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I 

ABSTRACT 

 

Background: Dehydroepiandrosterone (DHEA) is the precursor for sex steroids in 

humans and its inactivation by sulphonation is a key regulator of active DHEA levels. 

Sulphonation of DHEA is controlled by the enzyme SULT2A1, which requires the 

presence of 3’-phosphoadenosine-5’-phospho-sulphate (PAPS) for activity.  In humans 

PAPS is produced by two isozymes, PAPSS1 and PAPSS2.  Several variants of human 

PAPSS2 are associated with changes in functional activity and have been described in 

patients presenting with hyperandrogenism and severe bone phenotypes. 

Aims: The aim of this project was to characterise the functional activity of hsPAPSS2a 

genetic variants E10K, M281L and E332K within the DHEA sulphonation pathway. 

Methods: The hsPAPSS2a variants were overexpressed in HEK293 cells in conjunction 

with hsSULT2A1. The capacity of the hsPAPSS2a variants to generate PAPS was 

determined by the ability of the co-expressed SULT2A1 to convert 3H-DHEA to 3H-

DHEAS.  The steroids were extracted and thin layer chromatography was used to 

determine the amount of DHEA conversion. 

Results: The novel hsPAPSS2a E332G variant was observed to have a reduction of 50% 

in functional activity.  The hsPAPSS2a E10K and M281L variants showed no significant 

changes in the DHEA sulphonation pathway. 

Conclusions: The clinical recommendation from this study is that patients presenting 

with androgen excess should be screened for the hsPAPSS2a E332G mutation.  
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1 INTRODUCTION 

1.1 Steroidogenesis  

Steroidogenesis is a biochemical process that synthesises active steroid hormones from 

cholesterol.  These hormones are involved in many physiological processes including 

development, sex determination and maintaining homeostasis throughout life.  The sex 

steroids, mineralocorticoids and glucocorticoids make up the three physiological 

categories of steroids (Miller and Auchus, 2010).  Specifically, sex steroids (androgen 

and oestrogen) are responsible for the differentiation into male or female during 

embryonic development, as well as the development of sexual maturation and 

reproductive functions during adulthood.  Glucocorticoids have key roles in maintaining 

metabolic homeostasis, in addition to initiating the body’s stress response.  Finally, 

mineralocorticoids are involved in osmoregulation by controlling the mineral and water 

balance in the body.   

 

The biosynthesis of steroids involves a complex network of enzymatic reactions.  The 

steroidogenic pathway in humans (Figure 1) is controlled at many levels including the 

regulation of participating enzymes and cofactors, cellular localisation of substrates and 

tissue specific pathways.  The first step in the biosynthesis of all steroid hormones is the 

conversion of cholesterol to pregnenolone by CYP11A1 (Miller and Auchus, 2010).  

Both mouse CYP11A1 knockout (Hu et al., 2002) and rare patients with CYP11A1 

mutations (Tajima et al., 2001, Kim et al., 2008) have a failure of steroidogenesis, 

demonstrating that all biosynthesis of steroids begins with this enzymatic reaction.  
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The conversion of cholesterol to pregnenolone occurs within the two major sites of 

steroidogenesis in humans; the adrenal glands and the gonads (Miller and Auchus, 2010).  

Humans have two adrenal glands which are situated above each kidney and can be 

divided into the outer cortex and the inner medulla.  While epinephrine and 

norepinephrine are secreted by the medulla, the adrenal cortex is responsible for secretion 

of steroid hormones.  The cortex can be subdivided in to the outer zona glomerulosa, the 

middle zona fasciculata and the inner zona reticularis, which are responsible for the 

production of mineralocorticoids, sex steroid precursors and glucocorticoids, respectively 

(Simpson and Waterman, 1988).  

 

Figure 1: The three major branches of steroidogenesis in humans. 

The adrenal cortex is subdivided into three distinct regions, which are capable of metabolising 

cholesterol into mineralocorticoids, glucocorticoids or sex steroids.  In the zona glomerulosa the 

primary mineralocorticoid aldosterone is produced.  Meanwhile, in the zona fasciculata 

cholesterol is primarily metabolised to generate the glucocorticoid, cortisol.  Furthermore, the 

generation of the primary sex steroid precursor DHEA from cholesterol occurs within the zona 

reticularis.  



Aliesha Griffin 

  

3 

1.1.1 Sex steroid synthesis 

The biosynthesis of the sex steroids, androgens and oestrogens, is important for 

development and sexual maturity in both men and premenopausal women, respectively. 

The enzyme CYP17A1 allows for further downstream conversion of pregnenolone 

towards the androgen biosynthesis pathway (Miller and Auchus, 2010).  CYP17A1 is 

principally expressed in the adrenal and the gonads (Chung et al., 1987) and has two 

distinct enzyme activities. Its 17α-hydroxylase activity catalyses pregnenolone to 17α 

hydroxypregnenolone and its 17,20-lyase activity subsequently coverts 17α 

hydroxypregnenolone to dehydroepiandrosterone (DHEA) (Nakajin et al., 1984).  DHEA 

is the principal sex steroid precursor, however mostly it is converted to its inactive form 

dehydroepiandrosterone sulphate (DHEAS) via sulphotransferase enzymes (Auchus, 

2004).  The enzyme 3β-hydroxysteroid dehydrogenase type 2 (3βHSD2) catalyses the 

synthesis of androstenedione, while 17β-hydroxysteroid dehydrogenase type five 

(17βHSD5) is responsible for testosterone synthesis in the zona reticularis (Nakamura et 

al., 2009) (Figure 2). 
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Figure 2: Downstream conversion of DHEA in the zona reticularis 

DHEA is produced in the zona reticularis and is primarily sulphonated by DHEA 

sulphotransferase (SULT2A1) to produce its inactive from, DHEAS.  The zona reticularis 

expresses low levels of 3βHSD2 and 17βHSD5, which allows for only minor conversion of DHEA 

to androstetenedione and subsequently testosterone.  Minor pathways are represented by dashed 

arrows. 

 

Synthesis of testosterone in men occurs within the testicular Leydig cells where 

cholesterol is converted to DHEA via a similar pathway to the zona reticularis of the 

adrenal gland.  The Leydig cells express both 17βHSD3 and 3βHSD2, but lack the ability 

to generate DHEAS.  Therefore, DHEA produced in the testis is readily converted to 

testosterone via androstenedione or androstenediol (Miller and Auchus, 2010). Ovarian 

steroidogenesis occurs in the granulosa and the theca cells which surround the oocyte and 

form the follicle. Steroidogenesis varies during the menstrual cycle resulting in oestradiol 

as the major product during the follicular phase and progesterone as the major product 

produced during the luteal phase (Miller and Auchus, 2010). Thus the regulation of sex 

steroid synthesis relies on the cell-specific expression of steroidogenic enzymes within 

the gonads. 
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Figure 3: Conversion of DHEA to androgens and oestrogens within the gonads.  

The Leydig cells of the testis express high amounts of 17βHSD3 and 3βHSD2, which allows 

DHEA to be readily converted to testosterone via androstenediol or androstenedione. The 

ovarian theca and granulosa cells produce the major female sex steroids. Typically, theca cells 

produce androstenedione which diffuses to the granulosa cells where it is converted to oestradiol 

or oestrone via CYP19A1 and 17βHSD1.  Minor pathways are represented by dashed arrows. 

 

1.2 DHEA and DHEAS 

DHEA and its sulphate ester DHEAS are the most abundant circulating steroids in 

humans (Ebeling and Koivisto, 1994).  The major role of DHEA is to act as a precursor 

for the sex hormones testosterone and oestradiol.  During steroidogenesis, DHEA 

molecules are converted directly to androgens.  The sulphate group of DHEAS must first 

be cleaved to undergo this conversion.  Steroid sulphatase is the enzyme responsible for 

the conversion of DHEAS to DHEA.  However, the predominant reaction appears to be 

the conversion of DHEA to DHEAS via sulphotransferase enzymes, namely DHEA 

sulphotransferase (SULT2A1) (Hammer et al., 2005).  Since sulphonation is a reversible 
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process, it acts as an on/off switch, and therefore provides another level at which 

androgen synthesis can be regulated.  

 

Interestingly, the levels of DHEAS varies throughout life following an age-associated 

pattern.  In humans, along with rabbit, dog and chimpanzee have an increase in DHEAS 

concentration coinciding with sexual maturation (Figure 4) (Cutler et al., 1978).  DHEAS 

concentrations reach their peak level in men aged 20 to 24 years (3470ng/ml) and in 

women aged 15 to 19 years (2470 ng/ml) which is followed by a steady age-related 

decline throughout adulthood (Hazeldine et al., 2010, Orentreich et al., 1984). 

 

 

Figure 4: Schematic representation of DHEAS serum levels during life. 

Androgen precursors; DHEAS and DHEA have altered concentrations thoughout life.  Both in 

men (blue) and women (red) the levels of DHEAS peak during sexual maturation and then 

undergo an age related decline often referred to as adrenopause.  

 

1.3 Sulphonation 

Sulphonation involves the addition of a sulphate group (SO3
-1

) to a molecule and 

therefore influences its structural and functional characteristics.  Sulphate conjugation 
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plays an important role in the modification of hormones, neurotransmitters, proteins, 

carbohydrates, lipids, drugs and other xenobiotics (Xu et al., 2002).  Sulphonation 

generally acts as a mechanism of detoxification, as it increases water solubility and 

therefore aids excretion via the kidneys (Gamage et al., 2006).  However, sulphonation of 

molecules can also cause metabolic activation of pathways or activate molecules to elicit 

biological effects.  In addition, it is believed that the sulphonation of steroid precursors is 

a mechanism of inactivation, which can be readily reversed when the substrate is required 

for further steroidogenesis (Gamage et al., 2006).  However, it is currently unknown if 

the sulphonated steroids have specific biological roles or if they are simply inactivated 

forms of steroids (Miller and Auchus, 2010).  

 

1.4 Sulphotransferases 

Sulphonation reactions are catalysed by a super family of enzymes known as 

sulphotransferases (SULT).  There are two broad classes of SULT enzymes.  Firstly, the 

membrane bound SULTs are located in the Golgi apparatus and facilitate the 

sulphonation of peptides, proteins, lipids, and glycosaminoglycans.  The second group of 

SULTs are located in the cytoplasm and result in the sulphonation of xenobiotics and 

small endogenous substrates such as steroids, bile acids, and neurotransmitters (Gamage 

et al., 2006).  There are five known classes of SULT enzymes based on amino acid 

similarity; SULT1, SULT2, SULT3, SULT4 and SULT5 (Blanchard et al., 2004).  

Additionally, each SULT enzyme has a specific tissue expression pattern and unique 

substrates. 
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The SULT1 family has four sub-families (1A, 1B, 1C and 1E).  SULT1E1 is one of the 

most studied SULTs due it is role in steroid homeostasis.  This family member has high 

affinity for oestradiol, oestrone as well as synthetic oestrogens (Falany, 1997).  

SULT1B1 is expressed in the liver, colon and small intestine and is the major 

sulphotransferase responsible for sulphonating thyroid hormone (Fujita et al., 1997).  

SULT1A1 is the dominant sulphotransferase expressed in the human liver and has 

specificity for phenolic drugs and catecholamines.  Other family members such as 1A2, 

1C1 and 1C4 have unknown substrates and still require further characterisation (Gamage 

et al., 2006).  

 

The SULT2 family contains the hydroxysteroid sulphotransferases and consists of two 

sub-families (2A and 2B).  SULT2A1 is commonly referred to as DHEA 

sulphotransferase as it is the main enzyme responsible for the sulphonation of DHEA.  

Although DHEA is considered to be its major substrate, SULT2A1 has broad range 

substrate affinity, including androsterone, pregnenolone, testosterone and oestradiol 

(Gamage et al., 2006, Strott, 2002).  SULT2A1 is highly expressed in the adrenal glands, 

one of the major sites of DHEA production, and is also expressed in the liver where it is 

essential for the sulphonation of bile acids and many dietary xenobiotics and drugs 

(Strott, 2002, Nowell and Falany, 2006).  The other member of the SULT2 family is 

SULT2B1. This enzyme is responsible for the sulphonation of cholesterol, pregnenolone 

and can also sulphonate DHEA. However in contrast to SULT2A1, SULT2B1 cannot 

sulphonate androsterone, testosterone, or oestradiol.  
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Other families of SULTs still remain uncharacterised.  Enzymes within the SULT3 

family have only been found in mice and rabbits where it specifically sulphonates amino 

groups.  In addition, SULT5A1 has only been reported in mouse DNA databases and 

therefore this sulphotransferase also remains to be characterised (Falany et al., 2000).  

 

Mutations rendering non-functional SULT proteins in humans have not been described 

yet; however, single nuclear polymorphisms that result in amino acid changes have been 

published.  The African-American population is known to have a high incidence of 

polymorphisms in SULT2A1, which in turn alters their rate of conversion of DHEA to 

DHEAS (Thomae et al., 2002).  These polymorphisms are associated with an increased 

risk of prostate and other cancers within this population (Nowell and Falany, 2006).  

There is continued interest in the role of steroid sulphotransferases in endocrine-

dependent cancers such as breast cancer and carcinoma of the prostate gland.  As only 

non-sulphonated steroid hormones can interact with their specific receptors and for 

example, promote abnormal growth in cancer, the regulation of sulphotransferases may 

have important pathological implications for these diseases (Strott, 2002). 

 

1.5 PAPS 

PAPS or 3´-phosphoadenosine 5´-phosphosulfate acts as the universal sulphate donor for 

all sulphotransferase reactions (Xu et al., 2000).  In mammals, sulphotransferases require 

a PAPS molecule to donate a SO3
-1

 group which is transferred to a hydroxyl or amino 
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group on a suitable acceptor molecule.  PAPS is synthesised from ATP by two enzymatic 

reactions.  Firstly, ATP sulphurylase activity enables the generation of adenosine 5´-

phosphosulphate (APS) from ATP and sulphate (SO4). Secondly, APS kinase activity 

uses a phosphate from an additional ATP molecule to covert APS to PAPS (Strott, 2002).  

In humans, the enzyme responsible for the generation of PAPS is the bi-functional 

protein PAPS synthase (PAPSS) (Figure 5).  

 

1.6 PAPS Synthase 

In prokaryotes, PAPS is synthesised by two distinct enzymes, ATP sulphurylase and APS 

kinase (Klaassen and Boles, 1997).  However, in higher organisms PAPS synthase 

enzymes contain both functional domains and therefore are capable of catalysing both 

reactions sequentially (Figure 5).  It is believed that the fusion of the two proteins 

increases catalytic efficiency by a channelling mechanism for APS between the two 

PAPSS active sites (Lyle et al., 1994).  In humans, there are two isoforms of PAPS 

synthases, which are 77% identical at the protein level (Strott, 2002).  These two 

isoforms, PAPSS1 and PAPSS2, are encoded on separate chromosomes and differ in their 

expression patterns, cellular localisation and levels of catalytic activity.   
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Figure 5: Schematic depiction of hsPAPSS2a protein structure and function. 

