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Abstract

It is a classical result that for a function f ∈ Lp(T), dyadic partial sums of the Fourier

series of f converge almost everywhere for p ∈ (1,∞). In 1968, E. A. Bredihina established

an analogous result for the Stepanov spaces of almost periodic functions in the case p = 2.

Here, a new proof of the almost everywhere convergence result for Stepanov spaces is

presented by way of a bound on an appropriate maximal operator for p = 2k, k ∈ N. In

the process of establishing this, a number of general results are obtained that will facilitate

further work pertaining to operator bounds and convergence issues in Stepanov spaces.
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Remarks on Notation

It should be mentioned that the notation used in the study of almost periodic functions

has not been standardised, and varies wildly across the different texts on the subject. The

notation introduced herein ascribes to personal preference and instinct on the part of the

author, rather than conforming to the style of any particular published work.

The symbol S(R) is used to represent the Schwartz space of rapidly decaying functions,

namely those functions f ∈ C∞(R) satisfying the property that for any n, m ∈ N ∪ {0},

the quantity sup
x∈R
|xnf (m)(x)| is finite. The circle group is denoted by T with functions on

T being identifiable with 2π-periodic functions on R. It will be implicitly equipped with

the normalised Lebesgue measure throughout.

Throughout, the notation f̂ will be used interchangeably for the Fourier transform of a

function f on R, the function on Z defining the Fourier coefficients of a function f on T

and the function on R defining the Fourier coefficients of an almost-periodic function f

on R. The meaning in each instance should be clear from the context.

For a number p ∈ [1,∞], p′ will be used to denote its dual number given by the relationship

1

p
+

1

p′
= 1.

Finally, where not otherwise introduced, the letter C will be used to denote a fixed positive

constant. For an operator T acting on a function (or “object”) f , the notation Tf . f

will be taken to mean Tf 6 Cf with C independent of f .



Introduction

Whilst almost periodic functions attract a fair degree of interest from modern mathemati-

cians for their applications to differential equations (see, for example, [26] and [12] for

outlines of this theory), it seems that comparatively little has been done in re-examining

classical results in Fourier analysis in the more general setting furnished by the almost

periodic function spaces. This thesis will consider one such result, namely the question of

almost everywhere convergence of dyadic partial sums of Fourier series in the setting of

the Stepanov almost periodic function spaces (which originate from [32]). In the process,

the continuing validity of many of the standard results that are used in the Lp spaces is

examined, leading to some general framework for further work of this type.

The first chapter gives an outline of the properties of almost periodic functions that are

relevant to the remainder of the work. Whilst the choice and presentation of the material

is perhaps a little non-standard, the results themselves are, unless otherwise stated, well-

understood results from the literature, though unattributed proofs are original. Probably

the most comprehensive reference on this type of material is [25]. A reasonable (though

certainly less thorough) English language alternative is [3].

In Chapter Two, a presentation of the dyadic almost everywhere convergence result for

Fourier series of functions in Lp(T), p ∈ (1,∞) is given. It is remarked that full presen-

tations of a proof of this result are rarely found in the literature. Presentations of the

analogous problem for Fourier integrals of functions in Lp(R) (or indeed Lp(Rn), n ∈ N)

are easier to find, but still rare. The presentation given here takes a somewhat personal

approach, with inspiration drawn from various sources, as referenced. The proof was

ultimately enhanced with hindsight, using some of the ideas from the almost periodic

case.
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Chapter Three presents a proof of a bound on a maximal summation operator in the

Stepanov spaces for p = 2k, k ∈ N, and develops theory necessary to show that this leads

to the dyadic almost everywhere convergence result in this setting. The convergence

result was previously established by E. A. Bredihina in [10] for p = 2∗. The proof given

here takes a different approach, and it is the boundedness of the maximal summation

operator established that is of most interest. Results established as part of the proof of

the main result include an `2–valued bound on modified Hilbert transform operators in

the Stepanov spaces for p = 2k and an almost periodic Littlewood–Paley style theorem

for the Stepanov spaces for p ∈ (1,∞).

∗It is remarked at this stage, that despite no mention of it being made there, the proof given in [10]
actually provides the almost everywhere convergence for p > 2 by the nesting property of the Stepanov
spaces given in Proposition 1.2.8.
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Chapter 1

Almost Periodic Functions

1.1 Introduction and Definitions

The initial development of the concept of almost periodic functions is due to Harald

Bohr in the 1920s in [5] and [6]. Whilst a periodic function has a fixed period over

which it repeats, it is easiest to think of an almost periodic function (from an intuitive

standpoint, at least) as a function that will repeat to within any desired level of accuracy

over sufficiently long periods. A trivial example would be f(x) := sin(x) + sin(πx) which,

as a sum of two periodic functions, fails to be periodic owing to the two frequencies of

the oscillations being incommensurate.

This discussion can be formalised with Bohr’s original definition:

Definition 1.1.1 (Bohr Almost Periodicity) Let f : R → R be a continuous func-

tion. Then f is said to be almost periodic if for all ε > 0 there exists Kε > 0 such that for

any x0 ∈ R, there exists τ ∈ [x0, x0 +Kε] satisfying sup
x∈R
|f(x+ τ)− f(x)| < ε.

The numbers τ are referred to as translation numbers, with the free choice in x0 giving

a relative density condition on them. This is a development of the fact that any integer

multiple of the period of a periodic function is also a period, and is essential to the

3



definition (otherwise any continuous function would satisfy the above).

Definition 1.1.2 (Bohr Space) The normed vector space of all functions satisfying

Definition 1.1.1 equipped with the uniform (supremum) norm will be referred to as the

Bohr space of almost periodic functions and will be denoted by B.

From a Fourier analytic point of view, B can be thought of as an almost-periodic ana-

logue of the space C(T) (also equipped with the uniform norm). It is clear that this is

quite a restricted class of functions and that greater generality is desirable. This can

be achieved by introducing various alternatives to the uniform norm and relaxing the

continuity requirement:

Definition 1.1.3 (Stepanov, Weyl and Besicovitch Norms) Let f ∈ Lploc(R) for some

p ∈ [1,∞). The following (semi-)norms on f can be defined:

• The Stepanov norms are given by ‖f‖Sp,r := sup
x∈R

(
1

r

∫ x+r

x

|f(s)|p ds
) 1

p

for any fixed

r > 0.

• The Weyl semi-norm is given by ‖f‖W p := lim
r→∞
‖f‖Sp,r.

• The Besicovitch semi-norm is given by ‖f‖Bp := lim sup
x→∞

(
1

2x

∫ x

−x
|f(s)|p ds

) 1
p

.

Note that the Stepanov norms are norms (rather than semi-norms) under the usual (Lp–)

convention that functions that differ only on a (Lebesgue) null set are equal. The fact

that ‖ · ‖Sp,r satisfies the properties of a norm and that ‖ · ‖W p and ‖ · ‖Bp satisfy the

properties of semi-norms is easily proved and will not be presented here. The Stepanov

norms also satisfy the following property:

Lemma 1.1.4 Fix p ∈ [1,∞) and choose any distinct r1, r2 ∈ R+. Then ‖ · ‖Sp,r1 and

‖.‖Sp,r2 are equivalent norms.

Proof. Without loss of generality, assume r1 < r2 and choose any function f ∈ Lploc(R)
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such that ‖f‖Sp,r2 is finite. It follows that

‖f‖Sp,r1 =

(
sup
x∈R

1

r1

∫ x+r1

x

|f(s)|p ds
) 1

p

=

(
sup
x∈R

r2
r1

1

r2

∫ x+r2−(r2−r1)

x

|f(s)|p ds

) 1
p

6

(
r2
r1

) 1
p
(

sup
x∈R

1

r2

∫ x+r2

x

|f(s)|p ds
) 1

p

=

(
r2
r1

) 1
p

‖f‖Sp,r2 .

Now, choose N ∈ N to be the least integer such that N >
r2
r1

. Then,

‖f‖Sp,r2 =

(
sup
x∈R

1

r2

∫ x+r2

x

|f(s)|p ds
) 1

p

6

(
r1
r2

) 1
p
(

sup
x∈R

1

r1

∫ x+Nr1

x

|f(s)|p ds
) 1

p

6

(
r1
r2

) 1
p

(
N∑
j=1

sup
x∈R

1

r1

∫ x+jr1

x+(j−1)r1

|f(s)|p ds

) 1
p

=

(
Nr1
r2

) 1
p

‖f‖Sp,r1 .

It hence follows that ‖ · ‖Sp,r1 and ‖ · ‖Sp,r2 are equivalent. �

It is also necessary to show that the limit given in the definition of the Weyl norm exists,

for which a proof similar to [3], pp. 72–3 is presented:

Lemma 1.1.5 For p ∈ [1,∞) and f ∈ Lploc(R), lim
r→∞
‖f‖Sp,r always exists if it is permitted

to take the value ∞.

Proof. By Lemma 1.1.4, if for some r∗ ∈ R+, ‖f‖Sp,r∗ = ∞, then ‖f‖Sp,r = ∞ for all

r ∈ R+, and so the limit exists (and is infinite in this case).

Suppose ‖f‖Sp,r is finite for all r ∈ R+. Choose any r1, r2 ∈ R+ and let n ∈ N be such

5



that (n − 1)r2 6 r1 6 nr2. From this, nr2 6 r1 + r2 and so, using the proof of Lemma

1.1.4,

‖f‖Sp,r1 6

(
nr2
r1

) 1
p

‖f‖Sp,nr2

6

(
r1 + r2
r1

) 1
p

‖f‖Sp,nr2

6

(
1 +

r2
r1

) 1
p
(
nr2
nr2

) 1
p

‖f‖Sp,r2

=

(
1 +

r2
r1

) 1
p

‖f‖Sp,r2 .

It thus follows that lim sup
r1→∞

‖f‖Sp,r1 6 ‖f‖Sp,r2 .

By the arbitrary choice of r1 and r2, it may be concluded that lim sup
r→∞

‖f‖Sp,r 6 lim inf
r→∞

‖f‖Sp,r

and hence the limit exists as required. �

The almost periodic function spaces corresponding to each norm can now be defined as

follows:

Definition 1.1.6 (Stepanov, Weyl and Besicovitch Spaces) Let p ∈ [1,∞). Then

the Sp (Stepanov), W p (Weyl) and Bp (Besicovitch) spaces are defined as the space of

all functions, f ∈ Lploc(R), satisfying the following definition with the appropriate (semi-)

norm:

For all ε > 0 there exists Kε > 0 such that for any x0 ∈ R, there exists τ ∈ [x0, x0 + Kε]

satisfying ‖f(·+ τ)− f‖ < ε.

Note that the space B1 should not be confused with B. There is no ambiguity in the

definition of the Sp spaces, owing to the equivalence of the Stepanov norms given in Lemma

1.1.4. For convenience, ‖ · ‖Sp will be taken to mean ‖ · ‖Sp,1 when using a Stepanov norm

from hereon, and it is this norm that will be used almost exclusively.

6



1.2 Fundamental Properties

The following theorem is very significant:

Theorem 1.2.1 (The Fundamental Theorem) Let p ∈ [1,∞). Define the set of

trigonometric polynomials to be the set of all functions of the form

f(x) =
N∑

n=−N

ane
iλnx

where (an)n∈N ⊂ C, (λn)n∈N ⊂ R and N ∈ N. Then B is identically equal to the closure of

the set of trigonometric polynomials in the space C(R) equipped with the uniform norm,

and Sp, W p and Bp are all identically equal to the closure of the set of trigonometric

polynomials in the spaces {f ∈ Lploc(R) : ‖f‖ <∞} with respect to the appropriate norm.

For a proof for B, see [7], pp. 80–88. For the other spaces, see [3], Chapter II∗.

Another relevant property of the aforementioned spaces is that they are, in the order

introduced, increasingly general. Specifically, the following holds:

Proposition 1.2.2 Let p ∈ [1,∞). Then B ⊂ Sp ⊂ W p ⊂ Bp.

Proof. By looking at Definitions 1.1.1 and 1.1.6, it suffices to show that for any function

f ∈ Lploc(R), ‖f‖Bp 6 ‖f‖W p 6 ‖f‖Sp 6 ‖f‖B, so these inequalities will be considered in

turn:

∗Note that in Chapter I of [3], the name “Fundamental Theorem” is used to refer to a different
theorem than the one given here.
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‖f‖Bp = lim
y→∞

sup
x>y

(
1

2x

∫ x

−x
|f(s)|p ds

) 1
p

6 lim
y→∞

sup
x>y

sup
z∈R

(
1

2x

∫ z+x

z−x
|f(s)|p ds

) 1
p

= lim
y→∞

sup
x>y

sup
z∈R

(
1

2x

∫ z+2x

z

|f(s)|p ds
) 1

p

= lim sup
r→∞

‖f‖Sp,r

= ‖f‖W p by Lemma 1.1.5.

Now, from the proof of Lemma 1.1.4, ‖f‖W p 6 lim
r→∞

(
Nr

r

) 1
p

‖f‖Sp , where Nr is the least

positive integer such that Nr > r. But lim
r→∞

Nr

r
= 1, hence ‖f‖W p 6 ‖f‖Sp .

Finally,

‖f‖Sp =

(
sup
x∈R

∫ x+1

x

|f(s)|p ds
) 1

p

6

(
sup
t∈R
|f(t)|p sup

x∈R

∫ x+1

x

ds

) 1
p

= ‖f‖B. �

The Sp spaces perhaps form the closest almost periodic analogue of the spaces Lp(T) and

it is these spaces with which the bulk of the discussion herein will be concerned. The fact

that the W p and Bp semi-norms fail to be norms actually holds to the extent that two

functions f and g in either space may differ on a set of infinite measure and still satisfy

‖f − g‖ = 0. A brief demonstration of this fact for W 1 may be undertaken by means of

the following:

Proposition 1.2.3 There exists f ∈ L1
loc(R) such that ‖f‖W 1 = 0, but f(x) 6= 0 for all

8



x ∈ R.

