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Abstract

The origin of the quantum mechanical spin of the proton in terms of its constituents is not

yet fully understood. The discovery that the intrinsic spin of quarks contributes only a small

fraction of the total proton spin sparked a huge theoretical and experimental effort to understand

the origin of the remainder. In particular the transverse spin properties of the proton remain

poorly understood. Significant transverse spin asymmetries in the production of hadrons have

been observed over many years, and are related to both the transverse polarisation of quarks in a

transversely polarised proton and to the spin dependence of orbital motion. These asymmetries

are of interest because of perturbative QCD predictions that such asymmetries should be small.

Measurements of such asymmetries may yield further insights into the transverse spin structure

of the proton.

The Relativistic Heavy Ion Collider (RHIC) is the world’s first polarised proton collider,

and has been taking proton data since 2001. Polarised proton collisions at
√

s= 200 GeV taken

during the 2006 RHIC run have been analysed and the transverse single and double spin asym-

metries in the production of the neutral strange particlesK0
S, Λ andΛ have been measured in the

transverse momentum range 0.5< pT < 4.0 GeV/c atxF ≈ 0. Within statistical uncertainties

of a few percent the asymmetries are found to be consistent with zero.
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Chapter 1

The Structure of the Nucleon

1.1 Nucleon Structure

Over the past century huge strides have been made in understanding the structure of matter at

subatomic scales. Atoms, named from the Greek word for “indivisible”, were initially believed

to be the fundamental building blocks of matter. In 1897, J.J. Thomson’s studies of cathode rays

indicated that atoms contain negatively charged particles [1], called electrons. He proposed a

model of the atom in which negatively charged electrons exist within a uniform sphere of posi-

tive charge [2]. The positive charge of the sphere balances the negative charge of the electrons,

giving a neutral atom. This model was disproved by the Geiger-Marsden experiment in 1909

[3], in which a small fraction of alpha particles incident on a gold foil were backscattered.

This result was incompatible with the picture of a diffuse positive charge provided by Thom-

son’s model. In 1911 Ernest Rutherford proposed a model in which the positive charge and the

majority of the mass of the atom were concentrated in a small central region - the nucleus -

surrounded by orbiting electrons [4].

Later the nucleus itself was found to comprise two types of particles (‘nucleons’). Positively

charged protons were discovered by Rutherford in 1919 [5], when he observed that bombarding

nitrogen with alpha particles produced hydrogen. He concluded that the hydrogen atoms were

produced from the nitrogen nucleus, and so must form a component of it. In 1932 James
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Chadwick discovered neutrons, electrically neutral consitituents of nuclei with approximately

the same mass as the proton [6]. Neutral atoms contain equal numbers of protons and electrons,

and the chemical identity of an element is determined solely by its electron structure. Isotopes

are variant atomic forms with the same proton (electron) number but a different number of

neutrons. Hence the complicated family of elements within the periodic table were explained

in terms of only three particles.

Electrons and nucleons were found to possess an intrinsic property with the characteristics

of an angular momentum, which came to be referred to as ‘spin’. Despite this name, spin is a

quantum mechanical property and is not thought of as a classical rotation of a particle about an

axis. Rather it is a quantum number intrinsic to the particle species, like its charge, and has no

analogue in classical mechanics. Spin (S) occurs in only integer or half-odd-integer multiples

of the reduced Planck constanth̄; S= sh̄. A particle with spin exists in one of a number of

spin states. The quantum number describing the state takes a value in the range -s to +s at

integer intervals, yielding 2s + 1 possible states. The electron, proton and neutron all possess

spin of ½ h̄, commonly referred to as ‘spin-½’. They can exist in a state of s = -½ or s = +½.

This is the “classically indescribable two-valuedness” of the electron described by Wolfgang

Pauli. Particles with half-odd-integer spin are referred to as fermions and those with integer

spin as bosons. The spin-1 photon is an example of a boson. Fermions obey the Pauli Exclusion

Principle, which states that two particles of the same species cannot exist in the same quantum

state i.e. with all their quantum numbers identical. No such restriction exists for bosons.

The spin of a particle is associated with a magnetic moment. The measured magnetic mo-

ment of the electron was found to agree with the theoretical prediction of the Dirac equation,

but this was found not to be true of the proton [7, 8] and the neutron [9]. The ‘anomalous mag-

netic moments’ of the nucleons indicate that they aren’t fundamental units of matter but instead

possess some form of structure. In 1962 Yuval Ne’eman and Murray Gell-Man independently

demonstrated that baryons and mesons could be organised into families of 1, 8, 10 or 27 parti-

cles, a scheme termed the “eightfold way” [10]. This led to the prediction of theΩ− baryon,

which was discovered two years later. In 1964 Gell-Mann [11] and George Zweig [12, 13]
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independently formulated a description of the nucleons in terms of three constituent particles,

termed ‘quarks’1. This model successfully accounts for the magnetic moments of the nucleons,

and provides a description of not just the proton and neutron but all known hadrons. Baryons

are understood to be a combination of three (valence) quarks, and mesons as a paired quark

and anti-quark. There are six types (‘flavours’) of quark, each a fundamental particle with an

electric charge of either positive two-thirds or negative one-third of the elementary charge. All

flavours of quark possess a spin of ½̄h. A proton is composed of two positively charged quarks

of ‘up’ (u) flavour bound with one negatively-charged quark of ‘down’ (d) flavour. A neutron

is composed of two down quarks bound with a single up quark. The discovery of additional

hadrons, for example theΛ, required the addition of a third ‘strange’ (s) flavour (Λ = uds), and

subsequently three more flavours, ‘charm’ (c), ‘bottom’ (b) and ‘top’ (t), were predicted and

then discovered. All known hadrons are composed of some combination of quarks of these six

flavours.

The electron belongs to a family of particles calledleptons. The other members of this

family are the muon (µ) and tau (τ), and a neutrino species corresponding to each (νe,νµ ,ντ ).

The neutrinos are electrically neutral, while the non-neutrino species have charge -e. All interact

via the weak nuclear force and the charged leptons also interact via the electromagnetic force.

Quarks are subject to the electromagnetic and weak nuclear forces but, in addition, feel the

strong nuclear force. The strong force is associated with another ‘charge’ quantum number,

referred to ascolour. There are three colour charges, labelled red, green and blue, which may

be assigned to quarks, plus three corresponding anti-colours possessed by antiquarks (compare

this with electric charge, which occurs in a single type with an associated anti-type). Evidence

for the existence of three colours comes for example from the observation that the ratio of

the cross section fore+ +e− → hadronsto the cross section fore+ +e− → µ+ + µ− is three

times larger than predicted for colourless quarks. The colour quantum number was originally

proposed to explain the existence of baryons such as the∆++ (quark structure uuu), whose

spin and parity of32
+

implies a state with zero orbital angular momentum and all three quark

1Zweig called the constituents ‘aces’ but it was Gell-Mann’s name ‘quark’ that came to be accepted.
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Figure 1.1: (a) and (b): quark structure of the nucleons. The colour quantum numbers have
been arbitrarily assigned; they cannot be experimentally determined due to the confinement of
individual quarks within hadrons. (c): quark structure of a meson.

spins parallel. This would be forbidden by the Pauli Exclusion Principle for fermions, so a

further quantum number was introduced to account for the required distinction between the

three quarks. Observed hadrons are all ‘colour-neutral’; all three colour types are represented

equally. In (anti-)baryons, each of the three (anti-)quarks possesses a different (anti-)colour

(figures 1.1(a) and 1.1(b)). In mesons the antiquark possesses the anti-colour complementary

to the colour of the quark (e.g. red and anti-red) (figure 1.1(c)). States with net colour, for

exampleqqqqor qqq have not been observed to date. The naming of red, green and blue refer

to the fact that, when combined in equal amounts, these primary colours produce a colourless

(‘white’) hadron.

The strong force is carried by massless, electrically neutral, spin-1 bosons calledgluons.

Quarks and gluons, collectively termedpartons, along with leptons and the force carriers of

the electromagnetic and weak interactions, make up the particles of the Standard Model, sum-

marised in figure 1.2.

As shall be seen, the true structure of hadrons is more complicated than the two- or three-

quark structure of the simple parton model because of gluon exchange between the constituent

quarks. The theory describing the interaction of quarks and gluons is named Quantum Chromo-

dynamics (QCD), from the Greek ‘chrōma’ meaning ‘colour’. Gluons are themselves colour-

charged; this contrasts with photons, the carriers of the electromagnetic force, which are elec-

trically neutral. While photons can interact only with electrically charged objects, gluons can

4
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Figure 1.2: The particles that make up the standard model of particle physics. Quark flavours
u, c, and t possess charge of +2/3e and flavours d, s and b possess charge -1/3e.

interact not only with quarks but also with other gluons. Herein lies the most important dif-

ference between QCD and Quantum Electrodynamics (QED), which describes the electromag-

netic interaction. It results in the strong force between two coloured particles increasing with

their separation, a phenomenon referred to asconfinement, whereas the electromagnetic force

between two electrically charged particles diminishes with distance. This explains the observa-

tion that objects with net colour are never observed. Conversely, the strong force is weaker at

small separations, or equivalently in interactions involving large momentum transfers. This is

referred to asasymptotic freedom. In this regime, where the interaction strength is small, the

interaction cross-section may be calculated using perturbation theory in the form of perturbative

QCD (pQCD).

Low-momentum (long-range) behaviour cannot be described by pQCD because of the large

interaction strength, so other approaches must be used. One such method is to applyeffective

theoriesof QCD, in which only the degrees of freedom relevant to the problem at hand are

considered (see for example [14]). Another approach is to uselattice QCD, where calculations

are done for a finite number of points arranged on a space-time lattice [15].
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Figure 1.3: Illustration of deep inelastic scattering. An electron exchanges a virtual photon
with a quark in the target proton, transferring four-momentum ofQ2 to the quark. The electron
scatters, while the struck quark and the target remnant fragment into hadrons.

1.2 Unpolarised Parton Distributions

The internal structure of the nucleon has been extensively investigated using Deep Inelastic

Scattering (DIS), wherein high-energy leptons are scattered off nucleons via virtual photon ex-

change. At sufficiently high energies, the de Broglie wavelengthλ = h/p is small in comparison

to the proton size, so it interacts with the charged constituents of the proton rather than the pro-

ton as a whole. Figure 1.3 shows an electron inelastically interacting with a proton, exchanging

a virtual photon with four-momentumQ2 with a quark in a proton. The electron is scattered

and the quark and remaining proton remnant fragment into hadrons. Information can thus be

inferred about the properties of the nucleon constituents, even though they can themselves never

be isolated.

The cross section for deep inelastic lepton scattering can be written in terms of twostructure

functionsof the nucleon,F1 andF2:
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dσ
dEf dΩ

=
α2

4νE2
i sin4(φ)

(

sin2(φ)
Q2

xM2F1
(

x,Q2)+cos2(φ)F2
(

x,Q2)
)

. (1.1)

Ei( f ) is the initial (final) lepton energy,Q2 is the four-momemtum transfer during the scattering

andφ is half the lepton scattering angle.M is the mass of the nucleon. The Bjorken scaling

variablex measures the fraction of the nucleon momentum carried by the quark involved in the

scattering, andν = Q2/2Mx. Unlike F2, theF1 structure function depends on the spin of the

struck quark. If the quarks are assumed to possess spin ½, the relation between the structure

functions is given by

F2
(

x,Q2)= 2xF1
(

x,Q2) , (1.2)

known as the Callan-Gross relation [16]. The experimentally measured structure functions show

this relationship, providing strong evidence of the spin ½ nature of quarks.

Parton Distribution Functions (PDFs)f (x,Q2) describe the momentum distribution of par-

tons within the nucleon as a function of the fraction,x, of the nucleon momentum carried by

partons of speciesf . In a simple model of nucleon structure that considers just the valence

quarks the structure functions are related to the quark PDFs,q(x) by

F1(x,Q
2) = ∑

q
e2

qq(x,Q2), (1.3)

F2(x,Q
2) = ∑

q
2xe2

qq(x,Q2). (1.4)

The sums are over quark flavours,q, of chargeeq. Higher-energy collisions involve larger

Q2. Beyond this simple model, quarks continuously exchange gluons, which can undergo con-

versions into quark-antiquark pairs. The sums in equations (1.3) and (1.4) must therefore be

extended to also include antiquark flavours. Gluons have no electric charge so the exchanged

photon does not couple to them. The gluon distributiong(x) is therefore not directly observed

in DIS. However the gluons do introduce a weakQ2-dependence (‘scaling violations’) in the

7



(a) Photon-gluon fusion, PGF (b) QCD Compton scattering, QCDC

Figure 1.4: Gluonic processes contributing to scaling violations. Solid lines indicate quarks and
antiquarks, wavy lines photons and curly lines gluons.

structure functions through photon-gluon fusion (PGF) and QCD Compton scattering (QCDC),

as shown in figure 1.4. It is these scaling violations that cause the measured structure functions

F1 andF2 to be functions ofQ2 as well asx. By measuring data over a sufficiently largeQ2

range the gluon distribution can be determined from the scaling violations. The ZEUS and H1

experiments at HERA have provided precise measurements of theF2 structure function, which

dominates the DIS cross section for most of the HERA kinematic range [17, 18]. HERA col-

lided a 27.5 GeV e± beam with an 820 GeV proton beam, equivalent to centre-of-mass energy
√

s∼ 300 GeV. Figure 1.5 shows measurements of theF2 structure function from the H1 ex-

periment [18]. The data span four orders of magnitude in both Bjorkenx (0.00005< x < 0.65)

andQ2 (2 < Q2 < 2 x 104 GeV2). Scaling violations (Q2-dependences) are visible and are

well-described by NLO QCD fits.

QCD fits to DIS cross section data are used to determine the distribution functions of the

quarks and gluons. Figure 1.6 shows the PDFs calculated by both the H1 and ZEUS experiments

[19]. The extracted quark and gluon distributions are very well constrained and compare well

between the two experiments.

At large values ofx the gluon and antiquark distributions are small, while the up and down
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Figure 1.5:F2 structure function measured by the H1 Collaboration. Earlier results at lower
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quark distributions are large. The distribution for each quark flavour is the sum of the distribu-

tions of the valence quarks of the simple quark model and the quarks in the ‘sea’ arising from

g ↔ qq conversions. Subtracting the antiquark distribution from the quark distribution yields

the valence quark distribution alone. It is seen that at largex> 0.2 the valence quarks dominate.

Note that the up quark distribution has twice the magnitude of the down quark distribution, as

expected from the quark model of the proton. The valence quark distribution decreases with

decreasingx, while the antiquark and gluon distributions all increase. At smallx, gluons domi-

nate the PDF. A picture emerges of the valence quarks of the proton, each carrying a significant

portion of the proton momentum, plus a sea of low-momentum gluons and quark-antiquark

pairs.

1.3 QCD Factorisation

Calculating high energy hadronic cross sections relies upon thefactorisation theorem. Consider

a high energy collision between two hadrons,A+B→C+X, whereC is a measured final state

particle andX is the remaining unmeasured hadronic final state. At large momentum scales the

collision can be viewed as occurring between two partons,a andb from the hadronsA andB

respectively, producing a partonc that subsequently fragments into the observed hadronC. The

factorisation theorem states that the hadronic cross section for the collision,σA+B→C+X can be

split into three separate parts: the PDFs of the initial state hadronsA andB, thepartoniccross

sectionσa+b→c and thefragmentation function(FF) of the scattered quark:

σA+B→C+X = ∑
a,b,c

fa(xA)⊗ fb(xB)⊗σa+b→c⊗Dc→C(z). (1.5)

The sum runs over all partonic speciesa, b, andc that contribute to the cross section forA+B→

C. fa(xA) is the PDF of the partona as a function of its fraction,xA, of the momentum of

hadronA. fb(xB) is defined correspondingly.Dc→C(z) is the fragmentation function describing

the fragmentation of partonc into a hadronC with a fractionzof the momentum ofc. Only the

hard partonic cross section can be calculated using perturbative QCD, provided that theQ2 of
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the interaction is sufficiently high that the strong couplingstrengthαS is small. The PDFs and

FF are non-perturbative and must be empirically determined. Both PDFs and FF areuniversal;

they are the same for all collision processes. Thus if measured in one process they can be used

in predicting the cross sections of another process. The applicability of factorisation has been

demonstrated for the cross sections of hadronic collisions (for examplep+ p→ jets [20]) and

lepton-nucleon collisions (see for example [19]), where only one PDF is involved.

