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Abstract 
 

Hepatitis C Virus (HCV) infection is a hepatotropic, enveloped virus with a 

positive sense RNA genome. The prevalence rate of the virus has been shown 

to be 2.9% of the world population, equating to around 170 million infected 

individuals. Due to the high level of chronic infection and progressive nature 

of the liver disease, HCV is a major health concern.  

Four host proteins have so far been indicated as viral receptors; scavenger 

receptor BI, CD81, Claudin1 and Occludin. The interaction of CD81 and 

Claudin1 has been previously demonstrated which lead us to determine 

whether specific interactions are essential for HCV entry.   

Using a combination of imaging and biochemical methods we were able to 

demonstrate that only receptor active Claudins specifically interacted with 

CD81. We also evaluated the ability of previously published Claudin1 mutants 

to interact with CD81 and demonstrated that receptor inactive mutants no 

longer form an association with CD81.  A bioinformatic model predicted the 

association of the T149, E152 and T153 residues of CD81 EC2 with the 62-66 

region of Claudin1. Mutation of these residues lead to an ablation of Claudin1 

association and a reduction in on HCV entry, further indicating the 

requirement of the Claudin1-CD81 complex in the entry process. 
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1.1 Discovery of HCV and the disease  

By the mid 1970’s two distinct forms of hepatitis, termed infectious and serum, had been 

shown to have viral etiology (1-2). Feinstone et al demonstrated that infectious hepatitis 

was caused by a virus they termed Hepatitis A (HAV) (2). This virus belongs to the 

picornaviridae family of viruses which consists of non-enveloped particles containing 

positive single stranded RNA. HAV is transmitted via the Faecal-Oral route and usually only 

produces an acute infection (3). Serum hepatitis was shown by Bayer et al to be caused by 

Hepatitis B virus (HBV) (1). The discovery of the so called Australia antigen and the 

subsequent production of antibodies enabled investigators to determine the viral particle; 

HBV belongs to the Hepadnavirus family and consists of an enveloped particle containing a 

DNA genome. The transmission route of the virus is known to be via contact with infected 

blood or bodily fluids. The ability of the virus to integrate into the host genome enables the 

virus to persist in the host, leading to a chronic infection (4).  

The discovery of these two viruses enabled the creation of screening tools that led to the 

discovery that the majority of post-transfusion hepatitis was caused by an as yet unknown 

factor (5). The ability to infect chimpanzees despite filtration up to 80nM and the ability of 

organic solvents to inactivate the particle, suggested a small enveloped virus was the 

etiological agent, later termed viral non-A, Non-B (NANB) (5-10)  

The first identification of the causative agent of NANB post transfusion hepatitis by Choo et 

al used a blind recombinant immunoscreening approach (11). Briefly, the approach involved 

producing cDNA fragments of nucleic acid purified from experimentally infected chimpanzee 

serum. This cDNA library was for binding to sera from NANB-infected individuals and from 

an experimentally infected chimpanzee. This approach yielded one clone of the NANB 
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agent, which allowed hybridisation assays to be performed. This led to the determination of 

the genome and allowed for further characterisation of the causative agent (12). The clone 

was expressed in a yeast expression system and the proteins used to develop an assay for 

detecting circulating antibodies against the infectious agent. This assay allowed researchers 

to accurately study samples for the presence of the newly discovered agent and quickly 

established that a very high fraction of NANB hepatitis could be ascribed to this new agent, 

which was termed Hepatitis C virus (HCV) (12-13).  

Since its identification HCV has been shown to be a major health issue worldwide, infecting 

around 2-3% of the worlds’ population (14). HCV establishes a chronic infection in around 

75% of cases; with an estimated 123 million persistently infected individuals (15). Chronic 

infection by HCV leads to a progressive disease of the liver. Infection is often asymptomatic 

but can progress to hepatic fibrosis with 20-30% of individuals developing liver cirrhosis 

within 20-25 years of infection. The cumulative 5 year incidence of hepatocellular carcinoma 

in these individuals is 10-15%. Extra-hepatic conditions such as cryoglobulinemia, 

glomerulonephritis, pophryia cutanea tarda and sicca syndrome have been documented 

(16-17). It is estimated that between 40-74% of chronically infected individuals will develop 

at least one of these conditions (18). 

 

 

 

 

 



4 

 

1.2 Basic virology 

HCV has been classified as part of the Flaviviridae family, prototype of the genus 

Hepacviridae, although it differs in specific details of its genome organisation and the 

absence of an insect vector as part of its viral life cycle. The virus has a positive stranded 

RNA genome of around 9.4 Kb in length, encapsulated within an envelope. The RNA can 

directly interact with the 40s ribosomal subunit, via an Internal Ribosomal Entry site (IRES) 

at the 5’ end of the genome, allowing translation of the viral RNA into a single polyprotein 

and circumventing the usual translation process of cellular messenger RNA (figure 1.1) (19-

20).  The polyprotein is co- and post-translationally cleaved by cellular and viral proteases 

into the 10 individual viral proteins. There are three designated structural proteins; Core (C), 

envelope glycoprotein 1 (E1) and envelope glycoprotein 2 (E2). Processing of the 

polyprotein releases the further viral proteins p7 and the six non-structural proteins (NS2-

NS5B), which are necessary for replicating the viral RNA and immune evasion.  

The core protein of HCV is believed to form the viral nucleocapsid (21). The HCV capsid is an 

icosahedral shaped particle of around 33nm (22), with the expression of recombinant core 

protein leading to the formation of nucleocapsid-like particles of between 30-40nm (23-24). 

The core protein requires signal peptidase and signal peptide peptidase cleavage to form 

the mature protein (25). The mature core exists as a dimeric α-helical structure that 

associates with lipid droplets within the cytosol of the cell. Lipid droplets are stores of 

triacylglycerol and cholesterol ester, which are surrounded by a phospholipid leaflet and a 

protein layer (27-28). Although it is not fully known how the core assembles to form the 

viral capsid, it has been demonstrated that the association with the lipid droplets is essential 

for the production of infective viral particles (25, 27, 29-30).  
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Figure 1.1: Schematic of the HCV polyprotein processing. The individual proteins are 

produced by cleavage of a polyprotein precursor by either the host or viral protease. The 

structural protein core (C), two Envelope Proteins (E1 and E2) and p7 are cleaved by host 

proteins. The non-structural proteins (NS2-NS5B) are cleaved by the encoded viral 

proteases. Taken from (26). 
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The E1 and E2 proteins of HCV are responsible for the interaction with the cellular receptors 

and internalisation of the viral particle. As with the core protein host signal peptidases are 

responsible for the cleavage of the proteins from the HCV polyprotein. E1 and E2 are 

classified as type I integral transmembrane proteins with C-terminal transmembrane 

domains. The N-terminus of the E1 and E2 proteins contains 6 and 11 N-glycosylation sites, 

respectively.  The ectodomain is targeted to the lumen endoplasmic reticulum where the 

proteins are N-linked glycosolated (31). The HCV envelope proteins form a non-covalently 

linked heterodimer that is retained in the ER membrane. During the folding process the 

glycoproteins have been shown to interact with a lectin-like ER chaperone calnexin. 

Whether the interaction is essential for the correct folding of the heterodimer still needs to 

be determined (32-34).  

The p7 belongs to a group of ion channel forming viral proteins called viroporins (35). 

Although the isolated protein has been shown to act very similarly to influenza encoded M2, 

in forming an ion channel that is sensitive to amantadine, it is still debated whether p7 is a 

structural protein (36).  It has been demonstrated that p7 is required for the replication of 

HCV in chimpanzees (37). The protein has also been shown to be required for efficient 

particle release, with p7 inhibitors preventing viral release (38-41).  

NS2 protein is essential for viral replication in vitro and in vivo by cleaving the polyprotein 

between the NS2 and NS3 proteins (42-44). In addition the NS2 has also been implicated in 

viral assembly. Although the exact mechanism has not been fully determined the direct 

interaction to the p7 and E2 proteins is essential in the production of viral particles (45-46) 

NS2 has also been shown to associate with the NS3-NS4A enzyme complex, which is also 

required for viral assembly (46-47).  
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The NS3 protein has been shown to have serine protease and NTPase/helicase activity (48). 

The enzymatic activity has been shown to require the NS4A protein as a cofactor (49-50). 

The NS3/4A complex is responsible for cleaving the polyprotein to release the NS3, NS4A, 

NS4B, NS5A and NS5B proteins (50-51).  The helicase activity of the NS3 is required for 

replication and, although the exact function is not known, it may be required to eliminate 

RNA secondary structures or unwind double stranded RNA intermediates created during 

replication (52-53). In addition to its role in polyprotein processing the NS3/4A complex is 

involved in subverting the host immune response. The Toll-like recptor-3 and retinoic acid-

inducible gene I (RIG-I) pathways detect the presence of extracellular and intreacellular 

double stranded RNA (dsRNA), respectively. Upon dsRNA detection these pathways lead to 

the induction of interferon-β, which in turn can induce an anti-viral state in the host 

(reviewed in (54)).    The NS3/4A protease disrupts the cellular RIG-I pathway through 

proteolysis of Cardiff an interferon regulatory factor-3 (IRF-3) activator. NS3/4A cleavage of 

Cardiff, also referred to as MAVS, IPS-1 and VISA, results in its dissociation from the 

mitochondrial membrane and disruption of signaling to the antiviral immune response (55-

57). The disruption of the TLR-3 pathway is achieved by the cleavage of TRIF (also called 

TICAM-1) adaptor protein, which also activates IRF-3 (58).  

The NS4B protein has been shown to induce morphological changes in the endoplasmic 

reticulum. The structure formed is known as the membranous web and is believed to be the 

site of genome replication (59-61). In addition to the formation of the membranous web 

NS4B has also been shown to contain a nucleotide binding domain. This domain has been 

shown to bind and hydrolyze GTP with the mutation of the domain affecting HCV RNA 

replication (62). It has also been suggested that NS4B could be involved in viral assembly.  A 
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mutation of the N216 residue in the C-terminus enhances HCVcc production without 

affecting RNA replication. Although NS4B is required for assembly the role it plays still 

remains unknown (63).    

The NS5B protein contains the GDD polymerase motif and has therefore been identified as 

the RNA dependent RNA polymerase (64-66). The crystal structure of the catalytic domain 

of NS5B shows the palm, finger and thumb subdomains as seen in other polymerases (67-

69). The fingers and thumb modulate the RNA interaction with the active site located in the 

thumb domain. The finger and thumb domains encircle the active site forming a tunnel that 

the single-stranded RNA is guided along. The NTPs required for the RNA synthesis gain 

access to the active site by another positively charged tunnel in the protein structure (70). 

Finally the NS5A protein is thought to be important for replication due to its interactions 

with the other NS proteins, but its main function is believed to be involved in immune 

evasion as it can modulate the interferon response (71-74). The binding of PKR by NS5A has 

been shown to down regulate the induction and transduction of the interferon-dependent 

antiviral response (74-75). The interaction with cellular proteins, such as PI3K, p53, Raf-1, 

Grb2, indicate the role NS5A could play in regulating the cell cycle check points (76-79).   

The current treatment for HCV infection consists of Pegylated Interferon α-2a and Ribavirin. 

The rates of sustained virological response in those treated with dual therapy are 46% for 

individuals infected with genotype 1, 76% for those infected with genotypes 2 or 3 and 77% 

for those infected with genotype 4 (80). Due to these low response rates, the toxicity and 

cost of the treatment, the development of new therapies is urgently required. Two protease 

inhibitors Boceprevir (Merck) & Telaprevir (Vertex) have recently been approved by the FDA 

for the treatment of HCV, with other antiviral compounds targeting the viral lifecycle at 

various stages of development. The virus is found within individuals as a quasispecies, which 
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is developed over the course of their infection through neutral and adaptive evolution (81-

82). The ability of the virus to quickly develop resistance is a major concern for any potential 

therapies.  

 

1.3 Tools for viral research 

For reasons that have not fully been determined, the direct culture of virus from infected 

patients is extremely difficult, with few reports of successful attempts. The use of primary 

viruses or clinical strains of HCV to study entry therefore are limited. For this reason a 

number of molecular biology based approaches have been created to study the entry of 

HCV and have proved to be invaluable. These include soluble forms of the HCV 

glycoproteins, pseudotypic retroviruses encoding the HCV glycoproteins and, most recently, 

a cell culture attenuated virus that shows robust in vitro replication and virus production.  

 

1.3.1 Soluble HCV glycoprotein E2  

One of the earliest tools developed to study the interaction of HCV envelope proteins and 

cellular receptors was a soluble form of E2 (sE2). The removal of the transmembrane region 

after amino acid 661 of the protein led to the secretion of E2 from the cell (83). Soluble E2 

was used as a surrogate model to study virus cell surface interactions. The protein can be 

produced in large quantities and was used to discover of cellular receptors for HCV. sE2 has 

also been shown inhibit cell culture derived HCV entry into cells and is recognised by 

antibodies derived from chronically infected individuals (84).  It must be noted, however, 

that the HCV E1 and E2 proteins are believed to exist as a heterodimer on the particle 
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surface and any interactions of the E2 protein alone may not mimic the true interactions 

and function(s) of HCV glycoproteins. Measuring internalisation events is also not possible, 

which has led to the development of other experimental systems (85-88).  

 

 

1.3.2 HCV pseudoparticles 

To address the possible shortcomings of sE2 and reconstitute the HCV glycoprotein, a 

system was developed using retroviral particles that incorporated both HCV glycoproteins, 

so called HCV pseudoparticles (HCVpp) (89-91).  Retrovirus particles egress from the cell by 

budding from the plasma membrane of cells, in doing so they incorporate envelope proteins 

derived from the plasma membrane. Consequently, heterologous proteins expressed at the 

cell surface can be incorporated into particles. HCVpp are generated by co-transfecting 293-

T cells with plasmids encoding the HCV glycoproteins, a reporter gene, usually luciferase or a 

fluorophore, and a packaging construct encoding the gag-pol genes of HIV or Murine 

Leukaemia virus. The HCV glycoproteins can be the E1 and E2 from any of the HCV 

genotypes. Entry of these pseudoparticles into cells is defined by the HCV glycoproteins, 

which deliver the retrovirus particle into the cytosol of the target cell. The genes delivered 

by the retroviral particle undergo reverse transcription and are integrated into the cellular 

genome. After the integration event the reporter gene is expressed, allowing the detection 

of successful viral entry (92). The development of this system allowed investigators to 

discover the cellular proteins involved in the internalisation of the HCV (88, 90-91, 93). 
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1.3.3 The JFH-1 strain of HCV 

One of the biggest milestones in HCV research was the development of a HCV strain that has 

the ability to replicate, assemble and release infectious particles from cultured hepatoma 

cells (HCVcc) (94-96). A HCV RNA clone derived from a Japanese patient suffering fulminant 

hepatitis replicates efficiently and supports secretion of viral particles when transfected into 

Huh7 cells. This strain was termed Japanese Fulminant Hepatitis-1 (JFH-1cc). JFH-1cc 

particles are infectious for chimpanzees as well as UpA-SCID chimeric mice, which contain 

transplanted human hepatocytes. Virus can be recovered from the JFH-1cc-infected animals 

and will replicate in cell culture (94). Subsequently chimeras of JFH-1cc have been produced 

that have improved many aspects of the system. Chimeras have also been produced which 

express glycoproteins from different structural proteins (97-100). As a consequence of the 

development of these systems the full viral life cycle, from entry to egress, can be studied 

not only in hepatocyte derived cell lines but also primary cultures of human hepatocytes 

(94-96, 98, 101).  
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1.4 Discovery of receptors or entry factors. 

All viruses are intracellular parasites and, with the exception of yeast and fungal viruses that 

have no extracellular part to their life cycle, must traverse the barrier of the cellular 

membrane. The means by which viruses other than plant viruses achieve this is by 

interacting with specific factors on the cell surface which mediate their binding and entry 

into the cell. These factors can be highly specific and can define virus host and cellular 

tropism. The initial interaction of the HCV with the cell is thought to be via the low Density 

Lipoprotein Receptor (LDL-R) and Glycosoaminoglycans (GAGs), in particularly Heparin 

Sulphate. Interfering with interaction of the viral particles to these proteins by enzyme 

treatments does prevent infection (102). One point that has to be made at this stage is that 

the usage of heparin sulphate as an entry factor has been shown to be a cell culture 

attenuation in other viruses and therefore the observations related to heparin sulphate may 

not hold true in vivo (103-104).  

More specific protein interactions have been shown between the HCV particle, which are 

considered the specific receptor proteins, and the tetraspanin CD81 (88, 91, 93, 105-106), 

scavenger receptor class B membrane I (SR-BI) (107-109), three members of the Claudin 

family Claudin1, 6 and 9 (110-113) and Occludin (figure 1.2) (114-115).  
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Figure 1.2: Hepatitis C Virus entry factors.  The diagram shows a schematic representation 

of the known entry factors for HCV. CD81, Claudin1, 6 and 9 and Occludin share a similar 

overall topology of four transmembrane domains with two extracellular loop regions, 

denoted as EC1 and EC2. SR-BI has two transmembrane domains and a single extracellular 

loop. The EC2 of CD81 contains cysteine residues that are known to form disulphide bridges, 

denoted by yellow circles, with the conserved glycine depicted by the Green circle 
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1.4.1 CD81 

The first protein to be identified as a potential entry factor for HCV was CD81 (106). CD81 

belongs to a group of proteins called tetraspanins. In humans there are around 33 identified 

tetraspanin proteins, 36 in Drosophila melanogaster, and 20 in Caenorhabditis elegans.  

Tetraspanins have also been shown to be extensively expressed in plants, fungi, and 

protozoan amoebae (116). Tetraspanins have been shown to be involved in many biological 

processes, including fertilisation of oocytes and a wide variety of cell to cell interactions, 

they are also involved in the immune system  (reviewed in (117)). There is also evidence for 

their involvement in metastasis of cancer cells and infection by malaria (reviewed in (117-

119)). Tetraspanins share a common structure, depicted in figure 1.2, of four 

transmembrane domains, a conserved Cysteine-Cysteine-Glycine motif and at least two 

more Cysteine residues that are critical for forming two disulphide bridges within the 

second or large extracellular loop (120-121).  The first extracellular loop (EC1) is generally 

small and, due to a lack of specific antibodies or structural information, very little is known 

about its biological importance (122).  The large or second extracellular loop (EC2) has been 

reported to be involved in protein-protein interactions. The region responsible for the 

majority of the interactions is thought to be the conserved disulphide bridge region of EC2 

(122). 

It has been demonstrated that members of the tetraspanin superfamily form a network, 

referred to as a tetraspanin web, that interact with and organise other cell surface proteins 

(122, 123).  The tetraspanin proteins can form homodimers, trimers and tetramers and have 

been suggested as the fundamental building blocks of the tetraspanin web. In addition to 

the tetraspanin-tetraspanin associations further binding partners have been demonstrated. 
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The best characterised tetraspanin-partner pairs include CD151–integrin α3β1, CD151–

integrin α6β1 and CD81–CD19.  CD9 and CD81 share two partners, EWI-2 and CD9P-1–EWI-

F–FPRP (119, 122, 126-127).  The association of these partners with the tetraspanin have 

been shown to be important in the regulation of these proteins and their functions. The 

regulation and cell surface expression of CD19 is reliant on its tetraspanin partner CD81. 

CD81 deficient mice have demonstrated a reduced level of CD19 cell surface expression. The 

reduced level of CD19 leads to impaired B cell activation and antibody production in 

response to T cell (128-130). In contrast the integrin does not rely on CD151 for its surface 

localisation but the association is essential for integrin α3β1 to interact with the basal lamina 

(122, 131). Mutations within CD151, which ablate its interaction with integrin α3β1 and 

integrin α6β1, have been associated with a number of conditions such as hereditary 

nephritis, pretibial epidermolysis bullosa, platelet malfunctions, deafness and β-thalassemia 

minor (132-133). Knockout mice models also show disorders in platelet clotting, 

keratinocyte migration and lymphocyte proliferation (134-135). The use of knockout mouse 

models has also shown a variety of tetraspanin functions. CD9 deletion leads to defects in 

sperm–egg fusion, monocyte fusion with brain and peripheral nerve defects also observed 

(136-139). CD37, CD151 and TSSC6 knockout mice showed abnormal lymphocyte activation 

with Peripherin/RDS and ROM deletions leading to retinal degeneration (reviewed in (122, 

126)). 

Tetraspanins have also been essential for the life cycles of a number of viruses. The 

tetraspanin Tspan7 was shown to interact with the VP26 of Herpes Simplex Virus-1. The 

siRNA knockdown of Tspan7 leads to a reduction in viral replication (140). Human 

papillomaviruses localises with CD63 and CD151 on the cell surface following cell 

attachment. The antibody targeting or siRNA knockdown of CD63 has been shown to 
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prevent viral entry (141). The egress of HIV-1 has been shown to proceed through 

tetraspanin enriched microdomains containing CD9, CD63, CD81 and CD82 in dendritic cells, 

T-cells and macrophages (142-146).  

The first evidence demonstrating the involvement of CD81 in HCV entry was gained by 

screening a human cDNA library expressed in mouse fibroblasts with sE2, from which it was 

shown that E2 interacted with CD81 (106). Further studies have demonstrated the 

importance of the E2 interaction with CD81 as monoclonal antibodies against both E2 and 

CD81 inhibit HCVpp and HCVcc entry (147-148). siRNA silencing of CD81 expression in Huh-7 

cells prevented HCVpp and HCVcc entry whilst the introduction of CD81 into HepG2 cells, a 

non permissive CD81 negative hepatocyte cell line, enabled HCVpp and HCVcc entry, 

demonstrating the requirement of CD81 for viral entry (94, 147, 149). Infection of HepG2-

CD81 cells with HCVpp virus expressing glycoproteins from different genotypes 

demonstrated the universal requirement of CD81 by all HCV genotypes (147, 150). 

Additionally CD81 from various species also render HepG2 cells permissive to entry, 

indicating that CD81 is not responsible for HCV being a human specific pathogen (88).  

A soluble form of the second extracellular loop of CD81 (CD81-EC2) has proven to be an 

extremely useful reagent in determining aspects of the viral interactions with CD81. The 

CD81-EC2 has been shown to neutralise both HCVpp and HCVcc infection (149). The binding 

of E2 has also been demonstrated to purified full length CD81 produced in the yeast Pichia 

pastoris (151).  Crystallographic analysis of CD81-EC2 demonstrated that the protein forms 

dimers (120). The disruption of the ability of the CD81-EC2 to form dimers, via specific 

mutations, correlated with a reduction in E2 binding (152). The kinetics of the interaction of 

E2 and E1/E2 to CD81-EC2 were studied using surface plasma resonance, which showed that 
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the E1/E2-CD81-EC2 dissociation rate was much lower than that of E2-CD81-EC2. 

Furthermore, dimeric forms of CD81-EC2 have been show to have a 10-fold more efficient 

binding of E2 compared to monomeric CD81-EC2 (153).  

Although CD81 is a highly specific receptor for the HCV E1/E2, its ubiquitous expression 

throughout the body (122) and the variability of genotype binding efficiency to CD81 (154-

155), led investigators to look for additional entry factors. 

 

1.4.2 Scavenger receptor class B type I 

 The initial evidence for the role of Scavenger receptor class B type 1 (SR-BI) came from the 

observation that HepG2 cells, which lack CD81, bind sE2. This was shown to be mediated via 

a specific interaction with SR-BI (109). SR-BI is a member of the CD36 superfamily and plays 

an essential role in lipoprotein metabolism. Lipoproteins comprise a cholesterol ester core 

surrounded by lipids and apoproteins. These structures transport triglycerides and 

cholesterol around the body and are categorised by their density, as High density (HDL), low 

density (LDL) or very low density lipoproteins (VLDL) (156-157). SR-BI is a membrane protein 

of 509 amino acids in length. The structure is compromised of two transmembrane domains 

with a single large extracellular loop of around 403 amino acids. It has been shown to 

interact with a variety of ligands including VLDL, LDL, HDL and naturally occurring modified 

forms of LDL such as oxidised LDL (oxLDL) and acetylated LDL (158-160). A major role of SR-

BI is the selective uptake of cholesterol from HDL particles. Firstly HDL is bound to SR-BI, via 

the apoprotein ApoAI, before cholesterol is selectively transferred to the membrane of the 

cell or the HDL holoparticle is endocytosed (161). Movement of unesterified cholesterol can 



18 

 

also occur from the cell to the HDL particle, known as cholesterol efflux (157). The role of 

SR-BI in HCV infection has been shown by the inhibition of HCV infection by SR-BI ligands 

oxLDL and serum amyloid-α (162-164). HDL has been shown to enhance HCV entry, as well 

as reducing the efficacy of neutralising antibodies (165-166). This enhancement by HDL can 

be prevented by blocking the movement of cholesterol from bound HDL to the cell using 

drug treatment, indicating that the cholesterol content of the membrane may be important 

for HCV entry (162, 166-167). SR-BI has been shown to interact with the hypervariable 

region of HCV E2, as deletion of this region ablated binding (109). Silencing of SR-BI 

expression and treating cells with antibodies specific to SR-BI reduces HCV entry (89, 108, 

162, 166-169). Overexpression of SR-BI in Huh-7 cells enhances HCV entry, suggesting its 

expression in Huh7 cells is limiting (108, 169). Taken together these facts demonstrate a role 

for SR-BI in HCV infection and show that SR-BI expression levels have a direct impact on viral 

entry.  
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1.4.3 Claudin1 

As many cell lines that express both CD81 and SR-BI were not permissive to HCVpp 

infection, other factors were predicted to be required for HCV entry into cells, (91, 93). 

Subsequently, three members of the Claudin family were shown to mediate HCV entry (110, 

113). Claudins are a family of integral membrane proteins of around 23kDa, which are 

constituents of tight junctions (170). Claudin proteins form strands, via homotypic or 

heterotypic cis-interactions, within the plasma membrane of the cell. These strands can 

then interact with Claudins in an opposing cell closing the intercellular gap formation of the 

tight junction (170-171). Tight Junctions are mainly involved in the maintenance of epithelial 

and endothelial barrier function. The Claudin involved in the formation of the junction 

determines the permeability to solutes and the movement of ions between the apical and 

basal surface of the cell. Hence, Claudin expression in various tissues is highly specific for the 

function of those tissues (170, 172). It is also believed that expression of certain Claudins is 

dependent on the stage of development, for example Claudin6 is detected in embryonic 

epithelia, showing reduced expression over time (173). The organisation of Claudin proteins 

within the tight junctions of epithelial cells has been shown to be dependent upon their 

association with the scaffolding proteins zonula occludens (ZO)-1 and 2 (174). However, this 

association is not required for localisation in nonpolarized cells (175). Claudin association 

with ZO-1 and ZO-2 is dependent on a PDZ binding domain at its C-terminus. The Claudin 

proteins have also been shown to bind to the PDZ domains of various proteins, most notably 

Claudin1 which can associate with not only ZO-1, -2 and -3 but multi PDZ domain protein 

and Pals1-associated tight junction protein PATJ (176-178). Recent work using liver sections 

has shown that Claudin 1 not only localises to the tight junction but also exists at the basal 
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and lateral surfaces (179). The existence of these pools of Claudin may be related to the 

trafficking of newly synthesised proteins to the plasma membrane before translocating into 

the tight junction.  