Proof. It suffices to consider the following example:

f(x) :=

 1, x ∈ [−1, 1]

1
x2 , x ∈ R \ [−1, 1]

Clearly f(x) 6= 0 for all x ∈ R, so it remains to show that ‖f‖W 1 = 0:

‖f‖W 1 = lim
r→∞

sup
x∈R

1

r

∫ x+r

x

|f(s)| ds

= lim
r→∞

1

r

∫ r
2

−r
2

|f(s)| ds

= 0. �

Now, note that for functions f satisfying ‖f‖W 1 = 0, it is necessarily the case that f ∈ W 1

as for any τ ∈ R, ‖f(·+ τ)− f‖W 1 6 ‖f(·+ τ)‖W 1 + ‖f‖W 1 = 0. As the trivial function

g ≡ 0 also satisfies ‖g‖W 1 = 0, it follows that f and g are two functions differing on the

entire real line, but satisfying ‖f − g‖W 1 = 0.

This problem for the Besicovitch spaces will briefly be returned to in Section 1.4.1.

A further difficult property of the W p spaces is that they are incomplete. See [8]∗ for

a proof of this fact (in general, it follows from - or is used to prove, depending on the

method of proof considered - the fact that the space ({f ∈ Lploc(R) : ‖f‖W p <∞}, ‖ ·‖W p)

is incomplete).

Fortunately, the following does hold:

Theorem 1.2.4 Let p ∈ [1,∞). Then B, Sp and Bp are Banach spaces.

∗Note that this paper uses the notations Sp–a.p., W p–a.p. and Bp–a.p. for the almost periodic func-
tions spaces introduced here. The symbols Sp, W p and Bp are used for another purpose.
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The completeness of B follows trivially from the completeness of the space C(R) and

Theorem 1.2.1. For a proof of the completeness of Bp, see [8].

For Sp, it is noted that by the Fundamental Theorem (Theorem 1.2.1) it suffices to prove

completeness of the space ({f ∈ Lploc(R) : ‖f‖Sp <∞}, ‖ · ‖Sp).

Given this, the proof of the completeness of Lp in [29], pp. 67–8 adapts almost exactly to

give the desired result. See also [8].

The following result is critical to the remainder of this thesis:

Proposition 1.2.5 {f ∈ Lploc(R) : ‖f‖Sp <∞} 6= Sp, that is to say, there exist functions

f ∈ Lploc(R) \ Sp, p ∈ [1,∞) such that ‖f‖Sp <∞.

Proof. Consider the function f : R→ R defined as follows:

f(x) :=

 1, x ∈ [0, 1]

0, x ∈ R \ [0, 1]

Then certainly ‖f‖Sp = 1, but f fails to satisfy Definition 1.1.6, as for sufficiently large

τ ∈ R, ‖f(·+ τ)− f‖Sp = ‖f‖Sp = 1. �

The following intuitive result does hold:

Lemma 1.2.6 For any f ∈ Sp, p ∈ [1,∞), it follows that ‖f‖Sp <∞.

Proof. Whilst this result is clear by the Fundamental Theorem, technically, proving the

Fundamental Theorem requires that this result is already established, so a direct proof

will be presented here.

By Definition 1.1.6, as f ∈ Sp, there exists K1 > 0 such that for any x0 ∈ R, there exists

τ ∈ [−x0,−x0 +K1] such that ‖f(·+ τ)− f‖Sp < 1. Using this, for any fixed x ∈ R,

10



(∫ x+1

x

|f(s)|p ds
) 1

p

6 ‖f(·+ τ)− f‖Sp +

(∫ x+1

x

|f(s+ τ)|p ds
) 1

p

< 1 +

(∫ x+τ+1

x+τ

|f(s)|p ds
) 1

p

6 1 +

(∫ K1+1

0

|f(s)|p ds
) 1

p

< ∞

as f ∈ Lploc(R). As K1 is independent of x, it follows that ‖f‖Sp <∞. �

It is worth developing some arithmetical properties for Sp functions, which will be of use

later.

Proposition 1.2.7 Take p ∈ [1,∞), and choose f, g ∈ Sp and h ∈ Sp′, interpreting Sp
′

to mean L∞(R) when p = 1. Further, let (fi)i∈N ⊂ Sp be an Sp–convergent sequence with

limit f∞. Then the following hold:

• (f + g) ∈ Sp.

• fh ∈ S1.

• lim
i→∞

fi ∈ Sp.

Furthermore, these results continue to hold if the Stepanov spaces are replaced with the

corresponding Weyl spaces, Besicovitch spaces, or uniformly with the Bohr class.

Proof. For ease of notation and relevance to the remainder of this thesis, the proof will be

presented only for the Sp spaces. It adapts exactly to the W p and Bp spaces, and almost

exactly to the B space.

A direct proof of the first two facts using Definition 1.1.6 is more involved than it might

initially appear. The complication arises in finding a relatively dense set of translation
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numbers (“τ”s) that is common to both functions (there are proofs in the literature that

are erroneous because they fail to consider this fact). For an insight into these difficulties,

the reader is referred to [7], pp. 36–9, where some direct proofs for the Bohr class are

presented (which rely on powerful theory developed earlier in the book).

Fortunately, the Fundamental Theorem permits a somewhat more straightforward ap-

proach, and this is how the proof here will proceed.

Firstly, note that there exist sequences of trigonometric polynomials, (rn)n∈N, (sn)n∈N

such that lim
n→∞

‖f − rn‖Sp = 0 and lim
n→∞

‖g − sn‖Sp = 0. As (rn + sn)n∈N is a sequence of

trigonometric polynomials, and further, ‖f + g− (rn + sn)‖Sp 6 ‖f − rn‖Sp + ‖g− sn‖Sp ,

it can be concluded that f + g ∈ Sp.

Now, there also exists a sequence of trigonometric polynomials (tn)n∈N approximating h

( lim
n→∞

‖h− tn‖Sp′ = 0). Consider that

‖fh− rntn‖S1 = sup
x∈R

∫ x+1

x

|f(s)h(s)− rn(s)tn(s)| ds

6 sup
x∈R

(∫ x+1

x

|f(s)||h(s)− tn(s)| ds+

∫ x+1

x

|tn(s)||f(s)− rn(s)| ds
)

6 sup
x∈R

((∫ x+1

x

|f(s)|p ds
) 1

p
(∫ x+1

x

|h(s)− tn(s)|p′ ds
) 1

p′

+

(∫ x+1

x

|tn(s)|p′ ds
) 1

p′
(∫ x+1

x

|f(s)− rn(s)|p ds
) 1

p

)
by Hölder’s inequality

6 ‖f‖Sp‖h− tn‖Sp′ + ‖tn‖Sp′‖f − rn‖Sp .

Given that ‖f‖Sp <∞, and that (rntn)n∈N is a sequence of trigonometric polynomials, it

suffices to observe that sup
n∈N
‖tn‖Sp′ <∞ (as (tn)n∈N is a convergent sequence) to conclude

that fh ∈ S1. It thus follows that
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sup
n∈N
‖tn‖Sp′ 6 max{‖tn‖Sp′ : n ∈ [1, N1 − 1] ∩ N} ∪ {1 + ‖h‖Sp′}.

For the proof of the final fact, choose any ε > 0 and note that by hypothesis, there exists

Nε ∈ N such that ‖fi − f∞‖Sp <
ε

3
for all i > Nε.

Now, by the almost periodicity of fNε , there exists Kε > 0 such that for any x0 ∈ R, there

exists τ ∈ [x0, x0 + Kε] satisfying ‖fNε(· + τ) − fNε‖Sp <
ε

3
. To conclude that f∞ ∈ Sp,

note that

‖f∞(·+ τ)− f∞‖Sp

6 ‖f∞(·+ τ)− fNε(·+ τ)‖Sp + ‖fNε(·+ τ)− fNε‖Sp + ‖fNε − f∞‖Sp

< ε. �

It is remarked that, given the multiplication property and the fact that the function

f(x) ≡ 1 is in all almost periodic function spaces (as it is a continuous purely periodic

function, so is certainly in B), it follows that Sp ⊂ S1, W p ⊂ W 1 and Bp ⊂ B1 for all

p ∈ (1,∞). The space B1 thus contains all other classes of almost periodic functions

under consideration (by Lemma 1.2.2).

In fact, with a simple application of Hölder’s inequality, a further property that is rarely

mentioned in the literature can be deduced:

Proposition 1.2.8 Let p1, p2 ∈ [1,∞) with p1 < p2. Then

Sp2 ⊆ Sp1 ,

W p2 ⊆ W p1 ,

Bp2 ⊆ Bp1 .
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Proof. Again, only the proof for the Stepanov spaces will be presented. The other cases

proceed in exactly the same way.

Take any f ∈ Sp2 , ε > 0 and consider that by Definition 1.1.6, there exists Kε > 0 such

that for any x0 ∈ R, there exists τ ∈ [x0, x0 +Kε] satisfying

‖f(·+ τ)− f‖Sp2 < ε.

Now, for any such τ ,

‖f(·+ τ)− f‖Sp1

=

(
sup
x∈R

∫ x+1

x

|f(s+ τ)− f(s)|p1 ds
) 1

p1

6

(
sup
x∈R

(∫ x+1

x

|f(s+ τ)− f(s)|p1
p2
p1 ds

) p1
p2
(∫ x+1

x

ds

) 1

( p2
p1 )
′
) 1

p1

= ‖f(·+ τ)− f‖Sp2 .

It thus follows, using the same choices of Kε and τ as required, that f ∈ Sp1 . �

It is noted that in particular, this proof gives that ‖ · ‖Sp1 6 ‖ · ‖Sp2 for p1 6 p2, and this

property will be used implicitly from now on.

For a thorough survey of the hierarchy of the various almost periodic function spaces, the

reader is referred to [1].
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1.3 Fourier Series for Almost Periodic Functions

When considering how to define the Fourier series of an almost periodic function, it is clear

that there are a few important differences from the case of periodic functions. Firstly,

by considering the simple example of the function B 3 f := eiπ· + ei·, it is immediately

obvious that it is insufficient to consider only infinite trigonometric polynomials of the

form
∑
n∈Z

cne
in· as in the periodic case. Indeed by simple modification of this trivial

example, it is apparent that at least series consisting of multiples of polynomials in the

set {eiλ· : λ ∈ R} must be considered. Secondly, when calculating Fourier coefficients,

as almost periodic functions do not (generally) have a single “period”, it is likely to be

insufficient to consider integrals over intervals of finite length, as in the periodic case.

A complication that arises from the first issue is that the set {eiλ· : λ ∈ R} is clearly

uncountable, which means that any series of terms multiplying its members may not be

well-defined.

A simple averaging operation turns out to be the tool to solve these various issues:

Definition 1.3.1 Define M(f) := lim
T→∞

1

2T

∫ T

−T
f(x) dx.

The first key result is as follows:

Theorem 1.3.2 The set {eiλ· : λ ∈ R} is “orthonormal” with respect to the averaging

operation M. That is:

M(eiλ1·e−iλ2·) =

 1, λ1 = λ2

0, λ1 6= λ2

Proof. Normality is immediately clear. For orthogonality, note that for λ1 6= λ2, elemen-

tary integration yields that M(eiλ1·e−iλ2·) = lim
T→∞

1

T (λ1 − λ2)
sin((λ1 − λ2)T ) = 0. �

The Fourier coefficients of an almost periodic function may now be defined:
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Definition 1.3.3 Let f ∈ B1. Then for any λ ∈ R, the λth Fourier coefficient of f is

defined to be f̂(λ) := M(fe−iλ·). The numbers λ are referred to as Fourier exponents.

To show that these Fourier coefficients are well-defined, the following lemma is required:

Lemma 1.3.4 For f ∈ B1, p ∈ [1,∞), the quantity M(f) exists and is equal to ‖f‖B1.

For a simple proof, see [3], p. 93 (the equality is not stated, but holds trivially as a

consequence of the existence). By the inclusions discussed at the end of Section 1.2, it

follows that for an almost periodic function f in any of the spaces under consideration,

M(f) exists. Further, by the multiplication property (Proposition 1.2.7), M(fe−iλ·) exists

for any λ ∈ R and hence the Fourier coefficients of any almost periodic function are well

defined.

The aforementioned problem pertaining to uncountability can now be eliminated by means

of the following:

Theorem 1.3.5 For f ∈ B1 there exists a countable set E ⊆ R such that f̂(λ) = 0 for

all λ ∈ R \ E.

Proof. There is a presentation of a proof from first principles in [7], pp. 48–50 (the proof

is stated for B, but holds for B1 without adaptation). Here the Fundamental Theorem

will once again be appealed to, permitting a more elegant solution.

Let (rn)n∈N be a sequence of trigonometric polynomials such that lim
n→∞

‖f − rn‖B1 = 0. It

then follows that lim
n→∞

M(rne
−iλ·) = M(fe−iλ·).

Now by the “orthogonality” from Theorem 1.3.2 and the fact that rn is a trigonometric

polynomial, M(rne
−iλ·) may differ from zero only for the finite number of λ ∈ R such that

there is a term in eiλ· in rn. It thus follows that M(fe−iλ·) = lim
n→∞

M(rne
−iλ·) may differ

from zero for only countably many λ ∈ R. �
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This allows the Fourier∗ series of an almost periodic function to be defined:

Definition 1.3.6 (Fourier Series) Let f ∈ B1 and enumerate its Fourier exponents

with non-zero corresponding Fourier coefficients as (λn)n∈N. Then the Fourier series of f

may be written as:

f ∼
∑
n∈N

f̂(λn)eiλn·.

For purely periodic functions, the definition of the Fourier series given here practically

reduces to the standard definition, excepting minor technical considerations such as the

permissibility of zero coefficients in a standard Fourier series. The proof of this fact is

slightly non-trivial, and the reader is referred to [7] pp. 50–51 for a proof and further

discussion.

A potential problem with this definition that presents itself is that it gives no order

in which to enumerate the Fourier exponents for a particular almost periodic function.

Consequently, if the series is convergent, different arrangements could result in different

sums. Discussion of this issue will be resumed shortly.

The following basic properties of Fourier series carry over from the periodic setting:

Proposition 1.3.7 Let f , g ∈ B1. Then the following hold:

• kf ∼
∑
n∈N

kf̂(λn)eiλn· for k ∈ C.