1.4 Nucleon Spin

In a naive, non-relativistic quark model in which a nucleon contains three quarks, all the spin of

the nucleon is carried by the intrinsic spins of these three quarks. The spins of the three (spin-

½) quarks sum to give the nucleon spin-½. Models taking account of relativistic effects within

the nucleon predict that some of the spin will be carried by the orbital angular momentum of

the quarks. The amount carried by quark intrinsic spin is reduced to about 60% of the nucleon

spin [21]. DIS experiments show that the structure of the nucleon is more complicated than a

three-quark system. How does this affect our understanding of the nucleon spin?

In analogy to the unpolarised case, the spin structure of the nucleon can be probed using

polarisedDeep Inelastic Scattering (pDIS), wherein both the incident lepton and nucleon target

are polarised. Through such measurements thespin-dependentnucleon structure functiong1,

the spin-dependent analogue of theF1 structure function, can be determined. The functiong1 is

related to the spin-dependent quark distributions via

g1(x) = ∑
q

e2
q(q

↑(x)−q↓(x)), (1.6)

where the sum is over both quark and antiquark flavours,eq is the charge of the (anti-)quark

species and↑ (↓) indicates a quark with spin component parallel (opposite) to that of its parent

nucleon. The integral ofg1 over all x gives the total (sea plus valence) quark plus anti-quark

intrinsic spin contribution to the nucleon.

Polarised DIS measurements by the European Muon Collaboration (EMC) in the late eight-
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ies were the first to indicate that the intrinsic spins of the quarks in the nucleon carry a sig-

nificantly smaller fraction of the nucleon spin than had been predicted [22, 23]. EMC results

from µ+ + p collisions indicated a quark-plus-antiquark intrinsic spin contribution in the region

of 10 to 15%. The experimental uncertainty on the measurement in fact made it compatible

with zero. This was much smaller than the value of 60% predicted from relativistic models of

the nucleon spin. This unexpectedly small contribution from quark spin has been termed the

‘spin crisis’. Subsequently more precise measurements have been made by: SMC (Spin Muon

Collaboration, the successor to EMC), SLAC E-142, E143, E154 and E-155 Collaborations,

HERMES, J-Lab Hall A and COMPASS (see for example [24–36]). These have indicated that

the intrinsic spin of quarks and antiquarks accounts for about 30% of the proton spin. A recent

analysis of global pDIS data [37] gives a total fraction of 0.27± 0.07. The total proton spin

component, measured along a particular direction, must be one half. The helicity spin sum rule

1
2

=
1
2

∆Σ+∆G+Lq +Lg (1.7)

describes all the possible contributions to the nucleon spin: the quark and anti-quark intrinsic

spin, ½∆Σ, the gluon intrinsic spin,∆G, and the quark and gluon orbital angular momenta,

Lq andLg respectively. As∆Σ ≈ 0.3, the remainder of the proton spin must comprise gluon

intrinsic spin and parton orbital angular momentum. Untangling these contributions is a major

objective in spin physics.

Most DIS experiments are inclusive, and so only access the total quark-plus-anti-quark spin

contribution, summed over all flavours. Semi-inclusive deep inelastic scattering (SIDIS) can

provide information on the contribution from different quark and antiquark flavours. SIDIS

differs from inclusive DIS in that a high energy hadron, produced from the fragmentation of

the struck quark, is detected in coincidence with the scattered lepton. The hadron provides an

indicator of the flavour of the struck quark. This is because of the preference for a quark to

fragment into a hadron containing a valence quark of the same flavour. For example an up

quark is more likely than a down quark to fragment into aπ+ because theπ+ valence structure

is ud. Different hadrons provide ‘tags’ for different quark and anti-quark flavours, allowing
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Figure 1.7: Flavour-dependent helicity distributions atQ2 = 2.5 GeV2 from the HERMES Col-
laboration [34]. The productx∆q is shown for each light (anti-)quark species excepts. The data
were not able to constrain the∆s(x) distribution; results shown are extracted assuming∆s = 0.

the total quark-plus-anti-quark spin distribution to be decomposed into the contributions from

different flavours. The HERMES Collaboration have performed SIDIS measurements using a

polarisede± beam incident on polarised proton and deuterium targets. Tagging with pions and

(for the deuterium target only) kaons, the data provide information about theu, u, d, d and

s helicity distributions. Figure 1.7 from [34] shows the extracted distributions as a function

of Bjorkenx. The up quark distribution is positive for allx and the down quark distribution is

negative, indicating these quarks are polarised parallel and opposite, respectively, to the nucleon

spin. The sea quark distributions,u(x), d(x) and s(x), were all found to be consistent with zero

within uncertainties.
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1.5 Gluon Polarisation

The gluon helicity distribution,∆G, cannot be directly accessed in DIS because photons do

not couple with gluons. However limited information can be inferred about gluon spin from

scaling violations, in the same way thatg(x) can be inferred from scaling violations inF2.

Measurement of theQ2-dependence of theg1 structure function allows limits to be placed on

the gluon polarisation. Analyses of globalg1 data (for example [38, 39]) provide a measure of

∆G, but the uncertainties are very large; for example [38] reports a total gluon spin contribution

of 0.499± 1.266. Though a positive gluon contribution is favoured by the fits to the data, a

negative gluon distribution, or one which changes sign as a function ofx, cannot be dismissed,

as discussed in [39]. DIS data alone do not therefore strongly constrain∆G (figure 1.8).

Other constraints on∆G using lepton-nucleon collisions come from measurements of jets,

charm mesons and hadrons produced at large momentum transverse to the beam (pT ). The

production of all of these are sensitive to processes involving gluons. Measurements have been

carried out of jets and highpT hadrons by HERMES, SMC, and COMPASS [41–43] and of

charm mesons by COMPASS [44].

Another promising avenue is polarised proton-proton collisions at RHIC. Jets, highpT

hadrons, heavy flavour production and prompt photons are sensitive to the gluon polarisa-

tion, and measurements by the STAR and PHENIX collaborations are expected to put much

stronger constraints on the gluon polarisation; indeed, early measurements from both PHENIX

and STAR have already done so [20, 45–48]. Both experiments have performed measurements

of longitudinal double spin asymmetries of the form

ALL =
σ++−σ+−

σ++ +σ+− , (1.8)

whereσ++(+-) is the cross section for protons with the same (opposite) helicities. STAR mea-

surements ofALL in inclusive jet production,p+ p → jet +X, disfavour a large positive gluon

polarisation [20], suggesting a maximum value of 65% of the proton spin at a 90% confidence

level (figure 1.9). PHENIX measurements ofALL for p+ p→ π0 +X [45] have been incorpo-
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rated into global analyses with pDIS data to significantly reduce the uncertainty on∆G [37].

Though the uncertainty remains large compared to that of the quark spin contribution, the anal-

ysis strongly favours a positive gluon helicity distribution.
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Chapter 2

Transverse Spin Physics

2.1 The Transversity Distribution

To fully describe the nucleon, a third category of parton distribution functions is required, in

addition to the unpolarised parton distributionsq(x) and the helicity distributions∆q(x). These

are thetransversitydistributions,δq(x). Transversity is also frequently denoted∆Tq(x) or hq
1(x)

in the literature. Transversity can be considered as the transverse-spin analogue of the helicity

distribution. It describes the difference between the distributions of quarks with spin parallel

and opposite to that of their transversely polarised parent nucleon,

δq(x) = q⇑↑ (x)−q⇑↓ (x) . (2.1)

⇑ indicates the nucleon spin direction and↑ (↓) the quark spin direction.q⇑↑(⇑↓)(x) is the

distribution of quarks of flavourq within the nucleon with spin parallel (opposite) to that of the

parent nucleon. Thus transversity describes the degree to which the transverse quark spin is

correlated with the transverse nucleon spin.

From the definition in equation (2.1) it follows that the transversity distributions must obey

the bound

δq(x) ≤ q(x) (2.2)
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in order to always be positive. The Soffer inequality [49] provides another model-independent

constraint on the transversity distribution and relates it to the unpolarised and helicity distribu-

tions at leading order in QCD:

2|δq(x) | ≤ q(x)+∆q(x). (2.3)

The fact that the helicity and transversity distributions differ reflects the relativistic nature of

the nucleon’s constituents. In a non-relativistic case a series of transformations and rotations

can be used to change from a longitudinally polarised to a transversely polarised proton. In the

relativistic case Lorentz boosts and rotations do not commute. As a result the transversity and

helicity distributions need not be the same.

By the optical theorem, the transversity distribution is related to scattering amplitudes that

involve a flip of the quark and nucleon helicities [50]. Transversity distributions are thus de-

scribed as ‘chiral-odd’ because they are involved with a helicity flip. This contrasts with the

unpolarised and helicity distribution functions which are ‘chiral-even’: they involve no helicity

flip. There is no leading-twist1 gluon transversity distribution for a polarised spin-½ target be-

cause of helicity conservation. Gluons are spin-1 bosons, so have helicity±1. A gluon helicity

flip therefore involves a helicity change of±2, which a spin-½ nucleon cannot accomodate.

In inclusive deep inelastic scattering, which provides the majority of our understanding of

parton distributions, chiral-odd processes are not observed, because helicity is conserved in per-

turbative QCD interactions. For this reason transversity distributions are much less well under-

stood than helicity distributions. In order for a process related to transversity to be observable,

a second chiral-odd function must be involved. The combination of two chiral-odd functions

then conserves helicity overall. In hadron-hadron collisions, the two chiral-odd functions can

be provided by the transversity distributions of the two nucleons. Transversity may then be

studied via transverse double spin asymmetries in particle production resulting from collisions

between two transversely polarised hadrons. Another possibility is a chiral-odd, spin-dependent

1twist describes the order in 1/Q at which an effect is seen in experiment. An effect of twistt, wheret > 1,
is suppressed by a factorQ(2−t). An effect at the lowest twist,t = 2, is referred to as “leading twist”, and is not
suppressed by a factor ofQ, while suppressed effects, associated with larger values oft, are “higher twist”.

19



fragmentation process. This, combined with transversity, can give rise to transverse spin asym-

metries.

Transversity is therefore related to the observation of transverse spin asymmetries in hadronic

collisions. By measuring these, it may be possible to infer information about the transver-

sity distributions. Transverse spin asymmetries are also related to the study of transverse-

momentum-dependent parton distributions and parton orbital motion. I will first give a summary

of experimental measurements of such transverse spin asymmetries, which have a history span-

ning a number of decades. After describing the measurements, I will highlight the mechanisms

proposed to explain their existence. These relate to transversity, spin-dependent fragmentation

and transverse-momentum-dependent parton distributions. Finally, I shall discuss recent exper-

imental work that is beginning to provide the first information on the transversity distribution.

2.2 Transverse Spin Asymmetries

Since the 1970’s, significant transverse spin effects have been observed in hadronic collisions.

The first observation was thatΛ hyperons produced in inelastic proton-beryllium collisions,

p+Be→ Λ+X, are strongly spin-polarised transverse to their production plane [51].

Later experiments found unexpectedly large transverse production asymmetries for many

species in inclusive proton-proton collisions. Consider collisions between a transversely po-

larised and an unpolarised proton:p⇑ + p → d + X, wherep⇑ denotes the transversely spin-

polarised proton. The particled, of a species of interest, is detected, while X indicates the

remaining unmeasured hadronic final state. Thesingle spin asymmetry(SSA) or analysing

power (AN) in the production ofd can be defined as

AN =
1
P

N⇑
le f t−N⇓

le f t

N⇑
le f t +N⇓

le f t

, (2.4)

whereP is the average transverse spin-polarisation of the polarised proton beam or target.N⇑(⇓)
le f t

is the number of particles produced to the left of the beam when the transversely polarised beam

direction is up (down).N⇑
le f t + N⇓

le f t is simply the total number of particles produced to the left of
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the beam. The asymmetry thus measures the difference in particle production to beam-left upon

flipping of the beam polarisation. Rotational invariance requires production to the left when

polarisation is up to equal production to the right when polarisation is down:N⇑
le f t = N⇓

right . The

single spin asymmetry is thus equivalent to the difference between particle production to the

left and right of the beam for a fixed polarisation. Hence the single spin asymmetry is often

referred to as the left-right asymmetry. Equation (2.4) is defined such that that the asymmetry

is positive if particle production to the left of the beam momentum-polarisation plane exceeds

that to the right when the beam polarisation direction is up.

Initial expectations from perturbative QCD arguments were that such asymmetries should

be small at high energies [52]. At leading order in QCD,AN is predicted to be approximately

zero, being suppressed by a factor ofmquark/
√

s, where
√

s is the centre of mass energy of the

collision. However such asymmetries have been observed and are in many cases very large.

Results taken at the Argonne Zero Gradient Synchrotron (ZGS) in the 1970s found large asym-

metries, in excess of 10%, in the production of charged pions and kaons inp⇑ + p andp⇑ +2 H

collisions at 6 and 11.8 GeV/c [53, 54]. Asymmetries were found to be small at small Feynman

x (xF = 2pL/
√

s, wherepL is the particle’s longitudinal momentum) and large at largexF . A

significant asymmetry inπ0 production nearxF = 0 was found at CERN in 24 GeV/cp⇑+ p col-

lisions, which increased with thepT of the pion [55]. A number of measurements were carried

out at the Brookhaven National Laboratory (BNL) Alternating Gradient Synchrotron (AGS)

with beam momenta of 13.3 and 18.5 GeV/c [56–59]. The species measured wereπ±, p, K0
S

andΛ. π+ showed a clear positive asymmetry at forward angles,xF > 0.2, increasing withpT

to around 25% atpT of 2 GeV/c. At smaller values ofxF the asymmetry was consistent with

zero.K0
S showed a significant negative asymmetry of -10% forxF < 0.2, becoming increasingly

negative for larger values ofxF . π−, proton andΛ showed asymmetries consistent with zero in

the measured kinematic range.

Subsequently a large number of higher-energy measurements were performed by the Fer-

milab E704 Collaboration, using a 200 GeV/c polarised beam [60–68]. Measurements were

mostly carried out at moderatepT (< 1.5 GeV/c) in the beam fragmentation region (0.2< xF <
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1.0) [60–63, 65, 67, 68], with some at largerpT (1.0-4.5 GeV/c) and in the central region,xF ≈

0 [64, 66]. Studies were carried out of neutral and charged pions,η mesons andΛ baryons.

Significant non-zero asymmetries were found in the production of all pion species, increasing

linearly withxF abovexF ≈ 0.2. Theπ+ asymmetry is positive and theπ− asymmetry negative,

with the same magnitude. Theπ0 asymmetry is positive but about half the magnitude of the

π+ asymmetry. Theπ0 asymmetry was also measured atxF ≈ 0 and was found to be small and

consistent with zero. These results are summarised in figure 2.1 [62]. In addition to the depen-

dence of the asymmetry on the flavour composition of the produced particle, the flavour of the

polarised projectile is also important. Measurements of pion asymmetries with a transversely

polarisedantiproton beam, ¯p⇑+ p→ π±,0+X, in the same energy and momentum ranges show

that, while theπ0 results are unchanged within experimental uncertainties, the charged pions

exchange values; theπ+ asymmetry is negative and theπ− asymmetry is positive.η mesons

behave in the same way as theπ+ and have comparable results, albeit with much larger statisti-

cal uncertainties. TheΛ shows a significant negative asymmetry at largexF > 0.6 and moderate

transverse momentum, 0.6< pT < 1.5 GeV/c.

Most recently asymmetries have been measured at the Brookhaven Relativistic Heavy Ion

Collider (RHIC) at centre of mass energy
√

s= 200 GeV, an order of magnitude larger than that

in the E704 experiment. The PHENIX experiment has measured inclusive charged hadrons and

neutral pions at smallxF and found asymmetries consistent with zero (figure 2.2) [69]. The

STAR experiment has measured neutral pions at forward angles and found significant positive

asymmetries persist to these high energies [70, 71]. The asymmetry is found to increase with

pT above 1.7 GeV/c in contrast to theoretical expectations that it should decrease (figure 2.3).

At these energies the pion production cross section has been shown to be well described by

next-to-leading-order (NLO) pQCD, demonstrating that large asymmetries are not restricted to

the non-perturbative regime.