The discovery of Claudin1 as a mediator of HCV entry came from work performed by Evans 

et al who used a cDNA expression screening approach. They introduced a library of proteins 

found in the permissive hepatocellular carcinoma cell line, Huh7.5, into the non-permissive 

293-T cell line, which expresses both CD81 and SR-BI. The resultant screen demonstrated 

that Claudin1 could render 293-T cells permissive for HCVpp entry (110). Reducing Claudin1 

expression with siRNA ablated HCVcc entry into Huh7.5 cells. Further work performed by 

Zheng et al demonstrated that the permissive nature of the Claudin1 negative cell line 

Bel7402 was due to Claudin9. Silencing of Claudin9 in Bel7402 ablated HCVpp entry. This 

group also demonstrated that Claudin9, as well as the closely related Claudin6, could 

mediate HCVpp entry into 293-T cells, whilst other members of the Claudin family members 

were not functional receptors (113). The relevance of Claudin6 and 9 in entry of HCV into 

the hepatocyte is unlikely to be high, as neither protein is expressed in the liver. We 

demonstrated that the Huh7.5 cell line has a small mRNA signal for Claudin6 but a complete 

lack of Claudin9 mRNA (180) whilst a complete lack of expression of the two proteins was 

shown in the liver (181).  It must be highlighted at this point that the role of both SR-BI and 

CD81 in HCV entry was defined by their direct interaction with sE2, as of yet the role of 

Claudins has been shown in the gain of entry to non-permissive cell lines and not through a 

defined direct interaction with the virus (110, 182-183). 

Several groups have created Claudin mutants in order to determine specific residues that 

are required for receptor activity. Evans et al first demonstrated that the N-terminal third of 
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the EC1 of Claudin1 is essential for its function by creating chimeric proteins with the 

receptor inactive Claudin7. By swapping this region between Claudin1 and Claudin7 the 

authors were able to produce a receptor inactive Claudin1 and a receptor active Claudin7. 

Within the N-terminal third of the EC1 there are five amino acid differences, which the 

authors mutated to define the critical residues for receptor activity. Exchanging residues in 

the Claudin1 and Claudin7 EC1 at positions 32 and 48 showed a loss and gain of receptor 

activity, respectively (figure 1.3) (110). These positions were also demonstrated by Liu et al, 

with the addition of two further positions in the EC2 of Claudin1, F148 and R158 (114). A 

more extensive mutational analysis was performed by Cukierman et al, where they 

demonstrated that mutating a motif conserved among all Claudins, W30-GLW51-C54-C64, 

as well as D38 also created a receptor inactive Claudin1 (183). Mutational analysis of 

Claudin9 demonstrated that residues S38 and V45 are essential for its receptor activity 

(113). Unfortunately no clear mechanism was shown in these publications, although there 

are suggestions by the authors that the mutations may affect cell-cell contacts and the 

ability of the Claudin to form trans interactions which may be required for function. Liu et al 

reported that the localisation of the Claudin1 was defined at cell-cell contacts, with the 

receptor inactive Claudin1 mutants having a more diffuse localisation. Reseeding of 293-T 

cells expressing Claudin1, to break cell-cell contacts also lowers the infection efficiency, 

although how the experiment was performed was not detailed in the publication (114).   

In addition to the requirement of the EC1 of Claudin1 it was also demonstrated that the C-

terminal and the putative palmitoylation sites are not required for its receptor activity. The 

deletion of the C-terminal tail has no affect on HCVpp entry (110, 184), indeed the 

production of an Occludin-Claudin1 chimeric protein where only the EC1 of Claudin1 was 
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present demonstrates that the EC1 alone is required for receptor activity (114).   Together 

these data indicate that the interaction of Claudin1 with the actin cytoskeleton is not 

essential for receptor activity. 

To date a direct interaction of Claudin1, 6 or 9 with the HCV particle has not been 

demonstrated and the involvement of the Claudins in entry may be due to their ability to 

interact with CD81. It has been demonstrated previously that Claudin1 can associate with 

CD81 (125, 183-184). Experiments using a Claudin1 bearing a F10x3 tag, which allowed 

inhibition of infection using an M2 anti-FLAG antibody, allowed the time at which the virus 

escaped neutralisation to be determined. The results demonstrated that an anti-CD81 (JS81) 

and M2 anti-FLAG reached their half-maximal inhibition level at 18 and 73 minutes after 

addition of the virus, respectively. This suggests that the function of Claudin1 occurs at a 

later stage than that of CD81 (110). However, a rat polyclonal anti-Claudin1 antibody was 

shown to have a half-maximal inhibition time of 33±6 minutes, compared with anti-CD81 

JS81 with a time of 30±10 minutes (182).  These two sets of results were not produced on 

the same cell lines or using the same virus, Evans et al used 293-T cells and HCVpp virus 

whilst Krieger et al used Huh7.5 cells and HCVcc virus, however the differences question the 

relative timings of the post-attachment receptor interactions.  
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Figure 1.3: Schematic representation of receptor active and inactive Claudin proteins. The 

diagrams show a representation of the Claudin1 and Claudin7 constructs created by Evans 

et al, with their receptor activities detailed. The upper row shows the wild type Claudin1 

and 7, the lower row shows their reciprocal mutations, with the amino acid changes and 

their positions highlighted. 
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1.4.4 Occludin  

Recently two reports published almost simultaneously implicated Occludin as the fourth 

HCV entry factor (114-115). The rationale and experimental approaches of the 2 groups 

were quite independent and very different, which taken together strengthens the evidence 

for a specific role of Occludin in the HCV entry process.   

Ploss et al sought to address the question of why cell lines that encode CD81, SR-BI and 

Claudin1 were resistant to viral entry. They therefore repeated the process that enabled 

them to show Claudin1 as a HCV entry factor by expressing genes from the highly permissive 

Huh7.5 cell line in a non-permissive cell line using a cyclic lentivirus based repackaging 

screen (110). The cell line in question was a mouse embryonic fibroblast cell line, NIH3T3 

overexpressing CD81, SR-BI and Claudin1. From this screen Occludin was identified. The 

authors then proceeded to show that expressing Occludin in a renal carcinoma cell line, 786-

O, or in TZM cells, a Hela cell derivative that has low levels of endogenous Occludin, 

permitted HCVpp entry into cells which are naturally non-permissive. In addition to 

overexpressing Occludin to render cells permissive, the authors demonstrated that siRNA 

silencing Occludin expression in Huh7.5 cells, led to a significant reduction in entry of both 

HCVcc and HCVpp. Finally the authors demonstrated that HCVpp entry into NIH3T3 and CHO 

cells requires human CD81 and Occludin, whereas SR-BI and Claudin 1 could be of mouse 

origin (115).  

Lui et al wanted to determine whether HCV entry mimicked Coxsackie B Virus entry, which 

enters cells via tight junction interactions. The authors therefore performed both siRNA and 

shRNA knockdown of tight junction proteins Claudin1, Occludin, ZO-1, JAM-A and the 

Coxsackie and Adenovirus Receptor (CAR) in Huh7.5.1 cells. Their results showed that 
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Claudin1, Occludin and ZO-1 knockdown resulted in a reduced viral entry. Claudin1 and 

Occludin knockdown did not alter the expression of the other HCV receptors, however the 

ZO-1 knockdown resulted in a reduction in Claudin1 expression. The authors also produced 

chimeric proteins of Claudin1 and Occludin and determined their receptor activity in 293T 

cells, only those proteins containing the EC1 of Claudin1 showed receptor activity. This 

result is somewhat expected as Claudin1 lacking a C-terminus is still receptor active (184) 

and 293-T cells express endogenous Occludin (115).    

Occludin was first identified by Furuse et al as an integral membrane protein located in tight 

junctions. Structurally it is very similar to Claudins, with four transmembrane domains and 

two cytoplasmic regions at the N- and C- termini (185). The role of Occludin seems to be 

related to the maintenance of tight junctions. Knockout mice studies demonstrated that 

tight junctions could still form in the absence of Occludin with no gross phenotype (186), 

indicating that Occludin is not absolutely required for tight junction formation. However the 

treatment of polarised Caco-2 cells with peptides of the first extracellular loop of Occludin 

caused an increase in tight junction permeability (187-188). The function of Occludin is 

related to its ability to interact with the cytoskeleton.  Occludin is anchored to the 

cytoskeleton by interacting with the guanylate kinase region of ZO-1 via the Domain E 

region of its C-terminus, termed the coiled-coil region (189-191).  As part of the regulation 

of tight junctions Occludin, as well as Claudin, are readily internalised (192). Occludin has 

been shown to co-internalise with Claudin1 via Clathrin-mediated processes (193) as well as 

being induced to internalise by stress in a Caveolae mediated process (194).   
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1.5 Tight junction proteins and viral entry  

Tight junctions are responsible for the regulation of movement of solutes, ions and water 

across the endothelia or epithelia. They also form a barrier preventing the access of 

pathogens to the underlying tissue (172, 195-196).  Some 30 proteins have been identified 

which serve distinct functions in maintaining the barrier function of the tight junction (192). 

Some viruses have evolved to exploit tight junction proteins in order to enter and infect the 

target cell. Examples include Adenovirus, Coxsackievirus-B (CVB), Feline Calicivirus (FCV), 

Swine vesicular disease virus (SVD), Reovirus as well as HCV (195).  Another virus that has 

been shown to interact with tight junction proteins is Rotavirus, a major cause of 

gastroenteritis in mammals. Unlike the other viruses, that use tight junction proteins as co-

receptors, Rotavirus disrupts tight junctions, via the interaction of VP8 protein with JAM-A, 

to gain access to the “deeper” membrane-associated integrins that act as its entry factors 

(195, 197). 

The entry process of FCV and Reovirus also utilise JAM-A. The entry process of FCV is poorly 

understood but it appears to internalise upon receptor binding via clathrin mediated 

endocytosis (198-199). JAM-A has been implicated as a receptor along with α2,6-Linked 

sialic acid, the latter has been suggested to determine the typical oral and upper respiratory 

tract pattern of infection. Due to its broad expression, JAM-A may be responsible for 

systemic febrile diseases relating to specific highly viral strains (198-200). The stages in 

Reovirus entry are better defined than those of FCV. First the virus interacts with the cell 

surface via α2,3-linked sialic acid (α2,6-linked for serotype 3 reoviruses). The virus then 

forms a high affinity interaction with JAM-A. This virus-JAM-A complex then interacts with 
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β1 integrin, which mediates the internalisation of the virus via clathrin mediated 

endocytosis (201). 

Two further examples of viruses that utilise tight junction components are Adenovirus and 

CVB. Entry of both viruses was shown to be via a shared protein referred to as the Coxsackie 

and Adeno Receptor (CAR) (10, 202). Binding of Adenovirus to the cell occurs via a high 

affinity interaction of the fibre protein of the virus with the D1 domain of the CAR receptor 

(203-204). The virus then interacts via an argine-glycine-aspartate motif in its Penton base 

with αvβ3 and αvβ5integrins, which leads to the internalisation of the virus (205). This 

internalisation has been shown to be via clathrin-mediated endocytosis, although 

subpopulations of virions have been reported to associate with a Lipid Raft/Caveolae 

mediated endocytosis pathway (206-207). 

Since CVB and HCV both utilise Occludin in their entry process, CVB has become a model for 

many researchers of how HCV enters the cell. The process for the entry of CVB has been 

shown by Coyne and Bergleson to be facilitated by Decay-Accelerating Factor (DAF), CAR 

and Occludin (figure 1.4) (208-209). CVB engagement with DAF activates the non-receptor 

tyrosine kinase, AbI, which in turn induces Rac GTPase and causes the relocalisation of the 

virus to the tight junction. Once relocated to the tight junction the virus can interact with TJ 

resident CAR protein, which causes a conformational change in the virus. The activation of 

Fyn kinase, a tyrosine specific phospho-transferase, induced by the engagement of DAF 

allows the internalisation of the virus in a caveola-dependent manner (208).  The evidence 

for the involvement of Occludin was shown by the effects of siRNA treatment on cells, which 

caused a reduction in viral entry by trapping virus at the tight junction. 
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Figure1.4: Coxsackievirus (CVB) entry into polarized cells. CVB binds to Decay-Accelerating 

Factor (DAF). The binding activates the non-receptor tyrosine kinase, AbI, which in turn 

induces Rac GTPase and causes the relocalisation of the virus to the tight junction. Once 

relocated to the tight junction the virus can interact with TJ resident CAR protein, which 

leads to a conformational change in the virus. The virus then enters the cell by a caveola-

dependent manner (208). 
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The role of Occludin in CVB entry has thus far been shown to be associated with the entry of 

the virus after it has relocated to the tight junction. Additionally the entry of Occludin and 

viral particles were caveolin dependent and required the activation of the GTPases Rab34, 

Ras, and Rab5, which are associated with macropinocytosis (209). An intriguing 

development in CBV entry has been the demonstration that in non-polarised Hela cells both 

DAF-dependent and DAF-independent viruses enter via a Dynamin- and lipid raft-dependent 

process. In these cells the internalisation of the virus was also shown to be clathrin, 

caveolae and endosomal acidification independent (210). This demonstrates two different 

entry methods depending on whether the virus is interacting with a polarised or non-

polarised cell target.  

Parallels between aspects of CVB and HCV entry are evident in the use of two tight junction 

proteins as well as the interaction with an initial factor on the cell surface. HCV entry has 

also been shown to be reduced by inhibiting PKA (211). PKA has been shown to activate Ras 

as part of cAMP-PKA pathway, which has been shown to be involved in proliferation, 

differentiation, metabolism, immune response and, more specifically, viral entry 

cytoskeletal reorganisation (212). Whereas DAF has been shown to re-localise the virion to 

the cell junction, the same has not been shown for CD81. Although several similarities exist 

between aspects of the entry process, more work is required to demonstrate if HCV can 

enter in a CVB-like manner and not by a distinct mechanism. 
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1.6 Effects of polarisation on viral entry  

The interface between the lumen and the various organs is lined by a polarised cell layer. 

Within the respiratory and the gastrointestinal tract this cell layer consists of epithelial cells 

that exhibit a simple polarity.  These cells compose of an apical and basal surface that faces 

the lumen and lamina surfaces respectively.  The cells in the layer are joined laterally 

together by tight junctions, Adhesion Junction, gap junctions and desmosome (figure 1.5) 

(170, 195, 213-215). Using the human colon carcinoma cell line, Caco-2 cells, it was 

demonstrated that HCV could entry non-polarised and polarised with equal efficiency (180). 

However the use of this simple polarised cell line does not reconstitute the type of polarity 

found within the liver. Hepatocytes, the target of HCV, have a more complex polarity, with 

at least two basal surfaces and their apical surface forming a channel or bile canaliculi 

(figure 1.6) (216). The more complex polarity of hepatocyes may lead to a restricted access 

to proteins associated with the tight junction. In order to better define the effects of 

polarity on HCV entry a hepatocyte in vitro model is required. The cell line that 

demonstrates this polarity is the HepG2 cell line, which with the introduction of CD81 

becomes permissive for HCV entry (149, 216). It has been demonstrated HepG2 become 

more resistant to viral entry with polarisation. Expression of a fluorophore labelled Claudin1 

protein within HepG2 cells demonstrated that, as cells develop into a hepatocyte type 

polarity, discrete pools of Claudin1 appear at both the tight junction and basal/lateral 

surface from an initially  more diffuse localisation around the plasma membrane (figure 1.7) 

(179).  Expression of fluorescent labelled Occludin also demonstrates a diffuse expression of 

the protein around the plasma membrane, with enriched domains at the tight junction. 

Both of these staining patterns can be seen in figure 1.7. In vitro staining of polarized 
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HepG2, WIFB9 cells and human liver tissue with a commercial anti-Occludin antibody only 

showed the protein at the tight junctions (179). The different staining patterns could be due 

to the over expression of the fluorescent protein or it could also indicate the levels of 

protein at the basal surface may be below the detection threshold for the available occludin 

antibody. Flourescence resonance energy transfer (FRET) analysis of non-polarised HepG2 

cells showed a similar level of interaction of CD81 and Claudin1 as previously reported in 

Huh7.5 and 293-T cells (184). Although the levels of FRET between CD81 and Claudin1 were 

comparable between polarised and non-polarised HepG2 cells, there was no detectable 

FRET occurring in the tight junction regions (179, 217). This along with the ability of non-

polarised cells such as Huh7.5 and 293-T cells to support infection suggests that non-tight 

junction associated forms of Claudin1 are involved in the entry process and polarisation 

affects the access to the co-receptor. 
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Figure 1.5: Schematic representation of lateral cell-cell junction regions. A) Depicts the 

location of the different complexes that close the gap between two adjacent cells in an 

epithelial layer. The most apical complex is the tight junction followed by the adhesion 

junction, desmosome and the most basal complex the Gap junction. B) Shows an enlarged 

view of the tight junction.  The main tight junctions proteins are members of the Claudin 

protein family, Junction adhesion molecule-A (JAM-A) and Occludin. Claudin, JAM-A and 

Occludin interacts with the Actin cytoskeleton of the cell via associates with Zona Occludin-1 

(ZO-1). Claudin and JAM-A also associate with multi-PDZ domain protein 1 (MUPP1), which 

can also interact with actin (174, 176, 213, 215, 218). The image shown is modified from 

(213). 
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Figure 1.6: Schematic representation of polarised epithelial and hepatic cells.  Two types 

of polarisation are shown A) shows simple epithelial polarity, epithelial cells form a 

polarised continuous apical surface providing a barrier between the extracellular 

environment and the deeper tissues of the body. The tight junctions that form between 

neighbouring cells are in close proximity to the apical surface. B) Hepatic polarity, 

Hepatocytes form an apical surface between cells which generates a tubular structure, the 

bile caniliculus. The tight junctions seal this tube and isolate its contents. 
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Figure 1.7: Confocal images of polarised HepG2 cells expressing fluorophore-labelled 

Claudin1. HepG2 cells engineered to express AcGFP labelled Claudin1 or Occludin (A and B 

respectively) and allowed to polarise. The cells were fixed and stained for ZO-1, using and 

anti-Zo-1 primary antibody and a Alexa Fluor 594 anti IgG (H+L), to indicate the position of 

the tight junction. A) shows that Claudin1 co-localizes with ZO-1 at the tight junction (yellow 

region) and is also present at the basal and lateral surfaces of the plasma membrane. B) 

shows Occludin has a  similar pattern as Claudin1 with expression at both the tight junction,  

basal and lateral surfaces. Images provided by Helen Harris and Chris Mee.  
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1.7 Project aims 

 

The work presented here shows that the interaction of Claudin1 with CD81 seems to be 

required for viral entry, although it still remains to be determined whether the virus 

requires binding to a CD81-Claudin1 complex in order to gain entry. The aims of this project 

are to confirm whether the interaction with CD81 defines the receptor activity of Claudins, 

whether this is perturbed by antiviral treatments and to identify the regions of interaction 

between the two proteins. The aims of this project were achieved using a combination of 

biochemical and imaging analysis of the Claudin-CD81 interaction. 
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Chapter 2: 

Materials and Methods 
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2.1 Cell lines 

The cell lines utilised were 293-T, HepG2 and Huh7.5 (provided by Charles Rice Rockefeller 

University, New York, US). Cell lines were maintained in Dulbecco’s modified Eagles Medium 

(DMEM) supplemented with 10% foetal bovine serum, 1% L-Glutamine and 1% non-

essential amino acids.  

 

2.2 Claudin and fluorophore plasmids 

The various Claudin cDNA were obtained on a pBABEpuro backbone from Hongkui Deng 

(Peking University, Beijing, China). Plasmid stocks were expanded by incubating 25ng of 

plasmid DNA with 10μl of silver efficiency competent cells (Bioline, UK) for 45 minutes on 

ice. The mixture was heat shocked for 45 seconds at 42oC before returning to ice for an 

additional 2 minutes. The contents were spread onto LB Broth 2% Agarose plates (10mls 

deionised H2O (dH2O), 0.2g LB Broth base powder (Lennox L Broth Base, Invitrogen, UK), 

0.2g Agarose) containing Ampicillin (100μg/ml) and incubated at 37oC overnight. Colonies 

were selected from the plate and cultured in 5ml LB broth shaking at 350rpm at 37oC 

overnight. Plasmid DNA was recovered from the bacterial cultures using a QIAprep Spin 

Miniprep kit (Qiagen, UK) performed in accordance with the manufacturer’s instructions. 
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2.3 Generation of fluorophore tagged Claudin 

The region coding the fluorophore from the pAcGFP-c1 or DsRED-monomer-c1 plasmids 

(Clontech) was excised by incubating the plasmid for 1 hour in the presence of restriction 

enzymes BamHI and AgeI (2µg Plasmid DNA, 2μl NEB 2 10x Restriction Enzyme Buffer, 0.5 μl 

(5 units) BamHI, 0.5 μl (5u) AgeI, 14μl dH2O) . The pBABEpuro-Claudin6 was linearised, with 

the correct overhanging ends to accept the fluorophore insert, using BamHI and NgoMIV 

restriction enzymes for 1 hour at 37oC (2μl Plasmid DNA, 2μl Promega B 10x Restriction 

Enzyme Buffer, 0.5 μl (5u) BamHI, 0.5 μl (5u) NgoMIV, 14μl dH2O). Plasmid maps showing 

the positions of the restriction enzyme sites relative to the coding regions can be seen in 

figure 2.1. The products were loaded onto a 2% Agarose gel in TAE buffer (4.84g/L 2-Amino-

2(hydroxymethyl)propane-1,3-diol, 1.09g/L Glacial Acetic Acid, 0.29g/L 

ethlenediaminetetraactic acid in dH2O, pH8.3, Invitrogen), containing 0.05% Ethidium 

Bromide(EtBr), and electrophoresis performed at 100 volts for 30 minutes. The gel was 

photographed using a Bio-Rad GelQuant imaging system and bands measured against a 

1Kbp+ DNA ladder (Invitrogen, UK) (figure2.2). Bands of the correct size, 700bp for the 

liberated fluorophore and 5.9kbp for the linerised pBABEpuro Claudin6, were excised with a 

scalpel and the DNA recovered using a MinElute Gel Extraction Kit (Qiagen, UK) performed 

in accordance with the manufacturer’s instructions. The Fluorophore insert was ligated into 

the linerised pBABE-Claudin6 vector by incubating 1.5μl of the vector (100ng), 1μl of the 

insert (50ng), 1μl (0.5 Units) T4 DNA Ligase, 5μl 2x T4 Ligase reaction buffer (Promega, UK) 

and 2.5μl dH2O for 20 minutes at room temperature. 5μl of the mixture was removed and 

added directly to Gold efficiency competent cells (Bioline, UK) and incubated on ice for 45 

minutes. 
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Figure 2.1: Plasmid maps for pBABEpuro-Claudin6, pAcGFP-C1 and pDsRED-M-C1. The 

plasmids maps for A) pBABEpuro-Claudin6, B) pAcGFP-C1 and C) pDsRED-M-C1 with the 

protein coding regions  for Claudin6 (Yellow arrow), AcGFP (green arrow) and DsRED (red 

arrow) labelled with the positions of the coding region in the plasmid indicated in the 

brackets. The positions of the restriction enzymes used to digest the various plasmids are 

also listed with the position noted in the brackets.  
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Figure 2.2: Products of restriction digests on pAcGFP-C1, DsRED-Monomer-C1 and 

Claudin6. Lane 4 shows the pBABEpuro-Claudin6 BamHI and NgoMIV double digest, with 

lanes 1, 2 and 3 showing the undigested, BamHI and NgoMIV digest respectively. Lanes 8 

and 11 shows the AgeI and BamHI double digest of pAcGFP-C1 ad DsRED-Monomer-C1, with 

the insert released present at 790bp for AcGFP and 748bp for DsRED. Lanes 5 and 9 are 

undigested plasmids, 6 and 10 are AgeI digested plasmids and lane 7 is a BamHI digested 

Plasmid.  
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The cells were heated shocked at 42oC for 45 seconds and returned to ice for 2 minutes. The 

cells were plated on LB Broth Agarose plates overnight at 37oC. Colonies were then 

subjected to PCR analysis to identify plasmids containing the correct insert.  

The PCR reaction mixture contained 11μl dH2O, 1μl MgCl (25mM, Promega, UK), 3μl 5x 

GoTaq Buffer (Promega, UK), 0.3μl dNTPs (100nM, Invitrogen, UK), 0.03μl Forward Primer 

(DsRED+SalI 5’-CTCAGATGTCGACCTCAAGA-3’, 10 μM, Invitrogen, UK), 0.03μl Reverse Primer 

(GGTA6 Claudin6 5’-CGCGCGGCCGTCGACTCAGACGTAATTCTTGGTAG-3’, 10 μM, Invitrogen, 

UK) and 0.15μl Taq Polymerase (5u/μl, Promega, UK). The samples were subjected to the 

following thermal conditions: denaturing 95oC at 5 minutes followed by 30 cycles of 

denaturing at 94oC for 15 seconds, annealing at 500C for 15 seconds and polymerisation at 

72oC for 1 minute, followed by a 4oC hold. The PCR product was loaded onto a 2% Agarose 

gel in TAE buffer, containing 0.05% EtBr, and electrophoresis performed at 100 volts for 15 

minutes and examined under Long-wave Ultra violet light and compared to 1Kbp+ DNA 

ladder (invitrogen, UK). Clones that were positive by PCR were grown in liquid culture (5ml) 

(see Plasmids section for details) and the purified plasmid further tested using a SalI 

restriction digest, as plasmids containing the fluorophores will have gained a second SalI 

restriction site.  

Subsequent Claudin clones were produced by performing a BamHI and SpeI double digest 

on the pBABEpuro AcGFP-Claudin6 or pBABEpuro-DsRED-Claudin6 plasmid to release the 

promoter and fluorophore encoding region and replacing with the corresponding region 

from other pBABEpuro-Claudin plasmids. This strategy was chosen as it allowed the largest 

number of plasmids to be modified, however 3 Claudin constructs (Claudin2, Claudin3 and 
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Claudin23) have internal NotI sites and could not be cloned in this way. The AcGFP/DsRED-

Claudin1 was also transferred into the pTRIP vector using an NdeI/XhoI digest of 

pBABEpuro-AcGFP/DsRED-Claudin1 and the pTRIP-CD81 short provided by Michele Farquhar 

(University of Birmingham). 

  

2.4 Fluorophore tagging of Claudin1 and Claudin 7 mutants, Tetraspanin and Tetraspanin 

like proteins. 

Plasmid constructs encoding Tetraspanins CD81, CD82 and CD9 were selected to 

fluorophore label, the proteins were provided by Michel Farquhar (University of 

Birmingham), Heidi Drummer (Barnet institute, Australia) and Mike Tomlinson (University of 

Birmingham), respectively. A tetraspanin like protein, which is not localised within 

Tetraspanin webs, called T-cell differentiation protein (MAL), also referred to as T-

lymphocyte maturation-associated protein was obtained from Dr. Mike Tomlinson 

(University of Birmingham).  

The open reading frames were amplified using Phusion™ High-Fidelity DNA Polymerase 

(New England Biolabs) using the primers listed in table 2.1. The reaction mixture consisted 

of 32.5μl dH2O, 10μl 5x HF Reaction Buffer, 1μl dNTPs (100nM, Fermentas, UK), 2.5μl 

Forward and Reverse primers (10 μM, Invitrogen, UK), 0.5μl Phusion polymerase. For each 

reaction 10ng of plasmid DNA was added to the reaction mixture and the following thermal 

cycle performed; denaturing at 98oC for 2 minutes followed by 25 cycles of denaturing at 

98oC for 15 seconds, annealing and polymerisation at 72oC for 90 seconds. The PCR product 

was loaded onto a 2% Agarose gel in TAE buffer, containing 0.05% EtBr, and electrophoresis 
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performed at 100 volts for 15 minutes and examined under Long-wave Ultra violet light and 

compared to a 1Kbp+ DNA ladder (invitrogen, UK). Bands of the correct size were excised 

from the gel and purified using a Gel Extraction Kit (Qiagen, UK). The recovered PCR 

products were ligated into pJET1.2/blunt Cloning Vector (Fermentas, UK) using the following 

reaction mixture: 10μl 2x Reaction Buffer, 6 μl dH2O, 1 μl Ligase, 1μl pJET1.2/blunt Cloning 

Vector and 2 μl recovered PCR product. 5μl of the mixture was removed and added directly 

to Gold efficiency competent cells (Bioline, UK) and incubated on ice for 45 minutes. The 

cells were heated shocked at 42oC for 45 seconds and returned to ice for 2mins. 