(A) PAPSS2a consists of two major protein domains; the carboxyl ATP sulphurylase domain and 

the amino terminal APS kinase domain synthesises.  (B) Initially, the ATP sulphurylase domain 

generates adenosine 5´-phosphosulphate APS from ATP and sulphate.  Secondly, the APS kinase 

domain synthesises PAPS by phosphorlylating APS. Adapted from (Strott, 2002). 

 

 

In humans, PAPSS1 is located on chromosome four and is ubiquitously expressed (Xu et 

al., 2000).  To date, functionally disrupting mutations in PAPSS1 have been described in 

humans.  It has been suggested that due to its ubiquitous expression, non-functional 
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mutations could be embryonic lethal (Miller and Auchus, 2010).  Although it is believed 

that PAPS synthesis occurs in the cytosol, PAPSS1 localises to the nucleus through a 21 

amino acid segment at the amino terminus (Besset et al., 2000).  Furthermore, PAPSS2, 

which typically localises to the cytoplasm is capable of translocating to the nucleus in the 

presence of PAPSS1 (Besset et al., 2000).  The precise implications of the specific 

subcellular localisation of the PAPS synthase isoforms is yet to be fully understood.  

 

Human PAPSS2 is located on chromosome 10 (Faiyaz ul Haque et al., 1998).  In both 

mice and humans, PAPSS2 undergoes alternative splicing (Kurima et al., 1999), resulting 

in two variants, PAPSS2a and PAPSS2b, that differ in the presence or absence of five 

amino acids within the ATP sulphurylase domain (Strott, 2002).  PAPSS2 is highly 

expressed in cartilage, adrenal tissues and the liver (Fuda et al., 2002).  Unlike PAPSS1, 

several functional disrupting mutations within PAPSS2 have been identified in mouse and 

humans.  These are associated with a brachymorphic phenotype in mouse (Faiyaz ul 

Haque et al., 1998), bone growth defects in humans (Faiyaz ul Haque et al., 1998, Ahmad 

et al., 1998) and disrupted steroid metabolism resulting in androgen excess in women 

(Noordam et al., 2009).  PAPSS1 and PAPSS2 are capable of forming homodimers and 

heterodimers (Grum et al., 2010).  The significance of this interaction is unknown, but it 

hypothesised to influence the cellular localisation of the PAPS synthase isoforms and 

therefore regulate their activity.  Currently, the importance of having two PAPS synthase 

proteins which perform identical functions is unknown.  It has been suggested that each 

PAPS synthase enzyme may have specific physiological roles which are regulated by 

their cellular localisation and their ability to form heterodimers (Grum et al., 2010). 
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1.7 PAPSS2 Genetic Variants 

Reported mutations within the PAPSS2 gene are linked to an increasing number of 

human diseases. Complete loss of PAPSS2 function was found to be the cause of 

spondyloepimetaphyseal dysplasia of the Pakistani type in one family cohort.  Members 

of this family were found to carry a nonsense mutation at serine 475 of PAPSS2 (S475X).  

They presented with short stature, short bowed lower limbs, mild brachydactyly 

(shortness of the fingers and toes), kyphoscoliosis (abnormal curvature of the spine), an 

abnormal gait, enlarged knee joints and osteoarthritis (Ahmad et al, 1998), implying an 

important role for PAPSS2 in cartilage and bone formation.   

  

Mutations within PAPSS2 have also been associated with an excess androgen phenotype.  

In 2009, PAPSS2 deficiency was discovered in a patient with premature pubarche 

(Noordam et al, 2009).  At the age of six this female patient presented with premature 

pubarche and advanced bone age.  At the age of 13 she presented with worsening of 

androgen excess associated with acne, hirsutism and secondary amenorrhea.  It was 

observed that her circulating DHEA, androstenedione, testosterone and dihydrotesterone 

were all significantly elevated, whereas her DHEAS levels were undetectable.  The 

patient was found to have a maternally inherited PAPSS2 nonsense mutation at arginine 

329 (R329X).  In addition, the patient also carried a paternally inherited PAPSS2 

missense mutation changing a tyrosine to an arginine at amino acid position 48 (T48R).  

In vitro functional characterisation of both mutations revealed that R329X had no 

activity, while the T48R mutation had approximately 6% residual activity when 

compared to PAPSS2 wild type protein (Noordam et al., 2009).  The deficiency in 
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PAPSS2 in this patient prevented the sulphonation of DHEA and consequently caused an 

excess production of androgens.  

 

Xu and colleagues (2002) have additionally identified four coding region single 

nucleotide polymorphisms (SNPs), which cause amino acid sequence changes (E10K, 

M281L, V291M, R432K).  Functional characterisation of these PAPSS2 variants was 

carried out in a two-step process.  Initially, PAPS was generated from ATP and Na2SO4 

in COS-1 cells expressing recombinant his-tagged hsPAPSS2 variants.  Subsequently, an 

aliquot from this PAPS generating step was used as a substrate for the sulphonation of 

radioactive oestradiol catalysed by recombinant human SULT1E1 in COS-1 cells.  

Extraction and measurement of the sulphonated and the non-sulphonated radioactive 

steroid determined the activity of the hsPAPSS2 variants. Both E10K and V291M had a 

significant decrease in catalytic activity of 72.6% and 37.1%, respectively (Xu et al., 

2002) (Table 1).  Additionally, it was shown that E10K was decreased at protein level as 

determined by western blot.   

 

In human diseases caused by PAPSS2 deficiency, PAPSS1 is unable to compensate for 

the role of PAPSS2.  Specifically, it remains unclear as to how a loss of PAPSS2 function 

results in an osteochondrodysplasia phenotype despite abundant expression of PAPSS1 in 

cartilaginous tissue (Faiyaz ul Haque et al., 1998).  Additionally, several variants of 

human PAPSS2 have been described to be associated with changes in functional activity 

resulting in clinical phenotypes.  Two variants are associated with hyperandrogenism 

(Noordam et al., 2009), while another results in a severe bone phenotype (Faiyaz ul 
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Haque et al., 1998).  It has been suggested that PAPSS2 activity impacts independently 

on differing sulphation processes resulting in specific clinical symptoms.  It is 

hypothesised that genetic variants of PAPSS2 have varying abilities to generate PAPS 

and therefore altered abilities to sulphonate molecules through specific 

sulphotransferases.   

 

PAPSS2A 
variant 

 Activity (%WT)  
Frequency 

SULT2A1 SULT1E1 

E10K - 73 0.006 

T48R 6 - <0.005 

M281L - 100 0.006 

V291M - 37 0.017 

E332G       

R329X 0 - <0.005 

D370G       

R432K - 100 <0.005 

A463V       

S475X 0 - <0.005 
 

Table 1: Functional activity and population frequency of PAPSS2a genetic variants  

To date there have been ten PAPSS2a genetic variants reported in humans. PAPSS2a T48R, 

R329X and S475X were reported to have 6%, 0% and 0%, respectively within the DHEA 

sulphonation pathway. Additionally, PAPSS2a E10K, M281L, V291M, and R432K showed 73%, 

100%, 37% and 100% activity respectively, in sulphonation of oestrogen.  PAPSS2a E332G, 

D370G and A463V remain uncharacterised.  PAPSS2a V291M is the only variant to have a 

population frequency greater than 0.01%.  
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2 PROJECT AIMS  

 

This project aims to characterise the functional impact of hsPAPSS2a mutants on the 

DHEA sulphation pathway.  The following objectives will be addressed; 

 To determine the functional ability of the previously uncharacterised hsPAPSS2a 

E332K genetic variant in its ability to generate PAPS for DHEA sulphonation via 

SULT2A1. 

 To determine the functional ability of hsPAPSS2a E10K and M281L genetic 

variants in their ability to generate PAPS for DHEA sulphonation via SULT2A1.  

These genetic variants have previously been characterised in oestrogen 

sulphonation, however, characterisation of these variants in sulphonating DHEA 

will establish if genetic variants have differing functional capacities for different 

sulphonation pathways. 

 The generation of stable cell lines expressing hsPAPSS2a and hsSULT2A1 to 

allow for characterisation of PAPSS2a genetic variants in vitro.   
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3 MATERIALS AND METHODS 

3.1 Molecular Biology 

3.1.1 Transformation of E. Coli by Heat Shock 

Transformation is a naturally occurring process that allows the uptake of circular plasmid 

DNA by bacteria.  Molecular biology techniques can manipulate this process by allowing 

competent bacteria to uptake plasmids containing genes of interest.  As the bacteria 

replicate they make copies of the recombinant plasmid, which can be purified for future 

work. 

 

Bronze Efficiency Competent DH5α E. coli cells (Bioline) were transformed by 

incubating with a recombinant plasmid and using a heat shock method. Typically, 1L of 

DNA was added to 40L of competent cells.  The mixture was placed on ice for 20 

minutes before heat shocking at 37C for one minute and then returned to ice for five 

minutes.  200L of Luria Bertani (LB) media (Sigma) was added to the cells and 

incubated for 20 minutes at 37C.  Finally, the cell suspension was plated onto LB agar 

plates containing Carbenicillin (Sigma) at 50g/mL for selection.  The agar plates were 

incubated at 37C for 16 hours. 

 

3.1.2 Plasmid DNA preparation 

Plasmid DNA preparation is a method which enables the extraction and purification of 
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plasmid DNA from bacteria.  Plasmids were prepared using the QIAprep Spin Miniprep 

kit as per the manufacturer’s instructions (Qiagen).  This kit uses an alkaline lysis method 

of bacterial cells and allows the plasmids to bind onto silica containing high salt. 

Typically, a single E. coli colony was used to inoculate 10mL of LB media containing 

50g/mL carbenicillin.  They were cultured at 37C for 16 hours with shaking/aeration at 

250rpm. The culture was centrifuged at 3,000rpm for five minutes to pellet the bacteria. 

The cells were then resuspended in 250µL P1 buffer (50mM Tris-Cl, pH 8.0; 10mM 

EDTA; 100 g/mL RNase A).  The bacteria were lysed using 250µL P2 buffer (200 mM 

NaOH, 1 % SDS [w/v]) and neutralised by adding 350µL acetate containing N3 buffer.  

Samples were then centrifuged for 10 minutes at 13,000rpm. The remaining supernatant 

was added to the QIAprep Spin Column and centrifuged for one minute to allow plasmid 

DNA to bind to the column. The column was washed by adding 750µL of ethanol 

containing PE buffer and centrifuged for one minute.  The column was then centrifuged 

for an additional minute to remove residual wash buffer. Finally, the purified plasmid 

DNA was eluted by adding 40µL of deionised water to the column and centrifuged for 

one minute.  Plasmid concentration and purity was determined (section 3.1.3) and 

samples were stored at -20C. 

 

3.1.3 Quantification of Nucleic Acids 

Purified plasmids and extracted RNA were all quantified using the NanoDrop® ND-1000 

spectrophotometer.  Typically, distilled water was used to determine a background level 

and then 1.5L of sample was applied onto the spectrophotometer. For nucleic acid 
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samples a ratio of A260/A280 was used to determine purity.  A ratio between 1.8 and 2.2 

was usually considered acceptable to use in future experiments. 

 

3.1.4 Site Directed Mutagenesis 

Site direct mutagenesis is a PCR based approach that uses specifically designed 

oligonucleotides containing mismatched base pairs to obtain the desired mutation.  

Initially, forward and reverse oligonucleotides were designed containing specific 

mutations within the hsPAPSS2 cDNA to generate R432K, E332G, D370G and A463V 

amino acid mutations (Table 2).  Oligonucleotides were synthesised by Sigma.  

 

 

Table 2: Site Directed Mutagenesis Oligonucleotides 

Forward and reverse oligonucleotide primers were designed to introduce amino acid cDNA 

changes to generate PAPSS2a R432K, E332G, D370G and A463V. Mismatched nucleotides are 

underlined.  
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Subsequent site directed mutagenesis was performed using the QuickChange® II XL 

site-directed mutagenesis kit (Stratagene) (Figure 6).  Firstly, this kit uses PCR to induce 

the mutation using specifically designed oligonucleotides containing the required 

mutation.  The site directed mutagenesis reaction was carried out in 50µL reaction 

volumes containing 1X reaction buffer, 10ng of template plasmid DNA, 1µL of dNTP 

mix, 3µL of Quick Solution reagent, 2.5U PfuUltra HF DNA polymerase, 125ng of 

forward mutagenesis oligonucleotide and 125ng of reverse mutagenesis oligonucleotide.  

Cycling condition included 95ºC for one minute followed by 18 cycles of denaturing at 

95ºC for 50 seconds, annealing at 60ºC for 50 seconds and extension at 68ºC for 15 

minutes.  A final extension at 68ºC for four minutes was used to complete the cycling 

conditions.  Following the PCR amplification the reaction was treated with 1L of DpnI 

restriction enzyme and incubated at 37ºC for one hour to digest methylated template 

DNA. Finally, the mutated plasmid was transformed into ultra-competent XL1-Blue E. 

coli cells (section 3.1.1).  Individual clones were screened via DNA sequencing (section 

3.1.5).  
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Figure 6: Site Direct Mutagenesis methodology 

For each PAPSS2a genetic variant, forward and reverse oligonucleotides were designed 

containing a single mismatched nucleotide to engineer the desired amino acid change. 

Denaturing of the plasmid DNA template (yellow and green) allowed the oligonucleotides to bind 

to the template. Subsequently, plasmids were amplified by DNA polymerase allowing of 

incorporation of mismatched base.  Treatment with DpnI caused digestion of methylated parental 

bacterial DNA.  Therefore it will remove the template plasmid DNA and leave only the PCR 

amplified mutated plasmids. 

 

3.1.5 DNA sequencing 

DNA sequencing was performed by the Sequencing Facility at the Biosciences School 

within the University of Birmingham, United Kingdom.  Typically, 6.4pmol of sequence 

primer and 400-1000ng of double stranded plasmid DNA was supplied in 10µL of 

deionised water.  Assembled sequence data was viewed and analysed by SeqMan Pro 

software (Laser Gene).   



Aliesha Griffin 

  

22 

3.1.6 RNA extraction 

RNA extraction is a procedure which allows for the isolation of RNA from a biological 

sample and therefore gives a snapshot of the genes being actively transcribed at that time 

point.  RNA was isolated from transfected HEK293 cells using TRI Reagent (Sigma). 

Typically, cells were washed twice in phosphate buffered saline (PBS) (Sigma) before 

1mL of TRI Reagent was added.  Cells were harvested using a cell scraper and the 

suspension was placed in a 1.5mL microcentrifuge tube.  200µL of chloroform was then 

added to the samples and they were mixed vigorously.  Samples were incubated at room 

temperature for 10 minutes and centrifuged at 13,000rpm for 20 minutes at 4ºC.  The 

upper aqueous phase containing the RNA was transferred to a fresh 1.5mL tube.  The 

RNA was precipitated using 500µL of cold isopropyl alcohol.  Samples were incubated 

for at least 20 minutes at -20ºC.  The RNA was pelleted by centrifugation at 13,000rpm 

for 10 minutes at 4ºC and washed in 70% ethanol, followed by a further centrifugation 

step at 13,000rpm from 10 minutes at 4ºC.  RNA was resuspended in RNase-free water, 

quantified (section 3.1.3) and stored at -20ºC. 