The BRAHMS Collaboration have reported results for the single spin asymmetry in proton,

π± and K± production at large forward and backward scattering angles,|xF | > 0.2, and moder-

atepT ∼ 1 GeV/c from polarised proton collisions at
√

s= 62.4 GeV [72]. At backward angles
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Figure 2.1: Single spin asymmetries for pions measured by theE704 Collaboration forp⇑+ p→
π +X with a 200 GeV/c polarised beam.
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√
s= 200 GeV, measured by the PHENIX Collaboration
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Figure 2.3: Single spin asymmetry in the production ofπ0 mesons from polarised proton-proton
collisions at

√
s= 200 GeV, measured by the STAR Collaboration [71]. Large asymmetries are

seen to persist to large transverse momenta at forward angles (xF > 0.4).

asymmetries are all consistent with zero, but pions and kaons show significant asymmetries at

forward angles, increasing withxF to AN ≈ 0.2 atxF = 0.6 (figure 2.4). Protons show zero

asymmetry at forward angles, unlike the meson species.

Experimental results to date have shown significant non-zero asymmetries in a variety of

species. The magnitudes and signs of the asymmetries are highly dependent on the flavour of

the produced particle. It is therefore useful to measure the asymmetries for a wide variety of

identified species, as information on the flavour dependence of the asymmetries may provide

insights into their physical origin. Additionally, the dependencies of the asymmetries onpT

andxF are not yet understood. Measurements over different kinematic ranges are therefore also

useful in constraining models of the asymmetry. Understanding the origin of transverse spin

asymmetries will aide in elucidating the transverse spin structure of the nucleon.

Results before the RHIC era were at low transverse momenta, typically measuring the asym-

metries in particles produced withpT ≈ 1 GeV/c and smaller. This is too low for pQCD to be

applicable in the analysis of the data. Higher energy experiments at RHIC have done and con-

tinue to measure asymmetries at much larger transverse momenta, facilitating the applicability

of pQCD to the analysis of the data. Its excellent particle tracking capability means that the

STAR experiment in particular is well suited to the identification of a variety of species at large
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Figure 2.4: Single spin asymmetry in the production ofK± mesons from polarised proton-
proton collisions at

√
s= 62.4 GeV, measured by the BRAHMS Collaboration [72].

momenta, especially near mid-rapidity.

2.3 Collins Fragmentation Functions

As discussed above, the chiral-odd nature of transversity means that it can only be studied in

combination with another chiral-odd function. Collins [73] proposed a chiral-odd, transverse-

momentum-dependent fragmentation function in which the azimuthal distribution of hadrons

produced by a fragmenting quark is correlated with the quark’s transverse spin direction. In a

collision such asp+ p⇑ → π +X this correlation, combined with the transversity distribution,

can give rise to a spin-dependent transverse asymmetry in the production of the pion. The

Collins fragmentation function acts as an analyser of the transverse quark polarisation in a

transversely polarised hadron.

The fragmentation of a transversely polarised quark,q↑, into an unpolarised hadron,h, can

be expressed as [74]

Dh/q↑ (z,Ph⊥) = Dq
1

(

z,P2
h⊥
)

+H⊥q
1

(

z,P2
h⊥
)

(

k̂×Ph⊥
)

·Sq

zMh
. (2.5)

k̂ is the momentum direction of the quark andSq is its transverse spin. The produced hadron has

massMh and carries a fractionzof the momentum of the quark.Ph⊥ is the transverse momentum
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of the hadron with respect to the original quark direction. The first term in equation (2.5)

contains the spin-independent part of the fragmentation process. The second term describes

the transverse-spin-dependent part of fragmentation. The functionH⊥q
1 is called the Collins

function and describes the momentum dependence of the spin-dependent part. The term(k̂ ×

Ph⊥)·Sq changes sign under a flip of spin, and generates a spin-dependent azimuthal variation

in hadron production.

Experiment has begun to provide the first information about the Collins effect and indicates

that it is non-vanishing. The HERMES Collaboration have reported results from semi-inclusive

DIS of positrons incident on a transversely polarised proton target [75]. A non-zero asymme-

try in charged pion production, arising from the combination of transversity and the Collins

functions, is observed. This indicates that both the transversity distribution and the Collins

function are non-vanishing. The observed asymmetry has opposite sign and comparable mag-

nitude for positive and negative pions. The large magnitude and opposite sign of the negative

pion asymmetry can be explained if the disfavoured Collins function has a signficant magnitude

and opposite sign compared to the favoured2 Collins function.

The COMPASS Collaboration have measured charged hadron production in collisions be-

tween muons and polarised deuterons and found all asymmetries to be small and compatible

with zero [76]. When taken with the non-zero results with a proton target from HERMES, the

COMPASS results suggest the cancellation of asymmetries from the proton and the neutron in

the target.

The Belle Collaboration have observed azimuthal asymmetries of a few percent in dihadron

production ine+e− collisions at
√

s = 10.58 GeV [77, 78]. Because these are leptonic colli-

sions, transversity is not involved and the Belle results provide a direct indication of the Collins

functions. These results confirm the HERMES observation that the favoured and disfavoured

Collins functions have opposite sign.

2A fragmentation function describing a quark fragmenting into a hadron is said to befavouredif the hadron
contains a valence quark of the same flavour as the fragmenting quark, for example au quark fragmenting into a
π+. If the produced hadron does not contain a quark of the same flavour, the fragmentation function isdisfavoured.
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2.4 The Sivers Mechanism

Another mechanism for generating transverse single spin asymmetries was proposed by Sivers,

involving the intrinsic transverse momentum of the nucleon constituents,kT [79]. Sivers as-

sumed that there could be a correlation between the spin of a proton and the orbital motion of

the (unpolarised) parton constituents. This gives the possibility of an asymmetry in the partonic

kT distribution in the direction normal to the plane defined by the proton momentum and spin

directions. If the intrinsickT survives the fragmentation/hadronisation process following scat-

tering, the imbalance in the intrinsic momentum can be observed as a left-right imbalance in the

pT distribution of the produced hadrons. The Sivers mechanism is therefore related to partonic

motion within the nucleon. The Sivers mechanism is not related to transversity; it is a separate

mechanism involved in SSAs. The parton distribution function can be expressed as a (conven-

tional) spin-independent term, plus a spin-dependent term multiplied by a special parton density

function. This special parton density is commonly referred to as the Sivers distribution func-

tion and is denotedf⊥1T(x,kT). Note that it is a transverse-momentum-dependent distribution,

in contrast to usual, transverse-momentum-integrated PDFs,q(x).

For a long time the Sivers distribution was believed to be required to be zero due to argu-

ments related to time-reversal symmetry in QCD [73]. More recently however [80–83], work

has shown that such an asymmetry is allowed, by accounting for final state interactions between

the outgoing, scattered quark and the spectator hadronic remnant. ‘Final state’ refers to the fact

that the interactions occurafter the scattering of the quark. However, this interaction is not ‘fi-

nal state’ in the sense of being related to fragmentation or hadronisation of the quark; the gluon

exchange final state interactions occur before this.

It has also been shown that the Sivers distribution is non-universal [81, 82]; that is, the

measured function depends on the process studied. This is in contrast to the conventional

(transverse-momentum-integrated) PDFs, which are universal (the same in every scattering pro-

cess). For example a prediction given in [81] is that the Sivers distribution for Drell-Yan pro-

duction is equal in magnitude but differs in sign to that in deep inelastic scattering. A qualitative

understanding is provided [40] by recalling that the quark must undergo additional interactions
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in order for the Sivers effect to be non-vanishing. This interaction can be thought of as the quark

scattering in the colour field of the spectator remnant. Different collision processes will result

in different forces acting on the quark, giving rise to different Sivers functions.

The HERMES Collaboration have made the first report of a non-zero Sivers function [75].

SIDIS production ofπ+ with the HERA 27.5 GeV positron beam showed an asymmetry corre-

sponding to a negative, non-zero Sivers function. The COMPASS Collaboration have reported

measurements of Sivers asymmetries for inclusive positively and negatively charged hadrons

[76], and for pions and kaons [84] in SIDIS with a 160 GeV/c muon beam and deuteron target.

All asymmetries were found to be small and consistent with zero, suggesting cancellation of up

and down quark contributions from the deuteron target. The STAR experiment has presented

results for di-jet production inp+ p collisions at
√

s = 200 GeV [85]. Measurements were

made of the opening angle between the jets. ThekT asymmetry produced by the Sivers mech-

anism may manifest as an opening angle other than 180 degrees (back-to-back jets). Observed

asymmetries were found to be small and consistent with zero, and smaller than SIDIS results

from HERMES. pQCD calculations suggest the difference is due to cancellation between up

and down quark contributions [86], and between final- and initial-state interactions, both of

which contribute in the jet production mechanism [87].

2.5 Measurements of Transversity

Recently the transversity distributions ofu andd quarks in the proton have been extracted for

the first time [88]. SIDIS data from the HERMES and COMPASS Collaborations, measuring

ℓ+ p⇑ → ℓ+π +X, ande+ +e− → h+h+X data from the Belle Collaboration were studied.

The HERMES transverse asymmetries involve the combination of transversity with the Collins

mechanism. The Belle data provide a direct measure of the Collins functions, and so allow the

transversity distributions to be determined from the HERMES data. The transversity distribu-

tions were parameterised and the best-fit parameters determined from a global fit to the data.

The extracted transversity distributions are shown in figure 2.5. The extracted up quark distribu-
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tion is positive for allx while the down quark distribution is negative. The up quark distribution

is greater in magnitude than the down quark distribution,|δu(x)|> |δd(x)| and both are smaller

in magnitude than the Soffer bound given in equation (2.3).

The first steps are now being made toward understanding the quark transversity distribu-

tions, though they remain much less well understood than the unpolarised and helicity distribu-

tions.

2.6 Aims of This Thesis

The work to be presented here was performed using data taken by the STAR experiment at the

Relativistic Heavy Ion Collider (RHIC). The RHIC physics programme encompasses studies of

heavy ion collisions and polarised proton collisions, of which the polarised proton programme

is of interest here. RHIC is capable of providing both longitudinally and transversely polarised

protons, and an extensive spin programme has been in operation since 2002. Studies using lon-

gitudinally polarised protons have yielded constraints on the polarised gluon contribution,∆G,

to the spin of the proton by measuring double helicity asymmetries,ALL, in the production of

jets and pions. With transversely polarised protons, investigations have been performed into the

transverse spin structure of the proton via measurements of transverse single spin asymmetries

in hadron and jet production.

This thesis presents a study of single and double transverse spin asymmetries in the pro-

duction of the neutral strange particlesK0
S, Λ andΛ, using transversely polarised proton data

acquired during the 2006 RHIC run. These particles are well suited to study by STAR, as they

can be identified over a large momentum range using topological reconstruction of their decay

products, while also having a reasonable production cross section. By contrast, charged species

such as pions and protons can only be measured over a limited momentum range. Transverse

single spin asymmetries in the production of these particles have been measured before at AGS

and by the E704 Collaboration, as mentioned in section 2.2. STAR provides the opportunity

to extend these studies to significantly higher collision energy and particle momentum than has
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Figure 2.5: Transversity distributions ofu andd quarks in the proton extracted from a global fit
to data, taken from [88]. The shaded region shows a one-sigma uncertainty around the best-fit
distribution. The bold lines outside the shaded region indicate the Soffer bound.
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previously been attained.

The remainder of the thesis is organised as follows. In chapter 3 the RHIC complex, its

operation as a polarised proton collider and the STAR experiment are described. The techniques

used to identifyK0
S, Λ andΛ particles are then detailed. In chapter 4 the data set used in the

analysis is presented and the extraction ofK0
S, Λ andΛ yields, using the techniques outlined

in chapter 3, is described. Chapter 5 presents the methods used to calculate the transverse

single spin asymmetries in the production of each particle species, and describes a number of

systematic checks performed on the results. Chapter 6 presents the analysis of transverse double

spin asymmetries. Finally, chapter 7 summarises the results and provides an overview of future

transverse spin physics experiments planned at RHIC and elsewhere.
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Chapter 3

The Experiment

3.1 The Relativistic Heavy Ion Collider

The Relativistic Heavy Ion Collider (RHIC) [89, 90] is located at Brookhaven National Labo-

ratory, New York. It is an intersecting storage ring that accelerates two independent beams of

ions with mass numbers from one to around 200 using superconducting magnets. The maxi-

mum energy per nucleon decreases with mass number from 250 GeV for proton beams to 100

GeV for the heaviest ions such as gold, A = 197 u. Because the beams are independent of one

another each need not be of the same species and asymmetric collisions can be and have been

performed (for example between deuterons and gold ions). Figure 3.1 shows a schematic view

of all the elements of the RHIC complex. The RHIC ring has a 3.8 km circumference and is

approximately circular, with six arc sections and six straight regions. In the straight sections the

beams are steered to intersect so that collisions can occur. Collision points are at the two, four,

six, eight, ten and twelve o’clock positions, in the middle of the straight sections. Experimental

halls are situated at the collisions points: BRAHMS at two o’clock, STAR at six, PHENIX at

eight and PHOBOS at ten. The booster accelerator and AGS are used to accelerate ions to RHIC

injection energy. The LINAC accelerates hydrogen ions for use in proton collisions, while the

Tandem van der Graaff generator is used to accelerate heavier ions. Only operations relating to

proton-proton collisions will be discussed here.
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Figure 3.1: The RHIC complex. Protons follow a path through the Linac, Booster, AGS, ATR
(AGS to RHIC line) and into the RHIC ring. The Tandem Van de Graaff generator is used in
the acceleration of heavy ions.

Polarised protons are produced using an optically-pumped polarised ion source [91, 92],

which typically generates 0.5 mA, 300µs pulses of ions, corresponding to 9x1011 ions per

pulse, with up to 90% polarisation. To better achieve high luminosity the RHIC beams are not

continuous but are instead compressed into 120 ‘bunches’ of particles, each less than 30 cm in

length. Because of losses during acceleration and transfer to RHIC, pulses of 9x1011 ions are

needed from the source to provide the required RHIC luminosity of 1.4x1031 cm-2 s-1, which

corresponds to bunches of∼ 2x1011 protons. Protons are passed through a rubidium vapour

pumped with circularly polarised laser light in a strong magnetic field, whereby the rubidium

electrons are 95-100% polarised [93]. A polarised electron is transferred to the protons through

collisions, and magnetic fields are used to transfer the electron polarisation to the hydrogen

nucleus. The neutral, nuclear-polarised hydrogen atoms are finally ionised to H- by collisions

with a sodium vapour.

Acceleration occurs in four stages: LINAC, booster, AGS and RHIC. First the H- ions are
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accelerated to a kinetic energy of 200 MeV in the LINAC, with anefficiency of around 50%,

and then stripped of their electrons and injected as a single∼ 4x1011 ion bunch into the booster

ring. The booster accelerates the protons to a kinetic energy of 1.5 GeV and delivers them to the

Alternating Gradient Syncrotron (AGS), which accelerates the protons to 25 GeV for injection

into RHIC. RHIC then accelerates each beam to the desired collision energy; for protons the

design minimum is 30 GeV and the maximum 250 GeV. The RHIC complex is described in

more detail in references [89, 90, 94].

The stable proton spin direction in the RHIC ring is vertical i.e. transversely polarised

beams. The proton spins precess around the vertical magnetic field in the RHIC ring at a rate

of Gγ precessions per orbit, where G = 1.7928, the anomalous magnetic moment of the proton,

andγ is the relativistic factor. Imperfections in electric and magnetic fields can perturb the spin

direction. These perturbations typically cancel over many orbits because the spin is at a different

point in its precession in each orbit. However, when the proton spin is at the same point in its

precession on each orbit, corresponding to Gγ = integer, the ‘kicks’ to the spin directions add up

on consecutive orbits and lead to depolarisation of the beam.Spin resonancesof this sort occur

every 523 MeV for protons, so many are encountered during beam acceleration. To prevent

loss of beam polarisation due to these spin resonances, two helicalSiberian Snakemagents [95]

are installed in each beam, one at the three o’clock and one at the nine o’clock position. A

Siberian Snake rotates the stable spin direction by 180 degrees around a horizontal direction,

which eliminates polarisation losses from spin resonances. The design maximum polarisation

for RHIC is 70%. The 80-90% polarisation at the polarised source is reduced by losses during

the various acceleration and transport stages.

