in the catalytic domain (254;317). 

Phosphorylation of Tyr1349 is required for the binding of adaptor proteins, including GAB1 

(322). For this reason I performed a more detailed study of the phosphorylation status of MET 

in the HL cell lines. I observed that only KMH2 cells displayed phosphorylation of both 

Tyr1349 and GAB1. The possibility that the phosphorylation of Tyr1349 is mediated by an 

autocrine pathway in KMH2 cells was supported by the observation that only this cell line 

secreted HGF. However, the detection in most cases of HL, of HGF expression by 

surrounding non-malignant cells (259), and my finding that HGF is not expressed by most HL 

cell lines, suggests that the activation of Tyr1349 in HRS cells might normally require signals 

from the tumour microenvironment.  
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I also studied the phosphorylation of MET at Tyr1003. The phosphorylation of this residue 

has been shown to be required for the degradation of MET(249). For example, mutation of 

this residue enhances the stability of MET and its loss leads to cellular transformation. In 

keeping with the reported ability of HGF to activate Tyr1003, phosphorylation of this residue 

was found to be particularly prominent in KMH2 cells. However, an unexpected finding was 

that this residue was phosphorylated, albeit less strongly, in the three remaining MET-

expressing HL cell lines. This could simply reflect phosphorylation in response to the 

constitutive activation of MET in these cells. Although phosphorylation of Tyr1003 might be 

expected to result in the degradation of MET, phosphorylation of this residue has also been 

shown to prevent binding of caspases to a caspase cleavage site, which includes this 

tyrosine residue, thereby potentially protecting cells from apoptosis (323;324). The influence of 

Tyr1003 phosphorylation on the activity of MET in HRS cells requires further investigation. 

One possible mechanism to account for the high level expression of MET in HL cells, at least 

in a proportion of cases, may involve EBV. I showed that LMP1 expression in GC B cells, the 

presumed progenitors of HL, up-regulated MET. This is consistent with a previous study that 

has shown that LMP1 can up-regulate MET in NPC cells(316). It has also been shown that 

CD40L and EBV infection can up-regulate MET in B cells (228). Although others have shown 

that MET is more frequently expressed by HRS cells in EBV-positive cases of HL, I found no 

such association (229). The overexpression of MET in EBV-negative cases suggests that in the 

absence of virus other mechanism may up-regulate MET. For example, it has been shown 

that the aberrant activation of AP-1 in HL can up-regulate MET expression(260). 

Consistent with a previous study I observed that the other member of the HGFR family, RON 

was highly expressed in both HL cell lines and in primary HRS cells(232;233). I was also able to 
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show that RON was activated in these cells. The detection of RON and Met expression in 

HRS cells of the same case suggest they may be co-expressed by the same cells. This could 

be important because it has been previously shown that the co-expression Met and RON 

permits the reciprocal phosphorylation of these receptors in the absence of their cognate 

ligands (325). Furthermore, it has also been shown that MET can be activated following the 

ligation of RON with its ligand, MSP and that the transforming ability of a constitutively 

activated Met is reduced when it hetero-dimerizes with an inactive RON receptor (326).  

LRIG1 has been shown to negatively regulate the expression and activation of MET (250). I 

observed that LRIG1 was significantly down-regulated in a re-analysis of a microarray study 

in which gene expression in primary HRS cells was compared with that in centrocytes(319). I 

also showed that LRIG1 protein expression was down-regulated in all HL cell lines and that 

its re-expression in two cell lines reduced MET expression and activation. Although analysis 

of primary tissues revealed the down-regulation of LRIG1 in less than half of cases, which 

was in contrast to the micro-array analysis described above which showed that LRIG1 was 

down-regulated in all cases. In the cases I examined the loss of LRIG1 was not associated 

with expression of MET and I was unable to determine if there was any correlation with the 

activation of MET in these samples.  

In conclusion I have shown that HL cells are characterised by the activation of multiple RTK, 

many of which have not previously been shown to be activated in these cells. I have 

confirmed the over-expression and activation in HRS cells of two of these RTK, MET and 

RON. Finally, I have presented preliminary evidence suggesting that LRIG1 is down-regulated 

in HRS cells in a proportion of cases, and that it can regulate MET expression and activation 

in HL cell lines.  
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CHAPTER 4 

The receptor tyrosine 
kinase, Discoidin domain 
receptor 1, is an LMP1 
target gene which is 
aberrantly expressed 
and activated in 
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cells 
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4.1 Introduction 

The importance of the tumour microenvironment in the pathogenesis of HL is highlighted by 

the existence of numerous interactions between HRS cells and stromal cells which promote 

the proliferation and survival of HRS cells. These interactions are facilitated by various 

receptor-ligand pairs which include CD40-CD40L, CD30-CD30L and RANK-RANKL(89;141). 

However, little is known about the contribution of the non-cellular components of the 

microenvironment to the pathogenesis of HL. The abundance of collagen in the HL 

microenvironment is well described but it is not known if it enhances HRS cell growth or 

survival(3).  

Collagen can serve as a ligand for several different types of receptor which include the 

discoidin domain receptors, DDR1 and DDR2(148). Although DDR2 has been shown to be 

expressed in HL(232;233), DDR1 has not been described in this malignancy, but is frequently 

over-expressed in other cancers including hepatocellular carcinoma, breast cancer and non-

small cell lung carcinomas(278;327;328). Furthermore, the activation of DDR1 by collagen has 

been shown to induce many of the hallmarks of cancer, including increased invasiveness and 

protection from apoptosis(270;329;330). Many of the signalling molecules activated by DDR1 

include several that are known to be aberrantly activated in HL e.g. STAT5(331) and NF-κB(282)  

The objectives of this chapter are to: 

• Determine if DDR1 is expressed in HRS cells and if its activation could be induced by 

collagen. 

• Investigate if DDR1 is regulated by the EBV oncogene, LMP1.   

• Study the effects of DDR1 knockdown on the phenotype of HL cell lines.  



Results Part II 

 

134 
 

4.2 Results 

4.2.1 DDR1 is over-expressed in HL cell lines  

I first compared the expression of DDR1 in a panel of HL and BL cell lines with that in CD10+ 

GC B cells, the presumed progenitors of these two lymphomas. Three different tonsil 

samples were used in this analysis (samples provided by Dr Vockerodt). Initially, I used 

Taqman® q-PCR primers and probe (set 1) to amplify a sequence within the discoidin domain 

of DDR1 (Figure 4.1). This assay should detect all known isoforms of DDR1. I found that, 

compared to GC B cells, DDR1 expression was higher in 5/6 HL cell lines and in 1/3 BL cell 

lines (Figure 4.2a). I repeated the q-PCR with a different set of primers (set 2) which 

amplified a sequence within the C-terminus (Figure 4.1). Figure 4.2b shows that q-PCR 

analysis with this second set of primers and probe produced essentially similar results to 

those obtained with the first set. 

I next studied the expression of DDR1 in the same cell lines using a polyclonal antibody 

which was raised against the C-terminus of DDR1. Figure 4.3 shows the results of 

immunoblotting with this antibody. I observed a band at 126kDa which corresponds to one 

or both full length DDR1 proteins, DDR1a and DDR1b. I noted two further bands at 86kDa 

and 63kDa. The 63kDa band might be the membrane bound β-subunit. The identity of the 

86kDa band is unknown but it is strongly expressed in 5/6 HL cell lines and is only weakly 

expressed or absent in BL lines. It is not likely to be DDR1e which has a predicted weight of 

95kDa, nor is it DDR1d, a truncated isoform which cannot be detected with this antibody. 

L540 cells do not appear to express full length DDR1 but do have these additional bands.  
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Figure 4.1 Schematic of the position of q-PCR primer amplification sites and the DDR1 antibody 

recognition region against three DDR1 isoforms. Two different primers and probes were used to 

analyse DDR1 mRNA expression, the first amplifies a part of the discoidin domain and the second, a 

part of the C-terminus. The antibody used for detection of protein is a polyclonal antibody raised 

against the C-terminus.  
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Figure 4.2 Expression of DDR1 mRNA in a panel of HL and BL cells. The relative expression of DDR1 

mRNA as determined by q-PCR analysis using two sets of Taqman® primers and probes specific for 

DDR1 (A = set 1 and B = set 2, see figure 4.1 for primer locations). All samples were analysed in 

triplicate using the ΔΔ CT method, the unsorted CD10+ GC B cells included in the comparison were 

from three different tonsils (set 1 only). The results shown are representative of three independent 

experiments. 

 

 

A 

B 
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Figure 4.3 Expression of DDR1 protein in a panel of HL and BL cell lines. Immunoblot of whole cell 

lysates using a polyclonal DDR1 antibody. A band is seen at the expected size of 126kDa 

corresponding to DDR1a/b. Two further bands were identified at 86kDa and 63kDa. Equal loading 

was confirmed using an antibody against β-actin (41kDa).      
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4.2.2 DDR1 is expressed in primary paediatric HRS cells  

Having established that DDR1 is over-expressed in HL cell lines, I then studied the expression 

of DDR1 in primary HL. Paraffin embedded biopsies of paediatric HL were obtained from the 

CCLG. 54 cases were available for this analysis. Immunohistochemistry using the DDR1 

polyclonal antibody described above revealed strong expression of DDR1 in primary HRS 

cells in 69% (37/54) of cases. DDR1 expression was localised mainly to the cell membrane 

and as aggregates in the cytoplasm. I also noted DDR1 was expressed by a proportion of 

plasma cells. There was no significant association between DDR1 expression and histological 

subtype (p>0.05) (Table 4.1). No expression of DDR1 was detectable in the germinal centres 

of non-malignant tonsils (Figure 4.4).  

4.2.3 HRS cells are intimately associated with collagen in HL 

Following the observation that primary HRS cells over-express DDR1, I next explored the 

distribution of its ligand, collagen, in primary HL. First, I used a Van Gieson’s stain which is a 

method for the specific detection of collagen in tissue sections but which does not 

differentiate individual collagen types (Figure 4.5). I also performed immunohistochemistry 

for type I and type IV collagen on selected cases. I observed that in some cases type IV was 

more strongly associated with HRS cells whereas in other cases both collagen types were 

present (Figure 4.6).  

I observed two main patterns of collagen distribution. In the first pattern (pattern 1), there 

was prominent collagen deposition which was intimately associated with the HRS cells. In 

the second pattern (pattern 2) there was less collagen present in the immediate vicinity of 

the HRS cells and only a few tumour cells were in direct contact with collagen. I sub-divided 
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HL cases into one of two groups using an arbitrary cut off of greater than or less than 50% of 

HRS cells in contact with collagen. Tables 4.2 and 4.3 shows the numbers of HL cases in each 

group (n=38) stratified by DDR1 status and by subtype. Cases showing the pattern I 

localisation of collagen were significantly more likely to be of the NS subtype (p=0.0041). 

However, there was no significant association between the distribution of collagen and 

DDR1 expression.  
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Figure 4.4 Immunohistochemistry for DDR1. Representative photomicrographs of primary HRS cells 

in paediatric HL showing immuno-reactivity to a polyclonal DDR1 antibody A) Membrane staining in 

case 14-193, Nodular lymphocyte predominant HL  B) Membrane staining in case 14-172, nodular 

sclerosis C) Case 14-219,mixed cellularity showing aggregates of DDR1 in the cytoplasm D) No 

staining was observed in GC B cells of normal tonsil tissue.  
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Table 4.1 DDR1 expression stratified by subtype. There was no significant association between 

subtype and DDR1 positivity (n=54 p>0.05). 

 DDR1 positive DDR1 negative 

Nodular sclerosis 25 9 

Mixed cellularity 7 2 

Lymphocyte predominant 3 3 

Hodgkin’s disease (unspecified) 2 3 

 

 

 

Figure 4.5 Detection of collagen in paediatric HL. A Van Gieson’s stain to detect all collagen types in 
paediatric HL, visualised as a bright pink stain. In many cases the collagen ‘wraps’ around and 
associates intimately with individual HRS cells.    
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Table 4.2 Numbers of cases of HL classified on the basis of the distribution of collagen immediately 

adjacent to HRS cells, stratified by DDR1 status. There was no significant association between DDR1 

expression and the distribution of collagen (n=38 p>0.05) 

 Collagen in direct contact >50% 
(Pattern 1) 

Collagen in direct contact <50% 
(Pattern 2) 

DDR1 positive 17 10 

DDR1 negative 6 5 

 

 

Table 4.3 Numbers of cases of HL classified on the basis of the distribution of collagen immediately 

adjacent to HRS cells, stratified by histological subtype. There was a significant association between 

histological subtype and the distribution of collagen (n=38 p=0.0041) 

 Collagen in direct contact 
>50% (Pattern 1) 

Collagen in direct contact 
<50% 

(Pattern 2) 

Nodular sclerosis 20 6 

Mixed cellularity 3 3 

Lymphocyte predominant 0 4 

Hodgkin’s disease (unspecified) 0 2 
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Figure 4.6 (i) Collagen and DDR1 expression in paediatric HL Case 4-409 (EBV negative NS HL 
subtype) A) A Van Gieson’s stain showing a thick band of collagen enveloping tumour cells B) 
Immunohistochemistry for collagen type I (black arrow indicates a strongly positive fibroblast) C) 
Immunohistochemistry for collagen type IV D) Immunohistochemistry for DDR1 
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Figure 4.6 (ii) Collagen and DDR1 expression in paediatric HL Case 4-499 (EBV negative NS HL 
subtype) A) A Van Gieson’s stain detecting collagen in contact with HRS cells B) 
Immunohistochemistry for collagen type I C) Immunohistochemistry for collagen type IV D) 
Immunohistochemistry for DDR1 expression 
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4.2.4 Ectopic expression of LMP1 induces DDR1 in GC B cells  

Interrogation of an earlier microarray analysis performed following the ectopic expression of 

LMP1 in GC B cells had suggested that DDR1 was up-regulated by this viral gene(172). Using 

RNA from this same experiment, I performed q-PCR on two LMP1 transfected samples and 

two empty vector controls seeking independent validation of this array result. Figure 4.7 

shows that in both samples there was a striking up-regulation of DDR1 following LMP1 

expression. I next used flow cytometry to measure DDR1 protein expression. For this 

experiment CD10+ GC B cells were isolated from a fresh tonsil and co-transfected with either 

LMP1 or empty vector together with NGFR which was subsequently used to enrich 

transfected cells (transfection performed by Dr Vockerodt). Following this, I harvested and 

incubated the cells with primary DDR1 antibody followed by a rabbit-FITC conjugated 

secondary antibody. Gating was performed so that only live and transfected cells were 

included in the comparison of DDR1 expression in LMP1-transfected and empty vector-

transfected control cells. A live transfected population of 13% is consistent with previous 

transfection experiments in GC B cells(172). Figure 4.8 shows that when compared to control 

cells, a 20% increase in the number of cells expressing DDR1 was observed in LMP1-

transfected GC B cells.  

To address the possibility that the up-regulation of DDR1 by LMP1 could simply reflect the 

ability of this viral gene to drive GC B cell differentiation. I, therefore, investigated the 

expression of DDR1 among different B cell subsets. The isolation of naïve B cells, 

centrocytes, centroblasts and memory B cells was performed by Dr Anderton as previously 

described(332). I performed q-PCR analysis on mRNA extracted from these four subsets and 

found that DDR1 expression was lowest in both centrocytes and centroblasts but higher in 
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naïve B cells and in memory B cells (Figure 4.9). These results are consistent with the re-

analysis of a published global gene expression microarray (319) which showed that DDR1 

expression was higher in memory and plasma cells compared to GC B cells (Figure 4.10).  

Finally, using the same patient cohort described in section 4.3.2 I investigated if there was an 

association between DDR1 and LMP1 expression in primary tumours. A chi-squared test 

showed that there was no significant correlation between LMP1 status and DDR1 expression 

(p>0.05; Table 4.4).         
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Figure 4.7 Relative expression of DDR1 mRNA in CD10+ GC B cells transfected with either LMP1 or with 

empty vector. A q-PCR analysis using Taqman primers and probe (set 1) for DDR1 was performed on two 

separately isolated and transfected CD10+ populations. Results are shown as fold change in LMP1 expressing 

cells relative their corresponding vector only control which was set to a value of 1. Samples were analysed in 

triplicate and are presented as ΔΔ CT values in comparison to corresponding vector control.     
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Figure 4.8 DDR1 protein expression in CD10+ GC B cells transfected with either LMP1 or empty 

vector. Samples were incubated with DDR1 primary antibody followed by a FITC-conjugated rabbit 

secondary antibody. A) The population to be analysed were first gated by morphology and propidium 

iodide stain to identify live cells, then selected by NGFR expression.  B) Further gates were applied to 

account for fluorescence from DDR1 unconjugated antibody and rabbit-FITC antibody. C) The vector 

control population showed a similar fluorescence to rabbit-FITC only sample while an increase in 

DDR1-FITC positive cells is seen when LMP1 is ectopically expressed consistent with an up-regulation 

of DDR1 in LMP1 expressing cells.       
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Figure 4.9 Expression of DDR1 mRNA across different B cell subsets. B cell subsets were separated as 

described in Materials and Methods (section 2.16 page 96). mRNA from naïve B cells, centroblasts, 

centrocytes and memory B cells were analysed in triplicate by q-PCR using Taqman primers and probe (set 

1) for DDR1. Results are shown as fold change relative to centroblasts which was set to a value of 1 as 

determined by q-PCR analysis using a ΔΔCT method.  
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Figure 4.10 DDR1 expression in a published gene expression dataset. GCOS outputs for DDR1 

obtained from a study in which gene expression in micro-dissected HRS cells was compared to that in 

different B cell subsets. Compared to centrocytes and centroblasts (GC B cells), DDR1 was over-

expressed in HL cells in a proportion of cases. These data are consistent with the over-expression of 

DDR1 observed in my study.  

 

Table 4.4 DDR1 expression in primary HL stratified by EBV status There was no statistically 

significant association between DDR1 expression and EBV status (Chi-squared test, p>0.05) 

 DDR1 positive DDR1 negative 

LMP1 positive 20 9 

LMP1 negative 17 10 
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4.2.5 Regulation of DDR1 phosphorylation by collagen in HL cells 

I next investigated the activation of DDR1 in HL cell lines. Soluble type I collagen has been 

shown to activate DDR1 in range of cell types. Therefore, I used media supplemented with 

soluble type I collagen to study the activation of DDR1 in HL cell lines. Cells were stimulated 

with collagen for defined periods of time then harvested and DDR1 phosphorylation 

measured using a method adapted from L’hote and colleagues(267). This method is based on 

the immunoprecipitation (IP) of DDR1 from whole cell lysates followed by immunoblotting 

for the detection of phosphorylated tyrosine residues. Equal IP efficiency was confirmed by 

stripping the blot and re-probing for DDR1. The IP technique was optimised on a colon 

cancer cell, HCT116, reported to show DDR1 phosphorylation upon stimulation with collagen 

type I(267). I confirmed that in HCT116, the phosphorylation of DDR1 peaked at 12 hours 

following the addition of collagen (Figure 4.11). 

Once established, I used this method to analyse the phosphorylation of DDR1 in L428 cells. 