 

3.1.7 Reverse Transcription 

Reverse transcription (RT) is a methodology that allows for the generation of 

complementary DNA (cDNA) from a purified RNA sample.  cDNA was prepared from 

total RNA using TaqMan Reverse Transcriptase kit according to the manufactures 

instructions (Applied Biosystems).  Typically 20μL reactions were made containing; 1X 

reaction buffer, 5.5mM magnesium chloride, 500μM of each dNTP, 2.5μM of random 
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hexamer primers, 0.4U/μL of RNase inhibitor, 1.25U/μL Multiscribe Reverse 

Transcriptase and 700ng of RNA.  Samples were subjected to 25ºC for 10 minutes, 37ºC 

for one hour, 48ºC for 30 minutes and 95ºC for five minutes in a thermal cycler.  cDNA 

samples were stored at -20ºC until required.  

 

3.1.8 Quantitative Real Time RT PCR 

Real time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a method 

which allows for amplification and simultaneous quantification of specific genes of 

interest.  A fluorescent reporter probe method was used where probes where tagged with 

the FAM reporter and with a TAMRA quencher. 

 

Typically, 10L reactions were made consisting of 0.5L of Assay on Demand (Applied 

Biosystems) for either hsPAPSS1, hsPAPSS2 or SULT2A1, 5L of TaqMan Master Mix 

(Applied Biosystems) and 4.5L of previously prepared cDNA (section 3.1.7).  18S 

expression was also analysed by preparing 0.05L each of 18S forward and reverse 

primer (Applied Biosystems), 0.05L of Ribosomal VIC probe (Applied Biosystems), 

0.35L of deionised water, 5L of TaqMan Master Mix (Applied Biosystems) and 4.5L 

of previously prepared cDNA.  

 

Samples were prepared in 96-well optical reaction plates (Applied Biosystems) and 

sealed with adhesive PCR film (Thermo scientific).  Reactions were run on an ABI Prism 

SDS 7500 Thermocycler for 50C for two minutes, 95C for 10 minutes, followed by 40 
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cycles of 95C for 15 seconds and 60C for one minute.  Samples were analysed using 

7500 System SDS software (Applied Biosystems).  

 

3.2 Cellular Biology 

3.2.1 Mammalian Cell Culture 

HEK293 cells were cultured in high glucose Dulbecco's Modified Eagle's medium 

(DMEM) with L-glutamine.  Complete media was supplemented with 10% foetal bovine 

serum (Sigma) and 1% penicillin (5U/mL) streptomycin (5g/mL) (Invitrogen).  Cells 

were maintained at 5% CO2 at 37C in a humidified incubator.  HEK293s were cultured 

on cellBIND flasks (Corning Life Sciences) and were harvested either by trypsin 

digestion or by using a cell scraper. 

 

3.2.2 Transfection of Mammalian Cell Lines using FuGENE-HD 

Transfection is a process which allows introduction of nucleic acids into cells.  For 

transient transfections, FuGENE-HD transfection reagent (Roche) was used.  FuGENE-

HD contains a blend of cationic lipids which bind to the negatively charged DNA and 

allows it to be taken up by the cell. The day before transfection HEK293 cells were 

seeded at 20x10
4 

cells per well of a six-well cellBIND plate (Corning Life Sciences). 

 

Typically, 2µg of purified plasmid DNA was mixed with 8µL of Fugene reagent in 

100µL of serum free high glucose DMEM.  This was incubated at room temperature for 
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15 minutes to allow the FuGENE and DNA to form complexes.  The HEK293 cells 

received 2mL of fresh culture medium before 100µL of DNA-FuGENE mix was added to 

the cells.  The cells were then incubated at 37°C, 5% CO2 for 48 hours prior to 

sulphonation assays (section 3.3.1).   

 

3.2.3 Transfection of Mammalian Cell Lines using Lipofectamine-2000 

The day before transfections HEK293 cells were seeded at 20x10
4
 cells per well of a six 

well cellBIND plate (Corning Life Science).  For transfections, 4µg of plasmid DNA and 

10µL of Lipofectamine 2000 reagent (Invitrogen) were diluted separately in 50µL of 

Opti-MEM Media (Gibco) and incubated at room temperature for five minutes. The 

plasmid and Lipofectamine 2000 mix were combined and incubated for a further 20 

minutes at room temperature. Cells received 2mL of fresh culture media before 100µL of 

DNA-lipofectamine mix was added to the cells. The cells were then incubated at 37°C, 

5% CO2 for 48 hours. Media was replaced after 48 hours and supplemented with 

500µg/mL geneticin antibiotic to select cells expressing the plasmid DNA. 

 

3.2.4 Protein extraction 

HEK293 cells were washed twice in PBS before being harvested in 1mL of PBS using a 

cell scraper.  To extract protein, 500µL of SDS loading buffer was added (50mM Tris-

HCl pH6.8, 10% glycerol, 2% SDS, 1% β-mercaptoethanol, 0.05% bromophenol blue)  

Samples were then heated to 95ºC on a heat block for 10 minutes. This caused the cells to 

burst releasing the protein and allowing the SDS to bind.  Protein samples were stored at 
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-20ºC and care was taken to limit the number of freeze thaw cycles.  

 

3.2.5 SDS Poly Acrylamide Gel Electrophoresis 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis or SDS PAGE is a technique 

that allows for the separation of proteins based on size.  Typically, 10-30µL of protein 

sample was loaded on a 10% NuPAGE Novex Tris-Bis precast gel (Invitrogen) and run at 

200 volts for one hour in 1X NuPAGE Buffer (Invitrogen). Upon completion of 

electrophoresis the gels were transferred to nitrocellulose membranes. 

 

For the protein transfer, blotting pads, absorbent Whatman filter papers and the 

nitrocellulose membrane (GE Healthcare) were equilibrated in 1X transfer buffer (25mM 

Tris, 190mM glycine and 20% (v/v) methanol) (National Diagnostics).  The transfer 

apparatus was assembled and run at 30 volts for one hour.  After the transfer was 

complete Ponceau S staining (Sigma) was used to confirm successful transfer of the 

proteins from the polyacrylamide gel to the nitrocellulose membrane.  The membrane 

was simply placed in the stain until protein bands were visible.  The membrane was 

washed several times before proceeding with western blotting (section 3.2.6). 

 

3.2.6 Western Blot   

Western Blot is an analytical technique that uses specific antibodies to detect proteins of 

interest which have previously been separated based on their size.  Primary antibodies 

used for western blotting analysis included rabbit-anti-hsPAPSS2 (abcam ab37611) used 
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in a 1:1000 dilution and mouse-anti-hsβ-actin-HRP (abcam ab20272) used in a 1:20,000 

dilution.  Secondary antibody detection used the goat-anit-rabbit-HRP (Dako PO448) in a 

1:1000 dilution.   

 

Initially, the membrane was blocked for one hour using blocking buffer (10% skim milk 

in PBS).  The membrane was incubated overnight at 4ºC with primary antibody at the 

required dilution in blocking buffer.  The following day the membrane was washed three 

times for five minutes in PBS with 0.1% Tween 20 (PBST).  The secondary antibody was 

diluted to the appropriate concentration in blocking buffer and incubated with the 

membrane for one hour.  Finally the membrane was washed three times for five minutes 

in PBST.  Following antibody incubation, the blot was developed using ECL detection kit 

(GE health care) according to the manufactures instructions and Kodak film.   

 

3.3 Biochemical Analysis 

3.3.1 DHEA to DHEAS Sulphonation Assay 

The enzymatic activity of hsPAPSS2a genetic variants was measured by the ability of 

HEK293 cells to convert tritiated (3H) DHEA to DHEAS.  HEK293 cells were 

transfected with purified bicistronic pIRES plasmid containing the hsPAPSS2A variant 

and hsSULT2A1 48 hours prior to assay (section 3.2.2). 48 hours after transfection the 

cells were incubated at 37ºC for two hours with 500µL of serum-free high glucose 

DMEM containing 0.2µCi 3H-DHEA and 125nM of unlabelled DHEA.  Each assay was 

performed in triplicate and repeated a minimum of three times to determine accurate 
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values.  After incubation with the steroids extraction of DHEA and DHEAS was 

performed for each sample (section 3.3.2).  

 

3.3.2 Extraction of DHEA and DHEAS 

In order to determine the functional ability of PAPSS2a and SULT2A1 to covert DHEA 

to DHEAS, all the DHEA and DHEAS were extracted from the cell culture media before 

analysis.  After the assay, media from each sample was collected in individual glass test 

tubes and 5mL of dichloromethane was used to extract the steroids. In addition, 1mL of 

100% methanol was added to individual wells in order to extract residual steroids.  These 

fractions were also collected in individual glass test tubes and allowed to evaporate.  

Dichloromethane factions were vortexed thoroughly and centrifuged at 1,500rpm for five 

minutes to ensure separation of the top aqueous phase and lower organic solvent phase.  

The top phases were aspirated off and the remaining fraction containing the extracted 

steroid was added to the corresponding methanol fraction.  These were then allowed to 

evaporate on a sample concentrator at 50ºC.  The extracted steroids were then prepared 

for chromatography analysis (section 3.3.3).  

 

3.3.3 Thin Layer Chromatography 

Thin layer chromatography (TLC) is a technique that allows the separation of mixture up 

a plate coated with a thin layer of cellulose, aluminium oxide, or silica.  Once the sample 

has been applied to the plate, a mixture of solvents is drawn up the plate via capillary 

action.  Molecules will travel at different rates up the TLC plate allowing for separation.  



Aliesha Griffin 

  

29 

 

After the extraction of DHEA and DHEAS from the cell media, the steroids were 

resuspended in 70µL of dichloromethane.  The steroids were spotted onto PE SIL G/UV 

silica gel TLC plates and separated in a solvent system consisting of eight parts 

chloroform, two parts acetone, four parts acetic acid, two parts methanol and one part 

water.  Plates were allowed to run for 90 minutes to ensure adequate separation of DHEA 

and DHEAS fractions.  Plates were then removed from the tank and allowed to air dry.  

Purified samples of 3H-DHEA and 3H-DHEAS were also spotted on the plates as a 

standard control.  

 

Radioactivity was detected directly from the TLC plate by the AR2000 imaging scanner 

and analysed using the Laura radio-chromatography system software (Lab Logic).  

Radioactivity was detected for five minutes per sample.  
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4 RESULTS 

4.1 Site Directed Mutagenesis 

Site direct mutagenesis was used to introduce specific changes to hsPAPSS2a cDNA so 

that naturally occurring genetic variants could be characterised in vitro.  The bicistronic 

pIRES vector was used as it is a mammalian expression system which allows 

simultaneous expression of hsPAPSS2a and hsSULT2A1 from a single mRNA transcript.  

Constructs containing cDNA for hsPAPSS2a wild type or genetic variant (E10K, M281L, 

V291M, T48R, R3S9X and S475X) cloned into the first multiple cloning site and 

hsSULT2A1 cDNA in the second were already available (Vivek Dhir) (Figure 7).   

 

 

Figure 7: pIRES:yhsPAPSS2a/hsSULT2A1 expression plasmid. 

The bicistornic pIRES plasmid was used to express the hsPAPSS2a genetic variants and 

hsSULT2a.  For all constructs hsPAPSS2a was cloned into the first multiple cloning site 

while hsSULT2A1 was cloned into the second.   This plasmid allows expression of both 

hsPAPSS2a and hsSULT2A1 from the same messenger RNA through the internal 

ribosome entry site (IRES).   
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pIRES:hsPAPSS2a wild type/hsSULT2A1 was used as a template for all subsequent site 

direct mutagenesis.  Oligonucleotides were designed incorporating specific nucleotide 

mismatches to induce mutations into the cloned PAPSS2a cDNA (section 3.1.4).  These 

mutations, A995G, T1109C, G1295A and C1388T resulted in, E332G, D370G, R432K 

and A463V amino acid changes, respectively.  After site direct mutagenesis was 

performed, individual clones were confirmed by sequencing the entire PAPSS2a cDNA 

(Figure 8).   The sequencing results confirmed the presence of the specific DNA 

mutations.  Alignment of the entire cloned cDNA to hsPAPSS2a cDNA reference 

sequence (GI:62912490) established no other nucleotide changes occurred during 

amplification.  Subsequently, the confirmed hsPAPASS2a variants were subject to 

functional analysis.  
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Figure 8: Confirmation of site directed mutagenesis. 

Sequencing traces confirm the presence of the desired mutations (underlined) when compared to 

the PAPSS2a wild type sequence (shown above). The A995G, T1109C, G1295A and C1388T 

DNA variations result in E332G, D370G, R432K and A463V amino acid changes, respectively.  

These PAPSS2a genetic variants had not been previously generated within the laboratory.   

 

 

4.2 In vitro analysis of hsPAPSS2a genetic variants 

4.2.1 mRNA expression analysis of pIRES:hsPAPSS2/hsSULT2A 

In order to functionally characterise hsPAPSS2a genetic variants in vitro, each were over 

expressed in HEK293 cells (section 3.2.2).  Quantitative real time RT PCR was used to 

determine if the level of expression between control cDNAs and the hsPAPSS2a genetic 
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variants was similar.  RNA was extracted from transfected cells overexpressing the 

pIRES:hsPAPSS2a/hsSULT2A1 constructs and used to generate cDNA (sections 3.1.6 

and 3.1.7). Quantitative real time RT PCR was used to determine expression levels of 

hsPAPSS1, hsPAPSS2a and hsSULT2A1 and these were normalised against 18S 

ribosomal RNA (section 3.1.8).  Analysis of mRNA levels showed that typically the 

genetic variants (E10K, E332G or M281L) had similar levels of expression as the wild 

type construct within individual experiments (Table 3).  

 

 

   Gene of Interest expression (delta ct) 

Experiment Transfection  PAPSS2a SULT2A PAPSS1 

E10K PAPSS2a wild type/ SULT2A1 9.2 9.5 22.2 
  PAPSS2a E10K/ SULT2A1 7.5 7.4 21.8 
  SULT2A alone 16.2 4.6 23.8 

 
M281L 

 
PAPSS2a wild type/ SULT2A1 

 
5.0 

 
5.2 

 
21.3 

  PAPSS2a M281L/ SULT2A1 3.6 3.6 22.1 
  SULT2A alone 17.2 4.7 21.9 

 
E332G 

 
PAPSS2a wild type/ SULT2A1 

 
5.0 

 
5.2 

 
21.3 

  PAPSS2a E332G/ SULT2A1 4.3 4.4 21.1 
  SULT2A alone 17.2 4.7 21.9 

Table 3: Representative expression of PAPSS2a, SULT2A1 and PAPSS1  

Analysis of delta ct values were used to determine expression levels of 

pIRES:hsPAPSS2a/hsSULT2a plasmids within experiments. SULT2A1 showed similar levels of 

expression for cells transfected with PAPSS2a wild type, the genetic variant or for the SULT2a 

alone within individual experiments.  Differences in transfection efficiency between experiments 

was observed as PAPSS2a wild type relative expression levels showed delta cts of 9.2 and 5.0.    
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4.2.2 Functional activity 

To determine in vitro function of the hsPAPSS2a genetic variants (E10K, M281L and 

E332G), cells overexpressing pIRES:hsPAPSS2a/hsSULT2A1 plasmids were assayed in 

optimal hsPAPSS2a wild type conditions (sections 3.2.2 and 3.3.1).  A physiological 

DHEA concentration close to the Km of hsPAPSS2a was used and the assays were 

stopped when DHEA conversion was within the linear phase to ensure accurate 

conversion rates could be established.  Furthermore, HEK293 cells were used for 

functional analysis because of their inability to endogenously produce DHEA or carry out 

its sulphonation.  The capacity of the hsPAPSS2a variants to generate PAPS was 

determined by the ability of the co-expressed SULT2A1 to convert 3H-DHEA to 3H-

DHEAS.   