Spin rotators placed either side of both PHENIX and STAR allow rotation of the stable

direction at these experiments if so desired, in order to study longitudinally polarised protons.

All data used in this analysis were acquired with transverse beam polarisations at STAR.

Each beam’s polarisation is monitored using its own carbon-target Coulomb-Nuclear Inter-

ference (CNI) polarimeter. These measure the asymmetry in recoil carbon atoms from elastic

p⇑ +C scattering between the polarised RHIC proton beam and the carbon target of the po-
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larimeter. At the small momentum transfers (0.002 to 0.01 GeV2) at which the scatterings

occur, thep⇑ +C scattering process has a significant analysing power of around 4%. The scat-

tering cross-section is large and only weakly dependent on beam energy over the RHIC range,

allowing quick measurements of the beam polarisation. Measurements of∼ 107 carbon atoms,

sufficient for a statistical precision of a few percent on the polarisation measurement, can be

acquired in 30 seconds. The carbon targets used are very thin (≈ 5µm wide and 150Å thick for

a target 2.5 cm in length), allowing the recoil carbon atoms to escape the target and be detected.

The use of thin targets also keeps the loss of beam luminosity due to scattering to an acceptable

level.

Silicon strip detectors surrounding the carbon target allow measurement of both the vertical

and radial transverse components of the beam polarisation. Because of theoretical uncertain-

ties in thep⇑ +C analysing power, the pC polarimeters are calibrated using a single polarised

hydrogen jet target shared between the beams. A measurement of one to two days is required

to calibrate the pC polarimeters to within 5%. The calibrated pC polarimeters are then used

to measure relative variations in the beam polarisation. Each RHIC beam store typically lasts

eight to ten hours. The polarisation of each beam is measured at the start of the store and

again at approximately two- to three-hour intervals during the store using the pC polarimeters.

This interval is a compromise between the desires to monitor the polarisation frequently and

to minimise beam losses incurred during polarisation measurement (< 0.5%). Additionally,

data acquisition must be halted during the polarisation measurement so frequent measurements

would reduce physics running time.

Beam luminosity falls during a store, largely due to collisions between the beams at the

interaction points. Once luminosity has fallen sufficiently the beam is dumped and a new store

is begun. Each beam has fewer than the maximum of 120 filled bunches; in 2006 each beam

contained 111 filled bunches and nine consecutive empty bunches. The unfilled region in each

beam forms an ‘abort gap’. When the beam is to be dumped, steering magnets are energised

when the unfilled region passes by them, and the filled bunches that follow are directed towards

a dump region. The beam cannot be dumped in an unregulated fashion because the high energies
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Figure 3.2: Bunch pattern for a single RHIC store. Empty sections can be seen corresponding
to the abort gaps in each beam. The anticlockwise beam is arbitrarily referred to as the “yellow
beam”. The clockwise beam is referred to as “blue”.

(≈ 200 kJ/beam for 100 GeV protons) could cause damage to sensitive components [90].

The two beams are ‘cogged’ such that bunches from each beam pass through one another,

allowing collisions to occur, at the RHIC interaction points. During a RHIC store a bunch from

one beam always interacts with the same bunch from the other beam. Half the bunches in each

beam are polarised up and half down and the beams are polarised independently. This means

that the 120 bunch crossings at each interaction point sample all four permutations of relative

beam polarisation directions, and a given bunch crossing in a given RHIC store has the same

permutation throughout that store. An example of such a bunch/polarisation pattern is shown in

figure 3.2.

3.2 The STAR Experiment

The Solenoidal Tracker at RHIC (STAR) [96] is shown in figure 3.3. STAR is a multi-purpose

detector with many subsystems for investigating a wide range of phenomena and collision types.
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Because STAR is a general-purpose detector it typically runswith a large number of different

trigger conditions at a given time in order to be able to select collisions (“events”) with particular

signatures of interest for different analyses. A number of the detector subsystems are involved in

triggering the detector, some exclusively so and some in addition to providing data for analysis.

STAR records data inruns, typically of 30 to 45 minutes duration, during which time a few

hundred thousand events will be recorded. Recording data in smaller amounts like this means

that if a problem is discovered with a run during analysis, it can be discarded without the loss

of a very large number of events. Runs may also be stopped due to a hardware or software error

in a detector subsystem or the data acquisition system (DAQ).

Four of STAR’s subsystems are of relevance for this analysis and will be described fur-

ther. The Time Projection Chamber (TPC), the Barrel Electromagnetic Calorimeter (BEMC),

the Endcap Electromagnetic Calorimeter (EEMC) and the Beam-Beam Counters (BBCs). The

TPC data is analysed for particles of interest, while the BBCs and B/EEMC were used for the

triggering of the detector. Detailed discussions of these and the other STAR subsystems can be

found in [97].

3.2.1 The STAR Trigger

The slower detectors of STAR, such as the TPC, operate at a frequency of∼ 100 Hz, much

slower than the RHIC bunch crossing rate of∼ 10 MHz. A trigger system is therefore used

to select events of interest and instruct the slow detectors to record data for only these events.

There are four levels to the STAR trigger. Each trigger level applies selection criteria of greater

sophistication than the last, taking more time than the last to make a decision on whether to

record the current event. An abort signal can be sent to the data acquisition system from any

trigger level to stop the slow detectors before an event is acquired, thereby readying the detector

for a new event.

The lowest level (level 0) trigger takes raw data from the fast detectors in STAR (such as

the BBCs) and makes a decision on whether or not an interaction that may be of interest has

occurred. This is done on the same time scale as the RHIC bunch crossing interval of∼ 100 ns.
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If the level 0 trigger determines that an event of interest hasoccurred, the fast detector data is

passed to the subsequent trigger levels, which make more detailed analyses of the data to apply

further selection criteria to the event. The level 1 trigger makes a decision using a subset of the

trigger data in 100µs. This level searches for signatures indicative of collisions between the

beam and the TPC gas, allowing these events to be discarded. If the event is not aborted by

level 1, the level 2 trigger performs further analysis using the full trigger data set within 5 ms.

This trigger allows particular event signatures, such as jets, to be found. If the event is accepted

by the level 2 trigger then the data acquisition system is notified and the slow detectors are read

out.

A final level 3 trigger can be applied using data from the slow detectors to perform an online

event reconstruction, issuing a decision within 200 ms. This allows an even more detailed

analysis of the event to search for particular rare particle species, such as the J/ψ. This was not

used for these data.

3.2.2 Triggering Detectors

Two BBCs made from tiles of a scintillating material are placed close to the beam line. They

are sensitive to charged particles produced in the pseudorapidity range 3.3< η < 5.0, where

pseudorapidity is defined as

η = − ln

[

tan
θ
2

]

, (3.1)

whereθ is the angle between the particle momentum and the beam momentum. One BBC is

positioned each side of the TPC at± 3.5 m from the TPC centre. They are used in triggering

the detector for proton-proton collisions. When a collision occurs the BBCs detect charged

particles produced close to the beam direction. The minimum bias (MB) trigger condition for

collisions is defined as a signal in both BBCs within a 17 ns coincidence window. Figure 3.4

shows the BBC coincidence rate recorded for a number of STAR runs in a single RHIC store.

The decrease in coincidence rate, corresponding to the decrease in beam luminosity, is clear
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Figure 3.3: Schematic view of the STAR detector, showing manyof the detector subsystems
and defining the STAR coordinate system. The positive y direction is directed vertically up, out
of the plane of the page. Proton beams are polarised along this axis.

during the course of the store.

The BEMC [98] is made from plastic and lead scintillator and surrounds the TPC, covering

2π radians in azimuth and|η| < 0.98. It is used for triggering on rare processes such as jets

and forms part of the trigger definition for the data studied in this analysis. It can also be

used to detect photons, electrons and mesons with electromagnetic decay channels, but these

abilities are not used here. The EEMC is a lead-glass scintillator calorimeter. It is a ring-shaped

detector, covering 1.086< η < 2.0 in pseudorapidity and is placed over the west end of the

STAR detector. It provides sensitivity to the same particle species as the BEMC at a more

forward angle.

Events satisfying either of two trigger conditions were selected for study:

1. BEMC-JP1-MB: At least one BEMC jet patch (JP) has total energy above a threshold of

7.8 GeV and the minimum bias (MB) condition is satisfied.

2. BEMC-JP0-ETOT-MB-L2JET: At least one BEMC jet patch has a total energy exceeding
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Figure 3.4: BBC coincidence rate during a single RHIC store.

a threshold of 4 GeV and the total energy over the barrel and endcap EMCs (ETOT)

exceeds a threshold of 14 GeV. The minimum bias condition is satisfied. A jet-finding

algorithm is applied in the level 2 trigger system (L2JET) to select events with a jet-like

component.

A ‘jet patch’ is defined as a region of the BEMC spanning approximately one unit in pseudora-

pidity and one radian in azimuth. The whole BEMC, covering|η| < 0.98 and 2π in azimuth,

is thus divided into twelve jet patches. These triggers were selected for the large statistics they

sampled during 2006 running and because the jet patch condition provided a larger sample of

hadrons at high momenta than minimum-bias events.

3.2.3 The Time Projection Chamber

The TPC [99] is the largest STAR subsystem and serves as the main tracking detector for STAR;

it is shown in figure 3.5. It provides the high track resolution required in order to handle the

high track densities found in heavy ion collisions (∼ 1,000 tracks per unit pseudorapidity in Au

+ Au collisions at 200 GeV centre-of-mass energy). The TPC provides full azimuthal tracking

of charged particles with transverse momentum above∼ 100 MeV/c and|η| < 1.8.

The end caps of the TPC are maintained at ground electric potential. A thin membrane that
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Figure 3.5: The STAR Time Projection Chamber (TPC). The end-caps are divided into twelve
sectors, each with an inner and outer sub-sector. The TPC is divided into two by a central
cathode membrane spanning the gas volume between the inner and outer field cages.
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spans the TPC centre between the inner and outer field cages in the vertical plane is held at

-28 kV. The cylindrical field cages are made from metal rings connected in series by resistors,

providing a uniform electric field between the central membrane cathode and each end. Charged

particles passing through the TPC ionise the gas within it and the liberated electrons migrate

away from the central membrane to the nearest end. The drift velocity varies with electric field

strength, and the temperature, pressure and composition of the gas. Therefore the electron drift

velocity is measured every few hours. Radial laser beams at known positions along the length

of the TPC are used to ionise trace organic substances in the gas volume. The difference in drift

times for charge liberated by two laser beams at different z positions allows determination of

the drift velocity [100].

Each end of the TPC is divided into twelve trapezial sectors, positioned as the hours on a

clock face, each containing 45 rows of cathode pads (5,692 pads per sector). These detect the

migrating charge when it reaches the end of the TPC and allow measurement of its x and y

coordinates. Each time the TPC is triggered to acquire data, the pad values are read out in 512

time bins. Knowledge of the charge drift velocity in the TPC gas (typically≈ 5 cmµs-1) allows

the z position of the charge points to be reconstructed. The TPC is therefore essentially divided

into∼ 70 million (x, y, z) pixels.

The resolution between a pair of charge points depends on whether they are in an inner or

outer sub-sector, due to different pad sizes in the sub-sectors. In the inner sub-sectors a pair of

charge points can be completely resolved when they are separated by greater than 0.8 cm in the

direction of the pad-rows and greater than 2.7 cm in the drift direction. In the outer sub-sectors

the separation must be greater than 1.3 cm in the direction of the pad-rows and greater than 3.2

cm in the drift direction. Pattern recognition software is used to fit particle tracks through these

charge points. The crossing point of the fitted tracks is used to determine the collision point

(primary vertex) for each event to a resolution of better than 1 mm.

The STAR detector is surrounded by a solenoid magnet providing a uniform 0.5 T longitudi-

nal magnetic field [101]. The paths of charged particles are therefore bent in the transverse (x-y)

plane by the Lorentz force. Their longitudinal motion combined with the transverse curvature
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causes the particles to follow helical paths. Particle momenta can then be determined from the

radius of curvature of each track via

pT = 0.3Br|q|, (3.2)

where pT is the particle transverse momentum in GeV/c,B the magnetic field strength,r is

the radius of curvature andq the particle charge in units of the elementary charge. The direc-

tion of curvature allows determination of a particle’s charge. The best momentum resolution,

δ p/p, occurs at 500 MeV/c for pions, whereδ p/p ≈ 2%, and at 1 GeV/c for protons, where

δ p/p≈ 3%. Resolution worsens at lower particle momentum (p < 400 MeV/c for pions,p <

800 MeV/c for protons) due to multiple Coulomb scattering. At higher particle momentum the

resolution worsens with increasing momentum because it becomes harder to precisely deter-

mine the track curvature for straighter tracks.δ p/p increases approximately linearly with track

momentum, to≈ 10% at 10 GeV/c.

The software reconstruction produces raw ‘DAQ’ (data acquisition) files with all the infor-

mation on an event from the various detector subsystems, down to the level, for example, of all

the (x, y, z) charge points in the TPC. This is more information than is typically required at an

analysis stage, so these data are further processed to produce smaller files (historically called

‘micro Data Storage Tapes’ orµDSTs) that are quicker to analyse but retain the information

essential to a physics analysis (track momenta, vertex positions etc). TheµDSTs store data in a

ROOT TTree format [102] to allow large-scale analysis. All the analysis presented herein was

performed using custom-written C++ compiled code and macros in ROOT.

3.3 Particle Identification

Charged particles can be identified from their energy loss due to collisions with the TPC gas.

The number of electrons liberated in a collision is proportional to the energy lost by the particle.

The signal measured by a TPC pad is proportional to the charge liberated and so is proportional

to the energy lost by the particle across a path length the size of the pad. The measurements of
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charge at the end cap pads therefore allows the particle energy loss to be determined. The energy

lost by a charged particle traversing a thicknessx of an absorbing material is not constant. The

number of collisions the particle undergoes and the amount of energy lost in each collision both

vary (Landau fluctuations). Each pad collecting charge liberated by the passage of a particle is

used to make a measure of that particle’s energy loss. The mean energy loss of the particle per

unit path length can then be calculated.

The measured energy loss for each particle is then compared with theoretical predictions.

Landau derived an equation for the most probable energy loss [103],

L∆p = ξ
(

ln
2mc2β 2γ2

I
+ ln

ξ
I

+0.2−β 2−δ (β )

)

. (3.3)

I is the logarithmic mean excitation energy of the absorbing material,δ is a density term impor-

tant at large velocities, andβ andγ are the normal relativistic variables.ξ is related to the path

length traversed by the charged particle byξ = xk/β 2, wherek = 153.54(Z/A) keV cm2. A

modified version of the Landau formula, which accounts for the atomic structure of the absorb-

ing material, is used to predict the most likely energy loss as a function of particle momentum

[104–106]. Figure 3.6 shows an example of the mean measured energy loss per unit length as

a function of particle momentum. The theoretical predictions for the most probable energy loss

compare well with the measured energy loss.

At low momentum the pion, kaon and proton bands are well separated and the particles can

be easily distinguished. The kaon band converges with the pion band at around 700 MeV, above

which kaons and pions cannot be distinguished. Protons can be distinguished from pions and

kaons up to around 1 GeV. A band corresponding to muons is indistinguishable from the pion

band at the momenta shown, and an approximately horizontal positron band can be seen close

to the pion band at all momenta. For negative particles the distributions look very similar as the

energy loss depends on the magnitude but not the sign of the particle’s charge.
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Figure 3.6: Mean energy loss per unit path length for positiveparticles in the STAR TPC. The
predictions for the most likely energy loss per unit path length (∆/x) are shown for pions (solid
line) and protons (dashed line). Kaon and deuteron bands can be seen to the left and right of the
proton band respectively. Positrons are visible as a horizontal band near the pions.

