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SYNOPSIS 

 

The introduction of innovative filled methacrylate resin composites has revolutionised the 

field of aesthetic restorative dentistry and provided a clinically viable alternative to amalgam-based 

restorations. The mechano-physical properties and resultant clinical longevity of these materials was 

insufficient. To improve these properties the on-going development of resin-based composites 

(RBCs) has sought to modify the filler size and morphology and to improve the loading and 

distribution of constituent filler particles. This has resulted in the introduction of so-called ‘nanofills’ 

which possess a combination of nano- and micro-sized filler to produce a hybrid material. A 

variation to this approach was the introduction of ‘nanocluster’ particles, which are essentially an 

agglomeration of nano-sized silica and zirconia particles. Although these materials have 

demonstrated a degree of clinical and experimental success debate remains as to their specific 

benefit compared with existing conventionally filled systems. 

 Following placement RBC restorations are exposed to masticatory loading (repeated sub-

critical stresses) which are typically detrimental to the clinical longevity of the material. The current 

study determined that RBCs reinforced with the ‘nanocluster’ particles possessed statistically similar 

or significantly increased bi-axial flexure strengths and associated Weibull moduli following pre-

loading regimes which produced catastrophic failure of conventionally filled RBCs. This was 

attributed to the unique reinforcement provided by the ‘nanocluster’ particle, which were identified 

by a novel micromanipulation technique to possess distinctive fracture mechanisms, in addition to 

possessing an IPC-like structure. These acted in combination to absorb and dissipate loading stresses 

and to provide enhanced damage tolerance. 

Near-infra-red spectroscopy was also employed to determine the water sorption and it did not 

identify any direct correlation between water content and extent of strength reduction. However, 

immersion of the materials in water and also in sodium hydroxide or ethanol highlighted that the 

long-term hydrolytic stability of the ‘nanoclusters’ was limited. This suggested that degradation of 

the interfacial silane layer weakened the ‘nanocluster’ particle causing them to act as defect centres 

within the resin matrix and to consequently generate a greater loss of strength. Therefore, whilst the 

‘nanocluster’ reinforced RBCs have the potential to provide enhanced damage tolerance and 

improved clinical longevity the limited long-term hydrolytic stability suggests further development 

of hydrophilic silane coupling agents and resin monomers is required to realize these properties.  
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CHAPTER 1   THE DEVELOPMENT OF RESTORATIVE DENTAL MATERIALS 

 

1.1 Historical Development 

 

Modern aesthetic restorative dentistry is said to have begun in 1728 when Dr. Pierre 

Fauchard (1678-1761) published a discourse entitled ‘The surgeon dentist: a treatise on the teeth’, 

which in addition to describing the oral anatomy, oral pathology and operative techniques to 

remove carious decay also described tooth transplantation and the replacement of missing 

dentition [Philips 1991; Wahl, 2005]. From this point dentistry began to develop as a recognised 

science, with the introduction in 1756 by Dr. Philip Pfaff (1715-1767) of wax impressions of the 

dentition from which plaster of Paris models were produced [Wahl, 2005]. Whilst, in 1792 Dr. 

Nicholas Dubois de Chemant (1753-1824), following collaboration with the Parisian pharmacist 

Alexis Duchateau (1714-1792), patented a production process for porcelain dentures. This was 

followed by the introduction of the porcelain inlay in the early nineteenth century [Sugden, 1983; 

Philips 1991]. However, despite these advances a wide assortment of esoteric materials and 

techniques remained in use until the mid-nineteenth century, such techniques frequently included 

the complete removal of dentition. This led to the common use of dentures, although the 

materials used varied to a great extent and included animal teeth, ivory, Wedgwood porcelains 

and transplanted human teeth, which became known as ‘Waterloo teeth’ and originated from the 

Napoleonic battlefields of Europe (1803-1815). However, the use of such materials was limited 

as a consequence of poor fit, intrinsic staining and failure under masticatory loads [Hillam, 1990; 

Engelmeier, 2003a; 2003b]. 

The nineteenth century saw a technical revolution in dentistry with the introduction of 

formal training and regulation of dentistry as a profession. The development of new materials, 

such as vulcanised rubber in 1853 were combined with existing porcelain teeth to produce the 

first removable dentures [Rueggeberg et al., 2002] and the introduction and development of 

amalgam-based restorations in the early and mid-nineteenth century revolutionised restorative 

dentistry [Philips, 1991; Gelbier, 2005]. The extensive work of Dr. Greene Vardiman Black 

(1836-1915) during this time influenced and advanced nearly all aspects of dental research, 

including the production of porcelain and gold foil restorations in 1895 and the development in 

1896 of a silver-amalgam alloy [Black, 1896; Cannon et al., 1985]. 
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The pioneering work of Dr. Rafael Bowen in the mid-twentieth century led to the 

production of an innovative tooth-coloured, particle filled methacrylate resin-matrix which has 

since formed the cornerstone of modern aesthetic restorative dentistry [Bowen, 1956; 1958; 

1962a; 1962b; 1964]. Modern dental techniques have subsequently stressed the retention of 

natural dentition whilst improved adhesive techniques and the introduction of acid-etching has 

improved restoration retention [Bunoincore et al., 1955; Yip & Samaranayaka, 1998]. The 

ensuing development and refinement of resin-based composite (RBC) materials for aesthetic 

restorative dentistry in the late-twentieth and early twenty-first centuries has led to a wide 

diversity of materials. These have included Universal RBCs intended for both anterior and 

posterior placement [Cobb et al., 2000], RBCs containing ‘nano-sized’ filler particles and 

described as so-called ‘nanofills’ [Mitra et al., 2003], highly viscous ‘packable’ RBCs [Leinfelder 

et al., 1998; Manhart et al., 2001] and also ‘flowable’ RBCs [Braga et al., 2005]. In addition, 

recent modifications to the resin matrix have sought to reduce polymerization shrinkage stresses, 

such materials have included, siloranes [Weinmann et al., 2005], Ormocers [Moszner et al., 

2007a], thiol-ene step-growth polymers [Carisocia et al., 2005] and spiro-orthocarbonates which 

expand during polymerization [Ferracane, 1995] (Section 1.4.1.1). 

 

1.2 Amalgam Dental Restoratives 

 

Amalgam-based restorations have a long history as arguably the most successful and 

ubiquitous dental restorative material ever produced [Eley, 1997]. The first silver/mercury-

amalgam was developed either in 1816 by Dr. Auguste Taveau or in 1819 by Dr. Benjamin Bell 

and was first recorded as being placed in 1826 by Dr. Taveau. Amalgam was the first standard 

filling material, consisting of a hand-mixed ‘silver paste’, although it was commercially 

introduced as the ‘Royal Mineral Succedaneum’ in 1833 by the itinerant Crawcour brothers in 

New York who advertised “cheap, painless and fast fillings” [Pain, 2001]. Unfortunately early 

amalgams engendered a poor reputation as a consequence of inconsistencies in the mixing 

technique, post-operative pain following placement over existing untreated carious teeth and the 

unscrupulous behaviour of some practitioners. Consequently, in 1845 the placement of amalgam 

was prohibited by the American Dental Association (ADA) due to poor technique, lack of 

regulation and toxicity concerns related to mercury [Eley, 1997]. This instigated the first 
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‘amalgam war’ (1841-1855) and lead to stringent testing of clinical efficacy and eventual 

standardisation of amalgams. The prohibition of amalgam was gradually rescinded as the 

threatened adverse health effects failed to occur [Roulet, 1997; Eley, 1997; Meskin, 2001]. In 

1855, the work of Dr. J. Foster Flagg (1828-1903) in testing different amalgam formulations for 

posterior restorations [Hyson, 2006] and later of Dr. Black in 1896 resulted in a standardized 

formula of 67% silver, 27% tin, 5% copper and 1% zinc by mass [Black, 1896]. The second 

amalgam war began in 1926 when Dr. Alfred Stock expressed concern regarding the health of 

dental practitioners due to mercury vapour released during preparation of the amalgam for 

placement. It would appear that this concern was vindicated as a new amalgam formulation was 

subsequently introduced which removed the hazardous requirement to heat the original amalgam 

formulation prior to placement [Dodes, 2001]. The third amalgam war began in the late 1970s 

when Dr. Hal Huggins attributed a wide variety of systemic and chronic illnesses to mercury 

release from amalgam, the subsequent debate was especially intense in Scandinavia, the USA and 

Germany [Dodes, 2001]. In 1997 the FDI World Dental Federation and the World Health 

Organisation (WHO) and also in 1998 the ADA’s Council on Scientific Affairs stated that 

amalgam was a safe and effective restorative material [7th ICMGP, 2004]. 

 

1.2.1 Constituents of amalgams 

The low-copper conventional amalgam introduced by Dr. Black in 1896 has been 

rendered redundant by the introduction of the ‘modern’ high-copper amalgam in 1963 which 

eliminates the presence of the tin-mercury γ2 phase known to cause excessive marginal fracture 

described as ‘ditching’, inferior corrosion resistance and strength loss [Jørgensen, 1970; Mahler, 

1997; Eley, 1997; Fleming et al., 2001]. The main constituent of the amalgam alloy was Ag3Sn(γ 

phase), which was triturated with mercury to produce a plastic mass that set by the formation of 

γ1 and γ2 phases, although residual γ phase particles remained embedded within the γ1 and γ2 

phase matrix of the set amalgam (Equation 1.1) [Philips, 1991; Eley, 1997], 

 

Ag3Sn(γ phase) + Hg → Ag2Hg3(γ1 phase) + Sn7-8Hg(γ2 phase) + Ag3Sn(γ phase) Equation 1.1. 

 

High-copper amalgams contained an alloy powder of spherical Ag-Cu and lathe-cut Ag-Sn 

particles [Youdelis, 1967], with a copper content of 13-20%. High-copper amalgams were 
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identified to posses improved mechanical properties, corrosion resistance and marginal integrity 

in clinical trials compared with the preceding low-copper amalgams [Eley et al., 1997] (Table 

1.1).  

 
 Low-copper amalgams High-copper amalgams 

Compressive strength (MPa) 227-366 340-516 

Tensile strength (MPa) 51-55 43-56 

Creep (%) 1.5-6.3 0.09-0.45 

Dimensional change (µm/cm) -10.6--19.7 -1.9--8.8 

 
Table 1.1. The mechanical properties (MPa), creep (%) and dimensional change 
(µm/cm) of the now defunct low-copper amalgam compared with high-copper amalgam, 
following 1 week setting. Table adapted from Malhotra & Asgar (1978). 
 

Two types of high-copper amalgam are available, namely ‘admixed’ consisting of silver 

and silver-tin or ‘single composition’ consisting of a ternary silver-copper-tin alloy. The 

‘admixed’ amalgam contains high-copper spherical silver-copper particles consisting of silver-

rich and copper-rich phases and low-copper lathe-cut particles. The initial setting reaction of 

‘admixed’ amalgam is the same as that of low-copper (Equation 1.1) whilst the secondary solid-

state reaction occurs according to Equation 1.2. 

 

Sn8Hg (γ2 phase) + Ag5Cu2(eutectic) + Hg → Ag2Hg3(γ1 phase) + Cu6Sn5(η phase)  Equation 1.2. 

 

The high-copper ‘single composition’ amalgam contains a high quantity of spherical Cu3Sn(ε 

phase) dispersed throughout the Ag3Sn(γ phase). Following mixing with liquid mercury the ε and 

γ phases diffuse onto the surface of the mercury particles and Ag2Hg3(γ1 phase) and Cu6Sn5(η 

phase) are formed (Equation 1.3), 

 

Ag3Sn(γ phase) + Cu3Sn(ε phase)+ Hg → Ag2Hg3(γ1 phase) + Cu6Sn5(η phase)   Equation 1.3. 

 

The reaction of mercury in either ‘admixed’ or ‘single composition’ high-copper amalgam results 

in the Cu6Sn5(η) phase rather than the Sn7-8Hg(γ2) phase produced during trituration of low-

copper amalgams. However, small quantities of both residual γ2 phase (<1%) and mercury, 
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prompting toxicity concerns, remain within high-copper amalgams [Eley, 1997; Powers & 

Sakaguchi, 2007]. The mechanical trituration of the alloy powder and liquid mercury 

standardized the amalgamation process and ensured homogeneous distribution of alloy particles, 

although completion of the setting reaction takes several days to a week and subsequently the 

mechanical properties improve with time (Table 1.2) [Mitchell & Okabe, 1996].  

 
Low-copper amalgams High-copper amalgams  

1h 1 week 1h 1 week 

Compressive strength (MPa) 45-141 227-366 118-292 340-516 

Tensile strength (MPa) 3.2-4.7 51-55 3.0-8.5 43-56 

 
Table 1.2. The compressive and tensile strength (MPa) of low- and high-copper 
amalgams following 1h and 1 week setting time, highlighting that mechanical properties 
change with time. Table adapted from Malhotra & Asgar (1978). 
 

The alloy particles possess either an irregular or spheroidal morphology and respectively 

are produced by lathe-cutting or gas-atomization. The lathe-cut particles are cut and ball milled to 

produce particles of 60-120μm length, 10-70μm width and 10-35μm thickness which are 

subsequently described as ‘fine-cut’. In contrast, spheroidal particles are produced by melting of 

the alloy which is sprayed under a high pressure inert gas, such as argon, through a fine crack, to 

form particles with a diameter of 2-43μm [Powers & Sakaguchi, 2007]. Following setting the 

alloy particles are embedded within a mercury matrix forming an intermetallic metal-matrix 

composite [Mitchell & Okabe, 1996], the particles are covered by a 2-3μm thick reaction layer, 

described as the ‘Asgar-Mahler reaction zone’, which consists of ultrafine γ1 and η phase crystals 

[Johnson et al., 1969; Mitchell & Okabe, 1996]. In high-copper amalgams the addition of 

spherical silver-copper particles to the irregular lathe-cut particles were identified to act as strong 

fillers, consequently strengthening the amalgam matrix and thus improving the mechanical 

properties compared with the low-copper amalgams [Philips, 1991; Mahler, 1997]. 

 

1.2.2 The gradual demise of amalgam 

Despite the clinical success of amalgam-based restorations their routine placement is 

gradually decreasing due to continuing concern regarding alleged mercury toxicity and 

environmental considerations arising from disposal [Hörsted-Bindslev, 2004]. In addition, patient 

 5



driven demand for aesthetic restorations which mimic the appearance of natural dentition has 

risen dramatically [Whitters et al, 1999; Burke, 2004; Roeters et al., 2004; Opdam et al., 2007]. 

Subsequently, the use of amalgam is decreasing annually across the globe, albeit at different rates 

[Roeters et al., 2004; Opdam et al., 2007]. A comparison between UK and Australian dental 

practitioners highlighted that the use of amalgam decreased 9% faster in Australia (59%) 

compared with the UK (50%) over the same five year period [Burke, 2004]. The placement of 

amalgam restorations is generally not restricted, although Sweden, Norway, Austria and 

Germany recommend that amalgam not be placed in pregnant women, whilst Sweden has stated 

its aim to phase out the use of amalgam [Burke, 2004]. This suggests that a considerable shift 

away from the use of amalgam has occurred. An extensive study of Norwegian clinicians also 

reported a reduction in the previously widespread placement of amalgam to 32% compared with 

an increase in RBC restorations to 40% of placements [Mjör et al., 1999]. Furthermore, from 1st 

January 2008 the Norwegian government has enacted a ban on the production, import, export, 

sale and use of mercury containing substances including dental amalgam, due to concerns 

regarding environmental mercury pollution. Unsurprisingly many eminent dental material 

researchers have been appalled at this apparent travesty, pointing out that 50% of environmental 

mercury pollution comes from natural sources and 42% from burning fossil fuels whilst only 

0.2% at most originates from sources related to dental amalgam [Jones, 2008].  

 

1.2.2.1 Toxicity of amalgam 

A number of systemic and chronic illnesses have been attributed to the alleged toxicity of 

mercury-based amalgams, however no sound scientific evidence of this association exists 

[Roulet, 1997; Meskin, 2000]. These toxicity concerns have arisen as mercury in high 

concentrations is neurotoxic and nephrotoxic and adversely affects the respiratory, 

cardiovascular, reproductive and gastrointestinal systems [Horsted-Bindslev, 2004]. The release 

of mercury from amalgams has been identified to occur in three main forms, namely as vapour, 

mercury-oxide and as methyl mercury compounds. However, whilst the occurrence of mercury 

release is accepted, dispute exists as to whether the quantity released is significant [Langworth et 

al., 1997; Mackert & Burglund, 1997; Whitters et al., 1999]. A recent review by Horsted-

Bindslev, (2004) highlighted that mercury concentration in the urine of dental practitioners who 

routinely place amalgam restorations ranged from 3-40μg/l, compared with the considerably 
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lower range of 1-5μg/l for members of the general public, although it was not stated whether the 

general public included those with or without amalgam restorations or their occupation. WHO 

guidelines stipulate an occupational mercury exposure limit of 80μg/l so levels remain below 

toxicological concentrations, however it has been suggested that cumulative exposure may prove 

detrimental [Langworth et al., 1997; Meskin, 2000; Spencer et al., 2000; Horsted-Bindslev, 

2004].  

It is also interesting to note that psychosomatic studies have highlighted a psychological 

‘fear’ of amalgam, identifying that the vast majority of patients complaining of amalgam related 

health problems suffered pre-existing psychiatric disorders. Also, no correlation was identified 

between the severity of symptoms reported by these patients and the measured mercury levels 

[Bratel et al., 1997a; 1997b]. However, despite the lack of any vigorous scientific study 

highlighting a link between amalgam restorations and chronic illnesses attributed to mercury 

release, the use of amalgam has continued to decline [Meskin, 2000]. 

 

1.2.2.2 Clinical longevity 

The clinical longevity of amalgam and RBC restorations has been identified to vary 

greatly between studies and to be influenced by the presence of occluding surfaces and also 

technique sensitivity and operator induced variability [Mjör et al., 1997; Manhard et al., 2004; 

Lucarotti et al., 2005]. An extensive review conducted by Mjör et al. (1997) of the reasons for 

replacement of amalgam and RBC restorations carried out by Swedish general dental 

practitioners (GDPs), irrespective of the class of restoration, highlighted a median clinical 

longevity of nine years for amalgam restorations and six years for RBCs. The study concluded 

that the principle reason for restoration failure was secondary caries and that this diagnosis was 

significantly higher for amalgam than RBCs, which generally failed due to bulk fracture [Mjör et 

al., 1997]. Furthermore, a comprehensive review conducted by Lucarotti et al. (2005) involving 

80,000 patients and 503,965 directly placed restorations, concluded that 58% of small amalgam 

surface restorations survived following 10 years service, whilst only 43% of RBC restorations 

placed in posterior Class V lesions on the gingival third of the tooth surface survived the same 

period. It is also interesting to note that only 43% of the comparatively much larger mesial-

occusal-distal (MOD) amalgam restorations survived following 10 years service, suggesting that 

size and position of the restoration will influence its longevity [Lucarotti et al., 2005]. In contrast, 
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Manhart et al. (2004) highlighted that whilst the range of annual survival rates of amalgam and 

RBC restorations placed in posterior teeth was 0.0-7.4 and 0.0-9.0% respectively, the mean 

annual failure rate of RBCs were lower (2.2±2.0) than that of amalgam (3.0±1.9%), although 

statistical analysis highlighted no significant difference between the materials [Manhart et al., 

2004].  

The apparently superior clinical longevity [Bogacki et al., 2002] and ease of manipulation 

attributed to ‘packability’ and ‘condensability’ [Cunningham et al., 1990; Tyas et al., 1998] of 

amalgam compared with RBC restorations may be attributed to the previous dental curriculum 

which emphasised the teaching of amalgam over adhesive techniques [Roeters et al., 2004; 

Opdam et al., 2007]. However, as dental schools reduce or eliminate the teaching of amalgam in 

favour of posterior RBC restorations [Roeter et al., 2004; Wilson et al., 2004; Lucarotti et al., 

2005; Mitchell et al., 2007], a new generation of dental practitioners may be expected to favour 

the placement of RBC restorations which possess equivalent or improved clinical longevity 

compared with amalgams [Opdam et al., 2007]. 

 

1.3 The Development of Resin Based Composite Restoratives 

 

The precursor of RBCs were acrylic resins, particularly polymethyl methacrylate 

(PMMA), which was introduced to the dental profession in 1936 as Vernonite and was employed 

for inlays, crowns and fixed partial dentures [Rueggeberg, 2002]. However, the use of PMMA-

based restorations was limited due to volumetric shrinkage during polymerization, a large 

difference in the thermal expansion coefficient between PMMAs and the surrounding tooth, lack 

of colour stability, low adhesion and ‘ditching’. As a consequence of these limitations a high 

incidence of marginal staining and recurrent caries was identified at the restoration/tooth 

interface [Paffenbarger et al., 1953; Rueggeberg, 2002]. 

The pioneering work of Dr. Rafael Bowen in the 1950s developed novel organic high 

molecular weight epoxy resin and methacrylate derivatives that incorporated inorganic filler 

particles and sought to reduce the detrimental polymerization shrinkage of the preceding 

PMMAs. This work resulted in a patent in 1958 of a material composed of 75% by weight of 

quartz or aluminosilicate glass filler and 25% by weight polymerizable resin monomer, namely 

the dimethacrylate formulation 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane 
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(bisphenol-A glycidyl methacrylate; BisGMA). Subsequently, the large molecular size and 

chemical structure of the difunctional BisGMA resulted in decreased polymerization shrinkage 

compared with PMMAs and improved the elastic modulus, tensile and compressive strengths 

[Bowen, 1956; Braden, 1974].  

The high viscosity of BisGMA limited the filler particle loading necessitating the 

introduction of a lower molecular weight monomer, namely triethylene glycol dimethacrylate 

(TEGDMA) to reduce the viscosity of the paste and allow for increased filler loading and 

appropriate handling characteristics. A silane coupling agent was used to coat the glass filler 

particles prior to incorporation into the resin matrix to promote adhesion between the glass filler 

and the BisGMA/TEGDMA comonomer. Early RBCs were chemically cured via a reduction-

oxidation reaction (redox) to initiate free radical polymerization [Bowen, 1956; 1958; 1962a; 

1962b; 1964]. As RBCs were developed, light-activated polymerization was introduced and 

subsequently a photo-initiator, such as camphoroquinone, was added to promote the curing 

reaction, whilst the addition of an inhibitor, such as hydroquinone, was also required to increase 

both the shelf-life of the material and working time available to the dental practitioner during 

placement [Rueggeberg, 2002].  

The ongoing development of RBCs has coincided with the decline in placement of 

amalgam restorations (Section 1.2.2) and resulted in an extensive range of polymer-based dental 

restorative materials of which RBCs have become seen as the dominant alternative to amalgam 

for the direct restoration of posterior teeth [Whitters et al., 1999].  

 

1.3.1 Classification of RBCs according to filler type 

RBCs are commonly classified according to the mean size of the inorganic filler particles 

or volume percent of filler [Lang et al., 1992; Willems et al., 1992]. The first classification 

system was based on the mean size of filler particles, manufacturing techniques and chemical 

composition of the filler [Lutz & Philips, 1983]. RBCs are frequently experimentally classified 

by filler extraction from the unpolymerized paste using either thermogravimetric analysis, ashing 

or chemical decomposition of the resin and subsequent scanning electron microscopy to 

determine filler load and morphology or energy dispersed x-ray spectroscopy to determine filler 

composition [Marshall et al., 1988; Hosoda et al., 1990; Khan et al., 1992; Lang et al., 1992; Kim 

& Shim, 2001; Sabbagh et al., 2004; Beun et al., 2007]. The classification of RBCs according to 
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filler type has produced a wide variety of classifications and sub-classifications as new RBCs 

have been developed and existing materials refined, although the system developed by Lutz & 

Philips (1983) remains the most widely accepted. 

 

1.3.1.1 Traditional 

 The original RBCs contained macro-sized filler particles with a mean size distribution of 

10-100µm [Bowen, 1962; Lutz & Philips (1983)] and were classified as either conventional 

[Bowen, 1962] or traditional [Lutz & Philips (1983); Hosoda et al., 1990] RBCs, dependent upon 

the literature. The inorganic filler particulates were quartz, borosilicate, ceramic or glass 

manufactured by milling which produced particles with a splintered and irregular morphology 

(Figure 1.1; page 13). These particles were added to the BisGMA/TEGDMA resin matrix at 

approximately 70-80 weight percent (wt%) or 55-65 volume percent (vol%), to produce a paste 

that exhibited flexural strengths of 110-135MPa following chemical polymerization [McCabe et 

al., 1998]. Traditional RBCs included Concise (3M, St. Paul, MN, US) and Adaptic (Johnson & 

Johnson, Windsor, NJ, US) which contained a particle size range of 1-40µm [Willems et al., 

1992; Sabbagh et al., 2004]. However, traditional RBCs possessed a low wear resistance as a 

consequence of differential wear whereby the resin loss occurred more rapidly than that of the 

filler. This produced large wear facets, a high degree of surface roughness and a ‘dull’ 

appearance where particles protruded from the surrounding matrix [Willems et al., 1992; 

Sabbagh et al., 2004]. Traditional RBCs have been replaced with products possessing improved 

particle distribution and which generally possess a reduced filler size [Lutz & Philips, 1983].  

 

1.3.1.2 Small particle 

Small particle RBCs include both “intermediate” and “midifill” materials which possess a 

mean filler size range of 1-10µm [Marshall et al., 1988; Lang et al., 1992] and a filler loading of 

~80wt% (60vol%) [Yap et al., 2002; Xu & Burgess, 2003]. The smaller particle size (Figure 1.1; 

page 13) compared with traditional RBCs sought to improve filler loading and distribution. 

Subsequently, small particle RBCs possessed a flexure strength of 91-102MPa [Adabo et al., 

2003; Lohbauer et al., 2003a; 2003b] and a compressive strength of 285MPa [Xu & Burgess, 

2003] (values taken for Ariston pHc, Vivadent, Schann, Liectenstein and classified by Yap et al. 

(2002) as a midifill). The first RBC indicated for posterior placement was the small particle RBC 

 10



P-10 (3M, St. Paul, MN, US), which was a development of the earlier traditional RBC Concise 

and possessed improved wear resistance [Leinfelder, 1995]. 

 

1.3.1.3 Microfilled 

Microfilled RBCs were introduced in the late 1970s and contained finely dispersed 

radiolucent glass spheres (Figure 1.1; page 13) with a mean size of 0.04-0.1µm produced using a 

chemical hydrolysis and precipitation reaction known as a sol-gel technique (Section 1.3.3) to 

produce colloidal silica particles [Lutz & Philips, 1983; Lang et al., 1992]. An alternative process 

known as flame hydrolysis was also available to produce pyrogenic silica particles, also 

described as fumed silica, although the particle size is higher (~0.1µm) compared with colloidal 

silica [Lutz & Philips, 1983; Lang et al., 1992]. Despite the high aesthetic appearance and polish 

retention of ‘homogeneous microfills’, these materials possessed a maximum filler loading of 

only 50-65wt% (20vol%) due to the high surface-area-to-volume ratio of the microfill particles 

which increased the filler surface wettability with resin. Subsequently, the admixture of higher 

microfill loads rapidly produced an extremely viscous paste which limited the rheological 

properties and ease of manipulation [Lutz & Philips, 1983; Roulet, 1987].  

In order to increase the maximum attainable filler load ‘hetergeneous microfills’ were 

introduced which consisted of microfill complexes produced by grinding a pre-polymerized resin 

containing colloidal silica to 20-50µm sized particles which were then admixed into a resin filled 

with submicron colloidal silica prior to polymerization (Figure 1.1; page 13) [Lutz & Philips, 

1983]. However, the maximum achievable filler loading (~50vol%) remained considerably lower 

than traditional RBCs [Lang et al., 1992] and microfills were identified to possess a flexural 

strength of 60-80MPa, subsequently contraindicating their use for posterior restorations [Lutz & 

Philips, 1983; Roulet, 1987; Lang et al., 1992]. The three microfill complexes were described by 

Lutz & Philips (1983) and Roulet, (1987) as; 

• Splintered pre-polymerized: Pre-polymerized particles containing pyrogenic or colloidal 

silica particles were milled to produce a size distribution of 1-200µm prior to incorporation in 

a filled methacrylate matrix.  

• Spherical polymer-based: Silica particles were incorporated into partially cured polymer 

spheres with a mean diameter of 20-30µm, which are loaded into the resin matrix.  
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• Agglomerated: Silica filler particles with a mean size distribution of 1-100nm were 

agglomerated into complexes via hydrolysis or precipitation and heat treated at 600°C, to 

produce agglomerated particles with a size distribution of 0.5-50µm described as an 

‘agglomerated microfill complex’ (AMC) [Roulet, 1987].  

A recognised contributor to the degradation and premature clinical failure of microfills 

was that these pre-polymerized particles were not well bonded into the matrix, as adequate 

covalent bonding failed to occur due to lack of available surface methacrylate groups, resulting in 

particle debonding under high stresses [Ferracane et al., 1995]. Furthermore, the properties of 

microfills remained limited by the inability to incorporate a particularly high filler loading, 

regardless of the presence of pre-polymerized particles, when compared with traditional RBCs.  

 

1.3.1.4 Hybrid 

The development of hybrid materials has increased filler loading of RBCs and has aimed 

to combine the improved mechano-physical properties of microfills with higher filler loading 

achieved in traditional RBCs [Lutz & Philips, 1983]. Bimodal ‘hybrid’ materials contain two 

distinct filler size distributions in the same matrix (Figure 1.1) consisting of micro- or submicron-

sized colloidal silica (0.01-0.05µm) particles and larger macro-sized (15-20µm) particles [Lang et 

al., 1992; van Noort, 2007]. A carefully graded distribution of filler size minimises gaps between 

particles, theoretically allowing them to fit together more efficiently and therefore maximising 

packing density [Darvell, 2006]. Gladys et al. (1997) identified that hybrid RBCs contain a wide 

diversity of filler particle sizes and distributions, suggesting that dental manufacturers load the 

resin matrix with one of three filler ratios, namely either an equal quantity of large and small 

particles or either a greater quantity of large or small particles compared with a smaller quantity 

of the remaining particle size. The classification of ‘hybrid’ is largely redundant as the majority 

of modern RBCs contain two distinct particle size ranges, one of which is typically colloidal 

silica to improve rheological properties, instead the term ‘microhybrid’ is routinely used to 

describe the majority of modern RBCs [Ferracane, 1995].  

 



 (a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(d)(c)  
 
 
 
 
 
 
 
 
 
 
 
 

(f) (e)  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1. Schematic representations adapted from Lutz & Philips, (1983), highlighting 
(a) traditional, (b) homogeneous microfill RBCs, (c) a hybrid containing traditional 
macrofills and microfills, (d) a heterogeneous microfill containing splintered pre-
polymerized microfill complexes, (e) a heterogeneous microfill containing ‘suspension 
cured’ particles and (f) a heterogeneous microfill containing agglomerated microfill 
complexes. 
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1.3.1.5 Fibre-reinforced 

Fibre-reinforced composite (FRC) materials offered an alternative to particulate 

reinforced methacrylate resin materials and have been available to restorative dentistry since the 

1960s in the form of methacrylate resins reinforced with whiskers, glass fibres [Smith, 1962; 

Grant & Greener, 1967] or carbon fibres [Schreiber, 1971]. The fibre length has been reported to 

vary widely from 300µm [Willems et al., 1992] to 3mm [Garoushi et al., 2007]. However, FRCs 

exhibited a high degree of surface roughness and wear as a consequence of loss of fibres from the 

matrix [Willems et al., 1992]. Subsequently, modern FRCs have been described for use as 

endodontic-posts as an alternative to metal posts which cause root fractures, compromise 

aesthetics and risk allergic reactions [Torbjorner et al., 1995]. FRC posts contain unidirectional 

glass-, silica- or carbon-fibres (~60vol%) embedded in a polymer matrix, such as epoxy, to a 

fibre density of ~32/mm2 and possess an elastic modulus of 16-40GPa [Seefeld et al., 2007; 

Kececi et al., 2008]. Such materials include DT Light (Vereinigte, Dentalwerke, Munich, 

Germany), FRC Postec Plus (Ivoclar Vivadent, Schaan, Liechtenstein) and Everstick (StickTeck 

Ltd., Turku, Finland).  

 
Filler Particle Material Properties  

Size (µm) Volume (%) Flexural 
Modulus (GPa) 

Flexure 
Strength (MPa) 

Compressive 
Strength (MPa) 

Traditional 10-100 55-65 8.0-15.0 110-135 260 

Small 1.0-10 56-61 10.6 91-102 285 

Microfill 0.04 20-55 3.0-6.0 60-80 240-300 

Hybrid 0.01-0.05 & 15-20 60-65 7.0-14.0 75-150 300 

FRC - 40-75 6.5-15.0 130-200 260-300 

 

Table 1.3. The filler size and loading and mechanical properties of traditional, small, 
microfill, hybrid and FRC RBCs [McCabe et al., 1998; Yap et al., 2002; Adabo et al., 2003; 
Lohbauer et al., 2003a; 2003b; Xu & Burgess, 2003]. 
 

1.3.2 Modern RBCs 

The classification of RBC materials in modern restorative dentistry has proven to be 

increasingly difficult. Incremental changes in both particle morphology and size [Willems et al., 

1992; Beun et al., 2006] have complicated previous classifications of conventional RBCs 
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described in this Chapter (Section 1.3.1). Furthermore, some modern RBCs possess resin matrix 

chemistries modified from the original BisGMA introduced by Dr. Bowen [Asmussen & 

Peutzfeldt, 1998; Weinmann et al., 2005], although RBCs are not classified with regard to the 

resin. The continuing development, modification and refinement of the filler particles have 

resulted in the majority of improvements to the mechano-physical properties of RBCs, either in 

an attempt to improve clinical longevity or handling properties to assist placement [Ferracane, 

1995; Lu et al., 2006]. 

 

1.3.2.1 Universal 

Modern microhybrids have also been described as ‘universal’ or ‘all-purpose’ RBCs and 

have been indicated for both anterior and posterior placement [Cobb et al., 2000; Manhert et al., 

2001]. Universal RBCs possess appropriate filler distributions to attain a maximum loading in 

excess of 80wt% with a non-uniform size distribution of less than or equal to 1µm, providing 

flexural strengths of up to 160MPa [Mitra et al., 2003; Sabbagh et al., 2004; Lohbauer et al., 

2006; Lu et al., 2006]. In addition, Cobb et al. (2000) identified that universal RBCs exhibited an 

increased resistance to wear and improved surface polishability compared with preceding 

materials. The first so-called ‘universal’ RBC was Herculite XR (Kerr Manufacturing Co., 

Bioggio, Switzerland) which consisted of barium silicate filler with a mean size of 0.6µm, an 

extensive range of universal materials followed including Filtek™ Z250 (3M ESPE, St Paul, 

MN, US) and Tetric (Vivadent Ivoclar) [Leinfelder, 1995]. 

 

1.3.2.2 Packable 

The introduction of high viscosity ‘packable’, or incorrectly termed ‘condensable’, RBCs 

has sought to provide handling properties similar to the condensability and ease of manipulation 

reported for amalgams (Section 1.2.2.2) [Leinfelder et al., 1998]. Commercial packable RBCs, 

such as SureFil (Dentsply, York, PA, US), Alert (Pentron Clinical Technologies, Wallingford, 

CT, US) and Solitaire (Heraeus Kulzer Inc., Armonk, MY, US), possess a filler loading in excess 

of 86wt% and possess a wide filler size distribution (0.04-10µm). The irregular filler morphology 

maximises packing efficiency and restricts flow of smaller particles to achieve the requisite 

viscosity higher than that of conventional RBCs [Combe et al., 2000; Nash et al., 2001]. Packable 

RBCs are considered by some to allow more convenient placement in posterior cavities and 
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produce a placement technique similar to that of amalgam [Leindfelder et al., 1999; Manhart et 

al., 2001]. However, whilst the mechanical properties, namely compressive strength, flexural 

strength and diametral tensile strength, of packable RBCs has been identified to be comparable 

with conventional RBCs (Table 1.3; page 14), the larger particle size was suggested by Cobb et 

al. (2000) to produce increased wear and surface roughness. Furthermore, syringable RBCs 

where shown by Opdam et al. (2002) to introduce less porosity compared with packable RBCs, 

whilst Loomans et al. (2006) suggests that the proximal contact tightness of Class II restorations 

depends more on the matrix separation technique used than the RBC viscosity. 

 

1.3.2.3 Flowable 

A directly contrasting approach to high viscosity packable RBCs has been the 

introduction of low viscosity materials, described as ‘flowable’ RBCs, which contain a filler 

loading of 50-68wt% (<50vol%) [Combe et al., 2000]. Flowable materials have been developed 

and introduced to meet specific clinical requirements, such as pit and fissure sealants, repair of 

marginal defects, as liners in deep previously difficult to access cavities and as stress absorbing 

layers [Combe et al., 2000; Sabbagh et al., 2004]. Filtek™ Flow (3M, ESPE, St Paul, MN, US) 

contains a 68wt% (47vol%) filler loading of 0.01-6.0µm particles and has been described as 

possessing pseudo-plasticity prior to photoactivated polymerization [3M ESPE, Filtek™ Flow]. 

An alternative approach to obtaining flowable RBCs is modification of the resin matrix chemistry 

in addition to lower filler loading, Grandio Flow (Voco, Cruxhaven, Germany) possesses a higher 

filler loading of 80.2wt (65.6vol%) with a resin matrix containing a 5-ethyl-1,3-dioxane-5-yl 

methyl methacrylate (HEDMA) monomer. Interestingly, the addition of nanosized filler particles 

to some flowable RBCs, namely Grandio Flow (Voco) has been identified to produce mechanical 

properties, such as flexural strength, Vickers surface hardness and elastic modulus, comparable 

with or superior to some universal RBCs [Sabbagh et al., 2002; Beun et al., 2007]. 

 

1.3.2.4 “Nanofills” 

The current trend in modern RBCs of minimising filler size whilst aiming to improve the 

filler loading has sought to optimise the resultant mechano-physical properties and clinical 

performance [Ferracane, 1995]. The introduction of so-called ‘nanofilled’ and ‘nano-hybrid’ 

materials therefore appears a logical continuation of this trend and a number of dental material 
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manufacturers have marketed these as the advancement of dental materials into the field of 

nanotechnology [Mitra et al., 2003]. By definition, a ‘nano-material’ possesses components 

and/or structural features, such as fibres or particles, with at least one dimension in the range of 

1-100nm and subsequently demonstrates novel and distinct properties [Harris et al., 2006; Lui & 

Webster, 2007]. However ‘nano’ is not a recognised classification and a considerable degree of 

debate and speculation exists amongst researchers [Harris et al., 2006; Curtis et al., 2008] and 

manufacturers [CARE, 2003] as to whether ‘nano’ RBCs exhibit improvements to mechano-

physical properties compared with pre-existing RBCs. Notwithstanding the unremitting hype and 

often aggressive marketing of manufacturers, it is interesting to note that the size of fillers present 

in microfilled RBCs (Section 1.3.1.3) do not differ vastly from ‘nano-hybrid’ RBCs (Figure 1.2).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2  Diagrammatic representation of the development of RBCs employed by 
restorative dentistry and classified according to the size of the filler particles. It is 
interesting to note that the size of fillers present in homogeneous microfilled RBCs do not 
differ vastly from that of modern nano-hybrids. 

 

Several approaches have been adopted by manufacturers to produce ‘nanofilled’ RBCs. 

The introduction of ‘nano-hybrid’ RBCs was an approach chosen by several manufactures to 

produce what have been described as low shrinkage and high wear resistant RBCs [Grandio 
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Product Specification, 2006; Tetric EvoCeram, Scientific Documentation, 2006]. Nano-hybrid 

RBCs contain a mixture of colloidal silica particles with a size distribution of 0.02-0.06µm (20-

60nm) in addition to micron-sized filler particles of 0.1-2.5µm, such as borosilicate, admixed 

with a methacrylate-based resin matrix [Grandio Product Specification, 2006]. An alternative 

novel approach to the clinical application of ‘nanofill’ technology in dental restorative materials 

has been an RBC containing a combination of individually dispersed filler particles of 0.005-

0.075µm (5-75nm) and agglomerated nanosized particles of 1.3µm, described as ‘nanoclusters’ 

[Filtek Supreme; 3M ESPE, St. Paul, MN, US] (Figure 1.3).  

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.3. Schematic representation of silica-zirconia nanoclusters and individually 
dispersed nano-sized filler particles embedded in the methacrylate resin matrix of Filtek 
Supreme (3M ESPE, St Paul, MN, US). Image courtesy of B. Holmes, 3M ESPE. 
 

The agglomerated porous clusters are partially calcined and infiltrated with a dilute silane 

coupling agent to ensure infiltration of the silane into the cluster interstices, a second undilute 

silane coupling agent was then admixed with the ‘nanoclusters’ prior to incorporation into the 

resin matrix [Private communication, S. Mitra, 3M ESPE at IADR 2007 New Orleans, US]. This 

material has been claimed to “possess polish retention similar to that of microfills and also to 

exhibit mechanical and physical properties comparable with hybrid composites” [Mitra et al., 

2003]. The term ‘nanocluster’ may appear misleading as the agglomerated particle complexes are 

micron-sized and subsequently may be considered by some [Junior et al., 2008] to act as 

conventional microhybrid fillers.  