L428 cells were grown in serum free conditions overnight and harvested 2 hours after the 

addition of soluble collagen type I or media alone as a control. Figure 4.12 shows that in 

L428 cells, DDR1 phosphorylation was higher in control cells compared to those cells treated 

with collagen despite comparable levels of total DDR1. HCT116 stimulated with type I 

collagen for 12 hours was included as a positive control. 
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Figure 4.11 Detection of phosphorylated DDR1 in HCT116 cells following stimulation with collagen 

type I. Immunoblot for pan-phosphorylated tyrosine proteins following immunoprecipitation with 

DDR1 antibody; a strong band corresponding to DDR1a/b at 126kDa is detected 12 hrs after the 

addition of collagen. 500 µg of whole cell lysate was required for IP experiments. IP efficiency was 

confirmed using the same antibody to DDR1 to that used to perform the IP.   
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Figure 4.12 Detection of phosphorylated DDR1 in L428 cells following stimulation with collagen 

type I for 2hrs. A) Immunoblot for pan-phosphorylated tyrosine proteins following 

immunoprecipitation with DDR1 antibody. A strong band corresponding to DDR1a/b at 126kDa is 

detected. In addition, there is a band in the L428 cell line around 60kDa and a slightly higher band in 

the HCT116 cell line at the expected weight for the β subunit. B) The blot was stripped and re-probed 

with DDR1 antibody to confirm equal IP efficiency.  
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I further considered the effect of the addition of type I collagen on the activation of DDR1 in 

L428 cells grown in either serum-containing or in serum free media over a time course. I 

observed that the DDR1 present in L428 cells was phosphorylated in the absence of collagen 

in both 10% serum and in serum free conditions. I repeated this experiment with the L591 

HL cell line. In contrast to L428 cells, L591 cells showed no detectable DDR1 phosphorylation 

in the absence of collagen but phosphorylation was induced after collagen treatment in cells 

grown in 10% serum but not in serum free media. These data suggest that the 

phosphorylation of DDR1 by collagen in L591 cells requires a co-factor present in the serum 

(Figure 4.13). 



 

 
 

 

Figure 4.13 Activation of DDR1 in two HL cell lines A) L428 and B) L591 following stimulation with collagen type I 24hrs prior to treatment the cells were 

washed and re-suspended in either 10% serum or serum free media. 10µg/ml of soluble type I collagen was added to the cells (T=0). The cells were 

harvested at the time points indicated. Immunoblotting was performed for pan-phosphorylated tyrosine proteins following immunoprecipitation with DDR1 

antibody. The positive control was HCT116 cells stimulated with collagen for 12hrs and the negative control was HCT116 cells stimulated in the same 

manner but the IP was performed with total rabbit immunoglobulins A) Phosphorylation of L428 cells was  observed in the absence collagen treatment
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4.2.6 Knockdown of DDR1 expression in HL cell lines 

Having shown that DDR1 is constitutively activated in L428 cells, I used this cell line to 

investigate the impact of DDR1 on the phenotype of HL cells. I nucleofected L428 cells with 

either smart pool DDR1 siRNA or scrambled siRNA as a control and harvested the transfected 

cells at 24, 48 and 72 hours post-transfection. Figure 4.14 shows regions within the full 

length DDR1 sequence that are targeted by individual siRNAs contained with this pool. When 

compared to control cells, the treatment of L428 cells with the pooled siRNA efficiently 

reduced both DDR1 mRNA and protein expression (Figure 4.15). The knockdown showed loss 

of the 126kDa protein whereas other bands reacting with the DDR1 antibody were 

unaffected.  
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Figure 4.14 Schematic of the exon structure of full length DDR1 (NM_013994.2) illustrating the 

coding sequence targeted by individual corresponding siRNA contained within the Dharmacon 

SMARTpool. 

 



Results Part II 

| 158  
 

 

 

Figure 4.15 Transient silencing of DDR1 expression in L428 cells The L428 cell line was nucleofected 

using smart pool DDR1 siRNA or corresponding control and cells were harvested at 24, 48 and 72hrs 

post transfection for confirmation of knockdown A) mRNA expression of DDR1 following knockdown. 

The RNA analysis was performed in triplicate and relative DDR1 mRNA levels were calculated using 

ΔΔ CT. B) 30µg of total protein from whole cell lysate was loaded and immunoblotted for DDR1 using 

polyclonal C-terminal  DDR1 antibody. Equal loading was confirmed using an antibody to MCM7.   
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I investigated the effect of the knockdown of DDR1 expression in L428 cells on two key 

phenotypes, proliferation and apoptosis. For all the following experiments described here I 

confirmed the knockdown of DDR1 to levels comparable to those shown in Figure 4.15. I 

used a ‘proliferation assay’ (Promega see section 2.9.1 page 84) which measures metabolic 

activity as an indicator of proliferation. I observed that the knockdown of DDR1 had no 

effect on the proliferation of L428 cells (Figures 4.16). I used two assays to study the effects 

of DDR1 on apoptosis; flow cytometric detection of Annexin V-FITC and immunoblotting for 

PARP cleavage. Staurosporine treated L428 cells were used as a positive control in the 

Annexin V experiment. Figures 4.17 and 4.18 which are representative of three experimental 

replicates show that the knockdown of DDR1 had no effect on the number of L428 cells 

undergoing apoptosis.   

Next I explored in L428 cells the influence of DDR1 knockdown on three of its downstream 

molecules, STAT3, STAT5 and the adaptor protein NCK2, which have been reported in other 

cell types(277;331;333). Immunoblotting of transfected L428 cells showed no difference either in 

the protein levels or in the phosphorylation status of STAT3 and STAT5 following DDR1 

knockdown. Immunoblotting also revealed no change in the levels of NCK2 after DDR1 

knockdown (Figure 4.19). 
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Figure 4.16 Proliferation in L428 cells following the knockdown of DDR1 L428 cells were 

nucleofected with DDR1 siRNA or scrambled siRNA as a corresponding control. At 22, 46 and 70hrs 

post transfection the Promega proliferation reagent was added and the absorbance at 490 nm was 

read 2 hours later. This assay measures metabolically active cells. 

 

 

 

Figure 4.17 PARP cleavage in L428 cells following DDR1 knockdown 30µg of protein from whole cell 

lysate from L428 cells in which DDR1 knockdown was confirmed were immunoblotted for PARP. L591 

was used as a positive control for PARP cleavage and equal loading was confirmed using an antibody 

against β-actin.  
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Figure 4.18 Apoptosis in L428 cells using Annexin V staining measured by flow cytometry 48hrs 

post nucleofection. L428 cells were transfected with either DDR1 siRNA or scrambled siRNA as a 

control and harvested at 48 hrs for Annexin V analysis. Cells that are positive for FITC and negative 

for PI are undergoing apoptosis (LR quadrant). Cells positive for both FITC and PI are dead, necrosed 

or at end stage apoptosis (UR quadrant) while cells negative for both are alive (LL quadrant). L428 

cells treated with 1 µM of staurosporine served as a positive control for the assay.  
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Figure 4.19 Immunoblot for downstream targets of DDR1 following its knockdown in L428 cells. 

L428 cells were nucleofected with DDR1 siRNA or scrambled siRNA as a control and pellets were 

harvested at 24, 48 and 72hrs post transfection. Immunoblotting for pSTAT5 and pSTAT3 was 

performed first then the membrane was stripped and immunoblotted for total STAT5 and STAT3 

respectively. Equal loading was confirmed using an antibody against MCM-7. 
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4.2.7     Gene expression profiling in L428 cells treated with DDR1 siRNA 

Gene expression profiling was used to investigate the influence of DDR1 loss on the global 

transcriptional programme of L428 cells. To do this, I repeated the knockdown of DDR1 in 

the L428 cell line; RNA was isolated from three independent experiments in which L428 cells 

were transfected with either DDR1 siRNA or with scrambled siRNA as a control. RNA was 

harvested 48 hours post transfection.  

RNA was biotin-labelled with an IVT labelling kit (Affymetrix, Santa Clara, CA, USA), then 

randomly fragmentation and hybridized to Affymetrix HG-U133 Plus2 microarrays. Scanned 

images of microarray chips were analyzed using Affymetrix GeneChip Operating Software 

(GCOS).  

Ratios for GAPDH and beta-actin (3’/5’) were within acceptable limits (0.92- 0.97 for GAPDH 

and 1.20- 1.47 for beta-actin). BioB spike controls were present in all 6 chips, with BioC, 

BioD, and CreX also present in increasing intensity. Scaling factors for all arrays ranged from 

1.45 to 2.63.  Average background were within acceptable limits from 31 to 36, as well as 

raw Q values (0.89 – 1.02).  The percentage of genes called present was comparable across 

arrays from 37.1% to 40.5%. The gene expression signal was calculated using the MAS5 

algorithm of Affymetrix Expression Console with the default settings except the target signal 

was set to 100.  

Gene expression profiles of L428 cells transfected with DDR1 siRNA were compared with 

those of L428 cells transfected with scrambled siRNA. Differentially expressed genes with p 

values < 0.01 and fold change > 1.3 were identified using limma(334). The knockdown of DDR1 

in L428 cells was followed by the up-regulation of 18 genes and the down-regulation of 43 
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genes. Although the down-regulated genes included DDR1 the fold change observed (-1.83) 

was substantially less than that detected by q-PCR analysis on the same RNA. It was also 

notable that the fold changes in expression for those genes recorded as significant were very 

modest (only 3 genes had a fold change > 1.5). When the 60 probe sets differentially 

expressed following knockdown of DDR1 were compared with the top 60 probe sets 

differentially expressed in L428 cells compared with GC B cells, and with the top 60 probe 

sets differentially expressed in L428 cells following transfection with LMP1, no overlapping 

probe sets were found in either comparison. However, it should be noted that the LMP1-

L428 experiment was performed on the ‘Focus array’ which list substantially few probe sets 

(Affymetrix).  
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Table 4.5 List of genes differentially expressed following DDR1 knockdown in L428 cells 

Gene  
 

NCBI Gene 
Symbol 

Fold 
Change 

discoidin domain receptor tyrosine kinase 1 DDR1 -1.83 

solute carrier family 2 (facilitated glucose transporter), member 3 SLC2A3 -1.52 

ectonucleoside triphosphate diphosphohydrolase 1 ENTPD1 -1.49 

ATPase, class VI, type 11B ATP11B -1.49 

LAG1 homolog, ceramide synthase 6 LASS6 -1.48 

sortilin 1 SORT1 -1.45 

myelin protein zero-like 1 MPZL1 -1.44 

ankyrin repeat and FYVE domain containing 1 ANKFY1 -1.42 

small nucleolar RNA host gene 4 (non-protein coding) SNHG4 -1.40 

RAP1, GTP-GDP dissociation stimulator 1 RAP1GDS1 -1.40 

acyl-CoA binding domain containing 5 ACBD5 -1.39 

Coiled-coil domain containing 124 CCDC124 -1.38 

muscleblind-like 2 (Drosophila) MBNL2 -1.38 

GrpE-like 2, mitochondrial (E. coli) GRPEL2 -1.38 

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase like 2 CTDSPL2 -1.38 

Mix1 homeobox-like 1 (Xenopus laevis) MIXL1 -1.38 

bone morphogenetic protein 1 BMP1 -1.36 

mbt domain containing 1 MBTD1 -1.36 

secretory carrier membrane protein 1 SCAMP1 -1.35 

MORN repeat containing 1 MORN1 -1.35 

bicaudal D homolog 2 (Drosophila) BICD2 -1.35 

family with sequence similarity 177, member A1 FAM177A1 -1.35 

chromosome 9 open reading frame 41 C9orf41 -1.34 

transmembrane emp24 protein transport domain containing 8 TMED8 -1.34 

vesicle transport through interaction with t-SNAREs homolog 1B (yeast) VTI1B -1.34 

Mdm2, transformed 3T3 cell double minute 2, p53 binding protein (mouse) binding protein, 104kDa MTBP -1.33 

mannosidase, endo-alpha MANEA -1.33 

WD repeat domain 64 WDR64 -1.33 

RAD9 homolog B (S. pombe) RAD9B -1.33 

NMDA receptor regulated 2 NARG2 -1.33 

sorting nexin 13 SNX13 -1.33 

Hypothetical protein LOC100289294 LOC100289294 -1.32 

Scm-like with four mbt domains 2 SFMBT2 -1.32 

TAF4b RNA polymerase II, TATA box binding protein (TBP)-associated factor, 105kDa TAF4B -1.32 

transmembrane protein 67 TMEM67 -1.31 

zinc finger protein 567 ZNF567 -1.31 

bone morphogenetic protein receptor, type IB BMPR1B -1.31 

hypothetical protein LOC100128788 LOC100128788 -1.31 

AT hook containing transcription factor 1 AHCTF1 -1.31 

 Continued overleaf 
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EFR3 homolog B (S. cerevisiae) EFR3B -1.31 

solute carrier family 39 (zinc transporter), member 14 SLC39A14 -1.31 

REX1, RNA exonuclease 1 homolog (S. cerevisiae)-like 1 REXO1L1 -1.30 

post-GPI attachment to proteins 3 PGAP3 -1.30 

chromosome 14 open reading frame 79 C14orf79 1.31 

alkaline ceramidase 1 ACER1 1.31 

epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene homolog, avian) EGFR 1.31 

G protein-coupled receptor 44 GPR44 1.31 

cementum protein 1 CEMP1 1.31 

phosphodiesterase 5A, cGMP-specific PDE5A 1.31 

glutamate decarboxylase 2 (pancreatic islets and brain, 65kDa) GAD2 1.31 

protein phosphatase 2, regulatory subunit B, gamma PPP2R2C 1.32 

Similar to hCG1997308 LOC100287627 1.32 

RAB40B, member RAS oncogene family RAB40B 1.32 

phosphodiesterase 6B, cGMP-specific, rod, beta PDE6B 1.33 

NK6 homeobox 1 NKX6-1 1.34 

Erythropoietin EPO 1.34 

adenylosuccinate synthase like 1 ADSSL1 1.38 

hypothetical LOC388796 /// small nucleolar RNA, H/ACA box 71B LOC388796 1.40 

hypothetical LOC388796 /// small nucleolar RNA, H/ACA box 71B SNORA71B 1.40 

pleckstrin homology domain containing, family G (with RhoGef domain) member 4B PLEKHG4B 1.42 

histone cluster 1, H2bg HIST1H2BG 1.50 
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4.2.8    Sequence analysis of DDR1 cDNA in HL cell lines 

In the preceding experiments I had consistently observed several bands on immunoblotting, 

which were unchanged following DDR1 knockdown. I next explored the possibility that these 

bands might represent mutated forms or alternative splice variants of DDR1. An initial rapid 

screen of the coding region of DDR1 was performed using 6 overlapping primer pairs 

spanning the entire coding sequence of the DDR1 receptor (Figure 4.20). Sequencing was 

performed on the L428 and L591 cell lines. In both cell lines 5 out of 6 primer pairs gave 

clean PCR products. However, the primer pair spanning the juxtamembrane region gave 

multiple bands (Figure 4.21). Manual inspection and NCBI BLAST analysis showed that 

neither L591 nor L428 cells harboured point mutations, insertions or deletions in the exon 

sequence. The sequencing of genomic DNA was not performed so any mutations in the 

intron sequence or mutations of the intron-exon boundaries will not have been detected.  

4.2.9 Detection of multiple DDR1 transcripts in HL cells 

The sequence generated from the primer pair spanning the juxtamembrane region had a 

region of overlapping sequence with a similar pattern in both L428 and L591 cells (Figure 

4.22). On closer inspection the sequence is a single clean sequence for exon 10 but two 

overlapping sequences begin where exon 11 should be. A more detailed examination using 

NCBI BLAST software showed two mRNA transcripts were present. In summary, the 

sequence analysis of L428 and L591 cells suggests that there are two predominant isoforms 

of DDR1 that co-exist in HL cell lines. In the first, only exon 11 is absent and is consistent with 

the presence of DDR1a while in the second, both exon 11 and 12 were spliced out. ExPASy 

translation of this second sequence shows a shift in the open reading frame to the amino 

acid sequence GAPV followed by a stop codon, the same as that found in DDR1d.   
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Figure 4.20 Schematic of primer pair location in relation to DDR1 exon sequence. (Table 2.6 

page 94) 

 

 

 

 

Figure 4.21 Reverse transcriptase PCR of 6 primer pairs spanning DDR1. cDNA was synthesised and 

amplified from L428 and L591 cell lines A) A single PCR product was detected for primer pairs 1, 2, 3, 

5 and 6. Multiple products were detected after amplification with primer pair 4 which spans exon 10 

and exon 13. No bands were seen in the water control. 
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Figure 4.22 Sequence analysis of a part of the juxatamembrane region of DDR1 in L591 and L428 

cells. There are no mutations in the exon sequence but there is an overlapping sequence after exon 

10. BLAST analysis shows that in this region, exon 11 is absent and the overlapping sequence consists 

of exon10 followed by exon 12. This is consistent with the presence of DDR1a which has exon 11 

spliced out. In the second sequence exons 11 and 12 have been spliced out which might represent 

DDR1d.  

 

 



Results Part II 

| 170  
 

 The existence of DDR1a is supported by the detection of the 126kDa protein by 

immunoblotting. However, because DDR1d lacks the C-terminus it cannot be recognised by 

the antibody used in immunoblotting. DDR1e retains the C-terminus and has exons 11 and 

12 spliced out but has an additional deletion of the first part of exon 10. I did not observe 

this deletion in either cell line. The absence of DDR1e in HL cell lines is further supported by 

the failure to detect a protein at the predicted weight of 95kDa. 

Sequencing of the PCR products obtained after amplification with primer pair 4 yielded two 

sequences consistent with the presence of DDR1a and DDR1d.  However, it is clear from 

Figure 4.21 that there are multiple minor products which may have been masked by these 

more abundant isoforms. Therefore, to identify potentially novel alternative splice variants 

encompassing the entire juxtamembrane, I designed a new pair of primers which amplified 

this region. I performed PCR using these primers on both L428 and L591 cells. Bands were 

extracted, purified and sequenced. The strongest band generated a sequence corresponding 

to DDR1a. A weaker band gave a sequence consistent with DDR1b and a third band a 

sequence consistent with DDR1d (the sequence data is not shown here as they represent 

well established isoforms). Sequence analysis of four additional bands identified novel 

transcripts. These sequences were subjected to ExPASy translate software to determine if 

they might be translated to produce functional proteins. Figure 4.23 shows the predicted 

amino acid sequence of these four novel transcripts which are aligned to the amino acid 

sequence of DDR1c, the longest isoform. Transcript 1 has similarities to DDR1d because it 

lacks exon 11 and is truncated at the same position in exon 13 but unlike DDR1d it retains a 

part of exon 12. The three other transcripts shown in Figure 4.23 are characterised by a shift 
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in the open reading frame resulting in a different amino acid sequence to that of DDR1c. 