Colonies produced from the transformation were PCR screened using primers specific to the 

regions either side of the cloning site of the pJET1.2/blunt cloning vector (Forward Primer 

5’-CGACTCACTATAGGGAGAGCGGC-3’, Reverse Primer 5’ -AAGAACATCGATTTTCCATGGCAG-

3’). The PCR reaction mixture contained 11μl dH2O, 1μl MgCl, (25mM, Promega, UK), 3μl 5x 

GoTaq Buffer (Promega, UK), 0.3μl dNTPs (100nM, Invitrogen, UK), 0.3μl Forward Primer (10 

μM, Invitrogen, UK), 0.3μl Reverse Primer (10 μM, Invitrogen) and 0.15μl Taq Polymerase 

(5u/μl, Promega, UK). The samples were subjected to the following thermal conditions: 

denaturing at 95oC for 5 minutes followed by 30 cycles of denaturing at 94oC for 15 seconds, 

annealing at 50oC for 15 seconds and polymerisation at 72oC for 1 minute, followed by a 4oC 

hold. The PCR product was loaded onto a 2% Agarose gel in TAE buffer, containing 0.05% 

EtBr, and electrophoresis performed at 100 volts for 15 minutes and examined under Long-

wave Ultra violet light and compared to a 1Kbp+ DNA ladder (invitrogen, UK). Colonies 

positive for an inserted fragment were cultured overnight and the plasmids purified as 

previously described.  Claudin1 mutants, CD81, CD9 and MAL were digested with 

BamHI/XhoI and ligated into pBABEpuro- Claudin1 digested with BamHI/SalI. The 
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fluorophore coding region from a pBABEpuro-AcGFP-DsRED-Claudin1 was inserted using the 

BamHI and SpeI digest as described previously.   CD82 was digested with XhoI and ligated 

into pBABE-AcGFP/DsRED-Claudin1 digested with SalI. The Claudin7 mutants were digested 

with a BamHI/HindIII and ligated into pBABE-AcGFP/DsRED-Claudin1 digested with 

BamHI/HindIII. The fragments were ligated as previously described and the colonies 

produced by transforming Gold Efficiency competent cells were screened using the GoTaq 

screening protocol using the forward primer DsRED+SalI (5’-CTCAGATGTCGACCTCAAGA-3’) 

and the Reverse primer for the specific protein. Positive colonies were cultured overnight 

and purified plasmids sequenced to ensure the correct coding region is present in the clone.  
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Table 2.1: Tetraspanin and tetraspanin like protein PCR primers  

 

 

 

 

 

 

 

 

 

 

 

Primers noted in a 5’ to 3’ direction 

 

 

Forward Primer: 

CD81 TCTAGAGGATCCGCCACCATGGGAGTGGAGGGCTGCAC 

CD82 GAGCGCTCGAGGGAATTCTGCAGATC 

CD9 GATCAGGGATCCACCATGCC 

MAL GAGATCTGCCGTCATGGCCCCCGCAGC 

Claudin1 GGATCCGCCACCATGGCCAACGCGGGGCTG 

Claudin7 GGATCCGCCACCATGGCCAATTCGGGCCTGCA 

  

Reverse Primer:  

CD81 TAGAAGGCACAGTCGAGG 

CD82 TAGAAGGCACAGTCGAGG 

CD9 TTCTAGGTGTCGACATTCCTAGACCATC 

MAL GCTCTCGAGGGCTTATGAAGACTTCCATC 

Claudin1 CTCGAGTCACACGTAGTCTTTCCCGCTGG 

Claudin7 AAGCTTTCACACATACTCCTTGGAAGAGTTGG 
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2.5 Stable cell lines 

A 6 well plate, pre-treated with poly-l-lysine, was seeded with 293-T Phoenix cells at a 

density of 7x105 cells per well in 3% serum in DMEM (without antibiotics). After 24hrs the 

cells were transfected, using lipofectamine2000 protocol, with 4ug of plasmid DNA. The 

supernatant was harvested at 48 and 72hrs post transfection. The supernatant from the 

phoenix cells was clarified by centrifuging at 1500rpm for 3mins. The clarified supernatant 

was passed through a 0.22μm filter. The supernantent was diluted 1:2 in 3% DMEM 

supplemented with 8μg/ml Polybrene and 10mM HEPES and incubated at room 

temperature for 30mins. The mixture was applied to 293-T cells and the cells centrifuged at 

2500rpm for 1hr at 370C. The cells were then incubated for 48hrs. The cells were treated 

with 10μg/ml Puromycin (Sigma, UK) to select for the transduced cells.  

 

2.6 HCV pseudoparticle production genesis and infection 

To generate the pseudoparticles, 293-T cells were seeded in a 6 well plate, pre-treated with 

Poly-L-Lysine (Sigma) for 5 minutes, at a cell density of 7x105 cells per well in 3% antibiotic 

free DMEM. When the cells are ~60% confluent,  the cells were co-transfected with a 

plasmid encoding the Gag-pol gene of HIV, the luciferase reporter gene, (NL4.3R-E-Luc) and 

a plasmid encoding either HCV strain H77 E1E2 envelope glycoprotein, an empty vector 

control (Env-pp) or Murine Leukemia Virus (MLV) envelope protein. The transfection was 

performed by incubating 6μl Fugene (Roche) in 100μl Optimem for five minutes. This was 

added to 10μl solution containing 800ng of NL4.3R-E-Luc and 800ng envelope protein 
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plasmid and incubated at room temperature for 20 minutes. The DNA/Fugene mix was 

applied to cells and incubated for 6 hours, after which the media was replace with fresh 3% 

FBS, antibiotic free, DMEM. 48 hours post transfection the media was removed and clarified 

at 1500 rpm for 5 minutes in a centrifuge and passed through a .45μm filter. The media was 

stored at 4oC prior to use in the pseudoparticle entry assay for up to 1 week. 

Transfected 293-T or Huh-7.5 cells were seeded into a 96 well plate at a concentration of 

1.7x104 cells per well, 100μl of media per well. When the cells were ~60% confluent either 

100μl of H77pp, Env-pp, media or MLVpp, 2μl of MLV stock diluted in 98μl of media, was 

applied to three wells (i.e. triplicate infections). Unless otherwise stated the virus was not 

removed from the cells.  After the 72 hour incubation the media was replaced with 40μl Cell 

Lysis buffer (12.5 ml 1M TrisPO4  solution pH7.8, 5ml CDTA, 50ml Glycerol, 5ml Triton-X-100, 

1ml 1M DTT, adjusted to 500ml with dH2O) and incubated at 4oC for 1 hour. The luciferase 

activity of the lysate was assessed using the Luciferase Assay System Kit (E1501, Promega, 

Madison, USA) by adding 40μl of lysate to 35μl of Luciferase Assay Substrate (reconstituted 

in the Lucifase Assay Buffer) and measuring light output with a luminometer (Berthold 960). 

The neutralisation assay was performed in the same way, with the exception of pre-treating 

the cells prior to the addition of the pseudoparticles for 1hr with the concentration of the 

specified antibody. Data is presented as specific infectivity. 
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2.7 HCVpp entry after cholesterol depletion  

293-T cells were seeded as previously described (2.6 HCV Pseudo Particle Entry and 

Neutralisation Assay) with the infection carried out as before. Cells were treated with a 

cyclic oligosaccharide that depletes cholesterol from the plasma membrane (methyl-β-

cyclodextrin, MβCD) (219). Cells were treated for 1 hour prior to addition of H77pp, Env-pp 

or MLVpp. For the restoration of cholesterol the cells were treated for 1hr with 10mM 

MβCD, which depletes the cholesterol and cholesterol replenished by incubating with 

10mM MβCD–1mM cholesterol complexes. The effects of the treatment(s) on the level of 

cholesterol was determined by measuring the total cholesterol after the various treatments 

using an Amplex Red assay kit according to the manufacturer’s instructions (Invitrogen),  

 

2.8 Fluorescence intensity profiling and FRET analysis 

Transfected 293-T cells were grown on 22mm diameter borosilicate glass coverslips and 

imaged using a Zeiss MetaHead confocal system. The samples were photobleached at 

561nm to prevent the energy transfer from the AcGFP fluorophore to DsRED fluorophore 

with images being taken before and after the photobleach. Using the profile function from 

the LSM software, the fluorescence intensities of the two fluorophores, before 

photobleaching, from several hundred pixels around the plasma membrane were 

determined and used to generate a scatter plot.  The stoichiometry of the labelled proteins 

was inferred by fitting a linear regression to the data, with the correlation coefficient, R2, 

describing how close the data fits to the linear regression. The gradient of this linear 
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regression determines the stoichiometry of the labelled proteins as shown previously and is 

termed a FIR plot (220-221).  

The occurrence of FRET within the pixels from the FIR plot was determined using the gradual 

acceptor photobleaching methodology (222).  FRET was determined by measuring the 

fluorescence intensity of the donor fluorophore over a gradual photobleaching of the 

acceptor fluorophore. The fluorescence intensity of the AcGFP fluorophore (the donor 

fluorophore) before photobleaching was subtracted from the fluoroecence intensity after 

photobleaching on a pixel by pixel basis, with FRET being indicated by a positive value. The 

proportion of plasma membrane where FRET occurs gives a measure of interaction, 

recorded as the percentage FRET (%FRET) between the two fluorophores. Further details of 

experimental procedures, such as fluorophore cross-talk corrections are detailed in (184). 

 

2.9 Surface plasmon resonance. 

The interaction of recombinant forms of Claudin1 with CD81 and the Anti-CD81 monoclonal 

antibodies with the large extracellular loops of CD81 were assessed using the Biacore 3000 

system (Biacore AB). MBP-CD81 EC2 (Drummer 2002) was immobilised to a CM5 chip using 

the standard amine coupling method (Biacore, GE Healthcare). To limit the possibility of 

steric hindrance caused by oversaturation of the biacore chip the protein coupling was 

limited to 1000 response units. To control for nonspecific protein interactions all 

recombinant proteins were flowed over an “empty” (activated 1M ethanolamine blocked) 

channel and any response unit(s) observed subtracted from test channels. All interactions 

were performed in HBS-EP buffer (Biacore, GE Healthcare) at 25°C at a flow rate of 
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5μl/minute. In addition to the MBP-CD81 purified proteins we also obtained the EC1 of 

Claudin1 and Claudin7 fused to MBP (MBP-Claudin1 and 7) from the Drummer lab. 

The interaction of MBP-CD81, MBP-Claudin1 and MBP-Claudin7 was performed by injecting 

the proteins at a concentration of 750µg/ml for 10mins and measuring the dissociation time 

over 20mins. The affinity of MBP-Claudin1 interaction with the immobilised MBP-CD81 was 

determined by flowing the MBP-Claudin1 over the chip surface for 10mins and measuring 

the dissociation time for 20mins at three concentrations (125, 250 and 500µg/ml). The 

affinity was calculated using the 1:1 drifting baseline model provided by the BIAevaluation 

software (Biacore) (102, 153, 204). 

To determine the affinity of the anti-CD81 monoclonals the antibodies were injected for 1hr 

and dissociation recorded over 50 minutes. Each antibody was titrated in doubling dilutions 

starting at 0.5mM with the lowest concentration of 0.0036mM being injected first. The 

affinity antibody was determined by plotting the maximal level of binding for each 

concentration on an X,Y scatter plot and  fitting a non-linear regression. The linear 

regression produced values for the theoretical binding capacity (Bmax, Response Units (RU)) 

and affinity (KD, µM). 

To determine if MBP-CD81 and MBP-Claudin1 could still interact with the immobilised MBP-

CD81 in the presence of anti-CD81 antibodies a competition assay was performed. The 

antibody was injected at a concentration of 500µM followed immediately by MBP, MBP-

CD81 or MBP-Claudin1 at a concentration of 750µg/ml. The level of specific binding of the 

MBP-CD81 or MBP-Clauidn1 was determined by subtracting the change in response unit for 

the MBP protein form the change in response unit for the fusion proteins, if the value is 

positive then specific binding is occurring. A commercial anti-MBP was used for a positive 
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control of protein binding, this antibody should bind to the MBP moiety immobilized on the 

chip surface without interfering with the binding region of the CD81. In order to determine a 

value of affinity (KD) the response unit reached after one hour of injection, binding late, for 

each concentration was plotted and a non-linear regression fitted to the plots from which 

the KD is determined.   

 

2.10 Mammalian two hybrid system 

This technique allows for the accurate measurement of protein-protein interactions and is 

derived from familiar yeast 2-hybrid designs, optimised for use in mammalian systems. The 

system uses three plasmids, the first of which is the pG5luc plasmid, a reporter plasmid 

containing a GAL4 binding domain can be induced to express Firefly Luciferase via the 

transcriptional activation domain of herpes virus VP16 protein. Secondly the pBind vector 

which encodes the GAL4 fused protein which will associate to the GAL4 binding domain on 

the pG5luc. The third plasmid is the pACT vector, which expresses a second protein fused to 

a transcriptional activation domain of VP16. An interaction between the two fusion proteins 

fused to the GAL4 and VP16 domains will induce of the expression of Firefly Luciferase. The 

measurement of luciferase therefore gives a measure of protein interactions. 

To measure the interaction of the various wild type and mutant CD81, Claudin1 and 

Claudin7 proteins the coding region of these proteins were cloned into the pBind and pACT 

plasmids. The parental proteins were cloned into both pBind and pACT vectors with the 

mutant proteins being cloned only into the pACT vector. The ORFs were amplified using 

Phusion™ High-Fidelity DNA Polymerase (New England Biolabs) using primers listed in table 
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2.2 using the same procedure as previously described (2.4 Fluorophore Tagging of Claudin1 

and Claudin 7 mutants, Tetraspanin and Tetraspanin like proteins). The coding regions for 

the various proteins were digested with AsiSI/PmfI and ligated into pBind and pACT digested 

with the same enzymes. Colonies were screened and sequenced using the primers listed in 

table 2.2 using the protocol described previously (section 2.4).  

The assay was performed to the manufacturers instructions with some small alterations. 

Briefly, 293-T cells were seeded in a 24 well plate pre-coated with poly-l-lysine at a density 

of 1x105 cells/ml. 24hrs after seeding the cells were transfected with 1µg of the pG5luc, 

pBind and pACT plasmids using the lipofectamine2000 method. 48hrs post transfection the 

cells were lysed and tested for the presence of Firefly and Renilla luciferase activity using 

the Dual-Luciferase Reporter Assay System (Promega). Briefly the cells were incubated for 

30mins, followed by one freeze thaw cycle, in 100ul of the passive lysis substrate provided. 

The cell lysates were then transferred to a single well of a 96well luminometer plate and 

loaded in to the luminometer (Bertholt 960) to measure the two different luciferase 

activities. Firstly 15ul of the Luciferase Assay Buffer II, which measures the firefly luciferase 

activity, was injected into each well and the light output measured for 2secs, then The Stop 

& Glo® Buffer, which measures the renilla luciferase activity, was injected and light output 

again measured for 2secs. Each different protein combination was tested in triplicate with 

all firefly luciferase levels corrected using the level of renilla activity.  
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Table 2.2: Mammalian two hybrid system PCR primers 

 

Forward Primer: 

CD81 

 

 

gcgatcgccATGGGAGTGGAGGGCTGCA 

Claudin1 gcgatcgccATGGCCAACGCGGGGCT 

Claudin7 gcgatcgccATGGCCAATTCGGGCCTGCA 

 

Reverse Primer: 

 

CD81 gtttaaactcaGTACACGGAGCTGTTCCGGATG 

Claudin1 gtttaaacTCACACGTAGTCTTTCCCGCTGG 

Claudin7 gtttaaacTCACACATACTCCTTGGAAGAGTTG 

  

 

Primers noted in a 5’ to 3’ direction, lower case indicates cloning “tags” 
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2.11 Site directed mutagenesis of CD81. 

In order to produce the CD81 mutants the “Phusion polymerase and into pJET1.2/blunt 

Cloning Vector method” was used as previously described (2.4 Fluorophore Tagging of 

Claudin1 and Claudin 7 mutants, Tetraspanin and Tetraspanin like proteins). A schematic 

representation of the mutagenesis procedure is shown in figure 2.3. Firstly using the CD81 

BamHI and the CD81 mutant reverse primers, listed in table 2.3, PCR fragments were 

created with a BamHI on the 5’ end, site specific mutation and a SacI site on the 3’ end of 

the CD81K201 fragment or a SalI site for the remaining mutants. A second CD81 fragment 

was created using the CD81 155-166 and CD81 184-207 forward primers with the CD81 XhoI 

reverse primer, these fragments encoded a BamHI separated by a small polylinker to a SalI 

site in the CD81 155-166 fragment and a SacI site in the CD81 184-207 fragment at the 5’ 

end. The two different fragments were digested with BamHI and ScaI digest of the CD81 

184-207 and K201A Fragments with the remaining fragments digested with BamHI and SalI. 

These digested fragments were then ligated to produce full length CD81 ORFs containing 

the desired mutation. The mutants were then transferred into a pTRIP-AcGFP/DsRED-

Claudin1 plasmid using a BamHI/XhoI digest to replace the Claudin1 with the CD81 mutants. 

The correct introduction of the CD81 was confirmed by sequencing using the CD81 BamHI 

and XhoI primers. 
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Figure 2.3: Site directed mutagenesis of CD81. A) Two fragments of CD81 were amplified 

using the Phusion polymerase. Fragement1 was amplified using the CD81 BamHI forward 

primer (P1) and CD81 mutant reverse primer (P2), which introduce a BamHI site to the 5’ 

end with the specific mutation (yellow asterisk) and SalI or SacI site at the 3’ end of the 

fragment. The fragment 2 is amplified using the CD81 155-166 or 184-207 forward primer 

(P3) and the CD81 XhoI reverse primer (P4) which introduces a BamHI and SalI or SacI site at 

the 5’ end and a XhoI site at the 3’ end of the fragment. B) A BamHI/SalI (SacI) digest is 

performed on the two Fragments, which are then ligated to produce a full length CD81 ORF 

containing a 5’ BamHI site, the specific mutation and a 3’ XhoI site.  
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Table 2.3 Site directed mutagenesis PCR primers 

Forward Primers: 

CD81 BamHI TCTAGAGGATCCGCCACCATGGGAGTGGAGGGCTGCAC 

CD81 184-207 ggatccCCTCTTCTCCGGAGCTCTGTACCTCATCGGCAT 

CD81 155-166 ggatccTGCTGTGGCTCgtcgACACTGACTGCTTTGAC 

  

Reverse Primers: 

CD81 XhoI TTTCTAGGTctcgagTCAGTACACGGAGCTGTTCCGG 

CD81 K148A TCAGTGTcgacGAGCCACAGCAGTCAAGCGTCTCGTGGAAGGTCgcCACCAC 

CD81 T149A TCAGTGTcgacGAGCCACAGCAGTCAAGCGTCTCGTGGAAGGcCTTCACCAC 

CD81 K148A/T149A TCAGTGTcgacGAGCCACAGCAGTCAAGCGTCTCGTGGAAGGcCgcCACCAC 

CD81 E152A CAGTGTcgacGAGCCACAGCAGTCAAGCGTCgCGTGGAA 

CD81 T153A CAGTGTcgacGAGCCACAGCAGTCAAGCGcCTCGTGGAA 

CD81 E152A/T153A CAGTGTcgacGAGCCACAGCAGTCAAGCGcCgCGTGGAA 

CD81 K201A TGCCGATGAGGTACAgagctcCGGAGAAGAGG 

  

Primers noted in a 5’ to 3’ direction, lower case indicates cloning “tags”  
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2.12 Protein expression in mammalian cells by pTRIP gene delivery system 

The pTRIP expression system allows the transduction of proteins within cells of interest and 

was developed by Zennou et al. 293-T cells are seeded onto a 6 well plate, pre-coated with 

poly-l-lysine, at a density of 6x105 cells/well. 600ng of the pTRIP plasmid containing the 

target gene was transfected into 293-T cells along with 600ng of a plasmid encoded a 

replication deficient HIV gag-pol core and 400ng of a plasmid encoding the G envelope 

glycoprotein of vesicular stomatitis virus using fugene (Roche). 48hrs post transfection the 

media was removed from the cells and passed through a 0.25µm filter. The media was then 

applied to the target cells diluted 1:2 in fresh cell culture media. 

 

2.13 sE2 binding quantification  

To determine the effect of mutations within CD81 on E2 binding, wild type and various CD81 

mutants were expressed in CHO cells using the pTRIP expression system. The cells were 

incubated in a 96 U bottomed well plate at a cell density of 2x105 cells per well in 100ul of 

PBS containing 0.5%BSA and 0.01% sodium azide (Sigma) at room temperature for 20 mins. 

The sodium azide treatment ensures the minimal movement of proteins to and from the cell 

surface by inhibiting cell metabolism. The cells were incubated with 100µl of sE2 diluted 1:4 

in the above buffer and incubated for 45mins at 37oC. The cells were washed and incubated 

with 5ug/ml of the mAb 10/76b, which recognises the HIV gp120 epitope tag (STSIRGKVQ) 

on the sE2, for 45mins at 37oC. Finally the cells are washed incubated in a 1:1000 dilution of 

an alexafluor 633 ant-Rat IgG for 45mins at 37oC. The cells are then washed and fixed with 



59 

 

4%paraformaldehyde for 10mins before detecting the level of E2 binding detected by flow 

cytometry. 

 

2.14 Statistics  

 All tests were calculated using the Prism 4 package (GraphPad Software, CA). The majority 

of the statistical tests performed were non-parametric as these would allow test levels of 

significance without assuming a particular distribution for the data.  The relevant tests are 

noted in the figure legends with the level of significance.  
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Chapter 3: 

FIR and FRET methodologies to study CD81 and 

Claudin1 interaction 
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The entry of HCV into cells is a multi-step process culminating in a pH and Clathrin 

dependent internalisation (223-224). It has been demonstrated that the virus can directly 

interact, via the viral envelope glycoproteins, with CD81 (88, 91, 93, 105-106) and SR-BI 

(107-109). In contrast there is limited evidence showing a direct interaction with Claudin1 or 

Occludin, suggesting that their role in the entry process is downstream of the initial 

attachment of the virus to the cell surface. As described earlier, CVB entry has been 

suggested as a possible model of how HCV could enter the cell. CVB enters polarized Caco-2 

cells via interactions with DAF, CAR and Occludin (208-209). The engagement of DAF leads 

to a relocalisation of the virus-DAF complex to the tight junction. There it interacts with CAR, 

which induces a conformational change in the virus that primes particle internalization via a 

caveola-dependent manner (208-209). CVB internalisation is dependent on Occludin, as 

siRNA specific knockdown of Occludin trapped virus particles at the tight junction. Occludin 

internalises with the virus, despite not directly interacting with the virus, leaving CAR at the 

plasma membrane.  The role of Occludin seems to be in the recruitment of Caveolin-1 and 

other regulator molecules to the tight junction to promote virus internalisation (209). To 

date there is limited evidence to suggest or disprove CD81 or SR-BI acting in an analogous 

way to DA. Furthermore it is unknown whether Claudin1 is behaving in the same fashion as 

CAR, causing conformational changes to HCV after it is delivered to the tight junction. There 

is growing evidence that, in addition to interacting with the virus, CD81 interacts with 

Claudin1. The initial evidence of this interaction was reported by Kovalenko et al. who 

showed that Claudin1 co-precipitated with CD81 and other tetraspanin proteins after 

chemically cross-linking surface proteins (125). Subsequently other groups have shown this 

interaction using a Biomolecular fluorescence complementation BiFC assay (112, 183) and 

by FRET anlysis (184). These results suggest that, whatever the exact role of Claudin1 in the 
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entry process, an interaction with CD81 may be required. We therefore wanted to evaluate 

the role of the CD81-Claudin1 complex in HCV entry and define how the proteins interact 

using an imaging based approach previously developed within our group (184, 211) . 

The imagining technique used is FRET, which can determine dynamic interactions between 

molecules. Conventional confocal fluorescence microscopy to study protein co-localisation 

is limited to a resolution of 232nm, which is too large a distance to determine whether a 

direct molecular interaction is occurring. FRET only occurs between two labelled proteins 

that are within 10nm of each other, thus enhancing the resolution to a workable value. 

Fluorophores absorb light energy at a particular wavelength, leading to their excitation, 

which is subsequently re-emitted at a longer wavelength. This absorbance (or excitation) 

and emission occurs over a range of wavelengths, referred to as spectra.  When the 

emission and absorbance spectra of the two different fluorophores overlap, energy can be 

directly transferred between them by non-radiative energy transfer, this effect is illustrated 

by a Jablonski diagram (figure 3.1a). The fluorophore transferring its energy is referred to as 

the donor and the receiver is termed the acceptor.  This loss of energy results in an 

apparent loss of overall fluorescence of the donor, referred to as donor quenching (figure 

3.1d) (225).   

Many methods of determining FRET have been developed, including two-colour ratio 

imaging or sensitised emission (226), spectral imaging (227-228), Fluorescence Lifetime 

Imaging Microscopy (FLIM) (229-231) and  Polarised Anisotropy imaging (232).  Each 

method has its advantages and disadvantages, ranging from natural excitation of the 

acceptor fluorophores being mistaken for FRET, to a general decrease in sensitivity due to a 

high background (the techniques are reviewed in (233)). We adopted an acceptor 
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photobleaching method, which utilises the targeted bleaching of the acceptor to block 

energy transfer from the donor (figure 3.1e). Preventing this energy transfer leads to an 

increase in the intensity of the donors fluorescence when FRET occurs. Recently developed 

tuneable lasers settings allow the gradual photobleaching of the acceptor, which make it 

possible to correct for the natural signal decay of the fluorophores.  

There are several fluorophore pairs available for determining protein-protein interactions, 

we chose the AcGFP-C1 and DsRED-monomer-C1 fluors developed by Clontech. The original 

GFP and DsRED fluors required oligomerisation to yield high levels of fluorescence intensity. 

However, AcGFP-C1 and DsRED-monomer-C1 are mutant derivatives of GFP and DsRED, 

respectively, which have high level fluorescence as protein monomers (229). Using 

monomeric fluorophores means that single fluorophores can act as FRET pairs and enable us 

to measure and ensure an equimolar ratio which is required to infer FRET is occurring.  We 

previously selected regions of protein co-localisation to determine whether FRET occurs 

(184, 211).  However this approach may introduce some bias due to the selection of 

membrane regions with high ‘local’ concentrations of the proteins under study.   
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Figure 3.1: Principles of FRET. A) Shows a Jabolonski diagram of resonance energy transfer. 

The usual absorbance (Excitation) and Emission of energy by the donor are shown by solid 

green and red lines respectively. The blue line indicates the transfer of energy from the 

donor to the acceptor by resonance energy transfer (image taken from 

www.microscopy.fsu.edu). B) Shows the spectral overlap (grey area) between the emission 

spectrum of AcGFP (Green line) and excitation spectrum of DsRED (Yellow line), taken from 

www.clontech.com. The cartoons C-E depict the effect of distance on the interaction 

between two fluorophores, AcGFP (green circles) and DsRED (red circles).  C) No FRET occurs 

between the two fluorophores due to the distance being above 10nm. D) FRET occurs when 

the fluorophores are close enough for energy transfer.  Emission occurs from both 

fluorophores, with the AcGFP showing a reduced emission due to the loss of energy. E) 

Prevention of energy transfer by photobleaching of the DsRED fluorophore results in the 

AcGFP fluorophore emitting all of its energy as green fluorescence. Modified from (Rudolf, 

Mongillo et al. 2003). 
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To complement the FRET methodology we employed a technique known as Fluorescence 

Intensity Ratio (FIR) analysis that has previously been used to determine the subunit 

composition of the Cyclic nucleotide-gated (CNG) channels of olfactory neurons (220-221) 

and the epithelial Na+ channel (ENaC) (220-221). Zheng and Zagotta used this method to 

show that the three subunits of the CNG assemble into a defined heteromeric structure 

(221). Staruschenko et al demonstrated that subunit assembly and stoichiometry are 

essential for normal physiological function of ENaC (220). In addition they found that 

heterotypic channel formation is favoured over homotypic channel formation when 

subunits are co-expressed. The FIR approach relies on labelling the desired proteins with 

different monomeric fluorophores, where the intensity of each fluorophore is directly 

related to protein concentration. An example of how the FIR works is shown in Figure 3.2a. 