‘‘NNaannoo--ppaarrttiiccllee’’ 

‘‘NNaannoocclluusstteerr’’

  

 18



The presence of nanosized filler particles in RBC materials have been identified to 

produce distinct improvements to the material, such as increased filler loading in hybrid-type 

materials as nano-sized particles pack more efficiently between larger particles and also a 

subsequent reduction in polymerization shrinkage [Grandio Product Specification, 2006]. An 

extensive study conducted by Beun et al. (2007) compared the flexural strength, elastic modulus, 

Vickers microhardness and degree of conversion of several nanofills with universal and microfill 

RBCs. The study concluded that the nanofills Filtek™ Supreme (3M ESPE) and Grandio (Voco) 

exhibited superior flexure strengths, surface hardness values and elastic moduli compared with 

the other RBCs tested, with the exception of Filtek™ Z100 (3M ESPE). Subsequently, both 

nanofill materials were indicated for posterior and anterior placement [Beun et al., 2007]. 

The addition of even small quantities of nano-sized silica particles has been identified to 

improve the mechanical properties. Tian et al. (2008) highlighted that the addition of 1 and 2.5% 

mass of nano-sized fibrillar silica to a BisGMA/TEGDMA resin significantly improved the 

flexure strengths (128 and 130MPa) compared with conventionally filled RBCs, (110 and 

120MPa respectively). This was suggested to occur as a consequence of the reinforcing effect of 

highly separated and uniformly distributed nano-fibrillar silica, whilst the formation of 

agglomerates of fibrillar silica may weaken the resulting material [Tian et al., 2008]. 

Nanoparticles produce a more homogeneous filler distribution in low viscosity materials, such as 

bonding agents, which restricts ‘filler settling’, namely filler-rich regions within the matrix 

[Wilson et al., 2005]. The incorporation of nanosized filler in bonding agents also produced a 

more structured bond at the tooth/bonding agent interface as filler penetrates the dentine tubules 

to reinforce the hybrid zone [Breschi et al., 2008]. 

A further phenomenon contributing to the aesthetic appearance of nanofill RBCs was that 

such materials appear translucent as a consequence of the small size of the dispersed nano-sized 

filler particles [Grandio Product Specification, 2006]. This occurs as the particle size is smaller 

than the wavelength of incident light (400-700nm), the subsequent scattering coefficient is 

reduced enabling light to pass through the RBC without refraction at the interface between the 

resin matrix and inclusions, such as filler particles and porosity voids [Ruyter & Øysæd, 1982; 

Van Dijk et al., 2006; Lee, 2007].  
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Filler Particle Material Properties  

Distribution 
(µm) 

Volume (%) Flexural 
Modulus (GPa) 

Flexure 
Strength (MPa) 

Compressive 
Strength (MPa) 

Universal 0.2-3.0 60-70 8.8-13.0 80-161 240-290 

Packable 0.04-10 59-80 9.0-12.0 85-110 220-300 

Flowable 0.04-3.0 42-62 2.6-6.0 70-125 210-300 

Nanofill 0.002-0.075 78.5 8.3-16.2 60-177 460 

 

Table 1.4. Summary of the filler size distribution and loading present in modern 
universal, packable, flowable and nanofill RBCs and the resulting mechanical properties 
[Mitra et al., 2003; Lohbauer et al., 2006].  
 
1.3.3 Filler particle production 

A top-down milling technique has been widely used to produce filler particles to a 

minimum size of 0.1µm from larger particles [Lutz & Philips 1983]. Such particles have included 

quartz (silicon dioxide) which was widely available and possessed a refractive index comparable 

with the resin matrix. However, large quartz particles, such as ~4µm in Clearfil Photoposterior 

(Kuraray Dental, NY, US) caused excessive wear of the enamel of opposing teeth. Quartz is also 

radiolucent and early quartz fillers possessed a high level of surface roughness due to filler size 

which compromised aesthetics (Section 1.3.1.3). Milling of radiopaque silicate-based glasses of 

oxides of barium, strontium, aluminium, zirconium or zinc reduced particles to a mean size of 

0.6-1.0µm [Hosoda et al., 1990; Khan et al., 1992].  

The production of nano-sized fillers for conventional microfill (Section 1.3.1.3), 

microhybrid (Section 1.3.1.4) and modern nano-hybrid (Section 1.3.2.4) materials has required a 

shift from traditional top-down milling techniques to a bottom-up synthetic chemical sol-gel 

process. A synthetic sol-gel technique has been used to produce silicon dioxide (SiO2) particles, 

known as colloidal silica, although the high surface-area-to-volume-ratio and subsequent low 

surface monomer wettability limited the filler loading of early microfills (Section 1.3.1.3). The 

specific sol-gel techniques used to produce dental fillers generally remain proprietary to the 

manufacturer, although several generic sol-gel methods are available to produce submicron 

colloidal silica particles. Firstly, the reaction of sodium silicate with hydrochloric acid produces 

sodium chloride and the formation by crystallisation of silicon dioxide particles. Secondly, 

burning tetrachloride in a mixture of hydrogen and oxygen gases produces colloidal silicon 

dioxide, also described as pyrogenic or fumed particles (‘aerosil’), with a mean size of 0.05µm 
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[Lang et al., 1992; Leinfelder et al., 1995]. Despite the generally proprietary nature of sol-gel 

techniques the 0.01-3.5µm zirconia-silica filler in Filtek™ Z100 (3M, ESPE, St. Paul, MN, US) 

was reported to be produced by mixing a metal carboxylate and metal oxide sol to form a gel by 

dehydration which was heated and then ball-milled to produce spherical fillers [Ferracane, 1995; 

Filtek™ Z100 Product Specification]. It is also interesting to note that the inorganic filler used in 

Filtek™ Z250 (3M ESPE) employed a refinement of this technique to produce a less coarse filler 

with an improved particle distribution [Filtek™ Z250 Product Report, 1998]. 

 

1.3.3.1 Modification of filler surface 

The inorganic filler particles incorporated in early RBCs were frequently not chemically 

bonded within the resin matrix and consequently defects were present, which resulted in the 

premature failure of these materials [Standford et al., 1971]. Subsequently, the surface of filler 

particles are coated with an organofunctional silane coupling agent prior to incorporation with the 

resin matrix to promote interfacial adhesion between these two otherwise incompatible 

constituents via a chemical bonding process known as silanization [Johannson et al., 1967; Ishida 

& Koenig, 1978]. The silane interface is the weakest part of RBCs as the extent of adhesion is 

dependent upon ‘areal density’, namely the number of covalent bonds per unit area, and also the 

uniformity of coverage of the filler surface with silane coupling agent [Darvell, 2006].  

The silane coupling agent is based on methacrylate chemistry and possesses an amphilic 

bifunctionality, consisting of a methoxyl silane (Si-OCH3) or silanol group (Si-OH) on one end 

and a functional methacrylate group on the other [Ferracane, 1995; Hooshmand et al., 2004]. The 

functionality of silane coupling agents and subsequent interfacial adhesion has been identified to 

be dependent upon the presence of particular functional groups, such as alkoxyl, amine or 

methacrylic groups [Mohsen & Craig, 1995; Matinlinna et al., 2004]. The most commonly used 

silane in RBCs is γ-methacryloxypropyltrimethoxysilane (γ-MPS), although other silanes, such as 

γ-glycidoxypropyltrimethoxysilane (γ-GPS), have also been used in some materials [Luo et al., 

1997; Daniels & Francis, 1998; Debnath et al., 2004; Sabbagh et al., 2004].  

Filler particles were coated with the silane coupling agent via either dry-blending of the 

filler and coupling agent or deposition from solution onto the particle. The functionalised filler 

was then blended into the methacrylate resin [Venhoven et al., 1994; Torry et al., 2006]. A study 

by Mohsen & Craig (1995) demonstrated that increased silane concentrations of three times that 
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required to provide a minimum uniform coverage, which is dependent on filler size and 

morphology, improved the hydrolytic stability, tensile and transverse strengths of the resulting 

RBC. An alternative silanization technique from the routinely employed pre-treatment of filler 

with silane prior to incorporation in the resin matrix required in situ filler silanization, whereby 

untreated filler was admixed with a silane-functional methacrylate resin [Venhoven et al., 1994]. 

However, this technique may produce a non-uniform or absence of silane coating on the fillers 

limiting the amount and absorption of silane and subsequent interfacial adhesion and clinical 

longevity [Nishiyama et al., 1991]. Venhoven et al. (1994) also highlighted that the advantage of 

silanization compared with other available coupling techniques, such as grafting or 

micromechanical coupling, was that the bond formation is reversible and subsequently generated 

less deleterious internal stresses [Venhoven et al., 1994].  

The interfacial silane layer between the silica filler and silane coupling agent forms via a 

condensation reaction between silanol groups (Si-OH) on the silica surface and the hydrolysed 

silane coupling agent. Subsequent formation of siloxane bridge bonds (Si-O-Si) results in 

chemisorption of the silane coupling agent and the formation of a highly crosslinked siloxane 

film (Figure 1.5) [Söderholm & Shang, 1993; Daniels & Francis, 1998; Matinlinna et al., 2005].  
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Figure 1.4.  Diagrammatic representation of silanization between the silanol groups on 
the filler surface and the silane coupling agent, highlighting the subsequent formation of 
siloxane bridge bonds between the filler and silane coupling agent. 
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Simultaneously, the carbonyl group of the silane coupling agent initiates formation of 

hydrogen and covalent bonds with the resin constituents, producing an interpenetrating silanated 

network at the filler/resin interface [Söderholm & Shang, 1993; Daniels & Francis, 1998]. The 

silanated interfacial layer forms a multi-layered polymeric structure of variable thickness and 

orientation of the silane molecule, with differing extents of chemisorption and physisorption 

occurring throughout the interfacial layer (Section 2.1.2) [Söderholm et al., 1984; Söderholm & 

Shang, 1993]. Subsequently, the stability of the silane layer is also influenced by the adhesive 

and cohesive strength between the silane molecules themselves, whereby the propensity for 

hydrogen-bonding influences hydrolytic stability [Mohsen & Craig, 1995; Nishiyama et al., 

1995]. In addition to improving the mechanical properties of RBCs containing silanated filler 

particles, silanization also improves particle dispersion and wetting [Kim & Shim, 2001; Ikejima 

et al., 2003; Matinlinna et al., 2004]. The silane layer has also been identified to inhibit the 

propagating crack-tip through the polymerized RBC structure as a consequence of absorption of 

masticatory loads through the silane interface [Shirai et al., 2000]. Furthermore, silane coupling 

agents have also been identified to increase the hydrolytic stability of RBCs [Nishiyama et al., 

1991; Mohsen & Craig, 1995] due to the formation of a highly crosslinked siloxane film between 

the filler and resin [Matinlinna et al., 2006]. 

 

1.3.4 Resin matrix chemistry 

The original organic resin matrix patented by Bowen, (1962a) consisted of the high 

molecular weight BisGMA admixed with the low molecular weight TEGDMA monomer to 

produce workable viscosities (Section 1.3). Modification of type, ratio and quantity of the 

monomers present in the resin formulation can provide specific rheological and mechanical 

properties to both the unpolymerized paste and the final restoration. The organic matrix is 

initially ‘plastic’ enabling the paste to be moulded at ambient temperature in the oral environment 

and following placement in a prepared cavity a free-radical addition polymerization reaction 

produces a rigid crosslinked structure [McCabe & Walls, 1990a]. 

The majority of modern RBCs are based on a BisGMA/TEGDMA matrix, although 

additional organic monomers have been incorporated. 1,6-bis(methacryloxy-2-

ethoxycarbonylamino)-2,4,4-trimethylhexane (urethane dimethacrylate; UDMA) is a high 
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molecular weight methacrylate monomer which may be incorporated in place of BisGMA to 

modify the mechanical and rheological properties of the material [Asmussen et al., 1984; 

Asumssen & Peutzfeldt, 2001a; Floyd & Dickens, 2006]. Floyd & Dickens (2006) highlighted 

that the incorporation of UDMA produced a higher degree of monomer conversion compared 

with BisGMA monomers. In contrast, the 2,2-bis[4-(2-methacrlyloxyethoxy)phenyl]propane 

(bisphenol-A hexaethoxylated dimethacrylate; BisEMA) monomer is a lower viscosity analogue 

of BisGMA, although the molecular weight is dependent upon the presence of different 

functional groups, which influences polymerization shrinkage and rheology [Bagheri et al., 2007; 

Ogliari et al., 2008]. An extensive study of BisEMA monomers highlighted that aromatic 

dimethacrylates with increased chain extender lengths, namely additional ethylene oxide units in 

BisEMA4, BisEMA10, and BisEMA30 monomers, increased the degree of conversion and 

crosslink density [Ogliari et al., 2008]. However, the BisEMA6 monomer has been identified to 

be more hydrophilic and demonstrated a greater susceptibility to solvent degradation [Bagheri et 

al., 2007].  

 

1.3.4.1 Photo-polymerization 

The resin matrix also contains an initiator and a co-initiator to ensure rapid 

polymerization of the methacrylate matrix, the activating agent used is dependent on whether a 

chemical or light cure is required. Early RBCs (Section 1.3) consisted of a two-paste system 

containing a benozyl peroxide initiator and a tertiary amine activator, which upon mixing 

underwent a chemical, or auto-polymerization, reaction [Philips, 1991; Darvell, 2006]. However, 

the use of chemical polymerization was limited by decreased colour stability of the initiator 

chemistry, reduced mechanical properties due to increased porosity produced on mixing of the 

two components [Leinfelder, 1987], inconsistent extent of polymerization and also clinically 

unacceptable times to realise cure [Lutz & Philips, 1983]. The development of “on demand” 

photo-activated resin matrix formulations during the 1970s containing a benzoin methyl ether 

that initiated polymerization via ultra-violet (UV) light at a wavelength of 340-380nm was a 

major advancement in dental technology [McCabe& Walls, 1990a]. UV polymerization was 

rendered redundant due to significant concerns regarding UV-induced tissue damage, poor light 

transmission through both the tooth and RBC structure producing a low monomer conversion and 

also instability of the light output intensity [Lutz & Philips, 1983].  
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The majority of modern RBCs consist of a diketone-amine system which absorbs visible 

(blue) light irradiation at a wavelength of 450-500nm to initiate a free-radical addition 

polymerization reaction which results in the formation of a rigid three-dimensional polymer 

structure [Cook, 1992]. Camphoroquinone (CQ) is a commonly used diketone-based photo-

initiating molecule which contains a conjugated dicarbonilic group (Figure 1.4a), whilst 

photolysis of the C-C bond within CQ produces carboxyl radicals [Alvin et al., 2007]. CQ is 

present at approximately 0.05-0.50wt% in standard resin formulations [Cook, 1992; Asmussen & 

Peutzfeldt, 2002; Alvin et al., 2007] to reduce the energy level required to initiate polymerization 

to correspond with radiation within the visible range. In addition to CQ, a tertiary amine, such as 

dimethylaminoethylmethacrylate (DMAEMA), is incorporated into the resin matrix to provide a 

source of free radicals during polymerization (Figure 1.4b) [Cook, 1992; Asmussen & Peutzfeldt, 

2002].  

 
 (a)         (b)  

      
 
Figure 1.5. The chemical structure of the light-initiator (a) camphorquinone (CQ) and 
co-initiator amine activator (b) dimethylaminoethylmethacrylate (DMAEMA) routinely 
used in the visible-light polymerization of modern RBC. 
 
 

Photo-polymerization of RBCs occurs as the diketone, usually CQ, absorbs visible light 

within a specific wavelength of 450-500nm (with an absorbance maxima of approximately 

470nm) and is subsequently promoted to an excited-state, known as a ‘triplet’. The triplet then 

reacts with a tertiary amine, DMAEMA, to form an eciplex, or ‘excited-state-complex’ following 

proton transfer [Cook, 1992]. The eciplex then undergoes rapid decay by fluorescence or 

radiationless transition which releases free-radicals due to proton and electron transfer which 

initiates chain polymerization [Cook, 1992; Kim & Shim, 2001; Darvell, 2006]. The presence of 

an inhibitor, such as hydroquinone, in the resin matrix (0.1%) ensures adequate shelf-life and 
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prevents premature polymerization during placement under ambient light [Asmussen & 

Peutzfeldt, 2002]. Consequently a threshold level of light exposure must be exceeded to eliminate 

the inhibitor molecule and enable the progression of free-radical polymerization.  

During polymerization the epoxy ring in BisGMA monomers opens on combination with 

available hydrogen to produce hydroxyl radicals, forming crosslinkages in chain or branched 

structures [Bowen, 1956]. Subsequently polymerization occurs from these growth centres, 

described as foci, which initially generate discontinuous microgel regions and as polymerization 

progresses the foci expand and encounter other regions of gelation, the polymers merge and 

congregate to produce a highly crosslinked structure [Darvell, 2006]. As gelation continues the 

resin becomes increasingly viscous and develops a rigid highly crosslinked structure which 

impedes the continuing diffusion of free-radicals and unreacted monomer molecules through the 

resinous mass. The mobility of the propagating system continues to decrease as the viscosity of 

the material increases and the gel-point is reached. Subsequently, post-gel shrinkage occurs 

where residual stress with the polymerizing material is no longer mitigated as a consequence of 

flow of the resin in its pre-gel state [Darvell, 2006].  

The extent of crosslinking and associated degree of conversion (DC) of the methacrylate 

monomers to a rigid crosslinked polymeric structure influences the resulting mechano-physical 

properties of the RBC [Ferracane et al., 1998; Peutzfeldt et al., 2000]. The extent of DC is 

restricted as a rapid increase in viscosity occurs during polymerization, generating a relatively 

high concentration of unreacted pendent double bonds and unreacted methacrylate groups as only 

35-80% of the methacrylate monomers react [Asmussen & Peutzfeldt, 2001a; 2002]. Also, high 

viscosity monomers, such as BisGMA, restrict migration of reactive methacrylate groups and 

diffusion of free-radicals during irradiation [McCabe & Walls, 1990a; Asmussen & Peutzfeldt, 

2002]. Previous studies have highlighted that DC may be optimised by modification of CQ 

concentration. Asmussen & Peutzfeldt (2001a) identified that higher quantities (1.0wt%) of CQ 

generated additional foci of polymerization and consequently a greater crosslink density. 

However, excess CQ limits DC where a threshold concentration required to optimise 

polymerization was exceeded. This threshold was identified as 0.5mol% CQ where 

concentrations exceeding this caused DC to plateau at 75-77% [Yoshida & Greener, 1994]. 

Subsequently, unreacted molecules are unable to react with the amine and return to the ground 

state, thereby limiting free radical formation deeper within the structure [Yoshida & Greener, 

 26



1994]. The DC is also influenced by light intensity and the polymerization technique employed. 

The initiation of multiple foci of polymerization and subsequent increased crosslink density have 

been realised where a high intensity irradiation method was used, although this generated 

increased polymerization shrinkage stress [Oberholzer et al., 2003; Petrovic & Atanackovic, 

2008]. In contrast, a slow start polymerization technique initiated relatively few foci and hence 

generated a more linear structure exhibiting a reduced generation of contraction stress 

[Oberholzer et al., 2003; Petrovic & Atanackovic, 2008]. However, curing techniques such as 

‘slow-start’ or ‘pulse-delay’ which employ reduced irradiance to delay the onset of gelation, have 

been contraindicated due to an increased linear polymeric structure which has been identified to 

exhibit a higher propensity to softening and release of residual monomers [Asmussen & 

Peutzfeldt, 2001b]. 

 

1.4. Overcoming RBC Limitations 

 

Despite the continuing development of RBCs and subsequent improvement of clinical 

longevity [Mjör et al., 1997], optimum mechano-physical properties of RBCs remain 

compromised by diverse factors including the generation of polymerization shrinkage stress 

[Davidson & Feilzer, 1997; Palin et al., 2005a], limited depth of cure [Jandt et al., 2000; Fleming 

et al., 2008], decreased monomer conversion [Ferracane et al., 1997; Palin et al., 2003a], 

insufficient wear resistance [Hu et al., 2002; Palin et al., 2005b], hydrolytic instability [Mohsen 

& Craig, 1995; Palin et al., 2005c] and technique sensitivity of application (Section 1.2.2.2) 

[Lucarotti et al., 2005; Opdam et al., 2004; 2007]. Of these limitations possibly the most 

detrimental is polymerization shrinkage and the subsequent generation of polymerization 

shrinkage stresses. 

 

1.4.1 Polymerization shrinkage stress 

 Polymerization of RBC restorations is accompanied by volumetric shrinkage of 1.5-5% 

and the subsequent generation of internal stress as a rigid crosslinked structure is produced by 

conversion of carbon double bonds of the monomer to the physically shorter single bonds of the 

polymerized network [Sideridou et al., 2002; Ferracane, 2005]. Hydrostatic tensile stresses 

develop as covalent bonding produced during polymerization reduces the free volume. At the 
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onset of photoactivated polymerization the matrix is relatively plastic and stresses generated 

during crosslinking and subsequent shrinkage will be relieved due to viscous flow of the material. 

As the reaction proceeds and crosslink density increases the viscosity will become sufficiently 

high to impede flow, introducing hydrostatic tensile stresses to material and effectively placing 

the matrix in tension [Darvell, 2006]. Consequently, it is the post-gelation rigid contraction which 

generates polymerization shrinkage stresses that may compromise the marginal seal of 

restorations placed within confined cavities and result in microleakage and recurrent caries 

[Davidson & Feilzer, 1997; Whitters et al., 1997; Braga et al., 2005; Fleming et al., 2005; Palin et 

al., 2005a]. 

The ability of RBCs to compensate for polymerization shrinkage is also dependent upon 

the cavity configuration factor (C-factor). The C-factor has essentially been defined as the ratio of 

bonded to non-bonded surfaces, whereby a high ratio of bonded surfaces limits the materials 

ability to flow, which induces higher interfacial stresses [Feilzer et al., 1987]. Clinically, this 

influences the cavity design to minimize the number of restricting surfaces whilst maximizing 

free surfaces.  

Light-activated polymerization has been suggested to restrict stress reduction by flow to a 

greater extent than the comparatively slower chemical curing polymerization reaction. Moreover, 

in clinical situations the surface exposed to the curing light is polymerized first which restricts 

flow and stress relief [Feilzer et al., 1990]. The addition of a low viscosity ‘flowable’ RBC with a 

low elastic modulus as a cavity liner (Section 1.3.2.3) relieves and distributes internal shrinkage 

stresses uniformly at the RBC/tooth interface, thereby reducing marginal debonding, gap 

formation, cracking and tooth deflection to relieve internal stress [Braga et al., 2005; Ferracane et 

al., 2005]. 

 The incorporation of higher filler loadings in RBCs has sought to reduce volumetric 

shrinkage and minimize development of shrinkage stresses which has led to the introduction of 

universal (80wt%) and packable RBCs (86wt%) described in Sections 1.3.2.1 and 1.3.2.2, 

respectively. In essence the increased filler loading simply reduces the amount of resin, thereby 

reducing the component wholly responsible for shrinkage [Davidson & Feilzer, 1997; Ferracane, 

2005]. However, factors such as the filler size and resin chemistry also influence the magnitude 

of shrinkage [Aw & Nicholls, 2001; Ernst et al., 2004]. Polymerization shrinkage may also be 

reduced by the use of alternative curing methods, such as a ‘soft-start’ technique. Here, a low 
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light intensity is initially employed to extend the pre-gel phase prior to curing at high intensity. 

By delaying the onset of gelation the increased ability of monomer to flow, reduces the 

occurrence of contraction stresses and may improve the restoration bond integrity [Watts et al., 

1999; Braga et al., 2005]. However, as described previously (Section 1.3.4.1) Asmussen & 

Peutzfeldt (2001b) contraindicated techniques which employed an initially lower intensity cure 

due to the production of a more linear polymeric structure, decreased cross-linking and more 

susceptibility to solvent degradation. 

The introduction of ‘nanofilled’ RBCs has also sought to reduce the occurrence of 

polymerization shrinkage, due to the small size of the ‘nano’ particulates, wide size distribution 

and subsequently increased filler load [Moszner & Salz, 2001; Lu et al., 2006]. Consequently, the 

polymerization shrinkage of nanofills was highlighted by Kleverlaan & Feilzer (2005) to be 

comparable with or significantly lower than conventional materials. In contrast, Ferracane (2005) 

speculated that the large surface-area-to-volume-ratio of nanofill particles (<100nm) and 

subsequent surface interactions with the polymerizing monomers may increase the shrinkage 

stress by restricting monomer flow. Alternatively, studies of non-bonded nanofiller particles, 

namely unsilanated particles, highlighted a reduction in polymerization stress of up to 31% 

[Condon & Ferracane, 2002], whilst unsilanated microfill particles produced 30% less 

contraction stress following photo-activation compared with silanated particles [Condon & 

Ferracane, 1998]. Thus it was suggested that the addition of 10 vol% non-bonded nanofill 

particles may provide the greatest level of stress relief in hybrid-type RBCs whilst maintaining 

adequate rheological properties [Condon & Ferracane, 2002]. However, unsilanated fillers fail to 

promote adhesion between the filler and resin matrix, which may compromise mechanical 

properties of the resulting material (Section 1.3.3.1). 

 

1.4.1.1 Modifying the resin matrix chemistry 

A further approach to reduce the polymerization shrinkage of RBCs has been the 

introduction of materials possessing modified resin matrix chemistries, which are frequently 

based on derivatives of BisGMA [Moszner & Salz, 2001; Moszner & Klapdor, 2004; Weinmann 

et al., 2005; Perieira et al., 2007].  

“Silorane”-containing resins were recently introduced by 3M ESPE as Filtek™ Silorane 

as an alternative low-shrinkage material. Silorane-based RBCs possess a modified resin 
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consisting of siloxane and oxirane (epoxy) functional groups. The cyclosiloxane imparts 

hydrophobicity [Eick et al., 2004; Palin et al., 2005c], whilst the cycloaliphatic oxirane monomer 

possesses a high reactivity and reduced shrinkage during polymerization compared with 

conventional methacrylate-based resins [Braga & Ferracane, 2004]. The subsequent 

polymerization shrinkage of silorane RBCs has been reported to be significantly less than that of 

conventional RBC materials [Braga & Ferracane, 2004; Ernst et al., 2004; Weinmann, 2005]. The 

cationic ring-opening reaction of silorane monomers has previously been described as ‘living’ 

polymerization as the free-radicals are not extinguished as rapidly as those in conventional RBCs 

[Millich et al., 1998; Tilbrook et al., 2000]. Subsequently, this reduces shrinkage stress as the 

monomer flow was not restricted and may be manifested as an increased stress relaxation of the 

polymerizing RBC and decreased cuspal flexure, thereby improving the marginal seal and 

limiting potential microleakage [Palin et al., 2005a]. Silorane-based RBCs have also been 

identified to possess an increased hydrolytic stability compared with conventional RBCs due to 

the presence of hydrophobic silorane-monomers which reduce water sorption, solubility and 

diffusion coefficient [Palin et al. 2005c]. 

Organically modified ceramics (Ormocers) are organic-inorganic hybrid materials 

composed of a methacrylate-functionalised organic phase and inorganic glasses or ceramics 

synthesised by sol-gel processing of organofunctional metal alkoxides, such as Ti, Al or Zr, to 

produce functionalised alkoxy silane. Subsequent hydrolysis and condensation produces a three-

dimensionally branched oligomeric Si-O-Si network where the organic and inorganic 

components are combined at a nanoscopic or microscopic scale [Moszner & Salz, 2001; Moszner 

et al., 2007a; Sabbagh et al., 2004]. A number of commercial ormocers (Definite; Degussa AG, 

Hanau, Germany and Admira; Voco, Cuxhaven, Germany) have been produced based on a 

methacrylate-functionalised polysiloxane, such as urethane- or carboxy-functionalised 

methacrylate alkoxysilanes and a SiO2 network, with the aim of reducing polymerization 

shrinkage and increasing biocompatibility [Manhart et al., 2000; Moszner & Salz, 2001; Janda et 

al., 2006]. However, the drawback remains that ormocer materials contain dimethacrylate 

monomers (BisGMA and TEGDMA) and consequently experience shrinkage and reduced 

biocompatibility due to monomer elution [Al-Hiyasat et al., 2005; Moszner et al., 2007a]. In an 

effort to reduce or eliminate these drawbacks a recent study conducted by Moszner et al. (2007a) 

reported reduced cytotoxicity, improved flexural strength and modulus of elasticity for ormocers 
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based on amine or amide dimethacrylate trialkoxysilanes and which also possessed a 

nanoparticulate fraction, namely ZrO2 clusters or SiO2 organosols [Moszner et al., 2007a]. 

 Oligomeric thiol-ene monomers also offer an alternative as a novel low-shrinkage RBC 

material exhibiting as much as a 92% reduction in shrinkage stress compared with conventional-

RBC resins [Carioscia et al., 2005]. The thiol-functionalised oligomers were produced by 

photopolymerization using monomers such as triallyl-1,3,5-triazine-2,4,6-trione (TATATO), 

pentaerythritol tetra(3-mercaptopropionate) (PETMP), trimethacrylolpropane tris(3-

mercaptopropionate) (trithiol) and pentaerythritol tetracaptropropionate (tetrathiol) [Carioscia et 

al., 2005; Lu et al., 2005]. In contrast with the free-radical chain propagation mechanism of 

conventional methacrylate-based RBCs, thiol-ene polymerization occurs via a step-growth 

addition reaction initiated by a rapid free-radical transfer process. Consequently, the gel-point is 

not reached until a relatively high monomer conversion is achieved, which relieves contraction 

stresses [Cramer & Bowman, 2001]. In addition, Lu et al. (2005) reported that the increased 

monomer conversion of thiol-ene materials reduced monomer elution and also eliminated oxygen 

inhibition. However, the flexural strength of conventional BisGMA/TEGDMA RBCs was 

identified to be superior to those of thiol-ene materials [Lu et al., 2005]. 

 The use of expanding monomers, known as spiro-orthocarbonates (SOCs) have been a 

further approach devised to reduce polymerization shrinkage stresses, which is reduced via 

cationic ring-opening polymerization which promotes a volumetric expansion [Sanda et al., 1992; 

Rokicki, 2000]. However, Chappelow et al. (1997) suggested the observed lower shrinkage 

compared with conventional RBCs was due to the lower monomer conversion of SOCs compared 

with higher monomer conversion of conventional RBC resins. A variety of further less developed 

approaches also exist to produce low-shrinkage materials, including bismethacrylates [Holter et 

al., 1997], liquid-crystal monomers [Rawls et al., 1997] and cyclopolymerizable di- and multi-

functional acrylate resins [Stansbury et al., 1995]. 

 

1.4.1.2 Depth of cure 

 Throughout cure of photoactivated RBCs light is absorbed and scattered by the inorganic 

filler particulates, which reduces irradiance through the RBC bulk. Therefore the degree of 

conversion (Section 1.3.4.1) is reduced as depth increases [Watts et al., 1984]. The depth of cure 

is dependant on filler type, size and load [DeWald & Ferracane, 1987], light irradiance 
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[Rueggeberg et al., 2000] and exposure time [Halvorson et al., 2002] (radiant exposure) and also 

resin composition and shade [Atmadja & Bryant, 1990; Tanoue et al., 2001]. The presence of 

unreacted monomer within the RBC bulk may also attenuate the irradiating light, preventing the 

formation of free-radicals and thus reducing the depth of cure [Rueggeberg et al., 1997]. The 

recommended maximum curing depth of the majority of RBCs is 2mm which has resulted in the 

necessity of incremental placement techniques when the cavity to be filled exceeds this depth. 

Incremental placement of RBC is itself ‘technique sensitive’ as a consequence of the need for 

attention to detail and the requirement to achieve adequate bonding between the previous 

increment and cavity wall [Liebenberg, 2000; Fleming et al., 2008]. Subsequently, improving the 

achievable depth of cure is vital to producing clinically successful materials, therefore recent 

developments in modern RBCs have included packable RBCs (Section 1.3.2.2) and clinical 

placement techniques which have sought to increase the depth of cure[Jackson & Morgan, 2000]. 

In addition, RBCs which possess an improved depth of cure, such as X-tra fil (Voco, Cruxhaven, 

Germany) which possess a 4mm depth of cure, have been developed [Fleming et al., 2008].  

The depth of cure has also been identified to be limited where a refractive index mismatch 

between the monomer and filler exists [Söderholm et al., 1993]. Shortall et al. (2008) suggested 

that optimisation of the filler/resin refractive index mismatch may improve transmission of the 

irradiating light and provide an increased depth of cure, in addition to assisting shade matching as 

the opacity or translucency of RBCs is changed as a consequence of polymerization.  

An alternative approach to improving the depth of cure and also reducing the curing time 

was the introduction of ‘boosted’ light curing units (LCUs) which emit a higher light intensity 

than conventional QTH-LCUs and improve the depth of light penetration, although as previously 

noted (Section 1.3.4.1) the generation of polymerization shrinkage stress may increase due to the 

rapid onset of gelation [Visvanathan et al., 2007]. 

 

1.4.4.3 Technique sensitivity 

 The ease of manipulation and placement of amalgams compared with RBCs has been 

identified as one reason for the continued use of amalgam restorations [Fleming et al., 2001]. The 

technique sensitive application of RBCs is attributed to difficulties obtaining adequate contour 

and proximal contact as a consequence of the non-‘packability’ of RBCs compared with the 

condensability of amalgams [Cunningham et al., 1990; Tyas et al., 1998]. The development of 
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packable RBCs has sought to provide handling properties and ease of manipulation comparable 

with amalgam (Section 1.3.2.2). 

The addition of an adhesive layer prior to placement of RBC restorations, which are not in 

themselves self-adhesive, may exhibit technique sensitivity where a uniform layer is not 

deposited. The development of acid-etching and simplified placement techniques has sought to 

limit technique sensitivity produced during the application of bonding agents, although glass-

ionomer cements are considered the only true self-adhesive material [Yoshida et al., 2000; 

Peuman et al., 2005]. Furthermore the incremental placement of RBC restorations recommended 

due to limited depth of cure may also exhibit technique sensitivity due to lack of adhesion 

between the increments [Cobb et al., 2000; Jackson & Morgan, 2000].  

 

1.4.4.4 Toxicity concerns 

Concerns regarding the cellular cytotoxicity and biocompatibility of methacrylate 

monomers used in RBCs have also arisen, specifically, the leaching of TEGDMA and HEMA (2-

hydroxylethyl methacrylate) monomers into the oral environment and either subsequent local 

irritation and inflammation or systemic effects in patients [Geurtsen, 2000]. However, the 

potential toxicity is dependent upon monomer elution, diffusion through the dentine and 

subsequent accumulation in the pulpal tissue [Fleming et al., 2008]. Hume & Gerzina (1996) and 

Geurtsen (2000) reported a growing hypersensitivity and allergic dermatitis amongst dental 

personal as a result of reaction to one or more resin component. Of greater concern was the 

finding reported by Söderholm & Marriotti (1999) implicating leached impurities of BisGMA 

monomers as being potentially estrogenic. Despite these concerns the quantity of monomer 

leached from RBCs is extremely small and well below levels recorded to have a detrimental 

effect [Söderholm & Marriotti, 1999] 

The development of new RBCs with reduced toxicity includes SOCs [Rokicki et al., 

2000] and Ormocers, although the presence of BisGMA within Ormocer materials and 

subsequent potential monomer leaching continue to raise toxicity concerns [Başeren et al., 2004]. 

Low-cytoxic BisGMA analogues and monomer derivatives, such as a partially aromatic 

tetramethyl-m-xylylene UDMA (TMX-UDMA) have also been developed [Moszner et al., 

2007b]. 
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1.5 Summary 

 

The introduction of innovative filled methacrylate resin composites revolutionised the 

field of dental restorative materials and has provided a clinically viable alternative to amalgam-

based restorations. However, the mechano-physical properties and resultant clinical longevity of 

RBCs has been limited as a consequence of polymerization shrinkage stresses, technique 

sensitivity and the depth to which RBCs may be successfully cured. Subsequently, the continuing 

development and refinement of RBCs has sought to overcome these drawbacks through the 

modification of the filler size and morphology to improve filler loading and distribution. Also, 

the resin-matrix chemistry of recent materials, particularly siloranes, has been modified to reduce 

the occurrence of shrinkage. This has resulted in the introduction of new materials and proposed 

new material classifications, although the subtle and often incremental modification of filler or 

resin has often rendered classification difficult. The introduction of materials containing fillers 

purported to be in the nano-range (<100nm) would appear to be a continuation of the trend to 

decrease filler size and such materials have been described as ‘nanofill’ or ‘nano-hybrid’ RBCs. 

Manufacturers have suggested that ‘nano’-sized particles provide improved mechano-physical 

properties, consequently considerable debate exists within the dental research community as to 

the efficacy and potential advantages of these so-called ‘nano’ materials. 
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CHAPTER 2 FAILURE MECHANISMS OF RESIN-BASED COMPOSITES 

 

2.1 Chemically Induced Degradation of RBCs 

 

The median service-life of RBC restorations is approximately six years [Mjör et al., 1997] 

and is influenced by their susceptibility to chemically induced degradation, in addition to 

mechanistic aspects of wear and failure (Section 2.2). The extent and rate of chemical 

degradation following placement is influenced by the monomer constituents within the resin 

matrix [Munksgaard & Freund, 1990; Assmussen et al., 1998], degree of monomer conversion 

[Asmussen & Peutzfeldt, 2002; 2003a; 2003b], filler morphology [Schwartz et al., 2004; Bagheri 

et al., 2007] and silanization of the filler/matrix interface [Söderholm et al., 1983; 1984; 

Anagnostopoulos et al., 1993]. The degradation of RBC restorations occurs in-service due to the 

presence of moisture which produces hydrolytic degradation [Söderholm et al., 1984; Palin et al., 

2005c; Ferracane, 2006], saliva which initiates enzymatic degradation [Freund & Munksgaard, 

1990; Larsen & Munksgaard, 1991; Yap et al., 2000] and also solvent induced degradation 

instigated by routinely consumed foodstuffs [Ferracane & Marker, 1992; Yap et al., 2002; 

Schwartz et al., 2004]. 

 

2.1.1 Degradation of the resin matrix 

The degradation of the methacrylate-based resin matrix monomers has been identified to 

be the most prevalent form of degradation in RBC materials [Eliades et al., 2003] and occurs 

either passively by hydrolysis or actively by enzymatic action to produce smaller molecules, 

specifically via chain scission and also oxidation or attack of functional groups [Göpferich, 1996; 

Ferracane, 2006]. Essentially, chain scission of polymeric structures involves cleavage of the 

highly crosslinked polymeric chains of the photo-polymerized matrix to shorter oligomeric 

structures and subsequently to monomeric chain fragments (Figure 2.1) [Göpferich, 1996].  

The process of chain scission has been broadly divided into two types, namely single and 

multiple scission mechanisms. During single-scission only one bond is hydrolysed per chemical 

or enzymatic attack, whilst during multiple-scission the initial degradation is followed by further 

cleavage of polymer fragments produced during the initial scission [Tayal & Khan, 2000]. Tayal 

& Khan (2000) reported three modes of chain scission, namely random, central or Gaussian, 
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dependent upon the section of the polymeric chain undergoing scission. ‘Random’ scission was 

identified to occur at any point within the polymeric chain, whilst ‘central’ scission occurred at 

the midpoint of the polymeric chain and ‘Gaussian’ scission occurred non-randomly around the 

chain midpoint [Glynn et al., 1972; Tayal & Khan, 2000]. 

 

 

(a) 

(b) 

(c) 

 
Figure 2.1 Schematic diagram representing chain scission of (a) a polymeric BisGMA-
based structure to (b) shorter oligomeric structures and finally to (c) monomeric chain 
fragments, the process is initiated by hydrolysis, chemical and enzymatic degradation of the 
RBC. Image produced using ChemDraw Ultra 11.0 (CambridgeSoft, UK). 

 

The occurrence of degradation and subsequent scission of the polymeric chain was 

identified to be influenced by the degree of conversion (DC) and hence extent of chain 

polymerization. The DC in the majority of RBCs ranges from 35-80% [Asmussen & Peutzfeldt, 

2001a; 2002], whereby a high DC produces a highly crosslinked structure and improved 

mechanical properties (Section 1.3.4.1). Conversely, a low DC and increased quantities of 

residual monomer produce a structure more susceptible to hydrolytic and chemical degradation 

[Asmussen & Peutzfeldt, 2003a; 2003b].  
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2.1.1.1 Water sorption 

The presence of water is widely recognised to degrade the mechanical properties of RBC 

restorations during a time-dependent process proportional to the degree of water sorption into the 

material as determined by Fickian diffusion [Pearson et al., 1979, Bastoli et al., 1990; Asoaka et 

al., 2003; Göhring et al., 2005; Söderholm et al., 1984; 1996; Söderholm & Roberts, 1990; Turssi 

et al., 2005; Lohbauer et al., 2003b]. Hydrolytic degradation and erosion of RBCs has been 

identified to produce up to a 20% decrease in the fracture strength and elastic modulus following 

ninety days immersed in distilled water [Lohbauer et al., 2003b]. Likewise, Braem et al. (1995) 

highlighted that immersion in water caused a decrease in the Young’s Modulus of 12 to 25%, 

whilst Palin et al. (2005c) identified a moderate decrease in the bi-axial flexure strength of 

Filtek™ Z100 (3M ESPE) of 133MPa to 123MPa following twenty-six weeks stored in water. 