• f ∼
∑
n∈N

f̂(λn)e−iλn·.

• f ± g ∼
∑
n∈N

(f̂(λn)± ĝ(λn))eiλn·.

The proof of these facts is elementary and will not be presented here.

The following key result holds for almost periodic functions as for periodic functions:

Theorem 1.3.8 (Uniqueness Theorem) There is no f ∈ B1 with ‖f‖ 6= 0 such that

∗It should be noted that some authors adopt the terminology Bohr–Fourier series (and correspond-
ingly Bohr–Fourier coefficient and Bohr–Fourier exponent).
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f̂(λ) = 0 for all λ ∈ R, where the norm ‖ · ‖ is chosen to correspond to any space that f

belongs to.

The proof of this is more involved than that in the periodic setting. The reader is referred

to [3], p. 109 for the details.

The Uniqueness Theorem remedies the potential problem regarding the ordering of the

Fourier series for an almost periodic function. In particular, two different arrangements

of the Fourier series cannot converge to different functions (regarded as members of the

appropriate almost periodic space), as their difference would result in a non-zero function

with identically zero Fourier coefficients (using the additive property of Fourier series from

Proposition 1.3.7).

There is a notion of convolution that holds for almost periodic functions, which can be

defined as follows (as in [19], p. 164):

Definition 1.3.9 (Mean Convolution) Let f , g ∈ B1. Then the mean convolution of

f and g is given by (f ∗
M
g)(x) := My(f(x− y)g(y)) = lim

T→∞

1

2T

∫ T

−T
f(x− y)g(y) dy.

This has a similar property to regular convolution:

Lemma 1.3.10 Let f ∈ B1 and g(x) =
∑
|n|6N

ĝ(λn)eiλnx be a trigonometric polynomial.

Then (g ∗
M
f)(x) =

∑
|n|6N

f̂(λn)ĝ(λn)eiλnx for x ∈ R.

Proof.

(g ∗
M
f)(x) =

∑
|n|6N

(ĝ(λn)eiλnx) ∗
M
f

=
∑
|n|6N

ĝ(λn) lim
T→∞

1

2T

∫ T

−T
f(y)eiλn(x−y) dy

=
∑
|n|6N

f̂(λn)ĝ(λn)eiλnx. �
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Another result that holds for almost periodic functions, and will be very useful later, is

an analogue of Parseval’s identity:

Theorem 1.3.11 (Parseval’s Identity) For any f ∈ B2, M(|f |2) =
∑
n∈N

|f̂(λn)|2.

For a proof, the reader is referred to [3], p. 109.

It is emphasised that by Lemma 1.2.2, Parseval’s identity holds a fortiori for f ∈ S2 and

f ∈ W 2.

Before concluding this section, one final result will be developed that is an extension of

the “Strengthened Mean Value Theorem” in [7], p. 44:

Theorem 1.3.12 Take f ∈ Sp, p ∈ [1,∞) and λ ∈ R. Then for any a ∈ R,

lim
T→∞

1

2T

∫ T

−T
f(x)e−iλx dx = lim

T→∞

1

2T

∫ T+a

−T+a

f(x)e−iλx dx.

Proof. First, observe that

1

2T

∫ T+a

−T+a

f(x)e−iλx dx

=
1

2T

∫ −T
−T+a

f(x)e−iλx dx+
1

2T

∫ T

−T
f(x)e−iλxdx+

1

2T

∫ T+a

T

f(x)e−iλx dx.

Now, by an application of Hölder’s inequality,

| 1

2T

∫ T+a

T

f(x)e−iλx dx| 6 1

2T

∫ T+a

T

|f(x)| dx

6
a

1
p′

2T
‖f‖Sp,a.
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By a similar treatment of the
1

2T

∫ −T
−T+a

f(x)e−iλx dx term,

lim
T→∞

1

2T

∫ T+a

T

f(x)e−iλx dx = lim
T→∞

1

2T

∫ −T
−T+a

f(x)e−iλx dx = 0.

It thus follows that

lim
T→∞

1

2T

∫ T

−T
f(x)e−iλx dx = lim

T→∞

1

2T

∫ T+a

−T+a

f(x)e−iλx dx. �

1.4 Other Developments

This self-contained section aims to give a brief outline of some further theory related to

almost periodic functions, setting them in a broader context. It is not required for the

remainder of the thesis.

1.4.1 The Bohr Compactification

The following definition will be given in the most abstract setting, in line with the pre-

sentation in [30]:

Definition 1.4.1 Let G be a locally compact abelian group with dual group Γ and let Γd

be Γ equipped with the discrete topology. Then the Bohr Compactification of G, GB, is

the compact abelian group which is the dual group of Γd.

Associated with GB is the map iB : G → GB defined so that for any x ∈ G, γ ∈ Γ ,

γ(x) = (iB(x))(γ). This satisfies the following property which ensures that GB is indeed

a compactification of G:

Theorem 1.4.2 Regarded as a map onto its range, iB is a continuous isomorphism, with

iB(G) dense in GB.

20



For a proof of this fact, as well as verification that GB is a compactification of G, see [30],

pp. 30–31.

The significance of this definition in relation to almost periodic functions is encapsulated

in the following result, as stated in [1], pp. 129–30 and p. 167:

Theorem 1.4.3 The space B is isometrically isomorphic to C(RB,R), and for p ∈

[1,∞), Bp is isometrically isomorphic to Lp(RB,R), where RB is equipped with its Haar

measure.

This is of interest as it allows certain properties of B and Bp to be deduced from the

properties of continuous functions and Lp functions respectively. For example, it gives

that the Bp spaces are reflexive, and that Bp is dual to Bp′ .

Furthermore, it was mentioned earlier that functions f , g ∈ Bp may differ on a set of

infinite measure and still satisfy ‖f − g‖Bp = 0. The possibility of this may be deduced

from the representation of Bp as Lp(RB,R). In particular, it is noted that ‖f−g‖Lp(RB ,R) =

0 if and only if f and g, considered as members of Lp(RB,R), differ on a set of Haar

measure zero. Now, R forms a set of Haar measure zero in RB (see (33.28) in [18], p.

313), and thus it is feasible that f and g may differ on the entire of R.

The above does not make it permissible to modify a Bp function anywhere on R such that

the norm of the difference with the original function is zero (which would make the entire

space trivial). This is because the function’s values on RB are determined from its values

on R via isomorphism.

It is remarked that this perspective on Bp allows some sense to be made of Bp functions

that can be represented by series that diverge to infinity at every point in R! One example

of such a function, as stated in [24], is
∑
n∈N

cos(2−nπ·)
n

.
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1.4.2 Almost Periodic Functions on Groups

Whilst all of the theory of almost periodic functions so far has been concerned with

functions taking values on R, there is a limited theory in the more abstract setting of

R–valued functions taking values from a group.

To motivate the definition, an alternative (reasonably intuitive) definition of Bohr almost

periodicity due to Bochner will be considered:

Definition 1.4.4 A continuous function f : R → R is said to be normal if for any

(hn)n∈N ⊆ R, there exists a subsequence (hni
)i∈N such that the sequence (f(·+ hni

))i∈N is

uniformly pointwise convergent.

This satisfies the following:

Theorem 1.4.5 A continuous function f : R → R is a member of the Bohr class B if

and only if it is normal.

There is a proof of this result in [3], pp. 11–12.

With this equivalent definition of Bohr almost periodicity in mind, the following definition

of almost periodicity for a function taking values on a group can be considered analogously.

In what follows, G will always be used to represent an arbitrary group (which does not

need to have any topological structure).

Definition 1.4.6 Let f : G → R be an arbitrary function. Then f is said to be almost

periodic on the right if for any (an)n∈N ⊆ G, there exists a subsequence (ani
)i∈N such that

the sequence (f(· ani
))i∈N is uniformly pointwise convergent. Analogously, f is said to be

almost periodic on the left if for any (an)n∈N ⊆ G, there exists a subsequence (ani
)i∈N such

that the sequence (f(ani
·))i∈N is uniformly pointwise convergent.

This definition originates from Von Neumann’s paper [34]. It is noted that, in contrast

to the case of Bohr almost periodicity, there is no continuity requirement on the function
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under consideration (indeed, without topological structure on G, this concept is not well-

defined).

Independently of whether G is abelian, the following holds:

Theorem 1.4.7 A function f : G→ R is almost periodic on the right if and only if it is

almost periodic on the left.

For a proof of this fact, see [12], p. 170.

The full theory of almost periodic functions on groups is quite rich, and a complete

exposition is beyond the scope of this thesis. Through a use of representation theory, it is

possible to develop the concept of a Fourier series, which leads, for example, to analogues

of Parseval’s identity (Theorem 1.3.11) and the Fundamental Theorem (Theorem 1.2.1).

Von Neumann’s original paper [34], along with its sequel with Bochner [4] offer a very

comprehensive introduction to the subject. There is also a detailed exposition in Chapter

VII of [12] and a discussion from the perspective of Banach space valued functions on a

group in Chapter 13 of [35].
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Chapter 2

The Classical Problem for Lp(T)

2.1 Introduction to the Classical Problem

The following theorem is classical:

Theorem 2.1.1 (The Classical Dyadic Convergence Problem) Let f ∈ Lp(T), p ∈

(1,∞). Then for almost every x ∈ T, f(x) = lim
k→∞

∑
|n|62k

f̂(n)einx.

The special case of p = 2 originates from [23]. It is developing an analogue of this theorem

for the Sp spaces of almost periodic functions by means of a bound on an appropriate

maximal operator that is the main focus of this thesis. This chapter outlines a proof in

the standard periodic case. An alternative proof to the one given here (using somewhat

more old-fashioned complex methods) is given in [36], Chapter XV.

The approach taken will involve bounding the maximal operator

S∗f = sup
k∈N
|
∑
|n|62k

f̂(n)ein·|

and appealing to the following, which is a special case of Theorem 2.2 in [13], p. 27:

Theorem 2.1.2 Let {Tj} be a family of linear operators on Lp(T), p ∈ [1,∞). Then if
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the corresponding maximal operator, T ∗f := sup
j
|Tjf | is weak (p–q) for some q ∈ [1,∞),

the set {f ∈ Lp(T) : lim
j→∞

Tjf(x) = f(x) a.e.} is closed in Lp(T).

Note that Theorem 2.1.1 certainly holds for standard trigonometric polynomials (
∑
|n|6N

cne
in·,

N ∈ N, (cn)n∈N ⊆ C) and that the set of trigonometric polynomials is dense in Lp(T).

Consequently, once the bound on the maximal operator S∗ has been attained, Theorem

2.1.1 follows from Theorem 2.1.2.

To begin, for each k ∈ N, define the summation operator

Skf =
∑
|n|62k

f̂(n)ein·

for f ∈ Lp(T), p ∈ (1,∞).

Furthermore, let φ ∈ S(R) be such that supp(φ̂) ⊆ [−1, 1] and φ̂(ξ) = 1 for ξ ∈ [−1
2
, 1

2
].

Let φk := 2kφ(2k·) so that φ̂k := φ̂(2−k·). Define Rkf(x) = (φk ∗ f)(x) for f ∈ Lp(T),

where ∗ represents convolution on the line, that is

(φk ∗ f)(x) =

∫
R
φk(y)f(x− y) dy.

Throughout what follows, a function on T will be considered to be synonymous with a

2π–periodic function on R, the version adopted appropriate to the context.
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It is trivial to see that in spite of applying convolution on R to a function f on T, Rkf is

a function on T. Furthermore, for each n ∈ Z,

R̂kf(n) =
1

2π

∫ π

−π

(∫
R
φk(y)f(x− y) dy

)
e−inx dx

=

∫
R
φk(y)

1

2π

∫ π

−π
f(x− y)e−inx dx dy

=

∫
R
φk(y)

(
1

2π

∫ π−y

−π−y
f(x)e−inx dx

)
e−iny dy

=

∫
R
φk(y)f̂(n)e−iny dy

= φ̂k(n)f̂(n).

The interchange in integration in the above is justified by Fubini’s theorem (as stated in

[29], pp. 164–5) and the fact that φk ∈ L1(R) for each k ∈ N, and that f ∈ Lp(T) ⊆ L1(T).

As discussed above, Theorem 2.1.1 will follow immediately from the following:

Theorem 2.1.3 Let p ∈ (1,∞) and take f ∈ Lp(T). Then ‖ sup
k∈N
|Skf |‖Lp(T) . ‖f‖Lp(T).

To prove this, make the estimate

sup
k∈N
|Skf | 6 sup

k∈N
|(Sk −Rk)f |+ sup

k∈N
|Rkf |

6 (
∑
k∈N

|(Sk −Rk)f |2)
1
2 + sup

k∈N
|Rkf |.

It is thus certainly sufficient to bound the two terms, (
∑
k∈N

|(Sk −Rk)f |2)
1
2 and sup

k∈N
|Rkf |,

separately. In what follows, these two terms will be referred to as the “square function”

and the “maximal function” respectively.
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2.2 Bounding the Maximal Function

Consider the following preliminary result regarding the Hardy–Littlewood maximal func-

tion:

Lemma 2.2.1 Let f ∈ Lp(T) for p ∈ (1,∞) and make the definitions:

MRf(x) := sup
T>0

1

2T

∫ x+T

x−T
|f(y)| dy,

MTf(x) := sup
T∈(0,π]

1

2T

∫ x+T

x−T
|f(y)| dy.

Then for any x ∈ T, MRf(x) =MTf(x).

Proof. Fix x ∈ T and choose any T ∈ R+, writing T = kπ + d, k ∈ N ∪ {0}, d ∈ [0, π).

Then,

1

2T

∫ x+T

x−T
|f(y)| dy

=
1

2(kπ + d)

(
k

∫ x+π

x−π
|f(y)| dy +

∫ x+d

x−d
|f(y)| dy

)
by periodicity

6
1

2(kπ + d)
(k(2π)MTf(x) + 2dMTf(x))

= MTf(x).