 

For each replicate, radiation counts corresponding to 3H-DHEA and 3H-DHEAS peaks 

were used to determine the percentage of sulphonation that occurred (Figure 9).  The 

average of each experiment was recorded and this was repeated a minimum of three 

separate occasions.  The average conversion rate of wild type hsPAPSS2a assay was 

assumed to be 100% and this was used to determine the percentage of functional activity 

for each of the hsPAPSS2a variants.  In addition, HEK293 cells express low levels of 

PAPSS2a.  As a control, the activity of HEK293 cells to generate DHEAS in the presence 

of a sulphotransferase enzyme was determined by overexpressing pIRES:hsSULT2A1.  

Functional activity of cells transfected with pIRES:hsSULT2A1 was subtracted from all 

pIRES:hsPAPSS2a/hsSULT2A1 activities to give a representation of the level of 

sulphonation caused only by the overexpressed cDNAs.  
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Figure 9: Representative TLC plate read out. 

Region one corresponds to the extracted 3H-DHEAS while region two represents the extracted 

3H-DHEA.  From this readout it can be confirmed that the conversion of DHEA to DHEAS was 

21.47% for this particular PAPSS2 wildtype assay.  
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The previously uncharacterised E332G hsPAPSS2a variant showed a significant decrease 

to 50% of wildtype activity (p<0.001) (Figure 10).  Although non-significant, functional 

analysis of hsPAPSS2 E10K showed to have 60% functional activity when compared to 

wild type hsPAPSS2a.  Furthermore, expression of hsPAPSS2 M281L showed a modest, 

but non-significant increase in activity. 

 

 

Figure 10: Functional analysis of PAPSS2a genetic variants. 

The wild type (WT), E10K, M281L and E332G PAPSS2a genetic variants were over expressed in 

HEK293 cells.  Coexpression of human DHEA sulphotransferase allowed for in vitro conversion 

of 125nM DHEA to DHEAS. Both DHEA and DHEAS were extracted and measured via thin 

layer chromatography to determine the percentage of wildtype conversion. PAPSS2a E332G 

showed significant decrease of 50% of wild type activity.  Activities show the mean ±SEM, (n=3) 

after correction for SULT2A1 alone conversion due to low levels of endogenous PAPSS2a 

expression. (* p<0.001) 
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4.2.3 Protein expression analysis of pIRES:PAPSS2a/SULT2A1 

To determine if the functional differences observed in the hsPAPSS2a variants might be a 

direct result from the amount of protein expressed within the HEK293 cells, western blot 

analysis was performed. Protein was extracted from HEK293 cells over expressing the 

pIRES:hsPAPSS2a/hsSULT2A1 constructs as well as the appropriate controls for each 

experiment (sections 3.2.4).  Western blots were used to detect the amount of hsPAPSS2a 

and β-actin was used as a loading control (section 3.2.6).  

 

The results showed that the hsPAPSS2a E10K genetic variant had less protein present 

when compared to the wild type hsPAPSS2a.  Similarly, PAPSS2a E332G could only be 

faintly detected at the protein level.  The PAPSS2a M281L showed no difference in 

protein expression (Figure 11).    
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Figure 11: Representative western blots of hsPAPSS2a genetic variants 

Levels of expressed PAPSS2a immunoreactive protein in HEK293 cells.  Western blots were 

performed to determine the difference of PAPSS2a variant expression and wild type (WT) protein 

levels within individual transfection experiments.  β actin was used as a loading control  Both 

E10K and E332G PAPSS2a showed to have less immunoreactive protein present when compared 

to PAPSS2a wild type for individual experiments.  M281L PAPSS2a had similar levels of protein 

when compared to the PAPSS2a wild type (n=1).  

 

 

4.3 In silco analysis of PAPSS2 genetic variants 

In silico modelling was performed of PAPSS2 genetic variants to determine how the 

amino acids changes might alter the overall structure of the protein.  At present, the 

crystal structure for hsPAPSS2 is unknown. Therefore, the current computational model 

for this protein is based on the hsPAPSS1 solved structure (Harjes et al, 2005).  However, 

PAPSS2a E10K could not be analysed as the model used begins at amino acid 31. In 
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addition, hsPAPSS2a M281L aligns to a leucine in hsPAPSS1. As the current PAPSS2a 

model is based on the hsPAPSS1 sequence, it would not provide sufficient information 

about the disruption of the hsPAPSS2 to analyse M281L using this computation model.  

Subsequently, of the mutants functionally tested, hsPAPSS2a E332G was the only variant 

to undergo in silico analysis.  

 

In silico modelling of hsPAPSS2a E332 revealed that the glutamic acid is capable of 

forming hydrogen bonds with an argnine at position 273 and a glutamic acid 274.  

Alteration of E332 to an uncharged glycine is predicted to disrupt the formation of these 

hydrogen bonds (Figure 12).  
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Figure 12: In silico modelling of PAPSS2a genetic variants
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Figure 12: In silico modelling of PAPSS2a genetic variants 

Panel A shows the three dimensional locations of PAPSS2a M281 and E332 within the carboxyl 

ATP sulphurylase domain (green).  The APS kinase domain is represented in yellow.  The E10K 

mutation could not be modelled as the predicted model begins as amino acid 31.  Panel B shows 

a close up representation of E332.  It is predicted to form hydrogen bonds with R273 and E274 

(indicated by the yellow arrows). Panel C shows a representation of the E332G genetic variant.  

This amino acid change is predicted to disrupt the hydrogen bond formation with R273 and 

E274.  (The radiographic structure of hsPAPSS1 served as the template for modelling wildtype 

and E332G genetic variant with the use of Swiss-Pdb-Viewer [Swiss Institute of Bioinformatics] 

and POV-Ray3.6 [POV-Team])  
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4.4 Generation of HEK293 stable cell lines 

Stably transfected HEK293 cells containing pIRES:hsPAPSS2a/hsSULT2A constructs 

were generated for future assay experiments (section 3.2.3).  Generating stably 

transfected cell lines aimed to eliminate the differences observed in DNA uptake and 

subsequent protein expression often observed with transient transfections.  In total 14 

stable HEK293 cell lines were generated including, pIRES:hsPAPSS2a/hsSULT2A1, and 

pIRES:hsPAPSS1/SULT2A.  Furthermore, pIRES vectors with hsPAPSS2a genetic 

variants (E10L, M281K, V291M, T48R, R329X, S475X, E332G, D370G or A463V) 

were made in addition to a pIRES:hsSULT2A1 alone, pIRES:hsPAPSS2a alone, and a 

pIRES:hsPAPSS2-GFP/hsSULT2A1. Each transfection was initially performed in 

duplicate and the samples were later combined.  A control group of cells was used, which 

underwent the transfection procedure in the absence of DNA to ensure that the 

lipofectamine did not cause toxicity or cell death.  

 

Antibiotic selection was used to achieve positive selection of cells expressing the 

transgenes.  The pIRES plasmid expressed a geneticin resistance gene to allow survival 

of the cells in the presence of the antibiotic.  The non DNA transfected control cells 

underwent cell death, confirming that only cells expressing the pIRES transgenes 

survived (Figure 13).  
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Figure 13: Transfected HEK293 after selection with geneticin 

Two days after transfection with pIRES:PAPSS2a/SULT2A1 constructs, HEK293 cells underwent 

selection with geneticin.  After five days of selection cells growing in the presence of the 

antibiotic confirmed positive expression of the constructs (left panel).  A no DNA transfection 

control (right panel) confirmed cell death in the absence of the pIRES constructs.   
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5 DISCUSSION 

5.1 Characterisation of novel PAPSS2a genetic variants 

The aim of this project was to functionally characterise hsPAPSS2a genetic variants in 

their ability to influence the DHEA to DHEAS sulphation pathway.  Several PAPSS2a 

variants have been previously functionally analysed within the DHEA sulphonation 

pathway (T48R, R329X and S475X) (Noordam et al., 2009) and the oestrogen pathway 

(E10K, M281L, V291M and R432K) (Xu et al., 2002). This project has characterised the 

hsPAPSS2a E332G genetic variant for the first time.  This mutation is caused by a single 

A to G nucleotide change and results in a hydrophilic glycine replacing an glutamic acid 

within the ATP sulphotransferase domain.  This variant showed 50% less activity when 

compared to wild type hsPAPSS2a.  Despite having equal levels of hsPAPSS2a gene 

expression with wild type hsPAPSS2a, there was a decrease in the level of hsPAPSS2a 

E332G at the protein level.  Therefore, the decrease in functional activity may be directly 

related to a decrease in stability of hsPAPSS2a E332G protein.  

 

In silico analysis revealed that structurally the E332G variant loses two hydrogen bonds 

typically formed with nearby amino acids. This structural change may cause the protein 

to be unstable and rapidly degraded, supporting the decrease of protein detected.  

However, the resulting amino acid change may also alter the immunospecificity of the 

hsPAPSS2a antibody.  The antibody used was raised against the carboxyl terminal 

domain of the protein, where the amino acid change is located.  This may have caused 

inefficient detection via western blot.  Alternately, the E332G could disrupt the function 
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of the ATP sulphurylase domain which would support the decrease in functional activity 

observed.  

 

The frequency of the E332G genetic variant within the human population is yet to be 

determined as it was identified using the short genetic variation SNP databases (The 

National Centre for Biotechnology Information).  It remains unknown whether a 50% 

reduction in PAPSS2a would have significant physiological consequences particularly in 

heterozygous individuals.  To date, the only hsPAPSS2a variants known to cause disease 

are non-functional mutations (Faiyaz ul Haque et al., 1998, Noordam et al., 2009) or ones 

that have severely decreased activity (6%) (Noordam et al., 2009).  It has been suggested 

that PAPSS activity varies approximately 18 fold in the human liver between individuals 

(Xu et al., 2001). However, the difference in activity of PAPSS2a in the adrenal glands 

between individuals is unknown, but it appears likely that a change in functional activity 

of 50% may only be physiologically significant in homozygous individuals.  

 

5.2 Characterisation of previously analysed PAPSS2a genetic variants 

Xu and colleagues (2001) previously assessed the ability of hsPAPSS2a E10K and 

M281L to sulphonate oestrogen through hsSULT1E1 sulphotransferase.  This current 

project was able to characterise these genetic variants for the first time within the DHEA 

sulphonation pathway.  

 

hsPAPSS2A E10K results from a single nucleotide change G28A.  Despite being non 
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significant in this study, this mutation showed a tendency to be decrease of 36%.  This is 

comparable to the significant 27.4% decrease observed when analysed in the oestrogen 

sulphation pathway (Xu et al., 2002).  Both studies found a decrease in the function of 

hsPAPSS2a E10K protein coincided with a decrease of immunoreactive protein.  In this 

current study quantitative real time PCR was used to ensure these results were not from 

inadequate transfection or gene expression. Each study confirmed protein levels via 

western blot however, this study used a hsPAPSS2a specific antibody whereas the Xu 

study detected expression through a His tag.  Despite the contrasting detection methods 

both studies showed a decrease of hsPAPSS2a E10K at the protein level.  This suggests 

that the protein may be unstable and rapidly degraded.  Unfortunately, in silco analysis 

could not be performed due to the model lacking this region of protein. However, as 

E10K is an acidic to basic amino acid change it may cause disruption of ionic bonds and 

potentially disrupting the PAPSS2a stability.   

 

This project also investigated the functional activity of hsPAPSS2a M281L within the 

DHEA sulphation pathway.  The results showed a slight, nevertheless non-significant 

increase in hsPAPSS2a M281L activity when compared to wildtype.  Western blot 

analysis revealed that there was no increase of hsPAPSS2a M281L at the protein level.  

In comparison, hsPAPSS2a M281L previously showed a non significant increase in 

activity when investigated in the oestrogen sulphation pathway despite no change at the 

protein level (Xu et al., 2002).  Although this increase is not addressed in the paper, it 

supports the increase observed in this study.  
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As mentioned previously, alignment of hsPAPSS2a with hsPAPSS1 revealed that M281 

of PAPSS2a aligns with L291 of PAPSS1 (Strott, 2002).  Therefore, due to the high 

homology between the two isoforms (77%) (Strott, 2002), it would be expected that a 

change to a lucine in hsPAPSS2a would not have significant consequences on functional 

activity.  However, it has been shown that hsPASS2a and hsPAPSS1 a capable of 

forming heterodimers, which may be the mechanism of explaining how hsPAPSS2a 

relocates to the nucleus in the presence of PAPSS1 (Grum et al., 2010, Besset et al., 

2000).  When looking at the predicted interface between the two isoforms, M281 of 

hsPAPSS2a is predicted to be involved at the dimerisation site (Grum et al., 2010).  

Further studies investigating the APS kinase activity of different PAPS synthase dimers 

revealed that a heterozygous dimer of hsPAPSS1 and hsPAPSS2a has increased activity 

when compared to a homozygous hsPAPSS2a dimer (Grum et al., 2010).  Therefore, it is 

hypothesised that hsPAPSS2a M281L may enhances dimerisation formation, 

subsequently stabilise hsPAPSS2a and increase the activity of the APS kinase domain.  
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6 CONCLUSIONS AND FUTURE DIRECTIONS  

 

The aim of this project was to characterise the functional ability of hsPAPSS2a and its 

variants in their ability to allow sulphation of DHEA to DHEAS.  In this project three 

PAPSS2a genetic variants were characterised within the DHEA sulphation pathway.  

This project functionally assessed the hsPAPSS2a E332G variant for the first time.  This 

protein was observed to have 50% functional activity of hsPAPSS2a wild type.  This 

result has important clinical relevance as it suggests that patients presenting with 

androgen excess should be screened for this mutation.  Furthermore, this study also 

characterised the hsPAPSS2a E10K and M281L variants within the DHEA sulphation 

pathway.  Although both these variants showed non significant changes in functional 

activity, both reflected results observed when previously characterised within the 

oestrogen sulphation pathway.   