The figure shows a confocal image of cells expressing AcGFP and DsRED labelled proteins; in 

this case DsRED-CD81 and AcGFP-CD81 protein. A profile line is drawn around the plasma 

membrane, indicated by the red line in figure 3.2b, which allows us to measure the intensity 

of the two fluorophores pixel-by-pixel along the membrane. These intensities are plotted on 

an X,Y scatter plot (figure 3.2c) and linear regression analysis performed (figure 3.2d). The 

gradient of the line defines the ratio the two proteins, or their stoichiometry, and is referred 

to as the FIR value.  Along with the FIR value the regression analysis assesses how well the 

gradient fits the data through the correlation coefficient, noted as R2. 

If the R2 value is too low the inferred FIR value produced is unreliable. We therefore do not 

assign a FIR value to data sets with an R2 value which is less than the lowest value R2 

produced by a positive control. This method provides an accurate assessment of protein 

expression at the plasma membrane and shows whether the proteins are in a 1:1 ratio that 
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is required to interpret any FRET signals. Furthermore, profiling protein expression at the 

entire plasma membrane allows us to assess FRET across a wide range of protein expression 

levels, not only at areas of high protein expression. Distances between the two fluorophores 

can be determined by measuring the efficiency of energy transfer between the donor and 

acceptor fluorophores. But due to the large area we are measuring and the level of 

background “noise” within the assay we did not attempt to quantify the efficiency of energy 

transfer or to interpolate the spatial separation distance. We employed the method to 

determine whether FRET occurs or does not. 
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Figure 3.2: FIR analysis method. A) Images produced are laser scanning confocal images 

taken using the 63 x 1.2NA water immersion objectives and a meta head confocal 

microscope (Zeiss). B) The plasma membrane of the cell is traced using the profile 

function provided by the microscope software. The fluorescence intensities of the 

fluorophores are given on a pixel by pixel basis along the profile line. C) The 

fluorescence intensities of the two fluorophores are plotted on a scatter plot and D) a 

linear regression line is fitted to the data. The gradient of the linear regression line and 

the correlation of the data to the fitted line are recorded as the FIR value and R2 value, 

respectively.  
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3.1 Use of FIR and FRET methodologies to study CD81 dimerisation.  

To assess the suitability of FIR and FRET methodologies to study CD81 interaction with the 

various members of the Claudin family, we first looked at CD81 homodimerization. It is 

widely accepted that the CD81 EC2 forms dimers both when crystallized (Kitadokoro et al 

2002) or when purified as a soluble protein (Drummer et al 2005). We therefore co-

expressed CD81 labelled with AcGFP or DsRED in 293-T cells and performed FIR and FRET 

analysis on  plasma membrane expressed CD81 (figure 3.3).  

The images in figure 3.3 show the localisation of AcGFP-CD81 (figure 3.3a), DsRED-CD81 

(figure 3.3b) and a merged image (figure 3.3c) showing their co-localisation at the plasma 

membrane. One of these cells (figure 3.3d) was used to produce the scatter plot and 

regression analysis performed to determine FIR (figure 3.3e). The Scatter plot has an R2 

value of 0.68 with a FIR value of 0.57. Since the DsRED fluorophore has intensity 60% of the 

AcGFP fluorophore with the camera system used we would expect to observe FIR values of 

0.6 for proteins with a 1:1 stoichiometry. The observed FIR value for the CD81-CD81 

association is therefore in agreement with 1:1 ratio expected for a CD81-CD81 homodimer. 

After photobleaching of this cell, those pixels where an increase in the donor signal was 

detected were re-analyzed (figure 3.3f). The scatter plot demonstrates that FRET can be 

detected across a wide range of protein expression, with 63.8% of pixels positive for FRET. 

The R2 value and FIR values were 0.66 and 0.56, respectively, very similar to those of the 

entire data set (in figure 3.3e). The decrease in AcGFP fluorescence due to the FRET also 

appears across the entire range of protein expression, demonstrating the that data are not 

being biased due to variable expression levels.  
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In order to reduce the statistical errors in the experiment we chose to analyse at least 10 

cells. Analysis of a further nine cells (figure 3.3G-I) gave an average R2 of 0.49 (IQR 0.39 to 

0.6) and a FIR value was 0.56 (Inter quartile range, IQR, 0.47 to 0.65). The proportion of 

pixels where FRET occurred (%FRET) was 64% (IQR 60%-69%), similar to the 69% FRET 

previously reported for CD81-CD81 interaction using acceptor photobleaching of selected 

regions of protein co-localisation (184). Overall these results demonstrate that the FIR 

methodology can quantify the ratio of proteins expressed at the plasma membrane and 

CD81-CD81 homotypic interactions can be measured by FRET.  

 



70 

 

 

Figure 3.3: Fluorescent Intensity Ratio in CD81 homotypic Interaction(s). 293-T cells were 

co-transfected to express both AcGFP-CD81 and DsRED-CD81 to determine the FIR and FRET 

values for  homodimer interaction. The figure shows images of A) AcGFP-CD81, B) DsRED-

CD81 and C) a merged image. D) shows the cell (indicated with an arrow in C.),  which 

produced E) the FIR plot with all the pixels represented and F) the FIR plot of only those 

pixels where FRET was detected. Summary graphs are shown for G) The correlation 

coefficient, R2 , H) FIR values and I) %FRET values of 10 cells. The arrows present on plots G-

H show the R2, FIR values and %FRET of the cell shown in D.  
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3.2 Receptor activity of labelled Claudin proteins 

Prior to studying Claudin1-CD81 association with FIR and FRET methodologies we first 

determined whether the fluoresecent tag affected the antigenicity or receptor activity of 

Claudin1. Firstly, we expressed unlabelled Claudin1, AcGFP-Claudin1 or DsRED-Claudin1 in 

293-T cells, which do not express endogenous Claudin (110-111, 113), and stained the cells 

with a conformation-dependent anti-Claudin1 rat monoclonal antibody (MAB4618, R&D 

Systems). This antibody recognises the extracellular loop and, since the cells are stained live, 

only proteins expressed at the plasma membrane are labelled. Antibody staining and 

protein localisation is shown in figure 3.4. The images show that the staining pattern of both 

fluorophore labelled Claudin1 proteins was identical to the unlabelled protein. Finally, 

AcGFP-Claudin1 and DsRED-Claudin1 were equally well recognised by the antibody, leading 

us to conclude that the fluorophores fused to the N-terminus of Claudin1 had little or no 

affect on protein antigenicity or localisation. 

Both fluorophore tagged fusion proteins were tested for their ability to support viral HCVpp 

infection (figure 3.5). Parental 293-T lack Claudin1 expression and failed to support HCVpp 

infection. Expression of tagged or non-tagged Claudin1 in 293-T cells supported similar 

levels of HCVpp entry. The overall level of entry in Claudin1 expressing 293T cells was lower 

than Huh7.5 cells infected with the same virus stock, this could be partially ascribed to the 

fact that the transfection efficiency was 30%, 35% and 37% for 293-T Claudin1, 293-T 

AcGFP-Claudin1 and 293-T DsRED-Claudin1 cells, respectively. All the cell types showed an 

equal level of MLVpp infection, ranging from 4.8 to 5.6 x106 RLU. 
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Figure 3.4: Antigenicity of fluorophore tagged Claudin1. 293-T cells were transfected to 

express Claudin1, DsRED-Claudin1 or AcGFP-Claudin1 (A, B and C respectively). The cells 

were stained with an anti-Claudin1 monoclonal antibody (R&D Systems), which recognises 

the extracellular loop of Claudin1 and a secondary Goat Alexa Fluor 633 anti anti Rat IgG 

(H+L) (Invitrogen). Cells were imaged using a 63 x 1.2NA water immersion objective and a 

meta head confocal microscope (Zeiss), Size bars are 20μm.  
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Figure 3.5: Effect of N-terminal tagging Claudin1 on HCV receptor activity. 293-T cells were 

transfected to express native or tagged versions of Claudin1 and evaluated for their ability 

to support HCVpp and MLVpp entry. Data is shown as specific infectivity (Relative Light 

Units, RLU) and represents the mean plus the standard error of three replicates. RLU signals 

were corrected for signal noise by subtracting the Env-RLU level. A) specific infectivity of 

HCVpp, B) specific infectivity of MLV and C) percentage of the cells expressing Claudin1 as 

determined by flow cytometry. A one way Analysis of Variance with Bonferroni's Multiple 

Comparison Test was used to assess the differences between the cells (ns = No Significant 

difference). This data is representative of three independent experiments  
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3.3 Heterotypic interaction of Claudin1 and CD81 

Since fluorophore labelling had little effect on antigenicity or viral receptor activity of 

Claudin1 we chose to use these chimaeric molecules to study the interaction of AcGFP-

Claudin1 or DsRED-Claudin1 with CD81 (figure 3.6). As before, 10 cells were analysed and 

the median values used to interpret FIR and FRET values. With DsRED-CD81, the AcGFP-

CLDN1 showed an R2 of 0.67 (Inter quartile range (IQR 0.6 – 0.72) and a FIR value of 0.64 

(IQR 0.55 – 0.78). With AcGFP CD81 the DsRED-Claudin1 showed an R2 of 0.68 (IQR 0.58 – 

0.76) and a FIR value of 0.75 (IQR 0.67 – 0.9). These values are not significantly different 

from each other or from the CD81-CD81 values, of 0.62 (IQR 0.5 – 0.75) and 0.79 (0.59 – 

0.97) for R2 and FIR value respectively. From this we can conclude that Claudin1 is 

associating with CD81 with a 1:1 stoichiometry. The percentage FRET was also determined 

for each group, we found 36% ± 6.6%, 40% ± 15.9% and 40% ± 6.2% of pixels were positive 

for FRET for the AcGFP-CLDN1/DsRED-CD81, DsRED-Claudin1/AcGFP-CD81 and AcGFP-

CD81/DsRED-CD81 pairs, respectively. Overall these data demonstrate that Claudin1 

interacts with CD81 in a 1:1 stoichiometry at a similar level to the CD81 homotypic 

interaction. There was no significant difference between the values produced when the 

Claudin1 was labelled AcGFP or DsRED. The DsRED-Claudin1 did produce some intracellular 

staining in a subset of cells which may account for the higher level of variability in the %FRET 

value. The AcGFP-Claudin1 showed a more homologous staining pattern to that of the 

unlabelled Claudin1 and therefore this construct was used in the subsequent experiments.  
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Figure 3.6: FIR and FRET analysis of the Claudin1-CD81 heterotypic interaction. 293-T cells 

were transfected to co-express AcGFP-Claudin1/DsRED-CD81, DsRED-Claudin1/AcGFP-CD81 

or AcGFP-CD81/DsRED-CD81.  The R2, FIR and FRET were determined for 10 cells are shown 

in the dot plots. The median value is denoted by the solid line on each plot. This data is 

representative of two independent experiments  
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3.4 Association of Claudin1 with other tetraspanin proteins.  

Heterotypic interactions have been demonstrated between CD81, CD9 and CD151 (125). 

These authors also showed that Claudin1 co-precipitated with these tetraspanin proteins. 

Given these observations we sought to determine whether Claudin1 interacts with other 

members of the tetraspanin family of proteins with a similar stoichiometry to CD81. We 

generated AcGFP fusion proteins of CD82, CD9 and tetraspanin like protein Myelin And 

Lymphocyte protein (MAL) to assess their interaction with Claudin1. MAL, also known as T-

cell differentiation protein, has been shown to co-purify with glycosphingolipids in 

detergent insoluble domains but does not associate with tetraspanin proteins ((234), and 

Mike Tomlinson, personal communication) and provides an ideal control protein for FRET 

studies.  

Transfection of 293-T cells to express AcGFP labelled CD82, CD9 and MAL demonstrated 

protein localisation at the plasma membrane (Figure 3.7a). We first assessed the interaction 

of the 3 tetraspanins and Claudin1 with MAL. The MAL-CD81 transfections showed an R2 of 

0.47 (IQR 0.16 -0.67), a FIR value of 0.9 (IQR 0.0 -1.42) and a %FRET of 9.6% ± 10.4. MAL-

CD82 had an R2 of 0.59 (IQR 0.47 - 0.66), a FIR value of 0.6 (IQR 0.38 - 0.72) and a %FRET of 

9.3% ± 7.2. Finally, we found that MAL-CD9 had an R2 of 0.52 (IQR 0.38 - 0.61), a FIR value of 

0.91 (IQR0.37 - 1.24) and a %FRET of 13.8% ± 9.8. Since MAL has been reported not to 

interact with members of the tetraspanin family of proteins, these levels of %FRET can be 

considered non-specific interactions. In addition to assessing MAL association with 

tetraspanins, we measured MAL-Claudin1 interactions showed an R2 of 0.32 (IQR 0.23 -

0.46), a FIR value of 0.31 (IQR 0.0 - 0.5) and a %FRET of 7.3% ± 8.6, again indicating non-

specific interaction.  
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Next we determined the homotypic and heterotypic interactions between various 

tetraspanins. In this set of experiments the CD81-CD81 interaction showed an R2 of 0.52 

(IQR 0.35 - 0.64), a FIR value of 0.55 (IQR 0.48 - 0.67) and a %FRET of 63.8% ± 6.3. The CD82-

CD82 and CD9-CD9 homotypic interactions were similar to the CD81-CD81 interaction 

(CD82-CD82 had an R2 of 0.65 (IQR 0.57- 0.77), a FIR value of 0.8 (IQR 0.75 - 1.1) and a 

%FRET of 40.9% ± 7.4; CD9-CD9 had an R2 of 0.55 (IQR 0.47 - 0.68), a FIR value of 0.45 (IQR 

0.4 - 0.52) with a %FRET of 59.8% ± 9.2). The heterotypic interactions between tetraspanins 

were also similar to the CD81-CD81 interaction: the CD81-CD82 interaction had an R2 of 0.74 

(IQR0.64 - 0.77), a FIR value of 0.75 (IQR 0.63 - 0.92) and a %FRET of 39.4% ± 6.2; CD81-CD9 

interaction resulted in an R2 of 0.65 (IQR 0.55 - 0.73), a FIR value of 0.83 (IQR 0.6- 0.95) and 

a %FRET of 73.7% ± 14; finally CD82-CD9 association had an R2 of 0.68 (IQR 0.58 - 0.82), a FIR 

value of 0.8 (IQR 0.75 - 1.07) and a %FRET of 31.1% ± 7.7.  

In summary these interactions confirm the association of tetraspanins at the cell surface and 

provide a series of positive results against which to assess other datasets. The interactions 

of Claudin1 with CD81 or CD9 were not significantly different from the CD81-CD81 positive 

control: in these experiments Claudin1-CD81 had an R2 of 0.66 (IQR 0.64 - 0.71), a FIR value 

of 0.64 (IQR 0.55 - 0.78) and a %FRET of 69.7% ± 7.7; whereas Claudin1-CD9 showed an R2 

0.55 of (IQR 0.46 - 0.71), a FIR value of 0.92 (IQR 0.67 - 1.04) with a %FRET of 43.4% ± 20.1. 

Finally profiling Claudin1-CD82 cells gave an R2 0.56 of (IQR 0.45 - 0.67) and a FIR value of 1 

(IQR 0.74 - 1.21), which was not significantly different to the CD81-CD81 FIR value. For these 

cells the %FRET between the fluorophores was significantly lower than for the other 

proteins studied (33.9% ± 12), however this value is still considerably higher than the FRET 

values observed for the non-specific interactions between tetraspanins and MAL (9 - 14%). 
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These results show that Claudin1 can associate with all of the tetraspanin proteins tested. It 

is unknown whether this is due to a direct association of Claudin1 with each protein or 

whether Claudin1 is anchored by CD81 into a larger Tetraspanin complex, bringing Claudin1 

into close proximity with the tetraspanins but without any direct protein interactions. Our 

observation that the MAL protein showed low, non-specific, levels of interaction with 

Claudin1 allowed us to conclude that these results were specific and not an artefact of over 

expression of these fluorescent proteins at the plasma membrane.   
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Figure 3.7: Interaction of Claudin1 with tetraspanins CD9, CD81 and CD82 and tetraspanin-

like protein MAL. A) AcGFP labelled CD81, CD82, CD9 and MAL were expressed in 293-T 

cells and their localisation assessed. Cells were imaged by laser scanning confocal 

microscopy using a 63 x 1.2NA water immersion objectives and a meta head confocal 

microscope (Zeiss), size bars are equal to 20μm. The proteins were co-expressed with DsRED 

labelled partners in various combinations to determine their interaction with one another 

and with Claudin1 or MAL. The mean correlation coefficient (R2), fluorescent intensity ratio 

(FIR) and percentage FRET for ten cells is presented for B) MAL-protein Interactions C) 

Homotypic tetraspanin interactions, C) Heterotypic Tetraspanin Interactions and E) CLDN1-

Tetraspanin interactions. One way Analysis of Variance and Bonferroni's Multiple 

Comparison Tests were used to determine the degree of significance (**p <0.01, 

***p<0.001. This data is representative of two independent experiments.  
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3.5 Effects of CD9 over expression on Claudin1-CD81 association 

Our laboratory reported that over expressing unlabelled Claudin1 in 293-T cells significantly 

reduced AcGFP-Claudin1/DsRED-CD81 FRET (184). Although 293-T cells are Claudin1 

negative they do express endogenous CD81, which will result in a similar lowering of the 

%FRET value and potential underestimation of overall protein interaction(s). Since we found 

CD9 to have a similar FRET association with Claudin1 as CD81 (43.4% ± 20.1, figure 3.7) we 

sought to determine whether over expressing unlabelled CD9 could alter CD81-Claudin1 

association and HCVpp infection. 293-T cells stably expressing AcGFP-Claudin1 and DsRED-

CD81 were transduced to over express CD9 using the pTRIP lentiviral system. The cells were 

assessed for CD9 expression using an anti-CD9 antibody (SYB-1, Abcam, figure 3.8c), which 

showed a clear increase in the level of CD9 expression by flow cytometry.   

Both naive and TRIP-CD9 cells were assessed for CD81/Claudin1 FIR and FRET analyses and 

HCVpp infection (Figure 3.8). Parental cells showed an R2 of 0.51 (IQR 0.43 – 0.66) with a FIR 

value of 0.6 (IQR 0.48 – 0.92), whilst the pTRIP-CD9 cells had an R2 of 0.73 (IQR 0.57 – 0.82) 

with a FIR value of 0.73 (IQR 0.63 – 0.83). The %FRET observed was 40.6% ± 12.8 and 40.3% 

± 8.3 for the naive and pTRIP-CD9 cells respectively. These values are not significantly 

different and show that CD9 does not compete with CD81 for its interaction with Claudin1. 

Similarly, over expression of CD9 had no significant effect on HCVpp infection of 293-T cells 

expressing AcGFP-Claudin1. The level of entry was shown to be 44,853 ± 6,468 and 47,763 ± 

1,583 RLU for the naive and CD9 over expressing cells, respectively.  
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Figure 3.8: Effects of CD9 over-expression on Claudin1-CD81 association and HCVpp 

infection. AcGFP-Claudin1/DsRED-CD81 293-T cells were transduced to over express CD9 

and compared to parental cells for their ability to support HCVpp and MLVpp entry. Data is 

shown as specific infectivity (Relative Light Units, RLU) and represents the mean plus the 

standard error of three replicates. A) specific infectivity of HCVpp. B) specific infectivity of 

MLVpp. C) levels of CD9 expression in parental cells (blue line) and cells over expressing CD9 

(red line) as determined by FACS analysis. D) R2, FIR and FRET values for the 2 cell lines are 

shown as dot plots for 10 cells. The median value is denoted by the solid line. This data is 

representative of two independent experiments. 
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3.6 Localisation and Receptor activity of fluorophore labelled Claudins.  

To determine whether Claudin receptor activity is defined by its association with CD81, a 

panel of Claudin molecules representing classical (Claudin4, 7, 15 and 17) and non-classical 

(Claudin11 and 12) members of the Claudin superfamily were tagged with AcGFP to assess 

their association with CD81.  As for Claudin1, it was important to ensure that the 

fluorophore labelling of these proteins did not perturb their localisation or receptor activity. 

Due to the lack of antibodies to the various Claudin proteins, localisation without a 

fluorophore label was assessed using a Flag epitope expressed at the C-terminus of the 

various unlabelled Claudins (constructs used were the kind gift of Hongkui Deng). All 

proteins were expressed in the Claudin negative 293-T cell line and were stained with an 

anti-FLAG antibody (Sigma). The staining patterns of the Claudin-FLAG clones are shown in 

figure 3.9. Claudin1, 4, 6, 12 and 17 localised at the plasma membrane, whilst Claudin15 

showed an intracellular staining pattern. The remaining Claudin proteins, Claudin7, 9 and 11 

were detected at both the plasma membrane and intracellular locations.  The localisation of 

the fluorophore labelled Claudin proteins are shown in figure 3.10. Comparing their staining 

patterns to that of the Claudin-FLAG proteins shows that N-terminal tagging of the proteins 

with a flouorophore had little or no effect on their localisation. The fluorophore tagged 

fusion proteins were tested for their receptor activity using the HCVpp assay (figure 3.10). 

As expected the AcGFP-Claudin1 fusion protein showed receptor activity, as did Claudin6 

and 9. The remaining Claudin proteins showed no receptor activity, in agreement with 

published reports (110, 113). 

 

 



84 

 

 

 

 

 

Figure 3.9: Localisation FLAG-tagged Claudin proteins. 293-T cells were transfected with 

various members of the Claudin family, which contained a FLAG epitope fused to their c-

terminus. The cells were labelled with an anti-FLAG monoclonal and secondary labelled 

Alexa Fluor 633 anti IgG (H+L). Cells were imaged by laser scanning confocal microscopy 

using a 63 x 1.2NA water immersion objective and a meta head confocal microscope (Zeiss), 

Scale bars are equal to 20μm.  
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Figure 3.10: Localisation of Fluorophore labelled Claudin proteins. 293-T cells were 

transfected with various members of the Claudin family, which contained an AcGFP epitope 

fused to their N-terminus. Cells were imaged by laser scanning confocal microscopy using a 

63 x 1.2NA water immersion objective and a meta head confocal microscope (Zeiss), Scale 

bars are equal to 20μm. Plasma membrane and intracellular patterns of staining are readily 

apparent.  
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Figure 3.11: Effect of N-terminal tagging various Claudin proteins on viral receptor activity. 

293-T cells were transfected to express AcGFP tagged versions of the Claudin family of 

proteins and evaluated for their ability to support HCVpp and MLVp entry. Data is 

represented as specific infectivity (Relative Light Units, RLU) and represents the mean plus 

the standard error of three replicates. HCVpp and MLVpp signals were corrected for signal 

noise by subtracting the Env-RLU level. A) Shows the specific infectivity of HCVpp into 293-T 

expressing AcGFP-CLDN fusion proteins. B) shows the MLVpp entry. C) shows the 

percentage of cells in Claudin expression as determined by flow cytometry. One way 

Analysis of Variance and Bonferroni's Multiple Comparison Test was used to determine the 

degree of significance (***p <0.01). This data is representative of three independent 

experiments.  
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To investigate which Claudin proteins could associate with CD81 the panel of AcGFP N-

terminal tagged fusion proteins, representing both classical (Claudin1, 4, 6, 7, 9, 15 and 17) 

and non-classical (Claudin11 and 12) members of the Claudin family, were co-expressed 

with DsRED-CD81 in the Claudin negative 293-T cell line.  A representative FIR plot for each 

Claudin is shown in figure 3.12. Only Claudin1, 6, 9 and 12 had an R2 high enough to infer a 

FIR value (0.5, 0.6, 0.4 and 0.4 respectively). The FIR values for these Claudins with CD81 

were 0.7 (IQR 0.67 – 0.74) for Claudin1, 1.0 (IQR 0.80 – 1.10) for Claudin6, 0.5 (IQR 0.40 – 

0.67) for Claudin9 and 0.5 (IQR 0.26 – 0.83) for Claudin12 (table 1). As these values are not 

significantly different from that of the CD81-CD81, they suggest that the Claudins are 

associating with CD81 with a 1:1 stoichiometry. The levels of FRET were determined as 60% 

± 4, 50% ± 6, 63% ± 7 and 15% ± 12 for Claudin1, 6, 9 and 12, respectively. The low %FRET 

value for Claudin12 with CD81 suggests there is negligible association between AcGFP-

Claudin12 and DsRED-CD81. The %FRET value is around the level of non-specific interaction, 

set by the MAL-CD81 interaction, leading us to conclude that there is no specific interaction 

between Claudin12 and CD81. In contrast, the %FRET detected between CD81 and the 

receptor active Claudin1, 6 and 9 proteins are of a similar level to that observed for CD81-

CD81 interaction. In summary, these results demonstrate that only receptor active Claudins 

showed a specific 1:1 stoichiometry with CD81, with the level of FRET interaction showing 

they are closely associated (<10nm).   

Since Occludin is also important for HCV entry, we investigated the stoichiometry and 

association of AcGFP tagged Claudin molecules with Occludin. The majority of Claudins 

tested (-1, -6, -9, -11, -12 and -17) demonstrated a detectable association (R2 0.2-0.5), and 

FIR values of between 0.6 – 0.9 with variable levels of FRET, suggesting that receptor activity 

of the Claudin protein is unlikely to be defined by its ability to interact with Occludin (Table 

1).  
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Figure 3.12: Analysis of Claudin-CD81 interactions. 293T cells were co-transfected to 

express DsRED-CD81 (r.CD81) and a panel of AcGFP-tagged Claudin (g.CLDN) constructs 

(CLDN1–17, panels A–I). Ten cells were imaged as described in Fiure 3.2, and estimates of 

g.Claudin association with r.CD81 association with evaluated by FIR analysis and 

summarized in Table 3.1. The images above represent the scatter plots closest to the 

median FIR for each g.Claudin- r.CD81 pair studied. This data is representative of two 

independent experiments.  
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Table 3.1: Fluorescent tagged Claudin protein associations with CD81 and Occludin  

 

CD81 association with: 

    r2 (IQR)* FIR (IQR) %FRET ± sd# 

Claudin1 0.5 (0.42 – 0.61) 0.7 (0.67 – 0.74) 60 ± 4 

Claudin4 0.2 (0.17 – 0.24) 0.3 (0.21 – 0.41) 5 ± 8 

Claudin6 0.6 (0.54 – 0.62) 1.0 (0.80 – 1.10) 50 ± 6 

Claudin7 0.0 (0.00 – 0.09) ND† ND 

Claudin9 0.4 (0.36 – 0.50) 0.5 (0.40 – 0.67) 63 ± 7 

Claudin11 0.2 (0.16 – 0.23) 0.3 (0.19 – 0.41) 7 ± 4 

Claudin12 0.4 (0.28 – 0.48) 0.5 (0.26 – 0.83) 15 ± 12 

Claudin15 0.0 (0.00 – 0.04) ND ND 

Claudin17 0.2 (0.17 – 0.30) 0.3 (0.22 – 0.52) 6 ± 8 

    

Occludin association with: 

Claudin1 0.4 (0.29 – 0.54) 0.7 (0.60 – 0.82) 48 ± 1 

Claudin4 0.2 (0.14 – 0.34) 0.3 (0.29 – 0.53) 30 ± 7 

Claudin6 0.2 (0.04 – 0.36) 0.8 (0.57 – 0.53) 27 ± 9 

Claudin7 0.1 (0.04 – 0.18) ND† ND 

Claudin9 0.3 (0.13 – 0.48) 0.7 (0.39 – 0.79) 18 ± 8 

Claudin11 0.4 (0.12 – 0.45) 0.7 (0.62 – 0.83) 23 ± 7 

Claudin12 0.3 (0.19 – 0.37) 0.6 (0.51 – 0.71) 38 ± 6 

Claudin15 0.1 (0.08 – 0.21) ND ND 

Claudin17 0.5 (0.28 – 0.51) 0.9 (0.74 – 1.07) 40 ± 5 

* – Interquartile range 

# – Standard deviation 

† – Not Determined 
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3.7 Analysis of Claudin1-CD81 interactions by surface plasmon resonance. 