RBCs which possess resin monomers that exhibit a hydrophilic nature, such as TEGDMA 

(Section 1.3.4), exhibit an increased susceptibility to water sorption and subsequent hydrolytic 

degradation of the resin matrix [Musanje et al., 2001]. This occurs as polar hydrophilic 

monomers enable hydrogen-bonding with water molecules from the surrounding oral 

environment and subsequent uptake of water into the bulk of the resin matrix [Asmussen et al., 

1984; Asumussen & Peutzfeldt, 2001; Floyd & Dickens, 2006]. Water sorption into the bulk of 

the RBC structure causes the material to become plasticized, inducing swelling, ductility, 

polymeric chain scission and the leaching of unreacted monomers [Ferracane et al., 1998; Martin 

et al., 2003; Ito et al., 2005]. In addition, phase-separation occurs as comparatively large water 

molecules diffuse into intermolecular spaces between the polymeric chains, thus increasing the 

distance between chains held together by comparatively weak van der Waals forces, particularly 

where a high DC was not obtained [Eliades et al., 2003; Wilson et al., 2005]. Consequently, the 

swelling and expansion of the resin matrix, in addition to degradation of the silane interface, may 

lead to phase-separation as filler particulates are eluted from the polymeric matrix [Eliades et al., 

2003; Wilson et al., 2005].  

The dental research literature appears curiously bereft of long-term in vitro studies, 

namely studies exceeding six months, into the influence of water sorption on clinical longevity of 

RBC restorations, especially considering the nature of the oral environment and the recognized 

detrimental influence of water sorption and subsequent hydrolytic degradation. 
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2.1.1.2 Enzyme induced degradation 

In addition to water, RBCs are subjected to enzymatic degradation due to saliva, however 

the extent of enzymatic degradation varies as the quantity of enzymes in saliva differs between 

individuals [Musanje et al., 2001; Martin et al., 2003]. Human saliva contains enzymes such as 

esterase (hydrolase), which have been identified to increase the wear rate of RBCs via softening 

of the methacrylate resin as a consequence of hydrolysis of ester bonds to methacrylic acid 

[Freund & Munksgaard, 1990; Larsen & Munksgaard, 1991; Yap et al., 2000]. Enzymatic 

catalysis of polymer resins has also been identified to be pH dependent, as scission of the 

polymeric chains is increased and may become autocatalytic when specific monomers, such as 

carboxylic acid are produced [Göpferich, 1996]. In addition, Munksgaard & Freund (1990) 

identified that TEGDMA was hydrolysed faster in esterase compared with BisGMA, highlighting 

that the specific monomer chemistry also influences the rate and extent of degradation.  

Artificial saliva, such as that derived from porcine liver esterase, has been identified to 

produce softening equivalent to that of human saliva [Larsen & Munksgaard, 1991] and also 

leaching of monomers, which occurs at a greater rate in artificial saliva than in de-ionised water 

[Musanje & Darvell, 2003]. However, the type of artificial saliva employed in a specific study 

has been identified to have a distinct effect on the results obtained [Musanje et al., 2001; Martin 

et al., 2003]. Consequently, whilst in vitro studies should be conducted in medium that resembles 

the complex chemistry of natural saliva, in order to obtain clinically relevant results, the use of 

de-ionised water provides an easily reproducible reference solution, enabling comparisons 

between institutions and with published results [Martin et al., 2003]. 

RBCs are also subjected to degradation from chemical compounds within foodstuffs; 

consequently in vivo study of new and existing restorative materials is essential to predict 

probable failure rates. However, such studies are frequently time-consuming as degradation 

occurs at different rates, in some cases over a considerable period of time, whilst commercial 

considerations and time-constraints to introduce new materials may limit such testing [Sarkar, 

2000]. Therefore, solvents and food simulating liquids, such as sodium hydroxide and ethanol, 

are employed during in vitro studies to accelerate the rate and extent of material degradation and 

also with the aim of mimicking conditions in the oral environment [Badra et al., 2005].  

 38



Sodium hydroxide has been identified to simulate in vivo degradation and to accelerate 

hydrolysis of the siloxane bridge bonds between filler and resin (Section 1.3.3.1) due to the high 

concentration of hydroxyl ions (OH-), which are approximately one million times greater than in 

saliva (pH of ~13 compared with ~6.5, respectively) [Sarkar, 2000; Bagheri et al., 2007]. Bagheri 

et al. (2007) highlighted that sodium hydroxide induced cracking and surface peeling, identifying 

a depth of penetration into the bulk of the RBCs tested of up to 176.4±1.5µm, in comparison 

distilled water penetrated to a maximum depth of 61.6±0.5µm. 

Ethanol is a common constituent of many alcoholic beverages and specifically degrades 

the resin matrix, as both BisGMA and ethanol possess a comparable solubility parameter, 

resulting in leaching of unreacted monomer molecules [Badra et al., 2005; Yap et al., 2005; 

Polydorou et al., 2007]. The infiltration of ethanol into the organic resin plasticizes the matrix, 

which initiates swelling as the diffusing molecules expand the inter-chain spacing, subsequently 

softening the resin matrix [Asmussen et al., 1984; Asmussen & Peutzfeldt, 2001a; Schwartz et 

al., 2004; Polydorou et al., 2007]. Schneider et al. (2008) highlighted that ethanol storage at 

concentrations of 75 and 100% resulted in an 11.8±3.9 and 8.8±3.9% decrease in Knoop surface 

hardness for Filtek™ Z100 (3M ESPE) and a decrease of 13.5±3.4 and 14.1±3.5% for Filtek™ 

Z250 (3M ESPE). The diametral tensile strength of Filtek™ Z250 specimens stored in ethanol 

was also identified by Aguiar et al. (2005) to be significantly decreased to 51.3±7.5MPa 

compared with 71.1±10.2MPa following storage in water. 

 

2.1.2 Degradation of the silane coupling agent 

As previously described the silane coupling agent promotes adhesion between the 

otherwise incompatible filler and matrix, in addition to improving particle dispersion and wetting, 

inhibiting crack propagation and absorbing masticatory loads. However, the silane interface 

represents a comparatively weak interface within the RBC, from which premature failure of the 

restoration may occur (Section 1.3.3.1). Hydrolytic or chemical degradation of the silane 

interface facilitates interfacial cracking and filler particle elution [Söderholm et al., 1983; 1984], 

thereby limiting the clinical longevity of the restoration. Following in vivo clinical service or in 

vitro solvent storage, hydrolytic degradation reduces the interfacial siloxane bridge bonds present 

at the filler/matrix interface to the original silanol groups, thus producing hydroxyl ions. 
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The production of hydroxyl ions during hydrolytic degradation of the siloxane bridge 

bonds cause the concentration of OH- ions at the interface to increase which further promotes the 

degradation of the interface and the reaction to become autocatalytic. Subsequently, degradation 

of the silane interface initiates particle debonding, leaching of inorganic ions and interfacial 

microcracking which reduces the mechanical properties and fatigue resistance of the RBC 

[Söderholm et al., 1983; 1984; Øysæd & Ruyter, 1986; Stokes et al., 1988; Ortengren et al., 

2001; Takeshige et al., 2006]. Furthermore, hoop stresses exist around filler particles as a 

consequence of polymerization shrinkage, which increase the frictional forces between filler and 

resin matrix, limiting filler debonding. However exposure to water degrades the silane interface 

(Figure 2.2) reducing the tensile strength and causing the matrix to swell and plasticize thus 

reducing the hoop stresses, which increases the occurrence of particle debonding [Söderholm & 

Roberts, 1990].  

 
 

 

 

 

 

 

 

 

 

 

 

 

Filler

Silane interface

Resin matrix

Figure 2.2.  Diagram representing filler particles surrounded by hoop stresses (red 
arrows) within the resin matrix. The insets represent the interfacial region and highlights 
(circled) interaction and subsequent hydrolytic degradation of siloxane bridge bonds by 
water. Diagram modified from Söderholm et al. (1983); Söderholm & Roberts (1990). 
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Johannson et al. (1967) reported that the interfacial silane layer was previously and 

inaccurately described as possessing a uniform distribution and monolayer structure. However, 

multiple layers of silane molecules were later identified to be deposited on the filler particle 

surface during silanization [Johannson et al., 1967; Söderholm & Shang, 1993]. Subsequently, 

the interface exhibits a multilayered structure in which the silane molecules are randomly 

orientated in relation to the filler surface. The silane molecules at the interface are either 

chemicosorbed or physicosorbed. Silane molecules adjacent to the filler form siloxane bonds 

(Section 1.3.3.1), whilst concurrent condensation of the silanol groups within the deposited silane 

molecules produce a multilayered chemicosorbed layer. In contrast, the physicosorbed layers of 

deposited silane are easily degraded due to a lack of chemical bonding and subsequently lack 

structural coherence and organization [Söderholm & Shang, 1993]. Therefore, the thickness, 

disposition, concentration and coverage of the silane, in addition to the orientation of the silane 

molecules within the interfacial layer, influence the degree of physicosorption and subsequent 

degradation due to chemically active environments [Söderholm et al., 1984; Söderholm & Shang, 

1993; Eliades, 2003].  

 

2.1.3 Degradation of filler particles 

The reinforcing inorganic filler particles comprise the majority of the RBC microstructure 

and influence the mechano-physical properties of the resulting material (Section 1.3). Söderholm, 

(1981) identified that the surface of filler particles in RBCs stored in water exhibited significant 

degradation, the extent of which was associated with the presence or absence of the silane 

interface. The occurrence of filler degradation was attributed to the presence of hydroxyl ions 

within the resin matrix, whilst silanization of the filler was identified to reduce the release rate of 

OH- ions [Söderholm, 1981].  

Similar to the degradation of the siloxane bridge bonds by water (Section 2.1.2), the Si-O-

Si network of the silica filler particles is also degraded by the ingress of water. The bonding 

within silica has been reported to be short-range, irregularly distributed and to possess strained 

bond angles due to the amorphous nature of silica [Söderholm, 1983]. Consequently, as water 

infiltrates the RBC, the resultant hygroscopic expansion of the resin matrix stresses the filler 

surface and deforms the Si-O-Si structure, which occurs concurrently with OH- ions to induce 

stress corrosion of the reinforcing filler particles [Söderholm, 1981; 1983]. As hydrolytic 
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degradation progresses, the production of OH- ions during the rupture of the Si-O-Si network of 

both silica and also the silane interface causes the reaction to become autocatalytic as the pH is 

increased, resulting in degradation of the filler surface and debonding [Bowen & Reed, 1976; 

Söderholm, 1981; Eliades et al., 2003].  

 

2.1.3.1 The elution of filler particles 

Although filler elution is initiated by the mechanistic wear, hydrolytic degradation and 

subsequent production of OH- ions and stress corrosion of the filler particulates has been 

identified to initiate elution of filler elements dependent upon the filler constituents, such as Si, 

Ba or Sr, [Söderholm, 1983]. The occurrence of filler leaching was identified by Söderholm, 

(1981) to be retarded by effective silanization of the filler (Section 1.3.3.1), whilst leaching was 

accelerated due to the introduction of cyclic stresses. The occurrence of an ion exchange 

mechanism was also postulated by Söderholm et al. (1996) to occur at the filler interface and to 

drive filler leaching. During interaction with water the Si-O-Si network develops a negative 

charge which restricts cations from leaving the filler surface, however positive ions (H+) 

diffusing through the matrix interact with the negatively charged silica and additional leaching 

occurs [Söderholm et al., 1996]. The leaching of filler from RBCs immersed in water [Söderholm 

et al., 1983; Söderholm & Roberts, 1990] has prompted a range of cytotoxicity studies, although 

no specific cytotoxic effects were identified for fillers whilst the leaching of monomeric 

components (Section 1.4.4.4) continues to cause concern [Lee et al., 1998; Bouillaguet et al., 

2002; Al-Hiyasat et al., 2005]. 

 

2.2 Mechanistic Degradation of RBC Restorations 

 

The clinical longevity of RBC restorations following placement in the oral environment is 

influenced by the occurrence of fatigue [Söderholm & Richards, 1998; Papadogoannis et al., 

2006; Garoushi et al., 2007], environmentally assisted crack growth [Söderholm et al., 1984; 

Söderholm & Roberts, 1990] and wear resistance [Braem et al., 1986a; Bagheri et al., 2007], in 

addition to chemically induced degradation as previously described in this chapter. Subsequently, 

RBCs susceptible to such degradation mechanisms exhibit a propensity to premature failure at 

loads considerably lower than the determined mean strength values.  
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2.2.1 Crack propagation and fracture 

The Griffith criterion describes the occurrence of fracture in terms of the potential energy 

of the propagating crack and the specific surface energy, which must be exceeded to initiate the 

propagation of cracks. The presence of surface defects, structural inclusions or water all reduce 

this critical energy value, enabling crack propagation at lower stresses [Griffith, 1920; Roesler et 

al., 1956]. In addition, the filler type and loading has been identified to influence crack 

propagation, specifically the incorporation of fillers with a spheroidal morphology improve the 

loading and packing efficiency, enabling an increase in volume fraction of the filler [Ferracane et 

al., 1998; Sabbagh et al., 2004]. The spherical morphology also enhances fracture strength as 

mechanical stresses concentrate around irregularities of the filler/matrix interface, such as angles 

and protuberances of the filler particles, particularly where fillers possess an irregular 

morphology [Suzuki et al., 1995; Sabbagh et al., 2004]. 

 

2.2.2 Static fatigue 

The filler particles and resin matrix of RBCs are susceptible to static fatigue, also 

described as environmentally assisted crack growth, whereby water molecules act to propagate 

existing defects and reduce the critical energy at which crack propagation occurs. This occurs in 

combination with fatigue and sustained loading of the material which results in stress corrosion 

cracking of the material and significantly reduces the clinical longevity of the restoration [Wei & 

Simmons, 1981; Söderholm & Roberts, 1990; Takeshige et al., 2007]. Previous investigations 

have highlighted that the fatigue fracture resistance of RBCs stored in water was significantly 

decreased. This was attributable to a decrease in the Griffith’s critical energy value (Section 

2.2.1.), water absorption of the resin matrix (Section 2.1.1.1) and hydrolysis of the silane 

interface (Section 2.1.2). Takeshige et al. (2007) identified that the fatigue fracture resistance of 

RBCs stored in distilled water for up to three months was consecutively decreased. Likewise, 

Lohbauer et al. (2003b) identified that the flexure strength of an RBC stored in water for three 

months (73.9±6.7MPa) was significantly reduced compared with specimens of the same RBC 

stored for one day (102.3±6.9MPa). 

Static fatigue and propagation of existing defects has been identified to occur from the 

surface of inorganic ceramic filler particles and also from the silane interface, both of which 
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possess Si-O-Si bonding [Söderholm et al., 1981; 1983; 1984]. During static fatigue water 

molecules are absorbed at the crack-tip, which strains the Si-O-Si bonds, resulting in transfer of 

protons and electrons between oxygen atoms within the water molecule and Si atoms within the 

silica structure. The hydrogen-bond is ruptured resulting in the formation of Si-OH groups and 

enabling crack propagation within the surface layer of the silica ceramic filler particles 

[Michalske & Freiman, 1982].  

It is also interesting to note that Söderholm et al. (1984) identified that crack formation, at 

the filler surface and silane interface, also occurred due to osmotic pressure build-up at the 

matrix/filler interface due to hydrolytic degradation of the filler. This study also determined that 

microfill materials were the most stable in a wet environment compared with RBCs containing 

larger fillers, which Söderholm et al. (1984) attributed to filler composition, morphology and 

distribution within the resin matrix. In addition, crack growth was suggested to be retarded due to 

the pre-polymerized matrix surrounding the filler particles [Söderholm et al., 1984].  

In contrast, Kawakami et al. (2007) identified that fatigue crack initiation in RBCs was 

retarded, whilst dental ceramics were more susceptible to crack propagation within aqueous 

environments, although no explanation was offered for this. Takeshige et al. (2007) also 

identified that the fatigue crack threshold was increased following storage in water which 

retarded crack propagation. This study attributed the apparent toughening of the RBC to 

‘plasticization’ of the resin matrix and subsequent hygroscopic expansion following water 

sorption, resulting in blunting the tip of fatigue cracks with reduced stress concentration, release 

of internal stresses accumulated during polymerization shrinkage (Section 1.4.1) and also the 

generation of residual stresses at the crack-tip [Ferracane et al., 2006; Takeshige et al., 2007]. 

 

2.2.2.1 Static testing 

The generation of intra-oral stresses is a complex process, involving compressive, shear 

and tensile stress formation [Berenbaum & Brodie., 1959], consequently the production of 

reproducible in vitro stresses is both difficult and expensive and renders reliable comparison 

impossible between different laboratories and investigators [Langitan & Lawn, 1970; Dong & 

Darvell, 2003]. Subsequently, the testing methodologies employed by dental materials 

researchers have sought to improve the reliability and clinical relevance by adapting conventional 

mechanical testing techniques [Palin et al., 2003b]. The most routinely used mechanical tests are 
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diametral [Aguiar et al., 2005; Casselli et al., 2006], compressive [Brosch et al., 1999; Jandt et 

al., 2000] and flexural testing methodologies [Manhart et al., 2000; Palin et al., 2003b; 2005d; 

Junior et al., 2008]. 

 

Diametral testing 

The diametral (or Brazilian) test provides a simple method of measuring the tensile 

strength of brittle materials by applying a compressive force to a cylindrical specimen across its 

diameter, thus establishing a uniform tensile stress across the diametral plane of the specimen 

[Earnshaw & Smith, 1966; Lloyd & Mitchell, 1984; Ban & Anusavice, 1990]. Diametral tensile 

testing has been reported to produce tensile stresses in the diametral plane where shear forces 

were initiated at the point of contact (Figure 2.3) [Palin et al., 2003b].  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Diagram representing diametral testing of a disc-shaped specimen 
compressed diametrally between compression platens at an ‘area of contact’. Compressive 
forces are resolved into shear forces along a cone-shaped area at either end, subsequently 
generating tensile stresses within the central portion of the cylinder. 

 

Diametral testing eliminated the difficultly of fabricating dumb-bell shaped specimens, 

required by some tensile strength tests and the subsequent surface defect dependency [Bowen et 

al., 1962b]. However, the complexity of the stress distribution developed as a result of diametral 

loading can result in inconsistent modes of fracture [Ban & Anusavice, 1990]. The existence of a 

compressive stress along the loaded diameter was identified to hinder the propagation of the 

tensile crack [Kendall, 1978], while the occurrence of large shear stresses in the contact area, 
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may induce shear failure mechanisms [Lloyd & Mitchell, 1984]. However, where specimens are 

less brittle, deformation increases the area of contact as the specimen exhibits ‘barrelling’, which 

generates complex shear stress patterns (Section 2.3) which are difficult to interpret and may 

result in erroneous data [Darvell, 1990; van Noort, 2007]. 

 

Compressive testing 

RBC restorations are subjected to compressive loading during the masticatory cycle, 

however the formation of complex shear and tensile stress during longitudinal compression 

testing of cylindrical specimens (Figure 2.4) [Berenbaum & Brodie, 1959] renders the reliability 

of compressive testing open to discussion [Ban & Anusavice, 1990]. Brosh et al. (1999) 

determined that compressive strength testing was limited as the failure of brittle materials occurs 

in tension. Furthermore, the cylindrical test specimens may not be representative of the clinical 

situation as light-activated RBC specimens require irradiation from both surfaces to ensure 

complete polymerization as the depth of cure in most RBCs is limited to 2-4mm (Section 1.4.2) 

whilst cylindrical compressive test specimens possess a height of 6mm. Consequently, it has been 

suggested that the middle portion of specimens may be incompletely cured, producing variations 

in the compressive strength results obtained [Palin et al., 2003b]. 

 

 

 

 

 

 

 

Figure 2.4. Diagram representing compressive testing of a cylindrical specimen, 
compression generated shear stresses at both ends of the specimen and tensile stresses 
within the central portion of the cylinder. The stresses induced in cylindrical specimens are 
no different from those induced during diametral testing, except that the pattern is radially 
symmetrical. 
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Flexural testing 

The International Standard Organization (ISO) stipulates the use of a three-point flexure 

method to determine the flexure strength of RBCs as the simple shapes of test specimens, such as 

bars and rods, ensure the reproducibility of the results [ISO 4049]. Furthermore, the method does 

not require special grips which have previously been identified by photoelastic studies to result in 

inconsistent failure results [Bowen et al., 1962b; Ritter et al., 1995a; 1995b]. However, three-

point and four-point flexure testing has been identified to produce a non-uniform stress 

distribution throughout the bulk of the specimen undergoing testing [Williams & Smith, 1971]. 

The stress varies from zero at the neutral layer to a maximum at the outer surfaces, where tensile 

stresses were generated on the lower surface of the specimen (Figure 2.5), accentuating the 

influence of the surface condition [Rudnick, 1963] and has been identified to produce strength 

values in excess of the true tensile strength [Wright, 1955; Rudnick 1963; Earnshaw & Smith 

1966].  
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Figure 2.5. Diagram representing the three-point flexure test and highlighting the 
presence of compressive and tensile stresses above and below the neutral axis, which were 
resolved within the cone-shaped area generated between the loading crosshead and the 
roller-supports. 

 

Unless a bespoke curing-tip is used which irradiates the bar-specimen (25mm length) in 

‘one-shot’, the production of specimens for both three- and four-point flexure testing requires an 

overlapping curing regime. Palin et al., (2005d) suggested that an overlapping curing regime of 

bar-specimens result in an inhomogeneous cure, which produced residual stresses across the bar 

and decreased the reliability of the strength data. Furthermore, three-point flexure tests were 
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originally designed for relatively large engineering specimens, which Ban & Anusavice (1990) 

suggested was not completely relevant to the smaller dental materials test specimens. 

 

Bi-axial flexure testing 

Bi-axial flexure strength testing is a well established technique, albeit for the study of 

ceramics [Ban et al., 1992; Cattel et al., 1997], although bi-axial flexure testing of RBCs is 

gaining greater acceptance [Palin et al., 2005b; 2005c; 2005d; Fleming et al., 2008]. The bi-axial 

flexure strength test is employed to assess tensile stresses and is considered to be more reliable 

than the other tensile testing techniques available, such as uni-axial flexure, diametral tensile 

testing and three- and four-point flexure tests [Ban & Anusavice, 1990]. The central loading of 

the disc-shaped specimens used by bi-axial testing produces the maximum tensile stress at the 

centre of the specimen [Ban et al., 1992]. The tensile stress decreases rapidly with increasing 

radial distance from the centre of the disc, thereby eliminating the occurrence of spurious edge 

failures associated with three-point flexure tests. The results obtained from bi-axial flexure 

testing are also independent of defect direction [Shetty, 1980; Piddock, 1987; Ban & Anusavice, 

1990; 1992]. The disc-shaped specimens used were also a closer representation of clinical 

material geometry compared with bar-shaped specimens, although specimen geometry does not 

mimic that of clinical restorations. Furthermore, the specimen geometry enables a single 

reproducible curing regime, eliminating the requirement of three-point flexure testing of 

overlapping curing regimes and subsequently providing an improved reliability of the disc-

shaped specimens [Palin et al., 2005d]. Also, irradiation of specimens from a single surface is 

more clinically realistic than curing methods specifying irradiation of both upper and lower 

surfaces prior to testing [Palin et al., 2005d]. 

 

Weibull modulus 

The evaluation of mean flexural strength data and associated standard deviations may be 

misleading, as the generation of a mean strength value for any material assumes that the material 

possesses a ‘normal’ defect distribution that is duplicated within all such materials and that the 

mean value is therefore representative. However, the defect population frequently lacks this level 

of homogeneity resulting in failure at lower strengths and premature clinical failure where a 

higher defect distribution exists [McCabe & Carrick, 1986]. Therefore, statistical analysis, such 

 48



as Weibull modulus and survival probability distribution, is vital to provide a meaningful 

interpretation of the flexural strength, determine the reliability of the data and predict the 

probability of failure of brittle materials [Weibull, 1951; McCabe & Carrick, 1986]. The Weibull 

modulus of a group of specimens, provided that the group size is equal to or exceeds twenty 

specimens, provides an indication of the defect distribution. A high Weibull modulus is indicative 

of a narrow distribution of defects and increased reliability of the strength data of that particular 

material. The presence of a single defect population is indicated by an R2-value greater than 0.95, 

whilst a value of 1 would represent a perfect distribution and a value of less than 0.95 was 

attributable to a multi-modal distribution which distorts the flexural strength data away from the 

straight line [Fleming et al., 1999a; 1999b; 2000; Bhamra et al., 2002]. Subsequently, the Weibull 

modulus enables the failure probability of a material to be predicted at any level of stress and 

indicates the reliability of that material during the life-time of the restoration [McCabe & Carrick, 

1986].  

The use of Weibull statistics has allowed comparisons of flexural strengths determined 

using different test methodologies to be produced [Junior et al., 2008]. Palin et al. (2003b) 

compared the strength data of bi-axial and three-point flexure test methods using Weibull 

statistics and determined that the former exhibited a significantly more reliable data set. This was 

proposed since the variability introduced during the overlapping curing regimes required to 

polymerize bar-specimens was eliminated by the single-hit cure of the disc-shaped specimens 

[Palin et al., 2003b].  

 

2.2.3 Fatigue induced degradation 

Fatigue induced degradation occurs when one surface slides over or impacts a second 

surface, generating a zone of compressive stress ahead of the sliding surface whilst tensile stress 

and plastic deformation is generated behind the sliding surface. Garoushi et al. (2007) reported 

that the intraoral stress received by dental restorations during mastication is repeated in excess of 

three-hundred thousand times per year, at loads of 100 to 200N for anterior restorations 

[Helkimo, 1978], whilst posterior restorations may be loaded to 800N [Graf, 1969]. However, 

masticatory loading forces generated whilst chewing foodstuffs were identified to be 

considerably lower at approximately 10 to 20N [Anderson, 1956].  
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The cyclic masticatory stress, whilst lower than the stresses required to initiate 

catastrophic failure, generate subsurface crack propagation and the accumulation of fatigue 

stresses which result in the eventual displacement and loss of material from the restoration 

[Söderholm et al., 1984; Söderholm & Roberts, 1990; Mair, 1996; Sarkar et al., 2000]. Fatigue 

stresses include masticatory loads which may result in premature failure at stresses considerably 

below the reported mean strength of the material due to stress accumulation, such as sub-critical 

crack growth and slow crack propagation, localised around the point of contact [Söderholm & 

Richards, 1998; Papadogoannis et al., 2006]. Generally, the occurrence of catastrophic failure 

following flexure testing and stress accumulation within modern microhybrid and nanofill RBCs 

has also been attributed to surface defects such as scratches, voids, inclusions or non-uniform 

phase distribution of the resin and filler [Lohbauer et al., 2003a; 2003b; Papadogiannis et al., 

2006; Takeshige et al., 2007; Junior et al., 2008]. The degradation of the silane interface due to 

propagating stresses induced by loading, or chemical degradation (Section 2.1.2), also induces 

defects and microcracks in the material which initiate premature failure of the restoration 

[Söderholm et al., 1981; 1982; 1984; Takeshige et al., 2007]. 

As a result, defects whether induced by stress accumulation due to repeated loading of the 

RBC or degradation of the silane interface, initiate cracking from the point of contact where 

tensile and compressive stresses were greatest and propagate from the surface, through the resin 

matrix and silanated filler/matrix interface (Figure 2.6a). Alternatively, cyclic loading may 

generate a network of subsurface laminated cracks below the point of contact, which, as loading 

continues, propagate resulting in delamination and loss of a layer of material (Figure 2.6b) [Mair, 

1994; Lohbauer et al., 2006]. 
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Figure 2.6 Diagram representing (a) propagation of cracks from surface defects which pass through the resin matrix and 
silane interface and are the dominant fracture mechanism of RBCs, and (b) the nucleation of subsurface cracks which 
eventually result in delamination of the material surface. 
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An in vivo evaluation of posterior RBCs conducted by Braem et al. (1986a) identified that 

intermittent sliding-loading during mastication introduced fatigue and subsurface microcracking 

which propagated through the RBC bulk and reached the surface to induce severe pitting. 

Furthermore, whilst microfill RBCs (Section 1.3.1.3) exhibit good wear resistance [Lambrachts et 

al., 1987], clinical observations have identified that such materials exhibit pronounced chipping 

in stress-bearing situations, such as occlusal or incisal contact. This produces fatigue and 

subsequent pitting caused by failure of the silane interface and debonding of the resin matrix and 

pre-polymerized filler particles [Lambrachts et al., 1982; Okamoto et al., 1993]. The repeated 

cyclic loading of RBCs further introduce fatigue stresses which initiate the breakdown of the 

silanated filler/matrix interface, introducing progressive crack growth and voids within the RBC 

structure where particles are lost, resulting in substantial weakening of the restoration [Condon & 

Ferracane, 1996; Drummond et al., 2005]. This highlights the importance of in vitro cyclic testing 

of existing and novel RBCs to predict in vivo behaviour and the potential subsequent occurrence 

of premature failure of the restoration during masticatory loading. 

 

2.2.3.1 Fatigue testing 

RBCs are subjected to multiple stressing mechanisms in the oral environment, including 

static, dynamic and cyclic fatigue. Subsequently, the rate and extent of degradation has been 

identified to be a material dependent process influenced by both filler and resin chemistry [Braem 

et al., 1995]. Dynamic and cyclic fatigue (mastication) involves repeated loading of the 

restoration or tooth structure which induces cyclic stresses and the presence of surface or bulk 

defects [McCabe et al., 1990b].  

Cyclic loading regimes have been used to simulate masticatory loading. Hu et al. (1999) 

sought to simulate masticatory loading of RBCs using a sine cam mechanism to produce sine 

curve loading on the wear surface and introduce variable loading patterns associated with 

mastication. Alternatively, a well established approach to simulate cyclic loading and determine 

fatigue resistance is known as the ‘staircase’ method. In essence, this method involves alternating 

the applied stress between 1MPa and a predetermined maximum, the tests were conducted 

sequentially with the maximum stress being increased or decreased dependent upon whether the 

specimen survived the previous test. If the specimen survives the preceding test the stress level 
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was increased by 4%, if failure occurs the stress level is decreased until a mean value is obtained 

[Braem et al., 1995; Lohbauer et al., 2003a; 2005; Turssi et al., 2006; Garoushi et al., 2007].  

 

2.3 Wear of RBC restorations 

 

Following placement RBC restorations are subjected to tribological wear, such as 

attrition, abrasion, erosion and parafunctional habits, in addition to masticatory fatigue (Section 

2.2.3), which act either independently or in combination to produce loss of anatomical form and 

bulk fracture [Mair, 1996; Söderholm & Richards, 1998]. The occurrence of abrasion is the most 

common type of tribological wear of posterior RBC restorations and occurs as two or more 

substances, whether foreign particle, enamel or dentine, come into direct physical contact [Mair, 

1996]. Abrasion is divided into two categories, namely two- or three- body wear, although 

clinically a combination of two- and three-body wear mechanisms often occur to degrade the 

tooth or RBC [Mair et al., 1996; Söderholm & Richards, 1998].  

Two-body wear occurs when two occluding or proximal surfaces come into direct 

physical contact with opposing or adjacent tooth surfaces whilst undergoing loading [Mair, 

1996]. The subsequent compression or sliding of these surfaces generates surface and subsurface 

damage, whilst plastic shear deformation induces high tensile stresses and cracking (Figure 2.7a) 

[Mair, 1994]. Three-body wear occurs when hard foreign particles present in the food bolus or 

toothpaste, are compressed and slide against occluding structures during mastication. These 

particulates effectively act as ‘milling grist’ and abrade the occluding surface where the tooth or 

restoration is softer than the particle (Figure 2.7b) [Söderholm & Richards, 1998].  
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Figure 2.7 Diagram representing (a) two- and (b) three-body wear, highlighting occlusal 
contact (black arrows and circled) and direction of tooth movement during mastication (red 
arrows). 

 

Hu et al. (2002) identified that two- and three-body wear mechanisms induced two 

distinct mechanisms of wear, namely deformation and delamination. Areas of deformation were 

identified to be initiated as specimen surfaces moving against a counter-surface caused the resin 

to be plastically deformed and generated subsurface microcracking. Subsequently, delamination 

mechanisms occur as these microcracks coalesce resulting in cracking parallel to the specimen 

surface. In contrast to the deformed regions, delamination produces rougher surfaces possessing 

observable filler particles which may be dislodged from the resin to produce a ‘pitted’ surface 

[Hu et al., 2002].  

Adhesive wear occurs when two apparently flat surfaces are forced together, introducing a 

highly localised load to a comparatively small area of tooth structure which effectively ‘cold 

welds’ the asperities of the two surfaces. Subsequent movement, described as ‘sliding’, initiates 

transfer of material between surfaces and crack propagation through the bulk of the weaker 

material as the ‘welds’ are torn apart [Mair, 1996; Söderholm & Richards, 1998].  

The occurrence of in vivo wear and the wear resistance of RBCs have been identified to 

be influenced by the filler size, morphology and distribution [Leinfelder, 1987; Schwartz et al., 

2004]. Following the loss of the resin matrix at the surface of RBC restorations protruding filler 

particles remain. Subsequently, the rate of wear was initially slow as the protruding filler acts as a 
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‘protective shoulder’ to the remaining resin matrix, whilst continued loss of the resin causes filler 

‘plucking’ and surface void formation [Hu et al., 2002]. The presence of larger fillers, such as 

those in traditional RBCs (Section 1.3.1.1), exhibit stress-induced ‘tilting’ and subsequent 

removal of protruding particles, resulting in increased surface roughness due to large pores and 

defects.  

Jørgensen et al. (1979) determined that decreased interparticle spacing improved the 

clinical wear resistance, suggesting that shorter interparticle spacing of smaller fillers provided 

increased matrix protection. Likewise, the addition of colloidal silica particles with a mean size 

of 0.04µm to a BisGMA/TEGDMA resin was identified by Pallav et al. (1989) to increase wear 

resistance compared with an identical resin matrix reinforced with inorganic quartz fillers with a 

mean size of 3µm. A further wear study comparing filler sizes highlighted that resins reinforced 

with fillers that possessed a mean size of 1.5µm exhibited a wear value of 0.393±0.076mm2, 

whilst fillers with a mean size of 3.0 and 10.0µm exhibited successively increased mean wear 

values of 0.441±0.080 and 0.528±0.094mm2 [Schwartz et al., 2004]. Schwartz et al. (2004) 

hypothesised that in addition to the matrix protection provided by shorter interparticle spacing 

suggested by Jørgensen et al. (1979), that the shorter interparticle spacing and high surface area 

of the smaller fillers reduced the diffusion rate of plasticizing agents, such as water or ethanol, 

thereby increasing the wear resistance. Consequently, the development of smaller particles, such 

as submicron and nanofills in modern RBCs, has sought to further reduce the interparticle 

spacing and thereby increase wear resistance [Mair, 1994; Söderholm & Richards, 1998]. 

 

2.3.1 The influence of ‘nano’ particles on tribology 

The introduction of RBCs with an inorganic phase consisting of nano-sized filler particles 

(Section 1.3.2.4) has also sought to provide increased wear and fatigue resistance compared with 

pre-existing restoratives [Mitra et al., 2003; Turssi et al., 2005; 2006]. Despite this stated 

intention, a wear and fatigue study of several commercially available ‘nanofills’ highlighted no 

significant differences between two of the nanofills (Filtek™ Supreme; 3M ESPE and Grandio; 

Voco) compared with a microfill control (Heliomolar; Ivoclar vivadent), whilst the two other 

nanofills studied (Ceram-X; Dentsply and Premise; Kerr USA) possessed a lower fatigue strength 

[Turssi et al., 2006]. This disparity between the theoretical advantages of ‘nanofills’ and the 

apparent reality, was explained by Turssi et al. (2006) who noted that the size of discrete ‘nano’ 
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and ‘micro’ particles is approximately the same. Interestingly, the study suggested that the 

presence of pre-polymerized particles (Heliomolar and Premise) or ‘nanoclusters’ (Supreme) 

reduced the amount of wear due to the smaller particle size and the suggested improved 

interfacial bonding of Supreme and Premise, whilst Heliomolar exhibited interfacial failure, 

although the filler size and volume limited the occurrence of wear [Turssi et al., 2006].  

Therefore, whilst the influence of nano-sized fillers on tribological wear in dental 

restorative materials remains debatable [Başeren et al., 2004; Lohbauer et al., 2006; Turssi et al., 

2006; Bagheri et al., 2007; Beun et al., 2007; Masouras et al., 2007; Junior et al., 2008; Watanabe 

et al., 2008], the introduction of nanosized particulates to filled composite systems outside of the 

field of dental materials research has highlighted distinct improvements. The addition of 40nm 

alumina nanofillers at 20wt% to polytetrafluorethylene (PTFE) with a solid lubricant application 

was identified to significantly increase the wear resistance (x600) compared with unfilled PTFE 

[Sawyer et al., 2003]. Likewise, the addition of 1-10wt% 38nm alumina nanoparticles to semi-

crystalline poly(ethylene) terephyhalate (PET) increased the wear resistance (x2) and decreased 

the mean coefficient of friction (10%), which was attributed to the formation of a more coherent 

and adherent transfer film [Bhimaraj et al., 2005]. 

 

2.3.2 Wear tests 

The wear of RBC restorations has been identified to be a multi-factorial process involving 

mechanistic wear due to particles either from food or dislodged inorganic fillers which abrade the 

surface of RBC restorations [Schwartz et al., 2004], fatigue induced stress accumulation (Section 

2.2.3), chemical and enzymatic wear (Section 2.1). Consequently, the wear of RBCs following 

placement in the oral cavity is difficult to accurately reproduce in vitro, although a variety of 

wear testing methodologies and machines have been developed.  

Wear testing methodologies have included ‘pin-on-disc’ tests to determine movement 

between an abrasive and the specimen undergoing testing [Luo et al., 1998] and also ‘scratch’ 

tests where microscopy was employed to evaluate the depth and mechanism of wear [Jardret et 

al., 1998]. A further approach is the Academisch Centrum Trandheelkunde Amsterdam (ACTA) 

wear testing machine as described by Gee & Pallov (1994), which simulates in vivo wear at a 

predetermined force and rotational speed to mimic chewing frequency in abrasive slurry. The 

wear and surface hardness of the RBCs were subsequently determined. 
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A more advanced approach to in vitro determination of masticatory induced loading and 

fatigue has been the introduction of ‘oral wear simulators’ [Condon & Ferracane, 1996] and 

‘artificial mouths’ [DeLong & Douglas, 1991] which sought to mimic abrasion and attrition 

mechanisms or to reproduce loads and movements of the masticatory cycle. The Oregon Health 

Sciences University (OSHU) ‘oral wear simulator’ described by Condon & Ferracane (1996) 

sought to mimic three-body wear of an enamel cusp acting as the antagonist in a food-like slurry 

against the RBC surface, profilometry and microscopy was than used to determine the extent of 

wear [Condon & Ferracane, 1996]. The ‘artificial mouth’ sought to mimic in vivo masticatory 

loading utilising two servo-hydraulic actuators to produce horizontal and vertical ‘chewing’ 

motions at a frequency of 4Hz within an environmental chamber which contained natural or 

artificial saliva. The study concluded that a high correlation existed between wear produced in the 

artificial mouth and corresponding clinical wear [DeLong & Douglas, 1991]. 

 

2.4 Summary 

 

 The degradation and subsequent failure of RBC restorations is a complex and multi-

factorial process involving aspects of both physical and chemical wear. The fatigue of RBC 

materials introduces sub-critical cracking, the accumulation of which may result in premature 

failure of the restoration at loads considerably below the predicted mean strength of that material.  

The occurrence of fatigue induced damage, whether mechanistic or chemical in nature, degrades 

the resin matrix, interfacial silane coupling agent, the filler particle or a combination of these. 

Consequently, in vitro characterization of RBCs aims to mimic the occurrence of in vivo 

degradation, although the complex nature of wear mechanisms renders such investigations 

difficult. Thus a multi-disciplinary approach is required to yield data that may be combined to 

produce an overall indication of the degradation and subsequent mechanical and physical 

properties of modern RBCs and in particular the properties of so-called ‘nanofills’ reinforced 

with individually dispersed nano-sized filler particles and also ‘nanocluster’ particles. 
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2.5 Aims of Current Investigation 

 

The mechanical and physical properties of the RBCs used in posterior and anterior 

restorations are influenced by the resin matrix chemistry, the silane interface and the size, 

morphology, distribution and loading of inorganic filler particles. Whilst the resin chemistry has, 

until recently, remained unchanged, the size of the filler particles has generally decreased to 

improve loading, aesthetics and the resulting mechanical properties of the RBC. The introduction 

of materials containing nano-sized particles and marketed as ‘nanofill’ and ‘nano-hybrid’ RBCs 

has resulted in speculation as to whether these so-called ‘nano’ materials exhibit improved 

mechano-physical properties compared with existing conventional RBCs. 

 

Null Hypothesis 

The ‘nanocluster’ particulate complex will not exhibit a significantly different fracture 

mechanism compared with representative spheroidal or irregular particles. Furthermore, the 

presence of nano-sized filler particles and ‘nanoclusters’ will not significantly influence the 

mechanical properties compared with existing conventional modern RBC materials. 

 

1. In order to elucidate the reinforcement provided by the ‘nanocluster’ particles compared 

with inorganic filler particulates possessing conventional morphologies, namely 

spheroidal or irregular, the mechanical properties of discrete particles and agglomerates 

will be investigated. The efficacy of a novel micromanipulation technique to test the 

micromechanical properties of the filler particulates will also be investigated and 

developed. 