Furthermore, they display variable losses between exon 11 and exon 14. 
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R E P P P Y Q E P R P R G N P P H S A P C V P N G S A L L L S N P A Y R L L L A T Y A R P P     DDR1  
R E P P P Y Q E P R P R G N P P H S A P C V P N G S………..……………………………………….   Transcript 1 
R E P P P Y Q E P R P R G N P P H S A P C V P…………………………………………………….….    Transcript 2 
R E P P P Y Q E P R P R G N P P H S A P C V P……………………………………………………..…    Transcript 3  
R E P P P Y Q E P R P R G N P P H S A P C V P N G S A L L L S N P A Y R L L L A T Y A R P P   Transcript 4       
 
 
 
R G P G P P T P A W A K P T N T Q A Y S G D Y Met E P E K P G A P L L P P P P Q N S V P H      DDR1   
………………………………………………………………….……………………………………….........      Transcript 1 
………………………………………………………………….…………………………………………….       Transcript 2 
………………………………………………………………….…………………………………………….       Transcript 3 
R G P G P P…………………………………………………..…………………………………………….       Transcript 4 
 
 
Y A E A D I V T L Q G V T G G N T Y A V P A L P P G A V G D G P P R V D F P R S R L R F K        DDR1 
……………………  ..G R H R G Q H L C C A C T A P R G S R G W A P Q S G F P S I S T P L Q     Transcript 1 
………………………………………………………………………………………………………….……..     Transcript 2 
………………………………………………………………………………………………………….……..     Transcript 3 
………………………………………………………………………………………………………….……..     Transcript 4 
 
 
 
E K L G E G Q F G E V H L C E V D S P Q D L V S L D F P L N V R K G H P L L V A V K I L R P     DDR1 
G E A W R G P V W G G A P V (STOP)                                                                                               Transcript 1 
………………………………………………………………………………………………………………..     Transcript 2 
………………………………………………………………………………………………………………..     Transcript 3 
………………………………………………………………………………………………………………..     Transcript 4 
 
 
 
 
D A T K N A S F S L F S R N D F L K E V K I Met S R L K D P N I I R L L G V C V Q D D P L C      DDR1 
                   Transcript 1 
…………………………………………………………………………………………………………………   Transcript 2 
…………………………………………………………………………………………………………………   Transcript 3 
…………………………………………………………………………………………………………………   Transcript 4 
 
 
Met I T D Y Met E N G D L N Q F L S A H Q L E D K A A E G A P G D G Q A A Q G P T I S Y P     DDR1 
                  Transcript 1 
…………………………………………………………………………………………………………………  Transcript 2 
……………………………………………………………………………………………………..  H H Q L    Transcript 3 
……………………………………………………………………………………………………… H H Q L   Transcript 4 
 
 
 
Met L L H V A A Q I A S G Met R Y L A T L N F V H R D L A T R N C L V G                                      DDR1                   
                 Transcript 1 
P N A A A C G S P D R L R H A L S G H T Q L C T S G P G H A E L P S W G                                Transcript 2 
P N A A A C G S P D R L R H A L S G H T Q L C T S G P G H A E L P S W G                                Transcript 3 
P N A A A C G S P D R L R H A L S G H T Q L C T S G P G H A E L P S W G                                Transcript 4 

 
Figure 4.23 Amino acid sequences of DDR1 isoforms. The amino acid sequence of DDR1c (the 
longest transcript) is shown in the top row followed by 4 novel transcripts. Transcript 1 has a deletion 
of exon 11 and part of exon 12 resulting in a shift in the reading frame and a stop codon. Transcripts 
2-4 have variable segments spliced out and a shift in reading frame.   
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4.3 Discussion 

In this chapter I have shown for the first time that DDR1 is over-expressed in primary HRS 

cells. Furthermore, I have shown that in many cases, DDR1-expressing HRS cells are 

intimately associated with collagen, the ligand for DDR1.  

Although these observations suggest that DDR1 is likely to be activated in primary HRS cells, 

this could not be confirmed because antibodies capable of detecting the phosphorylated 

forms of DDR1 are not available. However, I was able to study the activation of DDR1 in HL 

cell lines following the addition of soluble type I collagen. To do this I used a method in 

which DDR1 is immunoprecipitated and then immunoblotted using a pan-phosphorylated 

tyrosine antibody. Using this assay I observed that the phosphorylation of DDR1 in the L428 

HL cell line was independent of collagen and of serum, suggesting that DDR1 is 

constitutively activated in these cells. In contrast, the phosphorylation of DDR1 in L591 cells 

required both the addition of collagen and of serum. This latter observation is consistent 

with a previous study which showed that in some cell lines, the addition of collagen is not 

sufficient to induce DDR1 phosphorylation in the absence of serum(267). The failure to induce 

DDR1 phosphorylation in the absence of serum suggests that an additional co-factor is 

required. The identity of this co-factor in L591 cells is not known. However, it has been 

shown that the activation of DDR1 by collagen in MCF7 breast cancer cells requires Wnt5a 

(335). The requirement of additional co-factors for the activation of RTKs is not unique to 

DDR1.  For example, the activation of the FGFR family requires the binding of heparin to 

both ligand and receptor. Alternatively, the activation of DDR1 might require the 

phosphorylation of an associated molecule, for instance src phosphorylation has been 

shown to be essential for DDR2 activation(336). 
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Very little is known about the mechanisms which contribute to the over-expression of DDR1 

in cancer cells. I considered the possibility that DDR1 expression might be influenced by the 

presence of EBV in HRS cells. I showed that DDR1 is up-regulated following the ectopic 

expression of LMP1 in GC B cells, suggesting that this viral oncogene contributes to the over-

expression of DDR1 in EBV-positive cases. Although I did not find an association between 

DDR1 expression and the presence of EBV in the cases I examined, this could be explained 

by the existence of an alternative mechanism which can up-regulate DDR1 in EBV-negative 

cases.  

The expression of LMP1 in primary human GC B cells has previously been reported to 

recapitulate up-to one-quarter of the transcriptional changes characteristic of HRS cells(172). 

For this reason, this model would be appear to be a useful system for the detection of LMP1 

induced transcriptional changes relevant to the pathogenesis of HL. Indeed, the up-

regulation of DDR1 by LMP1 in GC B cells might constitute a pathogenic event. However, an 

alternative explanation is that the up-regulation of DDR1 merely reflects the ability of LMP1 

to drive post GC B cell differentiation. This latter possibility was suggested by my 

observation that DDR1 expression is higher in memory B cells compared to centrocytes, and 

by the re-analysis of the published micro-array dataset referred to above which showed that 

when compared to centrocytes, DDR1 expression was higher in both memory cells and 

plasma cells(319).  

Despite the complete silencing of a 126kDa DDR1 protein following the treatment of L428 

cells with DDR1 specific siRNA, I failed to identify any significant changes in cell proliferation 

(metabolic activity) or apoptosis following this treatment. Furthermore, the knockdown of 

DDR1 in L428 cells did not change the expression or the activation of several known 
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downstream targets of DDR1, including STAT5 and STAT3(331;333). Finally, a micro-array 

analysis of global gene expression following DRR1 knockdown in L428 cells revealed 

surprisingly few significantly changed genes. Although the array analysis provided 

confirmation of the successful knockdown of DDR1 in these experiments, it only revealed a 

modest decrease in DDR1 expression (less than two-fold) which was in the contrast to the 

~5-fold down-regulation of DDR1 observed in the siRNA-treated cells by q-PCR analysis.  

Furthermore, comparison of DDR1 target genes with genes previously shown to be 

differentially expressed in the L428 cell line (compared to GC B cells), in LMP1-transfected 

GC B cells and in micro-dissected HRS cells, revealed no significant overlap(172).  

DDR1a has been reported to be over-expressed in various cancers and to contribute to 

malignancy(278;337). Therefore it was surprising that the knockdown of DDR1a in L428 cells 

did not result in an obvious phenotype. I now discuss potential explanations for this 

observation. 

Redundancy of DDR1 expression 

As individual RTK have been shown to converge on the same signalling pathways, it follows 

that the knockdown of a single RTK might alone be insufficient to disrupt a cell signalling 

pathway and reveal a change in cellular phenotype.  Therefore, one possible explanation for 

my results is that the functions of DDR1 can be replaced by other molecules. While I 

considered the possibility that DDR1 might activate STAT5 in HL cells, other mechanisms 

have been shown to contribute to the aberrant activation of STAT5 in these cells. For 

instance amplification of JAK2 gene or mutation in SOCS1 leads to an accumulation of STAT5 

in a proportion of HL cases(126;338).     
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Loss of dependency on DDR1 in HL cell lines  

The use of cell lines as models to explore the function of a receptor that may require 

complex signals from the microenvironment for its activation is open to question. This is 

particularly relevant in the case of HL cell lines which by their very nature no longer require 

signals from the microenvironment for their survival. It follows that such cells are likely to 

have acquired additional aberrations which enable cell growth in the absence of growth 

promoting stimuli from the microenvironment.  

Phosphorylation of DDR1 is alone insufficient for receptor activation 

The decision to use L428 cells to investigate the phenotypic consequences of DDR1 

activation was based upon the observation that DDR1 was constitutively phosphorylated in 

this cell line. However, it is not known if the constitutive phosphorylation of DDR1 I 

observed in this cell line was sufficient for its activation. This was further compounded by 

the inability of the IP methodology to localise the phosphorylation to specific residues in 

DDR1, some, but not all, of which have been shown to be important for the activation of 

downstream signals.   

Presence of alternative DDR1 isoforms not targeted by the siRNA  

Immunoblotting showed that only a protein at 126kDa corresponding predominantly to 

DDR1a was abolished following siRNA treatment. Two major bands, one at ~86kDa and the 

other at 63kDa, were unaffected by siRNA treatment. Although I have not confirmed their 

identity, these bands were also detectable following immunoprecipitation and blotting with 

DDR1 antibody. Furthermore, both bands were detectable following the blotting of these 

immunoprecipitates with a pan-tyrosine antibody, suggesting these proteins are 
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phosphorylated. Therefore one explanation for the lack of a phenotype in siRNA treated 

cells is the existence of additional isoforms which might substitute for the functions of 

DDR1a.  

To investigate the existence of additional isoforms I sequenced DDR1 cDNA. I showed that 

the predominant isoform present in both L428 and L591 cells is DDR1a. I also found DDR1d 

and substantially lower levels of DDR1b in HL cells but I did not detect DDR1c or DDR1e. 

However, the expression of DDR1d cannot account for the additional bands observed on 

immunoblotting since the region detected by the antibody is not present in this isoform. I 

also identified numerous novel transcripts of DDR1 several of which are predicted to 

produce truncated proteins one of which shared similarities to DDR1d. The functional 

significance of the expression of the known and novel isoforms of DDR1 in HL cells is 

currently unknown.  
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5.1 Introduction 

Many RTKs are targets of new generation small molecule RTK inhibitors, several of which are 

already in clinical use(339). Some of these agents are highly effective forms of therapy for 

patients with tumours with activated RTKs, for example imatinib for BCR-ABL-positive 

chronic myeloid leukaemia and FLT3 inhibitors (e.g. PKC412) for acute myeloid 

leukaemia(339;340). To-date, RTKs have not been used to treat paediatric HL because a detailed 

knowledge of the expression and activation status of RTKs in HL is lacking. However, in the 

preceding chapters I have shown that several RTKs are constitutively activated in HL, these 

included DDR1 which has recently been described as a major additional target of the RTK 

inhibitors, imatinib, dasatinib and nilotinib(295;341). 

The objectives of this study are to: 

• Evaluate the effect of imatinib, dasatinib and nilotinib on the proliferation of HL 

derived cell lines. 

• Investigate the influence of next generation TK inhibitors lestaurtinib, dovitinib and 

vargatef on the proliferation of HL derived cell lines.       
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5.2 Results 

5.2.1 Optimisation of cytotoxicity assays 

To screen for potential cytotoxic effects of RTK inhibitors in HL cells I used a commercially 

available ‘proliferation assay’ (Promega), which measures the metabolic activity of cells 

(methods section 2.9.1 page 84). I first optimised this assay on K562 cells, a myeloid cell line, 

the proliferation of which has been shown to be inhibited by dasatinib at nanomolar 

concentrations(342). Figure 5.1 shows that as little as 62nM of dasatinib reduced the 

proliferation of K562 cells to the same degree as the positive control, staurosporine. 
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Figure 5.1 Proliferation of K562 cells treated with increasing concentration of dasatinib. K562 cells 

were maintained in normal growth conditions then re-suspended in fresh media containing 10% 

serum 24hrs prior to drug treatment. Cells were treated with increasing concentrations of dasatinib 

for the times indicated. Promega proliferation reagent was added at 22, 46 and 70hrs respectively 

and 2hrs later absorbance at 490nm was read to measure metabolic activity. Cell proliferation was 

calculated relative to vehicle (DMSO) only control cells. K562 cells treated with staurosporine served 

as a positive control. Shown are data from one of two independent experiments. 
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 5.2.2 Effect of imatinib, dasatinib and nilotinib on the proliferation of HL cell lines 

Having optimized the cytotoxicity assays, I tested the influence of imatinib, dasatinib and 

nilotinib on five HL cell lines; L428, L591, L1236, L540 and KMH2. I chose two drug 

concentrations, 5µM and 10µM. 

Figure 5.2 shows representative results of cell proliferation assays on the HL cell lines 

following treatment with RTK inhibitors. All experiments were performed in triplicate in 

normal growth conditions with 10% serum. The error bars indicate analysis of quadruplicate 

wells for a single experiment. With the exception of a modest effect in L540 cells (Figure 

5.2d), I found little or no inhibition of proliferation following the treatment of a panel of HL 

cell lines with imatinib. Similarly, the treatment of HL cells with nilotinib induced modest or 

inhibition of the proliferation of these cell lines. In contrast, all five cell lines showed a 

decrease in cell proliferation following treatment with dasatinib, with a maximum inhibition 

at 72hours in L428, L1236 and L540 cells treated with 10µM dasatinib. 

I also performed immunoblotting for PARP cleavage as a measure of apoptosis following the 

treatment of L428 and L591 cells with these drugs. Figure 5.3 shows that compared to 

controls, 10µM of dasatinib increased PARP cleavage in both L428 and L591 cells. Cells 

treated with imatinib also showed a marginal increase in PARP cleavage, whilst treatment of 

cells with nilotinib resulted in PARP cleavage comparable to vehicle only control.  
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Figure 5.2 Cell proliferation in HL cell lines treated with RTK inhibitors. Cells were maintained in 

normal growth conditions then re-suspended in fresh media containing 10% serum 24hrs prior to 

drug treatment. Cells were treated with RTK inhibitors at the concentration and times indicated. 

Promega proliferation reagent was added at 22, 46 and 70hrs respectively and 2hrs later absorbance 

at 490nm was read to measure metabolic activity. Cell proliferation was calculated relative to DMSO 

only control cells. Each cell line was also treated with staurosporine which served as a positive 

control. 
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Figure 5.3 Detection of cleaved PARP following treatment with RTK inhibitors. Cells were 

maintained in media containing 10% serum and re-suspended in fresh media 24hrs prior to drug 

treatment. Cells were treated with 10µM imatinib, 10µm nilotinib or 10µM dasatinib and harvested 

at the time points indicated. 30µg of protein from whole cell lysate was loaded and immunoblotted 

for PARP cleavage. Equal loading was confirmed using an antibody to β-actin.    
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5.2.3 Effect of next generation RTK inhibitors on cell proliferation in HL cell lines 

In the preceding experiments, I observed that HL cell lines were more sensitive to dasatinib 

than to either imatininb or nilotinib. This is of interest because although dasatinib was 

originally designed to target BCR-ABL it has since been shown to have a broader range of 

activity against RTKs(295).  Given that I have shown that HRS cells display aberrant activation 

of multiple RTKs, I investigated the effect of a further three RTK inhibitors, lestaurtinib (CEP-

701), dovitinib (CHIR-258) and vargatef (BIBF-1120), which were developed to target 

multiple RTKs(343-345).  

I treated the same five HL derived cell lines: L428, L591, L1236, L540 and KMH2 with each of 

the three drugs at two different concentrations (1 µM and 10 µM). I measured cell 

proliferation of drug treated cells relative to control cells at 24 hours and 48 hours. All 

experiments were repeated twice and the error bars indicate variation between triplicate 

wells of a single experiment. Vargatef appeared to be inactive against these cell lines at the 

concentration and time points tested. I observed a dose-dependent reduction in cell 

proliferation relative to control cells in all five HL cell lines tested with two of the RTK 

inhibitors, lestaurtinib and dovitinib. For both drugs the level of inhibition at 10 µM, which 

increased over two days, ranged from a 50% reduction to a 75% reduction in cell 

proliferation compared to control (Figure 5.4).  

To explore the dose-response further, I repeated the cell proliferation assays, using a wider 

range of drug concentrations. I focused on three cell lines; L428, L591 and L1236 and 

extended the drug treatment to three days. Figures 5.5 and 5.6 shows confirmation of my 

previous observation, that both drugs were potent inhibitors of the proliferation of HL cell 
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lines. However, I observed while lestaurtinib remained active at much lower concentrations, 

the effect of dovitinib was less effective below a concentration of 10µM.  
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Figure 5.4 Cell proliferation in HL cell lines treated with RTK inhibitors. Cells were maintained in 

normal growth conditions then re-suspended in fresh media containing 10% serum 24hrs prior to 

drug treatment. Cells were treated with RTK inhibitors at the concentration and times indicated. 

Promega proliferation reagent was added at 22 and 46hrs respectively and 2hrs later absorbance at 

490nm was read to measure metabolic activity. Cell proliferation was calculated relative to DMSO 

only control cells. Each cell line was also treated with staurosporine which served as a positive 

control for that respective experiment.  
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Figure 5.5 Cell proliferation in HL cell lines treated with dovitinib. Cells were maintained in normal 

growth conditions then re-suspended in fresh media containing 10% serum 24hrs prior to drug 

treatment. Cells were treated with dovitinib at the concentration and times indicated. Promega 

proliferation reagent was added at 22, 46 and 70hrs respectively and 2hrs later absorbance at 490nm 

was read to measure metabolic activity. Cell proliferation was calculated relative to DMSO only 

control cells. Each cell line was also treated with staurosporine which served as a positive control.  
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Figure 5.6 Cell proliferation in HL cell lines treated with lestaurtinib. Cells were maintained in 

normal growth conditions then re-suspended in fresh media containing 10% serum 24hrs prior to 

drug treatment. Cells were treated with lestaurtinib at the concentration and times indicated. 

Promega proliferation reagent was added at 22, 46 and 70hrs respectively and 2hrs later absorbance 

at 490nm was read to measure metabolic activity. Cell proliferation was calculated relative to DMSO 

only control cells. Each cell line was also treated with staurosporine which served as a positive 

control. 
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5.3 Discussion 

In this chapter I have shown that HL cell lines are sensitive to new generation RTK inhibitors. 

I observed that HL cell lines were particularly sensitive to lestaurtinib. This drug otherwise 

known as CEP-701 is a tyrosine kinase inhibitor structurally related to staurosporine. 

lestaurtinib has been shown to inhibit FLT3, JAK2, TRKA, TRKB and TRKC(345-347). I also 

observed that HL lines were sensitive to dovitinib, an RTK inhibitor which has been shown to 

inhibit VEGFR, PDGFR and FGFRs. Interestingly, vargatef, which is thought to target the same 

RTK as dovitinib, had little effect on the proliferation of HL cells. 