So MRf(x) =MTf(x), as required. �

This allows the maximal function to be dealt with immediately. Noting that f ∈ Lp(T),

it follows that f ∈ L1
loc(R) (by Hölder’s inequality). Further, φ is Schwartz, so certainly

majorised by a radial, decreasing and integrable function. As Rk is a convolution operator
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of the appropriate form, it thus follows that sup
k∈N
|Rkf(x)| .MRf(x) =MTf(x). By the

well-known Lp–boundedness of the Hardy–Littlewood maximal function (see, for example,

[33] Chapter IV), ‖ sup
k∈N
|Rkf(x)|‖Lp(T) . ‖f‖Lp(T).

2.3 Bounding the Square Function

This requires a little more work than the bound on the maximal function. To start with,

consider the following definitions:

Definition 2.3.1 For f ∈ C∞(T), define the conjugate function of f to be the result of

the (Hilbert) transformation:

Hf(x) = −i
∑
n∈Z

sgn(n)f̂(n)einx.

Define the positive Riesz Projection to be the following operator:

P+f(x) =
∞∑
n=1

f̂(n)einx.

The following result is well known:

Theorem 2.3.2 Let p ∈ (1,∞). Then for any f ∈ Lp(T), ‖Hf‖Lp(T) . ‖f‖Lp(T), where

the domain of definition of H is continuously extended.

For a proof, see, for example, [17] p. 212 (despite the result being stated for f ∈ C∞(T),

the result above follows by density).

This result has the following immediate corollary:

Corollary 2.3.3 Let p ∈ (1,∞). Then for any f ∈ Lp(T), ‖P+f‖Lp(T) . ‖f‖Lp(T), where

the domain of definition of P+ is continuously extended.
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Proof. This follows immediately from the previous theorem, density and the fact that for

f ∈ C∞(T), P+f = 1
2
(f + iHf)− 1

2
f̂(0). �

It is now possible to prove the following result in a similar fashion to [17], Proposition

3.5.5, p. 211:

Theorem 2.3.4 Take p ∈ (1,∞). Then for any f ∈ Lp(T), sup
k∈N
‖Skf‖Lp(T) . ‖f‖Lp(T).

Proof. First note that for x ∈ T,

Skf(x) =
∑
|n|62k

f̂(n)einx = e−i2
kx

2k+1∑
n=0

(fei2
k·)̂(n)einx.

By the unimodular nature of the exponential factors, it follows that ‖Sk‖Lp(T)→Lp(T) =

‖S ′k‖Lp(T)→Lp(T), where S
′

kf(x) =
2k+1∑
n=0

f̂(n)einx.

Now, consider that for f ∈ C∞(T),

S
′

kf(x) =
∞∑
n=0

f̂(n)einx −
∞∑

n=2k+1+1

f̂(n)einx

=
∞∑
n=0

f̂(n)einx − ei(2k+1+1)x

∞∑
n=0

f̂(n+ 2k+1 + 1)einx

= P+f(x)− ei(2k+1+1)xP+(e−i(2
k+1+1)·f)(x) + f̂(0)− ei(2k+1+1)xf̂(2k+1 + 1).

In particular, using the fact that |f̂(n)| 6 ‖f‖L1(T) 6 ‖f‖Lp(T) for n ∈ N, by the triangle

inequality, sup
k∈N
‖S ′k(f)‖Lp(T) 6 (2‖P+‖Lp(T)→Lp(T) + 2)‖f‖Lp(T).

By density, this holds for all f ∈ Lp(T). Corollary 2.3.3 now completes the proof. �

This result can be used to show that dyadic partial sums of Fourier series of functions in

Lp(T) for p ∈ (1,∞) converge in norm (the proof is also easily adapted to regular partial

29



sums), and is not strictly necessary for proving the boundedness of the square function.

However, it is included as some of the methods used in the above proof will be useful in

what is to come.

The following is now needed:

Lemma 2.3.5 (Khintchine’s Inequality) For p ∈ (0,∞), there exist positive con-

stants Ap, Bp, such that for every (cj)j∈N ∈ `2,
∑
j∈N

cjrj ∈ Lp[0, 1] with

Ap(
∑
j∈N

|cj|2)
1
2 6 ‖

∑
j∈N

cjrj‖Lp[0,1] 6 Bp(
∑
j∈N

|cj|2)
1
2

where rj : [0, 1] → {1,−1} are the Rademacher functions, defined by partitioning [0, 1]

into equal intervals of length 2−j and assigning alternating signs to consecutive intervals,

where rj(0) = 1.

For a proof, see Appendix D in [31].

This can be used to prove the following vector-valued extension theorem for linear oper-

ators:

Theorem 2.3.6 For p ∈ (0,∞), suppose that T is a bounded linear operator on Lp(T).

Then T has an `2-valued extension. That is to say that for all (fj)j∈N ⊆ Lp(T),

‖(
∑
j∈N

|T (fj)|2)
1
2‖Lp(T) . ‖T‖Lp(T)→Lp(T)‖(

∑
j∈N

|fj|2)
1
2‖Lp(T).
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Proof.

‖(
∑
j∈N

|T (fj)|2)
1
2‖pLp(T) . ‖‖

∑
j∈N

T (fj)(x)rj(t)‖Lp
t [0,1]‖pLp

x(T)
by Khintchine’s inequality

=

∫ 1

0

‖
∑
j∈N

T (fj)(x)rj(t)‖pLp
x(T)

dt by Fubini’s theorem

=

∫ 1

0

‖T (
∑
j∈N

fj(x)rj(t))‖pLp
x(T)

dt

6 ‖T‖p
∫ 1

0

‖
∑
j∈N

fj(x)rj(t)‖pLp
x(T)

dt

= ‖T‖p‖‖
∑
j∈N

fj(x)rj(t)‖Lp
t [0,1]‖pLp

x(T)
by Fubini’s theorem

. ‖T‖p‖(
∑
j∈N

|fj|2)
1
2‖pLp(T) by Khintchine’s inequality. �

It is noted that with a longer proof, the “.” in Theorem 2.3.6 may be sharpened to “6”

(see [17], pp. 311–12).

One final result is now needed:

Theorem 2.3.7 (Littlewood–Paley) Let ψ ∈ C1(R) be an integrable function with

mean value zero, such that there exists a constant C > 0 so that for any x ∈ R,

|ψ(x)|+ |ψ′(x)| 6 C

(1 + |x|)2
.

Furthermore, define ψj := 2jψ(2j·) so that ψ̂j = ψ̂(2−j·). Then for f ∈ Lp(T), p ∈ (1,∞),

‖(
∑
j∈Z

|f ∗ ψj|2)
1
2‖Lp(T) . ‖f‖Lp(T).

Proof. First, define f̃ := f −
∫

T
f and observe that f̃ has mean value zero. Now, note
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that

‖(
∑
j∈Z

|f ∗ ψj|2)
1
2‖Lp(T)

= ‖(
∑
j∈Z

|
(
f̃ +

∫
T
f

)
∗ ψj|2)

1
2‖Lp(T)

= ‖(
∑
j∈Z

|f̃ ∗ ψj|2)
1
2‖Lp(T)

as ψj has mean value zero and

∫
T
f is constant.

Consequently, it can be assumed without loss of generality that f has mean value zero.

This being given, the proof of the analogous result on R, as given as Theorem 5.1.2 in

[17], pp. 339–41, along with the results it depends on from [17], can be adapted, stage-

by-stage, to give the above theorem. The assumption that f has mean value zero is used

to permit the Calderón–Zygmund decomposition at arbitrary height λ > 0 in the proof

of Theorem 4.6.1, pp. 326–7.

For discussion of the Calderón–Zygmund decomposition of a function on T, see [33],

Chapter IV. �

The necessary framework now provided, bounding of the square function may proceed as

follows:

Define ψ such that ψ̂ = φ̂(1
2
·)−φ̂ and note that trivially ψ ∈ S(R). Also, as supp(φ̂(1

2
·)) ⊆

[−2, 2] and φ̂( ξ
2
) = 1 for ξ ∈ [−1, 1], it follows that χ[−1,1]φ̂(1

2
·) = χ[−1,1]. Trivially,

χ[−1,1]φ̂ = φ̂, so it follows that χ[−1,1] − φ̂ = χ[−1,1]ψ̂.

Now, define ψk in the usual way, by setting ψk = 2kψ(2k·), so that ψ̂k = ψ̂(2−k·). Using

this and the ideas of the proof of Theorem 2.3.4,
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‖(
∑
k∈N

|(Sk −Rk)f(x)|2)
1
2‖Lp(T)

= ‖(
∑
k∈N

|Sk(f ∗ ψk)(x)|2)
1
2‖Lp(T)

= ‖(
∑
k∈N

|S ′k(ei2
k·(f ∗ ψk))(x)|2)

1
2‖Lp(T)

= ‖
(∑

k∈N

|P+(ei2
k·(f ∗ ψx))(x)− ei(2k+1+1)xP+(e−i(2

k+1)·(f ∗ ψk))(x) +

(ei2
k·(f ∗ ψk))̂ (0)− ei(2k+1+1)x(ei2

k·(f ∗ ψk))̂ (2k+1 + 1)|2
) 1

2

‖Lp(T)

6 ‖(
∑
k∈N

|P+(ei2
k·(f ∗ ψk))(x) + (ei2

k·(f ∗ ψk))̂ (0)|2)
1
2‖Lp(T) +

‖(
∑
k∈N

|P+(e−i(2
k+1)·(f ∗ ψk))(x) + (ei2

k·(f ∗ ψk))̂ (2k+1 + 1)|2)
1
2‖Lp(T)

. ‖(
∑
k∈N

|(f ∗ ψk)(x)|2)
1
2‖Lp(T) by Theorem 2.3.6 and Corollary 2.3.3

. ‖f‖Lp(T) by Theorem 2.3.7.

This concludes the proof of Theorem 2.1.3.

It is mentioned at this point that boundedness of the square function can be established

much more easily in the case of p = 2. In particular, consider that

‖(
∑
k∈N

|(Sk −Rk)f |2)
1
2‖2L2(T)

=
∑
k∈N

‖(Sk −Rk)f‖2L2(T) by the Lebesgue Monotone Convergence theorem

=
∑
k∈N

∑
2k−16|n|62k

|(1− φ̂k(n))f̂(n)|2 by Parseval’s identity

.
∑
n∈Z

|f̂(n)|2 using that φ̂ is bounded

= ‖f‖2L2(T) by Parseval’s identity.
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In closing, it is noted that the analogous problem to Theorem 2.1.1 for Fourier integrals

can be considered in dimensions higher than 1. In particular, the following can be said:

Theorem 2.3.8 (The Full Classical Dyadic Convergence Problem) For k ∈ N ∪

{0}, f ∈ Lp(Rd), d ∈ N and p ∈ [1,∞], define the following operators:

Ŝkf := mkf̂ ,̂̃
Skf := m̃kf̂ ,

where the multipliers are given by:

mk := χ{x∈Rd:|x|<2k},

m̃k := χ{x∈Rd:|xi|<2k,i∈[1,d]∩N}.

Then for p ∈ [2, 2d
d−1

), lim
k→∞

Skf(x) = f(x) for almost every x ∈ Rd, and for p ∈ (1,∞),

lim
k→∞

S̃kf(x) = f(x) for almost every x ∈ Rd.

The added difficulty for the spherical summation operator, Sk over the rectangular one,

S̃k, resulting in a more restricted range of p, pertains to the failure of norm boundedness

of Sk in Lp(Rd) for d > 1, p 6= 2. The proof of this originates from C. Fefferman’s

ground-breaking paper, [14].

For a proof of the result for Sk, see [11]. For S̃k, see [17], pp. 368–71. It is noted that it is

erroneously claimed in [17] that a result for Sk identical to the one for S̃k is proved. It is

also stated in the list of known errata for [17] that only the first five lines of the proof of

Theorem 5.3.2 are required, and that the remainder follows as an easy consequence of the

vector-valued operator bound on the summation operator from Exercise 4.6.1(b). These

errors are to be corrected in the forthcoming second edition.
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Chapter 3

The Almost Periodic Case

3.1 Validity of the Classical Approach and Issues of

Interpretation

For the remainder of this thesis, for the sake of simplicity, certain conventions regarding

Fourier series of almost periodic functions will be adopted. Firstly, for any particular

f ∈ Sp, p ∈ [1,∞), the corresponding Fourier exponents (λn)n∈N, enumerated by means

of Theorem 1.3.5, will be extended to range over Z by setting λ−n = −λn, n ∈ Z, applying

a Fourier coefficient of 0 to any newly introduced Fourier exponents. Furthermore, the

Fourier exponents will be ordered such that they are increasing in n.

The reader is reminded that, as per the discussion in Section 1.3 in relation to the Unique-

ness Theorem, reordering the Fourier series of an almost periodic function cannot result

in a different sum.

The theorem that will be proved is the following:

Theorem 3.1.1 (The Almost Periodic Dyadic Convergence Problem) Let f ∈ S2k

,

k ∈ N be such that there exists α > 0 such that λn+1−λn > α for all n ∈ Z, where (λn)n∈Z
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are the Fourier exponents of f defined by the convention above. Then for almost every

x ∈ R, f(x) = lim
k→∞

∑
|λn|62k

f̂(λn)eiλnx.

As discussed before, this result will be obtained by bounding a maximal summation

operator. The result is stated for S2k

, k ∈ N to emphasise that the bound will be

obtained for each of these spaces. It is noted, however, that by Proposition 1.2.8, it

suffices to consider the S2 space alone for the convergence result, as S2k ⊆ S2 for all

k ∈ N.

As mentioned in the introduction to this thesis, E. A. Bredihina has obtained a con-

vergence result of a form similar to the above in [10] by taking a somewhat different

approach to the one that will be considered in this chapter. As discussed earlier, the

forthcoming boundedness of a maximal summation operator should be considered to be

the most important result of this thesis.

It is entirely reasonable to suggest that an alternative analogous problem to Theorem

2.1.1 would be to consider sums of the form
∑
|n|62k

f̂(λn)eiλnx. This has not been pursued

here, as it loses the aspect of dyadic support for the Fourier exponents. There is a result

of this form for p = 2 considered in [10], but it places more stringent conditions on f than

the result analogous to the above formulation.