 

2. The reinforcement provided by ‘nanocluster’ particles to the resin matrix, compared with 

conventional fillers, will be further investigated to determine the mechanical properties of 

these RBCs following cyclic pre-loading of disc-shaped specimens. The bi-axial flexure 

strength (BFS) data will also be assessed for reliability using the associated Weibull 

modulus. Furthermore, the influence of water storage on the resultant mechanical 

properties of the RBC specimens following pre-loading will be investigated.  
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3. The short-, medium- and long-term storage of RBC specimens in distilled water will be 

undertaken to determine the mechanical properties of the ‘nanocluster’ reinforced RBC 

compared with nano-hybrid and conventional RBCs. The water sorption will be examined 

using a near-infrared spectroscopy (NIRS) technique to determine the presence of water 

prior to and following storage. The filler morphology and the potential hydrolysis of the 

interfacial layer will also be examined using scanning electron microscopy (SEM). 

 

4. The mechanical properties of the ‘nanocluster’, nano-hybrid and conventional RBCs will 

also be determined following storage in solvents known to initiate degradation of the 

interfacial silane coupling agent (sodium hydroxide) and the polymeric resin matrix 

(ethanol) in order to further characterize the reinforcement provided by the filler 

particulates. The extent of degradation of the resin matrix will be further characterized by 

determining the surface hardness (VHN) following solvent storage. Fourier transform 

infrared (FTIR) spectroscopy in the mid-range, in addition to SEM, will be used to assess 

the integrity of the interfacial silane layer following solvent storage. 

 

5. Furthermore, whilst many manufacturers widely bandy terms such as ‘nanofill’, ‘nano-

hybrid’ and ‘nano-composite’ these are not official classifications according to the 

accepted nomenclature established by Lutz & Philips (1983) and Willems et al. (1992). 

This system requires that filler morphology, size and loading provide distinct mechano-

physical properties to the subsequent material. Consequently, the current study also aims 

to determine whether so-called ‘nano’ RBCs necessitate a classification according to this 

system. 
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CHAPTER 3  EXPERIMENTAL PROCEDURE 

 

3.1 Materials 

 

The mechanical and physical properties of two commercially available ‘nanofilled’ resin-

based composite (RBC) restorative materials, namely Filtek™ Supreme Body (FSB; batches: 

6GY, 5CT, 6EE, 5BC and 5BB; shade A3) and Filtek™ Supreme Translucent (FST; batches: 

7CT, 5BX, 5BT and 6CL; shade YT) (3M ESPE Dental Products, St Paul, MN, US) were 

evaluated and compared with two ‘nano-hybrid’ RBCs, namely Grandio (GR; batch: 671469; 

shade A3) and Grandio Flow (GF; batches: 671609 and 701238; shade A3) (VOCO, Cuxhaven, 

Germany). Two established RBCs, namely the microhybrid Filtek™ Z250 (FZ; batches: 6CR, 

5UC, 6FC, 6EC, 6CR, 6FC, 6WU, 5TF and 7HY; shade A3) and the microhybrid Filtek™ Z100 

(Z100; batches; 5UR, 7YG, 6YF and 7ET; shade A3) supplied by 3M ESPE were also 

investigated and compared. An additional microfill RBC Heliomolar (Ivoclar Vivadent, Schaan, 

Liechtenstein) was also investigated (HM; batch G05532; shade A3). 

 

3.1.1 Resin matrix chemistry 

The dimethacrylate-based resin matrix of FSB, FST, FZ, GR, GF, Z100 and HM, 

consisted of a photoactive monomer blend of 2,2-bis[4-(2-hydroxy-3-

methacryloxypropoxy)phenyl]propane (bisphenol-A diglycidyl ether dimethacrylate; BisGMA) 

and the diluent triethylene glycol dimethyacrylate (TEGDMA). In addition, FSB, FST and FZ 

contained monomers of  2,2-bis[4-(2-methacrlyloxyethoxy)phenyl]propane (bisphenol-A 

hexaethoxylated dimethacrylate; BisEMA6) and 1,6-bis(methacryloxy-2-ethoxycarbonylamino)-

2,4,4-trimethylhexane (urethane dimethacrylate; UDMA). GF also contained 5-ethyl-1,3-

dioxane-5-yl(methyl methacrylate) (hydroethyl dimethacrylate; HEDMA), whilst HM also 

contained dicandiol dimethacrylate (D3MA) (Figure 3.1; Table 3.1). 
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(a) BisGMA 
 

 
 
 
 

(b) TEGDMA 
 

 
(c) BisEMA 
 

 
 
 
 

(d) UDMA 
 

 
 
 
 

(e) HEDMA 

 
 
 
Figure 3.1. The chemical structure of (a) bisphenol A glycol dimethacrylate (BisGMA), 
(b) triethyleneglycol dimethacrylate (TEGDMA), (c) bisphenol A hexaethoxylated 
dimethacrylate (BisEMA6), (d) urethane dimethacrylate (UDMA) and (e) hydroethyl 
dimethacrylate (HEDMA). 
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Light-activated polymerization of all RBCs was achieved by the admixture of initiator 

and co-initiating compounds. According to Shintani et al. (1985) and Alvin et al. (2007) dl-2,3-

diketo-1,7,7-trimethylnorcamphane (camphorquinone; CQ) was a commonly used initiator, 

whilst Ferracane, (1995) and Chen et al. (2006) identified the routine use of the co-initiators 

dimethylaminoethylmethacrylate (DMAEMA) and an iodonium salt, such as (4-

octylphenyl)phenyliodonium hexafluoroantimonate (OPIA), which act as electron donors. Alvin 

et al. (2007) identified 0.059, 0.082 and 0.054wt% CQ in FSB, FST and FZ respectively, whilst 

to the author’s knowledge the photo-initiator content within GR, GF, Z100 and HM has not been 

reported. Furthermore, whilst the manufacturers were also not forthcoming regarding the specific 

inhibitors present within the resin matrix it is likely that hydroquinone was employed in a few 

parts per million [Combe & Burke, 2000]. An unspecified low molecular weight UV 

stabiliser/absorber was also added to limit degradation of the organic polymer by ultra-violet light 

[Lee et al., 1998]. 

 

3.1.2 Particulate filler morphology 

The dimethacrylate monomer resin matrix of FSB and FST are reinforced with 

‘nanocluster’ particulate complexes with a reported size distribution of 0.6-1.4µm and loaded to 

71 and 30wt% respectively. The ‘nanocluster’ is an agglomeration of either nanosized (0.002-

0.02µm; 2-20nm) colloidal silica and zirconyl salt to form Zr-SiO2 particles (FSB), or nanosized 

(0.075µm; 75nm) silica, SiO2, particles (FST) produced by a proprietary sol-gel technique from 

aqueous colloidal silica sols (Section 1.3.3) [Mitra et al., 2003]. The ‘nanoclusters’ are then 

partially calcined and silanated first with a silane coupling agent (γ-MPS) (Section 1.3.3.1) 

diluted with an unspecified solvent and water to ensure infiltration of the silane into the 

interstices of the clustered particle [Private communication; S. Mitra, 3M ESPE]. The 

‘nanocluster’ particle was subsequently admixed with an undilute silane coupling agent (γ-MPS) 

prior to incorporation into the resin matrix [Mitra et al., 2003; Filtek™ Supreme Product Report 

2003]. The resin matrix of FSB and FST were also loaded with dispersed nanosized silica, so-

called ‘nanomers’, to 8 and 40wt% with a mean size of 0.005-0.02µm (5-20nm) and 0.075µm 

(75nm), respectively, produced by a proprietary sol-gel technique (Section 1.3.3). The filler 

particles were coated with a functionalized silane coupling agent (γ-MPS) (Section 1.3.3.1) prior 

to incorporation into the matrix. The total filler loading of FSB and FST was 79.0wt% 
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(59.5vol%) and 70.0wt% (57.5vol%), respectively [Mitra et al., 2003; Filtek™ Supreme Product 

Report 2003] (Table 3.1). 

The resin matrix of the nano-hybrid materials GR and GF were loaded with two distinct 

filler size distributions to 87wt% (71.4vol%) and 80.2wt% (65.6vol%), respectively. Barium-

alumina borosilicate (BaAl2O3-BSiO2) was milled (Section 1.3.3) to produce particles with a 

mean size distribution of 0.1-2.5µm and possessed an irregular morphology. The resin loading 

was maximised by the addition of nanosized silica particles produced by a proprietary sol-gel 

method which possessed a mean size of 0.02-0.06µm (20-60nm) and a spherical morphology. 

The irregular and spherical fillers were also silanated (γ-MPS) [Grandio/Grandio Flow Scientific 

Documentation, 2006] (Table 3.1). 

The microhybrid and microfill materials FZ and Z100 were both loaded to 84.5wt% (60 

and 66vol%, respectively) with fused spheroidal silica-zirconia particles which possessed a size 

distribution of 0.01-3.5µm and a mean size of 0.6µm, produced by a sol-gel technique and 

admixed with a silane (γ-MPS) [Filtek™ Z100 Product Report, 1996; Filtek™ Z250 Product 

Report, 1998]. The microfill HM was loaded to 66.7wt% (46vol%) with pre-polymerized silica 

particles (Section 1.3.1.3) in addition to spherical ytterbium trifluoride filler, also produced by a 

proprietary sol-gel technique, which possessed a size distribution of 40-200nm (Table 3.1). 

 



BisGMA bis-phenol A diglycidy ether dimethacrylate; TEGDMA triethyleneglycol dimethacrylate; BisEMA6 bis-phenol A 
polyethylene glycol diether dimethacrylate; UDMA urethane dimethacrylate; HEDMA hydroethyl dimethacrylate; D3MA dicandiol 
dimethacrylate. 
 

 Classification Resin Filler Total filler content 
Filtek Supreme Body 
(FSB) 

Nanofill BisGMA  
UDMA  
BisEMA6  
TEGDMA 

Silica; 5-20nm nanoparticle (8.0wt%) 
Zirconia/silica; 0.6-1.4µm nanocluster (71.0wt%) 
 

79.0wt% 59.5vol% 

Filtek Supreme 
Translucent (FST) 

Nanofill BisGMA  
UDMA  
BisEMA6  
TEGDMA 

Silica; 75nm nanoparticle (40.0wt%) 
Silica; 0.6-1.4µm nanocluster (30.0wt%) 
 

70.0wt% 57.5vol% 

Grandio (GR) Nanohybrid BisGMA 
TEGDMA 

Silica; 20-60nm 
Barium-alumia borosilicate; 0.1-2.5µm 

87.0wt% 71.4vol% 

Grandio Flow (GF) Nanohybrid BisGMA 
TEGDMA 
HEDMA 

Silica; 20-60nm 
Barium-alumia borosilicate; 0.1-2.5µm 

80.2wt% 65.6vol% 

Filtek Z250 (FZ) Microhybrid BisGMA  
UDMA 
BisEMA6  
TEGDMA 

Zirconia/silica; 0.01-3.5µm 
 

84.5wt% 60.0vol% 
 

Filtek Z100 (Z100) Microhybrid BisGMA 
TEGDMA 

Zirconia/silica; 0.01-3.5µm 
 

84.5wt% 66.0vol% 
 

Heliomolar (HM) Microfill BisGMA 
UDMA 
D3MA 

Pre-polymer (containing silica) 
Ytterbium trifluoride; 40-200nm 

66.7wt% 46.0vol% 

 
Table 3.1.  Summary of the resin matrix constituents, filler and loading in the nanofill (FSB and FST), nano-hybrid (GR 
and GF), microhybrid (FZ and Z100) and microfill (HM) materials studied in the current investigation. The main 
photoinitiator was camphoroquinone, with co-initiators DMAEMA and an iodonium salt.  



3.2 Mechanical Properties of Nanofilled RBCs 

 

3.2.1 Characterising discrete filler particles and agglomerates  

A micromanipulation technique was employed to assess the mechanical properties of 

discrete inorganic filler particulates with various morphologies, namely ‘nanocluster’, spheroidal 

or irregular, representative of filler types routinely employed in modern RBCs. The 

micromanipulation technique is essentially a compression test, whereby an individual particle is 

loaded to catastrophic failure between a micron diameter glass probe and a parallel glass slide 

[Zhang et al., 1992]. The subsequent force at fracture is measured and pseudo-modulus of stress 

deteremined [Zhang et al., 1991]. Furthermore, as micromanipulation has not previously been 

employed in the field of dental materials research the validity and efficacy of the technique was 

also investigated. 

 

3.2.1.1 Discrete filler particles 

The micromanipulation technique required filler particles discrete from the resin matrix. 

The manufacturers supplied unsilanated ‘nanocluster’ (3M ESPE) and irregular (Voco) filler 

particles, whilst spheroidal zirconia-silica fillers were obtained by separation from the 

unpolymerized monomer paste of FZ using a chemical dissolution technique. Preliminary studies 

identified no significant differences in mechanical properties identified using the 

micromanipulation technique between particles supplied by the manufacturers compared with 

those separated from commercial RBC pastes using the dissolution technique. In addition, 

comparison of unsilanated and silanated irregular filler particles supplied by the manufacturer 

identified no significant difference between the subsequent mechanical properties (Appendix 1). 

 

Dissolution technique 

The dissolution technique required a consistent resin composite mass (0.5±0.01g) to be 

dissolved in 4ml of undilute acetone (laboratory reagent grade, Fisher Scientific Ltd., 

Loughborough, UK) and centrifuged for 2mins at 1000rpm (IEC Centra-3, Damon, Bedfordshire, 

UK). The excess liquid was removed using a pipette and the centrifugation technique was 

repeated twice with fresh acetone each time. The remaining mass was dissolved in 4ml of 

undilute chloroform (laboratory reagent grade, Fisher Scientific Ltd., Loughborough, UK) and 
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centrifuged a further three times for 2mins at 1000rpm [Beun et al., 2006]. The filler particles 

were dried for 1h in an oven at 90±5°C (LTE Scientific Ltd., Oldham, UK).  

 

3.2.1.2 Micromanipulation technique 

A probe was produced from a borosilicate glass capillary tube (GC100-15, 1.0mm 

diameter; MicroInstruments Ltd., UK) using a glass puller (PE-21; Narishinge, Japan) and 

microforge (MF900; Narishinge, Japan) to draw the glass tube to a tip with a diameter of 40µm. 

The probe-tip was subsequently ground and polished using a graduated grinding regime; 320, 800 

and 1200 grit silicon carbide (Strueres Ltd., UK), in a micropipette grinder (Narishinge, Japan) 

for 120mins to produce a theoretically perfectly flat and infinite surface [Zhang et al., 1992; Shiu 

et al., 1999; Blewett et al., 2000].  

The filler particles were dispersed in a suspension of distilled water on a glass microscope 

slide and placed on the micromanipulation rig. The suspension was allowed to dry and isolated 

individual particles were identified using an inverted and side-angle light-microscope (LWD 

MPlan APO; Meiji Techno, Mitutoyo, Japan) and camera (Chou, High Performance CCD 

Camera) mounted on a UniSlide platform (LG Motion Ltd., Basingstoke, UK) at magnification of 

x1000. The two microscopes enable the slide to be viewed from below and the side, facilitating 

identification of single particles, which was a potentially extremely time consuming process due 

to the small particle size, even when magnified. Particles were positioned centrally under the 

probe. It was essential to ensure that the particles loaded were discrete from adjacent particles 

within a radius of 40µm (the diameter of the probe) to prevent multiple particles undergoing 

loading and potentially generating spurious results. The diameter of the particle was measured 

(µm) prior to loading using a graticule, where 1mm on the light microscope screen was known to 

be equal to 1µm [Private communication, K. Liu, University of Birmingham School of Chemical 

Engineering]. Irregular particles were measured at the widest point. The probe was connected to a 

force transducer (Model 406A, Cambridge Technology, Watertown, USA) using paraffin wax, 

and possessed a response sensitivity of 486µN/V at a resolution of 0.01µN. The probe was driven 

by a micromanipulator (MicroInstruments Ltd, Oxford, UK) compressing the filler particle at a 

constant velocity of 2.0±0.2µm/s. The force imposed on the particle during loading was measured 

by the transducer and the voltage output (magnitude of force) was recorded on a PC-30D data 

acquisition card (Amplicon Live-line, Brighton, UK) (Figure 3.2).  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bottom view 
microscope and 

camera 
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camera 

Filler Particle 

Computer 

 
 
 
Figure 3.2. Schematic diagram representing the micromanipulation apparatus. (Reproduced with the kind permission of 
Prof. Z. Zhang, School of Chemical Engineering; University of Birmingham). Insert represents view of particle (left: inverted-
view microscope camera, right: side-view microscope camera) undergoing compression. It is important to note that due to the 
set-up of the micromanipulation rig used by the author that capturing images of the particles under compression was 
unfortunately not possible. The image seen here is that of a cell and is modified from Blewett et al. (2000), the diameter of the 
cell is 35-85µm, which is markedly greater than that of the particulates (2-12µm) which underwent micromanipulation in the 
current study.  
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Compliance 

 

The compliance of the micromanipulation probe was calculated prior to particle loading 

to determine accurate displacement and deformation curves following micromanipulation. 

Compliance, C (µm/µN) was determined by compressing the probe directly against a glass slide 

and calculated according to Equation 3.1,  

 

rω
ανC =          Equation 3.1 

 

where α was the acquisition time between collection of data points (0.01872s), v the probe 

velocity (2.0±0.2µm/s), r the mean gradient of the regression line on the load-deformation graph 

and ω the transducer sensitivity (486µN/V).  

 

Force/displacement 

The force, f, imposed during compression and the force at fracture (µN) of the selected 

filler particles was calculated as in Equation 3.2, 

 

Vωf =          Equation 3.2 

 

where V was the voltage of the descending probe recorded during testing. The displacement, d 

(µm) of the filler particles during compression was calculated in accordance with Equation 3.3,  

 

( ) (fCVαd −= )        Equation 3.3 

 

Force and displacement were plotted and the occurrence of particle fracture recorded. The force 

prior to fracture and the related particle displacement were measured from the graph. 

 

Stress/deformation 

The pseudo-stress (MPa) of the filler particles during loading and at fracture was 

calculated using Equation 3.4 [Chung et al., 2005; Müller et al., 2005], 
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2πø
4fσ =          Equation 3.4 

 

where  was the diameter of the filler particle (µm) measured prior to micromanipulation. The 

‘pseudo-stress’ describes the ratio of applied force divided by the original cross-sectional area of 

each particle prior to deformation. The term ‘pseudo’ was used, as to calculate the ‘real’ stress 

the contact area between the particle and probe must be known. However, since the contact area 

varies with deformation and as particles were extremely small it was not possible to accurately 

measure the contact area. Therefore, a ‘pseudo’ stress is calculated which provides an 

approximation of the ‘real’ stress. The percentage deformation of the filler particles during 

compression was calculated according to Equation 3.5, 

ø

 

d/ødef(%) =           Equation 3.5 

 

The pseudo-modulus of stress was determined by superimposing a regression line through the 

linear section of stress-deformation graphs.  

 

3.2.1.3 Filler morphology 

 The filler morphology and size of discrete particles was examined using a scanning 

electron microscope (SEM; JSM 5300 LV, Jeol Ltd., Akishima Tokoyo, Japan). The SEM 

operates by producing a beam of electrons from a tungsten filament gun focused onto the surface 

of the sample within an SEM chamber maintained under vacuum. Condenser lenses focus the 

electron beam between 5nm to 1μm, operating at a current of 10-6 to 10-12 amps with an 

accelerating voltage of between 1 and 30kV, depending on the image quality to magnification 

required by the operator. The resultant electron beam scans the specimen surface to produce low 

energy secondary electrons which pass into a cathode ray tube to form an image that can be 

displayed. The resolution of the image was modified by adjustment and refinement of the 

parameters at which the electron gun operated, specifically the spot size, current, voltage, 

detector efficiency and also the working distance between filament and specimen surface; namely 
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distance the electron beam travels. Adjusting the strength at which the condenser lenses operate 

produced high magnification and sharp images of specimen surfaces. 

Prior to SEM analysis individual filler particles were deposited on an aluminium 

specimen SEM stub (Agar Scientific Ltd., Essex, UK) using adhesive carbon conducting tags 

(Agar Scientific Ltd.). Particles were sputter coated to deposit a 2±0.2μm layer of gold from a 

TK8842 gold target (Emitech Ltd., Ashford, Kent, UK) using an Emitech K550X sputter coater 

(Emitech Ltd.) with a runtime of 2mins and a voltage of 25mA. Sputter coating creates a 

conductive surface across the specimen and reduces the occurrence of electron charging, which 

would reduce the image quality attainable. The sample was carefully handled throughout the 

procedure using tweezers and cotton gloves to prevent damage which may dislodge particles 

following sputter coating and create artefacts which subsequently reduce the image quality and 

attainable magnification. 

The filament gun conditions were maintained throughout the procedure by controlling the 

spot size and operating current and maintaining the accelerating voltage at 20kV. Images were 

captured using Semaphore computer software (Digital slow scan image recording system, 

Version 4.01, LEAD Technologies, Jeol, Sundbyberg, Sweden). 

 

Cryo-SEM Procedure 

A cryo-SEM technique (Jeol JSM 7000F; Jeol Ltd, Akishima Tokyo, Japan) was also 

employed to produce a cross-sectional fracture surface through the bulk of the RBC to further 

examine the particle size, morphology and filler distribution. The cryo-SEM technique was 

employed to ensure fast and homogeneous freezing of the specimen structure and used a plunge 

freezing technique whereby specimens were manually plunged into liquid nitrogen. Specimens 

were then transferred into the cyro-preparation unit, maintained at -170°C under vacuum. An 

accessory tool enabled brittle fracture of the frozen specimen to expose the internal structure, the 

specimen was then sputter coated with a uniform 2±0.2μm layer of gold to reduce the occurrence 

of electron charging. The prepared specimen was transferred to the cryo-stage in the SEM 

chamber, also maintained at -170°C. The fracture surface was subsequently examined in the BEI 

mode with an operating voltage of 5kV. 
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3.2.2 The impact of cyclic loading on nanofill RBCs 

 The seven commercially available RBCs; FSB, FST, GR, GF, FZ, Z100 and HM (Section 

3.1), underwent a series of pre-loading regimes to simulate masticatory loading forces of 10-20N 

typically generated whilst chewing foodstuffs [Anderson, 1956] and also loads of up to 100N 

[Helkimo, 1978] (Section 2.2.3). The specific aim of pre-loading was to determine the influence 

of nano-sized filler particles and ‘nanoclusters’ in RBCs on the mechanical properties following 

cyclic pre-loading and subsequent ‘dry’ or ‘wet’ storage. 

 

3.2.2.1 Specimen preparation 

Eight groups of each RBC were produced consisting of twenty nominally identical disc-

shaped specimens (12mm diameter, 1mm thickness) using a black nylon ring-mould. A 

preliminary study identified that 0.235±0.003g of RBC paste measured using a Mettler AE 163 

analytical balance (Mettler-Toledo Ltd., Leicester, UK) accurate to 1x10-4g was sufficient to 

slightly overfill the ring-mould. The measured quantity of RBC paste was packed into the nylon 

mould with the upper and lower surfaces covered with acetate strips (approximately 0.1mm 

thick) to limit surface oxygen inhibition on the outer layers of the specimen. A 1kg weight was 

applied to the specimen surface for 20s to ensure homogeneous distribution of the RBC paste 

within the disc-shaped mould. The filled mould was placed within a black nylon curing light 

guide (24mm diameter, 6mm height and 30mm diameter, 18mm height, respectively) to ensure 

concentric placement of the curing-tip for each successive specimen irradiation [Harrington & 

Wilson, 1993]. This was placed on a stainless steel platen and irradiated from one side for 20s at 

an ambient temperature of 23±2°C, in accordance with the manufacturer’s instructions. A quartz-

tungsten halogen (QTH) light-curing unit (LCU; Optilux 501; Kerr, Orange, USA) with a curing-

tip exit window diameter of 12mm was used to irradiate all disc-shaped specimens (Figure 3.3).  
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Figure 3.3. Diagram representing the placement of the disc-shaped RBC specimen 
(12mm diameter and 1mm thickness), nylon ring-mould, curing guide, curing-tip of the 
QTH LCU and stainless steel platen during light-activated polymerization. 
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Since a large number of specimens were fabricated the light intensity of the LCU was 

measured at regular intervals to ensure consistent irradiation, the maximum output at the outset of 

this research measured at full aperture (Model 100, Demetron Research Corp., Danbury, CT, US) 

was 690±20mWcm-2. When the intensity decreased to below 650±20mWcm-2 the halogen bulb 

was replaced and the irradiance remeasured to be 690±20mWcm-2. Following irradiation of each 

specimen the cellulose acetate strip was discarded and flash cut away using a sharp blade. Each 

disc-shaped specimen was examined for obvious surface or bulk defects using a light-box, 

discarded if necessary and sample numbers replenished as required. One group of each material 

was stored ‘dry’ in a lightproof container or ‘wet’ in a lightproof water-bath at 37±1°C for 24h. 

 

3.2.2.2 Pre-loading regimes 

The remaining six groups of each RBC material were subjected to pre-loading of 20, 50 

or 100N for 2000 cycles using a universal tensile machine (UTM) (Model 5544, Instron Ltd., 
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Buckinghamshire, UK). Each specimen was placed within a bespoke stainless steel alignment jig 

(12.2mm diameter and 5.0mm depth cavity) to fit the UTM and allow for stable positioning of 

each disc-shaped specimen. Specimens were centrally loaded with a stainless steel ball-indenter 

(3mm diameter) either ‘dry’ or ‘wet’ in distilled water at 37±1°C. Cyclic testing was performed 

using a sinusoidal waveform at a crosshead speed of 8mm min-1 (1.67Hz). Following pre-loading, 

specimens were stored either in a lightproof container or a lightproof waterbath maintained at 

37±1°C for 24h dependent on test condition, prior to bi-axial flexure strength testing.  

 

3.2.2.3 Bi-axial flexure strength testing 

The bi-axial flexure strength (BFS) was determined by centrally loading each specimen 

using a 3mm diameter ball-indenter at a crosshead speed of 1mm min-1, with the cured side in 

tension on a UTM (Model 5544) with a 2kN load cell. The specimens were positioned on a 

10mm knife-edge support with a thin sheet of rubber placed between the specimen and the 

support to ensure uniform loading and to accommodate variations in the peripheral thickness or 

distortions of the specimen surface. The load (N) and extension (mm) at failure of each specimen 

was recorded and the specimen thickness at the point of fracture was measured (mm) using a 

screw-gauge micrometer (Moore & Wright, Sheffield, UK) read to an accuracy of 10µm (Figure 

3.4). 
Applied force (N)  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Schematic representing bi-axial flexure testing of a disc-shaped RBC 
specimen (12mm diameter and 1mm thickness) on a knife-edge support with the cured side 
placed in tension. A UTM with a 3mm ball indenter was used at a crosshead speed of 1mm 
min-1. 
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The BFS of the RBC specimens was then calculated according to Equation 3.6 

[Timoshenko et al., 1959]  
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where σmax was the maximum tensile stress (MPa), P was the measured load at fracture (N), a 

was the radius of the knife-edge support (mm), h was the specimen thickness at the point of 

fracture (mm) and υ the Poisson’s ratio for the composite investigated. The Poisson’s ratio of a 

material was defined by Kingery (1976) as the lateral contraction per unit breadth divided by the 

longitudinal extension per unit length. A value of 0.225 was substituted for the RBC systems 

used in the current investigation [Ban & Anusavice, 1990].  

 

3.2.2.4 Flexural modulus 

 Two groups of each RBC consisting of five nominally identical beam-shaped specimens 

(2mm width, 25mm length and 2mm thickness) were produced. A predetermined quantity of 

monomer paste, 0.260±0.005g, was employed to slightly overfill the rectangular beam-shaped 

black Nylotron split mould. A split mould was employed to enable specimen removal without the 

introduction of excessive bending stresses which may influence the resultant flexure strength. 

Cellulose acetate strips were placed over the upper and lower surfaces to reduce oxygen 

inhibition on the outer layers of the specimen. A 1kg weight was applied to the specimen surface 

for 20s to ensure homogeneous distribution of the RBC paste within the beam-shaped mould. To 

provide a ‘one-hit’ cure and to prevent inhomogeneous cure associated with overlapping 

irradiation techniques [Palin et al., 2005b] the mould and monomer paste were irradiated in a 

light-curing oven (Visio-Beta Vario, 3M ESPE), for 14min. The irradiance of the oven-LCU was 

not quoted by the manufacturer, however a previous investigation with the same oven calculated 

the irradiance using the output from a light-dependent resistor (LDR) to determine an irradiance 

of 67.6±3.1mW/cm2 [Palin et al., 2005b]. For the current investigation preliminary data 

suggested a curing time of 14mins for the oven-LCU to provide an equivalent radiant exposure 
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and curing extent as the handheld-LCU (Appendix 2). The specimen was carefully removed from 

the split-mould following irradiation and excess flash was cut away using a sharp blade. 

Specimens were examined for surface or bulk defects using a light-box and discarded and 

replaced as required. The specimens were subsequently stored either ‘dry’ in a lightproof 

container or ‘wet’ in a lightproof waterbath maintained at 37±1°C for 24h prior to three-point 

flexure testing. 

The flexural strength was determined in accordance with the International Standard for 

Dental Polymer-Based Filling, Restorative and Luting Materials (ISO 4049 3rd Edition, 2000), 

although as previously described in Section 2.2.2.1 the overlapping curing method was replaced 

with a ‘one-hit’ cure in an oven-LCU. The beam-shaped specimens were placed across a support 

span of 20mm with the surface directly facing the curing bulb within the oven-LCU in tension. 

Specimens were centrally loaded using a roller indenter with a 3mm width, on a UTM at a 

crosshead speed of 1mm min-1. The load (N) and deflection (mm) of the beam at failure was 

recorded, the width and thickness of the specimen at the point of fracture (mm) was measured 

using the screw-gauge micrometer. The flexure strength of the beam-shaped specimens, σ (MPa), 

was determined in accordance with Equation 3.7 

 

22bh
3Flσ =           Equation 3.7 

 

where F was the applied load at fracture (N), l is the span length (20mm), b is the width of the 

test specimen (mm) and h is the thickness of the test specimen (mm). The flexural modulus E 

(GPa) of the six RBCs studied in the current investigation was then calculated according to 

Equation 3.8, 

 

d4bh
FlE 3

3

=           Equation 3.8 

 

where d was the deflection of the specimen corresponding to load at F where failure occurred 

(mm). 
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3.3 Degradation of Nanofilled RBCs 

 

3.3.1 Water storage 

The aim was to determine the influence of short-, medium- and long-term immersion on 

the water uptake and mechanical properties of ‘nanofill’ compared with conventional RBC 

materials. Disc-shaped RBC specimens (12 diameter, 1mm thickness) prepared as described in 

Section 3.2.2.1 were stored in high purity double distilled de-ionised water (Fistreem Cyclon, 

Sanyo Gallenkamp, Leicester, UK) to provide a reproducible reference solution [Martin et al., 

2003] (Section 2.1.1.2).  

 Specimens stored in the waterbath were first placed within a polypropylene (PP) container 

(90mm diameter and 35mm depth), to allow maximum water exposure to surrounding solute the 

specimens were supported at the diametral axis using a small quantity of dental wax [Palin et al., 

2005c]. To further ensure maximum water exposure to the disc-shaped specimens the PP 

container was prepared by adding a total of approximately thirty holes (6mm diameter) prior to 

submerging both container and specimens in the waterbath (Figure 3.5). 

 
 
 

(a) (b) 

 

 

 

 

 

 

 

Figure 3.5. (a) Image of disc-shaped specimens supported at the diametral axis placed 
within the PP container (without lid) and (b) image of the container (with lid attached) 
submerged in the waterbath. 
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One group (n=20) of disc-shaped specimens of each material; FSB, FST, GR, GF, FZ, 

Z100 and HM, were produced according to the method previously described (Section 3.2.2.1) and 

stored ‘wet’ in a lightproof waterbath (Type JB2, Grant Instruments, Cambridge, UK) at 37±1°C 

for 24h to represent short-term storage and also as the control group. To avoid the potential 

accumulation of leached RBC components in the waterbath, 1L of distilled water was removed 

and replaced with freshly distilled water on a weekly basis. The specimens were subsequently 

loaded to failure under bi-axial flexure (Section 3.2.2.3). 

 Four groups (n=20) of disc-shaped FSB, FST and FZ specimens were produced (Section 

3.2.2.1) and underwent medium-term storage for 1, 4, 13 or 26 weeks in a waterbath maintained 

at 37±1°C prior to BFS testing (Section 3.2.2.3). In addition, two groups of GR and GF 

specimens were also produced and stored in the waterbath for 13 and 26 weeks prior to testing. 

 A further two groups of FSB, FST and FZ specimens (n=20) were produced (Section 

3.2.2.1) and underwent long-term storage for 52 and 78 weeks, whilst an additional group of disc-

shaped GR and GF specimens underwent storage for 52 weeks, prior to bi-axial flexure testing 

(Section 3.2.2.3). The apparent discrepancy between FSB, FST and FZ and GR and GF specimen 

storage (Table 3.2) occurred as the reinforcement of the so-called ‘nanoclusters’ and ‘nanomers’ 

(FSB and FST) compared with micro-sized particles (FZ) within an identical resin matrix was 

studied. Furthermore, the reinforcement of differing inorganic filler types within the varied 

organic matrices was also studied, although material and time limitations constrained this. 

 
 24h 1wk 4wks 13wks 26wks 52wks 78wks 

FSB        
FST        
FZ        
GR        
GF        

 
Table 3.2. Table highlighting the short-, medium- and long-term storage of the nanofill 
(FSB and FST), microfill (FZ) and nano-hybrid (GR and GF) specimens.  
 

 For comparative purposes additional specimen groups (n=20) of FSB, FST, GR, GF, FZ, 

Z100 and HM were produced and stored ‘dry’ in a lightproof container maintained at 37±1°C for 

24h.  
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3.3.1.1 Near-infrared spectroscopy 

Fourier transform infra-red (FTIR) spectroscopy in the near-infra-red (NIR) range (4000-

12000cm-1) was used to determine the extent of water uptake following short-, medium- and 

long-term storage in the waterbath, the water content of specimens stored ‘dry’ for 24h was also 

determined. An additional five disc-shaped specimens of FSB, FST, FZ, GR and GF were 

produced (Section 3.2.2.1) and dehydrated in accordance with the process stipulated by ISO4049. 

Specimens undergoing dehydration were weighed prior to transfer to a light-proof desiccator 

containing dehydrated silica gel (Fischer Scientific, Leicester, UK) maintained at 37±1°C for 

22h, followed by 2h at 23±1°C. The specimens were then reweighed and the conditioning cycle 

repeated until the mass loss of each specimen was not more than 1x10-3g. Following the 

conditioning cycle the NIR technique was used to determine presence or absence of water. 

 Five specimens of each RBC were examined following the requisite storage or 

conditioning regimes using a Matrix-F spectrophotometer (Bruker, WI, USA) to determine water 

content from the absorbance band centred around 5200cm-1, associated with symmetric stretch 

and bend of the O-H bond of water [Keyworth, 1961; Venz & Dickens, 1991; Diaz-Arnold & 

Williams, 1992]. Specimens stored ‘wet’ were dried using absorbent paper and allowed to further 

dry in air for 60s at an ambient temperature of 23±1°C.  

Prior to testing a background air spectra was produced and subtracted from proceeding 

spectra. The specimen was placed on a stainless steel platen at an ambient temperature of 23±1°C 

and an absorbance spectrum was collected by averaging 62 scans over the spectral region of 

11000 to 4000cm-1 with a resolution of 4cm-1 and a base-line correction was conducted. A 

spectral manipulation program (Opus 5.5, Bruker, WI, US) was used to process the spectra and 

calculate the area under the water absorbance band. An integration method available in the 

spectral manipulation program calculated the square root of the sum of squares of the spectral 

intensities over the frequency range of 4875-5350cm-1. The absorbance units of water content 

were then calculated from a logarithm of each spectral point.  

 

3.3.1.3 Fracture morphology 

A cross-sectional fracture surface through the bulk of specimens following BFS testing 

was produced using the cryo-SEM technique (Section 3.2.1.3) to examine the particle size, 

morphology and filler distribution in specimens stored ‘dry’ for 24h and ‘wet’ for 26 weeks. 
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3.3.2 Accelerated degradation of RBCs 

Six groups of nominally identical disc-shaped specimens (n=5) of FSB, FST, GR, GF, FZ 

and Z100 were prepared in accordance with the method outlined in Section 3.2.2.1 and stored in 

either sodium hydroxide (NaOH) or ethanol (EtOH) to examine the degradation of the silane 

coupling agent and the resin matrix (Section 2.1.1.2). Three groups of each material were stored 

in 0.1M NaOH solution (laboratory reagent grade, Fisher Scientific Ltd., Loughborough, UK), 

whilst the remaining three groups were stored in 75% absolute EtOH (Fisher Scientific Ltd., 

Loughborough, UK). The specimens and solvent solution were placed in glass beakers (150ml, 

Fisherbrand, Fisher Scientific Ltd., Loughborough, UK), in a lightproof waterbath maintained at 

37±1°C for 24h, 1 and 2 weeks. Following storage specimens were loaded to failure using the bi-

axial flexure test (Section 3.2.2.3) and the BFS was calculated.  

 

3.3.2.1 Surface Hardness Testing 

The surface hardness of the RBCs following storage in EtOH and also following storage 

‘dry’ and ‘wet’ for 24h (Section 3.3.1) was assessed using a Duramin-1 Vickers hardness tester 

(Struers, Glasgow, UK). The hardness of a material is not an absolute value as no universal 

hardness scale has been established. Instead hardness relates to the force applied and is a function 

of the test method employed, such as Knoop, Wallace or Vickers [Darvell, 2006]. The Vickers 

indentation test employed in the current study provided a hardness value as a Vickers Hardness 

Number (VHN).  

Following bi-axial flexure testing five specimen fragments were selected at random and 

the upper surface was indented within 2mm of where the centre of the complete disc-shaped 

specimen had been to ensure a uniform degree of polymerization [Palin et al., 2008]. Specimens 

were indented at a load of 9.8N using a Vickers hardness tester (Struers) with a diamond pyramid 

head for a constant dwell time of 15s to produce the characteristic diamond-shaped indent (Figure 

3.6).  
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Figure 3.6. A schematic diagram of Vickers indentation technique; the diamond 
crosshead indenter with a 68° angle of indentation was applied at a pre-determined load of 
9.8N (P). The average upper-lower (UL) and left-right (LR) diagonal distance of the 
diamond-shaped indent was measured and the VHN calculated. 

 

Each specimen was indented five times and a mean VHN calculated. The dimensions of 

the indent were measured using a calibrated graticle, which had been ‘zeroed’ prior to testing, 

situated within the light microscope attachment of the hardness indenter to obtain a mean 

diagonal distance (μm) of the left-right and upper-lower points of the indent. The VHN was then 

obtained by calculating the surface area of the indent in accordance with Equation 3.9,  

Diamond shaped indent 

Fragment of RBC specimen 

Diamond pyramid-indenter of 
Vickers hardness tester 

P(N)

68° 

 

UL

LR 
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P was the predetermined load applied in Newtons (N), D the average diagonal distance (μm) and 

68° was the angle of indentation of the diamond pyramid head indenter of the Vickers hardness 

tester. A large diamond-shaped indent was indicative of reduced surface hardness, resulting in an 

increase in the measured diagonal distance [McColm, 1990]. 

 

3.3.2.2 Mid-range FTIR spectroscopy 

FTIR spectroscopy in the mid-infra-red range (700-4000cm-1) was used to qualifiedly 

determine the silica and silane content and degradation of the silane coupling agent (from 

vibration of the Si-O bond) present in the RBCs prior to and following solvent storage for 24h, 1 

and 2 weeks. 

An FTIR spectrometer (Nicolet Magna-IR 860; Thermo-Nicolet Instrument Corp., 

Madison, WI, US) in Transmission ESP (enhanced synchronisation protocol) with a Golden Gate 

MkII attenuated total reflectance (ATR) accessory (Thermo-Nicolet) was employed. Spectra were 

produced at 4000-750cm-1 at an ambient temperature of 23±1°C. An air spectrum was produced 

prior to specimen analysis and subtracted from proceeding spectra to eliminate contamination by 

background environmental conditions. 

Following bi-axial flexure testing five specimen fragments were selected at random and 

placed on the ATR accessory base-plate, which consisted of a diamond top-plate and zinc 

selenide (ZnSe) lenses, the accessory head was tightened firmly against the specimen fragment. 

The specimen was scanned using an IR beam produced by an Everglo™ mid-IR source (Thermo 

Fisher Scientific, Hemel Hempstead, UK) with an aperture size of 100μm x 100μm and which 

operated at approximately 1200°C. Spectra were produced from 100 scans at a velocity of 

5.7µm/s, with a resolution of 4cm-1 and data spacing of 1.9cm-1. The FTIR spectrophotometer 

possessed a proprietary XT-KBr™ beamsplitter (Thermo-Nicolet) and a MCT-A (Thermo-

Nicolet) detector to record spectra. Omnic software (version 7.3; Thermo Fisher Scientific Inc., 

Loughborough, UK) was subsequently used to examine FTIR spectra. 
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3.3.2.3 Fracture morphology 

 SEM was used to examine either the cured surface or the fractured surface of randomly 

selected fragments of specimens following storage in NaOH and EtOH and subsequent bi-axial 

flexure testing. Where the cured surface was examined the specimen fragment was placed on an 

adhesive carbon conducting tag (Agar Scientific Ltd.) on an aluminium SEM stub (Agar 

Scientific Ltd.). Specimens were sputter coated to deposit a conductive 2±0.2μm layer of gold 

(Emitech Ltd.) with a runtime of 2mins and a 25mA voltage, as previously described (Section 

3.2.1.3), prior to placement in the SEM chamber. 