Of the group of RTK inhibitors developed to target BCR-ABL only dasatinib showed any 

efficacy against HL cell lines. This could reflect the broader spectrum of activity of dasatinib 

compared to either imatinib or nilotinib. My results are also consistent with two previous 

studies which found that imatinib did not significantly reduce the proliferation of HL cells 

when used at concentrations below 10μM(232;239).  

Although I have shown that several of the RTK inhibitors used in this study were effective 

against the proliferation of HL cell lines, the assay I used measures only metabolic activity 

which can be affected by both changes in cell cycle and cell death. Therefore, it will be 

important to properly define whether these drugs act predominantly to reduce cell 

proliferation or to promote apoptosis, or both. 

Preclinical studies of lestaurtinib have characterised this orally available compound as a 

potent FLT3 inhibitor with an in vitro IC50 of 2 to 3 nM. Lestautinib also displays low 

nanomolar inhibition of TRKA and VEGFR, but it is not a potent inhibitor of other receptor 

tyrosine kinases related to FLT3 (IC50 is greater than 500 nM against KIT, and PDGFRβ)(347;348).  
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A widened screen of the kinase activity of lestaurtinib found it to be a potent JAK2 inhibitor 

(IC50 of 1 nM)(346). Given the constitutive activation of JAK-STAT signalling in HL, the targeting 

of JAK2 may be an effective therapeutic approach. A recent phase II trial of 

relapsed/refractory myelofibrosis with JAK2 mutations reported an overall response rate of 

27 %(346). Consistent with my observations, recently the in vitro susceptibility of HL cell lines 

to lestaurtinib has been shown. Furthermore, the mechanism of action appeared to be 

through JAK2 inhibition(349). Pharmacokinetic studies after single doses of oral lestaurtinib 

suggest that a plasma concentration, in excess of that required for the inhibition of HL cells 

observed in my study, can be achieved without dose limiting toxicities(350).  

Dovitinib is also a multi-target tyrosine kinase inhibitor and has nanomolar potency against 

FLT3 but also demonstrated inhibition of VEGFR, CSF-1R and FGFRs(351). It is already in phase 

II development in renal cell carcinoma, advanced breast cancer, and relapsed multiple 

myeloma (www.clinicaltrialsfeed.org) There is currently no data on the use of dovitinib in 

children but xenograft models to determine the pharmacokinetics of this drug suggest that a 

plasma concentration of 5µM might be achieved(352).     

The multifactorial pathogenesis of HL means that any single-molecule targeted agent is 

unlikely to be curative if used alone. This hypothesis is supported by the results of clinical 

trials of FLT3 inhibitors in AML where mono-therapy has been disappointing(353). 

Simultaneous inhibition of multiple targets is likely to be necessary in most patients, and this 

may be achievable in the future not only through the use of multi-target agents but also by 

combination molecular therapy.  
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In conclusion, in this chapter I have provided preliminary evidence suggesting that HL cell 

lines are sensitive to several next generation RTK inhibitors. The results of this study suggest 

that lestaurtinib and possibly dovitinib should be evaluated further in the treatment of HL.
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This thesis has identified a number of areas which could be pursued in the future. I outline 

these below:  

6.1 Further study of the contribution of DDR1 to the pathogenesis of HL 

Although I have shown that DDR1 is over-expressed in HRS cells, the knockdown of DDR1 in 

a HL cell line did not result in a detectable phenotypic change. As outlined previously the 

knockdown of a single RTK might alone be insufficient to disrupt a cell signalling pathway. 

Furthermore, the use of cell lines as models to explore the function of DDR1, that may 

require complex signals from the microenvironment for its activation, is questionable. 

Therefore, investigation of the phenotypic consequences of aberrant RTK activation may 

require the use of more appropriate model systems. One such approach might be to 

ectopically express DDR1 in GC B cells. This model is limited by the range of phenotypic 

assays that are technically feasible on transfected GC B cells. However, several assays, for 

example micro-array analysis, are possible on these cells and may reveal the signalling 

pathways activated by DDR1. In a complimentary approach it will also be possible to 

measure transcription factor activity in transfected GC B cells using a system recently 

established in our laboratory (PathDetect Trans-reporting system, Agilent Technologies). A 

more detailed investigation of the effects of DDR1 on cellular signalling might be conducted 

on more tractable systems such as BL cell lines. The BL system could also be used to study 

the activation of DDR1 following exposure to different collagen types or following cultivation 

in complex extracellular environments such as Matrigel™. 
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6.2 An investigation of the contribution of RON to the pathogenesis of HL 

In addition to DDR1, I identified that numerous other RTKs were aberrantly activated in HL 

cell lines. Of these MET and RON were selected for further investigation. Owing to the lack of 

suitable antibody reagents, I was unable to confirm the activation of MET in paraffin 

embedded tissues of HL. However, I did detect the consistent activation of RON in primary 

HRS cells. These observations suggest that the contribution of RON to the pathogenesis of HL 

is worthy of further investigation. It seems probable that the same limitations identified 

above in respect of DDR1 may also apply to the future study of RON in HL cell lines. 

Therefore, I will consider adopting a similar approach to investigate the contribution of RON 

to the pathogenesis of HL as I have described above for DDR1.  

6.3 Further study of RTK isoforms in HL 

Investigating the contribution of the aberrant activation of DDR1 and RON to the 

pathogenesis of HL is further complicated by the potential existence of multiple isoforms of 

these receptors. For example, in HL cells I detected the presence of numerous DDR1 

transcripts, including several novel forms. Likewise, RON is known to have several oncogenic 

isoforms some of which I may have detected by immunoblotting. Before proceeding to any 

functional investigation of these isoforms it will be necessary to determine if these 

transcripts are: 1) present in micro-dissected primary tumour cells, and 2) capable of 

generating protein following cDNA cloning and expression. I will also use genomic 

sequencing on micro-dissected primary HRS cells to investigate if the presence of these 

transcripts is a consequence of mutations in splice acceptor or donor sites.  
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6.4 The potential therapeutic use of RTK inhibitors in HL 

Although my preliminary observations suggest that several of the RTK inhibitors I have 

investigated are effective against HL cell lines, there are several important issues which need 

to be resolved before these agents can be considered for the treatment of HL. First, the 

molecular target(s) of these RTKs inhibitors in HL cells need to be identified. This could be 

done using phosphorylation specific antibody arrays following the treatment of HL cells with 

these inhibitors. Second, it will be necessary to determine if the relevant target(s) can be 

inhibited at a clinical achievable plasma concentration. Third, it will be important to 

elucidate the mechanism of action and whether it involves cell cycle arrest, cell death or 

both. 

Improved animal models could be used to study the effects of these inhibitors on the in vivo 

growth of HL cells. For example, the recently developed NOD/Shi-scid IL2rγnull (NOG) mouse 

has been shown not only to support more efficiently the growth of HL cell lines, but also to 

allow the stable reconstitution of normal human haematopoietic cell subsets(354). Such a 

system offers the possibility of establishing an in vivo system in which tumour cell-

microenvironment interactions are maintained, while at the same time permitting the 

testing of these therapeutic agents. 



References 

| 209  
 

Reference List 

 (1)  Hodgkin. On some Morbid Appearances of the Absorbent Glands and Spleen. Med Chir 
Trans 1832;17:68-114. 

 (2)  Reed D. On the pathological changes in Hodgkin's disease, with special reference to its 
relationship to tuberculosis. J Hopkins Hosp Rep 1902;133-96. 

 (3)  Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO Classification of 
Tumours of Haematopoietic and Lymphoid Tissues. 4th. 2008.  International Agency for 
Research on Cancer.  

 
 (4)  Diehl V, Thomas RK, Re D. Part II: Hodgkin's lymphoma--diagnosis and treatment. Lancet 

Oncol 2004 Jan;5(1):19-26. 

 (5)  Anagnostopoulos I, Hansmann ML, Franssila K, Harris M, Harris NL, Jaffe ES, et al. European 
Task Force on Lymphoma project on lymphocyte predominance Hodgkin disease: histologic 
and immunohistologic analysis of submitted cases reveals 2 types of Hodgkin disease with 
a nodular growth pattern and abundant lymphocytes. Blood 2000 Sep 1;96(5):1889-99. 

 (6)  Diehl V, Sextro M, Franklin J, Hansmann ML, Harris N, Jaffe E, et al. Clinical presentation, 
course, and prognostic factors in lymphocyte-predominant Hodgkin's disease and 
lymphocyte-rich classical Hodgkin's disease: report from the European Task Force on 
Lymphoma Project on Lymphocyte-Predominant Hodgkin's Disease. J Clin Oncol 1999 
Mar;17(3):776-83. 

 (7)  Mason DY, Banks PM, Chan J, Cleary ML, Delsol G, de Wolf PC, et al. Nodular lymphocyte 
predominance Hodgkin's disease. A distinct clinicopathological entity. Am J Surg Pathol 
1994 May;18(5):526-30. 

 (8)  Nogova L, Reineke T, Brillant C, Sieniawski M, Rudiger T, Josting A, et al. Lymphocyte-
predominant and classical Hodgkin's lymphoma: a comprehensive analysis from the 
German Hodgkin Study Group. J Clin Oncol 2008 Jan 20;26(3):434-9. 

 (9)  Weiss LM, Chan JKC, Maclennan K, Warnke RA. In Hodgkin's Disease. Mauch PM, Armitage 
JO, Diehl V, Hoppe R, Weiss LM, editors.  101-120. 1999. Philadelphia, Lippencott Williams 
and wilkins.  

 
 (10)  Shimabukuro-Vornhagen A, Haverkamp H, Engert A, Balleisen L, Majunke P, Heil G, et al. 

Lymphocyte-rich classical Hodgkin's lymphoma: clinical presentation and treatment 
outcome in 100 patients treated within German Hodgkin's Study Group trials. J Clin Oncol 
2005 Aug 20;23(24):5739-45. 

 (11)  Neiman RS, Rosen PJ, Lukes RJ. Lymphocyte-depletion Hodgkin's disease. A 
clinicopathological entity. N Engl J Med 1973 Apr 12;288(15):751-5. 

 (12)  Pinkus GS, Said JW. Hodgkin's disease, lymphocyte predominance type, nodular--a distinct 
entity? Unique staining profile for L&H variants of Reed-Sternberg cells defined by 
monoclonal antibodies to leukocyte common antigen, granulocyte-specific antigen, and B-
cell-specific antigen. Am J Pathol 1985 Jan;118(1):1-6. 

 (13)  Paediatric oncology.  5-3-2011.  
 



References 

| 210  
 

 (14)  Parkin DM, Stiller CA, Draper GJ, Bieber CA, Terracini B, Young JL. International incidence of 
childhood cancer. [Scientific publications 87]. 1988.  International Agency for Research on 
Cancer.  

 
 (15)  MacMahon B. Epidemiology of Hodgkin's disease. Cancer Res 1966 Jun;26(6):1189-201. 

 (16)  Correa P, O'Conor GT. Epidemiologic patterns of Hodgkin's disease. Int J Cancer 1971 Sep 
15;8(2):192-201. 

 (17)  Cridland MD. Seasonal incidence of clinical onset of Hodgkin's disease. Br Med J 1961 Sep 
2;2(5252):621-3. 

 (18)  Douglas S, Cortina-Borja M, Cartwright R. Seasonal variation in the incidence of Hodgkin's 
disease. Br J Haematol 1998 Dec;103(3):653-62. 

 (19)  Newell GR, Lynch HK, Gibeau JM, Spitz MR. Seasonal diagnosis of Hodgkin's disease among 
young adults. J Natl Cancer Inst 1985 Jan;74(1):53-6. 

 (20)  Gilman EA, McNally RJ, Cartwright RA. Space-time clustering of Hodgkin's Disease in parts 
of the UK, 1984-1993. Leuk Lymphoma 1999 Dec;36(1-2):85-100. 

 (21)  Mangoud A, Hillier VF, Leck I, Thomas RW. Space-time interaction in Hodgkin's disease in 
Greater Manchester. J Epidemiol Community Health 1985 Mar;39(1):58-62. 

 (22)  Gutensohn N, Cole P. Childhood social environment and Hodgkin's disease. N Engl J Med 
1981 Jan 15;304(3):135-40. 

 (23)  Goldin LR, Pfeiffer RM, Gridley G, Gail MH, Li X, Mellemkjaer L, et al. Familial aggregation of 
Hodgkin lymphoma and related tumors. Cancer 2004 May 1;100(9):1902-8. 

 (24)  Mack TM, Cozen W, Shibata DK, Weiss LM, Nathwani BN, Hernandez AM, et al. 
Concordance for Hodgkin's disease in identical twins suggesting genetic susceptibility to 
the young-adult form of the disease. N Engl J Med 1995 Feb 16;332(7):413-8. 

 (25)  Harty LC, Lin AY, Goldstein AM, Jaffe ES, Carrington M, Tucker MA, et al. HLA-DR, HLA-DQ, 
and TAP genes in familial Hodgkin disease. Blood 2002 Jan 15;99(2):690-3. 

 (26)  Niens M, Jarrett RF, Hepkema B, Nolte IM, Diepstra A, Platteel M, et al. HLA-A*02 is 
associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV+ 
Hodgkin lymphoma. Blood 2007 Nov 1;110(9):3310-5. 

 (27)  Klitz W, Aldrich CL, Fildes N, Horning SJ, Begovich AB. Localization of predisposition to 
Hodgkin disease in the HLA class II region. Am J Hum Genet 1994 Mar;54(3):497-505. 

 (28)  Marshall WH, Barnard JM, Buehler SK, Crumley J, Larsen B. HLA in familial Hodgkin's 
disease. Results and a new hypothesis. Int J Cancer 1977 Apr 15;19(4):450-5. 

 (29)  Oza AM, Tonks S, Lim J, Fleetwood MA, Lister TA, Bodmer JG. A clinical and epidemiological 
study of human leukocyte antigen-DPB alleles in Hodgkin's disease. Cancer Res 1994 Oct 
1;54(19):5101-5. 

 (30)  Svejgaard A, Platz P, Ryder LP, Nielsen LS, Thomsen M. HL-A and disease associations--a 
survey. Transplant Rev 1975;22:3-43. 



References 

| 211  
 

 (31)  Enciso-Mora V, Broderick P, Ma Y, Jarrett RF, Hjalgrim H, Hemminki K, et al. A genome-wide 
association study of Hodgkin's lymphoma identifies new susceptibility loci at 2p16.1 (REL), 
8q24.21 and 10p14 (GATA3). Nat Genet 2010 Dec;42(12):1126-30. 

 (32)  Beck-Engeser GB, Lum AM, Huppi K, Caplen NJ, Wang BB, Wabl M. Pvt1-encoded 
microRNAs in oncogenesis. Retrovirology 2008;5:4. 

 (33)  Pinkerton R, Plowman PN, Pieters R. Paediatric Oncology. 3, 267-286. 2004. London, 
Arnold.  

 
 (34)  Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M. Report of the Committee on 

Hodgkin's Disease Staging Classification. Cancer Res 1971 Nov;31(11):1860-1. 

 (35)  Lister TA, Crowther D, Sutcliffe SB, Glatstein E, Canellos GP, Young RC, et al. Report of a 
committee convened to discuss the evaluation and staging of patients with Hodgkin's 
disease: Cotswolds meeting. J Clin Oncol 1989 Nov;7(11):1630-6. 

 (36)  Marcus R, Sweetenham JW, Williams ME. Lymphoma; Pathology, Diagnosis and Treatment. 
1. 2007.  Cambridge university press.  

 
 (37)  Donaldson SS, Link MP. Combined modality treatment with low-dose radiation and MOPP 

chemotherapy for children with Hodgkin's disease. J Clin Oncol 1987 May;5(5):742-9. 

 (38)  Hunger SP, Link MP, Donaldson SS. ABVD/MOPP and low-dose involved-field radiotherapy 
in pediatric Hodgkin's disease: the Stanford experience. J Clin Oncol 1994 Oct;12(10):2160-
6. 

 (39)  Landman-Parker J, Pacquement H, Leblanc T, Habrand JL, Terrier-Lacombe MJ, Bertrand Y, 
et al. Localized childhood Hodgkin's disease: response-adapted chemotherapy with 
etoposide, bleomycin, vinblastine, and prednisone before low-dose radiation therapy-
results of the French Society of Pediatric Oncology Study MDH90. J Clin Oncol 2000 
Apr;18(7):1500-7. 

 (40)  Schellong G. Treatment of children and adolescents with Hodgkin's disease: the experience 
of the German-Austrian Paediatric Study Group. Baillieres Clin Haematol 1996 
Sep;9(3):619-34. 

 (41)  Schellong G, Potter R, Bramswig J, Wagner W, Prott FJ, Dorffel W, et al. High cure rates and 
reduced long-term toxicity in pediatric Hodgkin's disease: the German-Austrian multicenter 
trial DAL-HD-90. The German-Austrian Pediatric Hodgkin's Disease Study Group. J Clin 
Oncol 1999 Dec;17(12):3736-44. 

 (42)  Schellong G, Bramswig JH, Schwarze EW, Wannenmacher M. An approach to reduce 
treatment and invasive staging in childhood Hodgkin's disease: the sequence of the 
German DAL multicenter studies. Bull Cancer 1988;75(1):41-51. 

 (43)  Smith RS, Chen Q, Hudson MM, Link MP, Kun L, Weinstein H, et al. Prognostic factors for 
children with Hodgkin's disease treated with combined-modality therapy. J Clin Oncol 2003 
May 15;21(10):2026-33. 

 (44)  Kaplan HS. On the natural history, treatment, and prognosis of Hodgkin's disease. Harvey 
Lect 1968;64:215-59. 



References 

| 212  
 

 (45)  Bhatia S, Robison LL, Oberlin O, Greenberg M, Bunin G, Fossati-Bellani F, et al. Breast 
cancer and other second neoplasms after childhood Hodgkin's disease. N Engl J Med 1996 
Mar 21;334(12):745-51. 

 (46)  Metayer C, Lynch CF, Clarke EA, Glimelius B, Storm H, Pukkala E, et al. Second cancers 
among long-term survivors of Hodgkin's disease diagnosed in childhood and adolescence. J 
Clin Oncol 2000 Jun;18(12):2435-43. 

 (47)  Sklar C, Whitton J, Mertens A, Stovall M, Green D, Marina N, et al. Abnormalities of the 
thyroid in survivors of Hodgkin's disease: data from the Childhood Cancer Survivor Study. J 
Clin Endocrinol Metab 2000 Sep;85(9):3227-32. 

 (48)  Carbone PP. The role of chemotherapy in the management of patients with Hodgkin's 
disease. Ann Intern Med 1967;67:433-7. 

 (49)  van den Berg H, Stuve W, Behrendt H. Treatment of Hodgkin's disease in children with 
alternating mechlorethamine, vincristine, procarbazine, and prednisone (MOPP) and 
adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) courses without radiotherapy. 
Med Pediatr Oncol 1997 Jul;29(1):23-7. 