In approaching the proof of this result, the first question that must be answered is whether

bounding an appropriate maximal operator gives the desired almost everywhere conver-

gence as in the periodic case. This breaks down into three sub-questions:

1) Is there an analogue of Theorem 2.1.2? That is to say, does “weak boundedness” of

the appropriate maximal operator in Stepanov norm lead to closure of a set like the one

given in that theorem?

2) It was implicitly used in the periodic case that a strong bound on the maximal operator
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automatically gave the weak bound required for Theorem 2.1.2. Does “strong bounded-

ness” of an operator in Stepanov norm imply “weak boundedness”?

3) Is there a dense subspace of Sp where Theorem 3.1.1 is known to hold, so that closure

of the set from Theorem 2.1.2 will provide the desired almost everywhere convergence on

the whole of Sp?

These are most easily addressed in reverse order.

3) is trivially answered by the Fundamental Theorem (Theorem 1.2.1). The Sp spaces

are identically equal to the closure of the trigonometric polynomials in {f ∈ Lploc(R) :

‖f‖Sp <∞}, and Theorem 3.1.1 certainly holds for the trigonometric polynomials.

2) can be answered negatively if the definition of “weak boundedness” is taken to be the

same as for Lp(T); that is that an operator T : Sp → Sp is weakly bounded (p − −p) if

for all λ > 0, f ∈ Sp, |{x ∈ R : |Tf(x)| > λ}| .
(
‖f‖Sp

λ

)p
.

To see this, consider the identity operator acting on Sp. This is clearly (strongly) bounded

in the regular sense. Note also that the function sin(x) is in Sp as it is a continuous periodic

function, so certainly almost periodic in all senses. However, for any λ ∈ (0, 1), the one

dimensional Lebesgue measure of the set {x ∈ R : | sin(x)| > λ} is infinite, so there is no

hope of a weak-type bound in the conventional sense.

Fortunately, this problem can be resolved by introducing a new definition of “weak bound-

edness” that is more appropriate for the Stepanov norms:

Definition 3.1.2 (Stepanov Operator Boundedness) Let T : Sp → Sq for p, q ∈

[1,∞). Then T is said to be strongly bounded (p–q) if ‖Tf‖Sq . ‖f‖Sp. T is said to be

weakly bounded (p–q) if sup
x∈R
|{s ∈ [x, x+ 1] : |Tf(s)| > λ}| .

(
‖f‖Sp

λ

)q
for all λ > 0.

This now behaves in the usual way:

Theorem 3.1.3 (Strong ⇒ Weak) Let T : Sp → Sq for p, q ∈ [1,∞) be strongly
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bounded (p–q). Then it is weakly bounded (p–q).

Proof. Suppose T is strongly bounded, fix any positive λ and let Ex := {s ∈ [x, x + 1] :

|Tf(s)| > λ}. Then it follows that

sup
x∈R
|{s ∈ [x, x+ 1] : |Tf(s)| > λ}| = sup

x∈R

∫
Ex

ds

6 sup
x∈R

∫
Ex

(
|Tf(s)|
λ

)q
ds

6 sup
x∈R

∫ x+1

x

(
|Tf(s)|
λ

)q
ds

=

(
‖Tf‖Sq

λ

)q
.

(
‖f‖Sp

λ

)q
. �

This leaves 1), which, given Definition 3.1.2 can be answered in the affirmative with the

proof of Theorem 2.2 in [13] adapted appropriately:

Theorem 3.1.4 Let {Tj}j∈N be a family of linear operators on Sp, p ∈ [1,∞) and assume

that T ∗f := sup
j∈N
|Tjf | is weakly bounded (p–q) for some q ∈ [1,∞). Then the set E :=

{f ∈ Sp : lim
j→∞

Tjf(x) = f(x) a.e.} is closed in Sp.

Proof. Let (fn)n∈N ⊆ E be such that ‖fn − f‖Sp → 0 as n→∞ for some f ∈ Sp.

Take any x ∈ R, λ > 0. Then,
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|{s ∈ [x, x+ 1] : lim sup
j→∞

|Tjf(s)− f(s)| > λ}|

= |{s ∈ [x, x+ 1] : lim sup
j→∞

|Tjf(s)− f(s)| − |Tjfn(s)− fn(s)| > λ}|

for any particular n ∈ N (as lim
j→∞
|Tjfn(s)− fn(s)| = 0 almost everywhere in R)

6 |{s ∈ [x, x+ 1] : lim sup
j→∞

|Tj(f − fn)(s)− (f − fn)(s)| > λ}|

6 |{s ∈ [x, x+ 1] : lim sup
j→∞

|Tj(f − fn)(s)|+ |(f − fn)(s)| > λ}|

6 |{s ∈ [x, x+ 1] : T ∗(f − fn)(s) + |(f − fn)(s)| > λ}|

6 |{s ∈ [x, x+ 1] : T ∗(f − fn)(s) > λ
2
}|+ |{s ∈ [x, x+ 1] : |(f − fn)(s)| > λ

2
}|

6 |{s ∈ [x, x+ 1] : T ∗(f − fn)(s) > λ
2
}|+

∫ x+1

x

2p|(f − fn)(s)|p

λp
ds.

By uniformity in x, it follows that

sup
x∈R
|{s ∈ [x, x+ 1] : lim sup

j→∞
|Tjf(s)− f(s)| > λ}|

6 sup
x∈R
|{s ∈ [x, x+ 1] : T ∗(f − fn)(s) > λ

2
}|+

(
2

λ
‖f − fn‖Sp

)p
6 C

(
2‖f − fn‖Sp

λ

)q
+

(
2

λ
‖f − fn‖Sp

)p

by the assumption that T ∗ is (p–q) weak. Now taking the limit as n→∞, it follows that

sup
x∈R
|{s ∈ [x, x+ 1] : lim sup

j→∞
|Tjf(s)− f(s)| > λ}| = 0 for all λ > 0.

It can hence be deduced that |{x ∈ R : lim sup
j→∞

|Tjf(x) − f(x)| > 0}| = 0 and so

lim
j→∞

Tjf(x) = f(x) for almost every x ∈ R. Consequently, f ∈ E and hence E is closed.�
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It has thus been shown that bounding the appropriate maximal operator does still give

the desired almost everywhere convergence as in the periodic case.

3.2 Forming the Decomposition

Define Skf(x) :=
∑
|λn|62k

f̂(λn)eiλnx, S∗f(x) := sup
k∈N
|Skf(x)|. Then, as just established,

Theorem 3.1.1 will follow immediately from the following:

Theorem 3.2.1 Let f ∈ S2k

, k ∈ N be such that there exists α > 0 such that λn+1−λn >

α for all n ∈ N. Then ‖S∗f‖
S2k . ‖f‖S2k .

An approach analogous to the periodic case will be taken. In particular, let Rk be some

‘smoothed-out’ summation operator of a similar form, the exact definition of which will

be determined shortly. Consider:

S∗f = sup
k∈N
|Skf |

6 sup
k∈N
|Skf −Rkf |+ sup

k∈N
|Rkf |

6 (
∑
k∈N

|Skf −Rkf |2)
1
2 + sup

k∈N
|Rkf |.

Again, it suffices to bound each of these two terms separately. As in Chapter 2, they will

be referred to as the “square function” and the “maximal function”.

While the idea of defining Rk as a mean convolution operator may seem the most intuitive

way to proceed, it does present a difficulty in that the Fourier exponents of different Sp

functions may be taken to be any countable subset of R. Hence to define Rk as a mean

convolution operator that would be suitable for all Sp functions would require that the

operator kernel of Rk had non-zero Fourier coefficients for uncountably many Fourier

40



exponents, which is not permissible. Another approach would be to define different Rk

operators for different functions, dependent on where their Fourier exponents are located.

Fortunately, these complications can be avoided by introducing convolution on the line

(as in Chapter 2). This technique works as a consequence of the following result, which

is an extension of the lemma in [9] (where it is proved for the Bohr class):

Theorem 3.2.2 Let f ∈ Sp, p ∈ [1,∞) be such that the Fourier exponents of f have

no finite limit points. Let ζµ be a real-valued continuous function on R dependent on

parameter µ ∈ R which satisfies:

supp(ζµ) ⊆ [−µ, µ]

ψµ ∈ L1(R), where ζµ(u) =
1

2π

∫
R
ψµ(t)e−iut dt = ψ̂µ(u).

Then f ∗ ψµ ∈ Sp and f ∗ ψµ(x) =
∑
|λn|<µ

f̂(λn)ζµ(λn)eiλnx, where ∗ represents convolution

on the line, that is f ∗ ψµ(x) =

∫
R
f(x− u)ψµ(u) du.

Proof. Define fµ(x) := f ∗ ψµ(u). First, to show that fµ ∈ Sp, consider the following:
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‖fµ(·+ τ)− fµ‖Sp =

(
sup
x∈R

∫ x+1

x

|fµ(s+ τ)− fµ(s)|p ds
) 1

p

= sup
x∈R

(∫ x+1

x

|
∫

R
f(s+ τ − u)ψµ(u) du−

∫
R
f(s− u)ψµ(u) du|p ds

) 1
p

6 sup
x∈R

(∫ x+1

x

(∫
R
|f(s+ τ − u)− f(s− u)||ψµ(u)| du

)p
ds

) 1
p

6 sup
x∈R

∫
R

(∫ x+1

x

|f(s+ τ − u)− f(s− u)|p ds
) 1

p

|ψµ(u)| du

by Minkowski’s integral inequality

6
∫

R

(
sup
x∈R

∫ x+1

x

|f(s+ τ)− f(s)|p ds
) 1

p

|ψµ(u)| du

= ‖f(·+ τ)− f‖Sp‖ψµ‖L1 .

It can hence be seen that ‖fµ(· + τ)− fµ‖Sp 6 ‖ψµ‖L1‖f(· + τ)− f‖Sp , thus fµ ∈ Sp by

Definition 1.1.6.

Now, for λ ∈ R, the λth Fourier coefficient of fµ can be calculated as follows:

lim
T→∞

1

2T

∫ T

−T
fµ(x)e−iλx dx

= lim
T→∞

1

2T

∫ T

−T

(∫
R
f(x− u)ψµ(u) du

)
e−iλx dx

= lim
T→∞

∫
R
ψµ(u)

(
1

2T

∫ T

−T
f(x− u)e−iλx dx

)
du

= lim
T→∞

∫
R
ψµ(u)

(
1

2T

∫ T+u

−T+u

f(x)e−iλx dx

)
e−iλu du

=

(∫
R
ψµ(u)e−iλu du

)
f̂(λ)

by the Lebesgue Dominated Convergence theorem and Theorem 1.3.12

= f̂(λ)ζµ(λ).
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To justify the change of order in integration above, it is noted that for any fixed positive

T ,

∫
R
|ψµ(u)|

(
1

2T

∫ T

−T
|f(x− u)| dx

)
du

6 sup
v∈R

(
1

2T

∫ T

−T
|f(x− v)| dx

)∫
R
|ψµ(u)| du

= ‖f‖S1,2T‖ψµ‖L1

6 C‖f‖Sp,2T‖ψµ‖L1 .

Consequently, Fubini’s theorem is applicable.

Furthermore, to justify the use of the Lebesgue Dominated Convergence theorem, it is

noted that from the proof of Lemma 1.1.4, for T > 1, if N ∈ N is the least number such

that N > T , then ‖f‖Sp,T 6

(
N

T

) 1
p

‖f‖Sp 6 2‖f‖Sp . It then suffices to consider similar

reasoning to the above.

Given the conditions on ζµ, it follows that fµ(x) =
∑
|λn|<µ

f̂(λn)ζµ(λn)eiλnx. �

With this result proved, Rk may now be defined as follows:

Choose any φ ∈ S(R) such that φ̂ is continuous and satisfies supp(φ̂) ⊆ [−1, 1], φ̂(ξ) ∈

[0, 1] for ξ ∈ R and φ̂(ξ) = 1 for ξ ∈ [−1
2
, 1

2
]. For each k ∈ N, define φk = 2kφ(2k·), so

that φ̂k = φ̂(2−k·).

Now, for f ∈ Sp, p ∈ [1,∞), define Rk(f) := f ∗ φk (where convolution is taking place on

R). From Theorem 3.2.2, Rkf =
∑
n∈N

f̂(λn)φ̂k(λn)eiλn·.

With this decided, work with proving Theorem 3.2.1 may now proceed.
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3.3 Bounding the Square Function for p = 2

Whilst it is by no means as trivial as in the periodic case, bounding the square function

for p = 2 is a sensible place to start in the almost periodic setting, owing to the validity

of Parseval’s identity in S2.

The following is a well-known inequality of Hilbert and Schur:

Lemma 3.3.1 For (aj)j∈Z ∈ `2, define the operator H : `2 → `2 by (H(aj))j =
∑
k 6=j

ak
j − k

.

Then ‖H(aj)‖`2 6 π‖(aj)‖`2.

For a proof, see [16]. Here, something stronger is needed, and will be constructed in the

spirit of that proof. The approach is similar to that given in [27], pp. 138–40. See also

[28].

Lemma 3.3.2 Let (λk)k∈Z ⊆ R be an increasing sequence such that there exists α > 0

so that λk+1 − λk > α for all k ∈ N. For (aj)j∈Z ∈ `2, define the operator T : `2 → `2,

(T (aj))j :=
∑

k∈Z\{j}

ak
λj − λk

. Then ‖T (aj)‖`2 6
π

α
‖(aj)‖`2.

Proof. To begin, assume that (aj)j∈Z is a compactly supported sequence. Given this, T

has matrix representation

A :=



0 1
λ1−λ2

1
λ1−λ3

· · ·
1

λ2−λ1
0 1

λ2−λ3
· · ·

1
λ3−λ1

1
λ3−λ2

0 · · ·
...

...
...

. . .


.

As A is a skew-Hermitian matrix, it follows that the operator norm of T is equal to the

spectral radius of A (see [27] pp. 134–137). Consequently,
‖T (aj)‖`2
‖(aj)‖`2

6 max
i

(|γi|) =

‖T (bj)‖`2
‖(bj)‖`2

, where the γi are the eigenvalues of A and (bj)j∈Z represents the eigenvector

corresponding to the maximal eigenvalue. It thus suffices to assume that (aj)j∈Z represents
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an arbitrary eigenvector.