 

Further characterisation of the genetic variants not investigated in this study is still 

required.  It will be interesting to determine functional activity of uncharacterised 

variants as well as those previously analysed with hsSULT1E1.  Generation of the 

pIRES:hsPAPSS2a genetic variant/hsSULT2A1 stable HEK293 cell lines will provide a 

useful tool for future analysis.  It is hoped that these stable lines will eliminate the 

differences observed between transient transfections and therefore give a more accurate 

representation of their true functional activity.  Furthermore, the HEK293 expressing 

pIRES:hsPAPSS2a-GFP/hsSULT2A1 will allow for future investigation into the cellular 



Aliesha Griffin 

  

49 

localisation of hsPAPSS2a and how over expression of disrupted hsPAPSS2a protein 

may alter its position within the cell.  This work will aid in determining if the cellular 

localisation is important feature of regulating hsPAPSS2a function and subsequent 

sulphonation of molecules.  

 

Determining why different hsPAPSS2a genetic variants result in a range of clinical 

phenotypes will be an important aspect of this research.  Over expression of hsPAPSS2a 

genetic variants in vitro in conjunction with different sulphotransferases (SULT2A1 or 

SULT1E1) will highlight if PAPSS2 variants have varying activities in the sulphation 

pathway.  Furthermore, these future studies will provide insights into how hsPAPSS2a 

variants impact on a given physiological phenotype, such as the previously observed 

androgen excess or bone dysplasia.  Therefore, this will hopefully provide a basis for 

improving the clinical management of PAPSS2 deficient individuals. 
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ABSTRACT 

 

Background: Rheumatoid arthritis (RA) is an autoimmune disease that results in 

inflammation of the synovial joints, loss of bone mass and muscle loss.   Inflammatory 

related skeletal muscle wasting increases the risk of falls and fractures and the mortality 

and morbidity of patients.  There is evidence to suggest that low levels of vitamin D also 

correlate with muscle weakness and loss. This is supported by observations that vitamin 

D has an important role in skeletal muscle development and function.   

Aim: The aim of this project was to determine if inflammatory related muscle atrophy is 

directly mediated through impaired vitamin D actions or its metabolism.   

Methods: Murine C2C12 myoblasts were differentiated over a six day period and treated 

with TNFα, IL-6 and IL-1β for 24 hours. Alternatively, C2C12 myoblasts were 

differentiated for six days in media preconditioned with serum from human RA synovial 

fibroblasts. Quantitative real time RT-PCR was used to determine changes in the mRNA 

levels of the vitamin D receptor and mRNA for gene involved in vitamin D metabolism. 

Results: Treatment of C2C12 muscle cells with pro-inflammatory or with pre 

conditioned media from synovial fibroblasts did not cause any changes in gene 

expression of the vitamin D receptor or the genes responsible for vitamin D activation or 

catabolism. 

Conclusion: It is concluded from this study that inflammatory related muscle atrophy is 

not a direct result of changes in vitamin D actions through its receptor or its metabolism. 



Aliesha Griffin  IX 

 

ACKNOWLEDGEMENT 

 

I would like to thank my supervisor Dr. Mark Cooper for giving me guidance and 

assistance throughout this study.  I am appreciative of his valuable advice and continued 

enthusiasm for this project.  I am also grateful to Dr. Rowan Hardy for his initial ideas 

and support in the development of the project.  I would also like to acknowledge Dr. 

Stuart Morgan for his continued assistance with the laboratory work and helpful feedback 

during this project.    



Aliesha Griffin  X 

 

TABLE OF CONTENTS 

 

7 INTRODUCTION................................................................................................... 48 

7.1 Rheumatoid arthritis and muscle wasting .................................................................... 48 

7.2 Inflammatory cytokines and their effects on skeletal muscle ...................................... 49 

7.3 Vitamin D physiology .................................................................................................. 51 

7.3.1 Classical Vitamin D actions ..................................................................................................54 

7.3.2 Non-classical actions of vitamin D ........................................................................................54 

7.4 Vitamin D and skeletal muscle .................................................................................... 55 

7.5 Vitamin D and Rheumatoid Arthritis ........................................................................... 57 

8 PROJECT AIMS AND HYPOTHESIS ................................................................ 59 

9 MATERIALS AND METHODS ........................................................................... 60 

9.1 Cellular Biology ........................................................................................................... 60 

9.1.1 Mammalian Cell Culture .......................................................................................................60 

9.1.2 Cytokine treatment of differentiated C2C12 cell line ............................................................61 

9.1.3 Serum conditioned media treatment of C2C12 myoblasts .....................................................61 

9.1.4 Differentiation of C2C12 in the presence of 1,25(OH)2D3 ....................................................62 

9.2 Molecular Biology ....................................................................................................... 62 

9.2.1 RNA extraction ......................................................................................................................62 

9.2.2 Reverse Transcription ............................................................................................................63 

9.2.3 Quantitative Real Time RT-PCR ............................................................................................63 

9.2.4 Quantification of Nucleic Acids .............................................................................................64 

10 RESULTS ................................................................................................................ 66 

10.1 Characterisation of C2C12 myogeneis......................................................................... 66 

10.2 Characterisation of Vitamin D effects on C2C12 ........................................................ 68 

10.3 Effects of inflammatory cytokines on C2C12 myofibres ............................................ 72 

10.3.1 TNFα, IL-6 and IL-1β treatment of C2C12 myofibres ......................................................72 

10.3.2 Differentiation of C2C12 myofibres in preconditioned media ..........................................77 



Aliesha Griffin  XI 

 

10.4 Vitamin D effects on muscle differentiation ................................................................ 81 

11 DISCUSSION .......................................................................................................... 84 

11.1 Vitamin D actions and metabolism in C2C12 cells ..................................................... 84 

11.2 Inflammatory cytokines effects of vitamin D metabolism ........................................... 85 

11.3 Modelling inflammatory related muscle atrophy in C2C12 myofibres. ...................... 86 

11.4 Indirect effects of Vitamin D on inflammatory related muscle atrophy ...................... 88 

11.5 Vitamin D and muscle differentiation .......................................................................... 89 

12 CONCLUSIONS AND FUTURE DIRECTIONS ................................................ 91 

 



Aliesha Griffin  XII 

 

TABLE OF FIGURES 

 

Figure 14: Vitamin D metabolism in humans. .................................................................. 53 

Figure 15: Morphological changes of C2C12 myoblasts during differentiation .............. 66 

Figure 16: Gene expression of myogenin, myostatin and myo D during C2C12 muscle 

differentiation. ................................................................................................................... 68 

Figure 17: Gene expression of muVDR, muCyp24A1 and muCyp27B1 during C2C12 

muscle differentiation. ...................................................................................................... 69 

Figure 18: Gene expression of muVDR, muCyp24A1 and Cyp27B1 in response to 

vitamin D treatment. ......................................................................................................... 71 

Figure 19: Cell morphology in day six treated C2C12 after treatment. ............................ 73 

Figure 20: Gene expression of muVDR, muCyp24A1 and Cyp24B1 in response to 

inflammatory cytokine treatment. ..................................................................................... 74 

Figure 21: Gene expression of muMAFbx and muMuRF1 after 24 hour treatment with 

inflammatory cytokines. ................................................................................................... 76 

Figure 22: Gene expression of muVDR, muCyp24A1 and Cyp24B1 in response to 

differentiation in the presence of preconditioned media................................................... 78 

Figure 23: Gene expression of myostatin and myogenin in response to differentiation in 

the presence of preconditioned media............................................................................... 79 

Figure 24: Gene expression of MuRF1 and MAFbx in response to differentiation in the 

presence of preconditioned media. ................................................................................... 81 

Figure 25: Gene expression of myo D, myogenin and myostatin in response to 

differentiation of C2C12 myoblasts in the presence of vitamin D. .................................. 83 



Aliesha Griffin  XIII 

 

LIST OF ABBREVIATIONS 

 

24-OHase 25-hydroxyvitamin D3 24-hydroxylase 

25-OHase 25-hydroxylase 

AU  arbitrary units 

cDNA  complementary DNA 

DMEM  Dulbecco's Modified Eagle's medium 

IL-1β  interleukin 1β 

IL-6 interleukin 6  

MAFbx  Atrogin 1/muscle atrophy F-box  

MuRF1 Muscle Ring Finger 1 

PBS  phosphate buffered saline 

RA  Rheumatoid arthritis  

rh recombinant human 

rm recombinant murine 

RT-PCR  Reverse Transcriptase Polymerase Chain Reaction 

TNFα  tumour necrosis factor α  

VDR  vitamin D receptor  

VDRE vitamin D response element 

 



Aliesha Griffin  48 

 

7 INTRODUCTION 

7.1 Rheumatoid arthritis and muscle wasting 

Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disorder where 

patients primarily suffer from inflammation of the synovial joints.  The disease results in 

an erosive arthritis with destruction of the joints, a loss of bone mass, as well as local and 

systemic muscle wasting.  This disorder has a multifactorial aetiology in which both 

genetic and non-genetic components are believed to be contributing factors (McInnes and 

Schett, 2007).  The cause of the initiation of the inappropriate immune response in RA is 

unknown.  However, there is a growing body of support suggesting that vitamin D 

homeostasis has a role in the development of this disease. 

 

RA is characterised by an infiltration of immune cells into the synovial joints.  These 

immune cells are also capable of causing damage to the surrounding tissue, including 

muscle and bone (McInnes and Schett, 2007).  Clinical studies have observed that RA 

patients suffer significant muscle wasting as a result of this inflammation (Helliwell and 

Jackson, 1994).  In addition, it has been observed that muscle wasting is more prevalent 

in RA patients than in the general population (Matschke et al., 2010).  Subsequently, 

patients often have a range of complications including an increased risk of falling and 

fractures as well as further development of joint degradation through reduced use (van 

Staa et al., 2006).  This highlights that muscle wasting, in addition to synovial joint 

destruction, is a serious and common characteristic of this disease. 

 



Aliesha Griffin  49 

 

Skeletal muscle atrophy often occurs in response to starvation, disuse, cancer, aging and 

chronic inflammatory diseases.  It results in decreased muscle mass, muscle weakness, 

fatigue and contributes to the mortality and morbidity associated with the primary illness 

(Firestein, 2003).  Muscle atrophy is characterised by a reduction in muscle fibre 

diameter, force output and fatigue resistance (Jackman and Kandarian, 2004).  Within the 

muscle fibre there is a decrease in protein synthesis as well as an increase in expression 

of protein breakdown pathways such as the ubiquitin-proteasome pathway (Glass, 2003).  

It is well established that inflammatory cytokines increase the rate of muscle catabolism 

and subsequent muscle wasting in RA and other pathological inflammatory conditions 

(McInnes and Schett, 2007). 

 

7.2 Inflammatory cytokines and their effects on skeletal muscle 

Skeletal muscle mass is maintained through a balance between protein synthesis and 

protein degradation.  Inflammation is a well-known cause of muscle atrophy as it 

accelerates protein degradation and decreases protein synthesis.  Pro-inflammatory 

cytokines, such as interleukin 6 (IL-6), interleukin 1β (IL-1β) and tumour necrosis factor 

α (TNFα) are associated with the depletion of fat stores and loss of muscular tissue 

(Argiles and Lopez-Soriano, 1999).  In many human diseases involving high muscle 

catabolism, such as RA, muscle loss is often reported in conjunction with elevated levels 

of these pro-inflammatory cytokines (McInnes and Schett, 2007).   

 

Atrophying muscles have an increase in protein degradation, which primarily occurs 
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through the E3 ubiquitin-proteasome pathway (Jagoe and Goldberg, 2001).  The muscle-

specific ubiquitin ligases atrogin 1/muscle atrophy F-box (MAFbx) and Muscle Ring 

Finger 1 (MuRF1) are induced during muscle atrophy and contribute to protein 

breakdown (Sandri, 2008).  Pro-inflammatory cytokines, such as TNFα, IL-6 and IL-1β, 

are capable inducing muscle catabolism through this pathway.  

 

TNFα is known to increase the expression of MAFbx in skeletal muscle (Li et al., 2005).  

Exogenous TNFα is reported to stimulate protein degradation in differentiating myoblasts 

(Li et al., 1998) and in in vivo experimental animal models (Garcia-Martinez et al., 1993).  

Another suggested mechanism of action is that TNFα promotes muscle atrophy through 

activation of the NFκB pathway (Li et al., 1998) which in turn supresses key muscle 

differentiation genes at the post transcription level (Guttridge et al., 2000). 

 

IL-1β is also known to be involved in skeletal muscle atrophy.  In vivo experiments in 

rats confirmed that MuRF1 and MAFbx were up regulated after treatment with IL-1β 

(Bodine et al., 2001).  Additional studies showed IL-1β treatment of rats was able to 

reduce the synthesis of major skeletal muscle proteins (Cooney et al., 1999).  In vitro 

experiments confirmed that IL-1β stimulates catabolism in C2C12 myofibres through 

increases in both MuRF1 and MAFbx expression (Li et al., 2009). This highlights that 

IL-1β has a key role in inflammatory related skeletal muscle atrophy.  

 

The pro-inflammatory cytokine IL-6 can also directly induce skeletal muscle atrophy. 

Mice infused with IL-6 had a significant decrease in muscle protein after two weeks 
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(Haddad et al., 2005).  This is mediated, at least in part, by an up regulation of MAFbx 

expression (Baltgalvis et al., 2009).  Additionally, IL-6 activates pathways which in turn 

down regulate growth factor-mediated intracellular signalling mechanisms (Haddad et al., 

2005).  Therefore, IL-6 is also capable of contributing to muscle atrophy in chronic 

inflammatory diseases via several pathways.  

 

7.3 Vitamin D physiology 

The term vitamin D (calciferol) refers to two steroids: vitamin D2 (ergocalciferol) and 

vitamin D3 (cholecalciferol).  For humans, the major source of vitamin D comes from the 

synthesis of vitamin D3 as a result of sun exposure on the skin.  Photochemical synthesis 

from the sun’s UVB radiation (280-320nm) is capable of converting provitamin D3 (7-

dehydrocholesterol) present in the skin to previtamin D3.  This is then further converted 

in the epidermal basal layers to vitamin D3 (Deeb et al., 2007).  Consequently, vitamin D3 

levels can be reduced with dark pigmented skin, the use of sunscreen or clothing and in 

housebound elderly populations.  Both vitamin D2 and D3 can be obtained through dietary 

intake or supplements (Lips, 2006). However, dietary intake is often insufficient as it 

supplies only 20% of the required amount (Wen and Baker, 2011).  Vitamin D2 and D3 

have differing side chains and both require further conversion to generate the active 

vitamin D metabolites (Figure 14). 

 

Once vitamin D3 is generated in the skin, it is transported to the liver where it is 

hydroxylated by 25-hydroxylase (25-OHase) generating 25-hydroxycholecalciferol 
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(25[OH]D3).  The 25-OHase enzyme is encoded by the CYP27A1 gene which is 

expressed in liver mitochondria and microsomes (Deeb et al., 2007).  The subsequent step 

in the metabolism of vitamin D involves the 25-hydroxyvitamin D3-1α-hydroxylase (1α-

OHase) enzyme.  This enzyme is expressed in the kidney and is encoded by the CYP27B1 

gene.  This hydroxylase catalyses the reaction of 25(OH)D3 to calcitriol (1α,25[OH2]D3); 

the most active metabolite of vitamin D.  The CYP27B1 gene is a key regulator of 

vitamin D action in the body and is tightly controlled by parathyroid hormone, calcium, 

phosphate and 1α,25(OH2)D3 (Lips, 2006). 