 (50)  Viviani S, Bonadonna G, Santoro A, Bonfante V, Zanini M, Devizzi L, et al. Alternating versus 
hybrid MOPP and ABVD combinations in advanced Hodgkin's disease: ten-year results. J 
Clin Oncol 1996 May;14(5):1421-30. 

 (51)  El-Badawy S, Aboulnaga S, Abou GA, Mokhless A, Zamzam M, Sidhom I, et al. Risk adapted 
combined modality treatment in children with Hodgkin's disease: NCI, Cairo. J Egypt Natl 
Canc Inst 2008 Jun;20(2):99-110. 

 (52)  Schwartz CL, Constine LS, Villaluna D, London WB, Hutchison RE, Sposto R, et al. A risk-
adapted, response-based approach using ABVE-PC for children and adolescents with 
intermediate- and high-risk Hodgkin lymphoma: the results of P9425. Blood 2009 Sep 
3;114(10):2051-9. 

 (53)  Wiedmann E, Baican B, Hertel A, Baum RP, Chow KU, Knupp B, et al. Positron emission 
tomography (PET) for staging and evaluation of response to treatment in patients with 
Hodgkin's disease. Leuk Lymphoma 1999 Aug;34(5-6):545-51. 

 (54)  Euronet PHL-C1.  2011.  
 
 (55)  Daw S, Wynn R, Wallace H. Management of relapsed and refractory classical Hodgkin 

lymphoma in children and adolescents. Br J Haematol 2011 Feb;152(3):249-60. 

 (56)  Schellong G, Dorffel W, Claviez A, Korholz D, Mann G, Scheel-Walter HG, et al. Salvage 
therapy of progressive and recurrent Hodgkin's disease: results from a multicenter study of 
the pediatric DAL/GPOH-HD study group. J Clin Oncol 2005 Sep 1;23(25):6181-9. 

 (57)  Akhtar S, El WA, Rahal M, Abdelsalam M, Al HH, Maghfoor I. High-dose chemotherapy and 
autologous stem cell transplant in adolescent patients with relapsed or refractory 
Hodgkin's lymphoma. Bone Marrow Transplant 2010 Mar;45(3):476-82. 

 (58)  Baker KS, Gordon BG, Gross TG, Abromowitch MA, Lyden ER, Lynch JC, et al. Autologous 
hematopoietic stem-cell transplantation for relapsed or refractory Hodgkin's disease in 
children and adolescents. J Clin Oncol 1999 Mar;17(3):825-31. 



References 

| 213  
 

 (59)  Brice P. Managing relapsed and refractory Hodgkin lymphoma. Br J Haematol 2008 
Apr;141(1):3-13. 

 (60)  Dores GM, Metayer C, Curtis RE, Lynch CF, Clarke EA, Glimelius B, et al. Second malignant 
neoplasms among long-term survivors of Hodgkin's disease: a population-based evaluation 
over 25 years. J Clin Oncol 2002 Aug 15;20(16):3484-94. 

 (61)  Bath LE, Wallace WH, Critchley HO. Late effects of the treatment of childhood cancer on 
the female reproductive system and the potential for fertility preservation. BJOG 2002 
Feb;109(2):107-14. 

 (62)  Busia A, Laffranchi A, Viviani S, Bonfante V, Villani F. Cardiopulmonary toxicity of different 
chemoradiotherapy combined regimens for Hodgkin's disease. Anticancer Res 2010 
Oct;30(10):4381-7. 

 (63)  Villani F, Busia A, Villani M, Laffranchi A, Viviani S, Bonfante V. Cardiopulmonary response 
to exercise in patients with different degrees of lung toxicity after radio-chemotherapy for 
Hodgkin's disease. Anticancer Res 2009 Feb;29(2):777-83. 

 (64)  Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and control of V(D)J 
recombination versus class switch recombination: similarities and differences. Adv 
Immunol 2005;86:43-112. 

 (65)  Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev 
Immunol 2008 Jan;8(1):22-33. 

 (66)  Teng G, Papavasiliou FN. Immunoglobulin somatic hypermutation. Annu Rev Genet 
2007;41:107-20. 

 (67)  Allen CD, Okada T, Cyster JG. Germinal-center organization and cellular dynamics. 
Immunity 2007 Aug;27(2):190-202. 

 (68)  DeKoter RP, Singh H. Regulation of B lymphocyte and macrophage development by graded 
expression of PU.1. Science 2000 May 26;288(5470):1439-41. 

 (69)  Dias S, Mansson R, Gurbuxani S, Sigvardsson M, Kee BL. E2A proteins promote 
development of lymphoid-primed multipotent progenitors. Immunity 2008 Aug 
15;29(2):217-27. 

 (70)  Lin YC, Jhunjhunwala S, Benner C, Heinz S, Welinder E, Mansson R, et al. A global network 
of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat 
Immunol 2010 Jul;11(7):635-43. 

 (71)  Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage 
depends on the transcription factor Pax5. Nature 1999 Oct 7;401(6753):556-62. 

 (72)  Yang Q, Kardava L, St LA, Martincic K, Varnum-Finney B, Bernstein ID, et al. E47 controls the 
developmental integrity and cell cycle quiescence of multipotential hematopoietic 
progenitors. J Immunol 2008 Nov 1;181(9):5885-94. 

 (73)  Kuppers R. B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev 
Immunol 2003 Oct;3(10):801-12. 



References 

| 214  
 

 (74)  Beck K, Peak MM, Ota T, Nemazee D, Murre C. Distinct roles for E12 and E47 in B cell 
specification and the sequential rearrangement of immunoglobulin light chain loci. J Exp 
Med 2009 Sep 28;206(10):2271-84. 

 (75)  Cobaleda C, Jochum W, Busslinger M. Conversion of mature B cells into T cells by 
dedifferentiation to uncommitted progenitors. Nature 2007 Sep 27;449(7161):473-7. 

 (76)  Thal MA, Carvalho TL, He T, Kim HG, Gao H, Hagman J, et al. Ebf1-mediated down-
regulation of Id2 and Id3 is essential for specification of the B cell lineage. Proc Natl Acad 
Sci U S A 2009 Jan 13;106(2):552-7. 

 (77)  Gonda H, Sugai M, Nambu Y, Katakai T, Agata Y, Mori KJ, et al. The balance between Pax5 
and Id2 activities is the key to AID gene expression. J Exp Med 2003 Nov 3;198(9):1427-37. 

 (78)  Corcoran LM, Karvelas M, Nossal GJ, Ye ZS, Jacks T, Baltimore D. Oct-2, although not 
required for early B-cell development, is critical for later B-cell maturation and for 
postnatal survival. Genes Dev 1993 Apr;7(4):570-82. 

 (79)  Schubart DB, Rolink A, Kosco-Vilbois MH, Botteri F, Matthias P. B-cell-specific coactivator 
OBF-1/OCA-B/Bob1 required for immune response and germinal centre formation. Nature 
1996 Oct 10;383(6600):538-42. 

 (80)  Basso K, Dalla-Favera R. BCL6: master regulator of the germinal center reaction and key 
oncogene in B cell lymphomagenesis. Adv Immunol 2010;105:193-210. 

 (81)  Crotty S, Johnston RJ, Schoenberger SP. Effectors and memories: Bcl-6 and Blimp-1 in T and 
B lymphocyte differentiation. Nat Immunol 2010 Feb;11(2):114-20. 

 (82)  Wei F, Zaprazna K, Wang J, Atchison ML. PU.1 can recruit BCL6 to DNA to repress gene 
expression in germinal center B cells. Mol Cell Biol 2009 Sep;29(17):4612-22. 

 (83)  Henderson A, Calame K. Transcriptional regulation during B cell development. Annu Rev 
Immunol 1998;16:163-200. 

 (84)  Hummel M, Ziemann K, Lammert H, Pileri S, Sabattini E, Stein H. Hodgkin's disease with 
monoclonal and polyclonal populations of Reed-Sternberg cells. N Engl J Med 1995 Oct 
5;333(14):901-6. 

 (85)  Kuppers R, Rajewsky K, Zhao M, Simons G, Laumann R, Fischer R, et al. Hodgkin's disease: 
clonal Ig gene rearrangements in Hodgkin and Reed-Sternberg cells picked from 
histological sections. Ann N Y Acad Sci 1995 Sep 29;764:523-4. 

 (86)  Kuppers R, Hansmann ML, Rajewsky K. Clonality and germinal centre B-cell derivation of 
Hodgkin/Reed-Sternberg cells in Hodgkin's disease. Ann Oncol 1998;9 Suppl 5:S17-S20. 

 (87)  Marafioti T, Hummel M, Foss HD, Laumen H, Korbjuhn P, Anagnostopoulos I, et al. Hodgkin 
and reed-sternberg cells represent an expansion of a single clone originating from a 
germinal center B-cell with functional immunoglobulin gene rearrangements but defective 
immunoglobulin transcription. Blood 2000 Feb 15;95(4):1443-50. 

 (88)  Kanzler H, Kuppers R, Hansmann ML, Rajewsky K. Hodgkin and Reed-Sternberg cells in 
Hodgkin's disease represent the outgrowth of a dominant tumor clone derived from 
(crippled) germinal center B cells. J Exp Med 1996 Oct 1;184(4):1495-505. 



References 

| 215  
 

 (89)  Kuppers R. The biology of Hodgkin's lymphoma. Nat Rev Cancer 2009 Jan;9(1):15-27. 

 (90)  Muschen M, Rajewsky K, Brauninger A, Baur AS, Oudejans JJ, Roers A, et al. Rare 
occurrence of classical Hodgkin's disease as a T cell lymphoma. J Exp Med 2000 Jan 
17;191(2):387-94. 

 (91)  Barry TS, Jaffe ES, Sorbara L, Raffeld M, Pittaluga S. Peripheral T-cell lymphomas expressing 
CD30 and CD15. Am J Surg Pathol 2003 Dec;27(12):1513-22. 

 (92)  Chittal SM, Brousset P, Voigt JJ, Delsol G. Large B-cell lymphoma rich in T-cells and 
simulating Hodgkin's disease. Histopathology 1991 Sep;19(3):211-20. 

 (93)  Seitz V, Hummel M, Marafioti T, Anagnostopoulos I, Assaf C, Stein H. Detection of clonal T-
cell receptor gamma-chain gene rearrangements in Reed-Sternberg cells of classic Hodgkin 
disease. Blood 2000 May 15;95(10):3020-4. 

 (94)  Kuppers R, Klein U, Schwering I, Distler V, Brauninger A, Cattoretti G, et al. Identification of 
Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest 
2003 Feb;111(4):529-37. 

 (95)  Rolink AG, Melchers F. Precursor B cells from Pax-5-deficient mice--stem cells for 
macrophages, granulocytes, osteoclasts, dendritic cells, natural killer cells, thymocytes and 
T cells. Curr Top Microbiol Immunol 2000;251:21-6. 

 (96)  Schwering I, Brauninger A, Klein U, Jungnickel B, Tinguely M, Diehl V, et al. Loss of the B-
lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin 
lymphoma. Blood 2003 Feb 15;101(4):1505-12. 

 (97)  Torlakovic E, Tierens A, Dang HD, Delabie J. The transcription factor PU.1, necessary for B-
cell development is expressed in lymphocyte predominance, but not classical Hodgkin's 
disease. Am J Pathol 2001 Nov;159(5):1807-14. 

 (98)  Mathas S, Janz M, Hummel F, Hummel M, Wollert-Wulf B, Lusatis S, et al. Intrinsic 
inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates 
reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol 2006 
Feb;7(2):207-15. 

 (99)  Renne C, Martin-Subero JI, Eickernjager M, Hansmann ML, Kuppers R, Siebert R, et al. 
Aberrant expression of ID2, a suppressor of B-cell-specific gene expression, in Hodgkin's 
lymphoma. Am J Pathol 2006 Aug;169(2):655-64. 

 (100)  Jundt F, Probsting KS, Anagnostopoulos I, Muehlinghaus G, Chatterjee M, Mathas S, et al. 
Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood 2004 
May 1;103(9):3511-5. 

 (101)  Jundt F, Acikgoz O, Kwon SH, Schwarzer R, Anagnostopoulos I, Wiesner B, et al. Aberrant 
expression of Notch1 interferes with the B-lymphoid phenotype of neoplastic B cells in 
classical Hodgkin lymphoma. Leukemia 2008 Aug;22(8):1587-94. 

 (102)  Stanelle J, Doring C, Hansmann ML, Kuppers R. Mechanisms of aberrant GATA3 expression 
in classical Hodgkin lymphoma and its consequences for the cytokine profile of Hodgkin 
and Reed/Sternberg cells. Blood 2010 Nov 18;116(20):4202-11. 



References 

| 216  
 

 (103)  Yoon SO, Zhang X, Berner P, Blom B, Choi YS. Notch ligands expressed by follicular dendritic 
cells protect germinal center B cells from apoptosis. J Immunol 2009 Jul 1;183(1):352-8. 

 (104)  Zweidler-McKay PA, He Y, Xu L, Rodriguez CG, Karnell FG, Carpenter AC, et al. Notch 
signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell 
malignancies. Blood 2005 Dec 1;106(12):3898-906. 

 (105)  Jundt F, Kley K, Anagnostopoulos I, Schulze PK, Greiner A, Mathas S, et al. Loss of PU.1 
expression is associated with defective immunoglobulin transcription in Hodgkin and Reed-
Sternberg cells of classical Hodgkin disease. Blood 2002 Apr 15;99(8):3060-2. 

 (106)  Re D, Muschen M, Ahmadi T, Wickenhauser C, Staratschek-Jox A, Holtick U, et al. Oct-2 and 
Bob-1 deficiency in Hodgkin and Reed Sternberg cells. Cancer Res 2001 Mar 1;61(5):2080-
4. 

 (107)  Stein H, Marafioti T, Foss HD, Laumen H, Hummel M, Anagnostopoulos I, et al. Down-
regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte 
predominant Hodgkin disease correlates with immunoglobulin transcription. Blood 2001 
Jan 15;97(2):496-501. 

 (108)  Ushmorov A, Ritz O, Hummel M, Leithauser F, Moller P, Stein H, et al. Epigenetic silencing 
of the immunoglobulin heavy-chain gene in classical Hodgkin lymphoma-derived cell lines 
contributes to the loss of immunoglobulin expression. Blood 2004 Nov 15;104(10):3326-34. 

 (109)  Ushmorov A, Leithauser F, Sakk O, Weinhausel A, Popov SW, Moller P, et al. Epigenetic 
processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. 
Blood 2006 Mar 15;107(6):2493-500. 

 (110)  Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W, et al. 
Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival 
of Hodgkin's disease tumor cells. J Clin Invest 1997 Dec 15;100(12):2961-9. 

 (111)  Hinz M, Loser P, Mathas S, Krappmann D, Dorken B, Scheidereit C. Constitutive NF-kappaB 
maintains high expression of a characteristic gene network, including CD40, CD86, and a 
set of antiapoptotic genes in Hodgkin/Reed-Sternberg cells. Blood 2001 May 1;97(9):2798-
807. 

 (112)  Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S, et al. Nuclear 
factor kappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, 
pathogenetic significance, and link to constitutive signal transducer and activator of 
transcription 5a activity. J Exp Med 2002 Sep 2;196(5):605-17. 

 (113)  Krappmann D, Emmerich F, Kordes U, Scharschmidt E, Dorken B, Scheidereit C. Molecular 
mechanisms of constitutive NF-kappaB/Rel activation in Hodgkin/Reed-Sternberg cells. 
Oncogene 1999 Jan 28;18(4):943-53. 

 (114)  Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT. Mutations in the IkBa gene in Hodgkin's 
disease suggest a tumour suppressor role for IkappaBalpha. Oncogene 1999 May 
20;18(20):3063-70. 

 (115)  Emmerich F, Meiser M, Hummel M, Demel G, Foss HD, Jundt F, et al. Overexpression of I 
kappa B alpha without inhibition of NF-kappaB activity and mutations in the I kappa B 
alpha gene in Reed-Sternberg cells. Blood 1999 Nov 1;94(9):3129-34. 



References 

| 217  
 

 (116)  Jungnickel B, Staratschek-Jox A, Brauninger A, Spieker T, Wolf J, Diehl V, et al. Clonal 
deleterious mutations in the IkappaBalpha gene in the malignant cells in Hodgkin's 
lymphoma. J Exp Med 2000 Jan 17;191(2):395-402. 

 (117)  Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtersheimer G, et al. 
TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B 
cell lymphoma. J Exp Med 2009 May 11;206(5):981-9. 

 (118)  Carbone A, Gloghini A, Gruss HJ, Pinto A. CD40 ligand is constitutively expressed in a subset 
of T cell lymphomas and on the microenvironmental reactive T cells of follicular 
lymphomas and Hodgkin's disease. Am J Pathol 1995 Oct;147(4):912-22. 

 (119)  Carbone A, Gloghini A, Gattei V, Aldinucci D, Degan M, De PP, et al. Expression of functional 
CD40 antigen on Reed-Sternberg cells and Hodgkin's disease cell lines. Blood 1995 Feb 
1;85(3):780-9. 

 (120)  Hirsch B, Hummel M, Bentink S, Fouladi F, Spang R, Zollinger R, et al. CD30-induced 
signaling is absent in Hodgkin's cells but present in anaplastic large cell lymphoma cells. Am 
J Pathol 2008 Feb;172(2):510-20. 

 (121)  Horie R, Watanabe T, Morishita Y, Ito K, Ishida T, Kanegae Y, et al. Ligand-independent 
signaling by overexpressed CD30 drives NF-kappaB activation in Hodgkin-Reed-Sternberg 
cells. Oncogene 2002 Apr 11;21(16):2493-503. 

 (122)  Pinto A, Aldinucci D, Gloghini A, Zagonel V, Degan M, Improta S, et al. Human eosinophils 
express functional CD30 ligand and stimulate proliferation of a Hodgkin's disease cell line. 
Blood 1996 Nov 1;88(9):3299-305. 

 (123)  Zheng B, Fiumara P, Li YV, Georgakis G, Snell V, Younes M, et al. MEK/ERK pathway is 
aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK 
that regulates cell proliferation and survival. Blood 2003 Aug 1;102(3):1019-27. 

 (124)  Baus D, Pfitzner E. Specific function of STAT3, SOCS1, and SOCS3 in the regulation of 
proliferation and survival of classical Hodgkin lymphoma cells. Int J Cancer 2006 Mar 
15;118(6):1404-13. 

 (125)  Mottok A, Renne C, Willenbrock K, Hansmann ML, Brauninger A. Somatic hypermutation of 
SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 
expression and activation of STAT6. Blood 2007 Nov 1;110(9):3387-90. 

 (126)  Weniger MA, Melzner I, Menz CK, Wegener S, Bucur AJ, Dorsch K, et al. Mutations of the 
tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated 
with nuclear phospho-STAT5 accumulation. Oncogene 2006 Apr 27;25(18):2679-84. 

 (127)  Kube D, Holtick U, Vockerodt M, Ahmadi T, Haier B, Behrmann I, et al. STAT3 is 
constitutively activated in Hodgkin cell lines. Blood 2001 Aug 1;98(3):762-70. 