‖T (aj)‖2l2 =
∑
j∈Z

|
∑

n∈Z\{j}

an
λj − λn

|2

=
∑
j∈Z

∑
n∈Z\{j}

∑
m∈Z\{j}

anam
1

(λj − λn)(λj − λm)

=
∑
n∈Z

∑
m∈Z

anam
∑

j∈Z\{n,m}

1

(λj − λn)(λj − λm)

=
∑
n∈Z

|an|2
∑

j∈Z\{n}

1

(λj − λn)2
+
∑
n∈Z

∑
m∈Z\{n}

anam
∑

j∈Z\{n,m}

1

(λj − λn)(λj − λm)

6
∑
n∈Z

|an|2
∑

j∈Z\{n}

1

(α(j − n))2
+
∑
n∈Z

∑
m∈Z\{n}

anam
∑

j∈Z\{n,m}

1

(λj − λn)(λj − λm)

=
π2

3α2

∑
n∈Z

|an|2 +
∑
n∈Z

∑
m∈Z\{n}

anam
∑

j∈Z\{n,m}

1

(λj − λn)(λj − λm)

as
∑

n∈Z\{0}

1

n2
=
π2

3
.

A decomposition into a “diagonal term” and an “off-diagonal term” has been formed.

The latter requires more work:

∑
j∈Z\{n,m}

1

(λj − λn)(λj − λm)

=
1

λm − λn

∑
j∈Z\{n,m}

(
1

λj − λm
− 1

λj − λn

)

=
1

λm − λn

 ∑
j∈Z\{m}

1

λj − λm
− 1

λn − λm
−

∑
j∈Z\{n}

1

λj − λn
+

1

λm − λn


=

2

(λm − λn)2
+

1

λm − λn

 ∑
j∈Z\{m}

1

λj − λm
−

∑
j∈Z\{n}

1

λj − λn

 .
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Consequently, the off-diagonal term is given by:

∑
n∈Z

∑
m∈Z\{n}

2anam
(λm − λn)2

+
∑
n∈Z

∑
m∈Z\{n}

anam
λm − λn

 ∑
j∈Z\{m}

1

λj − λm
−

∑
j∈Z\{n}

1

λj − λn

 .

The first term here is easily dealt with and will be returned to shortly. Consider the

problematic remainder and rewrite it as S2 − S1, where

S1 :=
∑
n∈Z

an

 ∑
m∈Z\{n}

am
λm − λn

 ∑
j∈Z\{n}

1

λj − λn

 ,

S2 :=
∑
m∈Z

am

 ∑
n∈Z\{m}

−an
λn − λm

 ∑
j∈Z\{m}

1

λj − λm

 .

As A is skew-Hermitian it has purely imaginary eigenvalues, so given that (aj)j∈Z rep-

resents an eigenvector of A, it follows that
∑

m∈Z\{n}

am
λm − λn

= iγan = −iγan for some

real γ. Hence S1 = −iγ
∑
n∈Z

|an|2
∑

j∈Z\{n}

1

λj − λn
. Considering S2 similarly, it follows that

S2 = −iγ
∑
m∈Z

|am|2
∑

j∈Z\{m}

1

λj − λm
. In particular, it follows that S2 − S1 = 0.

Given this, the “off-diagonal” term is given by
∑
n∈Z

∑
m∈Z\{n}

2anam
(λm − λn)2

. Now, using that

this term must be real-valued and the fact that for a, b ∈ C, 2|ab| 6 |a|2 + |b|2,

∑
n∈Z

∑
m∈Z\{n}

2anam
(λm − λn)2

= |
∑
n∈Z

∑
m∈Z\{n}

2anam
(λm − λn)2

|

6
∑
n∈Z

|an|2
∑

m∈Z\{n}

1

(α(m− n))2
+
∑
m∈Z

|am|2
∑

n∈Z\{m}

1

(α(n−m))2

=
2π2

3α2

∑
n∈Z

|an|2.
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From before, it now follows that ‖T (aj)‖2`2 6
π2

3α2

∑
n∈Z

|an|2 +
2π2

3α2

∑
n∈Z

|an|2 and so, as

required, ‖T (aj)‖`2 6
π

α
‖(aj)‖`2 .

To extend this result to any sequence (aj)j∈Z ∈ `2, it suffices to take a limit of compactly

supported sequences. �

This leads to another result:

Lemma 3.3.3 Let P (x) =
∑
|n|6N

ane
iλnx with α > 0 such that λn+1 − λn > α for all

n ∈ [−N,N ] ∩ Z. Then for any x ∈ R,

∫ x+1

x

|P (s)|2ds 6
(

2π

α
+ 1

) ∑
|n|6N

|an|2.

Proof.

Consider the following:

∫ x+1

x

|
∑
|n|6N

ane
iλns|2 ds

=

∫ x+1

x

(
∑
|n|6N

ane
iλns)(

∑
|m|6N

ame
−iλms)ds

=
∑
|n|6N

∑
|m|6N

∫ x+1

x

aname
i(λn−λm)sds

=
∑
|n|6N

∑
|m|6N

m6=n

anam
1

i(λn − λm)
(ei(λn−λm)(x+1) − ei(λn−λm)x) +

∑
|n|6N

|an|2
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Now, this quantity is bounded above by

|
∑
|n|6N

∑
|m|6N

m6=n

anam
1

i(λn − λm)
ei(λn−λm)(x+1)|+ |

∑
|n|6N

∑
|m|6N

m6=n

anam
1

i(λn − λm)
ei(λn−λm)x|+

∑
|n|6N

|an|2

6 2
∑
|n|6N

∑
|m|6N

m6=n

| anam
λn − λm

|+
∑
|n|6N

|an|2

= 2
∑
|n|6N

|an(T (am))n|+
∑
|n|6N

|an|2 where T is as in Lemma 3.3.2

6 2‖(an)‖`2‖T (am)‖`2 +
∑
|n|6N

|an|2

6

(
2π

α
+ 1

)
‖(an)‖2`2 by Lemma 3.3.2. �

There is now sufficient background material to prove the boundedness of the square func-

tion:

Theorem 3.3.4 For any f ∈ S2 with α > 0 such that λn+1 − λn > α for all n ∈ Z,

‖(
∑
k∈N

|Skf −Rkf |2)
1
2‖S2 6

(
2π

α
+ 1

) 1
2

‖f(x)‖S2 .
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Proof.

‖(
∑
k∈N

|Skf −Rkf |2)
1
2‖2S2

= sup
x∈R

∫ x+1

x

∑
k∈N

|
∑

2k−1<|λn|62k

(1− φ̂k(λn))f̂(λn)eiλns|2 ds

= sup
x∈R

∑
k∈N

∫ x+1

x

|
∑

2k−1<|λn|62k

(1− φ̂k(λn))f̂(λn)eiλns|2 ds

by the Lebesgue Monotone Convergence theorem

6

(
2π

α
+ 1

)∑
k∈N

∑
2k−1<|λn|62k

|(1− φ̂k(λn))f̂(λn)|2

by Lemma 3.3.3

6

(
2π

α
+ 1

)∑
n∈Z

|f̂(λn)|2

=

(
2π

α
+ 1

)
M(|f(x)|2) by Parseval’s identity (Theorem 1.3.11)

6

(
2π

α
+ 1

)
‖f(x)‖2S2 by Proposition 1.2.2. �

This establishes boundedness of the square function for the case p = 2.

3.4 Bounding the Maximal Function for p ∈ (1,∞)

Boundedness of the maximal function can be established for all p ∈ (1,∞) by means of

the following theorem:

Theorem 3.4.1 For p ∈ (1,∞), ‖ sup
k∈N
|Rk(f)|‖Sp . ‖f‖Sp.

Proof. For fixed k ∈ N, make the following decompositions of f and φk for l ∈ N, j ∈ Z:
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φ
(l)
k := φkχ(−2l,−2l−1]∪[2l−1,2l);

φ
(0)
k := φkχ(−1,1);

fj := fχ[j,j+1).

Then,

‖ sup
k∈N
|Rk(f)|‖Sp = ‖ sup

k∈N
|(
∞∑
l=0

φ
(l)
k ) ∗ (

∑
j∈Z

fj)|‖Sp

6
∞∑
l=0

‖ sup
k∈N
|φ(l)
k ∗ (

∑
j∈Z

fj)|‖Sp .

Now, fix any x ∈ R, l ∈ N ∪ {0} and observe that

∫ x+1

x

sup
k∈N
|φ(l)
k ∗ (

∑
j∈Z

fj)(s)|p ds 6
∫ x+1

x

(
∑
j∈Z

sup
k∈N
|φ(l)
k ∗ fj(s)|)

p ds.

Also, noting that supp(φ
(l)
k ) ⊆ [−2l,−2l−1] ∪ [2l−1, 2l] for l ∈ N and supp(fj) ⊆ [j, j + 1]

for j ∈ Z, it follows that

supp(φ
(l)
k ∗ fj) ⊆ [−2l + j,−2l−1 + (j + 1)] ∪ [2l−1 + j, 2l + (j + 1)] for l ∈ N, j ∈ Z.

Also, supp(φ
(0)
k ) ⊆ [−1, 1], hence

supp(φ
(0)
k ∗ fj) ⊆ [−1 + j, 1 + (j + 1)] = [j − 1, j + 2] for j ∈ Z.
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For l ∈ N, define

Kl := {j ∈ Z :
∣∣([−2l + j,−2l−1 + (j + 1)] ∪ [2l−1 + j, 2l + (j + 1)]) ∩ [x, x+ 1]

∣∣ 6= 0};

K0 := {j ∈ Z : |[j − 1, j + 2] ∩ [x, x+ 1]| 6= 0}.

By a simple counting argument, |K0| 6 4, and for l ∈ N, |Kl| 6 2(2l − 2l−1 + 2) = 2l + 4,

hence in general it is certainly true that for l ∈ N ∪ {0}, |Kl| 6 2l + 4.

Now, an application of Hölder’s inequality for sums (noting that these are finite sums)

gives that ∑
j∈Kl

sup
k∈N
|φ(l)
k ∗ fj| 6 (

∑
j∈Kl

(sup
k∈N
|φ(l)
k ∗ fj|)

p)
1
p (
∑
j∈Kl

1)
1
p′ .

It hence follows that

∫ x+1

x

sup
k∈N
|φ(l)
k ∗ (

∑
j∈Z

fj)(s)|p ds 6
∫ x+1

x

(
∑
j∈Kl

sup
k∈N
|φ(l)
k ∗ fj(s)|

p)(2l + 4)
p
p′ ds

=
∑
j∈Kl

∫ x+1

x

(sup
k∈N
|φ(l)
k ∗ fj(s)|

p)(2l + 4)
p
p′ ds

6 (2l + 4)
p
p′+1

sup
j∈Kl

∫ x+1

x

sup
k∈N
|φ(l)
k ∗ fj(s)|

p ds. (*)

Now φk satisfies φk = 2kφ(2k·). Given that φ is Schwartz, for any N ∈ N, there exists a

positive constant CN independent of k such that

|(2kx)Nφk(x)| = |(2kx)N2kφ(2kx)| 6 2kCN .

It thus follows that |φk(x)| 6 CN
2(N−1)k|x|N

. In particular, as supp(φ
(l)
k ) ⊆ [−2l,−2l−1] ∪
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[2l−1, 2l] for any l ∈ N, for x ∈ R,

|φ(l)
k (x)| 6 CN

2(N−1)k+N(l−1)

6
CN

2N(l−1)

as k ∈ N.

Using this,

(2l + 4)
p
p′+1

sup
j∈Kl

∫ x+1

x

sup
k∈N
|φ(l)
k ∗ fj(s)|

p ds

6 (2l + 4)
p
p′+1

sup
j∈Kl

∫ x+1

x

(
CN

2N(l−1)

∫
R
|fj(t)| dt

)p
ds

6
Cp
N(2l + 4)

p
p′+1

2Np(l−1)
sup
j∈Kl

∫ x+1

x

‖fj‖pL1[j,j+1] ds as supp(fj) ⊆ [j, j + 1]

=
Cp
N(2l + 4)

p
p′+1

2Np(l−1)
sup
j∈Kl

‖f‖pL1[j,j+1]

6
Cp
N(2l + 4)

p
p′+1

2Np(l−1)
‖f‖pS1 .

Consider now the case of l = 0. Note that since φk is Schwartz, sup
k∈N
||φk| ∗ |fj|(s)| is

pointwise almost everywhere dominated by the Hardy–Littlewood maximal function,MR

for any j ∈ Z. Using this fact, the well-known Lp–boundedness ofMR and (*), it follows
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that

(∫ x+1

x

sup
k∈N
|φ(0)
k ∗ (

∑
j∈Z

fj)(s)|p ds

) 1
p

6

(
(20 + 4)

p
p′+1

sup
j∈K0

∫ x+1

x

sup
k∈N
|φ(0)
k ∗ fj(s)|

p ds

) 1
p

6 5

(
sup
j∈K0

∫
R

sup
k∈N
||φk| ∗ |fj|(s)|p ds

) 1
p

6 5 sup
j∈K0

‖MR(fj)(s)‖Lp(R)

6 5 sup
j∈K0

‖fj‖Lp(R)

= 5 sup
j∈K0

‖f‖Lp([j,j+1])

6 5‖f‖Sp .

Now, using the fact that the choice of x was arbitrary and drawing everything together,

‖ sup
k∈N
|Rk(f)|‖Sp 6

∞∑
l=1

(
Cp
N(2l + 4)

p
p′+1

2Np(l−1)

) 1
p

‖f‖S1 + 5‖f‖Sp

=
∞∑
l=1

CN(2l + 4)

2N(l−1)
‖f‖S1 + 5‖f‖Sp

= 2NCN‖f‖S1

∞∑
l=1

(
(
1

2
)l(N−1) + 4(

1

2
)Nl
)

+ 5‖f‖Sp .