 

24-hydroxylation of 1α,25(OH2)D3 and 25(OH)D3 by 25-hydroxyvitamin D3 24-

hydroxylase (24-OHase) generates the inactive forms of vitamin D3; 24,25(OH)2D3 and 

1α,24,25(OH)2D3.  These metabolites are then excreted by the body.  24-OHase is 

encoded by CYP24A1 gene and is the rate limiting step in the catabolism of 25(OH)D3 

and 1α,25(OH)2D3 (Deeb et al., 2007).  CYP24A1 is primarily expressed in the kidneys 

and is typically regulated by 1α,25(OH2)D3 to reduce the amount of active vitamin D as 

well as its metabolites 24,25(OH)2D3 and 1α,24,25(OH)2D3 (Lips, 2006) .  
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Figure 14: Vitamin D metabolism in humans. 

Initially, the provitamin D3 (7-dehydrocholesterol) is converted to the previtamin D3 in response 

to ultraviolet B (sunlight) exposure in the skin.  This is then further converted to vitamin D3 in the 

epidermal basal layers.  Vitamin D3 from the skin or absorbed by the intestine from dietary intake 

binds to vitamin D-binding protein (DBP) in the bloodstream, and is transported to the liver.  In 

the liver vitamin D3 is hydroxylated by 25-hydroxylase (25-OHase) generating 25-

hydroxycholecalciferol (25[OH]D3).  Subsequently 25(OH)D3 is 1α-hydroxylated in the kidney by 

25-hydroxyvitamin D3‑1α-hydroxylase (1α‑OHase).  This generates the active steroid 

1α,25(OH2)D3 which has various effects on target tissues throughout the body. 25(OH)D3 and 

1α,25(OH2)D3 are catabolised by 24-hydroxylation by 25-hydroxyvitamin D 24-hydroxylase (24-

OHase).  The resulting metabolites 24,25(OH)D3 and 1α,24,25(OH)2D3 are excreted by the body. 

(adapted from Deeb et al., 2007).   
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7.3.1 Classical Vitamin D actions 

Genomic actions of vitamin D are initiated by 1α,25(OH2)D3 binding to the vitamin D 

receptor (VDR).  The VDR acts as a heterodimer and typically binds to the retinoid X 

receptor.  This complex is capable of recognising vitamin D response elements (VDREs) 

in promoter regions in order to up regulate or repress gene transcription (Bikle, 2009).  

Vitamin D influences target organs such as bone, intestine, kidneys and parathyroid 

glands.  Classically, vitamin D stimulates expression of proteins involved in calcium and 

phosphate homeostasis as well as bone mineralisation (Ceglia, 2008).  Impaired vitamin 

D action, such as vitamin D deficiency or genetic defects in the vitamin D activating 

genes can result in severe disease.  Children often suffer from the bone softening disorder 

rickets, while adults present with osteomalacia often characterised by hypocalcaemia and 

hypophosphataemia with secondary hyperparathyroidism and bone abnormalities (Endo 

et al., 2003).  This emphasises the fact that vitamin D is essential for adequate phosphate 

and calcium regulation and correct bone formation in humans.  

  

7.3.2 Non-classical actions of vitamin D 

The VDR is known to be expressed in a wide range of tissues unrelated to calcium and 

bone metabolism.  Discovery of moderate expression levels of the VDR in nearly all 

tissues, including skeletal muscle, suggests vitamin D has a range of actions throughout 

the body (Holick, 2007).  Recently, vitamin D has been linked with the regulation of 

hormone secretion, including insulin and parathyroid hormone, as well as modifying 

cellular proliferation and differentiation in vitro (Bikle, 2009). Furthermore, vitamin D 
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can regulate immune function by inhibiting pro-inflammatory macrophage derived 

cytokines such as interleukin 12, IL-1β, IL-6 and TNFα (Bikle, 2009).  This supports the 

premise that vitamin D is capable of exerting non-classical effects across many tissues in 

the body. 

 

In addition to regulating gene transcription, 1α,25(OH2)D3 is also capable of initiating 

rapid non genomic effects within cells. The mechanism behind this action remains to be 

fully characterised. 1α,25(OH2)D3 may bind a novel receptor or the VDR which has been 

translocated to the cell membrane.  After binding this receptor, vitamin D activates 

second messenger pathways resulting in instant cellular effects, such as rapid calcium 

uptake in muscle cells (Ceglia, 2008).  

 

7.4 Vitamin D and skeletal muscle 

Currently there is new interest in the relationship between vitamin D and muscle 

function. Identification of the VDR within skeletal muscle tissue provides evidence that 

vitamin D may have a direct effect on this tissue (Bischoff et al., 2001).  However, the 

effect of 1,25(OH)2D3 on skeletal muscle remains unclear.  1,25(OH)2D3 can influence 

muscle calcium uptake, phospholipid metabolism, phosphate transport across the cell 

membrane and muscle cell proliferation and differentiation. 1,25(OH)2D3 regulates 

calcium uptake in vitro and in vivo which subsequently controls muscle function through 

influencing its contraction and relaxation properties (Ceglia, 2008).  Additionally, 

treatment of myoblasts with vitamin D has a mitogenic effect during proliferation, and 
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inhibits proliferation during myofibre differentiation (Drittanti et al., 1989). Thus, 

vitamin D may play an important role in skeletal muscle development and function.   

 

Animal models have provided additional evidence that vitamin D has a positive effect on 

muscle maturation and strength.  Muscle fibres in vitamin D receptor knock-out mice are 

significantly smaller and are more variable in size than wild type controls. This suggests 

that the VDR plays a key role in skeletal muscle fibre development and its maturation 

(Endo et al., 2003). 

 

In humans, vitamin D deficiency can cause skeletal muscle atrophy of varying severity.  

Several clinical studies show that vitamin D has a key role in skeletal muscle and 

metabolism and that muscle weakness followed by atrophy is a common symptom of 

vitamin D deficiency (Pfeifer et al., 2002).  Low 25(OH)D3 levels (the accepted measure 

of vitamin D body stores) are associated with an increased risk of repeated falling and 

fractures (Snijder et al., 2006).  Additionally, adult patients with profound vitamin D 

deficiency show predominantly type II muscle atrophy (Ceglia, 2008).  These muscle 

fibres are fast-twitch and are the first muscles to be engaged in the prevention of falls.  

Treatment of low 25(OH)D3 with either Vitamin D3 on its own (Bischoff-Ferrari et al., 

2009) or in a combination with calcium (Bischoff et al., 2003, Pfeifer et al., 2009) is 

capable of reducing the risk of falls.  Vitamin D2 supplementation in combination with 

calcium has also shown similar outcomes (Flicker et al., 2005).  Alternately, other studies 

did not observe any significant increase in muscle strength (Verreault et al., 2002, 

Stockton et al., 2011).  One study in particular identified an increased incidence of falls 
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following supplementation with vitamin D in elderly women (Sanders et al., 2010).  

Although the evidence is inconsistent, it is suggested that treatment with vitamin D might 

aid improvement of musculoskeletal health in individuals with disease related muscle 

atrophy.  

 

7.5 Vitamin D and Rheumatoid Arthritis 

Based on several recent clinical and laboratory studies there has been an increased 

interest in vitamin D in the treatment and pathogenesis of RA.  Currently, there have been 

several observations that link vitamin D and RA.  Initially, epidemiological studies 

proposed an association between vitamin D deficiency with a susceptibility to developing 

the disease (Wen and Baker, 2011).  Secondly, a decreased concentration of 25(OH)D3 in 

the blood can be a risk factor for the initiation of RA (Merlino et al., 2004). Similarly, a 

dysfunctional VDR is related to poor bone development and health, as well as an 

increased risk of chronic diseases including RA (Holick, 2007).  Finally, several studies 

concluded that low levels of 25(OH)D3 was more likely to be associated with enhanced 

inflammation, pain and fatigue (Cutolo et al., 2007, Kroger et al., 1993).  These 

observations highlight the idea that vitamin D may have a role in the development, 

pathogenesis or treatment of RA.   

 

Interestingly, the VDR is expressed within endothelial cells within rheumatoid lesions, 

although it is not expressed in normal healthy synovium.  Tetlow et al (1999) have 

reported that more cells in the RA synovium express the VDR compared to controls. This 
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further supports the idea that vitamin D may play an important role within the 

pathophysiology of RA.   
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8 PROJECT AIMS AND HYPOTHESIS 

 

Given the reported positive effects of vitamin D on muscles, we hypothesised that muscle 

wasting in patients with autoimmune inflammatory diseases (such as RA) occurs as a 

direct result of impaired vitamin D action or metabolism.  This project aimed to clarify 

the potential role of vitamin D in inflammation associated muscle loss by addressing the 

following objectives: 

 Characterise the expression of the VDR, and vitamin D metabolism genes 

Cyp27B1 and Cyp24A1 during differentiation of muscle cells. 

 Examine the effects of the major inflammatory cytokines TNFα, IL-6 and IL-1β 

on the expression of VDR, and vitamin D metabolism genes Cyp27B1 and 

Cyp24A1 within mouse myofibres. 

 Examine the effects of increasing concentrations of vitamin D in regulating 

muscle proliferation and differentiation of myoblasts to myofibres. 
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9 MATERIALS AND METHODS 

9.1 Cellular Biology 

9.1.1 Mammalian Cell Culture 

This study used the C2C12 skeletal muscle cell line, which were originally isolated 

through serial passage of myoblasts cultured from the thigh of C3H mice inflicted with 

crush injury (Yaffe and Saxel, 1977).  These cells are capable of differentiating from 

pluripotent myoblasts to fully differentiated myofibres when grown in the presence of 

horse serum.  C2C12 mouse myoblasts were cultured in high glucose Dulbecco's 

Modified Eagle's medium (DMEM) with L-glutamine.  Complete growth media was 

supplemented with 10% foetal bovine serum (Sigma) and 1% penicillin (5 U/mL) 

streptomycin (5 µg/mL) (Invitrogen).  Cells were maintained with 5% CO2 at 37ºC in a 

humidified incubator and passaged at 70% confluence.  Cells were harvested by trypsin-

EDTA digestion. 

 

Cells used for assays were passaged into 12-well plates.  Once cells reached 80% 

confluence, differentiation of C2C12 myoblasts to myofibres was induced by replacing 

complete growth media with differentiation media.  Differentiation media consisted of 

DMEM with L-glutamine supplemented with 5% horse serum, 1% penicillin (5 U/mL) 

and streptomycin (5µg/mL) (Invitrogen). During differentiation media was replaced 

every two to three days. 
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9.1.2 Cytokine treatment of differentiated C2C12 cell line 

Day six differentiated C2C12 myofibres were treated with the inflammatory cytokines 

recombinant murine (rm) TNFα and IL-6 and recombinant human (rh) IL-1β (R&D 

Systems) and 1,25(OH)2D3 (Enzo Life Sciences).  Prior to treatment, cells were briefly 

washed with serum free DMEM and incubated in serum-free media for four hours.  

Subsequently, cells were placed in fresh serum-free media in the presence of 10ng/mL 

rmTNFα (stock 10µg/mL in 0.1% bovine serum albumin in phosphate buffered saline 

[PBS]), 25ng/mL rmIL-6 (stock 2.5µg/mL in PBS), 10ng/mL rhIL-1β (stock 10µg/mL in 

PBS) or with 10nM 1α,25(OH2)D3 (stock 10µM in 100% ethanol).  Each assay was 

performed in duplicate.  

 

Cells were incubated for 24 hours at 37ºC in a 5% CO2 humidified incubator prior to 

harvesting.  For harvesting, the media was removed, cells were washed with 1mL of PBS 

and TRI Reagent (Sigma) was added for RNA extraction (section 3.1.6). 

 

9.1.3 Synovial fibroblast serum-conditioned media treatment of C2C12 myoblasts 

Undifferentiated C2C12 myoblasts were passaged into 12-well plates and allowed to 

reach 80% confluence prior to differentiation.  Differentiation media was supplemented 

with serum extracted from human synovial fibroblast cells.  These fibroblast cells were 

harvested from a single RA patient, cultured and received treatment with TNFα, 

dexamethasone or no treatment prior to the serum being harvested.  Each assay was 

performed in duplicate. The media was changed on day three of differentiation and 
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replaced with fresh serum-conditioned media.  On day six of differentiation the cells were 

harvested in TRI Reagent (Sigma) for RNA extraction (section 3.1.6). 

 

9.1.4 Differentiation of C2C12 in the presence of 1,25(OH)2D3 

Undifferentiated C2C12 myoblasts were passaged into 12-well plates and allowed to 

reach 80% confluence prior to differentiation.  Differentiation media was supplemented 

with either 1nM, 10nM or 100nM of 1,25(OH)2D3 (Enzo Life Sciences).  Initially a 

1:1000 dilution followed by a 1:10 serial dilution was performed to make the 

supplemented media from a 100µM 1,25(OH)2D3 stock (in 100% ethanol).  The media 

was changed on day three of differentiation and replaced with fresh 1,25(OH)2D3 

supplemented media at the appropriate concentration.  Each assay was performed in 

duplicate. Cells were harvested at day one, day three and day six of differentiation in TRI 

Reagent (Sigma) for RNA extraction (section 3.1.6). 

 

9.2 Molecular Biology 

9.2.1 RNA extraction 

RNA extraction is a procedure which allows for the isolation of RNA from a biological 

sample and therefore gives a snapshot of the genes being actively transcribed at that time 

point.  RNA was isolated from C2C12 cells using TRI Reagent (Sigma).  Typically, cells 

were washed with 1mL in PBS (Sigma) before 1mL of TRI Reagent was added.  

Pipetting was used to dislodge cells before the cell suspension was placed in a 1.5mL 
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microcentrifuge tube.  200µL of chloroform was added to the samples and they were 

mixed vigorously.  Samples were incubated at room temperature for 10 minutes and 

centrifuged at 13,000rpm for 20 minutes at 4ºC.  The upper aqueous phase containing the 

RNA was transferred to a fresh 1.5mL tube.  The RNA was precipitated using 500µL of 

cold isopropyl alcohol.  Samples were incubated for at least 20 minutes at -20ºC.  The 

RNA was pelleted by centrifugation at 13,000rpm for 10 minutes at 4ºC and washed in 

70% ethanol, followed by a further centrifugation step at 13,000rpm from 10 minutes at 

4ºC.  RNA was eluted into RNase-free water, quantified (section 3.1.3) and stored at -

20ºC. 