The EC2 of CD81 has been reported to be the main region involved in protein-protein 

interactions (122). Nakajima et al were able to fuse the EC2 loop of CD81 to maltose binding 

protein (MBP-CD81), and the fusion proteins interacted with HCV sE2 by Surface Plasmon 

Resonance (SPR) (153). Evans et al identified regions of Claudin1 EC1 that were essential for 

HCV receptor activity (110). We therefore determined whether recombinant Claudin1 EC1 

and CD81 EC2 loops could associate by SPR technique. We obtained recombinant MBP-CD81 

from the Drummer lab (Burnet institute, Australia), and generated recombinant Claudin1 or 

Claudin7 fused to MBP (MBP-Claudin1 and MBP-Claudin7 respectively). MBP-CD81 or MBP-

Claudin1 were immobilised onto SPR chips and the various recombinant proteins tested for 

interactions (figure 3.13).  Homotypic Claudin1 and CD81 protein interactions were 

observed, with minimal detection of either recombinant loop protein interacting with MBP. 

MBP-CD81 demonstrated a specific interaction with MBP-Claudin1 and a minimal 

interaction with MBP or MBP-Claudin7 (Figure 3.13). The affinity of the Claudin1-CD81 

interaction was determined by flowing MBP-CLDN1 over the MBP-CD81 chip surface at 

varying concentrations (figure 3.14). The association constant was determined to be 243M-

1s-1 with a dissociation constant of 0.0973 s-1, which gives an approximate affinity (KD) of 

40µM. These values were calculated using the 1:1 drifting baseline model provided by the 

BIAevaluation software (Biacore), which corrects for the signal due to movements in the 

response unit which are not attributed to the injection of an anylate. 
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Figure 3.13: Analysis of Claudin1-CD81 extracellular loop interactions by surface plasmon 

resonance. MBP-Claudin1 EC1 (A) and MBP-CD81 EC2 (B-C) were immobilized onto the 

biosensor chip surface. Homotypic protein interactions were demonstrated by flowing MBP-

Claudin1 EC1 (solid grey line) or MBP-CD81 EC2 (solid black line) over the respective chip 

surfaces (A-B), with either MBP-CLDN7 EC1 (dotted light grey line) or MBP (dotted black 

line) as negative controls at a concentration of 1mg/ml. Heterotypic interactions between 

MBP-Claudin1-EC1 and MBP-CD81 EC2 are depicted in (C). To control for non-specific 

interactions, all MBP fusion proteins were flowed over an activated and blocked ‘empty’ 

channel and these response unit(s) subtracted from test channels. The arrow indicates the 

‘association phase’ i when proteins were flowed over the respective chip surfaces, the 

‘dissociation phase’ begins at time ii when protein injection is stopped. Data is 

representative of two independent experiments. 
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Figure 3.14: Affinity of Claudin1-CD81 extracellular loop interactions by surface plasmon 

resonance. MBP-CD81 EC2 was immobilized onto the biosensor chip surface. MBP-Claudin1 

EC1 was flowed over the chip surface at a concentration of 125µg/ml (light grey line), 

250µg/ml (grey line) or 500µg/ml (black line). The arrow indicates the ‘association phase’ i 

when proteins are flowed over the respective chip surfaces, the ‘dissociation phase’ begins 

at time ii when protein injection is stopped. This data is representative of two independent 

experiments.  
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3.8 Discussion 

The interaction between the two HCV co-receptors Claudin1 and CD81 has been 

demonstrated by both biochemical (125) and imaged based approaches (183-184). Our 

previous publication, using a FRET based approach, found that receptor active Claudin1 

associated with CD81, whereas the non-receptor active Claudin4 showed no interaction 

(184). A limitation of these previous approaches was the lack of information obtained about 

the Claudin1-CD81 complex. In the case of the FRET based approach regions of high protein 

co-localisation were selected for the analysis, which could introduce bias to the results. We 

therefore developed new methods for probing the Claudin1-CD81 complex and determining 

whether their specific interaction dictates HCV receptor activity.  

We utilised an imaging based technique termed FIR measurement that has been previously 

used to determine the subunit composition of heterotypic olfactory channels and of the 

epithelial Na1 channel (220-221). This technique can be used to define the ratio of two 

fluorophore labelled proteins at a given location (such as the plasma membrane). Although 

this technique can define a gross stoichiometry it is limited by the resolution of the image. 

We therefore sought to measure FRET which can detect close associations, as this 

phenomena requires the two fluorophores to be within 10nm of one another. The accurate 

interpretation of the FRET signal requires an equal concentration of the two fluorophores. 

For this reason the presence of FRET can only be reliably inferred for proteins with a FIR 

value corresponding to a 1:1 stoichiometry. 

  We generated a panel of fluorescently labelled Claudin proteins and determined their 

interaction with CD81. These studies were performed in 293-T cells which lack any 

endogenously expressed Claudins.  We found receptor active Claudins 1, 6 and 9, to have a 
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defined relationship with CD81, with the FIR analysis indicating a 1:1 stoichiometry. The 

receptor inactive Claudin12 also showed a 1:1 stoichiometry, the remaining Claudins 

showied no discernable pattern of association.  

As these Claudin-CD81 complexes had a 1:1 stoichiometry the presence of FRET could be 

assessed to demonstrate whether the proteins are close enough to show energy transfer. 

FRET was only detected between the receptor active Claudins (Claudin1, 6 and 9) and CD81. 

In contrast the receptor inactive Claudin12 showed a low level of FRET that was comparable 

to non-specific protein interactions, as defined by the MAL-CD81 FRET analysis. Overall 

these results show that Claudin1, 6, 9, the receptor active Claudins, all form a heterodimer 

complex with CD81 at the plasma membrane. Using recombinant CD81 and Claudin1 

proteins we have been able to demonstrate that this interaction occurs between the EC1 of 

Claudin1 with the EC2 of CD81 with an approximate affinity of 40µM. Nakajima et al have 

reported the affinity of CD81-HCV E2 to be 92 nM (153), which indicates that the Claudin1-

CD81 interaction is weaker interaction. Transient protein interactions are typically thought 

to be short lived with weak binding values normally in the µM-mM KD range. The low KD 

values are usually a consequence of high association and dissociation rate constants (235-

238). As the KD for the Claudin1-CD81 complex is within the range for transient protein 

interactions the proteins could be present in the membrane in a state of constant flux 

between single and complex forms. This has been observed in single particle trafficking 

experiments performed by Helen Harris, which demonstrated that the two proteins diffuse 

separately before coming together and co-diffusing as a complex and then dissociating 

(Helen Harris, unpublished data).    
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The relevance of Claudin6 and 9 to HCV infection is still to be determined. Our laboratory 

previously reported using qRT-PCR that Claudin6 has a lower level of expression than 

Claudin1, with Claudin9 mRNA being undetectable in Huh-7.5 cells (180). Zheng et al 

reported that Claudin6 was also expressed in HepG2 cells (113). Claudin6 is thought to be 

primarily expressed in embryonic epithelia, showing reduced expression over time (173), 

whilst Claudin9 is reported to be expressed exclusively in the ear (239). However it should 

be noted that expression of Claudins within tissues can be altered under certain conditions 

(240), and the majority of the research has been conducted on cancerous tissue (241-243). 

It is therefore possible that Claudin6 and 9 could be expressed in the liver under particular 

circumstances, such as liver damage. There is some evidence that peripheral blood 

mononuclear cells (PBMCs) could be involved in the HCV lifecycle (244-247). PBMCs have 

been shown to have high levels of Claudin6 and 9 with no detectable Claudin1 expression 

(113). 

The direct interaction of Claudin1, 6 or 9 with the HCV particle has, so far, not been fully 

demonstrated. This could indicate that an alteration of the HCV glycoprotein conformation, 

possibly upon binding to CD81, maybe required for Claudin to directly interact with the HCV 

particle. Alternatively Claudin could function by facilitating the internalisation of the CD81-

virus complex. To ascertain whether the interaction between Claudin1 and CD81 is essential 

for HCV infection we need to determine whether perturbation of the interaction purturbs 

particle internalisation.  

In addition to the interaction of Claudin1 with CD81, other tetraspanin proteins appear to 

have an association, as indicated by our FIR and FRET analysis (CD81, CD82 and CD9). The 

presence of these interactions could be indirect due to ability of CD81 to interact with these 
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members of the tetraspanin family of proteins (125). It is known that tetraspanin webs, 

which are regions of high tetraspanin protein concentration, interact to organise other cell 

surface proteins and are involved in many biological processes (117, 122, 123 91). It is 

unlikely that the Claudin1-CD81 complex require localisation within tetraspanin webs to act 

as a receptor complex, since CD81 palmitoylation mutants, which do not interact with the 

tetraspanin web, are still receptor active (248).  
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Chapter 4: 

Modulation of Claudin1-CD81 association 
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So far we have shown that an interaction exists between the receptor active Claudin 

proteins and CD81. In order to determine if the Claudin-CD81 interaction is essential for HCV 

entry we assessed the interaction under various conditions that have been shown to reduce 

or ablate viral entry. Firstly Hepatocytes, which are the major reservoir supporting HCV 

replication in the liver, are highly polarised (216). Since all of our previous Claudin1-CD81 

FRET experiments utilised non-polarised 293T cells, we need to study receptor association in 

a polarised model system. As our group has previously published data demonstrating that 

polarisation reduces HCV entry it is important to determine the effects on the Claudin1-

CD81 complex (179-180).  

 

4.1 Effects of cell polarisation on Claudin1-CD81 association.  

To assess the effect of polarisation on HCV entry our cell line of choice is the human HepG2 

hepatoblastoma line (HepG2). The cell line polarizes in culture, forming spheroid structures 

at sites of cell-cell contact that resemble bile canaliculi in the liver. These structures contain 

tight junctions and express multiple membrane protein markers (reviewed in Ref. (216)). 

HepG2 cells were transduced to express AcGFP-Claudin1/DsRED-Claudin1 or AcGFP-

Claudin1/DsRED-CD81 and allowed to proliferate for 72hrs, whereupon polarized cells were 

identified by staining for the apical tight junction marker ZO-1 (figure 4.1 a-c) (179). At the 

basolateral surface the Claudin1-CD81 association had an R2 of 0.7 (0.56 – 0.81), a FIR value 

of 0.67 (0.56 - 0.74) and %FRET of 39% ± 13.6. These results are similar to those shown 

previously for the Claudin1-CD81 association in 293-T cells (see previous chapter). In 

contrast, receptor association at the tight junction region was very different, with Claudin1-

CD81 showing an R2 of 0.13 (0.03 – 0.33), a FIR value of 0.16 (0.6 - 0.25) and a %FRET of just 
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4.7% ± 6.4. This lack of association appears to be due to CD81 being largely excluded from 

tight junctions. Importantly, the association of Claudin1 homodimers was comparable at the 

basolateral and tight junction regions, demonstrating FRET values of 19.27% ± 14.78 at the 

basolateral surface and 16.35% ± 19.44 at the tight junctions. The %FRET for the Claudin1 

homodimer at the two locations are low, which is likely due to pools of endogenous 

Claudin1 reducing the level of FRET detected, as previously reported (184). In summary, 

Claudin1 demonstrated comparable association(s) with Claudin1 at basolateral and tight 

junction locations in polarized HepG2 cells, similar to our observations in non-polarized 

293T cells. However significant differences were noted for AcGFP-Claudin1 and DsRED-CD81 

association at the basolateral and tight junction domains of HepG2 cells. These data are 

consistent with our previous report demonstrating a role for basolateral pools of Claudin1 in 

HCV infection (179). 
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Figure 4.1: Effect of cell polarization on Claudin1-CD81 and Claudin1-Claudin1 association. 

HepG2 cells were transfected to express AcGFP-Claudin1/DsRED-CD81 and AcGFP-

Claudin1/DsRED-Claudin1 and allowed to polarize over a period of 72hrs. Apical bile 

canalicular structures were identified by staining with anti-ZO-1 and visualized with an 

alexa-633-conjugated secondary anti-rabbit Ig. A) Represents two HepG2 cells showing 

AcGFP-Claudin1 staining, B) anti-ZO-1 staining, showing the location of the tight junction 

with C) showing the merged image. The R2, FIR and %FRET values for Claudin1-CD81 and 

Claudin1/Claudin1 in 10 cells at junctional and basolateral areas are shown (D and E, 

respectively). A Kruskal-Wallis Anova with a Dunn’s Multiple Comparison Test was used to 

assess differences between basolateral and tight junction regions of the cell (*** p <0.001). 

This data is representative of two independent experiments. Images provided by Helen 

Harris and Chris Mee.  
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4.2 The role of cholesterol in CD81-CD81 and Claudin1-CD81 association(s).  

 Tetraspanin protein interactions are known to be modulated by cholesterol (249-251). 

Kapadia and colleagues reported that HCV entry is dependent on the cholesterol content of 

the host cell membrane, however, the underlying mechanism was not defined. To 

investigate a role of cholesterol in Claudin1-CD81 and CD81-CD81 association we used a 

cyclic oligosaccharide that depletes cholesterol from the plasma membrane (methyl-β-

cyclodextrin, MβCD) (219). The removal of cholesterol can be reversed by treating cells with 

MβCD saturated with cholesterol. 293-T cells expressing AcGFP-Claudin1/DsRED-CD81 were 

treated with 10mM MβCD, that removed ~50% of total cholesterol as determined using an 

Amplex Red assay kit (Invitrogen), and cholesterol levels were partially restored to 75% of 

their initial value by treating with 10mM MβCD–1mM cholesterol complexes (figure 4.2c). 

Depleting cholesterol significantly reduced both HCVpp and MLVpp entry and partial 

restoration of cholesterol increased HCVpp and MLVpp infection (figure 4.2a and b 

respectively). The removal of cholesterol led to an increase in the FIR value as well as a 

reduction in Claudin1-CD81 FRET. Untreated cells showed a AcGFP-Claudin1/DsRED-CD81 

FIR value of 0.79 (0.65-1.049) whereas cholesterol depleted cells had a FIR value of 1.28 

(0.99-1.99). The FRET value for untreated cells was 45.63% ± 8.514, that was reduced to 

22.14% ± 28.65 following cholesterol depletion (figure 4.2e). In contrast, MβCD treatment 

had no detectable effect on AcGFP-CD81/DsRED-CD81 FIR (figure 4.2d), with untreated cells 

showing a FIR value of 0.75 (0.69-0.87) compared to 0.62 (0.52-0.7) following cholesterol 

depletion. The frequency of pixels where FRET occurred between AcGFP-CD81 and DsRED-

CD81 was reduced, from 63.2% ± 14.98 to 54.8% ± 5.83, although this was not significant. 

Restoring cholesterol after depletion led to a recovery of the Claudin1-CD81 association. 

The Claudin1-CD81 had a FIR value of 0.66 (0.59-0.7) with a %FRET of 50.12% ± 10.27, 
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similar to the untreated cell values. Overall these results demonstrate that Claudin1-CD81 

association is cholesterol dependent, which may contribute to the reduced susceptibility of 

MβCD treated cells to HCV infection.  Kapada et al demonstrated that the level of CD81 

expressed at the cell surface was significantly reduced in MβCD treated cells, however we 

found that untreated and treated cells showed mean fluorescent intensities at the plasma 

membrane of DsRED-CD81 of 2111± 608.2 and 2317 ± 491.7 respectively. The Claudin1 

however showed reduced fluorescence intensity levels from 1580 ± 605.9 to 821.7 ± 209.0, 

which explains the increase in the FIR value for MβCD treated cells. The discrepancy 

between these results and those published previously may be explained by the different cell 

types with Kapadia et al using Huh-7 cells, whereas with our experiments were performed 

using the 293-T cell line (249). 
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Figure 4.2: The role of cholesterol in virus entry and CD81-CD81 and Claudin1-CD81 

association(s). 293-T cells were transfected to express AcGFP-Claudin1/DsRED-CD81 or 

AcGFP-CD81/DsRED-CD81. The cells were treated with 10mM Methyl-β-cyclodextrin  

(MβCD), 1mM Cholesterol (chol) or with 10mM MβCD followed by 10mM MβCD+1mM 

Cholesterol. The AcGFP-CLDN1/DsRED-CD81 expressing cells were assessed for HCVpp and 

MLVpp entry (a and b respectively). The association of the C) AcGFP-CD81/DsRED-CD81 

homodimer and D) AcGFP-Claudin1/DsRED-CD81 were measured and the R2, FIR and FRET 

values for 10 cells represented as dot plots. The median value is denoted by the solid 

vertical line on the plots. One way Analysis of Variance and Bonferroni's Multiple 

Comparison Test was used to determine the degree of significance (*p <0.05, **p <0.01). 

This data is representative of three independent experiments. 
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4.3 Perturbation of Claudin-CD81 association with anti-CD81 antibodies 

It has been previously demonstrated that both the binding of recombinant HCV E2 (88-89, 

91, 106) and viral infection can be inhibited by anti-CD81 monoclonal antibodies (252). Our 

group has produced a panel of anti-CD81 monoclonal antibodies which we were interested 

to determine if they have an effect on CD81-CD81 homodimer or Claudin1-CD81 

heterodimer. The panel tested consisted of 7 monoclonal antibodies and one Fab fragment. 

The antibodies have previously been shown to inhibit HCV entry into Huh7.5 cells with IC50 

values ranging for 0.067 to 1.34µM (Michelle Farquhar, unpublished data). Before 

evaluating their effects, if any, on the interaction of Claudin1 with CD81 we first assessed 

their ability to inhibit HCVpp infection of 293-T cell line stably expressing AcGFP-CLDN1. The 

cells were pre-treated with the various antibodies at a concentration of 67µM, which is a 

saturating concentration for all the antibodies (Ke Hu, private communication), before the 

inoculating H77pp or MLVpp virus (figure 4.3). The results show that all the anti-CD81 

antibodies reduce H77pp viral entry without effecting MLVpp entry. There was some 

variation in the inhibition levels at this concentration with the 2s66Fab showing the lowest 

level of inhibition of 69.4%, and 2s20 showing the greatest level of inhibition of 89.4%  

The affinity of the antibodies for CD81 was assessed by surface plasmon resonance using 

the MBP-CD81 described earlier. The MBP-CD81 was immobilised on the BIAcore 

sensorschip surface and the antibodies passed over the chip surface at various 

concentrations to obtain a measure of affinity (Figure 4.4). The affinity of the antibodies was 

determined by plotting the maximal level of binding for each concentration on an X,Y scatter 

plot and fitting a non-linear regression line (figure 4.4b). The values of the theoretical 

binding capacity (Bmax, Response Units (RU)) and affinity (KD, µM) are shown in figure 4.3c. 
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The antibodies show different KD values, ranging from 1.22µM for 2s20 to 142.7µM for 

1s135. The lowest Bmax value seen was 249.1 RU for 1s337 antibody, with the highest 

noted for 2s20 with a value of 2407 RU. The results show a wide range in the binding 

capacities of the various antibodies and the concentration of antibody required to saturate 

CD81. However, we found no correlations between the Bmax, the affinity, and level of viral 

inhibition. The antibodies were also tested by other members of our group for their binding 

capacity to Huh7.5 cells, which again showed no correlation to the Biacore results. The likely 

reason for the lack of correlation between the Biacore and cell based experiments is the 

context of the CD81 protein. The Biacore uses a recombinant form of the EC2 of CD81 that 

will immobalised to the chip surface via lysine residues and may therefore adopt various 

orientations. The full length CD81 on the cell surface is not only restricted to its orientation 

but will also be interacting with other membrane proteins, which may alter how the 

antibodies are interacting with the protein. However the Biacore result confirms that all 

antibodies bind to CD81 EC2. 
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Figure 4.3: Anti-CD81 inhibition of HCVpp infection. A 293-T cell line stably expressing 

AcGFP-Clsudin1 was evaluated for its ability to support HCVpp and MLVpp entry in the 

presence of Anti-CD81 monoclonal antibodies. Data are represented as specific infectivity 

(Relative Light Units, RLU) and represent the mean plus the standard error of three 

replicates. A) Shows the specific infectivity of HCVpp. B) shows the specific infectivity of 

MLV. A One way Analysis of Variance with a Bonferroni's Multiple Comparison Test was 

used to determine the degree of significance (***p<0.001). This data is representative of 

two independent experiments.  
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Figure 4.4: Determination of the anti-CD81 mAb affinity for MBP-CD81 by surface plasmon 

resonance. MBP-CD81 was immobilized onto the bio-sensor chip surface and a panel of 

anti-CD81 antibodies flowed over the chip surface at various concentrations, ranging from 

500µM to 3.9µM. A) shows the sensograms for 2s155 at the various concentrations, where 

the arrow indicates ‘association time’ (i) when antibodies are flowed over the respective 

chip surfaces and the ‘dissociation phase’ (ii), when antibody injection is stopped. B) shows 

the x,y scatter plot produced by plotting the response units (RU) at the end of the end of the 

association phase against the concentration. A non-linear regression line was fitted to 

produce the Bmax and affinity values shown C. This data is representative of two 

independent experiments.  
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4.4 Anti-CD81 modulation of CD81-CD81 and Claudin1-CD81 association(s). 

The effect of the antibodies was assessed in cells co-expressing AcGFP-CD81/DsRED-CD81 or 

AcGFP-Claudin1/DsRED-CD81. All the antibodies showed a minimal perturbation of CD81 

homodimers (figure 4.5a), with a range of FIR values of the antibody treated cells from 0.46 

(0.39-0.57) to 0.71 (0.5-0.95), with no significant differences from untreated cells with a FIR 

value of 0.56 (0.46-0.68). There was also no difference between %FRET values, with 

untreated cells showing a %FRET of 34.4% ± 6.44 and antibody treated cells demonstrating a 

range of FRET values between 27% ± 13.7 to 41.5% ± 7.6. In contrast, Claudin1-CD81 

association was significantly reduced by all of the anti-CD81 monoclonal antibodies, with 

the exception of 1s337 (figure 4.5b). Antibody treatments caused a large reduction in the R2, 

which means that either a gradient or %FRET can be estimated. Antibody 1s337 showed an 

R2 of 0.28 (0.077-0.35), a FIR value of 0.67 (0-0.870) and a %FRET of 43.97% ± 33.2. Although 

1s337 reduced Claudin1-CD81 association, as shown by the FIR and FRET values, the 

difference was not significant compared to untreated cells (R2 0.5 (0.44-0.62), FIR value of 

0.67 (0.55-0.77) and %FRET of 43.22% ± 6.4). In addition to the bivalent antibodies we 

studied the effect of a monovalent 2s66 FAb fragment on AcGFP-CD81/DsRED-CD81 and 

AcGFP-Claudin1/DsRED-CD81 association. The 2s66 FAb bound to CD81 with a lower affinity 

than the complete IgG molecule (44.75µM ± 4.39 compared to 3.33 µM ± 0.414), as shown 

in figure 4.4c, it also showed a lower level of inhibition at the single tested concentration 

(69.4% and 81.2% respectively). The 2s66 Fab had no detectable effect on AcGFP-

CD81/DsRED-CD81 or AcGFP-Claudin1/DsRED-CD81 FIR or FRET values. This result suggests 

that bivalent engagement and possible cross-linking of CD81 is essential to modulate lateral 

protein interactions. In summary, bivalent antibody engagement of CD81 perturbs its 

interaction with Claudin1 and may contribute to the neutralizing activity of these mAbs. 
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Figure 4.5: Anti-CD81 modulation of CD81-CD81 and CLDN1-CD81 association(s). 293T cells 

were transfected to express AcGFP-CD81/DsRED-CD81 or AcGFP-CLDN1/DsRED-CD81 and 

treated with a panel of anti-CD81 mAbs at equimolar concentrations (13µM) for 1h at 37oC. 

The effects of mAb treatment on AcGFP-CD81/DsRED-CD81 (A) and AcGFP-CLDN1/DsRED-

CD81 (B) R2, FIR and %FRET of ten cells is presented. A Kruskal-Wallis anova with a Dunn’s 

Multiple Comparison Test was used to determine if the treatments caused a significant 

alteration from an untreated control (***p <0.001). This data is representative of two 

independent experiments. 
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To confirm the results of anti-CD81 mAb perturbation of Claudin1-CD81 FRET association, 

we used an independent surface Plasmon resonance technique to measure the effect(s) of 

antibodies on recombinant MBP-CD81 and MBP-Claudin1 association. MBP-CD81 was 

bound to the chip surface and the panel of anti-CD81 mAbs injected at a concentration of 

500µM followed immediately by MBP, MBP-CD81 or MBP-Claudin1 at a concentration of 

750µg/ml. To define the level of specific binding of MBP-CD81 or MBP-Claudin1 to tethered 

MBP-CD81 in the presence of the panel of antibodies we determined the net change in 

response units compared to MBP alone. In short the final response unit reached after 

injecting the MBP was subtracted from the response unit shown for the MBP-CD81 or MBP-

Claudin1 response unit (figure 4.6a and b). A positive value for the response unit indicates 

that binding has occurred between the MBP-CD81 of MBP-Claudin1 in the presence of the 

antibody, with a neutral or negative value indicating the antibody inhibiting the association 

of the proteins with the tethered MBP-CD81. As a positive control of MBP-CD81 and MBP-

Claudin1 association was assessed in the presence of a commercial anti-MBP antibody (NEB, 

Clone No. E8032), which should bind to the tethered MBP-CD81 without interfering with the 

CD81 moiety. As shown in figure 4.6c although there was a reduction in most of the 

antibodies compared to the anti-MBP control, none could prevent the CD81-CD81 

interaction, which mirrors the results shown previously. As predicted the majority of 

antibodies, with the exception of 1s337, 2s155 and 2s66Fab, reduced CD81-Claudin1 

association as indicated by the negative change in response unit values. These results reflect 

the pattern shown in the imaging based techniques, with the exception of the mAb 2s155  
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which was unable to prevent CD81-Claudin1 association. It is possible that this discrepancy 

is due to subtle differences in the interactions of recombinant fusion proteins and full length 

membrane tethered molecules. One may hypothesise that the protein conformation is 

restrained in the membrane, whereas the purified loops may interact in ways that are not 

prevented by the 2s155 antibody.   
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Figure 4.6: Determination of the ability of anti-CD81 antibodies to inhibit CD81-CD81 and 

Claudin1-CD81 interaction(s) by surface plasmon resonance. MBP-CD81 was immobilized 

onto the bio-sensor chip surface. A panel of anti-CD81 antibodies and a commercial anti-

MBP antibody were flowed over the chip surface at a concentration of 500µM then MBP, 

MBP-CD81 or MBP-Claudin1 was then injected at a concentration of 750ug/ml. A) Shows the 

sensogram for anti-MBP injected at the time point indicated by arrow i. At arrow ii the 

antibody injection is stopped and either MBP or MBP-CD81 injected. The amount of MBP-

CD81 or MBP-Claudin1 bound is determined by subtracting the response units change (ΔRU) 

observed with MBP between time points ii and iii from MBP-CD81 or MBP-Claudin1 values. 

B) Shows an expanded view of the sensorgram between regions ii and iii. C) Shows a table of 
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the ΔRU for the MBP-CD81 and MBP-Claudin1 binding in the presence of various anti-CD81 

antibodies. This data is representative of two independent experiments. 