As ‖f‖S1 6 ‖f‖Sp , it follows by fixing N > 2 that

‖ sup
k∈N
|Rk(f)|‖Sp . ‖f‖Sp . �

This gives the bound on the maximal function for p ∈ (1,∞), and completes the proof of

Theorem 3.1.1 in the case of p = 2.
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3.5 Bounding the Square Function for p = 2k, k ∈ N

In order to establish Theorem 3.1.1 in generality, it remains to consider the general bound-

edness of the square function. To start with, it will be useful to consider some results

regarding the Hilbert transform on Sp. This can be defined exactly as in the standard

settings:

Definition 3.5.1 For f ∈ Sp, p ∈ [1,∞), the Hilbert transform is defined as

Hf(x) := p.v.
1

π

∫
R

f(y)

x− y
dy.

Integration in the complex plane over a suitable indented contour shows that this is equiv-

alent to considering the operator such that for each n ∈ Z, Ĥf(λn) = −isgn(λn)f̂(λn).

The conclusion of Theorem 3.2.2 thus holds in this case in spite of the failure of the

hypotheses.

It turns out that for the present purposes, it will be useful to consider slightly modified

versions of the Hilbert transform:

Definition 3.5.2 For f ∈ Sp, p ∈ [1,∞) and θ ∈ {1, 2}, define Hθ to be the operator

such that Ĥθf(λ) = −isgnθf̂(λ) for any λ ∈ R, where sgnθ : R→ {−1, 1} are given by

sgn1(x) :=

 1, x ∈ [0,∞)

−1, x ∈ (−∞, 0)

sgn2(x) :=

 1, x ∈ (0,∞)

−1, x ∈ (−∞, 0]
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The following lemma shows that a well-known identity for the regular Hilbert transform

adapts well for the modified Hilbert transforms given above, acting on almost periodic

trigonometric polynomials:

Lemma 3.5.3 Let f be a trigonometric polynomial, f(x) =
∑
|n|6N

f̂(λn)eiλnx. Then for

θ ∈ {1, 2},

(Hθ(f))2 = f 2 + 2Hθ(fHθ(f)).

Proof. First note that

2Hθ(fHθ(f))

= 2Hθ((
∑
|n|6N

f̂(λn)eiλnx)(
∑
|m|6N

(−isgnθ(λm))f̂(λm)eiλmx))

= 2Hθ(
∑
|n|6N

∑
|m|6N

(−isgnθ(λm))f̂(λn)f̂(λm)ei(λn+λm)x)

= 2
∑
|n|6N

∑
|m|6N

(−sgnθ(λm)sgnθ(λn + λm)f̂(λn)f̂(λm)ei(λn+λm)x)

= 2
∑
|n|6N

∑
|m|6N

(−sgnθ(λn)sgnθ(λn + λm)f̂(λn)f̂(λm)ei(λn+λm)x)

by symmetry in n and m.

Averaging these last two lines gives that

2Hθ(fHθ(f)) =
∑
|n|6N

∑
|m|6N

−(sgnθ(λn) + sgnθ(λm))sgnθ(λn + λm)f̂(λn)f̂(λm)ei(λn+λm)x.

Now, f 2 =
∑
|n|6N

∑
|m|6N

f̂(λn)f̂(λm)ei(λn+λm)x, so it follows that

f 2+2Hθ(fHθ(f)) =
∑
|n|6N

∑
|m|6N

(1−(sgnθ(λn)+sgnθ(λm))sgnθ(λn+λm))f̂(λn)f̂(λm)ei(λn+λm)·
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It is trivial to see that for either θ ∈ {1, 2},

sgnθ(λn + λm)(sgnθ(λn) + sgnθ(λm)) = 1 + sgnθ(λn)sgnθ(λm).

Equivalently,

1− (sgnθ(λn) + sgnθ(λm))sgnθ(λn + λm) = −sgnθ(λn)sgnθ(λm).

Consequently, it follows that

f 2 + 2Hθ(fHθ(f)) =
∑
|n|6N

∑
|m|6N

(−sgnθ(λn)sgnθ(λm))f̂(λn)f̂(λm)ei(λn+λm)x

= (
∑
|n|6N

(−isgnθ(λn))f̂(λn)eiλnx)2

= (Hθ(f))2. �

Using this, the following vector-valued operator bound for the modified Hilbert transforms

may be established:

Theorem 3.5.4 For any k ∈ N, let (fj)j∈N ⊆ S2k

be such that there exists α > 0 such

that for every j ∈ N, the Fourier exponents of fj are separated by α. Then for θ ∈ {1, 2},

‖(
∑
j∈N

|Hθfj|2)
1
2‖

S2k . ‖(
∑
j∈N

|fj|2)
1
2‖

S2k .

Proof. To start with, fix any ε > 0 and for each j ∈ N, choose Nj ∈ N such that

f
(Nj)
j is a trigonometric polynomial of degree Nj approximating fj in the sense that
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‖f (Nj)
j − fj‖S2k <

ε

2
j
2

. Now, note that

‖(
∑
j∈N

|f (Nj)
j |2)

1
2 − (

∑
j∈N

|fj|2)
1
2‖

S2k

6 ‖(
∑
j∈N

|f (Nj)
j − fj|2)

1
2‖

S2k

= ‖
∑
j∈N

|f (Nj)
j − fj|2‖

1
2

S2k−1

6 (
∑
j∈N

‖f (Nj)
j − fj‖2S2k )

1
2 by the triangle inequality.

Consequently, by density, it suffices to assume that each fj is a trigonometric polynomial.

Also, place the assumption that fj is real valued for every j ∈ N. The result then extends

to complex valued functions by splitting fj into its real and imaginary parts and applying

the triangle inequality, using linearity of Hθ. Using the convolution definition of H, it is

clear that Hfj is real-valued when fj is. As Hθfj = Hfj − (−1)θf̂j(0), it follows that

Hθfj is also real-valued when fj is.

The proof will proceed by induction.

The case k = 1:

To begin, assume that
∑
j∈N

|fj|2 is a finite sum. The below will then be complete by
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appealing to the Lebesgue Monotone Convergence theorem.

‖(
∑
j∈N

|Hθfj|2)
1
2‖2S2

= sup
x∈R

∑
j∈N

∫ x+1

x

|Hθfj|2

6

(
2π

α
+ 1

)∑
j∈N

∑
n∈N

| − isgnθ(λn)f̂j(λn)|2 by Lemma 3.3.3

=

(
2π

α
+ 1

)∑
j∈N

lim
T→∞

1

2T

∫ T

−T
|fj|2 by Parseval’s identity

=

(
2π

α
+ 1

)
lim
T→∞

1

2T

∫ T

−T

∑
j∈N

|fj|2

6

(
2π

α
+ 1

)
‖(
∑
j∈N

|fj|2)
1
2‖2S2 by Proposition 1.2.2.

Inductive step: Assume the result for p := 2k and note that it follows a fortiori that

‖Hθf‖Sp . ‖f‖Sp . Now using Lemma 3.5.3,

‖(
∑
j∈N

|Hθfj|2)
1
2‖S2p

= ‖(
∑
j∈N

f 2
j + 2Hθ(fjHθ(fj)))‖

1
2
Sp

6 (‖
∑
j∈N

f 2
j ‖Sp + 2‖

∑
j∈N

Hθ(fjHθ(fj))‖Sp)
1
2

= (‖(
∑
j∈N

f 2
j )

1
2‖2S2p + 2‖

∑
j∈N

Hθ(fjHθ(fj))‖Sp)
1
2 .
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Now,

‖
∑
j∈N

Hθ(fjHθ(fj))‖Sp

= ‖Hθ(
∑
j∈N

fjHθ(fj))‖Sp

6 ‖Hθ‖Sp→Sp‖
∑
j∈N

|fjHθ(fj)|‖Sp

6 ‖Hθ‖Sp→Sp‖(
∑
j∈N

|fj|2)
1
2 (
∑
j∈N

|Hθ(fj)|2)
1
2‖Sp

= ‖Hθ‖Sp→Sp

(
sup
x∈R

∫ x+1

x

(
∑
j∈N

|fj|2)
p
2 (
∑
j∈N

|Hθfj|2)
p
2

) 1
p

6 ‖Hθ‖Sp→Sp

sup
x∈R

(∫ x+1

x

(
∑
j∈N

|fj|2)p
) 1

2
(∫ x+1

x

(
∑
j∈N

|Hθfj|2)p
) 1

2


1
p

6 ‖Hθ‖Sp→Sp‖(
∑
j∈N

|fj|2)
1
2‖S2p‖(

∑
j∈N

|Hθfj|2)
1
2‖S2p .

It thus follows that

‖(
∑
j∈N

|Hθfj|2)
1
2‖S2p 6

(
‖(
∑
j∈N

|fj|2)
1
2‖2S2p + 2‖Hθ‖Sp→Sp‖(

∑
j∈N

|fj|2)
1
2‖S2p‖(

∑
j∈N

|Hθfj|2)
1
2‖S2p

) 1
2

.

Using this,

(
‖(
∑

j∈N |Hθfj|2)
1
2‖S2p

‖(
∑

j∈N |fj|2)
1
2‖S2p

)2

6 1 + 2‖Hθ‖Sp→Sp

‖(
∑

j∈N |Hθfj|2)
1
2‖S2p

‖(
∑

j∈N |fj|2)
1
2‖S2p

.

Consequently,

‖(
∑
j∈N

|Hθfj|2)
1
2‖S2p 6

(
‖Hθ‖Sp→Sp +

√
‖Hθ‖2Sp→Sp + 1

)
‖(
∑
j∈N

|fj|2)
1
2‖S2p . �
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It is noted at this point that there is a certain degree of subtlety concerning the problem

of boundedness of the Hilbert transform in the setting of Stepanov norms. In particular,

the following is true:

Theorem 3.5.5 The Hilbert transform fails to be bounded in the space ({f ∈ Lploc(R) :

‖f‖Sp <∞}, ‖ · ‖Sp).

To prove this result, the following simple lemma is required:

Lemma 3.5.6 The Stepanov norm, ‖ · ‖Sp, is equivalent to the “amalgam” norm defined

by ‖ · ‖(Lp,`∞) :=

(
sup
x∈Z

∫ x+1

x

| · |p
) 1

p

.

Proof. It is clear that for f ∈ Lploc(R),

(
sup
x∈Z

∫ x+1

x

|f(s)|p ds
) 1

p

6 ‖f‖Sp . Now for any

x ∈ R, ∫ x+1

x

|f(s)|p ds 6
∫ [x+1]

[x]

|f(s)|p ds+

∫ [x+2]

[x+1]

|f(s)|p ds

where [x] indicates the integer part of x.

It hence follows that ‖f‖Sp 6 2
1
p

(
sup
x∈Z

∫ x+1

x

|f(s)|p ds
) 1

p

. �

By the equivalence of these norms, it follows that {f ∈ Lploc(R) : ‖f‖Sp <∞} is equal to

the “amalgam space” (Lp, `∞) of functions f such that ‖f‖(Lp,`∞) <∞, as defined in [15].

Now, from Theorem 2.6 in [15], the pre-dual space of (Lp, `∞) is (Lp
′
, `1) (which is defined

in the obvious way: ‖ · ‖(Lp′ ,`1) :=
∑
n∈Z

(∫ n+1

n

| · |p′
) 1

p′

). From this fact, if the Hilbert

transform is bounded on (Lp, `∞), it is also bounded on (Lp
′
, `1). This can be shown to

be false by the following:
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By an elementary calculation, H(χ[0,1])(x) =
1

π
log

|x|
|x− 1|

. Consequently,

‖H(χ[0,1])‖(Lp′ ,`1) =
1

π

∑
n∈Z

(∫ n+1

n

(
log

|x|
|x− 1|

)p′
dx

) 1
p′

.

Observing that log

(
|x|
|x− 1|

)
∼ 1

|x|
as |x| → ∞ and that for n ∈ N,

(∫ n+1

n

1

xp′
dx

) 1
p′

>(
1

(n+ 1)p′

) 1
p′

=
1

n+ 1
, it follows that ‖H(χ[0,1])‖(Lp′ ,`1) =∞.

In line with the proof of the periodic result, the next theorem to be developed is an

analogue of the Littlewood–Paley result from Theorem 2.3.7. To begin with, a standard

Littlewood–Paley theorem for R is stated. This result is a special case of Theorem 5.1.2

from [17], p. 339.

Theorem 3.5.7 (Littlewood–Paley on Lp(R)) Let Ψ ∈ C1(R) be an integrable func-

tion with mean value zero, such that there exists a positive constant C so that for all

x ∈ R,

|Ψ(x)|+ |Ψ′(x)| 6 C

(1 + |x|)2
.

Define Ψk = 2kΨ(2k·) so that Ψ̂k = Ψ̂(2−k·). Then for all f ∈ Lp(R), p ∈ (1,∞)

‖(
∑
k∈N

|Ψk ∗ f |2)
1
2‖Lp(R) . ‖f‖Lp(R).

For a proof, see [17], pp. 339–41.

With this stated, an analogous result for Sp, p ∈ (1,∞) may be developed.

Theorem 3.5.8 (Littlewood–Paley on Sp) Let ψ ∈ S(R) have mean value zero and
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define ψk := 2kψ(2k·) so that ψ̂k = ψ̂(2−k·). Then for f ∈ Sp, p ∈ (1,∞),

‖(
∑
k∈N

|f ∗ ψk|2)
1
2‖Sp . ‖f‖Sp .

Proof. The proof here will follow a similar scheme to the proof of Theorem 3.4.1.

For each k ∈ N, make the following decompositions for l ∈ N, j ∈ Z:

ψ
(l)
k := ψkχ(−2l,−2l−1]∪[2l−1,2l);

ψ
(0)
k := ψkχ(−1,1);

fj := fχ[j,j+1).

Now,

‖(
∑
k∈N

|f ∗ ψk|2)
1
2‖Sp

= ‖(
∑
k∈N

|(
∑
j∈Z

fj) ∗ (
∞∑
l=0

ψ
(l)
k )|2)

1
2‖Sp

6
∞∑
l=0

‖(
∑
k∈N

|ψ(l)
k ∗ (

∑
j∈Z

fj)|2)
1
2‖Sp .