 

9.2.2 Reverse Transcription 

Reverse transcription is a methodology that allows for the generation of complementary 

DNA (cDNA) from a purified RNA sample.  cDNA was prepared from total RNA using 

TaqMan Reverse Transcriptase kit according to the manufactures instructions (Applied 

Biosystems).  Typically 20μL reactions were made containing; 1X reaction buffer, 

5.5mM magnesium chloride, 500μM of each dNTP, 2.5μM of random hexamer primers, 

0.4U/μL of RNase Inhibitor, 1.25U/μL Mulitscribe Reverse Transcriptase and 700ng of 

RNA.  Samples were subjected to 25ºC for 10 minutes, 37ºC for one hour, 48ºC for 30 

minutes and 95ºC for five minutes in a thermal cycler.  Samples were stored at -20ºC. 

 

9.2.3 Quantitative Real Time RT-PCR 

Real time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a method 
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which allows for amplification and simultaneous quantification of specific genes of 

interest.  A fluorescent reporter probe method was used where probes were tagged with 

the FAM reporter. Typically, 10µL reactions were made consisting of 0.5µL of Assay on 

Demand (Applied Biosystems) for either murine myoD, myogenin, myostatin, VDR, 

Cyp24A1, Cyp27B1, MAFbx32, or MuRF1, 5µL of TaqMan Master Mix (Applied 

Biosystems) and 4.5µL of previously prepared cDNA (section 3.1.7).  Similarly, 18S 

expression was also analysed using a 0.5µL VIC labelled report probe (Applied 

Biosystems) with 5μL of TaqMan Master Mix (Applied Biosystems) and 4.5µL of 

previously prepared cDNA. 

 

Samples were prepared in 96 well Optical Reaction Plates (Applied Biosystems) and 

sealed with adhesive PCR film (Thermo scientific).  Reactions were run on an ABI Prism 

SDS 7500 Thermocycler for 50ºC for two minutes, 95ºC for 10 minutes, followed by 40 

cycles of 95ºC for 15 seconds and 60ºC for one minute.  Samples were analysed using 

7500 System SDS software (Applied Biosystems). 

 

9.2.4 Quantification of Nucleic Acids 

Purified plasmids and extracted RNA were all quantified using the NanoDrop® ND-1000 

spectrophotometer.  Typically, distilled water was used to determine a background level 

and then 1.5L of sample was applied onto the spectrophotometer.  For nucleic acid 

samples a ratio of A260/280 was used to determine purity.  A ratio between 1.8 and 2.2 

was considered acceptable indicating RNA could be used in future experiments. 
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9.2.5 Statistical Analysis 

All experiments were conducted in duplicate, with each duplicate representing n=1.  

Arbitrary units (AU) were used to display gene mRNA expression data as ± standard 

error of the mean (SEM).  Means were compared against each other by using an unpaired 

(two-tailed) students t-test, whilst multiple means were compared by analysis of variance 

(ANOVA) Post Hoc Dunnet (two-sided) test. P<0.05 was considered to be statistically 

significant.  
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10 RESULTS 

10.1 Characterisation of C2C12 myogeneis 

Murine C2C12 myoblasts are a well established in vitro model for investigating the 

differentiation of myoblasts (mononucleated myogenic cells) to myofibres 

(multinucleated cells).  During myogenesis, proliferating myoblasts withdraw from the 

cell cycle, obtain an apoptosis-resistant phenotype and fuse into myofibres (Figure 15).  

Changes in gene expression of myogenic regulatory factors accompany the differentiation 

of myoblast to myofibres. 

 

 

Figure 15: Morphological changes of C2C12 myoblasts during differentiation 

Murine C2C12 myoblast differentiation was induced by supplementing culture media with 5% 

horse serum.  Day zero depicts multipotent C2C12 myoblasts. Over six days of differentiation the 

C2C12 cells stop proliferating and fuse together to form muti-nucleated myofibres.  
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In order to characterise differentiation of the C2C12 cell line, expression of murine 

MyoD, myogenin and myostatin was examined.  MyoD is a transcription factor which 

marks muscle differentiation.  It halts proliferation and indicates the cells commitment to 

the myoblast lineage.  Secondly, myogenin is a transcription factor which is essential for 

muscle development.  Finally, myostatin is an inhibitor of muscle growth and 

differentiation.  To induce myogenesis of the C2C12 myoblasts, growth media was 

replaced with differentiation media.  Cells were harvested at the myoblast stage (day 

zero), day three and day six of myogenesis for gene expression analysis using 

quantitative real time RT-PCR (section 9.2.3).   

 

Over six days of differentiation, there was a significant increase in the expression of 

myogenic regulatory factors myogenin, myostatin and myoD (Figure 16).  Myostatin had 

a 150 fold up regulation during differentiation by increasing from 0.0002 AU ±1.1E-5 to 

0.03AU ±0.001 (p<0.05).  Similarly, myogenin showed an up regulation in expression, 

increasing 0.24AU ±0.1 to 187AU ±46.8 (p<0.05). Additionally, myoD had a similar 

expression pattern, displaying a 27 fold up regulation from 0.47AU ±0.04 to 12.8AU 

±4.3 (p<0.05). 
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Figure 16: Gene expression of myogenin, myostatin and myo D during C2C12 muscle 

differentiation. 

Quantitative real time RT PCR was used to determine the relative gene expression of muscle 

differentiation markers, myostatin (a) and myogenin (b) and MyoD (c) during differentiation of 

C2C12 myoblasts (day zero) to six days. Differentiation was reflected by significant increase in 

expression of all three genes between days zero and day six and day three and day six.  No 

significant change was noted between day one and day three of differentiation.  The mean relative 

expression is shown ±SEM  (*p<0.05 n=3).  

 

 

10.2 Characterisation of Vitamin D effects on C2C12 

One of the aims of this project was to confirm the expression the muVDR, muCyp27B1 

and muCyp24A1 during differentiation of C2C12 myoblast to myofibres.  RNA was 
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extracted from cells at the myoblast stage (day zero), day three and day six of 

differentiation (section 9.2.1). Subsequently, cDNA was generated and quantitative real 

time PCR was performed to analyse gene expression (sections 9.2.2 and 9.2.3).  The 

muVDR had low levels of expression which did not change over differentiation.  

Similarly, muCyp24A1 and muCyp27B1 were also not highly expressed and their 

expression levels showed no significant changes over differentiation (Figure 17). 

 

 

Figure 17: Gene expression of muVDR, muCyp24A1 and muCyp27B1 during C2C12 

muscle differentiation. 

Quantitative real time RT PCR was used to determine the relative gene expression of mouse 

vitamin D receptor (a), Cyp24A1 which encodes the inactivating enzyme 24-hydroxylase (b) and 

Cyp27B1 which encodes the activating enzyme 25-hydroxyvitamin D3-1α-hydroxylase (c). No 

significant difference in expression of these genes was observed during C2C12 myoblast 

differentiation into day six myoblasts The mean relative expression is shown ±SEM (n=3).   
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Given that muVDR, muCyp24A1 and muCyp27B1 showed relatively low levels of 

expression within the C2C12 muscle model (as determined by quantitative RT-PCR), it 

was important to confirm the expression of these genes was sufficient for this model to 

respond to vitamin D stimulation.  Therefore, day six C2C12s were treated with 10nM 

1α,25(OH2)D3 or a vehicle control containing 0.1% ethanol.  After 24 hours, the RNA 

was extracted and cDNA was generated (sections 9.2.1 and 9.2.2).  Gene expression by 

quantitative RT-PCR (section 9.2.3) showed that the muVDR and the gene responsible for 

the catabolism of vitamin D, muCyp24A1 were up-regulated upon treatment with 

1α,25(OH2)D3  (Figure 18 a and b).  muVDR had a significant five fold up regulation 

when compared to the vehicle control (2.4AU ±0.08 to 11.38AU ±1.92; p<0.05).  

Similarly, muCyp24A1 had more than 1000 fold up regulation when treated with 

1α,25(OH2)D3 when compared to the vehicle control (0.0004AU ±9.8E-05 to 0.47±0.15; 

p<0.01).  The expression of the activating enzyme muCyp27B1 remained unchanged after 

treatment (Figure 18). 
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Figure 18: Gene expression of muVDR, muCyp24A1 and Cyp27B1 in response to vitamin D 

treatment. 

Quantitative real time RT PCR was used to determine the relative gene expression of mouse 

vitamin D receptor (a), Cyp24A1 which encodes the inactivating enzyme 24-hydroxylase (b) and 

Cyp27B1 which encodes the activating enzyme 25-hydroxyvitamin D3-1α-hydroxylase (c) in day 

six differentiated myofibres after 24 hour treatment with 10nM 1α,25(OH2)D3.  Both the muVDR 

and muCyp24A1 were significantly up regulated five fold and 1000 fold, respectively, when 

compared to the 0.1% ethanol treated control.  muCyp27B1 expression remains unchanged after 

treatment.  The mean relative expression is shown ±SEM (* p<0.05. ** p<0.01. n=3). 
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10.3 Effects of inflammatory cytokines on C2C12 myofibres 

10.3.1 TNFα, IL-6 and IL-1β treatment of C2C12 myofibres 

The primary aim of this project was to determine if inflammatory related muscle atrophy 

is a directly mediated through vitamin D actions or metabolism.  To test this hypothesis, 

day six differentiated C2C12 were treated with key inflammatory cytokines, rmTNFα 

(10ng/mL), rmIL-6 (25ng/mL) and rhIL-1β (10ng/mL) for 24 hours (section 9.1.2).  After 

treatment the expression of muVDR, muCyp24A1 and muCyp27B1 was analysed using 

quantitative RT-PCR (section 9.2.3).  

 

Visual inspection of the cells after the 24 hour treatment showed no obvious changes in 

the morphology and formation of the C2C12 myofibres when compared to untreated 

controls (Figure 19). 
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Figure 19: Cell morphology in day six treated C2C12 after treatment. 

Day six differentiated C2C12 cells were treated with the pro-inflammatory cytokines rmIL-6 

(25ng/mL), rmTNFα (10ng/mL) or rhIL-1β (10ng/mL). Cells were also treated with 10mM 

1α,25(OH2)D3 and a vehicle control (ethanol).  Visual inspection of the cells after 24 hours with 

light microscopy showed no changes in fibre morphology.  

 

After 24 hours treatment, RNA was extracted (section 9.2.1), cDNA was generated 

(section 9.2.2) and quantitative RT PCR (section 9.2.3) was used to establish if 

inflammatory cytokines had a direct effect on expression of the vitamin D metabolism 

genes or receptor.  No significant changes were observed in the muVDR, or its 

metabolism muCyp27B1 or muCyp24A1 (Figure 20). 
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Figure 20: Gene expression of muVDR, muCyp24A1 and Cyp24B1 in response to 

inflammatory cytokine treatment. 

Quantitative real time RT PCR was used to determine the relative gene expression of mouse 

vitamin D receptor (a), Cyp24A1 which encodes the inactivating enzyme 24-hydroxylase (b) and 

Cyp27B1 which encodes the activating enzyme 25-hydroxyvitamin D3-1α-hydroxylase (c) in day 

six differentiated myofibres after 24 hours after treatment with rmTNFα (10ng/ml), rmIL-6 

(25ng/ml) and rmIL-1β (10ng/ml).  No significant changes were observed between treated and the 

untreated controls.  The mean relative expression is shown ±SEM (n=3). 

 

To ensure muscle atrophy was being induced, quantitative RT PCR (section 9.2.3) was 

also used to examine key atrophy markers muMAFbx and muMuRF1.  As previously 

mentioned, these enzymes are key regulators of the protein degradation through the E3 

ubiquitin ligase pathway during muscle atrophy.  Dexamethasone acts primarily as a 
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catabolic factor and therefore was used as a positive control to determine if muscle 

atrophy was being induced.  Gene expression confirmed that 10nM dexamethasone was 

capable of inducing muscle atrophy within 24 hours as represented by a significant 

increase in muMAFbx when compared to untreated controls (8.7AU ±3.14 to 39.1AU 

±5.36; p<0.05). An increase of muRF1 was observed with dexamethasone treatment, 

however this was not significant.  Additionally, treatment with 10ng/mL rmTNFα, 

25ng/mL rmIL-6 or 10ng/ml rhIL-1β did not increase expression of muscle atrophy 

markers when compared with untreated cells (Figure 21). 
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Figure 21: Gene expression of muMAFbx and muMuRF1 after 24 hour treatment with 

inflammatory cytokines. 

Quantitative real time RT PCR was used to determine the relative gene expression of skeletal 

muscle atrophy markers muMuRF1 (a) and muMAFbx (b) in day six differentiated myofibres 

after 24 hours after treatment with rmTNFα (10ng/mL), rmIL-6 (25ng/mL) and rhIL-1β 

(10ng/mL).  No significant changes were observed between the cytokine treated and untreated 

controls. The catabolic factor dexamethasone (10nM), was used to show induction of atrophy 

through increased mRNA production of these genes.  Treatment with dexamethasone caused 

significant up regulation of muMAFbx gene.  The mean relative expression is shown ±SEM 

(*p<0.05; n=2).  
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10.3.2 Differentiation of C2C12 myofibres in preconditioned media 

Although the major inflammatory cytokines (i.e. rmTNFα, rmIL-6 or rhIL-1β) did not 

affect gene mRNA levels of muVDR, muCyp24A1 or muCyp27B1, other factors relevant 

to the RA synovial milieu may have an effect on this pathway.  To identify if other 

factors were mediating the regulation of these genes, C2C12s were differentiated in 

preconditioned media (section 9.1.3). This media contained cytokines and growth factors 

secreted from human RA synovial cells previously treated with TNFα or dexamethasone.  

After six days of differentiation in the presence of preconditioned media, mRNA for gene 

of the vitamin D pathway was assessed using quantitative real time RT PCR (section 

9.2.3).  Differentiation of C2C12s in the presence of pre-conditioned media from 

synovial fibroblasts exposed to pro- or anti-inflammatory factors showed no significant 

changes in the muVDR expression or the expression of vitamin D metabolism genes 

Cyp27B1 or Cyp24A1 (Figure 22). 
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Figure 22: Gene expression of muVDR, muCyp24A1 and Cyp24B1 in response to 

differentiation in the presence of preconditioned media. 

Quantitative real time RT PCR was used to determine the relative gene expression of mouse 

vitamin D receptor (a), Cyp24A1 which encodes the vitamin D catabolising enzyme 24-

hydroxylase (b) and Cyp27B1 which encodes the activating enzyme 25-hydroxyvitamin D3-1α-

hydroxylase after six days of differentiation (c).  Myoblasts were differentiated in preconditioned 

media from human RA synovial fibroblasts treated with TNFα, dexamethasone (DEX), or had 

remained untreated.  No significant changes were observed between the different treatments.  The 

mean relative expression is shown ±SEM (n=2).  

 

To determine if the cytokine or dexamethasone-conditioned media were having an effect 

on muscle differentiation, gene expression of myogenic regulatory markers were assessed 

from day six myofibres (section 9.1.3).  The results showed that there was no significant 
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change in the expression of myostatin or myogenin in cells treated with preconditioned 

media when compared to cells differentiated in untreated conditioned media (Figure 23). 