 4.5 Anti-Claudin1 modulation of Claudin1-CD81 association(s). 

The results obtained using the panel of anti-CD81 monoclonal antibodies led us to 

investigate the effects of anti-Claudin1 antibodies on receptor association. The first 

antibody we obtained was a polyclonal serum produced by the Thomas Baumert group 

(INSERM, Université de Strasbourg) (253). This polyclonal serum was raised in Wistar rats 

using a genetic immunisation method and post-immune sera were screened for reactivity 

with Bosc cells, an Adenovirus 5 transformed 293-T cell line, transduced to express Claudin1. 

The resulting antiserum recognised epitopes in the extracellular region of Claudin1 (253). 

We first sought to confirm the specificity of the anti-Claudin1 and to determine which 

region the antiserum may be binding. To achieve this we performed a FACS based screen 

using an AcGFP labelled panel of Claudin family members. To act as a negative control a pre-

immune serum from the inoculated animal was used. The results, shown in figure 4.7d, 

show that the polyclonal anti-Claudin1 only recognises AcGFP-Claudin1. The other members 

of the Claudin family failed to bind the antibody above the background levels observed with 

the pre-immune serum, with the exception of Claudin17, which showed a low level staining. 

To assess the region of Claudin1 recognised by the anti-serum we characterised its reactivity 

with chimeric Claudin1/7 proteins (kind gift of Matt Evans (110)). These chimeric proteins 

are schematically shown in Figure 4.8 and consist of a Claudin7 backbone encoding the N-

terminal third up to residue G49 (N1/3), half up to residue S58 (N1/2), or C-terminal EC1 

(C1/2), residues S58 to R82, of Claudin1 (110). Overall the results show that the polyclonal 

serum specifically recognising the N-terminal third of the Claudin1 EC1 (figure 4.8g).  
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Figure 4.7: Anti-Claudin1 polyclonal antibody specificity. 293-T cells were transfected to 

express a panel of AcGFP labelled Claudin family members. The cells were  incubated with a 

pre-immune serum or with anti-Claudin1 serum at a dilution of 1:100. A) Shows the FACS 

plot for AcGFP-Claudin1 cells stained with the pre-immune serum, B) the anti-Claudin1 anti-

serum. C) shows a FACS plot for anti-serum reactivity with AcGFP-Claudin17 expressing 293T 

cells. D) Shows the percentage of antibody binding to Claudin positive cells with the 

thresholds being set by naive 293-T cells. This data is representative of three independent 

experiments.  
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Figure 4.8: Anti-Claudin1 polyclonal epitope mapping using chimeric Claudin1 and 7 

proteins. 293-T cells were transfected to express fluorophore labelled Claudin1, Claudin 7 or 

one of the Claudin7/1 chimeras. A schematic diagram of the different chimeras is shown in 

a-f. A) is Claudin1, B) Claudin 7, C) Claudin 7/1 N1/3, D) Claudin7/1 N1/2, E) Claudin 7/1 C1/2 

and F) Claudin 7/1 EC2. G) Shows the level of antibody binding as determined by FACS 

analysis. This data is representative of two independent experiments.  
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The anti-Claudin1 antiserum was assessed for its ability to inhibit HCVpp entry and for its 

effect on Claudin1-CD81 association. The antiserum was incubated with the AcGFP-Claudin1 

293-T stable cell line, co-expressing DsRED-CD81, at a dilution of 1:100 or 1:400 for 1hr prior 

to adding HCVpp of MLVpp. The results show that a 1:100 dilution of anti-Claudin1 reduced 

HCVpp infection by 87% of the pre-immune serum levels (figure 4.9a). The anti-Claudin1 

also had a significant effect on Claudin1 with CD81 association (figure 4.9d). Although the 

antibody had no effect on FIR values there was a significant dose dependent reduction in 

Claudin1-CD81 FRET, where the 1:100 dilution reduced FRET from 41.72% ± 5.15 to 6.11% ± 

5.37; and the 1:400 dilution reduced FRET to 26.29% ± 8.6. The anti-Claudin1 only affected 

Claudin1-CD81 association, there was no effect on CD81-CD81 or Claudin1-Claudin1 

homodimer associations (figure 4.9c and e, respectively). 
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Figure 4.9: The effect of an anti-Claudin1 serum on viral entry and CD81-CD81, Claudin1-

CD81 and Claudin1-Claudin1 association(s). 293-T cells were transfected to express AcGFP-

CD81/DsRED-CD81, AcGFP-Claudin1/DsRED-CD81 or AcGFP-Claudin1/DsRED-Claudin1. 

These cells were treated with pre-immune serum, a 1:100 or a 1:400 Dilution of anti-CLDN1 

polyclonal antibody. The AcGFP-CLDN1/DsRED-CD81 cells were assessed for HCVpp and 

MLVpp entry (a and b respectively). The association of the C) AcGFP-CD81/DsRED-CD81 

homodimer, D) AcGFP-Claudin1/DsRED-CD81 and E) AcGFP-Claudin1/DsRED-Claudin1 were 

assessed in the presence of the anti-CLDN1 polyclonal. R2, FIR and %FRET values for  10 cells 

are represented in the dot plots and  the median value denoted by the solid vertical line.  

One way Analysis of Variance and Bonferroni's Multiple Comparison Test was used to 

determine the degree of significance (*p <0.05, **p <0.01, ***p<0.001). This data is 

representative of three independent experiments.  
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Following the production of the polyclonal serum the Baumert group went on to produce a 

panel of anti-Claudin1 mAbs, from which we were able to obtain 3 different clones (6E1, 

7D3 and 8A9) (254). A commercial anti-Claudin1 monoclonal has also recently become 

available from R&D systems (R+D, Clone no. 421203). As with the polyclonal antibody, we 

tested the specificity of these clonal antibodies and determined the binding site for each 

(figure 4.10). All antibodies showed specificity for Claudin1 without binding to other Claudin 

proteins. As with the polyclonal serum, Claudin17 showed a low level binding of mAbs 6E1, 

7D3, 8A9 and R&D. The Claudin7/1 chimeras indicate that all Claudin1 mAbs bind to the N-

terminal third of the EC1 loop.  

The anti-Claudin1 monoclonal antibodies were assessed for their ability to inhibit HCVpp 

entry and to perturb Claudin1-CD81 association.  All of the antibodies significantly reduced 

HCV entry without affecting MLVpp infection at a final concentration of 67µM (figure 4.11a 

and b respectively), with mAbs 6E1, 7D3, 8A9 and R+D inhibiting HCVpp by 57%, 42%, 60%, 

and 41%, respectively. This level of reduction was similar to that published for the 

antibodies (254). The authors did show a further reduction in pseudoparticle entry at higher 

antibody concentrations of 670µM (254). 

The anti-Claudin1 mAbs had no effect on CD81-CD81 homodimers but significantly 

disrupted Claudin1-CD81 association (figure 4.11c and d respectively). The FIR value for the 

mAbs 6E1, 7D3, 8A9 and the R+D was 0 (0-0.41), 0.2 (0-0.8), 0 (0-0.42) and 0.66 (0-1.18), 

respectively compared to an untreated control of 0.7248 (0.6 - 0.9). 6E1 and 8A9 showed a 

significant difference in the FIR value compared to the untreated control, there was also a 

reduction in the 7D3 gradient. The R+D antibody seemed to cause an increase in the inter-

quartile range compared to the untreated cells, which although the median value was 
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similar the association is less well defined.  All these results are in contrast to that shown for 

the polyclonal rat serum, which showed no effect on the FIR value. All of the antibodies led 

to a significant reduction in Claudin1-CD81 FRET of 7.3% ± 12.35, 9.28% ± 12.51, 9.6% ± 16.0 

and 10.66% ± 14.08 for mAbs 6E1, 7D3, 8A9 and R+D, respectively).  
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Figure 4.10: Anti-Claudin1 mAb specificity. 293-T cells were transfected to express a panel 

of AcGFP labelled Claudin family members and Claudin7/1 Chimeras. The cells were 

incubated with anti-Claudin1 monoclonal antibodies at a concentration 67µM. The bar chart 

shows the percentage of antibody binding,that is the percentage of cells positive for Claudin 

antibody binding, with the thresholds being set by naive 293-T cells. This data is 

representative of two independent experiments.  
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Figure 4.11: The effect of anti-Claudin1 monoclonal antibodies on viral entry and CD81-

CD81 and Claudin1-CD81 association(s). 293-T cells were transfected to express AcGFP-

CD81/DsRED-CD81, AcGFP-Claudin1/DsRED-CD81 or AcGFP-Claudin1/DsRED-Claudin1. The 

cells were treated with the various anti-CLDN1 mAbs at a concentration of 67µM for 1hr at 

37oC. AcGFP-CLDN1/DsRED-CD81 cells were assessed for HCVpp and MLVpp entry (A and B 

respectively). The association of the C) AcGFP-CD81/DsRED-CD81 homodimer and D) AcGFP-

Claudin1/DsRED-CD81 heterodimer were assessed in the presence of the Anti-CLDN1 mAb. 

The R2, FIR and FRET values for 10 cells are represented in the dot plots and the median 

value is denoted by a solid vertical line. One way Analysis of Variance and Bonferroni's 

Multiple Comparison Test was used to determine the degree of significance (*p <0.05, **p 

<0.01, ***p<0.001). This data is representative of two independent experiments.  
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4.6 Discussion 

The observation that only receptor-active Claudins associate with CD81 provides supporting 

evidence for a role of these protein complexes in HCV entry. To further explore the 

conditions in which these complexes exist and whether disruption of the complexes limits 

HCV entry we studied the effects of cell polarization and receptor specific antibodies on 

receptor association. The major reservoir supporting HCV replication in vivo is thought to be 

hepatocytes in the liver. Hepatocytes are polarized and the results shown so far are for 

Claudin1-CD81 association in non-polarised 293-T cells.  We therefore needed to extend our 

investigation to study Claudin1-CD81 association in a polarised cell.  

Hepatocytes polarise with at least two basal surfaces facing the circulation and a branched 

network of grooves between adjacent cells that constitute the apical or bile canalicular 

surface (255). Tight junction strands encircle the apical region and comprise multiple 

transmembrane, scaffolding, and signalling proteins (reviewed in (191)). We recently 

reported Claudin1 expression at basolateral and apical hepatocyte membranes in normal 

liver tissue (256) and in polarized HepG2 cells, with an enrichment at tight junction 

associated apical sites (179). To investigate the presence and location of receptor complexes 

in the polarized HepG2 hepatoma cell line, we transduced HepG2 cells to stably express 

AcGFP- and DsRED-tagged versions of Claudin1 and CD81. Claudin1 was found to associate 

with basolateral pools of Claudin1 and CD81 with reduced FRET values (36 and 25%, 

respectively) compared with 293T cells, most likely representing competition from 

endogenous Claudins, as previously reported (184). The polarised cells have large pools of 

Claudin1 at the tight junction region, identified by ZO-1 staining, with CD81 being largely 

excluded from these apical sites and exhibiting a minimal association with Claudin1 (figure 
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1.7). HCV enters the liver via the sinusoidal blood, and so the virus is most likely to 

encounter receptors expressed on the sinusoidal or basal surface of the hepatocyte. Our 

current data, showing that Claudin1 receptor activity associates with the formation of 

Claudin1-CD81 complexes at the basolateral surface of polarized hepatoma cells, support a 

model where virus engagement of Claudin1-CD81 complexes at the basal membrane may 

initiate the particle internalization process (184). At present it is unknown whether any of 

the viral receptors, including CD81 and Claudin1, are endocytosed with HCV, and further 

research on the trafficking and endocytic routing of receptor complexes and virus particles 

in polarized hepatocytes is required to fully appreciate the entry process of HCV. 

A previous publication reported that the level of host cell cholesterol directly impacted on 

HCV entry (249). As tetraspanin protein interactions are known to be modulated by 

cholesterol (249-251), we assessed whether depletion of cholesterol had any effect on 

Claudin1-CD81 association. Depleting cholesterol with methyl-β-cyclodextrin significantly 

reduced Claudin1-CD81 association (from 45.63% ±8.514 to 22.14% ± 28.65), whereas the 

CD81-CD81 association was unaffected. The Claudin1-CD81 association was restored when 

cholesterol was re-introduced into the cell. These results suggest that observations by 

Kapadia et al could be due to the removal of the Claudin1-CD81 complex preventing HCV 

entry. The authors showed that the level of expression of CD81 is lowered (249).  

Koutsoudakis et al have reported that there is a threshold level of CD81 required for entry 

to occur (257). We however found that the level of CD81 remains constant, with slight drop 

in the levels of Claudin1 at the cell surface. The use of different cell lines and detection 

methods may account for the different observations.  
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The observation that recombinant forms of MBP-Claudin1 EC1 and MBP-CD81 EC2 associate 

demonstrates a role for these domains in defining protein receptor complexes. Our group 

cloned a number of anti-CD81 mAbs that recognise conformational epitopes in EC2, 

providing tools to probe the domains of CD81 associating with Claudin1. All of the anti-CD81 

monoclonal antibodies reduced FRET between CD81 and Claudin1 and yet had minimal 

impact on CD81-CD81 interactions (figure 4.4), which were verified by BIAcore (figure 4.6) 

The CD81 in both the FRET and Biacore are in an oligomeric form, CD81 is known to dimerise 

and this is required for HCV entry (120, 152). A Fab fragment of one antibody, 2s66, had 

minimal effects on the Claudin1-CD81 association suggesting that cross-linking of CD81 may 

be necessary to perturb the CD81 association with Claudin1 (figure 2.4 and 2.5). As the Fab 

fragment could still neutralise viral entry, albeit at a significantly lower titre, we can only 

suggest that disruption of the Claudin1-CD81 complex contributes but may not be the main 

mechanism of inhibition of viral entry for this antibody.  Whether the cross linking of the 

CD81 dimers is required for the antibodies to prevent the interaction of Claudin1 with CD81 

is unknown. Without a detailed idea of the antibody binding site it is unknown whether the 

steric hindrance is negated by the smaller size of the Fab fragment, whereas the larger IgG 

may be large enough to perturb the interaction. One would assume that the lack of effect 

on the homotypic interaction and the perturbation of the Claudin1-CD81 interaction 

demonstrate that the antibodies are directed to regions responsible for Claudin1 

interactions. Using the BIAcore technology we are able to look at the interaction of Claudin1 

with CD81 in isolation but this comes with a cost. The recombinant proteins are not full 

length proteins and are unlikely to be constrained by the same physical environment as the 

plasma membrane. The tethering of extracellular loops of the full length proteins by their 

transmembrane domains may lead to a different confirmation of the loops. The FRET allows 
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for the study of the interaction in the natural environment but with the unknown of other 

interacting proteins. The results from the two techniques have demonstrated the 

interaction of the two proteins.  

In addition to the anti-CD81 antibodies we were also able to test a number of anti-Claudin1 

antibodies. These antibodies could also inhibit viral entry and were shown to perturb the 

Claudin1-CD81 association. The binding of the anti-Claudin1 antibodies to the N-terminal 3rd 

of the Claudin1 EC1 indicate this is the region may be involved in interactions with the EC2 

of CD81. The polyclonal anti-Claudin1 has been reported to inhibit E2 protein and HCV 

particle binding to Huh7.5.1 cells, with E1 still binding to the cell (253). Given the limited 

information supporting a role for Claudin1 to directly associate with virus these results are 

somewhat unexpected. The interaction of HCV with CD81 has been demonstrated to be 

independent of Claudin1 (153, 258) with the anti-Claudin1 mAbs causing a dissociation of 

the Claudin1-CD81 complex that would make it unlikely the antibodies are inhibiting the 

interaction of the virus with CD81.  

Overall the results demonstrate that the perturbation of the Claudin1-CD81 complex by 

cholesterol depletion and specific antibodies prevents viral entry. We hypothesise that 

Claudin1 modulates CD81 interactions with the virus that promote virus internalization. The 

interaction of proteins may occur between the N-terminal 3rd of Claudin1 with specific 

regions on the CD81 EC2. 
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Chapter 5: 

Identification of the Claudin-CD81 interface by site 

directed mutagenesis 
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In the previous chapter we demonstrated that Claudin1 association with CD81 was 

disrupted by various treatments which reduced HCV infection, supporting a role for the co-

receptor complex in virus entry.  To ascertain whether Claudin1 association with CD81 is 

essential for HCV infection we studied the interaction of several published and newly 

generated receptor inactive mutants. Evans et al reported that specific residues in the EC1 

of Claudin1 and Claudin7 which, when interchanged, could alter the protein’s ability to act 

as a co-receptor. Claudin 1 and 7 differ in 5 residues within the EC1 loop, with two of these 

residues being the determining factor for receptor activity (110). Claudin1 encodes an 

isoleucine and a glutamic acid at positions 32 and 48, respectively. A single change to 

methionine at position 32 or lysine at position 48, encoded in Claudin7, reduced the 

proteins ability to act as a co-receptor, with a double mutant rendering the protein receptor 

inactive. The reverse was observed when Claudin7 residues were mutated to encode the 

Claudin1 amino acids (110). Since Claudin1 EC1 interacts with CD81 and the anti-Claudin1 

antibodies that perturb co-receptor association bind to the same region we hypothesized 

that these residues could play a direct role in Claudin1 association with CD81. We first 

sought to demonstrate the effect(s) of receptor inactivating mutations on Claudin1 

association with CD81 and secondly to define the residues in the two proteins that are 

essential for this interaction.  
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5.1 Localisation and antigenicity of fluorophore labelled Claudin1 and 7 mutants 

First we fluorophore labelled the mutant proteins and expressed them in 293-T cells to 

assess their localisation (figure 5.1). Wild type Claudin1 shows a strong staining pattern at 

the plasma membrane, whilst Claudin7 has a more punctuate appearance. The Claudin1 

I32M/E48K mutation causes the protein to have a Claudin7-like phenotype with punctuate 

regions at the plasma membrane and increased intracellular pools. The single mutation of 

Claudin1 at the I32M or E48K positions induces an intermediate phenotype, although the 

I32M mutant appears to be closer to a Claudin7 phenotype. Mutation of Claudin7 caused 

the protein to localise in a more Claudin1 phenotype. The single mutations of M32I and 

K48E again produced an intermediate phenotype with the double mutant showing a more 

uniform localisation at the plasma membrane.   

The antigenicity of the mutant proteins was assessed using the panel of anti-Claudin1 

antibodies (figure 5.2). 293-T cells transduced to express wild type and mutant Claudin1 and 

Claudin7 proteins, were stained with anti-Claudin1 polyclonal and anti-Claudin1 6E1, 7D3, 

8A9 and R+D monoclonal antibodies (figure 5.2). As shown in the previous chapter the 

antibodies showed a high level of binding to Claudin1 wild type protein. The Claudin1 I32M 

mutant also showed a high level of binding, equivalent to that of wild type. Mutating 

Claudin1 at position 48 from a glutamic acid to a lysine prevented the binding of the 

antibodies. As the antibodies are shown to bind within the N-terminal third of the protein, 

their inability to bind Claudin1 with this mutation could be due to this amino acid being part 

of the antibody epitope. The Claudin7 K48E mutant showed a low level of binding with two 

anti-Claudin 1 antibodies:  7D3 and 8A9 monoclonal antibodies bound 17% and 33% of cells. 

The Claudin7 M32I/K48E double mutant showed higher levels of binding for these two 
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antibodies, 32% for 7D3 and 50% for 8A9, with the polyclonal anti-Claudin1 binding to 33% 

of the cells.  The ability of the M32I mutation in Claudin7 to increase the level of binding of 

the antibodies is a little unexpected as the corresponding mutation in Claudin1 had no 

effect on antibody binding. However, the amino acid sequence of Claudin1 and Claudin7 

differ in the N-terminal third at five positions in total (residues 31, 32, 33, 41 and 48). The 

M32I change in the context of the flanking glutamine at position 31 and serine at position 33 

could favourably alter the structure to improve the availability of this antibody epitope. 
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Figure 5.1: Localisation of fluorophore labelled Claudin1 and 7 mutant proteins. 293-T cells 

were transfected with the various Claudin1 and 7 mutants, which contain an AcGFP epitope 

fused to the N-terminus. Images produced are laser scanning confocal images taken using a 

63 x 1.2NA water immersion objective and a meta head confocal microscope (Zeiss). Size 

bars are equal to 20μm. This data is representative of two independent experiments. 
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Figure 5.2: Antigenicity of Claudin1 and 7 mutants. 293-T cells were transfected to express 

a panel of AcGFP labelled Claudin1 and Claudin7 mutants. The cells were incubated with the 

anti-Claudin1 polyclonal antibody at a concentration of 1:100, or with the panel of anti-

Claudin1 monoclonal antibodies at a concentration 67µM. A) Shows the FACS plot of the 

AcGFP-Claudin1 wild type cells incubated with the Rat pre-immune serum, realized with an 

Alexaflour 633 anti-Rat IgG. B) shows the same cells stained with the anti-Claudin1 

polyclonal serum, 51% of cells expressed AcGFP-Claudin1, the anti-Claudin1 polyclonal 

serum bound to 91% of these cells (47.5%/51.3%), similar pairs of FACS plots were obtained 

for each of the mutant expressing cell lines (data not shown) C) The table shows the 

percentage of antibody binding to cells that are expressing the Claudin protein. This data is 

representative of two independent experiments. 
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5.2 Receptor activity of labelled Claudin1 and Claudin7 mutant proteins 

Having assessed protein localisation and antigencitiy we evaluated the ability of the mutant 

proteins to support HCVpp entry. The Claudin1 wild type demonstrated a robust level of 

entry with a mean RLU of 24013 ± 1794. All mutations in Claudin1 reduced HCVpp entry to 

the level observed for naive 293-T negative control. In contrast, mutations in Claudin7 

showed a marked increase in receptor activity. The mutants showed entry levels of 49.9%, 

62.7% and 68.2% for the M32I, K48E and M32I/K48E respectively, compared to the entry 

mediated by the wild type Claudin1. Interestingly the Claudin1 E48K and Claudin7 K48E have 

similar levels of entry, suggesting that mutation of this residue has a greater ability to 

change the receptor activity of Claudin7 than of Claudin1.  
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Figure 5.3: Viral receptor activity of fluorophore labelled Claudin1 and Claudin7 mutants. 

293-T cells were transfected to express AcGFP-Claudin1 and Claudin7 mutants and their 

ability to support HCVpp and MLVpp entry assessed. Data is represented as specific 

infectivity (Relative Light Units, RLU) and represents the mean plus the standard error of 

three replicates. A) Shows the specific infectivity of HCVpp. B) shows the specific infectivity 

of MLV. C) Shows the percentage of the cells expressing Claudin as determined by FACS 

analysis. A One way Analysis of Variance with a Bonferroni's Multiple Comparison Test was 

used to determine the degree of significant difference from the naive 293-T negative control 

(***p<0.001). This data is representative of two independent experiments. 
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5.3 Homotypic association of Claudin mutants and their association with CD81 and 

Occludin  

Analysis of the panel of AcGFP-Claudin mutants for their association with DsRED-CD81 and 

DsRED-Occludin was performed using the FIR and FRET methodologies. The results are 

shown in figure 5.3 and table 5.1. AcGFP-CLDN1 and AcGFP-CLDN7 wild-type proteins 

showed the expected high and low FIR values with CD81 and Occludin, as previously 

observed (Table 1). Interestingly, the two mutations in CLDN1 (I32M and E48K), either alone 

or in combination, abrogated any association with CD81 or Occludin. Consequently, no FIR 

value or %FRET could be assigned to the mutants for the CD81 or Occludin interaction. In 

contrast, both the single and double complementary changes in CLDN7 (M32I, K48E and 

M32I/K48E) resulted in a mutated molecule that showed a clear association with CD81 (17% 

± 18.45, 25.32% ± 25.83 and 40.5% ± 16.62 %FRET for M32I, K48E and M32I/K48E, 

respectively). These %FRET values were not significantly different from those seen for 

Claudin1-CD81 association. Interestingly, the mutations did not promote Claudin7 

association with Occludin, suggesting that direct Claudin-Occludin interactions are not 

required for Claudin receptor activity.  

In order to perform their barrier function Claudins form strands within the plasma 

membrane of a cell. These cis-interactions occur in addition to the trans-interacts with 

Claudins on opposing cells (170, 172). To determine whether the mutations affect protein 

cis-interactions we assessed their ability to form homo-dimers. We found that both wild 

type Claudin1 and Claudin7 can form homodimers (figure 5.3 and table 5.1), with %FRET 

values ranging from 12 – 29%, with only Claudin1 I32M/E48K double mutant (12.38% ± 
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11.02) showing a significant reduction in %FRET relative to the wild type protein (29% ± 

5.97).  

Evans and colleagues reported that the interchange of amino acid residues at positions 32 

(I/M) and 48 (E/K) rendered Claudin1 inactive and Claudin7 active for infection, however the 

authors did not attempt to elucidate the mechanism(s) by which this loss arose. The results 

obtained here demonstrate that mutations in Claudin1 abrogate CD81 association. In 

contrast, mutations in Claudin7 have the reverse effect promoting a Claudin7-CD81 receptor 

complex. Although the Claudin1 mutants lost their association with Occludin there was no 

equivalent gain of association for the Claudin7 mutants, leading us to suggest that direct 

Claudin-Occludin association is not essential for viral receptor function.     
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Figure 5.4: Effect(s) of Claudin1 and Claudin7 EC1 mutations on CD81 and Occludin 

association. 293T cells were transfected to express fluorescence-tagged mutant forms of 

AcGFP-Claudin and either DsRED-CD81 (A) or DsRED-Occludin (B), and the degree of 

association between fluorophore-tagged proteins assessed by FIR and FRET analysis. C) 293T 

cells were transfected with AcGFP- and DsRED-tagged versions of Claudin constructs to 

assess the effect of EC1 mutations on Claudin-Claudin cis-interactions. Median FIR and FRET 

values from ten individual cells are presented (*p<0.05, **p<0.01, ***p<0.001). This data is 

representative of two independent experiments. 
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Table 5.1 Fluorescent tagged Claudin mutant homotypic associations and heterotypic 

associations with CD81 and Occludin. 