 The specimen fragments (n=5) used to examine the cross-sectional fracture surface 

through the bulk of RBC specimen were placed on their diametral edge on the adhesive tag and 

SEM stub. To ensure the specimen fragment remained in this position a small amount of a putty-

like pressure sensitive adhesive was moulded around the base of the fragment. This was coated 

with adhesion electrodag (Ag in methyl-isobutyl ketone; Agar Scientific Ltd.) to ensure a 

uniform conductive surface. The specimens were subsequently sputter coated and examined 

(Section 3.2.1.3). The depth of penetration of solvent into the bulk of the RBC was quantified 

using ImageJ software (version 1.38x; Wayne Rasband, NIH, US). Three representative SEM 

images of each RBC fragment were produced which highlighted the depth of solvent penetration 

as a distinct structural change and/or delamination layer following 2 weeks storage, which was 

measured at three characteristic points and a mean value calculated. 

 

3.4 Statistical Analysis 

 

3.4.1 Analysis of Variance 

Multiple comparisons were conducted as appropriate on the combined BFS data using a 

general linear model (GLM) analysis of variance (ANOVA) following pre-loading, where the 

load (4 levels), the storage condition (2 levels) and also the material type (7 levels) were the 

independent variables. Post-hoc Sidak test Comparions (P=0.05) were also conducted. Two-way 

analysis of variance was performed on complete data sets for each RBC following the water 

storage and solvent degradation regimes with the material groups and storage conditions as the 

independent variables. The BFS data was checked for normality using a Kolmogorov-Smirnov 

test at a critical level set at P=0.05 and compared with Holm-Sidak comparison tests performed at 
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a significance level of P=0.05 (Sigmastat 9v3.5; Sigma Plot for Windows, Systat Software Inc., 

US). Box and whisker plots were produced to highlight the mean, median and inter-quartile 

ranges of the BFS and NIR data (Minitab Release 14.02; Minitab Ltd., Coventry, UK). The 

fracture strength and pseudo-modulus of stress data produced by micromanipulation was tested 

for normality using the Anderson-Darling and Kruskal-Wallis & Mann Whitney U tests to 

determine significance (P=0.05) (Minitab). Supplementary one-way ANOVAs with post-hoc 

Tukey multiple comparison tests were performed, also at a significance level of P=0.05, to 

highlight differences between the group mean BFS values following pre-loading and storage 

(SPSS® for Windows®, Version 12.0.1, SPSS Inc, Chicago, Illinois, US). 

 

3.4.2 Pearson correlation 

 A Pearson correlation was applied to the pseudo-modulus of stress and particle size data 

at a significance level of P=0.05, to provide a measure of the linear relation between these two 

variables. The Pearson correlation provides a range of values from -1 to +1, whereby a value of 0 

is indicative of no linear relationship between the variables, whilst a correlation of -1 indicates a 

perfect negative linear relationship and +1 indicates a perfect positive linear relationship. The 

Pearson correlation was calculated using Excel (Microsoft® Office Professional Edition Excel 

2003 SP1, Microsoft Corporation, US). The basic formula of the Pearson correlation was;  
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where x and y were the mean pseudo modulus of stress and the particle size. 

 

3.4.3 Weibull distribution 

A Weibull statistical analysis was employed to assess the reliability of the bi-axial flexure 

data and to provide a Weibull modulus for each group of BFS data (Section 2.2.2.1). The Weibull 

modulus was derived by Weibull (1951) to define the strength distribution and brittleness of a 

material and the probability of failure at an applied load. The Weibull distribution operates on the 
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weakest-link principle, whereby failure occurs at the weakest point within the structure before 

propagating to catastrophic failure. The occurrence of failure is determined by the distribution of 

stress, the location, size, shape and orientation of flaws inherent to the material or generated as a 

result of manufacturing and processing techniques [Trustrum & Jayatilaka, 1979; Robin et al., 

2002]. 

To determine the Weibull modulus of a given specimen group the BFS data for each 

specimen was first ranked in ascending order. A Weibull analysis was then performed on the 

resultant data to establish the reliability of the disc-shaped specimens by determining the 

probability of failure as a function of the applied stress. The basic form of the Weibull 

distribution was then calculated in accordance with Equation 3.11 
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where Pf was the probability of failure, V was the specimen volume, σ was the applied stress at 

failure (MPa) and σu, σo and m were constants. m was the Weibull modulus which was defined 

by Trustrum & Jayatilaka (1979) as characterising the ‘brittleness’ of a material. m describes the 

flaw size and the distribution of the defect population within a material and therefore the resultant 

scatter and associated reliability of the flexural strength data. A high value of m was perceived to 

be desirable, being indicative of a material with a predictable rate of failure and reliable flexure 

strength. σo is normally referred to as the normalising or scaling constant, σu was the stress at 

which the failure probability approaches zero and is known as the threshold stress (MPa). Pf was 

the probability of failure, which varies from zero to one and is calculated using Equation 3.12 
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where N* was the total number of specimens (n=20) and n is the ranked specimen number when 

the flexural strength is ranked in ascending order. The volume term, V, was disregarded as 

previous studies have reported that σu equal to zero can be assumed a safe stress level for brittle 
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materials since there is always a finite probability that a critical flaw may be present in the 

material prior to stressing [Davies, 1973; Stanley et al., 1973]. Therefore, Equation 3.11 may be 

reduced to the form of Equation 3.13 

 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=−

m

0
f σ

σexp11P1        Equation 3.13 

 

Equation 3.12 may be further simplified using logarithms to the equation of a straight line 

y=mx+c to allow the flexure strength data and resultant Weibull analysis to be presented in a 

graphical form (Equation 3.14) 
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Ps was the probability of survival (Ps is equal to 1-Pf) the x-axis and y-axis intercepted the axis at 

-mln(σ0), the gradient of the graph was m signifying the reliability of the specimen group to have 

undergone testing. The Weibull analysis was performed on the flexural strength data by plotting 

lnln(1/Ps) against lnσ. The gradient of the strength distribution data (m) was determined by 

superimposing a regression line along the data points to calculate the Weibull modulus for each 

specimen group. A high m indicates an increased homogeneity in flaw population and a more 

predictable rate of failure observed as a steep slope with a reduced scatter of data. Conversely, a 

shallow slope with a wide distribution of data and a low m is indicative of the presence of 

inhomogeneities within the flaw population resulting in less predictable failure and reduced 

reliability. 

Trustram et al. (1979) established that the number of specimens used to determine the 

Weibull constants (m and σ0) for brittle materials influences the accuracy of the results obtained. 

A minimum sample size of twenty specimens was recommended to reduce the occurrence of 

standard error and produce accurate results [Trustram et al., 1979]. Consequently, a specimen 

group size of 20 was employed throughout the current investigation where a Weibull modulus 

was calculated.  
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The standard deviation of the Weibull modulus (m) was calculated in relation to the 

sample size (N) in accordance with Equation 3.15 

 

Standard deviation (m) =
N

m        Equation 3.15 

 

A survival probability distribution of flexure strength was produced by plotting the 

probability of survival (ranging from zero to one) against the BFS data ranked in ascending order. 

The survival probability distribution was then assessed to further examine the occurrence of 

mono-, bi- and multi-modal distributions of failure and hence determine the nature of the defect 

population. 

 

3.4.4  Regression analysis 

The confidence intervals for the specimen groups were calculated to determine 

statistically significant differences between the Weibull modulus of the flexure strength data of 

each group of specimens. The confidence intervals were calculated using regression analysis of 

the flexure strength data at a 95% significance level using statistical analysis software (Excel 

2003, Microsoft Corporation, US). The 95% confidence intervals were considered to be 

significant when the range of values between groups did not overlap [Thoman et al., 1969]. The 

R2-values were also calculated from a regression analysis of the flexure strength data where the 

R2-values represented the scatter of flexure strength data along the regression line, or line of ‘best 

fit’, where the R2-value corresponded with the data correlation coefficient determined following a 

least square analysis on the plots of lnln(1/Ps) against the lnσ. The R2-value was indicative of the 

grouping of the BFS data of the disc-shaped specimens, where a value of 1 represents a perfect 

alignment of data along the line of best fit. A high R2-value is considered to be desirable 

indicating a high reliability of the BFS data, whilst a lower value indicates a bi- or multi-modal 

distribution of data.  

 

3.4.5  Non-parametric statistical analysis 

Non-parametric statistical analysis was performed were data did not possess a normal 

distribution, unlike the preceding methods described which were performed where the data 
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exhibited a normal distribution as determined by either Kolmogorov-Smirnov or Anderson-

Darling tests set at a significance of P=0.05 (Section 3.4.1). Subsequently, where data did not fit 

the normal distribution alternative non-parametric analytical techniques were employed. Z-tests 

were employed at a significance level of P=0.05 to determine the significance of the number of 

particle fractures identified using micromanipulation. The z-test specifically determined if the 

difference between a sample mean and the population mean was large enough to be significant, 

calculated in accordance with Equation 3.16,  

 

( )nσ
μxz −

=           Equation 3.16 

 

where x was the mean of the sample, μ was the mean value, σ was the standard deviation and n 

was the sample size, calculated using Sigmastat (v3.5; Systat Software Inc., Dundas Software 

Ltd., Germany). 
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CHAPTER 4  RESULTS & DISCUSSION: MODIFIED FAILURE MECHANISMS 

 

4.1 RESULTS: The Mechanical Properties of ‘Nanofilled’ RBCs: Micromanipulation 

 

A micromanipulation technique was employed to assess the mechanical properties of 

discrete spheroidal, irregular and agglomerated ‘nanocluster’ particles representative of fillers 

present in modern RBCs. 

 

4.1.1 Mechanisms of particle fracture 

The filler types possessed varying fracture mechanisms and a differing number of particle 

fractures (Figure 4.1). The stress-deformation curves of the spheroidal (FZ) and irregular (GR) 

particles exhibited either no distinct fracture (Figure 4.2a) as the load applied was insufficient to 

initiate particle fracture or a single distinct fracture (Figure 4.2b). In contrast, the ‘nanocluster’ 

(FSB) particles underwent up to four multiple distinct fracture events (Figure 4.2c), although 

some ‘nanoclusters’ fractured only once and some did not fail (Figure 4.1). Z-tests identified no 

significant difference (P>0.05) between the spheroidal (FZ) and irregular (GR) particles in 

respect to fracture events, whilst the ‘nanoclusters’ were unique in that on 24 out of 30 occasions 

they fractured, in some cases multiple times. Therefore, the resultant frequency of first fracture of 

FZ and GR was significantly lower (P<0.001 and P<0.002, respectively) compared with the 

‘nanoclusters’ (P=0.8). 
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Figure 4.1. Histogram of the distinct fracture events exhibited by the three filler-types. 



(a) 

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Deformation, d (%)

Fr
ac

tu
re

 S
tr

es
s 

(M
Pa

)

A 

B 

 
 

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Deformation, d (%)

Fr
ac

tu
re

 S
tre

ss
 (M

Pa
)

 

(b) 

A 

B 

C

B 

 
Figure 4.2. Representative micromanipulation plots highlighting the occurrence of (a) no 
distinct fracture and (b) single distinct fracture of FZ, GR and FSB particles. Curve region 
‘A’ corresponds with probe movement and particle alignment prior to initiation of 
compression, ‘B’ particle loading and ‘C’ particle fracture. 
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Figure 4.2(continued). Representative micromanipulation plot highlighting the occurrence 
of (c) multiple distinct fractures of the agglomerated ‘nanocluster’ particle. Curve region 
‘A’ corresponds with probe movement and particle alignment prior to initiation of 
compression and ‘B’ particle loading. ‘C’ was attributed to particle fracture, whilst ‘C2-4’ 
related to multiple distinct fracture events. 
 
 

4.1.2 Force at fracture 

Loading to failure of 30 spheroidal and irregular particles using the micromanipulation 

technique resulted in failure loads of 1389±1342 and 1356±1093µN, respectively. In contrast 

loading of the ‘nanoclusters’ highlighted up to four distinct fractures with an initial mean force at 

fracture of 1702±909µN, which increased following additional fractures to mean loads of 

1958±1132 and 2674±1485µN, whilst the final mean fracture was 1661±158µN (Table 4.1). 

Kruskal-Wallis & Mann Whitney U tests highlighted that for those particles which fractured there 

was no significant difference in fracture strength (P>0.05) due to the high standard deviation. 

Likewise, z-tests failed to highlight a significant difference between the occurrences of multiple 

fractures (P=0.76). 
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Force at Fracture (f) (µN)  

1st fracture 2nd fracture 3rd fracture 4th fracture 

FZ 1389±1342(0.28±0.14) - - - 
GR 1356±1093(0.38±0.17) - - - 
FSB 1702±909(0.46±0.67) 1968±1132(1.31±1.15) 2674±1486(0.61±0.61) 1661±158(0.43±0.06) 

 
 

Table 4.1. The mean force at fracture (µN) and associated deformation (%) of 
spheroidal, irregular and ‘nanocluster’ filler particles discrete from the resin matrix of FZ, 
GR and FSB following compression to failure using the micromanipulation technique. 
 
 
4.1.3 Pseudo-modulus of stress 

The mean pseudo-modulus of stress of the spheroidal or irregular particles prior to first 

fracture was 587±439 and 570±243MPa respectively, whilst the ‘nanocluster’ possessed a 

markedly higher pseudo-modulus of stress prior to first fracture of 797±555MPa. Following 

subsequent single fracture of the spheroidal or irregular particles the mean pseudo-modulus of 

stress at fracture increased to 819±859 and 617±298MPa, respectively. In comparison, following 

multiple fracture of ‘nanoclusters’ the subsequent mean pseudo-modulus of stress decreased to 

704±590, 465±403, 247±200 and 304±84MPa (Table 4.2). Statistical analysis highlighted no 

significant difference in the pseudo-modulus data (P>0.05) due to the high scatter and relatively 

small sample size. 

 
Pseudo-Modulus of Stress (σ) (MPa)  

No fracture 1st fracture 2nd fracture 3rd fracture 4th fracture 

FZ 587±439 819±859 - - - 
GR 570±243 617±298 - - - 
FSB 797±555 704±590 465±403 247±200 304±84 

 

 

Table 4.2. The pseudo-modulus of stress (MPa) of spheroidal, irregular and 
‘nanocluster’ particles separated from the resin matrix and compressed to failure using the 
micromanipulation technique. 
 
 

A Pearson correlation identified a negative linear relationship between the pseudo-

modulus of stress and particle size for FZ (r2= -0.70 and -0.78) and GR (r2= -0.59 and -0.79) prior 

to and following particle fracture, respectively (P<0.001). In contrast, FSB exhibited no 

correlation between pseudo-modulus of stress and particle size prior to first and subsequent 

particle fractures (r2 = -0.38, -0.33, -0.28, -0.08; P>0.05) (Figure 4.3). 
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Figure 4.3. Pseudo-modulus of stress scatter plots following micromanipulation of (a) FZ, 
(b) GR and (c) FSB. Pearson coefficient identified that the ‘nanocluster’ particles exhibited 
a higher level of variability between particle size and stress, whilst the spheroidal and 
irregular particles demonstrated a higher level of consistency. 
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Figure 4.4. (a) Cryo-SEM images of cross-sectional fracture surfaces, highlighting the 
size and morphology of filler particles embedded in the resin matrix of the complete 
composite system. (b) Size and morphology of filler particles separated from the resin 
matrix. The ‘nanoclusters’ exhibited a wide size distribution, distinct topographical 
variation and apparent random distribution of nanoparticles within the agglomerated 
particle (circled). The spheroidal fillers demonstrated a comparably uniform distribution, 
whilst the irregular borosiliciate GR fillers also highlighted a wide range of particle sizes. 
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4.2 RESULTS: The Mechanical Properties of ‘Nanofilled’ RBCs: Pre-loading 

 

Specimens were pre-loaded to simulate masticatory loading and induce sub-critical 

damage to determine the reinforcement provided by the filler particle on the subsequent 

mechanical properties of the RBCs. 

GLM-ANOVA of the combined BFS data of the seven RBCs following pre-loading and 

storage in either ‘dry’ or ‘wet’ conditions highlighted an overall general decrease in measured 

BFS as a consequence of increasing levels of pre-loading (Figure 4.5). However, individual 

RBCs, in particular the ‘nanocluster’ reinforced system (FSB and FST), differed from the general 

trend by exhibiting either an increased or comparable BFS and Weibull modulus following pre-

loading, particularly 20 and 50N, compared with unloaded specimens and the other RBCs tested 

in either ‘dry’ or ‘wet’ conditions (Figure 4.5). 
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Figure. 4.5. GLM-ANOVA Main Effects plots of the data means following ‘dry’ storage 
conditions, the plot highlights the downward trend in mean BFS data as a consequence of 
increasing pre-loading regimes. 
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Figure. 4.5(continued). GLM-ANOVA Main Effects plots of the data means following ‘wet’ 
storage conditions, the plot highlights the downward trend in the mean BFS data as a 
consequence of increasing pre-loading regimes and also the influence on the mean BFS of 
the RBCs following ‘wet’ storage compared with ‘dry’ (Figure 4.5a) conditions. 
 
 
4.2.1 BFS and associated reliability (m) 

One-way ANOVA highlighted that the BFS of ‘dry’ FSB pre-loaded to 20N and 50N was 

not significant compared with unloaded specimens (137±15MPa and 146±12MPa; P=0.403 and 

P=0.999, respectively), although a significant decrease occurred following 100N (127±25MPa; 

P=0.002). Following pre-loading to 20, 50 and 100N for 2000 cycles and subsequent ‘wet’ 

storage the BFS was either maintained or significantly increased compared with unloaded 

specimens (179±19, 183±19 and 145±34MPa; P=0.179, P=0.021 and P>0.05, respectively). 

Likewise, the 10% failure probability increased up to 100N. The Weibull modulus of FSB was 

increased or maintained following pre-loads of 20 and 50N and storage ‘dry’ (9.49±2.12 and 

11.82±2.64) or ‘wet’ (8.53±1.91 and 10.23±2.29) (Table 4.3a).  

The BFS of FST following pre-loading and ‘dry’ storage was not significantly decreased 

compared with unloaded specimens (165±19, 148±15 and 141±21MPa; P>0.05, P>0.05 and 

P=0.758, respectively). Likewise, following pre-loading and ‘wet’ storage the BFS (182±12, 

171±17 and 175±21MPa) was also not significantly different compared with the control 

(177±22MPa; P>0.05). However, the 10% failure probability of BFS progressively decreased as a 
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consequence of both ‘dry’ and ‘wet’ pre-loading regimes. The Weibull modulus exhibiting either 

a significantly increased or maintained reliability up to and including 100N pre-loads following 

‘dry’ (8.54±1.91, 10.71±2.39 and 6.04±1.35) and ‘wet’ (16.89±3.78, 10.91±2.45 and 8.03±1.79) 

storage compared with the control (Table 4.3b). 

The mean BFS and Weibull modulus of GR specimens following pre-loads of 20N ‘dry’ 

was 171±22MPa (P>0.05) and 7.25±1.62, whilst following pre-loading and ‘wet’ storage the BFS 

was 151±7MPa (P=0.06) and 10.64±2.38, neither of which were significantly different from their 

respective controls. Total failure of GR specimens to complete 50 and 100N pre-loads rendered 

further statistical analysis meaningless (Table 4.4a).  

GF specimens were not significantly influenced by pre-loads of 20 or 50N either ‘dry’ 

(119±17 and 122±22MPa; P>0.05) or ‘wet’ (90±14 and 73±24MPa; P>0.05 and P=0.998). The 

Weibull modulus of ‘dry’ specimens was significantly decreased (6.70±1.49 and 4.77±1.07), 

whilst following 50N pre-loads ‘wet’ the m was also significantly decreased (2.48±0.62) 

compared with the unloaded controls. Failure of approximately half of GF specimens to survive 

100N pre-loads prevented further meaningful analysis (Table 4.4b; Figure 4.6 page 100). 
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Mean values within rows and columns (including Tables 4.4, 4.5 and 4.6) exhibiting different letters (in superscript) and numbers (in 
subscript) respectively, were significantly different (P<0.05). 
 
Table 4.3. The range, mean and 10% failure probability (FP) of bi-axial flexure strengths (BFS), Weibull modulus (m), 
95% associated confidence intervals (CI), R2-value and percentage of specimens to survive pre-loading of the ‘nanocluster’ 
reinforced RBCs (a) FSB and (b) FST to 20, 50 or 100N for 2000 cycles and storage for either 24h ‘dry’ or in a waterbath 
maintained at 37 ± 1°C. 

Dry Wet  
Control 20N 50N 100N Control 20N 50N 100N 

(a) Nanocluster RBC (FSB) 

BFS (MPa) 125-205 101-161 112-168 87-172 102-198 138-203 139-206 68-202 
Mean BFS (MPa) 159(20)A,B,C

1 137(15)C,D
3 146(12)C,D

2 127(25)D
1 155(27)B,C

2 179(19)A,B
1,2 183(18)A

1 145(34)C,D
2,3 

10% FP (MPa) 128 114 132 88 115 141 157 96 
Weibull modulus (m) 8.07 (1.80) 9.49 (2.12) 11.82 (2.64) 5.29 (1.18) 5.98 (1.34) 8.53 (1.91) 10.23 (2.29) 4.02 (0.90) 
95% CI 6.99-9.15 8.55-10.45 9.99-13.66 4.79-5.80 5.66-6.30 7.62-9.09 9.46-11.39 3.61-4.42 
R2-value 0.93 0.96 0.91 0.96 0.99 0.97 0.97 0.96 
Specimens survived (%) 100 100 100 100 100 100 100 100 
(b) Nanocluster RBC (FST) 

BFS (MPa) 109-218 113-196 116-172 87-168 126-205 159-204 141-198 120-196 
Mean BFS (MPa) 160(27)A,B,C,D

1 165(19)A,B,C
2 148(15)B,C,D

2,3 141(21)C,D
1 177(22)A

1,2 182(12)A
1,2 171(17)A,B

1,2 175(21)A
1 

10% FP (MPa) 123 139 131 103 135 167 148 135 
Weibull modulus (m) 6.23 (1.39) 8.54 (1.91) 10.71 (2.39) 6.04 (1.35) 7.99 (1.78) 16.89 (3.78) 10.91 (2.45) 8.03 (1.79) 
95% CI 5.69-6.76 7.41-9.67 9.52-11.89 5.09-6.99 7.21-8.79 15.15-18.60 9.98-11.88 6.79-9.25 
R2-value 0.97 0.93 0.95 0.91 0.96 0.96 0.97 0.91 
Specimens survived (%) 100 100 100 100 100 100 100 100 
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Dry Wet  
Control 20N 50N 100N Control 20N 50N 100N 

(a) Nano-hybrid RBC (GR) 

BFS (MPa) 115-195 109-198 - - 107-1424 121-187 - - 
Mean BFS (MPa) 165(18)A

1 171(22)A
1,2 - - 125(11)B

2 151(7)A,B
3 - - 

10% FP (MPa) 145 130 - - 108 129 - - 
Weibull modulus (m) 9.03 (2.02) 7.25 (1.62) - - 12.11 (2.71) 10.64 (2.38) - - 
95% CI 7.83-10.22 6.06-8.43 - - 10.80-13.42 9.17-12.12 - - 
R2-value 0.93 0.90 - - 0.95 0.93 - - 
Specimens survived (%) 100 100 0 0 100 100 0 0 
(b) Nano-hybrid RBC (GF) 

BFS (MPa) 93-141 76-142 58-155 34-130 53-117 59-110 27-106 57-120 
Mean BFS (MPa) 125(13)A

2 119(18)A,B
3,4 122(22)A,B

3 79(34)B,C,D
2 87(17)B,C,D

4 90(14)B,C,D
4 73(24)B,C,D 91(17)B,C,D

4 
10% FP (MPa) 98 91 97 34 63 60 38 84 
Weibull modulus (m) 9.54 (2.13) 6.70 (1.49) 4.77 (1.07) 2.09 (0.66)* 5.11 (1.14) 6.29 (1.41) 2.78 (0.62) 4.63 (1.39)* 
95% CI 8.36-10.71 5.69-7.44 3.81-5.72 1.67-2.50 4.82-5.39 5.44-7.15 2.50-3.05 2.89-6.37 
R2-value 0.94 0.95 0.86 0.94 0.99 0.93 0.96 0.80 
Specimens survived (%) 100 100 100 50 100 100 100 55 

 
Mean values within rows and columns (including Tables 4.3, 4.5 and 4.6) exhibiting different letters (in superscript) and numbers (in 
subscript) respectively, were significantly different (P<0.05). 
*Weibull values determined with a decreased sample size (n<20) 
 
Table 4.4. The range, mean and 10% failure probability (FP) of bi-axial flexure strengths (BFS), Weibull modulus (m), 
95% associated confidence intervals (CI), R2-value and percentage of specimens to survive pre-loading of the nano-hybrid 
RBCs (a) GR and (b) GF to 20, 50 or 100N for 2000 cycles and storage for either 24h ‘dry’ or in a waterbath maintained at 
37±1°C. 



Following pre-loading of FZ specimens for 2000 cycles to 20 and 50N and storage ‘dry’ 

the BFS was not significantly different compared with unloaded specimens (171±16 and 

155±20MPa; P>0.05 and P=0.0536, respectively), whilst a significant decrease occurred 

following 100N (142±32MPa; P=0.001). Furthermore, pre-loading of FZ up to 100N followed by 

storage ‘wet’ did not significantly modify the BFS compared with unloaded specimens 

(198±22MPa, 170±24 and 171±31MPa; P>0.05, P=0.416 and P=0.494, respectively). In contrast, 

the 10% failure probability was progressively decreased following ‘dry’ and ‘wet’ pre-loads. The 

Weibull modulus was also significantly reduced following 50 and 100N pre-loads and subsequent 

‘dry’ (8.10±1.81 and 4.29±0.96) or ‘wet’ (7.22±1.61 and 5.66±1.27) storage compared with the 

control (Table 4.5a). 

The mean BFS of ‘dry’ pre-loaded Z100 following 20 (194±20MPa; P=0.996) and 50N 

(188±18MPa; P>0.05) was not significantly different, whilst following 50N pre-loads ‘wet’ the 

BFS decreased significantly (152±23MPa; P=0.021) compared with the respective controls. The 

Weibull modulus of ‘dry’ Z100 increased significantly to 9.96±2.23 and 10.78±2.41 following 

pre-loads of 20 and 50N compared with the control, whilst m of Z100 ‘wet’ significantly 

decreased to 6.60±1.48 and 6.56±1.47 following 20 and 50N compared with unloaded specimens. 

Failure of approximately half of Z100 specimens to complete 100N pre-loading prevented further 

meaningful analysis (Table 4.5b).  

HM specimens stored either ‘dry’ or ‘wet’ following 20N pre-loads possessed a mean 

BFS of 96±13 and 93±22MPa, neither was significant compared with the control (P>0.05). The m 

‘wet’ was significantly decreased (5.10±1.1) compared with unloaded HM. Pre-loading of 

specimens to 50 and 100N caused failure of all specimens rendering further analysis unfeasible 

(Table 4.6; Figure 4.6). 
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Dry Wet  
Control 20N 50N 100N Control 20N 50N 100N 

(a) Mircohybrid RBC (FZ) 

BFS (MPa) 150-201 145-2035 126-206 79-191 142-241 135-235 120-204 109-216 
Mean BFS (MPa) 176(16)A,B,C

1 171(16)A,B,C,D
1,2 155(20)C,D,E

2 142(32)E
1 192(23)A,B 

1 198(22)A
1 170(24)B,C

1,2 171(31)B,C
1,2 

10% FP (MPa) 150 148 126 82 162 177 127 131 
Weibull modulus (m) 11.23 (2.51) 11.51 (2.57) 8.10 (1.81) 4.29 (0.96) 8.71 (1.95) 8.65 (1.93) 7.22 (1.61) 5.66 (1.27) 
95% CI 9.73-12.73 10.29-12.79 7.03-9.17 3.91-4.67 7.87-9.56 7.23-10.07 6.69-7.74 5.28-6.04 
R2-value 0.93 0.95 0.93 0.97 0.96 0.90 0.98 0.98 
Specimens survived (%) 100 100 100 100 100 100 100 100 
(b) Mircohybrid RBC (Z100) 

BFS (MPa) 108-225 151-223 141-214 75-190 137-224 114-226 96-196 81-148 
Mean BFS (MPa) 180(31)A,B 

1 194(20)A
1 188(18)A

1 149(38)B,C,D
1 180(23)A

1,2 169(27)A,B,C
2,3 152(23)C,D

2 119(27)D
3,4 

10% FP (MPa) 133 152 162 93 145 131 122 96 
Weibull modulus (m) 5.70 (1.27) 9.96 (2.23) 10.78 (2.41) 3.27 (0.73)* 8.07 (1.81) 6.60 (1.48) 6.56 (1.47) 4.06 (0.91)* 
95% CI 5.29-6.12 8.58-11.33 9.87-11.69 2.61-3.93 7.42-8.72 5.99-7.21 5.49-7.63 2.78-5.34 
R2-value 0.98 0.93 0.97 0.93 0.97 0.97 0.90 0.89 
Specimens survived (%) 100 100 100 55 100 100 100 55 

 
Mean values within rows and columns (including Tables 4.3, 4.4 and 4.6) exhibiting different letters (in superscript) and numbers (in 
subscript) respectively, were significantly different (P<0.05). 
*Weibull values determined with a decreased sample size (n<20) 
 
Table 4.5. The range, mean and 10% failure probability (FP) of bi-axial flexure strengths (BFS), Weibull modulus (m), 
95% associated confidence intervals (CI), R2-value and percentage of specimens to survive pre-loading of the microhybrid 
RBCs (a) FZ and (b) Z100 to 20, 50 or 100N for 2000 cycles and storage for either 24h ‘dry’ or in a waterbath maintained at 
37± 1°C. 
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Dry Wet  
Control 20N 50N 100N Control 20N 50N 100N 

 Microfill RBC (HM) 

BFS (MPa) 71-100 72-116 - - 58-103 57-124 - - 
Mean BFS (MPa) 87(8)A

3 96(13)A
4 - - 88(12)A

4 93(22)A
4 - - 

10% FP (MPa) 72 78 - - 64 59 - - 
Weibull modulus (m) 7.61 (1.7) 6.53 (1.5) - - 8.19 (1.8) 5.10 (1.1) - - 
95% CI 6.78-8.45 5.99-7.06 - - 7.56-8.83 4.65-5.55 - - 
R2-value 0.95 0.97 - - 0.98 0.97 - - 
Specimens survived (%) 100 100 0 0 100 100 0 0 

 
Mean values within rows and columns (including Tables 4.3, 4.4 and 4.5) exhibiting different letters (in superscript) and numbers (in 
subscript) respectively, were significantly different (P<0.05). 
 
Table 4.6. The range, mean and 10% failure probability (FP) of bi-axial flexure strengths (BFS), Weibull modulus (m), 
95% associated confidence intervals (CI), R2-value and percentage of specimens to survive pre-loading of the microfill RBC 
HM to 20, 50 or 100N for 2000 cycles and storage for either 24h ‘dry’ or in a waterbath maintained at 37 ± 1°C. 
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Figure 4.6. Box and whisker plots of the BFS data of the seven RBCs following pre-
loading regimes and (a) ‘dry’ or (b) ‘wet’ storage. The box represents the inter-quartile 
range containing 50% of the BFS data, the whiskers represent the highest and lowest data-
points, the crosshair and line within boxes indicates the mean and median, whilst * 
represents outlaying data points. 
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4.2.2 Survival probability distribution 

The survival probability distributions for each RBC were plotted against the ranked BFS 

data for each specimen group following pre-loading and typically exhibited a normal distribution 

of data for unloaded specimens and following low pre-loads, suggesting that failure was related 

to a single defect type. The survival probability distribution plots highlighted a shift of the BFS 

data of FSB and FST into the higher strength range compared with the unloaded specimens. 

However, the distribution of FSB data exhibited a bi-modal distribution of data following ‘dry’ 

and ‘wet’ pre-loads of 100N, suggesting that pre-loading introduced a second defect population, 

interestingly this conflicted with the R2-vaules (0.96 and 0.96, respectively) which indicate a 

monomodal defect distribution (Table 4.3, p97; Section 2.2.2.1, p49). 

The survival probability distribution of ‘dry’ GR unloaded and 20N specimens was 

comparable, whilst following ‘wet’ storage the survival probability distribution of unloaded and 

20N specimens was reduced (<150MPa) compared with the distribution of ‘dry’ data. Likewise, 

the distribution of GF stored ‘wet’ and pre-loaded was notably decreased (<100MPa) compared 

with ‘dry’ specimens. Furthermore, the distribution of GF data ‘wet’ following 50N pre-loads 

appeared bi-modal, however this was not consistent with the R2-value (0.96), whilst that of GF 

‘dry’ 50N was R2=0.86 which is generally indicative of a multi-modal defect population which 

was not identified on the survival probably distribution plot (Figure 4.7). The distribution 

highlighted the damage induced following 100N pre-loads in those specimens that survived. 

‘Wet’ storage of FZ increased the number of specimens exhibiting a higher survival distribution 

at >200MPa (unloaded and 20N pre-load) and >150MPa (50 and 100MPa pre-loads) compared 

with specimens stored ‘dry’. ‘Wet’ pre-loading of Z100 to 50N produced a bi-modal distribution 

within the lower strength region (R2=0.90). The distribution of HM BFS following ‘wet’ 20N 

pre-loads introduced a bi-modal data distribution, although this was inconsitent with the R2-value 

(0.97) (Figure 4.7). 
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Figure 4.7. The combined survival probability distribution plots of FSB, FST and GR 
following 24h storage and pre-loading at 20, 50 and 100N for 2000 cycles prior to bi-axial 
flexure testing. 
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Figure 4.7 (continued). The combined survival probability distribution plots of GF, FZ and 
Z100 following 24h storage and pre-loading to 20, 50 and 100N for 2000 cycles prior to bi-
axial flexure testing. 
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Figure 4.7 (continued). The combined survival probability distribution plots of HM 
following 24h storage and pre-loading to 20, 50 and 100N for 2000 cycles prior to bi-axial 
flexure testing. 
 

4.2.3 Flexural modulus 

Two-way ANOVA of specimens stored ‘dry’ or ‘wet’ for 24h following three-point 

flexure testing highlighted that the storage condition was significant (F=7.63; P=0.008) as was 

the material type (F=4.38; P=0.002), however no significant interaction was identified (F=0.53; 

P=0.750). Likewise, one-way ANOVA and paired Tukey test comparisons at the 95% 

significance level identified no significant difference between ‘dry’ and ‘wet’ storage of FSB 

(115±21; 129±13MPa; P=0.998), FST (129±26; 133±207MPa; P=0.758), FZ (121±27; 

117±19MPa; P=0.938), Z100 (138±18; 129±18MPa; P=0.998), GR (134±10; 128±16MPa; 

P=0.790) and GF (107±17; 99±18MPa; P>0.05) (Table 4.4). The subsequent flexural modulus of 

‘dry’ and ‘wet’ GR (13.4±1.1; 14.9±0.6) and Z100 (17.9±1.5; 16.0±1.6) was markedly greater 

than the generally comparable flexure modulus of the other materials also tested (Table 4.7). 
 

FSB FST FZ Z100 GR GF  
Dry 

Flexural strength (MPa) 115 (21) 129 (26) 121 (27) 138 (18) 134 (10) 107 (17) 
Young’s Modulus (GPa) 8.5 (1.7) 9.3 (0.8) 10.6 (0.9) 17.9 (1.5) 13.4 (1.1) 8.2 (0.6) 
 Wet 

Flexural strength (MPa) 129 (13) 133 (20) 117 (19) 129 (18) 128 (16) 99 (18) 
Young’s Modulus (GPa) 9.3 (0.6) 8.5 (0.2) 11.3 (0.5) 16.0 (1.6) 14.9 (0.6) 8.9 (0.8) 

 

Table 4.7. The flexure strength (MPa) and flexural modulus (GPa) of FSB, FST, FZ, 
Z100, GR and GF following 24h stored (a) ‘dry’ or (b) ‘wet’ at 37±1°C.  

 106



4.3 DISCUSSION: The Mechanical Properties of ‘Nanofilled’ RBCs 

 

The development and introduction of so-called ‘nanofilled’ RBCs to aesthetic restorative 

dentistry may be seen as a continuation of the trend for new RBCs to possess a reduced mean 

filler size, whilst also seeking to improve the filler loading and to optimise the subsequent 

physical properties and clinical performance [Ferracane, 1995; Mitra et al., 2003; Beun et al., 

2007]. The development of ‘nanofilled’ RBCs for dentistry has not occurred in isolation; the 

introduction of ‘nanocomposites’ with a wide range of advanced materials and engineering 

applications, such as aerospace, electronics and biomaterials [Alexandre & Dubois, 2000; 

Abdalla et al., 2002; Dean et al., 2005; Thostenson, 2005] has occurred concurrently and utilise a 

diverse range of ‘nano’ filler-types [Tolle et al., 2002; McNally et al., 2005; McClory et al., 

2007; Zhang et al., 2008] to significantly improve functional properties of the material.  

‘Nanofilled’ RBCs routinely possess a bimodal filler distribution consisting of a distinct 

dispersion of spheroidal nano-sized silica particles and a phase of micro-sized particles to 

produce a hybrid-like structure [Lu et al., 2006; Turssi et al., 2006; Beun et al., 2007]. According 

to the manufacturer, the agglomerated ‘nanocluster’ filler offers an alternative approach to 

particle reinforcement of RBCs [Mitra et al., 2003], although considerable debate exists regarding 

the efficacy and clinical advantages associated with ‘nanofilled’ RBCs [CARE, 2003; Harris & 

Ure, 2006]. The term ‘nanocluster’ was coined by the manufacturer (3M ESPE) and may appear 

somewhat misleading as the mean cluster diameter was reported to be 0.6µm [Mitra et al., 2003]. 

Furthermore, SEM examination in the current study highlighted that the approximate mean 

cluster diameter in FSB was ~3.5µm (Figures 4.4, 5.12, 6.3 and 6.5), although the ‘nanoclusters’ 

in the translucent shade appeared to be generally smaller, ~0.2µm (Figures 4.4, 5.12 and 6.4). 

This may suggest that either the in situ ‘nanoclusters’ present in FSB were larger than the 

manufacturers reported [Mitra et al., 2003] or that the ‘nanocluster’ particles present in the 

polymerized resin matrix formed agglomerations of several ‘nanoclusters’. Furthermore, the non-

uniform distribution of constituent nano-sized particles within the structure of the ‘nanocluster’ 

and subsequent varied size and topographicical arrangement (Figures 4.4, 5.12 and 6.4), 

suggested that particle agglomeration during the production of the ‘nanoclusters’ occurred 

randomly. Despite the inhomogeneous filler structure and distribution of the ‘nanoclusters’ 

within the resin matrix and also the differing ‘nanocluster’ loading within FSB (79.0wt%; 
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59.5vol%) and FST (70.0wt%; 57.5vol%), the bi-axial flexure strength of control samples of FSB 

and FST (159 and 160MPa, respectively) was identified to be comparable with the 

conventionally filled FZ and Z100 (176 and 180MPa, respectively) and the nano-hybrid GR 

(165MPa) RBCs tested ‘dry’ (Tables 4.3-4.6). Likewise, published studies of the ‘nanocluster’ 

RBC have also identified equivalent, or improved, mechano-physical properties compared with 

conventionally filled RBCs [Mitra et al., 2003; Lohbauer et al., 2006; Turssi et al., 2006; Beun et 

al., 2007; Masouras et al., 2007; Junior et al., 2008; Watanabe et al., 2008].  

 

4.3.1 Micromanipulation of discrete filler particles 

The influence of common clinical scenarios on the mechanical (bulk and marginal 

fracture, strength degradation, cyclic fatigue, wear resistance) and physical (shrinkage, shrinkage 

stress/strain, colour stability) properties of filled dental resin matrices have been extensively 

studied, whilst the properties of individual filler particles are only inferred in relation to the 

complete RBC system [Yap et al., 2002; Adabo et al., 2003; Lohbauer et al., 2006; Lu et al., 

2006]. An understanding of the mechanisms by which individual particles fail, the loads at which 

catastrophic failure of individual particles occur and their ability to deform and recover under 

load may therefore assist our understanding of the interaction of filler particles within the resin 

matrix and their influence on the overall mechano-physical properties of RBC materials.  