 (128)  Skinnider BF, Elia AJ, Gascoyne RD, Patterson B, Trumper L, Kapp U, et al. Signal transducer 
and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells 
of Hodgkin lymphoma. Blood 2002 Jan 15;99(2):618-26. 

 (129)  Lamprecht B, Kreher S, Anagnostopoulos I, Johrens K, Monteleone G, Jundt F, et al. 
Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 



References 

| 218  
 

signaling and attracts Treg cells via regulation of MIP-3alpha. Blood 2008 Oct 
15;112(8):3339-47. 

 (130)  Scheeren FA, Diehl SA, Smit LA, Beaumont T, Naspetti M, Bende RJ, et al. IL-21 is expressed 
in Hodgkin lymphoma and activates STAT5: evidence that activated STAT5 is required for 
Hodgkin lymphomagenesis. Blood 2008 May 1;111(9):4706-15. 

 (131)  Skinnider BF, Kapp U, Mak TW. The role of interleukin 13 in classical Hodgkin lymphoma. 
Leuk Lymphoma 2002 Jun;43(6):1203-10. 

 (132)  Dutton A, Reynolds GM, Dawson CW, Young LS, Murray PG. Constitutive activation of 
phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin's lymphoma cells 
through a mechanism involving Akt kinase and mTOR. J Pathol 2005 Mar;205(4):498-506. 

 (133)  Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, et al. Negative 
regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998 Oct 
2;95(1):29-39. 

 (134)  Kapp U, Dux A, Schell-Frederick E, Banik N, Hummel M, Mucke S, et al. Disseminated 
growth of Hodgkin's-derived cell lines L540 and L540cy in immune-deficient SCID mice. Ann 
Oncol 1994;5 Suppl 1:121-6. 

 (135)  Aldinucci D, Lorenzon D, Cattaruzza L, Pinto A, Gloghini A, Carbone A, et al. Expression of 
CCR5 receptors on Reed-Sternberg cells and Hodgkin lymphoma cell lines: involvement of 
CCL5/Rantes in tumor cell growth and microenvironmental interactions. Int J Cancer 2008 
Feb 15;122(4):769-76. 

 (136)  Fischer M, Juremalm M, Olsson N, Backlin C, Sundstrom C, Nilsson K, et al. Expression of 
CCL5/RANTES by Hodgkin and Reed-Sternberg cells and its possible role in the recruitment 
of mast cells into lymphomatous tissue. Int J Cancer 2003 Nov 1;107(2):197-201. 

 (137)  Jundt F, Anagnostopoulos I, Bommert K, Emmerich F, Muller G, Foss HD, et al. 
Hodgkin/Reed-Sternberg cells induce fibroblasts to secrete eotaxin, a potent 
chemoattractant for T cells and eosinophils. Blood 1999 Sep 15;94(6):2065-71. 

 (138)  Marshall NA, Christie LE, Munro LR, Culligan DJ, Johnston PW, Barker RN, et al. 
Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin 
lymphoma. Blood 2004 Mar 1;103(5):1755-62. 

 (139)  Cattaruzza L, Gloghini A, Olivo K, Di FR, Lorenzon D, De FR, et al. Functional coexpression of 
Interleukin (IL)-7 and its receptor (IL-7R) on Hodgkin and Reed-Sternberg cells: Involvement 
of IL-7 in tumor cell growth and microenvironmental interactions of Hodgkin's lymphoma. 
Int J Cancer 2009 Sep 1;125(5):1092-101. 

 (140)  Schreck S, Friebel D, Buettner M, Distel L, Grabenbauer G, Young LS, et al. Prognostic 
impact of tumour-infiltrating Th2 and regulatory T cells in classical Hodgkin lymphoma. 
Hematol Oncol 2009 Mar;27(1):31-9. 

 (141)  Aldinucci D, Gloghini A, Pinto A, De FR, Carbone A. The classical Hodgkin's lymphoma 
microenvironment and its role in promoting tumour growth and immune escape. J Pathol 
2010 Jul;221(3):248-63. 



References 

| 219  
 

 (142)  Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in 
exhausted CD8 T cells during chronic viral infection. Nature 2006 Feb 9;439(7077):682-7. 

 (143)  Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M, et al. PD-1-PD-1 
ligand interaction contributes to immunosuppressive microenvironment of Hodgkin 
lymphoma. Blood 2008 Mar 15;111(6):3220-4. 

 (144)  Trimboli AJ, Cantemir-Stone CZ, Li F, Wallace JA, Merchant A, Creasap N, et al. Pten in 
stromal fibroblasts suppresses mammary epithelial tumours. Nature 2009 Oct 
22;461(7267):1084-91. 

 (145)  Birgersdotter A, Baumforth KR, Porwit A, Sjoberg J, Wei W, Bjorkholm M, et al. 
Inflammation and tissue repair markers distinguish the nodular sclerosis and mixed 
cellularity subtypes of classical Hodgkin's lymphoma. Br J Cancer 2009 Oct 20;101(8):1393-
401. 

 (146)  Crocker J, Overton SP, Smith PJ. Type IV collagen in Hodgkin's disease. An 
immunohistochemical study. Am J Clin Pathol 1988 Jan;89(1):57-62. 

 (147)  Vogel WF, Abdulhussein R, Ford CE. Sensing extracellular matrix: an update on discoidin 
domain receptor function. Cell Signal 2006 Aug;18(8):1108-16. 

 (148)  Vogel WF. Collagen-receptor signaling in health and disease. Eur J Dermatol 2001 
Nov;11(6):506-14. 

 (149)  Cader FZ, Kearns P, Young L, Murray P, Vockerodt M. The contribution of the Epstein-Barr 
virus to the pathogenesis of childhood lymphomas. Cancer Treat Rev 2010 Jun;36(4):348-
53. 

 (150)  Woodman CB, Collins SI, Vavrusova N, Rao A, Middeldorp JM, Kolar Z, et al. Role of sexual 
behavior in the acquisition of asymptomatic Epstein-Barr virus infection: a longitudinal 
study. Pediatr Infect Dis J 2005 Jun;24(6):498-502. 

 (151)  Carbone A, Gloghini A, Dotti G. EBV-associated lymphoproliferative disorders: classification 
and treatment. Oncologist 2008 May;13(5):577-85. 

 (152)  Timms JM, Bell A, Flavell JR, Murray PG, Rickinson AB, Traverse-Glehen A, et al. Target cells 
of Epstein-Barr-virus (EBV)-positive post-transplant lymphoproliferative disease: 
similarities to EBV-positive Hodgkin's lymphoma. Lancet 2003 Jan 18;361(9353):217-23. 

 (153)  Dolcetti R, Boiocchi M, Gloghini A, Carbone A. Pathogenetic and histogenetic features of 
HIV-associated Hodgkin's disease. Eur J Cancer 2001 Jul;37(10):1276-87. 

 (154)  Young LS, Murray PG. Epstein-Barr virus and oncogenesis: from latent genes to tumours. 
Oncogene 2003 Aug 11;22(33):5108-21. 

 (155)  Anagnostopoulos I, Herbst H, Niedobitek G, Stein H. Demonstration of monoclonal EBV 
genomes in Hodgkin's disease and Ki-1-positive anaplastic large cell lymphoma by 
combined Southern blot and in situ hybridization. Blood 1989 Aug 1;74(2):810-6. 

 (156)  Weiss LM, Movahed LA, Warnke RA, Sklar J. Detection of Epstein-Barr viral genomes in 
Reed-Sternberg cells of Hodgkin's disease. N Engl J Med 1989 Feb 23;320(8):502-6. 



References 

| 220  
 

 (157)  Ehlin-Henriksson B, Gordon J, Klein G. B-lymphocyte subpopulations are equally susceptible 
to Epstein-Barr virus infection, irrespective of immunoglobulin isotype expression. 
Immunology 2003 Apr;108(4):427-30. 

 (158)  Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 
2001 Oct;1(1):75-82. 

 (159)  Amoroso R, Fitzsimmons L, Thomas WA, Kelly GL, Rowe M, Bell AI. Quantitative studies of 
Epstein-Barr virus-encoded microRNAs provide novel insights into their regulation. J Virol 
2011 Jan;85(2):996-1010. 

 (160)  Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer 2004 
Oct;4(10):757-68. 

 (161)  Humme S, Reisbach G, Feederle R, Delecluse HJ, Bousset K, Hammerschmidt W, et al. The 
EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc 
Natl Acad Sci U S A 2003 Sep 16;100(19):10989-94. 

 (162)  Mancao C, Altmann M, Jungnickel B, Hammerschmidt W. Rescue of "crippled" germinal 
center B cells from apoptosis by Epstein-Barr virus. Blood 2005 Dec 15;106(13):4339-44. 

 (163)  Bechtel D, Kurth J, Unkel C, Kuppers R. Transformation of BCR-deficient germinal-center B 
cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and 
posttransplantation lymphomas. Blood 2005 Dec 15;106(13):4345-50. 

 (164)  Chaganti S, Bell AI, Pastor NB, Milner AE, Drayson M, Gordon J, et al. Epstein-Barr virus 
infection in vitro can rescue germinal center B cells with inactivated immunoglobulin 
genes. Blood 2005 Dec 15;106(13):4249-52. 

 (165)  Mancao C, Hammerschmidt W. Epstein-Barr virus latent membrane protein 2A is a B-cell 
receptor mimic and essential for B-cell survival. Blood 2007 Nov 15;110(10):3715-21. 

 (166)  Caldwell RG, Wilson JB, Anderson SJ, Longnecker R. Epstein-Barr virus LMP2A drives B cell 
development and survival in the absence of normal B cell receptor signals. Immunity 1998 
Sep;9(3):405-11. 

 (167)  Kilger E, Kieser A, Baumann M, Hammerschmidt W. Epstein-Barr virus-mediated B-cell 
proliferation is dependent upon latent membrane protein 1, which simulates an activated 
CD40 receptor. EMBO J 1998 Mar 16;17(6):1700-9. 

 (168)  Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V, Raab-Traub N. Expression 
of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic 
mice. Proc Natl Acad Sci U S A 1998 Sep 29;95(20):11963-8. 

 (169)  Miller CL, Lee JH, Kieff E, Burkhardt AL, Bolen JB, Longnecker R. Epstein-Barr virus protein 
LMP2A regulates reactivation from latency by negatively regulating tyrosine kinases 
involved in sIg-mediated signal transduction. Infect Agents Dis 1994 Apr;3(2-3):128-36. 

 (170)  Miller CL, Lee JH, Kieff E, Longnecker R. An integral membrane protein (LMP2) blocks 
reactivation of Epstein-Barr virus from latency following surface immunoglobulin 
crosslinking. Proc Natl Acad Sci U S A 1994 Jan 18;91(2):772-6. 



References 

| 221  
 

 (171)  Portis T, Dyck P, Longnecker R. Epstein-Barr Virus (EBV) LMP2A induces alterations in gene 
transcription similar to those observed in Reed-Sternberg cells of Hodgkin lymphoma. 
Blood 2003 Dec 1;102(12):4166-78. 

 (172)  Vockerodt M, Morgan SL, Kuo M, Wei W, Chukwuma MB, Arrand JR, et al. The Epstein-Barr 
virus oncoprotein, latent membrane protein-1, reprograms germinal centre B cells towards 
a Hodgkin's Reed-Sternberg-like phenotype. J Pathol 2008 Sep;216(1):83-92. 

 (173)  Herbst H, Foss HD, Samol J, Araujo I, Klotzbach H, Krause H, et al. Frequent expression of 
interleukin-10 by Epstein-Barr virus-harboring tumor cells of Hodgkin's disease. Blood 1996 
Apr 1;87(7):2918-29. 

 (174)  Baumforth KR, Birgersdotter A, Reynolds GM, Wei W, Kapatai G, Flavell JR, et al. Expression 
of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear antigen 1 in Hodgkin's 
lymphoma cells mediates Up-regulation of CCL20 and the migration of regulatory T cells. 
Am J Pathol 2008 Jul;173(1):195-204. 

 (175)  Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010 Jun 
25;141(7):1117-34. 

 (176)  Wehrman T, He X, Raab B, Dukipatti A, Blau H, Garcia KC. Structural and mechanistic 
insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron 
2007 Jan 4;53(1):25-38. 

 (177)  Liu H, Chen X, Focia PJ, He X. Structural basis for stem cell factor-KIT signaling and 
activation of class III receptor tyrosine kinases. EMBO J 2007 Feb 7;26(3):891-901. 

 (178)  Yuzawa S, Opatowsky Y, Zhang Z, Mandiyan V, Lax I, Schlessinger J. Structural basis for 
activation of the receptor tyrosine kinase KIT by stem cell factor. Cell 2007 Jul 
27;130(2):323-34. 

 (179)  Spivak-Kroizman T, Lemmon MA, Dikic I, Ladbury JE, Pinchasi D, Huang J, et al. Heparin-
induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, 
activation, and cell proliferation. Cell 1994 Dec 16;79(6):1015-24. 

 (180)  Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, et al. Crystal structure of the 
complex of human epidermal growth factor and receptor extracellular domains. Cell 2002 
Sep 20;110(6):775-87. 

 (181)  Nolen B, Taylor S, Ghosh G. Regulation of protein kinases; controlling activity through 
activation segment conformation. Mol Cell 2004 Sep 10;15(5):661-75. 

 (182)  Ward C, Lawrence M, Streltsov V, Garrett T, McKern N, Lou MZ, et al. Structural insights 
into ligand-induced activation of the insulin receptor. Acta Physiol (Oxf) 2008 Jan;192(1):3-
9. 

 (183)  Shewchuk LM, Hassell AM, Ellis B, Holmes WD, Davis R, Horne EL, et al. Structure of the 
Tie2 RTK domain: self-inhibition by the nucleotide binding loop, activation loop, and C-
terminal tail. Structure 2000 Nov 15;8(11):1105-13. 

 (184)  Niu XL, Peters KG, Kontos CD. Deletion of the carboxyl terminus of Tie2 enhances kinase 
activity, signaling, and function. Evidence for an autoinhibitory mechanism. J Biol Chem 
2002 Aug 30;277(35):31768-73. 



References 

| 222  
 

 (185)  Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F. Structural basis for 
autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated 
juxtamembrane region. Cell 2001 Sep 21;106(6):745-57. 

 (186)  Herbst R, Burden SJ. The juxtamembrane region of MuSK has a critical role in agrin-
mediated signaling. EMBO J 2000 Jan 4;19(1):67-77. 

 (187)  Till JH, Becerra M, Watty A, Lu Y, Ma Y, Neubert TA, et al. Crystal structure of the MuSK 
tyrosine kinase: insights into receptor autoregulation. Structure 2002 Sep;10(9):1187-96. 

 (188)  Nakamura T, Sanokawa R, Sasaki Y, Ayusawa D, Oishi M, Mori N. N-Shc: a neural-specific 
adapter molecule that mediates signaling from neurotrophin/Trk to Ras/MAPK pathway. 
Oncogene 1996 Sep 19;13(6):1111-21. 

 (189)  Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, et al. Drosophila Dscam is an 
axon guidance receptor exhibiting extraordinary molecular diversity. Cell 2000 Jun 
9;101(6):671-84. 

 (190)  Pajares MJ, Ezponda T, Catena R, Calvo A, Pio R, Montuenga LM. Alternative splicing: an 
emerging topic in molecular and clinical oncology. Lancet Oncol 2007 Apr;8(4):349-57. 

 (191)  Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 
2003;72:291-336. 

 (192)  Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet 2004 
Nov;20(11):563-9. 

 (193)  L'hote CG, Knowles MA. Cell responses to FGFR3 signalling: growth, differentiation and 
apoptosis. Exp Cell Res 2005 Apr 1;304(2):417-31. 

 (194)  Diaz-Rodriguez E, Cabrera N, Esparis-Ogando A, Montero JC, Pandiella A. Cleavage of the 
TrkA neurotrophin receptor by multiple metalloproteases generates signalling-competent 
truncated forms. Eur J Neurosci 1999 Apr;11(4):1421-30. 

 (195)  Jin P, Zhang J, Sumariwalla PF, Ni I, Jorgensen B, Crawford D, et al. Novel splice variants 
derived from the receptor tyrosine kinase superfamily are potential therapeutics for 
rheumatoid arthritis. Arthritis Res Ther 2008;10(4):R73. 

 (196)  Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic 
mutations that affect splicing. Nat Rev Genet 2002 Apr;3(4):285-98. 

 (197)  Faustino NA, Cooper TA. Pre-mRNA splicing and human disease. Genes Dev 2003 Feb 
15;17(4):419-37. 

 (198)  Chen LL, Sabripour M, Wu EF, Prieto VG, Fuller GN, Frazier ML. A mutation-created novel 
intra-exonic pre-mRNA splice site causes constitutive activation of KIT in human 
gastrointestinal stromal tumors. Oncogene 2005 Jun 16;24(26):4271-80. 

 (199)  Collesi C, Santoro MM, Gaudino G, Comoglio PM. A splicing variant of the RON transcript 
induces constitutive tyrosine kinase activity and an invasive phenotype. Mol Cell Biol 1996 
Oct;16(10):5518-26. 



References 

| 223  
 

 (200)  Ghigna C, Giordano S, Shen H, Benvenuto F, Castiglioni F, Comoglio PM, et al. Cell motility 
is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell 
2005 Dec 22;20(6):881-90. 

 (201)  Karni R, de SE, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor 
SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 2007 Mar;14(3):185-93. 

 (202)  Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001 May 
17;411(6835):355-65. 

 (203)  Barros FF, Powe DG, Ellis IO, Green AR. Understanding the HER family in breast cancer: 
interaction with ligands, dimerization and treatments. Histopathology 2010 Apr;56(5):560-
72. 

 (204)  Suo Z, Risberg B, Kalsson MG, Willman K, Tierens A, Skovlund E, et al. EGFR family 
expression in breast carcinomas. c-erbB-2 and c-erbB-4 receptors have different effects on 
survival. J Pathol 2002 Jan;196(1):17-25. 

 (205)  Joensuu H. Gastrointestinal stromal tumor (GIST). Ann Oncol 2006 Sep;17 Suppl 10:x280-
x286. 

 (206)  Piao X, Paulson R, van der Geer P, Pawson T, Bernstein A. Oncogenic mutation in the Kit 
receptor tyrosine kinase alters substrate specificity and induces degradation of the protein 
tyrosine phosphatase SHP-1. Proc Natl Acad Sci U S A 1996 Dec 10;93(25):14665-9. 

 (207)  Taniguchi M, Nishida T, Hirota S, Isozaki K, Ito T, Nomura T, et al. Effect of c-kit mutation on 
prognosis of gastrointestinal stromal tumors. Cancer Res 1999 Sep 1;59(17):4297-300. 

 (208)  Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 
2003 Sep;3(9):650-65. 

 (209)  Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H, et al. Internal tandem 
duplication of the FLT3 gene is a novel modality of elongation mutation which causes 
constitutive activation of the product. Leukemia 1998 Sep;12(9):1333-7. 

 (210)  Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, et al. Analysis of FLT3 length 
mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB 
subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of 
minimal residual disease. Blood 2002 Jul 1;100(1):59-66. 

 (211)  Veeriah S, Brennan C, Meng S, Singh B, Fagin JA, Solit DB, et al. The tyrosine phosphatase 
PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma 
and other human cancers. Proc Natl Acad Sci U S A 2009 Jun 9;106(23):9435-40. 