For fixed x ∈ R, l ∈ N ∪ {0}, define

I(x, l) :=

∫ x+1

x

(
∑
k∈N

|ψ(l)
k ∗ (

∑
j∈Z

fj)|2)
p
2
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and note that ‖(
∑
k∈N

|f ∗ ψk|2)
1
2‖Sp 6

∞∑
l=0

sup
x∈R

(I(x, l))
1
p .

Observe that

I(x, l) 6
∫ x+1

x

(
∑
j∈Z

(
∑
k∈N

|ψ(l)
k ∗ fj|

2)
1
2 )p.

As in the proof of Theorem 3.4.1, for j ∈ Z,

supp(ψ
(l)
k ∗ fj) ⊆ [−2l + j,−2l−1 + (j + 1)] ∪ [2l−1 + j, 2l + (j + 1)] for l ∈ N;

supp(ψ
(0)
k ∗ fj) ⊆ [−1 + j, 1 + (j + 1)] = [j − 1, j + 2].

As before, for l ∈ N, define

Kl := {j ∈ Z : |([−2l + j,−2l−1 + (j + 1)] ∪ [2l−1 + j, 2l + (j + 1)]) ∩ [x, x+ 1]| 6= 0},

K0 := {j ∈ Z : |[j − 1, j + 2] ∩ [x, x+ 1]| 6= 0}

and note that |Kl| 6 2l + 4 for any l ∈ N ∪ {0}.

Now, applying Hölder’s inequality to the sum in j and using the above,

(∑
j∈Kl

(
∑
k∈N

|ψ(l)
k ∗ fj|

2)
1
2

)p

6

(∑
j∈Kl

(
∑
k∈N

|ψ(l)
k ∗ fj|

2)
p
2

) 1
p
(∑
j∈Kl

1p
′

) 1
p′
p

6

(∑
j∈Kl

(
∑
k∈N

|ψ(l)
k ∗ fj|

2)
p
2

)
(2l + 4)

p
p′ .
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It thus follows that for x ∈ R, l ∈ N ∪ {0},

I(x, l) 6
∫ x+1

x

(∑
j∈Kl

(
∑
k∈N

|ψ(l)
k ∗ fj|

2)
p
2

)
(2l + 4)

p
p′

6 (2l + 4)
p
p′+1

sup
j∈Kl

∫ x+1

x

(
∑
k∈N

|ψ(l)
k ∗ fj|

2)
p
2 . (*)

Using the fact that ψ is Schwartz, proceeding as in the proof of Theorem 3.4.1, it follows

that for l ∈ N, for each N ∈ N, there exists some fixed positive constant CN such that for

any k ∈ N,

|ψ(l)
k | 6

CN
2(N−1)k+N(l−1)

.

So, for x ∈ R, l ∈ N,

I(x, l) 6 (2l + 4)
p
p′+1

sup
j∈Kl

∫ x+1

x

(∑
k∈N

| CN
2(N−1)k+N(l−1)

∫
R
fj|2
) p

2

6 (2l + 4)
p
p′+1

(
CN

2N(l−1)

)p
sup
j∈Kl

(∑
k∈N

(
1

2(N−1)k
‖f‖L1([j,j+1]))

2

) p
2

= (2l + 4)
p
p′+1

(
CN

2N(l−1)

)p
sup
j∈Kl

‖f‖pL1([j,j+1])

(∑
k∈N

1

4(N−1)k

) p
2

.

Choose N > 2 to make the sum in k convergent and denote its sum by D2
N . Letting

C ′N := CNDN , it now follows that

I(x, l) 6 (2l + 4)
p
p′+1

(
C ′N

2N(l−1)

)p
sup
j∈Kl

‖f‖pL1([j,j+1])

6 (2l + 4)
p
p′+1

(
C ′N

2N(l−1)

)p
‖f‖pS1

6 (2l + 4)
p
p′+1

(
C ′N

2N(l−1)

)p
‖f‖pSp .
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Consider the remaining case of l = 0. Continuing from (*),

(I(x, 0))
1
p 6

(
5

p
p′+1

sup
j∈Kl

∫ x+1

x

(
∑
k∈N

|ψ(0)
k ∗ fj|

2)
p
2

) 1
p

6 5

(
sup
j∈Kl

∫ x+1

x

(
(
∑
k∈N

|ψk ∗ fj|2)
1
2 + (

∑
k∈N

|(ψk − ψ(0)
k ) ∗ fj|2)

1
2

)p) 1
p

6 5

(
sup
j∈Kl

∫
R
(
∑
k∈N

|ψk ∗ fj|2)
p
2

) 1
p

+ 5

(
sup
j∈Kl

∫ x+1

x

(
∑
k∈N

|(ψk − ψ(0)
k ) ∗ fj|2)

p
2

) 1
p

= 5 sup
j∈Kl

‖(
∑
k∈N

|ψk ∗ fj|2)
1
2‖Lp + 5

(
sup
j∈Kl

∫ x+1

x

(
∑
k∈N

|(ψk − ψ(0)
k ) ∗ fj|2)

p
2

) 1
p

6 C sup
j∈Kl

‖fj‖Lp + 5

(
sup
j∈Kl

∫ x+1

x

(
∑
k∈N

|(ψk − ψ(0)
k ) ∗ fj|2)

p
2

) 1
p

by Theorem 3.5.7

= C sup
j∈Kl

‖f‖Lp([j,j+1]) + 5

(
sup
j∈Kl

∫ x+1

x

(
∑
k∈N

|(ψk − ψ(0)
k ) ∗ fj|2)

p
2

) 1
p

6 C‖f‖Sp + 5

(
sup
j∈Kl

∫ x+1

x

(
∑
k∈N

|(ψk − ψ(0)
k ) ∗ fj|2)

p
2

) 1
p

.
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Now, consider that

(
sup
j∈Kl

∫ x+1

x

(
∑
k∈N

|(ψk − ψ(0)
k ) ∗ fj|2)

p
2

) 1
p

=

(
sup
j∈Kl

∫ x+1

x

(
∑
k∈N

|(
∞∑
l=1

ψ
(l)
k ) ∗ fj|2)

p
2

) 1
p

6
∞∑
l=1

(
sup
j∈Kl

∫ x+1

x

(
∑
k∈N

|ψ(l)
k ∗ fj|

2)
p
2

) 1
p

6
∞∑
l=1

(
sup
j∈Kl

∫ x+1

x

(
∑
k∈N

(
CN

2(N−1)k+N(l−1)

)2

‖f‖2L1([j,j+1]))
p
2

) 1
p

6
∞∑
l=1

(
CN

2N(l−1)

)
sup
j∈Kl

‖f‖L1([j,j+1])

(∑
k∈N

1

4(N−1)k

) 1
2

6 C
′

N

(
∞∑
l=1

1

2N(l−1)

)
‖f‖Sp .

It thus follows that

(I(x, 0))
1
p 6

(
C + 5C

′

N

(
∞∑
l=1

1

2N(l−1)

))
‖f‖Sp .

Drawing everything together,

‖(
∑
k∈N

|f ∗ ψk|2)
1
2‖Sp

6
∞∑
l=0

sup
x∈R

(I(x, l))
1
p

6

(
C + 5C

′

N

(
∞∑
l=1

1

2N(l−1)

))
‖f‖Sp +

∞∑
l=1

(2l + 4)

(
C ′N

2N(l−1)

)
‖f‖Sp

. ‖f‖Sp
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as N > 2. �

One final, simple result is required:

Lemma 3.5.9 For f ∈ Sp, p ∈ [1,∞),

Skf(x) =
i

2
(e−2πi2kxH1(e

2πi2k·f)(x)− e2πi2kxH2(e
−2πi2k·f)(x))

for x ∈ R.

Proof.

(̂Skf)(λn)

= χ[−2k,2k](λn)f̂(λn)

=
1

2
(sgn1(λn + 2k)f̂(λn)− sgn2(λn − 2k)f̂(λn))

=
i

2
(−isgn1(λn + 2k) ̂(e2πi2k.f)(λn + 2k) + isgn2(λn − 2k) ̂(e−2πi2k.f)(λn − 2k)).

�

With this established, the boundedness of the square function may now be proved:

Theorem 3.5.10 Let f ∈ Sp, p = 2k, k ∈ N be such that there exists α > 0 such that

λn+1 − λn > α for all n ∈ N. Then

‖(
∑
k∈N

|Skf −Rkf |2)
1
2‖Sp . ‖f‖Sp .

Proof. Firstly, as in the proof of the periodic result, define ψ ∈ S(R) so that ψ̂ = φ̂(1
2
·)−φ̂
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and note that χ[−1,1] − φ̂ = χ[−1,1]ψ̂. It thus follows by Theorem 3.2.2 that

‖(
∑
k∈N

|Skf −Rkf |2)
1
2‖Sp

= ‖(
∑
k∈N

|Sk(f ∗ ψk)|2)
1
2‖Sp

= ‖(
∑
k∈N

|e−2πi2k·H1(e
2πi2k·(f ∗ ψk))− e2πi2

k·H2(e
−2πi2k·(f ∗ ψk))|2)

1
2‖Sp

by Lemma 3.5.9

6 ‖(
∑
k∈N

|H1(e
2πi2k·(f ∗ ψk))|2)

1
2‖Sp + ‖(

∑
k∈N

|H2(e
−2πi2k·(f ∗ ψk))|2)

1
2‖Sp

. ‖(
∑
k∈N

|f ∗ ψk|2)
1
2‖Sp by Theorem 3.5.4

. ‖f‖Sp by Theorem 3.5.8. �

This completes the proof of Theorem 3.1.1.

68



Concluding Remarks

The principal difficulty in establishing convergence results and operator bounds in Sp

is the great lack of “standard” results in this setting, requiring well-understood theory

to be constantly reviewed in a new context. Whilst many results pertaining to Fourier

series have been long established to transfer from the setting of Lp(T), albeit often with

additional complications (for example, Parseval’s identity), fundamental results pertaining

to operator theory have been subject to very little study by the mathematical community.

Given a Marcinkiewicz-style interpolation result on Sp, the `2–valued boundedness of the

modified Hilbert transforms on S2k

given in Theorem 3.5.4 would immediately extend

itself to Sp for p > 2. However, such an interpolation result seems unlikely, as classical

abstract interpolation theory (as in [2], for example) establishes Marcinkiewicz’s result in

spaces that have re-arrangement∗ invariant norms. The supremum present in the Stepanov

norm immediately negates this property.

Furthermore, if it were additionally the case that Sp and Sp
′
were dual in the same way as

for the Lp spaces, `2-valued boundedness of the modified Hilbert transforms on Sp, p > 2

would extend to all Sp with p ∈ (1,∞). However, the fact that {f ∈ Lploc(R) : ‖f‖Sp <

∞} 6= Sp would seem to immediately destroy any chance of the Sp spaces dualising in

some “nice” way. It is even commented in [24] that the space Sp “does not appear to be

∗In line with Chapter Two of [2], two R-valued functions f and g on a measure space (X,µ) are
understood to be re-arrangements of one another if µ{x ∈ X : |f(x)| > λ} = µ{x ∈ X : |g(x)| > λ} for
all λ > 0.
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dual space”.

All of this notwithstanding, the `2–valued boundedness of the modified Hilbert transforms

is the only result presented in this thesis that is required for establishing boundedness of

the maximal operator S∗ that has not been proved for general p ∈ (1,∞). Consequently

the natural first direction for further research on this subject would be to attempt to

generalise Theorem 3.5.4.

There has been some study of the Hilbert transform in the context of Stepanov norms

undertaken by Sumiyuki Koizumi. He introduces a “generalised Hilbert transform” of his

own in [20] defined as follows:

Definition (Koizumi’s Generalised Hilbert Transform) For p ∈ [1,∞), let Wp de-

note the class of measurable functions such that

∫
R

|f(x)|p

1 + x2
dx < ∞. Then for f ∈ Wp,

the generalised Hilbert transform is defined as:

H̃f(x) := p.v.
x+ i

π

∫
R

f(t)

t+ i

dt

x− t
.

Koizumi studies this from the perspective of Stepanov norms in [21] and [22] (noting that

for any f ∈ Lploc(R) such that ‖f‖Sp <∞, it is necessarily the case that f ∈ Wp), and in

particular, claims in [22] to have proved a theorem equivalent to the following:

“Theorem” For p ∈ (1,∞), let f ∈ Lploc(R) be such that ‖f‖Sp <∞. Then,

‖H̃f‖Sp 6 Ap‖f‖Sp

where Ap = O

(
1

p− 1

)
as p→ 1.

Given this result, it is possible to show that the regular Hilbert transform is bounded for

f ∈ Sp, by observing that for such f , H̃f = Hf + M(H̃f) (where M is the averaging
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operation from Definition 1.3.1). Noting that M(H̃f) is finitely determined by Koizumi’s

“Theorem” and Lemma 1.3.4, the boundedness of the regular Hilbert transform follows.

This can trivially be used to show (scalar) boundedness of the modified Hilbert transforms

considered in Theorem 3.5.4, and noting that the inductive part of the proof of that

theorem only requires scalar boundedness, Theorem 3.5.4 would be extended to p > 2.

Unfortunately, the author believes that the proof of the above in [22] contains an error∗,

which he has been unable to repair to date.

Another potentially interesting generalisation of this research is the possibility of extend-

ing the various results to functions on Rd, for d > 1 (or even a general Banach space).

Whilst the concept of Bohr almost periodic functions in higher dimensions has been well

studied (see, for example, [3] pp. 59–66), there has been practically no study of higher

dimensional analogues of the more general almost periodic function spaces. In the case

of the Besicovitch norms, there is perhaps a certain degree of ambiguity over the sense in

which the limit should be taken, though in the Stepanov and Weyl spaces, an intuitive

way of defining a higher-dimensional norm would seem to be clear. However, the extent to

which the various results presented in Chapter One would transfer to this context would

need to be subject to careful study.

∗In particular, when dealing with the “J3” term, the triangle inequality is used “backwards” on
moving from the second line to the third.
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