The micromanipulation technique is a novel method enabling the characterization of the 

mechanical properties of discrete micro-sized particles and single cells. A form of 

micromanipulation was originally used to characterize the surface forces and mechanical 

properties of arbacia (sea urchin) eggs, although these were comparatively large and easy to 

handle considering that the subsequent development of the technique sought to characterize 

micro-sized particles [Cole, 1967]. Micromanipulation has since been used for both chemical 

engineering and biological applications to characterize the mechanical properties and investigate 

the relationship between composition and structure of micro-sized particles, such as 

microspheres, plant and animal cells, bacteria and microcapsules [Zhang et al., 1991; 1992; 

Mashmoushy et al., 1998; Shiu et al., 1999; Blewett et al., 2000; Sun & Zhang, 2002; Wang et 

al., 2004; Müller et al., 2005]. A further advantage of micromanipulation is the versatility and 

simplicity of use, although subsequent data analysis was time consuming [Shiu et al., 1999].  
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Following micromanipulation, the force at fracture of particles is determined and a 

‘pseudo-modulus’ of stress is calculated [Zhang et al., 1991; 1992; Sun & Zhang, 2002]. The 

term ‘pseudo-modulus’ of stress is employed by studies using micromanipulation to describe the 

ratio of applied force divided by the original cross-sectional area of each particle prior to 

deformation [Bouwman et al., 2005; Chung et al., 2005; Müller et al., 2005]. Theoretically, in 

order to calculate the ‘real’ stress, the contact area between the particle and probe must be 

known. However, as the contact area varies with deformation and since particles are extremely 

small, it is often impossible to accurately measure the contact area. Therefore, a ‘pseudo’ stress is 

calculated which provides an approximation of the ‘real’ stress [Private communication with 

Prof. Z. Zhang].  

 

4.3.1.1 Fracture mechanisms of ‘nanoclusters’ 

Micromanipulation of ‘nanocluster’, spheroidal and irregular particles produced a high 

scatter in the force at fracture (Table 4.1) and pseudo-modulus of stress (Table 4.2) data. This 

was consistent with data previously produced using micromanipulation which attributed a high 

data scatter to structural and morphological variation of the individual particle and highlighted 

that the trends identified were reproducible [Zhang et al., 1991; 1992]. The distinct structural and 

topographical variation of the ‘nanocluster’ particles (Figures 4.4, 5.12 and 6.4) may also be 

associated with the high data scatter identified in the current study. 

Micromanipulation identified that the ‘nanocluster’ particles possessed significantly 

different fracture mechanisms compared with the spheroidal and irregular particles (Figure 4.1). 

The majority of spheroidal and irregular particles exhibited either no distinct fracture (Figure 

4.2a), or a single distinct fracture (Figure 4.2b). In contrast, the ‘nanocluster’ filler complexes 

exhibited up to four distinct multiple fractures (Figures 4.1 and 4.2c) highlighting a unique mode 

of failure. Previous micromanipulation studies of microcapsules have highlighted similar 

occurrences where the incidence of multiple failures was attributed to the progressive break-up of 

particles [Sun & Zhang, 2002]. Therefore, the occurrence of multiple failures of the discrete 

‘nanocluster’ particles is likely to be a consequence of the progressive break-up of the 

agglomerate following compressive loading. Two mechanisms of failure are proposed to describe 

the break-up of the ‘nanocluster’ particles identified following micromanipulation. Firstly, it is 

suggested that failure occurred along lines of internal porosity within the ‘nanocluster’ causing a 
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loss of cluster integrity, whereby the bifurcation of cracks either caused the cluster to fracture 

into several approximately equally sized fragments or to cause loss of smaller fragments of 

agglomerated particles (Figure 4.8a). Secondly, the ‘nanocluster’ may have been progressively 

deformed and subsequently collapsed into pre-existing interstitial cluster porosities to produce a 

denser compacted cluster thus acting to absorb or dissipate loading stresses (Figure 4.8b). The 

potential for denser and stronger clusters following loading was exhibited by the increased force 

at fracture of the ‘nanocluster’ (1702±909, 1968±1132, 2674±1486 and 1661±158µN) compared 

with the spheroidal (1389±1342µN) and irregular (1356±1093µN) particles (Table 4.1). 

Furthermore, propagation of micromanipulation loads and subsequent failure may be mitigated 

by the deposition and thickness of the silane coupling agent (Section 1.3.3.1) within the 

interstices of the agglomerated cluster. Essentially this may act as an elastic layer to absorb and 

dissipate loading stresses through the silane interface [Shirai et al., 2000]. 

 

 

 

 

 

 

 

Load 
Load 

(a) (b) 

 

Figure 4.8 Diagram representing the two fracture mechanisms proposed to explain the 
multiple fractures of ‘nanocluster’ particles, (a) bifurcation of cracks along lines of internal 
porosity resulting in fragmentation, (b) collapse of the ‘nanocluster’ into internal porosities 
to produce a denser particle complex. 
 

In contrast, micromanipulation of the spheroidal and irregular filler particulates produced 

either a single distinct fracture, in approximately a third of cases, whilst the remaining particles 

were not identified as failing (Figure 4.1). Ceramic structures, such as the silica-zirconia and 

barium-alumina borosilicate particles in the current study, have been identified to fracture within 
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the crystalline interfaces between the distinct crystalline phases [Brentel et al., 2007]. 

Furthermore, surface defects act as stress intensifiers and areas of local stress concentration to 

initiate failure [Lee et al., 2000; Junior et al., 2008]. This may suggest that failure of the fused 

spheroidal particles occurred by bifurcation of the fused zirconia-silica particles at the fused 

interface between the two phases as a consequence of the applied load (Figure 4.9a). 

Alternatively, single failure of the irregular barium-alumina borosilicate particles may be due to 

fracture of protuberances from the irregular particle or due to propagation of cracks from surface 

defects, potentially possessed by both the spheroidal and irregular particles, which were 

generated during particle production (Section 1.3.3) (Figure 4.9b).  

 

 

 

 

 

 

 

 

Load 

Bifurcation of fused 
interface 

Load 

Protuberance 
fracture  

Defect fracture  

(a) (b) 

 
Figure 4.9 Diagram representing of single failure of (a) spheroidal fused zirconia-silica 
particles at the fused interface and (b) fracture of protuberances or from surface defects 
generated by milling to produce irregular particles. 

 

The lack of failure exhibited by approximately two-thirds of spheroidal and irregular filler 

particles may be attributed to the orientation of the particle during loading, whereby the particle 

orientation effectively ‘shielded’ the surface defect, protuberance or fused crystalline interface 

between the crystalline phases, from which fracture occurred [Ritchie et al., 1988]. Interestingly, 

the pseudo-modulus of stress of the irregular and spheroidal particles was increased following 

fracture (Table 4.2), which may also suggest that the orientation of the particle fragments 

following fracture and lack of additional catastrophic defects prevented further failure.  
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It might be suggested that single or multiple particle failure occurred as aggregated or 

several distinct particles were loaded. However, the resolution of the light-microscope and 

camera set-up on the micromanipulator rig (Section 3.2.1.2) enabled identification of discrete 

particles prior to loading [Zhang et al., 1991; 1992], also the clear trends of none, single or 

multiple failure exhibited by the particle-types (Figure 4.1) refute this suggestion. To further 

clarify particle loading it may be suggested that future micromanipulation studies employ atomic 

force microscopy (AFM) to provide improved resolution and hence ease of individual particle 

identification and testing [Liu et al., 2005]. In addition, the efficacy of a nanomanipulation 

technique, which was a direct development of the micromanipulation technique, has recently 

been demonstrated by Lui et al. (2005) and may also enhance further study of particulate failure. 

Deformation of ‘nanocluster’ particles which possess internal porosities due to the 

structural arrangement of the agglomerated nanoparticles may also modify crack propagation 

through the bulk of the particle. This was indicated by the increased associated percentage 

deformation exhibited by the ‘nanoclusters’ and subsequent cluster fragments (0.46±0.67, 

1.31±1.15, 0.61±0.61 and 0.43±0.06%) compared with the spheroidal (0.28±0.14%) and irregular 

(0.38±0.17%) particles (Table 4.1). Consequently, blunting of the propagating crack-tip may 

occur, enhancing the dissipation of loading stresses and improving the ability of the ‘nanocluster’ 

complex to absorb compressive loads. The apparent influence of structural arrangement of 

nanoparticles within agglomerated fillers on the subsequent deformation and mechanical 

properties following micromanipulation is consistent with previous micromanipulation studies 

which also highlighted that deformation was influenced by particle microstructure in addition to 

water content and subsequent water loss. These studies identified an elastic recovery of 50-80% 

following deformation [Sun & Zhang, 2002; Chung et al., 2005], which may be attributed to the 

focus of the majority of previous micromanipulation studies on filled structures, such as cells and 

gel-filled microparticles which exhibited a degree of elastic recovery rather than the generally 

fused or monolithic structures employed in dental RBCs [Zhang et al., 1991; 1992; Anseth et al., 

1996; Mashmoushy et al., 1998; Sun & Zhang, 2002; Wang et al., 2005; Ding et al., 2007; Lui & 

Webster, 2007].  

Micromanipulation studies have previously identified that force and deformation at 

fracture increased proportionally with particle diameter [Zhang et al., 1992; Sun & Zhang, 2002]. 

In contrast, the current study identified a negative linear relationship between the particle size and 
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pseudo-modulus of stress of the spheroidal (r2= -0.70 and -0.78) and irregular (r2= -0.59 and -0.79) 

particles, suggesting instead that as particle size increases, pseudo-modulus of stress decreases. 

The focus of previous micromanipulation studies on filled structures, such as microgel particles, 

highlighted that deformation was related to release of the constituents from the particle [Sun & 

Zhang, 2002; Chung et al., 2005]. Consequently, since the spheroidal and irregular particles 

instead possessed fused and monolithic structures and did not exhibit significant deformation 

(Table 4.1) the previous correlation did not agree with the trends identified in the current study. 

Furthermore, despite the approximately equivalent sizes of the ‘nanoclusters’, spheroidal and 

irregular particles, the Pearson coefficient of ‘nanoclusters’ highlighted a comparatively higher 

level of inconsistency (r2 closer to 0) between the size and pseudo-modulus of stress of the 

‘nanoclusters’ (r2=-0.38, -0.33, -0.28, -0.08). This might suggest that the inhomogeneous 

distribution of nanoparticles within the agglomerated structure of the ‘nanocluster’, subsequent 

porosities and ability to deform influenced the force at fracture and pseudo-modulus of stress 

(Tables 4.1 and 4.2). 

In conclusion, micromanipulation of the agglomerated ‘nanocluster’ particles identified 

distinctly different mechanical properties compared with particles possessing a spheroidal or 

irregular morphology. Therefore, incorporation of ‘nanocluster’ particles into a conventional 

resin matrix may modify the subsequent failure mechanisms and provide enhanced damage 

tolerance unique to ‘nanocluster’ reinforced RBCs. 

 

4.3.2 Cyclic pre-loading of filled resin composite systems 

 Clinically, RBC restorations are subjected to multiple complex stressing mechanisms, due 

to masticatory loading and fatigue (Section 2.2.3), which induce surface and subsurface defects 

dependent upon the magnitude and duration of load [McCabe et al., 1990b]. This reduces the 

structural integrity of the RBC material and increases the likelihood of premature failure at 

stresses considerably below the reported mean strength values of those materials [Lohbauer et al., 

2003a; 2003b; 2006; Papadogiannis et al., 2006]. Subsequently, the introduction of sub-critical 

stresses to an RBC restoration may significantly reduce clinical longevity. It is therefore highly 

pertinent to investigate in vitro cyclic pre-loading to characterise failure mechanisms of RBCs, 

which may assist in the prediction of in vivo behaviour and potential occurrence of premature 

failure due to masticatory loading of RBC restorations. 
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Generally, each of the seven materials tested following pre-loading highlighted a general 

decrease in the BFS and reliability of strength data, irrespective of storage conditions (Figure 

4.5). This was consistent with previous studies which also reported that the fracture strength of 

pre-loaded materials was significantly reduced [Lohbauer et al., 2003a; 2003b; 2006; 

Papadogiannis et al., 2006]. Previous studies also identified that during pre-loading cracks were 

induced and propagated through the resin matrix and silane interface surrounding fillers. The 

occurrence of sub-critical crack growth was reported to be influenced by filler size, loading and 

interparticulate spacing and also in the specific case of microfill RBCs which possessed pre-

polymerized fillers cracks were identified to propagate through the prepolymer particles 

themselves [Drummond, 1989; Htang et al., 1995]. 

The fracture strength and resistance to fatigue of dental RBCs is often related to the filler 

particle loading, whereby a higher filler loading produces improved mechano-physical properties 

[Ferracane, 1995; Cobb et al., 2000; Lu et al., 2006]. Therefore, the low unloaded fracture 

strength of the microfill RBC HM (87±8MPa) and failure to complete the pre-loading regimes 

(Table 4.6) was consistent with this and attributed to the limited filler loading of HM (66.7wt%; 

46.0vol%). Consequently microfills have been contraindicated for posterior placement and areas 

of high stress [Lutz & Philips, 1983; Roulet, 1987; Lang et al., 1992], although HM is generally 

atypical of other microfills possessing a higher filler loading and fifteen years of proven clinical 

performance in posterior situations. However, the current study also revealed that the initial 

fracture strength and Weibull modulus of some RBCs material groups did not necessarily 

correspond with the fracture strength following pre-loading. This was particularly pronounced for 

GR and Z100, which despite a high filler loading (87.0wt%; 71.4vol% and 84.5wt%; 66.0vol%, 

respectively) and unloaded BFS of 165±18 and 180±31MPa, failed to respectively complete the 

50 and 100N or 100N pre-loading regimes (Table 4.4a and 4.5a). In contrast, despite FSB and 

FST possessing a lower filler loading (79.0wt%; 59.5vol% and 70.0wt%; 57.5vol%, respectively) 

and also exhibiting a lower unloaded BFS (159±21 and 160±27MPa, respectively) compared with 

GR and Z100, one hundred percent of FSB and FST specimens survived pre-loading regimes up 

to and including 100N and also exhibited improved strengths and significantly increased Weibull 

moduli (Table 4.3). Likewise, Lohbauer et al. (2003a; 2003b; 2006) also identified that the 

fatigue resistance of ‘flowable’, microhybrid and nano-hybrid RBCs, which exhibited an initially 

 114



high flexure strength, did not necessarily result in a correspondingly high resistance to clinical 

fatigue. 

Since all GR and HM specimens failed to survive pre-loading to 50 and 100N and 

approximately half of GF and Z100 specimens failed to survive pre-loads of 100N, the limited 

stress bearing capability of these materials may be of clinical concern as these materials have 

been indicated by their manufacturers for both anterior and posterior placement. The premature 

failure of GR and Z100 may be attributable to the significantly higher flexural modulus (13.4±1.1 

and 17.9±1.5GPa, respectively) compared with the other RBCs tested (Table 4.7). A high flexural 

modulus has been identified to inhibit the ability of a material to resist deformation due to 

loading and the accumulation of surface and bulk defects resulting in premature failure [Emami 

et al., 2003; Lohbauer et al., 2003a; 2003b; 2006; Sabbagh et al., 2004; Calheiros et al., 2006]. 

However, significantly lower flexural moduli of approximately 6GPa [Calheiros et al., 2006] and 

8.2±0.6GPa were identified for HM and GF respectively, which where comparable with the 

remaining RBCs (Table 4.7). Here, the low filler loading and subsequently lower BFS of the 

microfill HM may have resulted in the failure of all specimens prior to completion of the 50 and 

100N pre-loading regime. Alternatively, the apparent intrinsic weakness of HM may also be 

attributed to the presence of pre-polymerized filler particles which act as defect centres 

[Drummond, 1989; Htang et al., 1995]. Microfills have been identified to routinely possess an 

inhomogeneous microstructure due to inhomogeneity of filler size and distribution derived from 

the high density of nano-sized fillers within the pre-polymerized particle, which may ultimately 

lead to reduced strength and a greater tendency for strength degradation due to fatigue and cyclic 

pre-loading [Ferracane et al., 1995]. Subsequently, the use of microfill RBCs in areas of high 

stress and high contact was contraindicated [Lang et al., 1992]. The production of RBCs has 

sought to limit in situ particle agglomeration which produce an inhomogeneous filler distribution 

and subsequent ‘filler rich’ regions which act as weak inclusions within the resin matrix [Willems 

et al., 1992; Gladys et al., 1997; Chou & Ren, 2000; Sawyer et al., 2003].  

The resin matrix of GF has a decreased filler particle load and an irregular particle 

morphology. Irregular shaped particles have been associated with a high stress concentration due 

to the sharp edges and protuberances that may fail to dissipate loading stresses and subsequently 

enhance crack propagation [Sabbagh et al., 2004]. This strongly suggested that GF was an 

intrinsically weaker material since approximately half the specimens failed at a cyclic pre-load of 
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100N. However, ‘flowable’ RBCs have been developed to meet specific clinical needs, such as 

liners in deep cavities, repair of marginal defects, pit and fissure sealants and to act as stress 

absorbing layers in large RBC restorations (as a consequence of low elastic modulus). 

Subsequently their clinical placement does not routinely include high stress bearing locations 

[Combe & Burke, 2000; Sabbagh et al., 2004]. 

 

4.3.2.1 Differential reinforcement provided by ‘nanocluster’ particles 

The ‘nanocluster’ reinforced RBCs (FSB and FST) were identified to possess statistically 

similar or significantly increased BFS and associated Weibull moduli at cyclic pre-loads that 

initiated catastrophic failure of the other RBC materials tested in the current study (Table 4.3). In 

particular, the BFS of FSB pre-loaded to 20 and 50N both ‘dry’ (137±15 and 146±12MPa) and 

‘wet’ (179±19 and 183±18MPa) was maintained or increased. Similarly, the BFS of FST was 

also improved or maintained following pre-loading up to and including 100N (Table 4.3a&b). 

Conversely, at 50 or 100N the BFS of the other RBCs tested were significantly decreased 

compared with the unloaded control groups (Tables 4.4, 4.5 and 4.6).  

A Weibull analysis was subsequently applied to the mean BFS data since a potentially 

inhomogeneous defect distribution within specimens will render mean values inconclusive and 

potentially misleading, suitable only for comparative purposes [McCabe & Carrick, 1986]. Mean 

strength data assumes that the defect population possesses a ‘normal’ distribution, whilst in 

reality the defect population frequently lacks this level of homogeneity where a higher defect 

distribution exists. Therefore, to determine the reliability of the data and predict the probability of 

failure of brittle materials a suitable statistical function, such as Weibull modulus (Section 

2.2.2.1) and associated survival probability distributions is vital to provide a meaningful 

interpretation of the flexural strength within a specimen group (n≥20), [Weibull, 1951; McCabe 

& Carrick, 1986]. Whereby a high Weibull modulus is indicative of a narrow distribution of 

defects and increased reliability of the strength data of that particular material. Weibull analysis 

identified that in addition to the increased BFS data of the ‘nanocluster’ RBC compared with 

conventionally filled RBCs, the Weibull modulus (m) was also identified to be significantly 

increased or maintained at pre-loads of 50 and 100N. In contrast, all other RBC materials 

investigated in the current study exhibited a significantly decreased Weibull modulus following 
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50 and 100N pre-loading compared with unloaded specimen groups since the 95% confidence 

intervals failed to overlap (Tables 4.3, 4.4, 4.5 and 4.6). 

A significant increase was also identified between the Weibull modulus of ‘nanocluster’ 

RBC specimens stored ‘dry’ or ‘wet’ for 24h, which was consistent with the increase in BFS also 

identified. In particular, m of FST pre-loaded to 20N ‘wet’ (16.89±3.78) was identified to be 

significantly higher than ‘dry’ (8.54±1.91) as the 95% confidence intervals failed to overlap 

(15.15-18.60 and 7.41-9.67, respectively). In addition, the R2-value also highlighted a reduction 

in the scatter of data exhibited by the ‘nanocluster’ RBCs due to pre-loading to 20 and 50N and 

subsequent storage in water, such as FSB ‘wet’ (0.97 and 0.97) compared with ‘dry’ (0.96 and 

0.91) and also FST ‘wet’ (0.96 and 0.97) compared with ‘dry’ (0.93 and 0.95) (Table 4.3). The 

Weibull modulus has previously been identified to be valid when the BFS data approximates a 

straight line on the Weibull plot (R2=1), whilst a value exceeding 0.95 constitutes a single defect 

population. Conversely, a deviation from the straight-line distribution of the Weibull plot and an 

R2-value of less than 0.95 was indicative of a multi-modal defect distribution present within the 

specimen undergoing testing [Fleming et al., 1999a; 1999b; 2000; Bhamra et al., 2002]. The 

improved BFS and reliability of the ‘nanocluster’ RBCs stored ‘wet’ following pre-loading to 20 

and 50N was also suggested by the survival probability distributions. FSB exhibited a distinct 

shift in the data distribution into the higher strength range (>150MPa) following ‘wet’ compared 

with ‘dry’ storage. Furthermore, FST specimens stored ‘wet’ following pre-loading to 20 and 

50N highlighted a reduction in the asymmetry within the ‘tail-end’ of the data distribution and 

also that the homogeneity of the distribution of BFS data was markedly improved (Figure 4.7).  

It was interesting to note that throughout the pre-loading study (and also the subsequent 

water storage study reported in Chapter 5) the defect population indicated by the survival 

probably distribution plot did not necessarily correspond with that suggested by the R2-values 

(Section 4.2.2). The correlation coefficient (R2-value) was calculated by a least square analysis of 

the plots of lnln(1/Ps) against lnσ and were indicative of how well the experimental data fits the 

Weibull distribution [McCabe & Carrick, 1986] and varied from 0.89-0.99, suggesting significant 

differences in the defect populations [Fleming et al., 1999a; 1999b; 2000; Bhamra et al., 2002]. It 

is therefore worth reiterating that direct comparison of R2-values determined from the Weibull 

distribution with the survival probability plots may be misleading and also that the R2-value is an 

indication [McCabe & Carrick, 1986] of the defect population and not definitive. However, the 
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inconsistancies between the suggested defect distribution and that highlighted by the survival 

probability distribution highlight that conclusions construed from the R2-values alone (or any 

other source of data in isolation) is limited and that multiple sources of data are required to ensure 

the accuracy of conclusions. 

The significantly different response to fatigue loading of the ‘nanocluster’ RBCs 

compared with the other RBCs tested was attributed to the reinforcement provided by the 

‘nanocluster’ particles. Particularly as even FZ, which is known to possess an identical resin 

matrix to FSB and FST and also to possess a filler size comparable with the observed size of the 

‘nanoclusters’ (Figures 4.4, 5.12 and 6.4) [Junior et al., 2008], exhibited a decreased fracture 

strength and reliability following the 50N cyclic pre-loading regime (Tables 4.3 and 4.5a). The 

fracture of dental RBCs is routinely related to failure of the interfacial layer between the 

inorganic fillers and the resin matrix, which subsequently acted as defect centres, promoting 

failure [Söderholm et al., 1983; 1984; Øysæd & Ruyter, 1986]. The significant increase in 

Weibull modulus of the ‘nanocluster’ RBCs following pre-loading (Tables 4.3) implied a 

differential impact on the ‘nanocluster’ particles compared with the spheroidal or irregular 

particles, which limited their function as defect centres. This suggests that pre-loading of FSB 

and FST modified the ‘nanoclusters’ to produce a more damage tolerant system. As discussed in 

Section 4.3.1, the micromanipulation of the ‘nanocluster’ particles produced a unique fracture 

mechanism compared with spheroidal and irregular particles. This may be a consequence of 

crack bifurcation and the ability of the ‘nanocluster’ to absorb and dissipate crack stresses by 

collapsing into pre-existing cluster porosities or due to the loss of fragments from the main 

clustered structure. The suggested ability of discrete ‘nanoclusters’ to deform and dissipate the 

accumulated fatigue loading stresses may enhance the fracture strength and resistance to 

premature fracture within the resin composite system.  

The morphology of filler particles has also been identified to influence the subsequent 

reinforcement and resistance of RBCs to fracture [Lohbauer et al., 2003a; 2003b; 2006; 

Papadogiannis et al., 2006], therefore the ‘nanocluster’ morphology may also partially influence 

the response of the ‘nanocluster’ RBCs to pre-loading. Both the ‘nanocluster’ (FSB and FST) and 

microhybrid (FZ) RBCs contain fillers which possess a nominally spheroidal morphology 

(Figures 4.4, 5.12, 6.4). A spheroidal morphology has been associated with reduced stress 

concentration and dissipation of loading stresses compared with the sharp edges and 
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protuberances of irregular particles which may promote stress concentration and subsequent 

crack growth resulting in catastrophic failure [Sabbagh et al., 2004]. The non-uniform surface 

topography of the ‘nanocluster’ particles, due to the apparently random distribution of individual 

particles within the agglomerated complex, may enhance interfacial adhesion due to the higher 

surface area available for silanization, and also due to mechanical interlocking with the 

surrounding resin [Li et al., 2007].  

The storage condition highlighted a significant difference between the ‘dry’ and ‘wet’ bi-

axial flexure strength of the ‘nanocluster’ RBC, whereby specimens stored ‘wet’ exhibited a 

significantly increased bi-axial flexure strength (Table 4.3). The BFS of FST following 20, 50 

and 100N ‘wet’ (182±12, 171±17 and 175±21MPa) was markedly higher than similar specimens 

pre-loaded prior to storage of the specimens ‘dry’ (165±19, 148±15 and 141±21MPa). This 

suggested that water induced hydrolysis and polymerization of the interfacial silane layer of the 

‘nanocluster’ reinforced RBCs modified stress transfer both to and within the ‘nanocluster’ 

particles, producing an enhanced capacity to tolerate local stress and cluster deformation. In 

addition, ‘wet’ storage of the microhybrid FZ also improved the BFS, although not to the same 

extent as the ‘nanocluster’ materials as the fracture strength of FZ was reduced following pre-

loading to 50N. It is suggested that since the resin matrix chemistry of FSB, FST and FZ was 

nominally identical and since NIRS identified that following immersion the subsequent uptake of 

water into the hydrophilic resin matrix was rapid even following 24h (Section 5.1), that 

hygroscopic expansion of the resin may have occurred. Hygroscopic expansion occurs as water 

molecules infiltrate porosities, vacancies and free volume between polymeric chains within the 

resin matrix, causing swelling which may impede defects and propagating cracks [Martin et al., 

1998; Sideridou et al., 2003; Tay et al., 2002]. Therefore, a combination of water induced 

modification of the silane interface and hygroscopic expansion of the resin matrix may have 

occurred concurrently within the ‘nanocluster’ reinforced RBC to promote the observed increase 

or maintenance of BFS following pre-loads of 50 and 100N and wet storage. Conditions which 

were extremely detrimental to the other RBCs tested. 

 

4.3.2.2 Interpenetrating phase composite structure of ‘nanoclusters’ 

The ‘nanoclusters’ undergo a dual silanization process with a dilute silane coupling agent 

to infiltrate the cluster interstices, whilst the surface of the ‘nanocluster’ is subsequently coated 
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with an undiluted silane to promote interfacial adhesion with the resin matrix [Private 

communication, S. Mitra, 3M ESPE at IADR 2007 New Orleans, US]. This produces an 

agglomerated particle consisting of a random interconnected network of silica-zirconia or silica 

nano-particles. If the interstices and internal porosities of the ‘nanocluster’ are fully infiltrated by 

the silane coupling agent, it might be assumed that an interpenetrating phase composite (IPC) 

structure will be generated. Essentially, IPC materials possess an interconnected three 

dimensionally continuous phase where the degree of crosslinking between the three constituent 

phases determines the ability to resist deformation [Clarke et al., 1992; Wegner & Gibson, 2001]. 

The presence of a fully infiltrated porous IPC structure is known to provide increased mechanical 

properties compared with a similar non-infiltrated porous particulate structure [Yang et al., 2003]. 

The interconnectivity of the distinct phases enables each structural phase of the IPC to contribute 

its most desirable properties, such as plastic deformation of a metal phase and high stiffness of a 

ceramic phase in metal/ceramic IPCs, thereby optimising the mechanical properties of the 

subsequent material [Wegner & Gibson, 2001; Zeschley et al., 2005]. For example, IPC 

structures have been identified to increase the compressive strength and Young’s modulus by up 

to fifty percent compared with materials not possessing an IPC structure [Zeschley et al., 2005]. 

The ‘nanocluster’ particle possesses a high internal porosity infiltrated by a relatively 

weak second phase and would be expected to be inherently weaker than a ‘dense’ silica particle 

of the same size. However, the interpenetrating phase ‘nanocluster’ appears highly effective as a 

reinforcing filler within the polymeric matrix due to the statistically similar or significantly 

increased BFS and associated Weibull modulus, particularly following pre-loads and ‘wet’ 

storage, whilst the nano-hybrid and conventionally filled RBCs exhibited significantly reduced 

mechanical properties at 50 and 100N cyclic pre-loading regimes. In ‘dry’ environments the 

interfacial silane phase will be relatively stable, however the transmission of loading induced 

stresses through the silane layer may deform the ‘nanocluster’ creating defects in and around 

clusters. Silanated structures may also be modified by moisture which affects monomer 

polymerization, the interfacial silane layer and resin matrix bonds. The presence of water in the 

matrix could induce hydrolysis and polymerization of the interfacial silane layer, which modified 

stress transfer and inhibits crack propagation, blunting the crack-tip and thus reducing the stress 

concentration [Takashige et al., 2007].  
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The micromanipulation and pre-loading results suggested that the ability of ‘nanoclusters’ 

to undergo multiple fractures and the proposed IPC-like structure enhanced the damage tolerance 

and reliability of the material. This was exacerbated within an aqueous environment where the 

failure strength and Weibull modulus were significantly increased or maintained whilst that of 

conventionally filled RBCs decreased. However, as the current pre-loading study was limited to 

24h, increasing the period of immersion in an aqueous environment may critically compromise 

the hydrolytic stability of the material. 

 121



CHAPTER 5  RESULTS AND DISCUSSION: WATER STORAGE 

 

5.1 RESULTS: Degradation of Nanofilled RBCs: Water Storage 

 

The water storage regimes aimed to determine the influence of short- (24h), medium- (1, 

4, 13 and 26 weeks) and long-term (52 and 78 weeks) immersion and water sorption on the 

subsequent mechanical properties of ‘nanocluster’, nano-hybrid and conventional RBCs.  

 

5.1.1 Near-IR spectroscopy  

FTIR spectroscopy in the near infrared range was employed to semi-quantify the water 

content and water sorption of the disc-shaped RBC specimens following storage.  

 

Water sorption of FSB, FST and FZ 

The water content of FSB and FZ was identified from the area under the absorbance band 

centred around 5200cm-1 to increase up to between 1 and 13 weeks prior to equilibration, whilst 

the water content of FST increased concomitantly throughout the study (Figure 5.1).  
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Figure 5.1. Plot highlighting the mean water content of FSB, FST and FZ specimens 
(n=5) following specimen dehydration according to ISO 4049, 24h ‘dry’ storage and 24h, 1, 
4, 13, 26, 52 and 78 weeks stored in a waterbath. Water content was calculated with a 
spectral manipulation program and integration method to determine the mean area under 
the absorbance band centred around 5200cm-1. 
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Following dehydration according to ISO 4049 a residual quantity of water was identified 

in FSB, FST and FZ (9.00±2.72, 16.85±1.66 and 9.50±3.00AU, respectively). In addition, ‘dry’ 

storage for 24h produced a mean absorbance of 15.97±2.97, 20.47±0.63 and 15.46±1.87AU 

respectively (Table 5.1).  

The water content of FSB following 24h and 1 week stored in a waterbath was markedly 

increased (30.47±5.49, 37.72±1.79AU, respectively), whilst subsequent immersion for 4, 13, 26, 

52 and 78 weeks highlighted apparent equilibration of the water content of FSB (36.81±2.23, 

40.85±11.80, 33.68±7.36, 34.24±8.51 and 43.52±6.61AU, respectively) (Table 5.1; Figure 5.2a). 

Conversely, the water content of FST was identified to increase following consecutive immersion 

periods without apparent equilibration (33.79±5.9, 41.18±5.29, 53.38±2.26, 50.89±5.65, 

56.57±5.78, 62.74±5.91 and 72.04±16.89AU, respectively) (Table 5.1; Figure 5.2b). The water 

content of FZ exhibited a comparable trend with FSB, increasing following 24h, 1 and 4 weeks 

immersion (23.46±2.3, 34.60±2.69 and 43.33±4.02AU, respectively), prior to apparent 

equilibration (45.12±4.28, 39.18±4.09, 37.93±3.79 and 46.33±4.07AU, respectively) (Table 5.1; 

Figure 5.2c). 

 
5200 cm-1 (NIR absorbance)  

FSB FST FZ 

Dehydrated 9.00 (2.72) 16.85 (1.66) 9.50 (3.00) 
24h Dry 15.97 (2.45) 20.47 (0.63) 15.46 (1.87) 
24h Wet 30.47 (5.49) 33.79 (5.95) 23.46 (2.37) 
1 week 37.72 (1.79) 41.18 (5.29) 34.60 (2.69) 
4 weeks 36.81 (2.23) 53.38 (2.26) 43.33 (4.02) 
13 weeks 40.86 (11.50) 50.89 (5.65) 45.12 (4.28) 
26 weeks 33.68 (7.36) 56.57 (5.78) 39.18 (4.09) 
52 weeks 34.24 (8.51) 62.74 (5.91) 37.93 (3.79) 
78 weeks 43.52 (6.61) 72.04 (16.89) 46.33 (4.07) 

 
Table 5.1. NIR spectroscopy highlighting the water content of FSB, FST and FZ 
specimens following dehydration of specimens according to ISO specification 4049, 24h 
stored ‘dry’ and 24h, 1, 4, 13, 26, 52 and 78 weeks stored in a waterbath. 
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Figure 5.2. Box and whisker plots highlighting mean, median and interquartile range of 
water content and water sorption of (a) FSB, (b) FST and (c) FZ following dehydration, 24h 
stored ‘dry’ and 24h, 1, 4, 13, 26, 52 and 78 weeks stored ‘wet’. The plots highlight non-
equilibration of FST, whilst FSB and FZ equilibrate following between 1 and 13 weeks. 
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Water sorption of GR and GF 

NIR spectroscopic analysis of the nano-hybrid materials GR and GF also highlighted 

increased water content as a consequence of the water storage periods employed in the 

investigation (Figure 5.3), although this was markedly lower than FSB, FST and FZ. The mean 

absorbance value of GR following 24h ‘dry’ was 5.57±0.96AU and increased comcomitently 

following 24h, 13, 26 and 52 weeks (9.12±0.79, 12.38±0.80, 14.93±1.72 and 18.39±2.13AU, 

respectively) (Table 5.2). The water content of GF was 4.51±0.56AU following 24h stored in 

‘dry’ conditions and increased following storage until apparent equilibration following 13 weeks 

(14.45±2.79, 17.80±2.19, 18.71±5.47 and 16.09±2.84AU, respectively) (Table 5.2; Figures 5.2 

and 5.3). 
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Figure 5.3. Plot highlighting the mean water content of GR and GF specimens following 
24h ‘dry’ storage and 24h, 13, 26 and 52 weeks stored in a waterbath; highlighting non-
equilibration of GR and apparent equilibration of GF following 13 weeks. 
 

5200 cm-1 (NIR absorbance)  

GR GF 

24h Dry 5.57 (0.96) 4.51 (0.56) 
24h Wet 9.12 (0.79) 11.15 (1.15) 
13 weeks 12.38 (0.80) 17.80 (2.19) 
26 weeks 14.93 (1.72) 18.71 (5.47) 
52 weeks 18.39 (2.13) 16.09 (2.84) 

 

Table 5.2. NIR highlighting water content of GR and GF specimens following 24h 
stored ‘dry’ and 24h, 1, 13, 26 and 52 weeks ‘wet’. 
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Figure 5.4. Box and whisker plots highlighting the mean, median and inter-quartile 
range of the water content and water sorption determined using NIR spectroscopy of (a) 
GR and (b) GF specimens following 24h stored ‘dry’ and 24h, 13 26 and 52 weeks stored in 
a waterbath maintained at 37±1°C. 
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Figure 5.5. Representative spectra (FST) in the NIR region of the Fourier transform 
infrared spectrum highlighting the progressively increased height and area of the 
absorbance band attributed to water centred around 5200cm-1. 
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5.1.2 Bi-axial flexure strength and Weibull modulus of FSB, FST and FZ  

Two-way ANOVA of FSB, FST and FZ following 24h ‘dry’ and ‘wet’ and for 1, 4, 13, 

26, 52 and 78 weeks stored in a waterbath maintained at 37±1˚C highlighted that the BFS of the 

RBCs was significantly reduced under ‘wet’ storage conditions (F=4.80; P<0.001) (Figure 5.5).  
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Figure 5.6. Plot of the mean BFS exhibited by FSB, FST and FZ groups following the 
increasing immersion periods and demonstrating a general decrease in the BFS as a 
consequence of the water storage regimes. 
 
 

Supplementary one-way ANOVA and paired Tukey test comparisons at the 95% 

significance level highlighted no significant difference between the ‘dry’ and ‘wet’ BFS of FSB 

(159±21 and 155±27MPa; P>0.05). However, a significant concomitant reduction in BFS 

occurred following 1 (99±19MPa; P<0.001) and 4 (63±12MPa; P<0.001) weeks, whilst a 

significant increase was identified following 13 weeks (102±24MPa; P<0.001) and a further 

significant concomitant decrease was identified following 52 weeks (56±11MPa; P<0.001) 

(Table 5.3; Figure 5.7a). The Weibull modulus (m) was calculated and identified to be significant 

where the 95% confidence intervals failed to overlap. The m of FSB was significantly decreased 

following 24h stored ‘wet’ (5.98±1.34) compared with ‘dry’ (8.07±1.80) as the respective 95% 
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confidence intervals fail to overlap (6.99 to 9.15 and 5.66 to 6.30). A further significant decrease 

in the Weibull modulus was identified following 26 weeks (2.64±0.59), whilst m again 

significantly increased following 52 weeks (5.66±1.27) (Table 5.3). 

The BFS of FST following 24h stored ‘dry’ or ‘wet’ was not significantly different 

(160±27 and 177±22MPa; P=0.907), whilst a significant concomitant decrease occurred 

following 1 week (141±23MPa; P<0.01). A further decrease occurred following 4 weeks 

(105±25MPa; P<0.001) and also following 52 weeks (82±12MPa; P<0.001) compared with the 

preceding storage regime (Table 5.3; Figure 5.7b). The associated Weibull modulus was 

significantly increased following 24h stored ‘wet’ (7.99±1.78) compared with ‘dry’ (6.23±1.39) 

as indicated by the failure of the 95% confidence intervals to overlap (7.21 to 8.79 and 5.69 to 

6.76). A significant decrease occurred following 1 (6.15±1.38; 5.69 to 6.60) and 4 (4.39±0.98; 

3.99 to 4.79) weeks, whilst overlap of the 95% confidence intervals following 4, 13 and 26 weeks 

highlighted that the m was not significantly modified. A concomitant significant increase in the 

Weibull modulus was identified to occur following 52 weeks (6.98±1.56) (Table 5.3).  

The BFS of FZ following ‘dry’ compared with ‘wet’ storage for 24h was not statistically 

significant (176±16 and 192±23MPa; P=0.958), although a significant reduction in BFS was 

identified following 1 week (122±23MPa; P<0.001) compared with specimens stored ‘wet’ for 

24h. A concomitant significant increase in BFS was identified following 13 weeks (147±34MPa; 

P<0.001) and a further significant decrease occurred following 26 weeks (105±14MPa; P<0.001). 

Succeeding data was not significantly different (Table 5.4; Figure 5.7c). The Weibull modulus of 

FZ was significantly reduced as a consequence of ‘wet’ (8.71±1.95; 7.87 to 9.56) compared with 

‘dry’ (11.23±2.51; 9.73 to 12.73) storage, the m was further significantly decreased between 4 

(7.92±1.77; 7.42 to 8.43) and 13 (3.91±0.87; 3.38 to 4.43) weeks, whilst following 52 weeks the 

reliability was increased (7.39±1.65; 5.59 to 9.19) although a subsequent decrease occurred 

following 78 weeks (3.87±0.86; 2.97 to 4.76) (Table 5.4). 

 



 
 
 

 

Filtek Supreme (FSB)  

 24h dry 24h wet 1wk wet 4wks wet 13wks wet 26wks wet 52 wks wet 78wks wet 

Fracture strengths (MPa) 125-205 102-198 58-130 48-84 68-157 42-155 39-82 34-102 
Mean BFS (MPa) 159 (21)A

1 155 (27)A
2 99 (19)B

2 63 (12)C
2 102 (24)B

2 97 (34)B
2 56 (11)C

3 61 (16)C
2 

10% Failure Probability (MPa) 128 115 72 50 71 43 41 44 
Weibull modulus 8.07 (1.80) 5.98 (1.34) 5.09 (1.14) 5.29 (1.18) 4.47 (0.99) 2.64 (0.59) 5.66 (1.27) 4.22 (0.94) 
95% Confidence Intervals 6.99-9.15 5.66-6.30 4.47-5.73 4.26-6.31 3.86-5.08 2.37-2.91 4.79-6.54 3.69-4.76 
R2-value 0.93 0.99 0.94 0.87 0.93 0.96 0.91 0.94 

Filtek Supreme Translucent (FST)  

24h dry 24h wet 1wk wet 4wks wet 13wks wet 26wks wet 52 wks wet 78wks wet 

Fracture strengths (MPa) 109-218 126-205 92-184 67-155 51-172 70-166 58-101 48-103 
Mean BFS (MPa) 160(27)A,B

1 177(22)A
1,2 141(23)B,C

1 105(25)D,E
1 117(30)C,D

2 112 (28)D
2 82(12)E

2,3 82 (13)E
2 

10% Failure Probability (MPa) 123 135 101 67 75 78 61 63 
Weibull modulus 6.23 (1.39) 7.99 (1.78) 6.15 (1.38) 4.39 (0.98) 3.73 (0.83) 4.04 (0.90) 6.98 (1.56) 6.10 (1.36) 
95% Confidence Intervals 5.69-6.76 7.21-8.79 5.69-6.60 3.99-4.79 3.42-4.03 3.42-4.65 6.52-7.43 5.36-6.85 
R2-value 0.97 0.96 0.98 0.97 0.97 0.91 0.98 0.94 

Mean values within rows and columns (including Tables 5.4 and 5.5) exhibiting different letters (in superscript) and numbers (in 
subscript) respectively, were significantly different (P<0.05). 
 