3.4 Neutral Strange Particle Identification

Neutral particles do not ionise the TPC gas and so are not directly detected. However those that

decay into only charged species can be reconstructed from their daughter particles. The neutral

strange particlesK0
S andΛ studied in this analysis are found in this way. TheK0

S andΛ undergo

the following decays 68.6% and 63.9% of the time respectively:

K0
S → π+ +π−, (3.4)

Λ → p+π−. (3.5)

These charged decay modes are described as having a ‘V0’ topology due to the appearance

of two observed (charged) particles from the point where the unobserved (uncharged) parent

decays. In each event a population of V0 candidates is produced by forming all combinations of

positively and negatively charged particles that, when extrapolated back to the primary vertex,
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pass within a certain distance. By assuming the species of each daughter particle, the invariant

mass of each V0 parent is calculated under the hypothesis that it is of a particular species,

W2
V0 =

(

∑
+,−

E

)2

−
(

∑
+,−

p

)2

, (3.6)

whereWV0 is the V0 candidate’s invariant mass under the decay hypothesis being considered

and the sums are over both charged daughters. The energies of the charged daughters are calcu-

lated from

E2 = p2+m2, (3.7)

where m is the daughter particle mass under the decay hypothesis. For example, assuming the

positive (negative) daughter to be aπ+(−) will yield the invariant mass of the parent if it is a

K0
S. An example of such an invariant mass distribution is shown in figure 3.7. The same process

is repeated for all relevant daughter combinations, producing an invariant mass distribution for

each parent species. Each invariant mass distribution contains a peak, corresponding to the

particle of interest and centred close to its rest mass, sat atop a continuous background. Due

to energy loss by the daughter particles in the TPC gas and detector material, the reconstructed

mass is generally shifted to a value slightly lower than the Particle Data Group (PDG) value.

The background is composed of real particles of a V0-decaying species other than the one of

interest (for example there will be aΛ contribution in theK0
S spectrum) plus a combinatorial

background formed by unrelated crossings of positive/negative tracks that did not arise from

the decay of a common parent. The background can be reduced by applying selection criteria

to the V0 candidates (see section 4.2). However, because the background contribution can not

be entirely removed, a candidate falling in the peak region cannot be unambiguously identified

as either a genuine particle or background. This means that the yield of the species of interest

cannot be determined by counting positively identified particles, but must be done on a statistical

basis.

Two approaches may be used to determine the particle yield: parameterisation of the invari-
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Figure 3.7: The invariant mass distribution produced under the decay hypothesisK0
S → π+ +

π−. A broad signal peak at around theK0
S mass sits atop a large background. The peak width is

due to the momentum resolution of the daughter tracks, not the natural width of the decay.

ant mass spectrum with a function, or a counting method. In the first case a function is used

to fit the peak and background and the particle yield is determined from the fit parameters. In

the counting method, a signal mass region is defined, encompassing the peak. Then two back-

ground regions, each half the width of the signal region, are defined and placed symmetrically

either side of the signal region. The total counts in the background region are then subtracted

from the total counts in the signal region to give a particle yield. This method requires the

background to have a linear shape so that the total background under the peak is equivalent that

in the background regions.

For this analysis the counting method was chosen, mainly for its robustness under low statis-

tics. The fitting method would often fail or give very large uncertainties for runs with small

numbers of events. Additionally, the fit did not always give an adequate description of the peak

shape unless a large number terms and free parameters were allowed; for example fitting the

peak with two Gaussian functions, each with its width, centre and area as free parameters. This

increased the uncertainty in the calculated yields.
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Chapter 4

Data Selection

The analysis was performed on data recorded during the 2006 RHIC run with 100 GeV polarised

proton beams (200 GeV centre-of-mass energy). Data was recorded with both longitudinally

and transversely polarised beams over a thirteen week period. The data taken with transversely

polarised beams, collected during five weeks between 7th April and 9th May 2006, have been

analysed for transverse spin asymmetries. The neutral strange particlesK0
S, Λ andΛ produced

at mid-rapidity (|xF | < 0.05) and with transverse momentum 0.5< pT < 4.0 GeV/c were used

in the analysis.

4.1 Run Selection

Data were acquired at STAR in runs typically of 30 to 45 minutes. A total of 605 runs were

acquired containing events with the triggers of interest, each typically containing a few thousand

to a few tens-of-thousands of events of those triggers. Quality checks were applied to the data

run-by-run to eliminate any with problems that may have caused erroneous results. An initial

run list was formed from runs passing general STAR quality checks for the 2006 transverse

running period. There were a total of 549 STAR runs in which the TPC was utilised and for

which data was processed intoµDST form. Runs for which a problem was present with the jet

patch trigger were rejected, as were those in which there was an error in recording the beam

polarisation bunch pattern; for example if a bunch crossing was erroneously recorded as having
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events for more than one permutation of beam polarisations. This rejected 172 of the 549 runs.

The remaining 377 runs were then subjected to further quality checks before being used in the

analysis.

Tests were applied to ensure that the distribution of events in a run was consistent between

each permutation of beam polarisations. If the vertex distributions differed for different beam

polarisations, then events for those different permutations would effectively experience a dif-

ferent detector acceptance from one-another. The primary vertex z distributions were required

to be consistent between each beam polarisation permutation. Runs in which the distribution

for any permutation was inconsistent with any other were rejected. Consistency between two

distributions was determined using a Kolmogorov-Smirnov test of the vertex z positions. The

ROOT histogram (TH1) implementation of the K-S test was used to calculate the confidence

level for compatibility between the two histogramed vertex distributions tested. If this level was

below 0.1% for any permutation of distributions in a run, that run was discarded from the data

set. The distribution of the mean event vertex z coordinate is shown in figure 4.1. The means

are well-described by a fit with a Gaussian distribution, centred at z = -2.5 cm. Runs for which

the mean vertex z was significantly different from the mean (more that four standard deviations)

were also rejected from the analysis.

Once all quality checks had been performed 23 runs were rejected and a final list of 354

STAR runs remained, spanning 34 RHIC stores. These runs comprised a total of 5.1 million

events between the two triggers used. The triggers are not entirely independent; 630,000 events

satisfy both, while 2.62 million satisfy only the BEMC-JP0-ETOT-MB-L2JET condition and

1.85 million satisfy only the BEMC-JP1-MB condition.

4.2 V0 Identification

The data set used for analysis contained 5.1 million events, of which 4.9 million (96%) success-

fully had a primary vertex reconstructed. To provide approximately uniform acceptance and

phase space coverage for all events, only those with a vertex z coordinate in the range -60 cm
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Figure 4.1: Mean event vertex z coordinate for each STAR run. The distribution is described
well by a Gaussian fit. The vertical dashed lines indicate the values±4 standard deviations
from the fit mean. Runs outside this range were rejected.

< z < 60 cm were selected. This also corresponds to the vertex range from which events were

used to calculate beam luminosities (see section 5.1.1). 3.1 million events, 64% of those with

a reconstructed vertex, met this condition. From these events the STAR V0-finding code pro-

duced 184 million candidate V0 decays. Figure 4.2(a) shows the raw invariant mass spectrum of

the candidates under the assumption that they areΛ hyperons i.e. positive (negative) daughter

is a proton (π−). Figure 4.2(b) shows the spectrum under the assumption the candidates areΛ,

and figure 4.2(c) under the assumption they areK0
S. The Particle Data Group value for theΛ and

Λ mass is 1115.683 MeV and that for theK0
S is 497.614 MeV [107]. Peaks corresponding to

these masses can clearly be seen in the spectra, over a large background. The peaks are shifted

to slightly smaller masses than the PDG values due to loss of energy (and therefore momen-

tum) of the charged daughters in the TPC gas and other material. The measured momentum

of the daughters is therefore slightly less than the momentum they initially possess, resulting

in a smaller invariant mass resulting from equation 3.6. The widths of the peaks are entirely

dominated by the momentum resolution of the TPC; the natural widths of the decays are many

orders of magnitude smaller.
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(a) RawΛ invariant mass distribution.
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(b) RawΛ invariant mass distributoin.
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(c) RawK0
S invariant mass distribution.

Figure 4.2: Raw invariant mass spectra for all V0 candidates under different decay hypotheses
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Neutral strange species Positive daughter Negative daughter
Λ p π−

Λ π+ p
K0

S π+ π−

Table 4.1: Daughter particles produced from charged decay channels of each neutral strange
species.

Selection critera (‘cuts’) were applied to the V0 candidates to reduce the background frac-

tion. This was done in two stages. First an energy loss constraint was applied to the daughter

particles, as outlined in section 3.3. This was used to reject daughter particles not of the V0

parent of interest. Secondly, cuts were applied to the geometrical properties of the V0 decay

vertex. This was done separately for each V0 species.

4.2.1 Energy Loss Cuts in V0 Identification

The daughter species of the neutral strange particles of interest are given in table 4.1. Each

daughter in a candidate decay was required to have an energy loss per unit path length in the

TPC consistent with the prediction for the most-likely energy loss, described in section 3.3. For

example, to selectΛ hyperons the positive daughter was required to have energy loss consistent

with that of a proton and the negative daughter’s energy loss was required to be consistent

with that of a pion. To quantify the degree to which the energy loss measured for a particle

corresponded with the predicted value for a particular species, the quantity

Z =
√

N log

(

measured energy loss
predicted energy loss

)

(4.1)

was calculated for each daughter.N is the number of points along the track from which the mean

energy loss measurement was made; the more points used the more precisely the energy loss

was measured. Figure 4.3 shows the distribution ofZ for positive daughters using the model

prediction for the proton. The peak centred near zero corresponds to protons and the broad

peak to the left of this corresponds to other species, mostly pions. A Gaussian distribution

describes the proton peak well, though the tails cannot be fitted due to the presence of the
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Figure 4.3:Z distribution in a single pseudorapidity range of positive V0 daughters using most-
likely-energy-loss predictions for the proton. The Gaussian parameterisation describes the peak
shape well.

other peak. Similar distributions were produced for the other daughter species (π± and p).

Z distributions were found to depend weakly on track pseudorapidity. Therefore tracks were

grouped into ten equal-sized bins in pseudorapidity between -1.0 and +1.0. The small number

of tracks with pseudorapidity greater than 1.0 were combined with the last bin, and tracks with

pseudorapidity less than -1.0 were grouped with the first. The distributions for each species

and pseudorapidity range were parameterised using a Gaussian function. For the purposes of

making the distributions such as figure 4.3, only tracks with momentum less than 1 GeV/c

were used. In this momentum range protons and pions are well separated in energy loss and

theZ distribution peaks corresponding to each species could be fitted. The distributions were

not found to be momentum-dependent so the same Gaussian parameterisations found for 0-1

GeV/c were used when selecting particles of higher momentum. When selecting for a particular

daughter species, theZ of the particle was required to be within three standard deviations of

the distribution mean for that species in the appropriate pseudorapidity range. This allowed

background rejection with negligible signal loss (0.3% for three standard deviations).

The efficacy of this energy loss identification procedure is demonstrated in figure 4.4. Fig-
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ures 4.4(a) and 4.4(b) show the positive daughters accepted and rejected by the selection for

protons, respectively. The proton band is cleanly selected, and the other species are removed

by the cut. Similar results were seen for rejection ofπ± and p (not shown). V0 candidates

for which either or both daughters failed the relevant energy loss selection were rejected. Fig-

ure 4.4(c) shows the effect of the energy loss selection on theΛ invariant mass spectrum. The

background is significantly reduced by application of the energy loss selection on the daugh-

ter particles. Figures 4.4(e) and 4.4(f) show the improvements to theΛ and K0
S invariant mass

distributions using the energy loss selection for those species. The cut is more effective for

(anti)Λ than theK0
S. This is due to being able to efficiently distinguish protons from pions up

to momentum∼ 1 GeV/c. Pions make up most of the background tracks in an event, and most

of the background is in the low momentum region, so the ability to distinguish the (anti)proton

daughter in the (anti)Λ decay from the large pion background gives a significant background

suppression. The background suppression for kaons is less impressive because both the daugh-

ters are pions, so the largest background contribution is not rejected in this case. Nevertheless,

the energy loss cut is useful in suppressing the background in all cases because it does so with-

out significant signal loss, unlike the geometrical cuts to be described next. Figure 4.4(d) shows

the V0 candidates rejected by the energy loss selection forΛ hyperons. A peak at theΛ invariant

mass of 1116 MeV/c2 is not seen, showing that no significant number of genuineΛ hyperons

have been eliminated by the cut. Similar results (not shown) were obtained for theΛ and K0
S.

4.2.2 Geometrical Cuts

Rejection of background on the basis of particle energy loss is a useful first step in reducing

the background, but is insufficient to produce a clear signal, especially in the case of theK0
S.

The energy loss method is also of limited use for particles at large momentum, where pions

and protons cannot be clearly distinguished. Further selection criteria were therefore applied

to the V0 candidates to further reduce the background. A V0 decay can be characterised by

various geometrical properties, describing the spatial relationship between daughter tracks, the

reconstructed V0 momentum vector and the event vertex. Five quantities were considered that
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(a) Positive V0 daughters accepted by energy selec-
tion for protons.
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(b) Positive V0 daughters rejected by energy loss se-
lection for protons.
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(c) Invariant mass spectrum of V0 candidates pass-
ing energy loss selection forΛ hyperons (lower
points), compared to the raw spectrum (upper
points).
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(d) Invariant mass spectrum of V0 candidates failing
energy loss selection forΛ hyperons.
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(e) Invariant mass spectrum of V0 candidates pass-
ing energy loss selection forΛ hyperons.
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(f) Invariant mass spectrum of V0 candidates passing
energy loss selection forK0

S mesons.

Figure 4.4: Results of energy loss cuts.
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could be used to indicate the likelihood that a V0 candidate corresponded to a genuine neutral

strange particle. These are shown schematically in figure 4.5 and are described in detail below:

• Distance between daughter tracks at the apparent decay vertex:The decay vertex of the

V0 candidate is defined as the midpoint between the daughter tracks at their distance of

closest approach (DCA). The DCA between the daughter tracks will not be exactly zero

even for a real particle decay because of detector resolution. However, the closer they

approach, the more likely that the candidate corresponds to a real decay and not a chance

crossing of primary tracks. An upper limit was therefore placed on the DCA between

the daughters. A distribution of invariant mass vs. DCA between daughters is shown in

figure 4.6.

• Decay distance:This is the distance between the event collision point and the apparent

decay vertex of the V0 candidate. Because all the particles of interest decay via the weak

interaction, the mean decay distance is on the order of centimetres: cτ for theΛ is 7.89

cm and 2.68 cm for theK0
S [107]). Much of the background is due to chance crossings

of tracks originating at the collision point. Because the track density decreases with

the inverse square of distance from the collision point, the decay distance distribution

of spurious candidates falls off more quickly than that of genuine particles. Therefore

placing a lower limit on the decay distance rejects a portion of the background due to

chance track crossings. This is illustrated in figure 4.7.

• DCA of the V0 to the primary vertex:The V0 momentum vector (found from the vector

sum of daughter momenta) should extrapolate back to the primary vertex, though not

exactly due to detector resolution. V0 candidates from chance track crossings need not

fulfil this condition, so placing an upper limit on this distance can reduce background

from chance track crossings. This is illustrated in figure 4.8.

• DCAs of the positive and negative daughter tracks to the primary vertex:The daughter

tracks do not originate from the primary vertex, but the track fitting software can ex-

trapolate them backward toward it. Because of the curvature of the tracks, they should
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Figure 4.5: Schematic representation of a V0 decay. The solidlines represent the charged
tracks found by track-fitting software. The curved dashed lines represent the extrapolations of
the charged tracks back toward the primary vertex and the straight dashed line represents the
V0 parent momentum vector reconstructed from the daughter momentum vectors at the decay
point.
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Figure 4.6: Invariant mass of V0 candidates under theΛ decay hypothesis vs. the DCA between
the daughter particles. Genuine particles, seen as a band centred around the PDG mass for the
Λ, are concentrated at small distances.

not intersect with the primary vertex. Conversely most background tracks originate at

the primary vertex. By placing a lower limit on this distance for each of the daughters,

background from chance track crossings is reduced. This is illustrated in figure 4.9.

