Fairbairn, Benjamin Thomas (2009). On the symmetric generation of finite groups. University of Birmingham. Ph.D.
|
Fairbairn09PhD.pdf
Download (551kB) |
Abstract
In this thesis we discuss some uses and applications of the techniques in Symmetric generation. In Chapter 1 we introduce the notions of symmetric generation. In Chapter 2 we discuss symmetric presentations defined by symmetric generating sets that are preserved by a group acting on them transitively but imprimitively. In Chapter 3 our attention turns to Coxeter groups. We show how the Coxeter-Moser presentations traditionally associated with the families of finite Coxeter groups of types A\(_n\), D\(_n\) and E\(_n\) (ie the “simply laced” Coxeter groups) may be interpreted as symmetric presentations and as such may be naturally arrived at by elementary means. In Chapter 4 we classify the irreducible monomial representations of the groups L\(_2\)(q) and use these to define symmetric generating sets of various groups.
Type of Work: | Thesis (Doctorates > Ph.D.) | ||||||
---|---|---|---|---|---|---|---|
Award Type: | Doctorates > Ph.D. | ||||||
Supervisor(s): |
|
||||||
Licence: | |||||||
College/Faculty: | Colleges (2008 onwards) > College of Engineering & Physical Sciences | ||||||
School or Department: | School of Mathematics | ||||||
Funders: | Engineering and Physical Sciences Research Council | ||||||
Subjects: | Q Science > QA Mathematics | ||||||
URI: | http://etheses.bham.ac.uk/id/eprint/278 |
Actions
Request a Correction | |
View Item |
Downloads
Downloads per month over past year