 (212)  Xu Y, Baker D, Quan T, Baldassare JJ, Voorhees JJ, Fisher GJ. Receptor type protein tyrosine 
phosphatase-kappa mediates cross-talk between transforming growth factor-beta and 
epidermal growth factor receptor signaling pathways in human keratinocytes. Mol Biol Cell 
2010 Jan 1;21(1):29-35. 

 (213)  Flavell JR, Baumforth KR, Wood VH, Davies GL, Wei W, Reynolds GM, et al. Down-
regulation of the TGF-beta target gene, PTPRK, by the Epstein-Barr virus encoded EBNA1 
contributes to the growth and survival of Hodgkin lymphoma cells. Blood 2008 Jan 
1;111(1):292-301. 



References 

| 224  
 

 (214)  Bache KG, Slagsvold T, Stenmark H. Defective downregulation of receptor tyrosine kinases 
in cancer. EMBO J 2004 Jul 21;23(14):2707-12. 

 (215)  Gur G, Rubin C, Katz M, Amit I, Citri A, Nilsson J, et al. LRIG1 restricts growth factor 
signaling by enhancing receptor ubiquitylation and degradation. EMBO J 2004 Aug 
18;23(16):3270-81. 

 (216)  Laederich MB, Funes-Duran M, Yen L, Ingalla E, Wu X, Carraway KL, III, et al. The leucine-
rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J 
Biol Chem 2004 Nov 5;279(45):47050-6. 

 (217)  Hedman H, Nilsson J, Guo D, Henriksson R. Is LRIG1 a tumour suppressor gene at 
chromosome 3p14.3? Acta Oncol 2002;41(4):352-4. 

 (218)  Thomasson M, Wang B, Hammarsten P, Dahlman A, Persson JL, Josefsson A, et al. LRIG1 
and the liar paradox in prostate cancer: A study of the expression and clinical significance 
of LRIG1 in prostate cancer. Int J Cancer 2010 Dec 2. 

 (219)  Ljuslinder I, Malmer B, Golovleva I, Thomasson M, Grankvist K, Hockenstrom T, et al. 
Increased copy number at 3p14 in breast cancer. Breast Cancer Res 2005;7(5):R719-R727. 

 (220)  Satterthwaite A, Witte O. Genetic analysis of tyrosine kinase function in B cell 
development. Annu Rev Immunol 1996;14:131-54. 

 (221)  Fleming HE, Paige CJ. Cooperation between IL-7 and the pre-B cell receptor: a key to B cell 
selection. Semin Immunol 2002 Dec;14(6):423-30. 

 (222)  Middendorp S, Dingjan GM, Hendriks RW. Impaired precursor B cell differentiation in 
Bruton's tyrosine kinase-deficient mice. J Immunol 2002 Mar 15;168(6):2695-703. 

 (223)  Gauld SB, Cambier JC. Src-family kinases in B-cell development and signaling. Oncogene 
2004 Oct 18;23(48):8001-6. 

 (224)  Ogawa M, ten BE, Melchers F. Identification of CD19(-)B220(+)c-Kit(+)Flt3/Flk-2(+)cells as 
early B lymphoid precursors before pre-B-I cells in juvenile mouse bone marrow. Int 
Immunol 2000 Mar;12(3):313-24. 

 (225)  Ogawa M, Sugawara S, Kunisada T, Sudo T, Hayashi S, Nishikawa S, et al. Flt3/Flk-2 and c-Kit 
are not essential for the proliferation of B lymphoid progenitor cells in the bone marrow of 
the adult mouse. Exp Hematol 1998 Jun;26(6):478-88. 

 (226)  Li LX, Goetz CA, Katerndahl CD, Sakaguchi N, Farrar MA. A Flt3- and Ras-dependent 
pathway primes B cell development by inducing a state of IL-7 responsiveness. J Immunol 
2010 Feb 15;184(4):1728-36. 

 (227)  Coppola V, Barrick CA, Southon EA, Celeste A, Wang K, Chen B, et al. Ablation of TrkA 
function in the immune system causes B cell abnormalities. Development 2004 
Oct;131(20):5185-95. 

 (228)  van d, V, Taher TE, Keehnen RM, Smit L, Groenink M, Pals ST. Paracrine regulation of 
germinal center B cell adhesion through the c-met-hepatocyte growth factor/scatter factor 
pathway. J Exp Med 1997 Jun 16;185(12):2121-31. 



References 

| 225  
 

 (229)  Weimar IS, de JD, Muller EJ, Nakamura T, van Gorp JM, de Gast GC, et al. Hepatocyte 
growth factor/scatter factor promotes adhesion of lymphoma cells to extracellular matrix 
molecules via alpha 4 beta 1 and alpha 5 beta 1 integrins. Blood 1997 Feb 1;89(3):990-
1000. 

 (230)  Gordin M, Tesio M, Cohen S, Gore Y, Lantner F, Leng L, et al. c-Met and its ligand 
hepatocyte growth factor/scatter factor regulate mature B cell survival in a pathway 
induced by CD74. J Immunol 2010 Aug 15;185(4):2020-31. 

 (231)  Khnykin D, Troen G, Berner JM, Delabie J. The expression of fibroblast growth factors and 
their receptors in Hodgkin's lymphoma. J Pathol 2006 Feb;208(3):431-8. 

 (232)  Renne C, Willenbrock K, Kuppers R, Hansmann ML, Brauninger A. Autocrine- and paracrine-
activated receptor tyrosine kinases in classic Hodgkin lymphoma. Blood 2005 May 
15;105(10):4051-9. 

 (233)  Renne C, Hinsch N, Willenbrock K, Fuchs M, Klapper W, Engert A, et al. The aberrant 
coexpression of several receptor tyrosine kinases is largely restricted to EBV-negative cases 
of classical Hodgkin's lymphoma. Int J Cancer 2007 Jun 1;120(11):2504-9. 

 (234)  Renne C, Minner S, Kuppers R, Hansmann ML, Brauninger A. Autocrine NGFbeta/TRKA 
signalling is an important survival factor for Hodgkin lymphoma derived cell lines. Leuk Res 
2008 Jan;32(1):163-7. 

 (235)  Pinto A, Gloghini A, Gattei V, Aldinucci D, Zagonel V, Carbone A. Expression of the c-kit 
receptor in human lymphomas is restricted to Hodgkin's disease and CD30+ anaplastic 
large cell lymphomas. Blood 1994 Feb 1;83(3):785-92. 

 (236)  Aldinucci D, Poletto D, Nanni P, Degan M, Gloghini A, Di FR, et al. Hodgkin and Reed-
Sternberg cells express functional c-kit receptors and interact with primary fibroblasts from 
Hodgkin's disease-involved lymph nodes through soluble and membrane-bound stem cell 
factor. Br J Haematol 2002 Sep;118(4):1055-64. 

 (237)  Canioni D, Deau-Fischer B, Taupin P, Ribrag V, Delarue R, Bosq J, et al. Prognostic 
significance of new immunohistochemical markers in refractory classical Hodgkin 
lymphoma: a study of 59 cases. PLoS One 2009;4(7):e6341. 

 (238)  Rassidakis GZ, Georgakis GV, Younes A, Medeiros LJ. c-kit is not expressed in Hodgkin 
disease and anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma. 
Blood 2003 Dec 15;102(13):4619-20. 

 (239)  Re D, Wickenhauser C, Ahmadi T, Buchdunger E, Kochanek M, Diehl V, et al. Preclinical 
evaluation of the antiproliferative potential of STI571 in Hodgkin's disease. Br J Cancer 
2002 Apr 22;86(8):1333-5. 

 (240)  Lamprecht B, Walter K, Kreher S, Kumar R, Hummel M, Lenze D, et al. Derepression of an 
endogenous long terminal repeat activates the CSF1R proto-oncogene in human 
lymphoma. Nat Med 2010 May;16(5):571-9, 1p. 

 (241)  Naldini L, Vigna E, Narsimhan RP, Gaudino G, Zarnegar R, Michalopoulos GK, et al. 
Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor 
encoded by the proto-oncogene c-MET. Oncogene 1991 Apr;6(4):501-4. 



References 

| 226  
 

 (242)  Ferracini R, Longati P, Naldini L, Vigna E, Comoglio PM. Identification of the major 
autophosphorylation site of the Met/hepatocyte growth factor receptor tyrosine kinase. J 
Biol Chem 1991 Oct 15;266(29):19558-64. 

 (243)  Longati P, Bardelli A, Ponzetto C, Naldini L, Comoglio PM. Tyrosines1234-1235 are critical 
for activation of the tyrosine kinase encoded by the MET proto-oncogene (HGF receptor). 
Oncogene 1994 Jan;9(1):49-57. 

 (244)  Naldini L, Vigna E, Ferracini R, Longati P, Gandino L, Prat M, et al. The tyrosine kinase 
encoded by the MET proto-oncogene is activated by autophosphorylation. Mol Cell Biol 
1991 Apr;11(4):1793-803. 

 (245)  Bardelli A, Longati P, Williams TA, Benvenuti S, Comoglio PM. A peptide representing the 
carboxyl-terminal tail of the met receptor inhibits kinase activity and invasive growth. J Biol 
Chem 1999 Oct 8;274(41):29274-81. 

 (246)  Trusolino L, Bertotti A, Comoglio PM. MET signalling: principles and functions in 
development, organ regeneration and cancer. Nat Rev Mol Cell Biol 2010 Dec;11(12):834-
48. 

 (247)  Thien CB, Langdon WY. Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev 
Mol Cell Biol 2001 Apr;2(4):294-307. 

 (248)  Abella JV, Peschard P, Naujokas MA, Lin T, Saucier C, Urbe S, et al. Met/Hepatocyte growth 
factor receptor ubiquitination suppresses transformation and is required for Hrs 
phosphorylation. Mol Cell Biol 2005 Nov;25(21):9632-45. 

 (249)  Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY, et al. Mutation of 
the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a 
transforming protein. Mol Cell 2001 Nov;8(5):995-1004. 

 (250)  Shattuck DL, Miller JK, Laederich M, Funes M, Petersen H, Carraway KL, III, et al. LRIG1 is a 
novel negative regulator of the Met receptor and opposes Met and Her2 synergy. Mol Cell 
Biol 2007 Mar;27(5):1934-46. 

 (251)  Trusolino L, Comoglio PM. Scatter-factor and semaphorin receptors: cell signalling for 
invasive growth. Nat Rev Cancer 2002 Apr;2(4):289-300. 

 (252)  Rong S, Segal S, Anver M, Resau JH, Vande Woude GF. Invasiveness and metastasis of NIH 
3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. 
Proc Natl Acad Sci U S A 1994 May 24;91(11):4731-5. 

 (253)  Giordano S, Maffe A, Williams TA, Artigiani S, Gual P, Bardelli A, et al. Different point 
mutations in the met oncogene elicit distinct biological properties. FASEB J 2000 
Feb;14(2):399-406. 

 (254)  Michieli P, Basilico C, Pennacchietti S, Maffe A, Tamagnone L, Giordano S, et al. Mutant 
Met-mediated transformation is ligand-dependent and can be inhibited by HGF 
antagonists. Oncogene 1999 Sep 16;18(37):5221-31. 

 (255)  Onozato R, Kosaka T, Kuwano H, Sekido Y, Yatabe Y, Mitsudomi T. Activation of MET by 
gene amplification or by splice mutations deleting the juxtamembrane domain in primary 
resected lung cancers. J Thorac Oncol 2009 Jan;4(1):5-11. 



References 

| 227  
 

 (256)  Jucker M, Schaadt M, Diehl V, Poppema S, Jones D, Tesch H. Heterogeneous expression of 
proto-oncogenes in Hodgkin's disease derived cell lines. Hematol Oncol 1990 Jul;8(4):191-
204. 

 (257)  Jucker M, Gunther A, Gradl G, Fonatsch C, Krueger G, Diehl V, et al. The Met/hepatocyte 
growth factor receptor (HGFR) gene is overexpressed in some cases of human leukemia 
and lymphoma. Leuk Res 1994 Jan;18(1):7-16. 

 (258)  Pons E, Uphoff CC, Drexler HG. Expression of hepatocyte growth factor and its receptor c-
met in human leukemia-lymphoma cell lines. Leuk Res 1998 Sep;22(9):797-804. 

 (259)  Teofili L, Di Febo AL, Pierconti F, Maggiano N, Bendandi M, Rutella S, et al. Expression of 
the c-met proto-oncogene and its ligand, hepatocyte growth factor, in Hodgkin disease. 
Blood 2001 Feb 15;97(4):1063-9. 

 (260)  Mathas S, Hinz M, Anagnostopoulos I, Krappmann D, Lietz A, Jundt F, et al. Aberrantly 
expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate 
proliferation and synergize with NF-kappa B. EMBO J 2002 Aug 1;21(15):4104-13. 

 (261)  Gaudino G, Follenzi A, Naldini L, Collesi C, Santoro M, Gallo KA, et al. RON is a 
heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP. EMBO J 
1994 Aug 1;13(15):3524-32. 

 (262)  Follenzi A, Bakovic S, Gual P, Stella MC, Longati P, Comoglio PM. Cross-talk between the 
proto-oncogenes Met and Ron. Oncogene 2000 Jun 22;19(27):3041-9. 

 (263)  Cheng HL, Liu HS, Lin YJ, Chen HH, Hsu PY, Chang TY, et al. Co-expression of RON and MET 
is a prognostic indicator for patients with transitional-cell carcinoma of the bladder. Br J 
Cancer 2005 May 23;92(10):1906-14. 

 (264)  Maggiora P, Lorenzato A, Fracchioli S, Costa B, Castagnaro M, Arisio R, et al. The RON and 
MET oncogenes are co-expressed in human ovarian carcinomas and cooperate in activating 
invasiveness. Exp Cell Res 2003 Aug 15;288(2):382-9. 

 (265)  Vogel W, Brakebusch C, Fassler R, Alves F, Ruggiero F, Pawson T. Discoidin domain receptor 
1 is activated independently of beta(1) integrin. J Biol Chem 2000 Feb 25;275(8):5779-84. 

 (266)  Abdulhussein R, Koo DH, Vogel WF. Identification of disulfide-linked dimers of the receptor 
tyrosine kinase DDR1. J Biol Chem 2008 May 2;283(18):12026-33. 

 (267)  L'hote CG, Thomas PH, Ganesan TS. Functional analysis of discoidin domain receptor 1: 
effect of adhesion on DDR1 phosphorylation. FASEB J 2002 Feb;16(2):234-6. 

 (268)  Alves F, Saupe S, Ledwon M, Schaub F, Hiddemann W, Vogel WF. Identification of two 
novel, kinase-deficient variants of discoidin domain receptor 1: differential expression in 
human colon cancer cell lines. FASEB J 2001 May;15(7):1321-3. 

 (269)  Foehr ED, Tatavos A, Tanabe E, Raffioni S, Goetz S, Dimarco E, et al. Discoidin domain 
receptor 1 (DDR1) signaling in PC12 cells: activation of juxtamembrane domains in 
PDGFR/DDR/TrkA chimeric receptors. FASEB J 2000 May;14(7):973-81. 



References 

| 228  
 

 (270)  Kamohara H, Yamashiro S, Galligan C, Yoshimura T. Discoidin domain receptor 1 isoform-a 
(DDR1alpha) promotes migration of leukocytes in three-dimensional collagen lattices. 
FASEB J 2001 Dec;15(14):2724-6. 

 (271)  Perez JL, Shen X, Finkernagel S, Sciorra L, Jenkins NA, Gilbert DJ, et al. Identification and 
chromosomal mapping of a receptor tyrosine kinase with a putative phospholipid binding 
sequence in its ectodomain. Oncogene 1994 Jan;9(1):211-9. 

 (272)  Sakuma S, Saya H, Tada M, Nakao M, Fujiwara T, Roth JA, et al. Receptor protein tyrosine 
kinase DDR is up-regulated by p53 protein. FEBS Lett 1996 Dec 2;398(2-3):165-9. 

 (273)  Abdulhussein R, McFadden C, Fuentes-Prior P, Vogel WF. Exploring the collagen-binding 
site of the DDR1 tyrosine kinase receptor. J Biol Chem 2004 Jul 23;279(30):31462-70. 

 (274)  Hachehouche LN, Chetoui N, Aoudjit F. Implication of discoidin domain receptor 1 in T cell 
migration in three-dimensional collagen. Mol Immunol 2010 May;47(9):1866-9. 

 (275)  Wang CZ, Hsu YM, Tang MJ. Function of discoidin domain receptor I in HGF-induced 
branching tubulogenesis of MDCK cells in collagen gel. J Cell Physiol 2005 Apr;203(1):295-
304. 

 (276)  Flynn LA, Blissett AR, Calomeni EP, Agarwal G. Inhibition of collagen fibrillogenesis by cells 
expressing soluble extracellular domains of DDR1 and DDR2. J Mol Biol 2010 Jan 
22;395(3):533-43. 

 (277)  Koo DH, McFadden C, Huang Y, Abdulhussein R, Friese-Hamim M, Vogel WF. Pinpointing 
phosphotyrosine-dependent interactions downstream of the collagen receptor DDR1. FEBS 
Lett 2006 Jan 9;580(1):15-22. 

 (278)  Yang SH, Baek HA, Lee HJ, Park HS, Jang KY, Kang MJ, et al. Discoidin domain receptor 1 is 
associated with poor prognosis of non-small cell lung carcinomas. Oncol Rep 2010 
Aug;24(2):311-9. 

 (279)  Shimada K, Nakamura M, Ishida E, Higuchi T, Yamamoto H, Tsujikawa K, et al. Prostate 
cancer antigen-1 contributes to cell survival and invasion though discoidin receptor 1 in 
human prostate cancer. Cancer Sci 2008 Jan;99(1):39-45. 

 (280)  Chiaretti S, Li X, Gentleman R, Vitale A, Wang KS, Mandelli F, et al. Gene expression profiles 
of B-lineage adult acute lymphocytic leukemia reveal genetic patterns that identify lineage 
derivation and distinct mechanisms of transformation. Clin Cancer Res 2005 Oct 
15;11(20):7209-19. 

 (281)  Tomasson MH, Xiang Z, Walgren R, Zhao Y, Kasai Y, Miner T, et al. Somatic mutations and 
germline sequence variants in the expressed tyrosine kinase genes of patients with de 
novo acute myeloid leukemia. Blood 2008 May 1;111(9):4797-808. 

 (282)  Das S, Ongusaha PP, Yang YS, Park JM, Aaronson SA, Lee SW. Discoidin domain receptor 1 
receptor tyrosine kinase induces cyclooxygenase-2 and promotes chemoresistance through 
nuclear factor-kappaB pathway activation. Cancer Res 2006 Aug 15;66(16):8123-30. 

 (283)  Kim HG, Hwang SY, Aaronson SA, Mandinova A, Lee SW. DDR1 receptor tyrosine kinase 
promotes prosurvival pathway through Notch1 activation. J Biol Chem 2011 Mar 13. 



References 

| 229  
 

 (284)  Weinstein IB, Joe A. Oncogene addiction. Cancer Res 2008 May 1;68(9):3077-80. 