In addition to these cuts, for isolation of theK0
S it was found that placing a cut on theΛ andΛ

invariant masses was useful in further reducing the background. This involved rejecting V0 can-

didates passingK0
S selection criteria but whose invariant mass under anΛ or Λ decay hypothesis

was within the definedΛ signal mass range. In addition to reducing the background this cut was

also found to be useful in making the background invariant mass distribution flatter. A compli-

mentary cut for the (anti-)Λ was investigated, rejecting candidates with an invariant mass under

theK0
S hypothesis that was within theK0

S signal range. Though the cut was somewhat success-

ful in reducing background, it also eliminated a large amount of signal for both species. As the

signal for both species was quite statistics-limited, this cut was therefore not used. This reason

why this cut is useful forK0
S but notΛ andΛ can be seen from an Armenteros-Podolanski plot

for the V0 candidates, seen in figure 4.10. The variable

58



50

100

150

200

250

V0 decay distance (cm)
2 3 4 5 6 7 8 9 10

)2
 in

va
ri

an
t 

m
as

s 
(G

eV
/c

- π
p

 +
 

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15

Figure 4.7: Invariant mass of V0 candidates under theΛ decay hypothesis vs. the V0 decay dis-
tance. A band at the PDG mass of theΛ can be clearly seen extending to large decay distances.
The background is concentrated around small decay distances.
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Figure 4.8: Invariant mass of V0 candidates under theΛ decay hypothesis vs. the DCA of the
V0 to the primary vertex. Genuine particles are seen concentrated at small distances of approach
to the primary vertex.
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Figure 4.9: Invariant mass of V0 candidates under theΛ decay hypothesis vs. the DCA of the
(a) positive and (b) negative daughters to the primary vertex. The band around theΛ PDG mass
extends to larger distances than the background. Note that the DCA is momentum-dependent;
particles with high momentum do not bend away from the event vertex as much as those with
low momentum. The positive daughters (protons) typically have a smaller DCA than the nega-
tive daughters (π−).
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Figure 4.10: Armenteros-Podolanski plot for V0 candidates.p+
|| and p−|| are the momentum

components of the positive and negative V0 daughters parallel to the parent V0 momentum
direction.pT is the momentum of each daughter transverse to the parent momentum direction.

α =
p+
‖ − p−‖

p+
‖ + p−‖

(4.2)

describes the difference in the momentum components of the V0 daughters parallel to the V0

momentum direction as measured in the laboratory frame (p‖). The superscript (+,-) indicates

the daughter charge.pT in this case is defined as the V0 daughter momentum transverse to the

V0 momentum direction. When these variables are plotted against one-another the different

V0 species separate into elliptical bands. Cutting on the invariant mass of one of the species is

equivalent to masking out the corresponding ellipse on the Armenteros-Podolanski plot. TheΛ

andΛ bands each have a region of overlap with theK0
S band. As this region of overlap accounts

for only a small portion of theK0
S, cutting on theΛ andΛ masses is effective for isolatingK0

S.

However the region of overlap covers a large portion of theΛ andΛ momentum space, meaning

that cutting on theK0
S mass when selecting these species causes a large loss of statistics.
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A ‘brute force’ method was adopted to determine a suitable setof geometrical cuts to select

each neutral strange species. Once the energy loss cuts, and in the case of theK0
S the Λ/Λ

invariant mass cuts, had been applied the five geometrical cut parameters listed above (two

for daughter track DCAs) were changed in various permutations. The resulting invariant mass

spectra were used to select a set of cuts. Tightening the cuts gave a better signal-to-background

ratio at the cost of a reduced yield. The cuts were therefore chosen to strike a balance between

providing good background suppression whilst also retaining a usable yield. A requirement

was imposed that the background region had a straight line shape, so as to be able to apply

the bin counting method of yield calculation discussed previously. This was tested by fitting

a straight line through the two background regions only, omitting the intervening peak region,

and requiring the reducedχ2 of the fit to be close to one, indicating a good quality of fit.

The invariant mass background shape of each species was found to change significantly as

a function of transverse momentum. Therefore geometrical cuts were determined for eachpT

range individually. Backgrounds were largest at low momentum, as most of the background

particles have transverse momentum much less than 1 GeV/c. The momentum ranges used, and

the cut values determined for each species in those ranges, are summarised in table 4.2. Because

of low particle counts at small momentum, a lower momentum cutoff of 0.5 GeV/c was applied.

Figures 4.11, 4.12 and 4.13 show the invariant mass spectra produced using the cuts listed in

table 4.2 for theK0
S, Λ andΛ respectively.
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Table 4.2: Selection criteria for each V0 species. DCA = Distance of Closest Approach. PV = Primary Vertex.

Species
pT

(GeV/c)

Max. DCA
of V0 to

PV

Max. DCA
between

V0
daughters

Min. V0
decay

distance

Positive daughter Negative daughter
Other

Min.
DCA
to PV

energy loss
constraint

Min.
DCA
to PV

energy loss
constraint

K0
S All 2.0 1.2 3.0 0.5

Within 3σ
of π+

mean
0.5

Within 3σ
of π−

mean

Invariant mass
not consistent
with (anti-)Λ

K0
S 0.5 to 1.0 1.0 1.2 2.0 0.5 " 0.5 " "

K0
S 1.0 to 1.5 1.0 1.0 2.0 0.5 " 0.5 " "

K0
S 1.5 to 2.0 1.5 1.2 3.0 1.0 " 1.0 " "

K0
S 2.0 to 3.0 1.5 0.8 2.0 0.5 " 0.5 " "

K0
S 3.0 to 4.0 1.5 1.0 3.0 0.5 " 0.5 " "

Λ All 1.0 1.0 3.0 0.0
Within 3σ
of proton

mean
0.0

Within 3σ
of π−

mean

Λ 0.5 to 1.0 2.0 1.0 2.0 0.0 " 0.0 "

Λ 1.0 to 1.5 1.5 1.0 2.0 0.0 " 0.5 "

Λ 1.5 to 2.0 1.0 1.0 4.0 0.5 " 0.5 "

Λ 2.0 to 3.0 1.0 1.0 4.0 0.5 " 1.0 "

Λ 3.0 to 4.0 2.0 1.2 2.0 0.5 " 0.0 "

Λ All 1.5 1.2 4.0 0.0
Within 3σ

of π+

mean
0.0

Within 3σ
of p̄ mean

Λ 0.5 to 1.0 2.0 1.2 2.0 0.0 " 0.0 "

Λ 1.0 to 1.5 1.5 1.0 2.0 1.0 " 0.0 "

Λ 1.5 to 2.0 1.5 1.0 3.0 0.0 " 0.5 "

Λ 2.0 to 3.0 1.0 0.8 2.0 0.5 " 0.5 "

Λ 3.0 to 4.0 2.0 1.2 4.0 0.0 " 0.0 "

6
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Figure 4.11: Invariant mass distributions forK0
S mesons as a function ofpT with all selection

criteria applied. The signal region is shaded with lines and background regions are hatched. The
Background regions were fitted with a straight line, skipping the intervening region containing
the signal peak. Theχ2 per degree of freedom was required to be in the range 0.5 to 1.5,
indicating that the background was well-described by a straight line shape and that the bin
counting method of yield extraction was valid. The solid straight lines indicate extrapolations
of the background fits across the signal region, showing that the linear shape of the background
extends over the full mass range of interest. The mass peak shifts to the right at higherpT as
energy loss effects become less important. For simplicity, a single signal region was chosen that
encompassed the mass peaks in all momentum ranges.
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Figure 4.12: Invariant mass distributions forΛ hyperons as a function ofpT with all selection
criteria applied. See comments in the caption of figure 4.11.
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Figure 4.13: Invariant mass distributions forΛ anti-hyperons as a function ofpT with all selec-
tion criteria applied. See comments in the caption of figure 4.11.
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Chapter 5

Single Spin Asymmetry

Physics asymmetries were calculated separately for each RHIC beam store because of the vari-

ation of the beam polarisation between stores. The polarisations achieved for each beam are

summarised in figure 5.1. Typical beam polarisation during 2006 was between 45 and 65%,

with a mean of 53% for each beam. This was an improvement on the previous year’s data, for

which typical values of 45 to 50% were achieved. The polarisation of each beam was typically

measured to a statistical precision ofδPstatistical = 1-2%. Systematic uncertainties on the polari-

sation measurement for each beam store were of approximately the same size. These systematic

uncertainties were uncorrelated between stores. In addition, there was a global systematic un-

certainty, correlated between all beam stores, ofδPA/PA = 4.7% for the clockwise beam and

δPC/PC = 4.8% for the anticlockwise beam. The global uncertainty in the product of the two

beam polarisations,δ (PAPC)/(PAPC) = 8.3%.

5.1 Single Spin Asymmetry

The transverse single spin asymmetries in the production ofK0
S, Λ andΛ have been measured.

The single spin asymmetry,AN, is also known as the left-right asymmetry, or the analysing

power. The asymmetry in particle production is of the form [108]

N (φ) ∝ 1+ANPcosφ , (5.1)
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Figure 5.1: RHIC beam polarisation for 2006 p⇑ + p⇑ running for (a) clockwise beam, (b)
anticlockwise beam.

where N(φ ) is the number of particles produced at azimuthφ and P is the beam polarisation.

The analysing power can be measured by a detector at an azimuthal angleφ by

ANP =
1

cosφ
N⇑−N⇓

N⇑ +N⇓ . (5.2)

Throughout the analysis,φ is defined in the range -π to +π . φ = 0 corresponds to the positive

x direction in the STAR coordinate system and positive (negative)φ corresponds to positive

(negative) y.

The single spin asymmetry is seen as a difference in particle production to opposite sides of

the beam’s momentum-polarisation plane.N indicates the particle yield produced to one side of

this plane (i.e. to ‘beam-left’ or ‘beam-right’).⇑ and⇓ indicate the beam polarisation direction.

The directions ‘beam-left’ and ‘beam-right’ are defined as

~pV0·
(

~pbeam×~Pbeam

)

< 0, for beam-left

~pV0·
(

~pbeam×~Pbeam

)

> 0, for beam-right, (5.3)

where~pV0 is the V0 momentum vector and~pbeamand~Pbeamare respectively the beam momen-

tum and polarisation vectors. Beam left corresponds to negative x in the STAR coordinate sys-
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tem for the clockwise beam, and positive x for the anticlockwise beam. Because the asymmetry

involves takingratiosof particle yields, the acceptance of the detector and the efficiencies of the

STAR trigger, V0 reconstruction and analysis cuts cancel out, greatly simplifying the analysis.

The factor of cosφ in equation (5.2) and how this is accounted for in the analysis are discussed

further in section 5.2.

Single spin asymmetry measurements require only one beam to be polarised. Because the

two RHIC beams are independently polarised, two measurements of the single spin asymmetry

can be made using the same data. In each case, one beam is treated as the polarised beam, while

the other is treated as unpolarised by summing particle production over both the polarisation

states of that beam.

Two methods were used to calculate the single spin asymmetries and the results compared

to check consistency. One method involved using the relative luminosities of the beams to

correct the counts for each polarisation permutation. The other uses a combination of particle

production to both sides of the beam to cancel the effects of differing beam luminosities. These

two methods will be discussed in detail now.

5.1.1 Relative luminosity Method

The bunches in each RHIC beam are not identical in their spatial profile, and so each provides

a slightly different luminosity. The more tightly the protons are bunched, the higher the lumi-

nosity will be. This means that there is effectively a different luminosity for each permutation

of the beam polarisations (⇑⇑, ⇓⇑, ⇑⇓ and⇓⇓) in any given beam store. To account for this,

when calculating the asymmetry the yield for each polarisation state must be scaled by the

corresponding luminosity. Accounting for this, equation (5.2) then becomes:

ANP =
1

cosφ

N⇑

L ⇑ − N⇓

L ⇓

N⇑
L ⇑ + N⇓

L ⇓

. (5.4)

whereL ⇑ and L ⇓ indicate the beam luminosity for bunches of up and down polarisation

respectively. To treat one beam as effectively unpolarised, yields from the two polarisation
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states of that beam are summed,

N⇑ = N⇑⇑ +N⇑⇓,

N⇓ = N⇓⇑ +N⇓⇓, (5.5)

where the first superscript arrow in each term on the right of equation (5.5) indicates the polari-

sation direction of the ‘polarised beam’ and the second arrow indicates the polarisation direction

of the ‘unpolarised beam’. As the luminosities for these states are not necessarily the same, they

must be scaled by the appropriate luminosity individually:

N⇑

L ⇑ → N⇑⇑

L ⇑⇑ +
N⇑⇓

L ⇑⇓ ,

N⇓

L ⇓ → N⇓⇑

L ⇓⇑ +
N⇓⇓

L ⇓⇓ . (5.6)

Because the asymmetry measurement involves taking a ratio, it is adequate to use only therel-

ative luminosities between beams, meaning that the absolute normalisation of the luminosities

did not need to be known. Bunches with both beams polariseddown(⇓⇓ bunches) were used

as the reference for calculating relative luminosities. The four relative luminosities were thus

defined:

R
⇑⇑ =

L ⇑⇑

L ⇓⇓ ,

R
⇑⇓ =

L ⇑⇓

L ⇓⇓ ,

R
⇓⇑ =

L ⇓⇑

L ⇓⇓ ,

R
⇓⇓ ≡ 1. (5.7)

The relative luminosities were calculated by taking the ratios of BBC count rates for collisions
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with each permutation of beam polarisations.

Particle yields for each permutation of beam polarisations were scaled by the relative lumi-

nosity for that permutation. The full expression for the asymmetry was then:

ANP =
1

cosφ

(

N⇑⇑/R
⇑⇑+N⇑⇓/R

⇑⇓)−
(

N⇓⇑/R
⇓⇑ +N⇓⇓)

(

N⇑⇑/R⇑⇑+N⇑⇓/R⇑⇓)+
(

N⇓⇑/R⇓⇑+N⇓⇓) . (5.8)

The asymmetry can be calculated using counts to beam left or counts to beam right. By ro-

tational invariance, the asymmetry using particle production to the left is equivalent to the

negative of that using production to the right. For each beam, both the left-asymmetry and

the right-asymmetry were calculated, and the left-asymmetry averaged with the negative of the

right asymmetry. Asymmetries were calculated separately for forward and backward angles

relative to the beam direction. The results for each beam were then summed to give an average

value for the asymmetry at forward angles and at backward angles.

5.1.2 Cross Ratio Method

For the ‘cross-ratio’ method, N⇑ and N⇓ in equation (5.2) were defined as

N⇑ =
√

L⇑R⇓,

N⇓ =
√

L⇓R⇑, (5.9)

where L and R indicate particle yield to beam-left and beam-right respectively. This combined

the particle production to each side of the beam for opposite beam polarisations at the start,

rather than combining by averaging ‘left’ and ‘right’ asymmetries at the end as in the afore-

mentioned method. Because of rotational invariance, particle production to the beam-left for

one polarisation must be equivalent to that to beam-right for the opposite polarisation. Equation

(5.9) thus defines ‘effective’ yields to beam left.

To measure the single spin asymmetry, one beam is again treated as unpolarised by summing

over its polarisation states. The terms in equation (5.9) are then defined as
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L⇑ = L⇑⇑ +L⇑⇓,

L⇓ = L⇓⇑ +L⇓⇓,

R⇑ = R⇑⇑+R⇑⇓,

R⇓ = R⇓⇑+R⇓⇓. (5.10)

The first superscript arrows in the terms on the right indicate the polarisation state of the po-

larised beam and the second the state of the ‘unpolarised’, beam. The complete expression for

the asymmetry using the cross-ratio method is

ANP =
1

cosφ

√

(

L⇑⇑ +L⇑⇓)(R⇓⇑+R⇓⇓)−
√

(

L⇓⇑ +L⇓⇓)(R⇑⇑+R⇑⇓)

√

(

L⇑⇑ +L⇑⇓)(R⇓⇑+R⇓⇓)+
√

(

L⇓⇑ +L⇓⇓)(R⇑⇑+R⇑⇓)
. (5.11)

The cross-ratio method of calculating the asymmetry has two advantages. First, it cancels out

the effects of detector acceptance, as with the above method. Second, because each term in

the numerator and denominator in equation (5.2) contains a contribution from bunches with

both up and down polarisation via equation (5.9), polarisation-dependent luminosity differences

between bunches also cancel out. This means that the asymmetry can be calculated without

knowledge of the beam luminosities. It is therefore unnecessary to scale particle yields by

the luminosity for the corresponding polarisation state of the collisions creating them. This

simplifies the calculation of the asymmetry and allows more runs to be used in the analysis, as

relative luminosity measurements were not available for all runs. It also negates the effect of

any systematic errors in the luminosity monitoring.