       

  R2 (IQR)* FIR (IQR) %FRET ± sd# 

CD81 association with:      

Claudin1 0.695 (0.63 - 0.81) 0.673 (0.62 - 0.73) 44.59 ± 9.18 

Claudin1 I32M 0.029 (0.02 - 0.07)  ND  ND 

Claudin1 E48K 0.015 (0.01 - 0.06)  ND  ND 

Claudin1 I32M/E48K 0.049 (0.01 - 0.11)  ND  ND 

Claudin7  0.009 (0.01 - 0.04)  ND  ND 

Claudin7 M32I 0.182 (0.05 - 0.28) 0.475 (0.34 - 0.63) 17 ± 18.45 

Claudin7 K48E 0.239 (0.15 - 0.27) 0.444 (0.36 - 0.75) 25.32 ± 25.83 

Claudin7 M32I/K48E 0.339 (0.26 - 0.44) 0.668 (0.52 - 0.93) 40.5 ± 16.62 

        

Occludin association with:       

Claudin1 0.386 (0.29 - 0.54) 0.692 (0.6 - 0.82) 47.85 ± 3.41 

Claudin1 I32M 0.117 (0.05 - 0.19)  ND  ND 

Claudin1 E48K 0.101 (0.03 - 0.16)  ND  ND 

Claudin1 I32M/E48K 0.151 (0.07 - 0.24)  ND  ND 

Claudin7  0.114 (0.04 - 0.18)  ND  ND 

Claudin7 M32I 0.034 (0.01 - 0.07)  ND  ND 

Claudin7 K48E 0.043 (0.00 - 0.24)  ND  ND 

Claudin7 M32I/K48E 0.093 (0.04 - 0.23)  ND  ND 

        



139 

 

 

 

 

Homotypic association with:       

Claudin1 0.8771 (0.78 - 0.93) 0.835 (0.67 - 1.29) 29 ± 5.97 

Claudin1 I32M 0.7204 (0.58 - 0.86) 1.076 (0.98 - 1.31) 18.39 ± 11.03 

Claudin1 E48K 0.7642 (0.59 - 0.86) 0.673 (0.41 - 0.78) 19.95 ± 8.68 

Claudin1 I32M/E48K 0.5928 (0.38 - 0.79) 0.413 (0.22 - 0.58) 12.38  ± 11.02 

Claudin7  0.6758 (0.56 - 0.81) 1.379 (1.28 - 1.73) 22.31 ± 6.4 

Claudin7 M32I 0.6078 (0.55 - 0.73) 1.318 (1.02 - 1.77) 17.55 ± 9.29 

Claudin7 K48E 0.7805 (0.61 - 0.87) 1.067 (0.43 - 1.31) 23.74 ± 10.7 

Claudin7 M32I/K48E 0.7822 (0.74 - 0.87) 1.116 (1.07 - 1.15) 28.67  ± 17.93 

* – Interquartile range        

# – Standard deviation     

ND – Not Determined 
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5.4 Mammalian two-Hybrid assessment of Claudin1 and Claudin7 interaction with CD81 

To confirm the effect of Claudin1 and Claudin7 mutants on CD81 association we utilised a 

mammalian-two hybrid system (Checkmate mammalian two-hybrid system, Promega). This 

technique has been previously used to demonstrate the specific region of the cyclin-

dependent kinase (CDK) CDK4 that binds human T-cell leukemia virus type 1 (HTLV-1) 

oncoprotein Tax (259). De Jong et al used the same system to demonstrate multimerisation 

of the 2B, 2C and 2BC proteins of coxsackievirus (260). Lwa et al demonstrated the 

interaction of the human guanine nucleotide binding protein beta subunit 5L (GNbeta5) and 

HBX protein of hepatitis B virus within HepG2 cells (261). Accurate measurement of protein 

interactions is derived from a familiar yeast 2-hybrid design, optimised for use in 

mammalian systems. In brief, a reporter plasmid containing a GAL4 binding domain can be 

induced to express Firefly Luciferase via the transcriptional activation domain of herpes 

virus VP16 protein. This reporter plasmid, pG5luc is co-transfected with plasmids encoding 

the two proteins of interest.  The pBind plasmid will express one protein fused to the DNA-

binding domain of GAL4 and pACT vector expresses a second protein fused to a 

transcriptional activation domain of VP16. An interaction between the two fusion proteins 

will result in the VP16 domain inducing the expression of Firefly Luciferase as a reporter for 

protein-protein interactions.  

The CD81 protein was cloned into pBind plasmid with Claudin1 and Claudin7 mutants 

expressed in pACT plasmid. The pBind-CD81 and the pACT-Claudin1 or Claudin7 plasmids 

were co-transfected, along with the pG5luc, into 293-T cells and the firefly luciferase activity 

assessed after 48 hours. To assess the background noise, which could be caused by leaky 
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expression of the Firefly luciferase the pBind-CD81 was co-transfected with the pBind-MyoD 

plasmids for which no interaction should occur. The results for the various Claudin1 mutants 

are shown in figure 5.5b. Only Claudin1 showed a specific interaction with CD81 as indicated 

by a mean RLU of 3.86x107 ± 0.079, which was significantly above the RLU of 3.78x105 ± 

0.012 for the pACT-MyoD negative control.   The I32M, E48K and I32M/E48K Claudin1 

mutants showed RLU levels of 1.225x106 ± 0.108, 1.334 x106 ± 0.012 and 0.8095 x106 ± 

0.053, respectively, which are not significantly different for the negative control and 

therefore not interacting with the CD81. As shown in figure 5.5c, Claudin7 does not interact 

with CD81 as the RLU level of 6.5x105 ± 0.133 is not significantly different from the negative 

control. In contrast M32I, K48E and M32I/K48E mutants interact with the CD81 as the RLU 

levels are significantly above the negative control (2.16x107 ± 0.152, 2.98 x107 ± 0.137 and 

3.52x107 ± 0.075, respectively). The results confirm that only Claudin1 and Claudin7 mutants 

interact directly with CD81. Overall these results are in agreement with the FIR and FRET 

imaging results (shown in figure 5.4 and table 5.1). 
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Figure 5.5: Mammalian two-hybrid analysis of Claudin1 and Claudin7 EC1 mutations on 

protein association with CD81. A) shows a schematic representation of the principles of the 

mammalian two-hybrid system (image taken from Promega technical manual TM049). A 

reporter plasmid (pG5luc), which contains a GAL4 binding domain, can be induced to 

express Firefly Luciferase by the transcriptional activation domain of VP16. This reporter 

plasmid is co-transfected into a mammalian cell line with the pBind and pACT plasmids, 

which express the two proteins of interest.  The pBind plasmid co-expresses a protein fused 

to the DNA-binding domain of GAL4 and renilla luciferase, which can be used to correct for 

transfection efficiency. The pACT vector expresses a protein fused to a transcriptional 

activation domain of VP16. As the GAL4 fused protein will be associated to the GAL4 binding 

domain on pG5luc an interaction between the two fusion proteins will result in the VP16 

domain inducing the expression of the Firefly luciferase. The activity of the firefly luciferase 

therefore gives a measure of protein association. 293-T cells were transfected to express the 

pG5luc and pBind-CD81 with B) the Claudin1 mutants and C) the Claudin7 mutants, cloned 

into the pACT vector, pACT-Myod was used as a negative control for non-specific 

interactions. A protein interaction was determined by showing an increase in luciferase 

activity above the negative controls. A One way Analysis of Variance with a Bonferroni's 

Multiple Comparison Test was used to determine the degree of difference from the wild 

type positive control (***p<0.001). This data is representative of three independent 

experiments. 
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5.5 Bioinformatic modelling of Claudin1-CD81 interaction. 

To better understand the Claudin1-CD81 interaction we collaborated with Jonathan Mullins 

(Swansea University) to develop a theoretical model for the protein receptor complex. The 

crystal structure of CD81 EC2 is known (PDB 1G8Q) (120), however, no such structural 

information exists for any Claudin protein. The Claudin1 structure was modelled from 

homologous structures utilising a Biskit structural bioinformatics platform (Grunberg et al., 

2007) that peruses the entire PDB for candidate homologues. The workflow incorporates the 

NCBI tools platform (Wheeler et al., 2008), including the BLAST program (Altschul et al., 

1990) for similarity searching of sequence databases; T-COFFEE (Notredame et al., 2000) for 

alignment of the test sequence with the template; the MODELLER program (Eswar et al., 

2003) for homology modelling, and the DSSP algorithm (Kabsch and Sander, 1983) for 

secondary structure validation. Protein-protein interactions were simulated between 

estimated Claudin1 and CD81 wild type or mutant structures and the known crystal 

structure of the human CD81 extracellular domain using Hex 5.0 (Mustard and Ritchie, 

2005), fitting for shape and electrostatic interactions.  

The structure of the Claudin1 EC1 is predicted to have few structural constraints, such as α 

helix, β sheet or disulphide bridging, and mainly consists of a coiled coil structure. The 

results suggest that the interaction between Claudin1 and CD81 relies on the orientation of 

two sets of contacts between parts of Claudin1 EC1 loop and the CD81 EC2 loop (Figure 5.6). 

The two regions of Claudin1 correspond to an early section of the EC1 loop that emerges 

from the first transmembrane domain (TM1), around residues 33-35; and another section 

approaching the re-entry to the membrane at the beginning of TM2, around residues 63-66. 

The T149, E152 and T153 residues of CD81 EC2 are predicted to interact with the 62-66 
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region of Claudin1. A further interaction between CD81 K148 residue and Claudin1 region 

33-35 is also predicted, although this region may be more responsible for the general 

orientation of the loops rather than the formation of a stable, functionally viable complex.  

Following the modelling of the wild type interaction the effects of single and double 

mutations at Claudin1 I32 and E48 residues were determined (figure 5.6, table 5.2 and 5.3). 

Substantial changes to the structure and orientation of the loop are predicted, with a short 

α helix being introduced into a structure which previously had a coiled coil structure. The 

introduction of this α helix removes the 63-66 region of Claudin1 from the CD81 residues at 

which either form electrostatic forces act or hydrogen bonding. Thus, single and double 

mutations at these residues are predicted to perturb the interaction with CD81.  

To further explore this model, prior to testing the regions of CD81 predicted to interact with 

Claudin1, we evaluated the interaction(s) of an extensive panel of Claudin1 mutants 

reported by the Dragic laboratory (183). These mutants were created using an alanine 

scanning approach and involved residues that were putative sites for phosphorylation, 

palmitoylation, glycosylation or internalisation.  Within this panel a number of receptor 

inactive mutants were produced, consisting of residues W30, I32, D38, G49, L50, W51, C54 

and C64. We therefore evaluated the effect of all these mutations on Claudin1-CD81 

interaction, as well as a number of mutants which had minimal effect on receptor activity 

(table 5.3).  For the receptor active mutants, comprising T42A, M52A, S53A and N72A, the 

position(s) of the interfacing regions Y33-N39 and Q63-V66 are broadly maintained, with 

some minor alterations in the orientation of individual residues compared to wild type. 

CD81 binding was predicted to be maintained, with M52A and S53A predicted to have 

moderate binding whilst the T42A and N72A showed close to wild type binding to CD81.  In 
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contrast, the receptor inactive mutants W30A, I32A, D38A, G49A and W51A are all 

predicted to cause substantial disruption to the interfacing regions Y33-N39 and Q63-V66. 

The interacting loop regions are either withdrawn beyond the range of interaction, for 

W30A, D38A and W51A, or the docking of the two regions to CD81 is precluded due to 

regions of the loop occupying the same spatially required areas as CD81, preventing the 

interaction region from associating with CD81.  Overall these mutants are not predicted to 

associate with CD81. The modelling highlighted an interesting group of Claudin1 mutants, 

L50A, C54A and C64A, which show substantial alterations in their loop structure but 

maintain a CD81 interaction (figure 5.6). This interaction is not in the same conformation as 

wild type Claudin1 but the predicted E2 binding site of L162, I182, N184, F186 is positioned 

away from the Claudin1-CD81 association interface (258).  
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Figure 5.5: Bioinformatic modelling of Claudin1-CD81 mutants association. The image 

shows the A) Claudin 1, B) I32M, C) E48K and D) I32M/E48K Claudin1 mutants The image 

shows Claudin1 (white line), with the Transmembrane domain shown in orange, in 

association with CD81 (green line), with key interacting residues labelled. The major 

Claudin1 interactive regions include residues 33-35 and 63-66. The interacting residues of 

CD81 comprise residues K148, T149, E152 and T153. The main regions of association 

predicted for Claudin1 have been altered by the mutations to an extent where they are no 

longer within the spatial distance(s) to interact with CD81. Image produced using the 

Chimera program (University of San Francisco).  
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5.6 Bioinformatic modelling of receptor inactive Claudin1-CD81 association. Structural 

modelling of the Claudin1-CD81 association interface. The image shows the Claudin1 

mutants A) L50A, B) C54A and C) C64A (white line), with the Transmembrane domain shown 

in orange,  in association with wild type CD81 (green line), with key interacting residues 

labelled.  The mutants are predicted to interact with CD81 although the orientation of the 

interaction and the structure of the EC1 loop are altered compared to wild type Claudin1. 

The distance between two of the Q63 residue of Claudin1 with the G152 residue of CD81 is 

increased from 3Å for the wild type Claudin1 to 13.64 Å, 11.81 Å and 8.29 Å for the L50A, 

C54A and C64A mutants respectively, which are beyond the range of intermolecular forces. 

Image produced using the Chimera program (university of San Francisco) 
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Table 5.2: Inferred atomic distances (Å) between residues of the interacting regions of 

Claudin1  and CD81  

 CD81 Residues 

Claudin1 K148 T149  E152 T153 

Q63  11.42 8.12 3.00 6.05 

C64  3.43 5.80 3.55 6.65 

V66  12.14 4.51 7.14 3.79 

     

Claudin1 I32M     

Q63  11.66 8.13 10.88 (-) 11.21 

C64  9.46 (-) 2.53 (+) 5.99 (-) 4.91 

V66  15.76 9.79 15.78 12.62 (-) 

     

Claudin1 E48K     

Q63  11.95 13.03 6.69 (-) 12.13 

C64  4.85 (-) 8.00 4.58 (-) 10.15 

V66  10.08 4.09 3.12 (+) 1.79 (*) 

     

Claudin1 I32M/E48K     

Q63  12.86 9.63 5.99 (-) 8.42 

C64  11.26 (-) 5.14 3.50 (*) 2.53 (+) 

V66  15.50 7.84 10.66 6.79 (-) 

 

Distances based on closest end group. Comparisons to wild type shown; (-) Association Lost; 

(+) Association Gained; (*) Association Maintained 
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Table 5.3 Bioinformatic model predictions for the effect(s) of specific Claudin1 mutations on 

CD81 association 

Claudin1 
Disruption 

Y33-Y35 
Disruption Q63-V66 

Disruption of 

orientation of 

interacting residues 

Predicted to 

interact with 

CD81 

WT None None None Yes 

I32M Withdrawn Withdrawn from E152 Yes No 

E48K Withdrawn Withdrawn from E152 Yes No 

I32M/E48K Withdrawn Withdrawn from E152 Yes No 

W30A Projecting Withdrawn from E152 Yes No 

I32A Projecting Withdrawn from E152 Yes No 

D38A Withdrawn Withdrawn from E152 Yes No 

T42A None None None Yes 

G49A Projecting Withdrawn from E152 Yes No 

L50A None None None Yes 

W51A Projecting Withdrawn from E152 Yes No 

M52A None Withdrawn from E152 Yes Yes 

S53A None None Yes Yes 

C54A Projecting Withdrawn from E152 Yes Yes 

C64A Projecting Withdrawn from E152 Yes Yes 

N72A None None None Yes 
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5.6 Localisation and antigenicity of Claudin1 mutants 

To determine whether the predictions made by the Claudin1-CD81 interaction model were 

correct we studied a panel of Claudin1 mutants recently reported by the Dragic lab for their 

association with CD81 (183). Twelve Claudin1 mutants were fluorophore labelled and 

expressed in 293-T cells, which showed a variety of staining patterns (figure 5.7).  Although 

all the mutant proteins had some level of plasma membrane expression, several showed a 

high level of intracellular staining (figure 3.4). The wild type protein can be visualized at the 

plasma membrane, which is also seen for T42A, G49A, L50A, M52A, C54A and C64A 

mutants. The W30A and W51A mutations showed plasma membrane but with some 

intracellular accumulation. The I32A mutant had the same staining pattern as the I32M 

mutant shown earlier (figure 5.1) with punctuate staining at both the plasma membrane 

intracellular sites and at the plasma membrane, this is also observed for D38A and N72A 

mutants. Finally, the mutation at position S53A induced a punctuate plasma membrane 

staining with no detectable intracellular staining.  

The cells expressing these mutants were incubated with the panel of anti-Claudin1 

antibodies used previously to determine the antigenicity of the various Claudin1 mutants 

(figure 5.8). Mutation at residues W30A and L50A abrogated the binding of all antibodies. 

Selected antibodies showed a low level of binding, between 15.5 to 31.5%, to G49A, W51A, 

C54A and C64A mutants. However, binding was only detected to cells expressing the highest 

levels of protein. The remaining mutants showed levels of antibody binding comparable to 

that of wild type Claudin1. In summary, our results demonstrate that several mutations 

affect protein localisation and conformation. Although there is evidence that all Claudin1 

mutants localise to the plasma membrane they do so to varying levels, whether this is due 

to misfolded protein being retained within the cells is unknown. 
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Figure 5.7: Localisation of Fluorophore labelled Claudin1 mutants. 293-T cells were 

transfected with the various Claudin1 mutants, which contain an AcGFP epitope fused to the 

N-terminus. Images produced are laser scanning confocal images taken using the 63 x 1.2NA 

water immersion objectives and a meta head confocal microscope (Zeiss). Size bars are 

equal to 10μm. This images are representative of two independent experiments. 
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Figure 5.8: Antigenicity of Claudin1 mutant proteins. 293-T cells were transfected to 

express the panel of AcGFP labelled Claudin1 mutants. The cells were incubated with an 

anti-Claudin1 polyclonal antibody at a concentration of 1:100 or with a panel of anti-

Claudin1 monoclonal antibodies at a concentration of 67µM. A) Shows the FACS plot of the 

AcGFP-Claudin1 incubated with rat pre-immune serum with Alexafluor 633 anti-Rat IgG. B) 

shows the same cells stained with anti-Claudin1 polyclonal serum. C) The table summarises 

the percentage of antibody binding (as defined previously), which is the percentage of cells 

positive for Claudin protein expression and antibody binding, with thresholds being set by 

naive 293-T cells. This data is representative of two independent experiments. 
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 5.7 Receptor activity of labelled Claudin1 mutant proteins 

As with the previous Claudin mutants, we wanted to confirm HCV receptor activity before 

using the proteins in the FIR and FRET analysis. The fluorophore labelled Claudin1 proteins 

were transfected into 293-T cells, with wild type Claudin1 as a positive control for HCVpp 

entry (figure 5.9). The wild type protein produced a mean RLU level (± standard deviation)  

of 157,186 ± 40662 with the T42A, M52A, S53A and N72A mutants showing levels of entry 

that were not significantly different from wild type protein (Mean RLU of 110,683 ± 48148, 

93,016 ±56167, 88,036 ± 38876 and 117,326 ± 28411 respectively). All of the remaining 

mutants supported minimal entry equivalent to viral entry into parental 293-T cells, with 

RLU levels ranging from 3,600 ± 2788 to 7,396 ± 2287. The receptor activity of the mutant 

proteins is similar to those reported by Cukierman et al. (183).  
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Figure 5.9: Receptor activity of Claudin1 mutants. 293-T cells were transfected to express 

AcGFP-Claudin1 mutants and evaluated for their ability to support HCVpp and MLVpp entry. 

Data is represented as specific infectivity (Relative Light Units, RLU) and represents the 

mean plus the standard error of three replicates. A) Shows the specific infectivity of HCVpp. 

B) shows the specific infectivity of MLVpp. C) Shows the percentage of cells expressing 

Claudin1 as determined by FACS analysis. A One way Analysis of Variance with a 

Bonferroni's Multiple Comparison Test was used to determine the significance of differences 

from wild type positive control (***p<0.001). This data is representative of three 

independent experiments. 
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5.8 Association of Claudin1 mutants with CD81 

After confirming the effect(s) of the mutations on Claudin1 localisation, antigenicity and 

receptor activity we established their interaction with CD81. The mutants were first 

assessed for their ability to interact with CD81 using FIR and FRET analysis, which was 

independently confirmed using the mammalian two-hybrid system (figure5.10a and b 

respectively and Table 5.4). The results show that all receptor active mutants (T42A, M52A, 

S53A and N72A) were able to interact with CD81. The %FRET of these mutants and the wild 

type protein varied from 33.56 to 43.33% (no statistically significant differences noted). The 

mammalian two-hybrid system showed that all receptor active Claudin1 mutants were able 

to interact with CD81 whereas, the receptor inactive mutants W30, I32, D38, G49 and W51 

showed a minimal interaction with CD81 in both assay systems. The FIR and FRET results 

showed that W30A, I32A, D38A and W51A had no determinable FRET values, due to the low 

R2 value detected, whilst the G49A mutant produced a small FRET value equivalent to non-

specific interactions (10.06% ±21.36). The mammalian two hybrid assay detected no 

interaction with CD81, as indicated by RLU levels indistinguishable from the negative control 

of 3.79x105 (1.24x106, 1.25x106, 2.62x105, 1.04x106 and 1.56x106 respectively). As predicted 

from the bioinformatic modelling, mutation of Claudin1 residues L50, C54 or C64 did not 

perturb protein association with CD81. Overall these results have validated the accuracy of 

our model and enable us to predict and to evaluate the residues of CD81 which associate 

with Claudin1.  
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Figure 5.10: Effect of Claudin1 EC1 loop mutations on protein association with CD81. A) 

The R2, FIR and %FRET of AcGFP-Claudin1 mutants with DsRED-CD81 were determined, 

where the median value is denoted by a solid line. A One way Analysis of Variance with a 

Bonferroni's Multiple Comparison Test was used to assess the degree of difference from the 

wild type positive control (***p<0.001). B) 293-T cells were transfected to express pG5luc 

and pBind-CD81 with the pACT-Claudin1 mutants, pACT-MyoD was used as a negative 

control for non-specific interactions. An interaction of the proteins is determined by 

showing a luciferase level significantly above the negative control using. A One way Analysis 

of Variance, Bonferroni's Multiple Comparison Test was used to assess the degree of 

difference from the wild type positive control (***p<0.001). This data is representative of 

two independent experiments. 
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Table 5.4: FIR and FRET analysis of fluorescent tagged Claudin1 mutants association with 

CD81 

       

  R2 (IQR)* FIR (IQR) %FRET ± sd# 

CD81 association with:      

WT 0.577 (0.422 - 0.624) 0.609 (0.427 - 0.6757) 40.6 ± 6.864 

W30A 0.006 (0.002 - 0.021)  ND   ND 

I32A 0.076 (0.010 - 0.119)  ND   ND 

D38A 0.490 (0.299 - 0.631)  ND   ND 

T42A 0.476 (0.266 - 0.596) 0.924 (0.526 - 1.084) 37.7 ± 22.95 

G49A 0.171 (0.104 - 0.382) 1.126 (1.094 - 1.158)† 10.1 ± 21.36 

 L50A 0.532 (0.455 - 0.638) 1.159 (0.974 - 1.493) 43.3 ± 15.97 

W51A 0.039 (0.003 - 0.154)  ND   ND 

M52A 0.344 (0.326 - 0.436) 0.980 (0.794 - 1.296) 43.0 ± 5.827 

S53A 0.486 (0.389 - 0.601) 0.757 (0.536 - 1.078) 39.7 ± 7.89 

C54A 0.460 (0.317 - 0.584) 0.978 (0.630 - 1.415) 36.7 ± 13.2 

C64A 0.471 (0.350 - 0.571) 0.794 (0.593 - 0.975) 36.4 ± 5.451 

N72A 0.476 (0.266 - 0.596) 0.984 (0.783 - 1.249) 33.6 ± 19.68 

         

* – Interquartile range       

† - Min. And Max values       

# – Standard deviation       

ND – Not Determined       
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5.9 Localisation and antigenicity of Fluorophore labelled CD81 Mutants 

Our bioinformatic model predicts that CD81 residues K148, T149, E152 and T153 interact 

with Claudin1. The threonine (T) residues are likely to form hydrogen bonds with glutamic 

acid (E) and lysine (K) residues in Claudin1 EC1 forming electrostatic interactions, due to 

their overall negative and positive charges, respectively.  In addition to these residues the 

K201 position was selected since our model predicted it to be involved in the CD81 

dimerisation by interacting with the T149 residue. Although CD81 dimerisation is not 

essential for E2 binding it may prove to be essential for the Claudin1-CD81 complex 

formation (152-153).  

To ascertain the role of these CD81 residues in protein localisation, antigenicity and 

receptor activity we mutated each of the selected residues to an alanine and expressed the 

mutant proteins in the CD81 negative HepG2 hepatoma cell line.  All of the mutants 

expressed at comparable levels and localised to the plasma membrane, with minimal 

evidence for intracellular accumulation (figure 5.11). Cells were stained with the panel of 

anti-CD81 antibodies, used previously, to determine if the mutations affect protein 

antigenicity (figure 5.12). Overall the mutations had minimal effect on antibody reactivity, 

with a high level of binding occurring for each antibody.  

Since CD81 has been shown to interact with the HCV E2 we performed an E2 binding assay 

to determine whether any of the mutations affected E2 binding.  Since HepG2 cells express 

SR-BI, which can also interact with E2, we transduced Chinese hamster ovary cells (CHO 

cells) to express the various CD81 mutants as the E2 protein will not interact with naive CHO 

cells (figure 5.13). This assay showed that mutating the various selected regions of CD81 

caused no significant reduction in the proteins ability to bind E2. In summary, these 
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experiements demonstrate that the selected mutations have minimal effect on the tertiary 

structure, as both conformational-dependent antibodies and HCV E2 interact at comparable 

levels to wild type CD81 protein. The staining pattern demonstrates the proteins are 

expressed at the plasma membrane and are in the correct location to interact with HCV 

particles.   
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Figure 5.11: Localisation of fluorophore labelled CD81 mutants. HepG2 cells were 

transduced with the various CD81 mutants, which contained a DsRED epitope fused to the 

N-terminus. Images produced are laser scanning confocal images taken using the 63 x 1.2NA 

water immersion objectives and a meta head confocal microscope (Zeiss), Size bars are 

equal to 20μm. These images are representative of three independent experiments. 
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Figure 5.12: Antigenicity of CD81 mutants. HepG2 cells were transduced to express the 

panel of DsRED-CD81 mutants. The cells were incubated with anti-CD81 antibody 2s20 at a 

concentration 67µM. A) Shows the FACS plot of the DsRED-CD81 wild type incubated with 

Alexafluor 633 anti-mouse IgG. B) Shows the same cells stained with the anti-CD81. C) The 

graph shows the percentage of antibody binding to cells expressing DsRED-CD81. This data 

is representative of three independent experiments. 
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Figure 5.13: Binding of HCV E2 protein to CD81 mutants. CHO cells were transduced to 

express the panel of DsRED-CD81 mutants, which were incubated with HCV E2, where E2 

binding was realised using 10ug/ml of anti-10/76B using an Alexaflour 633 Goat anti-Rat 

(invitrogen), at a 1:1000 dilution, secondary antibody. A) Shows the FACS plot of the DsRED-

CD81 wild type. B) Shows the same cells incubated with the HCV E2 and stained with the 

anti-10/76B and Alexaflour 633 Goat anti-Rat. C) The graph shows the percentage of H77 

sE2 binding to CHO cells, which is the percentage of cells positive for CD81 protein 

expression and E2 binding, with thresholds being set by naive CHO cells. This data is 

representative of two independent experiments. 
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5.10 Receptor activity of mutant CD81 proteins. 

Having shown that CD81 mutations have minimal effect on protein localisation, antigenicity 

and interaction with HCV E2 protein we tested their receptor activity and ability to allow 

HCVpp infection of HepG2 cells (figure 5.14). The CD81 wild type, K148A and K148A/T149A 

CD81 proteins supported comparable levels of HCVpp infection with RLU levels of 13,010 ± 

974.1, 9,886.6 ± 4917.4 and 11,273.3 ± 6004.4, respectively. In contrast, the remaining 

mutants showed negligible levels of HCVpp entry with RLU levels ranging from 683.3 to 

3673.3, which is not significantly different from the mean RLU value of 540 for the parental 

HepG2 cells. The MLVpp entry levels into the cells were of a similar level across all the CD81 

mutants. These results demonstrate that threonines at position 149 and 153, glutamic acid 

at residue 152 and lysine residue at position 201 are all essential for the receptor activity of 

CD81.   
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Figure 5.14: The effect of CD81 EC2 mutations on viral receptor activity. HepG2 cells were 

transduced to express DsRED-CD81 mutants and evaluated for their ability to support 

HCVpp and MLVpp infection. Data is represented as specific infectivity (Relative Light Units, 

RLU) and represents the mean plus the standard error of three replicates. A) shows the 

specific infectivity of HCVpp. B) shows the specific infective of MLV. C) shows the percentage 

of cells expressing CD81 as determined by FACS analysis. A One way Analysis of Variance 

with a Bonferroni's Multiple Comparison Test was used to determine the degree of 

significant difference from the naive 293-T negative control (**p<0.01, ***p<0.001)This 

data is representative of two independent experiments. 
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5.11 Association of CD81 mutants with Claudin1  

Having identified receptor inactive CD81 mutants, which retained antigenicity and E2 

binding, we sought to investigate their association with Claudin1 (figure 5.15a). In addition, 

we tested their ability to form homodimers (figure 5.15b), as this has been shown to be 

important for viral entry (152). For wild type Claudin1-CD81 association the R2 was shown to 

be 0.29 (IQR 0.23 – 0.38) and FIR value of 0.67 (IQR 0.54 – 0.89) and a %FRET of 33.8 ± 4.45.  