Table 5.3. The range, mean and 10% failure probability of the BFS (MPa), Weibull modulus, 95% associated confidence 
intervals and R2-values of the ‘nanocluster’ reinforced RBCs (FSB and FST) following storage ‘dry’ and ‘wet’ for 24h, and for 
1, 4, 13, 26, 52 and 78 weeks in a waterbath maintained at 37±1°C. 
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Filtek Z250 (FZ)  

24h dry 24h wet 1wk wet 4wks wet 13wks wet 26wks wet 52 wks wet 78wks wet 

Fracture strengths (MPa) 150-201 142-241 97-157 78-126 70-201 52-157 77-138 77-203 
Mean BFS (MPa) 176 (16)A

1 192 (23)A
1 122(18)B,C

1,2 105(14)C,D
1 147 (34)B

1 102(30)C,D
2 94 (13)D

2 113(32)C,D
1 

10% Failure Probability (MPa) 150 162 100 84 79 75 80 80 
Weibull modulus 11.23(2.51) 8.71 (1.95) 7.17 (1.60) 7.92 (1.77) 3.91 (0.87) 3.58 (0.80) 7.39 (1.65) 3.87 (0.86) 
95% Confidence Intervals 9.73-12.73 7.87-9.56 6.07-8.26 7.42-8.43 3.38-4.43 3.01-4.15 5.59-9.19 2.97-4.76 
R2-value 0.93 0.96 0.91 0.98 0.93 0.91 0.81 0.82 

 
Mean values within rows and columns (including Tables 5.3 and 5.5) exhibiting different letters (in superscript) and numbers (in 
subscript) respectively, were significantly different (P<0.05). 
 
Table 5.4. The range, mean and 10% failure probability of the BFS (MPa), Weibull modulus, 95% associated confidence 
intervals, R2-values of the microhybrid RBC (FZ) following storage ‘dry’ and ‘wet’ for 24h, and for 1, 4, 13, 26, 52 and 78 
weeks in a waterbath maintained at 37±1°C. 
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Figure 5.7. Box and whisker plots highlighting the mean, median, inter-quartile range 
and outlaying data-points (*) of the BFS of (a) FSB, (b) FST and (c) FZ following 24h stored 
‘dry’ and ‘wet’ and for 1, 4, 13, 26, 52 and 78 weeks in a waterbath. 
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Survival probability distribution 

The survival probability distribution of all the materials tested (FSB, FST and FZ) 

exhibited an asymmetric bi-modal distribution of data manifested as an apparent discontinuity in 

the lower range of bi-axial flexure strengths following 24h stored either ‘dry’ or ‘wet’, although 

this was inconsistent with the R2-values, which generally exceeded 0.95, suggesting a mono-

modal defect distribution. The survival probability distribution of FSB exhibited a bi-modal 

distribution suggesting the presence of two distinct defect populations, which following 4, 52 and 

78 weeks was no longer present, implying the presence of a single defect population although 

specimen failure occurred at lower strengths (Figure 5.8a). However, this again conflicted with 

the R2-values (Table 5.3, p130). The survival probability distribution of FST was also decreased 

following water storage, although the bi-modal distribution identified from the plot following 4, 

13 and 26 weeks was eliminated following 52 and 78 weeks (however this did not concur with 

the R2-values), suggesting that the lower strength defect population became dominant as a result 

of continued storage (Figure 5.8b). The survival probability distribution of FZ was reduced 

following storage, the distribution following 4, 26, 52 and 78 weeks was largely comparable, 

although an increased bi-modal distribution following 26 and 78 weeks, suggested the low 

strength defect population gained dominance as storage continued. Furthermore, the R2-value of 

52 weeks (R2=0.81) also suggests a bi- or milti-modal defect distribution, although this was not 

observed on the plot (Figure 5.8c). 
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Figure 5.8. The combined survival probability distribution plots of (a) FSB specimens 
stored ‘dry’ for 24h or in a water-bath at 37°C for 24h, 1, 4 13, 26, 52 and 78 weeks. 
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Figure 5.8 (continued). The combined survival probability distribution plots of (b) FST and 
(c) FZ specimens stored ‘dry’ for 24h or in a water-bath maintained at 37°C for 24h, 1, 4 
13, 26, 52 and 78 weeks. 
 
 
5.1.3. Bi-axial flexure strength and Weibull modulus of GR and GF 

Two-way ANOVA of the nano-hybrid GR and GF specimens stored for 24h ‘dry’ and for 

24h, 13, 26 and 52 weeks ‘wet’ highlighted an overall decrease in the BFS due to the interaction 

of storage condition and storage time (F=7.57; P<0.001) (Figure 5.9).  
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Figure 5.9. Plot of the mean BFS exhibited by GR and GF groups following the storage 
regimes. The plot highlighted a general decrease in the BFS as a consequence of water 
storage regimes. 
 

One-way ANOVA of GR highlighted that the BFS following storage ‘wet’ for 24h was 

significantly reduced compared with ‘dry’ (125±11 and 165±18MPa; P<0.001). The BFS 

subsequently significantly increased following 13 weeks immersion compared with 24h ‘wet’ 

(166±19MPa; P<0.001), further storage for 26 weeks resulted in a significantly decreased BFS 

(146±20MPa; P=0.004) (Table 5.5; Figure 5.10a). The Weibull modulus of GR was initially 

increased following ‘wet’ (12.11±2.71; 10.80 to 13.42) compared with ‘dry’ (9.03±2.02; 7.83 to 

10.22) storage, whilst the reliability following 13, 26 and 52 weeks was significantly reduced 

compared with the preceding storage regime (9.22±2.06, 7.69±1.72 and 5.93±1.33, respectively) 

(Table 5.5).  

The BFS of GF was not significantly reduced following storage ‘wet’ for 24h compared 

with ‘dry’ (87±17MPa and 125±13; P<0.001), whilst further storage did not significantly 

influence the BFS (Table 5.5; Figure 5.10b). Likewise, the Weibull modulus was decreased 

following ‘wet’ compared with ‘dry’ storage for 24h (5.11±1.14; 9.54±2.13) as the 95% 

confidence intervals failed to overlap (4.82 to 5.39 and 8.36 to 10.71). Storage for 13 and 52 

weeks resulted in an m comparable with specimens stored ‘wet’ for 24h, whilst the reliability 

increased following 52 weeks immersion (7.18±1.61) (Table 5.5).  
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Grandio (GR) Grandio Flow (GF)  
24h dry 24h wet 13wks wet 26wks wet 52wks wet 24h dry 24h wet 13wks wet 26wks wet 52wks wet 

Fracture strengths (MPa) 115-195 107-1424 138-211 109-186 87-212 93-141 53-117 57-134 56-123 57-112 
Mean BFS (MPa) 165 (18)A

1 125 (11)B
3 166 (19)A

1 146(20)A,B
1 143(24)A,B

1 125 (13)A
2 87 (17)B

4 92 (18)B
2 90 (18)B

2 81(12)B
2,3 

10% Failure Probability (MPa) 145 108 142 120 117 98 63 61 66 67 
Weibull modulus 9.03 (2.02) 12.11 (2.71) 9.22 (2.06) 7.69 (1.72) 5.93 (1.33) 9.54 (2.13) 5.11 (1.14) 5.34 (1.19) 5.15 (1.15) 7.18 (1.61) 
95% Confidence Intervals 7.83-10.22 10.80-13.42 7.85-10.58 6.89-8.49 4.79-7.07 8.36-10.71 4.82-5.39 4.74-5.94 4.76-5.55 6.12-8.23 
R2-value 0.93 0.95 0.92 0.96 0.87 0.94 0.99 0.95 0.98 0.92 

 
Mean values within rows and columns (including Tables 5.3 and 5.4) exhibiting different letters (in superscript) and numbers (in 
subscript) respectively, were significantly different (P<0.05). 
 
Table 5.5. The range, mean and 10% failure probability of the BFS (MPa), Weibull modulus, 95% associated confidence 
intervals and R2-values of the nano-hybrid RBCs (GR and GF) following storage ‘dry’ or ‘wet’ for 24h and for 1, 4, 13, 26, 52 
and 78 weeks in a waterbath maintained at 37±1°C. 
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Figure 5.10. Box and whisker plots highlighting the mean, median, inter-quartile range 
and outlaying data points (*) of the BFS of (a) GR and (b) GF specimens following 24h 
stored dry and storage in a waterbath maintained at 37±1°C for 24h, 13, 26 and 52 weeks. 
 

Survival probability distribution 

The survival probability distribution of the nano-hybrid GR highlighted a single defect 

population which was unaffected by water storage, although the BFS of specimens highlighted a 

decrease following storage, as previously remarked upon (Section 4.3.2.1) this did not necessarily 
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concur with the defect population distribution suggested by the R2-values (Figure 5.11a). 

Conversely, a significant reduction in BFS was identified in the survival probability distribution 

of GF following storage, although the bi-modal distribution within the lower strength range 

identified from the distribution of 24h ‘dry’ (R2=0.93) was progressively reduced as a 

consequence of immersion with the exception of the R2-value following 52 weeks (Figure 5.11b). 
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(a) 

(b) 

Figure 5.11. The combined survival probability distribution plots of (a) GR and (b) GF 
specimens stored ‘dry’ for 24h or in a water-bath maintained at 37°C for 24h, 13, 26 and 52 
weeks. 
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Figure 5.12.  SEM micrographs of a cross-sectional fracture surface through the bulk of 
RBC specimens, highlighting the size and distribution of filler particles following (a) 24h 
‘dry’ and (b) interfacial cracking (circled) following 26 weeks immersed in a waterbath. 
 MC
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5.2 DISCUSSION: The influence of water storage 

 

 The influence of in vitro water immersion and subsequent water sorption on the 

mechanical properties of RBCs and possible detrimental effect to in vivo restoration longevity has 

been widely acknowledged [Söderholm et al., 1984; Cesar et al., 2001; Ferracane, 2006; Bagheri 

et al., 2007]. Although many studies investigate the effect of short and medium-term immersion, 

namely up to six months [Pearson et al., 1979; Söderholm & Roberts, 1990; Bastoli et al., 1990; 

Palin et al., 2005c], few researchers have reported the long-term degradative effects of water 

uptake.  

 

5.2.1 Near-infrared spectroscopic analysis of water sorption 

The near-infrared spectroscopy (NIRS) technique employed in the current study 

highlighted similar patterns of water sorption compared with investigations using the gravimetric 

analysis technique stipulated by ISO 4049. Discrepancies in the reported water sorption values of 

FZ exist between laboratories using gravimetric analysis and although specific water sorption and 

solubility values may differ, the reported time to saturation is relatively common [Toledano et al., 

2003; Palin et al., 2005c; Fleming at al., 2007]. This concurs with the present study, wherein FZ 

exhibited apparent saturation of the hydrophilic resin matrix and silane interface following 4 

weeks immersion (Figure 5.1), thus highlighting comparable trends between NIRS and the 

gravimetric techniques for a specific material. Venz et al. (1991) suggested that a higher water 

sorption using an NIRS compared with a gravimetric technique for the same material was 

associated with dissolution of resin constituents. This is a recognised disadvantage of the 

gravimetric analysis method of water sorption [Diaz-Arnold & Williams., 1992; Mohsen & 

Craig, 1995], which assumes that weight gain proportionally represents water gain, whilst in 

reality it is the gain in water and also dissolution and elution of low molecular weight monomers 

from the resin matrix [Mohsen & Craig, 1995]. Therefore, although careful calibration of the 

NIRS absorptivity would be required for different monomer matrix chemistries [Venz & Dickens, 

1991], the usefulness of the NIRS technique for assessing the influence of filler properties on 

water uptake was supported since the outcome is not influenced by the dissolution of polymeric 

components [Keyworth et al., 1961; Venz & Dickens, 1991; Diaz-Arnold & Williams, 1992].  

For water sorption investigations, ISO 4049 stipulates that specimens should be 

equilibrated to a constant mass (within 1x10-3mg) by dehydration at 37±1°C. Consequently the 
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water content of RBCs following dehydration is considered to be effectively zero. In contrast, 

NIRS in the present study highlighted that all test materials contained an initial amount of water 

following dehydration and ‘dry’ storage for 24h. This is consistent with previous NIRS studies 

which reported that a small amount of residual water remained in the material following 

dehydration [Keyworth et al., 1961; Venz & Dickens, 1991; Diaz-Arnold & Williams, 1992]. The 

presence of water molecules in the resin matrix of equilibrated specimens may be generated as a 

by-product during the free-radical addition polymerization reaction, which occurs following 

photo-activation (Section 1.3.4.1) [Musanje et al., 2001]. Subsequently, the water molecules may 

be effectively bound within the resin matrix and were unable to be lost during the dehydration 

procedure. The presence of water molecules within the ‘dry’ RBC may also reflect the influence 

of ambient humidity during specimen production or at the source of manufacture of the monomer 

paste (Table 5.1; Figures 5.1 and 5.2). Alternatively, the ‘residual water’ content may be 

attributable to detection of the O-H bond of the CH3OH molecules produced as a by-product of 

the condensation reaction which occurred during silanization (Section 1.3.3.1). Therefore, the 

presence of water within dehydrated and ‘dry’ specimens identified by NIRS suggested that the 

standard gravimetric analysis technique stipulated by ISO 4049 may provide values of water 

content which were less than the true water content of the material. 

Water sorption and water uptake in RBCs have previously been identified to be dependent 

on the constituents of the methacrylate resin matrix, morphology, filler dispersion and properties 

of the filler/resin interface [Pearson et al., 1979; Fan et al., 1985; Bastoli et al., 1990]. NIRS 

results in the current study highlighted that water sorption into all five RBCs (FSB, FST, FZ, GR 

and GF) was initially rapid, whilst the water content of FSB and FZ equilibrated due to apparent 

saturation of the hydrophilic resin matrix and interfacial silane layer following between one and 

thirteen weeks. In contrast, the water uptake in FST continued to increase markedly for each 

subsequent immersion period investigated, indicative of a non-equilibrated system (Table 5.1; 

Figure 5.1). This was attributable to the greater volume percentage of individually dispersed 

nanoparticles (Table 3.1) and comparatively smaller ‘nanoclusters’ than FSB (Figure 5.12), 

producing a greater surface area to volume ratio and hence a larger area of hydrophilic silane 

available for water sorption. Generally, the lower water content of GR and GF (Table 5.2; Figure 

5.3 and 5.4) was attributable to the higher volume percent filler loading (Table 3.1) compared 

with FSB, FST and FZ and a less hydrophilic resin matrix, due to the absence of the BisEMA6 

monomer [Bagheri et al., 2007]. BisEMA6 is generally considered to be a more hydrophobic 
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monomer than BisGMA or TEGDMA [Finer & Santerre, 2004; Palin et al., 2005c], although 

previous investigations conducted by Bagheri et al. (2007) and Ogliari et al. (2008), in addition to 

the current study, contradicated this highlighting that BisEMA6 containing resins exhibited 

increased water sorption and hydrophilic tendencies. Ogliari et al. (2008) identified that water 

sorption into a BisEMA monomer increased proportionally with increase in ethylene oxide chain 

extenders, namely that water sorption into BisEMA30 was significantly greater than BisEMA4, 

due to increased interchain spacing between monomers available for water uptake. Furthermore, 

the admixture of BisGMA and BisEMA4 doubled the water sorption, suggesting that the 

increased polarity of the BisGMA monomer increased water sorption [Ogliari et al., 2008]. 

Likewise, Bagheri et al. (2007) identified that the resin matrix of two nanofills, including Filtek 

Supreme™, which contained both TEGDMA and BisEMA exhibited significantly more 

degradation in solvent than monomers where BisEMA was absent, although no explanation was 

offered for this. Therefore, whilst a specific mechanism is not attributed to the increased water 

sorption of BisEMA monomers it highlights that the trend identified in the current study is 

consistent with the literature. This also concurs with the statement by Ogliari et al. (2008) which 

identified a lack of information in the current literature concerning BisEMA polymerization and 

the properties of the resultant monomer. 

The more rapid increase in water content and subsequent saturation of GF was attributed 

to the lower filler loading compared with GR. The increased filler surface area available for 

silanization of the highly loaded GR, and subsequently for sorption of water, was suggested to be 

responsible for the concomitant increase in water content without apparent saturation throughout 

the period studied (Figure 5.4a).  

 

5.2.2 The influence of water sorption on mechanical properties 

The mechanical properties of RBC restorations are widely acknowledged to be 

detrimentally influenced as a consequence of water uptake which occurs as part of a time 

dependent process [Pearson et al., 1979, Bastoli et al., 1990; Söderholm et al., 1996; Ferracane et 

al., 1998; Catteni-Lorente et al., 1999; Martin et al., 2003; Asoaka et al., 2003; Ito et al., 2005]. 

The current study concurred with these previous investigations also highlighting that generally, 

the BFS of all five RBCs tested was significantly decreased as a consequence of water induced 

degradation following as little as 24h (GR and GF) or one week (FSB, FST and FZ) immersion 

(Tables 5.3; 5.4 and 5.5).  
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The observed degradation of RBCs in the current study due to water uptake can be 

considered by two mechanisms. Firstly the dimethacrylate resin matrix absorbs water, dependent 

upon the hydrophilic nature of the specific resin monomers, this initiates ‘plasticization’ which 

causes the matrix to become weak, ductile and swell, and also initiates chain scission and 

subsequent monomeric elution and leaching [Bastoli et al., 1990; Ferracane et al., 1998; Catteni-

Lorente et al., 1999; Martin et al., 2003; Ito et al., 2005]. Secondly, hydrolysis of the siloxane 

bridge bonds of the filler/resin interface to the original silanol groups initiate debonding of the 

inorganic filler particles and a reduction in the mechanical properties of the material [Söderholm 

et al., 1984; 1996; Söderholm & Roberts, 1990; Stokes et al., 1988; Ortengren et al., 2001]. The 

formation of interfacial microcracks has been attributed to the degradation of the filler/resin 

interface [Calais & Söderholm, 1988; Ritter et al., 1996], which were identified from SEM 

images in the current study to occur as a consequence of water storage (Figure 5.12). Interfacial 

microcracking may act in terms of Griffith’s Law, whereby the presence of any flaw or defect 

acts as a weak inclusion and hence as a critical defect accelerating failure and reducing the BFS 

of the material [Griffith, 1920]. However, Drummond & Saver (1993) and Ferracane et al. (1998) 

postulated that hydrolytic degradation of the filler interface did not generate a significantly 

increased concentration of defects within specimens undergoing long-term immersion. 

Conversely, other investigators have observed degradation of the interfacial silane layer, filler 

debonding and subsequent decrease in mechanical properties [Calais & Söderholm, 1988; Ritter 

et al., 1996]. The resin matrix chemistries of FSB, FST and FZ were known to be nominally 

identical (Table 3.1). Therefore, whilst the degradation of the matrix may in part be responsible 

for the loss of structural integrity of FSB, FST and FZ, the occurrence of microcracking at the 

silane interface suggested that a further mechanism may have occurred, generating additional 

defect centres and producing a more pronounced degradation of the ‘nanocluster’ reinforced 

RBCs.  

The extent and rate of strength degradation exhibited by the nanofill, nano-hybrid and 

microhybrid materials following long-term storage highlighted distinct differences (Figures 5.6 

and 5.9). The percentage decrease in BFS of FSB and FST following 78 weeks, compared with 

specimens stored ‘dry’ for 24h, was calculated to be 62 and 49% respectively, whilst the 

percentage reduction in BFS of FZ was 36% (Tables 5.3 and 5.4). Moreover, the percentage 

decrease of the nano-hybrid GR and GF following 52 weeks storage was 13 and 36%, compared 

with 65, 49 and 47% of FSB, FST and FZ respectively (Tables 5.3, 5.4 and 5.5). This highlighted 



 144

that the long-term hydrolytic stability of the ‘nanocluster’ reinforced RBC was more limited than 

the other RBCs tested. Since the key difference between FSB, FST and FZ was filler 

morphology, (the resin matrix being nominally identical and the size of ‘nanoclusters’ and 

microhybrid particles being approximately equivalent), it was proposed that the ‘nanocluster’ 

itself acted as the dominant defect centre. This may suggest that the long-term hydrolytic stability 

of the ‘nanocluster’ was limited due to hydrolytic degradation of the silane interface and also 

potential degradation of the silane bonds within the cluster itself which may subsequently 

produce a weakened particle. In addition to the differing BFS the decreased hydrolytic stability 

was also manifested by the survival probability distribution of FSB, which highlighted a greater 

loss of structural integrity due to long-term immersion as a pronounced shift into the lower 

strength region (less than 80MPa). Furthermore, the previous bi-modal distribution and 

asymmetry within the data distribution was eliminated following 52 and 78 weeks storage, 

suggesting that a single defect population, such as the weakened ‘nanocluster’, became the 

dominant defect centre (Figure 5.8).  

Comparison of water sorption identified by NIRS (Figure 5.1) with the bi-axial flexure 

strength (Figure 5.6) did not identify a specific correlation between the extent of degradation and 

the water content. FSB and FZ exhibited comparable levels of water content following 78 weeks 

immersion, however the extent of degradation of FSB was greater than FZ (62 compared with 

47% reduction compared with ‘dry’ specimens). This may suggest that degradation occurs 

irrespective of the actual water content and further suggested that the hydrolytic stability of the 

‘nanoclusters’ was limited. Furthermore, FST exhibited a higher water content following 78 

weeks compared with FSB although BFS of the former was significantly increased compared 

with the latter (82±13 and 61±16MPa; P<0.001), further highlighting the lack of a direct 

correlation between water content and flexure strength (Tables 5.1 and 5.3). The clinical 

implication of this may be that FST, which is indicated for anatomical build-up techniques to 

mimic enamel, will exhibit mechanical properties at least comparable with FSB increments to 

which it adheres, despite greater exposure to water sorption from the oral environment. The 

superior mechanical properties of FST compared with FSB despite their interaction with water, 

may be attributed to the filler loading of FST which contained a considerably lower content of 

‘nanoclusters’ (30.0wt%) compared with FSB (71.0wt%), the ‘nanoclusters’ also being smaller 

(Figure 5.12), whilst the content of individually dispersed nanosized fillers was considerably 

higher in FST (40.0wt%) than FSB (8.0wt%). This may suggest either an improved filler packing 
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density due to the smaller particle sizes, or enhanced interfacial adhesion due to the higher 

content of individual nano-sized particles [Li et al., 2007]. In addition, since FST was identified 

by Alvin et al. (2007) to possess a higher concentration of photo-initiating CQ (0.082wt%), 

compared with a notably lower quantity within FSB (0.059wt%) and FZ (0.054wt%), the resin 

matrix may have possessed a higher degree of monomer conversion (Section 1.3.4.1) which may 

result in enhanced mechanical properties. The higher concentration of CQ, which will produce 

additional foci from which polymerization initiates [Asmussen & Peutzfeldt, 2001a], may 

produce a higher crosslink density between polymerized monomeric chains following light-

activation [Ferracane et al., 1998; Peutzfeldt & Asmussen, 2000] and hence the improved 

resistance to fracture exhibited by FST. A previous study comparing the microhardness of 

various RBCs following curing highlighted that the surface hardness of FST was consistently 

superior to FSB. Furthermore, the hardness of the surface furthest from the curing light was 

identified to be markedly harder for FST compared with FSB [Price et al., 2006], suggesting an 

improved depth of cure which may be attributable to the increased content of photo-initiator and 

might also be due to the translucency of FST. 

The investigation of nano-hybrid RBCs in the current study sought to highlight the 

influence of alternative filler types, morphologies and loadings and also differing resin matrix 

chemistries. Water storage of GR and GF significantly decreased the BFS following storage for 

up to 52 weeks (Table 5.5). The higher filler loading of GR (87.0wt%) compared with the 

flowable version (80.2wt%), provided improved mechanical properties. This concurred with a 

study by Ferracane et al. (1998) which concluded that increasing the mass fraction of reinforcing 

filler resulted in increased flexural strength, elastic modulus and fracture toughness of the 

subsequent RBC. As previously mentioned, GR exhibited a markedly lower percentage decrease 

in BFS following 52 weeks (13%) compared with the other RBCs tested (FSB, FST, FZ and GR). 

The high filler loading of GR reduced the resin content available for water uptake and subsequent 

mechanical degradation. In contrast, the higher resin content of GF suggested that the hydrolytic 

stability of the resin matrix chemistry was limited.  

 

5.2.2.1 Hygroscopic expansion 

Generally, the five RBCs tested in the current study exhibited a decrease in bi-axial 

flexure strength as a consequence of storage in water (F=4.80; P<0.001). However, two sets of 

results conflicted with this overall trend. Firstly, following 13 weeks immersion the bi-axial 
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flexure strength of FSB and FZ were significantly increased compared with 4 weeks storage 

(63±12 to 102±24MPa and 105±14 to 147±34MPa, respectively P<0.001), whilst the BFS of FST 

was also increased, although this was not statistically significant (105±25 to 117±30MPa; 

P>0.05). Secondly, following 52 weeks the Weibull modulus of FSB, FST, FZ and GR was 

significantly increased compared with preceding storage for 26 weeks. This is indicative of a 

greater consistency in the distribution of data produced on specimen failure and a reduction in the 

defect population. The simplest explanation for these potentially spurious results was that of 

batch variation of the material used to produce the sample groups in question. However, since 

specimen groups for different material types were fabricated at different times and similar effects 

for different RBC brands following 13 weeks were observed, this suggested that a more complex 

explanation may be required. NIRS suggested that the resin matrix of FSB and FZ may be fully 

saturated following 13 weeks, exhibiting water content values comparable with FST (Figure 5.1; 

Table 5.1). Water sorption is known to result in hygroscopic expansion of the resin matrix as 

water molecules infiltrate porosities, vacancies and free volume between polymeric chains 

[Momoi & McCabe, 1994; Martin et al., 1998; Sideridou et al., 2003]. This generates a 

volumetric expansion of 0.02-1% during immersion, which has been identified to counteract 

polymerization shrinkage stresses generated at the restoration/tooth interface [Feilzer et al., 1990; 

Peutzfeldt, 1997; Vanlandingham et al., 1999; Cury et al., 2006]. Moreover, it might be suggested 

that hygroscopic expansion of the resin matrix may impede the propagating crack-tip and initiate 

closure of intrinsic bulk defects. Although this occurrence has not been directly related to water 

uptake of RBCs, previous studies conducted by Tay et al. (2002; 2003a) and Tay & Pashley 

(2003b) implicated closure of dendritic ‘branches’ related to the transport of water through a 

BisGMA-based resin. The volumetric expansion of the resin matrix and apparent closure of 

marginal gaps and channels may suggest that the same mechanism also restricts bulk defects, 

albeit temporarily. This potential modification of defect populations was suggested by an increase 

in R2-values for FSB following 13 weeks (0.87 to 0.93), although the R2-values of FSB, FZ and 

GF were inconclusive. Unlike FSB, FST, FZ and GF, GR did not exhibit an increased Weibull 

modulus following 52 weeks. Momoi & McCabe (1994) reported that a material possessing a 

high Young’s Modulus, such as GR (13.4GPa; Table 4.7), exhibited reduced hygroscopic 

expansion, which may also be due to high filler loading and therefore a lower resin content 

reducing the potential for hygroscopic expansion. Despite the short-lived improvement to BFS 

and Weibull modulus observed for FSB, FST, FZ and GF, ultimately, the cumulative degradation 
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induced by the longest storage regimes resulted in significantly decreased mechanical properties 

of these materials (Tables 5.3, 5.4 and 5.5). 

 

5.2.2.2 Phase-separation 

The increased use of nano-sized fillers in dental RBCs provide new opportunities to 

optimise the filler loading and packing within hybrid-like systems, however a higher degree of 

silanization will be required for RBCs with a high volume percentage of nanoparticles, 

subsequently the interfacial silane layer may influence the subsequent physico-chemical 

properties. High filler loadings with distinct nano-sized particles have been identified to result in 

an inhomogeneous filler distribution within the resin matrix, resulting in ‘filler-rich’ and ‘resin-

rich’ regions which without adequate surface silanization resulted in detrimental physical 

phenomena, such as phase-separation during which nanofiller particles are ‘plucked’ from the 

resin [Wilson et al., 2005]. Phase separation may occur during polymerization to relieve 

thermodynamic instabilities generated due to the high molecular mass of mixed or blended 

polymer networks and between inhomogeneous regions of filler and resin distribution and 

subsequently causes filler particles to be effectively forced out of the polymer network [Wilson et 

al., 2005]. This occurs as phase separation degrades the adhesive interface, particularly where 

silanization is incomplete [Wilson et al., 2005] or degrades the adhesive hybrid-layer of bonded 

RBC restorations [Breschi et al., 2008]. Phase separation also compromises the stability of the 

resin-dentin bond due to infiltration of a solvent, such as water, into the adhesive layer between 

two distinct phases, particularly where one phase is hydrophilic and the other hydrophobic 

[Peumans et al., 2005; Cadenaro et al., 2008]. Although the current study was not able to identify 

the occurrence of phase-separation, or the loss of individual nano-sized particles, the increasing 

use of nano-sized filler in modern dental RBCs may cause such physical phenomena to become 

more prevalent and of greater clinical significance. Therefore, future research should be aimed at 

producing hydrophobic silane coupling agents, improved silane wetting of nanoparticles and 

subsequent silanization to ensure a homogeneous filler distribution to limit phase separation. 

 

5.2.2.3 ‘Nanocluster’ modification 

Following the micromanipulation and pre-loading studies (Chapter 4) the mechanical 

properties and damage tolerance of the ‘nanocluster’ reinforced RBCs appeared superior to the 

nano-hybrid and conventionally filled RBCs tested. In contrast, immersion for between 1 and 78 



 148

weeks highlighted that the hydrolytic stability of the ‘nanocluster’ RBC was limited to a greater 

extent than the conventional (FZ) and nano-hybrid materials (GR and GF), suggesting that the 

‘nanoclusters’ may have acted as defect centres. These two distinct findings are apparently 

contradictory. Pre-loading is a dynamic testing technique which established improved mechanical 

properties and damage tolerance to the ‘nanocluster’ material in the current investigation. As a 

consequence repeated loading modified the IPC-like structure of the ‘nanoclusters’ to absorb and 

dissipate loading stresses more effectively. It may be speculated that the water storage regimes 

and subsequent static load to failure testing did not provide an opportunity for dynamic induced 

modification of the ‘nanocluster’, which may have otherwise demonstrated improved mechanical 

properties following immersion if repeated sub-critical loads were applied. This may suggest that 

repeated sub-critical loading prior to long-term immersion could provide the enhanced damage 

tolerance observed following the micromanipulation and pre-loading studies. 

 



CHAPTER 6  RESULTS & DISCUSSION: ACCELERATED DEGRADATION 

 

6.1 RESULTS: Degradation of Nanofilled RBCs: Solvent Storage 

 

 The aim of the solvent storage regimes was to compare the mechanical properties of six 

RBC materials (FSB, FST, FZ, Z100, GR and GF) following accelerated degradation using 

sodium hydroxide and ethanol. 

 

6.1.1 Storage in sodium Hydroxide 

 Specimens (n=5) of the RBCs studied were stored in sodium hydroxide for 24h, 1 and 2 

weeks, prior to BFS testing. 

 

6.1.1.1 Bi-axial flexure strength 

Two-way ANOVA highlighted a significant decrease in the mean BFS as a consequence 

of NaOH storage (F=2.97; P=0.004), the dependent variables of storage period (F=68.21; 

P<0.001) and material (F=31.28; P<0.001) were also identified to be significant (Figure 6.1). 

 

Storage PeriodStorage Period

BF
S 

(M
Pa

)

2 weeks1 week1 day NaOH1 day

225

200

175

150

125

100

75

50

Material

FZ
GF
GR
Z100

FSB
FST

BFS following NaOH Storage

 

Figure 6.1. Plot highlighting the mean BFS (MPa) of FSB, FST, FZ, Z100, GR and GF 
following 24h stored in a waterbath maintained at 37±1°C and 24h, 1 and 2 weeks in a 0.1M 
solution of NaOH also maintained at 37±1°C. 
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 The extent and rate of decrease was identified to differ significantly between the materials 

studied. One-way ANOVA identified a decrease in BFS of FSB following 24h stored in NaOH 

(121±51MPa; P=0.316) and a significant decrease following 1 week (63±15MPa; P=0.006), 

whilst a further increase in storage period to 2 weeks produced a mean BFS of 71±22MPa 

(P>0.05). The mean BFS of FST was continuously decreased to 140±10, 105±10 and 78±7MPa 

following 24h, 1 and 2 weeks respectively stored in NaOH, although this was not statistically 

significant when compared with the preceding BFS value (P=0.093; P=0.594; P=0.950). An 

initial significant decrease in the mean BFS of FZ to 146±26MPa was identified following 24h 

storage in 0.1M NaOH (P=0.007), whilst consecutive non-significant decreases in the BFS 

occurred following 1 (131±12MPa) and 2 (123±11MPa) weeks (P>0.05). The BFS of Z100 was 

significantly increased following 24h (220±18MPa; P=0.042), whilst a consecutive decrease 

occurred following 1 (143±25MPa; P<0.001) and 2 (106±47MPa; P=0.511) weeks. The mean 

BFS of GR was also significantly increased following 24h (160±10MPa; P=0.159), whilst the 

BFS was decreased to 119±3 and 93±6MPa following 1 and 2 weeks, respectively (P=0.304; 

P=0.950). The BFS of GF following 24h was also increased (106±16MPa; P=0.983), whilst 

consecutive reductions in BFS following 1 and 2 weeks to 72±14 (P=0.675) and 40±10MPa 

(P=0.760), were not significant (Table 6.1; Figure 6.2). 
 
 



 
 

FSB FST (a) 

Control 24h 1 week 2 weeks Control 24h 1 week 2 weeks 
Fracture strengths (MPa) 102-198 78-182 45-81 53-109 126-205 126-153 92-118 69-87 
Mean BFS (MPa) 155(27)A

2 121(51)A,B
2,3 63(15)C

3 71(22)B,C
2,3 177(22)A

1,2 140(10)A,B
2,3 105(10)B,C

1,2,3 78(7)C
1,2,3 

Percent difference (%) - -22 -60 -54 - -21 -41 -56 
         

FZ Z100 (b) 

Control 24h 1 week 2 weeks Control 24h 1 week 2 weeks 

Fracture strengths (MPa) 142-241 106-170 120-150 111-138 137-224 190-235 98-163 50-169 
Mean BFS (MPa) 192(23)A

1 146(26)B
2,3 131(12)B

1 123(11)B
1 180(23)B

1 220(18)B
1,2 143(25)B,C

1 106(47)C
1,2

Percent difference (%) - -24 -32 -36 - +18 -21 -42 
         

GR GF (c) 

Control 24h 1 week 2 weeks Control 24h 1 week 2 weeks 

Fracture strengths (MPa) 107-142 85-122 115-122 85-100 53-117 85-122 58-90 30-49 
Mean BFS (MPa) 125(11)A,B

3 160(10)A
2 119(3)A,B

1,2 93(6)A
1,2 87(17)A

4 106(16)A
3 72(14)B,C

2,3 40(10)B
3 

Percent difference (%) - +22 -5 -26 - +18 -17 -54 
 
 
 

Mean values within rows (for each material) and columns (for all materials) exhibiting different letters (in superscript) and numbers (in 
subscript) respectively, were significantly different (P<0.05). 

 
 

Table 6.1. The range, mean and percentage difference of the BFS (MPa) of (a) the nanocluster, (b) microhybrid and (c) nano-
hybrid RBCs following 24h stored in a waterbath maintained at 37±1°C and following 24h, 1 and 2 weeks stored in 0.1M NaOH also in 
a waterbath at 37±1°C. 
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Figure 6.2. Box and whisker plots highlighting the mean, median, inter-quartile range 
and outlaying data-points (*) of the BFS of FZ, FSB, FST, Z100, GR and GF following 24h 
storage in a waterbath and 24h, 1 and 2 weeks stored in 0.1M NaOH maintained at 37±1°C.  
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Figure 6.3. Representative FTIR spectra of RBCs in the range of 750-1750cm-1 following 
24h ‘wet’ and 24h, 1 and 2weeks stored in 0.1M NaOH, highlighting a reduction in the peak 
centred around 1050cm-1 and attributed to the Si-O bond present in the silane coupling 
agent and the silica filler particles.  
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Figure 6.4. Cryo-SEM images of fracture surfaces through the bulk of FSB, FST and FZ 
disc-shaped specimens (a) prior to and (b) following 2 weeks storage in 0.1M NaOH, 
highlighting degradation at the filler/silane/matrix interface (circled). 
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Figure 6.4 (continued). Cryo-SEM images of fracture surfaces through the bulk of Z100, 
GR and GF disc-shaped specimens (a) prior to and (b) following 2 weeks storage in 0.1M 
NaOH, highlighting degradation at the filler/silane/matrix interface (circled). 
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6.1.1.2 Depth of penetration 

           The depth of solvent penetration identified by a layer of degradation (Figure 6.5) highlighted a 

mean depth of between 61±15.7 and 197±69.9µm, dependent upon the material tested (Table 6.2). 
 

 

FSBa FSBb 

FSTb FSTa 

FZa FZb 

Figure 6.5. SEM of the (a) surface and (b) fracture surface of FSB, FST and FZ specimens 
following storage in 0.1M NaOH for 2 weeks, highlighting surface cracking and subsurface 
cracking/delamination (indicated by arrows for FST). 
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Figure 6.5(continued). SEM of the (a) surface and (b) fracture surface of Z100, GR and GF 
specimens following storage in 0.1M NaOH for 2 weeks, highlighting surface cracking and 
subsurface cracking/delamination (indicated by arrows for GR). Note, due to the depth of 
solvent induced subsurface damage in GF the scale differs from other images. 



 
 FSB FST FZ Z100 GR GF 

Depth of penetration (µm) 91 (38.2) 88 (28.5) 69 (18.6) 61 (15.7) 91 (16.5) 197 (69.9) 

 

Table 6.2 Depth of solvent penetration (µm) identified by a layer of RBC degradation. 

 
6.1.2 Storage in ethanol 

RBC specimens (n=5) were stored in EtOH for 24h, 1 and 2 weeks and the BFS and 

surface hardness subsequently determined. 

 

6.1.2.1 Bi-axial flexure strength 

Two-way ANOVA of specimens stored in EtOH highlighted both storage (F=55.72; 

P<0.001) and material (F=70.48; P<0.001) to be significant, whilst their interaction significantly 

reduced the BFS (F=9.39; P<0.001) (Figure 6.6). 
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Figure 6.6. Plot highlighting the mean BFS (MPa) of FSB, FST, FZ, Z100, GR and GF 
following 24h stored in a waterbath maintained at 37±1°C and 24h, 1 and 2 weeks in a 75% 
solution of EtOH also maintained at 37±1°C. 

 

One-way ANOVA identified that the BFS of FSB following 24h stored in EtOH was not 

significantly modified (160±30MPa; P>0.05), whilst a significant decrease in the BFS was 
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identified due to 1 week storage (64±15MPa; P<0.001), although the subsequent decrease 

following 2 weeks was not significant (39±4MPa; P=0.981). The mean BFS of FST was 

increased following 24h storage in EtOH, although this was not significant (198±35MPa; 

P=0.973), whilst following 1 week the BFS was significantly decreased (138±20MPa; P=0.008) 

and a further non-significant, decrease compared with the preceding BFS was identified 

following 2 weeks (92±9MPa; P=0.191). The BFS of FZ following 24h storage in EtOH was not 

significant (197±26MPa; P>0.05), although a significant decrease occurred following 1 week 

(93±5MPa; P<0.001) and a further non-significant decrease occurred following 2 weeks 

(77±4MPa; P>0.05). The mean BFS and standard deviation of Z100 following 24h, 1 and 2 

weeks was 197±38, 210±23 and 188±36MPa respectively which was not significantly different 

compared with the control (P>0.05). The BFS of GR was significantly increased following 24h 

(203±28MPa; P>0.05) storage and the BFS after storage for 1 (177±36; P=0.978) and 2 

(203±17MPa; P=0.980) weeks was not significantly affected. Likewise, the mean BFS of GF 

following 24h, 1 and 2 weeks (79±25, 94±5 and 45±28MPa) did not differ significantly 

compared with the ‘wet’ control (P>0.05) (Table 6.3; Figure 6.7). 

 

6.1.2.2 Surface hardness 

The mean surface hardness of FSB and FZ was significantly decreased following EtOH 

storage for 24h, 1 and 2 weeks, whilst the VHN of FST was significantly decreased following 1 

and 2 weeks compared with the control specimens (P<0.001). The VHN of Z100, GR and GF 

was only decreased following 2 weeks (P<0.05) (Table 6.3).  