To demonstrate the cancellation of the luminosity, the asymmetry was calculated for a num-

ber of runs using equation (5.11). The asymmetries were then recalculated, using yields scaled

by the relative luminosities. The results of these calculations are compared in figure 5.2. The

single spin asymmetry calculated when the relative luminosity effects are explicitly accounted
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Figure 5.2: The cancellation of beam luminosity using the cross-ratio method of asymmetry
calculation (equation (5.11)). The shown asymmetries are calculated using yields ofΛ hyperons
at forward angles, treating the clockwise beam as the polarised beam and the anticlockwise
beam as unpolarised. Solid points show the asymmetry calculated with no account taken of
beam luminosity. The empty, offset points show the effect of explicitly including luminosity.
The difference is negligible.

for barely differ from those without the luminosity considered. Deviations are negligible com-

pared to the statistical uncertainties in all cases, showing that the cross-ratio method successfully

accounts for the effect of beam luminosity.

For this reason the cross-ratio method is the preferred method for calculating the asymme-

try. The relative luminosity method was used as a check on the cross-ratio results, to look for

systematic errors.

5.2 Azimuthal Weighting

Care must also be taken to account for the azimuthal particle distribution when calculating

the asymmetry. The asymmetry is strongest in the direction normal to the beam-polarisation

plane and goes to zero along the polarisation direction. The factor of 1/cosφ in equation (5.2)

accounts for this. In previous fixed-target experiments such as those at the AGS the detector

accepted only particles produced in a small range in azimuth, whereby a single value for cosφ
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could be used [56]. The STAR detector covers instead a full 2π radians in azimuth. Theφ

distribution of particles, produced from a beam with polarisationP and with analysing power

AN is given by equation (5.1),

N (φ) ∝ 1+ANPcosφ .

The analysing power can in principle be extracted by binning the particle yields into ranges

in cosφ and fitting a straight line to the results. The analysing power would then be found

from the gradient of the line using the known beam polarisation. However it was found that

the statistics in the data available were insufficient to allow binning into a sufficient number

of cosφ ranges for a meaningful fit. Therefore yields were integrated over all angles in each

hemisphere: beam-left (|φ | < π/2) and beam-right (|φ | > π/2). These yields were entered in

equation (5.11) to calculate the asymmetry. Using the full azimuthal acceptance ‘waters-down’

the measured asymmetry due to production at small values of cosφ , resulting in the analysing

power measured by equation (5.11) being smaller by a factor of 2/π than the physical analysing

power in equation (5.1). To account for the azimuthal distribution without dividing the data into

cosφ ranges, the particle counts used in the denominator were weighted by|cosφ |. Doing this

equation (5.2) becomes

ANP =
1

cosφ
N⇑−N⇓

N⇑ +N⇓ → N⇑−N⇓

∑N⇑
i=1 |cosφ |+∑N⇓

i=1 |cosφ |
(5.12)

Equations (5.8) and (5.11), derived from equation (5.2), were similarly modified. This accounts

for the azimuthal dependence of the asymmetry and means that the single spin asymmetry

determined using equations (5.8) or (5.11) corresponds to the physical analysing powerAN in

equation (5.1).

To check the relationship between a physical asymmetry and that extracted by measurement,

K0
S candidates were randomly assigned azimuthal angles from the distribution in equation (5.1)

with different chosen values ofANP. The asymmetryAN in the modelled particles was calcu-

lated using equation (5.11), both with and without the cosφ weighting procedure. The results
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Figure 5.3: Effect of|cosφ | weighting in denominator terms for asymmetry calculation. 10,000
K0

S were randomly assigned aφ angle, using a polarisation of 100% and an analysing power of
1.0, and the asymmetry calculated using the cross-ratio method. The image shows the results
from 100 repetitions of this calculation. The dashed peak shows the asymmetry calculated by
equation (5.11) with no weighting. The dotted line indicates the value of 2/π expected. The
solid line shows the same asymmetry calculated with weighting, recovering the input value of
1.0.

are shown in figure 5.3.

5.3 Results

The cross-ratio asymmetry was calculated for each RHIC store individually, summing particle

yields from every STAR run that occurred in a given store. Asymmetries were calculated for

each beam, separately for forward and backward angles. Poisson (
√

N) errors were calculated

for each particle yield in equation (5.11) and propagated to calculate the statistical uncertainty

on the asymmetry for each store. The asymmetry for each store was then scaled using the mean

polarisation measured for the corresponding store. The uncertainties on the asymmetries were
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Figure 5.4:AN calculated using the cross-ratio method forK0
S, 1.0 <pT < 1.5 GeV/c, at forward

angles, for the clockwise beam (squares) and anticlockwise beam (circles).

recalculated using the polarisation statistical and systematic uncertainties added in quadrature.

An example of the obtained results is show in figure 5.4, which shows the asymmetry calcu-

lated forK0
S at xF > 0 from both the clockwise and anticlockwise beams for a single transverse

momentum bin. Note that the results are not corrected for the global uncertainty in beam polar-

isation (4.7% clockwise beam, 4.8% anticlockwise beam). Consistency between the two beams

is good on a store-by-store basis.

For each beam and direction relative to the beam (forward and backward angles) a best-

fit line was applied to the store-by-store results to give a weighted mean asymmetry. In each

case the best-fit lines have aχ2 per degree of freedom close to one, indicating a good quality

of fit and showing store-to-store systematic differences are small compared to the statistical

uncertainties.

The results from each beam provide independent measurements of the asymmetry, so the

mean asymmetries calculated from each should show consistency within statistical uncertain-

ties. Figure 5.5 shows comparisons of the asymmetry inK0
S production, as a function ofK0

S

transverse momentum, calculated for both beams. The differences between the two beams are

typically one standard deviation or smaller. Larger differences are seen at forward angles in the
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pT range 1.0 to 2.0 GeV/c, but the deviations are not found to be inconsistent with statistical

fluctuations. The results forΛ and Λ at both forward and backward production angles (not

shown), showed good agreement between the results for the two beams. In all cases a flat best-

fit line fitted to the results from each beam showed results consistent with a zero asymmetry at

all values of transverse momentum.

The results from each beam at the same relative production angles were then averaged to

give a mean asymmetry at forward angles and a mean asymmetry at backward angles. These

averaged asymmetries, as a function of particle transverse momentum, are shown in figures 5.6

(K0
S), 5.7 (Λ) and 5.8 (Λ) and are listed in table 5.1.

All uncertainties shown are statistical only, except for the small contribution from the polar-

isation systematic uncertainty for each store. For theΛ andΛ, the asymmetries are found to be

consistent with zero within statistical uncertainties at all momenta studied, for both forward and

backward angles. The same is observed forK0
S at backward angles. Small non-zero asymme-

triesareseen for theK0
S at forward angles. A positive asymmetry is observed at the level of two

standard deviations in the range 1.0< pT < 1.5 GeV/c. An indication of a negative asymmetry

is seen at higher momentum at the same statistical level. A simple flat line fit through all the

points, with statistical uncertainties alone, yields a best fit value consistent with zero and with

a χ2/n of 10/4. Though this is quite a large value forχ2/n it is not inconsistent with being a

reasonable fit to the data; a value of 10/4 or larger would be expected approximately 4% of the

time. This is not considered large enough to be clear evidence of a non-zero result. Therefore it

was concluded that at the current level of statistical precision, the asymmetries inK0
S production

at forward angles are also consistent with zero.

5.3.1 Dependence of Asymmetry on Yield Extraction

To test for systematic uncertainties due to the choice of selection cuts, asymmetries for all

particles and transverse momenta were recalculated using yields calculated with different, but

still sensible, choices of geometrical cut criteria. The same energy loss selections were applied

as before as that cut did not reject any signal. In each case, changes to the calculated asymmetry
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Figure 5.5: AN in K0
S production as a function ofK0

S transverse momentum at (a) forward
production angles and (b) backward angles. The clockwise beam results are shown with solid
circles and the anticlockwise beam results with hollow circles.
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Figure 5.6:AN(pT) of K0
S mesons averaged over all RHIC stores and both beams.
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Figure 5.7:AN(pT ) of Λ hyperons averaged over all RHIC stores and both beams.
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Figure 5.8:AN(pT ) of Λ anti-hyperons averaged over all RHIC stores and both beams.

81



pT interval (GeV/c) Single spin asymmetry Uncertainty

K0
S at forward angles

0.5 to 1.0 -0.0034 0.0143
1.0 to 1.5 0.0265 0.0139
1.5 to 2.0 -0.0291 0.0168
2.0 to 3.0 0.0023 0.0148
3.0 to 4.0 -0.0397 0.0208

K0
S at backward angles

0.5 to 1.0 -0.0102 0.0143
1.0 to 1.5 0.0113 0.0139
1.5 to 2.0 0.0114 0.0168
2.0 to 3.0 0.0144 0.0148
3.0 to 4.0 -0.0019 0.0208

Λ at forward angles
0.5 to 1.0 0.0208 0.0364
1.0 to 1.5 0.0091 0.0298
1.5 to 2.0 -0.0293 0.0262
2.0 to 3.0 -0.0060 0.0239
3.0 to 4.0 0.0234 0.0412

Λ at backward angles
0.5 to 1.0 0.0439 0.0364
1.0 to 1.5 0.0118 0.0297
1.5 to 2.0 -0.0038 0.0261
2.0 to 3.0 -0.0009 0.0239
3.0 to 4.0 0.0050 0.0414

Λ at forward angles
0.5 to 1.0 -0.0151 0.0417
1.0 to 1.5 0.0364 0.0334
1.5 to 2.0 -0.0051 0.0286
2.0 to 3.0 0.0234 0.0241
3.0 to 4.0 -0.0234 0.0347

Λ at backward angles
0.5 to 1.0 -0.0600 0.0421
1.0 to 1.5 -0.0272 0.0331
1.5 to 2.0 0.0194 0.0286
2.0 to 3.0 -0.0052 0.0240
3.0 to 4.0 0.0498 0.0347

Table 5.1: Single spin asymmetries and associated statistical uncertainties as a function of par-
ticle pT .
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Figure 5.9: Variation of extractedK0
S AN(pT ) at forward production angles with different

choices of geometrical cuts. The results with the cuts listed in table 4.2 are shown with solid
circles and are the same as those in figure 5.6(a). Asymmetries calculated with an alternative
set of cuts are shown with hollow circles. Changes are uncorrelated between points.

on a store-by-store basis were equal to or smaller than one standard deviation of the statistical

uncertainty on the point, and were not correlated from one point to the next. The best-fit means

for each asymmetry extracted were also stable under alternative selection criteria to within at

most one standard deviation of the statistical uncertainty, and typically less than this amount.

An example is shown forK0
S, which had the best statistical precision, in figure 5.9.

5.3.2 Check for False Up-Down Asymmetry

The data were also analysed for false asymmetries. From the form of equation (5.1), the ‘up-

down’ asymmetry should be zero. This is the asymmetry calculated using equation (5.2) with

the counts N referring to counts into either the upper or lower halves of the detector (positive

or negative y) as opposed to the left or right. The cross ratio method was used here, substi-

tuting ‘left’ (L) and ‘right’ (R) yields in equation (5.11) for ‘up’ (U) and ‘down’ (D) yields

respectively, giving
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Aup−downP =

√

(

U⇑⇑+U⇑⇓)(D⇓⇑+D⇓⇓)−
√

(

U⇓⇑+U⇓⇓)(D⇑⇑+D⇑⇓)

√

(

U⇑⇑+U⇑⇓)(D⇓⇑+D⇓⇓)+
√

(

U⇓⇑+U⇓⇓)(D⇑⇑+D⇑⇓)
. (5.13)

This asymmetry was calculated as a function of transverse momentum using the same methods

as for the analysing power (left-right asymmetry). The up-down asymmetry was indeed found

to be zero within statistical uncertainties as expected. Figure 5.10 shows an example of the

up-down asymmetry calculated using each beam at forward and backward angles for theK0
S.

There is no indication of a statistically significant non-zero result at any momentum or beam

direction. The same conclusion was drawn for theΛ andΛ (not shown).

5.3.3 Comparison of Asymmetry Calculation Methods

Two methods of asymmetry calculation were described in sections 5.1.1 and 5.1.2. The cross

ratio method (section 5.1.2) was used as the preferred method, but the two methods should

give consistent results if the luminosity-scaling of yields is effective. Figure 5.11 compares the

results shown in figures 5.6, 5.7 and 5.8 with the equivalent results using the relative-luminosity-

dependent asymmetry calculation in section 5.1.1. In many cases the agreement between the

two methods is almost exact. The deviation between the methods is in all cases less than the

statistical uncertainty on the points. This gives confidence that the luminosity scaling used

successfully accounts for differing, polarisation-dependent, beam luminosities.

5.4 Summary

The transverse single spin asymmetry in the production ofK0
S, Λ andΛ has been measured in

transversely polarisedp+ p collisions at
√

s = 200 GeV at mid-rapidity up to transverse mo-

mentum of 4 GeV/c. For all species the observed asymmetries are small and consistent with

zero within statistical uncertainties. A number of sources of systematic effects have been inves-

tigated, none of which are found to be significant compared to the statistical uncertainties. The
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Figure 5.10: Up-down asymmetry in the production ofK0
S mesons as a function ofpT at (a)

forward production angles and (b) backward production angles.

85



Transverse momentum (GeV/c)
0.5 1 1.5 2 2.5 3 3.5 4

N
M

ea
n

 a
sy

m
m

et
ry

, A

-0.2

-0.15

-0.1

-0.05

-0

0.05

0.1

0.15

0.2

(a) K0
S, forward angles
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(b) K0
S, backward angles
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(c) Λ, forward angles
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(d) Λ, forward angles
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(e) Λ, forward angles
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(f) Λ, forward angles

Figure 5.11: Comparison between cross-ratio method of calculation forAN (solid circles) and
the luminosity-scaling method (hollow circles).
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measurements here greatly extend the transverse momentum range over which the asymmetries

in these species have been measured, making pQCD applicable to their analysis.

Collisions at smallxF are dominated by collisions between partons with small longitudinal

momentum fractions,x, of the colliding protons. Therefore collisions involving gluons and sea

(anti-)quarks will dominate. Collisions involving a valence quark will tend to give particle pro-

duction at largexF because of the large momentum fraction carried by the valence quark. While

collisions between two valence quarks, each with a large momentum fraction, can give particle

production at smallxF , such collisions will give only a small contribution to the collision cross

section because of the much larger number of smallx gluons and sea quarks in the proton. The

smallness of asymmetries atxF ≈ 0 and the large asymmetries seen at largexF indicate that the

mechanisms that give rise to the asymmetries are significant only in the valence region and are

small in the sea region.

As the gluon distribution is larger at smallx than the sea quark distribution (figure 1.6),

gluon-gluon and quark-gluon scattering will dominate over quark-quark scattering. As there is

no leading-twist gluon transversity distribution, the dominance of gluon scattering means that

the Collins mechanism is likely to be less important that Sivers meachanism when analysing the

data. The data can be used to place further constraints on the gluonic Sivers distribution; this is

discussed further in chapter 7.
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Chapter 6

Double Spin Asymmetry

Transverse single spin asymmetries are connected to tranversity in combination with another

chiral odd function. Another way to investigate transversity is with transversedouble spin

asymmetries, ATT, whereby the two chiral odd functions required to observe an asymmetry are

provided by the transversity functions of each proton. A double spin asymmetry can be inves-

tigated in collisions in which both particles involved are transversely polarised. The ability of

RHIC to polarise both proton beams provides an opportunity to search for such an asymme-

try in proton-proton collisions.ATT for hadron production in polarised hadronic collisions is

predicted to be very small [109], so an indication of a non-zeroATT would be interesting.

The transverse double spin asymmetry is predicted to be of the form

N(φ) ∝ 1+ATTP1P2cos2φ , (6.1)

as described in for example [108].ATT is the double spin asymmetry in particle production,P1

andP2 are the polarisations of the two beams andφ is the azimuthal angle at which the particle

is produced. The quantityATT can be extracted from the measured particle yields by

ATT (φ) =
1

P1P2cos2φ
Nparallel (φ)−Nopposite(φ)

Nparallel (φ)+Nopposite(φ)
. (6.2)

Nparallel denotes the yields from collisions in which the polarisation direction of the two beams
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is parallel. Noppositedenotes yields from collisions when the beam polarisations are opposite.

The factor of 1/cos2φ accounts for the azimuthal dependence of the asymmetry, in the same

way that the factor 1/cosφ did for the single spin asymmetry.