 (285)  Felsher DW, Bishop JM. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol 
Cell 1999 Aug;4(2):199-207. 

 (286)  Pegram MD, Lipton A, Hayes DF, Weber BL, Baselga JM, Tripathy D, et al. Phase II study of 
receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu 
monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic 
breast cancer refractory to chemotherapy treatment. J Clin Oncol 1998 Aug;16(8):2659-71. 

 (287)  Druker BJ. Translation of the Philadelphia chromosome into therapy for CML. Blood 2008 
Dec 15;112(13):4808-17. 

 (288)  Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year 
follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006 
Dec 7;355(23):2408-17. 

 (289)  O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, et al. Imatinib 
compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase 
chronic myeloid leukemia. N Engl J Med 2003 Mar 13;348(11):994-1004. 

 (290)  Bixby D, Talpaz M. Seeking the causes and solutions to imatinib-resistance in chronic 
myeloid leukemia. Leukemia 2011 Jan;25(1):7-22. 

 (291)  Xu AM, Huang PH. Receptor tyrosine kinase coactivation networks in cancer. Cancer Res 
2010 May 15;70(10):3857-60. 

 (292)  Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R, et al. 
Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted 
therapies. Science 2007 Oct 12;318(5848):287-90. 

 (293)  Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005 
Jul 14;353(2):172-87. 

 (294)  Demetri GD, von MM, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, et al. 
Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N 
Engl J Med 2002 Aug 15;347(7):472-80. 

 (295)  Rix U, Hantschel O, Durnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV, et al. 
Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib 
reveal novel kinase and nonkinase targets. Blood 2007 Dec 1;110(12):4055-63. 

 (296)  Diehl V, Kirchner HH, Burrichter H, Stein H, Fonatsch C, Gerdes J, et al. Characteristics of 
Hodgkin's disease-derived cell lines. Cancer Treat Rep 1982 Apr;66(4):615-32. 

 (297)  Wolf J, Kapp U, Bohlen H, Kornacker M, Schoch C, Stahl B, et al. Peripheral blood 
mononuclear cells of a patient with advanced Hodgkin's lymphoma give rise to 
permanently growing Hodgkin-Reed Sternberg cells. Blood 1996 Apr 15;87(8):3418-28. 

 (298)  Drexler HG, Leber BF, Norton J, Yaxley J, Tatsumi E, Hoffbrand AV, et al. Genotypes and 
immunophenotypes of Hodgkin's disease-derived cell lines. Leukemia 1988 Jun;2(6):371-6. 



References 

| 230  
 

 (299)  Falk MH, Tesch H, Stein H, Diehl V, Jones DB, Fonatsch C, et al. Phenotype versus 
immunoglobulin and T-cell receptor genotype of Hodgkin-derived cell lines: activation of 
immature lymphoid cells in Hodgkin's disease. Int J Cancer 1987 Aug 15;40(2):262-9. 

 (300)  Schaadt M, Diehl V, Stein H, Fonatsch C, Kirchner HH. Two neoplastic cell lines with unique 
features derived from Hodgkin's disease. Int J Cancer 1980 Dec 15;26(6):723-31. 

 (301)  Kamesaki H, Fukuhara S, Tatsumi E, Uchino H, Yamabe H, Miwa H, et al. Cytochemical, 
immunologic, chromosomal, and molecular genetic analysis of a novel cell line derived 
from Hodgkin's disease. Blood 1986 Jul;68(1):285-92. 

 (302)  Ben-Bassat H, Goldblum N, Mitrani S, Goldblum T, Yoffey JM, Cohen MM, et al. 
Establishment in continuous culture of a new type of lymphocyte from a "Burkitt like" 
malignant lymphoma (line D.G.-75). Int J Cancer 1977 Jan;19(1):27-33. 

 (303)  Lenoir GM, Vuillaume M, Bonnardel C. The use of lymphomatous and lymphoblastoid cell 
lines in the study of Burkitt's lymphoma. IARC Sci Publ 1985;(60):309-18. 

 (304)  Bertrand S, Berger R, Philip T, Bernheim A, Bryon PA, Bertoglio J, et al. Variant translocation 
in a non endemic case of Burkitt's lymphoma: t (8;22) in an Epstein--Barr virus negative 
tumour and in a derived cell line. Eur J Cancer 1981 May;17(5):577-84. 

 (305)  Denepoux S, Razanajaona D, Blanchard D, Meffre G, Capra JD, Banchereau J, et al. 
Induction of somatic mutation in a human B cell line in vitro. Immunity 1997 Jan;6(1):35-
46. 

 (306)  Menezes J, Leibold W, Klein G, Clements G. Establishment and characterization of an 
Epstein-Barr virus (EBC)-negative lymphoblastoid B cell line (BJA-B) from an exceptional, 
EBV-genome-negative African Burkitt's lymphoma. Biomedicine 1975 Jul;22(4):276-84. 

 (307)  Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive 
Philadelphia chromosome. Blood 1975 Mar;45(3):321-34. 

 (308)  Brattain MG, Fine WD, Khaled FM, Thompson J, Brattain DE. Heterogeneity of malignant 
cells from a human colonic carcinoma. Cancer Res 1981 May;41(5):1751-6. 

 (309)  Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time 
quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001 Dec;25(4):402-8. 

 (310)  Rieseberg M, Kasper C, Reardon KF, Scheper T. Flow cytometry in biotechnology. Appl 
Microbiol Biotechnol 2001 Aug;56(3-4):350-60. 

 (311)  Vanags DM, Porn-Ares MI, Coppola S, Burgess DH, Orrenius S. Protease involvement in 
fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 1996 Dec 
6;271(49):31075-85. 

 (312)  Takeda S, Shimizu T, Rodewald HR. Interactions between c-kit and stem cell factor are not 
required for B-cell development in vivo. Blood 1997 Jan 15;89(2):518-25. 

 (313)  Brown RE, Nazmi RK. The Reed-Steinberg cell: molecular characterization by proteomic 
analysis with therapeutic implications. Ann Clin Lab Sci 2002;32(4):339-51. 



References 

| 231  
 

 (314)  Moreau A, Praloran V, Berrada L, Coupey L, Gaillard F. Immunohistochemical detection of 
cells positive for colony-stimulating factor 1 in lymph nodes from reactive lymphadenitis, 
and Hodgkin's disease. Leukemia 1992 Feb;6(2):126-30. 

 (315)  Giles FJ, Vose JM, Do KA, Johnson MM, Manshouri T, Bociek G, et al. Clinical relevance of 
circulating angiogenic factors in patients with non-Hodgkin's lymphoma or Hodgkin's 
lymphoma. Leuk Res 2004 Jun;28(6):595-604. 

 (316)  Horikawa T, Sheen TS, Takeshita H, Sato H, Furukawa M, Yoshizaki T. Induction of c-Met 
proto-oncogene by Epstein-Barr virus latent membrane protein-1 and the correlation with 
cervical lymph node metastasis of nasopharyngeal carcinoma. Am J Pathol 2001 
Jul;159(1):27-33. 

 (317)  Bardelli A, Longati P, Gramaglia D, Stella MC, Comoglio PM. Gab1 coupling to the HGF/Met 
receptor multifunctional docking site requires binding of Grb2 and correlates with the 
transforming potential. Oncogene 1997 Dec 18;15(25):3103-11. 

 (318)  Lu Y, Yao HP, Wang MH. Multiple variants of the RON receptor tyrosine kinase: biochemical 
properties, tumorigenic activities, and potential drug targets. Cancer Lett 2007 Nov 
18;257(2):157-64. 

 (319)  Brune V, Tiacci E, Pfeil I, Doring C, Eckerle S, van Noesel CJ, et al. Origin and pathogenesis of 
nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene 
expression analysis. J Exp Med 2008 Sep 29;205(10):2251-68. 

 (320)  Guo A, Villen J, Kornhauser J, Lee KA, Stokes MP, Rikova K, et al. Signaling networks 
assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci U S A 2008 Jan 15;105(2):692-
7. 

 (321)  Campbell TN, Robbins SM. The Eph receptor/ephrin system: an emerging player in the 
invasion game. Curr Issues Mol Biol 2008;10(1-2):61-6. 

 (322)  Furge KA, Zhang YW, Vande Woude GF. Met receptor tyrosine kinase: enhanced signaling 
through adapter proteins. Oncogene 2000 Nov 20;19(49):5582-9. 

 (323)  Deheuninck J, Goormachtigh G, Foveau B, Ji Z, Leroy C, Ancot F, et al. Phosphorylation of 
the MET receptor on juxtamembrane tyrosine residue 1001 inhibits its caspase-dependent 
cleavage. Cell Signal 2009 Sep;21(9):1455-63. 

 (324)  Tulasne D, Deheuninck J, Lourenco FC, Lamballe F, Ji Z, Leroy C, et al. Proapoptotic function 
of the MET tyrosine kinase receptor through caspase cleavage. Mol Cell Biol 2004 
Dec;24(23):10328-39. 

 (325)  Follenzi A, Bakovic S, Gual P, Stella MC, Longati P, Comoglio PM. Cross-talk between the 
proto-oncogenes Met and Ron. Oncogene 2000 Jun 22;19(27):3041-9. 

 (326)  Benvenuti S, Lazzari L, Arnesano A, Li CG, Gentile A, Comoglio PM. Ron Kinase 
Transphosphorylation Sustains MET Oncogene Addiction. Cancer Res 2011 Mar 
1;71(5):1945-55. 

 (327)  Park HS, Kim KR, Lee HJ, Choi HN, Kim DK, Kim BT, et al. Overexpression of discoidin 
domain receptor 1 increases the migration and invasion of hepatocellular carcinoma cells 
in association with matrix metalloproteinase. Oncol Rep 2007 Dec;18(6):1435-41. 



References 

| 232  
 

 (328)  Perez JL, Jing SQ, Wong TW. Identification of two isoforms of the Cak receptor kinase that 
are coexpressed in breast tumor cell lines. Oncogene 1996 Apr 4;12(7):1469-77. 

 (329)  Castro-Sanchez L, Soto-Guzman A, Navarro-Tito N, Martinez-Orozco R, Salazar EP. Native 
type IV collagen induces cell migration through a CD9 and DDR1-dependent pathway in 
MDA-MB-231 breast cancer cells. Eur J Cell Biol 2010 Nov;89(11):843-52. 

 (330)  Ongusaha PP, Kim JI, Fang L, Wong TW, Yancopoulos GD, Aaronson SA, et al. p53 induction 
and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 
regulation through a positive feedback loop. EMBO J 2003 Mar 17;22(6):1289-301. 

 (331)  Faraci-Orf E, McFadden C, Vogel WF. DDR1 signaling is essential to sustain Stat5 function 
during lactogenesis. J Cell Biochem 2006 Jan 1;97(1):109-21. 

 (332)  Anderton JA, Bose S, Vockerodt M, Vrzalikova K, Wei W, Kuo M, et al. The H3K27me3 
demethylase, KDM6B, is induced by Epstein-Barr virus and over-expressed in Hodgkin's 
Lymphoma. Oncogene 2011 Jan 17. 

 (333)  Wang CZ, Su HW, Hsu YC, Shen MR, Tang MJ. A discoidin domain receptor 1/SHP-2 
signaling complex inhibits alpha2beta1-integrin-mediated signal transducers and activators 
of transcription 1/3 activation and cell migration. Mol Biol Cell 2006 Jun;17(6):2839-52. 

 (334)  Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for assessing differential 
expression in microarray experiments. Bioinformatics 2005 May 1;21(9):2067-75. 

 (335)  Jonsson M, Andersson T. Repression of Wnt-5a impairs DDR1 phosphorylation and 
modifies adhesion and migration of mammary cells. J Cell Sci 2001 Jun;114(Pt 11):2043-53. 

 (336)  Ikeda K, Wang LH, Torres R, Zhao H, Olaso E, Eng FJ, et al. Discoidin domain receptor 2 
interacts with Src and Shc following its activation by type I collagen. J Biol Chem 2002 May 
24;277(21):19206-12. 

 (337)  Yoshida D, Teramoto A. Enhancement of pituitary adenoma cell invasion and adhesion is 
mediated by discoidin domain receptor-1. J Neurooncol 2007 Mar;82(1):29-40. 

 (338)  Joos S, Kupper M, Ohl S, von BF, Mechtersheimer G, Bentz M, et al. Genomic imbalances 
including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res 
2000 Feb 1;60(3):549-52. 

 (339)  Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005 
Jul 14;353(2):172-87. 

 (340)  Weisberg E, Choi HG, Barrett R, Zhou W, Zhang J, Ray A, et al. Discovery and 
characterization of novel mutant FLT3 kinase inhibitors. Mol Cancer Ther 2010 
Sep;9(9):2468-77. 

 (341)  Day E, Waters B, Spiegel K, Alnadaf T, Manley PW, Buchdunger E, et al. Inhibition of 
collagen-induced discoidin domain receptor 1 and 2 activation by imatinib, nilotinib and 
dasatinib. Eur J Pharmacol 2008 Dec 3;599(1-3):44-53. 

 (342)  Nam S, Williams A, Vultur A, List A, Bhalla K, Smith D, et al. Dasatinib (BMS-354825) inhibits 
Stat5 signaling associated with apoptosis in chronic myelogenous leukemia cells. Mol 
Cancer Ther 2007 Apr;6(4):1400-5. 



References 

| 233  
 

 (343)  Ellis PM, Kaiser R, Zhao Y, Stopfer P, Gyorffy S, Hanna N. Phase I open-label study of 
continuous treatment with BIBF 1120, a triple angiokinase inhibitor, and pemetrexed in 
pretreated non-small cell lung cancer patients. Clin Cancer Res 2010 May 15;16(10):2881-9. 

 (344)  Huynh H. Molecularly targeted therapy in hepatocellular carcinoma. Biochem Pharmacol 
2010 Sep 1;80(5):550-60. 

 (345)  Miknyoczki SJ, Chang H, Klein-Szanto A, Dionne CA, Ruggeri BA. The Trk tyrosine kinase 
inhibitor CEP-701 (KT-5555) exhibits significant antitumor efficacy in preclinical xenograft 
models of human pancreatic ductal adenocarcinoma. Clin Cancer Res 1999 Aug;5(8):2205-
12. 

 (346)  Hexner EO, Serdikoff C, Jan M, Swider CR, Robinson C, Yang S, et al. Lestaurtinib (CEP701) is 
a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary 
erythroid cells from patients with myeloproliferative disorders. Blood 2008 Jun 
15;111(12):5663-71. 

 (347)  Knapper S, Mills KI, Gilkes AF, Austin SJ, Walsh V, Burnett AK. The effects of lestaurtinib 
(CEP701) and PKC412 on primary AML blasts: the induction of cytotoxicity varies with 
dependence on FLT3 signaling in both FLT3-mutated and wild-type cases. Blood 2006 Nov 
15;108(10):3494-503. 

 (348)  Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T, et al. Inhibition of mutant 
FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. 
Cancer Cell 2002 Jun;1(5):433-43. 

 (349)  Holz M, Janning A, Renne C, Brauninger A. Effects of receptor tyrosine kinase inhibitors on 
Hodgkin's lymphoma. Haematologica . 2010.  

 
 (350)  Marshall JL, Kindler H, Deeken J, Bhargava P, Vogelzang NJ, Rizvi N, et al. Phase I trial of 

orally administered CEP-701, a novel neurotrophin receptor-linked tyrosine kinase 
inhibitor. Invest New Drugs 2005 Jan;23(1):31-7. 

 (351)  Angevin E, Lopez J.A., Pande A, Moldova C. TKI258 (dovitinib lactate) in metastatic renal 
cell carcinoma (mRCC) patients refractory to approved targeted therapies: A phase I/II dose 
finding and biomarker study. J.Clin.Oncol. 27, 3563. 2009.  

 
 (352)  Lopes de Menezes DE, Peng J, Garrett EN, Louie SG, Lee SH, Wiesmann M, et al. CHIR-258: 

a potent inhibitor of FLT3 kinase in experimental tumor xenograft models of human acute 
myelogenous leukemia. Clin Cancer Res 2005 Jul 15;11(14):5281-91. 

 (353)  Fathi A, Levis M. FLT3 inhibitors: a story of the old and the new. Curr Opin Hematol 2011 
Mar;18(2):71-6. 

 (354)  Dewan MZ, Watanabe M, Ahmed S, Terashima K, Horiuchi S, Sata T, et al. Hodgkin's 
lymphoma cells are efficiently engrafted and tumor marker CD30 is expressed with 
constitutive nuclear factor-kappaB activity in unconditioned NOD/SCID/gammac(null) mice. 
Cancer Sci 2005 Aug;96(8):466-73. 



 

 

APPENDIX I 

 

HISTOLOGY OF PARAFFIN EMBEDDED PAEDIATRIC SAMPLES 

Centre/ ID code 
 

Pathological sub-classification 
 

Belfast (3)   
j05/6369 Nodular sclerosis (type II) 
4638/99 Nodular sclerosis 

j04/22990 Nodular sclerosis 
j02/10600 Nodular sclerosis 

j01/6150 Hodgkin's disease 
j01/25554 Hodgkin's disease 

    
BCH (4)   

234 Nodular sclerosis 
252 Nodular sclerosis 

22 Nodular sclerosis 
251 Nodular sclerosis 
186 Nodular sclerosis 
409 Nodular sclerosis 
512 Nodular sclerosis 
140 Nodular sclerosis 
210 Nodular sclerosis (cellular phase) 
402 Nodular sclerosis (grade II) 
499 Nodular sclerosis 
340 Nodular sclerosis 

53 Lymphocytic predominance cervical node 
35 Nodular sclerosis (type I) 

    
Cardiff (7)   

306 Nodular sclerosis 
132 Nodular sclerosis 
289 Hodgkin’s disease 
291 Nodular sclerosis 
404 Mixed cellularity 
373 Nodular sclerosis 
130 Nodular sclerosis 
135 Nodular sclerosis (type I) 
382 Nodular sclerosis (type I) 
352 Nodular sclerosis 
147 Nodular lymphocyte predominance HD 
310 Nodular sclerosis 



 

 

Liverpool (14)   
172 Nodular sclerosis 
169 Nodular sclerosis 
193 Nodular lymphocyte predominance HD 
170 Nodular sclerosis 
219 classical Hodgkin’s disease 

74 Nodular sclerosis 
159 Mixed cellularity 
223 Mixed cellularity 
160 Nodular sclerosis 
235 Nodular sclerosis 
208 Nodular sclerosis 
207 Nodular sclerosis 
225 Mixed cellularity 
224 Nodular sclerosis 

71 Mixed cellularity 
    
Newcastle (16)   

461 Mixed cellularity 
457 Mixed cellularity 
419 Nodular sclerosis (type I) 
390 classical Hodgkin’s disease 
443 Nodular sclerosis 
462 Lymphocytic predominance nodular 
375 Nodular sclerosis (grade II) 

    
Southampton (22)   

0519541k Mixed cellularity 
5249515 Mixed cellularity 

s17602.03 Lymphocytic predominance nodular 
s2489b.04 Lymphocytic predominance nodular 

 

 