 
 



 
 
 

FSB FST (a) 

Control 24h 1 week 2 weeks Control 24h 1 week 2 weeks 
Fracture strengths (MPa) 102-198 128-192 54-90 33-42 126-205 146-233 114-164 84-105 
Mean BFS (MPa) 155(27)A

2 160(30)A
1 64(15)B

4 39(4)B
3 177(22)A

1,2 198(35)A
1 138(20)B,C

2,3 92(9)C
2 

Surface Hardness (VHN) 88(1.89) 70 (4.84) 60 (2.03) 66 (5.02) 84 (1.68) 78 (2.39) 65 (5.53) 64 (3.53) 
         

FZ Z100 (b) 

Control 24h 1 week 2 weeks Control 24h 1 week 2 weeks 

Fracture strengths (MPa) 142-241 164-219 84-97 72-82 137-224 140-236 172-230 148-240 
Mean BFS (MPa) 192(23)A

1 197(26)A
1 93(5)B

3,4 77(4)B
2,3 180(23)A

1 197(38)A
1 210(23)A

1 188(36)A
1 

Surface Hardness (VHN) 93 (2.11) 82 (3.94) 69 (5.97) 68 (4.65) 120 (4.01) 136 (5.43) 129 (14.25) 83 (6.79) 
         

GR GF (c) 

Control 24h 1 week 2 weeks Control 24h 1 week 2 weeks 

Fracture strengths (MPa) 107-142 169-231 128-215 178-221 53-117 49-109 88-99 24-84 
Mean BFS (MPa) 125(11)B

3 203(28)A
1 177(36)A

1 203(17)A
1 87(17)A

4 79(25)A
3 94(5)A

3,4 45(28)A
2,3 

Surface Hardness (VHN) 119 (13.43) 136 (13) 126 (4.94) 86 (12.74) 54 (5.88) 60 (7.19) 53 (3.16) 37 (2.77) 

 
Mean values within rows (for each material) and columns (for all materials) exhibiting different letters (in superscript) and numbers (in 
subscript) respectively, were significantly different (P<0.05). 
 
Table 6.3. The range and mean bi-axial flexure strengths (MPa) and surface hardness (VHN) of (a) the ‘nanocluster’, (b) 
microhybrid and (c) nano-hybrid RBCs following 24h stored in a waterbath maintained at 37±1°C and following 24h, 1 and 2 
weeks stored in 75% EtOH also in a waterbath at 37±1°C. 
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Figure 6.7. Box and whisker plots highlighting the mean, median, inter-quartile range 
and outlaying data-points of the BFS (MPa) of FZ, FSB, FST, Z100, GR and GF stored 
‘wet’ for 24h and in EtOH for 24h, 1 and 2 weeks. 
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6.2 DISCUSSION: Accelerated degradation of nanofilled RBCs: Solvent Storage 

 

The degradation of RBC restorations can be accelerated using solvents, such as sodium 

hydroxide (NaOH) and ethanol (EtOH) to simulate routine ingestion of foodstuffs [Sarkar, 2000]. 

The current study highlighted a significant reduction in the bi-axial flexure strength of the six 

RBCs tested following storage for up to two weeks in NaOH (Section 6.2.1) and of the BFS and 

surface hardness following storage in EtOH (Section 6.2.2). 

 

6.2.1 Sodium hydroxide induced degradation  

A greater extent of mechanical degradation was observed following storage of the RBCs 

for two weeks in NaOH compared with the storage of specimens in water (Chapter 5) or EtOH. 

The specific action of NaOH is to degrade the interfacial silane layer at the filler/resin interface, 

whereby hydroxyl ions provided by the solvent reduce the siloxane bridge bonds to the original 

silanol groups. This generates additional hydroxyl ions, raising the pH (~13) which enhances 

dissolution of both the silane interface and silica filler [Sarkar, 2000]. The reaction becomes 

autocatalytic; accelerating interfacial degradation as the concentration of hydroxyl ions is further 

increased [Ortengren et al., 2001; Bagheri et al., 2007]. The total concentration of hydroxyl ions 

generated by NaOH is significantly greater than water, EtOH or artificial saliva, being 

approximately one million times greater than saliva [Sarkar, 2000; Bagheri et al., 2007], 

subsequently degradation produced by NaOH is significantly greater than these alternative 

solutions. 

Following two weeks immersion in NaOH the bi-axial flexure strength of FSB, FST, FZ, 

Z100, GR and GF (71±22, 78±7, 123±11, 106±47, 93±6 and 40±10MPa, respectively) was 

significantly reduced compared with the control specimens which were stored ‘wet’ for 24h 

(155±27, 177±22, 192±23, 180±23, 125±11 and 87±17MPa, respectively). The subsequent 

percentage decrease of FSB (54%), FST (56%), FZ (36%), Z100 (42%), GR (26%) and GF 

(54%) was calculated (Table 6.1), highlighting that although the pattern of decrease exhibited by 

the six RBCs was comparable (Figure 6.2) the ‘nanocluster’ reinforced RBCs (FSB and FST) and 

the ‘flowable’ RBC (GF) were most prone to degradation. In terms of the ‘nanocluster’ material 

this was consistent with the previous water storage studies which identified a decreased 

hydrolytic stability that became critical as a consequence of long-term storage (Section 5.1). The 
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similar, albeit off-set, pattern of decrease exhibited by GR and GF (Figure 6.2) highlighted the 

influence of decreased filler loading in the flowable material, which subsequently produced 

mechanical properties less than those obtained with a higher filler load in similar materials 

[Ferracane et al., 1998]. 

FTIR spectroscopy of all RBC specimens following immersion in NaOH highlighted a 

marked reduction in the absorbance peak at 1250-850cm-1 (Figure 6.3). This broad band within 

the FTIR spectra is related to the symmetric stretching of bonds attributed to Si-O-Si of the 

inorganic silica filler particles [Anagnostopoulos et al., 1993; Aldrich, 1997; Bertelsen & Boerio., 

2001]. This band also contains absorbance peaks attributed to the siloxane bonds and silanol 

groups associated with the silane interface [Ishida & Koenig, 1978; Antonucci et al., 2003], 

which includes stretch of Si-O-CH3 at 1189cm-1 associated with bonding of the silane coupling 

agent with the resin matrix [Anagnostopoulos et al., 1993]. In addition to also including the Si-O 

bond associated with formation of siloxane bridge bonds at 1090-1080cm-1 and at 1000-900cm-1, 

although these were generally masked by the silica absorbance peak which obscures this spectral 

region [Ishida & Koenig, 1978; Anagnostopoulos et al., 1993; Aldrich, 1997; Bertelsen & Boerio, 

2001]. Furthermore, following hydrolysis of the siloxane groups FTIR has previously highlighted 

silanol groups generated at 915-905cm-1 [Anagnostopoulos et al., 1993] and 930-840cm-1 due to 

the Si-O stretching mode of the Si-OH groups [Ishida & Koenig, 1978]. Although peaks directly 

associated with the silane interface may be masked by the broad band associated with silica filler 

particles, the relative comparison of peak heights using FTIR spectroscopy in the current study 

was useful to corroborate with the observed decrease in mechanical properties of RBCs as a 

consequence of interfacial silane degradation (Figure 6.4).  

 

6.2.1.1 Surface and subsurface degradation 

The surfaces of the RBC specimens were observed to be cracked and degraded following 

solvent storage (Figure 6.5), whilst a corresponding ‘peel layer’ was identified from bulk fracture 

analysis of the specimens (Figure 6.4). The peel layer was related to the depth of diffusion of 

NaOH into the specimen and whilst it may be assumed that the solvent diffused throughout the 

specimen, the peel layer was related to distinct structural modification of the RBC generated by 

the solvent [Mair, 1999; Hunter et al., 2003]. The depth of degradation in a given environment is 

dependent on the permeability of the RBC [Mair et al., 1989], which is determined by the physio-
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chemical characteristics of the resin, filler and silane coupling agent such as the hydrophilicity of 

the resin and the hydrolytic stability of the fillers and silane coupling agent [Sarkar, 2000]. 

Surface cracking and peeling due to storage in NaOH was attributed to the specific degradation of 

the silane coupling agent and loss of filler particles, where unfilled resins exposed to NaOH did 

not exhibit subsurface damage or peel layers [Sarkar, 2000]. The structural integrity and 

subsequent depth of the subsurface damage layer was identified to vary between materials, 

highlighting that the greatest extent of degradation was associated with porous fillers, whilst 

compact adherent fillers exhibited the least degradation [Sarkar, 2000]. The current study 

highlighted two distinct forms of peel layer, whereby a sub-surface layer of each specimen of 

FSB, FZ, Z100 and GF appeared to be delaminated from the majority of the specimen bulk. 

Conversely, the diffusion layer in FST and GR was identifiable as a layer of subsurface cracking 

which remained connected to the specimen bulk (Figure 6.5).  

A previous study highlighted that the depth of penetration of NaOH into the bulk of the 

RBCs tested (also manifested as surface cracking and subsurface peeling) ranged from 20.3±2.7 

to 176.4±1.5µm, with FSB exhibiting a mean depth of penetration of 94.8±0.5µm [Bagheri et al., 

2007]. Similarly, in the current study, FSB and FST possessed a mean depth of penetration of 

91±38.2µm and 88±28.5µm, respectively (Table 6.1; Figure 6.4). The variance of the data 

reported by Bagheri, (2007) was markedly less than that reported in the current study. Following 

immersion in NaOH, Bagheri, (2007) placed the specimens in aqueous silver nitrate for 10 days 

at 60°C, which were subsequently soaked in a photo-developing solution exposed to fluorescent 

light for 8h, sectioned and ground prior to SEM examination to determine the depth of solvent 

degradation via depth of silver nitrate penetration. Conversely, following immersion in NaOH for 

two weeks the specimens in the current study were immediately dried and examined in SEM 

(Section 3.2.1.3). This suggests that the method employed by Bagheri, (2007) which possessed a 

greater sample size, was considerably more concise, although the similarity of the mean values of 

FSB highlights the efficacy of the method reported in the current study.  

A markedly greater depth of solvent induced damage was identified for GF of 

197±69.9µm (with a range of 105 to 275µm), whilst that of the remaining RBCs were broadly 

comparable, ranging from 61±15.7 to 91±38.2µm (Table 6.2). The markedly higher depth of 

solvent induced damage within GF was attributed to the intentionally lower filler loading of 

‘flowable’ RBCs compared with conventional materials with higher filler loadings. Moreover, the 
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HEDMA monomer, which was incorporated to reduce the requisite activation energy of the resin 

matrix [Guzmán et al., 1997], has been reported to be extremely hydrophilic [Magni et al., 2007]. 

This was attributed to the presence of 1,3-dioxane rings as part of the monomeric structure of 

HEDMA, which whilst not initially hydrophilic were modified by hydrolysis to increase 

hydrophilicity [Guzmán et al., 1997]. This may suggest that the high concentration of hydroxyl 

ions generated by NaOH modified the 1,3-dioxane rings of HEDMA resulting in the high depth 

of solvent induced degradation observed in the current study. 

 

6.2.2 Ethanol induced degradation 

EtOH specifically degrades the resin matrix of RBCs since both BisGMA, the main 

constituent of the matrix, and EtOH possess a comparable solubility parameter [Badra et al., 

2005; Yap et al., 2005; Polydorou et al., 2007]. EtOH specifically degrades the resin matrix due 

to chain scission which cleaves the polymeric chains to oligomers and individual monomers 

(Section 2.1.1) and also elution of unreacted monomers, swelling and concomitant softening due 

to expansion of the polymer chains as the solvent penetrates the polymeric structure [Asmussen 

et al., 1984; Asmussen & Peutzfeldt 2001; Polydorou et al., 2007]. Subsequently, degradation of 

the resin matrix reduces the crosslink density of the polymerized chain structure within the resin 

matrix which reduces the structural integrity and produces ‘softening’ of the material, indirectly 

quantifiable by assessing surface hardness and/or flexural modulus of the material [McKinney & 

Wu, 1985; Göpferich et al., 1996; Asmussen & Peutzfeldt, 2001]. 

The bi-axial flexure strength of the ‘nanocluster’ (FSB and FST) and the microhybrid 

(FZ) RBCs were significantly reduced following one week storage in EtOH (64±15, 138±20 and 

93±5MPa, respectively) compared with the control groups. This decline in mechanical properties 

related to degradation of the polymerized structure and was further manifested as a reduction in 

surface hardness of FSB and FZ following 24h and one week storage in EtOH, whilst the VHN of 

FST was significantly reduced following one week (Table 6.3a). In contrast, the BFS of Z100 and 

GR was statistically similar or significantly increased following up to and including two weeks 

storage in EtOH, whilst the BFS of GF was significantly reduced following two weeks compared 

with the control. Furthermore, the surface hardness of Z100, GR and GF was only significantly 

decreased following two weeks storage in EtOH compared with the control (Table 6.3b&c). The 

extent and rate of degradation following storage in EtOH is attributable to the specific resin 
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matrix chemistry [Bastoli et al., 1990; Ferracane et al., 1998; Sarker, 2000; Göpferich et al., 

1996]. Despite the significant influence the resin matrix chemistry imparts on the subsequent 

mechanical and rheological properties of RBCs, dental manufacturers seldom divulge the exact 

quantity or ratio of monomers reporting merely the generic resin chemistry to protect intellectual 

property and to prevent duplication by competitors. Thus, predicting the likely mechano-physical 

properties of RBCs is unreliable and potentially misleading without extensive in vivo and in vitro 

studies. Nevertheless, it has been reported that the diluent TEGDMA was virtually eliminated 

from the matrix of FSB, FST and FZ, compared with the earlier Z100, and replaced with UDMA 

and BisEMA6. The replacement of TEGDMA with UDMA and BisEMA6 has previously been 

identified to improve mechanical properties, such as tensile strength, elastic modulus and wear 

resistance of the resulting RBC [Indrani et al., 1995; Peutzfeldt, 1997]. The BisEMA6 monomer 

is a lower viscosity analogue of BisGMA and has been identified to increase the degree of 

conversion and crosslink density to improve the flexural strength when admixed with BisGMA 

monomers [Ogliari et al., 2008]. In addition, BisEMA6 is known to form weaker hydrogen bonds 

with water molecules than the hydroxyl groups of BisGMA and TEGDMA molecules, thereby 

reducing the hydrophilic nature of the constituent monomers and theoretically increasing the 

hydrolytic stability of the resin [Finer & Santerre, 2004; Palin et al., 2005c]. Despite this, Bagheri 

et al. (2007) identified that resins consisting of both TEGDMA and BisEMA6, in particular FSB, 

exhibiting a higher susceptibility to solvent degradation than resins containing a higher quantity 

of BisGMA, although Bagheri et al. (2007) did not offer an explanation for this, suggesting that 

further work was required. In addition, Ogliari et al. (2008) identified that water sorption and 

solubility of resins consisting of BisEMA increased as the number of ethylene oxide groups 

increased. The current study concurred with Bagheri et al. (2007), highlighting a more significant 

extent of EtOH induced degradation of the RBCs possessing a resin matrix containing BisEMA6 

(FSB, FST and FZ). This may suggest that the presence of BisEMA6 limited the hydrolytic 

stability of the material and initiated degradation of the of the resin matrix as highlighted by a 

pronounced strength reduction and surface softening. This may also partially explain the 

considerably higher percentage reduction in BFS identified following long-term water storage of 

FSB, FST and FZ compared with GR and GF identified following the water storage study 

reported in Chapter 5. 
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The enhanced fracture strength and surface hardness of Z100, GR and GF following 

storage in EtOH was also attributed to the resin matrix chemistry which consisted of BisGMA 

and TEGDMA (also HEDMA in the case of GF) (Table 3.1). Asmussen & Peutzfeldt (2001) 

reported polymerization and extent of crosslinking between the constituent monomer chains to be 

increased by a high proportion of TEGDMA in a mixture of BisGMA, manifested as an increased 

surface hardness. The TEGDMA monomer was originally incorporated as a diluent to decrease 

the viscosity of the BisGMA-based resin matrix due to the low molecular weight of TEGDMA 

(286 compared with 513g/mol [Ge et al., 2005]) and also the flexibility of the monomer as ether 

links present little steric hindrance to chain rotation [Ruyter & Svendsen, 1978]. TEGDMA 

monomers possess a high content of C=C linkages which provide many centres of polymer 

growth during polymerization, thus producing a highly crosslinked structure and high degree of 

conversion [Asmussen et al., 1982; Asmussen & Peutzfeldt, 2001; Feilzer & Dauvillier, 2003; 

Hunter et al., 2003]. As a consequence the mechanical properties of materials which contain a 

high quantity of TEGDMA are generally increased [Assmussen et al., 1998], this concurred with 

the current study where the three RBCs (Z100, GR and GF) which contained a high quantity of 

TEGDMA (and also an absence of BisEMA6) possessed improved flexure strength and surface 

hardness values. 

Despite its apparent beneficial influence the incorporation of TEGDMA into the resin 

matrix requires a degree of compromise since the high degree of conversion, in addition to 

providing improved mechanical properties [Asmussen et al., 1982; Asmussen & Peutzfeldt, 2001; 

Feilzer & Dauvillier, 2003; Hunter et al., 2003], also produces polymerization shrinkage, as the 

C=C bonds are converted to the physically shorter single bonds of the polymerized network 

[Sideridou et al., 2002; Ferracane, 2005]. This promotes marginal gap formation at the 

restoration/tooth interface and monomer elution [Asmussen et al., 1984; Asmussen & Peutzfeldt, 

2001; Floyd & Dickens, 2006]. Furthermore, TEGDMA is a hydrophilic monomer, due to the 

ethylene-glycol groups and has been shown to be prone to degradation and erosion [Geurtsen & 

Leyhausen, 2001; Finer & Santerre, 2004], Kalachandra et al. (1987) highlighted that increasing 

the proportion of TEGDMA from 0 to 1.0wt% increased the water sorption. Therefore, the resin 

matrix chemistry may be modified to remove or reduce the quantity of TEGDMA present by the 

addition of an alternative monomer, such as UDMA and BisEMA6 as in the case of FSB, FST 

and FZ. The UDMA and BisEMA6 monomers possess a lower content of C=C bonds which 
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reduces polymerization shrinkage [Ellakwa et al., 2007], whilst also providing improved flexure 

strength [Assmussen et al., 1998]. Furthermore, compared with BisGMA-based RBCs the 

urethane linkage, decreased quantity of C=C bonds and therefore longer chain ends and increased 

molecular stability within UDMA monomers provides a lower viscosity and more flexible 

monomer, improving the tensile strength, elastic modulus and wear resistance [Peutzfeldt, 1997]. 

However, Ellakwa et al. (2007) identified that polymerization shrinkage increased again with an 

increased ratio of UDMA to BisGMA. This highlights the compromise between degree of 

conversion, mechanical properties and polymerization shrinkage which must be considered when 

selecting the specific resin matrix chemistry.  

The increased BFS and surface hardness of Z100 and GR (Table 6.3) also suggested that 

post-cure polymerization of the resin occurred for up to seven days following irradiation. Post-

curing occurs despite RBCs being described as so-called ‘command cure’ materials, whereby 

polymerization of the resin matrix is initiated by irradiation and continues following completion 

of the specified curing cycle. This is due to continued diffusion of free radicals resulting in an 

increased degree of conversion and subsequent reduction in pendent chain ends in the matrix 

[Yap, 1997; Tilbrook et al., 2000; Stansbury et al., 2001; Rueggeberg, 2002; Wilson et al., 2005]. 

Post-cure polymerization of resins may be promoted by heat treatment to reduce the viscosity of 

the resin enabling ease of free radical diffusion [Quance et al., 2001; Rueggeberg, 2002]. 

Therefore, it may be suggested that the presence of higher quantities of low viscosity monomers, 

such as TEGDMA in the current study of Z100 and GR, may also allow free radical diffusion to 

enhance the degree of conversion and subsequent mechanical properties. 
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CHAPTER 7  EXECUTIVE SUMMARY 

 

 The ongoing development of RBCs has resulted in the introduction of so-called 

‘nanofills’ which contain inorganic filler particles with a mean diameter of less than 100nm. 

Dental materials manufacturers have routinely adopted the approach of combining these nano-

sized fillers with a dispersion of micron-sized particles to maximise the filler loading and produce 

a hybrid-type RBC [Kleverlaan & Feilzer, 2005; Lohbauer et al., 2006; Mui et al., 2006; Beun et 

al., 2007]. The introduction of ‘nanocluster’ fillers, which are essentially an agglomerated 

particle complex consisting of either silica-zirconia or silica particles, with a mean size of 5-

20nm and 75nm respectively, was an alternative approach to the developing field of 

‘nanotechnology’ in restorative dentistry [Mitra et al., 2003]. However, considerable debate 

amongst researchers [Harris & Ure, 2006] and manufacturers [CARE, 2003; Mitra et al., 2003] 

has been associated with the potential of these materials to provide improved mechano-physical 

properties and subsequently enhance the clinical longevity of modern RBCs. 

 

7.1 The Mechanical Properties of ‘Nanofilled’ RBCs 

 

The reinforcement provided by the ‘nanoclusters’ to the resin matrix was studied using a 

micromanipulation technique to determine the fracture strength, pseudo-modulus of stress and 

failure mechanisms of the particulates during compressive loading [Zhang et al., 1991; 1992]. 

Micromanipulation highlighted that the ‘nanocluster’ particles provided unique fracture 

mechanisms compared with the spheroidal and irregular particles, exhibiting multiple fracture 

events, which indicated that the progressive break-up of the ‘nanoclusters’ had the potential to 

absorb and dissipate loading stresses. A pre-loading technique was subsequently employed to 

induce sub-critical damage to the RBCs studied prior to loading to failure in bi-axial flexure to 

highlight the reinforcement provided by the inorganic fillers. The pre-loading results highlighted 

that the ‘nanocluster’ material exhibited increased resistance to fracture and improved reliability 

of the strength data following the pre-loading regimes, particularly following storage in water. In 

contrast, the RBCs reinforced either with irregular or spheroidal particles exhibited a predilection 

to premature specimen fracture prior to completion of the pre-loading regimes, due to high 

Young’s modulus of the material or stress concentration around the fillers [Sabbagh et al., 2004]. 
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Pre-loading also suggested that the ‘nanoclusters’ possessed an IPC-like structure produced by 

silane infiltration of the interstices and internal porosities to create an interconnected network of 

nanoparticles, which enhanced the resistance to deformation [Clarke et al., 1992; Wegner & 

Gibson, 2001]. Clinically the distinctive capacity of the ‘nanocluster’ to enhance the damage 

tolerance of the material due to crack bifurcation and the absorption and dissipation of crack 

stresses and accumulated fatigue by deformation of the ‘nanocluster’ may provide improved 

resistance to low stress failures and subsequently increase the clinical longevity of the restoration.  

 

7.2 Water and solvent induced degradation of nanofilled RBCs 

 

NIRS of the RBC specimens highlighted a residual quantity of water within the resin 

matrix, even following specimen dehydration. The identical resin matrices of FSB and FZ were 

saturated following 13 weeks immersion, whilst the continued increase in water content of FST 

identified throughout the study was attributed to the increased surface-area-to-volume ratio of the 

higher quantity of dispersed nano-sized silica available for wetting with the hydrophilic silane. 

Likewise, the increased water content of GR compared with GF was attributed to the higher filler 

loading and thus greater quantity of silane coupling agent. 

The presence of water and subsequent hydrolytic degradation of the resin matrix [Bastoli 

et al., 1990; Ferracane et al., 1998; Catteni-Lorente et al., 1999] and interfacial siloxane bridge 

bonds [Söderholm et al., 1984; Söderholm & Roberts, 1990; Stokes et al., 1988] significantly 

degraded the mechanical properties of the RBCs in the current study. The nominally identical 

resin matrix chemistries of FSB, FST and FZ highlighted that the hydrolytic stability of the 

‘nanoclusters’ was limited as the ‘nanocluster’ reinforced RBCs exhibited a greater reduction in 

BFS (62, 49 and 36% strength loss respectively following 78 weeks). This was further manifested 

as FSB, which contained a higher loading of ‘nanoclusters’ than FST exhibited a more 

pronounced loss of BFS. This suggested that following long-term immersion hydrolytic 

degradation of the silane interface with the surrounding resin and potentially also of the bonding 

between constituent nano-sized particles, caused the ‘nanoclusters’ to act as defect centres  

Immersion of the RBC specimens (FSB, FST, FZ, Z100, GR and GF) in NaOH 

highlighted a significant reduction in the BFS, this was most pronounced for ‘nanocluster’ 

reinforced RBCs which further suggested that the hydrolytic stability of the ‘nanoclusters’ was 
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limited. FTIR spectroscopy and SEM identified this to be due to degradation of the silane layer at 

the filler/resin interface. Furthermore, SEM highlighted surface and subsurface microcracking 

related to the depth of diffusion of NaOH into the bulk of the RBC specimens [Mair, 1999; 

Hunter et al., 2003], which resulted in surface delamination of FSB, FZ, Z100 and GF specimens. 

In contrast, no delamination was identified for FST and GR specimens, in conjunction with the 

NIRS results which highlighted these two materials did not become saturated, this suggested an 

increased capacity to absorb solvent which limited the extent of degradation. 

Following EtOH storage FSB, FST and FZ exhibited significant degradation due to the 

presence of BisEMA6 in the resin matrix [Bagheri et al., 2007]. Conversely, the higher content of 

TEGDMA and corresponding absence of BisEMA6 in the matrix of Z100, GR and GF appeared 

to promote additional crosslinking and post-cure polymerization [Asmussen & Peutzfeldt, 2001; 

Hunter et al., 2003; Holmes et al., 2007] which maintained or increased the mechanical properties 

of these materials.  

 

7.3 The structure and classification of ‘nanoclusters’ 

 

The modern ‘nanocluster’ particulate appears to exhibit a remarkable similarity with the 

‘agglomerated microfill complex’ (AMC) particulates briefly utilised in certain RBCs during the 

late 1980s [Lutz & Philips, 1983; Roulet, 1987; Willems et al., 1992]. AMC fillers consisted of 

primary inorganic particles (1-100nm diameter) produced either by hydrolysis or precipitation 

and subsequent heat treatment at 600°C to agglomerate the primary particles to secondary 

particles possessing a size distribution of 0.5-50µm. The AMC particles were admixed with 

pyrolytic silica particles (0.05µm diameter) into an organic resin matrix. A number of 

commercial RBCs containing AMC particles were introduced in the 1980s, including Nimetic-

Dispers (ESPE, Seefeld, West Germany) and Answer (Johnson & Johnson, East Windsor, NJ, 

US) with a filler loading of 39.8 and 39.1vol% and a mean sintered agglomerate particle size of 

13.8 and 20.7µm, respectively [Willems et al., 1992]. However, comparative studies of Young’s 

modulus highlighted that these products did not compare favourably with other commercially 

available restorative dental RBCs [Braem et al., 1986b; 1987]. The ‘nanocluster’ fillers studied 

possess a remarkable similarity with AMC fillers due to similar production techniques (Section 

3.1.2) and microstructure (Figures 4.4, 5.12 and 6.4) to that described for the AMC, although the 
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‘nanocluster’ was markedly smaller (≤5.0µm). This may suggest that the ‘nanocluster’ is a 

development or refinement of this pre-existing technology, nevertheless studies of Filtek™ 

Supreme have highlighted that modern ‘nanocluster’ reinforcement produces mechano-physical 

properties at least comparable with conventionally filled materials [Kleverlaan & Feilzer, 2005; 

Lu et al., 2006; Beun et al., 2007; Turssi et al., 2007; Watanabe et al., 2008].  

 The classification of so-called ‘nanofill’ and ‘nano-hybrid’ RBCs remains an issue of 

considerable contention within the dental literature [CARE, 2003; Mitra et al., 2003; Harris & 

Ure, 2006; Junior et al., 2008]. Furthermore, these materials do not fit into the accepted 

classification scheme developed by Lutz & Philips (1983), whereby specific mechanical 

properties were attributed to specific filler loadings, size and morphology. This may suggest that 

more than twenty-five years since its introduction this scheme requires updating to remain 

relevant to modern dental restorative materials, such as ‘packable’ [Leinfelder et al., 1998; 

Combe & Burke, 2000], ‘flowable’ [Combe & Burke, 2000; Sabbagh et al., 2004], ‘universal’ 

[Cobb et al., 2000; Manhert et al., 2001] nanohybrid and ‘nanofill’ [Mitra et al., 2003; Beun et 

al., 2007] RBCs. The development of RBCs previously included distinct modification of the filler 

size and improved the filler distribution [Lutz & Philips, 1983; Roulet, 1987], whilst the subtle 

and often incremental modification of filler or resin during the development of modern materials 

(Section 1.3.2) has often rendered classification difficult.  

The description of materials as ‘nano’ implies that these materials are an aspect of the 

field of nanotechnology and therefore will possess specific advantages due to features within the 

‘nano’ range. Subsequently, there is considerable debate concerning the relevance of the ‘nano’ 

prefix to modern dental RBCs and the specific improvements provided by so-called nanoparticles 

compared with existing materials [CARE, 2003; Mitra et al., 2003; Harris & Ure, 2006]. 

‘Nanomaterials’ are generally defined as possessing components and/or structural features with at 

least one dimension of <100nm and to subsequently demonstrate novel and distinct properties 

[Harris & Ure, 2006; Lui & Webster, 2007]. The discrete nano-sized (5-20 and 75nm) fillers 

comply with the first part of this definition, whilst the agglomerated ‘nanoclusters’ are markedly 

larger at 0.6-1.4µm according to the manufacturer or as identified in the current study up to 

approximately 5µm (Figures 4.4, 5.12 and 6.4). Despite this the ‘nanoclusters’ are agglomerates 

of constituent nanosized particles (5-20 and 75nm), suggesting compliance with the definition. 

To comply with the second part of the definition the material must possess novel and distinct 
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properties due to the presence of the feature described as being ‘nano’. This is where 

considerable contention arises as some studies have suggested that ‘nanoclusters’ are simply a 

microhybrid-type particle under a different name, a name assumed due to marketing 

considerations rather than in relation to a specific technological advancement [CARE, 2003; 

Junior et al., 2008]. In contrast, previous studies of the ‘nanocluster’ reinforced RBC have 

highlighted that the mechano-physical properties were at least comparable, and on occasion 

superior, to the other RBCs investigated. Beun et al. (2007) identified that the elastic modulus, 

flexure strength and surface hardness of FSB, in addition to GR and GF, was superior to 

microfilled RBCs and comparable with the universal RBCs studied. Likewise, Mota et al. (2006) 

highlighted that of several commercial nanofills tested, FSB and GR exhibited superior 

mechanical properties when compared with 4 Seasons (Ivoclar Vivadent), Esthet-X Improved 

(Dentsply) and Palfique Estelite (Tokuyama Dental Corp.). The fracture toughness of FSB, and 

also FZ, was determined by Watanabe et al. (2008) to be superior to that of the microhybrid and 

microfills also studied. The polymerization shrinkage of FSB was identified by Kleverlaan & 

Feilzer (2005) to be 2.5vol%, which compared favourably with the other RBCs studied (2.0-

5.6vol%). Likewise, Lu et al. (2006) identified that FSB exhibited the lowest polymerization 

shrinkage of the particular materials selected in that study. A study of the tensile, compressive 

and flexural strengths and also the fracture resistance conducted by Mitra et al. (2003) also 

identified that the ‘nanocluster’ reinforced RBC compared favourably with, or were superior to, 

the other commercially available RBCs studied, although this may not be surprising considering 

Mitra et al. (2003) developed the material. Furthermore, Turssi et al. (2007) highlighted that the 

wear and fatigue resistance of FSB, and also GR, was comparable with the microfill, although the 

other nanofills did not compare as favourably. Furthermore, the current study highlighted that the 

‘nanocluster’ reinforced RBCs possessed unique failure mechanisms and enhanced damage 

tolerance due to absorption and dissipation of repeated stresses following pre-loading, which may 

suggest that the clinical occurrence of low stress failures may be reduced or eliminated. 

Consequently, when considering whether ‘nanoclusters’ fulfil the second caveat defining a 

‘nanomaterial’, namely the provision of distinct properties due to the ‘nano’ feature, whilst it is 

difficult to provide a definitive answer the balance of probability seems to suggest this to be the 

case. 
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Summary 

In summary, the unique fracture mechanisms exhibited by the ‘nanocluster’ particles and 

the IPC-like structure provided distinct improvements to the resistance to fracture and reliability, 

thus enhancing the damage tolerance and clinical longevity of the ‘nanocluster’ reinforced RBC. 

In contrast, the specific resin matrix chemistry and also the limited hydrolytic stability of the 

‘nanocluster’ particles in solvents may reduce the fracture resistance and long-term efficacy of 

the ‘nanocluster’ reinforced RBC. Nevertheless, the ongoing development of hydrophobic resin 

matrix derivatives [Moszner et al., 2007b; Perieira et al., 2007] and alternative silane coupling 

agents [Debnath et al., 2004; Sabbagh et al., 2004; Torry et al., 2006] may enable the potential 

enhanced damage tolerance of ‘nanocluster’ reinforced RBCs to be realised.  
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CHAPTER 8  CONCLUSIONS 

 

 The null hypothesis stated that the ‘nanocluster’ particle complex would not exhibit 

differing fracture mechanisms compared with conventional filler particles and also that 

‘nanocluster’ reinforced RBCs would not exhibit significantly different mechanical properties 

compared with existing RBCs. This was rejected by the current study which identified that the 

‘nanoclusters’ exhibited unique fracture mechanisms, improved fracture resistance and reliability 

following pre-loading, although the long-term hydrolytic stability of the ‘nanocluster’ RBC was 

identified to be limited. 

 

In conclusion, 

 

1. Micromanipulation of the agglomerated ‘nanocluster’ complexes highlighted a tendency 

to multiple fractures compared with conventional fillers. The fracture strength and 

pseudo-modulus of stress of the ‘nanoclusters’ was consistently higher than either the 

spheroidal or irregular particles. Furthermore, the efficacy of the micromanipulation 

technique was established. 

 

2. Cyclic pre-loading of the ‘nanocluster’ RBCs generated statistically similar or 

significantly increased bi-axial flexure strengths and associated Weibull moduli at pre-

loads (50 and 100N) that initiated catastrophic failure of the other RBCs tested. 

Furthermore, ‘wet’ storage of the ‘nanocluster’ RBC produced a significant increase in 

fracture strength and reliability compared with specimens stored ‘dry’. Subsequently, the 

‘nanocluster’ particle was identified to provide unique reinforcement to the resin matrix. 

The combination of unique reinforcement identified by micromanipulation and silane 

infiltration of structural porosities improved the damage tolerance of the ‘nanocluster’ 

material and may enhance the clinical longevity of restorations.  

 

3. A residual quantity of water was identified by NIRS bound in the resin matrix following 

dehydration and ‘dry’ storage. Water content increased proportionally with time until the 

hydrophilic resin matrix and silane interface of FSB, FZ and GF became saturated 
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between one and thirteen weeks. Conversely, water sorption into FST and GR continued 

to increase throughout the study, due respectively to the higher content of non-aggregated 

nanofiller (FST) or high filler loading (GR) which provided an increased surface-area-to-

volume ratio for silanization and thus available for water uptake. 

 

4. Long-term storage of the ‘nanocluster’ RBCs in water reduced the mechanical properties 

to a significantly greater extent compared with the other materials tested, suggesting that 

the long-term hydrolytic stability of the ‘nanoclusters’ was limited and degradation of the 

silane interface caused the ‘nanoclusters’ to act as defect centres. 

 

5. Storage in sodium hydroxide and ethanol accelerated degradation of the RBCs. FTIR and 

SEM following immersion in sodium hydroxide for two weeks highlighted degradation of 

the silane interface and subsequent microcracking. Ethanol storage highlighted that the 

resin matrix chemistry of FSB, FST and FZ, which was identical with the exception of the 

higher content of CQ in FST, limited the mechanical properties compared with the other 

RBCs tested. This was attributed to the BisEMA6 monomer and absence of TEGDMA 

which enhanced the surface hardness of Z100, GR and GF. 

 

In summary, whilst the long-term hydrolytic stability of the ‘nanocluster’ reinforced RBC 

was limited by the specific resin matrix chemistry and degradation of the interfacial silane layer, 

repeated sub-critical loading provided enhanced damage tolerance due to the ability of the 

‘nanocluster’ to deform and absorb or dissipate crack stresses. This may provide improved 

resistance to low stress failures and subsequently increase the clinical longevity of ‘nanocluster’ 

reinforced RBC restorations. 

 175



CHAPTER 9  RECOMMENDED FURTHER WORK 

 

Interfacial failure of the siloxane bridge bonds produced by the silane coupling agent at 

the filler/resin interface occurred as a consequence of the storage regimes employed, which 

generated microcracks and limited the longevity of the RBCs. However, the extent of interfacial 

degradation was not quantifiable. It is therefore suggested that this should be characterized using 

an atomic force microscope (AFM) with nano-indentation attachment. In essence the nano-

indentation technique will produce an array of indentations to determine the hardness of a 

specific area, enabling the hardness of the filler/silane/resin interface to be quantified and the 

extent of degradation to be determined. 

 

The extensive degradation of the ‘nanocluster’ RBC due to water storage studies 

contradicted the enhanced damage tolerance suggested by micromanipulation and pre-loading 

results. Therefore a combination of pre-loading prior to long-term water storage may further 

elucidate the reinforcement provided by the ‘nanoclusters’, particularly if deformation of the 

‘nanoclusters’ is required to provide the enhanced damage tolerance identified.  

 

 The NIR study of water sorption highlighted a discrepancy compared with results which 

may be obtained using the generally accepted gravimetric analysis technique, specifically NIR 

identified a quantity of water bound in the resin matrix even following dehydration whilst 

gravimetric analysis assumes water to have been eliminated. This suggests that additional study 

of a range of RBC materials should be conducted to compare the water content determined using 

NIR and gravimetric analysis to establish a ‘true’ value of water content for the materials.  

 

The efficacy of employing the micromanipulation technique to characterize the 

mechanical properties of the micro-sized filler particles was determined. However, the 

micromanipulation rig was operating at the limit of what was achievable with the sensitivity of 

this technique. Therefore, to further characterize the properties of the ‘nanoclusters’, particularly 

smaller sub-micron clusters, and also the ubiquitous sub-micron silica fillers within many modern 

RBCs it is proposed that a nanomanipulation technique be employed. The nanomanipulation 

technique proposed [Liu et al., 2005; 2007] is a direct development of the micromanipulation 

 176



technique employed in the current study and essentially operates on the same principles whereby 

single nano-sized particles are compressed to failure. In this case loading occurs within an ESEM 

chamber to provide considerably higher image resolution and enable recording of the 

nanoparticles undergoing failure [Liu et al., 2005; 2007]. Furthermore, the nanomanipulation 

technique may be used to load and unload the ‘nanoclusters’ without inducing failure, or using a 

staircase-like fatigue technique (Section 2.2.3.1), thereby allowing study of the elastic recovery 

and damage tolerance of the ‘nanocluster’ particles. 

 

 The current study evaluated a commercial material to determine the mechanical and 

physical properties provided by a unique filler-type. Therefore, to further elucidate the effect of 

nanoscale particulates on deformation characteristics of resin-based composites, model systems 

may be investigated to determine the effect of various filler fraction proportions of agglomerated 

‘nanoclusters’ to discrete nanoparticles on the long-term mechano-physical properties.  
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APPENDIX OF PRELIMINARY STUDIES 
 

Appendix 1  Micromanipulation of supplied FSB and silanated GR  

 ‘Nanocluster’ filler particulates separated from the resin matrix using the dissolution 

method and irregular fillers supplied by the manufacturer coated with a silane coupling agent 

were tested using the micromanipulation technique (Section 3.2.1). The hypothesis was;  

1. The fracture mechanisms of the ‘nanoclusters’ separated using the dissolution technique 

(Section 3.2.1.1) would be comparable with those of ‘nanoclusters’ supplied by the 

manufacturer. 

2. The mechanical properties of the silanated and unsilanated irregular particulates (GR) 

would be comparable.  

 

Kruskal-Wallis & Mann Whitney U tests highlighted no significant difference between 

the force at fracture of the ‘nanoclusters’ supplied by 3M (FSB) and those separated from the 

unpolymerized resin matrix (FSB(sep)) (P>005) (Figure A1a). Z-tests of the fractures did not 

highlight a significant difference between the occurrences of multiple fractures (P=0.76). 

Likewise, statistical analysis and z-tests of the silanated and unsilanted irregular filler failed to 

highlight a significant difference (P>0.05). Furthermore, comparison of the pseudo-modulus of 

stress of the supplied and separated ‘nanoclusters’ and of the silanated and unsilanated irregular 

fillers highlighted no significant difference (P>0.05) (Figure A1b). 

Consequently, both hypotheses were accepted and it was concluded the fillers selected for 

the investigation were representative of the failure mechanisms fillers underwent. 
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Figure A1. Box and whisker plots highlighting the range and mean (a) force at fracture 
(µN) and (b) pseudo-modulus of stress of FSB, FZ, GR fillers and also FSB fillers separated 
by dissolution and silanated GR fillers following analysis using the micromanipulation 
technique. 
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Appendix 2 Oven-LCU 

 The Vickers surface hardness of disc-shaped specimens of FZ following the 

recommended 20s irradiation period using a handheld-LCU was identified to be 94±4.2. 

Subsequently, to attain a comparable degree of cure for the beam-shaped specimens produced 

using the oven-LCU an approximately equivalent surface hardness was sought. 

 

Curing time (mins) 1 4 8 11 14 18 

Surface hardness (VHN) 33 (2.7) 62 (3.3) 82 (1.9) 88 (3.4) 93 (3.1) 92 (3.9) 

 

Table A1. Vickers surface hardness of FZ specimens following selected curing periods 
within the oven-LCU to obtain a compared degree of cure to that of the handheld Optilux 
501 LCU. 
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