Written in terms of the four beam polarisation permutations, and accounting for their differ-

ing relative luminosities, equation (6.2) becomes

ATT =
1

P1P2cos2φ
N⇑⇑/R⇑⇑+N⇓⇓−N⇑⇓/R⇑⇓−N⇓⇑/R⇓⇑

N⇑⇑/R⇑⇑+N⇓⇓ +N⇑⇓/R⇑⇓+N⇓⇑/R⇓⇑ . (6.3)

There were insufficient data to measureATT as a function ofφ and fit the distribution. How-

ever, to extract the asymmetry from the data, it is not necessary to measure the full azimuthal

distribution of the produced particles. A procedure of integrating counts over different detector

regions is followed, in a similar fashion to that used to extract the single spin asymmetry. For

an asymmetry with a cos2φ dependence,ATT can be extracted by combining the asymmetry

measured in different quadrants as follows [110]:

ATT =
1
4

(

Ale f t
TT +Aright

TT −Atop
T T −Abottom

TT

)

. (6.4)

Atop
TT is the double asymmetry calculated using yields only in the upper quadrant of the detector,

spanningφ = π/4 to φ = 3π/4. The other three terms refer to the asymmetry from the other

three quadrants. The asymmetry for the vertical quadrants, where the asymmetry is maximally

negative, is subtracted from that for the horizontal quadrants, where it is maximally positive.

When combined in this way, these four measurements ofATT yield the physical asymmetry.

Because the two beams are equivalent, left is defined arbitrarily to bex > 0 in the STAR co-

ordinate system. The azimuthal angleφ was defined to cover the range−π to +π . With this

definition, the four quadrants spanned theφ ranges given in table 6.1.

CalculatingATT in this way utilises the particle production throughout the whole detec-

tor, minimising statistical uncertainties. Because both beams enter equation (6.2) equivalently,

any asymmetry must be symmetric aboutη = 0. Yields at both forward and backward angles

are therefore summed. In analogy with the single spin case, integrating over an angular range
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Quadrant φmin φmax

Top π /4 3π /4
Left -π /4 π /4

Bottom -3π /4 -π /4
Right 3π /4 -3π /4

Table 6.1:φ angle ranges defining the four quadrants used for calculatingATT.

dilutes the asymmetry because of its angular dependence. This results in the measured asym-

metry being smaller than the physical asymmetry. The cos2φ dependence is accounted for by

weighting each count in the denominator by|cos2φ | of the particle.

Yields for each species are extracted, as discussed previously, for each STAR run. These

are scaled by the appropriate relative luminosity,R. The single spin asymmetry results cal-

culated using the luminosity-dependent method and the cross-ratio method corresponded well.

This indicates that the relative luminosity scaling procedure used is reliable, and systematic

uncertainties due to the luminosity measurements are not large.

Scaled yields from each run in a given RHIC store are added to give total store-by-store

yields. The asymmetry for each RHIC store is then calculated using equations (6.3) and (6.4).

The raw asymmetries are corrected for the product of the two beam polarisations. A best fit line

to the store-by-store results is used to obtain a weighted mean value for the asymmetry.

The calculated asymmetry is shown for each beam store in figure 6.1. Results are integrated

over all particle transverse momenta to minimise statistical uncertainties. The global uncertainty

in the product of the beam polarisations,δ (PAPC)/(PAPC) is not incorporated. No significant

store-to-store fluctuations are observed. Asymmetries are small, in agreement with theoreti-

cal predictions. The best-fit mean asymmetries are consistent with zero within the statistical

uncertainties.

The mean values ofATT extracted as a function of transverse momentum are summarised in

figure 6.2 and are listed in table 6.2. The results are flat and consistent with zero at eachpT bin

studied.
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Figure 6.1: ATT for each RHIC store integrated over all particle transverse momenta. The
horizontal straight lines show best fits to the data over all stores.
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Figure 6.2:ATT of each V0 species as a function of particle transverse momentum.
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pT interval (GeV/c) Double spin asymmetry Uncertainty

K0
S

0.5 to 1.0 -0.0097 0.0293
1.0 to 1.5 -0.0143 0.0282
1.5 to 2.0 -0.0606 0.0340
2.0 to 3.0 -0.0202 0.0298
3.0 to 4.0 0.0269 0.0419

Λ
0.5 to 1.0 -0.0277 0.0717
1.0 to 1.5 -0.0452 0.0593
1.5 to 2.0 -0.0352 0.0517
2.0 to 3.0 -0.0462 0.0483
3.0 to 4.0 0.0551 0.0833

Λ
0.5 to 1.0 0.0200 0.0847
1.0 to 1.5 0.0417 0.0658
1.5 to 2.0 -0.0754 0.0569
2.0 to 3.0 0.0305 0.0487
3.0 to 4.0 0.0150 0.0693

Table 6.2: Double spin asymmetries and associated statistical uncertainties as a function of
particlepT .
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6.1 Summary

Transversely polarised proton-proton collisions have been analysed for a cos2φ double spin

asymmetry,ATT, in the production of the neutral strange speciesK0
S, Λ andΛ. The asymme-

try is found to be small and consistent with zero within statistical uncertainties of 0.017 for

theK0
S and 0.028 for the (anti-)Λ when the data are integrated over all transverse momentum.

No non-zero results are seen for particle production in the range 0.5< pT < 4.0 GeV/c when

the results are plotted as a function ofpT . The asymmetries are measured atxF ≈ 0, where

collisions involving gluons dominate. While quarks can possess a non-zero transversity distri-

bution at leading twist, gluons can not. Therefore the double spin asymmetry, which involves

the transversity distributions of both the partons involved in a collision, is predicted to be very

small at smallxF . There results presented here are consistent with this prediction.
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Chapter 7

Overview and Outlook

I shall first give an overview of the work presented and its significance in the analysis of trans-

verse spin asymmetries. I will then give a brief overview of some of the work being carried out

now and proposed for the future at RHIC and other facilities that will increase our understanding

of the transverse spin of the nucleon.

7.1 An Overview of the Work Presented

The results presented in this thesis show measurements of the transverse single spin asymmetry

AN and transverse double spin asymmetryATT of the neutral strange particlesK0
S, Λ andΛ at

mid-rapidity (|xF | < 0.05) and transverse momentum in the range 0.5< pT <4 GeV/c, from

p+ p collisions at
√

s = 200 GeV.

For each species the measurements of the single spin asymmetry are all small and consistent

with zero across the wholepT range studied, within statistical uncertainties of a few percent.

No evidence has been found of systematic effects in the results of a size significant at the current

level of statistical precision. The results for theΛ hyperon are consistent with those obtained

by the AGS experiment at
√

s = 13.3 and 18.5 GeV in the region of kinematical overlap [57],

and fit with the low-xF trend seen in E704 data at
√

s= 20 GeV [65]. TheK0
S asymmetry is not

in agreement with the significant negative asymmetryAN(K0
S) ≈ -0.10 obtained at the AGS at

√
s = 18.5 GeV [57]. The result is consistent with that observed for neutral pions, another me-
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son species measured at the same centre-of-mass energy and kinematic range by the PHENIX

Collaboration [69]. More work would be required to understand the production mechanism

leading to the non-zeroK0
S asymmetry at low beam energies. There are two measurements that

could be made of theK0
S asymmetry that would be informative. First, it would be interesting to

measure theK0
S asymmetry at largexF to see if the asymmetry there remains at high energies,

as is the case for pions, or if it too vanishes. Secondly, it would be interesting to measure the

K0
S asymmetry at energies intermediate between those of the AGS measurement and this mea-

surement, to observe the evolution of the asymmetry with beam energy. Though RHIC has run

at
√

s= 62.4 GeV/c, the data acquired by STAR to date at this energy are insufficient to make a

measurement of theK0
S asymmetry at the required precision.

A measurement of theΛ asymmetry at the AGS at
√

s= 18.5 GeV and smallpT gaveAN(Λ)

= 0.03± 0.10. The results presented here are consistent with this value, but provide improved

statistical precision and are over a much larger range ofpT .

The measurements here extend the transverse momentum range at which the asymmetries

are measured significantly beyond that previously achieved. The measurements are at sufficient

momenta that pQCD will be applicable in their analysis, unlike previous measurements of the

same species [111]. Combined with charged kaon results from the BRAHMS Collaboration

[72], RHIC has now produced high-energy measurements of single spin asymmetries in the

production of several strange species, providing constraints on strange quark contributions to

nucleon spin. The results presented here, though in a differentxF range from the reported

BRAHMS K± results, fit the trend seen there.

Transverse double spin asymmetries atxF ≈ 0 involve the sea quark and antiquark transver-

sity distributions. The measurements ofATT are consistent with zero for each species as a func-

tion of transverse momentum. This is the first time such a measurement has been attempted

for any of these species. Calculations predict that double spin asymmetries in this momentum

range in hadronic collisions should be vanishingly small, due to small asymmetries and large

backgrounds from gluonic collisions. The results agree with these predictions, and rule out

unexpectedly large values for the transverse double spin asymmetry.
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7.1.1 Gluonic Sivers Effect

At largexF , particle production processes are dominated by valence quark-quark (qq) collisions.

At small xF gluon-quark (gq) collisions (involving sea quarks) and gluon-gluon (gg) collisions

are dominant. This means that measuring asymmetries in different ranges inxF gives access

to the spin distributions and dynamics of different constituents of the nucleon. The trend in

transverse single spin asymmetries to increase with largexF indicates that the asymmetry is

associated with mechanisms involving the valence quarks of the polarised nucleon. Conversely

small asymmetries atxF ≈ 0 indicate that effects due to sea quarks and gluons are small.

The results at smallxF presented here are therefore related to the sea quark and gluon con-

tent of the nucleon. The dominance of gluonic scattering in thisxF range means that the Collins

mechanism is unlikely to be significant in the analysis. However the Sivers mechanism (spin-

dependent transverse-momentum distribution) will be involved. Though most work to date has

concentrated on the quark Sivers effect - that is, the correlation between the transverse momen-

tum of the quarks and the nucleon spin - there can also be a correlation with the motion of the

gluons. The small results forAN presented here indicate that the gluonic and sea-quark Sivers

functions are small. An analysis using PHENIX measurements ofp⇑ + p → π0 + X, which

covered a comparable kinematic range to this work, has been performed to provide a constraint

on the gluonic Sivers function (GSF) [112]. It found that the PHENIX data, combined with

other data on pion production in hadronic collisions and SIDIS, are consistent with a non-zero

valence-like quark Sivers distribution and a vanishing sea-quark and gluonic contribution. The

PHENIX results were used to provide an upper limit on the size of the gluonic Sivers function,

shown in figure 7.1. The results presented here can be used to provide further constraints on the

gluonic Sivers effect.

7.2 The Future

What does the future hold for transverse spin physics? There have been great strides in the past

few years in understanding transverse spin effects: the first measurements have been made of
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Figure 7.1: Upper limit on the gluonic Sivers function, normalised to the positivity limit, ob-
tained using a fit to PHENIXp⇑+ p→ π0+X data [112]. The data constrain the function well
at smallx where gluons dominate. The solid line shows the results assuming a vanishing sea
quark contribution. The dashed line assumes a maximal sea quark distribution that balances the
gluon contribution.
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Collins and Sivers functions, and the first extraction ofu and d quark transversity distributions

have been performed. However uncertainties are still large compared to unpolarised and helicity

distributions, so much more work is needed before transverse spin phenomena are understood

to the same degree.

Transverse spin programmes are currently being performed or planned at a range of exper-

iments. I shall give here a brief overview of some the advances and measurements anticipated

over the next few years, and how they will impact on our understanding of transverse spin

phenomena.

7.2.1 At RHIC

RHIC is soon to begin accelerating proton beams to 250 GeV, providing a centre of mass energy
√

s= 500 GeV, an important milestone in its operation. This is a significant increase over
√

s=

200 GeV at which data has been acquired to date, and will open up the ability to study processes

involving W boson decays. Measurements of W asymmetries will provide information on the

flavour dependence of spin contributions from both sea and valence quarks and antiquarks in

the proton. In the longer term there are plans for a RHIC luminosity upgrade (RHIC II), and

there are proposals to upgrade RHIC to a polarised electron-proton collider (eRHIC).

Both ongoing RHIC experiments, PHENIX and STAR, maintain strong spin programmes.

Improvements to the STAR data acquisition system are now allowing it to take much larger

data sets than previously. This will contribute greatly to improving the precision of its spin

measurements. STAR is in the process of developing a forward meson spectrometer (FMS),

an advanced version of the forward pion detector that has been used in measurements ofπ0

single spin asymmetries. Non-zero values for both Sivers distribution functions and Collins

fragmentation functions have recently been shown by HERMES and BELLE [75, 77, 78], and

both mechanisms are expected to contribute to transverse single spin asymmetries in hadron-

hadron collisions. The STAR FMS will allow disentangling of the relative contributions of the

Sivers distribution function and Collins fragmentation function to the neutral pion asymmetry.

The PHENIX experiment can detect muons from the decaysu+d → W+ → µ+ +νµ and
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d+u→W− → µ− +ν µ . Studying the single spin asymmetry inW± decays will separate the

u, d, u and d (anti)quark Sivers distributions. PHENIX is receiving an upgrade to its muon

triggering systems in preparation for the increase in beam energy.

7.2.2 SIDIS Measurements

Though HERMES has now ceased taking data, the COMPASS experiment continues a pro-

gramme of transverse spin studies using SIDIS measurements with deuteron and proton targets,

shedding further light on the quark flavour dependence of transversity and the Collins effect.

The spin programme at Jefferson Laboratory plans continued transverse spin measurements

[113]. The Jefferson Laboratory Hall A experiment is preparing a measurement of the neutron

transversity using a polarised helium-3 target [114]. Measurements will be made of the single

spin asymmetry in semi-inclusive charged pion production,e+ n⇑ → e+ π± + X, with a 6

GeV electron beam. This will complement SIDIS measurements made by HERMES using a

proton target and continuing measurements by COMPASS using a deuteron target, and will aid

in constraining theu andd valence quark transversity distributions. JLab experiments will also

have a future 12 GeV beam upgrade. Once this is implemented, data will give access to both

the Sivers and Collins functions at large momentum fractions [115].

7.2.3 Polarised Antiprotons

The PAX (PolarisedAntiproton eXperiments) Collaboration have proposed a polarised proton-

antiproton collider. Measurements of Drell-Yan production can test the prediction that the Sivers

functions in pDIS and Drell-Yan production are equal in magnitude but opposite in sign, a result

of the non-universality of the Sivers functions. PAX could also study transversity by measure-

ments ofATT in polarised Drell-Yan production. In this process the asymmetry results solely

from the transversity distributions of the polarised proton and antiproton. The Collins frag-

mentation functions are not involved in the asymmetry, unlike the case, for example, of HER-

MES and COMPASS SIDIS data. In this way PAX could directly access transversity. Other

measurements may be able to disentangle the contributions of the Sivers and Collins func-
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tions to single spin asymmetries, via measurements of charm meson production, for example in

p+ p↑ → D+X.

7.2.4 Generalised Parton Distributions

The Sivers effect is related to the orbital motion of partons within the nucleon. However, more

direct access to orbital information may be provided by studyingGeneralised Parton Distribu-

tions (GPDs) [116]. Ordinary parton distributions contain information about the longitudinal

momentum fraction of the partons (x), but do not contain any information about transverse

motion. GPDs however contain information about both the transverse and longitudinal parton

momenta. They are characterised by three kinematic variables instead of one;x andξ , which

characterise the longitudinal parton momentum, andt, the square of the four-momentum trans-

fer to the target, which involves transverse momentum. GPDs therefore provide a means to give

a ‘multi-dimensional’ description of partons in the nucleon. They are of interest in relation to

spin because they can yield information on thetotal parton angular momentum: both the intrin-

sic andorbital contributions. Two GPDs, denoted E and H, can be related to the total angular

momentum of a parton species by the integral

J = lim
t→0

∫ 1

0
x(H +E)dx (7.1)

Therefore if the GPDs can be sufficiently well determined, the total angular momentum contri-

butions of the partons will become accessible. Combined with knowledge of the intrinsic spin

contributions from other measurements, the orbital contributions can be determined.

Deeply Virtual Compton Scattering (DVCS) (e+ p→ e′+ p+ γ) has been used as a means

access the GPDs. Investigation of GPDs via DVCS has been performed by the experiments H1,

ZEUS, HERMES and JLab Hall A and CLAS [117–121]. There is also a proposed programme

of study at the COMPASS experiment.
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