These values were not significantly different from the values seen with the receptor active 

mutants K148A and K148A/T149A, with R2 of 0.21 (IQR 0.073 – 0.37) and 0.19 (IQR 0.043 – 

0.31), FIR values of 0.54 (IQR 0.51 – 0.85) and 0.55 (IQR 0.28 – 0.69) and %FRET values of 

19.74% ± 17.84 and 21.31% ± 15.22. In contrast the receptor inactive mutants showed 

reduced levels of association, with R2 values ranging from 0.07 to 0.14. For those cells which 

had a sufficiently high enough level of association, the FIR values were not significantly 

different from the wild type control with values ranging from 0.43 to 0.91. Although some 

cells showed a FIR value similar to wild type CD81, the overall %FRET values observed for 

the receptor inactive mutants was significantly lower than wild type and within the region 

observed for non-specific protein associations (3.54% to 10.52%). When CD81 mutants were 

assessed for their ability to form homodimers, only the T149A mutant demonstrated any 

reduction in self-dimerization. CD81 produced an R2 of 0.39 (IQR 0.2 – 0.57), FIR value of 0.7 

(IQR 0.4 – 0.99) and %FRET of 34.11% ± 4.9 with the T149A mutant producing values of 0.18 

(IQR 0.067 – 0.47), 0.65 (IQR 0.57 – 1.02) and 16.29% ± 17.66, respectively. Although these 

values are not significantly reduced the associations were only seen in a subset of cells. 

We used the mammalian two-hybrid system to independently confirm our FRET imaging 

results (figure 5.16). The overall pattern for Claudin1-CD81 mutant association was 
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repeated, where wild type CD81 produced a mean RLU of 1.6x108 ± 1.15x107 with receptor 

active K148A and K148A/T149A mutants producing mean RLU levels of 1.6x108 ± 5.4x106 and 

5x107 ± 2.07x106, significantly above the negative control of 4.6x106 ± 1.98x105. The 

remaining receptor inactive mutants produced low RLU levels of between 2.05 and 9.93x106 

which were not significantly above the negative control. Overall, the results of the CD81-

CD81 mutant interaction again mirrored the FIR and FRET analysis, with T149A being similar 

to the negative control, with mean RLU levels of  5.35x105 ± 2.74x104 and 4.04x105 ± 

1.95x104, respectively. These results clearly show that receptor active CD81 mutants 

associate with Claudin1 and can still form homodimers, whereas receptor inactive mutants 

show no association with Claudin1 but, with the exception of the T149A mutant, maintained 

their ability to form homodimers.  
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Figure 5.15: Effect of CD81 EC2 mutations on Claudin1 association and homodimerisation. 

HepG2 cells were transduced to express fluorescent-tagged wild-type and mutant forms of 

DsRED-CD81 and AcGFP-Claudin1 (A) or AcGFP-CD81 (B), and the degree of association 

between fluorophore-tagged proteins assessed by FIR and FRET analysis. Median FIR and 

FRET values from ten individual cells are presented (*p<0.05, **p<0.01, ***p<0.001). This 

data is representative of two independent experiments. 
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Figure 5.16: Mammalian two-hybrid analysis of CD81 EC2 mutations on Claudin1 

association and homodimersiation. 293-T cells were transfected to express the pG5luc and 

the pACT-CD81 mutants with A) pBind-Claudin1 or B) pBind-CD81, pACT-MyoD was used as 

a negative control for non-specific interactions.  An interaction of the proteins are 

determined by showing a luciferase level significantly above the negative controls using a 

One way Analysis of Variance with a Bonferroni's Multiple Comparison Test to determine 

the degree of difference from the negative control (***p<0.001). This data is representative 

of two independent experiments. 
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5.12 Discussion 

Previous reports demonstrated that the receptor activity of Claudin1 and Claudin7 could be 

reversed by exchanging two residues within EC1, at amino acid position 32 and 48 (110). 

However, the authors did not provide a mechanism for the mutant phenotype. Further 

mutational analysis by Cukierman et al highlighted a highly conserved motif W30-GLW51-

C54-C64 in Claudin1, that was essential for viral receptor activity and in the formation of 

cell-to-cell contacts (183). Since HCV can enter 293T cells transduced to express Claudin1 

that do not form tight junctions, we conclude that a cells ability to form tight junctions is not 

a defining feature required for virus infection. We hypothesised that the mutations perturb 

Claudin1 association with CD81. We therefore studied the effect of the mutations on 

Claudin1 localisation, antigencity and ability to interact with CD81. Although the I32M 

mutation showed pools of intracellular staining and a more punctuate appearance it 

retained antibody binding and surface expression (Figure 5.1 and 5.2, respectively). This 

result for the anti-Claudin1 R+D monoclonal contradicts previous reports but unfortunately 

there is not enough information within the publication to assess these differences (114). 

The E48K and I32M/E48K double mutations showed a more marked effect on protein 

localisation and antibody binding. Given the effect of the double mutation on Claudin1 

location and antibody binding we are unable to ascribe the mechanism of receptor inactivity 

to a loss in Claudin-CD81 interaction.  The Claudin7 mutants demonstrate that receptor 

activity is increased by the M32I and K48E single mutation but the double mutation is 

required to produce a Claudin1 like staining pattern in 293-T cells and an ability, albeit at a 

low level, to bind the polyclonal anti-Claudin1 and two of the monoclonal anti-Claudin1 

antibodies (7D3 and 8A9).   
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 We sought to model the interactive face between the two proteins using a bioinformatics 

approach. The interaction for the wild type proteins was assessed and the potential 

alterations to the protein caused by the Evans mutants to positions 32 and 48 analysed. The 

model predicted that the Claudin1 loop is unstructured with a coiled coil appearance. The 

regions predicted to interact with CD81 are between residues 33-35 and 63-66. The 

receptor inactive mutations were predicted to cause a marked change in the orientation of 

the loop, introducing a α-helical region into the structure. This change predicted a loss of 

the interaction with CD81 which matches both the FIR and FRET analysis as well as the 

mammalian two-hybrid system. To further validate this model we compared the predicted 

results for twelve Claudin1 mutants reported by Cukierman et al against our experimental 

results measuring Claudin1-CD81 interaction. Our model was able to accurately predict 

which Claudin1 mutants would interact with CD81. However, receptor inactive Claudin1 

mutants L50A, C54A and C64A could still interact with CD81, illustrating that a simple 

interaction with CD81 is not sufficient to explain Claudin1 receptor activity and the protein 

interaction may have to occur in a specific orientation.  Indeed, the model predicts that 

these mutants interact with alternative CD81 residues compared to the wild type protein. If 

the orientation of the interaction has altered this could lead to a loss of CD81-HCV E2 

interaction or the association with other accessory proteins required for entry. Further 

investigations of how these mutations render Claudin1 receptor inactive could help to 

further define the role of these proteins in viral entry.  

Having validated the model we performed site-directed mutagenesis on CD81 residues 

predicted to interact with Claudin1 (residues K148, T149, E152, T153 and K201). We were 

able to demonstrate that, with the exception of K148, these residues are all essential for 
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receptor activity. Unlike the Claudin1 mutants, there was no effect on the protein’s 

localisation or antibody binding. We were able to demonstrate that these mutants could still 

interact with HCV E2. Due to the highly structured nature of CD81, which has multiple α-

helical regions as well as disulphide bridges, the mutations are not predicted to have a 

significant effect on protein 3D structure. Zhang et al demonstrated that mutants F186, 

E188 and D196, originally identified to prevent sE2 binding (262), could still allow HCVpp 

entry (149). A subsequent report identified that CD81 residues K171, I181, I182 and F186 

were essential for both HCV E2 binding and virus infection (263), highlighting different 

regions of CD81 that engage HCV and interact with Claudin1.  

One aspect of our results which is interesting is the double mutation of positions 148 and 

149. As a single mutant the K148A is receptor active, whilst the T149A is receptor inactive. 

However the double mutation in this position produces a receptor active mutant, meaning 

that the K148A mutation is “rescuing” the receptor activity of the T149A mutant. The reason 

for this rescue is at this point unclear. The experimental data show a clear requirement for 

each residue for HCV entry to occur. The model predicted that K148 and T149 residues 

interact with different residues of Claudin1, and the loss of either single residue will negate 

protein-protein interaction. This could indicate that the overall strength of the interaction is 

reliant on each residue and the loss of any single interaction reduces the ability of the two 

proteins to overcome separating forces. The T149 residue is predicted to interact with the 

63-66 region of the Claudin1 EC1, whereas K148 is predicted to interact with the 33-35 

regions (specifically Y33).  These results suggest that the 33-35 region is not essential for the 

Claudin1-CD81 complex as the K148A is still receptor active as are mutations of Y33 and Y35, 

reported in (183).  
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The results also indicate that the K201 residue is not essential for CD81 dimersiation. As 

other residues are implicated in the dimersiation of CD81 the mutation of the K201 residue 

may cause an alteration in the orientation of the dimer.  As the K201 mutant does not 

interact with Claudin1 it may indicate that a specific orientation of the CD81 loops is 

essential. The K201 residue of the CD81 interacting with Claudin1 is predicted to interact 

with the T149 residue of the second CD81 of the CD81-CD81 dimer. As the T149 is also 

predicted to interact with the C64 residue of Claudin1 the residue appears to be central to 

the Claudin1-CD81 and CD81-CD81 complex formation 

Our mutational analysis was directed by the bioinformatic model which was able to predict 

residues essential for Claudin1 binding. The model also predicts that the complex forms in 

an orientation that does not occlude the putative E2 binding site on CD81. Drummer et al 

have predicted that the binding site for E2 on the CD81 consists of L162, I182, A184 and 

F186 (258). Although Claudin1 is not required for the binding of E2 to CD81 it is not known 

whether its presence in the complex may increase the strength of the interaction. An 

interaction between the virus and Claudin1 has not been clearly demonstrated, although 

this could occur after the virus interacts with CD81. The dimerization of CD81 is also not 

required for E2 binding but it has been previously shown to improve the affinity of the 

binding of both E2 and the E1-E2 heterodimer (153). Nakajima et al used SPR to show that 

CD81 LEL fused to glutathione-S-transferase, which tends to form dimers and multimers, 

interacted with a higher avidity and affinity to the HCV E1-E2 than a CD81 LEL fused to MBP, 

which has a lower propensity to form multimers (153). Whether the Envelope proteins are 

interacting with multiple CD81 proteins or simply releasing from one CD81 and binding to 

the other CD81 in the dimer is unknown. Overall the data suggest the virus is interacting 
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with the Claudin1-CD81 receptors that are part of a larger multimeric structure. The 

associations may not be essential for virus binding, although the complex may increase the 

avidity and affinity, suggesting the interaction of Claudin1 with CD81 is essential for other 

aspects of the entry process.  
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Chapter 6: 

Discussion and Conclusions 
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6.1 The role of Claudin1 in HCV entry 

The entry process of HCV is multi-stepped culminating in a pH and Clathrin dependent 

internalisation of the virus particle (223-224). It has been shown that the expression of 

CD81, SR-BI, Claudin1 and Occludin within cells are essential for entry and these proteins 

constitute the main co-receptors for viral entry (112, 115).  Although it is known that the 

virus encoded glycoproteins directly interact with CD81 (88, 91, 93, 105-106) and SR-BI (107-

109), the role and function of the tight junction proteins Claudin1 and Occludin in the viral 

entry process are poorly understood. CD81 has been reported to associate with Claudin1 

(125, 183-184), with our group demonstrating that the receptor inactive Claudin4 molecule 

showed no interaction with CD81 (184).  

In this thesis we provide further evidence that only receptor active Claudin proteins 

associate with CD81. Treating cells with antibodies specific for CD81 or Claudin1 reduced 

Claudin1-CD81 association and viral entry. As these antibodies were directed to the EC1 of 

Claudin1 and the EC2 of CD81 we hypothesised that these regions may be involved in the 

complex formation. We were able to demonstrate that these regions were responsible for 

the complex formation using recombinant forms of Claudin1 EC1 and CD81 EC2 in a SPR 

based assay.  

To further define the protein-protein interface and extracellular loop residues responsible 

for the interaction we evaluated the ability of a previously published panel of Claudin1 

mutants to interact with CD81 to inform a bioinfomatic model of the receptor complex. The 

model predicted that association of T149, E152 and T153 CD81 EC2 residues with the 62-66 

region of Claudin1. A further interaction between CD81 K148 residue and Claudin1 region 

Y33-Y35 is also predicted. Using a site directed mutagenesis approach we were able to 
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validate the role of T149, E152 and T153 CD81 residues in association with Claudin1. The 

K148 residue was shown to be non-essential and although it may interact with the Claudin1 

loop, the strength of the interaction may not be sufficient to support a complex. In contrast 

mutation of T149, E152 and T153 residues lead to a reduction in HCV entry without affecting 

the E2 binding, which further indicates the requirement of the Claudin1-CD81 complex in 

the entry process. A schematic representation of the Claudin1-CD81 complex is shown in 

figure 6.1 with the essential residues indicated. 

Our laboratory has performed further analysis on the dynamics of the Claudin1-CD81 

complex using single particle tracking (SPT) and fluorescence recovery after photobleaching 

methodologies. The results of SPT demonstrated that the two proteins diffuse separately 

before coming together and co-diffuse as a complex. In contrast, SR-BI showed no co-

diffusion with CD81, suggesting that these proteins do not form a complex. These data sets 

highlight the presence of CD81 and Claudin1 existing separately and as a complex which 

raises the question of whether the virus binds to the CD81 before or after Claudin1 

association. The binding of sE2 to CD81-EC2 has been previously shown by Elisa and surface 

Plasmon resonance with the latter technique also showing recombinant E1/E2 as well as 

HCVpp interaction(s) with CD81-EC2 (153, 264-266). These results suggest that Claudin1 is 

not required for the virus to interact with CD81 but we have no evidence to show whether 

the virus preferentially binds to a particular form of CD81, either alone or in complex with 

Claudin1.  
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Figure 6.1 Schematic representation of the Claudin1-CD81 complex. The residues 

responsible for the formation of the Claudin1-CD81 complex are shown for both the CD81 

and Claudin1 with the orange dotted line indicating which residues are associating. 

Mutation of the CD81 residues shown lead to a loss of Claudin1 interaction and HCV entry 

whilst maintain conformational antibody and sE2 binding.  
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Extensive work by Michelle Farquhar in our laboratory has recently demonstrated that 

ligation of CD81 and Claudin1 with receptor specific antibodies, HCV sE2 or HCV particles 

(HCVcc and HCVpp) promotes receptor internalization via a clathrin and dynamin dependent 

process. It has been previously shown that the engagement of anti-CD81 antibodies could 

induce internalisation of CD81 (267). Our data is consistent with work that has reported HCV 

enters the cells via clathrin mediated endocytosis (224, 268). It has been previously reported 

that Claudin1 and CD81 co-localise with early endosomes antigen-1, a marker of early 

endosomes, positive vesicles (112). Using fluorescent labelled markers of different 

endosomal vesicles we were able to demonstrate that the majority of CD81 (61%) co-

localised with an early endosomal marker Rab5, with the remainder localising with the early 

and recycling marker rab4 and the recycling marker rab11. We were also able to show 

evidence that internalisation leads to the degradation pathway as half of the internalised 

CD81 (52%) associated with lysosomal markers. It must be noted that the data is based on 

static images and therefore the movements and fates of the various vesicles still needs 

further investigation. Many viruses enter cells via an endocytic pathway, with the 

acidification of the endosome prior to lysosomal fusion acting to prime the fusion machinery 

of the virus. The closely related flaviviruses Dengue and west Nile virus have both been 

shown to enter cells via clathrin mediated endocytosis with Rab5 being essential in both 

entry processes, indicating at least a transition through the early endosome (269-271). Van 

der Schaar et al and Zaitsva et al both showed, in addition to the requirement of Rab5, that 

Dengue virus also requires Rab7, suggesting that fusion can occur in late endosomes (269-

270). HCV infection has been reported to be dependent on Rab5 as cells expressing 

dominant negative mutants of Rab5 were refractory to entry. In addition Rab7 was shown 

to be not required for entry suggesting that fusion may occur in early endosomes (268). 
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Several members of the tetraspanin family have been shown to endocytose into cells, via 

various routes, due to the presence of the endocytic motif YXXØ. Not only does CD81 lack 

this motif, removal of the N- and C-termini have minimal effect(s) on the proteins ability to 

internalise or to confer HCV infection. Overall these results suggest that Claudin1 may 

promote CD81 internalisation within the early endosomes upon certain stimuli, in this case 

antibody engagement or viral interaction.  

 

6.2 The analogy to Coxsackie B virus Entry  

A mechanism for the entry process of HCV has been proposed based on the model of CVB 

entry (figure 6.2). Although parallels between the viruses receptor usage can be drawn the 

evidence to define the entry process of HCV is lacking. Before discussing the possible entry 

process of HCV it is important to review the CVB model of entry. As described earlier 

(section 1.5 Tight Junction Proteins and viral entry) the receptors for CVB entry are DAF and 

tight junction proteins CAR and Occludin. Virus entry into polarised Caco-2 cells is thought 

to occur in a stepwise process which starts with the interaction with DAF. The DAF-CVB 

complex then relocates to the tight junction where the virus interacts with CAR (208). The 

interaction with CAR is then thought to cause a conformational change in the virus which 

enters the cell with Occludin, whilst CAR remains at the plasma membrane. The role of 

Occludin is not presently known but the authors suggest that Occludin association with 

Caveolin-1 may be important for the recruitment of Caveolin-1 to the tight junction (209).  

Reports indicate that the entry of the CVB differs depending on the polarisation state of the 

cell. In non-polarised Hela cells DAF-independent and dependent viral strains, CVB-Nancy 
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and CVB-RD strains respectively, require Dynamin to enter cells but their infection is 

independent of Caveolin, Clathrin and endosomal acidification (210). The movement of CAR 

was also shown to be different as the receptor is internalised into endosomes with the virus 

in non-polarised cells (210).  

Many review articles depict the entry process of HCV as a stepwise association with co-

receptors which ends in the internalisation of the virus (figure 6.2) (reviewed (272-274). The 

evidence for the proposed model of entry was published by Brazzoli et al who reported 

images that appear to demonstrate the relocation of the HCV E2 and CD81 proteins to cell-

cell contact areas, which they refer to as tight junctions, in a CVB like pathway (267). 

However, the Huh-7 cell line type used by Brazzoli et al have been shown not to fully 

polarise or form mature tight junctions (179), without functional tight junctions and a 

polarised phenotype it seems difficult to draw solid conclusion about the movement of viral 

particles to cell contacts. The conclusions that HCV E2 engagement causes a redistribution 

to tight junctions is open to question. Recently single particle trafficking of DiD labelled HCV 

particles suggested that internalisation can occur within 10 minutes of attachment (275). 

We were also able to demonstrate that t50% for internalisation of virus bound to the cell 

surface was between 12mins and 22mins, as indicated by the escape from proteinase K 

degradation and anti-E2 C1 Mab neutralisation respectively (276). The images in the Brazzoli 

et al publication are static images taken at 60mins which would suggest they have missed 

the majority of the internalisation event (267). 
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Figure 6.2: Schematic representation of the proposed stepwise entry process of HCV based 

on the Coxsackie B virus entry. The theory states the interaction with SR-BI, then CD81 

which translocates with the virus to the tight junction. At the tight junction the virus 

interacts with Claudin1 then Occludin before internalising within Clathrin coated pits. The 

image is modified version taken from (273-274). 
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The sequential nature of HCV entry has been suggested due to the escape times of anti-

receptor antibodies. Catanese et al showed that anti-SR-BI Mab C167 could only inhibit 

entry when the cells were pre-incubated with the Mab (277). Evans et al reported that anti-

CD81 Mab JS81 could neutralise infection up to 18mins post viral binding. They also 

demonstrated using a Claudin1 protein containing an FLAG epitope within the EC1 that 

neutralisation by an anti-FLAG could occur up 78 mins post binding (110). Taken together 

these times would indicate a sequential function of the receptor proteins. In contrast other 

publications have demonstrated using alternative antibodies different kinetics for viral 

neutralisation. Zeisel et al reported with Rat anti-SR-BI serum that the entry could be 

neutralised up to 60mins post binding with similar kinetics to an anti-CD81 Mab (278). 

Krieger et al have also shown that a Rat anti-Claudin1 serum is able to inhibit  virus up to 

33mins post binding, which is half the time showed by Evans et al, with their anti-CD81 JS81 

Mab recording a similar time of 30mins (182). In addition to these viral escape times we 

have demonstrated that the two commercial anti-CD81 Mabs (1.3.3.22 and JS81) and two in 

house Mabs (2s66 and 2s131) have viral escape times of 37, 40, 51 and 59 mins, 

respectively. We demonstrated that the ability of the mAb to inhibit infection at late times 

post infection was dependent on CD81 epitope recognition and not affinity. Due to the wide 

variation in viral escape times between the different antibodies care should be taken in 

concluding whether the receptors act in a sequential fashion. Furthermore, endocytosis of 

the virus has been determined by single particle tracking and the escape from proteinase K 

degradation, of 10mins and 12mins respectively, the antibodies appear to have the ability to 

inhibit the entry of internalised viral particles. 
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The issue of cell type and polarity are other aspects that lead us to move away from a CVB 

like entry process for HCV. The epithelial polarity, which CVB is presented with, is very 

different from that of hepatocyte polarity where the cells have an apical surface exposed to 

the lumen, tight junctions which are located close to the apical surface (introduction figure 

1.4)  (170, 195). The hepatocyte polarity is somewhat different with tight junctions enclosing 

the apical surface to form the bile canliculi with at least two basal surfaces exposed to the 

lumen (introduction figure 1.4) (216). Recent data demonstrates that tight junction 

associated proteins in polarised HepG2 cells are not accessible to anti-Claudin1 antibodies, 

whereas antibodies can bind basolateral pools of Claudin1 (Chris Mee, unpublished data). 

We have reported that polarised HepG2 cells are less susceptible to HCV infection. Either 

allowing the cells to polarise over time or promoting polarity, using PKA inhibitors or human 

oncostatin M, decreases HCVpp entry. Importantly, HCV still infects polarized HepG2 cells in 

an SR-BI, CD81 and Claudin1 dependent manner (Mee, in preparation). Reducing polarity 

with phorbol ester, a PKA activator, or vascular endothelial growth factor increased HCV 

entry (179-180). Since HCV enters the liver via the sinusoidal blood, the virus will encounter 

receptors expressed on the basal surface of the hepatocyte. Figure 6.3 shows a schematic of 

the environment that the virus is presented with in a polarised liver. We have been able to 

show, by staining liver sections for SR-BI, CD81, Claudin1, that all three receptors are 

present at the basal surface of hepatocytes (179, 256). In contrast, Occludin is only 

detectable at the apical tight junctions in vitro in polarized HepG2 and WIFB9 cells and in 

vivo in human liver tissue (179). In contrast,  expression of a fluorophore labelled Occludin 

shows staining around the basal surface of a polarised HepG2 cells (figure 1.5), although this 

could be due to the over expression of the protein it could also indicate the levels of protein 

at the basal surface may be below the detection threshold for the available anti-occludin.  
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The polarisation of HepG2 cells was shown to have a notable change in the distribution of 

Claudin1 leading to a reduction of basal forms of the protein, which appear to be 

redistributed to the apical located tight junction (179). The data shown earlier in figure 4.1 

indicates that tight junction pools of Claudin1 do not associate with CD81 in HepG2 cells. As 

we feel we have very good data implicating the association of Claudin1 with CD81 is 

essential for entry, we would conclude the tight junctions represent a non-permissive area 

for viral entry (179-180, 184). The location of Claudin1–CD81 complexes at the basolateral 

surface of polarized hepatoma cells supports a model where virus engagement of Claudin1–

CD81 at the basal membrane may initiate the particle internalization process.  
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Figure 6.3: Schematic representation of the hepatic environment. HCV enters the liver in 

the blood carried by the hepatic artery. (A) The fenestrated sinusoidal endothelial layer 

which the virus has to traverse to gain access to its primary target cell, the hepatocyte. (B) In 

the case of polarized hepatocytes, although all receptors are detectable at the basal surface, 

the receptor proteins associated with the tight junctions may be inaccessible due to the 

closing of the space between neighbouring cells. (C) Depolarization of the hepatocytes, due 

to an underlying condition or to the actions of VEGF, PKC inhibition, etc., alters the 

presentation of the putative entry factors. In this state all of the receptor proteins will be 

available to allow viral engagement.  
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6.3 Conclusions and closing remarks 

We feel our results demonstrate a role for CD81-Claudin1 complexes in HCV entry. We 

propose a role for Claudin1 in regulating CD81 endocytosis. Claudin1 appears to enable the 

internalisation of CD81, which itself lacks endocytic markers. Not only do the results provide 

a clearer picture of the function of the proteins in virus entry but highlight potential targets 

for therapeutic intervention. The modelling data, which we were able to validate, identify 

specific residues of both CD81 and Claudin1 that are essential for the interaction of the two 

proteins. The first third of the Claudin1 EC1, which was shown to be essential for entry (110, 

183), appears to interact with T149, E152 and T153 of CD81. As the structure for CD81 is 

known, the design of small interfering molecules targeting the specific residues is very much 

achievable (120).  

Ultimately the knowledge gained about the viral life cycle hopefully should lead to the 

creation of antiviral treatments. At present a combination therapy of pegylated Interferon 

α-2a and Ribavirin are used to treat for HCV infection. Unfortunately the rates of sustained 

virological response of the dual therapy is 46% for HCV genotype 1 infected individuals, 76% 

for those infected with genotypes 2 or 3 and 77% genotype 4 infections (80). Due to these 

low response rates, the toxicity and cost of treatment, new therapies are urgently required. 

The FDA has recently approved the use of the protease inhibitors Boceprevir (Merck) & 

Telaprevir (Vertex) for the treatment of HCV, with other antiviral compounds targeting the 

viral lifecycle at various stages of development. The ability of the virus to quickly develop 

resistance is a major concern for any potential therapies. The virus is found within 

individuals as a quasispecies, which develops over the course of their infection through 

neutral and adaptive evolution (81-82). The targeting of the CD81-Claudin1 complex may be 

a promising target due to the essential requirement for viral entry and it represents a stable 
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target. A small compound produced by iThreX targeting SR-BI has cross genotype antiviral 

activity and demonstrates the validity of targeting host proteins as a viable therapeutic 

approach (279-280). Without the knowledge of the biological relevance and function of the 

Claudin1-CD81 complex the long term effects of any targeted disruption is unknown. It has 

been demonstrated that anti-Claudin1 antibodies which inhibit the interaction and viral 

entry to above 90%, had no toxic effects in cell culture (254). If some toxicity is shown within 

individuals there is still the possibility of targeting the complex shortly after liver 

transplantation. HCV is now the most common indicator of liver transplant in the US with re-

infection of the liver occurring with each case after transplantation leading to a more rapid 

and aggressive disease progression (281-282). The use of passive anti-HBV surface antigen 

(anti-HBVs) immunotherapy has been used with success to prevent the re-infection after 

liver transplantation (283). If the disruption of the CD81-Claudin1 complex has some long 

term toxic effects the short term use of anti-Claudin1 antibodies prior and shortly after 

transplant could serve to prevent the re-infection of the liver. In collaboration with the 

Baumert group we have been able to demonstrate that anti-Claudin1 antibodies inhibit HCV 

entry, with the mechanism appearing to be the disruption of the Claudin1-CD81 complexes 

(253-254). Overall the Claudin1-CD81 complex is important for the entry of HCV and could 

serve as an anti-viral target. The techniques utilised to show the CD81-Claudin1 interaction 

such as the FIR and FRET analysis and the SPR could easily be developed to enable screening 

of new drugs to perturb the complex. As stated earlier the biological function of the CD81-

Claudin1 complex is unknown and the effects of disrupting the complex is unknown. More 

research is required to verify the complex is a valid target for anti-viral therapy.     
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