 

 

Figure 23: Gene expression of myostatin and myogenin in response to differentiation in the 

presence of preconditioned media. 

Quantitative real time RT PCR was used to determine the relative gene expression of muscle 

differentiation markers, myostatin (a) and myogenin (b) after six days of differentiation.  

Myoblasts were differentiated in pre conditioned media from human RA synovial fibroblasts 

treated with TNFα, dexamethasone (DEX), or fibroblasts that remained untreated.  No significant 

changes were observed between the different treatments. The mean relative expression is shown 

±SEM (n=2).  
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In order to examine if muscle atrophy was being induced by the presence of other agents 

in the preconditioned media, the expression of the ubiquitin ligase proteins muMuRF1 

and muMAFbx were observed.  After six days of differentiation in the preconditioned 

media, RNA was extracted (section 9.2.1), cDNA was generated (section 9.2.2) and 

quantitative real time RT-PCR was performed (section 9.2.3).  muMuRF1 showed no 

change between cells treated with conditioned media induced with TNFα or 

dexamethasone and the normal conditioned media. There was a slight up regulation of 

muMAFbx with the conditioned media from TNFα treated synovial fibroblasts, however, 

this change was not significant (Figure 24). 
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Figure 24: Gene expression of MuRF1 and MAFbx in response to differentiation in the 

presence of preconditioned media. 

Quantitative Real time RT PCR was used to determine the relative gene expression of skeletal 

muscle atrophy markers muMuRF1 (a) and muMAFbx (b) after six days of differentiation.  

Myoblasts were differentiated in pre conditioned media from human RA synovial fibroblasts 

treated with TNFα, dexamethasone (DEX), or had remained untreated.  No significant changes 

were observed between the different treatments.  The mean relative expression is shown ±SEM 

(n=2).  

 

10.4 Vitamin D effects on muscle differentiation 

It has been suggested that vitamin D has a positive effect on skeletal muscle 

differentiation.  In order to determine the actions of vitamin D on C2C12 muscle cells,  
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myoblasts underwent differentiation in the presence of  either 1nM, 10nM or 100nM of 

1,25(OH)2D3 (section 9.1.4) .  Cells also were differentiated in the absence 1,25(OH)2D3 

or in 0.1% ethanol as a vehicle control.  Cells were harvested at day one, three and six for 

gene expression analysis by quantitative real time RT PCR (section 9.2.3). 

 

To investigate the effects of vitamin D on differentiation or proliferation, expression of 

key myogenic regulatory factors which have key roles in myoblast differentiation and 

skeletal muscle development were measured.  1,25(OH)2D3 had no significant effects on 

the expression of MyoD, myogenin or myostatin at any concentration during 

differentiation of myoblast to myofibres (Figure 25). 
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Figure 25: Gene expression of myo D, myogenin and myostatin in response to 

differentiation of C2C12 myoblasts in the presence of vitamin D.  

Quantitative real time RT PCR was used to determine the relative gene expression of muscle 

differentiation markers, Myo D (a), myogenin (b) and myostatin (c) during differentiation of 

myoblasts to day six myofibres.  Myoblasts were differentiated in the presence of 100nM, 10nM 

or 1nM of 1,25(OH)2D3 and cells were harvested on day one, day three and day six.  No 

significant changes were observed between the different treatments. The mean relative expression 

is shown ±SEM (n=2).  
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11 DISCUSSION 

11.1 Vitamin D actions and metabolism in C2C12 cells 

We hypothesised that inflammatory related skeletal muscle atrophy is a direct result of 

changes in vitamin D activity or its metabolism.  However, we failed to find support for 

this hypothesis through a variety of experiments using murine C2C12 myofibres.  We 

were able to confirm that the C2C12 muscle model expressed the muVDR, muCyp27B1 

and muCyp24A1 in relatively low levels.  It was also confirmed that the level of 

expression did not show significant changes during differentiation.  This contradicts other 

reported models where the VDR increases expression during differentiation from 

myoblasts to myofibres (Simpson et al., 1985).   

 

As highlighted, 1α,25(OH2)D3 is the active metabolite of vitamin D and it exerts its 

action through the nuclear VDR by regulating transcriptional responses within the cell.  

However, the precise effect of vitamin D on skeletal muscle remains controversial. 

Despite the relatively low levels of expression observed in this study, day six 

differentiated myofibres were able to respond to 10nM 1α,25(OH2)D3.  With a 24 hour 

treatment there was a significant increase in expression of muVDR (p<0.05) and the 

1α,25(OH2)D3 inactivating muCyp24A1 gene (p<0.01) when compared to the vehicle 

treated controls.  The up regulation of these genes is a well established auto-regulatory 

mechanism of vitamin D action in other tissues.  Furthermore, 1α,25(OH2)D3 is also 

capable of transcriptional repression of Cyp27B1 through a negative regulating VDRE 

within its promoter (Deeb et al., 2007).  However, in this study, repression of 
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muCyp27B1 was not observed in C2C12 myofibres after 24 hour treatment with 

1α,25(OH2)D3. 

   

11.2 Inflammatory cytokines effects of vitamin D metabolism 

Inflammatory autoimmune conditions such as RA, are associated with decreased levels of 

vitamin D, as well as an increased presence of pro-inflammatory cytokines. Cytokines 

such as TNFα, IL-6 and IL-1β are known to promote skeletal muscle loss in 

inflammatory diseases like RA (Argiles and Lopez-Soriano, 1999).  Furthermore, vitamin 

D deficiency also results in muscle wasting (Pfeifer et al., 2002).  Therefore, it was 

hypothesised that inflammation related muscle loss is due to effects on vitamin D action 

through the VDR or vitamin D metabolism in muscle cells. 

 

To determine if inflammatory related muscle wasting was from direct changes in vitamin 

D action or metabolism, expression of the key vitamin D genes were observed following 

a 24 hour treatment with inflammatory cytokines. Neither rmTNFα, rmIL-6 nor rhIL-1β 

had an effect on the muVDR, the vitamin D activating enzyme muCyp27B1, or its 

inactivating enzyme muCyp24A1. 

 

Although rmTNFα, rmIL-6 and rhIL-1β were shown not to directly influence the vitamin 

D metabolism genes, it was not possible to rule out a combination of these factors or that 

other growth factors or cytokines may have an effect.  Therefore, cells were differentiated 

for six days in the presence of serum extracted from human RA synovial fibroblasts 
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treated with TNFα or dexamethasone.  After six days, expression of muVDR, 

muCyp27B1, and muCyp24A1 remained unchanged compared to the controls.  This 

disproves the original hypothesis and suggests that inflammatory cytokines are not 

directly regulating vitamin D action or metabolism in skeletal muscle. 

 

11.3 Modelling inflammatory related muscle atrophy in C2C12 

myofibres. 

Inflammatory cytokines, specifically TNFα, IL-6 and IL-1β are capable of inducing 

muscle atrophy.  To confirm whether muscle atrophy was being induced in our C2C12 

model, gene expression of atrophy markers muMuRF1 and muMAFbx were analysed.  

muMuRF1 and muMAFbx are E3 ligase of the ubiquitin proteasome pathway and their 

mRNA expression is known to increase during muscle atrophy (Sandri, 2008). 

 

24 hour treatment with 10ng/mL rmTNFα, 10ng/mL rmIL-6 or 25ng/mL rhIL-1β was not 

sufficient to regulate the mRNA level of these key atrophy markers within day six 

differentiated myofibres.  Treatment with the catabolic factor 10nM dexamethasone did 

confirm that 24 hours was a sufficient length of time to induce significant up regulation 

of muMAFbx.  Similarly, when cells were treated with serum conditioned media over six 

days of differentiation, there was no change in expression of the E3 ubiquitin ligase gene 

expression. This suggests we were unable to accurately model skeletal muscle atrophy in 

C2C12s.  
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The possibility that muscle atrophy in C2C12 myofibres can be induced by higher 

concentrations of inflammatory cytokines cannot be excluded.  However, this study used 

concentrations based on physiological levels for chronic inflammatory disease, as well as 

concentrations observed in previous studies on C2C12 cells (Al-Khalili et al., 2006, Li et 

al., 2009, Li et al., 2005).  The concentrations of pro-inflammatory cytokines used in this 

study did not regulate mRNA levels of key myogenic factors, but skeletal muscle atrophy 

can also be assessed by other changes in the cell, such as changes in muscle fibre size 

(Sultan et al., 2006) or down regulation of muscle growth signalling pathways (Kandarian 

and Jackman, 2006).  However, none of these other muscle atrophy characteristics were 

investigated and consequently represent a limitation of the current study.  

 

Interestingly, IL-6 can directly induce skeletal muscle atrophy through activation of 

JAK/STAT signalling pathway causing subsequent down regulation of intracellular 

signalling (Haddad et al., 2005). This study also confirmed that mRNA for E3 ubiquitin 

protein liagases MAFbx and MuRF1 did not change in response to IL-6 treatment 

(Haddad et al., 2005). This supports the results in this current study.  As IL-6 muscle 

atrophy is not mediated via the ubiquitin ligase pathway, and therefore no change in the 

expression of the protein ligases would be expected.  

 

Previous studies have suggested that examination of gene expression after 24 hours of 

treatment may mask the up regulation of the ubiquitin protein liagases.  6ng/mL TNFα 

treatment of day four differentiated C2C12 mytubes was sufficient to induce significant 

up regulation of muMAFbx within two hours (Li et al., 2005).  Additionally, after six 
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hours post treatment, muMAFbx expression levels returned to control levels and remained 

unchanged from 12 and 24 hours. This is consistent with the results observed in this 

study, as there was no increase from control level after 24 hours of treatment.  However, 

it can not be concluded that there was significant up regulation of muMAFbx at two hours 

post treatment. Therefore a limitation of this current study that needs to be considered is 

only gene expression at 24 hours after treatment was investigated.   

 

It must also be noted that this study was limited to investigating mouse muscle, not 

human.  We failed to find evidence to suggest that inflammatory cytokines influence 

vitamin D action or its metabolism in murine C2C12 myofibres. However, this may not 

be a true representation of what occurs in human patients.  In vitro studies investigating 

the influence of inflammatory agents on muscle are commonly performed in C2C12, 

however, the results are often inconsistent (Petersen et al., 2009).  Therefore, it is 

proposed that human primary cultures will provide confirmation that results observed in 

this study can be translated to human muscle atrophy cases.  

 

11.4 Indirect effects of Vitamin D on inflammatory related muscle 

atrophy 

In contrast to the hypothesis, this current study demonstrated that inflammation-related 

muscle atrophy does not result from changes in vitamin D action through the VDR or its 

metabolism via 24-OHase or 25-OHase.  There is evidence to suggest vitamin D may 

have indirect effects which can be beneficial to inflammatory related skeletal muscle 
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atrophy. Briefly, vitamin D has been observed to have direct effects on cells of the 

immune system and consequently down regulate their immune response.  Vitamin D is 

capable of inhibiting secretion of pro-inflammatory macrophage derived cytokines, such 

as TNFα, IL-1β, IL-6 and IL-12 all of which are elevated in RA patients (Wen and Baker, 

2011). In addition, vitamin D is associated with down regulating signalling pathways 

induced during inflammatory related muscle loss (Bikle, 2009).  Therefore, through these 

suggested indirect mechanisms, it is possible that vitamin D may help decrease muscle 

atrophy caused by inflammatory cytokines.   

 

11.5  Vitamin D and muscle differentiation 

Vitamin D supplementation may be used as a preventative measure for patients who are 

high risk of acquiring vitamin D deficiency and subsequent muscle atrophy. Despite the 

precise mechanism of vitamin D action on muscle being unknown, some clinical and 

experimental studies have suggested it has important roles in muscle function and 

development including effects on proliferation and differentiation (Ceglia, 2008).  

Treatment of C2C12s with 10nM of 1α,25(OH2)D3 for 24 hours, showed a marked 

increase in expression of the VDR confirming that the cells are responsive to this steroid.  

However, differentiating myoblasts in the presence of 1nM, 10nM or 100nM 

1α,25(OH2)D3 had no influence in the formation of myofibres. During myogenesis, 

myoblasts stop proliferation and fuse into myofibres. A study by Stio et. al. (2002) 

confirmed that 1nM of 1α,25(OH2)D3 was ineffective in inhibiting cell proliferation of 

myoblasts or influencing their differentiation. This study also indicated that vitamin D 
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analogues were able to promote myogenesis in C2C12 cells, and therefore concluded that 

perhaps higher concentrations of 1α,25(OH2)D3 were required to observe this effect.  

However, this current study suggests that higher concentrations of 1α,25(OH2)D3 are also 

unable to influence myoblast proliferation or differentiation.  
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12 CONCLUSIONS AND FUTURE DIRECTIONS 

 

RA is a complicated disease which can be influenced by both genetic and environmental 

factors.  Currently, the treatment of RA requires a multiple approach using medications, 

regular follow ups, physiotherapy, joint protection and self management.  Patients often 

suffer skeletal muscle atrophy from whole systemic inflammation which inturn leads to 

general muscle weakness, impairment of normal activities and an increase in mortality.  

This project aimed to investigate muscle atrophy caused by inflammation and whether it 

results through direct changes in vitamin D action or metabolism.  We were unable to 

find any support for this hypothesis through a variety of experiments and therefore 

conclude that inflammatory related muscle loss is not mediated through vitamin D.  We 

found that pro-inflammatory cytokines had no effect on the expression of the muVDR or 

vitamin D key metabolism genes muCyp27Al or muCyp24B1.  As this study was limited 

to C2C12 mouse cell line, further in vitro studies with human primary cultures would be 

recommended to confirm the findings from this study.  

 

The results observed in this study can be directly translated to clinical management of 

patients and it would not be recommended that vitamin D be the sole treatment of 

inflammatory related muscle loss.  However, there is evidence to suggest that vitamin D 

can inhibit inflammatory components as well as down regulate their signalling pathway.  

Therefore vitamin D may have indirect benefits on atrophying muscle cells through 

inhibiting inflammatory actions.  
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Current reports on the actions of vitamin D in muscle are somewhat contradictory.  

Further research into the effects and underlying molecular action of vitamin D on skeletal 

muscle is required. Specifically, what genes are regulated through activation of the VDR 

will give insight into how vitamin D influences skeletal muscle.  Clinical trials 

investigating the relationship between vitamin D and muscle have also given conflicting 

results. Additionally, there is an absence of randomised controlled trials examining 

vitamin D supplementation in diseases where vitamin D deficiency is frequent.  Further 

well-designed clinical trials observing the effects of vitamin D on muscle are required.  In 

addition, studies are needed to determine the optimal level of vitamin D in the blood to 

achieve maximal benefit to patients.  

 

Skeletal muscle atrophy is common in chronic inflammatory diseases such as RA.  

However, currently there is no effective pharmacological treatment option for it 

regardless of its origin.  Loss of muscle mass results in muscle weakness, an increase risk 

of falls and fractures and can increase the mortality and morbidity associated with the 

initial disease.  Therefore, determining the precise pathological mechanisms promoting 

inflammatory related muscle atrophy remains of high clinical importance. 
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